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State Estimation for Discrete-time

Markovian Jumping Neural Networks

with Mixed Mode-Dependent Delays
Yurong Liu, Zidong Wang∗ and Xiaohui Liu

Abstract

In this paper, we investigate the state estimation problem for a new class of discrete-time neural networks with

Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time

neural networks are subject to the switching from one mode to another at different times according to a Markov chain,

and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping

mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel

Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are

established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show

that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of

the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions.
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I. Introduction

It is now well known that many biological and artificial neural networks contain inherent time delays in

signal transmission, which may cause oscillation and instability (see e.g. [1–3]). In recent years, a great num-

ber of papers have been published on various neural networks with time delays. The existence of equilibrium

point, global asymptotic stability, global exponential stability, and the existence of periodic solutions have

been intensively investigated, see e.g. [4–12]. For the dynamical behavior analysis of delayed neural networks,

different types of time delays, such as constant delays, time-varying delays, and distributed delays, have been

taken into account by using a variety of techniques that include linear matrix inequality (LMI) approach, Lya-

punov functional method, M -matrix theory, topological degree theory, and techniques of inequality analysis.

For example, in [10, 13], the global asymptotic stability analysis problem has been dealt with for a class of

neural networks with discrete and distributed time-delays by using an effective LMI approach.

In many applications, since the neuron states are not often fully available in the network outputs, the neuron

state estimation problem becomes important. Thus, the state estimation problem for neural networks has

recently drawn particular research interests, see e.g. [3,14–16]. For example, in [14], an adaptive state estimator

has been described by using techniques of optimization theory, the calculus of variations and gradient descent

dynamics. In [3], the neuron state estimation problem has been addressed for recurrent neural networks with

time-varying delays, and an effective LMI approach has been developed to verify the stability of the estimation

This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under

Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under

Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural

Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China

under Grant 60774073, and the Alexander von Humboldt Foundation of Germany.
Y. Liu is with the Department of Mathematics, Yangzhou University, Yangzhou 225002, P. R. China.
Z. Wang and X. Liu are with the Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex,

UB8 3PH, United Kingdom.
Email addresses: liuyurong@gmail.com (Y. Liu), Zidong.Wang@brunel.ac.uk (Z. Wang).
∗Corresponding author.



SUBMITTED 2

error dynamics. Very recently, in [17], the robust state estimation problem has been studied for a class of

uncertain neural networks with time-varying delay, and a sufficient condition has been presented to guarantee

the existence of the desired state estimator for the uncertain delayed neural networks.

In practice, neural networks may be subject to network mode switching, which is governed by a Markovian

chain [18]. In [19], the exponential stability has been studied for delayed recurrent neural networks with

Markovian jumping parameters. In [20], the exponential synchronization problem has been investigated for

a class of continuous-time complex networks with Markovian jump and mixed delays. On the other hand,

discrete-time neural networks could be more suitable to model digitally transmitted signals in a dynamical

way. However, to the best of the authors’ knowledge, the state estimation problem for discrete-time Markovian

jumping neural networks with or without mode-dependent mixed time-delays has not been adequately addressed

in the literature yet, and the purpose of this paper is therefore to shorten such a gap.

In this paper, we deal with the state estimation problem for a new class of discrete-time neural networks

with Markovian jumping parameters and mode-dependent mixed time-delays. By utilizing the Lyapunov

functional method and some new techniques, we derive several delay-dependent sufficient conditions under

which the estimation error dynamics is asymptotically stable. The criteria obtained in this paper are in the

form of LMIs whose solution can be easily calculated by using the standard numerical software. Note that

Markovian jumping parameters are introduced for discrete-time neural networks, and both the discrete and

distributed delays are mode-dependent. A numerical example is presented to illustrate the usefulness of our

results.

Notations: Throughout this paper, R
n and R

n×m denote, respectively, the n dimensional Euclidean

space and the set of all n × m real matrices. The superscript “T” denotes the transpose and the nota-

tion X ≥ Y (respectively, X > Y ) where X and Y are symmetric matrices, means that X − Y is positive

semi-definite (respectively, positive definite); I is the identity matrix with compatible dimension. | · | refers

to the Euclidean vector norm. If A is a symmetric matrix, λmin(·) and λmax(·) denote the minimum and the

maximum eigenvalue, respectively. In symmetric block matrices, we use an asterisk “∗” to represent a term

that is induced by symmetry and diag{· · · } stands for a block-diagonal matrix. E[x] and E[x|y] will, respec-

tively, mean the expectation of x and the expectation of x conditional on y. Matrices, if their dimensions are

not explicitly stated, are assumed to be compatible for algebraic operations.

