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Output Feedback Robust Hyo Control with
D-stability and Variance Constraints: A
Parameterization Approach

Zidong Wang and Daniel W. C. Ho

Abstract

In this paper, we study the problem of robust H., controller design for uncertain continuous-time systems with
variance and D-stability constraints. The parameter uncertainties are allowed to be unstructured but norm-bounded.
The aim of this problem is the design of an output feedback controller such that, for all admissible uncertainties,
the closed-loop poles are placed within a specified disk, the H,, norm bound constraint on the disturbance rejection
attenuation is guaranteed, and the steady-state variance for each state of the closed-loop system is not more than the
prespecified individual upper bound, simultaneously. A parametric design method is exploited to solve the problem
addressed. Sufficient conditions for the existence of the desired controllers are derived by using the generalized inverse
theory. The analytical expression of the set of desired controllers is also presented. It is shown that the obtained results
can be readily extended to the dynamic output feedback case and the discrete-time case.
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I. INTRODUCTION

In many stochastic control problems, it is quite common that the performance requirements are naturally
expressed in terms of the upper bounds on the steady-state variances, see e.g. [1], [2]. The traditional control
design techniques, such as LQG and Hy, control theories, are very difficult to be directly applied in this kind of
design problems, since they do not have a convenient avenue for imposing design objectives stated as the upper
bounds on the variance values. For instance, the LQG controllers minimize a linear quadratic performance
index which lacks guaranteed variance constraints with respect to individual system states. On the other
hand, the covariance control theory (see [1], [3], [4]) has provided a more direct methodology for achieving the
individual variance constraints than the LQG control theory. The main idea of the covariance control theory
is to choose a state covariance according to different requirements on the system performance and robustness,
and then to design a controller so that the specified state covariance is assigned to the closed-loop system.

In the past decade, the covariance control theory has received considerable research attention mainly because
of its multiobjective flavor to the control design problem, see e.g. [2], [5], [6], [7], [8]- The multiobjective nature
of the covariance control theory is based on two facts: 1) there is much remaining design freedom after assigning
steady-state covariance (or variance upper bound) to the closed-loop system; and 2) several control design
objectives are directly related to the steady-state covariance. So far, in the literature concerning covariance
control, in addition to the variance (covariance) constraints, other desired performance requirements, such
as stability, multiple-output performance specifications, robustness, Hy, norm restriction, minimum-energy
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input, have been extensively considered. Also, the dual multiobjective filtering problems with error variance
constraints have recently gained initial research interest, see e.g. [9], [10].

However, while the variance-constrained design is primarily concerned with steady-state mean square per-
formance specifications, it says little about the transient behaviour. As is well known, pole location is directly
associated with the dynamical characteristics of linear time-invariant systems, and in designing control sys-
tems it may be satisfactory in practice that the closed-loop poles are in a specified region. Therefore, in the
past decade, the problem of controller design for assigning all closed-loop poles within a desired region (often
a disk) has been an active area of research (see e.g. [7], [11]). A linear time-invariant system is said to have
the so-called D-stability if it is stable and its poles are all located inside a given disk.

The problem of robust regional pole-assignment subjected to plant parameter perturbations has been well
studied. The robust regional stability of a system subjected to uncertainties was analyzed in [12], [13]. Also,
in [14], [15], the controller design problem was dealt with for robust regional-pole assignment, but the poles
of the nominal system were required to be located in the specified region, and thus these design methods were
not suitable for the unstable nominal systems. [16], [17] established the parameterization of robust controllers
for regional pole placement for continuous-time systems, but did not take the H,, performance requirement
into account. [18] investigated the H, control with regional stability constraints, but the system uncertainty
was not presented. Up to now, to the best of the author’s knowledge, the issue of variance and D-stability
constrained H,, control for linear uncertain systems, which is actually a stochastic multiobjective control
problem, has not been fully investigated and remains to be important and challenging.

