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ABSTRACT  

Excessive coupling between object-oriented classes in systems is generally 

acknowledged as harmful and is recognised as a maintenance problem that can 

result in a higher propensity for faults in systems and a „stored up‟ future problem. 

Characterisation and understanding coupling at different levels of abstraction is 

therefore important for both the project manager and developer both of whom 

have a vested interest in software quality. In this Thesis, coupling trends are 

empirically investigated over multiple versions of seven Java open-source systems 

(OSS). The first investigation explores the trends in longitudinal changes to open-

source systems given by six coupling metrics. Coupling trends are then explored 

from the perspective of: the relationship between removed classes and their 

coupling with other classes in the same package; the relationships between 

coupling and „warnings‟ in packages and the time interval between versions in 

Java OSS; the relationship between some of these coupling metrics are also 

explored. Finally, the existence of an 80/20 rule for the coupling metrics is 

inspected. Results suggest that developer activity comprises a set of high and low 

periods (peak and trough‟ effect) evident as a system evolves. Findings also 

demonstrate that addition of coupling may have beneficial effects on a system, 

particularly if they are added as new functionality through the package Java 

feature. The fan-in and fan-out coupling metrics reveal particular features and 

exhibited a wide range of traits in the classes depending on their high or low 

values; finally, we revealed that one metric (fan-in) is the only metric that appears 

consistently to exhibit an 80/20 (Pareto) relationship. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

A software system is modified and developed many times throughout its lifetime 

to maintain its effectiveness. In general, it grows and changes to support the 

increasing demands in information technology. Consequently, the majority of 

software engineers today are concerned with changing and modifying existing 

software systems. In Software Engineering (SE), software maintenance is the 

process of making modifications to an existing system; software evolution is a 

term used to refer to the development of a system and its continuous change 

(Dvorak, 1994). 

One of the most popular structures for building systems is object-orientation. In 

this approach, concepts of classes and packages are used. Each package contains a 

set of related classes, and packages are hierarchically organised in a package tree 

(Hautus, 2002). 

From a maintainability perspective, refactoring plays a significant role in this 

field of software development activity (Fowler, 1999).  Refactoring refers to a 

technique whereby changes are made to a program to improve its design without 

necessarily changing the semantics of the program (Fowler, 1999). As well as a 

better program design, the benefits of the refactoring include improvement   

program understandability and, in theory, improvement in the maintainability of 

that program. Fowler (1999) presents 72 types of refactorings with the 

motivations and the mechanics of each refactoring. There are numerous 

refactorings pertaining specifically to inheritance in the set of 72 refactorings of 

Fowler. For example, the „Extract Subclass‟ refactoring creates a subclass for an 

existing class.  

Software metrics have become essential in some disciplines of software 

engineering. They are used to measure software quality and to estimate the cost 

and effort of software projects (Fenton and Pfleeger, 2002). In the field of 

software evolution, metrics can be used for identifying stable or unstable parts of 
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software systems, identifying where refactorings can be applied or have been 

applied, and detecting increases or decreases of quality in the structure of 

evolving software systems (Demeyer et al., 2000). 

1.2 Motivation 

Object-oriented (OO) design and development is very popular in today's software 

development environment. OO development requires not only a different 

approach to design and implementation than that of procedural but also a different 

approach to software metrics. Since OO technology uses objects and not 

procedures as its fundamental building blocks, the approach to software metrics 

for OO programs must be different from the standard metrics set. There have been 

many proposed OO metrics in the literature. As the quality of OO software is a 

complex concept, the aspects of the studied quality should be defined in order to 

decide how to measure them. Design metrics can be classified into two categories: 

static and dynamic (runtime). Static metrics measure what may happen when a 

program is executed and are said to quantify different aspects of the complexity of 

the static source code. Run-time metrics measure what actually happens when a 

program is executed. They evaluate the source code's run-time characteristics and 

behaviour. The metrics that are investigated in this Thesis are static coupling 

metrics. Stevens et al. (1974) first introduced coupling in the context of structured 

development techniques. It defined coupling as “the measure of strength of 

association established by a connection from one module to another”. It  stated 

that the stronger the coupling between modules, that is, the more inter-related they 

are, the more difficult these modules are to be understood, changed and corrected 

and thus the more complex the resulting software system.  

Excessive class coupling has often been related to the tendency for faults in 

software (Briand et al., 1997). A class that is highly coupled to many other classes 

is an ideal candidate for re-engineering or removal from the system to mitigate 

current and potential future problems. It is widely believed in the OO software 

engineering community that excessive coupling between classes creates a level of 

complexity that can complicate subsequent maintenance and potentially lead to 
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the seeding of further faults (Briand et al., 1997). Moreover, a highly coupled 

class is expected to grow to be a relatively large class, making it even more 

appropriate, theoretically, to be removed from the system. 

The purpose of the research in this Thesis is to investigate coupling metrics in the 

evolution of Java Open-Source Systems (OSS). In other words, the trends in and 

characteristics of coupling metrics and their changes as systems evolve are 

explored.  

1.3 Thesis Objectives and Contribution 

The main objective of this research is to assess how a system changes through the 

analysis of packages in the system and to compare that data with corresponding 

results from refactoring the same system. Another objective of the research is to 

explore the relationship between coupling metrics and the classes removed from 

multiple versions of several open-source systems; a further objective is to 

empirically explore coupling in these Java systems using coupling metrics, 

version release times and code warnings. Finally, we aim to explore whether an 

80/20 rule exists in Java from coupling metrics over multiple versions of open-

source software and to investigate the characteristics of classes with the highest 

values of incoming coupling metrics, notably FIN. 

These objectives can be listed as follows: 

1. To investigate versions of OSS with particular reference to the 

characteristics of classes removed from systems during their evolution. In 

particular, to conduct a thorough investigation of the removed classes from 

the perspective of their coupling to other classes, their size compared to 

other classes and their change trends before they were removed. 

2. To discover the relationship between changes in coupling metrics over the 

releases of a system and the different time periods between these releases. 

While there have been many studies of evolving systems, the time frame 

between releases is often ignored and each version release is considered as 

occurring at an equal time interval from the last. Moreover, we aim to 
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investigate how extracted code warnings could help in understanding the 

patterns of maintenance activity in which increased coupling will 

inevitably feature.  

3. To explore whether an 80/20 rule exists in Java coupling metrics over 

multiple versions of OSS. This will help in identifying the „key‟ classes, 

defined as certain classes in any system that comprise a large number of 

methods and, by implication, a large amount of coupling. 

4. To investigate the characteristics of classes that shown the highest value of 

incoming coupling metrics. A class that is highly coupled to many other 

classes is an ideal candidate for re-engineering or removal from the system 

to lessen both current and potential future problems.  A problem that 

immediately arises, however, for the developer when considering re-

engineering of classes with high coupling is the size of the dependencies 

of those classes and the kind of dependencies, „incoming‟ or „outgoing‟. 

We also address the issue of potential re-engineering and view coupling as 

a key contributor to the decision on whether and when to re-engineer 

(classes) or not over the lifetime of a system. 

This Thesis makes a number of contributions from an empirical perspective; in 

particular, from an evolutionary perspective. It informs the empirical 

understanding of coupling features and the contributions have been published in 

various archived sources. The contribution of the research in this Thesis can also 

be demonstrated on the basis that previous researchers (Kemerer and Slaughter, 

1999a; 1999b) have postulated that software evolution has not been the subject of 

significant research. Consequently, they expressed the need for further empirical 

studies of software evolution.  

The main contribution of the Thesis is first how changes in the maintenance 

practice may help a project manager to approximate the potential maintenance 

effort needed for the system, and for the project‟s developers to take preventive 

action in the form of additional system maintenance and refactoring. Secondly, 

since few empirical studies have analysed coupling from an evolutionary 

respective, we believe the results in this Thesis form a contribution to our 
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understanding of how coupling evolves and where the majority of maintenance 

changes are applied. Finally, all the data used in this Thesis is available to other 

researchers for the purposes of replication and, in this sense, we see the Thesis as 

a contribution to the ongoing body of empirical research in this area. 

1.4 Preliminaries 

Seven OSS were chosen to conduct the research investigation. These systems 

were all written in Java with sufficient versions to allow a meaningful longitudinal 

analysis. Systems were selected in terms of „number of downloads‟ order from 

sourceforge. The selection process thus resulted in many systems being rejected 

from candidate systems identified because they were either a mix of different 

languages and/or did not contain multiple versions for download. These systems 

are Velocity, Jasmin, SmallSQL, pBeans, Asterisk, DjVu and JWNL. More details 

on these systems are available in Chapter 3. 

Software metrics (Fenton and Pfleeger, 2002; Chidamber and Kemerer, 1994; 

Lorenz and Kidd, 1994) are a significant part of our investigation. In this Thesis, 

we make use of software metrics as the basis of our analysis to explore 

quantitatively the changes of coupling in multiple versions of the studied systems. 

The following six independent coupling metrics were collected using JHawk. 

1. Response for a Class (RFC). 

2. Number of EXTernal methods called (EXT). 

3. Message Passing Coupling (MPC). 

4. PACK. Number of imported PACKages. 

5. Fan-in (FIN).  

6. Fan-out (FOUT). 

We also collected the total number of methods (NOM) and the lines of code 

(LOC) in each class as size measures. Again, these metrics will be described in 

more detail in the methodology chapter (Chapter 3). 
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We also collected a physical time-based metric, which is the actual time interval 

between each version release. 

1.5 Thesis Outline 

The thesis is structured over eight chapters. We next explain the contents of each 

chapter and how the chapters in totality knit together to form a coherent research 

story. This chapter presents the context and motivation of the work, and gives the 

overview of the objectives and contributions.  

Chapter 2 describes related work to the research problems addressed. It looks at 

related and complementary work in the area of OSS, coupling metrics and 

refactoring. It also provides insights and justification for the nature of the research 

presented in this Thesis. 

Chapter 3 provides a detailed description of the research methodology adopted in 

the Thesis including an explanation for the basis upon which the systems used in 

the study were chosen, description of the software metrics used in the research, 

and justification for the choice of statistical analysis used. 

Central to the aim of the Thesis is to uncover traits in OSS from an evolutionary 

perspective (at the package level). Chapter 4 assesses how a system changes 

through the analysis of the said packages in a system and compares the obtained 

data with corresponding results from refactoring the same system. Knowledge of 

trends and changes within packages is a starting point for an understanding of 

how effective the original design may have been and how susceptible types of 

packages may change. It can also inform our knowledge of facets of software such 

as coupling and cohesion. 

One aspect of evolution detailed in Chapter 4 and a key observation was the 

dynamic nature of systems and, in particular, the tendency for removal of classes 

as a system evolved. Chapter 5 investigates versions of OSS with particular 

reference to classes „removed‟ during their evolution. The research explores 

whether classes removed from the system are lowly or highly coupled relative to 

other classes in the same package. Moreover, it explores the size of the same 

classes if they are excessively large compared with the remaining classes in the 
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package. Finally, the changes of the removed classes before they are removed are 

assessed to identify patterns of change.  

In Chapters 4 and 5, a key assumption made was that evolution and the versions 

of each system occurred at equal intervals in time. This assumption could be 

criticised on the basis that frenetic change activity could easily occur at irregular 

intervals. Chapter 6 therefore investigates the trends in change activity that can be 

observed if we factor in the different time periods between releases of a system. 

Hence, in this chapter the relationship between coupling and the potential code 

warnings (i.e., areas of code that might prove problematic) is investigated. The 

FindBugs tool was used to highlight potential sources of code problems.  

One observation made from the studies in Chapters 4, 5 and 6 was that the bulk of 

changes and coupling activity (identified by the metrics collected) centred around 

a small number of classes, while the vast majority of classes remained untouched 

throughout the same versions studied. Pareto‟s Law or an 80/20 rule is a naturally 

occurring phenomenon which suggests that 80% of class activity occurs in just 

20% of classes. Chapter 7 therefore explores, first, whether an 80/20 rule exists in 

Java from six coupling metrics over multiple versions of open-source software 

and, if so, whether that relationship is exacerbated over time. After that, the 

characteristics of classes revealing the highest fan-in are investigated. Finally, the 

trends of the changes in the fan-in and fan-out are inspected in addition to the 

relationship between these two metrics. 

Chapter 8 provides the conclusions and the contributions of the research presented 

in this Thesis with reflection on the original objectives and the level to which they 

were achieved. It also gives some thoughts about related future research. 

  

 



  8 

 

CHAPTER 2. LITERATURE REVIEW  

2.1 Overview 

In the previous chapter, we gave an introduction to the Thesis and we presented 

its structure. In this chapter, we describe related work to the research carried out 

in this Thesis. First, some concepts are defined, such as empirical software 

engineering, software life-cycle and software maintenance and evolution. After 

that, issues in evolving a system in terms of class and package changes are stated. 

Finally, related work to the areas of software metrics, coupling metrics and 

refactoring in particular are described.  

In Section 2.2, we talk about the idea of empirical work in software engineering. 

Section 2.3 presents a description of related research in software maintenance and 

evolution. Some concepts in the OO paradigm are described in Section 2.4 in 

terms of classes and packages. In Section 2.5, we review the software metrics 

presented in the literature, and how they have been used in practice. Section 2.6 

provides a detailed analysis of published work on OO coupling. Finally, we 

provide an analysis of published work on software refactoring in Section 2.7. A 

summary of the chapter is presented in Section 2.8. 

2.2 Empirical Software Engineering  

According to McDermid (1991, cited in Bennett, 1996), Software Engineering SE 

can be defined as “the science and art of specifying, designing, implementing and 

evolving - with economy, time limits and elegance - programs, documentation and 

operating procedure whereby computers can be made useful to man”.  This 

definition of software engineering is complete and contains the essence of these 

concepts. It declares that it is a science, and thus clarifies that it is about the task 

of looking for knowledge and scientifically managing that knowledge. It points to 

art to indicate creativity. It presents four actions, which inform the real work 

carried out. The expression „economy‟ suggests that in some way management 
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has to be involved; „time limits and elegance‟ indicate that an organised and 

methodical approach is significant. The outcome artefacts are specified to be the 

program, documentation and the operating procedures. Finally, „useful to man‟ 

underlines the significance of never neglecting the essential purpose - the human 

being. 

Software Engineering is still a very young branch of computer science (Bennett, 

1996). It emerged because of a necessity for new notations, new methods and new 

tools that could respond to the raised complexity of development and software 

systems. Moreover, it can be said that software engineering contains theories, 

techniques, methods and tools required to develop reliable software. Because of 

all these, the need for an empirical approach arose. Empirical Software 

Engineering focuses on the evaluation of software engineering technologies. It 

attempts to assess models and techniques, and to investigate how they perform in 

practical frameworks, with the aim of creating a database to support decision 

making for the progress (Basili et al., 1996a). A set of hypotheses are formulated 

to declare an assumption on how relevant variables are influenced by other 

independent variables. After that, these hypotheses are validated by conducting an 

experimentation process. Usually, this is decided by a statistical analysis 

conducted on the collected data.  

In 1996, Wasserman stated that software engineering had eight technical 

characteristics including the software life-cycle. A software life-cycle is defined 

as the period of time which begins when a software product is designed and 

finishes when the software is not used anymore (Longstreet, 1990). The software 

system goes through several phases throughout its life-cycle. According to Pillai 

(1996), these phases can be divided into the following stages:  

 Requirements definition and analysis phase, distinguished by exploration 

and analysis of the description of the product.  

 Design phase, in which we design drafts and test their integrity. 

 Implementation and testing phase, when all test cases are executed.  
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 Installation phase, which determines that the system is ready to be released 

to customers.  

 Maintenance phase, which includes regression testing. 

The most costly phase is the maintenance phase, because of the amount of change 

that occurs in the system (Williams and Carver, 2007). It costs between 40% and 

90% of the total life-cycle costs; however, it was not recognised as a serious 

activity until 1970s (Bennett, 1996). Kajko-Mattsson et al. (2001) state that 

although software maintenance forms a main phase of the software lifecycle; it 

has frequently been ignored and is given very little consideration in both 

educational and manufacturing fields. 

2.3 Software Maintenance and Evolution  

The software maintenance phase comes after the implementation of a system. The 

maintenance stage should be initiated for various reasons. Burd and Munro (2000) 

state that these reasons could be sorted into four categories of maintenance 

activities, which are: 

 Perfective maintenance: implies enhancing the functionality of software in 

reply to a user‟s identified changes. 

 Corrective maintenance: entails the correction of errors that have been 

defined in the software. 

 Adaptive maintenance: involves the alteration of the software that is 

caused by changes within the software situation. 

 Preventative maintenance: implies updating the software to progress upon 

its future maintainability without changing its existing functionality. 

One of the most important issues presently facing software engineering is the 

capability to evolve a system with the changing requirements of its stakeholders. 

When systems evolve, many issues arise. According to Perry (1994), the 

dimensions of the context in which the system evolves help to recognise the 

evolution of software system appropriately. He characterises these dimensions as: 

the fields that are related to these system, the skills learnt from evolving and 
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employing these systems and the procedures used in manufacturing and evolving 

these systems. 

Zimmermann et al. (2005) try to lead programmers along associated modifications 

by relating data mining to the histories of versions. To this end, they use the 

ROSE tool which aims: firstly to give a programmer recommendations and 

forecast of probable changes by using data mining skills to get these related 

changes. Secondly, to distinguish coupling among program items that program 

analysis cannot distinguish. Lastly, the tool will warn the program if the changes 

that the user wants to perform are incomplete. 

In terms of software evolution, the laws of Lehman (Belady and Lehman, 1976) 

provide the backdrop for many past evolutionary studies. Evolution has also been 

the subject of simulation studies (Smith et al., 2006) and this has allowed open-

source software evolution to be studied in a contrasting way to that empirically. 

One of the main issues that arise when systems evolve is which patterns of change 

apply at different levels of abstraction. By studying how classes change we can 

determine how the system changes. Developers can make changes to a built 

system by producing new classes instead of modifying existing ones (Bieman et 

al., 2003). Bieman et al. found that there was a relationship between design 

structures and development and maintenance changes. They examined whether 

potential changes to a class could be predicted by the architectural design context 

of a class, and found that a correlation between class size and number of changes 

was inconclusive. Moreover, they found that in four of five case studies, classes 

which had function in design patterns were modified more frequently than other 

classes (Gamma et al., 1995). 

In another study carried out by Bieman, Jain and Yang (2001) it was found that 

maintenance effort could be affected by certain design factors. For example, it 

was found that there was a correlation between class size and the number of 

changes. Moreover, two unexpected relationships were discovered. The first 

related to the classes reused during inheritance; it was found that these classes 

tend to be changed more. The second relationship identified was that classes 
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recognised as prone to change were the classes which played a part in design 

patterns. 

2.4 Concepts in OO Software  

Systems are built using many different structures. One of the most popular 

structures is OO. In this approach, a computer program may be considered as a 

collected composition of separated units, or objects, each one able to receive 

messages, process data, and send messages to other objects. Bennett et al. (2002) 

state that OO is organised around the interfaces of the objects, their status at a 

particular instance and how the objects communicate with each other. Moreover, 

they define the class as a set of related operations and attributes that defines a 

class‟s behaviour, methods and attributes. Consequently, an object is an instance 

of class and has identity, behaviour, and state.  In other words, they declare that 

the purpose of a class is to state a group of methods, operations and attributes that 

completely illustrate the behaviour and structure of objects. Each object consists 

of a single identifier, a set of attributes and a set of methods. Each attribute has a 

value that can change, and an object‟s method is invoked as a reaction to a 

message from another object (Jajodia and Kogan, 1990). 

Systems which are built using an OO structure are potentially more difficult to 

maintain than those in the procedural structure as the existence of inheritance and 

polymorphism raises dependencies in a program and incorporate potential 

difficulties in program understanding and analysis (Wilde and Huitt, 1992). Wilde 

and Huitt summarise the most important problems that can be expected in 

maintaining OO programming as follows: 

 The problem of dynamic binding:  dynamic binding gives much of the 

flexibility of OO languages; however, it may cause problems in outlining 

dependencies within the program, which many maintenance tools depend 

on. 

 Dependencies in an OO system: a dependency in a software system can be 

considered as a straight connection between two entities in the system; any 
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change in the first entity may affect the second. In an OO system, using 

polymorphism and hierarchy produces an increase in the types of 

dependencies: class-to-class dependencies, class-to-method, class-to-

message, class-to-variable, method-to-variable, method-to-message and 

method-to-method. Because of the multidimensional nature of the 

connections, it is very hard to sift through all the relationships in a system, 

and that makes program understanding more difficult. 

 The structure of an OO program: an OO system may contain a number of 

very small modules as for many tasks very short methods may be written. 

Consequently, the code for any particular task would be very broadly 

distributed. Understanding a line of code might need an understanding of a 

series of method invocations through some distinct object classes to 

discover where the task is actually completed. 

 High-level system understanding: when a maintainer wants to become 

familiar with a system for the first time, high level system understanding is 

required. In order to provide this to the maintainer, statistical clustering 

tools are needed to structure an OO environment.  

 Locating system functionality: according to the dispersion of functionality 

into different object classes in OO system, there is some complexity in 

discovering where different functions are performed. Therefore, 

maintainers may need to use tools to investigate and compare traces of 

system performance in order to help them recognise the methods and 

classes related in a functional sense. 

 Detailed code understanding: maintainers spend long periods of time 

understanding the detailed code that they intend to modify. In an OO 

environment, detailed code understanding is very complicated because of 

the class hierarchy and associated features such as polymorphism. By 

using the concept of dependency analysis, maintainers can easily identify 

the compound types of dependencies in OO programs. They also identify 

chains of relationships, which may be helpful in tracing through widely 

distributed code fragments. 



Chapter 2: Literature Review  14 

 

Classes in Java are organised into separate groups called packages. The aim of a 

package is to join strongly related classes within a single entity and to offer 

confidential access between those classes. Each package contains a set of related 

interfaces, classes and exceptions, and packages are hierarchically organised into 

a package tree (Hautus, 2002). At the present time, most programs are built in 

terms of a set of classes, or packages, and this is enhanced by the appearance of 

the concept of encapsulation. Bennett et al. (2002) state that encapsulation refers 

to the capability for the same message to be sent to objects in different classes, 

each of which replies to the message in a different way. Consequently, the full 

idea of encapsulation in OO programming is for the methods and variables of 

objects to be protected against unauthorised access by other objects. That can be 

achieved through the access modifiers, which Bennett et al. classify into four 

different types:  

 Public: a feature (an attributes or a method) with a public access can be 

accessed by any object. 

 Private: a feature with a private access can be accessed only by an object 

from the class that includes in it. 

 Protected: a feature with a protected access can be accessed either by an 

object of the class includes in it or of a subclass or descendant of that 

class. 

 Package: a feature with a package access is accessed only by an object 

from a class in the same package.   

In the environment of OO applications (according to Ducasse et al. (2005)), 

packages have varying functions: they may include utility classes used through 

their structure, or they may include some fundamental subclasses enlarging a 

framework. In addition, they indicate that as classes are included in packages, it is 

essential in the re-engineering and development of OO systems to understand sets 

of classes and packages; they add that packages are more than a simple 

generalisation of classes. Depending on the relationship between packages and 

their contained classes, we can decompose the application and re-modularise it. 

Ducasse et al. (2005) intend to help reengineers and researchers working on re-
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modularisation to gain a better understanding of OO programs. They give two 

radar visualisations called „butterfly views‟ which assist in comprehending and 

classifying packages. These butterfly views represent how a package connects to 

the remaining parts of the system and they also illustrate how a package is 

internally structured. 

In another study, Ducasse et al. (2004) state that understanding packages is an 

essential action in the re-engineering of OO programs, and the cost of modifying 

the program may be influenced by the correlation between packages and their 

enclosed classes. In order to support the developer in achieving a mental image of 

an OO system and understanding its packages, Ducasse et al. (2004) introduce a 

top-down engineering method based on visualisation. Consequently, they raise the 

abstraction level by detecting packages rather than classes. They classify packages 

by supplying a polymetric observation that helps the engineer to concentrate on 

packages rather than being flooded with information. They also illustrate how a 

package communicates with the remaining parts of the program and give an idea 

about how a package is built internally. 

Hautus (2002) observes that many researchers try to comprehend programs by 

considering the analysis and visualisation of them. However, packages are 

essential as they are well-suited for identifying the sophisticated design of Java 

programs. Therefore, focus should be on packages rather than classes or methods 

in research, they also present the Package Structure Analysis Tool (PASTA). The 

PASTA metric is described as: “the weight of the undesirable dependencies 

between the sub-packages divided by the total weight of the dependencies 

between the sub-packages”. Hautus states that this metric gives a means of 

speedily estimating the inner value of complex software products based on their 

source code. 

2.5 Software Metrics 

In this Thesis, we use software metrics to empirically investigate the trends of 

coupling in the evolution of Java OSS. Generally speaking, software metrics are 

used to explain the activities concerned with measurement in software 



Chapter 2: Literature Review  16 

 

engineering, and to offer information to support decision making during software 

development and testing from a technical and managerial side. The metrics which 

we use enable us to measure coupling in each version of the systems under study 

and to represent the evolutionary behaviour of systems from a coupling viewpoint, 

which helps to inform software quality and software resource requirements.    

Software metrics vary from generating numbers, which characterise properties of 

software code through, to models which help predict software quality and 

software resource needs. They are used to measure attributes of software systems 

as well as recognise the software threats and decrease the cost of developing and 

maintaining the software by taking corrective action early in the development 

course (Hall et al., 2005).  

Measurement, according to Fenton and Pfleeger (2002), is a mapping of empirical 

objects to statistical objects with consideration given to all structures and 

relationships. The attributes measured by software metrics can be categorised into 

two groups: internal and external attributes. The internal attributes of a software 

system include size, coupling and the amount of reuse in the system, while the 

external attributes include usability, reliability and security of a system (Fenton 

and Pfleeger, 2002). In this Thesis, since we are concerned with coupling in the 

system, we measure the internal attributes of the studied systems. There is also a 

distinction to be made between direct and indirect measurement of attributes 

(Fenton and Pfleeger, 2002).  Direct measurement of an attribute of an object 

involves no other attribute or object. For example, the length of source code is 

measured by lines of code, and the number of defects discovered during the 

testing process is measured by actually counting the defects. Indirect 

measurement of an attribute of an object involves other attributes or objects. 

Examples of the indirect measures are: the module defect density which is the 

number of defects divided by the module size, and the requirement stability, 

which is the number of initial requirements divided by the total number of 

requirements. In our Thesis, we measure direct and indirect attributes. 

The first text on software metrics was published in 1976 by Tim Gilb (1967). 

Therein, Lines of Code (LOC) was used to measure program quality and 
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productivity (Fenton and Neil, 1998). Akiyama (1971) proposes a basic regression 

model for module density to measure program complexity, and that represented 

the first step in using metrics for predicting software quality.   

By the introduction of OO languages, the main feature of academic research has 

been to refine, extend and validate complexity metrics (Chidamber and Kemerer, 

1994; Lorenz and Kidd, 1994; Abreu and Carapuca, 1994; Briand et al., 1998; 

Briand et al., 1999b; Harrison et al., 1998; Arisholm et al., 2004).  

Chidamber and Kemerer (C&K) (1994) proposed six OO metrics as a suite to 

measure features of OO systems. The suite of metrics consisted of Weighted 

Method per Class (WMC): measures the number of methods defined in a class, 

Response For a Class (RFC): measures the total number of methods that can be 

executed as a result of receiving a message from an object of that class, Lack of 

Cohesion in Method (LCOM): measures the lack of cohesion in methods of a 

class, Depth of Inheritance Tree (DIT): measures the maximum number of classes 

from a leaf to the root class in an inheritance hierarchy, Number Of Children 

(NOC): measures the total number of descendent classes from a single class, and 

Coupling Between Objects (CBO): measures inter-relationship of classes.  

These metrics have been used extensively since in a variety of studies; none of the 

metrics, however, give a coarse-grained feel for the incoming and outgoing 

coupling that OO fan-in and fan-out provide and which are the subject of some 

work in this Thesis. Of these six metrics, the RFC seems to have been the least 

favoured by empirical software engineers and yet there is no obvious reason for 

neglect of its investigation (our study therefore attempts to redress that 

imbalance). The majority of empirical studies in OO seem to have focused on 

other C&K metrics such as the DIT, WMC and CBO. In our study, we focus on 

the RFC and CBO metrics. C&K metrics appear to be useful for developers and 

designers of systems as they operate at the class level (Basili et al., 1996b).   

Abreu and Carapuca (1994) identify the MOOD (Metrics for Object-Oriented 

Design) set of metrics which fulfil some evaluation criteria. These criteria include 

the requirements for formal definition for metrics determination. Moreover, the 
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metrics should be obtainable early in the system life-cycle, language independent, 

dimensionless, down-scaleable and easily calculated. The MOOD set of metrics 

comprised 1) Method Inheritance Factor (MIF): The ratio of the sum of the 

inherited methods to the total number of available methods; Attribute Inheritance 

Factor (AIF): The ratio of the sum of the inherited attributes to the total number of 

available attributes; Coupling Factor (CF): This metric considers the actual 

couplings among classes in relation to the maximum number of possible 

couplings; Polymorphism Factor (PF): calculates the degree of method overriding 

in the class inheritance tree; Method Hiding Factor (MHF): The ratio of the sum 

of all the hidden methods to the total number of methods; and Attribute Hiding 

Factor (AHF): The ratio of the sum of all the hidden attributes to the total number 

of attributes. These metrics help in setting the OO design measures at the 

organisation level and help OO practitioners to conduct their development 

processes.  

Lorenz and Kidd (1994) introduce a set of metrics to measure dimensions of OO 

systems. Most of these metrics are direct metrics and include directly countable 

measures.  The metrics are divided into four categories: size, inheritance, internals 

and externals. They include Number of Methods per class (NM), Number of 

Public Methods per class (NPM), Number of Variables per class (NV), Number of 

Public Variables per class (NPV), Number of Methods Inherited by a subclass 

(NMI), Number of Methods Overridden by a subclass (NMO), Number of 

Methods Added by a subclass (NMA), Average Methods Size (AMS), Number of 

times a Class is Reused (NCR), and Number of Friends of class (NF).  

According to Shepperd (1995), theoretical and empirical validations are essential 

for the success of the software metrics when using them in practice. Metrics 

validation is the procedure of investigating if the software metric precisely 

measures the software attribute which they purport to measure (Fenton and 

Pfleeger, 2002). 

Harrison et al. (1998) investigated a set of six OO software metrics, called the 

MOOD metrics, with measurement theory perspective and taking into 

consideration the OO features that they were meant to measure: encapsulation, 
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inheritance, coupling and polymorphism. By applying these metrics to empirically 

investigate three different application domains, they found that the MOOD 

metrics set could be used to provide a general assessment for the systems studied. 

Their results showed that MOOD metrics work at the system level and hence are 

useful for project managers.  

Briand et al. (1999a) introduced an outline of the existing empirical studies of OO 

systems, methods, tools, notations and processes and discussed four directions for 

further work in the area of empirical OO software development and evolution. 

These directions were: categorise main quality and productivity issues, assess and 

compare OO technologies, construct (productivity and quality) models and meta-

analysis. They highlighted points to be considered to accomplish successful 

empirical studies. In particular, they encouraged cooperation with the software 

industry in an attempt to improve the quality and productivity of empirical 

studies. 

Validation is important to the success of software measurement (Kitchenham et 

al., 1995a). Kitchenham et al. propose a validation framework to demonstrate how 

software metrics should be investigated, to help practitioners and researchers to 

figure out how to validate a metric, and to identify when it is suitable for a metric 

to be applied. They differentiate between two fundamental assessment methods: 

theoretical validation, which validates that the measurement obeys the measured 

element‟s essential properties and empirical validation, which confirms that 

values that measure attributes are consistent with values expected by models 

involving the attribute. Moreover, Kitchenham et al. define a set of criteria that all 

measures must obey to be determined a valid measure from a measurement 

theoretic viewpoint.  

