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Abstract

This paper is concerned with the synchronization problem for a new class of continuous-time delayed complex networks with stochastic

nonlinearities (randomly occurred nonlinearities), interval time-varying delays, unbounded distributed delays as well as multiple stochastic

disturbances. The stochastic nonlinearities and multiple stochastic disturbances are investigated here in order to reflect more realistic

dynamical behaviors of the complex networks that are affected by the noisy environment. By utilizing a new matrix functional with the idea

of partitioning the lower bound ~1 of the time-varying delay, we employ the stochastic analysis techniques and the properties of Kronecker

product to establish delay-dependent synchronization criteria that ensure the globally asymptotically mean-square synchronization of the

addressed stochastic delayed complex networks. The sufficient conditions obtained are in form of linear matrix inequalities (LMIs) whose

solution can be readily solved by using the standard numerical software. A numerical example is exploited to show the applicability of the

proposed results.
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I. Introduction

Over the past few decades, the studies of complex networks have been an active field of research in many scientific

and technical disciplines [1, 5, 6, 14–16, 26, 31–33, 38]. Many systems in nature can be described by complex networks

with examples including genetic networks, information networks, the Internet, and social networks etc. Among many

literature on analyzing complex networks, one of the most widely investigated dynamical behaviors of complex networks

is the synchronization motion of its dynamical elements [6, 14, 18, 33, 38].

In practice, time delays are considered as ubiquitous in networks due to the fact that the information transmission

within complex networks is in general not instantaneous since the signals traveling speed is limited, and it is known that

the time delays may cause undesirable dynamic network behaviors such as oscillation and instability. In addition, it is

noted that continuously distributed delays, either bounded or unbounded [3,19,20,22,28], have received more attention

since the complex network usually has a spatial nature due to the presence of parallel pathways with a variety of axon

sizes and lengths. Recently, there has been a growing number of papers dealing with both discrete and distributed

time-delays, see e.g. [3, 8, 19, 20, 28] and the references therein.

In real-time systems, the signal transmission is usually a noisy process brought on by random fluctuations from

probabilistic causes and, therefore, stochastic modeling has been of vital importance in many branches of science such

as neurotransmitters and packet dropouts. It is often the case that the dynamical behaviors of complex networks are

largely affected by the stochastic disturbances. Subsequently, the synchronization problem for stochastic networks has

begun to receive some initial research interests. In [16, 17, 29, 33], the synchronization problems have been intensively

investigated for delayed complex networks with various kinds of stochastic disturbances, where the criteria ensuring the

synchronization among networks have been derived mainly based on the Lyapunov approach that is capable of coping

with the different type of time-delays.

In addition to the network-induced delay and external stochastic disturbances, “random” phenomena often appear

due to connections over communication channels, such as random communication delay, random measurements and

random packet losses, which have recently attracted much attention in the networked control society. However, another
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interesting random phenomenon, random nonlinearity, has been largely overlooked. As is well known, a wide class of

practical systems are influenced by additive nonlinear disturbances that are caused by environmental circumstances. For

complex networks with communication constraints, such nonlinear disturbances themselves may be subject to random

abrupt changes, which may result from abrupt phenomena such as random failures and repairs of the components, changes

in the interconnections of subsystems, sudden environment changes, modification of the operating point of a linearized

model of a nonlinear systems, etc. In other words, the nonlinear disturbances may occur in a probabilistic way and are

randomly changeable in terms of their types and/or intensity. The randomly occurred nonlinearities, also called stochastic

nonlinearities, have recently received some interest in the literature. For example, in [35, 37], the filtering and control

problems for discrete-time systems with stochastic nonlinearities have been thoroughly investigated. Unfortunately, to

the best of the authors’ knowledge, the synchronization problem for complex networks experiencing randomly occurred

nonlinearities with or without time-delays and stochastic disturbances has received very little attention, and the purpose

of this paper is therefore to fill in such a gap.

Motivated by the above observations, in this paper, we aim to deal with the synchronization problem for stochastic

delayed complex networks (SDCN) with stochastic nonlinearities, multiple stochastic disturbances, time-varying delays

and continuously distributed delays. We are interested in deriving sufficient conditions for the addressed problem by

employing the properties of Kronecker product [13] and the stochastic analysis techniques [2,11,24], combined with the

‘delay fractioning’ approach [25,26,33]. A novel matrix functional is constructed to attain new synchronization criteria,

which are formulated in the form of linear matrix inequalities (LMIs) [4]. Note that the LMIs can be solved by using

the standard numerical software.

The remainder of this paper is organized as follows. In Section II, a stochastic complex network model with mixed

time-delays, stochastic nonlinearities and multiple stochastic disturbances is proposed, and some preliminaries are briefly

outlined. In Section III, by utilizing the approach of ‘delay fractioning’ and the matrix functional method, we conduct

the stochastic analysis to obtain delay-dependent sufficient criteria in terms of LMIs so as to ensure that the considered

SDCN with multiple stochastic disturbances and stochastic nonlinearities are globally synchronized in the mean square.

In Section IV, a numerical example is provided to show the applicability of the obtained results. The conclusions are

finally drawn in Section V.

Notations: Throughout this paper, R
n and R

n×m denote, respectively, the n dimensional Euclidean space and the

set of all n × m real matrices. P > 0 means that matrix P is real, symmetric and positive definite. I and 0 denote the

identity matrix and the zero matrix with compatible dimensions, respectively; and diag{· · · } stands for a block-diagonal

matrix, col{· · · } denotes a matrix column with blocks given by the matrices in {· · · }. If A is a matrix, the notation

λmax(A) means the largest eigenvalue of A. The superscript “T ” stands for matrix transposition and the asterisk “∗” in

a matrix is used to represent the term which is induced by symmetry. The Kronecker product of matrices Q ∈ R
m×n and

R ∈ R
p×q is a matrix in R

mp×nq and denoted as Q⊗R. We let C((−∞, 0]; Rn) denote the family of continuous functions

ϕ from (−∞, 0] to R
n with the norm |ϕ| = sup−∞≤θ≤0 ‖ϕ(θ)‖, where ‖ · ‖ is the Euclidean norm on R

n. Moreover,

let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., the

filtration contains all P -null sets and is right continuous). Denote by L
p
F0

((−∞, 0]; Rn) the family of all F0-measurable

C((−∞, 0]; Rn)-valued random variables ξ = {ξ(θ) : −∞ < θ ≤ 0} such that sup−∞<θ≤0 E{|ξ(θ)|p} < ∞, where E{·}

stands for the mathematical expectation operator with respect to the given probability measure P . Sometimes, the

arguments of a function will be omitted in the analysis when no confusion arises.