In this paper, we consider the problem of designing robust H, controllers for linear uncertain continuous-
time systems subjected to D-stability and steady-state variance constraints. The goal of this problem is to
design an output feedback controller, such that for all admissible parameter perturbations, the closed-loop
poles are assigned within a prescribed disk, the steady-state variance of each state is not more than the indi-
vidual prespecified upper bound, and the H., norm of the transfer function from disturbance inputs to system
outputs meets the prespecified upper bound constraint, simultaneously. A purely algebraic parameterization
approach is effectively developed to solve the problem addressed. The existence conditions as well as the
explicit expression of desired controllers are presented, and an illustrative example is used to demonstrate the
applicability of the proposed design procedure.

Notation. The notations in this paper are quite standard. R"™ and R"*™ denote, respectively, the n
dimensional Euclidean space and the set of all n x m real matrices. The superscript “I” denotes the transpose
and the notation X > Y (respectively, X >Y) where X and Y are symmetric matrices, means that X —Y is
positive semi-definite (respectively, positive definite). I is the identity matrix with compatible dimension. Let
|-| be the Euclidean norm in R™. If A is a matrix, denote by || A|| its operator norm, i.e., || A|| = sup{|Az| : |z| =
1} = /Amax(AT A) where Apax(c) (respectively, Apin(-)) means the largest (respectively, smallest) eigenvalue
of A. Moreover, let (Q,F,{F;}i>0,P) be a complete probability space with a filtration {F;};>¢ satisfying
the usual conditions (i.e., the filtration contains all P-null sets and is right continuous). E{-} stands for
the mathematical expectation operator with respect to the given probability measure P. Sometimes, the
arguments of a function will be omitted in the analysis when no confusion can arise.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Consider a linear continuous uncertain stochastic system represented by
i(t) = (A+ AA)z(t) + Bu(t) + Dw(t), z(to) = o, (1)

and the measurement equation

y(t) = Cx(1), (2)
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where z(t) € R" is the state vector, u(t) € R™ is the control input vector, and y(¢) € R" is the measured
output vector. A, B, D and C are known constant matrices, and D is assumed to be of full row rank.
w(t) € R™ is a zero mean Gaussian white noise process with covariance I > 0. zg is the unknown random zero-
mean initial state with E{z{ 79} = Ry and is uncorrelated with w(t). The matrix AA represents parametric
perturbations in the system matrix that is of the following form (see e.g. [9], [17]):

AA=MFN, (3)
where F' € R**J | which stands for the norm bounded uncertainty, is an uncertain matrix bounded by
FF' <1, (4)

and M and N are known constant matrices of appropriate dimensions which specify how the elements of the
nominal matrix A are affected by the uncertain parameters in . AA is said to be admissible if both (3) and
(4) hold.
When an output feedback control law
u(t) = Ky(t) (5)

is applied to the system (1)-(2), the closed-loop system is governed by
z(t) = (Ac + AA)x(t) + Dw(t), Ac := A+ BKC, y(t) = Cx(t). (6)

If the closed-loop system (6) is asymptotically stable for all admissible uncertainties, the steady-state

covariance, defined by
X := lim E[z(t)zT (1)),

t—o0

satisfies the following Lyapunov differential equation
(Ac + AA)X + X (A + AA)T + DD =0. (7)

Furthermore, for the system (6), the closed-loop transfer function H(s) from the disturbance input w(t) to

the output y(¢) can be written as
H(s) = C[sI — (A, + AA)] ' D. (8)

We now consider a disc D(q,r) in the left complex plane with the center at —q + 50 (¢ > 0) and the radius
r (r < q) for the continuous systems. To this end, we are in a position to formulate that, the Robust Hu,
Variance and D-stability Constrained Design (RHVDCD) problem under study is to determine the output
feedback gain K such that the following performance criteria are simultaneously satisfied for the uncertain
system (6):
(P1) The closed-loop poles are constrained to lie within the specified disc, i.e.

o(A.+ AA) C D(q,r), (9)

for all admissible uncertainties.
(P2) The Hy, norm of the disturbance transfer matrix H(s) from w(t) to y(¢) meets the constraint

