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Inference of Nonlinear State-space Models for
Sandwich-Type Lateral Flow Immunoassay Using

Extended Kalman Filtering
Nianyin Zeng, Zidong Wang, Yurong Li, Min Du∗ and Xiaohui Liu

Abstract—In this paper, a mathematical model for sandwich-
type lateral flow immunoassay is developed via short available
time series. A nonlinear dynamic stochastic model is considered
that consists of the biochemical reaction system equationsand the
observation equation. After specifying the model structure, we
apply the extend Kalman filter (EKF) algorithm for identifyi ng
both the states and parameters of the nonlinear state-space
model. It is shown that the EKF algorithm can accurately identify
the parameters and also predict the system states in the nonlinear
dynamic stochastic model through an iterative procedure byusing
a small number of observations. The identified mathematical
model provides a powerful tool for testing the system hypotheses
and also inspecting the effects from various design parameters
in a both rapid and inexpensive way. Furthermore, by means of
the established model, the dynamic changes of the concentration
of antigens and antibodies can be predicted, thereby makingit
possible for us to analyze, optimize and design the properties of
lateral flow immunoassay devices.

Index Terms—Lateral flow immunoassay; Extended Kalman
filtering; Gold immunochromatographic strip; Mathematica l
model; Parameter estimation.

I. I NTRODUCTION

In the past few years, the rapid immunochromatographic
test strip, also called lateral flow immunoassay(LFIA), has
been under especially intensive investigations because ofits
advantages such as ease of use, short analysis time, low
cost, high sensitivity, good specificity, satisfactory stability
when applied to a wide variety of point-of-care (POC) tests
[20], [22], [33]. Owing to these attractive properties, the
lateral flow immunoassay has been widely used in many fields
including clinical diagnostics [29], food safety testing [14],
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environmental health and safety [39], agriculture [38], aswell
as some emerging areas such as molecular diagnostics and
theranostics [11].

The lateral flow immunoassay, which utilizes the specific in-
teraction between antigens and antibodies, consists of a porous
membrane or strip that is often made out of nitrocellulose. The
primary antibodies are immobilized within a defined detection
zone (test line) on the membrane. The secondary antibodies
are conjugated with reporter particles such as colloidal gold,
carbon black, fluorescent, or paramagnetic monodisperse latex
particle [1]. In this paper, we focus on the sandwich format of
gold immunochromatographic strip where the reporter particle
uses the colloidal gold nanoparticles. Although the lateral flow
immunoassay technology is widely used in a variety of areas,
the format suffers from certain shortcomings such as test-to-
test reproducibility challenges for quantitative analysis and the
hook effect happened when the high concentration of analyte
exist in the sample. Therefore, most immunochromatographic
assays can only give qualitative or semi-quantitative results
observed directly by naked eyes at present [2] which, in turn,
significantly limit the applications of these assays.

Recent research has been going mainly towards two di-
rections: one is the material selection and the improvement
of biochemical property of strips, see e.g. [19], [23], [35],
and the other is the development of quantitative instruments,
see e.g. [4]–[7], [13], [24], [25]. In order to produce high-
sensitivity results with low constant of variance (CV) strip
and enable the quantification, there is an urgent need for
improved materials, assay technology, reader technology and
manufacturing processes. There is also a growing research
interest on a more multidisciplinary approach to lateral flow
development [33]. In this sense, it is of great importance
to establish a mathematical model that allows us to predict
kinetic characteristics and also test the effects of various design
parameters in a both rapid and inexpensive way. In addition
to providing insights into device operation, such a model
could also enable us to optimize device performance [30].
Unfortunately, up to now, little research has been done on the
general modeling issues for lateral flow immunoassay systems
except the work [30], [31] relying on the convection diffusion
reaction equations and the COMSOL software for simulation.

