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Filtering for A Class of Nonlinear Discrete-Time

Stochastic Systems with State Delays

Zidong Wang, James Lam and Xiaohui Liu

Abstract

In this paper, the filtering problem is investigated for a class of nonlinear discrete-time stochastic systems with
state delays. We aim at designing a full-order filter such that the dynamics of the estimation error is guaranteed to be
stochastically, exponentially, ultimately bounded in the mean square, for all admissible nonlinearities and time-delays.
First, an algebraic matrix inequality approach is developed to deal with the filter analysis problem, and sufficient
conditions are derived for the existence of the desired filters. Then, based on the generalized inverse theory, the filter
design problem is tackled and a set of the desired filters is explicitly characterized. A simulation example is provided to
demonstrate the usefulness of the proposed design method.
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I. INTRODUCTION

One of the fundamental problems in control systems and signal processing is the estimation of the state
variables of a dynamic system through available noisy measurements. For linear systems, there are two
approaches available, namely, the Luenberger observer design in the deterministic framework and the Kalman
filter design in the stochastic one.

Nonlinear filtering has been an active area of research over the past three decades. With respect to some
recent representative work on this general topic in the deterministic case, we refer the reader to [5], [10], [11]
and the references therein. For the stochastic case, the nonlinear filtering problem has received considerable
attention, and a number of traditional approaches have been proposed in the literature, such as Gram-charlier
expansion, Edgeworth expansion, extended Kalman filters, weighted sum of gaussian densities, generalized
least-squares approximation and statistically linearized filters, see [7] for a survey. Among others, some later
developments include the bound-optimal filters, exponentially bounded filters, exact finite dimensional filters,
approximations by Markov chains, minimum variance filters, approximation of the Kushner equation, wavelet
transform, etc. It is remarkable that, Tarn and Rasis [13] have tackled the nonlinear filtering problem through
the concepts of observer for stochastic nonlinear systems, and have proposed an important stochastic stability
approach to designing the observers with guaranteed convergence. In [4], the radial basis function neural
networks have been exploited to approximate and estimate the nonlinear stochastic dynamics, and systematic
procedures have been provided. Unlike the linear case, in most literature mentioned above, the solution to
the nonlinear filtering problem has been given as a nonexplicit representation.
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On the other hand, the dynamic behavior of many industrial processes contains inherent time delays. Time
delays may result from the distributed nature of the system, material transport, or from the time required
to measure some of the variables. In the past few years, there has been rapidly growing interest in robust
and/or H filtering for linear systems with certain types of time-delays, see [3] for a survey. In the stochastic
framework, for example, the Kalman filter design problem has been tackled in [6], [20] for linear continuous-
and discrete-time cases, respectively. In [19], the asymptotic stability problem for a general class of nonlinear
stochastic time-delay systems has been thoroughly investigated. In [14], [15], [16], the filtering problems
have been studied for some continuous-time nonlinear stochastic time-delay systems. It is well known that
discrete-time systems play a very important role in digital signal analysis and processing. However, despite its
importance, up to now, the filtering problem for general nonlinear discrete time-delay systems has not been
fully investigated and remains open.

In this paper, we are concerned with the filtering problem for a class of nonlinear discrete time-delay stochas-
tic systems. The system under study involves stochastic disturbances, time-delay and inherent nonlinearities.
The nonlinearities are assumed to have the similar form as in [4], [15], [16]. We aim at designing a full-order
filter such that the dynamics of the estimation error is constrained to be stochastically, exponentially, ul-
timately bounded in the mean square, for all admissible nonlinearities and time-delays. First, an algebraic
matrix inequality approach is developed to deal with the filter analysis problem, and sufficient conditions are
derived for the existence of the desired filters. Then, based on the generalized inverse theory, the filter design
problem is tackled and a set of the desired filters is explicitly characterized. A simulation example is provided
to demonstrate the usefulness of the proposed design method.

