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Abstract. We study singular patterns in a particular system of
parabolic partial differential equations which consist of a Ginzburg-
Landau equation and a mean field equation. We prove existence of
the three simplest concentrated periodic stationary patterns (single
spikes, double spikes, double transition layers) by composing them
of more elementary patterns and solving the corresponding consis-
tency conditions. In the case of spike patterns we prove stability
for sufficiently large spatial periods by first showing that the eigen-
values do not tend to zero as the period goes to infinity and then
passing in the limit to a nonlocal eigenvalue problem which can be
studied explicitly. For the two other patterns we show instability
by using the variational characterization of eigenvalues.

1. Introduction

The study of pattern formation in various fields of science leads to

the study of systems with a conservation law. Examples, some of which

we refer to later, include fluid mechanics as well as many chemical or

biological systems. In this paper we consider pattern formation in a

particular system of partial differential equations where a Ginzburg-

Landau equation is coupled with a mean field.

We consider the following amplitude equations which have been de-

rived by P.C. Matthews and S.M. Cox [5], [8] and arise when expanding

the problem in terms of fast and slow (or envelope) variables near a

critical set of parameter values that lead to supercritical bifurcation:{
At = Axx + A − A3 − AB, x ∈ R, t > 0,
Bt = σBxx + µ(A2)xx, x ∈ R, t > 0,

(1.1)
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where

σ > 0, µ ∈ R.

By taking τ = 1
σ
, µ

′
= µ

σ
, equation (1.1) can be rewritten in the form{

At = Axx + A − A3 − AB, x ∈ R, t > 0,
τBt = Bxx + µ

′
(A2)xx, x ∈ R, t > 0,

(1.2)

where

τ > 0, µ
′
=

µ

σ
∈ R.

It is easy to see that the amplitude equation (1.2) is invariant if

A transforms to − A

or if

x transforms to − x.

As a prototype example, equation (1.2) arises in the study of the

following PDE

∂w

∂t
= − ∂2

∂x2

⎡
⎣r2w − sw2 − w3 −

(
1 +

∂2

∂x2

)2

w

⎤
⎦ , (1.3)

where the terms inside the brackets are the same as in the Swift-

Hohenberg equation [13] supplemented with a symmetry-breaking qua-

dratic term sw2. The symmetry breaking term is necessary for the

amplitude equations to become a system as in (1.1). In case s = 0 we

would just get the Ginzburg-Landau equation. Note that this system

has the following important features:

• It possesses conserved quantities. In a sense, it is a conservation

law.

• It is a parabolic equation at lowest order in w.

• It has the symmetry groups x → −x and x → x + x0 for all

x0 ∈ R.

• It arises in the perturbation analysis near a cubic bifurcation

point in the supercritical case.

• The Fourier modes ei0x and e±ix are neutrally stable at the

linearized bifurcation point r = 0, w = 0.
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It is shown in [8] how the equation (1.1) arises as an amplitude

equation of (1.3). Therefore the ansatz

r = ε2r2, T = ε2t, X = εx, (1.4)

and

w(x, t) = εA(X,T )eix + εA∗(X,T )e−ix + ε2B̃(X,T ) (1.5)

+ε2C(X,T )e2ix + ε2C∗(X,T )e−2ix + O(ε2)

is made, where the large-scale mode B has been introduced at order

ε2.

Substituting (1.5) into (1.3) and solving the system at successive

orders of ε, the following complex equations{
AT = r2A + 4AXX − (3 − 2s2/9)|A|2A − 2sAB,
BT = BXX + 2s(|A|2)XX (1.6)

are derived in [8]. If s2 < 27
2
, then it is shown in [8] that the bifurcation

is supercritical, and that, assuming that A is real, then (1.6) can be

rescaled to (1.1) with

σ =
1

4
, µ =

s2

3 − 2s2/9
.

In the equations (1.2), A can be complex. Namely, we can write A =

R exp(iθ). The additional phase space θ makes analytic analysis very

complicated. In this paper, we restrict our attention to the invariant

subspace in which A is real. Here we follow the paper [8] where the

authors also focus on the case of a real function A. We hope to return

to the general case in a future study.

Amplitude equations of the form (1.2) or conservative models of the

form (1.3) have been considered in hydrodynamics. See for instance,

[7]. We also refer to [5] and [8], where (1.2) was derived in from nonlin-

ear partial differential equations which arise in thermosolutal convec-

tion, rotating convection, or magnetoconvection, respectively. Further,

in [4], the equation (1.2) was also derived in the study of secondary

stability of a one-dimensional cellular pattern.

Another type of GL equation, where the term (|A|2)xx in the B-

equation is replaced by ∂x(|A|2) has been considered by a number of
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authors, see [10], [11] and the references therein. There the basic pat-

terns are travelling pulses which arise in convection of binary fluids.

Finally, in [14] a conserved variant of (1.3) has been considered which

has the same linear dispersion but different nonlinear behaviour. In this

case, the behaviour becomes chaotic.

Equation (1.2) is studied with the following periodic boundary con-

ditions which arise from the expansion (1.4):

A(x + L) = A(x), B(x + L) = B(x), (1.7)

where L is the minimal period. Other boundary conditions may be

more appropriate for other modelling situations.

We now state our two main results on existence and stability of

stationary patterns for system (1.2) with boundary conditions (1.7),

which we refer to as Problem (1.2).

We first consider the existence of spikes and fronts.

Theorem 1. There exists an L > 0 such that for all L > L the Problem

(1.2) admits the following three types of solutions.

