

An Empirical Study of Package Coupling

in Java Open-Source

A Thesis submitted for the degree of Doctor of Philosophy

by

Asma Mubarak

Department of Information Systems, Computing and

Mathematics

Brunel University

2010

 I

ABSTRACT

Excessive coupling between object-oriented classes in systems is generally

acknowledged as harmful and is recognised as a maintenance problem that can

result in a higher propensity for faults in systems and a „stored up‟ future problem.

Characterisation and understanding coupling at different levels of abstraction is

therefore important for both the project manager and developer both of whom

have a vested interest in software quality. In this Thesis, coupling trends are

empirically investigated over multiple versions of seven Java open-source systems

(OSS). The first investigation explores the trends in longitudinal changes to open-

source systems given by six coupling metrics. Coupling trends are then explored

from the perspective of: the relationship between removed classes and their

coupling with other classes in the same package; the relationships between

coupling and „warnings‟ in packages and the time interval between versions in

Java OSS; the relationship between some of these coupling metrics are also

explored. Finally, the existence of an 80/20 rule for the coupling metrics is

inspected. Results suggest that developer activity comprises a set of high and low

periods (peak and trough‟ effect) evident as a system evolves. Findings also

demonstrate that addition of coupling may have beneficial effects on a system,

particularly if they are added as new functionality through the package Java

feature. The fan-in and fan-out coupling metrics reveal particular features and

exhibited a wide range of traits in the classes depending on their high or low

values; finally, we revealed that one metric (fan-in) is the only metric that appears

consistently to exhibit an 80/20 (Pareto) relationship.

 II

DECLARATIONS

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of the university or other institute of higher

learning, except where due acknowledgment has been made in the text.

Asma Mubarak

date 30/04/10

 III

DEDICATION

This thesis is dedicated with endless love and eternal respect to: my husband

Issam, who has been always supportive with lots of love, patience, advice and

jokes, my daughter Bayan, who brings happiness and cheerfulness to my life

every time I look at her lovely face, and my parents and my sisters, who give me

an unconditional love and support despite the distance.

 IV

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Steve Counsell, for his advice, guidance,

support and encouragement throughout my PhD work. Our discussions always

gave me the confidence of being on the right way. I also owe special thanks to

Professor Robert Hierons, my second supervisor, for his encouraging comments

and suggestions throughout this research. It is a pleasure to thank all my

colleagues in the Department of Information Systems, Computing and

Mathematics at Brunel University and those outside.

 V

TABLE OF CONTENTS

ABSTRACT .. I

DECLARATIONS ... II

DEDICATION ... III

ACKNOWLEDGEMENTS .. IV

TABLE OF CONTENTS .. V

LIST OF TABLES .. IX

LIST OF FIGURES .. XI

LIST OF ABBREVIATIONS ... XIII

LIST OF PUBLICATIONS ... XIV

CHAPTER 1. INTRODUCTION ... 1

1.1 INTRODUCTION ... 1

1.2 MOTIVATION .. 2

1.3 THESIS OBJECTIVES AND CONTRIBUTION ... 3

1.4 PRELIMINARIES .. 5

1.5 THESIS OUTLINE ... 6

CHAPTER 2. LITERATURE REVIEW ... 8

2.1 OVERVIEW ... 8

2.2 EMPIRICAL SOFTWARE ENGINEERING .. 8

2.3 SOFTWARE MAINTENANCE AND EVOLUTION ... 10

2.4 CONCEPTS IN OO SOFTWARE ... 12

2.5 SOFTWARE METRICS .. 15

2.6 COUPLING METRICS ... 19

2.7 SOFTWARE REFACTORING .. 22

2.8 SUMMARY .. 25

CHAPTER 3. RESEARCH METHODS ... 26

3.1 OVERVIEW ... 26

 VI

3.2 RESEARCH PARADIGMS AND METHODS ... 26

3.3 RESEARCH OBJECTIVES .. 30

3.4 DATA COLLECTION .. 31

3.4.1 SYSTEMS UNDER STUDY .. 31

3.4.2 SOFTWARE METRICS DEFINITION .. 33

3.5 DATA ANALYSIS .. 34

3.6 SUMMARY .. 34

CHAPTER 4. PACKAGE EVOLVABILITY AND ITS RELATIONSHIP

WITH REFACTORING .. 36

4.1 INTRODUCTION ... 36

4.2 MOTIVATION AND RELATED ISSUES ... 37

4.3 EMPIRICAL INVESTIGATION .. 38

4.3.1 THE SYSTEM UNDER STUDY .. 38

4.3.2 THE RESEARCH QUESTIONS .. 40

4.4 DATA ANALYSIS .. 41

4.4.1 RESEARCH QUESTION 1 (RQ1) .. 41

4.4.2 RESEARCH QUESTION 2 (RQ2) .. 43

4.4.3 RESEARCH QUESTION 3 (RQ3) .. 44

4.5 REFACTORING RELATIONSHIPS .. 47

4.5.1 VELOCITY ... 47

4.5.2 PDFBOX AND ANTLR .. 51

4.6 DISCUSSION .. 53

4.7 SUMMARY .. 56

CHAPTER 5. AN EMPIRICAL STUDY OF “REMOVED” CLASSES ... 58

5.1 INTRODUCTION ... 58

5.2 MOTIVATION AND RELATED ISSUES ... 59

5.3 STUDY DETAILS ... 61

5.3.1 SYSTEMS UNDER STUDY .. 61

5.3.2 DATA COLLECTED ... 61

5.3.3 THE RESEARCH QUESTIONS .. 62

5.4 DATA ANALYSIS .. 63

 VII

5.4.1 RESEARCH QUESTION 1 (RQ1) .. 63

5.4.2 RESEARCH QUESTION 2 (RQ2) .. 70

5.4.3 RESEARCH QUESTION 3 (RQ3) .. 73

5.5 STUDY VALIDITY ... 75

5.6 SUMMARY .. 76

CHAPTER 6. EMPIRICAL OBSERVATIONS ON COUPLING AND

CODE WARNINGS .. 77

6.1 INTRODUCTION ... 77

6.2 STUDY MOTIVATION .. 78

6.3 PRELIMINARIES .. 79

6.3.1 SYSTEMS UNDER STUDY .. 79

6.3.2 TOOLS USED .. 80

6.3.3 DATA COLLECTED ... 81

6.3.4 RESEARCH QUESTIONS .. 81

6.4 DATA ANALYSIS .. 82

6.4.1 THE JASMIN SYSTEM ... 82

6.4.2 THE PBEANS SYSTEM .. 85

6.4.3 THE SMALLSQL SYSTEM .. 88

6.4.4 THE JWNL SYSTEM .. 91

6.4.5 THE DJVU SYSTEM ... 94

6.5 DISCUSSION .. 96

6.6 SUMMARY .. 99

CHAPTER 7. EVOLUTIONARY STUDY OF FIN AND FOUT 101

7.1 INTRODUCTION ... 101

7.2 STUDY MOTIVATION AND RELATED ISSUES ... 102

7.3 SYSTEMS AND METRICS ... 104

7.3.1 SYSTEMS UNDER STUDY .. 104

7.3.2 DATA COLLECTED ... 104

7.3.3 RESEARCH QUESTIONS .. 105

7.4 DATA ANALYSIS .. 105

7.4.1 RESEARCH QUESTION 1 (RQ1) .. 106

 VIII

7.4.2 RESEARCH QUESTION 2 (RQ2) .. 111

7.5 SUMMARY .. 130

CHAPTER 8. CONCLUSIONS, REFLECTIONS AND FURTHER

WORK 131

8.1 OVERVIEW ... 131

8.2 RESEARCH SUMMARY .. 131

8.3 RESEARCH CONTRIBUTIONS ... 133

8.4 PERSONAL ACHIEVEMENT .. 134

8.5 RESEARCH LIMITATIONS AND FUTURE WORK .. 136

REFERENCES .. 138

GLOSSARY OF SOFTWARE ENGINEERING TERMS 149

APPENDIX A: DATA USED IN ANALYSING THE MAINTENANCE

CHANGES ... 153

APPENDIX B: DATA USED IN ANALYSING 80/20 RULE IN THE

COUPLING METRICS ... 159

APPENDIX C: DATA USED IN ANALYSING THE FIN AND FOUT

RELATIONSHIP .. 162

APPENDIX D: THE REFACTORING DATA FOR ANTLR AND PDFBOX

 ... 181

 IX

LIST OF TABLES

Table 3.1 Systems under study ..32

Table 4.1 The number of packages and new classes over the course of 9 versions39

Table 4.2 Packages and the new classes over the course of 9 versions42

Table 4.3 Max. increase in the number of LOC over the course of the 9 versions44

Table 4.4 Summary of the increase in attributes and methods over the 9 versions45

Table 4.5 Refactorings for the Velocity system across 9 versions48

Table 4.6 Duration between each version and associated refactorings (Velocity)56

Table 5.1 Removed classes compared to median (Jasmin) ...64

Table 5.2 Removed classes compared to median (DjVu) ..66

Table 5.3 Removed classes compared to median (pBeans) ...67

Table 5.4 Removed classes compared to median (Asterisk)69

Table 5.5 NOM and LOC compared to the median for the four systems70

Table 5.6 Changes for removed classes (Jasmin) ..74

Table 5.7 Changes for removed classes (DjVu) ..74

Table 5.8 Changes for removed classes (pBeans) ...75

Table 5.9 Changes for removed classes (Asterisk) ..75

Table 6.6.1 Changes in coupling metrics for the Jasmin system82

Table 6.6.2 Warnings for Jasmin ...83

Table 6.3 Changes in coupling metrics for the pBeans system86

Table 6.6.4 Warning for pBeans ..87

Table 6.5 Changes in coupling metrics for the SmallSQL system89

Table 6.6.6 Warning for Small SQL ..90

Table 6.6.7 Changes in coupling metrics for the JMNL system91

Table 6.8 Warning for JWNL ..92

Table 6.6.9 Changes in coupling metrics for the DjVu system94

Table 6.6.10 Warning for DjVu ...95

Table 7.1 80/20 metrics for the Jasmin system..107

Table 7.2 80/20 metrics for the SmallSQL system ..107

Table 7.3 80/20 metrics for the DjVu system ..108

Table 7.4 80/20 metrics for the pBeans system ...109

Table 7.5 Correlations FIN vs. FOUT (Jasmin) ..113

 X

Table 7.6 FIN and FOUT per package (Jasmin)..115

Table 7.7 Correlations FIN vs. FOUT (Small SQL) ...116

Table 7.8 FIN and FOUT per package (SmallSQL) ..118

Table 7.9 Correlations FIN vs. FOUT (DjVu) ..119

Table 7.10 FIN and FOUT per package (DjVu) ..122

Table 7.11 Correlations FIN vs. FOUT (pBeans) ...124

Table 7.12 FIN and FOUT per package (pBeans) ...126

Table 7.13 Correlations FIN vs. FOUT (Asterisk) ..127

Table 7.14 FIN and FOUT per package (Asterisk) ...129

Table A.1 The number of the classes added to each package (Velocity)153

Table A.2 The max. increase in the LOC for each package (Velocity)154

Table A.3 The max. increase in the NOA for each package (Velocity)156

Table A.4 The max. increase in the NOM for each package (Velocity)157

Table B. 1 The percentage of coupling metrics in 20% of the classes (Jasmin)159

Table B.2 The percentage of coupling metrics in 20% of the classes (SmallSQL) ...159

Table B.3 The percentage of coupling metrics in 20% of the classes (DjVu)160

Table B.4 The percentage of coupling metrics in 20% of the classes (pBeans)161

Table C.1 Metrics values for Jas package (Jasmin) ...162

Table C.2 Metrics values for Jasmin package (Jasmin) ..163

Table C. 3 Metrics values for Database package (SmallSQL)164

Table C. 4 Metrics values for Djvu package (DjVu) ...170

Table C.5 Metrics values for Anno package (DjVu) ...171

Table C.6 Metrics values for Toolbar package (DjVu) ...172

Table C.7 Metrics values for pBeans package (pBeans) ...173

Table C.8 Metrics values for Data package (pBeans) ...174

Table C.9 Metrics values for Fastagi package (Aserisk) ...175

Table C.10 Metrics values for Manager package (Asterisk)175

Table C.11 Metrics values for Manager.event package (Asterisk)177

Table D.1 Refactorings for the Antlr system across 9 versions181

Table D.2 Refactorings for the PDFBox system across 9 versions182

 XI

LIST OF FIGURES

Figure 4.1 Line chart of new classes added to the packages over the 9 versions42

Figure 4.2 Line chart of the max increase in the number of LOC (9 versions)44

Figure 4.3 Inc. in attributes and methods ..46

Figure 4.4 Max. inc. in attributes and methods ...47

Figure 4.5 Refactorings in the 9 versions of Velocity ...49

Figure 4.6 „Peak and trough‟ effect of refactorings for Velocity51

Figure 4.7 Refactorings for PDFBox ...52

Figure 4.8 Refactorings for Antlr ..53

Figure 5.1 Coupling metrics in the removed classes compared to median (Jasmin) ...65

Figure 5.2 Coupling metrics in the removed classes compared to median (DjVu)66

Figure 5.3 Coupling metrics in the removed classes compared to median (pBeans) ..68

Figure 5.4 Coupling metrics in the removed classes compared to median (Asterisk) 69

Figure 5.5 LOC in removed classes ...72

Figure 5.6 NOM in removed classes ...73

Figure 6.1 Total warnings for Jasmin ..83

Figure 6.2 Time interval between versions ...85

Figure 6.3 Total warnings for pBeans ...87

Figure 6.4 Time interval between versions ...88

Figure 6.5 Total warnings for SmallSQL ..90

Figure 6.6 Time intervals between versions ..91

Figure 6.7 Total warnings for JWNL ..93

Figure 6.8 Intervals between versions ...93

Figure 6.9 Warnings for DjVu ...95

Figure 6.10 Intervals between versions ...96

Figure 6.11 Trends in RFC ..97

Figure 6.12 Trends in MPC ...97

Figure 7.1 Metric values for pBeans ...110

Figure 7.2 Metric values for SmallSQL ..111

Figure 7.3 FIN/FOUT for the Jas package ..114

Figure 7.4 FIN/FOUT for the Jasmin package ..114

Figure 7.5 FIN/FOUT for the database package ...117

 XII

Figure 7.6 FIN/FOUT for the Djvu package ...121

Figure 7.7 FIN/FOUT for the Anno package ..121

Figure 7.8 FIN/FOUT for the Toolbar package...121

Figure 7.9 FIN/FOUT for the pBeans package ...125

Figure 7.10 FIN/FOUT for the data package...125

Figure 7.11 FIN/FOUT for the Fastagi package ..128

Figure 7.12 FIN/FOUT for the Manager package ...128

Figure 7.13 FIN/FOUT for the Manager.event package ...128

 XIII

LIST OF ABBREVIATIONS

CBO Coupling Between Objects (Chidamber and Kemerer, 1994)

DIT Depth of Inheritance Tree (Chidamber and Kemerer, 1994)

EXT Number of EXTernal methods called (EXT) (JHawk, 2008)

FIN Fan IN (JHawk, 2008)

FOUT Fan OUT (JHawk, 2008)

LCOM Lack of COhesion in the Methods of a class

LOC Lines Of Code

MPC Message Passing Coupling (Li and Henry, 1993)

MOOD Metric for Object-Oriented Design

NOA Number Of Attributes (Lorenz and Kidd, 1994)

NOC Number Of Children

NOM Number Of Methods (Lorenz and Kidd, 1994)

OO Object-Oriented

OSS Open-Source Systems

PACK Number of imported PACKages

RFC Response For a Class (Chidamber and Kemerer, 1994)

SE Software Engineering

WMC Weight Method per Class (Chidamber and Kemerer, 1994)

 XIV

LIST OF PUBLICATIONS

1. Counsell, S., Mubarak, A. and Hierons, R. (2010) An evolutionary study

of Fan-in and Fan-out metrics in OSS. Proceedings of the 4th

International Conference on Research Challenges in Information Science

(RCIS 2010), Nice, France, 2010.

2. Mubarak, A., Counsell, S. and Hierons, R. (2009) Does an 80:20 rule

apply to Java coupling? Proceedings of the International Conference on

Evaluation and Assessment in Software Engineering, (EASE), Keele, UK.

3. Mubarak, A., Counsell, S. and Hierons, R. (2008a) An empirical study of

“removed” classes in Java open-source, Proceedings of the 4th

International Joint Conferences on Computer, Information, and Systems

Sciences, and Engineering (CISSE 08).

4. Mubarak, A., Counsell, S. and Hierons, R. (2008b) Empirical observations

on coupling, code warnings and versions in Java open-source, Proceedings

of the3rd IFIP TC2 Central and East European Conference on Software

Engineering Techniques (CEE-SET 2008), Brno, Czech Republic.

5. Mubarak, A., Counsell, S., Hierons, R. and Hassoun, Y. (2007) Package

evolvability and its relationship with refactoring, Proceedings of the 3
rd

International ERCIM Symposium on Software Evolution, Paris, France.

6. Mubarak, A. Counsell, S., Hierons, R. and Hassoun, Y. (2007) Package

evolvability and its relationship with refactoring, Electronic

Communication of the European Association of Software Science and

Technology, 8.

 1

CHAPTER 1. INTRODUCTION

1.1 Introduction

A software system is modified and developed many times throughout its lifetime

to maintain its effectiveness. In general, it grows and changes to support the

increasing demands in information technology. Consequently, the majority of

software engineers today are concerned with changing and modifying existing

software systems. In Software Engineering (SE), software maintenance is the

process of making modifications to an existing system; software evolution is a

term used to refer to the development of a system and its continuous change

(Dvorak, 1994).

One of the most popular structures for building systems is object-orientation. In

this approach, concepts of classes and packages are used. Each package contains a

set of related classes, and packages are hierarchically organised in a package tree

(Hautus, 2002).

From a maintainability perspective, refactoring plays a significant role in this

field of software development activity (Fowler, 1999). Refactoring refers to a

technique whereby changes are made to a program to improve its design without

necessarily changing the semantics of the program (Fowler, 1999). As well as a

better program design, the benefits of the refactoring include improvement

program understandability and, in theory, improvement in the maintainability of

that program. Fowler (1999) presents 72 types of refactorings with the

motivations and the mechanics of each refactoring. There are numerous

refactorings pertaining specifically to inheritance in the set of 72 refactorings of

Fowler. For example, the „Extract Subclass‟ refactoring creates a subclass for an

existing class.

Software metrics have become essential in some disciplines of software

engineering. They are used to measure software quality and to estimate the cost

and effort of software projects (Fenton and Pfleeger, 2002). In the field of

software evolution, metrics can be used for identifying stable or unstable parts of

Chapter 1: Introduction 2

software systems, identifying where refactorings can be applied or have been

applied, and detecting increases or decreases of quality in the structure of

evolving software systems (Demeyer et al., 2000).

1.2 Motivation

Object-oriented (OO) design and development is very popular in today's software

development environment. OO development requires not only a different

approach to design and implementation than that of procedural but also a different

approach to software metrics. Since OO technology uses objects and not

procedures as its fundamental building blocks, the approach to software metrics

for OO programs must be different from the standard metrics set. There have been

many proposed OO metrics in the literature. As the quality of OO software is a

complex concept, the aspects of the studied quality should be defined in order to

decide how to measure them. Design metrics can be classified into two categories:

static and dynamic (runtime). Static metrics measure what may happen when a

program is executed and are said to quantify different aspects of the complexity of

the static source code. Run-time metrics measure what actually happens when a

program is executed. They evaluate the source code's run-time characteristics and

behaviour. The metrics that are investigated in this Thesis are static coupling

metrics. Stevens et al. (1974) first introduced coupling in the context of structured

development techniques. It defined coupling as “the measure of strength of

association established by a connection from one module to another”. It stated

that the stronger the coupling between modules, that is, the more inter-related they

are, the more difficult these modules are to be understood, changed and corrected

and thus the more complex the resulting software system.

Excessive class coupling has often been related to the tendency for faults in

software (Briand et al., 1997). A class that is highly coupled to many other classes

is an ideal candidate for re-engineering or removal from the system to mitigate

current and potential future problems. It is widely believed in the OO software

engineering community that excessive coupling between classes creates a level of

complexity that can complicate subsequent maintenance and potentially lead to

Chapter 1: Introduction 3

the seeding of further faults (Briand et al., 1997). Moreover, a highly coupled

class is expected to grow to be a relatively large class, making it even more

appropriate, theoretically, to be removed from the system.

The purpose of the research in this Thesis is to investigate coupling metrics in the

evolution of Java Open-Source Systems (OSS). In other words, the trends in and

characteristics of coupling metrics and their changes as systems evolve are

explored.

1.3 Thesis Objectives and Contribution

The main objective of this research is to assess how a system changes through the

analysis of packages in the system and to compare that data with corresponding

results from refactoring the same system. Another objective of the research is to

explore the relationship between coupling metrics and the classes removed from

multiple versions of several open-source systems; a further objective is to

empirically explore coupling in these Java systems using coupling metrics,

version release times and code warnings. Finally, we aim to explore whether an

80/20 rule exists in Java from coupling metrics over multiple versions of open-

source software and to investigate the characteristics of classes with the highest

values of incoming coupling metrics, notably FIN.

These objectives can be listed as follows:

1. To investigate versions of OSS with particular reference to the

characteristics of classes removed from systems during their evolution. In

particular, to conduct a thorough investigation of the removed classes from

the perspective of their coupling to other classes, their size compared to

other classes and their change trends before they were removed.

2. To discover the relationship between changes in coupling metrics over the

releases of a system and the different time periods between these releases.

While there have been many studies of evolving systems, the time frame

between releases is often ignored and each version release is considered as

occurring at an equal time interval from the last. Moreover, we aim to

Chapter 1: Introduction 4

investigate how extracted code warnings could help in understanding the

patterns of maintenance activity in which increased coupling will

inevitably feature.

3. To explore whether an 80/20 rule exists in Java coupling metrics over

multiple versions of OSS. This will help in identifying the „key‟ classes,

defined as certain classes in any system that comprise a large number of

methods and, by implication, a large amount of coupling.

4. To investigate the characteristics of classes that shown the highest value of

incoming coupling metrics. A class that is highly coupled to many other

classes is an ideal candidate for re-engineering or removal from the system

to lessen both current and potential future problems. A problem that

immediately arises, however, for the developer when considering re-

engineering of classes with high coupling is the size of the dependencies

of those classes and the kind of dependencies, „incoming‟ or „outgoing‟.

We also address the issue of potential re-engineering and view coupling as

a key contributor to the decision on whether and when to re-engineer

(classes) or not over the lifetime of a system.

This Thesis makes a number of contributions from an empirical perspective; in

particular, from an evolutionary perspective. It informs the empirical

understanding of coupling features and the contributions have been published in

various archived sources. The contribution of the research in this Thesis can also

be demonstrated on the basis that previous researchers (Kemerer and Slaughter,

1999a; 1999b) have postulated that software evolution has not been the subject of

significant research. Consequently, they expressed the need for further empirical

studies of software evolution.

The main contribution of the Thesis is first how changes in the maintenance

practice may help a project manager to approximate the potential maintenance

effort needed for the system, and for the project‟s developers to take preventive

action in the form of additional system maintenance and refactoring. Secondly,

since few empirical studies have analysed coupling from an evolutionary

respective, we believe the results in this Thesis form a contribution to our

Chapter 1: Introduction 5

understanding of how coupling evolves and where the majority of maintenance

changes are applied. Finally, all the data used in this Thesis is available to other

researchers for the purposes of replication and, in this sense, we see the Thesis as

a contribution to the ongoing body of empirical research in this area.

1.4 Preliminaries

Seven OSS were chosen to conduct the research investigation. These systems

were all written in Java with sufficient versions to allow a meaningful longitudinal

analysis. Systems were selected in terms of „number of downloads‟ order from

sourceforge. The selection process thus resulted in many systems being rejected

from candidate systems identified because they were either a mix of different

languages and/or did not contain multiple versions for download. These systems

are Velocity, Jasmin, SmallSQL, pBeans, Asterisk, DjVu and JWNL. More details

on these systems are available in Chapter 3.

Software metrics (Fenton and Pfleeger, 2002; Chidamber and Kemerer, 1994;

Lorenz and Kidd, 1994) are a significant part of our investigation. In this Thesis,

we make use of software metrics as the basis of our analysis to explore

quantitatively the changes of coupling in multiple versions of the studied systems.

The following six independent coupling metrics were collected using JHawk.

1. Response for a Class (RFC).

2. Number of EXTernal methods called (EXT).

3. Message Passing Coupling (MPC).

4. PACK. Number of imported PACKages.

5. Fan-in (FIN).

6. Fan-out (FOUT).

We also collected the total number of methods (NOM) and the lines of code

(LOC) in each class as size measures. Again, these metrics will be described in

more detail in the methodology chapter (Chapter 3).

Chapter 1: Introduction 6

We also collected a physical time-based metric, which is the actual time interval

between each version release.

1.5 Thesis Outline

The thesis is structured over eight chapters. We next explain the contents of each

chapter and how the chapters in totality knit together to form a coherent research

story. This chapter presents the context and motivation of the work, and gives the

overview of the objectives and contributions.

Chapter 2 describes related work to the research problems addressed. It looks at

related and complementary work in the area of OSS, coupling metrics and

refactoring. It also provides insights and justification for the nature of the research

presented in this Thesis.

Chapter 3 provides a detailed description of the research methodology adopted in

the Thesis including an explanation for the basis upon which the systems used in

the study were chosen, description of the software metrics used in the research,

and justification for the choice of statistical analysis used.

Central to the aim of the Thesis is to uncover traits in OSS from an evolutionary

perspective (at the package level). Chapter 4 assesses how a system changes

through the analysis of the said packages in a system and compares the obtained

data with corresponding results from refactoring the same system. Knowledge of

trends and changes within packages is a starting point for an understanding of

how effective the original design may have been and how susceptible types of

packages may change. It can also inform our knowledge of facets of software such

as coupling and cohesion.

One aspect of evolution detailed in Chapter 4 and a key observation was the

dynamic nature of systems and, in particular, the tendency for removal of classes

as a system evolved. Chapter 5 investigates versions of OSS with particular

reference to classes „removed‟ during their evolution. The research explores

whether classes removed from the system are lowly or highly coupled relative to

other classes in the same package. Moreover, it explores the size of the same

classes if they are excessively large compared with the remaining classes in the

Chapter 1: Introduction 7

package. Finally, the changes of the removed classes before they are removed are

assessed to identify patterns of change.

In Chapters 4 and 5, a key assumption made was that evolution and the versions

of each system occurred at equal intervals in time. This assumption could be

criticised on the basis that frenetic change activity could easily occur at irregular

intervals. Chapter 6 therefore investigates the trends in change activity that can be

observed if we factor in the different time periods between releases of a system.

Hence, in this chapter the relationship between coupling and the potential code

warnings (i.e., areas of code that might prove problematic) is investigated. The

FindBugs tool was used to highlight potential sources of code problems.

One observation made from the studies in Chapters 4, 5 and 6 was that the bulk of

changes and coupling activity (identified by the metrics collected) centred around

a small number of classes, while the vast majority of classes remained untouched

throughout the same versions studied. Pareto‟s Law or an 80/20 rule is a naturally

occurring phenomenon which suggests that 80% of class activity occurs in just

20% of classes. Chapter 7 therefore explores, first, whether an 80/20 rule exists in

Java from six coupling metrics over multiple versions of open-source software

and, if so, whether that relationship is exacerbated over time. After that, the

characteristics of classes revealing the highest fan-in are investigated. Finally, the

trends of the changes in the fan-in and fan-out are inspected in addition to the

relationship between these two metrics.

Chapter 8 provides the conclusions and the contributions of the research presented

in this Thesis with reflection on the original objectives and the level to which they

were achieved. It also gives some thoughts about related future research.

 8

CHAPTER 2. LITERATURE REVIEW

2.1 Overview

In the previous chapter, we gave an introduction to the Thesis and we presented

its structure. In this chapter, we describe related work to the research carried out

in this Thesis. First, some concepts are defined, such as empirical software

engineering, software life-cycle and software maintenance and evolution. After

that, issues in evolving a system in terms of class and package changes are stated.

Finally, related work to the areas of software metrics, coupling metrics and

refactoring in particular are described.

In Section 2.2, we talk about the idea of empirical work in software engineering.

Section 2.3 presents a description of related research in software maintenance and

evolution. Some concepts in the OO paradigm are described in Section 2.4 in

terms of classes and packages. In Section 2.5, we review the software metrics

presented in the literature, and how they have been used in practice. Section 2.6

provides a detailed analysis of published work on OO coupling. Finally, we

provide an analysis of published work on software refactoring in Section 2.7. A

summary of the chapter is presented in Section 2.8.

2.2 Empirical Software Engineering

According to McDermid (1991, cited in Bennett, 1996), Software Engineering SE

can be defined as “the science and art of specifying, designing, implementing and

evolving - with economy, time limits and elegance - programs, documentation and

operating procedure whereby computers can be made useful to man”. This

definition of software engineering is complete and contains the essence of these

concepts. It declares that it is a science, and thus clarifies that it is about the task

of looking for knowledge and scientifically managing that knowledge. It points to

art to indicate creativity. It presents four actions, which inform the real work

carried out. The expression „economy‟ suggests that in some way management

Chapter 2: Literature Review 9

has to be involved; „time limits and elegance‟ indicate that an organised and

methodical approach is significant. The outcome artefacts are specified to be the

program, documentation and the operating procedures. Finally, „useful to man‟

underlines the significance of never neglecting the essential purpose - the human

being.

Software Engineering is still a very young branch of computer science (Bennett,

1996). It emerged because of a necessity for new notations, new methods and new

tools that could respond to the raised complexity of development and software

systems. Moreover, it can be said that software engineering contains theories,

techniques, methods and tools required to develop reliable software. Because of

all these, the need for an empirical approach arose. Empirical Software

Engineering focuses on the evaluation of software engineering technologies. It

attempts to assess models and techniques, and to investigate how they perform in

practical frameworks, with the aim of creating a database to support decision

making for the progress (Basili et al., 1996a). A set of hypotheses are formulated

to declare an assumption on how relevant variables are influenced by other

independent variables. After that, these hypotheses are validated by conducting an

experimentation process. Usually, this is decided by a statistical analysis

conducted on the collected data.

In 1996, Wasserman stated that software engineering had eight technical

characteristics including the software life-cycle. A software life-cycle is defined

as the period of time which begins when a software product is designed and

finishes when the software is not used anymore (Longstreet, 1990). The software

system goes through several phases throughout its life-cycle. According to Pillai

(1996), these phases can be divided into the following stages:

 Requirements definition and analysis phase, distinguished by exploration

and analysis of the description of the product.

 Design phase, in which we design drafts and test their integrity.

 Implementation and testing phase, when all test cases are executed.

Chapter 2: Literature Review 10

 Installation phase, which determines that the system is ready to be released

to customers.

 Maintenance phase, which includes regression testing.

The most costly phase is the maintenance phase, because of the amount of change

that occurs in the system (Williams and Carver, 2007). It costs between 40% and

90% of the total life-cycle costs; however, it was not recognised as a serious

activity until 1970s (Bennett, 1996). Kajko-Mattsson et al. (2001) state that

although software maintenance forms a main phase of the software lifecycle; it

has frequently been ignored and is given very little consideration in both

educational and manufacturing fields.

2.3 Software Maintenance and Evolution

The software maintenance phase comes after the implementation of a system. The

maintenance stage should be initiated for various reasons. Burd and Munro (2000)

state that these reasons could be sorted into four categories of maintenance

activities, which are:

 Perfective maintenance: implies enhancing the functionality of software in

reply to a user‟s identified changes.

 Corrective maintenance: entails the correction of errors that have been

defined in the software.

 Adaptive maintenance: involves the alteration of the software that is

caused by changes within the software situation.

 Preventative maintenance: implies updating the software to progress upon

its future maintainability without changing its existing functionality.

One of the most important issues presently facing software engineering is the

capability to evolve a system with the changing requirements of its stakeholders.

When systems evolve, many issues arise. According to Perry (1994), the

dimensions of the context in which the system evolves help to recognise the

evolution of software system appropriately. He characterises these dimensions as:

the fields that are related to these system, the skills learnt from evolving and

Chapter 2: Literature Review 11

employing these systems and the procedures used in manufacturing and evolving

these systems.

Zimmermann et al. (2005) try to lead programmers along associated modifications

by relating data mining to the histories of versions. To this end, they use the

ROSE tool which aims: firstly to give a programmer recommendations and

forecast of probable changes by using data mining skills to get these related

changes. Secondly, to distinguish coupling among program items that program

analysis cannot distinguish. Lastly, the tool will warn the program if the changes

that the user wants to perform are incomplete.

In terms of software evolution, the laws of Lehman (Belady and Lehman, 1976)

provide the backdrop for many past evolutionary studies. Evolution has also been

the subject of simulation studies (Smith et al., 2006) and this has allowed open-

source software evolution to be studied in a contrasting way to that empirically.

One of the main issues that arise when systems evolve is which patterns of change

apply at different levels of abstraction. By studying how classes change we can

determine how the system changes. Developers can make changes to a built

system by producing new classes instead of modifying existing ones (Bieman et

al., 2003). Bieman et al. found that there was a relationship between design

structures and development and maintenance changes. They examined whether

potential changes to a class could be predicted by the architectural design context

of a class, and found that a correlation between class size and number of changes

was inconclusive. Moreover, they found that in four of five case studies, classes

which had function in design patterns were modified more frequently than other

classes (Gamma et al., 1995).

In another study carried out by Bieman, Jain and Yang (2001) it was found that

maintenance effort could be affected by certain design factors. For example, it

was found that there was a correlation between class size and the number of

changes. Moreover, two unexpected relationships were discovered. The first

related to the classes reused during inheritance; it was found that these classes

tend to be changed more. The second relationship identified was that classes

Chapter 2: Literature Review 12

recognised as prone to change were the classes which played a part in design

patterns.

2.4 Concepts in OO Software

Systems are built using many different structures. One of the most popular

structures is OO. In this approach, a computer program may be considered as a

collected composition of separated units, or objects, each one able to receive

messages, process data, and send messages to other objects. Bennett et al. (2002)

state that OO is organised around the interfaces of the objects, their status at a

particular instance and how the objects communicate with each other. Moreover,

they define the class as a set of related operations and attributes that defines a

class‟s behaviour, methods and attributes. Consequently, an object is an instance

of class and has identity, behaviour, and state. In other words, they declare that

the purpose of a class is to state a group of methods, operations and attributes that

completely illustrate the behaviour and structure of objects. Each object consists

of a single identifier, a set of attributes and a set of methods. Each attribute has a

value that can change, and an object‟s method is invoked as a reaction to a

message from another object (Jajodia and Kogan, 1990).

Systems which are built using an OO structure are potentially more difficult to

maintain than those in the procedural structure as the existence of inheritance and

polymorphism raises dependencies in a program and incorporate potential

difficulties in program understanding and analysis (Wilde and Huitt, 1992). Wilde

and Huitt summarise the most important problems that can be expected in

maintaining OO programming as follows:

 The problem of dynamic binding: dynamic binding gives much of the

flexibility of OO languages; however, it may cause problems in outlining

dependencies within the program, which many maintenance tools depend

on.

 Dependencies in an OO system: a dependency in a software system can be

considered as a straight connection between two entities in the system; any

Chapter 2: Literature Review 13

change in the first entity may affect the second. In an OO system, using

polymorphism and hierarchy produces an increase in the types of

dependencies: class-to-class dependencies, class-to-method, class-to-

message, class-to-variable, method-to-variable, method-to-message and

method-to-method. Because of the multidimensional nature of the

connections, it is very hard to sift through all the relationships in a system,

and that makes program understanding more difficult.

