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Abstract

In a previous paper we demonstrated that the linear portion of the pressure-velocity 

loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. 

In this paper we extend this work to show that determination of the time at which the PU-loop

first deviates from linearity provides a convenient way to determine the arrival time of 

reflected waves (Tr). We also present a new technique using the PU-loop that allows for the 

determination of wave speed and simultaneously.

We measured pressure and flow in elastic tubes of different diameters, where a strong 

reflection site existed at known distances away form the measurement site. We also measured 

pressure and flow measured in the ascending aorta of 11 anaesthetised dogs where a strong 

reflection site was produced through total arterial occlusion at 4 different sites. Wave speed 

was determined from the initial slope of the PU-loop and Tr was determined using a new 

algorithm that detects the sampling point at which the initial linear part of the PU-loop 

deviates from linearity.

The results of the new technique for detecting Tr were comparable to those determined 

using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using 

the new algorithm was almost identical to that detected using wave intensity analysis and 

foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in 

vivo highly correlated with that detected using wave intensity analysis (r2=0.83, P< 0.001). 

We conclude that the new technique described in this paper offers a convenient and 

subjective method for detecting Tr, and allows for the dynamic determination of wave speed

and Tr, simultaneously. 

Key words:  wave speed, reflected waves, wave intensity analysis, PU-loop
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Introduction

The arrival time of reflected waves to the root of the aorta is of physiological 

importance (27). If the reflected compression waves arrive before the aortic valve is closed, 

the left ventricle will be required to produce extra work to overcome the increase in pressure 

associated with those reflected waves (8). The arrival time of reflected waves depends

principally on the distance to the sites of reflection and on wave speed; the higher the wave 

speed the earlier the arrival time of reflected waves.

Several methods have been proposed to identify the arrival time of reflected waves. 

Westerhof et al. (29) used the input impedance to calculate the distance to the nearest 

reflection site, from which, they determined the arrival time of reflected waves.  Van Den Bos 

et al. (28) introduced a method for determining the arrival time of reflected waves based on 

the time delay between the forward and backward components of the pressure waveform. 

Murgo et al. (20) suggested that the temporal time from the initial pressure upstroke to the 

pressure inflection point is the time that it takes the wave to run forward, be reflected and

arrive back. With knowledge of the wave speed the distance to reflection site can be 

determined. More recently, Pythoud et al. (25) proposed the “reflection profile” method to 

determine the distances of the most important reflection sites by deconvoluting the backward 

pressure wave. Parker et al. (23) introduced wave intensity analysis (WIA) for studying 

travelling waves in arteries. The method allows for the separation of waves into their forward 

and backward directions (24) and because WIA is a time-domain analysis, the arrival of the 

reflected waves to the measurement site is readily available in the results of this analysis as 

the onset of the backward wave. The accuracy of WIA has been tested in vitro (11), used in 

vivo in animal models (12,26) and has also been used for detecting the arrival time of 

reflected waves in patients (10,13). The determination of the arrival time of the reflected 
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waves using any of the above methods requires knowledge of the wave speed, which can be 

measured using any of the methods summarised in the following paragraphs.

Wave speed measurements can generally be grouped under two main categories, 

spatial and local techniques. Spatial wave speed in the arterial system has been predominantly 

obtained using the foot-to-foot method which entails measuring either pressure or flow 

waveforms at two sites that are at a known distance apart, L. Dividing L by the time it took 

the wave to run from one site to the other, Δt, gives wave speed, 
t

L
c


 . This method has 

been used extensively and the results confirm that the wave speed along the aorta is not 

uniform; a significant increase is observed distally (14,18,21). Although this method is being

used clinically and in a number of epidemiological studies (1,6,19) the non-invasive results 

are somewhat controversial and subjective because of the difficulty in determining the foot of 

the wave with sufficient accuracy and because of the difficulty in measuring the distance 

between the two measurement sites due to the curvature of the arteries (7).

