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Transmission Congestion Management by Optimal 

Placement of FACTS Devices 

Mahbube Zeraatzade 

Abstract 

This thesis describes the implementation of the Flexible AC Transmission Systems 

(FACTS) devices to develop a market-based approach to the problem of transmission 

congestion management in a Balancing Market. The causes, remedies and pricing 

methods of transmission congestion are briefly reviewed. 

Balancing Market exists in markets in which most of the trading is done via 

decentralized bilateral contracts. In these markets only final adjustments necessary to 

ensure secure system operation is carried out at a centralized Balancing Market. Each 

market player can participate in the Balancing Market by submitting offers and bids to 

increase and decrease its initially submitted active generation output. In this research a 

method is proposed to reduce costs associated with congestion re-dispatch in a 

Balancing Market by optimal placement of FACTS devices, and in particular Thyristor 

Controlled Phase Shifter Transformers (TCPST). 

The proposed technique is applicable to both Mixed Integer Linear Programming 

(MILP) and Mixed Integer Non-Linear Programming (MINLP). In the MILP a power 

system network is represented by a simplified DC power flow under a MILP structure 

and the Market participants' offers and bids are also represented by linear models. 

Results show that applications of FACTS devices can significantly reduce costs of 

congestion re-dispatch. The application of the method based on the MINLP creates a 

nonlinear and non-convex AC OPF problem that might be trapped in local sub-optima 

solutions. The reliability of the solution that determines the optimal placement of 

FACTS devices is an important issue and is carried out by investigation of alternative 

solvers. The behavior of the MINLP solvers is presented and finally the best solvers for 

this particular optimization problem are introduced. 

The application of DC OPF is very common in industry. The accuracy of the DC OPF 

results is investigated and a comparison between the DC and AC OPF is presented.  
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Chapter 1. Introduction 

 

1.1 Background to the research 

During the last three decades, the old monopoly electricity structures are replaced with 

deregulated electricity structures open to the competition. Different forces have driven 

the evolution of power industry from monopoly to the competition in the wholesale 

generation market and the retail market together with the open access to the 

transmission network. These forces can be categorized as technical [1], economical [2] 

and political [3] motivations. 

 

1.1.1 Technical motivations 

Although the technological development of high voltage networks during the 1960s and 

1970s was a great achievement that made possible transmission of bulk power over 

long distances, a necessary condition in order the power market to be opened to 

producers that are located far from the main customers, the electricity industry still 

remained a monopoly for the next twenty years.  

Power generation technology was another technical factor, which has given a stronger 

impulse towards the deregulation. In 1960s and 1970s, the thermal power plant units 

had a typical size between 600 and 1000 MW and an average construction time 

between four and five years. This time for nuclear power plant was doubled. Because of 

this reason and also the investment size, only a monopolist utility could make the 

decisions of generation expansion and also act as protection against investment errors, 

which could have dramatic consequences. The development of gas power plants, and 

especially of combined circle gas turbines, reduced the size of power production unit up 
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to 300 MW, the investment cost and the construction time. Hence, it is now possible 

the generation expansion decisions to be taken by smaller enterprises.  

Renewable resources are another mixed technical-ecological cause. The emerging of 

independent producers who operate, mostly, wind power units gives a further 

competitive character to the power industry despite the fact that such producers survive 

still due to the subsidies. 

The improvement of transmission and distribution technology is another reason. High-

efficiency transformers and ultra-high-voltage transmission lines (1,500KV or even 

higher) reduce the power losses between power plants and consumers, and FACTS 

devices provide a better control over the electrical features of the grid. With FACTS 

devices it is possible to control power flow through transmission lines, to regulate 

voltage, phase angle and line impedance. 

The development of new metering systems is absolutely necessary for an electricity 

market. The price of electricity varies with time in the market and metering must be 

time-dependent in order to bill the consumers the correct prices and also capable of 

reading the meter data from a distance radiographically, or by meter communicating 

with the supply company through the telecommunication or the power grid. 

Advances in Information Technology (IT) has a tremendous impact on the many 

aspects of electricity markets, such as bidding systems, billing systems, market 

information publishing systems, etc.  

 

1.1.2 Economical motivations 

In addition, a set of economical reasons was behind the electricity market reform. A 

well-operated competitive market can guarantee both cost minimization and average 

energy prices hold at a minimum level [2]. The second positive characteristic of a well-

designed competitive market is its ability to drive the prices towards the marginal costs. 

Another economical motivation was the privatization of the electricity industry to, 

firstly, free up public funds and makes them available to serve the national debt or other 

demands, and secondly, the governments of these countries can collect an essential 

amount from the sale of state owned utilities.  
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1.1.3 Political motivations 

Political factors are the third category of electricity industry restructures causes. In 

some countries privatization of the electric industry can attract funds from the private 

sector to relieve the burden of heavy government subsidies. In the countries formerly 

under centralized control, the process follows the general trend away from centralized 

government control and towards increased privatization and decentralization [3]. 

Among the political circles, the idea that the private companies apply more efficient 

practices than the public ones, in certain economic sectors, was getting more 

acceptance. Some organizations such as World Bank were another reason for the 

deregulation. They set as a requirement the opening of markets including the power 

sector in order to support financially a country. Consequently, the electricity industry of 

many countries financed by the World Bank opened to the competition. 

Transmission plays a key role in making the electricity market work. In a competitive 

market that all the parties have a free nondiscriminatory access to the transmission 

network, a considerable growth in the amount of transactions is inevitable. The 

existence of transmission bottlenecks is by far the most prevalent cause that will restrict 

the number of generators who can compete in any market [4]. Studies show that in 

markets in which a small number of generators compete, those supposed competitors 

can bid in a manner that keeps prices up [5]. Transmission constraints hinder distant 

generators from entering the high priced market and add to the market power of local 

generating incumbents. Congestion management is a crucial function of any system 

operator and is the process that ensures the security and reliability of market operation. 

Traditional mandatory dispatching actions (adjust fast-responded generators, curtail 

loads, etc.) are easy to implement and maybe still necessary in the worst situation, but 

they are not encouraged in a competitive electricity market as they are not transparent 

and may prevent the market from further development. With all the new technologies 

mentioned above, market-based approaches are needed urgently to cope with 

transmission congestion efficiently, economically, fairly, and transparently [6]. 

One of the technical motivations behind the regulation, as mentioned above, is the 

exponential growth of the microprocessor power, information storage capacity, the 

Internet and software systems. Historically, an explosive growth in the control center of 
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power system has occurred from 1960. Energy Management System (EMS), which is 

the main software system in this category, consists of four major elements [7]:  

 Supervisory Control and Data Acquisition (SCADA), including data 

acquisition, control, alarm processing, online topology processor, etc. 

 Generation scheduling and control applications, including Automatic 

Generation Control (AGC), Economic Dispatch (ED), Unit Commitment 

(UC), hydrothermal coordination, short term load forecast, interchange 

scheduling, etc. 

 Network analysis application, including topology processor, state 

estimator, power flow, contingency analysis, Optimal Power Flow 

(OPF), security enhancement, voltage and reactive power optimization, 

stability analysis, etc. 

 Dispatch Training Simulator (DTS), including the three stated 

components but in a separate off-line environment. 

In the electricity market some of these functions have to change to meet the new 

requirements. For example, some generation scheduling applications might be removed 

or redesigned to be more amenable to energy market trading applications while some 

other network analysis application, like OPF, should be extended to be able to perform 

new functions. Besides EMS, some new software subsystems will be needed in the ISO 

[8]. These new software subsystems are linked tightly with each other and must 

coordinate with the existing systems in the control room to support the implementation 

of electricity markets.  

The replacement of the low-speed control electronics by a new generation of control 

devices, the Flexible AC Transmission System (FACTS), is taking place as the control 

technology develops. It has brought series of opportunities and challenges to power 

engineers and researchers. Studies that investigate the deployment of FACTS must 

address the following questions: [9] 

 Which type of FACTS devices should be used? 

 How many should be used? 
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 What is their best allocation? 

 What should be their parameter settings? 

 What is their installation cost? 

There are different ways to class the FACTS devices [10]. According to the technology 

of the used semi- conductor they can be classified as:  

 Thyristor-based FACTS Controllers 

 IGBT-based FACTS Controllers 

The first group employs reactive impedances or a tap-changing transformer thyristor 

switches as controlled-elements in circuit arrangements which are similar to breaker-

switched capacitors and reactors and conventional (mechanical) tap-changing 

transformers, but have much faster response and are operated by sophisticated controls; 

the second group uses self-commutated static converters as controlled voltage sources 

[11]. The STATic synchronous COMpensator (STATCOM), the Static Synchronous 

Series Compensator (SSSC), the Unified Power Flow Controller (UPFC) and the 

Interline Power Flow Controller (IPFC) are in this category.  

According to the type of compensation the FACTS controllers may be classed in one of 

three categories: 

 series controllers such as TCSC (Thyristor Controlled Series Capacitor),          

TCPST (Thyristor-Controlled Phase Shifting Transformer) and SSSC (Static 

Synchronous Series Compensator) 

    shunt controllers such as SVC (Static Var Compensator) and STATCOM 

(Static Synchronous Compensator) 

    combined series-shunt controllers such as TCVR (Thyristor-Controlled Voltage 

Regulator) and UPFC (Unified Power Flow Controller) 

The choice of the appropriate device is important since it depends on the goals to be 

reached. TCSC and TCPST affect the line reactance and the angle of the voltage and 

can control the active power flow in the transmission line.  The SVC is used to absorb 

or inject reactive power while the TCVR is picked up to act on the difference between 
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the voltage magnitudes at the sending and receiving ends of the line. The UPFC can 

independently control real and reactive power by being integrated into a generalized 

power controller combining the functions of TCSC, TCPST and SVC. 

Different approaches and algorithms, as it will be stated in the literature review, are 

used to investigate the best location, parameter settings, the number and the installation 

cost of the FACTS devices. The necessity to investigate these issues stems from the 

fact that this is a useful but expensive technology, so its application has to be well 

planned and fully justified on technical and economic terms. In this research we will 

also look at the problem of how to place and use the FACTS devices optimally.  

 

1.2 Aims of the research 

The main aim of this research is to implement the Flexible AC Transmission Systems 

(FACTS) to develop a market-based approach to transmission congestion management 

with Optimal Power Flow (OPF) as a network analysis application.  

The scope of this work covers the real-time operation of the electricity market. The 

congestion problem should be managed in real-time because the bulk power 

transmission grid is highly dynamic and predicting constraints, well ahead of time, is 

therefore difficult. Further to the existence of the many congestion allocation methods 

dealing with different time scales, ranging from short-term scheduling up to long-term 

planning, a real-time congestion management is crucial to ensure the secure operation 

of the system.  

A method is proposed to make the generation re-dispatch in the real-time balancing 

market feasible and to minimize the associated re-dispatch costs by the optimal 

placement of TCPST devices and their settings. TCPST devices are chosen because the 

re-dispatch cost of reactive power generation, compared to active power generation is 

very small and, therefore, only active power is considered in the objective function. 

TCPST devices are capable of changing the phase angle of the line voltage in a way 

that affects the active power flow and generation re-dispatch costs by alleviating the 

congestion. This approach will be first carried out by a DC optimal power flow 

solution. This simplification has been common in the electricity industry to carry out 
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preliminary design studies. For more accurate further assessments we will develop the 

scope of our work to the area of AC OPF, which is a non-linear non-convex problem 

and in combination with integer decision variable, needs special software requirements 

in the modeling languages and solvers fields.  

Existing local optimum points in most of the optimization problems causes a degree of 

uncertainty about the achieved solutions. FACTS devices, in spite of being cost-

effective are expensive and the decision for their optimal placement needs a higher 

level of certainty. Therefore we will look at appropriate solver/solvers that are capable 

of producing the best solution for the FACTS devices locations and their settings. 

 

1.3 Literature review 

Models and applications of FACTS devices in power system operation have been often 

analyzed in recent years [11-14]. For example, in [13] Chaung et al propose a load-

equivalent model for TCSC, TCPST and UPFC for use in optimal active power flow 

and Varma in [14] provides an overview of the different FACTS controller 

configurations and their operating principles. FACTS devices applications to Economic 

Dispatch (ED) are presented in [15], while applications in Optimal Power Flow (OPF) 

studies are investigated in [16]. Under restructured operation of power systems, it 

became even more important to enhance Available Transmission Capacity (ATC) of 

transmission networks and avoid congestion. Since FACTS devices can affect line 

flows, they became prime candidates in attempts to resolve these difficulties. 

The steady state and dynamic models of these devices is subject of some studies such 

as references [17-19]. In [17], mathematical models of UPFC for steady state, transient 

stability and Eigen value studies is provided to investigate the impacts of control 

strategy, parameters and location of UPFC on power system operating conditions, and 

[18] demonstrates the effectiveness of TCSC in power swing damping by evaluating 

the simulation results of the static and dynamic performance of TCSC using the 

Electro-Magnetic Transient Program (EMTP) digital simulation in the power systems 

of China. In [19] Canizares presents a comparison between dynamic and steady state of 

SVC devices using three different optimization-based auction models namely, a 

standard stability-constrained OPF (SC-OPF), a voltage- stability-constrained OPF 
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(VSC-OPF) and the Stability-Constrained OPF (SSC-OPF). 

Generally, there were two approaches to problems of FACTS utilization. One is based 

on an assumption that location of FACTS devices is given, while the other looks into 

the issue of their optimal placement as well as settings.  

Some of the research carried out in the first category looked into coordination and 

influence of various FACTS devices or how to calculate their settings so as to minimize 

an objective function [20-39]. The second issue regarding optimal placement are 

investigated in references [40-57].  

 

1.3.1 Preselected Location/coordination  

 Galiana et al in [20] compare the impact of various FACTS devices on the behavior of 

power systems. Haugan et al in [21] examine the effects of TCSC and SVC devices on 

the transaction curtailment and TTC improvement issues by using two OPFs, And Xia 

in [22] formulates an optimal power-flow (OPF)-based Available Transmission 

Capacity (ATC) enhancement model to evaluate the influence of all categories of 

FACTS devices by the predictor-corrector primal-duel interior point linear 

programming (PCPDIPLP).  

Phichaisawat et al in [23] use Power Injection models (PIM) for unified, series and 

shunt controllers to deal with both active and reactive congestion management under 

pool and bilateral market models while the objective function of the modified ac OPF is 

to minimize operating cost. Shi et al in [24] deal with the congestion in a combined 

pool and bilateral market by re-dispatch method when FACTS devices are included in 

the network. The aim of their work is to reduce transmission loadings and each type of 

contracts has a weighting factor that can be viewed as the relative importance of the 

bilateral market to the pool market. 

The influences of FACTS devices are not confined to one bus or line. Therefore some 

authors work on the coordination of the FACTS devices [25, 26]. Chio and Moon in 

[25] determine the setting of TCSC devices to relieve the flow congestion by derivation 

line flow sensitivity to FACTS devices based on the DC flow model while Glanzman 

and Anderson in [26] derive a supervisory controller based on Optimal Power Flow 



Chapter 1. Introduction  

 9 

(OPF) with multiple objectives to avoid congestion, provide secure transmission and 

minimize active power losses.  

One way to find the best location of FACTS devices is to place them in various lines in 

turn. Rajderkar and Chandrakar in [27] place TCSC and SSSC devices in different lines 

to find the optimal locations and compares these two set of FACTS devices for 

congestion management under normal and abnormal system condition. In [28], 

Mwanza et al compute an index that gives an indication of the benefits by placement of 

FACTS in various lines in turn. The benefit-to-cost index for the investment in FACTS 

devices is calculated for each location of FACTS and the object is to minimize 

generation re-dispatch costs.  

Reddy et al in [29] use TCST and UPFC to maximize social welfare using Genetic 

algorithm. They represent another classification for congestion management 

methodologies [30-32]: cost free and non-cost free methods. Cost free means such as 

Out-aging of congested lines, operation of transformer taps/phase shifters and operation 

of FACTs devices particularly series devices, relieve the congestion technically and 

therefore generator and distribution companies doesn’t involve in the economical costs. 

In contrast with the first method, non-cost free methods are related with economics. Re-

dispatch of generation and curtailment of loads are among the later methods.  

The cost of FACTS devices such as IPFC, which is largely dependent on the capacities 

of its converters, is taken into account in [33] by defining an objective function with 

two goals as to minimize the total capacity of the converters of IPFC and also the total 

active power loss of the system. Zhang and Yokouama weighted each objective 

according to their importance and use Interline Power Flow (IPFC) devices for 

congestion management and solve the optimal power flow program by sequential 

quadratic programming. 

One of the goals of deregulation of electricity industry was providing cheaper energy 

for the consumers. Transmission line congestion has prevented achieving this objective 

by adding the congestion cost to consumer’s locational marginal cost. Haung and Yan 

in [34] studie a pricing scheme for FACTS devices in congestion management, which 

addresses both the penalty and the utilization issues. The OPF problem is solved by 

Lagrangian multiplier method to minimize total biding costs. This issue addressed in 
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[35] too, where Peng et al in study the spot price behavior with different control 

mechanism such as generation control, demand control and FACTS control under 

transmission congestion and use nonlinear interior point algorithm to solve the OPF 

problem. 

In [36], Berizzi et al considered two monodimensional FACTS devices (SPFC and 

TCPAR) and a bidimensional one (UPFC) in a compact and reduced security-

constrained optimal power flow (SCOPF) procedure to minimize the total generation 

cost. In [37], Momoh and Zhu use TCPST devices to minimum two objective functions 

to minimize line overloads and to minimize adjustment of numbers of phase shifters. 

The algorithm is the Extended Quadratic Interior Point (EQIP) method. In [38], Lie and 

Hui solve an OPF problem to maximize social welfare using Sequential Quadratic 

Programming (SQP) in the MATLAB environment. UPFC locations are preselected 

and modeled by a Power Injection Model (PIM). 

Yao et al in [39] express a renewable energy sources issue that will compound the 

congestion problem by increasing power transfers across major regional boundaries or 

interfaces in the transmission system of England and Wales. Wind energy is usually 

available and concentrated at some locations away from the load demand centers. For 

example the large load demands are centered in the South of the UK, while the wind 

based plants are mainly located along the Western Seaboard running from the North of 

Scotland and Outer Isles down to the Cornish Peninsula. The need to boost the transfer 

capability of the transmission system is addressed in the mentioned paper by the 

application of Static Series Synchronous Compensator (SSSC) and the nonlinear 

interior point optimization algorithm.  

 

 1.3.2 Optimal location/coordination  

Singh and David in [40] consider the TCST and TCPST costs along with the 

production costs in the objective function and solve the optimization problem by a 

sensitivity-based approach where each transmission line is first rated by using an 

optimal dispatch without considering the line flow limit and FACTS devices, then the 

Sensitivity factors are calculated for FACTS devices placed in every line one at a time 

and finally the optimal dispatch problem is solved to select the optimal location and 
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parameter settings. Some factors such as the capital recovery factor, interest rate and 

capital recovery plan are among the cost-benefit analysis. These authors in [41] present 

a two step method where the optimal location of the TCSC and TCPST is ascertained 

first and in the next step the settings of their control parameters is optimized. The 

approach is based on the sensitivity of three objectives: loss on a transmission line in 

which a device is installed, the total system real power loss and the real power flow 

performance index. 

One approach by Fang and Ngan is based on augmented Lagrange multipliers and has 

an objective to place unified power flow controllers (UPFCs) so as to find a balance 

between financial costs on capital investments and the cost of network losses [42].  

Momoh et al, in [43] use an elimination procedure based on the linearization load flow 

around base load flow solution for small perturbation to solve the rule based OPF with 

phase shifter scheme, and the ranking of phase shifter locations is conducted based on 

contingency analysis and sensitivity analysis. The objective functions are minimum line 

overloads and minimum adjustment of numbers of phase shifters and the algorithm is 

extended quadratic interior point (EQIP) method. 

Gitizadeh in [44] determines the location, size and number of TCSC and SVC devices 

to relieve congestion in the transmission lines while increasing static security margin 

and voltage profile. He uses Sequential Quadratic Programming (SQP) in the first stage 

to evaluate static security margin considering constraints and a Simulated Annealing 

(SA) based optimization finds the optimal solution in the next stage.  

In [45] alabduljabbar et al use the Low Discrepancy Sequences (LDS) algorithm based 

optimization for optimal placement of FACTS devices where the active and reactive 

generation costs should be minimized. A fixed cost of 100 US$/KVA for all type of 

FACTS is considered in the objective function too. 

In [46], Sharma et al deploy DC OPF to maximize system loadability and optimize the 

location of TCSC and TCPST devices by creating a MILP problem and solve the 

optimization problem using GAMS solver. This DC simplification is also used by 

Aygen and Abur in [47] where they use DC OPF to find the optimal placement of 

TCPST devices by a two-step optimization procedure to obtain the candidate branches 

for TCPS installments for each contingency. MILP and Integer Programming (IP) are 
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used in each stage. In [48] Kazemi and Sharifi find optimal location of TCPST 

devices to maximize the social welfare using DC load flow and quadratic 

programming.  

