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Abstract—In this paper, a mathematical model for sandwich-
type lateral flow immunoassay is developed via short availdb
time series. A nonlinear dynamic stochastic model is conséded
that consists of the biochemical reaction system equatiored the
observation equation. After specifying the model structue, we
apply the extend Kalman filter (EKF) algorithm for identifyi ng

environmental health and safety [39], agriculture [38]wezdl
as some emerging areas such as molecular diagnostics and
theranostics [11].

The lateral flow immunoassay, which utilizes the specific in-
teraction between antigens and antibodies, consists ofcupo

both the states and parameters of the nonlinear state-space membrane or strip that is often made out of nitrocelluloge T

model. It is shown that the EKF algorithm can accurately idertify
the parameters and also predict the system states in the ndnkar
dynamic stochastic model through an iterative procedure bysing
a small number of observations. The identified mathematical
model provides a powerful tool for testing the system hypothses
and also inspecting the effects from various design paramets
in a both rapid and inexpensive way. Furthermore, by means of
the established model, the dynamic changes of the concenti@n
of antigens and antibodies can be predicted, thereby making
possible for us to analyze, optimize and design the prope#s of
lateral flow immunoassay devices.

Index Terms—Lateral flow immunoassay; Extended Kalman
filtering; Gold immunochromatographic strip; Mathematica |
model; Parameter estimation.

I. INTRODUCTION

primary antibodies are immobilized within a defined detatti
zone (test line) on the membrane. The secondary antibodies
are conjugated with reporter particles such as colloidad,go
carbon black, fluorescent, or paramagnetic monodispetese la
particle [1]. In this paper, we focus on the sandwich fornfat o
gold immunochromatographic strip where the reporter glarti
uses the colloidal gold nanoparticles. Although the |atéoa
immunoassay technology is widely used in a variety of areas,
the format suffers from certain shortcomings such as test-t
test reproducibility challenges for quantitative anadyend the
hook effect happened when the high concentration of analyte
exist in the sample. Therefore, most immunochromatogcaphi
assays can only give qualitative or semi-quantitative Itesu
observed directly by naked eyes at present [2] which, in,turn
significantly limit the applications of these assays.

In the past few years, the rapid immunochromatographicRecent research has been going mainly towards two di-
test strip, also called lateral flow immunoassay(LFIA), hagctions: one is the material selection and the improvement
been under especially intensive investigations becausts ofof biochemical property of strips, see e.g. [19], [23], [35]

advantages such as ease of use, short analysis time,

cost, high sensitivity, good specificity, satisfactory bslity

towl the other is the development of quantitative instrusjent
see e.g. [4]-[7], [13], [24], [25]. In order to produce high-

when applied to a wide variety of point-of-care (POC) tesgensitivity results with low constant of variance (CV) gtri
[20], [22], [33]. Owing to these attractive properties, thand enable the quantification, there is an urgent need for
lateral flow immunoassay has been widely used in many fielagproved materials, assay technology, reader technology a

