
Knowledge Based System Development as an Engineering Process

by

M. Davoodi

A Thesis submitted for the degree of Doctorate of PhilosopliN

Brunel University, London

1989

Abstract

Knowledge Based System (KBS) development is a difficult and challenging task, in

particular in knowledge intensive domains. The traditional view of knowledge

engineering is one of mining experts' knowledge and somehow transforming it into a

machine usable form. This process, in general, suffers from insufficient or miscon-

strued representation of experts' problem solving behaviour. It is also unstructured

and unduly biased at an early stage by design and implementation issues - normally in

the form of incremental prototyping.

We believe that both knowledge acquisition and KBS development for real life appli-

cations will require a 'structured' approach. This approach should harness a KBS

developer's ability in extracting knowledge and developing systems. The structure

should also be sufficiently flexible to allow the knowledge engineer to use his sense of

creativity in developing a KBS. This thesis puts forward such a structured approach,

in which KBS development is carried out in an engineering fashion. A process in

which the worker is provided with an environment for developing knowledge based

systems as an engkeexirg process, as opposed to that of an artform or crafting.

The main emphasis of this work is that part of the process which deals with the

analysis and design phases in developing KBS. The analysis is performed at an

'epistemological' level, not coloured by design or implementation issues. The output

of this phase captures both an expert's problem solving capability, and the business

constraints placed upon the intended system. This is then used by the design process

in order to create an optimal, workable, and elegant design architecture for the ultimate

system.

-e

Acknowledgement

I am indebted to my supervisor Dr. Nfichael Elstob for his learned objectiveness, and

his high human qualities which have been most inspiring.

This research has been funded partially by the Commission for the European Commun-

ities' ESPRIT programme under project number 1098. The partners in this project are

STC ple. (UK), University of Amsterdam (LJvA, The Netherlands), Cap Soged Innova-

tion (France), SCICON ltd. (UK), SCS GmbH (W. Germany), and KBSC (UK).

Within the project 1098 (P1098), I gratefully acknowledge the useful discussions and

project work I have carried out with Simon Hayward (STC p1c.), Prof. Bob Wielinga

(UvA), and Dr. Joost Breuker (UvA) in the early part of P1098. In the latter part of

P1098 I have had the good fortune of leading the design methodology team in P1098.

Within this period I have benefited intellectually from my project work and discussions

with the other members of the design team, namely: Guus Schreiber (UvA), Prof. Bob

Wielinga (UvA), and Bert Bredeweg (UvA).

In a collaborative research work of this type it is difficult to identify clearly the extent

of the contribution of each individual involved. To the extent that this is possible., I

shall claim chapters one, six, eight, nine, and the appendices of this thesis as essen-

tially my work. ne, other chapters are largely influenced by the work of the other

researchers within P1098, most of whose names appear above. For this I am greatly

indebted to these people. The arguments put foma rd throughout the thesis neverthe-
.I

less reflect my own intellectual stance, which may not necessarily coincide with those

of fellow researches within P1099.

I would also like to acknowledge the moral support and encouragement that I was

given by William Clancey (KSL, Stanford Uni., USA) in my analysis of his work on

"NEOMYCIN" (see chapter 8, below). Our discussion convinced me that my study of

"NEOMYCIN" was pertinent to the development of part of the design methodology,

although Bill might not have been aware of this at the time.

Massoud Davoodi

Brunel University, 1989.

Table of Contents

1. Introduction

1.1 KADS Contribution to the field of KBS ...
1.2 Model Driven KBS Development ..
1.3 KADS Methodology ...

1.3.1 KBS Philosophy ...
1.3.2 KADS Modelling ..
1.3.3 KADS Analysis ..

1.3.3.1 The Internal View ...
1.3.3.2 Interpretation Models ..
1.3.3.3 The External View ..

1.4 Design ...
1.5 KADS Power Tools ..
1.6 Global Remarks ..
1.7 Organisation of Chapters ..

2. A Comparative Study

3

5

8

8

9

9

10

11

12

12

13

14

14

2.1 Introduction ... 17

2.2 Knowledgc Acquisition -a brief history
... 18

2.3 Paradigms for Knowledge Acquisition .. 19

2.4 Single Model Systems .. 24

2.4.1 ROGET ... 25

2.4.2 MOLE (Eshelman et al., 1986) ... 26

2.4.3 STUDENT (Gale, 1986) .. 27

2.4.4 KNACK (Klinker et al., 1986) .. 28

2.4.5 Other Systems ... 29

2.5 Language based Approaches .. 30

2.5.1 KRITON (Diederick, Ruhman & May. - 1986) 30

2.5.2 Expertise Specification ... 31

2.5.3 Generic Tasks ... 33

2.5.4 Ontological Analysis .. 35

2.6 Conclusion: KADS vs the Rest .. 36

3. REQUIREMENTS ANALYSIS

3.1 Introduction ... 39

3.2 Requirements Analysis ... 38

3.3 Analysis, Global Life Cycle Model ... 39

3.4 Analysis, Detailed Life Cycle Model ; 41

3.5 Description of Activities within the Analysis LCM 45

3.5.1 Determine Scope of Project ... 45

3.5.2 Generated Documents .. 45

3.5.2.1 Pl, Background and Prerequisites ... 45

3.5.2.2 P2, Project Terms and Directive .. 46

3.5.2.3 P3 .. 46

3.5.3 Analyse Present Situation .. 49

3.5.3.1 Documents Gcnerated ... 48

3.5.3.2 RI, Model of Present Situation .. 48

3.5.3.3 R2, Functioning Objectives of User Organisation 48

3.5.3.4 R3, Functioning Problems of User Organisation 49

3.5.3.5 R4, Task Organisation: ... 49

3.5.3.6 Fl, Feasibility Estimate .. 49

3.5.4 Analyse Static Knowledge ... 49

3.5.4.1 Documents Generated ... 50

3.5.4.2 MI, Lexicon 6 .. 50

3.5.4.3 M2, Static Structure .. 50

3.5.4.4 Fl, Feasibility Estimate .. 50

3.5.5 Analyse Objectives and Constraints .. 50

3.5.5.1 Documents Generated ... 51

3.5.5.2 R5, Objectives of Prospective System 51

3.5.5.3 R6, Compatibility Requirements .. 51

3.5.5.4 R7, Man-Machine Interface ... 51

3.5.5.5 R8, Development and Operational Environment 51

3.5.5.6 R9, Control and Security Constraints .. 52

3.5.5.7 RIO, Organisational Model .. 52

3.5.5.8 Fl, Feasibility estimate ... 52

3.5.6 Analyse Expert and User Tasks ... 52

3.5.6.1 M3, Interpretation Model ... 53

3.5.6.2 M4, Inference Structure .. 53

3.5.6.3 M5, Task Structure ... 53

3.5.6.4 M6, Strategies ... 53

3.5.6.5 M7, User Model ... 53

3.5.6.6 Fl, Feasibility Estimate .. 54

3.5.7 Determine Functional Requirements .. 54

3.5.7.1 Documents Generated ...
54

3.5.7.2 R1 I, Functional Requirements ...
54

3.5.7.3 R12, System Structure ..
54

3.5.7.4 R13, Information Requirements ...
55

3.5.7.5 R14, Expected Future Enhancements ..
55

3.5.7.6 R15, Consequences ...
55

3.5.7.7 F1, Feasibility Estimate ..
55

3.5.8 Construct conceptual model ..
55

3.5.8.1 Documents Generated ...
55

3.5.8.2 R16, Knowledge Base Requirements ...
56

3.5.8.3 Fl, Feasibility Estimate ..
56

3.5.9 Feasibility Estimate ..
56

3.5.9.1 Documents Generated ...
56

3.5.9.2 R17, Development Requirements ...
56

3.5.9.3 R18, Validation Procedures ..
57

3.5.9.4 Fl, Feasibility Estimate
57

4. Coceptual Model - the Internal View

4.1 Introduction ...
58

4.2 Analysis Modelling Language ..
59

4.2.1 Domain Layf-. r ...
60

4.2.2 Inference Layer ...
62

4.2.2.1 A Typology of Knowledge Sources ..
64

4.2.3 Task Layer ..
69

4.2.4 Flexible Strategy Layer ..
70

4.2.5 A Post-hoc analysis of NEOMYCIN ..
72

4.2.5.1 NEOMYCIN -a brief description ... 72

4.2.5.2 Domain Knowledge .. 72

4.2.5.3 Inference Layer ... 73

4.2.5.4 Task Structure ... 74

4.2.5.5 Flexible Strategy ... 75

4.2.6 Summary, and Discussion ... 75

5. Interpretation Models

5.1 Introduction ...
78

5.2 How to Construct an Interpretation Model ..
81

5.3 Types of Interpretation Models ..
82

5.4 A Classification of Generic Tasks ...
84

5.4.1 Analysis Tasks ..
84

5.4.2 Modification Tasks ...
86

5.4.3 Synthesis Tasks ..
87

5.5 Interpretation Model - the Use ...
88

5.5.1 A Template for Systematic Diagnosis ...
98

5.5.1.1 Inference Structure
..

90

5.5.1.2 Task Structure
...

94

6. Case Study I- Analysis of an Underwriting Domain

6.1 Introduction ...
96

6.2 A brief description of the Underwriting domain ... 97

6.3 The Role of ADSA ... 98

6.4 Principal similarities between the 'Underwriting Domain' and CLA

6.5 Different Phases of the Consultancy .. 99

6.5.1 Domain Layer ... 99

6.5.1.1 Domain Lexicon ... 101

6.5.1.2 Concept Hierarchy .. 101

6.5.2 Use of IM in Analysis .. 101

6.5.3 Problem Analysis at the Inference Level 101

6.5.4 Problem Analysis at the Task Level ... 105

6.6 History of Development ... 107

6.6.1 Introduction ... 107

6.7 Task Identification .. 108

6.8 Why use the IM .. 110

6.9 Task Analysis .. 111

6.10 Process Structure .. 114

6.11 In Conclusion .. 115

7. A Framework for Design

7.1 Introduction 118

7.2 A Philosophy for Design
.. 118

7.3 The Design Layers
.. 120

7.3.1 Functional Layer
... 120

7.3.1.1 Components of the Functional Layer
.. 121

7.3.2 Diagramming
.. 125

7.3.3 Selection of Methods
............................ ... 126

7.3.3.1 Design Elements ... 129

7.4 Physical Layer .. 131

7.4.1 Architecture ..
131

7.4.1.1 Components of a Physical Module .. 133

7.5 Discussion ...
134

S. NEOMYCIN

8.1 Backgound ...
138

8.2 Analysis ...
139

8.2.1 The Four Layer Model ...
139

8.2.1.1 Domain layer ..
139

8.2.1.2 Inference Layer ...
140

8.2.1.3 Task/Strategy Layers .. 142

8.2.2 External Requirements ...
143

8.3 Design ... : -ý 145

8.3.1 Overview ...
145

8.3.2 Functional Layer ...
145

8.3.3 Physical Layer
8.3.3.1 Modular Structure

... 148

...
148

8.3.3.2 Modules ...
150

9. Summary, Conclusion, and Future Plans

9.1 Summary and Conclusion ..
164

9.2 Future Plans ..
166

9.2.1 Prototyping in Design ..
167

9.2.1.1 Prototyping in the Functional Layer
..

167

9.2.1.2 Prototyping in Physical Layer .. 169

9.2.2 Generic Design Models .. 170

9.3 KADS in Future Systems ... 172

10. References

Appendix A: a KADS Prototype for COMPARE Knowledge Source:

11. A Brief Description

1.1 Implementadon ...
184

11.1.1 The Rules ..
184

11.1.2 The First Run .. 197

11.1.3 The Second Run ... 4 200

11.1.4 The Third and Fourth Runs ... 202

11.1.5 The Fifth and Sixth Runs ... 206

Appendix B: KBS, from Requirements to Design:

12. BOTAID

12.1 Analysis Phase .. 212

12.1.1 The Conceptual Model ... 212

12.1.1.1 Domain Layer ...
212

12.1.1.2 Inference Layer ...
212

12.1.2 External Requirements ...
213

12.2 Design Phase ...
213

12.2.1 Functional Layer ...
213

12.2.1.1 Selection of Methods ..
216

12.2.2 Physical Layer ..
218

12.2.2.1 Architecture ;.; ...
218

1. Introduction

In the course of this thesis, we shall set out to describe an emerging methodology

called "Knowledge Acquisition and Documents Structuring support" (referred to as

KADS throughout this work). The main concern of KADS is the conduct of KBS

development as an engineering process. An engineering process, in our view, is one

in which a framework containing the appropriate tools and techniques for developing

systems is provided. The framework for KBS should support a knowledge engineer

from "knowledge acquisition" to "system implementation". In this context, KADS will

contain:

0A number of 'models' for interpreting knowledge and infonnation acquired

from experts. These models will also provide the means for classifying

different types of expertise, as well as identifying the components of knowledge

within each type. The models will therefore provide the tact and focus which a

knowledge engineer will require in conducting interview sessions with an

expert. We have called these models "interpretation models" (also referred to

as IM throughout this thesis; see chapter 5).

0A number of phases (currently two of "analysis" and "design") for developing'a

KBS.

0A number of 'models' for capturing knowledge and system architecture com-

ponents at analysis and design phases respectively.

A set of layers within each phase, each of which will correspond to aspects of

'conceptual models' (see chapter 4) in the analysis phase, and system architec-

ture (see chapter 7) in the design phase.

-2-

A set of -vocabularies within each of the above layers, in order to describe the

corresponding aspects of each phase.

A method of describing and incorporating business, user community, and

environmental constraints placed upon the intended system. We refer to these

constraints as the 'external view' (see chapter 3). This is in contrast to the

problem solving component of the system known, in KADS, as the 'internal

view' (see chapter 3).

A set of Computer Aided System Engineering (CASE) tools for automating the

creation and maintenance of different phases of KADS. This is known as

'KADS System' which is only partially developed, and will not be described to

any great depth in this thesis. The use of a CASE tool is of assistance to a

developer, but it is not essential to the conduct of a methodology.

An engineering process, as we regard it, will admit both of a 'structured' approach and

a sense of 'creativity' in developing systems. We argue that a developer's sense of

creativity in developing systems can, in general, be enhanced and focused by having a

framework of the type we have just described (above). We also hold that the frame-

work should be a descriptive one, as opposed to one which prescribes every step of

development. The latter, we believe, will place unnecessary burden upon a knowledge

engineer or a system developer, thus detracting from their sense of creativity in apply-

ing their previous experiences to new application domains.

We have, therefore, attempted to develop KADS as a language for developing KBS.

It is a language to the extent that a number of development phases and layers of

description are provided within each layer, both within analysis and design models (see

chapters 4 and 7). Each layer provides a syntax for combining KADS vocabularies

(such as 'concepts', 'relations', etc.; see chapters 4,5, and 7). The semantics of the

-3'-

language can be observed in fully defined and instantiated 'conceptual models' (see

chapter 6), and 'system architectures' (see chapter 8). These will capture, respectively,

the implications of a particular domain of expertise at 'knowledge', and 'system archi-

tecture' levels.

KADS, as can be observed from our earlier discussion (above), has grown beyond

being simply a knowledge acquisition tool, with the future intent of supporting and

harnessing all stages of KBS development and maintenance. Our emphasis in this

work will be on the two phases of 'analysis', and 'design' (see below). The rest of

this chapter is intended to provide an overview of the whole thesis, and a summary of

KADS contribution to the field of KBS.

I. I. KADS Contribution to the field of KBS

The major contribution of KADS methodology to advancing the field of KBS is two-

fold:

0 The application of a number of abstract models known as "Interpretation

Models" for understanding the nature and relevance of knowledge and informa-

tion, acquired from experts, to problem solving in a particular domain of exper-

tise. A knowledge engineer will use a library of "Interpretation Models". in

order to fit the newly acquired knowledge against the components of an IM

which appears to be appropriate to the domain at hand (for instance a

"classification' IM for a diagnostic problem). The next stage would be to use

the same IM to consolidate and focus the line of interviewing with an expert,

by concentrating on asking questions about those components of the IM for

which little or no knowledge has yet b-= attained. Ile use of abstract prob-

lem solving models in this way is a novel one in the field of KBS. We pro-

pose that the use of IM in this manner, should help to eliminate the classic

-4-

knowledge acquisition bottleneck. A situation which is almost entirely due to a

lack of a top-down model driven enquiry method; IM should provide just the

models a knowledge engineer will seek.

KADS provides a language (in the sense which we have described above) for

modelling expertise and deciding the underlying system architecture for the

intended KBS. This is different to other methodologies, and approaches for

developing KBS, in that KADS is not constrained by a number of working sys-

tems which are the property of a limited number of researchers belonging in

centres of excellence. This. open approach to KBS development will allow

KADS to cover a large number of models at the analysis and architecture

spaces (see chapter 2), with the mapping between the two levels clearly being

defined (see chapter 7). It will also turn the methodology into an environment

for developing systems in academic and commercial environments alle.

KADS is not constrained by computer formalisms (computer languages and

shells, etc.), since it is possible to devise KADS analysis and architecture

models independently of such formalisms. It will however make use of the

appropriate computer languages, shells, or environments, once the architecture

of a system is decided. KADS will also use prototyping as an aid to under-

standing the features of a system during design, rather than as a methodology

for developing systems.

The features, we have just described will also form the central hypotheses this thesis

will test. In the sense that in developing KBS, we shall need a number of models (i. e.

IM) for acquiring knowledge, and a descriptive language for developing the acquired

knowledge into a working system. The hypotheses have been tested on fourteen

domains of expertise, most of which have resulted in working systems. The domains

cover areas such as 'network management', 'process control', 'statistical modelling',

4

-5-

'credit assessment', 'underwriting', 'medical diagnostics', 'hardware configuration',

etc. . For domains which are relatively easy to understand and develop, KADS will

carry too much overhead, and whilst elements of it can be used, its full application is

not recommended. On the other, no technique or methodology to this date, can deal

with developing KBS for domains of expertise which are too complex. This is both in

terms of the type of knowledge involved (eg. tacit knowledge), and the complex nature

of the reasoning processes applied to them. In KADS, like most other approaches, we

shall need to apply a 'feasibility' check list to a domain, before deciding whether it is

possible to develop a KBS for that domain based on today's methodologies, and tech-

nology.

1.2. Model Driven KBS Development

Because it takes experimentation to achieve high performance, an expert system

evolves gradually. This evolutionary or incremental development technique has

emerged as the dominant methodology in the expert system aýea. The procedure of

extracting knowledge from an expert and encoding it in program form is called

knowledge acquisition The burden of uncovering and formalising the expert's

knowledgefalls on the shoulders of the knowledge engineer at present knowledge

engineers must rely on their own skill and insight to guide the knowledge acquisition

activhy. (Hayes-Roth, et. al., 1983)

We find the sentiments expressed in this passage most relevant to expert system

development to date. We should, however, like to propose that any reasonably com-

plex domain of expertise will benefit from having a problem solving model and archi-

tecture devised for it, before prototyping can be used as a support activity. Our use of

prototyping, in this context, will be to understand some of the aspects of the underly-

ing system architecture, as well as users' reactions to the emerging system. 'Die proto-

-6-

types at this stage will enable us to modify or enhance certain features of the intended

system, in order to make a reasonable use of available technology, whilst complying

with some of users' requirements. We do not propose that prototyping should be used

to bring about the conceptual and initial architectural understandings required. These,

we find, to be the concern of modelling techniques, such as those in KADS. We hold

that:

Most KBS which are purely based on an incremental prototyping approach, will

address relatively simple domains of expertise,

Or that

they are likely to suffer from the shortcomings of the computer formalism (eg.

expert system shell) which has been used in developing them. An example of

this would be to force a 'production-rule based' shell upon a domain which will

require a large degree of 'object oriented' knowledge representation. The rea-

son behind the wrong choice of a shell can mostly be attributed to a lack of

understanding of the elements of knowledge of the domain prior to implementa-

tion. This understanding is made possible through the metaphor of modelling,

as provided within KADS.

Figure 1-1 is a simple illustration of the stages through which a knowledge based sys-

tem development will have to go. A methodology, proper, should cover and support

the stages described here so as to deliver 'knowledge acquisition (engineering)', and

system development from the realm of simple prototyping into that of an engineering

process. The engineering process (as argued earlier) will ensure that the creative sense

of the knowledge engineer, and his use of prototyping is conducted within the frame-

work of a methodology.

-7-

real world Cuniverse of discourse')

,
The wodd containing 'expert4'

business world

elicit business II
constraints

model of experis

business needs
(analysis)

transform

design archit

apply / implement

Figure 1-1: Development Stages of a KBS

-8-

The more the methodology is put to test, and systems and support tools built around it,

the clearer and more concrete will become the 'engineering process'.

1.3. KADS Methodology

KADS should ultimately support all stages of expert system development (fig. 1-1).

The current version of KADS has been extended to support the design process, yield-

ing very interesting results (see Davoodi, et. al., 19_87). It is intended that KADS

should be extended to support generic design models, in the same sense that it has

been applied to modelling at an earlier stage (fig. 1-1). We intend to concentrate in

this work on the 'design' and 'analysis' part of the methodology. This should make it

possible to provide a forum for a detailed and useful examination of the said phases.

13.1. KBS Philosophy

to enhance the performance of AI programs, knowledge is power [emphasis

added]. The power does not reside in the inference procedure. ' The power resides in

the specific knowledge of the problem domain. (Feigenbaum, 1983)

Expert system development has entered a new era in which domain knowledge has

assumed the central role in developing knowledge intensive domains, thus power lies

in knowledge. The increasingly prominent and real-life applications of expert systems

in knowledge intensive domains has made non-domain specific techniques such as

general problem solving. ' (GPS) unworkable.

The current belief is that the knowledge engineer should make extensive use of the

body of domain knowledge made available to him through reading texts, and inter-

views with experts. This-knowledge should then be consulted both to establish a vcca- Z:

bulary about domain 'facts' (entities known to be true irrespective of the problem solv-

-9-

ing behaviour), and the reasoning processes applied to those 'facts'. The ultimate aim

of this approach is to bring about a separation between domain 'facts', and (heuristic)

reasoning in using them. The origins of the term "knowledge based system" lies in

this transition, highlighting the role of domain knowledge in KBS development.

1.3.2. KADS Modelling

We are aware of these developments, and also concerned about the fact that little has

been done in the way of understanding expert knowledge at an epistemological level.

That is, a knowledge level understanding of all of the interesting domain entities, rela-

tions and structures amongst them, and different ways of exploiting them in problem

solving. Such an understanding should constitute a 'theory' about a particular expert

knowledge domain (thus, the use of the term epistemological), without being unduly

biased by design and implementation issues. Such an understanding is a prerequisite

to any proper system development, at worst reducing backtracking, and at best avoid-

ing expensive development disasters. .

KADS analysis is a process in which such an epistemological study is undertaken

resulting in models of problem solving behaviour in different domains. KADS

analysis has also been extended to deal with business needs required of the ultimate

problem solver (the intended KBS). This issue is particularly important in commercial

applications of KBS. Models of problem solving behaviour, and business needs have

come to be known as the internal and external views, respectively (Barthelemy, et. al.,

1987). The former is concerned with what constitutes the inner (problem solving)

aspects, and the latter with the external constraints placed upon it.

1.3.3. KADS Analysis

-10-

The analysis stage is concemed with capturing the intemal and extemal views. A

clear understanding of these two views are essential to a model-driven, methodological

development process.

1.3.3.1 The Internal View

The expert knowledge in solving problems falls into two broad categories of domain

'facts' and reasoning procedures. KADS will represent this knowledge in a four layer

model, purely concerned with expert problem solving behaviour at an epistemological

level. The layers depend very closely upon one another. Their organisation allows for

a good understanding of the domain facts, the interplay amongst them, and ways of

exploiting them in problem solving. The four layers together form (our view of) a

conceptual model. We shall provide a brief description of these layers.

Domain Layer: All of the facts pertaining to a domain of expertise gathered through

reading texts, and interviewing the expert are collected in this layer. The domain enti-

ties, in general, consist in concepts, relations between concepts, and structures made up

of these relations.

Inference Layer: This layer is concerned with interesting inferences which can be

made in the domain. 'Me inferences are assembled in a structure containing primitive

operations, with objects as input and output to those operations. The primitive opera-

tions are what we call 'knowledge sources' which use domain relations in order to

arrive from a given input to a desired output. The Vo objects are termed as 'meta-

class objects', these are classification of domain concepts according to the role those

concepts play in the reasoning process.

Task Layer: In solving a problem, the expert will consider a goal toward which he

sequences his inference (reasoning) steps. This is usually done by breaking down the

overall goal (task) into a number of sub-goals the achievement of which performs the

-11-

expert task.

The behaviour described here is achieved in this layer by devising a task structure con-

taining statements expressing goals and sub-goals. The sub-goals (sub-tasks) are ulti-

mately satisfied by the application of knowledge sources (operations), which, in turn,

use meta class objects as arguments.

Flexible Strategy Layer: This is the most embryonic and difficult of the four layers.

It is the least developed of the four layers, since it has to deal with dynanzic planning

and monitoring of tasks. This type of planning has also been a perennial problem in

the field of artificial intelligence in general. This, layer is concerned with ensuring that

a KBS can respond to new and unforeseen situations in an 'intelligent' and interesting

fashion, taking actions which would avoid redundant behaviour.

The four layers, put together, describe a system's internal view at an epistemological

level, and form the conceptual model. The conceptual model can be used to guide

'knowledge elicitation' in various stages of a development. This is one of the

significant aspects which is missing from rapid and incremental prototyping - viz. a

lack of model-driven data enquiry.

1.3.3.2 Interpretation ModeIs

These are generic problem solving models applied to a class (or classes) of domains

sharing some common, interesting feature captured by the model. For instance, an

interpretation model for heuristic classification could apply to any domain requiring

that particular problem solving behaviour.

Interpretation models are arrived at by studying domains sharing some. common feature

we want to capture. One-may then generate a conceptual model for the most general

of those domains. 7Me conceptual model is then transformed into a more generic

-12-

problem solving model, by deleting the domain layer, and replacing meta class names

with ones which are generic, to form the interpretation model. The process of

transforming a conceptual m odel into an interpretation model could turn out to be quite

challenging and demanding.

Interpretation models once devised can be instantiated to form conceptual models, to

be used within different domains for which they have been intended. We place particu-

lar importance on interpretation models for general problem solving in KBS. In

1.3.3.3 The External View

Business demands placed upon a KBS, need to be considered at the same time as we

form our problem solving four layer model. If Knowledge Based expert systems are

to assume their proper role in solving problems in commercial environments, they need

to accommodate for the external requirements placed on them by those environments.

We consider analysis of internal and external views as part of the analysis global

lifecycle model, in which the views will have to be negotiated-to reach an acceptable

compromise. 'ne compromise should bring about an acceptable trade off between the

business needs, and the possibility of capturing the internal view within the current

system development technology.

1.4. Design

Design in KADS appears in the methodological spectrum after analysis. A continuum

along which the output of analysis stage should be used as input to design (cf.

Davoodi, 1987[b]). The input to design is defined in terms of the conceptual mWel,

and a number of statements describing the external requirements.

The input is then transformed (fig. 1-1) into a description capturing WHAT functional-

-13-

ity is expected of the ultimate system. This description is then transformed into a

design architecture providing a transparent support for the artefact. Ideally, the only

decisions to be made at the implementation level should be those to do with house-

keeping, and system tidy-up issues (such as garbage collection).

The design language and methodology as we have come to establish, share some

aspects of conventional software design, as well as having major points of departure

from it. The major distinguishing factor in the design of knowledge based systems is

the use of Al problem solving techniques (methods), which will have a significant

effect on the architecture of a system.

1.5. KADS Power Tools

KADS uses a development environment based on a number of tools specifically

designed and implemented for this purpose. The tools are created in response to

requirements within different stages of development within the methodology, and they

are integrated together to provide a support environment.

Some of these these tools are:

0 Protocol Editor (Anjewierden, 1987), enabling an extensive cross-referencing

facility within transcripts (protocols) of interviews with experts. This makes it

possible to cross-reference amongst domain concepts, and large segments of

text, as well as annotating parts of text, and so forth.

Tools providing for editing a glossary of domain terms, building domain lexi-

cons, selecting and editing interpretation models, and editing concept hierar-

chies. For further references, see "KADS Power Tools: User Interface

Specification" (Allen and Anjewierden, 1987), and "KADS Power Tools: User

Guide" (Anjewierden and Allen, 1987), amongst other possible documents in

-14-

this respect.

We shall not concern ourselves with KADS Power Tools within the course of this

work beyond the above description.

1.6. Global Remarks

We do not intend to use prototyping as the main activity for developing KBS. Proto- t:

typing can be applied in testing development stages within the methodology; this sub-

ject deserves a chapter to itself. We shall say more on this in the concluding chapter

of this work.

We intend to extend KADS in the future to contain KBS shells. These shells are

intended to contain generic analysis and design models for different classes of exper-

tise. This is an extension of IM, so that a useful library of generic problem solving

models can be established for the users of KADS methodology. In this respect we

agree with Clancey (1985), that there are a number of gene, ral applications which

exhaust most of useful expert activities (planning, monitoring, diagnosis, so on).

KADS intended KBS shells are based on existing general expert problem areas, pro-

viding a flexible environment whose every stage is explicit and documented. 'Mese,

we believe, are the important tools the knowledge engineer will require in developing

large and complex knowledge based systems.

1.7. Organisation of Chapters

The chapters will appear in the same order in which we have introduced various sec-

tions in this introductory chapter. We shall, however, precede the work with a litera-

ture survey, so as to compare our work within KADS with attempts of a similar

-15-

nature. Chapter 2 will provide this comparative study within a spectrum of metho-

dologies or approaches which have been devised in the field of KBS of late.

We shall provide a detailed description of KADS analysis within the analysis lifecyole

model in chapters 3 and 4, starting with the 'external view'. Chapter 5 will round off

the work in analysis by introducing the notion of 'Interpretation Models' in some

detail. These models are the cornerstone of the KADS methodology. In chapter 6 we

shall provide an account of the use of conceptual models and interpretation models in

the context of a real life application used as a case study in that chapter.

In chapter 7 we shall provide an account of KADS design, which uses the output from

the analysis phase. The modelling within design does not as yet benefit from the same

degree of completeness as that of analysis. Despite this we are witnessing a number

of successes using our design approach, and we are encouraged that further research

should yield a design description language of the same power as KADS analysis

language. In chapter 8 we shall apply our design approach to a system called

NEOMYCIN (see, for instance, Clancey 1985[b]) in a post-hoc study, in which the

power of KADS analysis and design description languages are illustrated. This study

is particularly useful, since NEOMYCIN shares some of MYCIN's background.

MYCIN, in itself, is behind an approach to a KBS methodology in the shape of

ROGET (see chapter 2), which has been a point of inspiration in developing KADS.

NEOMYCIN also has a wide scientific appeal in the KBS community due to its large

degree of system modularity, and its reusability within HERACLES which is a

knowledge acquisition shell based on NEOMYCIN. The culmination of these factors

presents NEOMYCIN as a suitable test-bed for KADS design approach.

In the concluding chapter, we shall provide a summary of our work, as well as indicat-

ing our plans for future work in continuation of the methodology. This chapter will

have a significant part which deals with the use of prototyping, the inclusion of which

-16-

we find particularly apt. The use of prototyping within KADS is at a seminal stage; a

description of it will thus be well placed in a chapter addressing future developments

within KADS.

This thesis is not about producing an extensive system implementation, the length and

breadth of which would have made up the content of our work here. An attempt of

this type would have been futile, since it would have had little to bear on the sub-

stance and the reasons for introducing KADS as a methodology for KBS development.

By concentrating on one large implementation, we should have been unable to show

why KADS is applicable in general.

Appendices A and B will, however, provide examples of using KADS to support sys-

tem implementation. Appendix A is a prototype based on an earlier case study

(chapter 6). Whilst, appendix B will provide an account of how to go from 'require-

ments statements' to full 'system design' using KADS. The two appendices will com-

plement the case studies (chapters 6 and 8) in showing how KADS can be used in

developing knowledge based systems.

-17-

2. A Comparative Study

2.1. Introduction

In this chapter we shall compare KADS with a number of lmowledge acquisition

approaches. The candidate approaches are identified as using a number of techniques

and methodologies which are comparable to parts of KADS. The aim of the study is

as follows:

To establish the position of KADS amongst methodologies for developing

KBS.

To show our reasons for believing that KADS is the most appropriate metho-

dology for KBS development amongst those discussed in this chapter.

To provide a framework for a contextual understanding qf our work against the

conventional view of KBS development.

We shall start by providing a brief history of transferring experiences gained in

developing a system called MYCIN into a general purpose knowledge acquisition tool

in the shape of ROGET (Bennett, 1983). The next stage will be to pursue this line of

development within other application and non-application based knowledge acquisition

tools. This line of enquiry should provide both the history and the tradition of such

tools, as well as creating the appropriate context for a comparative study in the spirit

that we have alluded to earlier.

-18-

2.2. Knowledge Acquisition -a brief history

There are a few examples of knowledge acquisition tools dating from the early days of

expert system research. Teiresies (Davis, 1979) is probably the most notable of these

tools, which is used to define MYCIN's knowledge base. Another tool derived from

the MYCIN project is ROGET (cf. ibid.); ROGET can be seen as precursor of

interpretation models in KADS. It has only one model which is derived from the

structure of MYCIN. The model has, however, helped to recognise that there is a

level of description of system / domain which is more abstract than the underlying sys-

tem itself. The abstraction provides an important insight into the structure of the prob-

lem solving within the system. The structure might, then, be used to help to devise

other systems showing similar problem solving behaviour.

