
SOLUTIONS FOR THE CAHN-HILLIARD EQUATION
WITH MANY BOUNDARY SPIKE LAYERS

JUNCHENG WEI AND MATTHIAS WINTER

Abstract. In this paper we construct new classes of stationary solutions
for the Cahn-Hilliard equation by a novel approach.

One of the results is as follows: Given a positive integer K and a (not
necessarily nondegenerate) local minimum point of the mean curvature
of the boundary then there are boundary K–spike solutions whose peaks
all approach this point. This implies that for any smooth and bounded
domain there exist boundary K–spike solutions.

The central ingredient of our analysis is the novel derivation and ex-
ploitation of a reduction of the energy to finite dimensions (Lemma 3.5),
where the variables are closely related to the peak loations.

1. Introduction

The Cahn-Hilliard equation [7] was originally derived from the Helmholtz

free energy of an isotropic two-component solid and can be written as follows:

E(u) =
∫
Ω
[F (u(x)) +

1

2
ε2|∇u(x)|2]dx.

It is a well-accepted and widely studied macroscopic model for phase sep-

aration. Here Ω ⊂ RN is the smooth and bounded region occupied by the

body, u(x) is an order parameter typically representing the concentration

of one of the components. Furthermore, F (u) is the free energy density of

a corresponding homogeneous solid which has a double well structure the

prototype being F (u) = (1 − u2)2 since we consider low temperatures. The

constant ε describes the range of intermolecular forces; the gradient term

models spatial fluctuations.

We assume conservation of the order parameter, i.e. there exists u with

−1 < u < 1 such that u = 1
|Ω|

∫
Ω udx. Therefore, a stationary solution of
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E(u) under the conservation constraint u = 1
|Ω|

∫
Ω udx satisfies⎧⎪⎨

⎪⎩
ε2∆u − f(u) = λε in Ω,
∂u
∂ν

= 0 on ∂Ω,∫
Ω u = u|Ω|,

(1.1)

where f(u) = F ′(u) and λε is a constant.

In this paper we are concerned with solutions of (1.1) which contain spike

layers. The one dimensional case was studied by Novick-Cohen and Segal

[33], Novick-Cohen and Peletier [32], Bates and Fife [6], Grinfeld and Novick-

Cohen [13], [14].

In [44] we constructed a boundary spike layer solution to (1.1) whose peak

approaches a given nondegenerate critical point of the mean curvature of the

boundary assuming that u lies in the metastable region, i.e. f ′(u) > 0, for

dimensions N ≥ 2 and ε << 1.

Under the same assumptions in [45] we constructed a solution to (1.1)

with many boundary spike layers whose peaks are each located near different

nondegenerate critical points of the mean curvature of the boundary.

In both [44] and [45] we reduce the problem to finite dimensions and use

a fixed–point techique to obtain solutions. In this paper our approach is

reducing the energy to finite dimensions and finding extrema for it instead.

A new analysis is required. Although many of the estimates required for this

analysis are the same as in [17] some major differences are needed to deal

with the conservation constraint. These occur in particular in Lemma 3.6

and in Section 5.

The existence of spike layer solutions as well as their profile and the loca-

tion of the peaks for the semilinear Neumann problem{
ε2∆u − u + up = 0 in Ω

u > 0 in Ω, ∂u
∂ν

= 0 on ∂Ω,

for subcritical exponents p which arises as a model in various areas of applied

science such as chemotaxis, pattern formation, chemical reactor theory, etc.

has been studied by Lin, Ni, Pan, and Takagi [21, 26, 27, 28] and lately

by Gui, Wei, and Winter [15], [43], [17], and [20]. For the critical case

p = (N + 2)/(N − 2) similar results have obtained for example in [1], [2],

[3], [16], [36], [37], [38], [42]. The corresponding Dirichlet problem in the



CAHN-HILLIARD EQUATION 3

subcritical case was first investigated by by Ni and Wei [30]. for the Dirichlet

problem. However, they do not have the conservation constraint and the

nonlinearity is simpler than here.

Naturally these stationary solutions are essential for the understanding of

the dynamics of the corresponding evolution process.

Other important features of the Cahn-Hilliard equation with physical rel-

evance are spinodal decomposition and pattern formation. In this respect

see the recent work of Kielhöfer [18] and Maier-Paape and Wanner [23], [24]

and the references therein. The existence of stationary interface solutions

has first been proved my Modica [25]. See also the works of Luckhaus and

Modica [22] for the geometrical interpretation of the Lagrange multiplier

λε, Niethammer [31] for the radially symmetric case. See also Kohn and

Sternberg [19], and Chen and Kowalczyk [8].

The dynamics of interface solutions has been studied extensively, see for

example [39], [5], [4], [9], [10].

The attractor has been investigated for example in [14] and [41].

Henceforth, we assume that f ′(ū) > 0.

Before stating our main result we make the following transformation.

v = u − u,

g(v) = −f(u) + f(u − v).

Rewrite

g′(0) = −m, g(v) = −mv + h(v).

