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Abstract 
Nowadays, there exist a huge number of end devices with different screen properties for 

watching television content, which is either broadcasted or transmitted over the internet. 

To allow best viewing conditions on each of these devices, different image formats have 

to be provided by the broadcaster. Producing content for every single format is, 

however, not applicable by the broadcaster as it is much too laborious and costly. 

The most obvious solution for providing multiple image formats is to produce one high-

resolution format and prepare formats of lower resolution from this. One possibility to 

do this is to simply scale video images to the resolution of the target image format. Two 

significant drawbacks are the loss of image details through downscaling and possibly 

unused image areas due to letter- or pillarboxes. A preferable solution is to find the 

contextual most important region in the high-resolution format at first and crop this area 

with an aspect ratio of the target image format afterwards. On the other hand, defining 

the contextual most important region manually is very time consuming. Trying to apply 

that to live productions would be nearly impossible. 

Therefore, some approaches exist that automatically define cropping areas. To do so, 

they extract visual features, like moving areas in a video, and define regions of interest 

(ROIs) based on those. ROIs are finally used to define an enclosing cropping area. The 

extraction of features is done without any knowledge about the type of content. Hence, 

these approaches are not able to distinguish between features that might be important in 

a given context and those that are not. 

The work presented within this thesis tackles the problem of extracting visual features 

based on prior knowledge about the content. Such knowledge is fed into the system in 

form of metadata that is available from TV production environments. Based on the 

extracted features, ROIs are then defined and filtered dependent on the analysed 

content. As proof-of-concept, this application finally adapts SDTV (Standard Definition 

Television) sports productions automatically to image formats with lower resolution 

through intelligent cropping and scaling. If no content information is available, the 

system can still be applied on any type of content through a default mode. 

The presented approach is based on the principle of a plug-in system. Each plug-in 

represents a method for analysing video content information, either on a low level by 

extracting image features or on a higher level by processing extracted ROIs. The 
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combination of plug-ins is determined by the incoming descriptive production metadata 

and hence can be adapted to each type of sport individually.  

The application has been comprehensively evaluated by comparing the results of the 

system against alternative cropping methods. This evaluation utilised videos which were 

manually cropped by a professional video editor, statically cropped videos and simply 

scaled, non-cropped videos. In addition to and apart from purely subjective evaluations, 

the gaze positions of subjects watching sports videos have been measured and compared 

to the regions of interest positions extracted by the system. 
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1. Introduction 

1.1 Motivation 
Nowadays, broadcasters distribute their services over various channels. In addition to 

the traditional broadcast via antenna, satellite or cable, content is provided to the viewer 

via internet streams, podcasts or adapted broadcast systems for mobile devices, the latter 

of which is a growing and quite promising market. Especially in Korea (T-DMB) and 

Japan (One-Seg, based on ISDB-T) the mobile TV market is gaining a substantial 

market share. 

Key requirements for the success of mobile TV services are the adaptation of video 

content for optimal viewing conditions on mobile devices as well as an appropriate 

video quality. European mobile TV trials have shown that 24% of users stopped using 

the service because of quality issues (Arthur, 2007). The study indicates that there is a 

high demand for made-for-mobile, bite-sized content. 

Adaptation of content for mobile devices should be more than just a replication of 

traditional linear TV content. Mobile TV has to attract an audience with new 

programming and viewing experiences in order to co-exist with traditional TV on 

stationary receivers. Watching TV on portable devices should be complementary to the 

trend towards larger displays at home, such as 42” or even 50” flat screen displays. 

Unfortunately, all too often, identical TV content is presented on the various 

distribution channels as the generation of specific content for mobile TV is very costly 

and time consuming for content providers. The creation of different video formats needs 

to be implemented at program production level which has direct implications for artistic 

design. Alternatively, content adaption can be performed manually during 

postproduction; however, this is not feasible for live productions. 

With the introduction of HDTV productions, the effort for content adaptation for small 

displays increases further. As the scale factor between smallest and highest resolution 

increases significantly, the required relative cropping region size decreases for optimal 

viewing conditions. Consequently, greater attention has to be put on the correct focus 

for the most important areas instead of possibly cropping by static masks (e.g. centred 

pan & scan). 
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The proposed work addresses the problem of content adaptation by means of contextual 

automatic cropping. Compared to other works in the field of intelligent cropping and 

scaling, metadata information that is available from the broadcaster’s production 

workflow is combined with video analysis methods here. The metadata information 

feeds the adaptation system with a priori knowledge about the content and is used to 

guide the feature extraction algorithms. By doing so, the algorithms become aware of 

the content properties and therefore work more efficiently and deliver more reliable 

results. If no metadata is available, the system can still be applied on any type of content 

in a default mode. In this case, salient regions are detected without any background 

knowledge. 

The sample content used in this work consists of different types of SDTV sports 

productions. The sports genre is generally very popularly viewed on small screens. 

Compared to movies, sports do not need much contextual information. Hence, they can 

be watched simultaneously with other activities. Moreover, movies usually have a 

length of up to several hours, which also makes them less suitable for watching on small 

displays; a mobile TV user trial from 2006 has shown that the average duration per 

session is around 17 minutes (Lloyd, Maclean, & Stirling, 2006). As HDTV productions 

are not yet available for all types of sports production, the work has been carried out 

based on SDTV content. However, in principle, the presented approaches are also 

applicable to HDTV after adaption to the higher source format resolution. 

1.2 Outline 
The thesis is split into nine chapters. The second and third chapters examine the 

background of computer vision (Chapter 2) and visual attention (Chapter 3) which 

provide the basis for the technological methods used within this work. 

Chapter 4 introduces typical image composition techniques used for TV productions. 

These techniques applied by cameramen already provide features in video content 

which point out the most important areas. In later chapters, these techniques are 

considered to choose appropriate content analysis methods. 

In Chapter 5, comparable works from different areas are presented. Finally, their 

difference to this work is outlined and the advantages of the selected approach in the 

context of broadcast productions are presented. 
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Chapter 6 describes the role of metadata in TV productions and which standard has been 

used within this work to provide previous knowledge for content analysis. Relevant 

possibilities for content annotation are introduced and a software tool which was 

implemented to create metadata files for the selected standard is presented. 

Chapter 7 elaborates the system implementation. First it discusses the technologies used 

and the system design. In the following sections, each module of the system and its 

purpose are explained in detail. 

In Chapter 8, the results of the subjective system evaluation are presented based on 15 

subjects. Additionally, the screen gaze positions of 10 subjects watching sports videos 

were measured and compared to the positions of the regions of interest extracted by the 

system. Deviations between these positions were used to provide a more objective 

predication of the system’s accuracy. 

Finally, Chapter 9 concludes the work by summarising the main concepts and 

discussing the strengths and limitations of the evaluated system. Based on these results 

an outlook on possible future work is given. 
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2. Background on Computer Vision 
This chapter gives a brief overview of different computer vision methods which are 

important for this application. The main task for this application is to combine these 

methods in such a way that regions of interest (ROIs) can be identified in video images. 

Within this work, several plug-ins have been implemented, where each plug-in contains 

a combination of computer vision methods in order to fulfil certain tasks, e.g. detecting 

moving regions. These modules can be applied in different combinations, dependent on 

the video content to be analysed. 

Each video image that is analysed by a plug-in first passes through the process of image 

enhancement (Sections 2.2 and 2.3). This step prepares the image to support certain 

patterns in the image which are to be identified. In the next step, pattern recognition is 

applied by extracting certain features from the video image. Several methods serving as 

the basis for pattern recognition are introduced in Sections 2.4, 2.5 and in Section 3.5 of 

the following chapter. Then, to label the patterns found in the image as foreground and 

other signal components as background, image segmentation is applied (Section 2.6). 

Finally, regions which correspond to foreground are classified through pattern 

classification (Section 2.7). The order of these processing steps is common in computer 

vision (Toennies, 2005). 

The use of certain computer vision methods for this implementation is justified in 

Chapter 7. The discussion of alternative methods in this chapter serves as the basis to 

weigh up the pros and cons of the application area of analysing broadcast video content. 

2.1 Image Formation in Digital Television 
In broadcast productions, the standard video systems are SDTV (Standard Definition 

Television) and HDTV (High Definition Television). A clear distinction between these 

two systems does not exist. Poynton classifies (Poynton, 2003) SDTV as any video 

system that has less than ¾ million pixels. Video systems which have more than ¾ 

million pixels and a native aspect ratio of 16:9, he classifies as a HDTV system. 

In the context of this work, exclusively digital component video signals are of interest. 

Therefore, the author refers to (Poynton, 2003) and (Jack, 2001) for further information 

on analogue image formation of TV systems.  
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2.1.1 Studio colour encoding 
An image sensor produces three colour channels in a range of red, green and blue 

 .The values of each channel are proportional to the intensity of incidental light .(ܤܩܴ)

In most imaging systems, these values are transferred to a nonlinear scale, which is 

motivated by human perception. This correction (gamma correction with an exponent 

of about 0.4) is denoted by ܴ’ܤ’ܩ’. Additionally, human vision has a higher ability to 

perceive lightness than colour information (Poynton, 2003). Therefore, the ITU 

(International Telecommunication Union) standardised coefficients to decouple 

lightness from ܴ’ܤ’ܩ’ for SDTV (Rec. ITU-R BT.601-5, 1995) and HDTV (Rec. ITU-R 

BT.709-3, 1998). Lightness is approximated by luma (ܻ’) which is a weighted sum of 

 :’ܤ’ܩ’ܴ 

ܻԢௌ஽்௏   ൌ  0.299 · ܴ´ ൅ 0.587 · ´ܩ ൅ 0.114 ·  (2.1) ´ܤ

 

ܻԢ ு஽்௏  ൌ  0.2126 · ܴ´ ൅ 0.7152 · ´ܩ ൅ 0.0722 ·  (2.2) ´ܤ

 

Luma should not be confused with luminance. Luminance is proportional to intensity 

and is not an approximation of perceptual response.  

Besides luma, colour information is coded by difference components ܥ஻ and ܥோ, also 

called chrominance. They are formed in component digital video, Motion-JPEG, and 

MPEG by ܤ’ െ ܻ’  and ܴ’ െ ܻ’ ሺPoynton, 2003ሻ. To take advantage of the weakness of 

the human eye, chrominance components are sub-sampled. The notation of sub-sampled 

images is split into three digits ܬ: ܽ: ܾ. This notation can be interpreted as a region that is 

 has historically been set to 4, which represents the ܬ .pixels wide and 2 pixels high ܬ

factor of 3.375 MHz to obtain the horizontal luma sampling rate. The second digit 

represents the number of chrominance samples (ܥ஻, ܥோ) in the first line of ܬ luma pixels 

(Kerr, 2009). Accordingly, the third digit represents the number of chrominance 

samples in the second line of ܬ luma pixels. 

Common sub-sampled images are encoded as 4:2:2 (half of chrominance resolution in 

the first and second line) or 4:2:0 (half of chrominance resolution in the first line and no 

chrominance information in the second line). 
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As mentioned above, the ܻ’ܥ௥ܥ௕ presentation of an image provides facilities to remove 

redundant information more easily than in the ܴܤܩ presentation. For this reason, this 

 .௕ is commonly used for video compressions or digital video exchangeܥ௥ܥ’ܻ

2.1.2 Studio image resolutions 
A widely used technique for the scanning of images is interlaced scanning. By breaking 

a video frame into two fields, the number of images per second can be doubled by 

halving the vertical resolution of a video image. This approach was originally chosen to 

overcome the sensibility of the human eye to flicker, while keeping a given data rate. 

Scanning without interlace is called progressive. 

The scanning notation of digital images is commonly denoted by the count of vertical 

pixel resolution (digital active lines), followed by p for progressive or i for interlace and 

the frame rate. 

Two scanning standards that have been taken from analogue television broadcasting are 

globally used: 480i29.97 systems are used especially in North America and Japan, and 

576i25 systems are used especially in Europe, Asia, Australia, Korea, and Central 

America. Commonly, both systems define a sampling rate of 13.5 MHz (4 x 3.375 

MHz) per line, which results in 720 samples per digital active line (digital active line 

duration x sampling clock = 53.33 µs x 13.5 MHz = 720 samples/line). Alternatively, a 

sampling rate of 18 MHz can be used for an aspect ratio of 16:9, which results in 960 

samples per digital active line (Rec. ITU-R BT.601-5, 1995). To overcome the problem 

of two different image aspect ratios for SDTV, a common technique is to use 

anamorphic lenses that squeeze an image from 16:9 to 4:3. By doing this, the vertical 

and horizontal resolution of an image is the same for both aspect ratios while the display 

aspect ratio differs. Therefore, the horizontal resolution of 720 samples/line is 

commonly used to store 4:3 and 16:9 images. 

For HDTV, two different image resolutions of 1280x720 and 1920x1080 are defined in 

the broadcast environment. For Europe, the EBU (European Broadcast Union) specifies 

four production systems of 720p50, 1080i25, 1080p25 and 1080p50 (High Definition 

(HD) - Image Formats for Television Production, 2004).  
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2.1.3 Pixel aspect ratios 
In (Rec. ITU-R BT.601-5, 1995), SDTV systems are defined by non square pixels. Non 

square pixels have a lower sampling rate in the horizontal than in the vertical direction. 

This sample pitch can be expressed by the pixel, i.e. sample aspect ratio (PAR/SAR) 

which is computed by the ratio between horizontal and vertical active image resolution 

multiplied by the aspect ratio of the intended display (display aspect ratio, DAR). 

For an intended display of 4:3, this results in the following equation: 

ௌ஽்௏ ܴܣܵ ൌ ܴܣܦ ·
horizontal image resolution
vertical image resolution

ൌ
3
4
·
702
576

ൌ 0.914 (2.3) 

 

As the horizontal image resolution in SDTV is 720 by definition, only 702 samples/line 

are used in practice. This is due to the fact that the active analogue line length is 52 μs 

(52 µs x 13.5 MHz = 702 samples/line). The active line period of a digital signal starts 

0.71 μs earlier and ends 0.62 μs later to avoid disturbances that might occur by 

converting analogue to digital signals (Technical Guidelines for the production of 

Television Programmes for ARD, ZDF and ORF, 2006).  

Usually, computer graphics and flat screen TVs employ square pixels. Therefore, most 

of the non-square issues have been left behind with HDTV. HDTV is exclusively 

defined by square pixels in broadcast environments. Consequently, the calculation from 

Equation (2.3) for 1920x1080 results in: 

ு஽்௏ ܴܣܵ ൌ ܴܣܦ ·
horizontal image resolution
vertical image resolution

ൌ
9
16

·
1920
1080

ൌ 1.0 (2.4) 

 

2.2 Image Enhancement 
Image enhancement is a step in image processing which modifies an image so that the 

result is more suitable for a specific application. Therefore, the main objective is to 

suppress non-relevant information and emphasize important image characteristics. This 

can be done either in the frequency domain or the spatial domain. This chapter deals 

with image enhancement in the spatial domain as these operations are faster than in the 

frequency domain as long as the considered patch size for filtering in an image area is 

comparably small.  
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Image enhancement methods can be divided into three groups (Toennies, 2005): 

1. Point processing: change contrast by manipulating distances between grey 

values 

2. Linear filters: consider neighboured pixels to suppress noise or highlight edges 

3. Non linear filters: are constructed in such a way that disadvantages of linear 
filters are compensated 

2.2.1 Point processing 
Point operations compute new pixel values which are independent of the local structure 

in an image. The resulting pixel value ܽᇱ of a point operation function ݂ሺܽሻ is 

influenced solely by the original pixel value located at the same position. 

One of the simplest point operations is a contrast stretching that is an increase of the 

dynamic pixel value range by linear normalisation. Assuming that ܽ௟௢௪ and ܽ௛௜௚௛ are 

the lowest and highest pixel values in an image ܫ, the contrast can be stretched to a new 

maximum level ܽ௠௔௫ and a new minimum level ܽ௠௜௡ by: 

௖݂௦ሺܽሻ ൌ ሺܽ െ ܽ௟௢௪ሻ ·
ܽ௠௔௫ െ ܽ௠௜௡
ܽ௛௜௚௛ െ ܽ௟௢௪

൅ ܽ௠௜௡ (2.5) 

 

In most cases, images are quantised by 8 bits. Therefore the maximum and minimum 

values of contrast stretching are usually set to ܽ௠௜௡ ൌ 0 and ܽ௠௔௫ ൌ 255. It has to be 

considered, that according to (Rec. ITU-R BT.601-5, 1995), the signal is only defined 

on 220 levels; from 16 (black) to 235 (white). 

Another point operation is the gamma correction, already mentioned in Section 2.1.1. It 

improves local contrasts by a power function with an exponent referred to as gamma: 

௚݂ሺܽሻ ൌ ܽఊ (2.6) 

 

As a ߛ of 1 is simply a copy of each value, a ߛ ൐ 1 weights higher values more than 

lower values. In the case of overexposed images, such a correction helps to get a better 

distribution over the pixel value range. In turn, if images are underexposed, a ߛ ൏ 1 

improves the distribution by weighting lower values more than higher values. 
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2.2.2 Linear filters 
Linear filtering is a simple but very effective operation. It is also known as a linear shift 

invariant operation. The term shift invariant means that results are dependent on the 

pattern in an image neighbourhood, rather than on the operation itself. Linear means 

that an operation is homogeneous ሺ݂ሺܽݔሻ ൌ ݂ܽሺݔሻሻ and additive ሺ݂ሺݔ ൅ ሻݕ ൌ ݂ሺݔሻ ൅

݂ሺݕሻሻ. 

Linear filtering usually makes use of a locally applied pattern of weights. This pattern 

of weights is called a kernel and the process of applying this kernel is usually referred to 

as convolution. Given a kernel ܪ, the convolution of image ܫ with ܪ results in the 

filtered image ܴ. 

ܴሺݔ, ሻݕ ൌ ሺܪ כ ሻܫ ൌ ෍ ෍ ,ሺ݅ܪ ݆ሻ · ݔሺܫ െ ݅, ݕ െ ݆ሻ
∞

௜ୀି∞

∞

௝ୀି∞

 (2.7) 

 

The convolution is denoted by the operator כ. It is assumed that pixels beyond the 

kernel ܪ are zero, because positions outside the matrix are irrelevant for the summation. 

Common kernel sizes are 3x3 or 5x5. 

The weights of a kernel depend on the desired effect of the processed image. For 

example, a blur filter sums up all pixels covered by a kernel and divides the resulting 

value by the number of weights in the kernel. To highlight centred pixels and decrease 

the influence of pixels at the boundary of a certain region, a 2D Gaussian function 

(Gaussian filter) could be applied instead of a blur filter. Furthermore, linear filtering 

can be applied for edge detection by kernels weighting different orientations of edges 

(see Figure 2-1). For further information on linear filtering and its usage, the author 

refers to (Burger & Burge, 2008; Forsyth & Ponce, 2003).  
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Figure 2-1: Applying linear filters by convolving with a mean filter kernel (left), a Gaussian filter 
kernel (centre) and Sobel operators for vertical and horizontal edge detection (right). 

2.2.3 Non-linear filters 
The advantage of linear filters is that noise can be reduced by smoothing the image. For 

example, if the noise that is present is a stationary additive Gaussian noise with a mean 

value of zero, then a symmetric Gaussian filter kernel might be the right choice. If on 

the other hand there is noise that is not stationary additive, no general statement about a 

noise distribution can be made. Such a type of noise is for example salt and pepper 

noise, which induces randomly occurring white and black pixels. Therefore, a kernel 

function is required that robustly estimates the statistical distribution in a pixel’s 

neighbourhood. This can be achieved by non-linear filters. 

Such a robust statistical estimator is the median filter. The median value is the centre 

position of neighboured pixel values that are sorted in ascending order. For a set of 

2݇ ൅ 1 elements, the ݇ ൅  1st  element is chosen and in the case of 2݇ elements, the 

average of elements ݇ and ݇ ൅ 1 is calculated. The way of applying the median filter on 

a 2D image is the same procedure as for convolution.  
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Having a neighbourhood ௫ܰ,௬ centred at pixel position ݔ,  the filter can be expressed ,ݕ

by: 

ܴሺݔ, ሻݕ ൌ ݉݁݀൛ ,ሺ݅ܫ ݆ሻ|݅, ݆ ߳ ௫ܰ,௬ൟ (2.8) 

 

where ܫ is the input image and ܴ is the resulting image. Figure 2-2 depicts the different 

effects of a median filter and a Gaussian filter applied on an image with salt and pepper 

noise. 

 

Figure 2-2: Comparison of Gaussian filtering (left) and median filtering (right) applied on salt and 
pepper noise (top). 

A median filter belongs to the group of morphological filters and is commonly applied 

on grey-scale images. Other morphological operations are erosion and dilation. For 

grey-scale image processing, they are quite similar to the median filter. Erosion applied 

on grey images sets the value of a pixel to a lower level than the median value or even 

the lowest available in the pixel’s neighbourhood. This leads to a contraction of bright 

areas on a dark background. In turn, dilation chooses a value of higher rank than the 

median value which results in an expansion of bright areas on a dark background 

(Erhardt, 2008).  
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More powerful and less compute-intensive are morphological filters applied on 

binarised images. Instead of sorting pixels according to ascending values, erosion and 

dilation can now be computed by simple OR and AND operations with patterns 

consisting of zeros and ones (see Figure 2-3). Commonly, these patterns have a size of 

3x3 or 5x5 pixels. Assuming that ܵ is a structuring element, i.e. a pattern, and ܫ is a 

binary image, erosion can be expressed as: 

ܫ ٓ ܵ ൌ ൛݌ ׷ ܵ௣ ר  ൟ (2.9)ܫ

 

where ܵ௣ is the image obtained by shifting the structuring element ܵ to the pixel ݌. In 

the same way, dilation can be described by an OR operation. This means that at least 

one element of ܫ must match with ܵ, so that the value at position ݌ is kept: 

ܵ۩ܫ ൌ ൛݌ ׷ ܵ௣ ש  ൟ (2.10)ܫ

 

 

Figure 2-3: Comparison of erosion and dilation applied to a binarised image with a threshold of 
100. Both structural elements of the morphological operations have a size of 3x3. 

  

erosion dilation 
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Erosion and dilation operations are not the inverse of each other. For example, applying 

erosion at first and dilation afterwards rounds object boundaries and removes 

connections between objects (opening). In turn, closing is a serial execution of dilation 

and erosion and brings blobs together or closes holes in objects that may remain after a 

segmentation process. 

2.3 Geometric Operations and Interpolation 
As will be explained in Section 2.4, scaling of an image requires previous filtering to 

avoid alias effects. Usually, this filtering process is not applied in the frequency domain, 

but rather by convolving the image with a kernel. Dependent on up- or downscaling, 

interpolation is able either to remove or to restore frequency components. Besides 

scaling, geometric operations such as shifting, rotating and shearing are frequently used 

as well. Therefore, interpolation plays an important role wherever raster images are 

deformed and remapped in order that transformed coordinates no longer fall onto a 

discrete raster. 

In this section, a short introduction to 2D mapping functions is first given and then an 

overview of interpolation functions brings this section to a conclusion. Both topics form 

an important foundation for the implementations in this work. 

2.3.1 Affine transformations 

A geometric operation modifies the coordinates of a given image I to a new image I’: 

,ݔሺܫ ሻݕ ՜ ,ᇱݔԢሺܫ  Ԣሻ (2.11)ݕ

 

Such a transformation can be applied by simple mapping functions that allow 

translation, scaling, shearing and rotation: 

Translation  ൬ݔԢݕԢ൰ ൌ ቀ
ݔ
ቁݕ ൅ ൬

݀௫
݀௬
൰ (2.12) 

 

Scaling  ൬ݔԢݕԢ൰ ൌ ൬
௫ݏ 0
0 ௬ݏ

൰ · ቀ
ݔ
 ቁ (2.13)ݕ
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Shearing  ൬ݔԢݕԢ൰ ൌ ൬
1 ܾ௫
ܾ௬ 1 ൰ · ቀ

ݔ
 ቁ (2.14)ݕ

 

Rotation  ൬ݔԢݕԢ൰ ൌ ቀcos ߙ െ sin ߙ
sin ߙ cos ߙ ቁ · ቀ

ݔ
 ቁ (2.15)ݕ

 

These affine transformations can be simplified using homogenous coordinates. In other 

words, even translations are computed by one vector matrix multiplication. To convert 

2D coordinates into homogeneous coordinates, each vector is extended by an additional 

absolute term: 

൭
Ԣݔ
Ԣݕ
1
൱ ൌ ቆ

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
0 0 1

ቇ · ቆ
ݔ
ݕ
1
ቇ (2.16) 

 

Searching for an affine transformation from image I to I’, the matrix of six unknowns 

has to be solved. This condition is satisfied if three pairs of corresponding points 

ሺݔଵ, ,Ԣଵሻݔ ሺݔଶ, ,Ԣଶሻݔ ሺݔଷ,  Ԣଷሻ are given. In turn, when applying an affine mapping on anݔ

image, all coordinates have to be multiplied by the matrix. An affine transformation is a 

three point mapping that transforms lines to lines, triangles to triangles and rectangles to 

parallelograms (see Figure 2-4). 

 

Figure 2-4: Affine 2D transformation using three pairs of corresponding points. 
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2.3.2 Interpolation operations 
Interpolation is a process of regaining lost information in a sampled image or estimating 

a signal at continuous positions. This task arises in this work when image 

transformations are applied (two dimensional interpolation) or missing positions of 

ROIs or cropping areas are determined (one dimensional interpolation). For better 

illustration, operations are described below for one dimensional interpolation only. 

An interpolation of a sampled signal can be presented as a convolution with a 

continuous function. Dependent on the convolution function, the original signal can be 

approximated more or less accurately. To address the question of which convolution 

function has to be chosen to restore specific information content, a look at the spectral 

domain gives an intuitive answer. Obviously, interpolation of sampled signals goes side 

by side with Shannon's sampling theorem. This means that a properly sampled signal 

must have been limited to frequencies not higher than half of the sampling frequency. 

Therefore, the accuracy of a reconstructed continuous signal is naturally constrained. To 

retain maximal information from the periodic Fourier Spectrum, an ideal low pass filter 

cuts off high image frequencies and keeps all lower frequency components. This 

multiplication in the frequency domain with a square window corresponds to a 

convolution in the time domain with a Sinc function ቀୱ୧୬ ሺగ௫ሻ
గ௫

ቁ (see Figure 2-5). 

 

Figure 2-5: One dimensional Sinc function. It is 1 at the origin and has zero values at all integer 
positions. 

Practically, this optimal interpolation is not satisfying for two reasons. Firstly, the 

convolution mask of a Sinc function does not simply include a few neighboured values, 

but infinitely many values whose influences decrease with higher distances to the 

origin. Secondly, due to rapid transitions or pulses of the Sinc function, disturbing 

ringing artefacts can occur for image interpolations. For this reason, the Sinc function is 
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approximated by kernel functions dependent on the requirements of the applications. 

The most common kernels are introduced in the following sections. 

2.3.2.1 Nearest-neighbour and linear interpolation 
The simplest interpolation function and thus the opposite extreme of Sinc interpolation 

is the nearest-neighbour interpolation. This approach sets the sample value of a 

continuous coordinate x to the closest sample value of the function which has to be 

interpolated. A more closely approximated course of the original function can be 

achieved by a linear interpolation. It describes the interpolated value by a linear function 

that is calculated by the two closest samples. The nearest-neighbour and linear 

interpolation kernel functions are depicted in Figure 2-6. 

 

Figure 2-6: Convolution kernels of nearest-neighbour-interpolation (left) and linear interpolation 
(right). 

2.3.2.2 Cubic spline interpolations 
Interpolations that come closer to the function course of a Sinc function are spline 

interpolations. An efficient and good approximation of the Sinc can be reached by a 

cubic spline. In general, its kernel consists of piecewise cubic polynomials, where each 

polynomial is controlled by two parameters a and b. 

,ݔ௖௦ሺݓ ܽ, ܾሻ ൌ
1
6
·

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ሺെ6ܽ െ 9ܾ ൅ 12ሻ · ଷ|ݔ| ൅

ሺ6ܽ ൅ 12ܾ െ 18ሻ · ଶ|ݔ| െ 2ܾ ൅ 6
 0 ݎ݋݂ ൑ |ݔ| ൏ 1

ሺെ6ܽ െ ܾሻ · ଷ|ݔ| ൅ ሺ30ܽ ൅ 6ܾሻ · ଶ|ݔ| ൅ 
ሺെ48ܽ െ 12ܾሻ · |ݔ| ൅ 24ܽ ൅ 8ܾ  1 ݎ݋݂ ൑ |ݔ| ൏ 2

0 |ݔ| ݎ݋݂ ൒ 2

 (2.17) 

 

Specialisations of Equation (2.17) are defined by different values of a and b. Both 

parameters influence the slope of the function, which affects the amount of overshoot. 

In the case of image interpolation, overshoot has a strong influence on the sharpness of 
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images. In turn, overshoot can cause ringing artefacts as well. Therefore, it is desirable 

to find a compromise between these two effects. 

For example, parameters of a = 0.5 and b = 0 create overshoots that support sharpness in 

an image (Equation (2.18)). This setting, known as Catmull-Rom interpolation, can 

cause ringing artefacts, but delivers good results in smooth signal areas. 

ሻݔ௖௠௥ሺݓ ൌ ,ݔ௖௦ሺݓ 0.5,0ሻ ൌ
1
2
·

ە
ۖۖ
۔

ۖۖ
ۓ 3 · ଷ|ݔ| െ 5 · ଶ|ݔ| ൅ 2  0 ݎ݋݂ ൑ |ݔ| ൏ 1

െ|ݔ|ଷ ൅ 5 · ଶ|ݔ| െ 8 · |ݔ| ൅ 4  1 ݎ݋݂ ൑ |ݔ| ൏ 2

0 |ݔ| ݎ݋݂ ൒ 2

 (2.18) 

 

Less an interpolation but more an approximation of function courses is the cubic B-

spline interpolation. What is special about this operation is the fact that reconstructed 

signals do not necessarily go through all original points. Therefore, it is more a 

smoothing, comparable to a Gaussian smoothing, than an interpolation. The settings for 

a and b are a = 0 and b = 1 (Equation (2.19)). 

ሻݔ௖௕௦ሺݓ ൌ ,ݔ௖௦ሺݓ 0,1ሻ ൌ
1
6
·

ە
ۖۖ
۔

ۖۖ
ۓ 3 · ଷ|ݔ| െ 6 · ଶ|ݔ| െ 4  0 ݎ݋݂ ൑ |ݔ| ൏ 1

െ|ݔ|ଷ ൅ 6 · ଶ|ݔ| െ 12 · |ݔ| ൅ 8  1 ݎ݋݂ ൑ |ݔ| ൏ 2

0 |ݔ| ݎ݋݂ ൒ 2

 (2.19) 

 

In turn, the Mitchell-Netravali interpolation provides the right balance between the two 

spline functions mentioned above. With a setting of ܽ ൌ ଵ
ଷ
 and ܾ ൌ ଵ

ଷ
, it supports 

sharpness and low ringing artefacts for image interpolations (Equation (2.20)). 

ሻݔ௠௡ሺݓ ൌ ,ݔ௖௦ሺݓ
1
3
,
1
3
ሻ

ൌ
1
18

·

ە
ۖۖ
۔

ۖۖ
ۓ 21 · ଷ|ݔ| െ 36 · ଶ|ݔ| ൅ 16  0 ݎ݋݂ ൑ |ݔ| ൏ 1

െ7 · ଷ|ݔ| ൅ 36 · ଶ|ݔ| െ 60 · |ݔ| ൅ 32  1 ݎ݋݂ ൑ |ݔ| ൏ 2

0 |ݔ| ݎ݋݂ ൒ 2

 
(2.20) 
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2.3.2.3 Lanczos interpolation 
The Lanczos interpolation kernel is not an approximation of the Sinc function by 

polynomials, but a Sinc function that is commonly limited to the second or third 

overshoot. Additionally, the Lanczos kernel is smoothed at its boundaries by a window 

function to lessen the influences of the overlapping truncated Sinc kernels. Due to the 

good approximations of the Sinc kernel by the Catmull-Rom or Mitchell-Netravali 

functions, the Lanczos interpolation does not offer much advantage. 

2.4 2D Fourier Transform 
Section 2.2 covered the topic of how to manipulate discrete images by kernel functions. 

Obviously, a discrete image does not provide a proper basis for all operations. For 

example, shrinking an image should not be done by simply removing each k-th pixel. In 

doing so, alias effects can become visible; this is caused by disregarding the shift of 

sampling frequency. This effect could be examined by changing the basis. 