II. Problem formulation and preliminaries

Consider the following array of delayed complex networks with multiple stochastic disturbances and stochastic non-

linearities:

dxi(t) =

[

Axi(t) + Dxi(t − τ(t)) + δ(t)B1f(xi(t)) + (1 − δ(t))B2g(xi(t))

+C

∫ t

−∞

κ(t − s)h(xi(s))ds

]

dt +

N
∑

j=1

w
(1)
ij Γ1xj(t)(dt + dω1(t))

+

N
∑

j=1

w
(2)
ij Γ2xj(t − τ(t))(dt + dω2(t)) + σi(t, xi(t), xi(t − τ(t)))dω3(t), i = 1, 2, . . . , N, (1)

where xi(t) = col{xi1(t), . . . , xin(t)} ∈ R
n is the state vector of the ith network at time t; A, D, B1 and B2 are the

known real constant matrices; Γ1, Γ2 ∈ R
n×n represent the inner-coupling between the subsystems at time t and t−τ(t),
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respectively; W (1) = (w
(1)
ij )N×N and W (2) = (w

(2)
ij )N×N are the outer-coupling configuration matrices representing the

coupling strength and the topological structure of the complex networks; furthermore, σi(·, ·, ·) : R × R
n × R

n → R
n is

the noise intensity function vector, and ωk(t) (k = 1, 2, 3) are mutually independent scalar Brownian motions defined

on (Ω,F ,P) satisfying

E{ωk(t)} = 0 and E{[ωk(t)]2} = dt. (2)

Moreover, κ(·) : [0, +∞) → [0, +∞) is the distributed time-delay kernel; and the discrete time delay τ(t) is a time-varying

differentiable function satisfying [9]:

0 < ~1 ≤ τ(t) ≤ ~2, τ̇(t) ≤ µ, (3)

where ~1, ~2 and µ are constants. Finally, f(xi(t)) = col{f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t))}, g(xi(t)) = col{g1(xi1(t)),

g2(xi2(t)), . . . , gn(xin(t))} and h(xi(t)) = col{h1(xi1(t)), h2(xi2(t)), . . . , hn(xin(t))} are continuous nonlinear functions,

and δ(t) is a stochastic variable that describes the following random events for the system (1):

{

Event 1 : The system (1) experiences nonlinear function f(·),

Event 2 : The system (1) experiences nonlinear function g(·).
(4)

Letting δ(t) be a Bernoulli distributed sequence defined by

δ(t) =

{

1 : if Event 1 occurs,

0 : if Event 2 occurs,
(5)

it follows that δ(t) satisfies

Prob{δ(t) = 1} = E{δ(t)} = δ0, Prob{δ(t) = 0} = 1 − E{δ(t)} = 1 − δ0, (6)

where the constant δ0 ∈ [0, 1] reflects the occurrence probability of the event of the nonlinear functions f(·) and g(·). It

is further assumed that the variables δ(t) and ωk(t) (k = 1, 2, 3) are mutually independent.

Remark 1: In this paper, the random variable δ(t) is used to model the probability distribution of the nonlinear

functions. To our knowledge, this represents the first attempt to take into account the occurrence of different nonlinear

functions in a probabilistic way for the addressed complex networks. In other words, in the complex network (1), the two

terms δ(t)B1f(xi(t)) and (1− δ(t))B2g(xi(t)) can be used to account for the binary switch between these two nonlinear

functions according to the given probability distribution.

Remark 2: It follows from the given hypothesis that E{δ(t)−δ0} = 0 and E{(δ(t)−δ0)
2} = δ0(1−δ0). As pointed out

in [39], δ(t) is a Markovian process and, for the following use, it is assumed that δ(t) follows an unknown but exponential

distribution of switchings.

Throughout this paper, the following assumptions are needed:

Assumption 1: [6] The outer-coupling configuration matrices of the complex networks (1) satisfy

w
(q)
ij = w

(q)
ji ≥ 0 (i 6= j), w

(q)
ii = −

N
∑

j=1,j 6=i

w
(q)
ij (q = 1, 2; i, j = 1, 2, . . . , N). (7)

Assumption 2: [10] For ∀u, v ∈ R
n, the nonlinear functions f(·), g(·), h(·) satisfy the following sector-bounded

conditions

[f(u) − f(v) − X1(u − v)]T [f(u) − f(v) − X2(u − v)] ≤ 0, (8)

[g(u) − g(v) − Y1(u − v)]T [g(u) − g(v) − Y2(u − v)] ≤ 0, (9)

[h(u) − h(v) − H1(u − v)]T [h(u) − h(v) − H2(u − v)] ≤ 0, (10)

where X1, Y1, H1 and X2, Y2, H2 are real constant matrices with X2 − X1 ≥ 0, Y2 − Y1 ≥ 0 and H2 − H1 ≥ 0.

Remark 3: The nonlinear functions f(·), g(·) and h(·) satisfying Assumption 2 are said to belong to the sector [X1, X2],

[Y1, Y2] and [H1, H2], respectively. Note that the sector-bounded nonlinearity of stochastic systems has been studied by

[33, 34]. It should be pointed out that such a nonlinear condition is more general than the usual Lipschitz conditions

that have been widely used in [16, 38].
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Assumption 3: [20] The distributed time-delay kernel κ(·) : [0, +∞) → [0, +∞) is continuous, integrable and also

satisfies

κ̃ =

∫ +∞

0

κ(s)ds < +∞, κ̆ =

∫ +∞

0

sκ(s)ds < +∞ (11)

Assumption 4: The noise intensity function vector σi : R×R
n ×R

n → R
n satisfies the Lipschitz condition, i.e., there

exist constant matrices Σ1 and Σ2 of appropriate dimensions such that the following inequality

(

σi(t, u1, v1) − σj(t, u2, v2)
)T (

σi(t, u1, v1) − σj(t, u2, v2)
)

≤ ‖Σ1(u1 − u2)‖
2 + ‖Σ2(v1 − v2)‖

2

holds for all i, j = 1, 2, . . . , N and u1, v1, u2, v2 ∈ R
n.