Local wave speed refers to the determination of wave speed at the measurement site. 

Westerhof et al. used the characteristic impedance to give an estimate of local wave speed

(28) and Davies et al., introduced a new technique for determining local wave speed also 

based on the measurements of pressure and flow at the same site (4). In a previous paper we 

introduced the PU-loop method for determining local wave speed (9). The method is based on 

the water hammer equation which states that, if waves at the measurement site are running 

only in one direction, the relationship between pressure and velocity is linear. Therefore,

during the early part of systole it is most probable that only forward waves are present in the 

ascending aorta and the initial slope of the PU-loop is directly related to wave speed. A 

consequence of this is that the arrival of a reflected wave will change the relationship between 

pressure and velocity from the linearity that exists when only forward waves are present. The 

PU-loop becomes nonlinear after the arrival of reflected wave.
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We therefore hypothesise that the end of the initial linear part of the PU-loop during 

early systole marks the arrival time of reflected waves. Hence, the main objectives of this 

paper are: a) to present a new technique to test this hypothesis, and b) to demonstrate the 

simultaneous determination of the initial linear slope of the PU-loop indicating wave speed, 

and detecting the point of deflection at the end of this linear part indicating the arrival time of 

reflected waves.

Materials and Methods

The pulse wave speed and the arrival time of the reflected waves were determined in two sets 

of data; in vitro and in vivo.

In vitro experiments

A schematic diagram of the experimental setup is shown in Figure 1 and a description of the 

individual elements follows.

The pump: A positive displacement syringe pump was used to generate an 

approximately half-sinusoidal pulse wave. The pump consists of a cylinder and a piston 

that is driven by an electric motor running at a constant speed (Maxon, Sachseln, 

Switzerland). The cylinder of the pump is 5cm in diameter and the linear movement of the 

piston is 2cm, giving a displaced volume of approximately 40ml. In all of the experiments 

we generated and analysed a single half-sinusoidal pulse, in which the piston moved 

forward from its bottom to top dead centre positions. 

Tubes: We used flexible tubes made of latex (3S Health Care, London, UK). Tubes were 

uniform along their lengths with a circular cross sectional area and were obtained with a 

standard length of 100 cm. We used tubes with 4, 8 and 16mm unstressed diameter with wall 

thickness approximately 0.25mm. 

To eliminate gravitational and contact stresses between the elastic tubes and any hard 

surfaces during the experiments, the tube was immersed in an open tank containing tap water. 
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The tubes were able to extend and distend freely and were fully immersed, where the level of 

water above the surface of the tube was approximately 1cm. We note that the transmural 

pressure will vary for the different sized tubes, however this variation is ignored as the 

difference is insignificant. We also note that there will be a hydrostatic pressure difference 

between the top and bottom surfaces of the latex tube, however its value is considerably 

smaller than mean pressure in the tube. We expect its effect to be minimal, and so ignored it.

The outlet of each tube was attached to a hard plastic connector (Portex) of a matching 

size. The Portex connector was attached to a relatively rigid, thick-walled polyeurethene tube 

that was connected to the downstream reservoir, which is made of hard plastic.  The outlet of 

each tube was considered a strong reflection site because of the hard connector and rigid 

tubing. An upstream reservoir was connected to prevent pump cavitations and air bubbles 

entering the system.

Measurements: Pressure and flow-rate were recorded simultaneously at different locations 

along each tube, which are detailed as shown in Table 1. Pressure was measured using a 6F 

catheter with a strain gauge pressure transducer (Gaeltec, Scotland, UK), which was advanced 

to the measurement site through a Y connector at the inlet of the tube. Flow-rate was 

measured using an ultrasound flow meter and an ultrasound flow probe (Transonic, Ithaca, 

NY, USA), which fits snugly to each tube. The pressure catheter was calibrated against a 

column of water with a variable height, and the ultrasound flow probes were calibrated 

against the preset calibration signals of the flow meter. Data were sampled at a frequency of 