The notion of generalising a problem solving structure by applying it to a number of

domains is gaining acceptance increasingly within a large section of KBS conu-nunity.

Researchers within the community have shifted their focus of attention from building

individual systems, to capturing generic systems applicable to categories of domains.

The remainder of this chapter will address these systems with a view of comparing

them against KADS.

Given the range of systems and structures in existence, it is of little use simply to list

them. We shall require a general framework as a basis for comparison. The develop-

ment of this framework is also part of achieving a better understanding of the KBS

development process.

The framework provided here is very much in the spirit of our own work. The frame-

work certainly is not intended to reflect the perspective of many of the researchers

whose works are referenced.

-19-

2.3. Paradigms for Knowledge Acquisition

The conventional view of expert system development is one of extracting knowledge

from a source of expertise and transferring it into a format which can be used in a

computer system representation. The resulting computer program is known as an

expert system, which is the artificial counterpart representation of some real life exper-

tise. The source of expertise resides in an expert (or a small group of experts) and,

possibly, documents pertaining to the associated domain of expertise. Ile inextricabil-

ity and tacitness of certain elements of knowledge make them unsuitable for represen-

tation on a computer system. This is because what cannot be expressed clearly in the

real world can certainly not be represented and used in computer programs. In such

cases if the tacit elements are essential to problem solving, then a graceful degradation

will take place in automating the expertise. When tacit knowledge elements are not

central to problem solving, they may be side stepped at the risk of lower system func-

tionality or performance.

A more general view is that regardless of the exemplification of the expertise in the

functioning of an individual, knowledge about a domain exists in the world (perhaps in

a distributed form). It can be said further that this knowledge may be codified and the

associated behaviour produced in a system. Thus the paradigm is one of modelling an

aspect of the 'real' world and reproducing certain behaviour or synthesising the desired

behaviour (which may not be actually found at the present) in an 'artificial' world.

The use of 'real' and 'artificial' here has much in common with Simon's view (Simon,

1969) and his characterisation of "enginering the artificial" seems consistent with our

suggestion about KBS development, albeit his focus of attention is elsewhere. We

believe, in the same way, that the pairing between the engineered artifact and its real

life counterpart does not need to maintain all of the features of the latter in the former.

We are interested in capturing those features of the 'real world' which are seen as

-20-

essential to solving problems within a computer system. 'Ibis may also result in syn-

thesising certain features in the artifact which cannot be observed in the 'real world'

counterpart, in order to achieve the required problem solving behaviour. The use of a

modelling language such as KADS is to facilitate a mapping from the 'real world'

onto the domain of 'the artificial'. We are not, however, advocating modelling to the

exclusion of elicitation from experts. Experts should be used whenever required and

possible, but the use of data should be conceived as a foundation for modelling.

An important consequence of making this generalisation is that knowledge acquisition

has to be viewed with a modelling metaphor, rather than a metaphor of extraction or

mining. The modelling, as pointed out earlier, will provide the intermediate stage of

mapping from a 'real' into an 'artificial' world. This will also remove many of the

psychological and practical problems of knowledge acquisition if seen as extracting

something from the expert. The emphasis on expert systems as critically involved

with modelling has been forcefully argued by Clancey; although, his emphasis is on

the systems produced and ours is rather on the production process.

The distinction is in the ability of using KADS modelling independently of any one

system or developer to create a problem solving model. Clancey's approach is based

on applying abstraction of systems already developed as models for creating new sys-

tems. This can be observed in the use of HERACLES which is a diagnostic shell

abstracted from NEOMYCIN. HERACLES is intended to be used for modelling diag-

nostics in various domains, and not just in medicine as is the case for NEOMYCIN.

KADS, on the other hand, will provide the vocabulary (see chapters 5 and 6) for a

user to create her own generic model for different domains. Whilst KADS will learn

from works such as BERACLES project, it will not contain the creation of such

models to centres of excellence. KADS will also provide a forum for criticising

aspects of a model within a methodology, incorporating a consensus view as far as

-21-

practically possible.

If one accepts this view of KBS creation at the most general level as a mapping from

an understanding of behaviour in the real world to the description of the form of an

artifact (i. e. as a category of engineering), then there are essentially two ways in which

such a mapping may be created. One may start with known components of techniques

in the artificial world and experiment with composing them to create the desired

behaviour. Examples of this are not common but include chemical synthesis on an

exploratory basis and exploratory architecture. The alternative approach is to devise a

modelling language within which one can describe the required functionality and

transform this description into the desired artifact. There may of course be a number

of languages and thus transformations involved in this process. This approach is very

common, obvious examples are in civil engineering and electronic circuit design. A

very clear abstract description of this view of software development is provided by

Maibaum(1986).

Supporting the former process lies outside our scope but can be seen as the function of

tools such as KEE and LOOPS. Very few of conceptual tools fall into this category

with the notable exception of KREME (Abbret & Burstein, 1986). These development

tools will have within them a number of primitives, such as 'objects, 'rules', and

inference mechanisms for developing and combining aspects of the artifact which may

result in the required behaviour expected of a computer program. 'Me question which

then arises is how can the diversity of other works be located within the paradigm of

development via model building.

One categorisation may be based on the distinction between the top-down approach to

analysis and a bottom-up approach to it. Thus approaches which presurpose a model

structure (or several alternatives) will then attempt to fit observed data within such a

structure. On the other hand, tools which support one or more analytical techniques

-22-

make no commitment to structure in advance. Worse still, they will provide less sup-

port for problem understanding, as well as generating weaker structures. The top-

down versus bottom-up categorisation, which is well known for all types of software

activity, hides a more fundamental and more interesting distinction between the

research prognammes behind the various pieces of work. In a bottom-up approach the

tools are of a general nature, and their use is guided by their capability to represent

and manipulate aspects of knowledge or expertise. The wider, and more heterogene-

ous the population of such tools, the greater expertise domains they are likely to sup-

port. At the same time, there is no guarantee that they would provide the analytical

tools for a new domain, since there is no a priori commitment , on their part, to the

structure (or model) of that domain.

We have already outlined the notion of KBS development as mapping the real world

onto the artificial world via a model. This perspective can be extended across KBS

development as a whole by considering a description space which includes all potential

real world models, and a second space containing all system models. A specific sys-

tern development process will, then, consist of constructing a description in the first

space, and mapping it onto a description in the second space, and from there to an

implementation. We shall refer to the first as the analysis space, and to the second as

the design space. The major issue in knowledge acquisition research from an

engineering perspective can then be seen as attempting to understand the structure of

these spaces and how points within them may be defined. The definition will require

both appropriate languages, and effective processes within those languages; the two

issues whilst closely related are nevertheless distinct. Research programmes tackling

these issues may be seen in three categories.

The first provides techniques for concentrating on a very limited number of dimensions

but is reasonably precise in handling those dimensions. A good example is repretory

-23-

grid analysis (cf. - Gains & Shaw, 1986). Such techniques may provide relatively -sim-

ple and well defined methods of analysis. Their drawback is that there are no clear

criteria for when they are applicable and how to use the subsequent results. This can

be seen as a consequence of their failure to shed light on the structure of the descrip-

tion spaces or any sense of location within these spaces.

The second strategy is to fix a point within the design space by selecting a particular

implemented system. This would imply creating a definition of the mapping from the

analysis space by building a knowledge acquisition tool, which enables the original

system to be refined or augmented. The next step would then be to explore how the

knowledge acquisition tool may be used to build what are believed to be similar sys-

tems, i. e. in related domains. This corresponds with perturbing the domain of the

mapping and using the information gained as a means of better understanding the

description spaces. The difficulty with this approach is that the number of data points

currently available is very small and the creation of new ones is laborious. There is

also the risk that in perturbing the domain to another intuitively believed to be close,

one may misjudge the metric properties of the space. This would in turn mean that

one is dealing with a domain in fact very different from the original one.

The third approach is to tackle the issue of characterising the languages adequate to

describe a significant number of points within these spaces. The drawback of this

approach is that it is very difficult to produce such a language and once one is pro-

posed it is difficult to evaluate its adequacy. While there are some proposals relevant

to the analysis space, there is a dearth of material relevant to the design space. As a

rare exception to this, Newell's classic characterisation of weak problem solving

methods (Newell, 1969) can be named. More recent work on reflexive systems (e. g.

Maes 1986) and object-oriented systems (e. g. Stefik & Bobrow 1986; Booch, 1986)

may contribute to a better characterisation of the design space, but at present we are

-24-

far from having a coherent view.

At this point in time the second and third approaches are highly complementary,

although they appear to be very different. One hope in providing a characterisation of

the research issues which encapsulates both is that more researchers will be tempted to

consider their results within this framework thus adding to the data available. It is a

common complaint that Al research results are frequently non-comparable and thus

scientifically of little value.

Looking at the state of this research area overall one main conclusion must be that

more systems are required. The larger population of systems will only be seriously

useful, if closer commonality of description for those systems is adopted. 'ne fact that

we can perceive a framework within which previously apparently disparate works can

be related should, nevertheless, encourage us greatly. We are beginning to take the

step from producing interesting or curious single results to gathering a body of

scientific data on systems.

The remainder of this chapter is devoted to categorising works within the framework

proposed here (above), and comparing their results to KADS approach at a more

detailed level. We begin with considering what we term "single-model" systems,

which we see as exemplifying the second strategy outlined above. We then turn to

language based approaches in the third strategy. As we have previously indicated, we

do not see the first strategy as contributing to our understanding of, the issues at the

level at which we are pursuing them. It will, therefore, not be considered further in

here.

2.4. Single Model SYsterns

-25-

2.4.1. ROGET

An attempt has been made - to generalise very widely from MYCIN within a system

known as ROGET. This had been coloured by the perspective of the time, in the same

way that EMYCIN had been thought to be a very general purpose tool. This is due to

the fact that MYCIN's structure is very limiting and thus ROGET in practice must be

seen as single-model based. The philosophy of the endeavour has, nevertheless, been

to devise a "multi-model" based system, and the objectives of ROGET have much in

common with later work in this paradigm.

ROGET has a knowledge base of "conceptual structures" of existing expert systems.

A "conceptual structure" is an abstract description of the structure of an expert system.

It consists of types of data, types of inferences, etc., comparable to interpretation

models. For example, the conceptual structure called "recommend action to fix prob-

lem" consists of determined actions, determined causes, determined problems and

evaluated evidence. Some relations are also specified, e. g. "evaluated evidence" deter-

mines "determined problems" and "recommended actions" aný "determined causes".

Brief descriptions and examples are available of the categories in the conceptual struc-

ture. Many categories have got subcategories (e. g. laboratory tests are a subcategory

of evaluated evidence) as well.

The program helps the user to select an appropriate conceptual structure from the

library of such structures, by asking questions about the current task and domain and

presenting descriptions of the structures in the library. In the next next stage the struc-

tures are edited (by adding and deleting categories), and then the categories are used as

frames to construct the actual knowledge base.

The second function of ROGET is to provide the user with practical advice. For

example, ROGET contains heuristic rules about the feasibility of systems (taking into

-26-

account the complexity of the domain and the conceptual structure, the experience of

the knowledge engineer, etc.).

The second function of ROGET is to "compile" the resulting knowledge base into an

expert system, by translating the concepts and rules into a shell. ROGET currently can

translate simple concepts and rules into EMYCIN.

ROGET derives its power from the fact that: an abstract description of an existing

expert system (similar to the new system), can be used to establish a coherent frame-

work for the new domain. The idea of ROGET is very similar to that of KADS. A

study of the prototype version of ROGET will reveal that it is still a very limited sys-

tem. It can only recognise, domains that are very similar to MYCIN. For new

domains, it will be difficult to see how well the conceptual structure of MYCIN

applies. ROGET focuses on the structure of objects and disregards inference methods

and strategies (a bias that may stem from MYCIN). The advice on knowledge

engineering is very ad hoc and seems to be based on practical experience in the past

with a limited number of systems.

2.4.2. MOLE (Eshelman et al., 1986)

This system is a good example of the single model strategy. As its authors express

"MOLE the knowledge acquisition tool gets its power from its knowledge of the

problem-solving method of MOLE the performance system ... MOLE's problem solv-

ing method is a variant of heuristic c, assification". Since heuristic classification is a

very general method, MOLE may be expected to have wide applicability. The penalty

for this generality, however, is lack of expressive capability. The authors note

"MOLE's method still places strong limitations on the type of tasks for which it would

be appropriate. " MOLE requires exhaustively specified symptoms and hypotheses. It

then requests knowledge which may explain the symptoms ("covering knowledge"),

-27-

and knowledge to enable differentiation between hypotheses ("differentiating-

knowledge"). Ile two types of knowledge are then used to build a network of associ-

ations between symptoms and hypotheses. 'nis view of the use of knowledge in

refinement of a knowledge base appears very similar to SEEK (Politakis & Weiss,

1984; Ginsberg et al., 1985).

A weakness of the MOLE approach is that it focuses on gathering associations rather

than states or objects. Thus if an association requires the definition of an intermediate

possibility as a basis for discrimination, then the system has no means of detecting this

or probing for the knowledge. As the authors note: "since its constructive ability is

rudimentary, we have continued to present MOLE as only appropriate to tasks that are

amenable to heuristic classification. " We would interpret this as saying that the chain

of associations between any given symptom and hypothesis is short and only loosely

linked to other chains. To claim anything beyond this would imply a move from

heuristic classification to fuller causal modelling.

2.4.3. STUDENT (Gale, 1986)

This system lies at the other end of the spectrum from MOLE in the sense that MOLE

uses a general but weak problem solving model, while STUDENT uses a very specific

model - for the domain of statistical data analysis. The author refers to the method as

knowledge-based knowledge acquisition. MOLE's knowledge is general and con-

cerned with how hypotheses and symptoms must be related, and contains heuristics

such as parsimony of explanation of associations. Meanwhile STUDENT's knowledge

is solely about data analysis. The critical point is that the knowledge in the knowledge

acquisition system must be more general than that required in the target system, i. e. (as

Gale notes) the tool must be useful to build more than one system.

-28-

Gale explicitly identifies the core of the knowledge based knowledge acquisition sys-

tem as a "conceptual framework for the domain". This appears precisely equivalent to

an interpretation model. However Gale provides no formalism for describing such a

"conceptual framework" and it is effectively implicit in the STUDENT system. A

second major issue is how the conceptual framework is derived, Gale suggests the

framework to start shaping from the first instance of a system in a domain. We cer-

tainly believe that examination of implemented systems provides useful data for creat-

ing interpretation models. We do not see this as a prerequisite in the way suggested in

STUDENT, the overhead and lead-time is simply too great. We would however sug-

gest that our relative freedom is acquired as a result of having a descriptive formalism

applicable to all the models. This is the consequence of the language-based research

programme rather than the model-exploration one.

2.4.4. KNACK Winker et al., 1986)

This is another specific domain system used to construct target systems capable of

evaluating the design of electro-mechanical systems using a particular reporting format.

The systems created (called MUNGERs) gather information about a design, point out

possible design flaws and make suggestions to correct and improve the design. Ile

model (in our terminology) is referred to by the authors of KNACK as the problem

solving methods together with the identified knowledge roles. These methods are

described explicitly, albeit informally, in a way which is closely akin to a task struc-

ture referencing a set of metaclasses or knowledge sources. The following are given

as "roles" (for us metaclasses): report structure, synonym, information selection, design

fix; and as categories of knowledge (knowledge sources): information identification,

information gathering, consistency evaluation, completeness evaluation, design evalua-

tion and design default. It is not difficult to imagine that with a little more data one

could provide a KADS four layer model for this domain.

-29-

2.4.5. Other Systems

The TKAW system (Kahn -et al., 1986) is similar to MOLE; its focus is, however,

somewhat narrower. 'Ibis is because it handles domains concerned with the diagnosis

of equipment failure, in which failures can be represented in an abstraction hierarchy.

This would appear to allow support for more complex chains of causal connections

than MOLE provides. TKAW thus represents a point on the spectrum somewhat

towards STUDENT.

SALT (MARCUS, 1986) acquires knowledge for construction tasks which are based

on planned sequences of steps which can be created on a propose and revise basis.

This covers at least configuration and scheduling tasks, but with the proviso that the

relationship between "components" can be described in relatively simple dependency

networks. Thus the domain layer is represented primarily as associations comparable

in form with those in MOLE. The knowledge at the inference level is concerned with

how constraints interact and how to fix inconsistencies. The task level is 'plan crea-

tion' using the 'propose and revise' strategy.

The systems described so far cover not only the static knowledge about a domain but

also the knowledge about how this can be used in problem solving. A number of sys-

tems tackle the more limited issue of developing the static knowledge but within an

assumed overall model. Thus OPAL (Musen et al., 1986) supports the acquisition of

domain level knowledge for ONCOCIN. BLIP (Morik, 1986) also operates at the

domain level but seeks to refine and extend an initial model ("a sloppy model") using

a limited amount of meta-level data. Whereas OPAL is highly specific to the ONCO-

CIN knowledge base, BLIP is entirely general. The generality is manifested in the

user being able to start by specifying a model for the domain of interest, whk; h BLIP

can then refine. It seems more natural to treat BLIP as a single model system. BLIP

with a 'sloppy' model is a single model system and it is only this combination which

-30-

constitutes a knowledge acquisition system. BLIP without a sloppy model is essen-

tially first order predicate calculus with a small amount of very general meta-

knowledge. While one might argue that predicate calculus is adequate to characterise

points in the analysis space, it certainly does not provide any support to the knowledge

engineer in the analysis stage. It, therefore, cannot be considered a 'modelling

language' in any practical sense.

This characterisation of BLIP in terms of the framework outlined above does not seem

entirely satisfactory. Ibis may be due to the fact that logic as a language does not fit

conveniently with the more specific 'language' described in the next section. It may

be because leaming systems (or systems incorporating automated refinement of

knowledge) cannot be characterised in the framework given here. This issue requires

further elaboration.

2.5. Language based Approaches

2.5.1. KRITON (Diederick, Ruhman & May, 1986)

KRITON is a knowledge acquisition system designed to support the process of proto-

col analysis, and the conversion of this data via an intermediate representation into a

knowledge base. The objectives are very similar to KADS, although in practice more

emphasis seems to have been placed on automated elicitation and less on supporting

analysis. The intermediate knowledge representation level is described as having two

layers: "a descriptive language for functional and physical objects, representing the

generic concepts, and a propositional calculus representing the transformation path of

those concepts during the human problem solving process. " 'Me first is clearly

equivalent to the domain layer in KADS, but it is not clear whether the second is an

amalgamation of inference and task layers or only the inference layer. The latter

-31-

possibility is implied by the description of the "propositional calculus" as using

"semantic primitives to describe the basic relations of concepts detected by protocol

analysis. " Unfortunately the referenced paper does not contain any further

specification or illustration of these "semantic primitives". The KRITON approach

differs from KADS in that there is no notion of generic models and in that it is

assumed that the intermediate knowledge representation can be transformed directly

into the knowledge base. Ilus there is no explicit acknowledgement of a design pro-

cess or of a space of design descriptions.

2.5.2. Expertise Specification

The work of Johnson (Johnson & Gruber, 1986) is of great interest to us because his

philosophy is strongly in tune with ours in his belief in modelling expertise using pro-

tocols and avoiding early commitment to implementation. As he says: "we believe

that building a prototype system early in the knowledge acquisition process may carry

with it commitment to specific model of thinking (inference process) that does not ade-

quately represent the expertise we are trying to understand". He also provides a well

specified language for modelling expertise, but (at least superficially) it appears totally

different from ours. Johnson's language is single level and provides the following

constructs:

bubble

context of problem solving,

arrow

directed relations between bubbles; the " "pathways" of problem solving determining

a way of moving between, components of the solution",

triangle

-32-

the set of abilities deemed necessary to move one context to another,

cloud

"identifying the goals that specify the abilities needed to "travel" on that relationship

or "Pathway"",

box

"representing the set of possible "triggers" to activate the abilities (goals)".

This descriptive language is applied directly in analysis of protocols. A protocol is

coded into episodes and then contexts are formulated. In addition to the constructs

defined above a "sequencer" is defined. The sequencer defines the primary structure of

the problem solving in temporal sense, i. e. how the problem solving is organised at

what we would call the strategic level. The contexts and the sequencer define a tem-

poral division of the protocol, and the episodes, which fall within each temporal inter-

val, are then analysed to determine the relationship and its associated properties (abili-

ties, goals and triggers).

This scheme is obviously syntactically totally different from KADS and although there

is an apparent relationship between at least some of the semantic elements, it is far

from obvious that one scheme could be mapped onto the other. This doubt is

increased by noting that Johnson's language basically describes states of the problem

solver and the transitions between them. There is no attempt to model the structure of

the problem solver as in KADS. Thus Johnson's model may be a 'purer' real world

model than that provided by KADS, since there is less specification of internal struc-

ture and thus less commitment to implementation. This is supported by the fact that

the language is applied directly to protocols whereas in KADS the model is further

removed (abstracted) from the description of specific data. It would also appear to us

that it is less obvious how such a representation might be converted to an implemented

-33-

system than in the case of KADS model. This would also seem to be the implication

of Johnson's statement "At this point, we claim only that our representation can serve

as an initial specification for a computational model of expertise" [emphasis added].

However we do not wish to see these approaches as competing in the sense that they

are mutually exclusive. 'Me fact that we find another proposal so much in tune with

ours while quite different in detail appears to us as a strength. The fundamental argu-

ment is in favour of a structured approach to analysis, not in the parochial support of

one particular model.

2.5.3. Generic Tasks

The work of the group under Chandrasekaran at Ohio State University is focussed on

the definition of "generic tasks" which are claimed to be at the "right" level of abstrac-

tion to support effective knowledge acquisition (Bylander & Chandrasekaran, 1986).

Within our framework the first question is whether a "generic task" is a point in the

analysis description space or in the design space. Given the more detailed characteri-

sation of a generic task as "an elementary generic contribution of a task, representing

an inference strategy about concepts" one might assume that it was in the design

space. However the fact that a problem is envisaged to map directly onto a generic

task (or combination thereof) could suggest the former. If we. look at the rationale for

introducing generic tasks the situation becomes clearer. Bylander (cf. ibid.) notes the

"interaction problem", i. e. the interaction of decisions about knowledge representation

and control, and suggests that generic tasks are a way round this problem by fixing

primitive combinations of the two. Knowledge acquisition is then performed in the

context of the generic task and indeed CSRL (Bylander & Mittal, 1986) is proposed as

a language specific to the description of instances of a single generic task. Thus in our

terminology a generic task is in fact a region in a design space but with the assump-

tion that it can be fixed as the range of a region in the analysis space. Thus a generic

-34-

task in fact defines a fixed combination of points in the analysis space and in the

design space - hence the ambiguity referred to earlier.

We suggest therefore that there is a fundamental difference between this strategy and

the KADS approach. Rather than exploiting the interaction problem, we attempt to

sidestep it by providing different representations at different stages of development

process. Which approach is more fruitful only time will tell, but we do have some

reservations about the pragmatics of the generic task approach. Firstly it is not obvi-

ous that generic tasks are at the right level of abstraction. It is odd, to say the least, to

refer to "elementary generic combinations": if the entities are combinations then their

components are more prin-dtive (elementary). It is being suggested that other combina-

tions of these components are logically impossible, this seems unlikely. Surely the

components and the manner of their configuration requires deeper analysis. We may

also ask at what level of abstraction do generic tasks lie, relative to the entities in the

KADS four layer model (see chapter 4). Since it is suggested that an application sys-

tern may be the instantiation of a generic task, it seems likely that a generic task is

analogous to an interpretation model, or at least the inference structure. On the other

hand Bylander and Mittal (cf. ibid.) suggest their notion of classification is more primi-

tive than Clancey's heuristic classification (Clancey, 1985), which may be decomposed

into three elements. This would make the generic task analogous to a single

knowledge source, but it could hardly constitute the basis for a complete application

system.

This leads to a second problem. It is envisaged that application systems may be made

up of more than one generic task, but since generic tasks are highly discrete (given

they are combinations of representations and control) it is not clear how the interaction

in such composite systems would be defined. This problem is greatly exacerbated if

one defines a different language for each generic task. This would seem precisely the

-35-

wrong level at which to define a language: one surely requires (or at least prefers) a

language which is uniform across all the components of a system.

We suspect that at least some of these difficulties arise from trying to solve the

knowledge analysis problem (i. e. contamination of analysis by presuppositions about

representation) within the context of implementation paradigms. Our suggestion would

be to back away from implementation altogether and recognise a distinction between

analysis and design / implementation (as does Johnson). This creates the difficulty of

mapping the analysis to design but we find that a more tractable research strategy than

that adopted at Ohio state.

2.5.4. Ontological Analysis

This technique is analogous to the domain level tools described above, in that a

language is provided to specify objects within a domain. The ontology of the domain

is a specification of the objects in a domain, which Alexander et al. (1986) define in

three parts:

static ontology

"defines primitive objects, their properties and relations, "

dynan-dc ontology

"defines the state space of the problem solving domain, and the actions that transform

the problem from one state to another state, "

episternic ontology

"defines the constraints and methods that control the use of knowledge applied to the

static and dynamic ontologies. "

These ontologies are defined in a langUage (SUPE-SPOONS) which is based on the

-36-

domain equations of denotational semantics and algebraic specification.

While the epistemic ontology may overlap with the inference level of the KADS

model, this language seems essentially to define objects at the domain level. As the

authors note:

There is no operational component identified. The operations on a type are

necessary for fully specifying a type. We have no way to define the

behaviour of an object, only its structure.

Thus the descriptive capability of this language is admittedly limited. However the

domain level of the KADS model has so far been very partially described and explored

and it may be that the two frameworks can be combined with little difficulty. We

hope to assess this further in future experimentation.

2.6. Conclusion: KADS vs the Rest

The primary purpose of this chapter has been to propose a frarhework for describing

and discussing knowledge acquisition methods and tools and to relate specific cases to

this framework. However in evaluation of our own approach we should surnmerise the

major distinctions (and similarities) between KADS and other systems/techniques.

Firstly, as has been emphasised, KADS is a language based approach, in the sense that

it provides a vocabulary and grammar, and the other constituent parts as described in

chapter. I (above). It makes some commitment to internal system behaviour, particu-

larly at the upper layers of the four layer model. Thus it could be viewed as a pure

behavioural specification. However, some compromise in this regard seems necessary

in order to be able to use the model as a basis for subsequent design, i. e. the design is

partially constrained at the stage of conceptualising about the real world.

-37-

The structure of the KADS model is a notable feature. While one could produce other

formalisms possibly as adequate for modelling expertise, KADS provides a natural par-

tioning between knowledge elements (see, for instance, the four layer model in chap.

4), when compared with other systems/approaches.

One component of the KADS approach which we have not found elsewhere is the pro-

vision of "interpretation models" to support the analysis of data from knowledge elici-

tation. The 'single model systems' each embody (more or less explicitly) a model

which in fact performs this function. The attraction of the KADS approach - from the

point of view of the general system developer - is that it combines the strength of a

single model with the generality of the language based approach. Clearly the ade-

quacy of utility of these general models needs testing, but we now believe that we

have a sufficient number of these models (cf. Breuker et al., UvA & Davoodi et al.,

STC, 1987) to enable such an assessment.

-38-

3. R]ýQUIREMENTS ANALYSIS

3.1. Introduction

The integration of KBS into real life commercial applications requires a large degree

of conformity with the overall aims and constraints of the user environment. Ile

degree with which such systems will become common place in commercial applica-

tions, as well as those of academia, is a measure of how successfully they can adapt

themselves to those environments. It is therefore essential to consider and capture all

of the requirements expected of the intended system in the early stages of a project

lifecycle. This is the task of requirements engineering in which a requirements

analysis is carried out and its outcome recorded in a number of documents. The

requirement documents should ultimately filter into a number of statements describing

constraints to be placed on the design of the system.

Requirements analysis provides the context (or shell) for the detailed analysis phase in

which the expertise behaviour and the user requirements are mapped out prior to

design. Our concern in this chapter is the overall requirements analysis, references to

those parts of the analysis phase concerned with the expert behaviour are made in

order to demonstrate the relation between the two activities (user and system perspec-

tives) within the total analysis Lifecycle Model (hereafter also referred to as LCM) (fig

3-3).

3.2. Requirements Analysis

We distinguish two views of a KBS, one the functional view describing the 'internal'

working of the intended automata modelling the expert or some domain knowledge
ID

-39-

and, the other, the external constraints placed upon the working of the automata. We

shall refer to these two as the internal and external views respectively. Requirements

analysis is concerned with defining the external view, treating the internal view as a

black box sufficiently well behaved to support the external requirements.

Consider the capturing of an expert knowledge in the automata, where the expert's

function is to givq advice on possible types of computer hardware configurations. As

part of the external requirements the KBS simulating the expert may have to reside on

a particular machine for a host of reasons such as: compatibility, security and cost.

These constraints all belong in the external view, and have nothing to do with the

way the problem solving behaviour of the expert will have to be modelled at the

analysis stage. In devising a system to perforin the hardware configuration, we shall,

however, need to ensure that the machine on which the KBS is to be implemented is

capable of supporting the systen-L There will, therefore, need to be a process of nego-

tiation taking place between what is externally required, and what is technologically

possible. We shall consider this point more explicitly in the context of the analysis

global LCM.

3.3. Analysis, Global Life Cycle Model

Four global activities can be identified in the analysis phase of a KBS project (cf.

Barthelemy, et. al., sec. 3,1987). These are:

(1) Determine Scope of Project

the initial activity in which proposals are submitted for consideration, in which

global requirements and resourcing issues are also introduced.

(2) Requirements Analysis

the external view is identified and documented in this activity. The constraints

-40-

introduced by the view should affect the design of automata such that it adapts

closely to the user community's needs.

Knowledge Acquisition

the expert problem solving capability, and its extension in terms of mode of

interaction with users, also known as ntodality are modelled in this activity.

The model documents, in turn, represent the internal view.

(4) Feasibility Estimate

The information gathered and modelled during the requirement and knowledge

acquisition activities needs to be assessed to ensure its validity, as well as

establishing that the scope of project is feasible. This process will give rise to

the feasibility estimate, upon whose outcome the scope of the project may or

may not have to be revised and renegotiated.

The sequencing of the four activities and possible negotiation and iterations between

th ern give rise to the analysis global life cycle model (fig. 3-1).

It is interesting to note that the knowledge acquisition phase is normally driven by

technology push in terms of what the latest AI and KBS technologies are capable of

supporting, with the possibility of those techniques pushing the frontiers of the possi-

bilities. On the other hand, the requirements analysis is driven by application pull

ensuring that the technology available can support the external requirements. Often,

the negotiation between the two views brings about a compromise which is suitably

technical as well as being capable of supporting the user community.

The nature of the external and the internal views are primarily decided by the business,

commercial, industrial, or academic needs of the potential users. The needs them-

selves are translations of the users' corporate strategy in terms of where they aim to be

in the future, and how they perceive achieving it. The analyst or a team of analysts in

-41-

Determine
a the Requirements ?I

Sa*e Analysilas
2

II
of
Project

K ow Kig nowiedge e
Acquisition

Figure 3-1: Analysis Global LCM

Estimate
Feasibility

the shape of knowledge cum requirements engineers should establish in conjunction

with the users and experts the actual process and possibilities of achieving the users'

objectives. The analysis phase, clearly, is the place where the nature of this process,

in terms of system requirements, is identified. The outcome of the analysis, for

instance, might indicate that the internal view is a composite one calling for conven-

tional database management system (dbms), and decision support system (dss), as well

as KBS. This can be accommodated for within a similar LCM with an expanded

internal view (fig. 3-2).

3.4. Analysis, Detailed Life Cycle Model

The analysis of the external view consists of three activities of.

(1) Analyse Present Situation

1ý

during this activity a good understanding of the user environment in which the

intended system is to perform should be attained.

(2) Analyse objectives and constraints

the role of the perspective system is assessed in this activity, in terms of the

-42-

Requirements
Analysis

Ext.
Determine
the Knowledge
SCope Acquisition
of Int.
Project

)

Estimate
Analysis Feasibility : z- Int.

DSS
Analysis

Int.

Figure 3-2: Analysis LCM, with a compound Internal View

objectives it sets out to satisfy and constraints placed upon it.

(3) Determine Functional Requirements

an overall consolidation of the external and internal views will have to be

arrived at; this is achieved within this activity.

The analysis of the internal view: capturing the expert(s) behaviour, in turn, will divide

into three activities of-

(1) Analyse Static Knowledge

the analysis of concepts and relations (see chap. 4) pertaining to the domain of

expertise will take place in here.

(2) Analyse Objectives and Constraints

the analysis of the expert problem solving behaviour, and the intended mode of

communication between the prospective systern, and users is the concern of this

-43-

activity.

(3) Construct Conceptual Model

a four layer model (see chap. 4) is constructed in here, in which expert

knowledge is described in terms of elements of knowledge, relations between

them, and meta-levels of manipulating that knowledge to achieve the problem

solving behaviour.

Out of the eight activities we have identified, two of them are concerned with global

issues of the scope and feasibility of project, and the other six capture the internal and

external views. Varying emphasis is placed on these activities in different projects; on

the other hand, some of them might be absent in certain applications. For instance, a

project conducted in an academic setting may pay little or no attention to the external

view, and be directly concerned with the problem solving technology.