2.6 Coupling Metrics 

In 1974, Stevens et al. first defined coupling in the context of structured 

development as “the measure of the strength of association established by a 

connection from one module to another” (Stevens et al., 1974). Coupling metrics 

are OO metrics that measure the interdependence between a given class and the 
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other classes in the system. Classes are coupled when methods in one class use 

methods or attributes of other classes. 

A large number of researchers have tried to understand how to assess the quality 

of OO design. However, external quality measures such as maintainability and 

reliability cannot be measured until late in the software life cycle. Therefore, there 

is a need to recognise early predictors for such qualities. A number of research 

studies have used static coupling metrics to measure the maintainability of OO 

systems (Arisholm et al., 2004). Those measures have been helpful predictors of 

several attributes like modifications and fault-proneness. For example, Arisholm 

et al. (2004) describe the use of dynamic coupling metrics. These metrics are 

major signs of change-proneness and they go together with static coupling metrics 

capturing different facets of a system. There is also some evidence that some 

forms of coupling have a negative impact on fault-proneness (Briand et al., 1997). 

As a violation of encapsulation, C++ friends - an improper form of coupling, have 

also been shown to reflect higher fault rates in software (Briand et al., 1997).  

Briand et al. defined coupling measures and empirically found that several export 

and import coupling measures were significant predictors of fault-proneness. 

Additionally, they found that using “friend” classes in C++ increased the fault-

proneness of classes more than other kinds of coupling metrics. English et al. 

(2007) presented metrics that were refinements of the work of Briand et al. 

(1997), and assessed these metrics using the LEDA software system. They found 

that the metrics depended on the „friend‟ type of coupling (applied frequently to 

access hidden attributes in classes, but rarely to access hidden methods). They 

differentiated between coupling metrics that used the „friend‟ mechanism, 

„inheritance‟, and „other‟ forms of coupling. They further stated that metrics that 

depended on „friends‟ and „other‟ forms of coupling were different to existing 

metrics, and were helpful in both prediction models and conducting a more 

thorough investigation of the structure of software systems. 

Briand et al. (1999b) carried out a widespread study of the currently available 

coupling literature in OO systems and introduced a framework for the definition, 

comparison and assessment of coupling measures in OO systems. The framework 
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consisted of six criteria, which were important in identifying a coupling measure. 

The six criteria were: locus of impact, type of connection, stability of server, 

granularity of the measure, direct or indirect connections and inheritance. They 

concluded that even though many studies have been carried out, there are too few 

empirical studies of (coupling) measurement, particularly OO. This leads to a 

delay in research exploring suitable solutions for practitioners. .    

Bartsch and Harrison (2006a) extend Briand‟s framework for AspectJ 

concentrating on a specific definition of different coupling connections found in 

AspectJ (2005).  The criteria of the framework, which have to be thought about 

when designing, analysing and comparing OO measures, are seven. Six of these 

criteria are those introduced in the Briand et al. framework, and the seventh is 

Instantiation, which refers to whether or not to count aspects at a per-instance 

level (Bartsch and Harrison, 2006a).  Bartsch and Harrison (Bartsch and Harrison, 

2006b) use these criteria again in another paper to evaluate five coupling metrics 

proposed by Ceccato and Tonella (2004). They found that none of the coupling 

measures could be validated in the context of the validation framework used; 

however, most of them do not show any key  problems and the quality of most of 

them can be increased by more accuracy in their definitions (Bartsch and 

Harrison, 2006b). 

Li and Henry (1993) support the view that excessive coupling makes maintenance 

and tracing more difficult. In their research, they focused on ten OO software 

metrics and then validated these metrics with maintenance effort on two OO 

systems. They found that maintenance effort was related strongly to the metrics 

and it could be predicted from the combinations of these metrics. Moreover, they 

proved that this prediction was successfully cross validated. 

The role of method invocation (a form of coupling between classes) in creating 

faults is also highlighted by the work of Briand et al. (1998). In this work, they 

tried to validate all the OO measures found in the literature, especially the impact 

of these metrics on class fault-proneness, and their ability to predict fault 

locations. Results have shown that the possibility of identifying fault in a class is 

strongly related to many coupling and inheritance measures. The most important 
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quality factors in creating faults are method invocations, depth of a class in its 

inheritance hierarchy and the scale of change in a class as a result of specialisation 

(Briand et al., 1998). 

The Fan-in and Fan-out metrics of Henry and Kafura (1981) measure the number 

of inputs and outputs of a given module, respectively. According to Henry and 

Kafura (1981), the information flow between system components is a practical 

and appropriate technique for measuring large-scale systems since this technique 

exposes more of the system connections than other ordering relations, and the 

main elements in this technique can be concluded at design phase. In order to 

present their measurement for this technique, they defined fan-in and fan-out as 

follows. The fan-in of a module is the number of inputs plus the number of data 

structures from which the module gets information. The fan-out of a module is the 

number of outputs plus the number of data structures which the module updates 

(Henry and Kafura, 1981).   

2.7 Software Refactoring 

Refactoring is one of the techniques widely used to improve the structure of 

software systems. This technique was first introduced by Opdyke and Johnson 

(1990), referring to the internal structure development of an OO software system 

without changing the external performance of the system. Before that, Chikofsky 

et al. (1990) introduced the term software restructuring, which could be 

considered as the starting point of refactoring. They defined software restructuring 

as “the transformation from one representation form to another at the same 

relative abstraction level, while preserving the subject system‟s external behaviour 

(functionality and semantics)”. The research of Johnson and Foote (1988) and of 

Foote and Opdyke (1995) have all made considerable contributions to the 

refactoring discipline and also helped to reveal the viability and potential of 

refactoring. Refactoring is used to improve the design of the program and make it 

easier to understand (Counsell et al., 2006). Consequently, this supports software 

maintenance and reuse (Fowler, 1999; Johnson and Foote, 1988; Chikofsky et al., 

1990). The link between maintenance as part of every system‟s evolution and that 
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dedicated to refactoring is a topical area for OO researchers and practitioners 

(Mens and Tourwe, 2004). 

 Refactoring was introduced in a seminal text by Fowler (1999). Fowler defines 

software refactoring as: “a change made to the internal structure of software to 

make it easier to understand and cheaper to modify without changing its 

observable behaviour”. Moreover, Fowler describes the procedure of seventy-two 

different refactorings in four major categories and explains assorted „bad smells‟ 

in code. Fowler (1999) gives a list of refactorings that can be useful for 

developers to improve the design of their code. Some representative categories of 

refactorings are: Composing Methods, Moving Features between Objects, 

Simplifying Conditionals, Making Method Calls Simpler, Generalization, and Big 

Refactorings. According to Fowler, the basic indicator of when refactoring is 

overdue is when the code begins to „smell‟. Another approach has been 

demonstrated by Tourwe and Mens (2003), who use the technique of logic meta 

programming to detect bad smells and get the needed information for the 

proposed refactorings. By this, they show how support can be supplied for 

discovering when a design should be refactored and identifying which 

refactorings might be applied to develop this design. 

A full survey of recent refactoring work can be found (Mens and Tourwe, 2004). 

These researchers provide an outline of the existing research being completed in 

software refactoring and restructuring. They consider refactoring activities such 

as: identifying where to refactor software, determining which refactorings to 

apply, making sure that the applied refactoring does not change behaviour, 

applying the refactorings and finally preserving the stability between the new 

code and other software artefacts. Mens and Tourwe then talk about different 

refactoring techniques including graph transformations and invariant, pre and 

post-conditions. They discuss refactorings related to the kinds of software 

artefacts, and end with a look at various tools that present support for automation, 

reliability, configurability, coverage and scalability. 

We can improve the quality of design and reduce the complexity and the cost in 

succeeding development phases by applying refactoring as early as possible 
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during the software life-cycle (Zhang et al., 2005). Moreover, developers should 

refactor „mercilessly‟ and consistently (Beck, 1999). To identify places that need 

refactorings, developers should use software metrics before a refactoring to 

measure the quality of a software system (Mens and van Deursen, 2003). The 

metrics can also be applied after refactoring to measure the improvement in 

system quality. Programs that are not written in an OO language are harder to 

restructure because data flow and control flow are strongly interconnected (Mens 

and Tourwe, 2004). Nevertheless, refactoring of programs written in OO 

languages is not easy, particularly when we take into account complex OO facets 

such as inheritance, polymorphism or dynamic binding. For example, recent 

empirical work by Najjar et al. (2003) has shown that refactoring can give both 

qualitative and quantitative benefits – the refactoring „replacing constructors with 

factory methods‟ of Kerievsky (2002) was used as a source.  

Demeyer et al. (2000) detected refactoring indicators when comparing different 

versions of a software system. They used four heuristics to find refactorings, 

where each heuristic was identified as a combination of change metrics. The 

refactorings in the first heuristic split functionality from a class into a superclass, 

or combined a superclass with one or more of its subclasses. The second heuristic 

split functionality from a class into a subclass, or combined a subclass with one or 

more of its subclasses. The third heuristic explored the refactorings that moved 

functionality from one class to another, while the final heuristic explored the 

refactorings that split methods into one or more methods defined in the same 

class. In terms of investigating the link between refactoring and testing, Counsell 

et al. (2006) adapted a testing taxonomy suggested by van Deursen and Moonen 

(2002) built on the refactoring impact on the ability to use the same set of tests 

‘post-refactoring’. They urged that when making refactoring decisions, there was 

a requirement to consider the inter-relatedness of refactorings. 

In an empirical study of multiple versions of seven open source Java systems, 

Advani et al. (2005) explored the refactoring trends across these systems. They 

declared that simple refactorings, at the method and field level but not as part of 

larger structural changes to the code, were most commonly undertaken by 
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developers, with no pattern across the different versions of the systems. However, 

refactorings predominantly occur in the middle versions of a system not in earliest 

and/or latest versions. Advani et al. (2006) also describe a tool for collecting 

refactoring data from multiple versions of Java systems. The tool was designed to 

extract refactoring information from Java systems. It collected information about 

fifteen refactorings from seven systems and compared this information for the 

different releases. They found that the tool was a good indicator for the major 

kinds of refactorings used by developers. We used this tool in the experiment 

described in Chapter 4 to investigate the cross-comparisons between the high-

level package trends and refactoring practice, and to provide insights into why 

refactoring might be applied after a burst of regular change activity rather than 

consistently (Mubarak et al., 2007).  

2.8 Summary 

The central theme of this research is to demonstrate how evolving systems change 

during the transaction from one version to another in terms of coupling metrics. In 

this chapter, concepts related to this theme have been presented. We included 

definitions of issues linked to software evolution regarding changes in systems 

from the sense of the changes in the contained classes and packages. In the next 

chapter, we provide an explanation of the research process approach and the 

rationale for the research methods selected in this Thesis. A case study strategy 

will be described in detail. Finally, the systems under study will be explained 

accompanied by the study aims and objectives. 
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CHAPTER 3. RESEARCH METHODS  

3.1 Overview 

In Chapter 2, related work carried out in this Thesis was reviewed and analysed. 

This chapter aims to illustrate the research approach used to investigate our 

research. The chapter starts with an exposition of research paradigms and methods 

in the context of software engineering. Then it proceeds by providing a detailed 

explanation of the research objectives that guided the investigation and the 

rationale for the research methods selected.  The research process includes a 

description of the systems under study, definition of the investigated metrics, 

explanation of the data analysis for this study and statistical methods employed. 

Section 3.2 gives the description and justification for the research methods and 

strategies used in this Thesis. Details of the research objectives and hypotheses 

are presented in Section 3.3. Finally, a description of the research preliminaries is 

provided in Section 3.4. 

3.2 Research Paradigms and Methods 

A software engineer uses certain methods to estimate the existing work in order to 

raise the quality of a software product or reduce the cost of product improvement 

(Sommerville, 1996). By analysing data, certain conclusions can be used to 

predict how efficient and valuable work will be in the future in order to improve 

software quality. This data could be collected by the researchers using one of the 

data collection strategies such as surveys, questionnaires, interviews, experiments 

and project artefacts. Collected data can be quantitative or qualitative depending 

on issues such as personal experience and the nature of the research problems and 

questions. Creswell (2003) defines three approaches to research. These three 

approaches are quantitative, qualitative and mixed methods, and they are defined 

as follows: 
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 A quantitative approach: this approach is concerned with measuring a 

relationship or comparing two or more sets. It often uses an experiment, or data 

collected through a case study and helps in assessing the causes of a treatment. 

Quantitative data usually promotes statistical analysis.  

 A qualitative approach: in this approach, human and social problems are 

studied and interpreted depending on explanations that people provide. This 

means that qualitative researchers study things in their natural settings, trying to 

make sense of experiences in terms of the justifications people bring to them. The 

focus in this approach is on developing theory and generating knowledge. The 

data is obtained from interviews, case studies and observations. 

 A mixed method approach: in this approach knowledge claims are based on a 

practical basis and tend to combine or mix both qualitative and quantitative 

approaches. 

The research conducted for this Thesis is quantitative in nature; it uses software 

metrics collected from several Java OSSs and related to coupling.  

In general, for any research design there is a need to formulate a framework for a 

research design. Robson (2002) categorises these components as purpose, theory, 

research questions, methods and sampling strategy. Both the purposes which the 

study tries to achieve and the theory guide and inform the study and help to 

identify the research question. The methods and the strategies used determine the 

answer to these research questions. The strategies which can be used in the 

empirical investigations are varied; however, Robson (2002) defined three major 

different types of strategies that may be adapted: 

 Experiment: an experiment is an instance of fixed research design.  It is a 

particularly focused study and is usually done in a laboratory in a controlled 

environment. In this approach, one or more variables called independent variables 

are manipulated and the effects of this manipulation on one or more other 

variables, called dependent variables, are measured. All other variables are 

controlled. 
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 Survey: surveys are generally carried out as part of non-experimental fixed 

design. They aim to investigate areas by asking a broad collection of open-ended 

questions. They are normally carried out for descriptive reasons as they can 

supply facts about the distribution of a large range of features and of association 

between such features. However, surveys take a long time to be analysed, and 

they may not be an effective procedure. Moreover, surveys are only applied to a 

sample that represents the population studied.  

 Case study: case studies are “a strategy for doing research which involves an 

empirical investigation of a particular contemporary phenomenon within its real 

life context using multiple sources of evidence” (Robson, 2002, p.178). A case 

study is a well-established strategy which focuses deeply on a process, a program, 

an event, an activity, or one or more individuals. Moreover, a case study takes 

place at particular times with particular people in particular places. It can be 

considered as an observational study as the control in it is low.  

According to the design strategy, it can then be decided if the approach should be 

quantitative or qualitative. Wohlin et al. (2000) state that as experiments focus on 

evaluating various variables before and after making changes to them, they are 

merely quantitative. On the other hand, the same authors state that the 

categorisation of a survey or a case study relies on the collected data and the 

applied statistical methods held in a qualitative or quantitative approach. In a case 

study, data is collected for a particular reason during the study, and based on this 

data statistical analyses can be completed (Wohlin et al., 2000). Moreover, 

Wohlin et al. state that although case studies are valuable and integrate features 

that an experiment is not able to visualise, there are some probable difficulties 

with them. Firstly, a small case study is not always helpful in giving techniques 

and principles for software engineering as the problem in it may differ from the 

problem in a large case study. Secondly, as there is not enough control over the 

case study, the results, due to confounding issues, are not always clear. 

Kitchenham et al. (1995b) present instructions for arranging and analysing case 

studies in order to yield significant outcomes. These instructions are firstly, to 

identify the hypothesis in detail to make clear the measures needed to demonstrate 
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the effect of the methods and secondly, to select the pilot project. A third 

instruction is to identify the method of the comparison to assess the result of the 

case study by comparing the results of using the new method against a company 

baseline and selecting a sister project to contrast with. If the method relates to 

individual product elements, it could be related randomly to several elements and 

not to others. Fourthly, it is important to decrease the impact of confounding 

issues, examples of which are: employing staff who are extremely enthusiastic or 

unenthusiastic, and using of contrasting application types. Fifthly, the case study 

needs to be planned and sixthly, it needs to be observed alongside the plan and 

contrast its development and results with the plan. Finally, the results are required 

to be investigated and described to summarise what has occurred and to see if the 

results are significant. 

In software engineering, case studies are used in much research. The study of 

Granja-Alvarez (2004) is based on three real-world projects where a comparative 

analysis of projects was undertaken and, through this analysis advanced results 

were able to be achieved in software maintenance. The result derived from this 

study was that a very high-quality estimate may be gained from use cases for 

software maintenance. Bieman et al. (2001) declare that case studies can illustrate 

the relationships between design structure and quality attributes such as reliability 

and maintainability. Their study was carried out on a commercial OO C++ 

system. They analysed 39 versions of a system to discover if there was a 

connection between the total number of changes and the design structure in the 

system. Finally, Briand et al. (1999c) used a commercial case study and 

investigated the connection between design attributes and the fault-proneness in 

commercial and student projects. The commercial projects were case studies, 

whereas the student projects were experiments. 

In this research, we used source code archived analysis using multiple versions of 

several Java OSSs. Our strategy can be declared to be similar to multiple case 

studies. We used an automated tool, described later, to extract OO metrics from 

versions of the OSSs. The selection of our approach is justified by the fact that 

software artefacts can provide a meaningful insight into how professional 
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software developers use and maintain coupling, which in turn provides an insight 

into the evolution of coupling. Using this approach, we were able to reveal 

patterns of change in multiple versions of the studied systems.  

3.3 Research Objectives 

One of the main objectives of this research is to assess how a system changes 

through the analysis of packages in the system and to compare that data with 

corresponding results from refactoring the same system. Knowledge of trends and 

changes within packages is a starting point for an understanding of how effective 

the original design may have been, how susceptible types of packages may be to 

change and can also inform our knowledge of facets of software such as coupling 

and cohesion.  

Another objective of the research is to explore the relationship between coupling 

metrics and the classes removed from multiple versions of several open-source 

systems, and to empirically explore coupling in these Java systems using coupling 

metrics, version release times and code warnings. Finally, we aim to explore 

whether an 80/20 rule exists in Java from coupling metrics over multiple versions 

of open-source software and, if so, whether that relationship is exacerbated over 

time. 

For each of these objectives, we generate hypotheses that describe and interpret 

these objectives. Hypotheses can help researchers predict expected results and the 

direction of their investigation. However, researchers must provide a justification 

as to why they produce that hypothesis depending on the theoretical aspects. 

Furthermore, hypothesis testing also requires recognition of suitable data strictly 

related to the cause and effect of the hypothesis. The data should be divided into 

two groups, independent and dependent variables. An independent variable refers 

to a set of data which may have an impact on another set of data (dependent 

variable) and the dependent variable is a set of data which changes as a result of a 

change in independent variable. After the independent and dependent variables 

have been concluded, a fitting statistical test should be detected to precisely test 

the impact of independent variable on the dependent variable(s).  
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Hypotheses consist of a null hypothesis and an alternative hypothesis. A null 

hypothesis refers to an independent variable which has no significant relationship 

with the dependent variable(s), and an alternative hypothesis refers to a 

correlation existing between independent and dependent variables (Field, 2006). 

Researchers consider that the alternative hypothesis is true, unless the null 

hypothesis indicates the opposite. 

3.4 Data Collection 

In this section, a description of the systems under study will be provided along 

with the definition of the collected metrics. 

3.4.1 Systems under Study 

The explicit selection criteria for systems was that first, they all had to be entirely 

Java; second, sufficient versions were available (for a longitudinal study) and 

third, they should consist of a mix of application types. Systems were selected in 

terms of „number of downloads‟ ordered from sourceforge.net. The selection 

process thus resulted in many systems being rejected from candidate systems 

identified (because they were either a mix of different languages and/or did not 

contain multiple versions for download). 

1) Velocity: A template engine allows web designers to access methods 

defined in Java. Velocity began with 224 classes and 44 interfaces. In the 

latest version, it had 300 classes and 80 interfaces. 

2) Jasmin: A Java assembler takes ASCII descriptions of Java classes and 

converts them into binary Java .class files suitable for loading into a Java 

Virtual Machine. The system is comprised of 5 versions. It started with 5 

packages and 110 classes in the first version and had 5 packages and 130 

classes by the latest version. 

3) pBeans: Provides automatic object/relational mapping (ORM) of Java 

objects to database tables. The system comprised of 10 versions, with 4 
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packages and 36 classes in the first version with 10 packages and 69 

classes in the latest version. 

4) SmallSQL: A Java DBMS for Java desktop applications. It has a JDBC 

3.0 interface and offers many ANSI SQL 92 and ANSI SQL 99 features. 

The system comprised of 8 versions. It started with 130 classes in the first 

version and had 177 classes in the latest version. 

5) JWNL: A Java API for accessing the WordNet relational dictionary. 

WordNet is widely used for developing NLP applications and allows 

developers to use Java for building NLP applications. The system 

comprised of 5 versions. It started with 11 packages and 95 classes in the 

first version with 15 packages and120 classes in the latest version. 

6) DjVu: Provides an applet and desktop viewer Java virtual machine. The 

system is comprised of 8 versions. It started with 12 packages and 77 

classes in the first version with 14 packages and 79 classes in the latest 

version. 

7) Asterisk: A Java system consists of a set of Java classes that allow you to 

easily build Java applications that interact with an Asterisk PBX Server. It 

supports the FastAGI protocol and the Manager API. This system includes 

6 versions. It started with 12 packages and 222 classes in the first version 

and ended with 14 packages and 277 classes in the final version. 

Table 3.1 shows the data for the seven systems under study. 

Table 3.1 Systems under study 

System Number of versions Number of Packages Number of classes 

Velocity 9 28-39 224-300 

Jasmin 5 5 110-130 

pBeans 10 4-10 36-69 

SmallSQL 9 1-3 130-177 

JWNL 5 11-15 95-120 

DjVu 8 12-14 77-79 

Asterisk 6 12-14 222-277 
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3.4.2 Software Metrics Definition 

OO metrics usually capture properties of OO systems such as cohesion, 

inheritance, encapsulation, polymorphism, size or coupling (Fenton and Pfleeger, 

2002). It is important for a researcher to analyze whether the software metric used 

is well defined and valid (Fenton and Pfleeger, 2002). This guarantees that the 

software metric(s) truly measure(s) the attribute(s) of a product, process or project 

which it states to measure. For this Thesis, we adopted an automatic approach for 

data collection using the JHawk tool (JHawk, 2008). JHawk was used to extract 

OO metrics from versions of the systems under study. It uses static analysis of 

source code to extract a variety of OO metrics stated in the literature. We justify 

our selection of the tool on the basis that it was used by other researchers in the 

field of SE (Arisholm et al., 2004). The following is a description of the metric 

definitions used throughout this Thesis:  

1) Response for a Class (RFC): This metric is the same as that defined by 

Chidamber and Kemerer (1994) and measures the response set of a class. 

The RFC is defined as the set of methods that can be potentially executed 

in response to a message received by an object of that class. 

2) Message Passing Coupling (MPC): The number of messages passed 

among objects of a class. 

3) PACK: Number of imported packages. 

4) Number of EXTernal methods called (EXT): The more external methods 

that a class calls the more tightly bound that class is to other classes. 

5) Fan In (FIN): FIN of a function is the number of unique functions that call 

the function.  

6) Fan Out (FOUT): FOUT counts the number of distinct non-inheritance 

related class hierarchies on which a class depends. 

We also collected for each class the total number of methods (private, protected 

and public) and the lines of code (LOC) in each class as size measures. We also 
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collected one time based metric which is the time interval between each version 

release. 

3.5 Data Analysis 

Measurement is an essential concept in engineering. The conclusions of any 

empirical study are built on the values measured on research variables. Therefore, 

it is fundamental to consider the quality of the measurement and consequently 

their conclusions. Statistics is a tool that can assist researchers in giving the 

quantitative estimate of the probable truth of the conclusions. 

In this Thesis, we used three correlation coefficient analyses (Pearson‟s, Kendall‟s 

and Spearman‟s) to investigate the relationship between our variables. 

Researchers are usually interested in measuring the relationship between two or 

more variables. Field (2005) identifies correlation as a measure of the linear 

relationship between variables. These variables may relate to each other in one of 

the following ways: they may be positively related, they may be not related at all, 

or they may be negatively related. Field introduces two major calculations for 

correlations: Pearson‟s Correlation and Spearman‟s Correlation. Pearson‟s 

Correlation is a parametric statistical test that needs interval or ratio data and is 

normally distributed; Spearman‟s Correlation is a non-parametric test for ranked 

data so it can be applied to data that is not normally distributed.  

3.6 Summary 

In this chapter, we presented a discussion of the methods used to conduct our 

empirical research including, the design of the study, a description of the sample 

systems selected, the definition of software metrics used, data collected and 

statistical techniques used. 

The following chapter presents an empirical study that investigated longitudinal 

trends in changes to an OSS. We consider the trends in versions of the OSS, with 

respect to regular maintenance changes. These changes include the added classes, 
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methods, attributes and lines of code. The relationship between these changes and 

refactoring data is considered as well. 
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CHAPTER 4. PACKAGE EVOLVABILITY AND ITS 

RELATIONSHIP WITH REFACTORING 

4.1 Introduction 

Central to the aim of the Thesis is to uncover traits in OSS from an evolutionary 

perspective. Project managers and developers alike have a keen interest in 

minimising the amount of code „decay‟ that usually occurs as a system ages. It is 

also important that different levels of evolutionary abstraction are considered to 

give different perspectives on the same systems; equally, that different types of 

change (corrective, perfective or adaptive) are explored.    

In this Chapter, we therefore consider trends in versions of the „Velocity‟ OSS, 

with respect to added classes, methods, attributes and lines of code and the 

relevant enclosing packages. To support our analysis of change type, we also look 

at empirical refactoring data for the same system and associated trends for two 

other Java OSSs, namely PDFBox and Antlr.  

It is suggested that if the set of regular (i.e. essential) maintenance changes reveal 

specific characteristics, then a set of specific refactorings will also reveal similar 

features. Results showed an interesting inconsistency between trends in those 

regular changes made to the system studied and those as part of a specific set of 

changes according to refactorings specified in Fowler (1999).  

The remainder of the chapter is organised as follows. In the next section, the 

motivation for the undertaken study is presented and in Section 4.3, details of the 

data collected is provided addressing three research questions. In Section 4.4, the 

research questions are evaluated through analysis of the data over the nine 

versions of the system. Section 4.5 provides a discussion of the refactoring 

relationships from two points of view: the relationship between the refactorings 

and the changes in the new added classes, LOC, methods and attributes, and the 

relationships among the considered refactorings. The results are discussed in 

Section 4.6, and finally a summary for the study and its results given in Section 
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4.7. We note that the research described in this chapter was first published by 

Mubarak et al. (2007). 

4.2 Motivation and Related Issues 

A software system is modified and developed many times throughout its lifetime 

to maintain its effectiveness. In general, it grows and changes to support increases 

in information technology requirements. From a research perspective, we know a 

reasonable amount about facets of OO and procedural system evolution (Belady 

and Lehman, 1976; Bieman et al., 2003; Arisholm and Briand, 2006). However, it 

is less well-understood whether changes at the package level exhibit any specific 

trends. The benefit of a study that explores changes at this level is clear. 

Understanding changes at higher levels of abstraction may give a project manager 

a much more general idea of likely future maintenance or refactoring 

opportunities. In particular, such a study may also be able to focus developer 

effort in specific areas of packages susceptible to large numbers of changes. An 

additional topic of concern to OO practitioners and researchers is the relationship 

between maintenance as part of the system‟s development and that related to 

refactoring (Fowler, 1999; Mens and Tourwe, 2004).  

From an empirical point of view, the relationship between OO classes and 

packages is not well defined. Ducasse et al. (2005) suggest that it is necessary, for 

the re-engineering and development of OO systems, to recognise and investigate 

both sets of classes and packages. Ducasse et al. (2004) suggest that the cost of 

modifying a program may be influenced by the relationship between packages and 

their enclosed classes. In terms of the architecture of a system, Bieman et al. 

(2001) found that classes belonging to a design pattern were the most change-

prone classes in a system (this might also suggest that change-prone classes are 

implemented by design patterns). Finally, Demeyer et al. (2000) identified 

refactoring indicators when comparing different releases of a software system. 

They used four heuristics to find refactorings; each was identified as a mixture of 

change metrics. In this study, we will investigate the changes in the packages 

level in an OSS by considering the changes in the added classes, number of the 
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line of codes, the methods and the attributes in the packages basis. We also 

consider relationships between trends in changes at the class level with refactoring 

data extracted using a bespoke tool. 

4.3 Empirical Investigation 

The main objective of the research described is to assess how a system changes 

through the analysis of packages in the system and to compare that data with 

corresponding results from refactoring the same system. Knowledge of trends and 

changes within packages is a starting point for an understanding of how effective 

the original design may have been and how susceptible types of packages may be 

to change. It can also inform our knowledge of facets of software such as coupling 

and cohesion. 

4.3.1 The System under Study 

To achieve our objectives, a case study approach was adopted using multiple 

versions of an evolving system. This system was a large OSS called „Velocity‟ – a 

template engine allowing web designers to access methods defined in Java. 

Velocity began with 224 classes and 44 interfaces. In the latest version, it had 300 

classes and 80 interfaces.  

The data analysed was the change data on a package basis for nine versions of the 

system. The study investigated patterns in change over those nine versions 

through three research questions. In other words, certain features were 

investigated about how a system evolved based on what we believed should 

happen to a system over time. The research questions were supported by statistical 

analysis.  

Table 4.1 shows the changes in the number of packages and new classes added to 

the system over the course of the nine versions. 
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The data for each package is categorised in several columns, and each column 

contains the changes that have occurred to the packages since the previous 

version. These columns are structured as follows for each package: 

1. Number of classes where lines of code decreased, number of attributes and 

number of methods decreased.  

2. Number of classes where lines of code decreased, number of attributes 

decreased and number of methods stayed the same. 

3. Number of classes where lines of code decreased, number of attributes 

stayed the same and number of methods decreased. 

4. Number of classes where lines of code decreased, number of attributes 

stayed the same and number of methods stayed the same.  

5. Maximum decrease in the lines of code for that transition. 

6. Maximum decrease in number of attributes for that transition. 

7. Maximum decrease in number of methods for that transition. 

8. Number of new classes added during that transition. 

 

Table 4.1 The number of packages and new classes over the course of 9 versions 

Version Number of packages Number of new classes 

1
st
 28 788 

2
nd

 32 1116 

3
rd

 38 17 

4
th
 42 11 

5
th
 36 2032 

6
th
 39 45 

7
th
 39 297 

8
th
 38 1274 

9
th
 39 1386 

 

We also collected  data for the corresponding increases, obtained by replacing the 

word „decreased‟ with „increased‟ in the above list of eight columns. We looked 

into the changes over the course of these nine versions by investigating the 
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changes occurring in the individual packages. There are many ways to measure 

the changes in the packages; however, we determined these changes by assessing 

the changes in the number of added lines of code, the number of added methods, 

and the number of added attributes. Therefore, for each version, we collected the 

number of added classes, lines of code (LOC), methods and attributes. 

(Henceforward, we define a LOC as a single executable statement; we therefore 

disregard comment lines and white space from calculation of LOC.) 

4.3.2 The Research Questions 

The trends of changes in the packages for the OSS are inspected through three 

research questions. These questions investigate the trends of the added classes, 

increases in the LOC and the increases in the number of attributes and methods in 

the packages across the nine versions of the system. The research questions are as 

follow. 

