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Key words explanation 

Undercooling: also known as supercooling, is the process of lowering the 

temperature of a liquid or a gas below its freezing point, without it becoming a solid. 

Below this temperature liquid gets solidified. 

Solid-solution strengthening: a type of alloying that can be used to improve the 

strength of a pure metal. The technique works by adding atoms of one element (the 

alloying element) to the crystalline lattice of another element (the base metal). The 

alloying element diffuses into the matrix, forming a solid solution. 

Dispersion strengthening: also called age hardening, is a heat treatment technique 

used to increase the yield strength of malleable materials, including most structural 

alloys of aluminium, magnesium, nickel and titanium, and some stainless steels. It 

relies on changes in solid solubility with temperature to produce fine particles of an 

impurity phase, which impede the movement of dislocations, or defects in a crystal's 

lattice. Since dislocations are often the dominant carriers of plasticity, this serves to 

harden the material. 

Yield strength (YS): defined in engineering and materials science as the stress at 

which a material begins to deform plastically. 

Ultimate tensile strength (UTS): indicated by the maximum of a stress-strain curve 

and, in general, indicates when necking will occur. 

Elongation: a test to measure the ductility. When a material is tested for tensile 

strength it elongates a certain amount before fracture takes place. 

In vivo: experimentation using a whole, living organism as opposed to a partial or 

dead organism, or an in vitro controlled environment. Animal testing and clinical trials 

are two forms of in vivo research. 

In vitro: performed not in a living organism but in a controlled environment. 

Cytotoxicity: the quality of being toxic to cells. Examples of toxic agents are a 
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chemical substance, an immune cell or some types of venom. 

Lysis: refers to the breaking down of a cell, often by viral, enzymic or osmotic 

mechanisms that compromise its integrity. 

Osteoconductivity: refers to ability of any structure that facilitates the formation of 

bone structure. 

MTT assay: colorimetric assays for measuring the activity of enzymes that reduce 

MTT or close dyes (XTT, MTS, WSTs) to formazan dyes, giving a purple color.  

Acidosis: an increased acidity in the blood. (i.e., an increased hydronium ion 

concentration).  It usually refers to acidity of the blood plasma. 

Osteoblast: mononucleate cells that are responsible for bone formation; in essence, 

osteoblasts are sophisticated fibroblasts that express all genes that fibroblasts (a type 

of cell that plays a critical role in wound healing) express, with the addition of the 

genes for bone sialoprotein and osteocalcin. 

Anti-corrosion: refers to the protection of metal surfaces from corroding in 

aggressive (corroding) environments. 

Galvanic corrosion: an electrochemical process in which one metal corrodes 

preferentially when in electrical contact with a different type of metal and both metals 

are immersed in an electrolyte.  

Synovial tissue: the soft tissue that lines the non-cartilaginous surfaces within joints 

with cavities (synovial joints). 

Histology: is the study of the microscopic anatomy of cells and tissues of plants and 

animals. It is performed by examining a thin slice (section) of tissue under a light 

microscope or electron microscope. 

Osteogenesis: the process of laying down new bone material by cells called 

osteoblasts. 
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Chapter 1 
Introduction 
 
1.1 Background 

Depending on an excellent combination of high mechanical property and fracture 

toughness, metallic biomaterials have been widely accepted for clinical application of 

bone fixation. However, some prominent disadvantages such as stress shielding effect 

due to their high elastic modulus, poisonous ions released by corrosion or mechanical 

wear [Puleo and Huh, 1995] definitely restrict their effective performance in-service. 

In addition, patients also have to bear the pain resulted from second surgery for 

removing implants. Although bio-degradable polymers and ceramics seem to solve 

the tough problem as promising substitutes, the low mechanical property and rapid 

corrosion rate make them fail to qualify against the bear-loading requirement in body. 

Therefore, we desperately look for a non-toxic suitable material for medical 

application which possesses appropriate mechanical properties, and favourable 

corrosion resistance.     

1.1.1 Mg and its alloys for medical application 

In light of the moderate elastic modulus and density which are quite similar to   

natural bone, magnesium and its alloys of non-toxic composition can be regarded as 

potential bio-resorbable material, which not only avoid the second surgery and 

minimize the patient's pain but also contribute to accelerating bone restoration. As a 

result, over the last decade, a large number of researchers have investigated their 

properties in order to achieve the purpose of clinical application.  

Generally speaking, magnesium alloys available nowadays are designed for 

commercial industrial applications, which contain other bio-poisonous elements such 

as Al, and rare earth elements. Moreover, since those alloys are susceptible to Cl ion 
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containing physiological environment, the subcutaneous cavity formed by the rapid 

evolution of hydrogen gas can negatively affect osteoconductivity. Hence, it is 

necessary to select alloying elements based on their influence on mechanical 

properties, biocompatibility and corrosion resistance.  

Zinc is one of the most abundant nutritionally essential elements in the human body, 

and considered as a safe element for biomedical applications. When alloyed with Mg, 

it can improve the corrosion resistance and mechanical properties. Additionally, due 

to low density and biological function, calcium is regarded as an indispensable 

bio-alloying element. Therefore, we strongly believe that the ternary alloy of 

Mg-Zn-Ca synthesized with optimized composition may be able to perfectly suit 

load-bearing application.  

1.1.2 Metal matrix composites 

In the past, although magnesium alloys were identified as potentially suitable 

bio-degradable medical material, either their mechanical properties or corrosion 

resistance failed to satisfy the strict requirement in-service. Currently, it is therefore 

necessary to investigate a novel method by which designed magnesium alloys possess 

a controllable corrosion rate in physiological condition without compromising their 

mechanical properties. 

Metal matrix composites (MMC) based on magnesium alloys seem to be a feasible 

approach to work out the tough problem. A metal matrix composite (MMC) generally 

consists of at least two constituent parts, one is a metal as matrix and the other 

constituent is possibly another metal or different kind of material, such as a ceramic 

or organic compound as reinforcement. Moreover, according to the form of 

reinforcement in the matrix, the composite microstructures are also divided in to three 

types, which are monofilaments, whisker fibres and particulate composition. In the 

last decade, MMCs have been paid more attention in automotive and general 

transportation industry due to their relative high stiffness, strength, creep resistance 
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and favourable corrosion behaviour [Clyne, 2000]. On the basis of Mg-Zn-Ca alloy as 

the metal matrix, if we choose an appropriate reinforcement particle, a good 

combination of corrosion resistance and mechanical properties may be achieved. 

As a composition of natural bone, hydroxyapatite (HA) has been widely employed in 

medical applications. In addition, HA possesses a low solubility in the body 

environment [Fulmer et al., 2002]. Hence, it is reasonable to suggest that HA can be a 

suitable reinforcement in Mg-based MMCs.    

 

1.2 Aim and objectives 

In this study, the main objective is to prepare metal matrix composites based on 

Mg-Zn-Ca alloy as the matrix and HA particles as reinforcement for potential 

bio-medical application. Since the alloyed elements in this study and HA 

reinforcement are absolutely bio-safe, it is now important to enhance mechanical 

property and corrosion behaviour. The key approach to achieve the aim is to refine the 

microstructure, especially for improving the distribution of HA particles.  

An impeller is designed according to crucible dimension and is employed to stir the 

Mg/HA slurry, which should impact on the uniform distribution of the reinforcement. 

Therefore, the mixing procedure is carefully conducted prior to directly cast or other 

processes. Due to the high cooling rate, high pressure die-casting (HPDC) process can 

refine the microstructure. In order to improve the mechanical properties and corrosion 

behaviour, we have used the HPDC process. In addition, intensive shearing the 

Mg/HA slurry using melt conditioning by advanced shear technology (MCAST) 

process has been adopted to improve homogeneous dispersion of intermetallic 

particles and HA particles.  

In this thesis, the effect of HA particle addition on refining the grain size of 

Mg-Zn-Ca and AZ91D magnesium alloys is also systematically investigated. For this 

study, to maintain a constant cooling rate in casting process and to simulate cooling 
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conditions that are normally achieved in industrial practice such as in direct chill 

casting process, the standard test procedure-1 (TP1) mould is used for casting and 

investigated the grain refinement characteristics in detailed. 

 

1.3 Thesis outline 

This thesis is divided into 6 Chapters. Chapter 1 presents a brief introduction, aims, 

objectives and thesis outline.  In Chapter 2, a literature review is presented, which 

consist of two parts. Part 1 reviews in detail the current research and relevant 

technology development in the field of bio-degradable medical materials. Part 2 of 

this chapter mainly discusses the metallurgical aspects of Mg alloys. Chapter 3 

presents experimental procedure and working principles of techniques used in this 

work. The experimental results obtained in this research are presented in Chapter 4, 

which include the optical microscopy studies, XRD investigation, micro-hardness 

investigation, tensile properties, cooling curve measurements and detailed 

measurements of average grain size. Moreover, the discussion of the corresponding 

results is also given in this chapter. 

In Chapter 5, we have concluded the results. The recommendation for further work 

related to process improvement that can effectively further improve distribution of 

HA in Mg alloy, and the detailed experimental plan in association with 

characterization of bio-medical properties of these materials are presented in Chapter 

6. 

 
 
 
 



BCAST, Brunel University 

5 
 

Chapter 2 
Literature Review  

Part 1: Biomaterials 
 

2.1.1 Introduction 

Since metallic biomaterials possess a good combination of high mechanical properties 

and fracture toughness, they are widely being used in load-bearing bio-medical 

applications. However, some clinical limitations of these materials such as cobalt 

chromium alloys, stainless steel 316L, pure titanium and titanium alloys [Frosch and 

Stürme, 2006] confine their application. For instance, the stress shielding effect is 

induced due to the much higher elastic modulus of metal in-service in comparison 

with that of natural bone [Harvey et al., 1999]. This phenomenon could contribute to 

accelerate the resorption of bone in vicinity of the implant, resulting in unbalanced 

load supported by the metal instead of the surrounding bone. Eventually, the implant 

will fail to satisfy the requirement of load-bearing fixation. Moreover, the surface of 

metallic implants is impossible to match perfectly with bone surface, while the toxic 

ions released by corrosion or mechanical wear [Puleo and Huh, 1995] could cause 

deleterious influence on the bone and tissue response (e.g. less bone formation and 

inflammation). On the basis of those negative effects, biodegradable polymers and 

resorbable ceramics have widely been developed as alternatives to permanent metallic 

implants, whereas the low mechanical properties retarded their clinical application. 

Currently, iron and magnesium are two promising candidates for bio-medical 

application. If we take the elastic modulus and density of iron (91 GPa and 7.8 g.cm-3 

respectively) into account, it is obviously noted that Fe does not seem to be an 

excellent option for bone fixation because of the prominent deviation from those of 
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natural bone (10-15 GPa and 1.5-2.0 g.cm-3 respectively). However, according to 

some specific advantages of iron, it may conform to the requirement of specific 

applications such as biodegradable vascular stents [Waksman et al., 2008]. Therefore, 

despite Mg yield strength (55 MPa) being lower than that of natural bone (e.g. femur 

≈110 MPa) [Gu et al., 2009; Li et al., 2008], the elastic modulus and density of 

magnesium are similar to human bone. 

The bio-medical implant based on magnesium and its alloys offer a novel vehicle to 

relieve the patient’s pain due to avoiding second surgery for removing the bone 

fixation. Normally speaking, the physiological concentration of magnesium ions 

released by corrosion will sustain a relative constant standard in serum via storage in 

the muscle and the bone, while the excess magnesium ions in the serum are excreted 

by the kidney [Lothar, 2000]. As a result, the toxic reaction caused by the excess 

quantity of Mg ions could be efficiently avoided. Moreover, during the corrosion 

process of magnesium alloys, the complicated protective layer which consists of the 

precipitated calcium phosphates and corrosion products like magnesium oxides and 

magnesium hydroxides formed on the surface of implants in vivo improve the 

osteoconductivity but retard the corrosion. Nevertheless, as a negative effect on the 

tissue around the implant, the fast evolution of hydrogen gas caused by corrosion in 

the physiological condition may result in subcutaneous cavity formation. However, 

the hydrogen gas produced by the corrosion of Mg alloy implants placed at different 

locations in vivo resulted in different consequences. Depending on the pre-operation 

and post-operation investigation of Mg alloys, as cardiovascular stents in animals, the 

hydrogen evolution seems to rarely cause remarkable inflammation. The hydrogen is 

completely eliminated within two months due to less weight of implants and good 

transportation by blood circulation [Heublein et al., 2003]. The subcutaneous cavity 

formation is attributed to the rapid gas generation, and is responsible for the negative 

effect on bone healing. 

On the basis of the enormous progress in the field of synthesis technology, advanced 

approaches in preparation of alloys have given researchers firm confidence that Mg 
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and its alloys could be used as bio-medical implants in place of non-corrosion 

metallic materials like stainless steel and polymeric materials, although polymeric 

medical implants also possess the capability of degradation in physiological 

environment and non-toxicity. Nevertheless, the fast corrosion rate and low 

mechanical properties of polymeric materials cannot offer sufficient support in 

comparison with magnesium alloys. For instance, the magnesium alloys containing 

rare earth elements with better corrosion behaviour can provide 2-times higher tensile 

yield strength (200 MPa) and 4-times higher young’s modulus (45 MPa) than the 

bio-degradable polymeric implants (u-HA/PLLA 50/50) currently in clinical 

application [Shikinami and Okuno, 1999]. 

2.1.2 The corrosion mechanism of magnesium in 

aqueous conditions 

Magnesium and its alloys undergo electrochemical reaction easily in aqueous 

conditions. Magnesium hydroxide and hydrogen are generally observed as corrosion 

products. The entire corrosion equation of magnesium in aqueous solution is:  

Mg (s) + 2 H2O (aq) ↔ Mg(OH)2 (s) + H2 (g) 

This reaction could be divided into three partial equations: 

Mg (s) ↔ Mg2+ 
(aq) + 2 e- (anodic reaction) 

2 H2O (aq) + 2 e- ↔ H2 (g) + 2 OH-
(aq) (cathodic reaction) 

Mg2+ 
(aq) + 2 OH-

(aq) ↔ Mg(OH)2 (s) (product formation) 

Although the Mg(OH)2 film formed on the surface of Mg could temporarily retard the 

corrosion to some extent, it will become susceptible when the concentration of 

aggressive chloride ions increases above 30 mmol/l [Shaw, 2003] and eventually 

transform into MgCl2 with high solubility. Therefore, it is worth mentioning that Mg 

alloys as bio-degradable implants will be subjected to serious corrosion due to the 
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presence of high Cl- concentration (150 mmol/l) in physiological conditions [Xu et al., 

2007; Witte et al., 2005 and 2006]. 

2.1.3 Magnesium corrosion in relation to 

biocompatibility  

Yun et al. [Yun et al., 2009] have performed the special investigation of Mg corrosion 

and osteoblasts cell culture. The corrosion potential of pure magnesium immersed in 

phosphate-buffered saline (PBS) solution obtained from polarization curves was -1.53 

V, which is a little lower than the standard corrosion potential of Mg at 25 OC. It was 

associated with the formation of magnesium hydroxide resulting from the dissolution 

of Mg as protective layers which retarded the process of corrosion in aggressive ion 

containing environment [Song and Atrens, 2003]. Combined with the results of Ecorr 

measured in deionized water (-1.4 V) and McCoy’s 5A culture medium (-1.55 V), the 

most noble corrosion potential of Mg was observed in non-ions water, which indicate 

that the slowest corrosion occurred in the condition with absence of invasive ions. 

Nevertheless, although the Ecorr in PBS was quite similar to that in McCoy’s 5A-5% 

fetal bovine serum (FBS), the corrosion current density was four-fold higher than that 

in McCoy’s 5A-5% FBS, which may be responsible for the positive effect of albumin 

or other proteins on the corrosion resistance [Rettig and Virtanen, 2007]. 

The time-dependant tests using open circuit potential and electrochemical impedance 

in various solutions were performed for Mg. Passivation layer is observed to form on 

the surfaces of all magnesium samples according to the change of corrosion resistance, 

whereas the more compact and homogeneous protective layer was observed for the 

sample in McCoy’s 5A-5% FBS. The morphology and composition analysis of 

corrosion surface after 5 days confirmed the existence of the passivation layer during 

the corrosion in comparison with non-corroded Mg surface. The energy dispersion 

analysis (EDS) results indicated that the corrosion films in McCoy’s 5A-5% FBS and 

PBS also contained oxygen, chloride, phosphate and potassium rather than just 

magnesium like the sample in de-ionized water. 
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The result of cell culture in vitro revealed that no remarkable viability enhancement of 

U2OS (a human osteosarcoma cell line) cells was observed because of the presence of 

magnesium, which is slightly different from the proliferation improvement of L-929 

cells by magnesium ions as reported previously [Li et al., 2008]. However, the 

existence of magnesium promoted the mineral deposition process and didn’t cause 

cell lysis or cytotoxicity. 

2.1.4 Bone response during the corrosion of 

bio-degradable implants 

The degradation mechanism on the bone-implant interface of different magnesium 

alloys adjacent to bone and the effect on the surrounding bone has been widely 

studied by a large number of researchers. However, little information about the impact 

on the corrosion process by local condition is available. High pH (>11.5) could 

enhance a stable protective hydroxide layer on the surface of the Mg alloy implants 

and low pH (<11.5) could increase the corrosion process in aqueous solution 

[Pourbaix, 1974]. Based on this result, we can speculate that the surface corrosion rate 

of magnesium alloy implants obviously elevate due to low pH value caused by 

acidosis after surgery.  