In order to gain an insight into the performance of the lateral
flow immunoassay system, one needs to actually focus on
the modeling issue of biochemical reaction networks between
the antigens and the antibodies. In principle, the lateral flow
immunoassay model can be described by a nonlinear state-
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space system that is characterized by the state equations and
observation equations. The system state equations describe the
dynamics of the concentration distribution subject to stochastic
disturbances, and the system measurements are determined
in terms of an observation equation containing measurement
noises. After specifying the model structure, we need to finda
way to solve the joint parameter and state estimation problem
for nonlinear systems with stochastic noises. Nevertheless, in
practice, the lateral flow immunoassay system itself exhibits
several distinguishing features that add to the difficulties in
its modeling: 1) the biochemical reaction between antigens
and antibodies typically finishes in at most ten minutes, and
therefore we are only able to acquire a small number of
experiment data (i.e., short time-series); 2) the measurement
is usually concerned with a combination of certain variables
and many other system variables are not measureable; and
3) the dynamic model for the lateral flow immunoassay
system is essentially nonlinear, and the system parameters
and the system states have to be estimated simultaneously.
In general, there have been three popular algorithms for the
estimation problem of nonlinear systems, namely, extended
Kalman filtering [3], [34], [36], unscented Kalman filtering
(UKF) [32] and sequential Monte Carlo method [12], [26].

The traditional Kalman filter has been successfully used in
linear models [8]–[10] because of its versatility and effective-
ness. The EKF approach linearizes the nonlinear model by
Taylor expansion and then uses the traditional Kalman filterfor
the linearized model. The EKF algorithm utilized in estimation
problems is quite convenient as we only need to calculate the
mean and covariance values of the system states. Moreover,
the EKF is known as an effective online (recursive) estimator
for process variables, which can be suitable for identifying
large number of parameters using a short time series [3].
On the other hand, the other approaches for the parameter
estimation problem in nonlinear models, such as the unscented
Kalman filtering (UKF) and sequential Monte Carlo method,
would require a sufficiently large number of data for the
statistical inference. With hope to address the listed challenges
for modeling nonlinear lateral flow immunoassay system, the
extended Kalman filtering (EKF) approach stands out as an
appropriate candidate since it is capable of handling the joint
parameter and state estimation problem via short time series
data.

In this paper, we aim to infer the nonlinear state-space
model for the sandwich-type lateral flow immunoassay using
extended Kalman filtering approach through available short
time-series. The model is characterized by the system state
equation and the system measurement equation. The identified
mathematical model enables us to test the system hypotheses
conveniently and also inspect the effects brought from various
design parameters. By utilizing the established model, we are
capable of predicting the dynamic changes of the concentration
of antigens and antibodies, and this paves the way for analyz-
ing, optimizing and designing the behaviors of lateral flow
immunoassay devices. The main contribution of this paper is
mainly twofold. 1) The EKF algorithm is applied to jointly
estimate the system parameters, actual concentration distribu-
tion of states, the system noise and measurement noise in the

nonlinear model of lateral flow immunoassay. Note that the
EKF algorithm is an online estimation algorithm that can solve
the estimation problem through iterative procedure by using a
small number of observations. 2) Real-time experimental data
are obtained to evaluate the model identified by the EKF, and
it is shown that the model fits the data very well. In particular,
the hook effect phenomenon typically exhibited in lateral flow
immunoassay can be clearly demonstrated by the established
model.

The rest of this paper is organized as follows. In Section
II, the lateral flow immunoassay system is introduced and the
nonlinear state-space model is proposed for the lateral flow
immunoassay system. In Section III, the EKF approach to
parameter identification is described. The results of parameter
identification and state estimation by the EKF method are
discussed in Section IV and the model performance is also
demonstrated. Finally, concluding remarks are given in Section
V.

II. T HE MODEL FORLATERAL FLOW IMMUNOASSAY

A. Lateral Flow Immunoassay

Fig. 1. Lateral flow immunoassay architecture.

A typical configuration of lateral flow immunoassay, as
shown in Fig. 1 [16], consists of a variety of materials such
as sample pad, nitrocellulose membrane, conjugate pad and
wicking pad. With the presence of an antigen in the sam-
ple, a sandwich-type assay is formed between the secondary
antibody-immobilized gold nanoparticle immunocomplex and
the primary antibody immobilized on the membrane. After
the antigen-antibody reaction, the red color caused by the
accumulation of gold nanoparticle at that location would
appear on the membrane [1], [33]. The color intensity of
the red test line (signal intensity), which relates directly to
the concentration of the target protein in the standard or
spiked samples, is assessed visually or by a reader system
for quantitative analysis [35].