In devising an analysis lifecycle model we have taken the view that all of the phases

are always present by default. A less desirable solution would have been to have

different LCMs devised for different projects. The latter approach will leave the LCM

open to unhelpful interpretation, and make the analysis less sharable and transparent;

whereas, in the former case phases not present can be ignored. The order in which the

activities are traversed are shown in figure 3-3 , the order is a tentative one and can

vary should it suit a particular project's needs. The LCM follows Jackson Structured

Design (JSD) diagramming techniques (Sutcliffe, 1988), in which each activity results

in a numbe- of documents. The documents may be used as input to other activities as

indicated by the arrows. The order of activities does not necessarily imply time, that

is some of the activities might take place concurrently. Equally, an activity upstream

of the LCM may be suspended, until data or knowledge needed for the resumption of

it is gathered downstream of the LCM.

-4z--

The names of the documents generated in each activity have been abbreviated accord-

ing to the following scheme:

P[n]:

T" stands for project document required for project management, and suffix "n" is

used to distinguish between project documents introduced at different layers within the

phases. We shall be using suffix "n" in the same way throughout for other documents

generated in the analysis phase (see below).

R[n]:

Requirements document will contain a description of the external constraints placed on

the prospective KBS (or hybrid system, such as an integration of KBS and dbms).

The KBS itself is treated as a black box of which a number of functionalities are

expected as part of the overall requirements. The document uses a descriptive, natural

language format in outlining the requirements. The document may, therefore, suffer

from all senses of vagueness and ambiguity normally associated with non-formal.

languages. It is possible to interleave the natural language description with formal

notafions such as Vienna Development MethcA; we, however, find external require-

ments so informal and diverse in nature from one organisation to another as to make it

difficult not to use natural language in some form to capture it.

M[n]:

Model document will describe the requirements for the internal view, be it a KBS or

an integrated system. The modelling language, as far as KBS is concerned, is a

prescriptive one using specific vocabulary and modelling stages. The language will be

described in detail in chapter 4. The model document should describe fully all aspects

of the intended system, in terms of capturing human expertise and the mode of interac-

tion with users.

-45-

F[nl:

Feasibility document will provide an assessment of whether the required system is

feasible, as well as describing the process by which the feasibility estimation is

reached. This document will be the basis for negotiating the scope of a project.

There is, additionally, 'support document' containing interview transcripts, and back

ground information which may need to be recalled at any point during or after a pro-

ject completion.

fn the next section we shall provide a brief description of each activity within the

analysis LCM (see fig. 3-2), together with the associated documents. We shall use

the document abbreviations, already introduced, throughout our description.

3.5. Description of Activities within the Analysis LCM

3.5.1. Determine Scope of Project

This activity may take place either at the point of inception of a project, or at inter-

mediate cycles of renegotiation as a result of the feasibility estimate (see fig. 3-2).

The proposal submitted in this phase should establish the boundaries of the overall

requirements, as well as identifying the man and machine resources required to carry

out a project.

3.5.2. Generated Documents

3.5.2.1 PI, Background and Prerequisites

This document will act as a common source of pre-project documents, such as all of

the abstracts of meetings, and documents that give rise to the project. P1 will provide

-46-

infonnation required by P2 and part of P3 (i. e. P3. I.).

3.5.2.2 P2, Project Terms and Directive

The objectives, aims, direction, extent and limits, of the intended system as well as its

connection with other possible systems should be described here.

3.5.2.3 P3

This will consist of three documents, namely:

P3.1

Project LCM: careful attention should be paid to devising an LCM for the project at

hand, in order for it to correspond closely with the needs of the project. The LCM

need not unnecessarily contain all of the activities depicted in figure 3-3 , nor need it

follow quite the same sequence of events. The point to consider is that the general

LCM should be used as a guideline, and not as a definitive. 'Me more emphasis is

placed on technology push, the more prominent will become the 'modelling' activity.

Conversely, if emphasis is placed on organisational and user needs, then the external

view will require a deeper analysis.

On the whole, a number of decisions taken during this activity, in order to define what

documents and activities are required during the analysis phase together with reasons

behind those decisions will have to be registered in document P3. I.

P3.2

Project Plans: overall project plans in terms of allocating time schedules against

activities, project staff, and users should be documented here. This document will pro-

vide the blue-print for project milestones as well as ensuring that the activities of pro-

ject staff and users will be suitably coupled in terms of interviews and analysis of tran-

scripts.

-47-

0

S

U

-J

a
a

a

S
E
a
z

z

0

S
-J

Z:
c;
E

V7
CIL

A.

I*
1c; cc

LL

cl; ej 46

l:;
-
ui
-Z- E

Z:
-46-

(---1 10
fý 44 -r

91

= -4 4*-- Z. -2

r--01
ICE

i

jo

ZL

-ei

. ty '..
:

-C

Ii I. "i -

- :8
I

Figure 3-3: Analysis Detailed LCM

-48-

P3.3

Project Organisation: project staff and users together with their names, roles, and posi-

tions will be documented here. Some or all of a number of project groups such as:

project steering group (PSG), reference groups, project management group, and work-

ing groups will need to be identified here with their respective responsibilities to / for

other project members.

3.5.3. Analyse Present Situation

This is the first activity concerned with the external view, in which an overview of the

organisation concerned will be attained. This is performed by interviewing managers

and some of the potential users in order to establish the objectives and problems in

achieving them. The extent to which those objectives can be addressed by the

intended system is limited by the scope of the project.

3.5.3.1 Documents Generated

3.5.3.2 RI, Model of Present Situation

The structure of activities known as functional organisation, and hierarchy of people

responsible for those activities known as formal organisation should be documented

here. A number of diagranm-ýing and modelling techniques such as "Jackson Struc-

tured Design" (JSD, see, for instance, Jackson, 1975) and entity relationship may be

used here, but their use will depend on the suitability of the technique to the domain at

hand.

3.5.3.3 R2, Functioning Objectives of User Organisation

The objectives documented here will fall into two broad areas of "measurable, " and

11 non measurable". The former will have some numerical value qualifying it such as:

-49-

"increase production by 40%". The latter, however, is in the form of a statement of

desire in terms of future enhanced capability, such as "being able to respond efficiently

to mangement requests"

3.5.3.4 R3, Functioning Problems of User Organisation

This document will contain all of the problems perceived from the users' point of view

in achieving those objectives described in R2.

3.5.3.5 R4, Task Organisation:

This document will list all of those tasks which will need expert knowledge to solve.

The document can also be used to register those tasks which will require conventional

data processing skills, should we be aiming for an integrated system solution.

3.5.3.6 FI, Feasibility Estimate

This, the first feasibility document in the series of such documents will be concerned

with whether:

a system is needed, i. e. if there are not fulfilled objectives in R2 and problems

in R3 that a system can solve,

0a KBS is needed, i. e if there are tasks in R4 requiring fifth generation technol-

ogyl

0 the problem domain is too large or too small,

the resources are sufficient.

3.5.4. Analyse Static Knowledge

-50-

This is the first activity concerned with the internal view, in which all the concepts,

relations and structures making up the domain of expertise (cf. chap. 4) will be gath-

ered. In order to gather the static (domain) knowledge, interviews with the expert(s)

will have to be conducted in which a number of structured elicitation techniques will

be used (see Breuker, et al., 1983[a, b], Wiefinga, et al., 1984; and in particular,

Breuker et al., 1983[c], and Breuker et al., 1984).

3.5.4.1 Documents Generated

3.5.4.2 Ml, Lexicon

This document will contain all of the terms thought to be pertinent to the domain of tý

expertise, some of these terms may have to be refined, deleted or enhanced at a later

point in the analysis.

3.5.4.3 M2, Static Structure

The domain layer (cf. chap. 4) will take shape in this document. Concepts, relations

and structures will be defined against those tasks identified in R4.

3.5.4.4 FI, Feasibility Estimate

This document will, once again, put the question of whether a KBS is needed or not.

It will also contain a realisability estimation, in terms of whether or not what is

required can be supported with the use of KBS technology.

3.5.5. Analyse Objectives and Constraints

This activity will consider organisational objectives and constraints from a system's

point of view. That is, we shall need to establish what functionality the system will

have to provide for the overall organisation. In considering this, we may need to

-51-

arrive at a compromise between the views of users. We shall, also, need to identify

the changes eventually brought about to the organisation as a result of the introduction

of the system within it. The likely constraints imposed upon the system's development

and use will also need to be identified within this activity.

3.5-5.1 Documents Generated

3.5.5.2 R5, Objectives of Prospective System

This document should register objectives that the system should satisfy with regards to

a consensus of users' views.

3.5.5.3 R6, Compatibility Requirements

This document will include all compatibility issues regarding possible other systems

which will need to interact with the intended system, as well as software and hardware

requirements in developing the system itself.

3.5.5.4 R7, Man-Machine Interface

This document will contain issues pertaining to the level, depth, and variation of

machine inter-faces foreseen for different users of the system. Man-machine interface

is an important feature of any sophisticated system, providing for a level of interface

which should be helpful to users without being unnecessarily elaborate and time-

consuming.

3.5.5.5 R8, Development and Operational Environment

The environment in which the system will be developed and ultimately made fully

operational will be described in here. Different aspects of the environment are:

machine, operating system, language, tools, standards, methods, and system owners

-52-

organisation.

3.5.5.6 R9, Control and Security Constraints

All issues pertaining to the levels of security and use of the system, and legal implica-

tion of the system operation will be outlined here.

3.5.5.7 R10, Organisational Model

The same model as that described in R1 will be -presented in here with some

differences:

0 The way the organisation will be , once the system is installed.

0 Different levels of interaction between the system and the user organisation.

The overall behaviour of the user environment, part of which is the system

itself. Most of the culture shocks confronted as a result of system introduction

wiU be mapped out in here.

3.5.5.8 FI, Feasibility estimate

This document will assess the possibility of supporting the external view both from a

system and social (such as legality issues) point of view. The document may also

incorporate suggestions as how to modify parts of the organisation, in order to make

the system, and thus the solution, more feasible.

3.5.6. Analyse Expert and User Tasks

This is the second activity concerned with the internal view. During this activity we

shall devise the other three layers (cf. chap. 4) of KADS four-layer model, as well as

incorporating a model of the intended system users.

-53-

3.5.6.1 M3, Interpretation Model

A suitable interpretation model (cf. chap 5) will need to be identified and documented

here. These are generic models of problem solving which will be instantiated in a

bespoke fashion to suit different domains of expertise.

3.5.6.2 M4, Inference Structure

A structure containing primitive domain operations; in which, input and output to and

from those operations are identified and combined in an inference structure. Ile

operations and Vo objects are known as knowledge sources, and meta-classes respec-

tively (cf. chap. 4). Ile inference structure will show all possible interesting primitive

problem solving paths.

3.5.6.3 M5, Task Structure

Some of the paths in the inference structure are sequenced and combined together

under the control of a number of control statements in the task structure. This is a

structure describing the problem solving as abstracted from an expert(s) (cf. chap. 4).

3.5.6.4 M6, Strategies

Where possible, strategies should be devised to control and dynamically generate task

structures, so that the system show greater flexibility, and 'intelligence' in problem

solving than can be expected from the task structure alone (cf. chap. 4).

3.5.6.5 M7, User Model

This document should provide a basis for understanding how the user will choose to

interface with the systen-L Some of the information may be volunteered by the user

herself, and some of it has to be speculated by considering her level of competence in

terms of familiarity with computers in general.

-54-

3.5.6.6 F1, Feasibility Estimate

All of the issues regarding. realisability of the internal view up to this point of the

analysis should be addressed here. The concern should be that of recording whether

information and knowledge of the right level can be gathered in order to analyse the

internal view. On the other hand, it should also contain an assessment of whether the

knowledge would lend itself to representation schemes currently available within the

AI technology.

3.5.7. Determine Functional Requirements

This activity is concerned with a synthesised view of the external requirements, and

the expert tasks. The consolidated view should provide the overall requirements archi-

tecture

3.5.7.1 Documents Generated

3.5.7.2 RII, Functional Requirements

All of the requirements which will make up the overall system will be documented

here. The KBS is the problem solving part of the overall system, the other com-

ponents of it are environmental and users constraints placed upon the problem solver.

3.5.7.3 R12, System Structure

A logical decomposition of the overall system will take place in this document, show-

ing clearly different levels of interaction between different man and machine parts of

the system.

-55-

3.5.7.4 R13, Information Requirements

The actual infon-nation needed within the system, and ways in which that information

will be used within the system will be doccumented here.

3.5.7.5 R14, Expected Future Enhancements

This will contain all of the enhancements to be made to the system which can be fore-

seen at the time of writing the document.

3.5.7.6 R15, Consequences

Environmental, and man-machine consequences of installing the system will be docu-

mented here. This should indicate the level of resourcing required for the system, as

well as changes it will bring about to the present working conditions.

3.5.7.7 FI, Feasibility Estimate

This document will be included only if the last activity in the analysis under the same

title is not performed. The contents of this document will be similar to that of the said

activity (see below).

3.5.8. Construct conceptual model

A four layer model of the expert(s) problem solving behaviour known as "conceptual

model" (see chap. 4) will be devised within this activity. A large part of the model

has already been constructed in an earlier activity, viz. "Analyse expert and User

Tasks".

3.5.8.1 Documents Generated

The two model documents generated M6 and M7 are respectively concerned with

refining "strategy", and "user model" sections of an earlier activity as mentioned

-56-

above. 'ne refinement will take place in the light of further information made avail-

able as part of the last activity. Two other documents are also introduced:

3.5.8.2 R16, Knowledge Base Requirements

This document will contain information regarding the perceived size of the knowledge

base, and all of the issues possibly not captured in the four layers, such as special type

of reasoning or logic (i. e., fuzzy logic) which might be required for the design of the

system.

3.5.8.3 FI, Feasibility Estimate

This document will contain an update of the feasibility estimate as contained in its

counterpart in the activity "Analyse Exper-t and User Tasks"

3.5.9. Feasibility Estimate

This document will contain the overall feasibility of the external and internal views. A

great deal of this document can be gleaned from F1 series of documents already pro-

duced within the earlier activities. In short, the document will address the combined

feasibility of the two views, as well as making possible recommendations for different

types of prototypes in assessing various system possibilities in application environ-

ments.

3.5.9.1 Documents Generated

3.5-9.2 R17, Development Requirements

The document will detail support requirements for developing the system. These

Might be aspects such as: machine time, experts, test environments, conference room,
and so forth.

-57-

3.5.9.3 R18, Validation Procedures

Procedures for testing and validation of the system are outlined in this document.

3.5.9.4 FI, Feasibility Estimate

This document will contain the final feasibility estimate divided into four parts:

0 Summary with the project teams conclusions,

0 Detailed description of the extemal. view,

0 Detailed description of the internal view,

0 Background materials for references, such as: tests, prototype results and so

forth.

-58-

4. Coceptual Model - the Internal View

4.1. Introduction

Experts invariably rely on their extensive knowledge of a domain in performing their

tasks. Ilere is, however, a clear indication that structures and paths they pursue. in

performing their tasks is only partially present within the static elements of knowledge

itself. Statýq knowledge is a collection of facts, and experiences which once esta-

blished can be used independently of any particular human agent. An expert is largely

valued for his capability in dealing with complex issues independently, an ability

which extends beyond a straightforward use of static knowledge. He is, also, able to

perform with a large degree of flexibility, with the possibility of 'graceful degradation',

in confronting unforeseen situations and atypical problems.

It is widely recognised that a large degree of expert's ability ýtems from the control

mechanism he uses in manipulating the more static elements of his knowledge. This

has led to a number of Al workers to recognise. the need for a meta level description

over and above that of the object level at which the domain knowledge resides. The

separation between the object and control level is seen both as desirable and useful

within the Al community (see for instance, Davis, 1980; Clancey, 1983,1985), and in

psychological theories on problem solving (stemberg, 1980). The division between the

two layers has largely been brought about by introducing a strategy level which con-

trols reasoning using meta knowledge or rules about the domain knowledge itself

(Davis, et al., 1977 [a, b]; 1982, Clancey, 1985). In the same tradition, in logic pro-

gramming the notion of meta level control is introduced by Hayes (1973), and further

pursued by Gallaire and Lasserre (1982).

-59-

One of the more -interesting notions is the control of domain knowledge by the use of

meta knowledge which is domain specific (Bundy, et al., 1979; Bundy & Sterling,

1981). This is further elaborated by Sterling (1984) maintaining that meta level

knowledge embodies a theory of a particular domain. We hold with this view and

maintain that such a theory is the basis on which expert's proficient and flexible prob-

lem solving capability is founded. We shall, therefore, exploit the idea in a modelling

language we shall be describing next, a language that we shall be using for capturing

the internal requirements of a system.

4.2. Analysis Modelling Language

The main point of departure between knowledge based expert systems, and earlier

expert systems such as Dendral (Feigenbaum et al., 1971; Buchanan and Nfitchell,

1977,1978; Buchanan and Feigenbaum, 1978) is the extensive use of domain

knowledge by the former. The domain knowledge will provide useful restrictions and

constraints on thinking and tackling expert problems. The reapning knowledge will,

therefore, need to reflect those constraints, and benefit from them. In recognition of

this fact a multi layered framework for modelling expertise (Wielinga & Breuker,

1996) is devised in KADS, in which the domain knowledge acts as the competence

model for all of the other layers. ne layers will provide a gradual and explicit means

of transcending from the domain knowledge to that of control. The aggregate of the

layers will make up the conceptual model which represents the 'internal view' (see

chap. 3). The conceptual model is a model of the expertise at an epistemological

level, which contains the theory of the domain as negotiated between the knowledge

engineer and the expert. The model will not contain a purist view of the world in the

sense of representing the psychology of expert's behaviour. On the other hand,

beyond the use of a set of KADS vocabulary and notations, there is no requirement to

employ any artificial or formal languages (including computer languages) in

-60-

constructing the model. We believe that the imposition of any such languages will go

against the grain of KADS analysis. 'I'lie aim at this stage is to capture the expertise

in its fullest possible 'glory' devoid of any undue biases introduced by various imple-

mentation languages, which can distort an epistemological representation of the domain

of expertise.

Four layers are identified which between them contain the object and control level

knowledge. T'hey are domain, inference, task, and flexible strategy layers which will

be described next.

Domain Layer

This layer will contain the static knowledge pertaining to a domain of expertise. Ilere

are two primary sources of knowledge; one, documents and texts relating to the

domain, and the other, transcripts (protocols) of interviews with expert(s). Knowledge

in its raw form will need to be processed, and only those part of it thought to be in

some way connected with the problem solving should be registered in the domain

layer.

The basic element for representing domain knowledge is concept which has a concep-

tual and representational realisation. At the conce ptual level, a concept is the real

world interpretation of a set of percepts (cf. Sowa, 1984) associated with an object or

an abstract entity. In this sense a concept can stand for virtually any individually

identifiable entity, be it a physical object, or a concept as identified by the philosopher

as an uninstantiated (viz. generic) predicate (for a detailed discussion of this sense of

"concept", see Frege, 53,60, pd 72). We hold that expertise domains introduce

sufficient real world constraints to save us from having to enter into any major philo-

sophical or psychological debates over some of the more purist (abstract or metaphysi-

cal) views on the term "concept".

-61-

At the representational level, the structure of a concept comprises one or more attri-

butes, each containing: a value restriction, a value, and a relation with possible other

concepts. The value restriction will indicate the range over which a concept is valid,

for instance the concept "positive number" has the value restriction of '50". Ile value

slot, should it contain anything, will cause the instantiation of the concept with a cer-

tain value. On the whole, we maintain a position similar to Brachman and Schmolze

(1985) over concepts, except that we use rather different structural notations to them.

We find it useful to divide concepts into three types of 'concepts, ' 'relations, ' and

2structures', a distinction which will prove useful in developing a KBS. A relation is a

simple concept whose role is to connect other concepts. Chair as a concept, for-

instance, 'consists-of' a back, legs, and a seat. The 'consist-of' concept in this exam-

ple stands to describe the relation between the components of the concept 'chair' in

some domain of interest. Two types of relations, in turn, can be identified: 'internal, '

and 'external'. An internal relation describes the relationship amongst the components

of a concept, whereas external relations are used to describe intra concepts relations.

A structure is a composite cluster made up of other concepts combined together using

external relations. A structure can, for instance, be the model of some process or a

'complex' readily observable in the domain. The most frequently occurring type of

knowledge elements are relations and concepts.

The overall structure of the domain layer should reflect the necessary (essential) rela-

tions observed in the static knowledge. 'nis structure stems from the way 'things' are

in the real world, as well as how the knowledge engineer might interpret them for his

purposes. The structure will ultimately provide the axioniatic organisation upon which

the domain layer is founded. For instance, in NEOMYCIN (Clancey, 1985) two struc-

turing principles are merged as part of the overall domain layer structure. The first of

these is that each 'cause' in the aetiological hierarchies is related to others on the

-62-

strength of a theory of how such causes might be connected. It would have been

equally possible to organise the hierarchies such that they would be dependent on the

anatomical relationships between causes. That is, to cluster together those causes

which are normally associated with a particular part of the human anatomy. 'Me other

structuring principle is one of relating causes with findings for diseases across hierar-

. chies containing causes and findings. This principle stems from the way a general

practitioner diagnoses a disease (cause) by basing it on the observed symptoms

(findings) of his patient.

4.2.2. Inference Layer

The domain knowledge contains all of the facts which will need to be explored in

arriving at a solution for an expert problem. This layer should contain the format of

problems and solutions and all of the intermediate stages. 'Be complexity of the con-

trol knowledge is not in constructing these stages, rather to map them onto paths end-

ing in appropriate solutions. It is, therefore, useful to introduce an intermediate layer

in which the domain facts and possible ways of traversing them in order to get from

one to the other ones are made explicit. The outcome of such a layer can then be used

as an 'A-Z' for the control knowledge (or the reasoning process).

The inference layer does exactly that in containing classification of domain concepts

which could be conceived of as the collection of all of the stages, some of which a

problem solving path may have to visit. Concepts are grouped together in different

classes, according to the role they play in the reasoning process. For instance, in

NEOMYCIN (cf. ibid) the data regarding patient symptoms are classed as 'findings'.

Each of these classes is referred to as a metaclass, since it is used to describe the role

of domain concepts in reasoning. A concept may be a member of more than one

metaclass; for instance, fever as a concept could be either a symptom or a cause,

-63-

depending upon the course of a medical diagnosis.

The domain layer also contains a number of paths between concepts in terms of the

relations between then-L The paths are realised within the inference layer in the shape

of knowledge sources (hereafter, also referred to as ks). Knowledge sources establish

the link between metaclasses, and in that sense they are operations on the metaclasses.

If we consider a metaclass as some problem solving state, ks's can be seen as provid-

ing the primitive state transformations by resulting in new metaclasses (states). We

can, therefore, consider a ks as a primitive operation which uses the domain relations

in order to establish the possible reasoning paths between metaclasses. The reasoning

paths are primitive ones in the sense that they are inherent to the static knowledge and

do not contain any control elements.

The composite of all metaclasses and ks's are brought together in a network called the

inference structure. 'Me structure uses a number of arrows to show the possible paths

between metaclasses and ks's, the direction of the arrows is not an essential one and

may be reversed, where feasible, during the reasoning process. -The structure is a flat

one containing no temporal dimension, any sequencing of the way metaclasses are

traversed is introduced at the reasoning level. We identify ks's pictorially with ovals,

and metaclasses with boxes respectively qualified with their names.

It is possible to construct a typology of knowledge sources, since we can observe that

there are, in essence, a limited number of primitive domain operations across different

fields of expertise. Other operations tend to be more high level and ultimately con-

structed out of the more primitive ones. On the other hand, metaclasses by nature tend

to. be more free formated, and less amenable to categorisation. This is due to the fact

that problem states can be quite varied across domains, although there are some prime

candidates which tend to occur time and again. We shall provide a typology of

knowledge sources in the next section, before proceeding to describe the reasoning

-64-

process.

4.2.2.1 A Typology of Knowledge Sources

Knowledge sources are characterised in terms of the effect they have on their input

metaclass(es), resulting in output metaclass(es). We can identify four types of generic

operations which can take place on domain concepts within metaclasses (cf. Breuker et

al. UvA, Davoodi et al. STC, 1987), these are:

(1) Change Concepts

(2) Generate new Concepts

Compare Concepts

(4) Manipulate Structures

1) This operation is employed in order to manipulate the value of an attribute of a

concept, two ks's are identified as performing this operation.

assign-value

[concept with attribute --> concept with attribute with value]: The ks will assign a

value to the attribute of a concept, overwritting any previous value.

compute

[structure --> concept (in structure) gets value assigned to attribute]: The ks will

evaluate the value of a concept in a structure, the structure itself is used to guide the

computation of the value of the concept within it.

2) Generati-Ag new concepts is per-fon-ned using the following ks's.

-65-

instantiate

[concept --> instantiated -concept], [structure --> instantiated structure]: The

knowledge source will create an instance of a generic concept or structure.

classify

[instance --> concept]: This is the inverse of instantiate ks; the ks will involve match-

ing attributes of an instance in order to deterraine if it can be grouped under a certain

concept.

generalise

[set of instances --> concept]: The ks will examine the attributes of a set of concepts

in order to establish whether they can be classed under an already existing concept,

otherwise it will create a general concept for them. The ks is similar to 'classify' in

the case of an existing concept, in the other case where a new concept has to be gen-

erated the ks is also known as 'induction' (cf, for instance, Charniak & McDermott,

1985).

abstract

[concept --> concept]: The ks deletes a number of attributes from the input concept

resulting in the desired output concept.

specify

[concept --> concept]: 'Mis is the inverse of 'abstract', in the sense that the output

concept will have more attributes than the input one. The more abstract a concept, the

higher it is likely to be in a hierarchy of concepts. On the other hand, the lower down

the hierarchy a concept is, the more detailed and specific it is likely to be.

-66-

3) The comparison between concepts will take place using two ks's 'compare' and

'match', in either case resulting in an output concept representing the difference

between the input concepts.

compare

[value of X, value of Y. --> concept with difference-value]: 'Me attribute values of

two concepts are compared, resulting in a concept with an attribute value which is the

difference of the respective input attribute values.

match

[structure of X, structure of Y --> difference-structure]: This is similar to 'compare',

except that it applies to structures rather than simple concepts, the knowledge source is

therefore more complex in nature than its counterpart 'compare'.

4) The manipulation of structures is an operation in which the input structure is

transformed into some other structure. 'Me knowledge sources performing this type of

opemtion are:

assemble

[set of instances (components) --> part-of structure]: The ks pastes together a number

of instances into a structure according to some skeleton structure. The instances will

become the components (part-of) of the generated structure..

sort

[set1series of instances --> series of instances]: The 'sort' ks will arrange its input

instances into a series of instances according to some predefined sequencing 'princi-

ple'. In this sense it is a special case of 'assemble', in which the skeleton structure

describes a sequential arrangement.

-67-

decompose

[part-of structure --> set of- instances]: This is the inverse of 'assemble' in which a

structure is decomposed into its constituent components according to some skeleton

structure.

transfonn

[structurel --> structure2j: The knowledge source will transform the input structure

into that of the output structure. Two types of 'transform' operation can be identified.

The first of these produces an output structure which contains all of the input com-

ponents but in a different order, the sort operation can be seen as a special case of

this. The other type ends up with an output structure in which further details are

added to, or abstracted from the components of the input structure. This is the more

interesting and complex of the two types, which is also referred to as 'parsing'.

parse

(see transfoiTn).

The typology of knowledge sources as presented in here may not exhaust all possible

primitive operations. We, however, think that the set is a very extensive one, with

applications over a wide range of domains. In some cases, ks's are identified which

do not correspond with any given here, in which case there are three possibilities to

consider:

(1) Redundancy: A different name might have been used for an operation which is

already contained in the set.

(2) Non-primitiveness: The operation is not a primitive one, i. e. one that cannot

readily be observed in the domain. It, therefore, will not be justified to call it a

-68-

ks.

(3) New operation: In cases where neither of (1) or (2) are valid, then we have

come across a new ks. The new ks should be added to the set of existing

knowledge source types, sitting in the appropriate part of the typology.

The typical relations to be found in a domain, and those on which ks's are founded

are:

is-a

Instance-of (is-a) is a relationship existing between concepts in a hierarchy in which

concepts in the hierarchy are instances of their parent nodes. Ile relation is also

known as 'refinement, since concepts lower down the hierarchy refine the more

abstract concepts above them, by adding further detail.

consist-of

This relationship exists between concepts in a hierarchy in which nodes higher in the

hierarchy consist of those below them. 'nis is also known as 'subsume' relationship,

since every concept in the hierarchy subsumes those under it. The inverse of this rela-

tionship is known as 'part-of', since every concept in the hierarchy can be viewed as

being 'part-of' those above it.

caused-by

This is a relationship existing between concepts caused by each other. For instance, a

'hot tin roof' is caused by 'mid afternoon summer sun'. This type of relationship usu-

ally implies time, since for something to be the case, something else must have hap-

pened prior to it, to have caused it.

-69-

empirical

This is a relationship between concepts based on some statistical or certainty factors.

For instance if observed symptoms are 'headache, ' patient suffering from meningitis.

The relations identified here are some of the more usual ones, others may be identified

(such as quantitative), and named accordingly as they are discovered in a domain. In

short, what connects two or more concepts is a relation. If it is to be used at some

point for traversing the concepts then it must be named and defined, else it may be left

implicit within the concepts and structures.

4.2.3. Task Layer

In 'think-aloud' protocols in which the expert utters his thoughts whilst going through

a problem solving scenario, the session can be recorded and used to abstract from it

the solution path. The path and elements involved in it can then be discussed and

agreed with the expert, before they are turned into task structures. The more general

the problem solving task, the wider will be the application of the resultant structure.

Think aloud protocols are an important way of devising task structures, and certainly

the most reliable when a competent domain expert is available.

A task structure usually contains three types of statement:

(1) goal statement

this will describe an operation in orCer to satisfy a certain goal within the

overall solution tree. Each goal statement will make a contribution to achiev-

ing the overall solution, and can thus be regarded as a subgoal. A goal state-

ment will contain one or more ks's, where every ks will have some domain

concept parameters as part of metaclass(es) input to it.

-70-

control statement

this statement will control explicitly the order and frequency of application of

goal statements. The order in which goal statements appear in a task structure

implies an inherent sequential ordering control. Control statements such as

'if.. then' can disturb the sequential ordering, if and when this is required.

(3) modality statement

the mode of external interaction and communication of the intended system is

contained within modality statements. The statements will describe the way in

which data and knowledge exchange should take place between the system and

the outside world (e. g. users, data-bases).

Task structures are a powerful means of representing fixed strategies for problem solv-

ing, they constitute the main sequencing and manipulation of domain knowledge via

the inference structure. A task layer can contain several task structures for different

problems, or a general one which can be modified to suit different situations. A task

structure, however, will not contain the flexibility that experts employ in dealing with

different, sometime unforeseen, situations. In the next layer we propose a framework

for representing a flexible problem solving strategy, providing the top level control

mechanism.

4.2.4. Flexible Strategy Layer

One can argue that in providing a sufficient set of varying task structures, we are able

to tackle a large enough number of expert problems in a flexible fashion by switching

beftween different structures. This is a reasonable view, except that its achievement is

quite complex and currently the most seminal part of the analysis stage.

In order to shift attention from one task structure to another we need:

-71-

a) A scheduling, or overall supervisory control mechanism which can allocate

task structures to different problems.

b) A monitoring component which both understands when a new problem is

encountered, and one which can also oversee the success or failure of a task

structure in action.

c) An execution component which will cause the execution of one task struc-

ture until control is passed to another one.

d) a, b, and c suggest a planning loop in which the execution of task structures

is monitored, with the possibility of invoking new structures or aborting some

of the old ones. The loop terminates once a solution is found, meanwhile the

system's behaviour would be more 'non-detem-iinistic', and more flexible and

problem oriented than that suggested by a fixed strategy.

The flexible strategy layer will allow for such a planning-action-loop (above), with the

additional possibility of generating some of the task structures dynarrdcally. The latter

will save excessive effort at the task layer, by limiting that layer to defining only those

structures thought to be generally applicable. Of course, strategy paradigms like the

one we are suggesting in this layer, have applications in all fields of Al work. It is

equally recognised that the achievement of such general planning systems is a difficult

one. It is no Wonder that most of KADS KBS works contain themselves to the first

three layers, providing only a descriptive support for the flexible strategy.

We can cater for a more modest flexible strategy description (difficult to call it 'struc-

ture') by limiting its functionality to scheduling control amongst different task struc-

tures. The schedular can identify the appropriate task structure (procedure) by examin-

ing control rules and deciding what behaviour needs to be invoked next. The meta

strategy in NEOMYCIN (Clancey, 1985) consisting of a number of meta-rules which

-72-

decide what procedure to invoke next is a good and classic example of this. We shall

next examine the application of the four layer model in the context of NEOMYCIN.

The example should help to understand the ideas, notations, and the analysis modelling

language described above.

4.2.5. A Post-hoe analysis of NEOMYCIN

In this example we shall provide a very brief account of a four layer model for

NEOMYCIN, the system will be described in some detail in a later section (see

chap. 8).

4.2.5.1 NEOMYCIN -a brief description

NEOMYCIN is a medical diagnostic computer system concerned with diagnosing men-

ingitis, and related diseases. Diagnosis is based on observed symptoms of the patient.

The architecture of the system is a general one, applicable to most diagnostic prob-

lems.

4.2.5.2 Domain Knowledge

This will contain the concepts, relations, and structures pertaining to NEOMYCIN's

domain of medical facts (Davoodi, 1987[c]; also in Davoodi et al, 1987). The con-

cepts are hard (lab) and/or soft (circumstantial) data, as well as a dictionary of possible

diseases (causes). The main structures in the domain are the hierarchies of diseases

(aetiological taxonomy), hierarchy of symptoms (data on patients), and networks con-

necting symptoms and causes across hierarchies.