Type I (Single spike solution). Assume that

µ
′
> 1, lim

L→+∞
L(µ

′ − 1) :=
2

β∞
< 2. (1.8)

Then there exist steady-state solutions of (1.2) with the following

asymptotic behaviour

A±(x) ∼
√

2c±√
µ′ − 1

sech (c±x), B±(x) = −µ
′
(A±)2 +

µ
′

L

∫ L
2

−L
2

(A±)2 dx,
(1.9)

where c− < c+ are the two roots of the following algebraic equation:

c2 − 2β∞c + 1 = 0. (1.10)

Type II (Double spike solution). Assume that

µ
′
> 1, lim

L→+∞
L(µ

′ − 1) =
2

β∞
< 4. (1.11)
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Then there exist steady-state solutions of (1.2) with the following

asymptotic behaviour

A±(x) ∼
√

2c±√
µ′ − 1

[−sech (c±(x +
L

2
)) + sech (c±x) − sech (c±(x − L

2
))],

(1.12)

B±(x) = −µ
′
(A±)2 +

µ
′

L

∫ L
2

−L
2

(A±)2 dx,

where c− < c+ are the two roots of the following algebraic equation:

c2 − 4β∞c + 1 = 0. (1.13)

Type III (Double Front solution). Assume that

µ
′
< 1. (1.14)

Then there exist (even) steady-state solutions of (1.2) with the fol-

lowing asymptotic behaviour

A(x) ∼ c√
1 − µ′

tanh (
c√
2
(x − L

4
)) for 0 < x <

L

2
,

(1.15)

B(x) = −µ
′
A2 +

µ
′

L

∫ L
2

−L
2

A2 dx,

where c is the positive root of the following algebraic equation:

c2 − 4µ
′

L
c − (1 − µ

′
) = 0. (1.16)

Our next theorem classifies the stability of all the three types of

solutions given in Theorem (1).

Theorem 2. Suppose that L >> 1 and τ > 0. Then for single spike

solutions (Type I), (A−, B−) is (linearly) stable, while (A+, B+) is (lin-

early) unstable. The double spike solutions (Type II) and the double

front solutions (Type III) are all (linearly) unstable.

Remarks:

1. Theorem 2 confirms the numerical computations in Section 4 of

[8].
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2. The fronts are as in the usual bistable Allen-Cahn equation. The

instability of fronts and double spikes in Theorem 2 is a standard in-

teraction instability. See the proofs in Section 5.

3. We remark that our stability and instability result hold true for

any τ > 0. This is quite a nontrivial fact.

4. Combining Theorem 1 and Theorem 2, we see that stable patterns

exist for (1.2) only when µ
′
> 1, that is µ > σ. Going back to (1.3),

this shows that stable patterns exist for the amplitude equation (1.6)

only when s is small. That is when the bifurcation is supercritical.

When s is large, (1.3) will go through a subcritical bifurcation ([12])

and our results show that there are no stable patterns.

5. Roughly speaking, we have proved the existence and stability

(instability) of single (double) spike solution in the following parameter

regime:

1 <
µ

σ
= µ

′
< 1 +

2

β+∞L
, L >> 1. (1.17)

This agrees with the asymptotic analysis given in [8].

The case when L is finite remains open and we shall come to this

question in a future work.

6. Our results rigorously show that localized solutions (spikes) may

be stable when a Ginzburg-Landau equation is coupled to an equation

for a mean field, even when the coefficients of the equations are real

and when the bifurcation is supercritical. As far as we know, this is

the first theoretical result on the stability of such patterns.

Throughout the paper we assume that

L >> 1. (1.18)

The organization of this paper is as follows: In Section 2, we prove

the existence of the steady states given in Theorem 1 by joining single

spikes or fronts and checking their consistency.

In Section 3, we prove preliminaries for the stability analysis and

prove a crucial reduction lemma (Lemma 4).

In Section 4, we prove the stability of the single (small) spike solution

by reducing the problem to a nonlocal eigenvalue problem which is

studied in Lemma 6.
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In Section 5, we prove the instability of the other solutions by invok-

ing the variational characterization of eigenvalues.

In Section 6, we discuss some possible extensions.

Acknowledgments. The research of JW is supported by an Ear-

marked Grant from RGC of Hong Kong. JN and MW thank the De-

partment of Mathematics at the Chinese University of Hong Kong for

their kind hospitality.

2. Steady States: Proof of Theorem 1

In this section, we classify all periodic steady states.

Consider steady states of the equations (1.2):⎧⎪⎨
⎪⎩

Axx + A − A3 − AB = 0, x ∈ R,
Bxx + µ

′
(A2)xx = 0, < B >= 0, x ∈ R,

A(x), B(x) have minimal period L,
(2.1)

where < B > is the average of the B over the minimal period. (Note

that by adding a constant to B we can transform (2.1) back to (1.2).)

By moving the x variable and changing the origin, we may assume

that an interval with minimal period is I := [−L
2
, L

2
].

From the equation for B, we obtain that

B(x) = −µ
′
A2(x) + µ

′
< A2 >, < A2 >=

1

L

∫
I
A2(x)dx.

(2.2)

Substituting (2.2) into the first equation of (2.1) for A, we obtain{
Axx − aA + bA3 = 0, −L

2
< x < L

2
,

A(x) has minimal period L,
(2.3)

where

a = µ
′
< A2 > −1, b = µ

′ − 1. (2.4)

We consider a as a real parameter first. Since (2.3) is an autonomous

equation, it is easy to see that we may assume that A satisfies the

following boundary, symmetry, and positivity conditions:

A
′
(−L

2
) = A

′
(
L

2
) = 0, A(x) = A(−x), A

′
(x) > 0 for 0 < x <

L

2
.
(2.5)
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We remark that a periodic solution A of (2.3) satisfying (2.5) for

−L
2

< x < L
2

can be extended in a unique way to a periodic function

on the real line with minimal period L.