One way to change the basis into another that represents the frequency domain is the 

Fourier transform. The Fourier transform for sampled signals is the DFT (Discrete 

Fourier Transform). The two-dimensional DFT for a square image g(x,y) of size N×N is 

defined by: 

F൫݃ሺݔ, ,ݑሻ൯ሺݕ ሻݒ ൌ 1
ܰଶ ෍ ෍ ݃ሺݔ, ሻ݁ି௜ଶగቀݕ

௨௫
ே ା௩௬ே ቁ

ேିଵ

௬ୀ଴

ேିଵ

௫ୀ଴

 (2.21) 

 

This conversion takes the basis of the complex valued function of x,y (complex valued 

function with zero imaginary components) and returns a complex valued function of 

u,v. The exponential is the basis of u,v and can be rewritten as: 

݁ି௜ଶగቀ
௨௫
ே ା௩௬ே ቁ ൌ ݏ݋ܿ ቆ2ߨ ቀ

ݔݑ
ܰ
൅
ݕݒ
ܰ
ቁቇ െ ݅ ݊݅ݏ ቆ2ߨ ቀ

ݔݑ
ܰ
൅
ݕݒ
ܰ
ቁቇ (2.22) 

 

Equation (2.21) can be interpreted as follows: the value of each pixel g(x,y) is 

calculated by multiplying the spatial image with the corresponding base function of u,v 

and summing the result. As can be seen in Equation (2.22), the complex number is 

composed of sine and cosine waves. The values of the trigonometric functions can be 

interpreted as measuring the amount of given frequency and orientation in the signal.
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Consequently, each complex number of the sum represents a spatial frequency 

component whose precision depends on the number of pixels x,y  used  for  the 

transformation, where F൫݃ሺݔ,  ሻሺ0,0ሻ൯ describes the DC-component, i.e. the averageݕ

brightness of the image, and F൫݃ሺݔ, ሻሺܰݕ െ 1,ܰ െ 1ሻ൯ describes the highest frequency. 

To visualise each component, the complex function is usually inconvenient to draw. 

One possibility is to plot the real term and the imaginary term separately. Another 

option is to consider magnitude and phase of the complex numbers. Commonly, just the 

magnitude spectrum is chosen for visualisation, because it is in direct relation to the 

number of frequencies present in the image. Looking at the magnitudes of a transformed 

image, fast-diminishing values can be observed with increasing frequency. To 

counteract this effect, a logarithmic transformation is usually applied before plotting. 

Furthermore, for a better illustration, the magnitude spectrum is rearranged by shifting 

the origin of the four quadrants to the centre (see Figure 2-7). 

To save computing power, the DFT can be simplified by a few mathematical tricks. 

First, the DFT is separable and can be calculated by two successive one-dimensional 

sums, instead of a double sum: 

F൫݃ሺݔ, ,ݑሻ൯ሺݕ ሻݒ ൌ 1
ܰ
෍ ݃Ԣሺݑ, ሻ݁ି௜ଶగݕ

௩௬
ே

ேିଵ

௬ୀ଴

 (2.23) 

 

where ݃Ԣሺݑ, ሻݕ ൌ
1
ܰ
෍ ݃ሺݔ, ሻ݁ି௜ଶగݕ

௨௫
ே

ேିଵ

௫ୀ଴

 

 

This reduces the computational complexity from ܱሺܰସሻ to ܱሺܰଷሻ for a two-

dimensional image with a size of NxN pixels (Toennies, 2005). 

Further significant computational savings can be achieved by employing the Fast 

Fourier Transform (FFT). The total expense is finally ܱሺܰଶ݈ܰ݃݋ሻ. For further 

information on FFT, the author refers to (Brigham, 1988).  
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This section gives an overview of the most common local motion estimation methods: 

block matching, phase correlation and optical flow. 

2.5.1.1 Block matching 
Block matching is a widely used method in video compression to detect similar 

rectangular regions of intensity values in consecutive video frames. It is the simplest 

estimation of local motion, while at the same time producing quite accurate results 

dependent on the block size. The idea of block matching is to minimise the sum of an 

estimation criterion Φ at pixel position x ൌ ሺݔ,  ሻ், applied on all blocks B௠ in aݕ

pixel’s neighbourhood P: 

min
୳ሬሬԦఢP

ԪሺuሬԦሻ , ԪሺuሬԦሻ ൌ ෍ Φሺߝ௧ሺxሻ ሻ
୶ఢBౣ

ൌ ෍ Φ൫ܫ௧ሺxሻ െ ௧ାଵሺxܫ െ uሬԦሻ൯
୶ఢB೘

 (2.24) 

 

where ߝ௧ሺxሻ is the prediction error for pixel position x at time ݐ and uሬԦ is the 

displacement vector for each compared block B௠ at time ݐ ൅ 1. 

 

Figure 2-8: Motion vector estimation by applying block matching on two moving squares. The 
transparent squares describe the position in the second video frame. The size of the video frames is 
512 x 512 pixels and the block size is 16 x 16 pixels. 

To complete Equation (2.24), the estimation criterion Φ still has to be defined. Widely 

used criteria are the sum of squared difference (SSD) Φ൫ߝ௧ሺxሻ൯ ൌ ൫ߝ௧ሺxሻ൯
ଶ
 and the sum 

of absolute difference (SAD) Φ൫ߝ௧ሺxሻ൯ ൌ  ௧ሺxሻ|. More complex approaches, forߝ|

example computing the median of squared errors, are rarely used in order to save 
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computing power. Some speed optimisations can be addressed by, for example, sub-

sampling (cf. colour subsampling, 2.1.1) or coarser quantisation stages (Bovik, 2009). 

Figure 2-8 shows the motion vector estimation of two moving squares by applying 

block matching. 

2.5.1.2 Phase correlation 
The advantage of block matching is a precise estimation of shifted pixels. On the other 

hand, the disadvantage of block matching is the extensive search by checking many 

possibilities of local displacements. Phase correlation motion estimation cannot deliver 

precise information in the space-time domain as block matching does. In spite of that, 

phase correlation has the ability to identify present motion in the frequency domain 

robustly. Combining the two provides a promising approach to computing likely 

candidates of motion by phase correlation at first, and then using this information to 

limit the search area for block matching in the next step. The underlying idea of phase 

correlation is a cross correlation measurement between two video frames at time ݐ and 

ݐ ൅ 1 in Fourier-Domain: 

,ݑ௧,௧ାଵሺܥ ሻݒ ൌ Î௧ሺݑ, ሻÎݒ ,ݑ௧ାଵሺכ  ሻ (2.25)ݒ

 

where ݑ,  is כ and Î ,ܫ are frequency components, Î is the Fourier transformed image of ݒ

the conjugate complex of Î. In the Fourier domain, it is of great benefit that not only is 

intensity information available, but phase information as well. This fact is of great 

importance for a robust search for similar structures in consecutive video frames. For 

example, if the illumination of an object changes in video images, e.g. if an object 

moves into shade, intensity values might suddenly change whereas the structure 

remains. Motivated by this, phase correlation applies a normalisation by the magnitude 

on the cross correlation function. After an inverse Fourier transform, an image Ψ is 

obtained with numerous peaks which describe dominating replacements between image 

 :௧ାଵ (see Figure 2-9)ܫ ௧ andܫ

Ψ௧,௧ାଵሺݔ, ሻݕ ൌ ଵିܨ ቊ
Î௧ሺݑ, ሻÎݒ ,ݑ௧ାଵሺכ ሻݒ
หÎ௧ሺݑ, ሻÎݒ ,ݑ௧ାଵሺכ ሻหݒ

ቋ ൌ ଵ൛݁ି௜ିܨ ௔௥௚൛Î೟ሺ௨,௩ሻൟ · ݁ି௜ ௔௥௚൛Î כ೟శభሺ௨,௩ሻൟൟ (2.26) 
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Figure 2-9: Illustration of phase correlation motion estimation for moving objects in two 
consecutive video frames ((a) and (b)) resulting in two peaks (c) that describe the amount of motion. 

2.5.1.3 Optical flow 

The optical flow approach expects that a pixel at position x ൌ ሺݔ,  ݐ ሻ் at timeݕ

reappears in a subsequent frame at time ݐ ൅ 1 at a new position x ൅ uሬԦ ൌ ሺݔ ൅ ,ݑ ݕ ൅

 ሻ். It is assumed that this displacement can be approximated by a first-order Taylorݒ

series (Paragios, Chen, & Faugeras, 2005): 

ሺxܫ ൅ uሬԦ, ݐ ൅ 1ሻ ൎ ,ሺxܫ ሻݐ ൅ uሬԦ · ,ሺxܫ୶׏ ሻݐ ൅
,ሺxܫ߲ ሻݐ
ݐ߲

 (2.27) 

 

Subtracting ܫሺx,  ሻ to estimate the intensity difference leads to the optical flowݐ

constraint equation: 

uሬԦ · ,ሺxܫ୶׏ ሻݐ ൅
,ሺxܫ߲ ሻݐ
ݐ߲

ൌ 0 (2.28) 

 

Obviously, the translation uሬԦ cannot be calculated from the optical flow constraint 

equation only. This under-constrained condition is reflected in the aperture problem that 

appears as ambiguities perpendicular to the image gradients (see Figure 2-10). 

Therefore, another constraint has to be defined to solve Equation (2.28). 

(a) (b) 

(c)
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Figure 2-10: Aperture problem caused by ambiguities in optical flow computation. No clear 
assignment of point A at time t can be made to either point B or B’ at time t+dt. 

A key assumption which leads to a solution is that neighboured pixels undergo similar 

motion and hence those pixels are included in the gradient constraints. The squared 

error is finally minimised by the least-squares estimator: 

ሺuሬԦሻܧ ൌ෍݃ሺxሻ ቆuሬԦ · ,ሺxܫ୶׏ ሻݐ ൅
,ሺxܫ߲ ሻݐ
ݐ߲

ቇ
ଶ

௫

 (2.29) 

 

where ݃ሺxሻ is a kernel weighting the region of considered pixels. This approach has 

been proposed by Lucas and Kanade (Lucas & Kanade, 1981). The translation uሬԦ can 

finally be calculated by minimising ܧሺuሬԦሻ with: 

ሺuሬԦሻܧ߲
ݑ߲

ൌ 0 and
ሺuሬԦሻܧ߲
ݒ߲

ൌ 0  (2.30) 

 

Dependent on the image structure, and specifically in case of the aperture problem, it 

happens that Equation (2.30) cannot be solved. This leads to a sparse vector field, where 

only clearly identified pixels can be tracked by this method. 

An alternative motion estimation method has been proposed by Horn and Schunck 

(Horn & Schunck, 1981). Compared to the local approach of Lucas and Kanade, an 

energy function is minimised here which supports smoothness of the flow over the 

image: 

ሺuሬԦሻܧ ൌ෍൥ቆuሬԦ · ,ሺxܫ୶׏ ሻݐ ൅
,ሺxܫ߲ ሻݐ
ݐ߲

ቇ
ଶ

൅ λሺԡ׏୶ݑԡଶ ൅ ԡ׏୶ݒԡଶሻ൩
௫

 (2.31) 

  

A B
B'

time t time t + dt
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where ߣ is a regularisation constant to control the smoothness of the vector field, i.e. 

larger values of ߣ result in a smoother optical flow field. 

The advantage of Horn and Schunck over Lucas and Kanade is a dense flow field, 

which allows motion information even for unstructured areas through the global 

smoothness constraint. On the other hand, the Lucas and Kanade approach allows a fast 

computation, whereas Horn and Schunck is an iterative method to minimise the energy 

function. Additionally, Lucas and Kanade is less sensitive to noise as it considers only 

clearly identified pixels. 

 

Figure 2-11: Motion vector estimation by applying the optical flow approach by Lucas and Kanade 
on two moving squares. The transparent squares describe the position in the second video frame. 
The size of the video frames is 512 x 512 pixels. 

2.5.2 Global motion estimation 
Motion of pixels in 2D images can be seen as a result of projections from moving 

objects as well as camera motion in a 3D world coordinate system. For determining 

ROIs, it is of interest only to detect areas in images which correspond to moving 

objects. For this, an obvious approach is to detect and compensate camera motion in 

order to separate the two motion types in 2D images. This can be done either by 

physically measuring the movement of the camera directly or by estimating it from local 

motion information, i.e. a measured motion vector field. Even if the former method is 

the preferred and more accurate solution, it cannot be expected that measured camera 

parameters will always be available in a broadcast production workflow. Therefore, the 

computation of camera motion is considered in this section. Due to the fact that the 
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main region in an image often corresponds to background, global motion is considered 

as camera motion here. 

To estimate global motion model parameters, a geometric transformation is searched 

that, as much as possible, maps image coordinates from a first image to a consecutive 

one and vice versa. Such a mapping can be estimated by assuming that all 

corresponding coordinates for which a solution is searched lie approximately on a plane 

(see Figure 2-12). This constraint is known as planar homography. To achieve this, it is 

assumed that a world coordinate point ࢝ࢄ is projected on the first and second image 

planes (see Figure 2-12). This results in the image coordinates ࢞૚ and ࢞૛, where each 

corresponds to its own camera coordinate system with origins ݋ଵ and ݋ଶ. Accordingly, a 

world coordinate point ࢝ࢄ is then ࢄ૚ and ࢄ૛ expressed in the two camera systems. 

Further assuming that the world coordinate system is the same as the first camera 

coordinate system, then ࢝ࢄ ൌ  :૛ can be mapped byࢄ ૚ andࢄ ૚ and henceࢄ

 

૚ࢄ ൌ ૛ࢄ · ܴ ൅ ܶ (2.32) 

 

where ܴ is a 3x3 rotation matrix and ܶ is a 3D translation vector. The condition that all 

points lie on a plane can be described with the aid of the plane equation ்ܰࢄ૚ ൌ ݀, 

where ܰ is the normal vector perpendicular to the plane and ݀ is the distance from the 

plane to the origin ݋ଵ. Inserting this condition into Equation (2.32) results in: 

૛ࢄ ൌ ૚ࢄ · ܴ ൅ ܶ
1
݀
૚ࢄ்ܰ ൌ ൬ܴ ൅ ܶ

1
݀
்ܰ൰ࢄ૚ ൌ ܪ ·  ૚ (2.33)ࢄ

 

The matrix ܪ is known as planar homography matrix. 

Ignoring any camera calibration transformation (which can be done here, as the real 

position of world coordinates is not of interest) the coordinates ࢄ૚ and ࢄ૛ can be 

mapped to homogeneous image coordinates by: 

Zଵ࢞૚ ൌ Zଵ ቆ
xଵ
yଵ
1
ቇ ൌ ൭

Xଵ
Yଵ
Zଵ
൱   and   Zଶ࢞૛ ൌ Zଶ ቆ

xଶ
yଶ
1
ቇ ൌ ൭

Xଶ
Yଶ
Zଶ
൱, 
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with ࢄ૚ ൌ ൭
Xଵ
Yଵ
Zଵ
൱   and   ࢄ૛ ൌ ൭

Xଶ
Yଶ
Zଶ
൱ (2.34) 

 

Substituting the homogeneous image coordinates above for the world coordinates in 

Equation (2.33) and eliminating Zଵ and Zଶ (see (Ma, Soatto, Kosecka, & Sastry, 2004) 

for further details), the planar epipolar constraint is estimated by: 

૛࢞ ൈ ૚࢞ܪ ൌ 0 (2.35) 

 

 

Figure 2-12: Projection of a world coordinate lying on a plane onto image planes. Each image plane 
has its own camera coordinate system with origins ࢕૚ and ࢕૛. 

Geometrically, Equation (2.35) can be interpreted as follows: the matrix ܪ maps two 

position vectors ࢞૚ and ࢞૛ in such a way that they point in the same direction but not 

necessarily with the same magnitude and hence their cross product is zero (see Figure 

2-12).  

 ܪ

ଵݔ
ଶݔ

࢝ࢄ

 ଶ݋
ଵ݋
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A special class of homographies represents affine transformations, already discussed in 

Section 2.3.1. By applying this, Equation (2.35) significantly simplifies to: 

ቆ
xଶ
yଶ
1
ቇ ൈ ൭

hଵଵ hଵଶ hଵଷ
hଶଵ hଶଶ hଶଷ
0 0 1

൱ · ቆ
xଵ
yଵ
1
ቇ ൌ 0ሬԦ (2.36) 

 

where parameters hଵଵ,  hଵଶ,  hଶଵ,  hଶଶ allow scaling, shearing and rotating, and hଵଷ,  hଶଷ 

describe translation along the x- and y-direction. As the last row of the affine 

transformation is ሺ0 0 1ሻ, it is assumed that the coordinate system ݋ଶ does not shift into 

the z-direction in comparison to ݋ଵ. In other words, homogeneous coordinates ࢞૛ with 

zଶ ൌ 1 and ࢞૚ with zଵ ൌ 1 must always satisfy zଶ ൌ ሺ0 0 1ሻ ڄ  ૚ = 1. To solve Equation࢞

(2.36), three motion vectors are required to describe such a mapping.  

With regard to camera motion estimation, an affine transformation limits the camera 

motion to zooming (which corresponds to scaling in the x- and y-direction), rotation 

around the z-axis, as well as moving up and to the side (which corresponds to 

translation in the x- and y-direction). For pan and tilt (which correspond to rotations 

around the x- and y-axis), interesting special cases exist, where the homography matrix 

ܪ is ܪ ൌ ܴ. Thus, depth information gets lost as no translation exists and the scene 

becomes planar. This means that for the motion vector field all global motion vectors 

have the same magnitude independent of a pixel’s depth (cf. Figure 2-13). 

2.5.2.1 Robust estimation 
Due to the fact that many more than three matched points are usually available from a 

motion vector field, the system in Equation (2.36) is over-determined. Additionally, 

measured point positions are inexact and hence the equation will not result in a zero 

solution due to noisy data. This deviation from zero, i.e. the difference between 

estimated and predicted values is called residual. Therefore, instead of demanding an 

exact solution, an approximated solution has to be found by considering point 

correspondences as much as necessary. To keep the notation of the previous section, 

 are now the ݅-th point correspondence of a set of matched image points in a ࢏,૛࢞ and ࢏,૚࢞

motion vector field. 
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In the following, methods are proposed to receive a solution for the given problem of 

Equation (2.36). ܪ is assumed to be still affine, as solving a full perspective 

transformation would be beyond the scope of this work. Due to the over-determined 

system, Equation (2.36) serves as a residual measure for each point correspondence: 

࢏,૚࢞ ൈ ࢏,૛࢞ܪ ൌ  ௜ (2.37)ݎ

  

One possibility to solve for ܪ is to minimise the sum of squared residuals by the linear 

least-squares approach: 

min
ு

෍ԡݎ௜ԡଶ
௡

௜ୀ଴

 (2.38) 

 

Alternatively, (2.38) can be minimised by means of the Singular Value Decomposition 

(SVD) (see (Ma, Soatto, Kosecka, & Sastry, 2004; Kalman, 1996; Hartley & Zisserman, 

2008) for further details). 

 

Figure 2-13: Motion vector field estimated by optical flow. Motion vectors from the object 
represent outliers to motion vectors that correspond to the global motion. 

Least-squares fitting is an appropriate method to remove noise that is caused by inexact 

measured data, i.e. the residuals are expected to be normally distributed. Besides such a 

type of noise, the global motion estimation is further negatively influenced by motion 

vectors that correspond to object motion, i.e. those that differ from global motion. Such 

interferences represent outliers to the noise distribution of imprecise coordinate 

measurement and follow a different and unmodeled distribution (see Figure 2-13).

outlier

inlier
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Under this condition, a minimisation by least-squares might not result in a satisfying 

solution. To overcome this, an approach that first separates inliers from outliers and 

finally applies least-squares fitting obviously leads to a more stable estimation (see 

Figure 2-14). Such methods belong to the group of robust estimators. In the following, 

three robust estimators are briefly introduced which reduce the sensitivity to outliers. 

 

Figure 2-14: Effect of a single outlier in a bunch of arbitrary values x on least-squares fitting (red 
line). The distance between points and the fitted line is the error to be minimised. In turn, a robust 
estimator (green line) is not influenced by the outlier. 

M-estimators 

M-estimators ("M" for "maximum likelihood-type") try to reduce the influence of 

outliers by using an alternative function to the squared residuals ԡ݅ݎԡ2 from the least 

squares method: 

min
ு

෍ߩሺݎ௜ሻ
௡

௜ୀ଴

 (2.39) 

 

where ߩ is called the influence function. Dependent on the given data set and its 

distribution, different functions ߩ can be used to influence the results of the estimator. 

For further information on different M-estimator functions, the author refers to (Zhang 

Z. , 1997). 

RANSAC 

The idea of RANSAC (RANdom SAmple Consensus) is to randomly choose a minimal 

number of samples to fit a model – three for affine homography. Residuals that lie 

within a threshold define the support for this model. This process of randomly selecting 

samples is repeated several times and motion vectors that correspond to the model with

x 

least-squares estimate 

robust estimate 

f(x) 
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most support are considered as inliers. Finally, the model parameters are re-estimated by 

applying least-squares on inliers only. 

According to (Hartley & Zisserman, 2008), the RANSAC algorithm applied on a data 

set ܵ that contains outliers can be summarised as follows: 

1. Select ݏ random data points from ܵ and instantiate the model from this subset. 

2. Find a set of data points ௜ܵ that are within an error threshold ݐ of the model. 

Hence, ௜ܵ defines the inliers of ܵ. 

3. If the number of inliers in ௜ܵ is greater than a threshold ܶ, re-estimate the model 

(e.g. by applying least-squares) using all points in ௜ܵ and terminate. 

4. If the number of inliers in ௜ܵ is less than ܶ, select a new subset and repeat steps 1 

to 3. 

5. After ܰ trials, choose the largest consensus set which has been estimated. 

For RANSAC, three parameters have to be specified: ݐ, ܶ and ܰ. As ܰ defines the 

number of samples, it should be set to a sufficiently large value to ensure that with a 

probability ݌, at least one subset contains exclusively inliers. The probability to choose 

 :random inliers within one of ܰ trials is ݏ

݌ ൌ 1 െ ሺ1 െ ሺ1 െ  ሻ௦ሻே (2.40)ߝ

 

where ߝ is the fraction of outliers. With the assumption that ݌ should be nearly 1, ܰ can 

be computed from ݏ and ߝ. 

For example, ߝ ൌ ݌ ,50% ൌ 99% and ݏ ൌ 3 (three vectors to solve a matrix ܪ), ܰ can 

be estimated by: 

ܰ ൌ
log ሺ1 െ ሻ݌

logሺ1 െ ሺ1 െ ሻ௦ሻߝ
ൌ

log ሺ1 െ 0.99ሻ
logሺ1 െ ሺ1 െ 0.4ሻଷሻ

ൎ 35 (2.41) 

 

In turn, ܶ should correspond to the expected number of inliers and ݐ has to be estimated 

empirically. 
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Least Median of Squares 

An optional robust estimator is the Least Median of Squares (LMedS) method 

(Rousseeuw & Leroy, 2003). It is defined by the nonlinear minimisation problem: 

min med
௜ୀଵ,…,ே

ԡݎ௜ԡଶ (2.42) 

 

LMedS randomly chooses a set of samples for ܰ models, as RANSAC does. Finally, it 

chooses the inliers of the model with minimal error to re-estimate the model parameters. 

The error that corresponds to a model is defined as the median value of squared 

residuals for the whole data set. Therefore, LMedS can only tolerate up to 50% outliers 

in a data set. Alternatively, one can use the Least Quantile of Squares (LQS) if it is 

expected that fewer inliers exist. This might lead to a statistically worse condition and 

has to be used carefully. As RANSAC can deal with a higher number of outliers, 

LMedS requires no threshold setting. 

2.6 Segmentation 
Segmentation is a key process in detecting objects. It groups corresponding pixels to 

segments by detecting discontinuities and similarities in, for example, intensity values. 

Instead of handling each pixel individually, this process gives a much more meaningful 

image representation for further analysing. 

2.6.1 Thresholding 
Histogram based methods rely on the fact that related pixels can be found by peaks and 

valleys in their intensity distribution. Due to separating modes in an intensity 

distribution, this method is also referred to as thresholding. 

The simplest technique of thresholding is defining a single global threshold to split a 

bimodal distribution. Each pixel is labelled as background or foreground when it lies 

below or above a previously defined intensity threshold ܶ. The output is a binary image 

that represents each segment as black or white. This approach is computationally 

efficient when illumination can be controlled, for example in industrial inspection. 

  



48 
 
In the case of uneven illumination, a histogram cannot be separated by a single 

threshold. In such cases, an adaptive thresholding can be applied that divides an image 

into several sub-images. For each sub-image, a threshold is statistically examined. The 

simplest way to examine the local threshold in a sub-image ܵ, is by using the mean 

value of intensities: 

௠ܶ௘௔௡ ൌ
1

݉ · ݊
෍ ෍ ܵሺ݅, ݆ሻ

௠ିଵ

௜ୀ଴

௡ିଵ

௝ୀ଴

 (2.43) 

 

Alternatively, thresholds of sub-images can be computed by, e.g. the median value or a 

weighted sum. For further information on local thresholding, the author refers to 

(Gonzales & Woods, 2002) and (Fisher, 2007). 

2.6.2 Region labelling with flood fill 
When a local or global thresholding has been applied on an image, pixels are labelled as 

foreground or background. To get a more precise split into possibly several foreground 

objects, a local connection between foreground pixels is made. This process is called 

region labelling. A simple algorithm for region labelling is flood fill (Gonzales & 

Woods, 2002; Burger & Burge, 2008). This operation is initialised at an unmarked 

foreground pixel and flows out across a flat region. Neighboured pixels are added to a 

segment piece by piece as long as the absolute intensity level difference to the starting 

point is below a threshold. Due to the fact that the growing region starts from one 

reference pixel, this method is also called seeded region growing. After a segment has 

been finalised, this region is marked and the next “seed” point is chosen. 

2.6.3 Edge linking 
As described in Chapter 2.2.2, linear filters for edge detection yield pixels lying on 

edges. Due to noise and non-uniform illumination in images, highlighted edges can be 

interrupted. Therefore, a linking of edges is required afterwards to combine edge pixels 

into meaningful segments. 
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A simple approach for edge linking is to consider points in a small local neighbourhood 

that are labelled as edge points. Pixels are linked together if their magnitude and angle 

of the gradient fulfil criteria of resemblance. The gradient of an image ܫሺݔ,  ሻ is definedݕ

by its first derivative: 

ܫ׏ ൌ

ۉ

ۇ

ܫ߲
ݔ߲
ܫ߲
یݕ߲

 (2.44) ۊ

 

Thus, the magnitude and the angle of the gradient are: 

݉ܽ݃ሺܫߘሻ ൌ ඨ൬
ܫ߲
ݔ߲
൰
ଶ

൅ ൬
ܫ߲
ݕ߲
൰
ଶ

ܽ݊݃ሺܫߘሻ ൌ ଵି݊ܽݐ ൮

ܫ߲
ݕ߲
ܫ߲
ݔ߲
൲ (2.45) 

 

The magnitude and angle of the gradient are computed for each edge pixel ሺݔ଴,  ଴ሻ asݕ

well as for the pixels ሺݔ,  .ሻ in its neighbourhood (usually 3x3 or 5x5 neighbourhood)ݕ

The similarity of the magnitude is defined by a threshold ܧ: 

ห݉ܽ݃൫ܫߘሺݔ, ሻ൯ݕ െ ݉ܽ݃൫ܫߘሺݔ଴, ଴ሻ൯หݕ ൑  (2.46) ܧ

 

In the same way, the similarity of angles is expressed by a threshold ܣ as follows: 

หܽ݊݃൫ܫߘሺݔ, ሻ൯ݕ െ ܽ݊݃൫ܫߘሺݔ଴, ଴ሻ൯หݕ ൏  (2.47) ܣ

 

Each neighbourhood ሺݔ, ,଴ݔሻ  is linked to a pixel ሺݕ  ଴ሻ if both criteria are fulfilled. Thisݕ

process is repeated for the whole image. 

Alternatively, more complex methods can be applied that process edge images globally, 

for example Hough Transform or Graph Theoretic Techniques. For further information 

on edge linking by global processing methods, the author refers to (Gonzales & Woods, 

2002). 
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2.6.4 Clustering 
Clustering can be described as a process that organises observed elements into groups 

whose members are related in some sense (Fasulo, 1999). It is a widely used technique 

applied in different areas such as data mining, pattern recognition and computer vision. 

In computer vision it is commonly a post-processing of segmentation and a pre-

processing of classification. In general, cluster methods can be divided into three main 

steps. Firstly, a pattern representation has to be defined, e.g. by extracted features. 

Secondly, a measure of similarity has to be defined that is adapted to the pattern 

representation. And thirdly, found associations are organised into groups, i.e. clusters 

(Jain, Murty, & Flynn, 1999). 

There exist two types of clustering methods, hierarchical clustering and partitioning 

(also referred to as k-clustering) (Fasulo, 1999). In this section, the basic ideas of both 

methods are described. 

2.6.4.1 Hierarchical clustering 

The approach of hierarchical clustering is to subdivide a set ܵ of elements into subsets. 

This creates a tree of data with ܵ representing the root and the subsets defined by 

internal nodes. There exist two approaches to building up such a branched structure: 

divisive and agglomerative algorithms. The former recursively splits a set ܵ until a 

stopping criterion is satisfied. The latter starts with each element as a singleton set and 

successively merges them until an abort criterion is met. As agglomerative methods are 

much more common, divisive methods are not treated here. For further information on 

divisive methods, the author refers to (Jain, Murty, & Flynn, 1999). 

Most agglomerative methods proceed in a similar way. In a first step, ܵ is split into 

singleton sets ଵܵ, ܵଶ, … , ܵ௡ , where each singleton set is assumed to be an initial cluster. 

Next, pairs of sets ൛ ௜ܵ, ௝ܵൟ are searched by a defined cost function ܿሺ ௜ܵሻ. Every pair 

found is replaced by the intersection ௜ܵ ׫ ௝ܵ of singletons. This process is repeated until 

an abort criterion is met. If no abort criterion is specified, the algorithm terminates when 

only one cluster is left (see Figure 2-15). The core of hierarchical clustering is the cost 

function. Dependent on criteria such as properties of the data set and processing time, 

the cost function has to meet different requirements. Equations (2.48)-(2.50) list the 

most common cost functions, where ݀൫ݔ௜,  ௜ݔ ௝൯ denotes the distance between elementݔ

of set ௜ܵ and element ݔ௝ of set and ௝ܵ .  
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Single‐linkage  min
௫೔ఢௌ೔,௫ೕఢௌೕ

݀൫ݔ௜,  ௝൯ (2.48)ݔ

 

Average‐linkage  1
| ௜ܵ|ห ௝ܵห

 (2.49) 

 

Complete‐linkage  max
௫೔ఢௌ೔,௫ೕఢௌೕ

݀൫ݔ௜,  ௝൯ (2.50)ݔ

 

 

Figure 2-15: Agglomerative clustering for a two-dimensional feature space without an abort 
criterion ((a)-(e)) and the resulting tree (f). 

2.6.4.2 Partitioning 

Partitioning algorithms usually divide a set ܵ by a predefined number ݇ of desired 

subsets. Perhaps the most common partitioning algorithm is the optimisation algorithm. 

For this, a cost function ܿሺ ௜ܵሻ is defined that is associated with each subset. It is 

expected that the optimal allocation of elements to clusters has been achieved if the sum 

of costs per cluster ∑ ܿሺ ௜ܵሻ௞ିଵ
௜ୀ଴  is minimised.  
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A popular partitioning method is the k-means algorithm whose cost function relies on 

the sum-of-squares criterion. The main idea is – as for hierarchical clustering – to use 

the distance between the r’th elements of ௜ܵ (denoted by ݔ௥௜ ሻ and the centroid of each 

cluster ௜ܵ (denoted by ݔҧ ௜) as measure of similarity. If | ௜ܵ| the number of elements in ௜ܵ, 

the sum-of-squares criterion is defined as follows: 

ܿሺ ௜ܵሻ ൌ ෍ቀ݀൫ݔҧ ௜ , ௥௜ݔ ൯ቁ
ଶ

|ௌ೔|

௥ୀଵ

 (2.51) 

 

Some elements may not belong to a cluster and hence present outliers for a cluster. A 

more robust measure for the cluster centre is the median value, already mentioned in 

2.2.3. The algorithm is referred to as k-medioids. This leads to Equation (2.52), where 

 .ො௜ denotes the median of each ௜ܵݔ

ܿሺ ௜ܵሻ ൌ ෍݀൫ݔො௜, ௦௜൯ݔ
|ௌ೔|

௥ୀ଴

 (2.52) 

 

2.7 Classification 
Classification is a method that takes a set of feature examples and creates a class label. 

This process is called training and the feature examples are called training data. After 

training a classifier, any new example is assigned to the class with the lowest risk of 

mismatch. 

2.7.1 Bayes classifier 

Classification not only links an element ݏ to a class ܿ௜, but also specifies a quality of the 

decision. This qualitative statement is the posterior ܲ ቀݏ ൌ ܿ௜| Ԧ݂ሺݏሻቁ, where Ԧ݂ሺݏሻ is the 

feature vector of ݏ. 