II. Problem formulation

Let r(k) (k ≥ 0) be a Markov chain taking values in a finite state space S = {1, 2, ..., N} with probability

transition matrix Π = (πij)N×N given by

P
{

r(k + 1) = j | r(k) = i
}

= πij , ∀i, j ∈ S

where πij ≥ 0(i, j ∈ S) is the transition rate from i to j and
∑N

j=1 πij = 1, ∀i ∈ S.

Consider a discrete-time n-neuron neural network with N modes described by the following dynamical

equation:

x(k+1) = D(r(k))x(k)+A(r(k))F (x(k))+B(r(k))G(x(k−τ1,r(k)))+C(r(k))

τ2,r(k)
∑

v=1

H(x(k−v))+J(r(k)), (1)

where x(k) = (x1(k), x2(k), . . . , xn(k))T is the neural state vector; the constant matrices D(r(k)) = diag{d1(r(k)),

d2(r(k)), . . . , dn(r(k))} describe the rate with which the each neuron will reset its potential to the resting state

in isolation when disconnected from the networks and external inputs; A(r(k)) = [aij(r(k))]n×n, B(r(k)) =

[bij(r(k))]n×n and C(r(k)) = [cij(r(k))]n×n are, respectively, the connection weight matrix, the discretely de-

layed connection weight matrix and the distributively delayed connection weight matrix; τ1,r(k) denotes discrete

time delay while τ2,r(k) characterizes distributed time delay, and both kinds of time delays are dependent on

the system mode r(k). In (1), F (x(k)) = (f1(x1(k)), f2(x2(k)), . . . , fn(xn(k)))T , G(x(k−τ1,r(k))) = (g1(x1(k−
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τ1,r(k))), g2(x2(k − τ1,r(k))), . . . , gn(xn(k − τ1,r(k))))
T and H(x(k)) = (h1(x1(k)), h2(x2(k)), . . . , hn(xn(k)))T

are the nonlinear activation functions; and J(r(k))) is constant vector representing the external bias on the

neurons.

Remark 1: The discrete-time recurrent neural network (1) can be considered as a discrete analogue of the

continuous-time recurrent neural network of the form:

dx

dt
= D(r(t))x(t) + A(r(t))F (x(t)) + B(r(t))G(x(t − τ1,r(t))) + C(r(t))

∫ t

t−τ2,r(t)

H(x(s))ds + J(r(t)), (2)

where r(t) corresponds to a Markov Chain. Note that the continuous-time neural networks without Markov

chain have been extensively investigated; see, e.g. [13] and the references therein. However, to the best of

authors’ knowledge, discrete-time mode-dependent neural networks with or without mixed time delays, have

received very little attention.

Throughout this paper, we make the following assumption.

Assumption 1 ( [13]) For the activation functions F (·), G(·) and H(·), there exist constants λ−
i , λ+

i , σ−
i , σ+

i ,

υ−
i and υ+

i such that, for any s1, s2 ∈ R, s1 6= s2, 1 ≤ i ≤ n

λ−
i ≤

fi(s1) − fi(s2)

s1 − s2
≤ λ+

i , σ−
i ≤

gi(s1) − gi(s2)

s1 − s2
≤ σ+

i , υ−
i ≤

hi(s1) − hi(s2)

s1 − s2
≤ υ+

i . (3)

Remark 2: As pointed out in [13], the constants λ−
i , λ+

i , σ−
i , σ+

i , υ−
i and υ+

i in Assumption 1 are allowed

to be positive, negative or zero. Hence, the resulting activation functions could be non-monotonic, and are

more general than the usual sigmoid functions and the recently commonly used Lipschitz conditions. Such a

description is very precise/tight in quantifying the lower and upper bounds of the activation functions, hence

very helpful for using LMI-based approach to reduce the possible conservatism.

For neural networks, whether biological or artificial, it is usually difficult to get a complete access to their

states and, in many applications, it consequently becomes necessary to estimate the states of neural networks

based only on the output from the networks. In this paper, we assume that the output from the neural

network (1) is of the form:

y(k) = E(r(k))x(k) + S(k, x(k)) (4)

where y(k) = (y1(k), y2(k), . . . , ym(k))T denotes the measurement output of the neural network, E(i) ∈ R
m×n

(i ∈ S) is a constant matrix, and S(k, x(k)) ∈ R
m is a nonlinear disturbance dependent on the neuron state

satisfying the following Lipschitz condition:

|S(k, x) − S(k, y)| ≤ |W (x − y)|, ∀k ∈ R, x, y ∈ R
n (5)

with W being a known constant matrix of appropriate dimension.

Remark 3: Usually, the relationship m < n holds, which means that only partial information (or a combi-

nation of the information) on the system states can be accessed via output measurements.

