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Two-dimensional zero curvature conditions with special emphasis on conformal 
properties are investigated in detail and the appearance of covariant higher order 
differential operators constructed in terms of a projective connection is eluci- 
dated. The analysis is based on the Kostant decomposition of simple Lie algebras 
in terms of representations with respect to their “principal” SL(2) subalgebra. 

I. INTRODUCTION 

The construction of covariant differential operators in terms of projective connections (i.e., 
quadratic differentials with a Schwarzian derivative as an inhomogeneous term in their trans- 
formation law) has attracted a certain amount of interest for some time in the investigation of 
the integrability properties of nonlinear dynamical systems. The fact that Mobius invariant 
differential operators expressed in terms of the Schwarzian derivative was employed in Ref. 1 
in a general recursive construction (see also Refs. 2 and 3 for a review). 

More recently, aiming at a clarification of the relation between integrable systems and 
conformal field theory, the issue of the construction of such covariant differential operators in 
relation with W algebras has been addressed in Refs. 4-6 based essentially on the arguments of 
Drinfeld and Sokolov.’ 

Among other things it was the appearance of structures of integrable hierarchies in the 
matrix model formulation of two-dimensional gravity which has led to a strong belief that deep 
connections. between integrable models and two-dimensional conformal field theories should 
exist, calling for reconciliation of integrable hierarchies with conformal structures. 

Already some time ago Gervais and Neveu pointed out a close analogy between the 
Virasoro algebra and the second Hamiltonian structure occurring in the description of the 
Kortewegde Vries (KdV) hierarchy equation.*-” This observation was generalized subse- 
quently to the supersymmetric case” and further pursued in Ref. 12. 

More recently, relations between the SL(2) zero curvature formulation of integrable sys- 
tems and the anomalous Ward identities for the energy-momentum tensor have been proposed 
in Refs. 13 and 14, along with a generalization to the corresponding SL(n) construction and 
its possible interpretation in terms of conformal Ward identities of W, gravity. 

In this paper we study, in a rather elementary way, two-dimensional zero curvature con- 
ditions with special emphasis on the issue of conformal covariance. As is well-known, the basic 
object in the context of two-dimensional conformal structures is the Beltrami differential which 
serves to parametrize inequivalent conformal structures in a globally well-defined way. As 
such, it is clear that the Beltrami differential plays an important role in string theory, respec- 
tively, conformal field theory where it couples to the energy-momentum tensor. 

For these reasons it will be the central object in our analysis as well. Our demarche is 
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straightforward and to a large extend self-contained. In a first step, in Sec. II, we review in 
some detail the case of SL(2) from our point of view. We assign conformal properties to the 
gauge potentials such that holomorphic coordinate transformations are included in a concise 
way. The notion of Schwarzian derivative and projective connection is shown to arise in a very 
natural way in this setting. 

In Sec. III we investigate the general case, using the Kostant decomposition of simple Lie 
algebras:15 the generators are arranged in representations with respect to the “principal” SL( 2) 
subalgebra. The conformal covariance of the complete zero curvature structure written in this 
basis is then established by means of the assignment of conformal properties in the SL(2) 
subsector, as defined in Sec. II. In each representation, labeled by SL( 2) spin s, occuring in this 
decomposition, the gauge potentials are constraint such that just two conformally covariant 
entities remain: one at lowest weight, which generalizes the Beltrami differential and one at 
highest weight, a W primary field of spin s+ 1. We then point out how the higher order 
covariant differential operators arise through an explicit recursive procedure. 

In Sec. IV, as an illustration of the general discussion we present the example of SL( 3) in 
some detail, making contact with earlier investigations13.‘4 and extent our methods to discuss 
then the infinite dimensional wedge subalgebra of w, + m along the same lines. 

In Sec. V we proceed with OSp( 112) as a supersymmetric example, which is in a rather 
obvious way the generalization of the SL(2) construction, given the Beltrami parametrization 
of the corresponding superspace geometry.‘6P17 

II. SL(2) GAUGE STRUCTURE AND CONFORMAL COVARIANCE 

Consider the differential one-forms 

R=mkLk, (2.1) 

in two dimensions which take their values in the Lie algebra of SL(2), i.e., 

[Lk,LIl=(k--I)&+[, (2.2) 

for the values k,l= - 1,0,-i- 1. The mk are differential one-forms in two dimensions, parame- 
trized as follows: 

mk=dz mzk+dTmk. (2.3) 

