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Abstract 

Two-phase flow in small tubes and channels is becoming a common phenomenon in 

industrial processes. However, the study of two-phase flow regimes in small tubes is 

still at its infancy. The previous studies are reviewed and discussed in the literature 

section. The problems and inconsistencies encountered in the earlier studies are 

presented and discussed. 

The. experimental facility is introduced in the chapters that follow. They include a 

section on the design of the experimental system and the test sections, the selection of 

the experimental parameters and the introduction of the purposely-developed programs 

to control the experiments and collect and process the data. The methodology of the 

calibration and the uncertainty analysis, the problems encountered and their solutions 

and the single-phase validation experiments are also described. 

In this project we studied the effect of tube diameter and fluid flow parameters on flow 

patterns in small tubes using R134a as the working fluid. The tested tube diameters 

were 1.10,2.01,2.8 8 and 4.26 mm; the fluid pressures were 6,10 and 14 bar; the liquid 

and gas superficial velocities covered a range of 0.04-5.0 M/s and 0.01-10.0 m/s 

respectively. 

The observed flow patterns included bubbly, dispersed bubble, confined bubble, slug, 

chum, annular and mist flow. Twelve integrated flow maps are sketched in this report. 
The obtained results were compared with earlier experiments by other workers and with 

existing models, with obvious differences in the prediction of the transition boundaries. 

A set of new models and correlations were developed, based on the new data for boiling 

R134a presented in this thesis, to predict the effect of tube diameter and fluid properties 

on the transition boundaries. Some also agreed with the limited data available from 

earlier studies for adiabatic air-water flow in small to normal size tubes. 
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Chapter I Introduction 

1.1 Background 

Gas-liquid two-phase flow, a universal natural phenomenon, has been studied for a 

number of years owing to its wide application in industry. As early as the seventeenth 

century, air-water two-phase flow was utilized to produce compressed air and possibly 

the earliest publication on two-phase flow is that "On the shape and motion of a bubble 

of air in a liquid of constant densiV' published in 183 0 by Thermin (Chisholm 1983). 

Since then, engineers began their scientific work in this area and thousands of papers 

were published. 

In the last hundred years, there were many inventions that related to the applications of 

two-phase flow in the field of energy, chemistry, petroleum industry and domestic 

appliances. Later, with the rapid development of the nuclear industry, researchers 

focused on the safety and the stability of two-phase flow. The study of flow patterns 

received increasing attention because it can reveal the mechanism of the heat transfer 

processes in two-phase flow. The accuracy of correlations for heat transfer and pressure 

drop greatly depends on the precise prediction of flow patterns. According to Taitel 

(1990), the earliest flow map was plotted by Baker in 1954. Since then, numerous 

experimental data on flow patterns were collected, lots of flow maps were sketched and 

a large number of the correlations were published. Based on the above works, some 

models and correlations were put forward and could predict or explain the transition of 
flow patterns reasonably. However, these studies were mostly concerned with 

centimetre-scale tubes until recent years when this situation changed due to the 

development of micro-devices and micro-systems. 

Flow boiling heat transfer in small channels, a highly-efficient heat transfer method, has 

found important use and applications in industries such as compact heat exchangers, 

cooling devices for nuclear reactors, air-conditioning and refrigeration systems, thermal 

control devices in spacecrafts, chemical processing systems and high power electronic 
device cooling systems. (Fukano and Kariyasaki 1993, Wongwises et al. 2000, Zietlow 

and Pedersen 1998). Large or super large-scale integrated circuits, for instance, may 
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create a great quantity of heat in a narrow space, which requires a highly-efficient and 

compact heat exchanger to carry the energy away to protect such electronic equipment. 
Therefore, it is imperative that designers have a complete understanding of two-phase 
flow in small channels as this is the key in creating high quality thermal exchange 

equipment, where the accurate prediction of flow patterns significantly contributes to 
improve production performance, enhances heat transfer rate and reduces energy 

consumption. Such systems may also contribute to the depression of equipment noise 

and overall to the reduction in environmental pollution. Accurate prediction and control 

of pressure drop will also be possible. 

However, up to now, the study of two-phase flow regimes in small diameter tubes is 

still at an early stage though there are a significant number of reports in this field. The 

present author examined the previous studies for small channels and concluded that the 

majority of them dealt with adiabatic air-water in rectangular channels with a hydraulic 

diameter range of I to 5 mm and flow flux range of I to IX104 kg/m2S' see Appendix A. 
Although researchers agree that surface tension becomes an important parameter with 
the decrease of the channel dimension (Oya 1971, Bamea et al. 1983, Fukano and 
Kariyasaki 1993, Hibiki et al. 1993, Lin et al. 1998, Coleman and Garimella 1999), the 
flow pattern transition mechanisms for small channels are quite vague and disputable. 

Therefore, it is still problematic or impossible to predict the flow patterns for small 
channels due to lack of adequate experiment data and theoretical analysis. 

There are two main study methods for two-phase flow patterns: The experimental 

method (e. g. Bamea et al. 1985, Mao and Dukler 1989, Hout et al. 1992, Andreussi et al. 
1999) and a different approach which focuses on establishing physical models (e. g. 
Taitel and Dukler 1976, Taitel et al. 1980, Mishima and Ishii 1984, McQuilian and 
Whalley 1985, Bamea et al. 1982, Bamea 1986,1987). The earlier studies concentrated 

on standard size tubes (order of centimetre) as was the industry requirement at the time. 

Later studies (Sue and Grifith 1964, Oya 1971, Bamea et al. 1983, Graska 1986, 

Damianides and Westwater 1988) found that the existing correlations developed from 

standard size tubes could not predict properly flow regimes down to millimetre size 

tubes, and the deviation became more pronounced with the decrease of channel 
dimension. The reported flow maps for small tubes (Damianides and Westwater 1988, 

Mishima and Hibiki 1996, Coleman and Garimella 1999) showed large deviations when 
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compared with the predicted maps by the existing models for normal tubes (Taitel and 
Dukler 1976, Taitel et al. 1980, Mishima and Ishii 1984, Bamea et al. 1982). To date, 

models for two-phase flow in small tube are not complete and also the corresponding 

experimental data are still scarce. Therefore, the present project is an experimental study 

of two-phase flow patterns in small tubes and further proposes to contribute to the 

development of new theoretical models and correlations. 

1.2 The proposed project 

The purpose of the proposed research is to elucidate the effect of channel dimension and 
fluid flow parameters (pressure and as a consequence fluid properties such as density, 

viscosity and surface tension) on flow patterns in small tubes. Compared to the current 

state of research in two-Phase flow in small diameter tubes, the work includes and adds 

more experimental data and the development of flow regime maps. The results are 

compared with the previous predictions, quantitatively analysing the effect of tube 
diameter and fluid parameters. The ultimate aim is the establishment of new physical 

models and correlations for predicting two-phase flow regime boundaries in small tubes. 

In particular, the objectives of the present study include: 

1. Review the past work on the study of two-phase flow patterns in small tubes; 

summarize the existing findings/conclusions and identify unsolved problems or 
discrepancies. 

2. Modify an experimental rig to satisfy the need of the current study. This must be 

suitable for long term flow boiling heat transfer and flow visualization research 

with multi fluids and wide parameter range. 

3. Calibrate the measuring instruments and contribute to the commissioning of the 

experimental system. Validate the rig with single-phase experiments. 

4. Study the effect of tube dimension and fluid flow parameters on flow boiling 

regimes and transition boundaries. Provide new flow pattern maps which include 

the effect of tube diameter and fluid parameters. 

5. Develop and validate theoretical models and correlations describing flow regimes. 
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In order to achieve the above objectives, an advanced, highly sophisticated and accurate 

experimental facility has been built and commissioned. Four test sections with different 

diameters are used to study adiabatic flow patterns with high precision. A digital high- 

speed camera was used to objectively record flow patterns avoiding subjective 

observation. The experiments cover a wide range of temperature, pressure, mass flux 

and quality. The obtained data are enough to complete the integrated flow maps using 

various parameters to assess their relative importance. The new models and correlations 

suitable for small diameter tubes were developed through analysing and comparing the 

present experimental data and those from other researchers. 

The range of parameters that were tested in the adiabatic flow pattern experiments are 

summarised below: 

Fluid 

Pressure (bar) 

Temperature (*C) 

Diameter (mm) 

Orientation 
Vapour superficial velocities (m/s) 

Liquid superficial velocities (m/s) 

Quality 

R134a 

6,10,14 

21.56,39.40,52.45 

1.10,2.01,2.88,4.26 

Vertical upward 
0.01-10.0 

0.04-5.0 

0.0-1.0 

1.3 Outline of this thesis 

A detailed literature review was carried out and presented in Chapter 2. It discusses 

several basic concepts such as the definition of small tube or channel and the 

classifications of flow patterns. The parameters and factors which affect flow patterns 

are analysed and the existing discrepancies and unexplored problems are discussed. 

Chapter 3 introduces the existing experimental facility in detail, which includes system 
functions, experimental parameters and range, test sections and newly developed 

programs. The analysis of the experimental accuracy is presented in Chapter 4. The 

problems occurred in commissioning and the solutions are described in this chapter. The 

facility was validated using single-phase experiments which are described in the last 

part of this chapter. Chapter 5 presents the observed flow patterns in the experiments. 
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Twelve flow maps are sketched and compared. The effect of tube diameter and 

experimental pressure is qualitatively analysed. Chapter 6 compares the obtained data 

with the existing flow maps and correlations. Flow maps using the different coordinate 

systems are also discussed. In Chapter 7, the new models and correlations for predicting 
the flow patterns in small diameter tubes are developed based on the present data and 

compared with results from earlier studies. Chapter 8 presents the conclusions of the 

current study and the presentation of future work. In addition, some relative information 

is included in Appendixes to support the current work. 
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Chapter 2 Literature review 

Although a great number of papers have been published on two-phase flow patterns, 

most of them concern normal size tubes. There is a lack of experimental data and 

theoretical analysis for small tubes in which flow shows notably different characteristics 

so it is vital to conduct research in this area. A literature review is presented in this 

chapter to clarify the present status of the study of flow patterns in small tubes and to 

provide the background for the present project. 

2.1 Definition of small channel 

Engineers used to regard tubes of diameter in the order of centimetre and millimetre as 

normal and small-scale tubes respectively. Now many researchers think the criterion 

ought to be based on the combination of channel size, fluid thermo-hydraulic properties 

and gravity field rather than only on channel dimension. For instance, Brauner and 
Moalem-Maron (1992) reported that large conduits exhibit some characteristics of small 

channel under reduced gravity field. However, a widely accepted standard to define 

small tubes has not yet been agreed. Kew and Cornwell (1997) used the confinement 

number Co, see Equation 2.1, to differentiate traditional and small size tubes. Two- 

phase flow exhibits different flow and heat transfer characteristics from normal size 
tube when Co>0.5. For instance, isolated bubbles prevail when Co>0.5 and cause a 
typical flow regime in small tube identified as confined bubble flow. Brauner and 
Moalem-Maron (1992) recommended E6tv6s number E6, see Equation 2.2. They stated 
that surface tension dominates when E6>1 and this marks the boundary for small 

passages. Triplett et al. (1999) found that stratified flow became impossible when 
E6>100 in their experiments. Hatori and Bretherton (cited from Wadekar 2002) 

theoretically derived and later experimentally verified a quantitative criterion for the 

free bubble rise velocity to be zero, i. e. E6 ý: 11.7 1. They concluded that the narrowness 

of a channel leads to bubble stagnation and suggested the proposed criterion as a 

rational basis for bubble confinement. Akbar et al. (2003) summarized the previous 

studies and concluded that the buoyancy effect could be negligible when Bond number 
Bo, given by Equation 2.3, is less than 0.3, in which condition flow regimes are 
insensitive to channel orientation. Kandlikar (2002) summarized the previous studies on 
flow boiling and recommended the following criteria to differentiate channels, i. e. 3 mm 
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and 200 ýtm are the critical diameters of traditional channels to mini-channels (small 

tube) and mini-channels (small tube) to micro-channels, respectively. 

Co =- (2.1) 
D, 
uTgpýl , : T- 

p: g3 

Eö 
(2z)'u 

= 
(2z Coy (2.2) 

_ pg 
)D2g 

Bo=D 91 pý (2.3) 

Co 
In fact, all coefficients Co, E6 and Bo consider the effect of fluid densities, surface 
tension and channel size to two-phase flow. Therefore, the criteria are not only 
influenced by channel dimension (D), but also by gas-liquid parameters. Table 2.1 

illustrates the different calculated results given by the above five criteria, i. e. the size of 

a tube that indicates deviation from normal size behaviour. 

Table 2.1 The different criteria for small tubes. 

Parameters Air/water R-134a 

Pressure (bar) 1.0 6.0 10.0 14.0 

Temperature ('C) 25.0 21.6 39.4 52.5 

Surface tension (mN/m) 71.98 8.39 6.15 4.61 

Gas density (kg/m3) 1.185 29.04 1 49.06 1 70.7 

Liquid density (kg/M3) 997.0 1218.2 1 1148.3 1090.2 

Critical Diameter (mm) 

Criterion based on E6=1 17.1 5.3 4.7 4.3 

Criterion based on Co=0.5 5.4 1.7 1.5 1.4 

Criterion based on E6=1 1.71 5.0 1.6 
_1.4 

1.2 

Criterion based on E6= 100 1.71 0.53 0.47 0.43 

Criterion based on Bo=0.3 0.81 0.25 0.23 0.20 

As seen in the table, the discrepancy is quite significant (e. g. for air/water the critical 
diameter ranges from 0.81 to 17.1 mm. ) due to the different hydrodynamic mechanisms 

and there is a need for further work to clarify this. Fukano and Kariyasaki (1993) 

experimentally investigated the effect of diameter using air-water flow in I to 9 mm, 
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tubes at atmospheric conditions. The direction of flow was vertical upward, horizontal 

and vertical downward. They found the critical diameter, at which the surface tension 

surpasses the gravity, is between 5 to 9 mrn and the effect of diameter dominated over 
flow direction when the tube diameter was smaller than 6 mm. The conclusions agreed 

with the result of Kew and Cornwell (1997) or Hatori and Bretherton (cited from 

Wadekar 2002), seen in the table above, i. e. 5.4 or 5.0 mm. for air and water. 

Despite the great discrepancies between the actual values, the common characteristics 

exhibited in small tubes have been recognized by the various researchers (Oya 1971, 

Damianides and Westwater 1988, Barajas and Panton 1993, Fukano and Kariyasaki 

1993, Mishima and Hibiki 1996, Triplett et al. 1999, Lin et al. 1999) and are 

summarized below: 

(1) Higher heat transfer capability. 
(2) Surface tension becomes dominant force. 

(3) Flow patterns are less affected by channel orientation and flow patterns tend to be 

axisymmetric in horizontal or inclined tubes. 

(4) Bubbles tend to be regular in shape, i. e. round. 

(5) Some special flow patterns emerge (not reported in normal size tubes). 

(6) Some typical flow patterns in normal size tubes may be absent. 

(7) Intermittent flow appears easily and stratified flow is suppressed. 

(8) Confined bubble flow becomes a typical regime. 

(9) There is thinner liquid film around plug bubbles. 

(10) There is lower bubble drift velocity in vertical flow. 

The significance of differentiating small from normal size tube is that flow pattern 

transition mechanisms change significantly in small channels due to growing restriction 

from the channel wall. It indicates that new physical models and mathematical 

correlations must be built for small channels in order to get more precise prediction of 

flow patterns. For instance, Takamasa et al. (2003) experimentally studied the axial 

development of local flow parameters such as void fraction, interfacial area 

concentration and gas velocity. The project used air-water bubbly flow in a vertical 9 

min diameter tube with the purpose of revealing the true transfer mechanism in two- 

phase flow. In their experiments, they found that the relatively small tube increases the 

probability of a trailing bubble to be within a projected area of a preceding bubble 
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which will accelerate the trailing bubble and facilitate the merger. On the other hand, 

since the radial motion of bubbles is restricted by the presence of tube wall, bubble 

coalescence due to bubble random collision that frequently happens in normal size tubes 
is unlikely to occur in small tubes. Tberefore, the major mechanism of bubble 

coalescence in small tubes is totally different from that in normal size tubes. 

However, two-phase flow behaviour departs from that exhibited in small tubes as the 

channel size decreases further to the order of hundreds of microns and defined as 

microchannel. Kawahara et al. (2002) recently investigated two-phase flow of nitrogen 

and water through a 100 ýLrn horizontal circular channel and reported significant 

differences in the flow regime maps from those previously described for small channels 

with about I mm diameter. In particular, some unique flow patterns, like liquid-ring 

flow and serpentine-like gas core flow which have not been observed in small tubes, 

were reported in their study. On the other hand, dispersed bubbly, chum and fully 

developed annular flow were absent under their experimental conditions. Chung and 
Kawaji (2004) also investigated the effect of micron-scale tube diameter on two-phase 

flow to distinguish microtubes from small tubes. Experiments were conducted with a 

mixture of nitrogen and water in circular channels of 526,250,100 and 50 ýLrn diameter. 

In the 530 and 250 ýtm tubes, two-phase flow patterns were similar to those in small 

tubes, i. e. bubbly, slug, chum, slug-annular and annular. However, only some variations 

of slug flow, including the abovementioned liquid-ring flow and serpentine-like gas 

core flow, were observed in the 100 and 50 pm tubes. The authors also observed that 

the level of interfacial deformation was much smaller in the 100 and 50 pin channels. 
Kawahara et al. (2002), Chung and Kawaji (2004) attributed these new flow 

characteristics exhibited in the microchannels to the stronger effect of surface tension 

and laminar liquid flow. Apparently, their studies indicated that the critical size to 

differentiate small and micro tubes is between 100 to 250 Pm when using nitrogen- 

water as working fluid. Feng and Serizamw (1999), Serizawa and Feng (2001) and 
Serizawa et al. (2002) also reported that flow patterns exhibited greatly different 

characteristics when tube diameter is smaller than 100 pm in their air-water flow 

experiments. However, the effect of different fluids on this criterion has not as yet been 

studied conclusively. 
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2.2 Flow patterns in small channels 

Flow patterns reveal the shape and the distribution of the interface between different 

phases. A two-phase mixture may flow through a conduit in a variety of flow patterns 
depending on the range of system parameters, i. e. flow rate, fluid or conduit properties, 
heat transfer rate, pressure drop. Therefore, an appreciation of flow patterns is necessary 

and important. 

2.2.1 Classifications of flow patterns 

An accurate identification of flow patterns and transition boundaries is quite difficult 

due to lack of agreement in classification and the subjectivity of observers. Some 

researchers like to use very detailed classifications, which result in a large number of 
flow patterns. Others prefer less detailed divisions because the extremely detailed 

classifications are insignificant in engineering. Taitel (1990) reported that the trend was 
to minimize the number of flow patterns to the minimum essential with the desire to 

reach standardization so that data from different laboratories could be correctly 
interpreted and compared. 

Although there are still arguments on the classifications of flow patterns, most 

researchers agreed to categorise flow patterns into four main classes: stratified flow, 

intermittent flow, annular flow and bubble flow. Each main class could be subdivided 
into several subclasses. Table 2.2 lists the typical descriptions for the flow patterns. 

The factors affecting flow patterns are numerous and complex. The transition from one 
flow pattern to another may be abrupt but in most cases it is a gradual development 

process in which case the transition boundary becomes a transition zone. Within the 

transition zones the flow patterns possess characteristics of more than one of the flow 

patterns described above. The identification of flow patterns in transition zones is not 

easy and sometimes causes considerable confusion. For instance, a typical problematic 
zone is the region near slug, annular and stratified wavy flow in a horizontal tube. In 

this region the flow can be observed as either slug, wavy or annular flow, depending on 

the attitude of observers. Nicholson et al. (1978) termed this region as "Proto Slug", Lin 

and Hanratty (1986) named it as "Pseudo Slug" while Taitel and Dukler (1976) called it 

"Wavy Annular flow". 
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Table 2.2 Classification and description of two-phase flow patterns. 

Subclass Subclass 
Main class Flow orientation for normal tubes for small tubes 

Stratified flow Stratified smooth Stratified wavy Horizontal 
Stratified wavy Horizontal 

Bubble flow Bubbly Bubbly Vertical / All 
Dispersed bubble Dispersed bubble All 

Intermittent flow 
Plug Plug (Confined Bubble Horizontal / All 

Elongated Bubble) or Elongated Bubble) 

Slug Slug 
All (Vertical) 

(Taylor Bubble) (Taylor Bubble) 
Chum Chum Vertical 

Pseudo-slug 
Horizontal 

(Wavy Annular) 

Annular flow Annular Annular All 
mist Mist All 

Wispy annular All 

The typical flow patterns sketched in early researches are presented in Figures 2.1-2.5. 

Figure 2.1 shows the effect of gravity on flow patterns in normal size tubes, see 
stratified smooth and stratified wavy in horizontal tubes and elongated bubble and slug 
bubble in inclined tubes in which liquid flows at the bottom of conduit with gas at the 
top. Comparatively the distribution of gas and liquid phase is more uniform in bubble 

and annular flows which indicates that gravity is not as dominant force as the increase 

of gas/liquid velocity. The effect of surface tension on bubble configuration is 

significant in small diameter tubes. The typical flow characteristics in small tubes such 

as regular and round bubbles were clearly exhibited in plug flow in Figure 2.2. The 

typical flow patterns in vertical normal tubes were reported by Taitel et al. (1980), 

which included bubble (named as dispersed bubble in the current study), slug, chum and 

annular flows, see Figure 2.3. The flow patterns under microgravity conditions are 

presented in Figure 2.4 and discussed in Section 2.3.2 (6). Mishima and Hibiki (1996) 

studied air-water flow in I to 4 mm vertical tubes and reported several particular flow 

patterns which were never reported in normal tubes, as shown in Figure 2.5. 
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The common characteristics ofthe typical Ilo", patterns arc described below. 

Stratified flo, *-,,: In stratified llo\, N, liquid IloAs at the bottom ofconduit with gas Lit the 

top duc to the action of' gravity. see Figure 2.1. It is observed mainly in horizontal or 

downward inclined flow. Stratilied flow can be subdivided into stratificd smooth and 

stratified "avy. In stratified smooth, both liquid and gas flo\, \-s are larninar and there is 
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no obvious fluctuation on the gas-liquid interface. It is hardly ever observed in small 
tubes because surface tension dominates gravity. Stratified wavy indicates that the gas- 

liquid interface becomes unstable and wavy. 

Intermittent flow: Intermittent flow, see Figures 2.1 and 2.2, appears when elongated 
discrete gas-phase distributes in continuous liquid-phase. In most cases, there are many 

small bubbles in the liquid-phase. It is normally subdivided into Plug or Elongated 

Bubble (Confined Bubble in small tube), Slug (Taylor Bubble in vertical flow), Chum 

and Pseudo-slug (Wavy Annular). The flow is calm in plug flow and large elongated 

bubbles are in regular shape whilst none or few small bubbles float in the liquid. 

Sometimes it is also termed as "elongated bubble flow" (Coleman and Garimella 1999, 

Taitel 1990) or "confined bubble flow" in small tubes (Lin et al. 1999). Confined 

bubbles have spherical cap and bottom and the length is greater than tube diameter. This 

flow occurs in any flow orientation and direction and indicates that surface tension has 

grown into a dominant force. In slug flow, liquid is aerated and contains large as well as 

many small bubbles. It appears in any flow orientation. These large bubbles generally 
float on the upper part of horizontal tubes. In vertical flow, the large bubbles are in 

bullet shape. They occupy most of the cross-sectional area of conduit and are also 
designated as "Taylor bubble" in some papers (Taitel et al. 1980, Brauner and Bamea 

1986). Chum flow resembles slug flow, but is more chaotic, frothy, distorted and highly 

oscillatory, see Figure 2.3. The gas phase has irregular interface and tends to be 

continuous. Chum flow is usually associated with vertical or sharply inclined tubes. 

Pseudo-slug or Wavy annular (Damianides and Westwater 1988, Coleman and 
Garimella 1999) are typical flow patterns in small horizontal tubes. When wave surfaces 
in stratified wavy flow amplify to the extent that they touch the top of tube wall or 
liquid slugs tend to be penetrated through by gas phase, Pseudo-slug flow is formed. 

This flow pattern can be regarded as the transition zone of slug, stratified wavy and 

annular. 

Bubble flow: The most notable difference between bubble flow and intermittent flow is 

that the bubble size in bubble flow is smaller than the conduit dimension, see Figures 

2.1-2.5. Bubbles, especially bigger bubbles, tend to concentrate in the centre of conduit 
in vertical flow. But for horizontal or inclined flow, bubbles usually float on the upper 

part of conduit. Bubble flow appears as bubbly flow at lower liquid and gas flow rates 
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in which case the discrete bubbles are comparable with the conduit dimension. Bubbly 
flow turns into dispersed bubble flow when liquid flow rate increases and bigger 

bubbles are broken into fine bubbles. Dispersed bubble flow can appear at any flow 

orientation. 

Annular flow: In annular flow liquid film flows at conduit wall and gas phase flows 

continuously in the core, see Figures 2.1-2.5. In some cases, gas phase contains 

entrained liquid droplets. Annular flow can exist in all flow orientations. Wispy annular 
flow means that the entrained liquid droplets concentrate into lumps at high liquid flow 

rate. Mist flow occurs in the case of high gas flow rate. Liquid and gas mix so 

tempestuously that causes liquid droplets to become quite small, i. e. like mist. 

Summarizing the published reports, the basic flow patterns are now sketched and are 

presented in Figures 2.6-2.9 for normal size tubes and Figures 2.11-2.13 for small tubes. 

(1) Horizontal flow in normal size tubes 

Figure 2.6 illustrates the basic flow patterns in normal size horizontal adiabatic tubes. 
They are stratified smooth, stratified wavy, dispersed bubble, plug, slug, annular, mist 
and wispy annular. 

Stratified Smooth 

"i. 3 
Dispersed Bubble 

Stratified Wavy 

Plug 

Slug 

............. 

Mist 

....... ... 

Annular 

Wispy Annular 

Figure 2.6 The basic flow patterns in normal horizontal adiabatic tubes. 
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Figure 2.7 illustrates the transformation process of the flow patterns in non-nal size 
horizontal tubes with heat flux at tube wall, i. e. flow boiling. With increasing quality, 

the possible flow patterns could be bubble, plug, slug, stratified wavy, annular and mist 

in turn. However, the dividing lines between the flow patterns are not clear. 

Figure 2.7 The transition flow patterns in horizontal flow boiling in nonnal size tubes. 

(2) Vertical flow in normal size tubes 

Figure 2.8 shows the basic flow patterns in normal size vertical adiabatic tubes. They 

include dispersed bubble, bubbly, slug (Taylor bubble), chum, annular, mist and wispy 

annular. 
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Figure 2.8 The basic flow patterns in normal size vertical adiabatic tubes. 

Figure 2.9 shows the flow regimes in vertical flow boiling in normal size tubes. The 

flow patterns take turns to be bubble, slug, chum, annular and mist as quality increases. 
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Figure 2.9 The basic flow patterns in vertical flow boiling in normal size tubes. 

As tube diameter decreases, some particular flow patterns, which were never reported in 

normal size tubes emerged in small tubes; for example, spiral or intermittent bubble train 
flow, long bubble slug flow and long bubble chum flow reported by Mishima and Hibiki 

(1996), see the flow patterns marked with asterisk in Figure 2.5. In addition, the 
definitions and classifications of flow patterns in small tubes are more vague and non- 

unique. Some flow patterns were rarely reported in more than one experimental report. 

For instance, Granular-lumpy bubble and Fish-scale type slug flow reported by Oya (197 1) 

were seldom observed by other researchers, see Figure 2.10. Some flow patterns, like 

confined bubble which are rarely reported in normal size tubes, become the prevailing 

regime in small tubes (Watel, 2003). Here, only general flow patterns in small tubes are 

presented based on the evaluation of the reports presented in the literature. 
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Figure 2.10 Air-water flow patterns observed in Oya (197 1) experiments. 

(3) Horizontal flow in small tubes 

The typical flow patterns in horizontal small adiabatic tubes include bubbly, dispersed 

bubble, plug (confined bubble), slug, stratified wavy, pseudo-slug (wavy annular), 

annular and mist, see Figure 2.11. 
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Figure 2.11 The basic flow patterns in small horizontal adiabatic tubes. 

(4) Vertical flow in small tubes 

The typical flow patterns in vertical small adiabatic tubes are presented in Figure 2.12. 
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Bubbly Dispersed Plug Slug Chum Annular Mist Bubble (Confined Bubble) 

Figure 2.12 The basic flow patterns in small vertical adiabatic tubes. 

Figure 2.13 drawn by author is based on the previous observations and illustrates the 

possible flow boiling patterns in small vertical tubes. 

Figure 2.13 The possible flow patterns for flow boiling in small vertical tubes. 
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2.2.2 Flow maps 

Pressure loss, heat and mass transfer, flow stability and component/system safety are 

strongly dependent on flow patterns. An accurate prediction of flow patterns has 

important actual significance. The most accepted tool to predict flow patterns are flow 

maps, which are initially sketched based on experimental data and then are hopefully 

predicted by correlations. 

The first flow map may be that sketched by Baker in 1954 (Taitel 1990). Since then, 

various maps with different coordinate groups were proposed in an attempt to obtain 

general and accurate prediction of flow regimes. However, the aim has not been reached 

yet. Some flow maps were drawn in terms of dimensionless parameters, whereas others 

were based on dimensional parameters. The most popular coordinate parameters are gas 

and liquid superficial velocities. However, the dimensionless coordinate groups might 
be more general and effective since each coordinate can contain a group of parameters. 

The coordinate groups in the published flow maps from various researchers have been 

summarized by Chisholm (1983), Troniewski and Ulbrich (1984) and are given below: 
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The typical flow maps reported are shown in Figures 2.14-2.17 for normal and small 

size tubes at vertical or horizontal orientation. The significant effect of channel 
dimension can be detected from the aforementioned maps. For example, comparison of 
Figures 2.14 and 2.16 shows that stratified smooth flow occupies a large area in the 25 

min diameter tube but disappears in the 2.0 mm tube. This is one example of the many 

that urged researchers to explore flow regimes for small tubes. In addition, the flow 

maps for vertical and horizontal flow exhibited significant differences in both normal 

and small tubes, which indicates that gravity still is an important factor in flow regimes. 
For example, stratified flow (SS and SW) is a main flow pattern in horizontal normal 
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size tubes but it completely disappears in vertical normal size tubes. On the other hand, 

chum flow (CH) can only be observed in vertical tubes. For small tubes, Damianides 

and Westwater (1988) observed bubble, dispersed bubble, plug, slug, pseudo slug, wavy 

and annular flow in small horizontal tubes as shown in Figure 2.16. However, Mishima 

and Hibiki (1996) only reported bubbly, slug, chum and annular flow in vertical small 

tubes, see Figure 2.17. 
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Figure 2.15 Flow patterns reported by 
Bamea et al. (1985) for 25 mm diameter 

vertical upward tube, air-water at 
atmospheric conditions (25 T, I bar), 

compared with the theoretical lines 
proposed by Taitel et al. (1980). 
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Figure 2.14 Flow patterns reported by 
Barnea et al. (1985) for 25 mm diameter 
horizontal tube, air-water at atmospheric 
conditions (25 T, I bar), compared with 
the theoretical lines proposed by Taitel 

and Dukler (1976). 
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Damianides and Westwater (1988) for 2 
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2.2.3 Transition models and correlations 

The initial method to predict flow patterns was to correlate experimental data and plot 
them on a "flow pattern map". However, this method requires a great deal of 

experimental data and can hardly help obtain general correlations. In the 80's, attempts 

were required to develop physical models that allow an analytical prediction of the 

transition boundaries (Bamea 1986). These models try to simplify the description of 

physical phenomena so that a mathematical simulation is possible. However, a complete 

physical understanding of the phenomena related to flow pattern transitions is still not 

available. Most models are restricted to a specific range and thus give only a partial 

view of the transition mechanisms in tubes (Bamea 1987). 

The models for normal size tubes have been presented for the following particular 

situations: 

(1) Horizontal and slightly inclined tubes (Taitel and Dukler 1976, Husain and 
Weisman 1978, Kadambi 1982, Lin and Hanratty 1986) 

(2) Vertical upward flow (Taitel et al. 1980, Mishima and Ishii 1984, McQuillan and 
Whalley 1985) 

(3) Vertical downward flow (Barnea et al. 1982) 

(4) Inclined upward flow from 0 to 90" (Barnea et al. 1985) 

(5) Inclined downward flow from 0 to -90* (Barnea et al. 1982) 

(6) Complete range of inclined flow from -90 to 90* (Barnea 1987) 

Based on the previous studies, Taitel summarized and presented a "Unified Model" 

which can predict flow patterns reasonably at any angle of inclination. This model 
incorporates the effect of fluid properties (density, viscosity and surface tension), tube 

size and inclination angle. The prediction of the model agrees with the experimental 

results of 50.1 mm tube in the whole range of tube inclination (Taitel 1990). However, 

it was based solely on the experimental data for normal tubes and might not consider the 

effect of surface tension adequately. Tberefore, the unified model is only valid for 

normal size tubes and a revision for small tubes is needed. 

Bamea et al. (1983) verified experimentally the model of Taitel and Dukler (1976) for 

horizontal flow and Taitel et al. (1980) for vertical upward flow by using 4-12 mm 
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tubes. The comparisons are shown in Figures 2.18 and 2.19 for horizontal flow and 

upwards vertical flow respectively. For the horizontal flow in Figure 2.18, the Taitel 

and Dukler's model (1976) could predict Barnea's data properly except for the 

stratified-intermittent transition boundary, which exhibit the enhanced effect of surface 

tension in small tube. For the vertical flow in Figure 2.19, the Taitel's model (1980) 

generally agreed with Bamea's data but the deviation was obvious at the boundaries of 

slug-chum and chum-annular at high uls region, which might be attributed to the 

different identification of chum flow. However, Darnianides and Westwater (1988) 

sketched flow maps for 1-5 min tubes in their experiments and found that the Taitel and 

Dukler's model (1976) could hardly predict any transition boundaries. For example, the 

stratified flow could not be observed in the Damianides and Westwater's experiments 

but it is a main flow pattern in the Taitel and Dukler's model, see Figures 2.20 and 2.2 1. 

It indicated that the existing models are not valid when tube diameter is less than 5 mm 

for air-water at atmospheric conditions because surface tension begins to dominate as 

tube diameter decreases. 
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Figure 2.19 Comparison between the 4 
mm. upwards vertical air-water flow map 
at atmospheric condition (25 T, I bar) 

presented in the solid lines and the models 
of Taitel et al. (1980) presented by the 

broken lines, (Bamea et al. 1983). 
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The maps depicted in Figures 2.22 and 2.23, are sketched according to the "Unified Model" 

model cited from Taitel (1990). The relevant equations are given in Appendix B. Obviously, 

it results in an inconsistent prediction for small tubes because there is a region where 
intermittent-chum and chum-annular transition boundaries cross, see Figure 2.23. 
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To date, the special transition models and correlations for small channels have not been 

established. Therefore, revising the existing models and correlations for normal size 
tubes or developing new models and correlations for small tubes is one of the main aims 
in current two-phase flow research. Although the existing models and correlations 
developed from normal size tubes have been proved by most researchers not to be 

suitable for small tubes (Sue and Griffith 1964, Oya 1971, Barnea et al. 1983, Graska 

1986, Damianides and Westwater 1988), they can provide some indications of the 
boundaries or possibly provide the basis for the new developed models and correlations 
for small tubes. Therefore, it was considered necessary to present these models and 

correlations. Appendix B shows the equations of the models given by Taitel et al. 
(1980), Mishima and Ishii (1984), McQuillan and Whalley (1985) and, as mentioned 

above, the unified model summarized by Taitel (1990). 

Unlike the traditional flow maps, in which the transition boundaries are sketched based 

on gas-liquid interface configuration, flow regimes for small tubes or in microgravity 

situations are depicted according to force analysis in the work of Akbar et al. (2003). 

They divided the entire flow map into four regions for small tubes: 

(1) Surface tension-dominated region, including bubbly, plug and slug. 

(2) Inertia-dominated zone 1, including annular and wavy-annular regimes. 

(3) Inertia-dominated zone 2, including dispersed flow regime. 
(4) Transition zone. 

Akbar et al. (2003) proposed four semi-empirical correlations to predict the above four 

regions based on the previous experimental data for small channels, see Appendix B. 

The correlations use Weber numbers as the coordinate which represent the ratio of 

surface tension and inertia. The sketch transition lines agreed with the relevant data for 

air-water like fluid in circular and near-circular small tubes with about I mm hydraulic 

diameter at ambient conditions. The comparative result is presented in Figure 2.24. 

Akbar et al. also suggested that the applicability of the correlations needed further 

validation. 
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Figure 2.24 Comparison between the correlations proposed by Akbar et al. (2003) and 

the experimental data for circular and near-circular channels with about I mrn diameter. 

2.3 The factors affecting flow patterns 

2.3.1 Force analysis 

The particular flow regime established by a given combination of liquid and gas 

velocities depends upon the interaction of gravity, shear stress, inertia force, surface 

tension and turbulent force. It is believed that the flow mechanisms in small tubes are 

different from those in larger tubes primarily due to the different relative magnitudes of 

these forces (Coleman and Garimella 1999). The forces that act on a separate bubble 

can be defined quantitatively as follows: 

(1) Buoyancy (gravity) 

Buoyancy originates from the gravity acceleration and the difference of gas and liquid 

density. It causes the separation of gas and liquid thus is an important factor in forming 

stratified flow in horizontal flow. In inclined flow, buoyancy facilitates bubble 

accumulation and coalescence at the top of conduit, which leads to bubble flow 

transition into intennittent flow. It is given as: 
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FB ;rd3 (p, 
- pjg (2.4) 6 

i. e. the force is proportional to d3ý, -P, 
)g 

(2) Shear stress (friction) 

Shear stress at the gas-liquid interface can maintain the liquid film in annular flow and 

can also intensify the disturbance of gas-liquid interface, which causes stratified smooth 
flow and slug flow change to stratified wavy flow and chum flow respectively. It is 

given as: 

Ti 
Pg (ug 

-Uly 

F, = C, xndl x fi 
Pg 

(ug 

2 
-uly (2.5) 

If the bubble's length I is proportional to the bubble diameter d, the shear force between 

gas and liquid phases is proportional to df pg 
(ug 

- u, 
Y. 

(3) Inertia force 

Inertia force keeps bubbles moving at their original track, direction and velocity. Liquid 
bridge is broken at higher gas velocity to facilitate the transition of chum to annular 
flow due to the large inertia force. In addition, turbulence flow can be formed at large 

inertia force and accordingly promote the emergence of chum flow. 

F, =Cxýrd 
3 

Pg xu (2.6) 8d 

i. e. it is proportional to d' Pgug 
2 

(4) Surface tension 

Surface tension takes an important role in small bubbles, i. e. it facilitates the formation 

of regular and round bubbles and enhances the rigidity and anti-coalescence of bubbles. 
Another reason surface tension becomes an important factor in small tubes is that the 

size and the shape of bubbles are not anymore negligible in flow pattern studies. The 

enhanced effect in small tubes makes the liquid film in chum flow thinner so as to 
facilitate the rebuilding of liquid bridge in annular flow. The resulting force is 

proportional to the bubble size and surface tension, i. e. 
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lý, cc du 

(5) Turbulent force 

(2.7) 

Turbulent force drives bubbles to move in a zigzag way (Levich 1962). It increases 

collision frequency among bubbles. It also prevents bubbles from accumulating at the 

top of conduit in inclined flow. It is given as: 

zd I F, =2 PIU r4 

where 

U" =u 

4/2 

2 

Therefore, 

F, = 
;Td2X fl P/ U2 (2.8) 
16 

21 
U2 i. e. this force is proportional to d. fl P/ I* 

Figure 2.25, which is a plot of the ratio of the forces act on a bubble and the bubble 

surface area, i. e. F/A, qualitatively exhibits the influence of bubble size on buoyancy 

and surface tension, which shows that surface tension dominates over buoyancy when 

the bubble size is less than a certain value. 
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Figure 2.25 The relationship between forces and bubble size. 
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2.3.2 Parametric analysis 

Based on the aforementioned dynamic analysis and Taitel's (1990) summary, it can be 

concluded that the following parameters directly affect flow patterns: 
(1) liquid, gas superficial velocity u1s, ugs 

(2) liquid, gas density pl, pg 

(3) liquid, gas dynamic viscosity pl, pg 

(4) conduit dimension, D 

(5) gravitational acceleration g and conduit inclination angle 0 

(6) surface tension, cr 

(7) tube roughness, F 

(8) heat flux, q (only for flow boiling) 

(9) enthalpy hg, h, and latent heat of evaporation hfg (only for flow boiling) 

Although the above parameters can be simplified to eight parameters in vertical 

adiabatic two-phase flow in smooth tube at the normal gravitational conditions, i. e. u1s, 

ugs, pi, pg, ýtj, ýtg, D, cr, it is still quite impractical to find a relation for them based on 

experimental data or theoretical analysis. In order to establish an appropriate 

mechanistic model that is sufficiently close to the natural phenomena as well as being 

simple enough, we have to fully analyse the effect of these parameters so that finally 

only important factors are considered. 

(1) Superficial velocities 

Liquid and gas superficial velocities are two of the most important parameters. They 

directly influence void fraction and the balance of the forces which consequently affect 
flow patterns. The published flow regimes show that all flow patterns strongly depend 

on the superficial velocities. For example, annular flow always takes place at high gas 

superficial velocity, which means that gas-liquid shear stress dominates over other 
forces. Dispersed bubble flow appears at the region of high liquid superficial velocity 

where turbulent force becomes very important. The importance of gas and liquid 

superficial velocities to flow patterns has been recognized in Weisman et al. (1979) 

experiments. Their investigation also confirmed that both fluid properties and tube 
diameter have only moderate influences compared with the superficial velocities. The 
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effect of the superficial velocities on flow patterns is also explained by the effect on 

void fraction. Bamea and Brauner (1985), Hout et al. (1992) and Taitel et al. (2000) 

reported that the void fraction in liquid slug, cc,, is a function of homogeneous velocity 

Uh. where UhýUgs+Ulsý see Figure 2.26, and that a, is a vital criterion that distinguishes 

intermittent flow, i. e. plug (or elongated bubble), slug and chum, see Figure 2.27. 
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Figure 2.26 Void fraction in liquid slug, 
Hout et al. (1992). 

* Hout et al. (1992) 
* BameaandShemer(1989) 
* Fernandes (1981) 
o MaoandDukler(1989) 
------- Bamea and Brauner (1985) 

(2) Density 

dispersed bubble 

W 

It 0.1 - S: ;: 11 

0.01 elongated 5 
bubble 2 

slu 

Ugs (M/S) 

Figure 2.27 The different value of (x, in 
intermittent flow region, Barnea and 

Brauner (1985). 

Published work on the effect of liquid density on flow patterns is indeed rare. Weisman 

et al. (1979) examined the density effect by using air-K2CO3 solution (pl=1420 kg/m3) 

and comparing with the flow map of air-water (pl=1000 k g/M 3) 
. The relative liquid 

viscosity and surface tension changed only slightly. In their experiments, it seems that 
liquid density has little effect on the main transient boundaries, see Table 2.3. 

Table 2.3 The shift direction of flow pattern boundaries with reducing liquid density. 

Diameter To dispersed Intermittent - 
Researcher Orientation (mm) Fluid bubble To annular stratified flow 

air-water vs. 
Weisman et al. air-K2CO3 k1979) 

, horizontal 51 I solution I little effect little effect I little effect 

4+ + 
13 

Ir 

+ 

13 
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The compressibility of gas is normally much bigger than that of liquid, and gas density 

can vary significantly compared with liquid. Therefore, it has more practical 

significance to study the effect of gas density on flow patterns. Gas density strongly 
depends on fluid pressure within a definite temperature range in incompatible gas-liquid 
fluids such as air-water flow. Other parameters, such as liquid density, gas and liquid 

dynamic viscosity, and surface tension, are less dependent on pressure. Thus, the effect 

of pressure on flow patterns reflects the effect of gas density indirectly. This effect 

could be variable in different fluids depending on the sensitivity of the gas density to 

pressure. However, the situation is much more complex for vapour-liquid type fluids 

such as steam-water or two-phase R134a flow used in the proposed experiments. The 

fluid temperature, i. e. the saturated temperature, is a function of the fluid pressure. The 

densities cannot be isolated from other parameters to study their exclusive effect only. 
Table 2.4 presents such relationship between fluid parameters and pressure. 

Table 2.4 The effect of fluid parameters on their properties*. 

R134a Steam-Water Air-Water 

Pressure (bar) 6 10 14 1 10 100 1 
1 

10 
1 

100 1 

Temperature (OC) 21.6 39.4 52.5 99.6 179.9 311.0 20 0 50 99.6 

GasNapour Density 
1 

(k g/M3) 
- 

29.0 49.1 70.7 0.59 5.15 55.43 1.21 12.1 - 1.29 1.07 0.95 

Liquid Density 
(kWM3) 1218 1148 1090. 958 887 688 998 999 1003 1000 988 958 

GasNapour Dynamic 
Viscosity (ýtPa. s) 11.7 12.6 13.3 

. 
12.4. 15.0 20.5. 18.1 - 17.2. 19.5 21.7. 

Liquid Dynamic 
1 ý 

Viscosity (gPa. s) LIO. 2 170.8 147.3 282.0 153.9 81.1 1071 1071 1065 1791 547.1 282.0 

Surface Tension 
ý 

kmN/m) 8.4 6.2 4.6 59.0 42.2 11.8 72.8 - - 75.6 67.91 58.9 

*: Based on the information from Nagano, H. (1990), Schmidt, E. and Grigull, U. (1981), Rogers, 
G. F. C. and Mayhew, Y. R. (1988), and www. udel. edu/pchem/C446/Experiments/expl. pdf. 

Even with the above problems, the influence of gas density can be investigated 

qualitatively through a force analysis. High gas density evidently enhances gas-liquid 

shear stress and gas inertia force which facilitates chum or annular flow forming at 
lower gas velocity. Some experimental results support this analysis. For example, 
Weisman et al. (1979) evaluated the effect of vapour density by using RI 13 at 1 bar 
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(pg=14 k g/m 3) and 4 bar (pg=44 kg/m 3). Considering the change from the variation of 

viscosity and surface tension, the higher vapour density made the transition to annular 

flow to occur at lower gas superficial velocity but had little effect on the boundaries of 

stratified flow and intermittent flow, see Table 2.5. McQuillan and Whalley (1985) 

predicted the transition boundaries of plug-chum and chum-annular slightly shift 

towards the region of lower gas flow rate for vertical tubes when the pressure increases 

in their model. The agreement between the theoretical predictions and the experimental 

observations was generally good. Figure 2.28 shows the comparison of the McQuillan 

and Whalley's model with the steam-water flow maps sketched by Bergles and Suo 

(1966) at the pressures of 34.5 bar (pg=17.28 kg/m 3) and 69.0 bar (p, =35.95 k g/m 3) 

(McQuillan and Whalley 1985). However, the flow maps only support the prediction of 

chum to annular transition boundary, see Table 2.5 and Figure 2.28. 
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Figure 2.28 Comparison of the steam-water flow maps from Bergles and Suo (1966) 

and the model of McQuillan and Whalley (1985) at different pressures. 

Table 2.5 The shift direction of flow pattern boundaries with reducing vapour density 
by decreasing fluid pressure. 

Diameter Intermittent 
Researcher Orientation m Er Fluid Pressure Toannular -stratified 

Weisman et al. 1.0 vs. 4.0 
(1979) horizontal 25,51 RI 13 bar higher u,, little effect 
Bergles and Suo 

1 j 
36 5 vs. * (1966) vertical 10 steam-wate 0 bar 'I 69 higher u., 
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The above works were based on large tubes. Yang and Shieh (2001) experimentally 
investigated two-phase flow patterns for refrigerant R134a and air-water in horizontal 

small tubes with the inside diameters from 1.0 to 3.0 mm. Compared to the air-water 
flow regime, an increase of vapour density in R134a flow leads to a shift of slug to 

annular transition to lower gas velocity. The authors attributed the phenomenon to the 

difference of surface tension since the surface tension of air-water is much larger than 

that of R134a. However, some researchers (Reinarts 1993) gave a different explanation 

to the above phenomenon. They suggested that the change of vapour density might be 

the key factor. 

(3) Viscosity 

A series of experiments were carried out by Weisman et al. (1979) to examine the effect 

of liquid viscosity on flow pattern transitions in 51 min horizontal tube. The fluids used 

were air-water (gl=1.071 mPa. s) and air-glycerol solutions (gl=75 mPa. s and 150 

mPa. s). Glycerol solution has an advantage of allowing the liquid viscosity to be varied 

while the surface tension and the density are nearly constant. The experimental results 

showed that the liquid viscosity affects the transition boundaries of dispersed bubble 

and annular but has little effect on stratified - intermittent boundary, see Table 2.6. 

Bousman et al. (1996) experimentally studied the effect of liquid viscosity on flow 

patterns in 12.7 mm and 25.4 mm tubes at microgravity conditions. Air and two liquids, 

water (I mPa. s) and glycerine-water solution (6 mPa. s), were tested at 21 OC. They 

concluded that liquid viscosity affects slightly the slug-annular boundary but had an 

effect on the bubble-slug boundary only for the larger diameter tube, see Table 2.6. 

Furukawa and Fukano (2001) investigated the effect of liquid viscosity on the now 

patterns of upward air-liquid flow in a 19.2 mm vertical tube. Three different liquids, 

including water and 53% and 72% glycerol-water solutions with the viscosities of 5.7 

and 14.7 times that of water and little change on the density and the surface tension, 

were employed. Figure 2.29 shows the photographs of the three fluids under the same 
flow velocities (ug, =0.2m/s, ul, =0.3m/s). This clearly demonstrates the effect of 
viscosity on the flow patterns, i. e. small bubbles coalescence is easy to occur in the case 

of larger liquid viscosity. Similarly liquid viscosity has a great impact on the transition 
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boundaries of slug-churn and churn-annular. For example, with a decrease of liquid 

viscosity. the slug-churn and churn-annular boundaries move towards lower u"S. see 

'Fable 2.6 and Figure 2.30. 

I 
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(a) IbI (C) 

Figure 2.29 ]-he flow patterns in three diff'crent flulds at the same conditions 

(U,, =0.2m/s, uj, -O. 33rn/s), Furukawa and Fukano (2001 ). 

(a) bubble-slug. water (b) slug. 53% glycerol (b) slug, 72% glycerol 
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Table 2.6 demonstrates conflicting information among the past reports. For instance, 

Furukawa and Fukano (2001) and Bousman et al. (1996) gave different results on the 

dependence of change of bubble-slug boundary on viscosity. Therefore, further work is 

necessary to explore this area. According to force analysis in Section 2.3.1, fluid 

viscosity, which decides the magnitude of friction and turbulent force, could become a 
dominating factor with the decrease of channel dimension because the gravitational 
force is depressed correspondingly. In addition, the thickness of hydrodynamic 

boundary layer, which is comparable with micro or small channel, is also decided by 

viscosity. Therefore, fluid viscosity significantly affects flow field. Viscosity, especially 
liquid viscosity is greatly influenced by temperature. Other parameters are 

comparatively less dependent on temperature, as shown in Table 2.4. Therefore, the 

effect of viscosity on vapour-liquid flow patterns may be explored indirectly by 

changing fluid temperature. It is known that friction will grow as the dominating force 

with increases in viscosity. This limits the slippage between gas and liquid phases. 

Therefore, the gas-liquid interface suffers less disturbance and the turbulent flow 

patterns such as chum flow may hardly appear in high viscosity fluids. 

Table 2.6 The shift direction of flow pattern boundaries with reducing liquid viscosity. 

Diameter To dispersed Intermittent - 
Researcher Orientation (mm) Fluid bubble stratified flow To annular 
Weisman et al. air-water vs. 
(1979) horizontal 51 air-glycerol higher uls little effect lower u,,, 

Diameter 
Researcher Orientation (mm) Fluid Bubble-slug Slug-chum To annular 
Furukawa and air-water vs. 
Fukano(2001) vertical 19.2 air-glycerol lower ul, lower u,, lower u., 

Diameter I Slug- 
Researcher Condition (mm) Method Bubble-slug annular 

t l B 12.7 
ai t little effect I ittle effect ousman e a . r-wa er vs. 

K1996) microgravity 
_ 

25.4 air-glycerin 1 higher ul, I little effect 

(4) Surface tension 

Theoretically, surface tension minimizes the interfacial area of bubbles. It tends to keep 

bubbles retaining their circular shape and also to keep the liquid holdup to retard the 

transition from intermittent flow to annular flow (Yang and Shieh 2001). However, the 
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study of surface tension on flow patterns was hardly carried out in normal size tubes 

because the size of bubbles tends to be larger in the absence of the confinement of tube 

wall and the effect of surface tension can be neglected when compared with other forces 

such as gravity, as shown in Figure 2.25 and the equations in Section 2.3.1. Therefore, 

in earlier studies the effect of surface tension is mostly indirectly demonstrated through 

a reduction in tube diameter, and rarely directly by changing surface tension itself One 

of exceptions was that Bousman et al. (1996) who investigated its effect in 12.7 mm and 
25.4 mm tubes in microgravity conditions. They mixed a small quantity of Zonyl FSP 

into water, which can reduce air-water surface tension from 72 nlN/m to 21 mN/m 

without significantly affecting other physical properties. The results of experiments 
indicated that reducing surface tension resulted in a shift in the bubble-slug transition to 

lower ul, at the sarne ug,, i. e. higher void fraction. It had no significant effect on the 

slug-annular transition, see Table 2.7. The researchers explained that the reduced 

surface tension in the air-water/Zonyl FSP could reduce the probability of coalescence 

when bubbles contacted each other thus shift the bubble-slug boundary to lower liquid 

superficial velocity. Their result, that surface tension has little effect on the slug-annular 

transition boundary, was reported to be in agreement with Reinarts (1993) but in 

contrast with the analysis of Yang and Shieh (2001). The above phenomenon specified 

could be explained by the fact that the inertial force which relates closely to fluid 

velocity grows as a dominant force at the region of slug to annular flow. By comparison, 
the surface tension is not strong enough to influence the flow regime significantly at 
high liquid velocity. A similar experiment was also carried out by Weisman et al. (1979) 

using air-water (cr=68 N/in) vs. air-Aliguat 221 solution (cr--38 N/ni) in a horizontal 

tube. They reported that surface tension had significant effect on the wavy to stratified 
boundary. Their experimental results are summarized in Table 2.7. 

Table 2.7 The shift direction of flow pattern boundaries with reducing surface tension. 

Diameter To dispersed Intermitteril Wavy - 
Researcher Orientation (mm) Method bubble Toarmular -stratified stratified 

air-water vs 
Weisman et 11.5,25, air-aliguat 
al. (1979) horizontal 51 221 little cffect little effect little effect higher u,, 

Diameter Slug- 
Researcher Condition (mm) Method Bubble-slug annular 
Bousman et air-water vs 
01. (1996) I microgravityI I2.7,25.4 0ir-zonyl I Lower ul, I little effectl 
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Bang et a]. (2004) studied photographically vertical subcooled boiling flow using RI 34a 

in 4x5 mm rectangular channel. They reported that the higher pressure made the size 

of bubbles smaller. NA-hilst higher subcooling caused faster bubble collapse, as shown in 

Figures 2.31 and 2.32. It indicates that dispersed bubble flow is easily formed in higher 

pressure, i. e. bubbly to dispersed bubble transition boundary may shift toward lower 

liquid superficial velocity. The transition mechanism of dispersed bubble to bubbly may 

relate to surface tension more rather than to the effect of vapour density as mentioned in 

the above section. 

C/M2S 1ý igure 2.3 1 Effect of floxN parameters on boiling phenomena at 7.0 bar, 2000 k 

13 7 to 955 kW/m 2, 
-13.8% to -11.5% quality. 

Figure 232 Effect of flow parameters on boiling phenomena at 14.5 bar. 2000 kg/m2s, 

478 to 8733 kW/m2. -1-4.6% to -23.3% quality. 
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(5) Channel dimension 

One of main objectives in the present experiments is to elucidate the effect of channel 
dimension on flow patterns. Many previous studies proved that surface tension becomes 

an important parameter with the decrease of tube dimension (Oya 1971, Barnea et al. 
1983, Fukano and Kariyasaki 1993, Hibiki 1993, Lin et al. 1998, Coleman and 
Garimella 1999). In small tubes, bubble size and shape can no longer be ignored and 

surface tension is a vital factor on deciding bubble size and shape. 

Some transition boundaries are very sensitive to tube diameter and others are not. Kokal 

and Stranislav (1989) studied experimentally the effect of tube diameter (normal range) 

on transition boundaries using air-oil in horizontal flow. The tube diameters were 25.8, 

51.2 and 76.3 mm. The experimental results showed that tube diameter had a distinct 

effect on some but not all transition boundaries as shown in Figure 2.33. Kokal and 
Stranislav reported that the stratified-intermittent transition is quite sensitive to tube 

diameter and the region of stratified flow expands with tube diameter. The intermittent- 

dispersed bubble transition is also affected by tube diameter and shifts to higher liquid 

velocities for the larger tube. They explained that higher turbulence level was required 

to produce dispersed bubble flow in the larger tube. The intermittent-annular transition 

was relatively insensitive to tube size. 
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Figure 2.33 The effect of tube diameter on flow patterns for air-oil flow 

Kokal and Stranislav (1989). 
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Some studies focused on small tubes. Sue and Griffith (1964) studied two-phase flow in 

1.0 and 1.6 mm. horizontal tubes. They observed that the characteristics of slug flow in 

the horizontal small tube were quite similar to that in the vertical small tube. Therefore 

they concluded that surface tension dominates over gravity in small tubes. Oya (1971) 

investigated experimentally the developing flow patterns of air-water, air-gasoline two- 

phase flow in vertical upward flow. The tube diameters were 2,3 and 6 mm and the 

experimental conditions were 10-40 'C and atmospheric pressure. He found that the 
flow patterns were much affected by tube dimension and surface tension. For example, 
fish-scale type slug flow appeared at higher ugs in the smaller tubes. Some special flow 

patterns (granular-lumpy bubble and fish-scale type slug) were first reported in his 

experiments, see Figure 2.10. 

