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Abstract

We calculate the expectation value of an arbitrary product of characteristic polynomials of
complex random matrices and their hermitian conjugates. Using the technique of orthogonal poly-
nomials in the complex plane our result can be written in terms of a determinant containing these
polynomials and their kernel. It generalizes the known expression for hermitian matrices and it
also provides a generalization of the Christoffel formula to the complex plane. The derivation we
present holds for complex matrix models with a general weight function at finite-N , where N is the
size of the matrix. We give some explicit examples at finite-N for specific weight functions. The
characteristic polynomials in the large-N limit at weak and strong non-hermiticity follow easily
and they are universal in the weak limit. We also comment on the issue of the BMN large-N limit.
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1 Introduction

The study of the spectral statistical properties of random matrix models naturally leads to consider
characteristic polynomials of random matrices. Because of the wide applicability of random matrices,
the analysis of characteristic polynomials has been approached from different fields of physics and
mathematics, such as quantum chaos [1], Quantum Chromodynamics (QCD) [2] or the study of the
statistical distribution of the zeros of the Riemann zeta-function [3] to name a few of them.

The expectation value of ratios of random matrix determinants including sources has been intro-
duced in the supersymmetric approach to random matrix models, as it can be used as a generating
functional for resolvents and thus for all eigenvalue correlation functions. In the supersymmetric ap-
proach the determinants are expressed as integrals over fermionic and bosonic variables which can then
be evaluated at finite-N or large-N , where N is the size of the matrix. For a review of this approach
we refer to [4]. Recently the Ingham-Siegel integral has been used as an alternative to the Hubbard-
Stratonovich transformation [5]. Another approach to calculate ratios of characteristic polynomials is
the replica method, where new exact results have been obtained very recently by [6] and [7] (see also
[8]). A third approach which we will adopt in the following, is the method of orthogonal polynomials.
Arbitrary ratios of characteristic polynomials have been calculated by means of this method in [8, 9]
and a rigorous proof of their universality has been provided in [10].

In this article we will focus on products of characteristic polynomials. In principle they contain
all informations about the eigenvalues. When the matrices are hermitian, products of characteristic
polynomials exhibit an interesting duality property, which interchanges the size of the matrix with the
number of determinants [11, 12]. Moreover, in the application to QCD they enjoy a direct interpre-
tation as partition functions including quark masses [2]. They also give the orthogonal polynomials
and the kernel with respect to a weight function which includes such quark mass terms. Consequently
all massive correlation functions can be obtained from them [13]1. In fact many of the results for
characteristic polynomials have been first obtained in the QCD-related literature in the large-N limit,
without explicitly calling them “products of characteristic polynomials” but “massive partition func-
tions”. For the unitary ensemble of random matrices they were first calculated in [14] including a
universality proof. For the chiral unitary ensemble the partition functions were derived in [15] for
finite-N and infinite-N and shown to be universal [16]. For the other symmetry classes of chiral or-
thogonal and symplectic ensembles the massive partition functions were derived in [17] and [18], and
their universality has been proved [18]. The corresponding nonchiral results were obtained in [19].
Results for finite-N and infinite-N were independently found for all three nonchiral symmetry classes
in [20] and [11].

Up to now such results were little explored for random matrix models with complex matrices having
complex eigenvalues. Our aim is to provide an answer at finite-N and large-N for products of charac-
teristic polynomials where one has to distinguish between the matrix and its hermitian conjugate now.
Several developments in various fields have renewed the interest in complex matrix models. Such mod-
els have been related for example to the Saffman-Taylor instability on the interface of two-dimensional
fluids [21], and correlation functions of complex eigenvalues at large distance were calculated in [22].
The correspondence between supersymmetric Yang-Mills theory and string theory has also renewed
the interest in expectation values of traces of complex matrices [23]. There, the complex matrix model
belongs to the Ginibre ensemble and is a tool for computing operators in a peculiar large-N limit, the
so-called Berenstein-Maldacena-Nastase (BMN) limit [24]. The computational techniques range from
combinatorics, character expansion, orthogonal polynomials (as in the original approach of Ginibre
[25]), up to large-N loop equation techniques [26] or collective field theory [27].

1Here we are not considering the relation to finite volume partition functions of QCD, but only to random matrix
models partition functions.
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Matrices with complex eigenvalues occur also in QCD when a chemical potential for the quarks
is introduced [28]. As QCD belongs to the chiral symmetry class, a chiral complex eigenvalue model
has been introduced and solved in [29]. The nonchiral complex model with unitary symmetry, cor-
responding to three-dimensional QCD, was previously studied in [30]. There, the massive partition
functions as well as all correlation functions were determined under the hypothesis that the mass terms
provide a non-negative definite measure. Here, we will generalize these results to arbitrary products
of characteristic polynomials, without any restriction on the sources.

The technique we use in the present article is based on general orthogonal polynomials in the
complex plane. Many important properties that usually hold for such polynomials on the real axis
(e.g. the existence of a three-step recursion relation or the Christoffel-Darboux formula) are no longer
valid in the complex plane in general. Our results will rely solely on the existence of the orthogonal
polynomials.

The article is organized as follows. After some definitions we first state and prove our main result
in Section 2 for any product of characteristic polynomials of complex matrices and their hermitian
conjugate. As a nice consequence we also find a simple determinant expression for products of char-
acteristic polynomials of hermitian matrices, when the number of factors is odd. In Section 3 we give
an interpretation of our findings. In some special case they give massive orthogonal polynomials and
their kernel, which leads to all massive eigenvalue correlation functions. We also make contact to
previous results in [30]. In Section 4 we provide some explicit examples of orthogonal polynomials in
the complex plane at finite-N . We will also extend the duality [11, 12] between products of character-
istic polynomials of different matrix size to complex matrices. Section 5 is devoted to the microscopic
large-N limit. The known results for the asymptotics of orthogonal polynomials and their kernel at
weak and strong non-hermiticity directly apply to the asymptotics for the characteristic polynomials.
Also, the proof of universality at weak non-hermiticity [31] can be extended to our case. We note
however that at strong non-hermiticity only the kernel has a smooth microscopic large-N limit (and
not the polynomials). Before the conclusions we also briefly comment in Section 6 on the informations
about the BMN large-N limit that can be extracted from the products of characteristic polynomials.

2 Products of characteristic polynomials

We define our complex matrix model partition function and the corresponding expectation values by

Z̃N ≡
∫

[dJ dJ†] w(J, J†) , (2.1)

〈O 〉N ≡ 1

Z̃N

∫

[dJ dJ†] w(J, J†) O(J, J†) , (2.2)

respectively. Here J is a general complex matrix of size N ×N and we integrate over all independent
matrix elements. We restrict ourselves to real non-negative weight functions w(J, J†). In general a
complex matrix can be diagonalized by using two unitary matrices. Alternatively it is possible to
transform it into a triangular form by a single unitary transformation, the Schur decomposition

J = U(Z + R)U−1 , Z = diag(z1, . . . , zN ) , U ∈ U(N), zi ∈ C , (2.3)

where R is a strictly upper triangular matrix with complex entries. We assume that the above partition
function can be written solely in terms of the complex eigenvalues zi, i = 1, . . . , N and that the weight
w(J, J†) factorizes. We thus can write

Z̃N = C(N)

∫

D

N
∏

i=1

(

d2zi w(zi, z̄i)
)

|∆N (z)|2 ≡ C(N) ZN , (2.4)
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where we have used that the Jacobian of the transformation (2.3) yields the Vandermonde determinant
denoted by

∆N (z) ≡
N
∏

i>j

(zi − zj) = det
1≤i,j≤N

[zj−1
i ] . (2.5)

The constant C(N) contains the integral over the unitary group U(N) as well as the integral over the
upper triangular matrix R. The latter drops out also in other expectation values, as for example in the
determinants we consider below. In eq. (2.4) D denotes the domain in the complex plane over which
we integrate the complex eigenvalues. Examples for weight functions satisfying the above conditions
are2

w(J, J†) = exp[trV (J, J†)], with V (J, J†) = gJJ† + V (J) + [V (J)]† . (2.6)

Here V (J) can be taken for example as an arbitrary complex polynomial and g is a real coupling
constant. The domain D can be the full complex plane or any bounded domain, depending on the
weight function. For instance if

w(J, J†) = δ
(

tr(JJ†) − r2
)

, or w(J, J†) = θ
(

tr(JJ†) − r2
)

, (2.7)

then the domain is obviously a circle or a disk of radius r around the origin in the complex plane,
respectively.