To describe the asymptotic behaviour of A as L → +∞, we introduce

two standard limiting equations. The first one is a single spike (also

called soliton or bump). Let w∞ be the unique solution of the following

problem:{
w

′′
∞ − w∞ + w3

∞ = 0, w∞ > 0,
w∞(0) = maxy∈R w∞(y), w∞(y) → 0 as |y| → ∞.

(2.6)

By an elementary calculation it follows that w∞ is given by

w∞(y) =
√

2 sech (y). (2.7)

The second one is a “forward” front on R. Let v∞ be the unique

solution of the following problem:{
v

′′
∞ + v∞ − v3

∞ = 0, v
′
∞ > 0, y ∈ R,

v∞(0) = 0, v∞(y) → ±1 as y → ±∞.
(2.8)

By an elementary calculation it follows that v∞ is given by

v∞(y) = tanh

(
y√
2

)
. (2.9)

A “backward” front is then defined by v∞(−y), y ∈ R.

Let us introduce the three types of patterns for the solution A of

(2.3) in detail.

Type I Solution.

Let µ
′
> 1, A(x) > 0.

Since b = µ
′ −1 > 0, in order that (2.3) has a solution, we must have

a > 0.

We rescale A as follows

A(x) =

√
a

b
Hl(y), (2.10)

where

l =
√

aL, y =
√

ax. (2.11)
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Then Hl(y) is the unique solution of the following ODE (a rescaled

version of equation (2.3) on the real line with minimal period l =
√

aL):

H
′′
l − Hl + H3

l = 0, Hl > 0, Hl(−y) = Hl(y), (2.12)

satisfying

H
′
l (−

l

2
) = H

′
(
l

2
) = 0, Hl(y) = Hl(−y), H

′
l (y) > 0 for 0 < y <

l

2
.

(2.13)

In this case, we see that for l >> 1,

Hl(y) = w∞(y) + O(e−l), where w∞(y) =
√

2 sech(y).
(2.14)

By a translation, this corresponds to the so-called dn function in

Section 3.2 of [8].

We now return to check the consistency of our earlier calculations in

(2.4).

Substituting (2.10) into (2.4) and by simple computations, we arrive

at

c2 − 2β1
Lc + 1 = 0, (2.15)

where

c =
√

a, β1
L =

µ
′

2L(µ′ − 1)

∫ cL/2

−cL/2
H2

cL(y)dy. (2.16)

Since L >> 1, we have

β1
L =

2µ
′

L(µ′ − 1)
(1 + O(e−cL)),

since ∫
R

w2
∞(y)dy = 4.

Equation (2.15) has a solution if

β∞ = lim
L→+∞

2

L(µ′ − 1)
= lim

L→+∞
β1

L > 1. (2.17)

Condition (2.17) is equivalent to (1.8). Note that (2.17) forces µ
′ → 1.

Under the condition (2.17), equation (2.15) has two roots:

c± = β1
L ±

√
(β1

L)2 − 1. (2.18)
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Thus we have obtained two single spike solutions:

A± =
c±√

µ′ − 1
Hc±L(c±x), B±(x) = −µ

′
(A±)2 + µ

′
< (A±)2 > .

(2.19)

We will call (A+, B+) the single (large) spike solution and (A−, B−)

the single (small) spike solution.

This finishes the proof of Type I Solutions.

Type II Solutions.

Assume that µ
′
> 1 and that A(x) changes sign.

Similar to Type I Solutions, we rescale A(x) as in (2.10) and let

l =
√

aL, y =
√

ax.

Then Hl(y) is the unique solution of the following ODE:

H
′′
l − Hl + H3

l = 0, H(
l

4
) = 0, (2.20)

and

H
′
l (−

l

2
) = H

′
(
l

2
) = 0, Hl(y) = Hl(−y), H

′
l (y) > 0 for 0 < y <

l

2
.

(2.21)

In this case, Hl looks like the superposition of two half solitons at

the boundaries, which are both positive, and an interior soliton, which

is negative.

Note that then as l >> 1,

Hl(y) = w∞(y +
l

2
) − w∞(y) + w∞(y − l

2
) + O(e−l), − l

2
< y <

l

2
.

(2.22)

This corresponds to the so-called cn function in Section 3.2 of [8].

It is easy to see that the consistency condition (2.4) implies

a = µ
′
< A2 > −1

=

√
aµ

′

L(µ′ − 1)
(2

∫ ∞

−∞
w2

∞(y) dy + O(e−
√

aL)) − 1.

Therefore for L >> 1 a cn solution exists if and only if the quadratic

equation

c2 − 2β2
Lc + 1 = 0
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has a solution, where

β2
L =

µ
′

L(µ′ − 1)

∫ ∞

−∞
w2

∞(y) dy(1+O(e−
√

aL)) =
4µ

′

L(µ′ − 1)
(1+O(e−

√
aL)).

This is the case if 2β∞ = limL→+∞ β2
L > 1, or equivalently (1.11).

Similarly as for Type I Solutions, under condition (2.17), there are

two roots for c. Correspondingly we obtain two solutions (A±, B±).

(A+, B+) is called the double (large) spike solution and (A−, B−) is

called the double (small) spike solution.

This finishes the existence of Type II Solutions.

Type III Solutions.

Let µ
′
< 1.

In this case, since b < 0, a < 0, we rescale A as follows

A(x) =

√
a

b
H√−aL(

√−ax), (2.23)

where Hl, l =
√−aL solves

H
′′
l + Hl − H3

l = 0

with the following boundary and symmetry conditions:

H
′
l (−

l

2
) = H

′
(
l

2
) = 0, Hl(y) = Hl(−y), H

′
l (y) > 0 for 0 < y <

l

2
.