By utilizing the Kronecker product ‘⊗’ of matrices, the network system (1) can be written in a compact form as

dx(t) =

[

(IN ⊗ A + W (1) ⊗ Γ1)x(t) + (IN ⊗ D + W (2) ⊗ Γ2)x(t − τ(t)) + δ(t)(IN ⊗ B1)F (x(t))

+(1 − δ(t))(IN ⊗ B2)G(x(t)) + (IN ⊗ C)

∫ t

−∞

κ(t − s)H(x(s))ds

]

dt

+(W (1) ⊗ Γ1)x(t)dω1(t) + (W (2) ⊗ Γ2)x(t − τ(t))dω2(t) + σ(t, x(t), x(t − τ(t)))dω3(t), (12)

where

x(t) = col{x1(t), x2(t), . . . , xN (t)},

F (x(t)) = col{f(x1(t)), f(x2(t)), . . . , f(xN (t))},

G(x(t)) = col{g(x1(t)), g(x2(t)), . . . , g(xN (t)},

H(x(t)) = col{h(x1(t)), h(x2(t)), . . . , h(xN (t))},

σ(t, x(t), x(t − τ(t))) = col{σ1(t, x1(t), x1(t − τ(t))), · · · , σN (t, xN (t), xN (t − τ(t)))}.

Let the network (1) (or (12)) be supplemented with initial conditions of the form

xi(s) = ϕi(s) ∈ L2
F0

((−∞, 0], Rn), i = 1, 2, · · · , N,

in which L2
F0

((−∞, 0], Rn) is the family of all F0-measurable C((−∞, 0], Rn)-valued random variables which satisfying

sup−∞≤s≤0 E{‖ϕi(s)‖
2} < ∞ [23, 36].

Before stating the main results, a definition and some lemmas are introduced here.

Definition 1: The complex networks (1) (or (12)) is said to be globally asymptotically synchronized in the mean

square if

lim
t→∞

E

{

‖xi(t, ϕi(s)) − xj(t, ϕj(s))‖
2

}

= 0 (13)

holds for any i, j ∈ {1, 2, . . . , N}.

Lemma 1: [13] The Kronecker product has the following properties:

(1) (αA) ⊗ B = A ⊗ (αB);

(2) (A + B) ⊗ C = A ⊗ C + B ⊗ C;

(3) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD);

(4) (A ⊗ B)T = AT ⊗ BT .

Lemma 2: [3] Given any real matrices Ω1, Ω2, Λ of appropriate dimensions and a number ε > 0 such that Λ > 0,

then the following inequality holds:

ΩT
1 Ω2 + ΩT

2 Ω1 ≤ εΩT
1 ΛΩ1 + ε−1ΩT

2 Λ−1Ω2.

Lemma 3: Let U = (αij)N×N , P ∈ R
n×n, x = col{x1, x2, ..., xN} where xi = col{xi1, xi2, . . . , xin} ∈ R

n and

y = col{y1, y2, ..., yN} where yi = col{yi1, yi2, . . . , yin} ∈ R
n (k = 1, 2, ..., N). If U = UT and each row sum of U is zero,

then

xT (U ⊗ P )y = −
∑

1≤i<j≤N

αij(xi − xj)
T P (yi − yj).
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Lemma 4: [20] Let M be a positive semi-definite matrix, α(·) : (−∞, a] → [0, +∞) be a scalar function and F(·) :

(−∞, a] → R
n be a vector function. If the integrations concerned are well defined, the following inequality holds:

(
∫ a

−∞

α(s)F(s)ds

)T

M

(
∫ a

−∞

α(s)F(s)ds

)

≤

∫ a

−∞

α(s)ds

(
∫ a

−∞

α(s)FT (s)MF(s)ds

)

. (14)

Remark 4: In the above lemma, if we take

α(t) =

{

1 : b ≤ t ≤ a,

0 : otherwise,

we can get the following well-known Jensen inequality [12]:
(

∫ a

b

F(s)ds

)T

M

(
∫ a

b

F(s)ds

)

≤ (a − b)

(
∫ a

b

FT (s)MF(s)ds

)

. (15)

Therefore, the Jensen inequality (15) is a special case of the inequality (14). Lemma 4 will be used to deal with the

infinite integral such as the unbounded distributed delays considered in this paper.

Lemma 5: [27] Let f be a nonnegative function defined on [0, +∞). If f is Lebesgue integrable and is uniformly

continuous on [0, +∞), then limt→+∞ f(t) = 0.

III. Main Results

In this section, we deal with the globally mean-square synchronization problem of the complex networks (1) (or (12))

with stochastic nonlinearities and multiple stochastic disturbances.

In the following, for simplicity, we denote

X̂ = XT
1 X2 + XT

2 X1, X̌ = XT
1 + XT

2 ; Ŷ = Y T
1 Y2 + Y T

2 Y1,

Y̌ = Y T
1 + Y T

2 , Ĥ = HT
1 H2 + HT

2 H1, Ȟ = HT
1 + HT

2 .

Rewrite system (12) as

dx(t) =

[

(IN ⊗ A + W (1) ⊗ Γ1)x(t) + (IN ⊗ D + W (2) ⊗ Γ2)x(t − τ(t)) + δ0(IN ⊗ B1)F (x(t))

+ (1 − δ0)(IN ⊗ B2)G(x(t)) + (δ(t) − δ0)

(

(IN ⊗ B1)F (x(t)) − (IN ⊗ B2)G(x(t))

)

+ (IN ⊗ C)

∫ t

−∞

κ(t − s)H(x(s))ds

]

dt + (W (1) ⊗ Γ1)x(t)dω1(t)

+ (W (2) ⊗ Γ2)x(t − τ(t))dω2(t) + σ(t, x(t), x(t − τ(t)))dω3(t). (16)

In this paper, the discrete time delay we consider exists in an interval 0 < ~1 ≤ τ(t) ≤ ~2, that is, the range of the

delay varies in an interval for which the lower bound is not restricted to 0. Let us represent the time delay τ(t) as two

parts: the constant part ~1 and the time-varying part d(t),

τ(t) = d(t) + ~1, 0 ≤ d(t) ≤ ~2 − ~1, ḋ(t) ≤ µ. (17)

By utilizing the most updated techniques for achieving delay dependence, the idea of ‘delay partitioning’ [25,26] is now

introduced to the constant part ~1, that is, we divide ~1 into r equal divisions, where the integer r ≥ 1 denotes the

number of fractions.

