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Abstract

In this thesis modelling and solution methods for portfolio optimisation are

presented. The investigations reported in this thesis extend the Markowitz

mean-variance model to the domain of quadratic mixed integer programming

(QMIP) models which are 'NP-hard' discrete optimisation problems. In addi­

tion to the modelling extensions a number of challenging aspects of solution

algorithms are considered. The relative performances of sparse simplex (SSX)

as well as the interior point method (IPM) are studied in detail. In partic­

ular, the roles of 'warmstart' and dual simplex are highlighted as applied to

the construction of the efficient frontier which requires processing a family of

problems; that is, the portfolio planning model stated in a parametric form.

The method of solving QMIP models using the branch and bound algorithm

is first developed; this is followed up by heuristics which improve the perfor­

mance of the (discrete) solution algorithm. Some properties of the efficient

frontier with discrete constraints are considered and a method of computing

the discrete efficient frontier (DEF) efficiently is proposed. The computational

investigation considers the efficiency and effectiveness in respect of the scale up

properties of the proposed algorithm. The extensions of the real world models

and the proposed solution algorithms make contribution as new knowledge.
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MOLP
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Chapter 1

Introduction

"The great decisions of human life have as a rule far more to do

with the instincts and other mysterious unconscious factors than with

conscious will and well-meaning reasonableness. The shoe that fits

one person pinches another; there is no recipe for living that suits all

cases. Each of us carries his own life- form- an indeterminable form

which cannot be superseded by any other."

Carl Gustav lung, Modern Man in Search of a Soul, 1933, p. 69

This thesis is concerned with the modelling and solution of the portfolio optimi­

sation problem. The original continuous portfolio optimisation problem can be

viewed as a quadratic programming problem. When real world extensions are

considered, the problem becomes a quadratic mixed integer programming prob­

lem.

A general introduction to optimisation problems IS set out in section 1.1 and
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a summary of the historical evolution of the solution algorithms is made. In sec­

tion 1.2 examples and applications of the quadratic or quadratic mixed integer

programming problem are described providing the motivation of this study. Since

the portfolio optimisation problem is a special case of multi-objective optimisa­

tion, parallels are drawn in section 1.3. Finally, section 1.4 provides the outline

of this thesis.

1.1 Optimisation models

An optimisation problem that either minimises or maximises some function over a

set of real or integer variables is known as an unconstrained programming problem.

When the set of variables is restricted in respect to their value then the resulting

problem is called a constrained optimisation programming problem. Both prob­

lems are called mathematical programming (MP) problems. The most general

formulation is set out as a nonlinear programming (NLP) problem and is defined

in the following way.

NLP:

min (or max) f(x)

s.t. gi(X) = bi, i = i, ... , l

hi (x) > b., i = l + 1, ... , m

x E JRn

2
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In this statement f(x) is called the objective function and gi(X) and hi(x) are

other functions defining equality and inequality constraints respectively. In gen­

eral the functions !, gi, hi may be nonlinear.

If the objective function f and the constraint functions gi, hi are linear, the cor­

responding problem is known as a linear programming (LP) problem. In the case

that f is a quadratic function and gi, hi are linear restrictions, then this is known

as a quadratic programming (QP) problem. An NLP is a convex programming

problem if (a) the objective function (minimisation) is convex and (b) the con­

straints define a convex set. In the case of QP, if the objective functions is convex

then this becomes a convex programming problem since the linear constraints

define a convex set. If for the LP and the QP problem some of the variables are

restricted to take integer values then, the linear programming problem is called

a mixed integer programming (MIP) problem and the quadratic programming

problem becomes a quadratic mixed integer programming (QMIP) problem.

In the development of computational algorithms for MP problems, solving lin­

ear programming problems plays a central role. From the computational point

of view the most significant development was the simplex method proposed and

actively developed by Dantzig in 1947. Since then the methods for solving LP's

have been widely studied and are described in Dantzig [21], Beale [4], Mitra

[77], Bixby et al. [12], Vanderbei [89] and others. In 1984, Karmarkar [47] in­

spired the research world with a new polynomial time algorithm for LP referred

to as the interior point method. Further investigation led to Mehrotra's predictor

corrector method [73]. Amongst others, Andersen [1], Gondzio [33] 1 Ross et al.

[8·1], Wright [95] reconnoitred the interior approach further. The achievements of
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the investigations for LP solution algorithms has enabled problems with millions

of constraints and variables to be solved.

In 1952, Markowitz introduced QP but up until the 90's implementations could

only cope with portfolios over a small asset universe. However, incorporating the

advances from LP during the 90's, the finance industry has shown a consider­

able interest in applying quadratic programming methods for solving portfolio

problems. This thesis considers the solution of quadratic programming problems.

Wolfe [92, 93], Van-de-Panne and Whinston [87, 88], Cottle and Dantzig [18],

Beale [4] kindled the interest and made the initial contributions of the solution

methods for QP problems. With the work of Carpenter et al. [14], Vanderbei

[89], Jones [44], Meszaros [74], Guertler et al. [34] and others, the solution of

large scale QP problems can now be carried out on workstations.

Since the early nineties, portfolio optimisation models of Markowitz have gained

wide acceptance in industry. This in turn has led to the introduction of so­

phisticated extensions which require the use of discrete (zero-one and integer)

variables to represent these problems. The use of discrete variables and discrete

constraints extends the continuous Markowitz problem into a mixed integer pro­

gramming problem. Heuristic techniques such as simulated annealing and MP

based methods typically branch & bound, branch & cut have been adapted to

process this class of QMIP problems. Bienstock [11], Beasley [7], Chang [16],

Guertler et al. [35] describe approaches for the solution of QMIP problems.



1.2 Instances of quadratic and quadratic mixed

integer programming problems

Quadratic and quadratic mixed integer programming problems are special cases

of NLP's and arise in many applications when the objective function is quadratic

and the decision variables are subject to linear restrictions.

In 1959, Wolfe [92] identified the following four typical quadratic programming

problems:

1. Minimum Variance: For a given range of expected returns, the variance of

these returns are minimised [64].

2. Regression Analysis: The least square fit to given data is to be found, where

certain parameters are known a priori to satisfy linear inequality constraints

[30].

3. Efficient production: The profit is maximised with linear production func­

tions and linearly varying marginal costs [22].

4. Convex programming: A convex function is minimised subject to linear

constraints and quadratic approximations [91].

Since then, the different areas have been enhanced and quadratic programming

techniques have become more important. In this thesis the minimum variance

problem applied in finance plays a central role.
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The minimum variance model

This problem, introduced by Markowitz [63] is a classic case of a QP problem and

is referred to as portfolio optimisation. This is the process of analysing a port-

folio and managing the assets within it to obtain the highest return for a given

level of risk or the lowest risk for a certain level of return. The basic portfolio

optimisation theory hinges on the mean-variance (MV) or Markowitz paradigm

explained in [64, 65, 66, 67].

In the model proposed by Markowitz, there are N risky assets each with a mean

return J.Li. The covariance between security i and j is (Jij and (Jii is the variance

of security i.The portfolio weights are Xi and the Markowitz model is stated as

N N

mIn L: L: (JijXiXj (1.2)
i=1 j=1

N

s.t. L: Xi =1 (1.3),
i=1

N

L: J.LiXi =p, (1.4)
i=1

Xi > 0, Vi (1.5)

where p is the desired level of expected return for the portfolio.

The objective function 1.2 minimises the portfolio variance. Markowitz's major

contribution was to postulate that this measures 'risk' which should be minimised.

The constraint 1.3 ensures that the portfolio is fully invested and restriction 1.4

guarantees the level of expected return desired by the investor. It is common

practice to exclude short sales i.e. the investor is not allowed to borrow cash to

build the portfolio. The non-negativity constraint 1.5 ensures that there are no

short sales.
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Furthermore, in this approach it is assumed that none of the assets are perfectly

correlated and also that there are no risk free securities. This ensures a non­

singular positive definite covariance matrix. As the variance of a risky portfolio

is strictly positive, this covariance matrix is also positive definite and hence. the

objective function is convex. As for the linear constraints, they define a convex

set. Thus, the problem has a unique optimal solution presuming that the returns

J-Li are not equal.

Extensions to the Markowitz model

The basic Markowitz model does not reflect the requirements of the real world.

As a result the findings by the continuous MV model are exploited and expanded

towards the needs of industry either by adding 'discrete' variables or diversifying

the data. The main supplementary discrete constraints added to the model are:

• Buy-in threshold constraints: These constraints define the minimum level

at which an asset can be traded. It eliminates the problem where unrealis­

tically small trades can be included in an optimum portfolio.

• Cardinality constraint: To find a manageable portfolio out of a large uni­

verse of stocks with low transaction and taxation costs, it is sensible to limit

the number of unique stocks in the portfolio. The cardinality is implicitly

linked to the Buy-in threshold.

Further restrictions which constrain the basic unit of investment (or roundlot)

or try to match the duration can be introduced. The theory and application of

various restrictions is investigated by Chang et al. [16), Jobst et al. [43].
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Accommodating realistic properties of the portfolio selection process into the

model increases the size of the QP/QMIP problem extensively and thus its com­

plexity. In this thesis, approaches are suggested and computational studies are

performed to overcome the obstacle arising from a realistic portfolio optimisation

problem.

Not only has the mean variance problem been rediscovered but also in the regres­

sion analysis new research directions are pursued since quadratic programming

and discrete quadratic programming problems can now be solved.

The regression model

The problem of regression analysis is to minimise the sum of squares of the

residuals. This approach is very sensitive towards outliers infringing against the

normality assumption. Recently, Camarinopoulos and Zioutas [13] revisted the

idea of the regression model and compare established methods of robust regres­

sion estimation with the modified Mallows-type approach [61] which restricts

the downweight resource. With quadratic programming techniques, the bound

influenced estimates are minimised.

Given n points (Yi, Xli, ... , Xpi) in a p + 1 Euclidean space, the problem is to

solve the weighted least squares curve-fitting problem, finding the estimators

!3 =!31 -!32 with ri, = (!311,!312, ... ,!3IP)T and!32 = (!321,!322, ... ,!32p)T which solve
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the following problem:

n

nun ~ L: (U;2 + 2CWiaEi)
i=I

< Yi,

<E,

i = 1, ... ,n

where Zcuuoe, is the weighted penalty cost associated with the weights uu, C

a tuning parameter and a the standard deviation. u; are the "metrically Win-

sorised" [15]residuals obtained by pulling Yi towards the fitted value by a distance

Ei· The constraint L:~=1 Ei < E limits the pulling resource E. It is shown by Ca­

marinopoulos and Zioutas [13] that compared with other methods it is beneficial

to use quadratic programming techniques to obtain these estimators. Further-

more, the use of mathematical programming allows to perform post-optimality

analysis in respect of the standard deviation a.
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1.3 Multi-objective models

Many real-world decision problems take into account more than one objective.

Typical (multiple) objectives are to minimise risk, maximise reliability: minimise

deviations from a desired level, minimise cost. A multi objective programming

(MOP) problem with conflicting objectives results in different optimal solutions

or a compromised solution. A multiple objective LP is of the form:

MOLP:

s.t. Ax = b

x >0,

where c\ c2
, ... , cr are a set of robjective vectors. In most cases it would not

be possible to find one or more solutions which simultaneously optimise all of

the objectives. Multi-objective problems are usually investigated by optimising

each objective function individually to obtain bounds and then building a single

objective optimisation problem. This combines all the different objectives into

one or entails setting all except one of them as constraints in the MP problem.

Pareto optimality

The optimal solution of a multi objective programming problem is said to be

(globally) Pareto optimal or (globally) efficient or non-dominated or non-inferior

if there exists no other solution that is at least as good in respect to all the ob­

jectives and is strictly better to at least one objective or in other words:

Let x P be feasible to MOLP. Then x P is a pareto-optimal solution to A/OLP if for
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any other feasible solution i, if there is some index k for which ckx < ck xP . there

is another index l for which eli> clx p .

For any class of a multi-objective optimisation decision problem, the concept of

"Pareto optimality" or "efficiency" plays a key role in decision making. In such

cases the decision problem becomes that of computing a set of Pareto optimal

points showing the trade-off between the different objectives.

The following methods can be used to obtain a MOLP solution see Kornbluth

[48], Ignizio [41], Ehrgott [24].

Goal programming

The origins of Goal Programming date back to the work of Charnes, Cooper and

Ferguson [17]. The idea of goal programming is to set goals for the objective

values and try to meet these goals rather than optimise all of the objectives.

Let Zi be set of multiple objective functions which need to be optimised. Then

for each of the z; a goal or target value gi is assigned.

nun ~i(aiut+ 13iui)

s.t. Ax = b

Vi

Vi

where 0i, 13i are penalty terms. If z, - gi < 0 then ut = 0 and ui = -Zi + gi'

In this case, the added constraint was an equality. Depending on which goal tvpe
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constraints are introduced, different objectives are formed. Table 1.1 summarises

the three different categories:

Goal type Goal constraint Goal variable to be minimised

z. < g. Zi - (ut - ui) = gi u7-t _ t t

z. > g. z, - (ut - ui) = gi u·t _ t t

Zi = gi Zi - (ut - ui) = gi + + -u. u.t t

Table 1.1: Goal programming categories

The MOP problem can be restated as a goal programming problem where each

of the objectives has to be verified as a goal constraint. This can be extended

to two-sided bounding of goal values. This is an effective tool for dealing with

inconsistent objectives and constraints. MOP formulated in goal programming

terms is often referred to as elastic programming.

Preemptive goal programming

Preemptive goal programming minimises each constraint in a given priority or-

der, maintaining all previous objective function values while optimising the next

constraint. More specifically, the following four steps are carried out:

1. Prioritise the objectives in to a set order zl, Z2, ... , ZT.

2. Minimise the first objective Zl subject to the original set of constraints and

12



set z; to be the optimal objective value.

3. Add the constraint L7=1 c}Xj < z;, and minimise Z2 including the addi­

tional constraint.

4. Continue adding constraints L7=1 C;Xj < z~ and minimising Zi+l subject to

the original constraints and all of the added constraints until all objectives

are optimised.

This will give a goal-optimal solution. If any of the LPs solve with a unique

optimum, then none of the succeeding objectives are relevant in determining the

solution.