(2.24)

In this case, Hl looks like a ”backward” front connected to a ”for-

ward” front. More precisely, we need to introduce a front vl on a

bounded interval. This is the unique solution of the problem{
v

′′
l + vl − v3

l = 0, v
′
l > 0, − l

2
< y < l

2
,

vl(0) = 0, v
′
l(− l

2
) = v

′
l(

l
2
) = 0.

(2.25)

Then we have

Hl(y) =

{
vl/2(−(y + l

4
)), − l

2
< y ≤ 0,

vl/2(y − l
4
), 0 < y < l

2
.

(2.26)

This corresponds to the so-called sn function in Section 3.2 of [8].

The consistency condition (2.4) becomes

a = µ
′
< A2 > −1

=
2µ

′

L(1 − µ′)

√−a
∫ l

2

0
v2

l/2(y)dy − 1
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=
2
√−aµ

′

L(1 − µ′)

(
l

2
− 2 + O(e−

√−aL)

)
− 1.

Therefore for L >> 1 the sn solution exists if and only if the qua-

dratic equation

c2 − 4µ
′

L
c − (1 − µ

′
) = 0

has a positive solution, where c2 = −a and c > 0. This quadratic

equation always has two solutions one of which is positive and given

by

c =
2µ

′

L
+

√√√√(
2µ′

L

)2

+ (1 − µ′).

Thus we have solved equation (2.1) with L >> 1 and the boundary

conditions (2.5) in all three cases . This proves Theorem 1.

3. Preliminaries for the Stability Analysis: A Reduction

In this section, we study some preliminary properties of the linearized

eigenvalue problem. We show that the eigenvalues must be real. More-

over, we reduce the system of eigenvalue equations to a single eigenvalue

equation.

To study the linearized stability of (1.2), we perturb (A(x), B(x)) as

follows:

Aε(x, t) = A(x) + εφ(x)eλLt, Bε(x, t) = B(x) + εψ(x)eλLt,
(3.1)

where λL ∈ C – the set of complex numbers.

Since we have assumed that (1.2) is invariant under the transforma-

tions −x → x and x → x + L. we may suppose the perturbation

(φ(x), ψ(x)) possesses the same symmetry. Thus we may assume that

φ, ψ ∈ XL,

where

XL =
{
φ ∈ H1(−L

2
,
L

2
) |φ(−x) = φ(x), φ

′
(−L

2
) = φ

′
(
L

2
) = 0

}
.
(3.2)

Here H1(−L
2
, L

2
) is the usual Sobolev space of measurable functions

which as well as their first derivatives are square Lebesgue integrable

functions in (−L
2
, L

2
).
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Substituting (3.1) into (1.2) and considering the leading order part,

we obtain the following eigenvalue problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φxx + (1 − B)φ − 3A2φ − Aψ = λLφ, −L
2

< x < L
2
,

ψxx + 2µ
′
(Aφ)xx = τλLψ, −L

2
< x < L

2
,

λL ∈ C, φ, ψ ∈ XL,
< ψ >= 0.

(3.3)

We shall prove that the single (small) spike solution of Type I is

stable for all τ > 0 and all the other solutions of Type I, II, or III are

unstable for all τ > 0.

Let

ψ = −2µ
′
Aφ + 2µ

′
< Aφ > +τλLψ̂, (3.4)

where

< ψ̂ >= 0.

Equation (3.4) together with (3.3) implies

ψ̂xx − τλLψ̂ = −2µ
′
Aφ + 2µ

′
< Aφ > . (3.5)

Substituting (2.2) and (3.4) into the first equation of (3.3), we obtain

that

φxx − aφ + 3bA2φ − 2µ
′
< Aφ > A − τλLAψ̂ = λLφ, −L

2
< x <

L

2
,

(3.6)

where a and b are given by (2.4). If τ = 0, then (3.6) becomes{
φxx − aφ + 3bA2φ − 2µ

′
< Aφ > A = λLφ, −L

2
< x < L

2
,

φ ∈ XL.
(3.7)

Our main result in this section is the following reduction lemma.

It will be proved by variational techniques. Note that parts (a) and

(b) are relatively trivial. Part (c) follows by the application of the

intermediate value theorem to a suitably defined function.

Lemma 3. (a) All eigenvalues of (3.3) are real.

(b) If all eigenvalues of (3.7) are negative, then all eigenvalues of

(3.3) are negative.

(c) If problem (3.7) has a positive eigenvalue, then problem (3.3)

also has a positive eigenvalue.
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Lemma 3 implies that the (in)stability of (3.3) is equivalent to the

(in)stability of (3.7).

The following lemma proves (a) of Lemma 3 and is an easy conse-

quence of integration by parts.

Lemma 4. The eigenvalues λL of (3.3) are real.

Proof.

Multiplying (3.6) by φ – the conjugate function of φ – and integrating

over I, we obtain

λL

∫
I
|φ|2 dx = −

∫
I
[|φx|2 + a|φ|2 − 3bA2|φ|2] dx − 2µ

′

L
|
∫

I
(Aφ)|2 dx

(3.8)

−τλL

∫
I
Aψ̂φ dx.

Multiplying the conjugate of (3.5) by ψ̂ and integrating over R we get∫
I
Aφψ̂ dx =

1

2µ′

∫
I
|ψ̂x|2 dx +

τ λ̄L

2µ′

∫
I
|ψ̂|2 dx. (3.9)

Substituting (3.9) into (3.8) gives

λL

∫
I
|φ|2 dx +

∫
I
[|φx|2 + a|φ|2 − 3bA2|φ|2] dx +

2µ
′

L
|
∫

I
(Aφ)|2 dx

+
τλL

2µ′

∫
I
|ψ̂x|2 dx +

τ 2|λL|2
2µ′

∫
I
|ψ̂x|2 dx = 0. (3.10)

Taking the imaginary part of (3.10) we obtain

λi

(∫
I
|φ|2 dx +

τ

2µ′ dx
∫

I
|ψ̂x|2 dx

)
= 0, (3.11)

where λL = λr +
√−1λi.

