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Abstract 

This dissertation focuses on the mathematical design of a unified shape kernel for geometric 

computing, with possible applications to computer aided design (CAM) and manufacturing (CAM), 

solid geometric modelling, free-form modelling of curves and surfaces, feature-based modelling, 
finite element meshing, computer animation, etc. 

The generality of such a unified shape kernel grounds on a shape theory for objects in some 
Euclidean space. Shape does not mean herein only geometry as usual in geometric modelling, but has 

been extended to other contexts, e. g. topology, homotopy, convexity theory, etc. This shape theory 

has enabled to make a shape analysis of the current geometric kernels. Significant deficiencies have 

been then identified in how these geometric kernels represent shapes from different applications. 
This thesis concludes that it is possible to construct a general shape kernel capable of repre- 

senting and manipulating general specifications of shape for objects even in higher-dimensional Eu- 

clidean spaces, regardless whether such objects are implicitly or parametrically defined, they have 

'incomplete boundaries' or not, they are structured with more or less detail or subcomplexes, which 
design sequence has been followed in a modelling session, etc. For this end, the basic constituents of 

such a general geometric kernel, say a combinatorial data structure and respective Euler operators for 

n-dimensional regular stratified objects, have been introduced and discussed. 
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Preface 

The author began the work described in this thesis in 1989 (University of Coimbra, Portugal) 

leading to the following papers: 

" A. Gomes and J. Teixeira. Form feature modelling in an hybrid CSGBrep scheme. Com- 

puters & Graphics, Vol. 15, No. 2, pp. 217-229,1991. 

" A. Gomes, R. Bidarra, and J. Teixeira. A cellular approach for feature-based modelling. In 

M. Göbel and J. Teixeira (eds. ), Proceedings of the Workshop on Graphics Modeling and 
Visualization in Science and Technology, Springer-Verlag, 1992. 

" A. Gomes and J. Teixeira. A mathematical framework for set-theoretic solid models. In A. 

Middleditch and A. Requicha (eds. ), Proceedings of the Conference CSG'94, Set-Theoretic 

Solid Modelling: Techniques and Applications, Information Geometers Ltd., 1994. 

" A. Gomes and J. Teixeira. Cellta: a kernel for feature-based modeling. Computer Graphik 

Topics, Vol. 6, No. 4,1994. 

" A. Gomes and J. Teixeira. Modeling shape through a cellular representation scheme. In 

J. Teixeira and J. Rix (eds. ), Proceedings of the Workshop on Graphics and Modeling in 

Graphics & Technology, Springer-Verlag, 1996. 

This work was carried out at the University of Coimbra, Portugal, where the author was Assistant 

Lecturer on Computer Graphics and Geometric Modelling. It is primarily author's own work. 
In 1996 he joined Brunel University to work on the development of the 1-geometric kernel un- 

der the supervision of Professor Alan Middleditch. During the period April 1997 to October 1998, 

Professor Alan Middleditch and Dr Chris Reade were working on refinements to the Djinn API to a 

geometric modelling kernel. Although, we collaborated closely on the intimate relationships between 

subanalytic sets and their stratifications, the two projects remained distinct. Djinn is a universal inter- 

face that does not define techniques for their implementation, whilst Y. -geometric kernel is a geometric 

modeller. Although Djinn influenced 1-kernel, there are differences of viewpoint, e. g. the definitions 

for point set frontier and boundary are different. 
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PREFACE V 

This dissertation contains some material which has already been presented in the form of the 
following publications: 

" A. Gomes and A. Middleditch. Synthesis of a unified approach to shape modelling. In W. 

Strasser, R. Klein, and R. Rau (eds. ), Geometric Modeling: Theory and Practice, Springer- 

Verlag, 1997. 

" A. Gomes, A. Middleditch, and C. Reade. Issues and solutions in feature-based modelling: 

re-designing the shape kernel of CAD systems. In G. Jacucci (ed. ), Proceedings of the 
10th International Conference IFIP TC5 WG 5.2/5.3 Conference, PROLAMAT'98, Kluwer 

Publishers, September, 1998. 

" A. Gomes, A. Middleditch, and C. Reade. A mathematical model for boundary representa- 
tions of n-dimensional geometric objects. In W. Bronsvoort and D. Anderson (eds. ), Fifth 

Symposium on Solid Modeling and Applications, ACM Press, 1999, pp. 270-277. 

" A. Middleditch, C. Reade and A. Gomes. Set combinations of the mixed-dimension cellular 

objects of the Djinn API. Computer-Aided Design, V613 1, No. 11, September 1999. 

" A. Middleditch, C. Reade and A. Gomes. A representation-independent geometric model- 
ling kernel. Proceedings of the First Conference on Geometric Modeling and Processing, 

Hong-Kong, April 10-12, IEEE Press, 2000. 

" A. Middleditch, C. Reade and A. Gomes. Point sets and cell structures relevant to computer 

aided design. International Journal of Shape Modeling, Vol. 6, No. 2, pp. 175-205,2000. 

Although some of the material in Chapter 1 is extracted from the first two papers (Brunel stage), 
it is primarily the author's own work. In contrast, the last four papers are not primarily the author's 

work. This material is presented in Chapter 3 together with the author's work on Thom-Boardman 

stratifications. The remaining chapters of the dissertation are entirely the author's contribution. 
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Introduction 

This dissertation reflects much of the author's interdisciplinary view of what should be the modern 
geometric modelling, a synergetic engineering science research area which integrates mathematics, 
computer science and engineering. The title of this dissertation mirrors my concerns and aims in 
defining a theoretical and unified basis to deal with the shape of engineering artifacts, encompassing 
those of solid modelling, free-form modelling and feature-based modelling. 

Its major aims are the following: 

" To find a general-purpose geometric model suited to interactive design, engineering analysis, 

and manufacturing. 

" To find a general-purpose geometric model that incorporates the strengths and eliminates 

the weaknesses of current geometric solid models, CSG-rep (Constructive Solid Geometry 

representation) and B-rep (Boundary representation), without hybrid solutions. 

" To find a general-purpose geometric model whose geometry encompasses the solid and free- 

form geometries. 

" To find a general-purpose geometric model with arbitrary regular structure or stratifiability. 
This is the key not only to unify CSG and B-rep models, but also to integrate solid models 

and feature models. It allows us to relegate all the geometric interactions between subob- 
jects (e. g. form features) to the geometric model itself, relieving applications (e. g. feature 

modellers) of unnecessary overheads. 

" To find a general-purpose shape model capable of processing in a unified way the conven- 

tional shapes of geometric modellers and the shapes associated with feature modellers. 

This thesis assumes that current geometric modellers are just particular shape modellers that 
implement parts or submodels of a more general mathematical model. In this respect, regular stra- 

tifications (e. g. Whitney stratifications) constitute a mathematical and unified model for the family 

of all B-rep models, while the association of subanalytic geometry with regular stratified objects 

enables us to extend the theoretical unification to the family of CSG models, because the Booleans 

are then theoretically allowed. Subanalyticity is also crucial to a possible integration of solid and 
xi 
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free-form geometries. The integration of feature shapes is assured by in-built covering of Whitney 

subobjects or subcomplexes, but requires the development of a shape theory beyond the analytic and 

subanalytic geometries. Such a shape theory relates geometric shapes to fundamental topological 

shapes (manifolds), differential shapes and singularities (submanifolds), convex shapes (depressions 

and protrusions) and homotopic shapes (e. g. components, holes and voids in V). This general shape 

taxonomy has been synthesised over the last few years analysing and studying the shape of engi- 

neering artifacts, the fundamentals of the (topological) shape theory of Borsuk, relationships between 

topology and geometry, differential topology and geometry, the deficiencies of solid modellers to pro- 

cess form features, the theory of convexity, etc. Also, the reformulation of the Djinn mathematical 

model accomplished by Alan, Chris and myself during the last years determined a few but impor- 

tant improvements in my own model. For example, it was useful to better understand the theoretical 

relationship between Euler operators and standard/stratified Boolean operators. 
This thesis is organised as follows. Chapter 1 develops a mathematical shape theory that covers 

most shape aspects involved in shape modelling, i. e. geometric solid modelling, geometric free-form 

modelling and geometric feature modelling. Significant effort has been made to understand and to 

explain (for an engineering audience) how mathematicians perceive the concept of shape in different 

mathematical branches such as point-set topology, homotopy theory, differential topology, geome- 

try, and theory of convexity. The main conclusions are that each of these mathematical areas focus 

on specific maps between spaces with the objective to infer specific properties of such spaces up to 

equivalence. It is then possible to classify spaces by the action of a particular map; for example, two 

spaces are topologically equivalent if and only if there is a homeomorphism between them. A parti- 

cular useful part of this chapter is that the author shows that the concept of C' manifold smoothness in 

differential geometry is exactly what is called G' geometric continuity in geometric design, and, more 

importantly, it is independent of the representation form, explicit, implicit or parametric. Moreover, 

the notion of CT continuity in differential topology and geometry is a particular case of the notion 

of continuity used in general topology, seeing that a diffeomorphism is a homeomorphism. Another 

particularly useful part of Chapter 1 concerns the proposal of the theory of convexity as the mathe- 

matical theory behind form feature modelling based on the assumption that shape aspects should be 

separated from functional and engineering aspects of design and manufacturing. It is -to the best of 

my knowledge- the first mathematical shape theory for feature-based modelling. As will be shown 

there is a clear hierarchy of shape maps between subspaces in IIS2 which leads to a hierarchical taxo- 

nomy of shapes. These shape maps and classification of shapes are of great importance to expose the 
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deficiencies of current geometric modellers in shape processing. Chapter 1 ends with an overview of 
a general-purpose shape modeller. 

Chapter 2 deals with the mathematical theory of smoothness -or the lack of it-, which shows 
the relationships between smoothness of mappings and smoothness of manifolds. It is shown that the 

mathematical notion of C' smoothness or continuity generalises the various concepts of geometric 

continuity used in computer-aided geometric design. But, more importantly, we end up to understand 

that the definition of manifolds, varieties, and more general point sets follow the same mathematical 

theory, whether they are defined explicitly, implicitly, or parametrically. This allows us to say that 

solid modelling and free-form modelling of curves and surfaces are no longer separate research areas 
in geometric modelling. 

Chapter 3 introduces the mathematics behind our general geometric model, the subanalytic regu- 
lar stratifications. The generality of this geometric model comes from the following facts: 

" Subanalytic geometry provides a large class of geometric objects, covering practically all 

engineering artefacts. Subanalytic sets need not be relatively open or closed. 

" Subanalytic sets are invariant under projections which is essential in interactive design based 

on computer graphics systems. 

" Subanalytic sets are closed under Boolean operations. They generalise the semianalytic sets 

used by constructive solid geometry representations (CSG-reps). Booleans are useful as 

high-level design operators. 

" Subanalytic sets are regularly stratifiable. For example, they admit Whitney stratifications, 

which are generalisations of the manifold structures used by boundary representations (B- 

reps). 

" Regularly stratified subanalytic sets are combinatorial Euler-invariant. Thus, Euler operators 

can be used to construct engineering artefacts, as usual in B-reps. 

" Regularly stratified subanalytic sets or complexes admit coverings of subcomplexes. This 

enables the internal representation of geometric subobjects such as, for example, form fea- 

tures. 

Chapter 4 details the data structure of the E-geometric kernel for regular stratified objects. The 

data structure represents geometric objects independently of its dimension, local and global com- 

pactness, and clusters or subcomplexes. Its underlying representation, called subcomplex-tuple rep- 

resentation is a generalisation of the cell-tuple representation of Brisson. The view of an object as 
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a covering of subobjects or subcomplexes enables the internal representation of, for example, form 

features, which avoids known problems in integrating solid modellers and feature modellers. 
Chapter 5 describes Euler operators to construct geometric objects in Rn, which constitutes a 

generalisation to previous Euler operators in W. They make use of the shape theory introduced in 

Chapter 1. They were designed after achieving a general Euter formula for regular stratified objects 

in R7. Also, stratified Boolean operators are concisely described. The relationships between standard 

Boolean operators, stratified Boolean operators and Euler operators are then clarified. 

Finally, conclusions are drawn in the end of the thesis. 



CHAPTER 1 

Shape theory 

The existence of analogies between central figures of various theories 

implies the existence of a general theory which underlies the particular 

theories and unifies them with respect to those central features. 

E. Moore, New Haven Colloquium Lectures, 1906 

What is shape? To say that two objects have the same shape has an intuitively obvious, but 

sometimes very imprecise meaning in design, and engineering in general. This is because engineering 
design involves distinct levels of detail; an engineering artefact usually consists of an assembly of 

components -and this agrees with the mathematical notion of a topological space with a number of 

connected components-, a component may contain various through holes, each hole with a specific 

geometric pattern (cylindrical, square, etc. ) determined by functional requirements performance, life 

time, cost, and so forth. 

Analogously, in mathematics, there are various levels of detail in analysis and synthesis of the 

shape of more abstract spaces. (In fact, hierarchical constructions of the human mind seems to be 

spread over all knowledge areas. ) But, in contrast, the concept of shape can be now rigorously de- 

fined, theoretically developed and refined. For example, a cube and a sphere are topologically indis- 

tinguishable, but we know they are geometrically distinct. In other words, a cube and a sphere have 

the same topological type, but distinct geometric types. This is so because the level of shape detail 

in topology is coarser than in Euclidean geometry. To see that two distinct figures or point sets have 

the same shape type, we use a particular kind of mapping for shape matching. This suggests that we 

can define a shape taxonomy for point sets in III" by setting shape equivalence classes for each kind 

of mapping, each mapping corresponding to a particular level of shape detail. 

A major purpose of this thesis is precisely to show how the various research areas in geometric 

modelling or shape modelling -i. e. geometric solid modelling, geometric free-form modelling, and 

geometric feature modelling- are related to distinct levels of shape detail or shape types. This allows 

us to describe the shape of engineering artefacts from different settings and points of view. This is not 

new in mathematics, where each view of more abstract artefacts corresponds to a mapping between 

1 



1. SHAPE MAPPINGS, GROUPS AND GEOMETRIES 2 

them. For example, topologists make use of homeomorphisms to capture the global shape properties 
of a space, whereas differential geometers use diffeomorphisms to evaluate its smoothness properties. 
Roughly speaking, we can then say that each branch of mathematics is developed and established 
around a particular kind of mapping. 

Thus, we intend to know which shape mappings (and, ultimately, which mathematical theories) 
are associated with the various research branches of geometric modelling. In fact, a distinct shape type 
is defined for each kind of shape mapping. The fact that distinct shape mappings imply distinct shape 
types makes us to think of relating these shape types by relating their corresponding shape mappings. 
The result is a general hierarchical shape taxonomy in the context of geometric modelling. This is of 

paramount importance for those interested in to find a general mathematical basis to an effective shape 
integration in computer aided engineering environments. This is also important to comprehend the 

shape deficiencies and incompabilities of current geometric modellers, and the technical difficulties 

of current standard formats in the transference of data between distinct CAD/CAM systems. 

1. Shape mappings, groups and geometries 

In mathematics, the unification of diverse disciplines is achieved by abstraction [13, p. 7]. The 

existence of particular theories with common essential characteristics implies the existence of a gene- 

ral theory for all them. A general theory corresponds to a higher level of abstraction that its particular 

theories. For example, the projective geometry used in computer graphics or, better, in the design 

and implementation of computer graphical systems such as GKS (Graphical Kernel System), PHIGS 

(Programmer Hierarchical Interactive Graphical System), GL (Graphical Library), etc., generalises 

the affine geometry, which in turn is a generalisation of the Euclidean geomety. These three ge- 

ometries are all examples or instances of Klein geometries. According to Klein, a geometry (X, 9) 

consists of a space X, some properties possessed by figures (or subsets) in that space, and a group g 

of mappings or transformations of the space that preserve these properties. More formally, a Klein 

geometry is the ordered pair (X, 9), where X is a space and g is a group of mappings of X onto itself. 

Note that X and g are left unspecified, i. e. the nature of the elements of X and mappings of 9 (the 

operation associated with g is the composition of mappings) are not specified or instanciated. 

The view of geometry as a space and a group acting on it is called the Kleinian view of geometry, 

after the 19th-century German mathematician Felix Klein who proposed it first. It has the virtue 

of enabling us to generate many geometries, while seeing how they are related. The bigger the 

abstraction, the smaller the detail. A Klein geometry uses two important abstract devices by means of 

which many areas of mathematics are unified. The first is the concept of space. A space is basically a 
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set with some kind of structure. For example, as explained later, a set with a topological structure gives 
rise to a topological space. A space is rather abstract because neither the elements of its underlying 
set nor the structure type is specified. The second abstract device is the concept of a group. A group 
is basically a set and a binary operation associated with it. 

DEFINITION 1.1. Let G be a set and o be a binary operation defined on G. Then (G, o) is a group 
if the following axioms hold. 

(i) Closure Axiom. For all 91 1 92 E G, gl o 92 E G. 

(ii) Identity Axiom. There exists an identity element iEG such that, for all gEG, goi=g=iog. 
(iii) Inverse Axiom. For each gEG, there exists an inverse element g-1 EG such that go g-1 = 

i=g-log 

(iv) Associativity Axiom. For all gl , 92 , g3 E G, gi o (g2 0 g3) = (gl 0 92) 0 93 . 

In a Klein geometry, the elements of the set underlying the group are maps. Although these maps 

are a specialisation for the elements of such a set, their nature is still left unspecified. Klein geometry 
is a typical example of unification by abstraction in mathematics. By not specifying, or by ignoring, 

the nature of a space and the nature of the maps defined on it, a general theory for geometry follows, 

and many geometries can be generated. 

EXAMPLE 1.1. (Euclidean geometry). The set r is then made into a metric space by defining 

the distance d(p, q) = (1(p, - g1)2)1/2 between the n-tuples p= (p1,... 
, pn) and q= (ql,... 

, qn). 
This metric space is called Euclidean n-space and is denoted by E'. (En is often identified with 
IE for brevity. ) n-dimensional Euclidean geometry (0 

,I 
(n)) is precisely the Euclidean n-space IE'1 

together with the group I (n) of isometries (translation, rotation, and reflection) of E. By definition, 

an isometry is a homeomorphism (and, thus, a map) f of En onto itself which preserves distances, that 

is, for which d (f (p), f (q)) =d (p, q) [5, p. 1 ]. For obvious reasons, isometries are also called rigid 

motions. Properties, such as lengths, areas, volumes, angles, that remain unchanged by the group of 

isometries are called metric invariants. 

EXAMPLE 1.2. (Affine geometry). It is the geometry of parallelism. If in E, we retain the 

topology, the notion of straight line, and the notion of parallelism among straight lines but discard 

the metric structure, we obtain aline n-space, which we denote by An [5, p. 2]. In An we do not care 

about distance between points. The aline geometry (An, A (n)) is an extension of Euclidean geometry, 

where A (n) is the group of transformations, called affinities (or aline transformations). The group 

of affinities includes the group of isometries in addition to scalings and shearings. Affinities are 
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homeomorphisms that preserve parallelism, not distances. Properties, such as the parallelism of lines 

and collinearity of points, that are unchanged by the group of affinities are called affine invariants. 
Note that the metric or Euclidean invariants are not generally affine invariants because the invariable 

properties of the Euclidean geometry are not in general invariable properties of the affine geometry. 
For example, squares can be transformed into parallelograms and circles into ellipses. 

EXAMPLE 1.3. (Projective geometry). Consider the set of all points of Ilan+l except (0, 
... , 0). 

The exclusion of (0,... 
, 0) is a technical convenience. Two points p= (p1, 

... )Pn+l) and q= 
(ql......... qn+l) are said to be equivalent if there is a number c such that ql = cpl , ... , qn+l = CPn+1 
This relation of equivalence partitions If8n+1 into mutually disjoint equivalence classes. Let Ihn denote 

the set of those equivalence classes of Ilan+l Fn is called projective n-space [5, p. 60]. The projec- 

tive geometry is a generalisation of the affine geometry. The new important sort of maps which are 

possible in the projective geometry are the perspective transformations. The maps allowed in pro- 
jective geometry form a group, called group of projectivities (or projective transformations), which 
includes the group of affinities. The properties preserved by projectivities are concurrence of lines 

and collinearity of points. It is clear that the invariable properties of the projective geometry are 

not in general invariable properties of the affine geometry. For example, a square can change to any 

quadrilateral and a circle to any non-degenerate conic section (ellipse, parabola, hyperbola). 

The set Ilt'z may be then endowed with various mathematical structures, each one for a specific 

geometry. Thus, a geometry defined on 1W is characterised by its group of mappings. As suggested 

above, there is a hierarchy of geometries based on the generalisation of mappings. One of the purposes 

of this chapter is to expose the different geometries and shape mappings used in geometric modelling, 

namely geometric solid modelling, geometric free-form modelling, geometric feature modelling. This 

leads us to a general shape taxonomy for geometric modelling. More importantly, this allows us to 

anticipate a general theory for geometric modelling, where we can see the relationships between the 

seemingly distinct branches of geometric modelling. The idea behind this possible theory is to achieve 

a unified shape model capable of unifying and integrating the extant models in geometric modelling. 

2. Shape, shape equivalence 

Initially, Klein's definition was considered very general. It encompassed all of the known geo- 

metries of his time, and furthermore it was extensible to non-mathematical applications [13, p. 26]. 

Remarkbly, Klein wrote in 1912, "What the modern physicists call relativity theory is the theory of 
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invariants of a four-dimensional space-time continuum (Minkowski's world) with respect to a given 
group of collineations (the Lorentz group), and hence is a geometry. " 

However, it was understood that Klein's definition of a geometry had two drawbacks. First, it 
is not absolutely general. Second, it is not 'purely' geometrical. The Klein's definition relates a 
geometry to a group (an algebraic concept) of mappings which are usually given by expressions 
relating the coordinates (another nongeometrical concept) of a point in terms of the coordinates of the 
transformed point, or vice-versa. It was then realised that the concept of a group imposed a serious 
restriction on a geometry. 

A more general concept of geometry or shape can be achieved by removing the group condition on 
the mappings of a geometry. Doing so one comes to the essential concept underlying any geometry: 

equivalence of subsets or figures of a space X. Such an essential concept of shape equivalence was 
introduced in geometric modelling literature by Gomes and Middleditch [45]. Their paper constitutes 
the first attempt to achieve a unified shape theory in geometric modelling. In particular, it outlines a 
first mathematical theory for geometric feature modelling. 

To understand that the essence of any geometry lies in the choice of equivalent subsets rather than 
in the mechanisms (algebraic or whatever) by means of which the choice is defined, consider again 

the Klein geometry. The Klein geometry (X, 9) studies those and only those properties of a subset 
(or figure) that are invariant under every mapping (transformation) of the group 9. Thus, a property 

of a subset A of X is an object of study in the Klein geometry if and only if it is a property of each 

subset g(A) for every gE9, where g(A) stands for the subset into which A is mapped by the mapping 

g of X onto itself. 

It is now apparent that an equivalence relation is established in the class of all subsets of X by 

defining two subsets A, BEX to be equivalent (symbolically, A ti B) provided there exists an element 

g of 9 such that B= g(A). Because 9 contains an identity element, it follows that A -ý A, and since 9 

contains the inverse of each of its elements, the relation A ý- B implies that BrA. At last, if A, B, C 

are subsets of X such that APB and BrC, then B= gl (A), C= 92 (B), and C= 92 o gl (A) = 93 (A), 

where g3 is the element of 9 that is the group product of gl , 92 in the order indicated. Hence, A ti C, 

and thus the transitive property of the equivalence is also established. 

In seeking the geometric essence of Klein's definition suggests the following general definition 

for a geometry or shape. 

DEFINITION 1.2. The pair (X, S) is a geometry (or shape) over a set X, where E is an equivalence 

relation defined in the set of all subsets (or figures) of X. The geometry (X, E) studies those and only 
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those properties of a subset A of X that it has in common with all subsets equivalent to A; these are 
the invariant properties. 

Observe that a geometry is defined in terms of a set rather than a space. This also widens the 

applicability of the notion, although this fact is irrelevant in geometric modelling because X is usually 
the Euclidean space. Obviously, every Klein geometry is also a geometry according to Definition 1.2. 
Nevertheless, there are geometries in mathematics which are not Klein geometries. For example, 
the Riemann geometry is not a Klein geometry. Both Riemann geometry and Klein geometries are 
generalisations of the Euclidean geometry. All them are particular cases of Cartan geometries (see 
Sharpe [103] for further details). 

In geometric modelling, there is a particular interest in to know which geometries are involved 
in its various branches of research, and, if possible, to relate them somehow. The set associated with 

all the geometries used in geometric modelling is the n-dimensional Euclidean space IRn (and some- 

times the projective space P"). Therefore, these geometries defined over the same space Euclidean 

space are in principle only distinguishable from each other by means of their shape mappings and, 

ultimately, shape equivalence relations. They arise from different definitions of equivalent subsets. 
As shown in the next sections, a hierarchy of geometries can be established by hierarchically re- 

lating their corresponding shape equivalences. Furthermore, a classification or taxonomy of shapes 

involved in geometric modelling can be defined. This is extremely important not only to expose the 

shape deficiencies of current geometric modellers, but also to propose an alternative architecture for 

a shape-complete geometric modeller. 

3. Geometry: Euclidean shape mappings 

The n-dimensional Euclidean geometry (IRn, I(n)) is a Klein geometry. This geometry is par- 

ticularly useful in computer graphics systems since the group the isometries I(n) are used to move 

geometric objects in the ambient space that is usually R3. 

But the leading idea here is to classify subspaces of TWZ against mappings. In this respect, isome- 

tries are particularly useful because they lead us to the concept of Euclidean geometric equivalence 

or Euclidean congruence. Two subsets X, Y of Ihn are Euclidean-congruent, or X Y, if X can be 

rigidly moved such that it is exactly superimposed on Y; that is, if there is an isometry between them. 

It is a well-know fact that Euclidean congruence is an equivalence relation [40, p. 152]. Thus, by 

Definition 1.2, (IR, is a geometry or shape, called n-dimensional Euclidean geometry. (Note that 

the Euclidean geometry is identified by either its group of isometries or its Euclidean congruence. ) 



4. TOPOLOGY: TOPOLOGICAL SHAPE MAPPINGS 7 

It studies properties which are left unchanged by isometries (congruencies or rigid motions), which 

are distance -preserving mappings. This means that isometries preserve the size and shape of every 

geometric figure. 

EXAMPLE 1.4. Let us consider the 2-dimensional Euclidean geometry (1R2 
, 1(2)) and A={ (x, y) E 

1R2 :0<x<1.5 and 0<y<1}a rectangle in R2 (Figure 1). The action of the mapping g : 11 2 
--> J2 

given by (x, y) t (x + 1, y + 0.5) on A is a translation of A along the x-axis and y-axis by Sx =1 and 
Sy = 0.5, respectively. The result is a rectangle A* that is Euclidean-congruent to A. The original rec- 
tangle A and the transformed rectangle A* are said to be in the same Euclidean geometric equivalence 

class, or, alternatively, they have the same Euclidean geometric type. 

A* 
A 

91 

1.5 1.5 

FIGURE 1. The action of a translation on a rectangle. 

4. Topology: topological shape mappings 

The general topology is built upon the theory of sets. The study in topology starts with the idea 

of associating some kind of structure, usually called topology or topological structure, to a set. As 

shown below, this fact leads to the concept of continuity, which is one of most fundamental concepts 
in mathematics. 

4.1. Topologies and topological spaces. 

DEFINITION 1.3. A topology is a collection T of sets which satisfies the following two axioms. 

(i) The union of any (may be infinite) number of sets in T belongs to T. 

(ii) The intersection of a finite number of sets in T belongs to T. 

That is, the union of the sets in any subcollection of T {U1 :iE I} is a set in T; and, the 

intersection of the sets in any finite subcollection of T= {UU :iE If is a set in T. From the set theory, 

we know that the empty set 0 is subset of every other set; hence, it is an element of T. Furthermore, 

the axiom (i) above implies that the set X= U{U, ET: ic I} is necessarily in T because T is a 

subcollection of itself, and every set U, of T is a subset of X. The set X is called the space of the 
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topology T and T is a topology for X. Besides, the pair (X, T) is a topological space if an additional 

axiom is satisfied: (iii) O, X E T. T is a topology on X if (X, T) is a topological space. The 

elements U1 of the topology T are called open relative to T, or T-open, or if only one topology 7 
is under consideration, simply open sets. The simplest topology, called trivial or indiscrete topology, 
is the family of two open sets, empty set and X itself, respectively, while the largest, called discrete 

topology, is the family of all subsets of X. 

EXAMPLE 1.5. Consider the following families of subsets of X= {a, b, c, d, e}: 

(a) Ti = {X, 0, {a}, {c, d}, {a, c, d}, {b, c, d, e}}; 
(b) T2 = {s 

, 
{a}, {a, b}, {a, b, c}}; 

(c) Y= {X 
, 0, {a}, {c, d}, {a, c, d}, {b, c, d}}. 

Ti and T are topologies since they satisfy the necessary two axioms, but T3 is not a topology since 

the union {a, c, d} U {b, c, d} _ {a, b, c, d} of two elements of T does not belong to T3, i. e. T does 

not satisfy the first axiom. Consequently, T is not a topology on any set, and X in particular. On the 

other hand, yet T is a topology, it is not a topology on X, because X is not in T2. Only Ti is a topology 

on X since the three axioms of a topological space are satisfied; hence, (X, 'Ti) is a topological space. 
These examples clearly show that the concept of topology is independent of the concept of topological 

space; the converse is not true. For 'independence' we mean that the notion of topology preceeds the 

notion of topological space, as the notion of set comes before the notion of topology. 

EXAMPLE 1.6. (a) Let X be the real line R All open intervals (a, b) and their unions define a 

topology called the usual topology in R; a and b may be -oc and oc, respectively. Similarly, the 

usual topology in R' can be defined by taking a product (al, bi) x ... x (aJZ, b1z) and their unions. 

Thus, in R'1, the open sets of the usual topology agree with our 'intuitive open sets' used in geometric 

modelling. 

(b) The same is not applicable to the upper-limit topology U on W. For example, in R, U is generated 

by the open-closed intervals (a, b]. This example shows that the open sets of a topology do not 

necessarily correspond to our 'intuitive open sets'. 

Let (X, T) be a topological space and A be any subset of X. Then T={U} induces the relative 

topology in A by T' = {UZ lA :UE T}. The concept of relative or induced topology is relevant to 

geometric modelling of dimensionally nonhomogeneous objects, as will be apparent throughout this 

thesis. 
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EXAMPLE 1.7. Let X= 11 and take the 2-sphere S2 ={ (x, y, z) E 1R3 : x2 + y2 + z2 =1 }. A 

topology in S2 may be given by the relative topology induced by the usual topology on V. Each 

open set in S2 results from the intersection of an open set in R3 With S2. 

4.2. Closed sets, closure. As for open sets of a topological space, its closed sets do not coincide 
necessarily with our 'intuitive closed sets'. Let (X, T) be a topological space. A subset A of X is 

closed if its complement in X is an open set, i. e. X \A E %. 

EXAMPLE 1.8. As seen in Example 1.5, the collection of sets Ti = {X, 0, {a}, {c, d}, {a, c, d}, {b, 

c, d, e} }, defines a topology on X= {a, b, c, d, e}. The closed subsets of X are 0, X, {b, c, d, e}, 
{a, b, e}, {b, e} and {a}, i. e. the complements of the open subsets of X. Observe that there are subsets 
of X, such as {b, c, d, e}, which are both open and closed, and there are subsets of X, such as {a, b}, 

which are not neither open nor closed. 

Besides, by the definition of closed set and the axiom (iii) of a topological space (X, T), X and 
0 are both open and closed. Going a little further, by the definition of closed set, the axioms of a 
topological space and DeMorgan's Laws give an alternative and equivalent definition of topological 

space in terms of closed subsets of X, with the difference that, unlike the union axiom, the intersection 

axiom is not required to involve a finite collection of closed sets. 
Let A be a subset of a topological space X. The closure of A, denoted by C1(A), is the intersection 

of all closed sets that contain A. Note that C1(A) is a closed set since it is the intersection of closed 

sets. Furthermore, Cl(A) is the smallest closed set which contains A. Accordingly, a set A is closed 

if A= CI(A). 

4.3. Interior, exterior, boundary, frontier. It is remarkable that there are four types of subsets 
in a topological space; they are open, closed, open and closed simultaneouly, and neither open nor 

closed. Therefore, in a general setting, the concepts of closure, exterior, interior, boundary, and 

frontier of a subset A in a topological space X must be applicable to any kind of subset. 
Let A be a subset of a topological space X. A point xEA is called an interior point of A if x 

belongs to an open set contained in A. The set of interior points of A, denoted by Int(A), is called the 

interior of A. Thus, A is open if A= Int(A). 

From the concept of interior of a subset A of a topological space X, Ext(A) (the exterior of A), 

Bd(A) (the boundary of A) and Fr(A) (the frontier of A), and even C1(A) (the closure of A) can be 

defined as follows: 
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Ext(A) = Int(X \A) 

(1) Bd(A) =A\ Int(A) 

Fr(A) = Bd(A) U Bd(X \A) 

Cl(A) = Int(A) U Fr(A) =A U Fr(A) =A U Bd(X \A) 

10 

The necessity to distinguish between boundary and frontier of A comes from the fact that A may 
be neither open nor closed; in geometric modelling, A is said to have 'incomplete' boundary, what 
is mathematically non-sense. However, intuitively, 'incomplete' boundary means that it lacks part of 
the frontier, or that the boundary Bd(A) is a proper subset of Fr(A). 

EXAMPLE 1.9. In Figure 2, a table of fundamental topological shapes in R2 is depicted. The 

most essential topological shapes are the disc (or closed ball) D'Z = {x E IWF :j lx < 1}, the (open) 

ball IB'1 = {x E Rn : lIx II< 11, and the sphere § n-1 = {x E TW1 : jjx il= 1}, respectively. For n=0, 
this yields DO = IBS = {0}, S/2-1 = 0. This table shows that: (i) open spaces have no boundary; (ii) 

boundary and frontier of a closed space coincide; (iii) the distinction between boundary and frontier 

is necessary to keep the axiomatic consistency for clopen (closed and open) and nclopen (not closed 

and not open) spaces. 

The topological operators (1) may induce a certain ambiguity in our minds. Recall that they have 

been derived from the notion of open set, what depends on the topology used to topologise a point 
set A. For example, let us take the interval (-1,1). This interval is open in IR, but it is not open when 

considered as a subset of 1R2, since any open set of JR2 about a point of (-1,1) overlaps with the upper 

and lower half-planes of I[82. Similarly, the real line IR itself is both open and closed, but when it is 

considered as a subset of 1R2, it is no longer open. It is closed in V. This means that the openness 

or closedness of a subset A depends on its ambient space X (or, to be more precise, on the topology 

of its ambient space X). Thus, the point sets resulting from the topological operators (1) applied to a 

subset ACX depend on the ambient space X. To remedy this problem, or, equivalently, to obtain the 

same sets from (1) regardless of the dimension of the ambient space X, we make use of the notion of 

relatively open set. 

DEFINITION 1.4. (see Kinsey [66, pp. 16-18]) Let ACX. A relatively open subset of A is a set 

of the form N fl A, for some open subset N of X. 



4. TOPOLOGY: TOPOLOGICAL SHAPE MAPPINGS 

XE I82 Int(X) Ext(X) Bd(X) Fr(X) CI(X) 
EP "x 0 1182 \ MP ll 0 ADO DO 

SO* x"y 0 R2 \ SO s0 s0 s0 

ID' Y 
0 R2 \ IDI Dl B' BI 

0 Ilg2 \ (1DP U B') D° U R' ILD° U BI B° U II' 
II$ý ý~ 0 R2 IBI IBI BI 31 

2 2 2 1 1 13 R D S S B2 

2 1 2 2 O l 1 3 U3 ) \(IDPUIB R UE ID S )l2 

IB2 32 J2 \32 0 S1 B2 

FIGURE 2. Basic topological shapes in II82. 

This is so because the topology T= {U, } of X induces a relative topology T'= {U, f1A : Uj E T} 

in A. Thus, in the relative topology, the point set returned by any topological operator (1) applied to A 

is always the same independently of the dimension of the ambient space X. The Definition 1.4 is then 

the starting point to define the relative versions of Int(A), and, subsequently, Ext(A), Bd(A), Fr(A), 

and CI(A). 

4.4. Continuity. Continuity is not a topological property of a topological space. Instead, it is a 

property of a function defined between two topological spaces. 

DEFINITION 1.5. Let X and Y be topological spaces. A function f: X -+ Y is continuous if the 

inverse image of an open set in Y is an open set in X. 

This definition is very deep in many respects. Let us mention a few: 

" First, it shows that continuity depends on the topologies of X and Y, i. e. it does not make 

sense to define continuity for a function if the domain X and the range Y are not topological 

spaces. 

" Second, it is general since the nature of X and Y, and their topologies are left unspecified. 

Therefore, definitions of continuity as found in, for example, in analysis, theory of manifolds 
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or even free-form curves and surfaces in geometric design are certainly particular cases of 
it. 

" Third, it leads to the concepts of homeomorphism and topological equivalence, and conse- 

quently to the shape classification of spaces under homeomorphisms. This is particularly 

useful to shape theory developed here, and mathematical theory for geometric feature mo- 
delling in particular. 

EXAMPLE 1.10. Let f: RR be a function defined by 

f (x) 
_ 

x- 1 if x< 3 
2(x-5) ifx> 3 

whose graph in 1R2 is depicted in Figure 3(a). Note that the inverse of the open interval (1,3) is the 

open-closed interval (2,3] which is not an open set. Hence f is not continuous. 

f(x). 

4 
3 

13 .ý 

FIGURE 3 

EXAMPLE 1.11. Let T be the usual topology on the real line R and let U be the upper-limit 

topology on If which is generated by the open-closed intervals (a, b]. Furthermore, let f: R -+ IR 

defined by 

Ix ifx< 1 
f (x) ý 

x+2 if x> 1 

whose graph in R2 is depicted in Figure 3(b). 

(i) Let A= (-1,2) E T. Then f-1 (A) = (-1,1]. That is, AE 7- but f-'(A) V T. Hence f is 

not continuous relative to T. 
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(ii) Let A= (a, b] E U. Then 

(a, b] ifa<b< 1 
(a, 1] ifa<1<b<3 

_1 
(a, b-2] ifa<1<3<b 

0 if1<a<b<3 

(1, b-2] if1<a<3<b 

(a-2, b-2] if3<a<b 

In each case, f -1(A) is an open set in U. Hence f is continuous with respect to U. 

13 

4.5. Homeomorphism, topological equivalence. The concept of topological space provides the 

most essential and natural manner for dealing with continuity. Specialised notions of continuity can 
be found in calculus, theory of functions, theory of manifolds, and mathematics in general. A kind of 

continuity of particular interest in geometric design of free-form curves and surfaces is the geometric 

continuity or visual continuity. It underpinnes the mathematical theory behind the parametric formu- 

lations of Bezier, B-splines, NURBS, etc., for curves and surfaces in R3. As shown in Chapter 2, 

the various kinds of geometric continuity found in computer aided geometric design are all particular 

cases of CT continuity of the differential topology, which in turn is a particular case of (topological) 

continuity. Furthermore, it is also important in solid modelling, but here the focus is on the lack of 

smoothness, what leads us to the theory of singularities and, consequently, to the partition of the sur- 
face of a solid into smooth pieces or submanifolds, say faces, edges, and vertices. Edges and vertices 

are altogether the singularities of such a surface, that is, the point subsets of the surface where it is 

not smooth. This suggests that the notion of smoothness may work as a natural interplay between 

two important and 'separate' branches of geometric modelling: computer aided geometric design and 

solid modelling. 

Now, we are much more interested in the general notion of continuity as provided by topology. 

It leads to the concept of homeomorphism, and, consequently, the notion of topological equivalence 
between topological spaces. That is, our idea is to distinguish two topological spaces from each other, 

and ultimately to achieve a taxonomy of topological shapes. In topology, two topological spaces 

are said to be equivalent if it is possible to transform one to the other by continuous deformation. 

Intuitively speaking, these topological spaces are seen as made out of ideal rubber which can be 

deformed somehow. However, such a continuous deformation is constrained by the fact that the 

dimension is unchanged. This kind of transformation is mathematically called homeomorphism. 
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DEFINITION 1.6. Let X and Y be topological spaces. A function f: X -* Y is a homeomorphism 
if it is continuous and has an inverse f-1 :Y -4 X which is also continuous. If there is a homeomor- 

phism between X and Y, X is said to be homeomorphic to Y and vice-versa. X and Y are then also 
said to be topologically equivalent. 

Equivalently, X is homeomorphic to Y if there exist mappings f: X -+ Y and f- 1: Y -4 X such 
that fof-1 =idx and f- I of =idy. 

EXAMPLE 1.12. An interval without end points is homeomorphic to a line R. In fact, let f: 

X -+ Y be f (x) = tanx, with X= (-it/2, m/2) and Y= III. Since tanx is one-to-one on X and has an 
inverse, tan-1 x, which is one-to-one on III, f is indeed an homeomorphism. 

EXAMPLE 1.13. An (open) unit ball V={ (x, y) EV: x2 + y2 < 11 is homeomorphic to JR2 
.A 

homeomorphism f: T2 -ý R2 may be 

f(x'y) _ ((1-x2 x- 
y2) IT 

y 
' (1 -x2 -y2)1/2 

while the inverse f- 1: R2 -4 B2 is 

_ý f (x, Y) =(x (1+x2+y2)1/2' (1+x2+y2)1/2) 

It is easy to check that fo f- 1= idR2, and f-1 of = idB2 . 

Example 1.13 can be even generalised to any dimension: an open ball En is homeomorphic to 

R". This may be found a little surprising in that a bounded space, Y, is topologically equivalent 

to an unbounded space, 1W1; hence, boundedness cannot be a topological invariant. [Boundedness 

corresponds to the notion of 'finite extension' in solid modelling. Note the boundedness has nothing 

to do with boundary of a set. By definition, a subset of I1 is bounded if it is contained in an open 

n-ball; a n-ball centred on point pEZ is the set of points {q EZ: Ilp - qII < r} for some rE R+. ] 

EXAMPLE 1.14. A square I2 ={ (x, y) ER2: (xl =1, jy <1), (Ix < 1, jy =1) } is homeomorphic 

to a circle S1={ (x, y) E R2 : x2 +y2 = 11 (Figure 4). A homeomorphism f: I2 -4 51 may be given 

by 
yf (x, Y) - (-x 

' -) 
with r= (X2 + y2)1/2. 

r 

Since r cannot vanish, f is invertible, being its inverse f- I: S1 -+ 12 given by 

f -1 = (rx, ry) 
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This result is easily generalised to the n-dimensional cube: In is homeomorphic to n-dimensional 
sphere S". 

1' 

f 

FIGURE 4. A homeomorphism between a circle and a square. 

EXAMPLE 1.15. A circle S' ={ (x, y) E R2 : x2 + y2 = 1} is homeomorphic to an ellipse E 

{ (x, y) E R2 : (x/a) 2+ (y/b) 2= 11. A homeomorphism f: S1E may be given by 

f (x, y) = (ax, by). 

It is easy to see that isometries are particular homeomorphisms [5, p. 1]. In contrast, homeo- 

morphisms are not isometries. Homeomorphisms do not preserve distances. Thus, unlike isometries, 

homeomorphisms do not preserve size and shape in the Euclidean geometric sense. But, by Brouwer's 

Dimension Invariance Theorem (see [23, p. 53]), we know that homeomorphisms are dimension- 

invariant, that is, they are dimension-preserving. For example, the homeomorphim in Figure 4 trans- 

forms a square into a circle, with an apparent change in the geometric shape, but without changing 

the dimension that is 1. Sometimes, one says that isometries are too-rigid shape mappings, while 

homeomorphisms to too-relaxed or deformable shape mappings. Homeomorphisms form a group of 

mappings on the Euclidean space [122, p. 51]; hence (1W2, Homeo(n)) is a Klein geometry. 

Homeomorphims behave like elastic transformations of subsets made of perfectly elastic rubber. 
However, we must be careful to ensure that distinct points remain distinct. We are not allowed to 

force two different points to coalesce into one point. For example, a line cannot be topologically 

deformed into one of its points because that would change its dimension. Therefore, two subsets 

are topologically equivalent if and only if one subset can be made to coincide with the other by an 

elastic transformation or homeomorphism. For example, a solid sphere can be elastically deformed 

into a solid cube, a cube with a depression, or even a cube with a protrusion; they are said to be 

homeomorphic or of the same topological type. See [66, p. 24] for a proof that topological equivalence 

= is an equivalence relation. So, by Definition 1.2, the pair (Rn, -) is a geometry or shape that only 

recognises the continuity properties of subsets of R, where ý-- is the topological equivalence relation 
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in that establishes equivalence classes of homeomorphic subsets in IR'1. This geometry (Rn, ̂ -, ) is here 

called topology. It studies properties which are left unchanged by homeomorphisms. Obviously, the 
topology (R'2 

, ') as a kind of geometry or shape should not be mistaken by a topology or topological 

structure T on a set, say Iit". 

5. Homotopy: homotopic shape mappings 

Above we drew an analogy between homeomorphic spaces in topology and Euclidean-congruent 

figures in geometry. By relaxing the Euclidean-congruence in such a way that only the distance ratios 
instead of distances themselves are kept, we have the similarity geometry. This geometry is then a 

relative of Euclidean geometry since it is conformal, i. e. it preserves angles [103, p. 141], and thus 

a subgeometry of the affine geometry. For example, any two cubes are similar, but not necessarily 
Euclidean-congruent. 

Analogously, by relaxing point non-coalescence condition in topology, we obtain a more general 
geometry, called homotopy. However, it is not a Klein geometry, because the mappings used in 

homotopy, called homotopies or homotopy mappings do not form a group under composition, as 

explained further ahead. The coalescence of points is admissible in homotopy, but not completely. 
Such coalescence is restricted by the concept of deformation retract as shown below. Making an 

analogy, the property of being a deformation retract is analogous to similarity in geometry. As with 

similar figures in geometry, if X is a deformation retract of Y in homotopy, then there are obvious 

ways that X and Y differ, but there are also some essential characteristics in which they are the same 

[66, p. 187]. 

We assume, for convenience, that all spaces are at least Hausdorff. A Hausdorff space X (e. g. any 

Euclidean space) enjoys the property that distinct points are separated by disjoint neighbourhoods, 

i. e. given any x, yEX with x y, it is impossible to find points arbitrarily close both to x and to y 

[23, p. 143]. This rids a space of weird pathologies. 

DEFINITION 1.7. Let f, g: X -* Y be continuous mappings. Then, f is homotopic to g, denoted 

by fNg, if there is a continuous mapping H: XxI --+ Y such that H (x, 0) =f (x) and H (x, 1) = g(x). 

The mapping H is called a homotopy between f and g. 