 The structure of an OO program: an OO system may contain a number of

very small modules as for many tasks very short methods may be written.

Consequently, the code for any particular task would be very broadly

distributed. Understanding a line of code might need an understanding of a

series of method invocations through some distinct object classes to

discover where the task is actually completed.

 High-level system understanding: when a maintainer wants to become

familiar with a system for the first time, high level system understanding is

required. In order to provide this to the maintainer, statistical clustering

tools are needed to structure an OO environment.

 Locating system functionality: according to the dispersion of functionality

into different object classes in OO system, there is some complexity in

discovering where different functions are performed. Therefore,

maintainers may need to use tools to investigate and compare traces of

system performance in order to help them recognise the methods and

classes related in a functional sense.

 Detailed code understanding: maintainers spend long periods of time

understanding the detailed code that they intend to modify. In an OO

environment, detailed code understanding is very complicated because of

the class hierarchy and associated features such as polymorphism. By

using the concept of dependency analysis, maintainers can easily identify

the compound types of dependencies in OO programs. They also identify

chains of relationships, which may be helpful in tracing through widely

distributed code fragments.

Chapter 2: Literature Review 14

Classes in Java are organised into separate groups called packages. The aim of a

package is to join strongly related classes within a single entity and to offer

confidential access between those classes. Each package contains a set of related

interfaces, classes and exceptions, and packages are hierarchically organised into

a package tree (Hautus, 2002). At the present time, most programs are built in

terms of a set of classes, or packages, and this is enhanced by the appearance of

the concept of encapsulation. Bennett et al. (2002) state that encapsulation refers

to the capability for the same message to be sent to objects in different classes,

each of which replies to the message in a different way. Consequently, the full

idea of encapsulation in OO programming is for the methods and variables of

objects to be protected against unauthorised access by other objects. That can be

achieved through the access modifiers, which Bennett et al. classify into four

different types:

 Public: a feature (an attributes or a method) with a public access can be

accessed by any object.

 Private: a feature with a private access can be accessed only by an object

from the class that includes in it.

 Protected: a feature with a protected access can be accessed either by an

object of the class includes in it or of a subclass or descendant of that

class.

 Package: a feature with a package access is accessed only by an object

from a class in the same package.

In the environment of OO applications (according to Ducasse et al. (2005)),

packages have varying functions: they may include utility classes used through

their structure, or they may include some fundamental subclasses enlarging a

framework. In addition, they indicate that as classes are included in packages, it is

essential in the re-engineering and development of OO systems to understand sets

of classes and packages; they add that packages are more than a simple

generalisation of classes. Depending on the relationship between packages and

their contained classes, we can decompose the application and re-modularise it.

Ducasse et al. (2005) intend to help reengineers and researchers working on re-

Chapter 2: Literature Review 15

modularisation to gain a better understanding of OO programs. They give two

radar visualisations called „butterfly views‟ which assist in comprehending and

classifying packages. These butterfly views represent how a package connects to

the remaining parts of the system and they also illustrate how a package is

internally structured.

In another study, Ducasse et al. (2004) state that understanding packages is an

essential action in the re-engineering of OO programs, and the cost of modifying

the program may be influenced by the correlation between packages and their

enclosed classes. In order to support the developer in achieving a mental image of

an OO system and understanding its packages, Ducasse et al. (2004) introduce a

top-down engineering method based on visualisation. Consequently, they raise the

abstraction level by detecting packages rather than classes. They classify packages

by supplying a polymetric observation that helps the engineer to concentrate on

packages rather than being flooded with information. They also illustrate how a

package communicates with the remaining parts of the program and give an idea

about how a package is built internally.

Hautus (2002) observes that many researchers try to comprehend programs by

considering the analysis and visualisation of them. However, packages are

essential as they are well-suited for identifying the sophisticated design of Java

programs. Therefore, focus should be on packages rather than classes or methods

in research, they also present the Package Structure Analysis Tool (PASTA). The

PASTA metric is described as: “the weight of the undesirable dependencies

between the sub-packages divided by the total weight of the dependencies

between the sub-packages”. Hautus states that this metric gives a means of

speedily estimating the inner value of complex software products based on their

source code.

2.5 Software Metrics

In this Thesis, we use software metrics to empirically investigate the trends of

coupling in the evolution of Java OSS. Generally speaking, software metrics are

used to explain the activities concerned with measurement in software

Chapter 2: Literature Review 16

engineering, and to offer information to support decision making during software

development and testing from a technical and managerial side. The metrics which

we use enable us to measure coupling in each version of the systems under study

and to represent the evolutionary behaviour of systems from a coupling viewpoint,

which helps to inform software quality and software resource requirements.

Software metrics vary from generating numbers, which characterise properties of

software code through, to models which help predict software quality and

software resource needs. They are used to measure attributes of software systems

as well as recognise the software threats and decrease the cost of developing and

maintaining the software by taking corrective action early in the development

course (Hall et al., 2005).

Measurement, according to Fenton and Pfleeger (2002), is a mapping of empirical

objects to statistical objects with consideration given to all structures and

relationships. The attributes measured by software metrics can be categorised into

two groups: internal and external attributes. The internal attributes of a software

system include size, coupling and the amount of reuse in the system, while the

external attributes include usability, reliability and security of a system (Fenton

and Pfleeger, 2002). In this Thesis, since we are concerned with coupling in the

system, we measure the internal attributes of the studied systems. There is also a

distinction to be made between direct and indirect measurement of attributes

(Fenton and Pfleeger, 2002). Direct measurement of an attribute of an object

involves no other attribute or object. For example, the length of source code is

measured by lines of code, and the number of defects discovered during the

testing process is measured by actually counting the defects. Indirect

measurement of an attribute of an object involves other attributes or objects.

Examples of the indirect measures are: the module defect density which is the

number of defects divided by the module size, and the requirement stability,

which is the number of initial requirements divided by the total number of

requirements. In our Thesis, we measure direct and indirect attributes.

The first text on software metrics was published in 1976 by Tim Gilb (1967).

Therein, Lines of Code (LOC) was used to measure program quality and

Chapter 2: Literature Review 17

productivity (Fenton and Neil, 1998). Akiyama (1971) proposes a basic regression

model for module density to measure program complexity, and that represented

the first step in using metrics for predicting software quality.

By the introduction of OO languages, the main feature of academic research has

been to refine, extend and validate complexity metrics (Chidamber and Kemerer,

1994; Lorenz and Kidd, 1994; Abreu and Carapuca, 1994; Briand et al., 1998;

Briand et al., 1999b; Harrison et al., 1998; Arisholm et al., 2004).

Chidamber and Kemerer (C&K) (1994) proposed six OO metrics as a suite to

measure features of OO systems. The suite of metrics consisted of Weighted

Method per Class (WMC): measures the number of methods defined in a class,

Response For a Class (RFC): measures the total number of methods that can be

executed as a result of receiving a message from an object of that class, Lack of

Cohesion in Method (LCOM): measures the lack of cohesion in methods of a

class, Depth of Inheritance Tree (DIT): measures the maximum number of classes

from a leaf to the root class in an inheritance hierarchy, Number Of Children

(NOC): measures the total number of descendent classes from a single class, and

Coupling Between Objects (CBO): measures inter-relationship of classes.

These metrics have been used extensively since in a variety of studies; none of the

metrics, however, give a coarse-grained feel for the incoming and outgoing

coupling that OO fan-in and fan-out provide and which are the subject of some

work in this Thesis. Of these six metrics, the RFC seems to have been the least

favoured by empirical software engineers and yet there is no obvious reason for

neglect of its investigation (our study therefore attempts to redress that

imbalance). The majority of empirical studies in OO seem to have focused on

other C&K metrics such as the DIT, WMC and CBO. In our study, we focus on

the RFC and CBO metrics. C&K metrics appear to be useful for developers and

designers of systems as they operate at the class level (Basili et al., 1996b).

Abreu and Carapuca (1994) identify the MOOD (Metrics for Object-Oriented

Design) set of metrics which fulfil some evaluation criteria. These criteria include

the requirements for formal definition for metrics determination. Moreover, the

Chapter 2: Literature Review 18

metrics should be obtainable early in the system life-cycle, language independent,

dimensionless, down-scaleable and easily calculated. The MOOD set of metrics

comprised 1) Method Inheritance Factor (MIF): The ratio of the sum of the

inherited methods to the total number of available methods; Attribute Inheritance

Factor (AIF): The ratio of the sum of the inherited attributes to the total number of

available attributes; Coupling Factor (CF): This metric considers the actual

couplings among classes in relation to the maximum number of possible

couplings; Polymorphism Factor (PF): calculates the degree of method overriding

in the class inheritance tree; Method Hiding Factor (MHF): The ratio of the sum

of all the hidden methods to the total number of methods; and Attribute Hiding

Factor (AHF): The ratio of the sum of all the hidden attributes to the total number

of attributes. These metrics help in setting the OO design measures at the

organisation level and help OO practitioners to conduct their development

processes.

Lorenz and Kidd (1994) introduce a set of metrics to measure dimensions of OO

systems. Most of these metrics are direct metrics and include directly countable

measures. The metrics are divided into four categories: size, inheritance, internals

and externals. They include Number of Methods per class (NM), Number of

Public Methods per class (NPM), Number of Variables per class (NV), Number of

Public Variables per class (NPV), Number of Methods Inherited by a subclass

(NMI), Number of Methods Overridden by a subclass (NMO), Number of

Methods Added by a subclass (NMA), Average Methods Size (AMS), Number of

times a Class is Reused (NCR), and Number of Friends of class (NF).

According to Shepperd (1995), theoretical and empirical validations are essential

for the success of the software metrics when using them in practice. Metrics

validation is the procedure of investigating if the software metric precisely

measures the software attribute which they purport to measure (Fenton and

Pfleeger, 2002).

Harrison et al. (1998) investigated a set of six OO software metrics, called the

MOOD metrics, with measurement theory perspective and taking into

consideration the OO features that they were meant to measure: encapsulation,

Chapter 2: Literature Review 19

inheritance, coupling and polymorphism. By applying these metrics to empirically

investigate three different application domains, they found that the MOOD

metrics set could be used to provide a general assessment for the systems studied.

Their results showed that MOOD metrics work at the system level and hence are

useful for project managers.

Briand et al. (1999a) introduced an outline of the existing empirical studies of OO

systems, methods, tools, notations and processes and discussed four directions for

further work in the area of empirical OO software development and evolution.

These directions were: categorise main quality and productivity issues, assess and

compare OO technologies, construct (productivity and quality) models and meta-

analysis. They highlighted points to be considered to accomplish successful

empirical studies. In particular, they encouraged cooperation with the software

industry in an attempt to improve the quality and productivity of empirical

studies.

Validation is important to the success of software measurement (Kitchenham et

al., 1995a). Kitchenham et al. propose a validation framework to demonstrate how

software metrics should be investigated, to help practitioners and researchers to

figure out how to validate a metric, and to identify when it is suitable for a metric

to be applied. They differentiate between two fundamental assessment methods:

theoretical validation, which validates that the measurement obeys the measured

element‟s essential properties and empirical validation, which confirms that

values that measure attributes are consistent with values expected by models

involving the attribute. Moreover, Kitchenham et al. define a set of criteria that all

measures must obey to be determined a valid measure from a measurement

theoretic viewpoint.

2.6 Coupling Metrics

In 1974, Stevens et al. first defined coupling in the context of structured

development as “the measure of the strength of association established by a

connection from one module to another” (Stevens et al., 1974). Coupling metrics

are OO metrics that measure the interdependence between a given class and the

Chapter 2: Literature Review 20

other classes in the system. Classes are coupled when methods in one class use

methods or attributes of other classes.

A large number of researchers have tried to understand how to assess the quality

of OO design. However, external quality measures such as maintainability and

reliability cannot be measured until late in the software life cycle. Therefore, there

is a need to recognise early predictors for such qualities. A number of research

studies have used static coupling metrics to measure the maintainability of OO

systems (Arisholm et al., 2004). Those measures have been helpful predictors of

several attributes like modifications and fault-proneness. For example, Arisholm

et al. (2004) describe the use of dynamic coupling metrics. These metrics are

major signs of change-proneness and they go together with static coupling metrics

capturing different facets of a system. There is also some evidence that some

forms of coupling have a negative impact on fault-proneness (Briand et al., 1997).

As a violation of encapsulation, C++ friends - an improper form of coupling, have

also been shown to reflect higher fault rates in software (Briand et al., 1997).

Briand et al. defined coupling measures and empirically found that several export

and import coupling measures were significant predictors of fault-proneness.

Additionally, they found that using “friend” classes in C++ increased the fault-

proneness of classes more than other kinds of coupling metrics. English et al.

(2007) presented metrics that were refinements of the work of Briand et al.

(1997), and assessed these metrics using the LEDA software system. They found

that the metrics depended on the „friend‟ type of coupling (applied frequently to

access hidden attributes in classes, but rarely to access hidden methods). They

differentiated between coupling metrics that used the „friend‟ mechanism,

„inheritance‟, and „other‟ forms of coupling. They further stated that metrics that

depended on „friends‟ and „other‟ forms of coupling were different to existing

metrics, and were helpful in both prediction models and conducting a more

thorough investigation of the structure of software systems.

Briand et al. (1999b) carried out a widespread study of the currently available

coupling literature in OO systems and introduced a framework for the definition,

comparison and assessment of coupling measures in OO systems. The framework

Chapter 2: Literature Review 21

consisted of six criteria, which were important in identifying a coupling measure.

The six criteria were: locus of impact, type of connection, stability of server,

granularity of the measure, direct or indirect connections and inheritance. They

concluded that even though many studies have been carried out, there are too few

empirical studies of (coupling) measurement, particularly OO. This leads to a

delay in research exploring suitable solutions for practitioners. .

Bartsch and Harrison (2006a) extend Briand‟s framework for AspectJ

concentrating on a specific definition of different coupling connections found in

AspectJ (2005). The criteria of the framework, which have to be thought about

when designing, analysing and comparing OO measures, are seven. Six of these

criteria are those introduced in the Briand et al. framework, and the seventh is

Instantiation, which refers to whether or not to count aspects at a per-instance

level (Bartsch and Harrison, 2006a). Bartsch and Harrison (Bartsch and Harrison,

2006b) use these criteria again in another paper to evaluate five coupling metrics

proposed by Ceccato and Tonella (2004). They found that none of the coupling

measures could be validated in the context of the validation framework used;

however, most of them do not show any key problems and the quality of most of

them can be increased by more accuracy in their definitions (Bartsch and

Harrison, 2006b).

Li and Henry (1993) support the view that excessive coupling makes maintenance

and tracing more difficult. In their research, they focused on ten OO software

metrics and then validated these metrics with maintenance effort on two OO

systems. They found that maintenance effort was related strongly to the metrics

and it could be predicted from the combinations of these metrics. Moreover, they

proved that this prediction was successfully cross validated.

The role of method invocation (a form of coupling between classes) in creating

faults is also highlighted by the work of Briand et al. (1998). In this work, they

tried to validate all the OO measures found in the literature, especially the impact

of these metrics on class fault-proneness, and their ability to predict fault

locations. Results have shown that the possibility of identifying fault in a class is

strongly related to many coupling and inheritance measures. The most important

Chapter 2: Literature Review 22

quality factors in creating faults are method invocations, depth of a class in its

inheritance hierarchy and the scale of change in a class as a result of specialisation

(Briand et al., 1998).

The Fan-in and Fan-out metrics of Henry and Kafura (1981) measure the number

of inputs and outputs of a given module, respectively. According to Henry and

Kafura (1981), the information flow between system components is a practical

and appropriate technique for measuring large-scale systems since this technique

exposes more of the system connections than other ordering relations, and the

main elements in this technique can be concluded at design phase. In order to

present their measurement for this technique, they defined fan-in and fan-out as

follows. The fan-in of a module is the number of inputs plus the number of data

structures from which the module gets information. The fan-out of a module is the

number of outputs plus the number of data structures which the module updates

(Henry and Kafura, 1981).

2.7 Software Refactoring

Refactoring is one of the techniques widely used to improve the structure of

software systems. This technique was first introduced by Opdyke and Johnson

(1990), referring to the internal structure development of an OO software system

without changing the external performance of the system. Before that, Chikofsky

et al. (1990) introduced the term software restructuring, which could be

considered as the starting point of refactoring. They defined software restructuring

as “the transformation from one representation form to another at the same

relative abstraction level, while preserving the subject system‟s external behaviour

(functionality and semantics)”. The research of Johnson and Foote (1988) and of

Foote and Opdyke (1995) have all made considerable contributions to the

refactoring discipline and also helped to reveal the viability and potential of

refactoring. Refactoring is used to improve the design of the program and make it

easier to understand (Counsell et al., 2006). Consequently, this supports software

maintenance and reuse (Fowler, 1999; Johnson and Foote, 1988; Chikofsky et al.,

1990). The link between maintenance as part of every system‟s evolution and that

Chapter 2: Literature Review 23

dedicated to refactoring is a topical area for OO researchers and practitioners

(Mens and Tourwe, 2004).

 Refactoring was introduced in a seminal text by Fowler (1999). Fowler defines

software refactoring as: “a change made to the internal structure of software to

make it easier to understand and cheaper to modify without changing its

observable behaviour”. Moreover, Fowler describes the procedure of seventy-two

different refactorings in four major categories and explains assorted „bad smells‟

in code. Fowler (1999) gives a list of refactorings that can be useful for

developers to improve the design of their code. Some representative categories of

refactorings are: Composing Methods, Moving Features between Objects,

Simplifying Conditionals, Making Method Calls Simpler, Generalization, and Big

Refactorings. According to Fowler, the basic indicator of when refactoring is

overdue is when the code begins to „smell‟. Another approach has been

demonstrated by Tourwe and Mens (2003), who use the technique of logic meta

programming to detect bad smells and get the needed information for the

proposed refactorings. By this, they show how support can be supplied for

discovering when a design should be refactored and identifying which

refactorings might be applied to develop this design.

A full survey of recent refactoring work can be found (Mens and Tourwe, 2004).

These researchers provide an outline of the existing research being completed in

software refactoring and restructuring. They consider refactoring activities such

as: identifying where to refactor software, determining which refactorings to

apply, making sure that the applied refactoring does not change behaviour,

applying the refactorings and finally preserving the stability between the new

code and other software artefacts. Mens and Tourwe then talk about different

refactoring techniques including graph transformations and invariant, pre and

post-conditions. They discuss refactorings related to the kinds of software

artefacts, and end with a look at various tools that present support for automation,

reliability, configurability, coverage and scalability.

We can improve the quality of design and reduce the complexity and the cost in

succeeding development phases by applying refactoring as early as possible

Chapter 2: Literature Review 24

during the software life-cycle (Zhang et al., 2005). Moreover, developers should

refactor „mercilessly‟ and consistently (Beck, 1999). To identify places that need

refactorings, developers should use software metrics before a refactoring to

measure the quality of a software system (Mens and van Deursen, 2003). The

metrics can also be applied after refactoring to measure the improvement in

system quality. Programs that are not written in an OO language are harder to

restructure because data flow and control flow are strongly interconnected (Mens

and Tourwe, 2004). Nevertheless, refactoring of programs written in OO

languages is not easy, particularly when we take into account complex OO facets

such as inheritance, polymorphism or dynamic binding. For example, recent

empirical work by Najjar et al. (2003) has shown that refactoring can give both

qualitative and quantitative benefits – the refactoring „replacing constructors with

factory methods‟ of Kerievsky (2002) was used as a source.

Demeyer et al. (2000) detected refactoring indicators when comparing different

versions of a software system. They used four heuristics to find refactorings,

where each heuristic was identified as a combination of change metrics. The

refactorings in the first heuristic split functionality from a class into a superclass,

or combined a superclass with one or more of its subclasses. The second heuristic

split functionality from a class into a subclass, or combined a subclass with one or

more of its subclasses. The third heuristic explored the refactorings that moved

functionality from one class to another, while the final heuristic explored the

refactorings that split methods into one or more methods defined in the same

class. In terms of investigating the link between refactoring and testing, Counsell

et al. (2006) adapted a testing taxonomy suggested by van Deursen and Moonen

(2002) built on the refactoring impact on the ability to use the same set of tests

‘post-refactoring’. They urged that when making refactoring decisions, there was

a requirement to consider the inter-relatedness of refactorings.

In an empirical study of multiple versions of seven open source Java systems,

Advani et al. (2005) explored the refactoring trends across these systems. They

declared that simple refactorings, at the method and field level but not as part of

larger structural changes to the code, were most commonly undertaken by

Chapter 2: Literature Review 25

developers, with no pattern across the different versions of the systems. However,

refactorings predominantly occur in the middle versions of a system not in earliest

and/or latest versions. Advani et al. (2006) also describe a tool for collecting

refactoring data from multiple versions of Java systems. The tool was designed to

extract refactoring information from Java systems. It collected information about

fifteen refactorings from seven systems and compared this information for the

different releases. They found that the tool was a good indicator for the major

kinds of refactorings used by developers. We used this tool in the experiment

described in Chapter 4 to investigate the cross-comparisons between the high-

level package trends and refactoring practice, and to provide insights into why

refactoring might be applied after a burst of regular change activity rather than

consistently (Mubarak et al., 2007).

2.8 Summary

The central theme of this research is to demonstrate how evolving systems change

during the transaction from one version to another in terms of coupling metrics. In

this chapter, concepts related to this theme have been presented. We included

definitions of issues linked to software evolution regarding changes in systems

from the sense of the changes in the contained classes and packages. In the next

chapter, we provide an explanation of the research process approach and the

rationale for the research methods selected in this Thesis. A case study strategy

will be described in detail. Finally, the systems under study will be explained

accompanied by the study aims and objectives.

 26

CHAPTER 3. RESEARCH METHODS

3.1 Overview

In Chapter 2, related work carried out in this Thesis was reviewed and analysed.

This chapter aims to illustrate the research approach used to investigate our

research. The chapter starts with an exposition of research paradigms and methods

in the context of software engineering. Then it proceeds by providing a detailed

explanation of the research objectives that guided the investigation and the

rationale for the research methods selected. The research process includes a

description of the systems under study, definition of the investigated metrics,

explanation of the data analysis for this study and statistical methods employed.

Section 3.2 gives the description and justification for the research methods and

strategies used in this Thesis. Details of the research objectives and hypotheses

are presented in Section 3.3. Finally, a description of the research preliminaries is

provided in Section 3.4.

3.2 Research Paradigms and Methods

A software engineer uses certain methods to estimate the existing work in order to

raise the quality of a software product or reduce the cost of product improvement

(Sommerville, 1996). By analysing data, certain conclusions can be used to

predict how efficient and valuable work will be in the future in order to improve

software quality. This data could be collected by the researchers using one of the

data collection strategies such as surveys, questionnaires, interviews, experiments

and project artefacts. Collected data can be quantitative or qualitative depending

on issues such as personal experience and the nature of the research problems and

questions. Creswell (2003) defines three approaches to research. These three

approaches are quantitative, qualitative and mixed methods, and they are defined

as follows:

Chapter 3: Research Methods 27

 A quantitative approach: this approach is concerned with measuring a

relationship or comparing two or more sets. It often uses an experiment, or data

collected through a case study and helps in assessing the causes of a treatment.

Quantitative data usually promotes statistical analysis.

 A qualitative approach: in this approach, human and social problems are

studied and interpreted depending on explanations that people provide. This

means that qualitative researchers study things in their natural settings, trying to

make sense of experiences in terms of the justifications people bring to them. The

focus in this approach is on developing theory and generating knowledge. The

data is obtained from interviews, case studies and observations.

 A mixed method approach: in this approach knowledge claims are based on a

practical basis and tend to combine or mix both qualitative and quantitative

approaches.

The research conducted for this Thesis is quantitative in nature; it uses software

metrics collected from several Java OSSs and related to coupling.

In general, for any research design there is a need to formulate a framework for a

research design. Robson (2002) categorises these components as purpose, theory,

research questions, methods and sampling strategy. Both the purposes which the

study tries to achieve and the theory guide and inform the study and help to

identify the research question. The methods and the strategies used determine the

answer to these research questions. The strategies which can be used in the

empirical investigations are varied; however, Robson (2002) defined three major

different types of strategies that may be adapted:

 Experiment: an experiment is an instance of fixed research design. It is a

particularly focused study and is usually done in a laboratory in a controlled

environment. In this approach, one or more variables called independent variables

are manipulated and the effects of this manipulation on one or more other

variables, called dependent variables, are measured. All other variables are

controlled.

Chapter 3: Research Methods 28

 Survey: surveys are generally carried out as part of non-experimental fixed

design. They aim to investigate areas by asking a broad collection of open-ended

questions. They are normally carried out for descriptive reasons as they can

supply facts about the distribution of a large range of features and of association

between such features. However, surveys take a long time to be analysed, and

they may not be an effective procedure. Moreover, surveys are only applied to a

sample that represents the population studied.

 Case study: case studies are “a strategy for doing research which involves an

empirical investigation of a particular contemporary phenomenon within its real

life context using multiple sources of evidence” (Robson, 2002, p.178). A case

study is a well-established strategy which focuses deeply on a process, a program,

an event, an activity, or one or more individuals. Moreover, a case study takes

place at particular times with particular people in particular places. It can be

considered as an observational study as the control in it is low.

According to the design strategy, it can then be decided if the approach should be

quantitative or qualitative. Wohlin et al. (2000) state that as experiments focus on

evaluating various variables before and after making changes to them, they are

merely quantitative. On the other hand, the same authors state that the

categorisation of a survey or a case study relies on the collected data and the

applied statistical methods held in a qualitative or quantitative approach. In a case

study, data is collected for a particular reason during the study, and based on this

data statistical analyses can be completed (Wohlin et al., 2000). Moreover,

Wohlin et al. state that although case studies are valuable and integrate features

that an experiment is not able to visualise, there are some probable difficulties

with them. Firstly, a small case study is not always helpful in giving techniques

and principles for software engineering as the problem in it may differ from the

problem in a large case study. Secondly, as there is not enough control over the

case study, the results, due to confounding issues, are not always clear.

Kitchenham et al. (1995b) present instructions for arranging and analysing case

studies in order to yield significant outcomes. These instructions are firstly, to

identify the hypothesis in detail to make clear the measures needed to demonstrate

Chapter 3: Research Methods 29

the effect of the methods and secondly, to select the pilot project. A third

instruction is to identify the method of the comparison to assess the result of the

case study by comparing the results of using the new method against a company

baseline and selecting a sister project to contrast with. If the method relates to

individual product elements, it could be related randomly to several elements and

not to others. Fourthly, it is important to decrease the impact of confounding

issues, examples of which are: employing staff who are extremely enthusiastic or

unenthusiastic, and using of contrasting application types. Fifthly, the case study

needs to be planned and sixthly, it needs to be observed alongside the plan and

contrast its development and results with the plan. Finally, the results are required

to be investigated and described to summarise what has occurred and to see if the

results are significant.

In software engineering, case studies are used in much research. The study of

Granja-Alvarez (2004) is based on three real-world projects where a comparative

analysis of projects was undertaken and, through this analysis advanced results

were able to be achieved in software maintenance. The result derived from this

study was that a very high-quality estimate may be gained from use cases for

software maintenance. Bieman et al. (2001) declare that case studies can illustrate

the relationships between design structure and quality attributes such as reliability

and maintainability. Their study was carried out on a commercial OO C++

system. They analysed 39 versions of a system to discover if there was a

connection between the total number of changes and the design structure in the

system. Finally, Briand et al. (1999c) used a commercial case study and

investigated the connection between design attributes and the fault-proneness in

commercial and student projects. The commercial projects were case studies,

whereas the student projects were experiments.

In this research, we used source code archived analysis using multiple versions of

several Java OSSs. Our strategy can be declared to be similar to multiple case

studies. We used an automated tool, described later, to extract OO metrics from

versions of the OSSs. The selection of our approach is justified by the fact that

software artefacts can provide a meaningful insight into how professional

Chapter 3: Research Methods 30

software developers use and maintain coupling, which in turn provides an insight

into the evolution of coupling. Using this approach, we were able to reveal

patterns of change in multiple versions of the studied systems.

3.3 Research Objectives

One of the main objectives of this research is to assess how a system changes

through the analysis of packages in the system and to compare that data with

corresponding results from refactoring the same system. Knowledge of trends and

changes within packages is a starting point for an understanding of how effective

the original design may have been, how susceptible types of packages may be to

change and can also inform our knowledge of facets of software such as coupling

and cohesion.

Another objective of the research is to explore the relationship between coupling

metrics and the classes removed from multiple versions of several open-source

systems, and to empirically explore coupling in these Java systems using coupling

metrics, version release times and code warnings. Finally, we aim to explore

whether an 80/20 rule exists in Java from coupling metrics over multiple versions

of open-source software and, if so, whether that relationship is exacerbated over

time.

For each of these objectives, we generate hypotheses that describe and interpret

these objectives. Hypotheses can help researchers predict expected results and the

direction of their investigation. However, researchers must provide a justification

as to why they produce that hypothesis depending on the theoretical aspects.

Furthermore, hypothesis testing also requires recognition of suitable data strictly

related to the cause and effect of the hypothesis. The data should be divided into

two groups, independent and dependent variables. An independent variable refers

to a set of data which may have an impact on another set of data (dependent

variable) and the dependent variable is a set of data which changes as a result of a

change in independent variable. After the independent and dependent variables

have been concluded, a fitting statistical test should be detected to precisely test

the impact of independent variable on the dependent variable(s).

Chapter 3: Research Methods 31

Hypotheses consist of a null hypothesis and an alternative hypothesis. A null

hypothesis refers to an independent variable which has no significant relationship

with the dependent variable(s), and an alternative hypothesis refers to a

correlation existing between independent and dependent variables (Field, 2006).

Researchers consider that the alternative hypothesis is true, unless the null

hypothesis indicates the opposite.

3.4 Data Collection

In this section, a description of the systems under study will be provided along

with the definition of the collected metrics.

3.4.1 Systems under Study

The explicit selection criteria for systems was that first, they all had to be entirely

Java; second, sufficient versions were available (for a longitudinal study) and

third, they should consist of a mix of application types. Systems were selected in

terms of „number of downloads‟ ordered from sourceforge.net. The selection

process thus resulted in many systems being rejected from candidate systems

identified (because they were either a mix of different languages and/or did not

contain multiple versions for download).

1) Velocity: A template engine allows web designers to access methods

defined in Java. Velocity began with 224 classes and 44 interfaces. In the

latest version, it had 300 classes and 80 interfaces.

2) Jasmin: A Java assembler takes ASCII descriptions of Java classes and

converts them into binary Java .class files suitable for loading into a Java

Virtual Machine. The system is comprised of 5 versions. It started with 5

packages and 110 classes in the first version and had 5 packages and 130

classes by the latest version.

3) pBeans: Provides automatic object/relational mapping (ORM) of Java

objects to database tables. The system comprised of 10 versions, with 4

Chapter 3: Research Methods 32

packages and 36 classes in the first version with 10 packages and 69

classes in the latest version.

4) SmallSQL: A Java DBMS for Java desktop applications. It has a JDBC

3.0 interface and offers many ANSI SQL 92 and ANSI SQL 99 features.

The system comprised of 8 versions. It started with 130 classes in the first

version and had 177 classes in the latest version.

5) JWNL: A Java API for accessing the WordNet relational dictionary.

WordNet is widely used for developing NLP applications and allows

developers to use Java for building NLP applications. The system

comprised of 5 versions. It started with 11 packages and 95 classes in the

first version with 15 packages and120 classes in the latest version.

6) DjVu: Provides an applet and desktop viewer Java virtual machine. The

system is comprised of 8 versions. It started with 12 packages and 77

classes in the first version with 14 packages and 79 classes in the latest

version.

7) Asterisk: A Java system consists of a set of Java classes that allow you to

easily build Java applications that interact with an Asterisk PBX Server. It

supports the FastAGI protocol and the Manager API. This system includes

6 versions. It started with 12 packages and 222 classes in the first version

and ended with 14 packages and 277 classes in the final version.

Table 3.1 shows the data for the seven systems under study.

Table 3.1 Systems under study

System Number of versions Number of Packages Number of classes

Velocity 9 28-39 224-300

Jasmin 5 5 110-130

pBeans 10 4-10 36-69

SmallSQL 9 1-3 130-177

JWNL 5 11-15 95-120

DjVu 8 12-14 77-79

Asterisk 6 12-14 222-277

Chapter 3: Research Methods 33

3.4.2 Software Metrics Definition

OO metrics usually capture properties of OO systems such as cohesion,

inheritance, encapsulation, polymorphism, size or coupling (Fenton and Pfleeger,

2002). It is important for a researcher to analyze whether the software metric used

is well defined and valid (Fenton and Pfleeger, 2002). This guarantees that the

software metric(s) truly measure(s) the attribute(s) of a product, process or project

which it states to measure. For this Thesis, we adopted an automatic approach for

data collection using the JHawk tool (JHawk, 2008). JHawk was used to extract

OO metrics from versions of the systems under study. It uses static analysis of

source code to extract a variety of OO metrics stated in the literature. We justify

our selection of the tool on the basis that it was used by other researchers in the

field of SE (Arisholm et al., 2004). The following is a description of the metric

definitions used throughout this Thesis:

1) Response for a Class (RFC): This metric is the same as that defined by

Chidamber and Kemerer (1994) and measures the response set of a class.

The RFC is defined as the set of methods that can be potentially executed

in response to a message received by an object of that class.

2) Message Passing Coupling (MPC): The number of messages passed

among objects of a class.

3) PACK: Number of imported packages.

4) Number of EXTernal methods called (EXT): The more external methods

that a class calls the more tightly bound that class is to other classes.

5) Fan In (FIN): FIN of a function is the number of unique functions that call

the function.

6) Fan Out (FOUT): FOUT counts the number of distinct non-inheritance

related class hierarchies on which a class depends.

We also collected for each class the total number of methods (private, protected

and public) and the lines of code (LOC) in each class as size measures. We also

Chapter 3: Research Methods 34

collected one time based metric which is the time interval between each version

release.

3.5 Data Analysis

Measurement is an essential concept in engineering. The conclusions of any

empirical study are built on the values measured on research variables. Therefore,

it is fundamental to consider the quality of the measurement and consequently

their conclusions. Statistics is a tool that can assist researchers in giving the

quantitative estimate of the probable truth of the conclusions.

In this Thesis, we used three correlation coefficient analyses (Pearson‟s, Kendall‟s

and Spearman‟s) to investigate the relationship between our variables.

Researchers are usually interested in measuring the relationship between two or

more variables. Field (2005) identifies correlation as a measure of the linear

relationship between variables. These variables may relate to each other in one of

the following ways: they may be positively related, they may be not related at all,

or they may be negatively related. Field introduces two major calculations for

correlations: Pearson‟s Correlation and Spearman‟s Correlation. Pearson‟s

Correlation is a parametric statistical test that needs interval or ratio data and is

normally distributed; Spearman‟s Correlation is a non-parametric test for ranked

data so it can be applied to data that is not normally distributed.

3.6 Summary

In this chapter, we presented a discussion of the methods used to conduct our

empirical research including, the design of the study, a description of the sample

systems selected, the definition of software metrics used, data collected and

statistical techniques used.

The following chapter presents an empirical study that investigated longitudinal

trends in changes to an OSS. We consider the trends in versions of the OSS, with

respect to regular maintenance changes. These changes include the added classes,

Chapter 3: Research Methods 35

methods, attributes and lines of code. The relationship between these changes and

refactoring data is considered as well.

