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ABS'IRACT 
i 

The work of the author was to investigate the static , dynamic and machining 

behaviour of some new designs of slug damped boring bars with a 10 to 1 overhang 

ratio. The bars were mounted on a centre lathe. 

The static behaviour of a boring bar in relation to the geometric form errors 

that might be produced during boring was studied both analytically and 

experimentally. Specifically, two types of errors were considered, n'amely) 

a) errors that arise on entry of the boring tool into the woriTiece) known as 

the "bell-mouth" errors; and 

b) reproducibility of eccentricity errors, known as the "copying" erTors. 

The theory for "bell-mouth" errors did not seem to fit the results well; 

however,, the theory did prove that such errors could exist. The theory for 

"copying! ' errors agreed remarkably well with the results provided that the 

initial eccentricity was small compared with the depth of cut. 

The dynamical behaviour of the slug damped boring bar was modelled by a mathe- 

matical analogue. Despite its inability to properly account for the compressibilityl 

effect of the gaseous damping fluid, the model revealed the possibility of design 

improvements. In consequence, the optimally-tuned slug-damped tungsten-bunged 

bar was conceived, Manufactured and tested along with a solid bar for comparison 

purposes, a slug-daTrped recessed bar and a slug-damped steel-bunged bar. 

The machining behaviour of a boring bar was studied in terno of the maximum 

depth of cut that it could cope before the occurrence of chatter. At first, 

a stability model was developed based on the mathematical analogue formulated 

in the study of the dynamical behaviour. But since this analogue did not fit 
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the results accurately, a second and more precise model was set up using the 

frequency response obtained from dynamic experiments instead. The concept of 

negative damping coefficient was used; and a one-to-one correspondence between 

the asymptotic value of the negative damping coefficient and the limiting 

depth of cut was found to exist. By virtue of this, it is in principle possible 

to predict the limiting depth of cut of any machine tool system whose frequency 

response characteristics are known. 

Compared with other bars tested, the optimally-tuned tungsten-bunged bar was 

found to have the best dynamic and machining characteristics as reflected in 

the limiting depth of cut of 0.10511 (2.67 mm) to 0.110" (2.79 mm) at the feed 

of 0.0065"/rev (0.165 mWrev) and the speed of 500 rprn on a 31" dia. bore 

(140 rn/ndn) of EN8 steel. By constrast, the solid bar was hardiy able to cut 

stably even at the light cut of 0.005". 
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: L. INTROLRJCICION 

The designer of overhung boring bars is often f, ýced with two conflicting 

requiremnts: 

(1) the bar must be rigid enough to resist chatter and to minimize errors 

of geometric form; and 

(2), it must be long enough to profile bore deep into the workpiece. 

Naturally the main consideration is to eliminate the occurrence of, chatter 

by means other than increasing stiffness brought about by the reduction in 

overhang. 

Given a fixed overhang ratio, it is possible to increase the stiffness of the 

boring bar by utilizing stiffer materials of high modulus of elasticity. 

Tungsten-carbide which has a modulus of elasticity 2.5 to 3 times that of steel 

is often used. Nevertheless, in addition to being expensive to manufacture, 

the tungsten bars are very brittle and are readily fractured if they c-ire 

dropped. 

Another way of increasing resistance to chatter is to employ damping 

devices in the boring bar. The wide variation in chatter frequencies, 

that occurs when the bar is used over a wide range of cutting condition and 

workpiece materials, virtually rules out the use of highly tuned spring- 

type vibration absorber. The use of impact damper does not provide a 

satisfactory answer either, due to the fact that the device operates only 

when a certain level of vibration is exceeded and even then it serves only 

to limit the build up of the amplitude but not to suppress the vibration 

altogether. The use of Lanchester darnper, -as reported by Hahn 
(1) 

, for the 

suppression of chatter is a feasible proposal. Such a device possesses a 
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damping characteristic which is operative over a wide range of frequencies 

and hence is a suitable candidate for consideration. In the same paper,, 

Ifahn performed a siTrple analysis of the dynamical behaviour of the 

Lanchester-damped boring bar based on a simple yet revealing lumped- 

parameter mdel in which the respective masses of the bar and of the Plug- 

damper were coupled together by a linear dashpot. From his analysis) 

Hahn concluded that the dynamic performance of the bar improves as the 

ratio of the absorber mass to the equivalent mass of the bar, termed for 

short the mass ratio, increases. Despite the simplicity of the model, this 

conclusion is still valid for the real physical system and offers possible 

scope for improved boring bar design. 

A greater mass ratio can be achieved by way of increasing the absorber mass 

or reducing the equivalent mass of the bar or both. Physically, there are 

limitations on the manner that the two masses can be altered. The absorber 

mass, for example, cannot be increased without causing any possible reduction 

in the effective stiffness of the bar. Similarly. ) reducing the equivalent 

mass of the bar will bring about the same effect. The search for an 

optimum is obvious; but it must be conducted in a logical and analytical 

manner. Otherwise time and financial resources will not be utilised 

efficiently. 

Various stability theories have been developed whereby the stability border- 

line can be evaluated. Unfortunately,, the stability borderline thus 

evaluated is not directly related to the cutting parameters such as depths 

of cut, feeds or speeds, and hence the usefulness of these theories is 

severely limited. Improvements to these theories are needed. 
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In view of the problems presented, this project was conducted in the hope 

to find a satisfactory solution and to make recomaendations. The work 

was executed in the following stages. 

(1) Tentative analysis of geometrical form error under stable machining 

conditions. 

(2) The generation and removal of form errors. 

(3) Analytical and experirnental investigation of the dynamic behaviour 

of boring bars. 

(4) Optimal design of boring bar in terms of its frequency response 

characteristic and its resistance to chatter during boring. 

(5) Stability analysis of boring bar during boring using the concept of 

negative damping as the source of instability. 

(6) Stability boring tests to detern-dne the stability borderline in terms 

of the limiting depth of cut. Also problem arising from the boring 

testsý namely, chip curl and fracture, and removal of chips trom 

deep bores. 

(7) Correlating negative damping to the limiting depth of cut. 

The exposition of this thesis essentially follows this order. 

References for Chapter 1 

(1) HAHN RS "Metal cutting chatter and its elimination" Trans ASME 755 

1953, p 1073 



2. LITERATURE SURVEY 

Profile boring is a machining process relied upon to generate truly 

round holes of straight or curved profiles. The principal tool 

involved is the boring bar which in the main consists of a boring 

tool held in the free end of the bar. Metal removal is achieved 

by means of the relative rotational and axial motions between the 

workpiece and the boring bar. To a manufacturer employing profile 

boring operations, two issues are of immediate concern: - 1) the 

accuracy of profile generated and 2) the ability of the boring bar 

to resist chatter. While it is true that the phenamenon of chatter 

always results in a poorer machining accuracy, for the sake of discussion 

we consider here that the first issue is related to the stable machining 

alone and the second to unstable machining. 

Stable machining simply means chatter-free machining. It follows 

that the dynamics of the machine-tool and of the cutting process can 

be ignored in any theoretical considerations of geanetrical errors that 

May appear On the finished workpiece as a result of the boring operation. 

The subject will be taken up in section 2.1. 

Unstable machining, on the other hand, refers to machining in which 

chatter is present. On account of the generally high frequency 

associated with the chatter phencmenon, the dynamics of the machine- 

tool-and the cutting process cannot be assumed negligible. Their 

significance is shown up in theories put forward by investigators in 

this subject. A survey of their work is presented in sections 2.2, 

2.3,2.4 and 2.5. 

Finally, with a knowledge of the theoretical development, we are then 

in'a position to appreciate how the theories are put into practice by 
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looking at sme, different designs of boring bars that are available 

on the market or have been made known in publications. This is 

presented in section 2.6. 

2.1 GEOMETRIC FORM ERRORS AND ECCENTRICITY ERRORS IN BORING 

Hahn (1) 
was one of the first investigators who looked into the 

problem of geanetric form erTýor. By considering the case of precision 

boring in which the hole, as shown in fig. 2.1,., has an initial 

eccentricity er and a final eccentricity ef as a result of the 

machining, Hahn arrived at the expression 

ef =- 

Kw 
e., 

(2.1) K+K 
wq 

in which K is a material constant defined as the rate of increase 
w 

of thrust force with respect to the depth of cut, and Kq the stiffness 

value at tool point. 

According to Musty and Koeingsberger Mthe 
practical value of Kq 

for stable machining is much higher than that of K, being of the 
w 

order of hundreds or even up to a thousand, the final eccentricity ef 

in eqt(2.1) isý therefore, much less than the initial eccentricity er 

Since the term K I(K +K) is a measure of the error retained,, it is 
wwq 

called the "copying eryror". 

Hahn developed eqt(2.1) further to include the case in which the 

hole is bored out n times in succession, the final eccentricity ef 

is then 

n 
K 
w er 

K +K wq 

Obviously the precision is drastically improved as the nurrber of 

passes n increases. 
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0. Centre of rotation of workpiece 

0'. Centre of finished bore 

0". Centre of pre-finished 'bore 

Fig 2.1 Effect of initial eccentricity on final 

eccentricity of finished bore 
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The effect of stiffness of machine tool structure) of which the 

boring bar is one, on the gecmetric accuracy was also studied by 

BircI-iall et al 
(3) 

at PERA. Taking a general machining situation in 

which the tool was to take a nominal depth of cut d', they derived 

that the total depth of metal removed, un, after n cuts was 

u= nd' - pdl- 1- (2.2) 
n 

where in which C designates the rate of change of thrust 
K 

force with respect to the depth of cut and K is the static stiffness 

at the tool point in the direction of the thrust force. 

we can identify p in eqt(2.2) with the ratio K IK in eqt(2.1) and 
wq 

by the previous ccrrment of K IK is seen to be small in magnitude. wq 
As the number of cuts n is increased, eqt(2.2) beccmes 

un= ndl - Pdl 

On the right side of the equation, the first term denotes the total 

ncminal depth of metal that would have been removed were there no tool 

deflections and the second term represents the amount of geametric error 

consequent upon the operation. This error is seen to settle down to a 

final value as the nuTher of cuts n becomes large and can be reduced 

if-the value of p is made small. The observation is in accord with 

that of Hahn 

Tlusty and Koenigsber-ger (2,4) 
identified two causes of geometric errors: - 

the variation in the depth of cut due to an initial form ervor A 

is copied in the cut to produce a final form error S after the cut; 

and 2) the variation in the resulting campliance between the tool and 

the workpiece during the tool travel. With regard to (1) which is 

virtually the case discussed by Hahn,, Musty and Koenigsverger obtained 

the relation, 

&=w 
11-1 

(2.3) 
1 +p 
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where p is defined in the same manner as that of Bitchall et al 

and is the ratio K IK in the work of Hahn. It is, therefore2 to 
wq 

be expected that eqts(2.1) and (2.3) are in canplete agreement. In 

respect of (2), Tlusty and Koenigsberger noted that the error after 

one cut is 
(ý ýaI PMQx-PMid 

where a is the depth of cut. The equation indicates that this type 

of error depends on the depth of cut as well as on the variation Of 

the compliance. 

By likening a round boring bar to a simple cantilever and hence the 

stiffness at the tool point is 

D4 3Eý 37r ED 
K= 3E, 64 64 (2.4) 

00 (LIDP 

'7rD4 
where E is thepodulus of elasticity, I= i- 4 the second moment of 

ar, ea, L and D the respective length and diameter of the cantilever, 

Au and New 
(5) 

looked into the effect of diameter on the acceptable 

L/D ratio., known as the overhang ratio, and on the overhung length 

of steel bor-ing bars. Three cases are considered: - 1) precision 

boring practice, 2) normal workshop practice, and 3) stability 

borderline conditions. The results-are'presented graphically in 

fig. 2.2. 

2.2 VIBRATIONS IN CUTTING 

Vibrations in cutting are commonly referred to as chatter. When 

chatter occurs, the tool and work move relative to each other in 

the plane normal to the cut'surface. Whether chatter will be 

maintained or suppressed, according to Musty (4) 
, depends on 

1) the dynamics of the cutting process, 2) the dynamics of the 

machine tool at the tool point, and 3) the mutual directional 

orientation of 1) and 2) 
. 

Tlusty showed the relation in the form 
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of a block diagram as in fig. 2.3, from which it is obvious that 

fluctuations of the cutting process produce a cutting force ' 

variation P that acts on the machine tool and creates a vibration Y. 

The loop is closed by way of Y causing further fluctuations of the 

cutting process. 

There are three main types of vibration that may occur in cutting. 

First, there is the free vibration that is seen to arise immediately 

after an impact or shock. , The vibration norTrally dies down fast 

enough if the machine tool possesses sufficient damping. Second, 

there is the forced vibration generated from a source either inside 

or outside the cutting process itself. Intermittent cutting, for 

example, belongs to the source generated and maintained by the 

nature of the cutting process alone. In contrast, unbalance in 

machine tool drive brings about vibrations fran a source outside the 

cutting process. Despite this distinction, all forced vibrations 

possess the unique feature that the frequencies are constant and 

are readily determined and their suppressions are, therefore, 

relatively straight forward. Third,, there is the self-induced 

vibration, so called because the cutting process itself provides 

sufficient energy to initiate and to maintain vibration. By 

virtue of this definition, self-induced vibration will include 

primary chatter, regenerative chatter and chatter due to mode- 

coupling effects. This type of vibration is much more difficult 

to investigate and hence to suppress due to the fact that its 

frequency of vibration varies with variations in the cutting 

process dynamics, in the dynamics of the machine tool and in their 

mutual orientation. 
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In the study of vibrations in machining, the tem 'stability 

borderline' is very often used. Fmn the control engineering 

point of view, stability of a linear dynamical system is detemined 

by the nature of its characteristic roots. -According to Porter (6) 

there are the following distinctions of stability: - 

1) A system isImarginally stable' if its impulse response remains 

bounded as the time t-->co. This corresponds to the characteristic 

equation having exactly one pair of imaginary conjugate roots, other 

roots may be negative real or cmplex. conjugate with negative real 

parts. 

2) A system is 'asymptotically stable' if its impulse response 

dies down as the time t--), co This corresponds to characteristic 

roots that are negative real or complex conjugate with negative real 

parts. 

3) A system is 'unstable' if its impulse response becomes 

unbounded as time t->oo . This corresponds to characteristic 

rK)ots that are positive real or canplex conjugate with positive 

real parts. 

These distinctions can also be depicted graphically by the s-plane 

representation. In fig. 2.4 is shown an s-plane which is divided 

into four quadrants by the ýr- and w- axes which can be regarded 

as the real and imaginary axes respectively. A characteristic root 

has the form of a complex nurrber which can be represented asa. point 

in the s-plane. We are then able to make the following identifications: - 

1) Marginal stability is said to occur when all characteristic roots 

fall in the region def ined by v-< 0 

2) Asynptotic stability is said to occur when all characteristic roots 

lie in the region defined by -T <0 
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3) Instability is said to occur when there is at least one characteristic 

root lying in the region defined by q-> 0 

Based on these identifications, the 'stability borderline' can be taken 

to correspond to the w -axis in the s-plane of fig. 2.4 because the 

system becanes unstable if any of its roots cross the w -axis into 

right-half plane. 

2.3 DYNAMICS OF CUITING PROCESS 

The study of the cutting process dynamics is mainly concerned with 

the amplitude and phase relatims between the tool displacement and 

the resulting cutting force variations. Reviewing the work of previous 

investigators, Armarego and Brown (7) 
remarked that the cutting process 

itself has inherent periodicity in the sense that the cutting force 

varies peri6dically despite a constant metal removal rate. The 

periodicity may be caused, for instance, by the successive built-up-edge 

formation and fracture (8,9) 
, the chip segmentation 

(10-14) 
, and the 

discontinuous chip formation(15-17) ; but the force variations thus 

produced are small in ccmparison with those which giye rise to self- 

induced vibrations. 

I 
The first attEmpt to model mathematically the process of self-induced 

(8) 
vibration in cutting was made by Arnold His model was formulated 

on the basis Of a particular characteristic of the cutting process 

which is the negative slope of the cutting force versus cutting speed 

curve and with the assumption that the machine tool system could be 

approximated to a simple spring-mass-dashpot system. He demonstrated 

that the negative slope was analogous to scime measure of the negative 

damping due to the cutting process and that if this damping exceeded 

the positive damping that the machine tool system created, instability 

would result. 
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Camenting on Arnold's work, Doi and Kato (9) 
5 and Hahn (10) 

pointed 

out that the negative slope of the cutting force curve was not steep 

enough to explain the self-induced vibration. Hahn even quoted 

cases of zero slope at high cutting speeds and yet chatter occured. 

Shaw and Holken("), however, remarked that these criticism were 

improper since they were based on force values measured under steady- 

state conditions. To add support to their view, they quoted the 

data of Holken obtained under dynamic cutting conditions and showed 

that 1) dynamic forces were in general lower than steady-state forces 

and 2) the negative slope of the dynamic force-speed curve was much 

steeper. 

In an effort to explain the occurrence of self-induced vibration, 

Doi and Kato 
(9) 

suggested that it was primarily due to the phase lag 

of cutting fcrce behind the vibrational movement and that the lag was 

inherent in the cutting process. By virtue of this lag, some energy 

was available to maintain vibration. Shaw and Holken (11) derived 

expressions of the cutting and thrust forces for the cases of decreasing 

and increasing depths of cut. They concluded that the instantaneous 

forces at any particular depth of cut were higher for decreasing depth 

than for increasing depth as is shown by the elliptical curve in fig. 2.5. 

The shaded area in the ellipse is the energy available in each cycle 

to maintain vibrations. 

Smith and Tobias(12) disagreed with the contention that force lag was 

an inherent feature Of the cutting process. They suspected that such 

a fcrce lag was a product of the low frequency cbatter of the test 

machine used in the experiment of Doi and Kato. Frcm the results of 

the wave-producing experiments they conducted, they concluded that the 
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thrust force lagged the tool oscillation at frequencies of oscillation 

below 40 Hz; but above this frequency the force led the tool oscillation. 

Wave-producing experiments refer to experiments in which cutting is 

performed on a plain surface with the tool oscillating sinusoidally 

normal to the surface. Their results are reproduced in fig. 2.6. 

Nothing conclusive was, however, said of the main cutting force. 

Shumsheruddin (13) 
repeated the experfinent conducted by Smith and 

Tobias using the same set-up. He found out that the force lag at 

1OW frequencies as reported by Smith and Tobias was partly caused 

by the speed-dependent torsional oscillation of the test machine as 

a result of the torque fluctuations brought about by the cutting 

force fluctuations. It, therefore, cannot be concluded that the 

force lag is caused by the cutting process alone. For the test 

machine used, the torsional characteristic was found to differ at 

-low and high speeds because of the different gear arrangements required 

to obtain these speeds. Shumsheruddin remarked that, had this been 

taken into account, the force lag observed at low frequencies would 

be more pronounced. Apart fram this, he also made the following 

observations: - 1) the thrust force variation always leads the tool 

oscillation, the amount-of lead increasing with cutting, and 2) the 

main cutting force lags the tool oscillation at low and medium speeds, 

but at higher speeds,, it leads the oscillation, the amount of' lead 

increasing with cutting speed. 

Albrecht 
(14) 

conducted a similar wave-producing experiment and observed 

that both the t1rust and main cutting forces led the tool oscillation, 

the lead increasing with frequency. Although results obtained by 

various investigators are apparently different$ Das et al 
(18) 

noticed 
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sme points of agreement among them: - 

1) the main cutting force and the thrust force canponents are 

neither in phase with each other nor with the tool motion; 

2) the thrust force component always leads the tool motion while 

the main cutting force canponent either lags or leads the tool 

motion; and 

3) the phase and amplitude of the force canponent depend on the 

wave-length of the wave generated on the workpiece. 

On account of t4s, it is reasonable to model the dynamic cutting 

force canponents, namely, the main cutting and the thrust forces,, 

such that they consist of an in-phase cauponent and a quadrature 

camponent to account for the force lag or lead effects. Thus,, 

using canplex variable representation in which the real part is 

designated as the in-phase camponent and the imaginary part as the 

quadrature cmponent., a force incrEment dP may be written 

dP= P(cos e+ jsin 9) (2.5) 

P is the absolute magnitude of the force increment dPý and 8 

the amount of phase lead or lag that dP has relative to the tool 

motion. It must be noted that dP disappears at steady-state cutting. 

The in-phase cmponent Pcos 8 is produced by the, uncut chip 

thickness variation and is in general much larger in magnitude 

canpared with the quadrature canponent. The quadrature component 

PsinE) is produced by the variations of 1) the cutting speed, 

2) the instantaneous cutting direction, 3) the tool clearance and 

rake angles, 4) the feed rate and 5) the free surface slope. 

Two models of the dynamic cutting process will be presented in the 

two sections that follow. Both are often employed in the machining 

stability analysis. 
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2.3.1 CUrrING FORCE MODEL OF TOBIAS AND FISIMICK( 15) 

By considering changes from one steady-state to another, Tobias and 

Fishwick showed that small, but otherwise arbitrary, changes of uncut 

chip thickness s by ds, feed rate r by dr, and rotational speed-CL by d, -fL 

caused a variation of cutting force dP that may be written 

dP = wklds + wk 2 dr + wk 3dA (2.6) 

where w is the Chip, width; kl, k2, and k3 are termed the dynamic cutting 

force coefficients. For the case of turning, they related these co- 

efficients to the steady-state coefficients ks and kft by 

k2= 27r s 

and k3= kn s 

(2.6.1) 

where k and kA are the slopes of the respective steady-state forr-e-feed S 

and force-speed curves as shown in Fig 2.7. 

According to Tobias and Fishwick, since the' dependence of the cutting 

speed is negligibly small in general, then dr and ds will'depend only on 

the nornial oscillation of the tool. The variation of the uncut chip 

thickness ds can be expiessed as the difference between the two successive 

passes x(t-T) and x(t) where T-is the time lag between them, and for 

sinusoidal oscillation dr=jx(t). Eqt (2.5) then becanes 

dP = wk, IX(t) - px(t-T)l + jwk 2 x(t) (2.7) 

where p is defined as the overlapping factor which is a measure of the 

influence of the previous pass on the present pass in terms of force. 

Eqt (2.7) is seen to have the same fom as eqt (2.5). 
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2.3.2 CUTrING FORCE MODEL OF TLUSTY (4) 

In this cutting force model, the cutting force P is related to the chip 

width b, and to the uncut chip thickness variation (Y-Yo) where Y and Yo 

are the vibrations of two successive cuts of the tool relative to the 

workpiece in the direction normal to the nominal cut surface. The 

relation is P= -br(Y-YO) (2.8) 

Tlusty called ra coefficient and reasoned that its value was constant 

and real if all other cutting conditionss apart frCm. b, were held fixed. 

It follcws that the cutting force P changes instantaneously with the 

change in the uncut chip thickness (Y-Yý); and eqt (2.8) may be regarded 

as a special case of eqt (2.5) in which the quadrature force component 

Psin Gpdisappears. By virtue Of the fact that the in-phase component 

Pcos & is often much larger than the quadrature canponent Psin G, 

Musty's assurnptim that r is real, though inexact, yields a simple yet 

functional expression as eqt (2.8). In some of his later work, Tlusty 

recognised and accounted for the cmplex nature of r and the resulting 

cutting force expression is then in complete accord with eqt (2.5). 

With reference to eqt (2.6) of Tobias and Fishwick, the dynamic forr-e 

coefficient k can be expressed in terms of k and krL by eqt (2.6.1) 21 

and so eqt (2.7) can be seen to be in terms of ks2 ka . and k 1, As 

mentioned previouslys ks and k, 
-L are static coefficients that are readily 

detemined fran. steady-state experiments2 but k1 is a dynamic coefficient 

which,, according to Tobias and Fishwick2 can only be determined from 

dynamic experiments. Collecting dynamic cutting data will involve a great 

deal more work because an additional parameter, namelyo the frequency of 

oscillation, has to be incorporated into the design and the performance 
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of the experiments. For this reason, results that are obtained fr, <n one 

particular dynamic condition may become ccmpletely useless in another. 

Naturally one would prefer theories that pennit one to predict the 

dynamic cutting force on the basis of the well-documented knowledge of 

the steady-state cutting force data. Any attempt to develop such 

theories will have to start frcn the hypothesis that a causal relationship 

exists between the steady-state and dynamic cutting. 

Das and Tcbias(1'6) 
, Wallace and Andre417919)s Albrecht (14) 

, and Grieve 

and Rubenstein(20) believed that this causal relationship exists. That 

is to say, the dynamic force can be determined from fundamental principles 

by taking account of the effects of cutting parameters such as the uncut 

chip thickness, the cutting speed,, the instantaneous cutting direction$ 

the tool clearance and rake angles, the feed rate and the free surface 

slope. The theories of Albrecht(14) and Wallace and Andrew (17ý19) 
only 

allow a qualitative description of the dynamic cutting force which 

indicates that the chip formation mechanism in VibratOrY cutting may 

produce either a leading or lagging force relationship. On the other 

hand, the theories of Das and Tobias (16 ) 
and Grieve and Rubenstein (20) 

attempt to quantify the dynamic cutting force'but the agreement between 

predicted and experimental results is poor. 

Sane investigators, notably Doi and Kato(9), and at one time-, Tobias 

and Fishwick(15) believe there is sanething more which only occurs in 

dynamic cutting and so the dynamic cutting force can only be determined 

by way of dynamic cutting tests. According to Doi and Kato, the force 

phase lag is a fundamental effect believed to be induced by the action 

of the friction force on the tool face because the friction force cannot 
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change instantaneously with changes in uncut chip thicImess. 

2.4 DYNAMIC CHARACIERISTICS OF MAMINE TOOL STRUCAJRE 

The dynamic characteristic of a mechanical system is usually presented 

graphically by means of 1) its amplitude response and 2) its phase 

response to a sinusoidal input that varies over a range of frequencies 

of interest. Typical amplitude and phase responses are shown in the 

respective diagrams (a) and (b) of Fig 2.8. There is also a neater 

graphical -representation known as the harmonic res)ponse locus which 

ccIrIbines the magnitude and-the phase in the form of a polar plot Eks 

shown in Fig 2.8c. 

In mathematical term , the dynamic characteristic of a system is 

described by the dynamic receptance defined as the displacement per unit 

force and is a function of frequency. Since displacement and force are 

vector quantities, a further clarification is needed on the term dynamic 

receptance: if the displacement of interest and the applied force which 

is the input are in line, the receptance is called the direct receptance; 

if the displacement and the force are in different directions, the 

receptance is called the cross receptance. For obvious reasons, 

receptance is best represented by a complex function which may take the 

general fom of g+ jh where both g and h are some functions of the 

frequencyvi and they are related to the amplitude and phase by the 

expressions amplitude 
jg 2 -+h 2 

and phase tan-1 h 
T 

In the cmtext of control engineering, the dynamic receptance of a 

nechanical. system is equivalent to its transfer function defined as the 
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ratio of the Fourier transform of the output signal to that of the input 

signal. By virtue of this definition, the input force is not necessarily 

restricted to a sinusoid; other waveforms are equally acceptable. Until 

recently, the main difficulty in applying input forces of the form other 

than sinusoid lies in the tedious computation of the Fourier transform 

of the input and output. However, with the advent of high-speed digiti- 

zation, storage and processing facilities and the availability of digital 

spectrum analyser, the task is performed much faster and more reliably. 

Input force signals fall into two classes: 1) deterministic and 2) stochastic. 

Scrne typical signals are shown in Fig 2.9a. Class 1 includes the familiar 

sinusoids which may be fixed or sweeping with time. They are deterministic 

because they are time-definable. In the dynamic experiments with 

sinusoidal input, the instruments required are normally an exciter, an 

oscillator with its power amplifier, a vibration meter and a phasemeter. 

For the case of fixed sinusoidal input, the input signal is held constant 

at one particular frequency while the output response is measured. Since 

the frequency is changed in a discrete manner, the resulting response 

curves are, strictly speaking, a connected set'Of points because values 

between two successive points are not measured. Often such measurements 

are carried out manually. In contrast, a sweeping sine input is necessarily 

equipped with the appropriate automatic recording instrwnents. Since the 

frequency is varied in a continuous fashion, the resulting response plot 

is continuous. However, great care must be exercised to ensure that 

the mechanical system being measured remains in a quasi steady-state by 

keeping the sweeping rate reasonably low. 

Examples of stochastic signals are the random noises pseudo-randan noise 
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and pulse signals. In a random noise signal, all frequencies within a 

bandwidth are present simultaneously and hence a continuous frequency 

spectrum. A pseudo-random signal is random within a period T, but 

otherwise is periodic with the periodicity T. This signal has a discrete 

frequency spectrum. A pulse signal is generally taken to. refer to an 

approximation to a Dirac impulse which possesses a flat power frequency 

spectrum. Upon excitation with stochastic signals, the system responds 

to all these frequencies simultaneously,, and the data required for the 

determining of the transfer function within a frequency range is obtained 

in a matter of seconds. 

Apart from. the speed advantage, a stochastic signal is more representative 

of what is usually encountered in true machining conditions. In fact, 

the noise signals often associated with a machining process can be 

successfully applied as a fom of input signal. Thus, the influence of 

various machining parameters such as speed, and feed rate, on the dynamic 

characteristic can be individually studied. By this method, it is 

possible to relate the definite influence of feed rate, for examples to 

the dynamic characteristic of the machine tool. By using the pulse 

signal as an input, it is not even necessary to use an exciter as a 

means of delivering the input. Three advantages are immediately obvious: 

1) there is no need to find room for the exciter, which may sometimes pose 

a serious problem if the mounting space is just not available, 

2) there is no special consideration of the moving mass of the exciter 

whose presence may significantly affect the dynamics of the machine 

being tested, and 

3) a pulse signal is easily produced by means of a hamner and if waveforns 

of a variety of frequency contents are desired, striking heads with 
different-degrees of hardness can be used. 
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The pulse signal is usually registered by a load cell mounted in between 

the striking head and its body (22) 
, or by a crystal type impact trans- 

(23) ducer placed on the area to be struck 

According to Opitz and Weck(21) , experiments with stochastic signals 

give rise to two types of errors that are inherent in the process, namely 

the statistical and systematic errors. They reckoned that, on account 

of the inevitable features of filter bandwidth in the instrumentation, a 

small statistical error is not compatible with a small systematic error. 

For this reason, a cmprKnise is needed so that both types of errors are 

kept within allowable limits. CorTection procedures 
(21)22) 

were devised 

to minin-dse both types of errors. 

2.5 STABILITY ANALYSIS 

It has been shown in section 2.3 that the incremental cutting force dP 

under vibratory cutting conditions can be represented by the eqt (2.5) 

which is repeated here as dP = P(cos 9+ isin 6) (2.5) 

where it should be noted that both PcosE) and PsinE) are functions of 

the cutting process parameters. Thýs incremental force dP excites a 

machine tool structure whose cross receptance is expressed as a complex 

variable g+ jh, and produces a displacement x(t) which is sane function 

of the time t. By the definition of cross receptance, 

+ ih) 2'(t) 
dP 

or dP(g + jh) = x(t) (2.9) 

For the case of regenerative chatter, successive cuts overlap and the 

wave on the work surface of the previous cut continuously modifies the 

incremental cutting force dP. By the definition of stability borderline 
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in section 2.2. which is that the amplitudes remain constant in 

successive cuts, then x(t) = x(t - T) (2.10) 

The stability borderline is determined by solving eqts (2.5), (2.9), and 

(2.10) simultaneously. Since dP in eqt (2.5) can be regarded as some 

function of the cutting process parameters, it is possible to present this 

stability borderline graphically in terns of one of the cutting process 

parameters and the cutting speed as shown in Fig 2.9b. This type of 

diagram is also known as the stability chart. Various methods of 

stability analysis have I been proposed, but while they Lffer in details, 

their basic approach is in accord with what has been just described. 

We shall look into three methods which have features that merit some 

attention. 

2.5.1 METHOD OF TOBIAS AND FISHWICK 

The method) in its original formpis concerned with a single-degree-of- 

freedom. system. For this mason, it is suitable only when the machine 

tool under study has modes of vibrations that are well separated from 

each other. The Prerequisite is a knowledge of the system parameters 

such as the mass) spring stiffness and damping, which is not easy to 

acquire because of the tedious curve-fitting procedure involved following 

the collection of dynamic data. The cutting force equation used has a 

similar form to eqt (2.5) and includes the effects of not only the uncut 

chip thickness variation, but also the variations of the rate of tool 

penetration and of the rotational speed. The stability is then evaluated 

fnn the equation of motion . in which ý the cutting force function is taken 

as the applied force. 
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Gumey and Tobias 
(24) 

presented a graphical representation of the method 

of Tobias and Fishwick. The procedure is first to construct vectors for 

both, the machine tool and cutting process dynamics and then to relate them 

graphically in the manner described by the equation of motion. The 

vectorial representation of the machine tool dynamics is, in fact, the 

harmnic response locus which is readily determined by way of experiments 

even for mechanical systems of considerable complexity. It follows that, 

unlike the original method, values of the system parameters need not be 

canputed and the analysis is not necessarily confined to the single- 

degree-of-freedom system. 

Thus far, the stability borderline is specified in terms of the dynamic 

chip thickness coefficient k1 (see eqt 2.6) whose relation with uncut 

chip thickness, the really desired quantity to be of value to machinistss 

is not easy to establish, and so the potential advantage of this method 

is not fully realised. 

Das and Tobias 
(16) 

recognised the existence of the causal relation 

between the static and dynamic cutting as mentioned in section 2.3, if 

proper account is taken of the effects due to instantaneous shear plane 

length,, instantaneous cutting direction, and instantaneous effective 

shear angle. They concluded that it is possible to draw useful stability 

charts in terms of the limiting uncut chip thickness beyond which 

instability occurs. 

2.5.2 MLITIOD OF TWSTY AND POLACEK (4) 

The method is concerned with a general machine tool structurewhLch may 
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have any number of modes of vibrations. In this method it is not 

necessary to kncw the, values of the system parameters directly such as 

mass, damping and stiffness. The dynamics of the machine tool is 

determined experimentally and is presented graphically by a pair of 

curves known as the real receptance curve G(w ) and the imaginary 

receptance curve H (Uj). G( w) and H(w ) are respectively the real and 

imaginary parts of the cross-recetance g+ jh measured between the 

direction of the cutting force and the normal to the cut surface. The 

incremental cutting force equation is a repeat of eqt (2.8), ie 

P =-br(Y - Yý) (2.8) 

in which, as has been mentioned in section 2.3.2, r is assumed as a 

real constant if all other conditions, apart frx)m the chip width b, are 

kept fixed. 

According to Tlusty and Polacek, at the stability borderline, the limiting 

chip width is b liln -1 2rG 
min 

(2.11) 

where Gmin denotes the minimum value of the real receptance curve G(W ). 

Since r is assumed real, the cutting force equation of(2.8)only accounts 

for the effect of changes in the uncut chip thicknessý but ignores the 

effects of the rate of tool penetration and the rotational speed. 

Ignoring the rate of tool penetration will result in a higher value 

of the limiting chip width than that given in eqt (2.11). In'addition, 

the effect of rotational speed on stability is in general observed 

to be insignificant within the practical machining range. For these 

reasons, eqt (2-11) provides a safe estimate of the Limiting chip width b lim* 
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The real constant r in eqt, (2.11) has yet to be determined. 

According to Peters and Vanherck (25) 
2r has a value identical to that 

of the incremental cutting stiffness kl, which they define as the 

incremental cutting force per unit chip area of increment. The 

increments of chip area are effected by changes in the feed rate or 

uncut chip thickness or both frcm one steady-state condition to 

another. Thus, the value of r is a steady-state quantity whose values 

are determined fran steady-state cutting tests. The'limiting chip 

width can then be evaluated fran eqt (2.11). 

2.5.3 MFIHOD OF MERRITT(26) 

The method is based on the theory of linear control. Merritt likened 

the phenanenon of machine tool chatter to the dynamical performance 

of a closed loop control systein as is depicted in Fig 2.10. There are 

two feedback paths: 

(1) the primary path which models the effect of changes in the position 

of the cutting tool thus causing corresponding changes in the 

cutting force, and 

(2) the regenerative path with a time delay element peTs that models 

the overlapping effects of successive cuts. 

The cutting force function F(t) is assumed to be in direct proportion 

to the instantaneous uncut chip thickness u(t), hence 

F(t) = kcu(t) 

where kcs being a constant,, is called the directional cutting stiffness. 