The major domain relations are subsumption (consist-of), refinement (is-a), and causal.

These relations connect concepts within and across symptoms and causes hierarchies.

-73-

4.2.5.3 Inference Layer

The inference structure -(fig. 4-1) contains three knowledge sources

abstract/transform,

Figure 4-1: NEOMYCIN's Inference Stnicture

heuristic-match, and specify. 'Abstract/transforTn' will use domain relations to derive

findings (symptoms) from the given patient data. The patient data will consist of

laboratory test data, as well as circumstantial evidence observed by the GP. The ks is

the combination of two knowledge sources 'abstract' and 'transform'; 'abstract' will

ensure that those parts of patient data relevant to symptoms will be used. 'Transform'

will then take over, and N-! ill ensure that the resulting concepts will have structures

similar to those within the respective symptoms within the domain. It is not unusual

to see these two knowledge sources offten appearing together in differt-, nt domains,

-74-

since their operations are complementary to each other.

'Heuristic-match' is a variation of knowledge source 'match' in which "certainty fac-

tors" are used. The "certainty factors" themselves are part of the domain concepts.

This ks will correspond patient findings (symptoms) to possible diseases using proba-

bility measures (certainty factors). The knowledge source employs, in main, the causal

relations between findings and causes in order to bridge across from one hierarchy to

another in order to provide the initial diagnosis. The initial diagnosis is further

focused by the ks 'specify', thus enabling the system to identify the exact cause of the

problem. 'Mis ks uses, in main, the 'is-a' relationship between causes in order to

climb down the hierarchy of causes to arrive at a more detailed and precise causes of

the problem. In our description of the ks's, we have also provided an account of the

nature of metaclasses used as input and output to/from ks's.

4.2.5.4 Task Structure

We present in here a rather general and simple task structure, which is almost self

explanatory (4-2). The structure does not contain any control statement,

diagnose(disease)

abstrzet / transform(data)
obtain(data)

match(findings, diseases)

specify(disease)

Figure 4-2: NEOMYCIN's General Task Structure

-75-

the control, therefore, is implicit in the sequencing of the statements within the struc-

ture. The indentation used is indicative of the order of carrying out the operations.

That is, the satisfaction of a goal statement will require, a priori, the execution of all

of the statements below it which are indented further to the right of that statement.

The only modality statement employed here is 'obtain (data).

4.2.5.5 Flexible Strategy

This is contained within a set of meta rules, in NEOMYCIN meta strategy layer,

which order and invoke different procedures (subtasks) depending on the course of

diagnosis.

4.2.6. Summary, and Discussion

The four layers, as part of the KADS conceptual model, will provide the means to cap-

ture the expert static and reasoning knowledge at an epistemological level. The "four

layers" will make it possible to capture a model of 'expertise' in its full glory, thus

ensuring that the ultimate system is a close variation of the expert in terms of the

extent of the problem solving capability. The model should, also, make it possible to

gasp a clear understanding of the relationship between the problem solving (internal

view), and the external view components. The nature and extent to which the two

views are related will be reflected in the design of the system at the later stage of

design phase (see chap. 7).

The conceptual model itself can be used for a model driven knowledge elicitation, a

most useful concept in the often difficult process of knowledge acquisition. The model

can often, also, help the expert in discovering gaps in his own knowledge, and will

therefore encourage him to extend or amend his knowledge. In this sense, a concep-

tual model may be revised a number of times before the knowledge engineering team,

-76-

and the expert(s) are happy with it. Such a close collaboration, and involvement is

most useful when it comes to designing the system, at which point the expert will

share a lot of insight about the stage of development.

We have found that describing the expertise domain in four consecutive layers (see fig.

4-3) will allow us to gradually and

level relation objects organization

domain level r concepts, relations and structures axiomatic structure

describes
'- L

inference level
r meta-classes, knowledge sources inference structure

applies

l kl
L

k l eve tas s s, tas goa task structure
(+

controls

strategic level
L

plans, meta-rules, repairs, impasses process structure

Figure 4-3: A Schematic Representation of the KADSjour layer model

explicitly transcend from static to control knowledge. The domain layer will contain

all of the knowledge elements already observable independently of the expert (this is

what we mean by static knowledge). The other layers will capture the dynamics of

problem solving within the domain using inference paths (in the inference layer), con-

trol statements (in the task layer), and at times using flexible strategies (in strategy

layer). The concern of these three layers is, therefore, to capture the reasoning and

control knowledge. The domain layer will act as a competence model for all of the

-77-

other three layers throughout this process. It would have been possible to reduce the

number of layers, but we believe that would have made the process Jess discernible to

analytical scrutiny, and the nature of various relationships between the reasoning and

the underlying facts would have been made less clear.

In the next chapter we shall consider interpretation models which are based directly on

widely applicable conceptual models. Interpretation models will provide a powerful

modelling tool both for knowledge acquisition, and for developing knowledge based

systems.

I-)

-78-

5. Interpretation Models

5.1. Introduction

A number of researchers over years have registered their concern over a lack of proper

understanding of the nature of the knowledge and data to be used in a KBS implemen-

tation. Incremental prototyping has emerged as a way of interpreting and acquiring

further knowledge (cf. Hayes-Roth et al., 1983), thus making it possible to negotiate

and reflect the required understanding through progressive levels of experimental

development. Incremental prototyping, however, is an insufficient medium for provid-

ing a progressive understanding of domain expertise.

The process. lacks expressiveness in being constrained by a machine formalism in the

shape of some programming language. The language constrains what can be read into,

and read off from the prototypes, thus making it impracticable. either to capture or to

negotiate the expertise through those prototypes. The process of modelling in KADS,

on the, other hand, will not use any machine language in achieving a model of exper-

tise. The only constraints are that certain diagramming techniques, vocabulary, and

ordering of different layers of knowledge will need to be observed.

We are aware of the argument that certain type of tacit knowledge cannot be captured

within any model of the kind we are describing. We are also aware that some of the

proponents of 'incremental prototyping' would argue that some tacit (or soft) and non-

tacit knowledge can only be captured by the use of such prototypes. Beyond the fol-

lowing observations, we shall not discuss any further aspects of the apparent dicho-

tomy between the two schools of 'structured methodology', and 'incremental prototyp-

ing':

-79-

If incremental prototyping of certain type of tacit knowledge is to converge on

a working expert system, then each prototype has been based on some mental

model of that knowledge on the part of the developer. Furthermore, the experi-

ence of the developer has enabled him to choose the right programming tool for

developing the prototypes. We propose that such mental models should be

explicitly described using KADS modelling language.

If some elements of knowledge can be prototyped, and successfully converged

onto a working system with little effort, then it would be useful to examine

whether those elements are species of conventional systems assembled as

'heuristic' expert systems. This type of development is quite common place in

industry and it has created a technology hype, which is mostly attributed to

commercially available expert system shells. There are many examples of

'spread sheet' applications dealing with co-relating a number of matrices, which

appear under the banner of expert systems, simply because- they_are developed

using expert system shells. Examples of this type can be seen in applications

dealing with expert systems for licensing high technology equipments to certain

parts of the globe, or many 'help desk' expert advisors. In all such cases it

would be possible to translate the production rules used within these systems

into initial entries (variables) of spread-sheets, thus deciding the allowable per-

mutations by examining the various spread-sheet matrix entries (co-relations, or

premises).

As we have mentioned earlier (see chap. 4), we shall need to describe the domain

expertise at the level of theory of knowledge (epistemological level) as seen from the

common point of view of the expert(s) and the knowledge engincer(s). This descrip-

tion should provide for what Newells (1980) calls knowledge level, or the "missing

level" of Brachman's (1979) analysis of semantics network. The description closely

-go-

represents the elements and structures of a domain, and ways of exploiting them in

solving problems pertaining to the domain. Our representation of expertise domain is

neither a purist one, nor one which is unduly biased by any implementation vehicle. It

is not purist in the sense that it does not employ detailed level psychological models of

the expert behaviour, rather an interpretation of it as agreed between the knowledge

engineer and the expert. The intention is not to use KADS to represent the psychol-

ogy of experts' problem solving behaviour. Tle intention is to capture those elements

of experts' knowledge, which are seen as being essential to the ac=1 process of prob-

lem solving.

Conceptual models (cf. chap. 4) should be seen as the major touchstone for devising

generic problem solving models which capture the epistemology of a number of

interesting domains. We refer to these generic models as interpretation models (we

also refer to this as IM), since they can be used both in constructing a model of an

expert domain, and in interpreting data within that domain using the model itself. An

IM, similarly to a conceptual model, is a powerful tool for facilitating knowledge

acquisition, which is often thought to be a bottleneck in developing a KBS. It pro-

vides a model driven framework for conducting interviews with -experts, and analysing

data thus generated.

Interpretation models are usually devised for problem solving behaviours which can be

shared amongst a number of useful expert domains. The main diýfe'rence between an

IM and a conceptual model is the range of applicability, and the jevel of specificity. A

conceptual model is very specific toward a particular domain, and any wider applica-

tion is accidental as opposed to intentional. An IM, on the other hand, is only specific

toward a domain in the sense that it can be used as a template for devising a concep-

tual model for that domain. The range of application of an IM is the set of all

domains which can use that IM as a template, in the way described above, for part or

-81-

all of the problem solving behaviour pertaining to those domains.

In this chapter we shall describe the process of constructing interpretation models, and

the major role they play within the KADS methodology. We shall also describe

different types of these models and the space of expertise domains to which they may

apply. In the end we shall examine an IM in a hypothetical domain, in order to

demonstrate the power of IMs. In the next chapter we shall provide a real life exam-

ple of an interpretation model for devising a conceptual model for a financial domain.

The financial domain in question currently benefits from the use of a knowledge based

decision support system which is founded on the said conceptual model (cf. Davoodi

1987[a]).

5.2. How to Construct an Interpretation Model

An IM is an abstract problem solving model based on a conceptual model for a gen-

eral domain (or class of domains) of expertise. It is important that the domain con-

sidered should contain a problem solving behaviour widely observed in other domains.

Otherwise the conceptual model based on it would be of limited application, and thus

not a good base for an interpretation model.

The process of abstraction is one of deleting from the conceptual model all that is par-

ticular to a specific domain, thus ensuring that the resulting IM can be used as a tem-

plate for modelling domains of that nature. The parallel to this can be observed in

EMYCIN (Empty MYCIN), or HERACLES abstracted from NEOMYCIN. These gen-

erics models are abstracted from computer systems, whereas IMs are abstracted from

conceptual models devised using the descriptive power of KADS methodology. In

practice the 'domain layer' is deleted from the conceptual model, and all of the refer-

ences made to that layer are modified such that they reflect a sense of genericness.

That is, the names of metaclasses are suitably replaced with ones which can be applied

-82-

across domains, thus affecting some of the details in the inference and task structures.

It may also be necessary to replace the titles for some of the goal statements within the

task structure with some general ones. If the nature of communication between the

system and the outside world is also domain dependent, then suitable modality state-

ments should replace the more specific ones in the task structure.

An example of the process of arriving form a conceptual model to an IM can be seen

in the IM for hardware configuration (cf. Davoodi, 1986[a]) in which a generic model-

ling template is based on a conceptual model for designing computer hardware C,

configurations. The IM thus generated can be used for all types of hardware design

configurations in which the design components and ways of assembling them into

modules are already described. It may, for instance, be possible to use the IM for

describing the behaviour of R1 (also known as XCON, McDermott, 1980), and sys-

tems similar to it, if only in parts.

Finally, sensible names should be chosen for IMs which indicate ihe class of problems

for which they are intended. The name of an IM should help-the potential user of a

library of such models to concentrate on those IMs which seem to be of relevance.

We have taken the view that both the type of IMs and the space of expert problems to

which they apply should yield to some form of classification. '17his categorisation

should, in turn, help us in devising a library of interpretation models aimed at support-

ing various classes of expert problems.

5.3. Types of Interpretation Models

An IM is likely to be of one of the two types of 'generic, ' or 'real life' template. We

shall firstly have to dispose with an apparent paradox in our typology of IMs. An

interpretation model, by definition, is a general problem solving model (template) for a

class of domains of exper-tise. Both 'real life, ' and 'generic' IMs are general models

-83-

in this sense. The major distinction between the two types, however, is the level at

which their use is perceived. An IM of the 'generic' type will always need to be part

of a larger template before it can be used for real life applications. That is, the type of

task for which it is intended cannot be seen in real life as one which is an end to

itself. Rather it is a task which is aimed at some general (thus generic) problem solv-

ing behaviour whose presence is needed as part of a combination of tasks. 'Assess-

ment' is an example of a generic task, which should appear in all domains in which

the solution to a problem will depend on assessment of-some prerequisite, say, parame-

ters.

Real life IMs, on the other hand, are aimed at supporting classes of expert tasks which

can be identified in the real world as tasks whose achievement is both the means and

the end to a problem. Real life models usually contain one or more generic models

within them (see 5-1), though there are real life models whose

Generic
Tasks

Generic
task 1

Generic Generic Generic
tasj(3 ta'sk n

real life
tasks

specific
task

Interprei-ation Interpretation
mo el 1m del n

conceptual
Model 42

Figure 5-1: Construction of a Conceptual Model

composition is entirely independent of any 'generic' type. Most of the models coa-

tained in the library of interpretation models (see below) consist of the 'generic' type.

-84-

Although, as time goes by, more and more real life models will be identified in using

the KADS methodology at a wider front of KBS applications.

5.4. A Classification of Generic Tasks

The type and number of IMs we shall identify will, naturally, depend on the space of

problem solving domains, and a classification of them. The broadest view of a task is

one in which, we either seek to construct or 'invent' some solution given a pattern as a

problem, or that given the problem we shall try to 'somehow' find a path to a solution

which is already in existence within a domain of expertise. Tasks will, therefore,

divide between those of 'analysis' and 'synthesis' depending upon whether the solution

already exists within the domain of expertise being considered, or that one has to be

devised.

We, also, identify an in-between case in which part of the solution may have to be

constructed, or reshaped, whereas the rest of it will contain elements already within the

domain. 711iis third type we refer to as 'modification tasks, ' wHich could tend toward

either end of the 'analysis' to 'synthesis' spectrum, depending upon how extensive a

modification the solution to a problem will have to undergo. The classification of

tasks we have identified here will allow us to construct an IM associated with each

generic task thus identified (cf. Breuker et al., UvA, Davoodi et al., STC, 1987).

5.4.1. Analysis Tasks

Two classes of such tasks can be identified (fig. 5-2 cf. Breuker et al., UvA, Davoodi

et al., STC, 1987) depending upon whether the solution is an attribute of the task

domain, or whether it is a state which will change over time. In the first case the task

of solving the problem is one of identifying (see fig. 5-2) the solution amongst the

many possible domain attributes. In the second case, in order to isolate the solution

-85-

System -
analysis

identify
classify

simple classify
diagno-s-Is

sing le_fau I t_diag nos is
heuristic-class if i cation
systematic-diagnosis

causal_tracing
localisation

multiple_fault-diagnosis
assessment

monitor
predict

prediction -
of-behaviour

prediction 7-
of

- values
system_modification

repair
remedy
control
I maintain

system - synthesis
transformation
design

trans formational-design
refinem'ent_design

single stream refinement design
multiýTle am __yre _ref

inement_design
configuration

planning
modelling

Figure 5-2: Taxonomy of Problem Types

we shall need to predict some future state within the task domain. For instance, in

order to predict what state a chemical substance may be found in an experimental

domain, we shall need to take into consideration the relevant attributes of the sub-

stance together with external constraints imposed on it such as temperature, and atrnos-

pheric pressure. Toward the end of this chapter, we shall use 'classify' as a member

of 'identify' group of tasks in order to show the IM associated with that task, as an

example of how such models can ýe used in real life problem solving.

-86-

5.4.2. Modification Tasks

This type of tasks are closely enmeshed with analytic tasks, in which the 'cause' of a

problem is isolated, and then made subject to some modification in order for it to be

put right. The contingent relationship between analytic and modification tasks can be

summarised as thus (cf. ibid., p. 49):

heuristic classification -> remedy, repair
causal tracing -> remedy, repair
localisation -> repair
monitor -> control, maintain

The. difference between "remedy", and "repair" is in the nature of the modification, this

is discussed towards the end of this section. The modification tasks in real life will

appear either as the concluding part of analytic tasks, or that they are quite complex in

behaviour. In case of the former their inclusion is, almost, implied by the analytic

tasks consuming them. For instance, medical diagnosis is usually seen as a

'classification' problem, in which any proposed remedy for an ailment is a secondary

feature of the problem solving behaviour. 'nat is, once the cause for a disease is iso-

lated the major part of the solution is delivered, and it will only remain to associate

that cause with some sort of prescription. Beyond a separate classification that can

proposed for such tasks, it would be quite difficult to devise Ilms relating to them.

Since, any such attempt may fail in one of the following ways:

a possible IM may contain too large a section of an analytical IM for it to b--

identified separately as a template for a class of modification tasks.

because of the overtly complex nature of the modification task, any IM attempt-

ing to capture it, is likely to appear as a series of guidelines as how to proceed

rather than as the kind of template that was intended originally.

We shall, however, provide a description of the types of association one can seek

-87-

between the analytical and modification tasks listed above.

In 'repair' a defective component is replaced (or extensively modified) after it has been

identified using one or a combination of the, three classes of, analytical tasks identified

previously. The component(s) to be repaired are isolated by disassembling a compo-

site structure or system. This may involve planning of ways in which the device is

continually decomposed into its constituent parts, and each part is then examined. 717he

examination should finally arrive at one or more defective components in need of

repair.

In 'remedy' a process or malfunction is counteracted by initiating another process. A

typical example of this will be in process control, in which a corrective measure may

be needed for avoiding process features which somehow disturb a system's norm of

operation. Control is a task in which parameters of a system which deviate from some

expected or desired state (or value) are controlled by having their values changed or

refused categorically. The control mechanism itself is triggered by some discrepancy

observed in the system, indicating that some system components (parameters) are out-

side a predefined acceptable range.

5.4.3. Synthesis Tasks

The type of synthesis task will depend on the nature of input and output to / from the

task (or process). Input to 'design' tasks comprise such elements as functional

specifications, and external requirements resulting in an output consisting of a detailed

architecture annotated with the description for the actual requirements. 'Planning' is

similar to 'design, ' except that it takes as input 'activities, ' and partial priority orders

resulting in a dynamic schedule for assigning activities to processes containing the all

important temporal axis.

-88-

Modelling tasks are, also, similar to design, except that the input consists of more than

just the requirements and the constraints, but also of data. The output is an abstraction

of data in a framework which brings out the tacit interactions between data, and the

roles of data within the given input domain. The nature of the framework, itself, will

depend on the type of the modelling language utilised.

5.5. Interpretation Model - the Use

In this section we shall examine the use of an interpretation model, namely the 'sys-

ternatic diagnosis' IM, in order to illustrate how such models can be applied to their

intended domains.

5.5.1. A Template for Systematic Diagnosis

Description: systematic diagnosis is a branch of problem solving concerned with iden-

tifying defective device components using structures depicting the explicit relationship

amongst the device components. If the structure used is on& in which a 'part-of'

model of the device is used, then the diagnosis is said to take place by localisation.

That is, in using the part-of structure model of the device, one is able to isolate and

thus identify the defective component by homing in oý'its location within the struc-

ture. The other type of systematic diagnosis is diagnosis by causal tracing, in which

the device structure is described in terms of a causal network, in which different com-

ponents are connected using causal paths and are thus traceable.

The conditions which should exist for a domain to be amenable to either of the two

diagnoses are as follows:

Conditions for the application of diagnosis by localisation:

-89-

0 The presence of or possibility of developing a 'part-of' model for the device to

be examined. The model can be in the form of some configuration design, or a

drawing, or any other specification which yields to decomposition of its consti-

tuent parts in an explicit fashion.

The possibility to test system components, and the availability of system output

behaviour in terms of the output of individual components within it.

What has been said thus far makes 'diagnosis by localisation' IM a prime candidate

for trouble shooting in electrical and electronic devices. The circuit layout or design

of circuitry of a device such as a computer can be used as the required part-of model.

The model can then be decomposed into its constituent modules and submodules, such

as half-adders and transistors, in order to test the suspect components individually.

Conditions for the application of diagnosis by localisation:

0 The ability to show clearly how the device (or system) functions in terms of a

set of causal relations (paths) between its constituent parts, as well as between

possible states the device might go through during diagnosis.

In order to invoke causal tracing in an effective, and thus useful, manner, there

needs to be some data available on a significant part of the components of the

system causal model.

A typical domain for diagnosis by causal tracing is trouble shooting in mechanical sys-

tems, such as car engines. Steels and Velde (1985) provide an example of a causal net-

work for a car engine, in which malfunction within the engine is causally traced by

testing various observable states within the device.

In trouble shooting of devices causal tracing and localisation often alternate; a good

example of this can be observed in SOPHEE III (Brown et al., 1982) in which both

-90-

views are incorporated. Diagnosis by heuristic classification is another major form of

problem solving behaviour, in which short cuts are taken in arriving at possible prob-

lern areas, by the use of certainty factors. It is possible to see the application of diag-

nosis by heuristic classification in cooperation with one or both of the other types of

diagnosis in a domain. The main role of heuristics in such applications will be to con-

centrate on the problem area by the use of 'educated guesses' (heuristics). It will then

be possible for the other two types of diagnosis to take over and systematically go

through the components or states of the problem area until the defective component(s)

is identified. In the following sections we shall concentrate on the IM for diagnosis by

localisation.

5.5.1.1 Inference Structure

The inference structure for systematic diagnosis is depicted in figure 5-3 (cf. Breuker

et al., UvA, Davoodi et al., STC, 1987). A description of metaclasses and their

respective domain concepts can be found in figure 5-4 (cf. Breuker et al., UvA,

Davoodi et al., STC, 1987).

1A description of KS's

In this section we shall provide a brief description of knowledge sources, their input
11

and output metaclasses and the kind of domain knowledge required by them as seen

within the inference structure (fig. 5-3).

Select a system model

select: Diagnosis is initiated with the selection of a 'part-of' (or 'consist-of') represen-

tation of the system in which one or more components are suspected to be faulty.

Input: complaint can be about a system with at least one faulty component.

Output: system model is the actual 'consist-of' (or 'part-of') model of the system

Figure 5-3: Inference Structure for Systematic Diagnosis

-91-

-92-

meta class localisation causal tracing

system model part-of model causal model

complaint faulty system faulty state

universum of observable output observable states
observables variables

hypothesis (sub)system containing sub-network
faulty component

variable value observed output
value

norm Output specification

difference faulty component

conclusion faulty component

observed state

top state causal
subnetwork

faulty state

cause of complaint

Figure 5-4: Metaclasses in Systematic Diagnosis and their member concepts

under diagnosis.

Domain knowledge: knowledge about the system behaviour and structure will be

required by this knowledge source.

decompose the system model

decompose: the system is decomposed into a set of components which sit in the part-

of hierarchy. Every new decomposition will result in arriving at the next lower level

of the part-of (or decomposition) hierarchy.

Input: system model which is the part-of model as described before.

Output: hypothesis, conclusion; a hypothesis is made in terms of 'suspect' faulty

component, in our jargon the component is the hý`Pothesis itself Having decomposed

the suspect component into sub-components to a depth at which no further

-93-

decomposition is possible, the resulting sub-components form the 'conclusion'.

Domain knowledge: this is the system's 'consist-of' or 'part-of' model.

Select a variable value

select: given the 'universum of observables' (see below), variable values (see below)

are selected.

Input: hypothesis, and universum of observables; the latter is the collection of obser-

vations on the system components behaviour (or output). The 'universum of observ-

able' is used to associate with a hypothesis a cenain value known as 'variable value'.

Output: variable value

Domain knowledge: knowledge about various methods of testing different system

components is required.

Specify a norm

specify: this knowledge source specifies the expected output value (or behaviour) of

the system or components within it. 'Ibis output is, naturally, associated with a fully

working (thus expected) version of the system under diagnosis.

Input: system model

Output: norm, which is the already mentioned 'expected system behaviour'.

Domain knowledge: knowledge about system behaviour

Compare the variable value with the norm

compare: this ks will make it possible to compare the expected system behaviour

against its actual output.

Input: variable value and norm.

Output: diffemice will make it
rpossible

to exantine if the actual output of the com-

ponent is in variance with its expected output.

-94-

Domain knowledge: the judgemental information which will make it possible to assess

the significance of the 'difference' between the expected and the observed. In the

sense that, whether a given difference is cause for further investigation on a com-

ponent, or that it can be ignored on the basis of usual wear and tear.

5.5.1.2 Task Structure

The diagnosis starts with the selection of a system model, for which an iterative diag-

nosis is canied out. The diagnosis is concluded once the last of components within

the 'conclusion' metaclass is dealt with. At this point all components diagnosed to be

faulty have been clearly marked and can be recommended for further action of the

'repair' type. The task structure is depicted in figure 5-5

Task

Diagnose(fault)

select(system model)

wbile (no conclusion)

decompose(systern model)

HE& (no. of hyps in diff. > 1)

select(variable value)

specify(norm)

compare(var. val, norm)

Figure 5-5: Task Structure for Systematic Diagnosis

; this structure can on occasion be supplemented with one for heuristic diagnosis. The

-95-

enhanced structure will make it possible to deal with complex and detailed system

structures.

In the next chapter we shall illustrate the use of an IM for the financial domain of

'Commercial Loan Assessment' (also referred to as CLA) in the domain of

'Underwriting'. The example Will describe the criteria we use in applying the IM for

CLA to a similar domain. It will also illustrate the changes we have to make to the

CLA template before it is suitable for our new application.

-96-

6. Case Study 1- Analysis of an Underwriting
Domain

6.1. Introduction

The work described in this chapter provides an example of use for an interpretation

model in a real life application. The model in question-is that based on the 'Commer-

cial Loan Assessment' (hereafter referred to as CLA) paradigm, as presented in

'Models of Expertise' paper (Wielinga & Breuker, 1986). The reason for choosing ffie

IM is the essential similarities exhibited by the application domain of "underwriting"

with that of CLA. Ilie changes to the IM reflect closely the requirements of the

underwriting domain for which it has been adopted.

The chapter appears in three sections of results (the current section), history, and con-

clusion. We find the distinction useful, in the sense that it enables the reader to have

both a formal and an informal understanding of the use of the methodology, and its

impact on the use of interpretation models in general.

The IM has been used over a period of six months to provide consultancy in identify-

ing the detailed functional specification of a proposed KBS called 'Automated Deci-

sion Support Aid' (ADSA) in the domain of export credit guarantee underwriting.

The specification supports the problem solving in this domain, which we shall refer to

as 'underwriting domain' hereafter. Ile case study is based on a real life example in

providing consultancy to 'Export Credit Guarantee Department' (hereafter referred to

as ECGD) of the Welsh Office, the largest UK organisation engaged in underwriting

UK exporters. We have used KADS to analyse this domain, and as a result a 'concep-

tual model' has been devised for the domain. 'Me resulting KBS is currently in real

-97-

life application in various branches of ECGD. Due to some of the commercial impli-

cations of the consultancy, the nature of some of the data in this chapter has been

modified to ensure confidentiality. 'ne modification will not, however, affect the

nature and essence of the discussion put forward in the chapter.

6.2. A brief description of the Underwriting domain

The buyer division at ECGD provides an underwriting service for insuring the business

of potential client exporters. In this sense when a business is underwritten, the policy

holder (referred to as p/h throughout) obtains a cover against possible risks and

anomalies arising from the buyer's business conduct. The underwriter, therefore, in

essence is a 'buyer underwriter'.

To obtain a cover the exporter (viz. potential p/h) submits an application to ECGD, in

which a description of the type of policy he requires together with some detail about

the potential buyer(s), and his respective market condition is included. The under-

writer is then able to consult his existing files to obtain more information on all

aspects of a case. The major task of the underwriter is, however, the gathering of

information on the buyer and his market conditions. The typical data obtained on the

buyer concerns his business characteristics in the form of his payment record, trading

history, and such like. On the other hand, independently of the buyer, the underwriter

might need to assess the market characteristics in which the buyer operates.

There are several sources from which the underwriter can glean information on the

buyer and the p/h. Ilese can be agencies, embassy reports, other policy holders trad-

ing with or knowing the buyer, and so forth. The underwriter decides to guarantee a

case only when the risks involved are outweighed by the merits of a case based on just

the type of information discussed so far.

-98-

6.3. The Role of ADSA

The role of ADSA is to pfocess each application and make recommendations to the

underwriter (expert) whether to accept/reject an application. In highly marginal cases

if ADSA cannot arrive at a specific recommendation, it will refer the case to the expert

altogether. The overall aim of the buyer division is to improve radically the speed

with which applications made to them are processed. This is in order to attract new

business and win back business lost through unacceptable processing time currently

being experienced by some policy holders.

ADSA is being applied in a number of phases, at the final stage of which it should

enable the local branches of ECGD to provide a decision on a very high percentage of

applications within a 24 hour period. T'he ultimate version of the intended KBS

should also provide advice of the kind involving detailed, and informed judgements on

various factors contributing to making the final decision. In very marginal cases where

the system is unable to offer a decisive advice the expert will take over, with the

added benefit that all of the data gathered by then, will have been processed by the

system. The expert can then concentrate just on those parts which can sway his deci-

sion one way or the other, by calling on his life long expertise and feel for the market.

6.4. Principal similarities between the 'Underwriting
Domain' and CLA

In deciding whether to underwrite an application or not the underwriter is confronted

with issues not too dissimilar to that of CLA. The mechanism for gathering data, and

the nature of data differ to varying degrees between the two domains. but the essential

problem solving behaviours are interestingly similar.

-99-

On the one hand, solutions are identified for different applications in the form of a

credit guarantee of a certain limit over a specified period of time. The application,

itself, contains a statement of the type of 'solution' which is required by the p/h. 'Me

need on the part of the p/h to reduce business risk is identified as the 'problem' for

which a 'solution' is specified. Whilst, on the other hand, a number of parameters

regarding the p/h and his buyer(s) will have to be considered, to establish whether or

not the underwriting 'norm' (i. e. maximum acceptable financial risk) will be observed

in insuring a p/h. In cases where a decision is marginal, or some of the information in

the client's file has the potential for being dubious, there is a need for considering

financial evidence which could adjust the possibly inflated parameters. This problem

solving behaviour has all of the essential ingredients shared by CLA and supported by

the IM based on CLA. We have thus far endeavoured to show informally the pro-

cedure for choosing an interpretation model amongst the set of many, we shall demon-

strate next the use of the IM in the context of our consultancy work.

6.5. - Different Phases of the Consultancy

6.5.1. Domain Layer

The first thing to construct is the axiomatic structure containing concepts, relations and

structures within the underwriting domain. 'nis takes the form of producing a domain

lexicon, and an 'is-a concept hierarchy' (see fig. 6-1). The lexicon and the concept

hierarchy are based on transcripts from tape-recordings of the knowledge elicitation

sessions with the expert. The concept hierarchy is later modified as a result of intro-

ducing metaclasses (see below).

9

IA

-100-

......

.

10 f I- I-
v

pr
10

0

A
119,97 A\

I A. - fe 11
" I-- 41Ný

11 CL

.4 CL
00

ý*
1ý

r9 N
I" Aw I&

31 es ol

i I., Is & 12 0- 1-

tr
: .3 : 1*ý cl "0

I..

11 4.
V ol F I If f. 00 ft 0r 19

i of- :: 14.0 1
11 tr A

0. -
V. ". " i" .

1, i
an Ir" o%e 4- . -; LT 9

.0 "". wc IP lp
A

mill

I*L ., fo n f. f. w* 6-
iI,

IL

1.01
IL

A
v V.

V

Figure 6-1: Part of an is-a concept hierarchy describing ECGD Domain Layer

-101-

6.5.1.1 Domain Lexicon

This contains concepts which are attributes of those parts of the system which the

expert needs to consider in arriving at a decision.

6.5.1.2 Concept Hierarchy

Domain concepts are divided into five groups of. information-on-buyer, information-

on-ph, market-characteristics, commodity, and agents. This division is warranted by

the way the expert's problem solving behaviour comes across in terms of identifying

potential sources for gathering information which should enable him to arrive at a

decision (see fig. 6-1).

6.5.2. Use of IM in Analysis

The analysis should spell out the elements of the expert's (underwriter) decision mak-

ing process when he considers a potential client's case. Having devised the axiomatic

structure, we need to identify sources for, and branches of inference making, where

these have the potential for being combined to forrn task structures which support the

expert's problem solving behaviour. We shall, therefore, use the IM to:

0 firstly, identify potential elements used in making inferences by considering the

inference structure (fig. 6-2), which is the first part of the IM,

secondly, as the next step, we shall proceed to devise a task structure which is

influenced by its counterpart in the IM.

6.5.3. Problem Analysis at the Inference Level

At this level domain concepts can be mapped onto metaclasses, this will require an

analysis of the roles which these concepts play in the reasoning process: In the first ZP

-102-

I\, -

Figure 6-2: Inference Structure for Assessment of p1h application

instance, the client submits an application in which he expresses the need for a guaran-

tee; the need to reduce risk in export business, implied by the application, is expressed
in the fonn of the metaclass 'problem'. The expert is expected to provide a 'solution'

-103-

to this in the form of the type of policy to be awarded. 'Me type of a policy may be

determined in ten-ns of credit limit, duration, and terms of payment. -1)

Prior to applying the solution, the potential risks have to be assessed in order to ensure

that the underwriting 'norm' is not violated. The norm in this case consists of a set of

conditions, some of which will have to be present as part of the metaclass 'parameter'

before a positive answer can be given. The norm in our case may consist of one or a

combination of the following clauses:

buyer honesty is high & policy holder competence is also high.

buyer-exposure & buyer-market-condition are not below certain threshold &

p1h competence is above average.

