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Distributed State Estimation for Discrete-Time
Sensor Networks with Randomly Varying
Nonlinearities and Missing Measurements

Jinling Liang, Zidong Wang, Senior Member, IEEE, and Xiaohui Liu

Abstract— This paper deals with the distributed state
estimation problem for a class of sensor networks described
by discrete-time stochastic systems with randomly varying non-
linearities and missing measurements. In the sensor network,
there is no centralized processor capable of collecting all the
measurements from the sensors, and therefore each individual
sensor needs to estimate the system state based not only on its own
measurement but also on its neighboring sensors’ measurements
according to certain topology. The stochastic Brownian motions
affect both the dynamical plant and the sensor measurement
outputs. The randomly varying nonlinearities and missing mea-
surements are introduced to reflect more realistic dynamical
behaviors of the sensor networks that are caused by noisy
environment as well as by probabilistic communication failures.
Through available output measurements from each individual
sensor, we aim to design distributed state estimators to approx-
imate the states of the networked dynamic system. Sufficient
conditions are presented to guarantee the convergence of the es-
timation error systems for all admissible stochastic disturbances,
randomly varying nonlinearities, and missing measurements.
Then, the explicit expressions of individual estimators are derived
to facilitate the distributed computing of state estimation from
each sensor. Finally, a numerical example is given to verify the
theoretical results.

Index Terms— Distributed state estimation, missing measure-
ments, randomly varying nonlinearity, sensor network, stochastic
disturbances.

I. INTRODUCTION

DYNAMICS analysis for complex networks has long been
a hot research topic that has been attracting recurring

attention from a variety of research communities. The main
reason lies in the fact that complex networks serve as natural
models for many practical systems such as neuronal networks,
genetic networks, networks in social sciences, power grid
networks, coupled mechanical systems, information networks,
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and others. In a complex network, the connection weights
of the nodes are largely dependent on certain resistance and
capacitance values, which include uncertainties (modeling
errors) subject to stochastic disturbances as well as limited
communication constraints. Therefore, complex networks ex-
hibit grand challenges for the understanding of stochastic
influence, network-induced phenomena, cluster formation, sta-
bility, sensitivity and robustness, bifurcations and chaos, etc.
In the past decade, a rich body of literature has appeared on
the general topic of complex networks and applications, see
[1]–[7] and the references therein.

Sensor networks, as a special class of complex networks,
have recently been undergoing a quiet revolution in all aspects
of the hardware implementation, software development, and
theoretical research. In addition to the universal attributes
of complex networks, sensor networks do possess their own
characteristics due mainly to the large number of inexpensive
wireless devices (nodes) densely distributed over the region of
interest [8], [9]. As discussed in [8], two interconnected critical
challenges for sensor networks are the efficient networking
techniques and the collaborative signal processing (CSP) to
efficiently process the distributed information gathered. Lying
in the core part of the area of CSP is the distributed filtering
or estimation problem, which has recently been attracting
growing research interests. For distributed estimation problem,
the inherently asynchronous sensor network is comprised of a
large number of sensor nodes with computing and wireless
communication capabilities, where the nodes are spatially
distributed to form a wireless ad hoc network and every
node has its own notion of time. Each individual sensor in
a sensor network locally estimates the system state from not
only its own measurement but also its neighboring sensors’
measurements according to the given topology.

Different from the traditional central filtering techniques
[10]–[15], an effective distributed estimation algorithm should
be capable of handling two additional issues: 1) complicated
coupling between the sensor nodes according to a given topol-
ogy, and 2) network-induced phenomena such as randomly
varying nonlinearities and missing measurements. Concerning
the node coupling issue, four arguably representative distrib-
uted strategies have been proposed in the recent literature:
1) the distributed Kalman filtering algorithm [16]–[21] with
different sensing models and different consensus strategies;
2) the distributed estimation algorithm [22]–[24] that adap-
tively updates the weights for minimizing the estimation error
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variance; 3) the multiscale approach [25] to accelerate the
convergence of decentralized consensus problems for networks
with poor connectivity; and 4) the distributed diffusion filtering
algorithm [26], [27] with the information diffused across the
network through a sequence of Kalman iterations and data
aggregation. However, compared to the fruitful results with
respect to sensor node coupling up to now, the corresponding
research for distributed estimation problems with random com-
munication constraints has received much less attention, and
this constitutes the main motivation for the present research.

In a sensor network, each sensor node has wireless com-
munication capability as well as some level of intelligence
for signal processing and disseminating data. These sensor
nodes collaborate among themselves to set up a sensing
network. However, the limited energy, computational power,
and communication resources of the sensor nodes will in-
evitably lead to communication constraints that pose great
challenges in designing distributed estimators. Firstly, the
sensor measurements are usually subject to probabilistic in-
formation, missing which may be caused for a variety of
reasons such as the high maneuverability of the tracked
target, intermittent sensor failures, or limited battery energy.
Note that such a missing measurement phenomenon typically
occurs in networked control systems and has attracted con-
siderable attention during the past few years, see [28]–[30].
Secondly, the sensor networks are often influenced by addi-
tive nonlinear disturbances that are caused by environmental
circumstances. Such nonlinear disturbances themselves may
experience random abrupt changes due probably to abrupt
phenomena such as random failures and changes in node
interconnections, which give rise to the so-called randomly
varying nonlinearities, see [31], [32] and [33] for more ex-
planations. Thirdly, stochastic disturbances are unavoidable
when modeling sensor networks in a noisy environment. Note
that the distributed estimation problem has been extensively
studied for sensor networks with additive white noises in
[19], [24], [26] and with multiplicative (Itô-type) noises
in [34]. Unfortunately, so far very little research effort has been
made to the network-induced random phenomena including
multiplicative noises, random measurement missing, as well as
randomly varying nonlinearities. Therefore, the main purpose
of this paper is to pave the way for dealing with distributed
estimation problems with random communication constraints.