Equivalently, we can say that there is a continuous family of continuous mappings from X to Y 

between f and g, which are determined by varying tin the unit interval I= [0,1]. Thus, a homotopy 

between f and gin Y is defined by (x, t) H (1 - t) f (x) + tg (x) [22, p. 1091. Therefore, a homotopy is 
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a parametric shape interpolation between images of two mappings. Shape interpolation is particularly 

useful to animation systems based on morphing techniques. 
For an illustration of homotopic functions, let us take X=I such that f, g: I -* Y are two map- 

pings from the interval to a topological space Y, as depicted in Figure 5(a). A homotopy from f to g 
is pictured in Figure 5(b). 

I 
2 '\ 

g(I) 
Q(I) 

I 

(a) f g: hX, with X=R3 (b) A homotopy from f to g 

FIGURE 5 

One real-life example of a homotopy is the human aging process, by taking t as a time variable. 

In fact, the human topological shape of a youngster is related to the shape of a wrinkled person 80 

years old by a homotopy describing the shape at every age between [66, p. 184]. Another example is a 

waving flag, topologically equivalent to a rectangle at any time t, but whose embedding in I1g3 varies 

with t. An analytic example of an homotopy is as follows. 

EXAMPLE 1.16. Define f: S1 --+ S1 by 

f(cos (2Ttu), sin(21ru)) = (cos (2icu+ 2), 
sin(27tu+ 

2)) 

for 0<u<1. Consider that f rotates the circle S1 by 90° counterclockwise. A homotopy of f is 

defined by 

H((cos(2icu), sin(2itu)), t) = (cos(2mu+ it), 
sin(2mu ± 

2t)) 

for 0<t<1. So, for each value of t, H is a function from the circle to the circle. 

H((cos(2icu), sin(2icu)), 0) = (cos(2itu), sin(2itu)) 

H((cos(2iu), sin(2itu)), 1) = (cos(2iiu +2 sin(2icu +2 

Thus, H ((cos (211u) , sin (2iiu) ), 0) is the identity function on 51, denoted by ids i, and 

H((cos(2icu), sin(27tu)), 1) =f 
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i. e. the function f is homotopic to the identity function, f- ids 
. 
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The previous examples may suggest that the topological shape is preserved by homotopies. But 
this is not true. Let us see a counterexample of a homotopy that do not preserve topological shape. 

EXAMPLE 1.17. Consider X= [0,2] and Y= {0} and let f, g: X -+ Y, f (x) =x and g(x) = 
0. A homotopy between f and g is given by H (x, t) = (1 - t)x. In fact, f (x) =H (x, 0) =x and 
g(x) =H (x, 1) = 0. Thus, despite f and g are homotopic, the image f (X) =X is not homeomorphic 
to the image g(X) - {0} since they have different dimensions. The effect of H here is to shrink a 
1-dimensional space X= [0,2] onto its a 0-dimensional subspace Y= {0}. Putting it in other way, X 

and Y are homotopic, but not homeomorphic. 

DEFINITION 1.8. Let X and Y be topological spaces. X and Y are of the same homotopy type 
(or homotopic), written as X ti Y, if there is continuous mappings f: X -+ Y and g: Y -+ X such that 
fog ti idy and gof ti idx. f is called the homotopy equivalence and g, its homotopy inverse. 

This generalises the Definition 1.6 of topological equivalence. Therefore, two homeomorphic 

spaces are of the same homotopy type, but the converse is not necessarily true. The Example 1.17 

clearly illustrates this situation. What is more, 'of the same homotopy type' is an equivalence relation 
in the set of topological spaces (see [91, p. 96] for a proof), the equivalence class of which is called 

the homotopy class. An homotopy class is somewhat coarser than homeomorphism [91, p. 55]. Ba- 

sically, we relax the conditions in Definition 1.6 so that the continuous functions f and g need not 
have inverses. Consequently, homotopies do not form a group, and homotopy is a geometry by the 

Definition 1.2, but not in the sense of Klein. The next example illustrates this situation. 

EXAMPLE 1.18. From the Example 1.17 we know that the spaces X= [0,2] and Y= {0} are of 

the same homotopic shape, but not homeomorphic. Let f: X -+ Y, f (x) =0 and g: Y -+ X, g(0) =1 
two continuous functions. Then fog = idy, while gof idx, although fog - idy and gof- idX. 

The concept of homotopy defined above is also called homotopy of length 1 because it uses the 

unit interval I. But, it can be even extended to intervals of any length. The next example illustrates an 
homotopy of infinite length, where I is replaced by lit 

EXAMPLE 1.19.5 1 is of the same homotopy type as a cylinder because a cylinder is a direct 

product 51 xR and we can shrink JR to a point at each point of S 1. Analogously, the Möbius strip is 

of the same homotopy type as S 1, yet they are not homeomorphic. 



5. HOMOTOPY: HOMOTOPIC SHAPE MAPPINGS 19 

EXAMPLE 1.20. A 2-ball 1B2 ={ (x, y) E 112 : x2 + y2 <1} is of the same homotopy type as a 

point. E2 -{ (0,0) } is of the same homotopy type as S 1. Also, R2 -{ (0,0) } is of the same homotopy 

type as S1 and 113 - {(0,0,0)} as S2. 

The continuous deformation of spaces in homotopy theory is then stronger than in topology, 
because the coalescence of points is allowed. This enables us to say that, for example, the essential 
homotopic shape of an interval in R is a point. We are actually interested in to know how such 

coalescence captures the essential homotopic shape of any subspace in R'2. This is useful to compare 

two subspaces in 1W' from the homotopy point of view, and is important for the design of a shape- 

complete geometric kernel, as the E-geometric kernel proposed in this thesis. 

Therefore, we intend to capture the homotopic shape of a space X by continuously deformation 

of it onto a subspace YCX, that is X-Y. 

DEFINITION 1.9. Let Y( 0) be a subspace of X. If there is a continuous mapping f: X -+ Y 

such that fIy= idy, Y is called a retract of X and fa retraction. 

Equivalently, we say that the entire X is mapped onto Y keeping points in Y fired. [By 'keeping 

points in Y fixed' we mean f (x) =x for all xEY. ] Putting it differently, f collapses X onto its 

subspace Y. With YCX, let the inclusion function i: Y -+ X be defined by i(x) = x. Note that i does 

not move any points. So, f is a retraction I ff /(i(x)) = x, that is, foi= idy. We should not expect 

that iof: X -+ X be idX, since iof first shrinks the bigger space X onto Y, and then stretches out Y 

back into X without changing it. 

X C n+ 

\ý _'i 

(a) Examples of retracts 

(b) Actions of retractions 

FIGURE 6 
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EXAMPLE 1.21. Let us look at Figure 6(a), where three retracts for each space X, X', and X" 

are shown. Such retracts are the circles or loops a, ß, y. Note that X does not include any through 
hole, while X' possesses one hole and X" two holes. In Figure 6(b), the arrows illustrate the retraction 
effects of X, X', and X" onto the circles a, ß, and y, respectively. 

As suggested in Figure 6, there are many retracts of a space, but not all capture its essential 
homotopic shape. For example, since X is homotopic to a point, all the circles might be collapsed 
onto a point in X. Thus, no circle in X captures the essential homotopic shape of X. On the other 
hand, the annulus X' has a hole that is an obstruction to continuous deformation of the circle 0 into a 

point. However, this hole do not prevent the continuous deformation of the circles a, ? into a point in 

X'. It is then said that X' and 0 (but not a or y) are of the same homotopy type or the same homotopic 

shape. Analogously, unlike the double circle y in X", the circles a and (3 (or even its union) do not 
have the same homotopy type as X". 

In homotopy theory, a retract Y of a set X with the same homotopy type as X is called a deforma- 

tion retract of X. Thus, 

DEFINITION 1.10. A subset YCX is a deformation retract of X if there is a retraction f: X-Y 

such that iof- idx, with i is the inclusion function. 

This is equivalent to say that there is a homotopy H: Xx1 -4 X between idx and a retraction 
f: X -+ Y such that H (x, 0) =x and H (x, 1) EY for any xEX, and H (x, t) =x for any xEY and any 

tEI (see [91, p. 97] for this equivalent definition). 

Thus the difference between a retract and a deformation retract is that a deformation retract is 

basically a retract in 'the homotopic sense', but a retract is not necessarily a deformation retract. For 

example, in Figure 6, the circle a is a retract of X" but not a deformation retract, since the second 

hole in X" prevents the continuous deformation of idx,, to the retraction. 

Y={0} R 

X=[0,2] 

(a) 

Y, 
1 

Y_ 
-1 1x 

-1 
(b) 

FIGURE 7. Deformation retracts of (a) an interval and (b) a square. 
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EXAMPLE 1.22. Let X= [0,2] and Y= {0} a subset of X. A retraction f: X -+ Y is defined by 
f (x) =0 for each xEX. Note that iof (x) =i (f (x)) =i (O) =0 considered as a point in X. Let us 
define H (x, t) = tx, tEI and x EX. Thus, for each xEX, H (x, 1) =x and H (x, 0) = 0. x= 0=iof (x) 

. 
Thus iof- idx so Y= {0} is a deformation retract of Y, Figure 7(a). 

EXAMPLE 1.23. Let X and Y be the square of points (x, y) where -1 <x<1, -1 < y: 5 1 and the 
center line segment y=0, -1 <x<1, respectively. A deformation retract takes X to Y by defining 
the retraction f (x, y) = (x, 0). The homotopy is given by H[ (x, y), t] = (x, ty), tEI, and is depicted in 
Figure 7(b). 

EXAMPLE 1.24. Let Y= {eie :0<0< 27t} be the unit circle and X' _ {rei° :0<0< 2it, 2< 

r<2} be an annulus (see Figure 6(b)). Let f: X' -+ Y be a retraction be defined by f (re'0) = eie and 
i: Y -+ X' be the inclusion function defined by i(eie) = e'0 Then iof: reie iy eie and foi: eie H e'e 
Note that iof- idx, and foi= idy - idy. In fact, there exists a homotopy H (rei9, t) = (1 - t) rege + 

tetO = [1 + (r - 1) (1 - t)]eie which interpolates between iof and idy, keeping the points on Y fixed. 

Hence Y is a deformation retract of X'. 

EXAMPLE 1.25. Using the same technique as in previous example, it is not difficult to show that 
the unit circle S1 is a deformation retract of B2 

- {0}, with B2 _{ (x, y) : x2 + y2 < 11. Besides, it 

can be shown that the unit sphere S' is a deformation retract of ID'l+l - {0}. 

DEFINITION 1.11. If a point pEX is a deformation retract of X, X is said to be contractible. 

Let c: X -4 { p} be a constant mapping. If X is contractible, there exists a homotopy H: XxI -+ X 

such that H (x, 0) =c (x) =p and H (x, 1) = idx (x) =x for any xEX and, moreover, H (p, t) =p for 

any tEI. The homotopy H is called a contraction. 

EXAMPLE 1.26. X= TW is contractible to the origin 0. In fact, if we define H: II xI -+ R' by 

H (x, t) = tx, we have (i) H (x, 0) =0 and H (x, 1) =x for any xEX and (ii) H (0, t) =0 for any tEI. 

Now it is clear that any convex subset of 1W1 is contractible. 

The homotopy theory has many possible applications in geometric modelling. For example, ho- 

motopies can be used to describe geometric modelling operations such as sweeps (either they are 

translational or rotational, or even generalised sweeps, with shape deformation or not) and offsets, as 

well as operations of dimension reduction in finite-element modelling. Also, some of the Euler op- 

erators used by B-rep geometric modellers implement homotopy operations such as expansions (e. g. 

mev, the shorthand of make edge and vertex) and collapses (e. g. kev, the shorthand of kill edge and 
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vertex). This suggests that homotopy theory may work as a mathematical setting for many important 

geometric operations. This is so because homotopies are basically mappings of shape interpolation 

such that the image of a mapping f is continuously deformed to the image of another mapping g. 
Nevertheless, for the present time, we are primarily concerned to show how the classification 

of shape mappings allows us to classify spaces, that is, to achieve a shape classification of spaces 
in R. This is important in the design and construction of any n-dimensional geometric kernel, in 

particular stratified geometric kernels (e. g. boundary-representation geometric kernels). In fact, for 

a geometric kernel that is able to model objects in higher dimensions, we have to be aware of the 
homotopic shape of the frontier of each manifold in a stratified point set. (Roughly speaking, a 

stratified point set is a point set partitioned into manifolds or strata such as, for example, vertices, 

edges and faces. ) Otherwise, it would be rather difficult to have Euler operators carrying out reasoning 

queries of homotopic shape nature, not just topological queries such as incidence (or connectedness) 

and adjacency of manifolds. For example, to add a connected open edge (a 1-manifold) between two 

vertices (or 0-manifolds) of a stratified object, the corresponding Euler operator has to determine first 

whether or not such vertices belong to distinct object components, regardless of the shape complexity 

of such components. Clearly, this shows that a geometric kernel of stratified objects is more than 

a geometric and topological shape engine. Above all, it is a homotopic shape kernel for basically 

two reasons. First, we should take into account that geometric and topological shapes are particular 

homotopic shapes, what results from the fact that isometries are particular homeomorphisms, and in 

turn homeomorphisms are particular homotopies. Second, shape reasoning about the global shape 

properties of point sets has inherently a homotopic nature as explained later on. 

6. Differential topology: smooth shape mappings 

If one thinks of topology as the natural area of mathematics within which continuity is studied, 

then differential topology is the natural area of mathematics within which one studies smoothness 
[92, p. 25]. Of course, all differentiable mappings are also continuous, but not vice-versa. The dif- 

ferentiable mappings are for continuous mappings as diffeomorphisms are for homeomorphisms. So, 

while a homeomorphism is a continuous mapping that has continuous inverse, a diffeomorphism is a 

differentiable mapping that has differentiable inverse. Thus, diffeomorphisms form a subgroup of the 

group of homeomorphisms. Analogously, as homeomorphisms are central to topology, diffeomor- 

phisms are central to differential topology. As Sharpe notes in [103, p. 12], differential topology is the 

study of the properties of smooth manifolds that are preserved by diffeomorphism. 
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As their relative mappings, diffeomorphisms allow us to distinguish a geometric object from 

another somehow. Diffeomorphisms are finer shape filters than homeomorphisms. However, they are 
coarser shape filters than isometries. For example, consider two 1-dimensional manifolds, a square 
and a circle, depicted in Figure 4. The mapping f in Figure 4 represents a continuous deformation 

of the square into the circle, i. e. it is a homeomorphism. But because of the right-angled bends at the 
corners of the square, we do not expect f to be differentiable at those corners. This leads us to reject 
a square as a candidate for a 1-dimensional smooth manifold. We do not reject though, a smooth 
curve such as a circle. Thus, a square and a circle are homeomorphic but not diffeomorphic, and the 

mapping f in Figure 4 is not a diffeomorphism. 
Obviously, by specialising from continuous mappings to differentiable mappings, and even fur- 

ther to analytic mappings, we are able to cross areas of mathematics where shape of spaces is studied, 

namely topology, differential topology and geometry, respectively. This section deals with such dif- 

ferentiable shape mappings and how they are related to differentiable or smooth shapes as usual in 

geometric modelling. Surprisingly, or may be not, the concept of C' smoothness as defined by dif- 

ferential topology is basically a specialisation of the notion of continuity defined in topology. C' 

smoothness is for parametric formulations of curves and surfaces what we call geometric continuity 
GT (visual smoothness) in CAGD. Moreover, the notion of C' smoothness was developed in mathe- 

matics to be independent of any formulations, regardless of whether they are parametric or implicit, 

or even explicit. Besides, the theory of smoothness in differential topology underpinnes the theory 

of singularities and the theory of stratifications, two of the essential theories to support the develop- 

ment of an integrated geometric model for solid modelling and parametric formulations of curves and 

surfaces as usual in CAGD. 

6.1. Topological structure of a manifold. Manifolds are generalisations of curves and surfaces 

to arbitrary dimensional objects. This subsection deals with the topological structure underlying the 

differential structure of a manifold. The differential structure of a manifold is introduced in the next 

subsection. 
As a preliminary to the definition of a differentiable manifold, we recall the definition of a topo- 

logical manifold (or just manifold). A manifold M of dimension n is a Hausdorff space with a coun- 

table basis of open sets and with the further property that each point has a neighbourhood homeomor- 

phic to an open subset of II [15, p. 52]. Obviously, the open sets of M form a topology or topological 

structure on M. Therefore, a topological manifold M can be covered with a family of open subsets, 

each one can be assigned coordinates in IWß by a homeomorphism from it onto an open subset of R. 
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Let U one of those open subsets in M and fa homeomorphisrn from U onto an open subset of I1g", 

Figure 8. To xEU we assign then coordinates fj (x), 
... , 

f" (x) of its image f (x) in W. Each compo- 

nent function f, (x) of f is a real-valued function on U, the i-th coordinate function. Each pair (U, f) 

is called a chart (or local coordinate system or coordinate neighbourhood); U is called a chart do- 

main or patch. Obviously, if x lies also in a second chart (V, g) (more specifically, in a patch V), then 

it has also coordinates gl (x), 
... , g"(x) in this neighbourhood. Since f and g are homeomorphisms, 

this defines a homeomorphism h=gof -1 :f (U (1 V) -+ g(U n v), the domain and range being the 

two open subsets of 1W' which correspond to the points of U (1 V by the two coordinate mappings f, 

g, respectively [15, p. 52], Figure 8. Similarly, by definition, h-1 = fog-1 is also a homeomorphism. 

These homeomorphisms h=gof -1 and h-1 =fo g-1 are called transition mappings (or overlap 

mappings or coordinate change mappings). For 'geography' reasons, a collection of charts that cover 

a manifold is called an atlas. 

f2 S ýý 

h=g o f' 

gi 

FIGURE 8 

When a n-manifold is globally homeomorphic to III, only one chart is necessary; otherwise, 

more charts are required. In fact, because of the local homeomorphism between a n-manifold and R11, 

/I 
s" 

g 
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each point in a manifold is given a chart associated with its neighbourhood. [By definition, a local 
homeomorphism of R'1 is a homeomorphism of some open subset of Rn onto another [44, p. 2]. This 

means that the domain of a local homeomorphism need not be all of R/1. ] If a manifold is (globally) 
homeomorphic to Ilan 

, then it is a neighbourhood of all its points, and 1W' can be considered as the 

only coordinate system for all its points. Therefore, the charts on a manifold are defined by local, 
bijective, continuous mappings called homeomorphisms from a n-manifold to 1W' 

. 
Of course, there 

are usually several ways (i. e. atlases) to cover a manifold with charts. 

N 

S 
(a) (b) 

FIGURE 9 

EXAMPLE 1.27. Using only stereographic coordinates (u, v), we need at least two stereographic 

charts (or local stereographic coordinate systems) to cover a 2-dimensional sphere S2 centered at the 

origin (0,0,0). The first chart is obtained by first removing the south pole of 52 and then project 

stereographically onto a plane tangent to the north pole N. The stereographic projection of any point 
(x, y, z) of this chart onto the north tangent plane z=1 is given by the first two coordinates of the 

point (u, v, 1) resulting from the intersection of the tangent plane z=1 with the straight line defined 

by the south pole S and (x, y, z), as illustrated in Figure 9(a). The south pole S works here as the 

stereographic projection centre for all points in the first chart. Similarly, we can change the roles of 

the poles to obtain the second chart, Figure 9(b). Note that these two stereographic projections are 

in fact homeomorphisms because a pole has been removed from 52 before each projection onto the 

plane. However, no single homeomorphism can be used between 52 and V. This example illustrates 

a topological impossibility to cover 52 with just one chart. 

EXAMPLE 1.28. The surface of S2 in R3 can be also parametrised by polar coordinates (0,0). 

They can be obtained from the cartesian coordinates x= sin 0 cos 0, y= sin 0 sin 0, and z= cos 0, with 

E [0,21r] and 0E [0, i] by inversion to yield 0= tan- 1((x2+Y2) h12) 
and = tan-' (y/x). Note that 
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the 0-coordinate has a discontinuity at z=0, what means that the polar coordinates are not defined 

on the equator of S2. Similarly, the 4-coordinate is not defined at the poles since x=y=0. This 

suggests that we have to use various polar parametrisations to cover completely S2 with polar charts. 
This example illustrates a analytic impossibility to cover S2 with just one chart. Obviously, other 
coordinate systems, either stereographic projections from different points (other than poles) on S2 or 
polar coordinate systems, or even distinct kinds of local coordinate systems on the same manifold 
could be used to cover S2. 

Therefore, the number of charts on a manifold is determined by the fact that whether or not it is 
(globally) homeomorphic to R, and by the existence of discontinuities in the coordinates. 

6.2. Differential structures. The basic idea behind local coordinate systems associated with 

patches on a manifold is primarily to support differentiation processes on it. This is very important 

to engineering applications, in particular engineering analysis (e. g. computation of volumes, areas, 

moments of inertia, etc. ) of mechanical parts with parametric geometry and finite-element modelling 

of engineering artefacts designed on CAD systems. 

The coordinates on a manifold may be kept arbitrary until some specific calculation is to be 

carried out. Then, because coordinate systems or charts of an atlas usually overlap, we have to 

introduce a certain compatibility condition to guarantee that the charts fit together nicely, say in a 

sufficiently smooth way. It is then necessary to ensure that the transition from a coordinate system 

to another is smooth. Without this compatibility condition, a differentiable function in one chart may 
be not differentiable in the other chart. As shown below this enables us to develop calculus on a 

manifold. This is exactly the essence of the differential topology, a combination of manifolds (from 

topology) with the differential calculus of mappings (from function theory) between manifolds. 

Now we are ready to construct differentiable and analytic structures on a manifold. To this end, 

recall that every point of a topological manifold M lies in a very large collection of charts, but when- 

ever two chart patches overlap we have formulas just given for change of coordinates. The basic idea 

that leads to differentiable manifolds is to try to select a subfamily or subcollection of charts (i. e. 

an atlas) so that the change of coordinates is always given by differentiable mappings; that is, the 

homeomorphisms associated with the charts of an atlas must be differentiable mappings. 
Let us then review some important notions from (real) function theory (see [56, p. 2] for more 

details). Let 1I8m and 1W1 denote two Euclidean spaces of m and n dimensions, respectively. Let X, Y 

be open subsets of II m, R/z, respectively, and f: X -+ Y be a mapping of X into Y. If n=1, we say that 

the function f is CT (or C' differentiable or differentiable of class Cr, or Cr smooth or smooth of class 
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Cr) on X, for rEN, if the partial derivatives of f exist and are continuous on X, that is, at each point 
xEX. In particular, f is CO if f is continuous. If n>1, the mapping f is Cr if each of the component 
functions f (1 <i< n) of f is Cr. We say that f is C°° (or just differentiable or smooth) if it is Cr 
for all r>0. [In the case when n=1 it is customary to replace the term "mapping" (or "map") by 

the term "function". ] Moreover, f is called a Cr difteomorphism if: (i) f is a homeomorphism and (ii) 
both f and f- 1 are Cr differentiable, r>1 (when r= oo we simply say diffeomorphism). 

DEFINITION 1.12. Any two charts (U, f) and (V, g) are C' compatible if U nV nonempty implies 

that the mappings h= go f- 1 and h-1 =fo g-1 giving the change of coordinates are Cr. This 

is equivalent to requiring h and h-1 to be CT diffeomorphisms of the open subsets f (U f1 V) and 

g(U f1 V) of 1W', as illustrated in Figure 8 with m=n=2. 

The condition of compatibility has then to do with the differentiability of transition mappings. 
Thus, 

DEFINITION 1.13. A Cr atlas on a manifold M of dimension m is a collection of charts { (Ul, f) }, 

iEI, on M where fl(Ui) is an open subset of R' such that the following conditions are satisfied: 

(i) M=UUj; 

(ii) for each pair i, jEI the charts (UU, f1) and (Uj, fj) are Cr compatible. 

Therefore, for differentiable manifolds, all transition mappings must be homeomorphims (or CO) 

and C' (1 <r< oo), and so an atlas is said to be a Cr atlas (or Cr differentiable atlas or atlas of class 
Cr). A differential or smooth atlas is just a CO° atlas. 

REMARK 1. The condition (i) is here called atlas condition and concerns a topological structure 

of a manifold. In fact, the open sets in a manifold define a topology [1, p. 125]; for a proof, take as basis 

of the topology the family of finite intersections of charts domains or patches. Furthermore, given 

such an atlas, there is a unique topology on M making it a CT atlas on M [60, p. 14]. The condition 

(ii), here called differential compatibility condition, has to do with the differential compatibility of the 

transition mappings. 

Obviously, every manifold has many possible atlases. Two C' atlases are equivalent if the union 

of them is also a C' atlas. If the union of two C' atlases is again a C' atlas, they are said to be 

Cr compatible. The Cr compatibility of atlases is an equivalence relation, the equivalence class of 

which is called the Cr structure. It is also said that mutually Cr compatible atlases define the same 

Cr structure on M [91, p. 134]. The union of the atlases in a Cr structure is called the maximal Cr 
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atlas. Of course, if r= oo, we have a C°° structure (also called a differential or smooth structure) on 

a manifold M. 

In order to specify a differentiable structure on a manifold, it suffices to specify a differentiable 

atlas and, in general, one preferably chooses one as small as possible. 

EXAMPLE 1.29. The Euclidean space R'1' is the most trivial example, where a single chart covers 

the whole space and f is the identity mapping. This is true even if we let R' mean a single point 
for m=0. The manifolds of dimension 0 are then the discrete topological spaces. Every discrete 

topological space X is a 0-manifold, the charts being given by ({x}, f), f: xH0, xEX. 

EXAMPLE 1.30. Let M be a connected 1-dimensional manifold. There are only two manifolds 

possible: a real line R and the circle 51. All the others are homeomorphic to either R or 51. Let 

us construct an atlas on S1. Specifically, take the circle x2 + y2 =1 in R2 
. 

At least two charts are 

necessary, as pictured in Figure 10. Let fi 1: (0,2n) -+ 51 be defined by fi 1: 0H (cos 0, sin 0) whose 

image is S1-{ (1,0) }. In addition, let f2 1: (-it, +it) -+ S1 be defined by f2 1: 0 (cos 0, sin 0) 

whose image is 5 1- { (-1,0) }. Clearly, fi 1 and f2 1 are invertible and all the mappings fl, f2, fi 1 

and f2 1 are continuous. Thus fl and f2 are homeomorphisms. It is not difficult to check that the 

mappings f21 = fl 0 f2 1 and f12 = f2 0 fl 1 are smooth. 

tai 

(b) 

fý 0 2' 
e 

f- 
. aý e 

FIGURE 10. Two charts on a circle 51. 

EXAMPLE 1.31. The n-dimensional sphere Sn is a differentiable manifold (see [91, p. 136] for a 

proof). 
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DEFINITION 1.14. A Cr manifold M of dimension m is a topological manifold with a Cr structure 
of dimension m. Of course, if r= oo, M is called a C°° manifold (or differential manifold or smooth 
manifold). 

REMARK 2. Note that no assumption on the connectedness has been made for a manifold. In 
fact, in many mathematical applications the manifolds are disconnected. 

REMARK 3. The transition mappings of a C' structure of a manifold are diffeomorphisms. This 
is of paramount importance in geometric design, because as seen later it means that differential mani- 
folds are in fact visually smooth. That is, a C' manifold (e. g. a curve or a surface) is what in geometric 
design is called a GT manifold, or a manifold with geometric continuity G'. Moreover, because the 
definition of a C' manifold does not depend on the representation, whether it is parametric, explicit 

or implicit, the concept of geometric continuity seems to be redundant from a mathematical point of 

view. 

6.3. Analytic structures. An analytic structure on a manifold M is defined in a similar way to 

a differentiable structure. We just replace "differentiable" by "analytic" transition mappings. In this 

case M is called an analytic manifold. It is clear that we can always regard an analytic manifold 

as a differentiable manifold. It is often convenient to do so because it is known that the class of 
differentiable functions is much richer than the class of analytic functions in R n. In fact, analyticity is 

subsumed under differentiability. In other words, every analytic manifold is a differentiable manifold, 
but not vice-versa. 

Let us make clear the relationship between analyticity and differentiability in Rý. Let f (x) (x = 

XI) ... , xn) be a real-valued function defined on an open subset U of W. The function f is analytic at 

the point p in U if there is a neighbourhood of p on which f can be represented by means of its Taylor 

expansion in the variables x= xl, ... , xz [5, p. 115]. Obviously, f is analytic on U if it is analytic at 

each point of U [106, p. 56]. From the theory of power series, we know that such a function has partial 

derivatives of all orders and is thus differentiable [98, p. 181 ]. On the contrary, a differential function 

need not be analytic. To make the distinction between differentiable and analytic functions concrete, 

let us take the following classical example in mathematical literature. 

EXAMPLE 1.32. Let 

e-1/x2 for x0 f fix) 
0 for x=0 

Then f is differentiable even at the point x=0. But all derivatives of f are equal to zero at t=0, 

that is, all Taylor coefficients of f vanish at x=0. The only real analytic function with this property 
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is the function which is identically zero. Thus, because of the correspondence 1-1 between analytic 
functions and their Taylor series, f cannot be real analytic at t=0. Besides, note that for any analytic 
function there is a vast horde of differential (or smooth) but nonanalytic functions with the same 
Taylor series expansion [43, p. 588]. 

This implies that engineering artefacts, or at least their frontiers, must be analytic. Otherwise, one 

cannot avoid the mathematical horror of pathologies like that in Example 1.32. Analyticity guarantees 
the uniqueness of Taylor series for a function. We conclude that analytic spaces constitute a first 

approximation to an appropriate geometric coverage or domain in geometric modelling. 
By generalisation of functions to mappings, we say that a mapping of an open subset of Rn into 

Ilan is called analytic if the real-valued functions which describe this mapping are all analytic. Thus, 

a differentiable manifold is called (real) analytic if it may be covered by a family of charts among 

which the coordinate transformations are (real) analytic mappings. It follows that the product MxN 

of two (real) analytic manifolds M, N is (real) analytic (e. g. I1ý3 = JR1 x JR2) and that a submanifold of 

a (real) analytic manifold is (real) analytic [5, p. 118]. 

7. Convexity theory: convex shape mappings 

The notion of convex hull H(X) of a point set X is central to theory of convexity. (See, for 

example, the book entitled Convexity due to R. Webster [114] for a good reference about convexity 

theory. ) The convexities of a point set X in IRS's concerns to the convex subsets {XJ definable in X. 

The concavities of X are the convexities of the complement of X in H (X), say H (X) - X. On the other 

hand, a mapping f: X -+ Y is convex or convexity-preserving if the image under f of each convex set 

in X is a convex set in Y [114, p. 343]. That is, a convex mapping transforms every convex subset of 

a point set X into a convex subset of the corresponding image point set Y. The most familiar type of 

a convexity-preserving mapping is the affine mapping. But, not every convexity-preserving mapping 

is affine [114, p. 343]. In fact, Meyer and Kay [82] proved in 1973 that, if f: Rn --+ R' (m > 2) is 

an injective convexity-preserving mapping, then f is an affine transformation. Affine mappings are 

collinearity-preserving, i. e. they map parallel lines onto parallel lines [114, p. 343-350]. For example, 

the uniform scaling is an affine mapping -and therefore a convexity-preserving mapping- that 

preserve the ratio of the distances between any three points, not the distances themselves. So, the 

uniform scaling of a cube has as image a bigger cube. But, under a convexity-preserving mapping, 

a cube can be transformed into a parallelipipedic block -preserving so the collinearity-, or into a 

pyramid -not preserving the collinearity. 



7. CONVEXITY THEORY: CONVEX SHAPE MAPPINGS 31 

Apart of the preliminary work due to Gomes and Middleditch [45], no mathematical theory has 
been devised so far for geometric feature modelling, but the convexity theory seems to be able to fill 

the gap. Let us then concentrate on convex mappings. A convex mapping induces a convex decom- 

position in both (not necessarily convex) X and Y such that each convex subset of X corresponds to 

a convex subset of Y. We are particularly interested in convex homomorphisms, i. e. mappings that 

map convex subsets of X onto convex subsets of Y, preserving the interrelationships or adjacencies 
between them. Doing so, we can determine whether X and Y have the same convex type, or, equiva- 
lently, to say that they are convex-equivalent. The number of convex subsets is not necessarily finite, 

though the finite case is easier to deal with on computers. 

Y 

FIGURE 11 

X Y 

FIGURE 12 

EXAMPLE 1.33. In Figure 11, X has two irreducible convex subsets, while Y has three irreducible 

convex subsets. Therefore, X and Y have different convex types, or, equivalently, they are convex 
inequivalent. 

Recall that, by definition, an irreducible convex subset of a set X cannot be a subset of another 

convex subset of X. 

EXAMPLE 1.34. In Figure 12, X is not finitely decomposable into convex subsets. It only admits 

an infinite convex decomposition into triangles, each of which has a vertex at each point of the arc 

in the boundary of X. But, the point set Y admits a finite convex decomposition into two irreducible 

convex subsets. Thus, X and Y have distinct convex types. 
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Examples 1.33 and 1.34 suggest that the number of irreducible convex subsets is a shape invariant. 

Let us call it convexity number, which is denoted by ý. As usual for shape invariants, the fact that 

two point sets have identical convexity numbers does not mean that they have the same convex type. 

However, if they have the same convex type, they necessarily have identical convexity numbers. 

XYZ 

FIGURE 13 

XYZ 

FIGURE 14 

EXAMPLE 1.35. Let us look at Figure 13. The L-shaped objects X, Y, Z have all the same 

convexity number ý=2. Besides, they have analogous adjacency relationships. Thus, they have the 

same convex type. Note that, the convex type of a point set does not change by varying the sizes of 

its convex subsets. 

EXAMPLE 1.36. Let us look at Figure 14. X is a H-shaped object, Y is a U-shaped object, and Z 

is a'-i-shaped object. They have identical convex types since their convexity numbers, as well as the 

adjacency relationships between the corresponding convex subsets, are equal. Intuitively, they have 

the same convex type because Y can be obtained from X by moving down the convex subset X2, and 

Z can be determined from Y by moving down the convex subset Y3. Note that these translations of 

convex subsets do not change the adjacency relationships between analogous convex subsets. 
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However, the objects X, Y, Z depicted in Figure 14 have distinct convex patterns somehow. X has 
the convex pattern of a H-object, Y has the convex pattern of an U-object, and Z is a'-'-shaped object. 
In fact, in terms of convexity, they differ from each other somehow since X possesses two concavities, 
Y has only one concavity, and Z has also two concavities. To distinguish between them, we have to 

use more strict convex mappings, called strong convex mappings. A strong convex mapping is a 
convex mapping defined not only for X, Y but also for their convex hulls H (X), H (Y) such that: 

" Convex subsets of X are mapped onto convex subsets of Y. 

" Convex subsets of H (X) -X are mapped onto convex subsets of H(Y) - Y. 

" Adjacency relationships are preserved between analogous convex subsets of H (X) and H (Y) 
. 

" The convex type is preserved between analogous unions of (two) adjacent convex subsets of 
H(X) and H(Y). 

Instead of the convex hulls H(X), H(Y), we could alternatively use two of their convex superhulls 
ýZ (X) 

, 
N(Y). A convex superhull of a set is a superset of its convex hull. The existence of a strong 

convex mapping between X and Y means that X and Y have the same convex pattern. Clearly, two 

objects with the same convex pattern are of the same convex type, but the converse is not necessarily 

true. For example, X, Y, and Z in Figure 14 have all the same convex type, but distinct convex 

patterns. 

Alternatively, the convex pattern of a point set may be determined by applying the boundary ex- 

tension technique (BET) to the concavities of an object. The result is a decomposition into convex 

subsets, called BET convex decomposition, or simply BET decomposition. (A similar convex decom- 

position has been proposed in [45]. ) It is illustrated in Figure 15. Basically, the BET decomposition of 

a 2-dimensional object is obtained by extending edges incident at concave vertices. For 3-dimensional 

objects, we extend faces incident to concave edges instead. It is here assumed that an object admits a 

finite convex decomposition (see X in Figure 12 for a counterexample). The main advantages of the 

BET decomposition of a point set are: 

" The adjacency pattern is explicitly represented through intersection convex subsets. 

" It is adequate as a general convex decomposition for geometric feature modelling, indepen- 

dently of the design sequence of an engineeering artefact. 

" It enables the construction of the convex pattern. The resulting convex pattern is similar to 

that one obtained by the medial-axis transformation [12]. 

In fact, convex pattern of a set X can be obtained by combining the adjacency relationships 

between convex subsets of X with suplementary geometric information. This geometric information 
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concerns the 1-dimensional object formed by connecting the geometric centers of adjacent convex 
subsets of X through line segments. 

X 

Y 

Xi I ýý! 
IX3 

X. 7 X2 IX2.; I 

Yº I} 

IY1.2 Y2 IY, iI 

L `y3 

FIGURE 15 

Vv 

X1,2 X2 X2,3 

Y 

Y1,2 

Y2.3 

EXAMPLE 1.37. In Figure 15, the U-shaped object X, its BET decomposition, and its corre- 

sponding convex pattern, respectively, are depicted. X consists of three convex subsets X1, X2, X3. 

The convex subsets X1,2 and X2,3 are intersection subsets of XI, X2, and X2, X3, respectively. These 

intersection subsets explicitly represent the adjacency relationships between convex subsets, what 
facilitates the construction of the convex pattern of X. X1 denotes the convex set of H (X) - X. Simi- 

larly, Figure 15 also illustrates the L, -shaped object Y, as well as its BET decomposition and convex 

pattern. Y1 and Y2 are the convex subsets of H(Y) - Y. As shown, X and Y have distinct convex 

patterns, though their convex types are equal. 

The discussion above suggests that the convexity theory is relevant as a mathematical theory for 

geometric feature modelling. 

8. Shape invariants, shape taxonomy 

From the discussion above follows that there is a close relationship between a shape mapping 

between two sets and their shapes. Basically, every kind of shape mapping allows us to get a different 

way of looking at the shape of a figure or subset of W. A particular shape mapping induces a 
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new view or perception of the shape of a particular figure. That is, there are as many shape classes 
as shape mappings. So, we have homotopy shape classes, topological shape classes, convex shape 
classes, diffeomorphic shape classes, geometric shape classes hierarchicaly related by a hierarchy 

of shape mappings, from the most general to the more particular mapping, namely: homotopies, 
homeomorphisms, convex mappings, diffeomorphisms, and isometries, respectively. 

Shape invariants are obviously associated with each sort of shape mapping. In the context of 

geometric modelling, some of the more relevant shape invariants are Betti numbers (invariant under 
homotopies and homeomorphisms), dimension (invariant under homeomorphisms), convexity (invari- 

ant under convex mappings), Cr continuity (invariant under diffeomorphisms), and distance (invariant 

under isometries). Such shape invariants enable us to classify the admissible shapes of subsets in W. 

That is, a taxonomy of distinct shape classes of subsets of TW can be determined by using these shape 
invariants. Obviously, there are other shape mappings that give rise to other shape classes in the 

mathematics literature. For example, Borsuk [17] introduced the notion of fundamental class from 

X to Y -being X and Y two compacta-, which is a generalisation of the classical notion of the 

homotopy class of a mapping X to Y. However, in geometric modelling, we are interested only in 

spaces with 'well-behaved' local properties, that is Hausdorff spaces. This avoids certain pathological 

spaces which have the local disc-like property but are not Hausdorff. The aim of this section is then 

to establish a shape taxonomy for figures or subsets of IE8' that are relevant in geometric modelling. 

8.1. Geometric shape classes. Geometric design of engineering artefacts make use of computer 

graphics systems to visualise geometric objects on a computer display. One of the main properties 

that such geometric objects should possess is that they should keep their Euclidean-congruence under 
isometries. This fact allows the user or designer to move, rotate, and mirror a geometric object on 
display screen without any kind of shape deformation. 

The Euclidean-congruence requirement of geometric modellers is critical in setting up their geo- 

metric coverage. The most common geometric class of objects used in geometric modelling is the 

class of semi-algebraic sets, i. e. point sets defined by polynomial equalities and inequalities (see 

Chapter 3 for further details). They form a geometry called semialgebraic geometry which is invari- 

ant under rational mappings [58, p. 4531. Since every isometry is a particular rational mapping, we 

conclude that applying an isometry to a semialgebraic set has as a result another semialgebraic set 

that is Euclidean-congruent with the former set. Thus, the Euclidean congruence leads to the defini- 

tion shape subclasses in a geometry such as, for example, the semialgebraic geometry, each subclass 

identifying a particular geometric shape. 
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EXAMPLE 1.38. In Figure 16, the rectangles A= (x > 0) (1 (x < 1) n (y > 0) f1 (y < 1), B= 
(x>0)f1(x<2)n(y>0)fl(y<1), C=(x>0)f(x<3)f(y>0)f(y<1)belong to distinct 

semialgebraic subclasses because they are not congruent, i. e. they cannot be exactly superimposed on 

each other by a rigid motion (translations, rotations, and reflections). In fact, their areas -recall that 

the area of a geometric figure is an Euclidean geometric invariant- are distinct. 

1A1B1C 

123 

FIGURE 16. Semialgebraic rectangles with distinct geometric shapes. 

Obviously, each semialgebraic subclass defined by congruence is an equivalence class. 

EXAMPLE 1.39. In Figure 17, the point sets A (x2 + y2 < 4) \ [(x > -1) n (x < 1) n (y > 0)], 

B= (x2+y2 <4)\[(y> -1)n(y< i)n(x>o)], C=[(x-4)2+y2 <4]\[(y> -i)n(y< i)n(x> 

4)] are Euclidean-congruent They are in the same Euclidean geometric shape class, i. e. they are 
Euclidean-geometrically equivalent. In geometric modelling, they are called instances of the same 

geometric primitive or point set. Applying a clockwise rotation of 90 degrees about the origin to A 

results in B, and B is transformed into C by a translation Sx = 4. 

FIGURE 17. Distinct semialgebraic slotted discs that are Euclidean-geometrically equivalent. 

The number of distinct semialgebraic subsets in 1I'ß is certainly infinite, each belonging to a 

semialgebriac subclass. This means that, given a particular geometry (semialgebraic or else), it is not 

possible to finitely enumerate all of its geometric shapes. It is up to designers and constructors of 

geometric kernels an CAD systems to define basic geometric primitives and constructive algorithms 

to generate more complex geometric shapes that embody engineering components, assemblies, or any 

other artefacts. 
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8.2. Topological shape classes. Often it is not easy to find a homeomorphism between two 

subspaces of RI ; for example, between a doughnut and a torus. This is troublesome because leads to 
difficulties in characterising classes of topological equivalence for subspaces in R. In this respect, 
topological invariants are quite useful. They are properties (e. g. compactness, orientability, etc. ) or 
quantities (e. g. Euter characteristic, Betti numbers, etc. ) which are preserved under homeomorphisms. 
The interesting thing about topological invariants is that if a topological invariant is not the same for 

two topological spaces, they cannot be homeomorphic to each other. However, if it is the same for 
both topological spaces, it is not possible to conclude they are homeomorphic. However, sometimes, 
the topological equivalence of two spaces can be established by means of a few invariants; the well- 
known Surface Classification Theorem (see [3, p. 18]) is an example of it. 

8.2.1. Compactness. Although boundedness fails to be a topological property, a related notion 
does qualify, say compactness. As mentioned before, boundedness is a mathematical notion for what 
in geometric computing is called 'finite extension". As far as compactness is concerned, it is related to 

the concept of "finite describability" in geometric computing. This is one of the major requirements to 

represent geometric objects on computers; for example, a solid cube may be described by the union of 

a finite family of subsets homeomorphic to closed balls D, 1<n<3, respectively, 12 closed edges, 
6 closed faces, and one closed solid. 

Let X be a topological space. A covering of X is a family {A, } of subsets of X such that U1EIAZ = 

X. If a subset of a covering of X still covers X, it is said to be a subcovering. Note that a covering is 

not necessarily a topology, because the nature of the subsets of X are left unspecified. But, if all the 

Ai happen to be the open sets in X, i. e. open sets of its topology, the covering is said to be an open 

covering. Analogously, if all the Ai are the closed sets in X, one has a closed covering. Note that for 

any topological space X, the set {X } is an open (also closed) covering of X as is {X, 0}. 

DEFINITION 1.15. A topological space X is compact if every open covering of X has a finite 

subcovering. 

EXAMPLE 1.40. A point is compact. 

EXAMPLE 1.41. An infinite discrete space X is not compact, since the set of singletons {x} for 

each xEX is an open covering of X without finite subcovering. 

EXAMPLE 1.42. Any finite space X is compact, since any open covering of X is a finite set. 

EXAMPLE 1.43. Let {]1/n, 1]}, nEN, be an open covering of ]0,1]. The interval ]0,1] is not 

compact because no finite subcovering of {]1/n, 1]} covers ] 0,1]. 
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As this latter example shows, boundedness is not enough for a set to be compact. Another condi- 
tion, say covering finiteness, is required. 

THEOREM 1.1. Let X be a subset of R. X is compact iff it is closed and bounded. 

Since compactness is an topological invariant, it can be used to classify topological shapes. Here 
they are some examples in W, the space of interest in geometric modelling. 

EXAMPLE 1.44. A closed line [-1,1] is not homeomorphic to an open line (-1,1), since [-1,1] 
is compact while (-1,1) is not. However, (-1,1) and (-1,1] are not distinguishable via compact- 
ness, because none of them is compact. 

EXAMPLE 1.45. A circle 51 is not homeomorphic to Ifs, since S1 is compact in 112 while III is not. 

Compactness is not only significant for distinguishing topological shapes, but also in compactifi- 
cation operations in geometric computing. If X is a compact space, then removing points from X is 

liable to produce a non-compact space. The idea of compactification is the reverse procedure -given 
a space X, can points be added to X to produce a compact space? 

DEFINITION 1.16. A compactification of a space X is a compact space k and a homeomorphism 

f from X onto the subset f (X) of X such that f (X) is dense in X, i. e. Cl(f (X)) = X. 

There are several types of compactifications. The simplest compactification is the Alexandroff 

one-point compactification. This compactification requires only one point to become a space compact. 

For example, the one-point compactification of J' is homeomorphic to the n-sphere §n; in particular, 
II82 which is homeomorphic to S2 with a point removed can be compactified into 52 by adding a point. 

A more general compactification is the Freundenthal compactification. The intuitive idea is that 

the open interval ] 0,1[ should be compactified by adding two ends, for example by adding 0 and 1 to 

yield the closed interval [0,1]. With a Freundenthal compactification X\X is 0-dimensional, but the 

number of ends may be infinite. 

In geometric computing, more general compactifications are necessary as X\X is possibly n- 
dimensional; a classical example is the compactification of the set difference of two closed solids 

with two faces partially overlapping. Compactifications are then particular 'regularisation' opera- 

tions in geometric modelling. However, the 'regularisation' operation of eliminating 'dangling' or 

remanescent subspaces from a dimensionally non-homogeneous space is not a compactification ope- 

ration. It is worth noting that even the Euler operators that subdivide a closed surface can be viewed as 

a two-stage operation of de-compactification (e. g. remove a point x from S2 yielding S2 \ x) followed 

by its compactification (i. e. union of x to S2 \ x). 
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8.2.2. Connectedness. The examples in Section 4 show that the continuity of a function depends 
on the topologies of X and Y, and it does not correspond to our intuitive notion of a graph without 
'gaps' since the graph of a continuous function may have gaps, as illustrated above. The relationship 
between continuity of a function and the inexistence of 'gaps' in its graph is, however, valid with the 
usual topology in III". The existence or not of 'gaps' in a set is characterised by a topological property 
called connectedness, which is distinct from continuity of a function. 