 36

CHAPTER 4. PACKAGE EVOLVABILITY AND ITS

RELATIONSHIP WITH REFACTORING

4.1 Introduction

Central to the aim of the Thesis is to uncover traits in OSS from an evolutionary

perspective. Project managers and developers alike have a keen interest in

minimising the amount of code „decay‟ that usually occurs as a system ages. It is

also important that different levels of evolutionary abstraction are considered to

give different perspectives on the same systems; equally, that different types of

change (corrective, perfective or adaptive) are explored.

In this Chapter, we therefore consider trends in versions of the „Velocity‟ OSS,

with respect to added classes, methods, attributes and lines of code and the

relevant enclosing packages. To support our analysis of change type, we also look

at empirical refactoring data for the same system and associated trends for two

other Java OSSs, namely PDFBox and Antlr.

It is suggested that if the set of regular (i.e. essential) maintenance changes reveal

specific characteristics, then a set of specific refactorings will also reveal similar

features. Results showed an interesting inconsistency between trends in those

regular changes made to the system studied and those as part of a specific set of

changes according to refactorings specified in Fowler (1999).

The remainder of the chapter is organised as follows. In the next section, the

motivation for the undertaken study is presented and in Section 4.3, details of the

data collected is provided addressing three research questions. In Section 4.4, the

research questions are evaluated through analysis of the data over the nine

versions of the system. Section 4.5 provides a discussion of the refactoring

relationships from two points of view: the relationship between the refactorings

and the changes in the new added classes, LOC, methods and attributes, and the

relationships among the considered refactorings. The results are discussed in

Section 4.6, and finally a summary for the study and its results given in Section

Chapter 4: Package Evolvability and its Relationship with Refactoring 37

4.7. We note that the research described in this chapter was first published by

Mubarak et al. (2007).

4.2 Motivation and Related Issues

A software system is modified and developed many times throughout its lifetime

to maintain its effectiveness. In general, it grows and changes to support increases

in information technology requirements. From a research perspective, we know a

reasonable amount about facets of OO and procedural system evolution (Belady

and Lehman, 1976; Bieman et al., 2003; Arisholm and Briand, 2006). However, it

is less well-understood whether changes at the package level exhibit any specific

trends. The benefit of a study that explores changes at this level is clear.

Understanding changes at higher levels of abstraction may give a project manager

a much more general idea of likely future maintenance or refactoring

opportunities. In particular, such a study may also be able to focus developer

effort in specific areas of packages susceptible to large numbers of changes. An

additional topic of concern to OO practitioners and researchers is the relationship

between maintenance as part of the system‟s development and that related to

refactoring (Fowler, 1999; Mens and Tourwe, 2004).

From an empirical point of view, the relationship between OO classes and

packages is not well defined. Ducasse et al. (2005) suggest that it is necessary, for

the re-engineering and development of OO systems, to recognise and investigate

both sets of classes and packages. Ducasse et al. (2004) suggest that the cost of

modifying a program may be influenced by the relationship between packages and

their enclosed classes. In terms of the architecture of a system, Bieman et al.

(2001) found that classes belonging to a design pattern were the most change-

prone classes in a system (this might also suggest that change-prone classes are

implemented by design patterns). Finally, Demeyer et al. (2000) identified

refactoring indicators when comparing different releases of a software system.

They used four heuristics to find refactorings; each was identified as a mixture of

change metrics. In this study, we will investigate the changes in the packages

level in an OSS by considering the changes in the added classes, number of the

Chapter 4: Package Evolvability and its Relationship with Refactoring 38

line of codes, the methods and the attributes in the packages basis. We also

consider relationships between trends in changes at the class level with refactoring

data extracted using a bespoke tool.

4.3 Empirical Investigation

The main objective of the research described is to assess how a system changes

through the analysis of packages in the system and to compare that data with

corresponding results from refactoring the same system. Knowledge of trends and

changes within packages is a starting point for an understanding of how effective

the original design may have been and how susceptible types of packages may be

to change. It can also inform our knowledge of facets of software such as coupling

and cohesion.

4.3.1 The System under Study

To achieve our objectives, a case study approach was adopted using multiple

versions of an evolving system. This system was a large OSS called „Velocity‟ – a

template engine allowing web designers to access methods defined in Java.

Velocity began with 224 classes and 44 interfaces. In the latest version, it had 300

classes and 80 interfaces.

The data analysed was the change data on a package basis for nine versions of the

system. The study investigated patterns in change over those nine versions

through three research questions. In other words, certain features were

investigated about how a system evolved based on what we believed should

happen to a system over time. The research questions were supported by statistical

analysis.

Table 4.1 shows the changes in the number of packages and new classes added to

the system over the course of the nine versions.

Chapter 4: Package Evolvability and its Relationship with Refactoring 39

The data for each package is categorised in several columns, and each column

contains the changes that have occurred to the packages since the previous

version. These columns are structured as follows for each package:

1. Number of classes where lines of code decreased, number of attributes and

number of methods decreased.

2. Number of classes where lines of code decreased, number of attributes

decreased and number of methods stayed the same.

3. Number of classes where lines of code decreased, number of attributes

stayed the same and number of methods decreased.

4. Number of classes where lines of code decreased, number of attributes

stayed the same and number of methods stayed the same.

5. Maximum decrease in the lines of code for that transition.

6. Maximum decrease in number of attributes for that transition.

7. Maximum decrease in number of methods for that transition.

8. Number of new classes added during that transition.

Table 4.1 The number of packages and new classes over the course of 9 versions

Version Number of packages Number of new classes

1
st
 28 788

2
nd

 32 1116

3
rd

 38 17

4
th
 42 11

5
th
 36 2032

6
th
 39 45

7
th
 39 297

8
th
 38 1274

9
th
 39 1386

We also collected data for the corresponding increases, obtained by replacing the

word „decreased‟ with „increased‟ in the above list of eight columns. We looked

into the changes over the course of these nine versions by investigating the

Chapter 4: Package Evolvability and its Relationship with Refactoring 40

changes occurring in the individual packages. There are many ways to measure

the changes in the packages; however, we determined these changes by assessing

the changes in the number of added lines of code, the number of added methods,

and the number of added attributes. Therefore, for each version, we collected the

number of added classes, lines of code (LOC), methods and attributes.

(Henceforward, we define a LOC as a single executable statement; we therefore

disregard comment lines and white space from calculation of LOC.)

4.3.2 The Research Questions

The trends of changes in the packages for the OSS are inspected through three

research questions. These questions investigate the trends of the added classes,

increases in the LOC and the increases in the number of attributes and methods in

the packages across the nine versions of the system. The research questions are as

follow.

 RQ1: Does the number of new classes over the course of nine selected

versions increase constantly? This question is based on the notion that a

system will grow over time in a constant fashion in response to regular

changes in requirements.

 RQ2: Is the increase in LOC over the course of the nine versions constant?

This question is based on the assumption that the change in LOC over the

nine versions will always increase due to evolutionary forces.

 RQ3: Is the increase in the number of attributes and methods in a package

constant across the versions of a system? This question is based on the

assumption that the change in the number of attributes and methods will

increase consistently over time in response to constant changes in

requirements.

Chapter 4: Package Evolvability and its Relationship with Refactoring 41

4.4 Data Analysis

We determined the changes in the packages by assessing the changes in the

number of added lines of code, the number of added methods, and the number of

added attributes. In order to assess our research questions, we organised our

collected data in a table and a figure for each question.

4.4.1 Research Question 1 (RQ1)

The first research question investigates whether the numbers of new classes over

the course of nine selected versions increase constantly. Table 4.2 shows the

number of packages in each of the nine versions, the number of new classes

across those packages, the number of new classes in total, the maximum increase

in classes and the package name where that increase took place. In each of the

nine versions, new classes were added to packages and the number added varied

significantly from one version to another. Between versions three and four and six

and seven, relatively little change can be seen, while the peak of added classes is

reached in the fifth version with 2032 new classes added. Clearly, the addition of

classes to this system over the versions investigated was not constant.

Interestingly, the version with the highest number of new classes was also

accompanied by a drop in the number of packages (from 42 to 36). Equally, some

of the largest additions to classes were made after only minor changes to the

numbers of packages. Both effects may possibly be due to classes being moved

around in the same package and simply renamed.

A feature not immediately apparent from the data in Table 4.2 is the peak and

trough effect of this data. A graph was therefore used to present the changes in the

number of new added classes (Figure 4.1). We suggest that this trend is

symptomatic of a burst of developer change activity followed by a period of

relative stability and accumulation of new requirements, before another burst of

change activity. A closer view of the data shows us that this increase is not always

in the same packages for each version, and the packages themselves do not have

the same number of classes, so this may clarify the differences in the numbers of

Chapter 4: Package Evolvability and its Relationship with Refactoring 42

added classes across the nine versions. Furthermore, these differences may be

affected by external reasons associated with: the developers‟ experiences, the

product users and their requirements and the period of time separating each of the

versions. For RQ1, we conclude that the number of new classes over the course of

the nine versions increases at an inconsistent rate, rather than remaining constant.

It is not the case that there is constant addition of classes to the Velocity system

over the nine versions investigated; RQ1 cannot thus be supported.

Table 4.2 Packages and the new classes over the course of 9 versions

Version
No. of

packages

No. of new

Classes

Max inc. in

new classes
Package name

1
st
 28 788 176 Editor

2
nd

 32 1116 207 Java

3
rd

 38 17 5 Core

4
th
 42 11 3 Javadoc

5
th
 36 2032 329 Debuggerjpda

6
th
 39 45 13 Openide

7
th
 39 297 92 Core

8
th
 38 1274 357 Web

9
th
 39 1386 217 Core

Figure 4.1 Line chart of new classes added to the packages over the 9 versions

Chapter 4: Package Evolvability and its Relationship with Refactoring 43

4.4.2 Research Question 2 (RQ2)

The second research question is whether the increase in LOC over the course of

the nine versions is constant. To investigate RQ2, the „maximum‟ increase in the

number of LOC among all the versions was used. The data is presented in Table

4.3. It can be seen that there are increases in LOC over the course of the versions,

but these increases fluctuate wildly. Interestingly, the Core and Vcscore packages

were the packages that saw the maximum increases in LOC for five of the

versions. The Core package is the only common package in Table 4.2 and Table

4.3, suggesting that the addition of a large number of classes does not necessarily

imply the addition of a correspondingly large number of LOC. One explanation

for this feature might simply be that one class has been split into two (c.f. the

„Extract Class‟ refactoring of Fowler (1999)).

Scrutiny of the data indicates that the increase in the number of LOC in a package

is not always the same for each version; it varies from one version to another

across the nine versions. From the data under study it can be seen that in addition

to this increase in the number of LOC there is always a decrease in the same

number for each package. In other words, there are always some added LOC and

at the same time removed LOC also. Furthermore, the collected data presents the

maximum increase in the number of LOC among all the transitions of the classes,

this maximum may even be an outlier. All of these previous reasons may explain

the differences in the change of the number of LOC in addition to the external

reasons explained in the prior research question.

Figure 4.2 confirms that the increases in the number of LOC over the course of

the nine versions fluctuate across versions. Again, the peak and trough effect is

apparent from the figure. The most significant changes to Vcscore appear in the

first five versions and those of Core appear in the seventh and eighth versions;

RQ2 cannot be supported either.

Chapter 4: Package Evolvability and its Relationship with Refactoring 44

Table 4.3 Max. increase in the number of LOC over the course of the 9 versions

Version
Max inc in

LOC

Max inc in LOC among

all the packages

The name of

the package

1
st
 3955 547 Core

2
nd

 5077 686 Form

3
rd

 889 226 Vcscore

4
th
 910 320 Javacvs

5
th
 6985 995 Vcscore

6
th
 1109 111 Vcsgeneric

7
th
 369 71 Core

8
th
 6418 1854 Core

9
th
 6743 1236 Schema2beans

Figure 4.2 Line chart of the max increase in the number of LOC (9 versions)

4.4.3 Research Question 3 (RQ3)

The third research question is whether the increase in the number of attributes and

methods in a package is constant across the versions of a system. For this research

question, the maximum increase in the number of attributes, and the maximum

increase in the number of methods for each version were used. This data is

Chapter 4: Package Evolvability and its Relationship with Refactoring 45

presented in Table 4.4 which shows that over the course of the nine versions there

are consistent increases in the number of attributes (A) and number of methods

(M). However, these increases vary from one version to another. The largest

increase in the number of the attributes and methods is at version five. These

differences in the changes may occur because of the differences in the number of

classes in each package or because of the different structure for each package. In

addition, they may be affected by the reasons suggested in the last research

question related to the increases and decreases in the same variable, considering

the maximum number for variable in the collected data, as well external factors.

Once again, two packages dominate Table 4.4 - those being Core and Vcscore

(seven of the eighteen entries in columns 4 and 7 relate to these two packages). As

for Table 4.3, the maximum increase in methods occurs at earlier versions for

Vcscore and towards later versions for Core.

Table 4.4 Summary of the increase in attributes and methods over the 9 versions

Version
Inc in

A

Max Inc in

A

Package

name

Inc in

M

Max Inc in

M

Package

name

1
st
 153 26 Core 228 36 Vcscvs

2
nd

 262 49 Form 335 84 Vcscore

3
rd

 25 7 Jndi 46 11 Vcscore

4
th
 24 7 Diff 22 6 Diff

5
th
 325 51 Form 489 70 Vcscore

6
th
 39 10 Debuggercore 73 14 Openide

7
th
 17 4 I18n 29 6 Core

8
th
 238 57 Core 371 150 Core

9
th
 226 34 Java 378 76 Xml

Chapter 4: Package Evolvability and its Relationship with Refactoring 46

Figure 4.3 Inc. in attributes and methods

Figure 4.3 shows that the number of attributes and number of methods both

increase during the course of the nine versions, but at a fluctuating rate. Version

four shows that more attributes were added than methods; the pattern for all other

versions is the opposite. In contrast to the previous analysis, Figure 4.4 shows that

version eight appears to be the source of the largest increase in methods. In

keeping with the results from RQ1 and RQ2, we conclude for RQ3 that the

increase in attributes and methods is not constant across the nine versions

investigated. While the results so far give a fairly intuitive understanding of how a

system might evolve, what is not so clear is the relationship between the „regular‟

set of changes as we have described them, and the opportunities for undertaking a

set of changes such as those associated with refactoring techniques (Opdyke,

1992; Tourwe and Mens, 2003). These are both interesting and potentially fruitful

areas of refactoring research as well as challenges facing the refactoring

community (Mens and van Deursen, 2003).

Chapter 4: Package Evolvability and its Relationship with Refactoring 47

Figure 4.4 Max. inc. in attributes and methods

4.5 Refactoring Relationships

Beck (1999) suggests that a developer should refactor „mercilessly‟ and hence

consistently. We would therefore expect refactorings for the Velocity system to be

consistently applied across all versions. In this section, we first investigate the

refactoring in Velocity system and then in other two OSSs - PDFBox and Antlr.

4.5.1 Velocity

For Velocity system, we analysed fifteen refactorings across the nine versions.

These refactoring are presented in the first column in Table 4.5. They were

collected by a software tool as part of a full study of refactoring in seven Java

OSS systems by Advani et al. (2006). The fifteen refactorings were chosen by two

developers with industrial experience and reflected, in their opinion, in

consultation with Fowler‟s text (Fowler, 1999), the common refactorings likely to

be made by developers over the course of system‟s life. As such, refactorings

embracing inheritance, encapsulation, movement of class features and their

addition and removal, all are included amongst the fifteen refactorings.

The data presented in Table 4.5 is the number of the refactoring in each of the

nine versions for the Velocity system. It can be seen that versions 3, 5 and 6 are

Chapter 4: Package Evolvability and its Relationship with Refactoring 48

the main points when refactoring effort was applied to the Velocity system (these

columns are bolded). In versions 1, 4, 7 and 8, zero refactorings were applied to

this system.

Figure 4.5 shows Table 4.5 in graphical form (with the „per version sum‟ of the

fifteen refactorings on the y-axis). The figure shows that refactoring effort is

applied most significantly at one version (in this case version 3) and thereafter a

peak and trough effect can be seen. Comparing the trend in Figure 4.5 with that in

Figures 4.1-4.4 suggests that the majority of the refactoring effort occurred

between versions where significant changes in classes, LOC, methods and

attributes took place. Version 3, with the most refactorings effort across the nine

versions, is a trough in terms of these added features. Conversely, version 5 from

Table 4.5 shows significant refactoring effort to have been applied, coinciding

with large changes in the aforementioned features. Version 6 activity (again a

trough in terms of Figures 4.1-4.4) also shows relatively large amounts of

refactoring effort.

Table 4.5 Refactorings for the Velocity system across 9 versions

No. Refactoring Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9

1. AddParameter 0 0 14 0 1 2 0 0 1

2. EncapsulateDowncast 0 0 0 0 0 0 0 0 0

3. HideMethod 0 2 1 0 0 1 0 0 0

4. PullUpField 0 0 4 0 2 4 0 0 0

5. PullUpMethod 0 4 13 0 24 5 0 0 9

6. PushDownField 0 0 0 0 7 0 0 0 0

7. PushDownMethod 0 0 1 0 1 0 0 0 4

8. RemoveParameter 0 0 3 0 1 0 0 0 3

9. RenameField 0 3 14 0 1 2 0 0 3

10. RenameMethod 0 5 11 0 15 14 0 0 10

11. EncapsulateField 0 5 4 0 0 0 0 0 0

12. MoveField 0 0 18 0 1 2 0 0 0

13. MoveMethod 0 3 16 0 3 3 0 0 2

14. ExtractSuperClass 0 1 3 0 8 1 0 0 2

15. ExtractSubClass 0 0 0 0 1 0 0 0 0

Chapter 4: Package Evolvability and its Relationship with Refactoring 49

Figure 4.5 Refactorings in the 9 versions of Velocity

A number of conclusions can be drawn from this analysis. Firstly, it is clear that

developers do not seem to refactor consistently across the versions of the system

studied (Velocity) as there is not any refactoring for some versions. Secondly,

there is some evidence of peaks in refactoring effort happening simultaneously

with large changes in classes, LOC, methods and attributes, while refactoring

seems to take place mostly in a version after a peak of the same type of changes.

(One of the claims by Fowler (1999) as to why developers do not do refactoring is

that they simply do not have the time.) Finally, in the previous analysis, and from

Figure 4.5, it can be noticed that the majority of regular change activity applied to

the system is not applied during the initial versions. We considered the time

interval between two versions as a variable in our study in Chapter 6.

The first question that naturally arises is why refactoring changes tend to follow

the regular changes applied to a system? After all, it is quite feasible for

refactoring to be carried out at the same time as other changes (there is limited

evidence of this occurring from the data). Moreover, the opportunity for

refactoring often arises as part of other maintenance activity and we would thus

expect developers to spot opportunities for refactoring as they undertake other

work on a system. There is one relatively straightforward explanation for this

phenomenon. All of the fifteen refactorings in Table 4.5 are semantics-preserving

and do not explicitly add large numbers of classes, LOC, methods or attributes as

Chapter 4: Package Evolvability and its Relationship with Refactoring 50

part of their mechanics. For example, the „Move Field‟ and „Move Method‟

refactorings would have no net effect on the number of fields or methods in a

system, on a package basis. Simple renaming refactorings such as „Rename Field‟

and „Rename Method‟ do not add any LOC to the system either. Equally, none of

the inheritance-related refactorings explicitly add LOC to a system.

One further suggestion as to why refactoring occurs at different versions is that

after a burst of regular maintenance effort and a new version being released, the

decay to the system that those changes have caused may need to be remedied. In

other words, after a concerted effort to modify the system through regular

maintenance, developers may feel that only then is refactoring necessary.

However, this does not explain why for the Velocity system there is significant

refactoring effort in version 5 occurring together with a large set of changes in

terms of added classes, LOC, methods and attributes. One explanation could be

that developers refactor during the course of normal maintenance but without

explicitly recognising it as refactoring. In other words, they may tidy up the code

after completing the changes in the system classes, LOC, methods or attributes.

We could hypothesise that while for Velocity (and the refactorings we have

extracted) refactoring effort is not applied consistently, there are two key

occasions when, consciously or sub-consciously, it is applied.

One aspect of the analysis that we have not yet considered is the relationship

between the refactorings from Table 4.5.

 Figure 4.6 shows the sum of refactorings across all nine versions of the Velocity

system (the numerical data for this graph is exactly that in Table 4.5). Each line in

the graph represents the sum of each refactoring for a single version. So, for

example, refactoring five (Add Parameter) when taken in totality is a common

refactoring across most versions (at least five); the graphs at refactoring 5 show

simultaneous peaks. Equally, refactoring ten (Rename Method) can be considered

as a popular refactoring in each of the versions. For the fifteen refactorings, a

clear trend of peaks and troughs in the fifteen refactorings can be seen. In other

words, there is a trend in the propensity of refactorings to occur in „parallel‟ (at

Chapter 4: Package Evolvability and its Relationship with Refactoring 51

the same time). Figure 4.6 thus illustrates the strong bond between the fifteen

refactorings.

Figure 4.6 „Peak and trough‟ effect of refactorings for Velocity

Two notable exceptions to the trend of refactorings follow peaks and troughs

apply to refactoring one (Add Parameter) and twelve (Move Field). At times,

there are large numbers of this refactoring in a particular version and very few

other refactorings in the same corresponding versions. A simple explanation may

account for this trend. They are both refactorings that are used by the mechanics

of many other refactorings. They are also two refactorings that a developer may

undertake in the course of regular maintenance for example, to fix a fault without

the use of any other refactorings. In other words, they can both act as stand-alone

refactorings in contexts other than that of refactoring.

4.5.2 PDFBox and Antlr

The question we could then ask is whether refactoring effort is consistent in terms

of the versions where it is undertaken, and whether a similar trend in refactoring

Chapter 4: Package Evolvability and its Relationship with Refactoring 52

appears in other systems. In order to investigate that, we analysed the refactoring

data from other two systems; PDFBox and Antlr.

Figure 4.7 shows the versions where refactorings were undertaken for the

PDFBox system. Versions 3 and 6 appear to be where the majority of the

refactoring effort was invested. Although we do not have the dataset of regular

maintenance changes applied to the PDFBox system, it is interesting that a peak

and trough effect is clearly visible for this system as well as for Velocity.

Figure 4.7 Refactorings for PDFBox

Figure 4.8 shows refactoring trends for the Antlr system. Version two appears to

be the one which most refactoring effort was invested in, supporting the view that

relatively more refactoring seems to be undertaken at early versions of system‟s

life (but not at its inception). It is interesting that across all three systems, version

one seems to have been the subject of virtually no refactoring effort. One

explanation might be that version one is simply too early in the life of a system for

refactoring effort to be applied. On the other hand, it appears that version two or

three is when the majority of refactoring occurs. The question that then arises is

whether the numbers of each type of refactorings in each of the three systems

were similar?

Chapter 4: Package Evolvability and its Relationship with Refactoring 53

Figure 4.8 Refactorings for Antlr

Inspection of the raw data reveals a common trend for refactoring 1 (Add

Parameter) and refactorings 9, 10, 12 and 13 (Rename Field, Rename Method,

Move Field and Move Method). We hypothesise that these types of refactoring

have been applied relatively more frequently than any of the other fifteen because

they „tidy up‟ a system with relatively little effort being required. After a

significant amount of maintenance effort has been applied to a system, minor

modifications are bound to be necessary. This may further explain why there is no

coincidence between regular maintenance effort and that of refactoring. In the

analysis of changes made at the package level, a significant number of methods

and attributes were added over the versions studied.

4.6 Discussion

Based on the refactoring evidence, we could claim that the five stated refactorings

were a direct response to the problems associated with the addition of so many

attributes and methods. For example, the motivation for the „Move Field‟

refactoring is when „a field is, or will be, used by another class more than the

class on which it is defined‟. In such a case, the field needs to be moved to the

place „where it is being used most‟. Equally, the „Move Method‟ refactoring is

applicable when: „A method is, or will be, using or used by more features of

another class than the class on which it is defined‟. For the Velocity system, the

large number of these two refactorings at version three suggests that the

correspondingly large number of fields and methods added were the cause of

Chapter 4: Package Evolvability and its Relationship with Refactoring 54

required subsequent refactoring. In other words, simple refactorings may have

been undertaken to remedy the problems associated with such an intense set of

added fields and methods.

We also note that these two refactorings were popular across all three systems

studied (and at specific points), which adds weight in support of this argument.

The same principle applies to simple renaming of fields and methods. It is

perfectly reasonable to suggest that when large numbers of attributes and methods

have been added to a system, a certain amount of refactoring may be necessary

subsequently to disambiguate and clarify the role and meaning of those fields and

methods. Fowler (1999) suggests that the „Move Method‟ refactoring is the „bread

and butter of refactoring‟. Equally, „Move Field‟ is the „very essence of

refactoring‟.

Similarly, Fowler (1999) reveals an interesting point about the „Rename Method‟

refactoring: „Life being what it is, you won’t get your names right the first time‟.

One explanation for the lack of the more „structurally-based‟ refactorings (i.e.

those that manipulate the inheritance hierarchy) in the systems studied might be

that the package access provides the necessary inter-class access that inheritance

might otherwise provide. The „Extract Subclass‟ and „Extract Superclass‟

refactorings would fall into this category. One final point relates to why versions

two and three were the source of the most refactoring effort (as opposed to later

versions of the system across all three systems). One explanation is that when a

system is at early stages of its lifetime, the design documentation is more likely to

be up-to-date. Consequently, the system is relatively easy to modify from a

refactoring perspective. As the system ages, increasing amounts of effort and time

needs to be devoted to changes as the code „decays‟.

There are a number of threats to the validity of the study that need to be

considered. One threat is that we have only considered a relatively small sample

of systems to investigate. In defence of this threat, we accept that a larger sample

of systems might demonstrate that the results in this chapter are more

generalisable to the population of systems (external validity). However, the same

criticism could be made of a study with double the number of systems studied, for

Chapter 4: Package Evolvability and its Relationship with Refactoring 55

example. A further threat to the validity of the study is that we have only

considered fifteen refactorings from the 72 stated in Fowler (1999). We have also

only considered a relatively small number of versions of each system; again, in

defence of this claim, we chose the most number of versions available at the time

the research was being undertaken. One final threat to the validity of the study

relates to the time gap between each version of a system. We have assumed, so

far, that there is an equivalent time gap between versions and hence that, other

things remaining equal, there is a reasonable chance of the same number of

refactorings being undertaken between each version.

Table 4.6 shows the time gap in months (m) and days (d) between the nine

versions of the Velocity system and the total number of refactorings that were

identified in that time - the totals are calculated by summing the individual

columns of Table 4.5. (For the sake of argument, we assume a month to be 30

days duration.) Table 4.6 shows that there is a wide variation in times between

versions of the Velocity system. The minimum gap is 8 days and the maximum

gap 8 months, 8 days. What is most interesting and noteworthy from Table 4.6 is

that there is no clear pattern or proportionality with the number of refactorings

based purely on the version time gaps. In other words, the length in time between

versions seems to have no bearing on the number of refactorings extracted by the

tool and undertaken by the developers of this system. For example, the 8 month, 8

day gap between version 7 and version 8 realised zero refactorings. Equally, the

10 days between version 2 and 3 realised the highest number of (102)

refactorings. Inspection of the Velocity change logs detailing the changes between

versions revealed a mixture of patches, bug fixes and new requirements. It would

therefore seem that refactoring may be motivated by factors other than time per

se. The amount of developer effort invested into the system between versions, for

example, may be a more significant factor than time. A finer-grained analysis of

exactly at what date and time the refactorings were undertaken (i.e. a timestamp

approach) as well as some indication of effort on the part of the developers might

also provide a greater insight and reveal more informative patterns in the

refactorings; we leave this detailed aspect of the analysis for future work.

Chapter 4: Package Evolvability and its Relationship with Refactoring 56

Table 4.6 Duration between each version and associated refactorings (Velocity)

Version Version gap Refactorings

Ver1 - 0

Ver2 8d 23

Ver3 10d 102

Ver4 5m 28d 0

Ver5 1m 21d 65

Ver6 6m 28d 34

Ver7 15d 0

Ver8 8m 8d 0

Ver9 7m 9d 34

4.7 Summary

The goal of the research in this chapter was to investigate how a system evolved

at the package level and this goal was achieved through the use of a case study. A

set of three research questions investigated trends in changes of nine versions of a

Java OSS. A bespoke tool was written to extract data relating to changes across

those nine versions. An interesting „peak and trough‟ effect trend was found to

exist in the system studied at specific versions of the system, suggesting that

developer activity comprises a set of high and low periods. A contrast was found

between those regular changes and those associated with refactoring activity.

The results address a hitherto unknown area - that of the relationship between

regular changes made to a system as part of maintenance and that of refactoring.

While the study describes only a limited sample of systems and evidence of the

peak and trough effect is similarly restricted (both threats to study validity), we

view the research as a starting point for further replicated studies and for an in-

depth and generalised analysis of coupling/refactoring, both inter- and intra-

package.

Chapter 4: Package Evolvability and its Relationship with Refactoring 57

Since the focus of this Thesis is on trends in coupling at the package level

longitudinally, the next chapter will explore whether the extent of coupling

influenced the removal of classes from a system. Moreover, we investigate

whether size was an influence on removed classes, and whether these removed

classes were changed significantly before being removed.

 58

CHAPTER 5. AN EMPIRICAL STUDY OF

“REMOVED” CLASSES

5.1 Introduction

In the previous chapter, an investigation of trends in changes to an OSS was

conducted. These trends were considered with respect to added classes, LOC,

methods and attributes. In addition to this set of maintenance changes, the applied

refactorings were investigated in terms of their relationships with those changes.

One aspect of evolution detailed in Chapter 4 and a key observation was therefore

the dynamic nature of systems and, in particular, the tendency for removal of

classes as a system evolved.

Removal of classes can occur for range of reasons. One plausible reason might be

that a class is excessively coupled and therefore needs to be amalgamated and

dispersed within the classes to which it is coupled. Equally, a class might be doing

very little „work‟ and as such can easily be removed from the system with

minimal disruption to the rest of the system. In this chapter, an empirical study of

coupling and data related to classes removed from multiple versions of four

systems are described.

Coupling is a necessary feature of OO systems; ideally, classes with excessive

coupling should be either refactored and/or removed from the system. However, a

problem that immediately arises is the practical difficulty of carrying out the

removal of such classes due to the many coupling dependencies they have; it is

often easier to leave classes where they are and work around the problem. In this

chapter, we answer three related research questions. First, are classes removed

from the system lowly or highly coupled relative to other classes in the same

package? Second, are the same classes excessively large compared with the

remaining classes in the package? Third, are removed classes changed frequently

before they are removed? Results showed a strong tendency for classes with low

fan-in (incoming coupling) and fan-out (outgoing coupling) to be candidates for

Chapter 5: An Empirical Study of “Removed” Classes 59

removal. Evidence was also found of class types with high imported package and

external call functionality being removed. Finally, size, in terms of methods and

lines of code did not seem to be a contributing factor to class removal. The

research addresses an area that is often overlooked in the study of evolving

systems, notably the characteristics and features of classes that disappear from a

system.

The chapter is organised as follows: Section 5.2 describes the motivation for the

research and related previous work. In Section 5.3, the systems under study are

introduced together with an overview of the metrics collected. Section 5.4

presents an analysis of the data collected; Section 5.5 provides a discussion of the

points raised by the study and finally, a summary and future research are

presented (Section 5.6). We note that the research in this chapter was first

published by Mubarak et al. (2008a).

5.2 Motivation and Related Issues

Excessive class coupling has often been related to the tendency for faults in

software (Briand et al., 1997). It is widely believed in the OO software

engineering community that excessive coupling between classes creates a level of

complexity that can complicate subsequent maintenance and potentially lead to

the seeding of further faults. In practice, a class that is highly coupled with many

other classes is an ideal candidate for re-engineering or removal from the system

to mitigate current and potential future problems. Moreover, a highly coupled

class is, other things remaining equal, likely to have grown to be a relatively large

class, making it even more suitable theoretically for removal from the system. The

paradox that immediately arises, however, is that it is often easier to leave a

highly coupled class undisturbed than to attempt to remove it. In other words, the

disadvantages associated with its removal (i.e. side-effects, re-work and re-test)

outweigh the disadvantages of simply leaving the class where it is.

The research in this chapter is motivated by a number of factors. First, we would

always expect potentially problematic classes to be re-engineered by developers

through techniques such as refactoring (Fowler, 1999); however, practical realities

Chapter 5: An Empirical Study of “Removed” Classes 60

(limited time and resources) indicate that only when classes exhibit particularly

bad „smells‟ are they then dealt with (Fowler, 1999). The research in this chapter

explores the characteristics of classes removed from a system, research that has

not been touched on in any previous work that we know of. Throughout, we

interpret the term „removed‟ to mean that either a class has been:

a) Decomposed to form one or more newly named classes,

b) Moved to a different package and renamed or

c) Simply removed from the system because it is moribund.

 Second, there is no prior study that we know of which suggests large classes with

high coupling are removed any more or less frequently than small, low-coupled

classes. Large classes may be a maintenance problem and hence candidates may

be decomposed. On the other hand, however, small classes are more portable (and

hence can be moved more easily). Finally, while there has been some work on

finding the optimal size of class (El Emam, 2001), very little empirical research

has investigated whether through analysis of removed classes, there is a coupling

level beyond which action by the developer is usually triggered. The research

described in this chapter relates to areas of software evolution, coupling metrics

and the use of open-source software (Dinh-Trong and Bieman, 2004; Ferenc,

2004). In terms of software evolution, the basis for many past evolutionary studies

has been provided by the laws proposed by Belady and Lehman (1976). Evolution

has also been the focus in simulation studies (Smith et al., 2006). In terms of

coupling, a framework for its measurement was introduced (Briand et al., 1999c);

variations for different programming styles have also been proposed (Bartsch and

Harrison, 2006a). Li and Henry (1993) verify that maintenance and tracing

become more difficult with extreme coupling in the system. Chidamber and

Kemerer (1994) proposed six OO metrics, amongst which were the Response for

a Class and Coupling Between Objects coupling metrics. Finally, this study

contributes to an empirical body of knowledge on coupling and longitudinal

analysis of which more studies have been recommended (Kemerer and Slaughter,

1999a; 1999b).

Chapter 5: An Empirical Study of “Removed” Classes 61

5.3 Study Details

In this study, the main aim is to study the removed classes in an OSS. These

classes are investigated by comparing the coupling they contain to other classes in

the same package. Moreover, the size of these classes is considered together with

the changes taking place in them before they are removed. These terms are

investigated through three research questions using four OSS over several

versions. Five coupling metrics are collected for each version for these systems.

5.3.1 Systems under Study

Four systems were used as a basis of our study. These systems are presented in

Section 3.4.1; however, a brief description of them is as follows:

1) Jasmin. Jasmin is a Java assembler which takes ASCII descriptions of Java

classes and converts them into binary Java .class files suitable for loading into a

Java Virtual Machine. The system comprises 5 versions.

2) DjVu. DjVu is a Java system provides an applet and desktop viewer Java

virtual machine. The system comprises 8 versions.

3) pBeans. pBeans is a Java system provides automatic object/relational mapping

(ORM) of Java objects to database tables. The system comprises 10 versions.

4) Asterisk. The Asterisk Java system consists of a set of Java classes that allow

the user to easily build Java applications that interact with an Asterisk PBX

Server. It supports the FastAGI protocol and the Manager API. This system

includes 6 versions.