Such a cutting force model is bound to be approximate for it ignores 

the dynamics of the cutting process. The exact stability borderline 

which is rather complicated is then determined by means of a special 
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chart. According to Merritt, a simpler stability criterion is also 

possible, which is that chatter-free performance is assured if the 

directional cutting stiffness is less than one half of the minimum 

directional dynamic stiffness of the machine tool structure. 

Since Merritt, the control loop approach has been preferred by in- 

vestigators like Opitz and Bemard (27) 
who studied the behaviour of 

lathes and milling machines. The'popularity is partly due to the 

wealth of control theories available and partly due to the high 

computational speeds afforded by computem which cut down the time 

of stability analysis to a practical and economical level. 
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Fig 2.10 Block diagram of chatter loop 
(26) 
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2.6 SURVEY CF BORING BARS 

Some designs of boring bars will be surveyed and classified according as 

the principles involved. A few of these may make use of more than one 

principle for their effective operations and whenever this is the case, 

mention will be made of the other principles involved wherever the bars 

are described in the text. 

2.6.1 IMPROVED STIFFNESS 

The nzin advantage of having a high stiffness in a boring bar is in the 

maint--nanceof good geanetric form accuracy. Eqt (2.4) in section 2.1 

indicates three ways whereby high values of stiffness can be obtained; 

(1) increasing the Young's Modulus cf Elasticity E, 

(2) increasing the second moment of area I, and 

(3) reducing the overhung length of the boring bar L. 

The last two ways are dictated by the configuration of the workpiece and 

the consideration of swarf removal and ccolant passage. In practice, if 

conditions allcw, boring bars are often supported with steadies, which 

effectively reduces the overhang. Increasing the Young's Modulus E is 

achieved quite commonly by use of stiffer bar material such as tungsten 

carbide or-other tungsten-based alloys. Tungsten carbide, for example, has 

an E about 2.5 times that of steel. Sandvik Ccromant(28) marketed a type 

of tungsten carbide boring bar designated as TNS with a removable preset 

head for use on NC machines. Features include coolant channels cut out in 

the body for swarf rewval. The nkiin deterrents for using tungsten 

carbide are in the high costs involved and the inherent brittleness which 

requires special care in handling. 



34 . 

Effective stiffness can also be enhEuiced by way of arrangirg a pair of 

boring tools on the boring bar such that the cutting forces generated 

cancel out each other. Smolenskii(29) described one such design in which 

the pair of boring tools are adjustable at the root end of the boring bar 

so as to cut variable steps or recesses in a workpiece. The main drawback 

is, however, its inability to cope with profile boring. 

2.6.2 IWELLIGUIT USE OF MODE-COURING 

According to Kuchma (30) 
, the effective stiffness of a boring bar may be 

increased by means of a mechardsm known as mode-coupling which, brief lys 

is the phenmenon of mutual interchanges of vibrational energies between 

two rrodes of vibration of the bar. By machining diametrically opposite 

flats as in Fig 2.11, Kuchma observed that the bar then possesses two 

coupled modes and that the dynamic stability depended on the tool setting 

angle relative to the principal modal directions. He claimed that there 

was a particular angle at which the stability of the bar was at the 

maximum value even higher than that of an equivalent round solid bar. 

Parker (31) 
and Kato et al(32) also provided results to support this view. 

Thoma8 et al 
(33), however, disagreed with the findings of Kuchma and his 

supporters. Assording to Thomas et al, the machined flats on the bar do 

not bring about any overall improvement in stability but rather the 

optimum performance is lower than that of an equivalent round solid bar. 

Inada et al 
(34) 

reported on a boring bar whose design is shown sketched 

in Fig 2.12 with its analogous model shown in Fig 2.13. The bar is 

canposed of a body shank and an internal plate fitted into a slit of the 
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body. Both parts can be deflected independently of each other in the 

direction X whereas they are allowed to deflect only as a single unit in 

the direction Y as in Fig 2.12. The free end of the internal plate is 

machined with a recess such that the spring and disk can be acccaucdated. 

The damping force arising between the body and the internal plate is 

provided by the disk-spring coribination and can be varied by a set-screw 

pressed on the disk. According to Inada et al, the bar performs best at 

the tool-setting angle of 00 and 120 0. For the bar with a6 to 1 overhang 

ratio and a tool-setting angle of 1200,, the bar was claimed to be able to 

remove steel up to 6m deep at a cutting speed of 60 m/min as opposed to 

2mm deep using an equivalent round solid bar under the same condition. 

2.6.3 IMPROVED DAMPING 

All materials possess sane degree of inherent damping properties, sane 

more than others. Materials such as manganese copper alloy also known 

by the trade name Sonosto(35) have an inherently high damping property 

which can be used to advantage as building materials wherever high damping 

is demanded. However, these materials are in general less stiff than 

steel and so the overall improvements in dynamic stiffness are not very 

impressive. 

For mathematical convenience, damping is normally assumed to take one of 

three forms: 1) viscous damping, 2) hysteretic damping, and 3) coularb 

or dry-friction damping. In viscous damping, the damping force (36) is 

proportional and opposite'to the velocity. The energy dissipated per 

cycle is proportional to the forcing frequency and becanes infinitely 

small as the frequency is made to approach zero. In hysteretic damping (37) 
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I the damping force is proportional to the displacement and opposite to the 

velocity. Unlike viscous damping, the energy loss per cycle is independent 

of the forcing frequency. Coularb or dry-friction damping (38,39) is said 

to occur when the damping force is opposite in direction to the velocity, 

and remains constant in magnitude whose value is a function of the 

materials that make up the pair of surfaces in contact, the surface textures 

and the magnitude of the normal force. ",, I Energy is dissipated through the 
I 

relative displacement between the mating surfaces. 

Very often, boring bars are designed to operate with vibration dampers. 

According to Welbourn and Smith (39) 
, dampers may be classified in respect 

of the principles of damping involved: 

(1) Tuned auxiliary masses vibrating to give a force opposing the motion - 

A typical example is the tuned and undamped absorber which can be 

modelled by the analogue shown in, Fig 2.14. 
. 
In.,, this analogue, a 

spring-mass absorber is coupled to the main mass m., and is tuned to 

the frequency of the excitation force W such that e w2 e 
k /m, 2 2' 

The absorber introduces two resonant frequencies to the main mass as 

is shown by the response curve in Fig 2.15. This type of absorber 

can only be used when. there is a known and constant forcing frequency 

and is, therefore, practically useless in suppressing the unstable 

chatter type of vibration. 

(2) Energy absorption and dissipation frm the system - 

a) Impact dampers --------- These refer to the class of dampers in 

whi e energy is absorbed through the impacts of one body with 

another. Stabor bar (40) 
is one example. The bar, whose sketch 
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Fig 2.15 Response curve of the system in Fig 2.14. 

The absorber introduces two resonant 

frequencies of the main mass. 
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is shown in Fig 2.16, consists of a steel tube containing an 

adjustable impact damper. A cantilever spring supports an impact 

mass within a conical chamber in the. tool-holder. The distance 

between the-mass and the anvil can be set for optimum performance 

by adjusting a graduated nut which moves the supporting spring 

axially. Any vibration of the bar will be suppressed or reduced 

through the mass striking the conical seating of the chamber. 

Thcmas et al(33) modelled the Stabor bar by a two-degree-of- 

freedom system shown in Fig 2.17, from which its dynamic response 

subjected to harmonic force input wýs analysed. Fran their 

findings., a gain of 100% in metal removal rates was claimed over 

an equivalent round solid bar at an overhang ratio of 5 to 1 

when cutting at 400 rev/min. They also remarked that while it 

was virtually impossible to use a solid bar with 7 to 1 overhang 

or above, the stabor bar with the, same overhang ratio achieved 

what the 5 to 1 solid bar did in teims of the stable depth of 

cut. The behaviour of impact dampers was also studied by 

(41) - (42) Masri and Caughey and Sadek Another common type of 

impact damper is similar in appearance to the Lanchester damper 

which will be described soon. However, due to the larger 

clearance between the slug and the hole, the mechanism of 

operation is regarded as #pact damping. 

b) Viscous dampers ------- As the name indicates, these dampers can 

all be modelled by the viscous damping analogue. The most ccRMnly 

known damper is the Lanchester damper, two sketches of which are 

shown in Fig 2.18 a) and b) for the respective cases of boring 

blind holes and through holes. Energý is dissipated by way of 

the flow of fluid in the clearance between the slug and the hole. 
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Fig 2.16 The schematic drawing of the, Stapor Bar 
(33) 

showing -, - -ýI 
1) toolholder and conical chamber 
2) impact mass 
3) cantilever spring 
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Fig 2.17 The analogous model of Stabor Bar 
(33) 
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Fig 2.18 Two designs of Lanchester Damper for use in 

boring bars: (a) for blind hole boring; 

(b) for through hole boring. 
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Fig 2.19 Analogy of basic Lanchester Damper 
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Den Hartog (36) 
modelled the Lanchester damper by the analogue 

as shcwn in Fig 2.19 and studied its sinusoidal, response. Using 

the same analogue, Hahn (43) 
studied its transient response and 

Kato et al(32) studied its machining stability. Whether the 

damping is assumed viscous or impact in nature will depend on the 

amount of clearance between the slug and the hole: the smaller 

the clearance, the more viscous is the damping. 

In 1966, there appeared on the market under the trade name of 

Ceco (44) 
two designs of boring bar, one rotatory and the other 

ncm-rotatory. Both incorporate a Lanchester damper located 

close behind the boring tool. It was claimed that satisfactory 

PerfOrulance was possible up to 9 to 1 overhang ratio. Lamdon 

and Revva (45) 
also reported on a similar design of Lanchester- 

damped boring bar, but the bar shank was made of carbide instead 

of steel. 

c) Coulanb or dry-friction dampers ------ These are dampers that 

dissipate energy as friction losses through the relative movement 

between each pair of surfaces in contact. They have been applied 

with success in industry to deaden gear noise in large gear 

design and to reduce torsional vibrations. This idea of friction 

damping is also reflected in some designs of the boring bars 

that appear on the market. 

Kennametal De-vibrator (46) first reported in 1963, is one example. 

It consists of a set of inertial discs made from a type of heavy 

tungsten alloy, Kennertium. The discs are held under pressure in 

series at the cutting end of the boring bar as shown in Fig 2.20. 
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Fig 2.20 A schematic drawing of the De-Vibrator 

showing a set of inertial discs held by a 

light spring. 

Fig 2.21 The Vibration Absorber of PERA 
(49) 

showing 

1) cantilever spring; and 
2) absorber mass 

1 
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The pressure is provided by means of a canpressed spring also 

connected in series with the discs. The body of the bar is made 

of tungsten carbide and the boring head is held in position by 

a drawbar. The De-vibrator works by dissipating friction energy 

between the discs consequent upon their relative movements and 

by impact damping arising from the random impacts of the discs 

with their enclosure. Its manufacturer claimed in 1971 that 

it had produced the then largest boring bar (47) incorporating a 

Kennametal De-vibrator. The total weight is 1100 lbf (2420 kgf) 

and it masures 5 in (51 mm) in diameter by 72 in (2337 nm) in 

length. Holes up to 71 in (1803 mm) deep were reported to have 

been machined successfully. 

(48) In 1968, Guskov reported that an adjustable boring bar 

vibration damper was manufactured and successfully tested at 

Kirov, a machine tool plant in Russia. Its features are similar 

to the Kennanetal De-vibrator except: (1) that the discs are 

held under pressure by means of an adjustable bolt passing 

through the centres of all discs and (2) that the damper is 

located ahead of the tool. Obviously, this design does not 

permit blind-hole boring. 

(3) Corrbinations of types (1) and (2) to give a ccmpromise between the 

characteristics of the two types - 

A typical example is the tuned and damped absorber described in PERA 
(49) (50) 

reports 91 and 133 . Its sketch is reproduced in Fig 2.21. 

The slug is a cylindrical mass made of heavy alloy and is mounted on 

the end of a cantilever spring, the base end of which is fixed to the 
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body of the boring bar. Using an analogue as reproduced in Fig 2.22, 

the PERA team (50) 
analysed the harmonic response as well as the 

stability of the damper. Based on these results, they gave recan- 

mendations; of damper dimensions, and the choice of fluid on the basis 

of its viscosity for optimum damping. Comnenting on the theoretical 

harnonic response of various dampers, Den Hartog (36) 
pointed out 

that the design such as PERA's was usually three times as efficient 

as a Lanchester damper. Nevertheless, he also noted that the design 

of a correct spring was often difficult because the small amplitude 

of the main mass was obtained at the expense of large deflections 

and hence stresses in the damper spring. 

Some variations of the PERA damper exist and are illustrated in 

Fig 2.23. In diagram a), the springs are in the form of two plastic 

plates which are also damping elements. 
lIn 

diagram b), according to 

Revva (51) 
, the cylindrical slug is suspended on rubber rings and the 

clearance is filled with a fluid. Despite the variations, their 

dynamic performance is affected by the same parameters, namely: 

i) the mass of slug 

ii) the clearance 

iii) the width and thickness of the rubber or plastic material 

iv) the type of plastic material, and 

V) the damping fluid. 

Both Revva. (51) 
and 11ahn (36) 

remarked that a bigger mass was always 

desirable. 
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Fig 2.22 Analogy of PERA boring bar 
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Fig 2.23 Some variations of the PERA absorber: 

a) slug suspended on two rubber end plates; and 
(28) b) slug suspended on two rubber rings 
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3. ''THEORIES'OF'BORING'BAR''-ý''STATIC'CUTrING FORCES AND'TEUrATIVE 

''ANALYSES OF FACTORS*AFFECrING'GEOME7IRIC'FORM'AND'ECCENTRICITY OF 

FINISHED'BORES 

3.1 NOMENCLATURE 

ef eccentricity of finished bore, 

er eccentricity of pre-finished bore, 

Ft tangential cutting force, 

Fr radial cutting force, 

Ff feed cutting force, 

t instantaneous depth of cut 

s feed per revolution 

v cutting speed 

Rt tangential cutting force coefficient defined as the 
force per unit depth of cut and per unit feed 

Rr radial cutting force coefficient defined as the force 

per Unit depth of cut and per unit feed 

x1 deflection in the direction of radial force during the 
first revolution 

YJ deflection in the direction of tangential force during 

the first revolution 

t0 set depth of cut 

s set feed 

xn radial deflection during the nth revolution 

xi radial deflection at the end of the first revolution 

Y1 tangential deflection at the end of the first revolution 

Xn radial deflection at the end of the nth revolution 

Z_ feed reduction due to deflections xn and Yn" 

Xi/ t 

CIA 
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. 

overlapping factor, 

Kt stiffness of boring ýar in tangential direction, 

YXI stiffness of býring bar in radial direction, 

X overhung length of boring bar, 

L circumference of bore 

u 
ef 

copying error er2 
travelled distance of too[ tip from entry 

R-t /Kt 

Pr Rr/Kr 
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3.2 IMMODUCTION 

Elastic deflections of the boring bar and'the gemetric fom errors 

thereby produced will be discussed in this chapter. Factors believed 

to affect*the geometric form include the bar stiffness, the depth of 

cut and the feed per revolution. The cutting speed, however, is not 

ccnsidered since in the practical speed range, the cutting force 

components are found to be constant. Two types of error will be looked 

into: - (a) errors that arise on entry of the boring tool into the 

workpiece, and (b) reproducibility of eccentricity errors. 

3.3. EMPIRICAL CUITING FORCE EQUATION 
I 

It is very difficult to obtain a reliable, cutting force equation from 

the consideration of cutting mechanics. More often a realistic 

description of the forces can be achieved by means of an empirical 

equation of the fOm. 

F= At asb VC (3.1) 

where F is the machining force Of interest,, t is the depth of cut,, 

s is the feed per revolution and v is the cutting speed. 

in eqt (3.1 ), A. a. b, and c are constants whose values are determined 

from cutting tests and they am unique for every machining material 

as well as the tool geometry (and condition of the cutting edge). 

Equation 3.1 is suited to represent the tangentialý radial and 

feed cutting force canponents. 
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In tests where the data collected are nunerous, the business of 

finding the values of A, a. b and c is formidable. It will be shown 

that the cutting speed has negligible effects on the force over a 

wide rarge of practical speeds. For this reason it is convenient to 

consider instead a simplified empirical equation of the form 

F= At asb (3.2) 

so that only constants A, a, and b have to be determined. 

To find these constants,, a curve-fitting procedure is adopted and 

is described briefly as follows. Frm the cutting force data 

available as a result of the cutting testsý it is possible to construct 

a family of graphs with forces against depths of cut for each feed. 

Both the forces and depths of cut are drawn to a logarithmic scale. 

If equation 3.2 is suitable, the family of graphs will be linear and 

parallel with each other. Their comon gradient is given by a as is obvious 

fran the following equation , 
log F= log (Asb) +a log t, 

which is obtained by taking logarithm on both sides of eqt. 3.2. 

The next step requires the use of another logarithmic form of the 

equation (3-2. ). It is 

log F -: log (Atýa) +b log s 

It is now possible to draw a family of graphs with forces against feed 

for each depth of cut. Both the force and the feed are drawn to a 

logarithmic scale., The camongradient of the graphs, is equal to b. 

Now that a and b are determined, it is a simple matter to draw a-graph , 
of the force F against the quantity tasb. As can be seen frcm equation 
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(3.2), the graph is linear, passes through the origin and has a 

gradient of A. 

3.4. GEOMErRIC FORM ERRORS CAUSED BY MACHINING FORCES IN BORING 

3.4.1 Workpiece with a concentric bore 

The pre-finished bore is concentric with the axis of rotation. 

Deflections in the feed direction are assumed to be negligible for 

the reason that longitudinal stiffness of the bar is much higher 

than its transverse stiffness. 

Let the cutting force coefficient, R, be defined as the force per unit 

area of cut, then 

RF ts 
00 

at the depth of cut to and feed s0. In particular, the tangential and 

radial coefficients are respectively, 
Ft 

Rt ts 
(3.3) 

00 

and Rr 
Fr (3.4) 
t0s0 

Small variations in to and s0 bring about variations in Ft and Fr. 

Nevertheless these charges are small and so Rt and R. can be assumed 

constant in the neighbourhood of t0 and s0 

At the start of the cut,, the tool engages the workpiece at the full 

depth of cut to which it is set, but with zero area of cut then 

increasing until at the end of the first revolution it has sunk into 

the workpiece at its full feed. If the circumference of the bore is L. 

and at a distance t frxn entry, the actual feed will be given by 
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s9 where 9 is the axial deflection of the bar. 
0-1 

As the area of-cut increases, the bar deflects away frKn the set 

depth of, cut t0 by an amount x1 so that the actual depth of cut 

is ft6-ýXl). 

Arnold 
(1) 

showed that for a cantilever type single-point tool, 

the axial deflections resulting from the two transverse deflections 

in the respective radial and tangential directions are: 
22 

ýýL and 9y 
ix 2X ly 2A 

where x, and yl -are the respective radial and tangential deflections 

and X is the overhang of the cantilever which in this case is the 

boring bar. Since A is large and x1, yl are small deflections, 

ix and Z ly are insignificant. 

At the distance X frKn entry, the static fmce balance between 

the radial force and the spring restoring force of the bar is 

R- (to - xl) IL-ýs = Kx 
r, 0. r1 

and in the tangential direction, 

Rt (t -xs= Ktyl 
00 

Defining 0 and a as, 0 EE 
and 0 

rtr Kr 

previous two force-balance equations, - 
z ar (to -x 1) -E so = X, I 

and 0 (t -x ). L S=y t_ o1L0 
Ortos 

from which xi - or 
(1+ as 1) 

roL 
at 

and t oso Y1 Tl+ 0S 
r0 

Rt 
, then fix)m the 

7t- 

(3.5) 

(3.6) 
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At the end of the first cut, 9. = L, x1=X1 and y1=y1. 

Thus frm equations (3.5) and (3.6) 

x0rt0s0 (3.7) 

and Y 
Ittoso (3.8) 

1 (1+ Ar s0 

To develop realistic equations specifying deflections during the 

second and subsequent revolutions of the workpiece, the concept of 

an overlapping factor, 1j, is introduced. The factor V accounts for 

the influence of the preceding cut on the current cut and will vary 
11 

between zero and unity ccrresponding to the cases of no overlap and 

full overlap respectively. In this sense, V is similar to the over- 

lapping factor defined by Tobias (2) in his machining stability analysis 

for regenerative chatter. In the present situation, it is not an 

exact representatiai since during the early stages of boring the 

effects of material previously left by the tool are not due to the 

deflection only, but also follow from the coribination of the shape 

of the tool tip and the feed. This effect is illustrated in Fig. 3.1 

showing (a) a sharp nose radius; (b) a nose radius equal to the 

magnitude of the feed,, and (c) a nose radius much greater than the 

magnitude of the feed. In case (a), the area of cut, and so deflection, 

remains constant after canpletion of the first revolution if any 

secondary effect of elastic recovery is ignored. In case (b), 

interference occurs on the second and subsequent revolutions so that 

deflection increases to maintain the force balance, but this effect 

rapidly diminishes with successive revolution of the workpiece and 

rapidly tends to a constant level. In case (c), the geometry effect 

of the tool is much more significant during the initial revolutions, 

but again it rapidly diminishes, the resulting deflection tendir-g 
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All A2 A ýrA 34 A5 

Direction of too[ travel 

a) nose radius=O 

A, A2 A3 A4 5 5 

nMýLgNdLyA 

Direction of tool travel 

b) nose radius= feed 

Fig 3.1 Effect of nose radius and deflection of 

tool on chip cross-section Ai (i = 1,2,3, .... n) 

Direction of too[ travel 

c) nose radi'us>feed 
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quickly to a constant level. 

In spite of these practical ccrnplications, the following analysis 

presents a workable method the results of which agree qualitatively 

with those observed on a finished bore, recognising of course that 

the value of V will depend on the particular nose radius and feed used. 

IntrxDducing V for the second revolution, we obtain 

ar It 
0- 

(x 
2-"Xl 

)IS 
0=X2 

and t [t 
0 7P x 1)1 s6 ý' Y2 - (X2. 

which in term of x2 and y2 respectively give 

x=X (181, x (3.9) 
21t01 

and =X 
ýt 

(3.10) Y2 20r 

It is possible to generalize the derivation to tie nth cut during 

which the, tool is deflected xn and yn away frcm the position at 

which the tool is set to cut. The force balance equations are: 

ar it 0- 
(xn-pxn-l)l so =xn 

at (t 0-Xn -Px n-1) 
'so ý Yn 

which can be re-written as: 

x=X (1+ li x 
n1 to n 

and 
at 

Yn - "n 0r 
(3.12) 

Equation (3.11) which relates to deflecticn xn in the radial direction 

is of imediate interest. Expandir-g it gives: 
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3 (2__)2+ X4 (p )3 +X (P )X,... +X n-l(2 )n-2+X n-l(y. ) n-1 
1t*1t to 1t 

0 

in which the 2nd term to the 2nd last term inclusive form a gecmetrical 

progression and can be sumed. Thus, 

n-1 p n-1 x jýja, ý _IXJ(IL )In-2) 
t 

(ý 
xn 

-=X1+X1 
(T 

0)X, 
+ t. Q - -. 

tQ (3.13) 

1-X (11 » 1t0 

In particular2 at the ccmpletion of the nth cut,, 

x 2(IL) (, 
_ [XJ(IL )In-1) 

xn=X+1t0t0 (3.14) 

1-X, (I ) 
t0) 

Since X, < to, or X, = -to where - is less than unity, 

the higher powers of 
xl 

must be increasingly smaller and t 0 
X as given in equation (3.14) will converge to a maximum value 
n 

as n increases. Thus, 

x12 
x1+ tn (3.15) 

-x (11 (l 
1 to 

But since Xn->oo <t0, then frcm equation (3.15) 

x2(p) 
t>X+ to 

xt0 

which can be simplified to 

cc< cc (3.16) 
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if -p<1 which is valid because 04p <1 and 0< cc < 

With reference to either equations (3.14) or (3.15), it can be seen 

that with a smaller depth of cut, feed and a small overlapping factor, 

the deflection Xn at the tool tip decreases. A smaller overlapping 

factor can result frcm a sharper nose radius and a larger trailing 

clearance. Above all, the most effective way to reduce Xn is to increase 

the stiffness of the boring bar. Since Xn increases at a reduced rate 

as n increases in equation (3.14), and eventually tends to a constant 

value of X 
n-+oo as given in equation (3.15), the geanetric form of 

the bore will take up the shape of a bell-mouth. For this reason, it 

will be referred to simply as the "bell-mouth" error in future. 

3.4.2. Workpiece with eccentric bore 
ýI 

The pre-finished bore has an eccentricity er relative to the axis of 

rotation. During cutting, the instantaneous depth of cut varies from 

a minimun tmin to a maximun t 
max 

if the boring bar is infinitely rigid 

and they are related to eccentricity er by 

et-t. r max min 
(3.17) 

Since the bar is not infinitely rigid but, has a stiffness Kr ih the 

radial direction, at the position of maximun depth of cut, it is deflected 

such that 
Fr 

max Kr 

where F is the radial cutting force at the actual depth of cut rI 
(tmax - Xmax ) and is given by equation (3.2), i. e. 

Fr= Art asb 

in which t= (t 
max -x max 

) 
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A (t -! Xasb 
Hence, 'xr max max 

max Kr 

tax max AI-: F- r max max) -sb 
or >cmax K 

r 

x max Since <1 and the index a is in general less than unity 
max 

max )a little error arisesif we approximate (l -t max 
by (1 - 

max 
At at Sx 

so that x max 
mx K (1-a max) 

-r 
tiý 

frcrn which 

xIArt max 
eL 

s+ Artmax asba 

max Kr Yr tmax- 

Similarly for xmin at the position of minimum depth of cut 
At.. aSbAt. asb 

xr min 1+ r min a 
Iýv 

r min 

Equations (3.18) and (3.19) can be expressed in texro of the mean 

depth of cut t which is defined as 

t -'e -t--e, max r nun r 

and they respectively becane 

Atasb+ er)a 
xrt max Kr 1+a Asb t(a-D er (a-D 

Y'r 
(i + F-) 

IA 
tasb (i e., 

)a 
(3.20) 

and x. trt 
min 1+ aArs t "i - r) 

(a-D 
(3.21) 
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e 
When 

t 
r< 1 and since a is In general less than unity,, 

era. er 
(1 

e C, e 
r) U+) -(l+at-) and --L) 1 (1 - af- tt 

Similarly, (1 +eE+ 
(a-1) - er 

) and (1 
er)(a-141_(a-l). er 

tttt 

Thus, equations (3.20) and (3.21) become, 

Atasb+ a' er 

xrt (3.22) 
max K 

r1 +'dAcEbtta-1) + aer, el 
KrIt 

aber x Art s1 -T a and min Kt 
r+ 

aArsbt 
(a-! ) ae 

r+er 
K T- T- ) (3.23) 

The eccentricity error, ev, on the finished bore is related to 

x and x- by the equation, 
max min 

2e f 'ý Xmax - Xmin (3.24) 

And if we define the "copying" error as 
f (3.24a), which er 

indicates the extent to which the eccentricity error is copied, and 
er 

< fcr - ý< 1, then 
t 

Art asb l+ aer 
UKr 

er + aA1, sbt(cEL-1) (er + 
aer2 _e 

Ät 
r 

ae 
tr 

e+ aA r sbt(a-D ae 2e2 

+")- Krtt 
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er2e 
Ignoring te= containing since it is smaller than t 

E,, the above 

equation simplifies to 

1 

1+Kt (1-a) 

aA, s 
b 

1 (3.25) 
or U1+K 

where Kr 
aA sb (3.26) 

r- 

Fig. 6.26 shows the "copying" error in relation to the parameter K 

as defined in equation (3.26). As K increases frcm zero, the 

"copying" error decreases frxn unity. K can be made large by: - 

(1) increasing the bar stiffness, llýlj 

(2) increasing the depth of cut t since (1-a) is positive 

in equation (3.26), and 

(3) decreasing the feed s. 

Ar is the material constant whose value in general increases with 

the increase in the ultimate tensile strength of the material. 
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4. THEORIES OF BORING BAR - 'FREQUENCY *RESPONSE 

4.1 

T kinetic energy, 
V potential energy, 

2F dissipative energy rate, 

Q forcing function, 

m equivalent mass of boring bar considered at free end,, 

ms mass of slug, 

Mf mass of damping fluid, 

a C')f a correction factor, the square, root of which converts 

the relative-velocity between bar and slug to the average 

velocity of damping fluid, and are defined as; 

Oc = 
2. 

for slug rolling or sliding in cavity 

and 2 
Of =a for slug "floating" in cavity 

ýZ) 

radius of gyration of slug about longitudinal axis, 

R2 radius of slug, 

a radiaý clearance between slug absorber and cavity, 

x1 instantaneous vibration of bar at position of centre of slug, 

x2 instantaneous vibration of slug at its central transverse 

plane, 

X0 instantaneous vibration of bar at free end, 

G ratio of amplitudes, i. e. Xl/ 
. X01 

K equivalent stiffness of bar considered at free end, 

C coefficient of viscous damping, 

Po applied force vector at free end of bar, 

(A) angular frequency of the applied force, 

x0 vector vibration amplitude of bar at free end, 

xi vector vibration anplitude of bar at position of centre of slugs 

x2 vector vibration amplitude of slug at its central transverse 

plane, 

W angular undamped natural frequency Of bar with a tight- 
n C, 2 ms fit s1ug2 
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£ 

c c 

Meq 

C 
eq 

k 
eq 

AF 

opt 

+a mass correction factor for slug and 
2msc 

fluid, 

2m 
sw n` 

"critical" damping coefficient, 

AF 
opt 

x 
st 

s 

R 

Q 

z 

T 

E. 

YO 

, frequency ratio 
n 

equivalent mass of the single-slug-damped bar in the 

analogous single-degree-of-freedcm system, 
equivalent damping coefficient of the single-slug-damped 
bar in the analogous single-degree-of-freedan system 

equivalent spring stiffness of the single-slug-damped bar 
in the analogous single-degree-of-freedan system 
damping energy dissipated per cycle, 

optimun damping coefficient for the case of constant 
amplitude excitation 
damping energy dissipated per cycle corresponding to copts 

2ms G mass ratio, 

PO 
K- , static deflection of bar under the point of 

application of loading Po at free end, 
phase lag of amplitude behind impressed force, 

2 

, amplitude ratio squared, 
st 

t, 2,, frequency ratio squared, 

12c )2 
PC damping factor squared, 

(1 +jj) 1) mass ratio factor, 

1 
resonant frequency ratio squared for the case 1-Z I 

of zero damping, 

Young's Modulus at the ith section of bar, 

second mcment of area, at the ith section of bar, 

deflection of the bar at the free end, used in Section 4.5.1. 
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Y(X) deflection of bar at a distance x measured from the 

fixed end, in Section 4.5.1, 

overhung length of boring bar, in Section 4.5.1. 

Pi mass per unit length of boring bar, in Section 4.5.1. 

bb bung length 
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4.2 ý HARMONIC RESPONSE *OF SINGLE--ýSWG-; DAMPED'BORjNG -BAR 

A real physical system such as a boring bar is a distributed system 

in that its mass, danping and stiffness properties are distributed in 

the elements that make up the system. The resulting mathematical 

model requires the use of -partial differential equations which ar-e 

difficult to handle. However, since only the fundamental mode is of 

concern in most vibration situations, the boring bar in its simplest but 

realistic form may be regarded as a lumped parameter system consisting 

of discrete elements of mass, dashpot and spring. The resulting 

mathematical model involves only ordinary linear differential equations 

the solutiorsof which are readily determined. 

Assuming a lumped parameter system, we set out in this cbapter to formulate, 

a mathematical model using the technique of Lagrange equation whereby 

the differential equations of motion are obtained. But since this has 

been discussed in detail by Ng and New (1) 
as sumiarized in Appendix B, 

rather than repeat their work the ensuing discussion concentrates on the 

physical significance of the analogue with discrete elements of mass, 

dashpot, and spring. A phasor representation of the forces arising 

fran these elements seems to be more revealing and is, therefore, used to 

facilitate explanation. 

From the mathematical model, the following points are taken up and 

examined: - 

(1) amplitudes and phase responses of the boring bar, 

(2) the equivalent mass and equivalent dampir-g concept, 

(3) the resonant frequency, 

(4) the occurrence of the minimun amplitude at resonance for a 

particular damping known as the optimum damping$ and 
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(5) the design considerations of bung length in respect of 

minimun arrplitude at resonance. Each of these will be 

studied successively. 

4.3., THE'MATHEMATICAL MODEL 

To set up the equations of motion, use is made of the Lagrunge equation 

which,, in the fundamental fQrrn for generalized co-ordinates qi, is 

d (bTý_ 6T + 6F + ut rbqJ 
bq 6q 6q 

where T is the kinetic energy of the system; V, the potential energy; 
rcte 

F. the dissipative energ! ý, and Q. the generalized external force acting 

on the system. 

Ng and New (1) derived the expressions for T, V and F as a function of the 

coordinates x1 and x 21 which are sumiarized as below. 

(1) Kinetic energy, T 

Frxn equatim 02), which is repeated here, in Appendix B. 

1mý2+2 )L )202+ .1)2 T+R (ýl- X2) 2, mfoc (kl - ý2 =T ý2 12 ms -2 rs 
2 

(B. 2) 

Potential energy,, V 

Two potential energies 
* 

will be involved, namely, the 

gravitational potential energy brought about by the vertical 

ccFnponent of displacement Of the slug and the elastical potential 

energy due to the straining of the boring bar. Only the latter 

strict. Ly spearing, one can narne -uu-ee pomentia. L energies. The third ar 
fran the ccmpressibility of the fluid flowing in the gap. But this is 
ignored in the present analysis. 
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is, however, considered whilst the former is assuned to be 

negligible in canparison. Thus, the potential energy is 

1: kX02 = .1Kx2 22Z, 1 

(3) Dissipative en 

The damping force is assumed to be proportional to the relative 

velocity Gc between the bar and the slug at the central 1- x2 

position of the slug. The constant of proportionality, known 

as the damping coefficient, is designated by c and the dissipative 

energy, is, therefore, 

ý2 (4.2) 

(4) Forcing function, Q 

Since the harmonic response is to be studied, the forcing 

functim is 

Po Cos wt = Ref Poejwtl 

where Re means "the real part of". 

The force Po is applied at the free end. But since we are 

concerned with the motion on the transverse plane of the slug 

centre, where the motions x, and X2 are measured, the force P0 

has to be converted as follows. The wcrk done by the force P0 

to cause a displacement xO at its point of application is p0X0. 

Similarly, the work done by a force Qo to cause a displacement x 

at its point of application is Qo-xl- For both energies to be 

equal, it is necessary that 

Qo 
XO 

xi 
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But fran equatim (B. 1) , x, = Gx 
0, then 

Qo 

The equivalent forcing function in the plane of x1 and x2 is, 

therefore, 

.% iwt Re t -r e (4.3) 

Substituting equations (B. 2), (4.1), (4.2) and (4.3) into the Lagrange 

equation will yield the differential equations of motion which are 

L2 p 
e 

j'o t (4.4) 
02 

XI =0 (MS"R3+mf PC) ý2)+ C(kl -ý2) 
2 

and k2 R) -C(ý k) =0 (4.5) 
msR 2- (ms, 2 +mf ýd( 5kl -2 1- 2 R2 

From the consideration of equations (4.4) and (4.5), an-analogous model 

can be found for this single-slug-damped boring bar. The model, as 
m 

shown in Fig. 4.1, consists of two masses, -rG-12 and ms, coupled by a dashpot 

c and an inertia coupling factor (ms ý2 + Mfoc The main mass mi 
R2 G2 Is 

2K 
connected to the free end of a spring of stiffness ? and the impressed 

jWt 
force is designated by Ee 

G 

Assuming steady-state solutions of the form 

xx e3wt 

and 

xxe 
jwt 

where X1 and X2 are amplitude phasors that are complex quantities, 

equations (4.4) and (4.5) are respectively transfomed into 

L/ 

�V 

VI/ 

algebraic equations. Thus, 
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_K, I 4eilt 
G5 

m 

xf 

M. 
Ft trnf p. t,.. 

ro -Tý L---- M5 

X2 

Fig 4.1 An analogous model of the single-slug-damped 

boring bar 

N-"W 
xl 

Fig 4.2 A phasor representation of the forcbs involved 
in the analogue of Fig 4.1 - before resonance 
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W2(M+m 
X2 

+ Mf )+ jwc +KX, - 
[_ 

w2(MS >12 
mf AC ), jw X po 

PC GZ -2 - Cl 22 0 32 G sR 12- R2 

(4.6) 

and, 

w2(m s 
L2 +Mfpc)+jwc Xi + ,2 (m 

s+Ms -L24 + jWC X2 :-0 
Rý R2 

+mf PC 
22 

(4.7) 

Rewrite equation (4.7) to give a complex amplitude ratio, i. e. 