In order to track the state of system (1), we construct a full-order state estimator for (1):

x̂(k + 1) = D(r(k))x̂(k) + A(r(k))F (x̂(k)) + B(r(k))G(x̂(k − τ1,r(k))) + C(r(k))

τ2,r(k)
∑

v=1

H(x̂(k − v))

+ J(r(k)) − K(r(k)) [y(k) − E(r(k))x̂(k) − S(k, x̂(k))] , (6)

where x̂(k) is the state estimate, and K(i) ∈ R
n×m (i ∈ S) is the estimate gain matrix to be designed.

Let ǫ(k) = (ǫ1(k), ǫ2(k), . . . , ǫn(k))T
∆
= x̂(k) − x(k) be the state estimation error.

Definition 1: System (6) is said to be an asymptotic state estimator of neural network (1) if the estimation

error satisfies

lim
k→+∞

E[|ǫ(k)|2] = 0. (7)

This paper aims to design the state estimator of (1). By constructing new Lyapunov Krasovskii functional,

we will derive the sufficient conditions under which system (6) becomes an asymptotic state estimator of

neural network (1), and the resulting gain matrices K(i) (i ∈ S) will also be given explicitly.
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III. Main results and proofs

The following lemmas are needed in deriving our results.

Lemma 1 ( [13]) Let X, Y be any n-dimensional real vectors and P be a n×n positive semi-definite matrix.

Then, the following matrix inequality holds:

2XT PY ≤ XT PX + Y T PY.

Lemma 2 ( [21]) Let M ∈ R
n×n be a positive semi-definite matrix, xi ∈ R

n be a vector and ai ≥ 0

(i = 1, 2, ...) be scalars. If the series concerned are convergent, then the following inequality holds:

(

+∞
∑

i=1

aixi

)T

M

(

+∞
∑

i=1

aixi

)

≤

(

+∞
∑

i=1

ai

)

+∞
∑

i=1

aix
T
i Mxi (8)

Lemma 3: Suppose that B = diag{β1, β2, ..., βn} ≥ 0 is a diagonal matrix. Let x = (x1, x2, ..., xn)T ∈ R
n,

and H(x) = (~1(x1), ~2(x2), ..., ~n(xn))T be a continuous nonlinear function satisfying

l−i ≤
~i(s)

s
≤ l+i , s 6= 0, s ∈ R, i = 1, 2, ..., n (9)

with l−i and l+i being constant scalars. Then

[

x

H(x)

]T [
BL1 −BL2

−BL2 B

] [

x

H(x)

]

≤ 0

or

xTBL1x − 2xTBL2H(x) + HT (x)BH(x) ≤ 0

where L1 = diag
{

l+1 l−1 , l+2 l−2 , ..., l+n l−n
}

and L2 = diag
{ l+1 +l−1

2 ,
l+2 +l−2

2 , ..., l
+
n +l

−

n

2

}

Proof: Notice that (9) is equivalent to

(~i(xi) − l+i xi)(~i(xi) − l−i xi) ≤ 0,

or
[

x

H(x)

]T
[

l+i l−i eie
T
i −

l
+
i +l

−

i

2 eie
T
i

−
l
+
i +l

−

i

2 eie
T
i eie

T
i

]

[

x

H(x)

]

≤ 0, i = 1, ..., n,

where ek denotes the unit column vector having “1” element on its kth row and zeros elsewhere.

Since βi ≥ 0, it follows readily that

n
∑

i=1

βi

[

x

H(x)

]T
[

l+i l−i eie
T
i −

l+
i

+l−
i

2 eie
T
i

−
l
+
i +l

−

i

2 eie
T
i eie

T
i

]

[

x

H(x)

]

≤ 0, (10)

namely
[

x

H(x)

]T [
BL1 −BL2

−BL2 B

] [

x

H(x)

]

≤ 0.

This completes the proof of this lemma.

Lemma 4 ( [19]Schur Complement) Given constant matrices Ω1,Ω2,Ω3 where Ω1 = ΩT
1 and Ω2 > 0, then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0

if only if
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0.
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In what follows, for presentation convenience, we denote

τ1 = max{τ1,i | i ∈ S}, τ2 = max{τ2,i | i ∈ S}, τ = max{τ1, τ2},

τ1 = min{τ1,i | i ∈ S}, τ2 = min{τ2,i | i ∈ S}, π = min{πii | i ∈ S},

Λ1 = diag
{

λ+
1 λ−

1 , λ+
2 λ−

2 , ..., λ+
n λ−

n

}

, Λ2 = diag
{λ+

1 + λ−
1

2
,
λ+

2 + λ−
2

2
, ...,

λ+
n + λ−

n

2

}

,

Σ1 = diag
{

σ+
1 σ−

1 , σ+
2 σ−

2 , ..., σ+
n σ−

n

}

, Σ2 = diag
{σ+

1 + σ−
1

2
,
σ+

2 + σ−
2

2
, ...,

σ+
n + σ−

n

2

}

,

Υ1 = diag
{

υ+
1 υ−

1 , υ+
2 υ−

2 , ..., υ+
n υ−

n

}

, Υ2 = diag
{υ+

1 + υ−
1

2
,
υ+

2 + υ−
2

2
, ...,

υ+
n + υ−

n

2

}

.

