
MULTI-OBJECTIVE GENETIC OPTIMISATION FOR SELF-ORGANISING FUZZY

LOGIC CONTROL

M.F. Abbod, M. Mahfouf and D.A. Linkens

University of Sheffield, Sheffield, UK

A multi-objective genetic algorithm is developed for the

purpose of optimizing the rule-base of a Self-Organising

Fuzzy Logic Control algorithm (SOFLC). The tuning of

the SOFLC optimization is based on selection of the

best shaped performance index for modifying the rule-

base on-line. A comparative study is conducted between

various methods of multi-objective genetic optimisation

using the SOFLC algorithm on the muscle relaxant

anaesthesia system, which includes a severe non-

linearity, varying dynamics and time-delay.

Keywords: Fuzzy Logic, Self-organising, Multi-

objective optimisation.

INTRODUCTION

The last decade has seen an upsurge in the development

of intelligent control structures over their counterpart

model-based control structures due to their success in

dealing with complex multivariate uncertain systems

without the need of extensive dynamic modelling. The

main difficulty in the multivariable case is the

interaction between variables and sensitivity to faults in

various channels. At the forefront of intelligent control

systems technology are Fuzzy Logic Control (FLC),

Neural Networks (NN) and Genetic Algorithms (GA)

which have all proved to be serious contenders for many

other existing forms of control.

In order to map control designs to specific applications,

various tuning factors have been appended to these

design features, which has a double effect. On the one

hand, having a number of tuning factors ('knobs') makes

the design attractive to engineers by giving them more

flexibility in its application to a wide spectrum of

processes. On the other hand, it adds an extra burden of

having to find an optimal setting that will reach specific

objectives. At this stage, it is worth noting that in most

designs, there exist no golden rules for the tuning of

such factors. Instead, the user has to rely on his/her

intuition and knowledge of the process to find a set of

'good' values necessary to achieve a predefined set of

objectives. This task can prove to be tedious and only a

compromise solution is adopted whereby an objective is

sacrificed in order to satisfy the other objective criteria.

Various synergies are known to exist and as a result

have been described in the past between FLC, NN and

GA which not only showed that these intelligent

structures can interact together but also can make the

overall structure more robust against model uncertainties

as well as disturbances. For example, the concept of

Neuro-Fuzzy Control was shown to work well by

producing smoother control than the standard fuzzy

control by allowing automatic adjustment of the rule-

base and definition of fuzzy sets in terms of widths,

peaks, and membership functions. The following

sections will attempt to emphasise one such synergy,

that between self-organising fuzzy logic control and

genetic algorithms by allowing the performance index

table to be tuned to an optimal setting using GA

techniques which will encompass more than one

objective function. It will also be shown that by using

this technique, a much reduced size of rule-base can be

achieved, in contrast to past experiences where a

relatively large number of rules were deemed necessary

to achieve an acceptable performance.

AN INTRODUCTION TO GENETIC

ALGORITHMS

Genetic Algorithms (GA) are exploratory search and

optimisation methods that were devised on the

principles of natural evolution and population genetics.

Holland (1) first developed the technique of GA, and

several other research studies provided a comprehensive

review and introduction of the concept (2). Unlike other

optimisation techniques, GA does not require

mathematical descriptions of the optimisation problem,

but instead relies on a cost-function, in order to assess

the fitness of a particular solution to the problem in

question. Possible solution candidates are represented

by a population of individuals (generation) and each

individual is encoded as a binary string containing a

well-defined number of chromosomes (1's and 0's).

Initially, a population of individuals is generated and the

fittest individuals are chosen by ranking them according

to an a priori-defined fitness-function, which is

evaluated for each member of this population. In order

to create another better population from the initial one, a

mating process is carried out among the fittest

individuals in the previous generation, since the relative

fitness of each individual is used as a criterion for

choice. Hence, the selected individuals are randomly

combined in pairs to produce two off-springs by

crossing over parts of their chromosomes at a randomly

chosen position of the string. These new off-springs are

supposed to represent a better solution to the problem.

In order to provide extra excitation to the process of

generation, randomly chosen bits in the strings are

inverted (0's to 1's and 1's to 0's), this mechanism is

known as mutation and helps to speed up convergence

and prevents the population from being predominated by

the same individuals. All in all, it ensures that the

solution set is never empty. A compromise, however,

should be reached between too much excitation and

none by choosing a small probability of mutation. There

are four well-known reproduction techniques,

Generational Replacement (GR), Steady-State (SS),

Generational Gap (GG), and Selective Breeding (SB).

Only one of these will the subject of this study, i.e. SB,

which is described below:

Selective breeding

Selective breeding reproduction method is designed to

overcome some of the deficiencies in the other method.