Define

y(t) = Aη(t), (18)

where

A =

[

(IN ⊗ A + W (1) ⊗ Γ1), 0Nn×rNn, (IN ⊗ D + W (2) ⊗ Γ2), 0Nn×Nn,

δ0(IN ⊗ B1), (1 − δ0)(IN ⊗ B2), IN ⊗ C, 0Nn×Nn

]

,

η(t) = col

{

x(t), x(t −
~1

r
), · · · , x(t −

r − 1

r
~1), x(t − ~1), x(t − τ(t)), x(t − ~2),

F (x(t)), G(x(t)),

∫ t

−∞

κ(t − s)H(x(s))ds, y(t)

}

.
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Then, the network (12) can be expressed as

dx(t) =

[

y(t) + (δ(t) − δ0)Bη(t)

]

dt + σ(t)dω(t), (19)

where B =

[

0Nn×(r+3)Nn, (IN ⊗ B1), − (IN ⊗ B2), 0Nn×2Nn

]

, dω(t) = col{dω1(t), dω2(t), dω3(t)}, σ(t) =

[

(W (1) ⊗

Γ1)x(t), (W (2) ⊗ Γ2)x(t − τ(t)), σ(t, x(t), x(t − τ(t)))

]

.

Theorem 1: Consider the complex network (1) (or (16)) with unbounded distributed delay and a discrete interval

time-varying delay (0 < ~1 ≤ τ(t) ≤ ~2). For a given integer r ≥ 1, the asymptotic synchronization in the mean square

for (1) (or (16)) can be achieved if there exist matrices Pl > 0 (l = 1, 2), Qk > 0 (k = 1, 2, . . . , r + 1), R > 0, Z > 0,

matrices Mk, S and positive scalars λ, α, β, γ such that the following LMIs hold for all 1 ≤ i < j ≤ N :

P1 < λI, (20)

Θij =





Ξij M̃ M̃

∗ −R 0

∗ ∗ −Z



 < 0, (21)

where

Ξij = WT
Q Q̃WQ + WT

S ΠijWS , M̃ = diag

{

√

~1

r
M1,

√

~1

r
M2, . . . ,

√

~1

r
Mr, 0, 0,

√

~2 − ~1Mr+1, 0, 0, 0, 0, 0

}

,

WQ =

[

Irn×rn 0rn×n 0rn×7n

0rn×n Irn×rn 0rn×7n

]

, Q̃ =

[

Q + M + MT −M

∗ −Q

]

, WS =































In×n 0n×(rn+7n)

0n×rn In×n 0n×7n

0n×(rn+n) In×n 0n×6n

0n×(rn+2n) In×n 0n×5n

0n×(rn+3n) In×n 0n×4n

0n×(rn+4n) In×n 0n×3n

0n×(rn+5n) In×n 0n×2n

0n×(rn+6n) In×n 0n×n

0n×(rn+7n) In×n































,

Πij =































π(1,1) 0 π(1,3) 0 αX̌ + δ0P1B1 βY̌ + (1 − δ0)P1B2 γȞ π(1,8) P1C

∗ 0 0 MT
r+1 0 0 0 0 0

∗ ∗ π(3,3) 0 0 0 0 π(3,8) 0

∗ ∗ ∗ −2Mr+1 0 0 0 0 0

∗ ∗ ∗ ∗ π(5,5) π(5,6) 0 δ0B
T
1 ST 0

∗ ∗ ∗ ∗ ∗ π(6,6) 0 (1 − δ0)B
T
2 ST 0

∗ ∗ ∗ ∗ ∗ ∗ π(7,7) 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ~2R − S − ST SC

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
κ̃
P2































,

π(1,1) = (AT P1 + P1A) + λΣT
1 Σ1 + Qr+1 − Nw

(1,1)
ij ΓT

1 P1Γ1 − Nw
(1)
ij (P1Γ1 + ΓT

1 P1) − αX̂ − βŶ − γĤ,

π(1,3) = P1D − Nw
(2)
ij P1Γ2, π(1,8) = AT ST − Nw

(1)
ij ΓT

1 ST ,

π(3,3) = λΣT
2 Σ2 − (1 − µ)Qr+1 − Nw

(2,2)
ij ΓT

2 P1Γ2, π(3,8) = DT ST − Nw
(2)
ij ΓT

2 ST ,

π(5,5) = −2αI + δ0(1 − δ0)~2B
T
1 ZB1, π(5,6) = −δ0(1 − δ0)~2B

T
1 ZB2,

π(6,6) = −2βI + δ0(1 − δ0)~2B
T
2 ZB2, π(7,7) = −2γI + κ̃P2,

Q = diag{Q1, Q2, . . . , Qr}, M = diag{M1, M2, . . . , Mr},

and W (1,1) = W (1)W (1) = (w
(1,1)
ij )N×N , W (2,2) = W (2)W (2) = (w

(2,2)
ij )N×N .

Proof: Construct a matrix functional V (t, xt) ∈ C1,2(R × R
nN , R+) as follows

V (t, xt) = V1(t, xt) + V2(t, xt) + V3(t, xt) + V4(t, xt) + V5(t, xt) + V6(t, xt), (22)
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where

V1(t, xt) = xT (t)(U ⊗ P1)x(t),

V2(t, xt) =

r
∑

k=1

∫ t− k−1

r
~1

t− k

r
~1

xT (s)(U ⊗ Qk)x(s)ds,

V3(t, xt) =

∫ t

t−τ(t)

xT (s)(U ⊗ Qr+1)x(s)ds

V4(t, xt) =

∫ +∞

0

κ(s)ds

∫ t

t−s

HT (x(θ))(U ⊗ P2)H(x(θ))dθ,

V5(t, xt) =

∫ t

t−~2

∫ t

s

yT (θ)(U ⊗ R)y(θ)dθds,

V6(t, xt) = δ0(1 − δ0)

∫ t

t−~2

∫ t

s

ηT (θ)BT (U ⊗ Z)Bη(θ)dθds

with r ≥ 1 (number of fractions) being an integer and U = [umα]N×N with umα =

{

−1, α 6= m;

N − 1, α = m.

The infinitesimal operator L of V (t, xt) is defined as follows [24]:

L V (t, xt) = lim
∆→0+

1

∆
[E{V (t + ∆, xt+∆)|xt} − V (t, xt)]. (23)

With the detailed mathematical derivations in Appendix, we obtain

E{L V (t, xt)} =
∑

1≤i<j≤N

ξT
ij(t)(Ξij + M̃(I8+r ⊗ (R−1 + Z−1))M̃T )ξij(t), (24)

where

ξij(t) = col

{

(Υi(t) − Υj(t)), (ζi(t) − ζj(t)), (ςi(t) − ςj(t))

}

,

Υi(t) = col

{

xi(t), xi(t −
1

r
~1), . . . , xi(t −

r − 1

r
~1)

}

,

ζi(t) = col

{

xi(t − ~1), xi(t − τ(t)), xi(t − ~2)

}

,

ςi(t) = col

{

f(xi(t)), g(xi(t)), h(xi(t)), yi(t),

∫ t

−∞

κ(t − s)h(xi(s))ds

}

.