Bamea et al. (1983) compared the experimental data of 4-12 mm vertical and horizontal 

tubes with the physical models for normal tubes (Taitel and Dukler 1976, Taitel et al. 
1980), see Figures 2.18 and 2.19. They reported satisfactory comparisons except for the 

stratified-intermittent transition boundary in horizontal flow. They argued that the 
deviation between theory and experiment is attributed to the increasing effect of surface 
tension in small tubes, which makes surface tension, not Kevin-Hemholtz type 
instability, responsible for the transition from stratified flow to intermittent flow. 

However, the results disagreed with Darnianides and Westwater (1988) and Fukano and 
Kariyasaki (1993) who considered that flow characteristics transform completely when 
tube diameter is less than 5 mm. in air-water flow, see Figures 2.20 and 2.2 1. 

Damianides and Westwater (1988) presented a set of typical air-water flow maps for 
horizontal small tubes. The experimental conditions were 10-25 *C and atmospheric 
pressure. They studied flow patterns in five tubes ranging from I to 5 min and 

concluded that surface tension becomes a very important factor in the transition 

mechanisms when the tube diameter is less than 5 mm. Some common tendencies can 
be discovered by comparing the five flow maps, see Figure 2.34. The intermittent- 

dispersed bubble transition boundary moves to the region of lower liquid flow rate with 
decreasing tube diameter whilst the intermittent-annular transition boundary moves to 

regions of higher gas flow rate with decreasing tube diameter. The stratified flow region 

gradually shrinks with decreasing tube diameter until it vanishes completely in the I 

mm tube. 
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Figure 2.34 Comparison of air-water flow maps for small tubes, atmospheric conditions, 
Damianides and Westwater (1988). 

Fukano and Kariyasaki (1993) studied air-water flow patterns and pressure loss in 1,2.4, 

4.9,9 and 26 mrn tubes at atmospheric conditions. The flow orientations were vertical 

upward, horizontal and vertical downward. In their experiments, the flow patterns were 

not severely affected by flow direction as a result of the strong effects of surface tension. 

Fukano and Kariyasaki presented some common characteristics of flow patterns in 

small tubes. For example, flow patterns are more axisymmetric, stratified flow is hardly 

observed, and small bubbles usually do not exist in liquid slugs and liquid films. They 

also concluded that the critical tube size at which surface tension surpasses gravity was 
between 5 and 9 min for air-water mixture. The above conclusion is consisted with the 

criteria proposed by Kew and Cornwell (1997) or Hatori and Bretherton (cited from 

Wadekar 2002), as seen in Table 2.1. 

Mishima and Hibiki (1996) observed air-water flow patterns, measured void fraction, 

slug bubble rise velocity and pressure loss in I to 4 mm. vertical tubes at atmospheric 

conditions. Their results are shown in Figure 2.35 for the 2.05 and 4.08 mm tubes. They 

found that the transition boundaries were predicted well by the Mishima-Ishii's model 
(1984). The solid lines in Figure 2.35 present the prediction by the Mishima-Ishii's 

model. They also predicted void fraction and rise velocity by the revised drift flux 
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model. The drift flux model indicated that gas velocity ug can be calculated as a function 

of homogeneous velocity Uh and drift velocity ud, i. e. U9 = COUh + Ud * Mishima and 

Hibiki considered the effect of tube diameter and corrected the distribution parameter Co 

as CO = 1.2 + 0.5 le -0.691 D. Although the researchers drew the boundaries in the flow 

maps, examination of the maps indicates that the conclusion need to be validated further 

because of the limited number of data, see the map for the 2.05 mm tube. Therefore, the 

actual effect of diameter on flow patterns is not clear in these experiments. 
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Figure 2.35 Air-water flow pattern maps at atmospheric conditions 
Mishima and Hibiki (1996). 

Lin et al. (1998) studied air-water flow patterns in 0.54.0 mm. vertical tubes at the 

conditions of 20 T and I bar. The observation methods included direct observation, 
high-speed camera and differential pressure transducer. They observed that the 
transition boundaries of slug-chum and chum-annular shift toward the region of higher 

gas flow rate when the tube diameter decreases from 2.36 to 1.0 mm. However, the 
developed dimensionless flow maps were not in agreement with Bamea et al. (1983). 

For example, the transition of slug to chum and chum to annular occurred at lower ugs 
in the experiments of Lin et al. compared with the flow map for the bigger tube (4.0 mm 
diameter) from Bamea et al. (1983), see Figures 2.36-2.38. 

data for the 4.0 mm tube from Barnea 
, 
et a 1, (1983) 

data for the 1.0 or 2.36 mm tubes from Lin et al. (1998) 

confined bubble 13 bubble )K annular 

churn A slug 
transition between confined bubble and slug 
transition between chum and annular 
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Zietlow and Pedersen (1998) sketched several flow maps for refrigerant R134a in 

parabolic cross section channels with a hydraulic diameter of 0.74 mm. The detailed 

configuration of flow patterns was hard to observe because of the limitation of the 

observation method (fibre probe), which may have caused some confusion and these 

data are marked as "assumed" in Figure 2.39. Therefore further study is needed to 

complete the flow maps for R134a two-phase flow in small channels. Figure 2.39 shows 

the comparison of the experimental data of Zietlow and Pedersen (1998) with that from 

Damianides and Westwater (1988). As seen in the figure, a number of flow patterns that 

were observed by Zietlow and Pedersen fall in the region of slug flow in the 

Damianides and Westwater's map. 
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Figure 2.39 The comparison of Zietlow and Pedersen's data for R134a two-phase flow 

with the Damianides and Westwater's map for air-water flow (1988) (solid lines). 

The effect of tube diameter on transition boundaries was also investigated by Coleman 

and Garimella (1999). Air-water was used in horizontal round and rectangular tubes 

with 1.3 to 5.5 mm. hydraulic diameters at atmospheric conditions. As seen in Figure 

2.40, the results clearly show that the tube diameter has a significant effect on the 

transition boundaries. For example, the transition boundary of intermittent flow to 

bubble and dispersed flow shifts significantly as the tube diameter change from 5.50 

mm to 1.30 mm. However, the tendency of the above boundary moved to higher ul, 

with decreasing diameter, contradicts with the results of Darnianides and Westwater 
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(1988) depicted in Figure 2.34. Damianides and Westwater (1988) showed that the 

transition of dispersed bubble to intermittent flow happened at the lower uls in the 

smaller diameter tubes. 
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Figure 2.40 Comparison of air-water flow regimes for the 1.3 to 5.5 mm. tubes at 

atmospheric conditions, Coleman and Garimella (1999). 

Triplett et al. (1999) studied air-water flow regimes in 1.1 and 1.45 min circular tubes as 
well as 1.09 and 1.49 mm hydraulic diameter semi-triangular conduits. Overall, the 
influence of surface tension on the flow patterns is significant but the flow maps were 
similar because of the limited change of the tube diameters. The author reported that the 

experimental data roughly agreed with the existing flow maps for small tubes 
(Damianides and Westwater 1988, Kukano and Kariyasaki 1993), see Figures 2.41 and 
2.42. For example, the region of the annular flow in the flow map in Figures 2.41 from 

Triplett et al. (1999) is consisted with that from Damianides and Westwater (1988). The 

bubble-intermittent boundary sketched by Kukano and Kariyasaki (1993) shows 

excellent agreement with Triplett et al. (1999) as shown in Figure 2.42. They explained 
that the inconsistencies, such as bubbly-dispersed boundary in Figure 2.41 and 
intermittent-annular boundary in Figure 2.42, could be mainly attributed to the 

confusion on appropriate identification. 
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Zhao and Bi (2001) investigated experimentally the characteristics of co-current upward 

air-water two-phase flow patterns in vertical equilateral triangular channels with 
hydraulic diameters of 2.886,1.443 and 0.866 mm. The experimental results show that 

the typical flow patterns, such as dispersed bubble, slug, chum and annular flow, were 

observed in the 2.886 and 1.443 nun hydraulic diameter channels. However, dispersed 

bubble flow pattern was not found in the smallest channel (Dh=0.866 mm). Moreover, a 

new flow pattern - capillary bubbly flow was reported in the 0.866 mm channel. The 

flow maps, see Figure 2.43, presented the effect of channel dimension on flow patterns. 

For instance, dispersed bubbly flow shifted to a higher liquid superficial velocity whilst 

chum and annular flow occurred at higher gas superficial velocity as the channel 

dimension was reduced, see Figure 2.43 (a), (b) and (c). This tendency is in agreement 

with Lin et al. (1998), see Table 2.8. Their study also revealed that the existing models 

given by Taitel et al. (1980) and Mishima and Ishii (1984) could not predict now 

patterns in small triangular channels. 
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Table 2.8 summarise the findings in the previous researches mentioned above. As seen 
in the table, the researchers gave same conclusions on the effect of tube diameter on 

some boundaries but on the other hand they could not agree with each other on other 
boundaries. For example, both Kokal and Stranislav (1989) and Damianides and 

Westwater (1988) reported that the boundary of intermittent to dispersed bubble moved 

toward lower uiý with a decrease of tube diameter in horizontal flow, which is in total 

contradiction with the finding in the Coleman and Garimella's experiment (1999). Lin 

et al. (1998) and Zhao and Bi (2001) reported a same effect of tube diameter on the 

boundaries of slug to chum and chum to annular in vertical flow. However, the flow 

maps given by Lin et al. (1998) were in poor agreement with Bamea et al. (1983) 

Table 2.8 The direction of boundaries shift with reducing channel dimensions. 

Intermittent- Stratified 
Diameter Stratified- dispersed Intermittent- flow 

Researcher Orientation (mm) Fluid intermitteni bubble annular region 

Kokaland 25.8, 
Stranislav (1989) horizontal 5 1.2,76.3 air-oil lower ul, lower ul, little effect 

Damianides and 1,2,3,4, 
Westwater (1988) horizontal 5 air-water lower ul, higher uzs smaller 

Coleman and 1.3,1.75, 
Garimella (1999) horizontal 2.6,5.5 air-water higher ul, higher u,,, smaller 

TO 
Diameter dispersed 

Researcher Orientation (mm) Fluid Slug-chum bubble To annular 
Lin et al. (1998) vertical 1 

0.5 -4 hig cr u,,, higher u,,, 
Zhao, and Bi 

1 
0.87, 

(2001) vertical 1.44,2.8 higher u,, higher uls higher ugs 
*: Intermittent flow: include plug and slug flow for horizontal tube. 

The above studies involved the channels with the hydraulic diameters near or above I 

mm. Further changes in two-phase flow characteristics are expected for micro-channels 

as the diameters are in the order of hundreds micrometers. As we discussed in Section 

2.1, the flow patterns observed in the previous experiments exhibited greatly different 

characteristics when the tube diameters were smaller than 100 to 250 ýLrn in air-water 
flow, which indicates that the critical diameter to distinguish small and micro tubes is 

between 100 to 250 gm. 
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(6) Gravity and tube inclination 

Gravity cannot be neglected in normal tubes but its effect diminishes in small tubes and 

might be neglected in micro channels as seen in Figure 2.25. Gravity makes flow 

patterns possess intensive directional characteristic. At low- or micro-gravity conditions, 

two-phase flows are essentially much simpler than those at normal gravity (Bousman et 

al. 1996 and Zhao et al. 2001). Therefore, the distinguishable flow patterns may be less 

and simpler in the absent of gravity. 

Cheng and Lin (2001) experimentally observed air-dextran aqueous solution flow in 2-8 

nun diameter tubes at horizontal, inclined and vertical orientations. The gravitational 

effect on gas bubbles is significant but is fading in smaller tubes under their 

experimental conditions (0.168-0.672 m/s liquid superficial velocity and 0.04-0.32 M/s 

gas superficial velocity). It indicates that gravity cannot be neglected entirely in bubble 

and slug flow for small tubes. 

Flow orientation is not important in micro-gravity conditions and some studies showed 

that the flow maps under micro-gravity condition are similar with those in small tubes 

because surface tension, not gravity, dominates. For example, Nash ct al. (1992) studied 

nitrogen-water two-phase flow regimes in a horizontal annular tube with 1.35 mrn gap. 
They discovered that the flow maps were in agreement to those under micro-gravity 

conditions, see the boundaries of dispersed bubble and slug to annular flow in Figure 

2.44. Again, the same conclusion was reached by Galbiati and Andreini (1994). Air- 

water flow in the I mm horizontal capillary tubes was tested in their experiments. The 

pressures in the test section were varied from 10 to 50 bar. Two flow regimes were 

substantially observed: slug and annular flow. The flow maps were in agreement with 

the data collected in a normal size tube at microgravity conditions by Dukler et al. 
(1988), which were carried out in microgravity "equivalent system" under normal earth 

conditions. Therefore, they concluded that two-phase flow in the I mm capillary tube 

could reasonably simulate the microgravity "equivalent system" under normal earth 

conditions. 
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Transition lines in small channel, Nash et al. (1992) 
Transition lines under micro-gravity consition, Lee et al. (1987) 
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Figure 2.44 Comparison of nitrogen-water flow regime for 1.35 mm gap circle tube 

from Nash et al. (1992) with the microgravity flow map from Lee et al. (1987). 

Bousman et al. (1996) studied flow patterns under microgravity in 12.7 and 25.4 mm. 
diameter tubes. They observed only three flow patterns (bubble, slug and annular) in 

their experiments indicating that the types of flow patterns will be reduced when fewer 

forces act on two-phase flow, see Figure 2.4. Zhao et al. (2001) experimented in the 

microgravity environment of Mir Space Station (no more than 10-5 g). The working 
fluids were air-Carbogal and the tested tube was 10 nim diameter and 3 56 mm in length. 

The observed results were similar to those of Bousman et al. (1996) but they classified 
in more detail, namely dispersed bubble, bubble, slug, slug-annular and annular. 

Two-phase flow transition models under micro-gravity conditions were developed by 

Zhao and Rezkallah (1993), Rezkallah (1996), Lowe and Rezkallah (1999) and 

summarised by Akbar et al. (2003). The models based on the Weber numbers, which 

consider that inertia and surface tension are the dominant forces in micro-gravity two- 

phase flow. They argued that the entire flow regime map could be divided into three 

zones, see Appendix B Table B. 2. Zhao and Rezkallah (1993) suggested Weg, =I as the 

upper bound for surface tension-dominated zone, and Weg, = 20 as the lower bound for 

the inertia-dominated zone. Rezkallah (1996) and Lowe and Rezkallah (1999) modified 
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the above criteria by the transition line of Weg, oc We,, 0.25 
. Similar to the microgravity 

case, surface tension and inertial forces are likely to determine, or at least play 

significant roles on the flow regimes in small tubes. Therefore, a similar transition 

mechanism should be expected and requires further investigation. 

A great number of studies were carried out to discover the influence of inclination angle 

on flow patterns in normal tubes. Based on these works, some physical models were 

proposed and eventually developed to a "Unified Model" which can predict reasonably 
flow patterns in normal size tubes at any angle of inclination (Taitel 1990). In the case 

of micro-gravity or small tubes, the effect of gravity is reduced so that the flow regimes 

are less affected by inclination angle. Following from that, annular flow and dispersed 

bubble flow where shear stress, inertia force or turbulent force dominate over gravity do 

not depend on angle of inclination even in normal tubes (Taitel 1990, Kokal and 
Stainislav 1989). 

(7) Roughness 

To the best of the author's knowledge, none of the past experiments included a study on 

the effect of tube roughness on flow patterns. Tube roughness may intensify the 

turbulence of two-phase flow within the flow boundary layer. According to the 
boundary layer theory, the hydrodynamics mechanisms inside the boundary layer are 
totally different from that at the outside of the boundary layer. The significance of 

roughness and its effect on flow patterns needs to be investigated further as it is 

expected to rise in importance with diminishing diameter. 

(8) Heat flux 

The great majority of the studies on flow patterns were performed in adiabatic processes. 
However, boiling flow is a frequent phenomenon in industry. Frankurn et al. (1997) 

reviewed the existing experiment data in flow boiling and compared them with the 

adiabatic flow maps and the adiabatic correlations. The conclusion indicated that the 

existing adiabatic flow pattern maps and the correlations agreed well with those 

obtained for flow boiling. 
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However, following a theoretical analysis, the flow regimes in boiling flow must be 

different from those in adiabatic flow. Heat flux influences both the distribution of void 
fraction and the liquid viscosity. This is certainly the conclusion of an earlier study by 

Dukler and Taitel (1991) which contradicts the work of Frankurn et al. (1997). Dukler 

and Taitel experimentally verified the effect of heat flux on flow patterns. As seen in 

Figure 2.45, intermittent flow shrinks to a small area compared with adiabatic flow. One 

reasonable explanation is that flow boiling is a developing two-phase flow and the 

separated bubbles need time to coalesce. 
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Figure 2.45 Flow pattern map for flow boiling of water in the 25 mm diameter 

horizontal tube at atmospheric pressure, Duckler and Taitel (1991). 

(9) Enthalpy of vaporization 

Cole and Rohsenow proposed a modified correlation give below for the bubble size at 
departure from a heating surface in 1969 (cited from Tong and Tang, 1997). The 

correlation appears to work quite well for a large variety of ordinary liquids in saturated 

pool boiling. The calculated bubble diameter at departure (d) relates closely to density, 

surface tension, specific heat, saturated temperature and latent heat, as seen in Equation 

2.9 reference. Comparing to other parameters, the enthalpy of vaporization may be the 

most important parameter. For example, the enthalpy of vaporization of water is as 
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much as 15 times of that of R134a at 14 bar so that the calculated bubble diameter for 

R 13 4a is much smaller than that in water, see the comparison in Table 2.9. 

g(p, _p, 
p2 1/2 

,( CPT 
5/4 

= Cd 
pi 

w (2.9) 
gcc 

I 

pg hfg 

) 

Cdý 0.00015 (for water) 

= 0.000465 (for other liquids) 

Table 2.9 Bubble size at departure in pool boiling. 

Fluid Unit R134a Water 
Pressure bar 6 10 14 1 
Constant 0.00047 0.00047 0.00047 0.00015 

Liquid density k g/M3 1218.17 1148.32 1090.19 958.4 

Vapour density k g/M3 29.04 49.06 70.7 0.5903, 
Specific heat at constant pressure 

_J/kg. 
K 1412 1500 1594 4215 

Saturated Temperate K 294.71 312.55 325.6 336.78 
Latent heat of evaporation J/kg 181076 163985 149210 2257900 
Surface tension N/m 0.0084 1 0.0062 0.0046 0.0589 
Bubble diameter nim 0.37 1 0.21 0.14 6.79 

The actual bubble size departing from a heated wall in flow boiling should be smaller 
than that in pool boiling. From Table 2.9, we can find the bubble size in saturated water 
is in the order of millimetres and is much bigger than that in R134a. Therefore, in small 
tubes the flow boiling regimes of R134a may develop from dispersed bubble flow 

whilst flow boiling in water starts from bubbly or slug flow. 

2.3.3 Effect of other factors on flow patterns 

The following factors may also affect flow patterns in small tubes although their effect 

may be smaller than those mentioned above. 

(1) ChanneI shape 

Damianides and Westwater (1988) compared the flow map in a2 mm round tube with 
that in a 1.74 mm hydraulic diameter labyrinth type compact heat exchanger. They 

concluded that the flow patterns in the compact heat exchanger could not be predicted 
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from the knowledge based on the straight round tubes. Another experiment was 

performed later by W61k et al. (2000) for upwards vertical air-water flow through one 

circular and four different non-circular channels (with rectangular, rhombic and 

equilateral triangular cross-sections) with an equivalent hydraulic diameter of 6 mm. 
Three flow patterns were identified and named as dispersed bubble, slug and chum flow. 

Overall, the flow regimes were similar but the cross-section geometry did directly 

influence the transition boundaries, see Figure 2.46. As seen in the figure, the slug flow 

in the equilateral triangular tube occupies a smaller area in the flow map than that in the 

circular tube. The main reason for the shifting on the transition boundaries results from 

the turbulent secondary flow that occurs in non-circular channels and from the steeper 

radial distribution of the phase and/or velocities, according to the explanation by W61k 

et al. 
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Figure 2.46 Comparison of the flow pattern transition boundaries with the different 

cross-sections, W61k et al. (2000). 

However, Coleman and Garimella (1999) also investigated the effect of channel shape 

using a 5.5 nim round tube and a 5.36 mm hydraulic diameter rectangular channel with 

an aspect ratio of 0.72. The experiment was carried out in horizontal air-water flow at 

atmospheric conditions and the two flow maps were similar. Triplett et al. (1999) 

reached a similar conclusion by comparing the experimental results of the 1.10 and 1.45 

mm round tubes with those of the 1.09 and 1.49 mm semi-triangular channels. 
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There is still very limited work in this area to enable us to draw firm conclusions. The 

research so far indicates that when compared to circular passages straight conduit shape 
does not affect flow regimes significantly while complex channels such as labyrinth 

channel strongly affect them. Further work is necessary to reach final conclusions. 

(2) Developed and developing flow 

Oya (1971) experimentally investigated developing air-water and air-gasoline flow 

patterns in vertical 2,3 and 6 mm tubes. He found that the flow patterns are hardly 

affected by the flow state. Bamea and Taitel (1993) established a model for liquid slug 
length. The model was based on bubble overtaking mechanism, i. e. bubbles behind 

short slugs travel faster than those behind long slugs. The process of overtaking is 

terminated once all slugs are long enough such that the velocity profile at the back of 
long slugs is fully developed and all bubbles flow at the same velocity. They reported 

that the required distance for fully developed flow is about 10- 15 m in 50 mm tubes. No 

similar research has reported for small tubes yet. It can be expected that bubbles will 

grow continually before reaching fully developed state, and bubble flow in a developing 

stage may finally grow into slug flow in fully developed flow. 

(3) Channel inlet conditions and bubble generation methods 

Flow patterns are inevitably disturbed by channel inlet conditions and bubbling methods 
thus a long calming section is required to reduce this disturbance and expect to obtain a 
fully developed flow. Galbiati and Andreini (1992) studied experimentally the effect of 
inlet mixing method and calming section length on flow pattern transitions for vertical 
downward two-phase flow in 0.5,1.1 and 2.0 mm tubes. The experimental results show 
that the inlet mixing method and the calming section length have a significant effect on 
the flow patterns in what they called capillary tubes. For instance, vertical downward 

stratified flow in small tubes with the internal diameter smaller than 3 mm, which was 

reported by Biswas and Greenfield (1985), was never observed in their experiments 
because of the fact that the mixing method was improved. Prasser et al. (2002) observed 
that the bubble size distributions were still strongly depended on the primary size after a 

calming section equal to 60 times the diameter at lower superficial gas velocity, e. g. 
0.125 m/s in their experiments. At higher superficial gas velocities (e. g. at ugs = 0.5 m1s) 
the bubble distribution became independent on the gas injection device. However, an 
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adequate calming section is not always used in experiments due, for example, to space 
limitations. A calming section with 50 to 100 times diameter length usually is installed 

before the test section in flow pattern experiments. 

2.4 The relationship between heat transfer and flow patterns 

Heat transfer is closely related to flow patterns because gas and liquid possess different 

heat transfer characteristics. The control of flow regimes within a desired range is an 

effective way in engineering applications to improve heat transfer rates, avoid heat 

transfer deterioration and protect heat exchangers and plants. 

At present, the flow boiling mechanisms in small tubes are not clarified since only a few 

papers related heat transfer with flow patterns. The existing researches arc mostly 

restricted in qualitative analysis without the material correlations to link heat transfer 

with flow patterns (Kandlikar, 2002). For example, Laborie et al. (1999) experimentally 

proved that the length of gas slugs increased with decreasing tube dimension and the 

frequency of gas slugs decreased with decreasing tube dimension, which indicates that 

smaller tube may dry out intermittently in slug flow. Yu et al. (2002) studied 

experimentally the effect of flow patterns on heat transfer. They reported that the heat 

transfer coefficient generally keeps changing as the flow patterns changed along an 

evaporator tube. Agostini and Bontemps (2004) concluded that the bubble confinement 
led to higher heat transfer coefficients while dry-out happened easily in their flow 

boiling experiments in II parallel rectangular mini-channels (3.28 x 1.47 mm) with 
R134a. Frankuni et al. (1997) described qualitatively the heat transfer mechanisms by 

observing the detailed configurations of flow patterns. They discussed the fact that the 

liquid film around vapour slug possesses better convective heat transfer characteristics 

than that of liquid slug in plug flow. This makes the wall temperature located in the area 

of vapour slug lower than that of liquid slug. Therefore, nucleate boiling is the main 

heat transfer mode in liquid slug region and convective heat transfer dominates in 

vapour slug region. Extending the above postulate, convective heating likely dominates 

in annular flow and nucleate boiling likely dominates in bubble flow. They coexist in 

intermittent flow and the heat transfer characteristics strongly relate to void fraction. 
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2.5 Summary 

Numerous parameters, not well defined or vague concepts, subjectivity and the 

limitation of experimental techniques are vital factors that caused discrepancies in the 

results among different investigators. The flow maps sketched by different researchers 

may be dissimilar even though they use similar tubes under similar conditions. For 

instance, the vertical upward flow maps by Oya (1971), Barnea et al. (1983), Fukano 

and Kariyasaki (1993), and Mishima and Hibiki (1996), the horizontal flow maps by 

Barnea et al. (1983), Damianides and Westwater (1988), Fukano and Kariyasaki (1993), 

Coleman and Garimella (1999), and Triplett et al. (1999) are not in good agreement. 

Some researchers thought that the existing models or empirical maps for normal size 

tubes could predict flow patterns in small tubes except for a few transition boundaries. 

For example, Mishima and Hibiki (1996) sketched air-water flow maps for I to 4 mm. 

vertical tubes in their experiments and found that the transition boundaries were 

predicted well by Mishima-Ishii's model (1984). On the contrary, most researchers 

agreed that two-phase flow patterns in small tubes could not be properly predicted by 

the existing correlations developed for normal size tubes. In addition to the above 

disagreement, contradictory conclusions were also reported on the effect of conduit 

dimension. For horizontal flow, Damianides and Westwater (1988) discovered the 

intermittent-dispersed bubble transition boundary shifts towards the lower liquid flow 

rate region with decreasing tube diameter. However, this is completely contrary to the 

conclusion of Coleman and Garimella (1999). For vertical flow, both Lin et al. (1998) 

and Zhao and Bi (2001) found that the transition boundaries of slug-chum and chum- 

annular move to higher gas superficial velocity with decreasing tube size in their 

experiments. Mishima and Ishii (1984) obtained the same result by theoretical analysis. 
However, Oya (1971) argued that the flow maps sketched using superficial velocity 

coordinates are scarcely affected by tube dimension for both vertical and horizontal 

flow. 

One of the distinctive characteristics of two-phase flow in small tubes is that flow 

patterns are less affected by channel orientation due to the fact that the relative effect of 

gravity is reduced. However, researchers still Process their experimental data using 
horizontal or vertical flow maps separately that show notable orientation characteristics. 
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It seems that researchers followed the traditional classifying methods used in normal 

size tubes. Another possible reason is that the tubes examined were not small enough to 

neglect gravity completely even when they were recognized or reported as small tubes. 

Based on force analysis, annular and dispersed bubble flow in small tubes should be 

independent of inclination angle where gravity is a weaker force compared with other 
forces like shear stress, inertia force and turbulent force. Therefore, the transition 

boundaries in horizontal or vertical flow should be similar or at least the effect of tube 

diameter on them should be the same. However, the existing experimental results from 

different laboratories showed conflicting conclusions. For example, Damianides and 
Westwater (1988) found that the transition boundary of dispersed bubble in horizontal 

flow shifted towards lower liquid superficial velocity as the channel dimension 

decreases whilst Zhao and Bi (2001) found the tendency was toward higher superficial 

velocity for vertical air-water flow. 

The effect of heat flux on flow patterns is another controversial point. Theoretically, the 

flow regimes in flow boiling must be different from those in adiabatic flow. However, 

in an experimental work, Frankurn et al. (1997) concluded that the existing adiabatic 
flow pattern maps and correlations agree well with boiling flow. On the contrary, 

Dukler and Taitel (199 1) obtained different conclusion in their experiments. 

The effects of some parameters and conditions on flow patterns were rarely investigated 

in the previous studies. They are density, viscosity, surface tension, roughness, enthalpy 

of vaporization, and channel inlet conditions. Their influence on flow patterns were 
hardly analysed qualitatively or quantitatively or included in the correlations. Therefore, 

so far it has been difficult to obtain a general correlation and further work is needed. 

In addition to above identifiable and objective factors, sometimes the discrepancies 

between different investigations can be attributed to subjectivity rather than any 
limitation in the experimental technique. Therefore, clear, universal definitions and 

classifications for flow patterns can effectively reduce subjectivity. Also the use of 

picture instead of description can be helpful. In the proposed experiments, a digital 

high-speed camera will be used to record the experimental process and the descriptions 

of flow patterns will be backed by photographs. 
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Chapter 3 Design of the Experimental Facility 

The current status and literature available on two-phase flow patterns in small channels 

have been reviewed in Chapter 2. A number of arguments and disagreements among the 

different researchers are presented and require further experimental and theoretical 

investigations although some common characteristics exhibited in small tubes have 

been recognized by various researchers. The first stage of the project aims at collecting 

sufficient and accurate experimental data. In this chapter, the experimental facility 

design, construction, commissioning and modifications, the selection of the 

experimental parameters and the developed programs to control the rig, collect and 

analyse the experimental data are introduced and discussed. 

3.1 Experiment system introduction 

The proposed experiments focus on collecting adequate and accurate experimental data 

related to adiabatic flow patterns in small diameter tubes. An experimental facility was 

designed and constructed. The present author joined the research team when the facility 

was under construction for a parallel experimental study on flow boiling heat transfer, 
Huo (2005). The facility was designed to allow for heat transfer, pressure drop and flow 

visualization experiments. The contribution of the present candidate includes: 

(1) Completion of the facility. 

(2) Check and modify the previous design to fit the new requirements for flow pattern 

experiments. 
(3) Complete the measurement and control system. 
(4) Design and build four test sections for both flow pattern and heat transfer studies. 
(5) Contribute to the calibration of the experimental instruments and the single-phase 

experiments used to validate the rig. 

(6) Improve the purposely-developed program for experimental observation and data 

collection. 
(7) Develop new program for data analysis. 

(8) Contribute to the commissioning and testing. 
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The single-phase test results indicated that the facility could provide steady and precise 

experimental data which satisfies the current research requirements. 

The investigation of two-phase flow patterns in small channels is difficult in both 

experimental and theoretical terms. The methodology used in such studies is very 

important for obtaining reasonable results. The existing facility meets the designed 

experimental range. It can be divided into three parts according to their functions, i. e. 

R134a experimental system, R22 cooling system and control and data acquisition 

system. 

3.1.1 R134a experimental system 

A schematic diagram and a photograph of the RI 34a experimental system are presented 

in Figures 3.1 and 3.2 respectively. The system is composed of (1) R134a tank; (2) 

R134a circulating pump; (3) filter dryer; (4) sight glass; (5) small Coriolis mass flow 

meter; (6) big Coriolis mass flow meter; (7) chiller; (8) preheater; test section which can 

be subdivided to (9) a calming section, (10) a heating section and (11) an observation 

section; (12) separator and (13) R134a condenser. The pipes and the test sections are 

actually insulated (not shown in Figure 3.2). Besides the above experimental facilities, a 

flow meter calibration pipe was installed beside the test section which is not shown in 

the diagram. The whole rig was designed to cover a wide range from subcooling to 

superheat with different mass flux and heat flux. 

The tank consists of a cylinder; a sleeve heater; a small condenser tube, two liquid level 

glasses, a safety valve and a thermocouple (T6). The cylinder receives the returning 
fluid and contains most of the R134a in the system. The vapour volume in the tank also 

assists to calm pressure fluctuations in the system. The system pressure is controlled by 

the tank heater through a PID controller. The heater is positioned at the same level as 

the low level sight glass in order to protect the heater from burning out when the 

refrigerant in the tank drops below this level. The small condenser in the tank is 

activated when the system operates at low heating load, because the big condenser 

before the tank will cause system pressure instability in this case. The safety valve 

protects the tank from excessive pressure and the thermocouple T6 indicates 

superheated conditions in the tank. The signal from T6 switches off the heater 
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automatically via the PID controller when the vapour temperature in the tank exceeds 

the preset safety value (55"C). A gear pump located after the tank circulates 

continuously the refrigerant to the filter dryer, the sight glass and the flow meters. The 

filter dryer removes water and particles in the refrigerant and the sight glass allows 

visual observation of the flow status. A thermocouple and a pressure transducer (T 1, P 1) 

are set before the flow meters to confirm single-phase liquid flow before the mass flow 

maters. The flow meters offer highly accurate measurement at low or high flow rates. 

Flow rate is subtly controlled by two precision metering valves located behind the 

meters (V4, V5). After the control valves, the refrigerant flows down to a tube-in-tube 

heat exchanger - chiller. R134a is cooled here by R22 from the cooling system to reach 

a certain degree of subcooling. A thermocouple and a pressure transducer (T2, P2) are 

installed to record the fluid state at the entry of the preheater. There are six heaters in 

the preheater which can be switch on or off individually. Also the power of the first 

heater can be adjusted through a variac. R134a is heated here to obtain the desired 

subcooled temperature or quality. In the flow pattern experiments, the PID controller 

automatically adjusts the fluid temperature at the inlet of the test sections to 3K 

subcooling. 

The current project uses four test sections with the inside diameters of 1.10,2.01,2.88 

and 4.26 mm. Each test section is made up of three main parts: calming section, heating 

section and observation section. Single-phase flow is developed in the calming section. 
Then the liquid is heated to two-phase flow with the desired quality in the heating 

section. Finally the flow patterns were observed and recorded in the observation section, 

see Section 3.3 for more details. After the test section, the two-phase refrigerant is 

separated into liquid and vapour in the separator in order to reduce the pressure drop in 

the condenser. The liquid refrigerant flows directly into the tank and the vapour is first 

condensed. In the condenser, the latent heat of R134a is absorbed by the R22 cooling 

system. A6 min diameter pressure balance tube connects the inlet of the condenser and 

the tank to reduce the pressure fluctuation in the system. There is also a bypass loop 

after the pump to return extra refrigerant to the tank. The returned flow rate is adjusted 
by a needle valve (V14). Valve 14 combines with the two control valves in the main 
loop (V4, V5) to control the flow distribution in the system. 
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3.1.2 R22 cooling system 

The R22 cooling system shown in Figure 3.3 and 3.4 is used to carry the heat away 
from the R134a experimental system through a chiller and two condensers. The system 

components include (1) R22 tank; (2) R22 pump; (3) chiller; (4) small R134a condenser; 
(5) big R134a condenser; (6) compressor; (7) oil separator; (8) R22 condenser; (9) R22 

receiver; (10) filter dryer; (11) oil pump; (12) oil tank; (13) thermostatic liquid level 

control equipment and (14) hot gas bypass regulator. The system can regulate its 

cooling capacity automatically to adapt to the heating load of the R134a experimental 

system. The compressor is also protected by a high-low pressure switch and a power 

supply system with an overload protection device. 

At start up, the compressor sucks R22 vapour from the R22 tank, which acts as an 

evaporator. Hot compressed R22 vapour leaves the compressor and enters the oil 

separator, in which most of the oil is separated from the R22 and is sent back to the 

compressor. After the oil separator, R22 vapour goes to the R22 condenser or to the R22 

tank via a hot gas bypass line. In the condenser, the hot vapour is cooled down to liquid 

and flows to the R22 receiver, then travels to the R22 tank through a filter dryer, a sight 

glass, a solenoid valve and then a thermostatic liquid level control device. The 

thermostatic liquid level control device has two functions: working as an expanding 

valve, which can decrease the R22 temperature down to -40 *C at its exit, and 

controlling the liquid level in the R22 tank through a small heater in the tank. When the 

R22 liquid level in the tank is lower than the heater, the temperature of the heater will 

rise and the vapour created pushes the valve to open further and let more R22 liquid 

stored in the R22 receiver into the tank. When the liquid level in the R22 tank covers 

the heater, the temperature of the heater will drop and excess vapour in the heater will 

condense. The pressure in heater will drop, which leads to the valve closing. The extra 

R22 will be stored in the R22 receiver. The hot gas bypass line keeps the compressor 

running all the time when the load is changing during the experiments. In the current 

experiments, the hot gas bypass regulator has been preset at 2.5 bar, the equivalent 

saturated temperature is -20 'C. When the temperature in the tank is lower than -20 "C, 

the pressure difference between the evaporation pressure in the tank and the preset 

pressure is high enough to push the regulator open and let more hot gas into the tank to 

prevent the temperature in the tank from dropping further. The regulator closes when 
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the temperature in the tank is higher than the set value. In this loop, the solenoid valves 

and the liquid level control equipment operate together with the compressor, i. e. they 

can be opened only after the compressor is running. The cold liquid in the R22 tank is 

pumped to the big R134a condenser (or the small R134a condenser) and the R134a 

chiller by a circulating pump to cool the R134a in the experimental system. The flow 

rates, i. e. the cooling capacities, are controlled by three needle valves (V7, VIO, V2) 

located before the big R134a condenser, the R134a chiller and in the bypass line. The 

pump was selected for the maximum load, so a needle valve is installed in the bypass 

line to let the extra R22 flow back to the tank. The small R134a condenser does not 

need a control valve because the heater capacity in the R134a tank is big enough to 

compensate for its cooling capacity. The oil from the R22 compressor will deposit in the 

R22 tank gradually since the efficiency of the oil separator is less than 100% and the 

return vapour can only carry very limited oil back to the compressor. This was a 

problem encountered during the commissioning of the system. Therefore, an oil return 

system was designed and built for separating the oil from R22 and re-injecting it to the 

compressor. The compressor oil (Bitzer 135.2) used is compatible with R22 even at very 
low temperature. This is a significant characteristic which is different from normal 

refrigerant oils. So the oilM2 mixture can be pumped to an oil tank where it is heated 

by an oil pump or the R22 pump. The evaporated R22 flows to the compressor suction 

and the retained oil flows back to the compressor oil pool by gravity. 
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Figure 3.4 Photograph of the R22 cooling system (excluding the R22 tank, pump, 

chiller, condensers and oil pump. these are seen In Figures 3.1 and 3.3). 
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3.1.3 Control and data acquisition system 

The control and data acquisition system enables an automatic control of the system 

parameters and the data collection, reduces manual operation and improves measuring 

precision. The main measuring equipment include: (1) data collection computer; (2) 

data logger (Solartron Instruments, model S13535F); (3) data logger (Solartron 

Instruments, model S135951E); (4) preheater power meter DPMl; (5) the heating 

section power meter DPM2; (6) PID controller; (7) flow pattern monitoring and 

recording computer and (8) digital high-speed camera. The sensors include 

thermocouple probes TO-T7 and thermocouple wires TT(O)-TT(n); pressure transducers 

PO-P5; a differential pressure transducer DP and two Coriolis mass flow meters FI and 

F2, as shown in Figures 3.5 - 3.7. 

Flow patterns are observed through the digital high-speed camera (Photo-Sonics, model 

Phantom V4.0,1000 pictures/second with the full resolution of 512 x 512 pixels) and 

the recorded images are transmitted to the computer. The digital high-speed camera is 

essential in these experiments in which the processes occur in a very short period. Its 

high speed can capture the experimental details, facilitate analysis of the experimental 

data and understanding of the mechanisms. The associated software can store/replay the 

flow pattems and calculate physical parameters such as bubble size and velocity. 

The vital measurements in the current experiments are the temperatures, the pressures, 

the flow rate and the heating power in the test sections, i. e. T3, P3, P4, PO, F1 (or F2) 

and DPM2 shown in Figure 3.1. They are collected by the data loggers, the flow meters 

and the power meter, and then saved in the PC. The temperature and pressure before the 

preheater (T2, P2) are not key parameters in the flow pattern experiments because the 

fluid state at the inlet of the test sections is single-phase liquid. The saturated 

temperature at the inlet and outlet of the observation sections (T4, TO) can be deduced 

from the measured pressure (P4, PO) because the accuracy of the pressure transducers is 

higher than that of the thermocouples. The thermocouple T3 used the water triple-phase 

point as the reference temperature. It avoids the possible measuring error from the Cold 

Junction Compensation (CJC), therefore improves the measuring accuracy. All 

thermocouple probes (except the needle probes T3, T4, TO) are ungrounded type to 
insulate the noise from the system. The whole test section floats above ground so that 
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the probes (T3, T4, TO) and wires (TT(l)-TT(15)) exclusively use the data logger 

S135951E, which has an allowed maximum voltage of 500V to the ground. The other 

thermocouples, pressure transducers, flow meters and differential pressure transducer 

connect to the data logger S13535F with an allowed voltage of 14V. All power supplies, 

control circuits, measuring instruments and data acquisition devices share the same 

ground to avoid the case of different grounds having different potentials which will 

cause measuring error. The data logger S13535F equips two analogue output ports and 

the equipped module has five output channels. The signals from T6, PO and T7 are 

exported to the PID controller to control the R134a tank heater and the No. 1 heater in 

the preheater. The signal from T6 can cut the power supply of the tank heater when it 

overheats. The PO signal automatically adjusts the heating power in the tank to stabilize 

the system at a preset pressure. The T7 signal controls the No. 1 heater in the preheater 

to get the desired degree of subcooling at the inlet of the test section. All experimental 

parameters, including temperatures, pressures, fluid state, flow rate, power, thermal loss, 

quality and superficial velocities, are monitored via a program developed by the 

researchers (X. Huo and L. Chen). The key parameters are also plotted with time history 

to ensure the system reaches a stable state. Group data, with the same diameter and 

pressure, can be converted to a flow pattern map using another purposely-developed 

program by the author. The different flow maps can be overlaid to find the shift of 

transition boundaries. In addition, the program can evaluate the existing correlations, 

the proposed coordinate groups, newly developed models and correlations. The 

experimental uncertainty can also be estimated. 
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Figure 3.5 Schematic diagram of the control and data acquisition system. 

Figure 3.6 Photograph of the control and data acquisition system. 
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Figure 3.7 Photograph of the camera and lighting set up. 

3.2 The selection of experimental parameters 

The experimental data should include the key parameters affecting flow patterns. These 

will be useful in the theoretical study to reveal the effect of channel dimension and fluid 

parameters on flow patterns, and study further the transition mechanisms of flow 

patterns, pressure loss and heat transfer. Based on the dynamic analysis in Chapter 2, 

the necessary data in the current study include tube diameter D. liquid and gas 

superficial velocities (ul,, u,, ), liquid and gas densities (pi, pg), liquid and gas viscosity 
(p, and surface tension cr. Clearly, density, viscosity and surface tension are not 

independent parameters in vapour-liquid flow and they are functions of the saturated 

pressure. Therefore, the most important and controlling parameters can be further 

reduced to tube diameter, liquid and gas superficial velocities and pressure. However. 

the measurable and controllable parameters are tube diameter D. mass flow rate m, 
heating power Q, temperature T and pressure P. Liquid and gas superficial velocities 

can be calculated accordingly. In the present experiments, the following parameters 

were measured and recorded: tube diameter, mass flow rate, the heating power of the 

test sections, the inlet temperature and pressure of the test sections and the inlet and 
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outlet pressures of the observation sections. The selected range of these parameters is 

discussed below. 

Previous experiments on two-phase flow regimes usually used air-water as the working 

fluid. This was the case for most of the studies for small channels. Such experimental 

data rarely represent the influence of fluid properties on the flow regimes so the results 

could not predict flow patterns in other fluids. Today, heat exchangers and cooling 

devices widely use environmentally accepted refrigerants. Therefore, it is more practical 

to study the behaviour of these refrigerants in two-phase flow. In the proposed project, 

refrigerant R134a was studied. 

3.2.1 The selection of tube diameter 

One of the main motivations for the current project, is to study the effect of tube 

diameter on flow patterns in small size tubes. The criteria needed to estimate the size for 

which we can define tubes as small are given in Table 2.1. In the current experimental 

conditions, the range could be between 0.20 to 5.3 mm. However, not all criteria are 

suitable to the proposed experiments, for example, the criterion of E6= 100 presented by 

Triplett et al. (1999) was based on the emergence of stratified flow which only appears 

in horizontal tubes. Another criterion, Bo=0.3, was put forward by Akbar et al. in 2003 

when the design and construction of the current experimental facility have already been 

completed. The proposed tube diameters in the present study are 1.10,2.01,2.88 and 
4.26 mm respectively. In this study the confinement number, proposed by Kew and 
Cornwell (1997), was used as the criterion that separates normal and small size tubes. 

Based on this, the range of diameter chosen would allow the study of flow patterns for 

both normal and small size tubes and allow a direct comparison. The existing 

experimental system and devices were therefore designed and selected based on this 

range. The experimental accuracy and flexibility will be worse if the tube size was 
decreased further. However, it can be improved by changing the control valves, the 

current transformer variac for the test sections and reducing the measuring span of the 

mass flow meters. 
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3.2.2 The selection of pressure and temperature 

The experimental parameters recorded at the inlet of the test sections can be controlled 

automatically by the immersion heater in the R134a tank through the PID controller, see 
Figure 3.1. The experimental pressures were set to 6,10 and 14 bar in the proposed 

experiments; the corresponding saturated temperatures were 21.6,39.4 and 52.5 T, 

respectively. The designed pressures and temperatures are listed in Table 3.1. Normally 

RI 34a is used at lower pressure and temperature in practical applications. However, the 

current experiments cannot operate at such parameters due to the limitation of the 

existing experimental rig. The main reason is that the considerable thermal exchange 

between the ambient and R134a after the chiller, which may heat R134a to two-phase 

before it reaches the test sections. The effect is more significant in the smaller tubes or 

at low flow rate. This problem could be solved by adding a small chiller just before the 

test sections. 
Table 3.1 Experimental pressures and temperatures in the experiments. 

Experimental pressure (bar) 6.0 10.0 14.0 

Critical pressure ratio* 0.15 0.25 0.34 

. 
Experimental temperature (*C) 21.56 39.40 52.45 

* The critical pressure of R134a is 40.65 bar. 

3.2.3 The selection of gas and liquid superficial velocities 

Logarithm of gas and liquid superficial velocities are used as the main coordinate 

groups in the flow maps. The experimental data should cover all possible flow patterns, 
i. e. dispersed bubble, bubbly, slug, chum and annular flow. The maximum liquid and 

gas superficial velocities should at least cover the transition boundaries of dispersed 

bubble flow and annular flow. More experiments were carried out near the transition 

boundaries. 

Based on the existing models and correlations in Appendix B, the required liquid 

superficial velocity can be found at the boundary of dispersed bubble flow and the 

required vapour superficial velocity should be at the boundary of annular flow, see 
Figure 3.8. The required liquid and gas superficial velocities are 1.5 and 31 m/s 

respectively for vertical upward air-water flow in a 25 mm diameter tube. 
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Figure 3.8 Air-water flow map in vertical upward 25 nim tube using the unified model 

summarized by Taitel et al. (1990). 

Table 3.2 lists the calculation results for R134a at the proposed experimental pressures 

(6 -14 bar) based on the existing models. 
Table 3.2 The required gas and liquid superficial velocities. 

1.10 mm tube 4.26 mm tube 

6.0 bar 14.0 bar 6.0 bar 14.0 bar 

Models UIS ugs UIS ugs UIS ugs UIS ug 
'S 

Taitel et al. (1980) 1.6 1.7 0.90 0.96 1.7 1.8 1.1 0.96 

Mishima and Ishii (1984) 3.4 1.9 1.9 1.1 3.5 2.0 1 1.9 1.1 

Mcquillan and Whalley (1985) 1.2 1 0.65 1.1 0.45 1.4 1.3 1.3 1 0.77 

Taitel (1990) 0.55 
1 2.7 0.52 1 1.5 1 1.0 4.5 0.94 

1 2. 

The maps from Mishima and Hibiki (1996) were also considered to ensure that the 

range required is covered. Eventually, the velocities ranges chosen are: liquid 

superficial velocity 0.04 - 5.0 m/s and vapour superficial velocity 0.01 - 10.0 m/s. The 

actual velocities may be smaller in the 1.10 mm tube due to the extremely large pressure 
loss in high velocity. 
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The liquid superficial velocity was initially kept at a pre-determined constant by 

adjusting control valve continually during the experiments. The gas superficial velocity 

was increased step by step by increasing the heating power on the heating section until 

annular flow and possibly mist flow, eventually appeared. All fluid parameters and flow 

patterns were recorded once steady state was reached, which can be confirmed by the 

parameters-time history curves plotted by the monitoring program. Then, the liquid 

superficial velocity was increased in step and the experiments were repeated at different 

gas superficial velocities. The selected velocities can distribute the data on the logarithm 

ugs-uls flow maps at least in the grid of I Ox 10. However, the actual density distribution 

of data points depended on the position of the transition zones and the resolution of the 

variac for the heating section, as shown in Table 3.3. 

Table 3.3 Selection of liquid and gas superficial velocities. 

Liquid superficial velocities (m/s) 

. 071 0.11 
1 
0.18 

1 
0.28 

1 
0.45 

1 
0.72 

1 
(0.92) 

1 
1.901 (2.42) 

1 
3.091 5.00 

Vapour superficial ve ocities (m/s) 

0.01 to 10.0 ni/s uniformly distributed and more in the transition zones 

* The liquid superficial velocities in brackets are the optional velocities, depending on 
the transition boundary of dispersed bubble to bubbly flow. 

3.2.4 The range of mass flow rate 

The two mass flow meters can give highly accurate measurement in a wide range after 

careful setting and verification. The flow rate passing the test sections was adjusted by 

using the needle valves V4 (or V5) and V14, see Figure 3.1. The required mass flow 

rate can be calculated by the following equation. 

,T 
M 

D2 (PAS + PIUI") (3.1) 
4 

Table 3.4 lists the possible minimum/maximum mass flow rates in the present 

experiments, are 0.15 kg/hr and 327.4 kg/hr respectively. The corresponding 

experimental conditions are the 1.10 mm tube at 14 bar pressure and the 4.26 mm tube 

at 6 bar pressure. 
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Table 3.4 Selection of mass flow rates (kg/hr). 

Diameter (mm) 1.10 1.10 4.26 4.26 

Pressure (bar) 6 14 6 14 

apour superficial velocity S) 
Liquid superficial velocity (m/s) 0.01 0.01 10.00 10.00 

0.04 0.17 0.15 17.40 38.51 

5.00 20.84 18.65 327.43 315.97 

3.2.5 The selection of input power 

The heating power of the test sections cannot be controlled automatically to get the 

desired quality because no quality signal could be exported at the current experimental 

conditions. Therefore, the power has to be regulated manually by watching the 

calculated superficial velocities in the monitoring program. The required input power 

can be estimated by the following equations: 

Q- AQ = mAh, + xmhfg (3.2) 

and 

X=- 
pgugl (3.3) 

plul, + pgug, 

The heating power was recorded by a digital power meter. The heat loss AQ was 

estimated in the single-phase flow experiments. Considering 2% thermal loss in the test 

sections and 5K subcooling degree at the inlet of the test sections, the input power can 
be calculated based on Equations 3.2 and 3.3 and is 0.4 - 2297 W, see Table 3.5. 

Table 3.5 Selection of heating power. 

Diameter (mm) 1.10 1.10 4.26 4.26 

Pressure (bar) 6 14 6 14 

Vapour superficial velocity (ni/s) 0.01 0.01 10.0 10.0 

Liquid superficial velocity (m/s) 0.04 0.04 5.0 5.0 

Quantity 0.59% 1.60% 4.55% 11.48% 

Mass flow rate (kg/hr) 0.17 0.15 327.43 315.97 

Thermal loss 5.0% 5.0% 5.0% 5.0% 

lRequested power (W) 0.40 0.45 1459-21 2296.76 
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Overall, four different diameter tubes, three experimental pressures, altogether twelve 

groups of experiments and therefore twelve flow maps were possible. Considering the 

fact that more experiments were done at the transition zones, about 2400 data points and 
images were recorded in the present experiments. The range of the parameters are 

summarised below: 

Liquid 

Orientation 

Diameter (min) 

Pressure (bar) 

Temperature (*C) 

Gas superficial velocities (m/s) 

Liquid superficial velocities (m/s) 

Quality 

R134a 

Vertical upward 
1.10,2.01,2.88,4.26 

6.0,10.0,14.0 

21.56,39.40,52.45 

0.01-10.0 

0.04-5.0 

0.0-1.0 

The devices which were selected based on the designed parameters are discussed in 

Appendix C. 

3.3 Test sections 

Four test sections, with the inner diameters of 1.10,2.01,2.88 and 4.26 mm, were 
designed for both heat transfer experiments and flow pattern experiments. The test 

sections connect with the experimental rig through a pair of flanges. The main 

components include three parts namely calming section (steel tube before the upstream 

electrode), heating section (steel tube between the pair of electrodes) and observation 

section (glass tube), shown in Figures 3.9 and 3.10 and the details are given in Table 3.6 

and Section C. 1 (6) in Appendix C. The integrated functions include fluid heater, flow 

observation and experimental data collection. The test sections were wrapped by 

ID54xl3 mm insulation tubes except the visualization section (25-30 mm length) in the 

observation section. The space between the test sections and the insulation tubes was 
filled with fibreglass to improve insulation efficiency. 

A well-developed single-phase flow is achieved in the calming section. The length must 
be long enough to eliminate the inlet effect and get a uniform flow at its outlet, whilst 
the pressure drop is within a reasonable range. Generally a minimum length of 50 times 
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hydraulic diameter is required in the calming section. In this project, the designed L/D 

ratios are between 55 and 91 as presented in Table 3.6. 

l, 'Iangc IN- 

Pressure Mý 
transducer (PO) 

Visualization 
point 

ID 

Pressure 
transducer (114) 

I Icating section 
(steel tube) 

Pressure 
transducer W3) 
Calming section 
(steel tubL) 

Flange 

II) 

II) 

,1 krinocouple ( 10) 

Observation section 
(glass tube) 

Thermocouple (T4) 

I'llectrode (direct heating) 

Electrodc 

Fhermocouple (T3) 

Figure 3.9 Schematic diagram of the test sections. 

I ýý, ý-ýp e- -, 

¼! 
Figure 3.10 3-D model of the test sections. 
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Table 3.6 The dimensions of the test sections. 

Tube insider diameter ID (mm) 1.10 2.01 2.88 4.26 

Total length (mm) 1010 980 1260 1350 

Calming section length (mm) 100 175 225 235 

Heating section length (mm) 150 210 300 500 

Observation section length (mm) 200 300 450 450 

L, (mm) 187 270 440 425 
Observation point 

I 
L2 (MM) 

1 
100 145 125 1 140 1 

Note: The detailed dimensions and structure are presented in Figure 3.9 and Figures C. I 
and C. 2 in Appendix C. 

In the flow pattern experiments, the heating section worked as a vapour producer. Two- 

phase flow with the desired quality was created here by direct electric heating. The 

current was supplied by a current transfonner and could be regulated by a variac. The 

copper electrode and the stainless steel tube were welded by using silver solder to 

ensure good contact. The capacity of the transformer could be calculated from the 

required heating power and the resistance of the test sections. The electric resistance did 

not vary significantly in these four test sections, i. e. 0.107 0 to 0.164 n, and is less 

affected by the temperature; increased about 5% from 10 *C to 60 *C (Huo 1999). 

Therefore, the maximum current occurred in the case of the 4.26 mm. test section and 14 

bar. The corresponding maximum heating power and resistance were 2297 W and 0.113 

0, see Section 3.2.5. The maximum current can be calculated by the following equation. 
ý2-2S 7 , 

max ý- -- ý_!! 143A 
R. 113 

Therefore, the existing current transformer, with the capacity of 200 A, was suitable for 

the new study. Again, a pair of PDFE gaskets insulates the test sections from the other 
parts of the experimental rig to prevent current leakage. 

The purpose of the current project is to study fully developed adiabatic two-phase flow 

in an attempt to develop general flow maps and correlations. Therefore, a significant 
tube length, upstream of the observation section, allowed (within the limits of space and 
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pressure drop) in order to eliminate the effect of upstream conditions in the heating 

section and obtain fully or near fully developed flow at the visualization point. The total 

length of the test sections are between 980 to 1350 mm and the designed LI/D ratios are 
between 100 to 170, see Table 3.6. However, such development distance may not be 

long enough to obtain fully developed two-phase flow at the visualization point and in 

fact it is still a topic of discussion in the previous studies. For example, Taitel et al. 

(1980) did not predict bubbly flow in fully developed two-phase flow in small tubes but 

it was observed in the present experiments as shown in Chapter 5 Section 5.1.2. In 

addition, the development distance is also strongly dependent on the fluid parameters 

and the flow patterns based on the observations from Prasser et al. (2002), see Chapter 2 

Section 2.3.3 (3). The two-phase flow conditions at the different positions could not be 

strictly same due to the effect of thermal loss and pressure drop which is discussed in 

Chapter 4 Section 4.1.3 (12). In the present experiments, the length of the observable 

part is about 25-30 mm due to the restrictions of the camera. The flow patterns within 

this range were examined and compared carefully because only one high-speed camera 

was available in the present experiments. In the bubbly and slug flow, the bubble 

diameter, length and rise velocity were also measured at beginning and end of this 

length to examine the flow status indirectly, see Figure 4.11 in Chapter 4 for the slug 
bubble length and Figure 5.49 in Chapter 5 for the coalescence of bubbles. However, it 

is difficult to give solid conclusions on the flow status because the difference within 

such a short observation distance (25-30 mm) is possibly difficult to distinguish. 