Equation (3.11) implies

λi = 0 (3.12)

and therefore λ is real. �
Now we prove (b) and (c) part of Lemma 3. We use variational

techniques. To this end, we need to introduce two quadratic forms:

Let

L[φ] =
∫

I
(|φx|2 + aφ2 − 3bA2φ2) dx +

2µ
′

L
(
∫

I
(Aφ) dx)2, φ ∈ XL

(3.13)
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and

Lλ[φ] = L[φ] +
τλ

2µ′

∫
I
(|ψ̂x|2 + τλ|ψ̂|2) dx, (3.14)

where ψ̂ is the unique solution of the problem{
ψ̂

′′ − τλψ̂ = −2µ
′
Aφ + 2µ

′
< Aφ >,

ψ̂ ∈ XL, < ψ̂ >= 0.
(3.15)

Observe that for τ ≥ 0 and λ ≥ 0

L0[φ] = L[φ], L[φ] ≤ Lλ[φ]. (3.16)

Proof of (b) and (c) of Lemma 3:

(b). To prove (b), we note that if all eigenvalues of (3.7) are negative,

then the quadratic form L[φ] is positive definite, which by (3.16) implies

that Lλ is positive definite if λ ≥ 0. Let λL ≥ 0 be an eigenvalue of

(3.3), then by (3.10), we obtain that

λL

∫
I
|φ|2 dx + LλL

[φ] = 0 (3.17)

which is clearly impossible if λL ≥ 0. Thus we have shown that all

eigenvalues of (3.3) must be negative.

(c). Suppose (3.7) has a positive eigenvalue. Then the eigenvalue

problem

− µL = min
φ∈XL,

∫
I

φ2=1
L[φ] (3.18)

has a positive value µL > 0. We now claim that (3.3) admits a positive

eigenvalue.

Fixing λ ∈ [0, +∞), let us consider another eigenvalue problem

− µ(λ) = min
φ∈XL,

∫
I

φ2=1
Lλ[φ]. (3.19)

A minimizer φ of (3.19) satisfies the equation

φxx − aφ + 3bA2φ − 2µ
′
< Aφ > A − Aψ̂ = µ(λ)φ, φ ∈ XL,

(3.20)

where ψ̂ is given by (3.15).
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By (3.16), −µ(λ) ≥ −µL. Hence µ(λ) ≤ µL. Moreover, since ψ̂

is continuous with respect to λ in [0, +∞), we see that µ(λ) is also

continuous in [0, +∞).

Let us consider the following algebraic equation

h(λ) := µ(λ) − λ = 0, λ ∈ [0, +∞). (3.21)

By our assumption, h(0) = µ(0) = µL > 0. On the other hand, for

λ > 2µL, h(λ) ≤ µL − λ < −µL < 0. By the mean-value theorem,

there exists a λL ∈ (0, µL) such that h(λL) = 0.

Substituting µ(λL) = λL into (3.20), we see that λL is an eigenvalue

of problem (3.3).

Part (c) of Lemma 3 is thus proved.

�

4. Stability of Single (Small) Spike Solution of Type I

In this section, we prove the stability of the single (small) spike

solution of Type I. Let A(x), B(x) be the single (small) spike solution

of Type I obtained in Section 2. Then, as L → +∞, we have

A(x) =

√
a

µ′ − 1
w∞(

√
ax) + O(e−aL), B(x) = −µ

′
A2 + µ

′
< A2 >,

where c =
√

a satisfies as L → ∞

c = c− = β1
L −

√
(β1

L)2 − 1, β1
L =

2µ
′

L(µ′ − 1)
(1 + O(e−L)).

(4.1)

By Lemma 3, to prove the stability, we just need to consider the

positive definiteness of L[φ], defined by (3.13). By the rescaling (2.10)

and (2.11), we see that L[φ] is transformed to

L[φ] =

=
√

a

(∫
Ĩ
(|φ̃y|2 + |φ̃|2 − 3H2

l φ̃2) dy +
2µ

′

L(1 − µ′)
√

a

(∫
Ĩ
Hlφ̃dy

)2
)

,
(4.2)
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where we recall l =
√

aL, y =
√

ax, φ̃(y) = φ(x). Formally, as L →
+∞, we obtain the following quadratic form in H1(R):

L∞[φ] =
√

a
∫

R
(|φy|2 + |φ|2 − 3w2

∞φ2) dy + β
(∫

R
w∞φ dy

)2

,
(4.3)

where

φ ∈ H1(R), φ(−y) = φ(y),

and

β = lim
L→+∞

2

L(µ′ − 1)
√

a
. (4.4)

The study of (4.3) is equivalent to the study of the following nonlocal

eigenvalue problem:

Lβφ := L0φ − β(
∫

R
w∞φ dy)w∞ = λ0φ, φ ∈ X∞, (4.5)

where

L0φ := φ
′′ − φ + 3w2

∞φ, φ ∈ H1(R), (4.6)

and

X∞ = {φ ∈ H1(R)|φ(−y) = φ(y)}. (4.7)

We first collect some properties associated with w∞.

Lemma 5. (a) Ker(L0) = {cw′
∞(y) | c ∈ R}.

(b) L0 has a unique (principal) positive eigenvalue ν1 > 0. The

associated eigenfunction φ0(y) can be chosen to be positive and even.

(c) L0(
1
2
(w∞ + yw

′
∞(y))) = w∞(y).

Proof:

For the proof of (a), please see Lemma 4.1 of [15], where a more

general result in RN is proved.