By the Schur complement, we can see that condition (21) ensures Θ̂ij = Ξij + M̃(I8+r ⊗ (R−1 + Z−1))M̃T < 0, and

then it follows that

E{L V (t, xt)} ≤ λmax(Θ̂ij)
∑

1≤i<j≤N

E{‖ξij(t)‖
2}

≤ ϑ
∑

1≤i<j≤N

E{‖xi(t) − xj(t)‖
2}, (25)

where ϑ = max1≤i<j≤N{λmax(Θ̂ij)} < 0. Therefore we have

E{V (t)} − E{V (0)} =

∫ t

0

E{L V (s)}ds

≤ ϑ

∫ t

0

∑

1≤i<j≤N

E{‖xi(s) − xj(s)‖
2}ds, (26)

which implies that

∫ t

0

∑

1≤i<j≤N

E{‖xi(s) − xj(s)‖
2}ds ≤ −

1

ϑ
E{V (0)} +

1

ϑ
E{V (t)} ≤ −

1

ϑ
E{V (0)}. (27)
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From (8)-(10), it can be inferred that there exists a positive constant ε such that

‖f(u) − f(v)‖ ≤ ε‖u − v‖, ‖g(u) − g(v)‖ ≤ ε‖u − v‖ and ‖h(u) − h(v)‖ ≤ ε‖u − v‖, ∀u, v ∈ R
n. (28)

Accordingly, by (28) and Assumption 3, we can obtain V (0) < +∞, then we have
∫ t

0

∑

1≤i<j≤N

E{‖xi(s) − xj(s)‖
2}ds < +∞.

Moreover, it is not difficult to see that E{‖xi(s) − xj(s)‖
2} is uniformly continuous on [0, +∞). Therefore, by Lemma

5, we obtain
∑

1≤i<j≤N

E{‖xi(s) − xj(s)‖
2} → 0, as t → +∞.

In other words, all the subsystems in (1) are asymptotically synchronized in the mean square. The proof is complete.

Remark 5: The complex dynamical network (1) is a rather general system, since the mixed time delays, the stochastic

nonlinearities as well as the stochastic disturbances have been all taken into account in the proposed network framework.

It should also be pointed out that the distributed delays studied here comprise two types, one is the unbounded

distributed time delay that we have already considered, and the other is the bounded delay that can be demonstrated

as follows. If we take

κ(s) =

{

1, 0 ≤ s ≤ ρ < +∞;

0, otherwise,

then the distributed time delay becomes finite in this case. Similar result can be derived easily for the bounded delay

case, which are therefore omitted here. Note that, in [19, 28], the bounded distributed time delays in neural networks

were studied. However, in almost all literature concerning complex (neural) networks with mixed time delays, the

stochastic nonlinearities have not been investigated yet. Therefore, in this paper, the model we put forward can reflect

more intrinsic characteristics of the real-time systems, and the main results obtained are more general than the existing

ones.

Remark 6: By taking advantage of a novel matrix functional and linear matrix inequalities (LMI) techniques, the

synchronization criteria have been derived in the form of LMIs for the stochastic complex networks with mixed time

delays, stochastic nonlinearities as well as multiple stochastic disturbances. The LMI-based conditions can be readily

checked by using the LMI toolbox in Matlab or other standard numerical software. An important feature of the reported

results lies in that all the conditions are dependent on both the lower and upper bounds of the time-varying delays,

which is made possible by utilizing the most updated techniques for achieving delay dependence.

IV. Numerical Example

In this section, we present a numerical example so as to illustrate the advantage and usefulness of our main results.

Consider a system coupled by three identical second-order complex networks with the network parameters given as

follows:

A =

[

−2.5 0.3

0.9 −1

]

, B1 =

[

−1.6 0.4

0.3 −0.5

]

, B2 =

[

−1.5 0.5

0.8 −1.5

]

, D =

[

−2.4 0.8

0.4 −1.6

]

,

C =

[

−2 0.6

0.8 −1.2

]

, δ0 = 0.56, κ(s) = e−4s, τ(t) = 1 + 0.5sin(2t).

Choose the coupling matrices W (1), W (2) and the linking matrices Γ1, Γ2 as

W (1) =





−2 1 1

1 −2 1

1 1 −2



 , W (2) =





−3 1 2

2 −3 1

1 2 −3



 ; Γ1 =

[

0.7 −0.6

−0.4 0.7

]

; Γ2 =

[

−0.3 0.25

−0.35 −0.4

]

.

Let the nonlinear function and the noise intensity function vector be given by

f(xi(t)) = (0.5xi1(t) − tanh(0.2xi1(t)) + 0.2xi2(t), 0.95xi2(t) − tanh(0.75xi2(t)))
T

,

g(xi(t)) = h(xi(t)) = (0.2xi1(t) − tanh(0.1xi1(t)), 0.1xi2(t))
T

, i = 1, 2, 3,

σ(t, u, v) =

[

−0.1 0.1 0.2 −0.2

0.1 −0.1 0.2 −0.2

] [

u

v

]

.



FINAL VERSION OF PAPER A/294458/PAP/149802 9

Then, it is easy to verify that κ̃ = 0.25, µ = 1, ~1 = 0.5, ~2 = 1.5 and

X1 =

(

0.3 0.2

0 0.2

)

, X2 =

(

0.5 0.2

0 0.95

)

, Y1 = H1 =

(

0.1 0

0 0.1

)

,

Y2 = H2 =

(

0.2 0

0 0.1

)

, Σ1 =

[

−0.1 0.1

0.1 −0.1

]

, Σ2 =

[

0.2 −0.2

0.2 −0.2

]

.

By using the Matlab LMI Toolbox, if we take r = 1, LMIs (20)-(21) are feasible and the solutions are given as:

P1 =

[

26.0331 7.8656

7.8656 15.4338

]

, P2 =

[

17.9620 −2.9178

−2.9178 10.8588

]

, Q1 =

[

24.3735 −2.2467

−2.2467 19.2441

]

,

Q2 =

[

51.0797 −16.0797

−16.0797 21.4102

]

, R =

[

5.6141 3.7871

3.7871 4.0428

]

, Z =

[

14.6002 2.9157

2.9157 17.2751

]

,

λ = 31.4146, α = 19.8248, β = 24.6340, γ = 12.2727.