IH ()lloe <7, (10)

where || H(5)|loo := SUPyecr Omaz[H (jw)] and opee[-] denotes the largest singular value of [-]; and +y is a given
positive constant.
(P3) The steady-state covariance X meets

[X]’L’L S 0-1'27 1= ]-a27' c s N, (11)

where [X];; denotes the variance of the ith state, and o? (i = 1,2,--- ,n,) stands for the prespecified steady-
state variance constraint on ith state and can be determined by the practical performance indices.
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III. PRELIMINARY RESULTS

The following result provides a main key for solving the problem RHVDCD. It is shown that the enforce-
ment of the requirements (P1) and (P2) in the problem RHVDCD is related to a modified Riccati equation.
Moreover, the solution of this modified Riccati equation gives an upper bound on the actual steady-state
covariance matrix X.

Theorem 1: Given a constant v > 0 and a disk D(gq,7). Assume that the following matrix equation has a
positive definite solution ) > 0

(Ae + AA)Q(A, + AA)T + (¢ — 1)) Q
+q[(Ac + AA)Q + Q(A, + AA)T + 4 2QCTCQ + DD + P] =0, (12)

where P > 0 is an arbitrary matrix. Then, we have the conclusions that: 1) o(A. + AA) C D(q,r); 2)
|H(s)||loo < v; and 3) the steady-state covariance X exists and satisfies X < Q.
Proof: Define

1 1
L= ;(A—i—BKC—i—AA—I—qI) = ;(AC+AA+qI).

It is easy to see that the specified D-stability constraint o(A, + AA) C D(q,r) is equivalent to the Schur
stability of the matrix L, i.e., the eigenvalues of L are all located inside the unit circle D(0,1). From the
discrete-time Lyapunov stability theory, we know that L is a Schur matrix if and only if there exists a positive
definite matrix @ meeting Q — LQL” > 0. Note that since the matrix D is of full row rank, then DD* > 0,
and hence we can rearrange (12) as follows

Q- LQLT = %(W*QQCTC‘Q +DDT 4+ P) >0,
which implies that the D-stability requirement (P1) is met. Next, (12) can also be rewritten as the following
(Ac + AA)Q + Q(A. + AA)T +y72QCTCQ + DDT + % =0, (13)
where
%= q ' [(Ae + AA) QA + AA) + (¢* = rH)Q] + P. (14)

Since ¥ > 0, the proof of ||H(s)|l« < 7 can be completed by a standard manipulation of (13); for details
see Lemma 1 of [19].
Next, it follows from (7) and (13) that

(Ae+AA)(Q - X) +(Q — X)(Ac + AA) +472QCTCQ+X =0

which is, because of the D-stability of the system (6), equivalent to
o0
Q- X = / expl(A, + AA (v 2QCTCQ + N)exp|(A, + AA Hdt > 0.
0

That is, X < Q. The proof of this theorem is then complete. |

Remark 1: Theorem 1 shows that the H,, disturbance attenuation and the D-stability constraints are
automatically enforced when a positive definite solution @ to (12) is known to exist. Furthermore, if the
positive definite solution @) satisfies

[Q]Zz < 0'2 1= 172a ey Ny (15)
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then we will have [X]; < [Q)i; < 02, i =1,2,--- ,n, and therefore our task is accomplished. In what follows,

our goal is to study the existence conditions as well as analytical expression of a feedback gain K such that
(12) holds.

Lemma 1: [20] Let a positive scalar € > 0 and a positive definite matrix @ > 0 be such that eNQNT < I.
Then

(Acg + AA)Q(Acqg + AA)" < AggQAL + AcgQNT (711 = NQNT)T'NQAL,
e tMMT, (16)
where A.y := A, +ql = A+ BKC +ql.