The Bayes rule makes a connection between the posterior, the probability distribution 

of Ԧ݂ሺݏሻ for each class and the prior probability (Toennies, 2005). The prior probability 

ܲሺݏ ൌ ܿ௜ሻ (often just called the prior), is the anticipated likelihood or belief for each 

class before any training data has been observed. For uncorrelated features, the 
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probability distribution of Ԧ݂ሺݏሻ for a class ܿ௜ is estimated by the product of each feature 

ఫ݂ሬሬԦሺݏሻ: 

ܲ൫ Ԧ݂ሺݏሻ|ݏ ൌ ܿ௜൯ ൌ ܲሺ ଵ݂ሺݏሻ|ݏ ൌ ܿ௜ሻ · ܲሺ ଶ݂ሺݏሻ|ݏ ൌ ܿ௜ሻ ڄ … ڄ ܲሺ ௠݂ሺݏሻ|ݏ ൌ ܿ௜ሻ (2.53) 

 

According to the Bayes rule, the posterior can be calculated as follows: 

ܲ ቀݏ ൌ ܿ௜| Ԧ݂ሺݏሻቁ ൌ
ܲ൫ Ԧ݂ሺݏሻ|ݏ ൌ ܿ௜൯ · ܲሺݏ ൌ ܿ௜ሻ

∑ ܲ൫ Ԧ݂ሺݏሻ|ݏ ൌ ܿ௞൯௞ିଵ
௞ୀ଴ ܲሺݏ ൌ ܿ௞ሻ

 (2.54) 

 

where the sum in the denominator is used for normalisation. 

For example, having normally distributed training data for two classes ܽ and ܾ with two 

features ଵ݂ and ଶ݂, the probability distributions of Ԧ݂ for each class are: 

ܲ൫ Ԧ݂ሺݏሻ|ݏ ൌ ܽ൯ ൌ ܲሺ ଵ݂ሺݏሻ|ݏ ൌ ܽሻ ڄ ܲሺ ଶ݂ሺݏሻ|ݏ ൌ ܽሻ

ൌ
1
ߨ2

·
1

௔ሺߪ ଵ݂ሻ
݁
൭ି

൫௙భሺ௦ሻିாೌሺ௙భሻ൯
మ

ଶఙೌሺ௙భሻ
൱
ڄ

1
௔ሺߪ ଶ݂ሻ

݁
൭ି

൫௙మሺ௦ሻିாೌሺ௙మሻ൯
మ

ଶఙೌሺ௙మሻ
൱
 

(2.55) 

 

ܲ൫ Ԧ݂ሺݏሻ|ݏ ൌ ܾ൯ ൌ ܲ൫ Ԧ݂ଵሺݏሻ|ݏ ൌ ܾ൯ ڄ ܲ൫ Ԧ݂ଶሺݏሻ|ݏ ൌ ܾ൯

ൌ
1
ߨ2

·
1

௕ሺߪ ଵ݂ሻ
݁
൭ି

൫௙భሺ௦ሻିா್ሺ௙భሻ൯
మ

ଶఙ್ሺ௙భሻ
൱
ڄ

1
௕ሺߪ ଶ݂ሻ

݁
൭ି

൫௙మሺ௦ሻିா್ሺ௙మሻ൯
మ

ଶఙ್ሺ௙మሻ
൱
 

(2.56) 

 

where ߪ௔൫ ௝݂൯, ௕൫ߪ ௝݂൯ and ܧ௔൫ ௝݂൯, ௕൫ܧ ௝݂൯ are the variance and mean of the Gaussian 

distributions. Furthermore, it is known that class ܽ is chosen n-times more than class ܾ. 

Hence, the priors are ܲሺܽሻ ൌ ௡
௡ାଵ

 and ܲሺܾሻ ൌ ଵ
௡ାଵ

.  
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For each new segment ݏ with features ଵ݂ሺݏሻ, ଶ݂ሺݏሻ the posterior can now be computed 

by: 

ܲ ቀݏ ൌ ܽ| Ԧ݂ሺݏሻቁ ൌ
ܲሺ ଵ݂ሺݏሻ|ݏ ൌ ܽሻ ڄ ܲሺ ଶ݂ሺݏሻ|ݏ ൌ ܽሻ · ܲሺܽሻ

௧ܲ௢௧௔௟
 (2.57) 

 

ܲ ቀݏ ൌ ܾ| Ԧ݂ሺݏሻቁ ൌ
ܲ൫ Ԧ݂ଵሺݏሻ|ݏ ൌ ܾ൯ ڄ ܲ൫ Ԧ݂ଶሺݏሻ|ݏ ൌ ܾ൯ · ܲሺܾሻ

௧ܲ௢௧௔௟
 (2.58) 

 

where ௧ܲ௢௧௔௟ is: 

௧ܲ௢௧௔௟ ൌ ܲሺ ଵ݂ሺݏሻ|ݏ ൌ ܽሻ ڄ ܲሺܽሻ ൅ ܲሺ ଶ݂ሺݏሻ|ݏ ൌ ܽሻ ڄ ܲሺܽሻ ൅ ܲሺ ଵ݂ሺݏሻ|ݏ ൌ ܾሻ ڄ ܲሺܾሻ

൅ ሺ ଶ݂ሺݏሻ|ݏ ൌ ܾሻ ڄ ܲሺܾሻ 
(2.59) 

 

Having the two class classifier of the previous example, there exists a decision 

boundary in the feature space where ܲ ቀݏ ൌ ܽ| Ԧ݂ሺݏሻቁ ൌ ܲ ቀݏ ൌ ܾ| Ԧ݂ሺݏሻቁ. A feature 

vector that lies on this decision boundary cannot be assigned to any class. Therefore, a 

decision for one class has to be made. Figure 2-16 shows the feature space of the 

example above with variances of ߪ௔ሺ݂ሻ ൌ ௕ሺ݂ሻߪ ൌ 0.1 , means of ܧ௔ሺ ଵ݂ሻ ൌ ௔ሺܧ ଶ݂ሻ ൌ

0.3, ௕ሺܧ ଵ݂ሻ ൌ ௕ሺܧ ଶ݂ሻ ൌ 0.6 and a prior of ܲሺܽሻ ൌ ଶ
ଶାଵ

ൌ 0.67 and ܲሺܾሻ ൌ ଵ
ଶାଵ

ൌ 0.33. 

 

Figure 2-16: Feature space of two normally distributed classes a and b with ࢇࡱሺࢌ૚ሻ ൌ ૛ሻࢌሺࢇࡱ ൌ
૙. ૜, ૚ሻࢌሺ࢈ࡱ ൌ ૛ሻࢌሺ࢈ࡱ ൌ ૙. ૟  and ࡼሺࢇሻ ൌ ૙. ૟ૠ, ሻ࢈ሺࡼ ൌ ૙. ૜૜, normalised to a value range of 0,...,1.
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2.7.2 Nearest neighbour classifier and linear classifiers 
A nearest neighbour method assumes that the closeness of a new segment to an already 

classified point indicates the class for the new segment. This means that ܲ ቀݏ ൌ

ܿ௜| Ԧ݂ሺݏሻቁ ൌ 1 if an example exists in ܿ௜ that has a minimum distance to Ԧ݂ሺݏሻ. This is a 

significant simplification of the Bayes rule, because it is quite difficult to obtain an 

appropriate probability distribution from training data. In the case of a large number of 

training examples, nearest neighbour is a good approximation of the Bayes classifier. 

The difference from the Bayesian decision can be further decreased by considering a 

higher number of neighbours for classifying. This leads to the k-nearest neighbour 

approach which takes ݇ neighbours into account instead of a single point. Given a 

feature vector Ԧ݂ሺݏሻ and a nearest neighbour classifier ܣሺ݇, ݈ሻ, where ݈ is a predefined 

minimum number of nearest training examples in class ܿ௜, the k-nearest neighbour 

algorithm can be summarised by the following steps (Forsyth & Ponce, 2003): 

1. Find ݇ training examples that are closest to Ԧ݂ሺݏሻ. 

2. Determine the class ܿ௜ that contains the majority of feature vectors ݊ in the set of 

݇ found nearest neighbours. 

3. If ݊ ൐ ݈, classify Ԧ݂ሺݏሻ as ܿ௜, else refuse Ԧ݂ሺݏሻ. 

To simplify the computation of the nearest neighbours, some points in the feature space 

that do not influence the decision can be removed. 

The idea of nearest neighbour is to focus on the decision boundaries only, instead of 

considering a whole data set. This approach can be simplified even more when a 

function can be found that defines the decision boundary. Having training data that is 

linearly separable, a linear classification function provides the easiest solution to 

describe the decision boundary. A classifier which allows learning a linearly 

discriminative function is called a linear classifier. Examples of linear classifiers are 

perceptron (Freund & Schapire, 1999) and support vector machines (Schölkopf, 

Burges, & Smola, 1999) using linear kernels.  
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2.8 Summary 
This chapter gave a summary of computer vision and related methods which are 

relevant for this application. The sections describe methods from image enhancement, 

pattern recognition, image segmentation and pattern classification. The introduction 

and discussion of different algorithms serves as a basis to create modules which identify 

ROIs in broadcast video images. These modules will be introduced in Chapter 7. 

The following chapter is an introduction to systems which implement visual attention 

models for image analysis. Such systems make use of computer vision methods to 

detect salient regions in images. In other words, they interpret images on a higher level 

by processing the previously mentioned steps from image enhancement to image 

segmentation. They deliver possible ROIs which are then classified on the next higher 

level in this application. 
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3. Visual Attention 
Attention is a common and well known term that everybody uses in everyday language. 

From a psychophysical point of view, attention is a complex process that allows us to 

find the way in our crowded environment. The visual attention mechanism is part of this 

process and is described in (Tsotsos J. K., 1995) by the following basic components: 

• The selection of a region of interest in the visual field 

• The selection of feature dimensions and values of interest 

• The control of information flow through the network of neurons that constitute 

the visual system 

• The shifting from one selected region to the next in time 

In this chapter, psychophysical approaches to understanding the visual process of 

humans are briefly explained. Then two visual attention models are introduced that form 

the basis for many computer models. Finally, the implementations of attention models 

by applying computer vision methods are explained. Such systems allow a first step into 

identifying regions of interest by applying computer vision methods. 

3.1 Bottom-Up and Top-Down Attention 
Visual attention allows people to efficiently process visual information by focussing on 

regions of interest. Consequently, a complete scene needs only to be scanned at the 

most relevant positions. Finding and shifting the focus of attention is influenced by two 

main factors: bottom-up and top-down. 

Bottom-up attention depends on the saliency of features in a visual scene, e.g. by high 

contrasts. Therefore, the attention is controlled without conscious intention. This 

mechanism is also called exogenous. 

Top-down is an endogenous searching process. In this case, attention is driven by the 

previous knowledge, expectations and current goals of a subject. If someone is 

searching for an item that e.g. has a specific colour, the gaze is more attracted by 

regions of this known colour.  
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3.2 Visual Search 
Visual search is a common task and a fundamental tool in psychophysical experiments 

on visual attention. For this, subjects have to scan a scene for targets among other 

objects or features (distractors). Such a scene is usually an artificial set-up of targets 

with different features such as colour, size, orientation or shape. The quantity of targets 

and distractors is called set size or display size. One of the main questions behind these 

tests is: what are the basic features in visual perception? 

Two different tests are of interest in visual search. The first one is whether a subject 

finds a target in a given period. The subject has to specify the item afterwards. The 

second test is how much time a subject requires to find the target. The resulting reaction 

time or response time (RT) is a measure of visual search efficiency. The RT is presented 

as a function of set size. 

The flatter the slope of the RT functions, the more efficient the visual search. Results 

depend extremely on the type of search process. Hereby, a distinction is made between 

serial search and parallel search. As may be imagined, the parallel search is the more 

efficient one in processing and its slope is nearly zero, i.e. the response time is 

independent of the set size. This effect occurs when targets and distractors differ in one 

single feature. Therefore, the search is called a feature search and due to the fast RT, 

the effect is called the pop-out effect. On the other hand, a serial search occurs when 

targets and distractors differ in more than one feature; therefore, it is also called a 

conjunction search. In this case, the RT increases with the number of distractors (see 

Figure 3-1). 

 

Figure 3-1: Example of a feature search (left) and a conjunction search (right). It takes much 
longer to find the red square among red circles and blue squares than to find the red X among blue 
X (only one feature differs).  
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So far, one might conclude that a feature search causes a pop-out effect and a 

conjunction of several features increases the search time by each added target. Anne 

Treisman showed in (Treisman, 1986) that a feature search does not necessarily result in 

a pop-out effect. She stated that it is easier to find the presence of a basic feature than its 

absence. This effect is called search asymmetries. Figure 3-2 depicts this phenomenon 

by a vertical line among squares (presence of basic feature) and a square without 

vertical line (absence of basic feature) among squares with vertical lines. 

 

Figure 3-2: Presences of feature (top) and absence of feature (bottom). 

3.3 Feature-Integration Theory of Attention (FIT) 
The most famous model of visual attention is the Feature-Integration Theory (FIT) of 

Anne Treisman (Treisman A., 1980). This model describes the visual perception in 

several levels. The first level is the pre-attentive level and is responsible for the 

detection of features. On this level, “features are registered early, automatically, and in 

parallel across the visual field.” (Treisman A., 1980). In subsequent stages (attentive 

level), each object is identified by focussed attention. Figure 3-3 depicts all levels of the 

FIT.  
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Figure 3-3: Model of Feature Integration Theory according to Treisman (Treisman, 1986). 

3.3.1 Feature maps 
Treisman describes feature detection on the pre-attentive level by feature modules. Each 

module detects the presence of the respective feature. The feature modules can be seen 

as a stack of maps, each representing a special property. In the case where a target 

differs from its distractors by exactly one feature and the distractors are homogenous, 

the target is detected quickly and in parallel (pop-out effect). 

On the next level, all maps yield a master map of locations. This map contains spatial 

information about features, but no information about what kind of features they are. 

Comparable to a roaming spotlight, focal attention makes use of this master map and 

successively processes all regions. At each location, all present feature maps are 

combined, which results in a conjunctive search.  
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3.3.2 Object detection 
After locating and combining all features, this information is used to create an object 

description, a so-called object file. Finally, the contents of this file are compared to 

descriptions from a recognition network. This top-down process finally allows the 

recognition of an object. The recognition network combines attributes, behaviour, 

names and significance of familiar objects (Treisman, 1986). The object file is 

continually updated from new feature information and from the recognition network. 

3.4 Guided Search 
The Guided Search Model of Wolfe (Wolfe, 1994) is another very important work in 

visual attention along with the FIT. The two are quite similar. The main difference is an 

alternative approach for the conjunction search. Wolfe’s test results have shown that 

some slopes of RTs for targets that differ in more than one feature are too flat for a 

serial search. Wolfe disputes a strict separation between pre-attentive level and 

attentive level. He claims that the attentive level receives information from the pre-

attentive level, which allows a more efficient search. Additionally, instead of a stack of 

maps for each feature module, the Guided Search distinguishes between feature 

dimensions, such as colour, orientation, etc. 

In addition to bottom-up feature maps, there are top-down feature maps in the Guided 

Search approach. This allows a better separation of target features from distractor 

features. All feature maps are fused in an activation map that is comparable to 

Treisman’s master map of location. 

3.5 Visual Attention Systems 

3.5.1 Visual-attention system by Itti, Koch and Niebur 
One of the most popular computational attention systems is the one by Itti et al. (Itti L., 

1998). The FIT serves as a basis for this system. The pre-attentive level, i.e. the bottom-

up part of FIT is implemented by applying known computer vision methods on a still 

colour image. 

Motivated by receptive fields, a set of linear centre-surround operations (denoted by 

“ٓ”) compute local variations of different features. For this, difference images across 

scales of image pyramids are estimated. Each scale of an image pyramid represents a 

low-pass filtered copy of the previous scale with quarter resolution. The lowest level of 
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an image pyramid is the unfiltered and non-scaled input image. For subtraction, the 

centre pixel is at scale c {4 ,3 ,2} א. Surround pixels are at scales s = c + δ, with δ  א

{3,4}. As coarser scales have a lower resolution, images have to be up-scaled again for 

point-to-point subtraction. These operations are done for three early visual features: 

intensity, colours and orientations. 

3.5.1.1 Feature maps 
A feature map is a computed feature of the corresponding feature dimension. According 

to Treisman’s theory, feature maps of each feature dimension form a feature stack. 

The first feature is motivated by the intensity contrast of dark centres on a bright 

surround and vice versa. Such contrasts are sensitively detected by the neurons of 

mammals. The feature intensity (I) is calculated by the average of the colour channels r, 

g and b: 

Iൌ 
ݎ ൅ ݃ ൅ ܾ

3
 (3.1) 

 

The resulting intensity image is used to create an image pyramid from scales ߪ, with ߪ Ԗ 

[0 ... 8], to compute centre-surround relations: 

Iሺܿ, ሻݏ ൌ ሺܿሻܫ| ٓ  ሻ| (3.2)ݏሺܫ

 

For the feature dimension colour, four colour channels of red, green, blue and yellow 

are generated. This is justified by the fact that parsed colour from a trichromatic primate 

retina is encoded in colour-opponent signals of 'red/green' and 'blue/yellow' (Conway, 

2002). First, the input channels r, g and b are normalised by I to decouple hue from 

intensity. Afterwards, they are broadly tuned in the range of red, green, blue and yellow: 
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To simulate spatial and chromatic opponency of the primary visual cortex, all channels 

are further processed in two image pyramids: 

RGሺc, sሻ ൌ |൫ܴሺܿሻ െ ሻݏሺܩሺܿሻ൯ٓ൫ܩ െ ܴሺݏሻ൯| (3.7) 

 

BYሺc, sሻ ൌ |൫ܤሺܿሻ െ ܻሺܿሻ൯ٓ൫ܻሺݏሻ െ  ሻ൯| (3.8)ݏሺܤ

 

Orientation represents the third implemented feature. It is computed by Gabor pyramids 

ܱሺߪ,  Ԗ [0°, 45°, 90°, 135°]. Centre surround information is determined across ߠ ሻ, withߠ

scales again: 

Oሺc, s, θሻ ൌ |O ሺc, θሻ ٓ O ሺs, θሻ| (3.9) 

 

3.5.1.2 Saliency map 
A saliency map combines all feature maps into one and indicates salient locations. 

Before all maps are combined, they need to be normalised to similar ranges. Therefore, 

each map is normalised to a fixed range of [0...M], usually [0...1]. To separate salient 

objects from noise or less salient objects, Itti et al. introduce two different weighting 

methods. Together, normalisation and one of the two weighting operations are 

expressed by the normalisation operator N(.). 

The first and originally introduced weighting method makes use of the local and global 

maximum values of each map. For this, the global maximum value ܯ is determined, as 

well as the average of all local maximum values ഥ݉ . Finally, the whole map is multiplied 

by ሺܯ െ ഥ݉ሻଶ. The advantage of this method is a gain of a single salient area. The 

disadvantage is an extreme suppression of salient regions if more than one region of 

similar values appears. In that case, the average value of local maxima is close to the 

global maximum and hence the multiplier drifts to zero. 

The second operation is biologically more plausible, but computationally more 

complex. Corresponding to (Itti, Models of Bottom-Up and Top-Down Visual 

Attention, 2000), three conditions shall be fulfilled by this method. Firstly, by 

uncommon relations between a centre and its surroundings, an inhibition of the 

surround should happen. Secondly, inhibition shall be strongest if surroundings share 



64 
 
similar stimulus properties to the centre. Finally, related to centre surround distances, 

inhibition has to be strongest at a certain distance and weaken radially symmetrically 

from and to the centre. An approach that comes close to the previously mentioned 

requirements is a two-dimensional difference-of-Gaussian pattern. For the two Gaussian 

functions, one small and one high ߪ is chosen. The small one serves as excitation, the 

higher one serves as inhibition (see Figure 3-4). 

Each feature map M is iteratively subjected by the two-dimensional difference of 

Gaussian filter and added to the original map: 

M ՚ |M ൅M DoGെכ  ௜௡௛|ஹ଴ (3.10)ܥ

 

All negative values are set to zero. ܥ௜௡௛ is a constant that adversely affects the excitation 

in cases where excitation and inhibition balance each other (in (Laurent, 2000), ܥ௜௡௛ is 

set to 0.02). 

After normalisation, all feature maps are combined in three conspicuity maps, Iത for 

intensity, Cത for colour and Oഥ  for orientation. These maps are fused on scale 4 of the 

image pyramids: 
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(3.13) 

 

The conspicuity maps are normalised again. The sum of all maps finally gives the 

saliency map S: 

S ൌ 1
3
ቀNሺIതሻ ൅Nሺܥҧሻ ൅N൫Oഥ ൯ቁ (3.14) 
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Figure 3-4: Difference of two two-dimensional Gaussian functions with ࢞ࢋ࣌ ൌ ૛ % and ࢎ࢔࢏࣌ ൌ ૛૞ % 
as proposed in (Itti, Models of Bottom-Up and Top-Down Visual Attention, 2000) for an arbitrary 
scale. 

3.5.1.3 Winner take all 
After fusing all maps to a single saliency map, the most salient regions are defined by a 

neuronally inspired approach called winner-take-all (WTA). The model consists of 

neurons, charged by the synaptic input. The neuron that first reaches a threshold fires 

and the focus of attention (FOA) is shifted to this neuron. After that, a global inhibition 

is applied to reset all neurons. Then the charge and fire process restarts, whereby the 

FOA and its close surroundings are suppressed. This shifts the FOA and avoids a return 

to the previous one (inhibition of return). 

3.5.2 Spectral Residual 
An alternative visual attention system to the one by Itti et al. is Spectral Residual by 

Xiaodi Hou (Hou & Zhang, Saliency Detection: A Spectral Residual Approach, 2007). 

This approach relies on the fact that man-made images share similar structures that can 

be considered as redundancy. Non-redundant features are therefore deviations from the 

norm. A visual system only signals such unexpected features to the next level of 

processing (Koch & Poggio, 1999). From the point of view of information theory, this 

decomposition of information ܪ in an image ܫ can be described as follows: 

ሻܫሺܪ ൌ ሺInnovationሻܪ  ൅  ሺPrior Knowledgeሻ (3.15)ܪ
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where ܪሺInnovationሻ is the novelty part and ܪሺPrior Knowlegdeሻ denotes 

redundancy. Hou proposes a method which detects the “innovation” part of an image by 

defining and removing statistically redundant components. He proposes the log-

spectrum of a DFT as a good representation of redundant components in images due to 

its well-distributed frequency components in the magnitude spectrum (cf. Section 2.4). 

By examining the averaged log-spectra of a wide range of typical man-made images, a 

clear similarity can be noticed in the magnitude course. This sharing of similar trends is 

based on statistical singularities in images. 

The Fourier space domain is highly sensible to structural changes in an image, e.g. an 

object on a plain background. Hence, abrupt and uncommon local structural changes 

can be easily detected. To compute saliency by Spectral Residual, an input image ܫ is 

converted to a grey image and then transformed into the frequency domain by a DFT: 

ሺ݂ሻܣ ൌ |F൫ܫሺݔሻ൯| (3.16) 

 

ܲሺ݂ሻ ൌ ݃ݎܽ ቀF൫ܫሺݔሻ൯ቁ (3.17) 

 

where ܣሺ݂ሻ is the magnitude and ܲሺ݂ሻ is the phase of each frequency component. Next, 

the natural logarithm of the magnitude is calculated: 

ሺ݂ሻܮ ൌ ݈݊൫ܣሺ݂ሻ൯ (3.18) 

 

The Spectral Residual is defined by subtracting an approximated copy of ܮሺ݂ሻ from 

 :ሺ݂ሻܮ

ܴሺ݂ሻ ൌ ሺ݂ሻܮ െ ሺ݂ሻܮ כ ݄௡ሺ݂ሻ (3.19) 

 

where ݄௡ሺ݂ሻ is a local average filter with a kernel size of ݊ ൈ ݊. Hou proposes ݊ ൌ 3 

due to negligible changes when using bigger kernel sizes such as 5x5 and 7x7. 

Corresponding to Equation (3.15) ܴሺ݂ሻ represents the “innovation” part and ܮሺ݂ሻ כ

݄௡ሺ݂ሻ the prior knowledge.  
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Finally, the saliency map is determined by an inverse Fourier transform of ܴሺ݂ሻ from 

frequency domain to spatial domain: 

ܵሺݔሻ ൌ ݃ሺݔሻ כ Fିଵൣ݁݌ݔ൫ܴሺ݂ሻ ൅ ݅ ڄ ܲሺ݂ሻ൯൧
ଶ
 (3.20) 

 

where ݃ሺݔሻ is a Gaussian filter with a standard deviation of ߪ ൌ 8 and kernel size of 

3x3. The Gaussian filter is applied for a better segmentation of corresponding areas. The 

squaring of the inverse transformed image is for image enhancement (gamma 

correction) to emphasise high intensities and suppress small intensities. 

Different results can be achieved dependent on the size of the input image. The higher 

the image resolution, the less salient are large features. In turn, small images support 

large features and omit details. Hou proposes a size of 64 pixels (either width or height) 

which is a good approximation of normal visual conditions. 

3.6 Summary 
This chapter introduced two system implementations motivated by visual attention. 

They define regions of interest by applying common computer vision methods. 

The system by Itti is the more biologically motivated one and is close to the visual 

attention models introduced at the beginning of this chapter. The approach by Hou, in 

contrast, relies on statistical singularities in images which can be best identified in the 

log-spectrum of DFT transformed images. As can be imagined from the complexity of 

both systems, the one by Hou is much less computationally expensive than the one by 

Itti. 

The implementation of visual attention for video images provides an important 

contribution to this work. Therefore, the proposed systems are revisited in Chapter 7 to 

evaluate their suitability for determining ROIs in the area of broadcast applications. 
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4. Image Composition 
This chapter steps a bit out of line in that it discusses some artistic aspects. Nonetheless, 

these are important and very interesting aspects that must accompany the subject of 

visual attention, if one is to consider the extraction of features by computer vision and 

the composition of a new image by means of cropping. Images shot by a cameraman, 

whether they are still images or moving pictures, are not random in their composition. A 

cameraman’s intention is to convey information by attracting the viewer’s visual focus 

to a specific point. Designing information is perhaps the key element in image 

composition: “Information design is defined as the art and science of preparing 

information so that it can be used by human beings with efficiency and effectiveness.” 

(Jacobson, 2000) 

The interpretation of information can be divided into three levels (Weber, 1990). The 

first level is perception. Perception is a physiological habitude of human beings and is a 

result of interplays of past experience and interpretation of the perceived. The second 

level is recognition. It is a semantic aspect and involves identifying objects or events. 

On the last level are emotions. Emotions are reactions on the recognition. 

Compared to the previous chapter, image composition and visual attention systems 

might close a circle at this point; a cameraman tries to attract a viewer’s attention while 

a visual attention system works like the early perception of a human being. 

Unfortunately, the early perception is just the first level of information interpretation. 

Therefore, much information is not “understood” by a bottom-up visual attention 

system. 

As the proposed implementation focuses on sports applications, the examples of image 

compositions in this chapter are taken from sports productions. 

4.1 Composition Makes Order Out of Confusion 
It might sound weird to talk about rules of compositing in photography. Even so, there 

are clear concepts about how to attract a viewer’s attention. The aim of a cameraman is 

to lead the attention of the viewer to those elements that the cameraman found most 

relevant.  
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4.2 Positioning Objects in an Image 
In sports photography, the most important question of composition is how to position 

objects in the space enclosed by the frame (field). The shape that is formed around an 

object, thus the difference between field and object, is called negative space. Changing 

the negative space by positioning objects at different positions provides a different 

visual sensation (Clements B., 1980). 

Objects located more at the centre of an image convey the impression of being balanced 

and static, while objects tending to the image boundary or image corner are more 

dynamic, i.e. the image composition is unstable. Shapes and lines seem to be in motion 

or to fall over. In their turn, objects at the top of an image seem to be light while objects 

at the bottom seem to be rooted. In the same way, objects at the top or bottom can 

convey the impression of depth (Feininger, 1965). 

 

Figure 4-1: Example of the rule of thirds applied to an object moving from right to left. Due to fast 
camera motion, the effect of motion blur additionally appears in this example. 

A common separation of an image and maybe one of the major concepts of composition 

is the rule of thirds (see Figure 4-1). It is an approximation of the golden ratio that has a 

relation of 1,618:1. The golden ratio has a very harmonious and pleasing proportion. 

This fact has been proven by many scientific tests (Doczi, 1981). For example, the rule 

of thirds is applied to objects moving from left to right or vice versa. Usually, more 

space is allowed on the side into which the object is moving, while the object is kept 

relatively static and the camera is moving. As mentioned above, this promotes an “in-

motion” impression. Besides that, it gives the viewer an outlook on the area into which 

the object is moving.  
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4.3 Depth of Field and Motion Blur 
Depth of field is a three dimensional acuity and can be roughly distinguished in two 

types – shallow and great. The former allows the separation of foreground and 

background from a subject by blurring the background. The latter moves nearly 

everything of a 3D scene into focus. 

Motion blur is a function of the exposure time – the greater the motion offset during 

exposure time, the more motion blur appears in the image. In the case of a fast subject, 

tracked by a camera, subject and background/foreground are clearly separated by this 

effect (see Figure 4-1). 

4.4 Composition Guidelines for European Public Broadcasters 
In broadcast productions, there are a few limitations in image composition which aim to 

ensure a proper workflow. All requirements (technical and artistic) for such a workflow 

are specified in guidelines. For European public broadcasters, those guidelines are 

defined by the EBU (European Broadcasting Union) and generally in a similar way on 

national level by each public broadcaster. 

The EBU defines two image format standards for broadcasting: 4:3 (12:9) and 16:9. 

Additionally, the guidelines state how graphics and all essential action shall be 

positioned in an image (EBU Technical Recommendation R95-2000 , 2000). This 

assures a proper image composition, starting from the shot image to the graphic 

designer to the possibly prepared image on the end device (e.g. missing edge of the 

screen on a CRT or adaptations of flat screens to the TV raster). In addition, format 

conversions from 16:9 to 4:3 and vice versa are defined. 

4.4.1 Safe areas 
Safe areas define an enclosed region in an image that contains necessary information. 

The action safe area defines the region for essential action (see Figure 4-2) and the 

graphics safe area defines the regions of overlaid graphics (see Figure 4-3). 

  



71 
 

 

Figure 4-2: Action safe area and graphics safe area for 16:9 image formats (Technical Guidelines for 
the production of Television Programmes for ARD, ZDF and ORF, 2006). 

 

Figure 4-3: Action safe area and graphics safe area for 4:3 image formats (Technical Guidelines for 
the production of Television Programmes for ARD, ZDF and ORF, 2006). 

4.4.2 Scanned image areas 
For conversions between 16:9 and 4:3, either the images keep their original aspect ratio 

(consequently, empty areas of the target format are blackened) or the original image is 

scanned by a mask that has the aspect ratio of the target format. 

4.4.2.1 Conversion from 16:9 to 4:3 
Corresponding to previously mentioned guidelines, 16:9 images have to be scanned by 

4:3 masks for conversion. The scanning mask has to have the largest possible 

resolution, i.e. one which fits into a 16:9 image. The scanning process can be done in 

two ways. In the first way, the 4:3 extract is statically positioned in the middle of the 
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16:9 image. This approach requires that the extracted 4:3 picture frames the main 

subject (shoot-to-protect) and complies with the normal artistic practice of framing in 

4:3 (EBU Technical Recommendation R95-2000 , 2000). In the second, the mask is 

statically positioned out of centre or is tracked by an operator (pan & scan). 

 

Figure 4-4: Conversion from 16:9 to 4:3 image formats by centre cut-out, pan & scan or letterbox 
(Technical Guidelines for the production of Television Programmes for ARD, ZDF and ORF, 
2006). In this example, a centre cut-out should be avoided. 

4.4.2.2 Conversion from 4:3 to 16:9 
In the same way as 16:9 is adapted to 4:3, a 16:9 mask scans the 4:3 picture to obtain 

the widescreen standard. Here, a shoot-to-protect approach is less common. Therefore, a 

static extract can hardly be applied.  
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Figure 4-5: Conversion from 4:3 to 16:9 image formats by adding graphics, centre cut-out or pan & 
scan (Technical Guidelines for the production of Television Programmes for ARD, ZDF and ORF, 
2006). In this example, a centre cut-out should be avoided as well. 

4.5 Summary 
This chapter gave a brief overview of image compositions and guidelines for broadcast 

productions. Image compositions have a strong influence on information encoded in an 

image, i.e. encoded in its signal components. Such information originates from the 

intentions of the cameramen while shooting a scene. Hence, that information can be 

interpreted as top-down information. 

Image compositions will be referred to again at various points within this work when 

making decisions about certain methods. 
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5. State of the Art ROI Extraction in Video 
Applications 

In the previous chapters, an overview has been given of methods and systems which 

build a basis for detecting ROIs in images. Many works currently exist which are 

heading in the same direction by applying such methods. Most of them have the same 

objective of cropping out regions that contain the most relevant content. As a survey, 

related works are presented in this chapter. Finally, the summary at the end of this 

chapter discusses the motivation of the proposed implementation compared to existing 

approaches. 

The first applications for the detection of ROIs were developed for still images. 