Connectedness, like compactness, is a topological invariant. That is, if X is homeomorphic to Y, 
then X is connected if Y is connected. Therefore, compactness of a topological space X can be also 
described in terms of the open sets of its topology. 

THEOREM 1.2. A topological space X is connected iff X is not the union of two non-empty disjoint 

open sets; or, equivalently, X and 0 are the only subsets of X which are both open and closed. 

EXAMPLE 1.46. Let X= {a, b, c, d, e} be a set and T= {X, 0, {a}, {c, d}, {a, c, d}, {b, c, d, e}} 
a topology on X. X is disconnected or separated since {a} and {b, c, d, e} are complements and 
hence both open and closed. In other words, is the disjoint union of {a} and {b, c, d, e}, i. e. X= 
{a} U {b, c, d, e}. 

EXAMPLE 1.47. 

1. A discrete space with more than one point is disconnected, while 0 and {a} are connected 

spaces. 
2. The real line Iii with the usual topology is a connected space since IR and 0 are the only 

subsets of IR which are both open and closed. Analogously, r is connected. 
3. Any open interval of III is homeomorphic to IR and hence is connected. 

The connectedness of a topological space X can also be described in terms of the closure operator 
in X. A topological space X is connected if for any non-empty subsets A and B such that X=AUB, 

either A fl C1(B) 0 or Bn C1(A) 0. 

EXAMPLE 1.48. Let A =]O, 1 [, B =] 1,2[ and C= [2,3 [ be intervals on III. Now A and B are 

separated since C1(A) = [0,1] and C1(B) = [1,2], and so A fl Cl(B) and C1(A) nB are empty. But B 

and C are separated since 2EC is a limit point of B; hence, Cl(B) nc =[1,2]n[2,3 [= {2} 0. 

EXAMPLE 1.49. Let A={ (x, 0) E 1R2 :x< 0} and B={ (x, y) E JR2 :y= sin (1 /x), 0<x< 11 be 

two subsets of JR2 , Figure 18. Now (0,0) in A is a limit point of B; hence A and B are connected. 
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If a space is not itself connected, then the next best thing is to be able to decompose it into a 
disjoint family of maximal (or largest) connected subspaces. 

DEFINITION 1.17. A component C of a topological space X is a maximal connected subspace 

of X, that is, a connected subspace which is not a proper subset of any connected subset of X. 

Clearly, C is non-empty. Also, a connected space clearly has only one component, namely, the 

space itself. In a discrete space, it is easy to see that each point is a component. 

Connectedness is related to a numerical topological invariant: the 0th Betti number (30. It stands 

for the number of disjoint 'pieces', called components, of a topological space. Because of the maxi- 

mality of the components, ßo captures then the largest shape of a topological space. Still in the present 

chapter, we will see that the Betti numbers capture the shape in large of a topological space, called 

global shape. They are also important in the design of combinatorial geometric data structures such 

as, for example, B-Reps and in shape data structure proposed in this thesis. 

8.2.3. Cut-Pointedness. Let f: X --4 Y be a homeomorphism. If C is a component of a point 

xEX, then f (C) is a component of f (x) in Y. (This follows from the fact that ACX is connected if 

f (A) is connected. ) Consequently, f induces a bijection of the components of X to the components of 

Y. Thus, the number of components of X is a topological invariant of X; it is known as the 0th Betti 

number, j30. Despite the usefulness of this invariant to describe the global shape of a geometric object, 

and design and construction of shape data structures (e. g. B-Reps), it fails to distinguish different 

connected spaces. 

DEFINITION 1.18. Let X be a connected space, and kEN. A point xE Xis a cut point of order 

k if X\ {x} has k components. 
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Let X be connected, and f: X -+ Ya homeomorphism. A point x in X is a cut point of order k in 
X if f (x) is a cut point in Y. Therefore, the number of cut points of order k is a topological invariant 

in X. 

EXAMPLE 1.50. The open interval ]0,1[ has no cut points of order 1; the half-open interval [0,1[ 

has one cut point of order 1; the closed interval [0,1] has two cut points of order 1. Thus, no two of 

the spaces ]0,1 [, [0,1 [ and [0,1] are homeomorphic. Note that we have not considered any interior 

point of the intervals, since their interiors are homeomorphic, i. e. every interior point is a cut point of 

order 2. 

EXAMPLE 1.51. Let f: [0,1 [-ý j2 be defined by f (t) = (cos2itt, sin27tt), i. e. f is one-to-one 

and continuous function which maps [0,1 [ onto the unit circle, Figure 19. Following the cut point 

invariant, one concludes that [0,1 [ and unit circle are not homeomorphic; for example, removing the 

point t= 1/2 from [0,1 [ yields two components, but removing any point from the circle, the number 

of components holds at 1. 

FIGURE 19. The half-open interval is not homeomorphic to the circle. 

EXAMPLE 1.52. In Figure 20, no two of the following 1-dimensional spaces are homeomorphic 

since they can be distinguished by the numbers of cut points of various orders. Every point of the 

triangle (a) is a cut point of order 1; in (b), r is a cut point of order 2; in (c), the point r is the only cut 

point of order 3; analogously, in (d), the points r and s are the only cut points of order 3. 

However, the cut point invariant fails to distinguish between the spaces depicted in Figure 21. 

Nevertheless, they can be distinguished from each other by means of a stronger invariant, called 

local cut point invariant. 

DEFINITION 1.19. A point xEX is a local cut point of order k if each neighbourhood N of x 

contains a connected neighbourhood M of x such that M\ {x} has k components. 
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Therefore, if X is homeomorphic to Y, then X and Y must possess the same number of local points 

of order kEN. The spaces of Figure 21 are distinguished by the fact that the first (a) has no local cut 

points of order 3, the second (b) has two local cut points of order 3, and the other (c) possesses a local 

point of order 4. 
Obviously, the representation of local cut points is an important requirement in the design of 

modern dimensionally non-homogeneous shape data structures, in particular those which are combi- 

natorial. Unfortunately, because of the lack of a general mathematical theory underpinning the design 

and construction of current geometric data structures, cut points are absent or poorly represented. 

Even vertex-based combinatorial B-Rep data structures fail to represent arbitrary shapes at a vertex 

(or cut point), i. e. they are not capable of representing a bouquet of arbitrary shapes at a vertex; this is 

apparent whenever at least a bouquet petal is multiply incident at a vertex, what requires a complete 

control of the data structure on connectedness at a cut point. 

8.2.4. Dimension. Dimension is perhaps the most important topological invariant. It allows at 

a first glance to distinguish between two spaces of distinct dimensions. This means that not all 'de- 

formations' are allowed; for example, a line cannot be coalesced to a point (or, conversely, a point 

cannot be pulled out to a line), a cylinder cannot be contracted into a disk (or, conversely, a disk 
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cannot be expanded into a cylinder), and so forth. That is, the so-called 'elastic deformations' or 
homeomorphisms are dimension-invariant. 

In fact, by the Theorem of the Invariance of Dimension, if R' is homeomorphic to TR 
, then 

m=n. Thus, two points, two open intervals, etc., and, in general, spaces homeomorphic to the unit 

open ball Ihn have the same dimension. These spaces homeomorphic to Ihn or Rn are called n-cells 
in the theory of cell complexes, and more generally in the homology theory. Cells are particular 

manifolds. Manifolds are locally-defined topological shapes or local topological shapes. In fact, a n- 

manifold is a topological space locally homeomorphic to Ilan. "Locally' means in the neighbourhood 

of each point of the manifold. That is, each point in a n-manifold has an open neighbourhood that is 

homeomorphic to 11'2. In this case the homeomorphism is said to be local (see [75, p. 122] for further 

details). The 'locality' of manifolds is reinforced by the fact that they often appear as 'building blocks' 

or 'bricks' of stratified objects. This is the case of stratified objects represented and manipulated by 

B-rep geometric kernels. Therefore, dimension allows us to distinguish points, lines, surfaces, solids 

and, in general, n-dimensional manifolds (or simply n-manifolds) from each other. Manifolds are 

then the basic (topological) shapes used in geometric modelling. All manifolds of the same dimension 

constitute a topological shape class. For example, all points are in the class of 0-manifolds, all the 

open line segments belong to the class of 1-manifolds, all the open surfaces belong to the class of 

2-manifolds, all the open solids are part of the class of the 3-manifolds, and so on. 

However, topological spaces with the same dimension are not necessarily homeomorphic. For 

example, a closed cell = Cl(B) is not homeomorphic to an open cell lß'1 , and a non-closed, 

non-open cell is not homeomorphic to neither a closed cell nor a open cell. These facts agree with 

the following theorem: if f: ID'I --+ D" is a homeomorphism, then f W, IHn and fI Sn-1, §n-1 are 

defined and are homeomorphisms. In other words, the homeomorphism between two subsets X, Y 

of R' implies the existence of homeomorphisms between their interiors and their boundaries. This 

is relevant because makes possible to distinguish between two non-closed, non-open subsets in IRn, 

what has not been possible so far. For example, in Figure 22, three non-closed, non-open subsets of 
V are depicted. None of them is homeomorphic to any other two. The boundary of the first (a) is 

0-dimensional, while it is 1-dimensional for the other two, (b) and (c); the boundary of the second 

subspace (b) has only one component, while the third has two components. 

8.2.5. Betti numbers, homology groups. Topological equivalence does not preserve geometric 

properties such as distances, angles, convexity, etc. A geometric mapping (rigid motion or isometry) 

is a particular homeomorphism with null elasticity. However, the elasticity of a homeomorphism is 

constrained by the fact that two distinct points of a space are not allowed to coaslesce into one point. 



(a) (b) (c) 

FIGURE 22 

For example, a solid cylinder is not topologically deformable into a disc, nor a disc into a point. As 

seen in Section 5, these two more general shape deformation mappings are called homotopies. In fact, 

since a solid cylinder, a disc, and a point are all contractible, they are said to have the same homotopy 

type. However, they do not possess the same topological type because they have distinct dimensions. 

Even equidimensional objects are not necessarily homeomorphic. This is the case for manifolds. 
In fact, local homeomorphisms do not distinguish between two manifolds of the same dimension. 

For example, a plane, a spherical surface and a toroidal surface are all 2-manifolds, but it is known 

that they are not of the same topological type. To see that two n-manifolds are topologically distinct, 

we make use of other topological invariants such as the homology groups H, z or Betti numbers 0, 

(n = 0,1,2, ... 
) 
. These topological invariants capture the global topological shape of a space up to 

topological equivalence. 

By definition, the n-th Betti number 13 of a space X is the rank of the n-dimensional homology 

group H, (X), that is, 0, = rank H, z(X) [66, p. 143]. (Recall that the rank of a group on a set X is the 

cardinal number of X [75, p. 69]. ) Homology theory assigns to any topological space Xa sequence of 

Abelian or commutative groups Ho (X ), Hl (X), H2 (X ), 
..., and to any continuous mapping f: X -f Y 

a sequence of homomorphisms f* : H, (X) -+ H,, (Y) (n = 0,1,2, ... 
) 
. 

Informally speaking, the n- 

dimensional homology group Hn (X) stands for a set of n-cycles of (the complex associated with) a 

space X that are essential to characterise the shape of X. For example, many 1-cycles are definable 

on a torus F2, but only two are essential to capture the topological shape of X; in fact, T2 = 51 x S1. 

Thus, the 1st Betti number of T2 is ßi = 2. The purpose of all of this is to come up with something 

that allows us to determine the essential topological shape of a space. Important characteristics of 

topological shape include the ability to make a loop by identifying two vertices of an edge, or enclose 

a cavity, as in the sphere or torus. Recall that 1-cycles are edges which form loops, and 2-cycles are 

faces that are gathered together to form a hollow cavity [66, p. 128]. 

Let X be a topological space. The rank of the group Ho (X) is equal to the number of connected 

components of X [75, p. 148]. That is, Ho (X) has a basis in 1-1 correspondence with the set of 
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components of X. Therefore, the structure of Ho(X) has to do with the connectedness of X. Similarly, 

the groups Hi (X), H2(X), ..., have something to do with some kind of higher connectivity of X [75, 

p. 148]. See [66, p. 131] for an algorithm capable of finding H, (X). By abuse of language, X is here 

taken as both a space and its associated complex. Thus, in the context of homology theory, X is 

a 'subdivided' space as in [21], or a stratified space as in this doctoral work. A stratified space is 

basically a space partitioned into manifolds (see Chapter 3 for more details. ) 

Since the clear relationship between the homology groups and Betti numbers associated to a stra- 

tified space X, one says that Betti numbers are topological invariants containing a lot of information 

about the global shape of a space. A k-th Betti number (3k denotes the number of essential k-cycles in 

X. 

FIGURE 23. Spaces with the same ßo = 3. 

EXAMPLE 1.53. Consider the four topological spaces in R3, Figure 23. Each has three essential 

0-cycles corresponding to three components; hence Po = 3. There are not essential higher dimen- 

sional cycles, so (3i =0 (i > 1). However, there are edges in 1-cycles as, for example, the 1-cycle 

bounding the disc (Figure 23(c)), and faces in 2-cycles as, for example, the box bounding an open 

solid (Figure 23(d)), but they are not essential. These two cycles bound an open disc and an open 

solid, respectively. They are said to be 'filled', and then not essential. To be essential, these cycles 

cannot bound any 'filling' manifold, they must form a loop with a through hole or a box with a hollow 

cavity. 

EXAMPLE 1.54. Consider the three topological spaces in IF83, Figure 24. Each has two essential 

1-cycles corresponding to their through holes; hence (31 = 2. The squared space (a) is of dimension 

1. The diagonal edge subdivides one through hole into two. The first hole corresponds to the 1-cycle 

a, and the second hole is identified by the 1-cycle P. Each 1-cycle consists of two edges of the square 

and the diagonal edge, as well as their bounding vertices. The object (b) possesses two essential 1- 

cycles a, (3 which are inner boundaries of the back to back moon-shaped 2-manifolds. Analogously, 
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FIGURE 24. Spaces with the same (3, = 2. 
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the 2-dimensional torus (c) includes two 1-cycles a and 0. Besides, this torus encloses a cavity, so 
their constituents, namely one vertex, two edges and a face, form a 2-cycle; hence, (32 =1 for such a 
torus. 

Thus, in k3 -the usual modelling space in geometric modeliing-, the first three Betti numbers 
PO, ßi, ß2 allow us to distinguish between spaces with different numbers of components, holes through 

components, and voids in components, respectively. Components, through holes, and voids are the 

global topological shapes in JR.. Betti numbers can be combined to form the Euler characteristic of a 

space X in R. 

THEOREM 1.3. (Kinsey [66, p. 142]) Let X be a n-dimensional space. Then 

%ýýXý - 
PO 

- 
ß1 +ß2 -+... + (-I)nßn 

As shape invariants, Betti numbers allow us to classify each d-dimensional subclass of manifolds. 
Starting with the lower dimension manifolds, it is clear that stratified 0-manifolds do not have neither 
1-cycles (or through holes) nor 2-cycles (or voids). In fact, they are only distinguishable from each 

other by the number of components. For example, a 0-manifold with just one point-component (a 

component with a single point) is topologically distinct from a 0-manifold with two point-components 

provided that their 0th Betti numbers are distinct, (30 =1 and ßo = 2, respectively. Obviously, a 

discrete topological space with an infinite number of points is a 0-manifold with an infinite number 

of point-components. 

The topological type of any 1-manifold is characterised by the first two Betti numbers. The third 

Betti number 132 is always zero for 1-manifolds, that is, they cannot possess essential 2-cycles (or 

internal voids). Therefore, any component of a 1-manifold is homeomorphic to either 13' (no through 

holes) or §1 (just one through hole). 

Similarly, 2-manifolds are classified by the first three Betti numbers. The novelty here is that 

now the essential 2-cycles may be part of 2-manifolds. However, any component of a 2-manifold at 
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most possesses one 2-cycle (or void). Any component of a 2-manifold is homeomorphic to either 

an open 2-ball ]32, a 2-sphere S2, or a 2-sphere S2 with a number of handles as illustrated in Figu- 

re 25(a), (b), and (c, d), respectively. In particular, the well-known Theorem of Surface Classification 

asserts that every orientable, compact, connected surface without boundary' is topologically equiva- 
lent or homeomorphic to a 2-sphere or a connected sum of tori [57, p. 122]. (Non-orientable surfaces 

are not considered here. ) The connected sum (#) of two surfaces is defined as follows: remove an 

arbitrary disc from each surface and connect the two resulting boundary circles by an arbitrary ge- 

neral cylinder. This suggests a method of construction for every surface without boundary: take the 

2-sphere S2 (Fig. 25(b)), remove two disjoint discs and then add a cylinder by sewing its two boundary 

circles to the boundaries of the holes in the sphere. The result is a 2-sphere 92 with a handle, which 
is nothing more than (is homeomorphic to) the 1-fold torus T2, Fig. 25(c). By repetition, we are able 

to construct a sphere with two, three, or any finite number k of handles, or, equivalently, a 2-fold 

torus T2#T2 (Figure 25(d)), or in general a k-fold torus T'2#T2#... #T2, respectively. It is clear that 

the connected sum is a commutative, associative operation on the set of topological types of compact 

surfaces. Besides, the sphere S2 works as a unit or neutral element for this operation. However, there 

are not inverses. Thus, the set of topological types of compact surfaces does not form a group under 

the operation of connected sum. It only forms a semigroup [75, p. 9]. 

lA topological space M is an n-dimensional manifold with boundary if each of its points has either a neighbourhood 

homeomorphic to R", or else an open neighbourhood homeomorphic to an open set in the upper half-space 1R = {x E 

IR" : x" > 0} of ][R" [35, p. 2091. Examples of manifolds with boundary are: (i) an n-dimensional manifold, (ii) the disc 1Qf', 

(iii) the cylinder S1 x 1, where 1= [0,1], and (iv) a closed halfspace in R". The boundary of M, denoted by aM, is the 

set of points in M which have neighbourhoods homeomorphic to I but which have no neighbourhoods homeomorphic 

to R". Note that it is possible for a manifold with boundary to have an empty boundary [22, p. 131]. It is then said to be 

a manifold without boundary. If M is a manifold with boundary and aM = 0, then M=M- aM is of course a manifold. 

Therefore, any manifold without boundary is, by definition, a manifold. It is standard terminology to refer to compact 

manifolds without boundary as 'closed' manifolds [19, p. 359]; for example, a 2-sphere S2 and a torus T2 are two closed 

surfaces or 2-manifolds. 
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By analogy, we can form the connected sum of connected, compact, and oriented 3-manifolds in 
R4. Let Ml and M2 be two of these manifolds. Their connected sum Ml #M2 is formed by removing an 
open 3-cell (i. e. a space homeomorphic to an open 3-ball) from each and then identifying the resulting 
of S2 with an orientation-reversing isomorphism [111, p. 36]. Under the operation of connected sum 
the set of connected, compact, and oriented 3-manifolds becomes also a commutative semigroup with 
unit the 3-sphere S3 [111, p. 37]. By the unique decomposition theorem for 3-manifolds due to Milnor 
[88], any connected, compact, and oriented 3-manifold can be regarded as the unique connected sum 
of irreducible manifolds with perhaps one or more handles attached. [A 3-manifold M is irreducible 
if every embedded 2-sphere bounds a 3-cell. A 3-manifold M is prime if in any decomposition 

M= M1#M2 either Ml or M2 is a 3-sphere S3 (see [111, p. 37]). ] For example, it is clear that S2 X S1 

is prime but not irreducible. It can be thought of as a 'handle' in the sense that it results from S3 by 

excising two 3-cells and identifying their boundaries. The Milnor Theorem shows that the Poincare 

Conjecture (see Subsection 8.4) does not prevent us to construct and manipulate 3-manifolds in II 

or higher dimensions. Thus, the 3-manifolds are characterised or classified by the first four Betti 

numbers. Obviously, they may include essential k-cycles (0 <k< 2) in R3. Besides, they may 

contain essential 3-cycles in RI (n > 4). The number of these 3-cycles in a 3-dimensional or higher 

manifolds is the 3th Betti number ß3. 

This process of classification of manifolds can be generalised to higher dimensions by induction 

on dimension (and connected sum). The classification of manifolds in IE is very important in geo- 

metric modelling, because -as shown in next chapters- it facilitates the design and implementation 

of data structures for n-dimensional stratified geometric objects. 

8.3. Diffeomorphic shape classes. We have seen that homeomorphisms classify spaces accor- 
ding to whether it is possible to deform one space to the other continuously. We have also seen that 

the topological equivalence relation on the Euclidean space produces equivalence classes of subsets in 

it. The most important topological equivalence classes were shown to be the classes of n-dimensional 

topological manifolds. Likewise, diffeomorphisms classify spaces into equivalence classes of spaces 

according to whether it is possible to deform one space to the other smoothly. Two diffeomorphic 

spaces are essentially the same in so far as their differential topology is concerned. Therefore, smooth- 

ness imposes an additional constraint on the manifolds; consequently, a class of manifolds of the same 

dimension is further divided into subclasses of manifolds of distinct smoothness. These equidimen- 

sional manifolds with the same smoothness are said to be diffeomorphic manifolds. Thus, applying 

the notion of diffeomorphism given in Subsection 6.2 to equidimensional manifolds, we have: 
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DEFINITION 1.20. Let M and N be manifolds of the same dimension. A Cr mapping f: M -+ N is 

called a Cr diffeomorphism of M onto N if f (M) = N, f is one-to-one, and the inverse mapping f- 1 

is also C'S. If a C' diffeomorphism exists between two manifolds, they are called C' diffeomorphic; 
in case of r= oo, they are said to be just diffeomorphic. 

Clearly, by this definition, a diffeomorphism is a homeomorphism. But the converse is not true. 
However, a homeomorphism need not to be a diffeomorphism. Even a differentiable homeomorphism 

need not to be a diffeomorphism (see Example 1.57). In a word, diffeomorphisms are mappings that 
fall between isometries and homeomorphisms. 

R 
Y=Ix 

f 
-- ---- 

__ -------- -- 

FIGURE 26 

EXAMPLE 1.55. Consider the mapping f: R -+ Ift defined by t ý-* (t, Itl), Figure 26. Its image 

is a 1-manifold, the curve y- jxj in V. f is then a parametrisation of this curve in W. It is not Cl 

(and, then not differentiable) at t=0, because its second component function is not C1. Thus, f is 

not a diffeomorphism, and Ifs. and y= jxi in 1R2 are not diffeomorphic 1-manifolds. 

For the study of the differential geometry of manifolds it is essential that there exists tangent 

spaces (tangent lines for 1-manifolds, tangent planes for 2-manifolds, and so on) at every point. A 

point of a n-manifold where a n-dimensional tangent space is not defined is called a singularity. This 

suggests that two manifolds with different number of singularities cannot be diffeomorphic. In fact, 

the following theorem confirms our intuition. 

THEOREM 1.4. (See Hirsch [60] on p. 32) Diffeomorphic manifolds have di`eomorphic bounda- 

rtes. 

As a consequence, a cube cannot be diffeomorphic to a pyramid. Let us see a more formal 

example. 

EXAMPLE 1.56. The curve y= IxI in V in the previous example can be given a Cl parametrisa- 

tion g: R --+ IIý2 where g(t) = (tltl 
, t2), tER. The coordinate functions of g are given by 

It2 
when t>0 

S1(t) ý- 
-t2 when t<0 

and g2(t)=t2, tEI18. 
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Both gl and 92 are Cl at 0. Therefore, g is C1 at 0 and has a tangent vector there despite the fact 
that its image has a corner at g(0) = (0,0). Since the tangent vector at 0 is g'(0) = (0,0), there is 
no associated tangent line. However, g is not C2 because its derivative g' (t) = (2 It 1,2t) is not Cl . In 
fact, the right-hand and left-hand derivatives of g' are different, 2 and -2 , respectively. (Note that 
gi and gi have two patches each, so we have to check the equality of their lateral derivatives at the 
junction point. ) This suggests that it is possible to find a parametrisation C' for a non-C' mapping 
by increasing (squaring) the exponent of the parameter t. Nevertheless, this does not eliminate any 
singularities; it just promotes a C' singularity to a C" singularity. That is, singularities possess an 
intrinsic nature, regardless the parametrisation used for a curve. 

EXAMPLE 1.57. Let f: R -+ R given by f (t) = t2, tE III, has as image the line IIg itself, which 
is known to be smooth. The function f is C1 (and also differentiable or C°°) everywhere; it is also 

analytic. However, f-1 (u) = u1/2 is not C1 since it has no derivative at u=0. Thus, despite the 

smoothness of Ifs, f is not a diffeomorphism. 

These two examples suggest that: 

"A C' mapping between manifolds does not imply that its image manifold is C' (see Exam- 

ple 1.56). 

" The C' manifold can be image of a mapping which is not a Cr diffeomorphism (see Exam- 

ple 1.57). 

Thus, it is necessary to distinguish between C' smoothness on manifolds and C' smoothness for 

mappings. However, in next chapter, it is shown that a C' diffeormorphism ensures that its image of 

a smooth manifold is also smooth. Moreover, the idea of G' smoothness (or geometric continuity) 

used in computer aided geometric design (CAGD) is nothing more than C' smoothness in differential 

geometry. In fact, the pre-condition f0 is used in CAGD in order to guarantee the invertibility of 
f, what is the same to say that f is a diffeomorphism. Thus, the essential concept behind a C' smooth 

manifold is that of C' diffeomorphism. The singularities of a mapping are related to the singularities 

of its component functions. Recall that a mapping is only a C' mapping if their components are 

C'. More difficult it seems to be to check that a mapping is a C' diffeomorphism. Fortunately, the 

following theorem comes up to help us in this respect. 

THEOREM 1.5. (see Hirsch [60, p. 20]) A C' mapping which is a Cl dif, ýeomorphism is a Cr 

difýeomorphism. 
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It is also known that if f: M -+ N and g: N -+ P are C' mappings of manifolds, then so is go f [1, 

p. 132]. It follows from the previous definition that the set Diff' (M) of C' diffeomorphisms of M to 
M forms a group under composition [5, p. 36], i. e. a Klein geometry. Diff' (M) also denotes the group 
of reparametrisations of M [91, p. 142]. 

Diffeomorphisms are then the essential mappings studied in differential geometry. They are be- 

hind the idea of C' smoothness on manifolds. Cr smoothness is independent on the representation, 

either it is parametric or implicit. In computer aided geometric design (CAGD), visual smoothness, 

also called geometric continuity Gr, is concerned with how parametric curves and surfaces should be 

joined in a smooth way. This concern might surprise differential geometers, who are used to dealing 

with the concept of a Cr curve or surface as one of the basic facts of life, as explained by Gregory 

in [47, p. 353]. But, in geometric design practice, a complicated curve or surface is composed by 

glueing several patches together. So, the resulting curve or surface is Cr everywhere if and only if 

their constituent patches are Cr and any two patches join with geometric continuity Cr along their 

matching vertices or edges, respectively [52, p. 56]. This is equivalent to the existence of a Cr (regu- 

lar) reparameterisation of the curve or surface. This agrees with the definition of a Cr curve or surface 
in differential geometry and its use is now well established in CAGD [47, p. 354]. 

Besides, diffeomorphisms do not only allow us to develop a mathematical theory for the free-form 

objects in CAGD, but also to understand the close relationships between the geometry of objects (not 

necessarily parametric free-form objects used in geometric design and modelling) and their structure 
(roughly, their critical points and singularities). In fact, more than that, diffeomorphisms and Cr 

smoothness are also behind the theory of stratifications. The leading idea of a stratification is to 

subdivide a n-dimensional point set into subsets such that all singularities of the original object are 

contained in subsets of dimension less than n. Thus, the stratification of an object or point set is 

driven up by lack of smoothness. This is the traditional use of stratifications. But, we use it for other 

purposes in solid modelling. For example, cube surface can be constructed by first attaching eight 

vertices (or singularities of dimension 0) to an initial empty point set, and subsequently its twelve 

edges (or singularities of dimension 1) and six faces. This allows us to antecipate a unified view of 

the free-form geometric objects usual in CAGD and other geometric objects usually used in solid 

modelling. 

8.4. Homotopic shape classes. An equivalence class which is somewhat coarser than homeo- 

morphism is 'of the same homotopy type'. The classical notion of the homotopy type was introduced 
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by Hurewicz in a series of four papers, in 1935-36, which appeared in the Proceedings of the Konin- 
klijke Nederlandse Akademie van Wetenschapen [63]. It allows to classify the spaces from the point 
of view of their most important global topological properties, called homotopy properties [16, p. 77], 

and neglect the local ones. This makes us to think of a possible relationship between homotopic 

shape of an arbitrary topological space (manifold or else) and the associated Betti numbers, which 
are topological invariants. 

Let us now concentrate on the homotopic shape classes. In Section 5, we have already found 

some homotopic shape classes. For example, the homotopic shapes of the disc X, the annulus Y, an 
double-annulus Z in Figure 6 are a point, a circle (or loop), and the one-point union of two circles, 

respectively. In fact, X is contractible, so it deformation retracts to a point. And, in general, if we take 

a number k of non-intersecting disks, we obtain a deformation retract consisting of k points. In other 

words, the 0-dimensional homotopic class is a discrete space, i. e. a family of isolated points. The 

homotopic shapes of Y and Z are given by a 1-bouquet and a 2-bouquet of 1-circles, respectively. A 

k-bouquet is defined as the one-point union (also called the wedge product2) of k circles [91, p. 107]. A 

1-circle is homeomorphic to a 1-sphere S1. Therefore, a 1-dimensional homotopic class is a bouquet 

of 1-circles. Using the language of group theory, a k-bouquet of 1-circles is nothing more than the 

wedge product of a number k of 1-circles. In fact, the set of homotopy classes of 1-circles (or 1-loops) 

form a group under wedge product, called first homotopy group or (fundamental homotopy group) [91, 

p. 93], and denoted by itl. Moreover, the 1st homotopy group is invariant under homeomorphisms, 

and hence is a topological invariant [91, p. 97]. 

Higher dimensional homotopy groups may be assigned to a topological space X. The n-th homo- 

topy group (n > 1) is the set of homotopy classes of n-circles (or n-loops), and is denoted by itn(X). 

It is also a group under the wedge product. However, the 0-th homology group no (X) is not a group 

[91, p. 116]; it denotes the number of connected components of X. The higher dimensional homotopic 

classes are then k-bouquets of n-circles (or n-loops). A n-circle is homeomorphic to a n-sphere §n. 

Thus, in general, the homotopic shape of a topological space is given by a family of bouquets of 

circles. 

From the above discussion, we see that the homotopic shape classes are n-loops (n > 0) or bou- 

quets of loops (not necessarily of the same homotopic type). 

2Let us define first the notion of 'pointed space'. A pointed space (X, x0) is a topological space X and a point xo of X, 

called the base point such that {xo} is closed in X. Let (X, xO), (Y, yo) be pointed spaces. The wedge product of X and Y is 

the space XVY obtained from X and Y by identifying xo with yo [23, p. 116]. For example, S1 V S1, S'V S2, and S2 V S2 

(for some choice of base points) are one-point unions of tangential spheres. 
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EXAMPLE 1.58. In 1R2, only bouquets of 1-loops are allowed. Examples are depicted in Figu- 

re 27. The circle x2 + y2 =1 (Figure 27(a)), the lemminiscate of Bernoulli (x2 +y2 + a2)2 - 4a2x2 = a4 
(Figure 27(b)) and the clover leaf x3 - 3xy2 - (x2 +y2)3 =0 (Figure 27(c)) are bouquets of one, two, 

three 1-loops in R2, respectively. These bouquets belong to distinct 1-dimensional homotopic classes, 
but they are all in the first homotopy group n 1. 

EXAMPLE 1.59. The homopotic shape of the lemminiscate of Bernoulli pictured in Figure 27(b) 

is distinct from the homotopic shape of a 2-dimensional torus T2. Nevertheless, their 1-dimensional 

homotopic shapes are identical because the lemminiscate of Bernoulli is homotopy equivalent to 

S1VS1, which is a subset of E2 = 51 xSI. 

EXAMPLE 1.60. The homotopy shape of the subspace of i? depicted in Figure 28(a) includes 

four components. The first component is a point-component I¢°, so its homotopic image is also a 

point. The second component is a relatively closed line W, which is contractible to a point. So, its 

homotopic image is also a point-component DO. The third component is a triangle, and therefore 

homotopically deformable to S1. The last component is a union of six bouquets containing seven 

petals: two ballons topologically equivalent to two 2-spheres 52, one spherical solid object topolo- 

gically equivalent to a 3-disc ID? 3, two relatively closed curved segments, one filled triangle, and one 

2-torus T2 = 51 x 51. The ballons remain the same provided that each is not homotopy deformable to 

a point or a line. However, the relatively closed curved segments are homotopy deformable to a point. 

The dangling curved segment is homotopy deformable to a point in the bigger S2. Analogously, the 

second curved segment is contractible such that the resulting point is shared by the bigger 2-sphere 
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and the torus. Also, the solid sphere is contractible to a point in the bigger 2-sphere, as well as the 
filled triangle. Finally, it is known that the homotopy type of a 2-torus is wedge product S' V51 of 

two 1-circles. 

This suggests that there is a clear correspondence between the homology groups H/z (X) (or, equiv- 

alently, Betti numbers) and homotopy groups 7r, (X) defined on a set. This is useful to determine shape 

equivalence between two topological spaces from both topological and homotopic points of view. In 

fact, as known in algebraic topology, if f: X -+ Y is a homeomorphism of X onto Y, then the in- 

duced homomorphism f* : H, (X) --+ H, z 
(Y) is a isomorphism for all n. This means that the algebraic 

structure of the groups Hn (X) (n = 0,1,2, ... ) depends only on the topological type of X [75, p. 148]. 

Equivalently, if X and Y possess the same topological type, their corresponding Betti numbers are 
identical. Remarkably, in homotopy theory, an even stronger statement holds: if f is a homotopy 

equivalence, then f* is an isomorphism. Therefore, the structure of H� (Y) only depends on the ho- 

motopy type of X [75, p. 148]. The conclusion is that two spaces possessing the same homotopy type 

have isomorphic homology groups. This means that Betti numbers are also homotopy invariants, and 

thus they are independent of the dimension. 

For example, in spite of a1 -circle and an annulus are not of the same topological type, they are of 

the same homotopy type; consequently, their corresponding Betti numbers are identical. Moreover, 

there are spaces with identical dimensions that are of the same homotopy type -what implies that 

their Betti numbers are the same-, but not homeomorphic. As written on [75, p. 114], there are fairly 

DO D' 
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simple examples of compact 3-manifolds which are of the same homotopy type, but not homeomor- 

phic (the so-called lens spaces). However, for the particular case of compact surfaces, one knows that 
if two compact surfaces are not homeomorphic, then they are not of the same homotopy type. All of 
this happens because a shape invariant -Betti numbers in this case- may not determine the shape 
type of a space. Shape invariants are useful to distinguish two spaces with different shape types. That 
is, if two spaces have distinct shape invariants, then they are not of the same shape type. But, if their 

shape invariants are equal, no one can say whether or not they have the same shape type. 
Thus, Betti numbers capture the global topological invariance of general topological spaces (not 

only manifolds) independently of their dimensions. As a homotopy invariant, the n-th Betti number 
denotes the number of n-loops (or n-circles) in a topological space (after homotopic contraction). 
Note that n-cycles in homology theory are precisely stratified n-loops. Thus, a n-loop determines a 

n-dimensional hole; hence, the n-th Betti number is said to determine the n-dimensional connectivity. 
Note that each n-dimensional Euclidean space is associated with the (n - I) -th Betti number, i. e. 

with (n - 1) -loops which determine (n - 1) -dimensional holes. For example, consider the closed ball 

or disc B3 = Cl(B3) in R3. Then, S2 = Fr(D3) is the simplest 2-loop in R3. It encloses a hollow cavity 

or void, so it determines a 2-hole. Recall that torus-shaped 2-holes are also possible in R3. Likewise, 

S1 = Fr(D2) is the simplest 1-loop in 1R2; it is a 1-bouquet with a single 1-loop. It is not contractible 
in V, so it determines a 1-hole. Also, 50 = Fr(B1) ={ -1,1 } determines the simplest 0-hole in IR1; 

it consists of two point-components or 0-loops. A 0-hole denotes the absence of a path between two 

components. Therefore, the number of 0-holes is equal to the number of components less one. In 

general, a n-sphere §n is the frontier of a closed ball or disc Dr+1 = C1(Bn+l) = {x E Ilan+l : jxj < 1}, 

that is, Sn = Fr(D'1+1) = {x E W+1 : Ixj = 1} (see [66, pp. 133-134]). In fact, we know that the sphere 
Sn-1 is called the frontier of D. Furthermore, a famous theorem says that there does not exist any 

retraction of the closed (n + 1) -ball D"+1 onto its boundary sphere Sn = Bd(D'`+1) (see [66, p. 199] 

for a proof). Note that Ihn is homeomorphic to W, and that it is contractible. Thus, Sn possesses a 

n-hole in JRn+I 
. 

But, it is clear that there are more complicated n-holes in JRfl+l that are not of the 

same homotopy type as Sn. Any n-hole is the union of manifolds that form a n-cycle. This allows 

us to say that a n-cycle determines a 'stratified' n-hole. All this gives us a dimension-based inductive 

perception of the shape of things, say subsets, in IRA, what enables us to build up structured models of 

them on a computer. 

An important point here is that we have assumed that a compact n-manifold that has the ho- 

motopy type of an n-sphere is homeomorphic to Sn. But this remains a conjecture for n=3, the 

so-called Poincare Conjecture. In fact, from the Theorem of Surface Classification, we know that any 
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simply-connected (i. e. connected without 1-holes or m1 (M) = 0), compact surface without boundary 
is homeomorphic to the 2-sphere S2. Poincare conjectured that an analogous statement for n=3, that 
is, that a simply-connected, compact 3-manifold without boundary is homeomorphic to the 3-sphere 
S3. However, this is still unknown whether or not it is true. Nevertheless, there are examples of 
simply-connected, compact 4-manifolds which are not homeomorphic to §4 (for example, S2 x 52) 
[75, p. 114]. Oddly enough, an analogous statement of the Poincare Conjecture for higher dimensions 
(n > 3) has been proven, namely, that a compact, connected n-manifold without boundary M, and 
itl (M) = 0, is homeomorphic to 5n, the n-sphere. This generalised Poincare Conjecture was proved 
for n>4 by Smale in 1960. In 1982, Freedman proved this conjecture for n=4. 

This means that the topological classification of 3-manifolds remains unsolved. Note that this 

conjecture involves only the 3-manifolds without boundary with n, = 0, those which are embedded 
in IR or higher. Nevertheless, the homotopy classification of 3-manifolds is known (see [111] and 
[88]). Thus, the Poincare Conjecture is not a problem to model computational geometric objects in 

higher dimensions. In fact, boundary-representation geometric objects, also called B-rep geometric 

objects, concilliates local topological shapes with (global) homotopic shapes by means aa Euler- 

Poincare formula that relates the alternate sum of manifolds of distinct dimensions to the alternate 

sum of corresponding Betti numbers. This shows how homotopic shapes are crucial in the design and 
implementation of boundary-based geometric modellers, also called B-rep (boundary representation) 

modellers. One of the main aims of this doctoral thesis is just to propose a B-rep geometric modeller 

capable of coping with higher dimensional objects in some Euclidean space. Such a B-rep modeller 

should provide a general representation for bouquets of spheres or even complicated shapes. This 

requires the ability to represent and manipulate arbitrary shapes incident at a vertex (or base point) 

of a bouquet. Moreover, the study of the global shape of subsets of Ilan as understood in homotopy 

theory suggests that the representation and manipulation of any subspace by a geometric modeller 

requires the ability to represent its boundary (and frontier) without ambiguity. 

8.5. Convex shape classes. Let us now introduce a mathematical model for geometric feature 

modelling, as well as its axiomatics. 
8.5.1. Hadwiger ring. A well-known class of sets in convexity theory is the Hadwiger convexity 

ring [51]. The Hadwiger convexity ring H is the class of sets in }R which can be represented as a 

finite union of convex compact sets. The convexity ring is closed with respect to finite intersections, 

unions and projections on some spaces [25, p. 177]. 
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FIGURE 29. Illustrating the properties of the Hadwiger ring. 
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EXAMPLE 1.61. Let us consider three cormvex point sets X1, X2, X3, Figure 29(a). They are in 
Hadwiger ring, as well as X= Xl U X2 U X3 in (b) and X= (X1 n x2) U (X2 n X3) in (c), because they are 
all decomposable into a finite union of convex compact sets. But, the point set X= X2 - (XI U X3) in 

(d) is not in Hadwiger ring viewing that it does not admit a finite decomposition into convex subsets. 

Example 1.61 shows that the Hadwiger ring is not closed with respect to differences. It is only 

closed in relation to unions and intersections of convex sets. Thus, Hadwiger sets are not necessarily 

convex. However, they are always decomposable into a finite union of convex sets. The intersection 

property is a direct consequence of a basic lemma in the convexity theory: the intersection of an 

arbitrary collection of convex sets is convex [36, p. 3]. 

The Hadwiger ring provides a preliminary mathematical model for geometric feature modelling 
because: 

" As any mathematical model, the Hadwiger ring is independent of any engineering, func- 

tional or technical specifications. Only the point set of each geometric feature (a protrusion 

or a depression) counts. 

" The fact that the Hadwiger ring does not satisfy the difference axiom is not an handicap in 

geometric feature modelling, because the point set of any depression is represented in the 

model. It is eventually a problem for form feature recognition systems, but not for form 

feature modelling systems. It fact, from the point of view of the set theory, it does not make 

sense to distinguish between a protrusion and a depression. 

" Both protrusions and depressions can be defined as Hadwiger sets. That is, a protrusion 
(respectively, a depression) is not required to be defined as a convex subset of a point set. 
Instead, a protrusion (respectively, a depression) is defined as a finite union of convex pro- 

trusions (respectively, depressions). 
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" It is independent of any feature shape interpretations. In other words, there are many pos- 

sible form feature decompositions for a single engineering artefact because they depend on 
the designer intent or interpretation. However, they all have analogous Hadwiger decompo- 

sitions, or, equivalently, decompositions with the same convex pattern. 
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FIGURE 30. Convex pattern invariance in relation to engineering design operations. 

EXAMPLE 1.62. Let us take a block with two rectangular depressions, Figure 30. This artefact 

can be designed either by unioning four blocks or by subtracting two blocks (two slotted depressions) 

from a bigger block (a block protrusion), or, alternatively, by unioning three blocks and subtracting 

two smaller blocks, as depicted in (b), (c), and (d), respectively. Nevertheless, they have the same 

Hadwiger decomposition, Figure 30(e), and thus the same convex pattern. 

Therefore, the convex pattern of the resulting artefact is invariant to design-by features sequences 

to construct engineering artefacts. This makes possible to antecipate a convex pattern-based data 

structure underneath any geometric feature modeller that is independent of engineering design. That 

is, such a convex pattern-based data structure should support different engineering design views of 

an artefact simultaneously. This makes us to think of the convex pattern of an object as the 'neu- 

tral' convex decomposition or interplay between different geometric feature decompositions. This is 

important for several reasons, two of which come up immediately: 

" It enables the multi-designer shape modification of the same engineering artefact under a co- 

operative design platform based on design-by-features, regardless of whether the designers 

have the same shape view of the corresponding geometric feature model or not. For exam- 

ple, one designer has introduced a rib on a block, but a second designer sees the resulting 

artefact as a block with two slots; hence the second designer should be able to, for example, 

to remove one of the slots. 

X1,2 X1 X1,3 X1 X1,4 
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"A designer's shape description of an engineering artefact into geometric features is not ne- 
cessarily the same as the shape decomposition required by manufacturing processes. So, 

the Hadwiger convex decomposition seems to be more appropriate at the production stage 
than the designer's shape description, since it enables the re-interpretation of an engineering 
artefact in terms of form features 

Other nice properties of the Hadwiger structure are: 

" It is independent of any geometric-kernel client application. This is so because it does not 
'recognise' protrusions and depressions. If the client application is a feature modeller, the 

Hadwiger structure may work as a convex pattern descriptor for a form feature decompo- 

sition. But, it may also be used to retain the Boolean structure of a solid object built upon 
Boolean operators. The representation of the intersection convex subsets in the convex 

pattern makes unnecessary to record the temporal course of modelling as usual for CSG 

modellers. 

" The Hadwiger sets are easily editable. This is because their convex subsets are easily edita- 
ble. This is possible because the Hadwiger structure retains the intersection convex subsets 

of both protrusions and depressions, as well any solid primitives used in solid modelling. 
This largely facilitates editing operations used in feature modelling and solid modelling. 

" Because the design solid primitives (including protrusions and depressions) are basically 

convex, we can speed up time-consuming Boolean operations by using well-known algo- 

rithms of computational geometry [95], since we assume that any non-convex solid primitive 

is defined as part of a convex solid primitive. 

" The fact that the difference axiom is not satisfied by the Hadwiger ring does not prevent 

the representation of solid blending primitives as usual in CSG, e. g. a blend between a 

cylinder and a rectangular block. The corresponding blending surface is a saddle surface 

(two valleys) which is neither convex nor concave, i. e. an anticlastic surface. The saddle 

surface has negative Gaussian curvature. In this case, the original cylinder has to be split 

into two, being one of them then defined as part of a convex object which also contains 

the solid blend primitive. However, the Hadwiger ring hardly applies to general anticlastic 

shapes, e. g. the so-called monkey saddle, which is similar to the saddle surface except that it 

has three valleys running down from the pass: two for the monkey's legs and one for its tail. 

" Its convex pattern allows us to test whether or not two distinct point sets are in the same 

parametric shape family. 
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8.5.2. Shape axiomatics for geometric feature modelling. It is clear that protrusions and depres- 

sions are related to components, holes and voids. Altogether, components, through holes and voids 
provide us with the homotopic shape description of an object in R3, i. e. it provides us a global shape 
view of an object. Protrusions and depressions provide us the convex shape description of the same 
object, i. e. a zonal shape view of it. Thus, a shape axiomatics for geometric feature modelling could 
be possibly based on the following axioms: 

"A protrusion is a Hadwiger set. 

"A depression is a Hadwiger set. 

"A component contains at least a protrusion. 
"A through hole contains at least one depression. 

"A void contains at least one depression. 

EXAMPLE 1.63. In Figure 31(a), the through hole H= D1 UD2 UD3 consists of three convex de- 

pressions D1, D2, and D3. Note that other depression arrangements for H are possible. For example, 
H=D may be considered as just a single depression D, which in turn consists of those three depres- 

sions, D= D1 U D2 U D3. In contrast, the depression D= D1 U D2 in Figure 31(b) is not a through 
hole. It has two convex depressions D1, D2. 