In general, the biochemical reactions of the lateral flow
immunoassay signal pathway can be summarized as follows
[30]:
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1) Assume that the sample contains various target analytes
Ai. When the sample migrates through the conjugate
pad, the analytes interact with the particulate color
particle conjugateP to form particle-analyte complexes
PAi,

Ai + P
k1−⇀↽−
k2

PAi (1)

2) The free analytes in the sample and the particle-analyte
complexes both migrate into the membrane by the
capillary action. Free analytes of typei(Ai) and particle-
analyte complexesPAi interact with the immobilized
ligands of typei(Ri) to form the complexes,

Ai +Ri

k3−⇀↽−
k4

RAi (2)

PAi +Ri

k5−⇀↽−
k6

RPAi (3)

3) Additionally, unbound particulate conjugateP may bind
to the complexRAi to form the complexRPAi,

P +RAi

k7−⇀↽−
k8

RPAi (4)

In the above, we assume that the first-order reversible
interactions occur without consideration of the control line.
In this paper, for simplicity, we only consider a single target
analyte in the sample, and therefore we drop the subscripti
from the next section.

B. Lateral Flow Immunoassay Model

Let x1, x2, x3, x4, x5 and x6 be the concentration of
A,P, PA,R,RA and RPA, respectively. For demonstration
purpose, it is assumed that there is no time-delay between the
biochemical reactions (1)-(4). The rates of the reactions are
defined as follows:

v1 = k1x1x2 − k2x3 (5)

v2 = k3x1x4 − k4x5 (6)

v3 = k5x3x4 − k6x6 (7)

v4 = k7x2x5 − k8x6 (8)

wherek1, k3, k5, k7 andk2, k4, k6, k8 are the association and
dissociation rate constants, respectively. The stoichiometrix for
the biochemical reaction of the lateral flow immunoassay is
given by

S =

















−1 −1 0 0
−1 0 0 −1
1 0 −1 0
0 −1 −1 0
0 1 0 −1
0 0 1 1

















.

Let x = [x1, x2, ..., x6]
T and V = [v1, v2, ..., v4]

T . The
differential equation for the biochemical reactions of thelateral
flow immunoassay is given as follows [17], [34]

dx(t)

dt
= SV (x) (9)

It should be pointed out that the variablesx1, x2, x3, x4, x5

and x6 are not measurable/observable. The only observed
signal that can be detected with a reader system is the test
line’s intensity, which is typically either the color intensity
or the phosphor emission intensity or fluorescent [30]. The
signal would be proportional to the concentration of particle-
analyte complexesPA and the complexRPA. In this case,
the observation equation is obtained as follows

y = k9(x3 + x6). (10)

The most general form of the nonlinear model for the
dynamics of biochemical networks is defined by dynamic mass
balance equations or kinetic models [34], where the system
consists of a pair of equations as follows

dx(t) = f(x(t), t)dt +G(t)dβ(t) (11)

dy(t) = g(x(t), t)dt + L(t)dη(t) (12)

where x(t) is the vector of state variables which are con-
centrations of antibodies, antigens or complex material;y(t)
is the measurement process;f(x(t), t) = SV (x(t)) with S
being a stoichiometric matrix that describes the biochemical
transformation in a biochemical network andV (x(t)) being
the vector of reaction rates (usually the vector of nonlinear
function of the state) [34];G(t) andL(t) are arbitrary time-
varying matrices independent ofx(t) andy(t); g(x(t), t) is the
measurement model function; andβ(t) andη(t) are indepen-
dent Brownian motions with diagonal diffusion matricesQ(t)
and R(t), respectively. For the convenience of engineering
applications, such a model can also be modified in terms of
the white noisesw(t) = dβ(t)/dt and v(t) = dη(t)/dt as
follows [18]:

dx

dt
= SV (x(t)) +G(t)w(t) (13)

z(t) = g(x(t)) + L(t)v(t) (14)

where the Gaussian white noisesw(t) and v(t) are uncorre-
lated and independent for allt.