Theorem 1: Suppose that Assumption 1 and condition (5) hold and Let K(i)(i ∈ S) be known constant

matrices. Then system (6) becomes an asymptotic state estimator of neural network (1) if there exist a set of

scalar constants ϑi > 0(i ∈ S), a set of matrices Pi > 0(i ∈ S), two matrices Q > 0 and R > 0, and three sets

of diagonal matrices Ωi > 0,Θi > 0 and ∆i > 0(i ∈ S) such that the following LMIs hold:

Φi
∆
=



























Ξi ΩiΛ2 ΘiΣ2 0 ∆iΥ2 0 0 D̄T (i)P i

ΩiΛ2 −Ωi 0 0 0 0 0 AT (i)P i

ΘiΣ2 0 κ0Q − Θi 0 0 0 0 0

0 0 0 −Q 0 0 0 BT (i)P i

∆iΥ2 0 0 0 κiR − ∆i 0 0 0

0 0 0 0 0 1
τ2,i

R 0 CT (i)P i

0 0 0 0 0 0 −ϑiI P i

P iD̄(i) P iA(i) 0 P iB(i) 0 P iC(i) P i −P i



























< 0, (i ∈ S) (11)

where

P i =

N
∑

j=1

πijPj , D̄(i) = D(i) + K(i)E(i), (12)

Ξi = −Pi − ΩiΛ1 − ΘiΣ1 − ∆iΥ1 + ϑiW
TW, (13)

κ0 = (1 − π)(τ1 − τ1) + 1, (14)

κi = τ2,i + (1 − πii)(τ 2 − τ2) +
1

2
(1 − π)(τ 2 − τ2)(τ2 + τ2 − 1). (15)

Proof: Denote

F̃ (ǫ(k)) = [f̃1(ǫ1(k)), f̃2(ǫ1(k)), . . . , f̃n(ǫn(k))]T
∆
= F (x̂(k)) − F (x(k)), (16)

G̃(ǫ(k)) = [g̃1(ǫ1(k)), g̃2(ǫ1(k)), . . . , g̃n(ǫn(k))]T
∆
= G(x̂(k)) − G(x(k)), (17)

H̃(ǫ(k)) = [h̃1(ǫ1(k)), h̃2(ǫ1(k)), . . . , h̃n(ǫn(k))]T
∆
= H(x̂(k)) − H(x(k)), (18)

S̃(k, ǫ(k))
∆
= S(k, x̂(k)) − S(k, x(k)). (19)

It should be pointed out here that F̃ (ǫ(k)), G̃(ǫ(k)), H̃(ǫ(k)) and S̃(k, ǫ(k)) are all dependent on x(k) or x̂(k),

as well as ǫ(k). However, in order to avoid cumbersome notations, we shall use simpler symbols. For instance,

we use F̃ (ǫ(k)) instead of F̃ (ǫ(k), x(k)) and so on.

With the above notations and from Eqs. (1) and (6), we obtain the dynamics of estimation error governed

by

ǫ(k + 1) = D̄(r(k))ǫ(k) + A(r(k))F̃ (ǫ(k)) + B(r(k))G̃(ǫ(k − τ1,r(k)))

+ C(r(k))

τ2,r(k)
∑

v=1

H̃(ǫ(k − v)) + K(r(k))S̃(k, ǫ(k)). (20)
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For notation convenience, in the sequel, we denote

ǫk =
[

ǫ
T (k), ǫT (k − 1), . . . , ǫT (k − τ)

]T
,

ξ(k, i) =

[

ǫ
T (k) F̃ T (ǫ(k)) G̃T (ǫ(k)) G̃T (ǫ(k − τ1,i)) H̃T (ǫ(k))

τ2,i
∑

v=1

H̃T (ǫ(k − v)) S̃T (k, ǫ(k))

]T

,

Z(i) =
[

D̄(i) A(i) 0 B(i) 0 C(i) I
]

.