6auge transformations are defined as 

m =gag- ’ +gdg- 1, (2.4) 

where g=g(a-,a’,a+). With these definitions the covariant field strength takes the form 

F=d&-RR=FkLk, (2.5) 

with coefficients 

F”=dmm+l mkm’al+km, 

and summation over repeated indices is understood. In some more detail we have 

F-‘=dm-‘+m-‘m’, 

p=dm”+2m-‘m+‘, 

(2.6) 

(2.7) 

(2.8) 
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820 G. Akemann and R. Grimm: Zero curvature conditions and conformal covariance 

We impose the zero curvature condition 

Fk=O, 

(2.9) 

(2.10) 

and identify 

m-‘=$=dz+dTpCLf. (2.11) 

This choice assigns conformal weight - 1 to m -’ and triggers the conformal properties of 
m” and rn+l as well. First of all, requiring the conformal weights of the various terms in the 
zero curvature condition to match correctly leads us to parametrize 

m”=X=dzXZ+d.TXi, (2.12) 

and 

(2.13) 

In this notation the zero curvature conditions take the form 

(2.14) 

dx + 2pZA, = 0, (2.15) 

d/l,-ila=O. (2.16) 

Due to the constant term in the definition of $, the quadratic terms in the first two 
equations actually contain linear pieces. As a consequence, the coefficients xi and /2, can be 
expressed as 

Xi= (a.z+Xz)Pi, (2.17) 

~~=CL~~,+~~=(ar+Xr)~CL;--~~=. (2.18) 

Finally, substituting for xz and & in the third equation yields, with very little algebraic 
effort 

wL+kQz-&?xz) =2/2~~;+~,laiz,+~(~=-x,)a,(a,+x=)~~. (2.19) 

In the light of the analysis presented so far, it is suggestive to establish conformal covari- 
ante in requiring that xr transforms as a gauge potential under holomorphic changes of 
coordinates z-w(z) such that c?,+x= acts as a covariant derivative on ,uU~ [recall here the 
special SL(2) gauge transformation of parameter o”, i.e., gcao)rn-’ = m-l exp( + a’), 
g(a”)mO = ,o _ &o, 8(a”)m + 1 = m+ 1 exp( - cf’)]. In more explicit terms, we assign transfor- 
mation laws 

Wf w z 
l-b =zpi, (2.20) 

and 
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XW=f 
( 1 

xz-$ 9 (2.21) 

with primes attached to w denoting derivatives with respect to z. Moreover, /2, transforms as 
a quadratic differential, i.e., 

(2.22) 

As is well-known,” given this transformation law for xr the combination 

(2.23) 

transforms as a projective connection, i.e., 

%w=&? hzz--sAw)h (2.24) 

with the Schwarzian derivative, 

SAW+& (S)‘, (2.25) 

as inhomogeneous term. 
At this stage, a simple reshuffling of terms in the third order covariant derivative appearing 

above allows to establish the identity (as a simple example of more general structures1Y315) 

(2.26) 

This shows in particular that in the final zero curvature equation only the combination 

A,=2&+rZ, (2.27) 

of the “projective connection” rru and the quadratic differential il, appears such that we are 
simply left with 

(2.28) 

We have thus shown that the third order differential operator 

acts covariantly on tensors of conformal weight minus one, provided A, transforms inhomo- 
geneously with a Schwarzian derivative. The disappearance of xZ corresponds to a special 
SL( 2) gauge transformation of parameter 2a+ = 
of a Miura transformation.3 

-xn which, when acting on 1, has the form 

Observe that the same differential operator appears also in the second Hamiltonian struc- 
ture of the KdV equation. 

As to possible relations between the anomalous conservation equation of the energy mo- 
mentum tensor in two-dimensional conformal theory and the KdV hierarchy we refer to Refs, 
13 and 14. 
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Here we wish to point out shortly, that the structures presented so far can be easily 
generalized such that a consistent Becchi-Rouet-Stora (BRS) differential algebra can be de- 
rived geometrically, in imitation of the gauge and ghost field geometry of Yang-Mills theory. 

The prescription consists in enlarging the space of differential forms considered so far, in 
taking into account geometrically ghost fields, i.e., 

p=p=+cz, g=x+c, ~z=n,+cz, (2.30) 

and defining the generalized exterior derivative d=d+s. The zero curvature conditions in this 
enlarged setting then read 

i$F+p;=o, (2.31) 

&+2j&=o, (2.32) 

czz-~~=o. (2.33) 

Going through this set of equations at ghost numbers one and two allows, first of all to 
express the dependent variables and to show that the ensuing BRS differential algebra closes on 
pi, c’, and A, in the following simple way (see also Ref. 18): 

(2.34) 

~?=-?a#, (2.35) 

SA,= m4az+az- A,+A~,I~. (2.36) 

This completes the parenthesis on the geometrical BRS structure pertaining to the SL( 2) 
zero curvature condition. 

