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Abstract

This paper addresses the robust filtering problem for a class of linear genetic regulatory networks (GRNs) with

stochastic disturbances, parameter uncertainties and time delays. The parameter uncertainties are assumed to reside

in a polytopic region, the stochastic disturbance is state-dependent described by a scalar Brownian motion, and the

time-varying delays enter into both the translation process and the feedback regulation process. We aim to estimate the

true concentrations of mRNA and protein by designing a linear filter such that, for all admissible time delays, stochastic

disturbances as well as polytopic uncertainties, the augmented state estimation dynamics is exponentially mean square

stable with an expected decay rate. A delay-dependent linear matrix inequality (LMI) approach is first developed to

derive sufficient conditions that guarantee the exponential stability of the augmented dynamics, and then the filter gains

are parameterized in terms of the solution to a set of LMIs. Note that LMIs can be easily solved by using standard

software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design

procedures.
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I. Introduction

In a living cell, the mechanisms that genes encode proteins and some of which in turn regulate gene

expression construct a complex network, which is called Genetic Regulatory Networks (GRNs). With the

appearance and development of DNA microarray technology [27], it has become possible to measure gene

expression levels on a genomic scale and furthermore analyze the gene regulatory network. Considerable

attention has been contributed to theoretical analysis and experimental investigation on GRNs and a large

amount of results have been reported on dynamical behaviors of GRNs, see e.g. [1, 7, 13,19,20,28].

During the past few years, modeling of genetic regulatory network has become an attractive area and a

variety of models have been proposed, for example, Boolean network model [15, 22, 23, 32], linear differential

equation model [6, 9, 16] and a single negative feedback loop network [1]. It has been shown in [25], by

mathematically modelling recent data, that the observed oscillatory expression and activity of three proteins

is most likely to be driven by transcriptional delays, and time delay is often inevitable when analyzing the

dynamical behaviors of GRNs [7, 30, 31]. On the other hand, the stochastic fluctuations in real-world gene

expression data stem from either the probabilistic chemical reactions or random variation of one or more of
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the externally set control parameters [8, 18, 26, 33], and therefore state-dependent stochastic noise should be

recognized as a characteristic that has to be taken into account when modeling GRNs. Furthermore, it is well

known that the modeling error is unavoidable in the model identified from the measurement data. In other

words, there should exist ‘parameter uncertainties’ in those models that are constructed from real-time data.

The complexity originated from the time delays, intrinsic fluctuation and modeling errors poses significant

challenges to gene expression data analysts. A typical problem is how to obtain the steady-state values

of the actual network state components (the concentrations of the mRNA and protein) based on the model

identified from the measurement data. It should be pointed out that mathematical models without addressing

the aforementioned inherent complexity may have wrong predictions of the mRNA and protein concentrations.

Unfortunately, this issue has been largely overlooked in the literature because of the difficulty in theoretical

research. It is, therefore, the main purpose of this paper to shorten such a gap by studying the so-called

filtering problem, that is, predicting the network state such that the estimation error exponentially converges

to zero in the mean square sense in the presence of transmission delays, parameter uncertainties and intrinsic

fluctuations. Note that a similar filtering issue has been investigated in [37] for a linear stochastic GRN with

variance constraints where the time delay has been ignored.

Although the filtering problem has been extensively studied in the control and signal processing communities

(see [10–12, 34, 35] and references therein), the filtering problem for GRNs of specific structures still remains

a challenging issue, on which the latest analysis techniques (e.g. careful construction of Lyapunov-Krasovskii

functional and delay-dependent derivation) could be of help to provide enhanced stability conditions [12,14,36].

To facilitate the readers in biology area, let us briefly discuss the Lyapunov-Krasovskii functional theory, linear

matrix inequality technique and exponentially mean square stability. Lyapunov’s direct method (also called

the second method of Lyapunov) allows us to determine the stability of a system without explicitly solving

differential equations. The method is a generalization of the idea that if there is some “measure of energy” in a

system, then we can study the rate of change of the energy of the system to ascertain stability [17]. In case of

systems with time-delay, such measure of energy is often adopted as the Lyapunov-Krasovkii functional (LKF),

which is typically of the quadratic form. By calculating the derivative of the LKF, it is usually concluded

that the overall time-delay system is stable if certain linear matrix inequalities (LMIs) are feasible [12,14,36].

Note that the solvability of LMIs can be easily checked by using the Matlab toolbox, and a growing number

of dynamics analysis problems can be converted into the feasibility of LMIs [2]. The Lyapunov-Krasovkii

functional theory can be easily extended to check the mean-square stability of stochastic systems [24], where

the LMI framework can still be applied, see e.g. [34,35].