Contingency is incorporated in some other researches [49-51].  In [49] Yorino et al 

implement Benders decomposition technique to solve a MINLP problem that 

formulates a reactive power planning including the allocation of SVC and TCSC 

devices. The objective function is to minimize the sum of the installation costs and the 

operating costs under the normal and contingency states, which include the costs of 

load shedding, the cost of other emergency controls, and the expected costs for the 

voltage collapse. In [50] Minguez et al use a multistart Benders decomposition 

technique to maximize loading condition and find the optimal placement of SVC 

devices in a multiscenario framework that includes contingencies and in [51] ElArabi et 

al use FACTS devices to avoid voltage collapse for the set of contingencies that derive 

the system to unstable zone. The method is a hybrid method based on genetic 

algorithm/successive linear programming (GA/SLP) to solve the MINLP problem. 

MINLP is used to find optimal location of phase shifters in [52-55]. The difference 

between [52] and [53] is in the power flow constraints which are based on 

Transmission Congestion Distribution Factors (TCDFs) in [52] and power flow 

contribution factor in to the congested line in [53] and the objective function in [54] is 

the system loadability. In [55] Aminifar et al find the optimal placement of UPFC 

devices using an AC OPF. The optimization problem is MINLP considering the real 

power production costs and the UPFCs installation costs to be minimized. The 

modeling language is GAMS and the solver is DICOPT. 

In [56], Benabid et al use Non-dominated Sorting Particle Swarm Optimization 

(NSPSO) method which is specialized in multi-objective optimization problem, to find 

the optimal placement of TCSC and SVC devices that maximize static voltage stability 

margin, reduce real power losses, and load voltage deviation. 

In [57] Paterni et al study the application of TCPST devices for the French network and 

introduce an index for measuring the benefit of a given set of phase shifters by genetic 

algorithm. The best location is found but the size of the phase shifter is preselected. 
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1.4 Contents of the thesis 

Chapter 2 gives an overview of the conversion of the regulated electricity industry into 

the deregulated electricity market. Special characteristics of the electricity market 

components that make it different from other commodities are described: market 

models, pricing models and restructuring framework. The historic evolution of the UK 

and the USA electricity restructurings and their markets and pricing models are also 

discussed. 

Chapter 3 focuses on the transmission sector and its congestion management in 

electricity markets. Some important issues about the transmission sector in the 

deregulated environment are analyzed, including the physical transmission limits which 

may cause congestion, the impact of transmission congestion, the required features of a 

suitable approach for resolving transmission congestion and the various phases of 

congestion management. 

 In Chapter 4, some key concepts are reviewed, such as the applications of DC and AC 

models of FACTS devices, optimization, in general terms, and its role in the electricity 

market. Then, by combining all the individual concepts, the main contribution of this 

thesis is made. Optimal placement of FACTS devices and their setting as a solution to 

transmission congestion problem in real-time balancing market and its impact on 

generation re-dispatch costs is introduced, formulated and solved by a DC OPF. The 

simulation results are presented and discussed. 

Chapter 5 builds on the previous chapter where the thrust is in the implementing AC 

OPF as opposed to the DC OPF. Reactive power, bus voltage magnitudes and angles, 

and more realistic FACTS models, which have been neglected in the DC OPF, are 

taken into account; hence, more realistic solution is presented. For an “optimal” 

solution to be trapped in a local minimum is a common problem. In this chapter, the 

behavior of different MINLP solvers is evaluated, and the optimal locations and 

settings of TCPST devices using the proper solvers are determined. Finally, the 

simulation results carried out by DC and AC OPF are compared. 
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In Chapter 6 the main conclusions of the thesis are presented, and proposals for future 

work in this area of research, are made. 



Chapter 2. Market Structure 

 15 

 

Chapter 2. Market Structure 

2.1 Introduction 

A trend toward restructuring
1
, privatisation

2
 and deregulation of power industry started 

in the1980s in the UK and some Latin American countries and became worldwide in 

the 1990s. One of the aims behind the restructuring of the electricity industry was to 

allow market forces to play a greater role in the operation and planning of power 

systems.  The basic expectations of such a change were that efficiency would increase 

and that electricity prices would decline without compromising reliability. This ideal 

vision assumed that the restructuring process would stimulate the development of new 

technology that would replace old inefficient equipment allowing investors to earn 

significant profits, notwithstanding the lower electricity rates. 

There has been a worldwide trend towards restructuring and deregulation of the power 

industry over the last decade. The competition in the wholesale generation market 

brings many new technical problems and challenges to the operation of power system, 

which was regarded as “natural monopoly” due to the special characteristics of 

electricity as a commodity. On the other hand, this means real opportunities and 

challenges to power engineers and researchers. 

                                                 

1
 Restructuring is about commercial arrangements for selling energy: separating or “unbundling” 

integrated industry structures and introducing competition among producers and choice for customers 

[58]. 

2
 Privatisation is a change from government to private ownership, and is the end-point of a continuum of 

changes in ownership/management [58]. 
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An electricity market is known by its two components: market model and pricing 

mechanism. The purpose of this chapter is to present an overall review about these 

concepts of electricity market, different market models, restructuring frameworks and 

pricing models. A history and background of some electricity structures such as the UK 

and the US are discussed. California electricity market is presented and its structure 

before and after melt down interprets some aspects of the market that should be 

considered. 

2.2 Electricity restructuring  

Before restructuring, the electricity industry was either a state-owned monopoly like the 

United Kingdom (UK) or a private-owned monopoly like the United States (US). The 

main motivation for restructuring in some countries like the UK and the Latin 

American countries was attracting funds from the private sector to relieve the trouble of 

heavy government subsidies. In the countries formerly under centralized control 

(central and eastern Europe) the process followed the general trend away from 

centralized government control and towards increased privatization and 

decentralization. In the US and other private-owned countries, the trend is toward 

increased competition and reduced regulation. 

A first step in the restructuring process consisted of unbundling the traditional 

vertically integrated utilities into separate commercial unit that operated independently 

of each other, although not necessarily separately owned. These units were generation, 

transmission and distribution. In addition, the security of the system operation was 

usually assigned to an independent entity called the System Operator (SO).  The 

economic operation of a power system was managed by a market operator responsible 

for balancing supply and demand and for setting prices. Several different forms of 

electricity markets and operators have been developed. 

Generation companies and load supplying companies became market participants 

looking to sell or buy electricity. Various other market players started to appear, mainly 

traders who bought and sold power. One trend that stood out was to model electricity 

markets so that in structure they resembled traditional markets for other goods. The 
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problem with this was that there are physical laws that differentiate electricity from 

other commodities in a number of significant ways: 

 The need to instantaneously balance generation and demand; 

 No means to effectively store large amounts of electricity; 

 Transmission being a natural monopoly; 

 Severe limitations in the ability to control the flow of electricity. 

These factors make electricity markets more complex to run and call for tighter central 

coordination. The first feature requires real-time balancing between generation and 

demand at every bus. The lack of storage means that prices are more volatile and 

sensitive to market power that means some participants are in a position to influence 

the market outcome, and thus benefit at the expense of others. The natural monopoly of 

transmission and the inability to effectively control the flow of electricity distorts 

perfect market competition. This behavior does not occur in most other markets. 

Inadequate transmission flow-control can cause unreliable operation and system failure. 

2.3 Market Models 

There are four models of structuring the industry that correspond to varying degrees of 

monopoly, competition, and choice in the industry [58]. 

 Model 1-Monopoly at all levels, Generation is not subject to competition and no 

one has any choice of supplier; a single monopoly company handles the 

production of electricity and its delivery over the transmission to distribution 

companies and/or final consumers. This is the model for traditional power 

industry.  

 Model 2-Purchasing agency. A single buyer, which is the purchasing agency, 

chooses from a number of different generators to encourage competition in 

generation sector. Access to transmission grid is not permitted for sales to final 

consumers. The purchasing agency has a monopoly on transmission networks 

and on sales to final consumers. 
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 Model 3-Wolesale competition. Distribution or retail companies (Distcos) buy 

electricity directly from a producer and deliver it over transmission networks. 

But the distribution/retail companies still have a monopoly over final 

consumers. There is open access to transmission grid. 

 Model 4-Retail competition. All consumers can choose their suppliers. There is 

open access to transmission and distribution networks. The distribution is 

separate from the retail activity which is fully competitive. Most likely, this 

model is the world of the future of power industry. Retail competition makes 

the most competitive forces by bringing all final consumers into the market. 

However, it also greatly increases transaction costs due to requiring more 

complex trade arrangements and metering. 

The four models will lead to very different types of trading arrangements. A brief 

comparison between them is given in Table 2.1 

Table 2.1 Structural alternatives 

Characteristic  

Model 1 Model 2 Model 3 Model 4 

Monopoly 
Purchasing 

Agency 

Wholesale 

Competition 

Retail 

Competition 

Definition 
Monopoly at all 

levels 

Competition in 

generation-single 

buyer 

Competition in 

generation and 

choice for 

Distcos 

Competition in 

generation and 

choice for  final 

consumers 

Competition in 

Generation Sector 
    

Choice for 

Retailers 
    

Choice for final 

Consumers 
    
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2.4 Restructuring Framework 

Fig 2.1 shows a schematic representation of the restructured electricity industry divided 

into its various components: [3]  

 Generation side: Generating companies (G) and Power Marketers (PM); 

 Demand side: Retail (R) and Distribution (D) service providers; 

 Transmission and Trading Coordination sector: Power eXchange (PX), 

Transmission Owners (TO), System Operator (SO), Ancillary Service providers 

(AS), and Scheduling Coordinators (SC). 

Each component of this model represents a segment of the emerging electricity market.   

It is not necessary for all of these components to exist as separate entities. The task of 

one component can be assigned and performed by another depending on the market 

model.                   

 
 

Figure 2.1 Structural components of electricity markets  

2.5 Pricing Models 

An important component of electricity market design is the pricing model which 

defines tariffs for electricity as well as for the various ancillary services. Pricing plays a 

central role in the market, as it sends monetary signals on the value of the resources, 

signals that strongly influence future investments in the system infrastructure. In 

addition, from the perspective of the consumer, the price of electricity must be 

competitive.  
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 The special electricity characteristics make its market inherently imperfect. The two 

most notable imperfections are: the exercise of market power by generators, and the 

congestion of the transmission network. Market design, with its pricing schemes and 

rules, needs to tackle these problems, and discourage market participants from behavior 

that triggers such imperfections. 

Generally, there are two basic pricing methods: bilateral trading and electricity pool 

[59]. 

 

2.5.1 Bilateral Trading 

Bilateral trading involves only two parties: a buyer and a seller. Participants thus enter 

into contracts without involvement, interference or facilitation from a third party. The 

essential characteristic of bilateral trading is that the price of each transaction is set 

independently by the parties involved. There is thus no official price. Such agreements 

can be forwards and futures contracts. In a forward contract the sellers and the buyers 

are involved in generating and consuming electricity while in the future contract third 

parties can also take part in the trade. These parties are speculators who want to buy a 

contract for delivery at a future date, in the hope of being able to sell it later at a higher 

price. Similarly a speculator can sell a contract first, hopping to buy another one later at 

a lower price, future contracts are not backed by physical delivery. 

Two major types of bilateral contracts can be distinguished: 

 Physical 

 Financial 

Physical contracts specify the parties that generate and consume the power agreed to in 

the contract, the buses of injection and consumption, as well as the amount of traded 

power. A selling generator has the obligation to produce power to supply at least all of 

its physical bilateral contracts, while a load is expected to consume at least all of its 

physical bilateral contracts. 

Financial contracts, on the other hand, are agreements that specify only the amount and 

the price of the traded power, together with other trading conditions. The points of 

injection and consumption may or may not be defined. Even if known, these points are 

not binding. This means that a selling side of the contract is free to appoint any market 
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participant willing to supply the energy, while a buyer can also resell the contract 

further, and find another party to consume the power. Financial contracts may be resold 

at the market several times before the expiration date.  

From the operational point of view, physical contracts directly affect generation 

dispatch since a generator has to produce at least the amount of its bilateral obligations. 

In addition, physical bilateral contracts may affect transmission congestion. Because of 

these influences on the overall system operation, the network usage resulting from each 

bilateral contract has to be approved by the System Operator before its actual 

scheduling.  

As defined by the North American Electric Reliability Council (NERC) contracts could 

be non-recallable, also called firm or non-interruptible, and recallable, and usually 

referred to as non-firm or interruptible. For a firm contract, the system operator 

confirms that the full amount of an approved power transfer could be scheduled, except 

in the case of an emergency. In order to withdraw from such a contract, or curtail it, 

parties may need not only each other’s consent, but also the permission from the system 

operator. These conditions are of a financial nature allowing for a variety of contract 

arrangements, and do not pertain to system operation. Alternatively, non-firm contracts 

are not guaranteed, and would be scheduled only as the operation conditions allow.  

Financial contracts do not need to obtain any kind of advanced approval. A system 

operator does not even have to know about their existence. They are traded in the 

futures and forwards markets, without any power transfers actually being scheduled. To 

implement the trades arranged through financial contracts it is, however, necessary to 

transform them into settlements that firmly define the points of consumption and to 

specify whether these loads are supplied bilaterally or through the pool. 

If the financial agreement is to be fulfilled bilaterally, the parties involved transform 

their agreement into one or more physical contracts for which permission from the SO 

is required. 

2.5.2 Electricity Pools 

The idea of competitive electricity pools derived from the fact that electrical energy is 

pooled as it flows from the generators to the loads so its trading might be done in a 

centralized manner and involve all producers and consumers. Pools are a very unusual 
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form of commodity trading but they have well-established roots in the operation of 

large power systems. Rather than relying on repeated interactions between suppliers 

and consumers to reach the market equilibrium, a pool provides a mechanism for 

determining this equilibrium in a systematic way.  Generating companies submit bids to 

supply a certain amount of electrical energy at a certain price for the period under 

consideration. These bids make a curve which is deemed to be the supply curve of the 

market. Similarly, the demand curve of the market can be obtained by consumer’s 

offers. Sometimes this step can be omitted and the demand is set as a value determined 

using a forecast of the load. The intersection of the supply and demand curves 

represents the market equilibrium.  

All the bids submitted at a price lower than or equal to the market clearing price are 

accepted and generators are instructed to produce the amount of energy corresponding 

to their accepted bids. Similarly, all the offers submitted at a price greater than or equal 

to the market clearing price are accepted and the consumers are informed of the amount 

of energy that they are allowed to draw from the system. 

The market clearing price represents the price of one additional megawatt-hour of 

energy and is therefore called the System Marginal Price or SMP. Generators are paid 

this SMP for every megawatt-hour that they produce, whereas consumers pay the SMP 

for every megawatt-hour that they consume, irrespective of the bids and offers that they 

submitted. 

A pool model provides a much more centralized form of system management. It not 

only handles all the physical electrical energy transactions but also has the 

responsibility for operating the transmission system. 

2.5.3 Managed Spot Market 

Imbalances arise between the amount that a party has contracted to buy or sell and the 

amount that it actually needs or can produce. Spot markets provide a mechanism for 

handling these imbalances but a conventional spot market mechanism is not feasible to 

deal with imbalances between generation and load. Instead, the system operator (SO) is 

given the responsibility to maintain the system in balance. Both generators and loads 

are allowed to participate in this marked and submit their bids and offers. And these 

bids and offers are selected by a third party (SO).   



Chapter 2. Market Structure 

 23 

In addition to the term “managed spot market”, names such as “reserve market”, 

“balancing mechanism” and “real-time balancing market” are given to this function too. 

Fig 2.2 summarizes the operation of a managed spot market. 

 

Figure 2.2 Schematic diagram of the operation of a managed spot market for electricity 

[59]  

 

Pools are more centralized while bilateral markets are less organized. A pool can have a 

number of advantages over a bilateral market. It can reduce trading costs, increase 

competition, produce a publicly observable price and facilitate the detection of market 

power. Under some circumstances it may facilitate market collusion. On the other hand, 

a bilateral market can provide more flexibility than a pool and it needs little designing. 

Power marketers often favor bilateral markets because without an exchange there is 

more room for them to earn commission fees as brokers. 

Very often electricity markets can utilize both approaches. In real-time, organization is 

crucial and something like a pool is needed. Far in advance of real-time, there is no 

need for such coordination, and less organized markets can play a useful role. Of 

course, there will also be a place for centralized futures exchanges. The only real 

System operator 
Accepted 
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controversy is if the day-ahead market should be a pool, a bilateral market, or a set of 

private deal markets and exchanges. UK, PJM, and many other electricity markets 

adopted pool-based model as day-ahead markets while California adopted a 

combination of public exchange (Power Exchange) and private exchanges and dealers 

(Scheduling Coordinators). 

Different market models will have different market rules and behaviors. But due to the 

special characteristics of electric power as a commodity, at least a centralized 

dispatching function is necessary for the real-time operation.  

 2.6 The UK Electricity Industry and Market Structure 

Public electricity supply in the UK dates from 1881 when Siemens began operation of a 

small hydro-electric generating plant in Godalming, Surrey. Firstly promoted by Joseph 

Chamberlain in 1881, the Electric Lighting Act of 1882 allowed local authorities to 

break up streets for the laying of cables or to give their consent to private companies to 

do so.  

As the technology of the industry progressed, some consolidation of the industry into 

large connected units was required. The Central Electricity Board (CEB) was 

established in 1926 with responsibility for constructing a high-voltage national 

electricity grid. This was the first attempt to create a national executive body capable of 

integrating disparate local supply networks. The CEB developed a grid control system 

and encouraged construction of large capacity and more thermally efficient generating 

plant. 

Originally nationalized in 1947 as a response to a shortage of capacity left after World 

War II, the UK electricity system remained government controlled until privatization 

and restructuring began in April 1, 1990. A White paper called Privatizing Electricity, 

which was unveiled in early 1988, became the core of the Electricity Act of 1989. The 

first stage of instituting a new regulatory authority (to replace the Central Electricity 

Generating Board (CEGB) created in 1957) came shortly after the Electricity Act in the 

form of the Office of Electricity Regulation (OFFER), now the Office of Gas and 

Electricity Markets (OFGEM). The Electricity Act of 1989 has provided the basic 

framework for competition among generators. The major provisions of the act include 
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the privatization of area boards, converting them into Regional Electricity Companies 

(RECs), with a separation of infrastructure (wires) and power sales and purchases. The 

CEGB was ordered to separate into three parts: National Power, PowerGen, and a 

monopolized transmission company, the National Grid Company (NGC). A power pool 

was created to set wholesale prices, accepting bids from power generators. Retail 

competition was planned to phase in over time, reaching the goal of full retail 

competition by 1998. 

The Competitive Act of 1998, which took full effect in March 2000, includes two 

guiding principles: the prohibition of agreements that prevent, restrict, and distort 

competition; and the prohibition of the abuse of a dominant business position. The 

Electricity Act of 1989 was significantly amended in 2000 by the Royal assent of the 

Utilities Act, which removes the distinction between private and public electric supplier 

franchise areas.  

The New Electricity Trading Arrangement (NETA) began in 1997, when a review of 

the arrangements in force since 1989, the Pool, found that the system was flawed, 

uncompetitive and susceptible to manipulation. NETA “went live” on March 27, 2001. 

The aim of NETA is to bring about a more competitive wholesale market, bringing 

downward pressure on the price of bulk electricity and ultimately prices to all 

consumers. The primary tenets of NETA are:  

 Forward and futures markets, 

 Balancing mechanism administered by NGC, 

 Settlement process for recouping system operator costs. 

Essentially, NETA opens the way for a variety of bilateral contracts between entities 

buying, selling, producing, or consuming electricity. NGC will still act as System 

Operator and Transmission Owner, but not market operator any longer. Optimistically, 

OFGEM states: “Under NETA there will be less opportunity to manipulate the market.” 

Under this mew structure, the main mechanism to trade energy became bilateral trading 

done through forward and futures markets, as well as short-term power exchanges. The 

forwards and futures markets are bilateral contract markets for firm delivery of energy, 
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that trade from the short term prompt to a long-term agreement. In 2005, NETA was 

replaced by British Electricity Trading and Transmission Arrangements (BETTA) since 

Scotland joined the electricity market of England & Wales. Prior to BETTA the 

transmission system was operated in Scotland by Scottish Power and Scottish and 

Southern Energy who were the major generator and supply companies. However, there 

were no major changes in the structure of the market design, as bilateral contracts 

remained a main trading mechanism. 

2.7 The US Electricity Industry and Market Structure  

The US modern electricity industry could date back to the early 1880s with the opening 

of Thomas Edison’s Pearl Street station in Manhattan in the United States, which 

initially supplied 59 customers with direct-current (DC) electricity. Because of the 

inefficiency of DC transmission, George Westinghouse proposed a better idea of 

alternating current (AC). With AC systems, electricity can be transmitted at high 

voltages much more efficiently. By 1896, AC lines delivered electricity from 

generators at Niagara Falls to Buffalo, about 20 miles away. The AC transmission grid 

was born. From then, the power industry in the US went through an incredible 

expansion and formed large interconnected power systems generally.  