Then equation (1.1) becomes{
ε2∆v − mv + h(v) − 1

|Ω|
∫
Ω h(v) = 0 in Ω,

∂v
∂ν

= 0 on ∂Ω.
(1.2)

To accommodate more general g we assume that

(g1) g(0) = 0, g
′
(0) = −m < 0.

(g2) g ∈ C2(R+), g(v) = −mv + h(v), where h satisfies

h(v) = O(|v|p1), h
′
(v) = O(|v|p2−1) as |v| → ∞
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for some 1 < p1, p2 <
(

N+4
N−4

)
+

(
= ∞ if N ≤ 4, N+4

N−4
if N ≥ 5

)
;

there exists 1 < p3 <
(

N+4
N−4

)
+

such that

|h′(v + φ) − h′(v)| ≤
{

C|φ|p3−1 if p3 > 2,
C(|φ| + |φ|p3−1) if p3 ≤ 2.

(g3) The equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�V − mV + h(V ) = 0 in R

N,

V > 0, V (0) = max
z∈Rn

V (z),

V → 0 at ∞
(1.3)

has a unique solution V (y) (by the results of [12], V is radial, i.e. V =

V (r) and V
′
< 0 for r = |y| 	= 0). Furthermore, V is nondegenerate,

namely the operator

L := � + g
′
(V ) (1.4)

is invertible in the space H2
r (RN) :=

{
u = u(|y|) ∈ H2(RN)

}
.

Remark: Assuming F (u) = (1−u2)2 (i.e. f(u) = −4u(1−u2)) and f ′(ū) >

0 by changing F at infinity the Cahn-Hilliard equation satisfies conditions

(g1) – (g3). See [44]. In [44] it is shown that without loss of generality

we can assume that h and its first two derivatives are bounded continouous

functions on the real line. For simpicity, we make this assumption for the

rest of the paper.

Let Γ ⊂ ∂Ω be a relatively open set such that

min
P∈∂Γ

κ(P ) > min
P∈Γ

κ(P ), (1.5)

where κ(P ) is the mean curvature of ∂Ω at the point P .

Our main result can be stated as follows.

Theorem 1.1. Assume that condition (1.5) holds. Let g satisfy assump-

tions (g1)-(g3). Then for ε sufficiently small problem (1.2) has a solu-

tion vε which possesses exactly K local maximum points Qε
1, ..., Q

ε
K with

Qε = (Qε
1, ..., Q

ε
K) ∈ Γ × ... × Γ.

Moreover κ(Qε
i) → minP∈Γ κ(P ), V (

|Qε
k−Qε

l |
ε

) → 0, i, k, l = 1, ..., K, k 	= l as

ε → 0. Furthermore, there exists a real constant v∞
ε and positive constants
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a, b such that vε(x) → v∞
ε as ε → 0 and

|vε(x) − v∞
ε | ≤ aexp

(
−b mini=1,...,K(|x − Qε

i |)
ε

)
. (1.6)

Theorem 1.1 can be derived from a more general theorem which is as

follows.

Theorem 1.2. Let Γi, i = 1, ..., K be relatively open sets in ∂Ω such that

min
P∈∂Γi

κ(P ) > min
P∈Γi

κ(P ), i = 1, ..., K.

Let g satisfy assumptions (g1)-(g3). Then for ε sufficiently small prob-

lem (1.2) has a solution vε which possesses exactly K local maximum points

Qε
1, ..., Q

ε
K with Qε = (Qε

1, ..., Q
ε
K) ∈ Γ1 × ... × ΓK. Moreover κ(Qε

i) →
minP∈Γi

κ(P ), V (
|Qε

k−Qε
l |

ε
) → 0, i, k, l = 1, ..., K, k 	= l as ε → 0. Further-

more, there exists a real constant v∞
ε and positive constants a, b such that

vε(x) → v∞
ε as ε → 0 and

|vε(x) − v∞
ε | ≤ aexp(−b mini=1,...,K(|x − Qε

i |)
ε

). (1.7)

More details about the asymptotic behaviour of vε can be found in the

proof of Theorem 1.2.

We have the following interesting corollary.

Corollary 1.3. Let g satisfy assumptions (g1)-(g3). Then for any smooth

and bounded domain and any fixed positive integer K ∈ Z, there always

exists a boundary K-peak solution of (1.1) if ε is small enough.

Theorem 1.1 is the first result about the existence of boundary K-spike

solutions for problem (1.2) for any positive integer K in any smooth bounded

domain. Note that for a strict local minimum point of κ(P ) (i.e. there

exists a relatively open set Γ ⊂ ∂Ω with P ∈ Γ such that κ(Q) > κ(P ) for

all Q ∈ Γ) the boundary K-spike solutions can be chosen such that their

peaks approach the same point on the boundary. Intuitively speaking, the

boundary spikes attract one another. This is in balance with “forces” coming

from the curvature of the boundary which prevent the spikes from moving

closer towards one another and towards the strict local minimum point of

κ(P ).
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It seems that this new phenomenon cannot occur at a local maximum

point of κ(P ).

In this paper we study local minimum or maximum points of the mean

curvature of the boundary without assuming their nondegeneracy. Instead

we only need the global condition (1.5) which can be genuinely weaker in

many cases. To our knowledge, this was not possible in all previous works.