including clinical diagnostics [29], food safety testini4],
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manufacturing processes. There is also a growing research
interest on a more multidisciplinary approach to lateralvflo
development [33]. In this sense, it is of great importance
to establish a mathematical model that allows us to predict
kinetic characteristics and also test the effects of vartrsign
parameters in a both rapid and inexpensive way. In addition
to providing insights into device operation, such a model
could also enable us to optimize device performance [30].
Unfortunately, up to now, little research has been done en th
general modeling issues for lateral flow immunoassay system
except the work [30], [31] relying on the convection diffosi
reaction equations and the COMSOL software for simulation.
In order to gain an insight into the performance of the ldtera
flow immunoassay system, one needs to actually focus on
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space system that is characterized by the state equations monlinear model of lateral flow immunoassay. Note that the
observation equations. The system state equations deshgb EKF algorithm is an online estimation algorithm that carveol
dynamics of the concentration distribution subject tolséstic the estimation problem through iterative procedure by gisin
disturbances, and the system measurements are determsmedll number of observations. 2) Real-time experimenttd da
in terms of an observation equation containing measuremané obtained to evaluate the model identified by the EKF, and
noises. After specifying the model structure, we need todindt is shown that the model fits the data very well. In particula
way to solve the joint parameter and state estimation pnoblghe hook effect phenomenon typically exhibited in laterafl
for nonlinear systems with stochastic noises. Nevertsgies immunoassay can be clearly demonstrated by the established
practice, the lateral flow immunoassay system itself exhibimodel.
several distinguishing features that add to the difficalfie The rest of this paper is organized as follows. In Section
its modeling: 1) the biochemical reaction between antigehs the lateral flow immunoassay system is introduced and the
and antibodies typically finishes in at most ten minutes, amsnlinear state-space model is proposed for the lateral flow
therefore we are only able to acquire a small number @hmunoassay system. In Section Ill, the EKF approach to
experiment data (i.e., short time-series); 2) the measemeémparameter identification is described. The results of patam
is usually concerned with a combination of certain variablédentification and state estimation by the EKF method are
and many other system variables are not measureable; distussed in Section IV and the model performance is also
3) the dynamic model for the lateral flow immunoassagemonstrated. Finally, concluding remarks are given iniGec
system is essentially nonlinear, and the system parameftérs
and the system states have to be estimated simultaneously.
In general, there have been three popular algorithms for the”'
estimation problem of nonlinear systems, namely, extend®¢ Lateral Flow Immunoassay
Kalman filtering [3], [34], [36], unscented Kalman filtering
(UKF) [32] and sequential Monte Carlo method [12], [26].
The traditional Kalman filter has been successfully used
linear models [8]-[10] because of its versatility and effifess: Antibodies conjugated Tag  TestLine  Control Line
ness. The EKF approach linearizes the nonlinear model (o, Late' Riaopien so) D odeelec Asones)
Taylor expansion and then uses the traditional Kalman fitter ' ;
the linearized model. The EKF algorithm utilized in estimoat
problems is quite convenient as we only need to calculate §
mean and covariance values of the system states. Moreo
the EKF is known as an effective online (recursive) estimat
for process variables, which can be suitable for identdyi
large number of parameters using a short time series [
On the other hand, the other approaches for the paramsd
estimation problem in nonlinear models, such as the unsde
Kalman filtering (UKF) and sequential Monte Carlo method
would require a sufficiently large number of data for th Taithine: 7
.. . . . est Line Control Line
statistical inference. With hope to address the listedlehges (Positive)  (Valid Test)
for modeling nonlinear lateral flow immunoassay system, the
extended Kalman filtering (EKF) approach stands out as - 1. Lateral flow immunoassay architecture.
appropriate candidate since it is capable of handling the jo
parameter and state estimation problem via short timesserie A typical configuration of lateral flow immunoassay, as
data. shown in Fig. 1 [16], consists of a variety of materials such
In this paper, we aim to infer the nonlinear state-spa@s sample pad, nitrocellulose membrane, conjugate pad and
model for the sandwich-type lateral flow immunoassay usiwgcking pad. With the presence of an antigen in the sam-
extended Kalman filtering approach through available shqie, a sandwich-type assay is formed between the secondary
time-series. The model is characterized by the system statgibody-immobilized gold nanoparticle immunocomplexian
equation and the system measurement equation. The iddntifiee primary antibody immobilized on the membrane. After
mathematical model enables us to test the system hypothabes antigen-antibody reaction, the red color caused by the
conveniently and also inspect the effects brought fromoueri accumulation of gold nanoparticle at that location would
design parameters. By utilizing the established model, iee @appear on the membrane [1], [33]. The color intensity of
capable of predicting the dynamic changes of the concémtratthe red test line (signal intensity), which relates dingdt
of antigens and antibodies, and this paves the way for analylze concentration of the target protein in the standard or
ing, optimizing and designing the behaviors of lateral flowpiked samples, is assessed visually or by a reader system
immunoassay devices. The main contribution of this paperfsr quantitative analysis [35].
mainly twofold. 1) The EKF algorithm is applied to jointly In general, the biochemical reactions of the lateral flow
estimate the system parameters, actual concentratiaibdist immunoassay signal pathway can be summarized as follows
tion of states, the system noise and measurement noise in[B@:

