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Abstract 

The main aim of this research is directed towards the study of thin-walled rectangular 

planform silos with a view to maximising their structural efficiency. In thin plates of 

the type making up the wall, membrane action may increase the load carrying 

capability and current design guides make no account of this. Designing rectangular 

silos with this in mind can lead to significant structural savings. 

The core of the research involves using the finite element method to study the 

patterns of pressure exerted by the weight of a granular bulk solid on the walls of the 

silo structure. The stored granular solid must use an elastic-plastic material law in 

order to account for large deformations that can occur in a thin-walled structure. The 

need for this type of constitutive law led to the investigation of bulk solid properties 

and shows that parameters that have previously been used to categorise bulk solids 

may not be sufficient to describe all aspects of their behaviour. The finite element 

model created uses material constitutive laws that can be found in a number of 

packages. The required granular material parameters can be determined from a 

number of simple tests. This approach aims to enable engineers to routinely use 

similar models when designing silos. 

The results obtained from the finite element model exhibited some anomalies that 

had been observed in previous work. These were mainly apparent in the form of 
localised pressure peaks near the base of the model. These effects were investigated 

and possible mechanisms that lead to them were proposed. 

The results from the finite element model were compared to previous experimental 

work and existing theories. The model was then used to conduct parametric surveys 

on square and rectangular planform silos and the distribution of pressure across the 

wall compared to previous predictive models. 

Finally, a scale thin-walled metal silo was constructed and pressure measurements on 
filling with pea gravel made. These are compared to predictions made by the finite 

element model. 
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Co Overpressure discharge coefficient 
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G Plastic potential/Shear modulus 
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h,, Height of surcharge cone 
Il First invariant of stress tensor 

J2 Second invariant of stress tensor 

Jeý Elastic volume change 
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L Length of silo wall 
Pa Initial stress 
Pelt Elastic tensile limit 

Ph Horizontal wall pressure 

P. Mean wall pressure 

Pn Normal pressure in hopper 

Pt Tractive force in hopper 

P, Vertical pressure in solid 

P. Tractive force down bin wall 

p Average pressure stress 

q Frictional force/Deviator stress 
R Hydraulic radius of bin 
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t Thickness of bin wall 
U Perimeter of rectangular bin 

v Volume of solid 

w Deflection of plate 
Y Yield function 

y Depth from surface of fill 

a Redistribution parameter 

a' Hopper wall angle 

ß Drucker-Prager internal angle of friction 
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E Young's modulus 
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x Gradient of reloading lines 
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a Stress 
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ar Radial stress 
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T Shear stress 
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Chapter 1- Introduction 

In the modem industrial environment there are many situations where granular bulk 

solids need to be stored. Typical granular bulk solids include corn, plastic pellets for 

a production line or coal to feed furnaces. The structures used to hold these materials 

are known as silos, although they are occasionally referred to as bunkers (particularly 

when referring to the ground supported, squat type typically used to store coal in 

power stations). Silos are usually constructed from steel or reinforced concrete and it 

is apparent that much research effort should be directed toward the study of these 

types of structures as over 1000 structural failures occur in silos in North America 

alone each year (Jenkyn and Goodwill, 1987). 

Silos are most commonly found in circular planform due to the structural efficiency 

of this type (Trahair, 1985). Circular planform structures support the loads from the 

ensiled material mainly by membrane actions. They are axisymmetric, potentially 

simplifying the design process (Rotter, 1985a) but this can lead to a weak structure 

were any bending actions to arise (Rotter, 1985b). Circular planform silos must be 

accurately constructed because they are sensitive to any imperfections of the shell 

surface. One of the alternative silo structural forms is a rectangular planform 

structure, but this has largely been ignored because it is difficult to assess the 

response to the loads acting on the structure. In this type of structure the main load 

carrying action is bending but if the wall deforms sufficiently there may be some 

membrane action induced. This membrane action will always be dominated by the 

bending action but can significantly increase the ultimate strength of the plate if it is 

taken into consideration. Advantageously however, rectangular silos are simply 

constructed from flat plate which requires little preparatory work and could therefore 

provide a cost effective alternative to circular planform silos if design codes could be 

suitably adapted to better predict the behaviour of this type of structure. 

- Of most importance to structural designers are the (horizontal and vertical) pressures 

acting on the silo wall. There are several theories that are commonly used to predict 

pressures (Janssen, 1895; Reimbert and Reimbert, 1976). The resulting pressures are 
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then usually multiplied by some factor of safety in order to account for any excess 

pressure that may occur during filling or discharge. Once these are ascertained it is 

then a matter of using appropriate methodology to design the silo for strength, 

stiffness and stability. Most of these theories assume the silo (and its contents) has 

symmetry of rotation but it has been shown that even in a cylindrical silo this is not 

the case (Nielsen, 1983). It is also obvious that rectangular structures do not have 

rotational symmetry and therefore the available theories have to be adapted to suit. 
This adaptation is unsatisfactory because it makes further assumptions which may 
have a deleterious effect upon the economy of any rectangular silo design. Structures 

produced in this way tend to have an excess of stiffness; they use thick plates and a 
large number of external and internal stiffeners. This increases the weight of the silo 

and hence the cost. These designs could be improved by allowing a certain amount 

of deformation to occur in the wall of the silo which in turn stiffens the plate by 

membrane actions. 

In previous work (Jarrett, 1991; Lahlouh et al, 1995) the emphasis was on 

experimental determination of the effect of wall flexibility on measured pressures. 

This project aims to extend the knowledge in the area of rectangular planform steel 

silos in the following ways: 

" By using finite element models to predict wall pressures in flexible walled 

silos, 

" By determining the effect of a very flexible, thin silo wall on wall pressures, 

" By comparing experimental results with predictive theories, and 

" By assessment and design of instrumentation for use in scale model silos. 

1.1 Thesis summary 

The work presented in this thesis consists of twelve chapters of which this 

introduction is the first. 
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Chapter 2 gives some background into the problem being studied as well as defining 

some of the terms and concepts used throughout the remainder of the work. Chapter 

3 describes some of the methods currently used to assess the loads on, and responses 

of silo structures. Chapter 4 introduces various numerical methods that can be 

applied to problems of the type studied in this work. It goes on to describe the choice 

of the finite element method used for the remainder of the study. Chapter 5 describes 

the finite element method with respect to silo problems outlining solution techniques 

and modelling methods used. 

Chapter 6 describes the initial investigation and validation of the finite element 

model. This includes determination of parameters used in various constitutive laws 

that can describe granular materials of the type stored in silos. This is achieved by a 

combination of interpretation of experimental data, comparison with current theory 

and comparison with previous experimental work (Lahlouh et al, 1995). Chapter 7 is 

a study of some of the modelling anomalies experienced in Chapter 6. This is with 

regard to observed end effects near the base of the bin. 

Chapter 8 introduces a two parameter predictive law conceived by Rotter et al 

(2002). This law aims to describe the experimentally observed non-uniform 
distribution of wall pressure at a given depth in the ensiled material. The law is 

compared to experimental and finite element results. Chapter 9 describes a 

parametric survey of a square silo. It is shown that the previously introduced 

predictive law is a good fit to finite element results for a number of geometrically 

different bins. Chapter 10 describes an experiment performed on a thin-walled 

square planform silo and makes comparisons with the predictive law and the finite 

element model. Chapter 11 presents a parametric study of a rectangular silo and 

shows that the actions in structures of this type are very different from the actions in 

a square planform silo. 

Finally, Chapter 12 presents conclusions and suggestions for further work. 
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Chapter 2- Background to the problem 

The structural designer of silos is concerned with the horizontal and vertical 

pressures acting on the wall of the silo, because these pressures determine the 

membrane and bending actions that govern design. The response of the silo can be 

difficult to predict due to the large number of different possible failure modes, 

interaction between the stored solid and the structure and sensitivity to geometric 

imperfections. 

The wall pressures in silos were originally assumed to be equivalent to hydrostatic 

(fluid) pressures. Early experiments by Roberts (1882; 1884) showed that this was 

not the case as some of the weight of the stored material is carried by the wall due to 

friction at the interface between the materials. Janssen (1895) confirmed this and 

published his still widely used theory that accounts for this phenomenon. Soon after, 

Airy (1897) published a second theory to compute wall pressures but this is not in 

such widespread use as Janssen's. A typical Janssen distribution for normal pressure 

down the depth of a silo wall is shown in figure 2.1, along with the hydrostatic 

distribution that was previously assumed to be correct. 
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Figure 2.1 - Comparison of a hydrostatic distribution and a Janssen distribution in a deep silo 
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It is obvious that the pressure predicted by the Janssen theory is substantially lower 

than the hydrostatic distribution. The reason for this observed phenomenon is that 

granular materials have shear strength (i. e. they can support some of their own 

weight) and friction exists at the interface of the wall and the material. This leads to 

the development of an equilibrium between the weight of the solid and the supporting 

wall friction. The observation of this property has led to the proposal of many 
theories in the field of soil mechanics, several of which are specifically for the 

prediction of pressures in silos. However each of these theories contains assumptions 

and limitations that may make them unsuitable for particular types of problems. 

Theories for silo pressures include the Janssen formula (1895), those developed by 

Reimbert and Reimbert (1976) from empirical data and earth pressure theories such 

as Coulomb's (1776). These theories consider the wall to be rigid and the pressure to 

be invariant at any given depth but it has been shown by Jarrett et al (1995) and more 

recently emphasised by Rotter et al (2002), that this is not the case for rectangular 

planform silos. This research showed that when the wall is flexible an arch can form 

in the granular solid over the deforming wall leading to lower pressures in the middle 

of the wall and higher pressures near rigid, supporting boundaries. This is in contrast 

to Janssen's original postulation that a rectangular planform silo might experience 
higher pressures at the mid-side of the wall and lower pressures in the comers. 

2.1 Definitions 

There are several terms used in this thesis that require definition. The word silo 
describes the entire structure. The vertical walled section of this is usually referred to 

as the bin or box, while the angled section at the base is referred to as the hopper. 

Silos are further classified according to their planform, height to width ratio, the 

material they are constructed from and the type of flow they exhibit. The definitions 

given are consistent with the current ENV 1991-4 (1995). 
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2.1.1 Planform 

Currently, silos most commonly occur in either circular or rectangular planform. 
Other planforms are occasionally used and some were investigated by Reimbert and 
Reimbert (1976). Circular planform silos are efficient structures that carry most of 

their loads by membrane (hoop) actions. As this form of silo is the most common, 

the majority of research activity is not unreasonably directed towards their study. 
Rectangular planform structures may however, need to be used for a number of 

practical reasons and if the efficiency of this type of structure could be improved then 

it may provide a viable alternative to circular silos. 

2.1.2 Height to width ratio 

Silos can also be classified as deep or shallow and an approximate guide to this factor 

would be that a shallow silo has a height not exceeding one and a half times the 
diameter (or shortest side length). A deep bin obviously has a ratio greater than this 

(ENV 1991-4,1995). 

2.1.3 Construction materials 

Silos are usually constructed from either steel or reinforced concrete. Concrete 

structures are more usually used in larger applications such as the storage of cement 

clinker, coal and grain. Concrete structures are obviously designed with permanency 

in mind whereas steel structures can be easily constructed, moved, recycled etc. 

Recently, large concrete designs have been replaced by batches of squat steel silos. 

The design and testing of concrete structures has been well reported (Eibl, 1998) and 

will not be covered in this project, although some reference will be made to very stiff 

structures which could be considered to be like concrete in behaviour. 

2.1.4 Flow type 

Consideration must be given to the type of flow experienced in a silo. The type of 
flow leads to different pressure regimes within the silo contents and therefore 

different pressures on the silo wall (Nielsen, 1998). Flow types can be generally 
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classified as mass flow and funnel flow (sometimes known as core or internal flow). 

In mass flow, the ensiled material moves down the silo as one during discharge. In 

funnel flow, the material tends to flow down a central flow channel while the outer 

material remains stationary. Whether funnel flow or mass flow occurs in a silo is 

governed by a number of factors amongst which the material properties and the angle 

of the hopper walls are most important. A graphical design method for determining 

which type of flow will occur is employed by most codes and a typical diagram is 

shown in figure 2.2 (ENV 1991-4,1995). 
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Figure 2.2 - Figure used to determine the flow type in a silo (from ENV 1991-4 (1995)) 

The figure shows that mass flow will more likely occur in smooth walled silos with 

steep hoppers and those with rough walls or shallow hoppers will more likely 

experience funnel flow. The type of flow experienced in the silo is an important 

starting point in the structural design process. Mass flow may be deemed necessary 

in food processes because they operate on a first in/first out principle, thus avoiding 

stagnant zones associated with funnel flow. This stagnant food material could spoil 

in a low volume production situation. Conversely, space may be limited which 

precludes the steep hopper angle required for mass flow hoppers and therefore other 

solutions for assisted discharge would have to be considered such as flow agitators. 

Another disadvantage is that mass flow silos wear heavily on the wall due to the 
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abrasive effect of the granular bulk solid sliding down the wall and this must be 

factored into the design. 

2.2 Silos studied 

This thesis is concerned with metal, rectangular planform, thin-walled silos. Metal 

silos appear in many different plan-forms: circular, rectangular, square and 
hexagonal. They can be tall or squat, ground supported or elevated on columns. 
Some different forms of silo are shown in figure 2.3. 

abc 
Figure 2.3 - Planform shapes of silos 

This variation of form allows the designer to accommodate many different types of 
loading but the interaction between the stored bulk solid and the silo wall makes the 

assessment of the wall pressures difficult. Figure 2.3(a) shows a diagram of a typical 

metal, cylindrical silo. It can be seen that the basic structural form of this type of silo 
is a thin, axisymmetric shell of revolution making the stress in the structure relatively 

uniform around the circumference. This makes the analysis of the structure slightly 

easier for simple, un-stiffened cases. However, silos are regularly stiffened in some 
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way and when considering a rectangular planform silo their natural shape contains 

stress raisers such as corners that make the prediction of stress more difficult. 

Figure 2.3(b) shows the basic layout of a rectangular plan-form structure of the type 

that is to be considered in this project. Each form of silo has its own advantages and 
disadvantages. Rectangular planform silos can be easily constructed from plate 

material, meaning there is less fabrication work required prior to construction on site. 
However, rectangular planform silos are not as efficient structures as circular ones 
because they do not take advantage of membrane stresses (section 3.10). Rectangular 

structures may also make more use of available ground-space (because they 

tessellate), which may be important in applications where space is limited. 

It is noted that the silos studied in this project are different from the type shown in 

figure 2.3(c), which is known as a trough bunker. These are usually squat and long 

(the ratio of long wall to short wall is large and they are often treated as infinitely 

extending parallel walls) and exhibit plane flow (essentially 2-D flow, the stress state 
is not a function of the co-ordinate perpendicular to the plane of flow). 
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Chapter 3- Stresses and loads in the ensiled material and the silo 

structure 

3.1 Silo loads 

Silos are subjected to a number of load cases of various load conditions. Of most 
importance for design purposes are the loads imposed on the structure by the weight 

of the granular bulk solid when the silo is filled and emptied. These loads consist of 

pressure components and frictional tractive forces and are shown in figure 3.1. 
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Figure 3.1 - Loads exerted on the silo structure from the ensiled material 

Wall pressures can be influenced by a number of factors including the silo geometry, 

wall friction and type of stored material. There are also a number of other loads that 

may need to be considered in the design process such as wind loading, thermal 

loading and other environmental loads. 

This thesis is mainly concerned with the determination of the filling pressures in the 

silo structure and as such most consideration will be given to these loads and the 

interaction between the ensiled material and the silo structure. 
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3.2 Stress state in the stored solid 

Granular materials at rest in a silo can be said to exist in an elastic state which is 

limited by the Rankine active and passive pressure coefficients (Gaylord and 
Gaylord, 1984). These define the point of active failure (caused by expansion of the 

material) and passive failure (caused by compression of the material). However, 

throughout the granular material this state can differ which can affect the internal 

stresses experienced by an ensiled material which in turn affects the pressures 

experienced on the wall. 

This behaviour of stored materials is known to affect the pressures exerted on the 

walls of a silo structure (Nielsen, 1983). Therefore it follows that the overall stress 

state that the stored material assumes influences the wall pressures. There are three 

categories of wall pressure that are usually considered by designers; filling, static and 

discharge. The assumption that the filling and storage pressures are approximately 

equal is widely accepted (although some types of granular materials may cause the 

pressure regimes to alter over a period of time), and so consideration is normally only 

given to two stress states. The problem is often further simplified by basing the 

evaluation of discharge pressures on the static/filling pressures which are multiplied 

by some pre-determined factor that accounts for the apparent excess pressure. This 

factor is usually determined from codes or design guides (ENV 1991-4,1995; DIN 

1055,1987). These flow load multipliers are generally derived by consideration of 

changes in the stress field upon the onset of discharge (Nanninga, 1956; Walters, 

1973a, b) and were originally obtained empirically. This process requires the 

designer to perform only one set of calculations upon which the final design will be 

based even though there are three different phases of loading. This is before any 

consideration of any other external loadings. This would appear to be a considerable 

shortcoming given the variability of experimentally observed static pressures 

(Nielsen, 1979; Nielsen and Anderson, 1982; Harden et al, 1984) and discharge 

pressures (Nielsen, 1998). 
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The stress state (and hence the wall pressures) is also greatly affected by the 

eccentricity of the fill and discharge processes. During filling it is unlikely that 

material will be deposited from directly above the bin in the centre. It is more likely 

that material will be travelling up a conveyer and will be deposited into the bin 

towards one side, possibly impacting on the opposite wall in the case of a slender 

silo. This will have a large effect on the state of stress that exists in the solid at the 

end of the filling process and this has subsequently been shown to affect the wall 

pressures (Zhong et al, 2001). Similarly, it is possible that the material will be drawn 

from the silo via an eccentric hopper and this has been shown to produce highly 

asymmetric pressures in cylindrical bins (Rotter, 1986). 

3.2.1 Interaction between silo and contents 

The pressure exerted on the silo wall is dependent on the interaction between the wall 

and the stored bulk solid. This is especially so when the wall is flexible in a 

systematic way, as in a rectangular planform silo. Little work is currently available, 

although several research groups have shown that the flexibility of the wall of a 

cylindrical silo can have an effect on the wall pressures (Ooi and Rotter, 1990; 

Mahmoud and Abdel-Sayed, 1981). Others have performed studies of the silo- 

material interaction (Emanuel et al, 1983; Ibrahim and Dickenson, 1983). Most of 
these studies have used a two-dimensional finite element model. In order to improve 

the study of this phenomenon a three-dimensional model would be the most suitable 
but until recently this would have been impractical due to the constraints of computer 

systems. 

Jarrett et al (1995), Lahlouh et al (1995) and Rotter et al (2002) have presented 

experimental results for square planform steel silos showing that the flexibility of the 

wall and the type of granular material used affects the measured pressures. 

3.3 Calculations for wall pressures 

There are a number of theories available for the prediction of the wall pressures and 

these have been reviewed extensively elsewhere (Arnold et al, 1980; Gaylord and 
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Gaylord, 1984). Most of these theories are applicable to cylindrical silos because 

these structures can be reduced to two dimensions by the assumption of axisymmetry. 
As it is known that the wall deformation and hence the wall pressure in a rectangular 

silo varies at constant depth then a three dimensional analysis is required (Ibrahim 

and Dickenson, 1983). However, as there are not any specific formulae for this type 

of calculation, the cylindrical theories are usually applied to rectangular planform 

structures, although these are sometimes modified slightly to take account of 

parameters such as the ratio of the length of the side walls. Only the most commonly 

used theories will be assessed here, along with their assumptions and suitability 

towards the current problem. Figure 3.2 shows the notation used for the geometry of 

the silo in the forthcoming sections. 

D 

Figure 3.2 - Notation used for silo geometry 

3.3.1 Theory of Janssen 

Pressures in deep silos of circular planform are usually calculated by the theory of 
Janssen (1895). This is derived by considering the equilibrium of a horizontal slice 

of material in the silo as shown in figure 3.3. 
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Summation and integration of these forces yields the following equation for the 

vertical pressure in the solid: 

Pv= (1-e-r Y/R) 
yk 

(3.1) 

Where y= bulk density of the stored material, R= A/C = hydraulic radius of the silo, 

µ= the coefficient of wall friction, k= the ratio of horizontal to vertical stress and 

y= the depth of the solid above the section, which is assumed to be level. The 

outline derivation of this formula can be seen in Appendix A. 

The Janssen formula makes a number of assumptions that have an effect on the 

usefulness of the model. 

" The vertical stresses are zero at the free surface 

" The coefficient of friction between the material and the wall is constant and 

friction is mobilised throughout 

" The average ratio of horizontal to vertical stress is constant 

" The stored material is isotropic and uniform in weight 
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These assumptions limit the cases to which the Janssen formula should be applied but 

it is still used as the basis for a large number of design codes (ENV 1991-4,1995; 

DIN 1055,1987). 

The pressure coefficient, k, relates the horizontal to vertical stress in the solid: 

k= Ph (3.2) 
- PV 

And hence the horizontal wall pressure is given by the formula: 

(3.3) 

The usefulness of the Janssen theory is therefore dependant on the method used to 

assess this coefficient, k, and this is discussed further in section 3.5. The use of the 

hydraulic radius of a bin (rather than the circumference or the diameter) allows the 

designer to account for non-circular cross-sections, but the resulting solution is still 

two dimensional and therefore gives no indication about the pressure distribution 

across a non-circular bin at any given depth. It is therefore commonly assumed to be 

uniform. A typical Janssen distribution for wall normal pressures (Ph) is shown in 

figure 3.4. 
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Figure 3.4 -A typical Janssen distribution for wall normal pressures 

It can be seen that at great depth the pressures tend to an asymptotic value. This 

asymptotic value can be calculated by reducing the exponential component of 

equation 3.1 to zero making the maximum horizontal and vertical pressures equal to 

equations 3.4 and 3.5 respectively. 

Pn=yR 
(3.4) 

pv _ 
yR (3.5) 

, uk 

3.3.2 Theory of Reimbert and Reimbert 

Another method of prediction of wall pressure is that of Reimbert and Reimbert 

(1976) which is an empirically derived method resulting from a large number of 

experiments. This theory allows for the differences in planform that can occur in 

silos and also the value of k to change with respect to the depth below the surface of 

fill. It is based on the calculation of what is termed the "characteristic abscissa". For 

a cylindrical silo the horizontal pressure at a given depth is: 

16 



(P1 
1J 
12 (3.6) 

Where P. is the maximum lateral thrust given by: 

ý, _ 
yD (3.7) 

It may be noted that this value is comparable to the maximum value given by the 

Janssen equation (equation 3.4). 

And A is the "characteristic abscissa" given by: 

A=Dk 
(3.8) 

4uk 3 

D= diameter of silo and h, = height of cone of surcharge. 

The value of k taken in the original formulae was the Rankine active ratio (see below, 

equation 3.17). It may also be noted that this theory takes account of any surcharge 

on the material's surface which the Janssen equations do not (they are modified to 

accommodate an equivalent surface). This is a major deficiency in the Janssen 

theory as the surface boundary condition is clearly incorrect. A conical surcharge 

must lead to a finite value of vertical stress where the solid first makes contact with 

the wall. However, the wall normal pressure at this point must be zero and therefore 

the value of k must also be zero. This discrepancy has no real effect in a deep silo 
because the surcharge is small relative to the overall depth but in a squat silo the 

surcharge can have a large effect and different methods of treating this problem are 

shown in section 3.3.3. 

The following graph shows the horizontal pressure distribution down the wall of a 

cylindrical deep silo as calculated by the Janssen and the Reimbert and Reimbert 

formulae assuming a horizontal surface (figure 3.5). 
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Figure 3.5 - Comparison of Janssen and Reimbert theories in a similarly sized circular bin 

The value of k taken here was that of the Rankine active ratio. The choice of this 

ratio is discussed in further detail in section 3.5. The graph clearly shows that both 

methods tend towards an asymptote at a great depth and the maximum value is 

identical. 

The Reimbert and Reimbert method also gives specific formulae for the calculation 

of the pressure in a rectangular bin. This is based on the calculation of the relevant 
Pmax and A for the long and the short walls using the same basis as for the cylindrical 

silo (i. e. the equilibrium requirement is maintained). 

If the width of the short wall is denoted as b and the long wall as a then the pressure 

on the short wall can be calculated from: 

Ph =P .b 
1- y +1 

(3.9) 

A, 

Where Pma. b is given by: 

yb (3.10) 
Pmx. n =4p 

And Al given by: 
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For the long wall the formula is similar: 

Ph=P.. a 1- y (3.12) 

AZ 

Where Pm. e is given by: 

7h 1 (3.13) P. a =4p 

With: 

b, - 
2ba - b2 (3.14) 

a 

And A2 given by: 

(3.15) 

'cock 3 

Figure 3.6 shows the horizontal pressures on the walls of a deep rectangular bin 

where the ratio of long wall to short wall is 2: 1. 
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Figure 3.6 - Normal pressures on the long and short wall of a rectangular bin according to 

Reimbert and Reimbert (1976) 

It is clear that this theory predicts that the shorter wall will experience a much lower 

pressure than the longer one. This arises from the granular bulk solid spanning 

across the shorter distance between the long walls and hence more load is transferred 

to the long walls. 

3.3.3 Theories for squat silos 

The above theories are most suited to deep bins but when the height to diameter ratio 

of a silo becomes less than about 1.5 then the silo can be referred to as squat although 
H/D values of between 1 and 1.5 are defined as intermediate by the Eurocode (ENV 

1991-4,1995). There is even some debate about this definition with other limiting 

values being proposed (Fischer, 1966), for example: 

H<_ 1.5-, fA- (3.16) 

Where H is the height of the silo and A the cross-sectional area. 

Janssen, and Reimbert and Reimbert theories do not predict the pressures in these 

type of bins very well because of the influence of any conical surcharge. The 

Reimbert and Reimbert theory makes an allowance for this by incorporating the 
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height of the surcharge cone into the equation but Janssen theory assumes a level fill 

and must therefore be modified to account for the surcharge. If Janssen theory is to 
be used for squat silos then the origin of the first contact is moved to create an 

equivalent surface. The height of this surface is calculated by considering the height 

of a level fill given the volume of solid encompassed by the fill and the surcharge. It 

is therefore dependant on the silo geometry and the angle of the surcharge. This 

method leads to non-zero pressures at the first wall contact. 

To better calculate the pressures in squat silos, designers can use an earth pressure 

theory such as those of Coulomb (1776) or Rankine (1857). However, there are 
difficulties with using these. Rankine's theory assumes that the stored material 

extends infinitely and therefore should not be applied to circular or rectangular silos. 
Neither does it take account of the wall friction and thus tends to underestimate the 

wall pressures. The Coulomb theory also fails to take account of the wall friction and 

assumes a horizontal fill surface which can lead to errors in silos of this type. The 

Coulomb method has therefore been adapted by some researchers in order to take 

account of these factors (Mayniel, 1808; Muller-Breslau, 1906). Muller-Breslau 

(1906) modified the Coulomb theory to account for wall friction and a sloping 
backfill (this theory is essentially for earth pressure behind a retaining wall but the 

sloping backfill can be equated to the surcharge in a silo). However, the volume of 

surcharge on the silo is limited by its size and hence incorporation of the sloping 
backfill tends to over-estimate the pressures on the wall and a more accurate answer 

may be obtained from this theory by assuming the surface is a level fill. 

It is apparent that more work needs to be directed towards squat structures in order to 

provide designers with satisfactory guidelines for the assessment of loads. This is 

especially important as batteries of squat silos are becoming more common in place 

of larger concrete structures. 

3.4 Assumptions of theories 

The above described theories make a number of assumptions of which some have 

been mentioned. There are a great number of implied assumptions that can affect the 
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accuracy and usefulness of the theories and the most important of these are now set 

out. 

1. Wall friction is assumed to be constant down the depth of the bin. This may 

not always be the case as relative movement between the wall and solid can 

affect the value of µ. 

2. The stored material is incompressible, homogeneous and isotropic. Granular 

materials exhibit very complicated behaviour which is discussed further in 

section 5.2.1. Granular materials contain voids which make them 

compressible and they are sensitive to the method of filling in the silo which 

can affect the stress state producing a very anisotropic fill (thong et al, 2001). 

However, Munch-Anderson et al (1992) and Ooi et al (1990) have shown that 

the average pressure on a level in a circular silo is well represented by the 

Janssen distribution. 

3. Discharge pressures are simplified by using an over pressure factor dependent 

on the type of flow exhibited in the silo. This is a gross over-simplification of 

the mechanisms that are occurring in a discharging silo; these have been 

shown to be very complex and produce wall normal pressures that are above 

the estimations made from over-pressure factors, and in most cases are not 

constant at a given depth in a cylindrical silo (Nielsen, 1983). The onset of 

discharge also has a large effect on the behaviour of the stored material which 
further emphasises the limitations described in Point 2 above. The modelling 

of discharge is outside the scope of this thesis. 

3.5 Evaluation of the average pressure coefficient -k 

As mentioned, the evaluation of k affects the predictions of the above theories for the 

wall pressures in a silo. This thesis will discuss the average value of k (the ratio 
determined by consideration of the silo contents as a whole) and the local value of k 

(the ratio determined at a point of inspection). It is usually assumed that the average 

ratio is constant throughout the contents of the silo but local values of k can differ 
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from the assumed value due to the influence of factors such as wall deformation and 

wall friction. Methods that allow for the variation of the average value of k have 

been developed (Reimbert and Reimbert, 1976) but the overall result is often one that 
does not differ too greatly from using a single value of k. Using the single value of k 

has been considered sufficiently accurate for most researchers (Jaky, 1948; Pieper 

and Wenzel, 1965; Walker, 1966) but there has been much discussion of what value 
k should be. Rankine (1857) shows that there are theoretical boundaries for the value 

of k known as the active and passive pressure ratios. These two extremes can be 

demonstrated by the consideration of a mass of cohesionless soil behind a retaining 

wall and are: 

" The active pressure ratio that results from the movement of the wall away 
from the granular material, and 

" The passive pressure ratio that results from the movement of the wall towards 

the granular material. 

The active pressure is the minimum value and occurs just before failure of the 

granular material as the wall moves away. The passive pressure is the maximum 

value and occurs just before the granular material compressively fails. As calculated 
by Rankine these two coefficients are given by equations 3.17 and 3.18. 

Active: k_ 1- sin o (3.17) 
1+sinq' 

Passive: k =1 
+ sin o (3.18) 

1-sinq$ 

Where 4 is the internal angle of friction of the granular material. 

The active pressure ratio could be experienced in a flexible walled silo as there is 

scope for the material to fail if the wall deforms. This ratio has been used by some 
designers. It is unlikely that the passive pressure ratio would be reached in a silo 

problem. 
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Values of k for use in silo problems have been suggested including Jenike et al's 

(1973) suggestion of 0.4 (no matter what the material is) and Jaky's (1948) ratio for 

earth pressure at rest: 

k=1-sinn (3.19) 

This is used mainly for silos with rough walls and has been adopted (with slight 

modification) by the modem ENV 1991-4 (1995) which gives the value of k as: 

k =1.1(1- sin ý) (3.20) 

Figure 3.7 shows the effect of using the different values of k on the normal wall 

pressure distribution in a deep cylindrical silo when using the Janssen formula. 