The observation section, a Pyrex glass tube with the same inside diameter as the 

stainless steel tube is connected directly to the heating section, see Tables 4.1 and 4.2 in 

Chapter 4 and Figures C. 1 and C. 2 in Appendix C. The visualization point is near the 

outlet of the observation section in order to reduce the effect of the connection and in an 

attempt to obtain fully developed two-phase flow. The parameters at the visualization 

point are calculated based on the inlet and outlet pressures (P4, PO) with the assumption 

that the pressure drop along the observation section is linear. The experimental pressure 

at the observation point can be obtained as: 

p 
Llpo +L2P4 

L, + L2 (3.4) 
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The pressure at the outlet of the observation section (po) is controlled automatically in 

the current experiments. The signal from the pressure transducer (PO) is exported to the 

PID controller to control the R134a tank heater. The preset pressure po was slightly 
lower than the desired experimental pressure and was adjusted constantly depending on 
the pressure drop in the observation section to get constant experimental pressure (p). 

The local gas and liquid superficial velocities at the visualization point were calculated 

as follows: 

na (3.5) 
Apg 

ul., = 
M(l - X) (3.6) 

Ap, 

where, 

X= 
m(h. - hl)+ (Q - AQ) (3.7) 

m(hg - h, ) 

The mass flow rate (m) and power (Q) were measured by the Coriolis mass flow meters 
(FI or F2) and the power meter (DPM2), respectively. The inlet cnthalpy (hi,, ) was 

calculated based on the temperature and pressure at the inlet of the heating section (T3, 

P3) and the saturated parameters at the visualization point (pg, pi, hg, hi) were calculated 

based on the local saturated pressure, which was deduced from the pressure at the inlet 

and outlet of the observation section (P4, PO) - the pressure drop was assumed linear. 

The thermal loss at the test section (AQ) was obtained using the temperature difference 

(AT) across the insulation and the thennal loss coefficient (K), which was estimated in 

the single-phase experiments and is summarized in the below. 

Table 3.7 The thermal loss coefficient in the test sections. 

Test section diameter (mm) Thermal loss coefficient (W/K) 
1.10 0.048 

2.01 0.040 

2.88 0.044 

4.26 0.068 
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3.4 The control programs 

Three control systems were used in the current project. The Phantom Camera Control 

supplied with the digital high-speed camera and two purposely developed programs. 
The Phantom Camera Control can objectively record the experimental process, which is 

useful in analysing the data and understanding the mechanisms. The available functions 

include capturing, recording and playing back flow patterns whilst measuring bubble 

sizes and velocity. The programs developed in this study were constructed and modified 

according to the practical needs of the research. Both programs integrate a lot of 
functions in order to reduce manual interference during the data treatment. The first 

program focuses on monitoring the fluid parameters and recording the experimental 
data. The second is used to process the collected data and develop new models and 

correlations. They are described in Appendix D while the source codes are saved in a 
CD available with the thesis. 

3.5 Summary 

The designed facility is composed of three independent systems: the R134a 

experimental system, the R22 cooling system and the control and data acquisition 

system. Their operation and functions are introduced in detail in this Chapter. All key 

components in the system were designed based on the experimental range and 

conditions and discussed in Appendix C, see the summary below: 

Liquid 

Orientation 

Diameter (min) 

Pressure (bar) 

Temperature (*C) 

Vapour superficial velocities (m/s) 

Liquid superficial velocities (m/s) 

Quality 

R134a 

Vertical upward 
1.10,2.01,2.88,4.26 

6.0,10.0,14.0 

21.56,39.40,52.45 

0.01-10.0 

0.04-5.0 

0.0-1.0 

Four test sections with the inner diameters of 1.10,2.01,2.88 and 4.26 mm., were 
designed for both the heat transfer and the flow Pattern experiments. They is composed 
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of three main parts namely the calming section, the heating section and the observation 

section. Their design was such that they could be assembled easily whilst satisfying the 

required measurement accuracy. 

A commercial software and two purposely developed programs are used in the current 

study, see the introduction in Appendix D. The entire experimental process and all 

experimental parameters were controlled, monitored and recorded automatically with 

these control facilities. The obtained data can be analysed in real time, which greatly 

accelerated the experimental progress. The experimental accuracy was improved also 

due to limited manual interference. 
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Chapter 4 Validation of the Experimental Facility 

In all heat transfer and fluid flow experiments the experimental facility must be 

validated. The experimental error must be within an acceptable range and the whole 

system and its separate components must be shown to work properly at all experimental 

conditions. In these experiments the accuracy was verified in single-phase experiments. 

4.1 Calibration and uncertainty analysis 

All instruments used in this study were calibrated carefully before installation, either in 

the laboratory or by the manufacturer. Their contribution to the experimental accuracy 

was obtained by error analysis. This is very important in the experiment design and in 

the selection of instruments. The overall experimental accuracy is estimated and 

presented in this section. 

4.1.1 General theory 

The total experimental error should consider all potential factors that influence the 

experimental accuracy. It is the sum of systemic error (bias) and random errors 
(precision). The systemic error is the fixed or constant component of the total error. It is 

sometimes grouped into calibration error, data acquisition error, data reduction error and 
conceptual error. The combined systematic uncertainty is calculated as the root-sum- 
square (RSS) combination of the above elemental systematic errors. Calibration reduces 
the part "static" systematic errors to the level of the standard used in the calibration 

procedure. However, other systematic errors such as the stability should be additionally 

considered. If the calibration cannot be carried out properly in the laboratory, the 

systemic uncertainty data provided by the manufacturer are used. The random error 
follows the Gaussian distribution and can be reduced by increasing measurement times 

or collecting more data. The Chauvenet criterion is adopted to reject outliers (or wild 

points) in the current study. The quantification of uncertainty is determined at 95% 

confidence level in the current study. The overall uncertainty of a measured variable (U) 

can be calculated according to the ISO Guide (1993) (Coleman and Steele, 1999): 
U95 = t95Uc (4.1) 
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t95 is the distribution coefficient with 95% confidence level and u, is given by: 

vs-"+ s 1, (4.2) 
x 

SB, and Sx in Equation 4.2 are calculated from: 

SB 
Bx 

(4.3) 
2 

sx (4.4) 

Considering a general case, an experimental result, r, is a function of the measured 

variables Y (Coleman and Steele, 1999) 

r= r(YI, Y2, -- -, Yj) (4.5) 

Then the uncertainty of r can be obtained from the following equations. 

u2 
ar )2 

U2 +( 
Or )2 

U2 +... +( 
Or 

u2 (4.6) 
r yi- - Y2 Y, 

a Y, a Y2 ayj 

) 

or given as a ratio 

)2 ýL 
2+(y 2U2+... 

+ 
(y 22 1 yj 

.1 
Uyj U, 0rY. 

2 
ar Y2 

- 

ar 

(4.7) 
r2r aY, yl r L9 Y2 Y2 

)r 

aYj yj 

) 

4.1.2 Experimental range, conditions and assumptions 

The current experiments require numerous measurements which include a number of 

parameters. The corresponding error analysis is also very diverse and complex. The 

experimental conditions are specified below with assumptions for the data analysis: 

(1) Experimental range 

Tube inside diameter 

Experimental pressure 
Max. liquid superficial velocity 
Max. gas superficial velocity 
Min. mass flow rate 
Max. mass flow rate 

1.10,2.01,2.8 8,4.26 mm 
6.0,10.0,14.0 bar 

5.0 m/s 
10.0m/s 

0.5 kg/hr 

21.83 kg/hr (l. 10 mm tube) 
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72.89 kg/hr (2.01 mm tube) 
149.65 kg/hr (2.88 mm tube) 

327.43 kg/hr (4.26 mm tube) 

(2) Conditions and assumptions: 

" The heating section is of constant diameter and the tube wall thickness is the same, 
i. e. the section area and heat flux are constant along the tube. 

" The observation section has uniform inside diameter and is same as the connected 

heating section. 

" The maximum degree of subcooling at the outlet of the preheater is -5 K. 

" The maximum temperature difference between the tube wall and the fluid 

temperature is 5 K, except at the condition of critical heat flux. 

" The default ambient temperature is 20 "C. 

" The maximum variation of the ambient temperature between summer and winter is 

±5 K. 

The error caused by the fitted equation is equal to the maximum deviation between 

the equation and the calibration data. 

The pressure drop along the observation section is linear. 

The heating section and the observation section have same thennal loss coefficient. 

For the non-measured parameters, such as the density of glass and stainless steel and 

properties of R134a, the errors are negligible. 

4.1.3 Calibration process and error analysis 

(1) Tube inside diameter 

The inside diameter of the tubes was measured before the test sections were 

manufactured. The mean inside diameter of the stainless steel tube can be calculated by 

measuring its weight, length and outside diameter, i. e. 

IF 
D, n 

2 
-4T7 

out z 
(4.8) 

; OL 

The uncertainty can be obtained from 
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12 4W -1/2[(2DO 

7r, 
UD,. Dqut - utUD_, 

", L 2( p) 

4UW 2 

+(44VL 
)2]1/2 

(4.9) 
; OL2 M, ; OL 

However, the inside diameter of the glass tubes cannot be measured by using the above 

method because their outside diameters are much bigger than the inside diameters, and 

this will cause significant error. The appropriate method is to weigh the dry glass tube 

and the wet glass tube filled with water. The difference is the water weight in the tube. 

The inside diameter of the tube can be calculated by the water weight and the tube 

length, see the equations below. 

Dj,, 
f-4W 

(4.10) ý 
7rOL 

UD, 
ff (4.11) 

D.. 2 

These will of course be compared with the diameters supplied by the manufacturer. The 

measured tubes should be cleaned carefully. The weights were recorded using an 

electronic scale with the accuracy of 1/1000 gram. The outside diameters were 

measured by a micrometer with the accuracy of 1/100 mm at several different sections 

and each section was measured twice at different directions. The lengths were measured 
by a tape meter with the accuracy of I mm. The density was available from the 

manufacturer. The measured results show that the manufacturing precision of the 

stainless steel tubes is much better than that of the glass tubes. For example, the 

measured diameters for the 2.01 mrn steel tubes are 2.014 to 2.015 mm but for the glass 

tubes, the measured diameters are 2.01 to 2.04 mm. even though they were cut from the 

same tube. In order to find the right glass tube for the observation section, several glass 

tubes with the same diameter were ordered and measured. Only the glass tube which 

inside diameter matches with the steel tube was selected and installed on the test 

section. The measured diameters and the uncertainty of the stainless steel tubes and the 

glass tubes are summarized in Tables 4.1 and 4.2 respectively. 
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Table 4.1 Diameter of the stainless steel tubes and the uncertainty. 

Parameters Tube I Tube 2 Tube 3 Tube 4 

Outside diameter given by manufacturer (mm) 1.59 2.38 3.18 4.76 

Inside diameter given by manufacturer (mm) 1.09 1.98 2.87 4.25 

Measured outside diameter (mm) 1.60 2.39 3.18 
1 4.75 

Calculated inside diameter (mm) 1.10 2.01 2.88 4.26 

Error of the inside diameter (mm) 0.014 0.012 0.011 0.011 
ýncertainty 

of the inside diameter 1.31% 0.59% 0.38% 0.26% 

Table 4.2 Diameter of the glass tubes and the uncertainty. 

Parameters Tube I Tube 2 Tube 3 Tube 4 

Inside diameter given by manufacturer (mm) 1.10 2.01 2.88 4.26 

Calculated inside diameter (mm) 1.10 2.01 2.88 4.26 

Error of the inside diameter (mm) 0.004 0.004 0.002 0005 

Uncertainty of inside diameter (mm) 0.36% 0.17% 0.06% 

(2) Pressure sensor 

The pressure sensors convert pressure into analogue electronic signal which is 

acceptable by the data logger (mV for pressure transducers and mA for pressure 

transmitters). The voltage signal can be measured by the data logger directly but the 

current signal must be converted to voltage signal first using a 500 0 resistor. The data 

logger exports digital signals to a computer, in which the pressures are monitored and 

recorded by a purposely-developed program. Table 4.3 lists all pressure sensors used in 

the present experiments. 

All pressure sensors were calibrated by a dead weight tester (Barnet Instrument Ltd, 

Series No 310/62, accuracy 0.1%). The test range (0-300 psi, i. e. 0-20.68 bar) covers the 

experimental range (6.0-14.0 bar). The output signals were compared with the actual 

applied pressures and a best-fit linear equation was produced for each sensor. The 

equations were then incorporated into the monitoring program, converting the mV or 

mA signals to pressure in bar. 
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Table 4.3 Pressure sensors in the experimental rig. 

No. Sensor Manufacturer Range Output signal Power suppl 
PI GP series RS 040 bar g 4-20 mA 12V 

P2 PDCR4010 Druck 0-10 bar a* 0-100 mv 12V 

P3 ýPDCR 4010 Druck 0-20 bar a 0-100 mv 12V 

P4 PDCR 910-0826 Druck 0-10 bar a* 0-100 mv 12V 

PO PDCR 910-0826 Druck 0-10 bar a* 0-100 mv 12V 

P5 GP series RS 0-40 bar g 4-20 niA 12V 

*: Pressure transducers PDCR 4010 and 910-0826 allow 400% overpressure, i. e. the 
maximum allowed measuring range is 40 bar. 

The following factors affect the accuracy of the pressure measurements: 

* Accuracy of the calibration instrument, 0.1%. 

0 The power supply (12V) hardly affects the pressure transmitters (PI and P5). 

However, the output signals of the pressure transducers, P2, P3, P4 and PO, are 
linear to the voltage of the power supply in the range of IV to 12V. Tberefore, the 

supplied voltage was measured and the measured pressures were compensated in the 

program to eliminate the effect of the voltage fluctuation. 

The output signals from the GP pressure transmitters (PI and P5) are 4-20 mA 

current signals, which cannot be measured by the existing data logger. Therefore, a 
500 f2-wire wound pure resistor was used to convert the current signal into 2-10 V 

voltage signal for each sensor. The selected resistor has the characteristics of high 

accuracy (0.10%) and very low temperature-resistance coefficient in which the 

temperature effect can be neglected. 

The "dynamic" systematic error of the pressure sensor is given in Appendix E Table 

E. 1. 

9 The "dynamic" systematic error of the data logger is given in Appendix E Table E. 2. 

e The calibration data and the produced best-fit equations are summarized in 

Appendix F Section F. I. - 

The combined uncertainty of the pressures is calculated as the root-sum-square (RSS) 

combination of the above elemental systematic errors, see Table 4.4. 
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Table 4.4 Combined uncertainty of the pressure measurement. 

Elements Systematic error E i tal 
Pressure transducer PI P2 P3 P4 PO P5 

xper men 
pressure 

I 

Calibration standard 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 

u ti ) n Calibration ea on 0.08% 0.12% 0.20% 0.18% 0.17% 0.27% 

12V power supply 0.00% 0.00% 0.00%1 0.00% 0.00% 0.00% 

Pressure sensor 0.17% 0.35% 0.16% 0.16% 

Data logger 0.02% 0.04% 0.07% 0.04% 0.04% 0.02% 

Resistor 0.10% 0.10% 

Combined uncertainty -0.16% 0.24%1 0.42%1 0.260/o 0.26% -0.31% 
*: The manufacturer did not provide the information on this error in the technical 
specification. 

The uncertainty of sensors PI and P5 is an estimated value because of the absence of the 

information on stability and temperature effect. They are actually not used in any 

calculations. The pressures measured by P3, P4 and PO are the collected experimental 

data in the flow pattern visualization experiments. The experimental pressure at the 

visualization position is deduced from the pressures at the inlet and the outlet of the 

observation section, i. e. 

P =c (4.12) P4 + (1 - C)PO 

C is a ratio that represents the position of the visualization, which equates to LI/L in 

Figure 4.1. The uncertainty of the experimental pressure can be calculated by: 

U2 =C2U2 +(, _C)2U2 pAA (4.13) 

In the current experiments, the pressure drop in the observation section was much 

smaller than the experimental pressure, i. e. P 2ý P4 -- po. The uncertainty Of P4 and po 

are the same, see Table 4.4. Therefore Equation 4.13 can be simplified as: 
u )2 

2A [C2 
+(I_ C) 

A 
(4.14) 

In the above equation, the coefficient C2 +(I_ C)2 is bigger than 0.5 but smaller than I 

because the ratio C is between 0 and 1. Therefore, the uncertainty of the deduced 

experimental pressure at the visualization point is equal to or smaller than that Of P4 (or 

po). 
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Electrode 
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Figure 4.1 Sketch showing of the position of the visualization point. 

(3) Thermocouples 

Thermocouples convert temperature difference into voltage difference. The accuracy 

depends on the measurement of the reference temperature and the voltage signal. The 

measurement of the voltage signal has been introduced in the previous section. The 

reference temperature can be obtained in two ways, i. e. an external reference point or 

the use of the data logger input connection as the reference junction, called the cold 

junction compensation (CJC), through a thermal resistor. In the first case the water 

triple point (0.01 'C) is the most generally used reference temperature. It needs an 

additional ice/water box but provides higher precision. In the latter case the reference 
temperature is monitored and any change is compensated by the data logger into the 

measured temperature automatically. This inevitably introduces an extra error though it 

is a simpler method. Therefore, all the temperatures used as the experimental data 

employed the first method and the others, not actually needed in this study, used the 

second method, see Table 4.5. The readings from thermocouples TI, T5 and T6, which 

used the second method, were converted by the data logger into temperature. The 

readings from thermocouples T2, T3, T4, TO and TT I- 15, which used the first method, 

were voltage and this was converted into temperature in the PC using the best-fit 

equations. In order to insure a constant triple-phase point, the cold junctions were put in 

individual glass tubes filled with transformer oil. The tubes were immersed in the ice- 

water mixture stored in an insulated box. The temperature of the mixture was observed 
by a high accuracy National Physical Laboratory mercury-in-glass thermometer. 
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Table 4.5 Thermocouples in the experimental rig. 

No. Type Calibration 
Range ('C) 

Experimew 
Range ('C) 

Data 
logger Reference 

TI K type ungrounded probe -18-66 20-55 S13535F Cic 

T'2 V, type ungrounded probe -18-66 20-55 S13535F triple point 
T3 Te grounded needle probe -20-80 20-55 S135951E triple point 
T4 T type grounded needle probe -20-80 20-55 S135951E triple point 
TO T type grounded needle probe -20-80 20-55 S135951E triple point 
T5 K type ungrounded probe -18-66 20-55 S13535F Cic 

T6 K type ungrounded probe -18-66 20-55 S13535F Cic 
TTI-15 K type thermocouple wires 1 -20-80 > 20 SI 3595 1EI triple point 

Two types of thermocouples, K and T, were used in the experiments. Three T-type 

grounded thermocouples were installed in the test sections since only this type 

thermocouple was available as needle probe. Fifteen K-type thermocouple wires were 

equally spaced and welded on the outside wall of the heating section to measure the 

temperature distribution. Other thermocouples were K-type ungrounded probes to 

reduce electronic noise. Two data loggers were used in the experiments, i. e. SI 3535F 

and SI 35951E. The maximum allowed input voltage to ground in SI 3535F is ± 14 V 

because of the limitation of the analog input module 35301J. The test section floats 

above earth and its voltage to ground was higher than 14 V. Therefore, all the 

thermocouples in the test section, including T3, T4, TO and TTI-15, connected to SI 

35951E data logger for which the maximum allowed voltage to ground is 500 V. The 

calibrated temperature range covered the experimental range. However, the tube wall of 

the heating section could reach very high temperature when critical heat flux occurred. 
The standard temperature-voltage correlation for K-type thermocouple supplied by the 

manufactory replaced the user-defined equations when the measured temperature was 

above 80 T. 

All the thermocouples were calibrated in a temperature calibration equipment which 

was available in the Department of Engineering of Queen Mary, University of London. 

The unit is composed of a bath, a stirrer, a heater, a cooling system, a temperature 

controller and a high accuracy platinum resistance thermometer (RIOO 014), as 

presented in Figure 4.2. The working fluid is antifreeze TYFOXIT 1.18 which has a 

92 



freezing point of -35 'C. The thermometer measures the liquid temperature with 
±0.02 Q (equivalent to ±0.05 K) uncertainty in the range of -80 to 300 'C. In the middle 

of the bath is a constant temperature zone namely the calibration zone. The thermometer 

and the thermocouples to be calibrated are put together in that zone. In a similar manner 

to the pressure sensors, the output signals from the thermocouples are compared with 

the reading of the thermometer and a three-order polynomial equation is produced for 

each thermocouple. The equations are integrated in the monitoring program to convert 

the mV signals to the temperatures. The calibration data for the thermocouples are 

shown in Appendix F Section F. 2. 

high accuracý 
RI'D probe temperature probe 

motor & heater 

temperature 
controller 

resistance 
meter 

. 10 

calibration zone 

I 
A.. cooling system 

Figure 4.2 Sketch of the temperature calibration equipment. 

According to the calibration process and the signal transmitted, in assessing the 

measuring error. the following must be considered: 

The measuring error of the calibration machine are analyzed and presented in 

Appendix F Section F. 2 Tables F. 8-F. 10 and Figure F. 7. The error includes 

systematic error and random error. 

The produced best-fit equations, which are summarized in Appendix F Section F. 2 

Tables F. II -F. 19 and Figures F. 8-F. 15. 

The systematic error caused by the data logger is given in Appendix E Section E. 2 

Table E. 3. 
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The combined uncertainty on the temperature measurement is calculated as the root- 

sum-square (RSS) combination of the above elemental systematic errors, which is 

summarized in Table 4.6. 
Table 4.6 Combined uncertainty of the temperature measurement. 

Instruments Unit Error 

Thermocouple Tl* T2 T3 T4 TO T5* T6* TTI-15 

Calibration equipment K 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

Calibration equation K 0.03 0.02 0.04 0.04 0.04 0.03 0.04 0.02 

Data logger K 0.79 0.08 0.14 0.14 0.14 0.79 0.79 0.14 

Combined uncertainty K 0.79 1 0.11 1 0.16 1 0.16 1 0.16 1 0.79 1 0.79 1 0.16 

Note: the thermocouples marketed by asterisk used the second method, i. e. automatic 
compensation cold junction. Therefore, extra error was introduced in the measurement. 

(4) Coriolis mass flow meters 

Two Coriolis mass flow meters (CMF), CMFOlO (0 - 25 kg/h) and CMF025 (0 - 500 

kg/h) manufactured by Micro Motion Ltd, were installed in parallel in the loop in order 

to ensure high measurement accuracy both in low and high flow rate. CMF is one of the 

most accurate flow meters. It is impossible to calibrate them precisely in the current 

laboratory conditions. Tberefore, they were calibrated by the manufacturer with R134a. 

The correlation between the output signal and the flow rate can be presented by a linear 

equation for each meter, see Appendix F Section F. 3. The errors caused by the date 

logger and the 500 O-wire wound pure resistor should be considered properly. The 

systematic error of the date logger is given in Appendix E Table EA. The combined 

uncertainty is the root-sum-square (RSS) combination of the above elements and a 
function of flow rate. The calculation results is summarized in Appendix E Table E. 5 

and presented in Figure 4.3. 

As stated above, the CMF accuracy provided by the manufacturer is so high that they 

cannot be validated accurately in the laboratory. However, a verification test was carried 
out to ascertain "near enough" measured values and that the meters were correctly 
installed. The calibration system includes a stainless steel tube which is parallel with the 

test section and a differential pressure transmitter to measure the liquid level lift in a 

certain time interval. 
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Ah = Ap / pg (4.15) 

The mass flow rate can then be calculated from the mass obtained during this specified 

interval of time. 

; rD2AP (4.16) 
4gAt 

The difference between the reading of the CMFs and the flow rate deduced from the 

above equation was between 0.9% to 4.9% for the mass flow rate of 4.9 to 243.7 kg/hr, 

see Table 4.7. Considering the liquid level fluctuation, the result is reasonable. 

Therefore, we can conclude that the CMFs were installed correctly and work properly. 

0.60'� 

0.501, 

0. IM 

(SFolo 
0.304ý 

CMFO25 

0.201, 

0. lo, ', 

0.00% 
0.10 1.00 10.00 100.00 1000.00 

Flow Rate (kg/hr) 

Figure 4.3 Combined uncertainty of the flow rate measurement. 

Table 4.7 Verification of the Coriolis mass flow meters. 

Items Unit CMFOIO CMF025 

Diameter mm 24.0 24.0 
. 
72.9 72.9 72.9 72.9 72.9 72.9 

Different Pressure Pa 9800 14500 6280 6100 8220 11700 15230 18950 

Time interval s 300 450 249 119 125 126 122 110 123 123 

Calculated flow rate kg/hr 4.70 4.68 6.54 20.24 76.98 74.18 103.2 163.0 189.7 236.1 

Measured flow rate kg/hr 
_4.94 . 91 6.83 20.58 78.35 76.84 107.5 164.5 199.2 24 . 

Deviation -4.9% -4.8% -4.2% -1.7%1 -1.7% -3.5% -4.0% -0.9% -4.8% -3.1% 
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(5) Power meters 

Two instruments are involved in the measurement of the heating power supplied to the 

test sections; the digital power meter, WTI 10 manufactured by Yokogawa Electric 

Corporation and the current transformer, produced by D. K. Moriarty Ltd. The current 

passing through the heating section can reach a very high value (up to 200 A) due to the 

low resistance coefficient of stainless steel. This is beyond the range of the power meter. 

Therefore, a current transformer was used to scale down the current to an acceptable 

range for the power meter. and the combined uncertainty includes the uncertainty of the 

current transformer and the power meter. Similar to the mass flow meters, the accuracy 

of the power meter and the current transformer was provided by the manufacturers. The 

calculation results are summarized in Appendix E Table E. 6 and presented in Figure 

4.4, which indicates that the uncertainty is a function of heating power and hardly 

affected by the tube diameter. 

0.60% 

0.50% 

0.40% 

0.30% 

0.20% 

0.10% 

0.00% 

0 1.10 mm 
M 2.01 mm 

2.98 mm 

- 4.26 mm 

Figure 4.4 Combined uncertainty of the heating power on the test sections. 

(6) Differential pressure transmitter 

The entire experimental facility was validated in single-phase experiments by measuring 

the pressure drop at the test sections and comparing it with the Blasius's or Ilaaland's 

correlations, see Section 4.3. The pressure drop was measured by a differential pressure 

96 

10 100 1000 10000 

I feat ing Power (W) 



transmitter. The operation is the same as for the pressure transmitters, using a 500 92 

resistor to convert 4-20 mA current to 2-10V voltage signal then received by the data 

logger. The measuring uncertainty was analyzed as follows: 

e The differential pressure transmitter was calibrated through measuring the water 
level difference at both sides of the transmitter. The measuring results are 

summarized in Appendix F Section F. 4. 

The calibration uncertainty can be estimated as following: 

Ap = pgAh (4.17) 

The error in the water density, p and gravitational acceleration, g can be neglected. 

Hence, the uncertainty of Ap is: 

UAp = MUM (4.18) 

A tape meter with I mm accuracy was used to measure the water level difference. 

Therefore, the calibration error is 9.8 Pa. 

A linear equation was obtained from the test data, see Appendix F Section F. 4. Its 

linearity is included in the accuracy of the sensor. 

* The accuracy of the resistor was with 0.10%. 

The performance specifications of the sensor were provided by the manufacturer 

and listed in Appendix E Table E. 7. 

* The systematic error for data logger is given in Appendix E Table E. 8. 

The combined uncertainty is the root-sum-square (RSS) combination of the above 

elemental systematic errors and is presented in Table 4.8. 

Table 4.8 Combined uncertainty of the differential pressure measurement. 

Elements Unit PX771-IOOWDI 

24% 100% 
Full scale bar 0.0608 0.2491 

Calibration method Pa 9.8 9.8 

Differential pressure transmitter Pa 17.7 72.6 

Data logger Pa 0.6 2.2 

Resistance 0.10% 0.10% 

Measurement error caused by resistance Pa 6.1 24.9 

lCombined uncertainty Pa 21.2 77.4 
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(7) The inlet temperature at the heating section 

The liquid temperature after the preheater can be adjusted to a certain degree of 

subcooling through controlling the power supply of the preheater. Therefore, the liquid 

temperature at the inlet of the test sections can be calculated if we know the thermal loss 

between the preheater and the test sections. The equation for the above calculation is as 
follows: 

dQ =K (T - -cpmdT L 

Therefore, 

K dl dT (4.20) 
Lc 

PmT-T, 

-, k 

T3 =Ta +(T7 -T aý 
c" In (4.21) 

In the experimental range, the specific heat capacity, c. can be regarded as a constant, 

approximately 1.48 kJ/(kg K). The default degree of subcooling at the outlet of the 

preheater is 0 to -5 K. The measured then-nal loss coefficient K of the pipe between the 

preheater and the test section is 0.30 W/K and the default ambient temperature T. is 20 

OC. Figure 4.5 summarizes the deduced temperature at the inlet of the test sections 

based on different experimental pressure and mass flow rate. 

50.00 

1.5.00 
c 

10.00 

, 
ct -6 bar 

a) 35.00 - 10 ba I 
bil r 

rd 

30.00 

25.00 

20.00 0.1 1.0 10.100.0 1000.0 Flow rate (kg/hr) 

Figure 4.5 Temperature at the inlet of the test section. 
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(8) Fluid properties and associated uncertainty 

Fluid properties, such as density, enthalpy, viscosity and surface tension, are functions 

of the temperature and pressure. At saturated state, the above parameters only depend 

on either pressure or temperature. Considering the accuracy of the pressure transducers 

is better than that of the thermocouples, the two-phase fluid parameters are obtained 
from the pressure sensors only. 

However, it is very difficult to obtain the differential function directly because of the 

complexity of the property functions. Therefore, a numerical method presented in 

Equation 4.22 was proposed to estimate the uncertainty of fluid properties. This 

function has been integrated in the data analysis program. The calculation results at the 

different conditions are summarized in Table 4.9. 
-2 2 

u2 
r(T+AT, P) - r(T, P) U2+ 

r(T, P+AP)-r(T, P) U2 

r AT T1 AP 

Ip 
(4.22) 

Table 4.9 Combined uncertainty of the fluid parameters. 

Items Heating section inlet 
, Observation section 
i inlet and outlet Observation section 

Fluid state Si gle - phase fluid Two phase fluid 

Pressure (bar) 6.0 10.0 14.0 6.0 10.0 14.0 1 6.0 10.0 14.0 

Temperatu (*C) 20.78 34.37 47.39 20.78 34.37 47.39 21.56 39.40 52.45 

Uncertainty of pressure 0.42% 0.42% 0.42% 0.26% 0.26% 0.26% 0.26% 0.26% 0.26% 

Uncertainty of temperature (K) 0.16 0.16 0.16 0.16 0.16 0.16 
. 

Uncertainty of liquid density 0.05% 0.06% 0.06% 0.05% 0.06% 0.06% 0.03% 0.04% 0.05% 

Uncertainty of gas density 1 1 0.26% 0.27%, 0.29% 

Uncertainty of liquid enthalpy 0.10% 0.09% 0.09% 
. 
0.10% 0.09% 0.09% 0.05% 0.06% 0.06% 

Uncertainty of gas enthalpy 0.01% 0.01% 0.01% 

Uncertainty of latent heat 0.04% 0.06% 0.09% 

Uncertainty of liquid viscosity 0.10% 0.11% 0.12% 

Uncertainty of gas viscosity 0.03% 0.04% 0.05% 

Uncertainty of surface tension 0.13% 0.19% 0.26%j 
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(9) Thermal loss and associated uncertainty 

The thermal loss at the test section can be calculated by the following equation: 

AQ = KAT (4.23) 

Here, K is the thennal loss coefficient of the test section and AT is the average 

temperature difference at both sides of the insulation layer. The uncertainty is given by 

u2 + 
(KUAJ 

AQ "'ý 
(A7TýUJK Y 

(4.24) 

The thermal loss at the heating section is discussed first. The average temperature at the 

inner side of the insulation can be obtained approximately from the fifteen 

thermocouple wires which are welded on the tube wall of the heating section. The outer 
temperature (T .. t) is sampled by a K-type thermocouple placed at the middle of the 
heating section since there is negligible temperature difference for the ambient 

temperature along the heating section. Therefore, AT can be estimated by 

1 15 
AT =-Z (Ti,, )i - T.,., (4.25) 

15 j=1 

The uncertainty of AT can be calculated from: 

15 
u2 2: (U2 

+U2 (4.26) 
, &T : 15 j=1 

T. T-1 

u and U. have been given in Table 4.6, are 0.16 K. Therefore, the uncertainty of T. 

AT is 0.165 K. 

The thermal loss coefficient is assumed to be a constant and was obtained from the 

single-phase experiments. In single-phase flow, the thermal loss at the heating section 

can be calculated from: 

AQ = m(h3- h4) (4.27) 

Combining with Equation 4.23, we can get the thermal loss coefficient at the heating 

section and its uncertainty as follows: 

m(h3 - h4) 
K= 

AT 
(4.28) 

u2 
h3 _ h4 22 

(U 2 +U2 +[m(h3-h4)- 

2 

u2 U2 +( 
M 

K AT m AT AT 2 AT 
(4.29) 
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2= 
Um )2 

+ 

(Uh2i 
+ Uh2 UA- 

2 (UK 

4 

)+ 

Km (h 3 _h 4 
)2 AT 

(4.30) 

Obviously, the temperature difference AT and the enthalpy difference h3-h4 should be 

big enough to allow accurate assessment of UK. Therefore, the single-phase experiments 
for thermal loss test were run at low mass flow rate and high inlet temperature. For 

example, in one of the thermal loss experiments where the tube diameter was 4.26 mm, 

the flow rate was 2.03 kg/hr, the experimental pressure was 14 bar, the inlet and outlet 
liquid temperatures were 39.1 'C and 37.6 'C respectively, the average inside and 

outside temperatures of the insulation were 38.4 'C and 19.8 'C, the deduced thermal 

loss coefficient calculated using equation 4.28 of the heating section was 0.068. The 

uncertainty of the thermal loss coefficient is 

%)2 
(255196 x 0.094%)2 + (252959 x 0.094%)2 

+( 
0.165 2]1/2 UK 

= 
[(0.54 

+ 
9)2 K (255196 -25295 38.4-19.8) 

15.11% 

During the thermal loss tests, the experimental rig was warmed up at least for three 

hours whilst a program was developed to monitor the thermal loss coefficient 

continually to ensure the system had reached thermal balance and could obtain a 

constant thermal loss coefficient, see also the introduction in Appendix D Section D. 2 

(5). The experimental results and the uncertainty analysis, associated with the mass flow 

rate, the temperature difference between the pipe wall and ambient, the fluid enthalpy at 

the inlet and outlet of the test sections and their uncertainty, are calculated based on 
Equations 4.28 and 4.30 and summarized in Appendix E Table E. 9. 

Considering the fact that the observation section and the heating section use the same 
insulation material and thickness, we can assume that their thermal loss per unit length 

is the same. Therefore, the thermal loss between the inlet of the heating section and the 

visualization point can be deduced from the thermal loss at the heating section by 

multiplying by a length ratio. The thermal loss of the test sections and their uncertainty 

are calculated and summarized in Appendix E Table E. 10 and presented in the Figure 

4.6. 
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Figure 4.6 Thermal loss and the uncertainty in the four tubes. 

(10) Quality and associated uncertainty 

The quality is calculated based on the equation below, i. e. 

h- hl 
(4.31) 

hjg 

Here, h is the enthalpy of the two-phase mixture, 

h= h_j + 
Q- AQ (4.32) 

M 

The uncertainty of the enthalpy and the quality can be obtained From: 

)_ AC 
2 )2 

+(C u2U+ 

'JAQ 2 

(4.33) 
Y+(MMM2 

222 

u2 
U'ý 

+ 

Ui" 

+ 
h-h, 

hhh2 
(4.34) 

/9 f9 /9 
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Several experimental conditions are considered which cover all the possible 

experimental range, i. e. 6-14 bar experimental pressure, 0.5-327.4 kg/hr flow rate, 0.0 1- 

10 m/s gas superficial velocity, 0-5 m/s liquid superficial velocity and 0%-100% 

quality. Figures 4.7-4.10 summarize the uncertainty of the quality (absolute value) in 

the 1.10-4.28 mm test sections at the different pressures and mass flow rates. The 

comparisons show the uncertainty of the quality tends to increase in the case of small 

flow rate, high pressure and high quality. 
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Figure 4.7 Uncertainty of the quality in the 1.10 mm test section. 
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Figure 4.8 Uncertainty of the quality in the 2.01 mm test section. 
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Figure 4.9 Uncertainty of the quality in the 2.88 mm test section. 
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Figure 4.10 Uncertainty of the quality in the 4.26 mm test section. 

(11) Superficial velocity and associated accuracy 

The equations for gas and liquid superficial velocities are given as 

mx 4mx 
2, 

Og Ap, zD 
(4.35) 
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m(1 - x) 4m(1 - x) 
Api ; rD2P1 

The associated uncertainties can be obtained from 

(4.36) 

U2 +( 
8= UD)2 + 

(ýff 
X U) 

2+ 
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)2 
ma 

)2 

i -u (4.37) 
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)2 

(4.38) 
Ap, Ap, ; rD3 A Ap, 2 pi 

With the help of purposely developed software, the uncertainty of the gas and liquid 

superficial velocity in the whole experimental range can be calculated based on the flow 

rate, quality, tube diameter, density and the corresponding uncertainties. The results are 

summarized in Table 4.10: 

Table 4.10 Uncertainty of gas and liquid superficial velocity at the visualization point. 

Item Diameter Velocity range Error 

1.10 mm 0.01 - 10 M/s 0.0 11 - 0.32 m/s 
2.01 mm. 0.01 - 10 M/s 0.006 - 0.32 m/s 

Gas superficial velocity 2.88 mm. 0.01 - 10 M/S 0.004 - 0.32 m/s 
4.26 mm. 0.01 - 10 m/s 0.002 - 0.32 m/s 
1.10 mm. 0.04 -5 m/s 0.0009 - 0.05 m/s 
2.01 mm 0.04 -5 m/s 0.0003 - 0.03 m/s 

Liquid superficial velocity 2.88 mm. 1 0.04 -5 m/s 1 0.0001 - 0.02 m/s I 
4.26 mm 

1 0.04 -5 m/s 
1 

0.000 1-0. 

(12) Other factors 

The above uncertainty analysis is based on the assumptions listed in Chapter 4 Section 

4.1.2 (2). These assumptions are reasonable in most cases but sometimes they may 
introduce considerable experimental errors. These errors may not be evaluated 
accurately because of the limitation of the laboratory conditions and the experimental 

methodology. As a result some experimental data that are affected significant by these 

factors are rejected in the later study. In the present experiments, thermal loss in the 

observation section and the pressure at the visualization point are estimated based on a 
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series of assumptions. Their effect on two-phase flow state has been discussed in 

Chapter 3 Section 3.3. In this section, their effect on the experimental accuracy is 

discussed further. 

A. Thermal loss 

As mentioned in Chapter 4 Section 4.1.2 (2), the thermal loss between the inlet of the 
heating section and the visualization point is deduced from the thermal loss in the 
heating section based on the assumption that the thermal loss per unit length is the same 
for both sections. However, the above calculation method may overestimate or 

underestimate the thermal loss in the observation section. The overestimation may due 

to the fact that the heating section always has higher wall temperature than the 

observation section. The underestimation may occur when the experimental pressure is 

10 or 14 bar because about 25-30 mm long glass tube (observable section) at the 

visualization point is exposed to lower ambient temperature. The thermal loss in the 

observable section is difficult to be calculated accurately in the present experiments. 
However, it can be expected that its influence on the measurement results is increasing 

in higher temperature, smaller diameter tube and lower flow velocity. The magnitude of 

the thermal loss in the observable section is estimated below to investigate its effect on 

the experimental results, see Equation 4.39. 

Tf - T. 
T4 _T4) AQ R+ r-4 a( w (4.39) 

The overall thermal resistance IR includes the resistances from forced convection of the 

liquid film in the tube, conduction of the glass tube and free convection of the air 

surrounding. The resistance of the liquid film is negligible comparing with the others. 
The overall thermal resistance can be calculated by Equation 4.40: 

1: R= Rp + R,, (4.40) 

The resistance of the Pyrex glass tube can be obtained by: 

In 
Dý., 

Rp 
D 

(4.41) 
2; zkpL 

The worst case can be expected in the experiment for the 1.10 mm tube at 14 bar, in 

which case the cffect of thermal loss was most significant as shown in Figure 4.11. 
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Therefore, the parameters in the above equation can be given as: D ... t=7.8 mm, D ... =1.10 

mm, L=30 mm. and kp=1.4 W/m. K. Then the thermal resistant of the glass tube can be 

calculated as: 

R :- 
In(7.8/1.1) 

_=7.42 KIW 
2; r x 1.4 x 0.03 

If the free convection of surrounding air is the main thermal resistance in Equation 4.40, 

the temperature of the tube wall is approximate to the saturated temperature of 14 bar, 

i. e. T,, = 325.65 K (52.5 'Q. If we also assume that the room temperature is T, 

293.15 K (20 'C), the referent temperature of air can be given as: T,, 

(325.65+293.15)/2 = 309.04 K. Then the fluid properties can be obtained based on the 

reference temperature, i. e. 0= I/T,, f = 1/309.04 = 0.00323 I/K, v= 16.85xl 0-6 m2/s, k 

= 0.027 W/m. K and Pr = 0.706. 

Gr Pr = 
gB(T,, - T. )f Pr 

v2 
9.81 x 0.00323 x (325.65 

- 293.15)x 0.03' x 0.706 
(16.85 

x 10-6 

6.91 x 104 

Therefore, the free convection is at laminar state because the calculated GrPr is smaller 

than the critical value for the differentiation of laminar and turbulence flow, i. e. We 

(Incropera and DeWitt, 1996). The convection heat transfer coefficient h can be 

calculated based on the semi-empirical correlation for free convection at laminar state, 

see Equation 4.42. 

Nu = 
hL 

= 0.59(Gr Pr)'/' 
k 

i. e. 
0.027 x 0.59 x 691 001/4 

h==8.61 Wlm2. K 
0.03 

The thennal resistance of surrounding air can be obtained by: 

R,, =I 
; Dý., Lh 

;rx0.0078 x 0.03 x 8.61 

=158 KIW 

(4.42) 
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The calculation results indicate that the above assumption is correct, i. e. R. >> Rp. 

Therefore, it is not necessary to revise the above calculations. 

The emissivity of Pyrex glass is about 0.9, the overall thennal loss in the observable 

section can be estimated based on Equation 4.39. 

AQ 
52.5-20 

+; rx 0.0078x 0.03x 0.9x 5.67xlO-' x 
(325.65 4 -293.154) 7.42+158 

0.20 + 0.14 W 

= b. 34 W 

The above calculations indicate that the thermal loss in the observable section is 

negligible comparing with the thermal loss between the inlet of the heating section and 

the visualization point, which is about 3.8 W in the 1.10 mm tube at 14 bar as shown in 

Figure 4.6. The observations in the present experiments show that the flow regimes at 
the inlet of the observable section are quite similar to those downstream, which 
indicates that the thermal loss in the observable section has little effect on the flow 

patterns. Therefore, the flow maps are still accurate and reliable when the thermal loss 

in the observable section is neglected. 

The thermal loss in the observable section leads that the bubbles downstream are shorter 

than those upstream. The above calculations show that the thermal loss on a 30 mm 
long glass tube is about 0.34 W in the 1.10 mm. tube at 14 bar. In Figure 4.11 (iii) and 
(iii'), the average bubble length L= (4.04+3.54) = 3.79 mm, the time interval between 

the figure (iii) and (iii') is 0.085 s from the movie. Therefore, the total energy change 
for the bubble in the circle can be calculated when it travels from position (iii) to (iii'): 

AE = 
0.34 x 3.79 x 0.085 

= 0.00365 J 
30 

The condensed vapour can be estimated based on the vapour density and the latent heat 

of vaporization at 14 bar. 

A vcal = 
AE 

hfgpg 

0.00365 
1492 10 x 70.7 

=3.46xlO-'o m' 

If the bubble diameter is 1.0 mm, the bubble length changed can be estimated from:: 
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, äL =A 
V�, i =4x3.46 

x1 0-'o 
= 4.4 x 10-4 m=0.44 mm A zxo. Ool, 

The measurement shows that this average 3.79 mm long bubble is shortened about 0.5 

mm, i. e. 13.2%, after flowing up 15 mm as shown in Figure 4.11 (iii) and (iii'). It is in 

good agreement with the calculated result. Therefore, the thermal loss in the observable 

section is the main reason of bubble shrinkage. Such effect is significant in the smaller 

tube, higher pressure (temperature) and lower velocity. For example, bubble length 

decreased by about 0.25,0.33 and 0.5 mm after flowing up 12-15 mm in the 2.01 mm 

tube at 14 bar (the length decreases about 3.1 %), the 1.10 mm tube at 10 bar (the length 

decreases about 8.5%) and 14 bar (the length decreases about 13.2%), respectively. For 

bigger tubes, the effect of thermal loss on the bubble length can also be detected at low 

flow velocity, see the comparisons in Figure 4.11 (viii) and (ix) for the 2.88 mm tube. 

The experimental data also indicate that the slopes Of Ur/Uh decreased slightly in the 1.10 

mm, tube at 14 bar and the decrease may not be negligible in the 2.01 mm. tube at 14 bar 

and the 1.10 mm. tube at 10 bar, see Figures in Appendix I and comparisons in Table 7.1 

Chapter 7. The above phenomenon can also be attributed to the effect of thermal loss 

because the measurements show that bubbles condense faster in the smaller tubes, 

higher pressure and lower flow velocity, see the measurements in Figure 4.11. It can be 

expected that the effect of thermal loss on bubble rise velocity is the same magnitude of 
that on bubble length, i. e. the measurement accuracy is sensitivity to the thermal loss in 

the smaller tubes, higher pressure and lower flow velocity. However, the decrease of 
bubble rise velocity is difficult to be estimated accurately because the measurements is 

only based on the velocity at the front of bubbles due to its regular shape, where the 

velocity change may be different from that at the bottom. In addition, the observable 

section is not long enough (about 25-30 mm) to compare the rise velocity upstream with 

that downstream. Therefore, the experimental data used to deduce the distribution 

parameter Co and drift velocity Ud do not include those for the 1.10 and 2.01 mm tubes 

at 14 bar and the 2.88 and 4.26 mm. tubes at 14 bar at low velocity, see Chapter 7 

Section 7.2.1. Further discussion on this is also presented in Chapter 5 Section 5.1.4 (2) 

and Chapter 7 Section 7.1. 
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(a): 10 mm test section. 
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(b): the 2.01 mm test section. 
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(ix') 

(c): the 2.88 mm test section. 
Figure 4.11 The effect of thermal loss on bubble length. 

B. Pressure drop 

The parameters at the visualization point are deduced from the inlet and outlet pressures 

(P4, PO) with the assumption that the pressure drop along the observation section is 

linear. In fact, the fluid pressure in two-phase flow may not linearly decrease along the 
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pipeline. In the present experiments, the pressure profile along the test section depends 

on two opposite processes. First, liquid phase is vaporized continuously as the pressure 
decreases which increases the flow velocity and pressure drop. Second, thermal loss in 

the test section condenses vapour and results in the decrease of flow velocity and 

pressure drop. It can be expected that the effect of thermal loss will dominate over 

pressure change in low flow rate and the effect of pressure change will dominate over 
thermal loss in high flow rate, i. e. the calculated pressure based on the linear assumption 

may be higher than the actual pressure at the lower flow velocity but lower than the 

actual pressure at the higher flow velocity. However, the effect of the linear assumption 
to the measurement accuracy is limited due the fact that the visualization point was 

closer to one of the measured points (PO), i. e. L2 < LI as shown in Table 3.1 Chapter 3. 

4.1.4 Discussions 

Some conclusions can be drawn from the calculations described in the previous 

sections. The uncertainty of ul, is quite small within the current experimental range, 

whilst the uncertainty of ug, depends strongly on mass flow rate and quality, i. e. the 

accuracy of measuring of ug, is excellent at low flow rate and low quality but is poor at 
high flow rate and high quality. Therefore, it is vital to find the key measurements that 

contribute greatly to the uncertainty of ug, and try to improve these measurements 
during the experiments. In order to clarify the propagation of the errors in the 

calculation of gas superficial velocity, an uncertainty relationship tree was sketched. 
The parameters in red are the original experimental measurements and the others are the 
deduced data. 
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The experimental data analysis program can evaluate the importance of these 

measurements, see introduction in Appendix D Section D. 3 (4). It is not difficult to find 

that the temperature T3, the pressures P4 and PO, the flow rate and the heating power 

are the most important measurements. Comparatively the pressure transducer P3, the 

then-nocouple probes T4 and TO and the thermocouple wires TT have a little effect on to 

the accuracy of gas superficial velocity. Table 4.11 summarizes the key parameters 

uncertainties in the current experiments. The accuracy of ul, is quite good within the 

experimental range. Comparatively the uncertainty of u., is not so good as that of u1s, 

can reach 0.32 m/s when ug, is 10 m/s but it is still quite low, i. e. 3.2 % relative error. 
Therefore, the collected data can produce accurate flow maps. 
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Figure 4.12 The factors affecting vapour superficial velocity measurement. 



Table 4.11 Summary of the uncertainties of the key parameters. 

Items Range Uncertainty Range 

1.10 mm tube 1.31% 

Heating section 2.01 mm tube 0.59% 
(stainless steel tube) 2.88 mm tube 0.38% 

4.26 mm tube 0.26% 

1.10 mm tube 0.36% 

Observation section 2.01 mm tube 0.17% 

(glass tube) 2.88 mm tube 0.06% 

4.26 min tube 0.11% 

P3 6- 14 bar 0.42% 

Pressure P4 6- 14 bar 0.26% 

PO 6- 14 bar 0.26% 

T3 20 - 55 'C 0.16 K 

4 20 - 55 T 0.16 K 
Temperature 

0 20 - 55 T 0.16 K 

I-TT15 > 20 'C 0.16 K 

Small meter CMF0l0 0.5-25kg/hr 0.15-0.54% 
Flow rate Big meter CMF025 25 - 500 kg/hr 0.15-0.22% 

Heating power Test section 2.68 - 1640 W 0.10-0.49% 

24% full scale 0-0.0608 bar 21.16 Pa 
Differential pressure 100% full scale 0.0608 - 0.2491 bar 77.43 Pa 

1.10 min test section 0-100% 0.14-1.37% 

2.01 min test section 0-100% 0.14-2.88% 
Quality (absolute error) 2.88 mm. test section 0-100% 0.14-3.33% 

4.26 mm test section 0-100% 0.14-3.21% 
1.10 mm. 0.01 - 10 M/S 0.0 11 - 0.32 m/s 

Gas superficial velocity 2.01 mm 0.01 - 10 m/s 0.006 - 0.32 m/s 
(observation section) , 88 mm. 0.01 - 10 M/S 0.004 - 0.32 m/s 

. 26 mm 0.01 - 10 m/s 0.002 - 0.32 m/s 
1.10 mm 0.04 -5 m/s 0.0009 - 0.05 m/s 

Liquid superficial velocity 2.01 mm. 0.04 -5 m/s 0.0003 - 0.03 m/s 
(observation section) 2.88 mm. 0.04 -5 m/s 0.000 1-0.02 m/s 

4 
. 26 min 0.04 -5 m/s 0.0001 - 0.02 m/s 
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4.2 Commissioning of the test facility 

The test rig was commissioned step by step and finally validated by single-phase flow 

experiments. The problems encountered and the solutions are reviewed in this section 

and provide a better understanding of the system. 

4.2.1 Compressor failure 

The original compressor UA K750CS was manufactured by DORIN. The installed 

protection devices included a high-low pressure switch and three 32 A fuses in the 

power supply circuit. To the surprise of the research team the compressor burnt out after 

running for a few days. The main reason was that the lubricating oil escaped from the 

compressor whilst the protection system failed to cut off power on time. The oil in the 

compressor was carried by the high velocity refrigerant, flowed to an oil separator in 

which of course not all of the oil could be separated and returned to the compressor. 

Some oil inevitably escaped to the R22 tank. However, the vapour refrigerant back to 

the compressor could only carry a very small amount of oil due to the low vapour 

velocity in the tank. Over time the oil deposited in the tank. The compressor and the 

R22 tank were located in different rooms, which were always at a certain temperature 

difference, day and night. The refrigerant condensed in the compressor continually 

because of its lower room temperature, and indicated a false oil level in the oil pool. 

Therefore, the compressor operated with less oil than required and this caused a high 

working load. The big fuses (32 A) could not protect the compressor properly. The 

excess current overheated the motor until it burnt out. 

The new compressor installed was a BITZER / 4CC-6.2 Y. The original 32 A fuses 

were replaced by an overload relay and three circuit breakers and the capacity was 

reduced to 20 A. A crankcase heater was installed in the oil pool to prevent the 

refrigerant condensing in the compressor. A new oil return system was designed and 
installed to separate the oil from R22 and reinject it to the compressor continually, as 

shown in Chapter 3 Figure 3.3. 
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4.2.2 Condenser cooling capacity 

The cooling capacity of the R134a condenser designed based on the possible maximum 
heating load, is 8.5 KW according to the original calculations of Huo (2005). However, 

in most cases, the actual heating load in the test sections was much less than that. In this 

event, the heater in the R134a tank could not compensate for the extra cooling load. The 

needle valve used to control the R22 flow rate and the corresponding cooling capacity 

proved impractical because of its poor regulating performance. It usually resulted in an 

unexpected fluctuation in the system, which was extremely serious in the smaller tube 

or at low flow rate and quality. 

Based on the above analysis, a new condenser with a smaller heat exchanging area was 
installed in the R134a tank, see Figure 3.3 component 4. The refrigerant flows through 
it without control. The cooling capacity is very limited but stable. Therefore, the system 

parameters can be kept at a desired value stably using the tank heater. 

4.2.3 Measuring noise 

All thermocouple probes were initially of the grounded type whilst the experimental 

system and the data acquisition system were connected to different earth points. The 

potential difference between the different earth wires caused huge measuring error, 

sometimes up to 10 'C. After changing to ungrounded probes, the error reduced but was 

still not acceptable. Finally, reasonable results were obtained by connecting the 

experimental system and the data acquisition system at a common earth point. 

4.2.4 Test section clearance 

In the beginning, neither Blasius's formula nor Moody's diagram could predict the 

pressure drop in the single-phase experiments. The possible reasons included: the effect 

of diameter or fluid properties much different than the expected for Blasius's formula 

and Moody's diagram or some local pressure loss. Therefore, a thick wall tube with 

similar inside diameter (4 mm) was tested. The measured results agreed well with 

Blasius's formula, which indicated the local pressure loss was the only reason to cause 

the discrepancy. Careful examination of the test tube revealed some distortion and some 
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sediment. The results improved and agreed well with those predicted by Blasius's 

formula after the above were corrected. 

4.2.5 Small preheater 

The high degree of subcooling may cause unstable boiling flow. This phenomenon 
frequently happened in the small test sections at high experimental pressures. The origin 

of the problem was that the thermal loss between the preheater and the test section 

caused the low temperature at the inlet of the test sections, see Figure 4.5. Therefore, a 

small adjustable preheater was installed just before the test sections to heat the liquid to 

the desired temperature. 

Besides the aforementioned amendments, the flow control valves, V4, V5 shown in 

Chapter 3 Figure 3.1 and V2, V7 in Figure 3.3, were changed to smaller valves in order 

to improve their regulating performance especially during small flow rate experiments. 

4.3 Single-phase experiments 

Single-phase experiments, which are easier to verify and validate, were performed 
before commissioning two-phase experiments. Although every device and instrument 

had been tested and calibrated carefully, the whole experimental system still needs to be 

verified. In detail, pressure drop in single-phase flow was measured and compared with 

the widely applicable correlations to validate the performance of the entire experimental 
facility. Then, the thermal loss coefficient in the test section was assessed and is 

presented in Section 4.1.3 (9). In this chapter, only the pressure drop experiments and 

the measurement uncertainty are calculated and discussed. 

4.3.1 Methodology 

Every test section and the general system performance must be validated by single- 

phase pressure drop experiments before proceeding with two-phase experiments 
because the existing correlations on pressure drop in single-phase flow have been 

proved and accepted widely. The experimental results, after considering the measuring 

uncertainty, should be in reasonable agreement with these correlations. The Blasius's 
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and Haaland's forTnulae, which have been proved well in smooth and rough tubes, are 
used as the reference (Massey and Ward-Smith, 1998). 

The Blasius's formulae used for smooth tube can be presented as: 

=0.079Re-114 (4.43) 

The Haaland's fonnulae used for rough tube can be presented as: 

I 
-3.6loglo 

6.9 
+cI. 

Ilj 
(4.44) Tf : -- Re 

(3.71D) 

The roughness of the tubes has been measured by Taylor Hobson Limited (Leicester, 

UK). Measurement was made in an axial direction within the bore of each tube, start at 

a position 10 mm. in from on end face, and at 4 positions, A, B, C and D, normally 90 

degrees apart, see Figure 4.13. The roughness profiles measured in the 4.26 mm. steel 

and glass tubes are presented in Figures 4.14 and 4.15 and the complete results are 

summarized in Table 4.12. The average roughness used in the Haalan formulae is 1.28, 

1.82,1.54 and 1.75 ýtm. for the 1.10,2.01,2.88 and 4.26 mm steel tubes respectively. 

A 

BC 

D 

Figure 4.13 The position of the roughness measurement. 
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7.943 um 

-4.819 un 

Figure 4.14 The roughness profile in the 4.28 steel tube. 

1.107 un 

-1.191 UA 

1.251M 

Figure 4.15 The roughness profile in the 4.28 glass tube. 

Table 4.12 Summary of the measured roughness of the tubes. 