In this paper, attention is focused on the distributed
state estimation problem for a class of sensor networks
described by discrete-time stochastic systems with randomly
varying nonlinearities and missing measurements. The main
contributions of this paper lie in the new research problem
and can be summarized as follows. 1) The randomly varying
nonlinearities are introduced to describe the binary switch
between two kinds of nonlinear disturbances governed by
a Bernoulli-distributed white noise sequence. 2) The sensor
model includes the probabilistic missing measurements that
account for the random packet dropout during the signal
transmission or information collection amongst the sensor
network. 3) Intensive stochastic analysis is carried out
in order to establish a unified framework that caters the
simultaneous presence of the randomly varying nonlinearities,

the probabilistic missing measurements, and the multiplicative
noises. In Section II, the problem addressed is formulated and
some preliminaries are briefly outlined. In Section III, the main
theorems and corollaries are given for the distributed state
estimation of the dynamical systems describing the sensor
networks. In Section IV, a numerical example is given to
demonstrate the effectiveness of the distributed state estimation
scheme. Finally, conclusions are drawn in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notations: Throughout this paper, I and 0 represent, respec-
tively, the identity matrix and the zero matrix of appropriate
dimensions. N is used to be the set {1, 2, . . .}. The Kronecker
product of matrices A ∈ R

m×n and B ∈ R
p×q is a matrix

in R
mp×nq and denoted as A ⊗ B . The notation X > 0

for X ∈ R
n×n means that matrix X is real, symmetric, and

positive definite, while Sym(X) represents the matrix X + X T .
diag(· · · ) and col(· · · ) stand for, respectively, the block-
diagonal matrix and the matrix column with blocks given by
the matrices in (· · · ). (�,F ,P) is a complete probability
space with the probability measure P having total mass 1.
Prob{β} stands for the occurrence probability of the event
β and E{α1}, E{α1|α2} mean, respectively, the mathematical
expectation of the stochastic variable α1 and the expectation
of α1 conditional on α2 with respect to the given probability
measure P . ‖ · ‖ refers to the Euclidean vector norm and
the asterisk “∗” in a symmetric matrix is used to denote the
term that is induced by symmetry. Matrices, if not stated, are
assumed to be compatible for algebraic operations.

It is assumed in this paper that the sensor network has N
sensor nodes which are distributed in the space according to a
specific interconnection topology characterized by a directed
graph G = (V, E, L), where V = {1, 2, . . . , N} denotes the
set of sensor nodes, E ⊆ V × V is the set of edges, and L =
(li j )N×N is the nonnegative adjacency matrix associated with
the edges of the graph, i.e., li j > 0 ⇔ edge (i, j) ∈ E , which
means that there is information transmission from sensor j to
sensor i . Moreover, it is also assumed that lii = 1 for all i ∈ V ,
i.e., the sensors are self-connected. If (i, j) ∈ E , then node j
is called one of the neighbors of node i . For all i ∈ V , denote
Ni � { j ∈ V|(i, j) ∈ E}, which means that in the sensor
network, sensor node i can receive the information from its
neighboring nodes j ∈ Ni according to the given network
topology.

A target plant is the system whose state is to be estimated
through the distributed sensors. Let the target plant be de-
scribed by the following discrete-time nonlinear stochastic
system defined on the complete probability space (�,F ,P) :

x(k + 1) = Ax(k) + Dx(k − τ (k)) + δ(k)B1 f (k, x(k))

+(1 − δ(k))B2g(k, x(k)) + M0x(k)ω0(k) (1)

with N sensors modeled by

yi (k) = γi (k)Ci x(k) + Mi x(k)ωi (k), i = 1, 2, . . . , N (2)

where k ∈ N and x(k) ∈ R
n is the state of the target; yi (k) ∈

R
m is the measurement output measured by sensor i on the

target x(k); A, D, B1, B2, M0, Ci , and Mi are known constant
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matrices; f (·, ·) : N×R
n → R

n and g(·, ·) : N×R
n → R

n are
nonlinear functions; the time-varying integer τ (k) corresponds
to the delay in the state dynamics and satisfies τ1 ≤ τ (k) ≤ τ2
(τ1 and τ2 are known positive integers); ω0(k) and ωi (k) (i =
1, 2, . . . , N) are scalar Wiener processes (Brownian mo-
tions) defined on the complete probability space (�,F ,P)
with

E{ωi (k)} = 0 E{ω2
i (k)} = 1;

E{ωi (s)ωi (t)} = 0 (s 
= t ∈ N); i = 0, 1, 2, . . . , N. (3)

The stochastic variables δ(k) ∈ R and γi (k) ∈ R (i =
1, 2, . . . , N) are Bernoulli-distributed white noise sequences
specified by the following distribution laws:

Prob{δ(k) = 1} = E{δ(k)} = δ̄

Prob{δ(k) = 0} = 1 − E{δ(k)} = 1 − δ̄ (4)

Prob{γi (k) = 1} = E{γi (k)} = γ̄i

Prob{γi (k) = 0} = 1 − E{γi (k)} = 1 − γ̄i (5)

where δ̄, γ̄i ∈ [0, 1] are known constants. Obviously, for the
stochastic variables δ(k) and γi (k), one has

E

�
(δ(k) − δ̄)2

�
= δ̄(1 − δ̄), E

�
(γi (k) − γ̄i )

2
�

= γ̄i (1 − γ̄i ).

Here, it is further assumed that the variables δ(k), γi (k) (i =
1, 2, . . . , N), and ω j (k)( j = 0, 1, . . . , N) are mutually inde-
pendent.

Remark 1: Due to the random abrupt changes in the en-
vironmental circumstances such as repairs of the compo-
nents, random failures, and changes in the interconnections
of subsystems, the nonlinear disturbances may occur in a
probabilistic way and are randomly changeable in terms of
their types or intensity. In the dynamic target model (1),
the random variable δ(k) is used to model the probability
distribution of the nonlinear functions. In other words, in
the target model (1), the two terms δ(k)B1 f (k, x(k)) and
(1 − δ(k))B2g(k, x(k)) can be used to account for the binary
switches between these two nonlinear functions according
to a given probability distribution. Such a novel idea was
first proposed in [31] and [32] to investigate the synchro-
nization problem of stochastic delayed complex networks.
The randomly varying nonlinearities, also called stochastic
nonlinearities, have recently received some research interests
in the literature. For example, in [35], the control problem for
discrete-time systems with stochastic nonlinearities has been
thoroughly investigated.

Remark 2: Missing measurements are considered in the
sensor network (2) by resorting to the random variable γi (k).
Note that such system measurement mode (2) and (5) was first
introduced in [36] and subsequently utilized in many other
papers, see [28]–[30]. The case of γi (k) = 0, which does
happen in practice, implies that the main signal is missing
and the system measurement contains state-dependent noises
only.

As stated in the introduction, the aim of this paper is to de-
sign state estimators to approximate the states of the networked
dynamical target on the condition that there is no centralized
processor capable of collecting all the measurements from

the sensors. By considering the neighboring measurements in
current times, here we construct the following distributed state
estimator to track the state x(k) of the target:

x̂i (k + 1) = Ax̂i (k) + δ̄B1 f (k, x̂i (k))

+(1 − δ̄)B2g(k, x̂i(k))

+
�
j∈Ni

li j Ki j
�

y j (k) − γ̄ j C j x̂ j (k)
�

(6)

where k ∈ N; i = 1, 2, . . . , N ; x̂i (k) is the estimation of the
networked system state x(k) on sensor i and Kij ∈ R

n×m is
the estimator gain matrix to be determined.