500 Hz using Labview (National Instruments, TX, USA), and were subsequently analysed 

using programs prepared in Matlab (The Mathworks Inc, Ithaca, NY, USA).
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In vivo experiment

Animal preparations: This study, which conformed to the “Guiding Principles of Research 

Involving Animals and Human Beings” of the American Physiological Society, was 

performed in 11 mongrel dogs (average weight 22  3 kg, 7 males). Animals were

anaesthetised with sodium pentobarbital, 30 mg/kg-body weight intravenously, and a

maintenance dose of 75 mg/hr was given intravenously for the duration of the experiment. 

Each dog was endotracheally intubated and mechanically ventilated using a constant-volume 

ventilator (Model 607, Harvard Apparatus Company, Millis, MA., USA). After a median 

sternotomy, an ultrasonic flow probe (Transonic Systems Inc., Ithaca, N.Y., USA) was 

mounted around the ascending aorta approximately 1 cm distal to the aortic valve. ECG leads 

were connected to both forelegs and the left back leg. A high-fidelity pressure catheter (Millar 

Instruments Inc., Houston, Texas, USA) was used to measure the pressure in the aortic root as 

near as possible to the site of the flow probe without creating interference (a few millimetres 

away from the flow probe, proximal to the aortic valve). The pressure catheter was advanced 

from either the right or the left brachial artery. Snares were placed at 4 different sites during 

the preparation of each dog: the upper descending thoracic aorta at the level of the aortic 

valve (thoracic); the lower thoracic aorta at the level of the diaphragm (diaphragm); the 

abdominal aorta between the renal arteries (abdominal) and the left iliac artery, 2 cm 

downstream from the aorta-iliac bifurcation (iliac). 

Protocol: For each occlusion, data were collected for 30 seconds before the occlusion 

(control) and during the occlusion; 3 minutes after the snare was applied1. At each site, total 

occlusion was confirmed by observing no flow distal to the occlusion site, and another Millar 

high-fidelity pressure catheter was advanced from either the right or left iliac artery to 
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measure pressure at the occlusion site. A time interval of 10-15 minutes was allowed between 

occlusions to return to control conditions. In order to eliminate effects due to the cumulative 

time of the procedure, the sequence of occlusions was varied from dog to dog using a 4 by 4 

Latin-square. The circumference of the post-mortem ascending aorta was measured to convert 

the measured flow rate into velocity. We note that the circumference of the ascending aorta of 

each dog was measured at zero transmural pressure and hence the calculated diameter may be 

less than the actual diameter in vivo. However, In order to compensate for that difference, we 

did not take into account the wall thickness and assumed that the measured external radius is

the correct value to be used in calculating the velocities (12). To eliminate the effect of the 

possible time lag attributable to the filter in the ultrasonic flow meter, the foot of the pressure 

and velocity waveforms were aligned at the onset of ejection, as previously described (9), and 

the lag was accounted for prior to carrying out the analysis.

The pressure catheters were calibrated prior to each experiment against a mercury 

manometer. All in vivo data were recorded at a sampling rate of 200 Hz, stored digitally and 

were analysed using Matlab software (The MathWorks Inc., Natick, Mass, USA). 

Regression analyses were performed to identify the correlation factor and its

significance. Values of p < 0.05 were considered significant. The Bland-Altman (2) technique 

was used to establish whether there was a significant difference between the results of the 

new technique and those of WIA. The acceptable range for the mean difference was taken as 

± double standard deviation.
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Analysis

Three methods to determine the arrival time of the reflected waves have been used: the 

foot-to-foot, WIA and the PU-loop. 

Foot-to-foot

As discussed above, the foot-to-foot method is traditionally used for calculating wave speed. 

However, if the wave speed (c), and the distance between two measurement sites (L) is

known, the relative arrival time of the reflected waves can be determined as
c

L
t

2
 , which is 

the time it takes the wave to run from one site to the other, be reflected and run back to the 

measurement site.  This method has been used in the in vitro study only. 