Electric power was a natural monopoly. Centralized systems with large generators that 

reduced costs and attracted business customers were clearly more efficient than 

specialized generators and masses of wires. After the Public Utility Holding Company 

Act (PUHCA) of 1935 passed by Congress, electric utilities were established as 

vertically integrated natural monopolies serving captive markets. Utilities and 

regulators determined the allowable expenses, which were used to set rates consumers 

had to pay. Until the early 1970s the vertical monopoly structure provided a stable basis 

for building an extensive and reliable system. Electric rates were steadily decreasing 

while electricity demand increased significantly at rates of seven to eight percent each 

year. Generally speaking, power systems comprise four main components: generation, 

transmission, distribution and consumption. The integrated utility built the generators 

that supplied electricity, built the wires that transported the electricity to each 

community and to each individual consumer, and directly billed the consumer for this 

bundled service. 
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However, the dramatic increase of fossil-fuel prices during and after the 1973-1974 oil 

embargo, along with high inflation and some other events caused a sudden change to 

this fully regulated system. As a result, the electric rates stopped decreasing but started 

to increase regularly. Meanwhile, Congress passed the Public Utility Regulatory 

Policies Act of 1978 (PURPA) to respond to political concerns, including US 

independence on foreign oil and interest in alternative generation technologies such as 

solar, wind, waste, or geothermal. PURPA mandated that each investor-owned utility 

had to purchase power at its avoided cost from a new class of generation, known as 

Qualifying Facilities (QF), located in its service territory. PURPA therefore introduced 

competition into the generation section of the industry. QFs became a threat to the 

generation side of this monopoly. However, the utility still maintained its monopoly as 

it was in control of the method of distributing the product to the consumer: the 

transmission and distribution systems. 

2.7.1 FERC and NERC 

If the industry were to move towards a truly competitive marketplace, the access to the 

transmission grid has to be opened. The first step toward this was another legislative 

act, the 1992 Energy Policy Act. Federal Energy Regulatory Commission (FERC) has 

the national responsibility and authority to design the electric power industry structure. 

In order to remove impediments to the wholesale electric energy markets and to 

increase efficiency and reduce energy costs to consumers nationwide, FERC issued two 

Orders in April of 1996, which became the foundation for open transmission access. 

These orders apply to public utilities that own, control or operate facilities used for 

transmitting electric energy in interstate commerce. Order 888 requires these utilities to 

file open access non-discriminatory transmission tariffs. Order 889 requires the utilities 

to separate transmission and wholesale power merchant functions, and to participate in 

an Open Access Same-Time Information System (OASIS), which electronically 

provides all market players with transmission capacity, prices, and other information 

needed to obtain non-discriminatory open transmission access. 

 

During the following three years, the industry underwent a sweeping restructuring 

under new federal and state regulations, including divestiture of generation plants by 
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investor owned utilities, a significant number of mergers, and a large number of 

entrants such as power marketers and independent generation developers. Various 

independent system operators (ISOs) were established to manage large transmission 

systems. In December 1999, FERC issued Order 2000 to address transmission pricing, 

congestion, parallel path flow, planning, and coordination between regulatory agencies. 

Order 2000 compels the formation of Regional Transmission Organizations (RTOs), 

requiring all public utilities to be part of an RTO. Order 2000 also defines the minimum 

characteristics and functions of an RTO. 

FERC recently adopted a more hands-on approach to achieve its goal of a seamless 

national power market place. FERC’s role is to issue policy at the highest level, and it 

is still looking to country, state, and industry organizations to develop and implement 

reliability and business methods and standards. FERC is also active in bringing all 

stakeholders together to gain open communications between all and expeditiously 

coordinate the decision-making process. FERC’s role is also to provide the needed 

authority to compel adherence to rules in the competitive power markets. 

 

FERC is focusing on six top priority items: 

1. Congestion management 

2. Cost recovery 

3. Market monitoring 

4. Transmission planning 

5. Business and reliability standards 

6. Transmission rights 

 

Historically, the vertically integrated utility industry utilized the North American 

Electric Reliability Council (NERC), a bottom-up, electric-utility-dominated, volunteer 

organization, to establish reliability rules and monitor compliance. NERC was formed 

in 1968 in the aftermath of the 1965 Northeast Blackout and in response to the 1967 

U.S. Federal Power Commission report on that blackout recommending the formation 

of an industry-based national reliability organization. NERC is funded by the 10 

regional councils, which adapt NERC rules to meet the needs of their regions (NERC 
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2001a). NERC and the regional councils have largely succeeded in maintaining a high 

degree of transmission-grid reliability throughout North America. 

 

Until a few years ago, FERC and NERC operated on parallel tracks with little 

interaction needed between the two institutions. FERC oversaw bulk-power commerce, 

NERC oversaw bulk-power reliability, and there was little interaction between 

commerce and reliability. Unbundling generation from transmission and creating 

competitive markets for electricity are dramatically changing this situation. The 

industry now recognizes that reliability and commerce are tightly integrated. 

Increasingly, FERC receives cases in which market participants complain that NERC 

reliability rules, their implementation, or both competitively disadvantage them. NERC 

established a Market Interface Committee as a complement to its long-standing 

Operating and Planning Committees in September of 1998. NERC has been 

instrumental in making the congestion management issues visible and also in searching 

for solutions, which reconcile the reliability and physics of the grid with the developing 

competitive market needs. NERC spearheaded the OASIS Working Groups that 

developed the standards and communications protocols followed by all transmission 

providers to post market information and facilitate the Electronic Scheduling 

Collaborative, which recently filed a report with FERC on its efforts to develop 

common business practice standards for electronic scheduling (NERC 2001c). 

In response to recent NERC requirements, Regional Security Coordinators coordinate 

within the reliability regions and across the regional boundaries. These security 

coordinators conduct day-ahead security analysis, analyze current-day operating 

conditions, and implement NERC's Transmission Loading Relief (TLR) procedures to 

mitigate transmission overloads. 

Recognizing that curtailment is likely to occur when transmission capacity rights are 

granted at the same time to market participants and to power system operators, but 

based on totally different rules for each, NERC is promoting the development of a long 

term plan to address the issues related to congestion management. 

2.7.2 An Overview of North American Network 

The North American electric system is divided into three Interconnections, figure 2.3, 

including the Western Interconnection (Western Systems Coordinating Council 
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[WSCC]), the Electric Reliability Council of Texas (ERCOT, which covers most of 

Texas), and the Eastern Interconnection (all Reliability Councils except WSCC and 

ERCOT). Within each Interconnection, all the generators operate at the same frequency 

as essentially one machine connected to each other and to loads primarily by AC lines. 

The Interconnections are connected to each other by a few DC links. Because these DC 

connections are limited, the flows of electricity and markets are much greater within 

each Interconnection than between Interconnections. 

Within each Interconnection the fundamental entity responsible for maintaining bulk 

power reliability is the control area. NERC defines control areas as: "An electric system 

or systems, bounded by interconnection metering and telemetry, capable of controlling 

generation to maintain its interchange schedule with other Control Areas and 

contributing to frequency regulation of the Interconnection." (NERC 2001a) Control 

areas are linked to one another to form Interconnections. Each control area seeks to 

minimize any adverse effect it might have on other control areas within the 

Interconnection by (1) matching its schedules with other control areas and (2) helping 

the Interconnection to maintain frequency at its scheduled value (nominally 60 Hz). 

There are approximately 150 control areas in the U.S., most of which are operated by 

utilities although a few are run by ISOs. Control areas vary enormously in size, with 

several managing less than 100 MW of generation and others such as the Pennsylvania- 

New Jersey-Maryland Interconnection (PJM), California ISO, and Electric Reliability 

Council of Texas (ERCOT) each are managing over 50,000 MW of generation. Control 

areas are grouped into regional reliability councils, of which there are 10 in North 

America. The Midwest ISOs encompass more than 10 control areas with peak load over 

100,000 MW across multiple reliability regions.  
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Figure 2.3 NERC’s 10 regional councils cover the 48 contiguous states, most of 

Canada, and a portion of Mexico 

 

2.7.3 California Market Structure  

The de-regulation of the electric power industry in the state of California began with a 

ruling by the California Public Utilities Commission (CPUC) in April 1994 and 

followed bay State Assembly AB 1890, which was signed by the governor in 

September 1996, required the establishment of an ISO to coordinate safe and reliable 

delivery of power and to provide open access to the suppliers and consumers of electric 

energy. AB 1890 also required the creation of an Independent Power Exchange to 

create a spot market for energy. The first contract for the implementation of a Power 

Management System (PMS) for the ISO was awarded in December 1996. The 

remaining operation contracts, including the Scheduling Infrastructure (SI), Scheduling 

Applications (SA) and the Balance of Business Systems (BBS) were awarded by March 

1997. The ISO commenced operation on Jan. 1, 1998, allowing less than one year for 
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the development, integration, testing, and training of the market participants who would 

be using the system [60].  

The California electric market started with the ISO, the Power Exchange (PX), and the 

Scheduling Coordinators (SC). The responsibilities of the ISO are defined as: 

 • Ensure grid reliability  

 • Provide non-discriminatory and open access to the grid  

 • Schedule all power through the grid, and balance the grid operation  

 • Manage transmission congestion and constraints  

 • Competitively procure and operate ancillary services  

 • Provide information to market participants  

 • Settle the real-time energy and ancillary services markets.  

 

Additionally, the ISO is in the process of setting up a market for transmission capacity. 

As a part of this new service, the ISO will auction transmission capacity on interfaces 

between the major congestion zones and interfaces with external systems. The 

transmission capacity rights, referred to as the Firm Transmission Rights (FTR), will be 

used as a hedge against congestion on specified paths and will entitle the FTR owner to 

priority scheduling rights and a share of the transmission-use revenues  

The main responsibilities of the PX are:  

 • Provide a competitive spot market for energy  

• Determine day-ahead and hour-ahead market clearing price for energy based 

on a least-cost balanced schedule  

 • Procure adequate ancillary services on a least cost basis  

 • Act as Scheduling Coordinator for PX Participants  

 • Perform settlements process for the market  

 

In 2001, the PX ceased to exist as a result of the California energy crisis.  

To qualify as an SC, certain financial and technical requirements must be met to ensure 

load is met with enough supply. In addition, the SC must have access to and 

commitment from the supply and demand resources that it is representing. The 

responsibilities of the SCs are very similar to those of the PX.  



Chapter 2. Market Structure 

 33 

At the beginning of the market restructuring, California reformers held out the promise 

that wholesale prices would fall to 3 cents a kilowatt hour from 7 cents, driven by many 

small, new, efficient generating plants burning natural gas. 

The new wholesale market that began operating in April 1998 came reasonably close to 

the promised 3-cent power until the state ran into bad luck: dramatically higher gas 

prices, higher demand, higher emissions credit prices, lower imports from other states. 

Still, California Spot electricity markets work very poorly when supplies are tight; 

prices can rise to extraordinary levels and are more susceptible to supplier market 

power problems. The utilities, locked into purchasing on the spot market, paid up to $1 

a kilowatt hour for scarce power on peak days while what they could charge their 

customers was fixed at about 6 cents a kilowatt hour. After months of buying power for 

much more than they can charge, the utilities have now approached insolvency. The 

customers, meanwhile, had no incentive to reduce consumption or to switch to 

competing retail suppliers. To make matter worse, delays in site approvals has meant 

that no new generating plants have yet been completed to meet growing demand. 

At this time, the California Independent System Operator Corporation (CAISO) plans 

to implement a new market structure, Market Redesign and Technology Upgrade 

(MRTU), which has been developed over the years and approved by the Federal Energy 

Regulatory Commission (FERC). 

MRTU provides for a new congestion management system, and establishes a 

financially binding day-ahead market for trading and scheduling energy, a residual unit 

commitment process, a real-time market that includes an hour-ahead scheduling 

process, market power mitigation measures, and resource adequacy requirements. The 

day-ahead market co-optimizes energy and ancillary services procurement, subject to 

transmission and other operational constraints. Once the CAISO has established final 

day-ahead schedules, the CAISO compares them to its projected load forecast, 

including forecasts for certain local areas, and secure additional resources through a 

“residual unit commitment” process [61]. 

The real-time market updates the energy scheduling and capacity procurement, using 

updated demand forecasts for the next 5 h, and knowledge of outages and other 

operating conditions. In both the day-ahead and real-time markets, scheduling priorities 

are recognized. These include priority uses such as supply schedules that maintain 
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system reliability, use of pre-existing transmission contracts, and bids that are 

submitted as price-takers in an initial “scheduling run.” Penalty prices for these bid 

segments are kept from affecting final market prices, though, by freezing the affected 

schedules and re-optimizing by setting prices in a “pricing run,” using economic bids 

that are limited by caps and floors. Another instance where separate optimization runs 

serve different purposes is in the real-time market, where a real-time unit commitment 

process runs on 15-min intervals, and a separate real-time economic dispatch process 

runs on 5-min intervals to determine output levels.  

The CAISO’s implementation of MRTU involves a fundamental change to the way 

bilateral energy contracts, such as Power Purchase Agreement (PPA), are scheduled 

and financially settled within the CAISO balancing authority area. Prior to MRTU, 

sellers scheduled resources under bilateral contracts directly to buyers using balanced 

Scheduling Coordinator-to-Scheduling Coordinator trades (referred to as “SC to SC 

trades”) and received payment from buyers according to prices set forth in PPAs. Under 

the new MRTU framework, sellers now schedule resources into the CAISO’s Day 

Ahead Market and receive two separate payment streams. One payment is from the 

CAISO, which pays the seller an hourly derived price specific to the pricing node 

where the generator injects power into the CAISO system. The second payment is the 

bilateral contract rate, which the buyer of the energy pays per the pricing provisions of 

the PPA. On the buyer side of a bilateral transaction, load serving entities that purchase 

power through PPAs incur two separate charges. One charge is for the purchase of 

energy to serve load from the CAISO’s Day Ahead Market and the other is the PPA 

contract rate that is due to the seller of the PPA energy.  

To avoid the resulting double payment to sellers and the double charge incurred by 

buyers/load serving entities, and to facilitate the contractual delivery of bilateral power 

purchases, the CAISO has developed a settlement mechanism referred to as an Inter-SC 

Trade. An Inter-SC Trade consists of a quantity of MWs traded between two SCs for 

particular trading hours at designated locations. When two SCs submit matching Inter-

SC Trades to the CAISO, the payment that the seller would otherwise receive from the 

CAISO is negated and the buyer receives a credit from the CAISO equal to the product 

of a) the quantity of MWs traded for the hour and b) the hourly derived Day Ahead 

Locational Marginal Price (LMP) of the pricing node used to settle the Inter-SC Trade.  
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2.8 Summary 

Based on the level of the competition, an electricity market can have different models. 

These models and the framework of restructuring were reviewed in this chapter. In 

addition to the market model, which is essential to specify an electricity market, pricing 

model plays a central role in the market. Bilateral trading and electricity pool, two basic 

pricing methods are represented and the application of these methods in some well-

known electricity markets such as the UK and US are studied.  
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Chapter 3. Transmission Networks and 
Congestion  

3.1 Introduction 

In general, one of the suppositions that define the framework for perfect competition is 

„free entry and exit to the market‟, in other words, free market access should be 

guaranteed in a perfect competition. This prerequisite is not fulfilled in transmission 

markets therefore it is a natural monopoly. The first important step of power industry 

restructuring is the transmission open access. Transmission services have been 

unbundled as separate businesses from generation. However regarded as a natural 

monopoly, the transmission sector remains more or less regulated to permit a 

competitive environment for generation and retail services. The operating and planning 

of transmission network and the pricing of the transmission services are still retained as 

challenges on both theoretical and practical aspects in the development of electricity 

markets. 

Transmission congestion can be defined as the condition where desired transmission 

line-flows exceed reliability limits. Following this definition, congestion management 

can be defined as the actions taken to avoid or relieve congestion. More broadly, 

congestion management can be considered any systematic approach used in scheduling 

and matching generation and loads in order to manage congestion. Electricity, unlike 

many other commodities, can‟t be stored easily and its delivery is constrained by some 

physical transmission limits that have to be satisfied all the time to keep the operating 

security of the power system. With transmission limits, the deregulation of the power 

industry is more difficult therefore one of the major responsibilities of any type of SOs 

in any type of electricity markets is to manage transmission congestion and constraints 

[30, 31]. 
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The purpose of this chapter is to review the basic concepts of congestion management 

by describing the monopoly character of transmission network, transmission limits as 

the cause of congestion and the generic congestion management scheme. The more 

popular transmission pricing under capacity allocation methods are reviewed and the 

need for a balancing mechanism in real time to alleviate congestion is emphasized. 

3.2 Transmission Network in Electricity Market 

The function of transmission system in a vertically integrated structure was to connect 

the utility‟s generators to the utility‟s customers and to operate the system reliably. The 

transmission systems were interconnected by different utilities to increase reliability, 

share reserves and take advantage of economic exchanges. If transmission congestion 

occurred, the utilities solved it by either generation re-dispatch or load-reduction to 

support reliability and economic transactions. These corrective actions and also 

expectations for load growth and future electricity prices and availability were a 

feedback for system evaluation in both a real-time basis and long-term planning 

purposes. A solution for new transmission facilities could be developed and presented 

to the regulator for approval and the final decision could then be implemented and the 

costs passed on to customers. Utilities and regulators made the investments decisions 

with prudent investment and operational costs borne by customers. 

Although, the electric power industry restructuring has moved generation investment 

and operations decisions into the competitive market but transmission was left out as a 

communal resource in the regulated environment and despite the widespread 

experience of restructuring during the past decade, important issues remain open about 

the best way to operate transmission to support reliability management and market 

trading. In some models the mixing of competitive generation and regulated 

transmission makes congestion management difficult, and in some other models the 

huge quantity of bilateral transactions which could stress the existing transmission 

network heavily, has made the transmission congestion management one of the 

toughest problems in electricity market design and operation.  

The product or output provided by a transmission system is a transport service: the 

movement of electricity, from one point on the network to another, at the request of a 



Chapter 3. Transmission Networks and Congestion 

 38 

system user. Before completing such transaction, the generator and the customer must 

secure the right to transmit electricity. This right can be offered with a stronger or 

weaker guarantee that the service will be provided when needed. Rights can be 

combined, to allow transmission to and from a number of points. Any right will have to 

be accompanied by an assurance of quality, in terms of frequency control and reactive 

power control and the reliability of the service. 

As mentioned in the previous chapter, in most electricity markets a special entity the 

so-called System Operator (SO) exists. This monopoly can be either a non-profit or a 

for-profit entity. The for-profit entity in the US is called TransCo (transmission 

company). It owns, operates and manages the transmission system as a natural 

monopoly. A TransCo could maximize its profit by withholding transmission 

capacities, thus it is heavily regulated. The other choice is to introduce a non-profit 

entity that is usually called Independent System Operator (ISO). In contrast to the 

TransCo the ISO does not own – but manage – the transmission network. It does not 

have a motive to withhold transmission capacities in order to maximize its profit. Thus 

it is only slightly regulated. [2] 

The deregulation of the power industry was much easier without transmission limits. 

These limits are the main causes for transmission congestion and can be listed as [6]:  

 Thermal limits - Colliding electrons in the AC power line cause electrical 

resistance, and resistance interferes with current in a wire, producing heat. As a 

wire heats up, it softens. Since power lines are heavy, their weight makes them sag 

as heat builds. Beyond a certain temperature the overloaded line will be 

permanently damaged. It is caused not only by real power flow but also by reactive 

power flow. 

 Voltage magnitude limits - Voltage constraints define operating bounds that can 

limit the amount of power flowing on transmission lines. Voltage constraints 

inevitably require attention to both the real and reactive power loads and transfers 

in the AC transmission system. Consumption of reactive power tends to make the 

voltage sag. Often this must be corrected by injecting reactive power locally 

because reactive power is not easily transmitted over long distances. 
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 Stability limits on power lines - Power flows through AC power lines because the 

voltage at the generator end reaches its maximum slightly ahead of the voltage at 

the load end. The amount by which the generation voltage is ahead is called the 

“phase angle.” Beyond 90 degrees
1
, power flow decreases become completely 

unstable.  This is the line‟s physical stability limit. Angle stability can be classified 

into two categories: small-signal stability, which is the ability of the system to 

maintain synchronism under small disturbance; transient stability, which is the 

ability to maintain synchronism when subjected to a severe transient disturbance 

[62]. 

 Voltage stability limits - Voltage stability is the ability of a power system to 

maintain steady acceptable voltages at all buses in the system under normal 

condition or after being subjected to a disturbance. The main factor causing voltage 

instability is the inability of the power system to meet the demand for reactive 

power. The heart of the problem is usually the voltage drop that occurs when active 

power and reactive power flow through inductive reactance associated with 

transmission grid. 

 Contingency constraints - Transmission system operators leave some unused 

capacity on power lines in case an unexpected event (a contingency) occurs 

somewhere on the system. If, for example, a large power line drops out of service, 

the power flows will shift to other lines at the speed of light. The power system 

operators‟ job is to ensure that none of those power lines overloads. Contingency 

constraints are fundamental element of economy-security control. Contingency 

analysis identifies potential emergencies through extensive “what if?” simulations 

on the power system network. A more conservative estimation of transmission 

capability will be obtained after considering the post-contingency constraints 

In the research of this thesis, thermal, voltage magnitude and voltage angle limits are 

considered in the optimal power flow problems. The physical thermal limit on a 

transmission line is actually on the current magnitude, which causes the heating of the 

line, and the current is proportional to the apparent power S or the real and reactive 

                                                 

1
  45 degrees is a more practical limit. 



Chapter 3. Transmission Networks and Congestion 

 40 

powers P and Q flowing through the branch. Therefore the thermal limit can be 

expressed as: 



Sij Sij
max      (3.1) 

where 



Sij is the apparent power flow at line ij and 



Sij
max  is its limit. 