Steel Tubes (gm) Glass Tu es (pm) 
Tubes 

Peak to Valley Average Peak to Valley Average 

1.10 mm tube 12.94 1.27 3.60 0.47 

2.01 nim tube 18.40 1.82 1.28 0.15 

2.88 mm tube 10.70 1.54 N/A N/A 

4.26 mm tube 13.14 1.75 1.63 0.23 

The measured friction factor can be obtained from: 

Apf D= ; r2p Apf D' 

2Lpu 2 32 LM2 

The equation for the uncertainty of the measured friction factor is 

(4.45) 
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The uncertainty analysis of fluid density p, test section diameter D and length L, and 

mass flow rate was presented in Section 4.1.3. Therefore, the uncertainty of the friction 

factor can be deduced form Equation 4.46 if the pressure drop and the corresponding 

uncertainty are known. In detail, the total pressure drop Ap is measured by a differential 

pressure transmitter. It consists of two parts: friction pressure drop (Apf) and pressure 

difference due to different density (APdA APdc is used to compensate the measuring bias 

caused by the liquid density difference due to the fact that the liquid temperature in the 

test section could be different from that in the connecting tube leading to the differential 

pressure transmitter. The corresponding equations and the uncertainties are given 

below: 

APf AP - APdc (4.47) 

UAIP, Uý + UAP. (4.48) 

where UP is the uncertainty of the measurement of the differential pressure, see 

Section 4.1.3 (6). 

Ap", = 
(P" 

- P")gL (4.49) 

U2 = 
2L2 2 +U2 

)+( Yg2U2 

Ap, k 
g 

(UPII 

pip 
pit PIP 

L (4.50) 

Finally, the uncertainty of friction coefficient can be calculated by Equation 4.46. 

4.3.2 Experimental results 

According to the Equations 4.46,4.48 and 4.50, the uncertainty of the friction factor 

depends on the measurement of the diameter, length, flow rate and the fluid parameters. 

Among these measurements, the accuracy of the differential pressure transmitter is the 

most important factor. Figure 4.16 summarizes the deduced uncertainty of the friction 

factor for all the test sections. The data indicates that the uncertainty of the friction 

factor tends to be smaller as the pressure drop increases. In other words, the maximum 
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uncertainty occurs at the minimum flow rate or the minimum Reynolds number. The 

pressure drop measured in the single-phase experiments was 79 to 25321 Pa. 

50.0% 

8 40.0% 
t5 
cc U- 
c 0 30.0% 

20.0% 
cu 

10.0% 

0.0% L 

10 100 1000 10000 100000 
Pressure Drop (Pa) 

o 1.10 nyn 

-a-- 2.01 nim 
2.88 nim 

- 4.26 mm 

Figure 4.16 Pressure drop and the uncertainty of the friction factor. 

Figures 4.17-4.21 depict the graphical comparisons of the experimental results and the 

predictions from the Blasius's or Haaland's formula. As seen in the figures, the 

agreement is excellent if the measuring error is considered. The bigger deviations 

happen at the lower mass flow rates where the expected error is large. The probable 

reasons are (i) the accuracy of Blasius's and Haaland's formula (ii) the test section is 

not a strictly smooth tube or the roughness changed after the test sections were built (iii) 

zero offset existing in the transmitter, which is a vital factor in the lower flow rate. 
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Figure 4.17 Comparison of the measured and the calculated friction factor by the 

Blasius's formula in the LI 0 mm tube at 10 bar. 
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Figure 4.18 Comparison of the measured and the calculated friction factor by the 
Blasius's formula in the 2.01 rnm tube at 7.5 bar. 

The measured results for the 2.01 mm test section at 7.5 bar were also compared with 
Haaland's formula showing also better agreement in the higher flow rate, as seen in 

Figure 4.19. 
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Figure 4.19 Comparison of the measured and the calculated friction factor by the 

Haaland's formula in the 2.01 mm tube at 7.5 bar. 
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Figure 4.20 Comparison of the measured and the calculated friction factor by the 
Blasius's formula in the 2.88 mm tube at 10 bar. 

The reproducibility of the system was also checked by repeating the same experiment at 
7.5 bar on a different day. the results are shown in Figure 4.2 1. As seen in the figure, the 
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agreement with the Blasius's formula and the reproducibility of the experiments were 

excellent. 
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Figure 4.21 Comparison of the measured friction factor taken at two different times and 

the calculated friction factor by the Blasius's formula in the 4.26 mm tube at 7.5 bar. 

The above experimental results demonstrate the accuracy and the reliability of the 

existing measuring devices and the overall experimental system. In addition, single- 

phase heat transfer experiments were carried out by Dr. Huo and presented in Huo 

(2005). The measured results were compared with the Petukhov and Dittus-Boelter 

correlations. The difference between the measured data and the value predicted by the 

Dittus-Boelter and the Petukhov correlations was in the range of -15.2 to 10.1 % and - 
8.9 to 0.5% respectively. The two-phase experiments would then proceed with the 

certainty of a reliable and accurate system. 

4.4 Summary 

The current experiments involve various measurements, which include tube diameter, 

pressure, temperature. flow rate, power and differential pressure. All instruments used 

to measure these parameters were calibrated carefully and the corresponding 

uncertainties were given. In addition, the uncertainty in deduced parameters, thermal 

loss, quality and liquid/gas superficial velocities, were also calculated and the values 
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were reasonable. All calculation results are summarized in Table 4.11. The results 

reveal that the important measurements are the inlet temperature of the heating section, 

the inlet and outlet pressures of the observation section, the mass flow rate and the 

heating power. 

Several facility faults were found and corrected during the commissioning stage. These 

corrections not only improved the rig operability but also improve the experimental 

stability and accuracy. The performance was examined in single-phase experiments. 

The measured pressure drop, after considering measuring uncertainty, agreed very well 

with the Blasius's or Haaland's formulae, which proved the accuracy and reliability of 

the entire experimental facility. The rig was also tested successfully for repeatability by 

comparing the experimental results at the same conditions and different times. The 

validated facility was then considered ready for the two-phase flow experiments. 
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Chapter 5 Flow Pattern Experiments 

Four test sections with the internal diameters of 1.10,2.01,2.88 and 4.26 min were 

tested at the pressures of 6.0,10.0 and 14.0 bar. Twelve group experiments, total 2392 

experiments, were carried out in this project. The observed flow patterns include 

dispersed bubble, bubbly, confined bubble, slug, chum, annular and mist flow. Pictures 

are summarized and presented in this chapter. Five typical transition boundaries were 

recognized within the range of the experimental conditions. They were dispersed bubble 

- bubbly, dispersed bubble - chum, bubbly - slug, slug - chum and chum - annular 

boundaries. Considering mist flow was not observed at all experimental conditions, mist 

flow and mist - annular boundary are discussed together in Section 5.1.7. The transition 

boundary of confined bubble to slug flow is not discussed in this chapter because the 

confined bubble flow was not observed at all experimental conditions and the transition 

of confined bubble to slug is not very explicit. Twelve flow maps with the coordinates 

of liquid and gas superficial velocities are sketched and compared. 

The picture resolution was set to 256 pixels (width) x 512 pixels (height) to get clear 

images as well as fast snap speed. In most cases, the exposure time used the fastest 

speed - 10 microseconds to reduce tail track and get a clear profile. The number of 

pictures recorded in one experiment was between 50 to 2048 frames and the sample rate 

was from 200 to 1900 pps (pictures per second), depending on the flow patterns and the 

fluid velocity. For example, the dispersed bubble, bubbly, short slug and fully 

developed annular flow normally needed fewer pictures to validate their flow state 

whilst more pictures were examined in long slug, chum, developing annular flow and 

the regions near the transition boundaries. High sample rate is required to show the flow 

details and process in the region of high ug, or u1s, including dispersed bubble, chum, 

annular flow and the associated transition boundaries. Comparatively, a lower sample 

rate allows recording for longer times and more bubbles in slug flow or slug-chum 
boundary using the same memory. 

The measurements made in the current study included bubble diameter, slug length and 
rise velocity. In most cases 3 to 5 bubbles were measured for every data point 
depending on the bubble length. The average value was used in the study presented in 
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Section 5.1.4,5.2.3 and Chapter 7 Section 7. L Theoretically, the above measurement 

accuracy could reach 2 pixels resolution, i. e. 0.4% in the present experiments. However, 

the actual measurement error may be larger than the above assessment because it 

strongly depends on experimental stability and sample number rather than the image 

resolution. The measured bubble diameter was used to identify dispersed bubble, bubbly 

and slug flow. The criterion used to distinguish dispersed bubble and bubbly is based on 

the critical diameters presented in Table 5.3 whilst the tube diameter is the critical 
diameter used to differentiate bubbly and slug flow. Bubble diameter, slug length and 

rise velocity were used to validate flow state because they are constant in fully 

developed flow or changed slightly after considering measurement error. On the other 

hand, chum and annular flow could only be described qualitatively. As a result, the 

subjectivity, which can greatly depend on the observer, was inevitably introduced into 

the identification of these flow patterns. The classifications used in this study may be 

questioned by other researchers. In the current study, the transition of slug to chum flow 

was recognized when some (about 50%) slug bubbles distorted whilst the annular flow 

was obtained once gas core was continued in all frames verified. However, the above 

identifications are restricted by the length of the observation region. 

All movies were examined frame by frame to identify the flow regimes in the current 

study. Comparatively the identifications based on movies are much reliable and accurate 
than those based on pictures. However, it is difficult to demonstrate movies in the 

thesis. Therefore, a few typical pictures are presented in this chapter to depict the 

characteristics of the flow patterns. If the pictures in the hard copy thesis cannot be 
identified clearly, the electronic version thesis in the attached disc can provide clearer 
images. 

5.1 The observed flow patterns 

All flow patterns can be categorized into four main classes: stratified flow, intermittent 

flow, annular flow and bubble flow. Their common characteristics have been described 

in Chapter 2 Section 2.2. Each main class could be subdivided into several subclasses. 
In the present experiments, dispersed bubble, bubbly, slug, chum and annular flow were 

observed in all test sections. Occasionally mist flow was observed in the bigger tubes at 
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very high gas velocity whilst confined bubble flow was observed in the smaller tubes at 

low velocity. The above-mentioned seven flow patterns are defined as follows briefly. 

(1) Dispersed bubble: numerous small bubbles float in continuous liquid phase. 

(2) Bubbly: bubble size is comparable to but not as large as the tube diameter. The 

criterion used to distinguish dispersed bubble and bubbly flow will be discussed 

further in Section 5.2.1. 

(3) Confined bubble: bubble size reaches the tube diameter and the length is greater 

than tube diameter. The bubbles have smooth gas-liquid interface and extrusive 

bottom. 

(4) Slug: bubble size reaches the tube diameter and the length is greater than tube 

diameter. The difference between slug flow and confined bubble is that the slug 

bubbles have flat bottom with sharp edge whilst confined bubble have smooth 

extrusive bottom. Sometimes slug bubbles are followed by a stream of small 
bubbles creating a trail. 

(5) Chum: bullet bubbles start to distort and small bubbles in liquid slug coalesce into 

gas clump with gas velocity increases. It is a highly oscillatory flow with chaotic 
interface. 

(6) Annular: gas phase becomes a continuous flow in the core of tube. 

(7) Mist: liquid film is blown away from tube wall and numerous liquid droplets float in 

high-speed gas stream. 

Overall the flow patterns in the 1.10,2.01,2.8 8 and 4.26 mm tubes at 6-14 bar pressure 

are similar and could be grouped into the above seven typical patterns. However, on 

close observation, there are some differences among these tubes and pressures. In the 

following sections the flow patterns recorded in the present experiments are presented 

and compared to reveal the effect of gas/liquid velocities, tube diameter and pressure. 

5.1.1 Dispersed bubble flow 

Figure 5.1 shows dispersed bubble flow for the 4.26 mm. tube at the different pressures 

and gas/liquid velocities. As seen in Figure 5.1 (a) (iii) and (iv), (b) (ii) and (iv) and (c) 

(ii) and (iv), bubbles tend to be smaller, regular and round as the liquid superficial 

velocity increases. The same argument can be put forward for the 2.88 mm tube and the 

2.01 mm tube, see Figure 5.2 (c) (i) and (iv) and Figure 5.3 (c) (iii) and (v). However, 

127 



this tendency was not observed clearly in the 1.10 mrn tube possibly because the 
bubbles are very small at all conditions, see Figure 5.4. 

On the other hand, increasing the gas superficial velocity may increase the probability 

of collision and facilitates bubble coalescent and growth. This phenomenon was 

observed in all four test sections, see for example Figure 5.1 (a) (ii) and (iii). Figure 5.2 

(c) (iii), (iv) and (v), Figure 5.3 (c) (ii) and (iii) and Figure 5.4 (c) (iii) and (iv). 

The effect of pressure on the dispersed bubble is also important in the tested tubes. 

Bubbles could not be produced until a high degree of superheat was reached at lower 

pressure. In addition, the bubble number and volume are obviously larger at higher 

pressure than those at lower pressure at the same superficial velocities, see for example 
Figure 5.1 (b) (i) and (c) (i), Figure 5.2 (a) (i) and (c) (ii), Figure 5.3 (b) (i) and (c) (ii), 

Figure 5.4 (a) (ii) and (c) (ii). One reasonable explanation is that small bubbles may 

collapse easily at lower pressure to become superheated liquid because of the higher 

surface tension. Equation 5.1 gives the minimum diameter (d. j") that bubbles can 

survive in superheated liquid. p, at is the saturated pressure corresponding to the fluid 

temperature. 

4a 
(5.1) 

A- Am 

The effect of tube diameter on the dispersed bubble flow is obvious because the 

criterion used to distinguish dispersed bubble and bubbly depends on the tube diameter, 

i. e. a group of same size bubbles be reported as dispersed bubble in large tubes whilst 
they could be classed as bubbly in smaller tubes. For example, the biggest dispersed 

bubbles in the 4.26 min tube can reach 1.5 mm diameter, see Figure 5.1 (a) (iii). 

However, such a big bubble will be identified as slug or confined bubble in the 1.10 mm 

tube. 

128 



ML 

ION 

4; y 

D, ýp-d Bobblý EI E'A-61' DIEdF, ý'l I, 
Uq. =O 07 Ul- 1 49"1, q -, -, 4n- Ul'- I lnýiý Ug-0 4ý111" Ul'- 1 90111" Uq-, "4-, HI, o' j. "- 

0) H (111) (IV) V 

(a) D 4.26 mm. P-6 bar 

A- 

R 

-JE: ) 

Dspersed Bubble 0,, per, ed Bubble Dispersed Bubble Churn E),, pýrsed Býhble 
U,, =O. ()5,, J, Ul, =1.19b, /, Ug , -O 34n, 11 Uls= I q0mis Uqs=G 24m/s Uls=:! 54mis Uqs=O 53ni/, 1-11-3 39ni/s 

0) (ii) (iii) (IV) 

(b) D=4.26mm, P= 10 bar 

-S 

Disper-d Bubble cl'ýP-'d E'N. 1, Disper-cl Subble L),, p,, -,, d Bubbl, ukhl, 
Ug'=0 03. 'j, Ul'- 1 17ý1ý Uq, -O 13m/s Us= 1 , 'ri , UqszO 191TI/s Usz I 90mis LJgs=O I Orn)s 1-11-3 Ot, rn/ý lig s=O 28m/s Ulsz ýo nils 

(i) (i i) (IIi)( IV ) (V) 
(c) Dý4.26 mm,. Pý 14 bar 

Figure 5.1 Dispersed bubble flow observed in the 4.26 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.2 Dispersed bubble flow observed in the 2.88 mm tube at different pressures. 
(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.3 Dispersed bubble flow observed in the 2.01 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.4 Dispersed bubble flow observed in the I- 10 mm tube at different pressures. 
(a) 6 bar, (b) 10 bar and (c) 14 bar. 

In summary, the following concluding observations can be made: 
Dispersed bubbles tend to be smaller, regular and round as the liquid superficial 
velocity increases. 

Higher gas superficial velocity facilitates bubble coalescence and growth. 
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9 Dispersed bubbles could not be observed at lower pressure until a high degree of 

superheat was reached. The bubble number and volume tend to be smaller at lower 

pressure. 

e The bubble size in the smaller tubes is smaller than that in the larger tubes. 

5.1.2 Bubbly flow 

Taitel et al. (1980) predicted that bubbly flow could not exist in small tubes because 

slug bubbles, which experience excessive friction from liquid film on the tube wall, 

must flow slower than small bubbles and cause coalescence. Based on the equation 

given by Taitel et al. (1980), which is presented in Appendix B Table B. 1, the 

calculated critical diameters are between 12 to 16 mm. at the current experimental 

conditions (R134a, 6-14 bar). Therefore, bubbly flow according to Taitel should not 

exist in fully developed two-phase flow at the present experimetnal conditions. 

However, it was observed, see Figures 5.5-5.8. 

Figure 5.5 shows bubbly flow for the 4.26 mm tube at the different pressures and 

gas/liquid velocities. As seen in Figure 5.5 (c) (ii) and (iii), bubble size diminishes as 

the liquid superficial velocity increases. The same phenomenon were observed in the 

smaller tubes, see Figure 5.6 (a) (v) and (vi), Figure 5.7 (b) (ii) and (iii), and Figure 5.8 

(ii) and (iii). 

Similar to the dispersed bubble flow, the bubbles tend to be bigger at higher gas 

superficial velocity since it increases collision and coalescence among bubbles. This is a 

general phenomena in all four test sections, see Figure 5.5 (c) (iii) and (iv), Figure 5.6 

(a) (iv) and (v), Figure 5.7 (b) (iv) and (v), and Figure 5.8 (b) (iii) and (v). 

It seems that pressure has little effect on the bubble's configuration at lower flow rate; 
for example, compare Figure 5.5 (a) (i) and (b) (i), Figure 5.6 (a) (ii), (b) (iii) and (c) (i), 

Figure 5.7 (a) (ii), (b) (ii) and (c) (iii), Figure 5.8 (a) (iii), (b) (ii) and (c) (ii). With 

increasing flow rate, numerous small bubbles were produced at the higher pressure in 

the 4.26 and 2.88 mm. tubes, see Figure 5.5 (a) (vi) and (c) (vi), Figure 5.6 (b) (vi) and 
(c) (vi). However, the above tendency is not very obvious in the 1.10 and 2.01 mrn 
tubes. 
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Bubbles tend to be regular and round in smaller tubes due to the enhanced effect of 

surface tension in small bubbles, e. g. compare the bubbles in Figure 5.5 (a) (i) and 
Figure 5.7 (a) (i), Figure 5.5 (b) (ii) and Figure 5.7 (b) (ii), Figure 5.5 (c) (iv) and Figure 

5.7 (c) (iv). 
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Figure 5.5 Bubbly flow observed in the 4.26 mm tube at different pressures. 
(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.6 Bubbly flow observed in the 2.88 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.7 Bubbly flow observed in the 2.01 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.8 Bubbly flow observed in the 1.10 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 

In summary, the following concluding observations can be made: 

Bubbles tend to be smaller at higher liquid superficial velocity. 

0 Bubbles tend to be bigger at higher gas superficial velocity. 
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0 The effect of pressure on bubbles is not very significant at lower flow rate. As the 
flow rate increases, numerous small bubbles were produced in the bigger tubes at 

the higher pressure. 

* Bubbles tend to be regular and round in the smaller tubes. 

5.1.3 Confined bubble flow 

Confined bubble flow is a particular flow pattern which could be observed at low liquid 

and gas velocities only, i. e. in a triangle region of u1s< 0.18 m/s and ugs< 0.2 m/s. It was 

reported in the 1.10 and 2.01 mm tubes but vanished in the 2.88 and 4.26 mm tubes. In 

addition, in the 2.01 mm tube it was observed at the pressure of 6 bar only, see Figure 

5.9. In the 1.10 mm tube, confined bubble flow was reported at all experimental 

pressure (6-14 bar), see Figure 5.10. This regime could extend to higher gas and liquid 

velocities at lower pressure, see the flow maps in Section 5.2. It indicates that confined 
bubble flow is greatly affected by surface tension since the enhanced effect of surface 

tension in small tubes and low pressure. The above observations approximately agreed 

with the criteria recommended by Kew and Cornwell (1997) or Hatori and Bretherton 

(cited from Wadekar 2002), see the calculation results in Table 2.1. They expect that the 

confined bubble flow will emerge in the 1.10 mm tube at a] I tested pressure (6-10 bar) 

and possibly in the bigger tube at the lower pressure, i. e. in the 2.01 mm tube at 6 bar 

pressure. 
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Figure 5.9 Confined bubble flow observed in the 2.01 mm tube at 6 bar. 

138 



ii0.01 

I i01 

Confined Bubble Confined Bubble Confined Bubble Confined Bubble Confined Bubble Confined Bubble 
Ugs=O. Olm/s Uls=0,03m/s Ugs=O 06ni/s Uls=13.04ý/ý Uqý=O 18m/s Uls=O 04m/s Ugs=O 02nvs Uls=O 07m/s Ugs=O 07nVs UIs=O 07m/s Ugs=O 04nvs UIS=O I 1m/s 

(111) (iv) (v) (vi) 

(a) D=1.10 mm, P=6 bar 

r 

Coýfined Bubble Confined Bubble Confined Bubble Confined Bubble Confined Bubble 
Ugs=G 03m, s Uls=O 04ni/s Ugs=O ()8m/s UIS=O 04mis Ugs=O 15nVs Uls=0.04mls Ugs=O 02nvs UIS=C 06mls Ugs=O 07rn/s Uls=O 07MIS 

(i) (ii) (iii) (iv) (v) 

(b) D=1.10 mm, P= 10 bar 

Confined Bubble Confined Bubble Confined Bubble 
Ugs=O OlnVs Uls=0,04mts Ugs=O 08mls Uls=O 04ffVs Ugs=O 03m/s UIS=0.07m/s 

0) (ii) (iii) 

(c) D=1.10 mm, P= 14 bar 

Figure 5.10 Confined bubble flow observed in the I- 10 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 

In summary, the following concluding observations can be made: 

Confined bubble flow is a particular flow pattern of low liquid and gas velocities. 

Small tubes and low pressure facilitate the formation of confined bubble flow 

because of the enhanced effect of surface tension. 
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5.1.4 Slug flow 

Slug flow is ý main flow pattern in the present experiments. Fluid velocity, pressure and 

tube diameter greatly affect the slug configuration. Slug rise velocity and length were 

measured and the factors that affect them are analysed and discussed in this section. 

(1) Configuration 

Slug bubbles receive a higher impact force, which results in a severe distortion as the 

liquid superficial velocity increases, see Figure 5.11 (a) (v) and (xi), Figure 5.12 (c) (vi) 

and (viii), Figure 5.13 (a) (iv) and (vi), and Figure 5.14 (c) (iv) and (viii). On the other 

hand, the slugs tend to be longer and deformed as the gas superficial velocity increases, 

as shown in Figure 5.11 (a) (vii), (viii), (ix) and (x). The longer slugs may deform easily 

even under the same conditions, see for example Figure 5.11 (a) (v) and (vi). Summarily 

the slug bubbles are in streamlined bullet shape with a smooth surface at lower liquid 

and gas superficial velocities. As the liquid and gas superficial velocity increased, the 

slug head becomes sharp and irregular, ripples appear on the slug body and the slug tail 

is chaotic and is followed by numerous small bubbles. 

The higher fluid pressure results in smaller surface tension and weakening the rigidity 

of slug bubbles, which in turn facilitates the bubbles distortion in the 2.88 and 4.26 mm 
tubes, see the images in Figure 5.11 (a) (xi), (b) (vi) and (c) (vi), Figure 5.12 (b) (vii) 

and (c) (vii). However, the above tendency is not so distinct in the 1.10 and 2.01 mm 
tubes. Similarly the slug bubbles distort easily in the bigger tubes because the rigidity of 
bubbles is weakened as the increase of the bubble diameter, see Figures 5.11 (a) (x) and 
5.14 (a) (iv), Figures 5.11 (b) (iii), 5.12 (b) (iii), 5.13 (b) (iii) and 5.14 (b) (i), and 
Figures 5.12 (c) (vii) and 5.13 (c) (vii). 
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Figure 5.11 Slug flow observed in the 4.26 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.12 Slug flow observed in the 2.88 mm tube at different pressures. 
(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.13 Slug flow observed in the 2.01 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 

148 



Slug i head 
Ugs=O 29nvs Uls=0.03mis 

0 

0 

n 

pI 
Slug 

Ugs=0.20rrVs Uls=O 72nvs 

(v) 

Slug i he. d, 
Ugs=O 36nV s UIs=O 04. /s 

n', 

I 

Slug 
Ug-O 19.1, Uls=O 72,, Vý 

Slug ýIaib 
Ugs=O 29rrds UIS=0.03mls 

01) 

Slug 
Ugs=O 49m/s Uls=0.72-ýs 

(vi) 

Slug I ta: 1) 
Ugý=o 36ývs U ý=O 04. /s 

UgsýO 50ný, UlsýO 72ni/s 

(v) (vi) 

Slug Slug 
Ugs=O 05m/s U15=0 18m/s ljgs= oý 16m/s UIS=O, 18MIS 

Slug i head i Slug (tail i 
Ugs= 1.06nVs Uls=O 72mls Ugs= 1 06m's Uls=O 72mls 

(VIO (vii') 

(a) D=1.10 mm, P=6 bar 

Slug 
Uq, =O 08. /, Uls=O IM, iý 

Slug 
Uqý=O 84mls UIS=D 73ni/s 

(Vii) 

r 

U95=0 3 In 
, lu9 

Ugs=O 40mls Ul- 1 44nv, 

(viii) 

(b) D=1.10 mm. P- 10 bar 

Slug i head 
Ugs=O 59"ý 1-11-0 18. /s 

(IV) 

Slug 
Ugs=O 52mis Uls= I 47ý/s 

(viii) 

Slug 
Uqs=O 68mis Uls=O 19m/s 

(iv) 

Slug 
Ugs=O 7 7. IJ5 Uls= 1 44., ts 

OX) 

I'l 

slug dadi 
Ugs=o 59nvs L11-0 18ýjý 

iv') 

d 

Slug 
UgsýO 99-IJI UIS= I 49ý/s 

0 X) 

Slug itaili 
Ug-O 68ýJý UI-O 19ývý 

( IV' ) 

149 



Slug, headi Slug itaili Slug Slug Slug hýacl, Slug (ta: l) 
Ugs=O 24m/s Uls=O 04mis Ug s=C 24mis UIs=O 04m/s Ug s=O 10mN Uls= O 19. N Ugs=O 21m/s Uls=O 18. is Ugs= O 56mýý U11-0 18mýý Ugs= O 56m/s U s=O 18mis 

0') (iv) iv') 

Slug 
Slug Slug Slug 

Ugs=0.21n-ds Ulý=0.71nits Ugs=O 38n-ds Ulý=O 73m/s Ugs=0.70ni/s Uls=O 72m/s Jgý=O 56mis tJls=l 19ý/s 

(v) (vi) (Vii) (Viii) 

(c) D=1.10 mm, P= 14 bar 

Figure 5.14 Slug flow observed in the ]A 0 mm tube at different pressures. 

(a) 6 bar. (b) 10 bar and (c) 14 bar. 

(2) Slug rise velocity 

There is an "excited" zone behind each slug bubble. Any following bubble trapped in 

this zone will flow at higher velocity and catch up with its predecessor to cause 

coalescence, see the example in Figure 5.11 (b) (iv). Out of this region, slugs will flow 

at the same velocity with constant spacing in the fully developed flow. 

The slug bubble rise velocity and the slug length were measured from the consecutive 
images of the bubbles, which were reproduced in slow motion by tile high-speed video, 

in order to investigate the effect of tube dimension and fluid pressure on flow state. The 

rise velocity was calculated based on the time it takes for the front of bubbles to rise a 

given distance whilst the slug length was measured directly or calculated from the rise 

velocity and the time passed in the case of the slug being too long to display in a single 
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frame. The measured distance was so short that the pressure drop across the measuring 
distance can be reasonably ignored. The effect of expansion due to the pressure drop 

and condensation due to thermal loss on the bubbles velocity can be neglected except in 

the small tubes at the high pressure, e. g. the 1.10 mm tube at ]0- 14 bar or the 2.01 mm 

at 14 bar, see Chapter 4 Section 4.1.3 (12). The bubbles closing up on to a big bubble 

were not taken into account because the rise velocity was atypically accelerated and 

could not be the real rise velocity. The bubble rise velocity measured is exhibited in 

Figures 5.15-5.18 for the different diameters and Figures 5.19-5.21 for the different 

pressures. 

The comparisons in Figures 5.15-5.18 indicate that slug bubble rise velocity is 

approximately linearly related to the homogenous velocity and the linear correlation 

degenerates slightly at high velocity. The homogenous velocity was the sum of ul, and 

Ugs (Uhý Uls+Ugs), which were calculated based on Fquations 4.35 and 4.36 in Chapter 4. 

The effect of pressure on the rise velocity is quite inconspicuous though the velocity in 

the 1.10 mm tube at 14 bar is slightly lower than that at 6 or 10 bar. The probable 

explanation to the above deviation is that the effect of thermal loss and the condensation 

caused cannot be neglected completely in the LI 0 mm tube at 14 bar (T,,, = 52.5 OC). 

Slug bubble rise velocity vs. Fluid homogeneous velocity 
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Figure 5.15 The slug bubble rise velocity and the fluid homogenous velocity in the 4.26 

mm tube. 
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Slug bubble rise velocity vs. Fluid homogeneous velocity 
(2.88 mm, 6- 14 bar) 
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Figure 5.16 The slug bubble rise velocity and the fluid homogenous velocity in the 2.88 

mm tube. 

Slug bubble rise velocity vs. Fluid homogeneous velocity 
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Figure 5.17 The slug bubble rise velocity and the fluid homogenous velocity in the 2.01 

mm tube. 
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Slug bubble rise velocity vs. Fluid homogeneous velocity 
( 1.10 mm, 6- 14 bar) 
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Figure 5.18 The slug bubble rise velocity and the fluid homogenous velocity in the LI 0 

mm tube. 

The effect of tube diameter on the rise velocity is shown in Figures 5.19-5.21. Slug 

bubble rise velocity at the pressures of 6 and 10 bar is little affected by the tube 

diameter but it is slightly lower at 14 bar for the 1.10 and 2.01 mm tubes due to the 

relatively larger effect of the thermal loss and vapour condensation in the smaller tubes. 

Slug bubble rise velocity vs. Fluid homogeneous velocity 
(6 bar, 1.10 - 4.26 mm) 
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Figure 5.19 The slug bubble rise velocity and the fluid homogenous velocity at 6 bar. 
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Slug bubble rise velocity vs. Fluid homogeneous velocity 
(10 bar, 1.10 - 4.26 mm) 
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Figure 5.20 The slug bubble rise velocity and the fluid homogenous velocity at 10 bar. 

Slug bubble rise velocity vs. Fluid homogeneous velocity 
( 14 bar, 1.10 - 4.26 mm) 
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Figure 5.21 The slug bubble rise velocity and the fluid homogenous velocity at 14 bar. 

(3) Slug length 

The slug length was measured and compared to study the effect of gas and liquid 

superficial velocities. fluid pressure and tube diameter. The typical comparisons are 
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presented in Figures 5.22-5.26. The complete experimental data are summarized in 

Appendix G. Obviously slug length increases with gas superficial velocity but decreases 

with liquid superficial velocity, see Figures 5.22 and 5.23. 
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Figure 5.22 The effect of gas or liquid superficial velocities on slug average length 

in the 4.26 mm tube at 6 bar. 

Slug Maximum Length vs. Gas/Liquid Superficial Velocity 
(4.26 mm, 6 bar) 
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Figure 5.23 The effect of gas or liquid superficial velocities on slug maximum length 

in the 4.26 mm tube at 6 bar. 
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The absolute length of slug is longer in the bigger tubes at the same conditions, i. e. the 

same pressure and gas/liquid superficial velocities. However, the relative length, ratio of 

the bubble length to the tube diameter, is apparently less affected by the diameter, see 

Figures 5.24 and 5.25. 
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Figure 5.24 The effect of tube diameter on slug average length at 6 bar (ui, =0.45m/s). 
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Overall pressure has little effect on slug length though the possible maximum length 

could be longer at lower pressures due to the fact that the slug-churn boundary shifts to 

higher gas superficial velocity, see Figure 5.26. 
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Figure 5.26 The effect of pressure on slug average length in the 4.26 min tube 

(U,, =O. 1 8M/s). 

In summary, the following concluding observations can be made: 

The following factors facilitate slug distortion: higher gas and liquid superficial 

velocity, higher pressure, bigger tube diameter. 

The rise velocity is approximately linearly related to the homogenous velocity. 

The effect of pressure and tube diameter on slug rise velocity is not significant. 

" Slug length increases with gas superficial velocity but decreases with liquid 

superficial velocity. 

" 'rhe absolute slug length is longer in the bigger tubes but the length-diameter ratio is 

less affected by the tube diameter. 

" Pressure has little effect on slug length at the same gas/liquid superficial velocities. 
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5.1.5 Churn flow 

The gas-liquid interface becomes chaotic as the liquid superficial velocity increases due 

to the severe impact from the liquid phase, see Figures 5.27-5.30. However, the effect of 

gas superficial velocity on the flow pattern is not very significant under the current 

experimental conditions. A possible explanation is that the gas superficial velocity does 

not change very much between the boundaries of slug to chum and chum to annular, 

compare Figures 5.27-5.30 (iii) and (iv). In addition, increasing fluid pressure can 

reduce the surface tension, weaken gas-liquid interface rigidity and finally intensify 

chaos on the phase interface, see Figure 5.30 (a)-(c) (i). On the other hand, increasing 

tube diameter weakens relatively the effect of surface tension and results in chaotic 

interface also, see Figures 5.27-5.30 (i). Summarily the effect of pressure and diameter 

is significant at low fluid velocity because surface tension plays a comparatively 
important role. 

Large numbers of fine bubbles arc created and surround the gas column as the liquid 

velocity increases, which disturbs badly the identification of flow patterns and is more 

serious in the high pressure and big tubes, see Figures 5.27 (c) (vi) and 5.28 (c) (vi). in 

fact, all flow patterns are identified based on the movies. The movies, including the 

electronic pictures in the attached disc, are much clearer than the pictures in the hard 

copy thesis. Therefore, the identifications and classifications in these pictures are still 
accurate and reliable. 
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Figure 5.27 Chum flow observed in the 4.26 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.28 Chum flow observed in the 2.88 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.29 Churn flow observed in the 2.01 mm t ube at different pressures. 
(a) 6 bar, (b) 10 bar and ( c) 14 bar. 
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Figure 5.30 Chum flow observed in the I- 10 mm tube at different pressures. 
(a) 6 bar, (b) 10 bar and (c) 14 bar. 

In summary, the following concluding observations can be made: 
High liquid superficial velocity, high pressure and large tube diameter intensify 

chaos in chum flow. The effect of gas superficial velocity on the flow configuration 
is not quite distinct in the present experiments. 
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9 Numerous fine bubbles are created and surround gas column as the increase of 
liquid superficial velocity and fluid pressure. 

5.1.6 Annular flow 

The smooth gas-liquid interface in annular flow could be obtained in two cases. One 

case was at low liquid velocity because of the effect of surface tension, as seen in 

Figures 5.31 (b) (i) and 5.33 (c) (i). The second case took place at high gas superficial 

velocity when the liquid film on the tube wall became very thin as shown in Figures 

5.31 (b) (iv) and 5.33 (c) (iv). 

Similar to chum flow, numerous small bubbles were created and surrounded the gas 

core at high liquid superficial velocity and high pressure, see Figures 5.31 (b) (vi) and 
(c) (v), 5.32 (b)(vi) and (c) (v), and 5.33 (c) (vi). 
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Figure 5.31 Annular flow observed in the 4.26 mm tube at different pressures. 
(a) 6 bar, (b) 10 bar and (c) 14 bar. 

164 



Ugs= 1 78ý, /ý Ulý=O 0411/s 
(i) 

1111 

AnnLA r 
Ugs=1.70nVs UIS=O 0411Jý 

(i) 

l, 

-11 
Ugs= 1,49rrds Uls=O 04mis 

(i) 

ular 
Ug-2 17 UIS=O. 11 ý/s 

(ii) 

Atul Jar 
Ugs=l 64ni/s UIS=O I Im/s 

(ii) 

Annular Annular Annular A ular 
Ugs=3 OOn-ds Uls=O 28m/s Ugs=3.45nVs Uls=0.28m/s Ugs=3 39m/s UIS=O 73mis Ugsý3 53m/ý Ulsý 1 87mys 

(IIi) (iv) (v) (vi) 

(a) D=2.88 mm, P=6 bar 

I if 

Annular Annular 
Ugs=2 30rrds UIS=0.28m/s Ugs=2,76nIJs UIS=O 28mýs 

(iii) (iv) 

(b)D=2.88 mm, P= 10 bar 

Annulai 
Up=2 65nj. UIS=O 73ý/s 

(V) 

lAnnLA 

'r 
Ugs=2 87nvs Uls- 1.88ni/s 

(vi) 

Dý2.88 mm, Pý 14 bar 

Ugs= I 98rrJs U-0 28m/s u9s=2 22nVs Uis=O 73ni/s 
(iii) (iv) 

11 

Anntgar 
Ugs=2 39ffVs Uls= I 90ý1ý 

(v) 

Figure 5.32 Annular flow observed in the 2.88 nim tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.33 Annular flow observed in the 2.01 mm tube at different pressures. 

(a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.34 Annular flow observed in the ]. 10 mm tube at different pressures. 
(a) 6 bar, (b) 10 bar and (c) 14 bar. 

In summary, the following concluding observations can be made: 

0 The gas-liquid interface is smoother at high quality or high void fraction. 

0 Numerous small bubbles were created and surrounded gas core at higher liquid 

superficial velocity and higher pressure. 
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5.1.7 Annular -mist and mist flow 

Mist flow was observed in low liquid superficial velocity and extremely high gas 

superficial velocity in the present experiments. This is a quite unstable flow regime 

under the current experimental conditions. The system needed long time to reach steady 

state and was difficult to maintain. Therefore, the study of mist flow is very difficult in 

the present project. Pure mist flow was obtained in the 4.26 mm tube only, see Figure 

5.35 (i) and (ii). Annular-mist flow, a very thin liquid film stuck on the tube wall whilst 

the liquid droplets passed through intermittently, was observed in the 2.01,2.88 and 
4.26 mm tubes as shown in Figure 5.35 (iii)-(viii). This discontinuous liquid droplet 

flow may come of the collapsed liquid bridge in the heating section. After that, the 

experiments were stopped in the 2.01 and 2.88 mm tubes before reaching critical heat 

flux. The 1.10 mm tube was not tested at such a high fluid velocity because of the 

excessive pressure drop. 
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Figure 5.35 Annular -mist and mist flow observed in the present experiments. 
(i) -0i 1): 4.26 mm tube at 10 bar, (iv): 2.88 mm tube at 10 bar, (v) - (vi): 2.01 mrn tube 

at 10 bar, (vii) - (viii): 2.01 mm tube at 14 bar. 
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5.1.8 Discussions 

The flow patterns in the 2.88 and 4.26 mm. tubes do not exhibit common characteristics 

of the flow patterns in small tubes. Comparatively, the flow patterns in the 2.01 mm 
tube show some "small tube characteristics", which indicates the increasing action of 
surface tension and tube confinement, e. g. the appearance of the confined bubble flow, 

the slimmer vapour slug, the thinner liquid film around the gas slug, and the less chaotic 

gas-liquid interface in chum flow. When the tube diameter decreases to 1.10 mm, the 
full small tube characteristics, as also described in the previous studies (Oya 1971, 

Damianides and Westwater 1988, Fukano and Kariyasaki 1993, Mishima and Hibiki 

1996, Triplett et al. 1999, Lin et al. 1998), are exhibited. Therefore, the 2.01 min tube 

possesses both characteristics of normal size and small size tube. From this point of 

view, a tube diameter around 2.0 min can be regarded as the critical diameter for 

refrigerant R134a, at the current experimental conditions. This result agrees fairly well 

with the criterion commended by Kew and Cornwell (1997) or Hatori and Bretherton 

(cited from Wadekar 2002), e. g. 1.2 to 1.7 min at 6 -14 bar. 

Gas velocity, liquid velocity, tube diameter and fluid pressure are four important factors 

that affect the flow patterns. However, magnitude of their effect is different. Gas and 
liquid velocities are the most important parameters. All flow patterns are strongly 
dependent on them. Comparatively tube diameter has a moderate impact on flow 

patterns whilst pressure slightly affects them within the present experimental range. 
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5.2 The observed transition boundaries 

Five typical transition boundaries were reported in the present experiments. They were 

dispersed bubble - bubbly, dispersed bubble - chum, bubbly - slug, slug - chum and 

chum - annular boundaries. The characteristics of the above five transition boundaries 

are described as follows briefly. 

(1) Dispersed bubble - bubbly: a few bubbles reach the critical diameter given in Table 

5.3. 

(2) Dispersed bubble - chum: numerous dispersed bubbles start to coalesce to large, 

chaotic gas clumps. 

(3) Bubbly - slug: a few bubbles reach the size of the tube diameter. 

(4) Slug - chum: the transition occurs when some slug bubbles distort. 

(5) Chum - annular: liquid bridge is penetrated to become continual gas core. 

Overall the transition at the above five boundaries was a gradual development process 

in which case the transition boundary became a transition zone. Within the transition 

zones the flow patterns possess characteristics of more than one of the flow patterns 

described in the previous section. For example, the flow pattern near the intersection of 

dispersed bubble, slug and chum can be considered as a mixture of the above three flow 

patterns. In the current study the transition zones are still simplified as the transition 

boundaries just as done in the previous studies. Such simplification facilitates the 

comparison of the flow maps to reveal the effect of tube diameter and fluid pressure and 

develop the transition models and correlations. In order to represent the transition 

processes objectively, uniform criteria are applied for the different tubes and pressures. 

However, the identification of flow patterns and the determination of regime boundaries 

are significantly affected by the subjectivity of observers. The criteria used in the 

current study may be questioned by other researchers and lead to disagreement. It was 

therefore important to state them very clearly. 

As discussed in Chapter 3 Section 3.2-3, more experimental data were collected near the 

transition zones in an attempt to obtain the accurate transition boundaries. However, it is 

difficult to control ugs at low ug, for the smaller tubes because of the resolution of the 

heating variac. In addition, extremely dense data near transition boundaries cannot 
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improve the experimental accuracy because of the effect of the following factors: (a) 

subjectivity in the identification and classification of flow regimes, (b) experiment 

stability, (c) measurement uncertainty. Therefore, the resolution of ul, at the boundary of 
dispersed bubble to bubbly, i. e. uls=0.72,0.92,1.17,1.49,1.90 m/s as shown in Table 

3.3, is 0.2,0.25,0.32,0.41 m/s respectively. The resolution of ug, at the boundary of 

slug to chum, i. e. ugS=0.3-1.5 m/s, was about 0.05-0.2 ni/s at all the experimental 

conditions. The resolution of ug, at the boundary of chum to annular, i. e. ug, =0.8-3.5 

m/s, was about 0.1-0.3 m/s in most experiments. The above-mentioned transition 

boundaries and the corresponding resolutions are presented in the flow maps in Figures 

5.62-5.73 and the experimental data file in the CD attached. Although the shift tendency 

of the transition boundaries may not be so explicit for the similar size tubes or pressures 

at the above resolutions, their effect on the flow patterns gradually emerged and 

recognized as the difference of tube diameter or fluid pressure increases. For example, 
Table 5.1 summarizes the effect of tube diameter on the flow patterns near the slug- 

chum boundary at 10 bar pressure by verifying the recorded movies frame by frame. 

Table 5.1 The cffect of tube diameter on the slug-chum boundary at 10 bar pressure. 

Flow state pure slug transition zone pure chum 

Number of distorted slug 
bubbles (distortion degree) none 

few 
(slight) 

some 
(middle) 

most 
(serious) all 

UIS (M/S) 0.11 

ugs (m/s) for the 1.10 mm tube 0.56 0.69 * 0.78 0.92 

ug, (m/s) for the 2.01 mm tube 0.43 0.59 * 0.70 0.95 

ug, (m/s) for the 2.88 mm tube 0.39 1 0.50 1 0.59 * 0.67 0.76 

ugs (m/s) for the 4.26 mm tube 0.25 0.38 0.52 * 0.63 0.74 

Note: the data marked with asterisk in the above table are identified as the slug-chum 
boundary in the current study. 

The middle of the transition zone, i. e. when some (about 50%) slug bubbles distort, is 

plotted out as the slug-chum boundary in the current study. It is difficult to give a solid 

conclusion on the effect of tube diameter on the transition boundary based on the data 
for the 2.01 and 2.88 mm tubes only. However, the effect of tube diameter on the slug- 

chum boundary is still significant in the present experiments because the boundary 

shifts about 0.17 m/s ugs (ul, = 0.11 m/s) whilst the corresponding resolution is 0.08 - 
0.14 m/s when the tube diameter changes from 1.10 to 4.26 mm. In addition, the 
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distorted bubbles were observed in the 2.88 mm. tube when ugs 2: 0.50 mls whilst all 
bubbles still had smooth gas-liquid interface in the 1.10 mm tube when ug, =0.56 m1s, 

which indicates that the effect of tube diameter on the slug-chum boundary can be 

confidently concluded at the current experimental range and data density. The same 

conclusion can be given for the effect of fluid pressure on the slug-chum boundary, see 

Table 5.2. The effect of tube diameter and fluid pressure on other transition boundaries 

can be concluded in the similar method. 

Table 5.2 The effect of pressure on the slug-chum boundary in the 2.01 mm tube. 

Flow state pure slug transition zone pure chum 

Number of distorted slug 
bubbles (distortion degree) none 

few 
(slight) 

some 
(middle) 

most 
(serious) all 

UIS (M/S) 0.11 

ugs (m/s) for the 6 bar 0.70 0.88 * 1.06 1.26 

ugs (m/s) for the 10 bar 0.43 0.59 * 0.70 0.95 

ugs (m/s) for the 14 bar 1 0.35 1 0.42 1 1 0.47 * 0.63 

Note: the data marked with asterisk in the above table are identified as the slug-chum 
boundary in the current study. 

If a transition zone is represented by a transition boundary, the uncertainty in the 

determination of this transition boundary needs to be evaluated so that the data from the 

present experiments can be used by other researchers credibly. The transition zone of 

chum to annular flow occupies a narrow range of u., because the annular flow was 
identified once continued gas core was verified in all the frames of the movie. The non- 

annular regime at the highest u., was regarded as the chum-annular boundary. 

Therefore, the transition zone, or the uncertainty of the chum-annular boundary, is 

between the transition boundary and the annular flow at the lowest ugs. However, other 

transition zones such as slug to chum flow may span a wider ug, region because the 

transitions are gradual processes. As a result, the uncertainty of these transition 

boundaries is large accordingly. For example, the transition zone of slug to chum flow 

in the 2.01 mm tube at 10 bars is between 0.43 to 0.95 m/s ug, when ul, is constant 0.11 

m/s, i. e. pure slug to pure chum flow as shown in Table 5.1. If the flow regime at ug, = 

0.59 m/s is identified as the slug-chum boundary when some (about 50%) slug bubbles 

distorted, the uncertainty of ugs on the slug-chum boundary (2.01 mm, 10 bar, 0.11 m/s 

ul, ) is 0.16 m/s (0.43 to 0.59 m/s) and 0.36 m/s (0.59 to 0.95 m/s) for the upstream and 
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downstream of the boundary respectively. The upper and lower bounds for other 

transition zones is described as following: 

Dispersed bubble-bubbly transition zone: the upper bound is that most bubbles are 

smaller than the critical diameter given in Table 5.3 and the lower bound is that most 
bubbles are bigger than the critical diameter. 

Bubbly-slug transition zone: the upper bound is that most bubbles are longer than the 

tube diameter and the lower bound is that most bubbles are smaller than the tube 

diameter. 

Dispersed bubble-chum transition zone: the upper bound is that most bubbles coalesce 
into large gas clumps and the lower bound is that few bubbles are bigger than the 

critical diameter given in Table 5.3. 

Figure 5.36 presents the transition zones in the flow map for the 2.01 mm tube at 10 bar. 

The uncertainty of the transition boundaries can be deduced. The bubbly-slug transition 

zone apparently covers wide range in the flow map because the transition occurs at low 

ugs whilst the flow maps are sketched in logarithmic coordinate group. In fact, the 

bubbly-slug transition zone crosses three data points at the current data resolution. 
Similarly dispersed bubble-bubbly, dispersed bubble-chum and slug-chum transition 

zones span three data points in most cases and chum-annular transition zone is between 

two data points. Figure 5.36 shows that the transition zone of slug to chum flow at 

ujsýO. II m/s is apparently wider than others. With a close observation, most of the slug 
bubbles at the data point of uls=O. II m/s and u,, =0.70 m/s distorted badly. Therefore, 

although the flow pattern at uls=O. II m/s and ugs=0.70 m/s is reported as a middle point 
in the slug-chum transition zone, it can be expected that "pure chum" will be obtained 

when the ugs is slightly higher than 0.70 m/s at ul., =O. II m/s. 
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Figure 5.36 The flow map in the 2.01 mm diameter tube at 6 bar pressure with the 

transition zones (in shadow). 

5.2.1 Dispersed bubble - bubbly transition boundary 

The dispersed bubble and bubbly flow regimes have been widely recognized in earlier 

studies, see Barnea et al. (1985), Darmanides and Westwater (1988), and Zhao and Bi 

(2001). The obvious difference between dispersed bubble and bubbly flow is that the 

bubble size in dispersed bubble flow is much smaller than that in bubbly flow. 

However, the critical size, used to distinguish the above two flows, was not clearly 

illuminated in the earlier studies. In fact, the critical size cannot be a definite value. 

Otherwise it may lead to a conflicting result when pipe size is smaller than the critical 

size. For example, the recommended critical bubble size by "Unified Model" (Taitel 

1990) is: 

2[ 
0.4a 

(p, 
- P, 

yg (5.2) 

Therefore, the calculated critical diameter is 3.4 mm for air-water flow at 25 'C and I 

bar. If a tube diameter were 2.0 mm whilst the equivalent diameter of bubbles were 2.5 

mm, this practical slug flow could be identified as dispersed bubble flow since the slug 
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size is smaller than the critical diameter. Based on the above viewpoint, the critical 
diameter used in the present study depended on the tube diameter. Considering the fact 

that the earlier studies identified dispersed bubble flow in their experiments for small 

tubes but they did not give the criterion used, a very subjective criterion was used for 

the dispersed bubble-bubbly boundary in the current study, i. e. the average diameter of 
bubbles is approximately equal to the critical diameter at 6 bar based on Equation 5.2 

and smaller than the half the tube diameter. The average bubble diameter and number 

are estimated in the present experiments which can be used to estimate the actual void 
faction, see Table 5.3. Although it is difficult to justify the critical diameters 

recommended in the current study, the transition boundary based on this criterion is 

helpful to develop a general correlation for the prediction of bubble size. The developed 

correlation not only predicts the bubble size in the present experiments well but also 

agrees with the previous air-water experiments, see Chapter 7 Section 7.2.2. However, it 

needs further validation. 

Table 5.3 The critical bubble diameter used in the present study for the dispersed bubble 

- bubbly boundary. 

Parameters R-134a 

Fluid pressure (bar) 6.0 10.0 14.0 

Critical diameter based on Equation 5.2 (mm) 1.07 0.53 0.43 

The average diameter (mm) 0.4-0.5 
1.10 mm. tube 

The critical diameter (mm) 0.46 1 0.43-1 0.45 

The average diameter (mm) 0.9-1.1 
2.01 mrn tube 

The critical diameter (mm) 0.95 1.00 0.92 

The average diameter (mm) 0.8-1.1 
2.88 mrn tube 

The critical diameter (mm) 0.87 0.98 1.03 

The average diameter (mm) 0.8-1.2 
4.26 mm tube 

1 The critical diameter (mm) 1.05 1.10 1.18 

In air-water two-phase flow, the void fraction at the boundaries of dispersed bubble - 
bubbly flow can be calculated approximately based on the following equation: 
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(5.3) 
ug, + Ul, 

However, the above equation may lead to considerable error in the present experiments. 
Figures 5.37-5.40 are the results of the transition boundary. dispersed bubble-bubbly, 

observed at the three pressures and four diameter tubes studied. Normally the observed 

void fraction was smaller than the calculated void fraction based on Equation 5.3 and 
difference increases in smaller tube or at lower pressure. As seen in Figure 5.37 (1) and 
(vi), and Figure 5.40 (11) and (vi). the number and size of' the bubbles at 6 bar are 

obviously smaller than that at 14 bar though their gas and liquid superficial velocities 

arc similar. 

I 

le 
,,, I Buhhl, F", bbl, EIIIII-c-d Eld 1,1 111, EdI 1ý Eubbly 111"i 'e, se, B, bble Bubb[ý Disp , i, P, O d. E. ,III, 

U, j, -O 13, W, Ul, -l 1ý.,, uq, ýC) ug, Uq, - ,U , I, ,IJ 
(i) (iv) (v) 

Figure 5.37 Bubbly - dispersed bubble transition boundary observed in the 4.26 min 
tube. (1) and (ii) at 6 bar, (iii) and (iv) at 10 bar, (v) and (vi) at 14 bar. 
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19-0 1 "n, I jl, = II-, ")" [Jq'=(' Ul- 1 41-., /, Uq-G 06, n, Ul- 11 Nv, Hg-O I 4mI, UIS= 1 49,, / , Ugý=O 03-/S LIN= 1 l8mY, Ugs=O H)n, 1, ()I, = 1 4'', w, 

(I)( II I) Ov) (v) (vi) 

Figure 5.38 Bubbly - dispersed bubble transition houndary observed in the 2.88 nim 

tube. (i) and (ii) at 6 bar, (iii) and (iv) at 10 bar, (v) and (vi) at 14 bar. 
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Figure 5.39 Bubbly - dispersed bubble transition boundary observed in tile 2 
. 
01 111111 

tube. (i) and (ii) at 6 bar, (iii) and (iv) at 10 bar, (v) and (vi) at 14 bar. 
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Dispersed Bubble - Bubbly Dispersed Bubble Bubbl, Dispersed ubble Bubbly Dispersed Bubble Bubbly Dispersed Bubble Bubbly Disp ersed Bubble Bubbly 
Ugs=O 2 Imis Uls= I 49mls Ugs=O 36m/s Uls= 1 90m/, Ugs=0 06rirls Uls=1 l8m/s Ugs=0 -13mis Uls= I 89in/s Uqs=O I IM/S Uls= 1 45m/s Ugs= O 35mis Uls= 1 88n, /s 

(i) (ii) (iii) (IV) (v) (vi) 

Figure 5.40 Bubbly - dispersed bubble transition boundary observed in tile 1 
. 
10 

tube. (i) and (ii) at 6 bar, (Ili) and (IV) at 10 bar, (v) and (vi) at 14 bar. 

5.2.2 Dispersed bubble - churn transition boundary 

Dispersed bubbles start to coalesce and tbrin large gas CILIIIIPS When the bubble density 

is high enough. Considering tile slip velocity between gas phase and liquid phase can be 

ignored in dispersed bubble flow, a critical void fraction may be the right parameter I'or 

predicting dispersed bubble-chUrn boundary. Uril'ortunatcly, we did not collect 111LIC11 

data on this boundary in the present project because of the excessive pressure drop in 

the test section and poor flow pattern images. Therellore, it is very dill-icult to sketch the 

accurate dispersed bLibble-churn boundary in the current study. Figures 5.41-5.44 slioNk 

the dispersed bubble - churn transition boundary observed in the current experiments. 
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Figure 5.41 Dispersed bubble - churn transition boundary observed in the 4.26 rnm 

tube. (1) and (ii) at 6 bar, (iii) and (lv) at 10 bar, (v) and (vi) at 14 bar. 
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Figure 5.42 Dispersed bubble - churn transition boundary observed in the 2.88 min 
tube. (i) and (il) at 6 bar, (iii) and (lv) at 10 bar, (v) and (vi) at 14 bar. 
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Figure 5.43 Dispersed bubble - churn transition boundary observed in the 2.01 111111 

tube. (i) and (ii) at 6 bar, (iii) and (iv) at 10 bar, (v) and (vi) at 14 bar. 
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Figure 5.44 Dispersed bubble - churn transition boundary observed in the 1.10 rnni 

tube. (1) and (11) at 6 bar, (111) and (lv) at 10 bar, (v) and (vi) at 14 bar. 

5.2.3 Bubbly - slug transition boundary 

As the gas superficial velocity increases. bubbly IIoxA develops to slug How when the 

diameter of bubbles reaches the tube diameter. The typical characteristic is that small 

bubbles, with diameter smaller than the tube diameter. and slug bubbles. \"Ith diameter 

equal to the tube diarneter and confined by the tube well, coexist and flow with the same 

velocity, see Figures 5.45-5.48. 

11) 
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B ""Ibl, - ýA, g 
L(J, -c 1611- -P-O -3111's 

Bubbly Slug 
Ug, ýO 02.1AU-0 

Bubbly Slug 
18,111, H91=0 14,,, /, 01-0 71 

B, ýbhl, 
1, Uq-ý o- (I I U41-0 I "u" Ul- 

(11) (111) (IV) (N, I) 

Figure 5.45 Bubbly - slug transition bMinclarý observed in the 4.26 nim tube. 

(1) and (11) at 6 bar, (iii) and (Iv) at 10 bar. (ý ) and (vi) at 14 bar. 

179 



Jai 

l I 1 1 1 1 I 

' al ,0 

1 
1 11 

. Bubbly - Slug Bubbly - Slug Bubblý - Slug Bubbly - Slug Bubbly - Slug BLII, blý - LALIq 
ugs=o 02ni/s Uls=o 1 81111s Ugs=O I Bm/s U-0 72ý,,, Ugs=G 0-'. /ý LJI-O lft, lý Ugs= OI 3n, /, kJl, =O Ug, =O 01 ý/ý L jlý=o 18.1, (Jg, = (, 1 )1-0 45,,, /, 
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Figure 5.46 Bubbly - slug transition boundary observed in the 2.88 nim tube. 

(1) and (11) at 6 bar, (iii) and (lv) at 10 bar, (v) and (vi) at 14 bar. 
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Figure 5.47 Bubbly - slug transition boundary observed in the 2.01 nim tube. 