Theorem 2: Let the desired disk D(q,r), the constant v > 0 and the output feedback gain K be given. If
there exist a positive scalar € > 0 and a positive definite matrix @) > 0 satisfying

eNQNT <1 (17)
Aq[Q + QNT (e 11 - NQNT) 'NQ|AL + e ' MM”
=r*Q —q(y*QCTCQ + DD"), (18)

then the eigenvalues of the uncertain closed-loop system matrix A, + AA are located within the desired
disk D(q,r), the Hy, norm of the disturbance transfer matrix H(s) from w(t) to y(¢) meets the constraint
lH(s)]|co <, and the steady-state covariance X satisfies X < Q.

Proof: From Lemma 1, we have

© = Ay[Q+QNT(e'1-NQNT) 'NQ|AL,
+e tMM”Y — (A + AA)Q(A, + AA)T > 0. (19)

Then, by using (19), (18) is equivalent to
(Acq + AA)Q(Acq + AA)T = TQQ - q(fY_QQCTCQ +DD" + q_l@)- (20)
Define P := ¢~'0© > 0 and note that A., = A, + ¢, (20) can be rewritten as

q(Ac+ AA)Q + qQ(Ac + AA)T + (Ac + AA)Q(Ac + AA)T
+(¢? = r)Q + ¢[y 2QcTcQ + DDT + P =0, (21)

which is the same as (12), then the proof of this theorem follows from Theorem 1 directly. [ ]

It can be seen from Theorem 2 that, if there exists a controller gain K such that (17)(18) hold for a specified
positive definite matrix () and a positive scalar €, then the goal of this paper will be achieved. We refer to
this problem as the “(Q,¢)-pair assignment” problem, and therefore the addressed RHVDCD problem can be
converted into such an auxiliary “(Q, €)-pair assignment” problem. Now, we can conclude our task as solving
the following two alternative problems:

(A1) Find the conditions under which there exists a feedback controller K which satisfies (18) for the specified
pair (@, e) meeting (17), where () > 0 is positive definite and ¢ > 0 is a positive scalar. In this case, the pair
(Q,¢) is called an assignable pair.

(A2) Find the set of all output feedback controllers that can achieve the assignable pair (Q, ).

Note that Theorem 2 gives sufficient conditions on the RHVDCD problem, and the auxiliary “(Q, ¢)-pair
assignment” problem is described based on Theorem 2. Therefore, the necessary and sufficient conditions for
the existence of solutions to the converted “(Q,¢)-pair assignment” problem, which will be deduced in the
next section, are just the sufficient conditions for the solvability of the original RHVDCD problem. These
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sufficient conditions may be conservative which, it is not difficult to find, are produced primarily due to the
introduction of the matrix ® > 0 in Theorem 2. Since © > 0 depends directly on the parameter € > 0, we can
reduce the conservatism by minimizing the matrix © > 0 over the parameter ¢ > 0 in a matrix-norm sense. A
related detailed research on this issue can be found in [21] and references therein. As will be discussed later,
however, when we do not consider the uncertainty and Hs index, the RHVDCD problem will be simplified to
the problem of circular pole assignment via output feedback, which is equivalent to the (@, ¢)-pair assignment
problem.

In the next section, the so-called “(Q,¢)-pair assignment” problem will be solved completely based on the
generalized inverse theory and the singular value decomposition technique.

IV. MAIN RESULTS AND DERIVATION

In this section, we shall first discuss the conditions under which there exists an output feedback controller
gain K such that (17)(18) are satisfied, that is, establish the assignability conditions of a specified pair (Q, €).
Then, we shall derive the general expression of a feedback controller gain K that achieves the assignable pair
(Qa 6)'

The following lemma will be used in the proof of our main results.

Lemma 2: [22] Let X € R™*" and Y € R™*? (m < p). There exists a matrix V' that satisfies simultaneously

Y=XxV, vvl=1,

if and only if
XxT =vy”.