Weighting objectives

Another way of dealing with multiple objectives is to give each objective i a pos-

itive weight ai, and minimise the weighted sum (alcl + ... + arcr)x.

Preemptive goal-programming solutions can also be modelled by weighted objec-

tives, simply by giving weight ai = Ei to objective ci , for sufficiently small t > O.

This guarantees that the objectives will be minimised in priority order.

MOLPa :

r

mm L ai cix
i=l

s.t. Ax = b,

x >0,

13



Pareto-optimal paths

Identifying the set of all Pareto-optimal solutions for a multi objective LP IS

fairly complex, especially when there are several objectives. The Pareto-optimal

solutions form a path in the polyhedron.

Suppose the Pareto-optimal solutions for two objectives el and e2 are of interest.

Assuming that there exist the positive multipliers aI, a2, the set of of optimal

solutions to the LPs are generated by:

max

s.t.

Z = Zl + Z2 = (aIel + a 2e2)x

Ax = b,

x >0,

Since the optimal solution is not affected by the positive multipliers of the ob­

jective coefficients then, without loss of generality, they can be normalised by

a l + a 2 = 1. Thus, the objective function vector will be (1 - ael) + ae2 =

el + a(e2 - c') in the range 0 < a < 1. In this context the parameterised cost

trade-off curves are found, by setting e = el and eA = e2 - c'. Technically the

parameterised cost curve analysis does not give the entire set of solutions, since it

only gives the basic optimal solution associated with a given parameterised cost.
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Figure 1.1: Optimisation of two objectives

In figure 1.1 , graph A) shows the maximisation of Z l, z2, B) gives t heir minimi-

sation whereby C) reflects the trade-off of minimising Z l and maximising Z2 .

These solutions are unique between the bend points in the cost curve. The entire

edge associated with the given pivot will also be optimal for the par ameteri ed

obj ective , or in this case, Pareto-optimal for the given pair of objective. Thu

the Pareto-optimal path is the set of all Pareto-optimal solutions.

Markowitz model viewed as a bi-objective model

The concepts of multi objective programming especially Pareto optimality are of

int rest for the portfolio optimisation problem which is investigat ed in this study.

For implicity, the basic Markowitz model is considered . Observing thi model

from a multi obj ctive point of view there can be two objectives identifi d . Th

two obj t ives for t he investor are to maximise the return and to minimi e th

ri k of th por tfolio. Thus, t he de cribed Iarkowitz model can be wri t n a
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follows:

max

mm

s.t.

N

L /-liXi
i=l

N N
L L aijXiXj
i=l j=l

N

LXi = 1,
i=l

X >0,

The given formulation is a bi-objective optimisation model. The problem can be

solved by applying the given approaches earlier. The commonly used approach

computes a family of parametric quadratic programming problems which traces

out a curve in the risk-return space. If the solutions - risk versus return - are

plotted, it forms the efficient frontier (EF) which is Pareto-optimal. Figure 1.2

c...
:J
Gi
a:

Risk

Figure 1.2: Trade-off between risk and return

visualises the trade-off between the risk an investor has to take to gain a certain

return. The EF is the upper boundary of the minimum variance set which is the

left boundary of the feasible set.
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The mean-variance criterion can be associated with the expected utility approach.

Under the assumption that the future wealth of a portfolio is uncertain. utility

functions are used to rank the random wealth levels. By Luenberger [59], a

utility function is a function U defined on the real numbers representing possible

wealth levels and giving a real value. After the definition of the utility function,

all alternative random wealth levels are ranked by evaluating their expected util­

ity values. In the case of the Markowitz portfolio problem, there are two ways

of applying the expected utility approach to map the mean-variance criterion.

Either a quadratic utility function is assumed or the random returns follow a

normal distribution. Already in 1969, Hanoch and Levy [38] showed that in the

case of a normal distribution the mean variance criterion is valid for the efficiency

criterion for any investor's utility function. Later, a comparative study of utility

functions was done by Kallberg and Ziemba [46] in which they show that choosing

absolute risk aversion indices results in an optimal portfolio. This is regardless of

the functional form and the parameters of the utility function. Thus, by building

a concave utility function, the mean variance approach is justified.

In this thesis, a portfolio is modelled using the MV approach and solved using

MP techniques. The family of portfolios which traces out the efficient frontiers

are then solved. The efficient frontier is computed for the continuous QP and

discrete QMIP using MP based algorithms.
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1.4 Structure of the thesis

This thesis addresses the computational aspects related to portfolio optimisation.

In chapter 2, the mathematical programming aspects that are the foundation for

the subsequent chapters are presented.

In chapter 3, the basic concepts for portfolio planning are stated and its exten­

sions. This leads up to the global model proposed for UBS Warburg. For the

later studies, the test data sets are described which include the QP repository by

Maros et al. [69] and QP/QMIP data sets obtained from the portfolio optimisa­

tion applications.

In chapter 4, an overall description about existing QP solvers are discussed where

in depth the sparse simplex and interior point method are stated followed by

computational experiments of the two solution algorithms. On the basis of these

results, a crossover from IPM to SSX is described. This is followed by a compu­

tational study on the provided data sets of the three solution algorithms.

Chapter 5 gives a description of the existing solution algorithms for discrete prob­

lems and subsequently, a computational study is made. This chapter shows as

well a specialised heuristic for the discrete portfolio problem and results.

In chapter 6, a discussion of the continuous and discrete efficient frontier is pre­

sented. A computational study stating different approaches for the computation

and its results is expatiated.

Chapter 7 concludes the investigations, summarising the thesis and its contribu­

tions.
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Chapter 2

Mathematical programming

Mathematical Programming refers to the study of optimisation problems with

regard to their mathematical properties and formulations. It also includes the

development and implementation of algorithms to solve these problems along with

methodology of testing these algorithms. This thesis investigates NLPs in which

the objective function is quadratic and the constraints linear. These are often

referred to as QPs. The problems can be categorised by the decision variables

used, into discrete or continuous problems. This thesis discusses the discrete

and continuous QP problems which are a special case of constrained optimisation

problems.

In this chapter, a subset of the well understood mathematical problems are defined

and their optimality criteria set out. These results are used in the algorithmic

related sections of this thesis.
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2.1 Convex programming

Convex programming is a class of optimisation problem concerned with the min­

imisation of a convex function on a convex set. For the formulation of the convex

programming problem, the definition and properties of a convex set and function

are defined. The basic concepts for convex analysis are summarised by Rockafel­

lar in [83], Papadimitriou and Steiglitz [81].

Convex analysis

Definition 2.1. A subset C of IRn is said to be convex if

(1 - A)X + Ay E C

forall x E C, Y E C and 0 < A < 1.

Definition 2.2. A function f is said to be convex if and only if

f((l - A)X + AY) < (1- A)f(x) + Af(y)

where 0 < A < 1.

Proposition 2.1. If the function g(x) is concave then h(x) = -g(x) is convex

on C = {x : 9(x) > O}.

Keeping these statements in mind, the convex programming problem can be now

formulated.
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Convex programming problem

The nonlinear programming problem is reconsidered:

min xEXj(X)

where X := {x E JRnlgi(x) = bi; i = 1, ...l; hi(x) > bi, i = l + 1, ... ,m}.

If

1. the objective function j(x) is a convex function and

2. the set X as defined above is a convex set

(2.1)

then the corresponding optimisation problem is known as a convex programming

problem see Luenberger [58], Bertsekas [10].

An important property of a convex programming problem is that a local optimum

solution of the problem is also a global optimum.

The above set X may be considered to be the intersection of m sets In the

following way:

Let

and

Then

X = n·-l Xit- , ... ,m

If ~\i is convex for all x then for our example (NLP) this implies that gi are linear

functions and - hi are convex functions.
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2.2 Optimality conditions and duality

The Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions [50] specify the mathematical prop­

erties of an optimal solution. The first order necessary optimality conditions are

fundamental for many solution methods. For the NLP problems with inequality

and equality constraints and a smooth objective function j(x), the strong local,

weak local and global minimum are defined such that:

Definition 2.3. Let N(x*, 8),8 > 0 be the set of all feasible points in the neigh­

bourhood of x*. Then x* is a strong local minimum if f (x*) < j (x) Vx E

N(x*,8),x i= x*. If j(x*) < j(x)Vx E N(x*,8),x i= x* then x* is a weak local

minimum. If j(x*) < f(x) for all feasible points, then x* is a global minimum.

In the case of a convex objective function and constraints defining a convex set,

there are no local minima since any minimum is a global minimum.

Definition 2.4. Let x* be a point satisfying the constraints of the NLP( 1.1)

and let I' be the set of indices i for which gi(X*) = O. Then x* is said to be a

regular point of the NLP constraints of 1.1 if the gradient vectors V'hi (x*) for

1 < i < l , \7gi(z") for i E ]' are linearly independent.

The KKT necessary conditions for the NLP problem where f, gi, hi are con­

tinuously differentiable functions are:

Proposition 2.2. Let x* be a relative minimum point for the NLP problem 1.1

and suppose :r* is a regular point [or the constraints. Then there is a vector ,\ E E l
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and a vector with f-L E Em with f-L > 0 such that

\lj(x*) + >.7\lh(x*) + f-LT\lg(x*) = 0

f-LTg(x*) = 0

(2.2)

(2.3)

The KKT conditions reflect the complementarity of the variables of the primal

and dual form of the underlying problem. Certain optimisation problems, such

as LP and QP take advantage of the dual form of the given problem. The dual

problem is constructed with the coefficients that describe the original problem,

known as the primal problem and possesses symmetry relations with the original

problem. The duality provides an alternative means of solving the original prob-

lem.

Duality

Consider the NLP problem with linear constraints where e., aj and di , bj are

given vectors and scalars respectively. The function j : lR.n ---t lR. is a convex

continuously differentiable function and X is a polyhedral set. The Lagrangian

function is defined as

l m

L(x, A, f-L) = j(x) + I: Ai(e~x - di) + I: f-Li(a~x - di);
i=l j=l

then the dual function is defined by

(2.4)

and the dual problem is

(2.5)
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The essential duality properties can be summarised in the following way:

• If the primal problem has an optimal solution, the dual problem also has

an optimal solution and the corresponding optimal values are equal.

• In order for x* to be an optimal primal solution and (A*, J-l*) to be an optimal

dual solution, it is necessary and sufficient that x* is primal feasible.rz" >

0, J-lj = 0 for all j tJ. A(x*) and

x* = argminXEXL(x, A*, J-l*).

2.3 Quadratic programming

(2.6)

The quadratic programming (QP) problem is a special case of the convex NLP

problem. The objective function f(x) combines a linear term with a quadratic

form. An essential result of convex analysis is that the minimisation of a con­

vex function subject to a convex constrained set leads to a convex programming

problem. If the quadratic form, given by the matrix Q, is positive semi definite,

then it is convex. Therefore, the combination of the linear term which is a special

case of a convex function and the quadratic term, leads to a convex objective

function. Given a linear (convex) constrained set, this becomes a convex pro­

gramming problem and the KKT optimality criteria apply.

The mathematical formulation of the standard QP problem is:
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QPl:

s.t. Ax > b,

(2.7)

where c, x E }Rn; b E }Rm; A E }Rmxn and Q E }Rnxn is positive semi definite.

However, an earlier form due Wolfe [92], van de Panne and Whinston [87] is the

following quadratic programming representation:

QP2:

1
max cTx - -xTQx

2

s.t. Ax < b,

x >0, (2.8)

The two presented QP problems are both commonly used in the literature whereby

QPl is widely used amongst the interior point researchers and QP2 by the sim-

plex community.

The first order partial derivatives of the objective functions which relate to the

optimality conditions are linear satisfying the KKT conditions and require the

solution of linear equations in non-negative variables. Consequently, most of the

well established approaches for solving LPs can be applied to the solution of QPs.
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2.4 Mixed integer programming

The integer programming (IP) problem is defined by a linear objective function,

linear constraints and discrete decision variables. If all decision variables are

integer, the IP problem is called a pure integer programming (PIP) problem

while if some (but not all) decision variables are discrete, then it is a mixed

integer programming (MIP) problem.

Let N = {I, ... , n} denote the set of indices of all decision variables and N' a

subset of these indices corresponding to the discrete decision variables then the

MIP problem is stated as:

MIP:

nun
n
~c·x·L.J J J
j=l

n

s.t. I: aijXj = b, i = 1, ... , m
j=1

Xj > 0, j = 1, ... , n

j E N
, ,

and integer for j EN; N c N. (2.9)

Note for j E N'; N' = N, the MIP problem is a PIP problem. The set N can be

divided further into the following sets:

E = {I, ... , IE I} Index set for binary variables

I = {lEI + 1, ... , III + lEI} Index set for integer variables

C = {III + lEI + 1, ... , III + lEI + IOI} Index set for continuous variables

N = E U I U 0 Index set for all variables

N' = E U I Index set for the discrete variables 1.V

(2.10)
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A feasible solution x is any vector which satisfies the restrictions of the ~IIP.

Whereby the feasible region is the set of all feasible points; the infimum of all

feasible points yield the optimal solution.

2.5 Quadratic mixed integer programming

The integer programming problem with a quadratic objective function, linear

constraints and some discrete decision variables is known as a quadratic mixed

integer programming (QMIP) problem. The QMIP problem is formulated as:

QMIP:

n n n

min L: CjXj + ~ L: L: qijXiXj
j=l i=1 j=l

s.t.
n

L: aijXj = b,
j=1

j E N

Vi=l, ... ,m

I I

and integer forj EN; N c N. (2.11)

where the index sets are defined in section 2.4 conditions 2.10.

The stated QMIP problem is a integer problem therefore the feasible region is

not a convex set. Thus, the properties of the global optimality for convex pro-

gramming problems cannot be immediately applied.
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2.6 Computational complexity

In the 1970's, the theory of computational complexity was developed by Garey

and Johnson (1979) [27], Horowitz and Sahni (1978) [40]. The described method

attempts to predict the level of difficulty of solving a problem with respect to its

size. A function f(n) for a problem of size n is to be determined which represents

the maximum number of computer operations such as addition, subtraction, di­

vision, multiplication used to solve the given problem. The assumption is made

that each operation is completed in a unit time. This ensures that the solution

time for every instance of a model of size n does not exceed f (n ).

Consider a problem of size n, then the function f(n) is of complexity O(g(n)) if

If(n)1 < clg(n)J

where c is a positive value that is independent of the problem size. The constant

n is determined by the type of the computer processor being used to solve the

model.