Wave intensity analysis

The theoretical basis of WIA is the solution of the classical 1-D conservation of mass 

and momentum equations and the derivation of the following equations is found in earlier 

papers (22,23). The net wave intensity, dI, is calculated as dPdUdI  , where dP and dU are 

respectively the pressure and velocity differences over one sampling period. The pressure and 

velocity differences across the measured wavefronts are assumed to be the addition of the 

differences across the forward (+) and backward (-) pressure and velocity wavefronts; 

  dPdPdP and   dUdUdU . This assumption enables us to write the intensities of 

the forward and backward waves 

2cdU)(dP
c4

1
dI 


            (1)

Where ρ is density and c is wave speed which was determined using the PU-loop method (8).

We note that wave intensity has the useful characteristics that it is positive for forward waves 

and negative for backward waves. Therefore, the relative arrival time of reflected waves was 

determined as the time of the first sampling points when dI- (the backward intensity) was
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substantially bigger than the noise level determined from the initial part of the dI- curve. This 

method has been used in both the in vitro and in vivo studies.

PU-loop

The theoretical basis of the PU-loop method for determining wave speed is the water hammer 

equation, which can be written for the forward and backward waves as

  cdUdP    (2)

Equation (2) describes the relationship between changes in the pressure and velocity, and 

plotting the measured pressure against the measured velocity over the cycle we obtain a PU-

loop. During the very early part of the cycle when only forward waves are expected to be 

present, the slope of the PU-loop should be linear. On arrival of the reflected waves, the linear 

relationship between pressure and velocity will no longer hold and there will be a deflection 

point, after which the loop becomes non-linear. The slope of the PU-loop, S, during any time 

interval is
dU

dP
S  . We define t=0 as the time of the foot of the initial pressure waveform, and 

t=tr as the time at which the reflected wave returns to the site of measurement.

When rtt  and only forward waves are present, the slope of the initial linear part of the loop 

is c
dU

dP
S 




0 (3)

When the reflected wave arrives back to the measurement site, and both forward and 

backward waves are present, the slope at rtt  can be written









dPdP

dPdP
c

dU

dP
Sr  (4)

Calculating the relative change in slope, S , at  rtt  gives











dPdP

dP

S

SS
S r 2

0

0 (5)

When S was greater than a threshold,  , the initial part of the PU-loop was deemed no 
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longer linear and the time of that interval is considered the arrival time of the reflected wave.

The optimal value of  was determined by trial-and-error and found to be  = 0.35.

A program was written in MatLab (MathWorks Inc, Natick, Mass, USA) to automate 

the determination of the linear part in the PU-loop and to detect the sampling point at which 

the loop deviates from linearity, which we hypothesise to be the arrival time of reflected 

waves. The program calculates the local slope, Si, at each sampling time
ii

ii
i UU

PP
S









1

1 , 

where Pi and Ui are the pressure and velocity at time ti. To find the end of the initial linear part 

of the PU-loop, denoted by point R in Figure 2, the program calculates the relative difference 

between the current slope and the average of all the previous slopes starting from the 

beginning of the linear part, point K.

1
1 1



















i

Ki
i

i
i

S
Ki

S
S      (6)

When  iS , the time of that interval is considered the arrival time of the reflected wave.

This algorithm is a point-to-point technique and the program analyses one interval at a 

time. The program starts the analysis at the foot of the pressure waveform, which is the 

beginning of the linear part, proceeds to find the end of the linear part indicating the arrival 

time of reflected waves, and simultaneously determines the slope of the initial linear part 

indicating wave speed, then it stops. This method has been used in both the in vitro and in 

vivo studies.
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Results

In vitro experiment

For each of the three tubes, 3 measurements were taken at three distances; 30, 40 and 