Figure 3.7 - Janssen distributions of wall normal pressure using different values of k 

The two limiting cases can clearly be seen and are quite different from the majority 

of the predictions which tend to have similar values of k. 
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3.6 Discharge pressures 

This thesis is concerned with the prediction of the filling pressures but it is necessary 
to have some understanding of the methods currently used to predict discharge 

pressures in design codes. Most current codes (ENV 1991-4,1995; DIN 1055,1987) 
handle the prediction of the discharge pressures in a silo by calculation of a flow load 

multiplier and then applying this to the filling pressures. This method would appear 

simplistic given the number of variables that have been identified that can affect the 

symmetry of wall pressures even in a cylindrical bin. 

The Eurocode (ENV 1991-4,1995) gives guidelines for discharge from concentric 

and eccentric hoppers. In the case of the concentric hopper the normal wall pressure 

multiplier is based upon the characteristics of the material. 

Phd ° CoPh (3.21 

Co=1.35for4<30° 
. 

(3.22) 

C° =1.35+0.02(4 - 30°) for 4 >_ 30° (3.23) 

In the case of the eccentric discharge the procedure is more complicated and first 
involves the calculation of the flow channel eccentricity and geometry. This implies 

that the method is for funnel flow silos and no mention is made of eccentric mass 
flow hoppers. Knowledge of the flow channel then allows calculation of the wall 
pressure in the flow zone and also in the static zone. 

3.7 Other loading considerations 

As well as the loads imposed by the ensiled material there are a number of other 
factors that must be considered in the design process. Loads are imposed on the silo 

structure from external factors that include wind loads, seismic loads, and thermal 
loads caused by expansion and contraction of either the structure or the stored 

material. 
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3.7.1 Wind loading 

Any immovable structure experiences actions from the wind. Many statistical tools 

are available for the prediction of possible wind speeds in a given geographical area 

and these can be used to assess wind loads. The shape of the silo and the material it 

is constructed from affect this loading, a tall, rough square silo will experience a 
higher wind load than a squat, smooth cylindrical bin. Consideration must also be 

given to the location of the silo with respect to other structures. This can include 

other silos if a multi-cellular installation is being considered. The design of the roof 

can also have considerable effect on the passage of wind round the silo and if the 

design does not call for a roof at all then the possible effect of the wind acting on the 

internal surfaces of the bin must be examined. Wind loading can be critical for 

empty silos so consideration must be given to whether the filling/emptying cycle will 
involve periods where the silo may remain empty for some time. 

3.7.2 Seismic loading 

This type of load is not really applicable to designs intended for use in the UK or 

other areas of the world where seismic activity is low. However, there are a large 

number of regions where seismic activity is an important factor and some codes give 

guidance on designing for this type of load (ENV 1998-4,1999). The response of the 

structure will be a function of the material it is constructed from, the type of 

foundation and the structure's natural periods of vibration. 

3.7.3 Thermal loading 

If the overall temperature of the silo's immediate environment increases then the 

structure will expand. If the relative magnitude of the expansion of the structure 

compared to the ensiled material is large enough then the material stored inside may 

assume a new position. However, on contraction the material will experience a large 

passive pressure which in turn leads to compaction and stiffening of the stored 

material. As well as the high stresses in the wall of the structure there may be 

discharge problems associated with this compaction. Some researchers have 
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investigated this effect (Zhang et al, 1986; 1989). This phenomenon could have a 

significant effect in areas where extreme temperature cycles are apparent. 

3.8 Application of theories to rectangular planform silos 

All of the previously described theories are most applicable to circular planform 

silos. Some codes recommend ways in which the theory can be adjusted to take 

account of the different shape (ENV 1991-4,1995; DIN 1055) and some have been 

adapted to make them more applicable (Reimbert and Reimbert, 1976). Janssen's 

original paper (1895) postulated that the pressure at the mid-side of a rectangular silo 

would be higher than that at the comer. For a flexible walled silo this has been 

shown experimentally to be incorrect and the pressure at the mid-side can be 

considerably lower than the pressure at the comer (Jarrett et al, 1995). The Reimbert 

and Reimbert (1976) formulae would appear to be most useful as they give values for 

the wall pressure on the long and the short wall. None of the theories however give 

any sort of information about the variation of the pressure across the wall at any 

given depth. This is where structural savings can be made because if the pressure is 

shown to be lower in the middle of the wall then the bending moment is lower and 

hence the required strength is reduced. There is also the strengthening effect of 

taking into consideration the membrane stiffness of the plate. 

3.9 Silo response 

3.9.1 Load supporting actions in silo structures 

This section of the thesis discusses how the alternative forms of silo carry their loads 

and how this can have an effect on silo design. Cylindrical silos support most of their 

loads using in-plane (membrane) forces although some bending may occur in order to 

maintain compatibility of the boundary (Rotter, 1985a). Therefore, in most cases 

membrane theory is used for the design of cylindrical shells. Rotter (1985b) 

discusses several cases where the effects of bending stress may be of importance, 

such as under repeated cyclic loadings, where large bending stresses could cause a 
fatigue failure. 
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Rectangular structures however are usually designed so that the primary load 

supporting action is that of bending stresses (Brown, 1998). Structures are often 

designed with externally applied stiffening which divides the more flexible plate 

material into a number of panels which are treated and analysed separately. This 

tends to lead to an inefficient structure being designed with an excess of strength. 

Figure 3.8 shows a typical rectangular silo with a large amount of external stiffening. 

However, as will be shown later, in an unstiffened structure using thin plates, 

membrane stress can be induced when the plate undergoes large deflections. 

Therefore, if a design could be formulated that permitted large deflections then some 

of the load would be carried by this membrane stress, creating a more efficient 

structure. This would have particular benefit for smaller, unstiffened rectangular 

structures. 

3.10 Membrane actions in rectangular plates 

When considering plates of the sort that a rectangular planform silo may be 

constructed from, the main supporting action is that of bending actions. However, 

with thin plates, when the deflection at the midpoint is large compared to the 

thickness of the plate, the middle surface becomes strained, resulting in in-plane 
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tensile stress levels that stiffen the plate by a considerable amount. This stress is 

called diaphragm, direct or membrane stress. Ugural (1981) defines a large 

deflection in a plate as one where the deflection is greater than the thickness of the 

plate but goes on to show that significant differences between large and small 
deflection solution methods occur when the deflection exceeds half of the thickness. 

A plate undergoing large deflections has non-linear elastic load-deflection and load- 

stress relationships which are not accounted for by small-deflection bending theory 

(the usual approach to plate bending problems). Therefore a modified theory must be 

employed which accounts for the large deflections. This is usually achieved by 

determining the bending stress as per the original theory and then adding to this the 

membrane stress. As an example consideration is given to a circular plate that is 

fully fixed about its edge (Ugural, 1981). The bending (small deflection) solution of 
this problem is given by equation 3.24. 

r4 
wm. x =D or 64 

64D 
P1= 

r4 
Wmax (3.24) 

The bending and membrane (large deflection) solution is given by equation 3.25 (for 

derivation see Ugural (1981)). 

3 64DCw 1+8 Et (2Lmax 

pl -- 
r3 r3 (1- v) rr) J 

(3.25) 

Figure 3.9 shows deflections in the range 0<(w,,, /t)<1.5 and the corresponding load. 

It can be seen that the small deflection theory is suitable for midpoint deflections up 

to half the thickness of the plate but large errors occur after that point. At the point w 

=t there is a 65% error in the load predicted according to the small deflection theory. 
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Figure 3.9 - Comparison of large and small deflection theory for a circular plate 

3.10.1 General equations for rectangular plates 

Von Karman (1910) introduced governing differential equations for large deflections 

of thin plates. These take the form of coupled, non-linear partial differential 

equations and where realistic problems are concerned obtaining a solution is a 

complex and time-consuming task. Some approximate solutions of simple shapes 

under uniform loading have been determined (Timoshenko and Woinowsky-Krieger, 

1959; Roark and Young, 1975) but it is only since the advent of numerical techniques 

that the general problem has been treated satisfactorily (Zienkiewicz and Taylor, 

1989). 

Solutions for rectangular plates are therefore normally obtained by experimental or 

numerical techniques. However, some examples are available from literature (e. g. 

Bares (1979) for small deflections and Levy (1942) for large deflections) and these 

have been collated by Roark and Young (1975) for engineering design purposes. 

The effect of calculating the stresses in rectangular plates using the two different 

theories can be easily shown using an example. Consider a square plate, fully fixed 

and loaded with a uniform load of 2 kPa. It is made from steel with E=210 GPa and 

v=0.3 and has dimensions of lm square and thickness 3mm. 
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3.10.1.1 Small deflection theory 

From Roark and Young (1975) the formulas for the bending stress and deflection at 
the mid-point of a fully fixed square plate under uniform load are given as: 

0.1386gb2 (3.26) 
t2 

0.0138gb4 (3.27) 
maxw= Eta 

where q= load per unit area, b= width of plate, t= thickness, a= bending stress, w= 
deflection and E= Young's modulus. 

3.10.1.2 Large deflection theory 

In Roark and Young (1975) analytical results from various sources are tabulated. 

This table is given for v=0.316 so results would be slightly different from those 

given by the small deflection theory. Large deflection solutions are expressed in 

terms of the coefficients w/t, gb4/Et4 and ab2/Et2. Once the value of gb4/Et4 is 

determined then the table can be used to obtain values for the other coefficients. 
Interpolation between the values in the table may be necessary to provide values of 

stress and deflection for a particular problem. 

3.10.1.3 Comparison of large and small deflection theory 

Table 3.1 shows the maximum stress in the plate and the deflection at the middle 

point as calculated from the two theories. 

Mid-point stress (MPa) Mid-point deflection (mm) 

Small deflection theory 30.8 4.87 

Large deflection theory 23.8 3.12 

Table 3.1 - Stresses in a rectangular plate as calculated from large and small deflection theories 

It can be seen that by accounting for the membrane stress of a plate undergoing large 

deflections, lower values for stress and displacement are obtained. If membrane 

31 



stress is accounted for it can lead to more efficient use of the strength of a plate when 
designing structures. Designing the structure so that large deflections occur may 

prove difficult and therefore accounting for membrane stiffness may have other 
benefits. More realistically, this method may make it possible to evaluate the true 

factor of safety in the structure. 

3.10.2 General numerical techniques for plate problems 

As previously mentioned since the advent of computer based numerical techniques 

problems in large deflection plate bending have become easier to assess. The above 

rectangular example can be repeated using a simple finite element model and the 

results for this are shown in table 3.2. 

Element behaviour a (MPa) y (mm) 

Bending only 31.98 4.94 

Bending and membrane 24.64 3.16 

Table 3.2 - Finite element solution to the large and small deflection rectangular plate 

It is clear that the finite element method agrees well with both theories but of course 
it is not limited to the small number of geometries and load cases that are available 
from literature, and it can be used for many plate sizes or geometries. 

3.11 Structural considerations 

There are a large number of other structural components in a silo other than the main 

shell (or plate) structure. All of these can have an effect on the structural response of 

the silo. Figure 3.8 showed a rectangular silo and figure 3.10 shows an elevated 

cylindrical silo with a number of commonly used structural features. 

32 



Figure 3.10 - Structural features of cylindrical silos 

These features include a ring beam which provides a junction between the parallel 

section of the silo and the hopper. The overall support of the silo is by columns 

which are also attached to the ring beam. This ring beam is therefore subjected to a 

complex loading from the weight of the bin structure and the membrane tension 

caused by the hopper. The ring beam also acts as a stiffener at this point of the silo. 

Comparable in this sense to the ring beam is the roof which as well as protecting the 

contents from exposure to the elements also provides stiffening at the top of the bin. 

Figure 3.8 shows a rectangular silo that features externally applied stiffening. The 

use of this type of stiffener results in a structure that can be considered to act like a 

series of flexible panels supported between the stiffeners and there are a number of 

methods given for the analysis of this type of structure (Troitsky, 1980). This 

method of design usually leads to an overly stiffened structure which does not take 

advantage of its full load carrying capability. This is obviously wasteful of 

construction material but also underlines the lack of knowledge concerning 

rectangular structures. Although not shown in figure 3.8 another occasionally used 

feature of rectangular silos are internal ties across the comers. These are used to 

prevent spreading of the corners in the silo but must be carefully considered before 

use as they can affect the flow of the material. There is little openly available 
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material concerning the use of internal corner ties because it is commercially 

sensitive but Khelil (1998) discusses some of the effects that internal ties can have on 

wall pressures and flow patterns. 

3.12 Rectangular bin design 

As this thesis is concerned only with design of rectangular silos a full description of 

the design process for circular planform silos is unnecessary. There are a large 

number of codes, references and design guides that are devoted to this topic (DIN 

1055,1987; ENV 1991-4,1995; Rotter, 2001). It is worthwhile though to discuss 

some of the aspects of structural design specific to rectangular planform silos. 

Troitsky (1980) has produced a design guide specifically for rectangular steel silo 

structures. 

Most silos of this type would be expected to contain a ring beam at the junction 

between the hopper and the wall. The ring beam is subjected to a variety of loads 

especially if the structure is supported on discrete columns. It must distribute the 

weight of the silo to the supporting columns. At the onset of filling the ring beam 

will be subjected to inward forces from the weight of the hopper. As filling 

continues this force is offset by the horizontal pressure exerted on the walls of the 

silo. 

The columns that support a circular silo usually terminate at the ring beam. In 

rectangular bin design they often are extended to the top of the bin in order to provide 

more stiffness. There is often another ring beam at the very top of the silo to prevent 

excessive deflections at the free edge although this could be incorporated into the 

roof design. 

3.13 Summary 

The basis of silo design is knowledge of the internal pressures caused by the weight 

of the material that is to be stored. A number of theories and methods for 

determining these pressures have been developed. Some are specific to a certain silo 

form (e. g. Muller-Breslau (1906) for squat silos) but generally most codes use one 
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method no matter what the shape. The Eurocode (ENV 1991-5,1994) attempts to 

address this problem by classifying silos according to their shape, height etc. 

The correct determination of the wall pressures is also hindered by the assumptions 

made by the theories. Chiefly, the adoption of a constant value of k is a major 

simplification especially when considering rectangular planform silos which have 

been shown experimentally to exhibit large variations in the value of k throughout the 

stored bulk solid (Rotter et al, 2002). 

When considering rectangular silo design, bending moments are usually the basis. It 

has been shown that by accounting for membrane actions that may arise in the plate 

structure, lower stresses and deflections for a given load are predicted. Membrane 

stress arises as a result of wall deformation but this deformation does not need to be 

too large (compared to the thickness of the plate) for structural savings to be made. 
Rectangular planform steel silo designs are often produced that use a large amount of 

external stiffening. This limits the plate deformation which in turn limits any 

membrane actions and removal of a large amount of this stiffening may result in a 

structure with the same load carrying capability but using a reduced amount of raw 

material. 
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Chapter 4- Numerical methods for the prediction of silo wall 

pressures 

4.1 Introduction 

Due to the many limitations of the analytical methods for determining silo wall 

pressures that arise from the assumptions described in section 3.4, researchers have 

turned to numerical methods. The current work aims to investigate the interaction 

between the ensiled material and the silo structure when the wall is flexible and large 

deflections occur using a numerical model. There are a number of numerical 

methods available to the structural designer, some of which may be suitable for 

analysing silo problems. Initially, the use of these numerical methods and their 

potential applicability to the current problem is assessed before results are presented 
for analysis performed using a finite element method. 

4.2 Available numerical techniques 

With the advent of affordable yet powerful computers, numerical techniques have 

been developed that take advantage of this increased computational power. Systems 

of difficult and time-consuming equations can now routinely be solved in a matter of 

minutes. There are three main techniques used for structural analysis; the finite 

difference method, finite element method and boundary element method. These 

methods rely on some form of discretization (dividing the problem into units that 

have known geometry and properties) of the problem (this could be a fluid flow 

domain, structural component etc. ) and the resulting mesh (combined with 
knowledge of the boundary conditions) is used to construct a system of equations to 

describe the problem mathematically. These equations can then either be solved 

implicitly or explicitly (depending on the type of problem) to produce the required 

results (stresses, pressures etc. ). There also exists a fourth method, the discrete 

element method, that can be used for the simulation of granular bulk solids problems. 
This method models individual particles and the interaction between them, and would 
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appear to be ideally suited for problems of the type studied here. There are however 

limitations to each method, described below. 

4.2.1 Finite difference method 

This method is most commonly applied to problems that can be described as two- 
dimensional, such as the temperature distribution across a thin plate or the velocity 

profile of a fluid at a cross-section of a duct. The system is divided into a regularly 

spaced grid and a function to describe the required variable is derived at each of the 

points on the grid. Assuming knowledge of the function's value at the boundaries, 

then solution of the system of equations can be performed manually or by using a 

simple computer program. This method is not commonly used in commercial 

structural analysis and design because the equations to be solved must be determined 

for each separate problem which would be extremely time-consuming for a large 

analysis. The finite difference method is the most established numerical method 
discussed here but is considered unsuitable for the complex problem that is posed by 

the three dimensional simulation of silo filling. 

4.2.2 Finite element method 

This technique is currently one of the most commonly used numerical techniques for 

mechanical engineering design. It can be applied to many different types of problem, 

with the result that one package can be used to solve problems in a wide range of 

fields (structural, magnetic flux, fluids, electrical). As in the finite difference method 

the problem is divided into a series of smaller elements connected by nodes. These 

nodes can be compared to the grid points in the finite difference method but they do 

not have to be regularly spaced and thus, much more geometrically complex 

problems can be modelled using the finite element technique. 

There are a large number of commercial finite element packages available; which 

generally include a GUI (Graphical User Interface). This makes it possible for the 

engineer to create complex models that may contain many thousands of degrees of 

freedom without having to have specialist programming knowledge. In the past, 
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computer based implementation of numerical methods has generally involved coding 

as required, making programs application specific and more time-consuming to use. 
Modem software packages almost entirely eliminate the need for knowledge of 

programming languages etc., as they are driven by sophisticated graphical interfaces. 

The commercial need for this type of software has led to extremely robust code that 

is ideal for the solution of problems of the current type. 

4.2.3 Boundary element method 

As the name implies, the form of discretization used in this method involves meshing 

the boundaries of a structure. This technique is relatively new but has already been 

applied to silo problems by at least one research group (Wu and Schmidt, 1991). In 

their published work a two dimensional silo was examined and the results obtained 

gave good agreement with the predictions of Janssen (1895). Because this technique 

only meshes the boundaries of a problem it has the advantage of reducing a two 

dimensional problem to one dimension and likewise a three dimensional problem to 

two dimensions. This has advantages in that the level of computational power is 

reduced for a given problem especially when compared to the finite element method 

(which is very similar). However, there are comparatively few commercial boundary 

element packages available which, in part, is due to the established nature of the 

finite element method which has been used successfully for a number of years. 

4.2.4 Discrete element method 

This method would appear to be the most suitable for this project as it is specifically 

aimed at problems involving granular materials. It has been used on a number of 

occasions for the solution of silo problems and a comprehensive review of both this 

technique and the finite element method is given by Rotter et al (1998). The material 

is represented by a number of particles and the interaction between these particles is 

modelled numerically. This should appear to give the most accurate representation of 

the behaviour of bulk solids. However there are a number of disadvantages to using 

this method. Because each particle of granular bulk solid and the interaction between 

adjacent particles is modelled, an enormous computing resource is required to 
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perform even a simple two dimensional analysis. Rotter et al (1998) specified 10,000 

particles for a small two dimensional problem. This is currently considered to be 

approaching the practical machine limit in terms of computation for this method. 
However in a real three dimensional silo of the type considered here the actual 

number of particles could be in the region of 1013 (Chen et al, 1999). 

4.3 Choice of numerical technique for use in the current project 

Because of the widespread adoption of the finite element method by design 

engineers, a large number of proven and robust packages are available. Several of 

these commercial packages have been shown to be suitable for modelling silo 

problems (Guines et al, 2000; Ooi and She, 1997). Therefore this method is adopted 
for the remainder of the work presented here. Although there are several specialist 

codes available for prediction of silo wall pressure (Ragneau et al, 1998), these are 

not generally available and therefore a commercial package is utilised. The package 
ABAQUS is chosen for its superior handling of the material and model non- 
linearities which are important features of a thin-walled rectangular silo. 

4.4 Previous application of the finite element method to silo problems 

Since the finite element method is one of the most commonly used computational 

methods in the study of the mechanics of solids there is extensive silo research that 

has utilised it. There are two distinct phases that have been explored, filling (and 

static) pressures, and pressures upon discharge. These are often studied separately as 

the numerical techniques for the two cases can differ significantly. 

4.4.1 Filling pressures 

Many researchers have used the finite element method to predict the wall pressures 

upon filling a silo. They include Jofriet et al (1977), Mahmoud and Abdel-Sayed 

(1981), Ooi and Rotter (1990), Ragneau and Aribert (1993), Ooi et al (1996), Ooi 

and She (1997), and Chen et al (2000). This work is, in the main, aimed towards 

axisymmetric modelling of cylindrical silos as it allows easy comparison with the 

Janssen method. 
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For an axisymmetric silo, Jofriet et al (1977) showed that a finite element model 

could produce good agreement between the predictions and the Janssen model. 
Mahmoud and Abdel-Sayed (1981) further showed that the finite element method 

could produce results that agreed reasonably well with experimental measurements. 
Both of these pieces of work used custom written finite element code which is 

outside of the scope of this thesis. 

All of analyses described above have adopted a constitutive law to describe the 

ensiled material. Most of the laws used in silo problems involve plasticity to take 

account of large deformations of the material. The assumption that highly 

complicated material models are required for axisymmetric analyses is one that was 

disproved by Ooi and Rotter (1990) who showed that in analysis of this type an 

elastic model could describe the ensiled material and provide results that still 

compared favourably with the Janssen predictions. This is because circular silos 
have a high radial stiffness which means that strain developed in the stored material 
is quite small. The key parameters to matching the Janssen theory to the finite 

element model in this type of problem are shown to be the wall friction and the 

Poisson's ratio of the material. This is because the wall friction appears explicitly in 

the Janssen theory and the Poisson's ratio is implicit due to its relationship with k 

(the ratio of lateral to vertical pressure). Further discussion of this relationship is 

given in section 6.4.1. 

Analysis in three-dimensions is less common as the two-dimensional representation 

of the Janssen equations and an axisymmetric finite element model has been 

considered sufficiently accurate for the design of the more commonly occurring 

circular planform silo. Some three-dimensional analysis has been performed and has 

been applied to rectangular planform silos. Results have been presented by Ragneau 

et al (1994) and Guines et al (2000). Both of these works have characterised the 

ensiled material as an elastic/plastic material. Ragneau et al (1994) used the non- 

linear elastic model of Boyce (1980) coupled with both the Drucker-Prager (1952) 

and the Wilde (1979) plasticity criteria. Guines et al (2000) also used a non-linear 

elastic model (Hujeux, 1979) and coupled it with a Cam-Clay (Roscoe et al, 1965) 
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plasticity model. This work has demonstrated the complex patterns of wall pressure 

that occur in this type of silo but has not extended the work to give guidelines for the 
design of these types of structure. 

It is known that the interaction between the stored solid and the structure can have an 

effect on the wall pressures. Axisymmetric analysis of this interaction has been 

carried out by both Mahmoud and Abdel-Sayed (1981) and Emanuel et al (1983). 

The latter modelled a horizontal slice through a silo in order to show that the bending 

moments that arise in the wall at a given level can be non-uniform. Ooi and Rotter 

(1990) showed that the ratio of the stiffness of the solid to the stiffness of the wall 

could have a large effect on the predicted pressures and that an overall parameter of 

(Esr)/(Ewt) could best represent this behaviour for cylindrical silo shells. Chen et al 

(2000) explored the effect of ring stiffeners in an axisymmetric silo. A previously 

studied experimental silo (Rotter et al, 1995) was modelled with the finite element 

method and similar peaks in wall pressure were observed in the vicinity of the 

stiffening rings. 

Rotter et al (1998) conducted a large international study into the use of the finite 

element and discrete element methods for filling pressures. A well defined problem 

was analysed by a number of research groups and the results obtained vary 

significantly. The conclusions of this study were that the finite element method can 

be very sensitive to assumptions made when constructing the model. The filling 

method modelled has an effect but the main differences arise from the researcher's 

choice of material properties. It was concluded that these choices need to made with 

extreme care as the effect on the predicted pressure can be very large for only a small 

change in a parameter's value. 

4.4.2 Discharge pressures 

Although the current study is concerned with prediction of the filling pressures only 

it is important to consider the modelling of discharge pressures. There is often a 
large pressure peak at the onset of discharge which is referred to as a switch pressure. 

Several researchers (Jenike and Johanson, 1968; Walters, 1973a) explain this switch 
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pressure as a change in the stress field in the solid. However, it is often the case that 

only part of the material is moving (funnel flow) and therefore there is no overall 

change but rather, localised changes resulting in asymmetry of the discharge 

pressures. 

As well as this switch pressure, the pressures exerted on the wall by a discharging 

solid are often locally higher during the discharge process than during filling and 

most codes consider the discharge pressure to be a factor of the filling pressure (ENV 

1991-4,1995; DIN 1055,1987). It may therefore be argued that modelling of the 

filling stage is sufficient for design purposes because these predictions can then be 

treated in a similar way to arrive at discharge pressures (which are usually over 

predicted, resulting in silos with a high factor of safety). This appears to be the 

accepted trend since research groups (Runesson and Nilsson, 1986) who have 

specifically modelled the discharge stage have done so in order to study other 

phenomena such as the discharge patterns. 

Modelling of discharge is often carried out separately to the modelling of the filling. 

This is because different techniques must be employed for this type of problem. 

Some groups (Feise and Daiß, 2001) have used a fluid dynamics method to model the 

flow of the solid whereas others have used a dynamic finite element model 
(Runesson and Nilsson, 1986). Those groups (e. g. Link and Elwi, 1987) that have 

examined the wall pressures resulting from discharge seem to have confirmed the 

existence of a switch pressure and found agreement between the finite element results 

and theories of Jenike (1964) and Walker (1966). 

4.5 Summary 

The finite element method has been chosen because of it proven ability to model 

complex structural problems. A large number of silo problems have been modelled 

using this technique but have, in the main, been restricted to axisymmetric analysis of 

cylindrical silos. Little work has been directed towards three-dimensional modelling 

and of the work available only preliminary investigations of rectangular planform 

silos have been carried out. This may be due to the difficulty in determining a 
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suitable method for characterising the behaviour of the granular bulk solid. This is 
investigated in Chapter 5. 
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Chapter 5- The finite element method applied to silo problems 

The finite element method has been used extensively by researchers to model silo 

problems. Analysis has been carried out by using a mixture of custom code and 

commercial packages. The work presented below intends to use a commercial 

package. An excellent description of the general techniques of the finite element 

method is given by Zienkiewicz and Taylor (1989), but there are a number of aspects 

that must be considered when modelling silo problems. 

5.1 Analysis type 

There are two basic types of analysis that the finite element method uses for 

problems in structural mechanics; linear and non-linear. The deformation of a beam 

under a point load can be described as linear elastic as long as the load does not reach 

a level where the beam experiences large deformations or the stress and strain in the 

material do not exceed the yield point. Figure 5.1 shows the load-deflection of a 

simple elastic system. 

If this system is modelled using the finite element method then the response of the 

system to the load P=f can be described uniquely by a system of equations derived 

from knowledge of the stiffness of the structure, the loads applied and the boundary 

conditions. The resulting set of equations can be solved directly. 
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Figure 5.1 -A simple linear elastic load-displacement response 



Non-linear analysis, as the name implies, deals with systems that exhibit a non-linear 
response to the applied load. Figure 5.2 shows the non-linear response of a system. 

Figure 5.2 -A simple non-linear elastic load-displacement response 

This system can no longer be described by a single set of uniquely defined equations 
but the required solution must be determined implicitly by using an iterative 

procedure which applies the load incrementally. Solutions to non-linear problems 

may also not be unique making their solution more difficult. This situation is shown 
in figure 5.3. 

45 

Figure 5.3 -A non-linear system with a non-unique solution 



The figure shows that there are two values of displacement for the given load. In 

order to solve a system like this the load must be incremented very slowly so that the 

true response of the system is followed. If this type of behaviour is expected then 

engineering judgement and other calculations may also be required to determine 

which is the correct (required) solution. 

5.1.1 Sources of non-linearity 

There may be several features of a problem that can give rise to non-linearity. Non- 

linearities can arise from geometric non-linearity (large strains and deflections), 

material non-linearity (creep, plasticity etc) and contact interface conditions between 

separate areas of the model. A large number of problems contain non-linearity and 
different solution techniques must be adopted for non-linear and linear (small 

displacement) analyses. 

5.1.2 Obtaining a solution in non-linear finite element analysis 

Most commercial finite element packages use a Newton-Raphson method in order to 

solve non-linear problems. This is an iterative process that divides the problem into a 

number of increments often called time steps. This does not imply that the problem 
is mechanically dynamic; the time step is not measured in real units and it may be 

easier to consider the increments as a percentage of load (i. e. it ranges from 0 (no 

load) to 1 (full load)). 

This technique involves taking the tangential stiffness matrix at the starting 

conditions and incrementing (for example) the load. A solution is obtained and the 
iterative correction (which is calculated as the difference between the applied 

external loads and the internal forces) can be determined. If this value were zero then 

the structure would be in equilibrium but that is rarely the case. This correction value 
is compared to a set criterion and if this is satisfied the increment is said to have 

converged. If not, the tangential stiffness matrix is reformulated using the new 

configuration and the process repeated until convergence is obtained. Using this 

method it may take several iterations for each time increment to obtain the solution. 
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Since the software reforms the model stiffness matrix and solves the system of 

equations for each iteration the computational time required for non-linear analysis is 

much greater than that required for linear analysis. 

5.1.3 Non-linearity in silo problems 

A three-dimensional finite element model of a silo will contain all the sources of non- 
linearity mentioned above. As the current work deals with silo walls that may exhibit 
large deflections there is a geometric non-linearity implicit in the problem. There 

must also exist contact between the silo walls and the contents of the silo, and finally 

the stored material will exhibit non-linear properties (mostly plastic deformations). 

5.1.3.1 Large deformations 

Linear elastic small strain analysis assumes that the higher order terms in the elastic 

equations can be ignored and therefore the solution can be obtained by consideration 

of a single set of explicit equations. It is also assumed that displacements and strains 

are small in the model and that the geometry remains unchanged under loading. 

However this is rarely the case and the example of a large deformation analysis that 

was given in section 3.10 showed that a plate could support more load if large 

deformations were accounted for and membrane action was enabled. In the finite 

element method this type of situation is dealt with by a geometrically non-linear 

analysis. The strains are now related to the displacements by a non-linear function 

and solution techniques described in section 5.1.2 must be adopted. 