 RQ1: Does the number of new classes over the course of nine selected 

versions increase constantly? This question is based on the notion that a 

system will grow over time in a constant fashion in response to regular 

changes in requirements. 

 RQ2: Is the increase in LOC over the course of the nine versions constant? 

This question is based on the assumption that the change in LOC over the 

nine versions will always increase due to evolutionary forces. 

 RQ3: Is the increase in the number of attributes and methods in a package 

constant across the versions of a system? This question is based on the 

assumption that the change in the number of attributes and methods will 

increase consistently over time in response to constant changes in 

requirements. 
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4.4 Data Analysis 

We determined the changes in the packages by assessing the changes in the 

number of added lines of code, the number of added methods, and the number of 

added attributes. In order to assess our research questions, we organised our 

collected data in a table and a figure for each question.  

4.4.1 Research Question 1 (RQ1) 

The first research question investigates whether the numbers of new classes over 

the course of nine selected versions increase constantly. Table 4.2 shows the 

number of packages in each of the nine versions, the number of new classes 

across those packages, the number of new classes in total, the maximum increase 

in classes and the package name where that increase took place. In each of the 

nine versions, new classes were added to packages and the number added varied 

significantly from one version to another. Between versions three and four and six 

and seven, relatively little change can be seen, while the peak of added classes is 

reached in the fifth version with 2032 new classes added. Clearly, the addition of 

classes to this system over the versions investigated was not constant. 

Interestingly, the version with the highest number of new classes was also 

accompanied by a drop in the number of packages (from 42 to 36). Equally, some 

of the largest additions to classes were made after only minor changes to the 

numbers of packages. Both effects may possibly be due to classes being moved 

around in the same package and simply renamed. 

A feature not immediately apparent from the data in Table 4.2 is the peak and 

trough effect of this data. A graph was therefore used to present the changes in the 

number of new added classes (Figure 4.1). We suggest that this trend is 

symptomatic of a burst of developer change activity followed by a period of 

relative stability and accumulation of new requirements, before another burst of 

change activity. A closer view of the data shows us that this increase is not always 

in the same packages for each version, and the packages themselves do not have 

the same number of classes, so this may clarify the differences in the numbers of 
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added classes across the nine versions. Furthermore, these differences may be 

affected by external reasons associated with: the developers‟ experiences, the 

product users and their requirements and the period of time separating each of the 

versions. For RQ1, we conclude that the number of new classes over the course of 

the nine versions increases at an inconsistent rate, rather than remaining constant. 

It is not the case that there is constant addition of classes to the Velocity system 

over the nine versions investigated; RQ1 cannot thus be supported. 

Table 4.2 Packages and the new classes over the course of 9 versions 

Version 
No. of 

packages 

No. of new 

Classes 

Max inc. in 

new classes 
Package name 

1
st
 28 788 176 Editor 

2
nd

 32 1116 207 Java 

3
rd

 38 17 5 Core  

4
th
 42 11 3 Javadoc  

5
th
 36 2032 329 Debuggerjpda  

6
th
 39 45 13 Openide  

7
th
 39 297 92 Core  

8
th
 38 1274 357 Web  

9
th
 39 1386 217 Core  

 

 

 

Figure 4.1 Line chart of new classes added to the packages over the 9 versions 
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4.4.2 Research Question 2 (RQ2) 

The second research question is whether the increase in LOC over the course of 

the nine versions is constant. To investigate RQ2, the „maximum‟ increase in the 

number of LOC among all the versions was used. The data is presented in Table 

4.3. It can be seen that there are increases in LOC over the course of the versions, 

but these increases fluctuate wildly. Interestingly, the Core and Vcscore packages 

were the packages that saw the maximum increases in LOC for five of the 

versions. The Core package is the only common package in Table 4.2 and Table 

4.3, suggesting that the addition of a large number of classes does not necessarily 

imply the addition of a correspondingly large number of LOC. One explanation 

for this feature might simply be that one class has been split into two (c.f. the 

„Extract Class‟ refactoring of Fowler (1999)). 

Scrutiny of the data indicates that the increase in the number of LOC in a package 

is not always the same for each version; it varies from one version to another 

across the nine versions. From the data under study it can be seen that in addition 

to this increase in the number of LOC there is always a decrease in the same 

number for each package. In other words, there are always some added LOC and 

at the same time removed LOC also. Furthermore, the collected data presents the 

maximum increase in the number of LOC among all the transitions of the classes, 

this maximum may even be an outlier. All of these previous reasons may explain 

the differences in the change of the number of LOC in addition to the external 

reasons explained in the prior research question. 

Figure 4.2 confirms that the increases in the number of LOC over the course of 

the nine versions fluctuate across versions. Again, the peak and trough effect is 

apparent from the figure. The most significant changes to Vcscore appear in the 

first five versions and those of Core appear in the seventh and eighth versions; 

RQ2 cannot be supported either. 

 



Chapter 4: Package Evolvability and its Relationship with Refactoring 44 

 

Table 4.3 Max. increase in the number of LOC over the course of the 9 versions 

Version 
Max inc in 

LOC 

Max inc in LOC among 

all the packages 

The name of 

the package 

1
st
 3955 547 Core  

2
nd

 5077 686 Form  

3
rd

 889 226 Vcscore 

4
th
 910 320 Javacvs 

5
th
 6985 995 Vcscore 

6
th
 1109 111 Vcsgeneric 

7
th
 369 71 Core 

8
th
 6418 1854 Core 

9
th
 6743 1236 Schema2beans 

 

 

 

Figure 4.2 Line chart of the max increase in the number of LOC (9 versions) 

 

4.4.3 Research Question 3 (RQ3) 

The third research question is whether the increase in the number of attributes and 

methods in a package is constant across the versions of a system. For this research 

question, the maximum increase in the number of attributes, and the maximum 

increase in the number of methods for each version were used. This data is 
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presented in Table 4.4 which shows that over the course of the nine versions there 

are consistent increases in the number of attributes (A) and number of methods 

(M). However, these increases vary from one version to another. The largest 

increase in the number of the attributes and methods is at version five. These 

differences in the changes may occur because of the differences in the number of 

classes in each package or because of the different structure for each package. In 

addition, they may be affected by the reasons suggested in the last research 

question related to the increases and decreases in the same variable, considering 

the maximum number for variable in the collected data, as well external factors. 

Once again, two packages dominate Table 4.4 - those being Core and Vcscore 

(seven of the eighteen entries in columns 4 and 7 relate to these two packages). As 

for Table 4.3, the maximum increase in methods occurs at earlier versions for 

Vcscore and towards later versions for Core. 

 

Table 4.4 Summary of the increase in attributes and methods over the 9 versions 

Version 
Inc in 

A 

Max Inc in 

A 

Package 

name 

Inc in 

M 

Max Inc in 

M 

Package 

name 

1
st
 153 26 Core 228 36 Vcscvs  

2
nd

 262 49 Form 335 84 Vcscore  

3
rd

 25 7 Jndi 46 11 Vcscore  

4
th
 24 7 Diff 22 6 Diff  

5
th
 325 51 Form 489 70 Vcscore 

6
th
 39 10 Debuggercore 73 14 Openide 

7
th
 17 4 I18n 29 6 Core 

8
th
 238 57 Core 371 150 Core 

9
th
 226 34 Java 378 76 Xml 

 



Chapter 4: Package Evolvability and its Relationship with Refactoring 46 

 

 

 

Figure 4.3 Inc. in attributes and methods 

 

Figure 4.3 shows that the number of attributes and number of methods both 

increase during the course of the nine versions, but at a fluctuating rate. Version 

four shows that more attributes were added than methods; the pattern for all other 

versions is the opposite. In contrast to the previous analysis, Figure 4.4 shows that 

version eight appears to be the source of the largest increase in methods. In 

keeping with the results from RQ1 and RQ2, we conclude for RQ3 that the 

increase in attributes and methods is not constant across the nine versions 

investigated. While the results so far give a fairly intuitive understanding of how a 

system might evolve, what is not so clear is the relationship between the „regular‟ 

set of changes as we have described them, and the opportunities for undertaking a 

set of changes such as those associated with refactoring techniques (Opdyke, 

1992; Tourwe and Mens, 2003). These are both interesting and potentially fruitful 

areas of refactoring research as well as challenges facing the refactoring 

community (Mens and van Deursen, 2003). 
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Figure 4.4 Max. inc. in attributes and methods 

 

4.5 Refactoring Relationships 

Beck (1999) suggests that a developer should refactor „mercilessly‟ and hence 

consistently. We would therefore expect refactorings for the Velocity system to be 

consistently applied across all versions. In this section, we first investigate the 

refactoring in Velocity system and then in other two OSSs - PDFBox and Antlr.  

4.5.1 Velocity 

For Velocity system, we analysed fifteen refactorings across the nine versions. 

These refactoring are presented in the first column in Table 4.5. They were 

collected by a software tool as part of a full study of refactoring in seven Java 

OSS systems by Advani et al. (2006). The fifteen refactorings were chosen by two 

developers with industrial experience and reflected, in their opinion, in 

consultation with Fowler‟s text (Fowler, 1999), the common refactorings likely to 

be made by developers over the course of system‟s life. As such, refactorings 

embracing inheritance, encapsulation, movement of class features and their 

addition and removal, all are included amongst the fifteen refactorings. 

The data presented in Table 4.5 is the number of the refactoring in each of the 

nine versions for the Velocity system. It can be seen that versions 3, 5 and 6 are 
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the main points when refactoring effort was applied to the Velocity system (these 

columns are bolded). In versions 1, 4, 7 and 8, zero refactorings were applied to 

this system.  

Figure 4.5 shows Table 4.5 in graphical form (with the „per version sum‟ of the 

fifteen refactorings on the y-axis). The figure shows that refactoring effort is 

applied most significantly at one version (in this case version 3) and thereafter a 

peak and trough effect can be seen. Comparing the trend in Figure 4.5 with that in 

Figures 4.1-4.4 suggests that the majority of the refactoring effort occurred 

between versions where significant changes in classes, LOC, methods and 

attributes took place. Version 3, with the most refactorings effort across the nine 

versions, is a trough in terms of these added features. Conversely, version 5 from 

Table 4.5 shows significant refactoring effort to have been applied, coinciding 

with large changes in the aforementioned features. Version 6 activity (again a 

trough in terms of Figures 4.1-4.4) also shows relatively large amounts of 

refactoring effort. 

Table 4.5 Refactorings for the Velocity system across 9 versions 

No. Refactoring Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9 

1.  AddParameter 0 0 14 0 1 2 0 0 1 

2. EncapsulateDowncast 0 0 0 0 0 0 0 0 0 

3. HideMethod 0 2 1 0 0 1 0 0 0 

4. PullUpField 0 0 4 0 2 4 0 0 0 

5.  PullUpMethod 0 4 13 0 24 5 0 0 9 

6.  PushDownField 0 0 0 0 7 0 0 0 0 

7. PushDownMethod 0 0 1 0 1 0 0 0 4 

8.  RemoveParameter 0 0 3 0 1 0 0 0 3 

9. RenameField 0 3 14 0 1 2 0 0 3 

10. RenameMethod 0 5 11 0 15 14 0 0 10 

11. EncapsulateField 0 5 4 0 0 0 0 0 0 

12.  MoveField 0 0 18 0 1 2 0 0 0 

13.  MoveMethod 0 3 16 0 3 3 0 0 2 

14.  ExtractSuperClass 0 1 3 0 8 1 0 0 2 

15.  ExtractSubClass 0 0 0 0 1 0 0 0 0 
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Figure 4.5 Refactorings in the 9 versions of Velocity 

  

A number of conclusions can be drawn from this analysis. Firstly, it is clear that 

developers do not seem to refactor consistently across the versions of the system 

studied (Velocity) as there is not any refactoring for some versions. Secondly, 

there is some evidence of peaks in refactoring effort happening simultaneously 

with large changes in classes, LOC, methods and attributes, while refactoring 

seems to take place mostly in a version after a peak of the same type of changes. 

(One of the claims by Fowler (1999) as to why developers do not do refactoring is 

that they simply do not have the time.) Finally, in the previous analysis, and from 

Figure 4.5, it can be noticed that the majority of regular change activity applied to 

the system is not applied during the initial versions. We considered the time 

interval between two versions as a variable in our study in Chapter 6.   

The first question that naturally arises is why refactoring changes tend to follow 

the regular changes applied to a system? After all, it is quite feasible for 

refactoring to be carried out at the same time as other changes (there is limited 

evidence of this occurring from the data). Moreover, the opportunity for 

refactoring often arises as part of other maintenance activity and we would thus 

expect developers to spot opportunities for refactoring as they undertake other 

work on a system. There is one relatively straightforward explanation for this 

phenomenon. All of the fifteen refactorings in Table 4.5 are semantics-preserving 

and do not explicitly add large numbers of classes, LOC, methods or attributes as 
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part of their mechanics. For example, the „Move Field‟ and „Move Method‟ 

refactorings would have no net effect on the number of fields or methods in a 

system, on a package basis. Simple renaming refactorings such as „Rename Field‟ 

and „Rename Method‟ do not add any LOC to the system either. Equally, none of 

the inheritance-related refactorings explicitly add LOC to a system.  

One further suggestion as to why refactoring occurs at different versions is that 

after a burst of regular maintenance effort and a new version being released, the 

decay to the system that those changes have caused may need to be remedied. In 

other words, after a concerted effort to modify the system through regular 

maintenance, developers may feel that only then is refactoring necessary. 

However, this does not explain why for the Velocity system there is significant 

refactoring effort in version 5 occurring together with a large set of changes in 

terms of added classes, LOC, methods and attributes. One explanation could be 

that developers refactor during the course of normal maintenance but without 

explicitly recognising it as refactoring. In other words, they may tidy up the code 

after completing the changes in the system classes, LOC, methods or attributes. 

We could hypothesise that while for Velocity (and the refactorings we have 

extracted) refactoring effort is not applied consistently, there are two key 

occasions when, consciously or sub-consciously, it is applied. 

One aspect of the analysis that we have not yet considered is the relationship 

between the refactorings from Table 4.5. 

 Figure 4.6 shows the sum of refactorings across all nine versions of the Velocity 

system (the numerical data for this graph is exactly that in Table 4.5). Each line in 

the graph represents the sum of each refactoring for a single version. So, for 

example, refactoring five (Add Parameter) when taken in totality is a common 

refactoring across most versions (at least five); the graphs at refactoring 5 show 

simultaneous peaks. Equally, refactoring ten (Rename Method) can be considered 

as a popular refactoring in each of the versions. For the fifteen refactorings, a 

clear trend of peaks and troughs in the fifteen refactorings can be seen. In other 

words, there is a trend in the propensity of refactorings to occur in „parallel‟ (at 
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the same time). Figure 4.6 thus illustrates the strong bond between the fifteen 

refactorings. 

 

 

Figure 4.6 „Peak and trough‟ effect of refactorings for Velocity 

 

Two notable exceptions to the trend of refactorings follow peaks and troughs 

apply to refactoring one (Add Parameter) and twelve (Move Field). At times, 

there are large numbers of this refactoring in a particular version and very few 

other refactorings in the same corresponding versions. A simple explanation may 

account for this trend. They are both refactorings that are used by the mechanics 

of many other refactorings. They are also two refactorings that a developer may 

undertake in the course of regular maintenance for example, to fix a fault without 

the use of any other refactorings. In other words, they can both act as stand-alone 

refactorings in contexts other than that of refactoring. 

4.5.2 PDFBox and Antlr 

The question we could then ask is whether refactoring effort is consistent in terms 

of the versions where it is undertaken, and whether a similar trend in refactoring 
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appears in other systems. In order to investigate that, we analysed the refactoring 

data from other two systems; PDFBox and Antlr. 

Figure 4.7 shows the versions where refactorings were undertaken for the 

PDFBox system. Versions 3 and 6 appear to be where the majority of the 

refactoring effort was invested. Although we do not have the dataset of regular 

maintenance changes applied to the PDFBox system, it is interesting that a peak 

and trough effect is clearly visible for this system as well as for Velocity. 

 

 

Figure 4.7 Refactorings for PDFBox 

Figure 4.8 shows refactoring trends for the Antlr system. Version two appears to 

be the one which most refactoring effort was invested in, supporting the view that 

relatively more refactoring seems to be undertaken at early versions of system‟s 

life (but not at its inception). It is interesting that across all three systems, version 

one seems to have been the subject of virtually no refactoring effort. One 

explanation might be that version one is simply too early in the life of a system for 

refactoring effort to be applied. On the other hand, it appears that version two or 

three is when the majority of refactoring occurs. The question that then arises is 

whether the numbers of each type of refactorings in each of the three systems 

were similar? 
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Figure 4.8 Refactorings for Antlr 

 

Inspection of the raw data reveals a common trend for refactoring 1 (Add 

Parameter) and refactorings 9, 10, 12 and 13 (Rename Field, Rename Method, 

Move Field and Move Method). We hypothesise that these types of refactoring 

have been applied relatively more frequently than any of the other fifteen because 

they „tidy up‟ a system with relatively little effort being required. After a 

significant amount of maintenance effort has been applied to a system, minor 

modifications are bound to be necessary. This may further explain why there is no 

coincidence between regular maintenance effort and that of refactoring. In the 

analysis of changes made at the package level, a significant number of methods 

and attributes were added over the versions studied. 

4.6 Discussion 

Based on the refactoring evidence, we could claim that the five stated refactorings 

were a direct response to the problems associated with the addition of so many 

attributes and methods. For example, the motivation for the „Move Field‟ 

refactoring is when „a field is, or will be, used by another class more than the 

class on which it is defined‟. In such a case, the field needs to be moved to the 

place „where it is being used most‟. Equally, the „Move Method‟ refactoring is 

applicable when: „A method is, or will be, using or used by more features of 

another class than the class on which it is defined‟. For the Velocity system, the 

large number of these two refactorings at version three suggests that the 

correspondingly large number of fields and methods added were the cause of 
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required subsequent refactoring. In other words, simple refactorings may have 

been undertaken to remedy the problems associated with such an intense set of 

added fields and methods. 

We also note that these two refactorings were popular across all three systems 

studied (and at specific points), which adds weight in support of this argument. 

The same principle applies to simple renaming of fields and methods. It is 

perfectly reasonable to suggest that when large numbers of attributes and methods 

have been added to a system, a certain amount of refactoring may be necessary 

subsequently to disambiguate and clarify the role and meaning of those fields and 

methods. Fowler (1999) suggests that the „Move Method‟ refactoring is the „bread 

and butter of refactoring‟. Equally, „Move Field‟ is the „very essence of 

refactoring‟. 

Similarly, Fowler (1999) reveals an interesting point about the „Rename Method‟ 

refactoring: „Life being what it is, you won’t get your names right the first time‟. 

One explanation for the lack of the more „structurally-based‟ refactorings (i.e. 

those that manipulate the inheritance hierarchy) in the systems studied might be 

that the package access provides the necessary inter-class access that inheritance 

might otherwise provide. The „Extract Subclass‟ and „Extract Superclass‟ 

refactorings would fall into this category. One final point relates to why versions 

two and three were the source of the most refactoring effort (as opposed to later 

versions of the system across all three systems). One explanation is that when a 

system is at early stages of its lifetime, the design documentation is more likely to 

be up-to-date. Consequently, the system is relatively easy to modify from a 

refactoring perspective. As the system ages, increasing amounts of effort and time 

needs to be devoted to changes as the code „decays‟. 

There are a number of threats to the validity of the study that need to be 

considered. One threat is that we have only considered a relatively small sample 

of systems to investigate. In defence of this threat, we accept that a larger sample 

of systems might demonstrate that the results in this chapter are more 

generalisable to the population of systems (external validity). However, the same 

criticism could be made of a study with double the number of systems studied, for 
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example. A further threat to the validity of the study is that we have only 

considered fifteen refactorings from the 72 stated in Fowler (1999). We have also 

only considered a relatively small number of versions of each system; again, in 

defence of this claim, we chose the most number of versions available at the time 

the research was being undertaken. One final threat to the validity of the study 

relates to the time gap between each version of a system. We have assumed, so 

far, that there is an equivalent time gap between versions and hence that, other 

things remaining equal, there is a reasonable chance of the same number of 

refactorings being undertaken between each version.  

Table 4.6 shows the time gap in months (m) and days (d) between the nine 

versions of the Velocity system and the total number of refactorings that were 

identified in that time - the totals are calculated by summing the individual 

columns of Table 4.5. (For the sake of argument, we assume a month to be 30 

days duration.) Table 4.6 shows that there is a wide variation in times between 

versions of the Velocity system. The minimum gap is 8 days and the maximum 

gap 8 months, 8 days. What is most interesting and noteworthy from Table 4.6 is 

that there is no clear pattern or proportionality with the number of refactorings 

based purely on the version time gaps. In other words, the length in time between 

versions seems to have no bearing on the number of refactorings extracted by the 

tool and undertaken by the developers of this system. For example, the 8 month, 8 

day gap between version 7 and version 8 realised zero refactorings. Equally, the 

10 days between version 2 and 3 realised the highest number of (102) 

refactorings. Inspection of the Velocity change logs detailing the changes between 

versions revealed a mixture of patches, bug fixes and new requirements. It would 

therefore seem that refactoring may be motivated by factors other than time per 

se. The amount of developer effort invested into the system between versions, for 

example, may be a more significant factor than time. A finer-grained analysis of 

exactly at what date and time the refactorings were undertaken (i.e. a timestamp 

approach) as well as some indication of effort on the part of the developers might 

also provide a greater insight and reveal more informative patterns in the 

refactorings; we leave this detailed aspect of the analysis for future work. 
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Table 4.6 Duration between each version and associated refactorings (Velocity) 

Version  Version gap Refactorings 

Ver1  - 0 

Ver2 8d  23 

Ver3 10d  102 

Ver4 5m 28d  0 

Ver5 1m 21d  65 

Ver6 6m 28d  34 

Ver7 15d  0 

Ver8  8m 8d  0 

Ver9 7m 9d  34 

 

4.7 Summary 

The goal of the research in this chapter was to investigate how a system evolved 

at the package level and this goal was achieved through the use of a case study. A 

set of three research questions investigated trends in changes of nine versions of a 

Java OSS. A bespoke tool was written to extract data relating to changes across 

those nine versions. An interesting „peak and trough‟ effect trend was found to 

exist in the system studied at specific versions of the system, suggesting that 

developer activity comprises a set of high and low periods. A contrast was found 

between those regular changes and those associated with refactoring activity.  

The results address a hitherto unknown area - that of the relationship between 

regular changes made to a system as part of maintenance and that of refactoring. 

While the study describes only a limited sample of systems and evidence of the 

peak and trough effect is similarly restricted (both threats to study validity), we 

view the research as a starting point for further replicated studies and for an in-

depth and generalised analysis of coupling/refactoring, both inter- and intra-

package. 
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Since the focus of this Thesis is on trends in coupling at the package level 

longitudinally, the next chapter will explore whether the extent of coupling 

influenced the removal of classes from a system. Moreover, we investigate 

whether size was an influence on removed classes, and whether these removed 

classes were changed significantly before being removed. 
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CHAPTER 5. AN EMPIRICAL STUDY OF 

“REMOVED” CLASSES  

5.1 Introduction 

In the previous chapter, an investigation of trends in changes to an OSS was 

conducted. These trends were considered with respect to added classes, LOC, 

methods and attributes. In addition to this set of maintenance changes, the applied 

refactorings were investigated in terms of their relationships with those changes.  

One aspect of evolution detailed in Chapter 4 and a key observation was therefore 

the dynamic nature of systems and, in particular, the tendency for removal of 

classes as a system evolved.  

Removal of classes can occur for range of reasons. One plausible reason might be 

that a class is excessively coupled and therefore needs to be amalgamated and 

dispersed within the classes to which it is coupled. Equally, a class might be doing 

very little „work‟ and as such can easily be removed from the system with 

minimal disruption to the rest of the system. In this chapter, an empirical study of 

coupling and data related to classes removed from multiple versions of four 

systems are described.  

Coupling is a necessary feature of OO systems; ideally, classes with excessive 

coupling should be either refactored and/or removed from the system. However, a 

problem that immediately arises is the practical difficulty of carrying out the 

removal of such classes due to the many coupling dependencies they have; it is 

often easier to leave classes where they are and work around the problem. In this 

chapter, we answer three related research questions. First, are classes removed 

from the system lowly or highly coupled relative to other classes in the same 

package? Second, are the same classes excessively large compared with the 

remaining classes in the package? Third, are removed classes changed frequently 

before they are removed? Results showed a strong tendency for classes with low 

fan-in (incoming coupling) and fan-out (outgoing coupling) to be candidates for 
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removal. Evidence was also found of class types with high imported package and 

external call functionality being removed. Finally, size, in terms of methods and 

lines of code did not seem to be a contributing factor to class removal. The 

research addresses an area that is often overlooked in the study of evolving 

systems, notably the characteristics and features of classes that disappear from a 

system. 

The chapter is organised as follows: Section 5.2 describes the motivation for the 

research and related previous work. In Section 5.3, the systems under study are 

introduced together with an overview of the metrics collected. Section 5.4 

presents an analysis of the data collected; Section 5.5 provides a discussion of the 

points raised by the study and finally, a summary and future research are 

presented (Section 5.6). We note that the research in this chapter was first 

published by Mubarak et al. (2008a). 

5.2 Motivation and Related Issues 

Excessive class coupling has often been related to the tendency for faults in 

software (Briand et al., 1997). It is widely believed in the OO software 

engineering community that excessive coupling between classes creates a level of 

complexity that can complicate subsequent maintenance and potentially lead to 

the seeding of further faults. In practice, a class that is highly coupled with many 

other classes is an ideal candidate for re-engineering or removal from the system 

to mitigate current and potential future problems. Moreover, a highly coupled 

class is, other things remaining equal, likely to have grown to be a relatively large 

class, making it even more suitable theoretically for removal from the system. The 

paradox that immediately arises, however, is that it is often easier to leave a 

highly coupled class undisturbed than to attempt to remove it. In other words, the 

disadvantages associated with its removal (i.e. side-effects, re-work and re-test) 

outweigh the disadvantages of simply leaving the class where it is.  

The research in this chapter is motivated by a number of factors. First, we would 

always expect potentially problematic classes to be re-engineered by developers 

through techniques such as refactoring (Fowler, 1999); however, practical realities 
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(limited time and resources) indicate that only when classes exhibit particularly 

bad „smells‟ are they then dealt with (Fowler, 1999). The research in this chapter 

explores the characteristics of classes removed from a system, research that has 

not been touched on in any previous work that we know of. Throughout, we 

interpret the term „removed‟ to mean that either a class has been:  

a) Decomposed to form one or more newly named classes,  

b) Moved to a different package and renamed or  

c) Simply removed from the system because it is moribund.  

 Second, there is no prior study that we know of which suggests large classes with 

high coupling are removed any more or less frequently than small, low-coupled 

classes. Large classes may be a maintenance problem and hence candidates may 

be decomposed. On the other hand, however, small classes are more portable (and 

hence can be moved more easily). Finally, while there has been some work on 

finding the optimal size of class (El Emam, 2001), very little empirical research 

has investigated whether through analysis of removed classes, there is a coupling 

level beyond which action by the developer is usually triggered.  The research 

described in this chapter relates to areas of software evolution, coupling metrics 

and the use of open-source software (Dinh-Trong and Bieman, 2004; Ferenc, 

2004). In terms of software evolution, the basis for many past evolutionary studies 

has been provided by the laws proposed by Belady and Lehman (1976). Evolution 

has also been the focus in simulation studies (Smith et al., 2006). In terms of 

coupling, a framework for its measurement was introduced (Briand et al., 1999c); 

variations for different programming styles have also been proposed (Bartsch and 

Harrison, 2006a). Li and Henry (1993) verify that maintenance and tracing 

become more difficult with extreme coupling in the system. Chidamber and 

Kemerer (1994) proposed six OO metrics, amongst which were the Response for 

a Class and Coupling Between Objects coupling metrics.  Finally, this study 

contributes to an empirical body of knowledge on coupling and longitudinal 

analysis of which more studies have been recommended (Kemerer and Slaughter, 

1999a; 1999b). 
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5.3 Study Details 

In this study, the main aim is to study the removed classes in an OSS.  These 

classes are investigated by comparing the coupling they contain to other classes in 

the same package. Moreover, the size of these classes is considered together with 

the changes taking place in them before they are removed. These terms are 

investigated through three research questions using four OSS over several 

versions. Five coupling metrics are collected for each version for these systems.  

5.3.1 Systems under Study  

Four systems were used as a basis of our study. These systems are presented in 

Section 3.4.1; however, a brief description of them is as follows: 

1) Jasmin. Jasmin is a Java assembler which takes ASCII descriptions of Java 

classes and converts them into binary Java .class files suitable for loading into a 

Java Virtual Machine. The system comprises 5 versions.  

2) DjVu. DjVu is a Java system provides an applet and desktop viewer Java 

virtual machine. The system comprises 8 versions.  

3) pBeans. pBeans is a Java system provides automatic object/relational mapping 

(ORM) of Java objects to database tables. The system comprises 10 versions. 

4) Asterisk. The Asterisk Java system consists of a set of Java classes that allow 

the user to easily build Java applications that interact with an Asterisk PBX 

Server. It supports the FastAGI protocol and the Manager API. This system 

includes 6 versions. 

5.3.2 Data Collected 

OO metrics usually capture properties of OO systems such as cohesion, 

inheritance, encapsulation, polymorphism, size or coupling (Fenton and Pfleeger, 

2002). For this study, the JHawk tool was used to collect five coupling metrics for 

each of the four systems (as described in Section 3.4.2). These metrics are: 

1) Message Passing Coupling (MPC). The number of messages passed among 

objects of a class. 
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2) PACK. The number of the packages imported. 

3) Number of EXTernal methods called (EXT). The more external methods that a 

class calls, the more tightly bound that class is to other classes. 

4) Fan IN (FIN). The FIN of a function is the number of unique functions that call 

the function.  

5) Fan OUT (FOUT). The FOUT counts the number of distinct non-inheritance 

related class hierarchies on which a class depends. 

We also collected, for each removed class, the total number of methods (private, 

protected and public) and the lines of code (LOC) in each class as size measures.  

5.3.3 The Research Questions 

The study comprises three research questions (RQ1, RQ2 and RQ3), stated as 

follows: 

 RQ1: Do removed classes contain significantly more or less coupling than 

other classes in the same package? This question is based on the belief that 

removed classes will tend to contain relatively small amounts of coupling 

when compared with other classes in the same package. We take the 

median coupling values of each metric within each package as a basis for 

our comparison. The median represents the mid-point of all values for that 

metric. All values below the median will be relatively „low‟ values and 

values above, relatively „high‟ values by comparison.       

 RQ2: Are removed classes significantly „larger‟ than other classes in the 

same package? This question is based on the belief that removed classes 

will tend to be small (in terms of their number of methods and LOC) when 

compared with other classes in the same package. Again, we take the 

median value for methods and LOC as a basis of our comparison. 

 RQ3: Do removed classes tend to be modified significantly before they 

are removed? This question is based on the belief that classes which are 

modified significantly through versions of the systems studied are more 
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likely to be removed because they cause frequent maintenance problems in 

the system. 

5.4 Data Analysis  

In order to assess our research questions, we collected the five coupling metrics, 

the number of methods (NOM) and LOC for the four systems. We then calculated 

the median for each variable. Subsequently, we presented the differences between 

the variables and their median values in tables. We calculated the differences for 

the five coupling metrics in order to assess the first research question, and the 

differences for the NOM and LOC to assess the second.  For the third research 

question, we calculated the changes in the five coupling metrics for the removed 

classes over the course of the versions studied (prior to being removed) for each 

of the four studied systems. We assess each question on all the four systems 

separately.  