D1 Di 
D2 D^ 
D3 

(a) (b) 

FIGURE 31 

Thus, geometric feature modelling involves two mathematical theories: homotopy theory and 

convexity theory. They provide us with a general shape taxonomy for geometric feature modelling: 

homotopic shapes (components, through holes and voids) and Hadwiger shapes (protrusions and de- 

pressions). The axiomatics above complete a theory for geometric feature modelling. In particular, 

the last three axioms relate homotopic and Hadwiger shapes to each other by containment relation- 

ships. These axioms relating zonal and global shapes of an object imply a space decomposition which 

is not available in extant geometric modellers. This has in some extent justified the development of 

form feature modellers, and spread the idea that geometric feature modellers and geometric solid 

modellers are distinct shape modelling machines. It is our view that they are only representatives of 
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distinct shape views of an object. The geometric modellers provide us topological, differential and 
geometric shapes, while form feature modellers provide us homotopic and Hadwiger shapes. Our 
idea is to put them together into an integrated shape kernel responsible for all shape operations. This 

allows us to separate the functional aspects of engineering artefacts from the shape aspects of their 

underlying geometric objects. 

9. Shape Kernel Architecture 

9.1. Shape insufficiences of set-theoretic modellers. Set-theoretic modellers, usually known as 
CSG (Constructive Solid Geometry) modellers, typically include five parametric families of primitive 

solids (or homogeneously 3-dimensional geometric objects): blocks, wedges, spheres, cylinders, and 

tori. Each primitive solid is an element of a geometric equivalence class of congruent solids. Each 

primitive solid is parametrically defined by a finite number of parameter values. For example, a block 

is created or instantiated by assigning values to its length 1, width w, and height h; symbolically, this 

is described by the function CREATEBLOCK :RxRxRB, where B is the family of blocks. 

CSG modellers do not provide a shape interface suitable for feature-based modelling. In fact, 

they do not provide access to through holes, protrusions, etc. For example, a subtraction of one 
CSG solid from another may create a through hole, but it is very hard to recognize the existence 

of such a hole in a CSG tree. Besides, topological and Hadwiger shapes (e. g. a through hole con- 

sisting of three depressions) requires some kind of shape clustering machinery which is absent from 

CSG trees. Consequently, the automatic (algorithmic) detection of shape changes becomes difficult 

(e. g. the transmutation of the through hole (Figure 31(a)) into a stepped depression (Figure 31(b)) 

consisting of two convex depressions, after removing the bottom convex depression). 

9.2. Shape insufficiences of B-Rep modellers. B-Rep modellers have some advantages over 

CSG modellers because they possess a lower level of shape incompleteness. In fact, they are able 

in principle to represent and manipulate manifolds or 'cells' of dimension up to 3 (i. e. points, lines, 

surfaces and solids), whether they possess holes and voids or not. The existence of these manifolds 

in B-Rep data strucutures is useful for many purposes. For example, it facilitates the direct, gra- 

phical interaction with the designer. Besides, B-Reps have explicit representatives, called shells, for 

components and voids. Shells are particular 'cellular' clustering entities. Unfortunately, through 

holes, depressions and protrusions do not have similar clustering representatives. There is no re- 

presentation for the relationships between global topological shapes (components, through holes and 

voids) and their Hadwiger subsets (protrusions and depressions) either. Equivalently, there are no 
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hierarchical shape clustering entities, what makes difficult the representation of 'cellular' interac- 

tions between homotopic and Hadwiger shapes. To overcome these shape incompatibilities between 

'cellular' boundary representations and feature representations, some authors have proposed external 
' cellular' data structures associated with 'cellular' boundary representation data structures capable 

of emulating 'cellular' clusters for form features, their shape hierarchical or containment relation- 

ships, and their 'cellular' interactions as well. See [11] for a recent implementation of such external 
'cellular' data structure associated with the ACIS boundary data structure. However, such external 
'cellular' data structures on the top of a boundary data structure only strikes the shape deficiencies of 

the B-Rep modellers. In fact, they cannot be considered as extensions of B-Reps because the corres- 

ponding mathematical model has not been reformulated and extended. It is just an ad-hoc solution 
for a particular engineering application, as it is the case of feature-based modelling. 

9.3. Shape requirements for applications. B-rep and CSG-rep are complete representations of 

solids in the sense of Requicha [96], i. e. they are unambiguous representations of solids. Requicha 

completeness refers to point sets of solids, i. e. their geometry or geometric shape. It does not cover 

other sorts of shape as those described in this chapter. In this sense, we can say that CSG-rep and 

B-Rep modellers are shape-incomplete, i. e. they are not capable of representing and processing all 

the shape types as necessary for most applications. Recall the difficulties that many researchers faced 

in the last two decades to integrate form feature modellers and geometric modellers. It is also known 

that B-reps and CSG-reps are not suited to efficient algorithms for extracting some shape properties 

nor for modification algorithms based on those properties. Even worse it is the inexistence of a shape 

framework that relates different shape types. 

The problems mentioned above are largely due to insufficiences in the mathematical models of 

CSG-reps and B-Reps. The CSG-rep and B-Rep models were derived from the theory of semialge- 

braic sets [96] and theory of closed surfaces [18], respectively, but they were overconstrained by the 

notion of solidity. Consequently, they could not satisfy important shape requirements of a significant 

number of applications, even those related to design and manufacturing. To enable the effective inte- 

gration of computer aided design and manufacturing systems we have to achieve an integrated shape 

kernel architecture. Otherwise, CADCAM integration in engineering environments will be always a 

mirage. The most important requirements to achieve an effective shape integration are: 

" General geometric coverage. In the last twenty years, some efforts to integrate the geome- 

tries of solid modellers and free-form modellers have been attempted by integrating their 
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implicit and parametric representations. However, as explained in next chapters, an inte- 

grated geometry has to do more with a general geometric coverage than its representations. 
Such a general geometric coverage has been recently proposed by Middleditch, Reade and 
Gomes [86] to be the class of subanalytic sets. Subanalytic geometry is a generalisation 
of algebraic geometry, rational geometry and transcendental geometry; hence, it includes 

algebraic and sernialgebraic sets (e. g. CSG objects) described by polynomials, rational sets 
(e. g. non-uniform rational B-splines, shortly NURBS) described ratios of polynomials, and 
transcendental sets (e. g. springs) described by transcendental functions, respectively. This 
is important for several reasons, namely: (i) to eliminate possible geometric incompatibili- 

ties in design and manufacturing, (ii) subanalytic sets form a Boolean class, i. e. they can be 

combined through Boolean operators to construct more complicated subanalytic sets, (iii) 

subanalytic sets are stratifiable, i. e. they admit partitions into manifolds or strata. 
0 General shape coverage. Geometry is only part of the business in shape modelling. By 

shape integration we mean not only geometry integration, but also the integration of geo- 
metry with other kinds of shape, namely homotopic, topological, differential and Hadwiger 

shapes. Geometry integration is far from complete but subanalytic sets look to be able to fill 

the gap between solid modelling and freeform modelling. Furthermore, the integration of 
homotopic and Hadwiger shapes in an application-independent or general shape modeller 

releases feature modellers from controlling shape representation and manipulation. This 

is advantageous in many respects, mainly because shape modelling is then application- 
independent. A feature modeller will be just a (functional) modelling system taking ad- 

vantage of the facilities provided by a general-purpose shape modeller. 

0 Multidimensional manifold structure. The geometric structure of an object should be piece- 

wise manifold and multidimensional. Amongst several reasons, we mention the following. 

First, it provides the unified representation for drafting, wireframe, surface, and solid models 
[116], as essential in interactive design. Second, it is necessary to model objects and spaces 

of arbitrary dimension, in applications such as robot path planning which uses n-dimensional 

configuration spaces [83]. Third, it is suited to the representation of finite element meshes, 

and solid models internal membranes. 

" General manifold clustering. With the exception of the 'cellular' representation developed 

by Gomes and Teixeira [46], current 'cellular' geometric models do not provide general 

dimensionally nonhomogeneous clusters for cells. They usually use external, application- 

oriented 'cellular' clustering. These external 'cell' clusters were specifically designed to 
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represent the cell structures of form features, that is, they are application-oriented. This fact 

and the non-existence of a general shape theory have been the major barriers to the integra- 

tion of geometric and feature modellers. Such clusters are called subcomplexes in the theory 

of complexes, and, more generally, in the theory of stratifications. Basically, the classical 
hierarchical 'cellular' structure of complex-shell(loop)-'cell' is replaced by the hierarchical 

stratified structure of complex-subcomplex-stratum. A subcomplex can represent the 'cel- 

lular' or stratified structure of a homotopic or Hadwiger shape, or even general shapes not 

necessarily homogeneous in dimension. 

Homotopy 
Shell 

Stratified Core 

H Complexes, ýý. 
subcomplexes Geometry 

zdwige and Shell J Shell strata l 

Arbitrary Shape 
Shell 

FIGURE 32. A shape kernel architecture. 

9.4. A universal shape kernel architecture. A general shape modeller architecture should con- 

sist of the following modules, Figure 32. 

" Stratified Core. The stratified core of the SKA (Shape Kernel Architecture) is a hierarchical 

stratified structure (complex-subcomplex-stratum). It is a generalisation of usual boundary 

cores, in the sense that any subcomplexes can represented and manipulated. Strata are the 

essential 'building blocks' and are, by definition, manifolds. In terms of the shape the- 

ory, they are then the fundamental topological shapes. Strata are usually called generalised 

'cells' in geometric modelling. Therefore, the stratified core contains strata, i. e. vertices, 

edges, faces, solids, and even higher dimensional strata. In addition, the stratified core also 
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contains manifold subcomplexes, i. e. arbitrary finite clusters of manifolds, and complexes 
as a finite cluster of subcomplexes. These subcomplexes are not necessarily disjoint in a 
complex, but a subcomplex cannot belong to distinct complexes. 

" Geometric Shell. The association of the stratified core with the geometric shell corresponds 
to the conventional design of B-rep modellers: topology alongside geometry. The geometry 
shell here implements the subanalytic geometry, i. e. it describes the geometry for points, 
lines, surfaces, and so on, via equalities and inequalities of analytic functions. 

" Hadwiger Shell. The Hadwiger shell holds the convex pattern of an object. Together with 
the homotopic shell, we get the shape pattern of an object, i. e. a zonal and global shape 
description of an object. The relationships between the Hadwiger shell and homotopic shell 
represent the containment relationships previously axiomatised for Hadwiger and homo- 

topic shapes. Every Hadwiger set X is mapped onto a stratified subset (or subcomplex) in 

the stratified core. 

" Homotopic Shell. Analogously, every homotopic shape (e. g. components, through holes 

and voids) matches a subcomplex in the stratified core. Note that the stratified core con- 
tains a homological representation of a point set. Besides, a subcomplex may contain other 

subcomplexes; for example, the through hole containing three depressions in Figure 31 is 

stratified as a subcomplex that contains three subcomplexes, each of which is a stratified 

point subset for a depression. 

" Arbitrary Shape Shell. This is left unspecified and concerns other sorts of shape which may 
be relevant for future work. 

Putting this differently, a shape kernel consists of a stratified core (strata, clusters of strata, clusters 
of subcomplexes, homological reasoning algorithms, etc. ) surrounded by a shape shell consisting of 

three modules: (differential) geometry, Hadwiger, and homotopy shells). Many applications need not 

to use all the modules. For example, in computer-aided geometric design of parametric curves and 

surfaces, the stratified core is likely unnecessary, but if a stratification is required for such geometric 

objects, they will be mapped onto strata and (sub)complexes. The algorithm of stratifying a geometric 

object is know in solid modelling as boundary evaluation. In solid modelling, the stratified core and 

the geometry shell are always on, while a form feature modeller demands the activation of the whole 

shape kernel. Note that a form feature modeller is not part of the shape kernel, because it holds a 

particular shape view, the designer's shape view. 
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Another important point is that every shape is one-to-one mapped onto either a cell or a subcom- 
plex, but not all subcomplexes in the stratified nucleous correspond to a shape in the shape shell. For 

example, when two subcomplexes overlap, an overlapping-driven algorithm is triggered in order to 

achieve their intersection subcomplex. Then, this intersection subcomplex is defined as subcomplex 
of both overlapping subcomplexes, but it does not match any shape in the shape shell. Intersection 

subcomplexes constitute one of most important decisions in the design of our shape kernel. They are 
useful for many purposes, such as, for example, shape editing (undo, redo, resizing, deleting, etc) and 
shape matching for parametric families of objects. 

This shape kernel is general-purpose, i. e. application-independent, regardless of whether or not 
it is included in a CAD system. It is necessary to bear in mind that some engineering terms used in 

feature modelling coincide with mathematical terms in shape theory; for example, a through hole is 

a form feature but also a homotopic (or global topological) shape. The distinction becomes apparent 

when we consider that there are so many kinds of through holes (straight holes, stepped holes, etc. ) 

in engineering design, but they all have the same topological shape, just a through hole. A form 

feature combines technical function with shape, but its shape processing should be relegated to an 

application-independent shape kernel. That is, the 'cellular' clustering of a form feature is up to the 

shape kernel, not the form feature modeller itself. Thus, subcomplexes must be part of the stratified 

core in order to prevent external application-dependent cellular clustering. 

10. Summary 

A shape-theoretic framework for engineering artefacts has been proposed. Each type of shape 

is usually associated with a group of shape mappings of an Euclidean space into another, leaving 

intact certain properties of their subsets. Only homotopies do not form a group. So, we have a group 

of homeomorphisms, a group of diffeomorphisms, a group of isometries, etc. A general hierarchy 

of shapes has been derived from the hierarchy of shape mappings: homotopic shapes (i. e. n-holes) 

which are invariant under homotopies, Hadwiger shapes (i. e. Hadwiger sets) which are invariant 

under convexity-preserving mappings, differential geometric shapes (e. g. smooth manifolds or even 

piecewise smooth varieties) which are invariant under diffeomorphisms, and geometric shapes (e. g. 

semialgebraic manifolds and varieties) which are invariant under rational mappings (e. g. isometries). 

The shape taxonomy here introduced and the understanding of the relationships between the 

various shapes type have led us to a preliminary design of a general shape kernel. In particular, the 

convexity theory and homotopy theory have been shown to be the mathematical theories supporting 
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form feature modelling. Besides, it has been understood that it is not good idea to have a separated 

and isolated view of the various branches of geometric modelling. 



CHAPTER 2 

Smoothness and singularities 

Ifear that I bore you with these details, 

but I have to let you see my little difficulties, 

if you are to understand the situation. ' 

C. Doyle, A Scandal in Bohemia 

This chapter deals with smoothness and singularities of manifolds and varieties. The context 
is the differential topology and geometry, but we are interested in their usefulness and applicability 
in geometric modelling. Although almost all the important examples and applications of differen- 

tial geometry (e. g. engineering and geometric design in particular) deal with analytic manifolds, the 

discussion in this chapter is extended to smooth manifolds, restricting to the analytic category only 

when necessary. The objective is to exploit the smooth structure of manifolds (e. g. Euclidean spaces) 

to study the intrinsic properties of their subsets or subspaces, that is, independently of any choice 

of local coordinates (e. g. spherical coordinates, Cartesian coordinates, etc. ). As suggested in sub- 

section 6.2 (Chapter 1), manifolds provide us with the proper category in which most efficiently one 

can develop a coordinate-free approach to the study of the intrinsic geometry of point sets. It is ob- 

vious that the explicit formulx for a subset may change when one goes from one set of coordinates 

to another. Thus, somehow, any geometric equivalence problem can be viewed as the problem of 

determining whether two different local coordinate expressions define the same intrinsic subset of a 

manifold. Such coordinate expressions (or change of coordinates) are defined by mappings between 

manifolds. Thus, by defining mappings between manifolds such as Euclidean spaces, we are able to 

uncover the local properties of their subspaces. In geometric modelling, we are particularly interested 

in properties such as, for example, local smoothness, i. e. to know whether the neighbourhood of a 

point in a submanifold is (visually) smooth, or the point is a singularity. 

1. Differential of a smooth mapping 

Let U, V be open sets in W", W, respectively. Let f: U -+ V be a mapping with component 

functions Note that f is defined on every point p of U in the coordinate system x ,.... x,,,. 
68 
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We call f smooth provided that all derivatives of the fi of all orders exist and are continuous in U. 

I , 
1aXIaX2' a3f 

, IaX3 a2f , 1aXIaX2 = a2f Thus for f smooth, a2f etc., and ilax2axl, etc., all exist and are 
continuous. Therefore, a mapping f: UV is smooth (or differentiable) if f has continuous partial 
derivatives of all orders. And we call fa diffeomorphism of U onto V when it is a bijection, and both 
f, f- 1 are smooth. 

Let f: U -* V be a smooth (or differentiable or CO°) and let pEU. The matrix 

afi (P)/ax1 a. fi (P)/axe ... a. fi (P)/axm 

J. f (P) 

afn(P)Iax1 afn(P)/ax2 ... afn(P)/axm 

where the partial derivatives are evaluated at p, is called Jacobian matrix of f at p [24, p. 51]. The 
linear mapping Df (p) : IRtm -* RI whose matrix is the Jacobian is called the derivative or differential 

of f at p; the Jacobian Jf (p) is also denoted by [Df (p)]. It is known in mathematics and geometric 
design that every polynomial mapping f (i. e. mappings whose component functions fi are all poly- 
nomial functions) is smooth. If the components are rational functions, then the mapping is smooth 
provided none of the denominators vanish anywhere. 

Besides, the composite of two smooth mappings, possibly restricted to a smaller domain, is 

smooth [24, p. 51]. It is worth noting that the chain rule holds not only to smooth mappings, but 

also to differentials. This fact provides us with a simple proof of the following theorem. 

THEOREm 2.1. Let U, V be open sets in Wn, RI, respectively. If f: U -+ V is a diffeomorphism, 

at each point pEU the differential Df (p) is invertible, so that necessarily m=n. 

PROOF. See Gibson [42, p. 9]. 0 

The justification for m=n is that it is not possible to have a diffeomorphism between open sub- 

spaces of Euclidean spaces of different dimensions [15, p. 41]. In fact, a famous theorem of algebraic 
topology (Brouwer's Invariance of Dimension) asserts that even a homeomorphism between open 

subsets of Rý' and R7, m =, 4 n, is impossible (see Chapter 1). 

Theorem 2.1 is very important not only to distinguish between two manifolds in the sense of 
differential geometry, but also to relate the invertibility of a diffeomorphism to the invertibility of 

the associated differential. More subtle is the hidden relationship between singularities and non- 
invertibility of the Jacobian. We should emphasize here that the direct inverse of Theorem 2.1 does 

not hold. However, there is a partial or local inverse, called Inverse Mapping Theorem, possibly 
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one of the most important theorems of the calculus. It is introduced in the next section, where it is 

discussed the relationship between invertibility of mappings and smoothness of manifolds. 

2. Invertibility and smoothness 

In Chapter I (Subsection 8.3), it is argued that the smoothness of a submanifold which is image 

of a mapping depends not only on smoothness but also invertibility of its associated mapping. This 

section generalises such a relationship between smoothness and invertibility to mappings of several 

variables. This generalisation is known in mathematics as the Inverse Mapping Theorem. This leads 

to a general mathematical theory behind geometric continuity in geometric modelling -not only 

confined to parametric free-form geometric design- as explained throughout this chapter. This ge- 

neralisation is representation-independent, i. e. no matter whether a submanifold is parametrically or 
implicitly represented. 

Before proceeding, let us briefly review the invertibility of mappings, linear case. 

DEFINITION 2.1. Let X, Y be Euclidean spaces, and f: X -* Ya continuous linear mapping. One 

says that f is invertible if there exists a continuous linear mapping g: Y -+ X such that gof= idx 

and fog- idy where idX and idy denote the identity mappings of X and Y respectively. Thus, by 

definition, we have: 

g (f (x)) =x and 
.f 
(g (y)) =y 

for every xEX and yEY. We write f- 1 for the inverse of f. 

However, unless we have an algorithm to evaluate whether or not a mapping is invertible, smooth- 

ness analysis of a point set is useless from the computer-aided geometric modelling point of view. 

Fortunately, linear algebra is here to rescue us. Consider the particular case f: 7 -ý 7. The linear 

mapping f is represented by a matrix A= [aij]. It is known that f is invertible iff A is invertible (as a 

matrix), and the inverse of A, if it exists, is given by the formula 

A-1 =1 detA adjA 

where adjA is a matrix whose components are polynomial functions of the components of A. In fact, 

the components of adj A are subdeterminants of A. Thus, A is invertible iff its determinant detA is not 

zero. 
Now, we are in position to define invertibility for differential mappings. 
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DEFINITION 2.2. Let U be an open subset of X and f: U -4 Y be a C1 mapping, where X, Y are 
Euclidean spaces. We say that f is C' -invertible on U if the image of f is an open set V in Y, and if 
there is a C' mapping g: V -ý U such that f and g are inverse to each other, i. e. 

g(f(x)) =x and f (g(y)) =Y 

for all xEU and yEV. 

It is clear that f is Co-invertible if the inverse mapping exists and is continuous. One says that 
f is U-invertible if f is itself C' and its inverse mapping g is also C. In the linear case, we are 
interested in linear invertibility, which basically is the strongest requirement that we can make. By 
the Theorem 1.5, it turns out that if f is a C' -invertible, and if f happens to be C', then its inverse 

mapping is also C'. This is the reason why we emphasize C' at this point. However, a C, mapping 
with a continuous inverse is not necessarily C' -invertible, as illustrated in the following example: 

EXAMPLE 2.1. Let f: R --ý R be the mapping f (x) = x3. It is clear that f is infinitely diffe- 

rentiable. Besides, f is strictly increasing, and hence has an inverse mapping g: R -+ R given by 

g(Y) = Y, /3. The inverse mapping g is continuous at 0, but not differentiable at 0. 

Let us now see the behaviour of invertibility under composition. Let f: U --+ V and g: V -ý W be 
invertible C' mappings, where V is the image of f and W is the image of g. It follows that gof and 
(g o f) -1= f- 1o g- 1 are Cr-invertible, because we know that a composite of Cr mappings is also Cr. 

DEFINITION 2.3. Let f: X -ý Y be a C' mapping, and let pEX. One says that f is locally 

U-invertible at p if there exists an open subset U of X containing p such that f is Cl-invertible on U. 

This means that there is an open set V of Y and a C' mapping g: V -+ U such that fog and go 

are the corresponding identity mappings of V and U, respectively. Clearly, a composite of locally 

invertible mappings is locally invertible. Putting this differently, if f: X -ý Y and g: Y -4 Z are C' 

mappings, with f (p) =q for pEU, and f, g are locally U-invertible at p, q, respectively, then gof 
is locally U-invertible at p. 

In Example 2.1, we used the derivative as a test for invertibility of a real-valued function of one 

variable. That is, if the derivative does not vanish at a given point, then the inverse function exists, 

and we have a formula for its derivative. The Inverse Mapping Theorem generalises this result to 

mappings, not just functions. 
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THEOREm 2.2. (Inverse Mapping Theorem) Let U be an open subset of R, let pEU, and let 
f: U -+ Rn be a C' mapping. If the derivative Df is invertible, f is locally C' -invertible at p. If f- 
is its local inverse, and y=f (x), then Jf- 1 (y) = [Jf (x) ] -'. 

PROOF. See Boothby [15, p. 43]. O 

It is equivalent to say that there exists open neighbourhoods U, V of p, f (p) respectively such that 
maps U diffeomorphically onto V. Note that, by the Theorem 2.1, R' has the same dimension as 

the Euclidean space R, that is, m=n. 

EXAMPLE 2.2. Let U be an open subset of V consisting of all pairs (r, 0), with r>0 and arbitrary 
0. Let f: U -+ VC Rý be defined by f (r, 0) = (rcos 0, rsin 0), i. e. V represents a circle of radius r in 
V. Then 

Jf(r, 6) = 
cosh -rsin9 
sin8 rcos8 

and 
det Jf(r, 0) = rcos20 + rsin20 = r. 

Thus, Jf is invertible at every point, so that f is locally invertible at every point. The local coordinates 
fl, f2 are usually denoted by x, y so that we usually write 

x=rcosO and y=rsinO. 

The local inverse can be defined for certain zones of Y. In fact, let V be the set of all pairs (x, y) such 
that x>0 and y>0. Then the inverse on V is given by 

r= x2 + y2 and 0= arcsin 
y 

VX-2 

An immediate consequence of the Inverse Mapping Theorem is the following corollary. 

COROLLARY 2.1. Let U be an open subset of Rn and f: U -ý Rn. A necessary and sufficient 

conditionfor the Cr mapping f to be a Cr diffeomorphism from U to f (U) is that it be one-to-one and 
Jf be nonsingular at every point of U. 

PROOF. Boothby [15, p. 46]. 0 

Thus, diffeomorphisms have nonsingular Jacobians. This parallel between differential geometry 

and linear algebra provides us with a potential computable approach to evaluate whether or not a C' 

mapping is a C' diffeomorphism. Consequently, using computational techniques of differentiability 

and matrix calculus, we are able to establish smoothness conditions on a submanifold of r. 
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Note that the domain and codomain of the mappings used in Theorem 2.1, Theorem 2.2 and its 

Corollary 2.1 have the same dimension. This may suggest that only smooth mappings between spaces 

of the same dimension are C' invertible. This is not the case. Otherwise, this would be useless, at 
least for geometric modelling. For example, a parametrised k-manifold in W is defined by the image 

of a parametrisation f: k --ý W, with k<n. On the other hand, an implicit k-manifold is defined by 

the level set of a function f: k -4 IR, i. e. by an equation f (x) = c, where c is a real constant. 

3. Level set, image, and graph of a mapping 

Let us then review the essential point sets associated with a mapping. This will help us to un- 
derstand how a manifold or even a variety' is defined, either implicitly, explicitly, or parametrically. 
Basically, we have three types of sets associated with any mapping f: Uc WI ---ý Rý which play an 
important role in the study of manifolds and varieties - level sets, images, and graphs. 

3.1. A mapping as a parametrisation of its image. 

DEFINITION 2.4. (Baxandall and Liebeck [9, p. 26]) Let U be open in W". The image of a 

mapping f: UC R' --* R7 is the subset of given by 

Imagef ={yCR'1y= f(x), VxEU. } 

And, f is said to be a parametrisation of its image with parameters (xl, 
---, X. ) - 

This definition suggests that practically any mapping is a 'ýparametrisation" of something [61, 

p. 263]. 

EXAMPLE 2.3. The mapping f: R -ý Rý defined by f (t) = (cost, sin t), tEK has an image 

which is the unit circle x2 + y2 =1 in Rý (Figure 1 (a)). A distinct function with the same image as f 

is the mapping g(t) _ (cos 2t, sin 2t). 

Example 2.3 suggests that two or more distinct mappings can have the same image. In fact, it can 

be proven that there is an infinity of different parametrisations of any non-empty subset of R" [9, p-291. 

Free-form curves and surfaces used in geometric design are just images in W of some parametrisation 

RI -4 R' or Rý -ý R, respectively. The fact that an image can be parametrised by several mappings 

poses some problems to meet smoothness conditions when we patch together distinct parametrised 

curves or surfaces, simply because it is not easy to find a global reparametrisation for a compound 

'A real, algebraic or analytic variety is a point set defined by a system of equations f, = ... = fk = 0, where the 

functions fi (0 <i< k) are real, algebraic or analytic, respectively. 
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(a) (b) 

FIGURE 1. (a) Image and (b) graph of f (t) = (cost, sin t). 
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curve or surface. Besides, the smoothness of the component functions that describe the image of a 
mapping does not guarantee smoothnessfor its image. 

EXAMPLE 2.4. A typical example is the cuspidal cubic curve that is the image of a smooth 

mapping f: R1 --+ R2 defined by t ý-+ (t3 
7 t2) which presents a cusp at t=0, Figure 2(a). Thus, the 

cuspidal cubic is not a smooth curve. 

FIGURE 2. (a) Cuspidal cubic x3 = Y2 and (b) parabola y= x2 as images of different 

parametrisations. 

Conversely, the smoothness of the image of a mapping does not imply that such a mapping is 

smooth. The following example illustrates this situation. 

EXAMPLE 2.5. Let f, g and h be continuous mappings from R into 92 defined by the following 

rules: 

f(t) = (t7t 2)7 g(t) = (t31 t6) 7 and h(t) 
f (t), t> 

g(t), t<0. 
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All three mappings have the same image, the parabola y= x2 in Figure 2(b). Their Jacobians are 

however distinct, Jf (t) = [1 2t], Jg(t) = [3t2 6t5], and Jh(t) 
if(t)7 t>01 

As polynomi- 
ig(t) 7t<0 

als, f, g are differentiable or smooth everywhere. Furthermore, because of Jf (t) :A [0 0] for any 

tE IR, f is C' -invertible everywhere. Consequently, its image is surely smooth. The function g is also 

smooth, but its Jacobian is null at t=0, i. e. Jg(O) = [0 0]. This means that g is not C' -invertible, 
or, equivalently, g has a singularity at t=0, even though its image is smooth. Thus, a singularity of a 

mapping does not necessarily determine a singularity on its image. Even more striking is the fact that 

h is not differentiable at t=0 (the left and right derivatives have different values at t= 0). This is so 
despite the smoothness of the image of h. This kind of situation where a compound smooth curve is 

formed by piecing together smooth curve patches is common in geometric design of free-form curves 

and surfaces used in industry. 

The discussion above shows that every parametric smooth curve, or, in general, a manifold can 

be described by several mappings, but at least one of them is surely smooth and invertible, i. e. a 

diffeomorphism. This is confirmed by the Corollary 2.1. 

3.2. A level set of a mapping. Level sets of a mapping are varieties in some Euclidean space. 

That is, they are defined by equalities. Obviously, they are not necessarily smooth. 

DEFINITION 2.5. (Dineen [27, p. 6]) Let U be open in R. Let f: UC W' -4 W and c= 

(cl,..., c,, ) a point in W. A level set off, denoted by f-1(c), is defined by the formula 

{xEUIf(X)=C} 

In terms of coordinate functions of f, we write 

and thus 

f(x)=c. ý=->fi(x)=ci 

nn 
f-l(C) =Qfx UI fi(X) =Cil =Qfi-'(Ci). 

The smoothness criterion for a variety defined as a level set of a vector-valued function is given 

by the following theorem. 

THEOREm 2.3. (Implicit Function Theorem , Baxandall [9, p. 145]) A set XC W" is a smooth 

variety if it is a level set of a C1 function f: R' -+ R such that Jf (x) =/= 0 for all xEX. 
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This theorem is a particular case of the Implicit Mapping Theorem for mappings which are func- 

tions. The Implicit Mapping Theorem will be discussed later. 

EXAMPLE 2.6. The circle X2 +Y2 =4 is a variety in R2 that is a level set corresponding to the 

value 4 (i. e. point 4 in R) of a function f: R2 -4 R given by f (x, y) = X2 +y2. Its Jacobian is given by 

Jf (x, y) = [2x 2y] which is null at (0,0). However, the point (0,0) is not on the circle x2 +y2 - 4; 

hence the circle is a smooth curve. 

EXAMPLE 2.7. The sphere X2 + Y2 + Z2 =9 is a smooth surface in W. It is the level set for the 

value 9 of a C' function f: R3 --* R defined by f (x, y, z) = x' + y' + z, and Jf (x, y, z) : ý: k [0 0 0] at 
points on the sphere. 

EXAMPLE 2.8. Let f: R3 --* R be a function given by f (x, y, z) - X2 + y2 - Z2. Its level set 

corresponding to 0 is the right circular cone z=± V92 
-+y2, whose apex is the point (0,0,0) as 

illustrated in Figure 3(a). The Jacobian Jf(x, y, z) - [2x 2y - 2z] is null at the apex. Hence, the 

cone is not smooth at the apex, and the apex is said to be a singularity. Nevertheless, the level sets of 

the same function for which x2 + y2 _ Z2 =c:, ý 0 are smooth surfaces everywhere because the point 
(0,0,0) is not on them. We have a hyperboloid of one sheet for c>0 and a hyperboloid of two sheets 
for c<0, as illustrated in Figure 3(b) and (c), respectively. 

(a) (b) (c) 

+y2 _Z2 
2 +Y2 2 2. FIGURE 3. (a) Cone x2 = 0; (b) hyperboloid of one sheet x -z =a 

(c) hyperboloid of two sheets X2 + Y2 - Z2 = -a 
2. 

EXAMPLE 2.9. The Cartan umbrella with-handle x2 - zy2 =0 in W (Figure 4) is not smooth. 

It is defined as the zero set of the function f (x, y, z) = x2 - Zy2 whose Jacobian is Jf (x, y, z) = 
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[2x - 2yz -. y2j. It is easy to see that the Cartan umbrella is not smooth along the z-axis, i. e. 
the singular point set 1(0,0, z)l where the Jacobian is zero. This singular point set is determined by 
the intersection j2x-ojnj-2yz-ojn f -Y2 =: 01, which basically yields the intersection of plane 
fx - 01 and plane ly = 01, i. e. the z-axis. 

-4"Msk-l 

(a) (b) 
FIGURE 4. (a) Cartan umbrella with-handle X2 _ zy 2 :: = 0; (b) Cartan umbrella 

without-handle tX2 
- Zy 2- 01 - 

fZ < ()1. 

The smoothness criterion based on the Jacobian is valid for functions and can be generalised to 

mappings. In this case, we have to use the Implicit Mapping Theorem given further on. Even so, let 

us see an example of a level set for a general mapping, not a function. 

EXAMPLE 2.10. Let f (x, y, z) = (X2 +Y2 + Z2 - 1,2x2 +2 Y2 - 1) a mapping f: V 
-ý Rý with 

component functions f, (X, y, Z) - X2 + y2 + Z2 -I and f2 (x, y, z) = 2x2 + 2y2 - 1. The set fý 1 (0) is a 

sphere of radius I in R3 while fj- 1 (0) is a cylinder parallel to the z-axis in R3 (Figure 5). If 0= (0,0) 

is the origin in R2, the level set 

f-I (o, o) = fýl (o) n fi- I (o) 
is the intersection of a sphere and a cylinder in W. Such an intersection consists of two circles on the 

sphere that can be obtained by solving the equations f, (x, y, z) = f2 (x, y, z) - 0. 

Let us see now the role of the differentiability in the local structure of level sets defined by general 

mappings as in Example 2.10. As noted in [27, p. 111, by taking into account the linear approximation 
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FIGURE 5. Two circles as the intersection of a cylinder and sphere in W. 
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of differentiable functions and standard results on solving systems of linear equations, we start to 

recognise and accept that level sets are locally graphs. 
Let f: UC W" -4 R, U an open subset of R", f= (A.... 

ifn), C= (Ch ... ICn)- We assume 
that f is differentiable. Let us consider the level set f (c) 

== n, = I 
fi- 1 (ci), i. e. the set whose points 

(xl,..., x, n) EU satisfy the equations 

. 
fl(X1,..., Xm) =C1 

(2) 

(XI 
I ... I Xm) :::::::: Cn - 

We have m unknowns (xl,..., xm) and n equations. If each component function fi is linear, we have 

a system of linear equations and the rank of the matrix gives us the number of linearly independent 

solutions, and information enough to identify a complete set of independent variables. The Implicit 

Mapping Theorem states that all this information can be locally obtained for differentiable mappings. 
This is due to the fact that differentiable mappings, by definition, enjoy a good local linear approxi- 

mation. 
If pEf-I (c), then f (p) = C. If xEP is close to zero, then, since f is differentiable, we have 

]o 

f(p+ x) -f(P)+f, (p). X+F-(x) 

(b) 
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where F, (x) -+ 0 when x -+ 0 (see Dineen [27, p. 3, p. 12]). Because we wish to find x close to 0 such 
that f (p + x) = c, we are considering points such that 

f1 x+ F-(X) = 

and thus f(p). x --. 0 0 (where t-zý means approximately equal). Let us assume that m>n. Therefore, 

not surprisingly, we have something very close to the following system of linear equations 

af, afl 
ax, (P)x, ++ axm (P)xm =0 

(3) 
afn 

(P)xl +---+ 
afn 

(P)x- = 0, 
ax, hm 

whose matrix is the Jacobian Jf. 

From linear algebra we know that 

rankJf =n 4==ý, n rows of Jf are linearly independent 

n columns of Jf are linearly independent 

(4) Jf contains n columns, and the associated nxn matrix has non-zero determinant 

-ý==* the space of solutions of the system 3 is (m - n) -dimensional. 

Besides, if any of the conditions (3) are satisfied, and we select n columns which are linearly in- 

dependent then the variables concerning the remaining columns can be taken as a complete set of 
independent variables. If the conditions (3) are satisfied, we say that f has full or maximum rank at 

p" 

EXAMPLE 2.11. Let us consider the following system of equations 

2x- y+ z=0 

y -W=07 

whose matrix of coefficients is 

A2 -1 1 01. 

= 
[0 

10 -1 
The submatrix 

2 11 
is obtained by taking the first two columns from A, and has determinant 

10 

1 
2 =, 4 0. Thus, A has rank 2, or, equivalently, the two rows are linearly independent. So, the two 
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variables z, w in the remaining two columns can be taken as the independent variables. In other words, 

w, 2x =y-z=w-z, and hence f (2 zIW, Z, W) :zER, w C- RI is the solution set. Alternatively, 

the solution set can be written in the following form 

(Z, W), Z, W) : (Z, W) 

where g(z, w) = (2 z, w) is a mapping g: Rý -+ Rý. In this format, the solution space is the graph of 
(defined in the next subsection). 

Assuming that the rows of Jf (p) are linearly independent is equivalent to supposing that the gra- 
dient vectors JV f, (p), 

..., Vf, (p) I are linearly independent in R1. The Implicit Mapping Theorem 

states that with this condition we can solve the non-linear system of equations (2) -near p and apply 

the same approach to identify a set of independent variables. The hypothesis of a good linear appro- 

ximation in the definition of differentiable functions implies that the equation systems (2) and (3) are 

very close to one another [27, p. 13]. Roughly speaking, this linear approximation is the tangent space 

to the solution set defined by the at p. 

THEOREm 2.4. Let f: UC R' -+ r (m > n) be a differentiable mapping, let pEU and assume 

that f (p) =c and rank Jf (p) = n. For convenience, we also assume that the last n columns of the Jaco- 

bian are linearly independent. If p= (pl,..., pn), let pI= (pi 
I ... ) Pm-n) and P2 = (Pm-n+ 11 ... I PM) 

so that p= (PI 
7 P2). Then, there exists an open set VC Rm-n containing pi, a differentiable mapping 

g: V -* Rý, an open subset U' CU containing p such that g (p 1) = P2 and 

f-'(c)nul= {(x, g(x»: x cV1 =-graphg. 

Therefore, locally every level set is a graph. 

3.3. The graph of a mapping. 

DEFINITION 2.6. (Dineen [27, p-6]) Let U be open in Rý'. The graph of a mapping f: U 

IR -+ R' is the subset of the product space Rl+l = W' x R' defined by n, 

graphf -f (x, y)I xC Uandy=f (x) 1 

or 
graphf = «x, f (x» 1xG Ul. 

EXAMPLE 2.12. Let us consider both mappings f (t) = (cos t, sin t) and g(t) = (cos 2t, sin 2t) of 

Example 2.3. They have the same image in Rý, say a unit circle. However, their graphs are, distinct 
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point sets in R3. The graph of f is a circular helix (t, cost, sin t) in R3, Figure I (b). But, although the 

graph of g is a circular helix with windings being around the same circular cylinder, those windings 
have half the pitch. 

This suggests that there is aI -I correspondence between a mapping and its graph, that different 

mappings have distinct graphs. This leads us to think of a possible relationship between the smooth- 

ness of a mapping and the smoothness of its graph. In other words, the smoothness of a mapping 
determines the smoothness of its graph. This is corroborated by the following theorem. 

THEOREm 2.5. (Baxandall, [9, p. 147]) The graph of a Cl mapping f: U C- Wn -* R" is a smooth 

variety in R' x Rý. 

PROOF. Consider the mapping F: Ux Rý C R' x R" -4 Rý defined by 

F(x, y)=f(x)-y, xEU, yCR7. 

The graph of f is the level set of F corresponding to the value 0, that is 

graphf = t(x, y) eg' x elf (x) -y=OI. 

To prove that gaphf is a smooth variety in R' x Rý we show that: 

(i) F is a Cl mapping. 
(ii) JF (x, y) :ý (0ý 0) for all xEU, yCW- 

It follows from the definition of F above that for each i= j=m+1,..., m+n and each 

XG U, y EW 
aF 

(x, y) - 
aý 

(x) and 
aF 

(X, Y) 
axi axi ayj 

Therefore the partial derivatives of F are continuous and so F is a C' mapping. 

Also, for any xEU, yGW 

JF (x, y) = (Jf (X), - 1) 7ý (0,0) 
- 

This completes the proof 11 

EXAMPLE 2.13. Let us consider the curves sketched in Figure 6. In Figure 6(a) we have a curve 

y= jxj in Rý that is not smooth. It is the graph of the function f: R -* R that expresses y as a function 

of x, but f is not differentiable at x=0. Nor is it the graph of a (inverse) function g expressing x as a 

function of y, because in the neighbourhood of (0,0) the same value of y corresponds to two values 

of x. 
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In Figure 6(b) we see another non-smooth curve xy -0 in R2 that is the union of the two coordinate 
axes, x and y. In fact, in any neighbourhood of (0,0), there are infinitely many y's corresponding to 
x == 0, and infinitely many x's corresponding to y=0, so it is not a graph of a function either way. 
Finally, the graph of the function f (x) = X113 , depicted in Figure 6(c), is a smooth curve. Note that 
the curve is smooth despite the function being not differentiable at x=0. This happens because the 
curve is the graph of the function x=f (y) =: y3 is differentiable. 

(a) (b) (c) 

FIGURE 6. Not all point sets in Rý are graphs of a mapping. 

From these examples, we come to the following conclusions: 

Rewording Theorem 2.5, every point set that is the graph of a differentiable mapping is 

smooth. 
The fact that a mapping is not differentiable does not imply that its graph is not smooth; but 

if the graph is smooth, then it is necessarily the graph of a related function by changing the 

roles of the variables, possibly the inverse function. This is the case for the curve x= y3 in 

Figure 6(c). 

The graph of a mapping that is not differentiable is possibly non-smooth. This happens 

because of the differentiable singularities such as the cusp point in y- IxI, Figure 6. 

There are point sets in R' which cannot be described as graphs of mappings, unless we break 

them up into pieces. For example, with appropriate constraints we could split XY =0 (the 

union of axes in Rý) into the origin and four half-axes, each piece described by a function. 

The origin is a cut point of xy - 0, that is, a topological singularity. The idea of partitioning 

a point set into smaller point sets by its topological singularities leads to a particular sort of 

stratification as detailed in the next chapter. Another alternative to describe a point set that 

is not describable by a graph of a function is to describe it as a level set of a function. 
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The relationship between graphs and level sets plays an important role in the study of varieties. It 
is easy to see that every graph is a level set. Let us consider a mapping f: UC R' -ý R. We define 
F: Ux R' -4 Rn by F (x, y) =f (x) - y. If 0 is the origin in Rn, we have 

F-' (0) -ý=> (x, y) = 

f (x) -y=0 
-#ý (x, y) G graphf. 

Thus, F- 1 (0) = graphf and every graph is a level set. This fact has been used to prove the Theo- 

rem 2.5. As a summary, we can say that: 

e Not all varieties in some Euclidean space are graphs of a mapping. 
Every variety as a graph of a mapping is a level set. 
Every variety is a level set of a mapping. 

This shows us why the study of algebraic and analytic varieties in geometry is carried out using 
level sets of mappings, i. e. point sets defined implicitly. The reason is a bigger geometric coverage of 
point sets in some Euclidean space. In addition to this, many (not necessarily smooth) varieties admit 

a global parametrisation, whilst others can only be partially (locally) and piecewise parametrised. 

EXAMPLE 2.14. Let Z= X2 _ y2 be a level set of a function F: V 
-ý R defined by F (x, y, z) = 

X2 - y2 -z corresponding to the value 0. It is observed that JF (x, y, z) = [2x - 2y - 1] is not zero 

everywhere. So Z= X2 _ Y2 in V is smooth everywhere. It is a variety known as a saddle surface. 
Note that z is explicitly defined in terms of x and y. So, the saddle surface can be viewed as the graph 

of the function f: Rý ---ý R given by f (x, y) - X2 _ y2. Consequently, the saddle surface can be given 

a global parametrisation g: Rý -+ 
W defined by g(x, y) = (XjyjX2 -y2 ). 

Not all varieties can be globally parametrised, even when they are smooth. But, as proved later, 

every smooth level set can be always locally parametrised, i. e. every smooth level set is locally a 

graph. This fact is proved by the Implicit Mapping Theorem. 

Level sets correspond to implicit representations, say functions, on some Euclidean space, while 

graphs correspond to explicit representations. In fact, we have from calculus that 

DEFINITION 2.7. (Baxandall and Liebeck [9, p. 226]) Let f: XC R' -ý R be a function, where 

m>2. If there exists a function g: YC W" -+ R such that for all C 

(Xl 
I... 7xm- II g(xl,..., xm- 
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then the function g is said to be defined implicitly on Y by the equation 

f(Xi,..., 
m)O. 

Likewise, the graph of g: YC W"-' --* R is the subset of W" given by 

I (Xl, 
---, 

Xm- 1, Xn) EeI Xm = g(xi, ..., xm- 1) 1. 
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The expression xn = g(x) is called the equation of the graph [9, p. 100]. Hence, g is said to be 

explicitly defined on Y by the equation xn = g(xl,..., x. -I). 

EXAMPLE 2.15. The graph of the function f (x, y) = _X2 - y2 has equation -z = x2 +y2 . Thi s 

graph is a 2-manifold in R3 called a paraboloid (Figure 7). The equation -z = X2 + y2 explicitly de- 

fines the paraboloid in W. For c<0 the plane z=c intersects the graph in a circle lying below the 

level set x2 +Y2 = -c in the (x, y)-plane. The equation x2 +y2 = -c of a circle (i. e. a1 -manifold) in 
TrD2 
uk is said to define y implicitly in terms of x. This circle is said to be an implicit I -manifold. 

0.5 

C=-1 

FIGURE 7. The paraboloid -Z = X2 + y2 in W. 
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4. Rank-based smoothness 
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Now, we are in position to show that the rank of a mapping gives us a general approach to check 
the C' invertibility or C' smoothness of a mapping, and whether or not a variety is smooth. This 

smoothness test is carried out independently of how a variety is defined, implicitly, explicitly or 
parametrically, i. e. no matter whether a variety is considered a level set, a graph, or an image of a 

mapping, respectively. 

DEFINITION 2.8. (Olver [93, p. 11]) The rank of a mapping f: Rm -4 Rn at a point pG Wn is 

defined to be the rank of the nxm Jacobian matrix Jf of any local coordinate expression for f at the 

point p. The mapping f is called regular if its rank is constant. 