Throughout this paper, we assume that the target plant is
observable and the following conditions hold for the nonlinear
functions f and g in model (1):

Assumption 1: f (k, 0) = 0 and g(k, 0) = 0 for all k ∈ N.
Assumption 2: There exist matrices 	1 and 	2 such that

the following inequalities hold:
‖ f (k, u) − f (k, v)‖ ≤ ‖	1(u − v)‖
‖g(k, u) − g(k, v)‖ ≤ ‖	2(u − v)‖

for all k ∈ N and u, v ∈ R
n .

Setting x̃i (k) = x(k) − x̂i (k), the estimation error dy-
namics for sensor i can be obtained from (1), (2), and (6)
as follows:

x̃i (k + 1) = Ax̃i (k) + Dx(k − τ (k)) + δ̄B1 f̃ (k, x̃i (k))

+(1 − δ̄)B2g̃(k, x̃i (k)) + M0x(k)ω0(k)

+(δ(k) − δ̄)
�

B1 f (k, x(k)) − B2g(k, x(k))
�

−
�
j∈Ni

li j Ki j
�
γ̄ j C j x̃ j (k) + M j x(k)ω j (k)

+(γ j (k) − γ̄ j )C j x(k)
�

(7)

where f̃ (k, x̃i (k)) = f (k, x(k)) − f (k, x̂i (k)), g̃(k, x̃i (k)) =
g(k, x(k)) − g(k, x̂i(k)). By utilizing the Kronecker product,
the error dynamics governed by (7) above can be rewritten in
a compact form as

x̃(k + 1) = �IN ⊗ A − K̄
C̃
�

x̃(k) + D̃x(k − τ (k))

+(1 − δ̄) (IN ⊗ B2) G(k, x̃(k))

+(δ(k) − δ̄)
�

B̃1 f (k, x(k)) − B̃2g(k, x(k))
�

+M̃0x(k) ω0(k) + δ̄(IN ⊗ B1)F(k, x̃(k))

−K̄ (
(k) − 
) C̄x(k) − K̄ ω̄(k)M̃x(k) (8)

where x̃(k) = (x̃ T
1 (k), x̃ T

2 (k), . . . , x̃ T
N (k))T , C̃ = diag(C1,

C2, . . . , CN ), 
 = diag (γ̄1 Im , γ̄2 Im , . . . , γ̄N Im), 
(k) =
diag(γ1(k)Im , γ2(k)Im, . . . , γN (k)Im), ω̄(k) = diag(ω1(k)Im,
ω2(k)Im , . . . , ωN (k)Im)

B̃1 = [BT
1 , BT

1 , . . . , BT
1� 	
 �

N

]T , B̃2 = [BT
2 , BT

2 , . . . , BT
2� 	
 �

N

]T

D̃ = [DT , DT , . . . , DT� 	
 �
N

]T , M̃0 = [MT
0 , MT

0 , . . . , MT
0� 	
 �

N

]T
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C̄ =

�


�
C1
C2
...

CN

����� F(k, x̃(k)) =

�


�
f̃ (k, x̃1(k))

f̃ (k, x̃2(k))
...

f̃ (k, x̃N (k))

�����
M̃ =

�


�
M1
M2
...

MN

����� G(k, x̃(k)) =

�


�
g̃(k, x̃1(k))
g̃(k, x̃2(k))

...
g̃(k, x̃N (k))

�����
and K̄ = (li j Ki j )N×N is a sparse matrix satisfying
K̄ ∈ Wn×m , where Wn×m is defined as

Wn×m = {Ū = [Uij ] ∈ R
nN×mN |Uij ∈ R

n×m ,

Uij = 0 if j /∈ Ni }. (9)

In terms of Assumption 2, one can easily obtain

‖F(k, x̃(k))‖ ≤ ‖	̃1 x̃(k)‖, ‖G(t, x̃(k)‖ ≤ ‖	̃2 x̃(k)‖ (10)

where 	̃1 = diag(	1,	1, . . . , 	1) and 	̃2 = diag(	2,	2,
. . . , 	2).

For notational simplicity, in the rest of this paper, let ei =
col(0m, . . . , Im , . . . , 0m) ∈ R

mN×m be the matrix column with
the i th block as the identity matrix Im and the others as 0m .
Also, denote

K̂ = diag(K̄1, K̄2, . . . , K̄N ) (11)

where K̄i = col(l1i K1i , l2i K2i , . . . , lNi KNi ). Obviously, for
i = 1, 2, . . . , N , the equalities K̄i = K̄ ei hold.

By letting

η(k) =
�

x(k)
x̃(k)

�
we get the following augmented system with the combination
of (1) and (8):

η(k + 1) = Y(k) + (δ(k) − δ̄)B2F (k, η(k))

+Mη(k)ω0(k) − C(k)η(k) (12)

where Y(k) = Aη(k) + Dη(k − τ (k)) + B1F (k, η(k)) and
A = diag(A, IN ⊗ A − K̄
C̃)

D =
�

D 0
D̃ 0

�
B2 =

�
B1 −B2 0 0
B̃1 −B̃2 0 0

�
B1 =

�
δ̄B1 (1 − δ̄)B2 0 0

0 0 δ̄(IN ⊗ B1) B2

�
M =

�
M0 0
M̃0 0

�
F (k, η(k)) =

�

� f (k, x(k))
g(k, x(k))
F(k, x̃(x))
G(k, x̃(k))

����
C(k) =

�
0 0

K̄ (
(k) − 
)C̄ + K̄ ω̄(k)M̃ 0

�
and B2 = (1 − δ̄)(IN ⊗ B2).

By Assumptions 1, 2, and (10), one can easily conclude that
the following inequality holds:

‖F (k, η(k))‖ ≤ ‖�	η(k)‖ (13)

where

�	 =

�

� 	1 0
	2 0
0 	̃1

0 	̃2

����
and 	̃1, 	̃2 are as defined in (10).

The initial condition associated with (12) is given as

η(s) = ϕ(s) ∈ R
n(N+1) s = −τ2,−τ2 + 1, . . . , 0 (14)

where ϕ(·) is independent of the processes δ(·), γi (·) (i =
1, 2, . . . , N) and ω j (·) ( j = 0, 1, . . . , N).

Definition 1: The system (6) is said to be a convergent
distributed state estimator of the networked dynamic system
(1) with measurement outputs (2) if the estimation error system
(12) is globally asymptotically stable in the mean square sense,
i.e., for any initial condition ϕ(·), the corresponding solution
{η(k); k ∈ N} satisfies

lim
k→∞ E{‖η(k)‖2} = 0.