5.1.3.2 Contact analysis 

In order to model the interaction between the stored material and the silo structure, 

there should be a mechanism to transfer the force exerted by the weight of the stored 

material to the walls of the silo. This is achieved by using contact elements. These 

are elements that are meshed over the surface of the underlying structural elements 

(representing the bulk solid and the steel silo structure) at points where contact may 

occur. They effectively couple together the degrees of freedom of the discontinuous 

portions of the model and allow the transfer of loads across the interface. In a 
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structural problem these loads take the form of pressure across or relative sliding 
between the contact surfaces. The interaction can be modelled as frictional, smooth 

or tied. These elements can give rise to large displacements and non-linear solution 

techniques must be employed. This work uses a Coulomb model for friction which 

relates the shear stress at slip to the normal stress by a simple coefficient, µ (figure 

5.4). The contact is not tied to the wall and therefore it is possible for the stored 

material to move away from the wall and lose contact. There is also a small amount 

of allowable "elastic" movement between the contact surfaces. This implies that the 

stored material must move a small amount in order for friction to become fully 

mobilised. Chen et al (2000) investigated the parameter controlling this movement in 

a silo model and concluded that the standard value in the ABAQUS package gave 

satisfactory results. 

19 

µ (constant friction coefficient) 

i 

Normal stress 
Figure 5.4 - Coulomb model for friction 

5.2 Constitutive models to describe material behaviour 

In order to define material behaviour in finite element analysis a constitutive material 

model must be used. A constitutive model defines the relationship between the stress 

and the strain in a material. This is required by the finite element method in order 

that the displacements of the model may be calculated from the forces applied. 
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Material constitutive laws can be simple (such as a linear elastic law defined using 

only two parameters) or extremely complex such as the Karlsruhe law developed by 

Kolymbas (1988) for granular solids that uses upwards of thirteen parameters to 

define the material behaviour. 

In the current work a constitutive law is required for steel (for the structure) and the 

granular solid (for the ensiled material). The steel used in the silo structure will be 

considered to be a linear elastic material with no yield criteria specified. This is 

considered suitable because the steel will not be strained to yield levels and therefore 

it is not necessary to accommodate its post-elastic behaviour. However, it may not 
be appropriate to treat granular materials in the same way as they are capable of large 

plastic strains when unconfined and therefore an appropriate constitutive law for the 

granular solid must be formulated. In order to do this the main properties that affect 

the granular materials behaviour must be identified and quantified. 

5.2.1 Properties of granular bulk solids 

The materials that are stored in structures of the type being studied in this report are 

classed as granular bulk solids. This puts them into the same category as soils, and 
hence references will be made to soil mechanics as this field has much relevance to 

the work presented here. 

The complex behaviour of granular bulk solids has already been mentioned. The fact 

that they exhibit highly non-linear behaviour makes the determination of their 

material properties more complicated than, for example, those of a steel sample. 

Material properties are required for a number of reasons which might include, design, 

calculation or, in this case, numerical modelling. Considering steel as an example, 

this material's elastic behaviour can be simply described by two variables; the elastic 

modulus and the Poisson's ratio. This would give no indication of the yield stress or 

post-yield behaviour (although this could be incorporated) but is sufficient 
information for a simple, small-strain problem. Values for these variables would be 

determined from tensile tests, which are relatively easy to perform. 
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The aforementioned variables alone are not enough to adequately describe the full 

range of behaviour of a granular bulk solid. Even the determination of values for 

these parameters would pose difficulties as a bulk solid does not assume a form that 

would make performing a tensile or compressive test practical. 

Kolymbas (1988) has identified many characteristics for defining the behaviour of 
bulk solids and of these the most important are: 

" Plasticity: Irreversible deformations. 

" Dilatancy: When bulk solids shear the material changes density even if 

the hydrostatic stress remains the same. 

" Barotropy: The material behaviour depends in the stress level. 

" Pyknotropy: The behaviour of the material depends on the bulk density 

even if the particle density remains the same. 

" Cohesion: Most materials are cohesionless (have no strength in tension) 
but some can carry a small load and are known as cohesive 

materials. 

In order to assess these characteristics geotechnical engineers have developed 

alternative tests to determine the properties of granular bulk solids. These tests 

include, the shear box, biaxial tester and the triaxial tester. A list of some of the 

parameters that are used to describe bulk solids properties is shown in table 5.1. 
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Angle of internal friction, 4 The angle between a tangent to the yield locus of the 

material and the normal stress axis. Determined from 

shear box tests. 

Bulk density, y The mass of a quantity of bulk solid divided by its 

total volume. 

Cohesion, c The shear stress at yield under zero normal stress. 
Gives an indication of whether the material can 

support any load. 

Dilation, y The increase in volume due to shear. 

Voids ratio, e The ratio of volume of voids between the particles to 

volume of solid particles. 

Table 5.1 - Some properties of granular bulk solids 

5.2.2 Determining granular bulk solids properties for finite element analysis 

As already mentioned there are a large number of tests that can be performed on bulk 

solids in order to determine values for the parameters shown in table 5.1. It would 
be impractical to discuss all of these tests so attention will be paid only to some of the 

tests that are most relevant to finite element modelling. As this work is interested in 

filling pressures the measured properties need to be those that give information about 

the static behaviour of the material such as the compressibility, the shear strength and 

the density. 

Some of the more commonly performed tests are the shear cell test, an oedometer 
(one-dimensional consolidation) test and the triaxial test and the methodology and 

example results are presented below. 

The shear cell test enables the engineer to determine the internal angle of friction. A 

shear test cell is shown in figure 5.5 and is often referred to as a Jenike shear cell 

(1964). 
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Figure 5.5 -A Jenike shear cell 

The basic principle of operation is that the top of the cell is loaded with a force W 

and then a shear force is applied to the side of the cell until the specimen shears at a 

value S. This procedure is then repeated with lower values of W in order to 

determine the yield locus shown in figure 5.6. A Mohr circle tangent to this line is 

then drawn through the origin which determines the unconfined yield strength (Q. A 

second Mohr circle is drawn tangent to the first point on the yield locus (W, S) which 

determines the consolidating pressures of the material, pl and p2. The effective angle 

of internal friction is shown as S in the figure and is the angle between the x-axis and 

a line drawn through the origin and at a tangent to the Mohr circle determined from 

the experiments. For a cohesionless material this angle is the same as 0. 

Figure 5.6 - Yield loci of granular material determined from the Jenike shear cell 

This diagram can also determine the cohesion of the material. A large number of 

granular bulk solids are cohesionless (have no shear strength) but some can support a 
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small load. In the case of a cohesional material the yield locus would cross the S axis 

on the above figure at a non-zero value. 

This test gives basic information about the granular bulk solid that may be used for 

certain calculations or in conjunction with other parameters determined from other 

tests for more complex calculations. 

The oedometer can be used to give simple information about a granular solid's one- 

dimensional compression response. This may be comparable to a tensile or 

compressive test on a material such as steel. A sample of granular material is loaded 

into a test cell and is then simply compressed via a platen on the surface. The results 

of this form of test are usually plotted as the direct stress applied via the platen 

against the height of the sample or some derived volumetric parameter. Figure 5.7 

shows a typical plot of the results from an oedometer test. 

These results give simple ideas about the stress-strain relationship in a soil. They 

may be interpreted to give an equivalent elastic stiffness for a simple constitutive law 

or to calibrate a more complex constitutive law that accurately models volumetric 

response. If more detailed knowledge is required of the stress-strain curve of the 

material then a triaxial test is regularly used. The apparatus is shown in figure 5.8 

and the procedure is outlined fully by Bishop and Henkel! (1957). 
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Figure 5.8 -Apparatus for triaxial test 

The sample is prepared and sealed in a rubber membrane. It is then placed in the 

apparatus and brought into contact with the top and bottom platens. The radial stress 

(ß') is kept constant (usually by applying fluid pressure) and upon loading in the axial 

(aa) direction the volumetric strain is measured by observation of the radial 

expansion and the axial compression of the sample. The results can then be plotted 
in many ways although most common is as a function of deviator stress against axial 

strain as these are controlled from outside the test cell and are therefore easily 

measured. The deviator stress is given as the difference between the axial and the 

radial stress. 

q=aa-ar (5.1) 

This test is repeated a number of times with different confining pressures (a, ) in order 

to produce different stress-strain curves and a typical example can be seen in figure 

5.9 (taken from Ooi (1990)) 
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These curves illustrate one of the characteristics of granular bulk solids mentioned 

above which is barotropy (the material behaviour depends on the stress level). 

5.3 Material constitutive laws for use in the current work 

Once the relevant properties have been identified and values determined from 

appropriate testing, a numerical constitutive law can be formulated to describe the 

behaviour of the solid in the finite element software. This law is a set of relationships 

that defines the elastic or the plastic behaviour of a material (or both). Nielsen and 

Weidner (1998) state that the constitutive law must be chosen with respect to the 

ability to describe stress-strain paths that are relevant to silo problems. 

There are a large number of these laws, proposed mainly by civil engineers in the 

field of soil mechanics. Not all of them are applicable to the field of silo research 
because of the differences in loading, water flow etc. Hence only those that are 
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suitable will be discussed. Not all of these models represent all of the properties 
above so care must be taken to choose an appropriate constitutive model for any 

particular application. 

5.3.1 Elastic laws 

This type of constitutive law is one of the simpler laws for the description of a 

material. Elastic laws have been used in a small number of axisymmetric silo 

analyses because they are simple to implement and make the solution of the problem 

much easier (Ooi and Rotter, 1990). In this case the law was linear but non-linear 

laws are available such as the model proposed by Boyce (1980) specifically for 

granular materials. However, by definition these models cannot describe irreversible 

deformations and are thus not suitable for use in silo models where plasticity of the 

solid may occur. 

5.3.2 Non-Elastic laws 

These can describe irreversible deformations and include metal plasticity and creep 

laws. A study of creep is beyond the scope of this project and so model laws 

incorporating creep specifically will not be reported here. Laws for use with soils are 

generally derived from metal plasticity laws such as Von Mises. They divide the 

strain rate into a reversible and irreversible part and use a yield surface to distinguish 

between elastic and plastic deformations. A yield surface is a surface set in stress 

space which divides the elastic and plastic regions of the model. Anything inside the 

yield surface is considered reversible and outside, irreversible. 

5.3.3 Elastic-Plastic laws 

An elastic-plastic law can be used to more accurately describe the behaviour of bulk 

solids. This type of model also makes use of a yield surface and one of the more 

commonly used is the Mohr-Coulomb law. This law has been implemented 

extensively in the field of soils research with useful results. It proposes that a 

material loaded by some normal stress can only support some maximum shear stress 

and if this loading becomes bigger then the material will start to plastically strain. 
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This sustainable shear stress depends on the angle of internal friction (4) and the 

cohesion (c) of the solid. A further law of this type is the Drucker-Prager law which 
has been used by some research groups for silo problems (Aribert and Ragneau, 

1990). The Drucker-Prager failure criterion has the advantage over the Mohr- 

Coulomb in that it is described by simple formulae, and is thus numerically easier to 

handle. Both of these laws are capable of describing a number of the properties 

mentioned above (plasticity, dilatancy, barotropy etc) but they are still rate- 
independent and isotropic (Feise and Schwedes, 1998). Again these constitutive laws 

may be considered to be extensions of metal plasticity laws. 

As well as the yield surface, the elastic behaviour and the flow rule (which 

determines the direction and rate of plastic flow) must also be defined. The elastic 

behaviour can be modelled by any one of the linear or non-linear elastic laws 

mentioned in section 5.3.1. A more detailed description of the Mohr-Coulomb and 
Drucker-Prager yield criteria can be found in sections 5.4.3 and 5.4.4. 

This is not a comprehensive list of the types of constitutive models that are applicable 

to geotechnical problems but most others are little used and will not be investigated 

in this work. Other models include rate-type, polar, creep and microscopic and 
discussion of these can be found in Feise and Schwedes (1998). 

5.4 Constitutive laws available in ABAQUS 

In this project several bulk solids will be modelled in order that the validity of the 

constitutive laws may be tested against Janssen theory and experimental data. 

Experimental data is available from several sources (Lahlouh et al, 1995; Rotter et al, 

2002) and the materials used in those studies were Leighton Buzzard sand and pea 

gravel. A suitable constitutive law must therefore be chosen to model the behaviour 

of these materials as accurately as possible. Several constitutive laws of the types 

described above were implemented in this study. These are: 

" Linear elastic (will be referred to as LE). 

9 Porous elastic (PE). 
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" Linear elastic with Mohr-Coulomb plasticity (LE-MC). 

" Linear elastic with Drucker-Prager plasticity (LE-DP). 

is Porous elastic with Drucker-Prager plasticity (PE-DP). 

These laws have been chosen because the ABAQUS finite element software (as well 

as other commercially available packages) provides support for them. It is possible 

to code different constitutive laws in ABAQUS but the performance of the pre- 
defined models was investigated first with a view to using one of them. If one of 

these laws provides a realistic representation of the granular material then models can 
be created for design purposes using a wide range of finite element packages. It is 

accepted that these laws may not provide results that cover all aspects of granular 

material behaviour in silos when compared to silo specific material laws (e. g. 
Kolymbas, 1988) but their availability in other finite element packages would make 

the design problem more tractable for practising designers. 

5.4.1 Linear elastic law 

The linear elastic law is based on Hooke's (1678) observation that up to a certain 
limit the extension of a bar under tension was proportional to the load applied. The 

linear elastic law is described completely by two parameters (Young's modulus and 
Poisson's ratio). 

5.4.2 Porous elastic law 

This constitutive law is provided specifically for the modelling of granular materials 

or materials containing voids. It is a non-linear law relating the elastic strain to the 

change (decrease) in volume caused by increasing pressure levels and is based on 

critical state soil mechanics as originally proposed by Schofield and Wroth (1968). 

Critical state soil mechanics (CSM) aims to mathematically describe the response of 

granular materials by using the results obtained from triaxial tests. Consideration is 

given to the stress history of the material, as this will affect the behaviour of the 

material upon subsequent loading. Of principal concern in this method are the 
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relationships between the effective stress and the volume of the bulk solid. These 

relationships are typically determined from triaxial tests as described in section 5.2.2. 

This work is mainly related to soil mechanics and hence the pressure and loading 

regimes may be different to those experienced in silos, but this type of constitutive 

model has been successfully utilised by other researchers (Chen et al, 2000). 

A typical volumetric response of a granular solid as it is compressed is shown in 

figure 5.10(a) and for the purposes of critical state soil mechanics this data is re- 

plotted on a semi-logarithmic scale shown in figure 5.10(b). This produces a series 

of straight lines which represents a simplified characterisation of the materials 

behaviour but is however readily described mathematically. 
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Figure 5.10 - Volumetric response of a granular solid in compression 

The line A represents the initial compression of an unstressed sample and has the 

gradient X. The lines B, C and D represent subsequent unloading and reloading of 

the specimen and these have the same gradient x which is generally assumed to be 

the same for each line. It is the initial compression that this project is concerned with 
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as it is assumed the material will be unstressed when it is placed in the silo and that 

there will be no unloading or reloading after gravity is applied. 

5.4.3 Mohr-Coulomb law 

The Mohr-Coulomb criterion is one of the simplest models for granular materials and 

may be considered an extension of the Tresca criterion for metal plasticity (1864). 

Figure 5.11 shows the distortion of a block of granular material, supported on a rigid 

base, due to the application of a force. 

\ Force 

T 
ß 

(a) (b) (c) 

Figure 5.11 - Distortion of a block of granular material by the application of a force 

If this experiment were conducted it can be shown that for small values of force there 

is a small elastic deformation of the granular material represented by figure 5.11(b). 

When the force reaches some critical value, the material divides itself into two blocks 

which slide past each other as shown in figure 5.11(c). The shear stress is not related 

to the rate or the extent of the deformation and if the elastic deformations are ignored 

then this behaviour can be classified as a rigid-plastic failure mode. That is to say 

that the material divides into two rigid blocks that are separated by a localised plastic 

zone. This is the basis of an ideal Coulomb material which defines the value of shear 

stress at which slip will occur with respect to the normal stress. The failure criteria 

can be written as: 
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Z=Qtan9S+c (5.2) 

Where c is the cohesion of the material. It may be noted that many coarse materials 
have a very low or zero value of c. It is also noted that for the special case of 4= 01 

then this reduces to the Tresca criterion. 

There are three states to consider in an ideal Coulomb material, 

1. t< atan4+c, this implies that no slip can occur. 

2. ti = atan4+c, this implies a slip plane will form but the extent of this slip is 

unknown and governed by the boundary conditions of the material. 

3. r> atan$+c, these values cannot occur because if values of rc greater than 

those given by equation 5.2 imply that the material is not in static equilibrium 

and one of the "blocks" would accelerate away from the other. 

Figure 5.12 shows the complete Mohr-Coulomb failure criteria. 

The three states above can be shown on the diagram. If the Mohr's circle is below 

the line then the material is in a state given by condition 1 above. If the Mohr's circle 

touches the line then condition 2 above is said to exist. From condition 3 it can be 

deduced that the line may not intersect the circle. 
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The yield function, Y, is the formalised way of expressing the failure criteria. By 

definition the yield function must satisfy the function: 

Y=0 (5.3) 

And thus if the Coulomb function is re-written in terms of co-ordinates n ands which 

are normal to and along the slip plane respectively, the yield function can be written 
as: 

Y- ýZný 
- Q... tan c 

5.43.1 Plastic potential and flow rule 

(5.4) 

The above equations determine the level of stress at which the material will yield but 

do not describe the direction or rate of yield. In order to determine these unknowns 
the concept of a plastic potential function (G) is introduced which is analogous to 
ideal fluid flow conditions. Once the plastic potential surface is defined, the strain 

rates in any direction are related to the derivatives of the plastic potential with respect 

to the corresponding stress. 

ÖG 
=ý&7y (5.5) 

Where i and i are any combination of the co-ordinate variables (polar, Cartesian) and 

4 is a scalar constant. 

The relationship between the yield function and the plastic potential is known as the 
flow rule. One special case is the associated flow rule. This postulates that the 

plastic potential is identical to the yield function and for the Coulomb material results 
in the mathematical prediction that shear causes an increase in the volume of the 

material (dilation). 

ev_-IY. Imno (5.6) 
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Experimental observation of consolidated materials show that the actual level of 

dilation is less than that predicted by equation 5.6 (Nedderman, 1992) and it is 

therefore usual to define an angle of dilation (w) such that: 

, ýy = -It I tan y, (5.7) 

Materials that obey the associated flow rule therefore have: 

W=4 (5.8) 

Most real materials however must use a non-associated flow rule where: 

W<ý (5.9) 

Figure 5.13 shows idealised results from a shear box test adapted from Atkinson and 

Bransby (1978). 

Figure 5.13 - Variation of a) shear force and b) volumetric strain with shear strain in a granular 

material (Atkinson and Bransby, 1978) 

The figure shows the volumetric strain rate with respect to the shear strain. It may be 

observed that the volumetric strain reaches a maximum at about point C. This 

corresponds to a shear strain of about 2% after which no more dilation occurs. It is 
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not possible using the ABAQUS constitutive laws to model this exact behaviour and 
therefore a value of 0° is adopted for the angle of dilation in all the analyses. 

5.4.3.2 Mohr-Coulomb criterion in three-dimensional stress space 

When the Mohr-Coulomb criterion is projected into three-dimensional stress space it 

forms a yield surface. This is simply an extension of the above figure 5.12 where 

stresses under the line were treated as elastic and stress above the line resulted in 

plastic deformation. Figure 5.14 shows the three-dimensional representation of the 

Mohr-Coulomb criterion which appears as an irregular hexagon. It follows from the 

above that stresses inside the surface are treated as elastic and those outside (or more 

specifically on the surface) are treated as inelastic. 

Figure 5.14 - The Mohr-Coulomb criterion in principal stress space 

5.4.4 Drucker-Prager law 

If the Mohr-Coulomb criterion is considered to be an extension of the Tresca (1864) 

criterion based on maximum shear stress then the Drucker-Prager criterion is an 

extension of the von Mises (1913) criterion for elastic breakdown. This is based on 

shear strain energy. 
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Figure 5.15 - The Drucker-Prager criterion in principal stress space 

In principal stress space the Drucker-Prager yield surface appears as a cone (figure 

5.15) which has numerical advantages over the Mohr-Coulomb criteria shown in 

figure 5.14. Numerical problems with the Mohr-Coulomb criterion can occur when 

calculating the direction of yield which is normal to the surface. If yield in the Mohr- 

Coulomb model occurs on a vertex of the cone then the normal direction is hard to 

calculate. The Drucker-Prager criterion eliminates this problem as the normal to the 

yield surface will always be uniquely defined. 

In terms of the stress invariants the Drucker-Prager criterion is expressed as: 

(II, J2) I, + NfJY2 -ß (5.10) 

Where Il is the first invariant of the stress tensor: 

Il=al+a2+a3 (5.11) 

J2 is the second invariant of the stress deviator tensor: 

`12 -- 6 [\ýx 
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a and ß are material constants. 

The Drucker-Prager criterion can be calibrated in such a way that it approximates the 

Mohr-Coulomb criterion. This is achieved by adjusting the size of the cone so that 
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the outer apices of the Mohr-Coulomb coincide with the Drucker-Prager cone. This 

situation is shown in figure 5.16. 

Figure 5.16 - The coincidence of the Drucker-Prager and Mohr-Coulomb criteria (Chen, 1994) 

The two criteria will not give the exact same results as they do not coincide at all 

points. 

As in the Mohr-Coulomb example, once the yield criterion has been defined then the 

plastic potential and flow rule can be expressed in a similar form to that expressed in 

section 5.4.3.1. 

5.5 Summary 

The aspects of the finite element analysis that need to be considered with respect to 

silo problems have been discussed. Non-linear solution techniques must be used to 

accommodate the non-linear behaviour of the structure and the stored solid. 

A constitutive law must be used in order to model the finite element continuum as a 

granular bulk solid. There are a large number of such laws available and those 

provided by the finite element package being used here were discussed. It now 

remains to investigate the chosen laws by the methods outlined in Chapter 6. 
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Chapter 6- Investigation and validation of material constitutive laws 

6.1 Introduction 

When using the finite element method it is important to validate the model in some 

way. This is achieved by comparing results obtained against known conditions. 
These conditions may include results from experiments or from reliable theoretical 

models. 

For validation of the chosen material constitutive laws and hence the finite element 

model, results are initially compared to a Janssen pressure distribution. In Janssen's 

original work, there is only one boundary condition (the stress at the surface is zero) 
but the accuracy of the predictions compared to real silo pressure measurements is 

found to be much improved given the following: 

" The bin is deep. 

" The bin has a rigid wall. 

" The surface has a level fill. 

The finite element model with which to compare the Janssen distribution is therefore 

one that takes account of these assumptions rather than starting with a more complex 

three-dimensional model of a rectangular bin. 

6.2 Aaisymmetric model - geometry and boundary conditions 

An axisymmetric bin, 10m deep with a flat bottom and with diameter 1.5m is 

modelled. This size is chosen as h/d = 6.66 which classifies this silo as slender (ENV 

1991-4,1995). It is also deep enough to potentially enable pressures in the stored 

material to reach the Janssen asymptotic values. The walls are taken as 5mm thick 

steel. This is rather thicker than would be expected in a real silo of this size where 

the shell thickness would be less, but using this thickness ensures that the wall in the 

finite element model is very stiff and thus satisfies the Janssen requirement. Steel is 

modelled as a linear elastic material with elastic modulus (E) = 21 0GPa and 
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Poisson's ratio (v) = 0.3. All of the nodes making up the base of the silo are 

restrained against movement in the y-direction (vertical) but are unrestrained in the x- 
direction (radial), allowing the walls and base of the model to expand radially (if 

need be) but preventing any rigid body motions. This is shown in figure 6.1. This 

figure shows schematically three supports on the base but in the finite element mesh 

each node would be restrained in the y-direction. 

E' 
Wall 

0 

Base 

Figure 6.1 - Restraint at the base of the finite element model of the bin 

This boundary condition could be likened to having the silo ground-supported 

although the base is initially modelled as smooth (i. e. there is no friction between the 

base of the bin and the material inside). A more detailed study of the effects of the 

boundary condition at the base is presented later (Chapter 7). The walls are modelled 

as frictional with a simple Coulomb friction model. 

When predicting filling (static) pressures using the finite element method, two 

methods of loading have been reported (Rotter et al, 1998). The first is a progressive 
fill method whereby layers of unstressed material are placed into the silo under 

gravity. Numerical iteration occurs in order to produce an equilibrium solution and 

then further layers of material are placed into the silo until it is filled. This method 

has been used successfully by Ragneau et al (1994). The second method is 

incremental gravitational loading. The silo is initially filled with unstressed material 

and gravity is "switched on" in small increments until the full self-weight of the 

ensiled material is acting upon the structure. This second method is the one adopted 

in this study. Previous research has shown that different results might be obtained by 
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these methods but aside from Rotter et al's assessment (1998) there is currently little 

comparative work in this area. 

Figure 6.2 shows a schematic representation of the finite element model of the 

axisymmetric silo. The mesh shown is for illustrative purposes only. 

Heavy line 
indicates shell 
elements 

y Lot 

(L 
X 

Figure 6.2 - The finite element mesh of an axisymmetric silo 

6.3 Material models 

To describe the ensiled material, five alternative material constitutive models are 

considered. Literature (Ooi and Rotter, 1990) shows that the expected response in an 

axisymmetric bin of this type will be mainly elastic (small strains) and hence 

plasticity conditions may not be required for this type of analysis and the type of 
failure criterion chosen may be less important at this stage. The five material models 

are as presented in Chapter 5: 

" Linear elastic (LE) 

" Porous elastic (PE) 
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" Linear elastic with Mohr-Coulomb plasticity (LE-MC) 

9 Linear elastic with Drucker-Prager plasticity (LE-DP) 

" Porous elastic with Drucker-Prager plasticity (PE-DP) 

It may be noticed that the porous elastic model is not combined with the Mohr- 

Coulomb criterion. This is because the ABAQUS software does not allow this 

combination although no reason for this is given. 

Parameters for each of these constitutive laws are determined by performing suitable 

tests upon the granular material and translating the results into the finite element 

model. Examples of the types of tests performed on geotechnical materials were 

given in section 5.2.2. 

6.4 Elastic material models 

6.4.1 Linear elastic law 

Values are required for the elastic modulus (E) and either the Poisson's ratio (v) or 

the lateral pressure ratio (k) used in the Janssen equation. Values of v and k are inter- 

dependant for elastic solids. k is the ratio of horizontal to vertical stress in the solid 

and the value used in this report is as defined by ENV 1991-4 (1995), and is assumed 

to be constant: 

k=1.1(1- sin q5) (6.1) 

where 4 is the angle of internal friction of the material. 

The angle of internal friction can be related to the Poisson's ratio of the material by 

equation 6.2 (Rotter, 2001). 

_k v l+k 
(6.2) 

70 



For the Leighton Buzzard Sand in question, 0= 35.4° (Lahlouh et al, 1995) and 

therefore k=0.463 and hence, v=0.3164. E is taken as 1OMPa after Chen et al 
(2000). 

The bulk density of the material must be determined. Several values are given for the 
bulk density by Lahlouh et al (1995), relating to various stress states within the 

material. These are loose density, density after a 200mm fall and vibrated 
(compacted) bulk density. Table 6.1 shows these values: 

Mean loose bulk density (kg/m) 1,576 

Mean bulk density from a 200mm fall (kg/m) 1,610 

Mean vibrated bulk density (kg/m) 1,672 

Table 6.1 - Values of bulk density for Leighton Buzzard sand from Lablouh et al (1995) 

Initially the bulk density is taken as the mean of these three values (1,619kg/m3) in an 

attempt to estimate the density that would be observed at the relatively low pressure 
levels experienced in silos. This value must also be used in the Janssen calculations 
for comparison purposes. 

Figure 6.3 shows the wall normal pressures in the deep bin filled with Leighton 

Buzzard sand as calculated by the linear elastic law. The appropriate Janssen 

distribution is also shown. To determine the Janssen distribution consistent values of 

parameters must be used. The pressures shown in this and all subsequent figures are 

taken from the individual nodes in the model as opposed to being an average across 

the face of each element. 
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Figure 6.3 - Wall normal pressure as calculated from linear elastic constitutive law 

With the exception of the results near the base, agreement between the finite element 

results and the Janssen distribution is within 1%. The lack of agreement at the 

bottom of the bin is attributed to the effect of the boundary condition of the base. 

Effects of this type have been noticed by previous authors (Rotter et al, 1998) and are 

attributed to the proximity of the base. The effect on the pressures of the base 

boundary condition is discussed in Chapter 7 below. 

6.4.1.1 Poisson's ratio as the controlling factor in the linear elastic model 

From equation 6.2 Poisson's ratio can be determined for any value of k. In the 

axisymmetric case this allows the modelling of almost any granular solid given its 

density and angle of internal friction. Table 6.2 shows values for the properties of 

several materials that may be stored in silos from Rotter (2001). 
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Type of bulk 

solid 

Unit weight, ,y Effective angle of internal 

friction, 4) 

Lower bound, 

kN/m3 

Upper bound, 

kN/m3 

Lower bound, 

degrees 

Upper bound, 

degrees 

Barley 7.0 8.5 26 33 

Cement 13.0 16.0 40 50 

Coal, black 8.5 11.0 40 60 

Flour 6.5 7.0 23 30 

Sand, quartz 14.0 17.0 30 40 

Sugar 9.0 9.5 33 38 

Wheat 7.5 9.0 20 26 

Table 6.2 - Properties of various granular bulk solids as given by Rotter (2001) 

The following table shows representative values of k (from the above table) 

converted to values of Poisson's ratio. An appropriate mean density is also shown 
for each material. 

Type of bulk 

solid 

Mean unit 

weight, -y 

Effective 

angle of 

internal 

friction, 4 

k value from 

Eq. 6.1 

Effective 

Poisson's 

ratio (Eq. 6.2) 

Barley 7.75 29.5 0.558 0.358 

Cement 14.5 45 0.322 0.244 

Coal, black 9.75 50 0.257 0.204 

Flour 6.75 26.5 0.609 0.378 

Sand, quartz 15.5 35 0.469 0.319 

Sugar 9.25 35.5 0.461 0.316 

Wheat 8.25 23 0.670 0.401 

Table 63 - Properties of granular bulk solids for use in the linear elastic model 
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Figure 6.4 shows finite element results for some of these materials along with the 

corresponding Janssen distributions. 

01 M-70-6- T- II 
--t--Barley (Janssen) 
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Figure 6.4 - Comparisons between finite element and Janssen predictions for a range of 

materials 

Again, the agreement between the finite element results and the Janssen distributions 

is in the order of 1% over the majority of the bin. The materials that have lower 

values of 4 and y show more pronounced end effects. These effects are discussed in 

more detail in Chapter 7. 

The linear elastic model gives good agreement over the majority of the bin for a large 

range of materials compared to the Janssen distribution in axisymmetric type 

problems. The above analyses were carried out using the assumed low value of 

initial elastic stiffness from Chen et al (2000) of IOMPa. This value of elastic 

stiffness has been adopted by other researchers to represent granular materials (Ooi 

and She, 1997) but would appear to be chosen arbitrarily. Data for the elastic 

Uö 1U 

Wall normal pressure (kPa) 
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stiffness of granular materials is difficult to obtain for reasons discussed in section 

5.2.1 but some information is available. Granular material behaviour is known to be 

dependent on the overall stress level and at low confining pressures the equivalent 

elastic stiffness of a granular material has been shown to be very low. Hartlen et al 

(1984) showed that at a confining pressure of 40kPa the elastic modulus of wheat 

was about 6MPa. In the studied silo the maximum confining pressure may be taken 

as the average stress near the base. For a wheat material this is approximately l2kPa 

(determined from the average of the 3 directional stresses). Assuming a linear 

relationship between. confining pressure and modulus of elasticity the stiffness of 

wheat might be estimated as 2MPa in this case. It is therefore not unreasonable to 

assume a modulus of l OMPa for sand as it is a stiffer material. 