Notation. The notations in this paper are quite standard. R"™ and R"*™ denote, respectively, the n
dimensional Euclidean space and the set of all n x m real matrices, and Z is the set of positive integers. The
superscript “T"” denotes the transpose and the notation X > Y (respectively, X > Y) where X and Y are
symmetric matrices, means that X —Y is positive semi-definite (respectively, positive definite). I is the identity
matrix with compatible dimension. |-| means the Euclidean norm in R™. If A is a real matrix, denote by ||A||
its operator norm, i.e., | A|| = sup{|Az| : || = 1} = \/Amax (AT A) where Apax(-) (respectively, Ayin(-)) means
the largest (respectively, smallest) eigenvalue of A. Moreover, let (Q, F, P) be a complete probability space,
and £{-} stand for the mathematical expectation operator with respect to the given probability measure P.
The expected value of a random variable z is denoted by £{z} and the expected value of z conditional on y
is represented by £{z|y}. Sometimes, the arguments of a function will be omitted in the analysis when no

confusion can arise.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Let us consider the nonlinear discrete-time state delayed stochastic system described by

e(k+1) = [f(z(k),uk) +g(z(k - d)) + Exw(k), (1)
y(k) = Cu(k) + Eyw(k) (2)

where z(k) € R" is the state, u(k) € R™ is the deterministic input, y(k) € RP is the measurement output,
and f(-,-) € R” and ¢(-) € R" are nonlinear vector functions. d € Z is a positive integer time delay of the
system state. We assume z(k—d) = 0 when k —d < 0, k € Z. Here, w(k) € R? is a zero mean Gaussian white
noise sequence with £{|w(k)|?} < 6 for some positive constant 6. The initial state x(0) has the mean z(0)
and covariance P(0), and is uncorrelated with w(k). E;, Es are known constant matrices with appropriate

dimensions.
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Assumption 1: The nonlinear functions f(-,-) and g(-) are assumed to satisfy f(0,0) =0, g(0) = 0, and

Il

l9(z(k —d) + &) — g(z(k — d) = Ag€] < azl¢], (4)

f(@(k) + & ulk) +8) = f(a(k),u(k) ~ | A B |

where A € R*"*"™ B € R**™  A; € R"™*" are known constant matrices, £ € R", § € R™ are vectors, a; and ao
are known positive constants.

Remark 1: The nonlinear descriptions (3)-(4), which have been adopted in [13], [15], [16], quantify the
maximum possible derivations from a linear model with (4, B, Ag).

The full-order filter considered in this paper is of the form
E(k+1) = f(&(k), u(k)) + g(Z(k — d)) + K[y(k) — Ci(k)] (5)

where Z is the state estimate and the constant matrix K is the filter gain to be designed.
Let the error state be e(k) = z(k) — &(k), then it follows from (1)-(2) and (5) that

e(k+1) = [f(z(k), uk) = f(2(k), u(k)) + g(z(k — d)) — g(&(k — d))

For notational convenience, we define

Wk) = flz(k),u(k)) — f(&(k), u(k)) — Ae(k), (7)
m(k—d) = g(z(k —d)) —g(&(k — d)) — Age(k — d), (8)

and then obtain from (6) that
e(k+1) = (A— KCQC)e(k) + Age(k — d) + (k) + m(k — d) + (E1 — KE9)w(k). 9)

Now, take the initial estimate of the state z(0) to be equal to the known mean of the initial state z(0). Let
e(k) denote the state trajectory from the initial data e(0). To this end, we introduce the following concept of
exponential ultimate boundedness.

Definition 1: The dynamics of the estimation error e(k) (i.e., the solution of the system (9)) is exponentially

ultimately bounded in the mean square if there exist constants o > 0, 8 > 0, v > 0 such that

{ etk

6(0)} <afB+. (10)

where o € [0,1), > 0 and v > 0. In this case, the filter (5) is said to be exponential.

Remark 2: The exponential ultimate boundedness of the error dynamics means that, the estimation error
will initially decrease exponentially in the mean square, and remain within a region in the steady state, again
in the mean square sense. Such a region is defined in terms of the norm (£{|e(k)[>})"/? of the Hilbert space
of random vectors, and is specified by the coefficient 4. In other words, the steady-state estimation error
variance will be bounded.