(i) and (11) at 6 bar, (I 11) and (lv) at 10 bar. (v) and (vi) at 14 bar. 
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Figure 5.48 Bubbly -slug transition bOUndary observed in the LI 0 nini tube. 

(1) and (11) at 6 bar, (111) and (iv) at 10 bar, (v) and (vi) at 14 bar. 
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Unlike other typical flow patterns, bubbly and slug flows are generally al'f'ected by the 

observation position. For example, Barnea and Taitel (1993) reported that tile required 

minimum distance for fully developed air-water two-phase flow was about 10-15 In in 

the 50 min tube in their experiments, i. e. 200-300 times tube diameter. Within that 

distance bubbles and slugs flow at different velocity and coalesce ceaselessly. It can be 

expected that some bubbly flow, not all, may finally develop to slug flow after a long 

journey. This may be the reason that some earlier researchers, such as the model of' 
Taitel et al. (1980) do not distinguish bubbly flow and slug flow when the tube diameter 

is smaller than the critical diameter, see Appendix B. In the present experiments, 
because of the limitation of the laboratory conditions, the visulaization points are 
located downstream of the heating sections about 100- 170 times tube diameter. Two- 

phase flow might not reach fully developed state at that point. One indirect evidence of' 

this is that coalescence among bubbles was observed occasionally within the observable 

section, see the Pictures in Figure 5.49. 

15 

40 

(III) (IV) (V) (Vi) 

Figure 5.49 Bubble coalescence process occurred at bubbly - slug transition boundary 

(2.01 rrim, 10 bar. ups- 0.1 3rn/s, uj, A. 72ni/s). 

Picture (i): two separate bubbles. Picture 00: coalescent starts. 
Picture (iiii): creation ol'a new big bubble. Picture (IV): second group ot'bubbles. 
Picture (v): coalescent starts. PiCtUre (vi): creation ofanother new bubble. 

On the other hand, Figures 5.50-5.53) show that the coalescence likely finished because 

the small bubbles and slug bubbles almost llowcd at the sarne velocity, which indicates 

that the two-phase J1oA at the observation point has reached or approached 11111ý' 

developed state under the present experimental conditions. Another interesting 

phenomenon as shown In Figures 5.50 and 5.5 1 is that the bubble rise velocity is higher 
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at the higher pressures in the 2.88 and 4.26 mm tubes. In the smaller tubes, i. e. the 1.10 

or 2.01 mrn tubes, the rise velocity is less affected by the fluid pressure, see Figures 

5.52 and 5.53. With a close observation it can be found that the bubbles at the tube 

centerline flow faster than those near the tube wall. Following Bankoff s development 

(cited from Chisholm, 1983), two-phase fluid will flow at maximum velocity along the 

pipe centerline and the velocity profile across the pipe section can be described by 

Equation 5.4 with the assumption that both phases have the same local velocity. 
I/M 

(5.4) 

The diameter of slugs is slightly smaller at the higher pressure in the 4.26 and 2.88 mrn 

tubes because of the weaker surface tension, see Figures 5.45 and 5.46. The average 

velocity, according to the equation 5.4, should be slightly higher than the bigger slug 
bubblers at the lower pressure. However, the slug bubbles at the different pressures 

almost have the same diameter in the 1.10 and 2.01 mm tubes so that their rise velocity 
is almost the same, see Figures 5.47 and 5.48. 

The bubble rise velocity and the fluid homogeneous velocity are approximately linearly 

related from the sketched diagrams. Although Mishima and Hibiki (1996) reported that 

a buoyancy-driven air bubble in stagnant water could not rise in a capillary tube with a 
diameter below 5 mm, the experimental data in the present study show that the drift 

velocity cannot be zero when the tube diameter is equal to or above 2.88 mm. The 

difference of fluid properties, especially the difference of viscosity and surface tension, 

might cause the discrepancy. 
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Bubble rise velocity vs. Fluid homogeneous velocity 
(4.26 mm, 6- 14 bar) 
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Figure 5.50 The bubble rise velocity and the fluid homogenous velocity in the 4.26 mm 

tube. 

Bubble rise velocity vs. Fluid homogeneous velocity 
(2.88 mm, 6- 14 bar) 
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Figure 5.51 The bubble rise velocity and the fluid homogenous velocity in the 2.89 mm 

tube. 
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Bubble rise velocity vs. Fluid homogeneous velocity 
(2.01 mm, 6- 14 bar) 
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Figure 5.52 The bubble rise velocity and the fluid homogenous velocity in the 2.01 mm 

tube. 

Bubble rise velocity vs. Fluid homogeneous velocity 
(I. 10 mm, 6- 14 bar) 
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Figure 5.53 The bubble rise velocity and the fluid homogenous velocity in the ]. 10 min 

tube. 
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5.2.4 Slug - churn transition boundary 

The slug-chum transitional flow regime is depicted in Figures 5.54-5.57. From the 

recorded pictures, it can be concluded that the transition of slug flow to chum flow 

normally occurs at three conditions: 
(1) Gas slug could become extremely long with the increase of ugs in the low ul, zone, 

as shown in the figures in Appendix G Section G. L The slug body starts to distort 

when the slug reaches a critical length. This is the main transition mechanism at low 

flow rate, see also Figures 5.54 (b) (i') and 5.56 (a) (i). 

(2) The slug bubble leaves a disturbed zone behind its tail. The flow fleld in this region 
is chaotic and the local fluid flows at relatively higher velocity than the 

homogeneous velocity. If the successive slug is trapped in this zone, its head and 
body will deform seriously, see Figure 5.56 (b) (P). 

(3) The head of the slug bubble cannot keep its regular shape at high flow rate due to 

the great impact force from the surrounding liquid and bubbles. This is the dominant 

transition mechanism of slug flow to chum flow at high flow rate, see Figures 5.55 

(a) (iii), 5.56 (b) (iii) and 5.57 (c) (iii). 
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Figure 5.54 Slug - churn transition boundary observed in the 4.26 nim tube at diff'crent 

pressurcs. (a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.55 Slug - churn transition boundary observed in the 2.88 111m tube at different 

pressures. (a) 6 bar. (b) 10 bar and (c) 14 bar. 
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Figure 5.56 Slug - churn transition boundary observed in the 2.01 irim tube at diffIcrent 

pressures. (a) 6 bar. (b) 10 bar and (c) 14 bar. 
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Figure 5.57 Slug - ch urn transition boundary obscrved in the 1.10 mrn lubc at dill'crcrit 

pressures. (a) 6 bar. (b) 10 bar and (c) 14 bar. 

5.2.5 Churn - annular transition boundary 

Thc churn-annular transitional flow regime is depicted in Figures 5.58-5.61. Churn flow 

developed to annular flow at two situations From the observations in the present 

experiments. Firstly. gas slug can penetrate the liquid bridge to be a continual core 

when the average void 1raction is high enough. This is main transition mechanism for 
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the churn-annual boundary in the low liquid velocity region, see Figures 5.58-5.61 (i) 

and (i'). Secondly, as the liquid superficial velocity increases. the liquid filin on the tube 

wall becomes thicker and the corresponding gas channel becomes narro%Aer. The actual 

gas velocity increases even if the flow is at the same gas superficial velocity. The high- 

speed gas blows through the tube and holds the liquid film on the tube wall to Iorrn 

annual flow, see Figures 5.58-5.61 (ii) and (W). 
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Figure 5.58 Churn - annular transition boundary observed in the 4.26 mrn tube at 
different pressures. (a) 6 bar. (b) 10 bar and (c) 14 bar. 
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Figure 5.59 Churn - annular transition boundary observed in the 2.88 min tube at 
di 11'erent preSSLII-eS. (a) 6 bar. (b) 10 bar and (c) 14 bar. 
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Figure 5.60 Churn - annular transition boundary observed in the 2.01 nim tube at 

di ft'erent pressures. (a) 6 bar, (b) 10 bar and (c) 14 bar. 
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Figure 5.61 Churn - annular transition boundary obscrved in the I- 10 nim tube at 

di fferent pressures. (a) 6 bar, (b) 10 bar and (c) 14 bar. 
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5.3 Flow pattern maps 

Twelve flow pattern maps are generated based on the experimental data collected in the 

1.10,2.01,2.88 and 4.26 mm tubes and at the pressures of 6,10 and 14 bar and are 

shown in Figures 5.62-5.73. The coordinates used are the gas superficial velocity and 

the liquid superficial velocity, which were widely used in the earlier studies to reveal 

their effect on flow patterns and facilitate the comparison with the existing flow maps or 

models. Overall the twelve flow maps are similar. For example, the dispersed bubble 

flow is always located at the region of high liquid superficial velocity whilst annular 
flow can only be observed when gas superficial velocity is high enough. Therefore, gas 

superficial velocity and liquid superficial velocity are the two most important 

parameters in flow pattern transition mechanisms. Tube diameter and fluid pressure also 
have some effect on the flow patterns within the present experimental range. For 

instance, the confined bubble flow was only observed in the 1.10 mm tube at 6.0 to 14.0 

bar and the 2.01 mm tube at 6.0 bar. It indicates that surface tension is growing into the 

dominant force in the smaller tubes at low flow velocity. The flow maps with the grid of 

constant quality and mass flux are also presented in Appendix I-I to illuminate the effect 

of the fluid conditions on the different flow patterns. 
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Figure 5.63 The flow map in the 1.10 mm diameter tube at 10 bar pressure. 
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Figure 5.65 The flow map in the 2.01 mm diameter tube at 6 bar pressure. 
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Figure 5.67 The flow map in the 2.01 mm diameter tube at 14 bar pressure. 
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Figure 5.69 The flow map in the 2.8 8 mm diameter tube at 10 bar pressure. 
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Figure 5.70 The flow map in the 2.88 mm diameter tube at 14 bar pressure. 
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Figure 5.71 The flow map in the 4.26 mm diameter tube at 6 bar pressure. 
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Figure 5.72 The flow map in the 4.26 mm diameter tube at 10 bar pressure. 
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Figure 5.73 The flow map in the 4.26 mm diameter tube at 14 bar pressure. 

5.4 Comparison between the flow maps 

The effect of fluid pressure on flow pattern transition boundaries can be clearly seen 

with comparing the flow maps at the different pressures, in the same tube diameter, see 
Figures 5.74-5.77. Similarly the effect of tube diameter on flow pattern transition 

boundaries can be obtained by superimposing flow maps in the different tube diameters 

at the same pressure. shown in Figures 5.78-5.80. In this section, twelve flow maps 

obtained in the presented experiments shown above are grouped by tube diameter or 
fluid pressure and compared separately to illustrate their effect. The confined bubble 

flow, which is similar to slug flow but with elongated spherical top and bottom bubbles, 

was not observed in all tubes and pressures. For the purpose Ql'oblaining general 

comparison results, the confined bubble flow is combined VOth slug flo14, and is 

presented as slug. flow in the. following sketches. The mist-annular transition boundary 

is not included either fior the same reason, i. e. it did not appear. /br all tube diameters 

and experimental pressures. 
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5.4.1 Effect of pressure on transition boundaries 

As seen in Figures 5.74-5.77 the transition boundaries of slug-chum and churn-annular 
flow shift slightly towards the region of lower gas flow rate when the pressure 

increases. The same observation was made by Bergles and Suo (1966). The dispersed 

bubble-bubbly boundary is only slightly affected by pressure. The dispersed bubble- 

churn and bubbly-slug boundaries are hardly affected by pressure in the current 

experiments. As shown in Table 2.1, the surface tension of RI 34a decreases as pressure 

increases, which weakens the gas-liquid interface rigidity, leading to easier deformation 

of the interface and earlier (lower ugs) transition of slug to churn. Also, the value of the 

gas density increases significantly when pressure rises; the heavier gas density increases 

the gas momentum at the same gas velocity and this could result in the transition of 

churn to annular flow at lower gas velocity. 
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Figure 5.74 Effect of pressure on transition boundaries in the 1.10 mm diameter tube. 
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Figure 5.75 Effect of pressure on transition boundaries in the 2.01 mm diameter tube. 
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Figure 5.76 Effect of pressure on transition boundaries in the 2.88 mm diameter tube. 
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Figure 5.77 Effect of pressure on transition boundaries in the 4.26 mm diameter tube. 

5.4.2 Effect of tube diameter on transition boundaries 

The effect of tube diameter on flow patterns is depicted in Figures 5.78-5.80. Reducing 

the tube diameter shifts the transition boundaries of slug-churn and churn-annular to 

higher gas velocities. This result is in agreement with the experiments of Lin et a]. 
(1998), Zhao and Bi (2001), Coleman and Garimella (1999) and Damianides and 
Westwater (1988). As the diameter gets smaller, the slug size is further confined; the 

effect of surface tension is enhanced and this delays the slug-churn transition to higher 

ug, (similar to the effect of decreasing pressure). On the other hand, in annular flow the 

waves of liquid film find it easier to touch each other to form liquid bridges in smaller 

tubes, which blocks the gas stream in the core and converts the flow to chum flow. The 

dispersed bubble-bubbly boundary at 10 bar and 14 bar slightly shifts to higher liquid 

velocity with a reduction in the diameter, which agrees with Zhao and Bi (2001) and 
Coleman and Garimella (1999) but is in disagreement with the report of Damianides 

and Westwater (1988), see Table 2.8. However, tube diameter apparently has less 

influence on the dispersed bubble-bubbly boundary at 6 bar than that at 10 and 14 bar 

pressure. There seems to be no change for these four diameters at the boundaries of 
dispersed bubble-chum and bubbly-slug flow. 
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Figure 5.78 Effect of tube diameter on transition boundaries at 6 bar pressure. 
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Figure 5.79 Effect of tube diameter on transition boundaries at 10 bar pressure. 
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Figure 5.80 Effect of tube diameter on transition boundaries at 14 bar pressure. 

5.5 Summary 

Seven typical flow patterns were observed in the present experimental conditions. i. e. 

dispersed bubble, bubbly, confined bubble, slug, churn, annular and mist. The 

experimental results indicate that the flow patterns for the larger diameters (2.88 and 

4.26 mm) exhibit strong flow pattern characteristics found in normal size tubes. When 

the tube diameter was reduced to 2.01 mm, the flow patterns exhibit some -small tube 

characteristics" until the confined bubble flow appears in the 1.10 mm tube at all 

experimental pressures. which indicates that surface tension became the dominant force. 

The critical diameter used to distinguish small and normal pipes could be deduced from 

the above observations and is about 2 mm for the current experimental conditions, 

which agrees with the criteria recommended by Kew and Comwel I (1997) or Hatori and 

Bretherton (cited from Wadekar 2002), i. e. Co=0.5 or EV 11.71 . corresponding to the 

critical diameters of 1.7-1.4 or 1.6-1.2 mm for the pressures of 6-14 bar. Twelve flow 

pattern maps were drawn and compared. The boundaries of slug to chum and churn to 

annular moved to lower gas velocity when the pressure increases from 6 bar to 14 bar. 

No or little effect was observed on the dispersed bubble to bubbly. dispersed bubble to 

churn and bubbly to slug boundaries with pressure changes in the current experiments. 
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The boundaries of slug to chum and chum to annular moved to higher gas velocity for 

all pressures as the tube diameter was reduced from 4.26 to 1.10 mm. The dispersed 

bubble to bubbly boundary at 10 bar and 14 bar moved to higher liquid superficial 
velocity when the tube diameter changed from 4.26 to 1.10 mm. but the effect is not so 

significant at 6 bar pressure. The tube diameter does not seem to affect the boundaries 

of dispersed bubble to chum and bubbly to slug. Tables 5.4 and 5.5 summarise the 

effect of fluid pressure and tube diameter on the transition boundaries observed in the 

present experiments. 

Table 5.4 The direction of boundaries shift with reducing fluid pressure. 

Transition boundary 1.10 mm tube 2.01 mm tube 2.88 mm tube 4.26mm tube 

Dispersed bubble-bubbly little effect slightly higher 
UIS 

little effect slightly higher 
UIS 

Dispersed bubble-chum I ittle effect little effect I ittle effect little effect 
Bubbly-slug little effect little effect little effect I ittle effect 
Slug-chum higher ug, higher ug, higher u,, higher ug 
Chum-annular higher ug, higher u,, higher u,, higher u,, 

Table 5.5 The direction of boundaries shift with reducing tube diameter. 

Transition boundary 6 bar pr ssure 10 bar pressure 14 bar pressure 
Dispersed bubble-bubbly slightly higher ul, higher ul, higher ul, 
Dispersed bubble-chum little effect little effect little effect 
Bubbly-slug little effect I ittle effect little effect 
Slug-chum higher u,, higher u,, higher u,, 
Chum-annular higher u,, higher u,, higher u,, 
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Chapter 6 Experimental Result Analysis 

The current experimental data are compared with the earlier results such as flow maps, 

models and correlations in this Chapter. The data obtained are also mapped using 
different coordinate systems to find the right parameters to evaluate the effect of tube 
diameter and fluid pressure. 

6.1 Comparison between the flow maps and the previous data 

Flow maps are not only a common tool for flow pattern studies but also the first step to 

develop general correlations for flow regime prediction. It is significant and necessary 

to validate the present results by comparing with the earlier studies. It is well known 

that flow maps are greatly affected by the experimental conditions such as fluid type, 

flow parameters and tube diameter. Tberefore, all compared flow maps should be based 

on the same or similar conditions. However, most of the earlier studies used air-water 

and worked at atmospheric conditions. In fact, to the best of the author's knowledge, 

none of the existing flow maps match entirely the present experimental conditions. As a 

result, it is not surprising that great discrepancies are shown in the comparisons. In 

addition, the subjectivity in flow pattern observation will inevitably affect the compared 

results. 

Yang and Shieh (2001) sketched R134a flow maps based on their experiments in 2.0 

and 3.0 mm horizontal tubes. The experimental pressure and temperature were 7.7 bar 

and 30 T respectively. Yang and Shieh followed the traditional classifications used in 

small horizontal tubes and reported five flow regimes: bubble, dispersed, plug, slug and 

annular flow. What they call bubble corresponds to the dispersed bubble flow in the 

current study, see Figure 2.2 in Chapter 2. Overall the agreement between the maps 

obtained in the present experiments and those from Yang and Shieh (2001) is poor due 

to the different flow orientation and classifications, see the comparisons in Figures 6.1- 

6.4. For example, the dispersed flow in the Yang and Shieh's flow maps does not have 

an equivalent flow pattern in the current flow maps. However, on close observation the 
dispersed bubble and bubbly/slug flow observed in the present experiments corresponds 
to the bubble and plug flow reported by Yang and Shieh (2001) respectively. The 
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boundary of dispersed bubble to bubbly flow obtained in the present experiments 

roughly matches with the boundary of bubble to plug flow in the Yang and Shieh's flow 

map. Also for the boundary of intermittent flow (include the slug/churn flow in the 

current study or the plug/slug flow in Yang and Shieh's study) to annular flow, is in 

good agreement considering the difference of experimental parameters and the effect of 

subjectivity. Theoretically. the effect of gravity is not so important in these two 

transition boundaries. Therefore, the transition boundaries at dispersed bubble and 

annular flow are not so sensitive to the flow orientation. 

The present experimental data are also compared with the air-water upward vertical 
flow for the 4.0 mm tube from Barnea et al. (1983), the 2.05 mm tube from Mishima 

and Hibiki (1996) and the 1.0 mm tube from Fukano and Kariyasaki (1992). The 

disagreement is quite obvious except for the dispersed bubble-intermittent transition 

boundary, see Figures 6.5-6.7. The above conclusion can be predicted by the "Unified 

Model" (Taitel 1990). The transition boundary of dispersed bubble and intermittent is 

less affected by fluid properties as demonstrated in Figure 6.8, which is plotted using 

the "Unified Model". 
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Model" (Taitel 1990). 

6.2 Applicability of the existing models and correlations 

Twelve flow pattern maps were generated based on all the results obtained for the 1.10, 

2.01,2.88 and 4.26 mm tubes at 6,10 and 14 bar pressures. The flow pattern maps are 

compared with the existing models for vertical upward flow in normal size tubes in this 

section. The past work includes the models given by Taitel et al. (1980), Mishima and 

Ishii (1984), McQuillan and Whalley (1985) and the "Unified Model" summarized by 

Taitel (1990). In order to evaluate the difference of the above models and their validity 
in small tubes, the models are first compared each other for air-water flow in normal 

and small size tubes. 

6.2.1 The difference among the existing models 

The models mentioned above had been validated using the earlier experimental data and 

gave satisfactory agreement (Taitel et al. 1980, Mishima and Ishii 1984, McQuillan and 
Whalley 1985, Taitel 1990). However, most of them were based on air - water and in 

normal size tubes shown in Table 6.1. In addition, the existing models might give 
different predictions for some transition boundaries even at the same conditions. The 
discrepancies are partially due to the subjectivities of the observations, such as the 

identifications and classifications of the flow patterns. However, the major 
discrepancies are attributed to the difference of the transition mechanisms on which they 
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are based. In this section, the air-water flow maps at atmospheric conditions in the 1.0, 

5.0,25.4 and 101.6 mm tubes are predicted using the above models and compared with 

each other. In addition, the equivalent flow patterns identified by the above researchers 

are listed in Table 6.2 for the convenience of comparison. For example, the bubbly flow 

in the study of Mishima and Ishii (1984) is 6quivalent to the bubble flow in McQuillan 

and Whalley (1985), the dispersed bubble and bubble flow in Taitel et al. (1980) and the 

dispersed bubble and bubbly flow in the current study. 

Table 6.1 The validated rang of the existing models. 

Model Fluid Temperature ('C) Pressure (bar) Diameter (mm) 

Present 
Experiments R134a Saturated 6,10,14 

1.10,2.01, 
2.88,4.26 

Taitel et al. 
(1980) Air-water 25 1 25,51 

d Air-water 25 1 25,51 
Mishima, an 
Ishii (1984) Steam-water Saturated 34,69 10,13 

Air-water 25 1 51,92 

McQuillan and Steam-water Saturated 34.5,69 10 

Whalley (1985) RII Saturated 6.5 18 

RI 13 Saturated 4 25 

Unified Model 
(Taitel, 1990) Air-water 25 1 51 

Table 6.2 The equivalent flow patterns from the different researchers. 

Present 
Experiments 

Taitel et al. 
(1980) 

Mishima and 
Ishii (1984) 

McQuillan and 
Whalley (1985) 

Unified Model 
(Taitel, 19 

Dispersed 
bubble 

Dispersed 
bubble Bubbly Bubble 

Dispersed 
bubble 

Bubbly Bubble* Bubble* 

Confined 
bubble Slug Slug Plug Slug 
Slug 

Chum Chum Chum Chum Chum 

Annular 
Mist Annular Annular Annular Annular 

*Note: bubble flow in the models of Taitel et al. (1980) and "Unified Model" (Taitcl, 
1990) will develop to slug flow finally when the tube diameter is smaller than 51 mm 
for air-water at atmospheric conditions (I bar, 25 *C). 
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Four separate flow pattern maps predicted by the existing models from Taitel et al. 
(1980), Mishima and Ishii (1984), McQuillan and Whalley (1985) and the "Unified 

Model" summarized by Taitel (1990) are depicted in Figure 6.9 in order to show the 

transition boundaries clearly. Their comparisons are sketched in Figures 6.10-6.14 to 
illustrate the agreement and divergence at the different conditions. As expected the 

models mentioned above can reach agreement on some boundaries but not for all. For 

example, the bubbly-slug boundary given by Mishima and Ishii (1984) is quite close to 

the bubble-plug boundary predicted by McQuillan and Whalley (1985) at all considered 

conditions, i. e. air-water or R134a flow and in normal or small tubes. Sometimes the 

different models can give similar transition boundary only at a particular condition, see 

the chum-annular boundaries in figure 6.11 for the air-water flow in the 25.4 mm tube 

at atmospheric conditions. However, the disagreement on many boundaries is obvious. 
For instant, there is always disagreement on the location of boundary of slug (or plug) 

to chum. In addition, the models based on air-water flow in normal size tubes may 

produce a self-contradicting prediction when applied to a new condition. The typical 

case is that the "Unified Model" creates a region where the slug-chum boundary crosses 

with the chum-annular boundary when it is used in air-water flow in small tubes or 
R134a flow in normal tubes, i. e. the shaded zone in Figures 6.13 and 6.14. Therefore, 

there are very serious limitations on the application of these models. 
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Figure 6.9 Flow pattern maps predicted by the exiting models for air-water now in the 
51 mm. tube at atmospheric conditions (1 bar, 25 T). 

215 



WS) 
10- 

01- Taiteletal (1980) 

Mishirna and Ishii (1984) 

McQuillan and Whalley (1985) 

------- Unified Model, Taitel (1990) 

0 011� (M/S) 
001 01 1 10 100 

l 
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Figure 6.11 Comparison of the different models for the air-water flow maps in the 25.4 

mm tube at atmospheric conditions (I bar, 25 'C). 
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Figure 6.13 Comparison of the different models for the air-water flow maps in the 1.0 

mm tube at atmospheric conditions (I bar, 25 T). 
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Figure 6.14 Comparison of the different models for the RI 34a flow maps in the 25.4 

mm tube at 10 bar. 

6.2.2 Comparisons between the R134a flow maps and the existing models for 

normal size tubes 

The existing models were also compared with the present experiments. The 

comparisons are presented in Figures 6.15-6.26, where the solid lines plotted were 
based on the correlations provided by the past researchers mentioned in the figures. The 

model developed by Taitel et al. (1980) cannot match the transition boundaries obtained 
in the present experiments very well, see Figures 6.15-6.17. Although the prediction of 

the boundary of dispersed bubble-bubbly flow is much improved for the 4.26 min tube, 

the boundary shift direction is totally different. The dispersed bubble-bubbly boundary 

obtained in the present experiments indicates an increase in ul, with u,,. Taitel et al. 

(1980) grouped bubbly flow into slug flow and predict that the dispersed bubble-slug 

boundary shows a decrease in ul, with increases in ugs. Similarly Mishima and Ishii's 

model cannot predict the R134a flow maps accurately, see the Figures 6.18-6.20. For 

example, the model expects an extremely small churn zone, which vanishes completely 

when the experimental pressure increased to 14 bar. However, chum flow is a main 
flow pattern at all experimental pressures in our experiments. This has a lot of 
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disagreements among researchers. The model proposed by McQuillan and Whalley 

(1985) is in complete disagreement with our experimental results, see Figures 6.21- 

6.23. For example, the model predicts a small plug zone, which corresponds to the slug 

flow in the current study. However, slug flow is a main flow pattern in our experiments. 

Comparatively the unified model summarized by Taitel (1990) predicts the dispersed 

bubble-slug boundary for the 4.26 mm tube fairly well, better than the other models, but 

it creates a region where the chum-annular boundary falls in the slug flow zone rather 

than on the right hand side (higher ugs) of the slug-chum boundary, i. e. the shaded zone 
in Figures 6.24-6.26. However, as seen in the figures for the 1.10-2.88 mm tubes, the 

model can no longer predict any of the transition boundaries obtained in the 

experiments when the tube diameter decreases to 2.88 mm and the discrepancy 

becomes larger in the smaller tubes. For example, the shaded region in which the 

predicted annular flow falls into the region of slug flow increases and the disagreement 

on the transition boundary of dispersed bubble to slug/bubbly flow between the 

experimental data and the predictions increases as the diameter gets smaller. Therefore, 

the existing models for the air-water flow in normal size tubes cannot predict the R134a 

flow maps in the small tubes and the results of the models start to deviate further from 

the observations in the present experiments in the smaller tubes or at the higher 

pressure. 

Although the flow patterns for R134a in the 2.88 and 4.26 nun tubes exhibit strong 

characteristics of the normal size tube, the agreement between the current maps and the 

existing models based on air-water flow in the normal tubes is still very poor. From the 

comparisons presented in Figures 6.15-6.26, it is difficult to find which is the main 
factor, diameter or fluid, which causes the discrepancies. However, the comparisons in 

Figures 6.13 and 6.14 reveal that the existing models cannot agree with each other 

when applied for air-water flow in small tubes or R134a flow in normal tubes. It 

indicates that the existing models have strict restrictions on their applicability. They 

cannot be extended to the small tubes or other fluids. Otherwise, they may give 
inaccurate predictions. The above conclusions are also supported by the earlier studies 

reviewed in Chapter 2. For example, Zhao and Bi (2001), as discussed in Section 2.3.2 

(5). Their study revealed that the existing models by Taitel et al. (1980) and Mishima 

and Ishii (1984) could not predict flow patterns in small triangular channels used in 

their experiments. 
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Figure 6.19 Comparison of the RI 34a flow maps at 10 bar and the mo del of Mishima and 
Ishii (1984). 

224 



(rnis) 
10- 

03 

oij 

bubbN 

Transition Zone 
annular 

Mist 

slug c 

Annular 0 1- 
hunr, 

slug 

D,, P., s. d ubbl. 
Confined Bubble 

Bubbry 

001 
01 1 10 0 

(a) 1.10 mm tube 

bubblyy 

annular K4,, t 

Annular 

slug I hurn 

lug 
E-p-. d S. W. 

C 'Inf-d Subbl. 

Bubbly 

l'o IM 
Lig, 

(b) 2.01 mm tube 

bubbiv bubbly - 

Transition Zone 

bby 

r . -I., annular Mist Mist 

OIJ 
Annular 01- Annular 

Churn Slu Churn 

D', 

`ý'piil 

Bubble DIsgp., s. d Bubble 

Confined Subble, Confined Bubble 

Bribbly E3. bbN 

001 nil') 001- 
001 01 Oil 

U, Uri, 

(c) 2.88 mm tube (d) 4.26 mm tube 

Figure 6.20 Comparison of the RI 34a flow maps at 14 bar and the model of Mishima and 
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Figure 6.21 Comparison of the RI 34a flow maps at 6 bar and the model of McQuillan and 
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summarized by Taltel (1990). 

6.2.3 Comparison between the R134a flow maps and the existing correlations for 
small tubes 

Figures 6.27-6.29 compare the present experimental data and the semi-empirical 

correlations for small tubes proposed by Akbar et al. (2003). Obviously the comparisons 

show poor agreement though the correlations have been supported by the earlier data for 

air-water flow in the -1 mm tubes, see Figure 2.24 in Chapter 2. The transition 

boundaries predicted by the correlations (see Table B. 2 in Appendix B) are sketched in 

solid lines and the flow patterns observed in the current study are labelled in brackets. 

None of the flow patterns at the present experiments are predicted well. For example. in 
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most cases slug, churn and annular flow observed in the present experiments are 

predicted as froth (dispersed) flow by the correlations of Akbar et al.. The possible 

explanation to such discrepancy is (1) the proposed correlation was based on the 

experimental data using air-water flow in horizontal tubes. (2) Akbar et al. suggested 

Bo=0.3 as the criterion to define a small tube, i. e. the corresponding critical diameter is 

less than 0.25 mm in the present experimental conditions, see Table 2.1. Therefore, 

there no available correlations that can reasonably predict flow patterns in small 

diameter tubes for a range of pressure and different fluids. 
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Figure 6.27 The comparison between the correlations proposed by Akbar et al. (2003) 

and the present experimental data at 6 bar. 
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6.3 Flow maps in different coordinate systems 

In the current study the flow maps are first plotted and compared on the ug, -uls flow 

maps to investigate the effect of fluid pressure and tube diameter on the transition 

boundaries. For example, the boundaries of bubbly to slug or dispersed bubble to chum 
flow are apparently less aff6cted by the fluid pressure or the tube diameter from the 

comparisons in Figures 5.74-5.80, which indicates that the transition mechanisms may 

relate closely with void fraction. However, other transition boundaries are quite affected 
by the fluid pressure and the tube diameter so that these boundaries at the different 

pressures or tube diameters shift on the ugs-uls flow maps. For example, the transition 

boundaries of slug-chum and chum-annular flow shift towards the region of lower gas 

flow rate as the fluid pressure or tube diameter increase. 

The flow maps are also sketched on different coordinate systems in an attempt to obtain 

general and accurate prediction of the flow patterns in the flow regime studies, see the 
list below. The dimensionless coordinate groups were regarded to be more general and 

effective since they can contain a group of parameters. However, no one coordinate 

group was widely accepted among the researchers yet. The applicability of these 

parameters was examined in the present project. 
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The flow maps based on the above groups seem disorderly without following a clear 

rule. For example, the flow maps using quality and mass flux as the coordinate group at 

the different pressures and diameters are compared in Figure 6.30 for the 1.10 mm. tubes 

and Figure 6.31 for 10 bar pressure, in which the all transition boundaries obtained at 

the different fluid pressure and tube diameter can not match with each other. The same 

conclusions can be obtained for other tubes and pressures. Some groups may consider 

the effect of fluid properties or tube dimension. The flow maps using these coordinate 

systems can provide reasonable predictions at different conditions. Semi-empirical 

correlations may be developed based on these parameters. 
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6.3.1 Flow maps at different pressures 

It seems that the group of Lockhard-Martinelli parameter, X defined in the 

nomenclature and mass flux G can represent the effect of fluid pressure on the transition 
boundaries of slug to chum and chum to annular in the present experiments, see Figures 

6.32-6.35, in which the slug-chum and chum-annular boundaries at the different 

pressures properly superpose for all four tested tubes. They might be the right 

parameters to develop the correlations for the prediction of slug, chum and annular 
flow. A possible reason may be that friction is the dominant force in these two transition 
boundaries. The Lockhard-Martinelli parameter quantitatively presents the friction ratio 
between the gas and liquid phases and mass flux is directly related to the overall fluid 

friction. 

The above assumption is also validated by the air-water flow maps for the small 
diameter tubes obtained in the earlier studies. For example, the transition boundaries 

indicated by solid lines on the current data agree with the Mishima and Hibiki (1996) 

experimental data on the boundary to slug flow, see Figures 6.36 and 6.37. However, 

there is significant distinction with Bamea et al. (1983). The slug-chum and chum- 

annular boundaries obtained in the current study fall in the region of slug flow in the 

flow map of Bamea et al., see Figure 6.38. A possible explanation is that the 

identifications of slug flow and chum flow may be quite different among the 

researchers. The typical problematic zone is a triangular area near slug, chum and 
dispersed bubble flow. Some researchers may identify a flow pattern, such as the flow 

regime in Figure 6.39 (a), as churn flow whilst other researchers may group it into slug 
flow. As a result, some researchers sketched a small region for chum flow, see the flow 

map from Bamea et al. (Figure 2.19 in Chapter 2) and the model from Mishima and 
Ishii (Figure 6.9 b). On the contrary, the present study plotted a bigger area for chum 
flow, which agrees with the models from Taitel et al., McQuillan and Whalley, and 
Unified Model (Figure 6.9 a, c, d). 
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Figure 6.36 Comparison of the slug-churn and chum-annular boundaries in the 2.01 mm 

tube from the present experiments (solid lines) and the air-water flow map in the 2.05 

mm tube from Mishima and Hibiki (1996). 
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Figure 6.37 Comparison of the slug-churn and chum-annular boundaries in the 4.26 mm 

tube from the present experiments (solid lines) and the air-water flow map in the 4.08 

mm tube from Mishima and I libiki (1996). 
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Figure 6.38 Comparison of the slug-churn and churn-annular boundaries in the 4.26 mm 

tube from the present experiments (solid lines) and the air-water flow map in the 4 mm 

tube from Barnea et al. (1983). 

Fukano and Kariyasaki (1993) studied vertical upward air-water flow in 1.0,2.4 and 4.9 

mm tubes. They identified three flow patterns: bubble, intermittent and annular. In fact, 

the bubble, intennittent and annular flow in Fukano and Kariyasaki (1993) correspond 

to confined bubble/slug. slug and churn/annular flow in the present experiments, see 
Figure 6.39 (b)-(d). Therefore, it can be said that the present data agree well with 
Fukano and Kariyasaki (1993) on the boundary from intermittent to annular for 

diameter varying from 1.0 mm to 4.9 mm, i. e. the intermittent-annular boundary in the 
Fukano and Kariyasaki's flow map can be predicted properly by the slug-chum 
boundary obtained in the current experiments because the chum flow is included in 

annular flow in the study of Fukano and Kariyasaki (1993), see Figures 6.40-6.43. 
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Figure 6.39 Flow patterns in the present study and Fukano and Kariyasaki (1993). 

(a) Chum flow in the present experiments. 
(b) Bubble flow in the experiments of Fukano and Kariyasaki (1993). 

(c) Inten-nittent flow in the experiments of Fukano and Kariyasaki ( 1993). 

(d) Annular flow in the experiments of Fukano and Kariyasaki (1993). 
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Figure 6.40 Comparison of the slug-chum and chum-annular boundaries in the 1.10 mm 

tube from the present experiments (solid lines) and the air-water flow map in the 1.0 

mm tube from F ukano and Kariyasaki 0 993). 
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Figure 6.41 Comparison of the slug-churn and chum-annular boundaries in the 2.01 mm 

tube from the present experiments (solid lines) and the air-water flow map in the 2.4 

mm tube from Fukano and Kariyasaki (1993). 
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Figure 6.42 Comparison of the slug-churn and churn-annular boundaries in the 2.88 mm 

tube from the present experiments (solid lines) and the air-water flow map in the 2.4 

mm tube from Fukano and Kari yasaki ( 1993). 
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Figure 6.43 Comparison of the slug-chum and chum-annular boundaries in the 4.26 mm 

tube from the present experiments (solid lines) and the air-water flow map in the 4.9 

mm tube from Fukano and Kariyasaki (1993). 
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transition boundaries of slug to churn and churn to annular. They might be used to 
develop general correlations to predict slug, chum and annular flow. However, this 

possibility needs further investigation. 

6.3.2 Flow maps at different diameters 

After careful evaluation of all the plots obtained with these coordinate systems one can 

reach the conclusion that the use of the Weber number may be a good choice. As seen in 

Figures 6.44-6.46, the transition boundaries of slug-chum and churn-annular for the 

four different diameter tubes are superimposed at all the experimental pressures. It 
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seems to indicate that the effect of channel dimension is to a great extent correctly 

represented by the Weber number and may be useful in deducing the flow regimes for 

different size tubes from such maps. 

The Weber number represents the ratio of inertial force and surface tension, see 
Nomenclature. As discussed in the Chapter 2 Section 2.3.1, both inertial force and 

surface tension are the important forces in chum and annular flow in the smaller tubes. 

This representation is not only valid in the present experiments but also holds true in the 

earlier studies, i. e. the boundary to the annular flow at the different tube diameters can 

match each other properly in the flow maps using Weý, -Wej, coordinate system, see 

Figures 6.47 and 6.48. 
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Figure 6.44 RI 34a flow map with We coordinate system at 6 bar. 
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coordinate system, in the model of Fukano and Kariyasaki (1993). 
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Figure 6.48 Air-water flow map and the boundary to annular flow using the We 

coordinate system, in the model of Mishima and Hibiki (1996). 

6.3.3 General coordinate systems 

From the above discussion it seems that the parameters of X, G, Wegs and Wei, may 

properly consider the effect of fluid properties and tube diameter on the transition 

boundaries of slug-churn and churn-annular and might be the proper parameters to 

predict the slug, chum and annular flow in any condition. However, the above 

assumption cannot be supported by the comparisons depicted in Figure 6.49. 
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Figure 6.49 Comparison of the flow maps with the coordinates of G. Wel, vs. X. Weg,. 

In the above figure four arbitrary groups of experimental data from the different tube 

diameters and fluid pressures are plotted and compared using the coordinates of G. Wels 

vs. X. We,,. Although the flow maps plotted using coordinates of G vs. X and We], vs. 

Wegs apparently include the effect of fluid properties and tube diameter respectively, 

their combination cannot predict well any flow pattern when both tube diameter and 

pressure change. The reason is that parameters G and X may consider the effect of fluid 

properties but cannot include the effect of tube diameter whereas parameters We,, and 

Wegs cannot consider properly the influence of fluid properties on the transient 

boundaries. Therefore, it is urgent to find a pair of new parameters which can account 

for both effect of fluid properties and tube diameter. For example, inertia force, friction, 

gravity and surface tension are the dominant torces in the transition mechanism of churn 

to annular flow based on the force analysis, a semi-empirical correlation for the 

boundary of chum to annular flow could include Froude number Fr, Reynold number 

Re and Weber number We. In the current study the chum-annular boundary is 

consistent perfectly in the flow maps using Wei, vs. FrgsWegs coordinate system at all 

different tube diameters and fluid pressures, see Figures 6.50-6.56. A comparison at 

different diameters and pressures also exhibits perfect consistency on the boundary of 

chum to annular as shown in Figure 6.57. 
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6.4 Summary 

The flow maps obtained in the present experiments were compared with the earlier flow 

maps but show poor agreement in most cases possibly because of the different test 

conditions. Therefore, the flow maps obtained in the present experiments can only 
predict the flow patterns for RI 34a vertical flow in the 1.10-4.26 mm tubes and at 6-14 
bar. In addition, the sketched flow pattern maps are also compared with the existing 

models for normal size tubes indicating significant differences in the 4.26 mm tube and 

more so for the smaller tubes. The compared models include the models given by Taitel 

et al. (1980), Mishima and Ishii (1984), McQuillan and Whalley (1985) and the 
"Unified Model" summarized by Taitel (1990). The most probable reason that causes 
the above discrepancy is that the existing models generally neglect the influence of 

surface tension on the flow patterns but this is actually a dominant force in small tubes. 
Akbar et al. (2003) put forward a set of semi-empirical correlations for small tubes but 

the flow maps in the present study still cannot be predicted properly because (1) the 

proposed correlations are based on air-water flow in horizontal tubes and (2) the tubes 

used in the present experiments are not small enough. 

The experimental data obtained were plotted in various coordinate systems in order to 
investigate the cffect of fluid properties and tube diameter on the flow patterns and help 

to develop general correlations. The comparison results indicate that the Weber number 
may include the effect of tube diameter on the transition boundaries of slug to chum 
flow and chum to annular flow whilst the group of mass flux and Lockhard-Martinelli 

Parameter may be the right parameter to predict slug, chum and annular flow at 
different pressures. Further study reveals that the chum-annular boundaries under all the 
test conditions were consistent perfectly in the flow maps using Weis vs. FrgsWegs 

coordinate system. As a result the new semi-empirical correlations were developed for 

the transition boundary of chum to annular based on the dimensionless parameters of 
Frgs, Weg, and We,.. 
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Chapter 7 Theoretical Study 

The general transition boundaries observed in all the present experiments, which include 

bubbly to slug, dispersed bubble to bubbly, dispersed bubble to chum, slug to chum and 

chum to annular, are analyzed in this Chapter. New semi-empirical models and curve- 
fitting correlations were developed based on all the data points chosen as the regime 
boundaries. Some models and correlations are compared with the existing data for the 

air-water flow in small or normal size tubes and demonstrate good agreement. 

7.1 Bubble rise velocity in slug flow 

Void fraction is a very useful parameter in two-phase flow study. For example, the 

existing models suppose bubbly flow will change to slug flow when the void fraction 

exceeds a critical value, see Appendix B. However, the void fraction in small tubes is 

very difficult to measure accurately. A few traditional methods, like using quick-closing 

valves, will introduce considerable measurement error because of the great volume in 

the valve chamber and the frequently stagnant bubbles along the tube. On the other hand, 

some new measurement instruments, such as neutron radiography (Hibiki et al. 1993), 

are not available in most laboratories. Despite these problems, the void faction in slug 
flow could be calculated properly by measuring the rise velocity of slug bubbles. 

According to the drift flux model, the relationship between the gas velocity and the 
homogeneous velocity can be expressed by the following equation (Mishima and Hibiki, 

1996): 

U9= 
! ýg-' 

= COUh + Ud 
ct 

(7.1) 

In well developed slug flow, all bubbles should flow at the same rise velocity except 

those small bubbles just behind the slug bubbles. In fact, the total volume of these small 
bubbles make only a very small proportion of the gross gas volume in slug flow. 

Therefore, the gas velocity, u., should be approximately the same as the measured rise 

velocity, u, Equation 7.1 can then be rewritten as: 
ug = Ur = COuh + Ud (7.2) 
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The distribution parameter Co and the drift velocity ud in Equation 7.2 may be the 

functions of tube diameter and fluid properties. Ishii introduced the following equations 

for slug flow in round tubes in 1977 (cited from Mishima and Hibiki 1996): 

Co = 1.2 - 0.2 (7.3) 

Ud = 0.35ý gD(pl -p" (7.4) 
pl 

Overall the bubble rise velocity and the homogeneous velocity exhibit excellent linear 

relationship in the present data. The measured rise velocity, including the curve-fitting 

equations, are given in Appendix I and summarised in Table 7.1. The effect of diameter 

and pressure on the rise velocity has been analysed qualitatively in Chapter 5 Section 

5.1.4, i. e. the rise velocity is not affected significantly by the tube diameter and fluid 

pressure in most cases except for the 2.01 min tube at 14 bar and the 1.10 mm tube at 10 

and 14 bar because of the thermal loss. The experimental data indicate that the slopes of 

Ur/Uh are slightly lower in the small tubes at the high pressures and low velocity, see the 

discussions in Chapter 4 Section 4.1.3 (12) and Figures 5.20 and 5.21 in Chapter 5. In 

general the bubble rise velocity became slightly lower when the fluid temperature was 
higher than the ambient temperature due to the thermal loss at the exposed part of the 

observation section. In most cases, such as when the fluid pressure was 6 bar or the tube 

diameters were 4.26 or 2.88 mm, the effect of the thermal loss on the bubble rise 

velocity was not so significant. However, with the decrease of tube diameter and the 

increase of fluid pressure, the measured rise velocity may be slightly slower than the 

expected velocity because of the increased effect of condensation. The qualitative 

analysis and the relative calculations are given in Chapter 4 Section 4.1.3 (12). 

Considering that the magnitude of these measurement errors is very difficult to estimate, the 

measured velocity for the 2.01 mm tube at 14 bar and the 1.10 mm tube at 10 and 14 bar 

will not be considered in the later analysis, see Table 7.2 and Figures 7.1 and 7.2. 
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Table 7.1 The summarized curve-fitting equations for the bubble rise velocity. 

Dimneter 

(mm) 

Pressure 

(bar) 

Bubble rise velocity (u. ) vs. 

eneous velocity (Uh) 

6.0 u. = 1.193Uh + 0.059 

4.26 10.0 u,, = 1.240Uh + 0.044 

14.0 u,, = 1.218Uh + 0.041 

6.0 u, = 1.194Uh + 0.025 

2.88 10.0 u,, = 1.1 78Uh + 0.030 

14.0 u. = 1.208Uh + 0-0 19 

6.0 u. = 1.23 Ouh + 0.0 19 

2.01 10.0 u,, = 1.22 1 Uh + 0.005 

14.0 u,, z 
1.194Uh+0-001 

6.0 u, = 1.244Uh + 0.006 

1.10 10.0 u. = 1.186Uh + 0.013 

14.0 u,, = 1.129Uh + 0.0 14 

Table 7.2 The comparison of the experimental data and the Ishii's equation. 

Diameter Pressure Present experiments Ishii (1977) 

(mm) (bar) 
_ 

Best-fit equation CO Ud co Ud 

6.0 u, = 1.193Uh + 0.059 1.193 0.059 1.17 0.07 

10.0 u,, = 1.240Uh + 0.044 1.240 0.044 1.16 0.07 
4.26 

14.0 u, = 1.218Uh + 0.041 1.218 0.041 1.15 0.07 

Avg. u. = 1.220Uh + 0.050 1.220 0.048 1.16 0.07 

6.0 1 u,, = 1.1 94Uh + 0.025 1.194 0.025 1.17 0.06 

10.0 u,, = 1.178Uh + 0.030 1.178 0.030 1.16 0.06 
2.88 

14.0 u,, = 1.208Uh + 0.0 19 1.208 0.019 1.15 0.06 

Avg. Ug ýL1 90Uh + 0.020 1.190 0.025 1.16 0.06 

6.0 u,, = 1.230Uh + 0-0 19 1.230 0.019 1.17 0.05 

10.0 u, = 1.22 1 Uh + 0.005 1.221 0.005 1.16 0.05 
2.01 

14.0 

Avg. u, = 1.230Uh + 0-010 1.230 0.012 1.16 0.05 

6.0 u,, = 1.244Uh + 0.006 1.244 0.006 1.17 0.04 

10.0 
1.10 

14.0 

Avg. y=1.24x+0: 01 1.24 0.006 1.17 0.04 
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Figure 7.1 The effect of tube diameter and fluid pressure on the distributlon parameter. 
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It seems that fluid pressure does not have a significant effect on the distribution 

parameter and the drift velocity, see Figures 7.1 and 7.2. This result agrees with Ishii's 

equations in principle because the Ishii's equation predicts only 2% change on the 

distribution parameter and almost a constant drift velocity when the pressure increases 

from 6 to 14 bar. The distribution parameter is slightly changed but the tendency is not 

very clear when the tube diameters decrease from 4.26 mm to 1.10 mm in the present 

experiments, which makes it very difficult to consider the effect of tube diameter on the 

distribution parameter correlation. Although the effect of tube diameter on the drift 

velocity is quite significant, it is still very difficult to propose a general correlation 
depending on the experimental data from the current study because (i) the small number 

of previous studies related to the rise velocity in small tubes makes the validation of the 

proposed correlation very difficult, (ii) accurate drift velocity could only be obtained in 

stagnant fluid instead of deducing from flowing system, (iii) large measurement 

uncertainty at low flow rate affects the correlation's accuracy. In the current study, the 

measured rise velocity will be used directly. 

7.2 New developed models and correlations 

Several transition models were put forward and had been validated successfully in the 

earlier studies. These models try to represent the true physics observed in the 

experiments. Some less important factors were ignored in the models in an attempt to 

simplify the description of the physical phenomena so that a mathematical simulation 
was possible. In addition, the transition mechanisms in the different models may 
disagree due to the variance of observation and analysis among the researchers. 
Appendix B reviews the existing transition models for the vertical upward normal size 
tubes from Taitel et al. (1980), Mishima and Ishii (1984), McQuillan and Whalley 
(1985) and the "Unified Model" summarized by Taitel (1990). However, most of the 

earlier works were based on air-water flow in normal size tubes, with the consequence 
that some of the factors that were ignored, which are significant in the smaller tubes can 
invalidate the models in these applications. The later works (Damianides and Westwater 

1988, Lin et al. 1998, and Coleman and Garimella 1999) indicated that the existing 

models could not predict satisfactorily the transition boundaries in small tubes. The 

effect of surface tension must be considered in the transition models for the small 
diameter tubes. The above conclusion is also supported by the present work, see 
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Chapter 6 Section 6.2. In this section, the transition mechanisms are analysed and new 

models and correlations for small tubes are proposed based on the analysis and the 

present data. 

7.2.1 Bubbly - sIug boundary 

According to the models of Taitel et al. (1980) and Barnea et al. (1982) a fully 

developed bubbly flow could not exist in small diameter tubes because small bubbles 

rise faster than slug bubbles and cause coalescence. The critical diameter for the upward 
vertical flow is given as: 

1/2 
PI - pg 

L 

D>19.01[ 
gp-, 12] 

(7.5) 

The calculated critical diameters are between 12 to 16 mm. at the current experimental 

conditions (R134a, 6-14 bar). Therefore, bubbly flow should not exist in the present 

experiments. However, it was observed, see the figures in Chapter 5 Section 5.1.2. The 

possibilities lead to the above inconsistency include: 

(1) The calming distance or in fact the test section itself is too short to reach fully 

developed flow in the present experiments. Barnea and Taitel (1993) reported that 

the required distance for fully developed two-phase flow is about 10-15 m in the 50 

mm tube, i. e. 200-300 times tube diameter. The distance from the outlet of the 
heating section to the visualization point is about 100-170 times the inner diameter 

in the present experiments so that the observed bubbly flow might not be a fully 

developed flow. However, the measured rise velocity, depicted in Figures 5.50-5.53, 

indicates that the observed two-phase flow was already at fully developed state 
because the small bubbles and slug bubbles flowed at the same velocity. This needs 
further investigation and direct evidence. 

(2) When compared to air-water mixing methods usually used in the earlier studies, 
flow boiling might produce finer bubbles even at very low flow rate due to the 

smaller surface tension of R134a. This may delay or terminate altogether the 

coalescence of bubbles, so the transition of bubbly to slug flow is not affected by the 

tube diameter. 

(3) Equation 7.5 was obtained from the experiments using air-water two-phase flow and 
is not suitable for other fluids. 
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The effect of the observation position on the bubbly-slug boundary was not part of the 

current study due to the limitation of the laboratory conditions. In fact, the effect of flow 

state on the transition boundaries was not recognized by all researchers. For example, 
Oya (1971) experimentally testified that the flow patterns were hardly affected by flow 

state. 

The existing studies considered that void fraction was a vital parameter in the transition 

mechanism of bubbly to slug flow. For example, Taitel et al. (1980), Barnea et al. 
(1982), and McQuillan and Whalley (1985) considered that the transition takes place 

when the void fraction is 0.25, whilst Mishima and Ishii (1984) recommended 0.3 as the 

critical void fraction. The void fraction can be obtained from Equation 7.1 as follows: 

ugs 
q (Uý, + U, )+ U, 

(7.6) 

Although the distribution parameter CO and the drift velocity Ud in Table 7.2 are deduced 

from the data of slug flow, their applicability could be extended to the bubbly-slug 

boundary because the examined data covered a wide range from the bubbly-slug 

boundary to the slug-chum boundary and all showed excellent linear relationship. The 

above assumption agrees with Ishii, who proposed the same Co correlation for all bubbly 

flow, slug flow and churn flow, see Mishima and Hibiki (1996). Therefore, the critical 

void fraction at the bubbly-slug boundary in the present experiments can be estimated 
by Equation 7.6. As discussed in Chapter 4 Section 4.1.3 (12), the data analyzed do not 
include the 1.10 and 2.01 mm tubes at 14 bar and the 2.88 and 4.26 mm tubes at 14 bar 

at low velocity, i. e. ul., <O. II m/s for the 2.8 8 mm tube and ulr, <0.07 m/s for the 4.26 mm 

tube because of the measurement error caused by the thermal loss. 

Unlike the existing models for normal size tubes, the critical void fraction at the bubbly- 

slug boundary is not a constant in the present experiments. It is a function of 
homogeneous velocity and apparently is not affected significantly by fluid pressure and 

tube diameter. The transition of bubbly to slug flow starts at a lower void fraction at 
lower homogeneous velocity and shifts to the higher void fraction with increasing 

homogeneous velocity, see Figures 7.3 and 7.4. 
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Figure 7.3 The variation of the critical void fraction with homogeneous velocity at 
different fluid pressures. 
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Figure 7.4 The variation of the critical void fraction with homogeneous velocity at 
different tube diameters. 

The above transition tendency can be explained as follows. When a bubble leaves the 

heating wall, its original size relates closely to the mass flux, fluid properties and tube 

inner surface roughness. Levy (1967) gave a semi-empirical correlation about the 

average distance from the wall to the tip of the bubble, Y11, as 
II 

YH ý C[uD]2[l + C' g (p, 
- p, )D 

- (7.7) 

where 

f, G 
2p, 
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Levy evaluated the constants C and C' from experimental data. It was found that the 
buoyancy force appears to play a negligible part even at low mass velocities compared 
to the shear stress. Thus the second part of Equation 7.7 is neglected. The best-fit value 

of C was found to be 0.015, i. e. the equation for the bubble's average height can be 

rewritten as Equation 7.8. It is proportional to the maximum bubble diameter after 
departure. 

I 
YB (7.8) 

Therefore, bubble size tends to be bigger at lower flow rate. These longer bubbles may 
be big enough to block the channel flow in a small tube, facilitate the coalescence of 
bubbles in the fluid and those "embryonic" bubbles on the tube wall. As a result, the 
liquid slug between two slug bubbles at low fluid velocity has a smaller number of 

small size bubbles than that at the higher velocity, see Figure 5.45 in Chapter S. Slug 

flow could be formed at a lower void fraction in the smaller tube. However, the above 

coalescence process cannot be reproduced in normal size tubes because the original 
bubbles are too small to block the channel flow at either high or low flow rate. In a 

normal size tube, numerous bubbles will be uniformly distributed along the tube and 

many bubbles can coexist in the same section until the void fraction reaches the critical 

value when the bubbles collide and coalesce frequently so that the bubbly flow changes 
to slug flow. This critical void fraction is less affected by the fluid velocity and was 
considered as a constant for normal size tubes in the earlier studies. In a recent seminar 
(Transient Multiphase Flows, 2 nd Feb 2006, Imperial College London), B. J. Azzopardi 

stated that the critical void fraction at the bubbly-slug boundary is not a constant but a 
function of tube diameter. Generally the required void fraction is smaller in the small 
tube when the transition happened. For example, the critical void fractions are 0.68, 

0.40 and 0.25 for the 189,70 and 50 mm tubes, respectively. Based on the above 

analysis and the present data, a curve-fitting equation is proposed for the critical void 
fraction in small tubes, as, 

a, = C, (up + U1, 
Y. (7.9) 

Here the factors cl and C2 are experimental coefficients and may relate with tube 
diameter, fluid properties and bubble original size, i. e. the method of bubble generation. 
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At the present experimental conditions, the coefficients cl and C2 appear to be less 

affected by tube diameter and fluid properties. The experimental relation is given in 

Equation 7.10 after fitting the data shown in Figure 7.5. 

a� = 0.13 8uj, 0- 344 

= 0.1 38(uK, +u /' 
ý. 

-344 

0.20 

0.16 

c: 
2 0.12 

0.08 

0.04 

0.00 

Figure 7.5 The relationship of the homogeneous velocity and the critical void fraction at 

the bubbly-slug boundary. 

The above analysis indicates that the transition of bubbly to slug flow. especially at low 

flow rate, strongly depends on the experimental conditions. Therefore. Equation 7.10, 

which was obtained from the present experiments, might not be applicable to other 

conditions. However. it may explain why the constant critical void fraction cannot 

predict the bubbly-slug boundary well in small tubes and the actual transition starts at 
lower void fraction in lower homogeneous velocity in some experiments, see Figure 7.6. 