The complexity function is linear for O(n), polynomial for O(nk
) and exponential

for O(kn ) where k is a constant.

A given problem is said to be

• P-class if it can be solved in polynomial time and

• NP-class if it is solvable in exponential time.

Another way of describing the complexity is by looking into the reducibility or

transformability of a problem. A problem is known to be
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• PI intractable in polynomial time but could be reduced in polynomial time

to another problem,

• P2 using a polynomial time algorithm

If a problem P is such that every problem in N P is polynomially transformable

to P, then P is referred to as N P-hard which is also known as NP-complete.

Generally, MIP's fall into the class of N P-hard.

If the portfolio problem covers the buy-in, cardinality and roundlot constraints,

the problem increases in size and becomes computationally complex. In 1999,

Mansini and Speranza [62] showed that finding a feasible solution to the portfolio

selection problem with roundlots is NP-complete.
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Chapter 3

Portfolio planning in practice and

the collection of data sets

Portfolio planning is an important problem for the finance industry and has gained

considerable acceptance by (fund) managers in this industry sector. This the­

sis focuses on solving portfolio planning models. In this chapter, the portfolio

planning models are described and data sets taken from real world models are

summarised. These data sets are used in the subsequent chapters dealing with

solving these real world applications.

The first two sections of this chapter describe the mean-variance model and the

factor model. The first model is traditionally used and minimises the risk expo­

sure ensuring a certain level of return. The variance/co-variance which is in this

case the symmetric measure for risk, is decomposed into identified factors result­

ing in the factor representation of the portfolio planning model. The subsequent
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section shows how the portfolio models can be extended to capture the real world

requirements. In the last part of the chapter, an implemented model is presented.

3.1 The mean-variance model

The classical mean variance (MV) model of Markowitz [63, 66] assumes that

there are N risky assets and no risk free asset in the liquid markets. The prices

of all assets are exogenous given within one time period. All markets are liquid.

Furthermore, the portfolios are selected according to the mean-variance criterion

as follows:

MV1:

N N

nun L L (JijXiXj (3.1)
i=I j=l

N

s.t. LXi = 1, (3.2)
i=l

N

L /-LiXi = p, (3.3)
i=l

Xi > 0, i = 1, ... ,N (3.4)

where X E IR N denotes the portfolio weights, /-L E IR
N the return, V E IR

N x N the

covariance matrix with elements (Jij which is positive definite and p the desired

level of return. The objective function ( 3.1) is a quadratic function minimising

the risk of the portfolio subject to the requirement of complete investment ( 3.2)

and that a certain level of return needs to be met ( 3.3). The non-negativity

constraint ( 3.4) does not allow short sales.
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Estimation of data

The estimation of the data parameters is traditionally done using historical data.

This approach calculates the average of returns from a certain time period and

then the covariance is built. Another way of estimating the data uses the Bayes­

Stein estimators [45] assuming that most of the returns of the assets are nega­

tively skewed. Lower partial moments are used and the semi-variance constructed.

By using the Bayes-Stein estimators, it tries to reduce the degree of estimation

error of correlated variables and to eliminate extreme inputs which in turn gives

a lower variation of parameters. Furthermore, the means of the assets are shrunk

towards a global mean. In this study, the focus lies in symmetric risk measures

which guaranties a positive definite matrix in the QP(QMIP) framework.

Diversification

Systematic risk (due to market behaviour) refers to risk which cannot be elim­

inated. The remaining risks are collectively called unsystematic risk which by

diversification can be reduced or eliminated. In order to provide a wide scope of

diversification of a portfolio, it is better to consider a relatively large universe of

stocks. In section 3.3, models are introduced which address some of these short-

comings.

Investors are mainly interested in the risk-return trade-off. This is modelled bv

introducing a parameter A E [0, 1] and putting the budget constraint into the

objective. The MY-model can then be reformulated in the following way:

32



MV2:

N N N

mm ALL aijXiXj - (1 - A) L J-liXi
i=lj=1 i=1

N

s.t. LXi = 1,
i=1

i = 1, ... ,N

(3.5)

(3.6)

(3.7)

This model comprises a composite objective, the minimisation of risk and the

maximisation of the return of the given portfolio. The techniques described in

the introduction can be used to solve this problem and the Pareto optimal path

can be traced out showing the trade-off between risk and return. This line is

called the efficient frontier and is further discussed in chapter 6.

3.2 The factor model

The dense matrix of the quadratic objective in the MV model is from a com-

putational point of view undesirable. The aim is to either reduce the size of

the quadratic matrix or make it more sparse. Sharpe [86] introduced in 1971 a

single index model. This approach was extended by Rosenberg [85] and others;

such that it is assumed that a number of M factors explain a stock's return.

Thus, the return ri for asset i can be split with following the component factor

contributions:
M

r, = (}:i + L /3imfm + ei
m=1

(3.8)

In 3.8, (Ii is the expected value of the specific return of asset i, /3im the sensitivity

of asset i to factor in, fm being the level of the mth factor and e, the random
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component of the specific return; Using this representation of returns, the risk

matrix can be decomposed in the following way

where B is the M x N matrix of factor sensitivities, F is the M x J\J diagonal

matrix of factor variances a"JM' and D is the N x N diagonal matrix of specific

variances a 2 . Exploiting the composition of the covariance matrix, the portfolio

model can be written as follows:

M M N

nun ?=?= f3d3j alij+ L x;a;i
1,=1 )=1 i=1

N

s.t. LXi = 1
i=1

N

L /liXi > p,
i=1

N

f3m = L xif3im
i=1

X· > 0'I, _

m=l, ...,M

i=l, ...,N

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

In comparison to the earlier MV1/MV2 model, the objective function 3.9 is now

a quadratic function minimising the risk which is decomposed into the factor

related and the random risk and additional constraints. This reduces the objective

function to a sum of squares with M +N terms and in turn, M additional variables

and M constraints 3.12 are added. The restrictions 3.11, 3.13 remain the same

as in MV1.
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3.3 Extensions of the portfolio optimisation prob­

lem

The classical Markowitz model does not restrict for instance investment nor takes

into account time lags in trading. The introduced portfolio optimisation model

only restricts the budget and does not allow short sales. Obviously, these restric­

tions don't reflect the reality. In practical investment problems, restrictions are

often imposed either by regulatory authorities or there are internal restrictions in

the firm which are to be respected. Zenios [96], Jobst et.al. [43], Luenberger [59]

amongst others provide a good insight into the possible portfolio optimisation

extensions.

Restrictions can be imposed in various respects:

• Liquidity restrictions:

Typically, this kind of restriction has to be addressed in dynamic models of

portfolio selection in which borrowing and short selling of stocks are allowed

up to a fixed proportion.

• Buy-in threshold constraints:

These constraints define the minimum level at which an asset can be pur-

chased. It eliminates the problem where unrealistically small trades can be

included in an optimum portfolio.

• Upper threshold constraints:

These constraints are similar to the above with the only difference that the

portfolio weights have an upper limit.
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• SectorjIndustry (joint) constraint:

The securities in a portfolio are grouped according to their industry and

sector. With joint constraints the minimum and maximum exposure of a

sector or industry are limited.

• Penalties:

In large portfolio optimisation models not every bound can be met. In case

of breaking the introduced minimum or maximum exposures, respectively

the under- or overshooting is penalised with a defined cost.

• Cardinality constraint:

To find a manageable portfolio out of a large universe of stocks, it is sensible

to limit the number of stocks in the portfolio.

In this thesis the above constraints are used and by all means these are just a

subset of all possible constraints which could be considered. The following are a

number of restrictions which could be added to the initial portfolio optimisation

problem.

• Roundlots

Roundlots are restrictions used to define the basic unit of investment. In­

vestors are allowed only to make transactions in multiples of these roundlots.

reflecting cash or a certain number of stocks.

• Portfolio dedication:

Portfolio dedication matches the cash flow between borrowing and reinvest­

ment. In other words the stream of liabilities needs to be met by holding
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at each maturity a certain amount of investment .

• Portfolio immunisation:

An investment strategy that tries to protect the expected yield from a se­

curity or portfolio of securities by acquiring those securities whose duration

equals the length of the investors planned holding period .

The discussed possible restrictions on a portfolio optimisation model are widely

accepted.
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3.4 Industrial implementation: A discrete port­

folio optimisation model

An industrial strength implementation of a portfolio optimisation model was de­

veloped using the model specification format defined by Northfield System Inc.

[42]. This model includes the requirements given by UBS Warburg.

There are two aspects of the model, namely, (1) index tracking and (2) portfolio

rebalancing.

1. Index tracking

This implies that the portfolio should behave in a way similar to an index

or a given benchmark. The implementation of this technique is achieved by

minimising the 'tracking error' in respect to the mean and co-variance.

2. Portfolio rebalancing

Since the portfolio model is used as a decision tool it is applied to a given

fund at regular time intervals. This means the current asset composition of

the portfolio needs to be 'rebalanced' by buying and selling stocks.

The implementation of the model incorporating the data mart of Northfield Sys­

tem requires as an initial step the definition of the following sets, indices and data

sets. For diversification, each stock in the universe belongs to a certain industry

which in turn belongs to a certain sector. The return behaviour of the stocks on

the other hand are given by a factor model which has at most 22 factors. The

first factor is the reference factor, the next seven belong to an index, the subse­

quent 7 factors are associated with countries and the last 7 are structural. The
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decomposed variance/covariance has the form V = BTFB+D where V E jRNxX,

B E jRMxN, F E jRMxM is a block angular and D E jRNxN is a diagonal matrix.

The explicit representation of the variance/covariance matrix computed through

a regression model has two shortcomings (a) the Q-matrix is dense and (b) the

coefficients may contain numerical errors. The factor model has the benefit of

creating a sparse and compact representation of the objective function. The

solver algorithms, SSX or rPM, are able to take advantage of the sparse factored

form representation of the portfolio variance/covariance and process the model

efficiently. As mentioned in earlier sections, the sparsity plays an essential role

for fast computations using rPM or SSX.

The data mart for the basic structure of the portfolio optimisation model is

endogenous given by Northfield Systems and the following sets, indices and data

tables can be identified:

Sets and indices:

i E I denotes the universe of stocks

j E J denotes the set of industries

k E I{ denotes the set of sectors

i' E I'. denotes the set of stocks which belong to industry j Vj E J
J

i" E I~ denotes the set of stocks which belong to sector k Vk E K

f E ¢ denotes the set of model factors

Data tables:
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b; E R denotes the benchmark weight for stock i E I

ri E R denotes the expected return for stock i E I

o, E R denotes the initial portfolio weight for stock i E I

B denotes the model factor coefficient matrix III x I¢I

F denotes the model factor correlation matrix I¢I x I¢I

D denotes the variance matrix II I x II I

li denotes the minimum weight of stock i in the portfolio

Ui denotes the maximum weight of stock i in the portfolio

lnj denotes the minimum desired exposure for industry j

unj denotes the maximum desired exposure for industry j

lSk denotes the minimum desired exposure for sector k

usk denotes the maximum desired exposure for sector k

l¢1 denotes the minimum desired exposure for factor f

iubI denotes the maximum desired exposure for factor f

lt, denotes the lower threshold value of stock i

uti denotes the upper threshold value of stock i

pt denotes the unit penalty for overshooting the upper bound portfolio weight

for factor f Vf E ¢

PI denotes the unit penalty for undershooting the lower bound portfolio weight

for factor f Vf E ¢

pt denotes the unit penalty for overshooting the upper bound portfolio weight

for industry j Vj E J

P2 denotes the unit penalty for undershooting the lower bound portfolio weight

for industry j Vj E J
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pj denotes the unit penalty for overshooting the upper bound portfolio weight

for sector k Vk E K

P3 denotes the unit penalty for undershooting the lower bound portfolio weight

for sector k Vk E K

c denotes the cardinality

A E [0, 1] denotes a risk aversion coefficient

The decision variables are:

Xi denotes the portfolio weight for stock i

XSi denotes weight of stock i sold

xl, denotes weight of stock i bought

Yj denotes amount of factor f in the portfolio

xoi denotes the amount by which the desired lower bound lcPj is under achieved

xu:; denotes the amount by which the desired upper bound ucPj is over achieved

d:; denotes the range of the portfolio weight Xi

xonj denotes the amount by which the desired lower bound lnj is under achieved

xunj denotes the amount by which the desired upper bound unj is over achieved

dnj denotes the range of the industry Xi'

xokt denotes the amount by which the desired lower bound lkk is under achieved

xuk; denotes the amount by which the desired upper bound Ukk is over achieved

dk; denotes the range of the sector Xi"

6i denotes a binary variable indicating if stock i in the portfolio or not
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The objective function

The given data sets and indices result in the following formulation of the objective

function:

min (- rTx+rTb)(l-A)

2AbTBTF Bx - 2AbTDx

+ AyTFy + AXTDx

+ AbTBTFBb + AbTDb

+ P1xon- + ptxun+ + P"2 x ok- + ptxuk+

+ ptxo+ + P3XU-

(3.14)

(3.15 )

(3.16)

(3.17)

(3.18)

(3.19)

The original objective function has the form rT(x - b) + (x - b)V(x - b) with

V = BFBT + D. Writing the objective function explicitly in its risk component

results in:

2bTBTFBx - 2bTDx

+ yTFy+xTDx

+ bTBTFBb+bTDb

(3.20)

(3.21)

(3.22)

(3.23)

The first terms of ( 3.20) track the index in respect to its return whereby the

remaining terms are index tracking the covariance. The actual implemented

objective function has additional terms considering penalties for over- and under­

shooting of given desired limits and takes as well into account the risk aversion in

the form of the constant A . The objective function can be split up into a linear
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( 3.14), a quadratic ( 3.15, 3.16, 3.17) and a penalty term ( 3.18, 3.19). This

representation of the objective allows a large universe of stocks to be processed.

reduces the size of the quadratic part of the objective and gives insight into the

return and risk of the optimised portfolio.