In the steady-state breeding method, a sampling error

still occurs in selecting the parents and deletion of

individuals from the population, and often good

individuals can appear and be deleted without a chance

of recombination. Selective breeding introduces

determinism in order to eliminate stochastic sampling

error in deletion of candidates. The method consists of

the following: if the initial population is of „n‟ size, then

another population of the same size „n‟ is produced

through the mating process. The two populations are

combined together to form a population of size „2n‟

which will ranked in the usual manner to produce a

population of „n‟ best individuals. It is worth noting that

this method has already been found to converge more

quickly that most of the other.

MULTI-OBJECTIVE_OPTIMISATION

TECHNIQUE

In problems that have multi-objective formulation,

objectives are often combined by means of an

aggregation function. Combining the objectives to

obtain an optimised solution has the advantage of

producing a single solution, which requires no

interaction with the decision making. However, if the

solution found is not acceptable, tuning of the

aggregation function is required followed by a new run

of the optimiser until a suitable solution is found. The

aggregation functions can be as simple as the weighted

sum to a target vector. The method functions by

generating an initial population which is evaluated to

determine the performance of each individual, then an

off-spring is generated which in turn is evaluated

according to the performance of each individual. The

last step is to select the best individual from both

generations. Several popular methods exist for

producing a single solution to a multi-objective

optimisation operation as explained below and their

respective performances may differ depending on the

problem at hand; these are outlined below:

Average and distance ranking

The average multi-objective optimisation approach is

based on ranking the population according to each

objective individually, then a new overall rank can be

generated by taking the average of the newly ranked

populations. On the other hand, the distance

optimisation technique is based on ranking the

populations depending on a single objective at a time

then taking the square-root of the sum of the squared

objective values, and finally ranking the new vector to

produce the final generation.

Pareto ranking

A different approach for multi-objective optimisation is

based on ranking according to the actual concept of

pareto optimality proposed by Goldberg (2). The

method guarantees equal probability of reproduction to

all non-dominated individuals. If both objectives have

the same priority, all the satisfying individuals (the ones

which meet their goal) are preferable and have a lower

rank than the remaining ones).

FUZZY LOGIC CONTROLLER (FLC)

Similarly to other control structures such as neural

networks, fuzzy logic control has a long history. It stems

from the theoretical work of Lotfi Zadeh (3). He

proposed the use of fuzzy logic to mimic the human's

ability to use imprecise statements to solve complex

problems.

The main four components of FLC are fuzzification,

knowledge-base, inference engine, and defuzzification.

The fuzzification process converts the measured input

into a corresponding linguistic value. The knowledge-

base comprises the settings of the controller parameters,

such as the labels, fuzzy sets shapes and type and

number of rules. In this application a Gaussian shape

membership function is used for the inputs. Two inputs

are considered, the error and the change in error, while

the output is calculated using the center of area method.

There are 9 control rules which are expressed

linguistically in the following form:

if error is x and change_in_error is y then output is z

The controller starts with an empty rule-base with

constrained inputs and unconstrained outputs. The

inputs of the rules are constrained in terms of

optimisation of the position and width. The position

constraints do not allow a negative labeled rule to be

positioned in the positive side, neither do they allow big

overlapping of different fuzzy labels. Moreover, the

width constraints work by not allowing the fuzzy sets to

be too wide or too narrow. The unconstrained output

rules allow assignment of the output rules to any label.

This has the advantage of giving more flexibility to the

controller to generate any shape of control surface.

The learning procedure is to generate the rules and tune

them in terms of the input membership function

(position and width) and the output of the rules position.

Therefore for each rule there are five parameters to be

tuned. The membership function of each input and

output is defined as follows:

2

2

2

)exp(
)(




cx
x




where c is the peak position and  is the width.

THE SELF-ORGANISING FUZZY

LOGIC CONTROLLER (SOFLC)

The first implementation of a fuzzy controller after

Zadeh‟s seminal paper was followed by the self-

organising fuzzy controller (SOFLC) (4) as shown in

Figure 1. The controller consists of two levels; the first

level is a simple fuzzy controller, while the second level

consists of the self-organising mechanism, which acts as

a monitor and an evaluator of the controller

performance. In the first level, the input signal to the

controller is taken at each sampling instant in the form

of error and change-in-error. Each signal is mapped to

its correspondent discrete level by using the error and

change-in-error scaling factors respectively and sent to

the Self-Organising Controller (SOC). The SOC,

according to control rules issued by the second level,

calculates the output with respect to the inputs. The

output control signals are scaled to real values using the

output scaling factors and sent to the process being

controlled. The second level consists of four blocks: the

performance index, the process reference model, the

rules modifier, and the state buffer. Further details on

the design of a SOFLC can be found elsewhere (5) but

suffice here to concentrate on the learning part.