X2 
x _uj2(m S R2 *MfPC) * jWC 

22 

-w2( , \2 %*MS 
, -2* MfPC) * j"IC 
R2 

the modulus of which is found to be 

m 
X2 

+ Mf PC) U) 
2]2 

+ (wc)2 S; Rýý2 Izz I 

(Msmn! 

2- 
X1 \2 2 P 

. Ms +mf PC ), 2 + (uic 
R2 

If we define the critical damping cc = 2m ?W in which wnK2 
17 

JM 

+ MSG 

is the angular undamped natural frequency of the boring bar with a 

tight-fit s lug; and let h ýL and 2, +x+ Mf - -- Wn R-7 
)which 

2s 

is a measure, of the fluid mass and the slug rolling effects. ý then the 

last expression for amplitude ratio can be simplified to a non-dimensional 

fom as, 

2c --': IF Cc 

t+c) cc 
(4.8) z 
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The quantity z is called the mass correction factor; and h, the 

frequency ratio. 

c1 
ý2 

Two extrem cases are obvious: - (1) when 0, X1 

and (2) when 
2 tends to infinity, 

12 1= 
1. In the general situation ccX, I X21< 

where 2 takes up sane intermediate value, x CC 1 

Referring to equatims (4.6) and (4.7) that consist of two unknowns 

X, and X 21 we can ccrrbine them to eliminate X2 giving a single equation. 

r, 1 
MSW ( msw 

) 

wX, + 
K X, _P m 

+msil- +j Q_ 
2., c ?] 

Jxl 
2 72 G 

1 

--e +c MSU, 
(4.9) 

By virtue of this equation, the original system can be seen to be 

analogous to a sirgle-degree-of-freedcm model that is r\--presented by an 

equation of motion of the form: 

m- V+ck+kx=P cos wt eq eq eq 

which is equivalent to 

- Meq W2X + jwceq X_ + keq X=p (4.9a) 

Such an analogy offers scme definite advantage in the subsequent analysis 

of experimental data for reasons that will become clear later. 

If we make the identifications between the corresponding teluo in 

equations, (4.9) and (4.9a), then, 
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mm *M 
t 

eq ý2- s 2, ( c)2 
rnsw 

msw c 
mstj 

c, q 2c2 
"'SU-1 

K 
and keq 

Cý 

I 

(4"1O) 

(4.11) 

Equation (4.9) may also be interpreted as depicting the suruation 
I 

of forces. The terms on the left-hand side correspond to the inertia 

force, the dýLmping fcrce and the spring force respectively . whereas the 

term on the right-band side resembles the applied force. The equal sign 

indicates that the inertia, damping and spring forces balance the applied 

force, which is illustrated in the form of a phasor diagram in Fig. 4.2. 

It must be noted that the inertiadamping, and, spring forces are equivalent 

fcrces only, in the sense that they do not physically exist in the analogue 
I 

of Fig. 4.1. . That is to say, apart from the spring force and the applied 

force I, the individual forcEs that one can identify exerting on the main 

mass of this analogue are very different from the equivalent forces of 

equation (4.9). Nevertheless, these individual forces when correctly added 

must result in the equivalent forces on account of the fact that equation 

(4.9) is derived fran equations (4.6) and (4.7), both of which represent 

the analogue of Fig. 4.1. 

By equations (4.10) and (4.11). it can be seen that the ý parameters m eq 
and c eq are variable quantities, the values of which, among other factors, 

are dependent on the frequency of excitation w. In Particular the 
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equivalent mass meq is made up of two parts: - 

W the main mass 4- which is a constant and 
G2 

(ii) the effective mass of the slug and the fluid in the gap as 

denoted by the quantity, m11-I The equivalent s2c2 I+ (iiý-) 
S 

damping coefficient c eq as given in equation (4.11) indicates the 

variable nature of the damping present in the analogous single- 

degree-of-freedan system because of the presence of the frequency 

term w. The damping energy dissipated per cycle, ( i. e. during 

period T. assuming sinusoidal mation, is, 

jT T222 

, nýF = (Ceqkl)kldt 
f 

Cq w X, coswt dt = 7TceqwXl 

Substituting equation (4.11) in the last energy expression gives 

Vc 
AF 

msw 
w2) X2 

2c2 

msw 
) 

(4.12) 

This equation is plotted in Fig. 4.3 with ZýF 7r (M w2ý2 
/2 

S1 

versus c Two graphs are shown corresponding to t mSW 

and 1.5. 

It can be observed that each graph reaches a maximu-n value of 

Z\F w2X2) 2S1 
indicating a maximun damping energy 

dissipationAF. To find the corresponding M 
C. the quantity 
s 

2( c 
msw 

22 
in equation (4.12) is to be maximzed. 

mg, ) 
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It can be shown that for c Z, this quantity reaches a MSW 

maxiinun value. Thus, the optimun damping coefficient 

c 
opt 

=ms wl 

and the maximun energy dissipated 

(4.13) 

AF = 
11 ,Mw2x2 

opt 2V s1 

It must be pointed out that equations (4.13) and (4.14) are valid 

only for the case of constant amplitude excitation, i. e. constant Xls 

since in maximizing AF, X is assumed constant. The case of constant 
;, 1 

fcrce excitation will be dealt with in Section 4.4. 

Solving equation (4.9) for the amplitude X, gives 

xi = 
pn 

rKt 
MSW 

- ms (i - )] W21. j 
[w ryý( C 

FG2 
t2. ( c2 2] 

msýOF + (-i ýC-s -W) 

Nevertheless, what is to be measured in the experiment is the 

amplitude X0 measured at the free end and since from equation (B. 1) 

GXO = Xl, then 

p 0 
0 02 

Km 
+M 

t 
[w 

MSW 

s 2( 2 
m 

+ -4 2 
-- 

c 
s 
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This equation becames more useful if it is made non-dimensional. 

To this aim, we first let 

22 PO 
P=G Mr" 

Xst =K and note that, as defined previously 

c= 2m co and W2 K 
wn snnM +MS 62 

Second, we divide equation (4.15) by X on the left side and by Po 
st K 

on the right side giving 

x 
-. 22 

ý2 (2 -S- 
XS t h2 

1- h2.0 + P) +j0+ 
cc h 

., e 
2 

+(2S- t2+2 IL 1? 
%h1 CC h 

This is a canplex function that has the form A+ jB* Fran the rules 
B 

of cmplex algebra, its modulus i 

NOW' 
and its argument is Tan-' (; -7). 

Physically, the amplitude ratio is the modulus and the phase lag of X0 

behind X 
st , i. e. X0 behind P0 because Po is in phase with Xst, is given 

by the argunent. Thusthe amplitude ratio 

XO 

=ý1 Xs t h2 2 h2 (2-ý- 2 
2 (1 + P) E, 

1 -h +2+2 
-C +(2-Ll? + (2S- 1 

r-c h Cc h 
which can be s: ýnplified to 

+2C 
?h2 

XO t cc 
>ýt 4p22)]2.. [ 

I. Z c )2h2] (1 -h2 
2 [h 

(1 -h t Cc 

(4.161 

And the phase lag 0 of amplitude XO behind the : ýmpressed force P0 

h22c1 CC 
tan 0 p) 

(1-h2) 1 +(2 c1+ h2 I? 
c-C h +P) 
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The negative sign in the last equation indicates the phase lag. 

Equation (4.16) tallies with the amplitude ratio expression as given in 

(1) 
equation (A. 7) of Ng and New 

When the phase lag E) is L-, the phasor diagram that represents equation 2 

(4.9) beemes as shown in Fig. 4.4, from which is concluded that: 

the impressed force = the damping force, 

and the inertia force = the spring force. 

All forces are understood to be equivalent forces. 

Symbolicallys 

Mut C 
s msw PO 

2 wx G 
M. W ,- 

and 

M. 

MS 2+ 
W 

where w is understood to be th, 

Non-dimensional fcrms of these 

w2XI = 
K- X 
G2 

angular frequency at the pbase lag O= - 
2 

equations are respectively, 

-C 
2 

+( 2c 
XO cc 

p h2 2c Zýý 

and 

)2 
Cý h_ 

where h is understood to be the frequency ratio, 4) at the phase lag E)= 11 
'07 2 

In any dynamic experiments designed to measure the amplitude and phase 

responses of the system, the quantities X, Xst 9p and h at 0= L- 
02 

are either measured directly or readily determined fr'Cn simple calculations. 
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Two unknowns of considerable computational complexities are the 
C 

mass correction factor k and the damping ratio -, To facilitate 
c 

algebraic manipulation, instead of 2 the quanti 
C 

(22c 1) is handled 
c ty h 

CC 
as an unknown unit. 

Solving equation (4.19) for(22 1)2, 
we obtain cc Ti 

c -1 
ý -e h2 

ýp 
2 

Zý F 11 +( hZ - 1) 
14.20) 

Substitutirg into equation (4.18) and rearranging gives 
)ý) )2 ýh2 XSt (4.21) 

X0 
xSt 

which is the expression of the mass correction factor, the amplitude 

ratio 0) being that measured at 0=". The damping ratio 2 YS-t 2cC 

can be obtained frcm a modified equation (4.20)$ which is 

1/2 
C. L 

-- 
e 0ý2 2] 

(4.22) cc 21 (1+p)(W: -, ) 

It is noted that h in equations (4.20), (4.21) and (4.22) is the 

frequency ratio corresponding to o=H '70 

4.4 OPTIMIZING DAMPTNG FOR CONSTANT-TORCE EXCITATION 

In equation (4.16) which is repeated here 

h4 (2 Cý tý Xý 7--Eý ( 4.16 
xSt 2. [12.. 51. )2 t cc 

the amplitude ratio XXIL is noted to be a function, among other parameters, 
st 

of the frequency ratio h. 

1 
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The amplitude ratio will be seen to vary with the frequency ratio h 

and the former will rise to a peak which is known as the amplitude 

ratio at resonance. The corresponding frequency ratio is called the 

resonant frequency ratio. The height of this amplitude ratio at 

resonance is dependent upon thedamping ratio-S and a minimun amplitude cc 
ratio at resonance is,, at least in theory, attainable if the damping 

ratio is suitably adjusted -a process known as "tuning". The following 

paragraphs are devoted to a discussion of'the mathematical basis of 

this process. 

4.4.1 ýmplitude'ýatio'ard'frequency'xlatio at'resonance 

To simplify algebraic manipulationsý the following notations are 

introduced 

S=J, 
ýo 12 
Ts-t 

R h2 

cc]2 

and Z -- 
11 

zu + 

Equation (4.16) is then transformed to a---- 

_R 
+Q22 

RI RZ + (1-R)l +Q (1-R) (4.23) 

The amplitude ratio squared at resonance is obtained by differentiating 

equation (4.23) with respect to R and equating the result to zerx). 

Thus, after scme simplificationý equation (4.23) gives 

R3.42(Z-1)+Q . +In +R 
0[2(Z-1)+ül a2 

=0 14.24) 
2(Z-1)2 2 (Z - 1)2 (Z-i? 
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Consider the two cases when damping assumes zero and infinity respectively. 

Case 1: With no damping present the difference between the behaviour of 

the system in the present case with that of the simple absorber 

is inrediately evident. 

Putting c=0 and hence Q=0, equation (4.24) degenerates to 

R2 
[R 

+ 11 
= 

from which the three roots are R 
a, b =0 

and R1 
c- 7T 

The only root of physical significance is Rc giving the frequency 

ratio squared at resonance and henceforth denoted by T for this 

particular case. It is related to only two of the system 

parameters p and t so that T=1z 

or T= 
(4.25) 

* Footnote: 

The relationship of equation (4.25), with the corresponding case for the 

simple Lanchester damper in which rolling of the slug and the kinetic 

energy of the damping fluid is ignored, can be seen by putting 

2 
==0 so that the mass correction factor t beccmes 

s 
unity. This simplified version of equation (4.25) becorms 

(wc 
2 

Uj") 
Pn -- =1+ and on substituting for w and p 

n 

w2k1+G2M 
si or 

2k 
cm+ mG 

21 Tj cM 

which is the standard solution for the simple Lanchester damper when 
the viscous damping coefficient is zero so that no connection exists 
between the main mass and the damper mass. 
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For no damping in the system the frequency ratio at resonance is 

given by 

fn) res; (4.26) 
cc =0 

Case 2: When therv is an infinite amount of damping in the system 

correspcndixg to the case of the "tight-fit" slug, i. e. 

c-- and hence Q--, equation (4.24) becomes 

.R1-= 
(Z _ 1)2 

cr sinply R 

That is, for infinite damping the frequency ratio at resonance 

is given by 

(f 
f res; t (4.27) 

CC 

tFootnote: This particular case is identical with the case of the 
simple Lanchester damper, because to obtain infinite 
damping the clearance arKxu-4 the slug is zero so that the slug 
cannot roll and there is no fluid mass to consider. 
The rescnant frequency is given by 

=1 
[_ kI 
I [C 

fn 211 m +PT 

which is the natural frequency for the slug being the 
integral part of the bar. 
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To obtain the resonant frequencies at intemediate levels of 

damping, we need to solve equation (4.24) for R. First, substitute T 

for the quantity --I , and equation (4.24) beccws 
1-z 

R3+ R2 T+ -2 Q+R Lr T2Q2- 2TQ] -T2Q2=0 (4.28) 
21 

Second, since this is a cubic equation in R,,, we resort to the Cardan's 

method 
(2) 

whereby a new variable y defined as 

R+ -1 
Ka 

-T+1 322 Q] 

is introduced and equation (4.28)is transformd to 

3 + 3py + 2g =0 

where p and q are defined as 

I 2Q2 
_ 2TQ) 

21Q 
-2 (T - .1 (L T Q) 3322 

+2 T JQ)3 
2) (T2Q2 -2TQ) -T2 and q= -1 

:! g T+ýQ 2 
[27- 

22722 

Third, acocrdirg to Cardan's method, 
(2) 

the solution for y is 

given by, 

y=3q +p +q P3 
ý-q 

+jq 
2+ 

P3 
P[2-3 pf 

and it follows frcm the definitiozi of the variable y that the 

frequency ratio at rv-sonance is 

Rl (f 1 (4.29) 
res 

if 
j 

Q 

res 
-3 

Since the resonant frequency is readily measuruble frun experiment and 

the damping coefficient c and herrce Q are generally not known,, it is more 

1--, 

appmpriate to express: Q in terms of other parametem. 
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Rearranging equation (4.24) in descending order of Q gives a quadratic 

equation in Q3, the solution to which is 

T2R 
.3 _12R 

322 112 
Q -RI 2 TR -2T] +I R2( -+ -5- R- 2T) + 4T r4? (R - 1) (T - R) I 

2T2(R- 1) 

(4-30) 

where only the positive sign before the discriminant is chosen because in 

finding the real solution Q, must be positive, and from the previous 

discussion 14R4T. The damping ratio for this particular value of 

Ql is readily available frcn 

Z-Q 1 (4.31) 
1 

c 

4.4.2 Opt: imum damping and optimum frequency ratio 

The more realistic method of determining the optimum frequency ratio 

already referred to is to note in equation (4.23) that there are two 

independent variables, namely R and Qý which will affect S. Graphically 

the variables S) R and Q represent a curved surface and the minimum S coinc 

with the saddle point at which the values of R and Q are regarded as 

optimum. It is necessary to differentiate S with respect to R and Qj, 

in turn,, 'So arriving at a pair of simultaneous equations from which the 

optimum point can be determined as follows: 

Set bs 
=0 and 

bs 
=0 FR- 97 

Simplifying the two equations respectively gives 

ýR[(Z-l) R+, 12 +Q (1 -R) 
21_ (R + Q) ý2R(Z-1)«Z-1) R+ 11 

2 
+ [(Z - 1) R+ 11 - 2Q (1-R)ý =0 (4.32) 

and 

4R[(Z-- 1) R +-11 
2+Q (1-R)2)- (R + Q) (1 - R)2 0 (4.33) 

Subtracting equations (4.33) frcm (4.32) and noting that (R + Q) A0 

gives 
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Qopt _2R[(Z-1)R 
+lI(Z-1)4(Z-1)R+112-(1-R) 

2 

20 - R) 
(4.34) 

Eqpation (4.33) is m-adily simplified, giving two roots in R, 

rianely, 

R 
opt 

0 

which is trivial, and 

R 
opt 22 -Z 

(4.35) 

which is the required root. 

substituting equations (4.35) into (4.34) and simplifying eventually 

gives, 

=2 
(1 - Z) , 

opt 2-Z 
(4.36) 

Substituting R and Q- for R and Q in equation (4.23) gives opt opt 
the minimum amplitude ratio squared at resonance. Thus 

(2 _ Z) 2 
S 
opt = --Z2 (4.37) 

Fran equations (4.35) to (4.37), the conditions for most effective 

use of this particularversion of a Lanchester damper applied to a 

single massý single degree vibrating system for a given p ratio can 

be sumiarized as follows: - 

Optimun frequercy ratio, (ý: r) =[ 
2(l + P) t (4.38) fný 

pt 
2(l + VI) z 

Optimun damping vatioý (2) (1 + Ol (4.39) 
cc opt 

12(l 

+p )Z 

minimum possible amplitude ratio for these optimum conditions 

.X0 
1_* *2(1'+',, ) 

_1 (4.40) 
Xst 

opt 
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Note: - Equations (4.38) to (4.40) reduce to those for the basic 

Lanchester damper when rolling and fluid effects are ignored, 

which can be readily seen by putting the mass correction factor 

equal to unity and carrying out minor transforations. Thus, 

for 1 

= J2 
fn 

opt _2 
+ (4.38a) 

(c )Opt =1 
IT 

-+1111 (4.39a) 
c 

JT 

and'jXo 1+2 (4.40a) 
Xst 

opt 
V 

Equation (4.40a) is identical with that quoted by Den Hartog (3) 

but to demonstrate that equations (4.38a) and (4.39a) are also identical 

it must be remembered that in the present analysis 
2k1 

M[ ný +-1. w=- r- ý 

and c2= (2ms)2 ki 
cým+ 

In reference 

a2k, and 
2= (2m)2 2 

Lnm 1ý c On 

so that 
221 

. Y- wn On 
[. 

+ 11] 

and 
22 

cc=1. ýc lyl 
L+ -d 

Substituting for fn and cc in equations (4.38a) and (4.39a) gives 

1211 

L(f2+L fý 
opt 

and (c )=11 L c' 47TI + p) (2 + c opt 

which again are identical with the equations given by Den Hartog. 

ýf 
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4.5 ' 'OPTIMIZING'BUNG *LENGTH TORMINIMUM FOR 

'CONSTANT-TORCEMCITATION 
To Rewrite equation (4.40) such that Xst is replaced by R-, then 

, x0i '2(l + 
, (4.41) 

This is the expression for the minimun amplitude at resonance. Apart 

fr(n the impressed force P0 which is generally maintained constant in 

the experiment, the parameters K. Z and p can be manipulated in the 

design stages so that X0 will be minimized still further. 

One of the feasible designs which permit this relative freedam to vary 

parameters Kq L and p is illustrated in Fig. 4.5. Rds design incorporates 

a Lanchester type damper behind the toolpost and a constant diameter 

forced-fit bung situated at the fixed end. The philosophy behind this 

particular configuration is to permit variations in the parameters K, i 

and p by appropriate selections in (a) the bung length hb* (b) the bung 

material; (c) the slug absorber material, and (d) the clearance between 

the slug and its surrounding cavity. Details of the boring bar design will 

be taken up in Section 7.2. 

The bung length variation causes variations in the stiffness K and the 

mass ratio V and so the derivatives of 
dX 

and 
du 

exist. Differentiating dhb dhb 

X0 with respect to hb in equation (4.41) gives 

d JXJ 
=pp 

-3-t dp 
(+ 24 -1)(-0) 

dK 
+"I dhb K2 dhb K p2 dhb 

Since the aim is to minimize J)q d JXOJ 
That is, 

dhb 

tp dK P, -2t I dp (. L-+2Z-1)(- '+-0 =0 p t! < 
ý 

dhb KDT hbK 

which can be simplified to 
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(2ý + 2t -I ) dK 2tK dp- 
dh + p2 dh- 0 

bb 
(4.42) 

To obtain a solution for the bung lengthhb from equation (4.42) 

requires a knowledge of both the stiffness K and the mass ratio ji 

as functions of hb. We shall first be concerned with the determining of 

K in Section 4.5.1. while the study of p will be taken up in Section 4.5.2. 

4.5.1 Strain enEa and equivalent stiffness 

Frcm the textbook on strength of materials, the strain energy V stored 

in a deflected canposite beam is given by 

n22 
V 

Ei Ii dx y) dx 
2f 

ýd 2 (4.43) 

where the summation is carried out over the total overhurg length 

and n is the total number of sections having different flexural 

rigidities, EI11. 

In a linear spring with stiffness K, the strain energy stored within 

itself caused by a displacement y is-! Ky02 
, which is equal to V as in 

02 
equation (4.43) when K becomes the equivalent stiffness of the bar and 

yo the transverse deflection under the point of application of the load 

at the free end, thus K 2V 
y02 

n 02 
or K= --lyj] EiIi dx 

Y6 i =1 

ýdx2 

(4.44) 

In this expressicn$ the equivalent stiffness K can be determined only 
if the deflection shape function of the bar is known. For a composite 

bar possessing different flexural rigidities along its lengt1j, it is 
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virtually inpossible to be sure of the exact deflection shape function 

under forced vibration. Nevertheless, according to Rayleigh, (4) 
even if 

the function is approximate, as long as the end conditions are satisfied, 

the errors that may occur in the calculated natural frequency and hence 

the stiffness K tend to be quite small. For this r\--ason, a quarter cosine 

wave 

Y(X) = Yo (1 - Cos RX 
21 

is chosen as one possible model. 

(4.45) 

In this equation, y(x) and yo denote 

the transverse deflection of the bar at the distance x, from the fixed end 

and at the free end respectively; z, is the overhurg length. With y(x) as 

given in equatim (4.45). its second derivative is given by 

d2y= 
Yo ( 11 )2 Cos 

RX 
dx 2 211 2Z 

and the equivalent stiffness K, as given in equation (4.44). becomes 

4 

It 
2 nx 

ý=, 
EiIf cos 2. t 1 

dx (4.46) 

From the last equation, since K is dependent on the flexural rigidities 

E. I. in different sections of the bar, it follows that K is a function 
II 

of the bung length h bas hbaffects the distribution of the flexural 

rigidities. 

4.5.2. Kinetic energy and equivalent mass 

The kinetic energy stored in a composite bar due to an inertia loading is 

Fj fý 2CIX 
2 

Where Tj is the mass per unit length in the ith section of -the bar and ý 

is the time derivative, i. e. velocity of the deflection shape function. 

For a quarter cosine wave given in equation (4.45) its time derivative is 
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(X) =* (1 - Cos' )lx yo ý-t 

and the kinetic energy involved is 

ý02 T= :t 
T' 

Ij (1 _ Cos 7rx )2 dx 
i=l 2 2tj (4.47) 

0 
A point mass m moving with a velocity y possesses kinetic energy 0 
1.2 
2 Myo This is equal to T in equation (4.47) when m becomes the 

equivalent mass of the bar considered at the point of motion ýo and ko 

becanes the velocity of the bar at the free end. Thus, 

*2 
my 0 

from which m ='2T 
§72 

'o 

But the kinetic energy T is also given in equation (4.47), then the 

last equation becornes 

cos Ex- ) dx (4.48) 2x 1 

Frcm the definition of the mass ratio,, G2 ms and equation (4.48) 
3- 

the mass ratio V is observed to be some function of the equivalent mass 

of the bars m, which, in turn, is dependent on the mass per unit length pi. 

It follows that p is a function of the bung length hb as the latter affects 

the value of Fi. 

4.5.3 Iteration method 

With reference to equation (4.42) which is the equation fr, (xn which the 

optimun bung length hb is determined, since it contains K, p and their 
' dK 'd" derivatives Th-, Th-, all of which involve some trigonometric functions 

bb 
such as sine and cosine, an exact algebraic solution cannot be obtained. 
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An' altemative is to make use of a numerical computational procedure known 

as the Newtcn's iteration method explained as follows. 

1)'dK -21K dp First, let f (h + 2k IF + (4.49) 
c rh b)' b P2 b 

from which is obtained its first derivative with respect to h6 s i. e. 

fth )=d2K 2t ++ 
21K d2v-2 ýp ý 

2] 
(4.50) b d-h P'2 

1--b7 
(dh 

'7b 

['11 

dh7 

Second, apply the Newton's iterative formulas 

f r! hb) 

fl(h rb 

where the suffix r indicates the number of iterations; so r starts frcrn 

unity and increases successively. To start the iteration, an initial 

value for hb(I) is arbitrarily chosen and the values for'f 1 
(hbland fI (hb) are 

ccmputed from the respective equations (4.49) and (4.50). Using equation 

(4.51) a new value for the bung length, i. e. hb(2ýs calculateds which is 

the next value to be used for starting the second iterative loop. The 

successively calculated values for hb will converge to a steady value and 

the ppocess is terminated when the required accuracy is reached. 

The metIx)d as described in Section 4.5 will be used to calculate the bung 
I 

length hb in the design of the tungsten-bunged bar, which will be described 

in Appendix C. 
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5. THEORIES'OF BORING BAR - SrABILTrY 

5.1 NOMENCIATURE 

m1 equivalent mass for tangential acceleratiorsof boring 

bar at free end. 

M2 equivalent mass for radial accelerations of boring bar 

at free end 

c equivalent damping for tangential 
* 

velocities of boring 

bar at free end 

C2 equivalent damping for radial 
* 

velocities of boring 

bar at free end 

k, equivalent stiffness for tangential displacements of boring 

bar at free end 

k2 equivalent stiffness for radial displacements of boring 

bar at free end 

* 12 equivalent tangential damping for a radial velocity 

* 21 equivalent radial damping for a tangential velocity 

k 12 equivalent tangential stiffness for a radial displacement 

k 21 equivalent radial stiffness for a tangential displacement 

Kt spring constant for boring bar in tangential direction 

K spring constant for boring bar in radial direction 

CI c1 /M 1 

C2 c2 /M 
2 

c 12 /Ml 

n2 c 21/m2 
*12 kl/m, 

*22 k 2/M2 

kl2/kl 

K2 k 21 
/X 

2 
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a slope of the radial cutting force - depth of cut curve 

at the equilibrium posiTIon- 

b slope of the tangential cutting force - depth of cut curve 

at the equilibrium position 

YJ displacement in tangential direction 

Y2 displacement in radial direction 

M equivalent mass of boring bar considered at free end 

MS mass of slug 

Mf mass of damping fluid 

0c2f a correction factor, the square root of which converts the 

relative velocity between the bar and slug to the "average" 

velocity of the damping fluid 

radius of gyration of slug about longitudinal axis, i. e. 

R 2/, 
/-2 

R2 radius of slug 

XO vibration of bar at tool tip 

X, vibration Of bar at position of centre of slug 

x2 Vibration Of slug at centre position 

G ratio of amplitudes, i. e. I xl/xol 

c coefficient of viscous damping for translational motion 

f negative viscous damping coefficient 

P0 applied force at free end of bar 

s variable in the s-domain after the Laplace transformation 

G2ms/m, mass ratio 
2 

Wn K/ (m+G m s)) 
1 

angular natural frequency for bar when 

slug is an integral part of bar 

fn wn/ (211), natural frequency for bar when slug is an integral 

part of the bar. 

H (f 1 /G2 )/(mswn), negative viscous damping ratio which is 

a measure of the severity of cutting process for the case 

of primary chatter 
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cc 2m 
swn, coefficient of "critical" viscous damping 

1+(X/R 2)2+ (Mfoc/m 
s 

), a mass correction factor for 

absorber slug 

w angular chatter frequency 

h W/W n 
f1f 

n, 
chatter frequency ratio 

f w/ 2 7r chatter frequency 

h 
OP 

chqtter frequency ratio at maximum stability corresponding 

to the optimun damping condition of the slug absorber for 

primary chatter 

ýc 
optimum damping ratio for primary chatter 

cc) OP 

H 
OP 

maximun negative damping ratio for primary chatter 

f maximun negative viscous damping coefficient for primary lo, 
chatter 

hb length of bung in boring bar 

R2' r2(1-cos 6), a cutting force slope 

r2a constant depending on the rate at which the radial 
cutting force increases with the increasing depth of cut 

f2 negative hystetetic damping coefficient 

at a+ R,, a cutting force slope 2 
(f 

2 
/G2 )/(M 

son) , negative hysteretic damping ratio which is 

a measure of severity of cutting process for the case of 
regenerative chatter 

h 
or chatter frequency ratio at maximum stability corresponding 

to the optimum. damping condition of the slug absorber for 
regenerative chatter. 

(C optimum damping ratio for regenerative chatter -j) or c 
Jor maximum negative damping ratio for regenerative chatter 

f2o maximum negative hysteretic damping coefficient for 
regenerative chatter 

Note: tangential and radial directions refer to the direction of the 
tangential and radial components of the resultant cutting force 
respectively. 
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5.2 PRIMARY CHATTER THEORY OF SINGLE-SLUG-DAMPED BAR 

The term "primary chatter" is taken to mean the mode-coupling chatter 

in which the regenerative effects are considered absent. For the type 

of chatter pertinent to boring bar, PERA (1) 
ranark that regenerative 

chatter is not the main cause. Nevertheless, for the canparison with 

the primaxy chatter theory, that due to regenerative chatter is also 

considered and is presented in Section 5.3. 

During bcring, the tool moves mainly in the plane normal to the axis of 

the boring bar. Using the lunped-parameter approach, it follows that 

a plain solid bar can be modelled by a two-degree-of-freedom system 

which has coordinates yl and Y2 representing the movements in the 

respective targential and radial directions as indicated in Fig. 5.1. 

For a single-slug-damped bar,, due to the fact that an absorber must be free 

to move relative to the bar for effective operation2 two more coordinates 

are required to define its motion and the ccrresponding model must be 

four-degree-of-freedcm. Obviously, the task of studying its stability 

is much more involved. 

There isq however. 0 a simpler approach whereby the number of degrees of 

freedcm of the system can be reduced. The approach is based on the 
(192) 

theoretical deductions due to PERA A brief review of the 

theory leading to the deductions is presented as follows. 

As menticned previously, the plain solid bar is modelled by a two-degree- 

of-freedan systEm with coordinates yj and Y2 as in Fig. 5.1. 
inertia 

Ignoring thelcoupling effects, the equations of motion, are, 

*7 (MlYl + cjýj + klyi) + (012 ý2 +k 12 Y2) =0 

and (c 21ý1 +k 21 yl) + (m2y2 + cA + k2y2) 0 (5.2) 

where the symbols are as defined in the Nanenclature 5.1. 
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Fig 5.1 
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The coefficient k, in the tangential direction yl is equal to the spring 

constant Kt of the bar along yl; and the coefficient k2 in the radial 

direction Y2 is equal to the sun of the spring constant K along Y2 and of 

the equivalent spring constant a due to the rate of increase of the radial 

cutting force with increasing depth of cut at the operating position. 

As the radial cutting fcrce is independent of the tangential displacement, 

k 21 =0. Since an increase in the'depth of cut from the equilibriun 

operating position will cause an increase in the radial cutting force, 

then according to the definition Of k12 it is equal to the rate of increase 

b of the tangential cutting force with increasing depth of cut. 

Hence k 12 = b. Equations (5.1) and (5.2) becorne 

(Mlyl + clýl +K tyl) + (cl2ý2 + by2) =0 (5.1a) 

and c2lýl +[ m2Y2 + cA + (K + a) Y2] (5.2a) 

To study the stability of the system, PERA apply the Routh-Hurwitz 

criterion to equations (5.1a) and (5.2a). After some manipulation and 

simplification, it is found that for stability to occur, the following 

conditions must be satisfied: - 

c1+e2. >0-K, 
T12 

(5.3) 

w2< w2* 
el 

+ W2 
f2 

and 1c1+c2(c1+c2 (5.4) 

where the symbols are as defined in Nomenclature 5.1. It is also noted 

that inequality (5.4) can be written in a form similar to (5.3). That 

is 

el +e2 -> 0 

such that- c21= -( 
1)K 

in2 (5.5) 
w 2-W 2 

21 

The stability can, therefore, be specified by (5.3) and (5.5) from 

which PERA 
(1) 

suggest two physical interpretations: - 
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(1) If instability is brought into beirg by means of viola ting 

the condition (5.3), on account of the definitions of cl and c 21' 

it suggests that negative damping, either as (-cl) or (-c2). 

is present in the systEm. As a result, the tool tip must 

experience a negative resistance to either tangential or radial 

velocities. This is, however, thought to be physically implausible 

for it is clear that movements of the tool tip are always opposed 

by the work material. 

(2) If instability is established by means of violating the condition 

(5.5)9 c2 must be sufficiently small to make the sum of c 
1 

+ F2 

negative. That s2l is always negative can be established as 

follows. The radial spring constant k2=K+a and the tangential 

spring constant k, Kt. For a round solid bar, K=Kt and hence 

k2 > kj. Furthermore, since ml and m2 are comparable, 

k2 

m2 

or w22>w12 

Also, by the definition Of K1 and T122 they are both positive. 

It follows that 

W12 )K 
1T1 2 

22- wjý 

The value of K1 can. be increased by reducing the stiffness Kt 

of the bar resulting in a more negative c2. This is$ therefore, 

in accord with the experience that long and slender boring bars 

are more prone to chatter. 
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Inequality (5.5) can be regarded as an expression of the damping condition 

since e is a damping factor and hence-e ' 
12ý by the principle of dimensional 

homogeneity, is necessarily a damping factor. It follows that the 

product term K192 appearing in (5.5) is, a damping factor as well even 

though. its component Y. 1 is not. In the, inequality (5.4), it is noted 

that -1<1"2 occurs in conjunction with '-ý2 ,a positive damping factor in 

the radial direction. For these reasons PFRA(', ), conclude that boring 

bar instability, can be sinulated in many practical cases by injecting 

a hypothetical negative damping force which acts in the radial direction. 

5.12.1 Stability model with negative viscous damping 

Me theory to be presented shows how the primary chatter can be suppressed 

by a, suitably tuned absorber slug. A hypothetical negative damping force 

is used as the excitation force input. The differential equations of 

motion of the single-slug-dainped bar model when excited by a complex force 
Po 

ejw 
t 'are given by equations (4.4) and (4.5) which are repeated here G 

x20K po jt Em-n + (M ' +m fpc) M 1-x ) +c +Z. ýx =e (4.4) 
G21 SR 

222 
1- 2G21G 

and x 
k2 

x (4.5) ms**2 ms 
R2+ 

mf Pc ) ("l-SZ2) C(ý( - *2) ': 0 
2 

For the case of primary chatter, the exciting force is replaced by a 

negative damping force acting on the main mass m and this force is in 

the form fiýo acting in line with the motion xo at the tool tip in the 

radial direction. Since both equations (4.4) and (4.5) are formulated 

with respect to the radial direction of motion in the plane of the slug 
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centre, the force fjýo has to be converted acccr-dingly before it 

can replace 
Poejwt in equation (4.4) as follows. For a given work done 
?F 

by the negative fcrce fjAo at x0, the same wcrk must be done by an 

equivalent force, say Qequ, at xl. Thus, Qequ Xl = (fl: ko)xo and since 

Gx 0 
by equation (Bl), then Qequ = (fl/G2)jtl. 

The spring constant K in equation (4.4) refers to the equivalent stiffness 

in the radial direction during cutting and it includes both the radial 

stiffness K of the bar and the equivalent stiffness a due to the rate of 

change of the radial force with depth of cut. Replacing K by (K + a) 

and (Po/G)ejot by (fl/G 2 )A,, equation (4.4) becomes 

MR), 2 
ý _ý I+ (K+Q)xj__fj. ýj =0 (5.61 72 ffýq Mf PC) 1 3ý1 - 'Y +c 151 2 G2 G2 2 

in equations (4.4)9 (4.5) and (5.6) it is understood that 

or 
dn 

and 5z ieff 
Ai 

dt dt2 

We shall use the method of Laplace transfonn to solve the simultaneous 

equations (5.6) and (4.5). Thus, assuning the systern being initially 

quiescent, we can replace the differential operators ýL by s and 
d2 

dt dt 2 

by s2 in bath equations which respectively becane 

>, 2 
s2 . lc )s+ + X, -m _ý: 

2 
) s2. cx .T+ +mf C) 

f i +a 
1s 

LK 
0j2-. 