0 if buyer-exposure & buyer-market-conclition are both marginal, then buyer-

competence is above average & pfh competence is high.

The metaclass 'parameter' requiring similar attributes as that of 'norm' may consist of-.

buyer-honesty

0 buyer-competence

0 buyer-exposure

p/h-competence

0 buyer-market-condition

The member concepts of the metaclass 'parameter' will have to be combined using

and/or connectives to enable comparison against their counterpart clauses in the

'norm'. The satisfaction of one or more of the 'norm' clauses will result in a positive

decision to a potential p[h application.

-104-

As with CLA, we expect to find a 'diagnostic' branch, in order to adjust those com-

ponents of the parameter which might have been inflated in either direction. The

sources acting on behalf of the underwriter can obtain additional information providing

the required further 'evidence' in its pure (raw) form. The 'evidence' can then be

'refined' to form the metaclass 'conclusion' which is a measure of error (or exaggera-

tion) on concepts within the metaclass 'parameter'. This can then be used to adjust

the inflated values to enable a more factual assessment of an application.

The ks 'refine', strictly speaking, is not a primitive operation. It should be expanded

into knowledge sources 'abstract' and 'transform; we have however found the

extended version rather too detailed for our purposes here. Note that operations taking

place on metaclasses, in fact, apply to concepts under those metaclasses. Similar to

CLA three distinct branches of inference making can be identified within the inference

structure:

(1)' Problem -a' nd Solution Identification

(2) Risk Assessment

(3) Diagnosis

The major metaclasses and their member domain concepts are listed below (fig. 6-3).

The major domain relations are: 'quantitative' (eg. in formulas to calculate- parame-

ters), 'consist-of' between p/h's / buyer's property and market sectors and financial

attributes. T'he knowledge sources employ these relations in order to perform different

operations which yield desired metaclasses that can be used in making a decision. Ille

required knowledge sources can be read from the inference structure (fig. 6-2).

-105-

meta class domain concepts.

case description buyer attributes, p/h attribu=. market attribute, commodity. agency reports
system model underwriting syst=
problem risk reduction
solution type of policy
parwrieter buycr_honesty, buyer-compete: nce-..
norm
decision cLus

underwriting terms (see page 4)
yes/notrefer (ADS A mt= highly marginals cases to the expen)

evidence additional info on buycrimarket condition, etc. (gathered thro! agent)
hypothesis unreliability of dati
conclusion correction value
discrepancy difference between 'parameter', and'norm'

Figure 6-3: Metaclassesfor decision making in Underwriting Domain

6.5.4. Problem Analysis at the Task Level

The expert, in our case, turns out to follow an overall problem solving strategy in

which there is room for maneuver in individual cases. 'Me str-ategy deduced is the

result of thinking aloud protocol (see chap. 3), some of the detail of which is alluded

to in an earlier section.

When an application is submitted, the underwriter has to make a judgement on

whether or not to insure the p/h, who as an exporter sells to buyers from overseas. It

appears that the underwriter cannot exercise much flexibility in providing a guarantee

(solution). This is due to the nature of the type of insurance involved; namely, the p/h

needs to have a large enough credit guarantee over a fixed period of time to cover his

business. The underwriter is, therefore, required to assess the financial merits of a

case very carefully, since he cannot modify the terms of the application to any great

extent. Certain data on p/h and the buyer, in particular, can have near to conclusive

-106-

effect on a decision being made. On the buyer's side, documents such as 'letter of

credit', or characteristics such as 'good business morality' are the kind of data which

can greatly influence the underwriter in giving a positive answer. In short, if the

underwriter can make a clear yes/no decision based on the initial data supporting a

case, then he is likely to do so without considering other potential 'evidence' likely to

have a superficial effect.

In marginal cases, on the other hand, the underwriter will need to rely on his other

sources (agencies, embassy reports, etc.) to gather enough evidence (or show lack of

it) to correct errors of judgement which might have inflated the 'parameter' in either

direction. The diagnosis part of the inference structure is then used extensively to gen-

erate the measure of error ('conclusion) needed to adjust the 'parameter'. On the

whole, we find the problem solving behaviour in our case greatly resembling that in

CLA.

The task. structure (fig.
ý
64.) . combines the inferences shown in figure 6-2 in

assess(case, decision-class)
obLain(caseJescription)
match(solution, problem)

specify(problem)
specify(soludon)

assess(risk)
compare(parameter, norm)

SpeCify(rK)rM)
classify(case descTiption)

while dLecrepancy unaccepathle
confu-m-orJeny(hypothesis)

specify(evidence(discrepancy))
obtain(new case data)

heurisdc-match(evidence)
refine(hypothesis, evidcnce)
change(parameter)

Figure 6-4: General Task Structure for ADSA

-107-

order to achieve the objectives described in the strategy. If the outcome of issues hav-

ing a bearing on a decision remain very marginal after all of the branches of the task

structure have been considered, then ADSA makes no recommendation and refers the

processed case to the expert (a low percentage of cases). The more information is

required for the assessment of risks, the deeper the branches are evaluated.

We have not made any provisions for a flexible strategy layer for this domain, since

the task structure , though lacking total flexibility, is of general enough nature for our

purposes in the consultancy work.

6.6. History of Development

6.6.1. Introduction

This section is intended to. provide an informal account of the consultancy process.

This should help to provide the users of the interpretation library (see chap. 5) with an

insight into using an IM, and the possible problems they may encounter in doing so.

None the less, we do not claim that in providing the history of development in our

case, all possible 'how's' and 'what's' of using interpretation models will be answered.

Nor can any other singular use of such models provide those answers. On the other

hand, we detect that there possibly are enough interesting (or essential) similarities

between the use of the IM in our case with the use of other interpretation models to

provide a handle for the use of such models in general. Some of the problems that we

shall discuss are peculiar to the credit assessment in the domain of underwriting, whilst

some of the others are of a general enough nature to be used as, say, "problems to

watch out for in using an IM".

In describing the history of the work, we ascend from an understanding of the domain

-108-

and tasks involved to describing a process structure which could support those tasks;

the route is via an analysis of the tasks. We, therefore, find it useful to maintain an

ordering for our description which reflects the sequence in which the consultancy work

is conducted.

6.7. Task Identification

Prior to receiving and studying the transcripts from the knowledge elicitation sessions,

we are introduced to the notion of 'underwriting' in the context of ECGD. Our under-

standing of the issues involved in underwriting grows, but not always in a top down

manner. The reading of the first batch of transcripts starts with a partial, and to some

extent misconstrued, understanding of the domain. A better model of the underwriting

domain has begun to emerge after reading part one of the transciipts. A lot of credit

for this must go to the expert who is both eloquent, and disciplined in the way he

answers questions and volunteers information which to varying extent is of relevance.

This is despite the fact that the expert, in trying to be helpful, sometimes goes into too

much detail. The depth of detail changes from being a disadvantage to something of

an advantage on the second reading of the transcript. This' is due to the fact that by

now we have a much better appreciation of the domain and are able to use detailed

explanation to focus on the relevant points in identifying the tasks involved.

The major misconception we have had after reading the first batch of the transcripts

has been one of confusing a lot of data on the buyer for that on the p/h, and to a much

lesser extent the other way round. The major reasons behind this are twofold. Firstly,

both the exporter (p/h), and the buyer have a lot of financial attributes which are of

similar nature, for the obvious reason that they are both traders. Secondly, our partial

and somewhat misconstrued view of the domain could not have helped. In a sense,

the latter is greatly aggravated by the former. A lot of problems of this nature can

-109-

also be attributed to the fact that, as consultants, we are not present in the knowledge

elicitation sessions; and, therefore, we are unable to benefit from the 'psychology' of

the process. To bring this point home we shall describe a possible scenario.

Imagine a speaker who is comparing two issues (points of view, etc.), he starts using

his right and left hands in order to refer to those issues by allowing them separate spa-

tial existence. This is often used to focus the attention of the audience by the use of

'body language'. The audience might be clear about the speaker's way of distinguish-

ing between the two issues in this way; whereas someone reading the transcripts of the

scenario might be reduced to making conjectures to arrive at a potentially incorrect

distinction. This is particularly true if the two issues are intrinsically similar. Being

an audience, in this sense, brings with it just the kind of 'psychological' advantage we

alluded to earlier.

We have been able to adjust our view of the data on the buyer and the p/h to reflect

reality, after having a further consulting session with the actual interviewers responsi-

ble for eliciting expert's knowledge in the first place. Having -completed the reading

of the rest of the transcripts, we are able to tune our view of the domain, and, also,

enrich the lexicon, which we have had partially developed by then.

We have chosen the domain concepts against two major criteria. The first of these are

the tasks we have had identified by then as part of the problem solving behaviour in

the domain; these have provided us with constraints (or framework) for identifying the

relevant concepts. The second criterion, on the ct her hand, is more intuitive, in the

sense that there are a number of concepts which have either the potential for being

utilised as part of the problem solving process, or that they seem too financially

oriented to be ignored. We have been working on the assumption that it is better to

have redundant concepts to start with, which can be eliminated later, than to overlook

data by not including a number of seemingly unimportant concepts. We have been

-110-

able to revise our lexicon after reading the total transcript a second time, at which

point we have also been able to devise a rough version of an 'is-a concept hierarchy.

The hierarchy (see fig. 6-1) provides us with a classified view of the domain enabling

us to talk about different aspects of it without having to enter into an unnecessary

depth of detail. We have also had a view (based on previous experience; cf. Davoodi,

87[a]) that we could use -the- hierarchy as a way of clustering together those concepts

within the domain which can be regarded as potential units for holding information on

the domain. The hierarchy was rather rudimentary at this stage; it was, subsequently,

revised as the result of selecting a number of metaclasses. This is a process to which

we shall allude in a later section.

6.8. Why use the IM

We had started the consultancY with a feeling that the IM supporting CLA is likely to

be of use. in the case of ADSA. The fact that the IM was based on a financial applica-

tion, coupled with the simple reality that it was the only one around of its kind, was

reason enough to put the IM to test. We find that our intuition about the IM's poten-

tial use has been a reasonable one, as we have identified (sub) tasks in the 'underwrit-

ing domain' which are similar to those in CLA. As the nature of the underwriter's

decision making has become more and more clear to us, we have come to realise that

there are also essential similarities between high level tasks involved in the two

domains. 717he major difference between the two domains is the mechanics of gather-

ing data, this is the auxiliary part of the process, thus having no impact on the way

decisions are made.

We can distinguish two important tasks that the underwriter will need to carry out

before making a decision. Firstly, he has to assess the risks involved to make sure

that:

-111-

he does not take too much risk in underwriting a case, and

he does not reject a case because he is not prepared to take some risk.

In short, he has to get the balance right to earn ECGD profit without overtly exposing

it. Secondly, the underwriter is able to call on his potential sources (ie, agencies,

embassies, and so forth) to gather information, when he needs to assess the risks more

thoroughly, especially in processing marginal cases. The same information may, also,

be used in order to provide further data on a client's case which seems (to the expert)

as not having been sufficiently presented. These tasks show essential similarities to

those in CLA, it is now time to consider how we can use the IM to analyse the tasks

we have already identified. This can be done by considering the inference structure

(fig. 6-2), and seeing how its 'elements' apply to our domain.

6.9. Task Analysis

The tasks identified thus far are matched against the principal brýnches of the inference

structure within the IM. The first of these is that of assessing risks involved in

underwriting an application submitted by the p/h. The first thing to consider, now, is

the forn-ling of metaclasses comparable to 'parameter' and 'norm'. The concepts mak-

ing up different parameters are classed together, so that they could be referred to col-

lectively. The classification is based on the type of role the concepts play in the rea-

soning process, namely, providing the kind of information needed for the assessment

of risks. On the other, the same process can be pursued in order to define the meta-

class 'norm' in terms of its member domain concepts.

It could be argued that the process of defining 'norm' should precede that of 'parame-

ter', since the former will establish what we should look for in the latter. In reality,

one finds that defining parameters first comes more naturally, since one can speculate

-112-

about the sort of classification involved in order to identify concepts making up the

extension (set of all members) of 'parameter'. Ile identification of 'parameter' should

also provide us with a handle for deciding the 'norm. Ile 'norm' will have to be

checked and negotiated with the underwriter through the knowledge engineers, in order

to ensure that it contains the correct attributes. We can also conceive of domains in

which norms are defined very clearly; and, thus, the 'parameter' can be established in

an, almost, top down fashion, using the 'norm' as the model.

In negotiating the 'norm' with the underwriter, we find that despite the 'norm' contain-

ing the right ingredients, it is important that it is pitched at the same level of abstrac-

tion as that which the underwriter considers. That is, on the one hand, the expert does

not seem to appeal to what seems to be relatively low level concepts when he makes a

decision. Whilst, on the other hand, he seems to be using a combination of concepts

as clauses which on their own can individually indicate the amount of risk acceptable

in different situations. In order to ensure compatibility with the underwriter's view of

the 'world', we shall have to make certain that concepts participating in the 'parame-

ter' and clauses of the 'norm' are of the same level of abstraction as those which the

underwriter us I es. The concept hierarchy depicted in figure 6-1 has been used con-

stantly in order to adjust and refine our perception of the extension (membership) of

2 parameter' and 'norm' against that of the expert's.

Meanwhile, we are also able to enrich the concept hierarchy by including new high

level concepts near the root of the hierarchy, which we had not thought of when we

were devising the domain layer. The process of refining and enhancing 'concept

hierarchies' is a typical one which we expect to take place in almost A applications of

KADS using the hierarchies.

It is interesting to note that an 'is-a hierarchy', like the one we have constructed, may

have a number of possibilities for representing "which is" an instance of "what". At

-113-

the inference layer, one is able to constrain the possibilities by introducing metaclasses

near the root of the hierarchy, thus grouping together concepts in a highly organised

fashion. Most of the metaclasses happen near the root of the hierarchy providing a

clustered view of domain concepts, which will depend upon the role they will play in

reasoning.

We have, meanwhile, identified a new metaclass named 'discrepancy' which would

hold the difference between the constituent concepts of norm clauses with their coun-

terpart concepts within 'parameter'. This metaclass is not present in the IM and has

had to be added by us, we can only assume that prior to its inclusion it was being used

, within the IM, implicitly. 'Discrepancy' will act as a triggering factor in reasoning,

which might invoke gathering of further evidence through the diagnosis branch of the

inference structure.

The knowledge sources classify, and compare introduce a useful constraint on thinking

about the format of the metaclasses 'norm' and 'parameter'. In other words, 'parame-

ter' is the outcome of classifying concepts in 'case description'; the format of the

classification process is further constrained by the fact that 'parameter' should be dom-

parable with 'norm'. The philosophy of using ks's as constraints to reduce possibili-

ties for metaclasses has assisted us significantly throughout the analysis process. In

this sense, we find the new version of the inference structure (fig. 6-2) much more to

the point, by representing an appropriate and more explicit view of the kind of pritni-

tive subtasks involved in underwriting. The changes made to the inference structure

within the IM have been as a result of further advances in devising ks's within KADS,

as well as constructing a bespoke structure for the underwriting domain.

In the marginal cases when the underwriter is unable to make a clear yes or no deci-

sion, he will have to consider a second level of assessment. There are two distinct

occasions in which this can happen. The underwriter may decide, on the one hand,

-114-

that the data supporting 'parameter' is insufficient, in which case he has to consult his

sources for more data of the relevant kind. Whilst, on the other hand, he may have

some cause for doubting the reliability of the support data, in which case he is, again,

prompted to look for 'evidence' which may confirm or reject his original doubts. In

both these cases, the 'evidence' is used ultimately to possibly 'change' the parameter.

This type of behaviour, we find, concurs with the 'diagnostic' branch of the inference

structure. As before, ks's are used as constraints for defining the format of the remain-

ing metaclasses. Finally, the metaclass 'hypothesis' is used as a measure of 'heuristic

match' (educated speculation) in 'refining' the 'evidence'.

One of the interesting aspects of using the inference structure is the way in which it

has helped us in organising our thoughts by keeping ideas in our minds separate, and

identifiable from one another. The prime example of this is the use of the

'problern/solution identification' branch which once used in a task structure, it estab-

lishes a logical order of priority. That is, one should assess risks after clearly identify-

ing the 'solution' to a proposed 'problem'. Otherwise, one is likely to end up with a

confused view of the world in trying to establish a 'solution', whilst also assessing the

client's financial 'parameters'. Despite the apparent obviousness of the argument, it is

not clear that one could reason so parsimoniously and clearly, when one is confronted

with a new domain in which problems of getting to grips with the expertise may be

multifarious.

6.10. Process Structure

After the task analysis, the next natural step would be to devise the task structure and

possibly a flexible strategy structure. The former is shown in figure 6-4, in which

sub-tasks of problem / solution identification, assessment of parameters, and diagnosis

are sequenced respectively. Die diagnosis branch of the task structure may be over-

-115-

looked in cases, where the assessment of 'parameter' against 'norm' strongly suggest a

"yes" or "no" decision.

We have not devised a 'flexible strategy' layer, since the task structure seems general

and flexible enough for our purposes.

6.11. In Conclusion

Prior to any attempt to use an interpretation model, the user of the library of interpre-

tation models (see chap. 5) should be able to answer two questions,

" how to choose a model,

" and how to apply it to the domain at hand.

Given a number of interpretation models, the user should decide whether any of the

models provides for a problem solving behaviour of the kind in which he is interested.

Since models are named sensibly, it would be the natural thing !o see whether the title

is one which makes sense for an application under consideration. This activity could

be augmented with the reading of the description of the general task which the model

supports. There may be cases in which a given model satisfies the application only in

parts. 'Me user should use that model as a partial solution, and look for other models

to complement it. If he is unable to find any other models, then he has no choice but

to construct his own inference / task structures for the remaining parts. He should

then combine the outcome of this with the model he has already chosen, to arrive at a

coherent view of the problem solving for his domain. In fact, in our case the assess-

ment part of the IM can be viewed as a model in itself.

When choosing an IM, the user should not be disappointed with the possible fact that

even the best fit model shows dissimilarities with his own application. So far as there

-116-

are essential similarities between his domain and the model, it is, then, up to the user

to modify different parts of the model to fit his application domain. Having decided

that a model is possibly a suitable one, the user should, then, examine the task struc-

ture and the supporting flexible strategy to find out if the model can support his appli-

cation throughout. The more IMs are used, the more experience can be recorded on

how to choose and apply one.

In answering the question 'how to use an IM', we can do no better than to list a

number of important points from the previous sections.

0 Identify the main tasks (and sub-tasks) involved in the application area, and,

then, decide whether the candidate model can support them. This guideline

can, also, go some way toward answering the other question of 'how to choose

a model'.

At the inference layer, identify the main inference making branches and

traverse them in an order which seems natural to your thought processes.

Establish the metaclasses by using constraints such as the name of objects (i. e.,

'norm' has a particular implication in a given domain), coupled with the type

of knowledge sources for which the metaclasses are input or output. It is

important that the right level of abstraction is chosen for the metaclasses, other-

wise they will be either too detailed and tedious, or too abstract and

incomprehensible.

0 Use the inference structure to organise your ideas about the problem solving

behaviour, without allowing it to impose on you any unrealistic (or superficial)

inferences.

0 Make changes to the task structure if need be, or only use some part of it.

-117-

0 Use the task structure as a guideline for the particular structure needed to sup-

port the problem solving process in the domain.

0 In the unlikely event in which the task structure is totally irrelevant, it can, at

least, be used as an example of how to construct a task structure by combining

'elements' from the inference structure.

The methodology allows for operating at both levels of data model driven, and process

model driven. Ilat is, we are able to switch from a view of the 'world' which is not

concerned with the functionality of data, to one which is, whenever this is of help.

Such a flexibility is not associated with conventional software development, and we

regard as being a major contribution of the methodology to the field of KBS.

Nothing in the end can substitute for experience; our work here should be seen as an

informal education for users of the library, and not as a 'manual' on using interpreta-

tion models. We encourage the user to record his experience in using interpretation

models, and abstract from it what can be of benefit to the community of KADS users.

-118-

7. A Framework for Design

7.1. Introduction

In describing the design of a system we need to identify the 'processes' and 'com-

ponents' circumscribing this creative activity. We shall refer to these as 'design

processes' and 'design vocabulary', respectively. The distinction is a useful one, since

processes are vehicles for traýspe-nding from design components in one layer to those

in the next layer. Figure 7-1 identifies components and processes with boxes and

ovals, respectively. The vocabulary consist in a set of terms whose meaning and

implications should be made clear at the outset.

Design in the context of KADS uses the results of 'analysis' as the initial input (see

figure 7-1). The final output is a 'structure' directly supporting the artifact. The struc-

ture should leave the developer with minor implementation decisions, decisions con-

cerned primarily with 'housekeeping' (e. g. initialisation) and system 'tidy-up' (e. g. gar-

bage collection).

In the ensuing sections, we shall propose a framework for KBS design, which is based

on a design philosophy inspired by development in KADS to date, namely the results

of 'analysis'.

7.2. A Philosophy for Design

We view design as part of the methodological spectrum, a continuum along which the

output of 'analysis' should somehow transform into a workable and elegant architec-

ture (cf. Davoodi, 1987[b]).

-119-

Concaptuai M04001

-77 ..

Ansivsis Modol

External Requirements

D Docompoinion (Al.) Paradigms . oompo, dion

B k, lacks

T(anstormitton momods

Design Eiom*nt3

comoositions (Al-) Paradigms

SuDoort Knovvwgdo

P'myi4i: 41 Mocluies

Figure 7-1: KADS Design Process -a Bird's Eye view

We find it useful to identify two global layers over which design will take place. The

first of these captures the behaviour of the system with respect to analys's, tills layer

sits in the continuum immediately after analysis. It uses the results of analysis is

input in order to capture 'WHAT' is required of the system. The next layer decides

'HOW' to achieve that requirement, the latter is what we call the physical layer of

design.

At the physical layer we shall consider how to support the artifact such that the (jesireci

behaviour of the system is captured within the machine. Design, hy implication, does

not include the artifact (code) itself. The terni 'physical', therefore, refers to minjedi-

-120-

ate support for the code, and not the inclusion of it. For instance, a physical module

called 'schedular' may be designated as containing a number of procedures for moni-

toring and allocating some system processes to different devices within a manufactur-

ing machinery. The 'schedular' as a module will be realised within that part of code

which represents the procedures the module is meant to contain.

The physical layer should also address issues to do with optimum and/or transparent

support for the artifact. The degree to which these two issues are compromised will

naturally depend on the constraints placed upon the designer, as well as his level of

competence.

7.3. The Design Layers

We shall describe next the two layers over which design will take place.

7.3.1. Functional Layer

The functional layer is concerned with the fiinctional description of the system

(Davoodi et al., 1987). '17he functional description should encompass both the internal

and external views. The two views are incorporated in a number of functional blocks

which are the building blocks of the functional description layer.

In forming the functional description, the conceptual model is used as the starting

point for the formulation of the functionality of a system. One might argue that the

conceptual model should be treated as the complete functional description of the

artifact, and thus no further transformation will be required. We maintain, however,

that the distinction between the conceptual model and the structure consisting of the

functional blocks is an important one and should, therefore, be sustained. There are a

number of reasons for this distinction, the prime ones amongst which are:

-121-

The conceptual model is concerned almost entirely with the problem solving

part of a system. In particular, 1/0 and data storage functions are usually

implied in the conceptual model, but their existence is not fully described. In

the functional description these functions are explicitly identified and clearly

described by decomposing them into a number of sub-functions.

a External requirements may require additional functions within the artifact to

support them. An example of this might be the requirement to use an external

database, which will call for an interface function allowing for communication

between the intended system and the database.

The conceptual model has a purely epistemological bias, and as such it may not

be the most suitable, clear, or economical abstraction of the artifact require-

ments.

7.3.1.1 Components of the Functional Layer

The basic element of the functional layer is the so called fitnctional block, which

represents a distinct functional unit of the artifact. Every functional block may have

three types of relation with the other functional blocks, these are:

(1) Consist-of

Every functional block can be decomposed into a number of (including none)

other blocks at a lower level of functional decomposition; this decomposition

will form a consist-of hierarchy.

(2) InpurlOutput

A functional block may use output from and provide input data to one or more

other functional blocks.

-122-

Control

A functional block may control (or be controlled by) another block.

Figure 7-2 shows the 'consist-of' hierarchy of the functional blocks for the MYCIN

system (Shortliffe, 1976; Shortliffe

LEVEL o

MYCIN

LEVEL I
Cor=ýAdcn II

Explaudcn

LD
Aec cn üu:;

]

_cn

DynurL- 1
ýr ýz ge

ge

L
Uin E

AY LEVEL2

Figure 7-2: Consist-of hierarchyforfivictional blocks in MYCIN

et. al, 1979, Buchanan & Shortliffe, 1984). Figure 7-3 gives an overview of the input

/ output relations between the functional blocks within the same system.

The functional layer consists of the description of its individual component functional

blocks, a description which will contain the following slots:

(1) Subfunction of

The ancestor of each block in a consist-of hierarchy (if any) should be

-123-

User
User

rules S trace Explanation
Consultationý

J

User User
'User

AL

in w fain how
Dynamic data storage Expi hy Ex

Parsaw(Oe VAIVOS vaives ? trace Was

Knowledge storage
Data acquisitk: II;! W ; 7s Knowledge applic: 311,311, lutes

Figure 7-3: 410 relations between functional blocks in MYCIN

idendfied.

(2) Function type

A characterisation of the role that the function plays in the intended system

should be described; for instance whether it is an 1/0, or an 9explanation' func-

tion.

(3) Input data

A list (possibly empty) of all output data from the other blocks used as input,

Output data

And, similarly, a list (possibly empty) of all output data used as input to other

functional blocks.

-124-

External interface behaviour

Description of the 1/0 of the functional block at the level of user interface

and/or any other external interface.

(6) Controlled by

A desciiption of the control logic associated with the activation of the func-

tional. block (activation condition' or 'pre-condition')

(7) Controls

A description of the control logic associated with the termination of the func-

tional block ('termination condition' or 'post condition'). The description so

far should provide a full account of a functional block in relation to the other

functional blocks. In addition, the designer should also indicate the relation

between a functional block and the analysis output.

(8) Relation to Analysis

The part of the analysis that gives rise to the introduction of a block, this can

be a knowledge source, a metaclass, a goal statement in the task structure (eg.

'obtain data', etc), or an external requirement.

With regards to the fiinction type of a functional block, we have thus far identified the

following set:

0 Problem Solving

Typical problem solving blocks are functions like classify, match, and compute.

These functional blocks typically correspond to a knowledge source or a

sequence of knowledge sources in the inference structure of the analysis model.

Explanation

The word "explanation" is used here in a very broad sense. The explanation-

-125-

type functional blocks may represent functions that generate a trace of the rea-

soning process, or explain the possibility and the limitations of the system

itselL

Data 1/0

These functions will allow the system to transfer data at the external interfaces

of a KBS (such as: user interface, external database interface, etc.). They may

be of a simple nature (i. e. menus) or be more complicated (such as 'natural

language' type dialogues).

Data Storage

Data storage functions are often neglected in KBS system design; by default,

the built-in database facilities of the implementation language are psed. A truth

maintenance system is an example of a more elaborate data storage function.

a Control

Control functions are often introduced in order to put in place an explicit con-

trol unit in a system.

7.3.2. Diagramming

Diagramming techniques are used to represent the relationship between the functional

blocks within the functional layer explicitly. Most of these techniques show only

some, but not all, of the relationships between the blocks. It is not our intention to

either recommend one technique over another or attempt at creating new ones. We

shall, however, discuss the characteristics of some of these techniques, with-the aim of

helping the designer in applying them in various stages and types of KBS design.

0 Consist-of Tree

A hierarchical tree of functional blocks, thus describing the consist-of relations.

-126-

Data Flow Diagrams

Data Flow Diagrams (DFDs) show the input-output relations between functional

blocks. The MYCIN example (fig. 7-3) above is in fact shown in two (non-

standard) DFDs at consecutive hierarchical levels. A DFD, however, is incapa-

ble of representing the control mechanism explicitly; in such cases control is

implied in the flow of data. A DFD may, none the less, be enhanced with a

diagram(s) depicting the control mechanism.

JSD

The Jackson Structured Design (JSD, Jackson, 1975) technique is useful for

illustrating the control relations amongst the functional blocks. The control as

defined by the use of 'control statements' within the task structure of the con-

ceptual model is rather naive. If the designer is, however, satisfied with the

level of representation of control as depicted in the task structure, JSD is, then,

a good candidate for translating such statements into their counterparts in the

design. A major disadvantage of JSD is its lack of ability in representing

parallelism and delegation of control to local processes.

Petri Nets and SADT Diagranu

Both SADT diagrams and Petri Nets can depict input-output and control rela-

tions. SADT diagrams can also show explicitly the consist-of relations

amongst blocks. Petri Nets can represent the consist-of relations amongst

blocks in a similar fashion to DFDs. Petri Nets are, also, particularly powerful

in representing control structures using paralielism amongst the processes they

control.

7.3.3. Selection of Methods

-127-

The selection of methods constitutes the second part of the functional design layer,

methods specify the way in which functions are realised within the artifact. Our use

of the term method usually applies to artificial intelligence (or heuristic programming)

processing methods such as natural language interpretation, search algorithms,

classification using subsumption and/or refinement hierarchies, truth maintenance and

so forth. This, of course, is not to the exclusion of conventional data processing (dp)

methods, such as data retrieval and depositing, or relational database management

methods.

The selection of methods is one of the most crucial design decisions, and a major

point of departure between the conventional and KBS (or AI) design. In the first gen-

eration knowledge based systems the selection of methods was implied in the deploy-

ment of a particular shell (e. g. EMYCIN). In the second generation KBS develop-

ment, the way should be open to use a combination of various methods in a KBS in a

much less constrained fashion.

The major distinction between the first and second generation KBS is in representing

knowledge itself. The main concern of the first generation of KBS has merely been

one of problem solving. The static and dynamic / reasoning knowledge (see earlier

chapters, eg. chap. 4) are tightly coupled in such systems, a classic example of this is

MYCIN. In the second generation KBS, there is a conscious separation between the

domain facts (static knowledge) and the reasoning / procedural knowledge. The rea-

soning knowledge may at times be refined even further by having, say, 'procedural',

and 'strategy' (i. e. meta-reasoning) knowledge represented separately. A classic

example of this is NEOMYCIN, in which reasoning knowledge is globally shared

amongst different diagnostic procedures, and applied collectively to a module called

'domain knowledge' which contains aetiological. taxonomies (see chap. 8). The second

generation KBS are particularly powerful means of transferring expertise in teaching

-128-

sessions. They are much easier to maintain than the first generation, since different

components of the system can be modified and enhanced in a semi-independent

fashion. It will also take less code to write such systems, since the reasoning pro-

cedure is global, and local replications are eliminated.

A method should be seen as an abstract entity, whose realisation in the artifact will

require a number of components we have come to call design elements. For instance,

a search method such as the A* algorithm (cf. Winston, 1984) requires a procedure to

implement the algorithm, state operators, and heuristics estimates. We maintain that

the distinction between the abstract method, on the one hand, and the design elements

used in implementing it, on the other hand, is an important one. In the A* example it

would be a mistake to consider the procedure and the search method as one and the

same entity, since the method will require more than just the procedure. In Figure 7-4

a list of a number of methods and their corresponding design elements is provided.

_Table
3-1: Methods and their Design Elements

Method Desijzn Element
Hierarchical Classification Classifier

Subsumption relations
Class defmitioas
Attribute value pairs

A* algorithm Search procedure
Slam operators
Heuristic estimates
State description
Start state
Goal state

ATN parsing Parser
ATN grarhmar
Lexicon
Text string
Parse t ree

Production system - Rule InEerpretcr
Production Rules

Figure 7-4: Methods and their Design Elements

-129-

A method is described using the following slots.

(1) Description

A textual description of the method,

(2) Reference(s)

References to the (AI) literature in which the method has been portrayed or

used prominently,

(3) Realises

The functional block(s) which are realised using the method,

(4) Design Elements

And, lastly, a list of design elements which are required in realising the method

in the artifact should be provided. For every design element, the relationship

between the design element and the analysis output should also be provided

(see below).

7.3.3.1 Design Elements

Design elements point to elements within the conceptual model or components of those

parts of the system satisfying the external view. For example, the state operators used

within the A* algorithm find their counterparts in the domain layer of the conceptual

model for this search algorithm. In the travelling salesman problem (cf. Winston,

1984) state operators point to the 'road (Cityl, City2)' relations within the domain

layer of a perceived four layer model for that problem. A design element is, therefore,

described in terms of-

Name

The name of the design element refers to the role played by that element in

satisfying the corresponding method, this name is domain independent. For

-130-

instance, the use of a procedure in implementing the A* method transcends its

use in the 'travelling salesman, ' or any one particular domain.

Relation to the Conceptual Model

A description of the relation between the design element and its counterpart

within the analysis output, such as a domain relation, a knowledge source, or a

metaclass. For instance,
-
a design element may be a procedure for classifying a

group of input variables to a number of output parameters. It should be possi-

ble to associate the procedure to a knowledge source called 'classify' in the

'inference structure' within the analysis four layer model (see chap. 4).

It is difficult to provide a classification of design elements; we can, however, provide a

number of classificatory distinctions between them:

(1) Active vs. Passive

Active elements use or consume passive elements, e. g. a classifier -(active) uses

a set of subsumption relations.