Now, in order to ensure that (6) is the state estimator, we just need to show that the estimation error

system (20) is asymptotically stable in the mean square, i.e., lim
k→∞

E[|ǫ(k)|2] = 0. To this end, we construct

the following Lyapunov-Krasovskii functional V (xk, k, r(k)) by

V (ǫk, k, r(k)) = V1(ǫk, k, r(k)) + V2(ǫk, k, r(k)) + V3(ǫk, k, r(k)) + V4(ǫk, k, r(k)) + V5(ǫk, k, r(k)) (21)

where

V1(ǫk, k, r(k)) = ǫ
T (k)Pr(k)ǫ(k), (22)

V2(ǫk, k, r(k)) =

k−1
∑

v=k−τ1,r(k)

G̃T (ǫ(v))QG̃(ǫ(v)), (23)

V3(ǫk, k, r(k)) =

τ1−1
∑

ι=τ1

k−1
∑

v=k−ι

G̃T (ǫ(v))Q̄G̃(ǫ(v)), (24)

V4(ǫk, k, r(k)) =

τ2,r(k)
∑

ι=1

k−1
∑

v=k−ι

H̃T (ǫ(v))RH̃(ǫ(v)), (25)

V5(ǫk, k, r(k)) =

τ2
∑

s=τ2+1

s−1
∑

ι=1

k−1
∑

v=k−ι

H̃T (ǫ(v))R̄H̃(ǫ(v)) (26)

with Q̄ = (1 − π)Q and R̄ = (1 − π)R.

For i ∈ S, we have

E[V1(ǫk+1, k + 1, r(k + 1)) | ǫk, r(k) = i] − V1(ǫk, k, i)

= ξT (k, i)ZT (i)P iZ(i)ξ(k, i) − ǫ
T (k)Piǫ(k). (27)

E[V2(ǫk+1, k + 1, r(k + 1)) | ǫk, r(k) = i] − V2(ǫk, k, i)

=

N
∑

j=1

πij

k
∑

v=k−τ1,j+1

G̃T (ǫ(v))QG̃(ǫ(v)) −

k−1
∑

v=k−τ1,i

G̃T (ǫ(v))QG̃(ǫ(v))

= πii

[

k
∑

v=k−τ1,i+1

−

k−1
∑

v=k−τ1,i

]

G̃T (ǫ(v))QG̃(ǫ(v)) +
∑

j 6=i

πij

[

k
∑

v=k−τ1,j+1

−

k−1
∑

v=k−τ1,i

]

G̃T (ǫ(k))QG̃(ǫ(k))

≤ G̃T (ǫ(k))QG̃(ǫ(k)) − G̃T (ǫ(k − τ1,i))QG̃(ǫ(k − τ1,i)) + (1 − π)

k−τ1
∑

v=k−τ1+1

G̃T (ǫ(v))QG̃(ǫ(v)), (28)

E[V3(ǫk+1, k + 1, r(k + 1)) | ǫk, r(k) = i] − V3(ǫk, k, i)

=

τ1−1
∑

ι=τ1

(

G̃T (ǫ(k))Q̄G̃(ǫ(k)) − G̃T (ǫ(k − ι))Q̄G̃(ǫ(k − ι))
)

= (1 − π)(τ 1 − τ1)G̃
T (ǫ(k))QG̃(ǫ(k)) − (1 − π)

k−τ1
∑

v=k−τ1+1

G̃T (ǫ(v))QG̃(ǫ(v)), (29)
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E[V4(ǫk+1, k + 1, r(k + 1)) | ǫk, r(k) = i] − V4(ǫk, k, i)

=
N
∑

j=1

πij

τ2,j
∑

ι=1

k
∑

v=k−ι+1

H̃T (ǫ(v))RH̃(ǫ(v)) −

τ2,i
∑

ι=1

k−1
∑

v=k−ι

H̃T (ǫ(v))RH̃(ǫ(v))

= πii

τ2,i
∑

ι=1

[

H̃T (ǫ(k))RH̃(ǫ(k)) − H̃T (ǫ(k − ι))RH̃(ǫ(k − ι))
]

+
∑

j 6=i

πij

[

τ2,j
∑

ι=1

k
∑

v=k−ι+1

−

τ2,i
∑

ι=1

k−1
∑

v=k−ι

]

H̃T (ǫ(v))RH̃(ǫ(v))

= πii

τ2,i
∑

ι=1

[

H̃T (ǫ(k))RH̃(ǫ(k)) − H̃T (ǫ(k − ι))RH̃(ǫ(k − ι))
]

+
∑

j 6=i

πij

[

τ2,i
∑

ι=1

k
∑

v=k−ι+1

−

τ2,i
∑

ι=1

k−1
∑

v=k−ι

]

H̃T (ǫ(v))RH̃(ǫ(v))

+
∑

j 6=i

πij

[

τ2,j
∑

ι=1

k
∑

v=k−ι+1

−

τ2,i
∑

ι=1

k
∑

v=k−ι+1

]

H̃T (ǫ(v))RH̃(ǫ(v))

≤

τ2,i
∑

ι=1

(

H̃T (ǫ(k))RH̃(ǫ(k)) − H̃T (ǫ(k − ι))RH̃(ǫ(k − ι))
)

