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Abstract 

This paper examines the degree of persistence in the volatility of financial time series using a 

Long Memory Stochastic Volatility (LMSV) model. Specifically, it employs a Gaussian 

semiparametric (or local Whittle) estimator of the memory parameter, based on the frequency 

domain, proposed by Robinson (1995a), and shown by Arteche (2004) to be consistent and 

asymptotically normal in the context of signal plus noise models. Daily data on the 

NASDAQ index are analysed. The results suggest that volatility has a component of long- 

memory behaviour, the order of integration ranging between 0.3 and 0.5, the series being 

therefore stationary and mean-reverting.  
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1. Introduction 

In recent years international stock markets have become increasingly volatile, and the 

persistence of volatility in asset returns has received a great deal of attention in the literature.  

A high degree of persistence and time dependence has often been found in their conditional 

variances. In particular, asset returns typically exhibit high persistence in the autocorrelation 

of some transforms such as squares or other powers of absolute values. 

Two main approaches have been taken to model conditional heteroscedasticity. The 

first is the Autoregressive Conditional Heteroskedasticity (ARCH) model of Engle (1982), 

which models the conditional variance as an exact function of the squares of past 

observations. Thus, volatility is a stochastic process and both the mean and the volatility 

equations have separate and independent error terms. This paper uses the second approach, 

namely stochastic volatility (SV) models, extending them to the case of long memory 

behaviour.  

 Long range dependence (or long memory) processes have become very popular in 

recent years when modelling macroeconomic or financial time series (see, e.g., Diebold and 

Rudebusch, 1989; Baillie, 1996; Gil-Alana and Robinson, 1997; etc.). Moreover, the 

existence of long memory in powers of the absolute value of asset returns was studied by 

Ding et al. (1993). Later, Baillie et al. (1996), Bollerslev and Mikkelsen (1996) and Ding and 

Granger (1996) proposed the Fractionally Integrated ARCH (FIGARCH) model. Breidt et al. 

(1998), Harvey (1998) and, also, Deo and Hurvich (2001) and Arteche (2004) have 

developed parametric and semiparametric methods to estimate the memory parameter. In this 

paper, we use the approach proposed in Arteche (2004) to obtain a semiparametric estimate 

in the frequency domain based on the Whittle function, which is an approximation to the 

likelihood function, but does not require Gaussianity of the series, a feature that is rarely 

satisfied in financial time series. This estimate is shown to be consistent and asymptotically 

normal under very mild conditions in the context of signal plus noise models. 
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 The outline of the paper is as follows: Section 2 briefly describes the model and the 

estimation procedure for the memory parameter. In Section 3 the procedure is applied to 

daily data on the NASDAQ, while Section 4 contains some concluding remarks. 

 

2. The model and the estimation procedure 

The Long Memory Stochastic Volatility (LMSV) model proposed in Breidt et al. (1998), 

Harvey (1998), Deo and Hurvich (2001) and Arteche (2004) is given by: 

,tttx εσσ=      (1) 

where xt is the observed time series; σ is a positive constant; εt  is i.i.d., with mean zero and 

variance 1, and σt is given by: 

,
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where vt is stationary with long memory. That means that the covariance structure of vt is the 

following: 
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and its counterpart in the frequency domain implies that the spectral density function of vt 

satisfies: 
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where ≈  means that the ratio of the left-hand side and the right-hand side of (3) and (4) 

converges to 1 as h → ∞ in (3) and as  λ → 0+. Conditions (3) and (4) are not always 

equivalent, but Zygmund (1995, Cap.V, Sect. 2), and, more generally, Yong (1974) derive 

conditions under which both expressions are equivalent. A typical model satisfying the above 

two properties is the fractionally integrated I(d) model, namely 

,)1( tt
d uvL =−      (5) 
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where d can be any real number, and ut is an I(0) process, defined, for the purpose of the 

present paper, as a covariance stationary process with spectral density function that is 

positive and finite at the zero frequency. Note that the polynomial on the left-hand side of (5) 

can be expressed in terms of its Binomial expansion, such that  
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for all real d. Thus, higher the d is, the higher will be the level of association between the 

observations. This type of model was introduced by Granger (1980, 1981), Granger and 

Joyeux (1980) and Hosking (1981), and it was theoretically justified in terms of aggregation 

by Robinson (1978), Granger (1980), and more recently in terms of the duration of shocks by 