The objective of this paper is to design an exponential filter for the nonlinear time-delay system (1)-(2).
More specifically, we are interested in designing the filter parameter K such that the dynamics of the estimation
error (i.e., the solution of the system (9)) is guaranteed to be stochastically exponentially ultimately bounded

in the mean square.
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III. MAIN RESULTS AND PROOFS

In this section, we will consider both the filter analysis and filter design issues. For the filter analysis problem,
given the filter structure, we will establish the conditions under which the estimation error is stochastically
expounentially ultimately bounded in the mean square. For the filter design problem, we will try to derive the
erplicit expression of the expected filter parameter in terms of the positive definite solution to Riccati-like

matrix inequalities.

A. Filter analysis

The following simple lemma will be used several times in the proof of our main results.

Lemma 1: [16] Let z € R*, y € R* and € > 0. Then we have 227y < exlz + e 1yTy.

The following theorem provides sufficient conditions for the error dynamics of system (9) to be stochastically
exponentially ultimately bounded in the mean square.

Theorem 1: Let the filter parameter K be given. If there exist positive scalars €1, €9, €3 and a positive

definite matrix R such that the following matrix equation

(I+e1+e)(A-KC)TP(A-KC)—P+ (1+¢7! +e3)AL PA,
+2(af +ad) (1 + eyt + 65 H)Amax(P)I + R=0 (11)

has a positive definite solution P, then the system (9) is exponentially ultimately bounded in the mean square.

Proof: Let
Op = [ ek—d) e(k—d—1) - e(k) ]
Define a Lyapunov functional candidate for system (9) as
k—1
Vi(Or) = " (k) Pe(k) + ) ¢ (i)Qe(d), (12)
i=k—d
where P > 0 is the solution to (11), and
Q=1+e" +e3)ALPA;+2a35(1 + 651 + £31) Amax(P)T > 0. (13)

Then, one has from (9) that

AVy = E{Vi41(Ok11)|Ok} — Vi(O)
= &le(k+1)Pe(k+1)} + ' (k)(Q — P)e(k) — e’ (k — d)Qe(k — d)
= e (K)[(A—-KC)'P(A— KC) — P + Qle(k) + 2¢* (k) (A — KC)' PAge(k — d)
+2eL' (k) (A — KC)TPI(k) + m(k — d)] + T (k — d) AL PAge(k — d)
+2eT (k — d) AT P[I(k) + m(k — d)] + [I(k) + m(k — d)]T Pll(k) + m(k — d)]
+E{w” (k) (B — K Ey)" (B — KEy)w(k)} — e (k — d)Qe(k — d). (14)
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Next, it follows from Lemma 1 that

2¢T (k) (A — KC)L' PAge(k — d)

< el (k)(A— KC)'P(A— KC)e(k) + e, el (k — d) AL PAge(k — d), (15)
2¢! (k)(A — KC)'PlI(E) + m(k — d)]
< ege! (k)(A— KCO)'P(A — KC)e(k) + 5 [I(Kk) + m(k — d)]" P[i(k) + m(k — d)], (16)
el (k — d)AT P[I(k) + m(k — d)]
< ezel (k — d) AT PAge(k — d) + 5 [1(k) + m(k — d)]T P[l(k) + m(k — d)]. (17)

Furthermore, noticing the Assumption 1 and the definitions (7)-(8), we have

CRIK) = [f(e(k),uk) = F@(k), uk)) — Ae(k)]* < atle(k)]” = ate’ (k)e(k),  (18)
m' (k —d)m(k —d) = |g(z(k —d)) - g(@ (k—d)) — Age(k — d)|?
< djle(k — )] = aje’ (k — d)e(k — d), (19)

and hence it follows again from Lemma 1 that
[1(k) +m(k — d)]TP[l(k) + m(k — d)]
< Amax(P)[U(F) + m(k — d)]"[l(k) + m(k — d)]
< Amax(P) 207 (B)U(k) 4 2m" (k — d)m(k — d)]
< Amax(P)[2a%e” (K)e(k) + 2a3e” (k — d)e(k — d)]. (20)