III. MAIN RESULTS

In this paper, we are aiming at establishing sufficient criteria
for the discrete-time nonlinear system (12) with stochastic
disturbances to be globally asymptotically stable in the mean
square sense. By resorting to the Lyapunov functional stability
theory and the stochastic analysis technique, verifiable condi-
tions are derived step by step.

Theorem 1: Under Assumptions 1 and 2, for the given
K̄ , the network in (12) with time-varying delay is globally
asymptotically stable in the mean square sense if there exist
matrices Pj > 0 ( j = 1, 2, . . . , N + 1), Q > 0, matrices W ,
R, and scalar ε > 0 such that

P �
�

P1 R
∗ P2

�
> 0 and � + Sym(WT ) < 0 (15)

where P2 = diag(P2, P3, . . . , PN+1)

T =
�

−A −D −B1 In(N+1)

�
� =

�

� �11 ATPD AT PB1 0
∗ −Q + DTPD DT PB1 0
∗ ∗ �33 0
∗ ∗ ∗ 0

����
�11 = (τ2 − τ1 + 1)Q + ε�	T�	 + ATPA − P

+MTPM+
N�

i=1

(CT
1iPC1i + CT

2iPC2i )

�33 = −ε I2n(N+1) + BT
1 PB1 + δ̄(1 − δ̄)BT

2 PB2

and

C1i =
�

0 0√
γ̄i (1 − γ̄i )K̄ ei Ci 0

�
C2i =

�
0 0

K̄ ei Mi 0

�
.

Proof: Let X (k) � {η(k), η(k − 1), . . . , η(k −
τ (k)), . . . , η(k − τ2)}, and consider the following Lyapunov



490 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 3, MARCH 2011

functional candidate for the augmented estimation error
system (12):

V (X (k)) = V1(X (k)) + V2(X (k)) + V3(X (k))

= ηT (k)Pη(k) +
k−1�

i=k−τ (k)

ηT (i)Qη(i)

+
−τ1�

j=1−τ2

k−1�
i=k+ j

ηT (i)Qη(i) (16)

where P > 0, Q > 0 are matrices to be determined and P is
just as defined in (15).

Along the solutions of system (12), calculating the differ-
ence of Vj (X (k)) ( j = 1, 2, 3) and taking the mathematical
expectation conditional on X (k), we have

E{�V1(X (k))|X (k)}
= E{(V1(X (k + 1)) − V1(X (k)))|X (k)}
= E{V1(X (k + 1))|X (k)} − V1(X (k))

= E

��
ηT (k)(ATPA − P)η(k) + ηT (k − τ (k))DTP

×Dη(k − τ (k)) + F T (k, η(k))BT
1 PB1F (k, η(k))

+2ηT (k)ATP
�
Dη(k − τ (k)) + B1F (k, η(k))

�
+2ηT (k − τ (k))DT PB1F (k, η(k))

+2
�
Aη(k) + Dη(k − τ (k)) + B1F (k, η(k))

�TP
×�(δ(k) − δ̄)B2F (k, η(k)) + Mη(k)ω0(k) − C(k)η(k)

�
+2(δ(k) − δ̄)F T (k, η(k))BT

2 P
×�Mη(k)ω0(k) − C(k)η(k)

�
−2ω0(k)ηT (k)MTPC(k)η(k)

+ω2
0(k)ηT (k)MTPMη(k) + ηT (k)CT (k)PC(k)η(k)

+(δ(k) − δ̄)2F T (k, η(k))BT
2 PB2F (k, η(k))

�|X (k)
�

= E

��
ηT (k)(ATPA − P)η(k) + ηT (k − τ (k))DTP

×Dη(k − τ (k)) + F T (k, η(k))BT
1 PB1F (k, η(k))

+2ηT (k)ATP
�
Dη(k − τ (k)) + B1F (k, η(k))

�
+2ηT (k − τ (k))DT PB1F (k, η(k))

+δ̄(1 − δ̄)F T (k, η(k))BT
2 PB2F (k, η(k)) + ηT (k)MT

×PMη(k) + ηT (k)CT (k)PC(k)η(k)
�|X (k)

�
(17)

E{�V2(X (k))|X (k)}

= E

���
�

k�
i=k+1−τ (k+1)

−
k−1�

i=k−τ (k)

�
ηT (i)Qη(i)|X (k)

 !"
= E

���
�

k−τ1�
i=k+1−τ (k+1)

+
k�

i=k+1−τ1

−
k−1�

i=k−τ (k)

�
ηT (i)Qη(i)|X (k)

 !"
≤ E

���
�

k−τ1�
i=k+1−τ (k+1)

ηT (i)Qη(i) + ηT (k)Qη(k)

−ηT (k − τ (k))Qη(k − τ (k))

#
|X (k)

$
≤ E

���
�

k−τ1�
i=k+1−τ2

ηT (i)Qη(i) + ηT (k)Qη(k)

−ηT (k − τ (k))Qη(k − τ (k))

#
|X (k)

$
(18)

E{�V3(X (k))|X (k)}

= E

��� −τ1�
j=1−τ2

�
k�

i=k+1+ j

−
k−1�

i=k+ j

�
ηT (i)Qη(i)|X (k)

 !"
= E

��� −τ1�
j=1−τ2

(ηT (k)Qη(k) − ηT (k + j)Qη(k + j))|X (k)

 !"
= E

%&
(τ2 − τ1)η

T (k)Qη(k)−
k−τ1�

i=k+1−τ2

ηT (i)Qη(i)

#
|X (k)

$
.

(19)

From the definition of matrix C(k) defined in (12) and
the mutually independent properties of processes γ j (k) and
ω j (k) ( j = 1, 2, . . . , N), we can derive

E{ηT (k)CT (k)PC(k)η(k)|X (k)}
= E
'

x T (x)(K̄ (
(k) − 
)C̄ + K̄ ω̄(k)M̃)TP2

×(K̄ (
(k) − 
)C̄ + K̄ ω̄(k)M̃)x(k)|X (k)
(

= E
'�

x T (k)M̃T ω̄T (k)K̄ TP2 K̄ ω̄(k)M̃x(k)

+x T (k)C̄T (
(k) − 
)T K̄ TP2 K̄ (
(k) − 
)C̄x(k)

+2x T (k)M̃T ω̄T (k)K̄ TP2

×K̄ (
(k) − 
)C̄x(k)
�|X (k)

(
= E
'�

x T (k)M̃T ω̄T (k)K̄ TP2 K̄ ω̄(k)M̃x(k)

+x T (k)C̄T (
(k) − 
)T K̄ TP2

×K̄ (
(k) − 
)C̄x(k)
�|X (k)