Since the voltage in a power system does not normally deviate much from its nominal 

value and since the active power flow is usually much larger than the reactive power 

flow, the thermal limit on a line can also be approximated by the real power flow 

constrain as: 



Pij Pij
max      (3.2) 

where 



Pij and 



Pij
max are the transmission active line flow at line ij and its limit 

respectively. 

 

3.3 Congestion management 

Congestion is a term that has come to power systems from economics in conjunction 

with deregulation, although congestion was present on power systems before 

deregulation. Congestion management, controlling the transmission system so that 

transfer limits are observed, is perhaps the fundamental transmission management 

problem. The term “congestion management” comprises all actions and measures that 

are applied to handle network access in the presence of congestion. 

Before regulation, the transmission system was designed so that when the generation 

was dispatched economically there would be no limit violations. Hence, just solving 

economic dispatch was usually sufficient. However, with the deregulation of the 

electric utility industry, the transmission system is becoming increasingly constrained 

as a result of moving more power through a transmission line (or an interface) than the 

transmission line (or interface) can accommodate, for either reliability or commercial 

reasons. A consequence of a congested interface or cross-border is that it creates a 

bottleneck which prohibits delivery of economic energy supplies to consumers on the 

high-cost side of the bottleneck. This is the case in some areas such as the European 
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Union, where the main target of the liberalization of the electricity supply sector is the 

creation of a truly Internal Electricity Market not only in the domestic markets, but also 

on an international scale, results impeding the integration of the national electricity 

markets by the limited amount of cross-border transmission capacity at several borders.  

Congestion relief through transmission enhancements is desirable if it is cost-effective. 

There are usually several alternatives to relieve congestion and the goal should be to 

devise systems of incentives that produce cost-effective means to reduce such 

congestion where it is economical to do so. From the viewpoint of planning, effective 

relief methods can include installation and/or operation of large or small-scale 

generation in the congested area for energy production, for voltage support, to enhance 

stability, or to reduce flows on specific lines. Transmission-based solutions can include 

construction of new lines or facilities, upgrading of lines or facilities, installation of 

voltage support (capacitors, inductors, voltage regulating transformers, static 

condensers, or static VAr compensators), or installation of flow-control devices (phase 

angle regulators or FACTS devices), and power system stabilizers at generating 

stations. The technologies allow more power to be delivered over a line or to operate 

the system more reliably. Load management approaches (including bidding 

interruptible load in response to different market clearing prices) can also provide 

congestion relief under certain circumstances. The incentives (and moreover, 

disincentives) for a particular type of relief depend on various economic, technical, 

informational, and regulatory elements. 

Different market structures and market rules lead to different methods for congestion 

management. Basically, a proper approach for resolving transmission congestion in 

competitive electricity markets should at least have the following features: 

 Not discriminate: Each market participant, a consumer or a producer, should be 

treated equally and the price for a specific good at a specific place and time 

should be the same for everybody 

 Give economic signals: The method should give incentives to producers, 

consumers and the network operator to improve the systems in order to relieve 

transmission constraints. 

 Be transparent: The implementation should be well defined and transparent for 
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all participants. 

 Be feasible: The available resources (information, computer systems) need to be 

capable of producing the necessary quantitative results in the time frame 

available. 

 Be able to interact with other systems: In a real system the surrounding ISOs 

and their specific methodologies have to be taken into account. The 

implemented system needs to interact with other systems. 

Congestion management is usually organized as a sequence of four phases (Figure 3.1) 

[63]: 

1. The capability of the network to transmit power must be expressed as a 

“transmission capacity”. The first phase of congestion management is thus to 

determine the amount of available transmission capacity according to the 

definitions and time framed prescribed by the subsequent allocation phase. The 

physical transmission limits mentioned in the section 3.2, decide the Total 

Transfer Capability (TTC) and Available Transfer Capability (ATC), which is 

very important system information to be published in any electricity market. 

2. The capacity allocation step is required to distribute the ATC among the 

network users wishing to utilize it.  

3. After the transmission capacity has been allocated and the wholesale energy 

markets are settled (usually in the afternoon of the day before operation), the 

ISOs perform a congestion forecast and determine if the foreseen constellation 

of power generation and consumption will be feasible or if the network security 

limits will be breached. 

4. If during phase 3 a violation of network security limits is foreseen, the ISOs 

must take measures to relieve the network. 
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 Figure 3.1 Phases of Network Access with Respect to Congestion 

Taking account of the key role that the capacity allocation methods in phase 2 and 

congestion alleviation methods in phase 3 play in the context of congestion 

management, in the following sections these concepts are outlined. 

The above scheme can also be expressed as a combination of several of basic methods 

for different time scales as shown in Figure 3.2 [6]. 

  

 

 

 

Figure 3.2 Overall congestion management process 

 

In the long-term phase of this process capacity allocation can be made yearly, monthly, 

weekly, or even daily but no later than the morning of day-ahead. In the short-term 

scheduling all the transmission constraints are considered using the data collected from 

all the signed bilateral contracts and all the generation offers and demand bids in the 

spot market. The last step of this process is real-time re-dispatch in real-time balancing 

Transmission

Capacity Reservation

Bilateral

Market

Schedule with

Transmission

Constraints

Day-ahead Spot

Market

Redispatch

Real-time

Balancing

Market

Long-term Short-term Real-time



Chapter 3. Transmission Networks and Congestion 

 44 

market when transmission congestion may still occur even after the two previous steps 

due to unpredictable events and fluctuating loads. 

 

3.3.1 Capacity Allocation Methods 

Before the physical delivery of the energy takes place, a Capacity allocation method is 

needed to determine the allocation of transmission capacity. A variety of different 

capacity allocation methods are in used [32] and although each implementation is 

unique in detail, they can be roughly grouped as follows: 

 First come, first served: capacity is allocated according to the order in which the 

transmission requests have been received by the ISO. Starting from the earliest 

request, all requested amounts of capacity are fully granted until the available 

capacity is used up. This method encourages participants to make longer 

forecasts. Thus, it allows better and sooner security assessment for the ISO who 

knows accurately the volume of exchanges in advance. However, this method 

may not leave enough room for short-term trading, which is a requirement to 

ensure the success of market dynamics. This method is well suited for bilateral 

trades, but fails to provide an efficient priority mechanism for day-ahead or 

real-time pool transactions. 

 Pro rata rationing: In this method no real priority is defined. All requests are 

partially accepted in the way that the ISO curtails them in case of congestion 

according to the ratio: existing capacity/requested capacity. This rule is 

transparent but brings the participants to an economically inefficient use of the 

system. 

 Contribution based on physical flow. The ISO calculates the contribution of 

each transaction to the congestion to define its priority. The relative contribution 

to a transaction is the ratio between the flow induced by the transaction on the 

congested line and the volume of the transaction. The transactions will be 

curtailed in accordance with this rank till congestion disappears. This rule is 

also transparent, but it is not a market-based method. Its long-term efficiency is 
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not ensured, because this physical contribution factor varies with topology, 

generation and load patterns. 

 Explicit auction: (or Willing-to-pay) along with the requested capacity amount, 

the applicants have to declare how much they are willing to pay for this 

capacity. These bids are ordered by price and allocated starting from the highest 

one until the available capacity is used up. It is a market-based method for 

transaction curtailment, because it complies with the principle of “allocating the 

transmission capacity to the users who value it most highly”. However, this 

method may not be efficient for curtailment against published ATC. More 

likely, it will be combined with some other congestion management approaches. 

 Implicit auction: with all previously described methods, the electricity spot 

markets are separated from the transmission capacity allocation procedure and 

close after the transmission capacity has been allocated (i.e. between phases 2 

and 3 of the generic congestion management model according to fig. 3.1). With 

implicit auctioning transmission capacity is managed implicitly by the spot 

markets: Network users submit bids or offers for energy in the geographical 

zone where they wish to generate or consume, and the market clearing 

procedure determines the most efficient amount and direction of physical power 

exchange between the market zones. Hence phase 2 of the congestion 

management model is integrated with the energy market, a separate allocation 

of transmission capacity is not required. 

3.3.1.1  Nodal (Spot) Pricing 

Nodal Spot Pricing, also known as LMP (Locational Marginal Price), was first 

proposed by Schweppe [64] and further developed by Hogan [65 and 66]. The general 

idea of nodal pricing is to 1) model an electricity market with its various economical 

and technical specifications, such as generators‟ cost functions, demand elasticity, 

generation limits (individual and overall), power flow limits etc. and 2) optimize the 

system which is synonymous to maximizing social welfare. One crucial outcome of the 

optimization procedure is the price at each node, the nodal or spot prices. It reflects the 

temporal and local variations of the energy price relating to the energy demand. The 

methodology comprehends that electricity has not only to be generated but also that it 
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has to be delivered to a particular node, taking into account transmission constraints 

and electrical losses. 

Nodal spot pricing can be seen as fully coordinated implicit auction. Generators and 

loads do not explicitly participate into auctions for transmission capacity. Capacity is 

implicitly allocated through bids for production/consumption at a specific location 

(bus). Nodal pricing is often used in conjunction with a pool-based market design. The 

ISO collects all bids and it is then in charge of clearing the market by maximizing 

social welfare while satisfying network constraints by performing a Security 

Constrained unit commitment (SCUC). 

3.3.1.2  Zonal Pricing  

Zonal pricing in accordance with nodal pricing, establishes different electricity prices 

for different locations in the network. In contrast to nodal pricing where prices in the 

case of congestion might differ for every node, for zonal pricing a group of nodes is 

aggregated to one zone. These zones are mostly defined a priori as the concept focuses 

on certain flow gates, which might be subject to congestion. An example is the 

Norwegian system, where the system operator splits the national transmission system 

into two zones (North and South) in the case of congestion. If the demand for 

transmission services does not exceed system capabilities, different network zones are 

not established, and thus, there is only one clearing price for the whole network. In the 

following the market splitting procedure is described. 

When congestion is predicted, the ISO declares that the system is split into price areas 

at predicted congestion bottlenecks. Spot market bidders must submit separate bids for 

each price area in which they have generation or load. If no congestion occurs during 

market settlement, the market will settle at one price, which will be the same as if no 

price areas existed. If congestion does occur, price areas are separately settled at prices 

that satisfy transmission constraints. Areas with excess generation will have lower 

prices, and areas with excess load higher prices. Zonal pricing is illustrated with a 

simple two-zone example in Figure 3.3 [67]. 
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Figure 3.3 Two-zone market splitting example  

The transmission line has a maximum capacity of 



Pab
max . In zone A generation facilities 

with low marginal cost are located (e.g. hydro plants), whereas in zone B there are 

major load centers with little excess supply. Generators and load bids in each zone are 

given by 



PG
A, PD

A , PG
B  and 



PD
B . With no congestion, the market will settle at a single 

unconstraint market price 



pu, and total generation and load will be equal. If the 

unconstrained transfer 



Pab
u , exceeds the transfer limit 



Pab
max , then each zone becomes a 

separate price area and market will be split. The market operator utilizes transmission 

capacity to the limit of 



Pab
max  and maximizes arbitrage trade. Thus, it buys energy within 

the low-price zone A and sells energy to the high-price zone B. These activities may be 

regarded as a shift of demand and supply curves in zone A and B. The new demand 

curve in zone A is given by: 



PDnew
A  PD

A Pab
max       (3.3) 

which means a shift to the right along the x-axis in figure 3.2. And similarly, a shift to 

the right along the x-axis to create the supply curve in zone B defined through: 



PGnew
B  PG

B Pab
max       (3.4) 

The transmission capacity between the two zones is now fully utilized. Due to the 

arbitrage trade between the zones, the price in zone A decreases to 



pa  and the price in 

zone B increases to



pb . As the market operator (or the system operator) buys in the low-

price area and sells in the high-price area, it collects a congestion rent. As in the nodal 

pricing system, the rent may be used to invest into the grid or may be allocated among 
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the participants. 

  

3.3.2 Capacity Alleviation Methods 

In contrast with capacity allocation methods that place in long term and short term 

scheduling and are based on foreseen, capacity alleviation methods are often used to 

relieve congestion in real-time and are also referred to as remedial actions. A 

centralized balancing mechanism is needed to relieve the real-time congestion 

problems. Although the real-time balancing is also a market-based method, the ISO can 

take any mandatory actions to maintain the system security in emergent cases. Two of 

the most common methods to alleviate congestions are outlined in the following 

sections. 

 

3.3.2.1 System Re-Dispatch 

System re-dispatch is a real-time centralized method for congestion alleviation and as a 

part of the balancing mechanism is used to ensure power balance and secure system 

operation and guarantee that power balance equations and system constraints will 

always be satisfied. It is necessary because the bulk power transmission grid is highly 

dynamic and predicting constraints well ahead of time is therefore difficult.  

The final adjustment between generation and demand in real-time is done through the 

balancing mechanism. It is a centralized type of market where each market participant 

can submit offers and bids to participate and provide different types of services. The 

main advantage of this method is that due to the centralized nature of the dispatch, no 

delay occurs between the identification of a constraint and the implementation of re-

dispatch to control the constraint. However, employing a bid-based auction makes it a 

market-based system; the congestion management is therefore accomplished based on 

market participants‟ offers and their indicated willing to buy through congestion to 

protect their transactions. In this method, each participant that is selected for re-

dispatch will be instructed to either increase or decrease its active power bus injection, 

and will be paid for this service according to its submitted bid or offer. 
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3.3.2.2 Countertrade or Buy-Back Procedure 

Countertrading is based upon the same principles as re-dispatching [68], but may be 

considered market-oriented. Rather than applying command and control, the ISO will 

buy and sell electricity at prices determined by a bidding process. The principle of 

counter-trading is thus a buy-back principle, which consists in replacing the generation 

of one generator „ill-placed‟ on the grid as regards the congestion by the generation of 

one „better-placed‟ producer [69]. Different from market splitting, within the 

countertrade or buy-back model the market participants only see one uniform price 

(apart from the participants involved in the countertrade procedure). Equilibrium points 

of the day-ahead phase remain unchanged. As the ISO has to buy electricity 

downstream of the congestion at higher cost and sell it upstream, there is no congestion 

rent, but congestion cost for the ISO. This cost exposure is also regarded as an 

incentive for investment into grid capacity. Countertrading is used for real-time 

congestion relief in the Norwegian system and is used as exclusive Congestion 

Management concept in the Swedish market. 

3.4 Summary  

In this chapter, some necessary concepts of transmission system that are needed to 

study in this particular part of electricity industry, the nature of transmission network 

that makes it different from other commodities and also problems involved in operating 

of transmission grid in a deregulated environment such as the causes, remedies, and 

pricing methods of transmission congestion are discussed. 

Because of the monopolistic nature of the transmission system in any electricity market 

a special entity so-called System Operator (SO) or Transmission Company (TransCo) 

or Independent System Operator (ISO) or Transmission System Operator (TSO) is 

needed and this entity plays a vital role in congestion relief, ranging from long-term 

planning down to real-time operating. 

A generic congestion management process has four phases: 1) providing line 

information such as TTC and ATC based on physical limits of transmission lines 

including steady state limits, stability limits and contingency limits; 2) capacity 

allocation; 3) congestion forecast; 4) capacity alleviation.  There are a variety of 
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capacity allocation methods; however, the best solution might be a combination of 

several of the basic methods.  

The nodal (spot) pricing or LMP and Zonal Pricing are two of the more popular 

approaches of capacity allocation methods. Nodal pricing is proposed as FERC 

standard market design in the US; it is implemented in the PJM-Interconnection, in 

New York, New England, New Zealand and it has recently been implemented in 

California under MRTU. 

System re-dispatch and countertrade are used to alleviate congestion in real-time. In the 

last stage of congestion management, a balancing mechanism is needed to ensure 

power balance and secure system operation. Re-dispatching is a centralized type of 

market but can be designed in a market-based way, where each market participant 

submit offers and bids to participate in the market whereas the final decision is made by 

ISO. 
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4.1 Introduction 

A lack of sufficient transmission capacity leads to congested operation and requires re-

dispatch of generation. In markets with predominantly centralized operation where 

majority of trades are done through a pool, congestion re-dispatch is often embedded 

within the market clearing procedure, although there would be provision for certain 

generators to submit additional offers to increase or decrease their generation.  

Therefore, generation re-dispatch is a usual remedy for a congested operation and this 

is due to the fact that power flows in a transmission network follow Kirchhoff's laws, 

and means to control these flows are very limited. Another way would be to use 

Flexible AC Transmission System (FACTS) devices, which give certain level of line 

flow controls. Namely, these devices allow certain line parameters to be changed to 

influence flows along the lined. Although these changes may not be sufficient to 

completely relieve congestion, they can reduce the costs associated with generation re-

dispatch. 

The DC power flow, as a simplified model that carries out preliminary design studies is 

commonly used through the power industry. The well known limitations of this model 

are: the voltage profile of the system must be solidly maintained close to one per unit, 

its lines be short with high X/R ratio and the system be tightly meshed so that angle 

differences across lined are small. In all preliminary studies and simplified models 
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some judgment in the use of such a model and in the interpretation of the results should 

be considered.  

Since in this research we will investigate both AC and DC operation, after a brief 

review of FACTS devices, the AC and DC mathematical models of TCPST (Thyristor-

Controlled Phase-Shifter Transformer) will be presented in the following chapter. 

Optimization in general as the base of Optimal Power Flow (OPF) solution and its 

importance in electricity market will be discussed. And by implementing a DC optimal 

power flow, the problem of congestion in real-time balancing market will be 

formulated and solved by application of FACTS devices. The ability of these devices to 

alleviate line congestion and reduce the generation re-dispatch costs will be 

investigated and by means of a suitable modeling language and solver, optimum 

location and setting of FACTS devices will be determined.  

 

4.2   The Application and Models of FACTS Devices 

Free (non-discriminatory) competition that deregulation emphasizes is an opportunity 

for power producers to enter the market without any limits and this will considerably 

increase the number of contracts. The mandatory accommodation of the contracted 

power by the transmission network will make the parallel- and loop-flow
1
 problems 

                                                 

1
 Since with very few exceptions, the flow of power over the various lines in an AC network cannot be 

controlled, this leads to the result that portions of one system‟s power flowed through other systems‟ 

lines. The distribution of power flows over all parts of an interconnected transmission system results in 

two phenomena: parallel flow and loop flow. Parallel flow occurs when one utility delivers power to 

another utility. Because of the laws of physics, some of that power flows through the transmission 

system of the neighboring utilities, which parallel the transmission systems of the utilities involved in the 

transaction. Parallel flows may appear on another utility‟s system without that utility having any 

knowledge of the circumstances that gave rise of it. Loop flow involves two or more utilities. Each is 

supplying its own loads from its own sources. But the actual flows on the system from the combined 

operations result in the use of transmission in other systems in such a way that there is apparent 
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worse, causing unpredictable line loading (thermal limits), voltage variation and the 

potential decrease of transient stability. The traditional solution to these problems 

would be either transmission expansion or upgrading the existing transmission network. 

Apart from the cost, such a scenario in the present environmental and regulatory 

constraints may not be possible
2
. The solution is in technological approaches. One 

approach is the use of Flexible AC Transmission Systems (FACTS), relying on the 

large scale application of power electronics-based, and real time computer-controlled, 

compensators and controllers to provide cost effective, “high tech” solutions to the 

problems. 

In 1988, Hingorani proposed the concept of Flexible AC Transmission Systems 

(FACTS) [12]. FACTS devices have the ability to allow a power system to operate in a 

more stable, flexible, secure, economic, controlled and sophisticated way. The IEEE 

defines FACTS as “Alternating current transmission systems incorporating power 

electronic-based and other static controllers to enhance controllability and increase 

power transfer capacity.” There are two distinctly different technical approaches in 

FACTS controllers developments [11]:  

1. Thyristor Controlled FACTS Controllers, 

2. Converter-Based FACTS Controllers. 

The first group of controllers, the Static Var Compensator (SVC), Thyristor-Controlled 

Series Capacitor (TCSC) and Thyristor-Controlled Phase-Shifter Transformer 

                                                                                                                                              

circulating power flow around a closed loop. Obviously this loop flow is unwanted and will have bad 

effect on the transfer capability. 

2
 From the transmission investment point of view there often isn‟t enough incentive to invest on new 

transmission lines for transmission owners. The transmission revenue is a function of the magnitude of 

the flow or the available capacity of the transmission line [59] therefore the transmission owner may 

choose to reduce transmission capacity on purpose or do not invest sufficiently to collect more revenue. 

Either way aggravates transmission congestion. 
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(TCPST), employ conventional thyristors in circuit arrangements which are similar to 

breaker-switched capacitors and reactors and conventional (mechanical) tap-changing 

transformers, but have much faster response and are operated by sophisticated controls.  

Each of these controllers can act on one of the three parameters determining power 

transmission, voltage (SVC), transmission impedance (TCSC) and transmission angle 

(TCPST), as illustrated in Figure 4.1. 
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Figure 4.1 Conventional thyristor-based FACTS controllers [11]. 

In this thesis, we will investigate the application of TCPST in real-time congestion 

management in both DC and AC models. Therefore in this section the static models of 

TCPST are presented. 