5.4.1 Research Question 1 (RQ1) 

Table 5.1 shows the name of removed classes, the name of the packages that they 

were removed from, the number of version in which the classes were removed and 

values for the five coupling metrics. These values are expressed as the real values 

for the metrics minus the median for that package and in the version where the 

class was removed. The median metric value for the package and for that version 

of the system is shown in brackets after each value in each case; if classes are 

removed in different versions, the median values for that particular version are 

shown. The values for the coupling metrics are plus or minus according to the 

difference between the real value of the metric and the median value. If the metric 

value is more than the median, then the value in the table is plus, and if the metric 

value is less than the median, then the value in the table is minus. For example, 

the MPC value for class StackMapAttr was 25 greater than the median value of 6 

for that package (i.e. it had value 31). Equally, the MPC for class 

Signed_num_token was 4.5 less than the median MPC of 4.5 in that package (i.e. 

zero). Since both StackMapAttr and StackMapFrame classes were removed in the 
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same version they share the same set of median values given in the first row (this 

is not always the case).  

We have also highlighted the fact that classes are taken from different packages 

by alternating italicized class values with bold un-italicized values.  Consequently, 

the first two classes in Table 5.1 are from one package jas and the third class from 

a different package jasmin. We note also that the values in brackets represent the 

median for the whole package and therefore apply to all similar rows below it in 

the same table.  

For the Jasmin system, the three removed classes were all found in the fourth 

version (out of five). The first two removed classes are higher than the median for 

the coupling metrics. For the third class, all but one of the same metrics are below 

the median.  Clearly, for this system, coupling exceeds the median in the majority 

of cases. This is more noticeable in Figure 5.1, where the differences for the 

coupling metrics from the median are presented for each removed class (We refer 

to the class by the number of the row that presents it in the table). 

  

Table 5.1 Removed classes compared to median (Jasmin) 

Removed Class Package In MPC EXT PACK FOUT FIN 

StackMapAttr Jas V4 25 (6) 13(5) 2 (1) 6 (0) 0 (0) 

StackMapFrame Jas V4 15 7 2 2 3 

Signed_num_token jasmin V4 -4.5 (4.5) -3.5 (3.5) -0.5 (1.5) -1.5 (1.5) 0 (0) 
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Figure 5.1 Coupling metrics in the removed classes compared to median (Jasmin) 

 

For DjVu (Table 5.2), a number of different patterns emerge. First, it seems that 

when a class was removed, it tended to have relatively low (i.e. minus) MPC, 

EXT and PACK values compared with other classes (given by the median). For 

example, seven of the twelve removed classes contained values of MPC 

significantly less than the median; five of the twelve removed classes contained 

10 or less EXT values than the median. The same trend applies to the PACK 

metric. (It is relatively easy to remove a class that is lowly-coupled in terms of 

message passing and external calls.) Equally, with the exception of one class, the 

values of FOUT for this system are either 0 or negative. This is not always the 

case for FIN, suggesting a difference in emphasis between these two metrics when 

removing classes. A class with a higher FOUT than FIN is, in theory, easier to 

remove because it has fewer incoming dependencies than outgoing. Interestingly, 

only in four of the twelve cases does this occur in Table 5.2. Nonetheless, the 

values of FIN and FOUT are generally low; for two of the packages every FOUT 

value of removed classes is less than or identical to the median value.  Also of 

note are the exceptionally low values of MPC and EXT for the third package 

(each of the three classes in this package was removed in different versions 

because they each have their own set of median values). Overall, of the sixty 
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values for all metrics in the table, 33 were negative and 7 equivalent to the median 

(value of zero in the table).  

  

Table 5.2 Removed classes compared to median (DjVu) 

Removed Class Package In MPC EXT PACK FOUT FIN 

GMapRect Djvu V3 12 (20) 3 (15) 0 (1) -1 (5) 4 (10) 

GRectMapper Djvu V3 7 1 -1 -5 -10 

LibRect Djvu V3 -15 -10 1 -5 4 

Annotation Djvu V3 -20 -15 -1 -5 0 

ByteVector Djvu V7 5.5 (20) 2(15) 0 (2) 0 (5) -2.5 (10.5) 

DataPool$ 

CachedInputStream 
Djvu V7 1.5 1 -2 0 -10.5 

IFFContext Djvu V7 -9.5 -8 -1 -3 -7.5 

GMapOval djvu.anno V3 -17 (27) -7 (17) 1 (1) 0 (4) 3 (0) 

GMapPoly djvu.anno V3 51 20 1 1 3 

BoundImage Djvubean V3 -41(42) -27.5 (28.5) 0 (5) -7.5 (7.5) 1 (3) 

DjVuBean$ 

HyperlinkListener 
Djvubean V5 -46 (59) -30 (43) -5 (5) -7 (11) -5 (5) 

SimpleArea Djvubean V6 -50 (75) -34 (48) -4 (6) -10.5 (12) 0.5 (4.5) 

 

 

 

Figure 5.2 Coupling metrics in the removed classes compared to median (DjVu) 
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Table 5.3 shows the coupling metrics for the pBeans system expressed as values 

plus or minus the median. Eleven classes were removed from three different 

packages. In common with the DjVu system, the FIN values seem to be low 

compared with the median value and in this case, so too the FOUT. The most 

notable feature of Table 5.3 is the fact that all six classes removed from the 

second package (bolded) relate explicitly to databases. Moreover, the MPC and 

EXT values are exceptionally high for these classes. There is a reasonable 

explanation for this feature. Database classes are more likely to be used 

extensively by other classes and that could explain the high MPC and EXT values 

(the PACK values for the same classes are relatively low).  It might be the case 

that these six classes may not have been removed necessarily, but simply „moved‟ 

all together as part of an „Extract Package‟ refactoring to re-locate database 

classes where they are most needed (Fowler, 1999).  It is interesting that not all of 

the same six classes had low FIN and FOUT values, suggesting that only some 

forms of coupling may be relevant or considered by a developer when deciding on 

class removal.  Of the 55 values in Table 5.3, only 21 values were negative. The 

majority of positive values were accounted for by the database classes. 

Table 5.3 Removed classes compared to median (pBeans) 

Removed Class Package In MPC EXT PACK FOUT FIN 

ObjectClass pbeans V8 -2 (2) -2 (2) 0 (0) -1.5 (1.5) 1 (5) 

ObjectClass_StoreInfo pbeans V8 2 2 2 0.5 -5 

PersistentMap 

Entry_StoreInfo 
pbeans V8 -1 -1 0 -0.5 -5 

PersistentMap_StoreInfo pbeans V8 -1 -1 0 -1.5 -5 

HsqlDatabase data V8 33.5 (0.5) 27.5 (0.5) 4.5 (0.5) 15.5 (0.5) -1.5 (1.5) 

HsqlDatabase$ 

UpperCaseMap 
data V8 3.5 2.5 -0.5 0.5 -1.5 

PostgreSQLDatabase data V8 36.5 32.5 3.5 17.5 -1.5 

PostgreSQLDatabase$ 

LowerCaseMap 
data V8 3.5 2.5 -0.5 0.5 -1.5 

MySQLDatabase data V8 9.5 6.5 2.5 3.5 -1.5 

SQLServerDatabase data V8 18.5 14.5 3.5 10.5 -1.5 

InitFilter servlet V8 -1(10) 0 (8) 3 (3) 1(5) 0 (2) 
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Figure 5.3 Coupling metrics in the removed classes compared to median (pBeans) 

 

For the Asterisk system (Table 5.4), eight classes were removed from four 

packages. The Asterisk system exhibits a similar pattern to the DjVu system in 

terms of the FIN and FOUT values, the majority of which were either zero or 

negative when compared with the median.  In keeping with the pBeans system, 

the MPC and EXT values for removed classes are quite large in many cases.  

Consider, for example, the classes ReplyBuilderImpl, ReplyBuilderImplTest, 

RequestBuilderImpl and RequestBuilderImplTest – all of which have high 

MPC and EXT values. Finally, the two classes ServerSocketFacadeImpl and 

SocketConnectionFacadeImpl are related to patterns and, in particular, the 

facade pattern (evidence by Bieman et al. (2003) suggests that pattern classes are 

more susceptible to change than non-pattern based classes). The same 

phenomenon of moving related classes such as those for the database classes of 

pBeans may apply here. 
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Table 5.4 Removed classes compared to median (Asterisk) 

Removed Class Package In MPC EXT PACK FOUT FIN 

ReplyBuilder fastagi V2 0 (0) 0 (0) 1.5 (0.5) 0 (0) -1 (1) 

RequestBuilder fastagi V2 0 0 0.5 0 -1 

ReplyBuilderImpl impl V2 17 (12) 15 (10) -2 (5) 9 (7) 0 (0) 

ReplyBuilderImplTest impl V2 36 3 -3 -1 0 

Request 

BuilderImpl 
impl V2 55 41 5 7 0 

RequestBuilder 

ImplTest 
impl V2 101 19 -2 0 0 

CommonsLoggingLog util V2 5 (2) 3 (2) 0.5 (0.5) -1(2) 0 (0) 

NullLog util V2 -2 -2 -0.5 -2 0 

ServerSocket 

FacadeImpl 
asterisk.io V4 4 (0) 4 (0) 2.5 (1.5) 2 (0) -7 (7) 

SocketConnection 

FacadeImpl 
asterisk.io V4 18 12 4.5 1 -7 

Util manager V4 5.5 (2.5) 4 (2) -2 (2) 0 (1) 7 (0) 

 

 

 

Figure 5.4 Coupling metrics in the removed classes compared to median (Asterisk) 
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In response to RQ1, we suggest that FIN and FOUT coupling may be a strong 

determinant of whether a class is removed – low values of each may help the 

removal of a class; equally, high amounts of MPC and EXT may actually be one 

stimulus for moving a class. However, the key driver for removing classes as 

noted for classes in pBeans and Asterisk may be the need to remove related 

classes to a more convenient location.   

5.4.2 Research Question 2 (RQ2) 

Research question 2 attempts to answer the question whether removed classes 

were significantly „larger‟ than other classes in the same package? We determined 

the size of the class by the number of methods NOM and the number of LOC for 

this class.  

In order to answer the research question, we compare the size of the removed 

classes by taking the median value for NOM and LOC as a basis of this 

comparison. Table 5.5 shows the name of removed classes for each system, and 

values for the NOM and LOC. These values are expressed as the real values 

minus the median for that package and in the version where the class was 

removed; these values are minus or plus depending on whether the real values are 

less or more than the median, correspondingly.  

 
Table 5.5 NOM and LOC compared to the median for the four systems 

 System Removed class NOM LOC 

Jasmin 

StackMapAttr 1 14.5 

StackMapFrame 4 19.5 

Signed_num_token -2 -21 

 pBeans 

GMapRect 32.5 113 

GRectMapper 9.5 93 

LibRect -11.5 -41 

GMapOval 0 -77 

GMapPoly 26 116 

BoundImage -14 -59 

Annotation -0.5 -65 

DjVuBean$HyperlinkListener -12 -79 

SimpleArea -2 -185.5 

ByteVector 0 5 
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DataPool$CachedInputStream 1 -31 

IFFContext -5 -47 

ObjectClass 1 -5 

 SQL 

ObjectClass_StoreInfo -3 -8 

PersistentMapEntry_StoreInfo -3 -14 

PersistentMap_StoreInfo -3 -14 

HsqlDatabase 5 33.5 

HsqlDatabase$UpperCaseMap -3 -9.5 

PostgreSQLDatabase 9 47.5 

PostgreSQLDatabase$LowerCaseMap -3 -9.5 

MySQLDatabase 1 -0.5 

SQLServerDatabase 3 26.5 

InitFilter 1 11 

IndexNodeFile -1 -12.5 

Asterisk 

 

ReplyBuilder -1 0 

RequestBuilder -1 -1 

ReplyBuilderImpl -3 9 

ReplyBuilderImplTest 5 16 

RequestBuilderImpl 2 83 

RequestBuilderImplTest 11 94 

CommonsLoggingLog 4.5 5.5 

NullLog 4.5 -2.5 

ServerSocketFacadeImpl -2.5 4 

SocketConnectionFacadeImpl 1.5 17 

Util 1 19.5 

 

In order to study the NOM and LOC separately, we used the line chart to present 

each of their values in a different figure. Figure 5.5 shows the values of LOC for 

classes for each system and Figure 5.6 shows the NOM for the same four systems.  

The „zero‟ vertical axis represents the median value of NOM and LOC in the four 

systems. Hence, plotted values represent NOM and LOC values above (plus) or 

below (minus) the median.  

Figure 5.5 seems to show that a similar number of the 37 removed classes had 

LOC values below the median as above it; in fact 21 of the 37 were either zero or 

above and therefore 16 were below the median.   
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Figure 5.5 LOC in removed classes 

 

Figure 5.6 shows a similar pattern to Figure 5.5. Of the 37 values, 19 were zero or 

above (18 value were therefore below). In both figures, the DjVu system seems to 

be the system where both large and small classes were removed from the system 

(given by the erratic peaks). These results suggest that size, both in terms of NOM 

or LOC, seemed to have little bearing on the choice of removal of a class. A 

similar effect appears to take place for the pBeans and Asterisk systems, but to a 

lesser extent. For the Asterisk system, the peak in NOM and LOC coincides with 

the high values for the second package in Table 5.4. This implies that for this 

system, removed classes were both highly coupled and relatively large. 
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Figure 5.6 NOM in removed classes 

 

Based on the evidence presented, and in response to RQ2, size does not seem to 

be a key determinant in the removal of a class. Both small and large classes were 

removed (coupling may be a far greater determinant). This result is supported by 

Counsell (2008) where size was found to be a poor predictor of OO cohesion; 

coupling was a far better determinant. 

5.4.3 Research Question 3 (RQ3) 

Research question three aims to answer the question whether removed classes 

were also the subject of significant changes over the course of the versions studied 

(prior to being removed). For the Jasmin system, Table 5.6 shows the number of 

classes of the set of removed classes that were the subject of changes during the 

five versions of the system studied. As before, the values in the table are relative 

to the median. For example, two of the three removed classes in the Jasmin 

system had had changes applied to them. Class StackMapAttr was removed „In‟ 

version 4 and had changes applied to it between version 2 and 3. The same 

happened to class StackMapFrame. It was removed in version 4 and had changes 
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applied to it between version 2 and 3. Both of these classes were removed from 

the jas package. However, for the third removed class Signed_num_token, no 

change had been applied to it over the course of the versions prior to its removal, 

so it does not appear in Table 5.6. 

 

Table 5.6 Changes for removed classes (Jasmin) 

Removed classes In Changes NOM LOC FOUT FIN 

StackMapAttr V4 V2-V3 0 0 -1 0 

StackMapFrame V4 V2-V3 2 6 -1 -5 

 

For the DjVu system (Table 5.7), five out of the twelve classes were changed and 

these changes occurred between the second and the third versions in every case. 

However, these classes were not removed directly after those changes, they were 

removed later in the fifth, sixth, and seventh versions. These classes were 

removed from three different packages. 

  

Table 5.7 Changes for removed classes (DjVu) 

Removed classes In Changes NOM LOC FOUT FIN 

ByteVector V7 V2-V3 0 -4 -3 -1 

DataPool$CachedInputStream V7 V2-V3 0 0 0 0 

IFFContext V7 V2-V3 0 0 0 -1 

DjVuBean$HyperlinkListener V5 V2-V3 0 2 0 0 

SimpleArea V6 V2-V3 0 0 0 -6 

 

For the pBeans system (Table 5.8), there were changes in just three classes out of 

eleven. However, most of these changes were in the first three versions and they 

were all removed in the eighth version. The class MySQLDatabase was changed 

twice during the period studied and the class SQLServerDatabase was modified 

three times over the course of the versions studied (they thus have two and three 

entries in Table 5.8, respectively). These three classes were removed from the 

same package “data”.  
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Table 5.8 Changes for removed classes (pBeans) 

Removed classes In Changes NOM LOC FOUT FIN 

PostgreSQLDatabase V8 V3-V4 2 8 1 0 

MySQLDatabase V8 V1-V2 1 6 1 0 

MySQLDatabase V8 V6-V7 0 3 1 0 

SQLServerDatabase V8 V1-V2 1 13 4 0 

SQLServerDatabase V8 V2-V3 0 6 1 0 

SQLServerDatabase V8 V3-V4 2 8 1 0 

 

Finally for the Asterisk system (Table 5.9), there were changes in just three 

classes out of eleven. However, these changes were in the first two versions and it 

was not until the fourth version that they were removed. 

  

Table 5.9 Changes for removed classes (Asterisk) 

Removed classes In Changes NOM LOC FOUT FIN 

SocketConnectionFacadeImpl V4 V2-V3 1 2 0 0 

Util V4 V1-V2 1 6 0 1 

Util V4 V2-V3 0 0 0 2 

 

The conclusion we can draw in response to RQ3 is that first, removed classes are 

not necessarily changed significantly prior to their removal for the systems 

analysed. Second, that removal of the classes took place at a later date to that of 

change in all cases investigated. This was a surprising result to emerge from the 

analysis. Finally, we note that for all the changed systems in Tables 5.6-5.9, the 

FIN and FOUT values are small even when compared with the other FIN and 

FOUT values in Tables 5.1-5.4. 

5.5 Study Validity 

First, we have identified removed classes but could not say whether these classes 

were simply moved to a different package and renamed (we would expect most 

removed classes to be decomposed and for the subsequent classes to be renamed). 

To counter this threat to validity, we did search for classes with different names 
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but which had identical compositions to those removed classes, but found very 

little evidence to suggest that classes are actually moved and renamed (i.e. they 

tend to be decomposed or simply removed from the system). Finally, we have 

focused on coupling and size as the basis of our analysis. We could have used 

many other features of classes as a basis; for example, their cohesion or their 

position in the inheritance hierarchy (Cartwright and Shepperd, 2000). We leave 

such analyses for future work, however. 

5.6 Summary 

In this chapter, we investigated removed classes in four Java systems.  Five 

coupling metrics were collected from four Java open-source systems using the 

JHawk tool. The study investigated three research questions. First, we 

investigated whether the extent of coupling influenced the removal of classes 

from a system. We found that the FIN and FOUT metrics tended to be relatively 

small for removed classes. Moreover, that imported functionality (packages) and 

external calls play a role in certain cases (we found evidence of movement of 

database classes with high levels of message passing and external references).  

Second, we explored whether size was an influence on removed classes. We 

found little evidence that size did influence that choice.  Finally, the expectation 

that removed classes were changed significantly before being removed was ill-

founded; changes for most of the classes were made in early versions and 

removed relatively later on. 

In the next chapter, coupling will be empirically investigated. Five coupling 

metrics will be explored in five Java systems. The coupling will be examined in 

terms of their relationships with the version release times and code warnings.  
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CHAPTER 6. EMPIRICAL OBSERVATIONS ON 

COUPLING AND CODE WARNINGS  

6.1 Introduction 

In the previous chapter, an empirical study concerning removed classes in Java 

OSSs was undertaken. In the study, removed classes in four OSSs were 

investigated through three related research questions. First, does the amount of 

coupling influence the choice of removed class? Second, does class size play a 

role in that choice? Finally, is there a relationship between the frequency with 

which a class is changed and its point of removal from a system?  

One question that is pertinent to ask about coupling based on the features 

extracted in Chapter 4 and 5 is the extent to which it might cause problems in 

code. In other words, does excessive coupling cause faults to be invested in code 

or at best induce a coding style that naturally harbours faults? In this chapter, we 

explore this aspect of coupling. Our investigation considered coupling in five Java 

systems using coupling metrics, version release times and code warnings. We 

collected five coupling metrics, class data and version release times from the 

systems using the JHawk tool and used code warnings extracted using the 

FindBugs tool to determine the relationships between coupling, those warnings 

and the time interval between versions.  

Results found that addition of coupling may have beneficial effects on a system. It 

also seems that addition of coupling in new functionality through packages could 

result in fewer warnings than adding functionality to existing code. Finally, there 

appears to be a coupling trade-off between coupling types – in particular that 

between the uses of coupling through imported packages and the introduction of 

„internal-to-the-package‟ coupling.  

The remainder of the chapter is organised as follows. In the next section, we 

present the motivation for the study and related work. In Section 6.3, we provide 

details of the systems studied, the tools used, the data collected and the research 
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questions. We then present the data analysis including the role that code warnings 

played (Section 6.4). We then discuss a number of issues raised by the study in 

Section 6.5 before concluding in Section 6.6. We note that the research in this 

chapter was first published by Mubarak et al. (2008b). 

6.2 Study Motivation 

Coupling, whether in the procedural or OO paradigm, has often been related to the 

propensity for faults in software (Briand et al, 1997; Briand et al., 1998). It is 

generally accepted in the OO software engineering community that extreme 

coupling between classes produces a level of complication that makes problems 

with subsequent maintenance and possibly guides to the seeding of (further) 

faults. The research in this paper is motivated by a number of factors. Firstly, the 

research in Chapter 4 has shown that frenetic bursts of refactoring activity after 

specific releases of a system, suggesting that this activity is in response to a wide 

range of „regular‟ (i.e. non-refactoring) changes to the system under consideration. 

There is a strong link between refactoring and the need to reduce coupling and it 

is thus a natural extension to the research in this earlier work to explore those 

regular changes and, moreover, their link with refactoring. Secondly, while there 

have been many studies of evolving systems, the time frame between releases is 

often ignored, and each version release is considered as occurring at an equal time 

interval from the last. However, analysis of relative change may reveal significant 

facets of the maintenance activity that, in particular, have a relationship with 

trends in fault propensity.  

While there has been a large amount of research into evolutionary trends in 

systems in the past (Belady and Lehman, 1976; Bieman et al., 2003; Girba and 

Ducasse, 2006; Lehman, 1980; Mens et al., 2004), a number of research questions 

remain mainly unaddressed. Firstly, releases of a system can arise at very different 

time intervals, and change activity can be motivated by a number of factors. For 

example, it is possible for two sequential versions of a system to be released on 

the same day because of a requirements fault in the primary release. In other 

cases, time intervals of over a year between version releases are common. The 
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research question that naturally arises is: what trends in change activity can we 

observe if we factor in the different time periods between releases of a system? 

Secondly, if we can observe that there are these concerted „bursts‟ of maintenance 

activity in which increased coupling will inevitably feature, then how can 

potential code „warnings‟ assist and inform our understanding during or after 

those bursts? A high proportion of change activity must inevitably have an effect 

on potential fault patterns.  

6.3 Preliminaries 

6.3.1 Systems under Study 

Five systems were used in order to investigate the research questions. Three of 

these systems were used in the study conducted in Chapter 5 (Jasmin, pBeans and 

DjVu). The five systems are presented in Section 3.4.1; however, a brief 

description of them is as follows: 

1. Jasmin. Jasmin is a Java assembler which takes ASCII descriptions of Java 

classes and converts them into binary Java .class files suitable for loading 

into a Java Virtual Machine. The system comprises 5 versions.  

2. DjVu. DjVu is a Java system that provides an applet and desktop viewer 

Java virtual machine. The system comprises 8 versions.  

3. pBeans. pBeans is a Java system which gives automatic object/relational 

mapping (ORM) of Java objects to database tables. The system comprises 

10 versions. 

4. SmallSQL. Small SQL is a Java DBMS for Java desktop applications. It 

has a JDBC 3.0 interface and offers many ANSI SQL 92 and ANSI SQL 

99 features. The system comprises 8 versions.  

5. JWNL. JWNL is a Java API for accessing the WordNet relational 

dictionary. WordNet is widely used for developing NLP applications and 

allows developers to use Java for building NLP applications. The system 

comprises 5 versions.  
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6.3.2 Tools Used 

Two software tools were used for our analysis. Firstly, the JHawk (2008) tool was 

used to collect the five coupling metrics and the class data (number of classes and 

methods). The FindBugs (2008) tool was used to collect the warnings for each 

version of the systems. The FindBugs tool analyses the Java byte code for 

common potential fault patterns and issues those warnings decomposed into six 

categories. 

1. Bad Practice (BP): “Violations of recommended and essential coding 

practice. Examples include hash code and equals problems, serializable 

problems/misuse of finalize.”  

2. Correctness (CORR): “An apparent coding mistake resulting in code that was 

probably not what the developer intended.” For example, method ignores 

return value/double assignment of field.  

3. Malicious Code Vulnerability (MCV): State where internal information is 

changed or exposed. Examples include that a mutable static field could be 

changed by malicious code or by accident from another package. 

4. Multi-threaded Correctness (MTC): A potential fault due to careless 

housekeeping of threads. Examples include a method that does not release a 

lock on all paths, and field not guarded against concurrent access.   

5. Performance (PER): Code written in such a way that would detract from the 

efficiency of the system. Examples include a private method never being 

called, an unread or unused field, and inappropriate use of String. 

6. Questionable (Dodgy) Practice (DODGY): “Code that is confusing, 

anomalous, or written in a way that leads itself to errors. Examples include 

dead local stores, unconfirmed casts and redundant null check of value 

known to be null.”  
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6.3.3 Data Collected 

For each of the systems, we collected five independent and orthogonal coupling 

metrics and one time based metric (as described in Section 3.4.2). The first four 

metrics were used also in the study conducted in Chapter 5 (Section 5.3.3). 

1. Message Passing Coupling (MPC): The number of messages passed among 

objects of a class.  

2. PACK. The number of imported packages. 

3. Fan IN (FIN). The FIN of a function is the number of unique functions that 

call the function.  

4. Fan OUT (FOUT). The FOUT counts the number of distinct non-inheritance 

related class hierarchies on which a class depends. 

5. Response for a Class (RFC). This metric is the same as that defined by 

Chidamber and Kemerer (1994) and measures the response set of a class. The 

RFC is defined as the set of methods that can potentially be executed in 

response to a message received by an object of that class. 

6. The time intervals between each version release. 

6.3.4 Research Questions 

The study comprises two research questions (RQ1 and RQ2), stated as follows:  

 RQ1: What trends in change activity can we observe if we factor in the 

different time periods between releases of a system? This question is based 

on the belief that the time interval between two released versions will 

affect the changes in a system if we put it under consideration. Sometimes 

the time interval between the version releases can be days, while 

sometimes it can be months.  

 RQ2: How can potential code „warnings‟ help and inform our 

expectations of the changes in a system activity? This research question is 

based on the fact that a high fraction of change activity certainly has an 

effect on potential fault trends. 
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6.4 Data Analysis 

For each of the following five systems, we present the coupling data, the warnings 

for each version and the time interval between versions. We will assess the two 

research questions at the same time for each of the five systems. 

6.4.1 The Jasmin System 

Table 6.1 shows the changes in each of the coupling metrics over the five versions 

of the Jasmin system. No new packages were introduced over the course of the 

five versions, but we observe significant changes in each of the coupling metrics 

particularly between releases version 2 and 3, before falling consistently 

afterwards. The number of added classes was relatively low, but the addition of 21 

classes between versions 1 and 3 resulted in over 150 new methods being added. 

Between versions 4 and 5, there were small amounts of added coupling.  

 

Table 6.6.1 Changes in coupling metrics for the Jasmin system 

Jasmin Interval Packages Classes RFC MPC PACK FOUT FIN 

V1-V2 401 0 10 202 194 13 29 30 

V2-V3 63 0 11 317 330 25 42 31 

V3-V4 45 0 -1 45 44 -1 11 11 

V4-V5 140 0 0 1 5 0 6 2 

 

One feature of the data was not a surprise - the „burst‟ and then sudden fall in 

coupling activity was noted previously in Chapter 4, where refactoring effort for 

OSS followed a similar pattern of: bursts of maintenance activity followed almost 

immediately by bursts of refactoring activity.  

Table 6.2 shows the warnings for each release of the Jasmin system. These 

warnings are presented in the six aforementioned categories. Figure 6.1 shows the 

total number of warnings for each release of the Jasmin system (upper graph) and 

the changes in the number of warnings (lower graph). It is remarkable that from 
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version 2 to 3, there was actually a fall in the number of warnings for this system 

(and yet this was accompanied by a significant rise in coupling as we can see from 

Table 6.1). 

 

Table 6.6.2 Warnings for Jasmin 

Jasmin BP CORR MCV MTC PER DODGY Total 

V1 6 0 8 0 1 2 17 

V2 6 0 8 0 18 7 39 

V3 7 0 8 0 7 9 31 

V4 8 0 10 0 7 12 37 

V5 0 0 0 0 0 0 0 
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Figure 6.1 Total warnings for Jasmin 

 

Inspection of the warning categories issued by FindBugs revealed that over 50% 

of the 39 warnings attributed to version 2 were found to be in the performance 

(PER) category.  The majority of the warnings in this category relate to the need 

for additional method invocation to overcome inefficiencies associated with data 
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manipulation (this would affect the values of RFC and MPC metrics in particular). 

In many instances, the developer is urged by FindBugs to heed this warning by 

adding method calls (coupling) to specific classes and, in some cases, to replace 

one method call with two. For example, the following complex construct replaces 

a single method call as a remedy to one warning related to improper array use: 

myCollection.toArray(newFoo[myCollection.size()]). In other words, the increase 

in coupling witnessed by the Jasmin system between version 2 and 3 may have 

been from necessity. More significantly and counter-intuitively, added coupling 

may actually have contributed to the decrease in warnings between those versions. 

We cannot therefore discount the possibility that increases in coupling may 

actually have beneficial effects in a system by eliminating potential inefficiencies. 

This was a surprising feature to emerge from our study. 

The values in Table 6.1 and Figure 6.1 make the assumption that between each 

release of the Jasmin system, there is an equal length of physical time. Figure 6.2 

shows the time intervals between each of the versions of Jasmin.  

The significant increase in coupling between version 2 and 3 is placed in its 

proper context when we consider that there were 401 days between version 1 and 

2, yet only 63 days between version 2 and 3. We could suggest that a key 

motivation for the burst of increased coupling between version 2 and 3 (and the 

added coupling therein) may have been simply to improve the performance of the 

system. This may also explain the minimal changes in coupling and the 

consequent drop in warnings thereafter. 
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Figure 6.2 Time interval between versions 

 

To conclude, contrary to what we would expect, added coupling may have a 

positive rather than detrimental effect on a system. This result also points to the 

possibility of adding „good‟ coupling to a system as well as removing „bad‟ 

coupling in a simultaneous operation.  

6.4.2 The pBeans System 

Table 6.3 shows the changes in each of the five coupling metrics over the ten 

versions of the pBeans system. A notable feature of the values in the table is the 

relatively low coupling activity between version 3 and 6. Thereafter, there is a 

significant increase in each of the metric values. This increase would appear to be 

due to the addition of 6 new packages over the course of versions 6-8. The only 

decrease in a metric value was attributed to FIN between versions 1 and 2.  
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Table 6.3 Changes in coupling metrics for the pBeans system 

pBeans Interval Packages RFC MPC PACK FOUT FIN 

V1-V2 2 0 5 6 1 5 -2 

V2-V3 5 0 92 102 8 27 34 

V3-V4 2 0 16 14 0 1 0 

V4-V5 17 0 2 3 0 0 3 

V5-V6 35 0 44 39 5 18 1 

V6-V7 297 1 113 89 25 49 32 

V7-V8 727 5 604 607 34 208 190 

V8-V9 3 0 15 23 0 4 4 

V9-V10 26 0 18 28 0 3 3 

 

In Table 6.4, the number of warnings for each of the releases of pBeans system 

are categorised in the same six groups. Figure 6.3 shows the total number of these 

warnings and seems to follow the pattern of the values in Table 6.3. Figure 6.4 

shows the wide variation in times between each of the versions of the system. A 

surprising (and notable) feature of Figure 6.3 and Table 6.3 is the relatively low 

rise in warnings accompanying the large time interval after version 6, a period in 

which large amounts of coupling was added to the system. The rise in warnings 

between version 2 and 3 (Figure 6.3) is actually greater than that after version 6.  