The figure shows the models of Mishima and Ishii (1984) and McQuillan and Whalley 

(1985), which using constant void fraction as the criterion, can predict the bubbly-slug 

boundary properly in the region of high homogeneous velocity. The experimental 

transition boundary. which is presented in solid line, shifts to low void fraction as the 

homogeneous velocity decreases. 
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Figure 7.6 The comparison of the existing models and the experimental data from 

Mishima and I libiki (1996) on the bubbly-slug boundary. 

7.2.2 Dispersed bubble - bubbly boundary 

It is assumed that a big bubble separates into two small bubbles in an adiabatic process 

with no mass exchange between liquid phase and gas phase. The bubbles in question are 

round and the two small bubbles have the same diameter. Ignoring the pressure change 
in the bubbles, the total volume of the two small bubbles is equal to the volume of the 

big bubble, i. e. d, = VO-15d. see Figure 7.7. where Ap is the pressure difference of the 

vapour pressure in bubbles and the saturated pressure of the liquid temperature. 

Psat Psat 
Psat 

AP+Psat f. ' i 

APi I Psat 
di 

Psat 
Fi 

Psat 

APi I Psat 
di 

Figure 7.7 One big bubble separates into two small bubbles. 
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The total energy in a bubble can be expressed as: 

ZE = E. + E,,,,. 

where 
Ej,, is the internal energy 
E.,.,. is the surface energy 

The energy change after the bubble split can be expressed as: 

AE = AE,,, + AE (7.12) 

According the law of conservation of energy, the energy increase in a closed volume is 

equal to the work executed by the external forces, i. e. 

AE = IW 
=WP + WF (7.13) 

where 
Wp can be defined as the mechanical work done by liquid pressure, which equals 

to the product of liquid pressure and volume change when a bubble splits. 
WF can be defined as the mechanical work done by the external force from the 

liquid, which equals to the product of the turbulent force and the drift 

distance when a bubble splits into two. 

In the above example, the bubble pressure change when it splits can be calculated as 

A-P -"ý 
(API + P. J - (AP + P.,., ) 

4a 4a (7.14) 
d, d 
1.04a 

d 

where 

d, is the small bubble diameter, i. e. d, = VO--. 5d 

Therefore, the total volume of the two small bubbles is slightly smaller than the volume 

of the big bubble. In an adiabatic process, the mechanical work done by the fluid 

pressure is equal to the increase of internal energy in the bubbles, i. e. AEi,, =Wp. 
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Combining this equation with Equations 7.12 and 7.13, the increase of surface energy is 

equal to the mechanical work done by the turbulent force from liquid, say, 

AE =W sur F 

The change of surface energy of the bubbles can be given as: 
AE. 

r = AAb Cr 

= 2nd, 2a -; zd2a (7.16) 

= 0.26nd'a 

The work by the turbulent force is presented in Figure 7.7, given by: 
WF= Frs (7.17) 

where 

s is the drift distance when the bubble splits into two. 

According to the analysis in Chapter 2 Section 2.3.1, the turbulent force can be 

expressed as (Levich 1962): 
2f F, ocd IPIUI 

Here the distance s is assumed to be proportional to the bubble diameter and therefore 

the work done by the turbulent force can be expressed as: 
23 WF oc f1plul d (7.19) 

Combining Equations 7.15,7.16 and 7.19, we can obtain the critical liquid velocity at 

the transition boundary of dispersed bubble to bubbly flow: 

U, =C 
-: 

- (7.20) a ý 

f, pc I' ed, 

where 
dc is the critical diameter used to distinguish dispersed bubble and bubbly flow. 

The above analysis only explores the bubble splitting process and the required 

minimum homogeneous velocity. On the other hand, small bubbles may collide and 

coalesce into big bubbles. Therefore, the effect of void fraction and Weber number 

should be considered properly because they directly correlate with the probability of 

268 



collision and possibility of coalescence respectively. In other words, high void fraction 

leads to frequent collisions and high Weber number facilitates bubble coalescence. As a 

result, the required fluid velocity at the transition boundary of dispersed bubble to 

bubbly flow increases correspondingly. Therefore, the coefficient C in Equation 7.20 

may include a constant and an enhanced coefficient which relates to void fraction and 

Weber number, i. e. C= CO +f (a, We). Several equation forms were proposed for the 

coefficient C and finally a semi-empirical equation is recommended because it is in 

good agreement with the present experimental data and the previous results for air-water 

flow, see Equation 7.21: 

we112)13] 
a 

)1/2 

u, = 0.45 
[1+ 

4.0(aac, b d, 
(7.21) 

where: 

oc., t: actual void fraction 
2 

Web =. 
pgdcUh 

A-C, 

Reh 

pjDUh 
Reh 

As mentioned above, d,, is the critical diameter used to distinguish dispersed bubble and 
bubbly flow. In the previous air-water two-phase flow studies, the recommended critical 
diameter was given in Chapter 5 Equation 5.2 and was taken to be less than the tube 

inside diameter. In the present study, the critical diameters used were listed in Chapter 5 

Table 5.3. 

In air-water flow, the liquid velocity at the dispersed bubble-bubbly boundary is equal 

to the homogeneous velocity, i. e. UI=Uh=Ug, +Ul,. However, in the present experiments the 

actual liquid velocity is lower than the sum of u., and uls because the actual void 

fraction is smaller than the calculated void fraction, see Table 7.3. Therefore, the actual 

liquid velocity u, must consider the effect of the void fraction correction coefficient k 

and can be deduced by combining the following equations: 
pgug, + P, ul, = pg U, 

g, 
+p, U'b 

aact = kac", 
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where 

aact -I 
up gs 

u gs +U, js 

ugs 

ugs + uls 

The actual liquid velocity can be given by: 

U, = U, gs +U'IS = 
(P9 Ugs +A Uh xU9s + U1, (7.22) 

k(, pgug., -pug, 
)+ 

k is a correction coefficient used to correct the calculated void fraction. As 

mentioned in Chapter 5 Sections 5.1.1 and 5.2.1, the actual void fraction at the higher 

pressure is obviously higher than that at the lower pressure even at the same u., and ul,. 

In detail, the actual void fraction, (Xact, was smaller than the calculated void fraction (Xcal 

and the void fraction at the lower pressure was smaller. However, the above 

phenomenon will not occur in air-water two-phase flow because of their incompatible 

,, and ul,. The a,,, t is the percentage characteristics. The (x,,,, can be calculated based on u, 

of the total volume of bubbles in the inside volume of the tube. The total volume of 

bubbles can be estimated based on the number and average diameter of bubbles. The k 

factors measured in the current study are listed in Table 7.3. 

Table 7.3 The correction coefficient for the void fraction in the present study. 

Fluid Diameter (mm) Pressure (bar) k factor 
6.0 0.212 

1.10 10.0 0.240 
14.0 0.296 
6.0 0.400 

2.01 10.0 0.604 
14.0 0.625 

R134a 
6.0 0.181 

2.88 10.0 0.371 
14.0 0.624 
6.0 0.299 

4.26 10.0 0.391 
14.0 0.562 

air-water - 
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The proposed dispersed bubble-bubbly semi-empirical model is validated by the 

present R134a flow maps and the existing air-water flow maps, including Taitel et al. 
(1980), Barnea et al (1983), Barnea (1987), Fukano and Kariyasaki (1993) and Mishima 

and Hibiki (1996). Taitel et al. (1980), Barnea et al. (1983) and Barnea (1987) did not 
distinguish bubbly and slug flow when the tube diameter was smaller than 51 mm in air- 

water flow at atmospheric conditions because they thought bubbly flow would develop 

to slug flow in fully developed two-phase flow. Therefore, the compared results show 
that the proposed model agrees well with the air-water flow maps in the range of 1.0 to 

5 1.0 mm inner diameter tubes except a few data, see Figures 7.8-7.14. For example, the 

proposed model agrees with Taitel et al. (1980) on the dispersed bubble-bubbly 

boundary in the 51 mm tube except for one data point for bubbly flow, as shown in 

Figure 7.8. In the 25 mm tubes, the proposed model predicts that the transition occurs at 

a slightly higher ul, than the experimental data from Barnea (1987), which is shown in 

Figure 7.9. However, it agrees well with Taitel (1980) under the same conditions, see 
Figure 7.10. In addition, the proposed model and the "Unified Model" predict the same 
boundary when the tube diameter is 25 mm. In the 12.3 mm or smaller tubes the 

prediction by the proposed model is better than the existing models, see Figures 7.11 - 
7.14. The comparisons of the model with the present RI 34a results are presented later in 

Section 7.3. 

(MJS) 
10- 

------. S" 
--- _________ 

... 

0.01 0.1 1 
ugs 

Churn 

* Slug 

* Dispersed Bubble 

Bubbly 

1 -11 (MIS) 

ý 10 100 
the proposed model McQuillan and Whalley (1985) 

Taitel et al. (1980) Unified Model, Taitel (1990) 

Figure 7.8 Comparison of the present correlation for dispersed bubble-bubbly transition 

with the previous models and the air-water flow map using data of Taitel et al (1980) 

for 51 mm tube at 25 "C and I bar. 
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Figure 7.9 Comparison of the present correlation for dispersed bubble-bubbly transition 

with the previous models and the air-water flow map using data of Barnea (1987) for 

25.4 mm tube at 25 0C and I bar. 

(Note the proposed model line and the unified model line overlay in the figure above) 
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Figure 7.10 Comparison of the present correlation for dispersed bubble-bubbly 

transition with the previous models and the air-water flow map using data of Taitei et al. 

(1980) for 25 mm tube at 25 'C and I bar. 

(Note the proposed model line and the unified model line overlay in the figure above) 
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Figure 7.11 Comparison of the present correlation for dispersed bubble-bubbly 

transition with the previous models and the air-water flow map using data of Barnea et 

al. (1983) for 12.3 mm tube at 25 'C and I bar. 
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Figure 7.12 Comparison of the present correlation for dispersed bubble-bubbly 

transition with the previous models and the air-water flow map using data of Barnea et 

al. (1983) for 4 mm tube at 25 'C and I bar. 
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Figure 7.13 Comparison of the present correlation for dispersed bubble-bubbly 

transition with the previous models and the air-water flow map using data of Mishima 

and Hibiki (1996) for 2.05 mm tube at 25 "C and I bar. 
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Figure 7.14 Comparison of the present correlation for dispersed bubble-bubbly 

transition with the previous models and the air-water flow map using data of Fukano 

and Kariyasaki (1993) for 1.0 mm tube at 25 'C and I bar. 
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In the experimental conditions for air-water two-phase flow at 25 "C and I bar, the 

calculated critical diameter based on Equation 5.2 is 3.43 mm. This might be the reason 

that the flow maps for the 2.05 mm and 1.0 mm tube used bubble flow instead of 
dispersed bubble flow to describe the observed bubbles, i. e. the largest bubble in the 

small tubes may have reached the size of the tube inner diameter. Therefore, the 

proposed model uses the tube diameter as the critical diameter to predict the boundary 

of bubble flow in the 2.05 and 1.0 mm tubes. The calculated critical diameter, 3.43 mm, 
is used to sketch the dispersed bubble-slug boundary for the bigger tubes. 

As seen in the above figures, the Taitel et al. model and the "Unified Model" can predict 

well the boundary of dispersed bubble to slug in the normal size tubes but underestimate 

the required liquid velocity when the tube diameter decreases to 4 mm or smaller, see 
Figures 7.12-7.14. By contrast, the McQuillan and Whalley's model agrees with the 

experimental data for the small tubes well but generally overestimates the necessary 
liquid velocity in normal size tubes. In addition, the comparisons presented earlier in 

Chapter 6 Section 6.2 show that the existing models cannot predict well the R134a flow 

maps in the present experiments. The proposed semi-empirical correlation predicts 

properly the dispersed bubble and bubble flow in both normal and small size tubes for 

air-water flow and is in good agreement with the present R134a now maps presented in 

Figure 7.28-7.39. 

7.2.3 Dispersed bubble - churn boundary 

Both the model proposed by Taitel et al. (1980) and the Unified Model (Taitel 1990) 

suppose that dispersed bubble flow cannot exist at void fraction above ccc=0.52 

regardless of how much turbulent energy is available to disperse the mixture. However, 

in the present experiments the calculated quality at the transition boundary of dispersed 

bubble to chum is in the range of 0.007 to 0.025, see the figures in Appendix H. The 

corresponding critical void faction is between 0.20 and 0.30. The possible reasons that 

cause the above disagreement are: 
(1) Dispersed bubbles in two-phase flow tend to gather at the pipe centre and such 

asymmetric distribution becomes more severe in small tubes. As a result the critical 

void fraction in small tubes is smaller than that in normal size tubes. 
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(2) The Taitel et al. model and the Unified Model were based on the experimental 

results for air-water flow, i. e. the surface tension is much higher than R134a used in 

the present experiments. Therefore, the coalescence of bubbles might be easier in 

two-phase R134a flow so that the required critical void fraction is lower. 

The present data is not enough to deduce a precise dispersed bubble-chum correlation. 

In addition, the existing experimental results rarely relate to the boundary of dispersed 

bubble to chum flow in small tubes. However, the obtained experimental correlation for 

bubbly to slug boundary apparently predicts the transition boundary of dispersed bubble 

to chum flow well, which indicates that the two boundaries may follow the same 

transition mechanism but requires more work and further investigation. 

7.2.4 Slug - churn boundary 

Although all researchers gave a similar description or definition for chum flow, like 

chaotic gas-liquid interface and foaming liquid slug, there was no general agreement on 

the criteria to distinguish slug and chum flow. The typically problematic region is the 

triangular area near slug, chum and dispersed bubble flow. Take the flow pattern in 

Figure 5.56 (a) (iii) as an example; some researchers may classify it as slug flow since it 

is a single slug bubble and few small bubbles exist in the liquid. However, other 

researchers may group it into chum flow because of its distorted shape. In the current 

study, it is regarded as slug-chum transition boundary since it possesses both 

characteristics of slug and chum flow. Overall the tendency of the slug-chum boundary 

obtained in this study accords with Taitel et al. (1980) and Brauner and Bamea (1986) 

approximately but distinctly conflicts with Mishima and Ishii (1984) and this may be 

attributed to the different criteria used by these researchers. 

Three transition mechanisms can be summarized based on the observations in the 

present study: 
Mechanism A: slug could be extremely long as the ugs increases and the body starts to 

distort when the length exceeds a certain value. This is a particular phenomenon in 

small tubes and is the main transition mechanism at low ul,, see Figure 5.56 (a) (i). 

However, some researchers may not agree with the above criterion because the slug 
head is still regular bullet shape at this moment, see Figure 5.56 (a) (i). 

276 



Mechanism B: a slug will leave chaotic flow field behind its tail. If any successive slug 
is trapped in this field, its head and body will deform seriously, see Figure 5.56 (a) (ii'). 

This is the dominant mechanism in the middle range of ul,. 
Mechanism C: slug cannot keep its regular shape and change into chum flow at high 

homogeneous velocity due to the great impact force from the surrounding liquid and 

small bubbles. This is the prevailing transition mechanism at high ul,, see Figure 5.56 

(a) (iii). 

A dimensionless correlation is proposed for Mechanism A based on the present 

experimental data using a data analysis tool, i. e. "linest" function in Microsoft Excel, to 

analyse the relativity of the parameters and obtain the best-fit correlation. This tool 

calculates the statistics for a line by using the "least squares" method to calculate a 

straight line that best fits the data. Unlike the "trendline" function in the Chart utility, 

the "linest" function can analyse the relativity of three or more parameters and propose 

a multi-variables correlation. All the semi-empirical correlations, including Equations 

7.23,7.24,7.28 and 7.29 are obtained by this method. The detailed procedure is 

explained below: 

(1) Save the analysed data in Excel sheet. For example, the data at the low ul, region of 

slug-chum boundary is chosen for Mechanism A. 

(2) Analyse the transition mechanism and propose an exponent format correlation, e. g. 

Re=C*We'Fi' 
(3) Calculate all the parameters appearing in the correlation, e. g. Re, We and Fr in the 

equation above. 
(4) Linearize the proposed correlation, i. e. convert the exponent format correlation into 

a linear equation, e. g. ln(Re)=In(C)+m*ln(We)+n*ln(Fr). 

(5) Evaluate the proposed linear equation to seek the constant C, m and n by the 
function "linest", the syntax see the help file in Excel. 

(6) Modify the proposed correlation and repeat steps (2)-(5) until an idea correlation is 

achieved, i. e. the coefficient of detennination is close to 1. 

The deduced correlation for Mechanism A is unlikely to be applicable for normal size 

pipe since the distorted long slug bubble is a particular phenomenon in small tubes. In 

addition, the applicability to other fluids needs further validation because the available 

experimental data is scarce. 
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Mechanism A: 

Rels = 81.08We 1.626 Fr s-0.267 
gs 93 

where 

Re,, = 
pDu,, 

A 

p Du 2 
9 gs We gs 

Fr 0=g 
gs 

Fý-p7j- 

-Ppg ýD ugs 

(7.23) 

As the liquid velocity increases, slug bubbles tend to be shorter so that Mechanism B 

displaces Mechanism A and becomes the prevailing transition mechanism. In the region 
dominated by Mechanism B, an obvious characteristic is that the sketched slug-chum 
boundary is approximately a vertical line in the u,, -ul, flow maps. It indicates that the 

deduced correlation might not include the parameter of liquid velocity or that the 

reference liquid velocity is a constant at the transition boundary. Finally a curve-fitting 

correlation is developed in Microsoft Excel based on the data points at the slug-chum 

boundary, see Equation 7.24. 

Mechanism B: 

Re* = CWec' (7.24) gs 

where 

pD 
2U2 

p DU2 

Re*=' gý ýw' ='" ýwgs 
p, Du, * plul* 

Weg, =p 
DU2 

a 

Re* is a newly introduced dimensionless parameter which presents the ratio of the 
inertia force related to gas velocity and the friction based on a reference liquid velocity. 
u*1 is the reference liquid velocity which is a critical constant at the boundary of slug to 

chum flow. Therefore, Equation 7.24 can be rewritten as: 
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Du' p9 gs = U, * C, (7.25) 
/11 c 

c*( 
a 

In the above equation C* is a dimensional coefficient which includes the unknown 

critical reference velocity u*,. The coefficients C* and C2 can be obtained from the data 

point at the slug-chum boundary, see Equation 7.26 below: 

220.6523 
pgDu 84.53 

pgDu gýr (7.26) 

In the high ul, region the distortion of the slug can be attributed to the great impact force 

from the surrounding liquid and small bubbles. In other words, the slug-chum transition 

boundary in this region is the balance resulting between turbulent force and surface 

tension. The required homogeneous velocity can be given by combining Equations 2.7 

and 2.8, see Equation 7.27 below. 

Mechanism C: 

Uh =C 
Fa 

71p-ID 

where 
uh =U gs 

+ ul, 

C, 

Re, " 

Re. - 
pDu,, 

A 

(7.27) 

The coefficient C is an experimental factor and can be obtained by the developed data 

analysis program after several tests. A value of 2.75 can give good results at the current 

experimental conditions. 

Intermittent flow is subdivided into slug and chum in the present study based on the 

above three relevant mechanisms (A, B, Q. Slug flow takes place at lower gas velocity 

whilst chum flow dominates the higher gas velocity region as shown in Figures 7.26 

and 7.27. 
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Chun flow is ntiways considered as a typical flow pattern in the previous studies for 

small tubes. SoEýrnes it is grouped into intermittent flow but in other cases it might be 

integrated withmular flow. Therefore, the proposed correlations are only compared 

with 6e air-wo flow maps in which chum flow was identified and presented, see 
Figures 7.15-7.9. The compared results show that the proposed correlations accord 

with the earlier Mies when the tube diameter is 25 mm. or less, see Figures 7.15-7.18. 

However, a fewexperimental data at the region of high ul,, which were reported as slug 
flow by Barneactal. (1983) and should be at the left hand of the slug-chum boundary, 

are actually located at the right hand of the boundary predicted by the proposed model, 

see Figures 7.16 and 7.17. The above disagreement may be attributable to the 
differences in the definition of chum flow in the region of high u1s, i. e. the triangular area 

near slug, chum and dispersed bubble flow. Obviously the proposed model 

underestimates tlýe required ugs at the transition boundary when compared with the flow 

map for the 51 Mm tube reported by Taitel et al. (1980), i. e. the predicted boundary is at 
the left side of the experimental boundary, see Figure 7.19. The following comparisons 
include the existing models except that proposed by Taitel et al. (1980) since they 

considered that the slug-chum boundary was a function of the observation position 
which is an unknown parameter in some flow maps. However, the applicability of the 
developed correlations needs further validation because (1) all the comparisons are 
based on air-water flow maps;. (2) the available flow maps are for 4 mm tube or above; 
(3) the data points near the slug-chum boundary are too sparse to prove the validity of 
correlation, see Figures 7.15 and 7.16; (4) the criteria used in the earlier studies for the 
slug-chum boundary may differ from those in the current study because only a small 
number of pictures are available in the existing papers. The typically problematic region 
is the triangular area near slug, chum and dispersed bubble flow as shown in Figure 
7.16 and 7.17. 
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Figure 7.15 Comparison of the present correlation for slug-chum transition with the 

previous models and the air-water flow map using data of Mishima and Hibiki (1996) 

for 4.08 mm tube at 25 0C and I bar. 
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Figure 7.16 Comparison of the present correlation for slug-churn transition with the 

previous models and the air-water flow map using data of Bamea et a]. (1983) for 4 mm 
tube at 25 0C and I bar. 
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Figure 7.17 Comparison of the present correlation for slug-chum transition with the 

previous models and the air-water flow map using data of Barnea et al. (1983) for 12.3 

mm tube at 25 'C and I bar. 

(M/S) the proposed correlations 10- 
Mishima and Ishii (1984) 

McQuillan and Whalley (1985) 

------- Unified Model, Taitel (1990) 

E00E0 El 

IJ 0 

:3 01- 

El El 

001- 

Annular 

Churn 

Slug 

0001 1, (rTVs) 
001 01 10 100 1000 

ugs 

Figure 7.18 Comparison of the present correlation for slug-chum transition with the 

previous models and the air-water flow map using data of Taitel et al. (1980) for 25 mm 

tube at 25 'C and I bar. 
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Figure 7.19 Comparison of the present correlation for slug-churn transition with the 

previous models and the air-water flow map using data of Taitel et al. (1980) for 51 mm 

tube at 25 'C and I bar. 

7.2.5 Churn - Annular boundary 

As mentioned in Chapter 5 Section 5.2.5, transition from chum flow to annular flow is 

assumed to be the result of one of the two mechanisms discussed below. 

Mechanism A: Extremely long slug bubbles evolve to continuous gas core due to high 

void fraction. This is a distinctive phenomenon in small tubes and only appears at low 

liquid velocity. 

Mechanism B: With increasing liquid and gas superficial velocities, the gas velocity 

will increase accordingly until it accumulates enough momentum to blow through the 

liquid block and hold liquid film on the tube wall. 

Based on the present data at the boundary of churn to annular flow, two curve-fitting 

equations, corresponding to the mechanisms A and B, were developed in Microsoft 

Excel, see Equations 7.28 and 7.29. 

Mechanism A: 
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We,, = 1.567 xI 0-l' (Frg, Re g, 

Y. 41 

Mechanism B: 

Frg, Regs = 3.119 x 105 

where 

Reg, 
pgugD 

jug 

Frgs g' 

ýD--g 

PIU2 
We,, I. TD 

a 

(7.28) 

(7.29) 

Annular flow takes place when the gas superficial velocity is higher than the velocity 

calculated by Equations 7.28 or 7.29. Their relativity is depicted in Figures 7.26 and 

7.27. 

The proposed correlations apparently agree with the flow maps for air-water flow maps 

in both small and normal size tubes, see Figures 7.20-7.25. Here, the correlation from 

Mechanism A is only used for the tubes with a diameter smaller than 5 mm. For 

example, the proposed correlations coincide with the I mm. tube flow map from Fukano 

and Kariyasaki (1993). By contrast, the existing models show poor agreement, see 
Figure 7.20. Comparing with the flow maps for the 2.4 and 4.08 mm. tubes from 

Mishima and Hibiki (1996) shown in Figures 7.21 and 7.22, the newly developed 

correlations properly predict the annular flow except for a few data in the high ul, 
region, which were observed as annular flow in the experiments but are predicted as 

chum flow by the proposed correlations. In the 12.3 and 25 mm tubes, the proposed 

correlations agree with both the experimental data from Bamea et al. (1983) and Taitel 

et al. (1980) and the existing models from Taitel et al. (1980), Mishima and Ishii (1984), 

McQuillan and Whalley (1985) and the "Unified Model" summarized by Taitel (1990), 

see Figures 7.23 and 7.24. When the tube diameter increases to 51 mm, e. g. the flow 

map from Taitel et al. (1980) shown in Figure 7.25, the proposed correlation slightly 

underestimates the required ug, at the chum-annular boundary when compared with the 

experimental data. By contrast, the past models generally overestimate the required u,,. 
However, the difference is within a reasonable range. 
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Figure 7.20 Comparison of the present correlation for chum-annular transition with the 

previous models and the air-water flow map using data of Fukano and Kariyasaki 

(1993) for I mm tube at 25 C and I bar. 
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Figure 7.21 Comparison of the present correlation for chum-annular transition with the 

previous models and the air-water flow map using data of Fukano and Kariyasaki 

(1993) for 2.4 mm tube at 25 'C and I bar. 
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Figure 7.22 Comparison of the present correlation for chum-annular transition with the 

previous models and the air-water flow map using data of Mishima and Hibiki (1996) 

for 4.0 8 mm tube at 25'C and I bar. 
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Figure 7.23 Comparison of the present correlation for chum-annular transition with the 

previous models and the air-water flow map using data of Barnea et al (1983) for 12.3 

mm tube at 25 'C and I bar. 
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Figure 7.24 Comparison of the present correlation for chum-annular transition with the 

previous models and the air-water flow map using data of Taitel et al (1980) for 25 mm 

tube at 25 0C and I bar. 
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Figure 7.25 Comparison of the present correlation for churn-annular transition with the 

previous models and the air-water flow map using data of Taitel et al (1980) for 51 mm 

tube at 25 'C and I bar. 
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7.3 Validation of the new models and correlations 

Various transition mechanisms were explored and the corresponding correlations were 
developed in the previous section. The comparisons with the previous experimental data 

indicate that the proposed models and correlations developed from the current 

experimental data may be applicable for air-water flow for both small and normal size 
tubes. Although the use of the above equations is generally straightforward, it does 

require a logical sequence to decide the dominant flow pattern at the cross sectional 

area. Thus, the following steps are suggested to arrive at a unique determination of the 
flow patterns: 

(1) Step 1: check whether it is annular flow. 

Annular flow will take place when the gas superficial velocity is higher than the 

velocity calculated by Equations 7.28 or 7.29. 

Transition boundary A (Equation 7.28) 

We,, = 1.567 xI 0-l' (Frg, Re g., 

Y. 41 

Validated range: R134a, 1.10 - 4.26 mm, 6.0 - 14.0 bar 

Air-water, 1.0 - 4.08 mm, 1 bar, 25 'C. 

* Transition boundary B (Equation 7.29) 

Frg, Re., = 3.119 x 10' 

Validated range: R134a, 1.10 - 4.26 mm, 6.0 - 14.0 bar 

Air-water, 1.0 - 25 mm, 1 bar, 25 'C. 

(2) Step 2: check whether it is bubble or intermittent flow. 

If the data point is in the region of non-annular flow, we check for bubble flow 

(bubbly and dispersed bubble flow) and intermittent flow (slug and chum flow), 

using Equation 7.9. Bubble flow will take place at lower gas superficial velocity and 
intermittent flow is at the middle between bubble flow and annular flow. 

* Transition boundary C (Equation 7.9) 

ac = c. (u., + u, Y' 
where: 
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cl and C2 are the experirnentýl coefficients, which are 0.138 and 0.344 in the 

present experimental conditions, respectively. 

ugs 
C, (Uý, +u 

Co and Ud used in the current study are listed in Table 7.2. 

Validated range: R134a, 1.10 - 4.26 mm, 6.0 - 14.0 bar 

The author considers that this boundary depends strongly on the experimental 

conditions. Therefore, the critical void fractions used in the existing correlations, 

e. g. 0.25 and 0.52, are recommended for the transition boundaries of bubbly to slug 

and dispersed bubble to chum flow in normal size tubes, respectively. 

e Transition boundary D (bubbly to slug boundary) 

ugs 
-=0.25 C', (Uý, + U, + U, 

The following equations can be used to calculate CO and ud for air-water flow in 

nonnal size tubes (Mishima and Hibiki 1996). 

Co = 1.2 - 0.2 and Ud = 0.35 
IgD(, o, - pg) 

V 
P, 

9 Transition boundary E (dispcrscd bubblc to chum boundary) 

u gs = 0.52 
ugs + uls 

(3) Step 3: check whether it is bubbly flow or dispersed bubble flow in the subregion of 
bubble flow. 

The above bubble flow can be further subdivided into bubbly and dispersed bubble 
by Equation 7.21. Dispersed bubble flow will occupy the higher liquid velocity 
region whilst bubbly flow will appear at lower liquid velocity. 

o Transition boundary F (Equation 7.21) 

u, = 0.45 
[1+ 

4.0(a,,,, We, ' 12 3](a 

f1pid, 

where 
U, =U gs 

+ Uls 

(P9 
ugs +A ul, 

xu 
9.1 

+UIJ 
U/ =- 

k(pgug, - pug, )+ p, (u 
,+u gs 

(for air-water two-phase flow) 

(in the present R134a experiments) 
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Validated range: RI 34a, 1.10 - 4.26 mm, 6.0 - 14.0 bar 

Air-water, 1.0 - 51 nun, 1 bar, 25 'C. 

(4) Step 4: check whether it is slug flow or chum flow in the subregion of intermittent 

flow. 
The intermittent flow can be subdivided into slug and chum by Equations 7.23,7.26 

and 7.27. Slug flow will take place at lower gas velocity whilst chum flow will 
dominate the higher gas velocity region. 

9 Transition boundary G (Equation 7.23) 

Re,, = 81.08We I, 626 * -0.267 
gs 

r. 
3 

Validated range: RI 34a, 1.10 - 4.26 mm, 6.0 - 14.0 bar 

Air-water, <5 mm, 1 ar, 50. 

9 Transition boundary H (Equation 7.26) 

2 0.6523 
pgDug, pgDu' 

A= 
84.53( 

a 
91 

Validated range: RI 34a, 1.10 - 4.26 mm, 6.0 - 14.0 bar 

Air-water, <51 mm, 1 bar, 25 'C. 

e Transition boundary I (Equation 7.27) 

2.75 er F o'- 
T, p ,D 

Validated range: RI 34a, 1.10 - 4.26 mm, 6.0 - 14.0 bar 

Following the above sequence a unique flow pattern will be predicted at any condition. 
Figures 7.26 and 7.27 take the small and normal size tubes as the examples to show the 

predicted transition boundaries by the above correlations. The developed correlations 
have been compared with the air-water flow maps individually in the previous sections 

and show good agreement in some conditions. The comprehensive comparisons with 

the present flow maps are summarized in Figures 7.28-7.39 and show excellent 

agreement. In addition, the comparisons in Figures 7.40-7.42 indicate that some models 

and correlations (boundaries A, B, F, G, H, 1) developed from the present experimental 
data may be used for air-water flow in both small and normal size tubes. However, 

further investigation is needed. 
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Figure 7.26 The predicted transition boundary by the new correlations (A, B, C, F, G, 
H, 1) based on the R134a two-phase flow in the 2.01 mm tube at 10 bar pressure. 
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Figure 7.27 The predicted transition boundary by the new correlations (13, F, H, 1) and 
the existing correlations (1), E) for air-water flow in the 25 mm tube at I bar, 25 'C. 
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Figure 7.28 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 1.10 mm diameter tube at 6 bar. 
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Figure 7.29 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 1.10 mm diameter tube at 10 bar. 
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Figure 7.30 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 1.10 mm diameter tube at 14 bar. 
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Figure 7.31 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 2.01 mm diameter tube at 6 bar. 
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Figure 7.32 Comparison between the proposed semi-empirical models or correlations 

and the R134a flow map in the 2.01 mm diameter tube at 10 bar. 
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Figure 7.33 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 2.01 mm diameter tube at 14 bar. 
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Figure 7.34 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 2.88 mm diameter tube at 6 bar. 
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Figure 7.35 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 2.8 8 mm diameter tube at 10 bar. 
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Figure 7.36 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 2.88 mm diameter tube at 14 bar. 
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Figure 7.37 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 4.26 mm diameter tube at 6 bar. 
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Figure 7.38 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 4.26 mm diameter tube at 10 bar. 
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Figure 7.39 Comparison between the proposed semi-empirical models or correlations 

and the RI 34a flow map in the 4.26 mm diameter tube at 14 bar. 
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Figure 7.40 Comparison between the proposed semi-empirical models or correlations 
and the air-water flow map in the 4 mm tube (Barnea et al 1983). 
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Figure 7.41 Comparison between the proposed semi-empirical models or correlations 
and the air-water flow map in the 12.3 mm tube (Barnea et al 1983). 
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Figure 7.42 Comparison between the proposed semi-empirical models or correlations 
and the air-water flow map in the 25 mm tube (Taitel 1980). 

7.4 Summary 

In total, seven new experimental correlations were developed in the current study and 

some of them are compared with the existing flow maps for vertical air-water flow and 

show good agreement. Some correlations, such as Equations 7.22 and 7.27 for the 
dispersed bubble-bubbly and slug-chum boundaries, are based on energy and force 

analysis so that they could be applicable for both two phase R134a and air-water flow 

with a wide range from small to normal size tubes and various fluid parameters. 
Correspondingly. the correlations for the transition boundaries of slug to chum and 

chum to annular, see Equations 7.26 and 7.29, are the results of a curve-fitting program 
based on the present data and assessed by the existing air-water flow maps. However, 

their applicability needs to be validated further because it is impossible to obtain a firm 

conclusion based only on the above comparisons. Comparably, Equations 7.23 and 7.28 

are proposed for the chum-annular and slug-chum boundaries in small tubes only. 
Considering the significant effect of experimental conditions to the transition boundary 

of bubbly to slug, Equation 7.9 is restricted to the current conditions. The new 
developed correlations might have much more extensive application but they need 
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further validation. Finally a logical sequence is suggested to determine the unique flow 

pattern at any condition, see the steps below: 

(1) Step 1: check whether it is annular flow. 

Annular flow will take place when the gas superficial velocity is higher than the 

velocity calculated by Equations A or B. 

Equation A: We,, = 1.5 67 x 10 -" (Frg, Re gs 

Y. 41 

Equation B: Frg, Reg, = 3.119 x 10' 

(2) Step 2: check whether it is bubble flow or inten-nittent flow. 

If the gas superficial velocity does not satisfy the above conditions check for bubble 

flow (bubbly and dispersed bubble flow) and interinittent flow (slug and chum 
flow). Equation C is for the transition boundary of bubble to intermittent flow in the 

current study. Equations D and E are for the transition boundaries of bubbly to slug 

and dispersed bubble to chum flow in normal size tubes respectively. 

Equation C: a, = C, (Uý, + U, Y, 

cl and C2 are the experimental coefficients, which are 0.138 and 0.344 in the present 
experiments respectively. 

Equation D: Ugs 
-=0.25 q (Ug, 

+ U, 
) 

+ U, 

Equation E: Ugs 
= 0.52 

Ugs + U1, 

(3) Step 3: check whether it is bubbly flow or dispersed bubble flow in the subregion of 
bubble flow. 

The above bubble flow can be further subdivided into bubbly and dispersed bubble 
by Equation F. Dispersed bubble flow will occupy the higher liquid velocity region 

whilst bubbly flow will appear at lower liquid velocity. 

Equation F: u, = 0.45[1+ 4.0(aacWebl /23](a 
)1/2 

p, d, 

where 

U, = UP + ul, (for air-water two-phase flow) 

ul =- 
(Pgugs +PIUIXugl +Uj 

- (in the present RI 34a experiments) k(pgug, - pug, )+ p, (ug, + u,, 
) 
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(4) Step 4: check whether it is slug flow or chum flow in the subregion of intennittent 

flow. 

The intermittent flow can be subdivided into slug and chum by Equations G, H and 
1. Slug flow will take place at lower gas velocity whilst chum flow will dominate 

the higher gas velocity region. 

Equation G: Re,, = 81.08We 1.626 Fr s-0.267 
gs gs 

pgDU2 
0.6523 

Equation H: gs = 84.53 
A 

Equation 1: u,, = 2.75 (7 F7lp-, 7lD 
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Chapter 8 Conclusions and Recommendations 

The rapid developments of micro-devices and systems require accurate prediction of 

two-phase flow patterns in small channels but this has not been accomplished yet. The 

present project used R134a as the working fluid. Four test sections with the diameters of 
1.10-4.26 mm. were tested at a pressure range of 6-14 bar to investigate the effect of 

channel dimension and fluid parameters on flow patterns in small tubes. In total, twelve 

flow maps were plotted based on the 2392 experimental data collected in the present 

experiments. Seven typical flow patterns, i. e. dispersed bubble, bubbly, confined bubble, 

slug, chum, annular and mist, were observed. Seven new correlations are developed in 

the current study for the prediction of the transition boundaries of dispersed bubble- 

bubbly, dispersed bubble-chum, bubbly-slug, slug-chum and chum-annular. Some 

correlations are compared with the existing flow maps for the vertical air-water flow 

from small to normal size tubes and show good agreement. 

8.1 Conclusions 

The following conclusions can be obtained based on the observations and analysis in the 

current study. 
(1) The experimental facility covered a wide experimental range with high 

measurement accuracy. 
(2) Seven typical flow patterns were observed in the present experiments, including 

dispersed bubble, bubbly, confined bubble, slug, chum, annular and mist. 
(3) Confined bubble flow was observed in the 1.10 and 2.01 mm tubes only so that a 

tube diameter around 2.0 mm can be regarded as the critical diameter between 

small and normal size tubes at the current experimental conditions. 
(4) Slug bubble rise velocity is approximately linear to the homogeneous velocity. The 

effect of fluid pressure and tube diameter on the rise velocity is small. 
(5) Slug bubble relative length, i. e. length-diameter ratio, is little affected by the tube 

diameter and fluid pressure. 
(6) Slug-chum and chum-annular boundaries shift towards the region of lower gas 

superficial velocity as the pressure increases, whilst little effect was observed on 
the dispersed bubble-bubbly, dispersed bubble-chum and bubbly-slug boundaries. 
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(7) Slug-chum and chum-annular boundaries moved to higher gas superficial velocity, 

whilst dispersed bubble-bubbly boundary shifted to higher liquid superficial 

velocity when the tube diameters decreased from 4.26 to 1.10 mm. The diameter 

has little effect on the boundaries of dispersed bubble to chum and bubbly to slug 
flow. 

(8) The existing models or correlations cannot predict R134 flow patterns in small 

tubes well. 
(9) Seven new semi-empirical models and correlations were developed for the 

prediction of the transition boundaries of dispersed bubble-bubblY, dispersed 

bubble-chum, bubbly-slug, slug-chum and chum-annular based on the present data. 

(IO)The correlations for the transition boundaries of dispersed bubble-bubbly, slug- 

chum and chum-annular may be used to predict the flow maps for the vertical air- 

water flow from small to normal size tubes but their applicability needs further 

investigation. 

8.2 Recommendations 

Based on the current experimental facilities, the following tasks are strongly 

recommended for further research. 
(1) Smaller diameters need to be tested to confirm further the effect of diameter on the 

flow pattems. 
(2) Lower experimental pressure is suggested to achieve fluid properties which may be 

closer to the practical range of R134a used in systems. 

(3) The experimental facility, except the R134a tank, is made of stainless steel. The 

capacity of the pump, heaters, flow meters and other devices is big enough to cover 

a wide range. Therefore, a new two-phase flow, such as steam-water, carbon- 
dioxide can be tested in the future to reveal the effect of fluid properties further. 

(4) It is recommended to build new test sections for the measurement of void fraction 

because it is a vital parameter in the transition mechanism of flow regimes. 
(5) The experiments for R134a two-phase flow in horizontal and inclined small tubes 

can be integrated with the present study and may generate more general models and 

correlations. 

(6) Experiments on parallel channels, which are possible with this facility, can be more 

useful for practical applications in compact/mini heat exchangers. 
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Figure A. I Tube geometries and flow orientations used in studies reported in the 

literature (1960-2004) for small channels. 
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Figure A. 2 Fluids and test modes used in studies reported in the literature (1960-2004) 

for small channels. 
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Appendix B 

The Existing Flow Pattern Models and Correlations 

Appendix B summarizes the existing models and correlations. Table B. I introduces the transition 

models for vertical upward flow in normal size tubes, which include the models from Taitel et al. 
(1980), Mishima and Ishii (1984), McQuillan and Whalley (1985) and the "Unified Model" 

summarized by Taitel (1990). Table B. 2 introduces the semi-empirical correlations for small tubes 

summarized by Akbar et al. (2003). 

Table B. I Summary of the upward flow pattern transition models in vertical normal size tubes. 
Boundary Authors Conditions and Equations 

Taitel et (1) Turbulent fluctuations are vigorous enough to cause the bubbles to break into 
al. (1980) dispersed bubbles 

gýl -pg) 
0.446 

D 0.429(a/pl)0.089 [ 
uls+u =4 .0 9S 

V 0.072 P/ I- 

(2) Void fraction is less than the critical void fraction, i. e. ct<ot,, (x, =0.52 . 
ugs 

am uh=u93+UjS 
Dispersed Uh 
bubble to Taitel (1) Bubble size is small enough, i. e. d, t'Cdd and d, t<dcb intermittent 
flow 

(1990) 3/5 
-- 11 2/5 Ugs 2fh 

U3 d Uh =U +U = 
(0.725 

+ 4.15Va 
t 

/C ') K- am ,j IS 93 Dh uh 
7l 

1/2 2 04a dcb =3P, . 
fhUh 

d, d =2 
" 

8 - coso 1 P Pg P, Pg g 

(2) Void fraction is less than the critical void fraction, i. e. cc<cc,, ct, --0.52. 
UP 

a su Uh = Ugs + Uls 
Uh 

Taitel et (1) The tube diameter is large enough. 
al. (1980) ýL 1/2 

D> 19 0 1[ 
p g 

. 2 gpi 
(2) Void fraction is less than the critical void fraction, i. e. a<0.25 , which deduced to 

1/4 

Bubble to ul, = Mug, - 1.15 
Pg 

[ýL 
IP2 

slug I 
Mishima Transition occurs at a void fraction of around 0.3. 
and Ishii )- 1/4 

3.33 0.76Fogk-P (1984) _1)ug, g ul, =( CO -C0L 
P/2 

where 

CO = 1.2 - 0.2 
F-L'091- 

(for round tubes) or CO = 1.35 - 0.35 
F-L'091- 

(for rectangular ducts) 
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Table B. I Summary of the upward flow pattern transition models in vertical normal size tubes (Cont. ). 

Boundary Authors Conditions and Equations 
McQuillan (1) Liquid flow rate is large enough. 
and 
Whalley 6.8 [gaýj 

_D0.112 'Og 
)ý. 278 ýD 

U's ý- - 
(1985) 41 70.44 

1 
(2) The dispersion forces are not dominant to suppress the formation of gas plugs, i. e. 

a<0.25 
ý- 1/4 r 

_ O g ' g 
ul, =3. Ougs -1.15 __ 2 L 

P1 
_ 

(3) Void fraction is bigger than the critical void fraction, ctý=0.74. 

Bubble to a >a, where am 
U93 

slug UP + U/S 
Taitel (1) The tube diameter is larger the critical diameter given by. 
(1990) 1/2 

2.34 sin 
2o Fk -Pgý 

] 
D, = (0.35 sin 0+0.54 cos OY 

[ 
gpi 2 - 

(2) The inclination angle is larger the critici I angle, which is given below. 

U'2 C 
It Y2 cosO, 3 

45* , 
( ) 

= cos 
sin 20,4 gd 

(3) The distance between bubbles I : comes less than half the radius of the bubbles. 
a<0.25 
(4) The flow is not annular flow. 

Taitel et Taitel et al. considered chum flow to be an entry region phenomenon; the location of the 
al. (1980) slug-chum transition boundary depends on the point of observation along the pipe. 

LE rugs + U/S 
-= 40.6ý =__ + 0.22) 
D VgD 

Mishima It is assumed that the transition from slug to chum flow occurs when the mean void 
and Ishii fraction over the entire region reaches the mean void fraction in the slug-bubble section. 
(1984) Combining 

0.75 
(C(j 

-I 
Xug, 

+ uls 
)+0.3 

5&1 - pg )gDlýj_ A 
a= 1- 0.813 

ugs + ul, + 0.75V(pi - pg)gDlpl 
(ýj 

- pg)gD31pjvj2 
1/18 

Slug to 
I 

with 
chum U99 

C4 = FO (ug, 
+ ul, 

)+0.3 5&1 - pg )gDlpl 

where 

CO = 1.2 - 0.2 
FEP91_ 

(for round tubes) or CO = 1.35 - 0.35 
F_6P91_ 

(for rectangular ducts) 

Taitel There are a few or no bubbles in liquid slug. a, > 0.52 
(1990) 2 

2fh Uh3 
2/5 

A 
3/5 

0.725] a, = 0.058[dc 
( 

I 
dc = min(dcd, dcb) 

aitel et Gas velocity in the gas core is sufficient to lift the entrained droplets. 
Chum to 1. (1980) ) 1/4 [Ogk 

-P 
annular g 

ug, = 3.1 
f iý2_] 

[ 
gg 
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Table B. I Summary of the upward flow pattern transition models in vertical normal size tubes (Cont. ). 

Boundary Authors Conditions and Equations 
McQuillan Inertia force dominates gravity. 
and gDV -p Whalley I g Ugs = 
(1985) Pg 

ishima (1) Flow reversal in the liquid film section along large bubbles. 
and Ishii 
(1984) -pg kD 

Ugs 
(a-0.11) 

Pg 

0.75 
+ 0.35V(pi - pg)gDlpl 9S + Ujj (C 

0 _IXU 
a= 1- 0.813 

. . 3/PIV/21/18 
ugs + ul, + 0.75&j - pg )gDlpl pg 

)gD 

(2) Destruction of liquid slugs or large waves by entrainment or deformation. 
1/4 

0 2 , UP Ný 

where 

Nýd = 
P1 

avalAo -P 
)FF [P 

l g I 
raitel (1) The liquid film thickness is thin enough, i. e. the film thickness obtained from 

Churnto (1990) combining 
annular 2 I 

Apg 
U 9S 

2 2ý/ 
L DY 

with 

2][1 -n L 
pg 

)D 
sin 0[-. 

6 2-n D 
Ti =g -2 - P1 U Is 

('5 
+ 51 C' 

) 
2 2 V, D D (ýD_VIDY) 

is less than the solution from 

22 -n 
(1-29/ 

(D) 
2-n 

+ /1Y I ýý 
gý-pg)Dsin 

(1- 
CIPI U/S 0 - 

I- 

(ýD 
Ly 

3 D) D) 16 

(2) Lower liquid hold-up 
a, A, 

ý: 0.5 
asc A a., 
Barnea and Bratmer (1985) estimated the maximum stable liquid holdup (x,, to be 0.48. 
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Table B. 2 The semi-empirical correlations for small tubes (Akbar et al. 2003). 

Boundary Conditions and Equations 
We -: 50.11M'" for We,, :53.0 gs LT 

Surface tension dominated zone Wegs :51.0 for We, > 3.0 

Weg, ý: 11.0 We'O' 
Inertia dominated zone I (annular flow zone) We, 

--5 
3.0 

Weg, > 1.0 

Inertia dominated zone 2 (dispersed flow zone) We, > 3.0 
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Appendix C 

Validation of the Existing Experimental Facility 

The existing test facility was designed for flow boiling heat transfer experiments instead 

of flow pattern experiments. Some parameters required in the flow pattern experiments 

exceed the original designed range. Therefore, it was necessary to re-evaluate the 

capacity of the existing experimental facility and the possible modifications that were 

required. A summary of the key equipments used is also included here. 

CA R134a experimental system 

(1) R134a Tank 

Manufactory 

Model 

Design pressure 
Volume 

Heater 

ESK Schultze 

OSA - 40 

25 bar 

40 L 

1.0 kW 

(2) R134a Pump 

Manufactory 

Model 

Power supply 
Fluid 

Flow 

Head 

Design pressure (suction) 

(discharge) 

Design temperature 

Viscosity 

Tuthill Pump Group 

10 10/028 (gear pump) 
370 W, I PHASE, 220 - 240 V, 50 Hz 

R134a 

6 lit/min 

5 bar 

IS barg 

20 barg 

-30-100 'C 

0.3 - 1.0 Cp 
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The maximum flow rate required in the flow pattern experiments was at the condition of 
4.26 mm test section, 6.0 bar, maximum ul, (5 m/s) and ug, (10 m/s). 

AG 2rD2(Pgugs+Plul., 
) 

pl 4p, 

7r x 0.00426 2X (29.0 x 10 + 1218.2 x 5) 
4x 1218.2 

- 7.16 x 10-' m'/s 

=4.30 lit / min 

Therefore, the selected pump can provide the required flow rate. 

The pump head should be checked by the total pressure loss in the loop. The formula 

developed by Mishima and Hibiki (1996) for small tubes was used here. 

(012 = 
AP 

+C 
AP, x 

C=21(1-e -0.333D 
) 

The single liquid phase pressure gradient due to friction is given by Chisholm (1983): 

AP, LPI-U-I'L D 

where 
C, Re7, " is 

The calculation results are given in Table C. 1. 

Table C. I Total pressure losses in experimental system. 

Test section diameter 1.10 2.01 2.88 4.26 mm 
Conduit diameter 10.0 10.0 10.0 10.0 mm 
Test section length 0.54 0.83 1.10 

- 
1.40 m 

Conduit length 48.00 48.00 48.00 48.00 m 
Pressure 6 14 6 14 6 14 6 14 bar 

Temperature 21.56 52.45 21.56 52.45 21.56 52.45 21.56 52.45 'C 

Gas superficial velocity 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 M/S 
Liquid superficial velocity 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 m/s 
Pressure drop at test section 5.5 

1 
6.6 5.6 7.0 5.8 7.2 5.4 6.9 bar 

Pressure drop at conduits 0.0 0.0 0.0 0.0 0.2 0.2 0.7 0.8 bar 

ITotal pressure loss 5.5 6.6 5.6 7.0 6.0 7AT 6.1 7.7 
l 
bar 

I 
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The maximum pressure loss happens in the 4.26 mm tube at 14 bar, is 7.7 bar, which 

seems beyond the lift range of the pump. However, the practical measurement indicated 

that the above equations overestimated the pressure loss in two-phase flow. For example, 

the measured pressure drop was about 1.9 bar when the vapour and liquid superficial 

velocities were 9.95 m/s and 4.42 m/s in one of the present experiments. The calculated 

pressure drop is 3.9 bar which is double of the measured value. Therefore, the existing 

pump could be suitable for the proposed flow pattern experiments. 

(3) Mass flow meters 

ELITE CMFOI 0: 

Manufactory 

Type 

Nominal flow range 
Maximum flow rate 
Applied flow range 

Accuracy (at 0.5 kg/hr) 

(at 25 kg/hr) 

ELITE CMF025: 

Manufactory 

Type 

Nominal flow range 
Maximum flow rate 
Applied flow range 
Accuracy (at 25 kg/hr) 

(at 500 kg/hr) 

Micro Motion Ltd 

Coriolis mass flow meter 
0-82 kg/hr 

108 kg/hr 

0-25 kg/hr 

0.51% 

0.11% 

Micro Motion Ltd 

Coriolis mass flow meter 
0- 1090 kg/hr 

2180 kg/hr 

25-500 kg/hr 

0.51% 

0.11% 

The maximum flow rate of the proposed experiments is 327.4 kg/hr. Therefore, the 

Coriolis mass flow meters are big enough in the flow pattern experiments. The practical 

measuring spans were decreased to 25 kg/hr and 500 kg/hr in order to improve their 

measuring accuracy. 
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(4) Chiller 

Type 

Heating exchange area 

Design capacity 

tube-in-tube exchanger 
0.13 m2 
3.1 kW (at 55 K temperature difference) 

The chiller was not used in the flow pattern experiments. The two valves used to isolate 

R22 cooling system were always closed. 

(5) Preheaters 

No. I heater (regulable) 0- 1350 W 

No. 2 - No. 5 heaters (fixed) 5x 1350 W 

Small preheater (regulable) 0-30OW 

The purpose of the preheaters is to obtain the desired temperature at the inlet of the test 

sections. Otherwise, the excessive subcooling degree may lead to an unstable 

experimental state. However, the designed preheater could not work well in the flow 

pattern experiments because of the excessively long conduit between the preheater and 

the test sections. In low flow rate experiments, it needed a very long time to reach 

steady state. Therefore, a smaller tape heater was wrapped on the conduit just before the 

test sections. The existing variac for the No. 1 heater was used to control this 300 W 

preheater. 

Test sections 

The test sections have been introduced in detail in Chapter 3 Section 3.3. The detailed 

dimensions and structure, take the 1.10 mm test section as an example, are presented in 

Figures C. I and C. 2. 
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Drawing No. FP-T 110-00 

5 

4 

2 

3 

r. 

I: I 

Notes: 7 studding M5 1.650mm steel 4 111- 
6 flange module F-P-T 110-04 316L I Ile. 

1. The draw ing is only available for the 5 glass tube ID 1.10min, L-200mm Pyres glass I ne. 
ID1.10 nim test section. 4 electrode & connecter FP-1 110-03 1 Ile. 2. All dintensions in figure are in torn 

3 clectiode & connecter FP-T 110-02 1 ne. 
2 tube ID I 10mm L 305mm 3161,1 ne. 
I flange module 1`11- 1 110.0 1 3161,1 new 

No. narne drawing & type material qt. 

Figure C. I Design drawing of the 1.10 mm test section (I ). 
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The specifications of the all test sections are summarized below based on the above 
design drawings. 

Material (calming section): 

(heating section): 
(observation section): 

1.10 mm test section: 
Diameter (stainless steel tube): 

(Pyrex glass tube): 

Length (total) 

(calming section): 
(heating section): 
(observation section): 

Resistance (heating section): 

2.01 mm test section: 
Diameter (stainless steel tube): 

(Pyrex glass tube): 

Length (total) 

(calming section): 
(heating section): 
(observation section): 

Resistance (heating section): 

2.88 mm. test section: 
Diameter (stainless steel tube): 

(Pyrex glass tube): 

Length (total) 

(calming section): 
(heating section): 
(observation section): 

Resistance (heating section): 

stainless steel 

stainless steel 
Pyrex glass 

1.10 mm (ID) x 1.60 mm (OD) 

1.10 mm (ID) x 7.8 mm (OD) 

lolomm 

loomm 

150 mm 
200 mm 

0.107 - 0.112 f2 (10 - 60'C) 

2.01 mm (ID) x 2.39 mm (OD) 

2.01 mm (ID) x 7.6 mm (OD) 

98omm 

175 mm 
210 mm 
300 mm 
0.119 - 0.125 Q (10 - 60'C) 

2.88 mm (ID) x 3.18 mm (OD) 

2.88 mm (ID) x 7.8 mm (OD) 

1260 mm 

225 mm 
300 mm 
450 mm 
0.156 - 0.164 0 (10 - 60'C) 

328 



4.26 mrn test section: 
Diameter (stainless steel tube): 

(Pyrex glass tube): 

Length (total) 

(calming section): 
(heating section): 
(observation section): 

Resistance (heating section): 

4.26 mm (ID) x 4.75 mm (OD) 

4.26 mm (ID) x 9.4 mm (OD) 

1350 mm 
235 mm 
500 mm 
450 mm 
0.108 - 0.113 0 (10 - 60 ' C) 

(7) Separator 

Type 

Diameter 

Volume 

centrifugal 

50 mm 
0.0004 M3 

(8) Condensers 

R134a condenser: 
Type 

Heating exchange area 

tube-in-tube exchanger 
0.79 m2 

Design capacity 11.6 kW (at 10 K temperature difference) 

Small condenser (in RI 34a tank): 

Type 

Heating exchange area 
Design capacity 

immersed tube exchanger 
0.016 m2 
500 W (at 40 K temperature difference) 

The created vapour in the test sections is condensed in the condensers. In fact, the fluid 

temperature was always higher than the ambient temperature in the present experiments. 
Therefore, the surrounding air also contributed, i. e. heat loss to the ambient. In some 

experiments, the two condensers were not needed at all, see Table C. 2. 
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Table C. 2 The launch of the condensers. 

Tube diameter (mm) 1.10 2.01 2.88 4.26 

Pressure (bar) 6.01 10.0 
114.0 

6.01 10.0 14.0 6.0 10.0 14.0 6.0 110.0 
14.0 

Small condenser x x x x x x x x x 
jBig 

condenser x 
- 

x 
::: ] 

The required capacity of the condensers can be calculated by the following equation, in 

which the energy dissipation to environment is neglected. Obviously, the maximum 

requirement happens at the conditions of 4.26 mm tube, 14 bar and 10 m/s ug, 

;rD2 
pgu. hfg 

4 

;rx0.00426 2x 70.7 x 10 x (424879 
- 275669) 

4 
1504 W 

Therefore, the existing condensers can condense all vapour generated in the flow pattern 

experiments. 

(9) Current transformer 

Manufactory 

Model 

Current range 
Voltage range 
Max. output 

Todd Systems Inc. 

HC 56100B 

0- 100 /0- 200 A 

0- 56 /0- 28 V 
5600 VA 

C. 2 R22 cooling system 

In the flow pattern experiments, the R22 cooling system should be capable of absorbing 
all heat created in the experimental system. The existing cooling capacity is 12 kW at an 

evaporating pressure of 2.5 bar (-20 * Q, which satisfies the requirement of the 

experimental system, i. e. 1504 W. 
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(1) Compressor 

Manufactory 

Model 

No. of cylinder 
Power supply 
Displacement (1450 RPM 50Hz) 

Cooling capacity 

Max. pressure (LP/HP) 

Max operating current 
Working Fluid 

Oil 

Crankcase heater 

Bitzer 

4CC - 6.2 (semi-herrnetic) 

4 

380 - 420 V, Y3 phase, 50 Hz 
32480 m3/h 
12.0 Kw (3 0'C condensing temperature, 

-20 *C evaporating temperature) 

19 / 28 bar 

15.9 A 

R22 

Bitzer B 5.2 

120 W 

(2) Oil separator 

Manufactory 

Model 

Efficiency 

Temprite (Europe) Ltd. 