1 
ý2+nf Ac 2ýo SI 

R7 G 22 
(5.7) 

and 

), 2 
+ 

[(Ms. 
MS. L2 

+ Mf ýc ms 
R2 

+ Mf PC )s2+cs X, 
R2 

)s2+ CSI X 2=0 (5-8) 
212 
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The transfomation yields two algebraic equations (S. 7) and (5.8) 

in another variable s rather than the time variable 
It. 

That is to say, 

X, (t) and x2(t) are mapped from the time domain to the respective xl(s) 

and x2(s) in the s-damain. Since the right side of equations (5.7) 

and (5.8) are zero, the systern can be regarded as one which will undergo 

free vibration and it follows that there is only the transient response 

to consider. For a linear system such as the one being discussed, 

stability is decided by its transient response the nature of which, as 

has been mentioned in Section 2.2., depends on the location of the 

characteristic roots of the system in the s-plane. The characteristic 

equation$ from which the characteristic roots are evaluated is obtained 

from solving the determinant of the coefficient matrix of equations (5.7) 

and (5.8). That is 

[nn 
+ a) 

+, msjmfýc)js2+(c-, 
ýs+(K 

- C-7 

[(Ms_ýL2 
*mf ýC) S2. c 

R? 
S] 

2 

[(Msýý2 
)ý+c 

R2 S] 2+mfýc 

0 

(m +M )s2+cs 
s s-; -2 Mfýc R2 

(5.9) 

If all the roots can be evaluated, it is a simple matter to decide the 

stability of the system by examining the location of the characteristic 

roots in the s-plane. From section 2.2 and Fig. 2.4, asymptotic 

stability corresponds to all roots lying to the left of the w-axis5 and 

since they have negative real parts, the transient response will die away 

with time. Equation (5-9) is an equation of the 4th degree in's and the task 

ccmputing all the roots is tedious. Furthermore, since we desire to find 

the effects of changes in the parumeter values of c. Ks and a on the 

stability, it will be necessary torepeat the calculation many times. 
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In view of the difficulty, an alternative method, known as the method 

of D-partition 
(3) 

. will be used here. The method is based on the fact 

that the w-axis in Fig. 2.4 divides the s-plane into a domain of 

stability to its left and a domain of instability to its right. If it 

is assuned that jw is a characteristic root of the equation (5.9), then 

this equation with s replaced by jW gives a mathematical representation 

of the root locus of the w-axis, which, for obvious reasons, is called 

the stability borderline. Thus, we put s= jw into equation (5.9) and 

then equate the real and imaginary parts respectively to zero to yield. - 

>, 2 ! ý+ a1 Li n% , gn rn. ) ( r% K2 rnfpc t04 
iä)(ms+Ms 

2+m fýC) -f w2 m R2 G2 R2 
ýG j2]- 

(5.10) 

CI X2 and 
f++ r(K + d) c] uj 
Gm 

+M, 5 Mf PC (? M+ m 
Rý 

For the case of boring bar stability, the damping coefficient c due to 

the absorber, and the cutting process parameters such as the cutting force 

slope a and the negative viscous darriping coefficient f, are of particular 

interest. CCMpared with the damping offered by the absorber, that of 

the bar itself due to its material properties is insignificant. The value 

of c is dependent on the clearance surToundirg the slug absorber as well 

as on the type of fluid used in the clearance. The cutting force slope 

is a function Of the cutting conditions such as the depth of cut, the feed, 

and the cuttirg speed; of the tool geometry; amd of the work material. 

The negative'dairping coefficient f1 is regarded as a hypothetical source 

of instability and in particular if the bar overhang is kept constant and 

hence the stiffness, f, is also expected to be a furiction of the cutting 

process and the work material. 



110 

We now solve equations (5.10) and (5.11) simultaneously for c and fl/G 2 

as 
f, ) 2= (ms + Rýs ms+ (41 + ms) (rrý L2 +mf pc r7 ri ýl 
02 R2 

+mfPcl 
Gý FF (m + X2 +mf 2s ms 

R2 

r2= 
f(K+b), 

mý ms X2 +M m .1m +m )IM X2 +111fp -(m, 
+ Rl5g (5131 

and - -= s+ R2 f AC 
I-PM6-2 

s -ý, s S72 cm 
+m )_ (K-+ a) 

G2G -7 sz Gw 

To convert equations (5.12) and (5.13) into non-dimensional form, the 

following symbols are introduced: - 

fr 
02 Ms. 

- .2K2 -e ='+ 
X2 

+fw 
mw n- m, r 

H=- A cc=2mswn 
mfpc. 

and h= 
, Zms n'ýwn MS fn Wn 

Equations (5.12) and (5.13) then becorne 

22 2= a )il. v) h H 
K- p2 

and 
2 2= t 

cc 4 (1+ a 
h 

Once a particular design configuration of the single-slug-damped bar 

is chosen, the value of v, -C and K are constant. For a given value of 

the cutting force slope a, equations (5.14 ) and (5.15 ) are the parametric 

equations that define graphically in the H-(c/c. ) plane a locus of the 

stability borderline as the chatter frequency ratio h varies. The range 

of variaticn of h is determined from equations (5.14. 
-) and (5.15 ) by 

noting that the product of the quantities in the radicals must be positive 
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in order that H and c/cC bave real solutions. 

(1) bcrth 

tý to-P) 
(1+ -1 +p K 

and a 
+ jr) >0 
h2 

leading to (1+ a)< h2< 
KK 

. 1(1+p)-p 

or (2) both 

(l +P)- p< t 
(1+p) 

- 
and 

, 
+ 
h2 

leading to (1 + 
L) > h2 ý> (1 , -a-) t (1 + 
K 

Thus, either 

(6.16) 

(5.17) 

Since t and jj are positive quantities, 
x1i -P) is greater 10 +P)-P 

than unity. It follows that the inequality (5.17) cannot be satisfied 

in any practical design. The range of chatter frequency ratio within 

which H and c/cC are real is, therefore, given by the expression (5.16). 

5.2.2 optimum damping condition to resist primary chatter 

It has been mentioned in Section 5.2.1. that the parameters a and f1 

give a measure of the degree of severity of the cutting process. 

We now discuss qualitatively how a and f, are related to the cutting 

process. The variation of a in relation to the depth of cut is typically 

indicated in Fig. ' 5.2 which is a repeat of Fig. 30 in PERA report 129 (1). 

In general a decreases as the depth of cut increases and eventually settles 
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to a constant level when the depth of cut exceeds the tool nose radius. 

The magnitude of this constant level is usually very miall compared to 

the stiffness value of the boring bar and in the example quoted 
(1) 

ý for 

the case of cutting steel, a= 80 lbf/in (14 M. Tri7l) which is only 0.014 

times the stiffness of a 10: 1 bcrirg bar having a typical value of around 

1 MN. Z"' or 1 N. vm7l. It follows that a/K can be ignored in equations 

(5.14) and (5.15) when the stability borderline corresponds to depths of 

cut larger than the nose radius. The meaning of fl, unlike a, is more 

obscure, as it is expected to be same unknown function of K1 and T12 which 

according to their definitions, are K1=K 12 IK 1 and n2 = C21 /M 2 as in 

Section 5.2. It is recognised that K 1 and M2 ar e constants for a 

particular design configuration of the bar; but K12 'and c2l seern to 

relate to. the cutting process. In spite of its hypothetical nature, 

f, is the only source of instability injected into the system. It is 

also carimon knowledge that as the cutting condition becomes severer in 

terms of the rate of metal removed, the more is the bar likely to chatter. 

By following this argument, it is reasonable to suggest that as the 

severity of the cutting increases, so does the value of f, and hence H. 

The problem of optimising the damping ratio in respect of the ability of 

the bar to cope with the severest cutting condition is now equivalent to 

finding the solution to 

22c 
2] 

0 d[H 
I- d[H 

]/d 
1( 

c) (5.16) - -- 7 
d[(2cf] d [h j 

)21 d 
[HI 

nd 
dý§, 

where determined from equations (5.14) and (5.15) 

d[h2] 

respectively. Equation (5.16) contains the chatter frequency ratio 

squared h2, where the suffix lop' indicates the best tuned-condition 
OP 
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for the suppression of Primary chatter. By equation (5.16), 

h2+T (5.17) 
OP kt 

which, on substituting back to equations (5.14 ) and (5.15 ) respectively 

gives 

Hop + 2)1. it (1 + 11) =11 
, Kx (I + (5.18) 

and (1 + a)l 
C) K (5.19) 

- OP 

where, as before, the suffix lop' denotes the best tuned condition. 

In this equation, the optimun dmnping ratio (c/c 
C) OP 

is seen to be 

independent of the value of the mass ratio p. (Strictly speaking, 

due to the fact that t is influenced by p in this particular design, 

(c/c 
c) op and v are implicitly related. ) The value of c, however, is 

related to the mass of the absorber and the v ratio by virtue of the 

_ 
-K 

definition of the term cc as cc= 2mswnl, where tdn m+ G2Ms 

If Cc is now expressed in terus of the main mass m, and since 

0ý 
s 

/m), then cc= 
2p2m 

wn' It follows that equation (5.19) can 
G 

be written as 

c 
lim W .1 (1+ 1), (5.19a) 

OP G7 nK 

in wbich c OP 
is noted to be explicitly related to v. 

Since the parametric equations (5.18) and (5.19) define the location 

on the stability borderline of a point at which the boring bar can cope 

with the highest degree of severity in the cutting condition, the depth 

of cut in question is very often far in excess of the nose radius of the 

cutting tool, it follows that a/K becomes very small, and the value of 
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(c/c 
c) OP approaches 1/2, which indicates that the opýimun damping 

ratio is independent of the cutting condition. The advantage of 

this is immediately obvious because it means that once properly tuned 

such that (c/cc) 
op = 2,12, the absorber always operates at its best 

irrespective of the cutting condition it is subjected to. 

Normally the damping ratio is fixed once the clearance of the absorber 

slug is decided and the parameters H and a/K which are the measures of 

the cutting condition, are of more relevance to the stability borderline. 

For the 10: 1 boring bar, the maximum possible ratio of a/K as can be 

deduced from Fig. 5.2 is around 0.5 for cutting steel. Obviously for 

the case of the tungsten-bunged bar which possesses a higher stiffness, 

the value of a/K will be much lower than 0.5 for the cutting of steel. 

To obtain the parametric equations for the stability borderline in the 

H-a/K plane, rewrite equation (5.15) in the form 

S. ý 
. 

ýrý(1+0-p 

CC Lt(l+p) 

h2 +(2c )2 (5.20) 
I cr 

- 

Next we substitute equation (5.20) into equation (5.14 ) and after 

simplifying ý we obtain 

2 h 
SL? 
CC 

] 

(5.21) 

Equations (5.20) and (5.21) are the parametric equations which define 

the stability borderline in terms of H and a/K. 
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5.2.3. Optimisirg bung length for maximun stability against primary 
ChcItter 

It has been shown in Section 5.22 that at the optimally damped condition,, 

H 
OP 

is given by equation (5.18) which is repeated here 

+ H= (1 4) 1 
OP K 11 

[j 

I(I T (5.18) 

flo is a measure of the cutting condition which is experienced by 

the bar with the absorber optimally tuned and is the condition at 

the stability borderline beyond which primary chatter will occur. a/K 

is assumed to be insignificantly small at the stability borderline that 

(1+a/K)l in equation (5.18) is approximated to unity. Furthermore, 

since Hop = (fl. /G2)/(m w) and w= (KAm+G 2 
m. ))I, equation (5.18) can snns 

be written in the form: 

flo 
I -Tv ) 

lia + 0-11 
A ZU + P) 

I 

(5.22) 

For the particular design of boring bar such as that shown in Fig. 4.5 

in which a constant diameter forced-fit bung has a variable length that 

affects the values of K, m and V in equation (S. 18), it tums out that 

there is a particular length hb of the bung at which flo becones maximun 

riesulting in the highest stability borderline. To find this, it is 

necessary to solve the equation 

dflo 
0 (5.23) 

The level of canplexity involved in solving this equation clearly depends 

on the nature of the mathematical functions for K(hb) and m(hb) both of 

which are functions of the bung length hb and are deterTdned by the 

consideration of the respective strain and kinetic energies within the 

system in a manner similar to that described in Sections 4.5.1 and 4.5.2. 
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Since matharkatical functions for K and m are ofter very complicated, 

an exact solution for equation (5.23) is hardly possible and it follows 

that the iterative method as presented in Section 4.5.3 will also be of 

use here for finding the optimurn bung length hb. 

5.3. REGENERATIVE CHAT17ER THEORY OF SINGLE-SLUG-DAMPED BAR 

In Appendix IV of PERA Report 133 (2) 
9 it is proved-that regenerative 

chatter may be simulated by a hypothetical negative hysteretic damping 

force. The proof is presented here briefly as follows. 

At the stability borderline,, the boring tool is assuned to oscillate 

harmonically with the chatter frequency w in the radial direction with 

the motion 3, 

Y2 = a2 sn tot (5.24) 

which is sustained by virtue of the undulating surface left from the 

previous cut which has the wave equation, 

Y2 = a2 sin (wt + ý) (5.25) 

where ý is the phase lag of the wave in equation (5.24) as canpared with 

that in equation (5.25). The amplitude a2 for the two consecutive cuts 

are assumed to be equal, because at the stability borderline, the chatter 

amplitude neither grows or decays. 

The variations in the uncut chip thickness is a2 Fsin 
wt-sin (wt + ý)] 

and if r, and r2 denote the rates at which the cutting forces in the 

respective yj and Y2 directions increase with incresing depth of cut, 

then the cutting force increments in yl and Y2 directions ar\-- respectively 

given by 

p -sin(wt + I' sinwt 

and p2 =-r2 a2 sirwt-sin(wt + 

which can be expressed in terms of the displacements Y2 and the 
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velocity ý2 as respectively 

P=R1 (5.26) 1 1Y2 + wýl 
ý2 

and P=R) 
S2 

(5.27) 2 2Y2 + U- ý2 

where Rj = r, (1-cos ý), R2=r2 (1-cosý), S1=r, sin ý and S2 =r2 sin 

S1S2 

The term -* pd - wYw 
ý2 in equations (5.26) and (5.27) can be simulated 

by the negative hysteretic damPing terms when sin ý>0. It may be 

expected that these two terus act as a source of instability in the system, 

which will be, made clear as follows. The equations of motion for the 

plain solid bar modelled as before by a two-degree-of-freedcm system and 

subjected to the fcrce increments P1 and P2 are given by 

(mjYj + cjý, + Kt yl) + -L ) ý2+ (k +Rl)y =0 (5.28) ( C12- w 12 12 

and (c ý +k y +m Y )+(cja)ý +( K+ a+R/)y =0 (5.29) 
21 1 21 122w222 

Using the Routh-Hurwitz criterion, PERA establish that the necessary 

and sufficient conditions for boring bar stability are, 

Ei +Es>0 (5.30) 2- -wm 
2 

2 
(Kj R, 

and 
CU2_ W2 R' K 

)92 >0 (5.31) 
1) 1 rn2 

)-- 

These two conditions can be expressed as 

ell >0 (S. 30a) 2 
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and fit (5.31a) 

-/I -E- 
S2 

where E2 
Wm 2 

w2 
and F, (K 1 

R11 
22 Bj 

m2 
2] 

w2 

By the principle of dimensional homogeneity, e // and c /// in equations 
,22 

(5.30a) and (5.31a) can be regarded as danping terms and instability 

results if e 1/ or c 1// is larger than c It follows that negative 22 10 
hysteretic damping is a convenient source of instability for s: ijnulating 

regenerative chatter. This might suggest that separate tuning is required 

for the suppression of primary and regenerative chatter. However, according 

to PERA (2) 
, it turns out that tuning for primary chatter suppression 

using negative viscous damping model is quite adequate for the suppression 

of regenerative chatter as well. 

5.3.1. Stability model with negative hysteretic'ý M ing 

The forcing function on the right-side of the equation of motion (4.4) 

now has the form- "kwhere -f is the negative hysteretic damping coefficient w2 

and w is the angular chatter frequency. The equations of motion become 

>, 2 
* Mf PO 171 -'22) * Cý ýK+& ) 

x, _ 
f? IC, 2 

0 (5.32) 6F uj 

and msv 2- 
(m 

z 
"mfPc)(021-'22)-c(kl- (4.5) 

s FF, 2 

In equatim (5.32) alis different frcm a for primary cbatter. In this 

case a' = a+R 1 

Assuming that the system is initially quiescents and applying Laplace 

transform to the set of equations (5.32) and (4.5), the characteristic 

equation Of the sYstem is obtained fran the determinant of the coefficient 
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matrix of equations (5.32) and (4.5). That is 

, k2 X2 M( rrý +mfýr)s2+1c 
f2L 

T2ý 4s +(K + eil) 
MS 

R2 
+mf pd s2, cSl 

R2 G2 2 2 

MS +mf PC S2+ cs (mS+M X2 2 

sz"ds '+cs 2 

= (5.33) 

We obtain the parametric equations for the stability borderline in three 

stages. First, s is replaced by jw. Second, real and imaginary parts 

of the resulting equation are both equated to zero such that 

MS + MS) (Ms 
[ýM-2 

02 
m w4 s- +mf Pd 2 R 

1 
+ 
G21-21 r%2 ms +mf OC 

1 
w 

G2 
(5.34) 4-ý* c f7 0 

2 ý 

c(2_. m) w3 , 
'f 

n. ý, +m2 cw =0 _L 
2 

and 
G2 s r, 2 sý +MfA dw + (5.35) 

Finally, c and J are solved, bear 'ng in mind the definition of the cc 
l i 2 t 

ý 
f2/G 2 

ess on dimens parame er iJ That is,, 

t? w2ll+u 2 (1+ a, ) 1K (1+ a' h2 (5'. 36) n2 u K + K 

and (. -S- 
2= t2 (i t(l+W-p h2 (5.37) 

CC 4K 

fran which the stability borderline expressed in the J-c plane can c c 
be calculated. 

I 
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Similar to the derivation for the case of primary chatter, it can be 

shown that for real'values: of J and (c/c 
C 

the chatter frequency ratio 

h in the equations (5.36. ) and (5.37. ) is allowed to take on values in 

the interval, 

(I + -aý) < h2< I 11 1H)(i+ 11 ) (5.38) 
K, tO +P)- pK 

5.3.2. * Opt: irnun damping condition'to'resist regenerative chatter 

We shall describe first in a qualitative fashion how al/K and J 

am related to the cutting. process. The value of J in regenerative 

chatter, similar to H in primary chatter, is proportional to the severity 

of the cutting condition. By the relation that a' =a+ R21 where R21 

=r2 (1-cos 0) the maximum value of which is R21 = 2r2 when 0= 7r and that 

r2 is comparable to a as, islobvious-from their definitionss the-maximum 

value of a' is a+2r 2! 3a approximately. Hence, assuming as in 

Section 5.2.2. that'a/K = 1/140, then al/K ! 3a/K -1 3/140., It follows 

that for all practical situations when the depth of cut exceeds the nose 

radius, al/K can be safelyassuned negligible and hence (1+a'/K) !; 1. 

in view of this observation, the problem of optimising the damping condition 

to achieve the most enhanced stability borderline is equivalent to solving 

the following equation 

d[ J21 d J2] d0 
(5.39) 

d [(kf] -d h2] 

fcr the frequency ratio squared at the best-tuned condition, denoted by 
2 the symbol hor. Thus, after scme simplification, equation (5.39) becomes 

h+ (S. 40) 
or '2f K 2, 
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The corresponding Jor and (c/c 
C) or are respectively 

(5.41) : Tor 
2t K 

and 
(5.42) c 6,12 

K CC 

Since (1+a'/K) 1 ls equations (5.41) and (5.42) are simplified to 

(5.43) 
02t 

:L (5.44) 
and cir c2 

Normallys (C/cc) is fixed once a particular slug absorber size is 

chosen. Since both paraneters J and al/K are functions of the cutting 

process,, it may be more useful to obtain stability borderline indicative 

of the critical cutting condition as represented by J and a'/K. For this 

reason, equation (5.37) is rewitten in the form 

cc (5.37a 
K h2 +(2C )2 

t CC 

It is noted that the right-side of this equation is identical to that 

of equation (5.20) for a/K for the suppression of primary chatter. 

substituting equation (5.37c) in equation (5.36 ) gives 

2- h3 Wn 
- 

t Cr ýF * (2.. L? (5.36a) 

I" 

-t Cý 

The pair of parametric equations (5.370 and (5.36a) trace out graphically 
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in the J-a'/K plane the required stability borderline. 

5.3.3. Optimising bung length for maximum stability against regenerative 

chatter 

The optimisation applies to the design of boring bar shown in Fig. 4.5. 

At the optimum damping 'the cutting condition corresponding to the 

stability borderline is given by equation (5.43) which is repeated here 

for reference2 

j- = 
Wn tll+v) 

- or 2t 

it 

(1 +P)-P (5.43) 

m 3m 
on account of the fact that lorý 

f2ol 02 
and nr mswn + -, s 

equation (5.43) can be expressed in the f0m 

f2o Kp (5.45) 
2 ý[t(J. P)-jJ][j(j -P)l 

where Y, and p are functions of the design configuration, in this case, 

the bung lergth hb as it is allowed to vary. When the bung length hb 

is increased, K is expected to increase but v to decrease. It is$ 

therefore,, apparent that a maximun f 
20 exists at a certain bung length 

obtainable frxn solving the differential equation 

df =. Q =0 
dhb 

(5.46) 

Since this equation is very similar to equation (5.21) any carments 

pertinent to equation (5.23) will also be applicable to equation (5.46). 
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6. EXPEPJME14TS ON STABLE MACHINING AND THE GEOMETRIC FORM ERRORS 

Gemetric form errors are a function of the cutting conditions and 

the materials to be cut. They are also a function of the stiffness 

of the boring bar. This chapter will describe four experiments which 

are such related that if anyone is ignored, the picture of geometric 

form errors would be incomplete. The first experiment attempts to 

establish sane empirical cutting force equations from which forces 

can be calculated once the cutting conditions are given. The second 

experiment sets out to determine the equivalent radial stiffness of 

the tungsten-bunged bar which will be used in the subsequent form 

error experiments. The third and fourth experiments deal with the 

respective "bell-mouth" error and the "copying" error. Their theories 

have been developed in section 3.4.1and section 3.4.2. 

6.1. DLTERMINING EMPIRICAL EQUATIONS 

6.1.1. Object: - It is to determine by means of metal cutting tests 

the forces and how they are related to the depth of cut, t. 

and the feed rate s. The metal is EN8. 

Instrunentatim and equipment 

(1) Corcmant Standard E141 SlP type boring tool with a nose radius 

of 0.010" (0.254 m). Fig. 6.1 shows the tool geometry. 

(2) PERA Dynamaneter serial 001 - This design was used at 

PERA for boring and turning operations. Fig. 6.2 which is 

reproduced frcrn Fig. 33 oi PERA Report 90 
(1) 

ý illustrates a 

drawing of the dynamometer and the circuit diagram for 

strain gauges. The dynamaneter measures the three principal 

cutting forces, i. e. tangential, radial and feed forces, by 

mans of strain gauges such arranged that cross-couplings are 

nunuused and that temperature correction is provided. 
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(3) Carrier Frequency Bridges, Philips PR 9307 - These are 

strain measuring bridges with two possible output options: - 

current and voltage. The voltage output is capable of 

delivering a maximum of 1Vd. c. corresponding to the full 

scale deflection on the meter of the bridge. - 
(4) Ultra-violet recorder, Southern Instruments M1330 - 

Ten channels of recording traces are available but only three are 

used for the principal cutting force components. 

(5) Work specimen - EN8 steel as rolled. Ncminal dimensions are: - 

outside diameter = 4-111 (108 m) 4 

inner diameter = 3111 (79.4 m) 

and thickness = 111 . (25.4 m) 

The mechanical properties and its canposition. of EN8 will be 

discussed in section 6.3.2. 

(6) Bakelite tool packings - These are placed around the cutting 

tool principally to prevent heat generated in the cutting 

process frcrn reaching the strain gauge elements on the 

dynamometer and secondly to enable the tool to be set on 

centre. 

(7) Lathe - Holbrook Centre Lathe with 6" swing. 

6.1.3. Procedure 

The experiment was conducted in two stages: 

Dynamometer calibration 

In Fig. 6.3 is shown a block diagram of the arrangement of the 

strain measuring bridge, and the ultra-violet recorder used 

for both calibration and cutting tests. For calibration, the 

dyna=meter was firmly secured on a. test bed and suitably 

connected as shownýin Fig. 6.3. Before loads were applied,, 

the bridges had to be talanced so thýit all meters indicated 

zero deflections. Static loads were then applied in the 
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radial direction in steps of 50 lbf (222.4N) from zero load 

to a maximum of 3001bf(1334.4N) while deflections on each of 

the three meters were noted at each load increment. Unloading 

was done in steps of 50 lbf (222.4N) until all loads were 

ranoved, and again meter deflections were mad at each load 

decrement. The unloading part of the cycle is necessary 

to detect possible hysteresis in the dynamometer. 

The cycle of loading and then unloading was repeated in the 

tangential and feed directions and meter readings were taken. 

(2) Cutting tests 

The dynamometer was bolted on the saddle of the -lathe and the 

boring tool was set on centre. The dynamometer, the strain 

measuring bridges and the recorder were connected as shown in 

Fig. 6.3. The principle of operation is briefly as follows. 

The cutting forces that acted on the tool tip set up strain signals 

in the strain gauges and corresponding levels of strain were 

indicated on the meter as pointer movement. A proportional 

voltage output from the bridge was fed into the ultra-violet 

recorder to drive a light pen to produce a movement such that 

it is proportional to the amount of strain in the strain gauge. 

The movement was "written" by the light pen onto the ultra- 

violet light sensitive paper and so a pemanent record is 

provided for cutting forces conversion. 

The cutting conditions were designed to change in the follcwing 

mamer: - 
(a) depth of cut - fromO. 003" to 0.06011 
(b) feed rate - frcm 0.0030"/rev to 0.013511/rev. 
(c) spindle speed - go,, 1209 150,204,273,363 rpm - 

which provide a range of surface cutting 
speeds frcm 55 to 600 ft/min, whose 
magnitudes also depend on the hole diameters. 
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Each cutting condition was repeated twice so that there were 

available three values of the cutting forces from which their average 

was detemined. 

6.1.4. Results and discussion 

(1) Dynamcm er calibration 

Fig. 6.4. shows a graph of the static tangential load versus the 

percentage full-scale deflection (% fsd) on the meter of the tangential 

strain measuring bridge. The bridge was set to a sensitivity level of 

1.0 mv . If Ft is the tangential load in lbf, and Rt the reading 

in % fsd on the targential bridge, then fran Fig. 6.4, the gradient 

of the graph is given by 300 lbf/% fsd and Rt is 
195.5 

190.5 
related to Ft by Rt= 30? 5 Ft 

Rt = 0.635 Ft (6.1) 

It can be seen frcm Fig. 6.4. that the tangential load Ft also 

brings about a deflection on the meter of the feed strain measuring 

bridge and if the amount of deflection is denoted by Rf in % fsd, 

then 

11 Rf ý ý-Oo Ft 

Rf = 0.037 Ft (6.2) 

The load Ft . however5 does not seem to produce any significant strain 

in the radial direction. 

When radial loads were applieds deflections on the meters of tangential, 

radial ard feed strain measuring bridges were observed. The relation 

is as shown in Fig. 6.5 and we can write similar equations as before. 

nius, 
=- 

80,6 
300 Fr 
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Rr =-Oo6O2 Fr (6o3) 

R =-LF f 300 r 

i. e. Rf= -0.010 Fr (6.4) 

-2.3 and Rt= 300 Fr 

i. e. Rt = -0.008 Fr (6.5) 

in a similar fashion, when feed loads and their resulting meter 

deflections were related as in Fig. 6.6, we obtain the following 

equations, 
30*6 F 
300 

Rf = 0.102 Ff (6.6) 

and -9.7 R, = 300 Ff 

i. e. Rr = -0.032 Ff (6.7) 

The tangential deflection on the meter of the measuring bridge in 

this case is insignificant and therefore no equation is needed for 

its representation- 

In Figs. 6.4,6.5 and 6.6 it can be observed that the loading and 

unloadirg cycle coincides and follows the same straight line. 

It is this one-one correspondence between the force to be measured 

and the % fsd on the strain measuring meter that makes this dynamometer 

suitable for cutting force determination. 
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A cutting force with its three principal components Ft, F., and Ff 

will bring about meter deflections in the respective tangential, 

radial and feed strain measuring bridges and these deflections can be 

determined fran cambining equations (6-1) to (6.7) in the follcwing 

marmer. 

For tangential meter deflections 

Rt=0.635 Ft - 0.008 Fr (6.8) 

For radial meter deflections 

Rr = -0.602 Fr - 0.032 Ff (6.9) 

And for feed meter deflections 

Rf = 0.037 Ft - 0.010 fý + 0.102 Ilf (6.10) 

Using Cramer's rule, equations (6.8) to (6.10) can be solved 

simultaneously for Ft, F. and Ff. Thus, 

.rt=1.575 
Rt - 0.021 RI, - 0.007 Rf (6.11) 

Fr=0.030 Rt - 1.653 Rr-0.519 Rf (6.12) 

and Ff = -0.568 Rt-0.155R 
r+9.756 

Rf (6.13) 

It should be noted that Rt, Rr and Rf in equations (6.11) to (6.13) 

are meter deflectims measured in % fsd with the bridge sensitivity 

set on 1 mV. 

In the cutting tests the strain values were not read Off from the 

meter but instead were peiTnanently recorded on the ultra-violet 

light sensitive paper by means of the recorder so that measurements 

were to be done at a later time. It iss therefore, necessary to determine 

the correspondence between the full-scale deflection on the meter and 

the mowment of the light pen. It has been mentioned in Section 6.1.2 
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that 100% fsd corresponds to an output voltage of 1V dc which is 

applied on the recorder to drive the light pen and this corTespondence 

is riot affected by the sensitivity setting on the strain measuring bridge. 

For this reason, the conversion from a displacement of the light pen 

to the R's values which are used in equations (6.11) to (6.13) to 

determine the principal force canponents has to be carried out in two 

stages: - 

(1) The correspondence between the displacement of the light pen 

and the 100% fsd on the meter has to be found; and 

(2) the conversion of the meter deflection in % fsd fran a sensitivity 

setting at which the cutting tests results were reccrded to the 

sensitivity setting of I mV for which equations (6.11) to (6.13) 

are valid. 

In stage (1) it is found that 100% fsd on the meters corresponds to 

the light pen displacements of 123 m$ 129mm, and 113 rnm for the respective 

tangential, radial and feed strains. That is to say, % fsd in the 
Mt 

tangential strain meter is y2-3 x 100; % fsd in the radial strain 
Mr 

meter is 12-9 x 100; and % fsd in the feed direction is 
Lx 

100. 113 

M is the displacement of the light pen measured in mm and the suffices 

and f designate the tangential, radial and feed-directions 

respectively. 

To carry out stage (2), it is noted that % fsd at any one sensitivity 

setting can be converted to 1 mV setting by multiplying this % fsd by 

the corresponding sensitivity setting. For example, x% fsd at the 

sensitivity of 0.1 mV is equal to 0.1 x% fsd at 1 W. Thus, 

Rt = 
Mt 

100 xS (6.14) T2- 3x 

Rr=rx 100 xS T2-9 
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Mf 
and Rf= -j-, 3x 100 xS (6.16) 

where S is the sensitivity setting on the bridge at which the cutting 

tests results were recorded. 

The two sets of equations (6.14) to (6.16) and (6.11) to (6.13) will 

be used extensively in the empirical curve fitting procedure to be 

described presently. 

(2) Cutting tests results and empirical curve fitting 

(a) Effect of'cutting speed on cutting forces 

It has been reported in a number of literature surveys that within 

a certain range of cutting speeds, the cutting forces are substantially 
(2) 

constant. Kbenigsberger bbserved that the cutting forces decrease 

with increasing cutting speed below 300 ft/min. while above this speed 

the forces are approximtely constant over a wide range of speeds for 

the machining of steel with carbide tools. PERA (1) 
observed the 

same phenmenon but that the change occurs at a lower speed of 225 ft. /min 

when machining a cammn grade of cast iron with carbide tools. In 

practical machining conditions, the cutting speed is normally 300 ft/min 

and above for steel. If it can be confirmed that within this practical 

range of speeds the forces are approximately constant then the whole 

design of the experiment will be much simplified since one less parameter 

is to be considered. Our airn is, therefore, to find the relationship of 

the cutting forces and the practical cutting speeds. 

Fig. 6.7 shows a typical cutting force trace. Irregular fluctuations 

were observed and were found to increase in intensity as the tool showed 

signs of wear. nie mean cutting force is obtained by first measuring 

the height of the step on the trace and then applying two corresponding 
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equations chosen from equations (6.11) to (6.16). 

Fig. 6.8 shows two sets of graphs in which the tangential force in (a) 

and the radial force in (b) are plotted as a function of the cutting speed 

and the feed rate is constant at 0.0053"/mv. Three depths of cut are 

considered, namely, 0.005", 0.0020" and 0.060". In general it can be 

said that below 200 ft/min the cutting forces Ft and F. decrease with 

increasing speed and above 250 ft/min, Ft and Fr can be regarded as 

substantially constant up to about 600 ft/min even though a tendency 

for the forces Ft and F., to creep up slightly is detected in all graphs. 

The feed force is not shown in Fig. 6.8 and it will not be considered 

in any future discussion because the feed force is comparatively small 

in relation to other principal-forces and since it acts along the most 

rigid direction of the boring bar, the resulting deflection is too small 

to be significant. 

In Fig. 6.9 are shown two sets of graphs in which the tangential force 

in (a) and the radial force in (b) are plotted as a function of the 

cutting speed and the feed rate is O. '0095"/rev. There are-three graphs 

in each set and they correspond to depths of cut of 0.01011,0.02011 and 

0.060". It can be observed that within a range of speeds from 250 ft/min 

to 600 ft/min,, cutting forces Ft and Fr may be approximated by a constant 

although Ft and F. show a slight trend to inc: rease, with the speed. 

(b) Fitting e mpirical equations 

(i) -Tangentia l cutting force, Ft 

The curve fitting procedure adopted was described in Section 3.3. 

Basically it concems the finding of A, a and b in the empirical equation 

(3.2) which is 
F= Ata sb (3.2) 
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The cutting force data chosen for this purpose are from a cutting speed 

in the range of 250 ft/min to 350 ft/min. However within reasonable 

accuracy, the empirical equation is applicable to a range of cutting 

speeds fran 250 ft/min up to 600 ft/min for reasons as explained in 

the previous section. 

Fig. 6.10 shows a set of graphs with Ft plotted against the depth of 

cut t. Both are drawn to a logarithmic scale. There are five graphs 

in the set corresponding to the feed rates of 0.00311/rev, 0.005311/rev, 

0.006811/rev, 0.0095"/rev,, -and 0.0135"/rev. A little scatter is observed 

but in general the points fall on a series of streight lines each 

approximately parallel to each other. Their coumn slope is equal to a 

in equation (3.2) and has a value given by, 
84 

= 1.077 
78 

In Fig. 6.11 are shown a set of graphs with Ft plotted against the feed 

rate s, both being drawn to a logarithmic scale. Five graphs that 

correspond to the depths Of cut of MOP,, 0.010113,0.020" and 0.04011 and 0.06011 

are shown and they are seen to be linear and parallel to each other. The 

scatter is mull and the cannon slope of these graphs is equal to b in 

equation (3.2). 
_Its 

value is given by 

b= 57.5 
= 0.833 

69 

The value of A can now be determined fr'0M the graph of the tangential 

cutting force Ft drawn as a function of the quantity (J. 077 
s 

0.833 
). 