If the weight function w(z, z̄) is such that all moments exist,
∫

D d2z w(z, z̄) |z|2n < ∞, ∀n ∈ N,

then the orthogonal polynomials P̃n(z)

∫

D
d2z w(z, z̄)P̃k(z) P̃l(z) = hkδkl , (2.8)

exist as well and are uniquely determined by the monic normalization P̃k(z) = zk +O(zk−1) with norm
hk. Note that the coefficients of P̃l(z) are complex in general. However if both w(z, z̄) and the domain
D are symmetric under the exchange z ↔ z̄ then P̃l(z) can be chosen with real coefficients. The theory
of orthogonal polynomials in the complex plane (and their asymptotics) is a well-established subject
of mathematics; for further details, we refer the interested reader to the mathematical literature (e.g.
[32]).

We can easily express the eigenvalue partition function eq. (2.4) in terms of the norms hk by
replacing the Vandermonde determinant eq. (2.5) with a determinant of the monic polynomials P̃k(z)
and using the orthogonality relation (2.8):

ZN = N !

N−1
∏

k=0

hk . (2.9)

In order to state our results we also introduce the orthonormal polynomials

Pk(z) ≡ h
− 1

2

k P̃k(z) . (2.10)

With these preliminaries we can turn to the main result of this article.

2In our conventions we will not put a factor of N into the exponent in order to have exact results for finite-N . When
taking the large-N limit it can be reestablished by scaling zi →

√
Nzi and by suitably rescaling the coupling constants

in the potential V .
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Theorem: Let {vi; i = 1, . . . ,K} and {ui; i = 1, . . . , L} be two sets of complex numbers which are
pairwise distinct among each set. Without loss of generality we assume K ≥ L, where the empty set
with L = 0 is permitted as well. Together with the definitions and restrictions on the weight function
made above, the following statement holds3:

〈

K
∏

i=1

det[vi − J ]

L
∏

j=1

det[ūj − J†]

〉

N

=

∏N+K−1
i=N h

1

2

i

∏N+L−1
j=N h

1

2

j

∆K(v) ∆L(ū)
det

1≤l,m≤K
[ B(vl, ūm) ] , (2.11)

where we have defined:

B(vl, ūm) ≡







∑N+L−1
i=0 Pi(vl)Pi(um) for m = 1, . . . , L

PN+m−1(vl) for m = L + 1, . . . ,K

. (2.12)

Before presenting the proof of the Theorem let us make a few remarks. The reason why we restrict
ourselves to the case K ≥ L is that the other case K ≤ L can be obtained simply by complex
conjugating the above equations. The restriction to pairwise distinct sets of parameters vi or ui can
also be lifted. In the limit vi → vj the Vandermonde determinant in the denominator vanishes as well
as the determinant in the numerator. Hence in this limit the row containing vj has to be differentiated
with respect to vj and then we set vj = vi there. The same procedure can be iterated when vi is
degenerate of order m. The result is given by substituting the k-th row of eq. (2.12) for k = 1, . . . ,m
with its (k − 1)-th derivative at vi (and dropping the corresponding arguments in the Vandermonde
determinants in the denominator). The same argument applies for the case with degenerate ūi. We
will give an example for L = 0 in eq. (4.22).

We also wish to mention that the object occurring in the first L columns of the matrix B(vl, ūm)
is, apart from the weight factors, nothing else than the kernel of orthogonal polynomials defined as:

KN (v, ū) ≡ [w(v, v̄)w(u, ū)]
1

2

N−1
∑

i=0

Pi(v)Pi(u) ≡ [w(v, v̄)w(u, ū)]
1

2 κN (v, ū) . (2.13)

Here we have also explicitly defined the bare kernel κN (v, ū) as it occurs in the Theorem and subsequent
formulas. We note that this kernel cannot be written in terms of polynomials of order N and N − 1
alone because for orthogonal polynomials in the complex plane the analog of the Christoffel-Darboux
formula, eq. (2.18) below, does not hold in general (for an example see [31]).

Proof: The proof will be done in two steps. First we will prove the case K = L for arbitrary L.
Then we consider the case K > L using induction. For K = L we have:

〈

L
∏

i=1

det[vi − J ]
L
∏

j=1

det[ūj − J†]

〉

N

=

=
1

ZN

∫

D

N
∏

i=1



d2zi w(zi, z̄i)

L
∏

j=1

((vj − zi)(ūj − z̄i))



∆N (z)∆N (z̄)

3The following notation is understood: ∆0(x) = ∆1(x) = 1 and
∏N−1

i=N
hi = 1
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=
1

ZN

∫

D

(

N
∏

i=1

d2zi w(zi, z̄i)

)

∆N+L(z1, . . . , zn, v1, . . . , vL)

∆L(v1, . . . , vL)

∆N+L(z̄1, . . . , z̄n, ū1, . . . , ūL)

∆L(ū1, . . . , ūL)

=
1

ZN∆L(v)∆L(ū)

∫

D

N
∏

i=1

(

d2zi w(zi, z̄i)
)

det
1≤i,j≤N+L

[ζj−1
i ] det

1≤i,j≤N+L
[η̄ j−1

i ] , with

{

ζ ≡ {z, v}
η ≡ {z, u}

=

∏N+L−1
i=0 hi

ZN∆L(v)∆L(ū)

∫

D

N
∏

i=1

(

d2zi w(zi, z̄i)
)

det
1≤i,j≤N+L

[Pj−1(ζi)] det
1≤i,j≤N+L

[Pj−1(ηi)]

=

∏N+L−1
i=N hi

N !∆L(v)∆L(ū)

∫

D

N
∏

i=1

(

d2zi w(zi, z̄i)
)

det
1≤i,j≤N+L

[

N+L
∑

r=1

Pr−1(ζi)Pr−1(ηj)] . (2.14)

In the second step we have put the products of differences between vj and zi into a larger Vandermonde
determinant of size N + L and between ūj and z̄i into a complex conjugated one. The additional
factors of differences between vj’s and ūj ’s have been divided out in terms of smaller Vandermonde
determinants of size L. The Vandermonde determinant can be written as a determinant of powers,
eq. (2.5), where we have introduced a larger set of variables ζ1,...,N+L and η1,...,N+L. The properties

of determinants allow to replace the powers ζj−1
i first by the monic polynomials P̃j−1(ζi) and then

by the orthonormal ones times their norms, which have been taken out of the determinants. They
partially cancel the normalization ZN from eq. (2.9). We then apply that det[A] det[B] = det[ABT ]
and thus obtain a single determinant of the bare kernel eq. (2.13). Now we make use of Theorem
5.2.1 in [33], which can be applied as follows. The kernel KN (ζ, η̄) satisfies the hermiticity condition
KN (ζ, η̄) = KN (η, ζ̄) and the chain relation

∫

d2z KN (ζ, z̄) KN (z, η̄) = KN (ζ, η̄). Then

∫

d2zn det
1≤i,j≤n

[KN (zi, z̄j)] = (c − n + 1) det
1≤i,j≤n−1

[KN (zi, z̄j)] , (2.15)

where c =
∫

d2zKN (z, z̄) = N . We can thus successively integrate out all z1,...,N using eq. (2.15). The
successive use produces a factor N ! and we thus arrive precisely at eq. (2.11) for K = L, with the
matrix B only consisting of the bare kernels.