For simplicity, we denote

M:= (146 +e)(A—KC)TP(A—KC)— P+ (1+¢]"' +3)AL PA,
+2(af +a3)(1 + eyt + e5 ) Amax (P)1, (21)

and then (11) indicates that I = —R < 0.
Since E{|w(k)|?} < 6, it can be easily seen that

E{w (k)(BE, — KE)T(E) — KEy)w(k)} < O\pax{ (B1 — KE)T (Ey — KEy)} := ¢ (22)

Considering the definition of @ in (13), the relationships (18)-(22), after tedious algebraic manipulation, we
obtain from (14) that

AV (k) < ¢! (B)e(k) + ¢ < —Amin(R)|e(k)|* + ¢, (23)

where the matrix IT < 0 and the scalar ¢ > 0 are defined in (21) and (22), respectively.
Based on (23), the exponentially ultimate boundedness behavior of the estimation error can be proven by
following the same line as in [18]. In order to make the presentation concise, we give the details in Appendix.

This completes the proof of this theorem. |

B. Filter design

The purpose of this subsection is to give an explicit expression of the set of desired filters. By means of

Theorem 1, we shall deal with the following two problems: a) find the existence conditions for the positive
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definite matrix P under which there exists a filter gain K satisfying (11), and b) derive the characterization
of expected filter gains. A lemma given below will be needed in the development of the design procedure.

Lemma 2: [9] Let X € R™*" and Y € R™*P (m < p). There exists a matrix V' that satisfies simultaneously
Y =XV, VVT =1 if and only if XX7 = YY7T. In this case, a general solution for V can be expressed as

I 0

V=Vy Vi, U e R )< gyt = 1 (24)

where Vx and Vy come from the singular value decomposition of X and Y, respectively,

X=U Vi=1|U U 25

IS S TN AR (25)
Zy 0 . Zy 0 || Vi

Y =U W =1|U U 26

S R LG R E R e (26)

and rx = rank(X), UX = Uy, ZX = Zy.

For presentation convenience, we define

Qi=(1+e+e) ' [P—(1+e ' +e3)ATPA;—2(a +ad)(1 + &5 + 3 D Amax(P)T — R]. (27

Suppose the conditions of Theorem 1 are satisfied. Hence, we have
(A-KC)"P(A—-KC) =0 (28)

Since the left-hand side of (28) is non-negative definite, Q is required to satisfy

Q>0 (29)
Now, assume that (29) is true and let ©2'/2 be the square root of Q. Then equation (11) can be rewritten as
(A — KO PY2)[(A - KC)T PV = (@1/2)(QU/2)T. (30)

It follows from Lemma 2 that, (30) holds if and only if there exists an orthogonal matrix V' (V € R"*")
satisfying (A — KC)TPY/2 = Q'/2V  or

CTKT = AT —Q'2v p~1/2, (31)

It is easily seen from [1] that, there exists an orthogonal matrix V' such that (31) has a solution for K, if

and only if there exists an orthogonal matrix V' such that
1 —cT( ) |(AT —Q'2vp~1/2) =, (32)

where (CT)* denotes the Moore-Penrose inverse of C7.

By denoting
X = [I-c"chHHa'?, (33)
Y = [I-C"(CT)*AT P2, (34)

we can rearrange (32) as XV =Y, and from Lemma 2, XV =Y holds if and only if XX = YY”, which

can be expressed as

I —cT(cT)yM - ATPA)I - cT(c)t1=o. (35)
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So far, it should be clear that, there exists a filter gain matrix K such that (11) holds if and only if there
exist positive scalars €1, €9, €3 and a positive definite matrix R such that (29) and (35) have a positive definite
solution P > 0 (P > R). In other words, (29) and (35) serve as the existence conditions for a filter gain
matrix to satisfy (11).

Assume that (29) and (35) hold. The rest we need to do now is to derive the explicit expression of the
desired filter gains. It follows from [1] that a general solution to (31) is given by

K = {(cT)*AT — @2y P12 4 1 — (CT)*CT)Z)7, (36)

where Z € RP*" is arbitrary, V is any orthogonal matrix satisfying XV =Y and can be expressed, again by
Lemma 2, as
1 0

V=V
1o

Vi, U e Rovrx)xe-rx) (37)

where X and Y are defined in (33) and (34), respectively, the matrix U is arbitrary orthogonal, and ry =
rank(X).