5.3.2 Data Collected

OO metrics usually capture properties of OO systems such as cohesion,

inheritance, encapsulation, polymorphism, size or coupling (Fenton and Pfleeger,

2002). For this study, the JHawk tool was used to collect five coupling metrics for

each of the four systems (as described in Section 3.4.2). These metrics are:

1) Message Passing Coupling (MPC). The number of messages passed among

objects of a class.

Chapter 5: An Empirical Study of “Removed” Classes 62

2) PACK. The number of the packages imported.

3) Number of EXTernal methods called (EXT). The more external methods that a

class calls, the more tightly bound that class is to other classes.

4) Fan IN (FIN). The FIN of a function is the number of unique functions that call

the function.

5) Fan OUT (FOUT). The FOUT counts the number of distinct non-inheritance

related class hierarchies on which a class depends.

We also collected, for each removed class, the total number of methods (private,

protected and public) and the lines of code (LOC) in each class as size measures.

5.3.3 The Research Questions

The study comprises three research questions (RQ1, RQ2 and RQ3), stated as

follows:

 RQ1: Do removed classes contain significantly more or less coupling than

other classes in the same package? This question is based on the belief that

removed classes will tend to contain relatively small amounts of coupling

when compared with other classes in the same package. We take the

median coupling values of each metric within each package as a basis for

our comparison. The median represents the mid-point of all values for that

metric. All values below the median will be relatively „low‟ values and

values above, relatively „high‟ values by comparison.

 RQ2: Are removed classes significantly „larger‟ than other classes in the

same package? This question is based on the belief that removed classes

will tend to be small (in terms of their number of methods and LOC) when

compared with other classes in the same package. Again, we take the

median value for methods and LOC as a basis of our comparison.

 RQ3: Do removed classes tend to be modified significantly before they

are removed? This question is based on the belief that classes which are

modified significantly through versions of the systems studied are more

Chapter 5: An Empirical Study of “Removed” Classes 63

likely to be removed because they cause frequent maintenance problems in

the system.

5.4 Data Analysis

In order to assess our research questions, we collected the five coupling metrics,

the number of methods (NOM) and LOC for the four systems. We then calculated

the median for each variable. Subsequently, we presented the differences between

the variables and their median values in tables. We calculated the differences for

the five coupling metrics in order to assess the first research question, and the

differences for the NOM and LOC to assess the second. For the third research

question, we calculated the changes in the five coupling metrics for the removed

classes over the course of the versions studied (prior to being removed) for each

of the four studied systems. We assess each question on all the four systems

separately.

5.4.1 Research Question 1 (RQ1)

Table 5.1 shows the name of removed classes, the name of the packages that they

were removed from, the number of version in which the classes were removed and

values for the five coupling metrics. These values are expressed as the real values

for the metrics minus the median for that package and in the version where the

class was removed. The median metric value for the package and for that version

of the system is shown in brackets after each value in each case; if classes are

removed in different versions, the median values for that particular version are

shown. The values for the coupling metrics are plus or minus according to the

difference between the real value of the metric and the median value. If the metric

value is more than the median, then the value in the table is plus, and if the metric

value is less than the median, then the value in the table is minus. For example,

the MPC value for class StackMapAttr was 25 greater than the median value of 6

for that package (i.e. it had value 31). Equally, the MPC for class

Signed_num_token was 4.5 less than the median MPC of 4.5 in that package (i.e.

zero). Since both StackMapAttr and StackMapFrame classes were removed in the

Chapter 5: An Empirical Study of “Removed” Classes 64

same version they share the same set of median values given in the first row (this

is not always the case).

We have also highlighted the fact that classes are taken from different packages

by alternating italicized class values with bold un-italicized values. Consequently,

the first two classes in Table 5.1 are from one package jas and the third class from

a different package jasmin. We note also that the values in brackets represent the

median for the whole package and therefore apply to all similar rows below it in

the same table.

For the Jasmin system, the three removed classes were all found in the fourth

version (out of five). The first two removed classes are higher than the median for

the coupling metrics. For the third class, all but one of the same metrics are below

the median. Clearly, for this system, coupling exceeds the median in the majority

of cases. This is more noticeable in Figure 5.1, where the differences for the

coupling metrics from the median are presented for each removed class (We refer

to the class by the number of the row that presents it in the table).

Table 5.1 Removed classes compared to median (Jasmin)

Removed Class Package In MPC EXT PACK FOUT FIN

StackMapAttr Jas V4 25 (6) 13(5) 2 (1) 6 (0) 0 (0)

StackMapFrame Jas V4 15 7 2 2 3

Signed_num_token jasmin V4 -4.5 (4.5) -3.5 (3.5) -0.5 (1.5) -1.5 (1.5) 0 (0)

Chapter 5: An Empirical Study of “Removed” Classes 65

Figure 5.1 Coupling metrics in the removed classes compared to median (Jasmin)

For DjVu (Table 5.2), a number of different patterns emerge. First, it seems that

when a class was removed, it tended to have relatively low (i.e. minus) MPC,

EXT and PACK values compared with other classes (given by the median). For

example, seven of the twelve removed classes contained values of MPC

significantly less than the median; five of the twelve removed classes contained

10 or less EXT values than the median. The same trend applies to the PACK

metric. (It is relatively easy to remove a class that is lowly-coupled in terms of

message passing and external calls.) Equally, with the exception of one class, the

values of FOUT for this system are either 0 or negative. This is not always the

case for FIN, suggesting a difference in emphasis between these two metrics when

removing classes. A class with a higher FOUT than FIN is, in theory, easier to

remove because it has fewer incoming dependencies than outgoing. Interestingly,

only in four of the twelve cases does this occur in Table 5.2. Nonetheless, the

values of FIN and FOUT are generally low; for two of the packages every FOUT

value of removed classes is less than or identical to the median value. Also of

note are the exceptionally low values of MPC and EXT for the third package

(each of the three classes in this package was removed in different versions

because they each have their own set of median values). Overall, of the sixty

Chapter 5: An Empirical Study of “Removed” Classes 66

values for all metrics in the table, 33 were negative and 7 equivalent to the median

(value of zero in the table).

Table 5.2 Removed classes compared to median (DjVu)

Removed Class Package In MPC EXT PACK FOUT FIN

GMapRect Djvu V3 12 (20) 3 (15) 0 (1) -1 (5) 4 (10)

GRectMapper Djvu V3 7 1 -1 -5 -10

LibRect Djvu V3 -15 -10 1 -5 4

Annotation Djvu V3 -20 -15 -1 -5 0

ByteVector Djvu V7 5.5 (20) 2(15) 0 (2) 0 (5) -2.5 (10.5)

DataPool$

CachedInputStream
Djvu V7 1.5 1 -2 0 -10.5

IFFContext Djvu V7 -9.5 -8 -1 -3 -7.5

GMapOval djvu.anno V3 -17 (27) -7 (17) 1 (1) 0 (4) 3 (0)

GMapPoly djvu.anno V3 51 20 1 1 3

BoundImage Djvubean V3 -41(42) -27.5 (28.5) 0 (5) -7.5 (7.5) 1 (3)

DjVuBean$

HyperlinkListener
Djvubean V5 -46 (59) -30 (43) -5 (5) -7 (11) -5 (5)

SimpleArea Djvubean V6 -50 (75) -34 (48) -4 (6) -10.5 (12) 0.5 (4.5)

Figure 5.2 Coupling metrics in the removed classes compared to median (DjVu)

Chapter 5: An Empirical Study of “Removed” Classes 67

Table 5.3 shows the coupling metrics for the pBeans system expressed as values

plus or minus the median. Eleven classes were removed from three different

packages. In common with the DjVu system, the FIN values seem to be low

compared with the median value and in this case, so too the FOUT. The most

notable feature of Table 5.3 is the fact that all six classes removed from the

second package (bolded) relate explicitly to databases. Moreover, the MPC and

EXT values are exceptionally high for these classes. There is a reasonable

explanation for this feature. Database classes are more likely to be used

extensively by other classes and that could explain the high MPC and EXT values

(the PACK values for the same classes are relatively low). It might be the case

that these six classes may not have been removed necessarily, but simply „moved‟

all together as part of an „Extract Package‟ refactoring to re-locate database

classes where they are most needed (Fowler, 1999). It is interesting that not all of

the same six classes had low FIN and FOUT values, suggesting that only some

forms of coupling may be relevant or considered by a developer when deciding on

class removal. Of the 55 values in Table 5.3, only 21 values were negative. The

majority of positive values were accounted for by the database classes.

Table 5.3 Removed classes compared to median (pBeans)

Removed Class Package In MPC EXT PACK FOUT FIN

ObjectClass pbeans V8 -2 (2) -2 (2) 0 (0) -1.5 (1.5) 1 (5)

ObjectClass_StoreInfo pbeans V8 2 2 2 0.5 -5

PersistentMap

Entry_StoreInfo
pbeans V8 -1 -1 0 -0.5 -5

PersistentMap_StoreInfo pbeans V8 -1 -1 0 -1.5 -5

HsqlDatabase data V8 33.5 (0.5) 27.5 (0.5) 4.5 (0.5) 15.5 (0.5) -1.5 (1.5)

HsqlDatabase$

UpperCaseMap
data V8 3.5 2.5 -0.5 0.5 -1.5

PostgreSQLDatabase data V8 36.5 32.5 3.5 17.5 -1.5

PostgreSQLDatabase$

LowerCaseMap
data V8 3.5 2.5 -0.5 0.5 -1.5

MySQLDatabase data V8 9.5 6.5 2.5 3.5 -1.5

SQLServerDatabase data V8 18.5 14.5 3.5 10.5 -1.5

InitFilter servlet V8 -1(10) 0 (8) 3 (3) 1(5) 0 (2)

Chapter 5: An Empirical Study of “Removed” Classes 68

Figure 5.3 Coupling metrics in the removed classes compared to median (pBeans)

For the Asterisk system (Table 5.4), eight classes were removed from four

packages. The Asterisk system exhibits a similar pattern to the DjVu system in

terms of the FIN and FOUT values, the majority of which were either zero or

negative when compared with the median. In keeping with the pBeans system,

the MPC and EXT values for removed classes are quite large in many cases.

Consider, for example, the classes ReplyBuilderImpl, ReplyBuilderImplTest,

RequestBuilderImpl and RequestBuilderImplTest – all of which have high

MPC and EXT values. Finally, the two classes ServerSocketFacadeImpl and

SocketConnectionFacadeImpl are related to patterns and, in particular, the

facade pattern (evidence by Bieman et al. (2003) suggests that pattern classes are

more susceptible to change than non-pattern based classes). The same

phenomenon of moving related classes such as those for the database classes of

pBeans may apply here.

Chapter 5: An Empirical Study of “Removed” Classes 69

Table 5.4 Removed classes compared to median (Asterisk)

Removed Class Package In MPC EXT PACK FOUT FIN

ReplyBuilder fastagi V2 0 (0) 0 (0) 1.5 (0.5) 0 (0) -1 (1)

RequestBuilder fastagi V2 0 0 0.5 0 -1

ReplyBuilderImpl impl V2 17 (12) 15 (10) -2 (5) 9 (7) 0 (0)

ReplyBuilderImplTest impl V2 36 3 -3 -1 0

Request

BuilderImpl
impl V2 55 41 5 7 0

RequestBuilder

ImplTest
impl V2 101 19 -2 0 0

CommonsLoggingLog util V2 5 (2) 3 (2) 0.5 (0.5) -1(2) 0 (0)

NullLog util V2 -2 -2 -0.5 -2 0

ServerSocket

FacadeImpl
asterisk.io V4 4 (0) 4 (0) 2.5 (1.5) 2 (0) -7 (7)

SocketConnection

FacadeImpl
asterisk.io V4 18 12 4.5 1 -7

Util manager V4 5.5 (2.5) 4 (2) -2 (2) 0 (1) 7 (0)

Figure 5.4 Coupling metrics in the removed classes compared to median (Asterisk)

Chapter 5: An Empirical Study of “Removed” Classes 70

In response to RQ1, we suggest that FIN and FOUT coupling may be a strong

determinant of whether a class is removed – low values of each may help the

removal of a class; equally, high amounts of MPC and EXT may actually be one

stimulus for moving a class. However, the key driver for removing classes as

noted for classes in pBeans and Asterisk may be the need to remove related

classes to a more convenient location.

5.4.2 Research Question 2 (RQ2)

Research question 2 attempts to answer the question whether removed classes

were significantly „larger‟ than other classes in the same package? We determined

the size of the class by the number of methods NOM and the number of LOC for

this class.

In order to answer the research question, we compare the size of the removed

classes by taking the median value for NOM and LOC as a basis of this

comparison. Table 5.5 shows the name of removed classes for each system, and

values for the NOM and LOC. These values are expressed as the real values

minus the median for that package and in the version where the class was

removed; these values are minus or plus depending on whether the real values are

less or more than the median, correspondingly.

Table 5.5 NOM and LOC compared to the median for the four systems

 System Removed class NOM LOC

Jasmin

StackMapAttr 1 14.5

StackMapFrame 4 19.5

Signed_num_token -2 -21

 pBeans

GMapRect 32.5 113

GRectMapper 9.5 93

LibRect -11.5 -41

GMapOval 0 -77

GMapPoly 26 116

BoundImage -14 -59

Annotation -0.5 -65

DjVuBean$HyperlinkListener -12 -79

SimpleArea -2 -185.5

ByteVector 0 5

Chapter 5: An Empirical Study of “Removed” Classes 71

DataPool$CachedInputStream 1 -31

IFFContext -5 -47

ObjectClass 1 -5

 SQL

ObjectClass_StoreInfo -3 -8

PersistentMapEntry_StoreInfo -3 -14

PersistentMap_StoreInfo -3 -14

HsqlDatabase 5 33.5

HsqlDatabase$UpperCaseMap -3 -9.5

PostgreSQLDatabase 9 47.5

PostgreSQLDatabase$LowerCaseMap -3 -9.5

MySQLDatabase 1 -0.5

SQLServerDatabase 3 26.5

InitFilter 1 11

IndexNodeFile -1 -12.5

Asterisk

ReplyBuilder -1 0

RequestBuilder -1 -1

ReplyBuilderImpl -3 9

ReplyBuilderImplTest 5 16

RequestBuilderImpl 2 83

RequestBuilderImplTest 11 94

CommonsLoggingLog 4.5 5.5

NullLog 4.5 -2.5

ServerSocketFacadeImpl -2.5 4

SocketConnectionFacadeImpl 1.5 17

Util 1 19.5

In order to study the NOM and LOC separately, we used the line chart to present

each of their values in a different figure. Figure 5.5 shows the values of LOC for

classes for each system and Figure 5.6 shows the NOM for the same four systems.

The „zero‟ vertical axis represents the median value of NOM and LOC in the four

systems. Hence, plotted values represent NOM and LOC values above (plus) or

below (minus) the median.

Figure 5.5 seems to show that a similar number of the 37 removed classes had

LOC values below the median as above it; in fact 21 of the 37 were either zero or

above and therefore 16 were below the median.

Chapter 5: An Empirical Study of “Removed” Classes 72

-250

-200

-150

-100

-50

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12

Version

L
O

C

Jasmin

DjVu

pBeans

Asterisk

Figure 5.5 LOC in removed classes

Figure 5.6 shows a similar pattern to Figure 5.5. Of the 37 values, 19 were zero or

above (18 value were therefore below). In both figures, the DjVu system seems to

be the system where both large and small classes were removed from the system

(given by the erratic peaks). These results suggest that size, both in terms of NOM

or LOC, seemed to have little bearing on the choice of removal of a class. A

similar effect appears to take place for the pBeans and Asterisk systems, but to a

lesser extent. For the Asterisk system, the peak in NOM and LOC coincides with

the high values for the second package in Table 5.4. This implies that for this

system, removed classes were both highly coupled and relatively large.

Chapter 5: An Empirical Study of “Removed” Classes 73

-20

-10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
O

M

Jasmin

DjVu

pBeans

Asterisk

Figure 5.6 NOM in removed classes

Based on the evidence presented, and in response to RQ2, size does not seem to

be a key determinant in the removal of a class. Both small and large classes were

removed (coupling may be a far greater determinant). This result is supported by

Counsell (2008) where size was found to be a poor predictor of OO cohesion;

coupling was a far better determinant.

5.4.3 Research Question 3 (RQ3)

Research question three aims to answer the question whether removed classes

were also the subject of significant changes over the course of the versions studied

(prior to being removed). For the Jasmin system, Table 5.6 shows the number of

classes of the set of removed classes that were the subject of changes during the

five versions of the system studied. As before, the values in the table are relative

to the median. For example, two of the three removed classes in the Jasmin

system had had changes applied to them. Class StackMapAttr was removed „In‟

version 4 and had changes applied to it between version 2 and 3. The same

happened to class StackMapFrame. It was removed in version 4 and had changes

Chapter 5: An Empirical Study of “Removed” Classes 74

applied to it between version 2 and 3. Both of these classes were removed from

the jas package. However, for the third removed class Signed_num_token, no

change had been applied to it over the course of the versions prior to its removal,

so it does not appear in Table 5.6.

Table 5.6 Changes for removed classes (Jasmin)

Removed classes In Changes NOM LOC FOUT FIN

StackMapAttr V4 V2-V3 0 0 -1 0

StackMapFrame V4 V2-V3 2 6 -1 -5

For the DjVu system (Table 5.7), five out of the twelve classes were changed and

these changes occurred between the second and the third versions in every case.

However, these classes were not removed directly after those changes, they were

removed later in the fifth, sixth, and seventh versions. These classes were

removed from three different packages.

Table 5.7 Changes for removed classes (DjVu)

Removed classes In Changes NOM LOC FOUT FIN

ByteVector V7 V2-V3 0 -4 -3 -1

DataPool$CachedInputStream V7 V2-V3 0 0 0 0

IFFContext V7 V2-V3 0 0 0 -1

DjVuBean$HyperlinkListener V5 V2-V3 0 2 0 0

SimpleArea V6 V2-V3 0 0 0 -6

For the pBeans system (Table 5.8), there were changes in just three classes out of

eleven. However, most of these changes were in the first three versions and they

were all removed in the eighth version. The class MySQLDatabase was changed

twice during the period studied and the class SQLServerDatabase was modified

three times over the course of the versions studied (they thus have two and three

entries in Table 5.8, respectively). These three classes were removed from the

same package “data”.

Chapter 5: An Empirical Study of “Removed” Classes 75

Table 5.8 Changes for removed classes (pBeans)

Removed classes In Changes NOM LOC FOUT FIN

PostgreSQLDatabase V8 V3-V4 2 8 1 0

MySQLDatabase V8 V1-V2 1 6 1 0

MySQLDatabase V8 V6-V7 0 3 1 0

SQLServerDatabase V8 V1-V2 1 13 4 0

SQLServerDatabase V8 V2-V3 0 6 1 0

SQLServerDatabase V8 V3-V4 2 8 1 0

Finally for the Asterisk system (Table 5.9), there were changes in just three

classes out of eleven. However, these changes were in the first two versions and it

was not until the fourth version that they were removed.

Table 5.9 Changes for removed classes (Asterisk)

Removed classes In Changes NOM LOC FOUT FIN

SocketConnectionFacadeImpl V4 V2-V3 1 2 0 0

Util V4 V1-V2 1 6 0 1

Util V4 V2-V3 0 0 0 2

The conclusion we can draw in response to RQ3 is that first, removed classes are

not necessarily changed significantly prior to their removal for the systems

analysed. Second, that removal of the classes took place at a later date to that of

change in all cases investigated. This was a surprising result to emerge from the

analysis. Finally, we note that for all the changed systems in Tables 5.6-5.9, the

FIN and FOUT values are small even when compared with the other FIN and

FOUT values in Tables 5.1-5.4.

5.5 Study Validity

First, we have identified removed classes but could not say whether these classes

were simply moved to a different package and renamed (we would expect most

removed classes to be decomposed and for the subsequent classes to be renamed).

To counter this threat to validity, we did search for classes with different names

Chapter 5: An Empirical Study of “Removed” Classes 76

but which had identical compositions to those removed classes, but found very

little evidence to suggest that classes are actually moved and renamed (i.e. they

tend to be decomposed or simply removed from the system). Finally, we have

focused on coupling and size as the basis of our analysis. We could have used

many other features of classes as a basis; for example, their cohesion or their

position in the inheritance hierarchy (Cartwright and Shepperd, 2000). We leave

such analyses for future work, however.

5.6 Summary

In this chapter, we investigated removed classes in four Java systems. Five

coupling metrics were collected from four Java open-source systems using the

JHawk tool. The study investigated three research questions. First, we

investigated whether the extent of coupling influenced the removal of classes

from a system. We found that the FIN and FOUT metrics tended to be relatively

small for removed classes. Moreover, that imported functionality (packages) and

external calls play a role in certain cases (we found evidence of movement of

database classes with high levels of message passing and external references).

Second, we explored whether size was an influence on removed classes. We

found little evidence that size did influence that choice. Finally, the expectation

that removed classes were changed significantly before being removed was ill-

founded; changes for most of the classes were made in early versions and

removed relatively later on.

In the next chapter, coupling will be empirically investigated. Five coupling

metrics will be explored in five Java systems. The coupling will be examined in

terms of their relationships with the version release times and code warnings.

 77

CHAPTER 6. EMPIRICAL OBSERVATIONS ON

COUPLING AND CODE WARNINGS

6.1 Introduction

In the previous chapter, an empirical study concerning removed classes in Java

OSSs was undertaken. In the study, removed classes in four OSSs were

investigated through three related research questions. First, does the amount of

coupling influence the choice of removed class? Second, does class size play a

role in that choice? Finally, is there a relationship between the frequency with

which a class is changed and its point of removal from a system?

One question that is pertinent to ask about coupling based on the features

extracted in Chapter 4 and 5 is the extent to which it might cause problems in

code. In other words, does excessive coupling cause faults to be invested in code

or at best induce a coding style that naturally harbours faults? In this chapter, we

explore this aspect of coupling. Our investigation considered coupling in five Java

systems using coupling metrics, version release times and code warnings. We

collected five coupling metrics, class data and version release times from the

systems using the JHawk tool and used code warnings extracted using the

FindBugs tool to determine the relationships between coupling, those warnings

and the time interval between versions.

Results found that addition of coupling may have beneficial effects on a system. It

also seems that addition of coupling in new functionality through packages could

result in fewer warnings than adding functionality to existing code. Finally, there

appears to be a coupling trade-off between coupling types – in particular that

between the uses of coupling through imported packages and the introduction of

„internal-to-the-package‟ coupling.

The remainder of the chapter is organised as follows. In the next section, we

present the motivation for the study and related work. In Section 6.3, we provide

details of the systems studied, the tools used, the data collected and the research

Chapter 6: Empirical Observations on Coupling and Code Warning 78

questions. We then present the data analysis including the role that code warnings

played (Section 6.4). We then discuss a number of issues raised by the study in

Section 6.5 before concluding in Section 6.6. We note that the research in this

chapter was first published by Mubarak et al. (2008b).

6.2 Study Motivation

Coupling, whether in the procedural or OO paradigm, has often been related to the

propensity for faults in software (Briand et al, 1997; Briand et al., 1998). It is

generally accepted in the OO software engineering community that extreme

coupling between classes produces a level of complication that makes problems

with subsequent maintenance and possibly guides to the seeding of (further)

faults. The research in this paper is motivated by a number of factors. Firstly, the

research in Chapter 4 has shown that frenetic bursts of refactoring activity after

specific releases of a system, suggesting that this activity is in response to a wide

range of „regular‟ (i.e. non-refactoring) changes to the system under consideration.

There is a strong link between refactoring and the need to reduce coupling and it

is thus a natural extension to the research in this earlier work to explore those

regular changes and, moreover, their link with refactoring. Secondly, while there

have been many studies of evolving systems, the time frame between releases is

often ignored, and each version release is considered as occurring at an equal time

interval from the last. However, analysis of relative change may reveal significant

facets of the maintenance activity that, in particular, have a relationship with

trends in fault propensity.

While there has been a large amount of research into evolutionary trends in

systems in the past (Belady and Lehman, 1976; Bieman et al., 2003; Girba and

Ducasse, 2006; Lehman, 1980; Mens et al., 2004), a number of research questions

remain mainly unaddressed. Firstly, releases of a system can arise at very different

time intervals, and change activity can be motivated by a number of factors. For

example, it is possible for two sequential versions of a system to be released on

the same day because of a requirements fault in the primary release. In other

cases, time intervals of over a year between version releases are common. The

Chapter 6: Empirical Observations on Coupling and Code Warning 79

research question that naturally arises is: what trends in change activity can we

observe if we factor in the different time periods between releases of a system?

Secondly, if we can observe that there are these concerted „bursts‟ of maintenance

activity in which increased coupling will inevitably feature, then how can

potential code „warnings‟ assist and inform our understanding during or after

those bursts? A high proportion of change activity must inevitably have an effect

on potential fault patterns.

6.3 Preliminaries

6.3.1 Systems under Study

Five systems were used in order to investigate the research questions. Three of

these systems were used in the study conducted in Chapter 5 (Jasmin, pBeans and

DjVu). The five systems are presented in Section 3.4.1; however, a brief

description of them is as follows:

1. Jasmin. Jasmin is a Java assembler which takes ASCII descriptions of Java

classes and converts them into binary Java .class files suitable for loading

into a Java Virtual Machine. The system comprises 5 versions.

2. DjVu. DjVu is a Java system that provides an applet and desktop viewer

Java virtual machine. The system comprises 8 versions.

3. pBeans. pBeans is a Java system which gives automatic object/relational

mapping (ORM) of Java objects to database tables. The system comprises

10 versions.

4. SmallSQL. Small SQL is a Java DBMS for Java desktop applications. It

has a JDBC 3.0 interface and offers many ANSI SQL 92 and ANSI SQL

99 features. The system comprises 8 versions.

5. JWNL. JWNL is a Java API for accessing the WordNet relational

dictionary. WordNet is widely used for developing NLP applications and

allows developers to use Java for building NLP applications. The system

comprises 5 versions.

Chapter 6: Empirical Observations on Coupling and Code Warning 80

6.3.2 Tools Used

Two software tools were used for our analysis. Firstly, the JHawk (2008) tool was

used to collect the five coupling metrics and the class data (number of classes and

methods). The FindBugs (2008) tool was used to collect the warnings for each

version of the systems. The FindBugs tool analyses the Java byte code for

common potential fault patterns and issues those warnings decomposed into six

categories.

1. Bad Practice (BP): “Violations of recommended and essential coding

practice. Examples include hash code and equals problems, serializable

problems/misuse of finalize.”

2. Correctness (CORR): “An apparent coding mistake resulting in code that was

probably not what the developer intended.” For example, method ignores

return value/double assignment of field.

3. Malicious Code Vulnerability (MCV): State where internal information is

changed or exposed. Examples include that a mutable static field could be

changed by malicious code or by accident from another package.

4. Multi-threaded Correctness (MTC): A potential fault due to careless

housekeeping of threads. Examples include a method that does not release a

lock on all paths, and field not guarded against concurrent access.

5. Performance (PER): Code written in such a way that would detract from the

efficiency of the system. Examples include a private method never being

called, an unread or unused field, and inappropriate use of String.

6. Questionable (Dodgy) Practice (DODGY): “Code that is confusing,

anomalous, or written in a way that leads itself to errors. Examples include

dead local stores, unconfirmed casts and redundant null check of value

known to be null.”

Chapter 6: Empirical Observations on Coupling and Code Warning 81

6.3.3 Data Collected

For each of the systems, we collected five independent and orthogonal coupling

metrics and one time based metric (as described in Section 3.4.2). The first four

metrics were used also in the study conducted in Chapter 5 (Section 5.3.3).

1. Message Passing Coupling (MPC): The number of messages passed among

objects of a class.

2. PACK. The number of imported packages.

3. Fan IN (FIN). The FIN of a function is the number of unique functions that

call the function.

4. Fan OUT (FOUT). The FOUT counts the number of distinct non-inheritance

related class hierarchies on which a class depends.

5. Response for a Class (RFC). This metric is the same as that defined by

Chidamber and Kemerer (1994) and measures the response set of a class. The

RFC is defined as the set of methods that can potentially be executed in

response to a message received by an object of that class.

6. The time intervals between each version release.

6.3.4 Research Questions

The study comprises two research questions (RQ1 and RQ2), stated as follows:

 RQ1: What trends in change activity can we observe if we factor in the

different time periods between releases of a system? This question is based

on the belief that the time interval between two released versions will

affect the changes in a system if we put it under consideration. Sometimes

the time interval between the version releases can be days, while

sometimes it can be months.

 RQ2: How can potential code „warnings‟ help and inform our

expectations of the changes in a system activity? This research question is

based on the fact that a high fraction of change activity certainly has an

effect on potential fault trends.

Chapter 6: Empirical Observations on Coupling and Code Warning 82

6.4 Data Analysis

For each of the following five systems, we present the coupling data, the warnings

for each version and the time interval between versions. We will assess the two

research questions at the same time for each of the five systems.

6.4.1 The Jasmin System

Table 6.1 shows the changes in each of the coupling metrics over the five versions

of the Jasmin system. No new packages were introduced over the course of the

five versions, but we observe significant changes in each of the coupling metrics

particularly between releases version 2 and 3, before falling consistently

afterwards. The number of added classes was relatively low, but the addition of 21

classes between versions 1 and 3 resulted in over 150 new methods being added.

Between versions 4 and 5, there were small amounts of added coupling.

Table 6.6.1 Changes in coupling metrics for the Jasmin system

Jasmin Interval Packages Classes RFC MPC PACK FOUT FIN

V1-V2 401 0 10 202 194 13 29 30

V2-V3 63 0 11 317 330 25 42 31

V3-V4 45 0 -1 45 44 -1 11 11

V4-V5 140 0 0 1 5 0 6 2

One feature of the data was not a surprise - the „burst‟ and then sudden fall in

coupling activity was noted previously in Chapter 4, where refactoring effort for

OSS followed a similar pattern of: bursts of maintenance activity followed almost

immediately by bursts of refactoring activity.

Table 6.2 shows the warnings for each release of the Jasmin system. These

warnings are presented in the six aforementioned categories. Figure 6.1 shows the

total number of warnings for each release of the Jasmin system (upper graph) and

the changes in the number of warnings (lower graph). It is remarkable that from

Chapter 6: Empirical Observations on Coupling and Code Warning 83

version 2 to 3, there was actually a fall in the number of warnings for this system

(and yet this was accompanied by a significant rise in coupling as we can see from

Table 6.1).

Table 6.6.2 Warnings for Jasmin

Jasmin BP CORR MCV MTC PER DODGY Total

V1 6 0 8 0 1 2 17

V2 6 0 8 0 18 7 39

V3 7 0 8 0 7 9 31

V4 8 0 10 0 7 12 37

V5 0 0 0 0 0 0 0

-50

-40

-30

-20

-10

0

10

20

30

40

50

1 2 3 4 5

Version

N
o

.
W

a
rn

in
g

s
/C

h
a
n

g
e
s
 i

n

W
a
rn

in
g

s Warnings

Changes in

Warnings

Figure 6.1 Total warnings for Jasmin

Inspection of the warning categories issued by FindBugs revealed that over 50%

of the 39 warnings attributed to version 2 were found to be in the performance

(PER) category. The majority of the warnings in this category relate to the need

for additional method invocation to overcome inefficiencies associated with data

Chapter 6: Empirical Observations on Coupling and Code Warning 84

manipulation (this would affect the values of RFC and MPC metrics in particular).

In many instances, the developer is urged by FindBugs to heed this warning by

adding method calls (coupling) to specific classes and, in some cases, to replace

one method call with two. For example, the following complex construct replaces

a single method call as a remedy to one warning related to improper array use:

myCollection.toArray(newFoo[myCollection.size()]). In other words, the increase

in coupling witnessed by the Jasmin system between version 2 and 3 may have

been from necessity. More significantly and counter-intuitively, added coupling

may actually have contributed to the decrease in warnings between those versions.

We cannot therefore discount the possibility that increases in coupling may

actually have beneficial effects in a system by eliminating potential inefficiencies.

This was a surprising feature to emerge from our study.

The values in Table 6.1 and Figure 6.1 make the assumption that between each

release of the Jasmin system, there is an equal length of physical time. Figure 6.2

shows the time intervals between each of the versions of Jasmin.

The significant increase in coupling between version 2 and 3 is placed in its

proper context when we consider that there were 401 days between version 1 and

2, yet only 63 days between version 2 and 3. We could suggest that a key

motivation for the burst of increased coupling between version 2 and 3 (and the

added coupling therein) may have been simply to improve the performance of the

system. This may also explain the minimal changes in coupling and the

consequent drop in warnings thereafter.

Chapter 6: Empirical Observations on Coupling and Code Warning 85

0

50

100

150

200

250

300

350

400

450

1 2 3 4

Version

N
o

.
D

a
y
s

Time Interval

Figure 6.2 Time interval between versions

To conclude, contrary to what we would expect, added coupling may have a

positive rather than detrimental effect on a system. This result also points to the

possibility of adding „good‟ coupling to a system as well as removing „bad‟

coupling in a simultaneous operation.

6.4.2 The pBeans System

Table 6.3 shows the changes in each of the five coupling metrics over the ten

versions of the pBeans system. A notable feature of the values in the table is the

relatively low coupling activity between version 3 and 6. Thereafter, there is a

significant increase in each of the metric values. This increase would appear to be

due to the addition of 6 new packages over the course of versions 6-8. The only

decrease in a metric value was attributed to FIN between versions 1 and 2.

Chapter 6: Empirical Observations on Coupling and Code Warning 86

Table 6.3 Changes in coupling metrics for the pBeans system

pBeans Interval Packages RFC MPC PACK FOUT FIN

V1-V2 2 0 5 6 1 5 -2

V2-V3 5 0 92 102 8 27 34

V3-V4 2 0 16 14 0 1 0

V4-V5 17 0 2 3 0 0 3

V5-V6 35 0 44 39 5 18 1

V6-V7 297 1 113 89 25 49 32

V7-V8 727 5 604 607 34 208 190

V8-V9 3 0 15 23 0 4 4

V9-V10 26 0 18 28 0 3 3

In Table 6.4, the number of warnings for each of the releases of pBeans system

are categorised in the same six groups. Figure 6.3 shows the total number of these

warnings and seems to follow the pattern of the values in Table 6.3. Figure 6.4

shows the wide variation in times between each of the versions of the system. A

surprising (and notable) feature of Figure 6.3 and Table 6.3 is the relatively low

rise in warnings accompanying the large time interval after version 6, a period in

which large amounts of coupling was added to the system. The rise in warnings

between version 2 and 3 (Figure 6.3) is actually greater than that after version 6.

One explanation for this feature might be that adding new packages does not per

se cause a corresponding rise in warnings. In other words, self-contained and

encapsulated new packages tend to induce relatively few warnings. We thus

suggest that there is a marked and distinct difference between adding coupling to

those existing packages and the consequent effect this has on warnings when

compared with the influence on warnings through the addition of new packages.

From a maintenance point of view, we would normally expect new code to create

fewer „ripple‟ effects (Black, 2001) and to generate fewer warnings than

modification of existing code (because of the lower potential for lack of code

comprehension and the possibility of side-effects).