The self-organising controller is based on observation of

the trajectory of the process to be controlled. Any

deviation from the desired trajectory path should be

corrected by modifying the rule or rules responsible for

the undesired performance.

The performance index functions as an evaluation

criterion of the controller performance, In general terms

it measures the deviation from the desired trajectory and

issues the appropriate correction to the rule that gave the

present behaviour. It is derived from linguistic

conditional statements by means of using standard fuzzy

operations and written in a look-up table form.

As far as the rules modification procedure is concerned,

it can be explained assuming that a process has a time-

lag of m samples, this means that the control action at

sample (nT-mT) has most contributed to the process

performance at the sampling instance nT. Thus, if the

present instant is nT, the modification is made to the

controller output U, mT samples earlier, the rule to be

included being:

E(nT - mT) CE (nT - mT) U (nT - mT) +

)(nTPi

where)(nTPi is issued by the performance index table,

E is the error, and CE is its derivative.

The key issue with SOFLC is how to select the

performance index table. This table is usually selected

based on the knowledge of the operator or the expert,

but the table is commonly interpreted as a flat surface

with curvature on the edges, which ignores the small

non-linearities that are located in the middle region of

the table. In light of these considerations, the use of GA

as a tool for optimising the shape of the table is indeed

very attractive. In this work, a GA is used in two ways.

1. To optimise the fuzzy rule-base of a fixed fuzzy

Proportional integral (PI) controller. 2. To find the best

fit for the performance index table by starting with a

linear table then repositioning the output of the table

with constrained modifications.

A GENETIC ALGORITHM FOR

PARAMETER SELECTION

 Coding of the genetic algorithm is based on defining the

number in the population and the chromosome length of

each one using a concatenated binary mapping. This

coding is usually realised by joining segment codes of

all the parameters into one composite string. In this

study, the GA was set with the following parameters:

Population size = 30

Chromosome = 180

Probability of Crossover = 1.0

Probability of Mutation = 0.06

Number of Generations = 500

Fitness Scale = 10 x fitness rank + 100

The chromosome lengths were selected on the basis of

the type of application. For instance, in the case of the

SOFLC algorithm, the performance index table includes

25 rules with each rule having only one parameter that

need tuning (the output). With 10 bits allocated to each

parameter, the performance index rule-base will require

a 250-bit chromosome.

As for the control objective, it is defined as the ability to

follow the set-point with minimum error. This objective

can be expressed in terms of minimisation of the

controller performance indices. These include Integral

of Absolute Error (IAE), Integral of Square Error

(ISE), and Integral of Time Absolute Error (ITAE), as

well as minimising the controller effort by calculating

the Integral of controller effort (ICE). In this study only

the IAE and ICE indices are used as will be described

below.

SIMULATION RESULTS

A series of simulations were conducted using GA for

optimising the FLC rule-base and the performance index

related to the SOFLC algorithm using the optimisation

techniques already described in Sections 3.1 and 3.2. As

a process test bed we used the muscle relaxation process

associated with the drug atracurium (5). The continuous

model associated with the drug atracurium is highly

nonlinear and is identified to be of the Wiener structure:

G s
X

U

s e

s s s

s

()
(.).

(.)(.4)(.)
 



  



1 1 10 6

1 4 8 1 34 1 31

The overall nonlinear model is obtained by combining

the above equation with the following Hill equation:

E
X

X
eff 



1

2 98

1

2 98 2 980

.

. .(.404)

where U is the drug input, Eeff
 is the actual output

(muscle relaxation or paralysis) and X1 is the drug

concentration in the blood.

To simulate the above model, a fourth order Runge-

Kutta method with fixed step length was used for

integration together with a sampling interval period of

one minute. A bolus dose of drug was used initially to

speed up the response time. Three categories of patients

were used depending on their sensitivity to the drug;

low, medium and high sensitivity. A training set-point

profile of 90% then 80% changed every 70 minutes was

used, while a testing profile was chosen to have a set-

point change of 95%, 80% and 90% every 70 minutes.

The controller used in this series of experiments is of an

incremental type (linguistic PI).

The experiment described here used a GA to optimise

the performance index table relating to the SOFLC, in

an off-line study, using the IAE and ICE as optimising

criteria. Figure 2 is a bar chart representing the

performance of each algorithm (the non-optimised

SOFLC and the optimised SOFLC using the three

fitness-ranking methods. Although the distance ranking

method performed better under the IAE criterion and the

average ranking method performed better under the ICE

criterion, the Pareto ranking method was found to lead

to a reasonable performance under both objectives.