Next we prove eq. (2.11) for K > L by induction in K − L. The starting point of induction is
already satisfied for K = L. For the induction step K → K + 1 we proceed as follows:

〈

K+1
∏

i=1

det[vi − J ]

L
∏

j=1

det[ūj − J†]

〉

N

=

=
1

ZN∆K+1(v)∆L(ū)

∫

D

N
∏

i=1

d2zi w(zi, z̄i)

×
∑

σ∈{0,...,N+K}

(−1)σP̃σ(1)(z1) · · · P̃σ(N)(zN )P̃σ(N+1)(v1) · · · P̃σ(N+K)(vK)P̃σ(N+K+1)(vK+1)

×
∑

σ′∈{0,...,N+L−1}

(−1)σ
′

P̃σ′(1)(z1) · · · P̃σ′(N)(zN ) P̃σ′(N+1)(u1) · · · P̃σ′(N+L)(uL)

=

∏N+K
i=N h

1

2

i

∏N+L−1
j=N h

1

2

j

∆K+1(v) ∆L(ū)

(

PN+K(vK+1) det
1≤l,m≤K

[B(vl, ūm)]

−
K
∑

j=1

PN+K(vj) det
m=1,...,K

l=1,...,j−1,K+1,j+1,...,K

[B(vl, ūm)]



 . (2.16)
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We repeated the first steps in eq. (2.14) until we have the product of two determinants of monic polyno-
mials and their conjugate, containing the variables {z1,...,N , v1,...,K+1} and {z1,...,N , ū1,...,L}, respectively.
We have explicitly spelled out these determinants as sums over permutations. The index σ(N +K +1)
of the polynomial P̃σ(N+K+1)(vK+1) can take values in {0, . . . , N +K}. For σ(N +K+1) = N +K the

polynomial P̃N+K(vK+1) multiplies exactly the expectation value 〈∏K
i=1 det[vi−J ]

∏L
j=1 det[ūj−J†]〉N

for which the Theorem holds by using the assumption of induction. The other values for the index
σ(N +K +1) < N +K can be obtained by simply exchanging the argument vK+1 with the one of the
corresponding polynomial of argument vj=1,...,K . Since this is a pair permutation in σ it will produce
a sign for all terms. As a final step, in the last line of eq. (2.16) we move the row containing vK+1

from the position j to the lowest row of position K, without changing the order of the other rows in
the determinants. This produces a factor (−1)K−j . Then we see that the sum of all determinants is
just the Laplace expansion of a matrix of size K + 1 with respect to the last column, and that this
matrix is nothing else than B(vl, ūm) in eq. (2.12). We have thus proved the Theorem for K + 1.

Let us emphasize the Theorem (2.11) also holds for partition functions defined as eigenvalue in-
tegrals such as eq. (2.4) and which do not necessarily have a representation in terms of complex
matrices. Examples for such models are the chiral complex matrix model as recently proposed in
[29] which we will discuss again in Section 4. For this model no explicit matrix realization is known
so far. Another example are weight functions containing mixed higher powers of z and z̄ such as
w(z, z̄) = exp[−(zz̄)k≥2]. Such weight functions can be only written down in terms of complex matri-
ces which are normal, [J, J†] = 0, as normal matrices can be diagonalized without an upper triangular
matrix as in eq. (2.3). However, such terms with higher powers in |z|2 may be necessary in the weight
function to write down convergent integrals.

After having completed the proof let us compare to the known results for products of characteristic
polynomials of hermitian matrices J = H = H†. Since in our proof we have only assumed the existence
of an eigenvalue representation for the partition function and the existence of orthogonal polynomials
on some domain D, it holds also for arbitrary hermitian matrix models. We only have to restrict D
to the real line and replace complex integrals

∫

d2z by real integrals
∫

dx. Because of J = J† the
splitting into two sets of determinants becomes immaterial here. In particular for L = 0 we find back
the known result (see e.g. in [20, 11, 12])

〈

K
∏

i=1

det[vi − H]

〉

N

=
1

∆K(v)
det

1≤l,m≤K
[ P̃N+m−1(vl) ] . (2.17)

The product of K characteristic polynomials is thus given by a K ×K determinant of the orthogonal
polynomials. In [10] it was shown that for even K = 2k this can be further simplified to a k × k
determinant. We obtain the same result from setting K = L = k in our Theorem (2.11) and using
that for orthogonal polynomials on the real line the Christoffel-Darboux identity holds,

N−1
∑

i=0

Pi(x)Pi(y) =

√

hN

hN−1

PN (x)PN−1(y) − PN (y)PN−1(x)

x − y
, (2.18)
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with x, y real numbers4. We thus have

〈

k
∏

i=1

(det[vi − H] det[ui − H])

〉

N

=

=

∏N+k−1
i=N hi

(hN+k−1)k∆k(v)∆k(u)
det

1≤l,m≤k

[

P̃N+k(vl)P̃N+k−1(um) − P̃N+k(um)P̃N+k−1(vl)

vl − um

]

.(2.19)

As a simple corollary we can thus show from the Theorem (2.11) that also for and odd number
K = 2k + 1 of products of characteristic polynomials the K × K determinant in eq. (2.17) can be
reduced down to size (k + 1) × (k + 1).

Corollary: Let the definitions (2.1) - (2.5) and (2.8) - (2.10) be valid as well for hermitian matrices
H with real eigenvalues integrated over a real domain D. Take the parameters (real or complex)
{vi; i = 1, . . . , k + 1} and {ui; i = 1, . . . , k} to be all pairwise distinct. From Theorem (2.11) the
following relation follows:

〈

k+1
∏

i=1

det[vi − H]
k
∏

j=1

det[uj − H]

〉

N

=

∏N+k−1
i=N hi

(hN+k−1)k∆k+1(v)∆k(u)
det

1≤l,m≤k+1
[ B(vl, um) ] , (2.20)

where we have defined

B(vl, um) ≡











P̃N+k(vl)P̃N+k−1(um)−P̃N+k(um)P̃N+k−1(vl)
vl−um

for m = 1, . . . , k

P̃N+m−1(vl) for m = k + 1

. (2.21)

It is clear that from Theorem (2.11) for real hermitian matrices we can get many equivalent
formulas for determinants of size in between eq. (2.17) and eqs. (2.19) or (2.20) respectively, by
splitting the total number of parameters in different pairs K and L.

3 Applications

In this Section we give an interpretation for some particular products of characteristic polynomials
we calculated in eq. (2.11). From the beginning of our investigations we have assumed that the
weight function has to be non-negative definite on the domain D in order to make the construction
of the polynomials via Gram-Schmidt possible. The examples given for w(z, z̄) in eqs. (2.6) and
(2.7) obviously satisfy this requirement. We will now use the results from our Theorem to explicitly
construct orthogonal polynomials for more complicated weight functions containing determinants or
in other word weights with products of eigenvalues as prefactors.