Chapter 6: Empirical Observations on Coupling and Code Warning 87

Table 6.6.4 Warning for pBeans

pBeans BP CORR MCV MTC PER DODGY Total

V1 146 15 14 38 33 51 297

V2 146 15 14 38 32 51 296

V3 204 30 23 39 40 70 406

V4 203 27 20 39 38 65 392

V5 204 30 23 39 40 70 406

V6 204 31 23 39 40 71 408

V7 211 31 30 39 41 73 425

V8 228 45 40 34 59 100 506

V9 229 45 40 34 59 104 511

V10 230 45 40 34 59 104 512

-100

0

100

200

300

400

500

600

1 3 5 7 9

Version

N
o

.
W

a
rn

in
g

s
/C

h
a
n

g
e
s
 i

n

W
a
rn

in
g

s Warnings

Changes in

Warnings

Figure 6.3 Total warnings for pBeans

Chapter 6: Empirical Observations on Coupling and Code Warning 88

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9

Version

N
o

.
D

a
y
s

Time Interval

Figure 6.4 Time interval between versions

It is also interesting to note from Figures 6.3 and 6.4 that addition of coupling

within a very short space of time, for example in versions 1-3, seems to cause a

higher proportion of warnings than when a longer time is spent between versions.

Versions 1-3 of the pBeans system were released within a time period of just

seven days and the same period saw the highest rise in warnings as a result. The

overall theme that runs through changes to the pBeans system is that packages

may offer a level of encapsulation from access by classes in other packages and,

when added anew, do not seem to be the source of significant rises in code

warnings.

6.4.3 The SmallSQL System

Table 6.5 shows the changes in each of the five coupling metrics over 9 versions

for the SmallSQL system. There is a clear and notable increase in coupling as a

result of the addition of a single package between versions 5 and 6. In contrast to

Chapter 6: Empirical Observations on Coupling and Code Warning 89

the previous two systems, all values of changes in coupling metrics are positive in

value.

Table 6.5 Changes in coupling metrics for the SmallSQL system

SmallSQL Interval Packages RFC MPC PACK FOUT FIN

V1-V2 7 0 19 31 3 28 166

V2-V3 24 0 34 14 1 33 10

V3-V4 34 0 17 17 2 9 7

V4-V5 41 0 48 61 1 6 10

V5-V6 39 1 1055 1698 44 383 169

V6-V7 112 1 109 130 8 23 40

V7-V8 159 0 150 236 5 45 54

V8-V9 70 0 65 110 2 16 20

Table 6.6 presents the warnings categorised in six sets for the SmallSQL system.

Figure 6.5 shows the total warnings and changes in number of warnings for that

system. In common with the result for the pBeans system, there seems to be only

a small effect on the number of warnings from such a large increase in coupling

(between versions 5 and 6). The largest rise in warnings comes earlier, between

versions 2 and 3, where the time interval between versions was relatively small

(24 days). We would have expected a higher rise in warnings following the rise in

coupling from version 5 to 6, but this does not seem to be the case. This result

supports the claim made for the pBeans system with respect to addition of new

packages and the negligible effect that had on generated warnings.

We also note a strong correspondence between the trend for changes in warnings

for the pBeans and SmallSQL systems (Figure 6.3 and Figure 6.5). In each case,

there is a small peak in warning changes between an early pair of versions and

two later versions. The graphs representing the total warnings are also similar and

each has a large time interval towards the end of the versions studied (Figure 6.4

and Figure 6.6). Evidence from the pBeans system suggested that addition of new

packages may thus have relatively insignificant effects on the number of warnings

but that addition of coupling without the addition of packages can create

Chapter 6: Empirical Observations on Coupling and Code Warning 90

problems. We could thus suggest that, from the combined evidence presented in

Figure 6.3 and Figure 6.5, adding coupling in existing packages may have a

greater adverse effect on generated warnings than through creation of new

functionality. The evidence presented for the previous two systems also supports

the claim that addition of new functionality has a lesser effect on potential

warnings than modification of existing code.

Table 6.6.6 Warning for Small SQL

SmallSQL BP CORR MCV MTC PER DODGY Total

V1 47 1 0 0 7 12 38

V2 47 1 0 0 6 12 41

V3 53 1 0 0 6 13 67

V4 53 1 0 0 6 13 66

V5 53 1 0 0 6 13 73

V6 65 1 0 0 5 16 73

V7 65 1 0 0 5 16 73

V8 72 1 0 0 5 16 87

V9 72 1 0 0 5 16 87

-10

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Version

N
o

.
W

a
rn

in
g

s
/C

h
a
n

g
e
s
 i

n

W
a
rn

in
g

s Warnings

Changes in

Warnings

Figure 6.5 Total warnings for SmallSQL

Chapter 6: Empirical Observations on Coupling and Code Warning 91

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8

Version

N
o

.
D

a
y
s

Time Interval

Figure 6.6 Time intervals between versions

6.4.4 The JWNL System

Table 6.7 shows the changes in each of the five coupling metrics over the six

versions of the JWNL system. Version 2 to 3 was a simple patch to the system

and hence we have omitted coupling values from our analysis in this case

(denoted by „n/a‟ values).

Table 6.6.7 Changes in coupling metrics for the JMNL system

JWNL Interval Packages RFC MPC PACK FOUT FIN

V1-V2 0 1 -830 -599 69 -165 -53

V2-V3 n/a n/a n/a n/a n/a n/a n/a

V3-V4 386 9 1286 957 -87 352 232

V4-V5 20 0 0 0 0 0 0

V5-V6 284 -6 -129 -125 173 -150 -73

It is noteworthy that even though only a single package was added to the system

from version 1 to 2, a significant fall in coupling was observed for this system.

Chapter 6: Empirical Observations on Coupling and Code Warning 92

This was also accompanied by a fall in generated warnings from 166 to 63 over

the same versions. It is also interesting to note that each of the coupling metrics

saw a decrease in value except for PACK, which suggests that any re-engineering

effort that saw RFC, MPC, FIN and FOUT coupling reduced was „devolved‟ to

other imported packages. The strange feature of the JWNL system is that after

version 2 an opposite effect occurred. This process is reversed once again

between versions 5 and 6, suggesting that there is distinct contradictory choice

being made each time; either use coupling within a package or import that

coupling through other packages.

Table 6.8 shows the warning of each of the six categories for the JWNL system.

However, Figure 6.7 shows the number of warnings and the changes in warnings

for the JWNL system; warnings and change in warnings seem to be rising in

parallel after version 4.

Table 6.8 Warning for JWNL

JWNL BP CORR MCV MTC PER DODGY Total

V1 55 9 52 9 20 21 166

V2 17 2 28 4 8 4 63

V3 18 4 12 2 7 4 47

V4 21 1 13 1 4 4 44

V5 21 1 13 1 4 4 44

V6 33 4 21 3 6 15 82

We could tentatively suggest from the observed data that choice of alternative

forms of coupling represent a trade-off between those different types. For

example, it has been shown that coupling in the form of C++ friends are

correlated with faults (Briand et al., 1997) and such practice should be

discouraged as a violation of encapsulation principles; on the other hand,

inheritance-based coupling is encouraged when appropriate as good practice.

When used to access methods of a class, friends are an alternative to the use of

inheritance. Consequently, when choosing to use friends, a developer

automatically precludes the choice of inheritance to carry out the same task/s. In

Chapter 6: Empirical Observations on Coupling and Code Warning 93

theory, reuse coupling through the importing of packages is an essential and

unavoidable part of any system (it obviates the need for introducing internal

coupling). It is the extent of that importation that seems to make a difference.

-150

-100

-50

0

50

100

150

200

1 2 3 4 5

Version

N
o

.
W

a
rn

in
g

s
/C

h
a
n

g
e
s
 i

n

W
a
rn

in
g

s Warnings

Changes in

Warnings

Figure 6.7 Total warnings for JWNL

0

50

100

150

200

250

300

350

400

450

1 2 3 4

Version

N
o

.
D

a
y
s

Time Interval

Figure 6.8 Intervals between versions

Chapter 6: Empirical Observations on Coupling and Code Warning 94

From the data presented for the JWNL system, it would appear that the practice of

inter-changing one type of coupling for another between versions could be the

source of potential subsequent problems; more specifically, removing packages

may have an adverse effect in terms of warnings.

6.4.5 The DjVu System

Table 6.5 shows the changes in each of the five coupling metrics over the eight

versions of the DjVu system. In common with all the previous systems (apart

from Jasmin), the addition of packages causes significant increases in coupling

metric values. Of the five systems studied, DjVu appears to be the most stable in

terms of both warnings and changes in number of warnings (Table 6.10, Figure

6.9). One feature of the data for the DjVu system stands out from all the other

systems and might explain this characteristic. Over the course of its versions, only

two classes were added to the system even though two new packages were

introduced (versions 4 to 6).

Table 6.6.9 Changes in coupling metrics for the DjVu system

DjVu Interval Packages RFC MPC PACK FOUT FIN

V1-V2 160 0 27 28 1 9 5

V2-V3 41 0 198 110 7 30 109

V3-V4 1 0 0 3 0 2 3

V4-V5 7 1 132 140 10 42 25

V5-V6 18 1 41 72 0 35 22

V6-V7 25 0 -38 -25 11 7 55

V7-V8 40 0 1 0 0 -3 -10

Inspection of the data also revealed that correspondingly few methods were added

to existing classes over the course of the versions studied. This very slight

increase in classes contrasts heavily with the other four systems (where large

numbers of classes and methods were added consistently across versions). In

Chapter 6: Empirical Observations on Coupling and Code Warning 95

other words, effort in this system seems to have been applied to re-engineer

existing classes rather than introduction of new ones. A further notable feature of

the DjVu system is the relatively long time interval between releases of earlier

versions of the system. The pattern in Figure 6.10 is shared only with the Jasmin

system and is characterised by a long time interval between version 1 and 2 (160

days).

Table 6.6.10 Warning for DjVu

DiVu BP CORR MCV MTC PER DODGY Total

V1 35 9 62 15 58 12 191

V2 35 10 62 15 58 12 192

V3 37 9 56 12 50 9 173

V4 37 9 57 12 50 9 174

V5 36 8 58 12 50 9 173

V6 37 9 60 15 51 9 181

V7 34 7 64 14 51 13 183

V8 34 7 64 14 51 13 183

-50

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Version

N
o

.
W

ar
n

in
g

s/
C

h
an

g
es

 i
n

W
ar

n
in

g
s No. Warnings

Changes in

Warnings

Figure 6.9 Warnings for DjVu

Chapter 6: Empirical Observations on Coupling and Code Warning 96

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7

Version

N
o

.
D

ay
s

Time Interval

Figure 6.10 Intervals between versions

We could suggest that relative stability may be linked with two characteristics:

careful re-engineering of existing code (in terms of time spent) and minimisation

of added functionality to existing code. It is also interesting that the Jasmin system

is the only other system with a V-shaped time interval curve over the course of its

life so far – the other systems (Figures 6.4, 6.6 and 6.8) all approximate an

inverted V-shaped curve. We could suggest that spending relatively large amounts

of time and care over initial versions of a system and then again applying the

same attention later on in a system‟s lifetime (characterised by the V-curve) may

contribute to the stability of a system.

6.5 Discussion

There are a number of implications of the results described in this chapter and a

number of threats to its validity. In this chapter, we have tried to relate the

analysis to time between versions wherever possible. One feature that every

system seems to exhibit is an extreme burst of increased coupling at some point

and, usually, within a relatively short time period. Figure 6.11 and 6.12 illustrate

the extent of these bursts of activity and, specifically, the significance of coupling

peaks for the RFC and MPC metrics for all five systems (when all versions are

Chapter 6: Empirical Observations on Coupling and Code Warning 97

arranged sequentially). The order from left to right in Figure 6.11 and 6.12 thus

represents the RFC and MPC values in the same order of the five systems

introduced in Sections 6.4.1 to 6.4.5.

-1000

-500

0

500

1000

1500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Version

RFC values

Figure 6.11 Trends in RFC

-1000

-500

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Version

MPC values

Figure 6.12 Trends in MPC

Chapter 6: Empirical Observations on Coupling and Code Warning 98

Most noticeable from Figures 6.11 and 6.12 are the values for the JWNL system

which show wide fluctuations in both a positive and negative direction. As shown,

at the far right-hand side of each figure, the stability of the DjVu is represented by

relatively small peaks. While the claims that we have made in the previous section

may be based on single observations and intuition, it is clear that first, total

coupling always rises in a system and second, bursts of coupling activity seem to

be a characteristic of every system studied.

Since physical time plays such an important role in our analysis, it is worth

investigating the possibility that Self-Organized Criticality (SOC), or in other

words, whether an 80/20 rule (i.e. 80% of coupling is added in 20% of the time)

applies to the addition of coupling over the versions of the systems studied (Wu et

al., 2007). If we now consider just the RFC values for each system, then for the

Jasmin system, 20% of the total time interval is approximately 129 days. In the

108 days between V2 and V4, only 64% of coupling was added (other short time

intervals only add marginally to overall coupling). For the pBeans system, 20% of

the time interval is 223 days. 64% of the coupling for this system was added

between V6 and V8 where the time interval was 1024 days, suggesting, as for

Jasmin, the absence of any 80/20 rule. For the SmallSQL system, 20% of the time

interval is approximately 97 days. In the 80 days between V4 and V6, 74% of

coupling was added, suggesting a profile more akin to 80/20 (although still falling

just short of the threshold if we consider the extra 17 days). For neither the JWNL

nor DjVu system is there any evident 80/20 relationship. No significant 80/20 rule

is obvious for any of the five systems. The fact that we are only considering added

coupling, and not other added data or behaviour may contribute to this lack of

empirical support. However, it does further emphasise the enigmatic

characteristics of system coupling. In the next chapter, the 80/20 relationship will

be investigated in more detail to see whether 80% of total coupling is contained in

the top 20% of classes for multiple versions of open-source software and, if so,

whether that relationship is exacerbated over time.

A number of threats to the validity of the study also need to be considered. First,

we have only used five, medium-sized open-source systems as part of our study.

While that provides a cross-sectional view of systems, we accept that this limited

Chapter 6: Empirical Observations on Coupling and Code Warning 99

number and system size threatens the generalisability of the results. Another threat

to the validity of the study is that we have used warnings as a basis of our analysis

and not actual faults or complementary techniques (Zheng et al., 2006). However,

we feel that it is better to be „fore-warned‟ and therefore „fore-armed‟ of potential

problems and to analyse that data, than to analyse data in a post-fault sense.

The second threat is that many of the warnings issued by FindBugs suggest

refactorings that can be applied to remedy the potential problems in the code and

so we see our analysis as a contributor the refactoring process. For example, one

of the warnings on performance suggests refactoring a class into a named static

inner class, if it does not use existing objects appropriately. We note that the

majority of warnings for the five systems studied fell into the performance

category.

A third threat to the validity of the study is that we have assumed developer

activity to be constant throughout the time period studied. This means that on each

day there is the same probability of activity on the project. In reality, this might

not be the case; a detailed study of developer activity in each system will feature

in future work.

The fourth threat is that we have assumed that one package is identical to any

other package. In reality, there may be a combination of both user-defined and

library-based packages being imported into a system. This analysis will be the

subject of future work.

The final threat considered that we have only collected five coupling metrics from

a wide range of available coupling metrics in the literature. We defend this choice

on the basis that these five provide a set of metrics that allow different levels of

code and design abstraction to be analysed and compared, which is a key

objective of the study presented.

6.6 Summary

In this chapter, we have investigated trends in coupling in five Java systems. Five

coupling metrics were collected from five Java open-source systems using the

JHawk tool and warnings for each version collected using the FindBugs tool.

Chapter 6: Empirical Observations on Coupling and Code Warning 100

Investigation of the five systems revealed a common trend of bursts of additional

coupling and the emergence of a number of themes. First, and surprisingly, the

addition of coupling may have beneficial effects on a system. Second, and more

intuitively, it seems that the addition of coupling in new functionality through

addition of packages could result in fewer warnings than adding functionality to

existing code. Finally, there appears to be a trade-off between coupling types, in

particular, that between couplings through imported packages and the introduction

of internal-to-the-package coupling.

In the next chapter, the notion of an 80/20 relationship discussed in this chapter

will be presented in more detail. The coupling metrics will be tested to see if they

obey the 80/20 rules in the class basis. The top 20% of classes will be explored to

see if they contain the 80% of the coupling. Moreover, in the next chapter we will

investigate the relationship between the FIN and FOUT metrics to see whether

they increase in corresponding amount and consistently over time, and to

investigate the characteristics of classes exhibiting the highest values of these two

metrics.

 101

CHAPTER 7. EVOLUTIONARY STUDY OF FIN AND

FOUT

7.1 Introduction

One observation made from the studies in Chapters 4, 5 and 6 was that the bulk of

changes and coupling activity (identified by the metrics collected) tended to focus

around a small number of classes, while on the other hand the vast majority of

classes remained untouched throughout the same versions studied.

Pareto‟s Law or an „80/20‟ rule as it is sometimes known is a naturally occurring

phenomenon. For example, we could claim that 80% of floods comprise just 20%

of the total destructive damage around the world. Unfortunately, and sadly, the

other side of the coin is that 20% of floods (the most severe and destructive ones)

account for 80% of the total damage. In the context of the Thesis, we might

suggest that 80% of class activity in a system occurs in just 20% of classes. In the

previous chapter, coupling in five Java systems using five coupling metrics,

version release times and code warnings was empirically explored. The results

that were reported in that chapter revealed a common trend of bursts of additional

coupling and suggested that coupling is a multi-faceted, multi-dimensional and

more complex feature of a system than may have been appreciated in the past.

Moreover, in the previous chapter, there was a brief investigation to see whether

an 80/20 rule applied to the addition of coupling over the versions of the systems

studied. In this chapter, this investigation is studied in more detail. We explore

whether an 80/20 rule exists in Java from six coupling metrics over multiple

versions of open-source software and, if so, whether that relationship is

exacerbated over time. The automated tool JHawk was used to extract the six

different coupling metrics from four Open-Source Systems. Afterwards, the

classes were ranked on each of these 6 coupling metrics and then the top 20% of

classes were analysed to see whether 80% of total coupling was contained therein.

Only one metric appeared consistently to have an 80/20 relationship and that was

the FIN metric. Evidence suggests that FIN and FOUT have a complementary

Chapter 7: An Evolutionary Study of FIN and FOUT 102

relationship. We found many of the other metrics had few, if any, such

relationships. We also found no evidence to support the view that over time, the

80/20 is exacerbated. The relationship between FIN and FOUT coupling metrics

suggested another investigation, so we explore this relationship over multiple

versions of open-source software. More specifically, we explore the relationship

between the two metrics to determine patterns of growth in each over the course

of time. Two questions were posed for each system. First, what are the

characteristics of classes exhibiting the highest FIN values? Second, do FIN and

FOUT increase in corresponding and consistent amounts over time? Results show

a wide range of traits in the classes to explain both high and low levels of FIN and

FOUT. We also found evidence of certain „key‟ classes (with both high FIN and

FOUT) and „client‟ and „server‟-type classes with just high FOUT and FIN,

respectively. We provide an explanation of the composition and existence of such

classes as well as for disproportionate increases in each of the two metrics over

time.

The remainder of this Chapter is structured as follows. In the next section, we

present the motivation for the study and related issues. In Section 7.3, we provide

details of the systems studied, the data collected and the research questions.

Section 7.4 includes an analysis of each system individually in order to assess the

research questions. Finally, we conclude and summarise the study in Section 7.5.

We note that the research in this chapter was first published by Mubarak et al.

(2009) and also in Counsell et al. (2010).

7.2 Study Motivation and Related Issues

Many social and naturally occurring phenomena are distributed according to an

80/20 rule (sometimes known as a Power Law). In other words, „small‟

occurrences of an artefact or phenomenon are extremely common, whereas „large‟

instances are relatively rare. Wheeldon and Counsell (2003) illustrated that a

Power Law distribution existed in OO class relationships, particularly those

related to coupling (via inheritance and aggregation). In this chapter, we attempt

to support or refute that earlier work by focusing on 6 separate, yet different

Chapter 7: An Evolutionary Study of FIN and FOUT 103

coupling metrics to explore whether evolutionary coupling obeyed an 80/20 rule.

In theory, we would expect coupling to increase through consistent application of

maintenance as a system evolves and, hence, for any 80/20 rule to become

exacerbated. The study presented also attempts to shed light on which coupling

types tend to exhibit specific trends (in this case an 80/20 rule). There are also

parallels with the use and credibility of „key‟ classes, i.e. certain classes in any

system that comprise a large number of methods (and, by implication, a large

amount of coupling).

In practice, a class that is highly coupled to many other classes is an ideal

candidate for re-engineering or removal from the system to mitigate both current

and potential future problems. A problem that immediately arises, however, for

the developer when considering re-engineering of classes with high coupling is:

„Do those classes have prohibitively large dependencies?‟ If so, then are those

coupling dependencies „incoming‟ or „outgoing‟ dependencies? In theory, it is

more difficult to modify a target class with high incoming and low outgoing

coupling, since the former requires detailed and careful scrutiny of each of the

many „incoming‟ dependent classes and the possible side-effects of change.

Chapter 5 showed that the FIN and FOUT metrics tended to be relatively small for

classes removed from a system. In other words, classes with either high FIN

and/or FOUT may be difficult to move or remove from a system. This question

has inspired further examination of trends in the two metrics presented.

Chapter 6 has shown that there is a trade-off between coupling types – in

particular, that between coupling through imported packages and the introduction

of „internal-to-the-package‟ coupling. In this chapter, we explore the potential

characteristics and trade-offs between FIN and FOUT metrics over time. We

would always expect potentially problematic classes to be re-engineered by

developers through techniques such as refactoring (Fowler, 1999); however, the

practical realities of limited time and resources at their disposal means that only

when classes exhibit particularly bad „smells‟ (e.g. excessive coupling) (Fowler,

1999) are they dealt with.

Chapter 7: An Evolutionary Study of FIN and FOUT 104

In this chapter, we address the issue of potential re-engineering and view coupling

as a key contributor to the decision on whether and when to re-engineer (classes)

or not over the lifetime of a system. Chapter 4 showed some evidence to suggest

that „peaks and troughs‟ occur in software maintenance, suggesting that developer

activity comprises a set of high and low activity periods. This suggests that

excessive coupling is a continuous problem addressed only by spurious and

frenzied re-engineering activity.

7.3 Systems and Metrics

7.3.1 Systems under Study

Five systems were used as a basis of our study. These systems were used in the

study conducted in Chapter 5 and Chapter 6, and they were presented in Section

3.4.1. These systems are Jasmin, DjVu, pBeans, SmallSQL and Asterisk.

7.3.2 Data Collected

For each of the systems, we collected six independent, coupling metrics using

JHawk (2008) (as described in Section 3.4.2). These metrics are as follows:

1. Response for a Class (RFC): The RFC is defined as the set of methods that can

potentially be executed in response to a message received by an object of that

class.

2. Number of EXTernal methods called (EXT): The more external methods that a

class calls, the more tightly bound that class is to other classes

3. Message Passing Coupling (MPC): The number of messages passed among

objects of a class.

4. PACK. The number of imported PACKages.

5. Fan-in (FIN). The FIN of a function is the number of unique functions that call

the function.

Chapter 7: An Evolutionary Study of FIN and FOUT 105

6. Fan-out (FOUT). The FOUT is the number of unique functions that a function

calls.

7.3.3 Research Questions

The study consists of two research questions (RQ1 and RQ2), stated as follows:

 RQ1. Does an 80/20 rule exist in Java from six coupling metrics over

multiple versions of open-source software? If so, is that relationship

exacerbated over time? We try to see if the six coupling metrics obey the

80/20 rule by discovering whether the top 20% of the classes contain at

least 80% of the coupling metrics or not.

 RQ2. Is there a significant correlation between FIN and FOUT? If so, does

this relationship worsen over time? If the correlation is negative, then this

suggests that, over time, an inverse relationship exists between the two

metrics. In other words, as FIN increases, there is a decrease in the value

of FOUT and vice versa. On the other hand, a positive correlation between

the two metrics would imply that both FIN and FOUT increase as a system

evolves. As a developer, we would want to choose classes/packages for re-

engineering in the former category and preferably when FOUT is

increasing and FIN decreasing.

We note that in the following, we use three correlation coefficients. Spearman‟s

and Kendall‟s coefficients are non-parametric in nature and assume a non-normal

distribution in the data (appropriate for most software engineering data). For

completeness, however, we have also included Pearson‟s correlation values – a

parametric value which assumes a normal distribution of the data. The FIN and

FOUT values for all selected classes and for each version were used as a basis of

the correlation analysis.

7.4 Data Analysis

In order to assess our research questions, we collected six coupling metrics for the

five systems. For the first research question, we calculate the percentage of the

Chapter 7: An Evolutionary Study of FIN and FOUT 106

coupling metrics per package for each class over the versions of four OSSs

(Jasmin, DjVu, pBeans and SmallSQL). However, for the second research

question we calculate the correlations between the FIN and FOUT over the

versions of all the five systems. We also compare the differences between the FIN

and FOUT of the classes and the mean of these metrics across the whole package.

We assess each question on the systems separately.

7.4.1 Research Question 1 (RQ1)

In the following analysis and for succinctness, we include in the tables for each

system only the rows where at least one 80/20 rule was found to apply; equally,

only the columns (i.e. metrics) where at least one 80/20 rule was found to apply

are listed. If a value is omitted from a table, then no 80/20 rule is applied in that

case. (We note that for each system, the top 20% of classes will be exactly 20% of

the total number of classes stated earlier in the description of the systems.) An

80/20 rule applies if at least 80% of the coupling is incorporated in that top 20%.

7.4.1.1 The Jasmin System

Table 7.1 shows the percentage in each of the coupling metrics over the five

versions (V1-V5) of the Jasmin system for 20% of the classes on a package basis

(the 2 packages in this case are jas and jasmin).

The most striking feature of the values in Table 7.1 is the absence of four of the

six metrics extracted by the tool and subsequently analysed. No entries for RFC,

EXT, PACK or FOUT greater than or equal to the threshold 80% were found.

In V1 of the jas package, the top 20% of the classes comprised over 90% of all

FIN coupling. A comparison of V1 and V5 shows that the 80/20 rule became

weaker by V5 (i.e. at 84.78%). For the jasmin package, there is only a marginal

increase in the 80/20 rule (from 90.71% to 93.33%). It is also worth noting that

the FOUT metric had many values between 70% and 75% over the course of these

versions and consequently are not shown in the table. Equally, the values of the

other four metrics tended to be in the range 45%-70%, considerably lower than

the FIN values.

Chapter 7: An Evolutionary Study of FIN and FOUT 107

Table 7.1 80/20 metrics for the Jasmin system

Package Version MPC FIN

Jas V1 90.15

 V2 89.35

 V3 83.41

 V4 84.78

 V5 84.78

Jasmin V1 90.71

 V2 92.9

 V3 81.39 94.19

 V4 92.9

 V5 93.33

7.4.1.2 The SmallSQL system

Table 7.2 shows the same data for the SmallSQL system. In common with the

Jasmin system, the FIN metric satisfied the 80/20 rule across all versions studied.

However, the rule is only marginally strengthened between V1 and V9 (88.54% to

92%) - there is no support for the view that evolution of the 80/20 rule is

strengthened.

Table 7.2 80/20 metrics for the SmallSQL system

Package Version FIN

Database V1 88.54

 V2 90.33

 V3 91.18

 V4 91.15

 V5 91.23

 V6 92.44

 V7 92.19

 V8 92.11

 V9 92.00

Chapter 7: An Evolutionary Study of FIN and FOUT 108

7.4.1.3 The DjVu System

Table 7.3 shows the data for the DjVu system. Again, FIN appears prominently in

the table and so too does the FOUT metric. However, the PACK metric features in

V8 of the DjVu package. One plausible explanation for the dominance of FIN and

FOUT and an implication of that dominance is that it may render the use of other

coupling forms unnecessary.

It is interesting that none of the values in Table 7.3 overlap. Inspection of the raw

data revealed that generally, when FIN was high, FOUT was low (and vice-versa)

Table 7.3 80/20 metrics for the DjVu system

Package Version PACK FOUT FIN

DjVu V5 80.23

 V6 80.23

 V7 80.46

 V8 80.68

Toolbar V1 83.81

 V2 81.90

7.4.1.4 The pBeans System

Table 7.4 shows the trends for the pBeans system. The FIN metric does not

feature in the 80/20 rule in the pBeans package. It does, however, feature in the

first eight versions of the data package. This suggests that the FIN and other forms

of coupling may have a complementary relationship. When there is a high

proportion of 80/20 FIN relationships, there is a low number of other 80/20 forms

of coupling. Tables 7.1 and 7.2 support this theory and in Table 7.3 the six 80/20

relationships are non-overlapping (further supporting this theory). One

explanation for this phenomenon, in a practical sense, is that if there are a high

number of classes with large FIN values, then, by the law of averages, there will

Chapter 7: An Evolutionary Study of FIN and FOUT 109

be fewer classes with large numbers of FOUTs since the coupling that these latter

classes need is satisfied by the classes with large FIN (and which they use). In

other words, FIN and FOUT follow a „hub‟ principle, which minimises outgoings

by maximising incomings. This would also support the use of „key‟ classes (i.e.

classes that contain a large amount of functionality that many other classes use) as

a means of minimising coupling. In other words, and counter-intuitively, large

classes (or classes with large amounts of coupling) can have a beneficial effect (if

we assume minimising FOUT is an aspiration of developers).

Table 7.4 80/20 metrics for the pBeans system

Package Version MPC EXT PACK FOUT FIN

pBeans V1 90.98 85.73 85.00 88.32

 V2 90.79 85.67 85.00 88.32

 V3 91.89 86.56 81.05 87.29

 V4 91.89 86.56 81.05 87.29

 V5 92.23 87.10 81.05 87.29

 V6 92.23 87.10 81.05 87.29

 V7 94.02 89.23 81.82 90.60

 V8 89.50 84.67 83.90 85.69

 V9 89.50 84.67 83.90 85.69

 V10 89.54 84.74 83.90 85.69

Data V1 82.86

 V2 87.50

 V3 92.89

 V4 92.89

 V5 92.89

 V6 94.78

 V7 99.53

 V8 89.64 85.08 83.76 81.14

 V9 88.86 84.38 80.22

 V10 88.26 83.85

Chapter 7: An Evolutionary Study of FIN and FOUT 110

 Figure 7.1 shows the pBeans metrics over the course of all 20 versions from

Table 7.4. The values follow the same trends for much of all 20 versions (except

for RFC and FIN). Low values in the figure reflect a more even spread of

coupling for that metric.

Figure 7.1 Metric values for pBeans

Figure 7.2 shows the same values for the SmallSQL system. Coupling types

appear to have the same pattern in both figures; inspection of the raw data for the

other two systems revealed a similar trend. In other words, coupling remains

relatively static for all systems as they evolve; an 80/20 rule is not exacerbated as

a system evolves.

We can conclude for the first research question that certain metrics had a greater

propensity for that rule than others, namely FIN and, to a limited extent, FOUT.

High use of these two features seemed to exclude the use of other types of

coupling. Moreover, an 80/20 rule did not seem to worsen as a system evolved.

Finally, we suggested that dominance of FIN (particularly) might act as a „hub‟

for „key‟ classes and with which many other system classes communicate.

Chapter 7: An Evolutionary Study of FIN and FOUT 111

Figure 7.2 Metric values for SmallSQL

7.4.2 Research Question 2 (RQ2)

In the following analysis, we consider only the largest packages from each

system. A package was considered as „large‟ if it contained more than ten classes

(for statistical validity purposes, we wanted to ensure that the number in each

package was relatively high and ten seemed a reasonable threshold). We ranked

the classes in each of these packages according to their descending FIN values

and then took the set of classes from each package that contained 80% of the FIN

total. We chose the classes comprising 80% of FIN for a single reason. The

previous research question has shown that an 80/20 rule applies to coupling in

Java classes. In other words, 80% of FIN occurs in just 20% of classes. To be true

to the spirit of that earlier research question, we adopted the same strategy for

selection of classes. Moreover, we wanted to focus on classes with a high FIN and

choice of classes comprising 80% of the FIN, when ordered in descending FIN

captures classes with the highest FIN.

Chapter 7: An Evolutionary Study of FIN and FOUT 112

Additionally, choosing classes comprising 80% of FIN would also allow us to

compare (i.e. correlate) the FIN of those classes with the FOUT of the same set of

classes to establish overall relationships between the two metrics and to uncover

biases in class make-up and disparity between the two metrics. In particular, we

would like to explore the presence of „key‟ classes characterised by a high FIN

and high FOUT value, as well as to distinguish „server‟ classes that have a high

FIN (i.e. they are used by many classes) but a low FOUT (i.e. they

correspondingly do not use many other classes themselves). The profile of these

types of classes from an evolutionary perspective is also an interesting research

topic and one that we explore.

The mean of the FIN and FOUT across the whole package was also calculated to

allow a comparison of the differences between the selected classes and the

summary values of FIN and FOUT for all classes on an evolutionary package

basis.

7.4.2.1 The Jasmin System

We first consider the set of classes comprising the 80% of FIN. Table 7.5 shows

the correlation between the FIN and FOUT over the five versions (V1-V5) for the

Jasmin system on a package basis (the 2 packages chosen using the

aforementioned selection criteria in this case were Jas and Jasmin). Extracting

classes containing 80% of FIN from the Jas package gave a sample of 50 classes

for that package and 10 classes for the Jasmin package.

The most striking feature of the values in Table 7.5 is the significant positive

correlation between the two metrics for Jas package (Kendall‟s and Spearman‟s),

while the correlation values are strongly and significantly negative for the Jasmin

package. There is a simple, yet interesting explanation for each set of correlation

values. For the Jas package while the values of FIN are large, the values of FOUT

are correspondingly large (see Figure 7.3). Many of these classes are therefore

those used by many other classes, but also themselves use high numbers of other

classes. We could thus view this type of class as both a coupling „source‟ and

„sink‟ classes since they use equal measures of both FIN and FOUT. The

Chapter 7: An Evolutionary Study of FIN and FOUT 113

dependence of many classes on these types of class alone may make them

problematic from a re-engineering perspective. Indeed, Figure 7.3 shows very few

classes where both the FIN is low and FOUT high which would be one possible

and sensible criterion for re-engineering.

For the Jasmin package on the other hand, the FIN and FOUT metrics are in

complete contrast (see Figure 7.4). Classes with high FIN values in this package

tend to have low FOUT values and vice versa. The classes in this latter category

would be far preferable for re-engineering – since high values for FOUT alone

pose less of a problem from a maintenance perspective - the dependencies are

outgoing rather than incoming.

Table 7.5 Correlations FIN vs. FOUT (Jasmin)

Package No. of Classes Pearson‟s Kendall‟s Spearman‟s

Jas 50 0.024 0.287** 0.394**

Jasmin 10 -0.973** -0.619* -0.788**

*Correlation is significant at the 0.05 level (1-tailed).

**Correlation is significant at the 0.01 level (1-tailed).

From a correlation perspective, both packages present opportunities for re-

engineering, but the negative correlations for the Jasmin package provide the best

opportunity in this sense and the Jas only limited opportunities. In other words,

analysis of coupling through extraction of FIN and FOUT has provided an insight

into which classes might be targeted for re-engineering. This would not be the

case had we just collected coupling on a far coarser scale using for example, the

CBO (Chidamber and Kemerer, 1994). The CBO makes no distinction between

input coupling and output coupling.

We next consider the set of all classes in each of the two packages. The summary

data for FIN and FOUT in Table 7.6 shows the mean and median values for every

class in each of the studied packages over the five versions (V1-V5).