This paper is concerned with the filtering problem for a class of linear GRNs with state-dependent stochastic

disturbances, polytopic uncertainties as well as time-varying state delays. The stochastic disturbance is

described by a scalar Brownian motion and the time delays enter into both the translation process and

feedback regulation process. In order to estimate the true concentrations of the mRNA and protein, we design

a linear filter with guaranteed exponential convergence of the estimation error dynamics. By using the linear

matrix inequality (LMI) technique and the free-weighting delay-dependent technique, sufficient conditions are

derived for ensuring the exponentially mean square stability with a prescribed decay rate, and then the filter

gain is characterized in terms of the solution to a set of LMIs, which can be easily solved by using available

software packages. A simulation example is illustrated for a gene expression model.

Notation. Throughout this paper, R
n denotes the n dimensional Euclidean space, L2[0,∞) is the space

of square-integrable vector functions over [0,∞), | · | refers to the Euclidean norm in R
n and ‖ · ‖2 stands

for the usual L2[0,∞) norm. I denotes the identity matrix of compatible dimension. The notation X ≥ Y

(respectively, X > Y ), where X and Y are real symmetric matrices, means that X−Y is positive semi-definite
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(respectively, positive definite). For a matrix M , MT represents its transpose and ‖M‖ denotes its spectral

norm. When M is real symmetric, λmax(M) (respectively, λmin(M)) stands for its maximum (respectively,

minimum) eigenvalue. (Ω,F , {Ft}t∈R,P) is a complete probability space with a filtration {Ft}t∈R satisfying

the usual conditions (i.e., the filtration contains all P -null sets and is right continuous). E{x} stands for the

expectation of a stochastic variable x. The shorthand diag{M1, . . . ,Mn} denotes a block diagonal matrix with

diagonal blocks M1, . . . ,Mn and 0m×n denotes a m× n block matrix in which every block is 0. In symmetric

block matrices, the symbol ∗ is used as an ellipsis for terms induced by symmetry. Matrices, if the dimensions

are not explicitly stated, are assumed to have compatible dimensions .

II. Problem Formulation

In [6, 16], the following linear differential equation model of genetic regulatory networks

d

dt
x(t) = Mx(t) (1)

has been proposed and discussed, where x(t) ∈ R
n contains the mRNA and protein concentrations as a function

of time t, M = [Mij ]n×n is a constant matrix whose element Mij represents the effect of the concentration of

mRNA or protein j on the concentration of mRNA or protein i.

Recently, in [3], the model (1) has been generalized to account for the polytopic uncertainties and stochastic

disturbances and the following uncertain stochastic genetic regulatory network model has been considered:

dx(t) = Nix(t)dt + Mix(t)dω(t), i = 1, 2, . . . , l. (2)

Note that the model (2) can be obtained by linearizing the following kind of nonlinear stochastic genetic

regulatory networks

dx(t) = N(x(t))dt + M(x(t))dω(t)

by using the global linearization techniques [2] in order to avoid solving a nonlinear inequality when analyzing

the stability. It is worth mentioning that the robust filtering circuit design problems and H∞ stabilization

design problems have been considered for the nonlinear genetic regulatory networks in [4, 5] without time-

delays, and pioneering results have been obtained in the area.

As discussed in the introduction, time delays may play an important role in the dynamics of genetic networks,

and mathematical models without addressing the delay effects may even have wrong predictions of the mRNA

and protein concentrations [30, 31]. In this paper, we extend the model (2) further by incorporating time

delays in both the translation process and feedback regulation process. Specifically, we consider the following

uncertain genetic regulatory networks with state-dependent stochastic disturbances and time-varying delay:

(Σ0) :











dx(t) = [A(t)x(t) + B(t)x(t − d(t))]dt + E(t)x(t)dω(t)

dy(t) = [C(t)x(t) + D(t)x(t − d(t))]dt + F (t)x(t)dω(t)

x(t) = φ1(t), ∀ t ∈ [−2τ, 0]

(3)

where x(t) ∈ R
n denotes the concentrations of mRNA and protein of the GRN, y(t) ∈ R

p represents the

expression level of mRNA and protein of the GRN, and φ1(t) is the initial function of x(t). The state

transition matrix A(t) ∈ R
n×n shows the key information on the interactions of the mRNA and protein on

each other. The matrix C(t) ∈ R
p×n is the transformation matrix between the observation variables and the

internal state variables of the GRN. ω(t) is a scalar Brownian motion with zero mean value and unit variance.

d(t) is the time-varying delay that denotes the translation delay as well as the feedback regulation delay, and

satisfies

0 < d(t) ≤ τ < ∞ and ḋ(t) ≤ µ < 1 (4)
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where τ and µ are real constant scalars.