Figure 6.5 shows the effect of changing the Young's modulus of the Leighton 

Buzzard sand in the axisymmetric model. 
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Figure 6.5 - The effect of changing the elastic stiffness in the axisymmetric bin 

Figure 6.5 shows that for low values of Young's modulus the predicted pressures do 

not vary significantly. However, when E= 50MPa, the end effect in the bin is more 

pronounced although pressures further up the bin are relatively unaffected. These 

results probably indicate that this value of elastic modulus is too high to represent a 
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granular material but it appears that as long as the value taken is small then the actual 

value of Young's modulus is not critical to the performance of the model. 

The value of 1 OMPa is therefore accepted as a good approximation of the stiffness of 

the Leighton Buzzard sand and is used for the remainder of the analyses. 

6.4.2 Porous elastic model 

The porous elastic law uses several specific parameters for which values must be 

determined. The most suitable way to determine these values would be to perform a 

triaxial test (Bishop and Henkel, 1957). This would give a more complete overview 

of the behaviour of the granular bulk solid. Performing this type of test however 

requires significant specialist equipment and expertise that are outside the scope of 

this work. It was therefore decided to initially calibrate the porous elastic model 

from a variety of literature sources and subsequently check this data with materials 

tests. Values for the porous elastic law that were initially adopted are shown in table 

6.4 along with the source of these values. 

Parameter name Value assumed Source of value 

Logarithmic bulk modulus (? ) 0.0217 Literature (Been et al, 1991) 

Poisson's ratio (v) 0.3164 See Eq. 6.2 

Elastic tensile limit (P` t) 0 kPa From the assumption that this 

material is cohesionless 

Initial voids ratio (eo) 0.64 Literature (Rotter, 2001) 

Initial stress (Po) 0.01 kPa The material is unstressed at 

rest but a small value is 

assigned for numerical stability 

Table 6.4 - Values used to calibrate the porous elastic constitutive law 

The results using these parameters when compared to an equivalent Janssen 

distribution are shown below (figure 6.6). 
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Figure 6.6 - Wall normal pressure as calculated from the porous elastic constitutive law 

The figure shows that this material model does not predict the pressure as well as the 

previous linear elastic law when compared to the Janssen distribution. Both of these 

constitutive laws should produce results that agree with the Janssen distribution in 

this silo. The behaviour of the material should be entirely elastic as small 

deformations in the wall and solid are predicted/expected and equilibrium (implicit in 

Janssen's theory) should be maintained. Therefore it is assumed that one or more of 

the values in the porous elastic model has been incorrectly adopted. Poisson's ratio 

and the elastic tensile limit are assumed to be correctly chosen because of the 

previous study on Poisson's ratio and the fact that the material is cohesionless. 

Therefore investigation was carried out to determine whether one or more of the 

values adopted for X, eo or Po was poorly chosen. Figure 6.7 shows the effect of 

changing the values of Po. 
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Figure 6.7 - The effect of changing the initial stress in the porous elastic model 

Changing this value has a noticeable effect on the predicted pressures in the bin but 

this change is not sufficient to match the results to the Janssen distribution. Using a 

value of Po = 1kPa gives results closest to the Janssen prediction but it is questionable 

as to whether an initial stress of lkPa is acceptable in this case as the material is 

initially modelled as weightless and would therefore be experiencing no load. 1 kPa 

is also not an insignificant stress with respect to the maximum normal stress that is 

expected to occur in this bin (13.3kPa) and in future models it may be difficult to 

predict what effect this relatively large initial stress may have. It is therefore 

assumed that the value of eo or ), requires investigation. From inspection of figure 

5.11 it can be seen that these two parameters, as well as the bulk density, are 

intrinsically linked. If the value of one of these parameters is changed then the others 

must be re-calculated to reflect that change. Figure 6.8 shows a simplified version of 

figure 5.11 that represents the volumetric behaviour of the solid in the silo as 

described by the porous elastic law. 
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Point A represents the volume of the material when no load is applied and can be 

calculated from the initial values of pressure, bulk density, voids ratio and particle 

density. Point B represents the material at rest in the filled silo and can be calculated 

from knowledge of the final Janssen condition (assuming that Janssen is a good 

representation). It is known that for any given silo and material there is a Janssen 

distribution and that at an infinite depth the normal vertical pressure reaches an 

asymptote which is given by equation 6.3. 

Pmax =Yk 
(6.3) 

Given this value, the final bulk density and the value of the density of the solid 

particles in the granular material, it is possible to calculate the final voids ratio that 

corresponds to the Janssen asymptotic condition. Point B can then be plotted since: 

v=1+e (6.4) 

By following a similar calculation and taking an initial (unstressed) bulk density and 

pressure, point A can be calculated. Referring back to table 6.1 Lahlouh et al (1995) 

give bulk densities that can be used to perform these calculations. The initial bulk 

density is taken as the loosest form (i. e. it is unstressed) and the final bulk density is 

taken as the value measured after a 200mm fall. This value is chosen over the 

vibrated (denser) value due to the fact that L. ahlouh et al (1995) performed 
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equilibrium checks on the full silo and observed that after the sand had been placed 

into the silo it assumed a density lower then the vibrated bulk density. The voids 

ratio in both of these states can now be calculated from the void fraction (s) given by 

equation 6.5. 

1-Y=s 
PS 

(6.5) 

Where ps is the density of the solid particles. For silica this is taken as 2,650kg/m3 

(Nedderman, 1992). The voids ratio is related to the voids fraction by: 

E 
e= 1+E 

(6.6) 

These two states of the material are assumed to exist at some pressure. The initial 

pressure corresponding to eo and the initial value of y is taken as the same as that 

used in the porous elastic model (O. OlkPa). The final pressure is taken as the 

asymptotic value calculated from equation 6.3 which for this material is 27.8kPa. 

Given this information and the assumption that in the semi-logarithmic diagram the 

points are joined by a straight line, the diagram can be drawn. The gradient of the 

line between the two points gives the value of logarithmic bulk modulus. Table 6.5 

shows the information used in the above figure and the calculated value of X. 

Bulk density Voids ratio Pressure 

(kg/m3) (e) (kPa) 

Initial state 1,576 0.681 0.01 
0.0044 

Final (Janssen) state 1,610 0.646 27.8 

Table 6.5 - Calculation of ? from initial and final densities 
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It can now be seen that any comparison between the finite element results and a 
Janssen distribution must use the final value of bulk density in the Janssen 

calculations as opposed to the original value which was an average of the three 

values given in table 6.1. Figure 6.9 shows the finite element results using the newly 
determined properties, as well as the appropriate Janssen calculation. 
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Figure 6.9 - Finite element results as determined by the recalibrated porous elastic model 

This model now shows agreement between the results and the Janssen model 

comparable to the agreement between the linear elastic model and Janssen. Again 

there are noticeable end effects and the finite element results do not extend to a full 

depth of 10m. This effect is due to compression of the stored material as the gravity 
load is applied. This highlights a disadvantage in the gravity method of loading in 

that if this occurs no more material can be added to the silo model (if required). This 

would be possible in a progressive fill model. This phenomenon would only be a 

significant problem if the granular material modelled was very compressible, in 

which case after gravity was applied the silo may end up not completely full. The 

materials modelled here are not in that order of compressibility so the small change 

in volume is not cause for concern but should be taken as a limitation of this simple 

model. 
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In figure 6.8 only point B is fixed by the equilibrium conditions imposed by 

calibration against the Janssen equation. This is because the Janssen theory assumes 

a single value of bulk density and therefore for a given silo, equation 6.3 gives the 

value of the maximum vertical pressure. This pressure along with equations 6.5 and 

6.6, which gives the voids ratio at that density, fixes point B on the graph by utilising 

equation 6.4. Point A however, can be moved on the graph by assuming different 

values for the initial parameters. As long as points A and B are joined by the 

assumed straight line of gradient X and the remainder of the parameters calculated 

accordingly, then the final equilibrium condition calculated by the finite element 

analysis should match that of Janssen. For example, if a greater initial voids ratio 

(say 0.75) is assumed then the value of y and A. can be recalculated as above. This 

particular voids ratio gives y=1,514kg/m3 and A. = 0.013. Altering the parameters of 

the porous elastic model accordingly gives the results shown in figure 6.10. 
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Figure 6.10 - The effect of using different initial conditions in the porous elastic model 

Again the agreement between the results is good but the overall compressibility, 

exhibited by volume change, has been altered. These results have been calculated 

using an entirely different set of material parameters. It may therefore be argued that 

the value of 2, that was initially calculated may be incorrect. The value of X was 

determined from values of density taken from Lahlouh et al (1995) but there is no 
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way of confirming these results or ascertaining how the values where calculated or 
derived. However, those values give results that compare very well with the 

theoretical Janssen distribution and are accepted as a representation of the material 
for future constitutive models of sand. 

6.5 Elastic-plastic models 

In examining constitutive laws suitable for use in a three-dimensional model where 

large strains may occur, the ensiled material is very likely to undergo inelastic 

deformations. Therefore a failure criterion is required. A failure criterion defines the 

level of stress at which the material's behaviour changes from elastic to inelastic. 

The Mohr-Coulomb and the Drucker-Prager (1952) criteria are two commonly used 

plasticity criteria. These may be combined with elastic laws to provide a full elasto- 

plastic model that will be capable of modelling the granular material's behaviour in 

large strain situations (as well as still incorporating small strains). Both of these 

criteria are described as perfectly plastic because they allow infinite deformations of 

the material without any increase in the stress level. The principles of these criteria 

were outlined in sections 5.4.3 - 5.4.4. 

6.5.1 Application of the plasticity criteria to the axisymmetric model 

It was proposed by Ooi and Rotter (1990) that in the axisymmetric situation, a solely 

elastic constitutive law might be sufficient for most examples and this result was 

again shown in figure 6.3. However, the axisymmetric model is tested using the 

elasto-plastic laws to assess whether the addition of plasticity has a significant effect 

on the predicted wall pressures, although it is expected that there will be none. Both 

of these failure laws require the angle of friction and the angle of dilation of the 

material to be defined. The dilation angle is assumed to be 0° as set out in section 

5.4.3.1 'and the angle of friction is taken to be 35.4°. However this value only relates 

to the angle of friction used by the Mohr-Coulomb model as it was determined from a 

shear box test. In order to use the Drucker-Prager model the Mohr-Coulomb data 

must be reinterpreted so that the response of both models is matched. There are two 

options for performing this conversion. One is to match the failure definition in 
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triaxial compression and tension. However the ABAQUS manual (2001) only 

recommends this approach for materials with low values of internal friction. 

The second approach is to match the plane strain response of the two models. It may 
be argued that for any subsequent three-dimensional analysis this plane strain 

assumption could be invalid but this matching procedure has been used before for 

similar problems (Holst et al, 1996) and produced results comparable to theoretical 

methods. In the case of non-dilatant flow (M'=O°) the Drucker-Prager angle of 

internal friction is given by: 

tan fl = jsinO (6.7) 

Where ß is the Drucker-Prager angle of internal friction. The initial yield stress of 

the material is given by: 

ao1d 
(6.8) 

ýß 1_3 

Where d is a parameter related to the Mohr-Coulomb cohesion c by: 

d 
=4Cos0 

(6.9) 

c 

For the sand this gives values of 46.1 ° for the internal angle and 0 for the initial yield 

stress (because it is assumed that c=0, the material is cohesionless). In practice a 

small value (0.25kPa) is assumed for the value of a°, in order to maintain numerical 

stability. This value is not critical in the axisymmetric analysis due to the very small 

amount of plastic strain in these models. Later testing in three-dimensional models 

further shows that for small values of a°., the effect on wall pressures is negligible. 

Figure 6.11 shows the results in the axisymmetric bin of the three elasto-plastic 

constitutive laws (LE-MC, LE-DP and PE-DP) for sand. 

84 



o 
Janssen 

2 
-n LE-MC 

v 
-t- LE-DP 

V 
4 --- PE-DP 

06 

WX 
c8 

10 
05 10 15 20 

Wall normal pressure (kPa) 

Figure 6.11 - The effect on wall normal pressures of using elasto-plastic constitutive laws in an 

axisymmetric model 

As predicted the results show that the use of a failure model in this type of problem is 

unnecessary, as pressures predicted are identical to those predicted by the simpler 

elastic models. This however does not mean that a failure model will not be required 

for other types of simulation (notably three-dimensional simulation). 

6.6 Three Dimensional models 

In order to predict the wall pressures in rectangular or square silos a three- 

dimensional model is required. A two-dimensional model could be used to make 

simple predictions about the pressures down the wall, as with the axisymmetric cases 

described above, but it is known that in rectangular silos there is a non-uniform 

pressure distribution across the wall at any constant depth (Jarrett et al, 1995). It is 

important to be able to predict this phenomenon for design use and consequently only 

a three-dimensional model will suffice. Three-dimensional modelling of this 

problem is rare because of the need for silo research towards more commonly used 

circular plan-form structures where (as shown above) the assumption of axisymmetry 

is valid. Methods used by codes in the treatment of three-dimensional problems were 

given in section 3.3.2. 
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6.6.1 Further validation 

It has been suggested that the average pressures across the wall at a given depth in a 

rectangular silo are well approximated by the Janssen equation (Jarrett, 1991; Jarrett 

et al, 1995). The constitutive models can therefore be validated against this as well 

as experimental data that is available from previous studies (Lahlouh et al, 1995; 

Jarrett et al, 1995). In these works, extensive testing of a square planform silo was 

carried out and much data is available for the pressure distributions across the wall 

and the stresses in the ensiled material. Comparison will be made in the current work 

to that of Lahlouh et al (1995). This work and subsequent analysis is well reported 
(Rotter et al, 2002). The silo used in this work had a 2.5m deep bin section with a 

shallow, funnel flow hopper. It was 1.5m square in plan-form and is constructed of 
6mm thick steel plate. At this size the silo could almost be classified as squat (h/d = 
1.667). Figure 6.12 shows the layout of this rig. 
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Figure 6.12 - Schematic showing the layout of the experimental rig used by Lablouh et al (1995) 

The finite element model of the experimental rig uses 4-noded quadrilateral shell 

elements to model the bin, and 8-noded brick solid elements to model the ensiled 

material. Higher order elements could have been selected but it was anticipated that 

the final model could become very large and hence computational resources may 
have become strained. Advantage is taken of the symmetry of the bin and hence only 
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one quarter of the silo is modelled. It is supported at the corner to simulate the 

columns but they are not themselves modelled. The corners of the wall were welded 

in the original experiment with no additional support and this condition is reproduced 

in the finite element model. The experimental rig featured a ring beam that, for 

simplicity, is not modelled here. As in the axisymmetric case the walls are modelled 

as frictional with the Coulomb friction model. Figure 6.13 shows the finite element 

mesh. Appendix B shows the method used to determine the number of elements used 

in this mesh. 

Figure 6.13 - Finite element model of Lahlouh et al's (1995) geometry 

The finite element model does not initially take account of any conical surcharge 

upon the surface of the fill that may have been evident in the experiment. Appendix 

C shows a typical input dataset for this model and Appendix D shows some sample 

output in the form of contour plots. 
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6.6.2 Comparison with Janssen pressure distribution 

Figure 6.14 shows the average (integrated) wall normal pressure as determined from 

each of the five constitutive models. The appropriate Janssen curve is also shown. 

Integration of the finite element results was carried out using Simpson's rule at each 

level in the silo to produce the average pressure acting at that level. 
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Figure 6.14 - Average wall normal pressures as predicted by different constitutive laws 

The graph clearly shows the deficiencies in the purely elastic models. When 

considering average values, these constitutive laws under-predict the wall pressures 

in the three-dimensional model when compared to the Janssen distribution. This 

inaccuracy is caused by the large deformations that occur in the modelled granular 

bulk solid. These give rise to large strains in the ensiled material which simple 

elastic laws are not capable of modelling correctly. Inspection of the wall pressures 

and deformations shows that both of the elastic models support most of the lateral 

load near the corners of the walls. The high lateral load causes the flexible wall to 

deform outwards but the shear strength of the ensiled material means it is incapable 

of following this deformation. The final situation is that the stored material loses 
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contact with the silo wall at the centre and hence pressures are zero across a large 

percentage of the wall. This is obviously a poor representation of the actions 

occurring in a real silo. Figure 6.15 shows the pressure across the wall at mid-height 

as calculated by the linear elastic law. It is clear that the load is entirely supported 

near the corner of the silo walls. 
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Figure 6.15 - Pressures across the wall as predicted by linear elastic law 

The Mohr-Coulomb model also under-predicts the pressures, but both models using 

the Drucker-Prager criterion give an acceptable representation of the Janssen 

distribution. The assumption may therefore be that the Drucker-Prager criterion is a 

better model for use in silo problems than the Mohr-Coulomb. This may be because 

the Mohr-Coulomb criterion does not take into account the intermediate principal 

stress whereas the Drucker-Prager model does. Experiments have shown that the 

intermediate principal stress does have an effect on the failure of a soil (Lee, 1970). 

For the remainder of the project the suitable choice of constitutive law would appear 

to be restricted to either the LE-DP model or the PE-DP model. The porous elastic 

based model was chosen because it uses input parameters that can be obtained from 

tests routinely performed on granular bulk solids. If the LE-DP law were chosen then 

it would be necessary to determine a suitable value of Young's modulus. This value 

is difficult to determine directly from the material and would inevitably be an 
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extrapolation from other test data. Using the PE-DP law allows the modelling of a 

wide range of materials, that if treated as linear elastic, may appear almost identical 

whereas in fact there are small differences in (for example) voids ratio that could 

have a large effect on the final material behaviour. 

6.63 Comparison with experimental sand data 

The finite element model is now compared with the experimental data from Lahlouh 

et al (1995) in a square planform silo. Further data is available from Jarrett et al 

(1995) but Lahlouh's experiments were chosen due to the larger amount of data 

available. 

The tests of Lahlouh et al (1995) used a number of wall pressure cells of the type 

described by Askegaard (1989) and also studied in section 10.2.3. These have been 

shown to give reliable results when installed correctly in the silo wall (Askegaard et 

al, 1971). A larger number of free field cells of the type also described by Askegaard 

(1978) were also used. 

Table 6.6 gives wall normal pressures for the silo wall obtained from the free field 

cells in sand. The vertical component is given in terms of distance from the top of 

the silo and it is noted that the point of first contact on the wall is approximately 0.3m 

below the top of the silo and therefore the actual depth below the surface of the sand 
is approximately 0.3m less than the values given. 
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Depth below Distance from corner of bin (m) 
top of silo (m) 0.05 0.20 0.40 0.75 

0.50 2.0 2.9 3.3 2.8 

0.75 8.1 5.9 4.6 2.8 

1.00 11.5 6.0 4.6 4.0 

1.25 16.1 7.2 5.2 4.0 

1.50 18.0 7.7 4.7 5.4 

1.75 23.0 10.2 6.5 6.2 

2.00 20.0 8.4 6.3 6.3 

2.25 24.7 14.4 7.4 5.1 

2.50 19.3 21.8 16.1 13.0 

Table 6.6 - Wall normal pressures (in kPa) in the experimental silo from free field cells in sand 

(Lahlouh el al, 1995) 

Figure 6.16 shows the comparison of the average wall normal pressures from the free 

field cells and from the finite element model down the depth of the bin. The 

appropriate Janssen distribution is also shown. 
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Figure 6.16 - Integrated experimental (Lahlouh et at, 1995) and finite element wall normal 

pressures compared to Janssen distribution for sand 
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The experimental and finite element results closely follow the Janssen distribution, 

but this however gives no information about the distribution of the normal pressures 

across the wall. 

The measured wall normal pressures were of a non-uniform distribution. The 

experimental distribution is therefore compared with data obtained from the finite 

element model. Figure 6.17 shows the pressure distribution across the wall in the 

experiment at two levels and the corresponding predictions from the finite element 

model using a PE-DP constitutive law. 
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Figure 6.17 - Finite element predictions of wall normal pressure across the wall compared to 

experimental data of Lahlouh et al (1995) 

The finite element model produces predictions of pressure across the wall that show a 

similar form to that measured in the experiment. The pressures at the centre of the 

wall are under-estimated but closer agreement is observed nearer the corners of the 

bin. This under-prediction at the centre of the bin might be of concern if the results 

were being used as a basis for design, as the bending moment at the centre would be 

under-estimated and the wall may be designed with insufficient strength. 
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6.6.4 Modelling of pea gravel 

As well as using Leighton Buzzard sand, Lahlouh et al (1995) performed tests using 

a pea gravel. This was chosen as it had many similar measured properties to the sand 
but the particle size of the material was larger. Leighton Buzzard sand has a mean 

particle size of 0.53mm and the pea gravel has a mean particle size of 2.55mm. 

Other properties as measured by Lahlouh et al (1995) are shown in table 6.7. 

Property 

Mean particle diameter (mm) 2.55 

Mean loose bulk density (kg/m3) 1,644 

Mean vibrated bulk density (kg/m3) 1,731 

Mean density from a 200mm fall (kg/m3) 1,681 

Mean angle of internal friction (degrees) 36.8 

Mean angle of wall friction (degrees) 21.4 

Table 6.7 - Properties of pea gravel measured by Lahlouh et al (1995) 

It was not felt necessary to model the axisymmetric bin using the simple laws and 

therefore the axisymmetric model was only used to calibrate the PE-DP constitutive 

law in a similar way to the sand as described in section 6.4.2. 

The same approach was used as for sand although this time Lahlouh et al's (1995) 

equilibrium checks showed that the gravel assumes a more dense state when placed 
into the bin. Therefore in this case the starting and final bulk densities are taken as 

the loose and vibrated values respectively. Equations 6.3 - 6.6 are again used and 

give an initial voids ratio of 0.61 and a logarithmic bulk modulus of 0.0098. This 

implies that the gravel is more compressible over the small pressure range that is 

being assumed here. Later testing showed this to be correct (section 6.7) 

This data is again used in the axisymmetric model to validate against the Janssen 

distribution and the results are shown in figure 6.18. 
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Figure 6.18 - Comparison between Janssen and FEA results for pea gravel 

Again, the results show the same high level of corroboration across the majority of 

the bin as the sand model. A higher level of compression is observed as a result of 

the higher value for X. 

6.6.5 Comparison to Lahlouh et al's (1995) experimental data 

The values for the gravel model obtained above are used in the geometry of Lahlouh 

et al's (1995) work. As with the Leighton Buzzard sand experimental data is 

available from wall pressure cells and free field cells. The results from the finite 

element analysis compared to the average experimental data taken from free field 

cells and the Janssen distribution are shown in figure 6.19. 
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Figure 6.19 - Integrated experimental and finite element wall normal pressures compared to 

Janssen distribution for gravel 

Again, the results from the experiment and the finite element model are of the form 

of the Janssen distribution although the values obtained from the experiment are 

systematically higher than those given by the Janssen distribution and the finite 

element method. This may be due to the fact that a smaller number of tests were 

performed by Lahlouh et al (1995) with the pea gravel and thus there were less data 

for this material. There is also the possibility that due to the larger grain size present 

in the pea gravel, the results obtained from the free field cells could be adversely 

affected. For the free field cells to operate correctly there must be good contact 

between the cell and the medium. In the case of the pea gravel the relative cell face 

to particle size between the medium and the cell is quite large and it is possible that 

this could lead to irregular contact which in turn might affect the observed pressure 

on the cell. However, dw/dceii < 1/30 which should minimise any possible effects of 

this type. 

There is data available for the distribution of pressure across the wall and this can 

again be compared with the finite element analysis as shown in figure 6.20. 
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Figure 6.20 - Finite element predictions of wall normal pressure across the wall 

In this material the prediction of the pressure across the wall compared to the 

experimental data is relatively poor. However, the corroboration would appear better 

towards the centre of the bin. 

6.6.6 Best fit of finite element results to experimental data 

In order to further investigate the effect of the value of ?, on the wall pressure 

predictions a best fit exercise was carried out. X was varied in the sand and the 

gravel models and a least-squares fit between the finite element results and the 

experimentally obtained values performed. This data can be found in Appendix E. It 

was only possible to conclude from this exercise that the value of A, required to best 

fit the experimentally observed distributions of wall pressure needs to be a small 

value. 

6.7 One-dimensional consolidation tests on the two granular bulk solids 

The finite element analysis has shown that the selection of the value of logarithmic 

bulk modulus is critical to the output from the finite element model. Initially, values 

were derived from literature and these gave predictions that did not agree well with 

the Janssen theory. Secondly, values were calculated from density measurements and 
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the results obtained showed a high level of corroboration with Janssen theory. 

However, these values, when used in the three-dimensional model, provided a not 
ideal representation of the distribution of the pressure across the wall that was 

observed experimentally. A subsequent best-fit exercise to this experimental data 

showed that a smaller value of ? is required for both bulk solids but the various 

procedures failed to pinpoint exactly what that value should be. 

In order to further investigate a suitable value of X for the materials used in this work 

some simple one-dimensional consolidation tests were performed. This type of test 

was performed because it could give an idea of material behaviour using simple 

equipment as opposed to more rigorous testing (such as triaxial testing) that requires 

a specialist equipment and is outside of the scope of this thesis. Ideally, a triaxial test 

would have been performed. This would give a more complete picture of the 

materials behaviour and could have been performed at the low pressure levels that 

this work deals with (conventional triaxial tests usually subject the specimen to very 

high pressures). 

The one-dimensional tests are performed by placing the granular bulk solid in a 

cylindrical cell and then using a stiff platen to apply a pressure. By monitoring the 

displacement of the platen the axial strain can be related to the pressure level in the 

solid. Care must be taken when placing the solid in the cell in order to avoid 

consolidation before the test is started This also includes knocking the cell in any 

way as this will cause the sample to settle. Figure 6.21 shows the arrangement. The 

size of the cell was chosen to be long enough to ensure that end-effects were not 

significant and the diameter large enough to ensure that the wall friction had as little 

effect as possible. The overall height of the cell was 300mm and the internal 

diameter, 140mm. 
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Figure 6.21 - Schematic showing the one-dimensional consolidation test cell 

The tests were performed in a Series 8500 Instron. The maximum force applied to 

the platen was 200N which equates to a pressure level of approximately 15kPa. This 

was chosen as representative of the pressure level that would be experienced in a 

small rectangular silo. 

Figure 6.22 shows the raw data for one of the tests with Leighton Buzzard sand. The 

displacement of the platen has been converted to axial strain (given knowledge of the 

fill level in the cell) and is plotted against the direct pressure applied. 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 
a Sand 

0.1 

0.05 

0 
02468 10 12 14 16 18 

Pressure (kPa) 

Figure 6.22 - One-dimensional consolidation of sand 
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The graph shows an interesting feature of the material. As the pressure approaches 

8kPa there is a possible re-ordering of the grains in the material causing the pressure 

to reduce. This new arrangement of grains results in a stiffer material and as the load 

is re-applied the strain increases only a small amount. When 8kPa is again reached 

and exceeded the strain in the material continues along the original path. Subsequent 

tests revealed similar patterns at different levels of stress. 

The tests were performed several times for each material and the results interpreted to 

show the change in volume against the natural logarithm of the pressure using 

equations 6.4 to 6.6. If the assumption is made that the change in volume is entirely 

due to change in voids ratio then these results can be used to determine the value of ), 

relevant to each material. Figure 6.23 shows the plots for the sand while figure 6.24 

shows the plots for the gravel. 
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Figure 6.23 - One-dimensional consolidation tests on Leighton Buzzard sand 
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Figure 6.24 - One-dimensional consolidation tests on pea gravel 

The best fit straight line has been added to each set of results to determine the 

logarithmic bulk modulus and the values are shown in table 6.8. 

Sand Gravel 

Test 1 0.0015 0.0026 

Test 2 0.0015 0.0031 

Test 3 0.0020 0.0032 

Average value 0.0017 0.0030 

Table 6.8 - Results from consolidation tests on sand and gravel 

The value of ? for these materials is in the same order of magnitude as the values 

calculated above. The values are all lower than the original calculations as the best 

fit to the experimental data suggested they should be. As ? is not well reported in the 

literature for these materials there is no other data to compare these values with. This 

makes it difficult to assess whether these values provide a good representation of the 

material. However, Ooi (1990) performed a series of rigorous triaxial tests on wheat 

and interpreted this data to give values of X for his own finite element models. In 

order to attempt to corroborate the method employed above the tests were repeated 

on wheat. It was not possible to obtain the exact same type of wheat (Australian hard 
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wheat) that was used by Ooi but it was hoped to show that the one-dimensional tests 

gave results that were of the correct order of magnitude compared to the triaxial 

results. Values for X obtained for the Australian hard wheat ranged from 0.0 16 to 

0.021. 

Figure 6.25 shows consolidation lines for the wheat. Again the best fit line has been 

plotted in order to give the value of X. 
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Figure 6.25 - One-dimensional consolidation tests on wheat 

The average value of X obtained for the type of wheat tested is 0.015. This compares 

well with the values obtained by Ooi (1990) and shows that this simple test may 

suitable for determining values of X for preliminary calculations, without having to 

perform the more rigorous triaxial test. 

6.8 Conclusions and choice of values for PE-DP model for Leighton Buzzard 

sand and pea gravel 

After performing initial tests and comparison with theoretical models in an 

axisymmetric finite element model the porous elastic/Drucker-Prager constitutive law 

was chosen for use in this project. It was determined that the value of X in the porous 

elastic portion of the law was critical to the overall performance of the model and a 
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number of tests were performed to determine values for the materials. These tests 

showed that the value of 2 needs to be small in order to best match the Janssen 

distribution given the density data available. Simple consolidation tests have also 

shown that the order of magnitude determined from density based calculations is 

correct but the actual value is hard to pinpoint. The best fit exercise performed on the 

experimental results of Lahlouh et al (1995 ) has shown that a very small value of X 

would predict the corner pressures well but higher values may be required to better fit 

the experimental data in the middle of the bin. 

Choices of values for all the parameters discussed must be made based upon the tests 

or calculations carried out above. The values that will be used in the remainder of the 

analyses are given in table 6.9. ?, has been chosen based upon the consolidation tests 

performed in section 6.7. 

Property Leighton Buzzard Sand Pea Gravel Wheat 

yo (kg/m3) 1587 1704 761 

eo 0.67 0.555 0.8 

0.002 0.003 0.015 

0(0) 45.1 46.1 39.1 

yf (°) 0 0 0 

aoc (kPa) 0.25 0.25 0.25 

v 0.3164 0.306 0.3685 

P" t (kPa) 0 0 0 

9 0.445 0.392 0.44 

Table 6.9 - Final properties used for the materials in the finite element model 
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Chapter 7- The effect of the boundary condition at the base of the 

bin 

In Chapter 6 it was noted that there were end effects present in the results for the wall 

normal pressures in the axisymmetric bin. These take the form of a local pressure 
increase near the base when compared to the Janssen distribution. This is attributed 
to the influence of the base condition but it is not clear whether this a function of the 

modelling process or reflects some real phenomenon in silos. The results presented 
in this chapter show an investigation into this phenomenon using a variety of models 

with differing boundary conditions at the base. 