Parke (1999) and others.1 

Taking logs of the squares of xt in (1) and (2), we obtain: 

,log 2
tttt vxy ξμ ++==     (6) 

where 22 loglog tE εσμ +=  and 22 loglog ttt E εεξ −=  is i.i.d. with zero mean and 

variance .2
ξσ  For example, if εt ~ N(0, 1) then ξt is a centred log 2

1χ  variable with E log 2
tε  

= 1.27 and 2
ξσ  = π2/2. Apart from the constant μ, yt takes the form of a signal plus noise 

model, where the signal is a long memory process uncorrelated with the noise, which in this 

case is (non-Gaussian) i.i.d. (see Arteche, 2004). 

 The autocovariance function of yt is then given by: 

),0()()( 2 =+== + hIhyyEh vhtty ξσγγ    (7) 

implying that the corresponding spectral density function is: 

                                                 
1  Cioczek-Georges and Mandelbrot (1995), Taqqu et al. (1997), Chambers (1998) and Lippi and Zafferoni 
(1999) also use aggregation to motivate long memory processes, while Diebold and Inoue (2001) propose 
another source for long memory based on regime-switching models. 
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In the context of SV models, maximum likelihood methods are hard to implement due 

to the existence of separate errors in the mean and log-volatility equations. Moreover, in the 

presence of long memory, the problem is even harder. Other techniques, such as the one 

based on the method of moments, were proposed by Taylor (1986) and Melino and Turnbull 

(1990), but these methods were shown to be inefficient in the context of AR disturbances 

with roots which are close to unity (see, e.g., Jacquier et al., 1994). Harvey et al. (1994) 

proposed a quasi-maximum likelihood method based on the Kalman filter in the context of 

short memory SV models. However, for long memory, this method requires a truncation in 

the AR expansion of the process, which may lead to a loss of relevant information. 

Different estimators have been suggested for d in (5). Some of them are parametric, in 

the sense that the model is specified up to a finite number of parameters of which d is just 

one. Sowell (1992) analysed in the time domain the exact maximum likelihood estimates of 

the parameter of a fractional ARIMA (ARFIMA) model, using recursive procedures that 

allow a quick evaluation of the likelihood function. A limitation of this procedure is that the 

roots of the AR polynomial cannot be multiple and the theoretical mean parameter must be 

either zero or known. In the frequency domain, Fox and Taqqu (1986) assumed Gaussianity 

of the process, and, minimising the Whittle function, they showed that the estimate is 

consistent and asymptotically normal under appropriate conditions, which are satisfied by 

fractional models as in (5) with 0 < d < 0.5. Dahlhaus (1989) also assumed Gaussianity but 

considered the exact likelihood function. He proved that this estimate and the one studied in 

Fox and Taqqu (1986) are both not only asymptotically normal but also asymptotically 

efficient in the sense of Fisher. 

It is worth pointing out that all these parametric estimates have the same asymptotic 

properties of T1/2-consistency and asymptotic normality, and, if the process is Gaussian, 
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asymptotic efficiency. Giraitis and Surgailis (1990) relax the Gaussianity assumption and 

analyse the Whittle estimate for linear processes, showing that it is T1/2-consistent and 

asymptotic normal, although it is no longer asymptotically efficient, while Hosoya (1997) 

extends the previous analysis to a multivariate framework. 

However, in the case of parametric approaches, the correct choice of the model is 

crucial: if it is misspecified, the estimates of d are liable to be inconsistent. In fact, 

misspecification of the short run components can invalidate the estimation of the long run 

behaviour. Thus, there might be some advantages in estimating d on the basis of 

semiparametric approaches. These parameterise only the long run characteristic of the series. 

There is a price to be paid in terms of efficiency in not using a correct parametric model, but 

when the sample size is large the robustness of semiparametric procedures is important. 