Witte et al. [Witte, 2005] have investigated the degradable process happening on the 

bone-magnesium alloy interface and analyzed bone formation in the vicinity of 

bio-degradable magnesium implants (AZ31, AZ91, WE43, LAE442) in comparison 

with currently degradable polymers (SR-PLA96) used in clinical practices. The 

remarkably better osteoblast activity and a greater deposition rate of mineral in the 

vicinity of degradable Mg implants relative to a degradable polymer implant were 

observed. It can be explained that magnesium ions positively affect the synthesis of 

biological nucleic acids and the activity of enzymes which manage the nucleic acids 

[Katayanagi et al., 1990] or the protein translation for the extracellular matrix such as 

collagen type 1 was observed to be enhanced due to the presence of high Mg ion 

concentration. Furthermore, on the basis of different composition among these alloys, 
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the magnesium implants possessed different corrosion rate but generate similar 

calcium phosphates on the surface which could retard corrosion behaviour in vivo. As 

an unavoidable product of corrosion in vivo, limited amount of hydrogen gas does not 

result in adverse impact because of its disappearance caused by blood flux within 2-3 

weeks. 

2.1.5 Biological stimulus for bone growth 

Magnesium alloys as bio-medical degradable implants in vivo initiates the process of 

bone formation [Witte et al., 2005; Xu et al., 2007]. Electrical stimulation during the 

corrosion of magnesium alloys stimulates the bio-activity of osteoblast and 

accelerates the deposition of the bone [Xu et al., 2007]. It was responsible for the slow 

evolution of hydrogen gas which is related to the corrosion rate of Mg alloys 

containing various alloying elements [Witte et al., 2008]. The surface properties of 

magnesium alloys such as surface roughness, energy and charge, which can be 

modified by different post-treatment, are regarded as acceptable reasons that activate 

the bone healing. 

Positive bone response has been observed regardless of the composition of the 

magnesium alloys. Therefore, the common corrosion product in vivo, magnesium 

hydroxide, is paid more attention. Due to the susceptible resistance of Mg(OH)2 to 

Cl--containing physiological environment, Janning et al. [Janning et al., 2010] 

presume that the good biological influence on the bone activity around the 

bio-degradable implant is primarily associated with the local reinforced concentration 

of Mg ions by dissolution of magnesium hydroxide as well as in collaboration with 

local alkalosis. 

In vivo studies in rabbits [Janning et al., 2010] indicate that the volume of bone in the 

vicinity of magnesium hydroxide cylinders with low corrosion rate increased, which 

results from the improvement of osteoblast activity and the temporary reduction of 

osteoclast number. It is worth noticing that temporary reduction of bone resorption 
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has never been reported by in vivo study previously. Thus, the study supports the 

hypothesis of “the formation of the bone adjacent to the implant was accelerated by 

magnesium ions released by corrosion of Mg alloys in combination with local 

alkalosis”. However, due to the limitation of experimental instruments, it is very 

difficult to exactly measure the local concentration of Mg ions and the local pH value. 

From the previous assumption, the local pH value should vary in the range of the 

alkaline between 7.5 and 9.0, although it was never possible to probe the local pH 

value in vivo by a non-destructive method. In this regard, further investigation of the 

Mg2+ effect on the bone growth should be executed. 

2.1.6 The effect of the microstructure on the degradable 

behaviour 

The microstructure of Mg alloys as a bio-degradable implant is regarded as an 

important factor that can influence the corrosion performance when served in vivo 

condition. The bio-dissolution mechanism of magnesium alloys affected by 

microstructure in a chloride ion containing environment has been investigated in 

detail. For instance, since AZ91 magnesium alloy after die-casting possessed finer 

grain size and more homogeneous distribution of intermetallic phases around the 

boundary in comparison with conventional casting counterpart, excellent corrosion 

resistance was observed [Zucchi et al., 2006]. On the contrary, the investigation of 

AZ91 Mg alloys fabricated by different processes [Bobby, 2010] demonstrated 

different consequences. The Nyquist graphs (a plot between real and imaginary 

components of impedance) of die-cast, as-cast AZ91 Mg alloy samples and pure 

magnesium as a reference, shown in Fig. 2.1, indicated that the two alloys had much 

better corrosion properties than pure magnesium due to reduced corrosion by the 

addition of aluminium. Nevertheless, the polarization impedance of a sand-cast 

sample was marginally higher than that of the die-cast sample. The corrosion rate of 

the die-cast sample obtained from the polarization curve was a little lower than that of 

the as-cast sample, but no dramatic discrepancy between the two samples was found. 
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Depending on the morphological analysis of post-degradable samples, the magnesium 

matrix surrounded by the continuous second phase experienced severe dissolution as 

pitting corrosion of the die-cast sample, and eventually a configuration like 

honeycomb was observed because of the insolubility of β-precipitates (Mg17Al12) in 

the vicinity of the matrix. As a result, the implant in vivo revealed an obvious 

tendency to lose its mechanical integrity, which has attributed to the relative rapid 

degradation of grains in the as-cast sample and the embrittlement of the second phase. 

In addition, the high volume of insoluble β-precipitate that exists in the die-cast 

sample may cause negative impact on health in the physiological condition. Therefore, 

we should deeply and explicitly understand the corrosion behaviour of samples during 

dissolution, rather than make a conclusion to assess these bio-materials judged solely 

by corrosion rate, resistance and so on.   

 

Fig. 2.1 Nyquist plots of the samples in simulated body fluid. 

2.1.7 Corrosion properties of Mg alloys 

2.1.7.1 Ca-addition 

Some researchers have reported that the corrosion resistance against NaCl solution 

could be enhanced by addition of moderate Ca content. 

The corrosion resistance of Mg-xCa (x=1-3 wt.%) alloy samples were explored 
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systematically through immersion tests and electrochemical measurements by Li et al. 

[Li et al., 2008]. The results demonstrated that the anti-corrosion properties decreased 

and the hydrogen evolution increased with increasing calcium content (Fig. 2.2).  

  

Fig. 2.2 (a) The pH variation of Mg-Ca alloys immersed in SBF as a function of time. (b) 

Potentiodynamic polarization curves of Mg-Ca alloys in SBF. 

Zhang et al [Zhang et al., 2009 a] have also reported corrosion results of Mg-0.6%Si 

alloy by adding different low Ca content as shown in Table 2.1. The result showed 

that the addition of 0.18% Ca shifted the corrosion potential remarkably towards a 

more noble position, but anti-corrosion behaviour has not improved because of high 

corrosion density. However, the corrosion resistance significantly increased with 

0.44% Ca content.  

In addition, the electrochemical tests of as-cast Mg-Zn-Mn-Ca alloys containing 

different Ca content [Zhang and Yang, 2008] showed that the corrosion resistance 

slightly increased from 192 Ω/cm2  to 266 Ω/cm2 when the additive amount of 

calcium increased from 0.3 wt. % to 0.5 wt.%. However, the corrosion resistance 

improved significantly and the corrosion density decreased dramatically when the 

content of Ca increased from 0.5 wt. % to 1.0 wt. %. The tendency of the 

anti-corrosion property with increasing addition of calcium is quite similar to previous 

work [Zhang et al., 2009 a].  

 

(a) (b) 
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Table 2.1 Corrosion property of magnesium alloys. (○-unavailable) 

Measured 
alloys reference 

Electrolyte
compositio

n 

Test 
method 

Ecorr 
(V) 

Icorr 

(μA) 

Rcorr 
(mmyear-

) 

99.9% Mg 
Wang et 

al., 2008 b 
SBF Immersion 

test ○ ○ 3.0 

AZ91D Witte et 
al., 2005 

Borax- 

phosphate 

buffer pH 7 

OCP  
SCE 

○ ○ 2.8 

LAE442 Witte et 
al., 2006 ○ p 6.9 

AZ91 Kannan 
and 

Raman, 
2008 

mSBF-HEPE
S 

pH 7.4 

OCP  
SCE 

-1.73 65.7 1.1 
AZ91+1%Ca -1.57 17.8 0.3 

AZ61+0.4%Ca -1.71 36.5 0.6 

Mg-Mn 
Xu et al., 

2007 SBF OCP 
SCE 

-1.85 57 ○ 
Mg-Mn-Zn -1.51 79 ○ 

WE43 -1.70 16 ○ 
AZ31(SC) Wang et 

al., 2008 
a 

Hanks 
solution 

Immersion
test 

○ ○ 0.7 
AZ31 (ECAP) ○ ○ 0.54 

AZ31 (HR) ○ ○ 0.48 
AZ31 

Wen et 
al., 2009 SBF OCP 

SCE 

-1.6 25.1 ○ 
AZ31 

(HA coating) -1.42 0.03 ○ 

AZ91-HA 
Witte et al., 

2007 
artificial sea 

water EIS ○ ○ 1.25±0.16

AZ91 
Hu et al., 

2010 SBF EIS 
-1.49 70 ○ 

DCPD coated 
AZ91 -1.52 2.6 ○ 

AZ91 (T4) 

Zhou et 
al., 

2009 
SBF EIS 

-1.24 0.028 
(mA) 0.61 

AZ91 (T6-8h) -1.29 0.066 
(mA) 1.44 

AZ91 (T4-16h) -1.19 0.027 
(mA) 0.59 

AZ91 (T4-24h) -1.29 0.074 
(mA) 1.62 

Mg-Ce 
Ng et al. 

2010 
Hanks 

solution EIS 
-1.92 343 ○ 

Mg-Ce 
(Heat treatment) -1.85 4.0 ○ 

Mg-0.6Si 
Zhang et 
al., 2009 

a 

Hanks 
solution 

OCP 
SCE 

-1.727 30.6 0.38 
Mg-0.6Si-0.2Ca -1.547 36.3 0.39 
Mg-0.6Si-0.4Ca -1.536 14.3 0.15 
Mg-0.6Si-1.5Zn -1.630 12.6 0.14 



BCAST, Brunel University 

15 
 

The electrochemical polarization measurements of AZ91 magnesium alloy with 1 

wt.% calcium and AZ61 with 0.4 wt.% calcium in modified simulated body fluid 

indicated that the corrosion potential obviously shifted towards positive tendency and 

corrosion current density decreased remarkably in comparison with those of AZ91 

alloy despite the presence of similar break down potential for all alloys. This could be 

related to the accelerated precipitation of calcium phosphate on the surface which 

retards the corrosion [Kannan and Raman, 2008].  

The result of degradation experiment of Mg/Ca composite prepared by powder 

metallurgy method in Dulbecco’s modified Eagle’s medium (DMEM) [Zheng et al., 

2009] indicated that the corrosion resistance reduced with increasing amount of Ca 

particulate. It could be explained that the Ca particulate as the anodic member causes 

severe galvanic corrosion on the surface immersed in electrolyte with Mg matrix as 

the cathodic member. Therefore, increasing the amount of Ca particulate led to a 

growing surface area ratio of anodic Ca particulate to Mg so that it resulted in a 

gradually increasing corrosion rate. However, the corrosion resistance of all 

composite samples (Mg/1Ca, Mg/5Ca and Mg/10Ca) increased remarkably at the 

initial stage and kept approximately constant thereafter due to the formation of the 

protective film on the surface.  

In addition, the compositional analysis of corrosion products for all samples 

demonstrated that no conspicuous difference was observed except for the first 12 

hours immersion period. Improved corrosion resistance is probably due to properly 

refined grain size by the addition of Ca element. Most importantly, it depends on the 

different second phases and their distribution. Generally speaking, Mg2Ca is a 

common second phase in Ca-containing Mg alloys and always plays an important role 

in the modification of the corrosion behaviour. Zhang and Yang [Zhang and Yang, 

2008] have confirmed the effect of Mg2Ca on the aspect of anti-corrosion by 

experimental results. Some other Ca-containing intermetallic phase such as Al2Ca 

which forms at the cost of subsequent reduction of Mg17Al12 phase in AZ91 and AZ61 

magnesium alloys is also associated with the enhancement of corrosion resistance 
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[Kannan and Raman, 2008]. Furthermore, it was discovered that Mg(OH)2 and 

hydroxyapatite phases also protect alloy samples from further corrosion to some 

degree. 

2.1.7.2 Zn-addition  

Zinc can improve the corrosion resistance by increasing its mass fraction in 

magnesium. The addition of 1.5% Zn to Mg-0.6%Si alloy dramatically increased the 

anti-corrosion performance in comparison with the alloy without zinc as shown in 

Table 2.1 [Zhang et al., 2009 a]. Compared to the corrosion resistance of pure 

magnesium, an extruded Mg-6Zn alloy with the absence of second phase (γ-MgZn) 

possessed an excellent corrosion property [Zhang et al., 2009 b]. 

Yin et al [Yin et al., 2008], concluded from Fig. 2.3 that when a Mg-Zn-Mn alloy 

contains low Zn content (1%-2% Zn), the anti-corrosion behaviour is improved 

remarkably compared to higher Zn content. The corrosion test of extruded 

Mg-xZn-1Mn (x=1, 2, 3) in SBF also indicated that the corrosion resistance decreased 

with the increasing content of Zn element as shown in Table 2.2.  

The existence of a Zn-rich layer on the surface of Zn-containing magnesium alloy 

could protect alloys from further corrosion under aggressive environment [Fan et al., 

2004]. But, if the content of Zn element exceeds its maximum solubility in the 

magnesium matrix, the presence of a massive fraction of second phase (MgZn) 

accelerates the rate of corrosion and deteriorates the property of anti-corrosion. Zn 

forms zinc containing phosphate on the surface of magnesium alloys, which is an 

effective protective film. In addition, it has been extensively accepted that Zn can 

diminish the effects of Fe and Ni on corrosion property and then improve the 

anti-corrosion property of Mg-alloy [Li et al., 2006]. The corrosion products of Mg 

alloys when immersed in SBF, detected by XRD, includes Mg(OH)2, hydroxyapatite 

(HA) and a kind of magnesium-substituted apatite (amorphous (Ca0.86Mg0.14)10(PO4)6 ) 

which was pointed out by Kuwahara et al. [Kuwahara et al., 2001].  
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Table 2.2 Electrochemical parameters of extruded Mg-Zn-Mn alloys.            
[Yin et al., 2008] 

Alloys Ecorr, V Rp, KΩ Eb, V Eb-Ecorr, V 

Mg-1Zn-Mn -1.47 12.35 -1.42 0.05 

Mg-2Zn-Mn -1.46 7.54 -1.38 0.08 

Mg-3Zn-Mn -1.54 4.54 -1.41 0.13 

 

Fig. 2.3 Mass loss rate of extruded Mg-Zn-Mn alloys: 1 cross section sample;                       

2 longitudinal sample [Yin et al., 2008]. 

2.1.7.3 RE-addition 

RE element was regarded as an effective potential candidate to optimize 

anti-corrosion property. He et al. [He et al., 2010] have investigated the bio-corrosion 

of extruded Mg-Zn-Mn with and without yttrium addition. The result demonstrated 

that the corrosion resistance can be improved remarkably due to the formation of a 

protective Y2O3 film on the surface of magnesium alloy after addition of Y element. 

Moreover, Zhang et al. [Zhang et al., 2008 a] indicated that the anti-corrosion 

properties of Mg-Zn-xY (x=0.36%, 0.82%, 1.54%) alloys with low zinc content as 

shown in Fig. 2.4a are better than those of AZ91E and AZ31 alloys, although an 

Al-rich protective film formed on the surface of AZ91E and AZ31 alloys which could 

decrease the rate of degradation.  

In addition, the corrosion performance of Gd-containing magnesium alloys was 

explored by Hort et al. [Hort et al., 2009]. The results shown in Fig. 2.4b demonstrate 

that the anti-corrosion behaviour could be improved with the additive amount of Gd 



BCAST, Brunel University 

18 
 

  

Fig. 2.4 (a) The corrosion rate of Alloy I (Mg-1.98Zn-0.36Y), Alloy II (Mg-1.84Zn-0.82Y) and Alloy 

III (Mg-1.73Zn-1.54Y) [Zhang et al., 2008 a]. (b) Corrosion rate determined by hydrogen evolution 

and weight loss for Mg-Gd alloys [Hort et al., 2009]. 

up to 10wt%. However, the significant increasing trend of corrosion rate was found 

when the Gd content is 15%. The highest content of Ni was discovered in the 15wt% 

Gd-containing Mg alloy as an impurity, which deteriorated the corrosion property.   

2.1.8 Mechanical properties of Mg alloys & human bone  

To completely meet the requirements of adequate clinical implants, the maintenance 

of mechanical integrity is widely regarded as a crucial parameter accompanied with 

corrosion resistance. Therefore, the bio-degradable material under in vivo service 

should possess appropriate strength in sync with the process of bone healing, although 

it can experience corrosion reaction. Mechanical properties of various bone types, 

biometallic materials, polymers and Mg alloys are summarized in Table 2.3.  

2.1.8.1 Ca-addition 

Ca has a low density (1.55g/cm3), which provides the alloy system with the advantage 

of a similar density to bone. Li et al [Li et al., 2008] have reported mechanical 

properties of Mg-Ca alloy with different content of Ca and different processes. The 

result of the research reveals that yield strength (YS), ultimate tensile strength (UTS), 

and elongation for as-cast Mg-xCa alloy samples decreased with increase Ca content. 