The graph is shown in Fig. 6.12. The scatter measured in terms of the 

absolute error increases as the quantity (tl. 077 
s 
0.833 ) increases; 

but in terms of relative error its order of magnitude is about the 

same irrespective of the value of (J. 077 
sO. 

833 ). The slope of this 

graph is A the value of which is calculated as 



142 

500 

0.0030 in/rev 

&- 0.0053 in/rev 

U- 0.0068 in/rev 

, -ý 100 V- 0.0095 in/rev 

0- 0.0135 in/rev 

50 

a) U 
I-. 
0 

10 

ý- 

11 10 50 100 
Depth Of CUt, tj X 10-3 in) 

Fig 6.10 Log-log graph of tangential cutting force Ft versus depth 

of cut t 



143 

500 

100 

0 . 005 in 

0.010 in 

0.020 in 

0.040 in 

V"-- 0.060 in 

, -50 -Q 

Lit, 

u 
I- 0 

10 

11 
Feed, s, (X10-3 in/rev) 

Fig 6.11 Log-log graph of tangential cutting force Ft 

versus feed s 



v 

\® 

Go 

II, 

" 

"\D*O 
\ 

ION 
44 

54 

(Y) 
CV) 
LO 
0 
0 

co 
LD 
0 
0 

LO 
CD 

8 
LO 

0 
0 0 0 0 

)ý ,00 

C-) 

LO 1ý1'aojoj lDi4ua6ut)jL 

Lr) 

C) 

CP 

C) 

C) 

-3 CD 

144 

CY) 
cr) 
CD 

C; 

U) 
:j 
U) 

(U 

0 
4-1 

r-4 
(13 

tio 
r. 
ru 
4-J 
4-4 
0 

A 
P4 

(a 

CN 

bo 



145 

110 
-=2.292 x 105 

4 80 x 10- 6 

----, It-follows that the empirical equation for tangential cutting force is 

Ft = 2.292 x 105 t 1.077 
s 
0.833 (6.17) 

in which the depth of cut t is measured in inches, the feed rates 

in inches/rev., and the force Ft thus calculated is in lbf. 

In S. I. units, equation (6.17) becomes 

Ft = 2.114 x 10 3t1.077 
s 
0.833 (6.18) 

where t is measured in m, s in m/rev., and the force Ft thus 

calculated is in Newtons. " 

(ii) Radial"'cutting force, 'Ir 

The same procedure is used as-when the empirical equation for tangential 

cutting force was-determined. The cutting force data that are shown 

in Fig. 6.13 and 6.14 were obtained at a cutting speed between 250 ft/min 

and 350 ft/min. 

Fig. 6.13-shows a set of graphs with radial force versus the depth of cut,, 

both being drawn to a logarithmic scale. There are five graphs that 

correspond to the feed rates of 0.00311/rev., 0.005311/rev. 1,0.006811/rev. 
0.009511/r, ev. 'and 0.0135"/rev. "" Considerab le scatter is observed but the 

trend that the-points follow a set of approximately straight lines is 

noticeable. These lines are roughly parallel to each other and their 

cannon slopeis, 
95 

a= 12-0 = 0.792 

Fig. 6.14 is also a log-log plot with radial force against the feed rate. 

Five graphs that correspond to the depths of cut of 0.005". 0.010"$ 0.020"$ 

0.040" and 0.060" are drawn and they are more or less linear and parallel 
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to each other. 

urmistakeable. 

b 84 
9-9 

Scatter is heavier but the trend of the graphs is 

The camon slope of these graphs is: 

0.944 

Fig. 6.15 shows a graph of radial force Fr as a function of the quantity 

(t 0.792 
s 
0.944 ). The relationship is linear although there is considerably 

more scatter than its equivalent in Fig. 6.12. The slope of this line 

is A and is given by, 

A= 27.5 6.250 x 10 4 
440 x 176 

The empirical equation for radial cutting force is, therefore, 

Fr, = 6.250 x 104 tO. 792 
sO. 

944 (6.19) 

where t is measured in inches, s in inches/rev., and the force Fr 

thus calculated is in lbf. 

In metric units2 equation (6.19) becomes 

Fr = 1.012 x 10 3t0.792 
s 
0.944 (6.20) 

where t is in Tim, s in Tim/rev., and Fr thus calculated is in Newtons. 

It is noted that Ft and Fr thus calculated from equations (6.17) and 

(6.19) are accurate to one decimal place. 

6.1.5 Conclusions. 

The following camments refer to the machining of a rolled EN8 steel 

with a carbide-tipped tool the geometry of which is shown in Fig. 6.1. 

(a) Below 200 ft/min the tangential and radial cutting forces decrease 

with increasing cutting speed whereas from 250 ft/min to 600 ft/min, 

cutting, fcrces can be regarded as substantially constant. 

(b) The tangential cutting force can be calculated from the empirical 

equation (6.17) 
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Ft = 2.292 x 10 5t1.077 
s 
0.833 

where Ft is in lbf., t in inches and s in inches/rev. 

(c) The radial cutting force can be calculated frcm the empirical 

equation (6.19) 

Fr. = 6.250 x 10 4t0.792 
s 
0.944 

where Fr is in lbf., t in inches and s in inches/rev. 

(d) Considerable scatter is observed in fitting the radial cutting 

force Enpirical, equation. Its goodness of fit is inferior to 

that for the tangential cutting force. 

6.2 RADIAL STATIC SrIFFNESS OF TUNGSTEN-BUNGED BORING BAR 

6.2.1. Object 

(1) To deteindne the equivalent static stiffness of the 

tungsten-bunged bar in its radial direction when it 

is momted on the lathe. 

(2) To study the energy dissipation characteristic of the 

bar in the same direction. 

6.2.2. Instrunentation and equipment 

(1) Tungsten-bunged bar - details will be found in Section 7.1. 

(2) Lathe - Model Sriov by Churchill Denhams. It will be 

described in more detail in Section 6.3.2. 

(3) Dial indicator - made by Verdict, resolution is 0.000511/div. 

(4) Pre-calibration load cell - calibration curve is shown 

in Fig. 6.16 which is reproduced fran Fig. 31 

in thesis of Ng (3) 
* 

(5) A fLx-bire plate with a loading device - The plate has 

on its back a spigot which can be gripped by 

the jaws of the chuck. The loading device is 

fixed onto the front of the plate and it consists 

of a metal block with a tapped hole through 
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which rLms a loading screw. 

(6) Carrier 1'requency Bridge, Philip PR9307. 

6.2.3. Procedure 

The tungsten-bunged bar was secured on its bar holder by 

means of six cap screws on the flange and the holder was 

bolted onto the cross-slide of the lathe in place of the toolpost 

and top slide. The fixture plate was clamped onto the chuck 

such that the loading screw has its axis horizontal. The load 

was applied by turning the screw which set up a canpressive 

strain on the load cell and an equal magnitude of load would exert 

on the tool-tip of the dummy tool as shown in the arrangement 

in Fig. 6.17. The resulting deflection at the free end of the 

bar was measured by means of a dial indicator positioned 

diametrically opposite to the load cell. The loading was 

increased in steps of 50% fsd on the meter of the strain measuring 

bridge connected to the load cell. The sensitivity setting of 

the bridge was 1. OmV. 50% fsd corresponds to a static load 

of 106.55 N. since the load cell has a gain factor of 2.131 N/div 

which is the slope of the graph shown in Fig. 6.15. The load 

was increased to a maximu-n of 400% fsd on the bridge at 1. OmV 

sensitivitys which is equivalent to 852.4N. Unloading was 

conducted in a similar manner until zero load was reached. 

Deflections as indicated on the dial gauge were read at each 

load increment or decrement. 

The above experiment was conducted with the slide at its norml 

working condition, i. e. there was easy clearance between the slide 

and the bed. 



153 

-c 

GO 

4-2 

10 
rd 
0 

u 
., l 

4-1 
(0 
41 

0 
4-1 

+i 
a) 

vi 

tko 

CL th 

ý -a -0 



154 

6.2.4. Results and discussion 

Fig. 6.16 shows the calibration curve of the load cell, from 

(3) 
which the gain, factor. is. calculated, as 2.131, N/div 

Fig. 6.18 illustrates the load deflection characteristic of 

the bar in its radial direction. Three features are apparent. 

First, a hysteretic loop is present indicating that there is 

some energy loss in the system during the cycle of loading-unloading. 

Since the internal hysteresis of the bar itself is too 
- 
wall to be 

(3) , (4) 
of significance, which has been reported by Ng 

, and PERA 

this energy loss is due to the lathe. Second, the load deflection 

curve is non-linear during loading as well as unloading. The 

point at which the slope changes possibly suggests the mechanism of 

the unlocking of frictional, joints on the cross-slide. Third,, 

the curve does not return to the origin when all the loads are 

removedý but instead a residual deflection is present. 

To determine the equivalent radial stiffness of the bar mounted 

on the lathe is not a straight forward business because the graph 

does not have a constant slope. Nevertheless, an average value 

can be calculated but it must be used with caution in future. 

Thus frm Fig. 6.18, the static stiffness in the radial direction 

at the free end of the bar is, 

K , -, 
A00 % fsd 12.131 N 

e "604 jim fflýo'-rsd 

where the quantity in brackets is the gain factor of the load 

cell and simplifying,, 

Ke=1.41 MN/m 
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It will be shown in Appendix A that the calculated stiffness of the 

bar is 1.65 MN/m using the method of Myosotis. The difference is 

14.5% of the calculated stiffness. 

The energy loss per cycie of loading and unloading is given by the 

area enclosed in the loop and from Fig 6.18 is estimated to be 15.6 mJ 

approximately. 

6.2.5 Conclusions 

1. Within the loading range of 0 to 852.4 N, the average radial 

stiffness of the tungsten-bunged bar is 1.41 MN/m which is 14.5% 

lower than the calculated stiffness. 

2. The load deflection curve is made up of a number of linear segments 

pieced together, each having a slightly different slope, hence 

stiffness. The change in stiffness at some points in the loading 

or unloading is thought to be due to the unlocking of frictional 

joints in the cross-slide of the lathe. 

3. The relative movements in these frictional joints bring about 

an energy dissipation,, the value of which is 15.6 mJ per cycle for 

the loading range between 0 and 852.4 N. 
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6.3 "BELL-MOUTH" ERROR 

6.3.1. Object 

The experiment was conducted with the tungsten-bunged bar 

and the bore is concentric with the axis of rotation. 

1. To study the general features of the bell-mouth error. 

2. To canpare the predicted bell-mouth errors with the 

experimentally measured values. 

6.3.2. Instrunentation'and equipment 

1. Tungsten-bunged bar - details will be found in Section 7.1. 

2. Boring tool - Three boring tools will be used: 

(a) Sandvik Corxroint circular shank boring tool 

, tool, no. 140 dia. This is a left-handed 

tool with a brazed on carbide-tip. Its tool gemetry 

is identical to that which was described in Section 6.1.2 

and Fig. 6.1, except that the tool shank is aligned 

at an angle of 590 to the longitudinal axis of the bar. 

The nose radius of the tool is 0.010". 

(b) Same as (a) with the exception of the tool geometry 

which is shown in Fig. 6.19. The nose radius is 

0.030". This particular geometry is being used in 

Rolls Royce Aeronautic factory at Derby. 

(c) Same as (b) except that the nose radius is 0.010". 

3. Lathe - Model Sriov by Churchill Denhams. It has a 

maximun swing of 22 in (559 m) and a bed length of 8ft. 6in. 

(2.59 m). The speed range is from 48 - 2000 rjn which can be 

varied continuously. The feed range is from 0.001111/rev 

(0.03mm/rev) to 0.065"/rev. (1.59 mVrev). The cross-slide 

was removed and in its place was secured a boring bar holder 

0 

by means of four bolts. 
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ld* front cleara 
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Fig 6.19 Geometry of Rolls Royce tool, designated as 

the R tool 
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4. Workpiece - Two types of workpiece will be used: 

(a) Steel BS970 : 955 EN8. which is a 401 nornulized 

carbon steel. The mechanical properties are: 

M tensile strength - 35 tons/sq. in. min. 

(ii) yield stress - 18 tons/sq. in. min. 

elongation 17% min 

Brinell hardness 152/207. The average 

for this batch is 197. 

The dimensims of the workpiece are: 41" O. D. (110 m), 

311 I. D. (75 m) and a'ncminal thickness of 111 (25 nm). 

(b) Alloy steel supplied frcm Rolls Royce Aeronautic Ltd. 9 

of which the specification code-is RR S/HBH steel. 

It is a 3% cluxne molybdenum nitriding steel which has 

an average Brinell hardness of 395. The general 

dimension of the workpiece is dictated by the-shapes 

and sizes of the supplies which are rejects failing to 

meetýthe required dimensional specifications of the 

factory. For this batch, the general dimensions are: 

41" O. D. (110 mm), 311 to 3111 I. D. (75 mm to 90 mmYand 

a nominal thickness of 211 (50 mm). , 

5. Talysurf 3. -a surface finish measuring equipment by 

Taylor-Hobson. The stylus used for this particular measurement 

has a tip radius of 0.0001". 

6.3.3. Procedure 

Machining tests were conducted on four workpieces: two of 

EN8 steel and two of, alloy steel as specifiedIn Section 6.3.2. 

The machining conditions will be given in Section 6.3.4., the 

section of Results and Discussion. The boring bar used was the 

tungsten-bunged bar optimally tuned with a main slug of 

25.299 mm in diameter. No chatter marks were observed on the 
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cut surface of the workpiece and so the steady-state 

machining was maintained. 

The surface finish of the workpieces was measured using the 

Talysurf 3. A trace of the surface profile was also obtained 

while the stylus was made to run across the cut surface at the 

tool entry region so that any bell-mouth error would be recorded. 

In order to calculate the predicted bell-mouth exror, it is 

necessary, as will be explained in Section 6.3.4., that the radial 

cutting force at the given cutting condition be known. For 

EN8 steel and cutting with the cutting tool the geanetry of 

which is as in Fig. 6.1., the business of finding the radial 

cutting force is simple because the force is readily obtained 

frm equation (6.19). However, the radial cutting force that 

may arise during the machining of the alloy steel has to be determined 

by means of an experiment which requires the use of the dynammeter. 

The experiment is very similar to that described in Section 6.1 

with the following exception: - since only the radial force at some 

particular cutting condition was required, the cutting was done 

at that ccndition only and the radial force was calculated. 

6.3.4. Results and Discussion 

1. Work specimen and surface finish 

Four workpiece specimens were obtained at the following 

corditions: - 

Specimen 1- EN8 steel; nose radius 0.010"; depth of 

cut 0.050"; feed rate 0.013811/rev., 

Cutting speed 600 ft/min. 



161 - 

Specimen 2- EN8 steel; nose radius 0.010"; depth 

of cut 0.060"; feed rate 0.0104"/rev., 

cutting speed 600 ft/min. 

specimen 3- RRS/HBH steel; nose radius 0.010"; 

depth of cut 0.010"; feed rate 0.010411/rev. 1, 

cutting speed 200 ft/min. 

ppecimen_4 - RRS/HBH steel; nose radius 0.030"; 

depth of cut 0.010"; feed rate 0.006911/rev. $ 

cutting speed 200 ft/min. 

Their respective surface finishes measured in CLA are 

5.5,3.2 $3 and 2pm. 

2. Radial cutting force 

The radial cutting force that may arise in specimen 1 

is calculated fran equation (6.19). i. e. 

Fr=6.250 x 10 4x0.0500.792 
x 0.0138 0.944 

= 102.2 lbf. 

Similarly for specimen 2 the radial force is 

Fr=6.250 x 104 x 0.0600.792 x 0.0104 0.944 

= 90.4 lbf . 

Also from separate force measumnent tests$ the radial cutting 

fcrce for specimen 3 was measured to be 34.2 lbf. and for 

specimen 4 was 24.5 lbf. 

3. 'Graph of profile 

Figures 6.20 to 6.23 show the respective traces of the 

surface profiles of specimens 1,2,3, and 4. The 

I magnification factors in the vertical and horizontal axis 

are 1000 and 20 respectively. It is imediately obvious 
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that bell-mouth error indeed occurred on all four 

specimens. 

To facilitate a quantitative comparison between the theory 

as developed in Section 3.4.1 and the experimental results 

as shown in Figs. 6.20 to 6.23, the following procedure is 

thought necessary. Firstly fran equation (3.14), 

X12 (P- ) 
to 

t1 [Xi(-1EIý 

,X=X-+ nX (-Y-) I 
1 to 

and equation (3.15) 

2 
'xl- ' to provided that 

Ll 
< 1, which X 

00 
= X, +-7 to 

x1 GFO- )I is the case; 

Secondly, equation (3.14) is subtracted frcrn equation (3.15) 

to give 

x2 1tx (p )] n-1 X 
Go n to x (11 )1 

1 to 

fran which n 
IL Xn )Yt7) 

r0 nx1-x 
1 FO 

, In particular) when n=1, 

00 (P to ri 
x 

1 
and the ratio of the successive r's will be 

rn-r3-r2= 
(X 1) 

rn-1 ,r2r1 to 
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It follows that 

rn Xi 
n-1 

ri to 

in which X 'art 0s0 
U+ arso) 

Rr Fr 
Iýv tcýsoyr 

(6.21) 

(6.21a) 

The radial forces Fr have been determined in the last section, t0 

and s0 are the depth of cut and feed rate, both of which are known 

for each specimen; and the radial static stiffness Kr has been determined 

in Secticn 6.2. 

Finally , the surface profiles fran Figs. 6.20 to 6.2 3 have to be 

converted to a fcm canpatible with equation (6.21). This is carried 

out as follows: 

Fran the definktion of rn rn =Xxxn and 

so rx1-rn 
XCO - Xn) 

It follows that the ratio - 1 xi ri (X. -x 1) 

(6.22) 

Both (X. -Xn) and Oý. -, Xl) can be measured from the figures 

6.20 to 6.23. Take, for example, Fig. 6.20. A base line corresponding 

to XC, is drawn averaging the troughs at large n. The anount of 

deviation of each successive trough from the base line is then measured. 

The firut trough gives (X,, - Xl) and the subsequent troughs give 

(ý. - Xn) as n is increased fran 2 onwards., Finally, the ratio rn is 

detern-dned by usirg equation (6.22). 

as equation (3.7) and 
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The following tabulations refer to the four specimens and include 

entries calculated fi-an Figs. 6.20 to 6.23 as well as entries calculated 

from equation (6.21) which provides the theoretical n values. it is 
r1 

assuned that the overlapping factor 1. The radial static stiffness 

of the tungsten-bunged bar is 1.41 MN/m as obtained from Section 6.2. 
xi 

- To calculate -in equation (6.21) we need to use equation (3.7) and 
0 

(6.21a). 

(a) Specimen 1- The graph of profile is sh(= in Fig. 6.24a in 

which the entries in the second last colunn are indicated by 

crosses and entries in the last colum are joined by a smootb curve. 

Cut. no - )CA x- 1000 mm. 
'XoD - )ýn )Ir 

=[ 
x1 n-1 

. n. (X. 
.(-xn. - to Ul 

1 7.2 1 1 

2 1.8 0.25 0.203 

3 3.0 0.42 0.41 

4 1.6 0.22 0.008 

5 4.0 0.56 0.002 

6 0.7 0.10 0 
7 1.0 0.14 0 

8 0.4 0.06 0 

9 -0.8 -0.11 0 

10 0.3 0.04 0 
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(b) Specimen 2- The graph is shown in Fig. 6.24b. 

x). n-1 
Cut no .n (Xco - Xn) X 1000 mnrn= 

to 
1 
(7-7 --Xýl) 

I [Xl 

1 11.2 1 1 

2 8.6 0.77 0.158 

3 6.8 0.61 0.025 

4 7.1 0.63 0.004 

5 6.3 0.56 0 

6 7.7 0.69 0 

7 2.6 0.23 0 

8 4.6 0.41 .0 
9 2.7 0.24 0 

10 0.8 0.07 0 

(c) -Spebimen 3- The graph is shown in Fig. 6.24c. 

x 1000 mm Cut no. n (x. xn 
( x- -M, 
(xw -X) 1 '! rn to 

1 1 

1 8.2 1 

2 3.9 0.48 0.298 

3 2.1 0.26 0.089 

4 2.6 0.32 0.026 

5 2.1 0.26 0.008 

6 0 0 0.002 

7 2.7 0.33 0.001 

8 0 0 0 

9 0.8 0.10 0 

10 1.2 0.15 0 
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(d) Specimen 4- The graph of profile is shown in Fig. 6.24d. 

x n-1 
Cut no. n1 (X -X)x 100(). mm ý1 rn to 

Co n[ 

xi 
Pl 

1 6.7 1 1 

-2 3.9 0.58 0.233 

3 0 0 0.054 
4 1.0 0.15 0.013 

5 0.2 0.03 0.003 

6 2.0 0.30 0.001 

7 1.0 0.15 0 

8 0.8 0.12 0 

9 -1.0 -0.15 0 
10 0 0 0 

From the four diagrams in Figs 6.24,, it is obvious that the agreement 

between the theory and the results is very poor. The theory always 

predicts a sharper rate of decrease in rn as the number of cuts n 

increases. There are two different causes. First, the theory as 

developed in Section 3.4.1 is very crude in that the overlapping 

factor p is not an accurate representation of the real situation. It 

was also said that p cannot exceed unity. Referring to Figs 6.24, if 

p were made to exceed unityý the theoretical curve would have fitted 

the experimental points better. However, p>1 does not seem to stand 

to reason. Second, the experiment design itself may possess sane 

inherent erTors, which renders the calculated experimental points 

suspicious. It is rlemenlered that in an effort to measum (>ý, -x n) 
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a base line is required to be drawn across all the troughs except for 

those when n is small. Drawing this line is highly arbitrary and 

this is one possible source of error. Another possible source of 

error stems from the nature of the cutting process and of the surface 

measuri. ng equipment. It is true that radial force can be calculated 

by means of the equation (6.19) or measured from an experiment designed 

for that purpose. However, the instantaneous value of the radial 

force may vary up to t1 lbf or even more simply because the metal 

being cut is non-hanogeneous. Taking an error bound of +1 lbf , we 

can show that it will result in a deflection on the tool tip of, 

+1x4.448 x 39.37 
-+1.242 x 1074 in 

1.41 x 10 6 

which in metric unit is + 3.155 x-10-ý=. When magnified a thousand 

times on the trace, it gives a deviation of + 3.155 mm which is of 

quite a significant proportion compared with the entries in the second 

column of the tables. 

6.3.5 Conclusions 

(1) The experiments confirm the existence of the bell-mouth error 

that occurs in the first few revolutions of cut on the workpiece. 

(2) The theory as developed in Section 3.4.1 can only predict the 

general trend the error takes but is not able to provide a 

quantitative prediction. 



171 

(3) The attempt to measure bell-mouth errors is complicated by: - 

the inability to determine the instantaneous value 

of radial cutting force at the position of profile measurement, 

and 

the fact that a snall error in the radial force will be 

magnified to produce a considerable shift on the profile trace 

and hence a large scatter is introduced on a profile graph 

such as Figs. 6.24. 

6.4. "COPYING" ERROR 

6.4.1 Object 

(1) To study the "copying" error in the machining of EN8 steel 

with the tungsten-bunged boring bar. 

(2) To canpare the predicted "copying" error with that 

obtained frm experiments. 

6.4.2 Instrumentation and equipment 

(1) Tungsten-bunged bar - The bar is optimally tuned with 

a main slug of 25.299 nr. q in diameter. 

Details can be found in Section 7.1. 

(2) Boring tool - This is the same as that described in 2(a) of 

Section 6.3.2. 

(3) Lathe - This is the same as that described in Section 6.3.2. 

(4) Workpiece - The material is EN8 steel, the details of 

which are given in Section 6.3.2. 

(5) Dial indicator by Verdict, with resolution of 0-000511/div. 

Also a support stand with a magnetic base was needed. 
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6.4.3. Procedure 

The main aim of this experiment is to test the goodness of 

fit of equation (3.25) in which the "copying" error u is related 

to a parameter K as, 
1 

U= 1+ K 

-K t 
where K 

aA,, s 
b 

According to equation (3.24a), 

ef 
er 

where ef = eccentricity of the finished bore 

and e. = eccentricity of the pre-finished bore 

(3.25) 

(3.26) 

(3.24a) 

The two eccentricity values, ef and er$ are the objects to 

be measured. 

In designing the experiment, a rough check usirg equations (3.25) 

and (3.26) indicates that u is likely to be very small and so 

frcm equation (3.24a) er has to be reasonably large in order that 

ef becanes measurable. Nevertheless, a large er in comparison 

with the mean depth of cut t will violate the assumption made in 

arriving at the equation (3.25)- The assumption is that the 

ratio e. /t is reascnably less than unity. Furthenncreý the mean 

depth of cut t cannot be in excess of the limiting depth of cut at 

which the chatter sets in, which in turn restricts the range of er 

which can be used in the experiment. 

In view of this, the initial eccentricity was chosen to be 0.02011 

ncminal while the exact value was measured on each wcrkpiece dunirg, 

the experiment. The cutting conditions adopted am illustrated in 
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the next section and the cutting speed was 450 ft/min on all workpieces. 

There are five stages in which the experiment was conducted: - 

To ensure a circular concentric bom at the start . the workpiece 

that was held in a three-jaw chuck was bored through with a short 

rigid bcring bar. This bar shared the same holder as, but was 

mounted oppositive to, the tungsten-bunged bar. 

(2) A shim of thicl<ness 0.03011 - how this was wcrked out is shown 

in the next section - was. inserted in between the outside diameter of the 

workpiece and me of the jaws. This would produce an eccentricity, er 

of 0.020" nominal on the -bore. 

(3) The actual eccentr4city, er. was measured by means of a dial indicator 

set up on the stand with a magnetic base, hence providing a secured 

foundation for relative measurements. The first reading on the dial 

face was taken when the stylus rested at a point on the bore in line 

with the jaw with the inserted shim. The second reading was taken 

0 
after the chuck was rotated through 180 . The actual eccentricity, 

er, is then half the difference of the two readings. 

(4) The bar holder was rotated through 180 0 such that the tungsten-bunged 

bar was in position for cutting. The cutting was perfomed according 

to the conditions adopted. 

(5) To masure the eccentricity, ef, on the finished bores stage (3) was 

repeated. 

6.4.4 Results and Discussion 

(1) Dete-rminirg the thickness of'the'shim 

Fig. 6.25a shows a schematic diagram of a cirr-ular workpiece mounted 

on the jaws. 0 is the centre of rotation of the chuck. C is the 

centre of the workpiece relative to its external circumference. The 

amount of eccentricity is e and the outer radius of the workpiece is r. 

R is the radial distance of the jaw tip fran the centre of rotation 0. 
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Fig 6.25a Determining the thickness x of the shim for an 

eccentricity e 

A B 

Fig 6.25b Enlarged view of the triangle OCA in Fig 6.25a 
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x is the thickness of the shim to be detejmine, ý. 

Flxn Fig. 6.25a, DO + OC R+er+x. 

fram which x=R+er (6.23) 

Fig. 6.25b is an enlarged view of the triangle OCA in Fig. 6.25a. 

OC is extended to meet a perpendicular frcm A at B. Referrirg to 

Fig. 6.25b, and using the cosine formula, 

R2=e2+ r2 - 2er cos (1800 - 0) 

wbich gives 

R2=e2+ r2 + 2er Cos 0 (6.24) 

But CB = OB - OC and CB =r cos 0, OB - OC =R cos 60 0-e 

0-R Henceý r cos 0R cos 60 e=f-e 

R 
Substitute this into equation (6.24) R2e2+r2+ 2e e 

r2_e2+ eR 

d Since r=y where d is the outside diameter of the ýorkpiece, 

then 

2= (1) _e2+ eR 2 

frcm which the followirg quadratic equation is obtained, 

2_d2 
eR + (e T)= 

The solutim for R is 
2 2 d 2 Je 

_ -4 (e 
R2 

which can be'-simplified to' 

e +TT 3e2 
R2 

where the negative sign before the radical is dropped. 
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Substitute this value of R into equation (6.23) . the thickness 

of the shim is 

e +jd2'-"3e2 d 
X2+e2 

ý42 
2 

i. e. x 
3_e - d' + Jý 

/, 
- 3e 

2 (6.25) 

In this case, diameter of the workpiece d=4.50111 and the eccentricity 

required is e=0.020". Using equation (6.25),,, the resulting thickness 

of the shim is 

3x0.020 - 4.501 
J. 

5012 -3x0.0202 
2 

0.0299" 
M==Mr-ý 

(2) 
_Canpar#g 

experimental results with theory 

To facilitate ccmparison between the experimental results and 

the theoretical predictions, the former was converted as follows. 

Corr esponding to each depth of cut t and feed rate s, the parameter 1< 

was calculated using equation 0.26) and Kr=1.41MN/m. The theoretical 

"copying" error u was then detennined using equation 0.25). 

The experimental "copYing if error u was obtained frofn equation (3.24a) 

i. 
ef 
er 

The following table illustrates the results and the associated 

conversims. 

t(in s(in. /rev) e (in) 
r 

Experimental 

e (in) ef 
fU=- 

er 

The-oretical 

uK 

0.050 0.0044 0.0205 0.0014 0.0683 0.0640 14.63 
0.050 0.0069 0.0194 0.0016 0.0825 0.0946 9.57 
0.050 0.0104 0.0201 0.0025 0.1244 0.1334 6.50 
0.060 0.0044 0.0210 0.0014 0.0667 0.0567 16.63 
0.060 0.0069 0.0208 0.0020 0.0962 0.0914 9.94 
0.060 0.0104 0.0205 0.0025 0.1220 0.1291 6.75 
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Fig. 6.26 slows a curve of the "copying" ery-or u. as a function of the 

parameter k. The experimentally detemined us were also drawn as 

crosses, the values of which correspond to the entries in the third' 

last and last columns of the table. It can be observed from this 

figure that for K>6, the formula of "copying error 

U=-11+ 1< 
(. 3.25) 

conform with the experimental evidence. It is, however, dangerous to 

speculate that for k<6, equation (3.25) still holds. As have been I 

explained in Sectim 6.4.3. there are considerable difficulties to 

design an experiment to operate in the region of 0<K<6. mainly 

because of the possible onset of chatter if, in an effort to decrease K, 

the radial static stiffness K 
r-'s 

lowered or if a harder material and 

hence higher A. is used. Any attempt to lower K will inevitably bring 

about a higher radial force Fr, and there is a limit to which this can be 

increased. Fortunately, for most practical situations, K is unlikely 

to be less than 6. 

6.4.5. Conclusions, 

(1) The experiments confirm the existence of the "copying" error 

- that occur on a bore with some initial eccentricity. 

(2) The "copying" error can be predicted by using equation (3.25),, 
1 

U T+Ký 

(1-a) 

where Kr when the condition K >6 is met. 

M- When K<6, equation (3.25) must be used with caution since 

the experiments do not cater for this possibility. Fortunately, 

K<6 hardly arises in most practical machining situations in 

which there is no chatter. 
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7. FREQUENCY RESPONSE EXPERIMEWS 

In this chapter are presented results of the frequency response 

experiments that were conducted on the test bars fitted with different 

slug dampers as described in sections 7.1 and 7.2. The term "frequency 

response" is used to refer to the amplitude and phase measurements at 

the tool tip of the bar mounted on the lathe in response to a sinusoidal 

force input that varies within a frequency range of interest, namely 

50 Hz to 300 Hz. Since the frequency response experiments were conducted 

on the lathe, the dynamic characteristic obtained necessarily included 

the dynamics of the bar as well as of the lathe. The dynamics of the 

latter were small in canparison with those of the bar and hence quite 

often ignored. Based on this assumption, an attempt was made to evaluate 

the goodness of fit of the mathematical model of the bar developed in 

Chapters 5 and 6 based on the equivalent mass, stiffness and damping 

coefficient. 

The goodness of fit is considered to be reasonable as will be discussed 

in section 7.6, but in order to predict the stability limit during boring, 

the mathematical model needs refinement. For this reason, the stability 

theory in Appendix E was developed. Using this theory, it will be shown 

in Chapter 8 that stability limits in terms of the depth of cut can be 

estimated provided that the frequency response of the bar measured at 

the tool tip at the time of boring is known. Obviously such a requirement 

is difficult to realise in practice. A practical alternative is to 

measure the response of the bar mounted as before on the lathe but having 

the lathe inoperative. The difference between the two responses is 

believed to be small. It is this alternative that was adopted for the 

experiments. 
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7.1 BORING BAR DESIGN, 

Four types of boring bars were used in the experiments. They all 

had an overhung length of 381 m and a diameter of 38 m, equivalent 

to 10 to 1 overhang ratio. 

(1) Solid bar - This bar, as shown schematically in Fig. 7.1, 

was machined in one piece frcm, EN8 steel. It served as a reference 

in relation to which the performance of other bars was assessed. 

(2) Recessed bar - The bar is shown in Fig. 7.2. Aside from a 

round hole bored out close behind the toolpost to accannodate a slug 

damper, the recessed bar was in every respect identical to the solid 

bar. 

(3) Steel-bunged bar - The bar is shown in Fig. 7.3. The tem 

"steel-bunged" refers to the particular design in which a steel bung 

was fitted into a tubular shank. As illustrated in Fig. 7.3. the 

steel burg terminated at a fractio'n of the maxiinum allowable length. 

This was to ensure a reasonable measure of stiffness to be achieved 

whilst substantially reducing the effective mass of the boring bar, so 

enabling a high ij ratio, i. e. ratio of absorber mass to effective mass 

of boring bar, to be achieved. The contact pressure between the bung 

and the surrounding shank was designed to be 14 MN/M2 (20001b f/in2). 

Both the bung and shank were made of EN8 steel. Like the recessed bar, the 

steel-bunged bar was similarly recessed to accommodate a slug damper. 

In addition, to enhance machining performance, a second but much shorter 

slug in a capsule could be fitted to the free end of the bar if desired. 

Whilst such a bar would not be suitable for use in "blind" boring, i. e. 

up to the bottom of a cavity, it could be used for through boring and 

profiling operations. 
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(4) Tungsten-bunged bar - The bars, as shown in Fig. 7.4, had the same 

appearance as the steel-bunged bar. However, there were two important 

differences: - 

the bung length of the bar had been optimized using the 

theory described in Section 4.5 and the method 

described in Appendix C; 

(ii) the burg was made of tungsten carbide which has a modulus 

of elasticity of 534 MN/m2, that is 2.67 times that of steel. 

Similar to the steel-bunged bar, an auxiliary slug damper could be 

fitted to the free end of the bar. 

The four bars just described were fitted with a flange and spigot 

mounting whereby the bars were tightened to the bar-holder by means 

of six Allen screws that were evenly spaced on the flange face. The 

reason for choosing this type of end fixing, and hence a fixed overhang, 

was to ensure a constant rigidity of the mounting to facilitate 

experimental and analytical work. 

The bungs in (3) and (4) were finely ground to close tolerances before 

assembly so as to provide the desired mating pressure of 14mN/m 2. To aid 

assembly, the bung was refrigerated whilst the shank was heated in an 

oven so as to produce enough clearance for them to slip into one another. 

Finally, the bung was brazed to the spigot at the exposed end. 

7.2 SJM DAMPER DESIGN 

Slugs were made frcm a GEC heavy metal alloy with a density of 16.8 Mg/m3 

(0.607 Win 3 ). The slug dampers were cylindrical in shape and had a 

ncminal dianeter slightly under 25.4 mm (l. in. ). The actual diameters 

varied so as to produce different clearances between themselves and 

the acca-nmodating holes. There were three groups of slug dampers as 
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illustrated below: 

Main slug damper (length 52.4 nn) - There were six slug 

dampers, used in either the recessed bar or the steel-bunged 

bar. Their masses are tabulated alongside their diameters 

as follows: 

Diameter (mm) 

25.222 

25.243 

25.268 

25.293 

25.321 

25.347 

Slusi mass (kfO 

0.434 

0.432 

0.435 

0.435 

0.437 

0.438 

The mass variation was mainly due to the varying diameter, but slight 

inconsistencies were caused by variations in the threaded hole at one 

end of the slug. This threaded hole was to aid the slug removal from 

the damper hole. 