Generally, such algorithms adopt the approach of the previously introduced attention 

model by Itti and apply such additional extraction methods as text and face detection 

(Chen, Xie, Fan, Ma, Zhang, & Zhou, A visual attention model for adapting images on 

small displays, 2002; Chen, Xie, Fan, Ma, Zhang, & Zhou, Visual attention based image 

browsing on mobile devices, 2003). A more general approach computes the energy of 

an image by derivations of the intensity in the x- and y-direction (Avidan & Shamir, 

2007). In this way, homogenous image parts with low energy are interpreted as less 

interesting. Instead of cropping, parts with low energy are spatially compressed and 

interesting parts are kept in their original shape. This is called seam carving. Within this 

work, this approach is not of interest, because image distortion can come into the 

picture which is highly undesirable for TV productions. 

For video content, motion becomes available as an important additional feature to 

automatic ROI detection and cropping algorithms. (Zhang H.-J. , 2002) creates a motion 

saliency map by exclusively considering information extracted from MPEG motion 

vectors. The map is computed by allocating each vector to a motion histogram and 

analysing the distribution of the histogram for several video frames. Finally, the video is 

skimmed by defining temporal segments of intensive motion. An application developed 

to summarise videos for mobile devices is proposed in (Kopf, Haenselmann, Farin, & 

Effelsberg, 2004). It does not use a visual attention model, but defines ROIs by shot 

boundary, texts, faces and motion detection. Moving objects are extracted by defining a 

background template for each shot and the difference between current frame and 

background model. Additionally, objects are tracked and only those that remain tracked 
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for several frames are considered as reliable. Besides cropping, videos are temporally 

compressed by removing shots of no interest. In (Cheng, Chu, & Wu, 2005), an 

attention model relying on intensity, colour and motion is applied. Intensity and colour 

interpretation rely on the model of Itti. Motion is detected and categorised (e.g. camera 

motion / no camera motion, zoom, pan, etc.) by tensor histograms. Dependent on the 

motion type, salient extracted areas are weighted for each frame. Finally a median filter 

is applied to smooth ROIs temporally and spatially. In (Deselaers, Dreuw, & Ney, 

2008), a motion map is determined by optical flow and an appearance map is obtained 

from colour information. A saliency map is additionally computed by the Spectral 

Residual approach, already mentioned in Section 3.5.2. The combination of all maps 

results in a weighted map. From this map, a sequence of cropping areas is chosen that 

encloses as many relevant image parts as possible. The cropping areas are defined by 

applying zoom, pan and scan. 

In (Numata, Senoo, & Shishikui, 2008), NHK presented the broadcast service AdapTV. 

AdapTV is a video trimming system which combines broadcasted metadata and user 

profile information to adapt video content to mobile display viewing conditions. The 

system requires content and object related metadata which has to be annotated by the 

broadcaster. In addition, the system combines a simple long and short shot detection to 

choose an optimised cropping area on the receiving side. It should be mentioned that 

AdapTV does not extract ROIs automatically. 

A prototype solution (“Helios”) was presented by Snell & Wilcox (Zaller, 2007). This 

system is able to zoom in if clearly defined ROIs are available. Furthermore, Snell & 

Wilcox’s publications explain techniques planned for future professional conversion 

tools using two approaches for foreground and background separation (Knee, 2008). 

The first approach estimates global motion by phase correlation motion estimation. 

Additionally, intra-frame saliency is determined by colour elements that are more likely 

to attract the viewer’s attention. The second approach uses a clustering method which 

assigns pixels of similar properties to a segment. These segments are matched in 

consecutive frames. Available ROI information is used to dynamically adapt the source 

material to the desired target resolution. Snell & Wilcox solutions also make use of 

seam carving. 

In 2008, Thomson (now Grass Valley) developed the ViBE Mobile TV encoder which 

also relies on ROI detection for repurposing video content (ViBE Mobile TV Encoder 
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Data Sheet, 2009). The applied visual attention model which is proposed in (Le Meur, 

Le Callet, & Barba, Predicting visual fixations on video based on low-level visual 

features, 2007) analyses contrast in the Krauskopf colour space (achromatic component, 

red / green antagonist components, blue / yellow antagonist components) by applying a 

contrast component function in the frequency domain. Additionally, visual masking 

effects and orientation are considered. Temporal saliency is detected by hierarchical 

block matching and M-estimator regression for fitting 2D global affine motion. 

Thomson provides results of user tests, indicating that 90% of the users were watching 

the image areas that were proposed by the system as ROIs. The test set-up consisted of 

16 observers and four video clips (Le Meur, Cloarec, & Guillotel, Automatic content 

repurposing for mobile applications, 2008). 3-Italia, Europe’s largest DVB-H service 

provider, has made use of the Thomson head-end since September 2008. 

Most of the approaches presented do not make use of prior knowledge about the content 

in order to analyse and automatically choose important areas. Therefore, the rating of 

the importance of ROIs can only be done independently of the context and is based on 

general assumptions. 

However, there exist content specific methods as well. In (Dearden, Demiris, & Grau, 

2006), a football player tracking system is presented. Players are extracted by histogram 

backprojection of the field colour. In the next step in the process, particle filters are used 

to track players. A simpler approach for football player tracking is proposed in 

(Figueroa, Leite, Barros, Cohen, & Medoini, 2004). This approach extracts players by 

subtracting the current image from a background model. Found blobs are classified by 

shape and intensity distribution and linked between frames. 

Examples for combining bottom-up and top-down information are also known from the 

field of robotics. For example in (Frintrop, 2006), the Neuromorphic Vision Toolkit by 

Itti et al. (Itti, iLab Neuromorphic Vision C++ Toolkit, 2010) is optimised for real time 

robotic applications in the attention system VOCUS (Visual Object detection with a 

CompUtational attention System). In addition to run-time optimizations for bottom-up 

saliency map computation, feature vectors can be trained manually or automatically. 

Those feature vectors can be used to weight extracted bottom-up features. 



77 
 
5.1 Summary 
In summary, it can be said that top-down information for ROI extraction in broadcast 

applications is rarely used. Specific applications based on such information work 

exclusively for a single type of content and sometimes even need a special set-up on 

site. On the other hand, a classifying or weighting of ROIs can hardly be applied based 

on bottom-up information only. 

In this work, prior knowledge about the type of broadcast content is obtained from 

metadata information, which has recently become available in the production workflow 

as a result of the transition to tapeless production. In file-based production environments 

metadata is available in electronic form, which facilitates feeding any post-production 

system with additional information. The next chapter gives an introduction to the 

metadata format used within this work. The following chapters explain the combination 

of this data with computer vision methods in the context of the developed system. 
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6. Metadata in the Production Workflow 
As the purpose within this work is to use previous knowledge to guide feature 

extraction, this information must be fed into the system. The most intuitive way for 

broadcast productions is to make use of available content metadata. Such data is more 

and more available thanks to the transition from tape to tapeless productions. 

Unfortunately, there exists no uniform metadata standard for media content in the 

broadcast production environment. For this reason, there is a great necessity and 

demand for unification. Such a standardisation would simplify the exchange of 

metadata within broadcasting corporations as well as between broadcasters. 

One possible metadata specification meeting the requirements of uniformity for 

broadcast productions is introduced in this chapter. Firstly, however, parts of this 

specification necessary for this work are explained. Then a tool is presented which has 

been programmed to create metadata files that feed the system with the required content 

information. 

6.1 The BMF Specification 
In collaboration with public broadcasters, an open metadata specification has been 

worked out at IRT (Institut fuer Rundfunktechnik). This specification, called BMF 

(BMF – Broadcast Metadata exchange Format, 2007), is therefore tailor-made for 

content description in the scope of broadcast productions. It is designed to serve as an 

electronic record report starting from the production site up to designing complete 

programmes and annotating content. Besides that, BMF is foreseen to be used as a pure 

XML format as well as to be wrapped in a container format, e.g. the widely used MXF 

standard (Material eXchange Format). 

In the context of this work, the metadata format is not limited to BMF as long as it 

delivers the necessary information in a defined structure. Nevertheless, BMF has been 

chosen as metadata type for this work due to its special design for broadcast 

applications and its open specification. 

Because of the complexity of BMF, this chapter introduces only those parts of the 

specification that are necessary for this work. These are the annotation of genre type and 

information about scene changes in a video.  
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6.1.1 Programme annotation 
The BMF specification differentiates between two presentation form types, namely 

“fictional presentation form” and “non-fictional presentation form”. While the former 

includes content such as movies, the latter describes genres such as documentaries, 

news and reportages. A more detailed breakdown is purposely not provided by the 

specification itself in order to guarantee flexibility and extensibility. It is up to each 

broadcaster to decide how those annotation types are to be specified in more detail. To 

do so, broadcasters have to create thesauri as enumerated data types as well as batched 

enumerated data types for sub-divisions. Those enumerated types have already been 

established by German public broadcasters (ARD, ZDF) and are specified in the BMF 

documentation (BMF – Broadcast Metadata exchange Format, 2007). 

 

Figure 6-1: Excerpt from the BMF documentation (BMF – Broadcast Metadata exchange Format, 
2007) of the thesauri specified by German public broadcasters. A Fictional Presentation Form Type 
(see upper boxes) can be described in more detail by a Genre Type (see lower box) for annotating a 
programme.  

Fictional Presentation Form Type List Non-Fictional Presentation Form Type 

documentaryItem 

docMix 

magazine 

reporting 

address 

call_in 

discussion 

documentaryfeature 

interview 

commentary 

collection 

course 

news_collection 

news_programme 

spot 

studio_action 

reading 

speech 

semiDocumentation

Genre Type List 

architecture education  leisuretime society  communication 

culture  fineArts  visualArts literature  medicine  

music  politics  law  religion  sport 

technology entertainment environment economy  traffic 

cross_section science  dailynews 

televisiondrama 

televisionseries 

filmlet 

featurefilm 

animatedfilm 

musicclip 

documentaryfeature 

experimentalfilm 
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An excerpt of the thesauri for different presentation form types is listed in Figure 6-1. 

The thesauri do not specify a genre in more detail. For the purpose of this work, it is 

desired to know the type of sport as well. Therefore, beyond the BMF documentation, 

the “Genre Type List” of the BMF documentation is extended for the purposes of this 

application by any type of sport. To keep the hierarchy as proposed by German public 

broadcasters, the type of sport is added as a further element in the “Genre Type List”. 

An example of a BMF file annotated for the genre type soccer is given in Figure 6-2. 

Annotating such genre information could be easily done by an editor during a 

production workflow by an appropriate GUI. 

 

Figure 6-2: Table view of an example BMF file for the type of sport soccer. The whole structure of 
the programme is described in the node MasterProgramme (see lowest marked node). All items 
that are part of this programme are arranged in a batch (see upper marked node). Each item is 
referenced in the programme by a UUID, whereas an item in turn is further specified by its 
presentation form (see marked nodes in the middle). 

BMF allows only referencing of media. Therefore, the essence is not part of the 

metadata. This has the advantage that one media content could be used for multiple 

programme descriptions by simply specifying a universally unique identifier (UUID). 

This UUID is a unique assignment between metadata and corresponding media. 
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Besides simply referencing the essence, BMF allows one to describe the media in more 

detail. This possibility is used in this work to further divide a video into shots by 

indicating their boundaries. To do so, an item is further described by a batch of shots. In 

turn, several items can be part of one programme. To allow such a nesting, UUIDs are 

used again to make a connection between programme and items. Such a list of shots for 

an item is depicted in Figure 6-3 based on the example of Figure 6-2. So far, only 

manually annotated shot boundary information is processed by the system (see next 

section). Such information could be easily received by recording the editor action as 

metadata in future. 

 

Figure 6-3: More detailed table view of the example of Figure 6-1. The item track in this item array 
is uniquely identifiable by a UUID (see upper marked element). Thus this item can be referenced by 
a programme as depicted in Figure 6-1. This item further contains a list of shots where each 
specifies a start position and duration (see lower marked elements). 

The BMF specification does not specify a fixed hierarchy of items and programmes, but 

rather enables them to be loosely related by inheritance. This allows a dynamic program 

design. For the purposes of this work, a simple structure of items as described above is 

entirely sufficient. For further information on possible BMF structures, the author refers 

to (BMF – Broadcast Metadata exchange Format, 2007).  

6.1.2 BMF annotation tool 
Up to now, BMF exists only as a specification and hence no tools for file creation or file 

conversion exist. Within this work, a simple BMF-XML writer based on the BMF-

XML-schema has been programmed. It allows the description of one programme that 

contains several items by a graphical step-by-step-wizard (see Figure 6-4). Each item is 

assigned to a type of subgenre. Additionally, shot boundaries can be defined for each 

item. Due to this limitation this tool makes use of just a small part of the whole BMF 

specification. 
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Figure 6-4: Example for creating a BMF file for soccer content by the BMF wizard. 

6.2 Summary 
This chapter gave a very short overview of the relevant parts of the Broadcast Metadata 

Exchange Format (BMF) for this work. The most important information includes the 

type of genre and shot boundary positions. This descriptive data could be easily 

annotated in a metadata file by editors of broadcast productions. For example, the shot 

boundary information could be records of an editor’s action to identify the cameras that 

are on air. 

Such an electronic description is used to feed the system with previous knowledge about 

the video content. This allows guiding of the feature extraction in order to identify ROIs 

more reliably. How this information influences the ROI extraction is described in the 

next chapter in Section 7.2.2. 
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7. Implementation 
Based on the previous chapters, each component of the developed application is 

explained in this chapter. As already mentioned, the implementation makes use of 

computer vision methods and visual attention systems (cf. Chapters 2 and 3) and 

combines these with previous knowledge encoded in video images by image 

composition (cf. Chapter 4) and context related knowledge from descriptive metadata 

(cf. Chapter 6). Such a fusion allows a more specific search for ROIs than relying on 

bottom-up information only. Nevertheless, the system is not dependent on such 

information and can run in a default mode as well. As the final goal of the application is 

to automatically define cropping areas, extracted ROIs are used to find the most 

attracting and contextually important regions in a sequence of video images. 

The following sections give an insight into the developed application by presenting the 

design and functionalities of the system. First of all, an overview of the technologies 

and libraries used for this implementation is given. In Section 7.2 the idea of a modular 

system is brought closer and its realisation within this implementation is discussed. 

Furthermore, the linkage between metadata and computer vision algorithms is 

presented. Section 7.3 deals with the implementation of each plug-in that can be loaded 

by the system. A distinction is made between two groups of plug-ins: extraction plug-

ins and plug-ins working on higher processing levels. The former are responsible for 

extracting ROIs on low level computer vision methods, whereas the latter interpret 

ROIs to categorise their contextual relevance and finally define cropping areas. 

7.1 Technology 

7.1.1 Microsoft Visual C++ 
The application has been developed with the IDE (Integrated Development 

Environment) Microsoft Visual Studio 2008. It allows the execution of two different 

types of C++ applications. One uses native C++ code whereas the other option is to run 

C++ code under the control of the .NET Framework. The .NET Framework is the 

central concept of all .NET development products provided by Microsoft including high 

level programming languages such as C#, F#, Visual Basic and C++. Basically it 

consists of a set of libraries (.NET Framework class libraries) and the Common 

Language Runtime (CLR) which executes an application. Programs that are based on 
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C++ but run under this extension are called C++/CLI (Common Language 

Infrastructure) programs or CLR programs. 

The CLR provides garbage collection (GC) for dynamically allocated memory. 

Therefore, CLR code is often referred to as managed code. This memory management 

provides a simplification of allocation and release processes compared to native code. 

Fundamental parts of .NET form assemblies that are building blocks containing 

intermediate language code. They are generated after successful compilation of any 

.NET application. There exist process assemblies (with the file extension .exe) and 

library assemblies (with the file extension .dll). The former contain all required 

information in a single package. The latter can be used for larger applications by 

numerous assemblies. All assemblies contain a manifest1 file which contains the 

information necessary for using or executing it. This technology of independent blocks 

which can be loaded at runtime provides a central concept used within this work. It 

supports the basic idea of loading different modules, dependent on the type of incoming 

video content. 

7.1.2 OpenCV 
OpenCV (Open Source Computer Vision) is a C/C++ library which was originally 

developed by Intel. Nowadays, the library is maintained by Willow Garage (Willow 

Garage, 2010). This library mainly provides real time image processing methods such 

as object identification, segmentation, recognition, motion estimation, multiple-camera 

depth computation and much more. It is a very comprehensive collection of functions 

which also supports reading of uncompressed or decoded video input from file or 

cameras as well as writing uncompressed video, i.e. image data. The most common 

image format in OpenCV is the IplImage structure which is inherited from the Intel 

Image Processing Library. This structure provides raw image data from one to four 

channels and quantisation of 8-bit signed/unsigned, 16-bit signed/unsigned and 

single/double precision floating points. Most OpenCV operations support this image 

format.  

                                                 
1 A manifest contains metadata that is necessary for executing the application including all externally 
referenced assemblies 
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7.1.3 FFmpeg 
FFmpeg is a collection of open source libraries for decoding, encoding, recording, 

converting and streaming a wide range of video and audio formats (FFmpeg, 2010). It 

includes the leading audio/video codec library libavcodec as well as libavformat, which 

is an audio/video container multiplexing and demultiplexing library. It is written in C 

and hence can be used cross-platform. Well known applications that make use of 

FFmpeg are MPlayer and VLC-player (VideoLAN). 

The combination of OpenCV and FFMpeg provides a very powerful framework for 

image processing. For this application, both libraries are used and included in the 

Microsoft Visual Studio .NET IDE. 

7.2 System Design 
The idea underlying the implementation is a dynamic loading of computer vision 

methods adapted to the content to be analysed. In this way, the extraction of ROIs can 

be optimised to the present video content. In the context of this work, the BMF 

metadata specification has been chosen (see Chapter 6) which provides “type of genre” 

information and shot information. What extraction methods are chosen can be 

influenced by defining profiles that are assigned to each type of content. After ROIs 

have been identified by the system, a cropping area is chosen in a final step for every 

video frame that encloses as many high-weighted ROIs as possible. 

To meet the demands of a system which offers the previously mentioned functionality, 

some requirements have to be fulfilled. Due to the fact that, dependent on the video 

content, different extraction methods and settings have to be loaded, flexibility, 

reusability and expandability are of central importance. The implementation is mainly 

intended as a test environment. Therefore, maintainability should also not be 

disregarded. Performance is of more secondary importance. These requirements lead to 

following conceptual features used in the system: 

1. Modular approach. Components with related functions have the same structure 

and interfaces. Furthermore, modules define the smallest possible combination 

of associated operations with the smallest possible external interface. This 

allows high reusability of components as well as high expandability. 
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2. Function-Specialisation. Components that are based on the defined structure 

receive a method signature according to their functionality. The signature 

defines the required in- and output data. Besides this, components of identical 

functionality have the same method signature. 

3. Plug-In Concept. The plug-in concept allows a high flexibility of the system. As 

a plug-in wraps one or several modules, the exchange of modules does not 

influence the interface between plug-in and system core. This provides a high 

maintainability. 

4. System Core. The system core manages all configurations and modifications 

based on the modular structure. 

5. Independent Input/Output Operations. All file operations, such as reading a 

video file, can be processed independently from the system core. 

6. Logging. States and processes can be logged. This allows tracking of each 

component and its operations. 

Each plug-in functions independently. All modules which are part of a plug-in must 

however incorporate some basic functionality. This involves managing parameters as 

well as information about the module itself and its environment. A distinction is drawn 

between extraction plug-ins which are a collection of computer vision methods and 

plug-ins that work on higher level. The latter ones include the Cropping Plug-in and the 

Classification Plug-In. 

The plug-in-system which is controlled by the system core is located at the next higher 

level. It loads all required plug-ins and builds up the structure of the application. What 

plug-ins are loaded is determined by the incoming metadata. If no metadata is available, 

a default setting is loaded. Figure 7-1 depicts the overall structure of the application.
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Figure 7-1: Overall structure of the system. Black boxes represent input and output data whereas 
dark grey boxes represent data used for system set-up and configuration. Light grey boxes 
represent the software components. The system core manages incoming data as well as the 
configuration of the application by loading plug-ins. 

7.2.1 Modular structure and module settings 
The modular structure forms the basis of the application. It follows the composite 

pattern. Hence, a module can in turn consist of several or no further modules (sub-

modules). In the case of several sub-modules, the main module serves as a container and 

administrator for all underlying components. In this way, complex algorithms can be 

split into blocks of operations. This allows a flexible changing of logic units. To allow 

parallel processing, the module class is extended by an abstract class for multithreading. 

Each module defines an associated parameter set. The parameter set contains all values 

that are necessary to run the module, where a set can be defined either by the module 

itself or by feeding data in the form of an XML file. The type and ranges of the values 

in a data set can be limited by minimal and maximal values to avoid incorrect 

initialisation.  

Configuration mapping 

Cropping Plug-In 

Configuration 

Extraction Plug-In 

Configuration 

content metadata video 

system 

core 

cropped video 

Classification Plug-In 

Configuration 
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Figure 7-2: The composite pattern applied on modules (top) and module extensions for 
multithreading (bottom). 

7.2.2 The plug-in system 
Here, a plug-in is a block of full functionality which can be included in the system at 

runtime. Within this application, a plug-in is realised by a library assembly (.dll). All 

plug-ins have to conform to the IPlugIn-interface to offer a consistent method signature 

(see Figure 7-3). Internally, plug-ins define their own parameters and methods. As 

mentioned in 7.2.1, plug-ins can consist of additional sub-modules, where each of these 

can run as separate thread. 

The plug-in system loads all necessary plug-ins for running the application and sets all 

parameters that are defined, either by the module itself or by a XML file. Beside this, 

the plug-in system ensures that all data is correct, a valid module plus method signature 

has been specified and the module structure is correct. Modelling and cycling of each 

thread is managed by the plug-in system as well. This approach to computer 

programming is based on the strategy pattern (see Figure 7-3).  

Module

+registerSubmodule()
+unregisterSubmodule()
+setParamter()
+getParameter()

ThreadModule

+start(): void
+stop(): void
+setSync(): void
#process(): void
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Figure 7-3: Management of plug-ins according to the strategy pattern. 

7.2.2.1 Plug-in configuration 
Plug-in parameters can be set by loading their corresponding XML file which contains 

different parameter settings. Each parameter set is intended for certain use cases, i.e. 

different type of genres. Therefore, each module can be adapted individually to the 

video content. This allows the system to be fed with content related background 

knowledge which is the main advantage of this work compared to other approaches in 

the field of broadcast applications. 

The internal processing of such information relies on a description of each video by its 

properties. These properties are not arbitrary but have to be predefined by the plug-in 

developer. They represent possible properties that can be interpreted by the 

implemented plug-in. Linking the properties that can be interpreted to the received 

content enables the plug-in system to define which modules have to be loaded with 

which parameter settings. In summary, this linking of video content with plug-ins 

implies the following prior knowledge: 

1. The genre type of the video has to be known by receiving descriptive metadata 

from the production work flow 

2. All video content properties that can be extracted by the modules have to be 

defined by the plug-in developer 

3. The video content properties of each genre type have to be defined by either the 
developer or the application user  

IPlugIn
<<interface>>

+process(): void

PlugIn 2

+process(): void

PlugIn 2

+process(): void

Manager
1..*
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Having this information, optimised combinations of modules and their settings can be 

loaded. The type of genre information is fed in as BMF metadata. If this knowledge is 

unavailable, the plug-in system falls back to default settings. 

 

Figure 7-4: Assignment of properties of a specific sport production (left) and extractible properties 
(middle) for the example soccer. The listed plug-ins (right) are currently implemented. The system 
is, however, not limited to these plug-ins and can be extended at a later time. 

The linkage of extractable properties and the properties present in a video signal is a 

clear and simple assignment. A property (e.g. motion) has to be further specified by 

property values (e.g. fast motion). A property value can be assigned to multiple plug-in 

settings. In turn, a plug-in setting can be assigned multiple property values. Within this 

work, several properties and property values have been defined.  
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Figure 7-4 shows an example of assignments between parameter settings and plug-ins. 

The system is, however, not limited to these properties and can be extended at a later 

time, e.g. if new plug-ins are available. 

7.2.2.2 Loading plug-ins 
The ParameterLoader class administrates the whole process of parsing metadata 

information and loading plug-ins. It consists of three further classes (see Figure 7-5). 

The constructor of the ParameterLoader class expects a BMF file. The class functions 

then return information about shot boundaries, type of genre and plug-in parameters at a 

certain position in the corresponding video file. This allows modifying settings of the 

system at any position in a video, for example when the type of genre changes. 

 

Figure 7-5: Class diagram of ParameterLoader and its associated classes BmfXmlParser, 
PropertyParser and ParameterLoader. 

The first class that is used in ParameterLoader is the BmfXmlParser class. It provides 

three functions which return genre, subgenre and shot information at a specific frame 

number of a parsed BMF file. Shot information is not of importance for loading plug-

ins, but will be accessed at a later stage for the definition of cropping areas (see Section 

7.3.4).  

ParameterLoader

+ParameterLoader(String BmfFileName, String BmfSchema, IConfigurationManager confmgr, IStatusProvider status)
+SetModuleParameters(int frame_number): void
+GetShotInformation(int frame_number): bool
+getGenreChangeInformation(int frame_number): bool

BmfXmlParser

+BmfXmlParser(String BmfXmlFileName, String BmfSchema)
+getGenre(int frame_number): string
+getSubGenre(int frame_number): string
+getShot(int frame_number): bool

XMLParser

+XMLParser()
+SetManager(IConfigurationManager confmgr): void
+Open(String file, String schema, String schemaNamespace): void
+Parse(string plugin, string setting): void

PropertyParser

+PropertyParser()
+getModuleParamterSets(string genre, string subgenre): List<Pair<string>>
+getProperties(string genre, string subgenre): Dictionary<string, string>

IConfigurationManager
<<interface>>

+loadExtractionPlugin(String className, String assembly, String identifier): void
+setParameter<T>(String identifier, T value): void
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The second class is the PropertyParser which receives data from the BmfXmlParser 

describing the present genre and subgenre. Based on this information, it returns the 

corresponding plug-in configurations. 

The XMLParser is the third class in ParameterLoader. It receives the required module 

names and corresponding settings from the PropertyParser. The loading of each plug-in 

and setting of parameters is finally done with aid of a class implementing the interface 

IConfigurationManager. 

7.2.3 Core element 
The central control element for all configurations and activities within the application is 

the CV class. It functions as the “supervisor” of all program parts and provides a 

management interface for the whole application. Consequently, the CV class represents 

the logic layer of the software. Here, video and plug-in controlling come together. 

 

Figure 7-6: Core element and its aggregations for loading plug-ins (ConfigurationManager), 
managing of metadata parsing, property parsing and module loading (ParameterLoader) 

The class MainGUI is the graphical user interface (see Figure 7-7) and hence represents 

the entry point of the application. It instantiates the CV class.  

MainGUI

+loadvidButton_Click(object sender, EventArgs e): void
+savevidButton_Click(object sender, EventArgs e): void
+loadBMFButton_Click(object sender, EventArgs e): void
+startButton_Click(object sender, EventArgs e): void
+pauseButton_Click(object sender, EventArgs e): void
+stopButton_Click(object sender, EventArgs e): void
+showLogButton_Click(object sender, EventArgs e): void

CV

+init(String^ bmffile): void
+process(IplImage* img, IplImage** imgOut, int% imgOutOffset, cli: :array<Object^>^% args, cli: :array<int>^% offsetargs): void

ParameterLoader

+ParameterLoader(String BmfFileName, String BmfSchema, IConfigurationManager confmngr, IStatusProvider status)
+SetModuleParameters(int frame_number): void
+GetShotInformation(int frame_number): bool
+getGenreChangeInformation(int frame_number): bool

ConfigurationManager:IConfigurationManager

+ConfigurationManager()
+ConfigurationManager(ModuleStorage^% stor)
+loadExtractionPlugin(String^ className, String^ assembly, String^ identifier): void
+setParameter(String^ identifier, T value): void

VideoControl

+VideoControl(CV^ parent)
+init(): void
+loadVid(String^ file): void
+saveVid(String^ file): void
+pause(): void
+stop(): void
+start(): void
+paused(): bool
+running(): bool
+setInputDrawing(PictureBox^ target): void
+setOutputDrawing(PictureBox^ target): void
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The class VideoControl is the interface for controlling the video input. In turn, the 

VideoControl-constructor receives a handle on the instantiated CV-object. Therefore, 

both classes form a bidirectional association, while the VideoControl triggers processes 

in the CV class by new incoming video images. 

The interactions between the classes MainGUI, CV, VideoControl and the 

ParameterLoader class mentioned in the previous section are depicted in Figure 7-6. 

The VideoControl class will be explained in more detail in the following section. 

 

Figure 7-7: The GUI of the application. The left-hand part represents the control panel, the centre 
is the display area of input- and output-video, and the right hand part represents video 
information. The lower image displays the computed cropping area.  
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7.2.4 Video input/output 
As already mentioned, the video input and video output are controlled through the 

VideoControl class. This is an aggregation of three additional classes: VideoOperations, 

VideoIn and VideoOut (see Figure 7-8). 

The VideoOperations constructor receives the VideoIn and VideoOut objects that were 

instantiated in VideoControl. VideoOperations allows several overloaded functions for 

drawing on the input video and output video panel of the GUI (see Figure 7-7). 

Furthermore, VideoOperations allows the user to draw rectangles on each panel, i.e. in 

the video frames, to highlight for example extracted regions of interest or cropping 

areas. A very important function in VideoOperations is the insertion of a delay between 

video input and video output by indicating a buffer-size in the constructor. This allows 

the offline processing of video frames. As will be seen later, this functionality is used 

for buffering and filtering regions of interest for a certain period of time. 

 

Figure 7-8: VideoControl class and its aggregations. This class provides a control interface of 
incoming and outgoing video data.  

VideoControl

+VideoControl(CV^ parent)
+init(): void
+loadVid(String^ file): void
+saveVid(String^ file): void
+pause(): void
+stop(): void
+start(): void
+paused(): bool
+running(): bool
+setInputDrawing(PictureBox^ target): void
+setOutputDrawing(PictureBox^ target): void

VideoOperations

+drawFrame(Control^ display, Bitmap^% picture): void
+drawFrame(Control^ display, Image^% image1, Image^% image2): void
+drawRect(IplImage* target, Rect% r, CvScalar color): void
+drawFrame(Graphics^ g, Image^% i): void
+drawFrame(Graphics^ g, Image^% i, Rectangle source, Rectangle dest): void

VideoIn

+VideoIn()
+VideoIn(String^ file)
+open(String^ file): void
+getFrame(): IplImage*
+getSize(): CvSize
+getFps(): int
+getPar(): double
+isInterlaced(): bool
+count(): int
+getFOURCC(): int
+isOpen(): bool
+getFilename(): String^

VideoOut

+VideoOut()
+VideoOut(String^ file)
+VideoOut(String^ file, VideoIn^ vin)
+VideoOut(String^ file, int fps, CvSize imsize)
+open(VideoIn^ vin): bool
+open(String^ file, VideoIn^ in): bool
+open(String^ file, int fps, CvSize imsize): bool
+open(String^ file, int fps, CvSize imsize, double sampleRatio): bool
+open(String^ file, int fps, CvSize imsize, double sampleRatio, bool interlaced): bool
+close(): void
+putFrame(IplImage* frame): void
+isOpen(): bool
+getFilename(): String^
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The classes VideoIn and VideoOut form the direct connection to the ffmpeg library (see 

Section 7.1.3). VideoIn allows the decoding of a wide range of video files and provides 

the most important information about the loaded video file, such as frames per second, 

pixel aspect ratio and image size. VideoOut supports uncompressed video formats in an 

AVI container as well as encoding according to the MPEG-2 video standard. All 

internal image processing is done with the IplImage format of OpenCV (see Section 

7.1.2). 

7.2.5 Logging 
To ensure the tracking of all processes, a logging system has been implemented which 

facilitates the collection of information that can be viewed at a later time. Additionally, 

it allows the user to specify a level of importance for logging. The logging should be 

possible at any position in the application. For this, an approach based on the singleton 

pattern is chosen, which allows the usage of one single object across the whole system. 

7.3 Plug-ins 
In the following sections, each plug-in which has been implemented is introduced. Each 

section describing a plug-in is divided into a first part which treats the implemented 

algorithms and a second part which describes the class structure and parameter settings. 

As already mentioned in 7.2, plug-ins are not an inherent part of the application. They 

are loaded at run-time. For each execution of the application, the Cropping Plug-In (see 

Section 7.3.4) and the Classification Plug-In (see Section 7.3.3) are required, 

independent of the analysed content. All other plug-ins, referred to here as extraction 

plug-ins, receive an input image – either grey or colour. They all run in parallel and 

return a list of ROIs which are weighted by the Classification Plug-In (see Figure 7-10). 

Currently, there exist two extraction plug-ins, the Visual Attention Plug-In and the 

Backprojection Plug-In, which will be explained in Sections 7.3.1 and 7.3.2. 
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Figure 7-9: Flow chart for analysing video content by extraction plug-ins. Extraction plug-ins can 
be used in any combination and as required. Returned ROIs are collected and weighted by the 
Classification Plug-In. Finally, a list of weighted ROIs is returned for further processing. 

ROIs are described by their x- and y-position (centre position), their width and height, a 

corresponding frame number and a weight value which specifies the contextual 

importance of a ROI (see Figure 7-10). 