In this case, a general solution for V' can be expressed as

I 0

0 U VW, U eRrrx)Ixemrx) gyt = (22)

V=Vx

where Vx and Vy come from the singular value decomposition of X and Y, respectively,

Zx 0 T Zx 0 V)?l
X=U Vi = 23
X1 o o | [ Ux1 Uxsz ] 0 0 VI, (23)

Zy 0 T Zy 0 V}TI
Y =U Vy = 24
Yo oW [ Uy1 Uys } 0 0 v, (24)

and rx — rank(X), UX == Uy, ZX == Zy.
Now, in order to obtain the conditions for the existence of desired controllers, K, with respect to the
RHVDCD problem, we can rearrange (18) as follows:

Aeg[Q+QNT (e 11— NQNT) ' NQJ AL,
=r*Q —q(y?QC"CQ+DD") — e MM, (25)

Considering (25), since its left-hand side is positive semidefinite, we assume that @ and e satisfy
r’Q — q(y2QCTCQ + DDT) — e 'MM” > 0. (26)
We further make the following definitions and square root decompositions

2:=Q+QNT(e7' I - NQNT)"INQ, (27)
I:=r2Q — q(v 2QCTCQ+ DDT) — e ' MMT, (28)
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and thus we can rewrite (18) as
(A7) (A8 )T = (/) (27 (29)

It follows from Lemma 2 that (29) holds if and only if there exists an orthogonal matrix V, V' € R'= >,
meeting

Acqgl/2 - 111/21/7 (30)
or
BKC =11'2v=~12 — A —ql. (31)

Hence, we obtain the following result.

Lemma 3: Suppose that (17)(26) are satisfied. Then, (18) has a solution for K if and only if (31) has a
solution for K.

The following result is easily accessible from [23].

Lemma 4: There exists an orthogonal matrix V such that (31) has a solution for K, if and only if there
exists an orthogonal matrix V such that

(I - BBT)(IM?vE=Y2 —A—qI) =0, (32)
(M2ve=l2 — A —qI)(I-CtC) =0, (33)

where BT and C" denote the Moore-Penrose inverse of B and C, respectively.
It is easy to see that (32) is equivalent to

(I — BBY)IIY?V = (I — BBY)(A + qI)2/2. (34)

Note that when (26) holds, we have II > 0 and thus II-'/2 > 0 exists. Furthermore, considering the fact
that I — C*C is symmetric and VI = V!, we can rearrange (33) as

(I —CHYC)A+q)TTT V2V = (I — CcTO)E~ 12 (35)
We now define
¥ - (I — BBH)IIY/? | (I = BB*)(A+qI)E'? (36)
| d-cte) A+ DTV | (I—C+C)=-1/2 ’

then there exists an orthogonal matrix V' such that (34)(35) hold if and only if there exists an orthogonal
matrix V such that

XV =Y, (37)

which is, by Lemma 2, equivalent to
XxT =yyT. (38)
Substituting (36) in to (38) yields four equalities, of which two are identities, and the others are as follows:

(I — BB — (A +qI)E(A+ ¢I)T](I — BB*) =0, (39)
(I-CTON(A+q)™IT " (A+ql)-E" (I -CTC)=0. (40)
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Now, we can conclude the above results in the following theorem that gives the conditions for the assignabil-
ity of a given pair (Q,€).

Theorem 3: Consider the uncertain linear system (1)(2). Given the desired disc D(q,r) and the Hy, norm
upper bound . Suppose that a positive definite matrix ¢ > 0 and a positive scalar € > 0 satisfy

eNQNT < 1, (41)
2Q — q(v2QCcTCcQ + DD — MMt > 0. (42)
Then, the specified pair (Q, €) is assignable if and only if (39)(40) holds.