(2) Main slug damper (length 76 mm). - These were used exclusively 

in the tungsten-bunged bar. Diameters and masses are presented 

in the following table: 

Diameter (rm) Slug mass (kg) 

25.278 0.6379 

25.299 0.6364 

25.318 0.6410 

25.350 0.6415 
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(3) Auxiliary slug damper (lerigth 25.6 mm) - These were used in 

the tungsten-bunged and steel-bunged bars. Diameters and masses 

are shown in the following table: 

Diameter (mm) Slug mass (kg) 

25.226 0.209 

25.250 0.209 

25.282 0.210 

25.302 0.210 

25.322 0.210 

25.356 0.211 

7.3 INMUMENTATION AND EQUIPMENT 

7.3.1 Lathe for Frequency E2pponse Experiment 

Particulars of the lathe were presented in section 6.3.2. 

7.3.2 Bar Holder 

Fig. 7.5 shows the bar holder mounted on the saddle of the lathe. 

For the case of frequency response measurement, the bar under test 

was mounted onto one face of the bar-holder. For machining tests, 

the bar holder also allowed a stumpy boring bar to be mounted end-to--end 

with the boring bar under test. The function of this stumpy boring 

bar was to produce a standard chatter free surface prior to any test cut. 

Indexing of the two bars into their cutting position was achieved by 

allowing the bar holder to rotate about an axis normal to its base and by 

tightening after indexing the bar holder to the crPSS slide witb bolts 

located in the four comers of the base. 

7.3.3 Frequency Response Measurement 

The way in wbich the instrunents were connected for the frequency 

response measurement is slx)vm in the block diagram of Fig. 7.6. 

Functionally the instnnents fall into three groups as follows: 
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Force generation system consisting of, 

(a) an oscillator - D-890-B Muirhead 

(b) a power amplifier - Derritron 25-wass solid-state 

(c) an exciter VP2 permanent magnet type 

(d) a load cell it was made frýan a I" diameter tube 

with a wall thickness of, 0.030". It worked on the 

principle of strain detection, by a set of four strain 

gauges with two active and two passive so arranged as to 

provide for temperature canpensation. The cell was 

calibrated and found to have a sensitivity of 2.131 N/division 

of the pointer deflection on'the Philips PR 9307 set at 

1.0 mV/fsd. 

Force monitor system consisting of, 

(a) a Carrier Frequency Bridge - Philips PR 9307 

(b) a precision voltmeter for force level indication - 

Muirhead Wave Analyser - K-134-A used in its voltage 

measuring mode. 

Response measurement system consisting of-ý 

(a) a displacement transducer - 'Philips PR 9261 

(b) a vibration meter - Philips PR 9252/03 

(c) set of 8 strain gauges - Philips PR 9832 K110 rE 

etched foil gauges with electrodes. The disposition of the 

gauges in relation to the bar and the way they were 

connected up are shown in Fig. 7.7. 

(d) two Carrier Frequency Bridges - Philips PR 9307 

(e) a twin-matched filter - Dawe 1471 variable filter type. 

This instrument consisted of two identical filters which 

could be operated independently with a common power supply. 

For the frequency response experiment, it was used as a 
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pair of low pass filters to remove the high frequency 

contents of the force and displacement voltage signals 

before the phase difference between their main components 

was measured. 

(f) a phase meter - Wiltron 351 differential input model. 

(g) an oscilloscope - Medelec 4- cbannel fibre-optic recording 

oscilloscope. 

7.4 OBJECTS 

(1) To measure the amplitude and phase responses of the solid bar, 

I the recessed bar, the steel-bunged bar and the tungsten-bunged 

bar. 

(2) To measure the amplitude and phase responses of the recessed bar, 

the steel-burged bar and the turgsten-burged bar when fitted with 

different sizes of slug dampers. 

(3) To determine the optimum slug danpers for the recessed bar, 

the steel-bunged bar and the tungsten-bunged bar in terms of 

their rrLinimun amplitude response at resonance. 

(4) To assess the goodness of fit of the mathematical model for 

the case of single-slug damped bars. 

(5) To assess the dynarnic influence of the Model Sriou, lathe on 

the frequency response of the bar measured. 

(6) To canpare the theoretical stiffness with the experimental stiffness 

of the bar. 

(7) To establish an empirical relation between the danping ratio in 

the model and the radial clearance of the danper in the real 

system. 
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7.5 PROCEDURE 

The set-up is illustrated in Figs. 7.6 and 7.8. The exciter and 

the transducer were mounted diametrically opposite to each other 

sandwiching, in between them, the bar whose response was to be measured. 

The exciter delivered a hamonic force, whose magnitude was monitored 

by a load cell, to the tip of the durmy tool seated and secured in the 

toolpost of the bar. The amplitude response was picked up by the 

transducer which sent the signal onwards to the vibration meter for 

visual display. 

The term "phase response" is taken to mean the phase lag of the 

anplitude response signal in relation to the input force signal. 

The signal for amplitude response was derived frcm the strain gauges 

mounted at the root end of the bar whereas the signal for the input 

force was taken frcrn the load cell. These two signals were then 

sent through the two identical filters so as to remove their higher 

frequency components and finally into the phase-meter from which a 

phase lag reading was obtained. 

Response measurenents were taken in both the horizontal and vertical 

planes relative to the lathe. The frequency range was 50-300 Hz and 

the input force was maintained at a magnitude of 4.448N (1 lbf) 

peak-to-zero. 

7.6 RESULTS AND DISCUSSION 

7.6.1 Frequency response of bar 

The frequency response curves for various bars either on their own 

or fitted with slug dampers are shown in the figures whose numbers are 

indicated in Table 7.1. The carmon direction in which both the force 
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was applied and the amplitude was measured is shown in column 3. 

Also shown are the slug sizes and their radial clearances whenever 

it is appropriate. 

TABLE 7.1 

i N B Di i Slug (rrm) 
- 

Rad. clearance F g. o. ar on rect Maliý Aux. Main Aux. Remark 

7.9 Solid Horizontal - - - - - 

7.10 Solid Vertical - - - - - 

7.11 Recessed Horizontal - - - - - 

7.12 Recessed Vertical - - - - - 

7.13 Recessed Horizontal 25.268 - 0.0735 - Optimum 

7.14 Recessed Vertical 25.268 - 0.0735 - optimum 

7.15 Steel- 
bunged Horizontal 25.293 - 0.071 - Optimum 

7.16 if Vertical 25.293 - 0.071 - Optimum 

7.17 it Horizontal 25.293 25.250 0.071 0.081 Optimum 

7.18 it Vertical 25.293 25.250 0.071 0.081 Optimum 

7.19 Tungsten- 
bunged Horizontal 

7.20 it Vertical 

7.21 if Horizontal 25.299 - 0. '067 
optimum 

7.22 it Vertical 25.299 - 0.067 optimum 

7.23 Horizontal 25.299 25.282 0.067 0.065 Optimum 

7.24 Vertical 25.299 25.282 0.067 0.065 Optimum 

In general, it is noted that ordinary borir-g bars which were not fitted 

with dampers had an amplitude response curve with a very pronounced peak 

corresponding to a substantial amplitude Of vibration at resonance. 
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Also, their phase response curves indicate a very rapid charge in 

phase angles about the resonance. Examples can be found in 

Figs. 7.9,7.10$ 7.11$ 7.12,7.19 and 7.20.. In contrast, boring 

bars that were fitted with dampers possessed an amplitude response 

characterised by a dame-like peak at resonance; - and a phase response 

in which the phase argld change was more gradual with respect to the frequency 

of excitation. Such exarnples are found in Figs. 7.13 through 7.18 

and 7.21 through 7.24. 

The hcrizontal vibrational modes of the lathe occurved at frequencies 

that were reflected in the amplitude response curves shown in Figs. 7.15 and 

7.21. For example, in Fig. 7.15, the otherwise smooth amplitude response 

curve of the optimally-tuned main slug steel-bunged bar shows two kinks 

at the frequencies of 100 Hz and 140 Hz indicating the occurrence of 

the vibrational modes of the lathe at these frequencies. In addition, 

as is noted in Fig. 7.20, the lathe has one vertical vibrational mode 

at 190 Hz. The influence of this vertical mode was also present in 

Fig. 7.24 where the resonant frequency of the bar happened to fall very 

close to the modal frequency of the lathe. As a result, the amplitude 

response curve at resorkm'r-e became very ir-regular. 

To evaluate the theoretical frequency response curves to facilitate 

comparison with the experimentalresults,, equation (4.39) was employed 

so as to find the optimum dampirg ratio at which, by equations (4.16) 

and (4.17)ý the respective amplitude and phase responses were calculated. 

Successful application of these equations and others such as equations 

(4.38)a. nd (4.40) for the respective frequency and amplitude at resonance 
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at this optimun damping condition requires a knowledge of the 

following parameters: 

(a) G for tungsten-bunged bar = 0.6995 (see Section 7.6.5) 

(b) G for recessed bar = 0.726 (fram K. W. Ng(l)) 

(c) Horizontal natural frequency of tungsten-bunged bar, 

= 196 Hz (see Fig. 7.19) f 
no 

(d) Horizontal natural frequency of recessed bar, 

= 183 Hz (see Fig. 7.11) f 
no 

(e) Vertical natural frequency of tungsten-bunged bar, 

If = 236 Hz (see Fig. 7.20) 
no 

(f) Vertical natural frequency of recessed bar 

f 181 Hz (see Fig. 7.12) 
no 

(g) Mass correction factor for the case of slug rolling, 

1.5 approx. 

(h) Mass comection factor for the case of slug sliding or floating 

approx. 

(i) Horizontal static deflection of tungsten-bunged bar 

(See Section 7.6.2 or Table 7.2) 
X 

st 
2.683 pm 

Q) Horizontal static deflection of recessed bar,, 
(See Section 7.6.2 or Table 7.2) 

X 
st 3.742 pm 

W Vertical static deflection of tungsten-bunged bar 
(See Section 7.6.2 or Table 7.2) 

X 
st 

2.720 Pm 

(1) Vertical static deflection of recessed bar, 
(see Section 7.6.2 or Table 7.2) 

X 
st 

4.099 pm 

(m) Horizontal equivalent mass of tungsten-bunged bar 
(see Section 7.6.5) 

m-=0.708 kg 



215 

(n) Horizontal equivalent mass of recessed bar, 
(see Section 7.6.5) 

0.890 kg 

(o) Vertical equivalent mass of tungsten-bunged bar 

(see Section 7.6.5) 
0.744 kg 

(p) Vertical equivalent mass of recessed bar 

(see Section 7.6.5) 

m=0.839 kg 

The theoretical amplitude and phase responses for the case of optimun 

damping were calculated using, as-mentioned earlier, equations (4.39), 

(4.16), and (4.17). The calculated results were joined by a smooth 

curve and were presented as shown in Figs. 7.13,7.14,7.21 and 7.22 along- 

side the experimental results. In general, the agreement between the 

theory and experimental results was not satisfactory suggesting further 

refinements of the mathematical model were needed. Nevertheless, the 

existing model serves adequately in indicating the trend the response 

followed as the frequency was varied. A possible cause of the discrepancy 

will be discussed in Section 7.6.5. 

Using equations (4.38), (4.39) and (4.40), it was possible to calculate 

the respective values of damping ratio, the amplitude at resonance and 

the resonant frequency at the optimum damping for any single slug-damped 

boring bar. The following table shows these values for the single slug- 

damped recessed bar and the single slug-damped tungsten-bunged bar. 

In column 5 of the following table, the mass correction factor takes on 

the value I=1 when it is assumed that the slug is in either a sliding 

or floating mode; whereas z=1.5 when the slug is in a rotational mode. 
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Invariably, it is noted that in ternz of minimum amplitude at 

resonance, a slug operating in a rotational mode is the least efficient. 
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The mass ratio v in column 4 of the table was calculated using the 

relation P= G2. %. where the numerical values for G9 ms and m were 
iF 

taken from the list of data supplied preceding the last table. 

Frequency responses were also measured on bars fitted with slug dampers 

other than the optimun ones that have been reported in Table 7.1. 

To present these responses in a compact''manner, three features that may 

be regarded as being characteristic of the frequency response are chosen 

to be reported, namely: 

(1) thd frequency at which the amplitude lags behind the input force 

by 900, termed for short the "90()-fi-equency"; 

(2) the amplitude at the 90(i frequency,, termed the 11900- anplitude", and 

(3) the amplitude at resonance. 

These features are related to the slug size and the slug clearance. 

We shall ccnsider five different cases in respect of the three features 

as follows: 

(a) Steel-bunged bar fitted with main and auxiliary slug dampers and 

excited horizontally. The diameters of-the main slug hole and 

auxiliary slug hole were measured to be 25.435 mm and 25.412 nm 

respectively. The main slug of diameter 25.293 mm was used, 

hence giving a main slug radial clearance of 0.071 mm. Based on 

the auxiliary slug diameters supplied in Section 7.2.3. it is also 

possible to work out the auxiliary slug-radial clearance. The 

900-frequency, 900-amplitude and the amplitude at resonance can 

then be plotted against the radial clearance as shown in Fig. 7.25a. 

(b) Same as (a) except that the force was applied and the amplitude 

was measured in the vertical direction. Variations of these 

features in relation to the radial clearance are presented in Fig. 7.25b. 
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(c) Tungsten-bunged bar fitted with the main slug damper only and 

excited horizaitally. The diameter of the main slug hole was 

25.433 mm and based on the diameters of the-main slugs given in 

Section 7.2.2, the radial clearances were worked out. As before, 

the three features were plotted against the radial clearance and 

this is shown in Fig. 7.26a. 

(d) Tungsten-bunged bar fitted with the auxiliary slug danper only 

and excited vertically. The diameter of the auxiliary slug hole 

was 25.412 m. Variations of the tbree features in relation 

to the radial clearance are presented in Fig. 7.26b. 

(e) Tungsten-bunged bar fitted with the main and auxiliary slug dampers 

and excited horizontally. Diameters of the main and auxiliary slug 

holes were 25.433 rnm and 25.412 m respectively. Variations of 

the three features in relation to the radial clearance are presented 

in Fig. 7.27. 

7.6.2 Stiffness and damping of oveTlhung boring bar without Slug damper 

The solid bar can be adequately mxIelled by a simple spring-mass-damper 

system. With the slug-dampers removed, the recessed bar, the steel- 

bunged bar and the tungsten-bunged bar are no different fran the solid 

bar dynamically and hence can also be similarly modelled. From the 

textbook on vibrations, for a system with mass m, spring, constant k. 

and a damping coefficient c. and subjected to a sinusoidal force P 

at the frequency w2 the amplitude response Xo can be expressed as 

X0 xst 
ooe (7.1) 

cw + rEcc - wn wn 
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where xst is the amplitude at zero frequency, and it may be regarded 

-jk as the deflection of bar under the static force P; w=h is the 
ni ;M 

argular natural frequency; cc=2 mw n 
is the critical damping 

coefficient. 

Re-writing equation (7.1) gives 
2]2 

+ X0 2 [2 22= Xs 2 
oee (7.2) XO 

WcWt nc 

which has the form of a linear equation, 

are variables and b and d are constants9 
I 

y to XO 2 [1 2] 29x 
to X 

02[uj 

12 

"'n wn 

y+ bx = d. where y and x 

if we identify 

b to (2 2 )2 and d to X 
cc st 

Equation (7.2) suggests a method whereby the st. iffness and damping of 

the bar can be calculated. The method is explained as follows. 

Given an amplitude response curve of the bar obtained fran experiment, 

we can work out the values for y and x at each frequency of excitation w. 

Each pair of X, y values makes up a point on the rectangular coordinates. 

A straight line is then fitted through the set of points. The y-intercept 

gives the value of X22P 
st whereas the slope is -(22 Since X 

st C c 
it is a simple matter to calculate the stiffness K from this relation. 

Due to the fact that the amount of scatter of the set of points makes 

it difficult to determine the slope reliably, the damping ratio cE is 
c 

not obtained by this means. 

Figs. 7.28(a) and (b) are examples of the results obtained frcm applying 

this method to the tungsten-bunged bar excited in the respective 

horizontal and vertical directions. Similar graphs which are not shown 

here can also be drawn for determining the stiffness k of other bars. 
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From these graphs, the stiffnesses were calculated and were entered 

in the column 4 of Table 7.2. The values of Xst fran which the 

stiffnesses were calculated are given in column 3 and the theoretical 

stiffnesses determined in Appendix A are shown in colum 5. On 

canparison, experimental and theoretical stiffnesses in colums 4 and 

5 respectively agreed remarkably well. Since the sinusoidal force 

input of 4.448 N was too small to initiate any possible operation of 

the stick-slip mechanism in the machine tool,, the agreement was to be 

expected. It is also noted that experimental stiffness in the vertical 

plane was always lower than that in the horizontal plane. 

To find the damping ratio -E , it is preferable to use the expression C c (2) 
for the amplitude response at resonance XP That is 

st 

1 

2.2 
c 

0< .2<0.707 cc 

mp>, 1 

frm, which the solution for (c ) is obtained as c c 

c c 

Taking acount of the constraints 

the precedirg equation becanes 

c 
[12L 

- 
Fý12ý 

cc -Ili HP 

x 
0 0.707 and 

c 3ý 
c st 

*** (7.3) 

Using equation (7.3)5 the damping ratio 2 can be calculated from a c C 
knowledge of the maximum amplitude ratio Mp derived from experiment. 

The Xp and 2 are shown as the first six entries in the respective cc 

columns 6 and 7 of Table 7.2. 
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7.6.3 Damping'bf'overhung boring bar'with'slug damper 

Frm a control point of view. 
(2) 

, the roots of the characteristic 

equation that are located nearest the imaginary axis have a predominant 

influence on the trensient behaviour of higher-order systems. Thus, 

the transient behaviour of an overhung boring bar with one or more slug 

dampers, which is obviously governed by a higher-order characteristic 

equation than two, may be approximated by a second-order system and the 

concept of damping ratio may be used to describe the transient behaviour 

of this higher-order system. It must, however, be emphasized that the 

tevm "damping ratio" is different from that which models the damping action 

of the slug damper in Fig. 4.1. The damping ratio for a higher-order 

system is simply an approximate measure of its transient behaviour. The 

damping ratios calculated using equation (7.3) for overhung boring bars 

with slug dampers are entered from the seventh entry downwards in columns 

6 and 7 of Table 7.2. 

7.6.4 Percent maximun overshoot as a measure of danping 

A typical system response of a second-order system to a step-input 

is shown in Fig. 7.29. Various specifications indicative of the 

damping action in the transient behaviour of the system are possible. 

We shall choose as our specification, the percent maximum overshoot which, 

according to Raven (3) 
, is defined as 100 times the maximum amount by which 

the response overshoots its final steady-state value divided by the final 

steady-state value. 

For a second-order system, it can be shown 
(3) 

that the percent nuximum 

-overshoot, deisgnated as P. O. is 

c : iEý 

, o9o (7.4) 
cc) P. O. = 100 e 

EC 
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1, t, 

Fig 7.29 System response to a step input 
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Using equation (7.4) , the P. O. for each bar was calculated and the 

results are entered in column 8 of Table 7.2. 

7.6.5 Damping ratio and mass correction factor of slug damper 

According to the dynamic theory developed in Chapter 4, for-the case 

of a borir-g bar fitted with a single slug damper,, its mass correction 

factor I and the damping ratio 2 can be detemined from equations cc 
(4.21) and (4.22) that are repeated here as follows: 

X 
2) 2 

(h 2_1) 
Vh2 

j= Xst 

2-1)2 
, 
''XO 

. ** (4.21) 
(1 + 1+ (h (T-) 

2] 

st 

and 
h h2 

t2 (4 . 22) 
ccT (h2_1) 

where the symbols are as defined in nomenclature 4.1. 

Both equations are applicable to steady-state vibrations in the 

horizontal as well as vertical directions. It must be noted that 

Z and 2, -thus calculated, are related to a particular frequency 
c c 

w at which the vibrational displacement lags the impressed force by 

90 0 
-i. e. the 900-frequency. Despite the assumption that c and z c c 

are to be constant in the theory, it may be possible that they will vary 

as w is varied. For this reason, other means are needed to validate 

or disprove this particular assumption. 

By definition, the natural frequency of the baritself, f 
no$ is given 

by 

no 21 
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in which'K is the stiffness of the bar, the value of which had 

already been detemined as in colunn 4 of Table 7.2. By re-arranging 

this equation, the equivalent mass of the bar is obtained. Thus, 

K 
m (211 fno) 

(7.6) 

Using equation, (7.6) and substituting the nLunerical values for K as 

in colum 4 of Table 7.2 and for f., fran the amplitude response curves, 

the-equivalent mass is calculated. The results are tabulated as 

follows. 

Recessed Horizontal 184 

Recessed Vertical 181 

Tungsten- 
bunged Horizontal 244 

Tungsten- 
bunged Vertical 236 

(Hz)l EOUIV. MASS mOcR) 

0.890 

0.839 

0.708 

0.744 

By definition, the natural frequency of the bar fitted with an integral 

slug, i. e. a slug that is not allowed to move relative to its slug hole, 

is given by 

Iz1 J-ý 
fn 2n iý( 1+11) ... (7.7) 

where p=G 
ms in which ms is the mass of the slug danper and G 

M 
the amplitude ratio as defined in Appendix B. There are two different 

ways of calculatirg G :- one is based on the static deflection theory 

of cantilever and the other is derived from experimental measurements. 

They are discussed sequentially as follows. 
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First, the theoretical method assumes that the overhung boring 

bar can be modelled by a cantilever which is subjected to a concentrated 

load W at a point distant zs fram the fixed end as shown in the following 

diagram. The overall length of the cantilever is Z1. 

F11-an the theory on cantilever deflections, it is noted that the 

displacement Y. and the slope 
ý11 

at the point of application dx 
x=y s 

of the load W are respectively 

y- 
wk 

s3' and 
dy wt 

92 
s 3EI dx 

Ix 

=- t 2EI 
s 

The deflection at the free end is 

y+ Yl s d! 
yx-l 

x= x 

which can be simplified to 

yl = Ys _ 
(31l-ts) 

By the definition of G, 

G 
Ys 

= 
Us 

Yl 311-Zse. 9 (7.8) 
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Fran Fig. 7.1 fcr the tungsten-bunged bar, 

294 rmn and X1 381 mm 

Hence, by equation (7.8), G= 2'. ý * 294 '=0.6926 
3x 38f---294 

Next,, the experimental method is employed. It is based on the 

amplitude response measurements conducted on a test-bed so as to 

simulate as closely as possible the ideally rigid end-fixing condition. 

Two horizontal amplitude response curves of the tungsten-bunged bar 

were obtained at the applied sinusoidal force of 0.919 N peak-to-zero. 

for the cases of (a) no slug and (b) integral slug. They are as 

shown in Fig. 7.30 fran which it is noted that: 

(a) the natural frequency with no slug is fno =--244.6 Hz, and 

(b) the natural frequency with an integral slug is fn= 203.5 Hz. 

1JK 
.R That is, R= 244.6 fno 

m 

and 203.5 T-F-mTKl-+11) fn 

244.6 
Carrbinir-g both equations gives 

il- -+11 
203.5 

fran which 
244.6 2_ 

l=0.4447 V= (2-OT. ýý) 

By definition, w.: 
G2 ms where ms=0.6435 kg for the integral 
m 

slug obtained by actual weighing, and m=0.708 kg for vibrations 

in the horizontal plane, it follows that 

G 
10.4447 x 0.708 0.6995 0.6435 

By canparison, the theoretical G is different from its experimental 

G by 1.00%. The error in the theoretical G2 is understandably higher 

and is 2.00% which is acceptable. Frm now on, let it be agreed that 
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G=0.6995 in further calculations. 

Two cases will be considered for the calculation of the mass 

correction factor t and the damping ratio 
c 

(a) For the case of the tungsten-bunged bar fitted with various 

main slugs and excited horizontallyq the values of k and S 
C c 

are calculated using equations (4.21) and (4.22) for each size 

of the slug danper. As an example, we shall illustrate in 

detail the calculations involved for this bar fitted with an 

cptimun slug whose size and mass are respectively 25.299 mm 

and 0.6364 kg. 

By measumment, the diameter of the main slug hole in the 

turgsten-bunged bar is 25.433 mm. Hence the radial clearance, 
I 

is (25.433 - 25.299)/2 = 0.067 m. m 

From Fig. 7.21, the 900 -amplitude, which is designated as X0 in 

equation (4.21)$ is Xo = 9.8 vm; the 900-frequency. fgoo = 227 Hz. 

Since G=0.6995, and the equivalent mass of the tungsten 

bunged bar in the hcrizontal direction is m=0.708 kg, the mass 

ratio v can be calculated. Thus, 

G2 MS 
, 

(0.6995)2 x 0.6364 
- 0.4398 

m 0.708 

The natural frequency of the tungsten-bunged bar fitted with 

an integral slug is 

fK1.658 x 10 
M; n -Li m +11 6.708 x (1+Z5.4399) 21 Ll =+u 211 

j 

= 203.0 Hz. 
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and it follows that the frequency ratio 

f* 227 go = 1.1182 frý 203 - 

nxn Table 7.2, the static deflection of the turgsten-bunged bar 

under a load of 4.448 N (1 lbE) in the horizontal direction is X 
st 

2.683 pm. 

Using equation (4.21) 

2.8 )2 . (1.11822 - 1) x 0.4 398 x 1.1182 2 
2.683 

(1 + 0.4398) 1+ (1.11822-1)2 x (9. '8 1 
2.683 

0.6948 

And using equation (4.22) 

1.1182 0.6948 x 0.4398 x 1.11822 0.69482 
2 

(1 + 0.4398)(1.1182 2_1) 

= 0.4247 

Similar calculations can be performed for the tungsten-bunged bar 

fitted with slug dampers other than the one mentioned in the example. 

The results of the calculations are presented in Table 7.3. 

Variations of x and 2 in relation to the radial clearance a are ccm 

shown in Fig. 7.31. 

(b) For the case of the tungsten-bunged bar fitted with the auxiliary 

slug only'and excited vertically, the values for z and 2 may be 
c c 

calculated in the same manner as those presented in (a). Since the 

centre position of the auxiliary slug is different fran that of the 

main slug, the value of G is expected to be different. From experiment 

the value of G is found to be 1.0814. The results calculated are 

presented in Table 7.4. 
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Fig 7.31 Variations of c/c C and t in relation to main damper 

radial clearance, am, of tungsten-bunged bar excited 

horizontally 
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Fig 7.32 Variations of'c/c c and t in relation to auxiliary 

damper radial clearance, aa* of tungsten-bunged bar 

excited vertically 
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If the curves in Figs. 7.31 and 7.32 are plotted in a log-log 

scale as shown in Figs. 7.33 and 7.34 respectively, a linear relationship 

becmes obvious. It follows that the damping ratio 2 can be related c c 
to the radial clearance aI (where i=m or a) by an empirical equation 

such as, 

2=a aP cI c 
9.. (7.9) 

where a and a are ccnstants to be calculated frcm the log-log graphs. 

(a) For the tungsten-bunged bar fitted with different sizes of 

main slugs and excited horizontally, the empirical equation is 

calculated to be 

3 
ajl. 

6977 
-2 = 4.5976 x 10- eue (7.10) 

where 0.0415 m< a'-, < 0.0775 um M 
Extreme caution must be exercised when using equation (7.10) 

outside the limits specified for am. 

(b) For the sarne bar but fitted with different sizes of auxiliary 

slugs and excited vertically, the empirical equation is 

ý2 = 6.4831 x 10-3 a -1.3764 
oe. (7.11) 

CC 

where 0.028 m<aa<0.093 m 

Referring to Figs. 7.33 and 7.34, it is noted that the linear 

approximations are good. The coefficient a and the index a 

in equations M. 10) and (7.11) are seen to be different. 

This is caused by the different locations of the slug dampers 

and the different directions of the damping action in these two 

cases. 
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It is noted in Tables 7.3 and 7.4 that the mass correction factor L, 

contrary to wbat is expected,, namely P. =_1 + R2' + Mf OC 
MS 

hence P. ;ý1, turns out to be always less than unity. 

The discrepancy is better understood if it is recognised that 

the fluid film surTounding the slug possesses not only the damping 

characteristic as has been taken into account by the damping coefficient c 

in the mathematical analogue, but also an elasticity characteristic 

which miýy be model-led by a spring constant kf connected in parallel 

with the dashpot of the analogous systein shown in Fig. 4.1. Mathematically$ 

the spring force term caused by the 
. 

spring constant kf will appear in 

conjunction with the iýertia tenn and the former will have an opposite 

sign to that of the latter. Thus, taking account of the elasticity 

effect due to the fluid film, equations(4.6)and(4.7)are modified to become 

respectivelY 2 

_[ 
2(m 1, 

m+ jwc +ýK x 
w Gl- R+ fpc 

w2G211 

2 (ms ý2 kf 
-2 + mic c 

Po 
T2 

W7, 

) 
+ bj 

] 
X2 G.. * (4.6a) 

and 

2k 

-W 
2 IN + Mfpc 

'2) 
+ jw x jwc X (4.7a) 

J' (MS 
2 Cl 11 S+mf PC- 2'ý 0 

R2 

Pr\--Viously, Jt was defined as t+X2+ 
Mf 

ac. -2 - T2 
MS 

If now we introduce 11 to replace Z so that 

2 Mf k 
-2 and redefine P. such that tf 

R 2 MS lit sw 
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to account for the elasticity effect of the film, then two 

observations of k can be made: - 

(a) I is now a variable, being a function of kf, w and ms; and 

(b) it can becane negative if' 
kf 

> m w2 s 

Due to the fact that the 909-fiequency always occurs ahead of the 

resonant frequencys provided that kf rejýains constant, the value of 

z increases as the frequency is increased frcm the 900-fr\--quency to 

the resonant frequency. It follows that P. at resonance will be larger 

than the corresponding entries suggested in Tables 7.3 or 7.4. In 

particular, for the optimum radial clearance, namely, 0.067 mm for the 

main slug and 0.065 mm'for the auxiliary slug, the values of 2, at 

resonance will be larger than 0.6948 and 0.8789 respectively. In view 

of this, the errors that may occur in the assumption that the slug slides 

or floats around resonance, i. e. k=1, are not as significant as it 

appears at first sight. We shall not attempt to pursue any further the 

refinement of I here apart from the runark that investigations along 

this line are being conducted by M. Twumasi-Boateng (4) in the Department. 

Another source of error which may cause i-to deviate fran unity stems 

from the fact that the frequency response was measured with the overhung 

boring bar mounted on the latheý. Owing to the flexibility in the elements 

that make up the lathe, the frequency response thus measured includes 

the effects of the bar as well as of the lathe. This source of error is 

believed to be small in ccmparison with that caused by the elasticity 

effect mentioned earlier. 
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7.7 CONCWSIONS 

All subsequent conclusions are made in respect of the frequency 

responses obtained with the applied sinusoidal force of 4.448N peak- 

to-zero. 

1. The optimum damper for the recessed bar, the steel-bunged bar 

and the tungsten-bunged bcw are presented in the following table 

SWG SIZE (m) RADIAL CLEARANCE (mm) 
BAR MAIN AUXILIARY MAIN AUXILIARY 

Recessed 25.268 0.0735 

Steel-bunged 25.293 - 0.071 - 

Steel-bunged 25.293 25.245 0.071 0.083 

Tungsten-bunged 25.299 - 0.067 - 

Tungsten-bunged 25.299 25.245 0.067 0.065 

2. In the frequency range of 100 to 300 Hz, the lathe possesses 

(a) two horizontal modes of vibration at 100 and 140 Hz; and 

(b) one vertical mode of vibration at 190 Hz. 

3. The experimental stiffness of the bar is in good agreement with 

its theoretical stiffness. The experimental stiffness is lower 

in the vertical plane than is the case in the horizontal plane. 

4. The goodness. of fit between the theoretical and exper: imental 

frequerr-y response curves at the optimum damping condition is 

in general poor. But the general trend of the frequency response 

is adequately predicted by the theory. 
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In terms of the percent maximun overshoot (P. O. in the last 

colunn of Table 7.2) taken as a measure of the reluctance of the 

overhung boring bar to return to its equilibriun position after 

sane initial disturbances, the relative performance, of the boring 

bars can be assessed. The boring bars are listed in the 

ascendirg order of P. O. in the horizontal direction as follows: 

(a) Tungsten-bunged bar fitted with optimally-tuned 

main and auxiliary slug dampers. 

(b) Steel-bunged bar fitted with optb-nally-tuned 

main slug damper. 

(c) Tungsten-bunged bar fitted with optimally-tuned 

main slug damper. 

(d) Steel-bunged bar fitted with optimally-tuned 

main and auxiliary slug dampers. 

(e) Recessed bar fitted with optimally-tuned single 

slug damper. 

(f) Turgsten-bunged bar without damper. 

(g) Solid bar without damper. 

(h) Recessed bar without damper. 

6. For the tungsten-bunged bar fitted with different sizes 

of main slug dampers and excited horizontallys the variation 

of 2 in relation to the radial clearance a is given by the cM c 
empirical equation 

-2 = 4.5976 x lö-3 a -1.6977 
to* (7.10) 

where 0.0415 irm <am ic 0.0775 nim. 

7. For the tungsten-bunged bar fitted with different sizes of 

auxiliary slug dampers and excited vertically, the variation 
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of 2 in relation to the radial clearance a is given by 
Ca c 

6.4831 x 10-3 a -1.3764 
», oe (7.11) 

where 0.028 mm <a<0.093 mm. a ", 

8. The mass correction factor k is observed to be lower than unity, 

which is inconsistent with the assunption of z. Two sources 

of error are suggested: 1, 
(a) that the elasticity effect of the fluid film is significant 

and has to be accounted for properly, and 

(b) that the dynamics of the lathe modify the frequency response 

of the overhung boring bar measured and hence the mass 

correction factor 2, thus calculated is affected. ' 
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8. BORING'STABILITY'TESTS 

There are three objectives to be fulfilled in this chapter, rkunely, 

(a) to elucidate the considerations undertaken in the design stage 

of the bcring tests, 

(b) to report on the test results of various boring bars with 

I reference to their stability behaviour during boring, and 

(c) to assess the goodness of fit of the stability model developed 

in Appendix E. 

8.1 DESIGN OF EXPERIMENTS 

As was reviewed in section 2.2, vibrations in cutting, known as 

chatter, are caused by: 

(1) the cutting process dynamics, 

(2) the machine tool dynamics at the tool point where cutting 

forr, es are generated5 and 

(3) the mutual directional orientation of the preceding two factors. 

Despite the analytical carnplexities of the cutting Process dynamics, 

some major influencing parameters may be readily identifiable, namely, 

the work material, tool geometry, tool wear, tool material, workpiece 

temperatureq cutting speed, feed and depth of cut. With the exception 

of the workpiece tEmperature and tool wear, all parameters are readily 

controllable in the design stage, or during the course of the test. 

Jnvariablyý any test will have to be such designed that some or all of 

the controllable parameters are varied independently of each other and 

their effects on machining stability will be observed. Tool wear and 

workpiece temperature, owing to their possible effects on the cutting 

process dynamics, hence the machining stability,, will have to be 
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monitored within close limitEi so that their effects can be regarded 

as constant. On account of the time constraint, we chose to experiment 

on two different workpiece materials with tools of two different tool 

gecmetry. Detailed investigation was conducted, however, on one of 

these two worl<piece materials, specifically the EN8 steel, and with 

one of the tools. The cutting speed, having noted to have less 

influence on machining stability compared with other parameters, was 

made to vary in large discrete steps whereas the feed and depth of cut 

were made to vary in finer discrete steps that were within the practical 

range of profile bcring. 

The dynamics of the machine tool at the tool point can be considered 

to be the vectorial sun of the dynamics of individual elements that 

make up the machine tool at the tool point. In the case of boring, the 

boring bar itself possesses dynamics - commonly represented by its 

frequency response curve - whose contribution towards the overall 

dynamics is extremely significant. The overall dynamics can also be 

modified substantially if the workpiece to be machined is flexible. Since 

the objective of the investigation is mainly to assess the machining 

behaviour of different designs of boring bars elements other than the 

boring bar within the system must be made relatively rigid so that 

their resulting dynamics is small in ccmparison with that of, the bar. 

For this reason and the other reason that the flow of chip during 

bcring must not be restricted, the shape of the workpiece takes the 

fonn of a collar as described in Section 6.1.2 and Section 8.2. 

The criterion of stability is. based on the absence of cMtter marj<s 

on the machined surface. Very often, this is good enough. However, 

surface irregularities that can sanetimes be mistaken as chatter marks 

can also occur, as a consequence of a phenanenon known as forced vibration 
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as discussed in Section 2.2. Usually on a lathe, forced vibrations 

arise fran elements that have to undergo periodic motions and if these 

elEments are not properly balanced, centrifugal forces will be set up 

and will leave their marks of a periodic nature on the machined surface. 