When the content of Ca reaches ≥ 5%, the alloys are seen to be extremely  

(a) (b) 
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Table 2.3 Mechanical properties of natural bones and alloys. (○－unavailable) 

Tissue/ 
material 

Comp. 
Strength 
(MPa) 

Tensiles
Strength
(MPa) 

E-mod.
Tensile 
(GPa) 

Yield 
Strength
(MPa) 

Elongation 
at break 

(%) 

Impact 
strength
(J/m-2)

Cortical bone 164-240 35-283 5-23 ○ 1.07-2.10 4-70 
Cancellous 

bone ○ 1.5-38 10-1570
(MPa) ○ ○ ○ 

Titanium 
(TiAl6V4, cast) ○ 830-1025 114 760-880 12 19 

Titanium 
(TiAl6V4,wrought) ○ 896-1172 114 827-1103 10-15 ○ 

cobalt chromium 
alloys ○ 672-1039 ○ 422-649 9-36 ○ 

Stainless steel 
316L ○ 480-620 193 170-310 30-40 ○ 

Synthetic 
Hydroxiapatite 100-900 40-200 70-120 ○ ○ ○ 

Bioactive glass ○ 40-60 35 ○ ○ ○ 
DL-PLA ○ 29-35 1.9-2.4 ○ 5-6 ○ 
AZ91E-F  
sand cast 97 165 45 97 2.5 2.7 

AZ91E-F 
HPDC 165 230 45 150 3 ○ 

AZ61A-F 125 295 ○ 180 12 ○ 
AZ61A-F 
extruded 110-130 285-305 ○ 165-205 14-16 ○ 

AZ31 extruded 83-97 241-260 ○ 165-200 12-16 1.78 
AZ31 sheet 110-180 255-290 ○ 150-220 15-21 1.78 

LAE442 ○ 247 ○ 148 18 ○ 
WE43 extruded ○ 277 ○ 198 17 ○ 

AM50A-F 113 210 ○ ○ 10 ○ 
AM60B-F 130 225 ○ ○ 8 2.8 

AJ62 ○ 234 45 140 7 13.3 

brittle at room temperature and can be broken with bare hands easily. However, the 

YS, UTS, and elongation increased dramatically after hot rolling and hot extrusion for 

as-cast alloy as shown in Fig. 2.5a, particularly for Mg-1Ca alloy. Nevertheless, the 

tensile strength and the elongation of binary Mg-Ca alloy could not absolutely satisfy 

the requirement of a load-bearing implant application [Li et al., 2008]. 
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Fig. 2.5 (a) Tensile properties of as-cast Mg-1Ca alloy, as-cast Mg-2Ca alloy, as-cast Mg-3Ca alloy,           

as-rolled Mg-1Ca alloy and as-extruded Mg-1Ca alloy samples at room temperature [Li et al., 2008].  

(b) Mechanical properties of as-cast Mg–Zn–Mn–Ca alloys [Zhang and Yang, 2008]. 

In addition, the influence of Ca addition to Mg-Zn-Mn-Ca alloys on the mechanical 

property conducted by Zhang and Yang [Zhang and Yang, 2008] demonstrated that 

the yield strength slightly enhanced with the increasing amount of Ca element in the 

alloy due to refined grain size and increased volume fraction of second phase, as 

shown in Fig. 2.5b. The ultimate tensile strength and the elongation of the alloy 

increased obviously when the additive fraction of Ca was from 0.3 wt.% to 0.5 wt.% 

and then dramatically decreased with further Ca addition to 1 wt.%. It could be 

explained that the second phase (Ca2Mg6Mn3) in Mg-Zn-Mn-Ca alloys with 0.3 wt.% 

and 0.5 wt.% Ca addition transformed into new intermetallics (Ca2Mg6Mn3 and 

Mg2Ca) when the content of Ca element reached near or above 1 wt.%. Similar 

microhardness values for binary Mg2Ca phase and ternary Ca2Mg6Mn3 

(125-128kg/mm2) indicates that the two phases should possess approximately 

identical strengthening efficiency [Larionova et al., 2001]. However, the size 

difference between these two phases plays a significant role in strengthening. The 

ductility of Mg-0.9Ca alloy decreases due to the presence of the lamellar Mg2Ca at 

the grain boundary which acts as a crack source [Chino et al., 2002]. Hassel et al. 

have confirmed that the mechanical properties of magnesium alloy could be slightly 

increased because of the appropriate Ca-addition [Hassel et al., 2006].  

(a) (b) 
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However, the mechanical properties of Mg-0.6Si alloy without and with Ca (the 

content of Ca up to 0.44%) seemed to deviate from the expectation that the 

mechanical property should get appropriate improvement, although the grain size and 

shape of second phase were refined because of the existence of relatively low Ca 

content [Zhang et al.,2009 a]. 

Zheng et al. [Zheng et al., 2009] have performed the investigation of Mg/Ca 

composites with different amount of calcium synthesized by PM (powder metallurgy) 

method. Ultimate tensile strength slightly decreased with the content of Ca element 

(up to 10%wt), while the tendency of the elongation to decrease was observed with 

increasing the fraction of Ca (up to 10%wt). Compared with as-extruded Mg-1Ca 

alloy, it is interesting to note that the yield strength and elongation of Mg/1Ca 

composite is obviously better but not the ultimate tensile strength. The positive results 

could be explained by the following reasons: First, the grain size is remarkably 

refined by PM method so that the yield strength increases in comparison with cast 

counterparts according to Hall-Petch law. Second, the better elongation might be 

attributed to the softening effect of the Mg matrix, as the similar phenomenon 

reported previously by [Lim and Gupta, 2001]. Third, Mg oxide layered on 

magnesium powder broke into particulates and distributed to the grain boundary 

which contributes to a mechanical reinforcement by the Orowan mechanism during 

extrusion [Pérez et al., 2007]. Last but not least, the positive crystallographic texture 

produced by extrusion resulted in the enhancement of tensile strength [Pérez et al., 

2007].  

Depending on those consequences of exploration of Mg alloys with the addition of Ca 

element, the content of calcium must be controlled within a proper range, to improve 

mechanical properties. Thus, further work has to be conducted. 

2.1.8.2 Zn-addition 

Zinc was found to be next to aluminium in strengthening effectiveness as an alloying 
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element in magnesium alloys through the solid solution hardening mechanism. Zhang 

et al. [Zhang et al, 2009 b] have measured mechanical properties of Mg-6Zn alloys 

after solid solution treatment and hot working. Moreover, the comparison between the 

obtained results and the reported properties of Mg-Ca [Li et al., 2008] and Mg-Mn-Zn 

[Zhang et al., 2008 b] are conducted in this work. It could be seen that the Mg-6Zn 

alloy demonstrated higher ultimate strength in tension and compression and higher 

elongation than the extruded Mg-Ca alloy. Meanwhile, it was also interesting to find 

that the Mg-6Zn alloy showed comparable mechanical properties, although the grain 

size of the Mg-6Zn alloy is much coarser than that of the Mg-Mn-Zn alloy (>20 μm 

for the former and <9 μm for the latter). 

The mechanical properties of extruded Mg-xZn-Mn (x=1, 2, 3) alloys with different 

zinc content investigated by Yin et al [Yin et al., 2008] demonstrated that when zinc 

content is increased from 0% to 3%, both the tensile strength and the yield strength 

increases remarkably. On the contrary, the elongation decreases with increasing 

content of Zn. However, the alloy still shows 10% elongation at 3% Zn as shown in 

Table 2.4. Yuan et al [Yuan et al, 2003] have confirmed the similar conclusion as Yin 

et al in Mg-xZn-1Si(x=4, 6, 8) alloy and reported that YS and UTS increased while 

elongation decreased gradually with growing fraction of zinc, which is shown in Fig. 

2.6. Moreover, besides the exploration for the effect of different Zn content on the 

mechanical properties of Mg-xZn-1Mn (x=1, 2, 3) alloys, Zhang et al [Zhang et al., 

2008 b] have also studied the impact of the extrusion process. The results of 

mechanical tests revealed that the yield strength and the ultimate tensile strength of 

both as-cast and extruded samples slightly improved with increasing amount of zinc 

element and enhanced second phases (Al-Mn and Mg7Zn3; detected by XRD). The 

extrusion process resulted in the significant increment in the elongation except for the 

magnesium alloy with 3 wt.% Zn, whose elongation is decreased and even lower than 

the value of the as-cast counterpart. 
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Table 2.4 Mechanical properties of extruded Mg-Zn-Mn alloys. [Yin et al., 2008] 

Alloy Ultimate Tensile 

strength/MPa 

Yield strength/MPa Elongation/% 

Mg-Mn 260 ± 2.3 206.2 ± 14.6 18.7 ± 8.5 

Mg-1Zn-Mn 280 ± 0.9 246 ± 4.5 21.8 ± 0.6 

Mg-2Zn-Mn 283 ± 1.0 248.8 ± 0.8 20.9 ± 0.7 

Mg-3Zn-Mn 315 ± 4.3 275.9 ± 0.2 10.5 ± 1.2 

 

Fig. 2.6 Mechanical properties of the Mg-xZn-1Si alloys at room temperature [Yuan et al, 2003]. 

The addition of 1.5% Zn to Mg-0.6%Si alloy significantly enhanced the mechanical 

properties, which indicated the positive effect of the proper Zn content on the 

mechanical properties [Zhang et al., 2009 a].  

During the solidification process Zn element will be rejected by the α-Mg growth 

front and the segregated Zn restricts grain growth. With increasing Zn content, grain 

size of the alloy decreases and the yield strength increases with diminishing grain size 

according to the Hall-Path formula. When the content of zinc is low (1%-2%Zn), zinc 

element dissolves into primary magnesium and improves the strength of alloys by 

solid-solution strengthening. When Zn content is above 3% in the alloy, MgZn second 

phase forms and enhances the strength through a dispersion strengthening mechanism 

[Boehlert and Knittel, 2006].  

2.1.8.3 RE-addition 

Since some RE elements possess relatively high solubility in the Mg matrix such as Y 
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and Gd, they could improve the mechanical properties by the mechanism of solid 

solution strengthening and are widely considered as promising alloying candidates. 

Zhang et al. [Zhang et al., 2008 a] have reported the influence of the addition of 

different Y content to Mg-Zn-Y alloys on the mechanical properties. The yield  

 

  

Fig. 2.7 (a) Mechanical properties of Alloy I (Mg-1.98Zn-0.36Y), Alloy II (Mg-1.84Zn-0.82Y) and 

Alloy III (Mg-1.73Zn-1.54Y) [Zhang et al., 2008]. (b) Tensile properties of Mg-Gd alloys in as-cast 

condition [Hort et al., 2009]. (c) Compressive properties of Mg-Gd alloys in as-cast condition    

[Hort et al., 2009]. 

strength and elongation had a substantial enhancement while ultimate tensile strength 

slightly improved with increasing the content of Y (up to 1.54% Y) as shown in Fig. 

2.7a. The mechanical property measurements for Mg-Gd alloys after different heat 

treatment were performed by Hort et al [Hort et al., 2009]. The consequences of the 

tensile tests shown in Fig. 2.7b are that the ultimate tensile strength as well as the 

tensile yield strength improves with increasing the amount of Gd element, while the 

(a) 

(b) (c) 



BCAST, Brunel University 

25 
 

elongation to fracture decreases. The results of compression tests obtained from Fig. 

2.7c confirmed to be a similar trend in comparison with that of tensile tests.  

2.1.9 Use of chemical additions to Mg alloys and its 

relevance to biomaterial properties 

2.1.9.1 Ca –addition 

In the present work, calcium is regarded as a favourable bio-alloying element for the 

following considerations. (1) It is well known that calcium is a major component in 

human bone and calcium is also essential in chemical signaling with cells [Ilich and 

Kerstetter, 2000], so it is regarded as a safe potential element for a bio-medical alloy.  

The cytotoxicity of Mg-1Ca alloy was investigated by Li et al. [Li et al., 2008]. It 

could be seen that the morphologies of L-929 cell cultured in the extraction media for 

a period within 7 days exhibited a healthy flattened spindle shape. (2) Magnesium is 

necessary for the calcium incorporation into the bone [Serre et al., 1998], which might 

be expected to be beneficial to bone healing with the co-release of Mg and Ca ions. In 

vivo, biocompatibility [Li et al., 2008] studies discovered newly formed bone. It is 

characterized by high activity and good alignment of osteocytes around the Mg-1Ca 

alloy pins. 

2.1.9.2 Zn –addition 

Zinc is one of the most abundant nutritionally essential elements in the human body, 

and has basic safety for biomedical applications. The consequence of cytotoxicity 

assessment confirmed that the in vitro cytotoxicity of Mg-6Zn alloy was found to be 

Grade 0-1 according to ISO 10993-5: 1999. In addition, although a gap between the 

implant and surrounding bone tissue occurred during animal implant experiments due 

to a rapid degradation, the newly formed trabeculae and osteoblasts were still 

observed. Meanwhile, no disorders of the heart, kidney, liver and spleen existed 

because of the release of Zn ions [Zhang et al., 2009 b]. Therefore, it indicates that Zn 
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element is safe as an important potential bio-medical candidate. 

The results of hemolysis tests showed that the hemolysis rate of extruded 

Mg-6wt%Zn alloy was 3.4% which was lower than 5% due to a more favourable 

corrosion rate of the alloy. As a result, it could be deduced that Mg-Zn alloy will not 

generate damage of red blood cells according to ISO 10993-4:2002. Moreover, the 

healthy adhesion of MC3T3-E1 cells on the surface of Mg-Zn alloy was observed 

despite the fluctuation of pH value [Zhang et al., 2009 b]. Nevertheless, the hemolysis 

rate of extruded Mg-1Zn-1Mn alloy (65.75%) was much more than the safe standard 

(below 5%) for biomaterials despite the exhibition of non-toxicity to L-929 fibroblast 

line because of high cell viability by MMT testing [Zhang et al., 2008 b]. 

2.1.9.3 RE-addition 

Excessive yttrium ions (Y3+) have been shown to change the expression of some rat 

genes and have adverse effects on DNA transcription factors [Yang, 2006], while 

many authors stated that gadolinium is highly toxic. Nevertheless, if we successfully 

manipulate and control the concentration of Y or Gd ions released by Y or Gd 

containing Mg alloys in the physiological condition below the harmful level through 

specific and efficient post-treatment method, they are employable for bio-medical 

applications. 

2.1.9.4 Bio-active coating 

There are numerous factors that affect bone growth. These are bone morphogenetic 

protein (BMP) [Derynck and Zhang, 1996], transforming growth factor—β (TGF-β) 

[Noda, 1989] and platelet-derived growth factor (PDGF) [Helm et al., 1997] used to 

assess osteogenesis at the implant-bone interface.  

Immunohistochemical study demonstrated that a coated sample with bio-active 

coating has brilliant osteoconductivity in contrast to a sample without coating, since 

the coated sample showed a much higher BMP-2, TGF-β1 and PDGF expression than 
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the counterpart. This conclusion was consistent with the consequence of the 

investigation in vivo. The reasons contributing to the observed result could be related 

to the surface physical properties and the surface chemical properties. Due to the 

presence of micro-scale or nano-scale pores on the surface of the coated magnesium 

alloy, the cell adhesion and viability significantly improved, which devoted to the 

favourable bioactive bone response. In addition, the composition of the surface, 

including Ca2+, Mg2+ and Zn2+, played an important role in accelerating the formation 

of bone in the vicinity of the Mg alloy with the coating.   

As an effective bio-active coating, calcium phosphate (Ca-P) coating has been 

reported in the past [Cui et al., 2008]. Xu et al. [Xu et al., 2009] have also investigated 

the properties of Mg-1.2wt%Mn-1wt%Zn alloy after phosphate treatment. The 

composition of the porous and netlike surface layer after the treatment is 

CaHPO4·2H2O with negligible quantity of Zn and/or Mg containing phosphate 

compounds. Cell experiments in vitro (L-929) of pure Ti and Mg alloys with and 

without a Ca-P coating indicated that the healthy flattened (acicular) morphology and 

significant enhancement of cell proliferation is observed on pure titanium samples and 

Ca-P coated magnesium alloy in comparison to the naked Mg alloy. Moreover, there 

are no remarkable differences in cytocompatibility between pure Ti and Mg alloy with 

a Ca-P coating.  

In vivo, more compact and homogeneous new bone is detected in the vicinity of the 

coated Mg alloy implant than around the naked one, whereas no negative response 

from surrounding tissue adjacent to the coated sample is observed. The result 

demonstrated that the magnesium alloy with a Ca-P coating possessed much better 

biocompatibility as a potential biomedical implant. 

2.1.10 Novel approaches to process Mg alloys  

2.1.10.1 Powder Metallurgy route  

Due to the benefit of low manufacturing temperature and more uniform distribution of 
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grains which is hardly obtained by the conventional stir-casting route, a large number 

of researchers concentrate on the powder metallurgy technique. On the basis of 

previous work [Li et al., 2008], it is expected that the PM method can be employed to 

prepare Mg/Ca composites with high content of calcium which also possess 

favourable mechanical properties, corrosion resistance and good compatibility of 

as-cast Mg-Ca alloy with low Ca content. 