Assumption 1: The matrices A(t), B(t), C(t), D(t), E(t) and F (t) satisfy the following real convex polytopic

uncertain constraint:

Ω := [A(t) B(t) C(t) D(t) E(t) F (t)] ∈ S,

S :=







Ω(λ(t))|Ω(λ(t)) =
s

∑

j=1

λj(t)Ωj ;
s

∑

j=1

λj(t) = 1, λj(t) ≥ 0







(5)

where Ωj := [Aj Bj Cj Dj Ej Fj ] represents the jth vertex of the polytope, and Aj , Bj, Cj , Dj , Ej and

Fj (j = 1, 2, · · · , s) are all constant matrices.

Remark 1: The polytopic-type uncertainty often exists in practical systems. The issues on stability analysis

and filter design for systems with polytopic uncertainties have been extensively dealt with and many results

have been reported in the literature, see e.g. [10–12,14]. Note that many practical systems possess parameter

uncertainties which can be either exactly modeled or overbounded by the polytopic uncertainty S. Further-

more, it has been shown in [3] that the GRNs with polytopic uncertainties are an important kind of models

of biological significance that is worth investigation.

Note that the system parameters of (3), though time-varying, are described by means of a polytope, and

then the dynamics analysis problem for (3) could be transformed into the corresponding ones on the constant

vertices. Therefore, for the sake of simplicity, we first consider the system (3) with constant parameters:

(Σ) :











dx(t) = [Ax(t) + Bx(t − d(t))]dt + Ex(t)dω(t)

dy(t) = [Cx(t) + Dx(t − d(t))]dt + Fx(t)dω(t)

x(t) = φ1(t), ∀ t ∈ [−2τ, 0]

(6)

We will see later that the dynamics analysis results for the original system (3) can be built on those on the

system (6).

Remark 2: To simplify the stability analysis issue, the equilibrium point can be shifted to the origin. In

other words, in the case the concentrations of mRNA and protein do not converge to the origin when time

tends to infinity, we could always make a corresponding translation of the system states.

In this paper, we endeavor to estimate the concentrations of mRNA and protein x(t) through their expression

level y(t). The linear filter considered here is of the following form

(Σf ) :

{

dx̂(t) = Âx̂(t)dt + B̂dy(t)

x̂(t) = φ2(t), ∀ t ∈ [−2τ, 0]
(7)

where x̂(t) ∈ R
n is the estimate for x(t), φ2(t) is the initial function of x̂(t), and Â and B̂ are filter parameters

to be determined.

Defining

x̄(t) :=

[

x(t)

x̂(t)

]

, x̄(t − d(t)) :=

[

x(t − d(t))

x̂(t − d(t))

]

,

and augmenting (Σ) and (Σf ), the state estimation dynamics is governed by the following system:

(Σe) :

{

dx̄(t) =
[

Āx̄(t) + B̄Zx̄(t − d(t))
]

dt + ĒZx̄(t)dω(t),

x̄(t) = φ(t), ∀ t ∈ [−2τ, 0],
(8)

where

Ā =

[

A 0

B̂C Â

]

, B̄ =

[

B

B̂D

]

, Ē =

[

E

B̂F

]

, Z = [I 0], φ(t) =

[

φ1(t)

φ2(t)

]

.
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For presentation convenience, we set

ξ(t) = Āx̄(t) + B̄Zx̄(t − d(t)) (9)

and then (Σe) in (8) can be rewritten as

dx̄(t) = ξ(t)dt + ĒZx̄(t)dω(t). (10)

Before formulating the problem to be investigated, we introduce the following stability concept for the

augmented system (8).

Definition 1: System (8) is said to be exponentially mean square stable if there exist scalars α > 0 and

β > 0 such that

E|x̄(t, φ)|2 ≤ αe−βt sup
−2τ≤t≤0

E|φ(t)|2, ∀ φ(t) ∈ R
2n×n (11)

or, equivalently,

lim
t→∞

sup
1

t
log(E|x̄(t, φ)|2) ≤ −β,

where φ(t) :=
[

φT
1 (t) φT

2 (t)
]T

is the initial function of x̄(t) on the interval [−2τ, 0] and β is the exponential

decay rate.

In this paper, our goal is to design a linear filter of the form (7) for the system (Σ) in (6) such that, for all

admissible time-varying delays, polytopic uncertainties and stochastic disturbances, the augmented system

(8) that governs the state estimation dynamics is exponentially mean square stable.

III. Main Results

In this section, we shall deal with the robust filtering problem for the augmented system (8) by using a

combination of delay-dependent synthesis approach, Lyapunov-Krasovskii functional theory and Itô differential

formula.