In practice, when modeling biochemical networks from
observed data (time series), discrete-time models play a more
crucial role than their continuous-time counterparts in today’s
digital world. In order to obtain the nonlinear model for lat-
eral flow immunoassay biochemical networks from discretely
obtained measurements, it is usually essential to formulate the
discrete-time analogue as follows [34]:

x(k + 1) = x(k) + SV (x(k)) + w(k) (15)

z(k) = g(x(k)) + v(k) (16)

To facilitate the parameter estimation, in this paper, let
us useθ = [k1, k2, ..., k9]

T to denote the parameters to be
estimated, which are the association and dissociation rate
constants in the vectorV (x(k)). Therefore, we can rewrite
the model (15)-(16) in the following more compact form:

x(k + 1) = f(x(k), θ) + w(k) (17)

z(k) = g(x(k), θ) + v(k) (18)

wherex(k) is the vector of state variables at the time point
k, f(., .) is a nonlinear function withθ being a parameter
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vector to be identified.w(k) and v(k) denote the zero-mean
uncorrelated Gaussian noises with covariance matricesQk

and Rk, respectively.z(k) is the measurement data from
experiments at the time pointk.

It is clear from (17)-(18) that what we need to do is to
identify the parameter vectorθ for the purpose of establishing
the lateral flow immunoassay model. The main aim of this
paper is to estimate the parameters of the model (17)-(18)
via the EKF method from the possibly small number of the
measured data.

III. JOINT PARAMETER AND STATE ESTIMATION BY THE

EXTENDED KALMAN FILTER

In this section, for the convenience of the readers, we intro-
duce the EKF approach to parameter identification, see e.g. [3],
[27], [36] for more details. The Kalman filter is the optimum
state estimator for a linear system with the assumptions as
described. If the system is nonlinear, then we may use a
linearization process at every time step to approximate the
nonlinear system with a linear time varying (LTV) system.
This LTV system is then used in the Kalman filter, resulting in
an extended Kalman filter (EKF) on the true nonlinear system.
Note that although EKF is not necessarily optimal, it often
works very well. Discussions on the convergence of EKF can
be found in [15], [21] and the references therein.

Consider the following nonlinear system

x(k + 1) = f(x(k)) + w(k) (19)

y(k) = g(x(k)) + v(k) (20)

wherek is a non-negative integer,x(k) ∈ R
n is the system

state vector,y(k) ∈ R
r is the observation vector,w(k)

and v(k) are the system noise and the measurement noise,
respectively.w(k) and v(k) are zero-mean white Gaussian
stochastic processes with covariance matricesQk and Rk,
respectively. Here,f :Rn → R

n is a nonlinear state transition
function andg:Rn → R

r is a nonlinear measurement function.
The extended Kalman filter is implemented by the following

consecutive steps:

1) Consider the last filtered state estimatex̂(k|k)
2) Linearize the system dynamics (19) aroundx̂(k|k)
3) Apply the prediction step of the Kalman filter to the

linearized system dynamics just obtained, yieldingx̂(k+
1|k) andP (k + 1|k)

4) Linearize the observation equation (20) aroundx̂(k|k)
5) Apply the filtering or update cycle of the Kalman filter

to the linearized observation dynamics, yieldingx̂(k +
1|k + 1) andP (k + 1|k + 1)

Let

Â(k) =
∂f(x(k))

∂x(k)

∣

∣

∣

∣

x(k)=x̂(k|k)

(21)

Ĉ(k) =
∂g(x(k))

∂x(k)

∣

∣

∣

∣

x(k)=x̂(k|k−1)

(22)

Assume thatx(0) ∼ N (x0, Px0
), w(k) ∼ N (0, Qk), v(k) ∼

N (0, Rk) with Rk > 0, and that{w(k)} and{v(k)} are white
noise processes uncorrelated withx(0) and with each other.

Then, the Extended Kalman filter algorithm can be stated
below:

Initialization
For k = 0, set

x̂(0|0) = E[x(0)] = x0,

P (0|0) = E[(x(0)− x0)(x(0)− x0)
T ] = Px0

.