Standard transformation properties of the Jf imply that the definition of rank is independent 

of the choice of local coordinates [93, p. I I] (see [15, pA 10] for a proof). Moreover, the rank of 

the Jacobian matrix (shortly rankJf) provides us with a general algebraic procedure to check the 

smoothness of a submanifold or, putting it differently, to determine its singularities. It is proved in 

differential geometry that the set of points where the rank of f is maximal is an open submanifold of 

the manifold R' (which is dense if f is analytic), and the restriction of f to this subset is regular. The 

subsets where the rank of a mapping decreases are singularities[93, p. 11 ]. The types and properties 

of such singularities are studied in singularity theory. 

From linear algebra we have 

rankJf -- kk rows of Jf are linearly independent 

-#=ý k columns of Jf are linearly independent 

Jf contains akxk submatrix that has non-zero deternunant. 

The fact that the nxm Jacobian matrix Jf has rank k means that it includes akxk submatrix that 

is invertible. Thus, a necessary and sufficient condition for a k-variety to be smooth is that rank Jf -k 

at every point of it, no matter whether it is defined parametrically or implicitly by f. This is clearly 

a generalisation of Corollary 2.1, and is a consequence of a generalisation of the Inverse Mapping 

Theorem, called the Rank Theorem: 

THEOREm 2.6. (Rank Theorem) Let UC Wn, VC Rý be open sets, f: U -+ V be a C' mapping, 

and suppose that rank Jf = k. If pEU and q=f (p), there exists open sets UO CU and VO CV with 

pc UO and qC Vo, and there exists Cr diffeomorphisms 

, ý,: U _ý C Wn 
y0 
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W: vo --4 Ycr 

with XIY open in RI, Rn respectively, such that 

wof oo-'(X) cY 
and such that this mapping has the simpleform 

Nf of0 0-' (pl 
, ... pm) = (Pli 

... 3 Pk3 Oý 
... 30). 

PROOF. See Boothby [15, p. 47]. 
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r-l 

This is a very important theorem because it states that a mapping of constant rank k behaves 
locally as a projection of Wn = Rý X Wn-k to k followed by injection of Rý onto Rk xf 01 ckx 
Rý-k = Rý. 

4.1. Rank-based smoothness for parametrisations. The Rank Theorem for parametrisations 
is as follows: 

THEOREm 2.7. (Rank Theorem for parametrisations) Let U be an open set in R' and f: U --* 
,,,, n 
IR .A necessary and sufficient condition for the C' mapping f to be a diffeomorphism from U to 
f (U) is that it be one-to-one and the Jacobian Jf have rank m at every point of U. 

PROOF. See Boothby [15, p. 46]. r-l 

This is a generalisation of Corollary 2.1, with m<n. It means that the kernel2 of the linear 

mapping represented by Jf is 0 precisely when the Jacobian matrix has rank m. 
Let us review some simple examples of parametrised curves. 

EXAMPLE 2.16. We know that the bent curve in V depicted in Figure 6 and defined by the 

parametrisation f (t) = (t, It I) is not differentiable at t=0, even though its rank is I everywhere. 

Example 2.16 shows that differentiability test should always precede the rank test in order to 

detect differentiable singularities. 

EXAMPLE 2.17. A parametrised. curve that passes the differentiability test, but not the rank test, 

is the cuspidal cubic in V given by f (t) = (t3' t2) (Figure 2(a)). The component functions are poly- 

nomials and therefore differentiable. However, the rankJf (t) - [3t2 2t] is not I (i. e. its maximal 

2Let F: X -+ Y be a linear mapping of vector spaces. By the kernel of F, denoted by kernelF, is meant the set of all 

those vectors xE Xsuch that F(V) =0EY, i. e. kernelF = Ix EX: F(x) = 01 (see Edwards [33, p. 29]). In other words, 

the kernel of a linear mapping corresponds to the level set of a mapping. 
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value) at t=0; in fact it is zero. This means that the parametrised cuspidal cubic is not smooth at 
t=0, that is, it possesses a singularity at t=0. 

EXAMPLE 2.18. Let us take the parametrised parabola in V given by f (t) =: (t I t2) (Figure 2(b)). 
f is obviously differentiable, and its rank is 1 everywhere, so it is globally smooth. 

Nevertheless, algorithmic detection of singularities of a parametrised variety fails for self-inter- 
sections, i. e. topological singularities. Let us see some examples. 

EXAMPLE 2.19. The curve parametrised by the differentiable mapping f (t) =: (t3 - 3t - 2, t2 - 
t- 2) is not smooth at (0,0), despite the differentiability of f and its maximal rank. In fact, we get the 

same point (0,0) on the curve for two distinct points t=-1 and t=2 of the domain, that is, f (- 1) = 
f (2) = (0,0), and thus f is not one-to-one. These singularities are known as self- intersections in 

geometry or topological singularities in topology. In fact, the point (0,0) of this curve is a cut point. 
Its local topological type is different from any other point. 

The problem with a parametrised self- intersecting variety is that its self-intersections are topolo- 

gical singularities for the corresponding underlying topological space, but not for the parametrisation. 
However, it is an easy task to check whether a non- self-intersecting point in a parametrised variety 
is singular or not. A non- self-intersecting point is singular if the rank of Jacobian at this point is not 

maximal. 

EXAMPLE 2.20. Let us consider a parametrisation f (u, v) = (UV, U, V2) of the Cartan umbrella 

without-handle (the negative z-axis) (Figure 4(b)). The effect of this parametrisation on Rý can be 

described as the 'fold' of the v-axis at the origin (0,0) in order to superimpose negative v-axis and 

positive v-axis. The 'fold' is identified by the exponent 2 of the third component coordinate function. 

Thus, all points (0,01 V2) along v-axis are double points and determine that all points on the positive 

z-axis are singularities or self- intersecting points in R3. However, this is not so apparent if we restrict 

the discussion to the Jacobian and try to determine where the rank drops below 2. In fact, 

vu 

if 
(U7 

V) io 

-0 
2v_ 

and we observe that the rank drops below 2 only at (0,0). This happens because only (0,0) is a 

differential singularity, that is, the tangent plane is not defined at (0,0) 
- Any other point on the 

positive z-axis has a parametrised neighbourhood that can be approximated by a tangent plane in 

relation to the parametrisation. 
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EXAMPLE 2.21. Let f: Rý --* W be the mapping given by 

(xl y) = (sinx, ecosy, siny). 

Then 

cosx 0 

Jf (x, Y) = ex cos y-e sin y 
0 cosy 

and hence 

if (0,0) =1 

has rank 2, so that in a neighbourhood of (0,0), the mapping f parametrises a subset of V. 
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4.2. Rank-based smoothness for implicitations. The Implicit Function Theorem is particularly 

useful for geometric modelling because it provides us with a computational tool to test whether an 
implicit manifold, and more generally a variety, is smooth in the neighbourhood of a point. Specifi- 

cally, it gives us a local parametrisation for which it is possible to check the local U-invertibility by 

means of its Jacobian. 

Before proceeding, let us see how U-invertibility and smoothness is defined for implicit mani- 

folds and varieties. 

THEOREm 2.8. (Rank Theorem for implicitations) Let U be open in Wn and let f: U -ý R be 

a C'Junction on U. Let (p, q) = (pl,..., p, 1, q) CU and assume that f (p, q) =0 but -ýf- (p, q) ý4 0. ax. 
Then the mapping 

F: U -ý kn-1 xR= kn 

given by 

(X, y) ý-+ (x, f (x, 
is locally U-invertible at (p, q). 

PROOF. (See Lang [68, p. 523]). All we need to do is to compute the derivative of Fat (p, q). We 

write F in terms of its coordinates, F- (Fl, (xj,..., x,, -jj). 
Its Jacobian matrix is 



4. RANK-BASED SMOOTHNESS 

therefore 

JF (x) =- 

0 ... 0 
1 ... 0 

... 1 0 
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af af af DX1 TX2 

a 

and is invertible since its determinant is equal to ; 
f- 
X. ý4 0 at (p, q). The Inverse Function Theorem 

guarantees that F is locally U-invertible at (p, q) - 0 
As a corollary of this Theorem, we have the Implicit Function Theorem for functions of several 

variables. 

THEOREm 2.9. (Implicit Function Theorem) Let U be open in RI and let f: U -ý R be a C' 
af (p, q) =ý6 0. Then fiinction on U. Let (p, q) = (pl,..., pn-1, q) C- U and assume that f (p, q) =0 but TX. - 

there exists an open ball V in Wn- 1 centered at p and a Cr function 

such that g(p) =q and 
(x, g (y-» = 

for all xCV. 

PROOF. (See Lang [68, p. 524]). By Theorem 2.8 we know that the mapping 

F: U -> Er-' xR= Er 

given by 

(x, f (x, y» 
is locally CI-invertible at (p, q). Let F- 1= (Fý- 1,... 

, 
F; - 1) be the local inverse of F such that 

F-l(x, z)=(x, F; -'(x, z)) for XEWn-', zER. 

We let g(x) = F; -'(x, O). Since F(p, q) = (p, O) it follows that FWI(p, O) =q so that g(p) = q. 

Furthermore, since F, F- 1 are inverse mappings, we obtain 

(x, 0) =F(F-I (x, 0» =F(x, g(x» =(x, f(x, g(X»). 

This proves that f (xj g(x)) = 0, as shown by previous equality. El 
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Note that we have expressed y as a function of x explicitly by means of g, starting with what is 

regarded as an implicit relation f (x, y) = 0. Besides, from the Implicit Function Theorem, we see that 
the mapping G given by 

(X, g (x» =- G (x) 

or writing down the coordinates 

lxm- 1,9(Xil. ý- lxm-i» 
provides a parametrisation of the variety defi ned by the equation f (xi 

. .., x,,, - 1, y) =0 in the neigh- 
bourhood of a given point (p, q). This is illustrated in Figure 8 for convenience. On the right, 

we have the surface f(x) = 0, and we have also pictured the gradient gradf(p, q) at the point 
(p, q) as in Theorem 2.9. Note that the condition -ý-f-(p, q) : ýý 0 in Theorem 2.9 implies that the ax. 
gradf(p, q) = [ýf- ýL 

-ýL] 54 0. ax, aX2 ax, 

grad flp, q) 

VG 

(p, q) P 

surface J(x)=O 

FIGURE 8. Local parametrisation of an implicitly-defined variety. 

An example follows to illustrate the Implicit Function Theorem at work. 

EXAMPLE 2.22. The Cartan umbrella x2 _ ZY2 =0 in R3 is the level set for the value 0 of the 

function f: Rý -+ R given by f (x, y, z) = x2 - zy2. According to the Theorem 2.9, we have only to 

make sure that ýI 
:? ý- 0 in order to guarantee a regular neighbourhood for a point. But 

az 

af 
az = _Y2 

i. e. all points of x2 - zy2 -0 with y=0 are singular points. These singular points are then given by 

y= () 
-#> 

y () 
<-* lx=Olnly=OI 

X2 _ ZY2 = () x-0 

or, equivalently, the point set f (x, y, z) EV: x-O, y = 01. That is, the singular set of the Cartan 

umbrella is the z-axis 0x0xz. 
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This result agrees with the fact that the Jacobian Jf = [2x 2yz y2] has maximal rank I for 
(x, Y, z) ýý (0,0, z) . However, because the rank cannot fall below zero, we have no way to algorithmi- 
cally detect via rank criterion any possible singularities in the z-axis. In fact, the z-axis is a smooth 
cut-line, but we know that the origin is a special singularity of the Cartan umbrella provided that, 
unlike the points of the positive z-axis, it is a cut-point. 

The question now is whether or not there is any method to compute such singularities. An al- 
gorithm to determine the singularities of a variety is useful for many geometry-based packages. For 

example, the graphical visualisation of the Cartan umbrella with-handle X2 - Zy2 =0 in V is iMpos- 

sible because of the discontinuity at y=0. Therefore, unless we use a parametric Cartan umbrella 
without-handle, such a point set cannot be visualised on a display screen. This is an example amongst 
others that shows how much a stratification algorithm of varieties can be useful. 

Amongst other applications of Implicit Function Theorem, we can mention two: 

To prove the existence of smooth curves passing through a point on a surface [68, p. 525]. 

To state the smoothness conditions when an implicit surface and a parametric surface are 

stitched along an edge. 

The first refers a theorem of major importance because it allows the study of smoothness of 
higher-dimensional submanifolds via, for example, Frenet approximations. We will come back to 

this point later in this chapter. The second is particularly important in geometric design because it 

makes it possible to avoid the conversion of an implicit surface patch to its parametric representation, 

or vice-versa. So, in principle, it is possible to design a smooth surface composed of parametric and 
implicit patches. 

5. Submanifolds 

By definition, a submanifold is a subset of a manifold that is a manifold in its own right. In 

geometric modelling, manifolds are usually Euclidean spaces, and submanifolds are points, curves, 

surfaces, etc. in some Euclidean space of equal or higher dimension. Manifolds and varieties in an 
Euclidean space are usually defined by either the image, level set or graph associated with a mapping. 

5.1. Parametric submanifolds. As shown in previous sections, the smoothness characterisation 

of a submanifold clearly depends on its defining smooth mapping and its rank. We have seen that the 

notion of smooth mapping of constant rank leads to the definition of smooth submanifolds. In this 

respect, the Rank Theorem, and ultimately, the Inverse Function Theorem can be considered as the 

major milestones in the theory of smooth submanifolds. Notably, the smoothness of a mapping does 
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not ensure the smoothness of a submanifold. In fact, not all smooth submanifolds, say parametric 
smooth submanifolds, can be considered as topological submanifolds, i. e. submanifolds equipped 
with the submanifold topology. 

Extreme cases of mappings f: M -+ N of constant rank are those corresponding to maximal rank, 
that is, the rank is the same as the dimension of M or N. 

DEFINITION 2.9. Let f: M -ý N be a smooth mapping with constant rank. Then, for all pGM, 
is called: 

an immersion if 

a submersion if 

rankf = dimM, 

rankf = dimN. 

Let us now concentrate on immersions, that is, mappings whose images are parametric submani- 
folds. To say that f: M -4 N is an immersion means that the differential Df (p) is injective at every 

point pEM. This is the same as saying that the Jacobian matrix of f has rank equal to dimM (which 

is only possible if dimM < dimN). 'Then by the Rank Theorem, we have 

COROLLARY 2.2. Let M, N be two manifolds of dimensions m, n, respectively, and f: M --+ N 

a smooth mapping. The mapping f is an immersion if and only iffor each point pEM there are 

coordinate systems (U, (p), (V, W) about p and f (p), respectively, such that the composite Vf (p- I is 

a restriction of the coordinate inclusion i: RI -ý WI x Rn-'. 

PROOF. See Sharpe [103, p. 151.0 

This corollary provides the canonical form for immersed submanifolds: 

xm) ý--+ (xi.... ýxm307 10). 

DEFINITION 2.10. A smooth (analytic) m-dimensional immersed submanifold of a manifold N 

is a subset M' CN parametrised by a smooth (analytic), one-to-one mapping f: M -+ M, C N, whose 

domain M, the parameter space, is a smooth (analytic) m-dimensional manifold, and such that f is 

everywhere regular, of maximal rank m. 

Thus, a m-dimensional immersed submanifold M' is the image of an immersion f: M -+ M' - 
(M). To verify that f is an immersion it is necessary to check that the Jacobian. has rank m at 

every point. Observe that an immersed submanifold is defined by a parametrisation. Thus, an im- 

mersed submanifold is nothing more than a parametrically-defined submanifold, or simply a para- 

metric submanifold. Despite its smoothness, an immersed or parametric submanifold. may include 
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self-intersections. A submanifold with self-intersections is the image M' == f(M) of an arbitrary 
regular mapping f: M --ý M' CN of maximal rank m, which is the dimension of the parameter 
space M. Examples of parametric submanifolds with self-intersections such as Bezier curves and 
surfaces are often found in geometric design activities. Immersed submanifolds constitute the largest 
family of parametric submanifolds. It includes the subfamily of parametric submanifolds without 
self-intersections, also known as parametri .c embedded submanifolds. 

DEFINITION 2.11. An embedding is a one-to-one immersion f: M -+ N such that the mapping 
f: M --ý f (M) is a homeomorphism (where the topology on f (M) is the subspace topology inherited 

from N). The image of an embedding is called an embedded submanifold. 

In other words, the topological type is invariant for any point of an embedded submanifold. This is 

why embedded submanifolds are often called simply submanifolds. Obviously, f: M --+ N considered 

as a smooth mapping is called an embedding if f (M) CN is a smooth manifold and f: M -* f (M) is 

a diffeomorphism [22, p. 10]. 

Parametric immersed submanifolds are attractive for geometric design of parametric curves and 

surfaces, but not for solid modelling that practically processes embedded submanifolds as the 'build- 

ing blocks' of an engineering artifact. In order to integrate these two research areas of geometric 

modelling we have to somehow to reconcile immersed and embedded submanifolds. This has been 

taken into account in the design of the data structure of the 1-geometric kernel. 

(a) (b) (c) 

FIGURE 9 

Let us see first some examples of 1 -dimensional immersed that are not embedded manifolds. 
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EXAMPLE 2.23. Let f: R --ý Rý an immersion given by f (t) = (cos 2nt, sin 27u). Its image f (R) 
is the unit circle S' =I (Xjy) I X2+y2 - 11 in V. This shows that an immersion need not be one-to-one 
into (injective) in the large, even though it is one-to-one locally. In fact, for example, all the points 
t= 0)±11±27 ... have the same image point (0,1) in V. Moreover, the circle intersects itself for 

consecutive unit intervals in IR, even though its self- intersections are not 'visually' apparent. Thus, 
this circle is an immersed submanifold, but not an embedded submanifold in R2. The same holds 
if we consider the immersion f: [0,1] -ý V because f (0) =f (1). But, if we take the immersion 
f : ]0,1[-+ Rý, its image is an embedded manifold, that is, a unit circle less one of its points. 

EXAMPLE 2.24. Let f :]- oc7 2[-+ V be an immersion given by f (t) = (-t3 + 3t + 2, t2 _ 
t- 2). Its image f (] - oo, 2[) is a 1-dimensional immersed 6-shaped submanifold (Figure 9(a)). 

Although f is injective (say, injective globally, and consequently injective locally), that is, without 
self-intersections, its image is not an embedded manifold. This is so because ]- oo, 2[ and its image 

f (] - oo ,2 
[) are not homeomorphic. In fact the point (0,0) in f (] - oo, 2 [) is a cut point of f (] - oo, 2 [), 

and hence the local topological type of such a 6-shaped submanifold is not constant. Note that the 

curve intersects itself at t=-1 and t=2, but because t=2 is not part of the domain, one says that 

the curve touches itself at the origin (0,0). 

EXAMPLE 2.25. f: R -+ V defined by f (t) - (t2 _11 t3 - t) is an immersion (Figure 9(b)). It is 

not injective. However, it is injective when restricted to, say, the range -1<t< oc. 

EXAMPLE 2.26. A more striking example of a self-touching submanifold is given by the image 
T[D2 of the mapping f: R IR so that 

( T' , sin nt) for 1t< 00, t 
(0, t+ 2) for - 00 <t< 

The result is a curve with a gap (Figure 9(c)). Let us connect the two pieces together smoothly 
by a dotted line as pictured in Figure 9(c). Then we get a smooth submanifold that results from 

the immersion of all of R in Rý. This submanifold is not embedded because near t= oo the curve 

converges to the segment line 0x [- 1,1] in y-axis. In fact, while t converges to a point near oo, 

its image converges to a line segment. Thus, the submanifold is not embedded because f is not a 

homeomorphism. 

Embedded submanifolds are a subclass of immersed submanifolds that exclude self-intersecting 

submanifolds and self-touching submanifolds, that is, submanifolds that corrupt the local topological 
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invariance or type. Any other submanifold that keeps the same topological type everywhere in it is 

an embedded submanifold. Equivalently, a subset f (M) EN of a manifold N is called a smooth m- 
dimensional embedded submanifold if there is a covering jUj I of f (M) by open sets (i. e. arbitrarily 
small neighbourhoods) of the ambient smooth manifold N such that the componentsofui nf (m) 

are all connected open subsets of f (M) of dimension m. Thus, there is no limitation on the number 

of components of an embedded submanifold in a chart of the ambient manifold; it may even be 

infinite [103, P. 19]. This means that, even with differential and topological singularities removed, a 

smooth embedded submanifold may be non-regular. Regular submanifolds intersect more neatly with 

coordinate charts of the ambient manifold; in particular, the family of components of this intersection 

do not pile up. 

DEFINITION 2.12. An m-dimensional smooth submanifold MCN is regular if, in addition to 

the regularity of the parametirising mapping, there is a covering f Ujj of M by open sets of N such 

that, for each i, uinmis a single open connected subset of M. 

(a) 

FIGURE 10 

(b) 

By this definition, smooth regular submanifolds constitute a subclass of smooth embedded sub- 

manifolds. Three counterexamples are given below. 

EXAMPLE 2.27. Let f :]1, oo [-* V be a mapping given by 

cos 27tt II sin 21ct) 
tt 
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Its image (Figure I O(a)) in IRý is an embedded curve because the image of every point tE]1, oc [ is a 
point in R2; hence, f is a homeomorphism. Note that even near t= oc, f is still a homeomorphism 
because its image is a point, the origin (0,0). That is, a point and its image have the same dimension. 
(This is not true in Example 2.26. ) However, the image of ] 1, oc [ is not a regular curve because it 

spirals to (0,0) as t --ý oc and tends to (1,0) as t --* 1, Figure 10(a). This happens because near (in 

a neighbourhood of) t= oc) the relative neighbourhood in the image curve has several (possibly an 
infinite number of) components. 

EXAMPLE 2.28. Let us slightly change the previous mapping f :]1, oc [--ý Rý to be a mapping 

given by 
t+I 

cos 2, gt, 
t+I 

sin 2m). 
2t 2t 

Its image (Figure 10(b)) in Rý is a non-regular embedded curve, now spiraling to the circle with 

center at (0,0) and radius 1/2 as t -* oc, Figure 10(b). It is quite straightforward to check that the 

Jacobian is always 1. In fact, it could be 0 if both derivatives of the component functions could vanish 

simultaneously on ] 1, oc [; this would happen if and only if cos 2nt = -tan 2nt, an impossible equality. 

Thus, every regular m-dimensional submanifold of an n-dimensional manifold locally looks like 

an m-dimensional subspace of Rý -A trickier, but very important counterexample to limit the geome- 

tric coverage of a geometric kemel is as follows. 

EXAMPLE 2.29. Let us consider a torus -12 =S1xS1 with angular coordinates (0, y), 0<0, y 

2n. The curve f (t) - (t, kt) mod 2n is closed if k/t is a rational number, and hence a regular subma- 

nifold of T2, being 51 the parameter space. But, if k1t is irrational, the curve forms a dense subset of 

T2 and, consequently, is not a regular submanifold. 

This example shows us that a regular submanifold such as a torus in R3 may include non-regular 

submanifolds. One should be careful to avoid irrational numbers in the representation and construc- 

tion of submanifolds in a geometric kernel. 

5.2. Implicit submanifolds and varieties. An alternative to the parametric approach for sub- 

manifolds is to define them implicitly as a common or intersecting level set of a collection of functions 

[93, p. 16]. We have seen this in Subsection 3.2, where the Implicit Mapping Theorem was introduced. 

This theorem provides an immediate canonical form for regular manifolds as follows: 

THEOREm 2.10. (Olver [93, p. 14]) A n-dimensional submanifold NC Rm is regular if and only 

ifforeach point pEN there exist local coordinates x= (xl,..., x,, ) defined on a neighbourhood U 

of p such that UnN=: fx: xi ----- Xm-n - 01- 
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Therefore, every regular n-dimensional submanifold of an m-dimensional manifold locally looks 
like a n-dimensional subspace of R1. This means that all regular n-dimensional submanifolds are 
locally equivalent. They are the basic constituents of the stratifications introduced in Chapter 3. 

Let us study now varieties. They are generalisations of implicit submanifolds, and thus they are 
defined by submersions. In general, the variety V-F, determined by a family of real-valued functions 
Y is defined by the subset where they simultaneously vanish, that is, 

jr= fx lfi(x) =Oforallfi CJ71. 

In particular case when these functions Ifil are components of a mapping f: R' -+ R, the variety 
Vf = If (x) = 01 is just the set of solutions to the simultaneous system of equations fl (x) =---- 
f, (X) = 0. 

It is clear that the notion of rank has a natural generalisation to (infinite) families of smooth 
functions. 

DEFINITION 2.13. Let T be a family of smooth real-valued functions fi :M -+ IR, with M, R 

smooth manifolds. The rank of 77 at a point pEM is the dimension of the space spanned by their 
differentials. The family is regular if its rank is constant on M. 

DEFINITION 2.14. A set jfj,..., fkj of smooth real-valued functions on a manifold M with a 

common domain of definition is called functionaHy dependent if, for each pEM, there is a neigh- 
bourhood U and a smooth function H(y,.... i Yk) , not identically zero on any subset of Rk, such that 

H(fl(x),..., fk(x)) =O for all xEU. The functions are called functionally independent if they are 

not functionally dependent when restricted to any open subset of M. 

EXAMPLE 2.30. The functions fj (x, y) = xly and f2 (x, y) = Xyl (X2 + y2) are functionally de- 

pendent on the upper halfplane ly > 01 because the second can be written as a function of the first, 
f2). f2 "A+1 

Thus, for a regular family of functions, the rank gives us the number of functionally independent 

functions it contains. So, we obtain an Implicit Function Family Theorem generalising the Implicit 

Mapping Theorem as follows. 

THEOREm 2.11. (Implicit Function Family Theorem) If a family offunctions F is regular of 

rank n, there exists n functionally independent functions fl, ---, fi, EF in the neighbourhood of any 

point, with the property that any other function gE JI can be expressed as a function thereof, g= 

H(fl) ... ifn)- 
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PROOF. See Olver [93, p. 131.0 

Thus, if f, I ... I fr is a set of functions whose mxr Jacobian matrix has maximal rank r at pEM, 
they also have, by continuity, the same rank r in a neighbourhood of UCm of p, and hence are 
functionally independent near p. As expected, Theorem 2.11 also implies that, locally, there are at 
most m functionally independent functions on any m-dimensional manifold M. 

DEFINITION 2.15. A variety (or system of equations) Výr is regular if it is not empty and the 

rank of F is constant. 

Clearly, the rank of T is constant if 
-T 

itself is a regular family. In particular, regularity holds if 

the variety is defined by the vanishing of a mapping f: N -+ W which has maximal rank r at each 

point XEV,, 
. F, or equivalently, at each solution x to the system of equations f(x) =0 93, p. 16]. The 

Implicit Function Family Theorem 2.11, together with Theorem 2.10, shows that a regular variety is 

a regular submanifold, as stated by the following theorem. 

THEOREm 2.12. Let. F be afamily offunctions defined on an m-dimensional manifold M. If the 

associated variety VT CM is regular, it defines a regular submanifold of dimension m-r. 

PROOF. See Olver [93, p. 171. 0 

As for parametric submanifolds, to say that an implicit submanifold is regular means that it is 

smooth. However, a smooth parametric submanifold is not necessarily regular. But, for implicit sub- 

manifolds, regularity and smoothness coincide. This is so because, unlike a parametric submanifold, 

regularity of an implicit submanifold is completely determined by the regularity of its defining family 

of functions. 

Thus, Theorem 2.12 gives us a simple criterion for the smoothness of a submanifold described 

implicitly. 

EXAMPLE 2.3 1. Let f: R3 -* R be a function given by f (x, y, z) = X2 + y2 + Z2 _ 1. Its Jacobian 

matrix [Zx 2y 2z] has rank I everywhere except at the origin, and hence its variety (the unit sphere) 

is a regular 2-dimensional submanifold of R3. 

EXAMPLE 2.32. The function f: R3 -+ R given by f (x, y, z) = xyz is not regular, and its variety 

(the union of the three coordinate planes) is not a submanifold. 

The fact that regularity and smoothness coincide for implicit submanifolds suggests that we may 

have an algorithm to determine singularities on a variety via the Jacobian matrix. Let us define 
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regular points and singular points before providing some examples that illustrate the computation of 
such singularities. 

DEFINITION 2.16. Let f: Uc RI -4 W be a smooth mapping. A point pE Rm is a regular 

point of f, and f is called a submersion at p, if the differential Df (p) is surjective. This is the same 

as saying that the Jacobian matrix of f at p has rank r (which is only possible if r< m). A point 

qE R" is a regular value of f if every point of f- 1 (q) is regular. 

Instead of 'non-regular' we can also say singular or critical. In general, we have: 

DEFINITION 2.17. Let f: Uc W" -4 W be a smooth mapping. A point pE Wn is a singular 

point of f if the rank of its Jacobian matrix falls below its largest possible value min (m, r). Likewise, 

a singular value is any f (p) EW where p is a singular point. 

Recall that a singular point of an immersion determines a singular point in a parametric subma- 

nifold, but its self-intersections are -not determined by the singular points of its associated function. 

This happens because the regularity of an immersion at a given point is necessary but not sufficient 
to guarantee the regularity of its image. But, for implicit submanifolds and varieties, the regularity of 
functions is necessary and sufficient to ensure their regularity. 

EXAMPLE 2.33. Let f: R -4 R given by f (x) = x2. Then any c =ý6 0 is a regular value of f. Its 

Jacobian [2x] has rank 1 iff x00; hence x=0 is the only singular point of f. This corresponds to 

the minimum point of the graph of f (i. e. the vertex of a parabola), but here we are concerned with 
implicit submanifolds that are defined by level sets, not graphs. 

EXAMPLE 2.34. Let f: R2 -+ R given by f (x, y) = 2. x2 + 3y2. Its Jacobian [4x 6y] has rank 1 

unless x=y=0. So any c ýý 0 is a regular value of f. For c>0, f- I (c) is an ellipse in the plane. 

EXAMPLE'2.35. Let f: V -4 R given by f (x, y) = x3 + y3 - xy. The maximal possible rank for 

its Jacobian [3x2 -y 3y2 - x] is 1, and we can find all points where this fails, i. e. all singular points, 

by solving the system aflax = afld'y = 0, that is, 

3x2-y =O 

3y2-x =O. 

This yields the points (0,0) and as the only singular points of f. Since f(O, 0) =0 and 3333 

- T7- it follows that any c other than 0 or - -L is a regular value of f. Also, 0 is a regular value of 1 27 

restrictions f1 (0,0) }) and -1 is a regular value of fj (R2 -1 (1, ! )}). This is because the 27 33 
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singular points (0,0), (1,1) do not belong to the domain of the restrictions of f, say f (0,0) 33 

fI (R2 -f (1,1) 1), respectively. Figure 11 illustrates (c) for some values of c. For c=0 we 33 

have the well-known folium of Descartes (Figure 11(a)). The folium of Descartes is the variety 
X3 + y3 - xy =0 which self-intersects at the singular point (0,0), i. e. the level set defined by f (x, y) = 
0. The level set defined by f (x, y) -L is the variety X3 + y3 _ XY =- _L (Figure 11 (c)) whose 27 27 
singular point is the isolated point For c we have the regular variety x3 + y3 - XY 33 54 54 
(Figure 11 (b)). 

(a) 

FIGURE 11. Varieties as level sets x3 + y3 - Xy = C. 

(c) 

EXAMPLE 2.36. Let f: R3 --+ R be given by f (x, y, z) = X2 _ Zy2 . The associated variety has 

dimension m-r=3-I=2, but the maximal possible rank of its Jacobian [2x - 2zy -y 2] is 1. Its 

singular points are the solutions of the following system of equations: 

2x =0 X=o 

2zy =0 ZY =0 

-Y 
2=0y=0 

The expressions x=0 and y=0 denote the two coordinate planes in R3, whose intersection is the 

z-axis. That is, the Jacobian vanishes along the z-axis, or, equivalently, Each point in the z-axis is a 

singular point. Since f (0,0, z) =0 it follows that any c other than 0 is a regular value of f. Also, 0 is 

a regular value of fI (R3 -f (0,0, z) 1). Figure 12(a) illustrates f- 1 (0), a variety known as the Cartan 

umbrella with-handle. 
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(a) 

0 

FIGURE 12. (a) Cartan umbrella with-handle as a level set X2 - zy2 - 0; (b) Butterfly 

as a level set y2 -z 
2X2 + X3 :=0. 
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EXAMPLE 2.37. Let f: V 
-+ R be given by f (x, y, z) = y2 - zY + x3. As for the previous 

example, the Jacobian (-2Z2X+3x2 2y - 2zx2) vanishes precisely on the z-axis. The z-axis is the 
line of "double points" where the surface intersects itself at c=0. This is depicted in Figure 12(b) as 
the level set f-1 (0), a variety known as the butterfly. 

EXAMPLE 2.3 8. Let f: R3 --+ W be the mappi ng given by f (x, y, z) = (xy, xz). The Jacobian of 

is x0 
which has rank 2 unless all 2x2 minors are zero, i. e. unless xz = xy = x2 = 0, which is 

Z0 X) equivalent to x=0. Since f (0, y, z) = (0,0), any point of V other than (0,0) is a regular value. This 

variety (the union of the x-axis and the plane x- 0) has dimension 2 and is the intersection of two 
2-dimensional varieties defined by the levels sets of the components functions of f. The first level set 
is the union of the planes x=0 and y=0, while the second level set is the union of the the planes 

x=0 and z=0 in W. 

Consequently, we have a systematic approach to get rank-based stratifications of varieties. In next 

chapter, we will come back to this point of discussion. 

ýý - ZX2 4. Xi = 
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6. Tangent approximations 
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The essence of a k-dimensional smooth (or differentiable) submanifold is that near each of its 

points it is well approximated by a k-dimensional subspace of W. Intuitively, this is just the standard 
approximation of a curve by its tangent line, a surface by its tangent plane, etc. Obviously, such 
an approximation is not possible at (differential) singularities; for example, a tangent plane flips at 
any corner and along any edge of the surface of cube. More general approximations such as Taylor 

approximations and Fr6net approximations will be dealt with in next sections. 

6.1. Tangent spaces for parametric submanifolds. Let N be a submanifold of P and let qE 
N. In geometrical terms, we intend to define the tangent space at q that consists of all the vectors 
emanating from q in directions which are tangential to all curves on N at q. Each of these curves 
is a pararnetrised curve in N at q, that is, it is image of a mapping f: I -ý N with f (0) = q, where 
I is an open interval containing 0. A tangent vector to N at q has the form q+f (0), where f is a 

parametrisation of a curve in N based at q. Thus, apart from the point q, a tangent vector is the image 

of the derivative f'(0) at 0. This is illustrated in Figure 13. 

FIGURE 13. A tangent vector. 

So, we can define a tangent space spanned by aR vectors tangent to their corresponding curves on 

N at q. This is a geometric definition of a tangent space to N at q, and is called the geometric tangent 

space. An analytic generalisation of the geometric tangent space follows. 

DEFINITION 2.18. Let NC p+k be a smooth n-submanifold, let qEN and let f: UCr -+ r+k 

be a pararnetrisation of a relatively open neighbourhood of q in N with f (p) = q. The tangent space 

TqN at q to N is the image 3 of the differential Df(p) :P __+ R"+k. 

The generality of this definition comes from the fact that we are no longer considering I-di- 

mensional tangent spaces to curves on N, but directly an n-dimensional tangent space to N at q. 

3By definition ([61, p. 177]), the image of a linear mapping F is the set of vectors a for which there exists a solution of 

F(x) = 
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Furthermore, this tangent space is now spanned by partial derivatives of the Jacobian, that provide us 

with an analytical view of tangent spaces. This endows an analytic tangent space with a vector space 
structure. However, unlike a geometric tangent space, an analytic tangent space to a submanifold has 

the advantage that it is also a vector subspace of the ambient space (see Sharpe [103, p. 41] for more 
details). As explained next, this is very important to define smoothness on a submanifold through 
Taylor approximations and its relatives such as, for example, Fr6net approximations. Thus, from now 

on we drop the term analytic. 
The tangent space TqN at q to N is the vector subspace of R+k parallel to the affine subspace 

of RI+k through q which best approximates N close to q. By definition (see [65, p-7]), this affine 

subspace of Rn+k is given by 

f(p) + (x - p) Df(p) 7 

where Df(p) spans a n-dimensi, onal vector subspace of 7+k . This 'affine approximation' to f(X) 

near p is here called tangent approximation, and is a special case of the multidimensional Taylor's 

approximation. r 
The following theorem just confirms that a tangent space should be 'flat', rather than 'curved' 

like a manifold. 

THEOREM 2.13. Let NC r+k be a smooth n-manifold, and let q C- N. 7hen the tangent space 

TqN at q to N is a vector subspace of R7+k of the same dimension n as N. 

PROOF. See Gibson [42, p. 18]. 0 

It is clear that the smoothness of a submanifold N means that the neighbourhood of each point 

qf (p) of N can be approximated by its tangent space. This has to do with the the number of 

linearly independent partial derivatives in the Jacobian, that is, with the rank of the Jacobian. If the 

rank falls below the dimension of N, we have a singularity. 

6.2. Tangent spaces for impUcit submanifolds. Before defining the tangent space TpM to an 

implicit manifold M at a point p, it is convenient to generalise the idea of local linear approximation 

to a mapping between manifolds, that is, to define the differential at a point of a smooth mapping 

defined on a smooth manifold, rather than just on an open set. 

Let MC Rn+j, NCR, +k be two smooth m-, n-manifolds respectively, let f: M -4 N be a 

smooth mapping, and let pEM and q=f (p) 
- The fact that f is smooth requires that there is an 

open neighbourhood U of p in Rl+j, and a smooth mapping F: U -+ R1+k with f=F onunm. 

It is clear that the differential of F at p is a linear mapping DF(p) : R, +j _+ W+k. Then, DF(p) 
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necessarily mappings the tangent space TpM into the tangent space TqN (see [42, p. 19] for a proof) - The restriction of the linear mapping DF (p) to TpM is the mapping Df (p) : TpM --+ TqN, and is 
called the differential of f at p. 

We know that an m-dimensional implicit submanifold M of RI+j has the form 

M=fx: f(x) =o1 
where f: Rm+j -+ W' is a differentiable mapping for which Df (p) has full rank m for each pEM. 
The tangent space to M at p is found by linearising f near p. 

THEOREm 2.14. Let MC W'+j be an m-dimensional submanifold described by the set of solu- 
tions to the equation f (x) = 0. The tangent space TpM to M at p is the kernel of [Df (p)], denoted 
by kernel [Df (p)], i. e. the set of solutions to the system of linear equations [Df (p)] (x) = 0, where 
[Df (p)] is the Jacobian matrix. 

PROOF. See Hubbard and Hubbard [61, p. 273]. 0 

The kernel is sometimes called the zero set of a linear mapping. In fact, by definition [61, p. 177], 
the kernel of a linear mapping F is the set of vectors x such that F(x) = 0. If F is represented by 

a matrix [F], the kernel is the set of solutions to the system of linear equations [F] = 0. Kernels are 
related to uniqueness of solutions of linear solutions, whereas images are related to their existence 
[61, p. 177]. If the kernel of F is not 0, there is more than a solution to F (x) = 0. 

1. Taylor approximations 

In the previous section we used first-degree approximations (derivatives or tangent spaces) to 

curves, surfaces and higher-dimensional submanifolds. Now we are about to generalise such appro- 

ximations to higher-order approximations, the so-called Taylor approximations. A kth order Taylor 

approximation has the intuitive meaning of deviating from successive tangent subspaces up to order 
k. 

Approximation of functions of one and several variables by polynomials is a crucial issue in the 

calculus. It is also important for the purposes of computer-aided geometric since the techniques used 
to meet visual smoothness are essentially approximative in the sense of Taylor. The rest of this chapter 
is just devoted to showing this. 

7.1. Taylor polynomials of functions and mappings. Let Uc RI be an open set, f: U -+ Ra 

real-valued function and xCU. Let us denote by (aflaxi) (x) the partial derivative of f with respect 
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to the ith variable xi at x. To denote a higher-order mixed partial derivative, we use multi-indices 
given by a m-tuple a= (cc,, 

..., cc. ) of non-negative integers. Then 

alai alai f= 
mf 

where axct aXICCIaX2a2 
... 

axmccm 

Recall that f: U -+ R is k-times differentiable (or of class Ck' or Ck) i'f piaif/axa)(x) exists and 
is continuous for every m-tuple of non-negative integers a with I ocl :5k. (Note that for (x = (0, ---1 0), 
(al'If/axa)(x) is just f. ) f is real analytic on U if the Taylor series of f about each point in U 
converges to f in a neighbourhood of that point. In computer-aided geometric design, as for any 
computational geometry-based research area, we are interested in real analytic functions since only 
analytic functions Possess unique Taylor approximations. This uniqueness is not guaranteed in the 
larger class of differentiable functions since that different differentiable functions may have the same 
Taylor series expansion (see Example 1.3 2 in Chapter 1, or Example 3 in [98, p. 18 1] for a similar, but 
more detailed example). 

DEFINITION 2.19. Let Uc Rm be an open subset and f: U -+ R be a C' function. Then the 

polynomial of order k, 

pkf (p + h) = 
k 

i=O lal=i 
CCE((Xi,..., (Xk) 

(p) h" 
axo, 

is called the kth order Taylor polynomial approximation (or, simply, Taylor polynomial) of f at p. 

EXAMPLE 2.39. (Multi-index notation for a Taylor polynomial of a function in two variables) 

Assume that f is a function in two variables (xl, x2) = x. Its 2nd order Taylor polynomial at p is 

2 alai 
f (P) ha P2f (p + h) = 2; 

axa 
i=O lal=i 

aE(ai, a2) 

ao 

0! 0! ax? 
f (p) hoho Mo 12 

f(p) 

f (p) hl ho 
1 al Al 

012+- 5X-? -a7X 

1! 0! axax 0! 1! la 
I 
PPPI 2 

122 
terms of order 1: first derivatives 

a2 1 a2 1 a2 
2 

+f (p) h2ho If 
(p) hl hl + j-, 215--; f 

11 
2f 

(p) h0h 12+ ýX--j 1212 2! 0! ax2jax2O ax X? ax, 
22 

terms of order 2: second derivatives 
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or more simply 

p2f (p + h) = f(p) 

+a f(p) hi +af (p) h2 

ax, aX2 

I a2 
2 

a2 1 a2 
+- -f (p) h, +f (p) hih2 +-f (P) 2 ax2l 2 ax22 

106 

EXAMPLE 2.40. Let us determine the 2nd order Taylor polynomial of the function f (x, y) = 
sin (x +)ý) at (0,0). The first term of order 0 is f (0,0) = sin 0=0 since the derivatives of order 1 are 

aX7f 
(X, Y) aX7 

Fy f (X, y) FY 

COS(X+y2) 

2ycos(x+y2), 

.,, 
f(0,0) = land ý hence ; 

a7 
-f (0 0) = 0. For the derivatives of order 2, we have Dy 

a2 

--ff (x, y) =- sili (x ax -12 0= 
-2ysin(x+y2) u, -i -f (X, Y) ,y a2 

pf(x, y) = 2cos(x+y2)-4y2sin(x+y2), 

-1 02 a2 f (01 0) = 0,2 and axy f(O, 0) = 0, and af (0,0) = 2. Analogously, for the derivatives of order 3, ax-Ty 7 
we can take advantage of the existence of crossed partials to determine 

a, f (XI Y) a( a2 )f 7y) -COS(X+y2) a17 Tx- -Tx- I (x 
a3 (X 

1 y) =a( 
a2 )f(x 

ly) + y2) =axay f ýx7 gx-Fy = -2ycos(x 
a3 (x, y) a( a )f(x, y) = -2sin(x+y2)-4ý2COS(X+y2) axa>ý2f D7 ix-p 

Oß 
ý7f 

(XI y) 
a2 )f(X 

3 y) 4ysin(x+ý2)-8ysin(x+>ý2)-8y3cos(x+>ý2). p 

At (01 0) we have 
a3 f (01 0) = 

a3 f (07 0) =a3 f(0, O) =0 and a'f(070) = -1. So the term aX7 -a-P-a-y aXay2 
of order 3 is I)h3 =-W. Thus, the 3-order Taylor polynomial is 3*161 

P'f«0,0)+(h1, h2» =O+ hl +0+0+0+ 
2h2 

+o+O+o- 
1 

-hl. 6 

THEOREm 2.15. (Taylor's Theorem) 

(1) The polynomial pkf (p, h) is the unique polynomial of total order k which has the same 

partial derivatives as f at p up to order k. 

(2) The polynomial pkf (p, h) is the unique polynomial of order <k that best approximates f 

when h -ý 0, that is 

lim 
f (p, h) - Pkf 

IhIk 
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PROOF. See Hubbard and Hubbard [61, p. 2841. 
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0 

It can be also proved that the Taylor polynomial of the sum f+g is the sum of the Taylor polyno- 
mials, the Taylor polynomial of the product fg is the product of the Taylor polynomials [61, p-2881, 

and the chain rule is satisfied for Taylor polynomials. Furthermore, all these results can be generalised 
to mappings f: RI --+ RI. For that we have only to determine the Taylor polynomials corresponding 
to the n component functions of a mapping. The result is a mapping of Taylor polynomials. 

7.2. Taylor polynomials of implicit functions. A computational geometric kernel should be 
n1k able to represent and process Taylor polynomials of both parametric functions and implicit func- 

tions. This is important to set up smoothness conditions between two parametric submanifolds, two 

implicit manifolds, and between a parametric submanifold and an implicit submanifold. These ge- 

neral smoothness conditions are given in next section. Now, we are particularly interested in Taylor 

polynomials of functions given by the inverse and implicit function theorems. 

In the setting of the Implicit Function Theorem, an implicit function g is given by f (x, g(x)) = 
0 for all x in some neighbourhood of p. Its corresponding Taylor polynomial is provided by the 

following theorem. 

THEOREm 2.16. (Taylor polynomial of an implicit function) If f is of class Ck for some k >- 1, 

then g is also of class Ck, and its Taylor polynomial of order k is the unique polynomial mapping 

n: RI -+ RI of degree at most k such that 

pk f (p + h, pk g(p + h)) E o(lhlk). 

PROOF. See Hubbard and Hubbard [61, p-2891- 
0 

This theorem provides a technique to determine the coefficients of Taylor expansion of an im- 

plicit function. In fact, if we write the Taylor polynomial of the implicit function with undetermined 

coefficients, insert it into the equation f (x, g (x)) =0 that specifies the implicit equation, and then 

identify like terms, we can determine such coefficients. Let us see an example that illustrates this 

technique. 