From the theory of orthogonal polynomials defined on the real line the following is known. Choosing
any parameter vj ∈ R in eq. (2.17) for hermitian matrices the right hand side can be interpreted as
a polynomial in vj of order N , P̃N (vj), which is orthogonal with respect to the weight w(K−1)(x) ≡

4Formula (2.18) holds algebraically also for x, y ∈ C and Pk(x) being the analytic continuation to the complex
plane of the polynomials which are orthonormal on the real line. However we emphasize that in this case the sum
∑N−1

i=0
Pi(x)Pi(y) is not a kernel in the complex plane, because the Pk are not longer orthonormal in the complex plane

(for an explicit example see eq. (4.6) ).
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w(x)
∏

i6=j(vi − x). This holds provided that the new weight is non-negative definite on the domain
D. Note that under this condition, eq. (2.17) immediately follows from the Christoffel Theorem [34].
An example is when D ⊆ R and all vi are purely imaginary, coming in complex conjugate pairs. This
would correspond to the weight for the random matrix partition function of QCD in three dimensions.

In order to make such an interpretation of the characteristic polynomial in the complex plane
possible we have to choose K = L + 1 in eq. (2.11) and to take all ui = vi, i = 1, . . . , L. It is easy to
convince oneself by going to an eigenvalue basis that the following matrix representation holds:

P̃
(L)
N (z) ∼

〈

det[z − J ]

L
∏

i=1

(

det[vi − J ] det[v̄i − J†]
)

〉

N

. (3.1)

This gives a polynomial orthogonal with respect to the non-negative definite weight

w(L)(J, J†) ≡ w(J, J†)

L
∏

i=1

(

det[vi − J ] det[v̄i − J†]
)

, (3.2)

and the complex conjugate polynomial P̃
(L)
N (z) is simply obtained by taking the hermitian conjugate

of eq. (3.1). Please note the exact analogy with a similar formula for orthogonal polynomials on the

real line (see e.g. [34]). In order to satisfy the normalization P̃
(L)
N (z) = zN + . . . we define

P̃
(L)
N (z) ≡

〈

det[z − J ]
∏L

i=1

(

det[vi − J ] det[v̄i − J†]
)

〉

N
〈

∏L
i=1 (det[vi − J ] det[v̄i − J†])

〉

N

. (3.3)

Let us give an example for L = 1:

P̃
(1)
N (z) =

κN+1(z, v̄)P̃N+1(v) − κN+1(v, v̄)P̃N+1(z)

(v − z) κN+1(v, v̄)
, (3.4)

where we have used the bare kernel κN+1(v, ū) eq. (2.13) and the superscript (L = 0) has been
dropped. We can also calculate the norm of the polynomial given by

h
(1)
N = hN+1

κN+2(v, v̄)

κN+1(v, v̄)
, (3.5)

and we obtain for the orthonormal polynomials

P
(1)
N (z) =

κN+1(z, v̄)PN+1(v) − κN+1(v, v̄)PN+1(z)

(v − z)
√

κN+1(v, v̄)κN+2(v, v̄)
. (3.6)

We have not been able to prove a similar expression for the orthonormal polynomials at general L.

We expect to obtain the following result for the norm of P̃
(L)
N (z):

h
(L)
N = hN+L

deti,j=1,...,L[κN+L+1(vi, v̄j)]

deti,j=1,...,L[κN+L(vi, v̄j)
, (3.7)

which we have checked for L = 1, 2, 3, 4, 5. This would give us P
(L)
N (z) in a form very similar to [35].

After having determined the orthogonal polynomials for weight functions w(L)(J, J†) we can use
them to obtain the respective kernel as defined in eq (2.13):

K
(L)
N (z, ū) = [w(L)(z, z̄)w(L)(u, ū)]

1

2

N−1
∑

i=0

P
(L)
i (z)P

(L)
i (u) . (3.8)
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While we have an explicit expression for L = 1 in eq. (3.6) we would still have to calculate the norms

h
(L)
N of the polynomials P̃

(L)
N (z) which are of the conjectured form eq. (3.7). However, we can also

directly read off the kernel from the Theorem (2.11). It is known that not only the polynomials have
a matrix representation as in eq. (3.3) but also the kernel itself. Choosing the same weight eq. (3.2)
one has to insert two more determinants instead of only one as for the polynomials:

K
(L)
N (z, ū) = [w(L)(z, z̄)w(L)(u, ū)]

1

2

〈

det[z − J ] det[ū − J†]
∏L

i=1

(

det[vi − J ] det[v̄i − J†]
)

〉

N−1

hN

〈

∏L
i=1 (det[vi − J ] det[v̄i − J†])

〉

N

.

(3.9)
This can be shown along the same lines as in [36] where the same statement was made for hermitian
matrices. Note the different matrix size of the expectation value for numerator and denominator. We
also give the example with L = 1 explicitly as it follows from eq. (2.11):

K
(1)
N (z, ū) = [w(1)(z, z̄)w(1)(u, ū)]

1

2

∣

∣

∣

∣

κN+1(z, ū) κN+1(z, v̄)
κN+1(v, ū) κN+1(v, v̄)

∣

∣

∣

∣

(v − z)(v̄ − ū) κN+1(v, v̄)
. (3.10)

While eqs. (3.8) and (3.9) are equivalent by definition, for general L it is easy to see that already for
L = 1 this yields a highly nontrivial identity, comparing eq. (3.10) and eq. (3.8) with the polynomials
eq. (3.6) inserted. From a practical point of view the second form eq. (3.9) which can be directly
deduced from the Theorem (2.11) is much more convenient as it is only a ratio of two determinants.
Compared to this in eq. (3.8) we have to perform a sum over ratios of determinants of growing size.

Usually the aim of calculating orthogonal polynomials and their kernel is to evaluate correlation
functions of eigenvalues defined as

R
(L)
N (z1, . . . , zk) ≡ 1

ZN

N !

(N − k)!

∫

D

N
∏

l=k+1

d2zl

N
∏

i=1

w(L)(zi, z̄i) |∆N (z)|2 . (3.11)

Using standard orthogonal polynomials techniques [33] they are given by

R
(L)
N (z1, . . . , zk) = det

i,j=1,...,k

[

K
(L)
N (zi, z̄j)

]

. (3.12)

Therefore from eq. (3.9) we can immediately read off all k-point correlation functions. They are given

by a k × k determinant of the kernel K
(L)
N (zi, z̄j) which is itself again a ratio of determinants of size

(L+1)×(L+1) over L×L. There is an even more compact expression for the k-point functions which
has been introduced in [30]. It uses the fact that the correlation functions with weight w(L)(J, J†)
from eq. (3.2) can be entirely expressed in terms of higher n-point correlation functions with weight
w(J, J†) at L = 0 5:

R
(L)
N (z1, . . . , zk) =

R
(0)
N+L(z1, . . . , zk, v1, . . . , vL)

R
(0)
N+L(v1, . . . , vL)

. (3.13)

This result reduces the k-point correlation function to a single ratio of determinants of size (k + L)×
(k + L) over L × L. While for the 1-point function R

(L)
N (z) = K

(L)
N (z, z̄) it is easy to see that eq.

(3.13) and eq. (3.12) together with eq. (3.9) agree perfectly, for higher (k > 2)-point functions their
equivalence requires highly nontrivial identities among determinants. The fact that several different
(but equivalent) determinant formulations exist, depending on the way they are derived, is a common
phenomenon also for correlations functions of hermitian matrices. In some cases their equivalence can
be directly shown [37] (see also [38]).