The proof of (b) follows by the variational characterization of the

eigenvalues:

− ν1 = inf
φ∈H1(R),φ�≡0

∫
R[(φ′)2 + φ2 − 3w2

∞φ2] dy∫
R φ2 dy

< 0 (4.8)

since by the last inequality for φ = w∞

−ν1 ≤ −2

∫
R w4

∞ dy∫
R w2∞ dy

< 0.
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The fact that ν1 is the unique positive eigenvalue follows from Lemma

1.2 of [16]. By the variational characterization (4.8) of ν1, we see that

the corresponding eigenfunction can be chosen to be positive. Since

w∞ is even, this eigenfunction can also be chosen to be even. (Suppose

φ is not even. Then we write

φ(y) =

{
φ1(y), y ≥ 0,
φ2(y), y < 0.

If ∫
{y>0}[(φ

′)2 + φ2 − 3w2
∞φ2] dy∫

{y>0} φ2 dy
<

∫
{y<0}[(φ

′)2 + φ2 − 3w2
∞φ2] dy∫

{y<0} φ2 dy (4.9)

then we may choose

φeven(y) =

{
φ1(y), y ≥ 0,

φ1(−y), y < 0.

Then∫
R[(φ′

even)2 + φ2
even − 3w2

∞φ2
even] dy∫

R φ2
even dy

<

∫
R[(φ′)2 + φ2 − 3w2

∞φ2] dy∫
R φ2 dy

and thus the function φ is not the eigenfunction to the principal eigen-

value. This is a contradiction. Accordingly, we arrive at a contradiction

if in (4.9) we have the reverse inequality. If we have equality in (4.9),

then we can construct an even eigenfunction φeven from the eigenfunc-

tion φ in the same way as above with the same eigenvalue. Since the

principal eigenfunction is unique (up to constant factors) and since an

even eigenfunction exists, the eigenfunction has to be even. Note that

in general eigenvalue problems with even coefficients may have eigen-

function which are not even. Our argument works in this example for

the eigenfunction to the principal eigenvalue.)

To prove (c), we note that if u satisfies u
′′

+ f(u) = 0, then yu
′
(y)

satisfies (yu
′
)
′′
+f

′
(u)(yu

′
) = −2f(u). By simple computations, we see

that

L0w∞ = 2w3
∞, L0(yw

′
∞(y)) = −2(−w∞ + w3

∞).

Hence

L0

(
1

2
(w∞ + yw

′
∞)

)
= w∞, L−1

0 w∞ =
1

2
(w∞ + yw

′
∞).

�
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We are now ready to study Lβ.

Since Lβ is a self-adjoint operator, the eigenvalues of Lβ must be

real.

The following is our key lemma.

Lemma 6. (a) The eigenvalue problem (4.5) has an eigenfunction φ ∈
X∞ with a positive eigenvalue if and only if β < 1. Moreover, for

0 < β < 1, this positive eigenvalue is simple and isolated.

(b) If β = 1, then the eigenvalue problem (4.5) has a zero eigenvalue

with eigenfunction φ0 = w∞ + yw
′
∞(y).

(c)If β > 1, then there exists c0 > 0 such that∫
R
(|φy|2 + φ2 − 3w2

∞φ2)dy + β(
∫

R
w∞φ dy)2 ≥ c0

∫
R

φ2 dy
(4.10)

for all φ ∈ X∞.

Proof:

By Lemma 5, ν1 is the only positive eigenvalue of L0 and the cor-

responding eigenfunction φ0 is positive and belongs to X∞. For fixed

λ0 > 0, λ0 �= ν1, (L0 − λ0)
−1 exists in X∞.

For β > 0 and λ0 > 0 we may rewrite (4.5) as

φ = β
(∫

R
w∞φ dy

)
[(L0 − λ0)

−1w∞]. (4.11)

Assume first that (4.11) holds. Multiplying (4.11) by w∞ and inte-

grating over R gives∫
R

w∞φ dy = β
(∫

R
w∞φ dy

) ∫
R
[(L0 − λ0)

−1w∞]w∞ dy.
(4.12)

Now we use the fact that ∫
R

w∞φ dy �= 0,

which follows by contradiction as follows: Suppose that∫
R

w∞φ dy = 0.

Then (4.5) implies that

L0φ = λ0φ, λ0 > 0, φ ∈ X∞.
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By the properties of φ given in Lemma 5 (b), however, it follows that∫
R

w∞φ dy �= 0

This is a contradiction. Therefore (4.12) implies

ρ(λ0) := β
∫

R
((L0 − λ0)

−1w∞)w∞ dy − 1 = 0, λ0 > 0.
(4.13)

On the other hand, suppose that (4.13) holds. For the positive root

λ0 of (4.13) we define φ by

φ = (L0 − λ0)
−1w∞.

By (4.13) we have

β
(∫

R
w∞φ dy

)
= β

∫
R
((L0 − λ0)

−1w∞)w∞ dy = 1

and therefore λ0 �= 0 and φ > 0 solve (4.11).

Thus for β > 0 problem (4.5) has a positive eigenvalue if and only if

the algebraic equation (4.13) has a positive root.

We now discuss (4.13). It is easy to see that ρ(λ) < 0 for λ > ν1.

Thus we only need to consider λ ∈ (0, ν1). In this case,

ρ
′
(λ) = β

∫
R
(w∞(L0 − λ)−2w∞) dy = β

∫
R
((L0 − λ)−1w∞)2 dy > 0.

On the other hand, as λ → ν1−, ρ(λ) → ∞. Thus (4.13) has a

positive real root if and only if ρ(0) < 0.

It remains to compute ρ(0).