50cm away from the reflection site. The time of arrival of the first reflected wave was 

determined for each case, using 3 methods: the new technique utilising the PU-loop, WIA and

the foot-to-foot method.  The arrival time of reflected waves detected using the PU-loop 

method in vitro, point R, was highly correlated with that detected using the foot-to-foot-

method (r2=0.97, p<0.001) and the WIA, point M, (r2=0.95, p<0.001). Fig. 2 shows that the 

time of the sampling point at the end of the linear part of the PU-loop as determined by the 

new algorithm, and the onset of reflection as determined by wave intensity, occur almost 

simultaneously. This was found to be true in all of the cases that we tested. Times of arrival of 

the reflected wave to the different measurement sites in the different size tubes using the three 

methods are given in Table 1. The maximum difference between the arrival time of reflected 

waves determined by the new algorithm and both other methods was approximately 2%,

which occurred in the 16mm diameter tube.

In vivo experiment

Figure 3 and Figure 4 show the time of the sampling point at the end of the linear part 

of the PU-loop as determined by the new algorithm, point R, and the onset of reflection as 

determined by wave intensity, point M, during control and during thoracic occlusion 

respectively. During occlusion the strong reflection site results in a strong reflected wave that 

is marked by a clear deflection point on the PU-loop, point R, as shown in Figure 4. Although 

the end of the initial linear part of the PU-loop during control is less obvious than that during 

occlusion, the new technique accurately detects the time of arrival of reflected waves as 

detected by WIA in both cases. The arrival time of reflected waves determined by the PU-
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loop during all occlusions correlated well with that determined by the WIA (r2=0.83, 

p<0.001), as shown in Figure 5a. 

We used the Bland-Altman plot to compare the results of the WIA and the PU-loop 

methods for determining the arrival time of reflected waves. The mean value of the difference 

between the results of the two methods was 0.003 and the standard deviation of that mean was 

±0.004. As shown in Figure 5b most of the data points, as well as the zero line fell within the 

confidence range of the average, double the standard deviation (±2SD) of the difference, 

indicating no statistical difference between the results of the two methods. 
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Discussion

In our earlier work we established that the linear portion of the PU-loop corresponding 

to early systole could be used to calculate the local wave speed (9). In this paper we extended

this work and demonstrated that the time at which the initial part of the PU-loop first deviates 

from linearity provides a convenient way to determine the time of arrival of the reflected 

wave. Using the technique described in this paper allowed for the simultaneous determination 

of wave speed and the arrival time of reflected waves.

The program

As discussed in the analysis, the threshold τ, determines the accuracy of the linear part 

and represents the minimum allowed relative difference between slopes. We initially tested 

the algorithm and found by trial-and-error that τ= 0.35 is the value that gave the best results 

with in vitro data. The same value of τ has also given the best results with in vivo data. Since 

the in vivo data was collected at 200 Hz and the in vitro data at 500 Hz, it seems that the 

threshold is most likely sample rate independent.

To make sure the initial linear part of the PU-loop is not detected within the noise 

level, the length of the linear part was calculated and had to be at least 20 ms long before it 

was acceptable. The value of 20 ms has also been determined by trial and error and gave the 

best results in both the in vivo and in vitro data. If the length of the linear part is below this 

value, the program assumes the found linear part is within the noise level and continues 

searching for real linear part. Further, this technique has also been tested using these values of 

 and the minimum length of the linear part with other data that are not presented here but 

was recorded at 1 kHz and also gave the best results. Therefore we found these values to be 

optimal in our experiments, and anticipate they could be suitable for analysing similar data 

that are recorded at sampling frequencies in the range of 200Hz to 1kHz. 
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Wave speed

Wave speed is an important property of an arterial segment and directly related to its 

compliance. Wave speed has been long used as a surrogate marker for aortic stiffness, which 

has recently been thought of as an independent predictor of stroke (16), cardiovascular 

mortality (15) in hypertensive patients. Aortic stiffness has also been associated with the 

reduction of coronary flow (17). Thus, automating the determination of wave speed is of 

clinical relevance and the results of this paper are encouraging towards achieving this aim. 