In what follows, we will introduce the solution to the auxiliary “(@,¢)-pair assignment” problem. First,
take the following singular value decompositions

(I — BBHIIY/? Zx 0|
X = = 4
[ (1 -croyA+anruyz | U g o ] (43)
(I — BBT)(A + qI)E'/? Zy 0| p
(I —C+C)z—1/2 Wiy oW (44)

It follows from Theorem 3 and [23] that, if the pair (@, ¢) satisfying (41)(42) is assignable, then a general
solution of (31) is

K =BtM'?ve-12 - A—qCT + Z - BtBzCCT, (45)

where Z € R™ *™= jig arbitrary, V is any orthogonal matrix satisfying ¥ = XV and can be expressed, by
Lemma 2, as
1 0

0 U Vif, U e Re—rx)x(re=rx) (46)

V=Vx

where the matrix U is arbitrary orthogonal.

Substituting (46) into (45) leads to the following theorem that characterizes the output feedback gains
associated with assignable pair (Q, ).

Theorem 4: Let the pair (Q,¢) satisfying (41)(42) be assignable, then the set of all output feedback gains
that assign this pair is parameterized as

I 0

K = BT (1I1Y/?v.
Vg v

Te=1/2 _ A 4Ot + Z — BTBZCCT, (47)

where = and IT are defined in (27) and (28), respectively; Vy and Vy are defined in (43) and (44), respectively;
and Z € R"*" ig arbitrary, U € R(" —nx)x(nz=nx) ig arbitrary orthogonal, ry = rankX.

Finally, the following theorem, which gives a solution to the addressed RHVDCD problem, is easily accessible
as a summary of the results obtained in this section.

Theorem 5: Given the desired disc D(q,r), the Hy, norm upper bound -, and the prespecified steady-state
variance constraints o7 (i = 1,2,--+ ,n,). Assume that a specified pair (Q, ) satisfying (41)(42) is assignable
and [Qli; < 02 (i =1,2,--- ,n,). Then the expression (47) gives solutions to the RHVDCD problem addressed
in this paper.

Remark 2: 1t is easy to find out that, when the uncertainties are absent (i.e. M =0, N = 0) and there are
no constraints on the Hy norm of the disturbance transfer function (i.e. v = oo, D = 0), the condition in
Theorem 1 will be both sufficient and necessary (see also [24]), and thus Theorem 4 actually parameterizes
all output feedback controllers which place the closed-loop poles within a specified disk for continuous-time
systems. This means, Theorem 4 generalizes partial results of [11], [24].
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Remark 3: It can be seen that there exists much freedom in the design of desired controllers due to the
non-uniqueness in choosing @, €, U, Z. This design flexibility can be used to achieve other performance
requirements, such as reliability against sensor failures, implementation accuracies and gain reduction, etc.,
which still require further investigation.

Remark 4: It is not difficult to generalize our main results to the corresponding discrete-time systems. In
this case, the disk D(q,r) will be understood to lie inside the unit circle with center at the origin, centered at
(¢,0) with radius r, where r < 1 and |g| +r < 1. Such a disk is often treated as a desired pole region for linear
discrete-time systems, see [25] and the references therein. And then what we should do is only to simply
modify the key equation (12) in order to enforce the desired robustness, D-stability and H, disturbance
rejection attenuation properties. Considering (12), instead of the term “y~2QC?TCQ” for the purpose of
implementing continuous-time H, performance index, the well-known Riccati-equation based discrete-time
H, control approach (see for example [26]) can be exploited, so as to construct an alternative matrix equation
whose positive solution guarantees the simultaneous realization of all desired performance requirements on
the D-stability and H, index for uncertain discrete-time systems. After that, the design steps are the same
as those presented in this paper.

Remark 5: In designing practical systems, we usually wish to construct an assignable pair (Q,¢) satisfying
(41)(42) from the assignability conditions (39)(40), and then obtain the desired controller from (47) easily.
The equations (39)(40) are, in fact, the generalized algebraic Riccati equations that also appeared in [27]
with similar forms, thus they can be solved by using the same parametric method provided by [27]. Also,
for relatively lower-order models, the addressed generalized algebraic Riccati equations can be treated by
exploiting the local numerical searching method over the parameters @, €.

Remark 6: 1t should be noted that, for relatively higher-order models, considerable studies are still needed
to investigate the global convergence of the numerical searching algorithm. That is, developing an efficient
general computational algorithm remains an important issue for further research, at least in a theoretical
sense, while for relatively lower-order models with small parameter perturbations the numerical experience is

promising.