+
∑

j 6=i

πij





τ2
∑

ι=τ2+1

k
∑

v=k−ι+1

H̃T (ǫ(v))RH̃(ǫ(v))





= τ2,iH̃
T (ǫ(k))RH̃(ǫ(k)) −

τ2,i
∑

ι=1

H̃T (x(k − ι))RH̃(x(k − ι))

+ (1 − πii)

τ2
∑

ι=τ2+1

k
∑

v=k−ι+1

H̃T (ǫ(v))RH̃(ǫ(v))

≤ (τ2,i + (1 − πii)(τ 2 − τ2))H̃
T (ǫ(k))RH̃(ǫ(k)) −

τ2,i
∑

v=1

H̃T (ǫ(k − v))RH̃(ǫ(k − v))

+ (1 − π)

τ2
∑

ι=τ2+1

k−1
∑

v=k−ι+1

H̃T (ǫ(v))RH̃(ǫ(v)), (30)

and

E[V5(ǫk+1, k + 1, r(k + 1)) | ǫk, r(k) = i] − V5(ǫk, k, i)

=

τ2
∑

s=τ2+1

s−1
∑

ι=1

[

H̃T (ǫ(k))R̄H̃(ǫ(k)) − H̃T (ǫ(k − ι))R̄H̃(ǫ(k − ι))
]

= (1 − π)
[1

2
(τ2 − τ2)(τ 2 + τ2 − 1)H̃T (ǫ(k))RH̃(ǫ(k)) −

τ2
∑

ι=τ2+1

k−1
∑

v=k−ι+1

H̃T (ǫ(v))RH̃(ǫ(v))
]

. (31)
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From (27)-(31), it follows readily that

E[V (ǫk+1, k + 1, r(k + 1)) | ǫk, r(k) = i] − V (ǫk, k, i)

≤ ξT (k, i)ZT (i)P iZ(i)ξ(k, i) − ǫ
T (k)Piǫ(k) + κ0G̃

T (ǫ(k))QG̃(ǫ(k))

− G̃T (ǫ(k − τ1,i))QG̃(ǫ(k − τ1,i)) + κiH̃
T (ǫ(k))RH̃(ǫ(k)) −

τ2,i
∑

v=1

H̃T (ǫ(k − v))RH̃(ǫ(k − v)), (32)

where κ0 and κi are defined in (14) and (15), respectively.

In terms of Lemma 2, one knows

−

τ2,i
∑

v=1

H̃T (ǫ(k − v))RH̃(ǫ(k − v)) ≤ −
1

τ2,i

[

τ2,i
∑

v=1

H̃(ǫ(k − v))
]T

R

τ2,i
∑

v=1

H̃(ǫ(k − v)). (33)

From Assumption 1 and (16)-(19), it is not difficult to see that for any s1, s2 ∈ R, s1 6= s2, 1 ≤ i ≤ n

λ−
i ≤

f̃i(s1) − f̃i(s2)

s1 − s2
≤ λ+

i , σ−
i ≤

g̃i(s1) − g̃i(s2)

s1 − s2
≤ σ+

i , υ−
i ≤

h̃i(s1) − h̃i(s2)

s1 − s2
≤ υ+

i

and

f̃i(0) = g̃i(0) = h̃i(0) = 0.

Consequently, it follows that for any s ∈ R, s 6= 0, 1 ≤ i ≤ n

λ−
i ≤

f̃i(s)

s
≤ λ+

i , σ−
i ≤

g̃i(s)

s
≤ σ+

i , υ−
i ≤

h̃i(s)

s
≤ υ+

i . (34)

Also, from Lemma 3, it implies that

ǫ
T (k)ΩiΛ1ǫ(k) − 2ǫT (k)ΩiΛ2F̃ (ǫ(k)) + F̃ T (ǫ(k))ΩiF̃ (ǫ(k)) ≤ 0, (35)

ǫ
T (k)ΘiΣ1ǫ(k) − 2ǫT (k)ΘiΣ2G̃(ǫ(k)) + G̃T (ǫ(k))ΘiG̃(ǫ(k)) ≤ 0, (36)

ǫ
T (k)∆iΥ1ǫ(k) − 2ǫT (k)∆iΥ2H̃(ǫ(k)) + H̃T (ǫ(k))∆iH̃(ǫ(k)) ≤ 0. (37)

Moreover, from (5) and (19), it follows that

|S̃(k, x) − S̃(k, y)| ≤ |W (x − y)|, ∀x, y ∈ R
n,

and S̃(t, 0) = 0, which implies that

ϑiS̃
T (k, ǫ(k))S̃(k, ǫ(k)) − ϑiǫ

T (k)W T W ǫ(k) ≤ 0. (38)

Combination of (33)-(38) with (32) results in

E[V (ǫk+1, k + 1, r(k + 1)) | ǫk, r(k) = i] − V (ǫk, k, i)