THE MODEL FORLATERAL FLOW IMMUNOASSAY

Lateral Flow Assay Architecture

’C illary Fi
L S

Sample Conjugate Nitrocellulose Wicking
Pad Pad Membrane Pad
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1) Assume that the sample contains various target analyte$t should be pointed out that the variables o, x3, 4, x5
A;. When the sample migrates through the conjugasmd x¢s are not measurable/observable. The only observed
pad, the analytes interact with the particulate colaignal that can be detected with a reader system is the test
particle conjugate” to form particle-analyte complexesline’s intensity, which is typically either the color intsity
PA;, or the phosphor emission intensity or fluorescent [30]. The
A+ P ’“:1 PA; 1) signal would be proportional to the concentration _of péatic
k2 analyte complexe$’A and the complexR PA. In this case,

2) The free analytes in the sample and the particle-analjf¢ observation equation is obtained as follows
complexes .both migrate into thg membrane _by the y = ko(z3 + 26). (10)
capillary action. Free analytes of typed;) and particle- .
analyte complexe$’4; interact with the immobilized The most general form of the nonlinear model for the

ligands of typei(R;) to form the complexes, dynamics of biochemical networks is defined by dynamic mass
balance equations or kinetic models [34], where the system
Ai+R; k:% RA; (2) consists of a pair of equations as follows
ka4
i dz(t) = f(z(t),t)dt + G(t)dp(t) (11)
PA; + R; = RPA, ©) dy(t) = g(z(t),t)dt + L(t)dn(t) (12)

ke

where z(t) is the vector of state variables which are con-

centrations of antibodies, antigens or complex mategigl)

is the measurement procesgx(t),t) = SV (z(t)) with S

P+ RA; by RPA, (4) being a stojchiqmetric; matri>§ that describes the biochamic
ks transformation in a biochemical network afd{z(t)) being

In the above, we assume that the first-order reversigfee vector of reaction rates (usually the vector of nonlinea
interactions occur without consideration of the controleli function of the state) [34](+(t) and L(¢) are arbitrary time-
In this paper, for simplicity, we only consider a single &irg Varying matrices independent oft) andy(t); g(z(t), t) is the
analyte in the sample, and therefore we drop the subscripfheasurement model function; agt) andr(t) are indepen-
from the next section. dent Brownian motions with diagonal diffusion matria@st)
and R(t), respectively. For the convenience of engineering
applications, such a model can also be modified in terms of

3) Additionally, unbound particulate conjugafemay bind
to the complexR A; to form the complexkR P A;,

B. Lateral Flow Immunoassay Model the white noisesw(t) = dj(t)/dt and v(t) = dn(t)/dt as
Let x1,20,23, 74,25 and zg be the concentration of follows [18]:
A, P,PA,R,RA and RPA, respectively. For demonstration dx
purpose, it is assumed that there is no time-delay between th o = SVE®)+Gt)w() (13)
biochemical reactions (1)-(4). The rates of the reactiars a 2(t) = g(z(t) + L)) (14)
defined as follows:
where the Gaussian white noisegt) andv(t) are uncorre-
v1 = k1w129 — ko3 (5) lated and independent for 4l
Vo = ksz124 — kaxs (6) In practice, when modeling biochemical networks from
vs = ks@aTs — ket @) obse_rved data (t|me_ senes_), dlscrgte-tlme models p_Iayra mo
crucial role than their continuous-time counterparts itetygs
vs = k72275 — ks (®) digital world. In order to obtain the nonlinear model for-lat

wherek,, ks, ks, k- andks, k4, ke, ks are the association anderal flow immunoassay biochemical networks from discretely

dissociation rate constants, respectively. The stoicktamfor ~Obtained measurements, it is usually essential to forrauket
the biochemical reaction of the lateral flow immunoassay fiscrete-time analogue as follows [34]:

given by a(k+1) = a(k)+SV(ek) +wk)  (15)
-1 -1 0 0 z(k) = g(z(k)) +v(k) (16)
-1 0 0 -1 - L . .
1 0 -1 o0 To facilitate the parameter estimation, in this paper, let
S = 0 -1 -1 0 us used = [ky, ks, ..., ko] to denote the parameters to be
0 1 0 -1 estimated,_which are the association and dissociation rate
o o0 1 1 constants in the vectoV (xz(k)). Therefore, we can rewrite

the model (15)-(16) in the following more compact form:
Let z = [21,72,....,26]7 andV = [v1,va,...,04]7. The

differential equation for the biochemical reactions of dteral v(k+1) = fla(k),0) +w(k) (17)
flow immunoassay is given as follows [17], [34] z(k) = g(x(k),0) +v(k) (18)
dz(t) wherez(k) is the vector of state variables at the time point
ar SV (x) © &, f(.,.) is a nonlinear function with being a parameter
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vector to be identifiedw(k) andv(k) denote the zero-meanThen, the Extended Kalman filter algorithm can be stated
uncorrelated Gaussian noises with covariance matri@gs below:
and Ry, respectively.z(k) is the measurement data from Initialization
experiments at the time poirit For k =0, set