5Note the typo in the index of the denominator in eq. (2.12) of ref. [30].
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4 Explicit results for finite-N

In the first subsection we will give some explicit examples for weight functions and their corresponding
orthogonal polynomials and kernel at finite-N . These are the objects that then have to be inserted into
Theorem eq. (2.11). In particular our second example will be studied also in Section 5, when taking
the large-N limit. In the second subsection we derive a finite-N duality relation between characteristic
polynomials of different matrix size.

4.1 Examples for orthogonal polynomials in the complex plane

We start with the Ginibre ensemble where the weight function is defined on the full complex plane
D = C as

wG(J, J†) ≡ 1

π
exp[−trJJ†] =

1

π

N
∏

i=1

exp[−ziz̄i] . (4.1)

As one can easily convince oneself the orthogonal polynomials are monic powers,

P̃j(z) = zj , hj = j! . (4.2)

We thus have from the orthonormal polynomials Pj(z) = zj(j!)−
1

2 a simple expression for the kernel

κN (v, ū) =

N−1
∑

i=0

(vū)i

i !
= exp[vū]

Γ(N, vū)

Γ(N)
, (4.3)

where Γ(a, z) =
∫∞
z dt ta−1e−t is the incomplete gamma function. As a consequence of the results

in Section 3 we can also immediately read off explicitly the polynomials for the weight function

w
(L)
G (z, z̄) =

∏L
i=1 det[(vi − z)(v̄i − z̄)] exp[−zz̄] from eq. (3.3). For L = 1 they are given by:

P̃
(1)
N (z) =

vN+1
∑N

i=0
(zv̄)i

hi
− zN+1

∑N
i=0

(vv̄)i

hi

(v − z)
∑N

i=0
(vv̄)i

hi

= vN
N
∑

j=0

(z

v

)j κj+1(v, v̄)

κN+1(v, v̄)
. (4.4)

Note that eq. (4.4) holds for any hi, and not just for hi = i!. Moreover note that we started from
polynomials for L = 0 with real coefficients eq. (4.2) while those of the new polynomials with L = 1
are now complex. This example shows a remarkable fact. It is well-known that when D is a real
interval there is a correspondence between the distribution of the eigenvalues and the distribution of
the zeros of the orthogonal polynomials. However in the complex plane such a correspondence breaks
down. For instance, eq. (4.2) shows that all the zeros are at the origin z = 0, whereas the spectral
density spreads into the full complex plane.

The following example is for the weight

wH(J, J†) ≡ exp

[

− 1

1 − τ2
tr
(

JJ† − τ

2
(J2 + J† 2)

)

]

, τ ∈ [0, 1] , (4.5)

which is again defined on D = C. Here the complex matrix is parameterized as J ≡ H + iA
√

1−τ
1+τ

and H and A are hermitian matrices with equal Gaussian weight. The parameter τ measures the
degree of non-hermiticity, a concept which was introduced in [40]. In particular this allows to take
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the hermitian limit by sending τ → 1. In this limit limτ→1 wH(J, J†) ∼ δ(ℑmJ) exp[−tr(ℜeJ)2]. This
possibility makes the difference between the complex matrix model and two-matrix models particularly
transparent. In the former we have introduced polynomials of a complex variable Pj(z) as well as their
complex conjugate. While we can smoothly take the limit of z becoming real here, this is not possible in
the two-matrix model solved by the method of bi-orthogonal polynomials. The orthogonal polynomials
for the weight in eq. (4.6) can be shown to be Hermite polynomials [39],

P̃j(z) =
(τ

2

)
j

2

Hj

(

z√
2τ

)

, hj = πj!
√

1 − τ2 . (4.6)

Using that the Hermite polynomials have real coefficients their kernel is given by

κN (z, ū) =
1

π
√

1 − τ2

N−1
∑

j=0

1

j!

(τ

2

)j
Hj

(

z√
2τ

)

Hj

(

ū√
2τ

)

. (4.7)

An other example is for a bounded domain D in the complex plane, namely the disk Dr = {z ∈ C :
|z| < r} or the circle Cr = {z ∈ C : |z| = r}. In both cases the orthogonal polynomials with respect
to the flat measure w(z, z̄) = 1 are again given by monic powers but with different normalization
coefficients,

P̃j(z) = zj , hj =
π

j + 1
r2j+2 , in Dr , (4.8)

P̃j(z) = zj , hj = 2π r2j+1 , in Cr , (4.9)

and the bare kernels read

κN (v, ū) =
1

πr2

N−1
∑

j=0

(j + 1)
(vū

r2

)j

=
1

πr2

1 − aN (1 + N − aN)

(1 − a)2
, in Dr ,

κN (v, ū) =
1

2πr

N−1
∑

j=0

(vū

r2

)j

=
1

2πr

1 − aN

(1 − a)
, in Cr , a =

vū

r2
. (4.10)

Actually, all domains and weight functions in the complex plane which are invariant under the rotation
z → eiθz,∀θ ∈ [0, 2π] (i.e. they are function only of the radial coordinate ρ = |z|), give orthogonal
polynomials which are monic powers, i.e. P̃j(z) = zj with normalization coefficients given by

hj = 2π

∫ r

0
dρ ρ2j+1 w(ρ, ρ) . (4.11)

The Gaussian case wG(z, z̄) we considered above belongs to this class, and therefore the same argu-
ments apply here. In particular, eq. (4.4) holds exactly for all the elements of this class, since it is
independent of the particular expression for hj .

A more interesting case is for a bounded domain D which is not rotationally invariant, e.g. the
ellipse

Dell
r = {z ∈ C : |z| <

1

2
(reiθ + c2r−1e−iθ), ∀θ ∈ [0, 2π]} , r ≥ c ≥ 0 (4.12)

or its boundary Cell
r = ∂Dell

r . The shape of the ellipse is parameterized by two parameters, r and the
semi-focal length c. Obviously the semi-minor/major axis lengths are equal to r − c2r−1, r + c2r−1,
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respectively. It is easy to see that in this case the monic orthogonal polynomials with respect to a flat
measure w(z, z̄) = 1, are given by the Chebyshev polynomials of the second kind:

P̃j(z) =
( c

2

)j
Uj

(z

c

)

, hj =
π

22j+2(j + 1)

(

r2j+2 −
(

c2

r

)2j+2
)

. (4.13)

It is easy to check that eq. (4.13) reduces to eq. (4.8) in the limit c → 0. The kernel reads:

κN (v, ū) =
4

π

N−1
∑

j=0

c2j(j + 1)

r2j+2 − (c2r−1)2j+2
Uj

(v

c

)

Uj

( ū

c

)

. (4.14)

The final example we want to give are the generalized Laguerre polynomials in the complex plane
as recently introduced in [29]. For this chiral complex eigenvalue model no matrix representation is
known so far and we have to slightly modify our definitions (2.4) and (2.8). The partition function is
given by

Zch
N ≡

∫

D

N
∏

i=1

(

d2zi wch(zi, z̄i)
) ∣

∣∆N (z2)
∣

∣

2
, (4.15)

with D being the full complex plane and a weight

wch(z, z̄) ≡ |z|2a+1 exp

[

− 1

1 − τ2

(

|z|2 − τ

2
(z2 + z̄2)

)

]

, a > −1

2
∈ R . (4.16)

We could also allow for more general weight functions and domain D, the crucial point for the model
to be chiral being the squared argument inside the Vandermonde determinant. The orthogonal poly-
nomials are then necessarily polynomials in z2:

hkδkl =

∫

D
d2z w(z, z̄)P̃ ch

k (z2)P̃ ch
l (z2) . (4.17)

The characteristic polynomials consequently have to be defined in terms of the eigenvalues
〈

N
∏

i=1





K
∏

j=1

(v2
j − z2

i )
L
∏

l=1

(ū2
l − z̄2

i )





〉

N

. (4.18)

The whole proof of Theorem (2.11) goes through as before, replacing all arguments by their square
on the right hand side.