The constraints

s.t.:

LXi' + xunj - xonj + dnj = unj
i'EF:;

Y/ = LEi/xi Vf E ¢
iEI

Xi + XUi - xot + d; = u; Vi E I

(3.24)

(3.25)

(3.26)

(3.27)

Vj E J (3.28)

Vk E K (3.29)

(3.30)

(3.31)

(3.32)

Vi E I

Vi E I

Vi E I

LOi < C

iEI

x. < ut·O·t _ t t

x. > [t·o·t _ t t

and

d. < u: - l. Vi E It _ t t

Vi E I

(3.33)

(3.34)

(3.35)

(3.36)
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The restriction( 3.25) is present in each of the shown models and ensures that

everything is invested. The rebalancing constraint( 3.24) keeps the balance be­

tween the initial portfolio, the stocks bought and sold and the resulting stocks

held in the portfolio. Together with the positive restriction ( 3.36) it makes sure

that short selling is not allowed.

The buy-in constraints ( 3.31) and ( 3.32) define the upper and lower threshold

for a stock in the universe. These are represented by binary variables and a pair

of bounding restrictions. The introduction of buy-in thresholds enables binary

variables to limit the number of unique stocks in the portfolio by counting the

binary variables and fixing it to a fixed number of assets c.

From an algorithm point of view, the sparsity of the quadratic matrix plays an

essential role and therefore, the restriction ( 3.26) is introduced substituting Ex

in the objective function and adding a new decision variable y. This reduces the

quadratic term of the objective and therefore the computation of the factorisation

of a dense Q is avoided.

Earlier in this chapter, it was shown that diversification of the portfolio is very

important. This is achieved by dividing the universe of stocks into industries and

sectors and applying bounds to the value of the decision variables for the portfo­

lio weight Xi held in different industries (Xii) and sectors (Xi")' The constraints

( 3.27), ( 3.28) and ( 3.29) are responsible for the enforced diversification.

For large models, these tight bounds make the problem harder to solve and in

some cases impossible to obtain an optimal solution. By making the lower and

upper bounds on the decision variables flexible, the problem is solvable to opti­

mality or near optimality. Therefore, elastic or goal constraints are formulated.
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In case of not meeting the limits set by the investor, the so called over or un­

dershooting of the bounds is penalised. Depending on the preferences of the

investor, the violation of these bounds is severe or not and treated accordingly

with different penalties in the objective function ( 3.18, 3.19) .

3.5 Summary of test models

In this section a summary of all the test models which have been collected to

support this investigation are given.

A convex quadratic programming problems repository

This set of models were collected by Maros and Meszaros [69] as benchmark mod­

els to report properties of QPs.

In reality, they are adaptations of NETLIB LP models to which quadratic objec­

tive terms have been added. In this thesis, a subset of 11 benchmark problems

is taken to investigate the properties of different methods. Table 3.1 shows the

dimensions of the chosen problems and where the headings are as described below
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NAME is the name of the problem,

M is the number of rows in A,

N is the number of variables,

NZ is the number of nonzeros in A,

QN is the number of variables associated with the quadratic term,

QNZ is the number of off-diagonal entries in the lower triangular part of Q and

OPT is the solution value (BPMPD solver [74]).

NAME M N NZ QN QNZ OPT

25fv47 820 1571 10400 446 59053 1.3744448E+07

e226 223 282 2578 67 897 2.1265343E+02

fffff80 524 854 6227 278 1638 8.7314747E+05

scfxm2 660 914 5183 74 1057 2.7776162E+07

scfxm3 990 1371 7777 89 1132 3.0816355E+07

scsd6 147 1350 4316 96 1308 5.0808214E+01

scsd8 397 2750 8584 140 2370 9.4076357E+02

shell 536 1775 3556 405 34385 1.5726368E+12

SIerra 1227 2036 7302 122 61 2.3750458E+07

stair 356 467 3856 66 952 7.9854528E+06

standat 359 1075 3031 138 666 6.4118384E+03

Table 3.1: QP model statistics (in *.qps format)
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Test data set of practical portfolio models

The portfolio optimisation model explained in the earlier section of this chapter

are the basis of the alternative data sets supplied by DBS Warburg. The models

dimensions have been carefully chosen so that scale up properties can be studied

and where the headings are as described below.

NAME Narne of the problem

M Number of rows in A

N Number of variables

NZ Number of nonzeros in A

QN Number of variables associated with quadratic terms

QNZ Number of off-diagonal entries in the lower triangular part of Q

BN Number of binaries

OPT Value of the objective function using FortMP

For the later comparisons of different solution algorithms, the following models

are chosen. QPF#n indicates that the underlying problem is a factor model and

QPMV#n shows that it is a mean-variance model. Thus, QPFIOO problem is the

factor model with a stock universe of 100. The formal statement of the models

is given in section 6.2.
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NAME M N NZ QN OPT

QPF50 24 72 436 228 0.19518419

QPF100 24 122 784 278 0.11742109

QPF500 24 522 3960 678 0.86850727E-02

QPF1800 24 1022 8037 1178 -.14128493E-01

QPF4500 24 4522 35641 4678 -.22604763E-01

QPMV50 2 50 100 1275 0.20299250

QPMV100 2 100 200 5050 0.12043239

QPMV500 2 500 1000 125250 0.84802004E-02

QPMV1000 2 1000 2000 500500 -.39287655E-02

QPMV4500 - - - - -

Table 3.2: Model statistics for the continuous portfolio

selection models

Table 3.3 gives the model statistics for discrete factor models either in lambda

formulation (QMIPL) or in p-formulation (QMIPR). Both models of the QMIPL

and QMIPR problem are stated in section 6.3. Depending on the universe of

stocks a different cardinality is associated which is summarised in the next table

Number of stocks 50 150 300 600 1200 1800 4500

Cardinality 3 20 30 30 40 40 40

48



The QMIP problems have the following dimensions:

NAME M N NZ QN QNZ BN

QMIPFL50 125 122 686 72 228 50

QMIPFL150 325 322 1878 172 328 150

QMIPFL300 625 622 3775 322 478 300

QMIPFL600 1225 1222 7746 622 778 600

QMIPFL1200 2425 2422 15606 1222 1378 1200

QMIPFL1800 3625 3622 23352 1822 1978 1800

QMIPFL4500 9025 9022 58141 4522 4678 4500

QMIPFR50 126 122 686 72 228 50

QMIPFR150 326 322 1878 172 328 150

QMIPFR300 626 622 3775 322 478 300

QMIPFR600 1226 1222 7746 622 778 600

QMIPFR1200 2426 2422 15606 1222 1378 1200

QMIPFR1800 3626 3622 23352 1822 1978 1800

QMIPFR4500 9026 9022 58141 4522 4522 4500

Table 3.3: Model statistics for discrete factor models

49



Chapter 4

Solution methods for QP

problems

Because of its many applications, quadratic programming is considered to be an

area of specialisation in itself. Moreover, it forms the basis of several general

nonlinear programming algorithms.

In this section 4.1, first solution algorithms for linearly constrained optimisation

problems with quadratic objective function are described and the first order op­

timality condition is applied to the QP case. The simplex method, the sparse

simplex method and the interior point method are therefore described in sections

c±.3, 4.4, 4.5 respectively followed by a computational study which is reported in

section 4.6. It follows naturally from these results that a 'cross over' step (also

known as basis recovery) from IPM to SSX is desirable; computational investi­

gations of a basis recovery procedure is reported in section 4.7. In section 4.8, a

discussion of the algorithms is given for the continuous portfolio selection model.
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4.1 Solution algorithms for QP problems

In the literature various methods are described for solving quadratic programming

problems. These approaches are usually based on solving the system of equations

derived from the KKT optimality conditions. The following approaches can be

applied to solve a quadratic programming problem:

Gradient method

Common gradient methods are described in Luenberger [58], Golub and Van

Loan [31] and are steepest descent and conjugate gradient. Both are fundamen­

tal techniques that are often incorporated into various iterative algorithms.

Steepest descent is one of the oldest and simplest methods. At each iteration of

steepest descent, the search direction is taken as the negative gradient - gk of the

objective function at the specific point where the descent direction Pk satisfies

g[Pk > O. This inner product is negative if Pk = -gk and also minimises the

inner product for unit-length vectors and, thus gives rise to the name steepest

descent. Steps of the steepest descent method are often incorporated into other

methods (e.g., Conjugate Gradient, Newton).

The conjugate gradient method was originally designed to minimise convex quadratic

functions. The first conjugate gradient iteration is the same as that of the steep­

est descent, but successive directions are constructed so that they form a set of

mutually conjugate vectors with respect to the (positive-definite) Hessian of a

general convex quadratic function. Whereas the rate of convergence for steepest

descent depends on the ratio of the extremal eigenvalues of the Hessian, the con-
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vergence properties of conjugate gradient depend on the entire matrix spectrum.

Faster convergence is expected when the eigenvalues are clustered. In particular,

if the Hessian has m distinct eigenvalues, convergence to a solution requires m

iterations.

The cutting-plane method

The goal of the cutting-plane method is to find a point in a convex set called the

target set or to determine that the convex set is empty. The target set can be

taken as the set of optimal (or e-suboptimal) points for the problem, and the goal

is to find an optimal (or e-suboptimal) point for the given problem. There exists

no direct access to any description of the target set (such as the objective and

constraint functions in an underlying problem) except through an oracle. A query

returns if the point is an element of the convex set or if it returns a separating

hyperplane between the point and the convex set. This hyperplane is called a

cutting-plane or cut; no such point could be in the target set.

Penalty and barrier method

The main idea is firstly to solve a constrained optimisation problem by solving a

sequence of unconstrained optimisation problems, and in the limit, the solutions

of the unconstrained problems will converge to the solution of the constrained

problem. Secondly, an auxiliary function is used incorporating the objective

function together with penalty terms that measure violations of the constraints.

Two groups of classical methods can be identified one being the barrier method

which imposes a penalty for reaching the boundary of an inequality constraint
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and the other being the penalty method which imposes a penalty for violating

a constraint. Barrier and penalty methods solve a sequence of unconstrained

subproblems that gradually approximate the given problem in which an infinite

penalty for violating feasibility is replaced by a continuous function that gradually

approaches the given function. Barrier (Penalty) methods generate a sequence of

iterates that converge to a solution of the constrained problem from the interior

(exterior) of the feasible region.

These methods have been applied to solve quadratic programmmg problems.

However, almost all QP solution algorithms are designed to solve KKT in one or

the other way.
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4.2 KKT conditions and the LCP formulation

for the QP problem

Reconsider problem QP2 and assume that a finite optimum solution exists. Then

the primal dual formulation of the QP problem using the duality theorem can be

stated in the following way:

PQP2:

max fpQP2(X) = cTX - ~XTQx

s.t. Ax + y = b,

DQP2:

x >0,

nun fDQP2(X) = bTV + ~XTQX

s.t. u-ATv-Qx= -c,

U > 0,

(4.1)

(4.2)

where c, x, u E JRn; b, y, v E JRm; A E JRmxn and Q E JRnxn is symmetric positive

semi-definite.

When the objective function f(x) is strictly convex the problem has a unique

local minimum which is also the global minimum. To guarantee strict convexitv

it is a sufficient condition for the quadratic matrix Q to be positive definite.

For this problem the first order necessary conditions are also sufficient for a global
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mmimum. The Lagrangian for the quadratic programming problem is stated as:

(4.3)

where v E ]Rm. Non-negative surplus variables (vector) U E ]Rn and non-negative

slack variables (vector) y E ]Rm are introduced forming the following constraints:

c - Qx - vT A + U = 0,

Ax + y - b = 0.

(4.4)

(4.5)

where I is the identity matrix. Then the KKT conditions for the local maximum

can be formulated such that

c - Qx - vTA + u = 0, (4.6)

Ax +y = b, (4.7)

vT(Ax - b) = vTY = 0, (4.8)

uTx = ° (4.9),

U,V,x,y > 0. (4.10)

The KKT conditions for the system can be summarised as a set of (n + m)

equations in 2(n + m) variables; to which (n + m) complementary conditions are

imposed. The Karush-Kuhn-Thcker conditions for the QP turn out to be a set

of linear equalities and complementarity constraints. The following relationships

are apparent:

• Ij and Uj are complementary for j = 1, ... , n

• Vi and Yi are complementary for i = 1, ... , m
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The LCP formulation

An alternative representation of the QP problem is the so called linear comple-

mentarity problem (LCP).

Consider the linear complementarity problem (LCP).

Find x; s E lRn such that.

- M x + s = q' x > Q. s > Q. x T
S = Q., - , - , ,
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4.3 Tableau simplex for QP

The statement and the convergence proof for the simplex method for QP dates

back to Dantzig and Cottle [18], Wolfe [94]. Subsequently, van de Panne and

Whinston [87], [88] described a comparable simplex (pivotal) method. The re­

sults of these papers can be summarised in the following way. The convex QP

problem is (a) first set up as a tableau based on the system of equations required

to specify the KKT conditions for the primal QP and the dual QP problem and

(b) then this system is solved in non-negative variables and the complementary

KKT conditions are satisfied. A complementary pivoting strategy is used to

tackle the large QP problem.

A number of investigations have used the LCP formulation for the QP problem

and have proposed a pivotal algorithm (principal pivot method, Cottle [18] and

an alternative pivotal sequence, Lemke [54]) to process and solve QP's. Since

these are pivotal methods, they also qualify as simplex approaches.

It is well known that even for relatively small models (100 variables and con­

straints) the tableau simplex method is not very efficient. To illustrate the general

ideas of the simplex algorithm for QP, the simplex method in tableau form is de­

scribed. Conceptually the standard or the non-standard tableau form is used for

solving QP problems. The standard tableau form is given if for each primal vari­

able in the basis its corresponding dual variable is non-basic and a non-standard

tableau if the primal and its dual variable appear together in the basis. However,

both tableaus generate in each iteration the same solution with different pivot
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choices. The main difference between those two tableaus is that within a stan-

dard tableau the symmetryjskew-symmetry is preserved at each stage, whereby

it is not in the non-standard case. Therefore, the non-standard tableau is known

as an unsymmetric tableau.

Consider the QP2 problem and the derived KKT's, a new variable Uo is introduced

to represent the objective function value in the tableau such that

The additional relations which show the linear system of equations and form the

tableau can be written in the following way:

Uo

n m

2fpQP2(X) = L: CjXj + L: Vkbk,

j=l k=l
n m

Ci + L: qijXj + L: akivk, i = 1,2, .. , n

j=l k=l

(4.12)

(4.13)

n

Yi = bi - L: aijXj, i = 1,2, ... , m.
j=l

(4.14)

Also the complementary conditions and the non-negative restrictions must hold.