(2) Knowledge vs. Data

The validity of knowledge elements are situation independent, whereas the same

is not true for data elements. For instance, the ATN parsing method requires t;

two knowledge elements of 'ATN grammar, ' and 'lexicon, ' as well as the data

elements 'text string, ' and 'parse tree.

(3) Dynamic vs. Static

Dynamic elements will undergo changes throughout the life of a system,

whereas static elements remain unchanged. The distinction between dynamic

and static elements may seem similar to that between data and knowledge ele-

ments. This, however, is not true; the difference between data and knowledge

elements is 'real world' oriented; whereas, the distinction between dynamic and

-13 1-

static design elements is system oriented. In a 'learning' system, for instance,

the changing knowledge base is characterised. by its counterpart design com-

ponents which are, in turn, dynamic.

Methods typically require a procedure, representing the associated algorithm, and a set

of dynamic and static elements.

7.4. Physical Layer

7.4.1. Architecture

The physical layer takes the. functional description and the selected methods with

corresponding design elements as input; the generated output is a set of physical

modules. The design elements are aggregated in the physical modules, where every

module may be decomposed into a number of sub-modules. We shall call the struc-

ture (or hierarchy) in which physical modules ultimately appear, the architecture of the

artifact. 'Me purpose of this architecture is to provide the immediate design support

for the detailed implementation, but it will stop short of including the code itself.

The difference between the functional description and the architecture lies in the

organisational. principles underlying these two descriptions of the artifact. 'Me func-

tional description is primarily concerned with capturing the system requirements as

prescribed by the output of analysis. On the other hand, the archirecture consisting of

physical modules provides a refined and optimised representation of the same require-

ments amenable to immediate implementation. In the functional description the func-

tional blocks and their associated methods are identified, and no effort is made in

optimising the functional block hierarchy configuration. The functional description, in

this sense, provides the logical system design.

-132-

The architecture is a representation of the system whose relation with the analysis out-

put is not immediately obvious, since its concern is an elegant, optimal and working

implementation. This is no t to say that the architecture is not driven by the analysis

output; rather that the missing link between the architecture and the analysis output is

the functional description. Or to put it in a different way, the logic of design can be

observed in the functional layer, and its working in the architecture. Some of the

organising principles underlying the architecture are:

0 Avoid Redundancy

If certain behaviour, data, or knowledge is shared across a number of physical

modules, then capture it within one physical module to which all other modules

will have access.

0 Minimise Coupling and Maximise Cohesion

Processes contained within or across physical modules should be loosely cou-

pled providing for a truly modular design which yields to independent testing

of its components (cf. Yourdon, 1978). On the other hand, elements within a

module as far as possible should be of the same type, thus maximising cohe-

sion within the modules (cf. ibid.). The latter should make the system much

more transparent in terms of the behaviour of its individual modules and sub-

modules. In short minimising coupling and maximising cohesion should, on

the whole, provide for a good system design across domains.

0 Incorporating Trade offs

In cases where constraints are placed on the designer in terms of imPlementa-

tion vehicles or hardware to be used, the architecture should adopt a

configuration suited to those constraints. Of course, in such cases it is possible

to have two versions of the architecture; one free of the constraints, and the

other incorporating those constraints. The reason for this is reusability of the

-133-

design, in case the system were to be designed constraint-free, or under a new

set of consmaints.

0 System Management

One or more modules may be dedicated to managing the invocation, system

tidy up (such as garbage collection), or housekeeping (such as system initialisa-

tion), and placed under the control of one (or more) system manager modules.

7.4.1.1 Components of a Physical Module

A physical module is defined in terms of-.

(1) Description

A textual description of the module outlining its functionality,

(2) Sub-module of

Its 'father' module in the modules' consist-of hierarchy,

(3) Design Elements

A list of design elements aggregated and used within the module,

Composition Principles

A description of the overall mode of aggregation of the design elements within

the module, such as a network of hierarchies, or a simple is-a (refinement

hierarchy),

Access Ports

A description of access ports which are handles for bringing modules into life

from other parts of the system, these should not be mistaken with detailed

interfaces which might take place amongst modules. As a possible example,

we may imagine a control module which decides to activate a task module by

-134-

interpreting a piece of information (code) within that module. The piece of

code is the access port of the module which might outline the conditions under

which invocation of the task module is appropriate,

External Interface Behaviour

And, finally, a description of the interaction of the module at the level of user

interface or any other external interface.

In the next chapter we shall examine NEOMYCIN (Clancey 1985) with a view to car-

rying out a post-hoc study of it concentrating on the design of the system. In the same

chapter the relationship between the analysis output and design will be clearly illus-

trated.

7.5. Discussion

In different places in the AI literature (Bobrow, 1984; Newell & Freedman, 1971;

Sembugamoortly & Chandrasekaran, 1984; Chandrasekaran, J987) a distinction is

made between (1) the physical structure of a system, (2) the behaviour of a system,

and (3) the fiinction of a system. 17hey refer respectively to:

(1) the actual physical objects that the system consist of,

the way these objects behave,

(3) and the purpose of the produced behaviour.

The distinction is used to describe different features of a particular system in the real

world, and thereby support reasoning about the system (e. g. doing diagnosis, design,

etc.)

Our design framework shows resemblance with ideas portrayed by these workers. For

-135-

instance our physical and functional description will find their counterparts in these

works under the same names. As for the behavioural description mentioned above, it

will refer to our selection of methods and intrWuction of design elements which is the

second part of the functional description. The major difference in favour of our design

framework (or methodology) is its sense of completeness, as it is complemented by the

KADS analysis phase which precedes and feeds into it. Ilis should turn the metho-

dology into a powerful tool both at the level of epistemological, and system modelling.

Our ideas in developing the framework has been very much in the spirit of the belief

that the development of complex systems within Al will require a common framework

for guiding closely the selection and utilisation of methods, techniques, languages, and

paradigms available to the designer. The framework should help the designer in a

number of ways, namely:

Rational design description

Design, in essence, is a creative activity in which the designer cannot -be

expected to pursue a predetermined route. Our design -framework will, how-

ever, provide a rational way of describing a design, even if the designer has not

quite followed that route. A further discussion of the usefulness and underlying

reasons for a rational design description can be found in Parnas & Clements

(1986).

0 Paradigms

Al paradigms can be of immense help in designing knowledge based systems,

allowing the designer to choose a particular approach to design at a high level.

The choice of a particular paradigm will make it possible to decide the

methods, languages, and techniques pertinent to that paradigm, a mechanism

which reduces the selection process amongst the many possible to those exactly

relevant. This will, of course, require that the links between paradigms and

-136-

their respective methods, techniques and languages are explicitly established.

The design process can also be simplified to a large extent if shells are

developed that support a particular paradigm by providing the relevant methods

and languages.

Library of methods

The task of selecting AI methods could be a difficult one, particularly in the

face of a constantly increasing collection of such methods. Efforts have been

made in bringing some structure to this growing collection, the notable example

of which can be found in Bundy (1985) putting forward a catalogue of AI

methods / techniques. The catalogue can be usefully enhanced by relating

methods with particular function types to which they might apply.

The role of environrnents

The number of environments (such as, embedded systems containing Al

languages, editors, run-time behaviour; shells; and toolkits) for developing Al

systems is also rapidly growing. Chandrasekaran (1987). observes that a major

problem of existing AI systems is that they are turned to the possibilities of the

environment in which they are developed. Domain knowledge is forced into

the formalisms provided by the environment, as well as the likeliness that the

designer will have to use the methods available within the environment despite

his better judgement. For instance, if the environment provides a single world

database, a truth maintenance method is not likely to be part of a system

developed within that environment. We believe that the design framework

presented in this chapter will allow the designer to choose an appropriate

environment for the domain at hand, rather than having to start from some

given environment.

-137-

Explanation

First generation expert systems are only capable of providing explanation by

paraphrasing their code (e. g. MYCIN). It is now commonly accepted that this,

in itself, is not sufficient for an understanding of the reasoning process of a

given KBS (see Clancey 1983; Neches at. al. 1985). We address this issue,

within our design framework, by downloading the design rnodel within the

artifact such that the explicit links between system components can be (almost)

readily read from the ccde. This should make it-possible to explain the reason-

ing behind the system behaviour in a more explicit and transparent way by

referring back to the design model. It could also provide the ultimate link

between the artifact and the analysis model.

Maintenance, Refinement, and Debugging

The framework is also useful when it comes to enhancing, changing and/or

refining an existing KBS; this being particularly the case if the artifact has the

design model explicitly represented within it. The reasons behind this are simi-

lar to those in the previous item in the list, this position will, however, require

further investigation.

-138-

8. NEOMYCIN

8.1. Background

NEOMYCIN is a medical consultation system evolved over years, its domain of exper-

tise is "neurological signs" or "headache and fever" (Clancey and Letsinger, 1981).

NEOMYCIN's knowledge base is developed by extending and reorganising MYCIN's

(Shortliffe, 1976) knowledge base. A change which is reflected in the underlying

"EMYCIN system" (van Melle, 1979). This is in order to make possible the diagnosis

of a much larger set of causes of disorders; more importantly, this makes the

knowledge base suitable for use by GUIDON, a teaching program.

The overall diagnostic strategy of NEOMYCIN is one of posing tasks which will have

some structuring effect on the working memory. Requests for findings are generally

intended to redirect (bring in new focus), or to confirm (give c. onfidence to) what the

system is considering. Ile working memory (differential) is a convenient and neces-

sary medium for updating the hypotheses generated by the system. A mechanism

which should, in the end, isolate the root cause(s) of a complaint (or system fault).

Initial information supplied to the system brings it to an intermediate hypothesis in the

taxonomic hierarchy. Working from the middle, the system must first look upwards in

the hierarchy to focus the possibilities. It will then refine downwards by considering

more specific causes. This depicts the physician's behaviour in forming a set of possi-

bilities which will include the cause. He will then narrow down the space of possibili-

ties to a small treatable number.

-'39-

8.2. Analysis

8.2.1. The Four Layer Model

We should be able to abstract a KADS four-layer model from the description of the

system (see, for instance, Clancey, 1984-5). We are assisted in this by the clear dis-

tinction made in the system between domain and control knowledge (see below).

8.2.1.1 Domain layer

This will contain the concepts, relations, and structures pertaining to NEOMYCIN's

domain of medical facts. It should be pointed out that the axiomatic structure of this

layer will depend on the point of view taken when it comes to examining the structure

between concepts. For instance, disorders are organised in 'refinement' hierarchies

without any reference to their anatomical dependencies (ie, independently of body, or

device). Such a view may obviously be replaced or enhanced by structures which

relate disorders explicitly with (make it local with respect to) different parts of a dev-

ice (body).

At the highest level, the concepts consist of symptorns and causes. The symptoms are

abstracted from hard (lab) and/or soft (circumstantial) data, symptoms and causes are

referred to as findings and hypotheses respectively. Findings and hypotheses are

organised into subsumption and refinement hierarchies, respectively. A distinction is

made between hypotheses representing processes describing disorders, and those wh. ch

refer to substances in the body (see below). There may be process features associated

with disorders which would enable the diagnostician to discriminate between certain

hypotheses. The features are concerned with issues like, locýality or chronicity of

disorder.

-140-

Apart from structural relations of 'refinement' between hypotheses and 'subsumption'

between findings, other domain relations are causal links concerned with associating

hypotheses with hypotheses and findings across hierarchies. A complete list of these,

will appear in the domain knowledge module (below). Certainty factors are used in

the normal way (eg. as in EMYCN in order to hide causal detail. An expanded list

of domain 'elements' will appear in a later section (cf "Domain Knowledge" module).

8.2.1.2 Inference Layer

Clancey (Clancey, 1985[b]) provides a general inference diagram (fig 8-1) which sup-

ports heuristic, classification in general. We tend to concur with him an the use of this

inference structure. We, however, should want to adopt a modified version of the

inference layer, such that it reflects the KADS approach in the use of knowledge

sources (cf. Breuker, et. al., IJvA, Davoodi, at. al., 1987, pp. 35-40, and p. 58).

HEURISTIC MATCH

Data Abstractions

Data Abstraction

Data

Solution Abstractions

Refmemcnt

Solutions

Figure 8-1: Inference structure of heuristic classification (Clancey, 19851b], p. 296)

Diagnosis in the broadest sense is a problem of indexation from the purported symp-

toms into pre-enumerated solution (cause) hierarchies, a process widely known as

-141-

classification. NEOMYCIN uses classification in conjunction with heuristic associa-

don in order to establish the causes underlying the observed symptoms in the body.

The associations provide intra-hierarchical causal links amongst hypotheses as wen as

between hypotheses and findings.

Classification by heuristic association is implied by the use of the knowledge source

'match' (fig 8-2). 7111e. knowledge source ultimately indexes 'Patient Abstractions'

into 'Disease Classes', these two being the corresponding meta-class objects. A more

detailed

heuristic-match

Patient Abstractions

abstract/=isform

Disease Classes

specify

Discases(causes)

Figure 8-2: KADS' Inference Structure of heuristic classification

behaviour of 'match' can be seen in fig. 8-3 (Clancey, 1985[b], p. 329). In turn, we

need to abstract from raw data (hard/soft) on patient, that part of it which will contain

the useful information. The abstracted data will then have to be transformed into a

-142-

]HEURISTIC]HEURISTIC
(caused by) (caused by)

Patient Abstractions Disease Classes

Pat-hophysiologic
States and Classes

Data Abstraction Refinement

Paticht Data

Figure 8-3: Inference structure of causal-process classification

structure compatible with that of 'findings' (patient abstractions). We shall, therefore,

need to use the knowledge source 'abstract/transform' to get the raw (patient) data into

the required format to be used by 'match'.

Lastly, having indexed into the disease classes, we shall need to specify the exact

cause(s) underlying the symptoms. We should now be able to use the inference struc-

ture as a competence model for NEOMYCIN's diagnostic reasoning.

8.2.1.3 Task/Strategy Layers

The diagnostic procedure (Clancey, 1984-5) in NEOMYCIN is an embodiment of the

task and flexible strategy structures as we know them in KADS. The underlying

behaviour is one of collecting findings (forward reýasoning) until some hypothesis (es)

is generated. The reasoning then switches to hypotheses-driven mode, during which

further findings will be requested of the user (patient). The requests for findings will

either give confidence to the line of reasoning being followed (hypotheses being con-

sidered), or they may bring in a new reasoning focus.

-143-

The premise of (meta)rules in the diagnostic procedure can examine both the working

memory, and the task history in order to decide what action to perform next. lie

(meta)rules, therefore, have got the possibility of a flexible-strategy written into them.

In the sense that they can monitor the current situation, and generate new plans (eg.,

invoke new tasks), and have them executed by the task interpreter until a solution(s) is

found. This, by the way, is what Clancey calls "meta-strategy".

Figure 8-4 represents a high level task structure for NEOMYCIN, a structure whose

detailed behaviour is under the control of the flexible-strategy we have just described.

diagnose(disease)

abstract / transform(data)
obtain(data)

match(findings, diseases)

specify(disease)

Figure 8-4: Task Structure for NEOMYCIN

8.2.2. External Requirements

The system should ideally perform at three settings of (Clancey, 1984):

(1) learning (knowledge acquisition),

(2) teaching (student nwdelling),

(3) and, problem solving (user modelling).

The settings are, indeed, to be expected from any 'true' knowledge based expert sys-

tem. For our present purposes the first two settings can be regarded as the external

-144-

requirements satisfying NEOMYCIN's external view. On the other hand, "user model-

ling" could in part be regarded as an aspect of functional requirements. The question

of the exact position of "user modelling" with respect to internal and external views is

currently a contentious one. It will have to wait until the issue of "modality" has been

decided and put in its right perspective within KADS.

We shall describe briefly the extent to which NEOMYCIN attempts to satisfy the three

settings, with a hint of the implications this will have for design. Where we talk about

problem solving, all but its "user modelling" aspect belong in the internal view (cf

"the four layer Model"). We would, however, find it useful not to take out "problem

solving" from this section, as this may create unnecessary gaps in our understanding of

the settings which enjoy a close system support. The fact that Clancey finds these set-

tings to be the essential ingredients of any 'true' knowledge based expert system can

have a profound effect on where we may, in the future, draw the distinguishing line

between the internal and external views. That is, if the settings are indeed the essen-

tial ones for a 'true' KBS, then they should all belong in the internal view. In this

sense, among others, NEOMYCIN is inspiring and thought provoking when it comes

to considering aspects of the second generation knowledge based systems.

Adn-dttedly, most knowledge acquisition for NEOMYCIN takes place between people,

with the knowledge base supporting the other two settings to a large extent. In teach-

ing, the knowledge base is used by GUIDON2, a set of teaching programs. The teach-

ing components themselves reside in GUIDON2 set of programs, exploiting NEOMY-

CIN as a suitable knowledge base for that purpose. Against this background the archi-

tecture of the system should satisfy three behavioural criteria of (Clancey, 1985):

(1) problent solving,

(2) explaining own behaviour,

-145-

(3) modelling student behaviour

The three behavioural criteria are indeed what the design of the system wiH attempt to

satisfy, as we shaH observe in the ensuing sections. The criteria required can be seen

as a summary of the overall internal and external view requirements.

8.3. Design

8.3.1. Overview

The system uses the combined advantages of "rule based" and "frame based"

approaches to achieve the required criteria (above). Ile former is used because of its

simple syntax which the program can interpret for multiple purposes. Frame-based

approach, on the other hand, enables the system to state the domain knowledge

separately from the control -knowledge, a most crucial notion providing for:

non-redundant design - able to deal with large problem space,

(2) abstract reasoning - ability to explain own behaviour in terms of underlying

reasoning structures divorced from 'data',

multiple/clearly understood solutions - thus making the knowledge base suitable

., for teaching.

We shall describe next the two layers over which design will take place, given the out-

put of analysis.

8.3.2. Functional Layer

'I'lie functional block diagram in figure 8-5 captures what is required of the system at

-146-

EXPLANATION 4 rl, -flcr

d=-storzgc component
------ - ------

assm%(depc sit) S\w A 1. \- rd: r Hypothe= gr-ncmucri
(using heuristic association)

Abstraction /TransfZr: nation SpecTication (hy

ýýý.

potf=es rdmmnent) 31

Providc Ll= ask Pucstions

System Introduction 5
giveexplanation

'2 C\

USER INTERFACE 6
introdu C

I rcqucst for dings
inidatc)rmc. " ask guestioris

give(expl=tion

US ER

Figure 8-5: NEOMYCIN's Functional Block Diagram

an operational level. Blocks 1,2, and 3 are concerned with the problem solving

behaviour of the system. The blocks correspond closely with their counterparts in the

inference/task structure (above).

Alock 4 is an essential element of NEOMYCIN as far as the use of it by GUIIDON2

for teaching, and general explanation is concerned. Note that it would be possible to

-147-

collapse block 4 onto 2 and 3. We have, however, decided to represent the explana-

tion component explicitly, in order to emphasise its importance to the overall system.

Block 5 (introduction) is purely administrative, yet its realisation is required some-

where in almost all systems. 17his unit should provide the user with enough informa-

tion to use (consult) the system.

Block 6 acts as a bi-directional filter to provide communication between users and the

system. 'User I/F will put out requests (for findings), or give explanation when

required to do so. It will also take questions from the user and put them to the sys-

tem. In both these cases 'User VF should ensure that messages or requests are clearly

understood by the user or the system. This unit could ultimately engage in some form

of 'natural language' parsing process; one day this would be an essential component of

most knowledge based expert systems. - The user interface activity is performed by the

two tasks 'generate questions, ' and 'ask-general-questions' as part of the diagnostic

strategy (fig. 8-6).

Box 7 provides a means of keeping track of what tasks have been performed as part of

the overall diagnostic strategy (see below). This functional block will be 'referred' to

in order to explain reasoning, as well as supporting the decision to invoke the

appropriate next task(s). In general, this is the 'task memory' registering all activities

performed over time, as well as the order in which they take place.

Box 8 provides the means for depositing domain conclusiors, providing an up to date

picture of what has been established. This functional block is mainly responsible for

maintaining the 'differential' (see below).

All arrows are qualified with their specific functionality, so as to mpke the relationship

between all functional blocks clear. The input and output to each block are clearly

shown in terms of incoming and outgoing functional blocks. We have specifically

-148-

avoided marking data (facts) as 110 to the blocks, as these become apparent at the phy-

sical layer.

The overall behaviour of the system is captured by the calling structure of the tasks in

the diagnostic procedure (fig. 8-6). A structure in which the problem solver poses

tasks for himself in order to have some structuring effect on the working memory.

The procedure is intended to contain reasoning processes and structures circumscribing

diagnostic behaviour in abstract. A requirement which will have a major influence on

the detailed design of the system.

The tasks are called in a depth-first order, provided they are always relevant. The sys-

tem starts with the top node task 'consult'. 'Consult' unconditionally invokes 'make-

diagnosis' and then prints out the results of the consultation. 'Make diagnosis'

invokes the two main branches of 'identify problem' and 'collect information'. The

former deals with gathering information in order to establish the initial hypotheses -

viz., mainly doing forward reasoning. The hypothesis driven reasoning is performed

by 'collect information'.

The method used by the procedure is heuristic classi cation . It does diagnosis by

selecting a system identification ('hypothesis' in case of NEOMYCIN) from a taxon-

omy pre-enumerated in the knowledge base. 'Thus, the program's architecture embo-

dies a general problem solving method for constructing or interpreting systems by

selecting from pre-enumerated solutions' (Clancey, 1985[a], p. 4).

8.3.3. Physical Layer

8.3.3.1 Modular Structure

We identify three modules as part of the overall design architecture:

-149-

Consult

Make-diagnosis Print-results

Identify-problem Coll ect-in Io rm a lion

For%v a rd- reason Generate-qui

Clarity-finding Process-finding
-Process -hypothesis

Est a blish-h ypot lie sis- spa ce Process -ha rd -data

Group&differentiatc Exploro&reline Ask -go Ile ral-qu es lions
I

Pursue- hypothesis

"__-
.

Test-hypothesis Reline -hypothesis

Appi

I

yfules nefine-COMPI ex-hy pothesis

Finlout

Figure 8-6: NEOMYCIN's Diagnostic Strategy

(1) Control knowledge

(2) Domain knowledge

(3) Working memory

'Control knowledge' separation from 'domain knowledge' should satisfy the require-

-150-

ment of representing diagnostic strategy in abstraction from 'data' on which it

operates. As part of the 'control knowledge' module, a component is used to interpret

the rule sets employed in tasks into actions prescribed by them (fig. 8-7).

8.3.3.2 Modules

CONTROL KNOWLEDGE

Purpose: To specify when and how the program should carry out operations such as:

4 pursuing goals and focusing on hypotheses.

0 acquiring findings and making inferences.

Description: 'fliis is the strategy component of the system represented as subpro-

cedures we call tasks. Fig 8-6 depicts the internal structure of the module; all terrninal

tasks except 'review differential' ('print-results') invoke 'findout' directly or through

'applyrules'. Each task is a controlled sequence of conditional actions. Each'condi-

tional action reasons about domain rules (relations), thus called a Merarule .A task

has associated with it a description of how its metarules are to be applied. A task may

also have an end condition , describing the condition under which it may be aborted

by the task interpreter.

A task generally operates on a part of the working memory (hypothesi, -, finding,

domain rule) called the task focus. A task may not have more than one focus, this

could be a list which is the entire working memory. The tasks exploit the domain

relations in order to provide explanation. This process takes the form of broadening

the differential, contrasting hypotheses, focusing on a hypothesis, confirming a

hypothesis, or determining whether a finding is present.

-15 1-

M)
RICHLY STRUCTURED
DOMAINKNOWLEDGE

INDEX & APPLY DOMAIN INDEPENDENT
DIAGNOSTIC STRATEGY

D0MAIN
KNOWLEDG

VIA RELATTONS

ASSERT & EXAMINE

CONTROL
KNOWLEDG

MEMORY

Figure 8-7: NEOMYCIN's Modular Architecture Support

Method

Heuristic classification : The diagnostic procedure ultimately maps onto a hierarchy of

pre-enumerated solutions (disease processes), and refinement within this hierarchy; a

process commonly known as classification. The classification has the added feature of

relating nodes in different hierarchies by causal relations. These relations (domain

rules) employ certainty factors describing the strength of relations between nodes

-152-

across hierarchies. A classification of this type is better known as heuristic

classification (Clancey, 1985[b]). In applying the method the 'control knowledge'

makes use of forward/hypothesis-driven reasoning. A strategy supported by

forwardlbackward chaining mechanism inherent in the use of rules. The reasoning

proceeds by prompting the user (patient) with general questions or requests for

findings, as and when they are required.

Design elements

e Task (subprocedure)

The overall element containing all other elements in the 'control knowledge.

A task, in turn, is translated into action by a function called the (task) inter-

preter.

0 Rules

Two general categories can be identified.

(1) Metarule

The rules making up the rule set associated with each task. The "if part" of the

(meta)rule generally examines the working memory and domain knowledge.

The "then part" invokes another task, applies a domain rule, or requests a

finding of the inform2, nt.

(2) Bookkeeping rule

Performing operations such as resetting registers that characterise the state of

the differential. 'Mese rules are placed in the task before and after the
e

metarules.

-153-

Tasktype

A description of how the task should be applied. There are four possibilities:

(1) Simple, try-all ... Program type

(2) Simple, not try-all ... Conditional type

Iterative, try-all ... For loop type

(4) Iterative, not try-all ... Pure production system type

0 Taskfocus

Ile part of the working memory on which a task is operating. The possibili-

ties are: finding, hypothesis or domain rule. This element is part of the work-

ing memory, its inclusion here is to help us understand the make-up of tasks.

0 End condition

Evaluated every time a metarule succeeds. This is a mechanism for backing

out of a procedure, when it becomes inappropriate or its goal is not of highest

priority. 'DONOTABORT' is a special end condition, indicating that the asso-

ciated task should be carried out to completion.

0 Primitive action

Actions issued by the "then part" of (meta)r-ules. The actions themselves are

are carried out by the task interpreter (below). The meta-rules contain

function-calIs to them. 717he possible actions are:

-154-

(1) Ask

for finding (problem data).

(2) Assert

a domain fact.

(3) Apply

a domain (heuristic) rule.

Invoke a subprocedure (task-).

Task interpreter

This function uses a simple deliberation-action loop control method. In inter-

preting each task, the detailed application of the interpreter function is dictated

by the task type. It is, therefore, justified to assume the four possible types

described by task type as the detailed application method . The task interpreter

can be seen as a sub-module of the control module. The prominent design ele-

ments; of this sub-module are the primitive actions we have just described (fig.

8-8).

Composition principles Tree : This is the overall structure, on the nodes of which sit

different tasks (fig. 8-6).

Access port 'Consult' : The diagnostic procedure is always accessed (starts) through

the top-node task 'consult'.

DOMAIN KNOWLEDGE

-155-

TASKINTERPRETER

Overall
Interpreter
Function

interpret Function.. 'Call

con ult

primiti e II
actýinoini

IAGN0STICSTRATGEY

Figure 8-8: NEOMYCIN's Control Module

Purpose: To provide 'data' required by the diagnostic procedure in order to make

inferences and give explanation. The data consist in medical concepts, structures and

relations between concepts.

Description: The domain knowledge describes a medical vocabulary based on the

physician's experience. The vocabulary consists In two broad categories of hypotheses

and findings
, and the relations between these. Findings are observations describing n 1.

-156-

the problem. In our case they consist in soft (circumstantial) and hard Cab) data on

patients' symptoms. Hypotheses are partial descriptions of the findings. In this sense

hypotheses explain the findings and constitute the problem-solver's diagnosis.

Hypotheses, in turn, divide into two groups of (ultimate)'causes', and 'general states.

The former relate to specific processes, whereas the latter are characterisation of abnor-

mal conditions in the device (body).

Method

Heuristic classification : The method is applied to the domain knowledge by the diag-

nostic procedure (above). Ibe classifier uses hypotheses refinement hierarchies, and

findings subsumption hierarchies in conjunction with heuristic association. The asso-

ciations are described in terms of certainty factors which describe in numerical terms

the strength of causal relations between hypotheses and findings. The classifier makes

use of forward/backward reasoning prompted by antecedent and trigger rules respec-

tively.

Design Elements

States, unary and binary relations defined on states and other relations, and the strength

of relations in terms of 'certainty factors' collectively exhaust the design elements.

States

These are similar to EMYCIN parameters. The distinction made between states

(see below) are expressed in metarules. For instance, (SOFT-FINDING

$STATE), (HYPOTHESIS $STATE) or (SOFT-FINDING), and

(HYPOTHESIS) for short. Note that states are relations themselves, but we

express them as atomic propositions (above) for convenience.

-157-

0 Hypotheses

(1) (A)etiological... processes

(2) Statelcategory... substances

0 Findings

(1) Soft... circumstantial or historical

(2) ... laboratory or direct nwasurement

Hierarchies

These structures are defined in terms of relations amongst states.

Etiological taxonomy

A refinement (subtype) hierarchy amongst etiological hypotheses (fig. 8-9

There are several of these present in the domain knowledge.

(2) Statelcategory subtype hierarchy

A refinement hierarchy amongst 'general states'.

(3) Subsumption hierarchy

Findings are organised in such hierarchies. For instance, HEADACHE sub-

surnes BEADACHE-severity and BEADACHE-duration.

Causal network

A net of causal relations amongst state/categories.

(Other) relations

It must be pointed out that all the elements we have described thus far are

made up of relations. other domain relations are:

-158-

DIS041DEn-ETIOLOGY

NEOPLASTIC INFECTIOUS CONGENITAL TRAUMATIC Toxic

-G-ROUP
&-DIFFERENTIATE

ZZN -
SAVEREMIA CYST114S BRAIN. A13SCESS

INITIAL FOCU41

ACule I6At-r, 9, f, 3 Cf. OMC fAer-V4, S

BACIEMAL VIRAL PASITIAL. CZX 7B FLMIGAL

EX PLOAE & PEFINE

CRAM-MEG SKIWOnGS (OTHEII OACSI cnyptccoccus C=l

Figure 8-9: An etiological hierarchy: containing causes and process features

(1) Source

A finding can be the source of other findings, eg. (SOURCE-OF BLOOD-

ANALYSIS VMITE-CELL-COUNT).

World-fact

Findings can be related by world-facts, eg. males do not become pregnant.

These relations are currently proceduralised in NEOMYCIN in the form of

'don't ask' rules.

(3) Definitional

A finding can be defined in terms of other findings. Eg. "a neonate is a person

-159-

under five months of age. "

0 Process feature

A findings/hypothesis can characterise in more detail the process described by

another finding or hypothesis. A pain can be characterised by location and

change in severity over time. Every hypothesis in the etiological taxonomy can

be characterised by a set of similar process features.

Certainty factor

Associated with each causal relation is a certainty factor (CF), as used in

MYCIN. CF is used for heuristic association between hypotheses and findings,

thus omitting causal details.

0 Rules

(1) Antecedent

(cf fig. 8-10)A causal relation which is definitive, i. e. CF = 1.0. This rule is

used for forward-reasoning when the prernise of the rule is known to be true.

(2) Trigger

An antecedent rule which is also labelled as trigger rule. In receiving a trigger

rule the program N; iH try to satisfy the premise of the rule. The trigger rule is,

therefore, used for reasoning by backward chaining. Composition Principles

Network of hierarchies :A network at the nodes of which sit hypotheses

refinement, and findings subsumption hierarchies. The network, itself, is

described in ternas of causal relations between hypotheses, and between

hypotheses and findings. That is hypotheses causing other hypotheses, or being

caused by them, and hypotheses causing findings. The network is, therefore, a

causal network.

-160-

ý- _0,, - -C,
-Iuszl ruloa

DATA
I

cor-vo6on
ic

Etiological
taxonomy \

Dinglio3lic
meta-stralogy

\1
-\

'ký7511
rolciences to rules,
taxonomy. ond
procoss hnowleduo

()x-, 1111ill. -Ition of
CUtrent hypOllIC303

IDil Ioi PnIlal)

Figure 8-10: Components of the NEOMYCINsystem

Access port

Procedural anachment : Procedural attachments are associated with metar-ules,

and are accessed by their premise in appl)irfg the control knowledge (program)

to that of domain knowledge (data). It may be interesting to note that pro-

cedural attachments replace arbitrary functions which were used before to pro-

vide access to domain relations.

-161-

WORKING MEMORY

Purpose: To provide a medium for organising the possibilities to consider (the

differential), as well as for recording the trace of activities taken place over time (his-

tory). Ile differential ultimately should isolate the cause(s) of a complaint (or system

fault).

Description: The working memory is extensively used by the "then part" of metarules

in order for them to store "domain conclusions" (fig. 8-7). The "if part" of the

metarule, on the other hand, examines the working memory and operates on it through

the task focus. The focus, itself, can be a hypothesis, finding, or domain rule.

The continuous assertion and examination of domain conclusions, by the tasks, results

in broadening and narrowing of the differential. A focusing activity which decides the,

ordering of invocation of subsequent tasks (subprocedure) by the control knowledge

until a diagnosis is achieved.

The other part of the working memory is purely concerned with recording the history

of all of the tasks which have been performed (fig. 8-7). This part is consulted by

metarules, for example to determine if a particular hypothesis has been pursued.

Method

List manipulation : The method used here is a non-Al one. The working memory is a

list which is being continuously updated. T'he updating takes the form of broadening

and pruning the list such that it reflects the current, diagnostic thinking, and the history

of the tasks performed.

The whole operation is conducted through randomly accessing Ehe list using the task

focus, a process in which pointers to foci are inserted or deleted as required.