The finite-N orthogonal polynomials for our example eq. (4.16) are given by the generalized
Laguerre polynomials [31]

P̃ ch
k (z2) = (−1)k

Γ(a + 1)k!

Γ(a + k + 1)
La

k

(

z2

2τ

)

. (4.19)

Their norm can be calculated to be

hk =
fa(τ)Γ(a + 1)k!

τ2kΓ(a + k + 1)
,

fa(τ) =

∫

D
d2z wch(z, z̄) = π Γ

(

a +
3

2

)

(1 − τ2)
a
2
+ 3

4 Pa+ 1

2

(

1√
1 − τ2

)

, (4.20)

where Pa+ 1

2

(x) is the Legendre function. The bare kernel is thus reading

κN (z, ū) =
1

fa(τ)

N−1
∑

k=0

Γ(a + 1)k!

Γ(a + k + 1)
τ2kLa

k

(

z2

2τ

)

La
k

(

ū2

2τ

)

. (4.21)
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4.2 A duality relation

In this subsection we wish to prove a duality relation that relates products of characteristic polynomials
of different (finite) matrix size. This generalizes the relation found in [11, 12] to complex matrices.
The proof goes back to a relation between determinants of Hermite polynomials [11] which we will
use. Therefore our duality relation will only hold for the weight eq. (4.5) having Hermite polynomials
in the complex plane.

To begin with we consider Theorem eq. (2.11) at L = 0 where only polynomials and no kernels
appear. Next we take the limit of equal arguments vi = v, ∀i = 1, . . . ,K. We obtain

〈

det[v − J ]K
〉

N
=

1
∏K−1

j=1 j!
det

1≤l,m≤K
[ ∂(l−1)

v P̃N+m−1(v) ] . (4.22)

This looks exactly as for the hermitian matrix model (e.g. in [11]). Next we insert the orthonormalized
Hermite polynomials eq. (4.6) for the chosen weight eq. (4.5) and obtain

〈

det[v − J ]K
〉

N
=

1
∏K−1

j=1 j!

(√
2τ

2

)NK+K(K−1)/2 √
2τ

−K(K−1)/2
det

1≤l,m≤K

[

H
(l−1)
N+m−1

(

v√
2τ

)]

=
1

∏K−1
j=1 j!

(√
2τ

2

)NK
(−1

2

)K(K−1)/2

det
1≤l,m≤K

[

HN+m+l−2

(

v√
2τ

)]

. (4.23)

In the first step we have taken out all factors of the determinant stemming from the monic normal-

ization and the differentiation, where H
(l−1)
N+m−1(v/

√
2τ ) denotes the derivative with respect to the full

argument v/
√

2τ . In the second step we have used the following relation for the Hermite polynomials,

H ′
N (x) = 2xHN (x) − HN+1(x) , (4.24)

which holds algebraically for any x being real or complex. We have thus shifted the derivative into
the index of the polynomials, taking out all signs. We can now use the following relation among
determinants of Hermite polynomials as being shown in [11]6

det1≤l,m≤K [ HN+m+l−2(x) ]

(−2)K(K−1)/2
∏K−1

j=1 j!
= (−i)KN det1≤l,m≤N [ HK+m+l−2(ix) ]

(−2)N(N−1)/2
∏N−1

j=1 j!
. (4.25)

This relation was proved in [11] for real x only. However, the relation is purely algebraic as it relates
two polynomials after multiplying out the two determinants. We can therefore also allow for x to be
complex, in particular x = v/

√
2τ . Note also the factor of i in the argument on the right hand side.

Replacing the determinant of size K × K in eq. (4.23) by a determinant of size N × N with the
help of eq. (4.25), we arrive at the following remarkable identity:

〈

det[ v − J ]K
〉

N
= (−i)KN

〈

det[ iv − J ]N
〉

K
, (4.26)

interchanging the power of the product with the matrix size. It is identical to the corresponding
equation in [11] replacing the complex matrix J and argument v by the respective hermitian matrix H
and real argument x. The normalization in eq. (4.26) can be easily checked taking the limit v → ∞.
Another peculiar case is N = K at v = 0. Still, the duality relation is satisfied as both expectation
values which are now equal vanish for odd N = K due to symmetry.

6In [11] this relation was shown for the determinant of Cn(x) ≡ 2−nHn(x), but the factors of 2 can be easily taken
out. We further note a typo in eq. (3.16) there.
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The relation eq. (4.26) trivially extends to the Ginibre ensemble eq. (4.1), which can be obtained
by taking τ → 0 on the Hermite polynomials eq. (4.6). It is because in the Ginibre case all expectation
values of powers of J vanish. The same argument applies for all weights with spherical symmetry and
monomials as orthogonal polynomials, as in eqs. (4.8) and (4.9). We suspect that the duality also
holds for other weight functions.

5 The microscopic large-N limit and universality

The explicit examples given in the last Section are a good starting point for the analysis of the
asymptotic large-N limit. To this aim we first rescale the complex eigenvalues by zi →

√
N zi in

order to have N explicitly in the exponent of the weight functions eqs. (4.5) or (4.16), to which we
will restrict in this Section. Then we focus on the microscopic large-N limit where the correlations of
eigenvalues at small distance O(|zi − zj |) ≪ 1 are considered. For spectral correlators at a distance of
O(1) (the so-called macroscopic limit) we refer to [22, 26].

Furthermore, one has to distinguish two different ways of taking the microscopic N → ∞ limit
[40]. Starting from a general weight such as in eq. (2.6) or simply from the Ginibre ensemble eq. (4.1)
we will always end up in a regime which is called strong non-hermiticity. Introducing an additional
parameter τ ∈ [0, 1] as in eq. (4.5) will allow us to reach also the regime of weak non-hermiticity,
when taking simultaneously N → ∞ and (1 − τ) → 0 while keeping the product fixed. The latter
limit introduced in [40] permits to smoothly interpolate between correlations of real eigenvalues on
one hand and complex eigenvalues in the strong non-hermiticity limit on the other hand.

Let us begin with the weak non-hermiticity limit. Here we focus on a weight function of the form
of eq. (2.6), which is in terms of eigenvalues

w(z, z̄) ≡ exp

[

−N

(

1

1 − τ2

(

|z|2 − τ

2
(z2 + z̄2)

)

+
1

2

d
∑

k=2

g2k

2k
(z2k + z̄2k)

)]

, (5.1)

which generalizes the weight eq. (4.5)7. Here the g2k ∈ R are real coupling constants and τ ∈ [0, 1]
measures the degree of non-hermiticity as explained after eq. (4.5). The weak non-hermiticity limit
is defined by taking [40]

lim
N→∞

τ→1

N(1 − τ2) ≡ α2 (5.2)

to be constant. At the same time we rescale the complex eigenvalues according to

Nz = N(ℜez + iℑmz) ≡ ξ , (5.3)

which is the microscopic limit at the origin since z → 0 while N → ∞. It is important to note
that the scaling is done with the same power of N as for real eigenvalues, in contrast to the strong
non-hermiticity limit (see eq. (5.10) below). This has important consequences on the asymptotic limit
of the orthogonal polynomials as well.