A given problem is then set up as an initial tableau which has a symmetry and

a skew symmetry property:
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Basic variable Value basic variable

xo -x -v

Uo 0 -cT _bT

U -c -Q -AT

y b A 0

A solution which satisfies the complementarity relationship, and non-negativity

of the solution for the primal variables x, y and dual variables u, v yield the

optimal solution by the KKT conditions. The starting point guarantees the full

complementarity. For the starting point, certain techniques are used for variables

to enter or leave the basis. To enter the basis, the new basis variable is chosen

in such a way that variable x or v has the largest negative corresponding u or

y variable value. And the variable to leave the basis is chosen by selecting the

pivot row such that,

. {aiD. IaiD } aro
Ifll Il ;"\, .. ' 'l E I p rv .. > Cratio, and aij #- cpiv =-.

~~ ~~ a~

where Cratio is the zero tolerance for the ratio test, cpiv is the zero tolerance

for the pivot, aij denotes the (i, j) element of any tableau and j is the column

corresponding to the variable chosen to enter the basis whereby i is an element

of a set of indices I p for the rows in which the primal variable x or y variable is

pivoted.

Van-de Panne and Whinston [88), [87] show that for the standard form the

procedure terminates in a finite number of iterations if degeneracy is excluded.

The standard simplex tableau for the primal method or the dual method starts

with a feasible solution of the primal problem or the dual problem as appropriate.
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Taking into consideration that Q is positive definite, the initial tableau for the

dual method is restated in the table below. The initial tableau for the dual

method is built without drawing any conclusions about correspondence between

dual and primal variables.

Basic variable Value basic variable

u v x y

u -c I _AT -Q 0

y b 0 0 -A I

In the dual method, It has to be considered that the y variable can be a basic

variable which means that the solution is feasible for the dual problem satisfying

the constraints in the DQP2 problem. Since the v variable is not restricted, they

are as well candidates to enter the basis. Therefore, the rules for entering and

leaving a basis are different to the primal method. The variable to enter the basis

is selected among the u-variables, which have negative corresponding x-variables,

and among the y-variables which has a corresponding variable with the largest

absolute value. Whereby the variable to leave the basis is chosen by applying the

following rule:

(4.15)

where

k=
1 Basic variable is introduced in a positive direction

-1 Basic variable is introduced in a negative direction

and where Eratio is the zero tolerance for the ratio test, Epiv is the zero tolerance

for the pivot, aij (i, j) element of any intermediate tableau, j the column corre­

sponding to the variable chosen to enter the basis and i the element of the set of
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indices I D of the rows in which the dual u or v variable is pivoted. The index set

I is partitioned into I p , I D where I = I p U I D and I p n I D = 0

Example

Beale's [4] example, below, is presented to illustrate the set out simplex tableau

rules.

max f(x)

s.t.

(4.16)

The figure 4.1 shows the unconstrained and constrained maximum of f (x) defin-

ing a system of ellipses. Furthermore, the three steps of the iterative process is

illustrated.

2

1

1

"

.... : ... ... ... "
1- ,.,

2

..
,

..
..

Figure 4.1: Simplex steps in the tableau
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The standard tableau form of the problem is

-Xo -Xl 1 -X2 -VI

Uo 0 -6 0 -2

UI i -6 -4 2 -1

U2 0 2 -4 -1

YI 2 1 1 0

Table 4.1: Tableau 1 (standard)

From the tableau above, UI = -6 and according to rule 1 Xl enters the basis

which leads to the next tableau.

-Xo -UI -X2 1 -VI

Uo 9 3 -3 I
2 2

Xl
3 I I I
2 -4" 2 4

U2 -3 I -3 3
2 2

YI i I I 3 I
2 4 2 -4"

Table 4.2: Tableau 2 (standard)

Tableau 4.2 is in standard form and the next variable entering the basis is X2
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-Xo -Ul -Yl -VI 1

Uo 10 -1 2 -1

Xl
5 1 1 1
3 6 3 6

U2 t -2 1 2 -2

X2
1 1 2 1
3 6 3 6

Table 4.3: Tableau 3 (non-standard)

-Xo -Ul -Yl -u2

Uo 11 3 1 1
2 2

Xl
3 1 1 1
2 12 2 12

VI 1 1 -1 1
2 2

X2
1 1 1 1
2 12 2 12

Table 4.4: Tableau 4 (standard and optimal)

The last tableau is optimal.
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4.4 Sparse simplex (SSX) for QP

Sparse simplex (SSX) refers to the representation of the simplex method exploit­

ing the sparsity of the data structure. In the book by Beasley [6], Maros and

Mitra [70] summarised the computational development of the sparse simplex

method applied to LP chronologically in the following way

Year Topic Main researchers

1947 Tableau simplex method Dantzig

1953/54 Revised simplex method Dantzig

Orchard-Hays

Wolfe

1954 Simple upper bound algorithm Dantzig

1967 Generalised upper bound algorithm Dantzig, Van Slyke

1954 Basis factorization and the elimination Markowitz

1971 form of the inverse (EFI) Beale

1971/72 Hellerman, Rarick

1969 Sparse update procedures Bartels, Golub

1972 Forrest, Tomlin

1976 Reid

1975 Presolve procedures Brearley

Mitra, Williams

1965 Composite Phase-I procedures Wolfe

1986 Maros

see next page
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Year Topic Main researchers

1973 Combined price and pivot Harris

choice DEVEX procedure

1977 Steepest edge pricing Goldfarb, Reid

1992 Forrest, Goldfarb

Table 4.5: Chronological summary of the simplex devel­

opment

For LP, the sparse simplex is introduced for problems with a sparse constraint

matrix and for QP if the constraint matrix A and quadratic matrix Q of the

objective are sparse.

The SSX is based on the revised simplex method (RSJ\I). The standard form of

a linear programming (LP) problem is given by the primal dual pair.

Primal linear programming (PLP) problem:

s.t. Ax = b.

Dual linear programming (DLP) problem:

min bT v

S. t. ATr < c.
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where c, x E IRn; b, v E IRm and A E IRmxn.

In the LP case, the following steps are taken to perform SSX

1. Initialise

A starting basis for the primal-dual problem is determined either by the

unit matrix in A or an advanced basis.

2. Factorise

The inverse of the basis B-1 = U-1L -1 is built and then a number of revised

simplex steps are performed.

3. Form price vector

In phase I the solution is infeasible or in phase I I the solution is feasible.

The price form vector is computed depending on the phase.

4. BTRAN

The backward transformation (BTRAN) is used to calculate the simplex

multipliers.

5. Price

The reduced cost of the non-basic variable is observed. If a variable improves

the reduced cost, then it is a candidate to enter the basis. In case of no

improving variable the optimal solution is reached or there is no feasible

solution.

6. FTRAN

The forward transformation (FTRAN) gives the sequence in which the el-
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ementary elimination matrices compute the current coordinates of the cur­

rent basis.

7. Choose pivot

A pivot row is chosen to leave the basis. For phase I and I I different logical

steps are performed.

8. Update

If there was a change in the basis, an update is determined to the basis in­

verse. Only the solution is updated if there was no change in the basis. Step

3 or 2 are the subsequent steps depending on the need for refactorisation.

The SSX for LP and QP is very similar. If the Q matrix of the quadratic problem

is set to zero, this leads to the LP primal-dual problem.

SSX for QP

The sparse simplex method for QP problems follows the identical steps as SSX

for LP which is stated above. The sparse method for the solution of QP problems

goes in this case back to the tableau procedure introduced by Van-de-Panne and

Whinston [88] which is set out in the earlier section.

A fully complementary starting basis is selected in other words each basic variable

has a non-basic variable counter part which guaranties that the starting basis is

fully complementary. It has also the same skew-symmetric properties. The pivot

choice for entering and leaving the basis is according to the rules presented by

Van-de- Pann« and \Vhinston and described in the last preceding sect ion.
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Throughout the major iterations one standard tableau goes over to another one.

However, in the minor steps in which one non-basic basis exchange is processed,

the tableau is non-standard.
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4.5 Interior Point Method (IPM) for QP

In 1984, Karmarkar [47] introduced the interior point method for linear program­

ming problems. Since then, various basic approaches have been introduced which

are summarised in [60], [89].

To solve the convex QP problem, the logarithmic barrier Primal-Dual interior

point algorithm is stated and then extended by applying the idea of predictor­

corrector method which was proposed by Mehrotra for linear programming prob-

lems in [73].

The primal and dual form of problem QP1 can be stated in the following way:

Primal quadratic programming (PQPl) problem:

mm fpQPI(X) = cTx + ~XTQX

s.t. Ax - y = b,

x,y > 0,

Dual quadratic programming (DQPl) problem:

max fDQPI(X) = bTv - ~XTQX

s.t. U - ATV - Q.r = c,

v,U > 0,
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where c, x, u E JRn; b, y, v E JRm; A E JRmxn and Q E JRnxn is symmetric positive

semi-definite.

Consider the primal and dual QP problem, 4.19, 4.20 respectively taking into

consideration the properties and definition of 2.2. A nonnegative vector y for the

surplus variables is introduced. The given primal problem is formulated into a

primal barrier problem by subtracting a barrier term for each of the nonnegative

variables of the PQP problem.

s.t. Ax - y = b, (.J.2l )

The Lagrangian is built and 4.21 becomes

L(x, y, v) = cT
X + >TQx - J1 L loqx, - J1 L logYj + vT(b - Ax + y) (4.22)

j j

The KKT conditions for the barrier problem are obtained by differentiating the

Lagrangian with respect to each of its variables and setting these derivatives

to zero. Removing redundancies from the system of equations built from the

derivatives results in:

Ax - y = b,

-Qx+ATv+u=c

XUe = Me,
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where X, Y, U, V are diagonal matrices whose diagonal entries are the components

of x, y, u, v; respectively. In solving this system of equations, x, Y, u, v is replaced

by x + ~x, Y + ~Y, U + ~u, v + ~v and the following system is formed:

A~x - ~Y = b - Ax + y, (4.21)

-Q~x + AT~v + ~u =c+Qx-ATv-u (4.28)

U~x+X~u+~U~Xe = J.Le - XUe, (4.29)

V~y+Y~v+~V~Ye = J.Le - VYe, (4.30)

The variables ~u, ~y are replaced by

~u = X- 1(J.Le - XUe - U~x),

~y = V- 1(J.Le - VYe - Y ~v),

and the following system can be defined in matrix notation:

X-1U + Q AT ~x

A V- 1y ~v

c - ATV + J.LX -1 e + Qx

b - Ax - J.LV- 1e
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The path following method for QP problems solves this reduced svstem and

performs the following principal steps:

Set initial point (x, y, u,v) > 0

If not optimal

{

Build the right hand side;

Calculate I = uT
X + vT y;

Calculate the barrier parameter j.L = {)~;

Solve

Calculate /}.u, /}.y;

Calculate step length 8:

c - ATv + j.LX-le + Qx

b - Ax - j.LV-1e

})

- l
/}.~ /}.~ /}.~ /}.~ .

8 = r (max ij {---, ---, --.,---. 1\ 1,
Xj Yj vJ uJ

X f---- X + 8/}.x; v f-- v + 8/}.v;

Y f-- Y + 8/}.y; U f---- U + 8/}.u;

}



The stopping criteria of the interior point method is determined by a small dual­

ity gap which is linked with the complementarity. For a srnall y which translates

into a small duality gap, the computation is stopped. The reader is referred to

Maros [68], Vanderbei [90].

The interior point method is in fact the repeated application of the Newton step

solving a nonlinear system and gives the solution of a symmetric system of lin­

ear equations. The iterative process solves either a 'normal equations system' or

an 'augmented system'. In the normal equation approach, the Newton equation

system is processed by pivoting and Cholesky factorisation. In the augmented

system approach, the analysis and the factorisation of the symmetric indefinite

system is carried out dynamically. In other words, the pivots are chosen tak­

ing into consideration both, the sparsity and stability of the triangular factors.

The number of iterations is nearly invariant of the model size. In normal cir­

cumstances, there are no more than 100 iterations. As in the simplex method,

the sparse representation is an issue and determines which of the two forms is

appropriate.
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4.6 Computational study: IPM versus SSX

For the computation of the results for IPM as well as SSX, the following hardware

and software was used:

CPU: Pentium III, 700 MHz,

Memory: 128 MB RAM,

Compiler: Digital Fortran, MS C,

Solver: FortMP.

The next table shows the comparison between IPM and SSX using the problems

described in table 4.6.

IPM SSX

Number Value of Time Number Value of Time

of IPM objective [sees] of SSX objective [sees]

iterations function iterations function

25fv47 36 1.3744E+07 34.16 13776 1.3744448E+07 246.64

e226 16 2.1265E+02 0.74 922 2.1265343E+02 0.84

fffff80 25 8.7315E+05 2.77 919 8.7314746E+05 1.67

scfxm2 39 2.7776E+07 1.56 1640 3.0816354E+07 4.28

scfxm3 91 3.0816E+07 4.32 87 1.8805096E+03 0.32
II

scsd6 11 5.0808E+Ol 0.85 810 5.080821--1E+Ol 1.1--1 I',I

see next page
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IPM SSX

Number Value of Time Number Value of Time

ofIPM objective [sees] of SSX objective [sees]

iterations function iterations function

scsd8 10 9.4076E+02 1.72 1726 9.4076357E+02 4.71

shell 35 1.5726E+12 1.79 722 1.5726368E+12 1.2

SIerra 19 2.3750E+07 1.31 2576 2.3751139E+07 4.2

stair 30 7.9855E+06 1.92 544 7.9854528E+06 0.91

standat 15 6.4118E+03 0.68 384 6.4118384E+03 0.35

Table 4.6: Computational results: IPM versus SSX

Table 4.6 shows that the interior point method performs overall faster than the

SSX method. The fast convergence and good computation time makes the interior

point method a desirable algorithm for methods that need to solve continuous

problems. The solution produced by IPM is optimal but not a basic solution

where for SSX it is a basic optimal solution. Thus there is reasonable cause to

study the cross-over from the interior point solution to a basic solution using the

simplex method. The implementation and a computational study is performed

in the next section.
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4.7 IPM to SSX crossover (XO)

The advances applied to linear programming methods made it competitive and

attractive to practitioners in respect to computational time and problem size. As

a consequence of the increasing demand for solutions to QP problems resulting

from portfolio optimisation, regression analysis, etc., researchers within the OR

community tried to enhance the QP solvers profiting from the LP ideas such as

advanced basis, cross-over, basis recovery.