≤ ξT (k, i)ZT (i)P iZ(i)ξ(k, i) − ǫ
T (k)Piǫ(k) + κ0G̃

T (ǫ(k))QG̃(ǫ(k)) − G̃T (ǫ(k − τ1,i))QG̃(ǫ(k − τ1,i))

+ κiH̃
T (ǫ(k))RH̃(ǫ(k)) −

1

τ2,i

[

τ2,i
∑

v=1

H̃(ǫ(k − v))
]T

R

τ2,i
∑

v=1

H̃(ǫ(k − v)) −
(

ǫ
T (k)ΩiΛ1ǫ(k)

− 2ǫT (k)ΩiΛ2F̃ (ǫ(k)) + F̃ T (ǫ(k))ΩiF̃ (ǫ(k))
)

−
(

ǫ
T (k)ΘiΣ1ǫ(k) − 2ǫT (k)ΘiΣ2G̃(ǫ(k))

+ G̃T (ǫ(k))ΘiG̃(ǫ(k))
)

−
(

ǫ
T (k)∆iΥ1ǫ(k) − 2ǫT (k)∆iΥ2H̃(ǫ(k)) + H̃T (ǫ(k))∆iH̃(ǫ(k))

)

−
(

ϑiS̃
T (k, ǫ(k))S̃(k, ǫ(k)) − ϑiǫ

T (k)W T W ǫ(k)
)

= ξT (k, i)Ψ̃iξ(k, i), (39)
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where Ψ̃i = Ψi + ZT (i)P iZ(i) with

Ψi =























Ξi ΩiΛ2 ΘiΣ2 0 ∆iΥ2 0 0

ΩiΛ2 −Ωi 0 0 0 0 0

ΘiΣ2 0 κ0Q − Θi 0 0 0 0

0 0 0 −Q 0 0 0

∆iΥ2 0 0 0 κiR − ∆i 0 0

0 0 0 0 0 1
τ2,i

R 0

0 0 0 0 0 0 −ϑiI























and Ξi defined in (13).

By applying Lemma 4 to (11), we can deduce that Ψ̃i < 0, (i ∈ S). Let α0 = max
i∈S

{

λmax(Ψ̃i)}, then α0 < 0

and it follows readily from (39) that

E[V (ǫk+1, k + 1, r(k + 1)) | ǫk, r(k) = i] − V (ǫk, k, i) ≤ α0|ǫ(k)|2,

which implies

E[V (ǫk+1, k + 1, r(k + 1))] − E[V (ǫk, k, r(k))] ≤ α0|ǫ(k)|2. (40)

For an arbitrary positive number s, it can be inferred from (40) that

E[V (ǫs+1, s + 1, r(s + 1))] − E[V (ǫ0, 0, r(0))] ≤ α0

s
∑

k=0

E[|ǫ(k)|2],

which results in
s
∑

k=0

E[|ǫ(k)|2] ≤ −
1

α0
E[V (ǫ0, 0, r(0))].

It can now be concluded that the series
+∞
∑

k=0

E[|ǫ(k)|2] is convergent, and therefore

lim
k→+∞

E[|ǫ(k)|2] = 0.

This completes the proof of the theorem.

Now we are in a position to deal with the design problem of estimator. The following result is derived easily

from Theorem 1, hence its proof is omitted here.

Theorem 2: Let Assumption 1 and condition (5) hold. Then system (6) becomes an asymptotic state

estimator of neural network (1) if there exist a set of scalar constants ϑi > 0(i ∈ S), a set of matrices

Pi > 0(i ∈ S), a set of matrices Xi(i ∈ S), two matrices Q > 0 and R > 0, and three sets of diagonal matrices

Ωi > 0,Θi > 0 and ∆i > 0(i ∈ S) such that the following LMIs hold:

Φi
∆
=





























Ξi ΩiΛ2 ΘiΣ2 0 ∆iΥ2 0 0 Y
T

i

ΩiΛ2 −Ωi 0 0 0 0 0 AT (i)P i

ΘiΣ2 0 κ0Q − Θi 0 0 0 0 0

0 0 0 −Q 0 0 0 BT (i)P i

∆iΥ2 0 0 0 κiR − ∆i 0 0 0

0 0 0 0 0 1
τ2,i

R 0 CT (i)P i

0 0 0 0 0 0 −ϑiI P i

Y i P iA(i) 0 P iB(i) 0 P iC(i) P i −P i





























< 0, (i ∈ S) (41)

where Y i = P iD(i) + XiE(i), and P i,Ξi, κ0 and κi are defined as in Theorem 1. Furthermore, the estimate

gain matrix can be taken as K(i) = P
−1
i Xi(i ∈ S).