2.1.10.2 Metal matrix composites  

Although magnesium and its alloys are regarded as a category of potential effective 

biodegradable materials, the rapid corrosion rate retards their clinical application. The 

major frustration to improve the corrosion properties which we always confront is at 

the cost of mechanical properties. The synthesis of metal matrix composites (MMC) 

made of magnesium or its alloys as a matrix and hydroxyapatite (HA), which 

possesses natural bone composition with a low solubility in the body environment 

[Fulmer et al., 2002], as reinforcements may be a novel feasible method to achieve the 

excellent combination of good corrosion behaviour and suitable mechanical properties. 

Therefore, Witte et al. [Witte, 2007] have assessed the properties of extruded 

magnesium alloy AZ91-20wt%HA metal matrix composite as a biomedical implant. 

The different Vickers hardness values at different locations were measured depending 

on the size and distribution of HA conglomerates. Large and inhomogeneously 

dispersed clusters of HA reveal relative low hardness in contrast to fine and uniform 

distribution of clusters. The most important aspect is that the average hardness of the 

sample (Hv0.1 = 73 ≈ 730 MPa) is similar to that of natural bone (Hv0.1 = 49.8 ≈ 498 

MPa). Moreover, the tensile yield strength of the MMC with uniform HA particle 

distribution was twice that of natural bone, which demonstrates that the MMC-HA 

could be considered as longer biodegradable implants for load-bearing application. 

Compared with AZ91D Mg alloy, the corrosion behaviour of the MMC-HA sample 

improved in artificial sea water and cell solution by addition, while MMC-HA 

composites in cell solution containing and without protein exhibited more 
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homogeneous corrosion than that in sea water. Moreover, the uniform and proper 

corrosion morphology of the MMC-HA sample is consistent with the results of 

immersion tests, electrochemical tests and volume loss. 

The cytocompatibility assessment indicates that the good adhesion and conspicuous 

proliferation of human bone derived cells, osteoblasts and macrophages on the surface 

of the MMC-HA sample were exhibited. This could be attributed to good corrosion 

resistance which results in the low-level hydrogen evolution and proper pH value in 

comparison with AZ91D sample. 

2.1.10.3 Porous scaffolds 

Porous scaffolds configured similarly to natural bone, promote proliferation of 

osteoblasts and bone formation in the vicinity of hard tissues on the scaffolds. The 

eminent obstacle of porous scaffolds made of HA, natural polymer for adequate 

application as degradable implants is their relative poor mechanical properties and 

rapid corrosion rate [Ma et al., 2001]. Therefore, the excellent combination of proper 

mechanical properties and satisfactory corrosion behaviour is desirable. Magnesium 

scaffolds with controlled porosity and pore size may become a promising candidate 

for clinical bone surgery, since magnesium possesses good mechanical properties and 

brilliant degradable and bioresorbable characteristics [Witte et al., 2006 and 2005]. 

Hence, Zhuang et al. [Zhuang et al., 2008] have investigated the property of porous 

magnesium scaffolds synthesized with 0, 30 and 50 vol% CO(NH2)2 particles. They 

found that porosity formed as a result of droplets of low melting point CO(NH2)2. The 

porosity of the three samples was 7, 36 and 55% respectively analyzed by the 

equation: 

Total porosity ＝ (1- ρ/ρs) ×100%. 

where ρs is the density of magnesium and ρ is the apparent density of the porous 

magnesium specimen which can be measured by the weight divided by the volume of 

the porous magnesium specimen. 
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The compressive strength, flexure strength and Young’s modulus presented a dramatic 

descending tendency within a range of the increasing porosity from 7% to 55%, which 

could be associated with the negative influence of high porosity on the mechanical 

integrity of the scaffold. It is important to note that the problem of currently serviced 

implants is either too high Young’s modulus of the metallic material or too low 

mechanical property of ceramics and polymers. Therefore, a porous scaffold provides 

a feasible way to design the porous magnesium structure that can satisfy different 

mechanical property requirements as bone substitute. 

The corrosion resistance of magnesium scaffolds immersed in physiological saline 

solution exhibited the similar tendency to mechanical properties, in which the sample 

with 36% porosity showed better corrosion behaviour in comparison to the 55% 

porosity one since a greater quantity of aggressive solution would effortlessly 

penetrate into the sample with high porosity resulting in serious corrosion. However, 

the corrosion resistance still needs to be further enhanced.  

2.1.11 Effect of post-treatments on the properties of 

bio-degradable materials 

2.1.11.1 Heat treatment 

Since a homogeneous structure can be obtained by a hybrid solution and aging 

process, Liu et al. [Liu et al., 2007] have investigated the influence of heat treatment 

of die-cast AZ63 magnesium alloy on corrosion resistance in simulated body fluid. 

The solution treatment of all alloy samples, whose surface was protected by carbon 

powders, were executed at 413 oC for 24 hours (T4) in air, and then the samples 

experienced different period of time for ageing treatment (1 h, 5.5 h and 12 h). 

Compared with the untreated sample, the corrosion properties in vitro of its 

counterparts improved with increasing ageing time due to more homogeneous and 

continuous precipitation of second phase (Mg17Al12). The precipitation of β-Mg17Al12 

generated by aging significantly optimized the micro-galvanic corrosion in the 



BCAST, Brunel University 

31 
 

vicinity of α-Mg phase [Zhao et al., 2008]. 

Additionally, the influence of heat treatment of AZ91 magnesium alloy on corrosion 

performance in the simulated body fluid was investigated by Zhou et al [Zhou wt al., 

2009]. A solution treatment (T4) was carried out at 445 oC for 24 hours in argon 

atmosphere and water quenched at 25 oC. An alternative solution treatment (T6) was 

performed followed by aging treatment at 200 oC for 8 h, 16 h and 24 h. The results of 

immersion tests have been listed in Table 2.1. Significant improvement in corrosion 

resistance was observed after T4 treatment in the initial 8 h immersion in SBF as 

shown in Fig. 2.8a, and then severe corrosion rate was observed after 168 h 

immersion in comparison with other heat-treatments as shown in Fig. 2.8b. On the 

contrary, the corrosion resistance of T6 samples was worse than those of the as-cast 

and T4 samples when they were immersed in SBF for 8 h. However, the corrosion 

rate for T6 samples was significantly lower than that of the T4 treated sample for 

longer immersion (168 h). The different distribution, configuration and size of the 

β-Mg17Al12 phase after heat treatment resulted in the distinguished corrosion 

behaviour. 

  

Fig. 2.8 Corrosion rate for as-cast and heat-treated samples in SBF; (a) after 8 hours and             

(b) after 168 hours. [Zhou et al., 2009] 

In order to understand the corrosion behaviour of Mg alloys, the alloy system can be 

considered as a micro-galvanic corrosion system where β-Mg17Al12 phase as a cathode 

(a) (b)
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and α-Mg phase as an anode. On the basis of previous research, the variable 

percentage of aluminium contained in the primary α-Mg phase influenced the 

corrosion property. Preferential corrosion tendency is observed in regions with less 

than 8% Al [Ambat et al., 2000]. Therefore, it causes the phenomenon of localized 

corrosion initially within the area with less than 8% aluminium. Furthermore, it 

should also be noted that second phase in aluminium-containing magnesium alloy 

played a dual role on the anti-corrosion behaviour depending on their fraction and 

distribution [Scharf et al., 2005]. Finer and homogeneous distribution of second phase 

acts as a corrosion barrier and the corrosion resistance dramatically improves. 

Otherwise, the presence of β-phase (Mg17Al12) as an effective galvanic cathode led to 

deterioration of the corrosion properties. 

2.1.11.2 Mechanical process 

The bio-degradation of magnesium alloy was widely considered as a benefit for the 

application of absorbable implant, but the fast corrosion severely limited its use in the 

field of clinical application. Besides the alloy and surface treatment, the mechanical 

process was regarded as an alternative method to influence the corrosion resistance of 

the alloy.  

The anti-corrosion behaviour of AZ31 magnesium alloy with different processing 

histories in Hank’s solution was investigated [Wang et al., 2008 a]. The three kinds of 

samples produced using squeeze cast (SC), hot roll (HR) and equal channel angular 

pressing (ECAP) of the HR material and the corresponding corrosion rates were 

shown in Table 2.1. Due to the refinement of the grain size, it is noted that the 

corrosion resistance of the sample after HR improved corrosion resistance remarkably 

in comparison with that after SC which revealed an aggravated localized pitting mode. 

However, although the grain size of the sample after HR with further ECAP decreased, 

the anticipated improvement of corrosion resistance was not observed. 
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2.1.11.3 Surface treatment  

Magnesium alloy is extremely susceptible to the physiological pH (7.4-7.6) and 

environments including high concentration of chloride ions. Negative effects such as 

loss of mechanical integrity before the tissue has sufficiently healed and a relatively 

large amount of hydrogen release over the tolerance limit of physiology, hinder the 

application as a favourable bio-degradable implant. Although the advanced 

technology for synthesis of magnesium alloys with a minimal amount of impurities 

was regarded as a favourable and efficient method to improve the corrosion properties, 

it is also noted that the application of surface coating is paid more attention due to the 

ability to protect the alloy surface from its surroundings or contact with corrosion 

chemicals. Some researchers have pointed that corrosion resistance of pure Mg may 

be achieved eventually by the proper surface modification [Yamamoto et al., 2008]. 

Ti coating [Zhang et al., 2005] and heat treatment [Liu et al., 2007] have been adopted 

to optimize the corrosion behaviour of magnesium alloys. Therefore, the elemental 

composition and processing history is not the only way to manipulate the rate of 

corrosion in vivo. In addition, the biocompatibility of the surface also plays an 

important role in the clinical application of implants. Thus, it is necessary to employ 

an appropriate coating to achieve dual functions (corrosion and biocompatiblity). To 

be effective, the protective coating must be uniform, adherent and pore-free. 

Unfortunately, magnesium alloys have a strong tendency to react with surrounding air 

or water because of high chemical activity, which forms an oxide/hydroxide layer on 

the surface which has an adverse effect on adhesion and uniformity. 

Fluoride treatment   Fluoride treatment, as one useful way to inhibit the 

corrosion of magnesium and its alloys [Yamamoto et al., 2008] and granted for 

medical purpose due to the advantages of economy, non-toxicity, convenience and 

easy processibility [Chiu et al., 2007]. The bio-material after fluoride treatment 

showed an extreme cytocompatibility [Lamolle et al., 2009]. Moreover, it is widely 

accepted that magnesium is regarded as the most resistant metal to hydrofluoric acid 
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because of the formation of a protective film of MgF2 on the surface which retards the 

corrosion.  

Pereda et al. [Pereda et al., 2010] have investigated the influence of fluoride surface 

treatment on corrosion behaviour. Electrochemical tests indicated that the corrosion 

behaviour of magnesium obviously improved by fluoride treatment with KF, while 

the obtained corrosion resistance of Mg (PM) after 0.1 M KF treatment is much better 

than that after 1M KF treatment. Since the fluorine ion possesses a relatively high 

electronegativity, it has an obvious tendency to react with hydrogen released from 

KF-treated magnesium soaked in the F--containing solution and form HF2
-, H2F3

- and 

H3F4
- surface layer with strong binding energy. The deposited layer may retard the 

corrosion phenomenon. However, if fluoride treated Mg is immersed in an F--free 

solution like PBS, Cl ions substitute for F- and form the protective layer on the surface 

as a result of strongly absorbable ability of Cl-. The layer gradually loses its corrosion 

barrier.  

Witte et al. [Witte et al., 2009] have investigated the corrosion behaviour of extruded 

LAE442 magnesium alloy with and without fluoride treatment as a bio-medical 

degradable implant in rabbits, and assessed the biocompatibility and cytotoxicity. A 

favourable corrosion resistance of LAE442 Mg alloy in vivo was observed. Moreover, 

the corrosion resistance improved further by fluoride treatment. Depending on low 

corrosion rate of both cases, the evolution of hydrogen gas was remarkably restricted 

under the tolerated limit of hydrogen adjacent to the bio-degradable implant, which 

effectively prevented the occurrence of a gas cavity by fluid (blood) flow in the rabbit 

model [Witte et al., 2008]. Adverse effects on health like infection and negative 

reactions were not clinically discovered during the period of post-operation in vivo 

except in liver tissue which was closely related to the rare earth element released from 

both alloys. However, the protective MgF2 coating may retard the corrosion 

temporarily in the initial 4 weeks after operation, the dissolution of MgF2 coating 

caused by corrosion brought the symptom of irritation in the vicinity of the local 

synovial tissue. 
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Thermal oxidation    The corrosion behaviour of AZ91 magnesium alloy after 

the treatment of thermal oxidation was executed by Majumadar et al [Majumadar et 

al., 2008]. Isothermal oxidation was carried out at 200 ℃ and 300 ℃ for 4 h to 25h 

(under each temperature) in air. The data from the electrochemical test suggested that 

the corrosion potential of the samples after oxidation obviously shifted towards the 

noble direction due to formation of magnesium oxide on the surface in comparison 

with samples without post-treatment. Therefore, better corrosion resistance was 

attributed to the presence of stable magnesium oxide as an effective corrosion barrier. 

Among the thermally oxidized alloy (AZ91), the best retarded corrosion behaviour 

was achieved when oxidized at 200 ℃ for 25 h. Nevertheless, the corrosion rate of 

samples after oxidation at 300 ℃ relatively increased compared with the samples 

oxidized at 200 ℃ due to existence of micro-defects in the oxidation film.      

The contact angle between metal and SBF slightly reduced with increasing in 

temperature and time of the post-oxidation due to modification of the composition and 

morphology of the alloy surface.  

The cytocompatibility test was also conducted for samples modified at 200 ℃ for 25 

h. Compared with the original alloy, the percentage of adhered cells and their 

proliferation on the surface increased remarkably, which was possibly due to the 

oxide film. Hence, the consequence of the experiment implied that the cell adhesion 

and proliferation may be influenced by surface characteristics like wettability, surface 

charge, surface free energy and topography. In addition, the wear resistance of the 

AZ91 alloy after oxidation at 200 ℃ for 25 h enhanced dramatically in comparison 

with the alloy without treatment because of the presence of uniform oxide film on the 

surface.  

HA coat   Hydroxyapatite (HA) has been widely considered as a bio-medical 

material due to brilliant biocompatibility and bioactivity, while the composition and 

structure of HA were exactly identical to natural bone. Moreover, HA can optimize 

the corrosion resistance of magnesium alloys, which was responsible for possession of 
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high thermodynamic stability. Therefore, a titanium alloy substrate with HA coating 

as a bio-implant has been studied [Dumelie et al., 2008]. Nevertheless, HA coating on 

magnesium alloy substrates and their corrosion behaviour in simulated body fluid 

have hardly been performed. Since it possesses low melting point and inferior heat 

resistance, many methods to deposit HA on the Mg alloy substrate at high working 

temperature such as physical vapour deposition are unavailable. Electro-deposition 

can provide uniform coating at room temperature by changing the electrochemical 

potential and electrolyte concentration [Kuo and Yen, 2002]. HA coating on 

magnesium alloy by electrodeposition method [Song et al, 2008], resulted in a layer 

consisting of dicalcium phosphate dehydrate (DCPD) and β-tricalcium phosphate 

(β-TCP). They could convert into hydroxyapatite after immersion in alkali solution. 

Therefore, this study indicates that DCPD and β-TCP are the precursors for the 

formation of HA. 

Wen et al [Wen et al., 2009] have coated HA onto extruded AZ31 Mg alloy and 

studied the corrosion performance in alkali environment. The as-deposited coating 

consisted of DCPD and HA, while a partial amount of DCPD immersed in NaOH 

solution converted into HA, as previously reported by Song et al. [Song et al., 2008]. 

The coated layer is a kind of Ca-deficient HA and is speculated by the measured 

average Ca/P atom ratio in comparison with the theoretical value of HA.  

The analysis of the data from electrochemical testing indicated that the corrosion 

resistance of the magnesium alloy improved significantly due to the formation of the 

coating as an effective protective barrier. When the as-deposited alloy experienced 

alkali treatment, the anti-corrosion behaviour slightly improved. It is believed that the 

coating becomes more stable after alkali treatment. Hence, besides the characteristic 

of the chemical of coating, the stability also plays an important role in affecting the 

corrosion behaviour. Furthermore, the result of immersion testing in SBF suggested 

that as-deposited alloy and alloy post-treated in alkali environment possessed an 

excellent anti-corrosion behaviour due to the presence of Ca-P-Mg apatite as an 

efficient corrosion barrier in the Mg-rich interface in the initial 10 days.  
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Due to the low working temperature, the biomimetic method was extensively 

regarded as a feasible and effective vehicle to deposit coating on magnesium and its 

alloy with low heat resistance [Boanini and Bigi, 2006]. On the basis of favourable 

benefits, Hu et al. [Hu et al., 2010] investigated the corrosion behaviour of AZ91D 

magnesium alloy modified by DCPD coating on the surface through a biomimetic 

method by immersion in simulated body fluid. The Mg alloy after solution treatment 

at 420 oC for 24 h was submerged in a Ca(NO3)2 solution, while a K2HPO4 solution 

was gradually dribbled into the former solution. The formation of DCPD on the 

magnesium substrate was observed. The data from electrochemical measurement 

demonstrated that the corrosion current density of the alloy with DCPD coating 

decreased dramatically in comparison with that of the alloy without DCPD coating 

which was more than 33 times the former. Interestingly, it was seen that DCPD was 

not only transformed into HA but also acted as nuclei sites to induce the precipitation 

of HA after soaking in SBF. 
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Part 2: Metallurgical aspects of Mg alloys 

 
2.2.1 Chemical and physical properties of Magnesium 

Magnesium is among the alkaline earth metals and its average atomic mass is 24.305 

g/mol. The melting temperature is 649 oC. It possesses excellent thermal and electrical 

conductivity. The free state of magnesium hardly exists under natural atmosphere due 

to its high chemical activity, tending to react with water, oxygen, nitrogen, 

phosphorous and chlorine. 