Theorem 1.2 is the main result in this paper. To introduce the most

important idea of the proof of Theorem 1.2, we need to give some notations

and definitions first.

For our approach it is essential to note that v is a solution of (1.2) if and

only if v is a critical point of

Jε(v) =
ε2

2

∫
Ω
|∇v|2 +

m

2

∫
Ω

v2 −
∫
Ω

H(v),

where

H(v) =
∫ v

0
h(s)ds, v ∈ X = {v ∈ H1(Ω)|

∫
Ω

v = 0}.
Note that the conservation constraint∫

Ω
v = 0 (1.8)

contributes the Lagrange multiplier λε in (1.1). Recall on the other hand that

for solutions of (1.2) equation (1.8) does not have to be assumed a priori but

follows automatically for all solutions in {v ∈ H2(Ω) : ∂v
∂ν

= 0 at ∂Ω}.
We start our construction by finding good approximating functions for

the solutions. Our approach is by using a projection technique to obtain

appropriate functions in the space X. Let V be the unique solution of (1.3).

It is known (see [12]) that V is radially symmetric, decreasing and

lim
|y|→∞

V (y)e
√

m|y||y|N−1
2 = c0 > 0.

Let P ∈ Ω, Ωε,P := {y|εy + P ∈ Ω} and Ωε := {y|εy ∈ Ω}.
For any smooth domain U ⊂ RN we define a function u = PUV as the

unique solution of ⎧⎨
⎩∆u − mu + h(V ) = 0 in U,

∂u
∂ν

= 0 on ∂U.
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Let η > 0 be a small number. Let Γi be as in Theorem 1.2. Set

Λ = {P = (P1, ..., PK) ∈ Γ1×...×ΓK , V (
|Pk − Pl|

ε
) < ηε, k, l = 1, ..., K, k 	= l}.

Fix P = (P1, P2, ..., PK) ∈ Λ. We set

Vi(y) = V (y − Pi

ε
), PVi(y) = PΩε,Pi

V (y − Pi

ε
), y ∈ Ωε,

P0Vi(y) = PVi(y) − 1

|Ωε|
∫
Ωε

PVi(y) dy,

wε,P =
K∑

i=1

P0Vi,

vε = wε,P + Φε,P ∈ H2(Ωε),

where

Φε,P ∈ {Φ ∈ H2(Ωε) :
∂Φ

∂ν
= 0 on ∂Ωε,

∫
Ωε

Φ dy = 0}
is still unknown. Finally, we introduce

Kε,P = Cε,P = span{∂P0Vi

∂τPi,ij

, i = 1, ..., K, j = 1, ..., N − 1}

to denote the approximate kernel and cokernel of the operator obtained from

linearizing (1.2) at wε,P, respectively, where τPi,ij
are the (N − 1) tangential

derivatives at Pi (without loss of generality we may assume that the inward

normal vector at Pi is eN). We denote τPi,ij
as τPi,j

in the rest of the paper.

We first solve for Φε,P such that

vε ∈ K⊥
ε,P,

∆vε − mvε + h(vε) − 1

|Ωε|
∫
Ωε

h(vε) dy ∈ Cε,P

using the Liapunov-Schmidt reduction method. This method evolves from

that of [11], [34], and [35] on the semi-classical (i.e. for small parameter h)

solution of the nonlinear Schrödinger equation

h
2

2
∆U − (V − E)U + Up = 0 (1.9)

in RN , where V is a potential function and E is a real constant. The method

of Liapunov-Schmidt reduction was used in [11], [34] and [35] to construct

solutions of (1.9) close to nondegenerate critical points of V for h sufficiently

small.
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Then we show that Φε,P is C1 in P. Now we have developed all the tools

to introduce the novel function

Mε(P) = Jε(
K∑

i=1

P0Vi + Φε,P). (1.10)

That means we have reduced the energy Jε to finite dimensions, where the

variables are closely related to the location of the peaks. A large part of the

paper is devoted to deriving an explicit expression for Mε(P).

We maximize Mε(P) over Λ. Condition (1.5) ensures that Mε(P) attains

its maximum inside Λ. We show that the resulting solution has the properties

of Theorem 1.2.

Throughout this paper, unless otherwise stated, the letter C will always

denote various generic constants which are independent of ε, for ε sufficiently

small; δ > 0 is a very small number; o(1) means |o(1)| → 0 as ε → 0.

The paper is organized as follows. Notation, preliminaries and some use-

ful estimates are explained in Section 2. Section 3 contains the setup of our

problem and we solve (1.2) up to approximate kernel and cokernel, respec-

tively. We introduce and solve a finite-dimensional optimization problem in

Section 4. Finally, in Section 5, we show that the solution to the maximiz-

ing problem is indeed a solution of (1.2) and satisfies all the properties of

Theorem 1.2.

Acknowledgement. This research is supported by Stiftung Volkswa-

genwerk (RiP-program at Mathematisches Forschungsinstitut Oberwolfach).

We would like to thank everyone at the institute for offering their kind hospi-

tality and providing an excellent research environment during our stay. The

research of the first author is supported by an Earmarked Grant from RGC

of Hong Kong.