In closing we stress that the discussion of this section is based on the identification of the 
SL(2) gauge potential m-' with the Beltrami differential p’=dz+dz;LL~, soldering SL(2) 
gauge transformations with holomorphic coordinate transformations. Then, as a consequence 
of the covariance of the zero curvature conditions, xZ is absorbed in a redefinition of il, leaving 
as independent fields pi, covariant of conformal weight minus one and Am which transforms 
as a projective connection. 

III. SOME GENERAL CONSIDERATIONS 

The following discussion is based on the fact,” that the generators of any simple Lie 
algebra Q can be arranged in representations with respect to the principal SL( 2) subalgebra. In 
this basis it is convenient to note the generators with a double index according to the SL(2) 
spin and its third component. At spin a + 1 we have 2a + 3 generators Wk with range of indices 
restricted to 

a>O, and -a-- l<k<a+ 1. (3.1) 

The commutation relations are then defined as 

(3.2) 

and we identify the basic SL(2) at a=O, i.e., PO= Lk with commutation relations as defined 
in the preceding section. As to the remaining commutators we shall use the convention _6> 1 for 
underlined indices. We parametrize 
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[J@!,,@l=--a-(_bJ)ti-1, (3.3) 

w%@l=-I@, (3.4) 

I w”,,,@l= -a+@,0 *+I, (3.5) 

with appropriate structure constants (T- (_6,1) and (T+ (_b,l). 
The values of SL(2) spins occuring in this decomposition depend on the structure of the 

particular Lie algebra, they are given in terms of the Lie algebra exponents.15 A glance at the 
table of exponents (for instance in Ref. 19) shows that a given spin occurs just once, except for 
the case of SO(4N) where spin 2N- 1 occurs twice. For example, in SL( 3) only a =O,l, i.e., 
spins one and two contribute, whereas G2 exhibits a=0,4, i.e., spins one and five. In the 
decomposition of SO( 8) spins one and five occur once whereas spin three occurs twice. 

We propose here to study zero curvature conditions for Lie algebra valued gauge potentials 
pertaining to this particular decomposition of the Lie algebra G. We define the corresponding 
one-forms 

n=wp$ (3.6) 

where summation over the full range of indices is understood, with 

w,k = dz wZok + d.i? wFak. (3.7) 

The corresponding curvatures, 

(3.8) 

are now explicitly given as 

F,m =dw,m -;w,kw;c$ ,“. (3.9) 

It is instructive to display separately the field strengths for the values c=O and c=g> 1, 
namely, 

Fm = dwm - kwkw’6 0 0 0 0 &-km- ;w~w;cff o”, - - (3.10) 

and 

F~~=dw~~+mw~w~+w~1w~~~1a~~,m+1)+w~1w,”~1a+~,m-1)-fw,kw~~~~. -- - 
(3.11) 

At c=O we see that additional contributions may appear compared to the pure SL(2) case. 
It is nevertheless possible to assign consistently conformal weights and maintain conformal 
covariance very much along the same lines as before. We identify 

WO -‘=,u”=dz+dT,u,“, 

w;=x=dzxZ+dYXi, 

(3.12) 

(3.13) 

WO +’ =&=dz /2,+dT&. (3.14) 

For pf, xn and AZ we require the same transformation laws as established in the pure SL(2) 
case. A consistent scheme is then obtained if the wj transforms covariantly with weight k. 
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In the next step we impose the covariant zero curvature conditions 

F;=O, (3.15) 

together with the covariant constraints 

w,=dFwFak+dz w~~+&+~. 

In other words we parametrize wi such that 

(3.16) 

and we define 

W  zak=O, for --_a--l<k<g, (3.17) 

a+l- WZf -W(g+z) . (3.18) 

The qg+2) are conformally covariant tensors of weight _a+2. For the moment, the con- 
straint equations appear here without any further justification or motivation and should be 
considered as ansatz, compatible with the conformal structure, which simplify considerably the 
zero curvature equations, in particular the quadratic terms. 