The PU-loop method is easy to use but requires the simultaneous measurements of pressure 

and flow velocity at the same site. We note that Dujardin and Stone used a similar loop (the 

flow-pressure loop) to determine the characteristic impedance (3).

The wave speed determined by using the PU-loop is traditionally made by establishing 

the slope of the initial part of the loop by eye. The new algorithm allows for automating this 

process, making the determination of wave speed by the PU-loop subjective. The average 

difference between the results of wave speed determined by eye and that determined 

automatically using this technique in the in vivo experiments, is in the order of 3% as shown 

in Table 2. 

Because of the difficulty in obtaining accurate measurements of pressure non-

invasively, other researchers have used a wall tracking system which allows for substituting 

pressure with vessel diameter (5). Harada et al. used an online technique for determining 

wave speed, and suggested that towards end of systole there may be another period where 

waves in the ascending aorta are also unidirectional, similar to the period at early systole. We 

anticipate the relationship between pressure and velocity at that time to also be linear, and if 

desired, the computer program implementing the algorithm in this paper can be adapted to 

detect other linear parts in the PU-loop. To do so, another search procedure is applied after 
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the first linear part has been detected and this algorithm can simply be used to detect other 

linear parts if needed. 

Arrival time of reflected wave

Theoretically the end of the initial linear part of the PU-loop should occur at the same 

time as the onset of the first reflected wave determined using WIA. The comparison between 

the two methods is made to verify how well the new algorithm is able to detect the onset of 

nonlinearity between the pressure and velocity in the loop, which is regarded as the onset of 

reflected waves. As shown, the results of the new algorithm for the detection of the arrival 

time of the reflected waves are in agreement with those determined by both WIA and foot-to-

foot methods, indicating the viability of the new technique. It is worth noting however that 

one of the limitations of this technique is that incorrect temporal alignment of pressure and 

velocity can influence the correct determination of the slope of the linear part, and thus the 

value of wave speed. Similarly, a time lag between the measurement of pressure and flow (or 

velocity) can introduce errors in the determination of the arrival time of the reflected wave.

The augmentation index (AIx) is used extensively clinically to quantify the magnitude 

of the reflected waves (22). The determination of AIx depends principally on detecting a 

change in the shape of the pressure waveform upon the arrival of the reflected waves using 

some derivative of the waveform (20); most authors used the 4th derivative. The accuracy of 

the technique depends upon the ability to detect an inflection point on the pressure waveform. 

However, in our experiments an inflection point in the pressure waveform was not always 

obvious as shown in the pressure waveforms in Figure 3 and 4. A comparison of the results 

of detecting the arrival time of the reflected wave between the method discussed in this paper 

and those used in establishing AIx has not been reported previously and it is a question for a 

separate study. 
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In Conclusion, the PU-loop method for determining local wave speed can also be 

used to detect the arrival time of reflected waves by identifying the end of the initial linear 

part of the loop. The proposed algorithm is most likely independent of sampling rate, and the 

results for calculating wave speed and determining the arrival time of reflected waves 

compare well with wave intensity analysis and foot-to-foot methods for calculating the same. 

The new technique offers a subjective method for determining the initial slope of the PU-loop

indicating wave speed, and the end of the end of the linear part of the loop indicating the 

arrival time of reflected wave. The new algorithm utilising the PU-loop provides a new 

technique for the dynamic determination of wave speed and the arrival time of reflected 

waves simultaneously. 
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Figure Captions

Figure 1: Schematic diagram showing the experimental set up. The latex tube is 

connected to the pump at its inlet through a polyurethane tube, and its exit is 

connected to the downstream reservoir through a hard plastic (Portex) connector and a 

polyurethane tube. The pump generates half a sinusoidal waveform in the forward 

direction. Pressure (P) and flow rate (Q) are measured at different sites along the 

elastic tube. The measured signals are collected digitally into a personal computer. 