7.1 Flat-bottomed axisymmetric bin 

The axisymmetric examples presented in the previous chapter showed that given 

sound representation of the stored bulk solid the finite element results compare very 

well with the Janssen prediction apart from in regions near the base. All of the 

models so far analysed have been flat-bottomed and the base of the structure has been 

restrained along its entire length in the y-direction but not in the x-direction (figure 

6.1). The interaction between the base and the stored solid has been idealised and 

modelled as frictionless. 

In section 6.4.3 a range of materials was modelled in the flat-bottomed silo. This 

showed that materials with a lower value of internal friction (and hence a higher 

value of v) exhibited end-effects over a larger proportion of the bin (figure 6.4). This 

effect is assumed to be due to the larger Poisson's ratio giving a larger Poisson effect 

near the base where the vertical stress is high, leading in turn to more load being 

transferred to the wall. Figure 7.1 shows a plot of Poisson's ratio versus the depth at 

which the finite element prediction in the bin starts to deviate from the Janssen 

prediction. 
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Figure 7.1 - The effect of Poisson's ratio on the depth over which end effects are present 

Clearly the higher the Poisson's ratio the greater the distance over which the end- 

effect occurs. 

In order to investigate whether the observed end-effects are a function of the finite 

element model or represent a real phenomenon in silos, a number of models were 

created. These models have different boundary conditions at the base of the silo. 
Initially a flat-bottomed axisymmetric silo is modelled and investigated and then a 

concentric hopper is added with varying wall angles. 

7.1.1 Frictionless base condition 

Results for the model that was studied in the previous chapter are again presented 

here. Figure 7.2 shows the distribution of wall normal pressure at the bottom of the 

wall using the linear elastic law and the porous elastic/Drucker-Prager law to 

describe the ensiled material's behaviour. Only the area of the bin near the base is 

shown as the results away from this area in the parallel section of the bin are very 

close to the Janssen distribution. 
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Figure 7.2 - Pressures near the base using different constitutive laws 

Only a small difference in the wall pressures predicted near the base is observed, 

attributable to the way the materials are modelled. The portion of the bin over which 

the end-effect is apparent is the same for both material laws. 

The linear elastic model was repeated with the mesh density doubled to check that 

the effect is not a function of the mesh density. Figure 7.3 shows the results for this. 
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Figure 7.3 - Effect of doubling the mesh density on wall normal pressures 
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Again the proportion of the bin over which the end effect acts is unchanged and only 

minor changes in the values are observed compared to the original mesh density. 

As a check on whether the observed effect is caused by a density change the analysis 
is re-run with the gravity load doubled. This would cause any density change to 
increase in magnitude leading to the end-effect acting over a larger percentage of the 

wall. This analysis shows however, that this is not the case and further inspection of 
the results shows that the density change near the base in the linear elastic model is in 

the region of 0.25%. This is insufficient to account for the increased pressure if the 

higher density value is used in the Janssen equation. 

Following these observations, the remainder of the analysis of the flat-bottomed silo 
is carried out using the linear elastic material constitutive law. 

7.1.2 Frictional base condition 

In a real silo of this type the interaction between the base and the stored material is 

not frictionless as was assumed in the previous analysis. The coefficient of friction 

would be the same as that seen on the wall (assuming the base is constructed from the 

same material). Therefore the above analysis is repeated with the coefficient of 

friction between the base and the stored material set to the same as that on the wall (µ 

= 0.445). 

The following figure (figure 7.4) shows the effect of adopting a frictional base 

condition on the wall normal pressure near the base compared to the results from the 

original frictionless simulation. 
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Figure 7.4 - The effect of a frictional base in an axisymmetric bin 

A difference in wall pressure can be seen in the final 0.3m of the bin wall. The final 

node experiences a pressure reduction of 7.5% compared to the original frictionless 

model. The frictional nature of the base prevents the material being forced outwards 

by the weight of the material above, this leads to the observed reduction in pressure 

in this area. This figure also shows that there are two end-effects in operation. In the 

final 0.3m of the bin there is an effect that can be attributed to the frictional nature of 

the base but this is superimposed on another phenomena that appears unchanged by 

any change in friction. This effect also extends over the final 1m of the bin (10% of 

the total depth). 

In order to further investigate this mechanism other artificial values of .L were 

adopted (µ = 0.09 and 0.71). The value of µ=0.71 is chosen to represent the value 

of the materials internal friction coefficient (4 = 35.4° and therefore tan 4) =µ= 

0.71). Using this coefficient of friction causes the stored material to "see" the base as 

another layer of material. The value of g=0.09 is chosen arbitrarily to observe the 

effect of a small value. Results from these analyses are shown in figure 7.5. Also, as 

an extension of the different frictional coefficients the Abaqus software package has 

a "rough" frictional option. This option implies that the friction coefficient µ o0 
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which is physically meaningless but simulates contact that is effectively tied. 

Predictions using this model are also shown in figure 7.5. 
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Figure 7.5 - The effect of adopting different values of µ 

The results obtained using µ=0.09 are slightly lower in magnitude than the 

frictionless results while those obtained from µ=0.71 are lower than those obtained 

from µ=0.445. In general there is a trend of pressure reduction near the base as the 

value of µ increases. 

In the case of the rough base condition, it can be seen that the effect is similar to the 

previous frictional models but due to the fully rough nature of the base the final node 

that is in the corner, and therefore in contact with the base, experiences a much 

reduced lateral pressure. This is due to the high coefficient of friction effectively 

restraining the node against movement in the radial direction. 

7.1.3 Base and wall not connected 

The results presented above showed that adoption of a number of base conditions had 

some effect on the predicted pressure near the base, however, even assuming the 

rough base condition does not eliminate the end-effect entirely, it merely reduces it. 

Therefore another mechanism to account for the increased pressure must be in 
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operation. Inspection of the radial deformation in the shell shows that there is little 

deflection near the top of the silo. Moving down the wall this deflection increases to 

a maximum approximately 0.5m above the base. By virtue of the fact that the wall 

and the base are connected and the base is very stiff radially, the wall deformation 

quickly reduces to 0. It is therefore proposed that in this area the wall is effectively 

moving back towards the stored solid and therefore the observed end-effect is the 

result of a passive pressure in the solid. A model was constructed in which the base 

and wall are no longer connected. This allows the wall to expand at all levels 

including near the base, and should therefore reduce the observed effect. Figure 7.6 

shows the results for this model using a frictionless and frictional (p = 0.71) contact 

condition between the base and the stored solid. 
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9.8 0.71) 
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Figure 7.6 - Wall normal pressure predictions in the base and wall disconnected model 

A marked increase in pressure near the bottom of the wall is still apparent. In the 

model with the frictional contact at the base there is a reduction in pressure below the 

Janssen value. This is due to stored material being restrained from radial movement 

along the base by friction. However, an increase in pressure above this region near 

the base is still observed. In general the end-effect is not eliminated. 

Janssen prediction 

l diti on --ý 5mm wa l, smooth base con 

ý- 5mm wall, base and wall disconnected 
th b diti (smoo ase con on) 
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7.2 Horizontal and vertical stress in the stored solid 

In order for the observed wall pressure to change from that predicted by Janssen there 

must be a change in the distribution of stress in the material. The Janssen theory 

assumes that the stress is invariant across the bin at any given level and in a 

cylindrical silo this is generally found to be true. Figure 7.7 shows the distribution of 

horizontal and vertical stress through the stored material at a depth of 8m and 9.7m in 

the frictionless base model. 
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Figure 7.7 - The distribution of horizontal and vertical stress at two levels in the axisymmetric 

silo model 

The distribution of both horizontal and vertical stress is uniform at 8m depth and 

agrees well with the Janssen values. The average ratio k is calculated as 0.452 which 

is consistent with the material being modelled. 

The distribution of horizontal and vertical stress at a depth of 9.7m (which is inside 

the area that is experiencing a deviation from the Janssen distribution) is no longer 

uniform. There is a large increase in vertical stress and a decrease in horizontal stress 

at the centre of the bin. This leads to large variations in the value of k in the finite 

element model with k=0.39 at the centre on the solid and k=0.57 near the wall. 

These results reflect those of Ooi and Rotter (1990). 

-E- 9.7m depth horizontal stress 

-m 9.7m depth vertical stress 

-k - 8m depth horizontal stress 

-A 8m depth vertical stress 

-Janssen value (Vertical stress) 
Janssen value (Horizontal stress) 
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Inspection of the results shows that the maximum shear within the material occurs 

near the wall due to its frictional nature. This shear increases with depth up to a 

maximum. The shear reduces closer to the base because of the support the material 

receives from the vertically rigid base. It therefore follows that as there is little 

movement of the solid in this area the frictional nature of the wall may not be fully 

mobilised. Figure 7.8 shows the effective coefficient of friction determined from the 

finite element results. 
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Figure 7.8 - Effective coefficient of wall friction in the sand model 

Down the majority of the wall the coefficient is as specified (µ = 0.445). Nearer the 

base however, the effective coefficient of friction reduces, eventually diminishing to 

zero at the very base. This reduction in the effective value of µ is a possible cause of 

the observed internal stress distributions in the solid as wall friction is no longer 

supporting all of the vertical stress. Vertical stress is therefore transferred to the 

centre of the bin leading to higher lateral stress at the wall in order to maintain 

equilibrium. 

The reason the friction is not mobilised near the base is due to the movement of the 

contact surfaces relative to one another. Although the coefficient of friction is 

specified in the model it is not mobilised if there is no movement between the contact 

surfaces. This movement gives rise to shear and normal stresses which can be used 
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to calculated the effective coefficient of friction. Near the bottom of the bin the rigid 

base (which is fully supported in the vertical direction) stops the stored solid moving 

down the wall. This leads to reduced shear stresses and hence the reduced value of 

wall friction. If the base condition could be modelled in such a way as to allow the 

wall friction to support the full weight of the stored material then the end effect seen 

should be much reduced. 

The silo is again modelled as having the wall and base disconnected. The base is 

then supported by springs which allow a reasonably large movement of the solid 

above. This allowed movement should mobilise the friction at all points down the 

bin wall, leading to finite element predictions that are closer to the Janssen 

distribution. Figure 7.9 shows the results from this model. 
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Figure 7.9 - Wall normal pressures from the model with spring-supported base 

The initial observation is that this representation of the boundary condition increases 

the magnitude of the end effect. Changing the value of stiffness of the supporting 

springs in order to alter the amount of movement in the solid has little effect on the 

pressure predictions. Inspection of the normal and shear stress at the wall however, 

shows that because of the allowed movement, friction is fully mobilised all the way 

down the bin wall with the prescribed value of µ=0.445. 
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7.3 Strain in the stored material 

Figures 7.10 and 7.11 show contour plots of the vertical and radial strain in the stored 

material taken from the original frictionless base condition model. 
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Figure 7.10 - Vertical strain contour plot in axisymmetric model 
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Figure 7.11 - Radial strain contour plot in axisymmetric model 
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Figure 7.10 shows that there is a high compressive vertical strain at the centre of the 

bin near the base. The resulting Poisson effect leads to high tensile lateral strain at 

this point (figure 7.11) which in turn leads to high compressive lateral strain adjacent 

to the wall. This leads to the observed pressures that are higher than the Janssen 

prediction. This mechanism is shown in figure 7.12 illustrated by consideration of 

two elements of material near the base of the silo. The results show the shear stress 

to be very low in these areas and therefore the horizontal and vertical stresses are 

assumed to be principal stresses. 

Inspection of the vertical deformation in the solid show that there is more downward 

movement at the centre of the bin than adjacent to the wall. If a slice of material in 

equilibrium (such as that used by Janssen in formulating his theory) is considered 

then before the gravity load is applied to the model, this slice is horizontal. Once 

gravity is applied the slice sags rather like a beam supported at each end sagging 

under its own weight. This leads to the observed larger vertical deformations near 

the centre. However, when the rigid base is neared the slice can no longer sag and 

115 

rigure /. 1L - AICCRSu1SW Lu 7R: GVULII 1VI UUSCI VCU CUU-CIICCL 



therefore the material at the centre experiences the observed increase in vertical 

strain. 

In order to test this theory two more models are created, one with a 2° upward 

sloping base (sloping upwards from the transition) and one with a downward sloping 

base, also of 2° (sloping downwards from the transition). If the above proposed 

mechanism holds true then the end-effect should decrease in the model that slopes 

downwards. This is because the high lateral compressive strain adjacent to the wall 

will be relieved slightly by the action of the material attempting to move down the 

sloping wall of the hopper. Conversely, the upwards facing model should experience 

an increase in the end-effect since the material at the centre of the bin will now be 

attempting to move down the slope towards the wall. Figure 7.13 shows the results 

from these models along with the original flat-bottomed bin for comparison. These 

models all have a frictionless contact condition on the base. The patterns of wall 

pressure observed are as predicted. 
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Figure 7.13 - Effect of small angled hopper on the wall normal pressure prediction 

7.4 Summary of flat-bottomed model 

A number of finite element models with differing boundary conditions have been 

investigated. The results obtained have shown that the choice of boundary condition 
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made can have a considerable effect on the accuracy of the pressures predicted when 

compared to the Janssen distribution. A mechanism to account for the increased 

pressures observed near the base has been identified and further investigation 

supports the proposed theory. 

The mechanism identified above accounts for the initial observations concerning the 

end effect occurring over larger portions of the bin for materials with a higher value 

of Poisson's ratio. As the Poisson's ratio increases the end effect will increase due to 

larger Poisson effects near the base where the vertical strain near the centre is 

increasing. 

7.5 Hopper base condition 

The work is now extended by considering a similar model but with a concentric 

hopper at the base rather than the flat bottom. It is not realistic to represent this type 

of model as ground supported and therefore the supporting boundary condition must 

be changed. The model is now supported at the junction of the hopper and the wall. 

This simulates the silo being supported from the ring beam as would be common 

practice in a silo of this type. 

The walls of the hopper are modelled as frictional with the same coefficient of 

friction as the wall. The effect of the angle of the hopper on the wall pressures above 

the transition is investigated. The hopper angles ((x', consistent with definition in 

figure 3.2) chosen initially are 15°, 30°, 45°, 60° and 75°. 

Figure 7.14 shows the wall pressures in the parallel section of the silo for the hopper 

angle of 45° using the linear elastic model to represent the sand. 
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Figure 7.14 - The wall normal pressure above the transition with a 45° concentric hopper 

Again only the bottom of the wall is plotted as results above this point compare well 

with the Janssen distribution. The end effect in this case does not extend over such a 
large portion of the bin as was observed in the flat-bottomed case. The final node 

exhibits a very large pressure and inspection of the results shows that this node has 

slid down the wall into the hopper, accounting for this large normal pressure value. 

The pressures from this distorted element are therefore disregarded. Other 

researchers (Martinez et al, 2002) have also observed distortion of the mesh at the 

transition in problems of this type and concluded that this distortion can lead to 

unreliable pressure predictions. Above the level of this fmal element there is a 
decrease of pressure when compared to the Janssen distribution. 

As in the previous investigation the mesh was doubled to check whether the effects 

seen are a function of the mesh density. Figure 7.15 shows these results. 
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Figure 7.15 - Wall normal pressure near the base of the model with a hopper 

The final node that has moved into the hopper (and therefore shows a very large 

pressure) is considered to give unreliable results and has therefore been removed 

from this plot to improve clarity. 

It is apparent that in this model the doubling of the mesh has an effect on the 

observed pressures. With the more dense mesh several of the nodes just above the 

transition have zero pressures implying that there is a loss of contact between the 

stored material and the wall at this point. Even in this simple case the use of the 

linear elastic model may not be sufficient to accurately model the behaviour around 

changes in geometry such as the transition. 

The analysis is therefore repeated using the linear elastic/Drucker-Prager model 

outlined in Chapter 6. The denser mesh is again used and figure 7.16 shows the 

results compared to those obtained from the linear elastic law. 
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Figure 7.16 - Comparison of analysis with LE and PEDP constitutive laws 

There is a very large difference in the predicted form of the pressure distribution. 

inspection of the results shows plastic strains forming near the transition which 

would affect the resulting stress distribution. It is therefore accepted that the linear 

elastic law is not suitable to model this type of geometry and the remainder of the 

investigation is continued using the PEDP constitutive law for the ensiled material. 

Figure 7.17 shows the effect of changing the hopper angle on the wall normal 

pressure above the transition. 
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Figure 7.17 - The effect of altering the angle of the hopper on pressures above the transition 

As the hopper angle increases there is a systematic reduction of wall pressure above 

the transition. Inspection of the vertical and radial strains in the model shows that 

outward deformation of the hopper leads to tensile vertical strain adjacent to the wall 

above the transition. A Poisson effect in this area leads to the reduced lateral 

pressures. If this mechanism is a correct representation of the actions occurring then 

a fully rigid hopper wall should lead to a situation where the vertical strain is 

compressive (since the hopper wall is no longer deforming) and an end-effect above 

the value of the Janssen prediction will be observed similar to the flat-bottomed 

model. The 15° hopper is therefore re-run with a fully rigid hopper wall and the 

results for the pressures above the transition are shown in figure 7.18. 
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Figure 7.18 - The effect on wall pressures above the transition of a rigid hopper wall 

As expected there is now an increase in lateral wall pressure and inspection of the 

strains in the material show that the mechanism proposed above is a good 

representation of the actions occurring. 

7.5.1 Pressures in the hopper 

In the previous section it was observed that even though the cylindrical hopper walls 

were modelled as 5mm thick there was still an effect on the pressures above the 

transition resulting from deformations in the hopper wall. It therefore follows that 

the deformations of the hopper wall will have an effect on the pressures in the hopper 

itself. Figure 7.19 shows the normal pressures in the hopper for the 5 angles chosen 
for the analysis. The results are presented in a plot of normalised depth below the 

transition level against the pressures. The pressure shown on the final node is 

disregarded as inspection of the results show this to be anomalous due to the way the 

contact surfaces are modelled in this area. 
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Figure 7.19 - Normal pressure in hoppers of varying angles 

A pressure reduction just below the transition can be seen in the results for hoppers of 

shallow angles. Inspection of the deformed shape of the hopper wall shows that there 

is a deformation of the hopper wall away from the stored bulk solid in this area 

resulting in the observed lower pressure predictions. Figure 7.20 shows a much 

magnified plot of the wall deformations in the 15° hopper model. 
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The area that shows the largest deformations corresponds to the pressure reduction. 

This reduction is a result of the stored material arching across the bulge and the effect 

is more pronounced in models with shallow hopper angles. The deformations are a 

result of the vertical load acting on the hopper being greater in shallower hoppers as 

less of the load is supported by the frictional hopper wall. 

If the wall deformations are reduced then the magnitude of reduction in pressure 

predicted in the hopper should be reduced. The 15° hopper model is therefore 

repeated with varying wall stiffness including a rigid wall. Results are shown in 

figure 7.21. 
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Figure 7.21 - Effect on hopper wall pressure predictions of varying wall stiffness 

As the wall thickness increases there is a systematic increase in the hopper pressure 

immediately below the transition. In the case of the fully rigid wall the pressure 

prediction assumes a form that is very much in line with that predicted by ENV 1991- 

4 (1995). 

Figure 7.22 shows the effective coefficient of friction in the models with different 

hopper angles. This friction coefficient is calculated by relating the shear to normal 

stress at the nodes. 
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Figure 7.22 - Effective coefficient of friction in hoppers of different angles 

It is clear that in models with shallow hopper angles the friction is not mobilised fully 

and there is an angle below which friction will not be fully mobilised at any point in 

the hopper. 

7.6 Conclusion 

It has been shown that variations in the assumed base conditions in the finite element 

model can produce varying results for the prediction of wall pressures near the base. 

When modelling a flat-bottomed bin there is an increase in pressure near the base. It 

has been shown that this phenomenon is present in models that assume smooth base 

conditions and frictional base conditions. A number of theoretical base conditions 

were also analysed in an attempt to determine a mechanism that explains the 

observed end effect. A suitable mechanism that accounts for the observed end- 

effects has been identified and with further testing appears sound. Based upon this 

mechanism it is proposed that a model with a reasonably flexible base and is 

supported at the edge could exhibit pressures very close to the Janssen prediction. As 

the load is applied the flexible base would deform reducing the effect that leads to the 

high vertical compressive strain at the centre of the bin. Such a model was attempted 

but elimination of the end-effect entirely was not possible. 
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Adding a hopper to the model results in pressures that are more consistent with 
Janssen theory over a greater portion of the parallel section of the silo. However, it 

was shown that the change of angle at the transition leads to loss of contact between 

wall and solid when using a linear elastic material model. Using the PEDP 

constitutive law gives pressure predictions that are very much different to the results 

obtained from the LE constitutive law. Inspection of the results shows that there is 

considerable plastic straining in the region of the transition and therefore the LE 

constitutive law is not suitable for axisymmetric models with hoppers. Finally, it has 

also been shown that the flexibility of the hopper wall can have a large effect on the 

wall pressures above the transition and in the hopper itself, especially when the 

hopper angle is shallow. 
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Chapter 8- Further investigation of the geometry of Lahlouh et al 
(1995) 

8.1 Introduction 

In Chapter 6 some results for a small square silo using the geometry of Lahlouh et al 
(1995) were presented and compared to the finite element model. This comparison 

work is now extended. 

As well as data giving the wall pressures in the bin, Lahlouh's work also gives 

detailed measurements of the stresses in the stored bulk solid. These values were 

used to investigate mechanisms of load transfer in the silo and to determine overall 

and local values of k for the materials. 

Rotter et al (2002) analysed the data of Lahlouh et al (1995) and proposed an 

empirical rule to predict wall normal pressures in a square silo from two parameters. 

This proposed rule is now compared to the finite element results for various ensiled 

materials. 

8.2 Patterns of vertical stress in the stored material 

Chapter 6 presented some basic comparisons between experimental work (Lahlouh et 

al, 1995) and the finite element results. This showed that, for wall normal pressures, 

the finite element model and the experimental data showed a good level of agreement 

down and across the bin wall. From measurements made with free field cells the 

experimental work showed the horizontal and vertical stress levels in the stored solid 

to be non-uniform at a given level In subsequent work Rotter et al (2002) proposed 

a mechanism to account for the observed internal stress patterns. These internal 

stresses lead to the wall pressures already discussed. 

Based upon the experimental observations, Rotter et al (2002) proposed the arching 

mechanism (shown pictorially in figure 8.1) to explain the patterns of stress in the 

solid. This shows the stored granular bulk solid arching between the structurally stiff 

comers of the silo. The load caused by the weight of the material being transferred to 

127 



these structurally stiff areas results in higher stresses in the stored solid nearer the 

corner and lower internal stresses nearer the midside of the bin wall. Evidence of this 

load transferral is obtained from the observed wall pressure distributions and higher 

vertical stresses near the corners of the silo. 

Figure 8.1 - Proposed arching mechanism of Rotter et al (2002) in rectangular silo 

It is possible to compare the stress patterns in the granular bulk solid found in the 

work of Rotter et al (2002) with those produced by the finite element model. Figure 

8.2 shows the vertical stress patterns in sand at two levels from the finite element 

model. 
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Figure 8.2 - Patterns of vertical stress at lm and 2m below the surface of the solid 
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Direct comparison between the experimental and finite element results for these 

vertical stress readings is relatively meaningless. The fill method and nature of the 

stored material in the experiment means that repeatability is difficult to achieve no 

matter how carefully the experiment is performed. This random feature is difficult to 

recreate in the finite element analysis which will always produce the same results 

given the same materials, boundary conditions etc. However, the general patterns of 
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stress can be compared. The higher vertical stresses near the comer of the bin 

observed in the experiment are reproduced by the finite element analysis, as are the 

lower stresses near the midside of the walls. One major feature of the finite element 

results that was not observed experimentally is the region of high vertical stress at the 

centre of the stored solid. Comparison with similar contour plots of the experimental 

data in Rotter et al (2002) shows the vertical stress to be low through the cross- 

section of stored solid apart from in regions near the comer. The peak seen in the 

finite element model may be a function of the loading or the modelling but appears to 

have no effect on the predictions of the wall pressures. 

The simple finite element model described in Chapter 6 has produced 

consistent with experimental observation and these results appear to support the 

previously proposed theory of load transfer in the material. 

8.2.1 Average and local values of k 

It has been shown that the local value of the horizontal to vertical pressure ratio can 

alter significantly within a silo. Variation has also been observed between repeat 

experiments in the same silo (Ooi et al, 1990). Rotter et al (2002) present data for 

the local and mean values of k observed in the experimental silo using fills of sand 

and pea gravel These may be compared with values obtained from the finite element 

analysis and from other sources (e. g. Pieper and Wenzel, 1965; ENV 1991-4,1995). 

Figure 8.3 shows the average and local variation of k down the depth of the silo from 

the finite element model both locally and on average for sand. Figure 8.4 shows the 

same for gravel In both figures the Rankine active ratio of k is plotted as well as k 

from a current design code (ENV 1991-4,1995). 
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Figure 8.3 - Local and average values of k in sand 
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Figure 8.4 - Local and average values of k in gravel 

It may first be noted that the value of k at the midside of the bin falls below the active 

Rankine value. This is a result of the Rankine active value being calculated from a 

Mohr-Coulomb value of internal friction whereas these predictions are from a 

Drucker-Prager model which does not match the Mohr-Coulomb at all points (figure 

5.16). 

The above graphs show that the average values of k determined from the finite 

element results and the experimental values show acceptable correlation with each 
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other and with the value of k employed by the Eurocode (ENV 1991-4,1995). The 
local values of k are somewhat more erratic. 

In the sand material, the midside values predicted by the finite element method are 

systematically much lower than those values obtained from the experiment. 
However, the corner values of k for sand are well matched. The values of k 

calculated from the finite element results have a smoother distribution down the bin 

than for the experiment which shows local peaks. The average finite element value is 

within 10% of the average experimental value. 

The gravel material again shows good correlation of the average values compared 

with the Eurocode value of k. In this material a different pattern of results for local 

values of k compared to those seen in the sand is observed. Here the value of k in the 

corner calculated from experimental results is much larger than that observed in the 

finite element model. However, the k values at the midside show agreement within 
15% of each other. 

These observed patterns show that the prediction of the correct value of k and hence 

the stress state in the solid is difficult to achieve at all points in the bin. It may 

therefore be necessary to adapt the model dependent on which phenomena are of 

particular interest (the wall pressures at the midside, the large pressure peaks in the 

comer or some other phenomena). 

8.3 Predictive law for wall normal pressures 

Based upon the experimental measurements of Lahlouh et al (1995), Rotter et al 

(2002) proposed an empirical model to determine the pressure distribution across the 

wall in a square planform silo at a given level. This two parameter model was based 

upon a least squares fit to the experimental data and the resulting equation is a 

hyperbolic function based upon the mean pressure and some coefficient a. This 

coefficient a will be referred to as the redistribution parameter. The equation is 

given as 8.1 below. 
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saa 

() (8.1) 
P=" cosh 

2 
d 

pm is the mean wall pressure, x is the horizontal distance from the centreline of the 

silo and d is the width of the silo side. The ratio of the mid-side to comer pressure in 

the silo is given as cosh a. Rotter et al (2002) deduced that for the tests based on 

sand the value of a was about 2.5 and the value for gravel was about 2. This implies 

that sand shows a higher level of redistribution across the bin wall than gravel. Using 

these values, distributions can be calculated and compared to the measured data. 

8.3.1 Comparison to experimental results in sand 

From the values given by Rotter et al (2002) wall normal pressure distributions can 

be determined at any depth in the silo. These are compared with the experimental 

results to show that the guidance values given in the original paper could be used by 

structural designers to give an idea of the redistribution of pressure on the wall. 

Figure 8.5 shows the experimentally determined distribution of wall normal pressure 

at two levels in sand and the corresponding calculated distribution. The mean 

pressure (pm) is taken as the average pressure from the experimental data (given in 

Rotter et al, 2002) but as this has been shown to compare well with the Janssen 

value, this could be taken if the model were being used in design analysis. a for sand 

is taken as Rotter et al's (2002) suggested value of 2.5. 
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Figure 8.5 - Wall pressure distributions from sand experiments and predictive law 

Figure 8.5 shows that the results from the predictive law (equation 8.1) are of a 

similar form to those observed in the experiment with a large pressure near the corner 

of the bin and lower pressures at the midside. The values of wall normal pressure at 

the centre of the bin are underestimated by the predictive law (similar to the observed 

trend in the initial finite element results) and using the suggested value of a also 

results in the corner pressure predictions being underestimated. 

It must be noted that these distributions were generated using the suggested value of 

a=2.5. A better fit of the predictions to the experimental data could be achieved by 

varying a and pm. A fitting exercise using the least squares method was performed 

between the experimental and predictive data for sand. Figure 8.6 shows the values 

of pm produced by the least squares method compared to the Janssen distribution for 

sand. For comparison the integrated experimental data is also plotted on this graph 

(taken from Rotter et al, 2002). As before, the results are shown as a function of 

depth from the top of the silo as per the original paper (Rotter et al, 2002) rather than 

depth from surface of fill. 
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Figure 8.6 - Best fit mean pressures in sand 

The values of pm given by the best fit exercise are systematically around 20% higher 

than those determined from the original integration of the experimental data although 

the Janssen form of distribution remains. This may due to the experimental results 

not extending the full way across the wall (the first data point is not directly in the 

corner). In order to perform the integration in the paper Rotter et al (2002) assumed 

that the corner value was the same as that measured 0.05m from the wall. The 

predictive law gives a value of wall normal pressure in the very corner of the bin. 

This value will be higher than that assumed in the original integration leading to an 

increase in the area under the curve compared to the original data and hence a larger 

pressure. 

Figure 8.7 shows the best fit distribution in sand of the redistribution parameter a 

down the depth of the bin. 
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Figure 8.7 - The variation of the parameter a with depth in sand in the geometry of Lahlouh et 

al (1995) 

Figure 8.7 clearly shows how the original recommendation of a=2.5 for sand was 

determined. a is close to 2.5 over a large percentage of the bin wall. It deviates 

away from this value nearer the surface and towards the transition. This deviation 

can be attributed to the end effects caused by these boundary conditions. It would be 

necessary to study a deeper silo in order to determine whether a remains stable for a 

larger portion of the bin (Chapter 9). 

Using the values of a and p. determined from the best fit exercise it is again possible 

to compare the predicted pressure distributions across the wall with the experimental 

values. Figure 8.8 shows this comparison at two different levels in the sand. The 

values of pm and a as determined from the best fit exercise at these two levels are 

given below along with the appropriate Janssen wall normal pressure value for this 

depth for comparison. 

" Im depth; a=2.05 and pm = 5.81 kPa (Janssen pressure= 4.5lkPa) 
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" 2m depth; a=2.43 and pm = 8.77kPa (Janssen pressure = 8.26kPa) 
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Figure 8.8 - Predicted distribution resulting from best fit value of a compared to original 

experimental data for sand (Lahlouh et al, 1995) 

The predictive law now shows a value of pressure at the corner of the bin that is 

closer to the experimentally determined value. The form of the predictive law does 

not show as sharp a curve as the experimental data as the corner of the bin is 

approached. Again the pressures predicted at the midside are much lower than those 

shown in the experiment. The agreement between the results for Im depth would 

appear visually better than those at 2m. This may be because of a possible end effect 

as the transition/hopper is approached. Due to the ring beam in the experimental rig 

the transition has a higher local stiffness than the rest of the bin which affects the 

distribution across the bin at this level. 