Let us now have a closer look at these zero curvature conditions. From Fz=O we obtain 

dwr - kwo”w&* km - wa n+lW;e~+lq;=o. -- (3.19) 

Two of these three equations, namely, those at k= - 1 and k=O serve to determine xr and 
/2, respectively, while the last one, at k= + 1, yields a covariant differential equation, which 
“measures the anholomorphicity of Au.” It has the form 

(3.20) 

where the deviation from the pure SL(2) case is encoded in Z,(Q), which depends, of course, 
on the details of the Lie algebra considered. 

The explicit expressions of the zero curvature conditions F-r=0 are given as 

For each _c, there are 2~+3 equations. We first of all emphasize the appearance of the 
covariant derivative in terms of x. Then, for the values up to m =_c we have 2_c+2 relations, 
which, due to the presence of the term containing $ allow to determine recursively the 
one-form coefficients wzak for k> --_c. The last equation, at m=_c+ 1, is then a differential 
equation which measures the anholomorphicity of the coefficient wee+*), which is a covariant 
conformal tensor of weight _c+2. In this equation (covariant) derivatives up to order 2~+3 
appear. 

Note that, while at c=O we have the fields pi, xn and ;1, at each superior level two new 
additional independent fields appear, namely, uz- @ * ‘) = wrC-c- ‘, of conformal weight -c- 1, 
and wee+*), of conformal weight ~+2. The details of theequations depend of course on the 
structure of the Lie algebra in question. 

So far, covariance was ensured due to the presence of xZ with transformation law 

(3.22) 
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A field dependent special SL ( 2) gauge transformation g (a* ) = exp (a * L + ) of parameter 
2a* = -xZ eliminates xZ and replaces 2& by 

A,=2&z-ka&-&&, (3.23) 

which, as we have seen in the preceding section, transforms with Schwarzian derivative as an 
inhomogeneous term. 

On the other hand it leaves invariant the one-form coefficients w,-“-’ and w~,+~) together 
with the constraints imposed above, i.e., 

W zak=O, for -_a-- l<k@. (3.24) 

But this means that the recursive solution of the zero curvature conditions works out in the 
same way as before. The difference is that now xZ has disappeared and that the covariance of 
the higher order differential operators in the final equation is ensured solely in terms of ALn 
which transforms as a projective connection. More explicitly, in this gauge the explicit expres- 
sions of the zero curvature conditions F-J'=0 are given as 

dwc” + P w< ’ m*1o~~,m+l)+md~~~~zw~~+~dzA~~~-1~+~,m-l)-~~+1w~~~,~~,“=O. -- 
-(3.25) 

To summarize, the whole system is described in terms of two kinds of variables, corre- 
sponding to the highest and lowest values of SL(2) spin, respectively, and visualized as white 
disks in the following diagram: 

I= --a - 1 a k=a+l 

Y. i 
Vf-5 

\, 

J 
w(6) 

up-4 

\, 

,/ 

/ 

w(5) 

Vi-3 

\, / 

W(‘l) 

Up 

\, * / 

w(3) 

c k 
Pr” A I.2 

The zero curvature condition above is written as a differential two-form. In order to see its 
structure in some more detail we explicitly display its coefficient. 

It is convenient to consider separately the three cases m <E, m =_c, and m =_c+ 1. 
At m <_c we obtain 

where in the last term we have I= m ---_a - 1, i.e., I < m. For a given value m + 1 this equation 
expresses the coefficients wz,“* ’ in terms of coefficients at lower values of m, the projective 
connection Asn and certain-covariant tensors wCCi2). In the last term SL(2) spins different 
from E can contribute, the explicit structure depends of course on the properties of the Lie 
algebra chosen. Hence this string of equations serves to recursively eliminate wz,” for 
--_c<m< +E at each value< in favor of the covariant tensors Q-@*‘), w@+,) and the projective 
connection Au. The same kind of remark applies to the equation at m=_c, where we obtain 
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Wit’* lo- k,C+ 1) -piW Cc+2)(T-CC,C+l)=a~~‘--A~~~-la+Cc,c-l) 

+w(g+*)~~&$+* 7"; (3.27) 

with I=_c--_a- 1. We have written this equation separately because an extra term involving pf 
appears. 

The last equation, at m =E+ 1, has then a completely different structure, namely, 

We emphasize that, after successive substitution, these relations are given in terms of 
differential expressions involving only the covariant tensors located on the leftmost and on the 
rightmost diagonal in the previous diagram. We know, according to the previous discussion of 
covariance properties, that the these differential expressions are covariant due to the appear- 
ance and the special properties of AD. 