It is clear from (17)-(18) that what we need to do is to . B B
identify the parameter vectdrfor the purpose of establishing 2(0/0) = E[z(0)] = 2o, r
the lateral flow immunoassay model. The main aim of this P(0]0) = E[(z(0) — zo)(2(0) — 20)" | = Pu,-
paper is to estimate the paramete_rs of the model (17)—(18):0rk —1,2,3,... compute
via the EKF method from the possibly small number of the Time update (‘Predict)

measured data. State estimate time update(k|k — 1) = f(2(k — 1]k —1))
Error covariance time updat&(k|k—1) = A(k—1)P(k—
I1l. JOINT PARAMETER AND STATE ESTIMATION BY THE 1|k — 1)A(k _ 1)T + Qr_1
EXTENDED KALMAN FILTER Measurement update (‘Correct’)

In this section, for the convenience of the readers, weintro Compute the Kalman gain matrixk, = P(klk —
duce the EKF approach to parameter identification, see®,g. [L)C” (k)[C (k) P(k|k — 1)C (k)" + Ry ™!
[27], [36] for more details. The Kalman filter is the optimum Update the estimate with measuremertt): &(k[k)
state estimator for a linear system with the assumptions &&|k — 1) + Ki[y(k) — g(2(k[k — 1))]
described. If the system is nonlinear, then we may use aEffor covariance measurement updafe(k|k) = (I —
linearization process at every time step to approximate the:C'(k))P(k|k —1).
nonlinear system with a linear time varying (LTV) system. In addition, in order to improve the precision of state
This LTV system is then used in the Kalman filter, resulting igStimation and also reduce the possible biases, there is a
an extended Kalman filter (EKF) on the true nonlinear systef¢ed to properly quantify the parametepsand R in the
Note that although EKF is not necessarily optimal, it ofteRKF algorithm. To tackle this issue, we use the innovation-
works very well. Discussions on the convergence of EKF cdi@sed adaptive estimation (IAE) approach [40], where the

be found in [15], [21] and the references therein. covariance matriceg)(k) and R(k) are estimated and then
Consider the following nonlinear system updated iteratively according to the following equations:
ek+1) = fla(k)) +wk) (19) R(k) = Cu+C(k)P(klk)C(k)" (23)
y(k) = g(z(k)) +v(k) (20) Qk) = KpCuK[ (24)

where C,; is the innovation covariance matrix computed
through averaging the innovation sequengé) inside a
mpving estimation window of sizev,

wherek is a non-negative integer;(k) € R™ is the system
state vector,y(k) € R" is the observation vectony(k)
and v(k) are the system noise and the measurement noi

respectively.w(k) and v(k) are zero-mean white Gaussian 1 k

stochastic processes with covariance matri€gs and R, Cor = N Z s(k)s(k)” (25)
respectively. Heref: R™ — R"™ is a nonlinear state transition i=k—N+1

function andg: R™ — R” is a nonlinear measurement function. s(k) = y(k)—g(@(klk—1)) (26)

The extended Kalman filter is implemented by the followin

consecutive steps: Based on the above equations, the appropriate valu@samid

) ] o R can be determined at each iteration.