By (c) of Lemma 5, we have

ρ(0) = β
∫

R
w∞

1

2
(w∞ + yw

′
∞) dy − 1 =

β

2

∫
R

[
w2

∞ − y
1

2
(w2

∞)
′
]

dy − 1

=
β

4

∫
R

w2
∞ dy − 1 = β − 1.

Therefore ρ(0) < 0 if and only if β < 1.

Moreover, since ρ
′
(λ) > 0, we see that the positive eigenvalue, if it

exists, is unique.

This proves part (a) of the lemma.

Part (b) of the lemma follows from (c) of Lemma 5.

To prove part (c), let

λ0 = min
φ∈X∞

∫
R(|φy|2 + φ2 − 3w2

∞φ2) dy + β(
∫
R w∞φ dy)2∫

R φ2 dy
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= min
φ∈X∞

∫
R(−Lβφ)φ dy∫

R φ2 dy
.

By (a), if β > 1, Lβ has no positive real eigenvalues. Thus λ0 ≥ 0.

We have to exclude the case when λ0 = 0. Suppose λ0 = 0, then we

have a φ0 ∈ XL such that

φ
′′
0 − φ0 + 3w2

∞φ0 − β0(
∫

R
w∞φ0 dy)w∞ = 0,

∫
R

φ2
0 dy = 1.

(4.14)

Using (c) of Lemma 5, we see that

φ̃0

′′
− φ̃0 + 3w2

∞φ̃0 = 0,

where

φ̃0 = φ0 − β(
∫

R
w∞φ0 dy)

(
1

2
(w∞ + yw

′
∞)

)
.

By (a) of Lemma 5, we have that

φ̃0 = φ0 − β(
∫

R
w∞φ0 dy)

(
1

2
(w∞ + yw

′
∞)

)
= cw

′
∞

for some constant c.

Since φ0 ∈ X∞, it follows that φ(−y) = φ(y). Thus c = 0 and

φ0 = β(
∫

R
w∞φ0 dy)(

1

2
(w∞ + yw

′
∞). (4.15)

Multiplying (4.15) by w∞ and integrating over R, we have that(
1 − β

∫
R

w∞
1

2
(w∞ + yw

′
∞) dy

) ∫
R

w∞φ0 dy = 0.

Since β > 1 (recall that
∫
R w∞ 1

2
(w∞+yw

′
∞) dy = 1), we have

∫
R w∞φ0 dy =

0 and hence φ0 = 0. This is a contradiction.

Therefore λ0 > 0 and hence part (c) of the lemma is proved. �
As a corollary of (c) of Lemma 6, we obtain

Corollary 7. Let A be the single (small) spike solution of Type I. Then

there exists c0 > 0 such that for L sufficiently large and φ ∈ XL, we

have

L[φ] ≥ c0

∫
I
φ2 dx, (4.16)

where L[φ] is defined by (3.13).
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Proof: Note that

lim
L→+∞

βL = lim
L→+∞

2

c−L(µ′ − 1)

= lim
L→+∞

β1
L

β1
L −

√
(β1

L)2 − 1

= (β∞)2 +
√

(β∞)2((β∞)2 − 1) > 1

by the assumption (1.8).

Since Hl = w∞(y) + O(e−l), (4.16) follows from (4.10) of Lemma 6

and (4.2). �
From Lemma 3 and Corollary 7, we see that for L sufficiently large,

the single (small) spike solution of Type I is linearly stable for any

τ > 0.

5. Instability of Other Solutions

In this section will show that the other solutions (i.e., the single

(large) spike solution of Type I, the double spike layer of Type II,

or the double transition layer solution of Type III, respectively) are

linearly unstable.

By the reduction lemma (Lemma 3), we just need to consider prob-

lem (3.7). To show instability, all we need is to show that the following

minimization problem admits a negative value for a certain test func-

tion:

− µL = min
φ∈XL,

∫
I

φ2=1
[
∫

I
(|φx|2 + aφ2 − 3bA2φ2) dx +

2µ
′

L
(
∫

I
Aφdx)2] < 0.

(5.1)

Inequality (5.1) is equivalent to

− µL = min
φ∈H1(I),

∫
I

φ2=1
[
∫

I
(|φx|2 + aφ2 − 3bA2φ2) dx +

2µ
′

L
(
∫

I
Aφdx)2] < 0.

(5.2)

Recall that I = [−L
2
, L

2
], l =

√
aL, Ĩ = [− l

2
, l

2
].

Thus it is enough to find a φ ∈ H1(I) such that∫
I
(|φx|2 + aφ2 − 3bA2φ2) dx +

2µ
′

L
(
∫

I
Aφdx)2 < 0.

We now consider the three solution types separately, with L >> 1.
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1. Single (large) spike solution of Type I

Let (A(x), B(x)) = (A+, B+) be the single (large) spike solution of

Type I.

It is easy to see that

−µL = min
φ∈H1(Ĩ),

∫
Ĩ

φ2=1
[
∫

Ĩ
(|φy|2 + φ2 − 3H2

l φ2) dy + βL(
∫

Ĩ
Hlφ dy)2],

where

βL =
2µ

′

c+L(µ′ − 1)
.

Observe that as L → +∞,

βL → β = (β∞)2 −
√

(β∞)2((β∞)2 − 1) < 1. (5.3)

By Lemma 6, for β ∈ (0, 1), there exists a unique principal eigenvalue

λ0 > 0 and a corresponding eigenfunction φ0(y) ∈ X∞ for the following

eigenvalue problem

φ
′′
0 − φ0 + 3w2

∞φ0 − β(
∫

R
w∞φ0 dy)w∞ = λ0φ0.

Now since φ0(y) = O(e−l) for |y| ≥ l, a simple computation shows

that φ0(c+x) makes (5.2) negative.