4.2.1 DC TCPST Model 

The following TCPST representation is suitable for the DC load flow model of 

the power system network. Figure 4.2 shows an ideal TCPST connected in 

series with transmission line (



i  j ), between nodes 



i  and



j . The series 

impedance of the phase shifter is neglected and the line admittance is



y ij . The 

TCPST is modeled by a phase angle



ij .      
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Figure 4.2 DC Model of TCPST 

This equivalent circuit model represents the phase shifter as a continuous 

variable. By introduction a binary variable 



uij , the presence of the TCPST in the 

transmission line enters to the optimization problem as an integer variable. That 

is: 

  



uij 
0 for a line without a device

1 for a line with a device





    (4.1) 

 

4.2.2  AC TCPST Model 

The AC static model of a TCPST having a complex tap ratio of 



1:1ij  

and a transmission line between bus 



i  and bus



j  is shown in figure 4.3.  

The real and reactive power flows from bus 



i  to bus



j  can be expressed 

as: 



Pij Re Vi
* (Vi V j )Yij       

   



 GijVi
2 ViV j[Gij cos(i  j ij )Bij sin(i  j ij )]                

(4.2) 

and 



Qij  Im Vi
* (Vi V j )Yij   



GijVi
2 ViV j[Gij sin(i  j ij ) Bij cos(i  j ij )]                 

(4.3) 

Bus j  

ij  ijy  

Bus i  



Chapter 4. Optimal Placement of FACTS Devices in Real-Time Congestion Management  

by DC OPF  

 56 

 

Figure 4.3 AC Model of TCPST 

Where ijY , ijG and ijB are elements ij of the admittance, conductance and susceptance 

matrices, respectively. 

Similar to the DC model, the presence of the TCPST can be considered by equation 

4.1. 

 

4.3 Optimization in General 

Mathematical Programming is a technique of mathematical optimization and many 

real-world problems in such different areas as industrial production, transport, 

telecommunications, finance, or personnel planning may be cast into the form of a 

Mathematical Programming problem: a set of variables, constraints over these 

variables and an objective or objective function to be maximized or minimized. In other 

words, optimization is the procedure or procedures used to make a system or design as 

effective or functional as possible. An optimization problem is first modeled and 

classified in a mathematical form without making any reference to the implementation 

with the modeling software. The mathematical model and the results are obviously 

independent of the software.  

The objective can be either a single cost or a multi-objective in some cases. The goal of 

optimization is to find a value of the decision variables that satisfies some criterion. 

Decision variables can be a set of continuous or discrete alternatives. In general, 

optimizing over a discrete set of alternatives is much more difficult than optimizing 

over a continuous variable because in the discrete case we [70] 

 cannot use calculus to derive optimality conditions, 

 cannot obtain descent directions from purely local first derivative information, 

Bus j  

ijij XR   

Bus i  

ij1:1
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and 

 cannot make use of convexity to establish global optimality. 

If the discretization step of the discrete variable is “small,” a good approximate answer 

can be obtained by assuming that the discrete variables are continuous variables. After 

solving the continuous problem, we must then convert each continuous solution into a 

discrete value. A practical approach is to “round-off‟ to the nearest feasible discrete 

value, but this does not necessarily produce the best discrete alternative.  

Optimization problems can be categorized by the type of their feasible set as three 

general forms: 

 Unconstrained optimization, 

 Equality-constrained optimization, and 

 Inequality- constrained optimization. 

Economic Dispatch (ED) neglecting generator limits and line losses is an unconstrained 

optimization problem. 

Depending on linearity and nonlinearity of the constraints and objective function, and 

also the domain of decision variables, some of different categories of optimization 

problems are Linear Programming (LP), Mixed Integer Programming (MIP), Quadratic 

Programming (QP), Mixed Integer Quadratic Programming (MIQP), Nonlinear 

Programming (NLP) and Mixed Integer Nonlinear Programming (MINP). Table 4.1 

describes an overview of the above classification.   

An optimization problem in general can be expressed as: 

Minimize ),( uxF                                                                  (4.4) 

 subject to: 

            0uxg ),(       (4.5) 

 0uxh ),(          (4.6) 
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where ),( uxg  is a set of nonlinear equality constraints, and ),( uxh is a set of 

nonlinear inequality constraints. The vector x consists of dependent variables while the 

vector u is a set of controllable quantities.  

 

Table 4.1 A classification of optimization problems 

Optimization 

classification 

Decision variables 

domain 

Constraints Objective function 

Linear           

Programming (LP) 

Continuous  Linear Linear 

Mixed Integer 

Programming (MIP) 

Continuous Linear Linear 

Discrete 

Quadratic       

Programming (QP) 

Continuous Quadratic 

terms 

Linear 

Mixed Integer Quadratic 

Programming (MIQP) 

Continuous / 

Discrete 

Quadratic 

terms 

Linear 

Nonlinear      

Programming (NLP) 

Continuous  Linear Nonlinear 

Nonlinear Linear 

Nonlinear Nonlinear 

Mixed Integer Nonlinear 

Programming (MINLP) 

Continuous / 

Discrete 

Linear Nonlinear 

Nonlinear Linear 

Nonlinear Nonlinear 
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The full sequence of solving an optimization problem is to [71]: 

 Formulate a model, the abstract system of variables, objectives, and constraints 

that represent the general form of the problem to be solved. 

 Collect data that define a specific problem instance.   

 Generate a specific objective function and constraint equations from the model 

and data. 

 Solve the problem instance by running a program, or solver, to apply an 

algorithm that finds optimal values of the variables.  

 Analyze the results.  

 Refine the model and data as necessary, and repeat. 

Modeling language: 

People do not deal with mathematical programming in the same way that solvers do. 

The “modeler‟s form”, the form in which human modelers understand a problem, is 

different from the “algorithm‟s form”, the form in which solver algorithms work with 

the problem, and conversion from modeler‟s form to algorithm‟s form is a time-

consuming, costly and often error-prone procedure. In the algorithm‟s form, the largest 

part is producing the table of numbers that multiply all the variables in all the 

constraints, which is a very sparse (mostly zero) matrix with anywhere from hundreds 

to hundreds of thousands of rows and columns. A computer program that produces this 

matrix is called a matrix generator. Although matrix generators can successfully 

automate some of the work of translation from modeler‟s form to algorithm‟s form, 

they remain difficult to debug and maintain. Using a modeling language for 

mathematical programming is a way to avoid these difficulties. A modeling language is 

designed to express the modeler‟s form in a way that can serve as direct input to a 

computer system. Then the translation to the algorithm‟s form can be performed 

entirely by computer, without the intermediate stage of computer programming. 

Modeling languages can help to make mathematical programming more economical 

and reliable; they are particularly advantageous for development of new models and for 

documentation of models that are subject to change. 
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Since there is more than one form that modelers use to express mathematical programs, 

there is more than one kind of modeling language. In this research two modeling 

languages: „Mosel‟ and „AMPL‟ are implemented to model the optimization problem. 

Mosel is an advanced modeling and solving language and environment, where 

optimization problems can be specified and solved with the utmost precision and 

clarity. The modeling component of Mosel provides an easy to use yet powerful 

language for describing optimization problems. Through its modular architecture, 

Mosel provides access to data in different formats (including spreadsheets and 

databases) and gives access to a variety of solvers, which can find optimal or near-

optimal solutions to a problem [72]. 

AMPL is an algebraic
3
 modeling language for mathematical programming; it was 

designed and implemented by Fourer, Gay and kernighan around 1985 [71], and has 

been evolving ever since. AMPL is notable for the similarity of its arithmetic 

expressions to customary algebraic notation, and for the generality and power of its set 

and subscripting expressions. AMPL also extends algebraic notation to express 

common mathematical programming structures such as network flow constraints and 

piecewise linearities [71].  

Mosel is a modeling language appropriate to linear programming (LP). In this chapter, 

we will use a DC simplification to convert the MINLP problem to a MILP problem; 

therefore we are faced with a linear programming that can implement Mosel as the 

modeling language to produce the model‟s form of the OPF. 

 

                                                 

3
 An algebraic modeling language is a popular variety based on the use of traditional mathematical 

notation to describe objective and constraint functions. An algebraic language provides computer-

readable equivalents of notations that would be familiar to anyone who has studied algebra or calculus. 

Familiarity is one of the major advantages of algebraic modeling languages; another is their applicability 

to a particularly wide variety of linear, nonlinear and integer programming models. 
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4.4 Optimal Power Flow (OPF) in Electricity Market 

Economic Dispatch (ED) as an optimization problem had been used in electricity 

industry for almost 30 years. Traditionally, the transmission system was designed so 

that when the generation was dispatched economically there would be no limit 

violations. Hence, just solving economic dispatch was usually sufficient. With the 

worldwide trend toward deregulation of the electric utility industry, the transmission 

system is becoming increasingly constrained. As mentioned in the previous chapter, 

transmission limits affect the amount of power that can be transmitted through it. ED 

ignores the limits imposed by the devices in the transmission system. Combining ED 

with the power flow can solve this problem, the result combination is known as the 

Optimal Power Flow (OPF). Historically in 1962, Carpentier introduced a generalized 

nonlinear programming formulation of the economic dispatch problem including 

voltage and other operating constraints [73]. This formulation was later named the 

optimal power flow problem [74].  

OPF has been playing a very important role in power system operation and planning 

and has perhaps been the most significant technique for obtaining minimum cost 

generation patterns in a power system with existing transmission and operational 

constraints. Today OPF has been extended to any problem that involves the 

determination of the instantaneous optimal steady state of power system.  

OPF has a variety of applications in competitive electricity market. Transmission 

system with its natural monopoly characteristic is the major source of technical 

complication in a competitive electricity market and therefore has brought about many 

new potential applications and technical challenges to the OPF. It maximizes the social 

welfare in spot market clearing and pricing, minimizes generation cost or maximizes 

consumer net benefit in transmission pricing, minimizes the cost of congestion 

management in congestion management, maximizes the TTC in ATC evaluation, 

minimizes the cost of ancillary services in ancillary services procurement, and 

maximizes the revenue of transmission rights auction in transmission rights allocation. 

The progress in numerical optimization techniques and computer technology has 

brought development to the OPF techniques too [75-79]. These techniques may be 

classified as Gradient methods, Quadratic Programming (QP), Newton-based methods, 
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Linear Programming (LP), Interior Point methods, Heuristic optimization methods and 

Nonlinear Programming. 

 

4.5 Optimum location of FACTS devices in real-time 

balancing market 

In chapter 3, we represented generation re-dispatch as a method to alleviate congestion 

in a real-time balancing market. As we will see in detail in the following chapter, 

sometimes this solution is not feasible or is very expensive. Therefore we look into the 

problem of how to place and use FACTS devices optimally to minimize costs 

associated with generation congestion re-dispatch in a balancing market. The presence 

of FACTS devices brings integer variables to the problem and creates a Mixed Integer 

problem. On the other hand, OPF is naturally a nonlinear problem and in combination 

with integer decision variables becomes very difficult to solve. With the assumption 

that the network can be sufficiently well described by the DC OPF since only active 

power flows are investigated in this chapter, a DC simplification is implemented and a 

MILP problem is mathematically modeled. 

As discussed earlier, generators and loads trade most of the energy through bilateral 

contracts, while the balancing market allows for the adjustments that are necessary in 

order to ensure secure system operation. Both generators and loads are allowed to 

participate in this market and submit their offers and bids to increase or decrease power 

injections and allow system operator to modify submitted schedules. These 

modifications could be used to re-dispatch certain generators and alleviate network 

congestion.  

An example of such market design with bilateral contract trading can be found in the 

UK, where New Electricity Trade Agreements (NETA) was introduced in 2001. Under 

that new structure, the main mechanism to trade energy became bilateral trading done 

through forward and futures markets, as well as short-term power exchanges. The 

forwards and futures markets are bilateral contract markets for firm delivery of energy 

that trade from the short-term arrangement to a long-term agreement. In 2005 Scotland 

joined the electricity market of England & Wales and British Electricity Trading and 

Transmission Arrangements (BETTA) replaced NETA. However, there were no major 
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changes in the structure of the market design, as bilateral contracts remained the main 

trading mechanism. 

Therefore, the final adjustment between generation and demand in real-time through 

the Balancing Mechanism is a necessary physical market whose role is to ensure power 

balance and secure system operation. It is a centralized type of market where each 

market participant can submit offers and bids to participate and provide different types 

of services. Although less than 5% of energy is traded though this market, it is crucial 

for secure system operation. 

This Balancing Market is also used for congestion management. Each participant that is 

selected for re-dispatch will be instructed to either increases or decreases its active 

power bus injection, and will be paid for this service according to its submitted bid or 

offer. 

In addition, the incremental and decremental generation costs are assumed to be linear. 

This is also reasonable assumption, as it is used in practice (for example in the UK 

Balancing Market generators submit such linear bids and offers). 

In this research we are particularly investigating implementation of the Thyristor 

Controlled Phase Shifter Transformer (TCPST) devices, since a link between active 

power flows and voltage angle differences is dominant. And also we are neglecting 

reactive power injections and flows. 

 

4.5.1 Problem Formulation 

The objective is to investigate how application of FACTS devices can affect congestion 

management and congestion re-dispatch, and where to place and how to set these 

devices so as to minimize the cost of such generation re-dispatch. The problem of 

finding optimum location of FACTS devices can be expressed through the Mixed 

Integer Linear Programming (MILP). The idea is to allow for a possibility to install 

such a device in each transmission line and then formulate a problem to be able to use 

MILP solver to find the most optimal location. As mentioned before, it requires 

problem linearization and thus a DC network model is used.  
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Generation offers to increase, and bids to decrease their active power injections are also 

linear, as they can submit a few blocks of power at different prices. 

Therefore, the above-defined problem can be expressed as the following MILP 

optimization procedure: 

  



u,Pg
 ,Pg

 ,Pf ,,
Min (Ci

Pgi

 Ci

Pgi



i1

N

 )







 (4.7) 

Subject to,  



Pg Pg
 Pg

 Pd APf  (4.8) 



Pf BlA
t Bl (4.9) 



Pg
min  Pg

  Pg
max  (4.10) 



Pg
min  Pg

  Pg
max  (4.11) 



u.*max  u.*max  (4.12) 



1T u  N  (4.13) 



Pf Pf
max  (4.14) 

Where: 

N is the set of buses, 

L is the set of transmission lines, 



u is L vector of the binary variables, 



1 is L vector of 1‟s, 

.* is element by element vector multiplication, 



Pg
, Pg

minand Pg
max are vectors of bus generation increment outputs and limits, 



Pg
, Pg

minand Pg
max are vectors of bus generation decrement outputs and limits, 



Pd  is the vector of bus loads, 
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

Pg  is the vector of bus generation outputs (known vector), 

A is network node incidence matrix,
4
 



Pf and Pf
max  are vectors of line power flows and limits, 



 and max  are vectors of phase shifter settings  and limits, 



N is maximum specified number of TCPST‟s, 



Blis the diagonal matrix of line susceptances and 



  is the vector of bus angles. 

In the above formulation, the cost function, (4.7), minimizes the cost of modifying 

given generation output vector, where 



Ci
 is an incremental bid, submitted by a 

generator for the incremental generation change of 



Pgi
 . Similarly, 



Ci
 is a decremental 

bid, submitted by a generator for the decremental generation change of



Pgi
 . 

Furthermore, values of increments, 



Pgi
 , and decrements,



Pgi
 , have to be within the 

specified values, as defined by (4.10) and (4.11) (and with the nonnegative lower 

bound). In the above formulation the initial level of generation output



Pg  is known 

and defined by prearranged agreements between market participants. In this procedure, 

it is not a decision variable, but a specified parameter, and the objective is to minimize 

costs associated with modifying these initial values in congestion re-dispatch. 

Location of FACTS devices is modeled through a vector of binary variables 



u, which, 

as described in (4.1), defines whether a line is selected for the FACTS placement. 

Influence of the placed device on the system operation is taken into consideration by 

                                                 

4
 A is an 



N L  matrix that shows the topology of the network, the way the buses are connected through 

the lines with the matrix element being 



aij 

1, if flow j leaves node i

1, if flow j enters node i

0, if flow j is not incident with node i








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equation (4.9), which defines line power flows. Limits on phase shift angles 



  are 

modeled by (4.12). To limit a number of possible FACTS devices used, we introduce 

constraint (4.13), while equation (4.14) models line limits. 

Limitation on the number of FACTS devices,



N, is a useful parameter, as this 

technology is usually very expensive and it is reasonable to consider installation of only 

a few of these devices. 

Finally, for simplicity the above formulation considers that only generators are 

participating in congestion management re-dispatch, however, it will not be difficult to 

extend the model and include participation of demands. 

 

4.5.2 Implementation of Dash_xpress  

As mentioned in section 4.3, an optimization problem needs a modeling language and 

also a solver to produce the optimal solution/solutions. Dash Xpress is one of 

commercially available solvers able to solve MILP problems that are formulated with 

the Mosel language. Working with these Mosel models needs a graphical user interface, 

Xpress-IVE, which is available online [80] and provides a user-friendly environment. 

As in other windows applications, file menu handles file management. By means of an 

appropriate command a new blank file opens as shown in Appendix A.  

After starting up the Xpress-IVE, the next step is to creating and saving the Mosel file. 

A Mosel file has three main parts:  declarations, initializations, and mathematical 

formulations. In the declaration section, all the parameters and variables and their 

domains should be declared and placed between two commands: “declarations” and 

“end-declarations”. The initializations block is used for reading and writing data in 

Mosel-specific format and appears between two commands: “initializations from” and 

“end- initializations”. In the mathematical formulation block, constraints including 

equality and inequality constraints and the objective function are defined.  
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Solving the Mosel file can be done after writing and debugging the program. And 

finally printing the outputs and seeing the results is possible either in a separate file or 

in the same window shown in Appendix A.  

 

4.5.3 Simulation Results 

5-Bus Test System 

The derived formulation is first illustrated on a small 5-bus test system (example 11-9 

of reference [81]) shown in figure 4.4. The generators are placed in buses 1,2 and 4, 

while loads are at buses 2,3,4 and 5. 

  

 

 

 

 

 

 

Figure 4.4 System diagram for 5-bus test system 

 

Initial active power output of generators and also their incremental offers and 

decremental bids are given in Table 4.2. Both bids and offers specify a range of active 

power decrease or increase and associated price. The total demand given in the second 

row of Table 4.2 is equal to the total initial generation output of row 1. Thus, the 

system is in balance, and the generation re-dispatch is only due to network congestion. 

Table 4.3 gives values of line impedances, maximum line limits and angle limits of 

FACTS devices.  

 

3 

G 

1 4 

2 5 

G 

G 
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Table 4.2 Bus data for 5-bus test system 

 

Table 4.3 Line data for 5-bus test system 

Line From To 



xl [p.u] 



Pf
max [MW] 



max [] 

1 1 2 0.06 150 15 

2 1 3 0.24 60 15 

3 2 3 0.18 120 15 

4 2 4 0.18 100 15 

5 2 5 0.12 106 15 

6 3 4 0.03 50 15 

7 4 5 0.24 60 15 

 

 BUS 

1 2 3 4 5 



Pgi [MW] 142 178 0 80 0 



Pdi [MW] 0 40 150 80 130 



Pgi
max [MW] 40 50 0 30 0 



Pgi
min [MW] 0 0 0 0 0 



Pgi
max [MW] 40 50 0 30 0 



Pgi
min [MW] 0 0 0 0 0 



Ci
 [$ /MWh] 13.9 14.9 0 16 0 



Ci
 [$ /MWh] 12.9 13.9 0 15.5 0 
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Network node incidence matrix for the 5-bus test system shown in figure 4.4 is: 

 



A 

1 1 0 0 0 0 0

1 0 1 1 1 0 0

0 1 1 0 0 1 0

0 0 0 1 0 1 1

0 0 0 0 1 0 1























 and diagonal matrix of line susceptances is: 

 



B 

16.67 0 0 0 0 0 0

0 4.167 0 0 0 0 0

0 0 5.56 0 0 0 0

0 0 0 5.56 0 0 0

0 0 0 0 8.33 0 0

0 0 0 0 0 33.33 0

0 0 0 0 0 0 4.167





























. 

 

First, we will analyze a case with no FACTS, which can be obtained by setting the 

value of the maximum number of devices to zero, i.e.



N  0. The solution of this case 

indicates that the transmission line 5, between buses 2 and 5, is congested, and the cost 

of generations re-dispatch is 1312.6 $/h. The re-dispatch is carried out by reducing the 

output of generator 2 by 



Pg2

  45 MW, and increasing the output of generators 1 and 

4 by 



Pg1
 15 MWand 



Pg4

  30 MW, respectively. This means that the final values 

of generation outputs for generators 1, 2 and 4 became



Pg1 157 MW, 



Pg2 133 MW 

and



Pg4 110 MW. When the number of FACTS devices has increased to



N 1, the 

algorithm has chosen to place one device in line 4, between buses 2 and 4. This has 

reduced the cost of re- dispatch to zero, with the settings of the FACTS device



23  4. 