 

Figure 7-10: Structure of a ROI including its x- and y-centre position, width and height, frame 
number as well as its weight according to its computed contextual importance. 

Rect
<<struct>>

+int x
+int y
+int width
+int height
+int frame
+double weight

video frame 

Visual Attention Backprojection 

ROI classification 

list of weighted ROIs 
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7.3.1 Visual attention plug-in 
The Visual Attention Plug-In consists of three sub-modules: the Still Image Saliency 

Module, the Motion Saliency Module and the Segmentation Module. The Visual 

Attention Plug-In is a general approach combining saliencies of still as well as moving 

pictures. Despite its generality, due to different possible parameter settings of each sub-

module the Visual Attention Plug-In can still be modified and hence adapted to content 

properties. 

Firstly, the Still Image Saliency Module is presented. Afterwards, the Motion Saliency 

Module is discussed. Both modules analyse the video content independently and can run 

in parallel. Results of both modules are fused into one final weighted saliency map 

which is explained in Chapter 7.3.1.3. Finally, the Segmentation Module is explained, 

which combines related salient areas by bounding rectangles and represents those in a 

list of ROIs. This whole process is depicted in Figure 7-11. 

 

Figure 7-11: Flow chart of the Visual Attention Plug-In. An incoming grey image is independently 
analysed for motion and still image saliency. Information from both extractions is combined into a 
single weighted saliency map and ROIs are defined by a segmentation process applied on the 
saliency map. 

Visual Attention Plug-In 
video frame 

Motion Saliency 
Module 

Still Image 
Saliency Module 

Saliency Map + 
weight Saliency Map 

Fuse Maps 

Weighted 
Saliency Map 

Segmentation 
Module list of ROIs 
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7.3.1.1 Still image saliency module 
In Section 3.5, two visual attention systems have been introduced. The attention system 

by Itti is motivated by the human perception to detect features in a visual scene. In 

broadcast productions, images contain not just these features, but also contextual 

information in the form of design elements. Some image compositions have been 

introduced in Chapter 4. They are used by cameramen to attract a viewer’s attention. 

Therefore, top-down information is already available in video broadcast productions. To 

find an attention system that best meets the requirements of this application, the one by 

Itti (see Section 3.5.1) has been compared to the one by Hou (see Section 3.5.2). Both 

are available as a MATLAB implementation, where the former is available including a 

GUI at (Bernhardt-Walther, 2010) and the latter simply consists of five lines of code, 

available at (Hou, Spectral Residual, 2009). Typical still images of sports productions 

were used to investigate their suitability for this application. 

In sport applications, an attention model has to deal with dazzling colours, which may 

not be of contextual importance, e.g. advertisement banners or colour markings. 

Comparing the two attention models, Itti’s model is more sensitive to dazzling colours 

because it uses a colour map. Spectral residual relies on grey images only and hence is 

less susceptible to this colour information (see Figure 7-12). 

Especially for individual sports, objects are mostly focused by the cameraman, and in 

case of fast movement the difference between foreground and background can be 

recognized due to motion blur. Whereas Spectral Residual responds strongly to these 

image properties, the attention model by Itti does not consider such depth information. 

Based on the outcomes of the evaluations, the Spectral Residual approach has been 

selected. It best meets the requirements of the system and in addition has the highest 

computational efficiency. It should be mentioned that this is not a general assessment, 

but one that is specific to the demands of this particular application.  
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Implementation of Spectral Residual 

With the aid of the OpenCV library, the Spectral Residual approach has been ported 

from MATLAB to C++. According to Chapter 3.5.2, the incoming grey image is first 

scaled down to remove image details and to support the saliency of related areas. Here, 

a scale factor of 0.25 is used by default. Afterwards, a FFT is applied and the real- and 

imaginary parts are converted to magnitude and phase. After taking the logarithm of the 

magnitude image, the image is doubled and either of these is averaged by a 3x3 average 

filter. To compute the Spectral Residual, the averaged image is subtracted from the non-

averaged image. This step splits redundancy and deviations from the norm (cf. 3.5.2) 

according to Equation (3.20). Then the image is re-transformed by an IFFT. The whole 

process is depicted in Figure 7-13. 

 

Figure 7-13: Flow chart of the Still Image Saliency Residual implementation (Spectral Residual). 

The last processing step in Figure 7-13 is for image enhancement. This implies a 

gamma correction of 2.0 and a 3x3 Gaussian filter. Afterwards, a normalisation of the 

lowest and highest intensity value to the full range of 0-255 is applied. 
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Parameter Settings and Class Structure 

The Still Image Saliency Module allows the adaptation of three parameters. They 

influence the scaling of the input image and the kernel size of the average filter and of 

the Gaussian filter. As tests have shown, one setting delivers results that fit best under 

most conditions. These configuration parameters are defined as the default setting (see 

Table 7-1). 

Table 7-1: Settings for the Still Image Saliency Module. 

 Setting: default 

scaling factor 0.25 

kernel size of average filter 3x3 

kernel size of Gaussian filter 3x3 

 

The Still Image Saliency Module receives an 8 bit grey image and instantiates a 32 bit 

grey image that contains the saliency map. Figure 7-14 depicts the class structure of the 

module. 

Figure 7-14: Class structure of the Still Image Saliency Module. 

7.3.1.2 Motion saliency module 
Obviously, most sport productions contain camera motion and object motion. For 

example, individual sport is often shot by keeping the object of interest focused. In that 

case, the most interesting part of the image is the object that is kept at a rather static 

point and does not move much at all. 

As long as objects are small compared to the whole video image it is assumed that 

background motion corresponds to camera motion. Knowing the camera motion, objects 

are detected in the Motion Saliency Module by subtracting consecutive video frames, 

where one of the two frames is warped by the computed camera motion. As a result, 

two images shot at different times get coincident backgrounds. 

The motion vector field is computed by the OpenCV optical flow implementation of 

Lucas & Kanade (cf. Chapter 2.5.1.3). This method has been chosen for two main 

reasons. Firstly, the gradient based approach delivers fewer but much more reliable 

Still Image Saliency Module

+StillImageSaliencyModule((String^ id, AutoResetEvent^ run, AutoResetEvent^ ready): ThreadModule(id, run, ready)): ThreadModule(id, run, ready)
+setParameter(IplImage* img, IplImage** res)
+process()
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vectors than block matching (cf. 2.5.1.1 and 2.5.1.3). Hence, subsequent processing 

operations require less computing and filtering effort. Secondly, the Lucas & Kanade 

(Lucas & Kanade, 1981) approach directly delivers vectors that are described in the 

space-time domain in a very efficient way. Even if phase correlation might be the more 

robust motion detection, it does not deliver motion direction information (see 2.5.1.2). 

Because of that, computational effort can become quite high by combining phase 

correlation with additional techniques for assigning a motion offset to a direction. 

Due to 25 fps/interlace in TV productions, the frame rate is comparably high. Therefore, 

global motion between two frames is relatively small. Assuming that radial distortions 

of lenses are small as well, the computation of 2D affine homography is absolutely 

adequate. To remove outliers from the data set, the Least Median of Squares approach 

(LMedS) has been chosen (see Chapter 2.5.2.1). Compared to RANSAC, LMedS does 

not need any threshold setting. As it can be assumed that generally the ratio of objects to 

background is less than 1:1, LMedS is absolutely sufficient. The decision was also made 

against M-estimators, because LMedS does not weight outliers by an appropriate 

influence function as M-estimators does, but completely removes them from the data 

set. 

For the computation of the best fit affine mapping, the robust, non-linear homography 

estimation library homest has been chosen. It has been implemented in C/C++ by 

Manolis Lourakis (Lourakis, 2009). The approach of this implementation is according 

to the global motion estimation described in Chapter 2.5.2. It first selects a set of three 

random candidates and calculates the related residual of each affine model. 

To select candidates that contain global information, a technique is applied that avoids 

sampling vectors lying close to each other, because a global affine transformation 

computed from closely located vectors is highly unstable. This method is described in 

(Zhang, Deriche, Faugeras, & Luong, 1995) and is based on a bucketing technique. For 

this, the minimal and maximal coordinates of matched points in an image are computed. 

The area that is spanned by these values is divided into ܾ ൈ ܾ buckets (see Figure 7-15). 

To each bucket, a set of matched points is attached. Buckets without matches are 

removed. Subsamples are now randomly selected from three different buckets. 
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Figure 7-15: Division of matched coordinates in an image into  ૡ ൈ ૡ buckets. 

In summary, the algorithm implemented in homest can be described as follows: 

1. Randomly choose three corresponding points ݔ௜ and ݔ௜ᇱ from the computed 

motion vector field according to the bucketing technique. 

2. Compute the median value of squared residuals ݎ௜ for each affine model. 

3. Choose the model with minimal error and remove motion vectors whose residual 

is above the median of squared residuals. 

4. Refine the model parameters ܪ by applying least-squares on defined inliers. 

After computing ܪ for two consecutive video frames, ܪ is applied on the first image. In 

the next step, both images are subtracted from each other to blank coincident 

background and brighten up objects whose movement behaviours differ from camera 

motion (see Figure 7-16). 

The last processing step of the Motion Saliency Module includes the same image 

enhancement as for the Still Image Saliency Module. A gamma correction of ߛ ൌ 2.0 

first tries to separate noise from important information. Afterwards, a Gaussian filter is 

applied with a kernel size of 9x9. This comparably large kernel size has been chosen 

due to the fact that rather than the whole object, the offset of a moving object causes 

bright areas in a difference image. Therefore, the filtering is used to blur these areas and 

bring separated blobs closer together. Finally, a normalisation of the maximum and 
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minimum intensity values to the full intensity range is applied. The flow chart of the 

Motion Saliency Module is depicted in Figure 7-16. 

 

Figure 7-16: Flow chart for the computation of difference image by compensating global motion. 

So far, it is assumed that outliers are removed from the computation of the affine 

homography. Despite this, there is still no information about the accuracy of ܪ, which 

in turn gives information about the quality of the difference image. This information can 

be given by the root median squared error (ܴܧܵ݀݁ܯ) of the Euclidean error between 

the first and second image: 

݁ܵ݀݁ܯܴ ൌ  ඥmedሾ݀ሺݔ௜ᇱ, ௜ሻଶሿݔܪ ൌ medሾ݀ሺݔ௜ᇱ,  ௜ሻሿ (7.1)ݔܪ

 

where ݀ሺݔ,  and med is the median ݕ and ݔ ሻ describes the Euclidean distance betweenݕ

value of the term computed in square brackets for the entire data set. It has to be 

mentioned that Equation (7.1) can be used here because an affine transformation 
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between both images plays a symmetric role, i.e. ݀ሺݔ௜ᇱ, ௜ሻݔܪ ൌ  ݀ሺݔ௜,  ௜ᇱሻ. In caseݔଵିܪ

of fitting a complete planar homography, ܪ is no longer symmetric and more complex 

error functions have to be considered. For further information on alternative error 

functions, the author refers to (Hartley & Zisserman, 2008). 

As the calculation of optical flow by Lucas & Kanade (Lucas & Kanade, 1981) requires 

uniquely identified points, the number of motion vectors can vary dependent on the 

strength of found corners. This means that the number of good features to track might 

decrease if corners are not sufficiently pronounced in an image. To limit the total 

number of found points, a predefined number of strongest corners can be specified. In 

this implementation, the number of features can be limited by the ratio between image 

resolution and a variable denominator: 

௙ܶ௘௔௧௨௥௘௦ ൌ
݅݉ܽ݃݁ ݄ݐ݀݅ݓ ൈ ݅݉ܽ݃݁ ݐ݄݄݃݅݁

݊
 (7.2) 

 

where ௙ܶ௘௔௧௨௥௘௦ and ݊ are natural numbers with 1 ൏ ݊ ൏  ݄ݐ݀݅ݓ ݁݃ܽ݉݅ ൈ

݊ is an adaptable parameter which is set to ݊ .ݐ݄݄݃݅݁ ݁݃ܽ݉݅ ൌ 130 by default. A 

decreasing number of motion vectors decreases the statistical significance for global 

motion estimation. For example, if ܴܧܵ݀݁ܯ is sufficiently small, the global motion 

estimation can still be poor due to a much too small total number of found features. 

Combining the number of found features with the ܴܧܵ݀݁ܯ provides a good possibility 

of evaluating the accuracy of the expected global affine transformation. This accuracy is 

expressed by a weighting factor ݓ, with ݓ ߳ ሾ0…1ሿ, which is computed as follows: 

ݓ ൌ ቆ
݂

௙ܶ௘௔௧௨௥௘௦
ቇ
ସ

· ൬1 െ
݁ܵ݀݁ܯܴ
ோܶெ௘ௗௌ௘

൰
ଶ

 (7.3) 

 

where ݂ is the number of found features and ோܶ௠௘ௗௌ௘ is a threshold that limits the 

maximum allowed ܴܧܵ݀݁ܯ. This equation, as well as ோܶ௠௘ௗௌ௘, has been heuristically 

evaluated, where ோܶ௠௘ௗௌ௘ ൌ  by default. The weighting factor is returned by the ݔ݌ 1.0

Motion Saliency Module together with the motion map. As will be seen in the next 

section, ݓ is used to weight results from the Still Image Saliency Module and from the 

Motion Saliency Module, before they are combined.  
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Parameter settings for Motion Saliency Module 

The Motion Saliency Module defines eight adaptable parameters that are assigned to 

specified content properties (see Table 7-2). The “scale factor” specifies the image scale 

factor for the motion estimation. Half of image size (scale factor = 0.5) provides a good 

compromise between accuracy and computational effort. Therefore, this value has been 

chosen for all property values. “Maximal pyramid” level allows a search for 

corresponding points not only at one image level, but over several scales. A search on 

multiple pyramid levels provides an improvement for detecting greater pixel offsets. 

Because of that, more pyramid levels are used with increasing motion. The “optical 

flow window” parameter defines the number of neighboured pixels that are considered 

for optical flow computation on each pyramid level. As described in Section 2.5.1, the 

consideration of a pixel’s neighbourhood is necessary to reduce the aperture problem. 

For all motion types, a neighbourhood of 3x3 is absolutely adequate. “Epsilon” 

specifies a required accuracy for the iterative optical flow computation. This value has 

been chosen sufficiently small for a robust estimation. “Maximal iterations” defines the 

maximal number of iterations to compute the optical flow criteria. “Inlier percentage” 

specifies the percentage of inliers for the Least Median of Squares computation (cf. 

Section 2.5.2). The parameters in the last two rows of Table 7-2 allow the adaptation of 

the weighting factor ݓ according to Equation (7.3). 

Table 7-2: Settings for the Motion Saliency Module. 

 Setting 1 Setting 2  Setting 3 

 Motion: 

slow 

Motion: 

medium 

Motion: 

fast 

scale factor 0.5 0.5 0.5 

maximal pyramid 

level 

0 3 5 

optical flow window 3x3 3x3 3x3 

epsilon 0.01 0.01 0.01 

maximal iterations 5 5 5 

inlier percentage 0.5 0.5 0.5 

denominator (࢔) to 

compute ࢙ࢋ࢛࢚࢘ࢇࢋࢌࢀ 

130 130 130 

 threshold  ࢋࡿࢊࢋࡹࡾ

 (ࢋࡿࢊࢋࡹࡾࢀ)

1.0 1.0 1.0 
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The Motion Saliency Module receives an 8 bit grey image and instantiates a 32 bit grey 

image that contains the motion saliency map. The pointer weight allows access to the 

calculated weighting value ݓ according to Equation (7.3). Figure 7-17 depicts the class 

structure of the module. 

Figure 7-17: Class structure of the Motion Saliency Module. 

7.3.1.3 Map fusion 
The fusion of the still image saliency map and the motion saliency map is done on the 

level of the Visual Attention Plug-In, which receives the results of both sub-modules. 

Additionally, the already mentioned weighting value ݓ which is returned by the Motion 

Saliency Module is used for combining both maps. 

For summing up both maps, the motion saliency map ܯ is multiplied by ݓ and the still 

image saliency map ܵ is multiplied by 1 െ  is calculated according to ݓ where ,ݓ

Equation (7.3): 

ܴ ൌ
1
2
ሺݓ · ܯ ൅ ሺ1 െ ሻݓ · ܵሻ (7.4) 

 

where ܴ is the resulting saliency map. Figure 7-18 shows an example for summing up 

the maps weighted by ݓ.  

Motion Saliency Module

+MotionSaliencyModule(String^ name, AutoResetEvent^ run, AutoResetEvent^ ready): ThreadModule(name, run, ready)
+setParameter(IplImage * input_image, IplImage ** motion_map, float * weight)
+process()
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Figure 7-18: Example of combining motion saliency and still image saliency by weighting factor ࢝. 

7.3.1.4 Segmentation module 
Segmentation is a crucial task in image processing. In this implementation, 

segmentation is used to make a decision regarding which areas in the saliency map 

correspond to foreground and which areas correspond to background. Furthermore, the 

segmentation process defines foreground areas by bounding rectangles that enclose 

related regions. From there on, ROIs are simply specified by their corner coordinates. 

This process of getting from image level to a more abstract level is described in the 

following.  

Weighted Motion Map Weighted Saliency Map 

Saliency Map Motion Map

Original Image

Fused Map
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Before the final implementation is explained, an alternative segmentation process that 

has been used is first briefly introduced. This approach makes use of the region 

labelling method flood fill (see Chapter 2.6.2). This operation starts at a specific point 

(seed point) and adds neighboured pixels as long as the decrease of intensity is below a 

predefined threshold. The seed point represents the pixel with the highest intensity in 

the image. As soon as the first region has been labelled, this region is suppressed and a 

new seed point is searched. 

This approach has been rejected for several reasons. Firstly, it is assumed that the most 

salient pixels are those with the highest intensity. This is correct by definition, because 

saliency mainly arises from local contrasts in the input image. This means that, for 

example, on a green background, soccer players with red shirts are less salient than 

soccer players with white shirts. Searching for contextually important objects instead of 

salient regions, this approach delivers non-satisfying results, because less salient 

regions, i.e. the players with red shirts, might get lost due to thresholding. Additionally, 

this method can be computationally quite costly, because it iteratively labels regions by 

suppressing a found region and starting a new search. Another disadvantage is that 

flood fill requires some threshold settings which might end up giving greatly varying 

results. Even if this approach is more appropriate for saliency detection, it does not 

consider contextual importance. For this reason, an alternative approach has been 

chosen. 

As already mentioned, saliency is not equivalent to contextual importance. Therefore, a 

more robust segmentation method has been chosen that first separates foreground and 

background by local binarisation (see Chapter 2.6.1). The advantage is that a hard 

decision is made on local conditions instead of globally set thresholds like maximal 

number of labels. Afterwards, an average filter with adaptable kernel size is applied to 

bring together separated regions which correspond to the same object. This approach 

has been preferred over morphological operations because morphological operations 

can change the shape of an area; especially in the case of several iterations this effect is 

not negligible. As this might result in pumping ROIs over time, a simple blurring has 

been chosen to keep the shapes of regions more regular. Additionally, the shape and size 

of the filter kernel strongly supports specific object shapes. For example, vertically 

oriented objects can be supported by vertically oriented filter kernels, whereas 

horizontally oriented objects are weakened.  
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In the next step, contours are detected and combined by edge linking as described in 

Chapter 2.6.3. This rather simple approach is much faster than flood fill – especially for 

an increasing number of salient areas – and it retains as much information as possible 

from the saliency map. Finally, bounding rectangles are computed for linked edges and 

their coordinates are represented in the ROI structure according to Figure 7-10. The 

whole segmentation process is depicted in Figure 7-19. 

 

Figure 7-19: Flow chart of segmentation module for the example of Figure 7-18. 

Parameter Settings and Class Structure 

Parameters that are modifiable for the segmentation module influence only the kernel 

size and aspect ratio of the blur filter. As previously mentioned, this filter intends to 

merge parts that belong to the same object. To support specific shapes of objects that fit 

into a searched pattern, e.g. vertically oriented objects for soccer, different kernel shapes 

and sizes can be defined by the parameter settings of the segmentation module. 

Additionally, the size of each blur mask can be influenced by the “mask size 

multiplier”. This value allows the adaptation of the kernel size, dependent on the 

number of objects which are present. Here, it is assumed that content with multiple 

objects is shot in such a way that objects have a smaller size compared to content 

containing a single object. The Boolean value “binarise” allows switching off of the 

binarisation step in the Segmentation Module. As this is not necessary for the Visual 

Attention Plug-In, some other extraction modules might deliver an already binarised 

image. In this case, an additional binarisation can cause undesired results for 

segmentation.  

contour 
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weighted 

kernel 

local 
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Table 7-3: Settings for the Segmentation Module. 

 Default Setting 1 Setting 2  Setting 3 Setting 4 Setting 5  

  

Object 

appearance: 

solo 

Object 

appearance: 

team 

Object 

orientation: 

vertical 

Object 

orientation: 

horizontal 

Object 

orientation: 

default 

blur 

mask 

width 

7 - - 3 3 7 

blur 

mask 

height 

7 - - 9 9 7 

mask size 

multiplier 
1 2 1 - - - 

binarise true true true true true true 

 

The Segmentation Module receives an 8 bit grey image and returns a list of rectangles 

that were computed by the segmentation process. Figure 7-20 depicts the class structure 

of the module. 

 

Figure 7-20: Class structure of the Segmentation Module. 

7.3.2 Backprojection plug-in 
The Backprojection Plug-In is a simple approach which allows the detection of plain 

backgrounds in a video image as well as objects which are on this area. This plug-in is 

intended to be used for sports content which takes place on more or less plain pitches. 

Making use of this plug-in in addition to the Visual Attention Plug-In allows a more 

reliable statement about possible objects of interest. As optimally two ROIs are 

estimated for each object (one by each extraction plug-in), it is desirable to reduce the 

number of ROIs to a representative single ROI in a last processing step. In this way, 

ambiguous statements for further processing can be avoided. This reduction is done by a 

clustering method (intra frame clustering), described in Section 7.3.4.2. 

Segmentation Module

+SegmentationModule(String^ id): Module(id)
+process(const IplImage* img): List<Rect>
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The backprojection method (histogram backprojection) has been proposed by Swain 

and Ballard in (Swain & Ballard, 1990). Originally, histogram backprojection was used 

to locate colours in an image which belong to a known object that has to be found. For 

this, the histogram ܯ of a sample image which contains the desired colour pattern is 

computed. Additionally, the histogram ܫ of the image to be analysed is determined. For 

each bin ݆ of both histograms, a third histogram ܴ is computed which is the ratio of ܯ 

divided by ܫ: 

௝ܴ ൌ
௝ܯ
௝ܫ

 (7.5) 

 

The histogram backprojection is finally estimated by mapping each three-dimensional 

colour value ܿሺݔ,  :ሻ to a histogram binݕ

ܾ௫,௬ ൌ ݉݅݊ ቀܴ௛൫௖ሺ௫,௬ሻ൯, 1ቁ (7.6) 

 

where ܾ is the backprojected image and ݄ሺܿሻ is a function that maps a colour value to a 

histogram bin. 

Here, the hue channel of a colour image is used for histogram backprojection as it is 

intended to detect chromatically plain backgrounds. For this, a colour image is first 

converted from RGB to HSV (Hue, Saturation, Value) colour space. Afterwards, 

saturation and the achromatic part of HSV are rejected. For the sample image ܯ, a hue 

histogram is computed with a sufficiently large bin size of 22° to cover a large colour 

range. This results in 16 bins for the hue range of 360°. 

As described above, the histogram of the sample image is backprojected on the input 

image, which results in a binary image, where white represents colours that match the 

histogram bin of the sample image and black represents no matches (see Figure 7-21). 

In the next step, the pitch position and shape are detected on a lower scale. For this, the 

binary image is scaled down by a factor of four to remove image details. To further 

suppress details and support large areas in the image, a median filter with a kernel size 

of a quarter of the image width is applied. For this process, available methods from 

OpenCV are used.  
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To extract possible players moving on the pitch, the binary image is up-scaled to the 

original size and is inverted, so that the pitch now has the colour black and other areas 

are white. This binary pitch template is subtracted from the backprojected image. As a 

result, possible players positioned on the pitch remain. 

 

Figure 7-21: Flow chart of the Backprojection Plug-In. In the final step, objects are segmented by 
another instance of the Segmentation Module.  

backprojection 

subtract 
images 

remove details 

invert image 

Segmentation 
Module 

list of ROIs 
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Obviously, a drawback is that players who are off the pitch are not or only partly 

detected. It is assumed that such effects can be compensated by ROIs estimated from 

the Visual Attention Plug-In. 

In the last step, objects are segmented by another instance of the Segmentation Module, 

as described in Chapter 7.3.1.4. 

The Backprojection Plug-In provides just a basic implementation within this work. For 

future work, it is desirable to detect achromatic pitches as well, for example by 

analysing grey images instead of the hue channel. Additionally, updating a 

backprojected histogram would increase the reliability for different types of pitches. For 

this, the sample image can be used as the initialisation for the updating process. 

7.3.2.1 Parameter settings and class structure 
As the Backprojection Plug-In currently provides just a basic implementation, only a 

default setting is defined at the moment. The “Sample ID” defines the sample image to 

compute the sample histogram. The “number of bins” value allows an adaptation of the 

bin size. To control the image scaling factor for the pitch mask computation, the “image 

scale factor” can be modified. 

Table 7-4: Settings for the Backprojection Plug-In. 

 Default 

 
Background colour: 

green 

sample ID 0 

number of bins 16 

image scale factor 4 

 

For the Segmentation Module instance, the same parameters are chosen as for the 

Visual Attention Plug-In. The only difference is, as the Backprojection Plug-In delivers 

a binarised image, that the binarisation in the Segmentation Module is switched off by 

setting “binarise” to false.  



115 
 
Table 7-5: Settings for the Segmentation Module. 

 Default Setting 1 Setting 2  Setting 3 Setting 4 Setting 5  

  

Object 

appearance: 

solo 

Object 

appearance: 

team 

Object 

orientation: 

vertical 

Object 

orientation: 

horizontal 

Object 

orientation: 

default 

blur 

mask 

width 

7 - - 3 3 7 

blur 

mask 

height 

7 - - 9 9 7 

mask size 

multiplier 
1 2 1 - - - 

binarise false false false false false false 

 

The Backprojection Plug-In receives an 8 bit colour image (RGB) and returns a list of 

rectangles. The sample image can be specified by the corresponding ID in the 

constructor. 

 

Figure 7-22: Class structure of the Backprojection Plug-In. 

7.3.3 Classification plug-in 
As the system is a plug-in system, several plug-ins can be used to analyse different 

features in the same incoming video image. Due to this fact, the number of ROIs, i.e. 

possible hypotheses of contextually relevant regions, can become quite high. On one 

hand, this gives a high chance of detecting content related information. On the other 

hand, it is more important to separate relevant from irrelevant ROIs. The Classification 

Plug-In fulfils this purpose by weighting ROIs dependent on the given context, i.e. the 

genre information from the metadata. For this, three ROI features are considered: shape, 

size and position.  

Backprojection Plug-In

+BackprojectionPlugIn(String^ id)
+SetParameter(IntPtr img, List<Rect>^% roi): void
+process(): void
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The idea of this plug-in is not to find a decision boundary between possible classes such 

as, for example, k-nearest-neighbour does (cf. Chapter 2.7.2). Within this work, it is of 

interest how ROIs fit into a single predefined class and leave the final decision to the 

cropping module. Hence, it is more a weighting of ROIs than a classifying. 

The weighting used here is motivated by the Bayes classifier. Its main difference to the 

Bayes classifier, as described in Chapter 2.7.1, is that just a single class ܿ is specified 

manually rather than multiple classes that have been estimated by training data. The 

class ܿ specifies a special type of genre and the features Ԧ݂௜ሺݏሻ represent shape, size and 

position. Due to the fact that just one class is defined, no prior probability is required 

here. To express the probability ܲ൫ ప݂ሬሬԦሺݏሻ|ݏ ൌ ܿ൯ of each feature as a weighting factor, 

every normal distribution is normalised to a range from 0 to 1. This allows the same 

influence of each feature on the total weight value ݓ௧௢௧௔௟: 

௧௢௧௔௟ݓ ൌ ࣨ ቀܲ൫ ௦݂௛௔௣௘|ݏ ൌ ܿ൯ቁ ڄ ࣨ ቀܲ൫ ௣݂௢௦௜௧௜௢௡|ݏ ൌ ܿ൯ቁ ڄ ࣨ൫ܲሺ ௦݂௜௭௘|ݏ ൌ ܿሻ൯ (7.7) 

 

where ࣨሺ·ሻ is the normalisation operator. A threshold ݐ௧௢௧௔௟ that defines a minimal 

allowed weight value can be defined to reject ROIs from further processing. 

7.3.3.1 The feature shape 
The feature shape allows weighting of ROIs by their orientation. For this, a ROI’s 

aspect ratio is calculated and mapped to a function that describes the desired aspect ratio 

distribution. In terms of better handling, aspect ratios are converted to a fixed range 

from 0 to 2: 

ݎ ൌ

ە
۔

ۓ
ݐ݄݄݃݅݁
݄ݐ݀݅ݓ

for ݄ݐ݀݅ݓ ൒ ݐ݄݄݃݅݁

2 െ
݄ݐ݀݅ݓ
ݐ݄݄݃݅݁

for ݐ݄݄݃݅݁ ൐ ݄ݐ݀݅ݓ
 (7.8) 

 

where ݎ ߳ ሾ0…2ሿ. 
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To compute the probability of a ROI’s aspect ratio ௦ܲ௛௔௣௘, a normal distribution can be 

defined with a mean value of ߤ ߳ ሾ0…2ሿ and an arbitrary standard deviation ߪ: 

ܲ൫ ௦݂௛௔௣௘|ݏ ൌ ܿ൯ ൌ
1

ߪ · ߨ2√
݁൬ି଴.ହڄቀ

௥ିఓ
ఙ ቁ

మ
൰ (7.9) 

 

Figure 7-23 illustrates the probability distribution for an ROI where its aspect ratio is 

expected to be approximately ߤ ൌ 1.5 (two times higher than wide). This simple 

weighting already allows suppressing ROIs that have an unlikely aspect ratio for a given 

video content. 

 

 

Figure 7-23: Probability distribution for an ROI with expected aspect ratio of ࣆ ൌ ૚. ૞ and ࣌ ൌ
૙. ૜. According to Equation (7.9), a mean value of ࣆ ൌ ૚. ૞ represents an ROI that is two times 
higher than wide. The normal distribution ࡼ൫࢙|ࢋ࢖ࢇࢎ࢙ࢌ ൌ  ൯ is normalised to a range from 0 to 1 byࢉ
the normalisation operator घሺ·ሻ.  
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7.3.3.2 The feature position 
The weight for the feature position is obtained by a two-dimensional normal distribution 

which spans a bell curve over the image (see Figure 7-24). For each pixel position in the 

image, the probability ܲ൫ ௣݂௢௦௜௧௜௢௡|ݏ ൌ ܿ൯ is computed as follows: 

ܲ൫ ௣݂௢௦௜௧௜௢௡|ݏ ൌ ܿ൯ ൌ
1

ߨ2 ڄ ௫ߪ · ௬ߪ
݁
൭ି଴.ହڄቆቀ௫ିఓೣఙೣ

ቁ
మ
ା൬
௬ିఓ೤
ఙ೤

൰
మ
ቇ൱
      (7.10) 

 

where ߤ௫, ,௫ߪ ௬ are the mean values andߤ -௬ are the standard deviations of the twoߪ

dimensional normal distribution. By default, the mean values are set to the image centre 

and ߪ௫ ൌ
ఓೣ
ଶ

௬ߪ , ൌ
ఓ೤
ଶ

. 

 

 

Figure 7-24: Two-dimensional normal distribution for computing the weight of a ROI’s position. 
The probability values are normalised to a range from 0 to 1 by the operator घሺ·ሻ, which results in 
the weight value. The image size is 720x576, the mean values are ࢞ࣆ ൌ ૜૟૙, ࢟ࣆ ൌ ૛ૡૡ and the 

standard deviations are ࢞࣌ ൌ
࢞ࣆ
૛

࢟࣌ , ൌ
࢟ࣆ
૛

. 

7.3.3.3 The feature size 
The weight of the feature size is calculated by the ratio between ROI size and image 

size. It is a binary value and is determined by a predefined threshold. Size ratios below 

the threshold are rejected whereas values greater than the threshold are weighted by 1.
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Hence, the resulting weighting value is: 

ࣨ൫ܲሺ ௦݂௜௭௘|ݏ ൌ ܿሻ൯ ൌ ൜ 1 for ௦௜௭௘ݎ ൒ ௦௜௭௘ݐ
0 for ௦௜௭௘ݎ ൏ ௦௜௭௘ݐ

 (7.11) 

 

where  ݎ௦௜௭௘ ൌ
௪௜ௗ௧௛ೃೀ಺ൈ௛௘௜௚௛௧ೃೀ಺

௪௜ௗ௧௛೔೘ೌ೒೐ൈ௛௘௜௚௛௧೔೘ೌ೒೐
 and ݐ௦௜௭௘ is the threshold for the ROI to image 

ratio. ݐ௦௜௭௘ has been set sufficiently small to avoid the loss of possibly important ROIs 

௦௜௭௘ݐ) ൌ 0.1). 