(
(20)

in which

E{x T (k)M̃T ω̄T (k)K̄ TP2 K̄ ω̄(k)M̃x(k)|X (k)}

= E

���x T (k)

)
N�

i=1

��
j∈Ni

li j Ki j M j ω j (k)

�T

Pi+1

×
��

j∈Ni

li j Ki j M j ω j (k)

��
x(k)|X (k)

 !"
= E

%
x T (k)

& N�
i=1

�
j∈Ni

l2
i j (Kij M j )

T Pi+1

×(Kij M j )

#
x(k)|X (k)

$
= E

*
x T (k)

+
N�

i=1

MT
i K̄ T

i P2 K̄i Mi

,
x(k)|X (k)

-
= E{xT (k)M̃T K̂ T (IN ⊗ P2)K̂ M̃x(k)|X (k)}

= E

*
N�

i=1

ηT (k)CT
2iPC2iη(k)|X (k)

-
. (21)

Similarly, the following equality holds:
E{xT (k)C̄T (
(k) − 
)T K̄ TP2

×K̄ (
(k) − 
)C̄x(k)|X (k)}
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= E{x T (k)C̄T 
̃T K̂ T (IN ⊗ P2)K̂ 
̃C̄x(k)|X (k)}

= E

*
N�

i=1

ηT (k)CT
1iPC1iη(k)|X (k)

-
(22)

where 
̃ = diag(
√

γ̄1(1 − γ̄1)Im ,
√

γ̄2(1 − γ̄2)Im , . . . ,√
γ̄N (1 − γ̄N )Im).
Substituting (21) and (22) into (20), we have

E{ηT (k)CT (k)PC(k)η(k)|X (k)}

= E

*
ηT (k)

N�
i=1

(CT
2iPC2i + CT

1iPC1i)η(k)|X (k)

-
. (23)

On the other hand, based on (12), for any matrix W of
appropriate dimensions, one has

2ξT (k)W[Y(k) − Aη(k)

−Dη(k − τ (k)) − B1F (k, η(k))] = 0 (24)

where ξT (k) = [ηT (k), ηT (k − τ (k)),F T (k, η(k)),YT (k)].
Furthermore, (13) ensures that for any positive scalar ε, the
following inequality holds:

εηT (k)�	T�	η(k) − εF T (k, η(k))F (k, η(k)) ≥ 0. (25)

Therefore, adding the left side of (24) to (17), and by
considering (18), (19), (23), and (25), we eventually obtain

E{�V (X (k))|X (k)} ≤ ξT (k)(� + Sym(WT ))ξ(k) (26)

where � is defined in (15) and T = [−A,−D,−B1, In(N+1)].
The remaining part of the proof is similar to those in [37] and
[30] and so omitted here for simplicity, and the proof is then
completed.

Remark 3: To reflect a more realistic situation in practice,
different Brownian motions ω0(·) and ωi (·) (i = 1, 2, . . . , N)
are introduced, respectively, for describing the dynamics of
the target system and the sensor network. This brings some
difficulty in dealing with the stochastic disturbances reflected
by the term C(k)η(k) in (12). In the proof of Theorem 1, we
solve this problem by rearranging the block matrices in K̄ and
elegantly choosing P2 with special structure.

After conducting the dynamic analysis in Theorem 1 for the
augmented estimation error system (12), we are in a position
to deal with the problem of designing the distributed state
estimator (6) for the networked target system (1) with sensor
network (2). Before processing on, the following lemma will
be utilized in establishing our criteria.

Lemma 1: Let S = diag(S11, S22, . . . , SN N ), with Sii ∈
R

n×n (i = 1, 2, . . . , N) being invertible matrices. If X = SŪ
for Ū ∈ R

nN×mN , then we have Ū ∈ Wn×m ⇔ X ∈ Wn×m .
Theorem 2: Under Assumptions 1 and 2, the system (6)

is a convergent distributed state estimator of the networked
dynamic system (1) with measurement outputs (2) if there exist
matrices Pj > 0 ( j = 1, 2, . . . , N + 1), Q11 > 0, Q22 > 0,
matrices Q12, Wi11, Wi21 (i = 1, 4), X ∈ Wn×m , and scalar
ε > 0 such that

Q �
�

Q11 Q12
∗ Q22

�
> 0, � + �(I2N+1 ⊗ P−1

2 )�T < 0

(27)

where P2 = diag(P2, P3, . . . , PN+1)

� =
�� 0 ℵT

1 ℵT
2

(IN ⊗ A)TP2 − C̃T 
T X T 0 0
0 0 0

��
ℵ1 =

�


�
X e1 M1
X e2 M2

...
X eN MN

����� ℵ2 =

�


�
√

γ̄1(1 − γ̄1)X e1C1√
γ̄2(1 − γ̄2)X e2C2

...√
γ̄N (1 − γ̄N )X eN CN

�����

� =

�













�

�11 �12 �13 0 �15 �16

∗ �22 �23 0 −δ̄W121 B1 �26

∗ ∗ �33 −Q12 δ̄DT P1 B1 �36
∗ ∗ ∗ −Q22 0 0
∗ ∗ ∗ ∗ �55 �56
∗ ∗ ∗ ∗ ∗ �66
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

0 0 W111 − AT W T
411 −AT W T

421
�27 �28 W121 �2,10

�37 �38 −DT W T
411 �3,10

0 0 0 0
0 0 −δ̄BT

1 W T
411 −δ̄BT

1 W T
421

0 0 −(1 − δ̄)BT
2 W T

411 �6,10
�77 �78 0 �7,10
∗ �88 0 �8,10

∗ ∗ Sym(W411) W T
421∗ ∗ ∗ −2P2

����������������
and

�11 = AT P1 A − P1 + MT
0 P1 M0 + M̃T

0 P2 M̃0

+ε	T
1 	1 + (τ2 − τ1 + 1)Q11 + ε	T

2 	2

−Sym(W111 A)

�12 = (τ2 − τ1 + 1)Q12 − AT W T
121

�13 = AT P1 D − W111 D, �15 = δ̄(AT P1 − W111)B1

�16 = (1 − δ̄)(AT P1 − W111)B2

�22 = −P2 + (τ2 − τ1 + 1)Q22 + ε	̃T
1 	̃1 + ε	̃T

2 	̃2

−Sym(P2(IN ⊗ A) − X
C̃)

�23 = (IN ⊗ A)TP2 D̃ − C̃T 
TX T D̃ − W121 D − P2 D̃

�26 = −(1 − δ̄)W121 B2

�27 = δ̄(IN ⊗ A)TP2(IN ⊗ B1) − δ̄P2(IN ⊗ B1)