1) Consider the last filtered state estlma(®|kj) Remark 1:Extended Kalman filter is a very practical

2) Linearize the system dynamics (19) arou(@|k) method in identification of nonlinear systems. Augmenting t

3) Apply the prediction step of the Kalman filter to the,nknown parameters to the state vector makes it possible to
linearized system dynamics just obtained, yielditg+ | se EKFE for parameter identification too.
1lk) and P(k + 1|k)

4) Linearize the observation equation (20) arouirié|k) IV. RESULTSUSING THE EKF APPROACH AND

5) Apply the filtering or update cycle of the Kalman filter '

. . . . o DiscussioN
to the linearized observation dynamics, yieldibg: + . o )
1k +1) and P(k + 1]k + 1) In this paper, we take human chorionic gonadotropin (hCG)

as a target analyte. The CCD-based image acquisition system
[25] is exploited to generate the short time series shown
(21) in Fig. 2. The upper part of Fig. 2 shows the gold im-

Let
fl(k) _ of (z(k))

(k) o= ki) munochromatographic strip’s nitrocellulose membraneelpix
R dg(z(k)) intensity inverse the sample flow direction. The images are
C(k) = 0uT) |y s i) (22)  acquired when the sample passes through the nitrocellulose
z(k)=2 —1

membrane that consists of 45 equally spaced time point(fro
Assume thate(0) ~ N (zg, Py, ), w(k) ~N(0,Qk), v(k) ~ 0 to 11 minutes), 45 images as a time series. We choose
N(0, Ri) with Ry, > 0, and that{w(k)} and{v(k)} are white z = [maxpixe1(255 — Ipixel) — Phase]/10 as the observed value
noise processes uncorrelated witfD) and with each other. shown in the lower part of Fig. 2, wherg,..; is the pixel
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This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

ACCEPTED 5

14

120

10

Pixel intensity

©

0 50 100 150 200 250 300
Location

Concentration (arb units)
)
T
L

IS
#

\ ‘,AAAAAA

. B e S
ey Ty

Observed value

0 I I I I I I I I
0 5 10 15 20 25 30 35 40 45 -2 L L L L L L L L
0 5 10 15 20 25 30 35 40 45

No. of timepoints, k

No. of timepoints, k

Fig. 2. Upper part: The strip’s nitrocellulose membrane pixeL. . . .
intensity inverse the sample flow direction; Lower part: Thserved hg' 4. The estimated time series of stasP, PA, R, RA, RPA.

value of lateral flow immunoassay biochemical reaction aign

Ef 09)8%F S me—— ; . . . . . el
5 10 15 20 25 30 35 40 45

xlO
intensity andPase €quals tomaxixer (255 — Ipixel) Of the gF I
first out of the 45 images. & bAE e ——— ‘ ‘ ‘ ]
Take z 0 5 10 15 20 25 30 35 40 45
zo = [5,6.5,0,13,0,0]" i s
5 10 15 20 25 30 35 40 45
and g o%SékM I ! ! ! |
10 15 20 25 30 35 40 45
ko = [0.03,0.0001,0.01,0.0001, 0.04, 0.0001,0.04, 0.0001, 2.2]7 & oM v r R s s S S SO
0 5 10 15 20 25 30 35 40 45
as the initial values of the state variables and parametes o¥§———— I s —— " -
0 5 10 15 20 25 30 35 40 45

respectively. Then, we can estimate parameters and si .

; i _ 5 o8 S S—— ! ! 1 ! 1
variables based on the EKF algorithm. Both the identifie> ’ ég 5 10 15 20 2 30 3 a0 js
parameters and state variables are shown in Fig. 3 and Flg & o(géé : : : : =5 ‘ ‘ 1 3
which are expressed in the form of time series. The time ser s 10 B ertimepoimk % “0 “5

for error covariances is also obtained, simultaneouslyckvh
is depicted in Fig. 5 and Fig. 6 . In Fig. 7 shows the tim&ig. 5. The variances of estimated time series of parametgrg,,
series for the noise varian€g, and R. ks, ka, ks, ke, k7, ks, ko.

0.05 T T T T

i gfr s 10 15 2 ‘ \ + It can be seen from Fig. 4 that the target analytesolor

K 7005% w‘”’“\\‘/d;{ particle conjugaté® and immobilized ligand® are decreasing
005 > wﬁﬁ,‘ 30 M as the time goes. The particle-analyte complexe$ and

o -002% w w w w w w w the complexR A increase in the first instance because of the

- °°1%j_ui - = .MS biochemical reactions (1) and (2), but later decrease Iseoafu
oot 5 0 15 2 = ‘ ‘ ‘ the biochemical reactions (3) and (4). Therefore, the cempl

0.08

& ggg} ww% j RP A increases with the time going on and eventually reaches
the equilibrium state. It can now be concluded that the model