A. Filter analysis

First, let the filter parameter be given and we study the filtering analysis problem. The following lemma

will be used in the proof of our main results in this paper.

Lemma 1: [2] (Schur Complement) Given constant matrices Σ1,Σ2,Σ3 where Σ1 = ΣT
1 and 0 < Σ2 = ΣT

2 .

Then Σ1 + ΣT
3 Σ−1

2 Σ3 < 0 if and only if

[

Σ1 ΣT
3

Σ3 −Σ2

]

< 0 or

[

−Σ2 Σ3

ΣT
3 Σ1

]

< 0.

For simplicity of presentation, we first consider the stochastic time-delay GRN (6) without uncertainties,

but eventually we will extend our main result to the case when the GRN involves polytopic uncertainties. In

the following theorem, a delay-dependent LMI method is developed to obtain sufficient conditions ensuring

the solvability of the filtering problem.

Theorem 1: Consider system (8) with given filter parameters. For a prescribed constant β > 0, if there

exist positive definite matrices P > 0, Qi > 0, Ri > 0, Zl > 0 and matrices Sl = [ST
l1Z ST

l2 ST
l3]

T
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(i = 1, 2; l = 1, 2, 3) such that the following linear matrix inequalities






Ξ τS3 τS1

∗ −τZ3 0

∗ 0 −τZ1






< 0, (12)







Ξ τS3 τS2

∗ −τZ3 0

∗ 0 −τZ2






< 0, (13)

Z1 < R1, Z2 < R1, Z3 < R2 (14)

hold, where

Ξ := Ξ1 + Ξ2 + ΞT
2 , Ξ1 :=







Ξ11 PB̄ + eβτ−1
β

ĀT ZT (R1 + R2)ZB̄ 0

∗ −(1 − µ)Q1 + eβτ−1
β

B̄T ZT (R1 + R2)ZB̄ 0

∗ ∗ −Q2






,

Ξ2 := [S1Z + S3Z − S1 + S2 − S2 − S3],

Ξ11 := βP + PĀ + ĀT P + ZT ĒT PĒZ + eβτZT (Q1 + Q2)Z +
eβτ − 1

β
ĀT ZT (R1 + R2)ZĀ,

then the augmented system (8) is exponentially mean square stable.

Proof: To prove the exponential mean square stability of (8) under condition (12)–(14), we consider the

following Lyapunov-Krasovskii functional candidate:

V (t) = eβtx̄T (t)Px̄(t) +

∫ t

t−d(t)
eβ(s+τ)x̄T (s)ZT Q1Zx̄(s)ds +

∫ t

t−τ

eβ(s+τ)x̄T (s)ZT Q2Zx̄(s)ds

+

∫ 0

−τ

∫ t

t+s

eβ(θ−s)ξT (θ)ZT (R1 + R2)Zξ(θ)dθds. (15)

It follows from Itô’s differential formula [21] that

dV (t) = LV (t)dt + 2eβtx̄T (t)PĒZx̄(t)dω(t), (16)

where

LV (t) = βeβtx̄T (t)Px̄(t) + 2eβtx̄T (t)P [Āx̄ + B̄Zx̄(t − d(t))] + eβtx̄T (t)ZT ĒT PĒZx̄(t)

+eβ(t+τ)x̄T (t)ZT Q1Zx̄(t) − (1 − ḋ(t))eβ(t−d(t)+τ)x̄T (t − d(t))ZT Q1Zx̄(t − d(t))

+eβ(t+τ)x̄T (t)ZT Q2Zx̄(t) − eβtx̄T (t − τ)ZT Q2Zx̄(t − τ)

+eβt e
βτ − 1

β
ξT (t)ZT (R1 + R2)Zξ(t) − eβt

∫ t

t−d(t)
ξT (s)ZT R1Zξ(s)ds

−eβt

∫ t−d(t)

t−τ

ξT (s)ZT R1Zξ(s)ds − eβt

∫ t

t−τ

ξT (s)ZT R2Zξ(s)ds. (17)

By the Newton–Leibniz formula, for any appropriately dimension matrices S1, S2, S3, the following equalities

ηT (t)S1Z

[

x̄(t) − x̄(t − d(t)) −

∫ t

t−d(t)
dx̄(t)

]

= 0, (18)

ηT (t)S2Z

[

x̄(t − d(t)) − x̄(t − τ) −

∫ t−d(t)

t−τ

dx̄(t)

]

= 0, (19)

ηT (t)S3Z

[

x̄(t) − x̄(t − τ) −

∫ t

t−τ

dx̄(t)

]

= 0, (20)
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are true, where η(t) = [x̄T (t) x̄T (t − d(t))ZT x̄T (t − τ)ZT ]T .