903 

99.97 % of all oil greater than 0.03 microns 

(3) R22 condenser 

The condenser and receiver are the components of the air conditioner unit K750CS. 

The compressor was broken during the commissioning. The capacity of the new 
compressor was only slightly smaller than the original unit. Therefore, the existing 
condenser and receiver are bigger enough for the new unit. 

Manufactory 

Unit model 
Number of fans 

Fan power 
Total air volume 

Dorin 

K750CS 

6 

34 W 
10400 m3/hr 

i 
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(4) R22 receiver 

Manufactory Dorin 

Unit model K750CS 

Test pressure 20 bar 

Volume 14 L 

(5) R22 tank 

Test pressure 20 bar 

Volume 55 L 

Heater 350 W 

(6) R22 pump 

Same as the RI 34a pump 

(7) Oil pump 

Supplier Omega 

Model FPUGR 101 (gear) 

Power supply 370 W, I PHASE, 230 V, 50 Hz 

Flow 0.9 - 0.61 GPM (reference fluid: water) 
Head 0- 100 psi (reference fluid: water) 

(8) OR tank 

Test pressure 20 bar 

Volume 12.5 L 

(9) Thermostatic liquid level control equipment 

Manufactory Danfoss 

Model TEVA 20-20 

Temperature -50 - 10 0c 
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Heater 

Capacity 

low 

15.4 kW (R22, AM bar) 

(10) Hot gas bypass regulator 

Manufactory 

Model 

Maximum rated pressure 
Adjustment range 

Temperature range 

Parker 

A9 

27.5 bar 

0.33 - 8.2 bar 

- 45 - 93 *C 

C. 3 Control and data acquisition system 

(1) Computers 

Data collecting computer: 
Manufactory 

Model 

Operating system 
CPU 

RAM 

Hard disk 

Monitor 

Dell 

Dimension V400C 

Windows 2000 

Pentium Celeron 400 MHz 

256 MB 

6.4 GB 

15" 

Flow pattern monitoring and recording computer: 
Manufactory Dell 

Model Dimension 8300 

Operating system Windows XP (Home Edition) 

CPU Pentium IV 2.4 GHz 

RAM 512 MB 

Hard disk 120 GB 

Monitor 17" UltraScan 
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(2) Data loggers 

Data logger 1: 

Model S13535F 

Input module 35301 J high speed solid state scanner 
Number of input channels 20 per module (Max. 200 input channels) 
Max. scan rate 500 / second 
Max. measured voltage 13.7 V 

Max. voltage to ground 14 V 

Integration time 0.625 - 80 ms 
Voltage range 0- 10 VDC (in the current experiments) 

stability (0.005% rdg +2 digits + 3gV)/year 

temperature effect (0.00 1% rdg + 0.1 gV)/K 
Output module S135301E analog 
Number of output channels 5 

Range (voltage) 0-10V 

(current) 4- 20 mA 

Data logger 2: 

Model S135951E 

Number of input channels 20 

Max. measured voltage 12 V 

Max. voltage to ground 500 V 

Integration time 1.25 - 20 ms 
Voltage range 0- 20 mV (in the current experiments) 

stability (0.02% rdg + 51W)/year 

temperature effect (0.00 15% rdg + 0.2pV)/K 

(3) Power meters 

Manufactory Yokogawa Electric Corporation 

Model WTI 10 (Digital) 

Max. input current 20 A 

Max. input voltage 600 V 
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Accuracy 0.25%rdg+O. I%mg 

(4) PID controller 

Supplier OMEGA 

Model CNI504TC-1 

Channel number 4 

Inputtype J, K, T, E, R, S, B, thermistor, RTD 

4- 20 mA loop current 
0- 10 VDC 

0- 100 mv 

Accuracy Temperature: I K/ V F, 0.1 % full scale 

Voltage: 0.05% full scale 
Current: 0.05% full scale 

Scan rate 2 channels per second 

Proportional band 0-100% 

Reset 0- 50 repeats per minute 

Rate 0- 500 seconds 

(5) Digital high-speed camera 

Manufactory Vision Research, Inc. 

Model Phantom V4 B/W 

Resolution 512 x5 12 pixel 
Speed 1000 pictures/second with full resolution 
Maximum speed 32000 pictures/second 

Exposure time Variable, Minimum 10 ps 
Memory 256 MB 

The digital high-speed camera can objectively record the experimental process and flow 

patterns. It will be useful in analysing the data and understanding the mechanisms. The 

cool light resource provides extremely high levels of illumination at very low ambient 
temperature. This characteristic is very useful in flow boiling experiments. The software 
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available with the camera can capture, study the flow field and measure some 

parameters, like bubble size and velocity. 

(6) Pressure transducers 

The pressure transducers used in the current experiments are listed in Table C. 3. 

Table C. 3 The summary of pressure transducers. 

No. Sensor Supplier Range Output signal Power suppl Error 

PI GP series RS 0-40 bar g 4-20niA 12V 

P2 PDCR4010 Druck 0-10bara 0-100mv 12V 0.17% 

P3 PDCR 4010 Druck 0-20bara 0-100mv 12V 0.35% 

P4 PDCR910-0826 Druck 0-10bara 0-100mv 12V 0.16% 

PO PDCR910-0826 Druck 0-10bara 0-100mv 12V 0.16% 

P5 GP series RS 0-40bargý 4-20niA 12V 

(7) Thermocouples 

The thermocouples used in the current experiments are listed in Table CA 

Table CA The summary of thermocouples. 

No. Type 
Calibration 
Range('C) 

Experiment 
RangeCC) Reference Error* 

TI K type ungrounded probe -18-66 20-55 Ambient 0.08 

T2 j K type ungrounded probe -18-66 20-55 Ice box 0.08 

T3 T type grounded needle probe -20-80 20-55 Ice box 0.08 

T4 T type grounded needle probe -20-80 20-55 Ice box 0.08 

TO T type grounded needle probe -20-80 20-55 Ice box 0.08 

T5 K type ungrounded probe -18-66 20-55 Ambient 0.08 

T6 I t pe ungrounded probe -18-66 20-55 Ambient 0.08 

TTI-15 
I 
K type thermocouple wires -20 - 80 > 20 Ice box 

*: The error is the calibration error only, not include the measurement error caused by 
the data loggers. 
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(8) Differential pressure transducers 

Supplier 

Model 

Measurement range 
Accuracy (at 24% full scale) 

Omega 

PX771-IOOWDI 

100 inch water (0.2491 bar) 

17.7 Pa 
(at 100% full scale) 72.6 Pa 
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Appendix D 

Control Programs 

Three programs were used in the present study. The phantom camera control program 

operates the digital high-speed camera. The data collecting program controls the data 

loggers and the instruments, collects the experimental data. Finally, the data analysing 

program is a useful tool for the post-analysis of the experimental data. 

D. I. Phantom camera control 

The phantom camera control program is installed in the host computer. It exhibits the 

flow scene on the monitor in real time and controls the operation of the digital high- 

speed camera. After recording a set of pictures, the software transmits them to the 

computer through a firewire cable. The data obtained can be replayed and edited there. 

Meanwhile, physical parameters, like bubble size and velocity, can be measured by the 

software. In summary, its main functions include: 

(1) Operate the digital high-speed camera. 

(2) Transfer the recorded films to the computer. 
(3) Edit and save the films in the computer. 
(4) Replay and display the films in detail. 

(5) Measure the physical parameters. 

The interface of the phantom camera control program is presented in Figure D. I. The 

resolution was set to 256 pixels (width) x 512 pixels (height) to get clear images as well 
as fast snap speed. The sample rate was from 200 pps (pictures per second) to 1900 pps 
depending on flow velocity. In most cases, the exposure time used the fastest speed - 10 

microseconds to reduce tail track in the pictures and get clear profile. All the 
information about the camera state and the experiments was written in the description of 

each set of data collected. 
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Figure D. I The interface of phantom camera control program. 

D. 2 Data collecting program 

The data collecting program was developed in Visual Basic 6.0. This popular software 
is famous of its friendly interface and is easily managed. The most important point is 

that almost all the original communicating codes provided by the manufacturers are 

written in Basic or Visual Basic. These characteristics facilitate the quick development 

of an integrated, multi-function data collecting program. Visual Basic is a user-friendly 
language but hardly used to develop high performance codes. The average scan 
frequency in the present experiments was about 7 seconds. This speed affected only 

marginally the current study because the experiments were based on steady state. 

However, more attention must be paid when the experiments were close to critical heat 

flux (CHF). The overall functions built in the program are listed below: 

(1) Monitor the measured parameters. which include pressure, temperature, pressure 
difference, heating power and flow rate. 

(2) Calculate the experimental parameters in real time, such as flow status. quality, 

superficial velocities, therinal loss, heat flux and mass flux. 
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(3) Convert the electric signals to the real physical parameters by the best-fit equations 
facility to find measuring error in real time. 

(4) Export the control signals to the PID controller to enable the automatization of the 

experimental system. 

(5) Show the time-parameters curves to examine and confirm the experimental stability. 

(6) Save the experimental data to the appointed file. 

The modularization design enables the subdivision of the program into several single- 

function units. Every unit implements few functions and a new unit is easily added in 

without changing the whole program set-up. The main framework is sketched in Figure 

D. 2. The modules and interfaces in the program are introduced in the following: 

Ertrance I 

Mah Modde 

Program Information Experiment Condition MeasLrirg Ecpipmert 
Announcement Initialization Interfece 

II 
Selection Interface 

Power Meter Main Measurement 
Communication and Monitor Interface 

Data Logger S13535F Experinertal 
Communication 

it Iý 
Sýstem Disply 

MILM LUygrF TestSection S135951 E 
II 1ý 'I 

D is play 

Thermall-oss Ful Display Calculation Interface 
ý( i 1ý I 

ThermalLoss SaveDats 
Calculation Module Mo ritor Dis Pay 

Data Logger's Sefting 

Data Save herf ace 
(Excel Format) 

I 

Data Save Modufe 
(Txt Format) 

I 

Data AnaNýýing 
Program 
(C#. net) 

Parameters Setting I 
Calculation Interface I 

Parameters Calibration SystemState- I Parameters Setting I 

and Calculation Module 
r 

Time Disphy Calculation Module 

Figure D. 2 Flow chart of the data collecting program. 
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(1) Main Module 

The program starts with the Main Module. The Main Module defines all global 

variables and public functions, which include the R134a property equations. Every 

external module or interface can access these public variables and functions without any 

restrictions. The data loggers' settings, such as the measuring channels and the tasks, 

are defined here also. Then the Main Module triggers in turn the Program Infori-nation 

Announcement, Experiment Condition Initialization Interface, Measuring Equipment 

Selection Interface, Main Measurement and Monitor Interface. The program is then 

ready for measurement and recording. 

(2) Experiment Condition Initialisation Interface 

This interface initialises the current experimental conditions, such as tube diameter and 
length, flow direction, heat transfer or flow pattern experiment option, observation 

position, then-nocouple quantity, differential pressure transducer type, atmospheric 

pressure and alarm setting, see Figures D. 3 and DA 

Experiment Setting 

. ............. ýPdl Testcondition Setting 

Diameter Direction 

C, 1.10mm (- Horizontal 

2.01 mm (T UpwardVettical 

2 88 mm (- Downward Vertical 

(- 4.26 min Inchned [- Deg C 

Length 

r' 100 mm r' 211 mm r 300 mm r' 400 mm r 500 mm 

Experiment Option 

(- Heat Transfer Flow Patterns 

Thermalloss length F2-32 Observation Posti n 76 
compiensation coefficient Ratio between P4/PO 

Thermocouples Quantity F15 

-inýj 
OK I 

Figure D. 3 Experiment condition initialisation interface (1). 
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Wý 
-1012(1 
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Atmospheric Pressuie r- 1 03-7 bar 

Test Section Alarm F 100 C Temperature 

Comperssor Alarm T empeiature 

Comperssor Outlet r 100 C 

Compefssor Motor f- -40 C 

Comperssoi Inlet F 30 C 

R --t 
I OK I 

Figure DA Experiment condition mitialisation interface (2). 

(3) Measuring Equipment Selection Interface 

The measuring equipments used in the experiments are selected in the int( 

in Figure D. 5 according to the experi mental requirem ents. 
tlýý 

ý .I, - 11: 11.2(1 
Test Section Temperature System Temperature and Pressure 

No. State No. Stake Position Pressure T emperature 

TT-I Po TT11 Fv Befixe Flowmetei Pi F., T1 W, 

TT2 11,70 TT12 rv- Before Preheatat P2 Po T2 W, 

TT3 (70 TT13 r, -. Testsection Inlet P3 r7o T3 rv-o 

TT4 rv- TT14 rv- Testsection Outlet P4 f%-, T4 15,71 

TT5 rv- TT15 [-v Observation Outlet PO IV TO Wo 

TT6 rv- TT16 r- After Condenser P5 P-1 T5 Wo 

TT7 TT17 r- R1 34a Tank T6 rv-, 

Before Calibration T7 rv- 
TT8 

- After Prehealtei TO fv 
TT9 Wo Test Section Calibration Tube 
TT10 F, Differential Pressure DP1 fv-o DP2 r- 

Power Meter Watch Temperature 
Prahealer T estsection Room P-1 

Power rv- P 
Pfaheateis Inside rv- rv 110- rv- P rv 

Mass Flowmetet Preheaters Outside Wo IV Wo rv rv- P; 
Small Large 

Preheateis - Testsection I nside, r, -o Outside rv 
Flow Rate W P, 

Test Section Outside rv- DP1 Tube Outside u 
Output Signal Discharge motor Suction 

Before Testsection (P3) FV Compressor PP WO 

Rl 34a Tank [TE) W 

8 afore T estsection (T 3) rv- F*O- 12V P(*ver Supply Reset OK 

Figure D. 5 Measuring equipment selection interface. 

-rface shown 
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(4) Main Measurement and Monitor Interface 

The Main Measurement and Monitor Interface is supported by several modules, 
including Power Meter Communication, Data Loggers Communication, and Parameter 

Calibration and Calculation Module. The Power Meter Communication and Data 
Loggers Communication receive the digital single from the power meters and the data 
loggers, respectively. The Parameter Calibration and Calculation Module converts the 

original readings into the experimental parameters using the calibration equations, see 
Appendix F. It also calculates the fluid parameters (density, enthalpy, thermal loss, 

quality and superficial velocities). The Main Measurement and Monitor Interface can 

activate the Thermal Loss Calculation Interface. It also saves the experimental data into 

an Excel file and a Txt file. The Excel file is easily managed so that data processing can 
be done in a short time. The Txt file is a common format file and is accessible by other 

programs. In the current study, it is a bridge to the Data Analysing Program which is 

written in C# net. 

The Main Measurement and Monitor Interface includes five different interfaces based 

on the needs of the experiments, i. e. Full Display, Experimental System Display, Test 

Section Display, Saved Data Monitor Display and System State Display. The Full 

Display shows all the experimental data including the calculated parameters. It is the 

main monitoring interface during the experiments. There is a link at the bottom to 

access Parameters Setting Calculation Interface, where when you type in the desired gas 
and liquid superficial velocities, the required flow rate and heating power are given 
based on the current fluid parameters. The Parameters Setting Calculation Interface is 
backed by Parameters Setting Calculation Module. The Full Display and the Parameters 
Setting Calculation Interface are presented in Figures D. 6 and D. 7. The Experimental 
System Display demonstrates the important measurements on a system diagram, in 

which the measurements are shown visually since it relates to the real experimental rig, 
see Figure D. 8. The Test Section Display describes the temperature distribution along 
the test section. The signals come from the fifteen thermocouple wires welded on the 
tube wall. The fluid temperature profile along the heating section is assumed to increase 
linearly until the saturated state is reached, see Figure D. 9. The Saved Data Monitor 
Display is useful during saving the experimental data. It can exhibit twelve different 
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group data on one screen. The saving process can be cancelled at any moment if one or 

a few data are different from the other readings for an obvious reason, see Figure D. 10. 

The System State Display presents the key time dependent variation of the system 

parameters. It is helpful to ensure the system has reached steady state before saving the 
data, see Figure DA 1. 
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Figure D. 6 Main measurement and monitor interface - full display. 
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Figure D. 7 Parameters setting calculation interface. 
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Figure D. 8 Main measurement and monitor interface - experimental system display. 
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Figure D. 9 Main measurement and monitor interface - test section display. 
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Figure D. 10 Main measurement and monitor interface - the saved data monitor display. 
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Figure D. II Main measurement and monitor interface - system state display. 
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(5) Thermal Loss Calculation Interface 

The Thermal Loss Calculation Interface, seen in Figure D. 12, is used to estimate the 

thermal loss coefficient in the single-phase experiments. The related modules include 

Power Meters Communication, Data Loggers Communication, and Thermal Loss 

Calculation Module. The parameters (heating power, mass flow rate, temperature and 

pressure) measured in the Power Meters Communication and the Data Loggers 

Communication are transmitted to the Thermal Loss Calculation Module in where the 

thermal loss coefficients can be calculated automatically. 
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Figure D. 12 Thermal loss calculation interface. 
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D. 3 Data analysing program 

The data analysing program was written in Visual C# on the platform of Visual 

Studio. net. It is a fully object oriented language. Comparing with Visual Basic 6.0, 

Visual C# is more eff&ctive, organizable and powerful. These advantages make for 

developing large, fast, complex and exigent commercial software. The existing 
developed functions in the data analysing program include: 

(1) Calculation of R134a properties. 
(2) Conversion of the original data into the experimental results, in which the "wild 

points" are rejected according to the Chauvenet's criterion. 

(3) The uncertainty analysis model estimates the experimental accuracy at a certain 

condition, which can indicate the key measurements in the experiments. 
(4) The self-check module can validate the existing or developed models and 

correlations. 
(5) Sketch R134a flow pattern maps using different coordinate groups. 

(6) Overlay up to four flow maps in one plan, which facilitates studying the effect of 

diameter and pressure on flow patterns. 
(7) Compare the R134a flow maps with the existing models. The existing models 

include Taitel et al. (1980), Mishima and Ishii (1984), McQuilian and Whalley 

(1985) and the "Unified Model" summarized by Taitel (1990). 

(8) Validate the purposely developed models and correlations. 

New modules or interfaces may be added into the program without changing the 

existing structures. Every module or interface is an individual, complete unit, which can 

complete one or several functions independently. Thus they can be edited, inserted and 

expanded without affecting other units. The existing framework is described in Figure 

D. 13. Their particular characteristics are introduced below: 
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Figure D. 13 Flow chart of the data analysing program. 

(1) Main Interface 

The Main Interface is the entrance of the program. Five menus lead to R134a Properties 

Interface, Data Converting Interface, Uncertainty Analysis Interface, Flow Pattern Map 

and Exit. 

(2) R134a Properties Interface 

The R134a Properties Interface is used for obtaining R134a properties. A second 

purpose is to check the correctness of Fluid Properties Calculation Module. In this 
interface, the R134a properties, i. e. the saturated temperature and pressure, fluid state, 
density, enthalpy, viscosity and surface tension, are calculated and exhibited after 
typing in the fluid temperature and pressure. This interface is shown in Figure D. 14. 
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Figure D. 14 RI 34a properties interface. 

(3) Data Converting Interface 

The Data Converting Interface which is shown in Figure D. 15 calls the Experimental 

Data Treatment Module to convert the original data into the experimental results. The 

original data and the calculated experimental results are presented here in order to 

inspect them in time. 

T (C) F_ P (bar-a) 

F (kglhf) F_ 

Pattern File 

Flow Pattern 

Calculate Result 

Point3 State 

x l- 

ugs F- Uls I- 

F igure D. 15 Data converting interface. 
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(4) Uncertainty Analysis Interface 

This interface, shown in Figure D. 16, is used to calculate the experimental uncertainty 

at different conditions. One of its most useful functions is that it reveals the role of 

every measurement played in the experiments, and turns allows the researcher to pay 

more attention to those key measurements whether in the design stage, installation or 
during the experiments. 
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Figure D. 16 Uncertainty analysis interface. 

(5) Flow Pattern Map 

The Flow Pattern Map menu leads to three sub-graphics for different functions and 

purposes, i. e. Flow Pattern Map Graphics, Transition Boundaries Comparison Graphics 

and Models Exam Graphics. The Flow Pattern Map Graphics and the Models Exam 

Graphics can sketch the transient boundaries predicted by the existing modules from 

Taitel et al. (1980), Mishima and Ishii (1984), McQuilian and Whalley (1985), and 
Taitel (1990). The newly developed models and correlations can also be examined here. 
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The first step is to define the coordinate system, which includes the coordinate variables, 

coordinate scale and range, see Figure D. 17. The Flow Pattern Map Graphics depicted 

in Figure D. 18 draws a flow map based on the experimental data. The flow map can be 

sketched in different coordinate system. The most common coordinate group is the gas 

and liquid superficial velocities. The Transition Boundaries Comparison Graphics super 
imposes up to four flow maps in one map to show the shift of the transition boundaries 

at the different experimental conditions, see Figure D. 19. It intuitively presents the 

effect of physical parameters on flow patterns and helps to analysis the transition 

mechanism as well as to establish new correlations. The purpose of the Models Exam 

Graphics is to validate the existing models and correlations by the original flow maps, 

see Figure D. 20. The fluid parameters and diameter used in the Models Exam Graphics 

are set in the Parameters Setting Interface as shown in Figure D. 2 1. 
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Figure D. 17 Coordinate system selection interface. 
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In addition, there are several calculation engines (or modules) to support the above 
interfaces. The Fluid Properties Calculation Module calculates the fluids properties, 

which include R134a, air-water and steam-water. The Existing Models and Correlations 

Module creates the transition boundaries based on the published models and 

correlations, which include Taitel et al. (1980), Mishima and Ishii (1984), McQuilian 

and Whalley (1985) and the "Unified Model" summarized by Taitel (1990). The newly 
developed models and correlations in this study are also included. The Experimental 

Data Treatment Module reads the original experimental data recorded by the Data 

Collecting Program, eliminates the "wild points" according to the Chauvenet's criterion, 

and then writes the valid data in the Experimental Data File. The data in this file are 

used in the Flow Pattern Map Graphics and Transition Boundaries Comparison 

Graphics. 
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Appendix E 

Measurement Error of the Instruments 

The total experimental error is the sum of the systemic error (bias) and the random 

errors (precision). The random error can be reduced by increasing measurement times or 

collecting more data. Calibration can reduce the "static" systematic error to the level of 

the standard used in the calibration procedure. However, the "dynamic" systematic error 

of the instruments, which changes with time and ambient conditions, should be 

considered properly. The typical "dynamic" error, like stability and temperature effect 

of the sensors and the data loggers, was analysed based on the information from 

manufactures with the assumption of ±5K ambient temperature fluctuation and 
discussed here. 

E. 1 Pressure measurement 

Table EA analyses the stability and temperature effect of pressure sensors and the 

caused measurement error of pressure. The relative error is based on the minimum 

experimental pressure (6 bar), which produces the maximum relative error. PI and P5 

are not included in the table because the manufacturer did not provide such information 

in the technical specification. 

Table E. I Systematic error caused by the pressure sensors. 

Item Unit Error 
- - - 

Pressure sensor P 2 
TP3 

P4 PO 

Type PDCR 4010 PDCR 910-0826 

Full scale bar 10 1 20 io7 F 10 0.1% F. S. 
- 

0.1 mv 
Stability 

bar 0.01 
1 

0.02 0.008 
[ 

0.008 

0.03% F. S. 0.05% F. S. 
Temperature effect bar 0.003 0.006 0.005 0.005 

Systemic error bar 0.010 0.021 0.009 0.009 

Max. relative error 0.17% 0.35% 0.16% 0.16% 
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Table E. 2 analyses the stability and temperature effect on the data logger and the 

resulting measurement error of pressure. The relative error is based on the minimum 

experimental pressure (6 bar), which produces the maximum relative error. 

Table E. 2 Systematic error caused by the data logger. 

Item Unit Error 

Pressure sensor PI P2 P3 
I 

P4 PO P5 

Data logger Sl 3535F 

Scale V- 10 1 1 
11 

1 10 

(0.005% rdg +2 digits +3 gV)/year 

Stability 0.005% rdg 
+ 203 gV 

- 
0.005% rdg + 23 gV 

0.005% rdg + 
203 [tV 

0.02% 0.04% 
[0.07% 1 

0.04% 
FO. 

04% 0.02% 

(0.00 1% rdg + 0.1 pV)/K 
Temperature effect 0.005% dg + 0.5 gV 

0.01% 0.01% 0.01% 0.01% ý 0.01% 0.01% 

Systemic error 0.02% 0.04% 0.07% 0.04% 0.04% 0.02% 

E. 2 Thermocouples 

Table E. 3 analyses the stability and temperature effect on the data logger and the 

resulting error in temperature measurement. The relative error is based on the maximum 

experimental temperature of 52.5 *C, which produces the maximum absolute error. The 

more accurate results of TI, T5 and T6 cannot be given because the manufacturer does 

not provide the detailed information when using the CJC method. However, their error 

could be estimated by comparing the accuracy with a different reference method. For 

example, the measuring accuracy of the data logger is 0.50 K at the range of -30 -I 10 
T for K-type thermocouple when using the water triple point as the reference 

temperature, while the accuracy at the CJC method is 0.93 K. Therefore, the extra error 

caused by the CJC method is about 0.93' - 0.5' = 0.78 K. Considering the stability 
and the temperature effect of the data logger, about 0.08 K, the overall measuring error 

of TI, TS and T6 caused by the data logger is 0.79 K. 
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Table E. 3 Systematic error caused by the data logger. 

Item Unit Error 

Data logger S13535F S135951E 

Thermocouple TI T2 T5 T6 T3 T4 TO k7m, 

Scale mv 10 20 20 20 1 20 

(0.005% rdg +2 digits 
+3 pV)/year 1(0.02% rdg +5 AV)/Year 

Stability 1 
0.005% rdg + 3.2 ýX 

1 
0.02% rdg +5 pLV 

K 
1 0.083 0.1361 0.1361 0.136 0.136 
I (0.001% rdg + 0.1 

pV)/K 
(0.00 15% rdg + 0.2 

ýLV)/K 
Temperature effect 1 

0.005% rdg + 0.5 gV 0.0075% rdg + ýX 
K 0.015 0.029 0.029 0.029 0.029 

. 
Systemic error K 0.79 0.08 

' 
0.79 0.14, 0.14 0.14 

E. 3 Coriofis mass flow meters 

Table EA lists the stability and temperature effect on the data logger. The error is a 

function of the flow rate. The combined uncertainty at the different flow rate is 

summarized in Table E. 5. 

Table EA Systematic error caused by the data logger in the mass flow rate measurement. 

Item Unit Error 

Mass flow meter CMFOlO CMF025 

Measurement range kg/hr 0-25 25-500 

Data logger S13535F 

Scale v 10 10 

Stability 
(0.005% rdg +2 digits +3 

V)/year 
(0-005% rdg +2 digits +3 

ýN)/year 
kg/hr 0.005% rdg + 0.0006343 0.005% rdg + 0.0 1269 

(0.00 1% rdg + 0.1 ýN)/K (0.00 1% rdg + 0.1 ýtV)/K 
Temperature effect 

, kg/hr, 0.005% rdg + 0.00000156 , 0.005% rdg + 0.00003125 
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Table E. 5 Combined uncertainty of the flow rate measurement. 

CM FOlO 

Flow rate (kg/hr) 0.50 2.95 5.40 7.85 10.30 12.75 15.20 25.00 

Mass flow meter 0.51% 0.17% 0.14% 0.13% 0.12% 0.12% 0.11% 0.11% 

Resistor 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 
0.005% rdg + 0.0006343 kWhr 

Data logger stability 0.132% 10.02 1 0.0 13% 10.011 % 10.010% 10.00 

Data logger temperature 0.005% rdg + 0.00000 156 kg/hr 

effect 0.005% 10.005%1 0.005'/o7 O. OO5`/` 10.005`/` 10.005`/` 10.005ý/` 10.005ý/2 

Combined uncertainty 0.5 . 20%1 0.17%1 0.16% 10.16%1 0.16% 10.15% 10.15% 

CM F025 
Flow rate (kg/hr) 29.5 54.0 78.5 

. 
103.0 127.5 176.5 201.0 >250 

Mass flow meter 0.19% 0.15% 0.13% 0.13% 0.12% 0.12% 0.11% 0.11% 

Resistor 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 
0.005% rdg + 0.0 1269 kg/hr 

Data logger stability 0.048% 1 0.029%1 0.021%1 0.017%1 0.015%1 0.012%1 0.011 

Data logger temperature 0.005% rdg + 0.00003125 kg/hr 

effect 0.005% 1 0.005%1 - 0.005%1 0.005%1 0.005%1 0.005%1 0.005%1 0.005% 

Combined uncertainty 0.2 18% 1 0.17% 1 0.17% 1 0.16% 1 0.16% 1 0.15% 1 0.15% 

EA Power meters 

Table E. 6 gives the combined uncertainty considering the effect of the current 

transformer and the power meter, which covers widely experimental conditions, i. e. 0- 

6560 W heating power and the 1.10-4.26 mm tubes with the resistance of 0.107-0.164 0. 

Table E. 6 Combined uncertainty of the power measurement. 

Items Unit Error 

Current via the heating section A 5 5 20 20 200 200 

Resistance of the heating section rl 0.107 0.164 0.107 0.164 0.107 0.164 

Heating power W 2.68 4.10 42.8 65.6 4280 6560 1 
Current transformer convert ratio 2.5% 2.5% 2.5% 1 2.5% 2.5% 2.5% 

Current transformer uncertainty 0.4% 1 0.4% 0.2% 0.2% 0.1% 0.1% 

Range of the power meter W 7.5 7.5 7.5 7.5 150.0 300.0 

Reading of the power meter W 0.067 0.103 1.070 1.640 107.0 f 164.0 
0.25% rdg + 0.1% rnjz Power meter uncertainty 

1 0.29% 0.19% 0.02% 0.02% 0.0 1% 0.0 1% 
I Combined uncertainty 0.49% 0.44% 0.20% 0.20% 0.10% 0.10% 
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E. 5 Differential pressure transmitter 

The error associated with the sensor and the data logger includes the accuracy, stability, 
temperature effect and power supply effect. The calculation results are given in Table 
E. 7 and E. 8 for 24% and 100% scale, respectively. 

Table E. 7 Systematic error caused by the sensor. 

Item Unit Error 
Type PX771- IOOWDI 

24% 100% 
Full scale bar 0.0608 0.2491 

Accuracy 0.15% F. S. 0.15% F. S. 
(linearity, hysteresis and repeatability) Pa 9.1 37.4 

Stability 0.25% F. S. 0.25% F. S. 
(regulated every six months) Pa 15.2 62.3 

Temperature effect 0.00135%F. S. 0.00135%F. S. 
(based on +/- 5K temperature fluctuation) Pa 0.1 0.3 

Power supply effect 0.001% F. S. 0.001% F. S. 
(based on +/- 0.2V fluctuation) Pa 0.1 0.2 
Systemic error Pa 17.7 72.6 

Table E. 8 Systematic error caused by the data logger. 

Item Unit 

Type PX771-IOOWDI 
24% 100% Full scale bar 0.06082 0.24909 

Data logger SI 3535F 
Scale v 10 

(0.005% rdg +2 digits +3 gV)/year 
Stability 0.005% rd + 203 pV 

Pa- 0.5 1.8 
(0.00 1% rdg + 0.1 pV)/K 

Temperature effect 0.005%rdg+0.5gV 
Pa 0.3 1.2 

Systemic error Pa 0.6 2.2 
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E. 6 Thermal loss and associated uncertainty 

Thermal loss coefficients of the heating sections and their uncertainty are summarized 
in Table E. 9. The Thermal loss of the test sections and their uncertainty are summarized 
in Table E. 10. 

Table E. 9 Thennal loss coefficients and their uncertainty (the heating section part). 

Item Unit Data 

Inside Diameter mm 1.10 2.01 2.88 4.26 

Test pressure bar 14.0 14.0 14.0 14.0 

Flow rate kWhr 0.52 0.97 1.30 2.03 

Inlet temperature 'C 48.15 33.20 39.93 39.10 

Outlet temperature T 43.82 31.9 38.6 37.6 

Average steel well temperature T1 42.82 32.55 37.32 38.35 

Average ambient temperature T 23.16 19.6 20.97 19.8 

Uncertainty of flow rate 0.54% 0.54% 0.54% 0.54% 

Uncertainty of temperature difference K 0.165 0.165 0.165 0.165 

Thermal loss coefficient W/K 0.048 0.040 0.044 1 0.068 

Uncertainty of thermal loss coefficient 5.32% 17.46% 17.05% 1 15.11% 
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Appendix F 

Instruments Calibration Results 

Appendix F summarizes the calibration results of all the instruments of the experimental 
facility, including pressure transducers/transmitters, thermocouple probes/wires, mass 
flow meters and differential pressure transmitters. Based on the calibration results the 

best-fit equations were obtained and presented in this appendix for all instruments. 

All pressure transducers and transmitters were calibrated by a dead weight tester 
(Bamet Instrument Ltd, Series No 310/62, accuracy 0.1%). The test range (0-300 psi, i. e. 
0-20.68 bar) covers the proposed experimental pressures (6,10 and 14 bar). Every 
instrument was tested twice at each test point. The first test was carried out with 
increasing pressure and the second test with decreasing pressure in order to reduce the 

effect of the dead zone of the tester. The average pressures were used as the final results. 
The calibration data and the best-fit equation for each pressure transducer/transmitter 

are presented in Tables F. I -F. 6 and Figures F. I -F. 6 respectively. The best-fit equations 
and its error for all pressure transducers/transmitters are summarized in Table F. 7. 

All the thermocouples were calibrated in a temperature calibration equipment with the 

range of -20 to 80 'C. Table F. 8 and Figure F. 7 show the calibration data and the 
deduced best-fit equation for the platinum resistance thermometer in the calibration 
equipment. The measurement error of the platinum resistance is analysed and presented 
in Tables F. 9 and F. 10. The thermocouples TI, T5 and T6 used the CJC method. The 

signal was converted into temperature in the data logger directly. The thermocouples 72, 
T3, T4, TO and TTI-15 used the triple-phase point of water as the reference point. The 

output signal of the data logger was voltage and was converted into temperature using 
the best-fit equations. In order to improve the test accuracy, 3-5 groups of data were 
read at each test point. The average temperatures were used as the final results. The 

calibration data and the best-fit equation for each thermocouple are presented in Tables 
F. II -F. 18 and Figures F. 8-F. 15 respectively. The best-fit equations and the error for all 
thermocouples are summarized in Table F. 19. 
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The mass flow meters were calibrated by the manufacturer and tested and reset by the 

manufacturer on the site after installation. The best-fit equations were deduced based on 
the test data and the measurement error was provided by the manufacturer, see Table 

F. 20. 

The differential pressure transmitter was calibrated through measuring the water level 

difference at both sides of the transmitter. Two linear best-fit equations, corresponding 
to 24% and 100% scale range respectively, were obtained from the test results. The 

calibration data and the best-fit equations are presented in Tables F. 21 -F. 22 and Figures 

F. I 6-F. 17. The calibration results are summarized in Table F. 23. 
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Table F. 9 Repeatability test of the platinum resistance thermometer. 

Temperature 
Reading 

1 
Reading 

2 
Reading 

2 
Reading 

4 
Reading 

5 Average 
Standard 

uncertainty 
oc 0 rl 0 r) 0 0 rl K 

. 20.00 92.0493 92.0495 92.0497 , 92.0496 92.0497 92.0496 0.00017 0.000 

-15.23 93.9616 93.9611 93.9615 93.9610 93.9604 93.9611 0.00048 0.001 

-10.15 95.9938 95.9933 95.9975 95.9961 95.9947 95.9951 0.00172 0.004 

-5.17 97.9890 97.9893 97.9883 97.9879 1 97.9880 97.9885 0.00062 0.001 

-0.09 100.0168 100.0149 100.0150 100.0148 100.0147 100.0152 0.00088 0.002 

5.06 102.0673 102.0673 102.0666 102.0673 102.0675 102.0672 0.00035 0.001 

10.06 104.0585 104.0578 104.0577 104.0576 104.0577 104.0579 0.00036 0.001 

15.03 106.0342 106.0310 106.0311 106.0334 1 106.0342 106.0328 0.00161 0.004 

19.96 107.9912 107.9885 107.9915 107.9894 107.9927 107.9907 0.00169 0.004 

24.99 109.9841 109.9834 109.9804 109.9818 109.9809 109.9821 0.00159 0.004 

30.05 111.9868 111.9805 111.9803 111.9806 111.9801 111.9817 0.00288 0.007 

34.94 113.9139 113.9129 113.9113 113.9117 113.9109 113.9121 0.00124 0.003 

40.02 115.9190 115.9191 115.9213 115.9166 115.9164 115.9185 0.00203 0.005 

45.00 117.8787 117.8763 117.8759 117.8765 117.8753 117.8765 0.00129 0.003 

49.99 119.8394 119.8382 119.8369 119.8360 1 119.8358 119.8373 0.00153 0.004 

55.00 121.8077 121.8080 121.8064 121.8052 121.8054 121.8065 0.00128 0.003 

59.99 123.7615 123.7600 123.7581 123.7574 123.7565 123.7587 0.00203 0.005 

64.97 125.7100 125.7118 125.7107 125.7085 125.7080 125.7098 0.00156 0.004 

70.02 127.6819 127.6790 127.6785 127.6787 127.6792 127.6795 0.00139 0.003 

74.99 
_ 
129.6203 129.6197 129.6211 129.6171 129.6189 129.6194 0.00153 

80.25 131.6673 131.6658 131.6645 1 131.6672 131.6664 1 131.6662 1 0.00115 

Table F. 10 Combined error of the platinum resistance thermometer. 

Item S bol Unit Error 

Tbermometer uncertainty Bx K 0.05 

Standard deviation for the thermometer uncertainty SBx K 0.025 

Maximum random error of the thermometer Sx K 0.007 

Combined standard uncertainty UC K 0.026 

Sample size N 5 

IDistribution coefficient t95 2.776 
ýombined 

error of the thermometer with 95% confidence 1 Ugs I K1 0.07 

380 



Table F. II The calibration data and the best-fit equation for the thermocouple 
(K-type thennocouple wires TT, - TT15). 

Thermometer Volta ,e (V) Best-fit equation 
Reading 

M) 
Temp. 
(* Q Sample I Sample 2 Sample 3 Sample 4 Sam le 5 Average 

Temp. 
(0 Q 

Error 
(K) 

92oO493 -20.00 -0.000786 -0.000787 -0.000786 -0.000782 -0.000789 -0.000786 -20.00 0.00 
92.0495 -20.00 -0.000786 -0.000786 -0.000786 -0.000782 -0.000790 -0.000786 -20.00 0.00 
92.0497 -20.00 -0.000785 , -0.000786 -0.000787 -0.000781 -0.000789 . -0.000786 -19.99 0.01 
92.0496 -20.00 -0.000787 -0.000787 -0.000787 -0.000782 -0.000790 -0.000787 -20.01 -0.02 
92.0497 -20.00 -0.000786 -0.000787 -0.000786 -0.000782 -0.000790 -0.000786 -20.00 -0.01 
93.9616 -15.23 -0.000603 -0.000604 -0.000603 -0.000599 -0.000606 -0.000603 -15.24 -0.01 
93.9611 -15.23 -0.000602 , -0.000603 -0.000603 -0.000599 -0.000606 -0.000603 -15.23 0.00 
93.9615 -15.23 -0.000603 -0.000603 -0.000603 -0.000599 -0.000606 , -0.000603 - 15.23 0.00 
93.9610 -15.23 -0.000603 -0.000603 -0.000603 -0.000599 -0.000606 

1-0.000603 
-15.23 0.00 

93.9604 -15.23 -0.000603 -0.000603 -0.000603 -0.000599 -0.000606 -0.000603 -15.23 0.00 
95.9938 -10.15 -0.000406 , -0.000407 -0.000407 -0.000402 -0.000409 -0.000406 -10.16 0.00 
95.9933 -10.16 -0.000405 

1-0.000406 
-0.000407 -0.000402 -0.000410 -0.000406 -10.15 0.00 

95.9975 -10.15 -0.000406 -0.000407 -0.000406 -0.000402 -0.000409 -0.000406 -10.15 -0.01 
95.9961 -10.15 -0.000406 -0.000406 , -0.000406 -0.000402 -0.000409 , -0.000406 -10.15 0.00 
95.9947 -10.15 -0.000406 -0.000406 -0.000406 -0.000402 -0.000409 

1-0.000406 _ 
-10.15 0.00 

97.9890 -5.16 -0.000210 -0.000212 -0.000211 -0.000207 -0.000214 
1-0.000211 

-5.15 0.01 
97.9893 -5.16 -0.000210 -0.000211 -0.000211 -0.000207 -0.0002141 -0.000211 . 5.15 0.02 
97.9883 -5.17 -0.000211, -0.000211 -0.000210 -0.000207 -0.000214 -0.000211 -5.15 0.02 
97.9879 -5.17 -0.000210 -0.000211 -0.000211 -0.000207 -0.000214 -0.000211 -5.15 0.02 
97.9880 -5.17 -0.000210 -0.000212 -0.000211 -0.000207 -0.000215 -0.000211, -5.16 0.01 
100.0168 -0.09 -0.000011 -0.000012 -0.000012 -0.000007 -0.000014 -0.000011 -0.08 0.01 
100.0149 -0.09 -0.000012 , -0.000013 -0.000012 -0.000008 -0.000015 -0.000012 -0.10 -0.01 
100.0150 -0.09 -0.0000111 -0.000012 -0.000012 -0.000008. -0.000015 -0-000012 -0.09 0,00 
100.0148 -0.09 -0.000012 -0.000012 -0.000012 -0.000007 -0.000015 -0-000012 -0.09 0.00 
100.0147 -0.09 -0.000012 -0.000012 -0.000011 -0-000008 -0-000015 -0-000012 -0.09 0.00 
102.0673 5.06 0.000192 0.000192 0.000192 0.000196 0.000190 0.000192 5.06 0.00 
102.0673 5.06 0.000193 

. 
0.000192 0.000193 0.000196 0.000189 0.000193 5.06 0.01 

102.0666 5.06 0.000192 1 0.000192 0.000192 0.000197 0.000188 0.000192 5.05 0.00 
102.0673 5.06 0.000193 0.000192 0.000192 0.000196 0.000189 0.000192 5.06 0.00 
102.0675 5.06 0.000192 0.000192 0.000192 0.000196 0.000190 0.000192 5.06 0.00 
104.0585 10.06 0.000392 0.000391 0.000392 0.000395 0.000389 0.000392 10.06 0.00 
104.0578 10.06 0.000393 0.000391 0.000391 0.000396 0.000389 0.000392 10.07 0.01 
104.0577 10.06 0.000391 0.000391 0.000392 0.000395 0.000389 0.000392 10.06 0.00 
104.0576, 10.06 0.000391 0.000392 0.000391 0.000396 0.000389 0.000392 10.06 0.00 
104.05771 10.06 0.000393 0.000391 1 0.000391 1 0.000395 1 0.000389 1 0.000392 10.06 0.00 
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Table F. II The calibration data and the best-fit equation for the thermocouple (Cont. ) 

(K-type thermocouple wires TTI - TTIS). 

Thermometer Volta:,, e M Best-fit quation 
Reading 

M) 
Temp. 
(* Q Sample I Sample 2 Sample 3 Sample 4 Sample 5 Average 

Temp. 
(0 C) 

Error 
(K) 

106.0342 15.03 0.000591 0000590 0.000591 0.000594 0.000588 0.000591 15.02 -0.01 
106.0310 15.03 0.000592 0.000590 0.000591 0.000595 0.000587 0.000591 15.02 0.00 

106.0311 15.03 0.000591 0.000591 0.000591 0.000595 0.000588 0.000591 15.03 0.00 

106.0334 15.03 0.000592 , 0.000590 0.000591 0.000594 0.000587 0.000591 15.02 -0.01 
106.0342 15.03 0.000590 0.000591 0.000591 0.000595 0.000587 0.000591 15.02 -0.01 
107.9912 19.97 0.000791 0.000790 0.000791 0.000794 0.000786 0.000790 19.97 0.00 

107.9885 19.96 0.000789 0.000790 0.000791 0.000794 0.000786 0.000790 19.96 0.00 

107.9915 19.97 0.000791 0.000790 0.000790 0.000794 0.000786 
, 

0.000790 19.96 -0.01 
107.9894 19.96 0.000790 0.000790 0.000790 0.000795 0.000785 0.000790 19.96 0.00 

107.9927 19.97 0.000790 0.000790 0.000791 0.000794 0.000786 0.000790 19.96 -0.01 
109.9841 25.00 0.000994 0.000994 0.000995 0.000997 0.000991 0.000994 24.99 -0.01 
109.9834 25.00 0.000994 0.000994 0.000995 0.000998 0.000992 0.000995 25.00 0.01 

109.9804 24.99 0.000994 0.000994 0.000994 0.000997 
, 
0.000991 0.000994 24.99 0.00 

109.9818 24.99 0.000994 0.000994 0.000994 0.000998 0.000991 0.000994 24.99 0.00 

109.9809 24.99 0.000994 0.000993 0.000994 0.000997 0.000991 0.000994 24.98 -0.01 
111.9868, 30.06 0.001200 0.001200 , 0.001201 0.001204 0.001197 O. OMOO , 30.05 -0.01 
111.9805 30.04 0.001201 0.001201 0.001201 0.001205 0.001197 0.001201 30.06 0.02 

111.9803 30.04 0.001202 0.001200 0.001201 0.001204 0.001197 0.001201 30.06 0.02 

111.9806 30.04 0.001200 0.001200 0.001201 0.001204 0.001197 0.001200 30.05 0.01 

111.9801 30.04 0.001202 0.001200 0.001201 0.001204 0.001198 0.001201 30.06 0.02 

113.9139 34.94 0.001400 0.001399 0.001400 0.001404 , 0.001398 0.001400 34.93 -0.01 
113.9129 34.94 0.001401 0.001399 0.001400 0.001403 0.001398 0.001400 34.93 -0.01 
113.9113 34.93 0.001400, 0.001400 0.001401 0.001404 0.001399 0.001401 34.95 0.01 

113.9117 34.93 0.001401 0.001401 0.001401 0,001404 0.001398 0,001401 34.95 0.02 

113.9109 34.93 0.001400 0.001399 0.001400 0.001404 0.001398 0.001400 34.93 0.00 

115.9190 40.03 0.001610 0.001609 0.001609 0.001613 0.001606 0.001609 40.02 0.00 
115.9191 40.03 0.001609 0.001609 0.001609 0.001612 0.001606 0.001609 40.01 -0.01 
115.9213 40.03 0.001610 0.001609 0.001609 0.001612 0.001607 0.001609 40.02 -0.01 
115.9166 40.02 0.001609 0.001609 0.001609 0.001612 0.001607 0.001609 40.02 0.00 

115.9164 40.02 0.001609 0.001609 0.001609 0.001612 0.001607 0.001609 40.02 0.00 

117.8787 45.00 0.001815 0.001814 0.001814 0.001817 0.001811 0.001814 44.99 -0.01 
117.8763 45.00 0.001814 0.001814 0.001814 0.001817 0.001811 0.001814 44.99 -0.01 
117.8759 45.00 0.001815 0.001814 0.001815 0.001818 , 0.001811 0.001815 1 45.00 0.00 

117.8765 45.00 0.001814 
- 

0.001815 
. 
0.001814 0.001817 0.001812 0.001814 4500 0.00 

117.8753 1 45.001 01815 00 0.001813 10.001814 0.001818 0.0018117 0.001814 44.99 0.00 
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Table F. II The calibration data and the best-fit equation for the thennocouple (Cont. ) 

(K-type thennocouple wires TTI - TT15). 

Thermometer Volta:,, e (V) Best-fit quation 
Reading 

(0) 
Temp. 
(* Q Sample I Sample 2 Sample 3 Sample 4 Sample 5 Average 

Temp. 
(* C) 

Error 
(K) 

119.8394 49.99 0.002021 0.002020 0.002021 0.002024 0.002018 0.002021 49.99 0.00 

119.8382 49.99 0.002021 0.002021 0.002020 0.002024 0.002019 0.002021 49.99 0.00 

119.8369 49.99 0.002021 
10.002020 0.002021 0.002023 0.002018 0.002021 49.98 0.00 

119.8360 49.98 0.002020 0.002020 0.002021 0.002023 0.002018 0.002020 49.98 -0.01 
119.8358 49.98 0.002021 0.002020 0.002021 0.002024 0.002018 0.002021 49.99 0.00 

121.8077 55.01 0.002228 0.002228 0.002228 0.002232 0.002226 0.002228 55.00 -0.01 
121.8080 55.01 0.002228 0.002229 0.002229 0.002231 0.002226 2226 0 00 0 . 0 0 0. 0 0.002229 55.00 -0.01 
121.8064 55.00 0.002229 0.002228 0.002229 0.002232 2226 0.002226 2226 00 0 0 0 0.0 0.0 0.002229 55.01 0.00 

121.8052 55.00 0.002229 0.002228 0.002228 0.002232 2 2225 0.002225 225 00 0 0 0 0.0 0.0 0.002228 55.00 0.00 

121.8054 55.00 0.002228 0.002228 0.002229 0.002232 2 2226 0.002226 226 0 0 0 0 0.0 0. () 0.002229 55.00 0.00 

123.7615 59.99 0.002435 0.002435 0.002434 0.002438 2433 0.002433 2433 0 0 00 00 0.0 0.0 0.002435 59.98 -0.02 
123.7600 59.99 0.002435 0.002434 0.002433 0.002439 

J 

2433 0.002433 0.00 0.0 0.002435 59.97 -0.02 
123.7581 59.99 0.002434 0.002436 0.002433 0.002439 433 0.002433 0 00 0.0 0.002435 59.98 -0.01 
123.7574 59.98 0.002435 0.002434 0.002433 0.002439 433 0.002433 

. 
0 00 0.0 0.002435 59.97 -0.01 

123.7565 59.98 0.002435 0.002436 0.002433 0.002438 . 433 0.002433 000 0.0 0.002435 59.98 -0.01 
125.7100 64.97 0.002643 0.002643 0.002642 0.002647 00 641 0.. 002641 0 0. 0. 0.002643 64.99 0.01 

125.7118 64.98 0.002643 1 0.002643 0.002642 0.002646 0.002641 0.002643 64.98 0.00 

125.7107 64.98 0.002643 1 0.002643 0.002642 0.002647 0.002641 0.002643 64.99 0.01 

125.7085 64.97 0.002643 0.002643 0.002641 0.002646 0.002641 0.002643 64.98 0.01 

125.7080 64.97 0.002642 0.002643 0.002642 0.002647 0.002641 0.002643 64.98 0.01 

127.6819 70.02 0.002853 0.002853 0.002851 0.002856 

1 

0.002850 0.002853 70.02 0.00 
127.6790 70.02 0.002853 0.002852 0.002851 0.002857 0.002851 0.002853 70.03 0.01 

127.6785 70.01 0.002854 , 0.002853 0.002851 0.002857 , 0.002851 0.002853 70.04 0.02 

127.6787 70.01 0.002853 0.002854 0.002852 0.002856 0.002851 0.002853 _ 
70.04 0.02 

127.6792 70.02 0.002854 0.002853 0.002851 0.002856 0.002850 0.002853 70.03 0.01 
129.6203 74.99 0.003060 0.003061 0.003057 0.003064 0.003057 0.003060 75.01 0.01 
129.6197 74.99 0.003060 

. 
0.003060 0.003058 0.003063 0.003058 0.003060 75.01 0.01 

129.6211 74.99 0.003061 0.003061 0.003058 0.003064 0.003057 0.003060 75.02 0.02 

129.6171 74.98 0.003060 0.003060 0.003058 0.003064 0.003057 0.003060 75.01 0.02 

129.6189 74.99 0.003061 0.003061 0.003057 0.003064 0.003058 0.003060 75.02 0.03 

131.6673 80.25 0.003279 0.003280 0.003275 0.003272 0.003277 0.003277 80.22 -0.03 
131.6658 80.25 0.003280 0.003279 0.003274 0.003272 0.003277 0.003276 80.22 -0.03 
131.6645 80.24 0.003279 0.003280 0.003276 0.003273 0.003277 0.003277 80.23 -0.01 
131.6672 80.25 0.003279 0.003279 0.003274 0.003272 0.003277 0.003276 80.21 -0.04 

3.25 0.003281 0.003280 0.003275 . 0.003273 
. 
0.003277 0.003277 80.24 -0.01--, 
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Table F. 12 The calibration data and the best-fit equation for the thermocouple 
(K-type thermocouple probe TI). 

Thermometer Thermocouple Best-fit quation 

Reading (Q) Temperature('C) Reading(C) Temperature(*C) Error (K) 

92.7175 -18.33 -18.40 -18.30 0.03 

92.7175 -18.33 -18.40 -18.30 0.03 

92.7175 -18.33 -18.40 -18.30 0.04 

94.7465 -13.27 -13.38 -13.27 0.00 

94.7465 -13.27 -13.37 -13.26 0.01 

94.7465 -13.27 -13.38 -13.27 0.00 

96.5010 -8.89 -8.97 -8.84 0.04 

96.5010 -8.89 -8.98 -8.86 0.03 

96.5010 -8.89 -8.97 -8.84 0.04 

98.5370 -3.79 -3.88 -3.74 0.05 

98.5370 -3.79 -3.88 -3.74 0.05 

98.5370 -3.79 -3.88 -3.74 0.05 

100.5565 1.27 1.14 1.30 0.03 

100.5565 1.27 1.16 1.32 0.05 

100.5565 1.27 1.14 1.30 0.03 

102.9520 7.28 7.07 7.24 -0.04 
102.9520 7.28 7.06 7.23 -0.05 
102.9520 7.28 7.06 7.23 -0.05 
104.4780 11.12 10.90 11.08 -0.04 
104.4780 11.12 10.90 11.08 -0.03 
104.4780 11.12 10.90 11.08 -0.04 
106.5210 16.26 16.02 16.22 -0.04 
106.5210 16.26 16.02 16.21 -0.05 
106.5210 16.26 16.03 16.22 -0.04 
108.5130 21.28 21.02 21.23 -0.05 
108.5130 21.28 21.03 21.24 -0.05 
108.5130 21.28 21.02 21.23 -0.05 
110.5385 26.40 26.14 26.37 -0.03 
110.5385 26.40 26.15 26.38 -0.02 
110.5385 26.40 26.16 26.39 -0.01 
112.4626 31.26 30.98 31.22 -0.05 
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Table F. 12 The calibration data and the best-fit equation for the thermocouple (Cont. ) 

(K-type thermocouple probe TI). 

Thermometer Thermocouple Best-fit quation 
Reading (0) Temperature('C) Reading(*C) Temperature(*C) Error (K) 

112.4626 31.26 30.99 31.23 -0.04 
112.4626 31.26 30.98 31.22 -0.05 
114.4926 36.41 36.10 36.36 -0.05 
114.4926 36.41 36.10 36.35 -0.05 
114.4926 36.41 36.11 36.36 -0.05 
116.4071 41.26 40.98 41.25 -0.02 
116.4071 41.26 40.98 41.25 -0.02 
116.4071 41.26 40.98 41.25 -0.01 
118.4382 46.43 46.16 46.44 0.02 

118.4382 46.43 46.17 46.45 0.02 

118.4382 46.43 46.16 46.44 0.02 

120.1965 50.90 50.63 50.92 OeO2 

120.1965 50.90 50.64 50.93 0.03 

120.1965 50.90 50.63 50.92 0.02 

122.2254 56.07 55.79 56.10 0.03 

122.2254 
_ 

56.07 55.77 56.08 0.01 

122.2254 56.07 55.77 56.08 0.01 

124.1204 60.91 60.62 60.94 0.03 

124.1204 60.91 60.62 60.94 0.03 

124.1204 60.91 60.61 60.93 0.02 

126.1486 66.1 0 65.82 66.15 0.06 

126.1486 
_ 

66.10 65.81 66.15 0.05 

126.1486 66.10 65.81 66.15 0.05 
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Table F. 13 The calibration data and the best-fit equation for the thermocouple 
(K-type thermocouple probe T2). 

Thermometer Thermocouple Best-fit quation 
Reading (Q) Temperature Voltage (V) Temperature C) Error (K) 

92.7175 -18.33 -0.0007103 -18.32 0.01 

92.7175 -18.33 -0.0007106 -18.33 0.00 

92.7175 -18.33 -0.0007103 -18.32 0.01 

94.7465 -13.27 -0.0005170 -13.28 -0.01 
94.7465 -13.27 -0.0005166 -13.27 0.00 

94.7465 -13.27 -0.0005172 -13.28 -0.01 
96.5010 -8.89 -0.0003471 -8.87 0.01 

96.5010 -8.89 -0.0003478 -8.89 -0.01 
96.5010 -8.89 -0.0003475 -8.88 0800 

98.5370 -3.79 -0.0001497 -3.80 0.00 

98.5370 -3.79 -0.0001495 -3.79 0.00 

98.5370 -3.79 -0.0001494 -3.79 0600 

100.5565 1.27 0.0000484 1.26 0.00 

100.5565 1.27 0.0000489 1.28 0.01 

100.5565 1.27 0.0000480 1.25 -0.01 
102.9520 7.28 0.0002862 7.29 0.01 

102.9520 7.28 0.0002860 7.28 0.00 

102.9520 7.28 0.0002861 7.29 0.01 

104.4780 11.12 0.0004372 11.09 -0.03 
104.4780 11.12 0.0004376 11.10 -0.02 
104.4780 11.12 0.0004375 11.10 -0.02 
106.5210 16.26 0.0006437 16.26 0.00 
106.5210 16.26 0.0006437 16.26 0.00 
106.5210 16.26 0.0006438 16.26 0.00 
108.5130 21.28 0.0008456 21.29 0.00 
108.5130 21.28 0.0008460 21.30 0.01 

108.5130 21.28 0.0008461 21.30 0.02 

110.5385 26.40 0.0010522 26.40 0.00 

110.5385 26.40 0.0010524 26.41 0.01 
110.5385 26.40 0.0010529 26.42 0.02 
112.4626 31.26 0.0012496 31.26 0.00 
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Table F. 13 The calibration data and the best-fit equation for the therniocouple (Cont. ) 

(K-type thermocouple probe T2). 