−δ̄C̃T 
T X T (IN ⊗ B1)

�28 = (1 − δ̄)
�
(IN ⊗ A)TP2(IN ⊗ B2)

−C̃T 
T X T (IN ⊗ B2) − P2(IN ⊗ B2)
�

�2,10 = P2 + (IN ⊗ A)TP2 − C̃T 
T X T

�33 = DT P1 D − Q11 + D̃T P2 D̃

�36 = (1 − δ̄)DT P1 B2, �37 = δ̄ D̃T P2(IN ⊗ B1)

�38 = (1 − δ̄)D̃T P2(IN ⊗ B2)

�3,10 = D̃T P2 − DT W T
421
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�55 = δ̄BT
1 P1 B1 − ε I + δ̄(1 − δ̄)B̃T

1 P2 B̃1

�56 = −δ̄(1 − δ̄)B̃T
1 P2 B̃2, �6,10 = −(1 − δ̄)BT

2 W T
421

�66 = (1 − δ̄)BT
2 P1 B2 + δ̄(1 − δ̄)B̃T

2 P2 B̃2 − ε I

�77 = δ̄2(IN ⊗ B1)
T P2(IN ⊗ B1) − ε I

�78 = δ̄(1 − δ̄)(IN ⊗ B1)
T P2(IN ⊗ B2)

�7,10 = δ̄(IN ⊗ B1)
T P2

�88 = (1 − δ̄)2(IN ⊗ B2)
TP2(IN ⊗ B2) − ε I

�8,10 = (1 − δ̄)(IN ⊗ B2)
TP2.

Moreover

K̄ = P−1
2 X (28)

and, accordingly, the state estimator gains Kij (i =
1, 2, . . . , N, j ∈ Ni ) can be derived from (9).

Proof: Let P = diag(P1,P2) and P2 = diag(P2,
P3, . . . , PN+1), obviously, P > 0. Furthermore, from Lemma
1, we know that K̄ = P−1

2 X ∈ Wn×m under the condition that
X ∈ Wn×m .

From the definition of matrices A, D, B1, B2, M, �	, C1i ,
and C2i (i = 1, 2, . . . , N), and by computation, it is not
difficult to obtain

ATPA = diag(AT P1 A, (P2(IN ⊗ A) − X
C̃)TP−1
2

×(P2(IN ⊗ A) − X
C̃))

DTPD = diag(DT P1 D + D̃T P2 D̃, 0)

MTPM = diag(MT
0 P1 M0 + M̃T

0 P2 M̃0, 0)�	T�	 = diag(	T
1 	1 + 	T

2 	2, 	̃
T
1 	̃1 + 	̃T

2 	̃2)

CT
1iPC1i = diag(γ̄i (1 − γ̄i )(X ei Ci )

TP−1
2 (X ei Ci ), 0)

CT
2iPC2i = diag((X ei Mi )

TP−1
2 (X ei Mi ), 0)

ATPD =
�

AT P1 D 0
(P2(IN ⊗ A) − X
C̃)T D̃ 0

�
ATPB1 =

�
δ̄AT P1 B1 (1 − δ̄)AT P1 B2 0 0

0 0 ϒ1 ϒ2

�
DTPB1 =

�
δ̄DT P1 B1 (1 − δ̄)DT P1 B2 ϒ3 ϒ4

0 0 0 0

�
BT

1 PB1 =

�

� δ̄2 BT
1 P1 B1 δ̄(1 − δ̄)BT

1 P1 B2

∗ (1 − δ̄)2 BT
2 P1 B2

∗ ∗
∗ ∗

0 0
0 0

δ̄2(IN ⊗ B1)
TP2(IN ⊗ B1) ϒ5
∗ ϒ6

����
BT

2 PB2 =

�

� BT
1 P1 B1 + B̃T

1 P2 B̃1 ϒ7 0 0
∗ ϒ8 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

����
where

ϒ1 = δ̄(P2(IN ⊗ A) − X
C̃)T (IN ⊗ B1);
ϒ2 = (1 − δ̄)(P2(IN ⊗ A) − X
C̃)T (IN ⊗ B2);
ϒ3 = δ̄ D̃T P2(IN ⊗ B1);
ϒ4 = (1 − δ̄)D̃T P2(IN ⊗ B2);

ϒ5 = δ̄(1 − δ̄)(IN ⊗ B1)
TP2(IN ⊗ B2);

ϒ6 = (1 − δ̄)2(IN ⊗ B2)
TP2(IN ⊗ B2);

ϒ7 = −BT
1 P1 B2 − B̃T

1 P2 B̃2;
ϒ8 = BT

2 P1 B2 + B̃T
2 P2 B̃2

and the condition P2 K̄ = X has been utilized.
By setting W = col(W1, 0, 0,W4) and

W1 =
�

W111 0
W121 P2

�
W4 =

�
W411 0
W421 −P2

�
(29)

one has

WT =

�

� −W1A −W1D −W1B1 W1
0 0 0 0
0 0 0 0

−W4A −W4D −W4B1 W4

����
where T is as defined in Theorem 1 and

W1A =
�

W111 A 0
W121 A P2(IN ⊗ A) − X
C̃

�
W1D =

�
W111 D 0

W121 D + P2 D̃ 0

�
W4A =

�
W411 A 0
W421 A −P2(IN ⊗ A) + X
C̃

�
W4D =

�
W411 D 0

W421 D − P2 D̃ 0

�
W1B1 =

�
δ̄W111 B1 (1 − δ̄)W111 B2

δ̄W121 B1 (1 − δ̄)W121 B2

0 0
δ̄P2(IN ⊗ B1) (1 − δ̄)P2(IN ⊗ B2)

�
W4B1 =

�
δ̄W411 B1 (1 − δ̄)W411 B2

δ̄W421 B1 (1 − δ̄)W421 B2

0 0
−δ̄P2(IN ⊗ B1) −(1 − δ̄)P2(IN ⊗ B2)

�
.

From the proof of Theorem 1 and the detailed matrices
computed above, we obtain that the inequality �+�(I2N+1 ⊗
P−1

2 )�T<0 in (27) ensures the conditions in (15) to hold,
which in turn illustrates that the network in (12) with time-
varying delay is globally asymptotically stable in the mean
square sense. From Definition 1, one knows that the system
(6) is a convergent distributed state estimator of the networked
dynamic system (1) with measurement outputs (2), and the
proof is then completed.

Remark 4: In this paper, sufficient conditions are derived to
ensure the system (6) to be a convergent distributed state esti-
mator of the networked dynamic system (1) with measurement
outputs (2). It should be noted that, by the Schur complement
[38], the inequalities in (27) can be readily solved by using
some standard numerical software, which further illustrates
the practical usefulness of our results. On the other hand, by
utilizing a method similar to that employed in [28], it is not
difficult to deal with the robustness issues for the systems (1)
and (2) with parameter uncertainties.