Noticing the relationship between the time-varying delay d(t) and the constants τ , µ, and using the notation

of ξ(t), we have

LV (t) ≤ eβt{βx̄T (t)Px̄(t) + 2x̄T (t)P [Āx̄ + B̄Zx̄(t − d(t))] + x̄T (t)ZT ĒT PĒZx̄(t)

+eβτ x̄T (t)ZT Q1Zx̄(t) − (1 − µ)x̄T (t − d(t))ZT Q1Zx̄(t − d(t))

+eβτ x̄T (t)ZT Q2Zx̄(t) − x̄T (t − τ)ZT Q2Zx̄(t − τ)

+
eβτ − 1

β
ξT (t)ZT (R1 + R2)Zξ(t) −

∫ t

t−d(t)
ξT (s)ZT R1Zξ(s)ds

−

∫ t−d(t)

t−τ

ξT (s)ZT R1Zξ(s)ds −

∫ t

t−τ

ξT (s)ZT R2Zξ(s)ds

+2ηT (t)S1Z

[

x̄(t) − x̄(t − d(t)) −

∫ t

t−d(t)
ξ(s)ds −

∫ t

t−d(t)
ĒZx̄(s)dω(s)

]

+2ηT (t)S2Z

[

x̄(t − d(t)) − x̄(t − τ) −

∫ t−d(t)

t−τ

ξ(s)ds −

∫ t−d(t)

t−τ

ĒZx̄(s)dω(s)

]

+2ηT (t)S3Z

[

x̄(t) − x̄(t − τ) −

∫ t

t−τ

ξ(s)ds −

∫ t

t−τ

ĒZx̄(s)dω(s)

]

+d(t)ηT (t)S1Z
−1
1 ST

1 η(t) −

∫ t

t−d(t)
ηT (t)S1Z

−1
1 ST

1 η(t)ds

+(τ − d(t))ηT (t)S2Z
−1
2 ST

2 η(t) −

∫ t−d(t)

t−τ

ηT (t)S2Z
−1
2 ST

2 η(t)ds

+τηT (t)S3Z
−1
3 ST

3 η(t) −

∫ t

t−τ

ηT (t)S3Z
−1
3 ST

3 η(t)ds. (21)

It follows from (21) and the conditions of Z1 < R1, Z2 < R1, Z3 < R2 in (14) that

E{LV (t)} ≤ eβt
E

{

Γ + d(t)ηT (t)S1Z
−1
1 ST

1 η(t) + (τ − d(t))ηT (t)S2Z
−1
2 ST

2 η(t) + τηT (t)S3Z
−1
3 ST

3 η(t)

−

∫ t

t−d(t)

[

ηT (t)S1 + ξT (s)ZT R1

]

R−1
1 [S1η(t) + R1Zξ(s)] ds

−

∫ t−d(t)

t−τ

[

ηT (t)S2 + ξT (s)ZT R1

]

R−1
1 [S2η(t) + R1Zξ(s)] ds

−

∫ t

t−τ

[

ηT (t)S3 + ξT (s)ZT R2

]

R−1
2 [S3η(t) + R2Zξ(s)] ds

−2ηT (t)

[

∫ t

t−d(t)
S1Ex(s)dω(s) +

∫ t−d(t)

t−τ

S2Ex(s)dω(s) +

∫ t

t−τ

S3Ex(s)dω(s)

]}

(22)

where

Γ = βx̄T (t)Px̄(t) + 2x̄T (t)P [Āx̄ + B̄Zx̄(t − d(t))] + x̄T (t)ZT ĒT PĒZx̄(t) + eβτ x̄T (t)ZT Q1Zx̄(t)

−(1 − µ)x̄T (t − d(t))ZT Q1Zx̄(t − d(t)) + eβτ x̄T (t)ZT Q2Zx̄(t) − x̄T (t − τ)ZT Q2Zx̄(t − τ)

+
eβτ − 1

β
[Āx̄(t) + B̄Zx̄(t − d(t))]T ZT (R1 + R2)Z[Āx̄ + B̄Zx̄(t − d(t))]

+2ηT (t)S1Z[x̄(t) − x̄(t − d(t))] + 2ηT (t)S2Z[x̄(t − d(t)) − x̄(t − τ)]

+2ηT (t)S3Z[x̄(t) − x̄(t − τ)]. (23)
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Then, our next goal is to prove that

Γ + τηT (t)S3Z
−1
3 ST

3 η(t) + d(t)ηT (t)S1Z
−1
1 ST

1 η(t) + (τ − d(t))ηT (t)S2Z
−1
2 ST

2 η(t) < 0, (24)

which is equivalent to

Γ + τηT (t)S3Z
−1
3 ST

3 η(t) + τηT (t)S1Z
−1
1 ST

1 η(t) < 0, (25)

Γ + τηT (t)S3Z
−1
3 ST

3 η(t) + τηT (t)S2Z
−1
2 ST

2 η(t) < 0, (26)

which would hold if we have

Ξ + τS3Z
−1
3 ST

3 + τS1Z
−1
1 ST

1 < 0, Ξ + τS3Z
−1
3 ST

3 + τS2Z
−1
2 ST

2 < 0. (27)

By Schur complement, we can obtain from (12) and (13) that (27) is true, hence E{LV (t)} < 0.