-162-

Design elements

Except for the overall list structure, all of the other elements are place holders for the

type of elements already declared as part of the other two modules (above). Ibis is so

because the worldng memory uses instantiations of the elements already, contained in

the other two modules.

0 Taskfocus

a Hypotheses (making up the differential)

0 Findings

0 Domain rules

Hierarchies

those observed amongst hypotheses/findings (cf 'domain knowledge')

History

A hierarchy of the names of the tasks which have already been performed

The hierarchy may also contain the task foci.

List

The overall structure of the working memory.

Composition principles

List of hierarchi-es : The overall list structure of the worldng memory has

hypotheses/findinas hierarchies hanging from its cells. This is because in con- z:

sidering a finding/hypothesis we may need to examine its ancestor and/or its

children as well.

Access port

-163-

Taskfocus : The control module accesses (links up with) the working memory

using the taskfocus .

-164-

Summary, Conclusion, and Future Plans

9.1. Summary and Conclusion

KADS methodology will provide a knowledge engineer with modelling tools to:

0 Elicit knowledge ftorn experts, and

0 to 'formalise' that knowledge into a detailed design to be implemented on a

computer system.

In both of these cases "interpretational models" play the central role, and should, there-

fore, be seen as KADS major contribution to the field of KBS. A library of such

models has been developed within KADS, which will cover a population of KBS at an

analysis level.

The development of KADS is equally concemed with populating the design space with

models of equal usefulness to interpretation models. This will be discussed in a later

section in this chapter.

At the moment, a descriptive language has been developed at the design leveL in

which a body of Al and conventional design methods and techniques have been incor-

porated. This language will require further development, so as to formalise the design

activity more extensively. The formalisation should stop short of interfering with a

designer's sense of creativity. Otherwise, KADS design language will become as unat-

tractive to use as many conventional design methods have in the past.

KADS' other major attraction which is new in the field of KBS, is the capture of busi-

ness needs side by side with the problem solving components at the analYsis level.

-165-

This should make KADS a more commercially viable proposition, when it comes to

developing systems within real life financial, management, and user constraints.

The use of KADS within different domains of expertise (fourteen in our case) has

encountered successes and setbacks, with the former outweighing the latter. Ile prime

areas in which KADS has been successful are:

(1) The use of IM in modelling a domain experise, thus eliciting knowledge (see

Breuker, et al. 1983 [a, b, c], 1984; also Wielinga, et al. 1984) from an expert in

a "model driven" fashion.

(2) The use of an interpretation model or a number of such models to create a

workable conceptual model.

(3) The sharing of information across European countries through the use of expert

knowledge contained in "conceptual models", statements of "business needs",

and system design architecture.

(4) Following from. (3), the ability to develop models for large systems in colla-

boration with partners at remote sites.

(5) The use of KADS to extend KADS itself. i. e. new IMs have been created by

users of KADS, once they had learned how to develop one.

The creation of design language usefully enhanced the power of KADS

analysis, resulting in a number of worldng systems.

The important setbacks are as follows:

(1) Modality statements cannot, as yet, be capuired sufficiently within conceptual

models. It is intended that separate models should be developed for these state-

ments. These models are thought to be orthogonal to conceptual models, since

-166-

modality statements cut across the functionality of a working system. This is

because these statements will provide the communication links between the

problem solving component of a system and the external world. The work on

'modality models' is at a seminal stage.

(2) 'I'lie fourth layer of a conceptual model known as "strategic layer" has proved

difficult to capture. This layer contains elements of dynamic planning of new

task structures, as well as monitoring their behaviour. We are not very

discouraged by this, since the problem is shared in general within the AI com-

munity. We bypass this layer by having a sufficient set of task' structures,

amongst which we can choose one best suited to a problem solving situation.

Some domains tend to be satisfied by just having a sufficiently general task

structure, without the need for the strategic layer.

(3) In smaller domains, the use of KADS will involve too much overhead. Experi---

ence shows that certain elements of KADS can still be used in such domains.

9.2. Future Plans

We shall divide this section into two parts:

(1) The role of prototyping in design,

(2) Modeffing

(1) is concerned with the use of prototyping as a support activity in design. It is

included here for completeness; the issue of prototyping within KADS will need to be

pursued as an important future task. We, however, find it apt to indicate our position

in this regard. We should hope that our discussion on prototypring would also prove

beneficial to the future work concerned with this issue.

-167-

(2) will be addressing the issue of design models, as an extension to interpretation

models. We hope that we can provide generic design models for the future users of

KADS, so that these models may be used in conjunction with their corresponding gen-

eric epistemological counterparts (interpretation models) in analysis.

9.2.1. Prototyping in Design

Prototyping can be used within the two layers of KADS design methodology, in order

to test the feasibility of the components of each layer. - We have assumed that Func-

tional blocks, and physical modules are the building blocks of the two respective

layers of our design. We shall, therefore, suggest a set of possibilities for prototyping,

based on these building blocks. The list is not an exhaustive one; it may be extended,

as well as modified, in the course of future developments in KADS.

9.2.1.1 Prototyping in the Functional Layer

This should be done to establish the following:

(1) The correspondence between blocks and analysis output: each functional block

should be treated as a separate entity, with 110 to/from each block assumed.

The assumed 1/0 entries and exits need not, necessarily, be a very close

reflection of the actual ones, since we are concerned primarily with the internal

composition of the. block under consideration. The block is, then, prototyped to

ensure that: it functions as it should, relates to the analysis output as originally

planned, and the method used in realising --he block can be shown to

correspond (isomorphically, semi-isomorphically, or non-isomorphically) with

the analysis elements (goal statements, knowledge sources, and so on).

(2) Block Organisation: As a result of prototyping, we may decide to organise our
blocks differently to that originally assumed. Ibis may be due to the fact that

-168-

what seemed a good idea in the first instance, might prove to be difficult to

implement. This is a classic example of trading off between 'the ideal, ' and

'the possible'.

(3) Classificatory Prototyping: Where we can make distinctions between certain

classes of blocks, we may choose to develop prototypes for each class

separately. Possible examples might be "data storage, " "natural language

parser, " "ATN generator, " and "Classification" blocks. We can test prototypes

for each distinct class to ensure validity and appropriateness. We may then

decide to amass a library of different classes of prototypes for corresponding

functional blocks for future use, be it with some modifications.

(4) Methodological Prototyping: It is desirable to establish a link between the

dynamic parts of the analysis and the set of available methods. For instance,

we may choose to examine the connection between knowledge sources and

their counterparts in methods. It is possible to experiment with a knowledge

source (or a set of them) across different domains and find out about their

design counterparts. We may then use this experience in developing systems

using that knowledge source in other systems. We have an example of such a

development for the knowledge source 'heuristic match' in the domain of

ECGD (cf. Davoodi, 1987(a], see also appendix A). The idea can be extended

to meta-classes, composite goal statements, and various other elements of the

analysis output.

(5) User Reaction: By developing different prototypes for blocks addressing the

internal and external views, users' reaction can be assessed. 13ased on this

reaction, we can tune, or fine tune our design, as well as extend it. This is an

important use of prototyping, since we can also use it as a means of rectifying

the possible anomalies in the analysis output, against the user, expert, or

-169-

management requirements.

(6) Composite Prototyping: Having tested the functional blocks individually, we,

may, then prototype the overall functional block hierarchy, and the correspond-

ing methods. This should provide a handle on system coordination, as wen as

establishing the exact nature of 110 and other links between the blocks. '17his

process may lead to further tuning of the blocks, resulting in a fully working

hierarchy. This is always the last stage of prototyping in the functional layer

before descending to the physical layer.

We shall, no doubt, be able to think of other cases for prototyping in this layer. We

feel, however, that the list given provides a good insight into the role of prototyping

and its usefulness within the functional layer.

9.2.1.2 Prototyping in Physical Layer

We shall mention briefly how prototyping may be used at this layer. Most of the uses

of prototyping we enumerated for the functional layer can be applied to this layer as

well, replacing modules for blocks.

Prototyping may be used to give us a clearer idea of how design elements may be dis-

tributed across modules. It can also be used to achieve an optimal modular

configuration, also providing a clear idea of inter-modular (composition principle) and

intra-mbdular (hierarchy / network of modules) configuration. Finally, we can use pro-

totypes as handles for knowledge representation both globally (such as shells), and

locally (such as frames, and rules). The latter is guided both by the available develop-

ment kit, and by the available resources (machines and programmers).

We encourage the use of high culture (for a description of high and low culture shells,

see Warden, 1987) shells and environments for prototyping, as well as for full system

-170-

development. Low culture shells (cL ibid.) may be used for prototyping only when the

developer is certain that it is the correct support tool to use for intermediate system

assessment.

We shall, next, give some brief indications of our future plans in extending the design

methodology in incorporating the modelling activity.

9.2.2. Generic Design Models

KBS development is ultimately a process of modelling. The modelling activity, itself,

takes place at two global levels of analysis and design. We can, of course, consider

tow other types of modelling , namely: 'psychological, ' and 'administrative'. 'ne

former, roughly, relates to our conception of the expert and his environment in the pro-

cess of knowledge elicitation. That is, we all the time tend to have a model of inter-

viewee as we are proceeding with the elicitation of knowledge. This model is con-

stantly being reshaped and modified in our minds' eyes. The administrative modellin g

activity is what takes place at the lifecycle model level. 'nat is we purport to organise

activities and phases of the system analysis and design within interconnected

sequences, some of which may be overlapping.

Our talk of modelling here is concerned with that of analysis, and in particular with

design. In considering the interesting expert domains in the 'real world, ' we shall

arrive at a relatively limited set of classifications. Tlat is, irrespective of the fact that

on the surface of it there are many expert domains to be conquered within the

machine, we claim it possible for those domains to fall under a limited set of distinct

classes of activities (see Chandrasekaran, 1987; Buchanan, 1987).

We should be able to cater for a future in which the knowledge engineer should be

able to pick out of his 'toolkit' the appropriate "task-oriented" shell satisfying his

-171-

requirements. This is exactly what happens in the use of EMYCIN to help the

development of NEOMYCIN. No doubt future systems will be built based on BERA-

CLES which is the shell derived from the work on NEOMYCIN. Indeed, Clancey and

his students are applying the shell in an engineering domain (cf. Clancey, 1985[b]) at

the time of writing of this thesis.

The number of generic models such as HERACLES are very few, and they are

mainly contained to a limited number of KBS / AI research centres. If we are to have

any hope of turning KBS development from an artform into an engineering process, z: 1

we need to make these generic models more accessible by maldng their history of

development explicit.

This is the ultimate aim of KADS, in that we should provide a documented trace of

the development for each of the future generic models. The trace should include the

interpretation model(s), the possibility of different 'realistic' external requirements, and

a generic design model. The idea of a generic design model is similar to that of

interpretation models, in so far as such models can be applied-to domains sharing an

interesting expert feature. The major difference between the generic design and

interpretation models, primarily, is twofold:

(1) A generic design model needs to indicate the incorporation of some possible

envisaged external requirements; an interpretation model does not.

(2) Since design models are directly aimed at supporting real life tasks they are

likely to embe, -I within them a number of primitive interpretation models. The

alternative would be that of having a design model which is based on a 'real

life task' interpretation model, or a combination of both.

Our aim in design should be to provide such generic models, to be used in conjunction

with the corresponding interpretation model(s) and external requirements. This should Z!

-172-

make it possible for users of KADS to develop systems independently, as well as

together, without having to have access to KADS 'gurus' for advice and consultation.

The generic design models should be as much capable of being modified, or enhanced,

as interpretation models are aimed to be.

9.3. KADS in Future Systems

The hallmark of second generation KBS is its ability- to represent domain and reason-

ing knowledge separately (see, for instance, Steels, 1987). Such a separation will

make it possible to have a representation of domain knowledge in its 'full' glory, thus

avoiding problems associated with shallow knowledge representation. A deep

representation of knowledge will make it possible to understand the working of a sys-

tem better, and in turn to be able to extend and maintain it. It should also make it

possible to use the system for both teaching and learning some expertise aspects

KADS has been developed with the need for deep knowledge representation in mind.

This can be clearly seen in the way an expertise domain is'represented within the

KADS four layer model, by separating out the domain layer from the reasoning (con-

trol) part of the expertise.

KADS will also make it possible to bypass the expensive and generally unworkable

paradigm of "incremenW prototyping" by having a clear model of the expertise prior

to any design and implementation. On the other hand, KADS will, in the future, make

good use of prototyping as a support activity (see above).

KADS can equally be used in conjunction with a conventional methodology, to make

practicable a modelling of combined 'heuristic reasoning' and 'database management'

within one environment. The environment is supported by the KADS lifecycle model,

and its modelling toolkit. Developing integrated systems which combine the power of

-173-

conventional database management and KBS terhii. 1ologies is a very current and chal-

lenging issue. We anticipate that this useful trend will carry on for the next decade

and beyond, until such systerfis wi)JJ be,. -orn. -. practice. It is, also, possible to

extend KADS to embed a. convenfional meffiodology -ýMthin it, so as to support the

development of integrated systems 'seamlessly'. We find that KADS' contribution to

the future development of KDS; and is a major one. A cowribution

which manifests itself by taking out the development of such systems from the realm

of an artfonn into that of an engineering process.

-174-

10. References

Abbret, G., and Burstein, M., The KREME Knowledge Editing Environment, Proc. of
the Knowledge Acquisition for KBS Workshop, Banff, Canada, 1986.

Allen, J., and Anjewierden, A., KADS Power Tools: User Interface Specifications,
ESPRIT P1098, Wor4ing Paper, 1987.

Alexander, J. H., Shulman, M. J., Rehfuss, S. J., and Messick, S. L., Ontological
Analysis: An Ongoing experiment, Proc. of the Knowledge Acquisition for KBS
Workshop, Banff, Canada, 1986.

Anjewierden, A., PED - KADS Power Tools Protocol Editor, ESPRIT P1098, Work-
ing Paper, Apfil 24,1987.

Anjewierden, A., and Allen, J., KADS Power Tools: User Guide, ESPRIT
P1098, Working Paper, 1987.

Barthelemy, S., Edin, G., Toutain, T. (Cap Soged Innovation S. A.), and Becker, S.
(SCS Organisationsberatung und Informationstechnik Gmbh), Requirements Analysis in
KBS Development, ESPRrF P1098, Deliverable D3,1987.

Bennett, J. S., ROGET: A Knowledge-based consultant for acquiring the conceptual
structure of of an Expert system, Report no. HPP-83-24, Computer Science Depart-
ment, Stanford University, 1983.

Bobrow, D. G. (ed.), Qualitative Reasoning about Physical Systenis, Elseviers Science
Publishers B. V., Amsterdam, 1984.

Booch, G., Object Oriented Development, IEEE Transactions on Software Engineer-
ing, vol. SE-12,2,1986.

Bmchman, R. J., and Schmolze, J. G., An overview of the KL-ONE Knowledge
Representation SývStem, in Cognitive Science, vol. 9, pp. 171-216,1985.

Brachman, R. J., Ott the Epistemological Status of Semantic NenvorL, in Associative
Networks - Representation and Use of KnoNiledge by Computers, edited by N. V.
Findler, Acadernic Press, New York, 1979.

-175-

Breuker, J., Wielinga, B., Initial Analysis for Knowledge Based Systems - An Example,
Report 1.3a, ESPRIT Project 12, Memorandum 23 of the research Project: The
Acquisition of Expertise, University of Amsterdam, Dept. of Social Science Inforrnat-
ics and Laboratory for Experimental Psychology, Weesperplein 8,1018 XA Amster-
dam, June 1983[a].

Breuker, J., Wielinga, B., Analysis for Knowledge Based Systents - Part 1, Report 1.1,
ESPRIT Project 12, Memorandum 10 of the research Project: The Acquisition of
Expertise, University of Amsterdam, Dept. of Social Science Infonnatics and Labora-
tory for Experimental Psychology, Weesperplein 8,1018 XA Amsterdam, October
1983[b].

Breuker, J., Wielinga, B., Analysis for Knowledge Based Sysiew - Part 2, Report 1.2,
ESPRIT Project 12, Memorandum 12 of the research Project: The Acquisition of
Expertise, University of Amsterdam, Dept. of Social Science Informatics and Labora-
tory for Experimental Psychology, Weesperplein 8,1018 XA Amsterdam, December
1983[c].

Breuker, J., Wielinga, B., Techniques for Knowledge Elicitation and Analysis Report
1.5, ESPRIT Project 12, Memorandum 28 of the research Project: The Acquisition of
Expertise, University of Amsterdam, Dept. of Social Science Informatics and Labora-
tory for Experimental Psychology, Weesperplein 8,1018 XA Amsterdam, July 1984.

Breuker, J., Wielinga, B., van Someren, M., de Hoog, R., Schreiber, G., de Greef, P.,
Bredeweg, B., Wiclemaker, J., Billeaut, J-P (University

. van Amsterdam), and
Davoodi, M., Hayward, S. (STC), Model Driven Knowledge Acquisition - Interpreta-
tion Models, ESPRIT P1098, Deliverable D1,1987.

Brodie, M. L., Mylopolous, J. (eds.), On Knowledge Based Management Systems,
(Pub.) Springer Verlag, 1986.

Brown, J. S., Burton, R. R., and de Kleer, J., Pedagogical, natural language, and
Knowledge engineering techniques in SOPHIE 1,11, and III, in Intelligent Tutoring
Systems, (eds.) D. Sleeman and J. S. Brown, pp. 227-282, London, Academic Press,
1982.

Buchanan, B. G., Expert Systena, in Expert Systems Tutorial Notes, IJCAI-87,
Milan, Italy, 23 August, 1987.

Buchanan, B. G., and Feigenbaum, E., A., DENDRAL, and Meta-DENDRAL: Their
applications dimension, Artificial Intelligence, 11: 5-24,1978.

Buchanan, B. G., and Mitchell, T. M., Model directed learning of production rides,
Report. STAN-CS-77-597, Computer Science Department, Stanford University,
Calif., 1977; also in Pattern -Directed Inference Systems, (eds.) D. Waterman, and F.

7,176-

Hayes-Roth, pp. 297-312, New York: Acaderrdc Press, 1978.

Buchanan, B. G., and Shortliffe, E. H., RULE-BASED Expert SYSTEMS: The MYCIN
Experiments of the Stanford Heuristic Programming Project, , Addison-Wesley Pub-
lishing Company, 1994.

Bundy, A. (ed.), A Catalogue of Al techniques, (pub.) Springer-Verlag, New York,
1985.

Bundy, A., Byrd L., Lager G., Mellish C., and Palmer M., Solving mechanics problems
using meta-level inference, in LJCAI 6, pp. 1071-1027,1979.

Bundy, A., and Sterling, L., Metalevel inference in algebra, Department of Artificial
Intelligence, University of Edinburgh, 1981.

Bylander, T., and Chandrasekaran, B., Generic Tasks in Knowledge-Based Reasoning:
The 'Right' Level of Abstraction for Knowledge Acquisition, Proc. of the Knowledge
Acquisition for KBS Workshop, Banff, Canada, 1986.

Bylander, T., and NEttal, S., CSRL: A Language for Classificatory Problem Solving
and Uncertainty Handling, Al Magazine, vol. 7/2, pp. 66-67,1986.

Clancey, W. J., The epistemology of a Rule-Based Expert System: a Framework for
Explanation, Artificial Intelligence, vol. 20, no. 3, pp. 215-251,1983.

Chandrasekaran, B., Towards a Functional Architecture for Intelligence based on Gen-
eric Information Processing Tasks, Invited talk, UCAI, Milan, Italy, 28 August, 1987.

Charniak, E., and McDermott, D., Introduction to Artificial Intelligence, Addison-
Wesley Publishing Company, 1985.

Clancey, W. J., Acquiring, Representing, and Evaluating a Competence Model of
Diagnostic Strategy, Report no. KSL-84-2, Original draft, Knowledge Systems
Laboratory, Computer Science Department, Stanford University, Palo Alto, February
1984.

Clancey, W. J., Representing Control Knowledge as Abstract Tasks and Metarules,
Working Paper no. KSL 85-16, Stanford Knowledge Systems Laboratory, Computer
Science Department, Stanford University, Palo Alto, April 1985[a].

Clancey, W. J., Acquiring, Representing, and Evaluating a Competence Model of
Diagnostic Strategy, Stanford Knowledge Systems Laboratory, Computer Science

-177-

Department, Stanford University, Palo Alto, 9 August, 1985[b]. (Also appearing in
Contributions to the Nature of Expertise, Chi, Glaser, and Far (eds.), 1985).

Clancey, W. J., Heuristic Classification, in Artificial Intelligence, vol. 27, pp. 289-
350,1985[c].

Clancey, W. J., and Letsinger R., NEOMYCIN: Reconfiguring a Rule-Based Expert
System for Application to Teaching, proe. 7th IJCAI, pp. 829-835, Vancouver, B. C.,
Canada, 198 1.

Dayis, R., and King, J., An Overview of Production Systems, in Machine Intelligence,
pub: John Willey & Sons, New York, 1977[a].

Davis, R., and Buchanan, B. G., and Shortliffe, E., Production Rules as a Representa-
tionfor a Knowledge Based Consultation Program, Artificial Intelligence, Vol. 8, no.
1, Feb. 1977(b].

Davis, R., Interactive Transfer of Expertise: Acquisition of New Inference Rules,
Artificial Intelligence, vol. 12, no. 2, pp. 121-157,1979.

Davis, R., TEIRESIAS: Applications of Meta-level Knowledge, in Knowledge-based
Systems in Artificial Intelligence, (eds.) R. Davis and D. B. B. Lenat, McGraw-Hill,
1982

Davis, M., The Mathematics of Non-Monotonic reasoning, Artificial Intelligence, vol.
12, nos. 1&2,1980.

Davoodi, M., An Interpretation Model for the Generic Task of DESIGN of
HARDWARE CONFIGURATIONS(DI[C), ESPRIT P1098, P1098 internal publica-
tion, STC Technology Ltd., November, 1986[a].

Davoodi, M., Real Life Application of an Interpretation Model, ESPRIT P1098, P1098
internal publication, STC Technology Ltd., November, 1986[b].

Davoodi, M., KI - An Implementation of "Compare" KS in the context of ECGD
domain, the Consolidation Stream, , ESPRIT P1098, P1098 internal publication, STC
Technology Ltd., 4 April, 1987[a].

Davoodi, M., A Window to Design in KADS, ESPRIT P1098, P1098 internal publica-
tions, STC Technology Ltd., EUROKOM text no. 185584,13 July, 1987[b].

Davoodi, M., NEOMYCIN: a KADS Perspective, ESPRIT P1098, P1098 internal
publications, STC Technology Ltd., September, 1987[c].

-178-

Davoodi, M., KADS -a Methodology for KBS, proc. first conf. for KBS in Govern-
ment, Central Computer and Telecommunications Agency(CCTA), pp. 19-36,
November 1987(d].

Davoodi, M. (STC), Bredeweg, B., Schreiber, G., and Wielinga, B. (UvA), A Design
Methodologyfor KBS - KADS, ESPRIT P1098, Deliverable D8, November 1987.

Diederick, J., Ruhman, I., and May, M. KRITON: A Knowledge Acquisition Tool for
Expert System, Proc. of the Knowledge Acquisition for KBS Workshop, Banff,
Canada, Banff, Canada, 1986.

Diederick, J., Knowledge-Based Knowledge Elicitation, in Proe. of 10th 1JCAI conf.,
pp. 201-204, Milan, Italy, 1987.

Eshelman, L., Ehret, D., McDermott, J., and Tan, M., MOLE: A Tenacious Knowledge
Acquisition Tool, Proc. of the Knowledge Acquisition for KBS Workshop, Banff,
Canada, Banff, Canada, 1986.

Feigenbaum, E. A., Knowledge Engineering: the Applied Sides of Artificial Intelli-
gence, formerly Report no. HPP-80-21, Stanford Heuristic Programming Project,
Stanford, CA., 1983.

Feigenbaum, E. A., Buchanan, B. G., and Lederberg, J., On generality and problem
solving: a case study using the DENDRAL program, in Machine Intelligence, (eds.)
B. Meltzer and D. Michie, vol. 6, Edinburgh: Edinburgh University Press, pp. 165-190,
1971.

Frege, G., The foundations of Arithmetic, Trans: Austin, J. L., Oxford, Blackwell,
1953.

Frege, G., Philosophical Writings, Eds: Geach, P. and Black, M., 2nd edn., Oxford,
Blackwell, 1960.

Frege, G., Conceptual Notation and Related Articles, trans. and ed: Tyrell Ward
Bynum, Oxford, Clarendon Press, 1972.

Gains, B. R., and Shaw, M. L. G., Induction of Inference Rules for Expert Systems, in
journal of Fuzzy Set Systems, vol. 18, no. 3, University of Calgary, Dept. of Com-
puter Science, Alberta, Canada, 1986.

Gale, W. A., Knowledge Based Knowledge Acquisition for a Statistical Consulting Sys-
tem, Proc. of the Knowledge Acquisition for KBS Workshop, Banff, Canada, Banff,
Canada, 1986.

-179-

Gallaire, H., and Lasserre, C., Metalevel Control for Logic Programming, in Logic
Programming, London, Academic Press, 1987.

Ginsberg, A., Weiss, S., and Politakis, P., SEEK2: A generalised approach to
automatic Knowledge based requirement, in proc. 9th IJCAI, 1985.

Harmon, P., and King, D., Expert Systems, (pub.) John Wiley & Sons, Inc., 1985.

Hayes, P., Computation and deduction, in proc. of MFCS Symposium, Czech
Academy of Sciences, 1973.

Hayes-Roth, F., Waterman, D. A., Lenat, D. B. (eds.), Building Expert Systems,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1983.

Jackson, M. A., Principles of Program Design, Acadernic Press, 1975.

Johnson, P., and Gruber, S., Specification of Expertise: Knowledge Acquisition for
Expert Systems, Proc. of the Knowledge Acquisition for KBS Workshop, Banff,
Canada, Banff, Canada, 1986.

Kahn, G. S., Breaux, E. H., Joseph, R. L., and Del Clerk, P., An intelligent Mixed-
Initiative IVorkbench for Knowledge Acquisition, Proc. of the Knowledge Acquisition
for KBS Workshop, Banff, Canada, Banff, Canada, 1986.

Kampel, I., A Practical Introduction to the New Logic Symbols, (pub.) Butterworths,
1985.

Klinker, G., Bentolia, J., Geneteý S., Grimes, M., and McDen-nott, J. KNACK - Report Driven Knowledge Acquisition, Proc. of the Knowledge Acquisition for KBS
Workshop, Banff, Canada, Banff, Canada, 1986.

Maes, W., and Demeyer, K. W., and Dupas, L. H., Simpar -A versatile Technology
Independent Parameter Extraction Program using a new Optimized-Fit-Strategy, in
IEEE Transactions on Computer Aided Design of Integrated Circuits and Sys-
tems, Vol. 5, no. 2, pp. 320-5,1986.

Maibaum, T. S. E., Role of Abstraction in Program Development, in H. -J. Kugler(ed)
Information Processing, Elsevier, 1986.

MARCUS, S., Taking Backtracking with a Grain of SALT, Proc. of the Knowledge
Acquisition for KBS Workshop, Banff, Canada, Banff, Canada, 1986.

-180-

McDermott, J., RI: A Rule-Based Configurer of Computer Systems, Carnegie-Mellon
University Report CS-80-119, April 1980.

McDermott, J., Rl's Formative Years, in Al Magazine, vol. 2, pp. 21-29, Summer,
1981.

Morik, K., Acquiring Domain Models, in Proceedings of the Knowledge Acquisition
for KBS Workshop, Banff, Canada, 1986.

Musen, M., Fagan, L. M., Combs, D. M., and Shordiffe, E. H., Using a Domain
Model to Drive an Interactive Knowledge Editing Tool, Proc. of the Knowledge
Acquisition for KBS Workshop, Banff, Canada, Banff, Canada, 1986.

Neches, R., and Swartout, W. R., and Moore, J. D., Enhanced Maintenance and Expla-
nation of Expert Systems through explicit models of their Development, in IEEE Tran-
sactions on Software Engineering, vol. 2, no. 2, pp 1337-51, University of Southern
California, Institute of Information Sciences, Marina Del Ray, California, 1985.

Newell, A., Heuristic Programming: III-Structured Problems, in: Aronofsky (ed) Pro-
gress in Operations Research, (pub) Wiley, 1969.

Newell, A., Physical Symbol Systems, in Cognitive Science, vol. 4 pp. 135-183,1980.

Newell, A., and Bell, c. G., Computer Structures: Readings aria Examples, eds. Bell,
C. G., and Newell, A., McGraw-Hill, McGraw-Hill Computer Science Series, New
York, 1971.

Parnas, D. L., and Clements, P. C., A Rational Design Process - How and Why to
Fake it, in IEEE Transactions on Software Engineering, vol. 12, no. 2, pp. 251-57,
Dept of Computer Science, University of Victoria, Canada, 1986 Politakis, P., and
Weiss, S., Using Empirical Analysis to Refine Expert System Knowledge Bases, in
Artificial Intelligence, vol. 22,1984.

Simon, H., The Science of the Artificial, MIT Press, Cambridge, IMA., 1969.

Sembugamoortly, V., and Chandrasekaran, B., Functional Representation of Devices
and Compilation of Diagnostic Problem Solving Systems, in Experience, Memory,
and Reasoning, eds: Kolodner, J. L., and Riesbeck, C. K., pp. 47-73, Lawerence Erl-
baum, Hillsdale - NJ., 1986.

Shortliffe, E. H., Computer-Based Medical Consultation: MYCIN, (pub.) Elsevier, New
York, 1976.

-18 1-

Shordiffe, E. H., Buchanan, B. G., and Feigenbaum, E. A., Knowledge engineering for
medical decision making: A review of computer based clinical decision aids, in Proc.
of the IEEE 67, pp. 1207-1224,1979.

Steels, L., and Van de Valde, W., Learning in Second Generation Expert Systerns, in
Knowledge Based Problem Solving, ed. Kowalik, Prentice-Hall, Englewocxi Cliffs,
NJ., pp. 270-95,1986.

Steels, L., The Deepening of Expert Systems, in Al Communications, eds. Wielinga,
B., and Steels, L., Artificial Intelligence Laboratory, Free University of Brussels, pub.
North Holland, Aug. 1987.

Stefik, M., and Bobrow, D. G., Object Oriented Programming: Themes and Variations,
in AI Magazine, Spring edition, pp. 40-62, Intelligent Systems Laboratory, XEROX
Palo Alto Research Center, 3333 Coyote FEII Road, Palo Alto, Ca. 94304,1986.

Sterling, C. H., International Communications and Information Policy, ecl. Sterling, C.
H., Washington, D. C., Communications Press, 1984

Sternberg, R. J., Sketch of a Componential Sub-theory of Human Intelligence, in
Behavioural and Brain Sciences, vol. 3, no. 4, pp. 573-84, Dept. of Psychology, Yale
Univ., New Haven, CT, 1980

Sowa, J. F., Conceptual Structures: Information Processing in Mind and Machine, the
Systems Programming Series, Addison-Wesley Publishing CompAny, 1984.

Sutcliffe, A., Jackson System Development, UMIST, Prentice Hall, Ist pub., 1989.

van Melle, W., A Domain-independent Production rule system for consultation pro-
grams, Proc. 6th LjCAI, pp. 923-925, Tokyo, Japan, 1979.

Warden, R., Integrating KBS into information systems: the challenge ahead, proc.
first conf. for KBS in Government, Central Computer and Telecommunications
Agency(CCTA), pp. 19-36, November 1987.

Wielinga, B., and Breuker, J., Interpretation of Verbal data for Knowledge Acquisition,
Report 1.4, Memorandum 27 of the research project The Acquisition of Expertise,
University of Amsterdam, Dept. of Social Science Informatics and Laboratory for
Experimental Psychology, Weesperplein 8,1018 XA Amsterdam, June 1984.

Wielinga, B., and Breuker, J., Models of Expertise, in Proc. of European conf. on
Artificial In tell i gence(ECAI), Brighton, England, July 1986.

-182-

Winston, P. H., Artificial Intelligence, MIT, Addison-Wesley Publishing Company, 2nd
ed., July 1984.

Yourdon, E., and Constantine, L., Structured Design: A discipline of Computer Pro-
gram and System Design, (pub.) Yourdon Press, 1978.

-183-

Appendix A: a KADS Prototype for COMPARE Knowledge Source:

-184-

11. A Brief Description

In this appendix we shall consider the implementation of conWare knowledge source
used within the inference structure of ECGD in chapter 7 (Davoodi, 1986[b]). 'Me
knowledge source is implemented in CRYSTAL which is a low level shell, a previous
version of the KS has been implemented in KEE(Davoodi[a]).

The prototype has been initially used as part of the 'empirical' arm of the investigation
into the nature of KADS design language. It provides an opportunity to examine the
relationship between knowledge sources in the analysis output and their counterparts in
implementation. At the end of this process, it is possible to abstract lessons from this
to decide on the nature of some of the aspects of the design phase. The prototype
should also provide a sense of empirical backing for the appropriateness of the analysis
phase, and thus the conceptual model, for developing a kbs.

11.1. Implementation

The compare knowledge source will decide whether an exporter's application should
be underwritten or not. The knowledge source takes as input the financial details of a
case which are classed under the metaclass 'parameter', the output of the process are
'discrepancy' and 'decision' metaclasses. The type of a decision given is based on the
value of 'discrepancy' which is the difference between the underwriting 'norm' (the
second input to the knowledge source) and 'parameter.

In the code for the prototype appearing in the next sub-section, four types of decisions
are given:

a NO

YES

REFER

INSUFFICIENT DATA

Each of the above decisions is based on the values given for each parameter by the
user of the system.