Normally, Magnesium reveals an appearance of a silvery and white shade. It is worth 

mentioning that Mg is the lightest of all structural metals which are used in building 

and the automobile industry. 

Pure magnesium possesses a hexagonal closed-packed (h.c.p.) crystal structure under 

atmospheric pressure [Jete and Foote, 1935]. The atomic locations in the magnesium 

unit cell, and the principal planes as well as directions are illustrated in Fig. 2.9. The 

lattice parameters of pure Mg at 25 ℃ are a = 0.32092 nm and c = 0.52105 nm 

within marginal error (± 0.01%) [Stager and Drickamer, 1963]. Since the ideal value of 

c/a ratio for the ABAB close-packed layers of atoms is 1.633, the h.c.p. structure of 

pure magnesium is almost perfectly ideal (c/a = 1.6236). If the Mg crystal undergoes 

plastic deformation, primarily, it happens on the (0001) basal plane and in the 

close-packed        direction of the plane. Secondary slip occurs in the        

direction on the       perpendicular face planes. Twinning of pure 

magnesium can be observed most frequently across the       series planes, and the 

occurrence of secondary twinning is across the        planes. 

>< 0211

}2110{

}0110{
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Fig. 2.9 The magnesium unit cell crystal. (a) atomic position. (b) Basal plane, a face plane,          

and principal planes of the      zones. (c) Principal planes of the      zone.                        

(d) Principal directions. [Roberts, 1960] 

2.2.2 Magnesium and its alloys 

The mechanical properties of magnesium at 20 ℃ are shown in Table 2.5. In a bid to 

meet the various requirements for the practical application, different elements such as 

aluminium, zinc, cerium, silver, yittrium and zirconium are alloyed in commercial 

magnesium alloys.  

Mg as a medical material: For the purpose of clinical application, harmful elements 

should be avoided for alloying with Mg. As discussed in Part 1 of this chapter, based 

on corrosion properties, zinc and calcium have been widely regarded as potential 

alloying candidates for magnesium in the field of bio-degradable materials research. 

a b

c d

]0011[ ]1021[
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Here, the metallurgical aspects of Mg-Zn-Ca alloys are reviewed. 

Table 2.5 Typical mechanical properties of unalloyed magnesium at 20 ℃ . 

[Avedesian and Baker, 1999] 

 

Form and 

section 

Tensile 

strength, 

MPa 

0.2%  

tensile yield 

strength, 

MPa 

0.2% 

compressive 

yield strength, 

MPa 

Elongation in 

50 mm    

(2 in.), % 

Hardness 

HRE HB(a) 

Sand cast, 13mm 

(1/2 in.) diam 
90 21 21 2-6 16 30 

Extrusion, 

13mm (1/2in.) 

diam 

165-205 69-105 34-55 5-8 26 35 

Hard rolled 

sheet 
180-220 115-140 105-115 2-10 48-54 45-47 

Anneal sheet 160-195 90-105 69-83 3-15 37-39 40-41 

(a) 500 kg load, 10 mm dia ball 

 

Binary Mg-Zn alloy:   The phase diagram of binary Mg-Zn alloy is shown 

schematically in Fig. 2.10(a). Based on the diagram, the maximum solid solubility of 

Zn in Mg is approximately 6.2 wt.% (i.e. 2.5 at.%) at 325 ℃, whereas the solubility 

descends to 1.6 wt.% (i.e. ~0.6 at.%) at room temperature in the equilibrium state 

[Okamoto, 1994]. If the addition of zinc element exceeds the ultimate concentration, 

intermetallic particles can spontaneously precipitate from the magnesium matrix. For 

instance, solidification follows the dashed line as showed in Fig. 2.10(a) starting with 

the formation of primary α-Mg below the corresponding liquidus temperature. As the 

temperature decreases, the eutectic phase forms due to eutectic reaction. Eventually, it 

will co-exist with primary magnesium. Generally, the second phase (MgZn) seen 

along grain boundaries as shown in Fig. 2.10(b), is extensively accepted as the 

product of the eutectic reaction. The MgZn phase formation has been confirmed by 

X-ray diffraction analysis [Zhang et al., 2009 b]. In addition, other kinds of potential 

intermetallics are also marked in the phase diagram. 
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Fig. 2.10 (a) The Mg-Zn phase diagram [Ansara et al., 1998]. (b) Microstructure of          

conventional-cast Mg-6Zn sample [Zhang et al., 2009 b]. 

Binary Mg-Ca alloy:   The phase diagram of binary Mg-Ca alloy is illustrated in 

Fig. 2.11(a). Mg2Ca is the second phase in this system. Mg2Ca possesses the Laves 

C14 crystal structure [Aljarrah and Medraj, 2008]. Due to the extremely low solid 

solubility of Ca in Mg, the Mg2Ca intermetallics form by adding only a small quantity 

of calcium. As shown in Fig. 2.11(b), the typical metallographic microstructure of 

α-(Mg) primary grains with Mg2Ca phase precipitating interdendritically is observed.  

   

Fig. 2.11 (a) The Mg-Ca phase diagram [Agarwal et al., 1995]. (b) Microstructure of    

conventional-cast Mg-2Ca sample [Li et al., 2008]. 

Ternary Mg-Zn-Ca alloy:   The Mg-Zn-Ca phase diagram was first plotted by 

Paris [Paris, 1934] via cooling of 189 different alloys in sixteen different isopleths. 

The composition of intermetallics of this ternary alloy has been in dispute among a 

large number of researchers. Eventually, Jardim et al. [Jardim et al., 2002] 

Tem
perature, oC

 

Mass fraction, Zn 

(b)

(b)

(a) 

(a) 
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successfully investigated the ternary compound by advanced analysis methods, and 

confirmed it to be Ca2Mg6Zn3 in composition. Another second phase of Ca2Mg5Zn13 

has been reported by Clark [Clark, 1961]. However, insufficient and limited evidence 

is available to verify its presence. The microstructure of conventional-cast 

Mg-3Zn-1Ca alloy fabricated as a part of this thesis is shown in Fig. 2.12. A large 

volume of second phase particles, possibly, the Ca2Mg6Zn3 phase can be seen.   

   

Fig. 2.12 Micrograph of conventional-cast Mg-3Zn-1Ca alloy prepared in this study. 

Commercial alloys: Normally, a large quantity of commercial magnesium alloys 

contain aluminium, to provide strengthening. Mg-Al-Zn alloys are known as AZ 

series alloys such as AZ31, AZ61 and AZ91, which are commonly used in industrial 

application. In addition, AJ62 and AM60 as other available Mg alloys, which contain 

approximately 6.0 wt.% Al, are also widely used in some engineering application. The 

compositions of these commercial alloys are illustrated in Table 2.6. 

Table 2.6 Compositions of commercial magnesium alloys (wt.%). (Note that only the 

two major alloying elements are shown.) 

Al-containing Mg alloys 
AZ91 9Al 1Zn  bal. Mg 

AZ31 3Al 1Zn  bal. Mg 

AZ61 6Al 1Zn  bal. Mg 

AJ62 6Al 2Sr  bal. Mg 

AM60 6Al 0.13-0.6 Mn  bal. Mg 

LAE442 4Li 4Al 2RE bal. Mg 

Al-free Mg alloys 
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WE43 4Y 3RE  bal. Mg 

ZE41 4Zn 1RE  bal. Mg 

ZK51 5Zn 1Zr  bal. Mg 

 

2.2.3 Solidification process 

Phase transformations can be regarded as an atomic vibration issue and the driving 

force is thermal energy. If a specific motion of an atom contributes to a decrease in the 

free energy of the system, it is possible that an embryo or cluster can survive and turn 

into nuclei eventually. According to different nucleation conditions, the type of 

nucleation process is typically divided into homogeneous nucleation and 

heterogeneous nucleation. In homogeneous nucleation, a solid generates uniformly in 

pure liquid, whereas a solid forms on the surface of pre-existing particle or in crevices 

of the mould wall which accelerate the nucleation event during the heterogeneous 

nucleation process. 

Homogeneous nucleation   The process of homogeneous nucleation is shown 

schematically in Fig. 2.13a. If some liquid clusters assemble to form a small sphere of 

solid, the corresponding variation of the systematic free energy from G1 to G2 will 

occur spontaneously. As a result, the free energy change caused by the formation of 

solid G = G2 － G1 is given as following: 

G = －Vs Gv + ASLγSL   

where Gv =   －   , Vs stands for the volume of the solid sphere, ASL is the 

solid/liquid interfacial area, and γSL represents the solid/liquid interfacial free energy. 

Below the equilibrium melting temperature, the Gv has a positive value.  

If the solid possesses an optimized sphere shape and γSL is isotropic, G could further 

be related to the radius of the solid as follows: 

Gr = －4/3π r3 Gv + 4πr2γSL  
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According to Fig. 2.13b, it is obviously observed that the volume free energy 

decreases as r3, while the interfacial energy increases with r2. For a given  

  

Fig. 2.13 (a) The process of homogeneous nucleation. (b) The schematic diagram of the relationship 

between the free energy change and the solid sphere of radius r. [Porter and Easterling, 1992] 

undercooling, a certain radius r* shown in Fig. 2.13b is connected with a maximum 

excess free energy. If r < r*, the free energy of the system is decreased via dissolution 

of the solid, whereas the system could decrease its energy by permitting solid growth 

under the circumstances of r > r*. 

Heterogeneous nucleation    Reduction of the interfacial energy term is a 

favourable method to achieve nucleation at small undercooling under a given volume 

free energy. As shown in Fig. 2.14, the heterogeneous nucleus forms on the mould 

wall or in mould-wall cracks. If we assume that γSL is isotropic, it will be easily seen  

   

Fig. 2.14 Heterogeneous nucleation of spherical cap (a) on a flat mould wall and                     

(b) in mould-wall crevices. [Porter and Easterling, 1992] 

that for a given volume of solid, the interfacial energy is decreased by the spherical 

cap shape of the embryo with a 'wetting' angle θ. Therefore, the equation of free 

(a) (b)

(a) (b)
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energy of heterogeneous nucleation will be combined with the term of 'wetting' angle 

as follows: 

Ghet = {－4/3π r3 Gv + 4πr2γSL}S(θ) 

where  

   S(θ) = (2 + cosθ)(1-cosθ)2/4 

From the equation of S(θ), we can estimate that its numerical value will be lower or 

equivalent to 1 which only depends on θ. As a result, it can be concluded that the 

activation energy barrier of heterogeneous nucleation is much smaller than that of 

homogeneous nucleation as illustrated in Fig. 2.15(a). In addition, the requirement of 

undercooling for heterogeneous nucleation is apparently lower than that necessary for 

homogeneous nucleation as shown in Fig. 2.15(a) and 2.15(b).  

 

 

 

 

 

Fig. 2.15 (a) Variation of G* with T for homogeneous and heterogeneous nucleation. (b) The 

corresponding nucleation rates assuming the same critical value of G*. [Porter and Easterling, 1992] 

Normally, heterogeneous nucleation always happens during the solidification of a 

liquid. Moreover, due to its effect on refinement of fine grain size, heterogeneous 

nucleation is also reinforced by adding an appropriate amount of inoculant in 

commercial practice. However, it needs to be mentioned that the effectiveness of the 

inoculant is associated with the wetting angle and the surface roughness to a great 

degree. In addition, lattice match between the inoculant phase and the alloy phase 

which is to be nucleated/solidified is the most important characteristic to be 
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considered.  

2.2.4 Refinement of grain size for magnesium alloys 

Since the possession of a finer grain size for magnesium alloys always results in 

favourable mechanical properties and structural homogeneity, a large number of 

researchers are filled with enthusiasm and passion to investigate efficient approaches. 

Normally, due to the rapid solidification rate, the grain size refinement of Mg alloys 

can be achieved by high-pressure die casting (HPDC) process with the absence of a 

grain refiner. However, lower cooling rate casting methods cannot produce samples 

with a uniform and optimized microstructure unless a refiner agent is employed prior 

to casting.  

Generally, we are accustomed to classify magnesium alloys into two typical groups 

according to whether aluminium element is included in the alloy or not. Al-free Mg 

alloys are ZE43, ZK60 as well as WE43 and Al-containing Mg alloys are AZ91, 

AM60 AZ61, AZ31 etc.. Zirconium has been widely accepted as an effective grain 

refiner for Al-free Mg alloys [Qian et al., 2004]. Nevertheless, due to the undesirable 

reaction between Zr and Al, stable intermetallic phases form, which are unfortunately 

ineffective for nucleants for magnesium alloys. As a result, the anticipated effect of 

grain refinement for Al-containing Mg alloys is not achieved. For non-HPDC 

application, especially for AZ31, the discovery of a suitable and functional refiner will 

be regarded as a meaningful and important work by the manufacturing industry.  

In the following, the current technical status for grain size refinement of Mg alloys is 

introduced: 

1. Grain refinement for Al-containing Mg alloys 

Superheating   Superheating liquid metal is known to reduce the grain size 

significantly when compared to samples with low superheat [Cao et al., 2007]. The 

function of superheating on grain refinement depends on alloy composition and 

process variables. 
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Carbon inoculation   Carbon inoculation is extensively considered as another 

effective approach to improve grain sizes of Mg-Al based alloys [Qian and Cao, 

2005]. It is worth mentioning that calcium carbide and hexachloroethane seem to 

function more efficiently than other carbon inoculation methods. The reduced grain 

size is related to the presence of carbon inoculation as functional nucleants for 

Al-containing Mg alloys. 

The Elfinal Process   The addition of 0.4 to 0.5 pct of iron particles in the form of 

FeCl3 at 740℃ and 780℃ can contribute to the grain size refinement of Mg-Al 

based alloys confirmed by Farbenindustrie [Farbenindustrie, 1942]. Al - and Fe-rich 

intermetallics are likely to be a reasonable explanation for the observed reduced grain 

size [Cao et al., 2004], however, Fe is known to increase the corrosion rate of Mg 

alloys and is not being used effectively. A finer grain size could be observed for 

high-purity Al-containing magnesium alloy, which was confirmed by the Tamura 

group [Tamura et al, 2002]. However, the mechanism of native grain size refinement 

is still waiting for further exploration. It should be noted that this process seems to be 

consistent with the Elfinal process which improves grain sizes by the existence of Fe 

in high-purity Mg-Al based alloys [Cao et al., 2004].  

Grain size refinement by other additives:    Some other refiner agents such as Sr, 

RE (rare earth elements) and Si have also been used for improving the grain size of 

Al-containing Mg alloys besides those mentioned. 

2. Grain refinement for Al-free Mg alloy   

Under normal cooling rate, zirconium has been confirmed as a promising and 

effective refiner agent for Mg alloys with little or no Al, Mn, Si and Fe [Emley, 1966]. 

The positive impact on the uniform and finer grain size is not only related to the 

existence of Zr-rich cores by peritectic solidification which accelerate the nucleation 

of primary magnesium, but also responsible for insoluble Zr as efficient nucleants due 

to same crystal structure and identical lattice parameters between α-Zr and 

magnesium [Qian et al., 2004].  
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2.2.5 Processes and treatments of magnesium alloys 

2.2.5.1 Gravity and low-pressure casting: 

Normally, magnesium alloy castings can be obtained by almost every conventional 

casting method. However, according to specific service demand for the component, 

we need to carefully weigh options in order to make a correct choice. In the following, 

some typical methods to cast Mg alloys are introduced.  

Sand Casting:   When liquid metal is poured into a mould of sand, it is referred to as 

sand casting. As a traditional method, it is still widely accepted for the manufacturing 

applications, especially for the aircraft industry, because it is economical and can 

produce component in a large range from a few ounces to as large as 1400 kg. 

However, to successfully complete the casting process, some inhibitors such as sulfur 

and boric acid, which aim to prevent mould-metal reactions, are necessary. The 

quantity of inhibitor is influenced by the moisture content of the sand, pouring 

temperature and parameters of the casting alloy.   

Investment Casting:   Investment casting is a casting method designed to achieve 

high dimensional accuracy for small castings by making a mould of refractory slurry, 

which sets at room temperature, surrounding a wax pattern which is then melted out 

to leave a mould without joints. Generally speaking, it is difficult to distinguish the 

difference between modern sand casting and investment casting. However, compared 

with the process of sand casting, investment casting can produce tighter tolerances 

and thinner wall section samples, but it should be pointed out that the cost per casting 

is relatively high and the limitation of the casting size also confines its extensive 

application. 