Parameter Settings and Class Structure 

Settings for the Classification Plug-In mainly concern the adaptation of different normal 

distributions. 

For the feature shape, the expected ROI aspect ratio can be set by the mean value and an 

expected standard deviation from that value. Assuming that ROIs tend to be vertically 

oriented, a negative mean value supports those aspect ratios. In turn, a positive mean 

value supports mainly horizontally oriented ROIs. 

In the same way, the position of a ROI can be weighted by mean values for the x- and 

y-direction as well as the corresponding standard deviations. Increasing the standard 

deviations gives more weight to the border areas of an image. 

The feature size simply defines a threshold which rejects ROIs that are below a ROI’s-

size-to-image-size ratio. 

Finally, the threshold ݐ௧௢௧௔௟ allows the exclusion of ROIs from further processing whose 

weight value  ݓ௧௢௧௔௟ is far below an expected weight. This value has been set to 

௧௢௧௔௟ݐ ൌ 0.3 by default. In the case where ROI properties are known in the analysed 

content, i.e. genre type information is available, the value is increased to ݐ௧௢௧௔௟ ൌ 0.5. 

This higher value separates desired from undesired ROIs. 
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Table 7-6: Settings for the Classification Module. 

 default Setting 1 Setting 2 Setting 3 Setting 4 

  

Object 

appearance: 

solo 

Object 

appearance: 

team 

Object 

orientation: 

vertical 

Object 

orientation: 

horizontal 

mean value for normal 

distribution of feature 

shape ൫ࢋ࢖ࢇࢎ࢙ࣆ൯ 

1.0 - - -0.7 0.7 

divider for ࢋ࢖ࢇࢎ࢙ࣆ to 

estimate standard 

deviation for feature 

shape ൫ࢋ࢖ࢇࢎ࢙࣌൯ 

2.0 - - 2.0 2.0 

threshold for size 

feature ሺࢋࢠ࢏࢙࢚ሻ 
0.1 - - - - 

multiplier for image 

width to estimate 

mean value for normal 

distribution of position 

feature ൫࢞,࢔࢕࢏࢚࢏࢙࢕࢖ࣆ൯ 

0.5 - - - - 

multiplier for image 

height to estimate 

mean value for normal 

distribution of position 

feature ൫࢟,࢔࢕࢏࢚࢏࢙࢕࢖ࣆ൯ 

0.5 - - - - 

divider for ܠ,࢔࢕࢏࢚࢏࢙࢕࢖ࣆ 

to estimate standard 

deviation of feature 

shape ൫࢞,࢔࢕࢏࢚࢏࢙࢕࢖࣌൯ 

1.0  1.5 0.5 - - 

divider for ܡ,ܖܗܑܜܑܛܗܘࣆ 

to estimate standard 

deviation of feature 

shape ൫࢟,࢔࢕࢏࢚࢏࢙࢕࢖࣌൯ 

1.0  1.5  0.5  - - 

threshold for total 

probability ሺ࢒ࢇ࢚࢕࢚࢚ሻ 
0.3  ‐  ‐  0.5 0.5 
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The Classification Plug-In receives a list which contains a further list of ROIs. Each 

outmost list element represents an extraction plug-in with its extracted ROIs in the inner 

linked list. For each ROI, the weight value is set by the computed weight value. Figure 

7-25 depicts the class structure of the Plug-In. 

Figure 7-25: Class structure of the Classification Plug-In. 

7.3.4 Cropping plug-in 
The Cropping Plug-In represents the final plug-in in the complete processing chain. It 

not only defines final cropping areas, but filters ROIs that move consistently over time. 

The filtering is done with the aid of a further sub-module, the Cluster Module, which 

groups corresponding ROIs across several frames. 

 

Figure 7-26: Flow chart for the Cropping Plug-In. ROIs and cropping areas are buffered and 
filtered over time to smooth their trajectories as well as to remove unreliable ROIs, i.e. cropping 
areas. 

To provide buffered information, the Cropping Plug-In accumulates extracted ROIs in 

time slots of equal size (windows). After filtering ROIs, a cropping area per video 

image that best encloses high-weighted ROIs is defined. To avoid jittery movements, 

the cropping areas are buffered and filtered as well. These successive process steps of 

buffering and filtering are depicted in Figure 7-26. In the following section, the 

list of ROIs 

buffer cropping 
areas 

buffer ROIs 

cluster and filter 
cropping areas 

cluster and filter 
ROIs 

list of cropping 
areas 

Classification Plug-In

+ClassificationPlugIn(String^ id): Module(id)
+process(List<List<Rect>^>^ roi)
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underlying class that manages the buffering of information for several frames is 

explained. Afterwards, the filtering and smoothing of ROIs and the cropping process are 

explained. 

7.3.4.1 The Window Manager 
The Window Manager class allows the accumulation of ROIs for a certain number of 

consecutive video frames (where ROIs can be either objects or cropping areas). The 

number of frames is fixed and cannot be changed during run time. To deal with shot 

boundaries that are annotated in the BMF-metadata, further sub-windows within a 

window are possible, where the first frame of each sub-window represents the first 

frame of a new shot. 

 

Figure 7-27: Processing of window triplets. Only the latest window in a triplet is processed. For 
post-processing a window triplet, only the centre window is redefined, whereas all three windows 
are considered for processing. After post-processing, each window is shifted by one and the new 
incoming window is attached.  

push by one window 

n frames 
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The Window Manager is a generic frame buffer which allows any processing and post-

processing of a single window or three consecutive windows (window triplet). In the 

latter case, the windows are pushed by one as soon as a new window is available, as in a 

FIFO (First In, First Out) queue (see Figure 7-27). After a new window has been 

received, it is processed immediately. Once a window triplet is completed, a post-

processing on all three windows is applied. Which processing, i.e. post-processing is 

done, will be explained in the following sections. For the explanation of the Window 

Manager it is of interest only that such window processing can be done by any method 

as long as its function pointer is available and has the correct calling parameters. 

The class structure of the Window Manager is depicted in Figure 7-28. It mainly 

consists of the constructors that allow referencing of the function pointer and setting the 

window size, as well as defining whether window triplets or single windows have to be 

processed. As soon as the function pointer is available (ProcessingDelegate and 

PostProcessDelegate), the Window Manager can be executed, whereby results of a 

window are returned when the post-processing step has been completed. 

Figure 7-28: Class structure of the Window Manager. 

7.3.4.2 Cluster module 
The Cluster Module is used to identify the behaviour of ROIs within a single time 

window. It provides processing methods to group corresponding ROIs and a post-

processing method to filter ROIs within the estimated clusters. These methods are 

executed by the Window Manager. Processing and post-processing are applied on single 

windows only. Therefore, no window triplets are necessary for this operation. 

First, the chosen clustering methods are justified and explained. Two types of clustering 

exist: the Inter-Frame Clustering and the Intra-Frame Clustering, which both apply the 

same similarity measure for different purposes. The Inter-Frame Clustering estimates 

trajectories of ROIs by grouping corresponding ROIs over time. The Intra-Frame 

Clustering fulfils the task of clustering ROIs which are returned by several extraction 

modules. This is the case when the Visual Attention Plug-In and the Backprojection 

Plug-In are used in parallel. In case that only one plug-in is used for extraction, the 

WindowManager

+WindowManager(int windowSize, bool singleWindows)
+WindowManager(int windowSize, bool singleWindows, ProcessingDelegate^ pd, PostProcessDelegate^ ppd)
+delegate void ProcessingDelegate(DataWindow<T>^ data, F newData)
+delegate DataWindow<T>^ PostProcessDelegate(DataWindow<T>^ oldest, DataWindow<T>^ current,DataWindow<T>^ newest)
+DataWindow<T>^ Process(F newData, bool isShot)
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Intra-Frame Clustering is not required. Afterwards, the post-processing, i.e. the filtering 

applied on the clusters is presented. 

Inter-Frame Clustering 

As already mentioned in Chapter 2.6.4, there mainly exist two types of clustering: 

hierarchical clustering and partitioning. Whereas the latter usually requires a 

predefined number of desired clusters, the former does not need such a target value. Due 

to the fact that the number of clusters cannot be determined in advance for this 

application, hierarchical clustering is chosen here. In turn, hierarchical clustering can be 

further split into two approaches: divisive and agglomerative algorithms. The divisive 

method starts with a single cluster containing the entire data set and partitions a cluster 

into two clusters step by step. Alternatively, an agglomerative algorithm functions as 

bottom-up process which starts with each individual item as an initial cluster. The main 

advantage of an agglomerative method is that clustering can be initialised without 

knowing the whole data set and clusters can be extended by new incoming data. 

Regarding this application, this means that as soon as information of the first frame 

within a time window is available, the clustering can be started and information from 

successive frames can be assigned directly. This type of procedure is much more 

efficient compared to the divisive method, as incoming data can be processed straight 

away. Due to this reason, the agglomerative clustering is the preferred one for this 

implementation. 

A clustering process is started every new time window, or in case of shot boundaries, 

every new sub-window. Each ROI which has been extracted from the first available 

video frame in a time window serves as the initial cluster for the chosen agglomerative 

clustering method. With any time window that has been completed, the related 

clustering process is finalised. 

As the intention of the Inter-Frame Clustering is to detect movement paths of ROIs, it 

can be assumed that a ROI lying on such a trajectory appears only once for each frame. 

This fact simplifies the clustering conditions (see Figure 7-29). 

One of the most straightforward similarities measures of whether or not two ROIs of 

consecutive frames correspond to each other is the Euclidean Distance. As the distance 

alone does not provide information about the similarity of two ROIs’ shapes, aspect 

ratios are additionally compared. This combination allows a significant predication for 
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ROI correspondences. Finally, a probability of belonging is computed by multiplying 

estimated probabilities for distance and shape: 

௜ܲ௡௧௘௥ ൌ ௗܲ௜௦௧௔௡௖௘ · ௦ܲ௛௔௣௘ (7.12) 

 

Whether or not two ROIs correspond to each other is finally decided by a threshold for 

௜ܲ௡௧௘௥, which is set to ݐ௜௡௧௘௥ ൌ 0.5 by default. 

Because the Inter-Frame Clustering compares temporally consecutive data, only the 

latest available ROI from previous frames in a cluster is of interest. This leads to a 

single-linkage (cf. Section 2.6.4.1) approach, with the difference that not the closest, but 

the latest ROI in a cluster is compared to the allocable ROI here. Obviously, an average-

linkage or complete-linkage approach does not make sense for this application. The 

average-linkage would consider all ROIs in a cluster (centroid or medioid) to measure 

the similarity to the allocable ROI. As this includes ROIs from previous frames, past 

ROI positions or aspect ratios might have negative influences. In turn, the complete 

linkage uses the maximal distance from clustered ROIs to the allocable ROI as 

similarity measure, which is obviously not the information of interest either. 

 

Figure 7-29: Single-linkage clustering applied on two ROI cluster (red and green rectangles) over 
time. Incoming data is compared with all latest ROIs of existing clusters. 

The single-linkage clustering compares new incoming data with the latest ROIs of each 

existing cluster. To avoid wrong allocations, a cluster is compared with all new ROIs 

and, in turn, a possible cluster candidate is compared to each cluster to ensure that no 

cluster with higher correspondence exists. If a cluster with higher correspondence 

exists, the new ROI is assigned to this cluster. Once a ROI has been assigned to a 

cluster, it is removed from the list of incoming data. This process is repeated until 

exclusively ROIs with probabilities below the predefined threshold ݐ௜௡௧௘௥ are left. For 

each of these remaining ROIs, a new cluster is created. The clustering process over time 

based on the single-linkage method is depicted in Figure 7-29.  

?

n n + 1 n + 2 n + 3 n + 4 
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Similarity measure by means of relative ROI distance 

For the measure of the distance between two ROIs, not only the centre distance is used. 

Assuming that two relatively large ROIs overlap, their centre distance will be quite 

large whereas the actual ROI distance is zero. Because of this, the border to border 

distance is computed, which is the length of the line between border points which are 

collinear with both ROI centres. According to Figure 7-30 and with the aid of the 

intercept theorem, the border to border distance is computed by calculating the distance 

between border points ܦଵ and ܦଶ. 

 

 

Figure 7-30: Relations between two ROIs for computing the border to border distance. The ratio 
between ࢞࢘ and ࢝૚ , i.e. ࢝૛ describes whether the second rectangle is above/below or beside the first 
rectangle.  

As the relations for the intercept theorem vary depending on ROI positioning (the 

second rectangle is on either the top/bottom/side of the first rectangle), the x- and y-

border-distance Δݔ, Δy between two ROIs is calculated in two steps: 

1. If ࢞࢘ ൑  :૚ (rectangle 2 lies above/below rectangle 1)࢝

Δݔଵ ൌ |݀௫ െ  |௫ݎ

Δݕଵ ൌ ห݀௬ െ ݄ଵห 

where ݎ௫ ൌ
ௗೣ
ௗ೤
ڄ ݄ଵ 

  

݀௫ 

݄ଵ ݄ଵ
௬ݎ

݀௬ ܦଵ

ଶܦ

 ଶݓ

 ଵݓ

rectangle 2 

rectangle 1 
݄ଶ Δݔ

Δݕ

 ௫ݎ
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else: 

Δݔଵ ൌ |݀௫ െ  |ଵݓ

Δݕଵ ൌ ห݀௬ െ  ௬หݎ

where ݎ௬ ൌ
ௗೣ
ௗ೤
ڄ  ଵݓ

2. If ࢞࢘ ൑  ::૛ (rectangle 1 lies above/below rectangle 2)࢝

Δݔ ൌ |Δݔଵ െ  |௫ݎ

Δݕ ൌ |Δݕଵ െ ݄ଶ| 

where ݎ௫ ൌ
ௗೣ
ௗ೤
ڄ ݄ଶ 

else: 

Δݔ ൌ |Δݔଵ െ  |ଶݓ

Δݕ ൌ หΔݕଵ െ  ௬หݎ

where ݎ௬ ൌ
ௗೣ
ௗ೤
ڄ  ଶݓ

For the computation of probability ௗܲ௜௦௧௔௡௖௘, the ROI x- and y-distance is set in relation 

to the width and height of each ROI. This gives information about the motion-offset of a 

ROI from one frame to the next depending on its own size. In the case that the ROIs 

overlap, either vertically or horizontal, the corresponding probability is set to 1. Finally, 

ௗܲ௜௦௧௔௡௖௘ is computed as follows: 

ௗܲ௜௦௧௔௡௖௘ ൌ ൫ ௫ܲ · ௬ܲ൯
௡

 (7.13) 

where 

௫ܲ ൌ ቊ          
ଵݓ · ଶݓ
Δݔଶ      for 

ଵݓ · ଶݓ
Δݔଶ ൏ 1.0

1.0              else
 

௬ܲ ൌ ൝          
݄ଵ · ݄ଶ
Δݔଶ      for   

݄ଵ · ݄ଶ
Δݔଶ ൏ 1.0

1.0             else
 

and ݊ is an exponent to control the weight of increasing distances. For this application, 

݊ is set to ݊ ൌ 2 to decrease the influence on the total probability by more distant ROIs.
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Similarity measure by means of relative ROI aspect ratio 

The probability ௦ܲ௛௔௣௘ for the relation of ROIs shape is calculated by a single 

probability, which compares each width and height of the ROIs: 

௦ܲ௛௔௣௘ ൌ ቆ
,ଵݓሺܰܫܯ ଶሻݓ
,ଵݓሺܺܣܯ ଶሻݓ

·
,ሺ݄ଵܰܫܯ ݄ଶሻ
,ሺ݄ଵܺܣܯ ݄ଶሻ

ቇ
௠

 (7.14) 

 

where ܰܫܯ and ܺܣܯ return the minimum, i.e. maximum of two rectangles’ width and 

height (cf. Figure 7-30). The exponent ݉ weights the influence of ௦ܲ௛௔௣௘ on the total 

probability ௜ܲ௡௧௘௥. It is set to ݉ ൌ 1 by default. 

Intra-Frame Clustering 

Intra-Frame clustering is only applied as pre-processing for Inter-Frame Clustering if 

more than one extraction plug-ins are used. The intention of this method is to reduce the 

number of ROIs in the case of several extraction plug-ins. In this way, ambiguities of 

ROIs can be avoided.  

The similarity measure works in the same way as for the Inter-Frame Clustering. The 

difference is that ௗܲ௜௦௧௔௡௖௘ and ௦ܲ௛௔௣௘ are successively estimated. It is assumed that 

ROIs which correspond to the same object overlap. Therefore, ௦ܲ௛௔௣௘ is only computed 

when ௗܲ௜௦௧௔௡௖௘ is zero (ROIs overlap). Whether two ROIs belong to the same object or 

not ultimately depends entirely on ௦ܲ௛௔௣௘. Hence, a threshold ݐ௜௡௧௥௔ for ௦ܲ௛௔௣௘ is 

defined, which is set to ݐ௜௡௧௥௔ ൌ 0.3 by default. 

At the moment, the Intra-Frame Clustering can treat results from only two extraction 

plug-ins. As it is planned to implement further extraction plug-ins in the future, this 

clustering method should be adapted. For the current implementation, the limitation to 

two extraction plug-ins is sufficient. 

If two ROIs are grouped, only the one with the higher weight is kept to avoid changing 

of ROIs’ shapes through averaging. To support the ROI which has been kept, its weight 

value is replaced by a new one which is calculated with the aid of the weight value of 

the rejected ROI: 

௞௘௣௧ݓ ൌ ቊ
൫1 ൅ ௥௘௝௘௖௧௘ௗ௞൯ݓ · ௞௘௣௧ݓ for ൫1 ൅ ௥௘௝௘௖௧௘ௗ௞൯ݓ · ௞௘௣௧ݓ  ൑ 1.0
1.0                     for ൫1 ൅ ௥௘௝௘௖௧௘ௗ௞൯ݓ · ௞௘௣௧ݓ  ൐ 1.0

 (7.15) 
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where ݓ௞௘௣௧ is the weight value of the kept ROI, ݓ௥௘௝௘௖௧௘ௗ is the weight value of the 

ROI which has been rejected and ݇ is an exponent which controls the influence of the 

rejected weight value on the kept one. By default, ݇ has been set to ݇ ൌ 3. 

Filtering ROIs in Clusters 

Once a time window has been completed and clusters have been created, reliable ROIs 

are filtered and gaps within trajectories are closed. This requires a sufficient number of 

ROIs per cluster in order to evaluate their reliability. This can be ensured by total 

numbers which define the minimal required number of ROIs per cluster ݐ௠௜௡ே௢ோைூ௦ and 

the maximal gap between two consecutive ROIs in a cluster ݐ௠௔௫ீ௔௣ோைூ௦. Clusters with 

a size below ݐ௠௜௡ே௢ோைூ௦ are removed and obviously missing ROIs in a cluster which are 

not more than ݐ௠௔௫ீ௔௣ோைூ௦ are linearly interpolated by the adjacent ROIs. Figure 7-31 

depicts the effect of clustering and filtering of ROIs over time. 

 

Figure 7-31: Example of filtering ROIs over time by clustering. Red rectangles represent ROIs 
which cannot be allocated to any cluster and are hence removed from further processing. Green 
rectangles represent ROIs which are consistent over time. The numbers on each filtered rectangle 
are the weighting factor ࢒ࢇ࢚࢕࢚࢝ computed by the classification module (cf. Section 7.3.3). 

Parameter Settings and Class Structure 

Currently, there exists one default setting for the Cluster Module, as these parameter 

settings provide a good intercept for most type of genres. Hence, this setting is loaded 

independently of given content properties.  
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Table 7-7: Settings for the Cluster Module. 

 default 

threshold for Inter-Frame Clustering 

ሺ࢘ࢋ࢚࢔࢏࢚ሻ 
0.5 

threshold for Intra-Frame Clustering 

ሺࢇ࢚࢘࢔࢏࢚ሻ 
0.3 

exponent to weight computed distance 

between ROIs ሺ࢔ሻ 
2.0 

exponent to weight computed shape 

similarity between two ROIs ሺ࢓ሻ 
1.0 

multiplier for window size to estimate 

minimal number of ROIs within one 

cluster ሺ࢙ࡵࡻࡾ࢕ࡺ࢔࢏࢓࢚ሻ 

0.3 

multiplier for window size to estimate 

maximal number of missing ROIs in a 

cluster ൫࢙ࡵࡻࡾ࢖ࢇࡳ࢞ࢇ࢓࢚൯ 

0.05 

exponent to support the kept ROI 

weight by the rejected one ሺ࢑ሻ 
3.0 

 

The functions interFrameClustering and filterWindow are referenced by a function 

pointer of the WindowManager. The ClusterModule receives the incoming data and 

assigns it to the existing cluster. In the case of the first frame in a time window, each 

ROI represents an initial cluster. The filterWindow function removes outliers and closes 

gaps in ROI trajectories as soon as a time window has been finalised. The Cluster 

Module inherits from the abstract class Module. Figure 7-32 depicts the class structure 

of the module. 

Figure 7-32: Class structure of the Cluster Module.  

ClusterModule

+ClusterModule(String^ id): Module(id)
+interFrameClustering(DataWindow<List<Rect>^>^ clusterWindow, List<Rect>^ newData)
+filterWindow(DataWindow<List<Rect>^>^ prev, DataWindow<List<Rect>^>^ curr,DataWindow<List<Rect>^>^ next)
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7.3.4.3 Defining the final cropping area 
For defining the final cropping area, the Cropping Plug-In is controlled by another 

instance of the Window Manager, which now buffers window triplets (cf. Chapter 

7.3.4.1) instead of a single window. 

The idea behind the cropping process is to define a moving scanning mask of fixed size 

that encloses as many high-weighted ROIs as possible. Fixing the size of the cropping 

area avoids the annoying effects of mixing camera motion – which is already part of the 

video – and dynamic zooming by the application. 

The next section explains the processing of each window which is executed by the 

Window Manager. It firstly computes possible ROI combinations that fit into the 

scanning mask for every video frame. To avoid jittery movements of the cropping areas, 

the window is further filtered to remove outliers in a final step. The post-processing step 

is presented afterwards which recovers missing masks at outlier positions with the aid of 

the whole window triplet. 

Computing ROI combinations 

As already mentioned, the latest window in a window triplet is processed to define ROI 

combinations which best fit into a scanning mask. If a new window is available, all 

windows are shifted by one after the whole triplet has been post-processed (cf. Chapter 

7.3.4.1). 

For each frame in the latest window, possible ROI combinations are computed. To save 

computational effort, a level is defined ݈௖௢௠௕, which limits the number of ROIs that 

form a combination for a single frame. After all combinations with a number of ROIs 

equal to or smaller than ݈௖௢௠௕ have been computed, they are stored in a list and the 

average weight for each combination is calculated. Afterwards, the list of combinations 

is sorted by the weights in descending order. This sorted list is processed, starting with 

the highest weight, to find a combination with an enclosing rectangle that fits into the 

scanning mask. Here, the first that comes along is chosen, as it is inevitably the highest 

weighted combination. In case that ݈௖௢௠௕ ൐ 1, only combinations containing a number 

of ݈௖௢௠௕ ROIs are considered in the first pass. If no suitable enclosing rectangle has 

been found, combinations with ݈௖௢௠௕ െ 1 ROIs are checked in a second pass. This 

iterative search is applied as long as an enclosing rectangle is found which fits into the 

scanning mask. In the worst case, either no ROI is found at all or no combinations fit 

into the scanning mask. In the first case, the image centre position is chosen. In the 
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second case, the highest weighted single ROI is chosen, even if it exceeds the cropping 

size.  

After ROI combinations have been determined, only the centre positions of them are of 

interest, as they are used as centre positions for the corresponding scanning mask. Even 

if the ROIs have been filtered in the Cluster Module, scanning masks might rapidly 

change their centre position from one frame to the next. Therefore, the window size has 

been set to 40 frames for a video with 25 fps which results in approximately 1½ 

seconds. Assuming that video content is not drastically moving within 1½ second, one 

representative scanning mask for the whole time window is still a sufficient time 

resolution. Therefore, it is not the intention to smooth the existing path of scanning 

mask movement, e.g. by a B-Spline, but rather to find the most representative scanning 

mask position within one time window. This is done with the aid of the median x- and 

y-centre position (ܵ௥௘௣ሺݔሻ and ܵ௥௘௣ሺݕሻ) of scanning masks: 

ܵ௥௘௣ሺݔሻ ൌ med
௫ ௜ܵሺݔሻ (7.16) 

 

ܵ௥௘௣ሺݕሻ ൌ med
௬ ௜ܵሺݕሻ 

(7.17) 

where ௜ܵሺݔሻ and ௜ܵሺݕሻ are x- and y-centre positions of scanning masks within a time 

window of ݊ frames, with ݅ ൌ 1,… , ݊. For pan & scan mode, simply ௜ܵሺݔሻ or ௜ܵሺݕሻ is 

calculated, depending on whether a 4:3 video is converted to 16:9 or vice versa. 

Except for the representative scanning mask position ܵ௥௘௣ሺݔሻ, i.e. ܵ௥௘௣ሺݕሻ, all other 

positions are removed. To re-obtain missing information, not just one time window is 

used, but the whole window triplet. For this, the representative scanning mask is 

assigned to the frame in the middle of a time window. Having a time window triplet, 

missing scanning mask positions are now interpolated linearly between the 

representative positions (see Figure 7-33).  
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Figure 7-33: Temporal filtering and linear interpolation of scanning masks centre positions. For 
filtering, the median x- and y-centre-position within a time window are computed. Other positions 
are removed and missing cropping areas are linearly interpolated between windows. 

In Figure 7-34, two defined cropping sizes applied on an ice hockey example by the 

Cropping Plug-In are depicted. 

Figure 7-34: Example of two different cropping sizes applied on an ice hockey example with target 
aspect ratios of 16:9 (left) and 4:3 (right). Green rectangles are ROIs that are consistent over time 
and the blue rectangle describes the best combination of high-weighted ROIs that fit into the 
predefined cropping size. 

Parameter Settings and Class Structure 

The size of the scanning mask can be manually set in the XML-file for the Cropping 

Plug-In parameters. This is defined by a divisor for image width and height. The only 

parameter which is linked to video content properties is the number of ROIs which are 

used for computing ROI combinations. As in the case of single objects, e.g. for 

individual sports, no combinations are computed. In the case of multiple objects, 

Interpolate 

missing positions 

Compute median 

of x/y-position 

n frames n frames n frames

cropping with 
zooming factor 

1.33x1.33 

cropping with 
zooming factor 

1.77x1.33 
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combinations of two ROIs are computed. This value has been set relatively small, 

because a higher number of ROI combinations might result in misleading positions as 

long as the complete context is not understood, for example when the ball position in a 

soccer game is not known. 

Table 7-8: Settings for the Cropping Plug-In. 

 default Setting 1 Setting 2 

  

object 

appearance: 

solo 

object appearance: 

multiple 

multiplier to estimate the 

buffer size through frames 

per second of the video 

1.6 - - 

divisor which divides the 

image width to estimate the 

scanning mask width 

1.33 - - 

divisor which divides the 

image height to estimate the 

scanning mask height 

1.33 - - 

number of ROIs which define 

a combination 
2 1 2 

 

The Cropping Plug-In receives a list of ROIs for each frame and buffers processed ROIs 

internally. The final cropping area is returned through a single rectangle. 

 

Figure 7-35: Class structure of the Cropping Plug-In.  

Cropping Plug-In

+CroppingPlugIn(String^ name): Module(name)
+process(List<List<Rect>^> ^rois, Rect% cutOut)
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7.4 Summary 
This chapter presented the complete implementation. It first gave an overview of the 

system architecture which is based on the idea of a plug-in system. Each plug-in 

represents a component to either identify ROIs in a video, making use of low level 

methods (extraction plug-ins), or interpret those ROIs on a higher level. In a final step, 

ROIs are used to define cropping areas by focussing on the most attractive and 

contextually important regions. 

There are currently two extraction plug-ins implemented, the Visual Attention Plug-In 

and the Backprojection Plug-In. The Visual Attention Plug-In relies on general 

assumptions about which features attract a viewer’s attention by combining the visual 

attention system of Hou (still image saliency) and motion information. The 

Backprojection Plug-In is aimed at specific types of genre where it is known that 

objects are moving on a plain background, for example a soccer game. Additionally 

knowing the approximate colour of the background, the feature extraction of this plug-

in relies on important top-down information which guides the search for ROIs. 

How top-down information can be fed into the system and how to link content specific 

components and settings based on this information has been presented in Chapter 7.2.2. 

The possibility to put content-related background knowledge into the system represents 

the advantage of this work compared to other approaches in the field of broadcast 

applications. The internal processing of such information relies on a description of each 

piece of video content by its properties. Those properties are not arbitrarily chosen, but 

represent the possible properties that can be interpreted by the plug-ins. These 

properties can be extended at any time, for example when new plug-ins are added. On 

the other hand, the system can analyse any type of content by running in a default mode. 

In the following chapter, the proposed system has been applied on typical sports 

sequences to crop regions in a video by feeding the genre type through BMF metadata. 

Results have been compared to the same sequences cropped statically (cropping the 

centre position), cropped by a video editor from German public broadcasters and simply 

non-cropped versions by adding boxes (pillarbox or letterbox) if required. 
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8. Evaluation 
The purpose of this evaluation is, on one hand, to make subjective assessments of 

videos which have been processed by the proposed system. On the other hand, it is of 

interest to investigate the necessity of adapting cropping area positions for sport 

applications dependent on the content. 

For this, a subjective evaluation has been carried out which compared the output of the 

introduced application to results from manually and statically cropped sports videos. 

The manually cropped content has been prepared by a professional video editor from 

the Bayerischer Rundfunk2. The videos have been cropped at three different cropping 

levels. To get a comparison of the chosen cropping level compared to the non-cropped 

video, the simply scaled version of the source material was also part of the evaluation. 

All different cropping versions were finally scaled down to typical mobile TV 

resolutions. 

Apart from evaluating different types of cropping and different cropping levels, the 

lines of vision of ten subjects watching sports videos have been measured. For the same 

sequences, ROIs have been extracted by the proposed application. The deviations 

between ROIs and gaze positions have been used to predict the precision of the system. 

8.1 Subjective Evaluation 
In this section, the chosen subjective assessment method is first introduced in Section 

8.1.1. In the following Sections 8.1.2 - 8.1.6, the evaluation set-up, the material 

selection and the material preparation are presented. The chosen statistical method is 

justified for the given set-up in Section 8.1.6. Finally, results of the evaluation conclude 

this section. 

8.1.1 Evaluation method 
The Radio-communication Sector of the International Telecommunication Union (ITU-

R) provides recommendations for a variety of subjective and objective quality 

assessments methods (List of ITU-R Recommendations and Reports, 2007). The most 

important recommendations for subjectively assessing the quality of television and 

multimedia pictures are ITU-R BT.500-113 (Rec. ITU-R BT.500-11, 2007) and ITU-R 

                                                 
2 The Bayerischer Rundfunk is the Bavarian public broadcaster 
3 Methodology for the subjective assessment of the quality of television pictures 
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BT.17884 (Rec. ITU-R BT.1788, 2007), where the latter refers to the former. The main 

intention of such tests is to assess the quality of processed videos by subjects. 

Therefore, a sequence is processed in different ways and presented to the viewer. ITU-R 

BT.1788 distinguishes between the following subjective measurements procedures for 

assessing video quality in multimedia systems: 

• Double-stimulus impairment scale (DSIS) method as described in 

Recommendation ITU-R BT.500.  

• Double-stimulus continuous quality scale (DSCQS) method as described in 

Recommendation ITU-R BT.500.  

• Single-stimulus (SS) methods as described in Recommendation ITU-R BT.500 

• Stimulus-comparison (SC) methods as described in Recommendation ITU-R 

BT.500 

• Single-stimulus continuous quality evaluation (SSCQE) method as described in 

Recommendation ITU-R BT.500 

• Subjective Assessment of Multimedia VIdeo Quality (SAMVIQ) 

According to ITU-T BT.500, double-stimulus methods allow the viewer to assess a test 

version in comparison to a reference version of a sequence. In turn, single-stimulus 

methods define that the viewer has to grade a single video without reference. SAMVIQ 

differs from these approaches as it allows the viewer directly to compare more than one 

version of a sequence to a defined reference version (multi-stimulus). Table 8-1 lists the 

previously mentioned methods with respect to their most relevant properties. 

The multi-stimulus approach of SAMVIQ has the advantage that a subject can directly 

compare all processed versions of a sequence to a reference as often as he likes. 

Therefore, SAMVIQ offers a high reliability as the assessor is not forced to make a 

decision within a defined period (Kozamernik, Sunna, Wyckens, & Pettersen, 2005). As 

the methods defined in ITU-T BT.500 are mainly designed for video codec evaluations 

for TV, SAMVIQ is an appropriate method for combining different processing features 

in the context of multimedia, such as codec type, image format, bit-rate, temporal 

updating, zooming, etc. (Rec. ITU-R BT.1788, 2007).  