EXAMPLE 2.41. The equation f (XI y7 Z) = X2 + y3 + xyz3 -3=0 determines z as an implicit 
a3 

function of x and y in a neighbourhood. of (1,1,1), since -a-zTf (1,1,1) =3 :A0. So, we can compute 

the Taylor polynomial of this implicit g to degree 2. Let 

Z=g(x, y) =g(l+u, 1+v) =I+ alu+a2V+ 
1 

al, l u2+l a2,2 V2+ O(U 2+ V2). 22 
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Substituting z in X2 + y3 + XyZ3 -3=0, we obtain 

+U)2 + (1 +V)3 + (I +U)(1 +v)(1 +al u+a2V+ 
1 

al', u2+I a2 
,2V2+ 

O(U 
2+v 2) 

22 
Now, multiplying out and identifying like terms, we get 

e Constant terms: 

3-3=0 

o Linear terms: 

2u+3v+u+v+3aju+3a2V::: ý 0 

yields al =-1, a2 = -4/3. 
o Quadratic tenns: 

u 
2(l + 3al + 3a 2+3 al, l) + uv(l + 3a, + 3a2 + 6ala2 + 3a, + V2 (3 + 3a2 + 3aj +3 a2,2) =0 2 2) 

2 
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Identifying the coefficients with 0, and using the values of a, and a2 calculated above, we 
get 

a,,, = -2/3, al, 2 = 10/9, a2,2 = -26/9. 

Finally, we can write down the 2nd order Taylor polynomial of g: 

g(X, y) =, - (X- 1) -4 (Y-1)- 
1 

(X_ 1)2_ 
13(y_1)2+ 10 

(X_ 1)(y_1)+o«X_1)2+(y_1)2). 
3399 

8. Contact and jet bundles 

Most of this chapter has been dedicated to characterising visual smoothness -and the lack of it- 

for submanifolds in some Euclidean space. Visual smoothness is an essential issue in computer-aided 

geometric design of parametric curves and surfaces since there are boundary smoothness conditions to 
be satisfied whenever, for example, we patch together parametric surface patches (e. g. Bezier patches) 
to form a compound surface of an engineering artifact. Such a visual smoothness is called geometric 

continuity or GI continuity for parametric submanifolds in computer-aided geometric design and C' 

smoothness for submanifolds in differential geometry. 
This section deals with the computation of such smoothness conditions under contact of C' sub- 

manifolds. One way to do this locally is to approximate their associated functions, or mappings, by a 

part of their Taylor series at a given point. Such a part of a Taylor series is called a jet of a function 

or mapping at a given point. 
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DEFINITION 2.20. The k-jet of f: R' -+ R' at a given point p is just the k-degree Taylor 
polynomial 

jkf (P) = pk f (p + h). 

In particular, the k-jet of a function f: R -ý R at p is the polynomial 

jkf (P) =f (P) +t J4 (P) + 
t2 

J41 (P) + kf(k) 

2! k! 

obtained by truncating the Taylor series to degree k. Two k-jets are said to be equal when they are 
identically the same as polynomials. Some authors use a slightly different notion of k-jet by deleting 
the constant term. 

DEFINITION2.21. (Golubitsky and Guillemin [44, p. 37]) Let M and N be smooth manifolds, and 
pEM. Assume that f, g: M -+ N are smooth mappings with f (p) = g(p) = q. 

(1) f has Ist order of contact with g at p if Df (p) = Dg(p) as mappings of TpM --+ TqN. 
(2) f has k-th order of contact with g at p if Df : TM --+ TN has (k - 1) st order of contact 

with Dg at every point in TpM. This is written as fkg at p. TM and TN denote the tangent 
bundles to M and N, respectively. By definition, the tangent bundle to a manifold X is the 
union of tangent spaces at all points of X, T(X) = UpCx TpX. 

(3) A k-jet from M to N is an equivalence class [j'f (p)] under the equivalence relation k, at p. 
We use the notation jkf (p) to denote the k-jet of f at 

(4) Let Jk(M, N)p, q denote the set of equivalence classes under 
k 

at p of mappings f: M -4 N 

where f (p) = q. The disjoint union 

jk (M, N) =U jk (M, N)p, q 
(p, q)EMXN 

is called the k-jet bundle from M to N. 

As will be shown further below, these definitions are behind the mathematical smoothness theory 
in computer-aided geometric design for submanifold patch complexes. The mapping jf :M -ý 
Jk (M, N), that is the k-jet of a smooth mapping f: M -+ N defined by the equivalence class [jkf] of 
f in jk(M, N)p, f(p) for all pEM, is a smooth invariant particularly useful to set up the smoothness 

conditions whenever we want to stitch together two submanifolds. This opens up a scenario of a 

mathematical theory for geometric continuity in computer-aided geometric design. In fact, as shown 
further on, jkf(p) is just an invariant way of describing the Taylor expansion of f at p up to order 



9. FRENET APPROXIMATIONS 110 

k. It will also be shown that jkf (p) is a smooth mapping. This fact is very important for jet-based 
stratifications such as, for example, the Thom-Boardman stratifications, detailed in the next chapter. 

Note that JO (M, N) =MxN, so f has 0 
-contact with g at p iff f (p) = g(p), and jof (p) 

(p, f (p)) is just the graph of f. 

LEMMA 2.17. Let U be an open subset of R' and pEU. Let f, g: U --ý Rn be smooth mappings. 
Then fkg at p iff 

(5) alu-lfi ala1g, 
axcc-- (P) = ax(x 

for every multi-index a with I(XI <k and I<i<n where fi and gi are the coordinate functions 
determined by f and g, respectively, and xj, ..., xn are coordinates on U. 

PROOF. See Golubitsky and Guillemin [44, p-37]. m 

The conditions (5) can be used as smoothness conditions for touching parametric curve or surface 

patches as is usual in computer-aided design. In fact, they generalise the Gk (kth order geometric con- 
tinuity) conditions for two regular parametric submanifolds (see, for example, Gregory [47, p. 3351) 

to any regular submanifolds with the same dimension, no matter whether they are parametrically or 
implicitly defined. 

COROLLARY 2.3. f and g: U -ý R7 have kth order contact at p iff the Taylor expansions of f 

and g up to (and including) order k are identical at p. 

PROOF. See Golubitsky and Guillernin [44, p. 37]. 0 

The k-jet of f at pEU has a canonical representative, namely the Taylor polynomial of f of order 
k at p. Moreover, for the special case M=W, N= RI, this polynomial mapping from R' to Rý is 

uniquely determined by the list of derivatives of order k of f at p. 

9. Frenet approximations 

In computer aided geometric design (CAGD), a classical way of ensuring the C' smoothness or 

continuity of a parametric piecewise curve is to require the equality of the first r derivatives at its 

joints. This is generalised by Lemma 2.17 to higher dimensional manifolds regardless of whether 

they are implicitly or parametrically defined. Its Corollary 2.3 expresses the same result in terms of 

the Taylor expansions. 
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Another way of ensuring the C' smoothness of a parametric piecewise curve is to require the 
equality of the geometric invariants of the curve at its joints, namely the Fr6net frame and the cur- 
vatures. This suggests that it should be possible to express the Taylor expansion in terms of such 
geometric invariants. Also, this 'geometric' expansion can be in principle extended to higher dimen- 

sional (parametric and implicit) manifolds. Let us call it Frinet expansion or approximation. 
The Fr6net approximation of a mapping f -which is a parametric or implicit representation of a 

manifold- is a refinement of the Taylor approximation. Basically, each derivative ei) 
-which can 

be viewed as a geometric derivative invariant- of the Taylor series expansion is decomposed into 

subsidiary geometric invariants such tangents, curvatures, torsions, etc. 
Frenet approximations can be used to establish the F' continuity (or Fr6net continuity of order 

r) of k-manifolds (k < n)-not only curves as usual in CAGD- in Rn (using the Gram-Schmidt 

orthogonalisation process for defining the Fr6net frame). Thus, orthogonality seems to be the essence 
of Frdnet approximations. This is true independently of whether the first k derivatives f('), with 
i=11... I k, are linearly independent or not - as Mazure noted in [81] and [80]. In either case, Fr6net 

approximations require we must supply W with an inner product in order to obtain the full geometric 

structure of R' (including the concepts of distance, angles, and orthogonality). This is not explicitly 

stated in [81], but it is obviously assumed (see, for example, p. 181 of [81]). 

9.1. Orthogonality. Two vectors are called orthogonal (with respect to an inner product) if their 

inner product is zero. Thus, the angle between them is a right angle. A set of vectors is orthogonal 
if each pair of vectors is orthogonal. If all the vectors in a set are of unit length, such a set is further 

said to be orthonormal. Besides, if a set of nonzero vectors is orthogonal, then the vectors are linearly 

independent, and thus, they form an orthogonal basis for a vector space. An orthonormal basis is 

obtained by normalising the vectors of an orthogonal basis. A n-dimensional Fr6net frame along a 

curve in Rn is an example of an orthonormal basis in r. Remarkably, an orthonormal basis (e. g. 

Frenet frame for curves) can be inductively constructed using a fundamental tool of linear algebra, 

called Gram-Schmidt Orthogonalisation. 

THEOREm 2.18. (Gram-Schmidt Orthogonalisation) Let X be a vector space with an inner 

product (, ) and xj,..., xn be n linearly independent vectors ofX. Then the algorithm below constructs 

an orthonormal set of vectors vi, ---, vn spanning the same subspace. 

PROOF. See Hubbard and West [62, p. 407]. 0 
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ALGORITHM. Define new vectors ui and vi inductively as follows: 

Ul =Xjj VI = 
Ul 

Ilul 11' 

U2 = X2 - (X2) VI) VI V2 = 
U2 

JIU2111 

U3 = X3 - (X3)VI)VI (X31V2)V2i V3 = 
U3 

IIU3 11 

n-1 Un 

. -, 
(X Un --' Xn ne Vi) Vi, n- 

i=I 
1lUnil * 

Ei 

In linear algebra, the Gram-Schmidt Orthogonalisation Algorithm can be used to prove that any 
finite-dimensional vector space with an inner product has an orthonormal basis. In CAGD, it is used 
to construct the n-dimensional Fr6net frame along a regular parametric curve M, starting with x, a 
tangent vector at a given point pEM (see [47, p. 357] for more details). The construction of Fr6net 

frames can be generalised to higher-dimensional submanifolds, say k-dimensional submanifolds (I < 
k< n), with the first k vectors given by a basis of its k-dimensional tangent space at a given point and 

the remaining n-k vectors given by Gram-Schmidt. The key for this generalisation, for example, 

to surfaces is the theorem that states the existence of smooth curves passing through a point on a 

surface [68, p. 525]. Recall that a tangent space at a point pEM has the same dimension as M. 

Subsequent subsections will deal with Frenet approximations to curves and surfaces in R3, leaving 

higher-dimensional Fr6net approximations open to debate. 

Before proceeding, we must review a few more notions related to orthogonality. Let X be an 

inner product space and T be a subspace of X. The orthogonal projection 7rT(X) of x onto T is the 

unique vector in T closest to X. If T is finite-dimensional, there is a formula for ItT (X) in terms of an 

orthonormal basis for T given by the following theorem. 

THEOREm 2.19. If X is an inner product space and T is a finite-dimensional subspace with an 

orthonormal basis vj, .--, vk, then 

ILT (X) : -- 
1 (X 

j Vi) Vi - 
i 

PROOF. See Hubbard and West [62, p. 408]. 0 
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The geometric meaning Of nT (X) is illustrated in Figure 14(a). Consider in X= R3, a vector x 
and a plane T through the origin. Then TLT (X) is the vector lying in T that is obtained by dropping 
perpendiculars from the ends of the vector x to the plane T. 

ane) 

X)A 7[T( 
x 

1-t-r z (x) 

(a) (b) (c) 

FIGURE 14. (a) Orthogonal projection of a vector x, (b) orthogonal complement T-L 

and projection 'ATJ- (x), and (c) decomposition X : ---- 7CT (X) + nTJ- (X) 
- 

Another important notion related to orthogonality is the orthogonal complement of a subspace T 

in X, which is defined by the following set of vectors 

T-L = ýx EXI (x, v) =0 for all vE T} 

In Figure 14(b), the orthogonal complement T-L of the plane T is the line through the origin that is 

perpendicular to T. The projection 7CT-L (X) is the vector determined by dropping perpendiculars from 

the ends of x to the line T-L. Therefore, the vector x can be decomposed into two components, namely 
its orthogonal projection and its projection on the orthogonal complement, Xý TET (X) + nT-L (x), as 
illustrated in Figure 14(c). This leads to an important theorem: 

THEOREm 2.20. (Hubbard and West [62, p. 410]) Any vector xEX can be written uniquely as 

IIT (X) + nT-L (X)' 

In particular, any vector x defined at each point p of a submanifold (e. g. a curve or a surface) M 

but not necessarily tangent to M can be decomposed into two vectors; the first vector TiT (x) lying in 

the tangent space Tp (M) of M at p, and the second in the orthogonal complement of Tp (M), denoted 

by T-L (M). This reflects the direct sum 4 decomposition of Tp(Rn) = Tp(m) G) T-L(m) into mutually PP 
4 Let M and N be linear spaces of X. If M+N=X and MnN= 101 (where 0 stands for the zero vector of all vector 

spaces in sight), X is said to be the direct sum of M and N, written X=M E) N [10,241. Equivalently, for each XEX, there 

exist unique elements mEM and nEN such that x=m+n. 
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orthogonal subspaces: the tangent space Tp(M) and the normal or cotangent space T-L(M). Moreover, 
P 

we have dimTp(r) = dimTp(M) +dimT-L(M). (Note that Tp(r) and its subspace Tp(M) carry P 
the standard inner product of W' so M has the induced Riemannian metric [15, p. 304j. ) Figure 15 
illustrates this decomposition for (a) a curve and (b) a surface in W. 

Tp(M) 

, T]i 

T-' p 

TP(m) 

(a) 

FIGURE 15 

(b) 

9.2. Frenet approximations for curves. A Fr6net approximation of order n is a Taylor appro- 

ximation that uses an orthogonal basis or frame vi, ---, v. along a curve in r. 

Let f: [a, b] CR -4 R' be a regular parametric representation of class C' and suppose that the n 
derivatives I& (t) I (i =II... , n) are linearly independent on [a, b]. The Frinetframe of the curve is 

the set of orthonormal vectors f vi (t) I defined by the Gram-Schmidt orthogonal isation algorithm, that 

is 
Ui 

i-I 

It --I where Ui 
1: (ei) 

7 Vk) Vk - Iluill 
k=l 

Since f is C' on [a, b], its Taylor expansion up to order n at a point pE [a, b] gives: 

tn 
f(t) _ f(P) =: t (P) + 

t2 e2)(P) + en) (P) + 0(tn) (6) 2 n! 

where o(t) denotes a real-valued mapping of t which is negligible with respect to t, i. e. that satisfies: 

lim o(t 0. 

We are now in a position to make effective use of the orthonormal Fr6net frame fVIi V2 i ... 7Vnl- 

Since it is a basis any vector & can be written in the form 

ei) 
(Xi IVI+ Qi2 V2 +---+ Otin Vn 
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with (xi 1, cc, 2, . .., cci,, being real numbers. If we take the inner product of both sides successively with 
respect to V 17 V2 i ... i Vn, we get 

VI) = (lil (Vl 
i VI) + (Y-i2 (V2 

7 VI) + + Otin (Vn) VI) = (Xil +0+... +0= (Xil 

W) 
i V2) = ()Cil (Vl) V2) + ()Ci2 (V2 

7 V2) + + (Xin (Vn 
7 V2) =0+ ()Ci2 +---+0= ()Ci2 

W) 
i Vn) ý GCi I (V 17 Vn) + (12 (V2 

7 Vn) ++ (Xin (Vn 
7 Vn) 0+0++ Otin ý-- (Xin - 

Therefore, 

W)7VI)VI + W)iV2)V2+---+(ei))Vn)Vn 

Substituting all ei) in (6), we obtain a Taylor approximation in terms of the Fr6net frame, here called 
Frenet approximation, with 

L[vi 
I ... ) Vn ]T 

where L is anxn matrix given by 

(0) ý vi) 
(e2) 

7 VI) 

L (en) 
, VI 

(0) V2) ... 
(0) 

1 Vn) 

(e2) V2) ... 
(e2)) Vn) 

(en) V2 ) ... 
(en) 

, Vn)_ 

The matrix L becomes a lower triangular because the Frenet frame is constructed by first making 

vj the unit tangent vector to the curve at a given point, that is 

(7) with(x=llel)ll. 

So, all ei) can be determined by successive differentiation from el). But this requires we know 

the Fr6net equations that give us f vi(l) I in terms of f vi 1. This system of differential equations was 
developed in [47]. Since v(1) E spanf vj}j--`1, it follows that i i+1 

(8) IV(1)]T = K[vi.... I 
Vn]T 

n 

where K= [kij] is a lower Hessenberg matrix. From the orthonormality of the Fr6net frame, we have 

(1) kij = (vi 
, vj). 

Also, taking the orthonormality conditions (vi, vj) = 8ij, and differentiating them, we get 

kij + kji = 0. 
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The resulting matrix K for the Frenet differential equations (8) is therefore a lower Hessenberg, skew- 

symmetric matrix, and can now be written as 

0 

K2 

-Kn-2 0 Kn-l! 

-Kn-I o 

where the quantities are called the curvatures of the curve. In particular, in V, K, is the curvature, 

while in R3, Yl is the curvature and K2 is the torsion (or second curvature). So, the Fr6net equations 
(8) can be written as 

V(l) = KIV2 

V(I) = -KIV1 + K2V3 2 

VM " -Kn-2Vn-2 +Kn-lVn 
n-I - 

VM = -'Kn-lVn-I n 

Finally, we can determine the Frenet approximation in terms of Frenet frame and curvatures, i. e. 

against the Fr6net-Serret apparatus ývj 
, ... 7 Vni KI i ... 7 Kn-I I in RI. Accordingly, we take the starting 

equation (7) and determine its successive derivatives by combining them with the differential Fr6net 

equations. That is, 

el) = (XVI 
ý2) (3tV(l) 1- (XKIV2 

ü) 
= (XKIV(l) ---(X Vl+(XKIK2V3 21 

_(XK2V(I) 
(1) 3 2) 

11+ (XKI K2V3 =- «XKI + (XKI K2 V2 + UKI K2K3 V4 

42 2)VI + (_()CK3 32 
= «)CK 

1+ (XX1 K2 JK2 - (Xlc- 1 K2 _ ()C'KI«K2K3)V3 + (XKIK2K3K4V5 
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Thus, the lower triangular matrix L is given by 

0 (XKI 

-CCK2 10 (XKI'K2 

0 -(XK 
3_ CCKI K2 0 OCK I K2 K3 2 

00 

... (XK I K2 ... Kn-1, 

117 

In short, the Frenet approximation is a refinement of the Taylor approximation with I 

replaced by the Fr6net-Seffet apparatus. 

9.3. Frenet, approximations for surfaces and higher-dimensional submanifolds. In computer 
aided geometric design (CAGD) is not usual to determine a Fr6net frame and higher-dimensional cur- 
vatures for surfaces and higher-dimensional submanifolds. The CAGD literature almost exclusively 
refers to Fr6net frame and curvatures for parametric curves. The Gram-Schmidt orthogonalisation 
provides a process to determine a i-dimensional tangent space at a point of a i-dimensional submani- 
fold. 

In fact, looking at the expressions of Gram-Schmidt for curves in the previous subsection, we 

observe that 1: '- 1 W) 
i Vk) Vk is nothing more than ICV- W)) 

, the orthogonal projection of ei) onto the ; -Ik=l 
subspace Ti- IC RI Gram-Schmidt generated by the subbasis VI, V2) .... vi- 1. This subspace T'- 
is called an (i - 1) -dimensional flag of Rn. The iterative nature of Gram-Schmidt orthogonalisation 

enables the construction of an ascending sequence of subspaces T' C T2 C ... C Tn =W [62, p. 462], 

with each subspace T' of dimension i generated by the subbasis V17V27 ... vj_j, vj,, i. e. generated 
from the subbasis VI 7 V2 7 ... , vi- 1 of T- I and vi calculated by the Gram-Schmidt orthogonalisation 

process. 
In case of an i-dimensional submanifold in Rn represented by a mapping f, an i-dimensional flag 

in RI can be viewed as an i-dimensional tangent space at a point of an i-dimensional submanifold. 
Such an i-dimensional tangent space can be generated by the k derivatives (k i) of f. Thus, 

the Gram-Schmidt orthogonalisation technique can be applied to any i-dimensional submanifold (i < 

n) of Rn to determine iýs Fr6net approximation. Besides, the Gram-Schmidt orthogonalisation can 

proceed up to dimension n to determine the Fr6net frame. 
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10. Smoothness in geometric design and modeffing 
Some CAGD authors have argued that there are various kinds of visual smoothness or geometric 

continuity (e. g. Frenet frame continuity). But, what exists in the CAGD literature is different me- 
thods to achieve such a 'visual smoothness' for curves and surfaces. Well-known methods to achieve 
geometric continuity are those based on geometric invariants such tangents, curvatures and torsions. 
But, a geometric invariant may be not sufficient to guarantee 'visual smoothness' of a piecewise 
curve or surface. As any invariant, a geometric invariant is a mathematical tool to compare certain 
properties of geometric objects. For example, to obtain a bigger Gr curve from two touching Gr 
curves, it is required that they are joined with the same sided tangents, curvature, torsions, and higher 
order curvatures up to r. However, the fact that some geometric invariants are preserved does not 
guarantee that the resulting curve is Gr, for any positive integer r. 

The essential thing about invariants is the kind of mappings we use to transform a set into ano- 
ther. In Chapter 1, we saw that homeomorphisms (i. e. continuous mappings with continuous inverses) 

are continuous deformation mappings which preserve certain properties, called topological proper- 
ties, associated with topological invariants e. g. dimension, Betti numbers, etc. ). Analogously, in the 
present chapter, the mappings associated with smoothness or geometric continuity as understood in 
CAGD are called diffeomorphisms in differential geometry. That is, from a CAGD point of view, 
a continuously geometric or Gr mapping is a Cr diffeomorphism, i. e. a Cr mapping whose inverse 

mapping is also Cr mapping. (Usually, this is ensured by imposing the condition that the first de- 

rivative is not zero [47, p. 355]. ) This means that at a junction point of two C' curves, the partial 
derivatives of a mapping C", as well as the partial derivatives of its inverse are identical. Notably, it 
is known that a C' mapping that is a C' diffeomorphism is a Cr diffeomorphism (see Theorem 1.5 
(Chapter 1)). Therefore, to guarantee that a Cr mapping is a Cr diffeomorphism, it is sufficient that it 
is a Cl diffeomorphism, i. e. the first derivative of its inverse is Cl - 

Thus, the concept of diffeornorphism is essential to define geometric continuity in CAGD. It is 

the starting point to establish the C' contact conditions between two curves or higher dimensional 

manifolds (see Lemma 2.17). This implies the equality of their Taylor expansions, and their Fr6net 

expansions as well. Therefore, diffeomorphisms preserve geometric invariants such as tangents, cur- 

vatures, torsions, and higher dimensional curvatures. Clearly, the essential kind of smoothness for 

manifolds is the CI smoothness. Other sorts of smoothness found in CAGD literature are just parti- 

cular techniques to achieve C' smoothness. 
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Another important point related to smoothness or geometric continuity is the problem of re- 
presentation- independence. Some geometric modelling applications may require that manifolds (e. g. 
curves and surfaces) are composed of touching submanifolds represented implicitly or parametrically. 
The question is how can we ensure geometric continuity between touching submanifolds defined by 
distinct kinds of point set representations (e. g. level set and image of two different mappings), Le. 
implicit and parametric representations of point sets? In fact, as shown in the CAGD literature (see, 
for example, [39]), there are different methods to achieve visual smoothness, depending whether 
a curve or a surface is explicitly, implicitly or parametrically represented. However, no method 
has been devised for piecewise manifolds made up of patches with distinct representations (e. g. a 
parametric patch adjacent to an implicit patch of a surface). Obviously, this may be irrelevant in the 
'massively parametric world' of free-form geometric modelling. However, in the general context of 
shape integration, the problem of representation-independent smoothness or 'geometric continuity' is 

critical, regardless of whether the representational conversion of a cur-ve or surface is possible or not. 
On the other hand, in geometric solid modelling, manifolds are usually constituents of a stratified 

set. Such constituents are called strata in stratification theory. In B-rep modelling, such stratified sets 

are known as B-rep objects and strata are called cells. Obviously, in B-rep modelling there is not too 

much concern about keeping smoothness conditions on, for example, the boundary of a solid object. 
But this does not mean that smoothness conditions are not relevant for geometric solid modelling. 
In fact, they are! For example, the creation of the non-smooth surface of a B-rep cube leads to 

the partition of its point set into a collection of smooth manifolds, namely: six smooth 2-manifolds 

(faces), twelve smooth 1-manifolds (edges), and eight smooth 0-manifolds (vertices). The surface 

of a cube is then a 2-dimensional non-smooth manifold that admits a partition into d-dimensional 

smooth submanifolds, with 0<d<2. It is said to be a piecewise smooth manifold. The collection 

of I-submanifolds and 0-submanifolds are singularities of the cube surface because a tangent plane 

suddenly flips there. That is, a cube surface is not a smooth manifold, since there is no tangent plane 

at the comers or along the edges. Therefore, the intuitive understanding of a solid object as composed 

of vertices, edges, faces and a solid meets the notion of a stratified set: a non-smooth point set is 

stratified into a piecewise smooth point set. 
Therefore, manifolds can be either smooth or non-smooth. Non-smooth manifolds are in principle 

piecewise smooth manifolds. This leads us to the idea of partitioning a n-dimensional manifold into 

smooth k-dimensional submanifolds (k < n). The family of smooth submanifolds of dimension less 

than n are singularities of such a n-dimensional manifold. This simple idea is based on the pioneering 

work of two mathematicians, Whitney and Thom, nowadays known as Thom-Whitney stratification 
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theory. They showed that there is a close relationship between the concepts of differentiability and 
stratifiability of manifolds. Notably, both concepts are related even when they are applied to more 
general geometric point sets such as algebraic, analytic or even semianalytic varieties. 

This discussion suggests that smoothness is a unifying concept in the theory of geometric mo- 
delling. Smoothness theory (from differential geometry), stratification theory, and singularity theory 
altogether constitute important mathematical cornerstones for geometric modelling theory. 

11. Summary 

We have shown that C' smoothness from differential geometry generalises the concepts of visual 
smoothness found in the CAGD literature, and that it is representation-independent. The essential 
key to having smoothness on a manifold is the concept of diffeomorphism, that is, a differentiable 

mapping with a differentiable inverse. The differentiability of a mapping is not enough to guarantee 
the smoothness of a manifold (see Example 1.56); its inverse must be also differentiable. As noted 
in [37, p. 106], smoothness and differentiability do not agree. Smoothness means that the defining 

mapping of a submanifold is a diffeomorphism. 

Only a smooth mapping with smooth inverse, i. e. a diffeomorphism, ensures the smoothness of a 
parametric curve or surface. Thus, the smoothness of a submanifold depends more on the properties of 
the mapping used to define it than on its associated geometric invariants (e. g. curvature and torsion). 
The use of a geometric invariant may be not conclusive to ensure smoothness on a submanifold, 
as a topological invariant (e. g. Betti numbers) is not sufficient to characterise the continuity of a 
subspace. In geometric design, the relationships between diffeomorphisms and geometric invariants 
have not been very well understood yet. Usually, in geometric design, the smoothness criteria are 
based on geometric invariants, and this has led to the proliferation of many kinds of visual smoothness. 
Nevertheless, mathematicians have studied smoothness for decades. They proved that smoothness 

of a submanifold is only preserved by diffeomorphisms, regardless of whether the representation is 

implicit or parametric. 
The relationship between the invertibility and smoothness of a mapping has led us to its algebraic 

counterpart, that is, the relationship between the invertibility of the Jacobian and smoothness of a 

submanifold. We have shown that this relationship is independent of whether we treat submanifolds as 
level sets, images, or graphs of mappings. So, we have shown that C' smoothness can be determined 

by the rank-based criterion. This suggests that we can determine the singularities of a submanifold 
by observing where the rank is not constant. 
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This smoothness analysis has also been extended to higher-order C' smoothness by using the Tay- 
lor expansion, which can be refined by the Frenet approximation to get the usual geometric invariants 
in R, namely the Frenet frame (i. e. i-dimensional tangent spaces) and curvatures. 

The analysis of the rank of the Jacobian and the Taylor series have also suggested that we can 
envisage some rank-based and jet-based techniques to stratify varieties. This is developed in the next 
chapter. 

The main contributions of this chapter (in the context of geometric modelling) are then the follow- 
ing: 

To show that the theory of functions allows us to have a unified view of point sets. The level 

set of a mapping corresponds to an implicit representation of a point set as usual in CSG, 

while its image corresponds to a parametric representation of another point set. Thus, this 

chapter shows that a unified mathematical theory for the representation of geometric objects 
exists indeed. 

To show that it is possible to establish C' smoothness conditions on a submanifold that are 
coordinate-free and, consequently, representation-independent. 
To outline a computable approach to determine C' smoothness on submanifolds. This ap- 

proach generalises those found in computer aided geometric design of parametric curves 

and surfaces. 
To show that C' smoothness (of manifolds) as defined in differential geometry is a generali- 

sation of geometric continuity G' often used in geometric design. 

To make clear that there is only one essential kind of smoothness, the C' smoothness. 
To show that smoothness -or lack of smoothness- is central to geometric modelling. 
To show the intimate relationships between smoothness theory and both singularity theory 

and stratification theory. 



CHAPTER 3 

Stratifications and geometries 

La possibilite d'utiliser le moMe differential est, a mes yeax, 
la justification ultime de Vemploi des modHes quantitifs dans les sciences. 

R. Thom, Stabilit6 Structurelle et Morphogenese, 1972 

Stratification is a fundamental concept in differential and algebraic geometry. The study of stra- 
tifications originated with the work of Whitney and Thom on singularities of analytic varieties (see 
[119] and [110]). The basic idea behind this study was to subdivide or partition a k-dimensional 

piecewise smooth variety into smooth submanifolds of dimension less than or equal to k. The sin- 

gularities were just the union of all submanifolds of dimension less than k. This process was called 
'removal of singularities'. A simple example of this process is the subdivision of a cube surface into 

faces, edges and vertices, where the edges and vertices are singularities. This simple idea developed 

into what is nowadays known as Thom-Whitney stratification theory. Basically, they demonstrated 

that there is a close relationship between the concept of differentiability and stratifiability of mani- 
folds and varieties. Notably, both concepts are related even when they are applied to more general 

geometric point sets such as, for example, algebraic and analytic sernivarieties. These sernivarieties 

were studied by Gabrielov [38], Hironaka [59,58], and Hardt [55,54], as a natural extension of the 

theory of sernianalytic sets developed by Lojasiewicz [70,71]. 

Our purpose is to show that the Thom-Whitney stratification theory can work as a unifying ma- 

thematical theory in geometric modelling. It deals with stratifiable geometries, namely: algebraic, 

analytic, semialgebraic, semianalytic and, more generally, the subanalytic geometry. The objects in 

these geometries are commonly used in geometric design. The Thom-Whitney theory shows us the 

close relationship between geometry and stratifiability (or stratified structure) as a generalisation of 

the duality between geometry and structure of the well-known B-rep (boundary representations) data 

structures found in geometric modelling literature. This generalisation has led to the n-dimensional 

boundary representation described in next chapter. 
122 
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1. Topological stratifications 
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The mathematical theory of stratifications was initially developed for the 'removal' of singulari- 
ties or, equivalently, regularisation of analytic sets [120]. (This kind of regularisation has nothing to 
do with the regularisation of set-combinations commonly used in the geometric modelling research. ) 
Perhaps the first attempt at an abstract theory of stratifications appears in Whitney's concept of a 
"complifold", or complex of manifolds [118,1947]. However, only in the paper [109,1962], Thom 
introduces the term "stratification" and the notion of "regularity" on how the strata of a stratification 
should fit together. 

The basic idea of a stratification was to decompose an algebraic and, more generally, an analytic 
vanety V to a finite, disjoint union of manifolds Oust as with simplicial or CW complexes), 

V: -- MI U M2 U 
... 

UMk) 

where each Mi is called a stratum of the stratification. 
Stratifications are distinguished from each other by using a particular local regularity criterion of 

separation or partition. This section deals with only topological criteria, whilst next sections use diffe- 

rential criteria, the Whitney conditions in particular. The topological criteria appeal to the essence of 
topology as described in Chapter 1, and are not explicitly described and explained in the mathematical 
literature. However, they are useful because they help us to better understand the mathematical tools 
from the point-set topology and differential topology in the study of stratifications of varieties and 

semivarieties. Besides, some engineering applications based on geometric kernels (e. g. finite-element 

modelling and analysis) require stratifications whose submanifolds are not necessarily smooth, they 

may be just topological embedded submanifolds. So, it is convenient to be aware of these topological 

stratifications. 
It is necessary to bear in mind that each stratum of any stratification must be a submanifold. 

Consequently, all cut-submanifolds (i. e. cut-points, cut-lines, cut-surfaces, and higher-dimensional 

cut-s*Ubmanifolds) should be 'removed' in the sense they are singularities in a variety. (A cut-manifold 
is a generalisation of the the concept of cut-point introduced in Chapter 1. ) These cut-submanifolds 

are topological singularities. Recall that there is a topological singularity at a point p of a variety V if 

the intersection of a small neighbourhood of p with V is not homeomorphic to a ball, that is, it does 

not have the topological type of a ball. 

1.1. Ordinary topological stratifications. These stratifications, shortly OrdT stratifications or 

simply stratifications, do not satisfy any local regularity criterion, unless manifoldness. That is, as 
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for any type of stratification, the strata must be manifolds. Thus, this is the most general type of 

stratification. 
For example, all stratifications (b) and (c) depicted in Figures 1,2,3,4 are OrdT stratifications. 

However, there is a significant difference between the stratifications (b) and the stratifications (c). 

Intuitively, unlike stratifications (c), stratifications (b) are not what we want in the sense that each 

stratum should consist of "equally bad" points. More formally, by "equally bad" points we mean 
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points with the same topological type. However, the origin in stratum M3 in each stratification (b) is 
"worse" than the rest of the points in the same stratum. For example, for simplicity, let us take the 
manifold M3 of the variety pictured in Figure 3. The local topological type of the origin in M3 is the 
same as of a1 -dimensional cross-shaped (e. g. the xy-axes) object, while the local topological type of 
any other point in M3 is that of a single open line segment. In next section we will make the words 
"bad" and "worse" more precise in the language of differential geometry than in language of point-set 
topology. This will lead us to geometric, instead of topological, conditions which state how the strata 
should be patched together. Such conditions are now known as the regularity conditions of Whitney. 

1.2. Weak topological stratilications. In seeking the essence of Whitney stratifications, we in- 

troduce here a new stratification technique, called weak topological stratification, or shortly WeakT 

stratification. WeakT stratifications are a particular case of OrdT stratifications since they impose 

an additional condition, called local topological type condition, on each stratum component. It es- 

tablishes that any two points of a stratum component have the same topological type (i. e. they are 
homeomorphs) in its ambient variety V. Using previous words, this is equivalent to say that the 

points of any stratum component are all "equally bad". Two points are "equally bad", say they have 

the same topological type, if their neighbourhoods in a variety (or, more generally, a point set) are 
homeomorphic or topologically equivalent. This topological condition leads to a regular adjacency of 

the stratum components in a stratified variety as we use to see in B -rep (boundary representation) data 

structures. Unfortunately, because of its topological nature, differential singularities such as cusps and 

comers are not detectable by geometric kernels based on topological type stratification techniques. 

Later on, we will see criteria to recognize such differential singularities. 
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The stratifications (c), but not the stratifications (b), in Figures 1,2,3,4 are all WeakT stratifi- 
cations. Both OrdT and WeakT stratifications 'remove' all topological singularities (i. e. cut subma- 
nifolds, and self-intersections in particular) of a variety. They remove topological singularities such 
that the resulting 'building blocks' are all connected submanifolds. However, only WeakT stratifica- 
tions guarantee that all the points in each stratum possess the same topological type in a variety or 
sernivariety. 

EXAMPLE 3.1. Let us stratify the variety V=f (x, y, z) E R3 : Z(X2 _ y2) + X4 + y4j in Figure 2. 
Any point of V along the z-axis is topologically a singular point because an open neighbourhood of 
it in V is not homeomorphic to an open ball in V. Thus, the z-axis origiinates the stratum M3 for the 

corresponding OrdT stratification in Figure 2(b). No further stratification is required for V because 

its partition against M3 (z-axis) originates more four 2-dimensional sheets, MI, M2, M4, M5, all them 

manifolds. Taking now in consideration the local topological type condition, we see that all points of 
M3 in Figure 2(b), except the origin (0,0,0), have the same topological type. That is, the origin is 

it worse" than the other "bad" points in the z-axis. Therefore, the z-axis has to be further stratified into 

a O-straturn M7 (the origin) and two I-strata, namely M6 (the negative z-axis) and a redefined M3(the 

positive z-axis). The result is the WeakT stratification depicted in Figure 2(c). 

Therefore, a WeakT stratification has in general more stratum components than an OrdT stratifi- 

cation due to the topological type condition. A WeakT stratification is then a refinement for a OrdT 

stratification. The term 'weak' is because the local topological type criterion is applicable to stra- 

tum components, not to strata. This means that the 'building blocks' of any WeakT stratification are 

stratum components, and that we are free to define the strata we want since all the components of 

each stratum are equidimensional. This is particularly useful for many geometry-based applications 

such as, for example, computer aided design and computer graphics, where often the user or designer 

enjoys how the geometric kernel machine is flexible to meet his/her human creative process. Thus, a 
WeakT stratification admits multi-component strata. That is, a WeakT stratification has two stratifi- 

cation levels, the first level for components and the second level for strata. At the first level, stratum 

components satisfy the local topological type regularity condition. At the second level, the stratum 

components are gathered into strata, each stratum with possibly more than one component. 

EXAMPLE 3.2. The WeakT stratification of the Cartan umbrella in Figure I(c) has four possible 

distributions ri (i =I... 4) for its strata, as shown in Figure 5. [The brackets denote that each stratum 

is a set of components. ] All the strata of r, are connected; hence each stratum contains exactly one 

component. But, the only 2-stratum of r2 has two components, the two sheets MI, M2; the remaining 
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strata of r2 are connected. Similar distribution has 1'3, but now it is its I -stratum that possesses two 

components M3, M4. At last, 1-4 has two strata which are not connected, namely its I-, 2-strata. The 

components of its I-stratum are M3 and M4, while the components of its 2-stratum are M, and M2- 

O-strata I-strata 2-strata. 
r, IMO IM3)iIM4) IMIMM2) 

r') IM51 I MA, I M4) IMIM2) 

1-3 IM51 IM3M4) IMILIMA 

r4 IM5) (M3, M4) IM15M2) 

M1 

m" 

M4' 

M2 

FIGURE 5. The four possible WeakT stratifications of the Cartan umbrella x2 - zy2 = 0. 

Note that a WeakT stratification satisfies the local topological type condition. That is, all the 

points of a stratum component have the same topological type. However, its strata need not satisfy 
this criterion. For example, the strata Of 173 and F4 do not satisfy the local topological type condition 

because the components M3 and M4 of their I -stratum do not possess the same local topological type. 

13. Strong topological stratifications. If we impose the local topological type condition on 

the strata, instead of their components, we get a more constrained topological stratification, called 

strong topological stratification, or StrongT stratification. It is clear that a StrongT stratification is a 

particular case of a WeakT stratification because if their strata satisfy the topological type condition, 

then their components also do. The word 'strong' just highlights that the topological type condition 
is satisfied not only for components but also for strata. 

Obviously, if all the strata are connected, then a StrongT stratification and its underlying WeakT 

stratification coincide, as it is the case of the stratification F, of the Cartan umbrella above. The 

WeakT stratification F2 is also a StrongT stratification, but not IF3 nor F4. Thus, a StrongT stra- 

tification is nothing than a WeakT stratification whose strata also satisfy the local topological type 

criterion. 
Unfortunately, StrongT stratifications are not very well adequate for interactive geometric design. 

Their topological type condition on strata is too restrictive and impose changes on the stratification 

that do not necessarily follow the intended design changes. Let us illustrate this situation with an 

example. 

EXAMPLE 3.3. Let us consider again the WeakT-stratified variety in Figure 2(c). Assume that 

it has been organised into three strata, one for each dimension. Therefore, we have one 2-stratum 
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JMI, M2, M4, M5} with four components, one 1-straturn JM3, M6} with two components, and a con- 
nected 0-stratum IM7}. Now, suppose that a designer intends to remove the sheet Mi. Deleting Mi 
implies a re-arrangement of the remaining stratum components into strata. Otherwise, the topological 
type condition on strata is no longer satisfied, i. e. the topological consistency is lost. Such an arrange- 
ment requires the splitting of the 1 -stratum JM3, M6} into two I -strata IM3 1, JM6 1, and the 2-stratum 
IMI, M2, M4, M5} into two 2-strata IM2}, JM4, M5}. But, the designer intent might be just to delete 
MI without changing anything else. 

1.4. Topological splittings. The power of the topological type stratifications is that all topologi- 

cal invariants (e. g. dimension, cut-points and dimensional homogeneity) work simultaneously in the 

neighbourhood of each point of a component or a stratum. Obviously, topological splittings more 

general than topological stratifications are possible to envisage by relaxing the local topological type 

condition. These topological splittings are in a sense incomplete topological 'stratifications' viewing 
that they only satisfy particular collections of topological invariants. Nevertheless, no one expects 
that such topological splittings satisfy the topological type criterion, simply because a collection of 

topological invariants do not necessarily ensure the same local topological type over a connected com- 

ponent or stratum. Even so, these topological splittings are useful to better appreciate the topological 

type stratifications described above. Let us see then three kinds of these topological splittings. 
1.4.1. Topological splittings based on local dimension. As shown in Chapter 1, dimension is 

a topological invariant. Let XCWa set and XEW. There is a number dE 1-00,07 ... dimXj 

such that dim(u n x) =d for any sufficiently small neighbourhood U of x in R. The number d 

defined by this property is called the local dimension of X at x, notation dim. (X) [29, p. 691. Note 

that dim. (X) =- oo iff xý Cl (X). Consequently, if X is a d-dimensional manifold, then dim. (X) =d 
for all XE CI(X). A topological splitting based on the local dimension (LD) criterion is here called 

LD splitting. 

EXAMPLE 3.4. Let us partition the Cartan umbrella X (x, y, z) E R3 :, x2 = zy2}. All the points 

of the Cartan umbrella have dimension d=2, except the points all over the negative z-axis which 

have dimension d=1. So, we have only two pieces: a 1-dimensional submanifold M= I(x, y, z) E 
TO x=0, y=0, z< 0} and a non-manifold subset Y=X-M. 

This example shows that the resulting pieces are not necessarily strata or submanifolds. The 

topological singularities are not necessarily removed. Thus, this kind of splitting is not a stratification, 

it is just a partition. 
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1.4-2. Topological splittings based on local cut-manifoldness. A topological splitting based on 
local cut-manifoldness is shortly designated by LCM splitting. As described in Chapter 2, a local cut 
n-manifold only exists for a set neighbourhood of dimension greater than n. Thus, a d-dimensional 
set may only contain 0 -) 1-72...... (d - 1) -dimensional cut manifolds. 

EXAMPLE 3.5. All the points in M=I (x, y, z) E R3 :x=0, y=0, z !ý 01 of the Cartan umbrella 
are O-dimensional cut submanifolds of order k=2; hence, M is a non-manifold subset of the LCM 

splitting of the Cartan umbrella. Similarly, all the points in Nf (x, y, z) EW: x= 01 y= 07 z> 01 

are contained in a I-dimensional cut submanifold of order k 4. The remaining points are part of 
I-dimensional cut submanifolds of order k=2. Therefore, the LCM splitting of the Cartan um- 
brella includes three pieces: the non-manifold subset M, the submanifold N, and the 2-dimensional 

submanifold 0=X- (M U N) with two components. 

In general, the topological type of a point is determined using a finite collection of topological 
invariants such as, for example, dimension, cut-points and dimensional homogeneityý For locally 
'well-behaved' spaces such as analytic varieties, dimension and dimensional homogeneity suffice to 
determine the local topological type of a space at a point. For example, each point in the negative 

z-axis of the Cartan umbrella has homogeneous dimension 1 because the intersection of its neigh- 
bourhood with X is a 1-ball. In contrast, each point in the positive z-axis, including the origin, has 

dimension 2; hence, points on that half-axis have different topological type. (Recall that dimension is 

a topological invariant. ) Moreover, unlike the points in the positive z-axis, the point at the origin has 

a neighbourhood that includes points of dimension 1; that is, they have distinct topological types. 

2. Mathematical design issues 1: topological stratifications 

From the discussion above, we come to the conclusion that, amongst the topological stratifications 

and splittings, weak topological stratifications are the suited mathematical model for stratified objects 
in R. Let us summarise the advantages of the weak topological stratifications: 

Local topological type invariance. They resolve the topological singularities in such a way 

that all the 'building blocks' or connected strata of a geometric object are at least embed- 

ded submanifolds; otherwise, the invariance of the local topological type does not hold. 

This excludes a priori some pathological point sets, e. g. the topologist's curve. The local 

topological type condition imposes then that all strata are embedded (see previous chapter 

for details about embedded submanifolds). In fact, for any embedded submanifold Mi as a 

'building block' of a LTT stratification we have mi n Fr(mi) = 0. 
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Frontier condition. The local topological type invariance induces the frontier condition on 
the a WeakT-stratified point set. This is crucial for the design of any B-rep data structure, be- 
cause it guarantees that the frontier of any connected stratum is the union of other connected 
strata of lower dimension. This is precisely the basic relationship between strata we have 
in extant B-rep data structures; for example, the face (a 2-dimensional stratum) is bounded 
by a collection of edges (I -dimensional strata) and vertices (0-dimensional strata). We will 
come back to the frontier condition in next sections. 
Adaptability By striking on the local topological type invariance of connected components, 
instead of strata, we allow application -oriented stratifications, i. e. WeakT stratifications 
whose strata are not necessarily connected, nor satisfy the frontier condition. For example, 
the stratification 11'3 in Table 1 is a WeakT stratification which takes the negative z-axis and 
positive z-axis as components of the same stratum. This stratification is not LTT-invariant, 

and therefore it does not satisfy the frontier condition. In fact, the frontier of any of its 2- 

strata is not composed by any other strata of dimension 1 or 0. But, it is easy to observe that 
its refinement 171 into connected strata is LTT-invariant and does satisfy the frontier condi- 
tion. Thus, imposing the LTT criterion on stratum components, instead of strata, there is no 

need to rearrange the components of each stratum under any shape change operation carried 

out by a designer. 