8.3.2 Comparison to experimental results in gravel 

A similar exercise to the one above was performed on the data for gravel. Rotter et 

al (2002) predicted a value of a=2 for this material. Figure 8.9 shows the 

experimental data compared to the predictive law for two depths using the value of a 

= 2. 

+1m depth, predicted 

-- 2m depth, predicted 

-1 m depth, experimertal 
2m de th ex erimer*al p , p 

138 



45 

40 + lm depth, predicted 

35 -ý 2m de th redicted T p ,p 
0 -1 m depth, experimental 3 

- 2m dept h, experimental 
25 

20 

15 

R 10 

5 
0 

0 0.15 0.3 0.45 0.6 0.75 

Distance from corner of bin (m) 

Figure 8.9 - Wall pressure distributions from gravel experiments and predictive law 

The large peak at the corner seen in the experiment is not reproduced by the 

predictive law using the suggested value of a and the overall form of the prediction is 

not as curved as the experimental results. However, the predictive law does not 

underestimate the pressures at the midside as it did for the sand. This is 

advantageous from a design point of view for reasons already mentioned. 

Figure 8.10 shows the best fit values of pm against the Janssen distribution and the 

original integrated values for gravel. 
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Figure 8.10 - Best fit values of pm against experimental data and Janssen distribution 

In this case the values of pm produced by the best fit exercise do not produce the 

systematically higher results seen in the results for sand, the values are closer to the 

original experimental average but with some variation down the depth of the bin. 

Figure 8.11 shows the corresponding best fit values of a. 
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Figure 8.11 - The variation of the parameter a with depth in gravel in the geometry of Lahlouh 

et al (1995) 
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The best fit to the gravel results produces very different values of a to those 

suggested by Rotter et al (2002). It was originally suggested that the approximate 

value should be in the order of a=2 but figure 8.11 shows that the best fit values are 

very much greater than this. This is attributable to the least squares method 

favouring the fit where the values are higher. This necessitates the value of a to be 

high in order to produce the large curvature towards the corner of the bin. Finally, 

figure 8.12 shows the fit of the predictive law to the experimental data at two levels 

using the best fit values of a and p, n. These values are: 

9 Im depth; a=5.72 and pm = 5.21 kPa (Janssen pressure = 4.74kPa) 

" 2m depth; a=7.84 and pm = 9.18kPa (Janssen pressure = 8.98kPa) 
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Figure 8.12 - Predicted distribution resulting from best fit value of a compared to original 

experimental data for gravel (Lahlouh et al, 1995) 

The large value of a gives a prediction near the wall that is very close to the 

experimental value. The form of the prediction is also much more curved than the 

form seen in the sand and visually this compares well with the experimental 

observations. The high value of a causes the values of pressure predicted at the 

centre of the bin to be substantially lower than those measured in the experiment. 
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8.4 Comparison with finite element results 

Using the previously described finite element model of Lahlouh et al's (1995) 

experimental work, predictions for the wall pressures have been produced using the 

two different ensiled materials. The pressure distribution across the wall compared to 

the experimental data has already been examined in section 6.6.3 for sand and 6.6.5 

for gravel. Here, Rotter et al's (2002) predictive law will be compared with the finite 

element results. 

A similar least squares best fit exercise to the one above was performed to fit the 

predictive law to the finite element results. This gives values of a and pm that may be 

compared with the experimental data. 

Figures 8.13 and 8.14 show the variation of a in the two materials down the depth of 

the bin compared to the variation of a from the experimental work. 
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Figure 8.13 - Comparison of a determined from finite element method and experiment in sand 
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Figure 8.14 - Comparison of a determined from finite element method and experiment in gravel 

For the sand material the maximum values obtained from the finite element model 

are in the same region as the experimental work. An overall value of a=2.5 might 

also be suggested for the finite element results. There is a noticeable effect towards 

the transition where a increases and then reduces to 0 at the level of the transition. 

This effect is caused by end effects in the model of the type studied in Chapter 7 and 

the reduction of a to 0 indicates there is no redistribution of pressure at the transition 

level. 

The comparison between the finite element results and the experimental best fit in 

gravel shows that there is a large difference in the values of a obtained. The finite 

element values shows a similar pattern to that seen in the sand but the values are 

slightly higher. The erratic nature of the experimental values of a makes 

comparisons hard to draw but shows that even though this material has very similar 

properties to the studied sand, the measured pressures can be extremely variable. 

Figure 8.15 shows the wall normal pressures in sand determined by finite element 

analysis at two levels in the bin. The best fit of the predictive law to these results is 

also shown. The values of a and pm were: 
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9 lm depth; a=2.52 and pm = 4.42kPa (Janssen pressure = 4.51 kPa) 

" 2m depth; a=3.28 and pm = 7.08kPa (Janssen pressure = 8.26kPa) 
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Figure 8.15 - Comparison between FEA results and predictive law of Rotter et al (2002) 

The predictive law shows a very similar form of distribution to the finite element 

results. The values from the predictive law across the bin are within 5% of those 

given by the finite element model. At the 2m depth however, the experimental 

pressure rises rapidly towards the corner resulting in an underestimation of the 

pressure at the centre of the bin by the predictive law. 

8.5 Summary 

The work presented above revisits the work done by Rotter et al (2002). It shows 

that the predictive law proposed could be used as an effective design tool given 

values of a for different materials and geometries. It may be necessary to make some 

compromise on the choice of the value of a dependant on which feature in the bin is 

being studied. Most of the values of a that have been calculated from best fit 

exercises tend to underestimate the pressure at the centre while those determined 

from the experimental results underestimate the corner pressure. This is important 

for the calculation of the bending moments as under-estimation of the wall normal 
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pressure at the midside could lead to walls being designed with insufficient strength. 

Therefore it may be more useful to adopt a conservative value of approximately 2 for 

a as suggested by Rotter et al (2002). This would lead to more efficient designs 

compared to those produced following guides based upon uniform pressure 

distribution across the wall, but would ensure that walls are not under-designed. 

8.6 Finite element predictions for an idealised wheat 

The experimental geometry is now modelled as filled with a wheat whose parameters 

were determined in Chapter 6. This material was not used in the original work of 

Lahlouh et al (1995) and has very different characteristics to the sand and pea gravel 

so far studied. It has a much lower bulk density and while tests have shown the sand 

and gravel material to assume a relatively stiff state under low pressures, wheat is 

much less stiff. 

8.6.1 Comparison to Janssen distribution 

Figure 8.16 shows the average wall normal pressure down the depth of the silo as 

well as the appropriate Janssen distribution. Also shown are the best fit values of pn,. 
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Figure 8.16 - Comparison to Janssen distribution in wheat 
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In this material the finite element predictions systematically underestimate the wall 

normal pressures by approximately 0.5kPa. The finite element predictions would 

appear to be tending towards an asymptote but due to the nature of the wheat material 

the depth required to develop this is much greater than the depth of bin studied here 

(see Chapter 9 for deeper silos). The best fit values of pm are very close to the 

integrated values from the finite element model. The previously observed end effects 

are also much reduced in this model due to the softer nature of the stored material. 

8.6.2 Distribution of pressure across the wall 

Figure 8.17 shows the distribution of wall normal pressure across the wall at 1m and 

2m below the top of the silo determined from the finite element model. 
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Figure 8.17 - Wall normal pressure distribution across the wall in wheat 

With this softer material the amount of redistribution across the wall is less than that 

shown by the sand or gravel as would be expected due to the relative stiffness 

between the wall and the solid being much reduced. The results still show some 

redistribution with a pressure peak near the corner of the bin which reduces to a 

minimum at the midside position. 
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8.6.3 Patterns of vertical stress in the solid 

Figure 8.18 shows the patterns of vertical stress in the ensiled material. 
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Figure 8.18 - Pattern of vertical stress in wheat 1m from the surface of the solid 
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These patterns are similar in form to those observed in the sand and gravel but the 

magnitude is much reduced. Again, there is a larger value of internal vertical stress 

near the corner of the bin compared to near the midside of the wall. This arises from 

the stored material spanning between the stiff corners as detailed in figure 8.1. The 

redistribution of stress in the solid is reflected in the observed wall normal pressures 

(figure 8.17). 

8.6.4 Average and local values of k in the solid 

Figure 8.19 shows the average and local values of k calculated from the finite 

element model. 
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Figure 8.19 - Local and average values of k in wheat 

The wheat material shows similar trends to the sand and gravel models. The average 

value of k compared with the Eurocode value is about 10% lower. This compares 

favourably with the values found in the previous materials. As would be expected 

the value of k at the midside is lower than the average value and at the corner, higher. 

This is because the material at the midside is failing where the wall deforms outwards 

and material near the corner is confined by the stiff structural elements. 
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It may also be noted that the value of k corner at the surface of the solid is 

substantially smaller than the Rankine active ratio. This anomaly occurs because of 

the very low stresses in the solid at this point and therefore any small changes in the 

stresses (such as a rounding error from the finite element software) cause a large 

change in the value of k. 

8.6.5 Comparison with predictive law 

The best fit values of pm were shown in figure 8.16. These are systematically lower 

than the pressure predicted by Janssen as is the integrated pressure across the wall. 

Figure 8.20 shows the distribution of the parameter a down the depth of the bin. 
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Figure 8.20 -a determined from finite element method in wheat 

The value of a is lower for this soft material than it is for the stiffer sand and gravel. 

This indicates that there is less redistribution of the pressure in this case. The 

redistribution is affected by the deformation of the wall and therefore this softer, 

lighter material exhibiting smaller values of a compared to the sand (or gravel) is not 

unexpected. The observed form of distribution of a down the bin differs from that 

exhibited by the sand and gravel in that there is no increase in a towards the 

transition. This is due to the relative stiffness between the material and the wall 
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being much lower and therefore any extra stiffening effect at the transition has no 

measurable effect on the value of a. 

Finally, the results from the finite element model are compared to the predictive law 

at two levels. The values of pm and a determined from the best fit exercise were: 

" lm depth; a=1.37 and pm = 2.26kPa (Janssen pressure = 2.72kPa) 

" 2m depth; a=1.05 and pm = 4.36kPa (Janssen pressure = 4.73kPa) 
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Figure 8.21 - Comparison of pressures across the wall from finite element model and predictive 

law in wheat 

Again, this shows that the predictive law and the finite element method provide 

comparable results with agreement being within 5% across the bin. It may however 

be noted that this comparison merely shows that the predictive law can reproduce the 

distribution determined from the finite element analysis. It gives no indication about 

the form obtained from an experimental study. 

8.7 Summary 

The experimental geometry of Lahlouh et al (1995) has been modelled with the finite 

element method. Results have been obtained for the two materials that were used in 
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the experiment and comparisons drawn. The finite element analysis has shown 

comparable distributions of internal stress in the solid, k values and wall normal 

pressures. The finite element method cannot however reproduce the random features 

in the stored solid caused by filling (for example). These features have been shown 

to be important in their effect on the wall normal pressures (Ooi et al, 1990). 

The predictive law of Rotter et al (2002) has been introduced and the work from the 

paper revisited and extended in order to show that the predictive law can reproduce 

the pressure distributions shown in experimental work. The predictive law has also 
been compared to the finite element analysis and been shown to provide results that 

are consistent with each other in terms of the form of the distribution. 

Finally, a material that was not part of the original testing programme (wheat) has 

been modelled in the same geometry. This material was chosen due to its very 
different characteristics. Patterns and trends observed in the experiment and model 

of the sand and gravel are repeated in this material but lower levels of pressure 

redistribution are noted due to the lower stiffness of the wheat. 
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Chapter 9- Parametric study of a square planform silo 

9.1 Introduction 

This section of the thesis aims to use the finite element model described above 
(Chapter 6) to study the effect of several factors on the wall pressure distribution in a 

square planform silo. The results are compared to Janssen distributions and also to 

Rotter et al's (2002) predictive law described in Chapter 8 to determine whether this 

law can be used for more general predictive work in silo design. 

Results are presented for parametric variations of the square silo. The parameters 

that will be varied are: 

" Type of stored material (Leighton Buzzard sand, pea gravel, wheat) 

" Planform size 

" Wall thickness (and by extension wall stiffness) 

These parameters are varied to predict pressure distributions and the factors that are 

critical to their assessment. 

The first silo model will be of a 10m height and of plan dimension 1.5m square. This 

height is chosen in order to make the silo sufficiently deep to allow the Janssen 

asymptotic pressure to develop when the wall length is 1.5m. The base is modelled 

as having a concentric hopper of approximately 45° wall angle (consistent with the 

definition of hopper angle given in Chapter 7). The use of this boundary condition 

aims to reduce any effects of the type discussed in Chapter 7. 

This study aims to determine the effect that these parameters have upon the 

redistribution parameter a. It is predicted that a is related to the relative stiffness 

between the silo wall and the stored solid. Ooi and Rotter (1990) showed that the 

relative stiffness between the wall and stored solid could have an effect on the 

observed pressures in a cylindrical silo. A parameter was proposed for this 

relationship given by equation 9.1. 
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E5R (9.1) 
a= Et 

In the cylindrical silo however the wall needs to be thin and the stored solid rather 

stiff in order for the flexibility to have an effect. 

A similar expression may exist for the rectangular silo although rather than using the 

parameter Rh to characterise the shell rigidity, it would be more likely that some 

form of the plate flexural rigidity, (Ut)3, would be incorporated. The plate flexural 

rigidity is given by equation 9.2. 

Eta 
D-121-v2ý 

(9.2) 

Any relationship derived is likely to be of a higher order than the relationship given 

for the cylindrical bin. 

9.2 Type of stored material 

The three granular materials that were investigated in Chapter 6 are now modelled in 

a 10m deep bin of the same planform as used previously (1.5m square). The 

thickness of the wall however, is increased to 20mm. Initial investigation of this 

geometry showed that a thin wall (such as the 6mm used previously) leads to very 

large deflections in the wall. Further investigation showed that when deformations 

approach what may be defined as large (as a rule of thumb, as w t) it becomes 

difficult to predict the behaviour of the stored solid and hence values of a that are 

determined also become difficult to predict. Further investigation of this is given in 

section 9.5.1 but the work presented below is, for now, limited to cases where the 

wall deformation is small. 

Figure 9.1 shows the average wall normal pressures in this bin using the three stored 

granular materials. The average wall normal pressure plotted is the value of p1 

obtained by fitting the predictive law of Rotter et al (2002) to the finite element 

results (equation 9.3). 
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P= PC a Icoshl 2I (9.3) 
m sinh a) `dJ 

The value of pm is used as the curved distribution of the predictive law provides a 
better approximation of the integrated value (assuming the function is a good fit to 

the data) whereas Simpson's rule assumes the points to be joined by straight lines 

which can lead to numerical inaccuracy when applied to relatively coarse data such 

as this. The appropriate Janssen pressure distributions have also been plotted. 

The mesh density of these models is chosen in a similar manner to the method 

described previously for the smaller bins in order to provide the most accurate results 

but minimise the computational time required. 
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Figure 9.1 - Wall normal pressures in deep square planform bin 

In this deep bin it is easy to see that at a depth the Janssen distribution tends towards 

an asymptotic (constant) value and the finite element results follow this trend. The 

finite element predictions down the bin agree with the Janssen values within the 

bounds of experimental error. There are noticeable end effects and these are most 

pronounced in the silos filled with the two stiffer solids (sand and gravel). As noted 

previously the end node has been disregarded because the pressure recorded is the 

result of the node moving into the hopper. 
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These results have been fitted to the predictive law (Rotter et al, 2002) and therefore 

values of a have been determined. In section 8.3.1 it was shown that the value of a 

for sand was fairly stable away from the surface and the transition. A deep bin 

should demonstrate whether a stable value of a exists in regions away from the 

boundary conditions (surface and hopper). Figure 9.2 shows the value of a down the 

bin for the three materials as determined from the best fit to the finite element results. 
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Figure 9.2 - Variation of a with depth in different materials 

As expected the value of a is fairly stable in the main section of the bin away from 

the ends with an approximate value of 1.75 for sand, 1.65 for gravel and 0.45 for 

wheat. The two stiffer materials exhibit an increase in the value of a towards the 

transition which indicates that the distribution is affected either by the hopper or the 

increased wall stiffness where the hopper and walls meet. 

9.2.1 Relative stiffness between wall and stored solid 

In each of the three materials above, different values of a occur at a given depth. 

This describes the varying degrees of redistribution in each of the granular solids. It 

is expected that this phenomenon is attributable to the relative stiffness between the 

wall and the solid. Since the wall material and geometry (and hence stiffness) is the 

155 



same in the above three models the observed differences must be due to the stored 

solids having different equivalent elastic stiffness'. The constitutive model used in 

the finite element analysis does not explicitly define a stiffness, nor can it be readily 
determined because the constitutive law exhibits barotropy i. e. the stiffness is related 

to the stress level Therefore the results from the finite element analysis are 
interpreted to give a value of equivalent elastic stiffness that can be related to the 

elastic stiffness of the wall The ABAQUS theory manual (2001) gives the 

appropriate formulae to calculate the modulus for the porous elastic model These 

formulae can be used "in reverse" to work backwards from the stress values in the 

model and give a value of shear modulus. By then making the assumption that the 

material is linear elastic a value of elastic stiffness can be determined. 

Rather than calculate the elastic stiffness in each element (which would be extremely 

time consuming), a method for estimating the stiffness in each layer of elements was 

determined. Firstly, the equivalent elastic stiffness at the transition was determined 

as a reference value. This point in the bin was used as only small lateral wall 

deformations occurred at this level due to the increased stiffness of the structure 

arising from the joint between the walls and the hopper. The equivalent value of 

elastic stiffness at each level was then related to the ratio of vertical stress at the 

transition to the vertical stress at the point under consideration. It was found that 

using a Janssen vertical stress distribution for this was sufficiently accurate. As a 

check, calculations were performed at each level using the value of vertical stress 

determined from the finite element modeL It was found that the results obtained 

from this method and the method using the Janssen predicted value of vertical stress 

were very close and therefore this simplified approach was used for the remainder of 

the calculations. 

The calculation firstly requires the determination of the elastic volume change in the 

material. This is related to the stress level in the material and various material 

constants and is given by equation 9.4. 
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Po +l (9.4) 
J`r= In P' )+l 

(1+eo) P+1 1 

The value of p (which is called the average pressure stress in the ABAQUS manual) 

is given as the mean of the three directional stresses. 

p =-3 
ýQ11-1-an+a33) (9.5) 

It is then possible to directly determine the instantaneous shear modulus using 

equation 9.6. 

G- 3(1-2v)(1+eo) (p+ 
2(1 + v)2 

(9.6) 

If the assumption of a linear isotropic material is made then it is possible to directly 

convert this value to an elastic stiffness using equation 9.7. 

E= 2G(1 + v) (9.7) 

Using these formulae the reference value of elastic stiffness at the transition was 

calculated for each of the three materials. The results are presented in table 9.1. 

Stored material Sand Gravel Wheat 

Reference value of elastic stiffness (MPa) 18.10 15.15 0.73 

Table 9.1 - Equivalent elastic stiffness of the three materials 

Figure 9.2 showed that the material exhibiting the largest variation of pressure across 

the wall is the Leighton Buzzard sand (characterised by the higher values of a). This 

material also exhibits the highest equivalent elastic stiffness at the transition and 

therefore it may be deduced that a may be closely related to solid and wall stiess. 

Further investigation was therefore carried out to attempt to identify a more general 

relationship. 
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9.2.2 Deformations in the wall 

The analysis performed thus far has been a large deformation analysis. This does not 

necessarily mean that large deformations are occurring in either the solid or the wall 

but as was shown in section 3.10 the behaviour of plates can be affected even when 

the deformations are only approaching what may be defined as large (Ugural, 1981). 

As a check, the deformations down the centreline of the silo wall were inspected to 

determine whether large deflections were occurring. There could also be a 

significant effect on the value of a. The opposite could be said if the deformation is 

small. Figure 9.3 shows the normal deformations of the wall down the centreline of 

the silo described above when filled with the three materials. 
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Figure 9.3 - Normal deformations (w/t) down the centreline of the bin wall 

The predicted deflections in the model are small compared to the thickness of the 

plate. In order to fully take advantage of structural savings in this type of silo then 

the wall thickness would need to lower in order to induce some membrane tension 

into the plate. 
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9.3 Planform 

In the previous sections the silo studied was square with a width of 1.5m. This silo 

will now be increased in planform but will still be maintained square. The choice of 

planform sizes are 2m square, 2.5m square and 3m square. The initial wall thickness 

is chosen as 20mm. This is an arbitrary choice based upon the observed pressures 

and deformations above. An unstiffened silo wall of 20mm wall thickness will allow 

an observable level of redistribution of the wall normal pressure but still be thick 

enough to avoid excessive deflections in the wall. 

The mesh density of the finite element model is kept the same as for the previous 

study. 

9.3.1 Square planform silos with 20mm thick wall 

The results for the three different planforms of silo are again fitted to the predictive 

model (equation 8.1). The values of wall normal pressure are shown in figures 9.4- 

9.6 for sand, gravel and wheat respectively, as well as the appropriate Janssen 

distributions. 
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Figure 9.4 - Wall normal pressures for sand in square planform silos 
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Figure 9.5 - Wall normal pressures for gravel in square planform silos 
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Figure 9.6 - Wall normal pressures for wheat in square planform silos 

As the length of the wall increases (and hence the rigidity of the plate decreases) the 

observed end effects become more apparent in all materials. In the sand and gravel 

models the predicted pressures also become systematically higher than those 

predicted by Janssen. In the 2m planform model the finite element method 

predictions are in the order of 3-5% higher than the Janssen prediction. This rises to 

5-7% higher in the 3m planform model. This same pattern is not seen in the wheat 
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model where the corroboration between the finite element results and Janssen is in 

the order of 2% throughout the bin for all sizes of planform. This effect is assumed 

to be a function of the flexibility of the silo wall. As the wall length increases the 

flexural stiffness decreases. In the models filled with sand and gravel the pressures 

are in general higher (the mass of sand and gravel is approximately twice that of 

wheat) and therefore this effect is increased. Consideration of a 3m square planform 

model filled with sand but with wall thickness of 100mm shows that the agreement 

between the finite element results and the Janssen predictions is much improved 

compared to the results from the 20mm thick walled bin (figure 9.7). 
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Figure 9.7 - Comparison of Janssen and FEA prediction in 3m square planform bin with 
100mm thick wall 

It is expected that the values of a obtained from fitting the finite element predictions 

to the predictive law (equation 9.3) will be higher for those silos with a larger side 

length. This is due to the decreased rigidity of the plate and since the ensiled material 

is the same (and should therefore assume a similar stiffness) the relative stiffness 

between wall and material should be reduced. Figures 9.8-9.10 show the values of a 

for the three silos above again for sand, gravel and wheat respectively. 
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Figure 9.8 - Coefficient a for sand in the square planform bins 
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Figure 9.9 - Coefficient a for gravel in the square planform bins 

162 



2m plonform 
2 2.5m planform 

= °' 
-ý- 3m l f M -3 p an orm 

4 

ö6 
=E 

7 , _. 

9 

10 
0 0.5 1 1.5 2 

Coefficient a 

Figure 9.10 - Coefficient a for wheat in the square planform bins 

As expected the values of a are higher for silos with longer sides. The sand and 

gravel models exhibit similar forms of the variation of a down the bin whereas the 

wheat material is different entirely. This is due to the fact that the sand and gravel 

are relatively stiff (for granular bulk solids) but the wheat is a very soft material. The 

value of a for sand and gravel appear to tend towards a maximum value whereas a in 

the wheat is increasing steadily as the planform increases. This does not mean that 

there is not a maximum value for a in the silos with wheat, merely that up to 3m 

planform a maximum is not evident. 

In the sand and gravel models there is an extremely large peak in the value at the base 

in the 2.5m and 3m square bins. This indicates a very large amount of redistribution. 

This is due to the pressure in the corner being very high due to the presence of the 

stiff structural area where the walls meet the hopper. This leads to the observed large 

values of a. 

Figure 9.11 shows the horizontal distribution of wall pressure in sand just above the 

level where the bin meets the hopper for 20mm thick bins of varying planform. 
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Figure 9.11 - Distribution of pressure above the transition 

This figure clearly indicates that the larger models experience much higher peak 

pressures near the corner of the bin leading in turn to very large values of a. A large 

percentage of the load is carried by the corners as the wall length increases because 

the hopper/wall junction becomes less stiff at the midpoint. This leads to arching of 

the stored material between the structurally stiff corners producing the observed 

lower pressures at the midpoint. 

9.3.2 Stiffness of ensiled material 

The calculations detailed in equations 9.4 - 9.7 were again performed for the bins of 

varying planform with a 20mm wall thickness. The reference equivalent elastic 

modulus, E, of the three materials at the transition level are shown in table 9.2. 

Planform Reference equivalent elastic modulus, E (MPa) 

size (m) Sand Gravel Wheat 

1.5 18.10 15.15 0.73 

2.0 23.10 19.03 1.18 

2.5 28.27 22.21 1.47 

3.0 37.74 26.05 1.70 

Table 9.2 - Equivalent elastic stiffness in the square planform bins 
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Table 9.2 shows that for the same granular material, the equivalent elastic stiffness 

deduced from the results changes with the planform size. Figure 9.12 shows the 

relationship between the length of the silo wall and the calculated equivalent elastic 

stiffness for the three stored materials. 
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Figure 9.12 - Relationship between wall length and elastic stiffness of stored material 

The relationships for all three materials are almost linear apart from the 3m wall 

length bin when filled with sand. Inspection of the wall deformations shows that the 

3m bin experiences large deflections (w>0.5t) at this 20mm wall thickness (no matter 

what the ensiled material is modelled as) whereas the smaller bins do not. It may be 

that the relationship between the elastic stiffness and the wall length is linear until the 

bin experiences large deflections at which point the possible effect on equivalent 

elastic stiffness becomes difficult to predict. The conclusion might also be drawn 

that the equivalent elastic stiffness of the material is affected by the large deformation 

of the wall. This was assumed to be correct because it is known that the interaction 

between the wall and the solid has a direct effect on the observed wall pressures (Ooi 

and Rotter, 1990) and by extension, the stress state of the solid. 

As noted earlier there is a large end effect present in some of these bins. Therefore in 

order to study the relationship between the wall length and the value of a it is 
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necessary to study some area of the bin that is away from these end effects. The level 

chosen is 6m depth. This depth is chosen because it is reached before the end effects 
become apparent but it is also deep enough in the silo to allow the Janssen 

equilibrium to be almost developed. 

Figure 9.13 shows the relationship between the value a at 6m depth and the length of 

the wall. 
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Figure 9.13 - Relationship between wall length and a 

This figure appears to indicate that rather than exhibiting direct proportionality, the 

value of a may tend towards an asymptote. At this wall thickness (20mm) it is not 

possible to create larger models since large deflections will occur which appears to 

interfere with the trends noted so far. It would therefore be advantageous to 

incorporate a study into the relationship between t and a. The two studies could then 

be combined and enable many cases to be examined since a dimensionless measure 

of wall geometry could be formulated with which to compare the value of a. 

9.4 Wall thickness 

In order to investigate the effect of the wall thickness, a number of tests were 

performed using the small geometry as before (1.5m square planform) but with 
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increasing values of t. Section 9.3.2 showed that the relative stiffness between the 

wall and the solid had an effect on the level of redistribution across the silo wall but it 

was not possible to identify a direct relationship between these parameters. If the 

wall thickness is increased then the redistribution should decrease for a given solid 

and vice versa. The wall thickness used in section 9.2 for this model was 20mm and 

in this section results are present for wall thicknesses of 10,15,20,30 and 100mm. 

The choice of wall thicknesses used is arbitrary. As before, the finite element results 

were fitted to the predictive law (equation 9.3) in order to obtain values for p,,, and a. 

Figures 9.14-9.16 shows that there is almost indiscernible variation in the average 

wall pressure at a given level for any value oft in the three materials. 
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Figure 9.14 - Average normal wall pressures down the depth of a 1.5m square planform bin 

with varying wall thickness (sand fill) 
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Figure 9.15 - Average normal wall pressures down the depth of a 1.5m square planform bin with 

varying wall thickness (gravel fill) 
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Figure 9.16 - Average normal wall pressures down the depth of a 1.5m square planform bin with 

varying wall thickness (wheat fill) 

There are again some end effects as the transition of the bin is approached which are 

more pronounced when the bin wall is very thin. Fitting these results to the 

predictive law gives values of a at all points down the bin wall. Figures 9.17-9.19 

show the distribution of a for all the wall thickness' in the three materials. 
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Figure 9.18 - Variation of a with depth in bins of varying wall thickness (gravel) 
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Figure 9.19 - Variation of a with depth in bins of varying wall thickness (wheat) 

For the three materials the value of a increases in general as the wall becomes 

thinner. For sand and gravel, a appears to tend towards a maximum value as the wall 

becomes extremely thin whereas the value of a is still increasing in the models filled 

with wheat. 

The stiffness of the stored solid was again calculated. It is expected that this would 

be equal in all bins unless large deflections occur. This was shown to affect the 

equivalent elastic stiffness in the tests on bins of different planforms. Table 9.3 

shows the stiffness calculated from the finite element results. Those numbers in 

italics indicate if large deformations are observed in the wall of the model (w/t > 0.5). 

Equivalent elastic stiffness (MPa) 

t Sand Gravel Wheat 

10 17.04 13.87 0.95 

15 17.48 14.65 0.89 

20 18.10 15.15 0.73 

30 18.55 15.42 0.72 

100 17.57 14.69 0.72 

-^- t=100mm 
t 90 

°' 
- = mm 

- -t=20mm 

-t=15mm 
f' -*- t=10mm 

Table 9.3 - Equivalent elastic stiffness with varying wall thickness 
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In the sand and the gravel as the thickness of the bin wall increases there is a slight 

increase in the stiffness of the solid. When the bin wall becomes very thick 

(100mm), there would appear to be a reduction in stiffness. 

The wheat material shows the opposite pattern. As the wall thickness increases the 

stiffness of the material decreases. This material is extremely soft but the values 

calculated are in the same order of magnitude as those given by Ooi (1990) who 

gives the equivalent elastic stiffness of wheat in a small silo as 0.6MPa (after Hartlen 

et al, 1984) 

Again, the 6m depth in the bin is studied in order to determine whether there is a 

relationship between the wall thickness and the value of a. Figure 9.20 shows the 

variation of a at 6m beneath the surface of the solid with the wall thickness. 

3 

+ Sand 

2.5 Gravel 

m -r-Wheat 
tl 2 

1.5 

0 
0 20 40 60 80 100 120 

Wen thickness (mm) 

Figure 9.20 - Variation of a at 6m depth with wall thickness 

In the sand and gravel materials the first point on the graph (t=10mm) might be 

ignored as there is the possibility that this result has been affected by the observed 

large deformation. As t increases the value of a rapidly decreases and at t=30mm the 

redistribution is greatly reduced. When t=100mm the value approaches zero and 

therefore implies that there is no redistribution. This figure shows that there is likely 
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to be a point where the advantage of decreasing the wall thickness reaches a limit as 

the maximum amount of redistribution is already reached. 