Finally, by means of Theorem 1 and the above derivation, the characterization of the desired filter gains is
given as follows.

Theorem 2: 1If there exist positive scalars 1, €9, €3 and a positive definite matrix R such that (29) and
(35) have a positive definite solution P > 0 (P > R), then with the filter gain given by

I 0

K = {(c1)*[AT — oY%y VWPV 41— (cYTe" 2y, (38)

where X, Y, U and rx are defined previously, the system (9) is exponentially ultimately bounded in the mean
square.

Remark 3: In practical applications, it is very desirable to solve directly the matrix inequality (29) subject
to the constraint (35), and then obtain the expected filter parameters readily from (38). First, the positive
scalars €1, €3, €3 can be determined by using the optimization approach proposed in [17] and the references
therein, in order to reduce the possible conservatism that may result from the inequalities (15)-(17). Then,
when we deal with the matrix inequality (29) subject to the constraints (35), the local numerical searching
algorithms suggested by [2] and [8] are very effective for a relatively low-order model. A related discussion of
the solving algorithms for matrix inequalities can be found in [12]. We also mention that there is a considerable
freedom in the filter design, such the choices of the matrices Z and U in (38), which could be further used to
improve other filtering properties.

Remark 4: We point out that the main results can be easily extended to the multiple state delayed case.
Also, it is not difficult to obtain parallel results for the case where there are bounded nonlinearities and

uncertain disturbances. That is, f(-,-) and g(-) satisfy f(0,0) =0, g(0) =0, and
o
)

0‘<
a
5 <a

l9(z(k —7) +0) — g(a(k — 7)) — Ago| < as|o] + b, (40)

F(a(k) + o,ulk) +8) = f(a(k),u(k) = [ A B |

‘ + by, (39)

where the new parameters by > 0 and by > 0 account for the possible uncertain disturbances. The reason
why we discuss the relatively simple system (1)-(2) associated with (3)-(4) is just to make our theory more

understandable and to avoid unnecessarily complicated notations.
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IV. NUMERICAL SIMULATION

In this section, a simple simulation example is presented to illustrate the usefulness of the proposed filter
design method.

Let the nonlinear discrete-time stochastic state delayed system be given by

z1(k+1) = 0.2z1(k) — 0.01z2(k) + 0.1sin z1 (k)
+0.1z1(k — 1) + 0.2cos(zo(k — 1)) + 0.2w(t),
zo(k+1) = 0.0lz1(k) + 0.222(k) + 0.1sinzy (k)
+0.1z9(k — 1) — 0.2cos(zy(k — 1) — z9(k — 1)) + 0.2w(t),
yi(t) = z1(t) + 0.1w(t).

Considering the system (1)-(2) with the constraints (3)-(4), we can obtain that

1
,Ad=[0 0

) B:07 E, =

0.01 0.2

0.2 —-0.01
0 0.1

0.2

02 |’
0.1
: C=[1 0], d=1, a; =0.12, ay = 0.25.

By —
7101

We aim at designing an exponential filter for the nonlinear time-delay system (1)-(2), such that the dynamics
of the estimation error is stochastically exponentially ultimately bounded in the mean square.
Firstly, by using the method discussed in the previous section, we may choose the appropriate parameters

€1, €2, €3, and obtain P as follows:

€1 =48, €2 =82, e5=0.7, P=
! 2 ’ 0 3.0650

3.0650 0 ]

Let the positive definite matrix R be of the form R = [r;;]ax2 (i, = 1,2). The condition (35) implies that
r92 = 0.0835. Then, based on the constraint (29), we can select other elements of R as 13 = 0.1, 19 = 191 = 0,

and hence obtain the matrices €2, Vx, Vy as the following:

01 0.0499 —0.9988
bl VX = b) VY = .
10 —0.9988 —0.0499

q_ | 01229 0
B 0  0.1229

Note that in the expression (38), the choice of the arbitrary matrix Z does not affect the solution since
I — (CTY*CT = 0. Therefore, letting U = 1 (38) leads to the following desired filter gain:

0.4000
K= .
0.0200
The responses of error dynamics to initial conditions are shown in Fig. 1 and Fig. 2, which demonstrate
that the estimation error is exponentially ultimately bounded in the mean square.