Examples in this context are the log-periodogram regression estimator (LPE), initially 

proposed by Geweke and Porter-Hudak (1983) and later modified by Künsch (1986) and 

Robinson (1995b), the average periodogram estimator of Robinson (APE, 1994) and a local 

Whittle estimator (Robinson, 1995a). In the context of signal plus noise and SV models, 

Arteche (2004) showed that the latter procedure (Robinson, 1995a) is consistent and 

asymptotically normal.2 The estimator is implicitly defined by: 
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where I(λj) is the periodogram of the raw time series, xt, given by: 
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and d ∈ (-0.5, 0.5).3 Under finiteness of the fourth moment and other mild conditions, 

Robinson (1995a) proved that: 

,)4/1,0()ˆ( ∞→→− TasNddm do  

where do is the true value of d, and with the only additional requirement that m → ∞ slower 

than T.4 Robinson (1995a) shows that m must be smaller than T/2 to avoid aliasing effects. A 

multivariate extension of this estimation procedure can be found in Lobato (1999).  

The other methods also based on semiparametric models (such as the APE and the 

LPE) have been applied to economic time series (see, e.g. Gil-Alana, 2002). Here we use the 

Whittle approach, firstly because of its computational simplicity, as it does not require any 

additional user-chosen numbers in the estimation (as is the case with the LPE and the APE). 

Secondly, it is not necessary to assume Gaussianity in order to obtain an asymptotic normal 

distribution, Robinson’s (1995a) method being more efficient than the LPE.5 In addition, 

several Monte Carlo experiments carried out, for example, by Gil-Alana (2008) showed that, 

in finite samples, the Whittle approach has better statistical properties compared with the 

other procedures.6 

 Arteche (2004) shows that in the context of this procedure the spectral density of yt 

(fy(λ)) inherits the asymptotic behaviour of fv(λ) if the memory parameter d is positive. 

Further, under very mild regularity conditions, the estimate of d based on Robinson’s (1995a) 

method preserves the same consistency and asymptotic normality properties as under normal 

circumstances. 

                                                                                                                                                       
2  In fact, he showed that it satisfies these two properties not only for the case of long memory at the zero 
frequency, but also when the spectrum is unbounded at any frequency in the interval (0, π] (see also Arteche 
and Robinson, 2000). 
3   Velasco (1999a, b) showed that the fractionally differencing parameter can also be consistently 
semiparametrically estimated in nonstationary contexts by means of tapering. 
4   The exact requirement is that (1/m) + ((m1+2α (log m)2)/(T2α) → 0 as  T → ∞, where α is determined by the 
smoothness of the spectral density of the short run components.  In the case of a stationary and invertible 
ARMA, α can be set equal to 2 and the condition is (1/m) + (m5 (log m)2)/(T4) → 0 as  T → ∞. 
5   Velasco (2000) showed that Gaussianity is not necessary for the LPE either. 
6 Other recent approaches using the Whittle function are Phillips and Shimotsu (2004) and Shimotsu and 
Phillips (2005, 2006). 
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 3. Persistence in the volatility of the NASDAQ-100 

Over the past few years the presence of long memory in the volatility of equity returns has 

dominated the literature on temporal dependencies in financial volatility. Recently, both 

Bollerslev and Jubinski (1999) and Ray and Tsay (2000) investigated the long memory 

behaviour in the volatility of the Aluminum Corporation of American (AA) daily stock 

returns. Bollerslev and Jubinski (1999) use Robinson’s (1995b) bivariate version of the GPH 

estimator to estimate the long memory parameters of absolute returns and volume, whereas 

Ray and Tsay (2000) apply both the univariate GPH estimator and Breidt et al.’s (1998) 

QMLE to log-squared returns. Both studies find evidence of strong persistence in the 

volatility of the AA daily stock returns with a long memory parameter estimate of 

approximately 0.35. Jensen (2001) proposes a Bayesian estimator based on wavelets, and 

using the same dataset he concludes that the value of d is around 0.36. 

In this section we analyse the persistence in the volatility of the NASDAQ-100 Index. 

It includes 100 of the largest non-financial domestic and international companies listed on 

the NASDAQ National Market tier of the NASDAQ Stock Market Inc. The index reflects 

NASDAQ’s largest companies across major industry groups. The frequency of the series is 

daily and the sample covers the period from January 2, 2001 to February 20, 2004. 

 

INSERT FIGURE 1 ABOUT HERE  

 

 Figure 1 plots the return series. These appear to be stationary, although the variance 

seems to exhibit a higher degree of volatility in the first half of the sample. Figure 2 contains 

the plot of the transformed series, i.e. *
ty , which still appears to be stationary, but more 

persistent. Figure 3 plots the periodogram of the transformed series, which has a large peak at 
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the smallest frequency, suggesting that the series has long memory behaviour at the long run 

or zero frequency. 