Moreover, all line flows are below the line limits. Table 4.4 shows the above numeric 

results. 
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Table 4.4 The effect of FACTS devices on the congested 5-bus test system 

B
u
s 
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m
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Without TCPST With one TCPST 

In
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g
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D
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an

g
e 

Total 

Cost 

In
cr

em
en

ta
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an

g
e 

D
ec

cr
em

en
ta

l 

ch
an

g
e 

Total 

Cost 

TCPST 

Location/ 

Setting 

MW MW $/h MW MW $/h Degree 

1 15 - 1312.6 - - 0.0 Line 4 

4 2 - 45 - - 

3 - - - - 

4 - - - - 

5 30 - - - 

 

Next, we will look into the situation when there is a change in the level of demand and 

trading. We will investigate the case when a load at bus 5 increases by 10 MW, so that 



Pd 5 140MW. To satisfy this increase this load has entered into a bilateral contract for  

10MW with generator 1, which then increases the initial output of this generator to 



Pg1 152MW. In the case with no FACTS devices, the problem does not have a 

solution. With one FACTS device the problem becomes feasible, and the cost of 

congestion re- dispatch is zero. The solution proposes to place FACTS device in line 3 

(from bus 2 to bus 3), with a setting of 



23  9.26. The results are shown in Table 4.5. 
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Table 4.5 The effect of FACTS devices on the 5-bus test system with an imbalance in 

generation and demand 

B
u
s 

n
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m

b
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Without TCPST With one TCPST 

In
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g
e 
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Total 

Cost 

In
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ta
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g
e 

D
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cr
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en
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l 

ch
an

g
e 

Total 

Cost 

TCPST 

Location/ 

Setting 

MW MW $/h MW MW $/h Degree 

1 No Solution 

(Infeasible problem) 

- - 0 Line 3 

9.26 2 - - 

3 - - 

4 - - 

5 - - 

 

 

14-Bus Test System 

In addition the proposed method is tested on a 14-bus network whose line impedances 

and load data can be found in the example „case14‟ of Matpower 3.0 program [82] and 

also are represented in Appendix B. Bus generation data, which include initial power 

output of generators, their incremental offers and decremental bids, and also a range of 

generation output increase and decrease, are specified in Table 4.6. As in the 5-bus 

system example, a value of a total demand is equal to the total initial generation output. 

This dispatch is only due to network congestion.  
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Table 4.6 Bus data for 14-bus test system 

The first analysis is carried out when maximum line flows for all lines are 



Pf
max  50 MW, except for lines 1, 2 and 3 for which   



Pf

max 100 MW. 

For these limits, lines 1 and 4 are congested, and there is need to re-dispatch a 

generation. As Table 4.7 illustrates, if there are no FACTS devices, the cost of this re-

dispatch is 1839.1$/h, and it is achieved by increasing outputs of generators 2 and 8 by 

  



Pg2

  29.2MW and 
  



Pg8

  8.9MWand decreasing the output of generator 1 by the 

same amount, i.e. 
  



Pg1

  38.1MW. If only one FACTS device, with the maximum 

value 



max 15 , can be installed, the proposed method yields a solution that places it 

in line 1, and sets the angle limits of 



1  -2.5. However, the operation still remains 

congested, which is managed by reducing the output of generator 1 by 

  



Pg1

  27.9MWand increasing the output of generator 8 by 
  



Pg8

  27.9MW. The cost 

of this re-dispatch is 1579.5 $/h. Increasing the number of FACTS devices to two will 

 BUS 

1 2 3 6 8 



Pgi [MW] 195 36 28 0 0 



Pgi
max [MW] 111.4 102 100 100 100 



Pgi
min [MW] 0 0 0 0 0 



Pgi
max [MW] 199 34.2 0 0 0 



Pgi
min [MW] 0 0 0 0 0 



Ci
 [$ /MWh] 31 31 42 42 42 



Ci
 [$ /MWh] 14.7 14.7 20 20 20 
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reduce the re-dispatch cost to zero by placing them in lines 4 and 5 and settings 



4  -5.3 and 



5  -11.6. 

Table 4.7 The effect of FACTS devices on the congested 14-bus test system 
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Without TCPST With one TCPST 
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Total 

Cost 

TCPST 

Location/ 

Setting 

MW MW $/h MW MW $/h Degree 

1 - 38.1 1839.1 - 27.9 1579.5 Line 1 

-2.5 2 29.2 - - - 

3 - - - - 

6 - - - - 

8 8.9 - 27.9 - 

 

The second analysis for this 14-bus network is carried out for a case when limits of 

lines 1 and 4 are changed to   



Pf

max 100MW, with angle limits of 



max 15  and the 

results are presented in Table 4.8. Without any FACTS devices a re-dispatch is 

achieved by decreasing output of generator 1 by 
  



Pg1

  36.7MW, and increasing 

outputs of generators 2 and 3 by 
  



Pg2

  31.8MWand 
  



Pg3

  4.9MW. The cost of this 

re-dispatch is 1732.9 $/h, and can be reduced to zero by placing FACTS in line 5 with a 

setting of 



max  -14. 
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Table 4.8 The effect of FACTS devices on the congested 14-bus test system with a 

change in the line flow limits 
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Without TCPST With one TCPST 
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Total 

Cost 

TCPST 

Location/ 

Setting 

MW MW $/h MW MW $/h Degree 

1 - 36.7 1732.9 - - 0 Line 5 

-14 2 31.8 - - - 

3 4.9 - - - 

6 - - - - 

8 - - - - 

 

4.6 Summary  

In this chapter, a review of related concepts such as the applications and DC and AC 

models of FACTS devices, and optimization in general and its role in electricity market 

has been presented and a congestion remedy method for real-time operation using 

TCPST‟s to reduce generation re-dispatch cost has been proposed.  

The main feature of this method is: optimal placement of FACTS devices can 

significantly reduce costs of generation re-dispatch in a Balancing Market, and thus 

improve system efficiency. Depending on the network topology, values of bilateral 

trades, as well as on increment and decrement generation limits, in some cases few 

devices may be needed to reduce these re-dispatch costs to zero. 
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The method is based on MILP procedure, so that commercially available modeling 

languages and solvers can be used. These solvers are robust and fast, and therefore can 

be used in analysis of large networks. Results indicate that application of FACTS 

devices can effective decrease costs of congestion re-dispatch, and even reduce them to 

zero.  
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Chapter 5. Investigation of Alternative Solvers for 
the AC OPF  

 

5.1 Introduction 

Solving the optimal power flow (OPF) problem is of increasing importance in power 

system operation under deregulated environment of the electricity industry. Power 

system engineers consider the OPF, which requires the iterative solution of a set of 

nonlinear algebraic equations, the most heavily used tool in power system operation. 

The nonlinear nature of power balance equations, convergence problem and non-

convexity of the OPF problems have left many solution difficulties for researchers. In 

certain applications, approximate models such as DC OPF, decoupled and linearized 

decoupled power flow are often substituted for the power flow equations. These 

simplifications are useful to carry out preliminary design studies but for more accurate 

assessment, the necessity of applying a full AC OPF still exists. The non-convexity of 

the OPF leads to the application of a variety of mathematical algorithms and solvers to 

prevent trapping in local solutions.  

In this chapter, after a review of most common simplification methods of OPF and 

advantages and disadvantages of using DC OPF, the optimal placement and setting of 

FACTS devices in real-time congestion management will be formulated by AC OPF as 

a MINLP problem and will be written by AMPL language. To avoid the local sub-

optima points the performance of different commercial solvers will be investigated. 

And finally a comparison between AC and DC OPF will be presented. 
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5.2 Power Flow Simplification Methods 

The solution of Power flow is the most accurate approach for modeling the steady state 

behavior of electric power transmission networks. From the power flow solution, which 

contains the voltage magnitude and phase angles at each bus in the system, all other 

values can be derived, including the real and reactive flows on all the lines in the 

system. There are always difficulties to solve the power flow equations which are 

represented in equations (5.1) and (5.2). 



Pi(,V)  Vi Vj

j1

N

 [G
ij

cos(
i
 

j
)  B

ij
sin(

i
 

j
)]           (5.1) 



Q i(,V)  Vi Vj

j1

N

 [G
ij

Sin(
i
 

j
)  B

ij
Cos(

i
 

j
)]          (5.2) 

The root of these difficulties is in the nonlinearity of power balance equations. These 

equations usually have a large number of alternative solutions or, more rarely, no 

solutions. So even when the power flow converges it may not have found the desired 

solution. Most of the time, the power flow algorithm must not only solve the power 

flow equations but also determine the optimal solution of large number of discrete 

variable controls such as the values for FACTS devices where in some algorithms the 

solution is highly dependent on the initial guess. 

Many approximate methods have been proposed and widely used to conquer the 

difficulties in solving the full power flow. The decoupled power flow, the linearized 

decoupled power flow and the DC power flow are among these models. The decoupled 

power flow model is based on observations on many typical power systems concluding 

that whereas the interactions between real power flows and phase angles and between 

reactive power flows and voltage magnitudes are strong, the interactions between real 

power and voltage magnitude and between reactive power and phase angles are weak. 

The Decoupled power flow is derived by the assumptions a) The line conductances are 

negligible b) The phase angles across branch are small so that 



cos( i  j) 1 and 



sin( i  j)  ( i  j)  c) Voltage magnitudes are close to unity and do not thus affect 

real power flows. Under these simplifying assumptions power flow equations are: 



Pi()  B
ij
(

i
 

j
)

j1

N

               (5.3) 



Chapter 5. Investigation of Alternative Solvers for the AC OPF Model  

 78 



Q i(V)   Vi Vj

j1

N

 B
ij
              (5.4) 

The decoupled load flow dependency of reactive power on voltage magnitude is 

nonlinear and it is often convenient to linearize it and this ends with the linearized 

decoupled power flow simplification [83]. 

DC simplification: 

The DC power flow greatly simplifies the power flow by making a number of 

approximations including a) completely ignoring the reactive power balance equations, 

b) assuming all voltage magnitudes are identically one per unit, c) ignoring line losses, 

and d) ignoring tap dependence in the transformer reactances. Hence the DC power 

flow reduces the power flow problem to a set of linear equations: 



Pi Bl               (5.5) 

by using some algebraic matrix multiplying rules: 



Pi  (AB lA
t )              (5.6) 



Pi A(BlA
t)              (5.7) 

and substituting  



BlA
t  by 



Pf : 



Pi A(Pf )               (5.8) 

equation (5.8) will be derived which is exactly the same equation as (4.8) in the 

previous chapter. Where 



Bl  is the diagonal matrix of line susceptances, 



A  network 

node incidence matrix and 



A t
, its transpose. 

Choosing between the simplified and full power flow, depends on the variables under 

study and the required accuracy. For example, in the cases that the study of reactive 

power is necessary, both the decoupled and linearized decoupled power flow are 

effective. And when the reactive power study is not included in the investigation, the 

DC power flow solution approximates the real power flow solution very well. The 

effectiveness of DC OPF to find optimal placement of FACTS devices was observed in 

chapter 4 where reactive power re-dispatch and also bus voltage constraints weren‟t 

subject of the study. 
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The lack of the transmission line losses in the DC OPF is its most obvious difference 

from AC OPF that can be reasonably compensated for by increasing the total DC load 

by the amount of the AC losses. Hence, in the DC approach the estimated transmission 

system losses could be allocated to the bus loads. This requirement to first estimate the 

losses is usually not burdensome since the specified total control area “load” is actually 

the true load plus the losses. Indeed, the control area total loads given in the U.S. FERC 

Form 714 filings are actually load plus losses. Therefore in attempting to duplicate the 

Form 714 load values with a full power flow the true load must be estimated by taking 

the reported load and subtracting off the estimated losses [84].  

However, simplicity and accuracy are two desirable features in the DC and AC OPF 

trade-off. DC OPF simplifies and linearizes the power flow equations, (5.5) and (5.8), 

and since the equations are linear they always have a single solution, which can be 

directly calculated by eliminating the need for iterations. On the other hand, AC OPF 

provides more accurate solutions incorporating reactive power and voltage analysis. 

These features of the AC OPF are not possible unless being involved with some issues 

such as nonlinearity, convergence, infeasibility, non-convexity and local optimum 

points. In the next section, the problem of transmission congestion in real-time 

balancing market that was formulated by implementation of FACTS devices and solved 

using DC OPF before will be solved using AC OPF.  

 

5.3 AC OPF Problem Formulation (MINLP) 

Using the general optimization pattern, equations (4.4) to (4.6), the AC form of 

equations (4.7) to (4.14) can be derived as equations (5.9) to (5,21). The main 

difference between these two sets of equations is in the power flow equations, (5.11) 

and (5.12), which are nonlinear, reactive power generations and their bids and also bus 

voltage magnitudes and angles. Practically, the variables in OPF problem can be 

divided into continuous variables, such as generator outputs (
  



P
gi

, Q
gi

) and bus voltage 

magnitude (
  



V
i

), and discrete variables, such as phase shifters settings (
  




ij
) and the 

binary variables (
  



u ij), that shows the presence of the phase shifter in the transmission 

line. In addition, considering the nonlinearity of the active and reactive power equality 
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constraints, the problem can be expressed through the Mixed Integer Non-Linear 

Programming (MINLP). 



Minimize (Cpgi




i 1

N

 Pgi

 Cpgi


Pgi

 Cqgi


Qgi

 Cqgi


Qgi


)   (5.9) 

Subject to, (5.10) 

  



Pgi  Pgi


 Pgi


 Pdi 



Vi Vj

j1

N

 [G
ij

cos(
i
 

j
 

ij
)  B

ij
sin(

i
 

j
 

ij
)]  (5.11) 



Qgi  Qgi


 Qgi


 Qdi 



Vi Vj

j1

N

 [G
ij

sin(
i
 

j
 

ij
)  B

ij
cos(

i
 

j
 

ij
)]  (5.12) 

  



0  P
gi


 P

gi

max
 

(5.13) 

  



0  P
gi


 P

gi

max
 

(5.14) 

  



0  Q
gi


 Q

gi

max
 

(5.15) 

  



0  Q
gi


 Q

gi

max
 

(5.16) 

  



P
ij

 P
ij

max
 

(5.17) 

  



Vi

min Vi Vi

max
 

(5.18) 

  



i

min
 i  i

max
 (5.19) 

  



uijij

max
ij  uijij

max
 

(5.20) 

Nu
L

i j

i j 
1

 
(5.21) 

Where: 

  



N is the number of buses, 

  



L  is the number of lines,  
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

P
gi


, P

gi

max
are the incremental change of active power generation at bus i and the 

upper   limit, 

  



P
gi


, P

gi

max
are the decremental change of active power generation at bus i and the upper 

limit,  

  



Q
gi


, Q

gi

max
are the incremental change of reactive power generation at bus i and the  

upper limit, 

  



Q
gi


, Q

gi

max
are the decremental change of reactive power generation at bus i and the 

upper limit,  

  



C
pgi


, C

pgi


 are the incremental and decremental costs of active power generation at bus i, 

  



C
qgi


, C

qgi


 are the incremental and decremental costs of reactive power generation at bus 

i, 

  



P
di

, Q
di

are the active and reactive loads at bus i,  

  



P
gi

, Q
gi

are the active and reactive generation outputs at bus i, 

  



P
ij

, P
ij

max
are the transmission line flow at line ij and the limit,  

  



V
i

,V
i

max
, V

i

min
are the voltage magnitude at bus i, the upper and lower limits, 

  




i

,
i

max
, 

i

min
are the voltage angle at bus i, the upper and lower limits, 

  



G
ij

is the element ij of the line conductance matrix, 

  



B
ij

is the element ij of  the line susceptance matrix,  

  




ij

,
ij

max
 are the phase shifter setting at line ij and the limit, 

  



N  is the maximum specified number of TCPST devices, 
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

u ij is the binary variables that model the presence of a FACTS device in line ij. 

Similar to the DC OPF, the objective function (5.9) minimizes the re-dispatch cost, 

where 
  



C
pgi



 
is an incremental bid, submitted by generator i for the incremental active 

generation change of 
  



P
gi



 
and 

  



C
pgi


 is a decremental bid submitted by generator i for its 

decremental active generation change of 
  



P
gi


. Similarly, 

  



C
qgi



 
is an incremental bid, 

submitted by generator i for the incremental reactive generation change of 
  



Q
gi



 
and 

  



C
qgi


 is a decremental bid submitted by generator i for its decremental reactive 

generation change of 
  



Q
gi


.  The values of active and reactive power increments, 

  



P
gi


 

and 
  



Q
gi


, and decrements, 

  



P
gi


 and 

  



Q
gi


 have to be within specified values as defined 

by (5.13) to (5.16). The initial levels of both active and reactive generation outputs 
  



P
gi

 

and 
  



Q
gi

 are not decision variables because they are known and defined by prearranged 

agreements between market participants. The power flow equations, (5.11) and (5.12), 

are used as equality constraints; the active and reactive incremental and decremental 

generation limits in (5.13) to (5.16), active power flow limits in transmission lines 

(5.17), bus voltage and angle limits (5.18) and (5.19), phase shifter setting and number 

limits (5.20) and (5.21), are used as inequality constraints. The line active and reactive 

power flow equations, as were presented in the previous chapter, where the TCPST AC 

model was introduced, are: 

  



Pij  GijVi

2 ViVj[Gijcos(i  j ij)Bijsin(i  j ij)]                                    (5.23) 
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

Qij GijVi

2 ViVj[Gijsin(i  j ij) Bijcos(i  j ij)]                                     (5.24)   

The binary variable 
  



u ij in (5.20) describes whether a transmission line is selected for 

the FACTS placement and the influence of the placed device on the system operation is 

taken into consideration by equations (5.11), (5.12), (5.23) and (5.24). And the 

limitation on the number of the FACTS devices,   



N
, is considered in Equation (5.21).  

5.3.1 Reactive Power in Real-time Balancing Market 

Reactive power in order to participate in the power market needs to be priced. 

Analyzing the costs of providing reactive power services and establishing an 

appropriate price structure are important both financially and operationally for the 

deregulated electric industry. In general, there are two ways of supplying reactive 

power and controlling voltage: a) installing facilities as part of the transmission system 

and b) using generation facilities. Static sources of reactive power such as capacitors 

generally have their costs rolled into transmission charges or into the regulated retail 

rate structure. In this study, as equation (5.9) shows, the generation re-dispatch cost in 

real-time balancing market is the objective of the optimization. Therefore the focus is 

on the generator reactive production costs. 

 In [85], Momoh et al calculate the Locational Marginal Prices (LMPs) for real and 

reactive power. They consider the production cost of reactive power from various 

generation sources including generators and reactive compensators. In this case study, 

the reactive power cost concluding both generators and compensators is almost 0.2% of 

the total cost. This paper indicates that reactive power generation for local control is 

still on a small-scale level when compared to conventional generation; it does not 

constitute a market value in the present environment. 

 In [86], Baughman and siddiqi analyze the real-time pricing of active and reactive 

power using a modification of the OPF model with the objective of maximizing social 

welfare. The real-time price of active power at a specific bus at peak hour is almost 25 

$/MWH and this price for reactive power is almost 0.67 $/MVARH.  
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There are other researches such as [87-98] that investigate implementation of different 

tools in reactive power pricing mechanisms. Seifossadat et al in [87] use sequential 

linear programming method to solve the OPF. The results shows that including the 

production cost of reactive power in the objective function affects on the reactive 

power marginal costs and slightly changes the real power marginal costs because the 

cost of reactive power generation is low in comparison with active power. Hao and 

Papalexopoulos in [88] note that the reactive power marginal price is typically less than 

1% of the active power marginal price and depends strongly on the network constraints, 

and that the cost of reactive power production should be included in the formulation for 

calculating the reactive power marginal price. Dia et all in [89] include the production 

cost of reactive power including capacitor bank and reactive power generation into the 

objective function of the OPF problem and use sequential quadratic programming 

method to solve the optimal problem and have come to the conclusion that the active 

power marginal price sub-problem can be studied with reactive power production cost 

neglected. Niknam et al in [93] present various objective functions considering the cost 

of active power and both active and reactive powers produced by generators. The test 

results show a very small difference in the total cost. 

In [99], Papalexopoulos and Angelidis have considered two general ways to 

compensate generators for providing reactive power. One way is the capacity payment 

option, in which the generator is paid in advance for the capability of producing or 

consuming reactive power. The payment could be made through a bilateral contract or 

through a generally applicable tariff provision. Once the generator is paid, it could be 

obligated to produce or consume reactive power up to the limits of its commitment 

without further compensation when instructed by the ISO. To ensure that the generator 

follows instructions in real time, the generator could face penalties for failing to 

produce or consume when instructed. The other way is the real-time price option, in 

which the generator is paid in real-time for the reactive power that it actually produces 

or consumes. This pricing option falls under the general method of nodal reactive 

power pricing [86 and 100]. Under this option, the generator is paid only for what it 

produces or consumes, but it pays no penalty for failing to produce when instructed. It 

is also possible to combine some of the features of each of these options.  
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Papalexopoulos, believes that in practice, reactive power cannot be traded like the 

active power. The reactive power markets suffer from severe market power concerns, 

therefore competition is very difficult to develop. The reason is that in many areas few 

generators are available to compete, therefore they have market power. The other key 

reason is that reactive power cannot travel too far, so reactive power markets are very 

much localized. For these reasons the ISOs sign long term contracts with these 

generators to procure reactive power services. There are many academic papers that 

present methodologies for reactive power markets, but in fact reactive power markets 

have not been developed in practice.  

The cost of the reactive power because of its small amount in compare with active 

power generation cost is neglected; therefore equation (4.7) can still be used as the 

objective function. 