We thank the referee for valuable suggestions.

2. Technical Analysis

In this section we introduce a projection and derive some useful estimates.

Finally we will prove some lemmas which will be important in deriving an

explicit expression for Mε(P) as defined in (1.10). Propositions 2.1 and 2.2
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as well as Lemma 2.3 are from [44] and are presented here for the convenience

of the reader.

Throughout the paper we shall use the letter C to denote a generic positive

constant which may vary from term to term. We denote RN
+ = {(x′, xN)|xN >

0}, where x′ = (x1, . . . , xN−1). Let V be the unique solution of (1.3).

Set

I(V ) =
1

2

∫
RN

(|∇V |2 + mV 2) −
∫

RN
H(V ).

Let P ∈ ∂Ω. Then, since ∂Ω is smooth, there exists R0 > 0 such that

for |x − P | < R0, ∂Ω can be represented by the graph of a smooth function

ρ(x − P ), where ρ(0) = 0,∇ρ(0) = 0. The mean curvature of ∂Ω at P is

κ(P ) = 1
N−1

∑N−1
i=1 ρii(0), where

ρi =
∂ρ

∂xi

, i = 1, . . . , N − 1.

Here we use ρα to denote the multiple differentiation ∂|α|ρ
∂xα for α = (α1, . . . , αN−1),

where αi ∈ {0, 1, . . . } for i = 1, . . . , N − 1 and |α| =
∑N−1

i=1 αi. We denote

‖v‖2
ε = ε−N

∫
Ω
[ε2|∇v|2 + mv2].

For x ∈ Ω0 set now{
εyi = xi − Pi, i = 1, . . . , N − 1,
εyN = xN − PN − ρ(x1 − P1, . . . , xN−1 − PN−1).

(2.1)

Furthermore, for x ∈ Ω0 we introduce the transformation{
Ti(x) = xi, i = 1, . . . , N − 1,
TN(x) = xN − PN − ρ(x1 − P1, . . . , xN−1 − PN−1).

(2.2)

Note that then

y =
1

ε
T (x).

Then we have

Proposition 2.1. Let χ(x) be a smooth cutoff function such that χ(x) =

1, x ∈ B(P,R0 − δ) and χ(x) = 0 for x ∈ B(P,R0)
C (for a positive and

sufficiently small number δ.) Then[
V − PΩε,P

V
] (

x − P

ε

)

= εv1(y)χ(x − P ) + ε2(v2(y)χ(x − P ) + v3(y)χ(x − P )) + ε3Ψε,P (x),
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where v1 is the unique solution of{
∆v − mv = 0 in RN

+ ,
∂v

∂yN
= −V ′

|y|
1
2

∑N−1
i,j=1 ρij(0)yiyj on ∂RN

+ ,
(2.3)

V ′ is the radial derivative of V , i.e. V ′ = Vr(r), r =
∣∣∣x−P

ε

∣∣∣; v2 is the unique

solution of ⎧⎨
⎩ ∆v − mv − 2

∑N−1
i,j=1 ρij(0)yi

∂2v1

∂yj∂yN
= 0 in RN

+ ,
∂v

∂yN
=

∑N−1
i,j=1 ρij(0)yi

∂v1

∂yj
on ∂RN

+ ;
(2.4)

v3 is the unique solution of{
∆v − mv = 0 in RN

+ ,
∂v

∂yN
= −V ′

|y|
1
3

∑N−1
i,j,k=1 ρijk(0)yiyjyk on ∂RN

+
(2.5)

and

‖Ψε,P‖ε ≤ C.

Proof. A proof can be found in [44]. �
Note that v1, v2 are even functions in y

′
= (y1, ..., yN−1) and v3 is an odd

function in y
′

= (y1, ..., yN−1) (i.e. v1(y
′
, yN) = v1(−y

′
, yN), v3(y

′
, yN) =

−v3(−y
′
, yN)). Moreover, it is easy to see that |v1|, |v2|, |v3| ≤ Ce−µ|y| for

some 0 < µ <
√

m.

We next analyze ∂/∂τPj
PΩε,P

V
(

x−P
ε

)
for sufficiently small x. Because we

choose the coordinate system as explained on page 7, we have ∂/∂τPj
=

∂/∂Pj.

Proposition 2.2.[
∂V

∂τPj

− ∂PΩε,P
V

∂τPj

] (
x − P

ε

)
= w1(y)χ(x − P ) + εwε

2(x),

where w1 is the unique solution of{
∆v − mv = 0 in RN

+ ,
∂v

∂yN
= −1

2

(
V ′′
|y|2 − V ′

|y|3
) ∑N−1

k,l=1 ρkl(0)ykylyj − V ′
|y|

∑N−1
k=1 ρjk(0)yk on ∂RN

+ .

(2.6)

and

‖wε
2‖ε ≤ C.
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Proof. A proof can be found in [44]. �
Note that |w1| ≤ C exp(−µ|y|) and |w2| ≤ C exp(−µ|y|) for some µ <

√
m

and w1 is an odd function in y
′
.

Finally, let

L0 = ∆ − m + h′(V ).