For k = 1, 2, 3, ... compute
Time update (‘Predict’)

State estimate time update:x̂(k|k− 1) = f(x̂(k− 1|k− 1))
Error covariance time update:P (k|k−1) = Â(k−1)P (k−

1|k − 1)Â(k − 1)T +Qk−1

Measurement update (‘Correct’)
Compute the Kalman gain matrix:Kk = P (k|k −

1)ĈT (k)[Ĉ(k)P (k|k − 1)C(k)T +Rk]
−1

Update the estimate with measurementy(k): x̂(k|k) =
x̂(k|k − 1) +Kk[y(k)− g(x̂(k|k − 1))]

Error covariance measurement update:P (k|k) = (I −
KkĈ(k))P (k|k − 1).

In addition, in order to improve the precision of state
estimation and also reduce the possible biases, there is a
need to properly quantify the parametersQ and R in the
EKF algorithm. To tackle this issue, we use the innovation-
based adaptive estimation (IAE) approach [40], where the
covariance matricesQ(k) and R(k) are estimated and then
updated iteratively according to the following equations:

R(k) = Cvk + Ĉ(k)P (k|k)Ĉ(k)T (23)

Q(k) = KkCvkK
T

k (24)

where Cvk is the innovation covariance matrix computed
through averaging the innovation sequences(k) inside a
moving estimation window of sizeN ,

Cvk =
1

N

k
∑

i=k−N+1

s(k)s(k)T (25)

s(k) = y(k)− g(x̂(k|k − 1)) (26)

Based on the above equations, the appropriate values ofQ and
R can be determined at each iteration.

Remark 1:Extended Kalman filter is a very practical
method in identification of nonlinear systems. Augmenting the
unknown parameters to the state vector makes it possible to
use EKF for parameter identification too.

IV. RESULTSUSING THE EKF APPROACH AND

DISCUSSION

In this paper, we take human chorionic gonadotropin (hCG)
as a target analyte. The CCD-based image acquisition system
[25] is exploited to generate the short time series shown
in Fig. 2. The upper part of Fig. 2 shows the gold im-
munochromatographic strip’s nitrocellulose membrane pixel
intensity inverse the sample flow direction. The images are
acquired when the sample passes through the nitrocellulose
membrane that consists of 45 equally spaced time points (from
0 to 11 minutes), 45 images as a time series. We choose
z = [maxpixel(255− Ipixel)−Pbase]/10 as the observed value
shown in the lower part of Fig. 2, whereIpixel is the pixel
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Fig. 2. Upper part: The strip’s nitrocellulose membrane pixel
intensity inverse the sample flow direction; Lower part: Theobserved
value of lateral flow immunoassay biochemical reaction signal

intensity andPbase equals tomaxpixel(255 − Ipixel) of the
first out of the 45 images.

Take
x0 = [5, 6.5, 0, 13, 0, 0]T

and

k0 = [0.03, 0.0001, 0.01, 0.0001, 0.04, 0.0001, 0.04, 0.0001, 2.2]T

as the initial values of the state variables and parameters,
respectively. Then, we can estimate parameters and state
variables based on the EKF algorithm. Both the identified
parameters and state variables are shown in Fig. 3 and Fig. 4,
which are expressed in the form of time series. The time series
for error covariances is also obtained, simultaneously, which
is depicted in Fig. 5 and Fig. 6 . In Fig. 7 shows the time
series for the noise varianceQk andRk.
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Fig. 3. The estimated time series of parametersk1, k2, k3, k4, k5,
k6, k7, k8, k9.
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Fig. 5. The variances of estimated time series of parametersk1, k2,
k3, k4, k5, k6, k7, k8, k9.

It can be seen from Fig. 4 that the target analytesA, color
particle conjugateP and immobilized ligandsR are decreasing
as the time goes. The particle-analyte complexesPA and
the complexRA increase in the first instance because of the
biochemical reactions (1) and (2), but later decrease because of
the biochemical reactions (3) and (4). Therefore, the complex
RPA increases with the time going on and eventually reaches
the equilibrium state. It can now be concluded that the model
identified by the EKF algorithm does make the practical sense.
Also from Fig. 5 and Fig. 6, we can see that the estimation
covariances are small, which means that our model fits the
data very well.