One explanation for this feature might be that adding new packages does not per 

se cause a corresponding rise in warnings. In other words, self-contained and 

encapsulated new packages tend to induce relatively few warnings. We thus 

suggest that there is a marked and distinct difference between adding coupling to 

those existing packages and the consequent effect this has on warnings when 

compared with the influence on warnings through the addition of new packages.  

From a maintenance point of view, we would normally expect new code to create 

fewer „ripple‟ effects (Black, 2001) and to generate fewer warnings than 

modification of existing code (because of the lower potential for lack of code 

comprehension and the possibility of side-effects).  
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Table 6.6.4 Warning for pBeans 

pBeans BP CORR MCV MTC PER DODGY Total 

V1 146 15 14 38 33 51 297 

V2 146 15 14 38 32 51 296 

V3 204 30 23 39 40 70 406 

V4 203 27 20 39 38 65 392 

V5 204 30 23 39 40 70 406 

V6 204 31 23 39 40 71 408 

V7 211 31 30 39 41 73 425 

V8 228 45 40 34 59 100 506 

V9 229 45 40 34 59 104 511 

V10 230 45 40 34 59 104 512 
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Figure 6.3 Total warnings for pBeans 

 



Chapter 6: Empirical Observations on Coupling and Code Warning 88 

 

 

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9

Version

N
o

. 
D

a
y
s

Time Interval

 

Figure 6.4 Time interval between versions 

 

It is also interesting to note from Figures 6.3 and 6.4 that addition of coupling 

within a very short space of time, for example in versions 1-3, seems to cause a 

higher proportion of warnings than when a longer time is spent between versions. 

Versions 1-3 of the pBeans system were released within a time period of just 

seven days and the same period saw the highest rise in warnings as a result. The 

overall theme that runs through changes to the pBeans system is that packages 

may offer a level of encapsulation from access by classes in other packages and, 

when added anew, do not seem to be the source of significant rises in code 

warnings. 

6.4.3 The SmallSQL System 

Table 6.5 shows the changes in each of the five coupling metrics over 9 versions 

for the SmallSQL system. There is a clear and notable increase in coupling as a 

result of the addition of a single package between versions 5 and 6. In contrast to 
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the previous two systems, all values of changes in coupling metrics are positive in 

value.  

Table 6.5 Changes in coupling metrics for the SmallSQL system 

SmallSQL Interval Packages RFC MPC PACK FOUT FIN 

V1-V2 7 0 19 31 3 28 166 

V2-V3 24 0 34 14 1 33 10 

V3-V4 34 0 17 17 2 9 7 

V4-V5 41 0 48 61 1 6 10 

V5-V6 39 1 1055 1698 44 383 169 

V6-V7 112 1 109 130 8 23 40 

V7-V8 159 0 150 236 5 45 54 

V8-V9 70 0 65 110 2 16 20 

 

Table 6.6 presents the warnings categorised in six sets for the SmallSQL system. 

Figure 6.5 shows the total warnings and changes in number of warnings for that 

system. In common with the result for the pBeans system, there seems to be only 

a small effect on the number of warnings from such a large increase in coupling 

(between versions 5 and 6). The largest rise in warnings comes earlier, between 

versions 2 and 3, where the time interval between versions was relatively small 

(24 days). We would have expected a higher rise in warnings following the rise in 

coupling from version 5 to 6, but this does not seem to be the case. This result 

supports the claim made for the pBeans system with respect to addition of new 

packages and the negligible effect that had on generated warnings. 

We also note a strong correspondence between the trend for changes in warnings 

for the pBeans and SmallSQL systems (Figure 6.3 and Figure 6.5). In each case, 

there is a small peak in warning changes between an early pair of versions and 

two later versions. The graphs representing the total warnings are also similar and 

each has a large time interval towards the end of the versions studied (Figure 6.4 

and Figure 6.6). Evidence from the pBeans system suggested that addition of new 

packages may thus have relatively insignificant effects on the number of warnings 

but that addition of coupling without the addition of packages can create 
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problems. We could thus suggest that, from the combined evidence presented in 

Figure 6.3 and Figure 6.5, adding coupling in existing packages may have a 

greater adverse effect on generated warnings than through creation of new 

functionality. The evidence presented for the previous two systems also supports 

the claim that addition of new functionality has a lesser effect on potential 

warnings than modification of existing code.   

 

Table 6.6.6 Warning for Small SQL 

SmallSQL BP CORR MCV MTC PER DODGY Total 

V1 47 1 0 0 7 12 38 

V2 47 1 0 0 6 12 41 

V3 53 1 0 0 6 13 67 

V4 53 1 0 0 6 13 66 

V5 53 1 0 0 6 13 73 

V6 65 1 0 0 5 16 73 

V7 65 1 0 0 5 16 73 

V8 72 1 0 0 5 16 87 

V9 72 1 0 0 5 16 87 
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Figure 6.5 Total warnings for SmallSQL 
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Figure 6.6 Time intervals between versions 

 

6.4.4 The JWNL System 

Table 6.7 shows the changes in each of the five coupling metrics over the six 

versions of the JWNL system. Version 2 to 3 was a simple patch to the system 

and hence we have omitted coupling values from our analysis in this case 

(denoted by „n/a‟ values).  

 

Table 6.6.7 Changes in coupling metrics for the JMNL system 

JWNL Interval Packages RFC MPC PACK FOUT FIN 

V1-V2 0 1 -830 -599 69 -165 -53 

V2-V3 n/a n/a n/a n/a n/a n/a n/a 

V3-V4 386 9 1286 957 -87 352 232 

V4-V5 20 0 0 0 0 0 0 

V5-V6 284 -6 -129 -125 173 -150 -73 

 

It is noteworthy that even though only a single package was added to the system 

from version 1 to 2, a significant fall in coupling was observed for this system. 
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This was also accompanied by a fall in generated warnings from 166 to 63 over 

the same versions.  It is also interesting to note that each of the coupling metrics 

saw a decrease in value except for PACK, which suggests that any re-engineering 

effort that saw RFC, MPC, FIN and FOUT coupling reduced was „devolved‟ to 

other imported packages.  The strange feature of the JWNL system is that after 

version 2 an opposite effect occurred.  This process is reversed once again 

between versions 5 and 6, suggesting that there is distinct contradictory choice 

being made each time; either use coupling within a package or import that 

coupling through other packages. 

Table 6.8 shows the warning of each of the six categories for the JWNL system. 

However, Figure 6.7 shows the number of warnings and the changes in warnings 

for the JWNL system; warnings and change in warnings seem to be rising in 

parallel after version 4.  

Table 6.8 Warning for JWNL 

JWNL BP CORR MCV MTC PER DODGY Total 

V1 55 9 52 9 20 21 166 

V2 17 2 28 4 8 4 63 

V3 18 4 12 2 7 4 47 

V4 21 1 13 1 4 4 44 

V5 21 1 13 1 4 4 44 

V6 33 4 21 3 6 15 82 

 

We could tentatively suggest from the observed data that choice of alternative 

forms of coupling represent a trade-off between those different types.  For 

example, it has been shown that coupling in the form of C++ friends are 

correlated with faults (Briand et al., 1997) and such practice should be 

discouraged as a violation of encapsulation principles; on the other hand, 

inheritance-based coupling is encouraged when appropriate as good practice. 

When used to access methods of a class, friends are an alternative to the use of 

inheritance. Consequently, when choosing to use friends, a developer 

automatically precludes the choice of inheritance to carry out the same task/s. In 
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theory, reuse coupling through the importing of packages is an essential and 

unavoidable part of any system (it obviates the need for introducing internal 

coupling). It is the extent of that importation that seems to make a difference.  
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Figure 6.7 Total warnings for JWNL 
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Figure 6.8 Intervals between versions 
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From the data presented for the JWNL system, it would appear that the practice of 

inter-changing one type of coupling for another between versions could be the 

source of potential subsequent problems; more specifically, removing packages 

may have an adverse effect in terms of warnings. 

6.4.5 The DjVu System 

Table 6.5 shows the changes in each of the five coupling metrics over the eight 

versions of the DjVu system.  In common with all the previous systems (apart 

from Jasmin), the addition of packages causes significant increases in coupling 

metric values. Of the five systems studied, DjVu appears to be the most stable in 

terms of both warnings and changes in number of warnings (Table 6.10, Figure 

6.9). One feature of the data for the DjVu system stands out from all the other 

systems and might explain this characteristic. Over the course of its versions, only 

two classes were added to the system even though two new packages were 

introduced (versions 4 to 6).  

 

Table 6.6.9 Changes in coupling metrics for the DjVu system 

DjVu Interval Packages RFC MPC PACK FOUT FIN 

V1-V2 160 0 27 28 1 9 5 

V2-V3 41 0 198 110 7 30 109 

V3-V4 1 0 0 3 0 2 3 

V4-V5 7 1 132 140 10 42 25 

V5-V6 18 1 41 72 0 35 22 

V6-V7 25 0 -38 -25 11 7 55 

V7-V8 40 0 1 0 0 -3 -10 

 

Inspection of the data also revealed that correspondingly few methods were added 

to existing classes over the course of the versions studied.  This very slight 

increase in classes contrasts heavily with the other four systems (where large 

numbers of classes and methods were added consistently across versions).  In 
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other words, effort in this system seems to have been applied to re-engineer 

existing classes rather than introduction of new ones. A further notable feature of 

the DjVu system is the relatively long time interval between releases of earlier 

versions of the system. The pattern in Figure 6.10 is shared only with the Jasmin 

system and is characterised by a long time interval between version 1 and 2 (160 

days). 

Table 6.6.10 Warning for DjVu 

DiVu  BP CORR MCV MTC PER DODGY Total 

V1 35 9 62 15 58 12 191 

V2 35 10 62 15 58 12 192 

V3 37 9 56 12 50 9 173 

V4 37 9 57 12 50 9 174 

V5 36 8 58 12 50 9 173 

V6 37 9 60 15 51 9 181 

V7 34 7 64 14 51 13 183 

V8 34 7 64 14 51 13 183 
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Figure 6.9 Warnings for DjVu 
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Figure 6.10 Intervals between versions 

 

We could suggest that relative stability may be linked with two characteristics: 

careful re-engineering of existing code (in terms of time spent) and minimisation 

of added functionality to existing code. It is also interesting that the Jasmin system 

is the only other system with a V-shaped time interval curve over the course of its 

life so far – the other systems (Figures 6.4, 6.6 and 6.8) all approximate an 

inverted V-shaped curve. We could suggest that spending relatively large amounts 

of time and care over initial versions of a system and then again applying the 

same attention later on in a system‟s lifetime (characterised by the V-curve) may 

contribute to the stability of a system. 

6.5 Discussion  

There are a number of implications of the results described in this chapter and a 

number of threats to its validity. In this chapter, we have tried to relate the 

analysis to time between versions wherever possible. One feature that every 

system seems to exhibit is an extreme burst of increased coupling at some point 

and, usually, within a relatively short time period. Figure 6.11 and 6.12 illustrate 

the extent of these bursts of activity and, specifically, the significance of coupling 

peaks for the RFC and MPC metrics for all five systems (when all versions are 
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arranged sequentially). The order from left to right in Figure 6.11 and 6.12 thus 

represents the RFC and MPC values in the same order of the five systems 

introduced in Sections 6.4.1 to 6.4.5. 
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Figure 6.11 Trends in RFC 
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Figure 6.12 Trends in MPC 
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Most noticeable from Figures 6.11 and 6.12 are the values for the JWNL system 

which show wide fluctuations in both a positive and negative direction. As shown, 

at the far right-hand side of each figure, the stability of the DjVu is represented by 

relatively small peaks. While the claims that we have made in the previous section 

may be based on single observations and intuition, it is clear that first, total 

coupling always rises in a system and second, bursts of coupling activity seem to 

be a characteristic of every system studied.  

Since physical time plays such an important role in our analysis, it is worth 

investigating the possibility that Self-Organized Criticality (SOC), or in other 

words, whether an 80/20 rule (i.e. 80% of coupling is added in 20% of the time) 

applies to the addition of coupling over the versions of the systems studied (Wu et 

al., 2007). If we now consider just the RFC values for each system, then for the 

Jasmin system, 20% of the total time interval is approximately 129 days. In the 

108 days between V2 and V4, only 64% of coupling was added (other short time 

intervals only add marginally to overall coupling). For the pBeans system, 20% of 

the time interval is 223 days. 64% of the coupling for this system was added 

between V6 and V8 where the time interval was 1024 days, suggesting, as for 

Jasmin, the absence of any 80/20 rule. For the SmallSQL system, 20% of the time 

interval is approximately 97 days. In the 80 days between V4 and V6, 74% of 

coupling was added, suggesting a profile more akin to 80/20 (although still falling 

just short of the threshold if we consider the extra 17 days). For neither the JWNL 

nor DjVu system is there any evident 80/20 relationship. No significant 80/20 rule 

is obvious for any of the five systems. The fact that we are only considering added 

coupling, and not other added data or behaviour may contribute to this lack of 

empirical support. However, it does further emphasise the enigmatic 

characteristics of system coupling. In the next chapter, the 80/20 relationship will 

be investigated in more detail to see whether 80% of total coupling is contained in 

the top 20% of classes for multiple versions of open-source software and, if so, 

whether that relationship is exacerbated over time. 

A number of threats to the validity of the study also need to be considered. First, 

we have only used five, medium-sized open-source systems as part of our study. 

While that provides a cross-sectional view of systems, we accept that this limited 
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number and system size threatens the generalisability of the results. Another threat 

to the validity of the study is that we have used warnings as a basis of our analysis 

and not actual faults or complementary techniques (Zheng et al., 2006). However, 

we feel that it is better to be „fore-warned‟ and therefore „fore-armed‟ of potential 

problems and to analyse that data, than to analyse data in a post-fault sense. 

The second threat is that many of the warnings issued by FindBugs suggest 

refactorings that can be applied to remedy the potential problems in the code and 

so we see our analysis as a contributor the refactoring process.  For example, one 

of the warnings on performance suggests refactoring a class into a named static 

inner class, if it does not use existing objects appropriately. We note that the 

majority of warnings for the five systems studied fell into the performance 

category. 

A third threat to the validity of the study is that we have assumed developer 

activity to be constant throughout the time period studied. This means that on each 

day there is the same probability of activity on the project. In reality, this might 

not be the case; a detailed study of developer activity in each system will feature 

in future work.   

The fourth threat is that we have assumed that one package is identical to any 

other package. In reality, there may be a combination of both user-defined and 

library-based packages being imported into a system. This analysis will be the 

subject of future work.  

The final threat considered that we have only collected five coupling metrics from 

a wide range of available coupling metrics in the literature. We defend this choice 

on the basis that these five provide a set of metrics that allow different levels of 

code and design abstraction to be analysed and compared, which is a key 

objective of the study presented.    

6.6 Summary 

In this chapter, we have investigated trends in coupling in five Java systems. Five 

coupling metrics were collected from five Java open-source systems using the 

JHawk tool and warnings for each version collected using the FindBugs tool. 
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Investigation of the five systems revealed a common trend of bursts of additional 

coupling and the emergence of a number of themes. First, and surprisingly, the 

addition of coupling may have beneficial effects on a system. Second, and more 

intuitively, it seems that the addition of coupling in new functionality through 

addition of packages could result in fewer warnings than adding functionality to 

existing code. Finally, there appears to be a trade-off between coupling types, in 

particular, that between couplings through imported packages and the introduction 

of internal-to-the-package coupling.  

In the next chapter, the notion of an 80/20 relationship discussed in this chapter 

will be presented in more detail. The coupling metrics will be tested to see if they 

obey the 80/20 rules in the class basis. The top 20% of classes will be explored to 

see if they contain the 80% of the coupling. Moreover, in the next chapter we will 

investigate the relationship between the FIN and FOUT metrics to see whether 

they increase in corresponding amount and consistently over time, and to 

investigate the characteristics of classes exhibiting the highest values of these two 

metrics. 
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CHAPTER 7. EVOLUTIONARY STUDY OF FIN AND 

FOUT 

7.1 Introduction   

One observation made from the studies in Chapters 4, 5 and 6 was that the bulk of 

changes and coupling activity (identified by the metrics collected) tended to focus 

around a small number of classes, while on the other hand the vast majority of 

classes remained untouched throughout the same versions studied.  

Pareto‟s Law or an „80/20‟ rule as it is sometimes known is a naturally occurring 

phenomenon. For example, we could claim that 80% of floods comprise just 20% 

of the total destructive damage around the world. Unfortunately, and sadly, the 

other side of the coin is that 20% of floods (the most severe and destructive ones) 

account for 80% of the total damage.  In the context of the Thesis, we might 

suggest that 80% of class activity in a system occurs in just 20% of classes. In the 

previous chapter, coupling in five Java systems using five coupling metrics, 

version release times and code warnings was empirically explored. The results 

that were reported in that chapter revealed a common trend of bursts of additional 

coupling and suggested that coupling is a multi-faceted, multi-dimensional and 

more complex feature of a system than may have been appreciated in the past. 

Moreover, in the previous chapter, there was a brief investigation to see whether 

an 80/20 rule applied to the addition of coupling over the versions of the systems 

studied. In this chapter, this investigation is studied in more detail. We explore 

whether an 80/20 rule exists in Java from six coupling metrics over multiple 

versions of open-source software and, if so, whether that relationship is 

exacerbated over time. The automated tool JHawk was used to extract the six 

different coupling metrics from four Open-Source Systems. Afterwards, the 

classes were ranked on each of these 6 coupling metrics and then the top 20% of 

classes were analysed to see whether 80% of total coupling was contained therein. 

Only one metric appeared consistently to have an 80/20 relationship and that was 

the FIN metric. Evidence suggests that FIN and FOUT have a complementary 
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relationship. We found many of the other metrics had few, if any, such 

relationships. We also found no evidence to support the view that over time, the 

80/20 is exacerbated. The relationship between FIN and FOUT coupling metrics 

suggested another investigation, so we explore this relationship over multiple 

versions of open-source software. More specifically, we explore the relationship 

between the two metrics to determine patterns of growth in each over the course 

of time. Two questions were posed for each system. First, what are the 

characteristics of classes exhibiting the highest FIN values? Second, do FIN and 

FOUT increase in corresponding and consistent amounts over time? Results show 

a wide range of traits in the classes to explain both high and low levels of FIN and 

FOUT. We also found evidence of certain „key‟ classes (with both high FIN and 

FOUT) and „client‟ and „server‟-type classes with just high FOUT and FIN, 

respectively. We provide an explanation of the composition and existence of such 

classes as well as for disproportionate increases in each of the two metrics over 

time. 

The remainder of this Chapter is structured as follows. In the next section, we 

present the motivation for the study and related issues. In Section 7.3, we provide 

details of the systems studied, the data collected and the research questions. 

Section 7.4 includes an analysis of each system individually in order to assess the 

research questions. Finally, we conclude and summarise the study in Section 7.5. 

We note that the research in this chapter was first published by Mubarak et al. 

(2009) and also in Counsell et al. (2010). 

7.2 Study Motivation and Related Issues 

Many social and naturally occurring phenomena are distributed according to an 

80/20 rule (sometimes known as a Power Law). In other words, „small‟ 

occurrences of an artefact or phenomenon are extremely common, whereas „large‟ 

instances are relatively rare. Wheeldon and Counsell (2003) illustrated that a 

Power Law distribution existed in OO class relationships, particularly those 

related to coupling (via inheritance and aggregation). In this chapter, we attempt 

to support or refute that earlier work by focusing on 6 separate, yet different 
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coupling metrics to explore whether evolutionary coupling obeyed an 80/20 rule. 

In theory, we would expect coupling to increase through consistent application of 

maintenance as a system evolves and, hence, for any 80/20 rule to become 

exacerbated. The study presented also attempts to shed light on which coupling 

types tend to exhibit specific trends (in this case an 80/20 rule). There are also 

parallels with the use and credibility of „key‟ classes, i.e. certain classes in any 

system that comprise a large number of methods (and, by implication, a large 

amount of coupling). 

In practice, a class that is highly coupled to many other classes is an ideal 

candidate for re-engineering or removal from the system to mitigate both current 

and potential future problems.  A problem that immediately arises, however, for 

the developer when considering re-engineering of classes with high coupling is: 

„Do those classes have prohibitively large dependencies?‟ If so, then are those 

coupling dependencies „incoming‟ or „outgoing‟ dependencies? In theory, it is 

more difficult to modify a target class with high incoming and low outgoing 

coupling, since the former requires detailed and careful scrutiny of each of the 

many „incoming‟ dependent classes and the possible side-effects of change. 

Chapter 5 showed that the FIN and FOUT metrics tended to be relatively small for 

classes removed from a system. In other words, classes with either high FIN 

and/or FOUT may be difficult to move or remove from a system. This question 

has inspired further examination of trends in the two metrics presented.   

Chapter 6 has shown that there is a trade-off between coupling types – in 

particular, that between coupling through imported packages and the introduction 

of „internal-to-the-package‟ coupling. In this chapter, we explore the potential 

characteristics and trade-offs between FIN and FOUT metrics over time. We 

would always expect potentially problematic classes to be re-engineered by 

developers through techniques such as refactoring (Fowler, 1999); however, the 

practical realities of limited time and resources at their disposal means that only 

when classes exhibit particularly bad „smells‟ (e.g. excessive coupling) (Fowler, 

1999) are they dealt with. 
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In this chapter, we address the issue of potential re-engineering and view coupling 

as a key contributor to the decision on whether and when to re-engineer (classes) 

or not over the lifetime of a system. Chapter 4 showed some evidence to suggest 

that „peaks and troughs‟ occur in software maintenance, suggesting that developer 

activity comprises a set of high and low activity periods. This suggests that 

excessive coupling is a continuous problem addressed only by spurious and 

frenzied re-engineering activity.   

7.3 Systems and Metrics 

7.3.1 Systems under Study 

Five systems were used as a basis of our study. These systems were used in the 

study conducted in Chapter 5 and Chapter 6, and they were presented in Section 

3.4.1. These systems are Jasmin, DjVu, pBeans, SmallSQL and Asterisk.  

7.3.2 Data Collected 

For each of the systems, we collected six independent, coupling metrics using 

JHawk (2008) (as described in Section 3.4.2). These metrics are as follows: 

1. Response for a Class (RFC): The RFC is defined as the set of methods that can 

potentially be executed in response to a message received by an object of that 

class. 

2. Number of EXTernal methods called (EXT): The more external methods that a 

class calls, the more tightly bound that class is to other classes 

3. Message Passing Coupling (MPC): The number of messages passed among 

objects of a class. 

4. PACK. The number of imported PACKages. 

5. Fan-in (FIN). The FIN of a function is the number of unique functions that call 

the function. 
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6. Fan-out (FOUT). The FOUT is the number of unique functions that a function 

calls. 

7.3.3 Research Questions 

The study consists of two research questions (RQ1 and RQ2), stated as follows: 

 RQ1. Does an 80/20 rule exist in Java from six coupling metrics over 

multiple versions of open-source software? If so, is that relationship 

exacerbated over time? We try to see if the six coupling metrics obey the 

80/20 rule by discovering whether the top 20% of the classes contain at 

least 80% of the coupling metrics or not.  

 RQ2. Is there a significant correlation between FIN and FOUT? If so, does 

this relationship worsen over time? If the correlation is negative, then this 

suggests that, over time, an inverse relationship exists between the two 

metrics. In other words, as FIN increases, there is a decrease in the value 

of FOUT and vice versa. On the other hand, a positive correlation between 

the two metrics would imply that both FIN and FOUT increase as a system 

evolves. As a developer, we would want to choose classes/packages for re-

engineering in the former category and preferably when FOUT is 

increasing and FIN decreasing.  

We note that in the following, we use three correlation coefficients. Spearman‟s 

and Kendall‟s coefficients are non-parametric in nature and assume a non-normal 

distribution in the data (appropriate for most software engineering data). For 

completeness, however, we have also included Pearson‟s correlation values – a 

parametric value which assumes a normal distribution of the data.  The FIN and 

FOUT values for all selected classes and for each version were used as a basis of 

the correlation analysis.   

7.4 Data Analysis 

In order to assess our research questions, we collected six coupling metrics for the 

five systems. For the first research question, we calculate the percentage of the 
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coupling metrics per package for each class over the versions of four OSSs 

(Jasmin, DjVu, pBeans and SmallSQL). However, for the second research 

question we calculate the correlations between the FIN and FOUT over the 

versions of all the five systems. We also compare the differences between the FIN 

and FOUT of the classes and the mean of these metrics across the whole package. 

We assess each question on the systems separately.  

7.4.1 Research Question 1 (RQ1) 

In the following analysis and for succinctness, we include in the tables for each 

system only the rows where at least one 80/20 rule was found to apply; equally, 

only the columns (i.e. metrics) where at least one 80/20 rule was found to apply 

are listed. If a value is omitted from a table, then no 80/20 rule is applied in that 

case. (We note that for each system, the top 20% of classes will be exactly 20% of 

the total number of classes stated earlier in the description of the systems.) An 

80/20 rule applies if at least 80% of the coupling is incorporated in that top 20%. 

7.4.1.1 The Jasmin System 

Table 7.1 shows the percentage in each of the coupling metrics over the five 

versions (V1-V5) of the Jasmin system for 20% of the classes on a package basis 

(the 2 packages in this case are jas and jasmin).  

The most striking feature of the values in Table 7.1 is the absence of four of the 

six metrics extracted by the tool and subsequently analysed. No entries for RFC, 

EXT, PACK or FOUT greater than or equal to the threshold 80% were found. 

In V1 of the jas package, the top 20% of the classes comprised over 90% of all 

FIN coupling. A comparison of V1 and V5 shows that the 80/20 rule became 

weaker by V5 (i.e. at 84.78%). For the jasmin package, there is only a marginal 

increase in the 80/20 rule (from 90.71% to 93.33%). It is also worth noting that 

the FOUT metric had many values between 70% and 75% over the course of these 

versions and consequently are not shown in the table. Equally, the values of the 

other four metrics tended to be in the range 45%-70%, considerably lower than 

the FIN values. 
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Table 7.1 80/20 metrics for the Jasmin system 

Package Version MPC FIN 

Jas V1  90.15 

 V2  89.35 

 V3  83.41 

 V4  84.78 

 V5  84.78 

Jasmin V1  90.71 

 V2  92.9 

 V3 81.39 94.19 

 V4  92.9 

 V5  93.33 

7.4.1.2 The SmallSQL system 

Table 7.2 shows the same data for the SmallSQL system. In common with the 

Jasmin system, the FIN metric satisfied the 80/20 rule across all versions studied. 

However, the rule is only marginally strengthened between V1 and V9 (88.54% to 

92%) - there is no support for the view that evolution of the 80/20 rule is 

strengthened. 

Table 7.2 80/20 metrics for the SmallSQL system 

Package Version FIN 

Database V1 88.54 

 V2 90.33 

 V3 91.18 

 V4 91.15 

 V5 91.23 

 V6 92.44 

 V7 92.19 

 V8 92.11 

 V9 92.00 
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7.4.1.3 The DjVu System 

Table 7.3 shows the data for the DjVu system. Again, FIN appears prominently in 

the table and so too does the FOUT metric. However, the PACK metric features in 

V8 of the DjVu package. One plausible explanation for the dominance of FIN and 

FOUT and an implication of that dominance is that it may render the use of other 

coupling forms unnecessary. 

It is interesting that none of the values in Table 7.3 overlap. Inspection of the raw 

data revealed that generally, when FIN was high, FOUT was low (and vice-versa) 

 

Table 7.3 80/20 metrics for the DjVu system 

Package Version PACK FOUT FIN 

DjVu V5  80.23  

 V6  80.23  

 V7  80.46  

 V8 80.68   

Toolbar V1   83.81 

 V2   81.90 

 

7.4.1.4 The pBeans System 

Table 7.4 shows the trends for the pBeans system. The FIN metric does not 

feature in the 80/20 rule in the pBeans package. It does, however, feature in the 

first eight versions of the data package. This suggests that the FIN and other forms 

of coupling may have a complementary relationship. When there is a high 

proportion of 80/20 FIN relationships, there is a low number of other 80/20 forms 

of coupling. Tables 7.1 and 7.2 support this theory and in Table 7.3 the six 80/20 

relationships are non-overlapping (further supporting this theory). One 

explanation for this phenomenon, in a practical sense, is that if there are a high 

number of classes with large FIN values, then, by the law of averages, there will 
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be fewer classes with large numbers of FOUTs since the coupling that these latter 

classes need is satisfied by the classes with large FIN (and which they use). In 

other words, FIN and FOUT follow a „hub‟ principle, which minimises outgoings 

by maximising incomings. This would also support the use of „key‟ classes (i.e. 

classes that contain a large amount of functionality that many other classes use) as 

a means of minimising coupling. In other words, and counter-intuitively, large 

classes (or classes with large amounts of coupling) can have a beneficial effect (if 

we assume minimising FOUT is an aspiration of developers). 

Table 7.4 80/20 metrics for the pBeans system 

Package  Version  MPC  EXT  PACK  FOUT  FIN 

pBeans V1 90.98  85.73 85.00 88.32  

 V2 90.79  85.67 85.00 88.32  

 V3 91.89  86.56 81.05 87.29  

 V4 91.89  86.56 81.05 87.29  

 V5 92.23  87.10 81.05 87.29  

 V6 92.23   87.10 81.05 87.29  

 V7 94.02  89.23 81.82 90.60  

 V8 89.50  84.67 83.90 85.69  

 V9 89.50  84.67 83.90 85.69  

 V10 89.54   84.74 83.90 85.69  

Data V1     82.86 

 V2     87.50 

 V3     92.89 

 V4     92.89 

 V5     92.89 

 V6     94.78 

 V7     99.53 

 V8 89.64  85.08  83.76 81.14 

 V9 88.86  84.38  80.22  

 V10 88.26  83.85    
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 Figure 7.1 shows the pBeans metrics over the course of all 20 versions from 

Table 7.4. The values follow the same trends for much of all 20 versions (except 

for RFC and FIN). Low values in the figure reflect a more even spread of 

coupling for that metric. 

 

 

Figure 7.1 Metric values for pBeans 

 

Figure 7.2 shows the same values for the SmallSQL system. Coupling types 

appear to have the same pattern in both figures; inspection of the raw data for the 

other two systems revealed a similar trend. In other words, coupling remains 

relatively static for all systems as they evolve; an 80/20 rule is not exacerbated as 

a system evolves. 

We can conclude for the first research question that certain metrics had a greater 

propensity for that rule than others, namely FIN and, to a limited extent, FOUT. 

High use of these two features seemed to exclude the use of other types of 

coupling. Moreover, an 80/20 rule did not seem to worsen as a system evolved. 

Finally, we suggested that dominance of FIN (particularly) might act as a „hub‟ 

for „key‟ classes and with which many other system classes communicate. 
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Figure 7.2 Metric values for SmallSQL 

 

7.4.2 Research Question 2 (RQ2) 

In the following analysis, we consider only the largest packages from each 

system. A package was considered as „large‟ if it contained more than ten classes 

(for statistical validity purposes, we wanted to ensure that the number in each 

package was relatively high and ten seemed a reasonable threshold). We ranked 

the classes in each of these packages according to their descending FIN values 

and then took the set of classes from each package that contained 80% of the FIN 

total. We chose the classes comprising 80% of FIN for a single reason. The 

previous research question has shown that an 80/20 rule applies to coupling in 

Java classes. In other words, 80% of FIN occurs in just 20% of classes.  To be true 

to the spirit of that earlier research question, we adopted the same strategy for 

selection of classes. Moreover, we wanted to focus on classes with a high FIN and 

choice of classes comprising 80% of the FIN, when ordered in descending FIN 

captures classes with the highest FIN.  