 

5.4 How to Implement AMPL 

The problem that is initially formulated in section 5.2 by use of the traditional algebraic 

notation is an algebraic model and must be converted to modeling language statements. 

The selection of the modeling language depends on its ability to model the Mixed 

Integer Non-Linear Problems (MINLP). AMPL, A Modeling Language for 

Mathematical Programming, has this ability and is used to model the problem.  

AMPL separates the model, which describes the mathematical program to be solved; 

from the data, the numbers that specify one instance of the problem [71].  

5.4.1 Writing Model and Data Files 

The five major parts of an algebraic model i.e. sets, parameters, variables, objectives 

and constraints, are also the five kinds of components in an AMPL model.  

 Sets 

A set can be any unordered collection of objects pertinent to a model. Buses and lines 

in this study are two different sets: 

set BUSES;  

set LINES within {i1 in BUSES, i2 in BUSES}; 
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 Parameters 

A parameter is any numerical value pertinent to a model. The simplest kind of 

parameter is a single, independent value, such as the active power generation in each 

bus. Most AMPL statements that declare parameters also specify certain restrictions on 

them. 

param Pg {BUSES}>=0;   # Bus active generation output 

param Pd {BUSES}>=0;   # Bus active loads 

 Variables 

Continuous variables are declared much like the parameters. The only substantial 

difference is that the values of the variables are to be determined through optimization, 

whereas the values of the parameters are data given in advance. Bus voltage 

magnitudes and line power flows are examples of variable declaration: 

var V {i1 in BUSES} >= V_min[i1], <= V_max[i1]; 

var Pf {(i1,i2) in LINES};   

Binary variables are declared similar to the continuous except for the „binary‟ that 

should be stated e.g. the presence of a FACTS device in a line can be declared as: 

var u {LINES} binary; 

 

 Objectives 

An objective function can be any expression in the parameters and variables such as: 

 
minimize total_cost: sum {i1 in BUSES} 

Inc_Cost[i1]*delta_Pg_Inc[i1]               

   + Dec_Cost[i1]*delta_Pg_Dec[i1]; 

 

 Constraints 

A constraint may be any equality or inequality in the parameters and variables. Thus a 

model‟s constraints use all the same kinds of expressions as its objective. The AMPL 

representation for a collection of constraints must specify two things: the set over 

which the constraints are indexed, and the expression for the constraints. Thus the limit 

on the phase shifters number looks like this: 

subject to Phase_shifter_Number_limit:  

sum {(i1,i2) in LINES}  u[i1,i2] <= N_Phi; 
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A model file is made up of the above five parts and is recognized by a filename and the 

extension „.mod‟. Appendix C shows the „OPF1.mod‟ as an AMPL model file.  

 Data 

Once the AMPL translator has read and processed the contents of OPF1.mod in 

Appendix C, it is ready to read the data. The data for the 5_bus test system in the 

previous chapter are represented in the data format with the extension „.dat‟ in 

Appendix C.  

5.4.2 Running AMPL 

Once the data values have been read successfully, the members of all sets and the 

values of all parameters are known. The AMPL translator can then identify the 

variables that will appear in the resulting nonlinear program, determine the coefficients 

and constants in the objective and constraints, and write the output suitable for an 

algorithm. Running AMPL is very straightforward by simply typing three statements in 

the command windows shown in Appendix C. 

To change the default options, a command line such as: 

Option solver minos; 

can be used. For instance, this command changes the default solver to „minos.‟  

 

5.5 MINLP solvers at NEOS 

Solving the modeled problem is possible by using either the AMPL solvers in the 

command window or a server named „NEOS‟ [101, 102]. For error handling and 

debugging purposes, the first option is more beneficent whereas NEOS provides a 

variety of online solvers, where optimization problems are solved automatically by 

submitting the model and data file to a suitable solver. On the solver page, [103], a list 

of different solvers under the type of optimization problem is provided. By choosing 

MINLP from „Mixed Integer Nonlinearly Constrained Optimization‟ category and 

clicking on „AMPL Input‟ a page appears. By submitting the model and data file and an 

optional command files, the solution, which is the value of the objective function, will 
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be produced and returned in a separate window. Command file is a „mod‟ file that 

contains AMPL commands and can be used to return other outputs to the user. An 

example of such a file is given in Appendix C. 

There are five solvers in the MINLP category that can read AMPL language: Bonmin, 

Couenne, FilMINT, KNITRO and MINLP. In this research the behavior of these 

solvers will be investigated. 

 MINLP 

MINLP implements a branch-and-bound algorithm searching a tree whose 

nodes correspond to continuous nonlinearly constrained optimization 

problems and the continuous problems are solved using filter SQP, a 

Sequential Quadratic Programming solver. 

 Bonmin 

Bonmin is a hybrid between two classical algorithms for mixed integer 

nonlinear programming: an outer-approximation-based branch-and-cut-

based algorithm and a pure branch-and-bound algorithm [104]. 

 Couenne 

Couenne is a branch and bound algorithm to solve non-convex MINLP 

problems [105, 106]. 

 FilMINT 

FilMINT is based on the LP/NLP algorithm by Quesada and Grossmann 

implemented in a branch-and-cut framework [107]. 

 KNITRO 

KNITRO is a solver for nonlinear optimization that provides three 

algorithms: Interior-point Direct, Interior-point CG and Active Set [108]. 

 

 

http://www.ziena.com/threealgs.htm
http://www.ziena.com/threealgs.htm
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5.6 Simulation Results 

First of all the performance of the derived mathematical model in section 5.3, 

regardless of the implemented solver should be investigated. Therefore in the sections 

5.6.1 and 5.6.3, the ability of TCPSTs to reduce the re-dispatch costs due to congested 

lines by implementing MINLP solver are shown and discussed. The 5-bus and 14-bus 

test system that were used in chapter 4 to investigate the DC OPF applications are used 

in the AC OPF study too. The necessary data to investigate the AC OPF considering 

bus voltage limits, line conductance and susceptance matrices, reactive power 

generations and their incremental and decremental limits are given in Appendix B.  

  

5.6.1 MINLP solver on 5-bus test system 

Test1.  

The value of the total active power demand, the second column of Table B.1 in 

Appendix B, is equal to the value of the total initial active power generation output of 

column four. This means that the system is in balance, and the generation re-dispatch is 

only due to network congestion.  

If we analyze the case with no FACTS, by setting the number of FACTS to zero, 

running the program shows that line 2-5 is congested and a generation re-dispatch is 

needed. The new generation re-dispatch and also the cost associated with this re-

dispatch is shown in Table 5.1. When the number of FACTS has increased to one, the 

algorithm has chosen to place one device in line 2-4. This has reduced the re-dispatch 

cost to 10.64 $/h. 
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Table 5.1 MINLP solver and 5-Bus test system in test 1 
B

u
s 

n
u

m
b

er
 

Without TCPST With one TCPST 

Incremental 

change 

Decremental 

change 

Total 

Cost 

Incremental 

change 

Decremental 

change 

Total 

cost 

TCPST 

Location 

/Setting 

MW MW $/h MW MW $/h Degree 

1 18 - 1386.5 0.77 - 10.64 

Line 2-4 

 

3.58 

 

2 - 47.5 - - - - 

3 - - - - - - 

4 30 - - - - - 

5 - - - - - - 

 

Test2. Now we consider the case with a change in the level of demand and trading. 

Suppose a load in bus 5 increases by 10 MW, to satisfy this increase, this load enters 

into a bilateral contract for 10 MW with generator 1, which has the cheapest 

incremental cost, so the new active power generation values are:
  



Pg1 152MW, 

  



Pd5 140MWand as Table 5.2 indicates, in the case with no FACTS device, MINLP 

solver doesn‟t produce any solution. To investigate the reason, whether the algorithm 

of MINLP solver doesn‟t converge or the problem is infeasible, the behaviors of other 

solvers are also verified and shown in section 5.6.2 in detail and becomes clear that the 

problem without FACTS devices is infeasible and by adding one TCPST in line 2-3, it 

becomes feasible. 
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Table 5.2 MINLP solver and 5-Bus test system in test 2 
B

u
s 

n
u

m
b

er
 

Without TCPST With one TCPST 

Incremental 

change 

Decremental 

change 

Total 

Cost 

Incremental 

change 

Decremental 

change 

Total 

cost 

TCPST 

Location 

/Setting 

MW MW $/h MW MW $/h Degree 

1 

No solution  

(infeasible problem) 

1.95 - 27.17 

Line 2-3 

 

10.15 

 

2 - - - 

3 - - - 

4 - - - 

5 - - - 

 

Test3. When the number of FACTS devices is increased to 2, the re-dispatch cost has 

still a value of 11.60 $/h. Increasing the number of FACTS devices will decrease re-

dispatch costs in a Balancing Market, however, for the given generation dispatch it is 

impossible to reduce it to zero, even if we use 3 FACTS devices. The results are shown 

in Table 5.3. 

In any optimization problem and especially in non-convex problems such as OPF, there 

is always a possibility of receiving different local optimum. In the next section, the 

solutions of MINLP solver are discussed by running other mixed integer nonlinear 

solvers. 
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Table 5.3 MINLP solver and 5-Bus test system in test 3 
B

u
s 

n
u

m
b

er
 

With Two TCPSTs With Three TCPSTs 

Incremental 

change 

Total 

Cost 

TCPST 

Location 

/Setting 

Incremental 

change 

Total 

cost 

TCPST 

Location 

/Setting 

MW $/h Degree MW $/h Degree 

1 0.83 11.60 

Lines 

1-2/1.26 

4-5/3.74 

0.83 11.60 

Lines 

1-2/1.16 

3-4/-0.26 

4-5/3.86 

2 -  - - 

3 -  - - 

4 -  - - 

5 -  - - 

 

5.6.2 Bonmin, FilMINT,  KNITRO and  COUENNE Solvers 

The above results illustrate that optimal placement of FACTS devices can significantly 

reduce costs of generation re-dispatch in Balancing Market, but whether MINLP solver 

produces the best solution or not is investigated in this section by using other solvers 

such as Bonmin, FilMINT, KNITRO and COUENNE that can also read AMPL files. 

 The data of Test 1 are used in this comparison. With no FACTS devices all the solvers 

return one solution, and with FACTS devices, except for the FilMINT which doesn‟t 

work properly on this problem, the other solvers produce very close results on the 5-bus 

test system. Results are presented in Table 5.4 and Figure 5.1. 
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Table 5.4 Comparison between different solvers behaviors on 5-Bus test system  
N

u
m

b
er

 o
f 

T
C

P
S

T
 Cost of generation re-dispatch 

($/h) 

MINLP Bonmin FilMINT KNITRO COUENNE 

0 1386.51 1386.51 1386.51 1386.51 1386.51 

1 10.6350 10.6350 1381.51 10.6814 10.6350 

2 8.2949 8.3279 1381.51 8.2949 8.2949 

3 8.2869 8.3601 1381.51 8.2869 8.2869 

 

 

Figure 5.1 A Comparison between different solvers results on 5-Bus test system 

MINLP solver in Test 2 with no FACTS devices does not have any solution. Although 

Bonmin returns a cost function equal to 11937.9 $/h, it also states that the probability of 

infeasible problem or too expensive solution exists. FilMINT fails and KNITRO 

returns 1409.73$/h with the possibility of convergence to an infeasible point and also 

declares that Problem may be locally infeasible.  COUENNE returns only „infeasible 

problem‟. 
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5.6.3 MINLP solver on 14-bus test system 

Table 5.5 is a summary of Table B.3 in Appendix B and shows the bus data of the 14-

bus test system. 

Table 5.5 14-Bus test system bus data 

The maximum line flows for all lines are set to 50 MW, except for lines 1, 2 and 3 for 

which 150MW, line 7 is congested and there is need to re-dispatch a generation. 

 

5.6.3.1 Non strict voltage limits 

By applying the conditions of Test1 to the 14-bus test system where total active power 

generation and total active power demand are equal and system is in balance and also 

setting the voltage limits to 0.8 and 1.2 for all the buses, similar results and conclusions 

are obtained. As the results in Table 5.6 show, a considerable reduction in costs from 

2880$/h to 343.5$/h occurs by placing three TCPST in lines 1-2, 1-5 and 3-4.  

 BUS 

1 2 3 6 8 



Pgi [MW] 195 36 28 0 0 



Pgi
max [MW] 111.4 102 100 100 100 



Pgi
min [MW] 0 0 0 0 0 



Pgi
max [MW] 199 34.2 0 0 0 



Pgi
min [MW] 0 0 0 0 0 

  



Qgi [MVAR] 0 0 0 0 0 

  



Qgi

max [MVAR] 250 50 40 24 24 

  



Qgi

max [MVAR] 40 50 40 24 24 



Ci
 [$ /MWh] 31 31 42 42 42 



Ci
 [$ /MWh] 14.7 14.7 20 20 20 
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Table 5.6 MINLP solver and 14-Bus test system with voltage limits as 0.8 and 1.2 

for all the buses 

B
u

s 
n

u
m

b
er

 

Without TCPST With one TCPST 

Incremental 

change 

Decremental 

change 

Total 

Cost 

Incremental 

change 

Decremental 

change 

Total 

cost 

TCPST 

Location 

/Setting 

MW MW $/h MW MW $/h Degree 

1 - 45.3 2880 - 9.5 1007 

Line 5-6 

 

9.9 

 

2 - -  - - - 

3 - -  - - - 

6 40.4 -  20.6 - - 

8 12.3 -  - - - 

B
u

s 
n

u
m

b
er

 

With Two TCPSTs With Three TCPSTs 

Incremental 

change 

Total 

Cost 

TCPST 

Location 

/Setting 

Incremental 

change 

Total 

Cost 

TCPST 

Location 

/Setting 

MW $/h Degree MW $/h Degree 

1 - 392.10 

Lines 

4-7/6.2 

5-6/7.5 

- 343.5 

Lines 

1-2/4.8 

1-5/6.7 

3-4/2.9 

2 6.7  11 - 

3 -  - - 

6 -  - - 

8 4.4  - - 

Increasing the number of TCPST devices to 4 and more, Figure 5.2, can‟t make a 

considerable change in the generation re-dispatch cost. With no FACTS device, line 4-5 

is congested which causes a 2867$/h generation re-dispatch cost. Adding one FACTS 

device in line 5-6 reduces the power flow of line 4-5 but makes line 5-6 congested. 

Placing another FACTS devices in line 4-7 improves the re-dispatch cost while lines 2-

4 and 5-6 will operate at their upper power flow limits and in the case of 3 TCPSTs, the 

least cost is achieved yet line 7 operates at its upper limit i.e. 50 MW and remains at 

this power flow even if more FACTS devices are implemented.  The changes in 
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transmission line power flows are shown in Table 5.7. This is the reason why it is not 

possible to completely reduce re- dispatch costs to zero, even if FACTS devices are 

placed in each line. This is not a surprising result, considering that the role of these 

devices in not to replace transmission expansion and upgrade, but rather only help 

improve transmission capacity to certain extent. 

 

 

Figure 5.2 The effect of increasing the number of TCPSTs on generation re-dispatch 

cost 
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Table 5.7 Transmission line power flow of 14-bus test system in test1 

 

 

Line 

Index 

From 

Bus 

To 

Bus 

Maximum 

Line Power 

Flow [MW] 

Line Power Flow [MW] for the number of TCPSTs equal to: 

0 1 2 3 

1 1 2 150 101 123 130 123 

2 1 5 150 48 62 66 72 

3 2 3 150 51 55 57 67 

4 2 4 50 38 45 50 45 

5 2 5 50 26 36 40 33 

6 3 4 50 16.5 13 11 1 

7 4 5 50 50 37 44 50 

8 4 7 50 12.5 12 32 29 

9 4 9 50 10 7 2 16 

10 5 6 50 14 50 50 44 

11 6 11 50 13.5 24 11 7 

12 6 12 50 9 10 8 8 

13 6 13 50 21 26 20 18 

14 7 8 50 12.3 0 4 0 

15 7 9 50 25 12 37 29 

16 9 10 50 1 10 2 6 

17 9 14 50 6 0.3 7.2 10 

18 10 11 50 10 19 7 3 

19 12 13 50 2.4 4 2 2 

20 13 14 50 9.5 16 8 6 
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5.6.3.2 Strict voltage limits 

When the voltage limits are changed to the default voltage magnitude limits in [82], i.e. 

0.95 and 1.05 p.u for PQ buses and 0.8 and 1.2 p.u for PV buses, a slight reduction in 

re-dispatch costs, shown in Table 5.8 and Figure 5.3 occurs.  

 

Table 5.8 MINLP solver and 14-Bus test system with strict voltage limits 

B
u

s 
n

u
m

b
er

 

Without TCPST With one TCPST 

Incremental 

change 

Decremental 

change 

Total 

Cost 

Incremental 

change 

Decremental 

change 

Total 

Cost 

TCPST 

Location 

/Setting 

MW MW $/h MW MW $/h Degree 

1 - 110 6357.81 - 107 6214.01 

Line 5-6 

 

-3.18 

 

2 - - - - - - 

3 38 - - 35 - - 

6 51 - - 53 - - 

8 25 - - 23 - - 

B
u

s 
n

u
m

b
er

 

With Two TCPSTs With Three TCPSTs 

Incremental 

change 

Decremental 

change 

Total 

Cost 

Incremental 

change 

Decremental 

change 

Total 

Cost 

TCPST 

Location 

/Setting 

MW MW $/h MW MW $/h Degree 

1 - 105 6117.8 - 104 6085.3 

Lines  

2-5/-3.8 

4-5/-3.1 

6-12/-1.4 

2 - - 

Lines 

2-5/-3.9 

4-5/-3.2 

- - - 

3 34 - 33 - - 

6 52 - 52 - - 

8 23 - 23 - - 
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Figure 5.3 Increasing the number of TCPSTs under strict voltage limits 

 

It means that using FACTS devices doesn‟t affect the re-dispatch generation cost in the 

presence of strict voltage limits. As Table 5.9 indicates none of the transmission lines 

violate their power flow constraints, but bus 14 has reached to its lower voltage limit 

i.e. 0.95 p.u which remains at this value even after adding 3 TCPST devices, the last 

row of Table 5.10.  
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Table 5.9 Transmission line power flow of 14-bus test system in the presence of strict 

voltage limits 

 

Line 

Index 

From 

Bus 

To 

Bus 

Maximum 

Line Power 

Flow [MW] 

Line Power Flow [MW] for the number of TCPSTs equal to: 

0 1 2 3 

1 1 2 150 56.1 58.6 43.9 44.7 

2 1 5 150 29.3 29.2 45.9 45.6 

3 2 3 150 26.6 28.8 27.7 28.1 

4 2 4 50 25.5 26.6 23.7 24 

5 2 5 50 17.4 16.6 6.2 6.3 

6 3 4 50 2.04 3.4 5 5.2 

7 4 5 50 34.4 42 46.7 46.6 

8 4 7 50 2.9 7.8 8 8.1 

9 4 9 50 6.7 9.1 9.1 9.2 

10 5 6 50 3.87 4.6 3.7 3.76 

11 6 11 50 13.6 10.1 10.1 10.4 

12 6 12 50 8.6 8.2 8.2 5.5 

13 6 13 50 21 19.2 19.2 21.7 

14 7 8 50 24.6 22.8 22.6 22.5 

15 7 9 50 27.6 30.6 30.6 30.5 

16 9 10 50 0.77 2.8 2.6 2.3 

17 9 14 50 5.5 7.6 8 8 

18 10 11 50 9.8 6.4 6.4 6.7 

19 12 13 50 2.4 2.01 2 0.7 

20 13 14 50 9.6 7.4 7.4 7.1 
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Table 5.10 Bus voltages of 14-bus test system in the presence of strict voltage limit 

BUS   



Vi

min

 

[p.u] 

  



Vi

max

 

[p.u] 

Bus voltages [p.u] for the number of 

TCPSTs equal to: 

0 1 2 3 

1 0.8 1.2 1 1 1 1 

2 0.95 1.05 1.01 1.01 1.01 1.01 

3 0.95 1.05 1.007 1.01 1 1.005 

4 0.95 1.05 0.99 0.99 0.99 0.99 

5 0.95 1.05 0.994 0.994 0.994 0.994 

6 0.8 1.2 0.998 0.996 0.995 0.995 

7 0.8 1.2 0.99 0.992 0.992 0.99 

8 0.8 1.2 1.03 1.03 1.032 1.032 

9 0.95 1.05 0.97 0.97 0.97 0.97 

10 0.95 1.05 0.964 0.966 0.966 0.965 

11 0.95 1.05 0.977 0.976 0.977 0.976 

12 0.95 1.05 0.98 0.979 0.98 0.977 

13 0.95 1.05 0.974 0.973 0.972 0.972 

14 0.95 1.05 0.95 0.95 0.95 0.95 

 

Reaching to the voltage limits turns the attention to the reactive power concepts and the 

possibility of using other FACTS devices that can affect the voltage by injecting or 

absorbing reactive power. 