Figure 2 displays the estimated values of d based on Robinson’s (1995a) method, i.e., 

d̂  is given by (9). The upper part of the figure reports the results for all values of m from 1 to 

T/2.7 We also include in the figure the 95%-confidence interval corresponding to the 

hypothesis of d = 0. It can be seen that all the estimates are above the interval, implying the 

existence of a component of long memory behaviour.  

 

INSERT FIGURE 2 ABOUT HERE  

 

In the lower part of the table, we display the estimates for a grid of values of m from 

25 to 100. In general, lower values are obtained for higher bandwidths, which may be 

explained by the fact that negative biases are produced by the added noise to the SVLM 

models. The estimated values range of d between 0.3 and 0.5, implying stationary long 

memory and mean-reverting behaviour. This result has some implications in terms of 

financial policy and planning inference: any shock affecting the volatility process will die out 

in the long run, though the adjustment process will be slow, according to a hyperbolic rate of 

decay. In this context, policy actions might be appropriate to eliminate the effects of a shock 

more quickly and accelerate mean-reversion. 

 

 INSERT TABLE 1 AND FIGURE 3 ABOUT HERE  

 

                                                 
7 Some methods to calculate the optimal bandwidth numbers have been examined in Delgado and Robinson 
(1996) and Robinson and Henry (1996). However, in the case of the Whittle estimator employed here, the use 
of optimal values has not been theoretically justified. Other authors, such as Lobato and Savin (1998) use an 
interval of values for m but we have preferred to report the results for the whole range of values of m. 
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 Figure 2 also shows that the parameter d is most stable when m is between 50 and 75. 

In such a case the estimate of d is around 0.41. Table 1 reports the first twenty impulse 

responses for a 1-unit shock in the context of an I(d) process with d = 0.41. It can be seen 

that, 10 periods after the initial shock, 11.7% of its effect is still present in the series, 7.84% 

being the corresponding figure after 20 periods. Figure 3 plots the responses over a 50-period 

horizon, and shows clearly the hyperbolic decay in the effect of the shocks. 

 

4. Conclusions 

This paper has examined the long memory property in the stochastic volatitlity models of 

Harvey (1998) and Breidt et al. (1998) by using a Gaussian semiparametric or local Whittle 

estimator of the fractional differencing parameter (Robinson, 1995a). In a recent paper, 

Arteche (2004) shows that this estimator is consistent and asymptotically normal in the 

context of signal plus noise models. Moreover, the conditions needed for consistency and 

asymptotic normality are less restrictive than those required in Deo and Hurvich (2001) for 

the estimator based on the LPE. Thus, for example, Gaussianity, which is a condition rarely 

satisfied in financial series, is not necessary. 

 Daily data on the NASDAQ-100 Index (xt) for the time period January 2, 2001 – 

February 20, 2004 are used, and the analysis is carried out on the transformed series 

.log 2*
tt xy =  The results show that the volatility process has long memory, with an order of 

integration ranging between 0.3 and 0.5. The fact that the estimated values of d are strictly 

smaller than 1 implies mean reversion, with the effect of the shocks dying away in the long 

run. 

 A drawback of analysis carried out here might be the use of a semiparametric method 

not taking into account the short-run dynamics in the series. However, as mentioned in 

Section 2, the use of parametric procedures is difficult to implement due to the existence of 



 10

separate errors in the main and log-volatility equations. Theoretical work in this direction is 

now under way. 
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FIGURE 1 

NASDAQ-100 Index returns (yt) 
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FIGURE 2 

Estimates of d based on the Whittle method of Robinson (1994a) for the transformed returns 
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TABLE 1 

Impulse responses for a value of d = 0.41 

Period Value Period Value 

1 0.4100 11 0.1111 

2 0.2890 12 0.1056 

3 0.2322 13 0.1008 

4 0.1979 14 0.0966 

5 0.1745 15 0.0928 

6 0.1574 16 0.0893 

7 0.1441 17 0.0862 

8 0.1335 18 0.0834 

9 0.1247 19 0.0808 

10 0.1174 20 0.0784 
 

 

FIGURE 3 

Impulse responses for an I(d) process with d = 0.41 
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