Chapter 7: An Evolutionary Study of FIN and FOUT  112 

 

Additionally, choosing classes comprising 80% of FIN would also allow us to 

compare (i.e. correlate) the FIN of those classes with the FOUT of the same set of 

classes to establish overall relationships between the two metrics and to uncover 

biases in class make-up and disparity between the two metrics. In particular, we 

would like to explore the presence of „key‟ classes characterised by a high FIN 

and high FOUT value, as well as to distinguish „server‟ classes that have a high 

FIN (i.e. they are used by many classes) but a low FOUT (i.e. they 

correspondingly do not use many other classes themselves). The profile of these 

types of classes from an evolutionary perspective is also an interesting research 

topic and one that we explore. 

The mean of the FIN and FOUT across the whole package was also calculated to 

allow a comparison of the differences between the selected classes and the 

summary values of FIN and FOUT for all classes on an evolutionary package 

basis.  

7.4.2.1 The Jasmin System 

We first consider the set of classes comprising the 80% of FIN.  Table 7.5 shows 

the correlation between the FIN and FOUT over the five versions (V1-V5) for the 

Jasmin system on a package basis (the 2 packages chosen using the 

aforementioned selection criteria in this case were Jas and Jasmin). Extracting 

classes containing 80% of FIN from the Jas package gave a sample of 50 classes 

for that package and 10 classes for the Jasmin package.   

The most striking feature of the values in Table 7.5 is the significant positive 

correlation between the two metrics for Jas package (Kendall‟s and Spearman‟s), 

while the correlation values are strongly and significantly negative for the Jasmin 

package. There is a simple, yet interesting explanation for each set of correlation 

values. For the Jas package while the values of FIN are large, the values of FOUT 

are correspondingly large (see Figure 7.3). Many of these classes are therefore 

those used by many other classes, but also themselves use high numbers of other 

classes. We could thus view this type of class as both a coupling „source‟ and 

„sink‟ classes since they use equal measures of both FIN and FOUT. The 
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dependence of many classes on these types of class alone may make them 

problematic from a re-engineering perspective. Indeed, Figure 7.3 shows very few 

classes where both the FIN is low and FOUT high which would be one possible 

and sensible criterion for re-engineering.  

For the Jasmin package on the other hand, the FIN and FOUT metrics are in 

complete contrast (see Figure 7.4). Classes with high FIN values in this package 

tend to have low FOUT values and vice versa. The classes in this latter category 

would be far preferable for re-engineering – since high values for FOUT alone 

pose less of a problem from a maintenance perspective - the dependencies are 

outgoing rather than incoming.  

 

Table 7.5 Correlations FIN vs. FOUT (Jasmin) 

Package No. of Classes Pearson‟s Kendall‟s Spearman‟s 

Jas 50 0.024 0.287** 0.394** 

Jasmin 10 -0.973** -0.619* -0.788** 

*Correlation is significant at the 0.05 level (1-tailed). 

**Correlation is significant at the 0.01 level (1-tailed). 

 

From a correlation perspective, both packages present opportunities for re-

engineering, but the negative correlations for the Jasmin package provide the best 

opportunity in this sense and the Jas only limited opportunities. In other words, 

analysis of coupling through extraction of FIN and FOUT has provided an insight 

into which classes might be targeted for re-engineering. This would not be the 

case had we just collected coupling on a far coarser scale using for example, the 

CBO (Chidamber and Kemerer, 1994).  The CBO makes no distinction between 

input coupling and output coupling. 

We next consider the set of all classes in each of the two packages. The summary 

data for FIN and FOUT in Table 7.6 shows the mean and median values for every 

class in each of the studied packages over the five versions (V1-V5).  

  



Chapter 7: An Evolutionary Study of FIN and FOUT  114 

 

 

0

2

4

6

8

10

12

14

16

18

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Class

F
IN

/F
O

U
T

 V
a
lu

e
FOUT

FIN

 

Figure 7.3 FIN/FOUT for the Jas package 
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Figure 7.4 FIN/FOUT for the Jasmin package 

 

Table 7.6 shows the values of FIN across all the classes of Jas to be relatively 

small and so too the values of FOUT. (We note that the values of FIN in each 

package have been italicised to distinguish them from FOUT values.) There is a 

clear upward trend in the values of FIN and FOUT in both packages. However, 

the median values (column 3) do not change significantly throughout and this 
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suggests further that in each package there are certain outliers that subvert the true 

picture of the FIN and FOUT metrics (i.e. those in Figures 7.3 and 7.4). 

The values in Table 7.6 indicate that although FIN and FOUT increase over time, 

these increases are relatively small. The average values of FOUT in the Jasmin 

package are significantly higher than that for FIN, again suggesting that classes in 

this package would be preferable and more amenable to re-engineering than Jas.  

In answer to the question posed, we see a similarity between the growth in values 

of FIN and FOUT as they evolve, but not alarmingly so.  

Table 7.6 FIN and FOUT per package (Jasmin) 

Package Metric (Ver.) Mean Median 

Jas FOUT (V1) 0.67 0 

 FOUT (V2) 0.84 0 

 FOUT (V3) 1.23 0 

 FOUT (V4) 1.35 0 

 FOUT (V5) 1.44 0.5 

 FIN (V1) 1.35 0 

 FIN (V2) 1.61 0 

 FIN (V3) 1.86 0 

 FIN (V4) 2.03 0 

 FIN (V5) 2.03 0 

Jasmin FOUT (V1) 6.64 2 

 FOUT (V2) 7.17 1.5 

 FOUT (V3) 7.23 1 

 FOUT (V4) 8.08 1.5 

 FOUT (V5) 8.08 1.5 

 FIN (V1) 2.55 0 

 FIN (V2) 2.58 0 

 FIN (V3) 2.38 0 

 FIN (V4) 2.58 0 

 FIN (V5) 2.75 0 
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7.4.2.2 The SmallSQL System 

Table 7.7 shows the same correlation values we showed for Jasmin for the 

SmallSQL system. Only one package was considered for this system, namely 

„Database‟. The number of the classes comprising the 80% of FIN is 25 classes 

from a total 135 classes across the nine versions giving a total sample correlation 

size of (9*25=225). A positive correlation between the FIN metric and the FOUT 

is apparent from Table 7.7. However, the correlation is weaker for Kendall‟s and 

Spearman‟s, while there is no significant correlation for Pearson‟s.   

 

Table 7.7 Correlations FIN vs. FOUT (Small SQL) 

Package Pearson‟s Kendall‟s Spearman‟s 

Database 0.041 0.130** 0.175** 

**Correlation is significant at the 0.01 level (1-tailed). 

 

Figure 7.5 shows the values of FIN and FOUT over the nine versions for 

SmallSQL system on a package basis. From Figure 7.5 it can be seen, as was seen 

for the Jasmin system, that there are some classes with exceptionally large values 

of FIN. One class that is particularly noticeable is the Utils class, which started 

with a FIN of 245 in V1 and by V9 had a FIN of 416. In contrast, its FOUT 

started in version 1 with a value of just 12 and rose to only 19 by version nine.  

A class such as Utils (as its name suggests) is likely to be used (i.e. „utilised‟) and 

in great demand increasingly as a system evolves and as more classes are added to 

the system. A Date class for example is found in java.util – a class which his 

likely to be used by many other classes.  Interestingly, the number of methods in 

this class and its size in terms of LOC did not change significantly. It started with 

25 methods and 211 LOC in V1 and in V9 had 34 methods and 257 LOC. In other 

words, the class itself did not change, but the number of classes using that class 

grew significantly.  

While the benefits of such a class are clear, classes such as Utils could 

conceivably pose a problem for developers. With such a high FIN, it becomes 
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difficult to modify such a class and this might explain why its size in terms of 

methods and LOC changed only marginally over the nine versions. This type of 

class could also be seen as a key class to the functioning of the system and while 

stable in some senses, might be exceptionally difficult to re-engineer.  On the 

other hand, the fact that it has not changed significantly over the versions studied 

may mean that it does not need to be re-engineered – so the potential danger 

outlined is not germane.  
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Figure 7.5 FIN/FOUT for the database package 

 

Table 7.8 presents a summary of the FIN and FOUT for all classes in the Database 

package of SmallSQL and again gives the value of the mean and median values.  

The interesting feature of Table 7.8 is the drop in both the FIN and FOUT metrics 

in the transition from V5 to V6. This was not accompanied by any noticeable 

reduction in the size of the classes; there was some reduction in coupling 

however, suggesting that between these versions there may have been some effort 

devoted to re-engineering (with the consequent drop in coupling). Both FIN and 

FOUT seemed to mirror each other‟s movements. This again was interesting since 

it meant that if FIN changed, then FOUT would be changed as a result and as the 

system was re-structured.  It might also be the case that some active refactoring 
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was undertaken to eliminate inter-class coupling; a natural result of eliminating 

inter-class coupling is the elimination of total coupling since dependency 

„tangling‟ is simplified overall. In keeping with the Jasmin system, the values of 

FIN and FOUT remain relatively static. The system does contain, however, a 

number of classes those are key to the functioning of the system (such as Utils).       

 

Table 7.8 FIN and FOUT per package (SmallSQL) 

Metric (Ver.) Mean Median 

FOUT (V1) 10.32 3 

FOUT (V2) 10.53 3 

FOUT (V3) 10.31 3 

FOUT (V4) 10.38 3 

FOUT (V5) 10.42 3 

FOUT (V6) 9.96 3 

FOUT (V7) 9.98 3 

FOUT (V8) 10.13 3 

FOUT (V9) 10.19 3 

FIN (V1) 6.92 0.5 

FIN (V2) 8.19 0.5 

FIN (V3) 7.90 0 

FIN (V4) 7.96 0 

FIN (V5) 8.03 0 

FIN (V6) 7.48 0 

FIN (V7) 7.69 0 

FIN (V8) 7.94 0 

FIN (V9) 8.08 0 
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7.4.2.3 The DjVu System 

Table 7.9 shows the data for the DjVu system. The number of classes comprising 

80% of the FIN was 8 out of 40 across the 9 versions for the Djvu package (the 

package shares its name with the system from which it is taken), 2 out of 10 for 

Anno package and 2 out of 9 for Toolbar package. The number of classes for 

which we calculated the correlations between FIN and FOUT was 64 for Djvu and 

16 apiece for Anno and Toolbar.  The first question relates to the nature of the 

correlations. Negative correlations between FIN and FOUT are evident for the 

Djvu and Anno packages. There is positive correlation between the metrics for the 

Toolbar package over the same 8 versions of DjVu system.  

 

Table 7.9 Correlations FIN vs. FOUT (DjVu) 

Package Pearson‟s Kendall‟s Spearman‟s 

Djvu -0.088 -0.151 -0.248* 

Anno -0.572* -0.436* -0.462* 

Toolbar 0.988** 0.914** 0.950** 

*Correlation is significant at the 0.05 level (1-tailed). 

**Correlation is significant at the 0.01 level (1-tailed). 

 

Figure 7.6 shows the values of FIN and FOUT for the Djvu package. The values 

of FIN are consistently higher than that of FOUT. The lines in the graph do not 

overlap at all and are totally disjoint. This feature contrasts with all the graphs 

shown for the previous two systems.   

The class which, over the course of the eight versions was consistently high in its 

FIN was the GRect class; this class started with a FIN value of 59 and ended with 

a FIN of 81. It had one of the lowest FOUT values for that package however 

(value of just 4) throughout the versions studied, compared with a mean of 5.67 

for the remaining classes. Again, this might be a class for manipulating GUIs 

which might be critical to system functionality (i.e. key class).  Based on the fact 

that the DjVu system is graphically-oriented system – we would expect a shape-
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oriented class to be the subject of significant use by other classes in the system 

and this might explain its high FIN. It also gives an insight into the way this type 

of system evolves. A key class does not see any rise in FOUT, but does in terms 

of its FIN as more classes use the class.  GRect thus acts as a server class to other 

classes.    

Figure 7.7 shows the FIN and FOUT values for the Anno package. It is interesting 

that, there is a striking difference between the FIN and FOUT values towards later 

versions of the system studied. The class with the FIN of 11 was the Rect class.  

The values of FOUT remain static between V4 and V5. Interestingly, it seems that 

in two packages in this system, the same types of class (i.e. rectangle-based) are 

both prominent classes (GRect and Rect). This supports our view that there are 

certain classes whose FIN increases because of their popularity and whose FOUT 

remains relatively static. One conclusion that we could draw from our study is 

therefore that an increasing FIN is not necessarily a sign of decay as such. Some 

classes become increasingly used by other classes for the functionality they 

provide. A class whose FIN increases while its FOUT remains stable is a possible 

sign of one of these types of class.   

Figure 7.8 shows the same data for the Toolbar package. In contrast with any 

other packages/systems studied, the values of FOUT are significantly higher than 

that of FIN. There is a strong correspondence between the FIN and FOUT for this 

package and the values of FIN and FOUT mirror each other; each rise and fall 

correspondingly. This type of class is characterised by the feature that as 

incoming coupling is added to it, so too is added outgoing coupling and is in 

contrast to classes such as Rect and GRect just described. This feature may be due 

to the graphical processing nature of the classes in the DjVu system requiring 

input from other GUI-based classes and feeding the output to further GUI-based 

classes – e.g. processing x and y co-ordinate classes which feature heavily in this 

system. This would certainly be a plausible explanation. On the other hand, it 

might be a sign of a relatively balanced system that the FIN and FOUT are 

correspondingly large.  
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Figure 7.6 FIN/FOUT for the Djvu package 
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Figure 7.7 FIN/FOUT for the Anno package 
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Figure 7.8 FIN/FOUT for the Toolbar package 
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Table 7.10 shows a summary data for the FIN and FOUT metrics over the 

different versions for all classes in those packages.  (We note that when versions 

have the same mean and median FOUT or FIN, we list those versions in a single 

row of the table rather than duplicate a row; see, for example, row 1 of the data in 

Table 7.10, pertaining to the FOUT for V1 and V2.) 

 The Toolbar package is the most striking since both the FIN and FOUT metrics 

remain relatively static throughout. This is in complete contrast to the Djvu 

package where FIN rises rapidly and FOUT only marginally. The fluctuation in 

FIN and FOUT values is also evident for the Anno package (Figure 7.7).  

The noticeable feature of Table 7.10 is the relatively high values of FOUT 

compared with FIN throughout. On the basis that, in theory, classes with a high 

FOUT are easier to modify than classes with a high FIN basis, and from the 

systems studied so far, this system is certainly the most contrasting in terms of its 

FIN and FOUT values and presents best opportunity for re-engineering of classes. 

 

Table 7.10 FIN and FOUT per package (DjVu) 

Package Metric (Ver.) Mean Median 

Djvu  

FOUT(V1,V2) 6.21 5 

FOUT (V3) 6.5 5 

FOUT(V4,V5,V6) 6.53 5 

FOUT (V7) 6.97 5 

FOUT (V8) 6.89 5 

FIN (V1,V2) 10.29 7.5 

FIN (V3,V4) 13.15 10 

FIN (V5,V6) 13.23 10 

FIN (V7,V8) 15.71 10.5 

Anno 

FOUT (V1,V2) 9.43 4 

FOUT (V3,V4) 7.78 4 

FOUT (V5) 12.86 11 

FOUT (V6) 16.5 11.5 
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FOUT (V7) 14.5 3.5 

FOUT (V8) 8 3 

FIN (V1,V2) 1.14 0 

FIN (V3,V4) 1.33 0 

FIN (V5) 7.57 5 

FIN (V6) 9.17 4.5 

FIN (V7) 4.67 3 

FIN (V8) 2.55 3 

Toolbar 

FOUT (V1) 25 15.5 

FOUT (V2) 14.56 12 

FOUT (V3,V4) 14.89 12 

FOUT (V5) 14.89 12 

FOUT V6,V7,V8) 15.11 12 

FIN (V1) 4.2 1 

FIN (V2) 2.33 1 

FIN (V3,V4) 3.78 1 

FIN (V5) 3.89 1 

FIN (V6, V7, V8) 4.11 1 

 

7.4.2.4 The pBeans System 

Table 7.11 shows the correlation data for the pBeans system. We considered two 

packages for this system – pBeans (again a package that shares its name with the 

system in which it is located) and Data.  

We calculated the correlations between FIN and FOUT for 37 classes for pbeans 

package and 30 classes in the Data package (this is how many classes comprised 

80% of the FIN across the whole package). A negative correlation between the 

FIN and FOUT for the pBeans package is evident; however there is no significant 

correlation between these two metrics for the Data package. Both sets of 

correlations are negative but only in some cases are they significant. The data in 
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Table 7.11 suggests in this system there is a mixture of classes in terms of FIN 

and FOUT given by the inconsistent pattern of correlations.  

 

Table 7.11 Correlations FIN vs. FOUT (pBeans) 

Package Pearson‟s Kendall‟s Spearman‟s 

PBeans -0.064 -0.271* -0.355* 

Data -0.676** 0.052 0.087 

*Correlation is significant at the 0.05 level (1-tailed). 

**Correlation is significant at the 0.01 level (1-tailed). 

 

Figure 7.9 shows the values of the FIN and FOUT values for the pBeans package 

over the versions studied. The peak noticeable for this system was for the 

StoreException class, which started with a FIN value of 52 and reached 95 by the 

sixth version.  The pBeans package presents an interesting case where the FOUT 

is significantly larger than FIN in some cases (evident from Figure 7.9). In 

particular, the class with the high FOUT was called „Store‟ and comprised 88 

methods and 690 LOC. The mean number of methods was just 11 and mean LOC 

64. The FOUT for this class was 65 at the final version and the FIN just 30. This 

illustrates that a class, perhaps crucial to a system, can be one that has a high 

FOUT but not necessarily a correspondingly high FIN. In contrast to a server class 

such as GRect described earlier, there may also be „client‟ classes that use a wide 

variety of other classes.  

Figure 7.10 shows the values of the FIN and FOUT for the Data package. The 

remarkable feature is the exceptionally low values of FOUT across the classes. 

One of the explanations for such a low FOUT and high FIN is that many of the 

classes were „descriptor‟ classes which many classes would want to use, but 

equally classes that would not ordinarily use classes themselves. These classes are 

again server classes that provide a service to other client classes.        
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Figure 7.9 FIN/FOUT for the pBeans package 

 

 

Figure 7.10 FIN/FOUT for the data package 

 

Table 7.12 presents a summary for the FIN and FOUT metrics over the released 

versions for all classes in the two packages in the pBeans system. The value of the 

maximum number for FIN over the ten versions is that for the StoreException 

class in pBeans package and for FieldDescriptor in the Data package. However, 

the value of the FOUT metrics for these classes, as hinted previously, is zero.  

Table 7.12 shows fluctuating values in FIN and FOUT and in contrast to previous 

systems there appears to be little pattern to these fluctuations. Bearing in mind the 
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inconsistent trends in FIN and FOUT (Figures 7.9 and 7.10), this might have been 

expected. 

 

Table 7.12 FIN and FOUT per package (pBeans) 

Package Metric (Ver.) Mean Median 

pBeans 

FOUT (V1,V2) 7.21 0 

FOUT (V3,V4,V5) 6.69 0.5 

FOUT (V6) 6.94 1 

FOUT (V7) 5.85 0.5 

FOUT (V8,V9,V10) 9.19 1.5 

FIN (V1,V2) 8.21 4 

FIN (V3,V4,V5) 8.56 4 

FIN (V6) 8.06 2 

FIN (V7) 8.15 6 

FIN (V8,V9,V10) 9.58 5 

Data 

FOUT (V1,V2) 4.53 2 

FOUT (V3,V4,V5) 5.53 2 

FOUT (V6,V7) 6 2 

FOUT (V8,V9,V10) 5.31 0.5 

FIN (V1,V2) 2.33 0 

FIN (V3,V4,V5) 2.65 0 

FIN (V6,V7) 2.42 0 

FIN (V8,V9,V10) 6.56 1.5 

 

7.4.2.5 The Asterisk System 

Table 7.13 shows the correlation data for the Asterisk system. There are three 

packages considered for this system: Fastagi, Manager and Manager.event. The 

numbers of the classes that we used to calculate the correlations between FIN and 

FOUT were 29, 42 and 123 classes for the Fastagi, Manager and Manager.event 
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packages, respectively. There is a negative correlation between the FIN and 

FOUT for the Fastagi package and a positive correlation between these metrics for 

the Manager and Manager.event packages over the seven versions of the Asterisk 

system. Again, there is no consistency amongst the correlation values in terms of 

their direction.  

Table 7.13 Correlations FIN vs. FOUT (Asterisk) 

Package Pearson‟s Kendall‟s Spearman‟s 

Fastagi -0.209 -0.276** -0.326** 

Manager 0.025 0.417** 0.471** 

Manager.event 0.254** 0.215** 0.244** 

**Correlation is significant at the 0.01 level (1-tailed). 

 

Figure 7.11 shows the FIN and FOUT values for the Fastagi package and explains 

the negative correlations found for this package in Table 7.13. There are 

exceptionally high values of FIN and correspondingly low values of FOUT. One 

salient feature of the Fastagi is the number of exception handling classes, each of 

which has an exceptionally large FIN and low FOUT. The same classes are also 

relatively small, containing only a few methods. For example, the AGIException 

class has 2 methods, a value of 109 for FIN and value 0 for FOUT. Figure 7.12 

shows the FIN and FOUT values for the Manager package. The values of FIN and 

FOUT correspond to a greater extent in this package. Again, we see the existence 

of server classes with a very high FIN but low FOUT.  The Fastagi package is an 

interesting case from a FIN and FOUT point of view – the classes with the highest 

FIN are all of a certain type – namely exception handling classes. In practice, it 

makes sense to group these types of classes together, but this did not seem to be a 

feature of any of the other systems studied.  

Figure 7.13 shows the FIN and FOUT values for the Manager.event package. The 

relatively high FIN values of 28 belong to a class called ManagerEvent. Again the 

high value of FIN and relatively low value of FOUT for this class makes sense 

since many classes would want to access this class for the critical functionality it 

offers (that of event handling).  
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Figure 7.11 FIN/FOUT for the Fastagi package 
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Figure 7.12 FIN/FOUT for the Manager package 
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Figure 7.13 FIN/FOUT for the Manager.event package 
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From the five systems studied, we see that there are certain classes with a low FIN 

and high FOUT, but more frequent is the occurrence of a class with the opposite 

characteristics (high FIN, low FOUT). Table 7.14 presents a summary for the FIN 

and FOUT metrics over the released versions for the three packages.  

 

Table 7.14 FIN and FOUT per package (Asterisk) 

Package Metric (Ver.) Mean Median 

Fastagi 

FOUT (V1,V2) 1.83 0 

FOUT(V3,V4,V5) 2 0 

FOUT (V6,V7) 2.21 0 

FIN (V1,V2) 3 1 

FIN (V3) 5.17 1 

FIN (V4) 6.08 0 

FIN (V5) 6.76 0 

FIN (V6,V7) 7.21 0 

Manager 

FOUT (V1,V2) 3.67 0 

FOUT(V3,V4,V5) 4.23 1 

FOUT (V6) 0.64 0 

FOUT (V7) 6.17 0 

FIN (V1,V2) 3.55 0 

FIN (V3,V4,V5) 3.26 0 

FIN (V6,V7) 3 3 

Manager. 

Event 

FOUT (V1,V2) 0.04 0 

FOUT V3,V4,V5) 0.05 0 

FOUT (V6,V7) 0.15 0 

FIN (V1,V2) 3.18 1 

FIN (V3,V4,V5) 2.99 1 

FIN (V6) 1.83 1 

FIN (V7) 3.48 3 
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The maximum value for FIN over the seven versions is actually the FIN for the 

AgiException class in Fastagi, for the Channel class in the Manager package and 

for the ManagerEvent class in the Manager.event package. However, the values of 

the FOUT metrics for these classes are trivially small. There is a wide fluctuation 

in mean values for the two metrics over the versions studied. However, in keeping 

with most of the previous systems – the median values suggest that there is no 

significant change in terms of these two metrics.  

7.5 Summary 

In this chapter, we have explored the 80/20 in four OSS and six coupling metrics. 

The key findings were that, to a limited extent, FIN and FOUT metrics had a 

greater propensity for that rule than others. Moreover, these two metrics have a 

complementary relationship. We also found that many of the other metrics had 

few, if any, such relationships. The RFC was typical in this sense; no 80/20 

relationship was found in any of the systems or any version in those systems. 

Finally, an 80/20 rule did not seem to worsen as a system evolved. Because of 

these results, we investigated the relationship between the FIN and FOUT in five 

OSS. The key finding was that for most of the systems there is a correlation 

between the changes in the FIN and FOUT. This correlation was negative for 

some packages but positive for most of the packages – this informed our 

interpretation of the two metrics. We also asked two significant questions. First, 

what is the nature and characteristics of classes exhibiting the highest FIN values? 

Second, do FIN and FOUT increase in corresponding and consistent amounts over 

time? Our analysis revealed a wide range of traits in the classes to explain high 

and low levels of FIN and FOUT. We found evidence of certain „key‟ classes with 

high FIN and FOUT; we also found evidence of classes with just high FIN 

(„server‟-type) classes. In certain cases, the size of a class revealed its purpose as 

much as the values of FIN and FOUT. Finally, evolutionary aspects also showed 

evidence of a range of coinciding „similar directions‟ of evolution; in other cases, 

we found unilateral and independent evolution with respect to the two metrics 

studied.  
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CHAPTER 8. CONCLUSIONS, REFLECTIONS AND 

FURTHER WORK 

8.1 Overview 

This chapter draws together the research findings to present an understanding of 

coupling between classes in Java OSS. The chapter starts with an overall 

summary of the research and relates the key research findings with the 

conclusions. Contributions from the research findings are discussed. Finally, the 

research limitations are presented together with potential future research 

directions. 

8.2 Research Summary 

The objectives of this Thesis, originally stated in Chapter 1, were: 

1. To give a project manager an idea of future maintenance or refactoring 

opportunities by understanding changes in a system through the analysis of 

its packages and finding the link between these changes and the 

refactoring.  

2.  To investigate characteristics of classes removed from systems during 

their evolution from the perspective of their coupling to other classes, their 

size compared to other classes and their change trends before they were 

removed. 

3. To discover the relationship between changes in the coupling metrics over 

the releases of a system and the different time periods between these 

releases, on the one hand, and the relationship between these changes and 

the code warnings, on the other hand.  

4. To explore whether an 80/20 rule exists in Java from coupling metrics 

over multiple versions of OSS.  
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5. To investigate the characteristics of classes that show the highest value of 

incoming coupling metrics. In particular, to address the issue of potential 

re-engineering and to view coupling as a key contributor to the decision on 

whether or not and when to re-engineer (classes) over the lifetime of a 

system. 

To address the previous objectives, we started our investigation of coupling by 

conducting a comprehensive literature review (Chapter 2) of previous work 

reported on coupling, how it was used in practice and what implications it may 

have on system maintainability. This was followed by providing a detailed 

description of the research methodology implemented in the Thesis, including the 

systems and the software metrics used in the study (Chapter 3). 

In Chapter 4, we investigated how Velocity system evolved at the package level. 

The trends in changes of nine versions of Velocity were explored through three 

research questions. An interesting „peak and trough‟ effect trend existed in 

specific versions of the system. A contrast was found between those regular 

changes and those associated with refactoring activity.  

In Chapter 5, removed classes were investigated in four Java systems.  Five 

coupling metrics were collected from these four Java open-source systems using 

the JHawk tool. By investigating the influence of the extent coupling and the class 

size on the removal of the classes from the system, we found that FIN and FOUT 

tended to be comparatively small for these classes; however, little evidence that 

the size influenced removed classes was found. Finally, changes for most of the 

classes were made in early versions before the classes were removed relatively 

later on.  

In Chapter 6, trends in coupling in five Java systems were investigated. Again, 

five coupling metrics and the warning for each version were collected from the 

five Java OSS. Investigation of the five systems revealed that adding coupling 

may have advantageous effects on a system. Moreover, it seems that addition of 

coupling in new functionality through addition of packages could result in fewer 

warnings than adding functionality to existing codes.  
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The 80/20 rule in four OSSs and six metrics was explored in Chapter 7. FIN and 

FOUT had a larger leaning toward that rule than others. High use of these two 

metrics seemed to eliminate the use of other types of coupling. Consequently, the 

relationship between FIN and FOUT was investigated.  For most of the studied 

systems there was a correlation between the changes in the FIN and FOUT. Our 

analysis showed a wide range of traits in the classes to explain both high and low 

levels of FIN and FOUT. We also found evidence of certain „key‟ classes with 

both high FIN and FOUT and „client‟ and „server‟-type classes with just high 

FOUT and FIN, respectively.  

Based on the results of empirical studies presented throughout the Thesis, we 

therefore feel that all the research objectives have been satisfied. The trends in 

coupling in the package level in the evolution of Java OSS have presented 

interesting characteristics. We therefore assert that the Thesis informs our 

empirical understanding of coupling features of OO from an evolutionary 

perspective. 

8.3 Research Contributions 

The research described in this Thesis relates to areas of software evolution, 

coupling metrics and potential fault analysis (through warnings) and the use of 

OSS.  As stated in Chapter 1, this study contributes to an empirical body of 

knowledge on coupling and longitudinal analysis, of which more studies are 

recommended (Kemerer and Slaughter, 1999a; 1999b). Few empirical studies 

investigating coupling from the perspective of evolution in OSS can be found in 

the current literature. Equally, empirical evidence exists to suggest that research 

on software evolution is conducted inadequately. Kemerer and Slaughter (1999a) 

state that there is a need for further empirical studies in the software evolution. 

While there have been multiple studies of coupling both in the procedural and OO 

arena, the results that we report in this Thesis suggest that coupling is a multi-

faceted, multi-dimensional and more complex feature of a system than we may 

have appreciated in the past. 
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The main contribution of this Thesis can be seen in the light of few research 

stands.  

 An appreciation of trends of maintenance changes can help predict future 

changes in the maintenance practice. This may also help a project manager 

to estimate the likely maintenance effort needed to keep the project 

working properly. Based on the trends of activity changes, developers can 

take preventive action for further system maintenance and/or refactorings. 

The findings of Chapter 4 suggested that maintenance changes follow an 

interesting „peak and trough‟ effect trend in specific versions of the 

system. These trends corresponded with empirical evidence in refactoring 

data for the same system. This result suggests a contrasting motivation 

between regular maintenance practice and that of refactoring. In other 

words, refactoring might be applied after a burst of regular change 

activity, rather than consistently. 

 Since few empirical studies have analysed coupling from an evolutionary 

respective, we believe the methodological approaches adopted for data 

collection and analysis in this Thesis can help inform future empirical 

studies on coupling and its evolution. The Thesis therefore makes a 

contribution to our understanding of how coupling evolves and where the 

majority of maintenance changes are applied. In Chapter 5, results showed 

a strong tendency for classes with low FIN and FOUT to be candidates for 

removal. Evidence was also found of class types with high imported 

package and external call functionality being removed. The research 

addressed an area that is often overlooked in the study of evolving 

systems, notably the characteristics and features of classes that disappear 

from a system. 

 The findings in Chapter 6 recommended that addition of coupling might 

have beneficial effects on a system. It also seemed that there was a 

coupling trade-off between coupling types, in particular that between the 
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uses of coupling through imported packages and the introduction of 

„internal-to-the-package‟ coupling.  