We are not aiming here at solving the recursive construction in closed form, which of 
course depends on the structure constants of the Lie algebra in the particular decomposition we 
have used here. For SL(N) they are given in Ref. 20, whereas for the other Lie algebras we 
have not found them in the literature so far. 

Observe that for Wrcm=O the whole system collapses into the set of holomorphicity con- 
ditions 

agcci2) =a (3.29) 

which should be compared to those occuring in the construction of WZNW Toda theories.*“** 
In particular one might speculate that nonvanishing wrCm could, in some sense, be attributed to 
gauged versions of the Toda theory or “IV* gravity”23 -in relation with the Lie algebra Q along 
similar lines as in the pure SL (2) case. 

IV. TWO EXAMPLES: SL(3) AND THE WEDGE ALGEBRA 

In order to provide an explicit example illustrating the general procedure described in the 
previous section, we present here the zero curvature construction for SL( 3) in some detail, as 
a prototype for the SL(N) case, which can be treated along the same lines without any 
conceptual complications.‘3t’4 As a second example, going beyond the finite case, we discuss 
then the zero curvature structure defined on the infinite dimensional wedge subalgebra of 
Wlimt giving rise to an infinite sequence of covariant differential operators. 
A. SL(3) 

The Lie algebra SL( 3 ) is given in terms of I+$ for a = 0 and a = 1. We define 

@,=Lk, k=-l,O,+l, (4.1) 

wh= w,, m= -2,- l,O,+ 1,+2. (4.2) 

The commutation relations are given as 

(4.3) 

and 
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[W+2,W-2l=-16L3 [W+~,W.-~I=+~LJ, (4.5) 

Accordingly, the zero curvature conditions are written in terms of gauge potentials u& 
k=-l,O,+l, and WY, m=--2,-1,0,+1,+2. 

The former will be identified with $, x, and il, in the gauge xZ==O (see Ref. 24 for 
nonvanishing xZ and subsequent explicit elimination in the final result). We define 

wo -l=,uZ=dz+d&u;, (4.6) 

(4.7) 

w+&=;dz A,+dFAE. (4.8) 

For the latter, at spin two, we suppress the index 1, i.e., w”‘= WY, and define 

w”‘=dz w,“+dZw,“. (4.9) 

Following the discussion of the general case in the previous section we impose the constraints 

w,“=O, for -2<m<+l. (4.10) 

We then define 

W -==&vi-“, (4.11) 

and 

(4.12) 

The basic quantities are thus 

I49 ’ Au, VP, and W(3)m * (4.13) 

in terms of which all the other coefficients will be expressed by virtue of the zero curvature 
conditions. 

The corresponding picture is in this case 

UfLZ O O 793)zzz 

0 0 

p2 A .?Z 

Taking into account explicitly the structure constants displayed above, the three zero 
curvature conditions at a=0 take the form 

&=+p=x=O, 

dx+2,u%,+ 16w2w-==O, 

dA,---;l~+4w=w-‘=O, 

(4.14) 

(4.15) 

(4.16) 

whereas at level a= 1 we have five equations 
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dwm+m~wm+(m+3)pzwm+‘+(m-3)&wm-‘=O, 

corresponding to the values m = - 2, - 1,0, + 1, + 2. 
From the first two equations at a=0 one determines 

and 

Xi= a#+,Z, (4.18) 

U,=p~A,+d&p;-- l6~,~~,3,~. (4.19) 

The third equation is then a differential equation. Before writing it down, however, let us 
discuss the second set of equations for the wm. Note, first of all that, due to the constraints, up 
to m = 1 only ~3, derivatives can appear and that the term mxwm appears only at m = 2. For the 
same reason, in the last term, (m - 3)&wm-‘, only A, can contribute to A2, and, most impor- 
tant, the term (m+3)~=w”+’ is responsible for the recursive determination of the w;, i.e., 

w;’ =&I+==, 

2w$=&wim’+2A&iz, 

3w,+1=a&+;AG;‘, 

4w,+2=4~r=w~3) m-i-a&Js+1+A#~, 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

the last equation being 

a~,3,,=2XiW(3)zu+a~,+2+fA~~l. (4.24) 

With this information given we arrive, after recursive substitution, at the equations 