Permanent-Mould Casting:   According to whether metal cores or destructible sand 

cores as usual, the permanent-mould castings are classified into two typical types: 

permanent-mould and semi-permanent mould respectively. The castings produced by 

this process possess relatively good surface finish and precise dimensions, while the 
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mechanical properties are also superior to those of sand castings due to faster 

solidification. However, the inflexible mould shape is hardly modified once it is 

constructed, and complex castings are not practical by this process. In addition, some 

structural defects can easily be formed. 

Low-Pressure Die-Casting Process:   The die employed in this process is almost 

identical to those for permanent-mould casting. The main discrepancy between these 

two processes is that the metal flows into the mould from underneath under a little 

pressure. Currently, this technology is carried out to manufacture high-quality 

automobile wheels. 

Other casting methods:   Relied on its benefits, squeeze casting can successfully 

produce high-quality components for magnesium alloys which can't be achieved by 

other casting methods. Additionally, semisolid process, as another economical casting 

method, which leads to more uniform and finer grain size for Mg alloy products, is 

widely applied in industry. 

2.2.5.2 High Pressure Die casting: 

In high-pressure die casting (HPDC), the two halves of the mould are clamped 

together by hydraulic force. Liquid metal rapidly flows through a narrow entrance 

under pressure and guarantees complete filling of the mould. A high cooling rate also 

results in a material with finer grain size. Moreover, it should be mentioned that 

HPDC is a favourable method to produce high-volume components.  

At the moment, the HPDC process is used for most magnesium alloys due to their 

advantages for die casting. In the following, these advantages are listed: 

1. Depending on good fluidity for most Mg alloys, complex and thin-wall 

components are produced by this method. 

2. Compared with aluminium and zinc, lower volumetric specific heat of Mg alloys 

allows them to cool more quickly, which means that it can shorten cycle time and 
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reduce die wear. 

3. Low density as a physical characteristic of magnesium can make high gate 

pressures achieved under modest pressures.  

4. Low solubility of iron in magnesium liquid can effectively decrease the 

probability of die sticking phenomenon that happens to aluminium. If this effect 

combines with the low specific heat per volume for Mg alloys, the die will last 

much longer than aluminium application.  

2.2.5.3 Solution heat treatment: 

Heat treatments are always carried out for improving the mechanical properties of 

magnesium alloys. According to alloy composition (cast or wrought) and expected 

condition in-service, we need to choose appropriate type of heat treatment. Normally, 

solution heat treatment enhances strength and contributes to improve toughness as 

well as shock resistance. Subsequently, artificial aging improves hardness and yield 

strength, whereas the toughness is deteriorated instead. As a result, the desirable 

property combination can be achieved through changing parameters (time and 

temperature).   

2.2.5.4 Melt conditioning by advanced shear technology 

(MCAST) 

The melt conditioning by advanced shear technology (MCAST) was exclusively 

developed and patented by the research group led by Prof. Fan at BCAST, Brunel 

University, UK. The mechanism of the melt conditioning machine relies on 

perfect-intermeshing screws, which are self-wiping and co-rotating during the process. 

A high shear rate and a high intensity of turbulence are the two important 

characteristics of the MCAST unit, and guarantee that the melt experiences strong and 

efficient distributive mixing at an excellent level. In addition, due to intensive 

shearing, a uniform temperature, chemical composition as well as uniform dispersive 
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nucleation sites in the melt can also be achieved [Fan, 2002]. Cast components 

fabricated with melt conditioned liquid metal have shown to have superior 

microstructures and mechanical properties. 
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Chapter 3 
Experimental Techniques & Procedure  
 

3.1 Introduction 

In this chapter, the specific procedures for preparation of samples, the process 

methods, advanced characterisation analysis and mechanical property measurements 

employed in this research are introduced. 

 

3.2 Material preparation 

In this study, different alloys and composites were investigated to understand the 

effect of HA particles on the metallurgical structure, mechanical properties and for 

future bio-corrosion behaviour. The preparation procedures for alloys and composites 

are schematically shown in Fig. 3.1. All the alloys were heated in an electrical 

resistance furnace, and melted in steel crucibles under protective gas (99.6% N2 + 

0.4% SF6). The flow rates for N2 and SF6 are 6 litres/minute and 0.0025 litres/minute, 

respectively. To improve the distribution of HA particles, the impeller was designed 

according to the crucible dimension. Mixing process was carried for three times, at 20 

minute intervals. Each time the mixing time is between 3 and 4 minutes. Subsequently, 

conventional cast (670 ℃~680 ℃), HPDC and TP1 (TP1 660 ℃) samples were 

produced. The compositions and the casting processes of all the samples are listed in 

Table 3.1.   
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Table 3.1 List of chemical compositions and casting process. 

Composition 
Conventional cast 

MC-cast HPDC MC-TP1 TP1 
12 mm 31 mm 

Mg-1Zn-1Ca ● ● ○ ○ ○ ● 

        + 1HA ● ● ○ ○ ○ ○ 

         + 3HA ● ● ○ ○ ○ ● 

        +5HA ● ● ○ ○ ○ ○ 

Mg-3Zn-1Ca ● ● ○ ● ○ ● 

        +1HA ● ● ○ ● ○ ○ 

         +3HA ● ● ○ ○ ○ ● 

         +5HA ● ● ○ ○ ○ ○ 

        +10HA ○ ● ○ ○ ○ ○ 

       +15HA ○ ● ○ ○ ○ ○ 

Mg-5Zn-1Ca ● ● ● ● ● ● 

        +1HA ● ● ○ ● ○ ○ 

        +3HA ● ● ● ● ● ● 

        +5HA ● ● ○ ● ○ ○ 

        +10HA ○ ● ○ ○ ○ ○ 

AZ91D ○ ○ ○ ○ ○ ● 

+0.1HA ○ ○ ○ ○ ○ ● 
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+0.2HA ○ ○ ○ ○ ○ ● 

+0.5HA ○ ○ ○ ○ ○ ● 

        +1HA ○ ○ ○ ○ ○ ● 

+3HA ○ ○ ○ ○ ○ ● 

AM60 ○ ○ ○ ○ ○ ● 

+3HA ○ ○ ○ ○ ○ ● 

AJ62 ○ ○ ○ ○ ○ ● 

+3HA ○ ○ ○ ○ ○ ● 

Mg-1Ca ● ● ○ ○ ○ ○ 

Mg-5Zn ○ ● ○ ○ ○ ● 

●― Done   ○― Not done 
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Fig. 3.1 Procedures of preparations for (a) Mg-Zn-Ca alloy samples, (b) Mg-Zn-Ca-HA composite 

samples and (c) commercial Mg alloys-HA composite samples. 

 

3.3 Melt conditioning by advanced shear technology 

(MCAST) 

To achieve homogeneous distribution of HA particles and low porosity in the 

microstructure, the melt conditioning by advanced shear technology (MCAST) was 

employed. This technology was exclusively developed and patented by the research 

group lead by Prof. Fan at BCAST, Brunel University, UK. The mechanism of the 
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melt conditioning machine mainly relies on the perfect-intermeshing screws, which 

are self-wiping and co-rotating during the process as indicated in Fig. 3.2. A high 

shear rate and a high intensity of turbulence as an important characteristic of the 

MCAST unit guaranteed that the melt experienced strong and efficient distributive 

mixing at high level. In addition, due to the highly intensive shear, a uniform 

temperature, chemical composition as well as uniform dispersive nucleation sites in 

the melt also achieved. The shear rate  formed in the gap between the head of the 

screw flight and barrel surface was calculated according to the equation as following: 

 

 

where N  stands for the rotation speed of the screw, D  stands for the outer 

diameter of the screw, and G stands for the gap between the screw flight and barrel 

surface.  

 

Fig. 3.2 Schematics illustration the fluid flow of twin-screw process.                             

(a) longitudinal view and (b) transverse view. [Ji et al., 2001] 

The procedure for the MCAST experiment: 

a) Materials were synthesized in several small steel crucibles placed in a 

resistance furnace covered protective gas (SF6 and N2) at 700 ℃. When 
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the melt is ready, a crucible containing an appropriate quantity of fluid 

was taken and manually stirred to make sure homogeneity, and then the 

melt was poured into the inlet of the MCAST unit (Fig. 3.3) at the specific 

pouring temperature measured by a thermocouple.  

 

Fig. 3.3 Schematic illustration of the MCAST machine 

b) The MCAST machine was operated to process the fluid according to the 

set parameters (500 rpm, 60 sec, 650 ℃).  

c) For a while, when the shear process finished, the control valve was 

opened and the processed melt was fed into TP1 mould or casting mould. 

 

3.4 Casting process 

3.4.1 Moulds for conventional casting 

In this work, we have used two types of steel cylindrical moulds. Mould inner 

diameters were 33 mm and 13 mm. The wall thickness was approximately 30 mm and 

the height was 127 mm for the former one. For the latter one, the wall thickness was 

12 mm and the height was 127 mm. It is necessary to mention that these moulds were 

pre-heated at 350 ℃ in resistance furnace for sufficient time prior to casting 

procedure. The samples for microstructural investigations were taken at the middle of 

each cast. The small bars were cut into standard tensile samples for tensile strength 

measurements.    
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3.4.2 High Pressure Die-Casting (HPDC) 

As a high-speed manufacturing method, the high pressure die casting (HPDC) process 

has been widely accepted and practiced, especially for the automotive industries. The 

HPDC machine employed in this research was made by L.K. Machinery Co. Ltd., 

Hong Kong. The major components of the HPDC machine are illustrated in the Fig. 

3.4. The plunger in the machine was 60 mm in diameter, which possesses a maximum 

accelerated shot speed of 6.22 ms-1. The 280 tons load can be applied to clamp the die. 

In order to maintain a uniform temperature across the die-cavity during pre-heating, 8 

cartridge heaters were equipped symmetrically into the two halves of the die block. In 

addition, for the purpose of precise temperature control, a thermocouple was also 

located inside the die block along the heating manipulator unit. In addition, an 

external thermocouple was applied to test the temperature of the die-cavity surface 

before any casting operations. The die temperature was 180 ℃. The molten alloys or 

composites for the die casting have been prepared at the specific temperature 

according to the requirement of the investigation.  

The procedure for die casting operation in detail was as following: 

a) To diminish the negative effect of impurity remained from previous casting on 

the consequence, we have cleaned the surface of the die. 

b) Using tangs, the steel crucible containing a sufficient amount of melt was 

taken from the resistance furnace and poured into the shot sleeve at the 

designated temperature measured by an external thermocouple. It’s worth 

mentioning that the dross was removed from the liquid metal with a small 

spoon before pouring into the shot sleeve. 

c) Plunger speed, position and pressure were set to required level, and then the 

machine automatically completed the casting steps: injection, intensifying, 

dwell (while the casting fully solidifies), and finally ejects the cast component. 
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The intensifier was set to trigger at a pressure drop of 65% with an intensifying 

pressure of 70 bar and with a 30-45 s dwell time until ejection. The casting produced 

is shown in Fig. 3.5 which consists of two tensile samples and two fatigue samples 

along with the runner system. 

              

 

 

 

 

 

Fig.3.4 The structural sketch of the ‘high pressure die-casting’ (HPDC) machine.  

 

 

Fig. 3.5 Schematic illustration of a die-casting sample produced by the HPDC machine (A) Tensile 

sample (diameter 6.4 mm), (B) Fatigue sample (diameter 6.3 mm), (C) Runner, and (D) Biscuit. 

3.4.3 Test Procedure -1 (TP-1) mould 

The cooling rate plays an important role in influencing the grain size of the alloy. In a 

bid to investigate the effect of different processing parameters on the grain size for the 
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specific alloy, a constant cooling rate is definitely desirable. Therefore, as a 

favourable and common method the standard test procedure-1 (TP-1) [Aluminium 

Association, 1987] mould technique is employed across the research labs both at 

academic institutes and industries, which is illustrated in Fig. 3.6. The procedures of 

the experiments are as followings: 

a) The steel crucible containing the alloy was heated in the electrical resistance 

furnace at 700 °C until the material completely transformed to liquid and 

stirred the melt with or without HA reinforcement. 

b) Prior to the experiment, TP-1 mould was pre-heated to 350 °C. In addition, the 

water to a quench reservoir was supplied beforehand, and water flow rate was 

adjusted to 3.8 l/min which resulted in 25 mm immersion from the bottom of 

ladle. 

 
Fig. 3.6 Schematic illustration of the TP-1 moulds (a) ladle (b) plan and side view                

of mould design. [Aluminium Association, 1987] 

c) To maintain the same pouring temperature (660 ℃) for various experiments, 

the temperature of the melt was monitored using a thermocouple. When the 

prepared melt reached the expected temperature, it was poured into the TP-1 

mould and then located rapidly on a quench tank for a short period.  

d) For micro-structural examination, TP-1 mould cast sample was cut at 38 mm 

above the base as showed in Fig. 3.6a. The cooling rate at this position 

corresponds to 3.5 Ks-1. 

(b) (a) 
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3.5 Microstructural Characterization 

For microstructural analysis of all cast samples, thin sections were cut from the centre 

of the conventional cast cylinder and embedded in Bakelite by mounting equipment 

(Buehler-met phenolic Powder) using a Buehler, Simplimet 1000 automatic mounting 

press, which included 90 seconds of heating at 150  at a pressure of 290 bar ℃

followed by 180 seconds of water cooling. After that, the embedded samples were 

ground using SiC abrasive papers with various grits (600, 1200, 2500 and 4000), and 

then polished using a 0.04 μm colloidal silica suspension until the microstructures 

were clearly observed under optical microscopy. 

3.5.1 Etching surface treatment 

After grinding and polishing the samples as described above, the sample surface was 

cleaned several times by ethanol and cotton wool to eliminate residue completely, and 

then dried by hot air blower. The sample surface was etched with acetic-picral colour 

etchant (4.2g picric acid (conc.), 70mL ethanol, 15mL distilled water and 15 mL 

acetic acid (conc.)) for approximately 2 seconds, and immediately washed by ethanol 

and dried.  

When the etching treatment was completed, the phenomenon of brightness variation 

across the surface of the sample is apparently observed due to abrupt changes in the 

sample surface topography. Using the plane polarised light mode of the optical 

microscope, the presence of various colours on the sample surface indicated different 

grain orientation.  

3.5.2 Optical microscopy (OM) 

The Zeiss Optical Microscope (OM) combined with a digital camera and a computer 

was employed for the micro-structural observation and grain size measurement. In 

addition, to obtain images from the camera and execute relevant analysis, the software 

Axiovision was also installed in the computer. Depending on experimental demands, 
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we could adjust settings of the microscope to take desirable pictures of samples either 

with or without etched surfaces. 

The light contrast between the bright matrix and the dark unevenness such as grain 

boundaries or intermetallics could be apparently seen in the bright field (BF) mode. 

The reason to cause this phenomenon is related to the weakened intensity of the 

reflected light due to light dispersion from grain boundaries and the interfaces 

between second phases and matrix. 

The measurement of the grain size of the cast sample is carried out by exposing it to 

the plane polarized light (PP) mode which relies on a polarizing filter mounted inside 

the incoming light path. Due to various orientations of different grains, PP light 

reflects from the samples with strong reflecting waves and generates special wave 

components. These different components will change according to the favourable 

direction across the sample. 

3.5.3 Grain size measurements 

The grain size measurements for the Mg-alloys/composites were carried out on colour 

etched samples using a mean line-intercept method. The mean intercept length is 

used as the grain size and is calculated using the following equation: 

 

 

where Li is the total length of the test lines and Ni the total number of grain boundary 

intersections on each test line. The measured standard deviation from the average 

grain size measurements is used as the error in grain size measurements. 

3.5.4 X-ray diffraction (XRD) 

As a versatile, non-destructive research technology, X-ray diffraction (XRD) had been 

extensively accepted to analyze the information about the chemical composition and 
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crystallographic structure of natural or manufactured materials in detail. In this work, 

an XRD machine, located at the Bulk Superconductivity Research Group, Department 

of Engineering, University of Cambridge, equipped with Cu K∝ target (λ = 1.54056 

) has been used in this study to record XRD patterns in Mg-Zn-Ca/HA 

composites/alloys. 

Normally, any crystal possesses a number of different orientations, and each with 

different specific distance d between parallel planes. As a result, when a 

monochromatic X-ray beam with wavelength λ projected into a crystalline substance 

(Phase) at an angle θ, diffraction is generated unless the total distance of the rays 

traveled from successive planes satisfy an integer value n of wavelengths. Through 

changing the angle θ, the Bragg's Law conditions: 

nλ = 2dsinθ 

are satisfied by different d-spacings in polycrystalline materials. Eventually, the XRD 

pattern of the sample is plotted, which includes the angular position and intensities of 

the resultant diffracted peaks of radiation. Nevertheless, if a mixture of substance is 

investigated, the consequent diffraction graphs consist of the individual patterns 

combined.  

 

3.6 Mechanical property testing 

3.6.1 Hardness tests 

To assess the plastic penetration behaviour of a material surface, a Vickers indenter 

(Vickers hardness Hv) made by Akashi Corporation in Japan (Model NO. 

MICROMET 5101) was employed to measure micro-hardness. Normally, a square 

base diamond pyramid used as the indenter, which possesses the specific separation 

angle (l36°) between the opposite faces of the pyramid. The Vickers hardness value 

can be calculated by the equation: 
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where P stands for applied load in kg, and d stands for diagonal length in mm. It is 

worth mentioning that the indention dimensions of two diagonals (a1 and a2) which 

are perpendicular to each other are measured, and then turned into average valued: d = 

(a1+a2)/2. According to Vickers hardness chart, the corresponding Hv value to each 

measured d is eventually obtained. The average hardness of the sample was obtained 

by an average of at least six indentions under a load of 0.5 kg.  