9.5 Relative stiffness of silo wall and ensiled material 

It was suggested in section 9.1 that in the same way that the ratio R/t had been 

identified as a measure of the stiffness of a cylindrical silo, a form of the ratio L/t 

could be the equivalent measure for flat plates. If the wall is considered to be made 
from strips of unit width then the stiffness of each strip is related to L3/t3. The results 

presented above show that the value of a is affected by the relative stiffness of the 

wall and the stored solid and therefore the proposed parameter for the relative 

stiffness between the silo wall and the contents may be estimated from equation 9.8. 

E, L3 
Ew t3 

(9.8) 

Figure 9.21 shows this parameter against a for sand, gravel and wheat. Large 

deflection cases are ignored. 
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It is not easy to create "small deflection" models that lead to high values (comparable 

with sand and gravel) of ESL3/E,,, t3 when using the wheat material because of the 

extremely low stiffness of the solid. Large L/t values lead to large delfections. 

The figure shows that an asymptotic situation is approached as the value of the 

parameter EL3/EWt3 increases. An increase in the value of this signifies an increase 

in the wall length, a decrease in wall thickness or a combination of both. The 

asymptotic value of a for the sand appears to be around 2.3, for gravel the value 

might be taken as 2.7 and for wheat about 1.8. 

9.5.1 Effect of large deformations in the wall 

The cases studied above have been concerned with those deformations that are 

classified as small (i. e. w/t<0.5). It has been shown that when a large deflection 

occurs there is a significant effect on the value of a and the stiffness of the solid. 

Figure 9.22 shows the results for sand from figure 9.21 but with two large 

deformation cases added. These are indicated by the square data markers. 
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Figure 9.22 - Effect of large deformations on the value of a 
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:, 

The two cases that experience large deformations show a reduction in the value of a 
indicating that there is less redistribution of pressure when the deformation is large. 

However, due to the presence of large deformations, the value of the parameter 
ESL3/E,,, t3 is overestimated and therefore this graph is slightly misleading. If a 

measure of the relative stiffness of wall and solid that incorporated large deflections 

could be determined it is expected that all data points would sit on the same curve. 

The results shown suggest that in the type of bin modelled above the level of 

redistribution does not increase significantly even though the value of the parameter 

E L3/E,,, t3 has increased substantially. This indicates that the maximum value of a in 

large deformation cases may exhibit a lower maximum level than the cases presented 

earlier where a appeared to tend towards 2.25 for sand. 

9.6 Variation of height of silo 

All the silos modelled in this chapter thus far have had a height of 10m. Some of the 

same planforms and wall thicknesses are now modelled at 5m height in order to 

investigate whether these silos display similar trends to the deeper models. Figure 

9.23 shows the comparison of wall normal pressures in a 1.5m planform silo. The 

5m high silo is shown against results for the 10m high silo. Results are shown for a 

sand fill. 
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Figure 9.23 - Comparison of results obtained in a 10m deep bin and Sm deep bin (sand fill) 

The pressures in the 5m deep bin are very close to those predicted in the 10m deep 

bin near the surface. Moving down the bin the pressure deviates away from that in 

the 10m deep bin as the transition is reached. This end effect is similar to that 

exhibited by the l Om deep bin. 

This pattern is also evident in the bins of different wall thickness, planform and when 

they are modelled with different materials. Figure 9.24 shows results for 5m and 

1 Om deep bins with 2m planform filled with wheat. The wall thickness is 20mm. 
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Figure 9.24 - Average wall pressures in a 2m square planform silo of different height (wheat fill) 

Again, a similar pattern of results is observed. 

9.7 Summary 

The work presented above has investigated a number of variations in a square 

planform silo. The stored material modelled was first altered and this showed that 

different materials exhibit different levels of redistribution across the wall but on 

average compare well with the Janssen distribution for pressures down the bin wall. 
The equivalent elastic stiffness of the materials was calculated and it was shown that 

the stiffest material showed the highest level of redistribution. 

The variation of the planform size was then investigated and it was again shown that 

the Janssen theory was a good predictor of the pressure down the wall. The 

equivalent elastic stiffness was calculated and found to be almost linearly 

proportional to the size of the planform no matter what the stored material was 

modelled as. 

The wall thickness was then varied and it was found that there appeared to be a 

maximum value of a that was tended towards for each material as the wall got 

thinner. 
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All of these parameters were then combined to give an overall parameter that allowed 

comparison of different silo models. This showed that there does appear to be a 

maximum value of a for each granular material. 
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Chapter 10 - Experimental investigation of a very thin-walled square 

silo 

Jarrett et al (1995), Lahlouh et al (1995) and Rotter et al (2002) have shown that the 

pressure distribution across the wall in a square silo is non-uniform. In previous 

chapters this fact has been corroborated by finite element analysis. The finite 

element analysis was then used to show that if the wall of the structure is made very 

thin then the membrane stiffness of the plate supports some of the load and large 

deflections can safely occur without permanent deformation of the silo structure. In 

order to further investigate this phenomenon an experiment was performed using a 

very thin walled model steel silo filled with pea gravel of the same type used by 

Lahlouh et al (1995). 

10.1 Silo geometry and construction 

The silo studied is a Im square plan-form and is constructed with a flat base. The 

overall height of the silo is 1.5m and the wall thickness is 1.6mm. The silo is 

constructed from a 5mm thick steel angle section frame that supports flat wall panels 

that are joined to the frame using epoxy adhesive. This method was chosen as it was 

felt that other techniques would have a detrimental effect upon the quality of the 

internal walls. When using sheet metal that is of such a thin gauge, welding or 

mechanical fixing could cause local deformations near the corners. It has been 

shown by Ooi and She (1997) that silos are very sensitive to geometric defects and by 

using adhesive any effects of this type would be reduced whilst still retaining 

sufficient strength in the joints. Tests were performed on a range of adhesives in 

order to determine whether they were of suitable strength to support the walls. 

Figure 10.1 shows an overall view of the silo rig. There is some staining visible on 

the front face of wall as a result of the metal sheets getting damp during delivery. 

However, the sheets were mounted in such a way as to ensure the internal faces were 

free from this type of defect. 
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Filling and emptying are by means of an aero-mechanical conveyer. This takes 

stored material and places it into a filler box. This box can be seen at the top of 

figure 10.1 and an internal view is shown in figure 10.2. 

Figure 10.2 - Internal view of the filler box showing discharge holes 
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Figure 10.1 - Overall view of the experimental silo structure 



The purpose of this box is to produce as even and repeatable fill as possible in the 

silo. The holes may be shut off and then granular material placed in the box via the 

conveyor. This material is then allowed to discharge from the filler box into the silo. 

This process aims to give a level and evenly distributed fill. As the filler box is much 

shallower than the silo the process must be repeated several times until the silo is full. 

The silo is emptied by means of a large flap in the base of the silo. This experiment 

does not intend to measure emptying pressures and therefore the only consideration 

for this flap was that the silo could be emptied quickly in order to speed up the 

experimental process. Figure 10.3 shows the chute and conveyor that takes material 

away from the silo and back into the storage hopper. 

Figure 10.3 - The chute and conveyor for emptying the experimental silo rig 

10.1.1 Adhesive tests 

The frame of the silo is welded together. Into this frame is mounted flat metal 

panels. These are attached to the frame by adhesive. Tests were carried out on a 

range of adhesives in order to determine whether this method would provide enough 

strength. 

As the silo is filled the deflection of the wall will cause the adhesive joint to 

experience a shearing action. The tests performed therefore replicated this action. 

Samples were prepared by bonding two strips of mild steel with a joint surface area 
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of 625mm2. These were then mounted in an Instron 8500 series machine and loaded 

until failure occurred. Table 10.1 shows the results of this series of tests. 

Adhesive type Maximum load (kN) 

Araldite epoxy (type available in DIY shops) 5.848 

Araldite rapid (type available in DIY shops) 3.137 

Devcon 2 tonne epoxy 2.053 

Loctite 4080 cynoacrylate 9.332 

Araldite 2013 4.928 

Araldite 2014 7.204 

Table 10.1 - Results from shear tests of different adhesives 

The Loctite brand cynoacrylate gives the strongest bond in these tests. However, the 

disadvantage to this is that it prohibitively expensive for the quantities required and it 

has a limited storage life. The Araldite 2014 however is available in large quantities, 

can be stored for a considerable time (it is a two part epoxy) and provides sufficient 

strength for the silo model It was estimated that one wall (which is bonded along 

three sides) would have an adhesive contact surface area of approximately 0.1m2 and 
by extrapolating the above results it was determined that the chosen epoxy would 
have sufficient reserves of strength to support the entire mass of ensiled solid with 

ease. As a safety measure the top of the frame is tied together with angle section. 

This section allows the walls to move but in the event of a failure will prevent the 

wall from coming away from the model completely. 

10.2 Instrumentation 

The current work is concerned with the measurement of wall normal pressures in 

silos because these can be used to determine bending moments and are therefore 

extremely important for the design of rectangular steel silos. In order to determine 

whether the pressure distribution in the experimental silo is as predicted by the finite 

element model it would be ideal if the wall pressures could be measured directly. 

However, this may not be possible for reasons discussed below and it may be 
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necessary to make other measurements in order to infer the pressure distribution 

behind the wall. Possible methods that could be used are discussed below. 

10.2.1 Deflections of the wall 

Normal deflections of the wall could be measured and these compared to the finite 

element model. Unfortunately this would give little information about the state of 

stress in the wall or the stored solid. Small changes in the wall deflections could 

result in large changes in the stress state of the stored solid (and hence the wall 

normal pressures) and it would therefore be difficult to deduce much information by 

studying this alone. 

If the silo used by Lahlouh et al (1995) is considered it can be shown using finite 

element analysis that the deflected form is not too sensitive to the wall normal 

pressure. Figure 10.4 shows the deflections across the wall (at an arbitrary height) 

taken from the finite element analysis performed previously. It also shows the same 

silo geometry subjected to a hydrostatic pressure distribution. It can be seen that 

although the pressure distribution on the wall is now radically different there is little 

difference in the deflected form and hence it would be difficult to infer any 

information about the pressures on the wall and the stress state in the solid. 
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Figure 10.4 - Wall normal deflections calculated from FEA under different loading conditions 
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10.2.2 Strain in the wall 

Some researchers (e. g. Chen et al, 1996) have suggested that it is possible to infer the 

pressure behind a wall from strain readings taken from gauges attached to the exterior 
of the wall. This method would make the instrumentation of the silo relatively 

simple and would not affect the pressure readings by disturbing the continuity of the 

wall inside the silo. However, this method makes a large number of assumptions 

which reduce the accuracy and has mostly been applied to circular silos which, being 

shells of revolution, are radically different to the plate type structure being studied 
here. The presence of large deformations would almost certainly render this method 

unusable. 

10.2.3 Wall normal pressures 

Obviously to directly measure the wall normal pressures in the silo would be the 

ideal case. There are two options available for directly measuring these pressures, 
both of which are based on pressure cells of the type developed by Askegaard (1961; 

1978). These are measurement by a cell placed in the wall or by a free field cell 

placed in the granular solid adjacent to the wall. A brief discussion of the principles 
involved in these two types of cell follows. 

10.2.3.1 Wall pressure cells 

Wall pressure cells for use in silo problems are usually based upon the design of 
Askegaard (1961). This design measures the pressure on the front face of the cell by 

transmitting this pressure through the face and into an oil filled cavity. The, pressure 
in this cavity is then measured by a semiconducter based pressure transducer. 

Assumptions are made in the design of these types of cells but they have been shown 

to provide reliable results with a minimum of measuring error. However, one of 

these assumptions is that the wall is rigid. In the current case this is obviously not so 

and any cell design based upon Askegaard's may not be as reliable as those 

previously tested. 

Figure 10.5 shows the principles of operation of this type of cell. 
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Figure 10.5 - Principle of wall pressure cell 

Cells of this type are generally constructed by removing a section of the silo wall and 

machining the cell into the front of this. It is most important that the cell is made as 

stiff as possible to avoid any localised arching that may lead to erroneous pressure 

measurements (Askegaard, 1998). Investigation of some wall pressure cells of this 

type and the design of a cell for use in a thin-walled silo can be found in Appendix E. 

10.2.3.2 Free field cells 

As an alternative to wall cells, free field cells which measure the pressure in the solid 

can be used. These are based upon the theory of an inclusion in an elastic medium 
(Eshelby (1957)) and their use has been well documented (Munch-Anderson, 1982; 

Askegaard, 1995; Askegaard and Brown, 1995). Free field cells require a greater 
degree of "skill" when using them compared to wall cells because they can be 

sensitive to the way the material around them is in contact. Gamier et al (1999) 

investigated methods for the placement of free field cells and deduced that with a 

certain amount of practice it is possible to place these cells by hand and obtain 

consistent readings between experimental runs. 

Free field cells of the type shown in figure 10.6 are available for this project and 

would seem to be the ideal solution. 
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Figure 10.6 - Free field cell of the type designed by Askegaard (1978) 

Unlike the wall cell the bending of the wall will not induce an incorrect reading in the 

cell but there may be other problems associated with the large deflection expected in 

this experiment. As previously stated, this type of cell is sensitive to errors induced 

by the packing of the bulk solid around it. If a large normal deflection occurs at the 

midside of the wall then the solid behind that wall will undergo a large plastic 

deformation. This may adversely affect any cell that was placed in the bulk solid as 

the model silo was filled. 

In short, although measuring the wall pressure would appear to be the only reliable 

way to demonstrate the non-linear patterns of wall pressure that may exist, there are 

problems associated with both types of pressure cell available. It may therefore be 

necessary to infer that the pressure distribution is non-linear by measuring pressures 

in the (relatively) stiff corner (where bending would have a minimum effect on wall 

pressure cells and deformations would be small reducing possible effects on free field 

cells) and then comparing with finite element results and the predictive law proposed 

by Rotter et al (2002). Free field cells could also be used near the midside of the silo 

wall but these results may be unreliable. 

10.3 Finite element predictions of the experimental rig 

The previously described finite element method is used to model the experimental 

rig. In order to model more accurately the corner of the walls (which will be stiffer 

due to the presence of the angle-section framework) the shell elements in this area are 
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assigned a larger thickness than those modelling the wall. The granular bulk solid 

used here is the pea gravel. Figure 10.7 shows the finite element predictions of the 

pressure down the wall compared with the Janssen prediction. 
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Figure 10.7 - Finite element and Janssen predictions of the mean pressure in the experimental 

rig 

There is a large end effect associated with the finite element model. This is due to 

the flat-bottomed base condition and similar effects were seen in Chapter 7. Overall 

agreement between the Janssen theory and the finite element results is comparable to 

the agreement seen in previous models. 

Figure 10.8 shows the distribution of pressure across the wall halfway down the bin 

(0.75m) from the finite element model. 
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Figure 10.8 - Finite element prediction of pressure across the wall in the experimental rig 

There is a quite large amount of redistribution evident in the model. The ratio of 

corner to midside pressure is approximately 11: 1 which will result in values of a of 

around 3 and should be easily measurable in the experimental rig. Fitting the 

predictive law (equation 9.3) to these finite element results gives a value of a at this 

depth of 2.99. 

Evaluation of the solid stiffness as outlined in Chapter 9 is also possible. This gives a 

value for the relative stiffness parameter (equation 9.8). The appropriate value of 

E3L3/EW, t3 for this silo is therefore 9242 and referring to figure 9.21 shows that, since 

this is a very large value, the value of a predicted is going to be close to 3. 

10.4 Experimental results 

The experiment was performed a number of times. The strain gauges attached to the 

silo were zeroed and filling via the wooden filler box commenced. The silo was 

filled to the halfway point and then the pressure cells were placed in the gravel. Zero 

readings were taken for these cells. The silo was then filled to the top and readings 

taken from the pressure cells and strain gauges. 
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10.4.1 Pressures across the centreline 

Figure 10.9 shows the pressures across the centreline of the silo determined from the 

free field cells compared to the finite element model predictions. 
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Figure 10.9 - Pressures in the model silo from free field cells and finite element model 

A large variation in the predicted pressure is observed between different test runs. 

The pressures measured in the experimental silo show a distribution in agreement 

with the finite element model with a large pressure near the corner and very low 

pressures at the mid-point of the wall where the normal deformation is quite large. 

The pressures measured show high degrees of variation between repeat experiments 

even with the use of the filler box to attempt to make the fill as even and repeatable 

as possible. This phenomenon has been noted by other researchers (Zhong el al, 

2001). 

10.4.2 Comparison with predictive law 

The pressures measured across the centreline are fitted to the predictive law outlined 

previously. This gives values of pm and a. Table 10.2 shows values determined from 

the three test series as well as the appropriate Janssen pressure predictions. The 

Janssen values shown are calculated using ak value as recommended by ENV 1991- 

Finite element prediction 

r Test Series I 

A Test Series 2 

x Test Series 3 
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4 (1995) and using the Rankine active ratio. Using this ratio may be more suitable 
for this silo due to its squat nature and the fact that deformations that could lead to 

stored solid failure are expected. 

Test series 1 Test series 2 Test series 3 

a 3.53 3.85 3.24 

pes, (kPa) 3.14 3.68 2.11 

Janssen (ENV 1991-4), kPa 4.38 

Janssen (Rankine), kPa 2.76 

Table 10.2 - Values of a and pm determined from the predictive law of Rotter et a! (2002) 

These results again show the variability of the measured pressures but nevertheless 

the predictive law provides a good fit to the experimental data. Figure 10.10 shows 

the finite element, the measured and the best fit predictive law values of wall normal 

pressure at a depth of 0.5m in the bin. 
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Figure 10.10 - Predictive law of Rotter et al (2002) fitted to experimental results 
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Of course, due to the variability of the test results there is a similar variation in the 

results from the best fit to the predictive law. However, the previously proposed 

predictive law of Rotter et al (2002) has again been shown to provide a good fit to 

experimental data. 

10.4.3 Strain in the silo wall 

As well as measuring pressures across the centreline of the silo wall a number of 

strain readings in the wall were taken from gauges attached to the exterior of the 
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experimental rig. These readings can be compared to the finite element predictions 

of strain in the wall. Figure 10.11 shows the variation of horizontal and vertical 

strain down the bin wall along the midpoint as determined from the experimental and 

finite element models. 

Figure 10.11 - Horizontal and vertical strain down the centreline of the bin wall 

Patterns predicted by the finite element model are repeated in the experiment. There 

is a high tensile strain across the bin wall near the top as a result of the top of the wall 

being unrestrained by any external stiffening. The vertical stress in the wall 

predicted by the finite element model is repeated with reasonable agreement in the 

experiment. 
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10.5 Summary 

A small square silo with a very thin wall was designed and this design modelled 

using the finite element model that has been developed. The finite element model 

showed that using a wall thickness of 1.6mm should lead to large variations of 

normal pressure across the wall. From measurements taken using free field cells this 

has been shown to be correct and the pressures predicted by the finite element model 

agree reasonably with the measured data. 

The measured data shows a large degree of variability between fills which would 

prove difficult to implement in the finite element modeL 

Finally, the measured pressures are fitted to the predictive model of Rotter et al 
(2002) which again shows that for square planform silos this simple two parameter 

model provides a good representation of the pressures observed on a level. 
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Chapter 11 - Rectangular planform silos 

The work presented so far has concerned silos of a square planform. Therefore, due 

to symmetry of the finite element model only pressures on one wall have been 

considered. Although factors such as eccentric discharge and loading will affect the 

distribution of wall pressure, most codes are not specific about how these pressures 

will be dealt with. 

Attention is now turned to silos that are rectangular and non-square in planform. 

Here both walls must be considered, as they may experience different pressure 

regimes due to the different wall lengths. Figure 11.1 shows the notation and 

conventions used below to describe rectangular planform silos. 

11.1 Limitations to this study 

This study will investigate the pressures in rectangular silos that are close to square 

(2: 1 is the largest ratio of a/b that will be considered), and that are either at the upper 

extreme of shallow or tall Ratios less than 1.0 for h/a are relatively squat (defined as 

shallow or squat in EN 1991-4), but would be covered in most silo codes. Silos that 

are shallow and/or long will generally be treated as bunkers, and plane strain analyses 

may be valid for pressure predictions on the longer wall. This provides a known 

bound for the stress conditions. 
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Definition h/dr 

Squat Less than 0.4 

Shallow Between 0.4 and 1.0 

Intermediate Between 1.0 and 2.0 

Slender Greater than 2.0 

Table 11.1 - Definitions according to EN1991-4 (Note: d= b for rectangular silos) 

11.2 Current guidance available 

A number of other authors have dealt with rectangular silos, and it is probably helpful 

to outline the approaches of Reimbert and Reimbert (1976) and Gaylord and Gaylord 

(1983). The former report their results for model-scale tests, and their deductions 

from measurements of pressure at the base of silos; with some assumptions these 

measurements enable an estimate of wall pressures to be made. 

Reimbert and Reimbert base their theory upon the equilibrium of a slice (as Janssen), 

assuming that, at some depth in the silo, the wall friction equilibrates the downward 

force of the slice. They assume (and refer to experiments) that the pressure on the 

small wall is that which would act on a square silo of plan b*b. Hence a deduction 

about the pressure on the longer walls is made, and the `mean" thrust derived on both 

walls based on a hydraulic radius, R These are calculated from equations 11.1 and 

11.2 where subscripts S and L refer to the shorter and longer walls respectively. 

Short wall 
__rb1 RS l4) 

Long wall RL = 
(q2 

aJ 
(a > b) 

(11. x) 

(11.2) 

This asymptotic value can only be reached if the silo is sufficiently deep, and again 

implies a constant value of lateral pressure ratio - although it should be noted that 

Reimbert and Reimbert report the mean pressure. 
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As side length a becomes much greater than b, then the pressure on the longer wall 

tends to a limiting value that is twice the pressure on the shorter wall. This is shown 
in the relationship in Figure 11.2 The ratio of the side lengths directly determines the 

pressure ratio. 
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Figure 11.2 - Ratio of pressures on long side to short side (after Reimbert) 

Gaylord and Gaylord also report this same derivation using different notation, but 

somewhat confusingly conclude that the pressure on the longer side is lower than that 

on the shorter side, in spite of the formulae presented. It is probable that this may be 

an error, and their intention is to suggest the pressure on the longer side is the larger. 

Lightfoot and Michael (1966) conducted full scale and model tests on squat coal 

bunkers. Some design rules are given in this work for these types of structures but 

these are not extended to deeper silos. 

Figure 11.3 shows the wall normal pressure predictions in a bin of planform ratio 2: 1 

as calculated from ENV 1991-4 (1995) and formulae 11.1 and 11.2. In the latest 

draft of EN1991, the hydraulic radius is still used in the Janssen calculations: 
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U -(2)(l+a) 
(11.3) 

This leads to different pressure regimes, as shown in Figure 11.3. The main thing to 

note is that it implies the Janssen assumptions of constant lateral pressure ratio, k, at 

any given depth. 
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Figure 11.3 - Wall normal pressure predictions in a rectangular planform silo 

The consequence is that the designer has different sources of information giving at 

least two pressure regimes. Both of them imply that the wall of the silo is rigid and 

that the lateral pressure ratio is constant throughout. This may be perfectly 

acceptable for concrete silos, but for flexible walled silos the pressure regimes 

predicted on filling may be inappropriate. 

It is also noted that for silos that have very large planform ratios the pressure 

predicted by the Eurocode and the pressure on the long wall as predicted by Reimbert 

and Reimbert converge to a value determined from a hydraulic radius twice that of 

the short wall (i. e. R= b/2). 
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The structural design will be based on the wall pressures, but will also have 

implications for continuity at the corners, and the wall pressures that are developed. 

If the longer wall moves outwards away from the stored material, then if there is 

structural continuity at the corners (i. e. identical wall rotations about a vertical axis 

through the corner will be continuous) the shorter wall must move inwards - towards 

the stored material, and vice versa. 

The remainder of this Chapter will investigate pressures in some selected rectangular 

silo forms, and demonstrate that the wall flexibility is important for filling pressures. 

11.3 Rigid walled silo 

ENV 1991-4 gives pressure predictions for rigid walled silos using the overall 

hydraulic radius. A model was created 10m high with a hopper on the base. This 

hopper had an angle to the long wall of 45°. The walls were fully restrained in all 

directions and the fill was sand. The fill surface was modelled as level. Figure 11.4 

shows the average pressures predicted by the finite element model on the long and 

the short wall. The predictions from ENV 1991-4 are also plotted. Two different 

planform ratios are shown, 2: 1 and 1.5: 1. 
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Figure 11.4 - Long and short wall pressures in a 2: 1 planform ratio bin compared to predictions 
from ENV 1991-4 (1995) 
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This shows that for rigid walls the internal pressures are well predicted by ENV 

1991-4 (1995). 

Figure 11.5 shows the 2: 1 planform ratio rigid-walled bin compared to the 

predictions based upon equations 11.1 and 11.2 of Reimbert and Reimbert (1976). 
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Figure 11.5 - FEA predictions compared to the predictions of Reimbert and Reimbert (1976) 

This clearly shows that the predictions made by the finite element model do not agree 

with the Reimbert and Reimbert distribution. It may be noted that Reimbert and 

Reimbert based their calculations on a limited number of small scale experiments. 

The physical size of these experimental rigs give cause for concern as it is known that 

scale effects can be very influential (Munch-Anderson, 1983). 

11.4 Variation of planform ratio 

Four planform ratios are considered. These are 1.1: 1,1.3: 1,1.5: 1 and 2: 1. These 

ratios are chosen to represent silos that are just out of square and therefore pressures 

on the two walls will not be radically different. If silos of a large planform ratio are 

considered (e. g. 5: 1) then the longer wall will be so flexible compared to the short 

wall that its behaviour will dominate the silo response and comparisons between the 

two walls will be difficult to draw. 

hi 

ENV 199 1-4 1995 , 

-ý Short wall 34 XX 
-i- Long wall 

-)E- Normal pressure on long wall 
(Reimbert, 1976) 

-A- Normal pressure on short wall 
(Reimbert, 1976) 
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Results from the finite element model are compared to wall pressures predictions 

which are calculated from the Janssen formula using the value of hydraulic radius 

given ENV 1991-4 (1995). The actual sizes of the bins modelled are given in table 

11.2. The boundary condition at the base is modelled as for the rigid walled model. 

The mesh density is kept the same as was used in the study of the square silo. 

Ratio Long wall (a) Short wall (b) h/de 

1.1: 1 1.65m 1.5m 6.67 

1.3: 1 1.95m 1.5m 6.67 

1.5: 1 2.25m 1.5m 6.67 

2: 1 3m 1.5m 6.67 

Table 11.2 - Length of walls in rectangular planform silo models 

Figures 11.6-11.9 show the wall normal pressures in the three different planforms of 

bin filled with sand. The wall thickness of the bin 20mm. The Janssen distributions 

are also shown. 
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Figure 11.6 - Wall normal pressure in a 1.1: 1 planform ratio silo (sand fill) 
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Figure 11.7 - Wall normal pressure in a 1.3: 1 planform ratio silo (sand fill) 
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Figure 11.8 - Wall normal pressure in a 1.5: 1 planform ratio silo (sand fill) 
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Figure 11.9 - Wall normal pressure in a 2: 1 planform ratio silo (sand fill) 

The initial observation is that the pressures predicted by the finite element method 

disagree with the predictions from the Eurocode. The pressures on the long and short 

walls are no longer the same and the shorter wall in the finite element model is 

experiencing a larger pressure than the longer wall which is contrary to the prediction 

of Reimbert and Reimbert (1976). By inspection of the wall deformations it is 

possible to identify the mechanism that explains this phenomenon. In the rectangular 

bin the pressure acting on the long wall causes a moment about the corner of the bin. 

This is also true of the shorter side but the moment on the longer wall is greater. This 

causes a rotation of the walls about the corner and forces the short wall back towards 

the stored material. This corresponds to a change in state from active on the long 

wall (i. e. it is failing) towards passive on the short wall (it is being compressed). This 

causes the observed higher pressures. Figure 11.10 shows an exaggerated contour 

plot of the top of the silo walls. The magnitude of the deformation is shown. This 

plot clearly shows the longer wall deforming outwards (i. e. away from the stored 

material) and the shorter wall deforming inwards (i. e. towards the stored material). 
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Figure 11.10 - Deformation of the wall at the top of the silo 

Clearly, for flexible rectangular bins there are shortcomings in the current theory. In 

this unstiffened case the observed pressures, whilst still conforming to a Janssen form 

of distribution, are poorly predicted by the theory. 

Figures 11.11-11.14 show the same three bins but filled with wheat material. 
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Figure 11.11 - Wall normal pressure in a 1.1: 1 planform ratio silo (wheat fill) 
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Figure 11.12 - Wall normal pressure in a 1.3: 1 planform ratio silo (wheat fill) 
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Figure 11.13 - Wall normal pressure in a 1.5: 1 planform ratio silo (wheat fill) 
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Figure 11.14 - Wall normal pressure in a 2: 1 planform ratio silo (wheat fill) 

The average pressure down the bin wall follows a similar pattern to that observed in 

the sand model. Inspection of the wall deformations shows that the mechanism 

whereby the walls rotate around the corner also occurs in this model. 

11.5 Variation of wall thickness 

In order to investigate the effects of wall thickness, one particular rectangular silo has 

been analysed. The aspect ratio - the ratio of the longer side to shorter side (a/b) - is 

chosen as 1.5: 1. In this initial study, wall thickness has been kept constant for both 

long and short side walls. Three different wall thicknesses have been used: 10mm, 

15mm and 20mm. The stored material is modelled as Leighton Buzzard sand. The 

variation of wall normal pressures at mid-height (5m depth) are shown in Figure 

11.15. 
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Figure 11.15 - Redistribution of wall normal stress in a rectangular bin of planform ratio 1.5: 1 

The long wall shows a much lower pressure at the midpoint compared to the short 

wall. This can be attributed to the decreased flexural stiffness of the wall. The 

higher values seen on the short wall can be attributed to the rotational effect 

observed. 

For all three wall thicknesses, the previously reported normal pressure variation is 

present. For the thinner walls the ratio of corner to midside pressure is higher. The 

graph also shows that the average pressure on the short wall is higher than that of the 

long wall (due to the previously described rotations). 

Figure 11.15 shows the redistribution of wall normal stress across the wall for three 

different wall thicknesses. The section is chosen - somewhat arbitrarily - as the mid- 

height of the bin section (i. e. at a depths of 5m). At the corner of the bin the 

orthogonal stresses differ. Assuming the major principal stress is vertical, the 

implication is that the principal direction on a horizontal plane is not at 45° to the 

wall. The results are consistent with an arching mechanism between corners. 
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11.6 Summary 

The work presented above shows that when predicting wall pressures for rigid walled 

silos it is appropriate to use the values suggested by ENV 1991-4 (1995). The 

suggestions of Reimbert and Reimbert (1976) appear to disagree with the predictions 
for rigid walled silos. When the wall is made flexible the patterns of pressure 

predicted by the finite element model become more unpredictable. It is clear that the 

work of Reimbert and Reimbert (1976) is at odds with the finite element model but 

the pressures predicted by the Eurocode will lead to conservative designs as the 

planform aspect ratio increases. 