We will now give the asymptotic results for the orthonormal polynomials of eq. (5.1) and their
kernel as they were derived in [31]:

lim
n,N→∞

τ→1

Pn

(

z =
ξ

N

)

=
[√

2Nu(t)′α−1π− 3

2

]
1

2

e−
α2

4
u(t)2

{

cos(u(t)ξ) n even
sin(u(t)ξ) n odd

, t =
n

N
. (5.4)

7Strictly speaking the integral over the weight function eq. (5.1) cannot be made convergent for any choice of signs of
the coupling constants g2k. Consequently one would either have to restrict the domain D to be compact or to introduce
a small term ∼ ǫ|z|2d+2 to achieve convergence. However, in the weakly non-hermitian large-N limit the support of the
eigenvalues does not only become compact but also gets projected onto the real line. The correlators depend on complex
variables only microscopically. For that reason we ignore the aforementioned technical subtleties.
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In [31] the full kernel eq. (2.13) including the weights was given. Using the fact that the asymptotic
limit of the weight function reads

w(z, z̄) → exp

[

− 2

α2
(ℑmz)2

]

, (5.5)

we obtain for κN (z1, z̄2) appearing in Theorem (2.11)

lim
N→∞

1

N2
κN

(

z1 =
ξ1

N
, z̄2 =

ξ̄2

N

)

=
2

απ

∫ πρ1(0)

0

du√
2π

e−
α2

2
u2

cos
[

u(ξ1 − ξ̄2)
]

. (5.6)

Here we have introduced the spectral density of real eigenvalues ρt(x) corresponding to the hermitian
limit of the potential in eq. (5.1):

ρt(x) ≡ 1

2π

m
∑

j=1

g2j

t

j−1
∑

k=0

(

2k

k

)

r(t)kx2(j−k−1)
√

4r(t) − x2 , (5.7)

1 =
1

2

m
∑

k=1

g2k

t

(

2k

k

)

r(t)k .

The function u(t) in eq. (5.4) is related to the spectral density by

πtρt(0) ≡ u(t) , (5.8)

Finally the asymptotic of the norm of the polynomials is:

hN →
√

u′(t)

α
. (5.9)

The remaining N -dependence of the norm hN ∼ N ! in the prefactors of eq. (2.11) has to be canceled
by a suitable normalization. Inside the determinant it is needed when passing from the monic to the
orthonormal polynomials to make the asymptotic limit of the latter well defined. To summarize we
have determined the weakly non-hermitian large-N limit of the characteristic polynomials as stated
in Theorem eq. (2.11), when inserting eqs. (5.4), (5.6) and (5.9). Hence it is also universal.

In [40] the weak non-hermiticity limit away from the origin was also analyzed, for the Gaussian
weight of eq. (4.5). The corresponding kernel is exactly of the same form of eq. (5.6), with replacing
πρ1(0) →

√

1 − X2/4 which is the Wigner semicircle density at the point of investigation X ∈ R.
While the norms hN still behave as in eq. (5.9) with u(t) =

√
2t the asymptotic polynomials will

acquire an additional oscillating phase ∼ cos(
√

2t(ξ + NX)) as we now microscopically rescale the
deviation from point X: z = X + ξ/N , with z, ξ ∈ C. In other words their asymptotic limit does no
longer exist. Therefore only for K = L a smooth limit is found at weak non-hermiticity away from
the origin (a similar situation is found below at strong non-hermiticity). Furthermore the question of
universality away from the origin remains open.

We now turn to the microscopic limit at strong non-hermiticity where we keep τ ∈ [0, 1) fixed
while N → ∞. The microscopic origin scaling limit is defined here by letting z → 0 and N → ∞
keeping √

N z =
√

N(ℜez + iℑmz) ≡ ξ , (5.10)

constant. The reason for the different scaling is that now the eigenvalues will become dense on a
compact domain which truly extends into the complex plane. This has an immediate consequence
as the asymptotic large-N of the orthogonal polynomials no longer exists. This can be seen in the
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simplest example of the Ginibre ensemble eq. (4.1) or of the bounded domains eq. (4.8), (4.9). The
polynomials PN (z) = zN/N ! from eq. (4.2) will certainly no longer have a smooth large-N expansion.
The same problem occurs for the Hermite polynomials in the complex plane. Expanding for example

the even powers, H2j(z
√

N
2τ ) ∼ cos[

√
4j + 1 z

√

N
2τ ] it can be seen that while the weak scaling limit

eq. (5.3) is smooth (keeping j/N = t fixed) the strong limit from eq. (5.10) does not exist. While on
the real line the existence of an asymptotic expansion of the polynomials and the kernel are directly
related through the Christoffel-Darboux formula eq. (2.18) this is no longer the case here, since such
a relation does not hold in general in the complex plane. However the asymptotic limit of the kernel
eq. (4.3) still exist and it is given by the exponential function being smooth. The result for the weight
in eq. (4.5) reads after splitting of the weight factors [40]:

lim
N→∞

1

N
κN

(

z1 =
ξ1√
N

, z̄2 =
ξ̄2√
N

)

=
1

π(1 − τ2)
exp

[

1

(1 − τ2)

(

ξ1ξ̄2 −
τ

2
(ξ2

1 + ξ̄2
2)
)

]

. (5.11)

For τ → 0 we recover the exponential Ginibre kernel [25]. Taking into account the rescaled norms
hN ∼

√
1 − τ2 we can read off the asymptotic strongly non-hermitian large-N limit of our characteristic

polynomials eq. (2.11) for K = L. The question of universality of eq. (5.11) for more general weight
functions remains an open question. This has to be compared with the situation in the macroscopic
large-N limit. There, it has been recently shown that the two-point resolvent is universal but the
three- and four-point function are not [22].

The same analysis for the microscopic large-N limit at weak and strong non-hermiticity can be done
for the chiral ensemble of complex eigenvalues introduced in eqs. (4.15) and (4.16). The asymptotic
expressions for the norms, polynomials and kernel in the weak limit, and the norms and kernel in
the strong limit have already been explicitly given in [31] and we will not repeat them here. We
find the same phenomenon as above that only the case K = L at strong non-hermiticity makes sense
asymptotically. At weak non-hermiticity there are no such restrictions. The issue of universality for
the chiral ensemble remains an open problem.

We finish this Section with a remark: in the mathematical literature the large-N macroscopic limit
of our kernel KN (v, ū) is known as Bergman kernel function or Szegö kernel function, according to
the case where the weight function is defined on a domain in the complex plane or on its boundary.
Both these kernels are objects of fundamental importance in the theory of conformal mapping [32].

6 The BMN large-N limit

In this Section we apply the results of Sections 3 and 4 to the study of objects like 〈trJKtrJ†K〉N
in the limit where both N and K become large. Such quantities have become of interest in the
correspondence between pp-wave strings and supersymmetric Yang-Mills theory [23]. In this case the
expectation values are evaluated with respect to the weight of the Ginibre ensemble eq. (4.1). It has
been found that besides the usual (macroscopic) large-N limit, one can consider also K,N → ∞ such

that K2

N is finite. This limit is called BMN limit after [24]. In a sense in this limit the expectation
value becomes part of the matrix model action and the weight is no longer truly Gaussian as in eq.
(4.1). It would be very interesting to study more general insertions to the matrix model action and
to see if such models permit a large-N BMN limit. In this Section we will study the weight eq. (4.5)
for the Hermite polynomials as an example.