5
002 T
_OOJ i éwm ‘**40/\\‘# identified by the EKF algorithm does make the practical sense
- ooghﬂ—ﬂNHNHﬂ\ﬁgxmﬁ S— % Also from Fig. 5 and Fig. 6, we can see that the estimation
—005

s 0 s 2 P prs = m covariances are small, which means that our model fits the
0‘02 T T T T T T T
K ,O_OQMWHH% data very well. . 3
222 5 10 15 2 2 30 E 45 In order to further evaluate the model identified by the EKF
< 2215 ‘ ‘ e — e method, we have done some experiments by changing the
5 10 15 20 25 30 35 40 45 . .
No. of timepoints, k concentration of the target anylyte. Fig. 8 shows the olezkrv

value predicted by the EKF method and observed value from
the real experiments. Furthermore, to evaluate the model
quality in a quantitative way, let us introduce the follogin

Fig. 3. The estimated time series of parameters k2, ks, k4, ks,
ke, k7, ks, ko.
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of J y
15 2 2 0 3 20 45 oLd ‘ ‘ ‘ ‘ ‘ ‘ _®  EKF predict3
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Fig. 6. The variances estimated time series of stated®>, PA, R, )
RA, RPA. Fig. 8. The observed value predicted by EKF method and observed

value from the experiment.
0.2
" 01 q
O F—\_J\A_ M‘ L 1 1

30 35 40 45 TABLE |
Ozm T T T <{ QUANTITATIVE MODEL EVALUATION FOR TIME SERIES WITH DIFFERENT
0.1
2 . ) ) ‘ A ) ) CONCENTRATIONS
020 5 10 15 20 25 30 35 40 45
o o1 \ ‘ ‘ N L ‘ %JJ Experiment 1 2
020 5 10 15 20 25 30 35 40 15 Error ratio | 1.05% [ 2.27% | 5%
= +
0 Nl s 1 I U i L
040 5 10 15 20 25 30 35 40 45
o 02 \ PAVANP NS %
0 e ‘ . . _ _ _
02° 5 10 1 20 2 30 3 40 s labeling conjugate and to the ligands, and also blocks mény o
o o.lF \ { the particle-analyte complexes from binding with the ligan
02 10 15 20 2 30 3 40 s [30]. In theory, the identified model by the EKF method
02 { should confirm the occurrence of such a phenomenon. Fig. 9
o : m 5 20 s w % m s Shows the concentration of the compl&P A as a function
o- of tmepoints, of the target analyte concentration. When the target amalyt

concentration is less than the colored labeling conjugatken
ligands, the immunoassay can provide accurate resultshaend t
dose-response curve shows a positive slope. The slope will
become negative when the concentration of analyte exceeds
criterion for the modeling errors (error ratio in percempg the ligands [33]. To this end, the expected hook effect has
between the actual and the model predicted data [28], [37]peen successfully displayed by the identified model.

Fig. 7. The noise variances estimated time serieg)pfand R.

S (Yek — yck) Remark 2:When it comes to the quantitative interpretation
Error ratio = 100 x — Z S (e % (27) for the lateral flow immunoassay, best time-points (images)
k=1 should be obtained by the reader system. For different manu-
where! is the number of observations (dimension) involvetgcturers, different materials such as nitrocellulose imeme
in the modeling 1=1 in this paper);s is the number of are used and therefore the criterion for choosing the best
observations (length), ang,.; is the actual value forth time-points is the biochemical reaction. Concerning thevab
observation at theith time point. The results are given instrips’ performance, we have chosen to capture the images
Table I. Given the fact that there are only 45 time point® minutes later after the sample is added in the strip in
(images), the model quality is satisfactory. order to obtain reasonable results. From Fig. 9, we can
Next, let us examine if the established model could reve@ipserved that, despite different eigenvalues, the cunve is
biological significance. The hook effect is a well-known phedualitative agreement with the experiment results repoirte
nomenon in lateral flow immunoassay when the target analy&»] experiment results when the target analyte conceafrat
is detected to exceed the amount of colored labeling cotgugi less than the colored labeling conjugate or the ligands,
or the ligands immobile on the capture zone. The cause fd this again shows the validity of the proposed modeling
such a phenomenon is that the analyte binds both to the colog@proach.
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