We have

Lemma 2.3.

Ker(L0) ∩ H2
N(RN

+ ) = span

{
∂V

∂y1

, . . . ,
∂V

∂yN−1

}
,

where H2
N(RN

+ ) = {u ∈ H2(RN
+ ), ∂u

∂yN
= 0 on ∂RN

+}.

Proof. See Lemma 4.2 in [28]. �

The next lemma is the key result in this section. Its proof is similar but

differs at a crucial points from the one in [17]. We indicate this difference.

Lemma 2.4. For any P = (P1, ..., PK) ∈ Λ and ε sufficiently small

Jε(
K∑

i=1

P0Vi) = εN [
K

2
I(V ) − ε(β1 + o(1))

K∑
i=1

κ(Pi)

−1

2

K∑
k,l=1,k �=l

(γkl + o(1))V (
|Pk − Pl|

ε
) + o(ε)], (2.7)

where

β1 =
1

N + 1

∫
RN−1

|∇V |2|y′|2 dy′

and γkl = γlk ∈ Σ for

Σ =

{∫
RN

+

h(V (y))e
√

m<b,y> dy | b ∈ RN , |b| = 1

}
.

Furthermore, if V ( |Pk−Pl|
ε

) = ηε, we have γkl ∈ Σ1, where

Σ1 =

{∫
RN

+

h(V (y))e
√

m<b,y> dy | b = (b1, . . . , bN) ∈ RN , bN = 0, |b| = 1

}
.

Proof. In [17] we calculated Jε(
∑K

i=1 PVi). Now we need Jε(
∑K

i=1 P0Vi).

Note that

Jε(P0V ) − Jε(PV ) = εN
∫
Ωε

m

2

(
|P0V |2 − |PV |2

)
− (H(P0V ) − H(PV ))
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= O(ε2N)

and

Jε(
2∑

i=1

P0Vi) − J(
2∑

i=1

PVi) = εN
∫
Ωε,P

⎡
⎣m

2

(
|

2∑
i=1

P0Vi|2 − |
2∑

i=1

PVi|2
)

−(H(
2∑

i=1

P0Vi) − H(
2∑

i=1

PVi))

⎤
⎦ = O(ε2N).

Using Lemma 2.8 of [17] the proof is completed. �

3. Liapunov-Schmidt Reduction

In this section, we reduce problem (1.2) to finite dimensions by the Liapunov-

Schmidt method. We first introduce some notation.

X = {v ∈ H2(Ωε)|
∫
Ωε

v = 0,
∂v

∂ν
= 0 on ∂Ωε},

Y = {v ∈ L2(Ωε)|
∫
Ωε

v = 0.}
Define

Sε(v) = ∆v − mv + h(v) − 1

|Ωε|
∫
Ωε

h(v),

for v ∈ X. Then solving equation (1.1) is equivalent to

Sε(v) = 0, v ∈ X.

Fix P = (P1, ..., PK) ∈ Λ. To study (1.2) we first consider the linearized

operator

Lε : u → ∆u − mu + h′(wε,P)u − 1

|Ωε|
∫
Ωε

h′(wε,P)u,

X → Y.

Recall that wε,P =
∑K

i=1 P0Vi. Choose approximate cokernel and kernel as

Cε,P = Kε,P

= span

{
∂P0Vi

∂τPi,j

∣∣∣∣∣ i = 1, . . . , K, j = 1, . . . , N − 1

}
,

where (as in the introduction)

Kε,P ⊂ X

and Cε,P ⊂ Y.
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Let πε,P denote the projection from Y onto C⊥
ε,P. Our goal in this section

is to show that the equation

πε,P ◦ Sε(wε,P + Φε,P) = 0

has a unique solution Φε,P ∈ K⊥
ε,P if ε is small enough and P = (P1, ..., PK) ∈

Λ.

As a preparation in the following two propositions we show the invertibility

of the corresponding linearized operator.

Proposition 3.1. Let Lε,P = πε,P ◦ Lε. There exist positive constants ε, λ

such that for all ε ∈ (0, ε) and P = (P1, . . . , PK) ∈ Λ

‖Lε,PΦ‖L2(Ωε) ≥ λ‖Φ‖H2(Ωε) (3.1)

for all Φ ∈ K⊥
ε,P.

Proposition 3.2. There exists a positive constant ε̃ such that for all ε ∈
(0, ε̃) and P = (P1, . . . , PK) ∈ Λ the map

Lε,P = πε,P ◦ Lε : K⊥
ε,P → C⊥

ε,P

is surjective.

Proof of Propositions 3.1 and 3.2. We refer to [45] for proofs. �
We are now in a position to solve the equation

πε,P ◦ Sε(wε,P + Φε,P) = 0. (3.2)

Since Lε,P|K⊥
ε,P

is invertible (call the inverse L−1
ε,P) we can rewrite

Φ = −L−1
ε,P ◦ πε,P ◦ Sε(wε,P)

−L−1
ε,P ◦ πε,P ◦ Nε,P(Φ)

+L−1
ε,P ◦ πε,P ◦ Hε,P(Φ)

≡ Gε,P(Φ), (3.3)

where

Nε,P(Φ) = Sε(wε,P + Φ)

−[Sε(wε,P) + S ′
ε(wε,P)Φ],

Hε,P(Φ) =
1

|Ωε|
∫
Ωε

h′(wε,P)Φ,
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and the operator Gε,P is defined by (3.3) for Φ ∈ H2
N(Ωε). We are going to

show that the operator Gε,P is a contraction on

Bε,δ ≡ {Φ ∈ H2(Ωε)|
∫
Ωε

Φ = 0, ‖Φ‖H2(Ωε) < δ}
if δ is small enough.