According to Theorem 1, the array of coupled delayed complex networks (1) with multiple stochastic disturbances

and stochastic nonlinearities can achieve globally asymptotic synchronization in the mean square under the allowable

interval delay. Such a conclusion is further supported by the simulation results given in Fig. 1-Fig. 2, where the initial

states for system (1) are taken randomly constants in [−1, 1]× [−1, 1].

0 5 10 15 20 25 30
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

x i1
(t

)−
x 11

(t
)

Fig. 1. Synchronization error of xi1(t) − x11(t) (i = 2, 3)

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x i2
(t

)−
x 12

(t
)

Fig. 2. Synchronization error of xi2(t) − x12(t) (i = 2, 3)

V. Conclusions

In this paper, we have investigated the networks synchronization problem of a new class of stochastic delayed com-

plex networks with N identical subsystems. By employing a novel matrix functional, the properties of Kronecker

product, linear matrix inequalities (LMI) techniques and stochastic analysis theory, the synchronization criteria have

been established for a stochastic complex networks with mixed time delays, stochastic nonlinearities as well as multiple

stochastic disturbances. Note that the LMI-based criteria reported in the present paper are dependent on the allow-

able lower and upper bound of the discrete time-varying delays, which is made possible by utilizing the most updated

techniques for achieving delay dependence. Moreover, the LMI-based criteria can be readily verified by the standard

numerical software. In the end of the paper, we have exploited a numerical example to show the usefulness of our results.

Appendix. The detailed derivations of E{L V (t, xt)} in the proof of Theorem 1.
Based on the properties of Kronecker product and Assumption 1, it follows readily that

U ⊗W (i) = NW (i), (W (i) ⊗ Γi)(U ⊗ P )(W (j) ⊗ Γj) = N(W (i)W (j)) ⊗ (ΓiPΓj) i, j = 1, 2.
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Then, with Lemmas 1, 3 and 4, we have

L V1(t, xt) = 2xT (t)(U ⊗ P1)y(t) + xT (t)(W (1) ⊗ ΓT
1 )(U ⊗ P1)(W

(1) ⊗ Γ1)x(t)

+ xT (t− τ(t))(W (2) ⊗ ΓT
2 )(U ⊗ P1)(W

(2) ⊗ Γ2)x(t − τ(t))

+ σT (t, x(t), x(t − τ(t)))(U ⊗ P1)σ(t, x(t), x(t − τ(t))) + 2(δ(t) − δ0)xT (t)(U ⊗ P1)Bη(t)

=
X

1≤i<j≤N

�
(xi(t) − xj(t))

T

�
2P1(yi(t) − yj(t)) −Nw

(1,1)
ij ΓT

1 P1Γ1(xi(t) − xj(t))

�
− (xi(t− τ(t)) − xj(t − τ(t)))TNw

(2,2)
ij ΓT

2 P1Γ2(xi(t − τ(t)) − xj(t− τ(t)))

+ (σi(t, xi(t), xi(t− τ(t))) − σj(t, xj(t), xj(t− τ(t))))T P1

× (σi(t, xi(t), xi(t− τ(t))) − σj(t, xj(t), xj(t− τ(t))))

�
=

X
1≤i<j≤N

�
(xi(t) − xj(t))

T

��
P1A+ ATP1 −Nw

(1)
ij (P1Γ1 + ΓT

1 P1)

−Nw
(1,1)
ij ΓT

1 P1Γ1

�
(xi(t) − xj(t)) + 2(P1D −Nw

(2)
ij P1Γ2)(xi(t − τ(t)) − xj(t − τ(t)))

+2δ0P1B1(f(xi(t)) − f(xj(t))) + 2(1 − δ0)P1B2(g(xi(t)) − g(xj(t)))

+2P1C

Z t

−∞

κ(t− s)(h(xi(s)) − h(xj(s)))ds

�
−(xi(t − τ(t)) − xj(t− τ(t)))TNw

(2,2)
ij ΓT

2 P1Γ2(xi(t− τ(t)) − xj(t − τ(t)))

+(σi(t, xi(t), xi(t − τ(t))) − σj(t, xj(t), xj(t − τ(t))))T P1

× (σi(t, xi(t), xi(t− τ(t))) − σj(t, xj(t), xj(t− τ(t))))

�
, (29)

L V2(t, xt) = xT (t)(U ⊗Q1)x(t) − xT (t − ~1)(U ⊗Qr)x(t − ~1)

−

r−1X
l=1

�
xT (t −

l

r
~1)(U ⊗ (Ql −Ql+1))x(t −

l

r
~1)

�
=

X
1≤i<j≤N

�
(xi(t) − xj(t))

TQ1(xi(t) − xj(t)) − (xi(t − ~1) − xj(t − ~1))
T

× Qr(xi(t − ~1) − xj(t − ~1)) −

r−1X
l=1

(xi(t−
l

r
~1) − xj(t −

l

r
~1))T

× (Ql −Ql+1)(xi(t −
l

r
~1) − xj(t −

l

r
~1)), (30)

L V3(t, xt) = xT (t)(U ⊗Qr+1)x(t) − (1 − τ̇(t))xT (t − τ(t))(U ⊗Qr+1)x(t − τ(t))

≤
X

1≤i<j≤N

�
(xi(t) − xj(t))

TQr+1(xi(t) − xj(t))

−(1 − µ)(xi(t − τ(t)) − xj(t− τ(t)))TQr+1(xi(t − τ(t)) − xj(t − τ(t)))

�
, (31)

L V4(t, xt) =

Z +∞

0
κ(s)HT (x(t))(U ⊗ P2)H(x(t))ds −

Z +∞

0
κ(s)HT (x(t − s))(U ⊗ P2)H(x(t − s))ds

= κ̃HT (x(t))(U ⊗ P2)H(x(t)) −

Z +∞

0
κ(s)HT (x(t− s))(U ⊗ P2)H(x(t − s))ds

=
X

1≤i<j≤N

�
κ̃(h(xi(t)) − h(xj(t)))

T P2(h(xi(t)) − h(xj(t)))

−

Z t

−∞

κ(t− s)(h(xi(s)) − h(xj(s)))
T P2(h(xi(s)) − h(xj(s)))ds

�
≤

X
1≤i<j≤N

�
κ̃(h(xi(t)) − h(xj(t)))

T P2(h(xi(t)) − h(xj(t))) −
1

κ̃

�Z t

−∞

κ(t− s)(h(xi(s))

−h(xj(s)))ds

�T

P2

�Z t

−∞

κ(t− s)(h(xi(s)) − h(xj(s)))ds

��
, (32)