In order to further evaluate the model identified by the EKF
method, we have done some experiments by changing the
concentration of the target anylyte. Fig. 8 shows the observed
value predicted by the EKF method and observed value from
the real experiments. Furthermore, to evaluate the model
quality in a quantitative way, let us introduce the following
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Fig. 6. The variances estimated time series of statesA, P , PA, R,
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Fig. 7. The noise variances estimated time series ofQk andRk.

criterion for the modeling errors (error ratio in percentage)
between the actual and the model predicted data [28], [37]:

Error ratio = 100×
1

l

l
∑

c=1

[
√

∑s

k=1(yck − ŷck)2
∑s

k=1(yck)
2

]

% (27)

where l is the number of observations (dimension) involved
in the modeling (l=1 in this paper);s is the number of
observations (length), andyck is the actual value forcth
observation at thekth time point. The results are given in
Table I. Given the fact that there are only 45 time points
(images), the model quality is satisfactory.

Next, let us examine if the established model could reveal
biological significance. The hook effect is a well-known phe-
nomenon in lateral flow immunoassay when the target analyte
is detected to exceed the amount of colored labeling conjugate
or the ligands immobile on the capture zone. The cause for
such a phenomenon is that the analyte binds both to the colored
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Fig. 8. The observed value predicted by EKF method and observed
value from the experiment.

TABLE I
QUANTITATIVE MODEL EVALUATION FOR TIME SERIES WITH DIFFERENT

CONCENTRATIONS

Experiment 1 2 3

Error ratio 1.05% 2.27% 5%

labeling conjugate and to the ligands, and also blocks many of
the particle-analyte complexes from binding with the ligands
[30]. In theory, the identified model by the EKF method
should confirm the occurrence of such a phenomenon. Fig. 9
shows the concentration of the complexRPA as a function
of the target analyte concentration. When the target analyte
concentration is less than the colored labeling conjugate or the
ligands, the immunoassay can provide accurate results and the
dose-response curve shows a positive slope. The slope will
become negative when the concentration of analyte exceeds
the ligands [33]. To this end, the expected hook effect has
been successfully displayed by the identified model.

Remark 2:When it comes to the quantitative interpretation
for the lateral flow immunoassay, best time-points (images)
should be obtained by the reader system. For different manu-
facturers, different materials such as nitrocellulose membrane
are used and therefore the criterion for choosing the best
time-points is the biochemical reaction. Concerning the above
strips’ performance, we have chosen to capture the images
6 minutes later after the sample is added in the strip in
order to obtain reasonable results. From Fig. 9, we can
observed that, despite different eigenvalues, the curve isin
qualitative agreement with the experiment results reported in
[25] experiment results when the target analyte concentration
is less than the colored labeling conjugate or the ligands,
and this again shows the validity of the proposed modeling
approach.
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V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have dealt with three important issues
for sandwich-type lateral flow immunoassay. The first one
is the identification of nonlinear dynamic stochastic model
consisting of system and measurement equations. The second
issue is the EKF algorithm applied to jointly estimate the
system states and parameters for the lateral flow immunoassay
via short time-series data. The third issue is to verify the
identified model by using experimental data. It has been shown
that the established model fits the data very well and therefore
offers a powerful means for testing the system hypotheses and
for predicting the dynamic changes of the concentration of
antigens and antibodies.

In the near future, we will continue to investigate the mod-
eling issue of the lateral flow immunoassay where the control
line is included and the time-delays between the biochemical
reactions are taken into account. Furthermore, the variations in
membrane properties, batch to batch variability of the gold-
antibody conjugates and other factors lead to the variability
observed from strip to strip at the same concentration, so these
factors could be considered as input variables in the state-
space model in the next step. Although the EKF algorithm
is an efficient estimator because of its recursive nature, this
algorithm might result in infeasible estimates because it does
not take into account the physical constraints on the esti-
mated states. Therefore, the EKF algorithm with estimation
constraints should be considered, and the moving-horizon
estimation (MHE) approach appears to be good candidate for
incorporating the estimation constraints. We are also getting in
touch with biologists and manufacturers to gain further insight
into our main results.
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