The exponentially mean square stability of system (8) can be proved as follows. From the definitions of

ξ(t), x̄(t), φ(t) and (15), there exists a positive scalar δ such that

EV (t) ≥ eβtλmin(P )E|x̄(t)|2 (28)

and

EV (0) ≤ {‖P‖ + τeβτ [‖Q1‖ + ‖Q2‖ + 2τ(‖R1‖ + ‖R2‖)(‖Ā‖2 + ‖B̄‖2)]} sup
−2τ≤t≤0

|φ(t)|2

≤ δ sup
−2τ≤t≤0

E|φ(t)|2. (29)

By Itô’s formula [21], we obtain that

EV (t) = EV (0) + E

∫ t

0
LV (s)ds ≤ δ sup

−2τ≤t≤0
E|φ(t)|2. (30)

It follows from (28), (29) and (30) that

E|x̄(t, φ)|2 ≤
δ

λmin(P )
e−βt sup

−2τ≤t≤0
E|φ(t)|2

or, equivalently,

lim
t→∞

sup
1

t
log(E|x̄(t, φ)|2) ≤ −β

which indicates that the trivial solution of (8) is exponentially mean square stable and the exponential decay

rate is β. The proof is now complete.

Remark 3: In Theorem 1, the decay rate β is included that serves as an important index characterizing the

transient behavior of the filtering error dynamics, i.e., how fast the error dynamics converges to zero. Note

that the parameter β is adjustable according to practical requirements. A similar approach to characterizing

the decay rate has been exploited in [29] for a class of stochastic nonlinear neural networks with time delay.

B. Filter synthesis

The desired filter parameters can be determined in the following theorem by solving a set of LMIs.

Theorem 2: Consider system (8) without uncertainties. For a prescribed constant β > 0, if there exist

positive definite matrices X > 0, Y > 0 Qi > 0, Ri > 0, Zl and matrices Slk, (i = 1, 2; l = 1, 2, 3; k = 1, 2, 3)
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such that the following linear matrix inequalities

[

Π S̄1

S̄T
1 −τZ1

]

+ Φ + ΦT < 0, (31)

[

Π S̄2

S̄T
2 −τZ2

]

+ Φ + ΦT < 0, (32)

Z1 < R1, Z2 < R1, Z3 < R2, (33)

hold, where

S̄1 := [τST
11 τST

11 τST
12 τST

13 0 0 0]T , S̄2 := [τST
21 τST

21 τST
22 τST

23 0 0 0]T ,

Π :=

























Π1 Π2 YB 0 Π4 AT (R1 + R2) τS31

∗ Π3 XB + B̃D 0 Π5 AT (R1 + R2) τS31

∗ ∗ −(1 − µ)Q1 0 0 BT (R1 + R2) τS32

∗ ∗ ∗ −Q2 0 0 τS33

∗ ∗ ∗ ∗ −Λ 0 0

∗ ∗ ∗ ∗ ∗ − β

eβτ−1
(R1 + R2) 0

∗ ∗ ∗ ∗ ∗ ∗ −τZ3

























,

Φ :=

















S11 + S31 S11 + S31 −S11 + S21 −S21 − S31

S11 + S31 S11 + S31 −S11 + S21 −S21 − S31

S12 + S32 S12 + S32 −S12 + S22 −S22 − S32

S13 + S33 S13 + S33 −S13 + S23 −S23 − S33

04×5

05×4 05×5

















,

Π1 := ATY + YA + eβτ (Q1 + Q2) + βY, Π2 := AT X + YA + CT B̃T + ÃT + eβτ (Q1 + Q2) + βY,

Π3 := AT X + XA + B̃C + CT B̃T + eβτ (Q1 + Q2) + βX, Π4 := [ETY ET X + F T B̃T ],

Π5 := [ETY ET X + F T B̃T ], Λ :=

[

Y Y

Y X

]

, (34)

with 0n1×n2
being a n1 × n2 zero block-matrix whose dimension is compatible with other block entries in Φ,

then system (8) is exponentially mean square stable. In this case, the parameters of the desired filter (Σf )

are given as follows:

Â := (Y − X)−1Ã, B̂ := (Y − X)−1B̃. (35)

Proof: Define

P =

[

X Y − X

Y − X X −Y

]

> 0, Υ =

[

Y I

Y 0

]

, (36)

where Y = Y−1 > 0.