L V5(t, xt) = ~2y
T (t)(U ⊗R)y(t) −

Z t

t−~1

yT (s)(U ⊗ R)y(s)ds −

Z t−~1

t−~2

yT (s)(U ⊗ R)y(s)ds

=
X

1≤i<j≤N

�
~2(yi(t) − yj(t))

TR(yi(t) − yj(t)) −
rX

k=1

�Z t−
k−1

r
~1

t− k

r
~1

(yi(s) − yj(s))
T

×R(yi(s) − yj(s))ds

�
−

Z t−~1

t−~2

(yi(s) − yj(s))
TR(yi(s) − yj(s))ds

�
, (33)
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L V6(t, xt) = ~2δ0(1 − δ0)ηT (t)BT (U ⊗ Z)Bη(t)

− δ0(1 − δ0)

� Z t

t−~1

ηT (s)BT (U ⊗ Z)Bη(s)ds +

Z t−~1

t−~2

ηT (s)BT (U ⊗ Z)Bη(s)ds

�
= δ0(1 − δ0)

X
1≤i<j≤N

�
~2(Biηi(t) − Bjηj(t))

T Z((Biηi(t) − Bjηj(t))

−
rX

k=1

�Z t−
k−1

r
~1

t− k

r
~1

(Biηi(s) −Bjηj(s))
TZ(Biηi(s) −Bjηj(s))ds

�
−

Z t−~1

t−~2

(Biηi(s) −Bjηj(s))
TZ(Biηi(s) − Bjηj(s))ds

�
= δ0(1 − δ0)

X
1≤i<j≤N

�
~2

�
(f(xi(t)) − f(xj(t)))

TBT
1 ZB1(f(xi(t)) − f(xj(t)))

+(g(xi(t)) − g(xj(t)))
TBT

2 ZB2(g(xi(t)) − g(xj(t)))

−2(f(xi(t)) − f(xj(t)))
TBT

1 ZB2(g(xi(t)) − g(xj(t)))

�
−

rX
k=1

�Z t−
k−1

r
~1

t− k

r
~1

(Biηi(s) −Bjηj(s))
TZ(Biηi(s) −Bjηj(s))ds

�
−

Z t−~1

t−~2

(Biηi(s) −Bjηj(s))
TZ(Biηi(s) − Bjηj(s))ds

�
, (34)

where the symbol Biηi(t) means the term B1f(xi(t)) −B2g(xi(t)).

From Newton-Leibniz formula, we have that for matrices Mk (k = 1, 2, . . . , r)

φk(t) , 2xT (t −
k − 1

r
~1)(U ⊗Mk)

�
x(t −

k − 1

r
~1) − x(t−

k

r
~1) −

Z t−
k−1

r
~1

t− k

r
~1

dx(s)

�
= 0, (35)

ϕ(t) , 2xT (t− ~2)(U ⊗Mr+1)

�
x(t− ~1) − x(t − ~2) −

Z t−~1

t−~2

dx(s)

�
= 0. (36)

Note that, in φk(t), it follows from Lemma 2 that for all k = 1, 2, . . . , r:

−2xT (t −
k − 1

r
~1)(U ⊗Mk)

Z t−
k−1

r
~1

t−k

r
~1

dx(s)

= −2xT (t −
k − 1

r
~1)(U ⊗Mk)

Z t−
k−1

r
~1

t−k

r
~1

��
y(s) + (δ(s) − δ0)Bη(s)

�
ds+ σ(s)dω(s)

�
=

X
1≤i<j≤N

�
− 2

�
xi(t−

k − 1

r
~1) − xj(t−

k − 1

r
~1)

�T

Mk

�Z t−
k−1

r
~1

t−k

r
~1

(yi(s) − yj(s))ds

�
−2

�
xi(t −

k − 1

r
~1) − xj(t −

k − 1

r
~1)

�T

Mk

�Z t−
k−1

r
~1

t− k

r
~1

(δ(s) − δ0)(Bηi(s) −Bηj(s))ds

��
−2xT (t −

k − 1

r
~1)(U ⊗Mk)

Z t−
k−1

r
~1

t−k

r
~1

σ(s)dω(s)

≤
X

1≤i<j≤N

�
1

r
~1

�
xi(t −

k − 1

r
~1) − xj(t −

k − 1

r
~1)

�T

Mk(R−1 + Z−1)MT
k

×

�
xi(t−

k − 1

r
~1) − xj(t−

k − 1

r
~1)

�
+

�Z t−
k−1

r
~1

t− k

r
~1

(yi(s) − yj(s))
TR(yi(s) − yj(s))ds

�
+

�Z t−
k−1

r
~1

t−k

r
~1

(δ(s) − δ0)2(Biηi(s) −Bjηj(s))
TZ(Biηi(s) −Bjηj(s))ds

��
−2xT (t −

k − 1

r
~1)(U ⊗Mk)

Z t−
k−1

r
~1

t−k

r
~1

σ(s)dω(s). (37)
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Similarly, in ϕ(t), we can show that

−2xT (t − ~2)(U ⊗Mr+1)

Z t−~1

t−~2

dx(s)

= −2xT (t − ~2)(U ⊗Mr+1)

Z t−~1

t−~2

��
y(s) + (δ(s) − δ0)Bη(s)

�
ds+ σ(s)dω(s)

�
≤

X
1≤i<j≤N

�
(~2 − ~1)

�
xi(t− ~2) − xj(t− ~2)

�T

Mr+1(R
−1 + Z−1)MT

r+1

�
xi(t − ~2) − xj(t − ~2)

�
+

Z t−~1

t−~2

(yi(s) − yj(s))
TR(yi(s) − yj(s))ds +

Z t−~1

t−~2

(δ(s) − δ0)2(Biηi(s) − Bjηj(s))
TZ

×(Biηi(s) − Bjηj(s))ds

�
− 2xT (t − ~2)(U ⊗Mr+1)

Z t−~1

t−~2

σ(s)dω(s). (38)

From the definition (18), we have

ψ(t) , 2yT (t)(U ⊗ S)

�
(IN ⊗ A+W (1) ⊗ Γ1)x(t) + (IN ⊗D +W (2) ⊗ Γ2)x(t − τ(t)) + δ0(IN ⊗B1)

×F (x(t)) + (1 − δ0)(IN ⊗B2)G(x(t)) + (IN ⊗ C)

Z t

−∞

κ(t− s)H(x(s))ds− y(t)

�
= 0, (39)

which implies that

ψ(t) =
X

1≤i<j≤N

�
2(xi(t) − xj(t))