Chapter 7: An Evolutionary Study of FIN and FOUT 114

0

2

4

6

8

10

12

14

16

18

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Class

F
IN

/F
O

U
T

 V
a
lu

e
FOUT

FIN

Figure 7.3 FIN/FOUT for the Jas package

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.4 FIN/FOUT for the Jasmin package

Table 7.6 shows the values of FIN across all the classes of Jas to be relatively

small and so too the values of FOUT. (We note that the values of FIN in each

package have been italicised to distinguish them from FOUT values.) There is a

clear upward trend in the values of FIN and FOUT in both packages. However,

the median values (column 3) do not change significantly throughout and this

Chapter 7: An Evolutionary Study of FIN and FOUT 115

suggests further that in each package there are certain outliers that subvert the true

picture of the FIN and FOUT metrics (i.e. those in Figures 7.3 and 7.4).

The values in Table 7.6 indicate that although FIN and FOUT increase over time,

these increases are relatively small. The average values of FOUT in the Jasmin

package are significantly higher than that for FIN, again suggesting that classes in

this package would be preferable and more amenable to re-engineering than Jas.

In answer to the question posed, we see a similarity between the growth in values

of FIN and FOUT as they evolve, but not alarmingly so.

Table 7.6 FIN and FOUT per package (Jasmin)

Package Metric (Ver.) Mean Median

Jas FOUT (V1) 0.67 0

 FOUT (V2) 0.84 0

 FOUT (V3) 1.23 0

 FOUT (V4) 1.35 0

 FOUT (V5) 1.44 0.5

 FIN (V1) 1.35 0

 FIN (V2) 1.61 0

 FIN (V3) 1.86 0

 FIN (V4) 2.03 0

 FIN (V5) 2.03 0

Jasmin FOUT (V1) 6.64 2

 FOUT (V2) 7.17 1.5

 FOUT (V3) 7.23 1

 FOUT (V4) 8.08 1.5

 FOUT (V5) 8.08 1.5

 FIN (V1) 2.55 0

 FIN (V2) 2.58 0

 FIN (V3) 2.38 0

 FIN (V4) 2.58 0

 FIN (V5) 2.75 0

Chapter 7: An Evolutionary Study of FIN and FOUT 116

7.4.2.2 The SmallSQL System

Table 7.7 shows the same correlation values we showed for Jasmin for the

SmallSQL system. Only one package was considered for this system, namely

„Database‟. The number of the classes comprising the 80% of FIN is 25 classes

from a total 135 classes across the nine versions giving a total sample correlation

size of (9*25=225). A positive correlation between the FIN metric and the FOUT

is apparent from Table 7.7. However, the correlation is weaker for Kendall‟s and

Spearman‟s, while there is no significant correlation for Pearson‟s.

Table 7.7 Correlations FIN vs. FOUT (Small SQL)

Package Pearson‟s Kendall‟s Spearman‟s

Database 0.041 0.130** 0.175**

**Correlation is significant at the 0.01 level (1-tailed).

Figure 7.5 shows the values of FIN and FOUT over the nine versions for

SmallSQL system on a package basis. From Figure 7.5 it can be seen, as was seen

for the Jasmin system, that there are some classes with exceptionally large values

of FIN. One class that is particularly noticeable is the Utils class, which started

with a FIN of 245 in V1 and by V9 had a FIN of 416. In contrast, its FOUT

started in version 1 with a value of just 12 and rose to only 19 by version nine.

A class such as Utils (as its name suggests) is likely to be used (i.e. „utilised‟) and

in great demand increasingly as a system evolves and as more classes are added to

the system. A Date class for example is found in java.util – a class which his

likely to be used by many other classes. Interestingly, the number of methods in

this class and its size in terms of LOC did not change significantly. It started with

25 methods and 211 LOC in V1 and in V9 had 34 methods and 257 LOC. In other

words, the class itself did not change, but the number of classes using that class

grew significantly.

While the benefits of such a class are clear, classes such as Utils could

conceivably pose a problem for developers. With such a high FIN, it becomes

Chapter 7: An Evolutionary Study of FIN and FOUT 117

difficult to modify such a class and this might explain why its size in terms of

methods and LOC changed only marginally over the nine versions. This type of

class could also be seen as a key class to the functioning of the system and while

stable in some senses, might be exceptionally difficult to re-engineer. On the

other hand, the fact that it has not changed significantly over the versions studied

may mean that it does not need to be re-engineered – so the potential danger

outlined is not germane.

0

50

100

150

200

250

300

350

400

450

1 19 37 55 73 91 109 127 145 163 181 199 217

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.5 FIN/FOUT for the database package

Table 7.8 presents a summary of the FIN and FOUT for all classes in the Database

package of SmallSQL and again gives the value of the mean and median values.

The interesting feature of Table 7.8 is the drop in both the FIN and FOUT metrics

in the transition from V5 to V6. This was not accompanied by any noticeable

reduction in the size of the classes; there was some reduction in coupling

however, suggesting that between these versions there may have been some effort

devoted to re-engineering (with the consequent drop in coupling). Both FIN and

FOUT seemed to mirror each other‟s movements. This again was interesting since

it meant that if FIN changed, then FOUT would be changed as a result and as the

system was re-structured. It might also be the case that some active refactoring

Chapter 7: An Evolutionary Study of FIN and FOUT 118

was undertaken to eliminate inter-class coupling; a natural result of eliminating

inter-class coupling is the elimination of total coupling since dependency

„tangling‟ is simplified overall. In keeping with the Jasmin system, the values of

FIN and FOUT remain relatively static. The system does contain, however, a

number of classes those are key to the functioning of the system (such as Utils).

Table 7.8 FIN and FOUT per package (SmallSQL)

Metric (Ver.) Mean Median

FOUT (V1) 10.32 3

FOUT (V2) 10.53 3

FOUT (V3) 10.31 3

FOUT (V4) 10.38 3

FOUT (V5) 10.42 3

FOUT (V6) 9.96 3

FOUT (V7) 9.98 3

FOUT (V8) 10.13 3

FOUT (V9) 10.19 3

FIN (V1) 6.92 0.5

FIN (V2) 8.19 0.5

FIN (V3) 7.90 0

FIN (V4) 7.96 0

FIN (V5) 8.03 0

FIN (V6) 7.48 0

FIN (V7) 7.69 0

FIN (V8) 7.94 0

FIN (V9) 8.08 0

Chapter 7: An Evolutionary Study of FIN and FOUT 119

7.4.2.3 The DjVu System

Table 7.9 shows the data for the DjVu system. The number of classes comprising

80% of the FIN was 8 out of 40 across the 9 versions for the Djvu package (the

package shares its name with the system from which it is taken), 2 out of 10 for

Anno package and 2 out of 9 for Toolbar package. The number of classes for

which we calculated the correlations between FIN and FOUT was 64 for Djvu and

16 apiece for Anno and Toolbar. The first question relates to the nature of the

correlations. Negative correlations between FIN and FOUT are evident for the

Djvu and Anno packages. There is positive correlation between the metrics for the

Toolbar package over the same 8 versions of DjVu system.

Table 7.9 Correlations FIN vs. FOUT (DjVu)

Package Pearson‟s Kendall‟s Spearman‟s

Djvu -0.088 -0.151 -0.248*

Anno -0.572* -0.436* -0.462*

Toolbar 0.988** 0.914** 0.950**

*Correlation is significant at the 0.05 level (1-tailed).

**Correlation is significant at the 0.01 level (1-tailed).

Figure 7.6 shows the values of FIN and FOUT for the Djvu package. The values

of FIN are consistently higher than that of FOUT. The lines in the graph do not

overlap at all and are totally disjoint. This feature contrasts with all the graphs

shown for the previous two systems.

The class which, over the course of the eight versions was consistently high in its

FIN was the GRect class; this class started with a FIN value of 59 and ended with

a FIN of 81. It had one of the lowest FOUT values for that package however

(value of just 4) throughout the versions studied, compared with a mean of 5.67

for the remaining classes. Again, this might be a class for manipulating GUIs

which might be critical to system functionality (i.e. key class). Based on the fact

that the DjVu system is graphically-oriented system – we would expect a shape-

Chapter 7: An Evolutionary Study of FIN and FOUT 120

oriented class to be the subject of significant use by other classes in the system

and this might explain its high FIN. It also gives an insight into the way this type

of system evolves. A key class does not see any rise in FOUT, but does in terms

of its FIN as more classes use the class. GRect thus acts as a server class to other

classes.

Figure 7.7 shows the FIN and FOUT values for the Anno package. It is interesting

that, there is a striking difference between the FIN and FOUT values towards later

versions of the system studied. The class with the FIN of 11 was the Rect class.

The values of FOUT remain static between V4 and V5. Interestingly, it seems that

in two packages in this system, the same types of class (i.e. rectangle-based) are

both prominent classes (GRect and Rect). This supports our view that there are

certain classes whose FIN increases because of their popularity and whose FOUT

remains relatively static. One conclusion that we could draw from our study is

therefore that an increasing FIN is not necessarily a sign of decay as such. Some

classes become increasingly used by other classes for the functionality they

provide. A class whose FIN increases while its FOUT remains stable is a possible

sign of one of these types of class.

Figure 7.8 shows the same data for the Toolbar package. In contrast with any

other packages/systems studied, the values of FOUT are significantly higher than

that of FIN. There is a strong correspondence between the FIN and FOUT for this

package and the values of FIN and FOUT mirror each other; each rise and fall

correspondingly. This type of class is characterised by the feature that as

incoming coupling is added to it, so too is added outgoing coupling and is in

contrast to classes such as Rect and GRect just described. This feature may be due

to the graphical processing nature of the classes in the DjVu system requiring

input from other GUI-based classes and feeding the output to further GUI-based

classes – e.g. processing x and y co-ordinate classes which feature heavily in this

system. This would certainly be a plausible explanation. On the other hand, it

might be a sign of a relatively balanced system that the FIN and FOUT are

correspondingly large.

Chapter 7: An Evolutionary Study of FIN and FOUT 121

0

10

20

30

40

50

60

70

80

90

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.6 FIN/FOUT for the Djvu package

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.7 FIN/FOUT for the Anno package

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Classes

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.8 FIN/FOUT for the Toolbar package

Chapter 7: An Evolutionary Study of FIN and FOUT 122

Table 7.10 shows a summary data for the FIN and FOUT metrics over the

different versions for all classes in those packages. (We note that when versions

have the same mean and median FOUT or FIN, we list those versions in a single

row of the table rather than duplicate a row; see, for example, row 1 of the data in

Table 7.10, pertaining to the FOUT for V1 and V2.)

 The Toolbar package is the most striking since both the FIN and FOUT metrics

remain relatively static throughout. This is in complete contrast to the Djvu

package where FIN rises rapidly and FOUT only marginally. The fluctuation in

FIN and FOUT values is also evident for the Anno package (Figure 7.7).

The noticeable feature of Table 7.10 is the relatively high values of FOUT

compared with FIN throughout. On the basis that, in theory, classes with a high

FOUT are easier to modify than classes with a high FIN basis, and from the

systems studied so far, this system is certainly the most contrasting in terms of its

FIN and FOUT values and presents best opportunity for re-engineering of classes.

Table 7.10 FIN and FOUT per package (DjVu)

Package Metric (Ver.) Mean Median

Djvu

FOUT(V1,V2) 6.21 5

FOUT (V3) 6.5 5

FOUT(V4,V5,V6) 6.53 5

FOUT (V7) 6.97 5

FOUT (V8) 6.89 5

FIN (V1,V2) 10.29 7.5

FIN (V3,V4) 13.15 10

FIN (V5,V6) 13.23 10

FIN (V7,V8) 15.71 10.5

Anno

FOUT (V1,V2) 9.43 4

FOUT (V3,V4) 7.78 4

FOUT (V5) 12.86 11

FOUT (V6) 16.5 11.5

Chapter 7: An Evolutionary Study of FIN and FOUT 123

FOUT (V7) 14.5 3.5

FOUT (V8) 8 3

FIN (V1,V2) 1.14 0

FIN (V3,V4) 1.33 0

FIN (V5) 7.57 5

FIN (V6) 9.17 4.5

FIN (V7) 4.67 3

FIN (V8) 2.55 3

Toolbar

FOUT (V1) 25 15.5

FOUT (V2) 14.56 12

FOUT (V3,V4) 14.89 12

FOUT (V5) 14.89 12

FOUT V6,V7,V8) 15.11 12

FIN (V1) 4.2 1

FIN (V2) 2.33 1

FIN (V3,V4) 3.78 1

FIN (V5) 3.89 1

FIN (V6, V7, V8) 4.11 1

7.4.2.4 The pBeans System

Table 7.11 shows the correlation data for the pBeans system. We considered two

packages for this system – pBeans (again a package that shares its name with the

system in which it is located) and Data.

We calculated the correlations between FIN and FOUT for 37 classes for pbeans

package and 30 classes in the Data package (this is how many classes comprised

80% of the FIN across the whole package). A negative correlation between the

FIN and FOUT for the pBeans package is evident; however there is no significant

correlation between these two metrics for the Data package. Both sets of

correlations are negative but only in some cases are they significant. The data in

Chapter 7: An Evolutionary Study of FIN and FOUT 124

Table 7.11 suggests in this system there is a mixture of classes in terms of FIN

and FOUT given by the inconsistent pattern of correlations.

Table 7.11 Correlations FIN vs. FOUT (pBeans)

Package Pearson‟s Kendall‟s Spearman‟s

PBeans -0.064 -0.271* -0.355*

Data -0.676** 0.052 0.087

*Correlation is significant at the 0.05 level (1-tailed).

**Correlation is significant at the 0.01 level (1-tailed).

Figure 7.9 shows the values of the FIN and FOUT values for the pBeans package

over the versions studied. The peak noticeable for this system was for the

StoreException class, which started with a FIN value of 52 and reached 95 by the

sixth version. The pBeans package presents an interesting case where the FOUT

is significantly larger than FIN in some cases (evident from Figure 7.9). In

particular, the class with the high FOUT was called „Store‟ and comprised 88

methods and 690 LOC. The mean number of methods was just 11 and mean LOC

64. The FOUT for this class was 65 at the final version and the FIN just 30. This

illustrates that a class, perhaps crucial to a system, can be one that has a high

FOUT but not necessarily a correspondingly high FIN. In contrast to a server class

such as GRect described earlier, there may also be „client‟ classes that use a wide

variety of other classes.

Figure 7.10 shows the values of the FIN and FOUT for the Data package. The

remarkable feature is the exceptionally low values of FOUT across the classes.

One of the explanations for such a low FOUT and high FIN is that many of the

classes were „descriptor‟ classes which many classes would want to use, but

equally classes that would not ordinarily use classes themselves. These classes are

again server classes that provide a service to other client classes.

Chapter 7: An Evolutionary Study of FIN and FOUT 125

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.9 FIN/FOUT for the pBeans package

Figure 7.10 FIN/FOUT for the data package

Table 7.12 presents a summary for the FIN and FOUT metrics over the released

versions for all classes in the two packages in the pBeans system. The value of the

maximum number for FIN over the ten versions is that for the StoreException

class in pBeans package and for FieldDescriptor in the Data package. However,

the value of the FOUT metrics for these classes, as hinted previously, is zero.

Table 7.12 shows fluctuating values in FIN and FOUT and in contrast to previous

systems there appears to be little pattern to these fluctuations. Bearing in mind the

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT
FIN

Chapter 7: An Evolutionary Study of FIN and FOUT 126

inconsistent trends in FIN and FOUT (Figures 7.9 and 7.10), this might have been

expected.

Table 7.12 FIN and FOUT per package (pBeans)

Package Metric (Ver.) Mean Median

pBeans

FOUT (V1,V2) 7.21 0

FOUT (V3,V4,V5) 6.69 0.5

FOUT (V6) 6.94 1

FOUT (V7) 5.85 0.5

FOUT (V8,V9,V10) 9.19 1.5

FIN (V1,V2) 8.21 4

FIN (V3,V4,V5) 8.56 4

FIN (V6) 8.06 2

FIN (V7) 8.15 6

FIN (V8,V9,V10) 9.58 5

Data

FOUT (V1,V2) 4.53 2

FOUT (V3,V4,V5) 5.53 2

FOUT (V6,V7) 6 2

FOUT (V8,V9,V10) 5.31 0.5

FIN (V1,V2) 2.33 0

FIN (V3,V4,V5) 2.65 0

FIN (V6,V7) 2.42 0

FIN (V8,V9,V10) 6.56 1.5

7.4.2.5 The Asterisk System

Table 7.13 shows the correlation data for the Asterisk system. There are three

packages considered for this system: Fastagi, Manager and Manager.event. The

numbers of the classes that we used to calculate the correlations between FIN and

FOUT were 29, 42 and 123 classes for the Fastagi, Manager and Manager.event

Chapter 7: An Evolutionary Study of FIN and FOUT 127

packages, respectively. There is a negative correlation between the FIN and

FOUT for the Fastagi package and a positive correlation between these metrics for

the Manager and Manager.event packages over the seven versions of the Asterisk

system. Again, there is no consistency amongst the correlation values in terms of

their direction.

Table 7.13 Correlations FIN vs. FOUT (Asterisk)

Package Pearson‟s Kendall‟s Spearman‟s

Fastagi -0.209 -0.276** -0.326**

Manager 0.025 0.417** 0.471**

Manager.event 0.254** 0.215** 0.244**

**Correlation is significant at the 0.01 level (1-tailed).

Figure 7.11 shows the FIN and FOUT values for the Fastagi package and explains

the negative correlations found for this package in Table 7.13. There are

exceptionally high values of FIN and correspondingly low values of FOUT. One

salient feature of the Fastagi is the number of exception handling classes, each of

which has an exceptionally large FIN and low FOUT. The same classes are also

relatively small, containing only a few methods. For example, the AGIException

class has 2 methods, a value of 109 for FIN and value 0 for FOUT. Figure 7.12

shows the FIN and FOUT values for the Manager package. The values of FIN and

FOUT correspond to a greater extent in this package. Again, we see the existence

of server classes with a very high FIN but low FOUT. The Fastagi package is an

interesting case from a FIN and FOUT point of view – the classes with the highest

FIN are all of a certain type – namely exception handling classes. In practice, it

makes sense to group these types of classes together, but this did not seem to be a

feature of any of the other systems studied.

Figure 7.13 shows the FIN and FOUT values for the Manager.event package. The

relatively high FIN values of 28 belong to a class called ManagerEvent. Again the

high value of FIN and relatively low value of FOUT for this class makes sense

since many classes would want to access this class for the critical functionality it

offers (that of event handling).

Chapter 7: An Evolutionary Study of FIN and FOUT 128

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.11 FIN/FOUT for the Fastagi package

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.12 FIN/FOUT for the Manager package

0

5

10

15

20

25

30

1 11 21 31 41 51 61 71 81 91 101 111 121

Class

F
IN

/F
O

U
T

 V
a
lu

e

FOUT

FIN

Figure 7.13 FIN/FOUT for the Manager.event package

Chapter 7: An Evolutionary Study of FIN and FOUT 129

From the five systems studied, we see that there are certain classes with a low FIN

and high FOUT, but more frequent is the occurrence of a class with the opposite

characteristics (high FIN, low FOUT). Table 7.14 presents a summary for the FIN

and FOUT metrics over the released versions for the three packages.

Table 7.14 FIN and FOUT per package (Asterisk)

Package Metric (Ver.) Mean Median

Fastagi

FOUT (V1,V2) 1.83 0

FOUT(V3,V4,V5) 2 0

FOUT (V6,V7) 2.21 0

FIN (V1,V2) 3 1

FIN (V3) 5.17 1

FIN (V4) 6.08 0

FIN (V5) 6.76 0

FIN (V6,V7) 7.21 0

Manager

FOUT (V1,V2) 3.67 0

FOUT(V3,V4,V5) 4.23 1

FOUT (V6) 0.64 0

FOUT (V7) 6.17 0

FIN (V1,V2) 3.55 0

FIN (V3,V4,V5) 3.26 0

FIN (V6,V7) 3 3

Manager.

Event

FOUT (V1,V2) 0.04 0

FOUT V3,V4,V5) 0.05 0

FOUT (V6,V7) 0.15 0

FIN (V1,V2) 3.18 1

FIN (V3,V4,V5) 2.99 1

FIN (V6) 1.83 1

FIN (V7) 3.48 3

Chapter 7: An Evolutionary Study of FIN and FOUT 130

The maximum value for FIN over the seven versions is actually the FIN for the

AgiException class in Fastagi, for the Channel class in the Manager package and

for the ManagerEvent class in the Manager.event package. However, the values of

the FOUT metrics for these classes are trivially small. There is a wide fluctuation

in mean values for the two metrics over the versions studied. However, in keeping

with most of the previous systems – the median values suggest that there is no

significant change in terms of these two metrics.

7.5 Summary

In this chapter, we have explored the 80/20 in four OSS and six coupling metrics.

The key findings were that, to a limited extent, FIN and FOUT metrics had a

greater propensity for that rule than others. Moreover, these two metrics have a

complementary relationship. We also found that many of the other metrics had

few, if any, such relationships. The RFC was typical in this sense; no 80/20

relationship was found in any of the systems or any version in those systems.

Finally, an 80/20 rule did not seem to worsen as a system evolved. Because of

these results, we investigated the relationship between the FIN and FOUT in five

OSS. The key finding was that for most of the systems there is a correlation

between the changes in the FIN and FOUT. This correlation was negative for

some packages but positive for most of the packages – this informed our

interpretation of the two metrics. We also asked two significant questions. First,

what is the nature and characteristics of classes exhibiting the highest FIN values?

Second, do FIN and FOUT increase in corresponding and consistent amounts over

time? Our analysis revealed a wide range of traits in the classes to explain high

and low levels of FIN and FOUT. We found evidence of certain „key‟ classes with

high FIN and FOUT; we also found evidence of classes with just high FIN

(„server‟-type) classes. In certain cases, the size of a class revealed its purpose as

much as the values of FIN and FOUT. Finally, evolutionary aspects also showed

evidence of a range of coinciding „similar directions‟ of evolution; in other cases,

we found unilateral and independent evolution with respect to the two metrics

studied.

 131

CHAPTER 8. CONCLUSIONS, REFLECTIONS AND

FURTHER WORK

8.1 Overview

This chapter draws together the research findings to present an understanding of

coupling between classes in Java OSS. The chapter starts with an overall

summary of the research and relates the key research findings with the

conclusions. Contributions from the research findings are discussed. Finally, the

research limitations are presented together with potential future research

directions.

8.2 Research Summary

The objectives of this Thesis, originally stated in Chapter 1, were:

1. To give a project manager an idea of future maintenance or refactoring

opportunities by understanding changes in a system through the analysis of

its packages and finding the link between these changes and the

refactoring.

2. To investigate characteristics of classes removed from systems during

their evolution from the perspective of their coupling to other classes, their

size compared to other classes and their change trends before they were

removed.

3. To discover the relationship between changes in the coupling metrics over

the releases of a system and the different time periods between these

releases, on the one hand, and the relationship between these changes and

the code warnings, on the other hand.

4. To explore whether an 80/20 rule exists in Java from coupling metrics

over multiple versions of OSS.

Chapter 8: Conclusions, Reflections and Further Work 132

5. To investigate the characteristics of classes that show the highest value of

incoming coupling metrics. In particular, to address the issue of potential

re-engineering and to view coupling as a key contributor to the decision on

whether or not and when to re-engineer (classes) over the lifetime of a

system.

To address the previous objectives, we started our investigation of coupling by

conducting a comprehensive literature review (Chapter 2) of previous work

reported on coupling, how it was used in practice and what implications it may

have on system maintainability. This was followed by providing a detailed

description of the research methodology implemented in the Thesis, including the

systems and the software metrics used in the study (Chapter 3).

In Chapter 4, we investigated how Velocity system evolved at the package level.

The trends in changes of nine versions of Velocity were explored through three

research questions. An interesting „peak and trough‟ effect trend existed in

specific versions of the system. A contrast was found between those regular

changes and those associated with refactoring activity.

In Chapter 5, removed classes were investigated in four Java systems. Five

coupling metrics were collected from these four Java open-source systems using

the JHawk tool. By investigating the influence of the extent coupling and the class

size on the removal of the classes from the system, we found that FIN and FOUT

tended to be comparatively small for these classes; however, little evidence that

the size influenced removed classes was found. Finally, changes for most of the

classes were made in early versions before the classes were removed relatively

later on.

In Chapter 6, trends in coupling in five Java systems were investigated. Again,

five coupling metrics and the warning for each version were collected from the

five Java OSS. Investigation of the five systems revealed that adding coupling

may have advantageous effects on a system. Moreover, it seems that addition of

coupling in new functionality through addition of packages could result in fewer

warnings than adding functionality to existing codes.

Chapter 8: Conclusions, Reflections and Further Work 133

The 80/20 rule in four OSSs and six metrics was explored in Chapter 7. FIN and

FOUT had a larger leaning toward that rule than others. High use of these two

metrics seemed to eliminate the use of other types of coupling. Consequently, the

relationship between FIN and FOUT was investigated. For most of the studied

systems there was a correlation between the changes in the FIN and FOUT. Our

analysis showed a wide range of traits in the classes to explain both high and low

levels of FIN and FOUT. We also found evidence of certain „key‟ classes with

both high FIN and FOUT and „client‟ and „server‟-type classes with just high

FOUT and FIN, respectively.

Based on the results of empirical studies presented throughout the Thesis, we

therefore feel that all the research objectives have been satisfied. The trends in

coupling in the package level in the evolution of Java OSS have presented

interesting characteristics. We therefore assert that the Thesis informs our

empirical understanding of coupling features of OO from an evolutionary

perspective.

8.3 Research Contributions

The research described in this Thesis relates to areas of software evolution,

coupling metrics and potential fault analysis (through warnings) and the use of

OSS. As stated in Chapter 1, this study contributes to an empirical body of

knowledge on coupling and longitudinal analysis, of which more studies are

recommended (Kemerer and Slaughter, 1999a; 1999b). Few empirical studies

investigating coupling from the perspective of evolution in OSS can be found in

the current literature. Equally, empirical evidence exists to suggest that research

on software evolution is conducted inadequately. Kemerer and Slaughter (1999a)

state that there is a need for further empirical studies in the software evolution.

While there have been multiple studies of coupling both in the procedural and OO

arena, the results that we report in this Thesis suggest that coupling is a multi-

faceted, multi-dimensional and more complex feature of a system than we may

have appreciated in the past.

Chapter 8: Conclusions, Reflections and Further Work 134

The main contribution of this Thesis can be seen in the light of few research

stands.

 An appreciation of trends of maintenance changes can help predict future

changes in the maintenance practice. This may also help a project manager

to estimate the likely maintenance effort needed to keep the project

working properly. Based on the trends of activity changes, developers can

take preventive action for further system maintenance and/or refactorings.

The findings of Chapter 4 suggested that maintenance changes follow an

interesting „peak and trough‟ effect trend in specific versions of the

system. These trends corresponded with empirical evidence in refactoring

data for the same system. This result suggests a contrasting motivation

between regular maintenance practice and that of refactoring. In other

words, refactoring might be applied after a burst of regular change

activity, rather than consistently.

 Since few empirical studies have analysed coupling from an evolutionary

respective, we believe the methodological approaches adopted for data

collection and analysis in this Thesis can help inform future empirical

studies on coupling and its evolution. The Thesis therefore makes a

contribution to our understanding of how coupling evolves and where the

majority of maintenance changes are applied. In Chapter 5, results showed

a strong tendency for classes with low FIN and FOUT to be candidates for

removal. Evidence was also found of class types with high imported

package and external call functionality being removed. The research

addressed an area that is often overlooked in the study of evolving

systems, notably the characteristics and features of classes that disappear

from a system.

 The findings in Chapter 6 recommended that addition of coupling might

have beneficial effects on a system. It also seemed that there was a

coupling trade-off between coupling types, in particular that between the

Chapter 8: Conclusions, Reflections and Further Work 135

uses of coupling through imported packages and the introduction of

„internal-to-the-package‟ coupling.

 Chapter 7 provided an explanation of the composition and existence of

„key‟ and „server‟-type classes as well as for disproportionate increases in

each of the two metrics (FIN and FOUT) over time. The research

presented suggests that there is no such thing as completely common

trends in systems as far as coupling is concerned and that there are

multiple reasons why classes may be highly or minimally coupled through

FIN, FOUT or a combination of both. Equally, there are other class

characteristics that play a crucial part, such as size, and associated with

that, the level and type of functionality. The „key‟ and „server‟ classes

feature in the evolution of a system and its functioning.

8.4 Personal Achievement

There are many things that have been achieved over the course of the research in

this Thesis. First of all, the process of conducting research needs an advancement

of the researcher‟s knowledge in the studied area, and that was achieved by

reading more about this subject and searching the literature for related papers.

Moreover, research is usually done under time pressure, so time management is a

key aspect of research and a good help in meeting deadlines. Additionally,

successful research needs good collaboration and communication with other

researchers in the same study area, and that was achieved by communicating with

colleagues within the university or by attending conferences.

The research in this Thesis required a certain amount of data collection and

statistical analysis. This helped in improving an awareness of data collection and

suitability of statistical tests for a set of data. Over the course of this Thesis, it was

evident that completing a PhD is merely a learning process for further scientific

research. Finally, writing this research has raised the ability to read and write

technically and critically and has improved personal skills as a researcher.

Chapter 8: Conclusions, Reflections and Further Work 136

8.5 Research Limitations and Future Work

One threat to the validity of the study is that we have only used seven OSSs as

part of our study. While that provides a cross-sectional view of systems, we

accept that this limited number threatens the generalisability of the results.

In the Thesis analysis, there was a focus on coupling and class size; however,

many other features of classes could have been used as a basis, for example, their

cohesion or their position in the inheritance hierarchy. We leave such analyses for

future work, however.

Another threat to the validity of the study is that we have used warnings as a basis

of our analysis in Chapter 6 and not actual faults or complementary techniques.

However, we feel that it is better to be „fore-warned‟ and therefore „fore-armed‟

of potential problems and to analyse that data, than to analyse data in a post-fault

sense.

Finally, a threat to the study validity is that we have only collected six coupling

metrics from a wide range of available coupling metrics in the literature. We

defend this choice on the basis that these six give a set of metrics that allow

different levels of code and design abstraction to be analysed and compared; this

is a key objective of the study.

In terms of future work, we view the research as a starting point for further

replicated studies and for an in-depth and generalised analysis of

coupling/refactoring, both inter- and intra-package. Consequently, we aim to

extend our analysis to more systems and more versions in the spirit of Girba et al.

(2005).

From a refactoring perspective, it would be useful to investigate the link that

removal of classes may have with refactoring, and specifically with respect to

package refactoring. We also expect to investigate the potential for refactoring

the code as a result of that warning data. Future work will focus on first exploring

the opportunities and effects of applying refactorings to classes that appear to

have a high FIN and FOUT; it will also consider a finer-grained analysis of the

Chapter 8: Conclusions, Reflections and Further Work 137

different types of coupling inherent in the classes studied and a coupling analysis

„normalised‟ by class size.

We would encourage further empirical studies into coupling and particularly

evolutionary-based studies to refute, support or complement the results in this

Thesis; to that end, all the data used in this Thesis can be obtained for replication

purposes and other analyses on request from the author.

 138

REFERENCES

Abreu, F. and Carapuca, R. (1994) Object-oriented software engineering:

measurement and controlling the development process, Revised version:

Originally published in the Proceedings of the 4th International Conference on

Software Quality. McLean, VA.

Advani, D., Hassoun, Y. and Counsell, S. (2005) Refactoring trends across N

versions of N Java open source systems: an empirical study, Technical Report

BBKCS-05-03-01. Birkbeck, University of London: London, UK.

Advani, D., Hassoun, Y. and Counsell S. (2006) Extracting refactoring trends

from open-source software and a possible solution to the related refactoring

conundrum, Proceedings of the 21st Annual ACM Symposium on Applied

Computing, Dijon, France, April 23-27, 2006.

Akiyama, F. (1971) An example of software system debugging, Proceedings of

the IFIP Congress, pp. 353-379.

Arisholm, E. and Briand, L.C. (2006) Predicting fault-prone components in a Java

legacy system, Proceedings of the 5th ACM/IEEE International Symposium on

Empirical Software Engineering, pp. 8-17.

Arisholm, E., Briand, L.C. and Foyen, S. (2004) Dynamic coupling measurement

for object-oriented software, IEEE Transactions on Software Engineering, 30(8)

pp. 491-506.

AspectJ, (2005) Available at (http://www.eclipse.org/aspectj) [Accessed 10th

December 2009].

Bartsch, M. and Harrison, R. (2006a) A coupling framework for AspectJ,

Proceedings of the 10th International Conference on Evaluation and Assessment

in Software Engineering, Keele, UK, April 2006.

http://www.eclipse.org/aspectj

References 139

Bartsch, M. and Harrison, R. (2006b) An evaluation of coupling measures for

AspectJ, Workshop LATE'06, in conjunction with Aspect-Oriented Software

Development Conference (AOSD'06), Bonn, Germany, March 20, ACM Press.

Basili, V., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgard, S. and

Zelkowitz, M.V. (1996a) The empirical investigation of perspective-based

reading, Empirical Software Engineering: An International Journal, 1(2), pp.

133–164.

Basili, V.R., Briand, L.C. and Melo, W.L. (1996b) A validation of object-oriented

design metrics as quality indicators, IEEE Transaction on Software Engineering,

22(10), pp. 751-761.

Beck, K. (1999) Extreme programming explained: embrace change. Addison-

Wesley.

Belady, L.A. and Lehman, M.M. (1976) A model of large program development,

IBM System Journal, 15(3), pp. 225-252.

Bennett, S., McRobb, S. and Farmer, R. (2002) Object-oriented systems analysis

and design using UML. 2nd ed. London: McGraw Hill.

Bennett, K. (1996) Software evolution: past, present and future, Information and

Software Technology, 38, pp. 673-680.

Bieman, J. M., Straw, G., Wang, H., Munger, P. and Alexander, R. (2003) Design

patterns and change proneness: an examination of five evolving systems,

Proceedings of the 9th International Software Metrics Symposium, Sydney,

Australia, pp. 40-49.

Bieman, J.M., Jain, D. and Yang, J.Y. (2001) OO design patterns, design

structure, and program changes: an industrial case study, Proceedings of the

International Conference on Software Maintenance, Florida, Italy, pp. 580-589.

Black, S. (2001) Computing ripple effect for software maintenance, Journal of

Software Maintenance and Evolution: Research and Practice, 13, pp. 263-279.

References 140

Briand, L., Devanbu, P. and Melo, W. (1997) An investigation into coupling

measures for C++, Proceedings of the 19th International Conference on Software

Engineering, Boston, USA, pp. 412-421.

Briand, L., Daly, J., Porter, V. and Wust, J. (1998) Predicting fault-prone classes

based on design measures in object-oriented systems, Proceedings of the 9
th

International Symposium on Software Reliability Engineering, Paderborn,

Germany, 4-7 November 1998, pp 334-343.

Briand, L.C., Arisholm, F., Counsell, S., Houdek, F. and Thevenod-Foss, P.

(1999a) Empirical studies of object-oriented artifacts, methods and processes:

state of the art and future directions, Empirical Software Engineering: An

International Journal, 4(4), pp. 387-404.

Briand, L., Daly, J. and Wust, J. (1999b) A unified framework for coupling

measurement in object-oriented systems, IEEE Transactions on Software

Engineering, 25(1), pp. 91-121.

Briand, L., Wust, J., Ikonomovski, S. and Lounis, H. (1999c) Investigating quality

factors in object-oriented designs: an industrial case study, Proceedings of the

International Conference on Software Engineering, Florida, USA, pp. 345-354.