                                                 
4 Methodology for the subjective assessment of video quality in multimedia applications 
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Due to its advantages over other methods defined in ITU-T BT.500 in the context of 

multimedia applications, SAMVIQ has been chosen as the subjective assessment 

method within this work. 

As several cropped and non-cropped videos are compared in this test, a clear reference 

does not exist. Dependent on the defined reference and the questions asked to the 

subjects, results change significantly. Here, the statically cropped version has been 

chosen as a reference for two reasons. First, a direct assessment of the position of the 

cropping area is achieved. This statement is essential for this work as it indicates the 

necessity of adapting the cropping area intelligently instead of simply cropping the 

centre position. Second, the cropping level is assessed by rating the non-cropped 

version, which is just one among others. Thus, the rating of the cropping level is 

probably available as side information from the results. As this issue is not the main 

focus of this test, a general answer to this question is entirely satisfactory. 

Table 8-1: Comparison of methods for subjective video quality assessment according to ITU-R 
recommendations (Rec. ITU-R BT.500-11, 2007; Rec. ITU-R BT.1788, 2007; Jumisko-Pyykkö & 
Strohmeier, 2008). 

 DSIS DSCQS SSCQE SS SC SAMVIQ

References Explicit 
reference 

Hidden 
reference 

No 
reference No reference No reference 

Explicit and 
hidden 

reference
Comparison Double- 

stimulus 
Double-
stimulus

Single-
stimulus

Single-
stimulus

Stimulus- 
comparison 

Multi-
stimulus

Moment of 
rating 

Re-
trospective 

Re-
trospective 

Con-
tinuous 

Re-
trospective 

Re-
trospective 

Re-
trospective – 
rating can be 

adapted 
several 
times

Scale 
5-grade 

impairment 
scale 

5-point 
continuous 

scale 

5-point 
continuou

s scale 

5-point 
continuous 
scale (or 
higher if 
required)

7-point 
comparison 

scale 

5-point 
continuous 

scale 

Length of 
stimuli 10 seconds 10 seconds 

Long 
stimuli 
(>60 

seconds) 
up to 20 
minutes

10 seconds 10 seconds Maximum 
15 seconds 

 

8.1.1.1 The quality scale 
Even if SAMVIQ best meets the requirements of this evaluation, the recommended 

continuous quality scale from “bad” to “excellent” does not provide clear benchmarks to 

the subjects. Hence, there is a risk that results might scatter extremely. Additionally, it 

only allows a comparison to an absolute reference of best quality. Therefore, the scale 

has been replaced by the 7 point comparison scale according to the stimulus-comparison 
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(see Table 8-1). This allows a direct comparison to the statically cropped version on a 

scale from “much worse” to “much better” (see Figure 8-1). 

 

Figure 8-1: Comparison scale (left) and continuous quality scale (right) according to ITU-R 
BT.500-11 (Rec. ITU-R BT.500-11, 2007). 

8.1.1.2 Attributes 
As an extension to the ITU-recommendation, attributes have been used which should 

reflect the reason for a subject’s rating. Every time a subject assessed a video above or 

below zero, he had to specify an attribute which mainly influenced his decision. For 

this, the four following attributes have been used: 

Motion: The motion of the video content is natural/unnatural and continuous/not 

continuous. 

Sharpness: The video content has/does not have satisfying detail resolution. 

Proportions: The ratio between image size and image content is appropriate/not 

appropriate. 

Position of the cropping area: The cropping area is well/poorly chosen and 

contains/misses most important elements. 

If the subject was not able to justify his decision or the corresponding attribute was not 

listed, he had the possibility to specify “do not know”.  

The same       0 

Slightly better    +1 

Slightly worse    -1 

Better     +2 

Much better   

Worse    -2 

Much worse    -3 

Bad (0 to 20 points) 

Good (60 to 79 points) 

Fair (40 to 60 points) 

Poor (20 to 40 points) 

Excellent (80 to 100 points) 
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8.1.2 Evaluation software 
For the evaluation, the software “Suviq” (Subjective Video Quality) has been used 

which has been implemented at the IRT. The software meets the requirements of the 

SAMVIQ standard and is available as an executable file and source code. The source 

code has been slightly modified so that the scale is a comparison scale as required for 

this evaluation (see Figure 8-2). 

 

Figure 8-2: GUI of the slightly modified software Suviq (top) and attributes which have to be 
assigned to the according version A – D (bottom).  
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Here, the reference is the statically cropped video and the videos labelled A - D are the 

manually cropped, automatically cropped and simply scaled versions as well as the 

hidden reference in random order. For each trial, A - D are newly randomised so that the 

order of versions to be assessed changes. The software allows looping the selected 

sequences and switching between different versions while playing. To restrict the length 

of the loop, the brackets of the playbar can be moved. For each version A - D, the list of 

attributes was available on an extra sheet of paper (see Figure 8-2). The software is 

designed for dual screen mode. This means one monitor has been used for assessing and 

one monitor for rendering the video (see Figure 8-3). 

 

Figure 8-3: Illustration of dual screen mode. One monitor is for rendering the video (left) and the 
other serves as an assessment GUI (right). 

8.1.3 Material selection and processing 
The material which has been used for this evaluation was exclusively clean feed 

material from the archive of the Bayerischer Rundfunk. Other material, for example 

broadcasted material, is inacceptable as it can contain graphics which can be truncated 

by cropping. Additionally, the bitrate might be much too low for further processing 

which can cause heavy artefacts. 

Table 8-2: Chosen sequences of team sports (soccer, ice hockey) and individual sports (skiing, show 
jumping) for this evaluation. 

 Type of sport Format Duration 

Sequence 1 Soccer 576i25, 16:9 15s 

Sequence 2 Soccer 576i25, 4:3 18s 

Sequence 3 Ice hockey 576i25, 16:9 18s 

Sequence 4 Skiing 576i25, 16:9 12s 

Sequence 5 Show jumping 576i25, 16:9 19s 

Sequence 6 Show jumping 576i25, 4:3 17s 
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For the evaluation, six SDTV sports sequences from individual sports and team sports 

have been chosen (see Table 8-2). 

8.1.3.1 Target formats 
The video formats presented to the subjects have been selected for typical resolutions 

used for mobile TV. It can be inferred from launched services and recommendations by 

mobile TV video encoder manufacturers (MAYAH Communications, 2006), that 

QVGA (320x240, 4:3) is currently the most common video resolution used for mobile 

TV. For touch screen devices such as Apple iPhone/iPod Touch, there is a trend to 16:9 

formats for mobile devices as well. Therefore, in this evaluation 16:9 is considered as 

an additional aspect ratio. To have as similar viewing conditions as possible for the 4:3 

and 16:9 format, a 16:9 format from the DVB-H specification (ETSI TS 102 005 

V1.2.1, 2006) with a similar vertical resolution of 400x224 was selected. 

8.1.3.2 Material preparation 
In the context of cropping video material for broadcast applications, no clear guidelines 

exist. Only format conversions from 16:9 to 4:3 or vice versa are recommended by 

using the pan & scan method (cf. Sections 4.4.2.1 and 4.4.2.2). 

Here, the pan & scan approach has been chosen as the basis for two further cropping 

levels. In other words, the cropping mask size on the next higher level is defined by the 

pan & scan mask size applied on the previous cropping level. This results in relatively 

rough cropping levels with a highest cropping level of 1.77x1.33 for 16:9, or 1.33x1.77 

for 4:3. As no specifications exist for how cropping levels should be applied on 

different types of content, this rough graduation should give a good indication of 

possible finer graduations. Figure 8-4 compares the sizes of cropping levels applied on 

the source material. 

To avoid possible differences in quality, all videos have been passed through the same 

processing chain. For this, an application has been programmed which processes videos 

in the same way as the proposed cropping system. It receives a comma-separated value 

file (*.csv) which contains information about the cropping level and the centre position 

of the scanning mask for defined key frames. Scanning mask positions between key 

frames were interpolated linearly for each frame.  
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Figure 8-4: Illustration of different cropping levels applied on the example soccer with an aspect 
ratio of 16:9. The upper left image shows the non-cropped version with letterbox. The other images 
illustrate the positions of the cropping areas for the statically, i.e. centred cropped version (red 
bounding box), manually cropped version (blue bounding box) and automatically cropped version 
(yellow bounding box).The upper right image show results for a cropping level of 1.33x1.0. The 
bottom left image depicts positions of cropping areas for a cropping level of 1.33x1.33. The bottom 
right image show results for a cropping level of 1.77x1.33. 

All video processing has been applied on uncompressed video (24 bit, RGB). The video 

decoding has been done by the free open source software VirtualDubMod (Virtual Dub 

Mod, 2003). As the sequences have been presented on a PC screen, they have been 

deinterlaced after decoding by the open source VirtualDubMod plug-in Yadif 

deinterlace algorithm (Balakhnin, 2009). Additionally, 8 pixels have been cut off on the 

right and left side to remove pixels which do not correspond to the active image area 

(cf. Section 2.1.2). Finally, the progressive and uncompressed video (576p25) data have 

been wrapped into an AVI container format.  

Manual cropping has been done by a professional video editor of the Bayerischer 

Rundfunk at a typical editing desk which is part of the TV production workflow. The 

video-editing-software used was the AVID Media Composer. AVID allows setting key 

frames to define scanning mask positions. Missing positions can be calculated either by 

linear interpolation or by splines. The editor of the Bayerischer Rundfunk had chosen 

the linear interpolation as this is usually sufficient. Instead of exporting the cropped 

video clips, the positions for each key frame have been logged to an Open Media 

Framework file (OMF). OMF is a platform-independent file format supported by AVID 

to transfer digital media. This data has been read in an offline process and converted to 

.csv files. Finally, the video material has been cropped by the previously mentioned 
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cropping application by parsing the data from the .csv file. This process allowed an 

accurate reproduction of the scanning mask positions set by the video editor without 

video quality differences to the other cropped versions. 

The statically cropped version as well as the non-cropped version have both also been 

processed by the previously mentioned cropping application. For the statically cropped 

version, all videos have been cropped from the centre with the corresponding cropping 

level defined in the .csv file. In the same way, the non-cropped videos have been 

cropped from the centre; however, the cropping level has been set to 1.0x1.0 (no 

cropping). Although this step had no effect on the video content, it completely excluded 

any possible differences in the assessed videos due to processing. 

The automatically cropped versions have been created by the system proposed in this 

work, where each cropping level has been set in the .xml file for the Cropping Plug-In.  

After all videos were cropped, they were scaled to the target resolution (either 320x240 

or 400x224) with the aid of VirtualDubMod. To keep the best possible quality of the 

videos, the Lanczos interpolation has been used (cf. Section 2.3.2.3). 

8.1.4 Viewing conditions 
As no literature is known which tackles the issue of common viewing distances for 

small displays, i.e. mobile devices, the viewing distance for this test represents a 

compromise between theoretically correct and commonly used viewing distances for 

mobile devices. 

Assuming that the human eye has a point source acuity5 of 1 minute of arc (Smith & 

Archison, 1997), the theoretically minimal viewing distance dependent of the vertical 

resolution of the video can be calculated. According to Figure 8-5, the following 

relation can be established: 

tan ቀ
ߙ
2
ቁ ൌ

1
2 · ܽ
݀

 (8.1) 

 

where ݀ is the viewing distance, ܽ is the distance between two pixels in vertical 

direction and ߙ is the beam width at distance ݀ between two pixels in vertical direction.

                                                 
5 Point source acuity is a measure of the ability to resolve two very close point sources (Smith & 
Archison, 1997). 
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Figure 8-5: Illustration of relations between beam width and viewing distance for a video presented 
on a screen. 

Furthermore, it can be assumed that the distance between two pixels in the vertical 

direction can be expressed by: 

ܽ ൌ
݄
݊

 (8.2) 

 

where ݄ is the height of the video on screen and ݊ is the vertical resolution of the video. 

Substituting ܽ in Equation (8.1) and converting for ௗ
௛
 results in: 

݀
݄
ൌ

1

2 ڄ ݊ · tan ቀ2ߙቁ
 (8.3) 

 

According to Equation (8.3), the optimal minimal viewing distances given in height 

units for 240 and 224 are: 

൬
݀
݄
൰
ଶସ଴

ൌ
1

2 ڄ 240 · tan ቀ 1
60° · 2ቁ

ൌ 14.34 (8.4) 

 

൬
݀
݄
൰
ଶଶସ

ൌ
1

2 ڄ 224 · tan ቀ 1
60° · 2ቁ

ൌ 15.35 (8.5) 

 

These viewing distances are unrealistic in everyday life. From tests with persons 

watching videos on their mobile phones, 10 height units provide a good approximation.

 ߙ

ܽ 

݀ 

݄ 
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As a compromise between theoretical and practical values, 12 height units have been 

chosen for this evaluation. 

The evaluation took place at the IRT in a room specially designed for viewing tests. The 

light conditions within this room as well as luminance conditions of the PC screen were 

calibrated according to ITU-R BT.1788 (Rec. ITU-R BT.1788, 2007). The settings used 

for this evaluation are summarised in Table 8-3: 

Table 8-3: Settings used for the evaluation according to ITU-R BT.1788 (Rec. ITU-R BT.1788, 
2007). 

Parameter Setting 

Viewing distance Constrained: 12 H 

Peak luminance of the screen 70-250 cd/m2 

Ratio of luminance of inactive screen to 

peak luminance 
≤ 0.05 

Ratio of the luminance of the screen, when 

displaying only black level in a 

completely dark room, to that 

corresponding to peak white 

≤ 0.1 

Ratio of luminance of background behind 

picture monitor to peak 

luminance of picture 

≤ 0.2 

Chromaticity of background D65 

Background room illumination ≤ 20 lux 

 

Each subject was asked to lean his head against the headrest of a chair specially 

prepared for this evaluation to keep the viewing distance constant during the evaluation. 

Before the evaluation actually started, all subjects were familiarised with the test 

procedure by an introduction (see Appendix) and a training session. Figure 8-6 

illustrates the conditions on-site.  
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Figure 8-6: Viewing conditions on-site according to ITU-R BT.1788 (Rec. ITU-R BT.1788, 2007). 

To avoid juddering of presented videos, a display has been used which allows a display 

refresh rate of 75 Hz (integral multiple of video frame rate). Table 8-4 lists the 

configurations of the multimedia systems depicted on Figure 8-6. 

Table 8-4: Configurations of the multimedia systems used for the subjective evaluation test 
environment. 

 PC1 PC2 

Type of Display HP W19b and PHILIPS 

200WS 

HP W19b and PHILIPS 

200WS 

Display size 19” and 20” 19” and 20” 

Video display card NVIDIA GeForce 7300 SE NVIDIA GeForce 7300 SE 

Model Intel Core 2 Duo, 3.0 GHz, 3 

GB RAM 

Intel Core 2 DUO, 2.66 GHz, 

2GB RAM,  

Image information 320x240 and 400x224 native 320x240 and 400x224 native 
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8.1.5 Subjects 
As recommended for SAMVIQ, 15 persons participated in the subjective test. The 

observers were exclusively employees at IRT. Eight subjects were experts and seven 

were non-experts, where non-experts are not directly concerned with picture quality as 

part of their normal work. 

8.1.6 Statistical methods 
Before introducing the chosen statistical method at the end of this section, a brief 

overview on most common statistical procedures is given. First, possible measurement 

scales are presented, which are the basis of any statistical evaluation. In Section 8.1.6.2, 

parametric statistics are compared to non-parametric statistics and conditions are 

defined for when to use which method. 

8.1.6.1 Measurement scales 
A determining factor for the choice of an appropriate statistical procedure is which 

measurement scale has been used. A measurement scale allows the characterisation of 

variables to be measured. Measurement scales can be split into two groups: non-metric 

scales and metric scales (Frank & Todeschini, 1994).  

Non-metric scales are used for estimating qualitative variables. The simplest example 

for a non-metric scale is a nominal scale which is the mathematically weakest scale for 

qualitative variables. It only defines a category or label without any order relation. A 

more significant non-metric scale than the nominal scale is the ordinal scale. The 

ordinal scale arranges categories in order, where the differences between ranks are 

more relative than quantitative. 

Metric scales define a scale for quantitative variables. A metric scale where the starting 

point is not clearly defined, but the difference between each pair of adjacent values is 

defined, is called a proportional scale. In turn, a stronger metric scale where its starting 

point is well-defined is called a ratio scale. Examples of variables measured on ratio 

scales are weight and length.  
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8.1.6.2 Parametric versus non-parametric statistics 
Inferential statistical6 procedures can be categorised as parametric and non-parametric 

statistics (Sheskin, 2007). Parametric statistics make an assumption of population 

parameters which characterise an underlying distribution. Non-parametric statistics, 

also referred to as distribution/assumption free, are not making an assumption about an 

underlying distribution in advance. Therefore, non-parametric statistics are applied 

when the underlying distribution is questionable.  

As general rule, non-parametric statistics are applied if one or more assumptions for 

parametric tests are violated. According to (Corder & Foreman, 2009), parametric 

assumptions include data which: 

• approximately resembles a known probability distribution (in most cases normal 

distribution) 

• has respective populations of approximately equal variances 

• consists of independent observations, except for paired values  

• consists of values on a metric scale 

• is adequate large 

Table 8-5: Commonly used statistical tests for parametric statistics and their non-parametric 
counterparts 

Type of test Parametric Test Non-Parametric Test 

Comparing two related 

samples 
Wilcoxon signed rank test t-test for dependent samples 

Comparing two unrelated 

samples 
Mann-Whitney U-test t-test for independent samples 

Comparing three or more 

related samples 
Friedman test 

Repeated measures analysis 

of variance (ANOVA) 

Comparing three or more 

unrelated samples 
Kruskal-Wallis H-test 

One-way analysis of variance 

(ANOVA) 

Comparing two rank-

ordered variables 

Spearman rank-order 

correlation 

Pearson product-moment 

correlation 

  

                                                 
6 Inferential statistics or statistical induction are statistical methods which describe a model from random 
sampling. 
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For both types of statistics, statistical tests (hypothesis tests) exist which verify a 

hypothesis about parameters, a distribution or a goodness of fit (Frank & Todeschini, 

1994). Most non-parametric tests are based on ranked data by ordering from the lowest 

to the highest value, where the median value is usually used to estimate the location of a 

population distribution. Table 8-5 gives an overview of the most important parametric 

and corresponding non-parametric tests. 

8.1.6.3 Chosen statistical method 
Due to the fact that the comparison scale used in this evaluation is a non-metric scale, 

the chosen statistical method is a non-parametric method. 

To estimate the location of population distribution, the median value (0.5-quantile) and 

quartiles (0.25-quantile and 0.75-quantile) are used. For the number of 15 subjects, this 

results in the following ranks: 

.ܳଶହ ൌ ሺ݊ ൅ 1ሻ ڄ 0.25 ൌ ሺ15 ൅ 1ሻ · 0.25 ൌ 4 (8.6) 

 

.ܳଶହ ൌ ሺ݊ ൅ 1ሻ ڄ 0.5 ൌ ሺ15 ൅ 1ሻ · 0.5 ൌ 8 (8.7) 

 

.ܳ଻ହ ൌ ሺ݊ ൅ 1ሻ ڄ 0.75 ൌ ሺ15 ൅ 1ሻ · 0.75 ൌ 12 (8.8) 

 

For this evaluation it is of interest whether two cropping methods applied on a video 

have been assessed as significantly different or not. Therefore, two related samples are 

compared, which leads to the Wilcoxon signed rank test (cf. Table 8-5).  

This non-parametric method tests whether paired observations ܺ and ܻ with ܺ ൌ

  ଵܺ, … , ܺ௡ and ܻ ൌ ଵܻ, … , ௡ܻ correspond to the same location of symmetric population. 

Supposing that ܼ is continuous around a median ߠ, where ܼ௜ ൌ ௜ܺ െ ௜ܻ for ݅ ൌ 1,… , ݊, 

the null hypothesis that ܺ and ܻ correspond to the same location of a population is 

ߠ :଴ܪ ൌ 0. The test verifies whether this hypothesis can be confirmed and, in turn, the 

alternative hypothesis ܪଵ: ߠ ് 0 can be rejected. For this, |ܼ| is first computed and 

sorted in ascending order. After ranking the absolute values of ܼ, the sum ∑ܴା is 

computed by ranks |ܼ௜| which correspond to values ܼ௜ ൐ 0 and the sum ∑ܴି is 

computed by ranks |ܼ௜| which correspond to values ܼ௜ ൏ 0. Identical absolute values are 
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averaged before summing up. Difference values of ܼ௜ ൌ 0 are excluded from the ranked 

list. 

Finally, ܪ଴ is tested by a predefined significance level ߙ. According to (Sachs & 

Reynarowych, 1984), this level is commonly set to ߙ ൌ  ଴ is rejected when theܪ .5%

value ෠ܴ, which is the smaller value of ∑ܴି and ∑ܴା, lies below the listed value of 

Table 8-6. This test is called one-sided Wilcoxon signed rank test. Table 8-6 is a short 

excerpt of values taken from (Sachs & Reynarowych, 1984) and (Cook, 2009). 

For a number of test observations ݊ ൐ 25, it is assumed that ܴሺ݊,  ሻ follows a normalߙ

distribution and hence the following approximation can be applied: 

ܴሺ݊, ሻߙ ൌ
݊ ڄ ሺ݊ ൅ 1ሻ

4
െ ݖ · ඨ

1
24

· ݊ · ሺ݊ ൅ 1ሻ ڄ ሺ2݊ ൅ 1ሻ (8.9) 

 

where ݖ denotes the bounds of a normal distribution for a given ߙ (Sachs & 

Reynarowych, 1984). 

Table 8-6: Short excerpt on values for critical values for the Wilcoxon signed rank test from (Sachs 
& Reynarowych, 1984) and (Cook, 2009). 

 One-sided  One-sided 

n 5% 1% n 5% 1% 

6 2 - 21 67 49 

7 3 0 22 75 55 

8 5 1 23 83 62 

9 8 3 24 91 69 

10 10 5 25 100 76 

11 13 7 26 110 84 

12 17 9 27 119 92 

13 21 12 28 130 101 

14 25 15 29 140 110 

15 30 19 30 151 120 

16 35 23 31 163 130 

17 41 27 32 175 140 

18 47 32 33 187 151 

19 53 37 34 200 162 

20 60 43 35 213 173 
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For the Wilcoxon signed rank test computation, the software WinSTAT (Fitch, 2010) 

has been employed. This software returns values for ∑ܴି, ∑ܴା, ݖ and ߙ. For 

consistency, the values of ∑ܴି and ∑ܴା are exclusively used to perform the one-sided 

test for all evaluations within this work. 

For further information concerning the Wilcoxon signed rank test, the author refers to 

(Sheskin, 2007), (Sachs & Reynarowych, 1984) and (Kotz & Johnson, 1988). 

8.1.7 Evaluation results 
In this section, results of the subjective evaluation for each type of sport are presented. 

For statistical analysis, the previously mentioned methods of median and quartile, 

Wilcoxon-test and frequency distributions of attributes have been applied. 

Each type of genre is treated in a separate section where the results of all cropping 

levels are plotted in a single figure. In the lower part of each figure, the frequency 

distribution of attributes to the respective assessments is presented graphically. For 

illustrative purposes, a distinction is made between attributes according to positive and 

negative ratings by splitting the frequency distribution. This allocation allows a better 

visualisation and exploration of assessments by subjects. The sum of attributes per 

assessment still results in 100%. 

8.1.7.1 Ice hockey 16:9 
Compared to the statically cropped version, clear differences to all other versions of the 

ice hockey sequence can be recognised (see Figure 8-7). For cropping level 1.33x1.0, 

the letterbox version has been assessed as slightly worse than the statically cropped 

version due to the attribute “proportions” (see Figure 8-7 below). This significant 

difference diminishes with higher cropping levels mainly due to the “position of the 

cropping area”, which indicates that a static cropping area seems no longer to capture 

the most relevant areas of the ice hockey sequence. This assumption is confirmed by the 

fact that with higher cropping levels the median values of the automatically and 

manually cropped versions tend to be slightly better than the static version. 

Additionally, the frequency distributions of chosen attributes clearly affirm this positive 

trend by the attribute “position of the cropping area”. 

According to the Wilcoxon test, there is no significant difference between the 

automatically and statically cropped versions for all cropping levels (see Table 8-7).



153 
 
The highest percentages of ratings which have negatively influenced the automatic 

version were caused by of the attribute “motion”. It shows that the subjects were mostly 

satisfied with the “position of the cropping area”, whereas the movement of the 

cropping area might have been slightly annoying. 

 

Figure 8-7: Median and quartiles for all cropping levels applied on the ice hockey sequence (top) 
and corresponding frequency of attributes (bottom).  
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Table 8-7: Values of the one sided Wilcoxon test applied on the ice hockey sequence. 

 1.33x1.0 1.33x1.33 1.77x1.33 

 ෠ܴ different ෠ܴ different ෠ܴ different

static- 

automatic 

෠ܴ ൌ 23 ؤ 21

ൌ ܴሺ13,0.05ሻ no 

෠ܴ ൌ 42.5

ؤ 21

ൌ ܴሺ13,0.05ሻ 

no 

෠ܴ ൌ 24.5

ؤ 21

ൌ ܴሺ13,0.05ሻ 

no 

static- 

manual 

෠ܴ ൌ 0 أ 3

ൌ ܴሺ7,0.05ሻ yes 

෠ܴ ൌ 0 أ 0

ൌ ܴሺ5,0.05ሻ no 

෠ܴ ൌ 18.5

أ 25

ൌ ܴሺ14,0.05ሻ 

yes 

static- 

letterbox/ 

scaled 

෠ܴ ൌ 14.5

أ 30

ൌ ܴሺ15,0.05ሻ 

yes 

෠ܴ ൌ 26.5

ؤ 25

ൌ ܴሺ14,0.05ሻ 

no 

෠ܴ ൌ 29.5

ؤ 25

ൌ ܴሺ14,0.05ሻ 

no 

automatic- 

manual 

෠ܴ ൌ 21 ؤ 8

ൌ ܴሺ9,0.05ሻ no 

෠ܴ ൌ 22 ؤ 17

ൌ ܴሺ12,0.05ሻ no 

෠ܴ ൌ 36.5

ؤ 25

ൌ ܴሺ14,0.05ሻ 

no 

automatic-

letterbox/ 

scaled 

෠ܴ ൌ 14 أ 30

ൌ ܴሺ15,0.05ሻ yes 

෠ܴ ൌ 26 ؤ 21

ൌ ܴሺ13,0.05ሻ no 
෠ܴ ൌ 26 ؤ 25

ൌ ܴሺ14,0.05ሻ 
no 

letterbox/ 

scaled-

manual 

෠ܴ ൌ 7 أ 30

ൌ ܴሺ15,0.05ሻ yes 

෠ܴ ൌ 19.5

أ 25

ൌ ܴሺ14,0.05ሻ 

yes 

෠ܴ ൌ 15.5

أ 21

ൌ ܴሺ13,0.05ሻ 

yes 

8.1.7.2 Soccer 16:9 
For all versions of the soccer 16:9 sequence, the automatically and manually cropped 

versions are preferred to the statically cropped version, which preference gets more 

significant with higher cropping levels. Clearly, this positive trend is attributable to the 

“position of the cropping area”. Only for the highest cropping level, the manually 

cropped version has been significantly preferred to the automatic version because of the 

“position of the cropping area”. 

 

The slightly worse assessments of the non-cropped version seem to be caused by 

“proportions”. In turn, the non-cropped version gets more support with higher cropping 

levels which in the end is reflected by the “position of the cropping area”. Again, this 

indicates that the static version obviously does not deliver satisfying results because of 

losing important image regions by not adapting the cropping area to the content.
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Figure 8-8: Median and quartiles for all cropping levels applied on the soccer 16:9 sequence (top) 
and corresponding frequency of attributes (bottom). 

Table 8-8: Values of the one sided Wilcoxon test applied on soccer 16:9 sequence. 

 1.33x1.0 1.33x1.33 1.77x1.33 

෡ differentࡾ  ෡ differentࡾ ෡ differentࡾ

static- 

automatic 

෠ܴ ൌ 3.5 أ 13

ൌ ܴሺ11,0.05ሻ 
yes 

෠ܴ ൌ 12 أ 13

ൌ ܴሺ11,0.05ሻ 
yes 

෠ܴ ൌ 11 أ 21

ൌ ܴሺ13,0.05ሻ 
yes 

static- 

manual 

෠ܴ ൌ 18.5

أ 21

ൌ ܴሺ13,0.05ሻ 

yes 

෠ܴ ൌ 27 ؤ 25

ൌ ܴሺ14,0.05ሻ no 

෠ܴ ൌ 0 أ 25

ൌ ܴሺ14,0.05ሻ yes 

static- 

letterbox/ 

scaled 

෠ܴ ൌ 37.5

ؤ 30

ൌ ܴሺ15,0.05ሻ 

no 

෠ܴ ൌ 39 ؤ 30

ൌ ܴሺ15,0.05ሻ no 

෠ܴ ൌ 21.5

أ 25

ൌ ܴሺ14,0.05ሻ 

yes 
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 1.33x1.0 1.33x1.33 1.77x1.33 

෡ differentࡾ  ෡ differentࡾ ෡ differentࡾ

automatic- 

manual 

෠ܴ ൌ 5 ؤ 2

ൌ ܴሺ6,0.05ሻ no 

෠ܴ ൌ 25.5

ؤ 13

ൌ ܴሺ11,0.05ሻ 

no 
෠ܴ ൌ 6 أ 25

ൌ ܴሺ14,0.05ሻ 
yes 

automatic-

letterbox/ 

scaled 

෠ܴ ൌ 7.5 أ 17

ൌ ܴሺ12,0.05ሻ yes 

෠ܴ ൌ 21.5

ؤ 13

ൌ ܴሺ11,0.05ሻ 

no 

෠ܴ ൌ 42 ؤ 21

ൌ ܴሺ13,0.05ሻ no 

letterbox/ 

scaled-

manual 

෠ܴ ൌ 12 أ 21

ൌ ܴሺ13,0.05ሻ yes 

෠ܴ ൌ 30.5

ؤ 17

ൌ ܴሺ12,0.05ሻ 

no 
෠ܴ ൌ 13 أ 17

ൌ ܴሺ12,0.05ሻ 
yes 

8.1.7.3 Soccer 4:3 
This sequence represents an example where the cropping algorithm makes a wrong 

decision for a short time and loses the actual region of interest. This is reflected in the 

results for the cropping level 1.33x1.33. In turn, for the highest cropping level, this brief 

mistake seems to be less annoying than no adaptation of the cropping area at all. Hence, 

the “position of the cropping area” of the automatically cropped version is slightly 

favoured to the position of the statically cropped area. 

The manually cropped version significantly stands out with higher cropping level. 

Finally, the manual version was clearly preferred to the static version due to the 

“position of the cropping area”. 

For the highest cropping level, the assessments of the pillarbox version strongly scatter. 

The frequency distribution of attributes shows that this is caused by ratings against the 

pillarbox version because of the attribute “proportions”. On the other hand, the 

“position of the cropping area” has mainly been chosen by the other part of subjects, 

which means that the cropping area of the static version does not properly fit. 
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Figure 8-9: Median and quartiles for all cropping levels applied on the soccer 4:3 sequence (top) 
and corresponding frequency of attributes (bottom). 

Table 8-9: Values of the one sided Wilcoxon test applied on soccer 4:3 sequence. 

 1.0x1.33 1.33x1.33 1.33x1.77 

෡ differentࡾ  ෡ differentࡾ ෡ differentࡾ

static- 

automatic 

෠ܴ ൌ 42.5

ؤ 21

ൌ ܴሺ13,0.05ሻ 

no 

෠ܴ ൌ 5 أ 17

ൌ ܴሺ12,0.05ሻ yes 

෠ܴ ൌ 37 ؤ 21

ൌ ܴሺ13,0.05ሻ no 

static- 

manual 

෠ܴ ൌ 6 ؤ 2

ൌ ܴሺ6,0.05ሻ 
no 

෠ܴ ൌ 3 أ 8

ൌ ܴሺ9,0.05ሻ 
yes 

෠ܴ ൌ 10 أ 25

ൌ ܴሺ14,0.05ሻ 
yes 

static- 

letterbox/ 

scaled 

෠ܴ ൌ 4 أ 25

ൌ ܴሺ14,0.05ሻ yes 

෠ܴ ൌ 32 ؤ 21

ൌ ܴሺ13,0.05ሻ no 

෠ܴ ൌ 49.5

ؤ 25

ൌ ܴሺ14,0.05ሻ 

no 
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 1.0x1.33 1.33x1.33 1.33x1.77 

෡ differentࡾ  ෡ differentࡾ ෡ differentࡾ

automatic- 

manual 

෠ܴ ൌ 33.5

ؤ 17

ൌ ܴሺ12,0.05ሻ 

no 

෠ܴ ൌ 0 أ 10

ൌ ܴሺ10,0.05ሻ yes 

෠ܴ ൌ 25 ؤ 21

ൌ ܴሺ13,0.05ሻ no 

automatic-

letterbox/ 

scaled 

෠ܴ ൌ 0 أ 10

ൌ ܴሺ10,0.05ሻ yes 

෠ܴ ൌ 4.5 ؤ 2

ൌ ܴሺ6,0.05ሻ no 

෠ܴ ൌ 2 ൌ 2

ൌ ܴሺ6,0.05ሻ no 

letterbox/ 

scaled-

manual 

෠ܴ ൌ 0 أ 13

ൌ ܴሺ11,0.05ሻ yes 

෠ܴ ൌ 14 أ 17

ൌ ܴሺ12,0.05ሻ yes 

෠ܴ ൌ 15.5

أ 21

ൌ ܴሺ13,0.05ሻ 

yes 

 

8.1.7.4 Show jumping 16:9 
For the show jumping example with an aspect ratio of 16:9, the adapted versions have 

not been preferred most of the time. Just at the highest cropping level, the manually and 

automatically prepared versions show better results than the static version. According to 

the Wilcoxon test, all three versions compared to the statically cropped version were 

equally assessed at this level. 