&A =A’3’p-=-8(2v-=a=w I 2.z z z (3kzz+3w~3)zzAv~=)t (4.25) 

and 

a+(3) ,=$A (%i==+~+3~(3, zzz+ 3wc3,zZiW~ (4.26) 

at a=0 and a= 1, respectively. The third and fifth order covariant differential operators are 
defined as (we have suppressed here the indices z) 

AC3)=a3+aA+2Aa , (4.27) 

and 

A”‘=a5+2a3A+ 10Aa3+ 15aAdZ+9a2Aa+ 16AaA. 16AA.a. (4.28) 

It should be clear that the analysis for the more general case of SL(N) can be carried out 
along exactly the same lines without any conceptual complications. The relevant decomposi- 
tions and commutation relations for SL(N) are given in Ref. 20. 
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B. The wedge algebra 

Next we wish to apply our procedure to the wedge algebra.25 It is defined as 

[w”,,~l=tk(b+l)-l(a+l))~=~, 
with the range of indices on the generators Wk restricted to 

~2-1, and -u- l<k<a+ 1. 

(4.29) 

(4.30) 

In the k, a plane, the (infinitely many) generators are inclosed in the wedge formed from 
the lines k= --a - 1 and k=a + 1. The algebra cannot lead out of the wedge because the 
commutators of two generators located on the wedge have zero structure constants. Clearly, 
the commutation relations 

t@,,J+$=-(b+1+Iwf-,, (4.31) 

[#,@I=-@, (4.32) 

wt+,,~l=+(b+l-lm$+,, (4.33) 

show that we are dealing with a decomposition of the infinite dimensional wedge algebra in 
terms of representations with respect to the SL(2) subalgebra spanned by IV?,, F@, @+ 1. 

The idea is now again to study zero curvature conditions on the wedge algebra, such that 
the SL(2) substructure is parametrized in the same way as discussed before, involving the 
Beltrami differential ,~uf and the projective connection Au. 

We begin with the definition of Lie-algebra valued one-forms, i.e., 

a=w,kw$ (4.34) 

where summation over the appropriate range of indices is understood, with 

wt = dz wzak + d.T wTak. (4.35) 

The corresponding curvatures, 

F=dn-nn=F,krk, (4.36) 

are now explicitly given as 

Fr=dwr+l(a+ l)w~w~6k+;tafbc. (4.37) 

As anticipated above we assign overall conformal weight m to wr, identify in particular 

WO -‘~dz+d&=, 

and impose the zero curvature conditions 

dw,“+l(a+ 1)w~w;Ct?,Sk+jn6a+bc=0. 

At c= - 1 this reads simply 

dw:,=O. 

In the parametrization w!, E v=dz v,+dT v, this means 

(4.38) 

(4.39) 

(4.40) 
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aFz=ap,. (4.41) 

The zero curvature conditions of the wedge algebra at level c=O reproduce exactly the 
same equations as in the SL( 2) case, which we have already discussed in great detail there, and 
we use the same notations here. The upshot is then that the Beltrami differential ,v?’ and the 
projective connection A, are subject to the equation 

ai~,=(a~~z+az~~,+~~z)~,l. (4.42) 

For the discussion of the equations at levels c) 1 we follow the strategy of the general case 
and separate explicitly the indices c= - 1 and c=O. Underlined indices_c are then restricted to 
values E=C) + 1. In this notation the remaining zero curvature conditions for the wedge 
algebra take the form 

These equations are still completely general in the sense that no constraints whatsoever 
have been imposed on the one-forms W-J’. As to the conformal properties, the one-forms w-T 
transform covariantly, with conformal weights m. Taking into account the conformal proper- 
ties already determined for the SL( 2) substructure, the first two terms provide just the correct 
covariant derivative, establishing conformal covariance of the complete zero curvature struc- 
ture. The SL(2) singlet wrt has completely decoupled from the system of zero curvature 
equations. 

To proceed we choose the special parametrization where x,=0 and 

wzak=O, for -_a- l<k<_a, 

at each level _a. The only nonvanishing z component is then denoted 

(4.44) 

Q+l- wzg- -wc_a+21 7 (4.45) 

indicating its conformal weight _a+2. In this parametrization the zero curvature conditions 
simplify considerably. To be more explicit, at m <_c we obtain (I= m --_a - 1) 

(m+~+2)w~cm+‘=&w~cm+~~+2-m)A~,m-1+~+2-m)(u+1)~ (_a+2p4s”‘$~ 
(4.46) 

We use then the explicit form of the equation at m=_c to write that at m=_c+ 1 as 