 

5.6.4 Bonmin, FilMINT,  KNITRO and  COUENNE Solvers on 14-bus test 

system 

The behaviors of Bonmin, FilMINT, KNITRO and COUENNE in the 14-bus test 

system with non-strict voltage magnitude limits are compared in Table 5.11 and Figure 

5.4. With no FACTS device all the solvers produce one optimum point. When the 

number of FACTS devices is set to 1, which means the NLP problem is converted to a 

MINLP problem, Bonmin, MINLP and KNITRO produce the same minimum points, 

yet with two FACTS devices, MINLP and KNITRO return a cost function equal to 

392.10 $/h and select lines 4-7and 5-6 for FACTS placement but Bonmin and 

COUENNE act differently by finding 454.83 $/h and placing FACTS devices in lines 

1-5 and 2-3. 
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Table 5.11   Comparison between different solvers behaviors on 14-Bus test system  
N

u
m

b
er

 
o

f 

T
C

P
S

T
 

Cost of generation re-dispatch ($/h) 

 / TCPST Location 

MINLP Bonmin FilMINT KNITRO COUENNE 

0 
2867.0 2867.0 2867.0 2867.0 2867.0 

1 
1007.6 1007.6 2867.0 1007.6 1462.5 

2 
392.10 454.83 2867.0 392.10 401.79 

3 
343.52 402.65 2867.0 343.52 348.15 

 

 

Figure 5.4 Comparison between different solvers results on 14-Bus test system 

In general, different solvers can perform differently on different problems and one 

solver is rarely better than a competing solver for every problem. In this particular 

optimization problem, getting the same answer in all cases for MINLP and KNITRO 

solvers gives more confidence, but doesn't prove a global minimum because a 

minimum point only under very specific mathematical conditions can be proved that is 

a global minimum. 
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By adding three FACTS devices, MINLP/KNITRO and COUENNE and Bonmin return 

three different local minima. 

When the number of FACTS devices is set to zero the problem is only a NLP problem 

where FiLMINT works, otherwise it fails which means it is not a suitable solver for this 

MINLP problem.  

MINLP/KNITRO in all the cases produce the same results and seems to work perfectly 

for the AC OPF along with FACTS devices. 

COUENNE can be downloaded to the AMPL folder and by changing the default solver 

to „couenne‟ in the AMPL environment, the mod and data files can be introduced and 

solved by this solver. But there is a major problem with the breaking point. After a few 

hours the user can‟t decide whether the solution is found or not and the only choice is 

to break out running the program. There is always an uncertainty on the proper time to 

stop the program either using the mentioned method or NEOS server to solve the 

problem with COUENNE.  

 

5.6.5 AC and DC OPF comparison 

Because of the complications of AC OPF and difficulties in solution, the applications 

of DC approximations are very common in industry. The implementation of the 

proposed method based on DC OPF returns different results that are in an acceptable 

range. In Table 5.12 the generation re-dispatch costs and FACTS devices settings and 

locations are compared. In Table 5.13 the focus is on lines power flows.  

In this comparison the power generations and demands are in balance and the power 

flow limits of all buses are 50MW except for lines 1, 2 and 3 for which 100MW. For 

different number of TCPSTs, a comparison of the line power flows from the AC 

solution with the line power flows from the DC solution reveals very good 

correspondence for all lines. The differences are to be expected due to the line losses, 

which are neglected in the DC algorithm.  

As Table 5.12 indicates, the FACTS locations and settings are completely different in 

the AC and DC solutions. When the number of FACTS devices is set more than two, 
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the DC OPF returns a zero re-dispatch cost while in the AC OPF, adding FACTS 

devices reduces the amount of re-dispatch cost but never fixes it at zero. Figure 5.5, 

illustrates this comparison. 

 

Table 5.12 Comparison between the DC and AC OPF in the 14-bus test system 

Number of 

TCPSTs 

OPF Model Cost of 

Generation Re-

dispatch ($/h) 

TCPSTs 

Locations 

TCPSTs 

Settings   

(degree) 

0 DC 1839 
- - 

AC 2963 
- - 

1 DC 1580 
Line 1 -2.5 

AC 2015 
Line 2 6.1 

2 DC 0 
Lines 4 and 5 -5.3 and -12 

AC 482 
Lines 2 and 3 10.3 and 14.4 

3 DC 0 
Lines 2, 6 and 

17 

8.6, 13.3 and 3 

AC 361 
Lines 1, 2 and 7 3.5, 11.3 and 2.4 
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Table 5.13 Line power flows in the DC and AC OPF for different number of TCPSTs 

 

Line 

Index 

From 

Bus 

To 

Bus 

Maximum 

Line Power 

Flow [MW] 

Line Power Flow [MW] for the number of TCPSTs equal to: 

0 1 2 3 
AC OPF DC OPF AC OPF DC OPF AC OPF DC OPF AC OPF DC OPF 

1 1 2 100 100 100 85 100 95 95 100 100 

2 1 5 100 47 57 81 67 100 100 95 95 

3 2 3 100 51 55 48 49 100 80 57 100 

4 2 4 50 38 50 31 38 15 50 50 13 

5 2 5 50 26 39 19 27 3 20 17 1 

6 3 4 50 16 12 19 17 29 13 11 34 

7 4 5 50 50 49 50 50 48 32 50 50 

8 4 7 50 13 24 3 11.4 28 30 25 31 

9 4 9 50 10 15 10 12 16 17 15 18 

10 5 6 50 14 40 38 36 41 40 49 39 

11 6 11 50 14 5 3 2.9 8 5 10 9 

12 6 12 50 10 7 7 7 8 7 8 6 

13 6 13 50 21 16 16 15 18 16 19 13 

14 7 8 50 12 9 38 28 0 0 0 0 

15 7 9 50 25 33 41 39.3 28 30 25 31 

16 9 10 50 0 8 10 10 5 7 3 4 

17 9 14 50 10 11 12 12 9 11 8 16 

18 10 11 50 10 1.4 0 0.6 4 2 6 5 

19 12 13 50 1 1 1 1 2 1 2 0 

20 13 14 50 10 4 3 3 6 4 7 1 
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Figure 5.5 A comparison between DC and AC OPF in the 14-bus test system 
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5.7 Summary  

In this chapter, the proposed method to alleviate congestion in real-time balancing 

market was formulated by implementing AC OPF algorithm and the optimal 

placements and settings of TCPST devices with the aim of minimizing the generation 

re-dispatch costs was found. 

The main feature of this chapter is the implementation of the AC OPF that is in general 

non-convex, and as a result, many local minima may exist. This non-convexity is 

further increased when FACTS devices are included on the network. By selecting a 

proper modeling language, AMPL, and observing the behaviors of different Mixed 

Integer Non-Linear solvers the best solution was found and the ability and practicality 

of the proposed method was determined.  

The AC OPF algorithm in spite of the solution difficulties provides the users with some 

vital aspects of the power system such as voltage magnitude and angle, and reactive 

power generation and demand. These elements can change the performance of the 

system under equality and inequality constraints and have been considered in the 

simulation results.  

Concerning the line power flows, as would be expected, differences in the AC and DC 

solutions are due to the losses that are neglected in the DC OPF. Other results show that 

the AC OPF in compare with the DC OPF is more accurate and reliable.  
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Chapter 6. Conclusions and Future Research 
Work 

 

6.1 Synopsis 

In a decentralized market, congestion management including long-term, short-term and 

real-time phases is one of the most important tasks of the independent system operator 

(ISO). Real-time transmission congestion is defined as the operating condition where 

there is no sufficient transmission capability to implement all traded transactions 

simultaneously due to some unexpected contingencies, and that can be solved under a 

centralized real-time balancing market where generators and loads submit their offers 

and bids to participate and provide an increase or decrease in generation or demand in 

order to ensure a power balance and provide congestion re-dispatch.  

FACTS devices can control the power flows in the network by changing transmission 

lines parameters. Development in high power electronics and also increased loading of 

power system in the deregulated power industry have made FACTS devices a very cost 

effective means of dispatching specified power transactions. The optimal location of 

these devices is very important because of their considerable costs, a task that can be 

carried out under a mathematical optimization problem. 

Optimal Power Flow (OPF) is a widely used method in the system operations to 

schedule the power system controls to optimize an objective function while satisfying a 

set of non-linear equality and inequality constraints. The differences between the 

methods that have been implemented to alleviate the transmission line congestion are in 

the choice of objective functions for the algorithm, the system reconfiguration 

operations (i.e. tap changing transformer, capacitor banks, FACTS, etc.), the re-
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dispatch options (i.e. off-cost generation, price bid, load demand, etc.) and the 

constraints (i.e. thermal, voltage, stability, etc.).  

The focus of this work is on congestion management in real-time balancing market 

within an OPF framework. The proposed approach is based on generation re-dispatch 

and the use of FACTS devices. Generation re-dispatch is one of the options that can be 

adopted by a System Operator in a congested operation. FACTS devices give a certain 

level of line flow controls. Although these limited controls may not be sufficient to 

completely relieve congestion, they can reduce the costs associated with generation re-

dispatch.  

The proposed method is first implemented through the DC OPF algorithm where the 

objective function is the generation re-dispatch costs, the line flow limits are considered 

as inequality constraints and the presence of FACTS devices are taken into account as 

binary variables. Therefore the method is based on the MILP procedure, so that 

commercially available solvers such as Dash Xpress can be used. The results show that 

the method is able to determine the optimal placement and settings of TCPST devices 

and they also indicate that application of FACTS devices can decrease the costs of 

congestion re-dispatch, even reducing them to zero.  

In the DC OPF, reactive power, voltage magnitudes and angles which may change 

significantly the placement results, cannot be taken into consideration. On the other 

hand, the AC OPF does provide such a facility. Therefore, for more accurate 

assessments of the method, the AC OPF algorithm is applied and the effects of voltage 

constraints on the solutions are observed. Using the AMPL modeling language, the 

ability of different solvers such as MINLP, Bonmin, FilMINT, KNITRO and 

COUENNE to solve the full AC OPF based on MINLP procedure is investigated. The 

non-convex nature of the AC OPF may trap any solver in local sub-optima points. In 

general, different solvers perform differently on different problems and one solver is 

rarely better than the rest for all problems. In this particular optimization problem, 

getting a consistent answer in all cases for the MINLP and KNITRO solvers gives a 

great deal of confidence. Nevertheless, these solutions are not necessarily global 

minimums; global minimum points take place under very specific mathematical 

conditions. 
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In contrast with the DC OPF, the AC OPF never reduces the generation re-dispatch 

costs to zero and returns the optimal location of FACTS devices completely different 

from the DC OPF. Nevertheless, the line power flows in both algorithms are in close 

agreement, with the differences being within an acceptable ranges. 

 

6.2 Future Research Work 

The proposed method captures only one particular operating condition, and therefore a 

number of cases need to be studied in order to make a final decision as to where to 

install these devices. Furthermore, FACTS devices are expensive and a decision 

regarding their application needs to include these costs. The here presented model does 

not include such analysis because it yields solutions for only one operation condition, 

and for one point in time. However, these more complex analyses can be considered as 

an extension of the work. 

The simulation results carried out on the 5-bus and 14-bus test networks show the 

feasibility of the approach on these test systems. Results should be produced for a 

greater solution space, such as the one associated to a more realistic system power grid. 

In the presence of more strict voltage limits, the voltage of some buses reach their 

limits and the re-dispatch costs are no longer due to the line limit violation and 

therefore the TCPST devices are not able to reduce the associated costs by affecting the 

line flows. The impact of other FACTS devices that change the bus voltages by 

injecting or absorbing reactive power such as SVC or STATCOM devices along with 

TCPSTs can be the subject of future investigations. Another option is to substitute 

UPFC for TCPST. UPFC is a versatile FACTS controller with all encompassing 

capabilities of voltage regulation, series compensation and phase shifting that can 

control both the real and reactive power flow in a transmission line at an extremely 

rapid rate. HVDC based on voltage source converters can be another appropriate 

solution to both thermal limits and also voltage level problems. 
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Appendix A. Dash Xpress IVE  

 

 Figure A.1 Dash Xpress IVE main window 
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Appendix B. Data of Test Systems 

B.1 5-bus test System 

 

 

 

 

 

 

Figure B.1 Network configuration of the 5-bus test system 

Table B.1 Bus data of the 5-bus test system 

Bus 

Index 

MW 

Load 

MVAr 

Load 

MW 

Gen 

MVAr 

Gen 

Base 

KV 

Max Gen 

MW 

Increment  

Max Gen 

MW 

Decrement 

Max Gen 

MVAR 

Increment  

Max Gen 

MVAR 

Decrement 

Incremental 

Bid 

($/MWh) 

Decremental 

Bid 

($/MWh) 

1 0 0 142 15 100 40 40 40 40 13.9 12.9 

2 40 20 178 106 100 50 50 50 50 14.9 13.9 

3 150 39 0 0 100 0 0 0 0 0 0 

4 80 29 80 6 100 30 30 30 30 16 15.5 

5 130 39 0 0 100 0 0 0 0 0 0 

 

Table B.2 Line data of the 5-bus test system 

Line 
Index 

From 
Bus 

To 
Bus 

R (pu) X (pu) Maximum 
Line Power 
Flow [MW] 

Maximum 
Phase Shifter 

Angle [Degree] 

1 1 2 0.00244 0.06 150 15 

2 1 3 0.00101 0.24 60 15 

3 2 3 0.01473 0.18 120 15 

4 2 4 0.01473 0.18 100 15 

5 2 5 0.00204 0.12 106 15 

6 3 4 0.00110 0.03 50 15 

7 4 5 0.00101 0.24 60 15 

G 

1 4 

2 5 

G 

G 



Appendix B. Data of Test Systems 

 113 

B.2 14-bus test System 

 

 

 

Figure B.2 Network configuration of the IEEE 14-bus system 
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Table B.3 Bus data of the IEEE 14-bus system 

Bus 

Index 

MW 

Load 

MVAr 

Load 

MW 

Gen 

MVAr 

Gen 

Max Gen 

MW 

Increment  

Max Gen 

MW 

Decrement 

Max Gen 

MVAR 

Increment  

Max Gen 

MVAR 

Decrement 

Incremental 

Bid 

($/MWh) 

Decremental 

Bid 

($/MWh) 

1 0 0 195 0 111.4 199 250 40 31 14.7 

2 21.7 12.7 36 0 102 34.2 50 50 31 14.7 

3 94.2 19 28 0 100 0 40 40 42 20 

4 47.8 -3.9 0 0 0 0 0 0 0 0 

5 7.6 0.18 0 0 0 0 0 0 0 0 

6 11.2 7.5 0 0 100 0 24 24 42 20 

7 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 100 0 24 24 42 20 

9 29.5 16.6 0 0 0 0 0 0 0 0 

10 9 5.8 0 0 0 0 0 0 0 0 

11 3.5 1.8 0 0 0 0 0 0 0 0 

12 6.1 1.6 0 0 0 0 0 0 0 0 

13 13.5 5.8 0 0 0 0 0 0 0 0 

14 14.9 5.6 0 0 0 0 0 0 0 0 

 

Table B.4 Line data of the IEEE 14-bus system 

 

 

Line 
Index 

From 
Bus 

To 
Bus 

R (pu) X (pu) Maximum 
Line Power 
Flow [MW] 

Maximum 
Phase Shifter 

Angle [Degree] 

1 1 2 0.01938 0.05917 150 15 

2 1 5 0.05403 0.22304 150 15 

3 2 3 0.04699 0.19797 150 15 

4 2 4 0.05811 0.17632 50 15 

5 2 5 0.05695 0.17388 50 15 

6 3 4 0.06701 0.17103 50 15 

7 4 5 0.01335 0.04211 50 15 

8 4 7 0 0.20452 50 15 

9 4 9 0 0.53894 50 15 

10 5 6 0 0.23488 50 15 

11 6 11 0.09498 0.19890 50 15 

12 6 12 0.12291 0.25581 50 15 

13 6 13 0.06615 0.13027 50 15 

14 7 8 0 0.17615 50 15 

15 7 9 0 0.11001 50 15 

16 9 10 0.03181 0.08450 50 15 

17 9 14 0.12711 0.27038 50 15 

18 10 11 0.08205 0.19207 50 15 

19 12 13 0.22092 0.19988 50 15 

20 13 14 0.17093 0.34802 50 15 
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Appendix C. AMPL Implementation 

C.1 Model file 
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C.2 Data file 

 

 

C.3 Command file 
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C.4 Command window 
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Nomenclature and Abbreviations 

Nomenclature  

Superscript and subscript: 

d index of demands (consumers), 

g index of generators, 

i,j index of network buses, 

ij transmission line flow from bus i to bus j, 

f transmission line flow, 

l  index of branches, 

max upper limit, 

min lower limit, 

t transpose, 



 index of TCPSTs (phase shifters), 

.* element by element vector multiplication, 

+ incremental adjustment on generators or loads in the balancing market, 

 decremental adjustment on generators or loads in the balancing market, 

 

Prefix: 

∆ change of variables based on scheduled points, 
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Matrices and Parameters: 

A         network node incidence matrix, 



Bl        diagonal matrix of line susceptances, 



Gij  element ij of the conductance matrix, 



Bij  element ij of the susceptance matrix, 



N maximum number of TCPST’s, 

 

Sets: 

N the set of buses, 

G the set of generators, 

L the set of transmission lines, 

 

 

Vectors: 



u L vector of the binary variables, 



1 L vector of 1’s, 



P  vectors of active powers, 



 vectors of phase shifter settings, 

 

Variables: 

V bus voltage magnitude, 



 bus voltage angle, 

  



Pg

  incremental change of active power generation, 
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

Pg

  decremental change of active power generation, 

  



Qg

  incremental change of reactive power generation, 

  



Qg

  decremental change of reactive power generation, 

  



Pf /
  



Pij  line power flow, 



 phase shifter angle, 

u the presence of a FACTS device in a line. 

 

Abbreviations 

AGC Automatic Generation Control 

AMPL A Modeling Language for Mathematical Programming 

AS Ancillary Service providers 

ATC Available Transmission Capability 

BBS Balance of Business Systems 

BETTA British Electricity Trading and Transmission Arrangements 

CAISO California Independent System Operator Corporation 

CEB Central Electricity Board 

CEGB Central Electricity Generation Board 

CPUC California Public Utilities Commission 

D Distribution service providers 

Distcos Distribution or retail companies 

DTS Dispatch Training Simulator 

ED Economic Dispatch 



Nomenclature and Abbreviations 

 131 

EMS Energy Management System 

EMTP Electro-Magnetic Transient Program 

EQIP Extended Quadratic Interior Point 

ERCOT Electric Reliability Council of Texas 

FACTS Flexible AC Transmission System 

FERC Federal Energy Regulatory Commission 

FTR Firm transmission rights 

G generating companies 

IP Integer Programming 

IPFC  Interline Power Flow Controller  

ISO Independent System Operator 

IT Information Technology 

LDS Low Discrepancy Sequences 

LMP Locational Marginal Price 

LP Linear Programming 

MILP Mixed Integer Linear Programming 

MINLP Mixed Integer Non-Linear Programming 

MIP Mixed Integer Programming 

MIQP Mixed Integer Quadratic Programming 

MRTU Market Redesign and Technology Upgrade 

NERC North American Electric Reliability Council 

NETA New Energy Trading Arrangement 

NGC National Grid Company 
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NSPSO Non-dominated Sorting Particle Swarm Optimization 

OASIS Open Access Same-Time Information System 

OFFER Office of Electricity Regulation 

OFGEM Office of Gas and Electricity Markets 

OPF Optimal Power Flow 

PPA Power Purchase Agreement 

PIM Power Injection Model 

PJM Pennsylvania-New Jersey-Maryland Interconnection 

PCPDIPLP predictor-corrector primal-duel interior point linear programming 

PM Power Marketers 

PMS Power Management System 

PUHCA Public Utility Holding Company Act 

PURPA Public Utility Regulatory Policies Act 

PX Power Exchange 

QF Qualifying Facilities 

RBM Real-time Balancing Market 

RTO Regional Transmission Organization 

R Retail service providers 

RECs Regional Electricity Companies 

SA Simulated Annealing/ Scheduling Applications 

SI Scheduling Infrastructure 

SC Scheduling Coordinators 

SC-OPF stability-constrained OPF 
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SCADA Supervisory Control and Data Acquisition 

SCOPF security-constrained optimal power flow 

SMP System Marginal Price 

SO System Operator 

SQP Sequential Quadratic Programming 

SSC-OPF Stability-Constrained OPF 

SSSC Static Synchronous Series Compensator 

STATCOM STATic synchronous COMpensator  

SCUC Security Constrained unit commitment 

SVC Static Var Compensator 

TCDF Transmission Congestion Distribution Factors 

TCPST Thyristor Controlled Phase Shifter Transformator 

TCSC Thyristor Controlled Series Capacitor 

TCVR Thyristor-Controlled Voltage Regulator 

TLR Transmission Loading Relief 

TO Transmission Owners 

TSO Transmission System Operator 

TTC Total Transfer Capability 

UC Unit Commitment 

UPFC Unified Power Flow Controller 

VSC-OPF voltage- stability-constrained OPF 

WSCC Western Systems Coordinating Council 



Publications Related to the Thesis 

 134 

Publications Related to the Thesis 

 

 

[1] M. Zeraatzade, I. Kockar, Y.H. Song, “Minimizing balancing market congestion 

re-dispatch costs by optimal placements of FACTS devices,” in proc. of IEEE 

Conference, Power Tech, July 2007, pp. 873-878. 

[2] M. Zeraatzade, M. R. Irving, “Comparison of MINLP Solvers for Optimal 

Placement of FACTS Devices,” submitted to Electric Power Systems 

Research Journal.  

 