In view of this, before the test was started, possible causes of forced 

vibrations on the lathe were identified and eliminated. 

Machining stability results were obtained using the tungsten-bunged 

boring bar whose bung length was optimised using the theories developed 

in Chapters 3 and 4. SpecificaUy, the thecry in Chapter 3 provides 

the optimun lergth in term of the maximun'dynamic stiffness at resonance 

that can be achieved; whereas the theory in Chapter 4 gives the optimun 

length in texim of the maximum stability limit against chatter. Appendices 

C and D show respectively the methods for calculating the optimum, bung 

length based on the theories presented in Chapters 3 and 4. It is noted 

that both methods give roughly the same value for the optimum bung length, 

namely 220 mm, according to which the tungsten-bunged bar was manufactured 

fcr test purposes. Ideally in order to test the validity of the theories, 

one needs to experiment with a series of tungsten-bunged bar, each having 

a different bung length. Unfortunately, owing to the cost incurred in 

this alternative option, we have to be satisfied with only one tungsten- 

bunged bar. It follows that the results can in no way indicate that the 

bar is of the optimum bung length although ccmparison with other designs 

in respect of their machining capability still holds. 

8.2 INSTRU4MATION AND EQUIPMENr 

Details of the bcring bars, the slug dampers . the bar-holder and the 

lathe on which the bcring tests were corxiucted are presented in Sections 7.1 

through 7.4. 
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1. Boring tool 

Although a number of boring tools were tried, basically the results 

to be reported and discussed were obtained frm the use of two tools 

of the same tool material but of different tool gecmetry. For brevity 

they are labelled as: 

(a) University specification tool, designated as the U tool - 

Sandvik Commant circular shank left-handed boring tool 

tool No. 140-3/81"dia., with a brazed-on carbide tip. The tool 

geanetry is as shown in Fig. 8.1 in which it is noted that the 

tool shank is at an angle of 590 measured firm the longitudinal 

axis of the bar. Nose radii bf 0.01011 and 0.03011 were used. 

(b) Rolls Royce specification tool, designated as the "R tool" - 

Also a Sandvik Coromant circular shank left-handed tool as in (a). 

Nevertheless, the tool gecrnetry is different and is as shown in 

Fig; 6.19. Nose radius of 0.03011 was used. 

2. Workpiece 

Two different wcrkpiece materials were used, namely: 

Steel BS970: 955-EN8, a 401 normalized carbon steel. Details 

of its mechanical properties can be found in Section 6.3.2. 

Nominal dimensions of the workpiece are: 5" O. D. (127 mm),, 

3111 I. D. (89 m) and a thickness of 1" (25 m). 

(b) 3% Chrome molybdenum nitriding steel, designated as7RRS/HBH 

steel by Rolls Royce Ltd. which was the supplier of this steel 

for test purposes. The average Brinell hardness of this batch 

was measured to be 395. Dimensions of the workpiece are: 

4111 O. D. (110 rrm), 311 to 31" I. D. (75 to 90 m), 2 and a thickness 

of 211 (50 m). 
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Type: - Coromant circular shank no. 140-3/8 in dia. 

! 5ý top rake 

5" front an 

Nose radius: -0-010 or 0-030 in 

Fig 8.1 Nanenclature and geanetry of the U tool 

used in the stability test 
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Other instruments employed in the tests include: 

(a) Tachometer for measuring the spindle speed of the lathe, 

fran which the actual cutting speed can be calculated if 

desired. 

(b) Carrier frequency bridges - Philips PR9307 

(c) Set of 8 strain gauges - Philips PR9832 K/10FE etched 

foiled gauges with electrodes. Their arrangement in 

relation to the boring bar and their connection in the bridge 

circuit are shown in Fig. 7.7. 

8.3. OBJECTS 

(1) To study the effect of cuttirg speed, depth of cut and feed 

on machining stability. 

(2) To canpare the machining capability of different boring bars 

in respect of their maximum depth of cut before the occurrence 

of chatter. 

(3) To assess the goodness of fit of the stability theory presented 

in Appendix E. 

8.4. PROCEDURE 

The set-uP is shown in the photograph of Fig. 8.2. It is noted that 

a stunpy boring bar is mounted end to end with the boring bar under 

test. To ensure a consistent chatter-free finish of high quality on 

the surface to be bored, and a pre-test bore concentric with the axis 

of rotation, the stumpy boring bar was employed to prepare such a 

surface prior to any test cut. Indexing of the two bars into their 

cutting position was achieved by allowing the bar holder to rotate 

about an axis normal to its base by securing after indexing the bar 

holder to the slide with four bolts located in the four corners of 

the base. 
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The cutting tool tip on the boring bar under test was carefully 

djusted so that, without any cutting load, itwas 0.005" (0.127 mm) 

above the horizontal plane through the spindle axis. The workpiece 

was clamped on a three-jaw chuck and was bored first of all with a 

stumpy boring bar using a fine feed to obtain a good finish. ' The 

bcring bar under test was then indexed to its boring position and a 

cut of a certain depth was taken. To economize-on the workpiece material, 

two and sametimes three cuts of different depths were taken on the 

same workpiece. Frcm. time to time, attempts were wade to cut into the 

chattered surfaces using the boring bar under test at a light cut so 

as to determine if the surface irregularities could be removed. 

I 
For the tungsten-bunged bar fitted with a main slug, some boring tests 

were conducted using different tuning conditions, i. e. different slug 

diametersý in order to establish the limiting depth of cut when the 

feed, adopted was 0.0065"/rev (0.1651 mm/rev) and the spindle'speed was 

500 rpm on a bore diameter of 3111, that is equivalent to a cutting speed 

of 458 ft/min or 140 m/min. In terms of surface quality, this condition 

was found to be around the optimum for EN8 steel. The tests were limited 

in number for it was found that repeatedly fixing and removing the boring 

head to allow the slug to be changed caused a loosening in the fit between 

the head and the bar. In consequence, the rigidity of the boring bar 

at the tool point'deteriorated. 

The main difficulty encountered in setting the depth of cut was to 

establish the initial reference at which the boring tool just began to 

contact the bcre surface. The difficulty was overcome with the help 

of the strain gauge signals derived from the strain gauges cemented 

at the root end of the bar. With the carrier frequency bridge set 

to the mst sensitive range, this initial reference was taken to be 
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the reading cn the dial for depth of cut at which the pointer on 

the meter of the bridge began to deflect. 

8.5 RESULTS AND DISCUSSION 

Since the lathe on which the machining tests were conducted indicates 

feed and depth of cut readings in imperial units, it will be convenient 

to adopt in this report the units of inch/rev for feed and inch for 

depth of cut. Whenever a feed or depth of cut value is first encountered, 

it will be expressed in both the imperial unit and metric unit, the 

latter being enclosed in brackets. Any subsequent reference of the same 

quantity will be in imperial units only. The depth of cut was the 

set value as indicated on the dial of the lathe; the actual depth of 

cut is obviously lower. 

8.5.1 Boring EN8 Steel 

The following results were obtained from boring with a 0.01011 (0.254 rim) 

nose radius U tool and are presented according to the boring bar with 

which the tests were conducted. 

Solid bar - apart frcm one stable cut at a depth of 0.00311 

(0.0762 m), feed of 0.006511/rev (0.1651 nmVrev), and a speed 

of 500 rpn, chatter always occurred under any condition. - The 

stable cut observed, however, was not always repeatable. An 

example of the type of chattered surface obtained is shown in 

Fig. 8.14. 

(2) Tungsten-bunged bar without slug Only depths of cut below 

0.00711 (0.1778 nm) in the feed renge of 0.004411/rev. (0-1118 mm/rev) 

to 0.010411/rev. (0.2642 m/rev) and speed rangd of 400 rpm to 
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700 rpm could be achieved with chatter-free finish. Repeatability 

of results was not satisfactory$ dependent significantly on the 

boring tool finish. 

(3) Optimally-tuned main-slug recessed bar - Fig 8.3 shows the effect 

of depth of cut and feed on stability at the speed of 500 rlxn, 

equivalent to 458 ft/min for a bore diameter of 31". The stability 

borderline that separated the stable from the unstable cuts, ie the 

full dots fran the circles in Fig 8.3. was difficult to locate. 

However, 'the general trend was obvious, namely, the limiting depth 

increased as the feed'increased until, the depth reached 0.02511 

(0.635 mm) at the feed of 0.004411/rev and 0.0065"/rev, for heavier 

feeds up to 0.010411/rev, the limiting depth decreased slightly. 

As can be seen fran Fig 8.3 at sarie light depths of cut of 0.0051, 

(0.127 mm), partly chattered surface was obtained. It seems 

reasonable to suggest that at these light cuts, the slug damping 

mechanism was not cperating effectively. 

(4) optimally-tuned main-slug steel-bunged bar - Fig B. 4 shows the 

effect of speed on the limiting depth of cut at the feed of 

0.004411/rev. The stability borderline gradually lowered towards 

the high speed end of 900 rpm. At the lower speed of 250 rpms at 

times difficulties arose when deciding if the surface unevenness 
of 

was the ccinsequence/instability or of the inherent poor surface 

finish due to the law cutting speed. Some of these results were not 

repeatable, as is indicated by the presence of more than one symbol 
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in Fig 8.4 at the same. boring condition. Non-repeatability of 

performance is believed to be caused by the wear condition of the 

boring tool and the foniation of built-up edge at low cutting 

speeds. At light cuts, slight tool wear was proved to be benefi- 

cial for it improved stability. The improvement was probably the 

result of additional danping produced by the wear land rLbbing on 

the surface. 

Fig 8.5 shows the vaHations ýf limiting depth of cut in relation 

to the feed when cutting at the spindle speed of 500 rpm. As the 

bore diameter varied slightly around the nardnal value of 31". the 

- real cutting speed would change''within an interval whose width was 

acceptable since the cutting, speed had little effects on the limiting 

depth of cut. From Fig 8.5, the maximun limiting depth of cut was 

sawiewhere between 0.02511 (0.635 mm) and 0.030" (0.762 mm) at the feed 

of 0.006511/rev. The stability borderline shows the same pattern of 

variations as that in Fig 8.3. 

(5) optimally-tuned twin-slug steel-bunged bar - Fig 8.6 shows the 

relation between the limiting'depth of cut and feed at the speed of 

500 rpm. Due to the OPerlatiOn Of the additional slug damper, the 

maximum limiting depth was increased to sarewhere between 0.0501, 

(1.27 r=) and 0.060" (1.524 mm). 

(6) optimally-tuned main-slug tungsten-bunged bar - Fig 8.7 shows the 

effect of depth of cut and speed on-Stability When the feed was 

kept at 0.006511/r-ev. It is noted that the limiting depth decreased 

as the cutting speed increased. At the lower cutting speed of 

250 rpm, due tothe formation of built-up edges the surface finish 
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produoed was poor. In consequence, there was some difficulty in 

deciding the occurive-noe of chatter by way of inspecting the bored 

surface for chatter marks. 

Fig 8.8 shows the limiting depth of cut variation relative to the 

feed at the constant spindle speed of 500 rpm. The pattern of 

variation is similar to that shown in Figs 8.3,8.5 and 8.6. Me 

iruxlzun limiting depth was soriewhere between 0.060" (1.524 m) 

and 0.07011 (1.778 mn). 

]Fig 8.15 is a photogreph showing some typical finishes obtained for 

three different depths of cut at the feed of 0.0065"/rev and the 

speed of 500 rpm. The depths of cut at the top, middle, and bottom 

of the workpieoe are 0.02011,0.030" and 0.07011 respectively. Chatter- 

free surfaces were obtained under these three conditions. There was 

scme scoring on each finish,, but the worst was observed on the heaviest 

depth. The problem of scoring is a significant feature in boring with 

the damped tungsten-bunged bar, either of single-slug or twin-slug 

configuration. The subject will be taken up later. 

Some "tuning" was perfortred on the tungsten-bunged bar by means of a 

limited number of boring tests using slug dampers of different 

diameters. At the speed of 500 rpm,, and the feed of 0.006511/rev, 

the limitirg depths for different slug dampers were found to be as 

follows. 
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Limit. depth (in) 

0.055 

0.060-0.070 

0.060 

0.035 

(7) Optimally-tuned twin-slug tungsten-bunged bar -Tig 8.9 shows the 

effect on stability of depth of cut and feed at the speed of 500 rpm. 

The pattem of variation of the limiting depth of cut is very similar 

to that in the other diagrams such as Figs 8.3,8.51,8.6 and 8.8. 

owing to the additional slug damper, the maximum limiting depth was 

increased to between 0.10511 (2.667 mm) and 0.110" (2.794 mm). 

The photograph in Fig 8.16a shows two finishes obtained with the 

Optimally-tuned twin-slug tungsten-bunged bar. The surface at the top 

of the photograph was produced at a depth of cut of 0.01011, a feed 

of 0.006511/rev and a speed of 500 rlxn, which is the typical finishing 

cut in boring practice. The surface at the bottan was produced at a 

heavier cut) namely 0.02011 whilst other conditions were identical. 

Aside from some scoring, the finish is satisfactory and it is definitely 

chatter-free. Better finishes could sometimes be achieved when the 
I 

chip produced were neatly conducted away firm the cutting region. 

The . photograph in Fig 8.16b shows some finishes obtained when taking 

much heavier depths of cut. The surface finish in the middle was 

obtained with the stimpy boring bar and was regarded as the standard 

surface on which the two other cuts were taken. Obviously the finish 

is of high quality by virtue of the high rigidity of the stunpy bar. 

The surface at the top was produced at a depth of cut of 0.03011 and 
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that at the bottan at 0.070'.. Finishes are slightly inferior to 

the standard in the middle; nevertheless,, they are chatter-free. 

8. S. 2 Boring RRS/HBH steel 

A few boring tests were performed on the RRS/HBH steel to find the limiting 

depth of cut at various feeds when the speed was kept at 190 rpm, using a 

0.01011 nose radius U tool. Results of these tests were presented graphically 

as, shown in Figs 8.10 and 8.11, in which the limiting depth of cut is 

plotted against the feed for the cases of boring with the optimally-tuned 

tungsten-bungedbar fitted. with the. main, slug and with the, twin. slug. The 

twin-slug arrangement brought about a marginally higher limiting depth of 

cut. Since the RRS/HBH steel is of much greater strength than EN8 steel, 

the reduction in the limiting depth is something to be expected. The 

photograph in Fig 8.17a shows the surface finishes obtained from boring 

depths of cut Of 0,030" (top) and 0.020" (bottom) with the twin-slug 

tungsten-bunged bar at a feed of 0.010411/rev and a speed of 190 rpm. 

Despite the chatter-free finish, both surfaces show unevenness of yet 

another kind as a result of chip scoring and of the flexibility of the 

boring bar. Better finishes can always be obtained if a light cut, for 

example, 0.005" is taken. The finish at the top of the photograph in 

Fig 8.17b shows such a finish. The finish at the bottom was obtained 

from the stumpy boring bar. 

A problem peculiar to this type of boring at higher depths of cut is that 

the boring bar vibrated at two carponent frequencies. M-Lile one coq)onent 

frequency was close to the naturel, frequency of the boring bar; the other 

had a value very much higher. These coirponent frequencies were measured 
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when the optimally-tuned main-slug tungsten-bunged bar was used to remove 

a depth of 0.040" at the feed of 0.004411/rev and the speed of 190 rlxn, and 

their values were respectively 168 Hz and about 2690 Hz, the latter being 

16 tines the former. 

8.5.3 Ability to remve surface irTegularities 

For the optimally-tuned tungsten-bunged bar whether it be of single-slug 

or twin-slug configuration, it was always possible to remove the surface 

irregularities from a prfaviously chattered surface by means of a finishing 

cut having the specification: 

(a) for EN8 steel, depth of cut 0.01011 to 0.030", feed 0.004411/rev to 

0.0104"/rev, and cutting speed 500 rpm to 700 rpm. 

(b) for RRS/HBIi steels depth of cut, 0.01011 to 0.015,19 feed 0.0065"/rev 

and cutting speed 190 rpm to 200 rpm. -, 

8.5.4 Boring with the 0.030" nose radius U and R tools 

A few bcring'tests were carried out using the U and R tools that had the 

nose radius of 0.030". In general, it was observed that the limiting 

depth of cut achieved for the EN8 steel was some 0.01011 to 0.02011 lower 

than that using the 0.010" nose radius tools under the otherwise identical 

boring condition. For the RRS/HBH steelý the limiting depth of cut was 

about 0.005" to 0.010" lower. 

8.5.5 Surface roughness 

Measurements of the surface roughness values on finishes obtained with -ý 

the 0.010", and 0.030" nose radius tools varied from O. Spn to 6F. Variability 

depended 'on the tool wear conditions the tool nose radius, the feed and to 

some extent the-cutting speed.. The lowest value for surface-roughness was 
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recorded on the RRS/HBH steel for the 0.01011 nose radius U tool, but, on 

average, the value would be in the range of 1 to 2 pm.. Better finishes 

were almost always obtained using a tool with the smaller nose radius,, 

in this case, 0.010". 

8.5.6 Problems in boring stability tests 

A number of problems was encountered in the boring tests and are identified 

as below. 

(1) Repeatability - It was at times difficult to deterTaine the state of. 

the surface finish that fell on the stability borderline due to the 

fact that it was not always repeatable. Non-repeatability was caused 

in the main by the amount of tool wear and to a lesser extent by the 

built-up edge formation at low cutting speeds. In general, chatter 

occurred with a freshly ground tool, and at light cuts, slight tool 

wear was found to improve stability. To alleviate this difficulty 

associated with a freshly ground tool$ the cutting edges were dulled 

by a fine grade of oil stone before the tool was employed to take 

any cut. 

(2) Chip disposal - For the EN8 steel and at small depths of cut the problem 

of chip disposal hardly arose. Nevertheless, at heavier depths such 

as obtainable with the optimally-tuned tungsten-bunged bar, the proper 

delivery of the chip away from the cutting zone presented a formidable 

problem. The same problem was also encountered when boring high duty 

alloy steel such as the RRS/HBH steel in whichs although the limiting 

depth of cut was smaller than was the case for EN8, the chips formed 

were of much higher strength and hence difficult to shape or break. 
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Quite oftený such chips emerged from the tool tip in the form of a 

large-coil continuous spiral which would wrap round anything that was 

in its path. As a result, the machined surface was scored by virtue 

of the nunerous cutting edges presented by the chips in contact with 

the surface; and equally undesirably the tool would break under the 

excessive cutting load. 

Sane tentative solutions by way of chip-breaking and chip-shaping 

were experimented. Initially a chip-breaker in the fom of a 0.02011 

bigh by 0.020" wide step neasured from the cutting edge was adopted. 

This chip-breaker succeeded in breaking the chip into shorter segTents 

that were then carried away by, means of a stream of pressurized air. 

Howevers the resulting periodic fluctuation in the, cutting,, load 

exerting on a flexible element such as the boring bar caused the 

surface finish to show periodic irregularities. In the second stage 

of the development, a chip-breaker was designedý not to break chips, 

but rather to conveniently curl the chip into one long and continuous 

closely-coil spiral so that it could be led away from the cutting zone. 

Preliminary results proved that the method was satisfactory; and 

further investigation are now being'conducted in this direction. 

(3) Chattered surface. - In general, it was simple, matter to decide if the 

boring bar bored stably or not by examining the surface finish, 

produced. Chatter marks such, as those shown in the photograph of 

Fig 8.14 clearly indicates instability. Howevers there were situations, 

particularly when, light depths of cut were attempted, where the 

chatter marks became extremely fine and could be missed easily if 

the surface in question was not scrutinized in a well-lit environment. 
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For obvious reason, the whole problem was aggravated by the chip 

disposal problem discussed in the last section. 

Aside from the problem elucidated, it is worthy of mention that there 

is another class of problem with which we were not concerned in the 

boring stability tests, and yet it significantly affects the quality 

of profile boring using long overhung boring bars. These are the 

problems of geometric form error and are dealt with in Chapters 2 and 6. 

8.5.7 Convarison between stabilitV theorV and results. 

The theory referred to is the one presented in Appendix E. The mason 

why Appendix E is preferred to that developed in Chapter 5 is expounded 

in the opening paragraph of the appendix. 

Essentially) it is suggested in Appendix E that a boring process can be 

considered to be under closed-loop control in which the cutting process 

dynamics interacts with the machine tool dynamics at the tool point as 

shown in the block diagram of Fig El. For primary chatter, the cutting 

process dynamics can be regarded to have a transfer function a- jff 

where a is the rate of change of radial force with respect to the.. depth 

of cut and - f, is the negative viscous damping coefficient which provides 

the hypothetical source of instability. For regenerative chatter, the 

cutting process dynamics has a transfer function a' - jf2 where a' is 

I*s th similarly defined as a (see section 5.3.2 for details) and - f2 'e 

negative hysteretic damping coefficient. For the closed-loop system as 

depicted in Fig El. the stability borderline can be specified in te rms 

of f as a function of a for the case of primary chatter as shown graphicall, 
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in Fig E6; and in te= of fý as a function of a' for the case of regenerative 

chatter as shown graphically in Fig E7. From these figures, it is 

observed that as a and a' decrease$ the respective f, and f2 decrease but 

level off eventually at some constant values which for brevity are termd 

the asymptotic values. Physically, being related to the cutting force 

slope, a and a' decrease as the depth of cut increases, until when the 

depth exceeds the nose radius on the boring tool, a and a' will then settle 

at a small yet constant value. As an example, for boring mild steel with 

tools of nose radii of 0.01011,0.020"$ 0.030" and 0.040". the cutting force. 

slope values as shown in Fig 5.2 for these tools are all observed to level, 

off at 80 lbf/in, equivalent to l4kN/m, for a. By the reasoning presented 

in section 5.3-2, the value for a' is less than 3a, ie 42 kN/m. For the 

optin-ally-tuned main-slug tungsten-bunged barý it can be seen from. Fig E7 

that at a= 14 kN/m, f, is at its asymptotic value of 317 Ns/m. and fi-M 

Fig E8 that at a' < 3a = 42 kN/m. 9 the value of f2 lies in the interval 

452 to 456_kN/m) the lower limit being the asymptotic value. Without much 

loss of accuracy,, it can be assumed that f2 takes on its asymptotic value 

whenever a' is less than 3a, ie 42 kN/m. in this example. Following this 

line of reasoning, it can be deduced that whenever the limiting depth of 

cut is in excess of the nose radius (which is the case for most practical 

machining processes) and by virtue of the fact that asymptotic fl. or f2 

corTesponds to when the closed-loop system in Fig El becomes just unstable, 

both asymptotic fl and f2 can be related uniquely to the limiting depth 

of cut attainable with a particular boring bar when other factom such as 

tool geormtry) workpiece materialý feed and speed are maintained constant. 

The asymptotic values for fl and f2 were calculated as explained in the 

numerical example in Appendix E. 
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The following table shows the asymptotic values for f, and f2 for each 

boring bar under test. These values were calculated in the same manner as 

the nun-k--rical example shown in Appendix E. 

BAR 
_ASYMPTOTIC 

ASYMPTOTIC 

f, (Ns/m) f2 (kNs/m) 

Solid 23 25 

Opt. damped recessed 176 199 

Opt. main-slug steel-bunged 163 199 

Opt. twin-slug steel-bunged 337 371 

Tungsten-bunged 24 36 

Opt. main-slug tungsten-bunged 317 452 

Opt. twin-slug tungsten-bunged 452 585 

Main-slug tungsten-bunged with slug 

diameter: 

1) 25.278 mm. 289 422 

2) 25.299 mm (optimum) 317 452 

3) 25.318 mm. 316 429 

4) 25.350 nn 198 255 

For the case of primary chatter, Fig 8.12 shows the relation between the 

limiting depth of cut and the negative viscous damping coefficient f, 

when boring EN8 steel with a 0.010" nose radius U tool at the feed of 

0.006511/rev and speed of 500 rpm. Similarly,, for the case of regenerative 

chatter) the limiting depth of cut and the negative hysteretic damping 

coefficient f2 can be related as shown in Fig 8.13. Both curves have a 

shape that can be represented by a logarithmic function as will be discussed 

later. Extreme care,, however, must be exercised in interpreting the results 
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00 
100 200 300 400 500 600 

Asymptotic negative viscous damping c'oeff icient , f, , (N-s/m) 

Key: Common to both Figs 8.12 and 8.13 

1- Solid bar 

2- Tungsten-bunged bar without slug 

3- optimally-tuned main-slug steel-bunged bar, 0.02511 to 0.03011 depth 

of cut 

4- optimally-tuned single-slug recessed bar, 0.025" depth of cut 

5- optimally-tuned main-slug tungsten-bunged bar (0.067 mm radial 

clearance), 0.060" to 0.07011 depth of cut 

5a - Main-slug tungsten-bunged bar (0.0775 mm radial clearance) - 

5b - Main-slug tungsten-bunged bar (0.0575 mm radial clearance), 0.06011 

depth of cut 

5c Main-slug tungsten-bunged bar (0.0415 mm radial clearance) 

6 optimally-tuned twin-plug steel-bunged bar 

7 optimally-tuned twin-slug tungsten-bunged bar 

Fig 8.12 Relation between the limiting depth of cut and the asymptotic 

negative viscous damping coefficient, f 
,1 
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0111111a 91 111. I! 

0 100 200 300 400 500 600 
Asymptotic negative hysteretic damping coefficient. f2 (kN-s/m) 

Key: See Fig 8.12 

Fig 8.13 Relation between the limiting depth of cut and the asymptotic 

negative hysteretic damping coefficient, f2 
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shown by the dashed part of curve in Figs 8.12 and 8.13ý since the results 

obtained from using the solid bar and the tungsten-bunged bar without slug 

corr, espond. to effective depths of cut being less than the nose radius of 

0.01011 and hence a and a' may have values greater than their minimn. 

For this reason, f, and f2 thus calculated as being the asymptotic values 

are not strictly valid. Some amount of scatter is observed in both curves 

of Figs 8.12 and 8.13, but since the boring tests results are not exactly 

repeatable due to factors as explained in section 8.5.6. such exrors am 

tolerated. 

To establish the empirical relation between f, and the limiting depth of 

cut, Fig 8.12 is redrawn as Fig 8.18 with the limiting depth of cut,, 

designated as d. plotted to a logarithmic scale whilst f, is plotted to a 

linear scale as before. By virtue of the linear relationship, the 

errpirical expression may take the form: 

log d= Af, +B .0000.0.000000f000(8.1) 

where A and B are constants to be evaluated. 

Let the depth of cut have the unit of rrm and f, the unit of Ns/m, then at 

d=0.020" = 0.508 mm hence log d= -0.2941, and from Fig 8.18, f, = 90Ns/m. 

Substituting these into eqt. (8.1) gives ., 

-0.2941 = 90A +B... * .... 0 ............ (8.2) 

Similarlys at another point on the graph,, say, d=0.10011 = 2.54 mm, 

hence log d=0.40485 f= 435 Ns/m. which when substituted into eqt. 8.1 1 

gives 

0.4048 = 435A +B 00 ... (8.3) 

soviing eqts. (8.2) and (8.3) simultaneously gives 

A=2.026 x 10-3 and B= -0.4764 
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Fig 8.18 Finding the empirical relation between limiting depth of cut 

and asymptotic negative viscous damping coefficient f1 
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Hence the empirical equation for Fig 8.18 is 

log d= (2.026 x 10-3)fl -0.4764 ........... (8.4) 

For ease in utilising eqt. 8.4 $d is preferred to log d and the alter- 

native equation can be shown to be 

d= (1.00468f' )/2.9952 0 ........... (8.4a) 

where d is in mm and f, in Ns/m. 

It is noted that the base of f, in the numerator is expressed to 

5 decimal placesq which is necessary if accuracy, in d is to be. maintained 

when the Practical range of f, falls in the interval 150 (f l< 450 Ns/m. 

as in Fig 7.18. Obviously any error in the base of 1.00468 will be 

magnified by virtue of the high power fl. 

For the case of regenerative chatter, a similar expirical expression 

to eqts (8.4)or(8.4a)can be established. In particular, for boring EN8 

steel with the 0.010" nose radius U tool at the feed of 0.0065"/rev and 

the speed of 500 rpm, Fig 8.13 can be redrawn as Fig 8.19 and the 

empirical relation is found to be 

log d=1.5379 x 10-3 f 2-0.4641 (8.5) 

or d= (1.00355f2 V2.9112 (8.5a) 

where d is the limiting depth of cut in mm; and f2 the negative 

hysteretic darrping coefficient in kNs/m. 

The advantages in using the stability model presented in Appendix E and 

the two empirical formulae, namely eqtsl8.4)and (8.51or their altematives, 

eqt (8.4a) or (8.5a) are significant - First , from the evidence obtained as 

demonstrated in Figs 8.12 and 8.13 specifically that there is a one-to-one 

correspondence between the limiting depth of cut and the negative damping 
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coefficients , the stability model enables us to rate the machining 

performance of different boring bars employed in the boring tests in 

terms of their limiting depths of cut achieved. Second, the 1 imiting 

depth of cut, when other conditions are fixed,, can be calculated from the 

eirpirical formulae such as eqts(8.4)and. 18.5ý once the asymptotic value 

for fl or f2 of a particular boring bar has been obtained from the stability 

model. Third,, provided enough cutting tests are done to cover the practical 

range of machining, from which formulae like eqtsf8.4)and (8.5)are derived, 

it is in principle possible to predict the limiting depth of cut of any 

machine tool system whose frequency response characteristics am known. 

Finally2 the process of limiting depth of cut prediction can be quickened 

with the aid of cheap programming facilities that are made available by 

the applications of microcomputers on the shop floor in the vicinity of 

the machine tool concerned. 

8.6 CONCLUSIONS 

For boring EN8 steel with the 0.01011 nose radius U tool, the limiting 

depth of cut decreased as the cutting speed inm-e-ased. 

(2) For boring EN8 and RRS/HBH steels with a 0.010" nose radius U tool 

at the respective speedsof 500 and 190 rpm$ the limiting depth of 

cut increased with the feed rate until the latter reached 0.004411/rev 

to 0.0065"/rev before the limiting depth decreased slowly as the feed 

increased further. --ý 

(3) Arranged in the order of decreasing limiting depths of cut, the 

different boring bars are listed together with the limiting depths 
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of cut,. achieved as follows-(also see Figs 8.13 or 8.14): 
1 

a) Optimally-tuned twin-slug tungsten-bunged bar 

b) Optimally-tuned main-slug tungsten-bunged bar 

C) Optimally-tuned twin-slug steel-bunged bar 

d) Optimally-tuned main-slug steel-bunged bar 

e) Optimally-tuned single slug recessed bar 

f) Tungsten bunged bar without slug 

g) Solid bar 

0.1051, - 0.1101, 

0.060" - 0.070" 

0.0501, - 0.060" 

0.025" - 0.030" 

0.025" 

0.007" 

0.003" 

(4) It was possible to remove all traces of badly chattered surface in 

one cut with conditions as specified in section 8.5.3. 

(5) Below the limiting depths of cut, when boring EN8 steel at a heavy 

cut or RRS/HBH steel at a lighter cuts there was the problem of 

badly scored surface finish caused by the long and unruly chips that 

wrapped round the cutting tool. Some success was achieved by intro- 

ducing a chip-breaker to the tool. 

(6) The stability theory developed in Appendix E succeeded in sorting 

out the order of machining performance of different boring bars 

employed in the tests in term of the limiting depths of cut achieved 

purely from the asymptotic values of the negative damping coefficient. 

(7) A one-to-one corTespondence exists between the limiting depth of cut 

and the asymptotic value of the negative damping coefficient. 

(8) With the help of the theory in Appendix E and the empirical formulae 
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such as eqt(8. Vand(8.4ý or their altemativesj(8.3aland(8.4aý it is 

possible to predict the limiting depth of cut of any machine tool 

system whose frequency response characteristics are known. 



292 

9. OVERALL CONCLUSIONS AND AREA FOR FURTHER WORK 

9.1 Overall Conclusions . 

(1) For nuchining with boring bars under stable conditions, both theories 

and experiments indicate the existence of two types of geome-tric fom 

ex-rors', namely the "bell-mouth" errors and the "copying" errors. 

"Bell-mouth" errors occur on the entry of boring tool into the work- 

piece and the theory did not seern to fit the results well. "Copying" 

errors are defined as the ratio of the final eccentricity error to 

the initial eccentricity error and as such are related to both the 

initial eccentiricity of the bore and the flexibilitj of the overhung 

boring bar. The theory on "copying" ervors agreed remarkably weU 

with the experimental results when the initial eccentricity was small 

con-pared with the depth of cut. 

(2) The dynamical behaviour of the slug-damped boring bar in term of 

frequency response curves was characterised by a lumped-parameter 

model in which the respective masses of the bar and of the slug- 

danper were linked together by a linear dashpot and a linearized 

fluid inertia coupler. This fomulation was found to be a significant 

improvement over the model of Hahn (1) in that the inertia effect of 

the air film surrounding the slug was taken into account. 

(3) The theoretical frequency response curves calculated using the lunTed- 

parimeter model were not in close agreement with the experimental 

curves. It was reasoned that were the carpressibility effects of the 

air film around the slug considered, a better fit could be expected. 
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Despite this simplification, the model revealed the possibility of 

design improvements. In consequence, the prototype optimally-tuned 

slug-damped tungsten-bunged bar was developed and tested. 

(4) Based on the lumped-parameter model, an optimization method was 

devised whereby the bung length for the minimum amplitude response at 

resonance could be determined. A similar method was also devised for 

the case of maximum resistance to machining chatter. Both methods 

gave the same optimum bung length for the prototype tungsten-bunged 

boring bar. Results demonstrated that this bar was far superior to 

other bars under test in respect of the dynamic and machining behaviour. 

(5) The stability borderline expressed in term of the negative damping 

coefficient - as a source of instability - and of the cutting force 

slope was derived from the lumped-parameter model. However$ since the 

model-was not exact and hence accuracies of the stability borderline 

thus calculated would suffer, a more precise stability model based on 

the theory of closed-loop control was suggested. The procedure 

involved was graphical, and the main advantage was the representation 

of the dynamical characteristics of a boring bar by means of its 

frequency response curves instead of the lumped-parameters in the 

model. - 

(6) When the limiting depths of cut exceeded the nose radius of the boring 

tool, the cutting force slope became very small and the negative 

damping coefficient approached its asymptote. A one-to-one correspon- 

dence was found to exist between the asymptotic negative damping 

coefficient and the limiting depth of cut. It is, therefore$ possible 
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in principle to predict the limiting depth of cut of any machine 

tool system whose frequency response characteristics are known. 

(7) Compared with other bars tested2 the prototype optimally-tuned 

tungsten-bunged boring bar was found to possess the best dynamic and 

machining characteristics. When machining EN8 steel at the feed of 

0.006511/rev (0. '165 rwVrev) and the speed of 500 rpm on a 31" bore 

(140nL/min),, the boring bar would readily remove depths of cut up 

to 0.110" (2.79 rmn) without any sigms of chatter. Even when machining 

high duty alloy steel such as the RRS/HBH, chatter free finishes could 

always, be obtained at depths of cut under 0.030" (0.762 mm), feeds 

between 0.0044"/rev and 0.010411/rev (0.112 mWrev and 0.264 mm/rev) 

and a speed of 190 rpm on a 3411 diameter bore (49 m/min). 

9.2 Area for Further Work 

The optimally-tuned tungsten-bunged boring bar has been found to be able 

to take heavier'depths of cut than other designs of boring bars under test 

without the occurrence of chatter. Howeverj this causes two problems to 

rise to significance. 

Geometric form error - It occurs as a result of the heavier cutting 

load and of the flexible nature of the boring bar. The analyses 

presented in Chapter 2 are only approximate as reflected in the 

discrepancies between the experimental and theoretical results. 

A more exact analysis will be needed if one is to obtain a more 

satisfactory, model from which the geometric fom erTors can be 

predicted in a quantitive manner and hence corrective actions that 
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may be in the form of adaptive control can be taken for its 

elimination. This work has initiated an investigation now being 

conducted in the Department. 

(2) Chip disposal - It is a problem ccmmn in profile boring in which 

the chip flow passage is necessarily restricted by the geometry of 

the bore and of the boring bar. The problem is further aggravated 

by the increased metal removal rate by virtue of the heavier depths of 

cut now attainable. By a suitable choice of cutting conditions and 

tool geometry, it is possible to control the chip flow such that it 

does not impinge on the cutting process. There is scope for develop- 

ment into the chip flow characteristics and the effective chip removal. 