It is convenient to introduce products of resolvent operators such as

W (z, ū) ≡
〈

tr
1

z − J
tr

1

ū − J†

〉

=
1

zū

∞
∑

l,m=0

1

zl ūm

〈

trJ l trJ†m
〉

, (6.1)
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in order to generate expectation values of product of traces of powers of matrices. However, at finite-N
only few closed formulas for a small number of traces are known so far, such as [23]

〈

trJ ltrJ†m
〉

= δlm

(

Γ(N + l + 1)

Γ(N)
− Γ(N + 1)

Γ(N − l)

)

, (6.2)

for the Ginibre weight eq. (4.1). More general multi-point resolvents are known only in the asymptotic
large-N limit so far [26].

The products of characteristic polynomials we have calculated in eq. (2.11) are generating functions
that may be used to extract information about the spectrum. In fact they generate all the elementary
symmetric functions cr of the eigenvalues:

det[v + J ] = vN
N
∑

r=0

crv
−r ,

cr ≡
N
∑

i1<...<ir

zi1 · · · zir , r = 1, . . . , N . (6.3)

Similarly we have det[ū+J†] = ūN
∑N

r=0 c̄rū
−r for the hermitian conjugate. The elementary symmetric

functions cr can be expressed by the power sums

pr ≡
N
∑

i=1

zr
i = trJr , r = 1, . . . , N . (6.4)

Namely, the two sets are related by

cr =
1

r!
det

1≤i,j,≤r
[Sij ] , Sij =







pj−i+1 if j ≥ i
j if j = i − 1
0 if j < i

. (6.5)

As a first example we can apply the Theorem eq. (2.11) for K = L using the finite-N result eq.
(4.3) for the Gaussian weight:

〈det[v − J ] det[ū − J†]〉N = hNκN+1(v, ū) = N !
N
∑

j=0

1

j!
(vū)j

=

N
∑

l,m=0

〈cl c̄m〉N (−v)N−l(−ū)N−m . (6.6)

Comparing coefficients we obtain

〈cl c̄m〉N = δlm
N !

(N − l)!
. (6.7)

In the large-N limit it yields

〈cl c̄l〉N = N l

(

1 − l(l − 1)

2N
+

1

12

(

l

2

)

(

3(l − 1)2 − l − 1
) 1

N2
+ . . .

)

= N l

(

1 +

∞
∑

h=1

ah
l2h

Nh
+ . . .

)

, (6.8)
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and consequently an expansion in l2/N exists. We note that the expansion goes in powers of 1
N

instead of the usual genus expansion in powers of 1
N2 . This is due to the fact that eq. (6.7) contains

expectation values of all combinations 〈pi1 · · · pir p̄j1 · · · p̄jr〉N with
∑r

s=1 is =
∑r

s=1 js = r. So far
such expectation values were not known explicitly for finite-N in a closed form. If we could manage
to disentangle all expectation values of pr and p̄r alone, the individual terms would all have a genus
expansion in 1

N2 , with different prefactors in N however. The fact that the BMN limit of eq. (6.7)
exists is quite remarkable. This holds for the Ginibre ensemble. We wish to mention however, that
for a more general weight function the expansion is generically in powers of 1

N . For example the next
to leading order of the free energy in 1

N can be calculated [22].
The difficulty to extract formulas like eq. (6.2) from eq. (6.7) is that each elementary symmetric

functions cr depends on all lower powers p1, . . . , pr through the determinant in eq. (6.5). The fact
that the cr can be constructed recursively, ncn =

∑n
r=1(−1)r−1prcn−r, is also not enough to extract

each single term. We have therefore not been able to derive new finite-N expectation values of traces
alone, that would generalize eq. (6.2). However, we have explicitly checked in few cases that eq. (6.7)
leads to eq. (6.2).

We will now address the question whether the existence of the BMN limit is a generic property of
complex matrix models or if it is specific to the Ginibre ensemble. Therefore we look at the ensemble
with weight eq. (4.5) of Hermite polynomials. In this model single powers of traces 〈trJ l〉 do not
vanish any longer for τ 6= 0. The simplest nontrivial characteristic polynomial is given by

〈det[v − J ]〉N = P̃N (v) =
(τ

2

)N
2

HN

(

v√
2τ

)

, (6.9)

where we have used eq. (4.6). In order to read off the coefficients from eq. (6.3) by expanding the
right hand side we distinguish between even and odd N . For N = 2n we obtain

〈det[v − J ]〉2n =
n
∑

l=0

〈 c2n−2l〉2n (−v)2l

=
n
∑

l=0

(−1)n+l(2τ)n−l

(

n

l

)

Γ(n + 1
2 )

Γ(l + 1
2)

v2l , (6.10)

where we have used the fact that our weight is even. Repeating the same analysis for N = 2n + 1 and
using an identity for the Gamma function we arrive at

〈 c2l 〉N =
(

−τ

2

)l N !

l!(N − 2l)!
, 〈 c2l+1 〉N = 0 , (6.11)

which holds for any N . Looking at eq. (6.7) we can see that again the limit l,N → ∞ with l2/N fixed
exists. Such a large-N limit thus seems to be a generic property of complex matrix models. We note
however, that the expectation value eq. (6.11) has to be properly normalized since both τ l and 1/l!
vanish for 0 < τ < 1 at large-l.

7 Conclusions

We have studied products of characteristic polynomials of complex matrices and their hermitian con-
jugate. For hermitian matrix models several equivalent determinant formulas hold for characteristic
polynomials. They contain orthogonal polynomials and their kernel, which are related through the
Christoffel-Darboux formula. For complex matrices this is no longer the case. The number of charac-
teristic polynomials and their conjugate completely fixes the result which in general is a determinant
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of both the orthogonal polynomials in the complex plane and their respective kernel. If we only con-
sider characteristic polynomials of complex matrices without their conjugate our result reduces to a
determinant over polynomials only, which is identical to the result of the hermitian matrix model.
This does not come as a surprise since our proof only uses the existence of orthogonal polynomials
in the complex plane and holds despite of the breakdown of the three-step recursion relation and the
Christoffel-Darboux identity.

Next we gave an interpretation of our results in terms of orthogonal polynomials in the complex
plane, with weights including determinants, and their corresponding kernels. We have provided explicit
examples for complex polynomials at finite-N such as Hermite, Laguerre or Chebyshev polynomials
in the complex plane. From them we have constructed orthogonal polynomials for a class of more
general weights.

At finite-N we proved a duality relation for the weight with Hermite polynomials in the complex
plane. It relates expectation values of different powers of characteristic polynomials with respect to a
different matrix size, generalizing a known duality for the Gaussian Hermitian matrix model.

We have also studied the microscopic large-N limit of characteristic polynomials when the argu-
ments are rescaled with the matrix size N . In the weak non-hermiticity limit all products of char-
acteristic polynomials are universal for a large class of weight functions. The strongly non-hermitian
large-N limit is smooth only for products with an equal number of characteristic polynomials and their
hermitian conjugate. This is again a peculiar implication of the breakdown of the Christoffel-Darboux
identity. Although in general the orthogonal polynomials do no longer have a smooth asymptotic
limit, their kernel still can and does have a smooth limit. The issue of universality of the large-N
kernel at strong non-hermiticity remains open at present.

Furthermore we have argued that the existence of the BMN large-N limit is a generic phenomenon
for complex matrix models. In using the fact that characteristic polynomials generate the elementary
symmetric functions we have shown that for quite general expectation values such a limit exists. In
principle from our finite-N results one can compute iteratively expectation values of single powers of
traces alone. However it would be more useful to find a closed expression for that, if any.

It would be also very interesting to extend our analysis to include negative powers of moments in
the expectation values. We suspect that a result similar to that of hermitian matrices holds, where
the Cauchy transformation of the orthogonal polynomials occurs. This would provide us with an
alternative way to evaluate complex eigenvalue correlations at finite-N and infinite-N .
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