SUBMITTED 10

Remark 4: In Theorem 1 and Theorem 2, sufficient conditions are provided for the system (6) to be an

asymptotic state estimator. Such conditions are expressed in the form of LMIs, which could be easily checked

by utilizing the recently developed interior-point methods available in Matlab toolbox, and no turning of

parameters will be needed. It should be mentioned that, in the past decade, LMIs have gained much attention

for their computational tractability and usefulness in many areas because the so-called interior point method

has been proven to be numerically very efficient for solving the LMIs.

IV. A numerical examples

In this section, we present a simple example to demonstrate the approach addressed.

Example 1: Consider a three-neuron neural network (1) with the following parameters:

τ1,1 = 7, τ1,2 = 8, τ2,1 = 3, τ2,2 = 5, D(1) = diag{1.2, 0.7, 0.8}, D(2) = diag{1.3, 0.8, 0.6},

A(1) =





0.2 −0.5 0.1

0.2 −0.4 0

0 −0.1 0.2



 , A(2) =





0.6 −0.2 0.1

0.1 −0.1 0.2

0.1 0 0.2



 , B(1) =





0.2 0.2 0.2

0.2 −0.2 0

0.2 −0.1 −0.1



 ,

B(2) =





0.2 0.2 0.1

0.2 −0.2 0

0.3 −0.1 −0.1



 , C(1) =





0.2 0.2 −0.1

0 0.4 0.3

−0.3 0 0.2



 , C(2) =





0.2 −0.2 0.1

0.1 0.2 0.3

0.8 0 0.2



 ,

E(1) = E(2) =

[

1 0 0

0 1 0

]

, Π =

[

0.6 0.4

0.5 0.5

]

.

Take the activation functions as follows:

f1(s) = g1(s) = h1(s) = − tanh(0.6s), f2(s) = g2(s) = h2(s) = tanh(0.2s),

f3(s) = g3(s) = h3(s) = 0.4 tanh(s).

It is easy to see that Λ1 = Σ1 = Υ1 = 0, Λ2 = Σ2 = Υ2 = diag{−0.3, 0.1, 0.2}. In addition, letting

S(k, x) =
(

0.2 sin
√

x2
1 + x2

2, 0.2
√

x2
1 + x2

2

)T

, it is also easy to verify that W =

(

0.2 0 0

0 0.2 0

)

. With the

above parameters, by using Matlab LMI Toolbox, we solve the LMIs (41) and obtain the feasible solution as

follows:

P1 =





3.0831 −0.3844 0.1002

−0.3844 2.3970 −0.7316

0.1002 −0.7316 1.0777



 , P2 =





4.3869 −0.2753 −0.1175

−0.2753 2.5613 −0.6949

−0.1175 −0.6949 0.7936



 ,

Q =





1.5023 0.5528 0.1044

0.5528 3.8353 0.0235

0.1044 0.0235 0.3990



 , R =





0.0808 0.1546 0.0013

0.1546 0.9912 −0.0115

0.0013 −0.0115 0.0110



 ,

X1 =





−4.1167 0.3365

0.4422 −1.1396

0.0671 −0.1955



 , X2 =





−4.2016 0.2623

0.4774 −1.4941

−0.0706 −0.1726



 ,

Ω1 = diag{4.0414, 16.9336, 0.9398}, Ω2 = diag{8.2832, 7.5886, 1.2245}

Θ1 = diag{4.9918, 11.0612, 1.2956}, Θ2 = diag{4.9115, 10.8292, 1.3080},

∆1 = diag{9.3179, 22.5366000, 1.4407}, ∆2 = diag{20.5649, 18.4063, 2.4857},

ϑ1 = 19.7298, ϑ2 = 15.5312.

From Theorem 2, (6) becomes an asymptotic state estimator of neural network (1) with the given parameters,
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and the estimate gain matrices can be taken as

K(1) =





−1.1369 0.0335

0.0600 −0.6602

0.1296 −0.6942



 , K(2) =





−1.1230 −0.0060

0.0237 −0.8410

−0.0678 −0.8256



 .

V. Conclusions

In this paper, we have studied the state estimation problem for a class of discrete-time neural networks

with Markovian Parameters and mode-dependent mixed time-delays. An asymptotic state estimator is de-

signed to estimate the neuron states, through available output measurements, such that the dynamics of the

estimation error is globally stable in the mean square. By using new Lyapunov-Krasovskii functional, we have

established an LMI approach to derive the sufficient conditions guaranteeing the existence of the asymptotic

state estimators. The explicit expression of the desired estimator has been parameterized by means of the

solution to an LMI. A simulation example has been used to illustrate the usefulness of the derived LMI-based

conditions. It should be pointed out that the main results presented in this paper can be extended to stability

analysis, filter design and control applications for other discrete-time delayed systems (e.g. genetic regulatory

networks), see [22–27] and the references therein.
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