It has to be mentioned that these results not really give an answer to the question 

whether there is a demand for cropping or not. As the subjects were asked to compare in 

relation to the static version, it cannot be found out if no cropping or cropping has been 

preferred at the highest cropping level of this example. It can just be stated that all 

versions have been favoured in relation to the statically cropped version due to the 

“position of the cropping area”, respectively “proportions”.  
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Figure 8-10: Median and quartiles for all cropping levels applied on the sequence show jumping 
16:9 (top) and corresponding frequency of attributes (bottom). 

Table 8-10: Values of the one sided Wilcoxon test applied on sequence show jumping 16:9. 

 1.0x1.33 1.33x1.33 1.33x1.77 

෡ differentࡾ  ෡ differentࡾ ෡ differentࡾ

static- 

automatic 

෠ܴ ൌ 15 ؤ 8

ൌ ܴሺ9,0.05ሻ 
no 

෠ܴ ൌ 20.5 ؤ 8

ൌ ܴሺ9,0.05ሻ 
no 

෠ܴ ൌ 11 أ 21

ൌ ܴሺ13,0.05ሻ 
yes 

static- 

manual 

෠ܴ ൌ 1.5 ؤ 0

ൌ ܴሺ1,0.05ሻ 
no 

෠ܴ ൌ 3.5 ؤ 3

ൌ ܴሺ7,0.05ሻ 
no 

෠ܴ ൌ 5 أ 17

ൌ ܴሺ12,0.05ሻ 
yes 

static- 

letterbox/ 

scaled 

෠ܴ ൌ 37.5

ؤ 30

ൌ ܴሺ15,0.05ሻ 

no 

෠ܴ ൌ 9 أ 17

ൌ ܴሺ12,0.05ሻ yes 

෠ܴ ൌ 26 أ 30

ൌ ܴሺ15,0.05ሻ yes 

automatic- 

manual 

෠ܴ ൌ 15 ؤ 8

ൌ ܴሺ9,0.05ሻ 
no 

෠ܴ ൌ 23 ؤ 13

ൌ ܴሺ11,0.05ሻ 
no 

෠ܴ ൌ 12.5 ؤ 3

ൌ ܴሺ7,0.05ሻ 
no 
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 1.0x1.33 1.33x1.33 1.33x1.77 

෡ differentࡾ  ෡ differentࡾ ෡ differentࡾ

automatic-

letterbox/ 

scaled 

෠ܴ ൌ 39.5

ؤ 25

ൌ ܴሺ14,0.05ሻ 

no 

෠ܴ ൌ 14.5

أ 17

ൌ ܴሺ12,0.05ሻ 

yes 

෠ܴ ൌ 34 ؤ 17

ൌ ܴሺ12,0.05ሻ no 

letterbox/ 

scaled-

manual 

෠ܴ ൌ 32 ؤ 25

ൌ ܴሺ14,0.05ሻ no 

෠ܴ ൌ 20 ؤ 13

ൌ ܴሺ11,0.05ሻ no 

෠ܴ ൌ 39 ؤ 21

ൌ ܴሺ13,0.05ሻ no 

8.1.7.5 Show jumping 4:3 

 

Figure 8-11: Median and quartiles for all cropping levels applied on the sequence show jumping 4:3 
(top) and corresponding frequency of attributes (bottom). 
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Compared to the previous example of show jumping, this sequence interestingly shows 

nearly the opposite results especially for the non-cropped version. Obviously, this seems 

to be related to the aspect ratio of the video sequence. As the source material is 4:3, 

most cropped versions result in an aspect ratio of 16:9. Taking the previous show 

jumping example into account, it can be said that there seem to be a preference of the 

aspect ratio 16:9 for show jumping. The high number of the attribute “proportion” 

confirms this assumption that aspect ratio might be the reason for this result. In turn, all 

cropping versions do not significantly differ according to the Wilcoxon test. 

Table 8-11: Values of the one sided Wilcoxon test applied on sequence show jumping 4:3. 

 1.0x1.33 1.33x1.33 1.33x1.77 

 ෠ܴ different ෠ܴ different ෠ܴ different

static- 

automatic 

෠ܴ ൌ 12 ؤ 3

ൌ ܴሺ7,0.05ሻ 
no 

෠ܴ ൌ 13.5 ؤ 5

ൌ ܴሺ8,0.05ሻ 
no 

෠ܴ ൌ 30 ؤ 17

ൌ ܴሺ12,0.05ሻ 
no 

static- 

manual 

෠ܴ ൌ 0 ൌ 0

ൌ ܴሺ1,0.05ሻ no 

෠ܴ ൌ 0 ൌ 0

ൌ ܴሺ4,0.05ሻ no 

෠ܴ ൌ 30.5

ؤ 13

ൌ ܴሺ11,0.05ሻ 

no 

static- 

letterbox/ 

scaled 

෠ܴ ൌ 0 أ 30

ൌ ܴሺ15,0.05ሻ yes 

෠ܴ ൌ 13 أ 30

ൌ ܴሺ15,0.05ሻ yes 

෠ܴ ൌ 8.5 أ 25

ൌ ܴሺ14,0.05ሻ yes 

automatic- 

manual 

෠ܴ ൌ 10.5 ؤ 2

ൌ ܴሺ6,0.05ሻ no 

෠ܴ ൌ 27.5

ؤ 13

ൌ ܴሺ11,0.05ሻ 

no 

෠ܴ ൌ 35.5

ؤ 17

ൌ ܴሺ12,0.05ሻ 

no 

automatic-

letterbox/ 

scaled 

෠ܴ ൌ 0 أ 25

ൌ ܴሺ14,0.05ሻ yes 

෠ܴ ൌ 0 أ 8

ൌ ܴሺ9,0.05ሻ yes 

෠ܴ ൌ 3.5 أ 21

ൌ ܴሺ13,0.05ሻ yes 

letterbox/ 

scaled-

manual 

෠ܴ ൌ 0 أ 30

ൌ ܴሺ15,0.05ሻ yes 

෠ܴ ൌ 17.5

أ 21

ൌ ܴሺ13,0.05ሻ 

yes 

෠ܴ ൌ 7 أ 21

ൌ ܴሺ13,0.05ሻ yes 
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8.1.7.6 Skiing 16:9 
This example show strong scattering results. The main reason is possibly a shaking 

camera at the end of the sequence. Nevertheless, the results show similar trends as the 

previous examples. The higher the cropping level, the more the non-adapted cropping 

area is rated worse compared to the other versions. Again, the main attributes used are 

the “position of the cropping area” and “proportions”. 

 

Figure 8-12: Median and quartiles for all cropping levels applied on the skiing 16:9 sequence (top) 
and corresponding frequency of attributes (bottom).  
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Table 8-12: Values of the one sided Wilcoxon test applied on the skiing sequence. 

 1.33x1.0 1.33x1.33 1.77x1.33 

 ෠ܴ different ෠ܴ different ෠ܴ different

static- 

automatic 

෠ܴ ൌ 5 أ 10

ൌ ܴሺ10,0.05ሻ yes 

෠ܴ ൌ 33.5

ؤ 17

ൌ ܴሺ12,0.05ሻ 

no 

෠ܴ ൌ 12 أ 17

ൌ ܴሺ12,0.05ሻ yes 

static- 

manual 

෠ܴ ൌ 0 ൌ 0

ൌ ܴሺ1,0.05ሻ 
no 

෠ܴ ൌ 17 ؤ 13

ൌ ܴሺ11,0.05ሻ 
no 

෠ܴ ൌ 31 ؤ 17

ൌ ܴሺ12,0.05ሻ 
no 

static- 

letterbox/ 

scaled 

෠ܴ ൌ 41.5

ؤ 21

ൌ ܴሺ13,0.05ሻ 

no 

෠ܴ ൌ 44 ؤ 21

ൌ ܴሺ13,0.05ሻ no 

෠ܴ ൌ 41 أ 25

ൌ ܴሺ14,0.05ሻ no 

automatic- 

manual 

෠ܴ ൌ 9.5 أ 10

ൌ ܴሺ10,0.05ሻ 
yes 

෠ܴ ൌ 8 ؤ 5

ൌ ܴሺ8,0.05ሻ 
no 

෠ܴ ൌ 26 ؤ 13

ൌ ܴሺ11,0.05ሻ 
no 

automatic-

letterbox/ 

scaled 

෠ܴ ൌ 13 ؤ 10

ൌ ܴሺ10,0.05ሻ no 

෠ܴ ൌ 24.5

ؤ 10

ൌ ܴሺ10,0.05ሻ 

yes 

෠ܴ ൌ 20 ؤ 10

ൌ ܴሺ10,0.05ሻ no 

letterbox/ 

scaled-

manual 

෠ܴ ൌ 33 ؤ 17

ൌ ܴሺ12,0.05ሻ no 

෠ܴ ൌ 18.5

ؤ 13

ൌ ܴሺ11,0.05ሻ 

no 

෠ܴ ൌ 33 ؤ 13

ൌ ܴሺ11,0.05ሻ no 

8.1.7.7 Combined results 
As a summary of all individual results, this section combines all examples into one 

representation. 4:3 and 16:9 are presented separately as the previous evaluations have 

shown quite different results for both aspect ratios. 

16:9 content 

For cropping level 1.33x1.0, the letterbox version tends to be slightly worse than the 

statically cropped version mainly due to the attribute “proportions”. This difference 

decreases with higher cropping levels. For the highest cropping level, the letterbox 

version is slightly better than the statically cropped version, which is mainly due to the 

“position of the cropping area”. This suggests that the static cropping area seems no 

longer to enclose the most relevant areas of the sequences. 

According to the Wilcoxon test, there is a slight preference for automatically and 

statically cropped versions for all cropping levels (see Figure 8-13). Additionally, 

automatically and manually prepared versions show very similar trends. For the highest 

cropping level, this positive tendency becomes significant. It shows that the subjects 
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were more satisfied with the adapted cropping versions because of the “position of the 

cropping area”. This confirms the fact that with higher cropping levels a statically 

cropped version is no longer sufficient most of the time. 

This evaluation does not directly give an answer to the question of whether there is a 

demand for cropping. As the subjects were asked to compare the sequences in relation 

to the static version, it is not answered if adapted versions or the non-cropped version 

were preferred. It can only be stated that all versions have been favoured in relation to 

the statically cropped version due to the attributes “position of the cropping area” and 

“proportions”. 

 

Figure 8-13: Median and quartiles for all cropping levels applied on all 16:9 sequences (top) and 
corresponding frequency of attributes (bottom).  
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Table 8-13: Values of the one-sided Wilcoxon test applied on 16/9 sequences. 

 1.33x1.0 1.33x1.33 1.77x1.33 

 ෠ܴ different ෠ܴ different ෠ܴ different

static- 

automatic 

෠ܴ ൌ 322

أ 336

ൌ ܴሺ43,0.05ሻ 

yes 

෠ܴ ൌ 447

ؤ 407

ൌ ܴሺ47,0.05ሻ 

no 

෠ܴ ൌ 225.5

أ 486

ൌ ܴሺ51,0.05ሻ 

yes 

static- 

manual 

෠ܴ ൌ 56.5

أ 83

ൌ ܴሺ23,0.05ሻ 

yes 

෠ܴ ൌ 148.5

أ 241

ൌ ܴሺ37,0.05ሻ 

yes 

෠ܴ ൌ 208.5

أ 507

ൌ ܴሺ52,0.05ሻ 

yes 

static- 

pillarbox/ 

scaled 

෠ܴ ൌ 694

ؤ 642

ൌ ܴሺ58,0.05ሻ 

no 

෠ܴ ൌ 631

ؤ 550

ൌ ܴሺ54,0.05ሻ 

no 

෠ܴ ൌ 602

أ 618

ൌ ܴሺ57,0.05ሻ 

yes 

automatic- 

manual 

෠ܴ ൌ 297.5

ؤ 200

ൌ ܴሺ34,0.05ሻ 

no 

෠ܴ ൌ 418

أ 426

ൌ ܴሺ48,0.05ሻ 

yes 

෠ܴ ൌ 389.5

ؤ 389

ൌ ܴሺ46,0.05ሻ 

no 

automatic-

pillarbox/ 

scaled 

෠ܴ ൌ 441

أ 486

ൌ ܴሺ51,0.05ሻ 

yes 

෠ܴ ൌ 525.5

ؤ 389

ൌ ܴሺ46,0.05ሻ 

no 

෠ܴ ൌ 492

ؤ 446

ൌ ܴሺ49,0.05ሻ 

no 

pillarbox/ 

scaled-

manual 

෠ܴ ൌ 476

أ 550

ൌ ܴሺ54,0.05ሻ 

yes 

෠ܴ ൌ 418

أ 426

ൌ ܴሺ48,0.05ሻ 

yes 

෠ܴ ൌ 398.5

أ 426

ൌ ܴሺ48,0.05ሻ 

yes 

 

4:3 content 

For all cropping levels, the pillarbox respectively scaled version has been assessed as 

significantly worse than the statically cropped version. Obviously, this is due to the 

attribute “proportions”. Compared to the results for 16:9 content, subjects seem to be 

more satisfied with the statically cropped version even at the highest cropping level. 

The automatically and manually adapted versions show similar trends as for the 16:9 

content. Especially for the highest cropping level, both versions tend to be slightly 

better than the statically cropped version. Again, this can be confirmed by the attribute 

“position of the cropping area”. 

For the cropping level 1.33x1.33, the automatically cropped version tends to be slightly 

worse. Obviously, this results from the soccer example already discussed in Section 

8.1.7.3, where the algorithm made a false detection for a short time.  
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Figure 8-14: Median and quartiles for all cropping levels applied on all 4:3 sequences (top) and 
corresponding frequency of attributes (bottom). 

Table 8-14: Values of the one sided Wilcoxon test applied on 4/3 sequences. 

 1.0x1.33 1.33x1.33 1.33x1.77 

෡ differentࡾ  ෡ differentࡾ ෡ differentࡾ

static- 

automatic 

෠ܴ ൌ 95.5

ؤ 60

ൌ ܴሺ20,0.05ሻ 

no 
෠ܴ ൌ 36 أ 60

ൌ ܴሺ20,0.05ሻ 
yes 

෠ܴ ൌ 125.5

ؤ 100

ൌ ܴሺ25,0.05ሻ 

no 

static- 

manual 

෠ܴ ൌ 7 ؤ 3

ൌ ܴሺ7,0.05ሻ 
no 

෠ܴ ൌ 66 ؤ 21

ൌ ܴሺ13,0.05ሻ 
no 

෠ܴ ൌ 72

أ 100

ൌ ܴሺ25,0.05ሻ 

no 

static- 

pillarbox/ 

scaled 

෠ܴ ൌ 7.5

أ 140

ൌ ܴሺ29,0.05ሻ 

yes 

෠ܴ ൌ 93

أ 130

ൌ ܴሺ28,0.05ሻ 
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 1.0x1.33 1.33x1.33 1.33x1.77 

෡ differentࡾ  ෡ differentࡾ ෡ differentࡾ

automatic- 

manual 

෠ܴ ൌ 77 ؤ 47

ൌ ܴሺ18,0.05ሻ 
no 

෠ܴ ൌ 50 أ 67

ൌ ܴሺ21,0.05ሻ 
yes 

෠ܴ ൌ 129.5

ؤ 100

ൌ ܴሺ25,0.05ሻ 

yes 

automatic-

pillarbox/ 

scaled 

෠ܴ ൌ 0 أ 91

ൌ ܴሺ24,0.05ሻ 
yes 

෠ܴ ൌ 48 ؤ 30

ൌ ܴሺ15,0.05ሻ 
no 

෠ܴ ൌ 10 أ 47

ൌ ܴሺ18,0.05ሻ 
yes 

pillarbox/ 

scaled-

manual 

෠ܴ ൌ 0 أ 110

ൌ ܴሺ26,0.05ሻ 
yes 

෠ܴ ൌ 66

أ 100

ൌ ܴሺ25,0.05ሻ 

no 

෠ܴ ൌ 38.5

أ 110

ൌ ܴሺ26,0.05ሻ 

yes 

 

8.2 Gaze Tracking 
Within this section, results of gaze tracking measurements are presented. For this, all 

the video examples which were chosen for the subjective evaluation have been 

presented again to ten of the fifteen subjects. The estimated gaze tracking data has been 

compared to the ROI positions determined by the proposed system. Besides this, the 

algorithm was launched with and without optimised parameter settings to demonstrate 

the advantage of genre information fed to the system. 

8.2.1 Gaze measurement set-up 
The gaze positions of subjects have been measured with the aid of the open source gaze 

tracking software from the IT University of Copenhagen (ITU Gaze Tracker, 2010). For 

the set-up, two infrared webcams were deployed. One was attached to a specially 

prepared chair to film the eye of the subject (see Figure 8-15). The other served 

exclusively as an infrared light source which was positioned on the table in front of the 

subject. The infrared LEDs of the camera fixed at the chair were turned off. Infrared 

light has been used for a clearer distinction between the pupil and other parts of the 

face.  
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Additionally, the reflection of the LED in the eye has been taken into account (making 

use of this reflection is called “glint mode” in the ITU-software) to estimate a geometric 

relationship between LED, eye reflection and monitor. To calibrate the parameters for 

this relationship, moving dots were presented on the screen to the subject and the 

subject was asked to blink as little as possible as well as not to move his head during 

and after calibration. Once calibrated, all sequences were presented to the subjects 

successively. 

 

Figure 8-15: Set-up for gaze measurement. The camera fixed on the chair was used for glint 
detection (cyan cross hairs, top right) and pupil detection (green cross hairs, top right). The 
infrared light projected on the subject was emitted by the camera on the table (bottom right). This 
camera was intended merely to provide a point light source by its LEDs rather than to film the 
scene. 

8.2.2 Determination of gaze to ROI deviation 
In addition to the ITU gaze tracker, the set-up was extended by a self-programmed 

media player which renders videos and synchronises the gaze position data received by 

the ITU software via UDP. The player converted the measured screen position to the 

corresponding gaze position in the video and logged this data to a simple text file 

containing frame number and pixel position in the video. 

After measuring the gaze position, the player illustrated the logged data in the form of a 

red dot (see Figure 8-16).  
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Figure 8-16: Illustration of measured gaze position with the use of a red dot. 

In an offline process, the Euclidean distances between measured gaze positions and 

estimated ROI positions have been computed for each video frame. The ROI positions 

were extracted by the proposed system in the same way as for the estimation of 

cropping areas for the subjective evaluation. As the gaze tracker sends approximately 

four position coordinates per second, the median of the Euclidean distances was 

calculated over a period of 20 video frames. 

8.2.3 Scatter plots 
The measured data for all types of sports are combined into a single scatter plot for 16:9 

and 4:3 content. It should be mentioned that gaze tracking delivers only approximate 

position data and is still quite error-prone. For this, the scatter plots serve to give an 

impression of the system’s reliability rather than to supply accurate measurement data. 

The coordinate system for the scatter plots is centred, so that the closer the plotted data 

points are to the coordinate origin, the smaller are the Euclidean distances between the 

gaze position and ROI position. 

The outer rectangle drawn in the coordinate system represents the original resolution of 

the video and the inner rectangle corresponds to the range of the highest zoom level 

(1.77x1.33, respectively 1.33x1.77) applied for the subjective evaluation. The dashed 

lines symbolise the corresponding pan & scan mask.  
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8.2.3.1 Scatter plots for 16:9 content 
The presented 16:9 content contained the examples of soccer, ice hockey, show jumping 

and skiing. The parameter settings for ROI extraction were the optimised ones for each 

content as well as the default setting for the system. Looking at the results, both 

measurements show an accumulation around the coordinate centre (see Figure 8-17). In 

addition, the scatter plot for optimised parameters (top) clearly shows less scattering and 

a promoting of concentration around the origin. The increased spread scattering within 

the plot for default parameters (bottom) is mainly due to sports with multiple objects, as 

these are the more critical ones in defining ROIs. 

 

Figure 8-17: Scatter plot of deviation between measured gaze position and extracted ROI position 
with optimised parameters (top) and default parameters (bottom). The inner rectangle corresponds 
to the range of the highest zoom level and the dashed lines depict the pan & scan range for 16:9 
content.  
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8.2.3.2 Scatter plots for 4:3 content 
The 4:3 content presented to the subjects consisted of the soccer and show jumping 

examples. Again, the default parameters caused a much higher scattering which is the 

result of detecting false ROI positions. The scatter plot for optimised parameters shows 

that deviations are mainly accumulated within the highest zoom level range. This 

indicates that the algorithm is almost always pointing to the regions of interest, which 

could be identified by the individual viewer. 

 

Figure 8-18: Scatter plot of deviation between measured gaze position and extracted ROI position 
with optimised parameters (top) and default parameters (bottom). The inner rectangle corresponds 
to the range of the highest zoom level and the dashed lines depict the pan & scan range for 4:3 
content. 
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9. Conclusion 

9.1 Summary 
The presented system follows a new approach to optimising the extraction of regions of 

interest (ROIs) from video content. The main concept is to exploit production metadata 

and image compositions to use this information as prior knowledge for the extraction of 

ROIs. The ROI candidates are filtered by several processes on different levels to 

estimate contextually important regions. Based on the computed weights for each ROI, 

the system is able to define a final cropping area that encloses as much important image 

information as possible. The application can be adapted to any type of content or it can 

run in a default mode. For the purposes of this work, the detection of cropping areas has 

been specified for different types of sports content. 

The system architecture is based on the concept of a plug-in system. The plug-ins 

represent components which either detect ROIs by low level feature extraction 

(extraction plug-ins) or interpret the contextual importance of extracted ROIs on a 

higher level. The extraction plug-ins that have been implemented are the Visual 

Attention Plug-In and the Backprojection Plug-In. The former relies on assumptions 

motivated by visual attention models which mainly detect bottom-up features in a visual 

scene that attract a viewer’s attention. The plug-in combines the visual attention system 

by Hou (Hou & Zhang, Saliency Detection: A Spectral Residual Approach, 2007) and a 

method that detects object motion by compensating for camera movements in image 

sequences. The Backprojection Plug-In has been developed for specific types of content 

for which it is known that objects are moving on a plain background, as happens, for 

example, in a soccer game. By pre-loading a rough colour histogram of the expected 

background, the extraction is guided by valuable top-down information. The plug-in 

architecture allows for the flexible extension of the system by additional plug-ins. 

The amount of production metadata that is fed into the application has been kept low in 

order to ensure that the required effort for content annotation is at a reasonable level. 

The exploited information includes the type of genre, which can be easily annotated by 

an editor on site or in advance of a production. Additionally, shot boundary information 

is assumed to be available in the descriptive data which can, for example, be estimated 

by recording the switch between cameras that are on air.  
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The proposed application has been used for a subjective evaluation including sequences 

from four different types of sports, of which two were available in two different aspect 

ratios (16:9 and 4:3). The aim of the test was to examine the reliability of the system as 

well as to compare different types of cropping approaches for content viewed on small 

displays. Additionally, three different cropping levels were used to assess the 

acceptance of each cropping level applied to SDTV production material. For this, 

statically cropped, manually cropped, and non-cropped versions as well as a version 

automatically cropped by the system have been compared and assessed by 15 subjects. 

For each assessment, the subject had to specify the attribute which justified his decision. 

Results of the subjective evaluation have shown that with higher cropping levels, 

statically cropped versions are less satisfying than those with adaptive cropping masks 

(manually and automatically cropped versions). Despite a few rare cases, the 

automatically cropped version was perceived to be worse than the manually cropped 

version. 

In addition to the subjective evaluation, a gaze tracking has been carried out to compare 

a subject’s line of vision with the positions of ROIs extracted by the proposed system. 

Results of this test should demonstrate the reliability of the system, independently of 

cropping. For this, ten subjects had to watch sports material in a normal way while their 

line of vision was logged. The deviations of each gaze position from the ROIs extracted 

by the system were computed and visualised in scatter plots. Extracted ROIs were 

determined by optimised plug-in parameters and additionally by default parameters. The 

scatter plots show that the system almost always points at the region which was the 

focus of the viewer’s attention. 

With HDTV penetrating the market quickly, a wider range of display resolutions needs 

to be considered for broadcast productions. This means that the required cropping ratio 

increases, which also has an effect on the amount of work for a video editor compared 

to SDTV productions. This indicates the necessity of a system which identifies possible 

regions of interest automatically. In turn, the system does not have the complete 

contextual knowledge and hence the selection of the specific cropping area should still 

be in the hands of the video editor. Therefore, the proposed solution tackling the 

problem of automatic cropping and scaling should be seen as a supporting tool for video 

editors, for example by suggesting possible cropping areas. Such a solution can provide 

an improvement of the production work flow.  
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9.2 Strengths and Limitations 
The detection of contextual importance in TV sports productions by the proposed 

system is highly motivated by the image compositions of cameramen and contextual 

saliency. As this system is less biologically motivated, it concentrates and focuses on 

features in videos which are caused by typical TV productions. The system architecture 

has been chosen in such a way that extensions and modifications can be made anytime 

and as required. The possibility of mixing several extraction modules and weighting 

their results with subsequent classification provides a high adaptability to specific 

content. Clear tendencies in results from the subjective evaluation and the gaze tracking 

prove the success of this approach. Nevertheless, more extraction modules would be 

desirable for a more flexible analysis of different content, which will be discussed in the 

next section. 

Although the results show quite high system accuracy, human intervention is still 

necessary for TV productions. Only the combination of human and machine provides a 

fast and reliable solution. While the application might identify important regions faster 

than humans, it can still make wrong decisions. 

As mentioned previously, the evaluation did not directly answer the question of the 

necessity of cropping at all. Within this work, only the cropping of the system has been 

compared to other types of cropping. Additionally, HDTV content has not been taken 

into account for the evaluation as those productions are still rare. Nevertheless, it would 

be desirable to answer questions about the system’s reliability on HDTV content in 

subsequent investigations. 

9.3 Future Work 
As already mentioned, some more extraction modules are desirable which were not 

implemented within this work. For example, object tracking could deliver important 

top-down information in addition to the Visual Attention Plug-In. Especially in the case 

of content with a single object, this method could be easily initialised by the weight 

values of ROIs. On the other hand, for content with multiple objects, object tracking 

might get out of control with an increasing number of objects. In such cases, additional 

information, for example by the Backprojection Plug-In, might be preferable. 

Other high level information could be gained by the detection of faces in video images. 

The presence of clearly identified faces can deliver important contextual information. 
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To reduce abrupt motions of the cropping mask, a smoothing by splines instead of 

simple linear interpolation is quite promising. It gives a more natural impression of 

motion and avoids fast changes of movement directions. This complaint can be 

observed in the results of the subjective evaluation as some subjects have devalued the 

automatically cropped version due to the attribute “motion” (cf. results of ice hockey, 

soccer and skiing sequences). 
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11. Abbreviations 
ARD - Arbeitsgemeinschaft der öffentlich-rechtlichen Rundfunk- 

anstalten der Bundesrepublik Deutschland (German public 
broadcaster) 

AVI - Audio Video Interleave 

BMF  - Broadcast Metadata Exchange Format 

CLI - Common Language Infrastructure 

CLR - Common Language Runtime 

DAR - Display Aspect Ratio 

DC - Direct Current 

DFT - Discrete Fourier Transform 

DSCQS - Double-Stimulus Continuous Quality-Scale 

DSIS - Double Stimulus Impairment Scale 

EBU - European Broadcasting Union 

FFT - Fast Fourier Transform 

FIFO - First In, First Out 

FIT - Feature-Integration Theory 

GC - Garbage Collection 

GUI - Graphical User Interface 

HDTV - High Definition Television 

HSV - Hue, Saturation, Value 

IDE - Integrated Development Environment 

IFFT - Inverse Fast Fourier Transform 

IRT - Institut fuer Rundfunktechnik (research centre of the German 
broadcasters) 

ISDB-T - Integrated Services Digital Broadcasting - Terrestrial 

ITU - International Telecommunication Union 

ITU - IT University of Copenhagen 

LED - Light Emitting Diode 

LMedS  - Least Median of Squares 

LQS - Least Quantile of Squares 
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MMV - Multimedia and Visualization 

MPEG - Moving Picture Experts Group 

MXF - Material eXchange Format 

NHK - Nippon Hōsō Kyōkai (Japan Broadcasting Corporation) 

OMF - Open Media Framework 

OpenCV - Open Source Computer Vision 

ORF - Österreichischer Rundfunk (Austrian Broadcasting) 

PAR - Pixel Aspect Ratio 

RANSAC - RANdom SAmple Consensus 

RGB - Red, Green, Blue 

RMedSE - Root Median Squared Error 

ROI - Region Of Interest 

RT - Response Time   

SAD - Sum of Absolute Difference 

SAMVIQ - Subjective Quality of Internet Video Codecs 

SAR - Sample Aspect Ratio 

SC - Stimulus Comparison 

SDTV - Standard Definition Television  

SS - Single Stimulus 

SSCQE - Single Stimulus Continuous Quality Evaluation 

SSD - Sum of Squared Difference 

Suviq - Subjective Video Quality 

T-DMB - Terrestrial - Digital Multimedia Broadcasting 

TV - Television 

UDP - User Datagram Protocol 

UUID - Universally Unique Identifier 

VOCUS - Visual Object detection with a CompUtational attention System 

XML - Extensible Markup Language 

ZDF - Zweites Deutsches Fernsehen (German public broadcaster) 
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Explanation of attributes: 

• Motion: The motion of the video content is natural/unnatural and continuous/not 

continuous. 

• Sharpness: The video content has/does not have satisfying detail resolution. 

• Proportions: The ratio between image size and image content is appropriate/not 

appropriate. 

• Position of the cropping area: The cropping area is well/poorly chosen and 

contains/misses most important elements. 

12.1 Published work based on the thesis 

Publication 
Contributions to the 

Thesis 

Deigmoeller, J., Itagaki, T., Stoll, G. (2008). 

An approach for an intelligent crop and scale 

application to adapt video for mobile TV. 

IEEE International Symposium on Broadband 

Multimedia Systems and Broadcasting. 

Chapter 1 (Section 1.1); Chapter 5; Chapter 6 

(Section 6.1.1) 

Deigmoeller, J., Itagaki, T., Stoll, G., Just, N. 

(2010). An approach to intelligently crop and 

scale video for broadcast applications. 

Proceedings of the 2010 ACM Symposium on 

Applied Computing. 

Chapter 1 (Section 1.1); Chapter 2 (Section 

2.5.2); Chapter 3 (Section 3.5), Chapter 5; 

Chapter 6 (Section 6.1.1); Chapter 7 (Section 

7.2.1, 7.2.2, 7.3.1, 7.3.3, and 7.3.4); Chapter 8 

(Section 8.2.2, and 8.2.3) ); Chapter 9 

(Section 9.1) 

Deigmoeller, J., Itagaki, T., Stoll, G., Just, N. 

(2010). A context-based approach to crop and 

scale video for broadcast applications. IEEE 

International Symposium on Broadband 

Multimedia Systems and Broadcasting. 

Chapter 1 (Section 1.1); Chapter 2 (Section 

2.5.2); Chapter 3 (Section 3.5); Chapter 5; 

Chapter 6 (Section 6.1.1); Chapter 7 (Section 

7.2.1, 7.2.2, 7.3.1, 7.3.2, 7.3.3, and 7.3.4); 

Chapter 8 (Section 8.1.1, 8.1.3, 8.1.5, and 

8.1.7); Chapter 9 (Section 9.1) 

Deigmoeller, J., Itagaki, T., Stoll, G., Just, N. 

(2010). Contextual Cropping and Scaling of 

TV Productions. Multimedia Tools and 

Applications (MTAP) Special Issue on ACM 

SAC'10 MMV Track. (selected from the MMV 

track of the 2010 ACM Symposium on 

Applied Computing, currently in submission) 

Chapter 1 (Section 1.1); Chapter 2 (Section 

2.5.2); Chapter 3 (Section 3.5); Chapter 5; 

Chapter 6 (Section 6.1.1); Chapter 7 (Section 

7.2.1, 7.2.2, 7.3.1, 7.3.2, 7.3.3, and 7.3.4); 

Chapter 8 (Section 8.1.1, 8.1.3, 8.1.5, 8.1.7, 

and 8.2.3); Chapter 9 (Section 9.1) 

 