The damping rrechanism of the slug damper as modelled by a linear 

damping coefficient and an inertia coefficient is clearly not adequate. 

The squeeze film(2) surrounding the slug has been found to have a 

significant effect on the damping behaviour. To a first approxi- 

mation, this effect can be represented by a spring element. As a 

result) the optimization method whereby the optimum bung length is 

derived may have to be refined to give a more precise design basis. 

The stability theories developed in Chapter 6 and Appendix E made use 

of the concept of negative dairping, as being a source of instability. 

In Chapter 8, it was found that the asymptotic negative damping 

coefficient was related uniquely to the limiting depth of cut, which 

can be represented by an empirical function. If enough of this 

relation is established, it is in principle possible to predict the 

limiting depth of cut for any machine tool system once its dynamic 
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characteristics in the fom of frequency response curves are known. 

Further research in this area may bring fruitful results. 
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APPENDDC A CALOJLATING EQUIVALENT STATIC STIFFNESS OF OVERWNG BAR 

The overhung boring bar is assimed to have an infinitely rigid end-fixing and 

hence is analogous to a cantilever with an encastre end. To determine the 

equivalent stiffness, it is a prerequisite to know the amunt of deflection 

under the point of application of the load at the free end. The Myosotis Method 

is eirployed to c4culate the static deflection and hence the static stiffness 

explained as follows. 

Consider a general couposite bar which will account for all of the different 

designs of boring, bars that are discussed in this thesis. The bar consists of 

four parts of. unequal. flexural rigidities, namely Eli,, E 2,2 ,E 31P and E 4,411 

as shown in Fig Al. A load P is applied at the free end and the deflection 

under the point of load application is denoted by S- The Myosotis Method is 

based on t4e principle of superposition. which asserts that the deflection curve 

of the bar in Fig Al is the algebraic sum of the deflection curves of the 

individual section of the bar with other sections assumed to have infinite 

flexural rigidities. Thus, for instance, when the EjIl section is considered, 

the rest of the bar is assmed to be infinitely rigid and the deflection curve 

caused by the load P will be as shown in Fig A2. The end deflection under P is 

seen to consist of two conponents: a deflection at point A, and a deflection 

6, =T(, e4- & 
1) which is the linear extrapolation of the slope ý at A. Other 2 

sections will be considered siffdlarly. 

With reference to Fig All, at section A-A, the shear force is P and the bending 
P-1 3 

noment is P(-e --e ). The loading P causes a deflection I, whilst the 41 
p(, e _e 

2 3EIII 
bending moment Kt4 -61) causes a deflection ---4 I)t I The slope at section 

A-A caused by P is and by P (. e 
2EjIj 

)h Thus, the 2E 1 4-61 ) is PV4- 
11 EjIj 

deflection at the free end, ie section D-D, is: 
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3 
L (SA -E't: 
L++ (I 4-tl) + ....... (Al) 

3ElIl 2E, Il 2EIl El I, 

At section B-B, the shear force is P and the bending moment is PU4 42). The 

deflection at B-B . assuming E11, $ E 3,3$ and E 4,4 as infinitely large, is 

P(t2-tl? 
+ 

P(tL-/-? )(t2-t1 

3Eý, 2 2E2,2 

the first term being the deflection caused by the load P and the second term the 

deflection caused by the bending moment P (t4 - t2 

The slope at B-B relative to the tangent line at A-A is 

pv-2-q P(. e, -12)(Z2 -tj 

2 E2,2 E2,2 

where the firýst and second terms arise from the respective load P and the 

bending m0went PU4 -42 ), 

It follows that the deflection at the free end is 

6= P(ý2-41) 3+ 

B 3E12 
P(14 -12) (62 

2E2I2 
e2) + 

P(t4-ý2"2-ýl W) 
[ 

2E2I2 ý212 

1 

At section C-C, the shearing force is P and the bending moment 4s PV4 -*-3 

The deflection at C-C, assuming E1 Ils E21 21 and E 4,4 as infinitely large, is 

_f _?, ) ?, p(tq )3 
+ 

p(t 
_1 _? 2)2 LP- 

3EJI3 2E3I3 

and the slope at C-C relative to the tangent line at B-B is 

pv-447) 2 P(f N(13 -t2) 
+ 

4-- 
2E3,3 E313 

Thus, the deflection at the free end is 
4 

(t _t )2 p(t4_t. )(1, -t7 (A3) 
C E313 3 E313 2E3I3 2E3I3 

Finally at the free end, ie, section D-Dq the shearing force is P but there is 

no bending mcment. Assuming flexural rigidities, except E41 41 as infinitely 

largeý the deflection is simply, 

60 
3E4,4 
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The deflection (S under the load'P for this composite bar is the sum of 

eqtsUU) to(AW, ie 

6= 6A'* 6B " (SC * 6D (A5) 

By definition) the static equivalent stiffness is given by 

p (A6) 
6' 

Static stiffness calculation 

(1) Solid bar 

=1=1w10.381 m 1234 

EIEI=EIEx (0-038)4 x 200 x 10g = 20-471 x 103 N m2 122334,4 = 64 
Fran eqt(Mý the static stiffness K-1.110 MN/m 

(2) Recessed bar 

11=120.287 m 

13=0.337 m 

14=0.381 

E1 =E2 =E 3 =E 4= 200 GN/m 2 

I =I =I = -2ý- x (0-038)4 = 102-354 x 10-9 m4 124 64 

= 
7T 

. (0.0384 -0-02544) = 81-922 x lo-grn4 3 64 
Fran eqt(A6), the static stiffness K=1.107 MN/m 

(3) Steel-bunged 

0.100 m 

2=0.287 

0.337 

14=0.381 m 

E1 =E 2 =E 3 =E 4= 200 GN/M2 

I =I = g7T-4 x(O-038)4=102-354xjo-9m4 14 64 

299 ' 



300 ' 

I= 7r 
x(O-0384-0.0304)=62-5g3xjo-9m4 2 64. 

13 = -E64- x (0-0384 70-02544)=81-922xjo-9m4 

From eqt(Mý the static stiffness K=0.722 MN/m 

(4) Tunj; ýsten-bunjzed bar 

11 = 0.220 m 

12 = 0.256 m 

13 = 0.332 m 

14 = 0.381 m 

EI (EI)t+(EI)s =2-67x2OOx1O9x-7r-x (0-0304)+2OOxlO9x 7r x(O. 0384-0.0304) 
64 64 

33 -751 x 103 N m2 

where (ED 
t 

is the flexural rigidity of the tungsten bung and (ED 
s 

is 

the flexural rigidity of the steel hollow sleeve. 

EI= 200x1O9x-Mx(O 0384- 0-0304) =12-519 103 Nm2 22 64 

EI= 200 x109 xTIx (0-0384 -0-02544 16-384 x 103 Nm2 33 64 

EI= 200 x 109 xJ" (0-0384) = 20 -471 x 103 Nm2 44 64 

From eqt(Mý the static stiffness K=1.652 MNIM 

Reference 

(1) Den Hartogs JP "Strength of Materials" Dover Publications, Inc, 

New Yorks 1949, p 85 
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Fig A2 Deflection shape of cantilever under the end 
load P. Only the length from the fixed end 
to A bends, the rest of the beam is infinitely 

rigid. 

Fig Al A cantilever with four sections of 

different flexural rigidities 
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APPENDIX B ''AMPL=E'RATIO G'AND T 
(1) 

AMPL=E *RATIO 

Ri bcrirg bar practice the absorber slug is normally positioned 

within the bar sane distance behind the toolpost as is depicted 

in Fig. Bl. The slug ms is at a distance t2 fran the fixed end, 

and the equivalent mass of the boring bar at the free end without 

the slug is designated by m. It will be observed that the displacement 

of the bar at the central position of the slug ms is xl, as against xo 

for M. It follows1that the effectiveness of the slug is decreased 

when reckoned at the overhung end, because x, is less than x0. Thus 

for the purpose of analysis 

x1= Gx (Bi) 

where the value of G depends on the deflection shape of the borir-g bar. 

KINLTIC ENERGY 

Fig. B2 shows the cross-section AA (in Fig. Bl) through the bar at a 

point mid-way along the length of the slug. The slug is assumed to 

oscillate about an instantaneous centre. This is equivalent to the 

assumption that the slug rolls with such small oscillations that any 

possible vertical motions are ignored. 

The total kinetic energy of the system is given by 

T=TB+T SL +T SR + Tfs 

where TB = K. E. of equivalent mass of bar, 

T SL = K. E. of slug, translational rnotioný 

TSR = K. E. of slug, angular motion, 

and Tf = K. E. of damping fluid. 
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With reference to Fig. B2, the kinetic energies are respectively, 

T-2 B Mko 

Tmk2 where is the instantaneous velocity of the slug, SL 2s2 ýc2 

Tmx 2a2 
where ; is the angular velocity of the slug, and SR 2s 
X is the radius of gyration about its instantaneous 

centre. 

Assuming pure rolling without sliding and let R2 be the radius of the 

slug, 

R2& - 

fran which 

1A22 
SR =f MýRJ (A 

1-k2) 

and T= -21 )2 'ýl 'ý2 f2 Mf Oc (' -' 

Thus, the total kinetic energy of the system is 

= 
Lm; 

c2.. 
Ims)k2. j_m X2 )2 T20222 S( R1 *1 -'ý2 12ý'l-MOPCI -ýk2 

2) 2 

in tems of the two coordinates x, and x2 and their time derivatives, 

the last equation becomes 

I 
-n*2, 

Im 
ms(L )2 r T2 

G2 12s ýk3 
[. 

R2)2 * Mf Pc] 1 ý1-*2 (B2) 

Reference 

1. Ng, K. W. and New, R. W. ca 
"Overhung Boring Bars - Part I, Dynamic 
Behaviour of New Designs of Damped Boring 

Bars under Forced Vibratory Conditions". 
Brunel University, Dept. of Production Technology, 
S. R. C. Research Report BB1. October, 1977. 
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APPENDIX C OP=ZING BUNG LENGTH FOR MINIMUM AMPLITUDE AT RESONANCE 

It was found in section 4.4 that the minimLun airplitude response at resonance 

is JXOJ = 
Po [2(1+u)t 

1 (4.41) 
KU 

We shall look at the physical significance of this equation. In the context 

of a slug-damped boring bar, the minimum amplitude response IX01 corresponds to 

when the bar is fitted with the optimum slug damper. Further reduction inIX01 

can be achieved by a suitable choice of the stiffness K and the mass ratio p. 

Of the rent possible ways that enable K and ja to be changed, perhaps the 

most direct and effective way is to make use of the idea of a bung with a variable 

length as shown in Fig Cl so that the stiffness K and the mass ratio p can be 

varied accordingly. Since high stiffness is always desirable, the use of 

materials with high tensile strength is suggested. Specifically, the bung in 

our design will be made of tungsten carbide. Fýx)m a purely theoretical 

consideration and assuming that the bar deflects in the shape of a quarter 

cosine wave, the equivalent stiffness of the bar can be calculated from. 

eqt(4.46), ie 
42 '7rx dx 7r EI cos (4.46) 

2t iif2 -tj 

and the equivalent mass which is required in the evaluation of the mass ratio 

can be found fran eqt(4.48ý ie 
n 

m Fi 
- cos 7rx ? dx (4.48) 

f(l 
2t, 

The optimization method essentially involves the successive computation of the 

equivalent stiffness K from eqt(4.46ý the equivalent mass m. from eqt(4.48)and 

the minimum amplitude at resonancelX01from, eqt(4.41)for the successive values 

that the bung length may be allowed to take. For obvious reasons, the optimum 

bung length corýresponds to whenIX01becomes the minimum. The computation 
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involved in the design of the tungsten-bunged bar is presented in the rest of 

this Appendix. Initially we assign length dimensions arbitrarily to the bar 

as shown in Fig Cl. whilst the bung length bbis to be optimized and hence is 

allowed to vary. 

(1) Amplitude ratio G 

Assuming that the bar deflects in the shape of a quarter cosine wave, then 

the deflection at a point on the bar distant x from the root end is 

(X) y 
Irl 

0 COS 2t, 
) (4.45) 

By the definition of G as in Appendix Bý 0= 
(t 

where, as is obvious fran Fig Cis,.? 1=0.381 m and Z2=0.294 m. 

Combining the last two equations gives 

ie G=0.6490 

, -e ycos 

Yo -Cos 
7rt, 
V1 

(Cl) 

(2) Slug mass- 

The slug has a nominal diameter of 0.0254 m and a length of 0.076 m. 

Fr<)m materials handbook, its density is given as 16.8 Mg/m 3. The mass 

of the slug is,, therefore, 

Tr x0.02542 x -076x16800 = 0-6470 kg (C2) 

(3) Equivalent spring stiffness K 

Being a free caTponent in the cavity, the slug does not contribute towards 

the overall equivalent stiffness of the bar. On the basis of different 
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flexural rigiditiess the bar may be considered to be composed of four 

sections which can be defined mathematically. as (see Fig Cl): 

D Section 1 

ii) Section 2 

iii) Section 3 

iv) Section 4 

O<x<hb 

IS< x <0.256 

0.256 <x <0.332 

0.332 <x <0.381 

where all length dimensions are understood to be in metres. 

By eqt(4.46)and taking the end points of these intervals as the limits 

of integration, 
hD 256 2 K7 ElIlf. co sý ML d( 7rx + E2 k 

cos 7rx d( '7rx 
2t, 2t, 2ti 0 

12 Jhb 
V 21 

332 2 f8l 
cOs2 +E cos Z-x d (7rx + E. I 'Trx d (Zx- 

3ý 
f- 

V2t44", 2t, 2t, 0-256 1 0-332 

From the table of standard integrals, cos2u du =1u+ -L sin 2u +C 
f24 

and if we make the identification that u= "T x and can-y out the V, 

integration as indicated, 

K 71' Pf (Ell -L (IT h h) +I sin2 (-7rhh) + (E2 -E 2? l 
1- E12) 

[2 

2-tl 4 2-tl 
12 3,3) 

0.256 
+1 sin 2(0.25 + (E I -E (U32S) 

2-tl 4 2-el 33 4,4)[. 
12- 

2t, 

+1 sin 2( 0-332 E4,4 
[12-1 

O-aUX) +I sin 2 (Qajn-Lr)] 

I 

(C3) 
4 2-e 

1 

ý+ 

2e 
142? 1 

The flexural rigidities E111 to E414 are taken to mfer to the four 

sections or intervals. In the interval O<x< h blEl 11 is the sum of the 

flexural rigidities of the tubular steel shank and of the solid round 

tungsten bung. From the materials hnadbooks E's for steel and tungsten 

are respectively given as 200 and 534 GN12 
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Frm Fig Cl and by the definition of the second moment of area I, for 

the tubular shank, 

Is = 
Tr(O. 03814 _ 0.0304 63-67 . 10-9M4 

64 

and for the tungsten bung, 

It 7r(O. 0304 39-76xlCr9m' 
64 

It follows that 

E, I I, =( 200x109 x63-67xlO-g+ 534x1O9x39-76x16-'9 )= 33-97x, 03 Nm2 

In the interval bb<x<0.2569 

E2,2 = 200xlOgx63-67xlO7g = 12-73x, 03 NM2 

In -the interval 0.256< x< 0.332, 

EI= 200009 x7T 
(0-03814-0,02544) 

= 16-60x 10 N M2 33 64 

In the interval 0.332 <x <0.381,, 

20000 9X 710-03S14) 
= 20-6900 3 Nm2 E4,4,2 

64 

0 

Substituting the numerical values thus calculated into eqt(C3)and noting 

that t1=0.381, we obtain, after some simplifications, 

K= 7-1317 x, 05 + 3-0683xl0r'h +3-7212x, 05 sin( 
7rhh (CO b 0.381 

In eqt(C4ý K is now expressed as a function of a single independent 

variable, namely hb, Five significant figures are retained at this stage 

of the calculation but at most three significant figures in the final 

results are reliable since some of the quantitiesý for examples E's for 

steel'and tungsten are accurate to three significant figures only. 

(4) Equivalent mass m 

In the same manner as in the detennining of equivalent stiffness . the bar 

is again diviOed into four sections or intervals. Use is then made of 

eqt (4-4 8) to find the equivalent mass. It can be shown that the integral 
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in eqt(4.48L ie 

f 
cosTrx 

P 
dx =x+ 

i- + 
ZI 

sin 111 
- 

4j-1 
sin 7Tx 

+C 2t, 2 21r 2ý 7r 2t, 

The densities of steel and tungsten carbide are respectively taken to be 

7.83 Mg/m 3 
and 14.4 Mg/m3. The mass per unit length Fi in eqt(4.48)is not 

only a function of the density of material but also of the geometrical 

shapes within a given interval. Thus, in the interval 0 <x< hb, 

o 7r 10-0381 2-0-030 2) 7r. 0.0302 
p, =7-83xl +14-4,103 4= 

13-571 kgIm 

In the interval hb<x <0.256 

-7r(O-03812-(). 0302) 
= 3.3922 kg/m P2 = 7-83 xIO x4 

In the interval 0.256 <x <0.332, assuming that the bottom of the slug 

container has negligible rikass, 

-03812-0-02542) 73' = 7-83x, 03x 7T(O 
4= 

4-9594 kg/m 

In the interval 0.332< x <0.381,, assuming that the toolpost is of 

solid round shape, 

3 7r (0-03812 ) 
A= 7-83 it 10 x-4=8.9269 kgim 

By eqt(4.48ý the equivalent mass is 

hb 
-rrx 2 -256 

(1 m= 14-066 (1 -Cos dx + 3-3922 _Cosa, _)2 dx fo, 
2t, 

fh 

2C, b 
0-332 

7rx )2 dx + 9-9269 
0.381 

(1 -cos! 
Lx- )2 dx +4,95941- -(1 -Cos V, 

f 
2t, 

0-256 0.332 

which, when simplified with 4 0.381, gives 

m= 0-56456 +10-179 
Lhb. 0-3 81 sin 

7rhb 
_4 xO-3 81 sin irhb C5 

[22 

Tr 0-381 7r 2xO-361 

The equivalent mass is now expressed as a function of the single variable 

If now we define the optinn compliance) as the name implies, as the 
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ratio 
1)ýl 

, then by eqt(4.41) PO 
IX01 

=i 
2(1+p)t 

_1 pKIpI 

where K is calculated from eqt(C4); the mass ratio p is calculated using 

eqt6(C5b(Cl)andIC2t and the mass correction factor -e is assumed to be 

unity. The bung length hbis Permitted to take on values in the interval 

0 <hb<0.256 as imposed by the design constraints. 

Results of the calculation are depicted graphically in Fig C2 in which 

the variations of the optimum cornpl i ance 
I XII in relation to the bung 
PO 

length is shown. The optimum bung length corresponds to the lowest dynamic 

compliance. But since the compliance varies very gradually in the region 

around the optimun, little error is incurred if the bung length is chosen 

to be 220 mm. Besides, this length will ensure a higher stiffness for the 

bar than is the case when the bung length is at the optimum.. The corTes- 

ponding equivalent mass and stiffness are calculated as 0.633 kg and 

1.749 M/m respectively. The mass ratio ji = 0.430. It mist be noted 

that,, at the design stage, the values for equivalent stiffness and mass 

thus calculated are based on a deflection shape of a quarter cosine wave. 

As experiments are performed and results obtained with the tungsten-bunged 

bar, it is observed that the assumed deflection shape is not accurate 

enough, and hence refinezents are needed. In consequence, the values 

for stiffness and mass will be affected as described in section 7.6.5. 
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APPENDIX D OPTIMIZING BUNG LENGTH FOR MAXIMUM STABILITY AGAINST- CHATTER 

It is to be noted that the following calculations are based on theories 

developed in Chapter 5 and on the schematic drawing of the tungsten-bunged bar 

shown in Fig Cl. The cases of primary chatter and regenerative chatter will be 

considered separately as follows. 

(1) Primary chatter 

As shown in Appendix d for the tuýgsten-bunged bar fitted with a slug 

damper, the amplitude ratio, 

G =, 0.6490 (Cl) 

and the mass of the slug 

ms=0.6470 kg (C2) 

In additions bY assuming that the deflection shape of the bar be a. 

quarter cosine wave, the equivalent stiffness K and the equivalent 

mass m of the bar taken at the free end have been shown to be 

K= 7-1317 x 105 + 3-0683 x 106hb+3-7212 x 105sin( ff hh ) (C4) 
0.381 

and 

m= 0756456 +10,179 
ýý, 0-381 sin 

Irhb 
_ 

4xO381 sin 
'rr hb (C5) 

[2 

27r 03PI1 Ir 2xO-381 

] 

In developing the prinkuy chatter theory in Chapter 5,, it was remarked 

that both the negative viscous damping coefficient f, and the radial 

force-depth of cut slope a provide a measure of the cutting condition 

the bar is to encounter. In particular5 when the bar is optimally tuned, 

f1 becomes f 10 ) and for most practical purposes5 at the stability border- 

line, 'a/K becomes insignificant. Hence, f 10 is given by eqt(S. 22)which 

is repeated here. 

floi JKM( -l+ p)1, -117-- 

1 
(5.22) 
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r ., 
2mý 

where the mss ratio P=; and the mass correction factor t 

assuming that the slug operates in the sliding or floating wde. 

The Optimization. method involves the successive calculation of the 

equivalent stiffness K,, the mass m,, the mass ratio p and the optimum I 
negative viscous damping coefficient f 10 using the preceding equations 

for each bung length bbassumed. 

Results of the calculation are shown graphically in Fig Dl in which the 

Optimum negative damping coefficient flo is plotted against the bung 

length hb. The optimum bung length corresponds to the maximum value of flo- 

But since flo does not vary significantly with the bung length around its 

optimum, the bung length of 220 mm is chosen by virtue of higher stiffness. 

(2) Regenerative chatter 

Similar to the case of primary chatter2 the optimization method makes 

use-of the-eqts(C4)and(C5)to find the equivalent stiffness and mass for 

each bung length assumed. To find the optimum negative bysteretic 

damping coefficient, use is made of eqt(5.45), ie 

fK (5.45) 2o ý2 

In particular, if . as before, the slug is assuTmd to slide or float during 

its operation, t -1 Land the prepeding equation is simplified to 

1K 2o 2 
(CO 

Results of the calculation are depicted in Fig D2 in which f2o is plotted 

against hb, The optimun bung length corresponds to the maximum f 2o* But, 

for reasons as explained previouslys the bung length is chosen to be 

220 nn. 
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coefficient and the bung length of a tungsten-bunged bar 
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APPENDIXT -GRAPHICAL M=D FOR STABILITY'ANALYSIS OF'BORING BAR 

The following discussion deals with an alternative analysis of a boring bar 

system for suppression of the respective primary and regenerative chatter. The 

need for yet another method arises from the observation that the mathematical 

model of the boring bar system as developed in Chapters 4 and 5 is inadequate 

to represent precisely the general dynamical behaviour of the system; and that 

there is considerable difficulty in numerically evaluating the system parameters 

such as the damping coefficient, the equivalent mass and the spring stiffness. 

The method to be'presented makes use of the frequency response curve of the boring, 

bar system that can be readily measured by means of frequency response tests. 

The stability borderline is then determined on the basis of the frequency 

response curve and the dynamics of the cutting process. It is obvious that, by 

eliminating the requirements of determining from the response curves the system 

parww-ters, considerable time and effort can be saved. More inportantlys the 

new method gives a more precise stability borderline than does the method 

developed in Chapters 4 and 5 since the dynamical behaviour of the boring bar 

is characterised absolutely by the frequency response curve whereas in the 

previous method the mathematical model is inexact due to assumptions and 

simplifications made in its formulation. 

(1) Suppression of primary chatter 

The dynamical behaviour of the boring bar system is characterised by its 

frequency response, curve which has a fiequency transfer function Gb(jw 

It has been explained in section 5.2 -ffiat the source of primary chatter 

can be modelled by a hypothetical negative viscous damping force, and a- 

spring force arising fi-cm, the change of radial force with depth of cut. 
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In the fom of a frequency transfer function, the cutting process dynamics 

is characterised by Gc Qw a-jfp where a is the rate of change of 

radial force with respect to the depth of cut and -fl is the hypothetical 

negative viscous damping coefficient. 

rrhe process of cutting with the boring bar involves the interaction 

between the two fiequency transfer functionss namely, Gb(jLv) and Gc(jw 

A block diagram representation is given in Fig El which is seen to 

incorporate a feedback loop. In this diagram the input signal is R(jw 

and is the desired change in the depth of cut, which is always zero for 

realistic constant-depth machining. The output signal X(jw ) is the actual 

change in depth of cut that is fed back in its entirety to the summation 

point from which the error signal E(jw )= R(j w X(juj is derived. 

Since RQw) is zero, it follows that EQw)XQ LO The dynamic 

forr-e F(jw ) emerges from the cutting process and acts on the boring bar 

system. 

Dx)rn a control point of view, GC (jw ) can be regarded as the gain of a 

proportional-plus-differential controller. Henceý the stability of the 

closed-loop system in Fig El depends on a coubination of values that a 

and fl assuTm. It is to be noted that the physical interpretation of 

parameters a and f1 is exactly identical to that described in section 5.2.2, 

according to which, it is correct to understand that in general as the 

depth of cut increases, f increases whereas a decreases. 

In subsequent discussions, the argument jcu in the signal functions and 

the transfer functions will be dropped for notational convenience. Thus 

for exajrples Gc(j w) becomes Gc. 



319 

I 

94 rd 
AW 

bo 

94 
0 

A 

3 

0 

LL 

0 

P4 
ul 

bO 

u 
4-J 0 
4j 
:jP, 

bO 
4 

(a 
Pi 

bo 
63 

,a 

ý4 
fa 

A 
bo 
r. 

., q 94 

.8 

4.4 
0 
r- 
0 

94 
04 

bO 
., I 
10 

0 
-i 
pq 

tho 
., I 
914 



320 

Me stability analysis is carried out in a number of stages - First, we 

need to know the forward path frequency transfer functign given by the 

product GcGb. It is noted that both Gc and Gb are canplex variables. 

Thus, using the exponential fom of representation, 

. (p Gc= rýce3 c and Gb =rb ej'? b 

where rý and rb are the gain magnitudes of the cutting process and the 

boring bar respectively. Both r and y are a function of the angular 

frequency w- Graphically, r is, the gain amplitude response curve and (p 

is the phase shift curve. The product of 

GdGb = rc. rb eJ 
(yc +(Pb) 

and it follows that the gain amplitude response curves of Gc and Gb w"' 

have to be multiplied whereas the corresponding phase shift curves are 

stzmied algebraically. The operation of multiplication is tedious and is, 

therefore, undesirable. To alleviate this difficulty, GC and Gb are first 

converted to a decibel scale, ie dB using the conversion fonnula 20 loglor. 

Then they are represented individually by a diagram which has a similar 

appearance to the ordinary frequency response curve except that the 

ordinate for gain is now expressed in dB. For this reason$ we shall refer 

to this as the logarithmic frequency response curve. A typical plot in 

the frequency range of interest is shown in Fig E2. The virtue of 

logarithmic representation becomes immediately obvious when forming 

the Product GcGb in which the operation of multiplication rd rb becomes 

one of addition, ie, 20 loglor + 20 loglorb. It is noted that the phase 

shifts for Gc and Gb are simply sunmed algebraically as before. The 

logarithmic plot of the product GcGb2 based on results in Fig E2. is 

shown in Fig E3. 



15 

10 

co 

5 

0 

-9; 

(a=l , r=0-001 

X. -Ix 

/3r-x-lx/ 

I\e 

. X--, X--, x\x 
Gb 

121 

0 

100 150 200 250 : jUU 

Frequency ( Hz) 

inn isn 200 250 300 

50 

CD 

100 

0- 
150 

(a=l. c-=0-001) I 

G 

Fig E2 Logarithmic frequency response curves for Gc and G b* 'r = 0-001 

and a=1 in Gc ; and Gb is the horizontal frequency response of 

optimally-tuned main-slug tungsten-bunged bar (Fig 7.21) 

-)nn 



15 
to 

12 

10 

0 

0 

50 

1Z3 
r. n 100 
ci 

El z, 
CL 

150 

200 

322. 

)( \)e. 

100 150 200 250 

Frequency (Hz) 

300 

100 150 200 250 300 

-X-11111 
x 

x 
x 

Fig E3 Logarithmic frequency response curves for G 
cGb , where T= 0.001$ 

a=1; and Gb refers to the horizontal frequency response of 

optimally-. tuned main-slug tungsten-bunged bar (Fig 7.21) 



323 ' 

The second stage of the analysis deals with the transfer of results from 

the logarithmic plot to a Nichols chart which is a special fom of graph 

for use in the analysis of stability behaviour of a closed-loop unity 

feedback linear system such as the one being studied. The chart is shown 

in Fig E4. To effect a transfer of result at a certain frequency, we 

note the gain and phase values at that frequency and locate a corresponding 

point in the Nichols chart using'the gain and phase as its coordinates. 

We proceed in this fashion until every data point of interest is transferred. 

In the final stage . we need to make use of the part of the linear control 

theory relevant to the utility of Nichols chart. According to the theory, 

a closed-loop system is stable when its forward path frequency response 

curve, ie GcGb passes to the left of the OdB/-180 0 point (see Fig ES) on 

the Nichols chart in the direction of increasing frequency w9 Hence, 

the closed-loop system as depicted in Fig E4 is unstable whereas that in 

Fig E5 is stable. The quality of stability, if stability existss depends 

on the width of the phase and gain margins which are indicated in Fig ES. 

In most situations, a negative phase or gain margin has no practical 

significance because the closed-loop system is already unstable and, 

irrespective of the width of these negative margins, an unstable system 

serves no practical purpose. Nevertheless, in this discussion, we shall 

encounter and utilise the concept of negative gain margin as will be 

explained presently. In particular, the system is on the stability 

borderline when its forward path frequency response curve passes through 

the OdB/-18CP point. obviously, in this case both the gain and phase 

margins are zero. 

So fars it has been assumed that Gc is known. However, unlike Gb which is 
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readily measurable from experiments, determining Gc for each and every 

cutting condition by way of experiments is a daunting task. In this 

analysisý Gc is modelled by 
, 
the expression Gc = a-j wfl, where f, and 

a are related to the cutting conditions as explained in section 5.2. 

This expression Pay be rewritten as G=d11-j so that af 
c ift 

is taken as a single variable. The gain of Gc in decibels is 

20 lo%jr3cl = 20 logl(, a + 20 loglojl +(2Trfr)2 

= 20 logloa +. 10 log,, 11+ 2-rrf o- ?I 

(El) 

Where the ratio 
fl is replaced by T and w by 2vf with f as the 
a 

frequency in Hz. 

The first term on the right-side of the preceding equation is a constant 

when a is fixed. The second tem is noted to be a function of frequency f 

when a- is fixed. 

The phase shift 4? c of Gc is given by 

tan Tc 27rf T (E2) 

and since both f and (r are numerically positive, the phase shift TC will 

have to fall in the interval 

ic 
Graphically, once certain values am assigned to a and Tja l0garjthMjC 

frequency response diagram for the gain and phase can be drawn using the 

respective eqts (ED and (E2). The diagrams of Gc and Gb can be added 

graphically and the result is then transferTed onto a Nichols chart as 

described before. For convenience, in using eqt (ED for drawing its 

logarithmic diagram, a is set to unity, and it follows that the fixst tem 
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on the right-side of eqt (ED becomes zero. To decide how far the closed- 

loop system is rvrmved from the stability borderline,, we note from the 

Nichols chart the gain margin designated by Gm which is negative if the 

system is unstable or positive if stable. Graphically,, a change in the 

value of a'fr-an unity in eqt (ED is equivalent to a vertical shift of the 

forward path frequency response curve without affecting its shape since a' 

is maintained constant. Specifically$ an upward shift is equivalent to an 

increasing a from unity,, and vice versa. At the stability borderline, 

the gain margin Gm is zero. Thus,, the critical value of a for the system 

to border on stability is obtained from the following expression, 

from which 

6m 20 log,, P 

Gm 
a Anti-lo 

20 

where the gain margin Gm may take on positive or negative values. 

a) A numerical exarrple 

Fig E2 shows the logarithmic frequency response curves for Gc and Gb. 

Gb is the horizontal frequency response of the optimally-tuned main- 

slug tungsten-bunged bar as illustrated in Fig 7.21; but in the 

logarithmic representation as in Fig E2 the amplitude will have to be 

converted to decibels as shown in the following example. 

Refer to Fig 7.21ý at the frequency of 200 Hz,, the response amplitude 

of the bar to an impressed fcrce of 4.448 N is 9.3 pm. The logarithmic 

ratio of amplitude to force is 20 loglo (9.3/4.448) = 6.41 dB which 
is known as the gain. The corresponding phase shift, also from 

Fig 7.21 is 460. 
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Gc is the frequency transfer function of the cutting process. Taking 

a=1 N/um and q= 0.001s, at the frequency f= 200 Hz, the gain 

of Gc, by eqt (El), is 

20 logio 1+ 10 logio 
11 

+( 27T x 200 x 0.00, )2] 4-11 dB 

Also, by eqt (E2), the corTesponding phase shift is given by 

-ýOc = tari-127rfa" = tan-'( 2Trx2OOxO-OOl )= 51-! ý 

Ccirbining the gain and phase of both Gb and Gc in the manner 

described previously, we obtain the frequency response curves for 

GCG b as shown in Fig E3. Thusý at the frequency f= 200 Hz,, the 

gain of GcGb = 4.11 + 6.41 ='10.52 dB, and the phase = 460 + 51.50 - 

97.50. 

The Nichols chart representation of the forward path frequency transfer 

function GcGb is shown in Fig E4. The gain margin Gm is, by measure- 

rrent, -9.6 dB. Since GM is negative, the system is unstable for 

a=1 N/um and T=0.001s. For the system to border on stability, 

the value of a, by eqt M), has to be a= anti-log (-9.6/20) = 

0.3311 N/um. Since = fl/a, it follows that f, = ýr a=0- 001 x 0.3 311 

331.1 x lO-6N-s/um = 331.1 N-slm- 

4 

The following table shows. for the optimally-tuned main-slug tungsten- 

bunged bar, the relations of r 3, Gm, a and fl. 

u-, (s ) %jdB) apN/m) flIN-s/m) 

0.0005 2.72 731 366 
0.001 9.6 331 331 
0.005 23.89 63.9 319 
0.01 30.00 31.6 316 
0.05 43'. 96 6.34 317. 
0.1 49.98 3.17 317 
0.5 63.97 0.63 317 
1 69.97 0.32 317 
2 76.01 0.16 317 
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Graphically, the variation of f, in relation to a is shown in 

Fig E6. 

It is noted that as a decreases subsequent to an increasing depth of, ' 

cut, the value of f1 decreases at first but eventually settles down to 

a minimum constant value termed the asymptotic value which, in this 

case, is 317 N-s/m. Being a negative damping coefficient, the higher 

its value,, the more stable the system becomes. It is convenient that 

we employ this minimum f, value as a measure of the degree of stability, 

-that a particular slug-damped bar can offer. 

(2) Suppression of regenerative chatter 

The approach is similar to that presented in section El for the case of 

primary chatter. The only difference is in the assumed mathematical form 

of GC. For the case of regenerative chatter suppressioný it has been shown 

in section 5.3 that the cutting process can be modelled by a negative 

hysteretic damping device with a coefficient -f 2 together with a spring 

element of stiffness a'. - Thusý the frequency transfer function of the 

cutting process 

I GC a f2 

or 
izi )iJ, 12 GC d=aej (pc 

where T1 =f2 and ýpl tan-' T1 
a/ C 

It follows that the gain of Gc in dB = 20 logloal + 10 loglO(l+ V1,2) ... (E4) 

and the phase., shift (pc =- taxi7l T1... (E5) , 

So, for the case of regenerative cbatter, eqts (M) and (E5) will replace 

eqt (El) and (E2) respectively. 
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Similar to the case of primary dbatter, it is also observed that as q-1 

increases, leading to a decreasing a' , the value of f2 decreases at 

fix-. t but settles down to a minimum constant termed the asymptotic value. 

Fig E7 shows the manner f2 decreases as a' decreases for the same bar 

employed in the previous example. Accordingly, this minimum f2 value 

can be employed fruitfully as an indicator of the degree of stability 

that a particular bar can offer. 
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