 Chapter 7 provided an explanation of the composition and existence of 

„key‟ and „server‟-type classes as well as for disproportionate increases in 

each of the two metrics (FIN and FOUT) over time.  The research 

presented suggests that there is no such thing as completely common 

trends in systems as far as coupling is concerned and that there are 

multiple reasons why classes may be highly or minimally coupled through 

FIN, FOUT or a combination of both. Equally, there are other class 

characteristics that play a crucial part, such as size, and associated with 

that, the level and type of functionality. The „key‟ and „server‟ classes 

feature in the evolution of a system and its functioning. 

8.4 Personal Achievement  

There are many things that have been achieved over the course of the research in 

this Thesis. First of all, the process of conducting research needs an advancement 

of the researcher‟s knowledge in the studied area, and that was achieved by 

reading more about this subject and searching the literature for related papers. 

Moreover, research is usually done under time pressure, so time management is a 

key aspect of research and a good help in meeting deadlines. Additionally, 

successful research needs good collaboration and communication with other 

researchers in the same study area, and that was achieved by communicating with 

colleagues within the university or by attending conferences.  

 

The research in this Thesis required a certain amount of data collection and 

statistical analysis. This helped in improving an awareness of data collection and 

suitability of statistical tests for a set of data. Over the course of this Thesis, it was 

evident that completing a PhD is merely a learning process for further scientific 

research. Finally, writing this research has raised the ability to read and write 

technically and critically and has improved personal skills as a researcher. 
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8.5 Research Limitations and Future Work 

One threat to the validity of the study is that we have only used seven OSSs as 

part of our study. While that provides a cross-sectional view of systems, we 

accept that this limited number threatens the generalisability of the results.   

In the Thesis analysis, there was a focus on coupling and class size; however, 

many other features of classes could have been used as a basis, for example, their 

cohesion or their position in the inheritance hierarchy. We leave such analyses for 

future work, however. 

Another threat to the validity of the study is that we have used warnings as a basis 

of our analysis in Chapter 6 and not actual faults or complementary techniques. 

However, we feel that it is better to be „fore-warned‟ and therefore „fore-armed‟ 

of potential problems and to analyse that data, than to analyse data in a post-fault 

sense.   

Finally, a threat to the study validity is that we have only collected six coupling 

metrics from a wide range of available coupling metrics in the literature. We 

defend this choice on the basis that these six give a set of metrics that allow 

different levels of code and design abstraction to be analysed and compared; this 

is a key objective of the study. 

In terms of future work, we view the research as a starting point for further 

replicated studies and for an in-depth and generalised analysis of 

coupling/refactoring, both inter- and intra-package. Consequently, we aim to 

extend our analysis to more systems and more versions in the spirit of Girba et al. 

(2005). 

From a refactoring perspective, it would be useful to investigate the link that 

removal of classes may have with refactoring, and specifically with respect to 

package refactoring.  We also expect to investigate the potential for refactoring 

the code as a result of that warning data. Future work will focus on first exploring 

the opportunities and effects of applying refactorings to classes that appear to 

have a high FIN and FOUT; it will also consider a finer-grained analysis of the 
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different types of coupling inherent in the classes studied and a coupling analysis 

„normalised‟ by class size. 

We would encourage further empirical studies into coupling and particularly 

evolutionary-based studies to refute, support or complement the results in this 

Thesis; to that end, all the data used in this Thesis can be obtained for replication 

purposes and other analyses on request from the author. 
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GLOSSARY OF SOFTWARE ENGINEERING TERMS 

The terms define below are widely used in software engineering. The purpose of 

this glossary is to explicitly indicate what we mean by each term in this Thesis 

and avoid any confusion by the reader.  

Abstraction 

The concept of abstraction from the perspective of OO is a process that involves 

identifying only crucial aspects of a problem and ignoring the non-essential 

information and detail. 

Attribute  

Attributes are data fields defined in a class to store information about each 

instance/object of that class. 

Bad Smells 

Bad smells in code are strong indicators of problems somewhere in the code that 

offer opportunities for refactoring. 

Class  

A class is a unit of code from which instance objects are created and defines a set 

of attributes and methods for those objects.  

Cohesion  

Cohesion is the extent of class components working together to perform one 

single and precise task. Cohesion increases class comprehensibility and eases 

modification. 

Coupling  

Coupling in OO is a measure of inter-dependency between classes. High coupling 

shows a strong dependency which is undesirable from a complexity perspective.  
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Design Patterns 

Design patterns are recurring solutions to software design problems that are 

observed or discovered repeatedly in real-world application development 

environments (Gamma et al. 1995) 

Fan-in Metrics 

Fan-in metrics is the number of functions that call a particular function. A 

function with a high Fan-in means that many other functions use this function. 

Fan-out Metrics 

Fan-out metrics is the number of functions a function calls.  

Inheritance  

Inheritance is a mechanism used in OO which provides the ability to define a new 

class using methods an attributes of an existing class and adding its own specific 

methods and attributes. The newly added class is then called subclass and the 

existing class is called superclass.  

Java Package  

A package in Java is a namespace used to organise class files. This is done by 

creating a directory, putting all classes with related functionally in that directory 

and giving it a sensible name to clearly represent the functionality of those 

classes. The directory in which all classes exist is called a package.  

Lines of Code (LOC) Metric  

LOC measures lines of code in a system or a class which may or may not include 

comments and/or blank lines.  
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Message Passing Coupling (MPC) Metric  

MPC metric measures the total number of method calls in the methods of a class 

to methods of other classes. In other words, it measures the dependency of 

methods of a class to the methods of other classes.  

Method  

A method is a member function in a class consisting of a set of statements which 

may have a set of arguments and may have a return type. Methods are used to 

provide overall class behaviour.  

Move Field (MF) Refactoring  

MF refactoring moves a field from a class to another, in which it is used more 

than the class it is defined (Fowler, 1999). . 

Number of Attributes (NOA) Metric  

NOA metric measures the total number of local variables plus the total number of 

class variables (including public, private and protected) in a class.  

Number of External Methods Called (EXT) Metrics 

The more external methods that a class calls the more tightly bound that class is to 

other classes. 

Number of Methods (NOM) Metric  

NOM metric measures the total number of methods in a class.  

PACK Metrics 

PACK metrics measures the number of imported packages. 

Refactoring  

Refactoring is the process of changing internal behaviour of a system, to make it 

easy to understand and change, while preserving its external behaviour.  
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Rename Field (RF) Refactoring  

RF refactoring is concerned with changing the name of a field to clearly state its 

purpose (Fowler, 1999).  

Rename Method (RM) Refactoring  

RM refactoring is concerned with changing the name of a method to clearly state 

its purpose (Fowler, 1999).  

Response for a Class (RFC) Metrics 

This metric is the same as that defined by Chidamber and Kemerer (1994) and 

measures the response set of a class. The RFC is defined as the set of methods that 

can be potentially executed in response to a message received by an object of that 

class. 

Software Metrics  

Software metrics are measures of characteristics of a software project, product or 

process.  

Superclass  

A superclass is a class which contains all the common features (methods and 

attributes) to be inherited by a set of classes and serves as an ancestor for those 

classes. The classes inheriting those common features add their own specific 

features so that more specific objects of the superclass can be created.  

Subclass  

A subclass is a class which inherits from another class or implements an interface.  

Warning  

The term warning in the context of this Thesis indicates to the problems 

embedded in a system which may potentially lead to a fault (FindBugs, 2008). 
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APPENDIX A: DATA USED IN ANALYSING THE 

MAINTENANCE CHANGES 

The data analysed in Chapter 4 was held in Excel spreadsheets. The data for each 

package is categorised in several columns, and each column contains the changes 

that occurred to the packages since the previous version. These tables are as follows.  

Note: for all the following tables, when the cell is empty that means the package did 

not exist for this version. 

Table A.1 was used in analysing the first research question. It was created by taking 

the column that includes the number of the added classes for each package across the 

nine versions. 

 

Table A.1 The number of the classes added to each package (Velocity) 

Version No.\ 

Package name 
Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9 

ant  55 0 1 33 0 6 1 23 

apisupport  46 0 0 28 2 0 10   

applet 0 0 0 0 0 0 0 0 0 

autoupdate 0 18 0 0 21 0 0 14 8 

beans 4 10 0 0 6 0 9 1 3 

classfile    0  0 0 1 0 

clazz 3 2 1 0 2 0 1 15 2 

core 81 162 5 1 316 7 92 131 217 

debuggercore 12 105 0 0 121 3 0 23 27 

debuggerjpda 1 7 0 0 329 0 0 7 7 

debuggertools 0 3 0   4 0 0     

diff       0         1 

editor 176 55 0 0 71 1 58 54 97 

extbrowser     0 0 19 0 0 1 12 

form 37 87 1 0 91 1 0 64 76 

html 1 3 0 0 0 0 0 1 0 

httpserver 5 3 0 0 2 0 0 9 2 

i18n 25 60 0 0 0 0 8 1 4 

icebrowser 0 7 0             

image 1 6 0 0 3 0 0 0 1 
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j2eeserver       0   0 0 47 3 

jarpackager 23 43 0 0 21 0 0 111 13 

java 50 207 0 0 41 1 35 16 140 

javacvs     0 0 153 0 0 64 13 

javadoc 0 34 2 3 22 1 0 9 17 

jndi     1 0 1 3 0 21 0 

nbbuild 18 4 0 2 35 1 0 8 27 

objectbrowser 0 0 0             

openide 78 80 2 1 294 13 81 115 148 

openidex 10 1 0 0 45 0 0 23 0 

projects 8 21 0 0 9 1 7 0 24 

properties 20 7 0 0 3 0 0 27 19 

rmi     1 0 20 0 0 14  

schema2beans       0         38  

scripting   6 0 0 6 0 0 0  

text 3 0 0 0 3 0 0 0 0 

tomcatint       0   0 0 52 15 

ui       1         81 

usersguide     0 0 0 0 0 7 0 

utilities 16 10 0 0 14 2 0 2 6 

vcscore   62 2 1 146 3 0 50 83 

vcscvs 52 7 1 0 4 0 0 0 1 

vcsgeneric     1 1 53 6 0 18 57 

xml       0         157 

web 164 5 0 0 116 0 0 357 64 

SUM 788 1116 17 11 2032 45 297 1274 1386 

The Max Inc 176 207 5 3 329 13 92 357 217 

Package name editor java core javadoc debugg-erjpda openide core web core 

Table A.2 was used in analysing the second research question. It was created by 

taking the column that indicates to the maximum increase in the number of lines of 

code for each package across the nine versions. 

 

Table A.02 The max. increase in the LOC for each package (Velocity) 

Version No.\ 

Package name 
Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9 

ant  105 0 54 131 9 0 36 69 

apisupport  66 0 0 42 37 0 94  

applet 29 8 0 0 0 0 0 2 36 

autoupdate 13 180 10 16 128 44 34 74 174 

beans 137 138 2 13 76 2 0 94 45 
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classfile    0  0 31 8 3 

clazz 16 75 2 17 110 0 0 30 15 

core 547 380 51 36 614 103 71 1854 453 

debuggercore 106 56 18 0 225 54 35 56 329 

debuggerjpda 138 149 8 0 160 15 7 64 77 

debuggertools 71 52 0  82 3 0   

diff    165     27 

editor 265 145 60 12 498 60 1 258 388 

extbrowser   0 0 73 3 0 17 5 

form 198 686 30 3 609 89 14 352 591 

html 7 16 0 0 3 1 0 90 10 

httpserver 43 93 0 0 25 1 0 56 18 

i18n 182 88 1 0 57 4 14 24 12 

icebrowser 0 112 0       

image 62 185 0 0 14 0 0 102 26 

j2eeserver    0  14 0 35 136 

jarpackager 213 223 13 7 150 30 22 86 74 

java 321 184 21 0 413 22 29 125 387 

javacvs   174 320 216 33 2 181 505 

javadoc 116 146 11 41 76 20 0 167 29 

jndi   44 0 57 91 7 156 0 

nbbuild 0 27 0 30 93 52 0 305 203 

objectbrowser 2 1 0       

openide 325 206 60 47 698 56 47 351 159 

openidex 0 16 0 0 8 9 5 0 3 

projects 87 446 5 0 121 57 30 49 167 

properties 120 54 7 2 32 11 0 91 24 

rmi   41 0 159 14 8 20  

schema2beans    0     1236 

scripting  198 0 0 79 3 0 52  

text 52 29 0 0 3 2 0 2 4 

tomcatint    0  0 0 574 137 

ui    31     84 

usersguide   0 0 1 0 0 51 3 

utilities 233 175 0 0 63 35 0 43 38 

vcscore  411 226 116 995 101 10 265 206 

vcscvs 529 212 71 0 49 0 0 0 0 

vcsgeneric   34 0 641 111 2 169 102 

xml    0     198 

web 143 215 0 0 284 23 0 485 770 

SUM 3955 5077 889 910 6985 1109 369 6418 6743 

The Max Inc 547 686 226 320 995 111 71 1854 1236 

Package name core form vcscore javacvs vcscore 
vcsgen-

eric 
core core 

schema

2beans 
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Table A.3 and Table A.4 were used in analysing the third research question. They 

were created by taking the columns that indicates to the maximum increase in the 

number of the attributes and the methods for each package across the nine versions. 

 

Table A.3 The max. increase in the NOA for each package (Velocity) 

Version No.\ 

Package name 
Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9 

ant  3 0 2 5 0 0 0 4 

apisupport  1 0 0 3 1 0 5  

applet 2 0 0 0 0 0 0 0 0 

autoupdate 1 7 1 2 10 1 1 6 5 

beans 1 3 0 0 5 0 0 0 8 

classfile    0  0 1 2 1 

clazz 0 5 0 0 3 0 0 1 0 

core 26 11 2 2 23 5 3 57 26 

debuggercore 5 3 1 0 18 10 1 5 2 

debuggerjpda 3 11 0 0 11 0 0 2 4 

debuggertools 3 11 0  2 0 0   

diff    7     3 

editor 9 7 1 1 12 3 0 12 19 

extbrowser   0 0 4 1 0 9 0 

form 8 49 0 0 51 0 0 15 8 

html 0 0 0 0 1 0 0 0 0 

httpserver 1 3 0 0 3 0 0 0 1 

i18n 10 5 1 0 4 0 4 3 1 

icebrowser 0 3 0       

image 2 1 0 0 0 0 0 0 2 

j2eeserver    0  0 0 2 4 

jarpackager 1 7 0 0 7 0 0 2 7 

java 18 12 1 0 16 1 2 9 34 

javacvs   1 3 11 1 1 7 13 

javadoc 7 5 0 1 2 1 0 7 2 

jndi   7 0 1 1 0 7 0 

nbbuild 0 1 0 0 2 3 0 6 13 

objectbrowser 0 0 0       

openide 7 26 1 3 26 4 1 15 9 

openidex 0 0 0 0 2 0 0 0 0 

projects 3 27 0 0 3 1 3 1 9 

properties 2 6 0 0 1 0 0 0 0 

rmi   3 0 10 0 0 1  

schema2beans    0     16 
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scripting  1 0 0 3 0 0 2  

text 1 1 0 0 1 0 0 0 0 

tomcatint    0  0 0 10 2 

ui    1     6 

usersguide   0 0 0 0 0 2 0 

utilities 9 13 0 0 3 1 0 1 1 

vcscore  28 4 2 43 2 0 16 8 

vcscvs 20 10 2 0 3 0 0 0 0 

vcsgeneric   0 0 32 2 0 13 2 

xml    0     6 

web 14 2 0 0 4 1 0 20 10 

SUM 153 262 25 24 325 39 17 238 226 

The Max Inc 26 49 7 7 51 10 4 57 34 

Package name core form jndi diff form debug-ercore i18n core java 

 

Table A.04 The max. increase in the NOM for each package (Velocity) 

Version No.\ 

Package name 
Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 Ver7 Ver8 Ver9 

ant  6 0 3 9 1 0 2 2 

apisupport  2 0 0 4 1 0 3  

applet 3 1 0 0 0 0 0 0 2 

autoupdate 1 8 1 0 8 4 3 6 13 

beans 5 6 0 1 5 0 0 1 4 

classfile    0  0 2 2 0 

clazz 3 4 0 0 10 0 0 1 0 

core 17 20 3 1 48 7 6 150 22 

debuggercore 9 6 1 0 20 1 3 5 13 

debuggerjpda 3 12 0 0 9 0 0 2 2 

debuggertools 6 11 0  15 1 0   

diff    6     1 

editor 14 9 0 2 32 4 0 20 29 

extbrowser   0 0 6 0 0 3 0 

form 11 20 8 0 52 4 1 10 26 

html 1 2 0 0 1 0 0 3 1 

httpserver 4 7 0 0 3 0 0 3 1 

i18n 4 10 0 0 5 0 1 3 1 

icebrowser 0 3 0       

image 4 11 0 0 1 0 0 7 1 

j2eeserver    0  1 0 7 17 

jarpackager 15 9 1 0 7 2 1 1 8 

java 23 17 0 0 17 2 1 7 20 
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javacvs   9 1 26 1 0 8 16 

javadoc 8 13 1 2 4 1 0 4 2 

jndi   0 0 2 5 1 4 0 

nbbuild 0 1 0 0 4 6 0 8 9 

objectbrowser 0 0 0       

openide 13 9 1 3 40 14 2 19 13 

openidex 0 2 0 0 3 1 0 0 0 

projects 3 18 0 0 8 2 4 2 10 

properties 5 4 0 0 4 1 0 6 1 

rmi   4 0 13 1 2 1  

schema2beans    0     30 

scripting  16 0 0 8 0 0 2  

text 3 2 0 0 1 0 0 0 0 

tomcatint    0  0 0 36 6 

ui    1     16 

usersguide   0 0 0 0 0 1 0 

utilities 9 12 0 0 5 2 0 1 3 

vcscore  84 11 2 70 9 2 18 12 

vcscvs 36 3 4 0 2 0 0 0 0 

vcsgeneric   2 0 38 2 0 6 5 

xml    0     76 

web 28 7 0 0 9 0 0 19 16 

SUM 228 335 46 22 489 73 29 371 378 

The Max Inc 36 84 11 6 70 14 6 150 76 

Package name vcscvs vcscore vcscore diff vcscore openide core core xml 
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APPENDIX B: DATA USED IN ANALYSING 80/20 

RULE IN THE COUPLING METRICS 

Tables in this appendix show the percentage in each of the coupling metrics over 

the versions of the the system for 20% of the classes on a package basis. The 

value is bolded if 80% is found (An 80/20 rule applies if at least 80% of the 

coupling is incorporated in that top 20%). 

Table B.1 shows the data for the Jasmin system. 

Table B. 1 The percentage of coupling metrics in 20% of the classes (Jasmin) 

Package Version  RFC  MPC  EXT PACK FOUT  F-IN 

Jas V1 45.58 59.94 54.48 44.29 76.88 90.15 

  V2 46.31 61.07 54.8 47.04 77.92 89.35 

  V3 49.63 62.09 56.76 48 72.1 83.41 

  V4 50.99 62.56 58.26 48 74.61 84.78 

  V5 50.99 62.56 58.26 48 72 84.78 

jasmin V1 60.07 70.58 63.48 49.09 58.36 90.71 

  V2 68.13 77.42 70.91 50.43 61.16 92.9 

  V3 73.75 81.39 73 46.67 66.6 94.19 

  V4 71.6 78.66 73.88 46 62.68 92.9 

  V5 71.67 78.87 73.97 46 62.68 93.33 

 

Table B.2 shows the same data for the SmallSQL system. 

Table B.02 The percentage of coupling metrics in 20% of the classes (SmallSQL) 

Package Version  RFC  MPC  EXT PACK FOUT  F-IN 

database V1 62.1 72.55 65.75 73 74.79 88.54 

  V2 62.25 72.74 65.71 73.79 75.24 90.33 

  V3 63.48 73.97 66.95 75.19 75.53 91.18 

  V4 63.39 73.84 66.74 75.66 75.34 91.15 

  V5 63.36 73.44 66.89 74.95 75.05 91.23 

  V6 64.4 74.08 67.13 75.27 74.68 92.44 

  V7 64.61 74.31 67.38 75 74.35 92.19 

  V8 64.51 74.13 67.12 73.04 74.01 92.11 

  V9 64.12 73.45 66.48 73.28 73.9 92 
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Table B.3 shows the data for the DjVu system. 

Table B.03 The percentage of coupling metrics in 20% of the classes (DjVu) 

Package Version  RFC  MPC  EXT PACK FOUT  F-IN 

 

djvu 

 

 

 

 

 

V1 48.07 65.26 55.87 41.13 48.28 54.54 

V2 48.05 65.03 55.53 40.37 47.73 54.72 

V3 50.76 67.02 58.82 46.55 49.31 51.9 

V4 50.76 67.08 58.82 46.55 49.43 52.17 

V5 51.21 67.08 58.82 46.55 49.43 53.12 

V6 51.21 67.08 58.82 46.55 49.43 52.12 

V7 51.26 67.89 58.73 44.67 48.91 55.54 

V8 51.16 67.79 58.66 44.67 48.32 55.3 

 

 

 

djvu.anno 

 

 

 

V1 57.09 60.68 57.5 54.29 76.36 52.5 

V2 57.09 60.68 57.5 54.29 76.36 52.5 

V3 47.65 59.12 54.53 46 78.29 53.33 

V4 47.65 59.12 54.53 46 78.29 53.33 

V5 55.27 64.46 60.6 38.57 80.23 56.43 

V6 55.27 64.46 60.6 38.57 80.23 56.43 

V7 55.38 64.68 60.79 38.57 80.46 56.43 

V8 56.2 65.32 62.11 38.57 80.68 56.43 

Toolbar 

 

 

 

 

 

 

V1 41.6 46.7 41.32 31.15 45.12 83.81 

V2 37.68 42.38 37.2 27.87 42.14 81.9 

V3 43.41 48.08 42.69 30 45.52 77.65 

V4 43.41 48.08 42.69 30 45.52 77.65 

V5 43.41 48.08 42.69 30 45.52 75.43 

V6 43.13 48.81 43.07 30 45.19 76.76 

V7 43.13 48.81 43.07 29.51 44.85 76.76 

V8 43.13 48.81 43.1 29.51 44.85 76.76 
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Table B.4 shows the trends for the pBeans system.  

Table B.4 The percentage of coupling metrics in 20% of the classes (pBeans) 

Package Version  RFC  MPC  EXT PACK FOUT  F-IN 

Pbeans 

 

V1 78.12 90.98 85.73 85 88.32 73.22 

V2 77.9 90.79 85.67 85 88.32 73.45 

V3 78.05 91.89 86.56 81.05 87.29 72.12 

V4 78.05 91.89 86.56 81.05 87.29 72.12 

V5 78.4 92.23 87.1 81.05 87.29 72.12 

V6 78.4 92.23 87.1 81.05 87.29 72.12 

V7 78.95 94.02 89.23 81.82 90.6 67.48 

V8 75.94 89.5 84.67 83.9 85.69 69.96 

V9 75.94 89.5 84.67 83.9 85.69 69.96 

V10 76.11 89.54 84.74 83.9 85.69 70.2 

Data 

V1 64.56 79.57 77.5 36.67 73.53 82.86 

V2 63.86 79.3 77.11 38.71 71.23 87.5 

V3 63.18 77.1 73.17 37.78 68.3 92.89 

V4 63.75 77.43 72.48 37.78 68.63 92.89 

V5 63.75 77.43 72.48 37.78 68.63 92.89 

V6 63.15 75.85 71.31 39.51 67.96 94.78 

V7 62.65 75.98 70.97 39.51 66.49 99.53 

V8 70.79 89.64 85.08 59.13 83.76 81.14 

V9 69.9 88.86 84.38 59.13 80.22 79.63 

V10 69.63 88.26 83.85 59.13 79.34 79.63 
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APPENDIX C: DATA USED IN ANALYSING THE FIN 

AND FOUT RELATIONSHIP 

The tables in this appendix provide detail on name of classes, NOM, LOC, RFC, 

MPC, EXT, PACK, FOUT and FIN for the classes with 80% of the FIN in each of 

the large package across the released versions for the six systems. We used these 

tables to produce the figures in analysing RQ2 in Chapter 7. 

Table C.01 Metrics values for Jas package (Jasmin)  

Class Name   NOM  LOC  RFC MPC EXT PACK  FOUT  FIN 

CatchEntry 3 19 7 6 4 1 0 4 

ClassEnv 15 102 48 55 33 4 8 4 

CodeAttr 12 98 43 41 31 2 5 9 

GenericAttr 5 16 11 6 6 1 0 8 

Insn 8 56 21 16 13 2 0 6 

Label 6 24 10 5 4 1 1 18 

LocalVarEntry 4 23 9 6 5 1 0 4 

LongCP 3 10 6 3 3 1 1 1 

Method 3 28 10 7 7 1 0 3 

Var 3 23 8 5 5 1 0 2 

CatchEntry 4 30 8 6 4 1 0 4 

ClassEnv 20 134 63 65 43 4 8 4 

CodeAttr 13 109 47 44 34 2 5 9 

GenericAttr 5 16 11 6 6 1 0 8 

Insn 10 68 24 18 14 2 0 6 

Label 6 24 10 5 4 1 1 12 

LabelOrOffset 5 15 7 2 2 2 1 15 

LocalVarEntry 5 34 10 7 5 1 0 4 

StackMapFrame 6 28 15 17 9 3 3 8 

VerificationTypeInfo 4 45 14 10 10 1 2 8 

Annotation 11 66 30 33 19 3 3 15 

ClassEnv 22 181 76 76 54 4 11 4 

CodeAttr 14 120 51 47 37 2 5 9 

GenericAttr 6 24 17 12 11 1 2 17 

InnerClass 4 39 10 7 6 1 0 4 

Insn 11 77 27 22 16 2 0 6 



Appendix C 163 

 

Label 6 24 10 5 4 1 1 12 

LabelOrOffset 5 15 7 2 2 2 1 13 

LocalVarEntry 5 34 10 7 5 1 0 8 

VerificationTypeInfo 4 50 16 12 12 1 2 4 

Annotation 11 66 30 33 19 3 3 15 

CodeAttr 14 120 51 47 37 2 5 9 

GenericAttr 6 24 17 12 11 1 2 17 

InnerClass 4 39 10 7 6 1 0 4 

Insn 11 77 27 22 16 2 0 6 

Label 7 26 11 6 4 1 1 13 

LabelOrOffset 5 15 7 2 2 2 1 13 

LocalVarEntry 5 34 10 7 5 1 0 8 

VerificationTypeInfo 6 62 21 16 15 1 2 8 

VerifyFrame 11 110 32 34 21 3 10 9 

Annotation 11 66 30 33 19 3 3 15 

CodeAttr 14 120 51 47 37 2 5 9 

GenericAttr 6 24 17 12 11 1 2 17 

InnerClass 4 39 10 7 6 1 0 4 

Insn 11 77 27 22 16 2 1 6 

Label 7 26 11 6 4 1 1 13 

LabelOrOffset 5 15 7 2 2 2 1 13 

LocalVarEntry 5 34 10 7 5 1 0 8 

VerificationTypeInfo 6 62 21 16 15 1 2 8 

VerifyFrame 11 110 32 34 21 3 10 9 

 

Table C.02 Metrics values for Jasmin package (Jasmin)  

 Class Name  NOM  LOC  RFC MPC EXT PACK  FOUT  FIN 

InsnInfo 3 12 6 4 3 2 1 17 

ScannerUtils 7 63 26 29 19 0 8 8 

InsnInfo 3 12 6 4 3 2 1 19 

ScannerUtils 7 68 27 31 20 0 10 9 

InsnInfo 3 12 6 4 3 2 1 19 

ScannerUtils 7 68 26 31 19 0 9 9 

InsnInfo 3 12 6 4 3 2 1 19 

ScannerUtils 7 68 26 31 19 0 9 9 

InsnInfo 3 12 6 4 3 2 1 21 

ScannerUtils 7 68 26 31 19 0 9 9 
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Table C. 3 Metrics values for Database package (SmallSQL)  

Class Name NOM  LOC  RFC  MPC  EXT  PACK  FOUT  F-IN 

CommandSelect 35 254 101 119 66 1 19 8 

Database 19 192 85 145 66 3 25 11 

DataSource 15 18 15 0 0 0 1 8 

DateTime 27 424 60 62 33 4 17 41 

Expression 33 80 43 13 10 0 12 81 

ExpressionArithmetic 35 424 104 196 69 1 70 9 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 11 

ExpressionValue 35 292 101 104 66 2 54 30 

IndexDescription 16 73 49 41 33 3 16 12 

IndexNode 32 176 64 55 32 1 7 29 

Money 17 52 29 13 12 1 4 27 

MutableNumeric 37 334 78 76 41 1 14 29 

SQLToken 3 14 4 1 1 0 0 34 

SQLTokenizer 4 156 17 14 13 2 61 43 

SSResultSetMetaData 28 111 49 46 21 1 52 8 

StoreImpl 70 650 217 408 147 2 65 22 

StorePage 5 25 8 3 3 2 2 12 

Strings 5 17 8 3 3 0 2 14 

Table 19 234 81 94 62 6 18 16 

TableStorePage 4 20 8 4 4 1 2 32 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 9 50 28 25 19 2 8 17 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 25 211 54 37 29 1 12 245 

Column 24 69 36 12 12 2 10 16 

CommandSelect 35 254 101 119 66 1 19 8 

Database 21 211 97 161 76 3 27 14 

DataSource 15 18 15 0 0 0 1 8 

DateTime 27 424 60 62 33 4 17 41 

Expression 33 80 43 13 10 0 12 81 

ExpressionArithmetic 35 424 104 196 69 1 70 9 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 11 

ExpressionValue 35 292 101 104 66 2 54 30 

IndexDescription 16 73 49 41 33 3 16 12 

IndexNode 32 176 64 55 32 1 7 29 
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Money 17 52 29 13 12 1 4 27 

MutableNumeric 37 334 78 76 41 1 14 29 

SQLToken 3 14 4 1 1 0 0 34 

SQLTokenizer 4 156 17 14 13 2 61 91 

SSResultSetMetaData 28 111 49 46 21 1 52 8 

StoreImpl 70 653 217 410 147 2 66 22 

StorePage 5 25 8 3 3 2 2 12 

Strings 5 17 8 3 3 0 2 14 

Table 19 229 78 91 59 6 18 16 

TableStorePage 4 20 8 4 4 1 2 32 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 10 51 29 25 19 2 8 19 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 25 211 54 37 29 1 12 358 

CommandSelect 35 254 101 119 66 1 19 8 

Database 21 211 98 161 77 3 27 14 

DataSource 15 18 15 0 0 0 1 8 

DateTime 26 429 59 61 33 4 17 44 

Expression 33 80 43 13 10 0 12 84 

ExpressionArithmetic 35 424 104 196 69 1 70 9 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 11 

ExpressionValue 35 294 101 104 66 2 55 30 

IndexDescription 17 76 52 43 35 3 16 13 

IndexNode 32 176 64 55 32 1 7 29 

Money 17 52 29 13 12 1 4 27 

MutableNumeric 37 334 78 76 41 1 14 29 

SQLToken 3 14 4 1 1 0 0 34 

SQLTokenizer 4 156 17 14 13 2 61 91 

SSResultSetMetaData 28 111 49 46 21 1 52 8 

StoreImpl 70 654 218 411 148 2 67 22 

StorePage 5 25 8 3 3 2 2 12 

Strings 5 17 8 3 3 0 2 14 

Table 19 232 82 93 63 6 19 16 

TableStorePage 4 20 8 4 4 1 2 32 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 10 51 29 25 19 2 8 19 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 27 223 56 37 29 1 16 361 