Pre- and post-multiplying the LMIs in (31) and (32) by diag
{

diag{Y, I, I, I,diag{Y, I}, I, I}, I
}

and its

transpose, we have

[

Π̄ S̆1

S̆T
1 −τZ1

]

+ Φ̄ + Φ̄T < 0,

[

Π̄ S̆2

S̆T
2 −τZ2

]

+ Φ̄ + Φ̄T < 0, (37)

Z1 < R1, Z2 < R1, Z3 < R2 (38)
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where

S̆1 := [τY ST
11 τST

11 τST
12 τST

13 0 0 0]T , S̆2 := [τY ST
21 τST

21 τST
22 τST

23 0 0 0]T ,

Π̄ :=

























Π̄1 Π̄2 B 0 Π̄4 Y AT (R1 + R2) τY S31

∗ Π3 XB + B̃D 0 Π̄5 AT (R1 + R2) τS31

∗ ∗ −(1 − µ)Q1 0 0 BT (R1 + R2) τS32

∗ ∗ ∗ −Q2 0 0 τS33

∗ ∗ ∗ ∗ −Λ̄ 0 0

∗ ∗ ∗ ∗ ∗ − β

eβτ−1
(R1 + R2) 0

∗ ∗ ∗ ∗ ∗ ∗ −τZ3

























,

Φ̄ :=

















Y (S11 + S31)Y Y S11 + Y S31 −Y S11 + Y S21 −Y S21 − Y S31

S11Y + S31Y S11 + S31 −S11 + S21 −S21 − S31

S12Y + S32Y S12 + S32 −S12 + S22 −S22 − S32

S13Y + S33Y S13 + S33 −S13 + S23 −S23 − S33

04×5

05×4 05×5

















,

Π̄1 := Y AT + AY + eβτY (Q1 + Q2)Y + βY,

Π̄2 := Y AT X + A + Y CT B̃T + Y ÃT + eβτY (Q1 + Q2) + βI,

Π̄4 := [Y ET Y ET X + Y F T B̃T ], Π̄5 := [ET ET X + F T B̃T ], Λ̄ :=

[

Y I

I X

]

. (39)

It can be seen from the definitions of P and Υ that the LMI in (37) is equivalent to







Ξ̄ τ S̃3 τ S̃1

τ S̃T
3 −τZ3 0

τ S̃T
1 0 −τZ1






< 0,







Ξ̄ τ S̃3 τ S̃2

τ S̃T
3 −τZ3 0

τ S̃T
2 0 −τZ2






< 0, (40)

where

Ξ̄ := Ξ̄1 + Ξ̄2 + Ξ̄T
2 , Ξ̄1 :=

















Ξ̄11 ΥTPB̄ 0 ΥT ZT ĒT PΥ ΥT ĀT ZT (R1 + R2)

∗ −(1 − µ)Q1 0 0 B̄TZT (R1 + R2)

∗ ∗ −Q2 0 0

∗ ∗ ∗ −ΥT PΥ 0

∗ ∗ ∗ ∗ − β

eβτ−1
(R1 + R2)

















,

Ξ̄2 := [S̃1ZΥ + S̃3ZΥ − S̃1 + S̃2 − S̃2 − S̃3], Ξ̄11 := ΥT (βP + PĀ + ĀT P + eβτZT (Q1 + Q2)Z)Υ,

S̃l := [ST
l1ZΥ ST

l2 ST
l3 0 0]T , (l = 1, 2, 3).

Finally, pre- and post-multiplying LMIs in (40) by diag
{

diag{Υ−T , I, I,Υ−T , I}, I, I
}

and its transpose, we

can obtain from Theorem 1 and Schur complement that system (8) is exponentially mean square stable with

the given filter parameters in (35).

C. The solution

In the following theorem, the desired filter synthesis problem is solved for the polytopic uncertain stochastic

genetic regulatory network (6) with time-varying delay. The proof of this theorem can be obtained along the

similar line of that of Theorem 2, and is therefore omitted here to avoid unnecessary duplication.