Burd, E. and Munro, M. (2000) Using evolution to evaluate reverse engineering

technologies: mapping the process of software change, Journal of Systems and

Software, 53 (1), pp. 43-51.

Cartwright, M. and Shepperd, M. (2000) An empirical investigation of an object-

oriented (OO) system, IEEE Transactions on Software Engineering, 26, pp. 786-

796.

Ceccato, M. and Tonella, P. (2004) Measuring the effects of software

aspectization, Proceedings of the 1
st
 Workshop on Aspect Reverse Engineering

(WARE 2004). Delft, The Netherlands.

Chidamber, S.R. and Kemerer, C.F. (1994) A metrics suite for object oriented

design, IEEE Transactions on Software Engineering, 20(6), pp. 476-493.

References 141

Chikofsky, E.J. and Cross, J.H. (1990) Reverse engineering and design recovery:

a taxonomy, IEEE Software, 7(1), pp.13–17.

Counsell, S., Mubarak, A. and Hierons, R. (2010) An evolutionary study of Fan-in

and Fan-out metrics in OSS. Proceedings of the 4th International Conference on

Research Challenges in Information Science (RCIS 2010), Nice, France, 2010.

Counsell, S. (2008) Do student developers differ from industrial developers?

Proceedings Information Technology Interfaces (ITI) Conference, Dubrovnik,

Croatia, June 2008.

Counsell, S., Hierons, R.M., Najjar, R., Loizou, G. and Hassoun, Y. (2006) The

effectiveness of refactoring based on a compatibility testing taxonomy and a

dependency graph, Proceedings of Academic and Industrial Conference (TAIC

PART), Windsor, UK, August 2006, pp. 181-190. IEEE Computer Society Press.

Creswell, J. W. (2003) Research design, qualitative, quantitative and mixed

methods approaches. 2nd ed. London, Sage.

Demeyer, S., Ducasse, S. and Nierstrasz, O. (2000) Finding refactorings via

change metrics, Proceeding of OOPSLA ’00: Proc of the 15th ACM SIGPLAN

OOPSLA, Minneapolis, Minnesota, United States, pp.166–177. ACM Press, New

York, NY, USA.

Dinh-Trong, T. and Bieman, J. (2004) Open source software development: a case

study of FreeBSD, Proceedings of the 10th IEEE International Symposium on

Software Metrics, Chicago, USA, pp. 96-105.

Ducasse, S., Lanza, M. and Ponisio, L. (2005) Butterflies: a visual approach to

characterize packages, Proceedings of the 11th International Software Metrics

Symposium, Como, Italy, pp. 7-16.

Ducasse, S., Lanza, M. and Ponisio, L. (2004) A top-down program

comprehension strategy for packages. Technology Report IAM-04-007, University

of Berne, Institute of Applied Mathematics and Computer Sciences.

References 142

Dvorak, J. (1994) Conceptual entropy and its effect on class hierarchies, IEEE

Computer, 27(6), pp. 59-63.

El Emam, K., Benlarbi,S., Goel, N. and Rai, S. (2001)The confounding effect of

class size on the validity of object-oriented metrics, IEEE Transactions on

Software Engineering, 27, pp. 630-650.

English, M., Buckley, J. and Cahill, T. (2007) Fine-grained software metrics in

practice, Proceedings of the 1st International Symposium on Empirical Software

Engineering and Measurement (ESEM‟ 07), Madrid, Spain, pp. 295-304.

Fenton, N.E. and Pfleeger, S.L. (2002) Software metrics: a rigorous and practical

approach. London, UK: International Thomson Computer Press.

Fenton, N and Neil, M (1998) Software metrics: successes, failures and new

directions, Journal of Systems and Software, 47(2-3), pp. 149-157.

Field, A. (2005) Discovering statistics using SPSS. 2nd ed. London, Sage.

Findbug, (2008) Available at (http://findbugs.sourceforge.net/). [Accessed 15
th

March 2008]

Foote, B. and Opdyke, W. (1995) Life cycle and refactoring patterns that support

evolution and reuse. Pattern languages of programs. Addison-Wesley.

Fowler, M. (1999) Refactoring: improving the design of existing code. Boston,

MA, USA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995) Design patterns:

elements of reusable object-oriented software. Massachusetts: Addison- Wesley.

Gilb, T. (1976) Software metrics. Cambridge, MA: Chartwell-Bratt.

Girba, T., Ducasse, S. (2006) Modeling history to analyse software evolution.

Journal of Software Maintenance and Evolution, 18(3), pp. 207-236.

http://findbugs.sourceforge.net/

References 143

Girba, T., Lanza, M. and Ducasse, S. (2005) Characterizing the evolution of class

hierarchies, Proceedings of the 9th European Conference on Software

Maintenance and Reengineering, Manchester, UK, pp. 2-11.

Granja-Alvarez, J. C. (2004) New technologies, software maintenance: a case

study, Proceedings of the Ninth IEEE Workshop on Empirical Studies of Software

Maintenance. Chicago, USA.

Hall, T., Rainer, A. and Jagielska, D. (2005) Using software development

progress data to understand threats to project outcomes, Proceedings of the 11th

IEEE International Software Metrics Symposium (METRICS 2005), Como, Italy,

10 pages.

Harrison, R., Counsell, S. and Nithi, R. (1998) An evaluation of the MOOD set of

object-oriented software metrics, IEEE Transactions on Software Engineering,

24(6), pp. 491-496.

Harrison, R., Counsell, S. and Nithi, R. (1997) An overview of object-oriented

design metrics, Proceedings of the conference on Software Technology and

Engineering Practice (STEP), IEEE Press, pp. 230-237.

Hautus, E. (2002) Improving Java software through package structure analysis,

Proceedings of the Sixth IASTED International Conference Software Engineering

and Applications, Cambridge, USA.

Henry, S.M and Kafura, D.G. (1981) Software structure metrics based on

information flow, IEEE Transactions on Software Engineering, 7(5), pp. 510-518.

Jajodia, S. and Kogan, B. (1990) Integrating an object-oriented data model with

multilevel security, Proceedings of the IEEE Computer Society Symposium on

Research in Security and Privacy, Oakland, California, pp. 76-85.

JHawk tool (2008) Available at:

(http://www.virtualmachinery.com/jhawkprod.htm) [Accessed 13
th

 January 2008]

http://www.virtualmachinery.com/jhawkprod.htm

References 144

Johnson, R.E. and Foote, B. (1988) Designing reusable classes, Journal of Object-

Oriented Programming, 1(2), pp. 22-35.

Kajko-Mattsson, M., Forssander, S. and Olsson, U. (2001) Corrective

maintenance maturity model (CM
3
): maintainer‟s education and training,

Proceedings of the 23
rd

 International Conference on Software Engineering,

Toronto, Ontario, Canada, pp.610-619.

Kemerer, C.F. and Slaughter, S. (1999a) Need for more longitudinal studies of

software maintenance. Empirical Software Engineering: An International

Journal, 2(2), pp. 109-118.

Kemerer, C.F. and Slaughter, S. (1999b) An empirical approach to studying

software evolution. IEEE Transactions on Software Engineering, 25(4), pp. 493-

509.

Kerievsky, J. (2002) Refactoring to patterns. Addison Wesley.

Kitchenham, B.A., Pfleeger, S.L. and Fenton, N.E. (1995a) Towards a framework

for software measurement validation, IEEE Transactions on Software

Engineering, 21(12), pp. 929-944.

Kitchenham, B., Pickard, L. and Pfleeger, S.L. (1995b) Case studies for method

and tool evaluation. IEEE Software, 12 (4), pp. 52-62.

Lehman, M. (1998) Understanding laws, evolution, and conservation in the large-

program life cycle. Journal of Systems and Software, 1, pp. 213-221.

Li, W. and Henry, S. (1993) Object-oriented metrics that predict maintainability,

The Journal of Systems and Software, 23 (2), pp. 111-122.

Longstreet D.H. (1990) Software maintenance and computers. IEEE Computer

Society Press U.S.

Lorenz, M. and Kidd, I. (1994) Object-oriented software engineering metrics.

Prentics-Hall Englwood Cliff, NJ.

References 145

McDermid, J. A. (1991) Software engineering reference book. Oxford:

Butterworth-Heinemann Ltd.

Mens, T., Ramil, J. and Godfrey, M. (2004) Analyzing the evolution of large-

scale software. Journal of Software Maintenance and Evolution: Research and

Practice, 16(6), pp. 363-365.

Mens, T. and Tourwe, T. (2004) A survey of software refactoring, IEEE

Transactions on Software Engineering, 30(2), pp. 26-139.

Mens, T. and van Deursen, A. (2003) Refactoring: emerging trends and open

problems, Proceedings First International Workshop on REFactoring:

Achievements, Challenges, Effects (REFACE). University of Waterloo.

Mubarak, A., Counsell, S. and Hierons, R. (2009) Does an 80:20 rule apply to

Java coupling? Proceedings of the International Conference on Evaluation and

Assessment in Software Engineering, Keele, UK.

Mubarak, A., Counsell, S. and Hierons, R. (2008a) An empirical study of

“removed” classes in Java open-source, Proceedings of the 4th International Joint

Conferences on Computer, Information, and Systems Sciences, and Engineering

(CISSE 08).

Mubarak, A., Counsell, S. and Hierons, R. (2008b) Empirical observations on

coupling, code warnings and versions in Java open-source, Proceedings of the3rd

IFIP TC2 Central and East European Conference on Software Engineering

Techniques (CEE-SET 2008), Brno, Czech Republic.

Mubarak, A., Counsell, S., Hierons, R. and Hassoun, Y. (2007) Package

evolvability and its relationship with refactoring, Proceedings of the 3
rd

International ERCIM Symposium on Software Evolution, Paris, France.

Mubarak, A. Counsell, S., Hierons, R. and Hassoun, Y. (2007) Package

evolvability and its relationship with refactoring, Electronic Communication of

the European Association of Software Science and Technology, 8.

References 146

Najjar, R., Counsell, S., Loizou, G. and Mannock, K. (2003) The role of

constructors in the context of refactoring object-oriented software, Proceedings of

the Seventh European Conference on Software Maintenance and Reengineering

(CSMR '03), Benevento, Italy, pp. 111-120.

Opdyke, W.F. and Johnson, R.E. (1990) Refactoring: an aid in designing

application framework and evolving object-oriented systems, Proceedings of the

Symposium on Object-Oriented Programming, Emphasizing Practical

Applications (SOOPPA ‟ 90), Poughkeepsie, NY, pp. 145-161.

Opdyke, W. (1992) Refactoring object-oriented frameworks, Ph.D. Thesis, Univ.

of Illinois.

Perry, D.E. (1994) Dimensions of software evolution, Proceedings of the

International Conference on Software Maintenance, Victoria, BC, Canada, pp.

296-303.

Pillai, K. (1996) The fountain model and its impact on project schedule. Software

Engineering Notes, 21(2), pp. 32-38.

Robson, C. (2002) Real world research: a resource for social scientists and

practitioner-researchers. 2nd ed. Oxford, Blackwell Publishers Ltd.

Shepperd, M.J. (1995) Foundations of software measurement. Hertfordshire, UK:

Prentice Hall International.

Smith, N., Capiluppi, A. and Fernandez-Ramil, J. (2006) Agent-based simulation

of open source evolution, Journal of Software Process - Improvement and

Practice, 11(4), pp. 423-434.

Sommerville, I. (1996) Software engineering. 5th ed. Wokingham, England,

Addison-Wesley.

Stevens, W., Myers, G. and Constantine, L. (1974) Structured Design, IBM

Systems Journal, 13, pp. 60-73.

References 147

Tourwe, T. and Mens, T. (2003) Identifying refactoring opportunities using logic

meta programming, Proceedings of the 7th European Conference on Software

Maintenance and Re-Engineering, Benevento, Italy, pp. 91-100.

van Deursen, A. and Moonen, L. (2002) The video store revisited – thoughts on

refactoring and testing, Proceedings of the 3rd International Conference on

eXtreme Programming and Flexible Processes in Software Engineering XP.

Sardinia, Italy, pp. 71-76.

Wasserman, A. (1996) Toward a discipline of software engineering, IEEE

Software, 13(6), pp. 23-31.

Wheeldon, R. and Counsell, S. (2003) Power law distributions in class

relationships. Proceedings of the IEEE International Workshop on Source Code

Analysis and Manipulation, Amsterdam, The Netherlands, pp. 45-54.

Wilde, N. and Huitt, R. (1992) Maintenance support for object-oriented programs,

IEEE Transactions on Software Engineering, 18(12), pp. 1038-1044.

Williams, B.J. and Carver J.C. (2007) Characterizing software architecture

changes: an initial study, Proceedings of the 1
st
 International Symposium on

Empirical Software Engineering and Measurement, Madrid, Spain, pp. 410-419.

Wohlin, C. Runeson, P., Host, M., Ohlsson, M., Regnell, B. and Wesslen, A.

(2000) Experimentation in software engineering: an introduction. Boston/

Dordrecht/ London, Kluwer Academic Publishers.

Wu, J., Holt, R. and Hassan, A. (2007) Empirical evidence for SOC dynamics in

software evolution, Proceedings of the 24
th

 International Conference on Software

Maintenance, Paris, France, pp. 244-254.

Zhang, J. Lin, Y. and Gray J. (2005) Generic and domain-specific model

refactoring using a model transformation engine, Springer Berlin Heidelberg, pp.

199-217.

References 148

Zheng, J, Williams, L., Nagappan, N., Snipes, W., Hudepohl, J. and Vouk, M.

(2006) On the value of static analysis for fault detection in software, IEEE

Transactions on Software Engineering, 32(4), pp. 240-253.

Zimmermann, T., Weißgerber, P., Diehl, S. and Zeller, A. (2005) Mining version

histories to guide software changes, IEEE Transactions on Software Engineering,

31(6), pp. 429-445.

 149

GLOSSARY OF SOFTWARE ENGINEERING TERMS

The terms define below are widely used in software engineering. The purpose of

this glossary is to explicitly indicate what we mean by each term in this Thesis

and avoid any confusion by the reader.

Abstraction

The concept of abstraction from the perspective of OO is a process that involves

identifying only crucial aspects of a problem and ignoring the non-essential

information and detail.

Attribute

Attributes are data fields defined in a class to store information about each

instance/object of that class.

Bad Smells

Bad smells in code are strong indicators of problems somewhere in the code that

offer opportunities for refactoring.

Class

A class is a unit of code from which instance objects are created and defines a set

of attributes and methods for those objects.

Cohesion

Cohesion is the extent of class components working together to perform one

single and precise task. Cohesion increases class comprehensibility and eases

modification.

Coupling

Coupling in OO is a measure of inter-dependency between classes. High coupling

shows a strong dependency which is undesirable from a complexity perspective.

Glossary 150

Design Patterns

Design patterns are recurring solutions to software design problems that are

observed or discovered repeatedly in real-world application development

environments (Gamma et al. 1995)

Fan-in Metrics

Fan-in metrics is the number of functions that call a particular function. A

function with a high Fan-in means that many other functions use this function.

Fan-out Metrics

Fan-out metrics is the number of functions a function calls.

Inheritance

Inheritance is a mechanism used in OO which provides the ability to define a new

class using methods an attributes of an existing class and adding its own specific

methods and attributes. The newly added class is then called subclass and the

existing class is called superclass.

Java Package

A package in Java is a namespace used to organise class files. This is done by

creating a directory, putting all classes with related functionally in that directory

and giving it a sensible name to clearly represent the functionality of those

classes. The directory in which all classes exist is called a package.

Lines of Code (LOC) Metric

LOC measures lines of code in a system or a class which may or may not include

comments and/or blank lines.

Glossary 151

Message Passing Coupling (MPC) Metric

MPC metric measures the total number of method calls in the methods of a class

to methods of other classes. In other words, it measures the dependency of

methods of a class to the methods of other classes.

Method

A method is a member function in a class consisting of a set of statements which

may have a set of arguments and may have a return type. Methods are used to

provide overall class behaviour.

Move Field (MF) Refactoring

MF refactoring moves a field from a class to another, in which it is used more

than the class it is defined (Fowler, 1999). .

Number of Attributes (NOA) Metric

NOA metric measures the total number of local variables plus the total number of

class variables (including public, private and protected) in a class.

Number of External Methods Called (EXT) Metrics

The more external methods that a class calls the more tightly bound that class is to

other classes.

Number of Methods (NOM) Metric

NOM metric measures the total number of methods in a class.

PACK Metrics

PACK metrics measures the number of imported packages.

Refactoring

Refactoring is the process of changing internal behaviour of a system, to make it

easy to understand and change, while preserving its external behaviour.

Glossary 152

Rename Field (RF) Refactoring

RF refactoring is concerned with changing the name of a field to clearly state its

purpose (Fowler, 1999).

Rename Method (RM) Refactoring

RM refactoring is concerned with changing the name of a method to clearly state

its purpose (Fowler, 1999).

Response for a Class (RFC) Metrics

This metric is the same as that defined by Chidamber and Kemerer (1994) and

measures the response set of a class. The RFC is defined as the set of methods that

can be potentially executed in response to a message received by an object of that

class.

Software Metrics

Software metrics are measures of characteristics of a software project, product or

process.

Superclass

A superclass is a class which contains all the common features (methods and

attributes) to be inherited by a set of classes and serves as an ancestor for those

classes. The classes inheriting those common features add their own specific

features so that more specific objects of the superclass can be created.

Subclass

A subclass is a class which inherits from another class or implements an interface.

Warning

The term warning in the context of this Thesis indicates to the problems

embedded in a system which may potentially lead to a fault (FindBugs, 2008).

 153

APPENDIX A: DATA USED IN ANALYSING THE

MAINTENANCE CHANGES

The data analysed in Chapter 4 was held in Excel spreadsheets. The data for each

package is categorised in several columns, and each column contains the changes

that occurred to the packages since the previous version. These tables are as follows.

Note: for all the following tables, when the cell is empty that means the package did

not exist for this version.

Table A.1 was used in analysing the first research question. It was created by taking

the column that includes the number of the added classes for each package across the

nine versions.

Table A.1 The number of the classes added to each package (Velocity)

Version No.\

Package name
Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9

ant 55 0 1 33 0 6 1 23

apisupport 46 0 0 28 2 0 10

applet 0 0 0 0 0 0 0 0 0

autoupdate 0 18 0 0 21 0 0 14 8

beans 4 10 0 0 6 0 9 1 3

classfile 0 0 0 1 0

clazz 3 2 1 0 2 0 1 15 2

core 81 162 5 1 316 7 92 131 217

debuggercore 12 105 0 0 121 3 0 23 27

debuggerjpda 1 7 0 0 329 0 0 7 7

debuggertools 0 3 0 4 0 0

diff 0 1

editor 176 55 0 0 71 1 58 54 97

extbrowser 0 0 19 0 0 1 12

form 37 87 1 0 91 1 0 64 76

html 1 3 0 0 0 0 0 1 0

httpserver 5 3 0 0 2 0 0 9 2

i18n 25 60 0 0 0 0 8 1 4

icebrowser 0 7 0

image 1 6 0 0 3 0 0 0 1

Appendix A 154

j2eeserver 0 0 0 47 3

jarpackager 23 43 0 0 21 0 0 111 13

java 50 207 0 0 41 1 35 16 140

javacvs 0 0 153 0 0 64 13

javadoc 0 34 2 3 22 1 0 9 17

jndi 1 0 1 3 0 21 0

nbbuild 18 4 0 2 35 1 0 8 27

objectbrowser 0 0 0

openide 78 80 2 1 294 13 81 115 148

openidex 10 1 0 0 45 0 0 23 0

projects 8 21 0 0 9 1 7 0 24

properties 20 7 0 0 3 0 0 27 19

rmi 1 0 20 0 0 14

schema2beans 0 38

scripting 6 0 0 6 0 0 0

text 3 0 0 0 3 0 0 0 0

tomcatint 0 0 0 52 15

ui 1 81

usersguide 0 0 0 0 0 7 0

utilities 16 10 0 0 14 2 0 2 6

vcscore 62 2 1 146 3 0 50 83

vcscvs 52 7 1 0 4 0 0 0 1

vcsgeneric 1 1 53 6 0 18 57

xml 0 157

web 164 5 0 0 116 0 0 357 64

SUM 788 1116 17 11 2032 45 297 1274 1386

The Max Inc 176 207 5 3 329 13 92 357 217

Package name editor java core javadoc debugg-erjpda openide core web core

Table A.2 was used in analysing the second research question. It was created by

taking the column that indicates to the maximum increase in the number of lines of

code for each package across the nine versions.

Table A.02 The max. increase in the LOC for each package (Velocity)

Version No.\

Package name
Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9

ant 105 0 54 131 9 0 36 69

apisupport 66 0 0 42 37 0 94

applet 29 8 0 0 0 0 0 2 36

autoupdate 13 180 10 16 128 44 34 74 174

beans 137 138 2 13 76 2 0 94 45

Appendix A 155

classfile 0 0 31 8 3

clazz 16 75 2 17 110 0 0 30 15

core 547 380 51 36 614 103 71 1854 453

debuggercore 106 56 18 0 225 54 35 56 329

debuggerjpda 138 149 8 0 160 15 7 64 77

debuggertools 71 52 0 82 3 0

diff 165 27

editor 265 145 60 12 498 60 1 258 388

extbrowser 0 0 73 3 0 17 5

form 198 686 30 3 609 89 14 352 591

html 7 16 0 0 3 1 0 90 10

httpserver 43 93 0 0 25 1 0 56 18

i18n 182 88 1 0 57 4 14 24 12

icebrowser 0 112 0

image 62 185 0 0 14 0 0 102 26

j2eeserver 0 14 0 35 136

jarpackager 213 223 13 7 150 30 22 86 74

java 321 184 21 0 413 22 29 125 387

javacvs 174 320 216 33 2 181 505

javadoc 116 146 11 41 76 20 0 167 29

jndi 44 0 57 91 7 156 0

nbbuild 0 27 0 30 93 52 0 305 203

objectbrowser 2 1 0

openide 325 206 60 47 698 56 47 351 159

openidex 0 16 0 0 8 9 5 0 3

projects 87 446 5 0 121 57 30 49 167

properties 120 54 7 2 32 11 0 91 24

rmi 41 0 159 14 8 20

schema2beans 0 1236

scripting 198 0 0 79 3 0 52

text 52 29 0 0 3 2 0 2 4

tomcatint 0 0 0 574 137

ui 31 84

usersguide 0 0 1 0 0 51 3

utilities 233 175 0 0 63 35 0 43 38

vcscore 411 226 116 995 101 10 265 206

vcscvs 529 212 71 0 49 0 0 0 0

vcsgeneric 34 0 641 111 2 169 102

xml 0 198

web 143 215 0 0 284 23 0 485 770

SUM 3955 5077 889 910 6985 1109 369 6418 6743

The Max Inc 547 686 226 320 995 111 71 1854 1236

Package name core form vcscore javacvs vcscore
vcsgen-

eric
core core

schema

2beans

Appendix A 156

Table A.3 and Table A.4 were used in analysing the third research question. They

were created by taking the columns that indicates to the maximum increase in the

number of the attributes and the methods for each package across the nine versions.

Table A.3 The max. increase in the NOA for each package (Velocity)

Version No.\

Package name
Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9

ant 3 0 2 5 0 0 0 4

apisupport 1 0 0 3 1 0 5

applet 2 0 0 0 0 0 0 0 0

autoupdate 1 7 1 2 10 1 1 6 5

beans 1 3 0 0 5 0 0 0 8

classfile 0 0 1 2 1

clazz 0 5 0 0 3 0 0 1 0

core 26 11 2 2 23 5 3 57 26

debuggercore 5 3 1 0 18 10 1 5 2

debuggerjpda 3 11 0 0 11 0 0 2 4

debuggertools 3 11 0 2 0 0

diff 7 3

editor 9 7 1 1 12 3 0 12 19

extbrowser 0 0 4 1 0 9 0

form 8 49 0 0 51 0 0 15 8

html 0 0 0 0 1 0 0 0 0

httpserver 1 3 0 0 3 0 0 0 1

i18n 10 5 1 0 4 0 4 3 1

icebrowser 0 3 0

image 2 1 0 0 0 0 0 0 2

j2eeserver 0 0 0 2 4

jarpackager 1 7 0 0 7 0 0 2 7

java 18 12 1 0 16 1 2 9 34

javacvs 1 3 11 1 1 7 13

javadoc 7 5 0 1 2 1 0 7 2

jndi 7 0 1 1 0 7 0

nbbuild 0 1 0 0 2 3 0 6 13

objectbrowser 0 0 0

openide 7 26 1 3 26 4 1 15 9

openidex 0 0 0 0 2 0 0 0 0

projects 3 27 0 0 3 1 3 1 9

properties 2 6 0 0 1 0 0 0 0

rmi 3 0 10 0 0 1

schema2beans 0 16

Appendix A 157

scripting 1 0 0 3 0 0 2

text 1 1 0 0 1 0 0 0 0

tomcatint 0 0 0 10 2

ui 1 6

usersguide 0 0 0 0 0 2 0

utilities 9 13 0 0 3 1 0 1 1

vcscore 28 4 2 43 2 0 16 8

vcscvs 20 10 2 0 3 0 0 0 0

vcsgeneric 0 0 32 2 0 13 2

xml 0 6

web 14 2 0 0 4 1 0 20 10

SUM 153 262 25 24 325 39 17 238 226

The Max Inc 26 49 7 7 51 10 4 57 34

Package name core form jndi diff form debug-ercore i18n core java

Table A.04 The max. increase in the NOM for each package (Velocity)

Version No.\

Package name
Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9

ant 6 0 3 9 1 0 2 2

apisupport 2 0 0 4 1 0 3

applet 3 1 0 0 0 0 0 0 2

autoupdate 1 8 1 0 8 4 3 6 13

beans 5 6 0 1 5 0 0 1 4

classfile 0 0 2 2 0

clazz 3 4 0 0 10 0 0 1 0

core 17 20 3 1 48 7 6 150 22

debuggercore 9 6 1 0 20 1 3 5 13

debuggerjpda 3 12 0 0 9 0 0 2 2

debuggertools 6 11 0 15 1 0

diff 6 1

editor 14 9 0 2 32 4 0 20 29

extbrowser 0 0 6 0 0 3 0

form 11 20 8 0 52 4 1 10 26

html 1 2 0 0 1 0 0 3 1

httpserver 4 7 0 0 3 0 0 3 1

i18n 4 10 0 0 5 0 1 3 1

icebrowser 0 3 0

image 4 11 0 0 1 0 0 7 1

j2eeserver 0 1 0 7 17

jarpackager 15 9 1 0 7 2 1 1 8

java 23 17 0 0 17 2 1 7 20

Appendix A 158

javacvs 9 1 26 1 0 8 16

javadoc 8 13 1 2 4 1 0 4 2

jndi 0 0 2 5 1 4 0

nbbuild 0 1 0 0 4 6 0 8 9

objectbrowser 0 0 0

openide 13 9 1 3 40 14 2 19 13

openidex 0 2 0 0 3 1 0 0 0

projects 3 18 0 0 8 2 4 2 10

properties 5 4 0 0 4 1 0 6 1

rmi 4 0 13 1 2 1

schema2beans 0 30

scripting 16 0 0 8 0 0 2

text 3 2 0 0 1 0 0 0 0

tomcatint 0 0 0 36 6

ui 1 16

usersguide 0 0 0 0 0 1 0

utilities 9 12 0 0 5 2 0 1 3

vcscore 84 11 2 70 9 2 18 12

vcscvs 36 3 4 0 2 0 0 0 0

vcsgeneric 2 0 38 2 0 6 5

xml 0 76

web 28 7 0 0 9 0 0 19 16

SUM 228 335 46 22 489 73 29 371 378

The Max Inc 36 84 11 6 70 14 6 150 76

Package name vcscvs vcscore vcscore diff vcscore openide core core xml

 159

APPENDIX B: DATA USED IN ANALYSING 80/20

RULE IN THE COUPLING METRICS

Tables in this appendix show the percentage in each of the coupling metrics over

the versions of the the system for 20% of the classes on a package basis. The

value is bolded if 80% is found (An 80/20 rule applies if at least 80% of the

coupling is incorporated in that top 20%).

Table B.1 shows the data for the Jasmin system.

Table B. 1 The percentage of coupling metrics in 20% of the classes (Jasmin)

Package Version RFC MPC EXT PACK FOUT F-IN

Jas V1 45.58 59.94 54.48 44.29 76.88 90.15

 V2 46.31 61.07 54.8 47.04 77.92 89.35

 V3 49.63 62.09 56.76 48 72.1 83.41

 V4 50.99 62.56 58.26 48 74.61 84.78

 V5 50.99 62.56 58.26 48 72 84.78

jasmin V1 60.07 70.58 63.48 49.09 58.36 90.71

 V2 68.13 77.42 70.91 50.43 61.16 92.9

 V3 73.75 81.39 73 46.67 66.6 94.19

 V4 71.6 78.66 73.88 46 62.68 92.9

 V5 71.67 78.87 73.97 46 62.68 93.33

Table B.2 shows the same data for the SmallSQL system.

Table B.02 The percentage of coupling metrics in 20% of the classes (SmallSQL)

Package Version RFC MPC EXT PACK FOUT F-IN

database V1 62.1 72.55 65.75 73 74.79 88.54

 V2 62.25 72.74 65.71 73.79 75.24 90.33

 V3 63.48 73.97 66.95 75.19 75.53 91.18

 V4 63.39 73.84 66.74 75.66 75.34 91.15

 V5 63.36 73.44 66.89 74.95 75.05 91.23

 V6 64.4 74.08 67.13 75.27 74.68 92.44

 V7 64.61 74.31 67.38 75 74.35 92.19

 V8 64.51 74.13 67.12 73.04 74.01 92.11

 V9 64.12 73.45 66.48 73.28 73.9 92

Appendix B 160

Table B.3 shows the data for the DjVu system.

Table B.03 The percentage of coupling metrics in 20% of the classes (DjVu)

Package Version RFC MPC EXT PACK FOUT F-IN

djvu

V1 48.07 65.26 55.87 41.13 48.28 54.54

V2 48.05 65.03 55.53 40.37 47.73 54.72

V3 50.76 67.02 58.82 46.55 49.31 51.9

V4 50.76 67.08 58.82 46.55 49.43 52.17

V5 51.21 67.08 58.82 46.55 49.43 53.12

V6 51.21 67.08 58.82 46.55 49.43 52.12

V7 51.26 67.89 58.73 44.67 48.91 55.54

V8 51.16 67.79 58.66 44.67 48.32 55.3

djvu.anno

V1 57.09 60.68 57.5 54.29 76.36 52.5

V2 57.09 60.68 57.5 54.29 76.36 52.5

V3 47.65 59.12 54.53 46 78.29 53.33

V4 47.65 59.12 54.53 46 78.29 53.33

V5 55.27 64.46 60.6 38.57 80.23 56.43

V6 55.27 64.46 60.6 38.57 80.23 56.43

V7 55.38 64.68 60.79 38.57 80.46 56.43

V8 56.2 65.32 62.11 38.57 80.68 56.43

Toolbar

V1 41.6 46.7 41.32 31.15 45.12 83.81

V2 37.68 42.38 37.2 27.87 42.14 81.9

V3 43.41 48.08 42.69 30 45.52 77.65

V4 43.41 48.08 42.69 30 45.52 77.65

V5 43.41 48.08 42.69 30 45.52 75.43

V6 43.13 48.81 43.07 30 45.19 76.76

V7 43.13 48.81 43.07 29.51 44.85 76.76

V8 43.13 48.81 43.1 29.51 44.85 76.76

Appendix B 161

Table B.4 shows the trends for the pBeans system.

Table B.4 The percentage of coupling metrics in 20% of the classes (pBeans)

Package Version RFC MPC EXT PACK FOUT F-IN

Pbeans

V1 78.12 90.98 85.73 85 88.32 73.22

V2 77.9 90.79 85.67 85 88.32 73.45

V3 78.05 91.89 86.56 81.05 87.29 72.12

V4 78.05 91.89 86.56 81.05 87.29 72.12

V5 78.4 92.23 87.1 81.05 87.29 72.12

V6 78.4 92.23 87.1 81.05 87.29 72.12

V7 78.95 94.02 89.23 81.82 90.6 67.48

V8 75.94 89.5 84.67 83.9 85.69 69.96

V9 75.94 89.5 84.67 83.9 85.69 69.96

V10 76.11 89.54 84.74 83.9 85.69 70.2

Data

V1 64.56 79.57 77.5 36.67 73.53 82.86

V2 63.86 79.3 77.11 38.71 71.23 87.5

V3 63.18 77.1 73.17 37.78 68.3 92.89

V4 63.75 77.43 72.48 37.78 68.63 92.89

V5 63.75 77.43 72.48 37.78 68.63 92.89

V6 63.15 75.85 71.31 39.51 67.96 94.78

V7 62.65 75.98 70.97 39.51 66.49 99.53

V8 70.79 89.64 85.08 59.13 83.76 81.14

V9 69.9 88.86 84.38 59.13 80.22 79.63

V10 69.63 88.26 83.85 59.13 79.34 79.63

 162

APPENDIX C: DATA USED IN ANALYSING THE FIN

AND FOUT RELATIONSHIP

The tables in this appendix provide detail on name of classes, NOM, LOC, RFC,

MPC, EXT, PACK, FOUT and FIN for the classes with 80% of the FIN in each of

the large package across the released versions for the six systems. We used these

tables to produce the figures in analysing RQ2 in Chapter 7.