However, weak topological stratifications have some shortcomings because they do not satisfy 
important requirements in geometric modelling: 

Lack of localfiniteness Since the submanifolds of a LTT stratification are not necessarily re- 

gular (see Chapter 2 for definitions) -they have only to be embedded submanifolds-, their 

components can pile up in the neighbourhood of a point. In this case it is said that the strati- 
fication is not locally finite. Stratifications that satisfy both frontier condition (or ultimately 

the LTT condition) and local finite condition are said to be stable topological stratifications. 
The terms of 'topological stability', 'stratification', 'regularity' were introduced by Rene 

Thom in his seminal paper [109] about stratifications. 
Lack of computability. They do not provide any algebraic machinery to resolve or detect in 

practice (i. e. a computational algorithm) singularities. 
Undetectability of differential singularities. Even if we could devise an algorithm based on 

LTT-invariance, only topological singularities would be identifiable. Differential singulari- 

ties such as cusps, ridges, etc are not detectable by UT-invariance. This makes unfeasible 
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the intuitive stratification of a cube surface into faces, edges and vertices; the cube surface 
would have only one face, the surface itself. Thus WeakT stratifications become useless for 
purposes of geometric modelling. 
Lack of geometric persistence. This a major issue in geometric modelling. Extant geometric 
kernels do not provide in general means to maintain the geometric identity of strata in a 
variety or subvariety. This can be illustrated as follows. The Cartan umbrella is an algebraic 
variety described by the equality x2 _ Z. Y2 = 0, but usually geometric kernels are not designed 
to retain the geometric identity of strata; for example, the O-dimensional stratum at the origin 
of the Cartan umbrella is algebraically described by a triple of real numbers, not by the 
algebraic set x2 - zy2 = 0. This suggests that geometric persistence requires some kind of 
clustering for strata. 
Lack of a general clustering scheme. A weak topological stratification has been defined as a 
cluster of strata. But, many applications (e. g. form feature modelling) require that an object 
is viewed as a cluster of subobjects (respectively, form features), each one of which is in 

turn a cluster of strata. The inexistence of such a general scheme for clustering subobjects 
and strata in extant geometric modellers has undermined the effective integration of CAD 
(computer-aided design) technology in large-scale industries such as automobile, aircraft 
and shipbuilding industries. Quite often a design has to be changed, but even minor changes 
imply to redesign everything from the scratch because the geometric kernels that equip CAD 

systems do not allow local or zonal changes easily. Recall the difficulties that feature-based 

modelling researchers have faced for the last two decades to implement an effective feature- 

based modeller on the top of a geometric kernel. Without such in-built subobjects or clusters 

of strata (called subcomplexes in [46]), the representation and manipulation of subsets of an 

object is very difficult. 

3. Whitney stratifications 

It has also long been understood that there are many techniques of partitioning a real point set 
into submanifolds, each concerning a type of splitting or stratification. However, not all splittings or 

stratifications are valuable in mathematics, and even less in geometric modelling and design. From a 

mathematical point of view, Whitney stratifications are important because, by the existence of Whit- 

ney stratifications for subanalytic sets [105, p. 44], one can reduce problems on subanalytic sets and 

maps to problems on Whitney stratifications. Although this is also relevant to the geometric design 
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theory as far as the unification of the extant geometric models, the importance of the Whitney strati- 
fications -in terms of the design of a data structure for geometric objects- is due to their nice local 
properties. In fact, each stratum (connected or not) of a Whitney stratification consists of "equally 
bad" points. (This concept of "equal badness" is used intuitively by some mathematicians and means 
'the same local topological type'. ) The embedding of such nice local properties into a data structure 
has as a result a general boundary representation capable of representing and manipulating geometric 
objects in Rn. (This general boundary representation is described in the next chapter. ) 

3.1. Whitney regularity conditions. The regularity conditions of Whitney are based on the 
concept of tangent space at a point of a manifold, which is obviously a geometric concept. Hence one 
says that the Whitney regularity conditions defined later, called (a)- and (b)-conditions, are essentially 
geometric. 

Let V =MIUM2u ... U Mk be a variety in Rý where MI, M2, ..., Mk are manifolds without 
boundary. Let pE Mi, and let TpMi be a tangent space of Mi at p. Let qE Mj, and let NqMj be the 
normal space of Mj at q. And denote by n some appropriate projection; for example,, 7iN,. Mj (T) is the 

projection of r into the normal space of Mj at q 

DEFINITION 3.1. Mj is (a)-regular over Mi at p if, for any tangent vector TE TpMi. ) 
IiM 7INqMj (T) 
q-+p 

This means that for any tangent vectorr E TpMi, the projection of r into the normal space of Mj 

at q approaches zero as q approaches p. In other words, r is nearly perpendicular to NqMj when q 
is close to p; equivalently, r is nearly contained in TqMj when q is close to p. Thus we may restate 
the condition that Mj is (a)-regular over Mi at p as follows: TpMi is nearly contained in TqMj as q 

approaches p. Therefore, 117CNqMj (r) 11 can be viewed as the distance from T to TqMj- 

EXAMPLE 3.6. Let us look at the OrdT stratification of the variety V shown in Figure 2(b) first. 

Let p and q two points of V in the manifolds M3 and M2, respectively, as illustrated in Figure 6(a). 
As q approaches p, we see that TqM2 is far from containing the tangent vectorr at p. It is clear that 
117TN(M2, 

q)('r)jj does not approach zero as q approaches p. This shows that the OrdT stratification of 
V does not satisfy the (a)-regularity condition, or, equivalently, it is not stratified according to the 

(a)-regularity condition. In particular, M2 is not (a)-regular over M3 at p. 

EXAMPLE 3.7. Now, let us check whether the WeakT stratification of the variety V depicted in 

Figure 2(c) is (a)-regular. Consider, for example, the incident strata M3, M2 and M7; M7 is the point 
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FIGURE 6. Testing the Whitney (a)-regularity condition. 

P, M3 is the positive z-axis, and M2 is the top-right sheet of V. 
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Is M3 (a)-regular over M7 at p? (Figure 6(b)) This is a trivial case since M7 is the point p, and 
in particular TpM7 (i. e. the point p in this case) is clearly contained in TqM3 for every qE M3. 

(ii) Is M2 (a)-regular over M7 at p? (Figure 6(c)) This is also clear since TpM7 (i. e. the point p 
in this case) is nearly contained in TqM2 as q approaches p. 

(iii) Is M2 (a)-regular over M3 at any point p in M3 ? (Figure 6(d)) Let us take any sequence of 

points on M2 such that q approaches p as denoted by the dotted line in Figure 6(d). The tangent space 
TqM2 is a 2-dimensional linear space; thus it is obvious that the vectorr tangent to M3 at p is nearly 

contained in TqM2 as q approaches p. Hence M2 is (a)-regular over M3 at any p in M3, that is M2 is 

(a)-regular over M3. 

In short, because (i), (ii) and (iii) exhaust all possibilities in our checking process, the WeakT 

stratification of V depicted in Figure 2(c) satisfies the (a)-regularity condition. 

EXAMPLE 3.8. Consider the WeakT stratification of the variety V depicted in Figure 3(c). For 

the same reason as we noted in the discussion of (i) in the previous example, it is clear that M, and 

M3 are (a)-regular over M5. Thus the WeakT stratification of V is also an (a)-regular stratification. 

EXAMPLE 3.9. Consider now the OrdT stratification shown in Figure 3(b). For brevity, take the 

points p and q in the strata M3 and MI, respectively, as drawn in Figure 7(a). Unfortunately, in this 

case, M, is (a)-regular over M3 at the origin p, since r is clearly contained in TqMj as q approaches 

p. We say "unfortunately", because p in M3 is obviously "worse" than the other points in M3. 
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FIGURE 7. (a)-regularity insufficiency. 

The previous example shows us the insufficiency of (a)-regularity to impose a WeakT stratifica- 
tion on a variety. Therefore, we need additional regularity conditions. 

DEFINITION 3.2. Let pE Mi and qE Mj- We say that Mj is (b')-regular over Mi at p if 

-4 

M. IiM 7ENq 
j q ýp .v 

-+ -+ -4 -+ 
where v= qp - TcTpmi (qp) and IIvII is the Euclidean norm of v*. 

In intuitive terms, this is equivalent to say that TqMj nearly contains the direction of the vector 

v; that is, NqMj is nearly perpendicular to the direction of v+. 

DEFINITION 3.3. Let jPkj be a sequence of points in Mi, fqk} a sequence of points in Mj- Mj 

is (b)-regular over Mi at p if 
Vk HM 'ANqkM- 
-+ k-4oo J11 Vkjj 

where vk = qkPk - TcT,, 
kmi qkPk 

REMARK 4. In [77], Mather proved that the regularity conditions (a) and (b) are equivalent to 

(a) and (b'). Moreover, he proved that (b) implies (a). Thus, it is enough to check the condition (b) 

for a regular stratification in the sense of Whitney. However, (b) is clearly harder to handle than (b'), 

and (a) is not difficult to check at all. Therefore, in mathematics, the conditions (a) and (b') are used 

preferably. 
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DEFINITION 3.4. (Whitney regularity conditions) A stratum Mj of the variety V is Whitney- 
regular over a stratum Mi of V if Mj is (a)-, (b)-regular (or (a)-, (b')-regular) over Mi at every point 
PE Mi. 

DEFINITION 3.5. A stratification of a variety V is called a Whitney stratification if for any two 
strata Mj, Mi of V with mi C CI(Mj), Mj is Whitney-regular over Mi. 

Thus, the conditions (b) and (b') overcome our problem in distinguishing the origin in the stratum 
M3 of V in Figure 3(b). 

EXAMPLE 3.10. Let us look again at this case as illustrated in Figure 7(b). Let qE MI and project 
qp onto M3 as M3 = TpM3 in this case. We obtain qr = qp - 7[TpM3(qp). This clearly shows that the 
direction (or unit vector) of qr is not nearly contained in TqMI as q approaches p, which violates 
(b'). This implies that the stratification of V in Figure 3(b) is not Whitney-regular, i. e. a Whitney 

stratification. 

EXAMPLE 3.11. On the other hand the stratification depicted in Figure 3(c) is a Whitney stratifi- 
cation. In fact, looking at its sub-stratification drawn in Figure 7(c), it is obvious that M3 is Whitney- 

regular over M5 and M, is Whitney-regular over M5 since M5 is just a point, and further M3 0 Cl(MI) 

nor M, c Cl(M3). 

EXAMPLE 3.12. Using the same argument as in Example 3.10, it is clear that the OrdT-stratified 

variety V in Figure 2(b) is not (b')-regularly stratified. However, the stratification in Figure 2(c) is a 
Whitney stratification as illustrated in Figure 7(d). In fact, it is trivial to see that both M2 and M3 are 
Whitney-regular over M7 since M7 is a point. Therefore, we have only to check that M2 is (b')-regular 

over M3. So, let pE M3 and qE M2. Take any sequence of points in M2 such that q approaches p, 
i. e. q -ý p. It is easy to see that as q approaches pE M3 the vector qr =q- nT., m3(qp) is nearly 

contained in the (2-dimensional) tangent space TqM2 because the direction q-+r is revolving about M3. 

This shows that M2 is (b')-regular over M3 and hence V is Whitney-regular via Figure 2(c). 

The examples above suggest that Whitney stratifications of algebraic and analytic varieties satisfy 
the LTT criterion, and therefore they are a subclass of weak topological stratifications. In fact the 
Thom-Mather Theorem confirms this for algebraic and analytic varieties as follows. 

THEOREm 3.1. (Thom-Mather Theorem [110,78]) Let V be an analytic variety stratified under 
the (a) and (b) conditions. Along each stratum Mi the local topological type remain invariant in the 
following sense. If p, q are two points in a connected component 9f the stratum Mi, then there is a 
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neighbourhood U of p in V homeomorphic to a sufficient small neighbourhood U' of q in V and the 
homeomorphism h: mj nu --+ mj nU'preserves the stratification for each j. 

PROOF. See [731. r-I 

The examples above suggest that if a variety V is stratified into M, U M2 U ... U M, and if Mj is 
(a)-, (b)-regular over Mi such thatmi na (mj) : ý- 0, then 

(9) dim (Mi) < dim (Mj), 

as proved by Whitney in [121, p. 541-5471. We call the inequality (9) the dimensional inequality 

condition. This inequality is not surprising given the Thom-Mather Theorem. However, despite the 
inequality (9) is valid for algebraic and analytic varieties, it is not satisfied in general, as the following 

counterexample shows. 

COUNTEREXAMPLE 3.1. Let M, =f 01 x [- 17 1] a straight line segment in the y-axis of Rý and 
M2 =I (x, y) ly = sin(l), x: A: 01 the topologist's curve oscillating near x=0. We have M, n CI(M2) :A0 
but dim(MI) = dim(M2) (Figure 8). Thus, the variety M, UM2 cannot be analytic. See [120, p. 208- 

x 

211] for more details about analytic varieties. 

FIGURE 8. Topologist's curve. 

The previous counterexample shows that: 

9 There seems to be an intimate relationship between Whitney stratifications and sorts of 

geometries, i. e. not all geometries admit Whitney stratifications. 

* Stratifications can be used to study the geometric nature of point sets in R; for example, to 

know whether that a point set is analytic or not. 
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The incidence (a)-, (b)-conditions of Whitney on analytic varieties imply that Whitney stra- 
tifications of analytic varieties satisfy the LTT criterion, what allows us to rid of serious 
pathologies. This explains why analytic Whitney stratifications are sometimes said to have 
nice local properties [120]. 

Note that the inequality (9) does not imply that Whitney stratifications satisfy the frontier con- 
dition. For example, the ordinary topological stratifications (b) in Figures 1,2,3,4 all satisfy the 
dimensional inequality of incident strata, but not the frontier condition. Obviously, one can conjec- 
ture that an analytic Whitney stratification satisfies the frontier condition. In fact, such conjecture is 
due to Thom and was proven by Mather [77]. 

THEOREm 3.2. If a variety V=M, U M2 U ... U Mn is a (a)-, (b)-regular stratification andmi n 

Cl (Mj) :? ý 0 then Mi C Cl (Mj). 

This leads us to the following definition: 

DEFINITION3.6. A stratification V =Ml UM2U... UMn satisfies the frontier condition if when- 

evermi n ci(mj) 00 then Mi C CI(Mj). 

Another important property for stratifications is that one concerning localfiniteness [113]. 

DEFINITION 3.7. A stratification V=m, U m2 U ... UM, satisfies the local finiteness condition 
if each point of any stratum Mi has a neighbourhood meeting only finitely many strata. 

It is worth noting that, in his seminal paper [109, p. 25] about stratifications, Thom stated the 

properties that stratified sets should satisfy, namely: 

(1) The closure of every stratum is a stratified subset. 
(2) The frontier of stratum constitutes a stratified subset of lower dimension. 

(3) The number of strata is finite. 

(4) Any finite union and intersection of stratified subsets are stratified subsets. 

The rationale behind the frontier condition -that includes the dimensional inequality condition- 

and the local finiteness condition is to guarantee nice local properties. They both ensure that strata are 

regular submanifolds. The frontier condition ensures that the strata are at least embedded submani- 
folds. The local finiteness condition imposes an additional restriction avoiding the "piling up" effect 

of some embedded submanifolds. Therefore, the local finiteness condition on strata means that all 

strata should be regular submanifolds (see previous chapter for more details about the various classe s 

of submanifolds. ) 
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What is more interesting is that these stratification properties proposed by Thom are essentially 
topological in the sense they do not depend on the nature of the geometry we may consider. They 
have been proposed to observe topological stability, i. e. to rid of possible pathologies. Therefore, the 
(a)-, (b)-conditions of Whitney are basically a geometric attempt to satisfy the local finiteness and 
frontier topological requirements. All this works quite well for algebraic and analytic varieties, as 
described above in this section. The properties of algebraic and analytic varieties guarantee a priori 
the local finiteness condition'of a Whitney stratification. The frontier condition is a consequence of the 
local finiteness condition and (a)-, (b)-regular Whitney conditions [113, p. 336] as proved by Mather 
[77]. Everything still works well for a more general class of closed semialgebraic and semianalytic 
sets. Moreover, the frontier condition still holds for Whitney stratifications of semialgebraic and 
semianalytic sets which are not closed, but the LTT condition may be violated. This is illustrated in 

next counterexample. 

COUNTEREXAMPLE 3.2. Let us consider the stratified point set X=M, U M2 U M3, here called 
the stratified double-flag, as shown in Figure 9(a). The flagpole is the 1 -stratum M, =0x0xz, the z- 

axis. The two flags M2, M3 are here taken as components of a 2-stratum. m, = (x = o) n (y < o) n (z > 
0) is the second quadrant of the plane x=0 and M3 = (x = o) n (y > o) n (z < o) is the fourth quadrant 

of the plane x=0. It is trivial to check that Whitney conditions are satisfied because the tangent space 

at any point of the 2-stratum contains the tangent space at any point in the z-axis. Nevertheless, the 

frontier condition is still satisfied, but not the LTT condition. But, if we assume that all strata MI, M2, 

M3 are connected, then the stratified double-flag in Figure 9(a) is no longer a Whitney-stratified set, 

and hence the frontier condition is not satisfied; consequently, the LTT condition cannot be satisfied 

either. 

This counterexample shows us the following: 

" Local finiteness and Whitney conditions imply the satisfaction of the frontier condition, a 

result due to Mather. 

" Whitney stratifications do not necessarily satisfy the LTT condition, so the Thom-Mather 

Theorem is not always valid. 

" The Thom-Mather Theorem is valid for Whitney stratifications with simply connected strata. 

" Frontier condition does not imply LTT condition for multi-connected strata. 

" Frontier condition implies LTT condition for connected strata. 

In addition to connectedness, closedness property for strata seems to reinforce the LTT condition. 

This is illustrated in Figure 9(b), where a single connected I -stratum M4 has been attached along the 
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positive y-axis. This stratification is not a Whitney stratification because the M, and M4 violate the 
(a)-condition at the origin. In fact, the tangent space at the origin, the M, itself, is not contained in the 
tangent space at any point of M4 for a sequence of points in M4 approaching the origin. To satisfy the 
Whitney conditions, we have to subdivide M1 into two 1-strata, M5 (the positive z-axis) and M6 (the 
negative z-axis ,ya O-stratum M7 (the origin), Figure 9(c). 

z 

y y 

(a) (b) (c) 

FIGURE 9. Stratifications of a double-flag point set. 

4. Mathematical design issues 11: Whitney stratifications 

y 

At this point of discussion, some facts about Whitney stratifications and their adequacy as a 
framework for processing geometric objects on computers can be pointed out. Let us enumerate 
them: 

* Localfiniteness. To be useful in geometric modelling, a stratification must be at least locally 

finite. A stratification satisfies the local finiteness condition if each point of a stratum has 

a neighbourhood meeting only finitely many strata (113]. This is essential to guarantee a 

computable representation for geometric objects. For example, an unbounded cone in R3 

can be stratified into its apex and conical surface, since every point has a neighbourhood 

with just one 2-dimensional component. In contrast, if the conical surface is partitioned 
into an infinite number of lines, every point has a neighbourhood with an infinite number 

of 1-dimensional components; this stratification is not locally finite. As seen above, local 

finiteness is also essential to guarantee regular strata for a stratification, and therefore to 

rid of troublesome pathologies. This means that local finiteness heavily depends on the 

geometry of the point sets under study. That is, it is the local finiteness of a type of geometry 

that determines the local finiteness of a stratification, and not vice-versa. Local finiteness 

z z 
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condition together with the incidence Whitney conditions determine a Whitney stratification 
for a point set, but everything depends on the geometry nature of such point set. Remarkably, 
the local finiteness condition is inherent to algebraic, analytic, semialgebraic, semianalytic 
and, more generally, subanalytic sets because they are locally described by a finite number of 
subsets. Thus, the local finiteness matches the memory limitations and the discrete character 
of current computer processing. 
Local topological type condition. Whitney stratifications are not necessarily LTT-invariant. 
Thus, as C' stratifications, they constitute a subclass of OrdT stratifications. 

" Frontier condition. Whitney stratifications satisfy the frontier condition, but this does not 
necessarily impose the LTT condition, as illustrated in the example of the double-flag point 
set, where we have multi-connected strata. It is clear that this becomes rather difficult to 
design and implement homology-based navigation algorithms to traverse the data structure 
of geometric objects. Thus, Whitney stratifications with multi-connected strata seem to be 

useless in geometric modelling. 

" Incidence scheme. Even so, the dimensional inequality condition underlying the frontier 

condition guarantee that the incidence Whitney conditions lead to an incidence scheme for 

Whitney-stratified sets. The concept of an incidence scheme was introduced by Thom [110, 

p. 245] and establishes that every stratum M of dimension d is associated with a finite number 

of strata of dimension less than d, MI ... Mm, the strata of the frontier of M; equivalently, 

we say that Mi is incident at M, or Mi < M. The incidence relation < is transitive: Mi < Mj 

and Mj < Mk implies Mi < Mk- 

" Weakftontier condition. Imposing the LTT condition on the stratum components of Whitney 

stratifications, they become a subclass of WeakT stratifications, regardless of whether the 

stratified set is closed or not. Whitney stratifications whose stratum components satisfy the 

frontier condition are said to satisfy the weakfrontier condition. They are called here Weak 

Whitney stratifications, or just WeakW` stratifications. The weak frontier condition is crucial 

to define an incidence scheme based on the order of the dimensions of the adjacent stratum 

components. Such a scheme is here called weak incidence scheme. Thus, the weak frontier 

condition is an important condition to ensure the satisfaction of the requirements of the 

design and implementation B-rep data structures. Besides, the design principles of a B-rep 

data structure can be extended to higher dimensions, as well as their navigation or traversal 

algorithms. This means that we have a mathematical validation for the incidence scheme of 

the extant B-rep data structures. 
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Computability. It is possible -theoretically, at least- to computationally check the Whit- 

ney conditions for any two strata by using simultaneous approximation techniques of two 
sequences of points tending to a particular point in one of two strata, and calculation of 
tangent spaces in their respective Grassmannians. The tangent spaces can be determined by 

the Gram-Schmidt Orthogonalisation algorithm for any dimensions as explained in the pre- 
vious chapter. Even tual problems with floating point arithmetic can be overcome by using, 
for example, the CORE Library for precision-driven exact computation with constructible 
real numbers [126]. 

Detectability of differential singularities. The resolution of singularities makes usage of the 
criterion of Cr continuity, i. e. smoothness of order r>1 [44]. (Recall that a point of a set X 
in R' is Cr regular if it has a neighbourhood U in R7 such thatxnuis a Cr ball; otherwise 
it is said to be a Cr singular point [44]. ) Whitney stratifications are just C' stratifications, 
while topological stratifications are CO stratifications. Therefore, CI singularities such as 
cusps, ridges, etc. are in principle detectable and resolvable by Whitney stratifications. C' 

singularities are just the points where the rank of the Jacobian is not maximal and constant. 
As seen in the previous chapter, the points where the rank is constant and maximal are called 
regular points. Therefore, we can envisage a computational rank-based approach to detect 
C' singularities. Unfortunately, this approach is not sufficient to isolate all the singularities. 
For example, applying this approach to the Cartan umbrella with-handle has as a result the 
OrdT stratification in Figure 1(b), where the origin is in a C' stratum M3. This means that 

we cannot isolate the origin as a new stratum because the rank over M3 is constant, even 
increasing continuity order, that is, using C' Whitney stratifications with r>1. 
Adaptability. WeakW stratifications are WeakT stratifications. Thus, during a shape ope- 

ration on an object, there is no need to re-arrange the internal structure of existing multi- 

connected strata to conform with the frontier condition. 
Lack of a general clustering scheme. Similar to WeakT stratifications, the absence of general 

clusters of subobjects, each one of which is a cluster of strata, disables geometric persistence 

and adaptability to shape changes (e. g. deleting, undoing, redoing, resizing, etc. of form 

features). 

5. Stratiliable geometries 

The usefulness of a particular stratification depends on being able to find a sufficiently large class 

of sets for which they exist. Here we are interested in Whitney-stratifiable geometries. It is clear 
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that we need a geometry more general that algebraic or analytic geometries, and it is also Whitney- 

stratifiable. There are two major reasons behind this. The first is that algebraic and analytic geome- 
tries are restricted to point sets defined by algebraic and analytic equalities. Therefore their geometric 
coverage is limited to algebraic and analytic varieties, e. g. those found in parametric geometric de- 

sign of curves and surfaces found in CAD systems, or algebraic geometry engines such as that one 
included in the Mathematica package. But, in solid modelling, we need more general geometries 
which enable the construction of geometric objects by using not only equalities but also inequalities 

of algebraic and analytic functions. (Nevertheless, Shapiro has shown that we can construct similar 

objects by using only equalities of R-functions [102]. ) For example, to define a square in R2 we need 
four inequalities. Otherwise, it does not make sense to think of geometry integration in engineering 

environments, CAD/CAM systems in particular, if we use different geometries for different tasks. 
The second is that a geometric framework as that one provided by Whitney stratifications satisfies 

many applications requirements. In addition to its adequacy to design and implementation of B-rep 

data structures, more applications are possible to envisage for Whitney stratifications. For example, 

they can be used to model Bezier polygons and polyhedra, to represent the stratification of semial- 

gebraic and sem-ianalytic point sets as a result of a boundary evaluation algorithm, and possibly to 

assist designers in the graphical visualisation of varieties which are unplottable because of their dis- 

continuities. (Recall that, the Cartan umbrella with-handle x2 -)ýz =0 cannot be plotted through 

Mathematica system. ) 

5.1. Semialgebraic geometry. Recall that a set XC W" is algebraic when it is obtained by 

finitely many intersections of sets of the form Ix E Wn I f(x) = 0} With fa polynomial function on 

R' - That is, X is the intersecting set level of the zero-sets of a family of functions. Thus, algebraic sets 

are just algebraic varieties. A wider class of sets, closed under as many set-theoretic and topological 

operations as possible, is the class of sernialgebraic sets. 

DEFINITION 3.8. The class of semialgebraic subsets of W' is the smaller Boolean algebra of 

subsets of R' which contains all sets of the form 

(10) Rr lf(x) > 01 

where f: W" --ý R is a polynomial function. 
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Therefore, sernialgebraic subsets of R' are closed under finite unions, finite intersections and 
complements (and difference of any two) [59, p. 166]. It also follows that the product of semialge- 
braic sets is semialgebraic [41, p. 17], which mathematically validates sweeping operations usual in 
geometric modelling. 

REMARK 5. (Hironaka [59, p. 167]) In (10), we may replace > by >, because 

fX E Uýýn 1f (X) > 01 -__� kn 
- 

tX C Uen 1_f (X) > 0}. 

This implies that the semialgebraic Boolean class includes the algebraic sets viewing that 

txeRýnif (X) =()l = tXeknlf (X) ýý 0} n fx G kn 1_f (X) ýý 01. 

REMARK 6. (Hironaka [59, p. 167]) A subset XE W" is semialgebraic if and only if there exist a 
finite family of polynomials fi, gj on Rm such that 

tU, txE kn 1 f, (x) > ()11 U ýUjtx E kn 1 gj(x) - 011 

Taking into account that the topological operations, say closure, interior and frontier, are defined 
in tenns of set-theoretic operations (see Chapter 1), we have: 

THEOREm 3.3. If X is semialgebraic in Wn, then its closure (hence also its interior andfrontier) 
is also semialgebraic in W". 

PROOF. See Gibson [41, p. 18] for an elegant proof using the Tarski-Seidenberg Theorem. El 

By the definition of semialgebraicity above, the inverse image of a semialgebraic subset of W 

under a polynomial map f: R' -4 R' is semialgebraic [41, p. 17]. The converse of this is Tarski- 

Seidenberg Theorem. 

THEOREM 3.4. (Tarski-Seidenberg Theorem) The image of a semialgebraic subset of R' un- 
der a polynomial map f: RI -+ Rý is semialgebraic. 

PROOF. See Seidenberg [1011. 

This theorem is important for two reasons: 

0 

It formalises our intuition that parametric curves and surfaces (e. g. Bezier curves and sur- 
faces) as images of polynomial functions are semialgebraic indeed. 
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In the theory of semialgebraic geometry it is only needed in the particular case of a linear 

projection f: R+k -4 R' to ensure that semialgebraic subsets are closed under linear pro- 
jections. This is because a linear projection of an algebraic set is not in general algebraic 
but semialgebraic such as, for example, the projection of a circle in R2 into R 

Another important property of semialgebraic subsets of RI is as follows: 

THEOREm 3.5. A semialgebraic set has onlyfinitely many connected components, each of which 
is semialgebraic. 

The smoothness theory and singularity theory provide the interplay between the semialgebraic 
geometry and stratification theory. Let XC R' be semialgebraic, and let pEX. We say p is a 

regular point of X if there exists a neighbourhood U of p in RI and a family of real analytic functions 

fl, 
..., fk, defined in U, such that Dfl,..., Dfk are linearly independent elements of TpX, and 

x nu = fx c- ulf, (x)= ... = f, (X) = 01. 
It follows from the Implicit Function Theorem that p is a regular point of X if and only if there is an 
open neighbourhood U of p in R' such thatunxis an analytic submanifold of U. Moreover, this 

analytic submanifold (and thus smooth) is of dimension k. The set of regular points AX of a semial- 

gebraic set X is also semialgebraic, and open and dense in X [79, p. 13 1 ]. The set of regular points 
AX is an analytic manifold which may contain components of distinct dimensions. The dimension of 
AX is defined to be the dimension of the largest component, which is also the dimension of X; that is 

dimX = dimA. X. 

A point of X is a singular point of X if it is not a regular point of X. The set IX of singular 

points of X is also semialgebraic, since YX =X- AX. Note that IX is closed in X. Besides, we have 

dimYX < dim. X and dim (CI(X) - X) < dimX [41, p. 191. 

The regular and singular points of a semialgebraic set X can be dimensionally related to each 

other by a filtration Xk D Xk-I D ... X0 of X by taking Xk = X, where k= dimX, and defining X'-1 

to be YX' if dimX' = i, and to be X' if dimXi < i. Obviously, there are finitely many differences 

X'- X'- 1, each a smooth manifold of dimension i which altogether yield a finite stratification of X. 

Now we come closer to the matter in hand that semialgebraic sets are Whitney-stratifiable. Let 

M, N be smooth submanifolds of Rl. The bad set "-". (M, N) is defined as the set of points xEM 

where N fails to be Whitney regular over M at x. 

THEOREm 3.6. (Whitney Theorem) Let M, N be semialgebraic smooth submanifolds of Rm. 

Then the bad set E. 11W (M, N) is semialgebraic and its dimension dim E (M, N) < dimM. 
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Besides, for any semi algebraic sets XIYER, it follows from the preceding results that the set 

H(X, Y) = Ex UN. 4 (X - 2: 6dy- MY) 

is also semialgebraic, and dim U (X, Y) < dimX. At last, we are in position to prove the Whitney- 
stratifiability of the semialgebraic sets. 

THEOREM 3.7. Any semialgebraic set XC R' admits a Whitney stratification X having finitely 

many semialgebraic strata 

PROOF. We follow here the proof given in [41, p. 20]. Let k= dimX and Xk D Xk-, D ... X0 a 
filtration of X by semialgebraic sets X' closed in X with dimXi <i and each difference Xi - X'- 1a 

smooth manifold of dimension i (or empty). Suppose inductively that Xk, Xk- X' have been con- 
structed according to the following prescription. If dimX' <i we simply put X'- 1= Xi. If dimX' =i 
we put 

k 
x =cixf u 

h=(xi7xj-xj-l)}. 
j=i+l 

(CIXY means closure a subset YCX in X. ) It follows from the preceding notes that X'-1 is semial- 
gebraic of dimension < (i - 1). And X' - X'- 1 is a smooth manifold viewing that it is obtained from 
the smooth manifold X' - Y. X' by removing a closed set. We take X to be a stratification of X whose 
strata are the Xi - Xi-1. It follows from the construction that X is a Whitney stratification which has 

of course finitely many semialgebraic strata. 0 

5.2. Semianalytic geometry. Analytic functions are particularly useful in geometric design be- 

cause they can be uniquely approximated by Taylor series expansion. They include the algebraic or 
polynomial functions, rational functions, transcendental functions, etc. Analytic functions are used to 
define semianalytic subsets of R, as polynomial functions are used to define semialgebraic subsets 

of RI. 

Similar to semialgebraic sets, semianalytic sets are defined not only by analytic equalities -what 
characterises the analytic geometry-, but also by analytic inequalities. This means that semialgebraic 

sets form a subclass of the semianalytic sets since polynomial functions are in the class of analytic 
functions. For example, the straight line segment from the point (0,0) and (1,0) in R2 is given by the 

semianalytic point set ly = o} n Ix > ol n fx < 1}. This point set is the intersection of the analytic 
set ly = 01 with two semianalytic sets, Ix > 0} and fx < 01, respectively. Obviously, this straight 
line segment is not analytic. Thus, analytic varieties are just a subclass of semianalytic sets. That is, 
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every analytic variety is semianalytic, but not vice-versa. For another example, observe that the line 
y=x and the half-plane y ý! x in R2 are both sernianalytic, but only the former is analytic. 

All this makes us to wonder whether or not all the nice local properties of sernialgebraic sets can 
be extended to sernianalytic sets. In particular, we are interested in to know whether semianalytic 
sets are or not Whitney- stratifiable. This study was carried out by Lojasiewicz and is summarised as 
follows: 

Local finiteness. Every semianalytic set is locally finite [71, p. 76] [53, p. 112]. 
Boolean algebra. Taking into account that the product, the sum of squares, or the Cartesian 

product of two analytic functions is analytic, we readily verify that the union of a locally 
finite family of serrtialgebraic sets is semianalytic, the intersection of a finite family of semi- 
algebraic sets is semianalytic, the complement (or difference of any two) of a semianalytic 
set is also semianalytic, as well as the Cartesian product of two semianalytic sets [71, p. 67] 
[53, p. 109]. 

Topological operations. It follows that the closure, interior, andftontier of a semianalytic 
set is also semianalytic, as well as any of its connected components [71, p. 76] [53, p. 112]. 

" Images. The inverse image under an analytic map of a semianalytic set is semianalytic. Un- 
fortunately, the Tarski-Seidenberg Theorem may fail, i. e. the direct image under an analytic 

map of even a compact analytic set may fail to be semianalytic. [71, p. ] [53, p. 110]. 

" Whitney-stratifiability. Semianalytic sets admit Whitney stratifications [71, p. 97]. 

" Triangulability. Every semianalytic set is triangulable [70, p. 463]. This generalises the 

triangulability of semialgebraic sets first proven by Hironaka [59, p. 170]. 

Thus, with the exception of the Theorem Tarski-Seidenberg, semianalytic sets enjoy all the good 

properties of semialgebraic sets. In fact, the semianalyticity of sets is not preserved by projection ope- 

rations (see, for example, [72, p. 1587]), even when such sets are compact. As noted in [58, p. 453], this 
failure causes various difficulties in dealing with semianalytic, or even closed real-analytic, subsets 
in geometric problems. In geometric modelling, the lack of projective invariance makes to think of 

semianalytic geometry as inadequate for operations of graphical visualisation and projection. But, as 

shown later, there is no problem if we project objects of dimension at most 3, as usual in geometric 

modelling. Problems turn out for higher dimensions. Nevertheless, the image of any semianalytic 

set by an analytic isomorphism (i. e. diffeomorphism) is semianalytic [70, p. 450]. The following two 

examples show us that the semianalyticity is not preserved by projections. 
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EXAMPLE 3.13. (Hironaka, [58, p. 453]) Let f: R3 --ý R2 be a projection (x, y, z) ý--+ (x, y). Let 
X= I(x, yz) E R3 Jxz =1 andy = sin(l/x), x > 0}, which is closed real analytic and hence semi- 
analytic in R3. But f (X), the graph of y= sin(I Ix), x>0, called the topologist's curve, is not 
semianalytic at the origin of R2. 

This example shows us that if f is not proper, the image of a semianalytic subset by f can be 
pretty wild, that is, non-semianalytic, (Recall that a map f from Y to X is proper if whenever A 
is compact in X, f- '(A) is compact in Y. ) But, semianalyticity fails to preserve even for compact 
subsets. Semianalyticity may fail even if the map is real analytic and proper, as illustrated by next 
example. 

EXAMPLE 3.14. (Lojasiewicz, [72, p. 1587]) The point set X= fx = 1, z = ey, O < y: 5 x} C R3 
is not semialgebraic. (This is clear because the point set z= ey is not semialgebraic. ) Consequently, 
by the theorem of the semianalytic cones that asserts that 'every semianalytic cone of RI is semialge- 
braic', the cone [0, oo)X cannot be semianalytic, what implies that the point set Y= [0,00)x n to < 
x< 11, i. e. Y=0Ufz= xeyl', 0<x<1,0 <y :5 xJ, is not semianalytic either. But Y is the image 
of the compact semianalytic set Z= ly = xu, z= xeu, 0<x<1,0 <u< 11 C R4 by the projection 
(X) 

Y7 ZI U) F-+ 
(X, 

Y, Z). 

5.3. Subanalytic geometry. Tarski and Seidenberg shown that semialgebraicity is preserved 
by rational maps (not only algebraic or polynomial maps) [108,101] (see also [42, p. 223] for a 
simple proof). Namely, if XC R' is semialgebraic, and f: X -+ RI is rational, then f (X) is also 
semialgebraic in W. Examples 3.13 and 3.14 have shown that the Tarski-Seidenberg Theorem may 
fail to preserve semianalyticity under projections. 

The question is now whether or not there is a bigger class of sets that not only enjoy the properties 

of semianalytic sets, but also does satisfy the Tarski-Seidenberg Theorem. As noted by Lojasiewicz 

in [72, P. 15881, a natural candidate is the class of sets which are locally images by projections of 

relatively compact sen-iianalytic sets. (Recall that a set X is relatively compact whenever its closure 
X is compact [30, p. 237]. ) Thus, we are interested in a class of locally compact sets. In fact, by 

definition, a Hausdorff space is locally compact if each point has a relatively compact neighbourhood 
[30, p. 237), that is, a neighbourhood with compact closure. Obviously, a locally compact space not 

need to be compact, but every compact space is locally compact. For example, R' is locally compact, 
but not compact. Also, an open interval in R is locally compact, but not compact. Local compactness 

rids of serious problems such as, for example, to have the set of rationals as image of a projection. In 

fact, it is known that the set of rationals in R is not a locally compact space. 
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DEFINITION 3.9. (Lojasiewicz, [72, p. 1589]) Let VC RI a real analytic variety. A subset X of 
V is said to be subanalytic if its trace in the neighbourhood. of any point of V is the image, by the 
projection Vx Rk -ý V, of a relatively compact semianalytic subset of Vxk (where k depends on 
X). 

It is clear that a relatively compact subanalytic set is the image of a projection of a relatively 
compact sernianalytic set, and vice-versa [72, p. 1589]. 

REMARK 7. (Hironaka [58, p. 465]) It is easy to prove that XC R1 is subanalytic if and only if 
for every xEY, we can find an open neighbourhood. U of x in R7 and a finite number of proper real 
analytic maps of real analytic spaces fij : Yjj -ý U, j=1,2, such that 

xnu= U(Imagefil 
- Imagef, 2). 

i 
REMARK 8. (Hironaka [58, p. 465]) Using resolution of singularities, we may assume that all the 

Yjj of Remark 7 are real analytic manifolds (smooth and connected). 

According to Remark 7, a subanalytic set is a set which locally is the proper analytic image of 

some semianalytic set. This disables the existence of spirals in the neighbourhood of any point of a 

subanalytic set. The same applies to the neighbourhood of any point of a subanalytic stratum. For 

example, the spiral in Rý that is image of the map f: [0, oo) -+ Rý analytically given f (r) = (cos r, sin r) 
rr 

is compact, but f is not proper in spite of f is a 1-1 immersion. Thus the strata of a subanalytic 

stratification are regular. In fact, a proper one-to-one immersion is an embedding [103, p. 16], and 
its image is a closed regular submanifold [15, p. 81]. Thus, unlike semianalytic sets, subanalytic sets 

are closed under proper projections. As noted in [58, p. 454], "the class of subanalytic subsets is the 

smallest one which contains all the semianalytic subsets and is closed under the operation of taking 

the images by proper real analytic maps". 

THEOREm 3.8. If X is semianalytic in R, then it is also subanalytic in R. 

PROOF. See Hironaka [58, p. 467]. 0 

Semianalytic and subanalytic sets coincide up to dimension 2, and start to differ from each other 

from the dimension 3. (An example of a subanalytic set in W that is not semianalytic is the set Y in 

Example 3.14. ) 
In addition to projective invariance, subanalytic sets enjoy the properties of semianalytic sets 

which are relevant for geometric modelling. In short, we have: 
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Local finiteness. Every subanalytic set in Rn is locally finite [58, p. 472]. 
Boolean algebra. The property of being subanalytic is closed under finite union, finite 
intersection, and difference of any two [58, p-466]. This follows from the definition given 
in Remark 7. 

e Topological operations. The closure, the interior, and frontier of a subanalytic set XE Rn is 

also subanalytic [58, p. 480-4811 [59, p. 179]. 
Images. Subanalyticity is preserved by proper real-analytic maps [58, p. 480]. Let f R" 
Rn be a proper real-analytic map. If Y is a subanalytic subset of Rn, then so is (Y) in 
R1. If X is a subanalytic subset of R1, then so is f (X) in Rn. 

" Whitney-stratifiability. Subanalytic sets admit Whitney stratifications [58, p. 4881. 

" Triangulability. Every subanalytic set is triangulable [59, p. 180]. 

Bounded and unbounded subanalytic sets (for example, a line segment with a finite length and 
a line with infinite length, respectively) are often useful in geometric modelling. Bounded subana- 
lytic sets have a finite number of connected components. But, as Middleditch and Reade noted in 

[84, p. 83], a subanalytic set may possess an infinite number of components. For example, the set- 
intersection of an unbounded sine curve with an unbounded straight line can yield an infinite set of 
isolated points. To overcome this problem, Middleditch and Reade have proposed to reduce the geo- 

metric coverage of Djinn* API to finitely subanalytic sets. Another way to round this problem is to 

make sure that at least one of the Boolean operands is bounded. 

6. Mathematical design issues: stratifiable geometries 

Let us review such important issues related to the geometric nature of point sets in R' and strati- 
fiability, and their applicability to the mathematical design of a geometric kernel: 

Geometric coverage. Subanalytic geometry provides a wide geometric coverage in W that 

includes the geometries commonly used in solid modelling, free-form modelling of curves 

and surfaces, and algebraic geometry engines such as, for example, the Mathematica. 

Topological coverage. In geometric modelling, we use topologically stable spaces, i. e. 

spaces that enjoy nice local properties. Therefore, we are interested in topological spaces 

which are rid of pathologies. Otherwise, it will be rather difficult to control and process 

their geometry on computers. We have seen that subanalytic geometry ensures the required 

nice local properties, since the strata of a stratified subanalytic set are all regular manifolds. 
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Note that a subanalytic set need not to be neither closed nor open as, for example, the union 
of a relatively open square and a relatively open edge in R2 is a subanalytic subset in V- 
Stratifiability. For mathematicians, stratifiability is useful to study the local properties of 
point sets. For example, if the dimensional inequality condition is not satisfied for a point 
set, we can conclude immediately that such a point set is not subanalytic. For us, geo- 
metric modelling researchers, this is also important because it helps us to understand the 
intimate relationship between stratifiability and geometric nature of point sets. But, above 
all, stratifiability is relevant for the mathematical design of geometric kernel data structures. 
In fact, a weak Whitney stratification endows a space with a homological structure simi- 
lar to those of conventional B-reps, which is essential to devise traversal, interrogation and 
geometric reasoning algorithms. Remarkably, any Whitney stratification of a locally closed 
set in R1 satisfies the weak frontier condition [105, p. 24], what shows that weak Whitney- 

stratifiability depends more essentially on the topological stability than geometric stability 
of a point set. Moreover, stratifiability is a first step to guarantee the triangulability of a 
geometric object, what is necessary for finite-element modelling applications. 
Geometric operators. Together with the shape coverage (types of shape) and stratifiabili- 
ty (structure), the set of operators definable for a class of subsets of RI is the third most 
important part of the triangular mathematical design architecture of the X-geometric ker- 

nel proposed in Chapter 1. Taking into account that subanalytic sets form a Boolean class, 
the set-theoretic operators are here considered the basic operators to construct geometric ob- 
jects. But, because the inner kernel of the X-geometric kernel processes stratified subanalytic 

sets, we have to define some sort of stratified set-theoretic operators, i. e. set-theoretic opera- 
tors which are stratifiability-preserving, similar to those proposed in [87]. Alternatively, the 

geometric kernel can be provided by a set of Euler operators as proposed in Chapter 5. 

Shape coverage and clustering. In order to be able to process sorts of shapes (global topo- 

logical shapes, homotopic shapes, convex and concave shapes, etc. ) other than geometric 

ones, and preserve the geometric identity of manifolds and varieties under stratification and 

subdivision operations, we need an effective technique of clustering strata. This point will 
be tackled in next chapter. 
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7. Thom-Boardman stratifications 
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Singularities can be discussed in terms of the Inverse Map Theorem: they occur where the theo- 
rem fails [43, p. 585]. A map f: M -* N of one n-manifold M into another n-manifold N is nonsingu- 
lar at pEM if it is locally invertible. The test for local invertibility is given explicitly by the Inverse 
Map Theorem. If xl,..., xn is a system of coordinates around pEM, and fj,... 'fn a system around 
f (p) E N, then f is locally invertible if and only if the Jacobian of the transformation is nonsingular, 
i. e. detDf (p) =A 0. But, as seen in Chapter 2, this is a rudimentary way to determine singularities. For 

example, we know from the previous chapter that the singular set of the Cartan umbrella with-handle 
x2 - zý2 =0 is the z-axis, what leads to an OrdT stratification. However, we have no way to distin- 

guish the origin from the remaining singular points in the z-axis, though we know that it has a rather 
different topological type. 

A more accurate approach to calculate singularities has been outlined in Chapter 2 and is based on 
the rank of the first differential. In fact, by the Implicit Mapping Theorem, all regular points of a map 
f: M -+ N, where dimM =m and dimN = n, that is, points at which the rank of the first differential 

is equal to min (m, n), are equivalent. On the hand, points at which the rank is less than min (m, n) are 

called singular points of the map and the number yielding the deficiency of the rank is the simplest 
invariant that distinguishes nonequivalent singular points. Such a number is called the corank of the 

singularity However, the corank criterion may fail to isolate singularities from the singular set either. 

EXAMPLE 3.15. Let us consider the Cartan umbrella x2 - zy2 = 0. It is a level set of the function 

f: R3 -+ R given by f (x, y, z) = x2 - ZY2. We know that the maximal rank of the Jacobian Jf= 

[2x - 2zy - y2] associated with the Cartan umbrella is 1, so the corank is 0 for the regular point 

set (the two umbrella sheets) or 1 for the singular point set (z-axis); hence the corank cannot increase 

further, and the origin is not distinguishable from the other singular points in the singular point set. 

In order to overcome these difficulties, we have to use a finer approach to resolve singularities. 

Basically, it consists of determining the singularities of the sucessive U derivatives of a map. That 

is, we determine the C' singularities by taking the Jacobian of the C'-I derivative. This leads to 

an increasingly refinement of the conjunctive form of C' singular set towards a union of smooth 

submanifolds. 

EXAMPLE 3.16. Let us consider again the Cartan umbrella. Intuitively, self-intersections as those 

which occur in the Cartan umbrella have a conjunctive form. The singular set of the Cartan umbrella 
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is given by the conjunction of the zero sets of the derivatives of the Jacobian, Le. 