After successive substitution the independent conformally covariant variables w(~+~) to- 
gether with their “duals,” 

vi-(_a+lLw- -t--l z< 9 (4.48) 
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will appear in differential expressions which are conformally covariant as a consequence of the 
inhomogeneous transformation law of the projective connection Azz 

Let us illustrate this mechanism with the two simplest examples. For the values= + 1 we 
obtain after straightforward calculation 

agt3, -k=a4+3, - ~w(~&u~=&A%,-~. (4.49) 

The covariant fifth order differential operator appearing here is given as 

A’5’=a5+2a3A+ 10Ad3+ 15aAa2f9a2Ar3+ 16AaA+ 16AAa. (4.50) 

In the next complicated case, E= + 2, after slightly more tedious algebraic efforts one finds 

a++,, -k++44, - 4w~4&$=&A(7)v;3+&Q(3)(w~3~,v;2). (4.51) 

Here, on the right hand side, two separately covariant differential expressions appear. The 
seventh order covariant differential operator comes out as 

+352A~2Ad~295aAaAa~78Aa3A+177aAd2A+288AAAa+432AAaA. (4.52) 

In addition, Q3’( wc3) ,vF2> is a covariant expression containing wc3) and vF2 (and A, of 
course) with derivatives a, up to third order 

Q’3)(W(3,,V,-2) = i4wc3)a32q2+ i4aW~3~a2u~2+6a2W~3~a~;2+a3W~3~vf-2+52W~3~~av~2 

-2 + 18aw(3,Av;2+25w(3,aAvr . (4.53) 

Clearly, at higher levels of c the structure of the recursive solution which provides higher 
and higher covariant differential expressions requires more and more computational effort, 
calling for some algorithm which would allow to extract the results in closed form (possibly 
employing symplectic techniques as indicated in Ref. 26). This should also help to clarify the 
geometrical meaning of the zero curvature structures developed here, a question which un- 
doubtedly deserves further study. 

V. SUPERSYMMETRY 

Turning to the supersymmetric case we consider the Lie algebra OSp( 112) 

(5.1) 

(5.2) 

CWGl=2L,,, 9 (5.3) 

with indices k&{ - l,O, + 1) for the even generators and r,sc{ -f, +i} for the odd generators. 
In complete analogy with the bosonic case we define Lie algebra valued one-forms 

i-h=MmLm+l--rGr. (5.4) 

The corresponding field strengths 
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F=dfl--Cl, (5.5) 

are expanded in the same way, i.e., 

F=FmLm+WGr . (5.6) 

Observe that in the supersymmetric case we are dealing with differential forms defined with 
respect to rigid superspace, i.e., 

iI = e”R,+ e%,+ eeOe+ e%&j , (5.7) 

where the individual coefficients are superfields, i.e., functions which depend not only on 
coordinates z,Z but on the anticommuting parameters 19,e as well. Moreover, the frame of rigid 
superspace satisfies 

de’= - 2ieees, dg= + 2ie’e’. (5.8) 

The field strength pertaining to the even and odd generators of the Lie algebra OSp( 112) 
in our parametrization are given, respectively, as 

(5.9) 

(5.10) 

F+‘=dM+‘-M+lMO+r+l/2r+‘/2 
, (5.11) 

and 

*-l/Z,dr-1/2 +M-lr+l/Z-;j@r-l/2 f (5.12) 

(5.13) 

In this general setting we now impose zero curvature conditions and establish, at the same 
time, the relation with the superspace Beltrami parametrization, using the conventions of 
Baulieu et al. 16r17 

We identify in particular 

-f Mels&fZ=~+~j$f$+eGM$, (5.14) 

-- i r-‘/2rMe=ee+~M~e++eeMee. (5.15) 

Moreover, adjusting consistently with the overall conformal weights, leads us to define 

M+, r+1/2EXe. (5.16) 

The zero curvature conditions F-’ =0 and r-1’2=O then take the form 

dM”+M’x+ 2iMeMe=0, (5.17) 

(5.18) 
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Again, the presence of the constant coefficients in M’ and in Me allows to reduce the 
number of independent superlields. Straightforward manipulations yield (We use here the 
abbreviation a, MA=e%flEA+ee&M~ for A equal z or 6.) 

x=M’xZ+a~=, (5.19) 

Xe=Mz~z~+~~~z+afle. (5.20) 

Reinsertion of these relations in the zero curvature conditions discussed so far gives rise to 
equations where ,yt and x20 have dropped out and which then serve to express the superfields 
Mzz, MT”, and Mae in terms of the independent superfield M$, as explained in great detail in 
Ref. 17. 