More efficient rectangular silos might be designed if these reduced wall pressure 

phenomena are exploited, with sufficient ductility in the vertical corner joints. If 

designs are enabled that allow reduced midside wall pressures to be used, a thinner 

wall section can be used. Structural efficiency becomes important in several 

applications, but knowledge of the pressure patterns is also essential to understand 

the relationship between internal pressures and flow patterns in the stored solid 
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Chapter 12 - Conclusions and further work 

The work presented here has investigated several aspects of silo problems. 

Firstly, the general problem of describing a discrete, granular material using a 

continuum method was considered. Previous finite element work has either used 
laws based on a linear elastic assumption or based upon parameters (such as the 

internal angle of friction) regularly used to describe granular materials. It has been 

shown that these parameters alone may not lead to constitutive laws that are suitably 

robust for the prediction of silo wall pressures. In particular the use of a parameter 

(in this work, the logarithmic bulk modulus) that relates the stiffness of the stored 
bulk solid to the stress level is especially important. Chapter 6 showed that two 

granular materials whose properties are very similar when described in terms of 
"standard" bulk solids parameters could produce pressure distributions across the 

wall of a square planform silo that were markedly different. This replicated 

observations that had been made in experimental work (Lahlouh et al, 1995). 

Chapter 7 investigated some observed end-effects in an axisymmetric model Wall 

pressures increase above the Janssen predicted pressures near the base of the silo, and 

confirm previously reported results. A mechanism was proposed that explains the 

observed pressures. In axisymmetric models with hoppers, it was noted that, even 

though these models were relatively thick-walled, small deformations of the hopper 

were shown to have very large effects on the wall pressures both above and below the 

transition. 

A parametric survey was carried out on a square planform silo and investigated the 

effect of varying the stored solid, the wall thickness and the planform size. A 

parameter was formulated that characterised the relative stiffness between stored bulk 

solid and silo wall. Further investigation showed that there appears to be a maximum 
level of redistribution of pressure across the wall and therefore there is a limit to the 

structural savings to be made by further reducing the wall thickness. 
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An experimental silo with a very thin wall (1.6mm) showed patterns of wall pressure 

that agreed with the finite element model and the redistribution law of Rotter et al 
(2002). 

Rectangular planform silos were investigated and the finite element results showed 

that patterns of pressure on the long and the short wall disagree with existing 
knowledge. It had been suggested that the long wall would experience a larger 

pressure than the shorter wall but in the modelled flexible walled silos this was 

shown to be untrue. A mechanism was identified whereby there is rotation about the 

comer of the silo resulting in the observed pressure distributions. 

12.1 Summary of main conclusions 

In summary the main findings of the work are: 

" Constitutive laws for granular materials in silo models must (in all but the most 

simple axisymmetric cases) account for plastic deformations. This is especially 

true in thin-walled silos. 

" Common parameters used to classify bulk solids (such as 0) may not be sufficient 

to accurately model their behaviour in silo problems. It is necessary to have some 

parameter comparable to the logarithmic bulk modulus in order to account for 

volumetric change. Use of the porous elastic law in ABAQUS means that the 

material stiffens as the overall stress increases. This feature must be incorporated 

in any constitutive model for non-circular silos. 

" End-effects observed in finite element modelling of silos are a real phenomenon 

as a result of the stiffness of the base and the friction between the wall and the 

stored bulk solid. 

" In axisymmetric silo problems the flexibility of the hopper has a large effect on 

the pressures both above the transition and in the hopper. Even when the hopper 

is modelled with thick walls, small deformations that occur can have a radical 

effect on the pressure regimes. 
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" Simple one-dimensional consolidation tests on granular bulk solids were shown 
to provide material parameters that resulted in finite element predictions which 

agreed well with experimental data. 

" Analysis of three-dimensional square silos shows that the value of k is not 

constant at a given depth. This is one of the major assumptions in the Janssen 

equations and therefore the use of this theory in relation to square silos must be 

questioned. It was however shown that the Janssen distribution was a good 

predictor of the mean pressure. 

" The predictive law of Rotter et al (2002) gives a good representation of finite 

element results for pressures across the wall. A material not used in the original 

paper was modelled (wheat) and the patterns seen previously were predicted. 

" Following a previous study, a parameter a to characterise pressure disrtibutions 

has been postulated. This work shows that it relies on the relative stiffness 

between silo wall and stored material There is an asymptotic value of a for a 

given material and therefore there is a theoretical limit to the amount of stress 

redistnbution. It was also shown that if large deformations occurred the value of 

a was hard to predict based upon the proposed relative stiffness parameter. 

" An experiment using a very thin-walled silo was conducted and the showed that 

the finite element predictions were a good comparison. The results obtained 
fitted the predictive law very well and the values of a agreed with the patterns 

predicted by the relative stiffness parameter. Large deflections did not occur. 

" Current methods for the prediction of the pressures on the long and the short wall 
in a rectangular silo are inadequate, when the silo wall is flexible. Reimbert and 
Reimbert (1976) suggest a larger pressure on the long wall and lower on the short 

wall. The finite element results suggest that this is not the case It was also 

shown that ENV 1991-4 (1995) was only applicable to silos that featured rigid 

walls and this would appear to be a shortcoming. 
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12.2 Further work 

During the course of this research a number of avenues of exploration have been 
identified. 

" Fill method; the work presented here used an incremental gravity fill method but 

other researchers have used a layered fill method. It would be of interest to 
investigate whether results would be affected dependent on which method was 

used, and which is more appropriate. 

" Hopper pressures; there are a number of theories for the prediction of pressures in 

hoppers. Hopper pressures are only discussed briefly here but the finite element 

model could be used to investigate the effect on filling pressures of different 

hoppers (e. g. mass flow, funnel flow, eccentric etc). 

" Stiffened silos; it was noted that rectangular silos are often stiffened. The finite 

element model could be used to investigate the effect of these stiffeners on 

pressure distributions. 

" Rectangular silos; chapter 11 identified some general trends in rectangular silos 
but further work is needed to formulate an accurate method for the prediction of 

pressures in rectangular silos, especially those with very flexible walls. 

" Discharge pressures; this work has been solely interested in pressures exerted on 
the walls of a full silo. The natural extension to this work would be to move 
towards a model that could predict the pressures during discharge. 
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Appendix A- Derivation of the Janssen formula 

The Janssen (1895) theory that is referred to in this work and in most current codes 

(ENV 1991-4,1995; DIN 1055,1987) is based upon the equilibrium of a horizontal 

slice of material in a deep silo. This equilibrium is shown in figure A. 1. 

Summation of the vertical forces gives equation A. 1. 

dp, A-yAdy+gCdy=0 (A. 1) 

The relationship between the pressure on the wall and the friction coefficient is given 

by equation A. 2. 

=p ph (A. 2) 

The relationship between the horizontal and vertical pressure is taken as constant and 

defined by equation A. 3. 
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ph - 
kpr (A. 3) 

Substituting equations A. 2 and A. 3 into equation A. 1 and integrating gives equations 

A. 4 and A. 5 for the vertical and horizontal pressure on the wall respectively. 

P. _ (1-e-vý)PR) (A. 4) 

Ph =2 (1-e-1kr/R) (A'S) 
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Appendix B- Convergence test on the three-dimensional model 

In order to choose a mesh density for the three-dimensional model that provides 

accurate results with the minimum of computational time a convergence test was 

performed. The geometry of Lahlouh et al (1995) was meshed with increasingly 

larger numbers of elements and the horizontal displacement at the centre-top of the 

silo wall was monitored. This displacement will converge to a value It is expected 

that a very coarse mesh will poorly estimate this value, while a very fine mesh will 

provide an accurate result but at the expense of increased computational time. Five 

meshes were considered and table B. l gives the total number of elements in each 

model. The distribution of elements is uniform along each edge. Distributions with a 

mesh density greater than those outlined below generate a large number of very small 

elements. When the contact pairs are created in such a model the position of some 

nodes is adjusted slightly to ensure the slave and master contact surfaces are correctly 

orientated. This can lead to the very small elements adjacent to the contact surface 

being defined incorrectly and having a negative volume or turning inside out. This 

type of error will cause the Abaqus solver to terminate the analysis. 

Coarse Fine 

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

Total no. of elements 297 527 1013 1711 2657 

Table ß. 1-! Number of elements in each mesh 

Figure B. 1 gives a pictorial representation of the element distribution in the part of 

the model representing the stored solid in the parallel section of the bin. 
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Mesh 3 Mesh 5 

- Element distribution in the parallel section of the bin 

25 

The choice to monitor the displacement of the bin is an arbitrary one. Any of the 

output variables could feasibly be monitored. Figure B. 2 shows the displacement of 

this point as determined by the five different meshes. 

1.2 
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1.1 
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= 1.04 
0 500 1000 1500 2000 2500 3000 

Number of elements in model 

Figure B. 2 - Wall normal deformation at the top mid-point of the bin 

It shows clearly that the value of the displacement tends towards 1.18mm and that 

meshes 3,4 and 5 give the most accurate results. This indicates that any mesh above 

the density of mesh 3 could be used and it would in fact be advantageous to use mesh 
density 3 as it is the quickest to solve. 
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Appendix C- Sample finite element input file 

The following is an input file for ABAQUS 6.2 that models the geometry of Lahlouh 

et al (1995) filled with Leighton Buzzard sand whose behaviour is described by the 

porous-elastic/Drucker-Prager constitutive law. Sections of the node and element 
definitions have been removed in order to make the files presentation more 

convenient. 

*Heading Define job 
** Job name: final Model name: Model-1 title 
** ------------------------------------ 
** 
** PART INSTANCE: walls-1 Define nodes 
** for walls in 
*Node X-Y-Z format 

1,0.75, -0.68,0.71 
2,0.75,0., 0. 

-------etc-------etc---------etc---------etc--------- 
319,0.45,2.375,0. 
320,0.6,2.375,0. 

*Element, type=S4 Define shell 
1,23,24,116,113 elements for 
2,24,25,115,116 walls 

-------etc-------etc---------etc---------etc--------- 
282,319,320,109,110 
283,320,108,10,109 
*Nset, nset=walls-l. 

_G16, 
generate Define wall 

1,320,1 node and 
*Elset, elset=walls-1. 

_G16, 
generate element sets 

1,283,1 
** Define shell 
** SECTIONS behaviour, 
** material and 
** Section: walls thickness 
*Shell Section, elset=walls-1. 

_G16, 
material=steel 

0.006,5 
** fori iddi 
** PART INSTANCE: solid-i in for solid n 
** X-Y-Z format 
*Node 

321,1.72456e-31,0., 1.2326e-32 
322,0., 0., 0.75 

-------etc-------etc---------etc---------etc--------- 
1219,0.3,2.1775,0.6 
1220,0.15,2.1775,0.6 
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*Element, type-C3D8 Define solid 
284,376,549,885,517, 321, 337, 485, 352 elements for 
285,549,550,886,885, 337, 338, 486, 485 ensiled 
-------etc-------etc---- -----etc---------etc--------- material 
882,1219,1220,884, 883, 835, 836, 465,466 
883,1220,860,481, 884, 836, 464, 335,465 
*Nset, nset-solid-1. 

_G7, 
generate Define wall 

321,1220,1 node and 
*Elset, elset-solid-1. 

_G7, 
generate element sets 

284,883,1 
** Define solid 
** SECTIONS behaviour 
** and material 
** Section: ensiled 
*Solid Section, elset=solid-1. 

_G7, 
mater ial=sand 

1., 
*System Define 
*Nset, nset-_G12 internal 

1,2,7,10,11,12, 13, 14, 15, 44, node and 
45,46,47,90,91, 92 element sets 

93,94,95,96,97,98, 99, 100, 101, 102, for boundary 
103,104,105,106,107, 108 conditions, 
477,478,565,566,567, 568, 569, 570, 571, 572,573, output etc 
574,575,576,577,578 

579,580,597,598,599, 600, 601, 602, 603, 604, 
605,606,607,608,609, 610 

611,612,613,614,615, 616, 617, 618, 619, 620, 
621,622,623,624,625, 626 

627,628,629,630,631, 632, 633, 634, 635, 636, 
637,638,639,640,641, 642 

643,644,645,646,647, 648, 649, 650, 651, 652, 
837,838,839,840,841, 842 

843,844,845,846,847, 848 
*Elset, elset-_G12 

4,5,6,7,8, 9, 59, 64, 69, 74, 
79,188,193,198,203,2 08 

213,218,223,228,233, 238, 243, 248, 253, 258, 
263,268,273,278,283, 304 

305,306,307,308,329, 330, 331, 332, 333, 354, 
355,356,357,358,379, 380 

381,382,383,404,405, 406, 407, 408, 409, 414, 
419,424,429,434,439, 444 

449,454,459,464,469, 474, 479, 484, 489, 494, 
499,504,509,514,519, 524 

529,534,539,544,549, 554, 559, 564, 569, 574, 
579,584,589,594,599, 604 

609,614,619,624,629, 634, 639, 644, 649, 654, 
659,664,669,674,679, 684 

689,694,699,704,709, 714, 719, 724, 729, 734, 
739,744,749,754,759, 764 

769,774,779,784,789, 794, 799, 804, 809, 814, 
819,824,829,834,839, 844 

849,854,859,864,869, 874, 879 
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*Nset, raset= G13 
5,6,7,8,27,28,29,30,31,40, 

41,42,43,71,72,73 
74,75,76,77,78,79,80,81,82,83, 

84,85,86,87,88,89 
322,323,325,326,331,332,335,336,341,342, 

343,344,357,358,359,360 
377,378,379,380,381,382,383,384,393,394, 

395,396,401,402,403,404 
405,406,407,408,409,410,411,412,413,414, 

429,430,431,432,433,434 
435,436,437,438,439,440,441,442,465,466, 

467,468,473,474,475,479 
480,481,533,534,535,536,537,538,539,540, 

541,542,543,544,545,546 
547,548,765,766,767,768,769,770,771,772, 

773,774,775,776,777,778 
779,780,781,782,783,784,785,786,787,788, 

789,790,791,792,793,794 
795,796,797,798,799,800,801,802,803,804, 

805,806,807,808,809,810 
811,812,813,814,815,816,817,818,819,820, 

873,874,875,876,877,878 
879,880,881,882,883,884 

*Elset, elset=_G13 
33,34,35,36,37,38,59,60,61,62, 

63,84,89,94,99,104 
109,114,119,124,129,134,139,144,149,154, 

159,164,169,174,179,288 
293,298,303,308,313,318,323,328,333,338, 

343,348,353,358,363,368 
373,378,383,388,393,398,403,408,429,430, 

431,432,433,454,455,456 
457,458,479,480,481,482,483,504,505,506, 

507,508,529,530,531,532 
533,554,555,556,557,558,579,580,581,582, 

583,604,605,606,607,608 
629,630,631,632,633,654,655,656,657,658, 

679,680,681,682,683,704 
705,706,707,708,729,730,731,732,733,754, 

755,756,757,758,779,780 
781,782,783,804,805,806,807,808,829,830, 

831,832,833,854,855,856 
857,858,879,880,881,882,883 

*Nset, nset=_G14 
3, 

*Nset, nset=_G15, generate 
1,1220,1 

*Elset, elset=_G15, generate 
1,883,1 

*Nset, nset=_G46, generate 
1,1220,1 

*Elset, elset=_G46, generate 
1,883,1 
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*Nset, nset-w Define 
321,322,330,331,334, 335, 337, 338,339,340, internal 

389,390,391,392,429, 430 node and 
431,432,433,434,435, 436, 437, 438,439,440, element sets 

441,442,443,444,445, 446 for boundary 
447,448,449,450,451, 452, 453, 454,455,456, conditions, 

461,462,463,464,479, 480 output etc 
481,482,483,484,653, 654, 655, 656,657,658, 

659,660,661,662,663, 664 
665,666,667,668,669, 670, 671, 672,673,674, 

675,676,677,678,679, 680 
681,682,683,684,685, 686, 687, 688,689,690, 

691,692,693,694,695, 696 
697,698,699,700,701, 702, 703, 704,705,706, 

707,708,849,850,851, 852 
853,854,855,856,857, 858, 859, 860 

*Elset, elset=w, generate 
413,883,5 

** Define sand 
** MATERIALS constitutive 
** law 
*Material, name=sand 
*Density 
1587, 
*Drucker Prager 

45.1,1., 0. 
*Drucker Prager Hardening 
250,0. 
*Porous Elastic 

0.002,0.3164,0. 
*Material, name=steel Define steel 
*Density constitutive 
7500., law 
*Elastic 

2. le+11,0.3 
** Define 
** INTERACTION PROPERTIES friction 
** properties 
*Surface Interaction, name=_wal ll-Property 
1. 
*Surface interaction, name=_wal l2-Property 
1. 
*Surface Interaction, name=fric tional 
1. 
*Friction 
0.445, 
*Surface Interaction, name=smoo th 
1. 
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** 
** BOUNDARY CONDITIONS 
** 
** BC: fixed Type: Displacement 
*Boundary 

_G14,2,2 ** BC: symx Type: Typed 
*Boundary 

_G12, 
XSYMM 

** BC: symz Type: Typed 
*Boundary 

G13, ZSYMM 

Define fixed 
and symmetry 
boundary 
conditions 

*Elset, elset _G6_SNEG, generate Define 
59,83,1 contact 

*Surface Definition, name=_G6 surfaces 
G6SNEG, SNEG 

_ Elset, elset=_G7_S1, generate * 
384,408,1 

*Surface Definition, name=_G7 
G7 Si, Si 

_ _ *Elset, elset- G8_SNEG 
30,31,32,33,34,35,36, 37,38,39, 

40,41,42,43,44,45 
46,47,48,49,50,51,52, 53,54,55, 

56,57,58,84,85,86 
87,88,89,90,91,92,93, 94,95,96, 

97,98,99,100,101,102 
103,104,105,106,107,108,109, 110,111,112, 

113,114,115,116,117,118 
119,120,121,122,123,124,125, 126,127,128, 

129,130,131,132,133,134 
135,136,137,138,139,140,141, 142,143,144, 

145,146,147,148,149,150 
151,152,153,154,155,156,157, 158,159,160, 

161,162,163,164,165,166 
167,168,169,170,171,172,173, 174,175,176, 

177,178,179,180,181,182 
183, 

*Surface Definition, name=_G8 

_G8_SNEG, 
SNEG 

*Elset, elset=_G9_S4, generate 
413,883,5 

*Elset, elset=_G9_S3 
284,285,286,287,288,309,310, 311,312,313, 

334,335,336,337,338,359 
360,361,362,363,384,385,386, 387,388 

*Surface Definition, name=_G9 
G9 S4, S4 

_ _G9 S3, S3 
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*Elset, elset- G10 SPOS Define 
1,2,3,4,5,6,7, 8, 9,10, contact 

11,12,13,14,15,16 surfaces 
17,18,19,20,21,22,23, 24, 25,26, 

27,28,29,184,185,186 
187,188,189,190,191,192,193, 194, 195,196, 

197,198,199,200,201,202 
203,204,205,206,207,208,209, 210, 211,212, 

213,214,215,216,217,218 
219,220,221,222,223,224,225, 226, 227,228, 

229,230,231,232,233,234 
235,236,237,238,239,240,241, 242, 243,244, 

245,246,247,248,249,250 
251,252,253,254,255,256,257, 258, 259,260, 

261,262,263,264,265,266 
267,268,269,270,271,272,273, 274, 275,276, 

277,278,279,280,281,282 
283, 

*Surface Definition, name-_G10 
G10_SPOS, SPOS 

_ Elset, elset-_Gil_S3 * 
409,410,411,412,413,434,435, 436, 437,438, 

459,460,461,462,463,484 
485,486,487,488,509,510,511, 512, 513,534, 

535,536,537,538,559,560 
561,562,563,584,585,586,587, 588, 609,610, 

611,612,613,634,635,636 
637,638,659,660,661,662,663, 684, 685,686, 

687,688,709,710,711,712 
713,734,735,736,737,738,759, 760, 761,762, 

763,784,785,786,787,788 
809,810,811,812,813,834,835, 836, 837,838, 

859,860,861,862,863 
*Elset, elset-_G11_S6, generate 

284,404,5 
*Surface Definition, name=_Gll 

G11 S3, S3 
Gil 

_S 
6, S6 

*_Elset, elset- G45_S2, generate 
859,883,1 

*Surface Definition, name=_G45 
G45 S2, S2 

** Interaction: base Define 
*Contact Pair, interaction=smooth contact 
G7, 

_G6 
interactions 

_ ** Interaction: walll 
*Contact Pair, interaction=_walll-Pr opert y 
G9, G8 

** Interaction: wall2 
*Contact Pair, interaction=_wall2-Pr opert y 

G11, G10 

** Define voids 
*initial conditions, type=ratio ratio and 

G7,0.67 solid-1. stress in 
_ *initial conditions, type=stress, ge ostat ic stored solid 

solid-1. G7, -10, -0.68, -10,2.25,1 
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** Start non- 
STEP: equil linear 

** analysis 
*Step, nlgeom, unsymm=YES step 
*Geostatic Geostatic 

anal is 
** Apply load 
** LOADS to balance 
** initial 
** Load: pressure stress 
*Dsload 

_G45, 
P, 10. 

** Request 
** OUTPUT REQUESTS output 
** 
*Restart, write, overlay 
*Output, field, op=NEW, frequency=99999 
*Node Output 
U, RF, CF, POR 
*Element Output 
S, E, VOIDR, SAT 
*Contact Output 
CSTRESS, CDISP 
*Output, history, op=NEW, frequency=99999 
*Energy Output 
ALLAE, ALLCD, ALLFD, ALLIE, ALLKE, ALLPD, ALLSE, 
ALLVD, ALLWK, ETOTAL 
*El Print, freq=999999 
*Node Print, freq=999999 
*End Step End of step 
** Start next 
** STEP: loading analysis 
** step 
*Step, inc=1000, unsymm=YES 
*Static Static step 
0.00125,1., le-05,1. 
** Apply 
** BOUNDARY CONDITIONS gravity load 
** to ensiled 
** BC: gravity Type: Velocity material 
*dload, op=new 

_G46, 
grav, 9.8,0, -1,0 

** Remove load 
** LOADS that was 
** balancing 
** Load: pressure initial 
*Dsload, op=NEW stress 
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** Interaction: walll 
*Change Friction, interaction=_walll-Property 
*Friction 
0.445, 
** Interaction: wa112 
*Change Friction, interaction=_wall2-Property 
*Friction 
0.445, 
** 

Change 
friction 
coefficient 
on the walls 
from 
frictionless 
to µ=0.445 

** OUTPUT REQUESTS Request 
** output 
*Restart, write, overlay 
*Output, field, op=NEW, frequency=99999 
*Node Output 
U, RF, CF 
*Element Output 
S, E, PE, PEEQ, PEMAG 
*Contact Output 
CSTRESS, CDISP 
*Output, history, op=NEW, frequency=99999 
*Energy Output 
ALLAE, ALLCD, ALLFD, ALLIE, ALLKE, ALLPD, ALLSE, 
ALLVD, ALLWK, ETOTAL 
*E1 Print, freq=999999 
*Node Print, freq=999999 
*contact file, freq=999999 
*el file, elset=solid-l. _g7, 

freq=999999 
PE 
*End Step End analysis 
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Appendix D- Example contour plots from ABAQUS 

The following plots show some example output from the finite element model in the 
form of contour plots. The model is that described in the input file in Appendix C. 

S, Miaea 
SN®G, (fraction - -1.0) 
(Ave. Crit.: 754) 

+6.616e+07 J 
+6.065e+07 
+5.514e+07 
+4.962e+07 
+4.411e+07 
+3.860e+07 
+3.308e+07 
+2.757e+07 
+2.205e+07 
+1.654e+07 
+1.103e+07 
+5.514 e+06 
+3.121e+02 

z ODB: eand. odb ABAQUS 

3' 
Step: Step-2, loading 
Increment 17: Step 
Primary Var: S, Mises 
Deformed Var: U Defor 

7 11: 26; 41 GMT Daylight Time 2002 

00 

Figure D. 1 - Von Mises stress in the silo wall 

U, U2 
+5.569e-07 
-3.192e-03 
-6.385e-03 
-9.579e-03 
-1.277, -02 
-1.596e-02 
-1.916e-02 J 
-2.235e-02 
-2.554e-02 
-2.874e-02 
-3.193, -02 
-3.512e-02 

11 -3.832e-02 

2 
ODB: eand. odb ABAQUS/Standard Apr 07 11: 26: 41 G(T Daylight Time 2002 

3' 
Step: Step-2, loading 
increment 17: Step Time - i.. 
Primary Var: U, U2 
Deformed Var: U Deformation Scale F tor: +1.000e+00 

rigure u. 2 - Vertical deformation of the ensiled material 
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PEEQ 
(Ave. Crit.: 75%) 

2.258e-02 ýý- 
2.032e-02 
1.806e-02 
1.581e-02 
1.355e-02 

I2.710e_02 
2.484e-02 

1.129e-02 
9.032e-03 
6.774e-03 
4.516e-03 
2.258. -03 0.000e+00 0 

4 

2 
ODB: san d. odb ABAQUS/Stand 07 11: 26: 41 GMT Daylight Time 2002 

3" `1 
Step: Step-2, loading 
Increment 17: Step Time - 1.. 
Primary Var: PEEQ 
Deformed Var: U Deformation Scale F. . or: +1.000e+00 

Figure D. 3 - Plastic strains in the ensiled material 
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Appendix E- Best fit of finite element predictions to the experimental sand data 

In Chapter 6 it was shown that the initial bulk density and the voids ratio could be 

calculated given different logarithmic bulk moduli. The work presented above 

showed that the finite element model could be used to provide results for the normal 

pressure distribution across the wall and this was compared to the experimental data. 

It was also shown that the parameters of the constitutive law could be changed yet 

still provide results consistent with Janssen theory. In order to further investigate the 

effect of the parameters of the porous elastic law a best fit exercise was performed 

between the experimental data and the finite element results. 

The original geometry was used to perform runs with material parameters that had 

been calculated using higher and lower values of logarithmic bulk modulus. The 

values used are presented in table E. I below (the values in italics are the original 

values for reference). 

A. eo yioi ai (kg/m3) 

0.0005 0.65 1606 

0.0020 0.66 1595 

0.0044 0.68 1576 

0.0080 0.71 1550 

Table E. 1 - Values used for best fit exercise 

Results for the four models compared to the experimental results are shown in figure 

E. 1 at a depth of 1.25m below the surface of the fill. This depth, being the mid- 
height of the bin, is chosen to illustrate the form of the distribution and show the 

relative effect of altering the parameters of the finite element model. 
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-_- A=0.0080 
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X=0.0020 
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0 0.15 0.3 0.45 0.6 0.75 

Distance from corner of bin (m) 

Figure E. 1 - Wall normal pressures across the wall from FEA and experiment at 1.25m depth 

Results are available for other levels and a least squares mathematical fit has been 

performed on the data. In order to do this the finite element results must be 

interpolated so that corresponding values for wall pressure can be obtained at the 

points where experimental data is available. Firstly, this was performed by using a 

linear interpolation technique and secondly a cubic spline technique (Schumaker, 

1981). Linear interpolation assumes the data to be connected via straight lines and 

provides values based on this assumption. The cubic spline interpolation fits a 

function between each point to produce a smooth curve. This function is then used to 

provide values at the appropriate points. 

Both of these best fit techniques fail to point to a conclusive value of A for sand. 
They merely show that the value must be small in order to obtain the best fit. This is 

because the least squares method tends to minimise the difference where the numbers 

are large (in this case, in the corner). In order to reduce the sum of the least squares 

there must be a good fit in this area and therefore the value of A=0.0005 provides 

the mathematically best fit. However, it can be seen from figure E. 1 that none of the 

models provide accurate results for the pressure in the middle of the wall. The need 
for a good prediction in the middle if this method were to be used for design was 
discussed in Chapter 6. 
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Appendix F- Investigation of wall pressure cells 

Figure F. 1 shows a wall pressure cell taken from the experimental rig used by Jarrett 

(1995). 

This cell was manufactured by Askegaard along with 3 others for use in the 

aforementioned work. Sections of the wall of the bin were removed and the 

workings of the cell built into them. These sections were then replaced in the bin 

wall. This technique aims to reduce any effect on the continuity of the wall caused 

by the installation of pressure cells. 

Each cell is constructed from a 10mm thick piece of the bin wall. A 0.5mm thick 

piece of mild steel forms the front face of the cell and this is placed into a 0.7mm by 

100mm diameter recess machined into the wall section. The cell face is welded to 

the centre of the recess and sealed at the edge by a rubber membrane. The resulting 

0.2mm gap between face and wall section is charged with a silicone oil. This 

transmits the pressure on the face to a semiconductor pressure gauge. The front face 

of the cell remains very stiff with the deflection being measured at less than 1 micron 

per 100kPa. 
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Figure F. 1 - Wall pressure cell used in the work of Jarrett (1995) 



These cells are filled with silicone oil via an aperture in the back of the cell. The oil 

gap is evacuated using a vacuum pump and fresh oil is drawn into the cell when the 

pump is turned off. The presence of any air (which is highly compressible) in the cell 

will lead to non-linear behaviour of the cell making it useless. 

The cells were charged with oil and then calibrated using air pressure. The pressure 

transducer is wired in a full bridge configuration and the excitation voltage is set to 
10V. Figure F. 2 shows the calibration of one of these types of cell. 

6 

5- 

3- p1 

y = 0.3799x + 0.9682 

0- 
02468 10 

Pressure (kPa) 

Figure F. 2 - Calibration of a wall pressure cell 

The best fit straight line to the readings gives a value of 37.99 µV per volt excitation 

per kPa. This figure agrees with the original specification supplied with the cells. 

These cells are not suitable for use in a thin-walled silo model. Installation in the thin 

wall would lead to erroneous results due to the drastically increased local stiffness in 

the region of the cell. In order to use cells of this type in a thin-wall a new design is 

required. 

Pervious work has shown that wall cells must be installed flush with the wall in order 

that the results they provide are as accurate as possible (ref). With this in mind it was 
proposed that the workings of a cell be machined into the back of the wall. This 
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would preserve the smooth continuity of the wall inside the bin. A circular recess 
1.1 mm deep and 50mm diameter was machined into a plate of overall thickness 

1.6mm. A step of 0.3mm was left around the circumference. This allows another 

piece of plate to be installed in the back leaving a gap for the oil. A point to allow 

the oil into the cell and a pressure transducer were mounted onto the backing plate 

and the whole piece glued into the recess. Figure F. 3 shows the back of the cell. 

.4 

7 

Figure F. 3 - Rear view of cell installed in thin-wall 

The cell is charged with oil in a similar fashion to the previous cells. Again, the 

pressure transducer is wired in a full bridge configuration and the calibration is 

performed using air pressure. 

Unfortunately this cell was unable to provide any useful results. The overall bending 

of the plate was shown to induce a large reading into the cell and when pressurised 

the readings obtained were non-linear. There was also a large amount of hysteresis in 

the system and therefore once the load was removed the readings could not be 

induced to return to zero. 

More research in this area could lead to a viable method for directly determining the 

wall pressures in a thin-walled silo but this is outside the scope of this project. 
Therefore, the use of the free field cells was deemed most suitable. 
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