Remark 5: Distributed state estimation problem was also
considered in [39] for wireless sensor network based on quan-
tized observations. There are two main differences between
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the works in [39] and ours. 1) The networked dynamic target
studied in [39] was a linear discrete-time system while the
target investigated here is a delayed model with randomly oc-
curred nonlinearities. 2) In [39], the authors first designed the
quantized message function mi (k) � Q(yi (k)) and the fusion
function g(m1(k), m2(k), . . . , mN (k)), and then constructed a
linear filter to make the estimation error with a minimized
upper bound, while in our work, veritable distributed state
estimators are designed which could be reflected by the
term

.
j∈Ni

li j Ki j y j (k). Compared to the fusion function
g(m1(k), m2(k), . . . , mN (k)), the distributed estimators em-
ployed here are more practical. The reason can be explained
just as pointing out in [34]: in a sensor network consisting of
a large number of sensor nodes in a wide spatial region, it
is impossible to have only one centralized processor that can
collect the measurements from all the sensors, particularly in
a remote area, while, usually, each sensor may only be able
to use local information and communicate with neighbors so
that the estimation can be achieved in a distributed way.

When the nonlinearities in the networked dynamic target
are not randomly varying, i.e., the target system turns to be

x(k + 1) = Ax(k) + Dx(k − τ (k))

+B f (k, x(k)) + M0x(k)ω0(k) (30)

we then design the following distributed state estimator:
x̂i (k + 1) = Ax̂i (k) + B f (k, x̂i (k))

+
�
j∈Ni

li j Ki j
�

y j (k) − γ̄ j C j x̂ j (k)
�
. (31)

Furthermore, if there is no time-varying delay in the target
model, the target plant reduces to

x(k + 1) = Ax(k) + B f (k, x(k)) + M0x(k)ω0(k). (32)

Based on the analysis of Theorems 1 and 2, the above three
special cases are easy to deal with and we have the following
corollaries.

Corollary 1: Under Assumptions 1 and 2, the system (31)
is a convergent distributed state estimator of the networked dy-
namic system (30) with measurement outputs (2) if there exist
matrices Pj > 0 ( j = 1, 2, . . . , N + 1), Q11 > 0, Q22 > 0,
matrices Q12, Wi11, Wi21 (i = 1, 4), X ∈ Wn×m and scalar
ε > 0 such that

Q �
�

Q11 Q12
∗ Q22

�
>0 �′ + �(I2N+1 ⊗ P−1

2 )�T <0 (33)

where �′ can be derived from matrix � defined in Theorem 2
by firstly deleting the sixth and eighth rows and columns,
and then substituting the number δ̄ and the matrices B1 and
	2, respectively, by the number 1 and the matrices B and
0, the other symbols are the same as defined in Theorem 2.
Moreover, K̄ = P−1

2 X , accordingly, the state estimator gains
Kij (i = 1, 2, . . . , N, j ∈ Ni ) can be derived from (9).

Corollary 2: Under Assumptions 1 and 2, the system (31)
is a convergent distributed state estimator of the networked
dynamic system (32) with measurement outputs (2) if there
exist matrices Pj > 0 ( j = 1, 2, . . . , N + 1), matrices Wi11,
Wi21 (i = 1, 4), X ∈ Wn×m , and scalar ε > 0 such that

�′′ + �(I2N+1 ⊗ P−1
2 )�T < 0 (34)

where �′′ can be derived from matrix �′ defined in Corollary 1
by first deleting the third and fourth rows and columns,
and then substituting the matrices Q11, Q12, and Q22 all
by the zero matrix 0 with appropriate dimensions, the other
symbols are the same as defined in Theorem 2. Moreover,
K̄ = P−1

2 X , accordingly, the state estimator gains Kij (i =
1, 2, . . . , N, j ∈ Ni ) can be derived from (9).

Remark 6: Assume that there are neither randomly varying
nonlinearities nor stochastic disturbances in the target plant (1)
and in the corresponding sensor networks (2). Assume also that
there are no probabilistic missing data probabilities, i.e., the
sensor network measurements are the ideal (perfect) outputs
where γi (k) ≡ γ̄i = 1. In this case, the model reduces to

x(k + 1) = Ax(k) + Dx(k − τ (k)) + B f (k, x(k)) (35)

and

yi (k) = Ci x(k), i = 1, 2, . . . , N. (36)

Considering the target plant (35) with N sensors modeled by
(36), we further implement the following full-order distributed
state estimator:

x̂i (k + 1) = Ax̂i (k) + Dx̂i (k − τ (k)) + B f (k, x̂i (k))

+
�
j∈Ni

li j Ki j
�

y j (k) − C j x̂ j (k)
�

(37)

and then the error state vector x̃(k) = (x̃ T
1 (k), x̃ T

2 (k), . . . ,
x̃ T

N (k))T with x̃i (k) = x(k) − x̂i (k) satisfies the following
equation:

x̃(k + 1) = (IN ⊗ A − K̄ C̃)x̃(k) + (IN ⊗ D)x̃(k − τ (k))

+(IN ⊗ B)F(k, x̃(k)). (38)

Along similar lines as the proof of Theorem 1, we can
obtain some sufficient conditions that guarantee the system
(37) to be a convergent distributed state estimator of the
dynamic system (35) with measurement outputs (36), and these
sufficient conditions will no longer require the original system
(35) to be asymptotically stable.

Remark 7: The algorithm developed in this paper is based
on the linear matrix inequalities (LMIs) that can be solved by
MATLAB LMI toolbox. This algorithm has a polynomial-time
complexity, which is bounded by O(ν1ν23log(ϑ/ε)), where ν1
is the total row size of the LMI system, ν2 is the total number
of scalar decision variables, ϑ is a data-dependent scaling
factor, and ε is the relative accuracy set for the algorithm.
For example, let us examine the distributed state estimator
(6) for the systems (1) and (2), the dimensions of system
variables are x(k) ∈ R

n and yi (k) ∈ R
m (i = 1, 2, . . . , N).

From Theorem 2, we have ν1 = 6n + 7nN + 2nN2 and
ν2 = n2(3+(7/2)N+(1/2)N2)+mnN2+nN+n+1, therefore
the time complexity of our algorithm can be represented as
O(n3 N4), which is obviously dependent on the number of
sensors N and the number of target plant states n. On the
other hand, the MATLAB LMI Toolbox implements state-
of-the-art interior-point LMI solvers. While these solvers are
significantly faster than classical convex optimization algo-
rithms, it should be kept in mind that the complexity of
LMI computations remains higher than that of solving, say, a
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Sensor 1

Sensor 5

Sensor 4

Sensor 3

Sensor 2

Fig. 1. Topological structure of the sensor network.