11.1.1. The Rules

Crystal is a production rule based expert system shell, in which the satisfaction of each
rule will depend on the satisfaction of every node rules hanging from it. This is a
recursive process ultimately ending in the leaf rules which are the basic means of
evaluating each branch of a rule. Having satisfied the relevant leaves, Crystal will
then performs a backward chaining process until all the rules including the top rule(s)
are satisfied.

In our case compare knowledge source comprises three clauses comparel, compare2,
compare3, the satisfaction of one or more of which will result in a "YES" decision. A
"NO" decision is given if all three clauses fail decisively, in marginal cases a

-185-

"REFER" decision is given. If there is not enough data to exploit any of the three
'compares, ' then the prototype will signal that there is "INSUFFICIENT DATA".

Following is the listing of the rules, after which a series of runs of the prototype will
appear.

-186-

[1] Analyse case
" IF [25] Initialise
" AND 41] Instantiate Parameters
" AND 101 Compare
" AND[2] Analyse Decision

AND DO: Menu Question Response$
Would you like to consider another case?

YES
NO

AND DO: Test Expression
Response$="YES"

AND DO: Restart Rule

OR DO: Display Form
This brings the consultation session to an end.
We hope that our services have been of help in
providing an underwriting "decision support".

CALCULATED RISK IS A SOUND BUSINESS STRATEGY
BENEFITING OUR CLIENTS, AND ENSURING A
CONTINUED SERVICE FROM US IN YEARS

TO COME!

2] Analyse Decision Sp
" IF [46] Top Decision Order
" AND [24] Final Decision
" AND [151 Decision Priority

3] Buyer Competence in Region SP
EF DO: Test Expression

(buyer_competence<=10)&(buyer_competence>=O)

4) Buyer Exposure in Region SP
IF DO: Test Expression

(buyer_exposure<=10)&(buyer_exposure>--O)

5] Buyer Honesty in Region Sp
IF DO: Test Expression

(buyer-honesty<=10)&(buyer_honesty>--O)

[6] Buyer Market Condition in Region Sp

-187-

IF DO: Test Expression
buyer market condidon<=10

AND DO: xpression .
-Test E-

buyer. market-condition>--O

71 Checkl. All Parameters Present Sp
EF DO: Test Expression

((buyer honesty>O)&(buyer_competence>O))
AND DO: A-ssign Variable

DI_AII_Pararneters_Present$: ="YES"

8] Check2 All Parameters Present Sp
IF DO: Test Expression

((buyer exposure>O)&(buyer_market-condition>O))
AND DO: Te-st Expression

ph -competence>O AND 9-0: Assign Variable
D2_AII_Parameters-Present$: =" YES"

9] Check3 All Parameters Present Sp
IF DO: Test Expression

((buyer exposure>O)&(buyer_competence>O))
AND DO: Te-st Expression

((buyer market condition>O)&(plý_competence>O))
AND DO: A7ssign Va-riable

D3_AII_Parameters-Present$: ="YES"

101 Compare Sp
" IF [19] Evaluate Discrepancies
" AND [11] Compare 1
" AND [12] Compare2
" AND [13] Compare3

11] Comparel Sp
" IF [7] Checkl. All Parameters Present

AND DO: Test Expression
DI All Parameters Present$="YES"

" AND 16] Evaluate Decisio-nl

OR DO: Assign Variable
Dec I: =- I

-189-

12] Compare2 Sp
" EF [8] Check2 All Parameters Present

AND DO: Test Expression
D2 All Parameters Present$=" YES"

" AND [17] Evaluate DecisicZ-2

OR DO: Assign Variable
Dec2: =-l

13] Compare3 Sp
" FLF [9) Check3 All Parameters Present

AND DO: Test Expression
D3 All Parameters Present$="YES"

" AND [18] 9valuate, Decisioii3

OR DO: Assign Variable
Dec3: =-l

141 Decide Buyer Exposure vs Market Condition Sp
IF DO: Test Expression

((D2-b e>=O)&(D2 bm c>--O))
AND DO. Assign Variab)-le7

Dec2: =2

OR- DO: Test Expression
D2

-
b-e>--O

AND DO. Assign Variable
Dec2: =l

OR DO: Assign Variable
Dec2: --O

15] Decision Priority Sp
IF DO: Test Expression

Decision$=" YES"
AND DO: Display Form

NVe Recommend a "YES" decision.

The recommendation is based on careful analysis of
the client's financial attributes. We find that
the data volunteered would leave the underwriter
within the acceptable / reasonable bounds of
business risk.

OR DO: Test Expression
Decision$=" REFER"

AND DO: Display Form
We should like to pass judgement on this case, and
"REFER" the decision completely to the under-

-189-

writer. Meanwhile, the underwriter should be able
to refer to the system's knowledge base and use
processed data in arriving at his decision. Our
reason for REFERRING the case to the underwriter
stems from the fact that the financial attributes
volunteered are not sufficiently favourable / un-
favourable to warTant a definite recommendation.
Updated data may be submitted for reconsideration.

OR DO: Test Expression
DecisionS="NO"

AND DO: Display Form
" NO

The financial attributes volunteered in this case
point to an UNACCEPTABLE amount of risk to be
undertaken by the underwriter. I would, therefore,
suggest that the case should be rejected. If you
find, on revision and further investigation of the
case that some of the attributes can be improved,
you should resubmit the case for reconsideration.
Meanwhile, the processed data within the system
can be referenced for future purposes.

OR DO: Test Expression
Decision$="Insufficient Data"

AND DO: Display Form
"INSUFFICIENT DATA"

A number of financial attributes are missing, and
it, therefore, is not possible to make a realistic
assessment of the case. The missing data are
those attributes for which you entered "0" (for
UNKNOWN).
You can resubmit the case once you have sufficient
data on the missing attribute values.

16] Evaluate Decisionl, Sp
EF DO: Test Expression

((D1 b h>---O)&(Dl b C>--O))
AND DUFA`ssign Variab)Te-

Dec 1: =2

OR DO: Test Expression
((DI-b h>=-2)&(DI b_ C>--O))

AND DO. kssign Variabfe-
De. cl: =l

OR DO: Assign Variable
Decl: --O

-190-

17] Evaluate Decision2 SP
IF DO: Test Expression

D2_ph c>--O
+ AND [14] Decide Buyer Exposure vs Market Condition

OR DO: Assign Variable
Dec2: --O

181 Evaluate Decision3 Sp
IF DO: Test Expression

((D3
-b-

c>---O)&(D3_ph c>=O))
+ AND [231 Exposure vs Market ýCondition

OR DO: Assign Variable
Dec3: --O

191 Evaluate Discrepancies SP
" IF [20] Evaluate Discrepancyl.
" AND [21] Evaluate Discrepancy2
" AND [22] Evaluate Discrepancy3

20] Evaluate Discrepancyl Sp
IF DO: Assign Variable

D1 b, h: =buyer honesty-Nl-b_h
AND DO: -Assign Viiable

Dl-b_c: =buyer competence-NI-b-c

211 Evaluate Discrepancy2 Sp
IF DO: Assign Variable

D2
-be:

=(10-buyer exposure)-N2_b_e
AND DO: -Assign. Variagle

D2 b-m_c: =buyer market condition-N2_b_m_c
AND DO: Assign Variable -

D2_ph_c: =ph_competence-N2_ph-c

22] Evaluate Discrepancy3 Sp
IF DO: Assign Variable

D3
-

b_e: =(10-buyer exposure)-N3_b_e
AND DO: Assign VariaRe

D3
-

t,
-m

c: =buyer market condition-N3_b_m_c
AND DO: As-sign Vaiii-ble -

D3 b_c: =buyer competence-N3_b_c
AND DO: Assign Variable

-19 1-

D3_pfý_c: =plý_competence-N3_ph-c

23) Exposure vs Market Condition Sp
IF DO: Test Expression

((D3 b e>--O)&(D3 bm c>=O))
AND DOToVssign Variable-

Dec3: =2

OR DO: Test Expression
D3 b_e>=O

AND D*0: Assign Variable
Dec3: =l

OR DO: Assign Variable
Dec3: --O

24] Final Decision Sp
IF DO: Test Expression

Decision--O
AND DO: Assign Variable

Decision$: ="NO"

OR DO: Test Expression
Decision=1

AND DO: Assign Variable
Decision$: ="REFER"

OR DO: Test Expression
Decision=-1

AND DO: Assign Variable
Decision$: =" Insufficient Data"

OR DO: Test Expression
Decision=2

AND DO: Assign Variable
Decision$: ="YES"

251 Initialise Sp
" IF [36] Initialise Parameters
" AND 351 Initialise Norms
" AND 27] Initialise Discrepancies
" AND 31] Initialise Intermediate Decisions
" AND 261 Initialise Decision Class

26] Initialise Decision Class Sp
IF DO: Assign Variable

-192-

Decision$: ="NO"

27] Initialise Discrepancies SP
" IF [28] Initialise Discrepancyl
" AND 29] Initialise Discrepancy2
" AND 30] Initialise Discrepancy3

28] Initialise Discrepancyl Sp
IF DO: Assign Variable

D1 b_h: --O AND DO: Assign Variable
DI b-c: =O

AND DO: Assign Variable
DI-All-Parameters_Present$: ="NO"

29] Initialise Discrepancy2 Sp
IF DO: Assign Variable

D2 b-e: =O
AND DO: Assign Variable

D2 b-m c: --O
AND DD: As-sign Variable

D2 h c: =O
AND DJ- Xssign Variable

D2_AII_Paramete. -s_Present$: ="NO"

30] Initialise Discrepancy3 Sp
IT DO: Assign Variable

D3 b e: =O
AND - DO: Assign Variable

D3 b m c: --O AND - DO: As-sign Variable
D3 b c: =O

AND - DO: Assign Variable
D3 h-c. =O d

AND Assign Variable D
D3_AII_Parameters-Present$: ="NO"

311 Initialise, Intennediate Decisions Sp
IF DO: Assign Variable

Decl: --O AND DO: Assign Variable
Dec2: ---O

AND DO: Assign Variable

-193-

Dec3: --O AND DO: Assign Variable
Response$: ="NO"

32] Initialise Norml Sp
EF DO: Assign Variable

NI b_h: =8
AND DO: Assign Variable

Nl-b_c: =6

33] Initialise Norm2 Sp
EF DO: Assign Variable

N2
-

b_e: =4
AND DO: Assign Variable

N2 b-m c: =4
AND DO: As-sign Variable

N2_ph_c: =6

34] Initialise Norm3 Sp
EF DO: Assign Variable

N3 b e: =2
- AND _ DO: Assign Variable

N3 b m c: =2
AND - DO: As-sign Variable

N3 b c: =6
AND _ DO: Assign Variable

N3_ph_c: =8

35] Initialise Norms Sp
" IF [32] Initialise Norrnl
" AND 331 Initialise Norm2
" AND 34] Initialise Nortn3

36] Initialise, Parameters, Sp
EF DO: Assign Variable

buyer_competence: --O AND DO: Assign Variable
buyer_exposure: =O

AND DO: Assign Variable
buyer_honesty: =O

AND DO: Assign Variable
buyer market condition: =O

AND - DO: Assign -Variable
ph_competence: ---O

-194-

37] Instantiate Buyer Competence Sp
IF DO: Display Form

Your judgemental value for:
ý'BUYER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.10 for IUGH

Please Enter a Value between "0" to "10" Inclusive
- <buyer

-
competence >

buyer-competence

+ AND [3] NOT Buyer Competence in Region
AND DO: Restart Rule

OR DO: Succeed

38] Instantiate Buyer Exposure Sp
IF DO: Display Form

Your judgemental value for:
"BUYER EXPOSURE"

0 for UNKNOWN, In this case values other than "0"
should be seen as representing their complementary
meaning. That is the higher the value, the lower
will be it contribution: 1-2 for LOW, 3-4 for
below average, 5-6 for average and above, 6-10
for HIGH.
Please Enter a Value between "0" to "10"- Inclusive

< buyer_exposure >

buyer_exposure
.

+ AND 4] NOT Buyer Exposure in Region
AND DO: Restart Rule

OR DO: Succeed

39] Instantiate Buyer Honesty Sp
EF DO: Display Form

Your judgemental value for:
"BUYER HONESTY"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
< buyer

-
honesty >

buyer_honesty

-195-

AND [51 NOT Buyer Honesty in Region
AND DO: Restart Rule

OR DO: Succeed

40] Instantiate Buyer Market Condition Sp
EF DO: Display Form

Your judgemental value for:
"BUYER MARKET CONDITION"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
< buyer market condition>

buyer_market-con-dition -

+ AND [6] NOT Buyer Market Condition in Region
AND DO: Restart Rule

OR DO: Succeed

411 Instantiate Parameters Sp
IF DO: Display Form

You are invited to enter the judgemental values
against parameters allowing the system to-re-
commend a decision. We have allowed for a wide-
spread of these values between I to 10 to enable
you to provide a close approximation. In cases
where the data is lacking, you can enter 0 for
'unknown'.

" AND [37] Instantiate Buyer Competence
" AND [38] Instantiate Buyer Exposure
" AND [391 Instantiate Buyer Honesty
" AND [40] Instantiate Buyer Market Condition
" AND [421 Instantiate Policyholder Competence

42] Instantiate Policyholder Competence Sp
IF DO: Display Form

Your judgemental value for:
"POLICY HOLDER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

-196-

Please Enter a Value between "0" to "10" Inclusive
< ph_, competence >

ph.
_competence

+ AND [45] NOT Policyholder Competence in Region
AND DO: Restart Rule

OR DO: Succeed

43] Introduce
IF DO: Display Form

UK Exporter Underwriting Decision Support
SYSTEM

Ile system is aimed at supporting decision mak-
ing by underwriters at ECGD within the Welsh
office. Data required is that describing the
exporter(potential policy holder(p/h)), and his
overseas buyers. Cases will be underwritten in
which the aggregate risks arising from the ex-
poter and his clientels are judged reasonable. I

44] Mainline control
" EF [43] Introduce
" AND [1] Analyse case

45] Policyholder Competence in Region Sp
IF DO: Test Expression

(ph_competence<=10)&(ph_competence>--O)

46] Top Decision Order Sp
EF DO: Assign Variable

Decision: =max(Dec l, max(D ec2, D ec3))

471 CRYSTAL MASTER RULE
+ IF 44] Main line control

We shall provide six runs of the system, the first two of which will result in "YES"
decisions, the next two will result in "NO" decisions. The fifth run will give "REFER"
decision and the last one will signal to the user evidence of "INSUFFICIENT DATA"
for any decision to be made.

-197-

11.1.2. The First Run

In this run clauses one and two of compare are satisfied, note that the satisfaction of
one clause would have given the decision of "YES".

The first run:

-. 98-

UK Exporter Underwriting Decision Support
SYSTEM

The system is aimed at supporting decision mak-
ing by underwriters at ECGD within the Welsh
office. Data required is that describing the
exporter(potential policy holder(p/h)), and his
overseas buyers. Cases will be underwritten in
which the aggregate risks arising from the ex-
poter and his clientels are judged reasonable.

You are invited to enter the judgemental values
against parameters allowing the system to re-
commend a decision. We have allowed for a wide-
spread of these values be

,
tween I to 10 to enable

you to provide a close approximation. In cases
where the data is lacking, you can enter 0 for
'unknown'.

Your judgemental value for:
"BUYER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8-10 for HIGH

Please Enter a Value between "0" to "10" -Inclusive
<7>

buyer-competence

Your judgemental value for:
"BUYER EXPOSURE"

0 for UNKNOWN, In this case values other than "0"
should be seen as representing their complementary
meaning. That is the higher the value, the lower
will be it contribution: 1-2 for LOW, 3A for
below average, 5A for average and above, 6-10
for HIGH.
Please Enter a Value between T" to "10" Inclusive

<5>

buyer_cxposure

Your judgemental value for:
"BUYER HONESTY"

-199-

0 for UNKNOWN, L. 2 for LOW
1.4 -for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<8>

buyer_honesty

Your judgemental value for:
"BUYER MARKET CONDITION"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.. 7 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<5>

buyer_market-condition

Your judgemental value for:
"POLICY HOLDER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<7>

ph_competence

We Recommend a "YES" decision.

The recommendation is based on careful analYsis of
the client's financial attributes. NVe find that
the data volunteered would leave the underwriter
within the acceptable / reasonable bounds of
business risk.

Would you like to consider another case?

YES

-200-

11.1.3. The Second Run

In this run clause three of compare is satisfied to result in another "YES" decision.

The second run:

-201-

You are invited to enter the judgemental values
against parameters allowing the system to re-
commend a decision. We have allowed for a wide-
spread of these values between 1 to 10 to enable
you to provide a close approximation. In cases
where the data is lacking, you can enter 0 for
'unknown'.

Your judgemental value for:
"BUYER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<6>

buyer-competence

Your judgemental value for:
"BUYER EXPOSURE"

0 for UNKNOWN, In this case values other than T"
should be seen as representing their complementary
meaning. That is the higher the value, the lower
will be it contribution: L. 2 for LOW, 1.4-for
below average, 5A for average and above, 6-10
for HIGH.
Please Enter a Value between T" to "10" Inclusive

<8>

buyer_exposure

Your judgemental value for:
"BUYER HONESTY"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<0>

buyer_honesty

-202-

Your judgemental value for:
"BUYER MARKET CONDMON"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<7>

buyer_market-condition

Your judgemental value for:
"POLICY HOLDER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<8>

ph,
_,
competence

We Recommend a "YES" decision.

The recommendation is based on careful analYsis of
the client's financial attributes. We find that
the data volunteered would leave the underwriter
within the acceptable / reasonable bounds of
business risk.

Would you like to consider another case?

YES

11.1.4. The Third and Fourth Runs

In the next two runs none of the three of compare clauses are satisfied thus resulting in
a "NO" decision in both cases.

The third run:

-203-

You are invited to enter the judgemental values
against parameters allowing the system to re-
commend a decision. We have allowed for a wide-
spread of these values between 1 to 10 to enable
you to provide a close approximation. In cases
where the data is lacking, you can enter 0 for
'unknown'.

Your judgemental value for:
"BUYER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 -for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "101, Inclusive
<6>

buyer_competence

Your judgemental value for:
"BUYER EXPOSURE"

0 for UNKNOWN, In this case values other than "0"
should be seen as representing their complementary
meaning. That is the higher the value, the lower
will be it contribution: 1-2 for LOW, 3A for
below average, 5A for average and above, 6-10
for HIGH.
Please Enter a Value between T" to "10" Inclusive

<6>

buyer_exposure

Your judgemental value for:
"BUYER HONESTY"

0 for UNKNOWN, L. 2 for LOW
3.. 4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<0>

buyer_honesty

-204-

Your judgemental value for:
"BUYER MARKET CONDITION"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<1>

buyer_market-condition

Your judgemental value for: ,
"POLICY HOLDER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<3>

ph_competence

" NO "
The financial attributes volunteered in this case
point to an UNACCEPTABLE amount of risk to be
undertaken by the underwriter. I would, therefore,
suggest that the case should be rejected. If you
find, on revision and further investigation of the
case that some of the attributes can be improved,
you should resubmit the case for reconsideration.
Meanwhile, the processed data within the system
can be referenced for future purposes.

Would you like to consider another case?

YES

The fourth run:

-205-

You are invited to enter the judgemental values
against parameters allowing the system to re-
commend a decision. We have allowed for a wide-
spread of these values between 1 to 10 to enable
you to provide a close approximation. In cases
where the data is lacking, you can enter 0 for
'unknown'.

Your judgemental value for:
"BUYER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<3>

buyer_competence

Your judgemental value for:
"BUYER EXPOSURE"

0 for UNKNOWN, In this case values other than "0"
should be seen as representing their complementary
meaning. That is the higher the value, the lower
will be it contribution: L. 2 for LOW, 1.4-for
below average, 5A for average and above, 6-10
for HIGH.
Please Enter a Value between T" to "10" Inclusive

<9>

buyer_exposure

Your judgemental value for:
"BUYER HONESTY"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<2>

buyer_honesty

-206-

Your judgemental value for:
"BUYER MARKET CONDITION"

0 for UNKNOWN, 1.. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<0>

buyer_market-condition

Your judgemental value for:
"POLICY HOLDER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<3>

ph,.
_competence

" NO "
The financial attributes volunteered in this case
point to an UNACCEPTABLE amount of risk to be
undertaken by the underwriter. I would, therefore,
suggest that the case should be rejected. If you
find, on revision and further investigation of the
case that some of the attributes can be improved,
you should resubmit the case for reconsideration.
Meanwhile, the processed data within the system
can be referenced for future purposes.

11.1.5. The Fifth and Sixth Runs

The fifth run will result in a "REFER" decision, and the sixth one will indicate that the
data available is insufficient to make a decision.

In this case clauses two and three will fail and clause one will result in a "REFER"
decision.

The fifth run:

-207-

You are invited to enter the judgemental values
against parameters allowing the system to re-
commend a decision. We have allowed for a wide-
spread of these values between I to 10 to enable
you to provide a close approximation. In cases
where the data is lacIdng, you can enter 0 for
'un-known'.

Your judgemental value for:
"BUYER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<6>

buyer_competence

Your judgemental value for:
"BUYER EXPOSURE"

0 for UNKNOWN, In this case values other than "0"
should be seen as representing their complementary
meaning. That is the higher the value, the lower
will be it contribution: L. 2 for LOW, 3A. for
below average, 5A for average and above, 6-10
for HIGH.
Please Enter a Value between T" to "10" Inclusive

<6>

buyer_exposure

Your judgemental value for:
"BUYER HONESTY"

0 for UNKNOWN, L. 2 for LOW
3-. 4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<6>

buyer_honesty

-208-

Your judgemental value for:
"BUYER MARKET CONDITION"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<I>

buyer_market-condidon

Your judgemental value for:
"POLICY HOLDER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<0>

ph competence

We should like to pass judgement on this case, and
"REFER" the decision completely to the under-
writer. Meanwhile, the underwriter should be able
to refer to the system's knowledge base and use
processed data in arriving at his decision. Our
reason for REFERRING the case to the underwriter
stems from the fact that the financial attributes
volunteered are not sufficiently favourabhý / un-
favourable to warrant a definite recommendation.
Updated data may be submitted for reconsideration.

Would you like to consider another case?

YES

In this case every one of the compare clauses are able to deliver a decision due to lack
of data, thus "INSUFFICIENT DATA" will be returned as the final decision.

The sixth and final run:

-209-

You are invited to enter the judgemental values
against parameters allowing the system to re-
commend a decision. We have allowed for a wide-
spread of these values between 1 to 10 to enable
you to provide a close approximation. In cases
where the data is lacking, you can enter 0 for
'unknown'.

Your judgemental value for:
"BUYER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<6>

buyer_competence

Your judgemental value for:
"BUYER EXPOSURE"

0 for UNKNOWN, In this case values other than "0"
should be seen as representing their complementary
meaning. That is the higher the value, the lower
will be it contribution: 1-2 for LOW, 3A for
below average, 5A for average and above, 6-10
for HIGH.
Please Enter a Value between "0" to "10" Inclusive

<6>

buyer_exposure

Your judgemental value for:
"BUYER HONESTY"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<0>

buyer_honesty

-210-

Your judgemental value for:
"BUYER MARKET CONDMON"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<I>

buyer_market-condition

Your judgemental value for:
"POLICY HOLDER COMPETENCE"

0 for UNKNOWN, L. 2 for LOW
1.4 for below AVERAGE, 5.3 for AVERAGE and ABOVE
8.. 10 for HIGH

Please Enter a Value between "0" to "10" Inclusive
<3>

ph_competence

"INSUFFICIENT DATA"
A number of financial attributes are missing, and
it, therefore, is not possible to make a realistic
assessment of the case. The missing data- are
those attributes for which you entered "0" (for
UNKNOWN).
You can resubmit the case once you have sufficient
data on the missing attribute values.

Would you like to consider another case?

NO

This brings the consultation session to an end.
We hope that our services have been of help in
providing an underwriting "decision support".

CALCULATED RISK IS A SOUND BUSINESS STRATEGY
BENEFITING OUR CLIENTS, AND ENSURING A
CONTINUED SERVICE FROM US IN YEARS

TO COME!

-211-

Appendix B: KBS, from Requirements to Design:

-212-

12. BOTAID

We shall use an example kbs in order to demonstrate the KADS methodology in terms
of its analysis and design approach. Since we have had a number of case studies hith-
erto mostly dealing with the 'analysis' aspects of KADS, we shall put greater emphasis
on the design aspects in this example.

BOTAID is a system intended to AID a BOTanist in identifying 'Me correct species of
plants, given that some or all of the characteristics of those plants are known. 'Me fol-
lowing is the statement of requirements of the system:

The system should be able to perform the task of a botanist in identifying the
spicies of a plant by applying the flora rules to the given characteristics of the
plant.

12.1. Analysis Phase

12.1.1. The Conceptual Model

The first three layers of the conceptual model are listed below. The fourth layer of
'flexible strategy' is not included since the task at hand does not require it.

12.1.1.1 Domain Layer

This will contain:

entities/* representing plants

attribute & value pairs/* making up definitions of different types of plants

" subsume relations/* relations between entities

" heuristics for attribute selection.

12.1.1.2 Inference Layer

This will contain two knowledge sources, and corresponding metaclasses. It can be
represented linearly as follows:
FINDINGS attribute value pairs classify --- > SOLUTION (/* object class*l)
FINDINGS match --- > QUESTION (unknown discriminating attribute(s) *)

-213-

Classify Plant
obtain data(object attributes) /* Goal Statement
classij57(object attributes) /* knowledge source
IF solution
THEN

display(object class)
ELSE

select request(attribute)
displtiý request
Classiff Plant

/* Goal Statement */

/* request is guided by 'match'
/* Goal Statement */
/* Starting to do recursion

Explain
display(trace(classify))

12.1.2. External Requirements

/* Goal Statement */

External requirements are formulated as follows:

(1) The system should be able to acquire the flora rules from an existing database.

(2) The explanation should be a graphic path of the reasoning process.

(3) The user should be to converse with the system in a semi-natural language
fashion.

12.2. Design Phase

12.2.1. Functional Layer

Figure 12-1 depicts the functional block structure supporting the analysis output of
BOTAID. At The top level of the structure (level 1) BOTAID (Flora Expert) has four
functional blocks, the aggregate of which satisfy the analysis internal and external
views. The detail of each block, where appropriate, has been mapped out in terms of
the functional blocks in the next level (level 2). We find that level 3 is the right level
of abstraction for the functional blocks, thus we shall refrain from decomposing the
blocks any further.

The description of each block is as follows:

-214-

L Fl

-T-
I'-, lDbl= E

FD)manicDB
Ew

casr-r-ca Regucst Eýý-un
s . 11

ýý Handiing O"Iucn

Usc-
Intc:! fa=

NaLl-3ng.
Lnt=pmuT. icpn

Lcvcl 0

1-, Vc! I

L. evc! 2

Figure 12-1: The 'consist of functional block diagram for BOTAID

Level I

User Interface
Sub Function of. - BOTABD(Flora Expert)
Function Type: data 1/0, explanation
Relation to Analysis: obtain

-
data, display, and explanation goals

Input: solution, attribute, solution path
Output: attribute value pairs
External Interface: user i/o in terms text and graphics display
Controls: see sub-function s (below)
Controlled By: see sub-functions(below)

Problem Solver
Sub Function ofl BOTAID(Flora Expert)
Function Type: problem solving
Relation to Analysis: match and classify knowledge sources
Input: attribute value pairs, flora rules
Output: solution, solution path, attribute
External Interface: - Controls: see sub-functions(below)
Controlled By: see sub-functions(below)

Internal dynamic database
Sub Function of. ý BOTAID(Flora Expert)
Function Type: data storage
Relation to Analysis: place holder for findings and solution
Input: attribute value pairs, solution path
Output: attribute value pairs, solution path
External Interface:
Controls:

-215-

Controlled By: classification, request handling, explanation

External database interface
Sub Function of. BOTA]ID(Flora Expert)
Function Type: data 1/0
Relation to Analysis: external requirement (1)
Input: plant class
Output., definition of sub-classes of the input plant

class
External Interface: reads external flora database
Controls:
Controlled By: classification

Level 2

Explain solution
Sub Function of.
Function Type:
Relation to Analysis:
Input:
Output:
External Interface:

Controls:
Controlled By:

User Interface
explanation
explanation goal
Solution path

responds to user's request for explanation
by giving a graphical representation of
the solution path
solution path path request to internal database
solution path request to internal database

Natural Language Interpretation
Sub Function of., User Interface
Function Type: data 1/0
Relation to Analysis: obtain_data goal
Input:
Output:
External Interface:
Controls:
Controlled By:

attribute value pairs
reads user's text
activates classification

Display solution / question
Sub Function of. - User Interface
Function Type: data 1/0
Relarion to Analysis: display goal
Input: attribute, solution
Output:
External Interface:
Controls:
Controlled By:

Classification
Sub Function of.,
Function Type:

display attribute question or solution path

activated by classifier or request handler

Problem Solver
problem solving

-216-

Relation to Analysis:
Input:
Output:
External Interface:
Controls:

Controlled By:

Request Handling
Sub Function of. -
Function Type:
Relation to Analysis:
Input:
Output:
External Interface:
Controls:

Controlled By:

knowledge source classify
attribute value pairs, class definitions
solution

asks external database for sub-class definitions
asks internal database for attribute value pairs
EF no solution -> activates request handler
ELSE activate display function
natural language interpretation

Problem Solver
problem solving
match knowledge source
class definitions, attribute value pairs
attribute

asks internal database for attribute value
pairs; activates display function
classification

Figure 12-2 depicts the input-output relationships between the functional blocks at the
lowest level (level 2). This type of figure is a useful add-on to the textual description
of the functional blocks. It is a useful idea not to have any more than six to eight
blocks to such a figure. If a greater number of blocks need to be represented in a such
a way, then zooming in / out facilities should be used to make Ile diagram readable.

Figure 12-3 shows the control of the functional blocks in terms of a JSD diagram
(Jackson, 1975). The conceptual model of BOTAID has a fixed task structure, in
which case a JSD representation as that show below is sufficient to represent control.

12.2.1.1 Selection of Methods

We shall not describe every single method being used by the blocks, rather those
which are significantly important and interesting.

-217-

User

Usa lrvafixe

P-2

D=

Exlernal database

SoLa Lm Dv=iic

sduný A-ý-, ýý
P-A P--

R-le

p

User

D-piay
, autjm/
QLe-suon

sa. d. I I. Ci
I
r&on

:)blcrn Solver

, Wý-L, fo

ftq. ett

Figure 12-2: Input-Output relationships between BOTAID lowest functional blocks

Metlwd: Hierarchical Classification

Description: Classification by refinement

Reference: Clancey(1985[c]), for instance

Assoc. method: Classification

Design Elements: Classifier procedure
Class definitions + subsumption relationships
Attribute value pairs

Method: Production System

Description: Situation, Conclusion / Action pairs

Reference: Buchanan, et al. (1984), for instance

-218-

Assoc. method: request handling

Design Elements: Rule interpreter
Heuristic rules for attribute selection

Method: ATN parsing

Description: Language parsing using
Augmented Transition Networks

Reference: Charniak, et al. (1985), for instance

Assoc. method: Natural Language interpretation

Design Elements: text string
ATN granunar
ATN parser
lexicon
parse tree

12.2.2. Physical Layer

12.2.2.1 Architecture

We shall use a simple skeleton architecture to describe BOTAD:) at the physical level.
The architecture will consist of six (see fig. 12-4) physical modules:

0 knowledge base

external database interface

working memory

" inference procedure

" monitor

" user interface

A number of physical modules consist of sub-modules. The main modules are
described below.

-219-

J D-v

Figure 12-3: JSD diagram of control in BOTAID

Module: knowledge base

Description: Stores the static knowledge needed by the kbs

Design elements: ATN grammar
lexicon
production rules

Comp. principle: The three design elements will form three
independent sub-modules of knowledge base

Access port: ATN grammar: start node of the network
lexicon: a word
production rules: condition part of rule

Module: external database

Description: Stores the static knowledge needed by the kbs

Design elements: flora class definitions

Comp. principle: dependent on the external database

Access port: node in the subsumption hierarchy

-220-

Module: working memory

Description: Stores global data

Design elements: attribute value pairs
solution path

Comp. principle: virtual (pointer to a) subsumption hierarchy

Access port: global access

Module: inference procedures

Description: Stores the 'active' design elements for BOTAID

Design elements: ATN parser
rule interpreter
classifier

Comp. principle: The three design elements will form three
independent sub-modules of inference structure

Access port: ATN parser: text string
rule interpreter. request
classifier: attribute value pairs +
node in subsumption hierarchy

Module: monitor

Description: implements the overall control

Design eletnents: -

Comp. principle: see the control diagarn in the
functional description

Access port: new case description

Module: user interface

Description: handles every interaction with the user

Design elements: display explanation
display solution / question
read text + text string

Comp. principle: three independent sub-modules

-221-

C. =, -rr , d, _4- ýýe user

h tý Ilk
external user interface

database
lntcrfýacc

inference
procedures control

module

ATNparsc:

AT. N
RuIc fuzt

knowledge base I

Figure 12-4: Architecture of BOTAID

Access port: display explanation: solution path
display solution / question: solution / question
read text + text string: user input

The choice of implementation vehicle or environment may be constrained by the type
of software available. But if such a constraint is not present, the major guideline is the
physical modules architecture which will indicate the use of an environment such as
KEE. This will provide a high degree of textual and graphic intelface, whilst also pro-
viding the means to develop a production system as well as 'objects' to represent some
of the static knowledge.