3.6.2 Tensile tests 

Samples for tensile measurements were prepared by HPDC process and conventional 

casting method. The dimensions of the test samples which were produced by the 

standard die attached to HPDC machine, were 6.4 mm in gauge diameter, 25 mm in 

gauge length and 12 mm diameter in the grip section. Due to the cylinder shape of 

conventional casting samples, they needed to be machined into tensile bar shape 

according to the standard tensile bar dimensions. 

The universal measurement machine (Instron ® 5569) was used to test the stress-strain 

curves of samples at a cross head speed of 2 mm/min. (strain rate: 1.33 ×  10-3 s-1). 

The machine equipped with a computer could automatically test and record the tensile 

property results such as Young’s modulus, 0.2% proof yield stress, ultimate tensile 

strength and elongation. To obtain precise elongation, an extensometer with 25 mm in 

gauge length was manually clipped to every test sample. All samples were measured 

at room temperature.  

 

3.7 Cooling curve measurement 

The schematic illustration of the experimental setup for measuring the cooling curves 

a1 

a2 
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is shown in Fig. 3.7. The steel crucible covered with a 13 mm thick layer of thermal 

insulation and a 0.5 mm diameter thermocouple which connected with computer was 

used in this work. Prior to measurements, the crucible was pre-heated to 700  in ℃

electric resistance furnace. To make results accurate, we need to make sure that the 

thermocouple is located in the middle of Mg melt. Moreover, the protective gas is also 

used during the test, which aims at preventing Mg melt from oxide reaction with air. 

Eventually, the temperature of the melt as a function time is recorded by a data 

acquisition software. 

 

Fig. 3.7 The diagram of experimental setup for measuring the cooling curve. 
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Chapter 4 
Results and Discussion 
 

4.1 Microstructure 

   

   

Fig. 4.1 Optical micrographs of conventional cast Mg-xZn-1Ca alloy for (a) x = 0; (b) x = 1; (c) x = 3; 

(d) x = 5. 

Figure 4.1 shows optical micrographs of conventional Mg-xZn-1Ca alloy samples. It 

is obviously seen that the microstructure of Mg-1Ca alloy is quite similar to that of 

Mg-1Zn-1Ca alloy. Both possessed a small quantity of second phase. Since the 

maximum dissolution of Zn in magnesium is approximately 2-3 wt.%, the typical 

microstructure still consists of Mg2Ca second phase after adding 1 wt.% Zn. 

Nevertheless, the amount of intermetallic particles gradually increased with increasing 

a b

c d
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fraction of zinc element. It may be explained that when the addition of zinc element 

exceeded the limit of solubility in Mg matrix, an increasing fraction of second phase 

subsequently formed. It is necessary to mention that Mg2Ca second phases observed 

in Fig. 4.1 (a) are replaced by Ca2Mg6Zn3 when Zn concentration is high (>3%). This 

replacement of Mg2Ca by Ca2Mg6Zn3 has been previously reported [Bamberger et al., 

2006].   

     

   

Fig. 4.2 Optical micrographs of conventional cast Mg-1Zn-1Ca-xHA composites for (a) x = 1; (b) x = 3; 

(c) x = 5.  

Figure 4.2 presents the optical micrographs of conventional cast Mg-1Zn-1Ca-xHA 

composites. Apart from presence of Mg-Ca second phase particles in the magnesium 

matrix, dark in colour agglomerates of HA particles exist in the microstructure for 

Mg-1Zn-1Ca/HA composites. Although, large size agglomerates are easily seen in the 

microstructure, finely dispersed HA particles are also seen in the microstructure. 

Moreover, the size and number of the clusters gradually increased with increasing 

a 

b c



BCAST, Brunel University 

68 
 

fraction of HA powders. The microstructures for Mg-3Zn-1Ca-xHA and 

Mg-5Zn-1Ca-xHA composites are shown in Fig. 4.3 and they are hardly different 

from Mg-1Zn-1Ca-xHA composites shown in Fig. 4.2. 

   

     

   

Fig. 4.3 Optical micrographs of conventional cast Mg-3Zn-1Ca-xHA composites for (a) x = 1; (b) x = 3; 

(c) x = 5 and Mg-5Zn-1Ca-xHA composites for (d) x = 1; (e) x = 3; (f) x = 5. 

The optical micrographs of Mg-5Zn-1Ca-xHA alloy/composites processed by 

high-pressure die-casting (HPDC) unit are shown in Fig. 4.4. The intermetallics are 

observed along the grain boundary and the agglomerates of HA particles are also 

a b

c d

e f
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observed in microstructures of Mg-5Zn-1Ca-xHA composites. Therefore, there are no 

distinctive differences between conventional and HPDC sample microstructure 

besides the possession of different grain size (see section 4.4). 

    

    

Fig. 4.4 Optical micrographs of Mg-5Zn-1Ca-xHA alloy/composites produced by HPDC for (a) x = 0;     

(b) x = 1; (c) x = 3; (d) x = 5.  

In order to improve the distribution of HA particles, the Mg/HA slurry was sheared 

intensively using “melt-conditioning by advanced shear technology” (MCAST). The 

optical micrographs of samples processed by MCAST technology and conventional 

cast corresponding ones are compared in Fig. 4.5. Compared with the microstructure 

of conventional Mg-5Zn-1Ca alloy, the distribution of intermetallic particles exhibits 

much better homogeneity after intensive shearing. The large agglomerates of HA that 

existed in as-cast composite are almost extinct, and the average size of HA 

agglomerates is significantly decreased. The HA agglomerate size is compared in Fig. 

4.6 for conventional cast and MC-cast samples. It can be seen that the MC-cast 

a b

c d
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process results in relatively fine dispersion of agglomerates. Unlike in the 

conventional process, there are no agglomerates above 200 μm in MC-cast processed 

samples. The observed improved microstructure is as a result of high shear rate, a 

high intensity of turbulence generated by MC machine. These results are in agreement 

with an earlier study of Al/SiC composites [Hari Babu et al., 2008; Tzamtzis et al., 

2009]. Fine dispersion of HA particles are expected to contribute for much improved 

corrosion due to increased interface area between Mg matrix and HA inclusion. 

   

    

Fig. 4.5 Optical micrographs of Mg-5Zn-1Ca alloy (a) conventional cast (b) MC-cast (casting after 

shearing intensively the slurry using MCAST). (c) and (d) are for Mg-5Zn-1Ca-3HA composites 

processed with conventional cast and MCAST, respectively. In both alloys and composites, intensive 

shearing the liquid/slurry is observed to result in much improved distribution of second phase 

inclusions and reinforcement particles. 

a b

c d
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Fig. 4.6 HA agglomerate size disribution for conventional and MC-cast processes. 

 

4.2 XRD analysis 

The XRD patterns for as-cast Mg-1Zn-1Ca, Mg-3Zn-1Ca and Mg-5Zn-1Ca alloys are 

shown in Fig. 4.7. For Mg-1Zn-1Ca alloy, all the observed peaks correspond to α-Mg. 

Peaks are indexed to h.c.p crystal structure of Mg. No additional peaks related to 

second phases are observed in both Mg-1Zn-1Ca and Mg-3Zn-1Ca, even though 

microstructures in Fig. 4.1(b) and 4.1(c) show presence of intermetallics. However, 

several new peaks (marked with “*”) are detected for Mg-5Zn-1Ca samples in 

comparison with the XRD pattern of pure magnesium. These additional peaks 

represent second phases, which may be ternary intermetallics (Ca2Mg6Zn2) and a very 

small amount of Ca-rich CaMg2 phase as reported previously [Bamberger et al., 2006]. 

The intensity of XRD peaks corresponding to these second phases is not strong 

enough for detection due to their low volume concentration. 

It is important to understand whether there is a chemical reaction between HA and Mg 

liquid metal during the mixing process. To enable us to detect the second phases using 

XRD, we have fabricated an MMC containing 10 wt.% HA (Mg-5Zn-1Ca-10HA 
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composite). The XRD patterns for pure HA particles, Mg-3Zn-1Ca cast alloy and 

Mg-5Zn-1Ca+10%HA samples are compared in Fig. 4.8. The XRD pattern for 10 

wt.% HA added Mg-5Zn-1Ca resulted in additional peaks. These peak positions  

 
Fig. 4.7 XRD patterns of conventional cast Mg-1Zn-1Ca, Mg-3Zn-1Ca and Mg-5Zn-1Ca alloys. 

 

Fig. 4.8 XRD patterns of HA particles, conventional cast Mg-3Zn-1Ca alloy and               

Mg-5Zn-1Ca-10HA composite. 

match with those of the HA phase, suggesting that the HA phase remained chemically 
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unaffected during mixing with Mg-Zn-Ca liquid metal. It can be concluded that the 

observed agglomeratess are indeed HA based phase particles. The chemical reaction 

between HA and Mg, if there is any, is not detected by the XRD. To investigate the 

interface between Mg and HA, high resolution electron micrograph study may be 

needed. 

 

4.3 Tensile property 

 

Fig. 4.9 Tensile properties of as-cast Mg-1Zn-1Ca, Mg-3Zn-1Ca alloy and Mg-5Zn-1Ca          

alloys at room temperature. 

The results of tensile strength measurements shown in Fig. 4.9 demonstrate that the 

yield strength and the ultimate tensile strength obviously increased when the content 

of Zn element increased from 1 wt.% to 3 wt.%, whereas they were approximately 

invariable when Zn addition increased to 5 wt.%. It is worth mentioning that the 

tendency of elongation is completely opposite against previous reports, which indicate 

that it should gradually drop with increasing the Zn fraction [Yin et al., 2008; Zhang 

et al., 2009 b].  

The observed mechanical behaviour can be clarified by the following reasons. First, 
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during solidification, Zn solute is ejected by the Mg growth front and can restrict the 

grain growth. In other words, at a given cooling rate (i.e, the rate at which the heat is 

extracted from the liquid metal), Zn can contribute to grain growth restriction. 

Therefore, with increasing content of zinc, the grain size decreases and as a result the 

yield strength can enhance with reduced grain size according to the Hall-Petch 

formula. Second, when 3% Zn is included into alloy, the Zn-based second phase will 

precipitate from the Mg-matrix, which can enhance the strength by a dispersion 

strengthening mechanism. However, the presence of more intermetallic phase along 

the grain boundary may have a detrimental effect on the elongation. Third, the 

unexpected trend of elongation could be related with the defects in the cast structure, 

such as large voids caused by poor die filling during conventional casting, when Zn 

concentration is low.  

 

Fig. 4.10 Tensile properties of Mg-5Zn-1Ca-xHA alloy/composites produced by HPDC             

as a function of HA content. 

Tensile properties of Mg-5Zn-1Ca-xHA samples produced with high-pressure die 

casting (HPDC) method are shown in Fig. 4.10. The yield strength and the ultimate 

tensile strength have improved by increasing the HA addition, significantly. It could 

be related to the phenomenon of load transfer that occurs in MMCs. The applied load 
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can be transferred to the reinforcement (HA) which possesses good load-bearing 

capability. With the increasing fraction of HA, more reinforcement exists in the 

structure, which could tolerate more load. However, the elongation almost fluctuated 

around 0.7%, which deviates from the anticipated results of elongation deterioration 

with increased HA fraction. The elongation of the non-reinforced alloy is also very 

low. These results indicate that casting defects dominate elongation in HPDC 

specimens. 

In summary, the tensile properties of Mg-Zn-Ca alloys and composites investigated in 

this study are similar to that of cortical bone [Staiger et al., 2006]. It is important to 

note that the mechanical properties of Mg alloys and composites could be altered 

significantly with the use of Zn as an alloying element and HA as reinforcement.  

 

Fig. 4.11 Comparison of tensile properties for conventional cast Mg-xZn-1Ca alloy and with 3 wt.% 

HA addition for x =1, 2 and 3.   

Tensile strength and elongation are compared for Mg-xZn-1Ca alloy and 

Mg-xZn-1Ca-3HA composite (x=1, 2, 3) in Fig. 4.11. Although HA resulted in the 

refinement of grain size, the existence of HA powder in the structure seems to reduce 

the yield strength, the ultimate tensile strength and elongation, when slurry cast into a 

cylindrical steel mould. As a matter of fact, it could be associated with some 
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inevitable defects such as large porosity by the gravity-casting method due to the 

increased viscosity of the liquid metal by the addition of HA. As a result, the presence 

of defects severely deteriorates the mechanical properties and eventually accelerates 

the failure of the sample during tensile test. Therefore, the result of conventional cast 

samples is opposite to that of HPDC samples which are rarely influenced by large 

structural defects due to effective die filling under high pressure. 

 

4.4 Hardness 

 

Fig. 4.12 Hardness of conventional cast Mg-xZn-1Ca alloys for x=0, 1, 3, 5 at room temperature. 

The hardness of Mg-1Ca alloy is enhanced by the addition of Zn, while the slight 

improvement of hardness is observed with further increasing content of zinc element 

up to 5 wt.% as shown in Fig. 4.12. Increased hardness is attributed to the 

strengthening effectiveness of Zn in magnesium alloys. When the content of Zn is 

controlled under a relatively low level (1-2 wt.% Zn), zinc element dissolves into 

magnesium matrix and improves the strength of alloys by solid-solution strengthening 

mechanism. Nevertheless, when the Zn addition exceeds 3 wt.%, the intermetallic 

phase (Ca2MgZn2) precipitates from the matrix, which contributes to the improvement 
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of the hardness by dispersion strengthening mechanism [Bamberger et al., 2006].  

 

Fig. 4.13 Hardness of conventional cast Mg-xZn-1Ca-yHA alloy or composite samples                     

(x=1, 3, 5; y=0, 1, 3, 5) at room temperature. 

Hardnesses of the samples tend to increase with the elevating fraction of HA as shown 

in Fig. 4.13. Moreover, compared with 1 wt.% and 3 wt.% Zn series composites, the 

more prominent hardness was observed among Mg-5Zn-1Ca-yHA composites (y=1, 3, 

5). Significant variation in local hardness value is observed, depending on the location. 

Low hardness (HV0.5 = 50.3) was observed within metal matrix (Fig. 4.14a), while 

some regions possessed intermediate hardness (HV0.5 = 65.1) due to the presence of 

small clusters of HA (Fig. 4.14b). Nevertheless, the measurement within big 

agglomerate of HA (Fig. 4.14c) led to higher hardness (HV0.5 = 99.9). This shows that 

the overall hardness of the composite materials depends on the distribution of the HA 

particles. However, a limitation of accurate micro-indention measurement in this 

research is the limited resolution of microscope attached to micro-hardness equipment, 

which occasionally leads to indentation to takes place within the agglomerate rather 

than matrix and is the possible source for observed large error. 
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Fig. 4.14 Microstructure of Mg-3Zn-1Ca-3HA showing the Vickers hardness indents in different 

locations of MMC-HA sample. 

On the basis of the micro-hardness of cortical bone (Hv~ 49.8) [Hodgskinson et al., 

1989], it is easy to find out that some measured samples in this study seem to 

approach the characteristic values of natural bone. Moreover, hardness for alloys 

processed in this study is comparable to that of Al-containing magnesium alloys 

(HV0.1 = 80 and 73) [Witte et al., 2007]. It is important to note that the poisonous 

negative effect on health by the presence of aluminium element for alloys studied by 

Caceres et al. and Witte et al. [Caceres et al., 2005; Witte et al., 2007] can be avoided 

in the alloys proposed here. In addition, the yield strength of Mg-5Zn-1Ca-xHA (x=1, 

3, 5) composites samples by HPDC process is about 140-196 MPa, which was similar 

to the compressive yield strength of natural bone (130-180 MPa). Therefore, these 

mechanical properties demonstrate that Mg-5Zn-1Ca-xHA (x=1, 3, 5) composites 

(MMC-HA) are promising candidates as biomedical materials for bone load-bearing 

application. 

a 

b c



BCAST, Brunel University 

79 
 

4.5 Grain size for various alloys/composites 

Fine grain structure is favourable for anti-corrosion property of Mg alloys. 

Optimization of grain structure by efficient approaches is always considered as an 

important issue of the solidification process. Chemical inoculation and physically 

induced grain refinement are two common methods that are commonly used to 

achieve this tough task. 

4.5.1 Ca-addition 

 

Fig. 4.15 Average grain sizes for conventional cast Mg-5Zn-1Ca and Mg-5Zn alloy. The grain sizes         

for same alloys under TP1 cast condition are also shown.(cooling rate for conventional and TP1 cast 

are ~1 K/s and 3.5 K/s, respectively.) 

  

a b
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Fig. 4.16 Micrographs of etched samples: (a) conventional cast Mg-5Zn-1Ca alloy; (b) the TP1 sample 

of Mg-5Zn-1Ca alloy; (c) conventional cast Mg-5Zn alloy; (d) the TP1 sample of Mg-5Zn alloy. 

The results from Fig. 4.15 demonstrate that the average grain size is apparently 

refined by the addition of 1 wt.% Ca for conventional cast and TP1 samples. 