Column 24 69 36 12 12 2 10 16 
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CommandSelect 35 254 101 119 66 1 19 8 

Database 21 217 102 167 81 3 28 14 

DataSource 15 18 15 0 0 0 1 8 

DateTime 26 429 59 61 33 4 17 44 

Expression 33 80 43 13 10 0 12 84 

ExpressionArithmetic 35 424 104 196 69 1 70 9 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 11 

ExpressionValue 35 294 101 104 66 2 55 32 

IndexDescription 17 76 52 43 35 3 16 13 

IndexNode 32 176 64 55 32 1 7 29 

Money 17 52 30 14 13 1 5 27 

MutableNumeric 38 324 81 76 43 1 13 28 

SQLToken 3 14 4 1 1 0 0 34 

SQLTokenizer 4 156 17 14 13 2 61 91 

SSResultSetMetaData 28 114 49 46 21 1 57 8 

StoreImpl 70 656 216 410 146 2 66 22 

StorePage 5 25 8 3 3 2 2 12 

Strings 5 17 8 3 3 0 2 14 

Table 19 232 82 93 63 6 19 16 

TableStorePage 4 20 8 4 4 1 2 32 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 10 51 29 25 19 2 8 19 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 27 223 56 37 29 1 16 366 

Column 24 69 36 12 12 2 10 18 

CommandSelect 36 256 102 119 66 1 19 9 

Database 21 217 102 167 81 3 28 14 

DataSource 15 18 15 0 0 0 1 8 

DateTime 26 429 59 61 33 4 17 44 

Expression 33 80 43 13 10 0 12 84 

ExpressionArithmetic 35 426 104 198 69 1 70 9 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 11 

ExpressionValue 35 294 101 104 66 2 55 34 

IndexDescription 17 76 52 43 35 3 16 13 

IndexNode 32 176 64 55 32 1 7 29 

Money 17 52 30 14 13 1 5 27 

MutableNumeric 38 324 81 76 43 1 13 28 

SQLToken 3 14 4 1 1 0 0 34 
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SQLTokenizer 4 156 17 14 13 2 61 91 

SSResultSetMetaData 28 114 49 46 21 1 57 8 

StoreImpl 70 661 216 410 146 2 66 22 

StorePage 5 25 8 3 3 2 2 12 

Strings 6 20 9 4 3 0 2 15 

Table 19 232 82 93 63 6 19 16 

TableStorePage 4 20 8 4 4 1 2 32 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 10 51 29 25 19 2 8 19 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 27 223 56 37 29 1 16 370 

Column 24 69 36 12 12 2 10 18 

CommandSelect 36 259 102 119 66 1 18 9 

Database 21 222 102 171 81 3 28 14 

DataSource 15 18 15 0 0 0 1 8 

DateTime 27 435 60 61 33 4 18 40 

Expression 33 80 43 13 10 0 12 85 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 12 

ExpressionValue 35 302 105 109 70 2 55 34 

IndexDescription 17 76 52 43 35 3 16 14 

IndexNode 32 176 64 55 32 1 7 29 

LongTreeList 21 264 41 43 20 1 4 7 

Money 17 52 30 14 13 1 5 33 

MutableNumeric 38 324 81 76 43 1 13 30 

SQLToken 3 14 4 1 1 0 0 35 

SQLTokenizer 4 156 17 14 13 2 61 91 

SSResultSetMetaData 28 114 49 46 21 1 57 9 

StoreImpl 70 661 216 410 146 2 66 22 

StorePage 5 25 8 3 3 2 2 12 

Strings 6 20 9 4 3 0 2 16 

Table 19 238 87 98 68 6 21 19 

TableStorePage 4 20 8 4 4 1 2 32 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 10 51 29 25 19 2 8 20 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 28 234 57 37 29 1 16 375 

Column 23 68 35 12 12 2 10 18 

CommandSelect 36 259 102 119 66 1 18 9 

Database 21 222 102 171 81 3 28 14 
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DataSource 15 18 15 0 0 0 1 8 

DateTime 28 437 62 62 34 4 18 43 

Expression 33 80 43 13 10 0 12 89 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 13 

ExpressionValue 35 302 107 111 72 2 55 35 

IndexDescription 19 100 60 53 41 4 18 14 

IndexNode 33 178 67 57 34 1 7 29 

LongTreeList 21 264 41 43 20 1 4 7 

Money 17 52 30 14 13 1 5 33 

MutableNumeric 42 332 85 76 43 1 13 30 

SQLToken 3 14 4 1 1 0 0 35 

SQLTokenizer 4 156 17 14 13 2 61 91 

SSResultSetMetaData 28 114 49 46 21 1 58 9 

StoreImpl 70 661 220 415 150 2 66 22 

StorePage 5 25 8 3 3 2 2 12 

Strings 6 20 9 4 3 0 2 16 

Table 19 240 88 99 69 6 21 19 

TableStorePage 4 20 8 4 4 1 2 32 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 10 51 29 25 19 2 8 20 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 29 236 58 38 29 1 16 398 

Column 23 68 35 12 12 2 10 20 

Columns 7 29 14 9 7 0 3 9 

CommandSelect 36 264 103 121 67 1 18 9 

Database 24 243 113 189 89 3 29 16 

DataSource 15 18 15 0 0 0 1 8 

DateTime 27 445 64 62 37 4 19 43 

Expression 34 87 45 14 11 1 13 91 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 14 

ExpressionValue 35 304 109 115 74 2 55 35 

IndexDescription 19 100 60 53 41 4 18 15 

IndexNode 33 178 67 57 34 1 7 29 

Money 17 52 30 14 13 1 5 33 

MutableNumeric 42 336 85 76 43 1 13 30 

SQLToken 3 14 4 1 1 0 0 38 

SQLTokenizer 4 156 17 14 13 2 61 91 

SSResultSetMetaData 28 116 49 46 21 1 58 9 
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StoreImpl 70 662 220 415 150 2 66 22 

StorePage 5 25 8 3 3 2 2 12 

Strings 6 20 9 4 3 0 2 17 

Table 20 266 89 102 69 6 22 23 

TableStorePage 4 20 8 4 4 1 2 36 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 10 51 29 25 19 2 8 20 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 33 253 67 44 34 1 17 409 

Column 23 68 35 12 12 2 10 21 

Columns 7 33 16 9 9 0 3 9 

CommandSelect 36 264 103 121 67 1 18 9 

Database 24 243 113 189 89 3 29 16 

DataSource 15 18 15 0 0 0 1 8 

DateTime 27 464 64 62 37 4 19 43 

Expression 34 87 45 14 11 1 13 91 

ExpressionName 31 83 60 30 29 0 4 22 

Expressions 15 59 20 13 5 0 2 14 

ExpressionValue 35 304 109 115 74 2 55 35 

IndexDescription 19 100 60 53 41 4 18 15 

IndexNode 33 178 66 56 33 1 7 28 

Money 17 52 30 14 13 1 5 33 

MutableNumeric 42 336 85 76 43 1 13 30 

SQLToken 3 14 4 1 1 0 0 38 

SQLTokenizer 4 156 17 14 13 2 61 91 

SSResultSetMetaData 28 116 49 46 21 1 58 9 

StoreImpl 72 675 222 419 150 2 67 30 

StorePage 5 25 8 3 3 2 2 15 

Strings 6 20 9 4 3 0 2 17 

Table 20 266 89 102 69 6 22 23 

TableStorePage 4 20 8 4 4 1 2 36 

TableStorePageInsert 3 11 4 1 1 1 1 8 

TableView 10 51 29 25 19 2 8 20 

TableViewResult 10 32 16 7 6 1 8 11 

Utils 34 257 69 46 35 2 19 416 
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Table C. 4 Metrics values for Djvu package (DjVu)  

Class Name NOM  LOC  RFC MPC EXT PACK FOUT  F-IN 

DataPool 18 84 46 36 28 2 7 29 

DjVuOptions 57 115 61 6 4 0 2 26 

GBitmap 38 476 87 99 49 1 8 22 

GPixel 21 56 32 32 11 0 3 29 

GPixelReference 14 35 16 3 2 2 0 27 

GPixmap 39 498 102 250 63 2 11 18 

GRect 14 82 20 15 6 0 4 59 

JB2Shape 7 25 15 8 8 2 5 20 

DataPool 20 95 52 40 32 2 8 30 

DjVuOptions 59 124 65 8 6 1 4 28 

GBitmap 38 476 87 99 49 1 8 22 

GPixel 21 56 32 32 11 0 3 29 

GPixelReference 14 35 16 3 2 2 0 27 

GPixmap 39 498 102 250 63 2 11 18 

GRect 14 82 20 15 6 0 4 59 

JB2Shape 7 25 15 8 8 2 5 20 

DataPool 23 109 63 49 40 3 8 35 

DjVuObject 9 59 20 14 11 4 9 26 

DjVuOptions 57 116 61 6 4 1 2 26 

GBitmap 28 242 69 72 41 1 9 26 

GPixel 21 56 35 32 14 0 3 29 

GPixelReference 17 79 34 25 17 2 2 28 

GPixmap 16 413 81 209 65 0 8 25 

GRect 15 82 21 15 6 0 4 78 

DataPool 23 109 63 49 40 3 8 35 

DjVuObject 9 59 20 14 11 4 9 26 

DjVuOptions 57 116 61 6 4 1 2 27 

GBitmap 28 242 69 72 41 1 9 26 

GPixel 21 56 35 32 14 0 3 29 

GPixelReference 17 79 34 25 17 2 2 28 

GPixmap 16 413 81 209 65 0 8 27 

GRect 15 82 21 15 6 0 4 78 

DataPool 23 109 63 49 40 3 8 35 

DjVuObject 9 59 20 14 11 4 9 26 

DjVuOptions 61 124 65 6 4 1 2 29 

GBitmap 28 242 69 72 41 1 9 26 

GPixel 21 56 35 32 14 0 3 29 
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GPixelReference 17 79 34 25 17 2 2 28 

GPixmap 16 413 81 209 65 0 8 27 

GRect 15 82 21 15 6 0 4 81 

DataPool 23 109 63 49 40 3 8 35 

DjVuObject 9 59 20 14 11 4 9 28 

DjVuOptions 61 124 65 6 4 1 2 29 

GBitmap 28 242 69 72 41 1 9 26 

GPixel 21 56 35 32 14 0 3 29 

GPixelReference 17 79 34 25 17 2 2 28 

GPixmap 16 413 81 209 65 0 8 27 

GRect 15 82 21 15 6 0 4 81 

CachedInputStream 28 137 59 44 31 3 14 68 

DjVuObject 12 65 26 17 14 4 9 29 

DjVuOptions 61 125 65 6 4 2 2 54 

GBitmap 28 242 69 72 41 1 9 26 

GPixel 21 56 35 32 14 0 3 29 

GPixelReference 17 79 34 25 17 2 2 28 

GPixmap 16 413 81 209 65 0 7 27 

GRect 15 82 21 15 6 0 4 81 

CachedInputStream 28 137 59 44 31 3 14 61 

DjVuObject 12 65 26 17 14 4 9 29 

DjVuOptions 61 125 65 6 4 2 2 54 

GBitmap 28 242 69 72 41 1 9 26 

GPixel 21 56 35 32 14 0 3 29 

GPixelReference 17 79 34 25 17 2 2 28 

GPixmap 16 413 81 209 65 0 7 27 

GRect 15 82 21 15 6 0 4 81 

  

 

Table C.05 Metrics values for Anno package (DjVu)  

Class Name NOM  LOC  RFC MPC EXT PACK FOUT  F-IN 

GMapOval 6 14 16 10 10 2 4 3 

GMapPoly 32 207 69 78 37 2 5 3 

GMapOval 6 14 16 10 10 2 4 3 

GMapPoly 32 207 69 78 37 2 5 3 

Poly 32 207 69 78 37 2 5 3 

Rect 47 196 65 32 18 2 4 4 

Poly 32 207 69 78 37 2 5 3 

Rect 47 196 65 32 18 2 4 4 
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Poly 32 220 69 77 37 2 5 4 

Rect 59 221 80 41 21 2 4 11 

Poly 32 220 69 77 37 2 5 4 

Rect 59 221 80 41 21 2 4 11 

Poly 32 220 69 77 37 2 5 4 

Rect 59 221 80 41 21 2 4 11 

Poly 32 220 69 77 37 2 5 4 

Rect 59 221 80 41 21 2 4 11 

  

Table C.6 Metrics values for Toolbar package (DjVu)  

Class Name NOM  LOC  RFC MPC EXT PACK FOUT  F-IN 

ListenerSupport 6 46 18 13 12 7 5 2 

ToggleButton 45 249 125 121 80 6 23 16 

ListenerSupport 6 46 18 13 12 7 5 2 

ToggleButton 45 249 125 121 80 6 23 16 

ComboBox 30 168 101 95 71 4 19 13 

ToggleButton 45 249 125 121 80 6 23 16 

ComboBox 30 168 101 95 71 4 19 13 

ToggleButton 45 249 125 121 80 6 23 16 

ComboBox 30 168 101 95 71 4 19 13 

ToggleButton 45 249 125 121 80 6 23 16 

ComboBox 30 168 101 95 71 4 19 13 

ToggleButton 45 249 125 121 80 6 23 18 

ComboBox 30 168 101 95 71 4 19 13 

ToggleButton 45 250 125 121 80 7 23 18 

ComboBox 30 168 101 95 71 4 19 13 

ToggleButton 45 250 125 121 80 7 23 18 
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Table C.07 Metrics values for pBeans package (pBeans)  

Class Name NOM  LOC RFC MPC EXT PACK FOUT  F-IN 

Persistent 0 1 0 0 0 0 0 25 

StoreException 3 4 3 0 0 0 0 52 

StoreInfo 6 9 6 0 0 2 0 9 

Persistent 0 1 0 0 0 0 0 25 

StoreException 3 4 3 0 0 0 0 53 

StoreInfo 6 9 6 0 0 2 0 9 

Persistent 0 1 0 0 0 0 0 30 

PersistentID 6 13 10 4 4 0 3 11 

StoreException 3 4 3 0 0 0 0 56 

Persistent 0 1 0 0 0 0 0 30 

PersistentID 6 13 10 4 4 0 3 11 

StoreException 3 4 3 0 0 0 0 56 

Persistent 0 1 0 0 0 0 0 30 

PersistentID 6 13 10 4 4 0 3 11 

StoreException 3 4 3 0 0 0 0 56 

Persistent 0 1 0 0 0 0 0 30 

PersistentID 6 13 10 4 4 0 3 11 

StoreException 3 4 3 0 0 0 0 56 

Persistent 0 1 0 0 0 0 0 34 

PersistentID 6 13 10 4 4 0 3 10 

StoreException 3 4 3 0 0 0 0 57 

StoreInfo 7 10 7 0 0 2 0 9 

GlobalPersistentID 8 25 18 10 10 0 3 18 

PersistentID 6 13 10 4 4 0 3 17 

Store 85 690 293 433 208 10 65 30 

StoreException 3 4 3 0 0 0 0 93 

StoreInfo 15 18 15 0 0 2 0 14 

GlobalPersistentID 8 25 18 10 10 0 3 18 

PersistentID 6 13 10 4 4 0 3 17 

Store 85 690 293 433 208 10 65 30 

StoreException 3 4 3 0 0 0 0 93 

StoreInfo 15 18 15 0 0 2 0 14 

GlobalPersistentID 8 25 18 10 10 0 3 18 

PersistentID 6 13 10 4 4 0 3 17 

Store 88 696 298 436 210 10 65 30 

StoreException 3 4 3 0 0 0 0 95 

StoreInfo 15 18 15 0 0 2 0 14 
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Table C.08 Metrics values for Data package (pBeans)  

Class Name NOM  LOC RFC MPC EXT PACK FOUT  F-IN 

AbstractDatabase 38 330 165 193 127 4 35 4 

FieldDescriptor 11 23 11 0 0 3 0 15 

IndexDescriptor 9 25 16 8 7 1 1 10 

ResultsIterator 1 2 1 0 0 0 0 3 

IndexDescriptor 9 25 16 8 7 1 1 10 

FieldDescriptor 11 23 11 0 0 3 0 15 

FieldDescriptor 11 23 11 0 0 3 0 24 

IndexDescriptor 9 25 16 8 7 1 1 14 

ResultsIterator 1 2 1 0 0 0 0 3 

FieldDescriptor 11 23 11 0 0 3 0 24 

IndexDescriptor 9 25 16 8 7 1 1 14 

ResultsIterator 1 2 1 0 0 0 0 3 

FieldDescriptor 11 23 11 0 0 3 0 24 

IndexDescriptor 9 25 16 8 7 1 1 14 

ResultsIterator 1 2 1 0 0 0 0 3 

FieldDescriptor 11 23 11 0 0 3 0 24 

IndexDescriptor 9 25 16 8 7 1 1 15 

ResultsIterator 1 2 1 0 0 0 0 3 

FieldDescriptor 11 23 11 0 0 3 0 24 

IndexDescriptor 9 25 16 8 7 1 1 15 

ResultsIterator 1 2 1 0 0 0 0 3 

Database 16 19 16 0 0 2 0 10 

FieldDescriptor 14 28 15 1 1 0 0 48 

IndexDescriptor 10 28 17 8 7 1 1 26 

Database 16 19 16 0 0 2 0 10 

FieldDescriptor 14 28 15 1 1 0 0 48 

IndexDescriptor 10 28 17 8 7 1 1 26 

Database 16 19 16 0 0 2 0 10 

FieldDescriptor 14 28 15 1 1 0 0 48 

IndexDescriptor 10 28 17 8 7 1 1 26 
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Table C.9 Metrics values for Fastagi package (Aserisk)  

Class Name NOM  LOC RFC MPC EXT PACK FOUT  F-IN 

AGIException 3 4 3 0 0 0 0 32 

AGIReader 2 4 2 0 0 1 0 3 

AGIRequest 18 20 18 0 0 1 0 16 

AGIScript 1 2 1 0 0 0 0 7 

AGIWriter 1 3 1 0 0 1 0 3 

AGIException 3 4 3 0 0 0 0 32 

AGIReader 2 4 2 0 0 1 0 3 

AGIRequest 19 21 19 0 0 1 0 18 

AGIScript 1 2 1 0 0 0 0 7 

AGIConnectionHandler 5 42 25 20 20 8 11 5 

AGIException 3 4 3 0 0 0 0 74 

AGIRequest 19 21 19 0 0 1 0 18 

AGIScript 1 2 1 0 0 0 0 7 

AGIConnectionHandler 5 42 25 20 20 8 11 5 

AGIException 3 4 3 0 0 0 0 107 

AGIRequest 23 26 23 0 0 2 0 17 

AGIScript 1 2 1 0 0 0 0 8 

AGIConnectionHandler 5 42 26 21 21 8 11 5 

AGIException 3 4 3 0 0 0 0 119 

AGIRequest 27 30 27 0 0 2 0 22 

AGIScript 1 2 1 0 0 0 0 8 

AgiChannel 52 55 52 0 0 2 0 2 

AgiException 2 3 2 0 0 0 0 109 

AgiScript 1 2 1 0 0 0 0 12 

MappingStrategy 1 2 1 0 0 0 0 12 

AgiChannel 54 57 54 0 0 2 0 2 

AgiException 2 3 2 0 0 0 0 109 

AgiScript 1 2 1 0 0 0 0 17 

MappingStrategy 1 2 1 0 0 0 0 12 

 

Table C.10 Metrics values for Manager package (Asterisk)  

Class Name NOM  LOC RFC MPC EXT PACK FOUT  F-IN 

AsteriskServer 8 35 13 5 5 1 1 14 

Channel 28 85 49 21 21 2 2 44 

ChannelStateEnum 3 11 5 2 2 3 1 8 
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DefaultManagerConnection 31 264 113 107 82 25 21 6 

Queue 7 20 11 4 4 4 1 8 

TimeoutException 1 2 1 0 0 0 0 9 

AsteriskServer 8 35 13 5 5 1 1 14 

Channel 28 85 49 21 21 2 2 44 

ChannelStateEnum 3 11 5 2 2 3 1 8 

DefaultManagerConnection 31 262 114 108 83 25 21 5 

Queue 7 20 11 4 4 4 1 8 

TimeoutException 1 2 1 0 0 0 0 9 

AsteriskServer 8 35 13 5 5 1 1 14 

Channel 25 97 46 24 21 4 5 49 

ChannelStateEnum 3 11 5 2 2 3 1 8 

Extension 9 33 21 12 12 2 2 8 

Queue 8 27 21 13 13 4 3 12 

TimeoutException 1 2 1 0 0 0 0 7 

AsteriskServer 8 35 13 5 5 1 1 14 

Channel 28 106 53 30 25 4 5 49 

ChannelStateEnum 3 11 5 2 2 3 1 8 

Extension 9 33 21 12 12 2 2 11 

Queue 8 27 21 13 13 4 3 12 

TimeoutException 1 2 1 0 0 0 0 8 

AsteriskServer 8 35 13 5 5 1 1 14 

Channel 28 106 53 30 25 4 5 49 

DefaultManagerConnection 37 344 136 130 99 32 31 6 

Extension 9 33 21 12 12 2 2 11 

Queue 8 27 21 13 13 4 3 12 

TimeoutException 1 2 1 0 0 0 0 8 

EventTimeoutException 2 5 2 0 0 0 0 3 

ManagerConnection 17 23 17 0 0 5 0 6 

ManagerEventListener 1 4 1 0 0 2 0 6 

ResponseEvents 2 6 2 0 0 3 0 4 

SendActionCallback 1 3 1 0 0 1 0 4 

TimeoutException 1 2 1 0 0 0 0 7 

DefaultManagerConnection 33 76 58 37 25 5 2 3 

ManagerConnection 20 26 20 0 0 5 0 6 

ManagerEventListener 1 4 1 0 0 2 0 6 

ResponseEvents 2 6 2 0 0 3 0 4 

SendActionCallback 1 3 1 0 0 1 0 4 

TimeoutException 1 2 1 0 0 0 0 7 
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Table C.011 Metrics values for Manager.event package (Asterisk) 

Class Name NOM  LOC RFC MPC EXT PACK FOUT  F-IN 

ConnectEvent 3 6 3 0 0 0 0 13 

DisconnectEvent 1 2 1 0 0 0 0 19 

HangupEvent 3 6 3 0 0 0 0 5 

LinkEvent 1 2 1 0 0 0 0 5 

ManagerEvent 4 14 11 7 7 3 2 18 

NewChannelEvent 1 2 1 0 0 0 0 9 

NewExtenEvent 15 30 15 0 0 0 0 8 

NewStateEvent 1 2 1 0 0 0 0 5 

QueueEntryEvent 11 22 11 0 0 0 0 5 

QueueMemberEvent 13 26 13 0 0 0 0 5 

QueueParamsEvent 17 34 17 0 0 0 0 5 

RenameEvent 7 14 7 0 0 0 0 5 

ShutdownEvent 5 10 5 0 0 0 0 5 

StatusCompleteEvent 1 2 1 0 0 0 0 8 

StatusEvent 23 46 23 0 0 0 0 5 

UnlinkEvent 1 2 1 0 0 0 0 5 

ConnectEvent 3 6 3 0 0 0 0 13 

DisconnectEvent 1 2 1 0 0 0 0 19 

HangupEvent 3 6 3 0 0 0 0 5 

LinkEvent 1 2 1 0 0 0 0 5 

ManagerEvent 4 14 11 7 7 3 2 18 

NewChannelEvent 1 2 1 0 0 0 0 9 

NewExtenEvent 15 30 15 0 0 0 0 8 

NewStateEvent 1 2 1 0 0 0 0 5 

QueueEntryEvent 11 22 11 0 0 0 0 5 

QueueMemberEvent 13 26 13 0 0 0 0 5 

QueueParamsEvent 17 34 17 0 0 0 0 5 

RenameEvent 7 14 7 0 0 0 0 5 

ShutdownEvent 5 10 5 0 0 0 0 5 

StatusCompleteEvent 1 2 1 0 0 0 0 8 

StatusEvent 23 46 23 0 0 0 0 5 

UnlinkEvent 1 2 1 0 0 0 0 5 

ConnectEvent 3 6 3 0 0 0 0 11 

DisconnectEvent 1 2 1 0 0 0 0 14 

HangupEvent 5 10 5 0 0 0 0 6 

LinkEvent 1 2 1 0 0 0 0 5 

ManagerEvent 6 21 14 8 8 3 2 28 
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NewCallerIdEvent 12 36 16 4 4 0 1 11 

NewChannelEvent 1 2 1 0 0 0 0 9 

NewExtenEvent 15 30 15 0 0 0 0 8 

NewStateEvent 1 2 1 0 0 0 0 5 

QueueEntryEvent 13 26 13 0 0 0 0 5 

QueueMemberEvent 17 34 17 0 0 0 0 5 

QueueParamsEvent 19 38 19 0 0 0 0 5 

RenameEvent 7 14 7 0 0 0 0 5 

ResponseEvent 5 10 5 0 0 0 0 11 

ShutdownEvent 5 10 5 0 0 0 0 13 

StatusCompleteEvent 1 2 1 0 0 0 0 6 

StatusEvent 23 46 23 0 0 0 0 5 

UnlinkEvent 1 2 1 0 0 0 0 5 

ConnectEvent 3 6 3 0 0 0 0 11 

DisconnectEvent 1 2 1 0 0 0 0 14 

HangupEvent 5 10 5 0 0 0 0 6 

LinkEvent 1 2 1 0 0 0 0 5 

ManagerEvent 6 21 14 8 8 3 2 28 

NewCallerIdEvent 12 36 16 4 4 0 1 11 

NewChannelEvent 1 2 1 0 0 0 0 9 

NewExtenEvent 15 30 15 0 0 0 0 8 

NewStateEvent 1 2 1 0 0 0 0 5 

QueueEntryEvent 13 26 13 0 0 0 0 5 

QueueMemberEvent 17 34 17 0 0 0 0 5 

QueueParamsEvent 19 38 19 0 0 0 0 5 

RenameEvent 7 14 7 0 0 0 0 5 

ResponseEvent 5 10 5 0 0 0 0 11 

ShutdownEvent 5 10 5 0 0 0 0 13 

StatusCompleteEvent 1 2 1 0 0 0 0 6 

StatusEvent 23 46 23 0 0 0 0 5 

UnlinkEvent 1 2 1 0 0 0 0 5 

ConnectEvent 3 6 3 0 0 0 0 11 

DisconnectEvent 1 2 1 0 0 0 0 14 

HangupEvent 5 10 5 0 0 0 0 6 

LinkEvent 1 2 1 0 0 0 0 5 

ManagerEvent 6 21 14 8 8 3 2 28 

NewCallerIdEvent 12 36 16 4 4 0 1 11 

NewChannelEvent 1 2 1 0 0 0 0 9 

NewExtenEvent 15 30 15 0 0 0 0 8 

NewStateEvent 1 2 1 0 0 0 0 5 
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QueueEntryEvent 13 26 13 0 0 0 0 5 

QueueMemberEvent 17 34 17 0 0 0 0 5 

QueueParamsEvent 19 38 19 0 0 0 0 5 

RenameEvent 7 14 7 0 0 0 0 5 

ResponseEvent 5 10 5 0 0 0 0 11 

ShutdownEvent 5 10 5 0 0 0 0 13 

StatusCompleteEvent 1 2 1 0 0 0 0 6 

StatusEvent 23 46 23 0 0 0 0 5 

UnlinkEvent 1 2 1 0 0 0 0 5 

CdrEvent 43 89 44 6 1 3 1 3 

ConnectEvent 4 8 4 0 0 0 0 3 

DisconnectEvent 1 2 1 0 0 0 0 4 

HangupEvent 5 10 5 0 0 0 0 3 

LinkEvent 1 2 1 0 0 0 0 3 

ManagerEvent 6 34 17 11 11 6 7 7 

MeetMeMuteEvent 3 6 3 0 0 0 0 3 

MeetMeTalkingEvent 3 6 3 0 0 0 0 3 

NewCallerIdEvent 4 20 8 4 4 0 2 3 

NewChannelEvent 1 2 1 0 0 0 0 3 

NewExtenEvent 15 30 15 0 0 0 0 3 

NewStateEvent 1 2 1 0 0 0 0 3 

PeerlistCompleteEvent 3 6 3 0 0 0 0 3 

QueueMemberEvent 17 34 17 0 0 0 0 3 

QueueParamsEvent 19 38 19 0 0 0 0 3 

RenameEvent 7 14 7 0 0 0 0 3 

ResponseEvent 5 10 5 0 0 0 0 15 

UnlinkEvent 1 2 1 0 0 0 0 3 

CdrEvent 43 89 44 6 1 3 1 5 

ConnectEvent 4 8 4 0 0 0 0 5 

DisconnectEvent 1 2 1 0 0 0 0 6 

HangupEvent 5 10 5 0 0 0 0 5 

LinkEvent 1 2 1 0 0 0 0 5 

ManagerEvent 8 38 19 11 11 6 7 7 

MeetMeMuteEvent 3 6 3 0 0 0 0 5 

MeetMeTalkingEvent 3 6 3 0 0 0 0 5 

NewCallerIdEvent 4 20 8 4 4 0 2 5 

NewChannelEvent 1 2 1 0 0 0 0 5 

NewExtenEvent 15 30 15 0 0 0 0 5 

NewStateEvent 1 2 1 0 0 0 0 5 

OriginateResponseEvent 19 40 20 1 1 0 0 8 
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PeerlistCompleteEvent 3 6 3 0 0 0 0 5 

QueueMemberEvent 21 42 22 2 1 0 0 5 

QueueParamsEvent 19 38 19 0 0 0 0 5 

RenameEvent 9 18 9 0 0 0 0 5 

ResponseEvent 5 10 5 0 0 0 0 15 

UnlinkEvent 1 2 1 0 0 0 0 5 
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APPENDIX D: THE REFACTORING DATA FOR 

ANTLR AND PDFBOX 

Tables in this appendix show the data for the fifteen refactoring analysed in this 

Thesis for Antlr and PDFBox systems. 

Table D.01 Refactorings for the Antlr system across 9 versions 

Refactoring  Ver1 Ver2 Ver3 Ver4 Ver5 

AddMethodParameter 2 7 0 1 0 

EncapsulateDowncast 0 0 0 0 0 

HideMethod 0 0 0 0 0 

PullUpField 0 0 0 0 0 

PullUpMethod 0 5 0 0 0 

PushDownField 0 0 0 0 0 

PushDownMethod 0 0 0 0 0 

RemoveMethodParameter 0 1 0 0 0 

RenameField 1 6 0 0 0 

RenameMethod 1 6 1 0 0 

EncapsulateField 0 0 0 0 0 

MoveField 0 6 0 0 0 

MoveMethod 0 6 0 0 0 

ExtractSuperClass 0 0 0 0 0 

ExtractSubClass 0 0 0 0 0 
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Table D.02 Refactorings for the PDFBox system across 9 versions 

Refactoring  Ver1 Ver2 Ver3 Ver4 Ver5 Ver6 

AddMethodParameter 0 3 0 0 0 7 

EncapsulateDowncast 0 0 0 0 0 0 

HideMethod 0 0 0 0 0 0 

PullUpField 0 0 0 0 0 0 

PullUpMethod 0 0 0 0 0 0 

PushDownField 0 0 0 0 0 0 

PushDownMethod 0 0 0 0 0 0 

RemoveMethodParameter 0 0 6 0 0 1 

RenameField 0 0 1 0 1 3 

RenameMethod 1 0 2 4 0 7 

EncapsulateField 0 0 0 0 0 1 

MoveField 0 0 4 1 0 1 

MoveMethod 1 0 8 0 0 7 

ExtractSuperClass 0 0 1 0 0 0 

ExtractSubClass 0 0 0 0 0 0 

 