V. CONCLUSIONS

In this paper we have considered the filter design problem for a class of nonlinear stochastic discrete time-
delay systems. We have investigated both the filter analysis and design issues. The existence conditions as well

as the analytical parameterization of desired filters are derived. The method relies not on the optimization
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Responses of Error Dynamics to Initial State (40,20)
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Fig. 2. z; (solid), z2 (dashed).

theory but on Lyapunov type stochastic stability results that can guarantee a mean square exponential rate
of convergence for the estimation error. It has been pointed out that, the desired exponential filters for this
class of nonlinear discrete time-delay systems, when they exist, are usually a large set, and the remaining
freedom can be used to meet other expected performance requirements. The results of this paper have been
demonstrated by a numerical simulation example. Finally, we may generalize our results to more complex

systems such as sampled-data systems and stochastic parameter systems, which gives us future research topics.
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VI. APPENDIX

Proof of the exponentially ultimate boundedness in Theorem 1.

10

In this appendix, based on the relation (23), we proceed to prove the exponentially ultimate boundedness

behavior of the estimation error dynamics for the system (9).

If e(k) = 0 for some finite k, then it is straightforward to show that the system (9) is stochastically bounded

in the mean square. We now assume that e(k) # 0. Taking the expectation of both sides of (23) and using

the definition of AV}, we have
E{Vit1(Or11)} — E{Vi(Ok)} < —Amin(R)E{[e(K)|*} + ¢
It follows readily from (12) that

k—1
Vi(Ok) < Amax(P)[e(B)? + Amax(Q) D le(@)]?
i=k—d

which, together with (41), shows that for any scalar u > 1,

E{F T Vi1(Op1)} — E{u"Vi(O1)}
= W eV (Oki0)} — E(VA(O}] + (1 — DE(VA(O)}

< pk[—u)\min(R)'i‘(,U«_l) max( )]5{| ( )|2}

+/Lk(ﬂ max Z 5{|6 | }+Mk+1¢
i=k—d

For any integer T' > d + 1, summing up both sides of (43) from 0 to T' with respect to k, we have

E{n"Vr(O1)} — E{V0(©0)}

T—1 T—1 k—1 (T — 1)
B HELPY + b)Y S wefle@) + Mg,
k=0 k=0 i—k—d H

where

Note that for d > 1,

T-1 k-1
S el
k=0 i=k—d

)
1 ¢

i+d  T—d—1 1i+d T-1 T-1
< ( IS IED VI VD R I (0
i=—d k=0 =0 k=i+1 i=T—dk=i+1
plpt —1)
< @)y + == Zu’f{l )Py + B Zu’f{l

i=—d K
Then, it follows from (44) and (46) that
E{u"Vr(Or)} — E{Vo(O0)}
T+1 1)

b() (u — 1)d <« e
. 731;1-;05{@ DY+ ¢ kZ:OME{Ie )P} + -

(41)

(42)

(44)

(45)

(47)
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where

_ 2ub(p) (u? = 1)
C(pn) = alp) + o1

Since (1) = —Amin(R) < 0 and lim, 1 ((p) = +o00, there exists a scalar pg > 1 such that {(ug) = 0.
Therefore, we can obtain from (47) that, for any integer 7' > d + 1,

T d 12 NU(M6F+1 —-1)
E{po Ve (O1)} = E{Vo(O0)} < dAmax(Q) (g — 1) sup E{le(d)["} + —————¢, (48)
—d<i<0 po — 1
and subsequently,
T+H1 _
S0 VHO)} < [Dhmas (@ — 1)+ dmax (). ma(@)] sup_&4je(@)?) + L2V a9)
—d<i<0 Ho

Finally, it follows easily from Definition 1 that the error dynamical system (9) is exponentially ultimately

bounded in the mean square. The proof is now complete.
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