Thermometer Thermocouple Best-fit quation 
Reading (Q) Temperature C) Voltage (V) Temperature CQ Error (K) 

112.4626 31.26 0.0012495 31.26 0.00 

112.4626 31.26 0.0012493 31.26 -0.01 
114.4926 36.41 0.0014587 36.39 -0.02 
114.4926 36.41 0.0014591 36.40 -0.01 
114.4926 36.41 0.0014594 36.41 0.00 

116.4071 41.26 0.0016582 41.26 0.00 

116.4071 41.26 0.0016582 41.26 0.00 

116.4071 41.26 0.0016587 41.28 0.01 

118.4382 46.43 0.0018700 46.42 -0.01 
118.4382 46.43 0.0018702 46.42 0.00 

118.4382 46.43 0.0018700 46.42 -0.01 
120.1965 50.90 0.0020550 50.91 0.01 

120.1965 50.90 0.0020557 50.92 0.02 

120.1965 50.90 0.0020549 50.90 0.00 

122.2254 56.07 0.0022684 56.07 0.00 

122.2254 56.07 0.0022682 56.07 -0.01 
122.2254 56.07 0.0022679 56.06 -0.01 
124.1204 60.91 0.0024687 60.91 0.00 

124.1204 60.91 0.0024687 60.91 0.00 

124.1204 60.91 0.0024685 60.91 -0.01 
126.1486 66.10 0.0026841 66.10 0.01 

126.1486 66.10 0.0026839 66.10 0.00 

126.1486 66.10 0.0026838 66.10 0.00 
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Table F. 14 The calibration data and the best-fit equation for the thennocouple 
(T-type thermocouple probe T3). 

Thermometer Thermocouple Best-fit quation 
Reading (f)) Temperature ('C) Voltage (V) Temperature (' Q Error (K) 

92.0493 -20.00 -0.000759 -19.98_ 0.02 
92.0495 -20.00 -0.000759 -19.98 0.02 
92.0497 -20.00 -0.000759 -19.98 0.02 
92.0496 -20.00 -0.000759 -19.98 0.02 
92.0497 -20.00 -0.000760 -20.01 -0.01 
93.9616 -15.23 -0.000583 -15.24 -0.01 
93.9611 -15.23 -0.000582 -15.21 0.02 
93.9615 -15.23 -0.000582 -15.21 0.02 
93.9610 -15.23 -0.000583 -15.24 -0.01 
93.9604 -15.23 -0.000582 -15.21 0.02 
95.9938 -10.15 -0.000392 -10.15 0.01 
95.9933 -10.16 -0.000392 -10.15 0.01 
95.997 -10.15 -0.000393 -10.17 -0.03 
95.9961 -10.15 -0.000392 -10.15 0.00 
95.9947 -10.15 -0.000392 -10.15 0.00 
97.9890 -5.16 -0.000203 -5.17 -0.01 
97.9893 -5.16 -0.000203 -5.17 -0.01 
97.9883 -5.17 -0.000203 -5.17 -0 , 01 
97.9879 -5.17 -0.000203 -5.17 -0.01 
97.9880 -5.17 -0.000203 -5.17 -0.01 
100.0168 -0.09 -0.000008 -0.10 -0.01 
100.0149 -0.09 -0.000008 -0.10 -0.01 
100.0150 -0.09 -0.000008 -0.10 -0.01 
100.0148 -0.09 -0.000008 -0.10 -0.01 
100.0147 -0.09 -0.000008 -0.10 -0.01 
102.0673 5.06 0.000192 5.04 -0.01 
102.0673 5.06 0.000192 5.04 -0.01 
102.0666 5.06 0.000192 5.04 -0.01 
102.0673 5.06 0.000192 5.04 -0.01 
102.0675 5.06 0.000192 5.04 -0.01 
104.0585 10.06 0.000389 10.05 -0.01 
104.0578 10.06 0.000388 10.03 -0.03 
104.0577 10.06 0.000389 10.05 -0.01 
104.0576 10.06 0.000389 10.05 -0.01 
104.0577 10.06 0.000388 10.03 -0.03 
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Table F. 14 The calibration data and the best-fit equation for the thermocouple (Cont. ) 

(T-type thermocouple probe T3). 

Thermometer Thermocouple Best-fit quation 
Reading (Q) Temperature (0 Q Voltage (V) Temperature C) Error (K) 

106.0342 15.03 0.000586 15.01 -0.03 
106.0310 15.03 0.000587 15.03 0.01 
106.0311 15.03 0.000586 15.01 -0.02 
106.0334 15.03 0.000587 15.03 0.00 
106.0342 15.03 0.000586 15-01 -0.03 
107.9912 19.97 0.000785 19.96 -0.01 
107.9885 19.96 0.000785 19.96 0.00 
107.9915 19.97 0.000785 19.96 -0.01 
107.9894 19.96 0.000785 19.96 -0.01 
107.9927 19.97 0.000785 19.96 -0.01 
109.9841 25.00 0.000989 24.97 -0.02 
109.9834 25.00 0.000989 24.97 -0.02 
109.9804 24.99 0.000990 25.00 0.01 
109.9818 24.99 0.000990 25.00 0.01 
109.9809 24.99 0.000989 24.97 -0.01 
111.9868 30.06 0.001199 30.09 0.02 
111.9805 30.04 0.001199 30.09 0.04 
111.9803 30.04 0.001199 30.09 0.04 

111.9806 30.04 0.001199 30.09 0.04 

111.9801 30.04 0.001199 30.09 0.04 
113.9139 34.94 0.001403 35.00 0.06 
113.9129 34.94 0.001402 34.97 0.04 
113.9113 34.93 0.001402 34.97 0.04 
113.9117 34.93 0.001402 34.97 0.04 
113.9109 34.93 0.001402 34.97 0.04 
115.9190 40.03 0.001615 40.05 0.03 
115.9191 40.03 0.001615 40.05 0.03 
115.9213 40.03 0.001616 40.08 0.05 
115.9166 40.02 0.001615 40.05 0.03 
115.9164 40.02 0.001615 40.05 0.04 
117.8787 45.00 0.001825 45.01 0.01 
117.8763 45.00 0.001824 44.99 -0.01 
117.8759 45.00 0.001824 44.99 -0.01 
117.8765 45.00 0.001824 44.99 -0.01 
117.8753 45.00 OoOO1825 45.01 0 
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Table F. 14 The calibration data and the best-fit equation for the thermocouple (Cont. ) 
(T-type thermocouple probe T3). 

Thennometer Tberrnocouple Best-fit quation 
Reading (LI) Temperature C) Voltage (V) Temperature Q Error (K) 

119.8394 49.99 0.002037 49.97 -0.02 
119.8382 49.99 0.002036 49.95 -0.04 
119.8369 49.99 0.002037 49.97 -0.01 
119.8360 49.98 0.002037 49.97 -0.01 
119.8358 49.98 0.002037 49.97 -0.01 
121.8077 55.01 0.002253 54.98 -0.03 
121.8080 55.01 0.002254 55.00 -0.01 
121.8064 55.00 0.002254 55.00 0.00 
121.8052 55.00 0.002254 55.00 0.00 
121.8054 55.00 0.002253 54.98 -0.02 
123.7615 59.99 0.002469 59.94 -0.05 
123.7600 59.99 0.002469 59.94 -0.05 
123.7581 59.99 0.002470 59.97 : 0.02 
123.7574 59.98 0.002470 59.97 -0.02 
123.7565 59.98 0.002470 59.97 -0.02 
125.7100 64.97 0.002688 64.93 -0.04 
125.7118 64.98 0.002688 64.93 -0.05 
125.7107 64.98 0.002689 64.96 -0.02 
125.7085 64.97 0.002689 64.96 -0.01 
125.7080 64.97 0.002689 64.96 -0.01 
127.6819 70.02 0.002914 70.04 0.02 
127.6790 70.02 0.002913 70.02 0.01 
127.6785 70.01 0.002913 70.02 0.01 
127.6787 70.01 0.002914 70.04 0.03 
127.6792 70.02 0.002913 70.02 0.00 
129.6203 74.99 0.003134 74.98 -0.01 
129.6197 74.99 0.003135 75.00 0.01 
129.6211 74.99 0.003135 75.00 0.01 
129.6171 74.98 0.003134 74.98 -0.01 
129.6189 74.99 0.003133 74.96 -0.03 
131.6673 80.25 0.003371 80.26 0.01 
131.6658 80.25 0.003372 80.28 0.04 
131.6645 80.24 0.003372 80.28 0.04 
131.6672 80.25 0.003371 80.26 0.01 
131.6664 80.25 0.003371 80.26 0.01 
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Table F. 15 The calibration data and the best-fit equation for the thermocouple 
(T-type thermocouple probe T4). 

Thermometer Thermocouple Best-fit quation 
Reading (0) Temperature C) Voltage (V) Temperature (' C) Error (K) 

92.0493 -20.00 -0.000758 _19.99 0.01 
92.0495 -20.00 -0.000759 -20.02 -0.02 
92.0497 -20.00 -0.000757 -19.96 0.03 
92.0496 -20.00 -0.000758 -19.99 0.00 
92.0497 -20.00 -0.000757 -19.96 0.03 
93.9616 -15.23 -0.000581 -15.22 0.01 
93.9611 -15.23 -0.000581 -15.22 0.01 
93.9615 -15.23 -0.000581 -15.22_ 0.01 
93.9610 -15.23 -0.000581 -15.22 0.01 
93.9604 -15.23 -0.000581 -15.22 0.01 
95.9938 -10.15 -0.000391 -10.16_ 0.00 
95.9933 -10.16 -0.000391 -10.16 0.00 
95.9975 -10.15 -0.000391 -10.16 -0.01 
95.9961 -10.15 -0.000391 -10.16 -0.01 
95.9947 -10.15 -0.000390 -10.13 0.02 
97.9890 -5.16 -0.000202 -5.18 -0.01 
97.9893 -5.16 -0.000203 -5.21 -0.04 
97.9883 -5.17 -0.000202 -5.18 -0.01 
97.9879 -5.17 -0.000202 -5.18 -0.01 
97.9880 -5.17 -0.000202 -5.18 -0.01 
100.0168 -0.09 -0.000007 -0.10 -0.01 
100.0149 -0.09 -0.000007 -0.10 -0.01 
100.0150 -0.09 -0.000007 -0.10 -0.01 
100.0148 -0.09 -0.000007 -0.10 -0.01 
100.0147 : 0.09 -0.000007 -0.10 -0.01 
102.0673 5.06 0.000193 5.05 -0.01 
102.0673 5.06 0.000194 5.07 0.02 
102.0666 5.06 0.000193 5.05 -0.01 
102.0673 5.06 0.000194 5.07 0.02 
102.0675 5.06 0.000193 5.05 -0.01 
104.0585 10.06 0.000390 10.06 0.00 
104.0578 10.06 0.000390 10.06 0.00 
104.0577 10.06 0.000390 10.06 0.00 
104.0576 10.06 0.000389 10.04 -0.02 
104.0577 10.06 0.000390 10.06 
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Table F. 15 The calibration data and the best-fit equation for the thermocouple (Cont. ) 

(T-type thermocouple probe T4). 

Thennometer Thennocouple Best-fit quation 
Reading (Q) Temperature ('C) Voltage (V) Temperature C) Error (K) 

106.0342 15.03 0.000587 15.02 -0.01 
106.0310 15.03 0.000587 15.02 -0.01 
106.0311 15.03 0.000587 15.02 -0.01 
106.0334 15.03 0.000587 15.02 -0.01 
106.0342 15.03 0.000586 14.99 -0.04 
107.9912 19.97 0.000785 19.95 -0.02 
107.9885 19.96 0.000785 19.95 -0.01 
107.9915 19.97 0.000786 19.97 0.01 
107.9894 19.96 0.000786 19.97 0.01 
107.9927 19.97 0.000785 19.95 -0.02 
109.9841 25.00 0.000990 24.99 0.00 
109.9834 25.00 0.000991 25.02 0.02 
109.9804 24.99 0.000990 24.99 0.01 
109.9818 24.99 0.000990 24.99 0.00 
109.9809 24.99 0.000990 24.99 0.01 
111.9868 30.06 0.001198 30.06 0.00 
111.9805 30.04 0.001199 30.08 0.04 
111.9803 30.04 0.001199 30.08 0.04 
111.9806 30.04 0.001199 30.08 0.04 
111.9801 30.04 0.001200 30.11 0.06 
113.9139 34.94 0.001401 34.95 0.01 
113.9129 34.94 0.001402 34.97 0.03 
113.9113 34.93 0.001401 34.95 0.01 
113.9117 34.93 0.001401 34.95 0.01 
113.9109 34.93 0.001402 34.97 0.04 
115.9190 40.03 0.001615 40-05 0.02 
115.9191 40.03 0.001615 40.05 0.02 
115.9213 40.03 0.001615 40.05 0.01 
115.9166 40.02 0.001615 40.05 0.03 
115.9164 40.02 0.001615 40.05 0.03 
117.8787 45.00 0.001824 44.97 -0.03 
117.8763 45.00 0.001824 44.97 -0.02 
117.8759 45.00 0.001825 45.00 0.00 
117.8765 45.00 0.001825 45.00 0.00 

1-117.8753 1 
_45.00 

0.001825 45.00 0.00 
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Table F. 15 The calibration data and the best-fit equation for the thermocouple (Cont. ) 

(T-type thermocouple probe T4). 

Thermometer Thermocouple Best-fit quation 
Reading (Q) Temperature (C) Voltage (V) Temperature Q Error (K) 

119.8394 49.99 0.002038 49.97 -0.03 
119.8382 49.99 0.002038 49.97 -0.02 
119.8369 49.99 0.002039 49.99 0.00 
119.8360 49.98 0.002038 49.97 -0.02 
119.8358 49.98 0.002039 49.99 0.01 
121.8077 55.01 0.002255 54.98 -0.03 
121.8080 55.01 0.002255 54.98 -0.03 
121.8064 55.00 0.002256 55.00 0.00 
121.8052 55.00 0.002255 54.98 -0.02 
121.8054 55.00 0.002256 55.00 0.00 
123.7615 59.99 0.002472 59.94 -0.06 
123.7600 59.99 0.002472 59.94 -0.05 
123.7581 59.99 0.002472 59.94 -0.05 
123.7574 59.98 0.002472 59.94 -0.05 
123.7565 59.98 0.002472 59.94 -0.04 
125.7100 64.97 0.002695 64.99 0.01 
125.7118 64.98 0.002696 65.01 0.03 
125.7107 64.98 0.002695 64.99 0.01 

125.7085 64.97 0.002696 65.01 0.04 

125.7080 64.97 0.002695 64.99 0.02 
127.6819 70.02 0.002921 70.05 0.03 
127.6790 70.02 0.002920 70.03 0.02 
127.6785 70.01 0.002920 70.03 0.02 
127.6787 70.01 0.002920 70.03 0.02 
127.6792 70.02 0.002920 70.03 0.02 
129.6203 74.99 0.003143 74.98 -0.01 
129.6197 74.99 0.003144 75.01 0.02 
129.6211 74.99 0.003143 74.98 -0.01 
129.6171 74.98 0.003143 74.98 0.00 
129.6189 74.99 0.003144 75.01 0.02 
131.6673 80.25 0.003383 80.27 0.02 
131.6658 80.25 0.003382 80.25 0.00 
131.6645 80.24 0.003382 80.25 0.00 
131.6672 80.25 0.003381 80.22 -0.03 
131.6664 80.25 0.003382 80.25 0.00 
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Table F. 16 The calibration data and the best-fit equation for the thermocouple 
(T-type thermocouple probe TO). 

Thennometer Thermocouple Best-fit quation 
Reading (Q) Temperature Q Voltage (V) Temperature Q Error (K) 

92.0493 -20.00 -0.000754 -20.01 -0.01 
92.0495 -20.00 -0.000753 -19.98_ 0.01 
92.0497 -20.00 -0.000753 -19.98 0.01 
92.0496 -20.00 -0.000754 -20.01 -0.01 
92.0497 -20.00 -0.000754 -20.01 -0.01 
93.9616 -15.23 -0.000577 -15.22 0.01 
93.9611 -15.23 -0.000578 -15.25 -0.02 
93.9615 -15.23 -0.000578 -15.25 -0.02 
93.9610 -15.23 -0.000577 -15.22 0.01 
93.9604 -15.23 -0.000578 -15.25 -0.01 
95.9938 -10.15 -0.000387 -10.14 0.02 
95.9933 -10.16 -0.000388 -10.16 -0.01 
95.9975 -10.15 -0.000387 -10.14 0.01 
95.9961 -10.15 -0.000387 -10.14 0.01 
95.9947 -10.15 -0.000387 -10.14 0.02 
97.9890 -5.16 -0.000199 -5.17 0.00 
97.9893 -5.16 -0.000199 -5.17 -0.01 
97.9883 -5.17 -0.000198 -5.14 0.02 
97.9879 -5.17 -0.000199 -5.17 0.00 
97.9880 -5.17 -0.000199 -5.17 0.00 
100.0168 -0.09 -0.000004 -0.08 0.01 
100.0149 -0.09 -0.000004 -0.08 0.01 
100.0150 -0.09 -0.000005 -0.10 -0.01 
100.0148 -0.09 -0.000004 -0.08 0.01 
100.0147 -0.09 -0.000004 -0.08 0.01 
102.0673 5.06 0.000195 5.06 0.00 
102.0673 5.06 0.000195 5.06 0.00 
102.0666 5.06 0.000195 5.06 0.00 
102.0673 5.06 0.000194 5.03 -0.03 
102.0675 5.06 0.000195 5.06 0.00 
104.0585 10.06 0.000392 10.08 0.02 
104.0578 10.06 0.000392 10.08 0.02 
104.0577 10.06 0.000392 10.08 0.02 
104.0576 10.06 0.000392 10.08 0.02 
104.0577 10.06 0.000391 10.05 -0.01 
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Table F. 16 The calibration data and the best-fit equation for the thennocouple (Cont. ) 

(T-type thermocouple probe TO). 

Thermometer Thermocouple Best-fit quation 
Reading (Q) Temperature (C) Voltage (V) Temperature (0 Q Error (K) 

-106.0342 15.03 0.000588 15.02 -0.01 
106.0310 15.03 0.000588 15.02 -0.01 
106.0311 15.03 0.000589 15.04 0.02 
106.0334 15.03 0.000588 15.02 -0.01 
106.0342 15.03 0.000588 15.02 -0.01 
107.9912 19.97 0.000786 19.96 -0.01 
107.9885 19.96 0.000786 19.96 0.00 
107.9915 19.97 0.000786 19.96 -0.01 
107.9894 19.96 0.000785 19.93 -0.03 
107.9927 19.97 0.000786 19.96 -0.01 
109.9841 25.00 0.000990 24.99 -0.01 
109.9834 25.00 0.000990 24.99 -0.01 
109.9804 24.99 0.000990 24.99 0.00 
109.9818 24.99 0.000990 24.99 -0.01 
109.9809 24.99 0.000990 24.99 0*00 
111.9868 30.06 0.001197 30.04 -0.03 
111.9805 30.04 0.001197 30.04 -0.01 
111.9803 30.04 0.001197 30.04 -0.01 
111.9806 30.04 0.001197 30.04 -0.01 
111.9801 30.04 0.001198 30.06 0.02 
113.9139 34.94 0.001400 34.94 0.00 
113.9129 34.94 0.001400 34.94 0.00 
113.9113 34.93 0.001401 34.96 0.03 
113.9117 34.93 0.001400 34.94 0.00 
113.9109 34.93 0.001400 34.94 0.00 
115.9190 40.03 0.001613 40.03 0.00 
115.9191 40.03 0.001614 40.05 0.03 
115.9213 40.03 0.001613 40.03 0.00 
115.9166 40.02 0.001613 40.03 0.01 
115.9164 40.02 0.001613 40.03 0.01 
117.8787 45.00 0.001824 45.02 0.02 
117.8763 45.00 0.001823 45.00 0.00 
117.8759 45.00 0.001823 45.00 0.00 
117.8765 45.00 

-- 
0.001824 45.02 0.02 

117.8753 45.00- 
t 

0.00 1824 45.02 0.03 
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Table F. 16 The calibration data and the best-fit equation for the thermocouple (Cont. ) 

(T-type thermocouple probe TO). 

Thermometer Thermocouple Best-fit quation 
Reading (Q) Temperature Q Voltage (V) Temperature C) Error (K) 

119.8394 49.99 0.002036 49.99 0.00 
119.8382 49.99 0.002036 49.99 0.00 
119.8369 49.99 0.002036 49.99 0.01 
119.8360 49.98 0.002036 49.99 0.01 
119.8358 49.98 0.002037 50.02 0.03 
121.8077 55.01 0.002250 54.97 -0.04 
121.8080 55.01 0.002251 54.99 -0.02 
121.8064 55.00 0.002251 54.99 -0.01 
121.8052 55.00 0.002251 54.99 -0.01 
121.8054 55.00 0.002251 54.99 -0.01 
123.7615 59.99 0.002468 59.99 0.00 
123.7600 59.99 0.002467 59.97 -0.02 
123.7581 59.99 0.002467 59.97 -0.02 
123.7574 59.98 0.002467 59.97 -0.01 
123.7565 59.98 0.002468 59.99 0.01 
125.7100 64.97 0.002686 64.98 0.00 
125.7118 64.98 0.002686 64.98 0.00 
125.7107 64.98 0.002686 64.98 0.00 
125.7085 64.97 0.002685 64.95 -0.02 
125.7080 64.97 0.002686 64.98 0.01 
127.6819 70.02 0.002908 70.01 -0.01 
127.6790 70.02 0.002909 70.04 0.02 
127.6785 70.01 0.002908 70.01 0.00 
127.6787 70.01 0.002909 70.04 0.02 
127.6792 70.02 0.002909 70.04 0.02 
129.6203 74.99 0.003128 74-97 -0.02 
129.6197 74.99 0.003128 74.97 -0.02 
129.6211 74.99 0.003129 74.99 0.00 
129.6171 74.98 0.003129 74.99 0.01 
129.6189 74.99 0.003129 74.99 0.01 
131.6673 80.25 0.003364 80.26 0.01 
131.6658 80.25 0.003363 80.23 -0.01 
131.6645 80.24 0.003364 80.26 0801 
131.6672 80.25 0.003363 80.23 -0.02 
131.6664 80.25 0.003364 80.26 0.01 
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Table F. 17 The calibration data and the best-fit equation for the thermocouple 
(K-type thennocouple probe T5). 

Thermometer Thermocouple Best-fit quation 
Reading (Q) Temperature Q Reading (C) Temperature Q Error (K) 

92.7175 -18.33 -18.39 -18.31 0.02 

92.7175 -18.33 -18.38 -18.31 
_ 0.02 

92.7175 -18.33 -18.37 -18.29 0.04 

94.7465 -13.27 -13.35 -13.26 0.01 

94.7465 -13.27 -13.35 -13.26 0.01 

94.7465 -13.27 -13.36 -13.27 0.00 

96.5010 -8.89 -8.95 -8.84 0.04 

96.5010 -8.89 -8.95 -8.84 0.05 

96.5010 -8.89 -8.95 -8.84 0.04 

98.5370 -3.79 -3.87 -3.74 0.05 

98.5370 -3.79 -3.87 -3.74 0.05 

98.5370 -3.79 -3.88 -3.75 0.04 

100.5565 1.27 1.17 1.31 0.04 

100.5565 1.27 1.18 1.32 0.06 

100.5565 1.27 1.16 1.30 0.04 

102.9520 7.28 7.06 7.22 -0.06 
102.9520 7.28 7.07 7.23 -0.05 
102.9520 7.28 7.06 7.22 -0.06 
104.4780 11.12 10.92 11.09 -0.02 
104.4780 11.12 10.91 11.09 -0.03 
104.4780 11.12 10.92 11.10 -0.02 
106.5210 16.26 16.01 16.20 -0.06 
106.5210 16.26 16.01 16.20 -0.06 
106.5210 16.26 16.01 16.21 -0.05 
108.5130 21.28 21.03 21.24 -0.04 
108.5130 21.28 21.02 21.23 -0.05 
108.5130 21.28 21.02 21.23 -0.05 
110.5385 26.40 26.15 26.38 -0.02 
110.5385 26.40 26.15 26.38 -0.02 
110.5385 26.40 26.16 26.39 -0.01 
112.4626 31.26 30.97 31.22 -0.05 
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Table F. 17 The calibration data and the best-fit equation for the thermocouple (Cont. ) 

(K-type thermocouple probe T5). 

Thermometer Thermocouple Best-fit quation 
Reading (0) Temperature Q Reading (* Q Temperature Q Error (K) 

112.4626 31.26 30.97 31.22 -0.05 
112.4626 31.26 30.97 31.22 -0.05 
114.4926 36.41 36.09 36.36 -0.05 
114.4926 36.41 36.10 36.36 -0.05 
114.4926 36.41 36.10 36.36 -0.05 
116.4071 41.26 40.96 41.24 -0.02 
116.4071 41.26 40.98 41.26 -0.01 
116.4071 41.26 40.98 41.26 -0.01 
118.4382 46.43 46.15 46.45 0.02 
118.4382 46.43 46.15 46.45 0.02 
118.4382 46.43 46.15 46.45 0.02 

120.1965 50.90 50.61 50.92 0.02 

120.1965 50.90 50.61 50.92 0.02 
120.1965 50.90 50.60 50.91 0.01 
122.2254 56.07 55.76 56.09 0.02 
122.2254 56.07 55.76 56.09 0.02 

122.2254 56.07 55.75 56.08 0.01 

124.1204 60.91 60.59 60.94 0.03 
124.1204 60.91 60.59 60.94 0.03 
124.1204 60.91 60.59 60.94 0.03 
126.1486 66.10 65.79 66.15 0.06 
126.1486 66.10 65.79 66.15 0.05 
126.1486 66.10 65.78 66.15 0.05 
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Table F. 18 The calibration data and the best-fit equation for the therniocouple 
(K-type thermocouple probe T6). 

Therinometer Thermocouple Best-fit quation 
Reading (0) Temperature C) Reading ('C) Temperature (C) Error (K) 

92.7175 -18.33 -18.27 -18.31 _0.02 
92.7175 -18.33 -18.27 -18.31 _0.02 
92.7175 -18.33 -18.26 -18.31 0.03 

94.7465 -13.27 -13.23 -13.26 0.01 

94.7465 -13.27 -13.23 -13.26 0.01 
94.7465 -13.27 -13.24 -13.27 0.00 

96.5010 -8.89 -8.83 -8.85 0.03 

96.5010 -8.89 -8.83 -8.85 0.04 

96.5010 -8.89 -8.83 -8.85 OoO4 

98.5370 -3.79 -3.75 -3.76 0.03 

98.5370 -3.79 -3.74 -3.75 0.04 

98.5370 -3.79 -3.75 -3.76 0.03 

100.5565 1.27 1.26 1.27 0.00 

100.5565 1.27 1.28 1.28 0.02 

100.5565 1.27 1.26 1.27 0000 

102.9520 7.28 7.23 7.25 -0.03 
102.9520 7.28 7.22 7.24 -0.04 
102.9520 7.28 7.23 7.25 -0: 03 

104.4780 11.12 11.07 11.10 -0.01 
104.4780 11.12 11.07 11.10 -0.01 
104.4780 11.12 11.07 11.10 -0001 
106.5210 16.26 16.18 16.22 -0.04 
106.5210 16.26 16.17 16.22 -0.04 
106.5210 16.26 16.17 16.22 -0.04 
108.5130 21.28 21.20 21.25 -0.03 
108.5130 21.28 21.19 21.25 -0.03 
108.5130 21.28 21.19 21.25 -0.03 
110.5385 26.40 26.31 26.38 -0.02 
110.5385 26.40 26.33 26.40 0.00 
110.5385 26.40 26.33 26.40 0.00 
112.4626 31.26 31.15 31.23 -0.03 
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Table F. 18 The calibration data and the best-fit equation for the thennocouple (Cont. ) 

(K-type thennocouple probe T6). 

Thermometer Thermocouple Best-fit quation 
Reading (0) Temperature('C) Reading(*C) Temperature(*C) Error (K) 

112.4626 31.26 31.15 31.23 -0.03 
112.4626 31.26 31.15 31.23 -0.03 
114.4926 36.41 36.27 36.37 -0.04 
114.4926 36.41 36.27 36.37 -0.04 
114.4926 36.41 36.28 36.37 -0.03 
116.4071 41.26 41.15 41.26 -0.01 
116.4071 41.26 41.15 41.26 0.00 

116.4071 41.26 41.16 41.27 0.00 

118.4382 
_ 

46.43 46.33 46.45 0.03 

118.4382 46.43 46.33 46.46 0.03 

118.4382 
_ 

46.43 46.33 46.46 0.03 

120.1965 50.90 50.78 50.92 0.01 

120.1965 50.90 50.79 50.93 0.02 

120.1965 50.90 50.77 50.91 0.00 

122.2254 56.07 55.94 56.09 0.02 

122.2254 56.07 55.93 56.08 0.01 

122.2254 56.07 55.93 56.08 0.01 

124.1204 60.91 60.76 60.92 0.01 

124.1204 60.91 60.76 60.92 0.01 

124.1204 60.91 60.76 60.92 0.01 

126.1486 
_ 

66.10 65.95 66.12 0.03 

126.1486 66.10 65.94 66.12 0.02 

126.1486 66.10 65.95 66.12 0.03 
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F-4 Differential pressure transmitters 

Table F. 21 The calibration data for the differential pressure transmitter DI) I 

(24% scale range). 

Test No. 1 2 3 4 Unit 
Water density (at 18.5 Q 998.53 998.53 998.53 998.53 k ý/M3 

Water level difference 0.0 323.0 477.5 621.2 mm 
Measured pressure difference 0.00000 0.03163 0.04676 - 0.06082 bar 
Signal output 2.0465 6.1745 8.1763 10.0000 v 
Calculated pressure difference 0.00001 0.03156 0.04685 0.06079 bar 
Difference between 
measurement and calculation 1 -7 10 -4 Pa 
Relative error 0.23% -0.20% 

LOjO: 
6: 07/o 

0.07 

0.06 

ca 
-0 0.05 
(D 

0.04 

0.03 
(D 
cn 

0.02 

0.01 

0.00 

y=7.64138E-03x - 1.56251 E-02 
R2=9.99992E-01 

10 12 

Voltage (V) 

Figure F. 16 The best-fit equation for the differential pressure transmitter DP I 

(24% scale range). 
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Table F. 22 The calibration data for the differential pressure transmitter DII I 

(100% scale range). 

Test No. 1 2 Unit 
Water density 1000.0 1000.0 kg/m 3 

Water level difference 0.0 100.0 in. 
Measured pressure difference 0.0000 0.2491 bar 
Signal output 2.0 10.0 v 
Calculated presSure difference 0.0000 0.2491 ar 
[Difference between measurement and calculation 0 

ýp 

0.30 

0.25 

0.20 

-0 
0.15 

0- 0.10 

0.05 

0.00 

y=3.11361 E-02x - 6.22722E-02 

Voltage (V) 

Figure F. 17 The best-fit equation for the differential pressure transmitter DPI 

(100% scale range). 

Table F. 23 The best-fit equations for the differential pressure transmitter DP 1. 

No. 
- t 

Scale Applied range Best-tit equations R2 
0- 24 in. water y=7.64138E-03x - 1.56251 E-02 0.999992 DPI 

24 - 100 in. water y=3.11361 E-02x - 6.22722E-02 1.000000 
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Appendix G 

Effect Factors on Slug Length 

The present study indicates that slug length is an important factor affecting tile slug 

configuration and may reveal the transition mechanism from slug flow to churn flow. 

The maximum and average slug length was measured in the present experiments and 

shows that various parameters affect it. The complete experimental results are presented 

and compared in this appendix to reveal the effect of gas/liquid superficial velocity, 
fluid pressure and tube diameter. A discussion and conclusions are presented in Chapter 

5 Section 5.1.4. 

G. 1 The effect of gas/liquid superficial velocity on slug length 

Slug average length vs. gas/liquid superficial velocity 
(4.26 mm, 6 bar) 
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Uls-0.18m/s 

*E tJls=0.28m/s 

--10- Uls--0.45m/s 

Uls-0.72m/s 

Uls-0.921n/s 

Uls- 1.17m/s 

Figure G. I The effect of gas or liquid superficial velocities on slug average length 

in the 4.26 mm tube at 6 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(4.26 mm, 6 bar) 
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Figure G. 2 The effect of gas or liquid superficial velocities on slug maximum length 

in the 4.26 mm tube at 6 bar. 

Slug average length vs. gas/liquid superficial velocity 
(4.26 mm, 10 bar) 
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Figure G. 3 The effect of gas or liquid superficial velocities on slug average length 

in the 4.26 mm tube at 10 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(4.26 mm, 10 bar) 
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Figure GA The effect of gas or liquid superficial velocities on slug maximum length 

in the 4.26 mm tube at 10 bar. 
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Figure G. 5 The effect of gas or liquid superficial velocities on slug average length 

in the 4.26 mm tube at 14 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(4.26 mm, 14 bar) 
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Figure G. 6 The effect of gas or liquid superficial velocities on slug maximum length 

in the 4.26 mm tube at 14 bar. 

Slug average length vs. gas/liquid superficial velocity 
(2.88 mm, 6 bar) 
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Figure G. 7 The effect of gas or liquid superficial velocities on slug average length 

in the 2.88 mm tube at 6 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(2.88 mm, 6 bar) 
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Figure G. 8 The effect of gas or liquid superficial velocities on slug maximum length 

in the 2.88 mm tube at 6 bar. 
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Figure G. 9 The effect of gas or liquid superficial velocities on slug average length 

in the 2.89 mm tube at 10 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(2.88 mm, 10 bar) 
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Figure G. 10 The effect of gas or liquid superficial velocities on slug maximum length 

in the 2.88 mm tube at 10 bar. 

Slug average length vs. gas/liquid superficial velocity 
(2.88 mm, 14 bar) 
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Figure G. II The effect of gas or liquid superficial velocities on slug average length 

in the 2.88 mm tube at 14 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(2.88 mm, 14 bar) 

160.0 

140.0 

120.0 

100.0 

E 80.0 

60.0 

40.0 

20.0 

0.0 
0 

0 Uls=0.04m/s 

-»- Ulsý0.07m/s 
U IsýO. 11 M/s 
Uls-0.1 ßm/s 

NE Uls-0.28m/s 

-0- Uls-0.45m/s 
Uls=O. 72m/s 
Ulsý0.92m/s 

Figure G. 12 The effect of gas or liquid superficial velocities on slug maximum length 

in the 2.88 mm tube at 14 bar. 

Slug average length vs. gas/liquid superficial velocity 
(2.01 mm, 6 bar) 
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Figure G. 13 The effect of gas or liquid superficial velocities on slug average length 

in the 2.01 mm tube at 6 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(2.01 mm, 6 bar) 
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Figure G. 14 The effect of gas or liquid superficial velocities on slug maximum length 

in the 2.01 mm tube at 6 bar. 

Slug average length vs. gas/liquid superficial velocity 
(2.01 mm, 10 bar) 
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Figure G. 15 The effect of gas or liquid superficial velocities on slug average length 

in the 2.01 mm tube at 10 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(2.01 mm, 10 bar) 
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Figure G. 16 The effect of gas or liquid superficial velocities on slug maximum length 

in the 2.01 mm tube at 10 bar. 

Slug average length vs. gas/liquid superficial velocity 
(2.01 mm, 14 bar) 
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Figure G. 17 The effect of gas or liquid superficial velocities on slug average length 
in the 2.01 mm tube at 14 bar. 
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Figure G. 18 The effect of gas or liquid superficial velocities on slug maximum length 

in the 2.01 mm tube at 14 bar. 

Slug average length vs. gas/liquid superficial velocity 
(I. 10 mm, 6 bar) 
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Figure G. 19 The effect of gas or liquid superficial velocities on slug average length 

in the 1.10 mm tube at 6 bar. 
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Figure G. 20 The effect of gas or liquid superficial velocities on slug maximum length 

in the 1.10 mm tube at 6 bar. 

Slug average length vs. gas/liquid superficial velocity 
(I. 10 mm, 10 bar) 
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Figure G. 21 The effect of gas or liquid superficial velocities on slug average length 

inthe 1.10 mmtubeat 10 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(I. 10 mm, 10 bar) 
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Figure G. 22 The effect of gas or liquid superficial velocities on slug maximum length 

in the 1.10 mm tube at 10 bar. 

Slug average length vs. gas/liquid superficial velocity 
(1.10 mm, 14 bar) 
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Figure G. 23 The effect of gas or liquid superficial velocities on slug average length 

in the I- 10 mm tube at 14 bar. 
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Slug maximum length vs. gas/liquid superficial velocity 
(I. 10 mm, 14 bar) 
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Figure G. 24 The effect of gas or liquid superficial velocities on slug maximum length 

in the 1.10 mm tube at 14 bar. 
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G. 2 The effect of tube diameter on slug length 

The effect of tube diameter on slug average length 
(P=6 bar, Uls=0.04m/s) 
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Figure G. 25 The effect of tube diameter on slug average length at 6 bar (ui, =0.04m/s). 

The effect of tube diameter on slug relative length 
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Figure G. 26 The effect of tube diameter on slug length-diameter ratio at 6 bar 

(uls=0.04m/s). 
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The effect of tube diameter on slug average length 
(P=6 bar, Uls=0.07m/s) 
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Figure G. 27 The effect of tube diameter on slug average length at 6 bar (ui, =0.07m/s). 

The effect of tube diameter on slug relative length 
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Figure G. 28 The effect of tube diameter on slug length-diameter ratio at 6 bar 

(ui, =0.07m/s). 
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The effect of tube diameter on slug average length 
(P=6 bar, Uls=O. II m/s) 
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Figure G. 29 The effect of tube diameter on slug average length at 6 bar (ul, =O. II m/s). 

The effect of tube diameter on slug relative length 
(P=6 bar, U lsýO. II m/s) 
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Figure G. 30 The effect of tube diameter on slug length-diameter ratio at 6 bar 
(ul, =O. II M/S). 
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The effect of tube diameter on slug average length 
(Pý6 bar, Uls=O. I 8m/s) 
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Figure G. 31 The effect of tube diameter on slug average length at 6 bar (ul, =O. I 8m/s). 

The effect of tube diameter on slug relative length 
(Pý6 bar, U Is- 0.18m/s) 
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Figure G. 32 The effect of tube diameter on slug length-diameter ratio at 6 bar 

(ui, =O. I 8m/s). 
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The effect of tube diameter on slug average length 
(P=6 bar, Uls=0.28m/s) 
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Figure G. 33 The effect of tube diameter on slug average length at 6 bar (ul, =0.28m/s). 

The effect of tube diameter on slug relative length 
(P=6 bar, Uls=0.28m/s) 
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Figure G. 34 The effect of tube diameter on slug length-diameter ratio at 6 bar 

(ul, =0.28m/s). 
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The effect of tube diameter on slug average length 
(P=6 bar, Uls-0.45m/s) 
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Figure G. 35 The effect of tube diameter on slug average length at 6 bar (ul, =0.45m/s). 

The effect of tube diameter on slug relative length 
(P=6 bar, Ulsý0.45m/s) 
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Figure G. 36 The effect of tube diameter on slug length-diameter ratio at 6 bar 

(ul, =0.45m/s). 
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The effect of tube diameter on slug average length 
(P=6 bar, Uls=0.72m/s) 

50.0 

45.0 

40.0 

35.0 

30.0 

25.0 

)O. o 

15.0 

10.0 

5.0 

0.0 

0 

6 D=I. lOmm 

--W- D-2.0 1 mm 
D=2.88mm 
D=4.26mm 

Figure G. 37 The effect of tube diameter on slug average length at 6 bar (ui, =0.72m/s). 

The effect of tube diameter on slug relative length 
(P-6 bar, Uls=0.72m/s) 
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Figure G. 38 The effect of tube diameter on slug length-diameter ratio at 6 bar 

(ul, =0.72m/s). 
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The effect of tube diameter on slug average length 
(P-6 bar, U Is= 1.1 7m/s) 
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Figure G. 39 The effect of tube diameter on slug average length at 6 bar (ui, = 1.1 7m/s). 

The effect of tube diameter on slug relative length 
(Pý6 bar, U Is- 1.1 7m/s) 
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Figure G. 40 The effect of tube diameter on slug length-diameter ratio at 6 bar 

(ul, = 1.1 7m/s). 
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The effect of tube diameter on slug average length 
(P-10 bar, Uls=0.04m/s) 
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Figure GAI The effect of tube diameter on slug average length at 10 bar (ul, =0.04m/s). 
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120 

100 

80 

60 

40 

20 

0 

0 D-1.10mm 

--B- D-2.01 mm 
D-2.88mm 

D-4.26mm 

0 0.1 0.2 0.3 0.4 0.5 

Up (M/S) 

Figure G. 42 The effect of tube diameter on slug length-diameter ratio at 10 bar 

(ul, =0.04m/s). 

434 

0.1 0.2 0.3 0.4 0.5 

Ugs (M/S) 



The effect of tube diameter on slug average length 
(P= 10 bar, Uls=0.07m/s) 
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Figure G. 43 The effect of tube diameter on slug average length at 10 bar (ui, =0.07m/s). 

The effect of tube diameter on slug relative length 
(P=10 bar, Ulsý0.07m/s) 
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Figure G. 44 The effect of tube diameter on slug length-diarneter ratio at 10 bar 

(ui, =0.07m/s). 
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The effect of tube diameter on slug average length 
(P- 10 bar, U ls=O. II m/s) 
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Figure G. 45 The effect of tube diameter on slug average length at 10 bar (ul, =O. II m/s). 

The effect of tube diameter on slug relative length 
(Pý 10 bar, U ls=O. II m/s) 
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Figure G. 46 The effect of tube diameter on slug length-diameter ratio at 10 bar 

(UIS=O. II M/S). 

436 

0.1 0.2 0.3 0.4 0.5 0.6 

Ugs (M/S) 

0.1 0.2 0.3 0.4 0.5 0.6 

Ugs (M/S) 



The effect of tube diameter on slug average length 
(P= 10 bar, U ls=O. I 8m/s) 
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Figure G. 47 The effect of tube diameter on slug average length at 10 bar (ui, =O. I 8m/s). 

The effect of tube diameter on slug relative length 
(P-- 10 bar, U lsýO. I 8m/s) 
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Figure G. 48 The effect of tube diameter on slug length-diameter ratio at 10 bar 

(u,, =0. I 8m/s). 
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The effect of tube diameter on slug average length 
(P= 10 bar, U ls=0.2 8m/s) 
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Figure G. 49 The effect of tube diameter on slug average length at 10 bar (ui, =0.28m/s). 

The effect of tube diameter on slug relative length 
(P=10 bar, Ulsý0.28m/s) 
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Figure G. 50 The effect of tube diameter on slug length-diameter ratio at 10 bar 

(ul, =0.28m/s). 
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The effect of tube diameter on slug average length 
(P=10 bar, Uls=0.45m/s) 
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Figure G. 51 The effect of tube diameter on slug average length at 10 bar (ul, =0.45m/s). 

The effect of tube diameter on slug relative length 
(P=10 bar, Uls-0.45M/S) 
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Figure G. 52 The effect of tube diameter on slug length-diameter ratio at 10 bar 

(ui, =0.45m/s). 
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The effect of tube diameter on slug average length 
(P=10 bar, Uls=0.72m/s) 
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Figure G. 53 The effect of tube diameter on slug average length at 10 bar (ul, =0.72m/s). 
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(P=10 bar, Uls=0.72m/s) 
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Figure G. 54 The effect of tube diameter on slug length-diameter ratio at 10 bar 

(ui, =0.72m/s). 
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The effect of tube diameter on slug average length 
(P= 14 bar, U lsý0.04m/s) 
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Figure G. 55 The effect of tube diameter on slug average length at 14 bar (ui, =0.04m/s). 
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Figure G. 56 The effect of tube diameter on slug length-diameter ratio at 14 bar 

(ul, =0.04m/s). 
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The effect of tube diameter on slug average length 
(P-14 bar, Uls=0.07m/s) 
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Figure G. 57 The effect of tube diameter on slug average length at 14 bar (uis=0.07m/s). 

The effect of tube diameter on slug relative length 
(P=14 bar, Ulsý0.07m/s) 
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Figure G. 58 The effect of tube diameter on slug length-diameter ratio at 14 bar 

(ul, =0.07m/s). 
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The effect of tube diameter on slug average length 
(P= 14 bar, U ls=O. II m/s) 
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Figure G. 59 The effect of tube diameter on slug average length at 14 bar (ul, =O. II m/s). 

The effect of tube diameter on slug relative length 
(P- 14 bar, U ls=O. II m/s) 
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Figure G. 60 The effect of tube diameter on slug length-diameter ratio at 14 bar 

(ul, =O. II m/s). 
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The effect of tube diameter on slug average length 
(P= 14 bar, U ls=O. I 8m/s) 
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Figure G. 61 The effect of tube diameter on slug average length at 14 bar (ul, =O. I 8m/s). 

The effect of tube diameter on slug relative length 
(P= 14 bar, U lsýO. I 8m/s) 
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Figure G. 62 The effect of tube diameter on slug length-diameter ratio at 14 bar 

(ul, =O. I 8m/s). 
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The effect of tube diameter on slug average length 
(P=14 bar, Uls-0.28m/s) 
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Figure G. 63 The effect of tube diameter on slug average length at 14 bar (ui, =0.28m/s). 

The effect of tube diameter on slug relative length 
(P=14 bar, Uls=0.28m/s) 
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Figure G. 64 The effect of tube diameter on slug length-diameter ratio at 14 bar 

(ul, =0.28m/s). 
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The effect of tube diameter on slug average length 
(Pý14 bar, Uls=0.45m/s) 
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Figure G. 65 The effect of tube diameter on slug average length at 14 bar (ul, =0.45m/s). 
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Figure G. 66 The effect of tube diameter on slug length-diameter ratio at 14 bar 

(uls=0.45m/s). 
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The effect of tube diameter on slug average length 
(P=14 bar, Uls-0.72m/s) 
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Figure G. 67 The effect of tube diameter on slug average length at 14 bar (ul, =0.72m/s). 
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Figure G. 68 The effect of tube diameter on slug length-diameter ratio at 14 bar 

(ul, =0.72m/s). 
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G. 3 The effect of pressure on slug length 
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Figure G. 69 The effect of pressure on slug average length in the I-I Onim tube 

(ul, =0.04m/s). 
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Figure G. 70 The effect of pressure on slug average length in tile I-I Omni tube 
(ul, =0.07m/s). 
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The effect of pressure on slug average length 
(D= 1.1 Omm, Uls-0. II m/s) 
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Figure G. 71 The effect of pressure on slug average length in the I-I Omm tube 
(U], =O. II M/S). 
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Figure G. 72 The effect of pressure on slug average length in the 1.1 Omni tube 
(ul, =O. I 8m/s). 
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The effect of pressure on slug average length 
(D=1.10mm, Uls=0.28m/s) 
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Figure G. 73 The effect of pressure on slug average length in the LI Omm tube 

(ul, =0.28m/s). 
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Figure G. 74 The effect of pressure on slug average length in the I-I Omm tube 

(ul, =0.45m/s). 
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The effect of pressure on slug average length 
(D=1.10mm, Uls=0.72m/s) 
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Figure G. 75 The effect of pressure on slug average length in the 1.1 Onim tube 

(ul, =0.72m/s). 
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Figure G. 76 The effect of pressure on slug average length in the 1.1 Ornin tube 
(uis= 1.1 7m/s). 
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The effect of pressure on slug average length 
(D=2.01 mm, Uls=0.04m/s) 
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Figure G. 77 The effect of pressure on slug average length in the 2.01 mm tube 

(uls=0.04m/s). 
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Figure G. 78 The effect of pressure on slug average length in the 2.01 mrn tube 

(ul, =0.07m/s). 
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The effect of pressure on slug average length 
(D=2.01 mm, U ls=O. II m/s) 
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Figure G. 79 The effect of pressure on slug average length in the 2.01 mm tube 

(U,, =O. II M/S). 
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Figure G. 80 The effect of pressure on slug average length in the 2.01 mm tube 

(U,, =O. 1 8M/S). 
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The effect of pressure on slug average length 
(D=2.01 mm, Uls=0.28m/s) 
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Figure G. 81 The effect of pressure on slug average length in the 2.01 mm tube 

(ul, =0.28m/s). 

The effect of pressure on slug average length 
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Figure G. 82 The effect of pressure on slug average length in the 2.01 mm tube 

(ul, =0.45m/s). 
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The effect of pressure on slug average length 
(D=2.01 mm, Uls=0.72m/s) 
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Figure G. 83 The effect of pressure on slug average length in the 2.01 mm tubc 

(ul, =0.72m/s). 

The effect of pressure on slug average length 
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Figure G. 84 The effect of pressure on slug average length in the 2.01 mm tube 

(ul, =0.92m/s). 

455 

0 0.2 0.4 0.6 0.8 1 1.2 

Ugs (M/S) 



The effect of pressure on slug average length 
(D=2.88mm, Uls=0.04m/s) 
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Figure G. 85 The effect of pressure on slug average length in the 2.88mm tube 

(ul, =0.04m/s). 
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Figure G. 86 The effect of pressure on slug average length in the 2.89mm tube 

(ul, =0.07m/s). 
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The effect of pressure on slug average length 
(D=2.88mm, Uls=O. II m/s) 

160.0 

140.0 

120.0 

100.0 

80.0 

60.0 

40.0 

20.0 

0.0 

6 Pý 6 bar 

-ii- P= 1 Obar 
P- 14bar 

Figure G. 87 The effect of pressure on slug average length in the 2.88mm tube 

(U, S=O. II M/S) - 

The effect of pressure on slug average length 
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Figure G. 88 The effect of pressure on slug average length in the 2.88nim tube 
(ul, =O. I 8m/s). 
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The effect of pressure on slug average length 
(D=2.88mm, Uls=0.28m/s) 
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Figure G. 89 The effect of pressure on slug average length in the 2.88mm tube 

(ul, =0.28m/s). 

The effect of pressure on slug average length 
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Figure G. 90 The effect of pressure on slug average length in the 21.88mrn tube 

(ul, =0.45m/s). 
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The effect of pressure on slug average length 
(D-2.88mm, Uls=0.72m/s) 
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Figure G. 91 The effect of pressure on slug average length in the 2.88mm tube 

(ul, =0.72m/s). 

The effect of pressure on slug average length 
(D=4.26mm, Uls=0.04m/s) 
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Figure G. 92 The effect of pressure on slug average length in the 4.26mm tube 

(ui, =0.04m/s). 

459 

0.1 0.2 0.3 0.4 0.5 0.6 

Ugs (M/S) 



The effect of pressure on slug average length 
(Dý4.26rnrn, Uls=0.07m/s) 

180.0 

160.0 

140.0 

120.0 

100.0 
E 

80.0 

60.0 

40.0 

20.0 

0.0 

0 

0P-6 bar 

--mF- P- I Obar 
P- 14bar 

Figure G. 93 The effect of pressure on slug average length in the 4.26mm tube 
(ul, =0.07m/s). 

The effect of pressure on slug average length 
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Figure G. 94 The effect of pressure on slug average length in the 4.26nim tube 
(ul, =O. II M/S). 
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The effect of pressure on slug average length 
(D-4.26mm, Uls=O. I 8m/s) 
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Figure G. 95 The effect of pressure on slug average length in the 4.26mm tube 

(ul, =O. I 8rn/s). 

The effect of pressure on slug average length 
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Figure G. 96 The effect of pressure on slug average length in the 4.26min tube 

(ul, =0.28m/s). 
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The effect of pressure on slug average length 
(D=4.26mm, Uls=0.45m/s) 
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Figure G. 97 The effect of pressure on slug average length in the 4.26mm tube 

(ul, =0.45n-t/s). 
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Figure G. 98 The effect of pressure on slug average length in the 4.26mm tube 

(ul, =0.72m/s). 
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Appendix H 

Flow Map with a Grid of Constant Quality and Mass Flux 

The flow maps are presented with a grid of constant quality and mass flux to illuminate 

the effect of the fluid conditions on the different flow patterns. The quantity range is 
from 0.0005 to 0.9 and mass flux is from 40 to 6400 kg/m 2s in the present experiments. 
The calculation equations are presented in Equations 11.1 and 11.2. AlthOLIgh the 
transition boundaries do not associate with these constant lines explicitly Frorn the 

present comparisons, these works may link heat transfer with flow patterns ell'ectivel". 
because quantity and mass flux are two important parameters in the study of' heat 

transfer. 
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Figure HA The R134a flow map with a grid of constant quality and mass flux lines 

in the 1.10 mm diameter tube at 6 bar pressure. 
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Figure H. 2 The RI-34a flow map with a grid of constant quality and mass flux lines 

in the 1.10 mm diameter tube at 10 bar pressure. 
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in the 1.10 mm diameter tube at 14 bar pressure. 
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Figure HA The R134a flow map with a grid of constant quality and mass flux lines 

in the 2.01 mm diameter tube at 6 bar pressure. 
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Figure H. 5 The R134a flow map with a grid of constant quality and mass flux lilies 

in the 2.01 mm diameter tube at 10 bar pressure. 
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Figure H. 6 The R I 34a flow map with a grid of constant qual ity and mass fl ux Ii nes 
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Figure H. 7 The R134a flow map with a grid of constant quality and mass flux lines 

in the 2.88 mm diameter tube at 6 bar pressure. 
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Figure 11.8 The R134a flow map with a grid of'constant quality and mass flux I Ines 

in the 2.88 nim diameter tube at 10 bar pressure. 
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Figure ILIOThe R134a flow map with a grid of'constant quality and mass flux lines 

in the 4.26 min diameter tube at 6 bar pressure. 

(rn/s) ? op. P, A. 

1 

V- vvýw, / 

Trammon Zona 
Gý k 

a Ij Ij Annular 
o 1-: =1 k 

a Churn 
op A5 mis Slug 

Do', Porred Bubble 

k M)S Corwhned Bubble 

bubbN 

001 (rrVs) 

001 0111, loo 

Up 
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Appendix I 

Slug Bubble Rise Velocity 

The bubble rise velocity and the homogeneous velocity exhibit excellent litlearitN In tile 

present experiments which is shown in Figures 1.1-1.12. The distribution parameter U(j 

and the drift velocity Ud in the drift model can be obtained based on tile deduced best-fit 

equations, i. e. gradient and constant in the equations. The effect of' thennal loss oil the 

experimental accuracy is discussed in Chapter 4 Section 4.1.3 (12). The ellect of' 
diameter and pressure on the rise velocity is analysed based oil the comparisons of' these 
figures and a conclusion is given in Chapter 5 Section 5.1.4 (2). 

Slug bubble rise velocity and the bcst-fit equation 
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Figure 1.1 The best-fit equation flor the slug bubble rise velocity versus hoillogencous 

average velocity in the 4.26 min tube at 6 bar. 
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Slug bubble rise velocity and the best-fit equation 
(4.26 mm, 10 bar) 
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Figure 1.2 The best-fit equation I'm the slug bubble rise velocity versus homogeneous 

average velocity in the 4.26 mm tube at 10 bar. 
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Figure 1.3 The best-fit equation for the slug bubble rise velocity versus homogeneous 

average velocity in the 4.26 min tube at 14 bar. 
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Slug bubble rise velocity and the best-fit equation 
(2.88 mm, 6 bar) 
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Figure 1.4 The best-fit equation flor the slug bubble rise velocity versus homogeneous 

average velocity in the 2.98 nim tube at 6 bar. 
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Figure 1.5 The bcst-lit equation 1'()r the slug bubble rise velocity versus homogc1leous 

average velocity in the 2.89 nim tube at 10 bar. 
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Slug bubble rise velocity and the bcst-fit equation 
(2.88 nim. 14 bar) 
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Figure 1.6 The best-fit equation lor the slug bubble rise velocity versus homogeneous 

average velocity in the 2.88 nini tube at 14 bar. 

Slug bubble rise velocity and the bcst-fit equation 
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Figure 1.7 The best-fit equation I'm tile slug bubble rise velocity versus homogeneous 

average velocity in tile 2.01 min tube at 6 bar. 
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Figure 1.8 The best-fit equation 1'()r the slug bubble rise velocity versus homogeneous 

average velocity in the 2.01 nim tube at 10 bar. 
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1: 1gurc 1.9 The bcst-fit equation for tile slug bubhIc rise velocity versus homogeneous 

average vclocltý in the 2.01 min tubc at 14 bar. 
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Slug bubble rise velocity and the best-fit equation 
(1.10 mm, 6 bar) 
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Figure 1.10 The best-fit equation for the slug bubble rise velocity versus homogeneous 

average velocity in the 1.10 mm tube at 6 bar. 

Slug bubble rise velocity and the best-fit equation 
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Figure 1.11 The best-fit equation for the slug bubble rise velocity versus homogeneous 

average velocity in the 1.10 mm tube at 10 bar. 
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Slug bubble rise vclocitý and the bcst-fit equation 
( 1.10 m ni. 14 ha r) 
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Figure 1.12 The best-I it equation fOr tile slug bubble rise velocity versus homogeneous 

average velocity In tile 1.10 min tube at 14 bar. 
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