Reservoir 1 provides the pump with water and ensures the system is free from 

bubbles, and reservoir 2 collects the fluid volume displaced by the pump. The dashed 

lines indicate the level of water in the tank and reservoirs.

Figure 2: The determination of the initial linear part of the PU-loop is shown in (a)

and the pressure measured in a latex tube of 1m length and an 12mm diameter at 

0.30m away from the reflection site is shown in (b). Wave intensity analysis is shown 

in (c). End of linear part, point R, corresponds well with the onset of reflected wave 

from wave intensity analysis, point M. Note that wave speed is determined by the 

average of the slopes over the period between points K and R.

Figure 3: Pressure and velocity measured in the ascending aorta during control 

conditions. The PU-loop is constructed and the initial linear part of the loop is 

determined using the new technique (a), pressure is plotted against time in (b) to 

translate the end of the linear part, point R, to time. Wave intensity analysis (c). 

Although the end of the initial linear part in the PU-loop (a) is not very obvious, the 

end of the linear part detected by the new method, point R, corresponds well with the 

onset of the reflected waves as determined using wave intensity analysis, point M.
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Figure 4: Pressure and velocity measured in the ascending aorta during thoracic

occlusion. The PU-loop is constructed and the initial linear part of the loop is 

determined using the new technique (a), pressure is plotted against time in (b) to 

translate the end of linear part, point R, to time. Wave intensity analysis is shown in 

(c). The end of the initial linear part in the PU-loop is more obvious in this example 

than in the example of Figure 3 due to the earlier arrival of the reflected wave. Again, 

the end of the initial linear part of the loop, point R, corresponds well with the onset 

of the reflected waves as determined using wave intensity analysis, point M. 

Figure 5: a) The relative arrival time determined using the PU-loop is compared with 

that determined using wave intensity analysis. The results of the new technique using 

the PU-loop correlates well with Wave Intensity Analysis (r2=0.0.83, p<.001). 

b) Bland-Altman plot showing the agreement between the two results. Dashed line is 

the mean difference between the two methods and the continuous lines indicate ±2SD 

of the mean difference. Note that most of the data points fell within ±2SD range, and 

the zero line fell within the confidence limits of the average, indicating no statistical 

significant difference between wave intensity analysis and the PU-loop methods for 

determining the arrival time of reflected waves.



Table 1: The arrival time of reflected waves in tubes with different diameters 

Tube Tube Arrival Time of Reflected Waves (s)
f-t-f PU-loop WIADiameter 

(mm)
Wave speed

(m/s)

Distance to 
Reflection 

Site (m) 2L/c R M
0.30 0.0918 0.0960 0.0920
0.40 0.1182 0.1140 0.1180
0.50 0.1427 0.1400 0.1360

mean 0.1176 0.1167 0.1153
SD 0.0255 0.0221 0.0221

4.00 6.77

% change 1 -1
0.30 0.1060 0.1160 0.1100
0.40 0.1413 0.1240 0.1280
0.50 0.1766 0.1780 0.1760

mean 0.1413 0.1393 0.1380
SD 0.0353 0.0337 0.0341

8.00 5.66

% change 1 -1
0.30 0.1476 0.1360 0.1380
0.40 0.2168 0.2160 0.2140
0.50 0.2740 0.2880 0.2760

mean 0.2128 0.2133 0.2093
SD 0.0633 0.0760 0.0691

16.00 3.80

% change 0.3 2

Values of mean ± SD and the percentage change of the arrival time of reflected waves 

as determined using three methods; the new technique using the PU-loop method 

(point R, Figure 3), Foot-to-Foot method (f-t-f) and wave intensity analysis (WIA) 

using equation 1 (point M, Figure 3). The % change is calculated as the difference of 

the f-t-f, wave intensity methods, and the PU-loop method, compared to the PU-loop 

method.