Solution algorithms such as conjugate gradient, cutting plane methods, KKT

based methods are known. However, the quadratic programming problem is

mostly solved using the interior point method or sparse simplex method. In the

case of the solution of a family of QP problems e.g. such as computing the ef­

ficient frontier, methods based on advanced basis restart give a high speed up.

The solution of the interior point method however gives only an optimal solution

which is usually not a basic solution. Applying a cross-over procedure gives an

optimal basic solution which can be used in the framework for the solution of a

family of QP problems.

Levkovitz et.al. [56] performed a computational investigation of the combina­

tion between IPM and SSX for LP solvers. A basis recovery technique is used

to obtain a restart basis from the interior point method in order to cross over to

the sparse simplex solver. As in linear programming, the performance of IP:\I
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for QP problem is much better for medium to large sized problems. However.

the solution of IPM may not be basic. In order to use this solution for further

computations, typically sensitivity analysis, restart, for the repeated use (efficient

frontier) in general mixed integer programming , etc. it is necessary to recover

the basis and" crossing over" to a pivotal algorithm. Based on the earlier study

of IPM versus SSX for QP problems and the desirable speed ups achieved with

the LP cross-over, a technique for the cross-over from an interior solution to a

basic solution is theoretically investigated and then implemented in the FortM P

solver. In this thesis, the rPM solution is used to identify the restart basis which

can be used as an advanced restart basis for SSX.

In the LP case, Megiddo [72] introduced a strongly polynomial algorithm. Berke­

laar, Jansen, Roos, Terlaky extended these ideas for QPs and LCPs and pre­

sented theoretically a strongly polynomial basis identification algorithm for QP

and LCPs for sufficient matrices in [9].

The set of optimal solutions of PQP1 ( 4.19) and DQP1 ( 4.20) can be charac­

terised by maximal complementary solutions and the corresponding tripartition.

The tripartition is defined by the set {B, N~ T}

- B:= {i : Xi > 0 in at least one solution x},

- N:= {i : u, > 0 in at least one solution u},

- T:= {l, ... ,n}\(BUN).
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and is denoted by 7r := {B, N, T}. A maximally complementary solution (x, u)

is a solution for which

Xi > 0 {::} i E B; u, > 0 {::} i E N

the existence of such a solution is a consequence of the convexity of the optimal

sets of PQP and DQP. McLinden [71], Giiler and Ye [36] showed that such a

maximal complementary solution is generated by the interior point method.

The basis identification (BI) algorithm starts from a complementary solution

and has two general phases. The first phase consists of diagonal and exchange

pivoting, the basic variables with value zero are replaced by the nonzero non­

basic variables. In the second phase, the set B is reduced iteratively by using the

orthogonality property of the tableau, and if necessary some principal pivots are

performed. This continues until B is empty.

The implementation of the cross-over from an interior point solution to sparse

simplex method is employed. A set of initial variables a., ~i are given by IPM.

Additionally, it is assumed that the initial vectors ~, a for the given problem are

complementary with corresponding tri-partition 7r = {B, N, T}. Given the matrix

AI = [0, A; -AT, -Q] with the elements mij and the initial values ~o = ~,ao = a

with the initial tri-partition 7r0 = {BO, N°, TO} then the following principal steps

performed for the crossover:
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Major cycle:

for B j =1= a and a j > a
{

Choose{k E Bj}

if mkj =1= a/\ l E Tj U Bj

if k = l /\ mkl < a
Diagonal pivot:

j .
ak leaves the basis and ~~ enters the basis

==? Bjreduces by one

else

k /\ mkk = a/\ mkl =1= 0

Off diagonal pivot

exchange pivot on pair(k, l)

at, a/leave the basis

~t, ~/ enter the basis

==? Bjreduces by one

else

Minor cycle:

for Bj =1= 0

{

1. Choose arbitrary k E Bj corresponding to a non-basic ~~

JB is the set of basic indices and JN the set of nonbasic variables

t(k) is a vector which is the column of the corresponding tableau

with Tki the coefficients of B

2. Get corresponding t(k)i

Tki if i E JB

-1 if i = K

o if neither

3. Eliminate one of the positive values in~Bj oraNj

Since the one element of tk is nonzero, the corresponding element

in (~j, aj) is positive. The positive ~Bj are eliminated by'
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((~j, a
j
) + 1Jt(k))' 1J is an appropriate scalar obtained by a ratio test

if Ej reduces by one index and Nj remains the same

=> Then update t», Nj, Tj,~, a, j ---+ j + 1

and start the minor cycle again

else

Nj reduces by either one or more indices

=>Leave minor cycle and start major cycle again

j ---+ j + 1 and start the minor cycle again

}

j---+j+1

Update Ej, Nj, Tj,~, a

}

The presented cross-over technique is implemented within the FortMP frame-

work and the following results were obtained using the same platform as before:

Number Time Value of Number Total

ofIPM [sees] objective ofXO time

iterations function iterations [sees]

25fv47 36 34.16 1.3744E+07 12423 226.98

e226 16 0.74 2.1265E+02 1068 1.29

fffff80 25 2.77 8.7315E+05 1522 4.34

scfxm2 39 1.56 2.7776E+07 1444 3.26

scfxm3 91 4.32 3.0816E+07 2154 8.31

scsd6 11 0.85 5.0808E+Ol 886 1.71

scsd8 10 1.72 9.4076E+02 2018 6.39

see next page
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Number Time Value of Number Total

ofIPM [sees] objective ofXO time

iterations function iterations [sees]

shell 35 1.79 1.5726E+12 1127 7.82

SIerra 19 1.31 2.3750E+07 1457 3.56

stair 30 1.92 7.9855E+06 533 2.42

standat 15 0.68 6.4118E+03 108 0.77

Table 4.7: Computational results of IPM to SSX cross-

over

From the table above, it can be seen that there are hardly any improved solution

times. The enthusiasm about improving the solution times by implementing a

cross-over is not proven. Implementing more advanced techniques for crashing

an advanced basis for SSX can be done but due to the very good performance of

SSX it is doubtful that for any problem a crash routine would be useful. This

does not imply that a desirable improvement with an advanced basis would be

unsuccessful for all classes of problems. Therefore, further research can be done.
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4.8 Computational study for the continuous port­

folio selection problems

The following computational study shows the results using first sparse simplex.

secondly the interior point method and lastly the cross-over to solve the factor

models using the problems stated in table 3.2.

NAME Iterations QPSSX time Total time

QPF50 64 0.00 0.00

QPF100 117 0.00 0.01

QPF500 528 0.30 0.34

QPF1000 1016 1.17 1.20

QPF4500 4102 45.02 45.14

Table 4.8: Computational results for factor models using

SSX
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NAME Iterations QPIPM time Total time

QPF50 10 0.00 0.02

QPF100 10 0.00 0.01

QPF500 12 0.11 0.11

QPF1000 16 0.42 0.42

QPF4500 26 9.33 9.36

Table 4.9: Computational results for factor models using

IPM

NAME Total number of IPM QPXO Total

iterations(IPM) time time time

QPF50 55(9) 0.03 0.05 0.06

QPF100 55(9) 0.02 0.05 0.05

QPF500 53(11) 0.11 0.36 0.44

QPF1000 172(15) 0.44 2.23 2.78

QPF4500 4180(25) 9.64 19.63 63.42

Table 4.10: Computational results for factor models us­

ing XO
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The tables 4.8, 4.9 and 4.10 show the computational results solving the QPF

problems with SSX, rPM or XQ. The results suggest that rPM is the best algo­

rithm for large problems whereas SSX is better for smaller problems. It is for the

user to decide which solver to apply, rPM or SSX depending on the size of the

problem.

As mentioned earlier, there are two portfolio models considered for the com­

putation. Due to limitations of the computer capacity as well as limits on the

computational time frame, the QPMV4500 is not computed.

The following tables describe the results for QPMV problems using SSX, rPM

and XQ.

NAME Iterations QPSSX time Total time

QPMV50 68 0.02 0.02

QPMV100 121 0.05 0.08

QPMV500 525 10.91 11.70

QPMV1000 1012 163.16 167.22

QPMV4500 - - -
Table 4.11: Computational results for MV models using

SSX
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Iterations QPIPM time Total time

QPMV50 9 0.03 0.03

QPMV100 8 0.05 0.06

QPMV500 8 7.67 7.95

QPMV1000 14 232.92 234.22

QPMV4500 - - -

Table 4.12: Computational results for MV models using

IPM

NAME Total number of IPM QPXO Total

iterations(IPM) time time time

QPMV50 40(8) 0.02 0.03 0.03

QPMV100 58(7) 0.06 0.09 0.13

QPMV500 109(7) 8.05 14.09 22.66

QPMV1000 286(13) 238.13 317.69 425.59

QPMV4500 - - - -

Table 4.13: Computational results for MV models using

XO
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From the above results for the MV models, it can be seen that the computation

of the mean variance model follows a similar behaviour as the factor model.

However, the dense quadratic covariance matrix is computationally challenging

for both IPM and SSX and in respect of computation time and size, it is for

neither of the algorithms desirable to compute the MV problem with a universe

of 4500 stocks.

The main difference between the factor problems and the MV problems is the

speed up property of the factor model. Therefore, the factorisation does not only

payoff from the analysis point of view it also produces results much quicker.

From a practical point of view, a fast computation is eligible particularly for

back-testing, sensitivity analysis.
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Chapter 5

Solution methods for QMIP

problems

The classic portfolio selection model is expressed as a quadratic programming

problem in continuous variables. Including realistic restrictions which involve

discrete decisions expands the QP problem to a quadratic mixed integer pro­

gramming problem.

The computational aspects of integer (discrete) linear programmmg program­

ming are challenging and their solution algorithms have been studied extensively.

Quadratic mixed integer programming (QMIP) are natural extensions of the

mixed integer programming (MIP) problems and show some common algorithm

structures. Section 5.1 gives an overview about existing methods for solving dis­

crete linear programming. In this thesis, the main focus is on problems with

quadratic objectives. The solution methods for QMIP problems which are based

on MIP approaches are discussed in section 5.2. In section 5.3 a branch and
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bound method for quadratic mixed integer programming problems is described.

In the subsequent section 5.4, a customised approach for the discrete portfolio

planning problem is developed and investigated which can process large models

efficiently. A detailed computational study using the discrete portfolio model

collection is given in section 5.5

5.1 Mixed integer programming: An analysis of

algorithms

The success of the simplex method for linear programming problems and its adop­

tion within solution methods for mixed integer programming problems are closely

related. In the early research of solving mixed integer programming problems the

focus lay in finding a general method to solve any mixed integer programming

problem to optimality. Later heuristic methods have been introduced which are

able to find quickly discrete, feasible but often suboptimal solutions; in general

heuristic methods do not adopt well to prove optimality.

Exact methods

The term exact method refers to an algorithm which is guaranteed to solve a

given problem to optimality. Exact methods include cutting plane techniques.

enumerative techniques and partitioning algorithms.

In the cutting plane technique, a current and integer infeasible solution is cur off
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by adding constraints. The first to introduce this method were Dantzig, Fulkerson

and Johnson [20]. The latter method was for the special case of the travelling

salesman problem. In 1963, Gomory [32] developed a formal theory of cut­

ting planes and described a convergent algorithm which processed general integer

programming problems. Because of (a) slow convergence and (b) no solution is

available until the final step, the cutting plane method was initially unpopular.

Recently, Mitchell [75], Balas et al. [2] extended the cutting plane theory and

developed an advanced cutting plane method.

An alternative to the cutting plane method is branch and bound which is an

implicit enumeration technique introduced by Land and Doig [51]. The branch

and bound method uses the solution space property of an IP which is a finite

number of possible integer feasible solutions. All integer feasible points of the

IP may be potentially enumerated. Obviously searching all the feasible points

is computationally expensive. Therefore, only a fraction of the feasible points

are enumerated which, for a bounded problem, is called implicit enumeration e.g.

branch and bound.

Branch and bound follows the idea of divide and conquer. In other words, the

solution space is partitioned and smaller sub-problems are solved and then the

solutions are combined. Little et.al. [57], Balinski [3], Beale [5], Mitten [78], Mi­

tra [76] are among the first researchers to introduce the branch and bound (B&B)

method.

The partitioning method was proposed by Benders [8] for mixed integer pro­

gramming methods. The method divides the problem into a (continuous) linear

problem and a pure integer problem. Applying the duality theory, the parti-
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tioning algorithm solves a LP, calculates an extreme point. This gives an lower

bound for the mixed integer programming problem and solving the pure integer

programming problem gives an upper bound. The optimal solution is found when

the two bounds coincide.

In the last 20 years, hybrids of these methods have become more and more im-

portant. One of the most promising approaches is the combination of the cutting

plane with the branch and bound algorithm for instance see Crowder and Pad-

berg [19]. This approach has the benefit of cutting plane yet the branch and

bound framework makes it possible to obtain feasible integer solutions at an in-

termediate stage of the search process.

5.2 Quadratic mixed integer programming solu-

tion algorithms

The solution methods for QMIP problems with discrete and continuous variables

are essentially extensions of MIP solution algorithms, since the solution space has

the same structure only the objective function is quadratic.

The quadratic mixed integer programming problem without distinguishing be­

tween the various types of integer variables the problem can be stated as

n n n

nun L: ejxj + ~ L: L: qijXiXj
j=l i=lj=l

s.t.
n

L: aijXj = b,
j=l

Xj > 0,

i = 1, ... , m (5.1)

/ I

j E N and integer forj EN: N C s.
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In general, outer approximation method, Benders decomposition and the branch

and bound method are proposed and investigated as exact approaches for the

solution of QMIP problems. Additionally, a few heuristic methods have been

proposed.

The Branch&Bound method

Initially, Land and Doig [51] proposed the first branch&bound (B&B) routine

and later Lawler and Wood [52] gave a survey of branch and bound methods.