At the next level we identify 2iM +l&. and write the zero curvature condition Fc=O in z 
the form 

(5.21) 

This equation renders some of the coefficients of the superspace one-form ;1, redundant, 
giving rise to 

(5.22) 

So far we have only encountered algebraic relations between supertields. This situation 
changes when we consider the last two zero curvature conditions F+‘=O and F+“2=0 which, 
with the identifications introduced so far read 

dA,--;1&+2iXeXe=O, (5.23) 

djyr&+Me/Z,=O. (5.24) 

These equations simply determine (somewhat loosely speaking) the 8 and 8 components of 
the superfteld xfi More explicitly one finds 

Dexze= fb t (5.25) 

i.e., the superfield 

fL=2A,+a~z--&~z (5.26) 

is identified in the 8 component whereas at the 8 level we find the differential constraint 

(5.27) 

This provides the supersymmetric generalization of the corresponding equation derived in 
the SL( 2) case, involving the basic supertields MeZ; which generalizes the Beltrami differential, 
and xze, which generalizes the projective connection. For a more detailed account of this 
construction and for the discussion of the structure of superconformal transformations we refer 
to Ref. 24. 

In component field language we have &, the usual Beltrami differential and pre, its 
supersymmetry partner and, on the other hand, Am the projective connection and x2& its 
supersymmetry partner (following widespread usage we employed here the same symbols for 
the superfields and their lowest components). 

The corresponding component field equations are then 
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and 

(5.29) 

A crucial input in our construction of the supersymmetric case was the superfield version 
of the Beltrami parametrization, corresponding to the left-right decomposition of two- 
dimensional superspace geometry. This means that two copies of the structures described here 
exist, related to each other by chiral conjugation. We expect that in the construction of 
analoguous systems with extended supersymmetry the corresponding Beltrami parametriza- 
tions will provide useful tools as well. Another interesting question is whether the supersym- 
metric procedure presented here can be extended to more general (and more complicated) 
super Lie algebras, in analogy with recent constructions of the super Toda theories.27 

VI. CONCLUSIONS AND OUTLOOK 

We have proposed a constructive procedure to establish relations between simple Lie 
algebras and conformally covariant higher order differential operators via zero curvature con- 
ditions. 

The basic ingredient is the decomposition of the basis of the Lie algebra in terms of 
representations with respect to the principal SL( 2) subalgebra. The corresponding gauge struc- 
ture exhibits then a number of intriguing properties. First of all, conformal covariance is 
established in assigning suitable properties under holomorphic coordinate transformations to 
the gauge potentials in the principal SL( 2) subsector, where, in all cases, Beltrami differential 
and projective connection are made to come up. Then, at each spin s ( =_a+ 1, where a > 0 in 
our notation) occuring in the Kostant decomposition of the Lie algebra we identify two 
conformally covariant fields w(,+ ,) and VT” at highest and at lowest weight, respectively. 

Conformally covariant constraints can be imposed in a suggestive way such that after 
taking into account the recursive structure of the zero curvature equations the independent 
covariant tensor variables are pz’, uF’, and w(,+,), of conformal weights - 1, --s and s+ 1, 
respectively. 

As a final result, at each spin s occuring, one is then left with an equation for aflcs+ ,) in 
terms of covariant differential expressions involving the basic covariant fields together with the 
projective connection A, which ensures conformal covariance. 

In particular, at each s, a covariant differential operator of order 2.s+ 1 acting on v;’ 
emerges, mapping this tensor of conformal weight -s into a conformal tensor of weight s+ 1. 
Other types of covariant differential expressions, involving the other covariant basic fields, and 
whose detailed form depends on the Lie algebra of interest, appear in a completely automatic 
way as well. 

Although the constraints employed here are quite suggestive and have a lot of similarities 
with the constraint structure appearing in the WZNW construction of the Toda field theo- 
ries 2’*22P28 and their supersymmetric version,27 a better understanding should be achieved. In 
paiicular the remaining gauge invariances deserve further study. Recall that the constraints 
serve to eliminate the dz components of the gauge potentials at each s except for the highest 
weight one of conformal weight sf 1. 

As this kind of primary fields appears in the WZNW construction of the Toda theories as 
well, one might speculate whether the fields VT”, which appear here in a certain dual manner 
together with the w~~+~), may serve to formulate some kind of ‘gauged’ Toda system, thus 
providing a link with We gravity.29 
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