Table 1
Click here to download table: Table 1.doc

http://www.editorialmanager.com/mbec/download.aspx?id=13507&guid=07a5825b-1b6b-4134-be7d-726507ec30bd&scheme=1


Table 2: A comparison between wave speeds determined using the PU-loop 
algorithm and that determined by eye.

Wave speed [m/s]
Dog no. c1 c2 (c1-c2)/c1 [%]

1 4.67 4.60 1.6
2 8.70 8.18 6.4
3 4.25 4.22 0.8
4 4.83 4.82 0.1
5 4.38 4.23 3.4
6 9.65 9.20 4.9
7 8.03 7.79 3.0
8 5.52 5.42 2.0
9 5.87 5.91 -0.7

10 5.60 5.53 1.2
12 7.01 6.85 2.2

Average 6.23 6.07 2.6

Wave speeds determined using the PU-loop algorithm, c1, and that determined by eye, 

c2. For each method, the wave speed is the average of the entire wave speeds 

measured for all of the interventions. The global average of the percentage difference 

between the two techniques is 2.6%.
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Figure 1: Schematic diagram showing the experimental set up. The latex tube is 

connected to the pump at its inlet through a polyurethane tube, and its exit is 

connected to the downstream reservoir through a hard plastic (Portex) connector and a 

polyurethane tube. The pump generates half a sinusoidal waveform in the forward 

direction. Pressure (P) and flow rate (Q) are measured simultaneously at different 

sites along the elastic tube. The measured signals are collected digitally into a 

personal computer. Reservoir 1 provides the pump with water and ensures the system 

is free from bubbles, and reservoir 2 collects the fluid volume displaced by the pump. 

The dashed lines indicate the level of water in the tank and reservoirs.
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Figure 2: The determination of the initial linear part of the PU-loop is shown in (a) 

and the arrows indicate the direction of the loop. The pressure measured in a latex 

tube of 1m length and 12mm diameter at 0.30m away from the reflection site is shown 

in (b). Wave intensity analysis is shown in (c). End of linear part, point R, 

corresponds well with the onset of reflected wave from wave intensity analysis, point 

M. Note that wave speed is determined by the average of the slopes over the period

between points K and R.
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Figure 3: Pressure and velocity measured in the ascending aorta during control 

conditions. In (a) the PU-loop is constructed, the initial linear part of the loop is 

determined using the new technique and the arrows indicate the direction of the loop. 

The pressure is plotted against time in (b) to translate the end of the linear part, point 

R, to time. Wave intensity analysis is shown in (c). Although the end of the initial 

linear part in the PU-loop is not very obvious, it was detected by the new method, 

point R, which corresponds well with the onset of the reflected waves as determined 

using wave intensity analysis, point M.
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Figure 4: Pressure and velocity measured in the ascending aorta during thoracic 

occlusion. In (a) the PU-loop is constructed, the initial linear part of the loop is 

determined using the new technique and the arrows indicate the direction of the loop.

The pressure is plotted against time in (b) to translate the end of linear part, point R, 

to time. Wave intensity analysis is shown in (c). The end of the initial linear part in 

the PU-loop is more obvious in this example than in the example of Figure 3 due to 

the earlier arrival of the reflected wave. Similar to Figure 3, the end of the initial 

linear part of the loop, point R, corresponds well with the onset of the reflected waves 

as determined using wave intensity analysis, point M. 
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Figure 5: a) The relative arrival time determined using the PU-loop is compared with 

that determined using wave intensity analysis. The results of the new technique using 

the PU-loop correlates well with Wave Intensity Analysis (r2=0.0.83, p<.001). 

b) Bland-Altman plot showing the agreement between the two results. Dashed line is 

the mean difference between the two methods and the continuous lines indicate ±2SD 

of the mean difference. Note that most of the data points fell within ±2SD range, and 

the zero line fell within the confidence limits of the average, indicating no statistical 

significant difference between wave intensity analysis and the PU-loop methods for 

determining the arrival time of reflected waves.