In fact we have the following lemma

Lemma 3.3. For ε sufficiently small, we have

‖Nε,P(Φ)‖L2(Ωε) ≤ C‖Φε,P‖L2(Ωε), (3.4)

‖Sε(wε,P)‖L2(Ωε) ≤ Cε, (3.5)

|Hε,P(Φ)| ≤ CεN‖Φ‖L2(Ωε). (3.6)

Proof. (3.4) follows from the mean value theorem since h ∈ C2(R) and

h, h′, h′′ are bounded real functions.

(3.6) follows since

|Hε,P(Φ)| ≤ C
1

|Ωε|‖Φ‖L2(Ωε)‖h′(wε,P)‖L2(Ωε) ≤ CεN‖Φ‖L2(Ωε).

The proof of (3.5) is the same as in [17]. �
Thus

‖Gε,P(Φ)‖H2(Ωε) ≤ λ−1(‖πε,P ◦ Nε,P(Φ)‖L2(Ωε)

+‖πε,P ◦ Sε(wε,P)‖L2(Ωε) + ‖πε,P ◦ Hε,P(Φ)‖L2(Ωε))

≤ λ−1C(c(δ)δ + ε),

where λ > 0 is independent of δ > 0 and c(δ) → 0 as δ → 0. Similarly we

show

‖Gε,P(Φ) − Gε,P(Φ′)‖H2(Ωε) ≤ λ−1C(c(δ) + O(εN))‖Φ − Φ′‖H2(Ωε)

if δ, ε are small enough and where c(δ) → 0 as δ → 0. Therefore Gε,P is a

contraction on Bδ. The existence of a fixed point Φε,P now follows from the

Contraction Mapping Principle and Φε,P is a solution of (3.3).

Because of

‖Φε,P‖H2(Ωε) ≤ λ−1(‖Nε,P(Φε,P)‖L2(Ωε)

+‖Sε(wε,P)‖L2(Ωε) + ‖Hε,P(Φε,P)‖L2(Ωε))

≤ λ−1C(ε1 + c(δ)‖Φε,P‖H2(Ωε))
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we have

‖Φε,P‖H2(Ωε) ≤ Cε.

We have proved

Lemma 3.4. There exists ε > 0 such that for every (N+1)-tuple ε, P1, . . . , PK

with 0 < ε < ε and P = (P1, ..., PK) ∈ Λ there is a unique Φε,P ∈ K⊥
ε,P satis-

fying Sε(wε,P + Φε,P) ∈ Cε,P and

‖Φε,P‖H2(Ωε) ≤ Cε. (3.7)

The next lemma is our main estimate.

Lemma 3.5. Let Φε,P be defined by Lemma 3.4. Then we have

Jε(wε,P + Φε,P) (3.8)

= εN

⎡
⎣K

2
I(V ) − β1ε

K∑
i=1

κ(Pi)

−1

2

∑
k,l=1,...,K,k �=l

(γkl + o(1))V (
|Pk − Pl|

ε
) + o(ε)

⎤
⎦,

where β1 and γkl are introduced in Lemma 2.4 and Lemma 2.5,respectively.

Proof.

In fact, for any P ∈ Λ, we have

ε−NJε(wε,P + Φε,P) = ε−NJε(wε,P) + gε,P(Φε,P) + O(‖Φε,P‖2
H2(Ωε)),

where

gε,P(Φε,P)

=
∫
Ωε

K∑
i=1

(∇P0Vi∇Φε,P + mP0ViΦε,P) −
∫
Ωε

h(
K∑

i=1

P0Vi)Φε,P

=
∫
Ωε

[
K∑

i=1

h(Vi) − h(wε,P)]Φε,P + O(εN+1)

≤ ‖
K∑

i=1

h(Vi) − h(wε,P)‖L2(Ωε)‖Φε,P‖L2(Ωε)

≤ O(ε2)
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for N ≥ 2 by Lemma 3.3 and Lemma 3.4.

Estimate (3.8) now follows from Lemma 2.4 and Lemma 3.4. �
Finally, we show that Φε,P is actually smooth in P.

Lemma 3.6. Let Φε,P be defined by Lemma 3.4. Then Φε,P ∈ C1 in P.