Riccati equation. For instance, problems with a thousand
design variables typically take over an hour on today’s work-
stations. However, research on LMI optimization is a very
active area in the applied mathematics, optimization, and the
operations research community, and substantial speedups can
be expected in the future.

IV. NUMERICAL EXAMPLES

Consider a networked target system (1) with the following
parameters:

A =
�� −0.1 0.01 0

0 0.07 −0.01
−0.01 0 0.06

��
D =

�� −0.1 0.1 0.1
0.2 0.1 0

−0.1 −0.2 0.1

��
B1 =

�� 0.2 −0.1 0
0.1 −0.1 0
0 −0.2 −0.1

��
B2 =

�� −0.2 0 0.1
−0.2 −0.1 0.1

0 0.2 −0.1

��
M0 =

�� 0.2 −0.1 0.1
0.5 −0.5 0
0.3 −0.1 0.2

��.
The time-varying delay in (1) is assumed to be τ (k) =

2+3| sin((k/2)π)|, i.e., the delay τ (k) has upper bound τ2 = 5
and lower bound τ1 = 2. The randomly occurred nonlinearities
are

f (k, x(k)) = (0.1x1(k) − tanh(0.2x1(k)),

0.1x2(k) − tanh(0.1x2(k)), 0.2x3(k))T

and

g(k, x(k)) = (−0.2x1(k)),

0.2x2(k) − tanh(0.1x2(k)), tanh(0.1x3(k)))T

i.e., they satisfy Assumptions 1 and 2 with 	1 =
diag(0.3, 0.2, 0.2) and 	2 = diag(0.2, 0.3, 0.1).

The sensor network has five nodes with interconnection
topology shown in Fig. 1, i.e., the adjacency matrix

L =

�



�
1 1 1 0 0
0 1 0 0 1
0 0 1 1 0
1 0 0 1 0
0 0 0 1 1

������.
The dynamics of the sensor nodes are described by (2) with

parameters as follows:

C1 =
�

0 −0.1 0.1
0.1 0.2 0.3

�
C2 =

�
0.3 0 0.1
0 0 0

�
C3 =

�
0.1 0.2 −0.2
0.2 −0.1 0.1

�
C4 =

�
0 0.1 −0.2

−0.1 0.2 0

�
C5 =

�
0.1 0.3 0.4
0.3 −0.2 0.1

�
M1 =

�
0.4 0.1 −0.1
0 −0.1 0.3

�
M2 =

�
0.1 0.1 0
0.3 0.2 −0.2

�
M3 =

� −0.1 0.1 0
0 −0.1 0.2

�
M4 =

�
0.1 −0.2 0

−0.1 0.1 0.2

�
M5 =

�
0.2 −0.3 0.1

−0.1 0.2 0

�
.

And the Bernoulli-distributed white noise sequences δ(k)
and γi (k) (i = 1, 2, 3, 4, 5) are assumed to satisfy conditions
(4) and (5) with

δ̄ = 0.68, γ̄1 = 0.15, γ̄2 = 0.86,

γ̄3 = 0.96, γ̄4 = 0.26, γ̄5 = 0.76.

By resorting to some standard software in MATLAB, the
matrix inequalities in (27) are solvable with a feasible solution
as follows (here only part of the matrices are listed for
simplicity): ε = 6.6613

P1 =
�� 77.6371 −18.5079 −7.1468

−18.5079 63.5472 0.2328
−7.1468 0.2328 24.5598

��
Q11 =

�� 10.1110 2.0258 −2.9191
2.0258 8.5853 0.4305

−2.9191 0.4305 4.2383

��
W111 =

�� −0.6846 −0.0799 −0.0074
0.0818 0.5333 −0.3403

−0.0653 −0.1722 0.3198

��
W411 =

�� −3.4720 0.0648 −0.2055
0.0761 −3.5230 −0.0818
0.2021 −0.0988 −3.4878

��.
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Therefore, it follows from Theorem 2 that the system (6) is
a convergent distributed state estimator of the networked dy-
namic system (1) with measurement outputs (2). Furthermore,
by (9) and (28), we can derive the distributed state estimator
gain matrices in (6) to be

K11 =
�� −0.0762 −0.2710

0.0752 −0.1040
−0.2016 −0.3428

��
K12 =

�� −0.0492 0.0153
0.0237 −0.0073

−0.0251 0.0078

��
K13 =

�� −0.0275 −0.0779
−0.0571 0.0559
0.0760 −0.0424

��
K22 =

�� −1.1194 0.3542
−0.0058 0.0020
−0.2156 0.0683

��
K25 =

�� 0.0031 −0.0541
−0.0096 0.0618
−0.0303 −0.0436

��
K33 =

�� −0.6291 −1.1389
−0.3707 0.1318
0.3451 −0.1952

��
K34 =

�� 0.0086 0.1122
−0.1971 −0.1735
0.2692 0.1055

��
K41 =

�� −0.0127 −0.0371
0.0591 0.0344

−0.0894 −0.1044

��
K44 =

�� 0.1112 0.7149
−0.4497 −0.5894
0.6637 0.2091

��
K54 =

�� −0.0071 0.1104
−0.2090 −0.1730
0.2751 0.1086

��
K55 =

�� −0.1996 −0.8298
−0.1817 0.2227
−0.2707 −0.2144

��.
V. CONCLUSION AND DISCUSSIONS

In this paper, the problem of distributed state estimation
was investigated for sensor networks with time-varying delay
and randomly varying nonlinearities in discrete-time form. The
sensor network consisted of N nodes, and the dynamics of
each sensor was characterized by a linear model with missing
measurement. To reflect more realistic situations, stochastic
disturbances were considered in both the target model and the
sensor dynamics. Distributed state estimators were designed to
estimate the states of the target plant through the sensor mea-
surements in a distributed way. By employing the Lyapunov
stability theory and the stochastic analysis technique, it was
verified that such estimators exist if a set of matrix inequalities

are solvable. Furthermore, the effectiveness of these criteria
were checked by a numerical example.

We like to point out that our main results can be extended
to other uncertain discrete-time dynamical systems such as
those with Markovian jumping parameters and/or distributed
time-delays. The sensor network discussed in this paper is
currently represented by a direct graph. If the topology is
described by an undirected graph, i.e., the nonnegative ad-
jacency matrix L = (li j )N×N is symmetric, then the designed
distributed state estimators will have a better performance
for the state estimation. This will also be one of our future
research topics.
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