V. A NUMERICAL EXAMPLE

In this section, a numerical example is provided to show the usefulness and applicability of the present
approach. We counsider an uncertain linear continuous-time system described by

z(t) = (A+ AA)x(t) + Bu(t) + Dw(t), A= MFN, (48)
y(t) = Cx(t), wu(t) = Ky(t), (49)
where
-2 0 0 0 0 025 0 0
A= 0O -3 1|,B=|10|, D= 0 018 0 ,
0 0 1 0 1 0 0 0.16
05 0 0 05 0 0
C= 8 0(')5 005],M= 0 001 0|, N= 0 0 O
' 0 0 0 0 0 O

It is clear that the open-loop system is unstable. We assume that the robust constraints on the D-stability,
H norm of the disturbance transfer function, and the steady-state variance are, respectively,

o(A+ BKC +AA) C D(g,r) = D(3,2), ||H(s)| <~ = 0.9, (50)
(X1 <of =45, [X]pw<o5=4, [X]s3<o03=1L15 (51)
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Now, it is supposed that the positive definite matrix @ has the form @ = diag{qi1, 22, ¢33}. Note that (39)
reduces to the following

4q1; — 3(0.972-0.25¢%, + 0.25%) — 0.25¢ 1 = [0.25(¢ * — 0.25q11) " YJ¢dy + qu1. (52)

Thus, subject to the constraints (51), we can choose 11 = 4, ¢ = 0.9998. Next, the constraint (40) implies
that goo = 3.887. To meet the inequalities (41) and (42), we can set ¢33 = 1, and then the assignable pair
(Q,e) is determined.

Using the results provided in the previous section, we can obtain the important matrices as follows

2.000 0 0 155624 0 0 ]
2= (1.06+004) | 0 00004 0 |, I= 0 14611 0 |,
0 0  0.0001 0 0 29973 |
3.9449 0 0 02535 0 0] 1414214 0 0 00071 0 0]

X = O 00 0 00| ,VY= 0 00 0 00
0O 00 0 00 0 00 0 00,

Furthermore, in the expression (47), the arbitrary matrix Z can be set to be zero matrix, and the orthogonal
matrix U can be selected as

Ui=h, U= dlag{]" _]‘}7 Us = dlag{—l, 1}a Uy = —1Is,

respectively. Then, four desired output feedback controller gains are obtained from (47) as the following

Caso1: K = | 12262 —20000 ) = o g | 12262 —2.0000 |
0 —4.5375 0 —11.4625

Case3: k= | 12262 —20000 | = g | T12262 —2.0000 |
0 —4.5375 0 —11.4625

In these four cases, assume now that the uncertain matrix is of the form F = sintl3. The state responses
of the closed-loop system to initial conditions are shown, respectively, in Figures 1-4. The simulation results
verify that the desired goal has been achieved.

VI. CONCLUSIONS

This paper has introduced a parametric approach to the robust H., output feedback stochastic control
problem for linear continuous uncertain systems with D-stability and steady-state variance constraints. First,
we have derived some Riccati-like matrix equations whose positive definite solutions give the upper bounds
for the actual steady-state variance, and therefore indicate the simultaneous enforcement of all desired perfor-
mance requirements. Then, based on these Riccati-like matrix equations, the generalized inverse theory and
singular value decomposition technique have been exploited to obtain the existence conditions and solutions
of expected controllers. It is not difficult to extend the results of this paper to the dynamic output feedback
case and the discrete-time case. Further study will concentrate on utilizing the remaining design freedom to

achieve other performance constraints.
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Case 1: State Responses to Initial Conditions (3,1,-3) Case 2: State Responses to Initial Conditions (4,2,~4)
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Case 3: State Responses to Initial Conditions (3,2,-3)

3 : ; : Case 4: State Responses to Initial Conditions (2,2,-3)
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