Proof. Recall that Φε,P is a solution of the equation

πε,P ◦ Sε(wε,P + Φε,P) = 0 (3.9)

such that

Φε,P ∈ K⊥
ε,P . (3.10)

By definition we easily conclude that the functions ∂P0Vi

∂Pi,j
and ∂2P0Vi

∂τPi,j
∂τPi,k

are

C1 in P. This implies that the projection πε,P is C1 in P. Applying ∂/∂τPi,j

gives

πε,P ◦ DSε(wε,P + Φε,P)

(
K∑

i=1

∂P0Vi

∂τPi,j

+
∂Φε,P

∂τPi,j

)

+
∂πε,P

∂τPi,j

◦ Sε(wε,P + Φε,P) = 0, (3.11)

where

DSε(wε,P + Φε,P) = ∆ − m + h
′
(wε,P + Φε,P) − 1

|Ωε|
∫
Ωε

h
′
(wε,P + Φε,P).

We decompose
∂Φε,P

∂τPi,j
into two parts:

∂Φε,P

∂τPi,j

=

(
∂Φε,P

∂τPi,j

)
1

+

(
∂Φε,P

∂τPi,j

)
2

,

where
(

∂Φε,P

∂τPi,j

)
1
∈ Kε,P and

(
∂Φε,P

∂τPi,j

)
2
∈ K⊥

ε,P. We can easily conclude that(
∂Φε,P

∂τPi,j

)
1

is continuous in P since

∫
Ωε

Φε,P
∂P0Vk

∂τPk,l

= 0, k = 1, ..., K, l = 1, ..., N − 1

and ∫
Ωε

∂Φε,P

∂τPi,j

∂P0Vk

∂τPk,l

+
∫
Ωε

Φε,P
∂2P0Vk

∂τPi,j
∂τPk,l

= 0

k, i = 1, ..., K, l, j = 1, ..., N − 1.



CAHN-HILLIARD EQUATION 17

We can rewrite equation (3.11) as

πε,P ◦ DSε(wε,P + Φε,P)

(
(
∂Φε,P

∂τPi,j

)2

)

+πε,P ◦ DSε(wε,P + Φε,P)

(
K∑

i=1

∂P0Vi

∂τPi,j

+ (
∂Φε,P

∂τPi,j

)1

)

+
∂πε,P

∂τPi,j

◦ Sε(wε,P + Φε,P) = 0. (3.12)

As in the proof of Propositions 3.1 and 3.2, we can show that the operator

πε,P ◦ DSε(wε,P + Φε,P)

is invertible from K⊥
ε,P to C⊥

ε,P. Then we can take the inverse of πε,P ◦
DSε(wε,P + Φε,P) in the above equation and the inverse is continuous in

P.

Since ∂P0Vi

∂τPi,j
, (

∂Φε,P

∂τPi,j
)1 ∈ Kε,P are continuous in P and so is

∂πε,P

∂τPi,j
, we conclude

that (
∂Φε,P

∂τPi,j
)2 is also continuous in P. This is equivalent to C1–dependence

of Φε,P on P. The proof is finished. �

4. The reduced problem: An Optimization Procedure

In this section, we study an optimization problem.

Fix P ∈ Λ. Let Φε,P be the solution given by Lemma 3.4. We define a

new functional

Mε(P) = Jε(wε,P + Φε,P) : Λ → R. (4.1)

We shall prove

Proposition 4.1. For ε small, the optimization problem

max{Mε(P) : P ∈ Λ} (4.2)

has a solution Pε ∈ Λ.

Proof. Since Jε(wε,P + Φε,P) is continuous in P, the optimization problem

has a solution. Let Mε(P
ε) be the maximum where Pε ∈ Λ. We claim that

Pε ∈ Λ.



18 JUNCHENG WEI AND MATTHIAS WINTER

In fact, for any P ∈ Λ, by Lemma 3.5, we have

Mε(P) = εN

⎡
⎣K

2
I(V ) − εβ1(

K∑
i=1

κ(Pi))

−1

2

∑
k,l=1,...,K,k �=l

(γkl + o(1))V (
|Pk − Pl|

ε
) + o(ε)

⎤
⎦.

Since Mε(P
ε) is the maximum, we have

β1

K∑
i=1

κ(P ε
i ) +

1

ε

∑
k �=l

(
1

2
γkl + o(1))V (

|P ε
k − P ε

l |
ε

)

≤ β1

K∑
i=1

κ(Pi) +
1

ε

∑
k �=l

(
1

2
γkl + o(1))V (

|Pk − Pl|
ε

) + o(1) (4.3)

for any P = (P1, ..., PK) ∈ Λ. Choose Pi such that κ(Pi) → minP∈Γi
κ(P )

for i = 1, 2, . . . , K and V ( |Pk−Pl|
ε

)1
ε
→ 0 for k 	= l. This implies that

β1

K∑
i=1

κ(P ε
i ) +

1

ε

∑
k �=l

(
1

2
γkl + o(1))V (

|P ε
k − P ε

l |
ε

) ≤ β1

K∑
i=1

min
P∈Γi

κ(P ) + δ

for any δ > 0.

Note that ∂Λ ⊂ {Pi ∈ ∂Γi or V ( |Pk−Pl|
ε

) = εη}. Hence if Pε ∈ ∂Λ , we

have that either

κ(P ε
i ) ≥ min

P∈∂Γi

κ(P ) ≥ min
P∈Γi

κ(P ) + 2η0

for some i = 1, ..., K and η0 > 0 (by condition (1.5)) or

1

ε
V (

|P ε
k − P ε

l |
ε

) = η

for some k 	= l.