Tables 1 and 2 display the corresponding criteria values

under the various regimes for the training and testing

set-point profiles.

Finally, Figure 3 shows the performance of the SOFLC

when the performance index table was optimised using

the fitness Pareto ranking method. As seen in Figure 3a

the output tracked the output changes efficiently with a

reasonable control activity. Moreover, Figure 3c

emphasises the nonlinear shape of the control surface.

CONCLUSIONS

It is widely recognised that for control designs to be

flexible, they need to incorporate as many tuning factors

('knobs') as possible to allow them to be tailored to

particular applications. Concomitant disadvantages of

these tuning factors is the lack of clear guidelines for

optimal settings, especially with control designs based

on a heuristic approach where stability analyses are

either impossible or difficult to carry out. Fuzzy logic

control is one of these strategies. One of the adverse

effects of this is that a relationship between stability and

design tuning factors is not always easy to establish. For

instance, it is known that a qualitative rather than a

quantitative relationship can be drawn between the

parameters of a conventional PID controller and the

tuning of a simple PID fuzzy controller. In this paper,

we proposed a new method for tuning the performance

index table relating to the SOFLC. Future work will

include the extension of this work to the multivariable

case and the introduction of a fuzzy gain scheduling

procedure for selecting the appropriate rule-base based

on the initial response of the patient to the initial bolus

of drug.

REFERENCES

1. Holland, J.H., 1973, “Genetic Algorithms and the

Optimal Allocation of Trials”, SIAM J. Comput., 2,

pp 89-104

2. Goldberg, D.E. 1989, “Genetic Algorithms in

Search, Optimisation and Machine Learning”,

Addison-Wesley, Reading, Massachusetts.

3. Zadeh L.A., 1965, “Fuzzy Sets, Information and

Control”, 8, pp 338-353.

4. Procyk, T.J., 1977, “Self-Organising Control for

Dynamic Processes”, Unpublished PhD Thesis,

Queen Mary College, London.

5. Mahfouf, M. and Abbod, M.F., 1994, “A

comparative study between GPC and SOFLC for

multivariable anaesthesia”, Chap.4. in Intelligent

Control in Biomedicine, D.A. Linkens (Ed.), Taylor

and Francis Publ., London.

Figure 1: Block diagram of SOFLC with GA learning

 FZ: Fuzzification, DFZ: Defuzzification.

0

100

200

300

400

500

600

700

IAE ICE IAE ICE IAE ICE

no-training

Distance

Average

Pareto

Small sensitivity Medium sensitivity High sensitivity

Figure 2: Training error (IAE, ICE) for three patient sensitivities for SOFLC table adjustment

Genetic Algorithm

Rule-base

Inference

engine

fuzzific

ation

De_fuz

zificatio

n

Process

Performance

index

Rule-base

modifier
Buffer

Target

Table 1: IAE and ICE error after training with SOFLC for 3 patient sensitivities.

Ranking low sensitivity medium sensitivity high sensitivity

 IAE ICE IAE ICE IAE ICE

no-training 380.365 669.920 325.861 546.479 364.960 637.990

Distance 312.0425 219.595 297.668 135.691 226.387 100.622

Average 330.705 190.436 302.350 133.558 256.453 63.496

Pareto 340.218 193.506 291.980 136.732 237.078 83.017

Table 2: IAE and ICE error after testing with SOFLC for 3 patient sensitivities.

Ranking low sensitivity medium sensitivity high sensitivity

 IAE ICE IAE ICE IAE ICE

no-training 881.514 419.599 702.470 317.543 688.182 696.943

Distance 588.967 280.597 543.386 195.322 447.562 127.899

Average 604.4115 237.6572 524.700 171.231 454.549 101.1101

Pareto 572.995 282.999 562.164 176.088 453.361 119.875

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100
SOFLC_PI, GA pareto (IAE, ICE), training medium gain

time (min)

paralysis

0 100 200 300 400 500
0

100

200

300

400

500

600

700
SOFLC_PI, GA pareto (IAE, ICE), training medium gain

training no.

IAE, ICE error

IAE

ICE

(a) (b)

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-0.2

0

0.2

SOFLC_PI, GA pareto (IAE, ICE), training medium gain

errorc_error

output

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

SOFLC_PI, GA pareto (IAE, ICE), training medium gain

errorc_error

PI_output

(c) (d)

Figure 3: Simulation results of SOFLC using selective breeding and pareto multi-objective optimisation (a) simulation

of training profile (b) ISE and ICE error minimisation (c) control surface after learning (d) modified performance index