2. Double Spike Layer Solutions of Type II.

By Lemma 5 the eigenvalue problem

φ
′′
0 − φ0 + 3w2

∞φ0 = λ0φ0, φ0 ∈ H2(R)

has an eigenvalue λ0 > 0 with a corresponding eigenfunction φ0.

We now set

φ(x) = φ0(
√

a(x +
L

2
)) + φ0(

√
a(x − L

2
)) + φ0(

√
ax), x ∈ I.

Then we calculate∫
I
Aφdx = 2

∫ L
2

L
4

Aφ0(
√

a(x − L

2
)) dx +

∫ L
4

−L
4

Aφ0(
√

ax) dx + O(e−l/2)

=
∫

R
w∞φ0 dy −

∫
R

w∞φ0 dy + O(e−l/2)

= O(e−l/2).

Recalling that

φ̃(x) = φ(
√

ax),
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this implies ∫
Ĩ
Hlφ̃ dy = O(e−l/2).

Hence

1√
a
L[φ] ≤

∫
Ĩ
[(φ̃

′
)2 + φ̃2 − 3H2

l φ̃2] dy +
2µ

′

L(µ′ − 1)
√

a
(
∫

Ĩ
Hlφ̃ dy)2

≤
∫

Ĩ
[|φ̃′|2 + φ̃2 − 3H2

l φ̃2] dy + O(e−l/4)

= 2
∫

R
[|φ′

0|2 + φ2
0 − 3w2φ2

0] dy + O(e−l/4)

= −2λ0

∫
R

φ2
0 dy + O(e−l/4) < 0. (5.4)

Therefore we have µL > 0. (In fact we have µL ≥ λ0 + O(e−l/4).)

We have shown that the double spike solution of Type II is unstable.

3. Double front solutions of Type III.

We now consider the double front solution, the so-called sn solution

of Type III, and we will show that it is unstable.

In this case, we choose our function φ(x) so that

φ
′
(0) = φ

′
(
L

2
) = 0, φ(x) = φ(

L

2
− x) for 0 < x <

L

2
.

(5.5)

The last equality says that φ(x − L
4
) is an even function in [−L

4
, L

4
].

We then extend φ(x) evenly to [−L
2
, 0]. In this case

∫
I
Aφdx = 2

∫ L/2

0
Aφdx = 0

and

√
aL[φ] =

√
a

∫
I
(|φx|2+aφ2−3bA2φ2) dx = 2

∫ L
2

0
(|φx|2+aφ2−3bA2φ2) dx

= 2
√

a
∫ l

4

− l
4

(|φ̃y|2 − φ̃2 + 3v2
l/2φ̃

2)dy,

where vl/2 is defined by (2.25) and

φ̃(y) = φ(x), y =
√

a(x − L

4
). (5.6)
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Let ϕl be such that{
ϕ

′′
l − 2ϕl = 0, − l

4
< y < l

4
,

ϕl(−y) = ϕl(y), ϕ
′
l(

l
4
) = −v

′′
l/2(

l
4
) = vl/2(

l
4
)(1 − (vl(

l
4
))2).

(5.7)

Set

φ̃(y) = v
′
l/2(y) + ϕl(y).

It is easy to check that φ(x), defined by (5.6), satisfies (5.5).

We compute:

φ̃
′′

+ φ̃ − 3v2
l φ̃ = v

′′′
l/2 + v

′
l/2 − 3v2

l/2v
′
l/2 + ϕ

′′
l + ϕl − 3v2

l ϕl

= 0 + 3(1 − v2
l )ϕl,

L[φ] = 2
∫ l

4

− l
4

(|φ̃y|2 − φ̃2 + 3v2
l/2φ̃

2) dy

= −6
∫ l

4

− l
4

(1 − v2
l )ϕlφ̃ dy < 0, (5.8)

since

1 − v2
l > 0, ϕl > 0, φ̃ > 0. (5.9)

By (5.1) this shows that the double front solution is unstable. In

fact, the behaviour of the double front solution is very similar to that

of two-layer solutions of the Cahn-Hilliard equation. See for example

[1],[2], [3], [6], [9].

6. Extensions

The results of this paper can be extended in several ways.

We first consider the following so-called ABC system in [5] arising

from two-dimensional rotating convection and magnetoconvection:

⎧⎪⎨
⎪⎩

At = Axx + A − A3 − AB, x ∈ R, t > 0,
Bt = σBxx + µ(A2)xx, x ∈ R, t > 0
Ct = τCxx + ν(A2)xx, x ∈ R, t > 0,

(6.1)

where

σ > 0, τ > 0.

In [5], it is shown that all rolls are unstable if
µ

σ
+

ν

τ
> 1. (6.2)
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The steady-state of the ABC system (6.1) takes the same form as

(2.3), except that we replace µ
′
by µ

σ
+ ν

τ
.

Similar proofs as in Theorems 1 and (2) show that if (6.2) holds,

then there exists a stable single (small) spike solution, an unstable

single (large) spike solution, and an unstable double spike solution. If
µ
σ

+ ν
τ

< 1, then there exists an unstable double front solution.

Second, we can consider the following model which includes higher

order terms (equations (5.1) and (5.4) of [8]):

{
At = Axx + A − A3 − AB, x ∈ R, t > 0,
Bt = σBxx + µ(A2)xx + δ(BA2)xx, x ∈ R, t > 0,

(6.3)

where

σ > 0, δ > 0.

After rescaling, the steady state problem for δ small can be approx-

imated by the following model equation{
w

′′
∞,δ − w∞,δ + w3

∞,δ − δw5
∞,δ = 0,

w∞,δ > 0, w∞,δ(y) → 0 as |y| → +∞.
(6.4)

As δ → 0, w∞,δ → w∞ =
√

2 sech(y). Our results extend without

any difficulty to the case of δ << 1.
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