Therefore, if Pε ∈ ∂Λ we have

β1

K∑
i=1

κ(P ε
i ) +

1

ε

∑
k �=l

(
1

2
γkl + o(1))V (

|P ε
k − P ε

l |
ε

)

≥ β1

K∑
i=1

min
P∈Γi

κ(P ) + min(β1η0, min
k �=l,V (

|Pk−Pl|
ε

)=ηε

γklη).

Note that min
k �=l,V (

|Pk−Pl|
ε

)=ηε
γkl ≥ infτ∈Σ1 τ ≥ δ0 > 0 since for any τ ∈ Σ1

we have

τ =
∫

RN
+

h(V )e
√

m〈b,y〉 =
1

2

∫
RN

h(V )e
√

m〈b,y〉 > 0.
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This is a contradiction to (4.3) if we choose δ small enough.

It follows that Pε ∈ Λ.

This completes the proof of Proposition 4.1. �

5. Proof of Theorem 1.2

In this section, we apply results of Sections 3 4 to prove Theorem 1.1,

Theorem 1.2 and Corollary 1.3. It remains to prove Theorem 1.2. The other

proofs are similar.

Proof of Theorem 1.2. By Lemma 3.4 and Lemma 3.6, there exists ε0

such that for ε < ε0 we have a C1–map which, to any P ∈ Λ, associates

Φε,P ∈ K⊥
ε,P such that

Sε(wε,P + Φε,P) =
∑

k=1,...,K;l=1,...,N−1

αkl
∂P0Vk

∂τPk,l

(5.1)

for some constants αkl ∈ RK(N−1).

By Proposition 4.1, we have Pε ∈ Λ, achieving the maximum of the opti-

mization problem in Proposition 4.1. Let Φε = Φε,Pε and vε = wε,Pε + Φε,Pε .

Then we have

∂

∂τPi,j

|P=PεMε(P
ε) = 0, i = 1, ..., K, j = 1, ..., N − 1.

Hence we have∫
Ωε

[∇vε∇∂(wε,P + Φε,P)

∂τPi,j

|P=Pε + mvε
∂(wε,P + Φε,P)

∂τPi,j

|P=Pε

−h(vε)
∂(wε,P + Φε,P)

∂τPi,j

|P=Pε ] = 0.

Thus ∫
Ωε

∇vε∇∂(P0Vi + Φε,P)

∂τPi,j

|P=Pε

+mvε
∂(P0Vi + Φε,P)

∂τPi,j

|P=Pε − h(vε)
∂(P0Vi + Φε,P)

∂τPi,j

|P=Pε = 0

for i = 1, ..., K and j = 1, ..., N − 1. Because of

wε,P + φε,P ∈ X

we have ∫
Ωε

[wε,P + φε,P] = 0.
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Differentiating both sides, we have∫
Ωε

∂(wε,P + φε,P)

∂τPi,j

= 0.

This implies that ∫
Ωε

Sε(vε)
∂(wε,P + φε,P)

∂τPi,j

= 0.

Therefore we have ∑
k=1,...,K;l=1,...,N−1

αkl

∫
Ωε

∂P0Vk

∂τPk,l

∂(P0Vi + Φε,P)

∂τPi,j

= 0. (5.2)

Since Φε,P ∈ K⊥
ε,P, we have that∣∣∣∣∣

∫
Ωε

∂P0Vk

∂τPk,l

∂Φε,P

∂τPi,j

∣∣∣∣∣ =

∣∣∣∣∣−
∫
Ωε

∂2P0Vi

∂τPk,l
∂τPi,j

Φε,P

∣∣∣∣∣
≤ ‖ ∂2P0Vi

∂τPk,l
∂τPi,j

‖L2‖Φε,P‖L2

= O(ε−1).

Note that by Proposition 2.2∫
Ωε

∂P0Vk

∂τPk,l

∂P0Vi

∂τPi,j

=
1

ε2
δikδlj(A + o(1)),

where

A =
∫

RN
+

(
∂V

∂y1

)2 > 0.

Thus equation (5.2) becomes a system of homogeneous equations for αkl and

the matrix of the system is nonsingular since it is diagonally dominant. So

αkl ≡ 0, k = 1, ..., K, l = 1, ...N − 1.

Hence vε = wε,P + Φε,P is a solution of (1.2).

By our construction, it is easy to see that εN Jε(vε) → K
2
I(V ) and vε has

only K local maximum points Qε
1, ..., Q

ε
K and Qε

i ∈ ∂Ω. By the structure of

vε we see that (up to a permutation) Qε
i − P ε

i = o(1). This proves Theorem

1.2.

Theorem 1.1 follows from Theorem 1.2 by taking Γi = Γ, i = 1, ..., K.

Finally, we prove Corollary 1.3.

If Ω is not a ball, then κ(P ) has a local minimum on some relatively open

set Γ, Theorem 1.1 can be applied.
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If Ω is a ball, Corollary 1.3 follows by using perturbation theory in sym-

metric spaces. See [27] and [29]. �
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