The B&B approach is to divide the feasible region, to solve over the smaller spaces

and then to put the results together. Garfinkel and Nemhauser [28] argue that

B&B does not require linearity of the objective function. Gupta and Ravindran

[37] implemented for mixed integer non-linear programming problem a B&B rou­

tine. By observing the behaviour for the implemented algorithm, they discovered

that the solution time increases linearly with the number of integer variables as

well as the number of constraints in the model. In 1985 a branching heuristic was

proposed by Korner [49] aiming to choose the branching variables in an order

which minimises the size of the tree. A LP/ QP based branch and bound method

is reported in 1972 by Quesada and Grossmann [82].

Bienstock [11] presents in 1996 a branch and cut algorithm for QMIP problems

with an upper bound on the number of positive variables. The given branch

and cut algorithm computes one round of cutting at each node and using the

'node' strategy to choose the next node to branch on. From all variables not yet

branched on, the one furthest from its bounds is chosen as the next branching

variable.
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Benders decomposition

A further important exact method is the Benders decomposition [8]. The original

minimisation problem is decomposed into a minimisation over the so called com­

plicating variable and a minimisation over the decision variable of an LP problem

parameterised in the complicating variables. The LP is dualised and correspond­

ing master problem is obtained. The derived problems are solved using relaxation

techniques. In 1972, Geoffrion [29] generalised the Benders decomposition tech­

nique for convex functions.

Lazimy [53] exploits the ideas of the Benders decomposition for a class of mixed

integer quadratic programming problem. In his approach, assumptions about

the rank of the Hessian matrix are made with the consequence that the rvIIP

problems are not included. It is shown by Flippo and Rinnoy Kan [26] that the

Lazimy's method is based on inaccurate interpretations of the Benders Decom­

position. They then give the correct Benders decomposition for QMIP problems.

Outer approximation

The outer approximation approach proposed first by Duran and Grossmann [23]

is similar to the Benders decomposition. The main difference is that instead of

searching for the dual representation of the NLP, first order necessary conditions

are employed. The obtained optimal solution for a sub-problem provides a point

for the generation of the supporting hyper-planes. Fletcher and Leyffer present

in [25] an outer approximation routine for mixed integer non-linear program­

ming problems and show results. Difficulties arising due to the non-convexitv are

overcome using heuristics.
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5.3 A Branch&Bound framework for QMIP prob­

lems

The B&B method for QMIP problems is a tree search approach. The tree is

developed by branching on discrete variables thus partitioning the solution space

and bounding the objective function value. Since most of the linear :0.IIP and

QMIP problems are such that their integer variables are restricted to take binary

values, the description of the B&B method is limited to QMIP problems with

binary variables 6i k .

Every tree has a root node Po which gives the entire state space S = So and sub­

sequent nodes are referred to as sub-problems P, and represent smaller partitions

Sj C S. Therefore, every node corresponds to a sub-problem which is linked to

its parent sub-problem. Any parent problem I{ is associated with two subprob­

lems Pj and Pj +1 . These nodes and their associated sub-problems (continuous

quadratic programming relaxation) (Pj ,Pj +1 ) are created by setting a variable

8i k currently taking fractional a value to its lower and upper bounds (0 and 1)

respectively.

The branching process can be viewed in the following way:
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Figure 5.1: Branching process in a QMIP problem

where k is the tree depth, PN the current problem, PL the left branch (Px plus

Ojk = 0) and PR the right branch (PN plus Ojk = 1). Therefore Pj and Pj +1 are

the finite search spaces of 5j = {5k j } n {Okj = O} and 5j +1 = {5k j } n {Okj = I}.

At any level of the tree, all the unsolved nodes are 5. It ensures that the optimal

solution over 5 is equal to the optimal solution in one of the smaller sub-spaces

5 i . The optimal solution over 5 is as well the minimum of all the sub-sets values.

The solution process of a node requires usually solving the quadratic program­

ming relaxation dropping all the integrality constraints. If no feasible solution at

a node occurs, then the node investigation is terminated. While if the solution

of the continuous quadratic programming relaxation of a sub-problem is integer.

the value of the objective function of this sub-problem is set as an upper bound

for all the remaining sub-problems or is found to be sub-optimal. Furt lu-rmon.

the optimal solution to the continuous quadratic programming relaxation gin's a

lower bound on the objective function value of the subsequent sub-problems.

The sub-problems with a lower bound on the objective function exceeding the

value of the remaining node's objective value are excluded from the branchiuc

process. This procedure is pursued until the best integer feasible solution .unougs:
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the eligible nodes in the search tree is found.

In the whole process of branch and bound, there are two important choices to

be made. Firstly, the choice of the next node which is the next sub-problem

to be solved. Secondly, the choice of the fractional variables which are used for

partitioning.

An explicit statement of the B&B algorithm can be found in Nemhauser and

Wolsey [79], Bertsekas [10], Nwana [80]. The solution process for branch and

bound has six principal steps. Let L denote the list of active subproblems {I pi},

where I pO = I P denotes the original integer program corresponding to the state

So· Zi denotes a lower bound on the optimal solution of the value of I Pi (usually

the optimal objective value of the relaxation of subproblem i), and ZIP denotes

the incumbent objective value (representing the current best integer feasible so­

lution). The B&B is stated below:

1. Initialisation

Set L = 0, Zo = -00, ZIP = +00

2. Termination test

If the list of the uninvestigated nodes is empty, the last stored node is

optimal.

3. Node(Subproblem) Selection

Select and delete active subproblem I pi from L

Solve the continuous quadratic programming relaxation of I pi to obtain
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the optimal objective value z; for the optimal solution, Xi (if it exists)

4. Bounding

If z, > ZIP goto step 2

If Zi < ZIP and the solution Xi is integer feasible, then update 2IP = z, and

delete from L all problems, I pj with zj > ZIp. Go to Step 2

5. Branching (Partitioning)

Divide the finite search space S, into smaller search spaces Sj and Sj+1 such

that s, n Sj+1 = s; Add the problems I r, and I Pj + 1 to L. Go to Step 2

6. Exit and report of solution

If ZIP = +1 then no feasible solution else Optimum integer solution is ZIP

end if

The described procedure of the branch and bound algorithm can be extended by

more advanced node and variable choice strategies (Nwana [80]).
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Analysis of the algorithm: Dual and its importance

An important aspect of the success of the B&B algorithm is that by applying

basis restart and the dual method a family of models are rapidly invest igated.

For instance: PI, P2 , P3 , P4 are all child problems of Po and can be efficiently

Figure 5.2: Family of a QMIP problem nodes

processed by applying the basis restart from the parent. Further advantage is

obtained by applying the dual simplex since every sub-problem after branching is

primal infeasible but dual feasible. The importance of this feature is illustrated

by the summary information in respect of M 1PL1B models given by Maros [70],

Nwana [80].
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5.4 Heuristics and investigation of B&B search

for QMIP problems

The branch and bound procedure as such performs well in finding an initial

(good) solution. For relatively large models a heuristic refinement of the B&B

search procedure was investigated to get a solution for the industrial portfolio

optimisation problem stated in section 3.4. This heuristic is only applicable to

the given class of portfolio model.

A three step procedure is followed to solve the problem in less computational

time than solving the problem with a conventional solver. The three steps of the

refined B&B heuristic are described below:

Step 1:

The discrete variables and the corresponding discrete constraints are relaxed

(dropped) and the reduced continuous QP model is solved. This yields a

limited set of non-zero portfolio weights and is referred to as the "QP"

model.

Step 2:

A subset of choices is made by filtering out all portfolio weights less than

a certain amount in the QP run. To this reduced model the related binary

variables 6i , threshold constraints and the cardinality constraints are added.

A first integer solution is found by the procedure "Priority UP" which

means in effect that 6i's are selected and fixed to 1, one by one, until all

have been fixed and the cardinality constraint is satisfied.In general. a loss
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of feasibility is encountered but since the investigated model is formulated

as a goal programm feasibility is kept.

Step 3:

A more general approach is used, fixing 6/s to zero as well as to 1 but

the algorithm starts with the integer solution already known from step 2.

Subproblems with optimum solution values above a bound are abandoned

and continuing the solution process an improved integer solution is found.

Model Alternatives

The entire procedure is strongly affected by the number of investments chosen by

filtering. A smaller filter leading to a larger selection requires longer to solve but

the solution found may be better. The filter is chosen by analysing the achieved

portfolio weights by solving the continuous portfolio selection problem and de­

pending on the users preference, a filter is applied cutting off relatively small

portfolio weights.

In the results tabulated below, three different filters are used and the six corre­

sponding runs are given.

QMIP 1.1 and QMIP 1.2

step 2 and 3 with a filter small enough to cover 1705 investments selected bv the

QP run.

QMIP 2.1 and QMIP 2.2

steps 2 and 3 with a filter selecting 1267 investments
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QMIP 3.1 and QMIP 3.2

steps 2 and 3 with a filter selecting 899 investments.

Computational Platform

Runs were carried out using the following hardware and software:

CPU: Pentium III, 700 MHz,

Memory: 128 MB RAM,

Compiler: Digital Fortran, MS C.

The general statistics of each problem solved are given below in table 5.1:

Model Number Number Number Number Filter

type of of of of value

variables constraints binaries non-zeros

QP 19187 19177 - 90034

QMIP 1.1 12077 10404 1705 48323 0.0000001

QMIP 1.2 12077 10404 1705 48323 0.0000001

QMIP 2.1 9011 7776 1267 36148 0.00012

QMIP 2.2 9011 7776 1267 36148 0.00012

QMIP 3.1 6435 5568 899 25889 0.00027

QMIP 3.2 6435 5568 899 25889 0.00027

Table 5.1: Model statistics of the discrete portfolio opti­

misation models
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The filter value in table 5.1 is used to truncate every value below from the contin­

uous solution. The lower the filter value is the more assets will be in the discrete

portfolio optimisation model.

Model Value of Return Risk Penalty Number of Total

type objective relative to relative to value selected time

function benchmark benchmark stocks [sec]

QP 5.1825064 0.00086 0.00003 5.18334 1719 319.83

QMIP 1.1 5.1828622 0.00076 0.00028 5.18334 150 1681.88

QMIP 1.2

1 integer 5.1828603 0.00083 0.00035 5.18334 142 3342.65

3 integer 5.1828514 0.00082 0.00033 5.18334 146 3485.40

QMIP 2.1 5.1828512 0.00077 0.00028 5.18334 150 783.18

QMIP 2.2

1 integer 5.1828509 0.00081 0.00032 5.18334 127 1265.43

3 integer 5.1825432 0.00081 0.00031 5.18334 129 1362.71

QMIP 3.1 5.1828561 0.00073 0.00025 5.18334 150 382.29

QMIP 3.1

1 integer 5.1828560 0.00080 0.00032 5.18334 126 530.08

3 integer 5.1828461 0.00081 0.00031 5.18334 128 585.34

Table 5.2: Results using QMIP models and breakdown

of objective functions
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The chosen, original problem has nearly 24000 variables of which 4571 are dis­

crete. Attempting to solve this problem with branch and bound takes more than

10 hours. Therefore, the described heuristic is a necessary tool to obtain in a

reasonable time frame a good solution. Table 5.2 shows the total time taken to

solve the three models as well as the different values associated to risk (relative to

benchmark), return (relative to benchmark) and penalties of the portfolio. The

best risk and return level is achieved by the continuous model with its 1719 stocks

in the portfolio. However, one requirement of the model is to have at most 150

stocks in the portfolio.

By choosing different filter values the stock universe is reduced to three levels.

The comparison of the three models shows that by taking a small filter value

good risk and return values are achieved within an hour. The larger filters values

give the same risk and return though gaining less and taking more risks than the

portfolio with 1719 stocks.
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5.5 Computational study for the discrete port­

folio selection model

In this section, two different strategies for solving QMIP problems are compared.

• Strategy 1: The tree is searched until the first integer feasible solution.

• Strategy 2: The tree is searched for 10 integer feasible solutions or 50000

nodes are evaluated.

In the next two tables, the two strategies are applied to the data set.

Value of Number of Branch Total

discrete iterations and Bound time

obj. function (nodes) time [sees] [sees]

QMIPFL50 1.2648329 138 (3) 0.03 0.05

QMIPFL150 0.2884729 404 (20) 0.28 0.34

QMIPFL300 0.1988575 846 (30) 1.11 1.34

QMIPFL600 0.1707010 1622 (30) 2.86 3.73

QMIPFL1200 0.1486922 4473 (40) 17.78 25.13

QMIPFL1800 0.1903924 7331 (40) 43.34 62.83

QMIPFL4500 0.2098827 15294 (40) 335.03 585.81

QMIPFR50 118.30733 133 (3) 0.03 0.05

QMIPFR150 32.913636 405 (20) 0.27 0.28

QMIPFR300 32.634988 696 (30) 1.08 0.34

see next page
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Value of Number of Branch Total

discrete iterations and Bound time

obj. function (nodes) time [sees] [sees]

QMIPFR600 19.831407 1300 (30) 4.91 5.73

QMIPFR1200 18.945271 2533 (40) 16.41 19.47

QMIPFR1800 16.470851 4043 (40) 39.08 49.55

QMIPFR4500 13.268292 8518 (40) 304.83 440.30

Table 5.3: Computational results for discrete factor

model using strategy 1

Value of Number of Branch Total

discrete iterations and Bound time

obj. function (nodes) time [sees] [sees]

QMIPFL50 0.68604190 24949 (11726) 33.44 33.45

QMIPFL150 0.24580903 603147 (50000) 377.08 377.16

QMIPFL300 0.17313613 1916305 (50000) 1192.69 1192.97

QMIPFL600 0.14288833 133026 (3254) 256.22 258.16

QMIPFL1200 0.090443132 4112809 (50000) 30548.01 30571.92

QMIPFR50 69.852319 22339 (10744) 36.03 36.06

QMIPFR150 28.436833 59569 (29178) 175.06 175.13

see next page
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Value of Number of Branch Total

discrete iterations and Bound time

obj. function (nodes) time [sees] [sees]

QMIPFR300 20.519690 11548 (2896) 42.09 42.32

QMIPFR600 19.665274 131240 (50000) 1399.72 1400.19

QMIPFR1200 15.831303 1634129 (50000) 19297.97 19306.33

Table 5.4: Computational results for discrete factor

model using strategy 2

In the second strategy, the tree search is terminated after 10 integer solutions

are found. In the table above, the tree search for each of the problems was

not always completed. It stopped after reaching 50000 nodes regardless of the

number of feasible integer solutions. The tree of QMIPFL50 and QMIPFR50 was

completely searched to optimality without finding 10 feasible integer solutions or

exceeding 50000 nodes.