Table C.01 Metrics values for Jas package (Jasmin)

Class Name NOM LOC RFC MPC EXT PACK FOUT FIN

CatchEntry 3 19 7 6 4 1 0 4

ClassEnv 15 102 48 55 33 4 8 4

CodeAttr 12 98 43 41 31 2 5 9

GenericAttr 5 16 11 6 6 1 0 8

Insn 8 56 21 16 13 2 0 6

Label 6 24 10 5 4 1 1 18

LocalVarEntry 4 23 9 6 5 1 0 4

LongCP 3 10 6 3 3 1 1 1

Method 3 28 10 7 7 1 0 3

Var 3 23 8 5 5 1 0 2

CatchEntry 4 30 8 6 4 1 0 4

ClassEnv 20 134 63 65 43 4 8 4

CodeAttr 13 109 47 44 34 2 5 9

GenericAttr 5 16 11 6 6 1 0 8

Insn 10 68 24 18 14 2 0 6

Label 6 24 10 5 4 1 1 12

LabelOrOffset 5 15 7 2 2 2 1 15

LocalVarEntry 5 34 10 7 5 1 0 4

StackMapFrame 6 28 15 17 9 3 3 8

VerificationTypeInfo 4 45 14 10 10 1 2 8

Annotation 11 66 30 33 19 3 3 15

ClassEnv 22 181 76 76 54 4 11 4

CodeAttr 14 120 51 47 37 2 5 9

GenericAttr 6 24 17 12 11 1 2 17

InnerClass 4 39 10 7 6 1 0 4

Insn 11 77 27 22 16 2 0 6

Appendix C 163

Label 6 24 10 5 4 1 1 12

LabelOrOffset 5 15 7 2 2 2 1 13

LocalVarEntry 5 34 10 7 5 1 0 8

VerificationTypeInfo 4 50 16 12 12 1 2 4

Annotation 11 66 30 33 19 3 3 15

CodeAttr 14 120 51 47 37 2 5 9

GenericAttr 6 24 17 12 11 1 2 17

InnerClass 4 39 10 7 6 1 0 4

Insn 11 77 27 22 16 2 0 6

Label 7 26 11 6 4 1 1 13

LabelOrOffset 5 15 7 2 2 2 1 13

LocalVarEntry 5 34 10 7 5 1 0 8

VerificationTypeInfo 6 62 21 16 15 1 2 8

VerifyFrame 11 110 32 34 21 3 10 9

Annotation 11 66 30 33 19 3 3 15

CodeAttr 14 120 51 47 37 2 5 9

GenericAttr 6 24 17 12 11 1 2 17

InnerClass 4 39 10 7 6 1 0 4

Insn 11 77 27 22 16 2 1 6

Label 7 26 11 6 4 1 1 13

LabelOrOffset 5 15 7 2 2 2 1 13

LocalVarEntry 5 34 10 7 5 1 0 8

VerificationTypeInfo 6 62 21 16 15 1 2 8

VerifyFrame 11 110 32 34 21 3 10 9

Table C.02 Metrics values for Jasmin package (Jasmin)

 Class Name NOM LOC RFC MPC EXT PACK FOUT FIN

InsnInfo 3 12 6 4 3 2 1 17

ScannerUtils 7 63 26 29 19 0 8 8

InsnInfo 3 12 6 4 3 2 1 19

ScannerUtils 7 68 27 31 20 0 10 9

InsnInfo 3 12 6 4 3 2 1 19

ScannerUtils 7 68 26 31 19 0 9 9

InsnInfo 3 12 6 4 3 2 1 19

ScannerUtils 7 68 26 31 19 0 9 9

InsnInfo 3 12 6 4 3 2 1 21

ScannerUtils 7 68 26 31 19 0 9 9

Appendix C 164

Table C. 3 Metrics values for Database package (SmallSQL)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

CommandSelect 35 254 101 119 66 1 19 8

Database 19 192 85 145 66 3 25 11

DataSource 15 18 15 0 0 0 1 8

DateTime 27 424 60 62 33 4 17 41

Expression 33 80 43 13 10 0 12 81

ExpressionArithmetic 35 424 104 196 69 1 70 9

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 11

ExpressionValue 35 292 101 104 66 2 54 30

IndexDescription 16 73 49 41 33 3 16 12

IndexNode 32 176 64 55 32 1 7 29

Money 17 52 29 13 12 1 4 27

MutableNumeric 37 334 78 76 41 1 14 29

SQLToken 3 14 4 1 1 0 0 34

SQLTokenizer 4 156 17 14 13 2 61 43

SSResultSetMetaData 28 111 49 46 21 1 52 8

StoreImpl 70 650 217 408 147 2 65 22

StorePage 5 25 8 3 3 2 2 12

Strings 5 17 8 3 3 0 2 14

Table 19 234 81 94 62 6 18 16

TableStorePage 4 20 8 4 4 1 2 32

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 9 50 28 25 19 2 8 17

TableViewResult 10 32 16 7 6 1 8 11

Utils 25 211 54 37 29 1 12 245

Column 24 69 36 12 12 2 10 16

CommandSelect 35 254 101 119 66 1 19 8

Database 21 211 97 161 76 3 27 14

DataSource 15 18 15 0 0 0 1 8

DateTime 27 424 60 62 33 4 17 41

Expression 33 80 43 13 10 0 12 81

ExpressionArithmetic 35 424 104 196 69 1 70 9

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 11

ExpressionValue 35 292 101 104 66 2 54 30

IndexDescription 16 73 49 41 33 3 16 12

IndexNode 32 176 64 55 32 1 7 29

Appendix C 165

Money 17 52 29 13 12 1 4 27

MutableNumeric 37 334 78 76 41 1 14 29

SQLToken 3 14 4 1 1 0 0 34

SQLTokenizer 4 156 17 14 13 2 61 91

SSResultSetMetaData 28 111 49 46 21 1 52 8

StoreImpl 70 653 217 410 147 2 66 22

StorePage 5 25 8 3 3 2 2 12

Strings 5 17 8 3 3 0 2 14

Table 19 229 78 91 59 6 18 16

TableStorePage 4 20 8 4 4 1 2 32

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 10 51 29 25 19 2 8 19

TableViewResult 10 32 16 7 6 1 8 11

Utils 25 211 54 37 29 1 12 358

CommandSelect 35 254 101 119 66 1 19 8

Database 21 211 98 161 77 3 27 14

DataSource 15 18 15 0 0 0 1 8

DateTime 26 429 59 61 33 4 17 44

Expression 33 80 43 13 10 0 12 84

ExpressionArithmetic 35 424 104 196 69 1 70 9

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 11

ExpressionValue 35 294 101 104 66 2 55 30

IndexDescription 17 76 52 43 35 3 16 13

IndexNode 32 176 64 55 32 1 7 29

Money 17 52 29 13 12 1 4 27

MutableNumeric 37 334 78 76 41 1 14 29

SQLToken 3 14 4 1 1 0 0 34

SQLTokenizer 4 156 17 14 13 2 61 91

SSResultSetMetaData 28 111 49 46 21 1 52 8

StoreImpl 70 654 218 411 148 2 67 22

StorePage 5 25 8 3 3 2 2 12

Strings 5 17 8 3 3 0 2 14

Table 19 232 82 93 63 6 19 16

TableStorePage 4 20 8 4 4 1 2 32

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 10 51 29 25 19 2 8 19

TableViewResult 10 32 16 7 6 1 8 11

Utils 27 223 56 37 29 1 16 361

Column 24 69 36 12 12 2 10 16

Appendix C 166

CommandSelect 35 254 101 119 66 1 19 8

Database 21 217 102 167 81 3 28 14

DataSource 15 18 15 0 0 0 1 8

DateTime 26 429 59 61 33 4 17 44

Expression 33 80 43 13 10 0 12 84

ExpressionArithmetic 35 424 104 196 69 1 70 9

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 11

ExpressionValue 35 294 101 104 66 2 55 32

IndexDescription 17 76 52 43 35 3 16 13

IndexNode 32 176 64 55 32 1 7 29

Money 17 52 30 14 13 1 5 27

MutableNumeric 38 324 81 76 43 1 13 28

SQLToken 3 14 4 1 1 0 0 34

SQLTokenizer 4 156 17 14 13 2 61 91

SSResultSetMetaData 28 114 49 46 21 1 57 8

StoreImpl 70 656 216 410 146 2 66 22

StorePage 5 25 8 3 3 2 2 12

Strings 5 17 8 3 3 0 2 14

Table 19 232 82 93 63 6 19 16

TableStorePage 4 20 8 4 4 1 2 32

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 10 51 29 25 19 2 8 19

TableViewResult 10 32 16 7 6 1 8 11

Utils 27 223 56 37 29 1 16 366

Column 24 69 36 12 12 2 10 18

CommandSelect 36 256 102 119 66 1 19 9

Database 21 217 102 167 81 3 28 14

DataSource 15 18 15 0 0 0 1 8

DateTime 26 429 59 61 33 4 17 44

Expression 33 80 43 13 10 0 12 84

ExpressionArithmetic 35 426 104 198 69 1 70 9

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 11

ExpressionValue 35 294 101 104 66 2 55 34

IndexDescription 17 76 52 43 35 3 16 13

IndexNode 32 176 64 55 32 1 7 29

Money 17 52 30 14 13 1 5 27

MutableNumeric 38 324 81 76 43 1 13 28

SQLToken 3 14 4 1 1 0 0 34

Appendix C 167

SQLTokenizer 4 156 17 14 13 2 61 91

SSResultSetMetaData 28 114 49 46 21 1 57 8

StoreImpl 70 661 216 410 146 2 66 22

StorePage 5 25 8 3 3 2 2 12

Strings 6 20 9 4 3 0 2 15

Table 19 232 82 93 63 6 19 16

TableStorePage 4 20 8 4 4 1 2 32

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 10 51 29 25 19 2 8 19

TableViewResult 10 32 16 7 6 1 8 11

Utils 27 223 56 37 29 1 16 370

Column 24 69 36 12 12 2 10 18

CommandSelect 36 259 102 119 66 1 18 9

Database 21 222 102 171 81 3 28 14

DataSource 15 18 15 0 0 0 1 8

DateTime 27 435 60 61 33 4 18 40

Expression 33 80 43 13 10 0 12 85

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 12

ExpressionValue 35 302 105 109 70 2 55 34

IndexDescription 17 76 52 43 35 3 16 14

IndexNode 32 176 64 55 32 1 7 29

LongTreeList 21 264 41 43 20 1 4 7

Money 17 52 30 14 13 1 5 33

MutableNumeric 38 324 81 76 43 1 13 30

SQLToken 3 14 4 1 1 0 0 35

SQLTokenizer 4 156 17 14 13 2 61 91

SSResultSetMetaData 28 114 49 46 21 1 57 9

StoreImpl 70 661 216 410 146 2 66 22

StorePage 5 25 8 3 3 2 2 12

Strings 6 20 9 4 3 0 2 16

Table 19 238 87 98 68 6 21 19

TableStorePage 4 20 8 4 4 1 2 32

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 10 51 29 25 19 2 8 20

TableViewResult 10 32 16 7 6 1 8 11

Utils 28 234 57 37 29 1 16 375

Column 23 68 35 12 12 2 10 18

CommandSelect 36 259 102 119 66 1 18 9

Database 21 222 102 171 81 3 28 14

Appendix C 168

DataSource 15 18 15 0 0 0 1 8

DateTime 28 437 62 62 34 4 18 43

Expression 33 80 43 13 10 0 12 89

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 13

ExpressionValue 35 302 107 111 72 2 55 35

IndexDescription 19 100 60 53 41 4 18 14

IndexNode 33 178 67 57 34 1 7 29

LongTreeList 21 264 41 43 20 1 4 7

Money 17 52 30 14 13 1 5 33

MutableNumeric 42 332 85 76 43 1 13 30

SQLToken 3 14 4 1 1 0 0 35

SQLTokenizer 4 156 17 14 13 2 61 91

SSResultSetMetaData 28 114 49 46 21 1 58 9

StoreImpl 70 661 220 415 150 2 66 22

StorePage 5 25 8 3 3 2 2 12

Strings 6 20 9 4 3 0 2 16

Table 19 240 88 99 69 6 21 19

TableStorePage 4 20 8 4 4 1 2 32

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 10 51 29 25 19 2 8 20

TableViewResult 10 32 16 7 6 1 8 11

Utils 29 236 58 38 29 1 16 398

Column 23 68 35 12 12 2 10 20

Columns 7 29 14 9 7 0 3 9

CommandSelect 36 264 103 121 67 1 18 9

Database 24 243 113 189 89 3 29 16

DataSource 15 18 15 0 0 0 1 8

DateTime 27 445 64 62 37 4 19 43

Expression 34 87 45 14 11 1 13 91

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 14

ExpressionValue 35 304 109 115 74 2 55 35

IndexDescription 19 100 60 53 41 4 18 15

IndexNode 33 178 67 57 34 1 7 29

Money 17 52 30 14 13 1 5 33

MutableNumeric 42 336 85 76 43 1 13 30

SQLToken 3 14 4 1 1 0 0 38

SQLTokenizer 4 156 17 14 13 2 61 91

SSResultSetMetaData 28 116 49 46 21 1 58 9

Appendix C 169

StoreImpl 70 662 220 415 150 2 66 22

StorePage 5 25 8 3 3 2 2 12

Strings 6 20 9 4 3 0 2 17

Table 20 266 89 102 69 6 22 23

TableStorePage 4 20 8 4 4 1 2 36

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 10 51 29 25 19 2 8 20

TableViewResult 10 32 16 7 6 1 8 11

Utils 33 253 67 44 34 1 17 409

Column 23 68 35 12 12 2 10 21

Columns 7 33 16 9 9 0 3 9

CommandSelect 36 264 103 121 67 1 18 9

Database 24 243 113 189 89 3 29 16

DataSource 15 18 15 0 0 0 1 8

DateTime 27 464 64 62 37 4 19 43

Expression 34 87 45 14 11 1 13 91

ExpressionName 31 83 60 30 29 0 4 22

Expressions 15 59 20 13 5 0 2 14

ExpressionValue 35 304 109 115 74 2 55 35

IndexDescription 19 100 60 53 41 4 18 15

IndexNode 33 178 66 56 33 1 7 28

Money 17 52 30 14 13 1 5 33

MutableNumeric 42 336 85 76 43 1 13 30

SQLToken 3 14 4 1 1 0 0 38

SQLTokenizer 4 156 17 14 13 2 61 91

SSResultSetMetaData 28 116 49 46 21 1 58 9

StoreImpl 72 675 222 419 150 2 67 30

StorePage 5 25 8 3 3 2 2 15

Strings 6 20 9 4 3 0 2 17

Table 20 266 89 102 69 6 22 23

TableStorePage 4 20 8 4 4 1 2 36

TableStorePageInsert 3 11 4 1 1 1 1 8

TableView 10 51 29 25 19 2 8 20

TableViewResult 10 32 16 7 6 1 8 11

Utils 34 257 69 46 35 2 19 416

Appendix C 170

Table C. 4 Metrics values for Djvu package (DjVu)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

DataPool 18 84 46 36 28 2 7 29

DjVuOptions 57 115 61 6 4 0 2 26

GBitmap 38 476 87 99 49 1 8 22

GPixel 21 56 32 32 11 0 3 29

GPixelReference 14 35 16 3 2 2 0 27

GPixmap 39 498 102 250 63 2 11 18

GRect 14 82 20 15 6 0 4 59

JB2Shape 7 25 15 8 8 2 5 20

DataPool 20 95 52 40 32 2 8 30

DjVuOptions 59 124 65 8 6 1 4 28

GBitmap 38 476 87 99 49 1 8 22

GPixel 21 56 32 32 11 0 3 29

GPixelReference 14 35 16 3 2 2 0 27

GPixmap 39 498 102 250 63 2 11 18

GRect 14 82 20 15 6 0 4 59

JB2Shape 7 25 15 8 8 2 5 20

DataPool 23 109 63 49 40 3 8 35

DjVuObject 9 59 20 14 11 4 9 26

DjVuOptions 57 116 61 6 4 1 2 26

GBitmap 28 242 69 72 41 1 9 26

GPixel 21 56 35 32 14 0 3 29

GPixelReference 17 79 34 25 17 2 2 28

GPixmap 16 413 81 209 65 0 8 25

GRect 15 82 21 15 6 0 4 78

DataPool 23 109 63 49 40 3 8 35

DjVuObject 9 59 20 14 11 4 9 26

DjVuOptions 57 116 61 6 4 1 2 27

GBitmap 28 242 69 72 41 1 9 26

GPixel 21 56 35 32 14 0 3 29

GPixelReference 17 79 34 25 17 2 2 28

GPixmap 16 413 81 209 65 0 8 27

GRect 15 82 21 15 6 0 4 78

DataPool 23 109 63 49 40 3 8 35

DjVuObject 9 59 20 14 11 4 9 26

DjVuOptions 61 124 65 6 4 1 2 29

GBitmap 28 242 69 72 41 1 9 26

GPixel 21 56 35 32 14 0 3 29

Appendix C 171

GPixelReference 17 79 34 25 17 2 2 28

GPixmap 16 413 81 209 65 0 8 27

GRect 15 82 21 15 6 0 4 81

DataPool 23 109 63 49 40 3 8 35

DjVuObject 9 59 20 14 11 4 9 28

DjVuOptions 61 124 65 6 4 1 2 29

GBitmap 28 242 69 72 41 1 9 26

GPixel 21 56 35 32 14 0 3 29

GPixelReference 17 79 34 25 17 2 2 28

GPixmap 16 413 81 209 65 0 8 27

GRect 15 82 21 15 6 0 4 81

CachedInputStream 28 137 59 44 31 3 14 68

DjVuObject 12 65 26 17 14 4 9 29

DjVuOptions 61 125 65 6 4 2 2 54

GBitmap 28 242 69 72 41 1 9 26

GPixel 21 56 35 32 14 0 3 29

GPixelReference 17 79 34 25 17 2 2 28

GPixmap 16 413 81 209 65 0 7 27

GRect 15 82 21 15 6 0 4 81

CachedInputStream 28 137 59 44 31 3 14 61

DjVuObject 12 65 26 17 14 4 9 29

DjVuOptions 61 125 65 6 4 2 2 54

GBitmap 28 242 69 72 41 1 9 26

GPixel 21 56 35 32 14 0 3 29

GPixelReference 17 79 34 25 17 2 2 28

GPixmap 16 413 81 209 65 0 7 27

GRect 15 82 21 15 6 0 4 81

Table C.05 Metrics values for Anno package (DjVu)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

GMapOval 6 14 16 10 10 2 4 3

GMapPoly 32 207 69 78 37 2 5 3

GMapOval 6 14 16 10 10 2 4 3

GMapPoly 32 207 69 78 37 2 5 3

Poly 32 207 69 78 37 2 5 3

Rect 47 196 65 32 18 2 4 4

Poly 32 207 69 78 37 2 5 3

Rect 47 196 65 32 18 2 4 4

Appendix C 172

Poly 32 220 69 77 37 2 5 4

Rect 59 221 80 41 21 2 4 11

Poly 32 220 69 77 37 2 5 4

Rect 59 221 80 41 21 2 4 11

Poly 32 220 69 77 37 2 5 4

Rect 59 221 80 41 21 2 4 11

Poly 32 220 69 77 37 2 5 4

Rect 59 221 80 41 21 2 4 11

Table C.6 Metrics values for Toolbar package (DjVu)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

ListenerSupport 6 46 18 13 12 7 5 2

ToggleButton 45 249 125 121 80 6 23 16

ListenerSupport 6 46 18 13 12 7 5 2

ToggleButton 45 249 125 121 80 6 23 16

ComboBox 30 168 101 95 71 4 19 13

ToggleButton 45 249 125 121 80 6 23 16

ComboBox 30 168 101 95 71 4 19 13

ToggleButton 45 249 125 121 80 6 23 16

ComboBox 30 168 101 95 71 4 19 13

ToggleButton 45 249 125 121 80 6 23 16

ComboBox 30 168 101 95 71 4 19 13

ToggleButton 45 249 125 121 80 6 23 18

ComboBox 30 168 101 95 71 4 19 13

ToggleButton 45 250 125 121 80 7 23 18

ComboBox 30 168 101 95 71 4 19 13

ToggleButton 45 250 125 121 80 7 23 18

Appendix C 173

Table C.07 Metrics values for pBeans package (pBeans)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

Persistent 0 1 0 0 0 0 0 25

StoreException 3 4 3 0 0 0 0 52

StoreInfo 6 9 6 0 0 2 0 9

Persistent 0 1 0 0 0 0 0 25

StoreException 3 4 3 0 0 0 0 53

StoreInfo 6 9 6 0 0 2 0 9

Persistent 0 1 0 0 0 0 0 30

PersistentID 6 13 10 4 4 0 3 11

StoreException 3 4 3 0 0 0 0 56

Persistent 0 1 0 0 0 0 0 30

PersistentID 6 13 10 4 4 0 3 11

StoreException 3 4 3 0 0 0 0 56

Persistent 0 1 0 0 0 0 0 30

PersistentID 6 13 10 4 4 0 3 11

StoreException 3 4 3 0 0 0 0 56

Persistent 0 1 0 0 0 0 0 30

PersistentID 6 13 10 4 4 0 3 11

StoreException 3 4 3 0 0 0 0 56

Persistent 0 1 0 0 0 0 0 34

PersistentID 6 13 10 4 4 0 3 10

StoreException 3 4 3 0 0 0 0 57

StoreInfo 7 10 7 0 0 2 0 9

GlobalPersistentID 8 25 18 10 10 0 3 18

PersistentID 6 13 10 4 4 0 3 17

Store 85 690 293 433 208 10 65 30

StoreException 3 4 3 0 0 0 0 93

StoreInfo 15 18 15 0 0 2 0 14

GlobalPersistentID 8 25 18 10 10 0 3 18

PersistentID 6 13 10 4 4 0 3 17

Store 85 690 293 433 208 10 65 30

StoreException 3 4 3 0 0 0 0 93

StoreInfo 15 18 15 0 0 2 0 14

GlobalPersistentID 8 25 18 10 10 0 3 18

PersistentID 6 13 10 4 4 0 3 17

Store 88 696 298 436 210 10 65 30

StoreException 3 4 3 0 0 0 0 95

StoreInfo 15 18 15 0 0 2 0 14

Appendix C 174

Table C.08 Metrics values for Data package (pBeans)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

AbstractDatabase 38 330 165 193 127 4 35 4

FieldDescriptor 11 23 11 0 0 3 0 15

IndexDescriptor 9 25 16 8 7 1 1 10

ResultsIterator 1 2 1 0 0 0 0 3

IndexDescriptor 9 25 16 8 7 1 1 10

FieldDescriptor 11 23 11 0 0 3 0 15

FieldDescriptor 11 23 11 0 0 3 0 24

IndexDescriptor 9 25 16 8 7 1 1 14

ResultsIterator 1 2 1 0 0 0 0 3

FieldDescriptor 11 23 11 0 0 3 0 24

IndexDescriptor 9 25 16 8 7 1 1 14

ResultsIterator 1 2 1 0 0 0 0 3

FieldDescriptor 11 23 11 0 0 3 0 24

IndexDescriptor 9 25 16 8 7 1 1 14

ResultsIterator 1 2 1 0 0 0 0 3

FieldDescriptor 11 23 11 0 0 3 0 24

IndexDescriptor 9 25 16 8 7 1 1 15

ResultsIterator 1 2 1 0 0 0 0 3

FieldDescriptor 11 23 11 0 0 3 0 24

IndexDescriptor 9 25 16 8 7 1 1 15

ResultsIterator 1 2 1 0 0 0 0 3

Database 16 19 16 0 0 2 0 10

FieldDescriptor 14 28 15 1 1 0 0 48

IndexDescriptor 10 28 17 8 7 1 1 26

Database 16 19 16 0 0 2 0 10

FieldDescriptor 14 28 15 1 1 0 0 48

IndexDescriptor 10 28 17 8 7 1 1 26

Database 16 19 16 0 0 2 0 10

FieldDescriptor 14 28 15 1 1 0 0 48

IndexDescriptor 10 28 17 8 7 1 1 26

Appendix C 175

Table C.9 Metrics values for Fastagi package (Aserisk)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

AGIException 3 4 3 0 0 0 0 32

AGIReader 2 4 2 0 0 1 0 3

AGIRequest 18 20 18 0 0 1 0 16

AGIScript 1 2 1 0 0 0 0 7

AGIWriter 1 3 1 0 0 1 0 3

AGIException 3 4 3 0 0 0 0 32

AGIReader 2 4 2 0 0 1 0 3

AGIRequest 19 21 19 0 0 1 0 18

AGIScript 1 2 1 0 0 0 0 7

AGIConnectionHandler 5 42 25 20 20 8 11 5

AGIException 3 4 3 0 0 0 0 74

AGIRequest 19 21 19 0 0 1 0 18

AGIScript 1 2 1 0 0 0 0 7

AGIConnectionHandler 5 42 25 20 20 8 11 5

AGIException 3 4 3 0 0 0 0 107

AGIRequest 23 26 23 0 0 2 0 17

AGIScript 1 2 1 0 0 0 0 8

AGIConnectionHandler 5 42 26 21 21 8 11 5

AGIException 3 4 3 0 0 0 0 119

AGIRequest 27 30 27 0 0 2 0 22

AGIScript 1 2 1 0 0 0 0 8

AgiChannel 52 55 52 0 0 2 0 2

AgiException 2 3 2 0 0 0 0 109

AgiScript 1 2 1 0 0 0 0 12

MappingStrategy 1 2 1 0 0 0 0 12

AgiChannel 54 57 54 0 0 2 0 2

AgiException 2 3 2 0 0 0 0 109

AgiScript 1 2 1 0 0 0 0 17

MappingStrategy 1 2 1 0 0 0 0 12

Table C.10 Metrics values for Manager package (Asterisk)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

AsteriskServer 8 35 13 5 5 1 1 14

Channel 28 85 49 21 21 2 2 44

ChannelStateEnum 3 11 5 2 2 3 1 8

Appendix C 176

DefaultManagerConnection 31 264 113 107 82 25 21 6

Queue 7 20 11 4 4 4 1 8

TimeoutException 1 2 1 0 0 0 0 9

AsteriskServer 8 35 13 5 5 1 1 14

Channel 28 85 49 21 21 2 2 44

ChannelStateEnum 3 11 5 2 2 3 1 8

DefaultManagerConnection 31 262 114 108 83 25 21 5

Queue 7 20 11 4 4 4 1 8

TimeoutException 1 2 1 0 0 0 0 9

AsteriskServer 8 35 13 5 5 1 1 14

Channel 25 97 46 24 21 4 5 49

ChannelStateEnum 3 11 5 2 2 3 1 8

Extension 9 33 21 12 12 2 2 8

Queue 8 27 21 13 13 4 3 12

TimeoutException 1 2 1 0 0 0 0 7

AsteriskServer 8 35 13 5 5 1 1 14

Channel 28 106 53 30 25 4 5 49

ChannelStateEnum 3 11 5 2 2 3 1 8

Extension 9 33 21 12 12 2 2 11

Queue 8 27 21 13 13 4 3 12

TimeoutException 1 2 1 0 0 0 0 8

AsteriskServer 8 35 13 5 5 1 1 14

Channel 28 106 53 30 25 4 5 49

DefaultManagerConnection 37 344 136 130 99 32 31 6

Extension 9 33 21 12 12 2 2 11

Queue 8 27 21 13 13 4 3 12

TimeoutException 1 2 1 0 0 0 0 8

EventTimeoutException 2 5 2 0 0 0 0 3

ManagerConnection 17 23 17 0 0 5 0 6

ManagerEventListener 1 4 1 0 0 2 0 6

ResponseEvents 2 6 2 0 0 3 0 4

SendActionCallback 1 3 1 0 0 1 0 4

TimeoutException 1 2 1 0 0 0 0 7

DefaultManagerConnection 33 76 58 37 25 5 2 3

ManagerConnection 20 26 20 0 0 5 0 6

ManagerEventListener 1 4 1 0 0 2 0 6

ResponseEvents 2 6 2 0 0 3 0 4

SendActionCallback 1 3 1 0 0 1 0 4

TimeoutException 1 2 1 0 0 0 0 7

Appendix C 177

Table C.011 Metrics values for Manager.event package (Asterisk)

Class Name NOM LOC RFC MPC EXT PACK FOUT F-IN

ConnectEvent 3 6 3 0 0 0 0 13

DisconnectEvent 1 2 1 0 0 0 0 19

HangupEvent 3 6 3 0 0 0 0 5

LinkEvent 1 2 1 0 0 0 0 5

ManagerEvent 4 14 11 7 7 3 2 18

NewChannelEvent 1 2 1 0 0 0 0 9

NewExtenEvent 15 30 15 0 0 0 0 8

NewStateEvent 1 2 1 0 0 0 0 5

QueueEntryEvent 11 22 11 0 0 0 0 5

QueueMemberEvent 13 26 13 0 0 0 0 5

QueueParamsEvent 17 34 17 0 0 0 0 5

RenameEvent 7 14 7 0 0 0 0 5

ShutdownEvent 5 10 5 0 0 0 0 5

StatusCompleteEvent 1 2 1 0 0 0 0 8

StatusEvent 23 46 23 0 0 0 0 5

UnlinkEvent 1 2 1 0 0 0 0 5

ConnectEvent 3 6 3 0 0 0 0 13

DisconnectEvent 1 2 1 0 0 0 0 19

HangupEvent 3 6 3 0 0 0 0 5

LinkEvent 1 2 1 0 0 0 0 5

ManagerEvent 4 14 11 7 7 3 2 18

NewChannelEvent 1 2 1 0 0 0 0 9

NewExtenEvent 15 30 15 0 0 0 0 8

NewStateEvent 1 2 1 0 0 0 0 5

QueueEntryEvent 11 22 11 0 0 0 0 5

QueueMemberEvent 13 26 13 0 0 0 0 5

QueueParamsEvent 17 34 17 0 0 0 0 5

RenameEvent 7 14 7 0 0 0 0 5

ShutdownEvent 5 10 5 0 0 0 0 5

StatusCompleteEvent 1 2 1 0 0 0 0 8

StatusEvent 23 46 23 0 0 0 0 5

UnlinkEvent 1 2 1 0 0 0 0 5

ConnectEvent 3 6 3 0 0 0 0 11

DisconnectEvent 1 2 1 0 0 0 0 14

HangupEvent 5 10 5 0 0 0 0 6

LinkEvent 1 2 1 0 0 0 0 5

ManagerEvent 6 21 14 8 8 3 2 28

Appendix C 178

NewCallerIdEvent 12 36 16 4 4 0 1 11

NewChannelEvent 1 2 1 0 0 0 0 9

NewExtenEvent 15 30 15 0 0 0 0 8

NewStateEvent 1 2 1 0 0 0 0 5

QueueEntryEvent 13 26 13 0 0 0 0 5

QueueMemberEvent 17 34 17 0 0 0 0 5

QueueParamsEvent 19 38 19 0 0 0 0 5

RenameEvent 7 14 7 0 0 0 0 5

ResponseEvent 5 10 5 0 0 0 0 11

ShutdownEvent 5 10 5 0 0 0 0 13

StatusCompleteEvent 1 2 1 0 0 0 0 6

StatusEvent 23 46 23 0 0 0 0 5

UnlinkEvent 1 2 1 0 0 0 0 5

ConnectEvent 3 6 3 0 0 0 0 11

DisconnectEvent 1 2 1 0 0 0 0 14

HangupEvent 5 10 5 0 0 0 0 6

LinkEvent 1 2 1 0 0 0 0 5

ManagerEvent 6 21 14 8 8 3 2 28

NewCallerIdEvent 12 36 16 4 4 0 1 11

NewChannelEvent 1 2 1 0 0 0 0 9

NewExtenEvent 15 30 15 0 0 0 0 8

NewStateEvent 1 2 1 0 0 0 0 5

QueueEntryEvent 13 26 13 0 0 0 0 5

QueueMemberEvent 17 34 17 0 0 0 0 5

QueueParamsEvent 19 38 19 0 0 0 0 5

RenameEvent 7 14 7 0 0 0 0 5

ResponseEvent 5 10 5 0 0 0 0 11

ShutdownEvent 5 10 5 0 0 0 0 13

StatusCompleteEvent 1 2 1 0 0 0 0 6

StatusEvent 23 46 23 0 0 0 0 5

UnlinkEvent 1 2 1 0 0 0 0 5

ConnectEvent 3 6 3 0 0 0 0 11

DisconnectEvent 1 2 1 0 0 0 0 14

HangupEvent 5 10 5 0 0 0 0 6

LinkEvent 1 2 1 0 0 0 0 5

ManagerEvent 6 21 14 8 8 3 2 28

NewCallerIdEvent 12 36 16 4 4 0 1 11

NewChannelEvent 1 2 1 0 0 0 0 9

NewExtenEvent 15 30 15 0 0 0 0 8

NewStateEvent 1 2 1 0 0 0 0 5

Appendix C 179

QueueEntryEvent 13 26 13 0 0 0 0 5

QueueMemberEvent 17 34 17 0 0 0 0 5

QueueParamsEvent 19 38 19 0 0 0 0 5

RenameEvent 7 14 7 0 0 0 0 5

ResponseEvent 5 10 5 0 0 0 0 11

ShutdownEvent 5 10 5 0 0 0 0 13

StatusCompleteEvent 1 2 1 0 0 0 0 6

StatusEvent 23 46 23 0 0 0 0 5

UnlinkEvent 1 2 1 0 0 0 0 5

CdrEvent 43 89 44 6 1 3 1 3

ConnectEvent 4 8 4 0 0 0 0 3

DisconnectEvent 1 2 1 0 0 0 0 4

HangupEvent 5 10 5 0 0 0 0 3

LinkEvent 1 2 1 0 0 0 0 3

ManagerEvent 6 34 17 11 11 6 7 7

MeetMeMuteEvent 3 6 3 0 0 0 0 3

MeetMeTalkingEvent 3 6 3 0 0 0 0 3

NewCallerIdEvent 4 20 8 4 4 0 2 3

NewChannelEvent 1 2 1 0 0 0 0 3

NewExtenEvent 15 30 15 0 0 0 0 3

NewStateEvent 1 2 1 0 0 0 0 3

PeerlistCompleteEvent 3 6 3 0 0 0 0 3

QueueMemberEvent 17 34 17 0 0 0 0 3

QueueParamsEvent 19 38 19 0 0 0 0 3

RenameEvent 7 14 7 0 0 0 0 3

ResponseEvent 5 10 5 0 0 0 0 15

UnlinkEvent 1 2 1 0 0 0 0 3

CdrEvent 43 89 44 6 1 3 1 5

ConnectEvent 4 8 4 0 0 0 0 5

DisconnectEvent 1 2 1 0 0 0 0 6

HangupEvent 5 10 5 0 0 0 0 5

LinkEvent 1 2 1 0 0 0 0 5

ManagerEvent 8 38 19 11 11 6 7 7

MeetMeMuteEvent 3 6 3 0 0 0 0 5

MeetMeTalkingEvent 3 6 3 0 0 0 0 5

NewCallerIdEvent 4 20 8 4 4 0 2 5

NewChannelEvent 1 2 1 0 0 0 0 5

NewExtenEvent 15 30 15 0 0 0 0 5

NewStateEvent 1 2 1 0 0 0 0 5

OriginateResponseEvent 19 40 20 1 1 0 0 8

Appendix C 180

PeerlistCompleteEvent 3 6 3 0 0 0 0 5

QueueMemberEvent 21 42 22 2 1 0 0 5

QueueParamsEvent 19 38 19 0 0 0 0 5

RenameEvent 9 18 9 0 0 0 0 5

ResponseEvent 5 10 5 0 0 0 0 15

UnlinkEvent 1 2 1 0 0 0 0 5

 181

APPENDIX D: THE REFACTORING DATA FOR

ANTLR AND PDFBOX

Tables in this appendix show the data for the fifteen refactoring analysed in this

Thesis for Antlr and PDFBox systems.

Table D.01 Refactorings for the Antlr system across 9 versions

Refactoring Ver1 Ver2 Ver3 Ver4 Ver5

AddMethodParameter 2 7 0 1 0

EncapsulateDowncast 0 0 0 0 0

HideMethod 0 0 0 0 0

PullUpField 0 0 0 0 0

PullUpMethod 0 5 0 0 0

PushDownField 0 0 0 0 0

PushDownMethod 0 0 0 0 0

RemoveMethodParameter 0 1 0 0 0

RenameField 1 6 0 0 0

RenameMethod 1 6 1 0 0

EncapsulateField 0 0 0 0 0

MoveField 0 6 0 0 0

MoveMethod 0 6 0 0 0

ExtractSuperClass 0 0 0 0 0

ExtractSubClass 0 0 0 0 0

Appendix D 182

Table D.02 Refactorings for the PDFBox system across 9 versions

Refactoring Ver1 Ver2 Ver3 Ver4 Ver5 Ver6

AddMethodParameter 0 3 0 0 0 7

EncapsulateDowncast 0 0 0 0 0 0

HideMethod 0 0 0 0 0 0

PullUpField 0 0 0 0 0 0

PullUpMethod 0 0 0 0 0 0

PushDownField 0 0 0 0 0 0

PushDownMethod 0 0 0 0 0 0

RemoveMethodParameter 0 0 6 0 0 1

RenameField 0 0 1 0 1 3

RenameMethod 1 0 2 4 0 7

EncapsulateField 0 0 0 0 0 1

MoveField 0 0 4 1 0 1

MoveMethod 1 0 8 0 0 7

ExtractSuperClass 0 0 1 0 0 0

ExtractSubClass 0 0 0 0 0 0