T (ATST −Nw
(1)
ij ΓT

1 S
T )(yi(t) − yj(t)) + 2(xi(t− τ(t)) − xj(t − τ(t)))T

× (DTST −Nw
(2)
ij ΓT

2 S
T )(yi(t) − yj(t)) + 2(f(xi(t)) − f(xj(t)))

T δ0B
T
1 S

T (yi(t) − yj(t))

+ 2(g(xi(t)) − g(xj(t)))
T (1 − δ0)BT

2 S
T (yi(t) − yj(t)) + 2

�Z t

−∞

κ(t − s)(h(xi(s)) − h(xj(s)))ds

�T

× CTST (yi(t) − yj(t)) − (yi(t) − yj(t))
T (ST + S)(yi(t) − yj(t))

�
= 0. (40)

According to Assumption 4 and condition (20), it is clear that

[σi(t, xi(t), xi(t− τ(t))) − σj(t, xj(t), xj(t − τ(t)))]T P1[σi(t, xi(t), xi(t − τ(t))) − σj(t, xj(t), xj(t − τ(t)))]

≤ λ

�
(xi(t) − xj(t))

T ΣT
1 Σ1(xi(t) − xj(t)) + (xi(t − τ(t)) − xj(t− τ(t)))T ΣT

2 Σ2(xi(t− τ(t)) − xj(t − τ(t)))

�
, 1 ≤ i < j ≤ N. (41)

At the same time, Assumption 2 ensures that the following inequality holds:

α

�
xi(t) − xj(t)

f(xi(t)) − f(xj(t))

�T �
XT

1 X2 +XT
2 X1 −(XT

1 +XT
2 )

∗ 2I

� �
xi(t) − xj(t)

f(xi(t)) − f(xj(t))

�
≤ 0,

i.e.,

α

�
xi(t) − xj(t)

f(xi(t)) − f(xj(t))

�T �
X̂ −X̌

∗ 2I

� �
xi(t) − xj(t)

f(xi(t)) − f(xj(t))

�
≤ 0, 1 ≤ i < j ≤ N. (42)

Similarly, one has

β

�
xi(t) − xj(t)

g(xi(t)) − g(xj(t))

�T �
Ŷ −Y̌

∗ 2I

� �
xi(t) − xj(t)

g(xi(t)) − g(xj(t))

�
≤ 0, (43)

γ

�
xi(t) − xj(t)

h(xi(t)) − h(xj(t))

�T �
Ĥ −Ȟ

∗ 2I

� �
xi(t) − xj(t)

h(xi(t)) − h(xj(t))

�
≤ 0. (44)

Combining (29)–(44), considering condition (6) and noting that

E{2xT (t − ~2)(U ⊗Mr+1)

Z t−~1

t−~2

σ(s)dω(s)} = 0,

E{2xT (t −
k − 1

r
~1)(U ⊗Mk)

Z t−
k−1

r
~1

t− k

r
~1

σ(s)dω(s)} = 0 (k = 1, 2, . . . , r);
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we get

E{L V (t, xt)}

≤
X

1≤i<j≤N

E

�
(xi(t) − xj(t))

T

��
P1A+ ATP1 −Nw

(1)
ij (ΓT

1 P1 + P1Γ1) + λΣT
1 Σ1 +Qr+1 − αX̂ − βŶ − γĤ

−Nw
(1,1)
ij ΓT

1 P1Γ1

�
(xi(t) − xj(t)) +

�
2(P1D −Nw

(2)
ij P1Γ2)(xi(t − τ(t)) − xj(t− τ(t))) + 2(αX̌ + δ0P1B1)

(f(xi(t)) − f(xj(t))) + 2(βY̌ + (1 − δ0P1B2))(g(xi(t)) − g(xj(t))) + 2γȞ(h(xi(t)) − h(xj(t))) + (2ATST

−2Nw
(1)
ij ΓT

1 S
T )(yi(t) − yj(t)) + 2P1C

Z t

−∞

κ(t − s)(h(xi(s)) − h(xj(s)))ds

��
+ (xi(t − τ(t))

−xj(t− τ(t)))T

��
λΣT

2 Σ2 − (1 − µ)Qr+1 −Nw
(2,2)
ij ΓT

2 P1Γ2

�
(xi(t− τ(t)) − xj(t − τ(t))) +

�
2DTST

−2Nw
(2)
ij ΓT

2 S
T

�
(yi(t) − yj(t))

�
+ (f(xi(t)) − f(xj(t)))

T

��
− 2αI + δ0(1 − δ0)~2B

T
1 ZB1

�
(f(xi(t)) − f(xj(t))) + 2δ0B

T
1 S

T (yi(t) − yj(t)) − 2δ0(1 − δ0)~2B
T
1 ZB2(g(xi(t)) − g(xj(t)))

�
+(g(xi(t)) − g(xj(t)))

T

��
− 2βI + δ0(1 − δ0)~2B

T
2 ZB2

�
(g(xi(t)) − g(xj(t))) + 2(1 − δ0)BT

2 S
T

(yi(t) − yj(t))

�
+ (h(xi(t)) − h(xj(t)))

T

�
− 2γI + κ̃P2

�
(h(xi(t)) − h(xj(t))) +�Z t

−∞

κ(t − s)(h(xi(s)) − h(xj(s)))ds

�T �
2CTST (yi(t) − yj(t)) −

1

κ̃
P2

Z t

−∞

κ(t − s)(h(xi(s))

−h(xj(s)))ds

�
+ (yi(t) − yj(t))

T (~2R − S − ST )(yi(t) − yj(t))

+(Υi(t) − Υj(t))
T

�
(Q + M + MT )(Υi(t) − Υj(t)) − 2M(Υi(t−

1

r
~1) − Υj(t −

1

r
~1))

�
−(Υi(t −

1

r
~1) − Υj(t−

1

r
~1))T Q(Υi(t −

1

r
~1) − Υj(t−

1

r
~1))

+2(xi(t − ~2) − xj(t − ~2))
TMr+1

�
(xi(t − ~1) − xj(t − ~1)) − (xi(t − ~2) − xj(t − ~2))

�
+

1

r
~1(Υi(t) − Υj(t))

T M(Ir ⊗ (R−1 + Z−1))MT (Υi(t) − Υj(t)) + (~2 − ~1)(xi(t − ~2) − xj(t − ~2))
T

Mr+1(R
−1 + Z−1)MT

r+1(xi(t − ~2) − xj(t − ~2))

�
=

X
1≤i<j≤N

ξT
ij(t)(Ξij + M̃(I8+r ⊗ (R−1 + Z−1))M̃T )ξij(t), (45)
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