The two tables 5.3 and 5.4 compared to show that the objective value of strategy2

to strategy1 is improved by a factor of approximately 1.2 except for Qf\IIPR50

and QMIPL50 where it is a factor of 1.77.
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Chapter 6

Investigation of the continuous

and discrete efficient frontiers

The efficient frontier represents that set of portfolios that has the maximum rate

of return for every given level of risk, or the minimum risk for every level of

return. Following the discussion of section 1.3, the efficient frontier is a Pareto

optimal curve of the two objective functions maximising return and minimising

risk.

In section 6.1, the background to the efficient frontier is given in respect of

the initial definition as well as the underlying discrete or continuous portfolio

optimisation problem. Section 6.2 shows different methods for the construction

of the continuous efficient frontier. The discrete case of the efficient frontier is

discussed in section 6.3.
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6.1 Background

Markowitz defines an efficient asset or portfolio of assets to be efficient if no other

asset or portfolio of assets offers higher expected return with the same or lower

risk with the same or higher expected return. The set of all efficient portfolios are

used to plot the efficient frontier. The slope of the efficient frontier curve decreases

steadily as one moves upward. This implies that adding equal increments of risk

moving up the efficient frontier results in diminishing increments of expected

return.

Luenberger [59] describes the set of points of a portfolio as the feasible region or

feasible set (see Figure 6.1) which is convex. If the investor allows short selling the

feasible region is enlarged though the properties of a convex set do not change.

I Minimum variance point I

Risk

Figure 6.1: Feasible set of all efficient portfolios
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The boundary of the feasible set is called the minimum variance set where the

minimum variance point marks the turning point from risk averse to risk prefer­

ring investors. The upper part of the minimum variance set defines the efficient

frontier of the feasible set giving the risk averse investor the best mean-variance

portfolios. The efficient frontier marks the minimum variance portfolio on the

left side and on the right side the maximum return portfolio.

6.2 The continuous efficient frontier (CEF)

~odel statements

In this section of the chapter, the main focus lies in continuous portfolio optimi-

sation and the computation of the continuous efficient frontier (CEF). In chapter

3, a mean-variance (MV) model as well as a factor (F) model are described and

in the following study the following two basic models are pursued.

QP~V

N N

mm L: L: (J"ijXiXj (6.1)
i=1 j=1

N
(6.2)S.t. L: Xi = 1,

i=1

N
(6.3)L: J-LiXi = p,

i=l

Xi > 0, i=l, ... ,N (6.4)

where X E lRN denotes the portfolio weights, J-L E lRN the return, \/ E JR N x N the

covariance matrix with elements (Jij which is positive definite and p the desired

level of return.
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QPF

M M N

nun ?=?= 13i13jaJij + ?= x;a;i
~=1 J=1 ~=1

N

s.t. LXi = 1,
i=1

N

L f-LiXi > p,
i=1

N

13m = L Xi13im
i=1

m=l, ...,M

i=l, ...,N

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

where M is the number of factors, 13im the sensitivity of asset i to factor m, 13m

the portfolio's factor sensitivities, af
2 the factor variances and a 2 the random

m e1

component of the specific variance. Throughout the whole chapter, these are the

basic models which are extended later by introducing discrete variables.

Computational algorithm

The theory of the efficient frontier is a straight forward approach in which at every

point of the EF a QP or QMIP problem is solved. Traditionally, the desired level

of return is varied between its maximum and minimum value and each individual

QP problem is solved. The solution is an efficient point and the set of all such

points span the efficient frontier. This method is suitable for small problems but

for larger problems it is too time consuming.
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In order to speed up the procedure, warm-start techniques can be exploited.

Originally, each of Pk points on the efficient frontier need to be computed. Ob-

Figure 6.2: Restart techniques for CEF

viously, the first few points PI, ..., P IO are computationally cheap since the port­

folio optimisation problem is very close to an LP problem. In the case of "real"

quadratic problems the computation time by itself is efficient but solving a family

of QP problems makes it computationally expensive. The implemented approach

solves the initial point PI and saves its basis. Then it is used as an initial solu­

tion for the subsequent point P2 . This procedure is performed throughout until

solving for point Pi:
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The continuous efficient frontier (CEF)

The performed study is based on two different portfolio optimisation models. The

factor model (QPF) minimises risk subject to a certain level of return and the

risk matrix exploits the decomposition of V. As mentioned earlier, with this ap­

proach the quadratic terms are reduced and the constraint matrix becomes more

sparse. The MV model (QPMV) is the standard Markowitz model.

The following table visualises the universe of stocks used to perform the studv.

Number of stocks 10 100 500 1800 4500

QPMV Model X X X X -

QPF Model X X X X X

The computation of the continuous efficient frontier is done in various ways. Two

of them are described in the previous section. The computational study focuses

on SSX and its advances using restart. The following table shows a comparison

of the different ways of computing the CEF with 100 points.
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CEF (SSX) CEF (SSX-Restart) CEF (IP~I)

Number of Total Number of Total Number of Total

NAME iterations time iterations time iterations time

QPF50 2756 1.15 53 0.98 1480 1.63

QPFI00 5372 1.77 103 1.53 1361 2.29

QPF500 25486 15.67 519 9.20 1689 17.60

QPFI000 39809 52.05 1041 21.73 2012 63.33

QPF4500 169946 1961.29 5541 375.21 2525 11--13.10

Table 6.1: Computation time of CEF for QPF models

From the table above, it is obvious that using the advance basis restart speeds

up computation. The advantage of using IPM becomes redundant as soon as

the efficient frontier is built with the advanced basis technique. In the case of

QPF4500, the computation of one point on average (advanced basis restart) took

3.7 seconds compared with the computation of one singe problem of QPF4500

using IPM took 9.36 seconds.
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6.3 The discrete efficient frontier(DEF)

~odel statements

The two models used for the computation of the discrete efficient frontier (DEF)

originated from the described industrial implementation and are given in its di­

mension in table 3.3.

The study in the previous section showed that the factor model is desirable for

implementation of large scale portfolio selection. Therefore, two different models

are given

Q~IPFR

M M N

nun L L (3i(3j C7Ji· + L x; C7~i (6.10)
. 1· 1 J. 1'1,= J= '1,=

N

s.t. LXi = 1, (6.11)
i=l

N

L l1ixi > p, (6.12)
i=l

N

(3m = L xi(3im m = 1, ... ,M (6.13)
i=l

N

L 6i < c, (6.14)
i=l

Xi < uti6i, i=l, ...,N (6.15)

Xi > lti6i , i = 1, ... ,N (6.16)

Xi > 0, i=l, ...,N (6.17)

where c is the cardinality and lu, uti are the lower and upper threshold for asset

i. The variable 6i is a binary variable indicating if stock i in the portfolio or not

which is reflected in the cardinality constraint 6.14. This constraint is associated

with the buy-in restrictions 6.16, 6.15 that put lower and upper bounds on the
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portfolio weights.

In the next model the two objectives are combined in one, minimising the risk on

one hand and maximising return on the other.

QMIPFL

nun

s.t.

M M N N

-\(?= ?= 13i13jCJJij + L xTCJ;J - (1 - -\) L J-liXi
1,=1 )=1 i=1 i=1

N

LXi = 1,
i=1

N

13k = L Xi13ik,
i=1

(6.18)

(6.19)

k = 1, ... ,K (6.20)

(6.21)

i=l, ... ,N (6.22)

i = 1, ... ,N (6.23)

i=l, ...,N (6.24)

where -\ is a constant in the interval [0, 1]. By varying the value between zero

and one, the points on the efficient set are traced out.

Discontinuities of the DEF

The efficient frontier with discrete variables does not have the same properties as

the CEF. The discrete efficient frontier (DEF) exhibits discontinuities in which

the selected portfolio would be inefficient. In case of a discontinuity in the effi-

cient frontier, the chosen portfolio depends on the investor's preference.
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Example

In order to visualise discontinuities of the DEF, the example with four assets given

by Chang [16] is revisited. The given data set was investigated by Horniman [39].

Considered is a portfolio selection model with a universe of 4 stocks. To construct

the DEF, the portfolio selection model is built by setting the cardinality' C = 2.

QMIPC

N N

mm L: L: (JijXiXj (6.25)
i=1 j=1

N

s.t. L: Xi = 1, (6.26)
i=1
N

L: J-LiXi > p, (6.27)
i=1

N

L: 6i < C (6.28)
i=1

x. < ut'6' i=l, ...,N (6.29)
'/, - '/, '/,

x: > it·6· i=l, ...,N (6.30)
'/, - '/, '/,

Xi > 0, i=l, ...,N (6.31)

S, = 0 or 1 i=l, ...,N (6.32)

The computation of the DEF is processed by gradually changing p and it is shown

in Figure 6.3, 6.4. The DEF begins at curve MEF 1-3 and continues until the

tangency with curve MEF 2-4 is found. At the tangency to the lower curve the

smoothness in the increasing gradient is maintained but some efficient points are

missmg.
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Figure 6.3: DEF: A four stock example
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Figure 6.4: DEF: A four stock example (expanded)

117



Computational algorithm

The strategy for the computation of the discrete efficient frontier is sirnilarlv per­

formed to the CEF. During the first computation of Q~IIP problem both, the

binary and the 'continuous' basis is reported. In the subsequent stages either

both are used or just one of them. Naturally, using both the binary and the

Figure 6.5: Restart techniques for DEF

continuous basis to warm start the following QMIP problem should achieve the

same solution though faster.

The discrete efficient frontier (DEF)

The discrete factor portfolio planning model can be written in two different form-.

There is on the one hand the factor model (QPL)using the lambda formulation

combining the two objectives of a portfolio optimisation in one object in' min­

imising risk and maximising return. While on the other hand, there is the factor

model (QPR) which minimises risk subject to a certain level of return. Sin((\ this
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section is dedicated to the discrete efficient frontier, in the two continuous fac-

tor models (QPL and QPR) cardinality as well as buy-in constraints are added.

Thus, the given factor models become the two quadratic mixed integer program-

ming (QMIPFL and QMIPFR) problems.

The following table gives the universe of stocks with the chosen cardinalities

for the various factor models:

Number of stocks 50 150 300

Cardinality 3 20 30

From the table below, the computation of the DEF using either with or without

restart is shown.

-

DEF without restart DEF with restart

Number of iterations Total time Number of iterations Total t ime

QMIPFR50 3588943 3475.27 355396 2580.13

QMIPFR150 59883797 37336.11 8075805 ')'n-J <r_ •• , .. I

QMIPFR300 127933358 110560.8 18267631 I H)ll.()~

.~--_.-

Table 6.2: Computation time of DEF for QMIPF models

Comparing the two different methods, one can clearly' see that computing the

DEF with restart does better.
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Chapter 7

Discussion and conclusions

This thesis is concerned with the modelling of portfolio optimisation problems

presented in the Markowitz MY framework. Therefore its main focus is the

solution of the quadratic and quadratic mixed integer programming problems.

7.1 Summary of contributions

Portfolio optimisation models

In chapter 3, a family of real world portfolio optimisation problems are intro­

duced; these models include buying and selling of assets for portfolio re-balancing

and also (market index) benchmark tracking. Other features of the model ;[1"('

the sector and industry groupings which are used to create realistic rest rirtion­

by such categories. This approach provides exogenous control in respect of divrr­

sification. The constraints are presented in an elastic (goal) programming form

which makes the model fairly amiable to tuning.
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Solution method for QP models

Out of the many alternative algorithms for solving QP problems, sparse simplex

and the interior point method are investigated (see chapter --1). The compu­

tational study shows that the implementation of a crossover between IP~ I and

SSX could be of advantage especially taking into consideration the computation­

ally encouraging results reported by Levkovitz et.al. [55] and others in respect

to crossover for LP problems. A crossover routine is implemented and negative

results are reported which show that there is little advantage of IP~I to SSX

crossover compared to straight application of SSX.

The three approaches SSX, IPM and XO are applied to the test models which

include Maros et.al [69] and our continuous portfolio planning models (QPF

and QPMV). The study shows that the computational time for the factor hnscd

portfolio planning model (QPF) is superior to the full variance/covariance matrix

(original) Markowitz model (QPMV).

Solution methods for QMIP models

The actual industrial portfolio model investigated in this thesis is a discrete port­

folio planning model in which the discrete constraints, that is cardinality and

thresholds are considered. The branch and bound based algorithm for Q?\IIP

problems is developed in depth. It is shown that (a) use of basis rr-st art to pro­

cess a family of models and (b) use of dual algorithm enhance the pro('('ssing

speed. The scale up property of this discrete programming problem is reported

as a heuristic. For these large scale NP-hard models under considerat ion it IS

121



not possible to complete the full search for the discrete optimum. However. the

results presented show encouraging scale up property in respect of good solutions

which are obtained rapidly (see chapter 5.

Computing the efficient frontier

The computation of the continuous efficient frontier can be easily achieved by

simply reapplying the QP solver. However, for large scale models using the basis

restart technique allows the processing of the family of models efficiently again

with good scale up property (see chapter 6).

The consideration of discrete constraints allowing a more realistic model change

the appearance of the efficient frontier. For the discrete constrained efficient fron­

tier problem, there are two contributions. First, it is identified how the lambda

formulation leads to a missing portion of the frontier. Then by using integer

restart, dominated solutions are eliminated. Thus relative efficiency of the dis­

crete feasible solutions is achieved. The computation of the discrete efficient

frontier are performed using two QMIP methods - standard B&B and B&B

with restart. These are contributions to current research in portfolio selection.
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7.2 Research challenges and future directions

The discussed portfolio planning model uses symmetric risk measures. Recently.

semi-variance, conditional Value-at-Risk are brought forward as risk measures for

a portfolio. Attempting to solve the portfolio planning model with a universe of

5000 stocks using asymmetric risk measures implies the solution of a non-linear

model. The investigation of these problems would be challenging. Furthermore.

the mean-variance approach can be generalised introducing multiple chance con­

straints. The formulation of the uncertain return in form of chance constraints

results in a model with linear or quadratic objective functions and quadratic

(or more general non-linear) constraints. The solution of such models provide

ambitious research problems.
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