Theorem 3: Consider system (8) with polytopic uncertainties satisfying Assumption 1. For a prescribed

constant β > 0, if there exist positive definite matrices X > 0, Y > 0, Qi > 0, Ri > 0, Zl, and Slk > 0,
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(i = 1, 2; l = 1, 2, 3; k = 1, 2, 3) such that the linear matrix inequalities (31)-(33) hold for j = 1, · · · , s,

where the system matrices A, B, C, D, E, F are substituted by Aj , Bj , Cj, Dj, Ej, Fj, then the stochastic

genetic regulatory networks with polytopic uncertainties satisfying (5) and time-varying delays satisfying (4)

is exponentially mean square stable and the desired filter parameters Â, B̂ can be derived according to (35).

IV. An Illustrative Example

In this section, a simulation example is presented to illustrate the usefulness and flexibility of the filter

design method developed in this paper.

As discussed in the Section II, sometimes a linear differential equation model could be used to approximate

genetic regulatory networks [6, 16]. On the other hand, nonlinear stochastic genetic regulatory networks

could be linearized by using the global linearization techniques [2] with the hope to avoid solving a nonlinear

inequality when analyzing the stability [3]. Note that a linear GRN model with polytopic uncertainties and

stochastic disturbances has recently been investigated in [3]. Motivated by this, we consider the following

linear uncertain stochastic time-delay GRN which takes into account the time delays, polytopic uncertainty

and stochastic disturbance:






























dx1(t) = [−3x1(t) + (0.42 + 0.3ρ)x2(t) − 0.1x1(t − d(t)) + (0.12 + 0.1σ)x2(t − d(t))]dt + 0.4x1(t)dω(t)

dx2(t) = [(−2.5 + 0.3ρ)x2(t) − 0.15x3(t) − 0.08x2(t − d(t)) − 0.14x3(t − d(t))]dt + 0.4x2(t)dω(t)

dx3(t) = [0.1x1(t) − 2.4x3(t) + 0.1x4(t) − 0.11x3(t − d(t)) + 0.12x4(t − d(t))]dt + 0.4x3(t)dω(t)

dx4(t) = [(−2.1 + 0.1ρ)x4(t) + 0.1x5(t) − 0.21x4(t − d(t)) + 0.13x5(t − d(t))]dt + 0.4x4(t)dω(t)

dx5(t) = [−0.2x1(t) − 0.15x4(t) − 2x5(t) − 0.08x1(t − d(t)) − 0.15x5(t − d(t))]dt + 0.4x1(t)dω(t),

where the time delay d(t) = 0.6 + 0.3 sin(2t), the delay bound τ = 1, the delay rate µ = 0.6, the exponential

decay rate β = 1.0 and

C = D = 0.16I, F = 0.4I,

where |ρ| ≤ 1, |σ| ≤ 1.

According to Theorem 2, the filter parameters can be calculated as follows:

Â =

















−7.0556 0.7856 0.0802 0.0006 −0.1613

0.3117 −5.7085 −0.2743 0.0006 0.0020

0.1826 −0.1218 −5.5059 0.1806 0.0026

0.0006 0.0007 0.0802 −4.8326 0.0841

−0.3579 0.0056 0.0030 −0.1662 −4.5953

















,

B̂ =

















2.7845 −0.1596 −0.0176 0.0019 0.0314

−0.1488 2.5626 0.0149 −0.0001 0.0027

−0.0202 0.0248 2.5891 −0.0079 0.0012

0.0010 0.0002 −0.0177 2.4550 0.0218

0.0253 −0.0035 0.0009 0.0108 2.4340

















.

Figs. 1-2 give the simulation results for the performance of the designed filter. Fig. 3 plots the actual decay

rate of augmented system’s state x̄(t) via − sup 1
t
log(E|x̄(t, ρ)|2) and the decay rate estimation β, where the

initial condition is set to be φ(t) = [0.1 0.15 0.3 0.4 0.5 0 0.12 0.25 0.31 0.45]T (−2τ ≤ t ≤ 0).

It is confirmed from the simulation results that the expected exponentially mean square stability has been

guaranteed.
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Fig. 1. Trajectory and estimate of x(t)

V. Conclusions

In this paper, we have investigated the filtering problem on a class of stochastic genetic regulatory networks

with time-varying delay. The time delays d(t) representing the translation delay and feedback regulation delay

are time-varying. By using Itô’s differential formula and Lyapunov stability theory, we have proposed a linear

matrix inequality method to derive sufficient conditions under which the desired filters exist. We have also

characterized the expression of the filter parameters and the decay rate β > 0, and employed a simulation

example to illustrate the effectiveness of the proposed results. It should be pointed out that it is not difficult to

extend the main results in this paper to more complex and realistic systems, such as systems with nonlinearity

constraints. Furthermore, although not directly applicable to time-delay systems, the traditional Kalman and

Stratonovich filters may be useful for genetic regulatory networks with stochastic disturbances, and this is

now under investigation.
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