Moreover, the effect of Ca on the refinement of grain size can be observed by naked 

eyes according to Fig. 4.16. It could also be related to the precipitation of 

intermetallic phase Ca2Mg6Zn3 and a small quantity of MgCa2 from the Mg matrix 

[Bamberger, 2006] instead of solely Mg2Zn when Mg-5Zn was alloyed with calcium. 

These intermetallics may have contributed to heterogeneous nucleation process as 

described in Chapter 2 (literature review-part 2). Reduced grain size could be related 

to the growth restriction of Ca solute by the α-Mg solvent front [Ramirez et al., 2008] 

4.5.2 Zn-addition 

In Fig. 4.17, the influence of zinc element on the grain size is presented. The plotted 

line shows that the grain size systematically decreased with increasing content of 

solute element Zn. The Micrographs of etched samples shown in Fig. 4.18 also 

confirm the effect of zinc element on grain size refinement. 

c d
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Fig. 4 17 Average grain sizes for conventional cast Mg-1Ca, Mg-1Zn-1Ca,                   

Mg-3Zn-1Ca and Mg-5Zn-1Ca alloys. 

   

   

Fig. 4.18 Micrographs of etched samples of conventional cast sample for (a) Mg-1Ca; (b) Mg-1Zn-1Ca;          

(c) Mg-3Zn-1Ca; (d) Mg-5Zn-1Ca.  

 

a b

c d
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4.5.3 HPDC process 

 

Fig. 4.19 Average grain sizes for Mg-5Zn-1Ca-xHA samples produced by conventional          

casting method and HPDC process (x=0, 1, 3, 5). 

   

   

Fig. 4.20 Micrographs of etched samples of Mg-1Zn-1Ca-xHA alloy/composite sample produced by 

HPDC process for (a) x=0; (b) x=1; (c) x=3; (d) x=5. 

a 

c 

b

d
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As shown in Fig. 4.19, compared with grain sizes of conventional castings in steel 

cylindrical mould, HPDC process significantly reduces the grain size due to high 

cooling rate. Microstructures are presented in Fig. 4.20. However, the anticipated 

tendency that the gradual decrease with increasing the content of HA particles is not 

observed for HPDC samples. HPDC is expected to provide high cooling rates 

(103-104 ℃/s). During solidification under such high cooling rate, due to increased 

homogenous nucleation rate and limited time for grain growth, fine grain structure is 

obtained when without HA addition. 

4.5.4 HA-addition 

 

Fig. 4.21 Average grain sizes for conventional cast Mg-1Zn-1Ca-xHA, Mg-3Zn-1Ca-xHA and 

Mg-5Zn-1Ca-xHA samples for x = 0, 1, 3, 5. 

As shown in Fig. 4.21, the grain sizes of the Mg-Zn-Ca alloys have been significantly 

reduced by the addition of 1 wt.% HA particles. The result firmly demonstrates that 

the presence of HA particles has a positive influence on the refinement of grain size. 

However, when the HA content is up to 3 wt.%, the grain sizes of Mg-1Zn-1Ca-3HA 

composite and Mg-3Zn-1Ca-3HA composite suddenly increases, which is completely 

opposite to expectation. Eventually, the alloy with 5 wt.% HA possessed similar grain 
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sizes, and the minimum grain size (~38.9 μm) is obtained from the Mg-3Zn-1Ca-5HA 

samples. The microstructures are shown in Fig. 4.22, 4.23 and 4.24. 

    

    

Fig. 4.22 Micrographs of etched samples of conventional cast samples for (a) Mg-1Zn-1Ca alloy; (b) 

Mg-1Zn-1Ca-1HA composite; (c) Mg-1Zn-1Ca-3HA composite; (d) Mg-1Zn-1Ca-5HA composite. 

    

a b

c d
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Fig. 4.23 Micrographs of etched samples of conventional cast samples for (a) Mg-3Zn-1Ca alloy; (b) 

Mg-3Zn-1Ca-1HA composite; (c) Mg-3Zn-1Ca-3HA composite; (d) Mg-3Zn-1Ca-5HA composite. 

    

    

Fig. 4.24 Micrographs of etched samples of conventional cast samples for (a) Mg-3Zn-1Ca alloy; (b) 

Mg-3Zn-1Ca-1HA composite; (c) Mg-3Zn-1Ca-3HA composite; (d) Mg-3Zn-1Ca-5HA composite. 

Referring to the classical theory of heterogeneous nucleation, we can explain the 

reason for the refinement of grain size by the addition of HA powder. The nucleation 

embryo could not successfully transform into nuclei unless it overcomes the 

c d

a b

dc 
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activation energy barrier. After adding HA particles, they could reduce the 

solid/liquid interfacial energy and the embryo turns into the shape of a spherical cap 

with a ‘wetting’ angle θ. Therefore, for a given volume of solid, the energy barrier to 

nucleation is decreased and thereby nuclei can be formed at higher undercooling. In 

other words, heterogeneous nuclei can form at higher temperature than homogeneous 

nuclei. 

Based on the lattice structures presented in Fig. 4.25, it is noted that lattice parameter 

a of HA is three times as that of pure Mg, which means that there can be a good 

lattice match between HA and Mg. As a result, there could be a good wetting between 

HA and Mg. Turnbull [Turnbull, 1953] has defined the potency P of a nucleant, which 

is related to the contact angle θ between the spherical cap and substrate as P ∝ 1/θ. 

Hence, it is absolutely possible that the addition of HA particles can enhance the 

heterogeneous nucleation process.  

According to the above analysis, we could anticipate that the effect of grain size 

refinement should be more prominent by increasing the amount of HA particles up to 

5%. However, as shown in Fig. 4.21, the increased grain size for Mg-1Zn-1Ca-3HA 

composite and Mg-3Zn-1Ca-3HA composites when compared to low concentration of  

   

Fig. 4.25 Lattice structures of (a) hydroxyapatite and (b) pure magnesium.                    

(Their parameters are 9.4  and 3.2088 , respectively.) 

HA addition may be associated with relative inhomogeneous distribution of HA 
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caused by severe agglomeration and prevented acceleration of heterogeneous 

nucleation process.                                                    

To eliminate the impact of different cooling rate on the grain size and also to simulate 

cooling rate achieved in industrial practice, the casting is conducted using test 

procedure-1 (TP1), which is expected to provide cooling rate of 3.5 K/s. The grain 

sizes of TP1 samples are significantly decreased in comparison with those of 

conventional samples due to the higher cooling rate (3.5 K/s) as shown in Fig. 4.26. 

Representative micrographs of etched surfaces are shown in Fig. 4.27. We also could 

effortlessly make similar conclusion through visible comparison between the alloy 

and the corresponding composite. The result further confirms that HA particles refine 

grain size for Mg alloys and is simply due to heterogeneous nucleation process 

facilitated by HA particles, rather than variation in cooling rate. 

 

Fig. 4.26 Average grain sizes for conventional cast Mg-3Zn-1Ca-xHA samples, TP1 cast 

Mg-1Zn-1Ca-xHA, Mg-3Zn-1Ca-xHA and Mg-5Zn-1Ca-xHA (TP1) samples (x = 0,3). The pouring 

temperature in TP1 mould was 660 ± 1 ℃. 
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Fig. 4.27 Micrographs of etched samples of TP1 cast samples for (a) Mg-1Zn-1Ca alloy; (b) 

Mg-1Zn-1Ca-3HA composite; (c) Mg-3Zn-1Ca alloy; (d) Mg-3Zn-1Ca-3HA composite; (e) 

Mg-5Zn-1Ca alloy; (f) Mg-5Zn-1Ca-3HA composite. (Pouring temperature 660 ± 1 ℃.) 

Generally speaking, it is very difficult to refine a commercial Al-containing 

magnesium alloy by chemical methods. The moderately efficient carbon-based refiner 

explored in the late 1930s is still employed for refining the grain size currently. Thus, 

the influence of HA particles on the commercial Mg alloys containing aluminium 

element is also investigated in this thesis. 

a b

c d

e f
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Fig. 4.28 Average grain size for AZ91D alloy, AZ91D-3HA composite, AM60 alloy, AM60-3HA 

composite, AJ62 alloy and AJ62-3HA composite. (TP1 660 ℃) 

The average grain sizes for different samples are shown in Fig. 4.28, which indicate 

that HA particles possessed significant effect on the grain size refinement for AZ91D 

alloy. The grain size sharply decreased from 441.5 μm to 80.8 μm by the addition of 3 

wt.% HA. However, the grain sizes for AM60 and AJ62 alloys just have slight 

improvement. The corresponding microstructures are revealed in Fig. 4.29. Based on 

this investigation, we suggest that the HA is a promising grain refiner for 

Al-containing magnesium alloys. 

    

a b
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Fig. 4.29 Micrographs of etched samples: (a) AJ62 alloy; (b) AJ62-3HA composite; (c) AM60 alloy; (d) 

AM60-3HA; (e) AZ91D alloy; (f) AZ91D-3HA composite. (TP1 660 ℃) 

On the basis of the remarkable reduction of the grain size by adding 3 wt.% HA to 

AZ91D, it is worth investigating the influence of various low concentration of HA 

content on the grain size. Excessive amount of reinforcement particles in the 

microstructure can reduce the elongation. Therefore, AZ91D-0.1HA, AZ91D-0.2HA, 

AZ91D-0.5HA and AZ91D-1HA composites have been processed and their grain size 

measured. The average grain size versus HA content for AZ91D is shown in Fig. 

4.30.  

It is exciting to note that the grain size of AZ91D alloy sharply decreased from 441.5 

μm to 176.9 μm by adding just 0.1 wt.% HA, and then gradually reduce with 

increasing fraction of HA. The corresponding microstructures are shown in Fig. 4.31. 

Therefore, it can be concluded that a small quantity of HA particles can strongly 

influence on the refinement of grain size of AZ91D. Considering that HA addition  

c d

e f
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Fig. 4.30 Average grain sizes for AZ91D-xHA (x=0, 0.5, 1, 3) samples. (TP1 660 ℃) 

   

   

Fig. 31 Micrographs of etched samples of AZ91D-xHA composite for (a) x=0.1; (b) x=0.2; (c) x=0.5; 

(d) x=1. (TP1 660 ℃) 

does not deteriorate mechanical properties (see Fig. 4.10), eventually, it may be 

a b

c d
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possible to put HA into industrial application as a promising effective refiner for 

commercial Al-containing magnesium alloys. 

4.5.5 Effect of mixing process on the AZ91D grain size  

 

Fig. 4.32 Average grain sizes for AZ91D and AZ91D (mixing) samples (TP1 660 ℃). 

    

Fig. 4.33 Micrographs of etched samples of (a) AZ91D alloy and (b) mixing-AZ91D alloy         

(TP1 660 ℃). 

In order to investigate the effect of mixing on the grain size of AZ91D alloy, liquid 

metal was stirred with impeller and cast into TP1 mould.  Results shown in Fig. 4.32 

and 4.33 confirm that mixing procedure is also effective on the grain size of AZ91D. 

The reason may be explained that the inevitable existence of Mg oxides or 

a b



BCAST, Brunel University 

93 
 

intermetallics tend to be dispersed homogeneously due to mixing, which could 

accelerate the heterogeneous nucleation as an effective nucleant sites [Fan et al., 

2009]. Although stirring liquid metal at high speed with impeller resulted in reduction 

of grain size, the addition of HA to liquid metal dramatically decreases the grain size. 

4.5.6 Cooling curve measurements 

 

 

 

Fig. 4.34 Cooling curves for AZ91D and AZ91D-1HA. 

To understand the effect of HA particles on grain size refinement for AZ91D, we 

a 

b 
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have measured cooling curves for AZ91D and AZ91D added with 1 wt.% HA. It 

needs to be mentioned that insulation material is wrapped around the steel crucible to 

prevent the temperature of melt decreasing too rapidly during solidification process. 

The measured cooling curves are presented in Fig. 4.34. Based on Fig. 34 a, it is noted 

that the cooling rate of AZ91D is approximately 0.28 ℃/s, which is quite similar to 

that of AZ91D-1HA (0.24 
℃/s). Measured data close to the liquidus line is shown in 

Fig. 34(b). The undercooling for AZ91D is measured to be 0.98 OC, whereas the 

addition of 1 wt.% HA particles dramatically decreased the undercooling (ΔT < 

0.25 ℃). The observed results clearly demonstrate that the existence of HA inclusions 

in the Mg-liquid metal can enhance heterogeneous nucleation process and as a result 

reduces the grain size of castings, which is consistent with the measured grain size in 

this study. 
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Chapter 5 
Conclusion 
 

The main purpose of the work performed in this thesis is to design magnesium-based 

alloys and metal matrix composite materials as potential bio-medical materials.  On 

the basis of bio-degradable and bio-compatible nature, Mg is chosen as a matrix and 

Hydroxyapatite as a reinforcement phase. The Mg alloys are fabricated by 

commercial pure magnesium ingot, pure zinc and pure calcium granules according to 

different weight proportion. The following is the summary of extensive research work 

on Mg-Zn-Ca/HA alloys and composites. 

• Extensive literature survey conducted in this thesis suggests that Zn and Ca are 

bio-compatible alloying metals in Mg alloys which not only improves 

mechanical properties, but also improves corrosion properties. In this study we 

have manufactured various Mg-Zn-Ca alloys and found out that the fraction of 

intermetallic particles gradually increased with increasing the content of zinc 

element. Presence of Ca2Mg6Zn3 intermetallic phase is confirmed with X-ray 

diffraction study. 

• When Hydroxyapatite (HA) powder added into the liquid metal, after 

solidification, HA particles are observed to agglomerate in composites due to 

inadequate mixing efficiency of conventional impeller, and the degree of 

agglomeration became higher with increasing the percentage of the 

reinforcements. Although a little progress could be achieved by HPDC process 

in comparison with conventional casting method, the relatively large cluster of 

reinforcements still exist in the microstructure. However, due to high intensive 

shear and turbulent force generated by MCAST process, the dispersion of HA 

particles and second phase significantly improved. 

• Tensile tests indicate that yield strength and ultimate tensile strength increased 

with increasing the fraction of Zn in Mg-Zn-Ca alloys. These properties are 
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further improved by the HA addition when processed with HPDC process. 

However, since microstructural defects such as porosity, as a result poor die 

filling due to viscous nature of slurry, resulted in inconsistent elongation. 

• Vickers micro-hardness is also increased with increasing the content of zinc. 

HA particle addition also increased the average hardness of Mg-Zn-Ca/Ha 

composites in comparison with alloys. The improving tendency of 

micro-hardness by increasing the HA reinforcement concentration is clearly 

observed. However, it is noted that local micro-hardness varied significantly 

due to inhomogeneous distribution of HA particles.  

• Zn addition could refine the grain size of the alloys, which is in agreement 

with the well established concept of grain restriction due to ejected Zn solute 

by the Mg grain growth front. Similarly, Ca is also observed to refine grain 

size significantly. Fine grain structures are expected to contribute for improved 

corrosion resistance.   

• Grain size refinement is remarkable when HA is added to the Mg-Zn-Ca alloy. 

Grain size is also decreased for commercial Al-contained Magnesium alloys 

such as AZ91D, AJ62 and AM60 with the addition of HA. It is absolutely 

worth mentioning that grain size of commercial AZ91D alloys which is 

normally quite difficult to be refined by the chemical method, was 

significantly reduced from 441.5 μm to 176.9 μm by the addition of a little 

quantity of 0.1 wt.% HA. The results strongly suggest that HA as effective 

nucleant sites accelerated the process of heterogeneous nucleation and is 

confirmed by the reduced undercooling for HA added AZ91D alloy. Therefore, 

we believe that hydroxyapatite (HA) as a promising efficient refiner and 

should be paid more attention for structural applications and medical 

applications of Mg/HA composites.  
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Chapter 6 
Future work 
 
Metallurgical aspect of Mg/HA aspects: The research performed in this work 

has confirmed that Mg-Zn-Ca/Ha MMCs produced by HPDC process can be potential 

materials for bio-medical application, since their mechanical properties including, 

modulus, tensile strength and Vickers hardness values are quite close to that of natural 

bone. Nevertheless, the elongation of all the samples is definitely unfavourable due to 

structural defects and big agglomerates of HA particles existed in microstructure by 

insufficient mixing. However, depending on the observed effect of improved 

homogeneous distribution of HA particles with intensive shearing, we anticipate that 

the mechanical properties of these samples produced by intensive shearing combined 

with HPDC can be obviously improved, especially for elongation. In addition, based 

on observation of grain refinement with HA addition for Al-containing commercial 

magnesium alloys, implementation MCAST and MC-HPDC process should be carried 

out in future. The corresponding composite samples are expected to exhibit finer 

microstructure and improved mechanical properties. 

6.2 Biomedical properties of Mg/HA: As bio-degradable medical materials, 

the assessments of bio-corrosion resistance and bio-compatibility in physiological 

condition are absolutely necessary for these novel designed Mg-Zn-Ca/HA alloys and 

composites. Due to the absence of bio-related facilities at BCAST, these 

measurements will be conducted in TJUT, China. The electrochemical method and 

immersion tests will be employed to test the corrosion resistance of samples in SBF 

(simulated body solution). In order to evaluate the effect of metal ions released by 

corrosion on cell viability, the measurements of cytotoxicity should be performed 

according to ISO 10993-5: 1999.  
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