(11) o} A ýyz = 01 A ýy = o} = ýo x0x Z}. 

The singular set is then the z-axis. The first and third terrns of (11) are smooth submanifolds in W, 

the planes {x = 01 and {y = 01. So, we need not decompose them further. But, jyz = 01 is not 
smooth because it is the union of two planes, {y = 01 and {z = 01. The Jacobian concerning this 

variety yz =0 is [z y], so its singular set is given by 

J 1 
y=° 

or, in the conjunctive form, 

tz = 0} A ty = 01 

Replacing (12) in (11), we get 

fx=OI A {Y=o} A fz=OI ={O X0X 01. 

i. e. the origin. Note that fz = 01 A fy = 0} = fx x0x 01 is the x-axis. Thus, the singularity at the 

origin can be viewed as the intersection of the z-axis (the singularity set of first order) and the x-axis 
(the singularity set of second order), i. e. f0x0x z} A fx x0x 01 = 10 x0x 0} - 

This intuitive technique was formally studied and developed by Thom and Boardman. It is now 

know as Thom-Boardman stratification. 

7.1. Transversality. Transversality is the key idea behind Thom-Boardman stratifications. 

DEFINITION 3.10. Two linear subspaces of a finite-dimensional linear space are said to be trans- 

verse if their sum' is the whole space. 

This makes us think of transversality for more general spaces in R' depends on their associated 

tangent bundles, i. e. the tangent spaces at every point of them. In previous chapter we have used a 

particular case of transversality, namely the notion of orthogonality of tangent and cotangent spaces 

in Rn. 

'Let U and V be subspaces of the vector space X. Their sum U+V is the set of all vectors x=u+v, where uEU 

and vEV. Besides, U+V is a subspace of X [34, p. 17 1 ]. 
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EXAMPLE 3.17. In R-3, two 1-dimensional subspaces are never transversal, while two non- 

parallel 2-dimensional subspaces are always transversal. Similarly, a I-climensional and a 2-dimen- 

sional subspace are transversal only if the former subspace does not lie in a 2-dimensional subspace 

parallel to the latter subspace. 

The notion of objects intersecting transversally (or in general position) is fundamental in singu- 
larity theory. It can be easily extended to smooth submanifolds of a smooth manifold. 

DEFINITION 3.11. Let M1, M2 be two submanifolds of a manifold M. They intersect transver- 

sally at x Em, nM2 when the tangent spaces TxMI, TxM2 intersect transversally in TxM; and they 

intersect transversally in M when they do so at every pointof m, nM2- 

This is illustrated in Figure 10, where some examples of non-transverse and transverse submani- 

folds in (a) R2 and (b) R3 are depicted. Note that two tangential lines in V are not transverse, whereas 

two crossing lines in R3 are transverse. The idea behind this is that we can slightly perturb two 

crossing lines in without destroying the intersection, but not two tangential lines. Similarly, two 

crossing lines in are not transverse since a slight perturbation of them destroy their intersection. 

This is very important from the floating point arithmetic because it is a priori ensured that floating 

point inaccuracies in the representation of strata do not alter their transversality. As seen later, this 

leads us to the notion of genericity or infinitesinial stability. 

M, M2 M, M2 
M, M2 

transverse non-transverse transverse 

(a) 

M, 
M2 M, 

M2 

non-transverse transverse 

(b) 

FIGURE 10 

tr Lcf" ýý, 11 
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In order to exploit the idea of transversality in geometric modelling, we have to define it in terms 
of mappings. Doing so, we are able to study transversality for images, level sets, and graphs of 
mappings, i. e. the (parametric, implicit, and explicit) representations of geometric objects as usual in 

geometric modelling. 

DEFINITION 3.12. Let X and Y be smooth manifolds and f: X -ý Y be a smooth map. Let B be 

a smooth submanifold of Y and pEX. The map is said to be transverse to B at p (denoted by f rh B 

at p), or, in other words, f intersects B transversely at p if either 

fVB, or 
(b) f (p) EB and the image of the tangent space to X at p under the derivative Df is transverse 

to the tangent space to B, that is, 

(14) Tf(p) Y= Tf (p) B+ Df (TpX). 

Of course, the map f is said to be transverse to B if it is transverse to B at every point of X, 

and we write f rfi B. The equation (14) is known as T-condition, or transversality condition, and is 

illustrated in Figure 11. 

X=R 

Y=W 

FiGURE 11. Picturing the T-condition. 

EXAMPLE 3.18. Let B be a curve in Y and X=R. Then f: X --ý Y is transverse to B iff 

the image of X does not intersect B. 

EXAMPLE 3.19. Let X=R= B) Y= Rý, and f (t) = (t, t2). Then f rh B at all nonzero x, Figure 12. 

Y=le 

X=R f 
--> -B=R 

FIGURE 12 
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Inclusion maps f: Xc RI --ý R' are possibly the best way to further develop our intuition about 
transversality. The condition for f to be transverse to a manifold Yc RI then reduces to 

(15) TyX + TyY = TyW", for all y Exny, 
and we write X rh Y, and say that X transverse to Y, [24, p. 16 1 ]. 

EXAMPLE 3.20. Let XIY be the x-axis and y-axis in R2, respectively. Clearly, X rh Y. 

EXAMPLE 3.21. Let X, Y be the x-axis and y-axis in R3, respectively. In spite of they intersect 

at the origin 0= (0,0,0), X is not transverse to Y. In fact, dimX + dim Y=2<3= dim R3, hence 

ToX + TOY cannot yield R3. 

EXAMPLE 3.22. Let X be a unit sphere S' =f (x, y) E R2 I X2 + y2 = 1} and Y be the line Yj - 
(01 y) IyE RI (respectively, the lines Y2 =f (2, y) IyE RI, Y3 =f (1 

7 y) IyE RI). In each case other 

than the latter we do have transverse intersection. 

It is apparent that the relative dimensions of X, Y and B play an important role in determining the 

transversality for a particular instance. 

THEOREm 3.9. Let X and Y be smooth manifolds, BCYa smooth submanifold. Assume that 
dimX+dimB<dimY, or, equivalently, dimX <codimY. Let f: X--+Y be smooth and suppose that 
f rh B. Thenf (x) nB=O. 

PROOF. See Golubitsky [44, p. 5 1]. 0 

THEOREm 3.10. If f: X -* Y is transverse to B then f- 1 (B) is a smooth submanifold in X 

with the same codimension in X as B has in Y, that is, codim f- 1 (B) = codim B. In particular, if 

dimX = codimB, then f-lB consists only of isolatedpoints. 

PROOF. See Golubitsky [44, p. 52]. 0 

It is clear that, for any trio X, Y, and B, the set of of transverse maps is quite large. The formali- 

sation of this fact is known as the Thom Transversality Theorem. 

THEOREm 3.11. (Thom Transversality Theorem) Let X and Y be smooth manifolds and Ba 

smooth submanifold of Jk(X, Y). Let 

(16) TB={f E COO (X, Y) I jkf rfiBl. 

Then TB is a residual subset of C' (X, Y) in the CO' topology. Moreover, if B is closed, then TB is 

open. 
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PROOF. See Golubitsky and Guillemin [44, p-54]. 
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0 

REMARK 9. C110 (X, Y) is the family of all smooth mappings of X -+ Y, i. e. COO (X 
I Y) = if : 

X --+ Y: f of class C'} 
- 

C' is the Whitney C' -topology associated to CI)O (X, Y) as explained in [1, 

pp. 180-18 11. 

REMARK 10. A subset of a topological space is residual if it is a countable intersection of open 
dense subsets of such a topological space. 

REMARK 11. Note that if B is closed, the maps transverse to B form an open everywhere dense 

set. If B is not closed, the maps transverse to B form a countable intersection of open dense sets. 
Examples: (1) Ya torus, B an "irrational line" winding round it and Xa circle; (2) Ya plane, Xa 

circle on it and B one of its tangents (without the point of contact). In either example, the embedding 
of X in Y is transverse to B but there exist maps non-transverse to B arbitrarily close to this embedding. 

We are also interested in dealing with cases where B is not a smooth manifold, but a manifold 
or a variety with singularities. In particular, we are interested in mappings which are transverse to a 
stratified set. A mapping is said to be transverse to a stratified set B if it is transverse to each stratum 
[4, p. 41] 

EXAMPLE 3.23. Let B the union of two planes intersecting along a line in R3, and the strati- 
fication B its partition into the line of intersection and four halfplanes. Transversality to B means 
transversality to each of the planes as well as transversality to the intersection line. For example, a 

curve that is transverse to B does not intersect its line of singularities. 

Of course, the Thom Transversality Theorem also extends to the case of a stratified set B. How- 

ever, in this case the theorem only guarantees that transverse maps form an everywhere dense inter- 

section of a countable number of open sets, not just an open everywhere dense set. Nevertheless, for 

the transverse maps to form an open everywhere dense set it is sufficient for the stratification to satisfy 

the following further condition [4, p. 411: every embedding transverse to a stratum of smaller dimen- 

sion is transverse to all adjacent strata of larger dimension in some neighbourhood of this stratum of 

smaller dimension. This is called here the transversal adjacency condition. 

EXAMPLE 3.24. Let B be the cone x2 = y2 + Z2 in R3 as depicted in Figure 13(a), and B its 

stratification into the point Mi =0= (0,0,0) and the two sheets M2 and M3, Figure 13(b). Clearly, 

this stratification satisfies the transversal adjacency condition. 
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M2 

M3 

M2 

(a) (b) (c) 

FIGURE 13. Stratifications of a cone. 
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EXAMPLE 3.25. Let us take again the cone in Figure 13(a), but now stratified into a straight 
line M, passing through the apex and the two sheets (now homeomorphic to R2) M2, M3. From 
transversality to the 1 -dimensional stratum Mi there does not follow transversality to M2 and M3. In 
fact, any plane tangent to M2 or M3 intersects M, transversely at the apex. But, such tangent planes are 
not obviously transverse to M2 or M3. Consequently, transversal adjacency condition is not satisfied, 
that is, transversality to M, does not imply transversality to higher dimensional strata M2 and M3. 
The transversal adjacency condition would be satisfied if M, were partitioned into two halflines (two 
1 -dimensional strata) by the apex (a O-dimensional stratum). 

EXAMPLE 3.26. Let B be the Cartan umbrella with-handle given by x2 = zy2. A rank-based 

stratification of B consists of two 2-dimensional sheets and a singular line x=y=0, the z-axis in R3. 

As for the previous example, transversality to the singular line does not imply transversality to the 

submanifold of regular points of the surface close to this line. In fact, the plane z=0 is transverse 

to the singular line but is not transverse to the surface. Therefore, similar to local topological type 

condition, the transversal adjacency condition leads to the partition of the z-axis into the negative 

z-axis, the origin, and the positive z-axis. 

If the transversal adjacency condition is satisfied for the stratification B, that is, if 

transversality to lower-dimensional strata 

4 
transversality to higher-dimensional strata, 

then transversality to the whole stratification is achieved as follows: 

2 
=y 

2Z2 
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ALGORITHM 3.1. (Thom Stratification Algorithm)[4, p. 42]) 
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(1) Strata of the lowest dimension are smooth, and thus the Thom Transversality Theorem ap- 
plies. 

(2) In a neighbourhood of strata of least dimension transversality is achievable to all strata. 
(3) Discard from the containing manifold the closure of a neighbourhood of the strata of least 

dimension and proceed to process the strata of the next smallest dimension. 

The examples above and the Thom Stratification Algorithm suggest that T-regular Thom stratifi- 
cations satisfy the topological type criterion. This was proven by Thom in [1091 indeed. Moreover, it 

can be proved that it is possible to decompose any algebraic stratification further in such a way that 
the transversal adjacency condition becomes fulfilled [4, p. 43]. 

7.2. First-order Thom-Boardman singularity sets. Our purpose now is to use Thom Transver- 

sality Theorem to show that for a dense set of smooth maps f: R' -* R' the singular set Ef can be 

partitioned into finitely many smooth manifolds on each of which f has constant rank. 
Recall that a singular point of a smooth map f: X ---ý Y is a point xGX for which the rank of 

the differential Df (x) falls bellow its possible maximal value of min (dimX, dim Y) -A rudimentary 

classification of singularities of f is provided then by distinguishing one singular point from another 
by the value taken by the corank of the differential at it. We say that f has a singularity of type D at 

x EX if Df(x) drops rank by i, or, equivalently, if rankDf(x) =min (dimX, dimY) -i. Denote by 

I'f the singularities of f of type 1'. 

DEFINITION 3.13. The first-order Thom-Boardman singularity sets are defined by 

Z'f = {x CX1Df (x) has kernel corank i, 1 

or 
X'f =fxEXIDf (x) has kernel dimension i, I 

REMARK 12. Let r= rankDf (x) and let m= dimX and n= dimY. The differences m-r and 

n-r are called the coranks of Df (x) at X and Y, respectively. 

REMARK 13. The coranks are related to the dimension i of the kernel by the formulas m-r == i, 

n-r= n-m+i. 

The first-order Thom-Boardman singularity sets are determined by observing where the rank of 

the Jacobian falls below min (dimX, dim Y). In this way we get a stratification by rank of X into 
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finitely many sets on each on each of which f has constant rank. One might reasonably expect that 
these singularity sets were submanifolds of X, but as shown below that is not necessarily the case. 

EXAMPLE 3.27. Let f: W -+ IR3 be defined by f (x, y) = (X2 
7 y2). This is called the "folded 

handkerchief' map because it is the composite of the two maps 

(X) y) h-+ (X, y 2) 

(Xly) ý_+ (X23y) 

which "fold" the plane along the x-axis and y-axis, respectively, as illustrated in Figure 14. The 

respective Jacobian is given by 

Jf(X, y) = 
2x 0' [0 

2y_ ' 

so the overall singular set is given by xy = 0, the union of the axes x=0 and y=0. It can be 

decomposed into three first-order Thom-Boardman singularity sets, namely: the origin is the only 12 

point, other points on the axes being 11 points, and the remaining points being 10 points (the regular 

points). This fits in with the fact that the origin is folded twice, other points on the axes just once, and 

the rest not at all. 

fold along 
x-axis 

fold along 
y-axis 

-> 

FIGURE 14. Folding an handkerchief using a composite of two maps. 

In Example 3.27, the first Thom-Boardman singularity sets 10f, Elf and 12f are all submani- 

folds. However, not always this is the case, as shown in the following example. 

2 EXAMPLE 3.28. Let us take the smooth map f: R -+ Rý given by f (x, y) = (x2 + y, y2). Its 

Jacobian matrix is 
1, 

and therefore the 11 points are given by the union of the two axes 
1 

0 2y] 

xy = 0, which is not then a submanifold. Note that there are no 12 points, since the rank cannot drop 

af, below 1. This happens because F=1 :A0. 

THEOREm 3.12.2: ' is a smooth submanifold of Jl (m, n) of codimension i(m -n+ 
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PROOF. See Gibson [42, p. 56-57]. 

160 

0 

7.3. Higher-order Thom-Boardman singularity sets. The Thom-Boardman theory has to do 
with the behaviour of maps restricted to their singular sets [44, p. 145]. 

DEFINITION 3.14. A map f: X -+ Y is said to be 1-generic if j1f rh X'for all i. 

Thus, if f: X -4 Y is 1 -generic, Vf is a submanifold, so the restriction f 11' is again a map 
between manifolds, and we can again ask whether it has singularities generically. Such singularities 
are denoted by Vdf, the set of points where the map f: D -+ Y drops rank j. By the theorem 3.12, 
we have codiml'f > dimX - dimY, so diml'f < dimY. Therefore, xE XQf if and only if xE Vf 

and the kernel of Df (x) intersects the tangent space to Vf in a j-dimensional subspace [44, p. 152]. 

THEOREm 3.13. Let f: X -+ Y be 1-generic. Then 

li, if 
«. � 7==> j2f (X) Ei 

PROOF. See Golubitsky [44, p. 154]. 0 

COROLLARY 3.1. Let f: X --+ Y be 1 -generic. If j2f rh ZQf, then 1', jf is a submanifold of I'f 

whose codimension is given by thefonnula 

(m-n+i)i+ i[(m-n+i)(2i-j+ 1) -2i+2j], 2 

where m= dimX and n= dim Y. 

Thus, X'Jf is a submanifold of X, being its dimension given by dim 1"if = dim. X - codimz'f - 
codimli, if, where obviously codimlif is the codimension of Vf in X and codiml', jf is the codi- 
mension of XQf in lif. Moreover, by the Transversality Theorem, we know that the condition 
j2f I'd is satisfied by a residual set of maps. These maps for which this condition is satisfied for 

all i, j are called 2-generic. 

It seems reasonable to think of this process in higher order versions of XQ. So, if f: X -+ Y is 

2-generic, Ei, j, kf is defined to be the set of points in 1', jf where the map 

zid -ý y 
drops rank by k. This definition makes sense provided that Vdf is a submanifold of X. Analogously, 

if, by chance, li, j, kf comes out to be a manifold, we can then define XQOf. Boardman proved this 

process can be continued indefinitely by the following theorem. 
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THEOREM 3.14. (Boardman Theorem) For every sequence of integers ik such that il + 
max (0, dim X- dim Y) ý! i2 ý! ... ý! ik ýý 0, one can define a fiber subbundle Jil'... 'ik of jk (X 

) y) (re- 
lative to the fib ration jk (X 

7 y) -4 Xx Y) such that i j1 f is transversal to all manifolds Xil ...... i where if 
< k, thenjil) ... 

Af iSwell-defined and 

Eil) ... likf ý: ==> jkf (X) C li�, *�i,. 

PROOF. See Boardman [14]. n 

DEFINITION 3.15. ([44, p. 157]) A Boardman map is a map f: X -ý Y whose k-jet extension 
kf is transversal to 1" jor 

all k. 

Thus, if f: X -+ Y is a Boardman map, then, by the Boardman Theorem 3.14, we can parti- 
tion X into a disjoint union of subsets consisting of the regular points X- Ul'f and the Boardman 

submanifolds 1",..., ikf with ik = 0. The map 

f: X- Ulif 
i0o 

is either an immersion or a submersion, what depends on whether dimX < dimY or dimX > dimY; 

and if ik =0 the map 
Af 

is an immersion. This partition of X which we have just described is called the Thom-Boardman 

stratification [44, p-1591. 

COROLLARY 3.2. Let f: X -+ Y be (k-1)-generic. If jkf rh Z" ...... kf and I" ...... kf is non-empty, 

then I" ...... kf is a submanifold of If whose codimension is given by the formula 

(m-n+i)p(il,. --, ik) - (il 
-i2), U(i27 ... 7 

ik) -*'*- 
(ik- 1- ik) 11(ik) 

where ik) standsfor the number of sequences (11, 
.. -, Ik) of integers which satisfy thefollow- 

ing conditions: 
(i) 11 ý! 12 

-"** ,** 
ýý lk ýý 

(ii) ii >Ijforall I <j<k and 11 >0. 

The singularity sets I" ...... k are called the Boardman submanifolds of Jk(m, n). Also, from the 

Thom Transversality Theorem we have: 

THEOREm 3.15. The set of all smooth maps f: X --ý Y for which jkf is transverse to all the 

Boardman submanifolds X" ...... k is dense in C' (X, Y). 
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We say that a smooth map f: X -+ Y is k-generic when jkf rh jil ...... k, i. e. jkf is transverse to all 
the Boardman submanifolds I" ..... k, for every integer k>1. For such a map the set 

jil I ... )ikf = (jkf)-l (Zil,..., ik) 

is also a smooth submanifold of X having the same codimension as Xil ...... k. Moreover, as Boardman 

showed in [14], we have 

THEOREm 3.16. Let f: X --ý Y be a generic map. Then 

lk+l (f ll: il) ? 
ikf). 

From the two last theorems we have the following. Any smooth map f: X -+ Y can be forced to 
be generic by an arbitrarily small perturbation. Besides, the sets Z" ..... kf are smooth manifolds and 

coincide precisely with the Thom singularity sets [42, p. 187]. Besides, a trivial consequence of the 

theorem 3.16 is that 

1102f :: ) fllll21t3f 

EXAMPLE 3.29. Which are Thom singularity sets associated with a k-generic map f: R3 -ý R3 ? 

Let us take first k=1, so by the formula above we have p(i) = i, and therefore the codimension of V 

in J1 (3,3) is (m -n+ i) i= (3 -3+ i) i=P. Hence, lif has codimension P in R3. It is then clear that 

Elf with codimension 1 is the only first-order Thom singularity set which can occur. Elf splits into 

11, of and 11,1f with codimensions 1,2 respectively, and in turn 11,1f splits into 11,1, of and 11,1, lf 

with codimensions 2 and 3, respectively. No further further splittings are possible in R3 since the kth 

order Thom singularity set has codimension k, so it does not appear for k>4. 

EXAMPLE 3.30. Let us take the dovetail map f: 93 -+W given by f(x, y, z) = (x, yZ-xz-yi), 

whose Jacobian matrix is then 

00 

010 

_Z _Z2 4Z3 _X- 2YZ 
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Taking into account that the rank only drops when afl 
= 0, it is easy to see that the possible Thom 7z 

singularities sets 1f are given by the following equations: 
lf 

ah 
I 

az 0 
I'lf 

ah 
0 and az 

ah 
=0 and az 

a2 f3 

az 2 

a2 f3 a3 f3 

aZ2 and -W = 0. 

These Thom singularities are pictured in Figure 15: Elf is the folded surface, V, lf is the fold curve, 
and 11,1, lf is the origin. 

FIGURE 15. Thom-Boardman singularities of the dovetail map. 

A Thom-Boardman stratification enjoys the property that the restriction of f to each stratum is 

a stable map, namely either a submersion or an immersion with normal crossings. Obviously, for 

geometric modelling purposes, we can ask how do the strata fit together, or, equivalently, how do the 
closures of the higher-dimensional strata intersect the lower-dimensional ones. Taking into account 
the transversality theorem, they are expected to be transverse, what it is the same as saying that they 

satisfy the local topological type condition. 

8. Mathematical design issues: Thom-Boardman stratifications 

Whitney theory and Thom-Boardman theory together with subanalytic geometry have been just 

discussed and assessed in the context of geometric modelling and design. Whitney stratifications are 
based on the idea of connectedness and containment of tangent I-planes at two points of adjacent 

strata, while Thom-Boardman stratifications are based on the idea of transversality. 
Both of them lead to topological type stratifications, and that is essential to develop a homological 

structure (cycles, boundaries and chains) on subanalytic sets in R. This is fundamental for the design 

and implementation of a combinatorial. boundary representation in R". 

However, Thom-Boardman stratifications take advantage because: 
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They have been formulated for any kind of map, and consequently we can have stratifi- 
cations for level sets and images. That is, Thom-Boardman stratifications are applicable to 
both implicit and parametric representations of point sets. Certainly, this is very encouraging 
for the geometry integration in geometric modelling. 
They are essentially computable stratifications, i. e. there is an matrix calculus algorithm to 

steadily stratify subanalytic sets. 
They provide a natural way to establish the geometric continuity conditions under contact 
equivalence, by just looking at the Boardman symbols. In fact, Boardman symbols are 
contact invariant. 

They generalise Whitney stratifications because we are able to detect higher-order singula- 
rities. 

9. Summary 

Topological stratifications have been introduced to understand the local properties of point sets. 
This study has led to the notions of topological singularities and partition of a point set into manifolds 
(i. e. point subsets without topological singularities). These topological stratifications have two major 

problems. First, they do not provide any algebraic machinery (i. e. a computational algorithm) to 

resolve singularities. Second, they cannot detect differential singularities such as cusps, inflection 

points, maxima, minima, etc. 
These problems were resolved by mathematicians by using differential stratifications. One of 

the first attempts to solve the first problem was carried out by Whitney, who introduced the Whitney 

stratifications, say C' Whitney stratifications. Unfortunately, the rank-based algebraic machinery used 

to resolve singularities usually originates OrdT stratifications, not Whitney stratifications. Despite 

the existence of an algorithm to check whether a stratification is a Whitney stratification [67], no 

algorithm has ever been proposed -at the best knowledge of the author- to construct a Whitney 

stratification for a general algebraic variety in RI, using exclusively the Whitney machinery. 

Besides, the ultimate objective of geometry integration is only possible if we are able to uniformly 

handle implicit representations (i. e. level sets such as algebraic varieties) and parametric representa- 

tions (i. e. images such as Bezier curves and surfaces). Unfortunately, Whitney stratifications only 

works for level sets (or kernels) of maps. In fact, as seen before, self-intersections are not usually 
detectable for parametric varieties. 

The importance of the Thom-Boardman stratifications stems from the fact they look adequate to 

solve these problems. In fact, they work quite well for level sets and images of maps, that is, for 
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implicit and parametric representations of point sets. This makes us to think of Thom-Boardman 

stratifications as a promising cornerstone for geometry-integrated systems, say integration of solid 
modelling, free-form modelling of curves and surfaces, and algebraic geometry systems. For exam- 
ple, we could imagine the construction of a smooth surface compound of implicit and parametric 
patches without loosing the control of C' smoothness along their borders. 

The geometry integration is reinforced by the existence of an algorithm to determine regular stra- 
tifications of implicit and parametric point sets: the Thom Stratification Algorithm. The existence of 

such an algorithm to automatically decompose an algebraic variety into a regular stratification makes 

possible in principle the graphical visualisation of dimensionally non-homogeneous varieties (e. g. 

the Cartan umbrella with-handle) through geometry machines (e. g. Mathematica). Note that current 

geometry machines are only able to plot dimensionally homogeneous subsets of varieties (e. g. Cartan 

umbrella without-handle) through their parametric counterparts. This may be not relevant for most 3D 

geometric modellers that basically use shape composition techniques, instead of shape decomposition 

techniques, to build up application-oriented geometric objects. But, it is certainly a significant step 

towards the integration of geometric modellers (e. g. ACIS modeller [64]) and algebraic geometry 

machines (e. g. Mathematica [1231). 



CHAPTER 4 

I-representation 

With all these data you should be able to draw some just inference. 

C. Doyle, The Sign of Four 

To represent n-dimensional geometric objects has been an interesting research topic for years 
in geometric modelling, computational geometry, and computer graphics. Some representations for 
3-dimensional objects were introduced mainly in 70's and 80's and then used in most comme ial 
CAD systems. Only a few representations have been extended to higher dimensional objects in 90's. 
With some exceptions (e. g. the CSG representations of the Goffannon modeller (Brunel University) 

and Svlis modeller (Bath University)), these dimension-independent representations were limited to 
simplicial and cell complexes. 

Our purpose now is to introduce a dimension-independent representation for regular stratified 
objects in R1, eventually with relatively non-compact strata. It is here called I- representation. (Z 
is a Greek character for s and denotes here the first character of both words 'stratified shape by 

subcomplexes'. ) The main idea is then to generalise previous representations. 

1. Representation requirements 

An object representation should fulfill a set of general requirements in order to be useful in prac- 
tice. Let us enumerate them: 

Separation of shape structures. The representation core should be a stratified structure. 
It should be separated from other shape structures such as geometry structure, homotopy 

structure, Hadwiger structure, or else. This enables us to extend the 1-kernel to other kinds 

of shape structures eventually required for some geometric application. This separation of 
the description of shape from stratified structure is similar to that one of conventional B- 

reps, with the difference that now we have more shape structures coupled to the stratified 

core. The stratified structure also enables the graphical interaction with geometric objects 
displayed on a computer screen. The designer is so able to pick up or select one or more 

166 
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strata to carry out a particular design operation on an object. Besides, the lack of a strati- 
fied structure in surface models causes a number of difficulties in interfacing them to rapid 
prototyping processes [104]. Without this stratified structure, verifying the completeness 
and correctness of a geometric object which has been transferred from a CAD system to 
another is difficult because cracks and improper intersections most likely occur as a conse- 
quence of the inaccuracy of floating-point computations. Nevertheless, in healing-software 
industry practice, such a stratified structure has been revealed as a necessary condition (not 
a sufficient one) to prevent such inaccuracies. 
Dimension independence. It enables the convergence of multivariate viewpoints from solid 
and geometric modelling, computational geometry, computer aided design, computer gra- 
phics, and other geometry-based activities. This makes possible to tackle in a unified man- 
ner several geometric problems, such as solid modelling of articulated objects, simplicial 
approximation of curved manifolds, motion encoding and interference detection, free con- 
figuration space computation, and graphical representation of multidimensional data [94, 
p. 56]. Besides, it facilitates the design of dimension-independent operators such as, for 

example, set-theoretic operators for both point sets and stratified sets and Euler operators, 
as detailed in the next chapter. 
Order and incidence representation. A series of computational geometry algorithms make 
usage of order information; for example, the optimal three-dimensional convex hull algo- 
rithm [95] and the divide-and-conquer approach for building the two-dimensional Voronoi 
diagram [49]. In solid modelling, order information is essential to traverse or navigate 
through an object. Examples of orderings are: (i) an ordering of vertices and edges incident 

to a face, (ii) an ordering of faces incident to an edge, (iii) an ordering of edges and faces 
incident at a vertex, etc. 
Compactness representation The boundaries and frontiers of an object and its strata must 
have a consistent representation. This is needed because objects encountered in many 

geometric-application domains have frontiers. But, there may be others with boundaries 

partially missing. For example, a crack of an object can be represented by a missing boun- 

dary. Therefore, the relative compactness of strata must be carefully represented. 
Subobject representation. Current geometry-based machines cannot cope with the represen- 
tation and manipulation of subsets of geometric objects. This is essential for applications 
that require other shape structures other than geometry. Representation of subobjects allows 
to directly couple a new kind of shape structure (e. g. Hadwiger structure or form feature 
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structure) to the stratified structure. That is, it is important and necessary for applications 
which require stratum clustering. In fact, current geometric modellers cannot cope with the 
representation and manipulation of such stratum clusters. Such clusters are usually imple- 
mented and coupled to a geometric modeller as auxiliary data structures, and are dependent 
of a particular geometric application. 

2. Representation state-of-art 

In computational geometry, the most widely used representation of a stratified structure is the 
incidence graph [32], [48], [100]. It consists of nodes for cells and arcs connecting nodes if the cor- 
responding cells are incident and differ by one in dimension. Although the incidence graph has came 
up in the context of polytopes, cell complexes and simplicial complexes, it can be easily extended 
to represent regular stratifications. Unfortunately, it does not provide any direct access to ordering 
information. Accessing ordering information requires graph searching algorithms or, alternatively, 
auxiliary data structures, e. g. linked lists [21, p. 3891. 

In the case of 2-dimensional objects, ordering representation may be associated to edges. This 
kind of representation was called edge-based representation. The first edge-based representation is 

called winged-edge representation, and was proposed by Baumgart [8] in the context of computer 
vision research. Similar edge-based representations appeared in computational geometry [26], [90], 

and solid modelling [61, [18], [31], and [741. For a detailed comparative analysis of edge-based 
representations, see the work of Weiler [116], [117], [115]. These edge-based representation schemes 
work quite well since an edge is incident at most two vertices and two faces. 

Weiler extended a variant of an edge-based representation due to Mantyld and Sulonnen [74], 

called haýf-edge representation, to inhomogeneous relatively compact objects in R3. It was coined as 

radial-edge representation. The key feature of the radial-edge representation is the cyclic ordering 

of oriented edges -they were called edge-uses- around an edge, each one representing the use of 

such an edge by a loop bordering one out of two oriented faces -they were called face-uses- of 

a face. However, radial-edge representation has no provision for correctly forming shells when a 

cut-vertex has to be traversed. This fact was noted by Gursoz and Prinz [50] and is due to the fact 

that the radial-edge representation lacks an ordering around a vertex. Gursoz and Prinz proposed an 

alternative vertex-based representation to remedy this deficiency of radial-edge representation. They 

called it cusp-based representation. These edge-based representations have been used in the design 

and implementation of commercial geometric kernels for objects of dimension up to 3. 
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In the late 80's, computational geometry researchers have tried to generalise representations 
to higher dimensions. A complete characterization of the adjacencies in a CW complex of an n- 
dimensional polyhedron was given by Lienhardt [69]. Lienhardt shows how to compute the number 
of boundaries, the Euler characteristic, orientability, and genus of 2-G-maps representing surfaces. 
Similar work, but using a different approach, was done independently by Brisson [20]. Brisson in- 
troduced a representation for a CW complex of a d-dimensional manifold (not necessarily without 
boundary), called cell-tuple representation. The Brisson's representation contains in a easily accessi- 
ble form the cellular structure, ordering information, the topological dual of the cellular structure, and 
boundaries [211. It consists of a set of cell-tuples which yields a dimension-ascending description or 
skeletal description of the cellular structure of a manifold. Each cell-tuple consists of a sequence of 
incident cells of increasing dimension, where any two consecutive cells differ in dimension by one. 
This means that a d-cell comes before a (d + 1)-cell in a cell-tuple, what denotes that such a d-cell 
is in the boundary of a (d + l)-cell. Cell-tuples were implemented as arrays of pairs of indices such 
that the first index points to the constituent cells, and the second one is used by a switch operator to 
determine a particular adjacent cell-tuple. Brisson shows that cell-tuple representation is equivalent 
to the representations used by Guibas and Stolfi [49] in dimension 2 and Dobkin and Lazlo [28] in 
dimension 3, whose implementations were called the quad-edge data structure and the facet-edge data 

structure, respectively. 
Similar efforts to extend representations of geometric objects to higher dimensions were at- 

tempted in solid and geometric modelling. Rossignac and O'Connor proposed selective geometric 

complexes, or SG complexes, as a new mathematical model in the attempt to extend the geometric 

coverage of solid and geometric modelling over curved point sets with internal structures and incom- 

plete boundaries. However, SG complexes lack mathematical rigour for two major reasons. First, 

labelling is used to define the relative compactness of cells, attaching to each of them an attribute 

with one out two values, either active or inactive. It is clear that labelling is much more a represen- 
tation issue than a mathematical issue. Second, removing now the adjective 'selective', we end up 

with geometric complexes which were vaguely defined as stratifications of real algebraic varieties. 
They wrote on the footer of p. 156 [99], "The theory of stratifications provides a geometric decom- 

position of a variety, which is more than sufficient for our purposes". It remains to know which sort 

of stratification they had in mind. For example, what about the dimensional inequality condition to 

prevent the representation of non-analytic varieties such as the topologist curve. In fact, geometric 

complexes are equivalent to a kind of stratification which satisfies the local finiteness condition but 

not the frontier condition, because it misses the local topological stability or regularity required by 
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the dimension inequality condition. Consequently, there is not a one-to-one correspondence between 
a real algebraic variety and a geometric complex. Geometric complexes cover a bigger class of va- 
rieties, including non-analytic varieties. Obviously, this a priori undermines the representation of 
geometric complexes because the incidence scheme of Thom is not ensured. They also recognised 
that a general ordering representation is absent from the representation of SG complexes [99, p. 1611. 
The ordering representation is confined to the ordering of cells bounding a cell. 

The present work introduces the subcomplex-tuple representation for regular stratifications in 
R' of subanalytic objects. It extends the cell-tuple representation of Brisson to a bigger class of 
geometric objects, say subanalytic sets, and to more general complexes than CW complexes, say 
Whitney stratifications and Thom-Boardman stratifications. It synthesises the topological structure, 
ordering information, topological dual, boundaries, and subcomplexes. The basic elements are tuples 
of subcomplexes. There is also a set of basic operators which act on the components of these tuples 
in order to easily access the information required. 

3. Regular stratifications 

In Chapter 3, we explained the mathematics behind subanalytic sets and their possible stratifi- 

cations. We came to the conclusion that regular stratifications such as Whitney stratifications and 
Thom-Boardman stratifications match the topological stability of subanalytic sets. We also explained 

why Whitney conditions do not guarantee the frontier condition for multi-component strata. There- 

fore, a regular stratification can be defined as follows: 

DEFINITION 4.1. A regular stratification X= (IX I, X) is a pair consisting of a set X= JMJ of 

connected strata and its underlying point set IX I, which satisfies the following conditions: 

(i) (Localfiniteness). Each point has a neighbourhood meeting only finitely many strata. 

(ii) (Boundary condition). The boundary of each stratum is a union of lower-dimensional strata. 
(iii) (Whitney regularity). For each pair Mi, Mj of strata and each p EminFrmj, mj is reguiar 

over Mi at 

Here we are interested in subanalytic stratifications, i. e. stratifications of subanalytic sets into 

subanalytic manifolds or strata. In fact, one of the most important properties of subanalytic sets is 

that they are stratifiable, i. e. they can be partitioned into manifolds or strata. 

3.1. Strata. Let us see some examples of connected strata in lower dimensional Euclidean spaces. 
In RO we have only one 0-manifold, the RO itself. In R1, there are only 0-manifolds (points) and 
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1-manifolds (open intervals), where R1 itself is the biggest 1-manifold. In R2 we have the previ- 
ous manifolds, 1 -manifolds with holes (e. g. the circle x2 +Y2=1 of radius 1), 2-manifolds with- 
out holes (e. g. the relative interior of a square), and 2-manifolds with holes (e. g. the relative inte- 

rior of square with a closed disc removed from it). In R3 we have the manifolds described pre- 
viously, and 3-manifolds. These 3-manifolds may possess holes and voids. For example, the in- 
terior x2 + y2 + z2 <1 of a solid sphere is a 3-manifold without any holes and voids, while the 
interior (x2 + y2 + z2 + a2 -b 2)2 < 4a 2 (X2 + ý2) of a solid torus is a 3-manifold with a hole. Re- 

moving a closed solid 3-sphere from the interior of a 3-manifold results in a 3-manifold with a 
void. Note that in R3,2-manifolds may also contain holes and voids; for example, the frontier 
(X2 + y2 +z2+ a2 - b2) 2= 4a2 (X2 + y2) of a closed solid torus in R3 is a 2-manifold with a hole 

and a void. 
Nevertheless, manifolds are not necessarily connected i. e. they may contain several components. 

In fact, by definition, a d-manifold is a topological space locally homeomorphic to R". (Locally means 
'in the neighbourhood of any point. ) For example, two points in Rn may be considered as just one 
0-manifold with two components (each component with a point); analogously, five non-intersecting 
open 3-spheres may form just one 3-manifold with five components (an open 3-sphere each), or two 
3-manifolds (the first with I<k<4 open 3-spheres and the second with 5-k 3-spheres), or just five 

3-manifolds with a 3-sphere each. 
Manifolds or strata of the 1-kernel are all connected, i. e. they all have only one component. There 

are two major reasons for that, namely: 

Boundary condition breakdown. The failure of regularity conditions of Whitney for multi- 

connected strata cause the breakdown the boundary condition. But, Middleditch et al. [86] 

showed that it is possible to define a stratification which satisfies the boundary condition 

with multi-component strata. This stratification, called strong relative topological stratifi- 

cation, is the stratification of the Djinn API [2]. 

Theoretical intractability. They are hardly tractable theoretically. The problem is that multi- 

component strata place difficulties in satisfying the boundary (assembly) condition when- 

ever the designer intends to attach or detach a new stratum to an object. This problem 

was noted by Middleditch et al. [84] in the design of Djinn API. They showed that to hold 

the boundary condition, a complex re-arrangement of stratum components is almost always 

necessary. 
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Computational intractability. It is hard to computationally manage such re-arrangements of 
strata in order to hold the boundary condition. 
Design intent overriding. Such re-arrangements of strata are often undesirable because they 
may override the designer intent. The organization of strata is compelled to change, over- 
riding the design intent. 
Traversal algorithm unreliability. Unless we guarantee the satisfaction of the boundary 

condition -using, for example, a strong relative topological stratification-, it is difficult to 
design reliable algorithms to traverse the data structure. 

The solution proposed by the I is to consider the existence of two kinds of 'building blocks': 

superstrata (or multi-component strata) and strata (or connected strata). This guarantees that the weak 
boundary condition is always satisfied, but not necessarily the boundary condition. 

3.2. (Weak) boundary condition. A stratification jMj} satisfies thefrontier condition if for any 
two (multi-component) strata M, and M2 such thatm, nFr(M2): ý 0 implies M, c Fr(M2). Taking 

the components of strata instead the strata themselves, we say that a stratification satisfies the weak 
ftontier condition if the family of the connected components of all Mi satisfies the frontier condi- 
tion [105, p. 4]. Analogously, we say that a stratification jMj} satisfies the boundary condition or 
the weak boundary condition by replacing Fr by Bd and frontier by boundary in the previous two 
definitions. The frontier condition (respectively, boundary condition) basically states that the frontier 

(respectively, boundary) of each stratum is a union of lower dimensional strata [113]. The weak fron- 

tier condition (respectively, weak boundary condition) basically says that the frontier (respectively, 

boundary) of each connected component of a stratum is a union of lower dimensional components of 

other strata. 
It is clear that the frontier condition and the weak frontier condition are equivalent to the boundary 

condition and the weak boundary condition, respectively, because all strata Mi are part of the same 

stratified set. Besides, the frontier condition (respectively, boundary condition) implies the weak 
frontier condition (respectively, weak boundary condition), but not vice-versa. For convenience, from 

now on we only refer to the boundary condition and the weak boundary condition. The boundary 

condition is important primarily because it refers to 'part of the frontier' of a stratum already in the 

data structure of a geometric kernel. It has the advantage that the 'missing part of the frontier' do 

not need to be considered and represented in the data structure. This is particularly useful for the 

representation of 'non-manifold' stratified sets whose strata may have 'incomplete' frontiers. 
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For example, the boundary and the frontier of the 2-straturn of the stratified sets B, C depicted in 
Figure I do not coincide, what means that only 'part of the frontier', here called boundary, of such a 
2-stratum is represented by the stratified set. Thus, in a general setting, it is more adequate to use the 
(weak) boundary condition than the (weak) frontier condition. 

(a) 

FIGURE 2 

(b) 

Let us consider different stratifications of the Cartan umbreHa for which the boundary condition 

and weak boundary condition may or not be satisfied: 

Neither boundary condition nor weak boundary condition are satisfied. An example of this 

case is the Cartan umbrella stratified into two sheets and the z-axis as shown in Figure 2(a). 

In fact, this stratified set does not satisfy the weak boundary condition because the boundary 

of any of its 2-dimensional components (sheets) is the union of the origin and the positive z- 

axis, which are not strata in it. The origin and the positive z-axis are just subsets of the only 
I-stratum (the z-axis) in this stratified set. Consequently, the boundary condition cannot 
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be satisfied either. The non-satisfaction of the weak boundary condition (and the boundary 
condition) makes impossible to design reliable algorithms to traverse or navigate in the 
data structure as usual for B-reps. This leads us to think of the weak boundary condition, 
and also the boundary condition, as crucial conditions in the de sign, implementation and 
manipulation of B-rep data structures. 
Both boundary condition and weak boundary condition are satisfied, but strata are not ne- 
cessarily connected. This case was first considered in the context of the development of the 
Djinn API. Let us consider again the stratification of the Cartan umbrella illustrated in Figu- 

re 2(b) now with four strata, namely: one O-stratum (the origin), two 1-strata (the negative 
z-axis and the positive z-axis), and one 2-straturn with two components (two sheets). It is 

easy to see that both boundary condition and weak boundary condition are satisfied. But, the 
fact that strata are not necessarily connected makes difficult to hold the boundary condition. 
For example, the user is not allowed to define the positive z-axis and negative z-axis as com- 
ponents of one 1 -stratum because this violates the boundary condition; the negative z-axis is 

not in the boundary of the 2-stratum with two sheets. Imposing the boundary condition on 
a stratification with multi-connected strata has as a result an intricate re-arrangement of the 

strata and their components (with possible creation of new strata from components of the 

existing strata) whenever it is necessary to insert, remove or edit strata from the model via 
a geometric design operation. This is clearly undesirable because it changes the structure 

of an object independently of a designer intent. This fact led, for example, the designers of 
the Djinn* API (an improved version of Djinn API) mathematical kernel to option for strata 

with a single component [841. 

0 Both boundary condition and weak boundary condition are satisfied, being all strata con- 

nected This is the case of most B-rep geometric kernels, including Gnomes (see [1071 for 

this implementation of SGCs) and the Djinn* API. Here, the boundary condition and the 

weak boundary condition are equivalent because all strata are connected, i. e. each stratum 

possesses a single connected component. For example, let us consider again the stratified 
Cartan umbrella in Figure 2(b. 5), now with five connected strata, namely: one O-stratum 

(the origin), two 1-strata (the negative z-axis and the positive z-axis), and two 2-strata (two 

sheets). The boundary of any stratum of this stratified set is a union of strata in it; for exam- 

ple, the boundary of either 2-stratum (a sheet) is the union of a O-stratum (the origin) and a 
I -stratum (the positive z-axis). 
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Only the weak boundary condition is satisfied, with strata not necessarily connected. This 
is the case of the 1-geometric kernel. It does not impose any restrictions on the number 
of components of any stratum, except that it must be finite. Therefore, the user/designer 
is free to define and edit (i. e. insert, remove and update components of) any stratum, no 
matter the boundary relationships between strata. The important thing here is the boundary 
relationships between components. This kind of stratification that satisfies the weak boun- 
dary condition is called weak topological stratification or, shortly, WeakT stratification. A 
WeakT stratification does not depend on the number of components defined for each stratum. 
For example, any WeakT-stratification of the Cartan umbrella in Figure 2(b) contains two 
2-dimensional components (the sheets), two I-dimensional components (the positive and 
negative z-axes) and one O-dimensional component (the origin). But, there are four possible 
WeakT stratifications of the Cartan umbrella. All them include a O-stratum with the 0- 

component (the origin); the two open Z-half-axes give rise to two 1-strata, one z-half-axis 
for each I-stratum, or, alternatively, just one I-stratum with both z-half-axes; the two sheet 
components may form one 2-stratum, or, alternatively, two 2-strata, one sheet component 
for each 2-stratum. Thus, the number of strata of a WeakT stratification is determined by 

the application or design intent. WeakT stratifications constitute an important step towards 

a universal and unified boundary representation for geometric modelling and design. 

Despite, the (weak) boundary condition is something of an embarrassment in mathematical prac- 
tice, since it is not preserved under natural operations on stratifications (, e. g. taking intersections of 

stratifications in general position) [41, p. 16-17], and therefore in the stratified Boolean operators, it 

must be hold in the design and implementation of any n-dimensional boundary representation, for the 

following reasons: 

" It enables the identification of the frontier of each stratum in a geometric modelling system. 

" To use the same algorithms of topological nagivation and interrogation, independently of 
the dimension of the strata in an geometric object. 

" To use general homological algorithms to geometric shape reasoning, independently of the 

dimension of the strata in an geometric object. 

" To facilitate computations of the physical properties of a geometric object, what requires 

that the frontier of each stratum is well-defined in the data structure. 

" To keep the algebraic consistency via Euler-Poincar6 formula if a combinatorial data struc- 

ture is being used. 
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3.3. Local finiteness. To be useful in geometric modelling, a stratification must be at least lo- 
cally finite. A stratification is said to be locallyfinite if each point of a stratum has a neighbourhood 
meeting only finitely many strata [113]. Fortunately, localfiniteness is a property satisfied by sub- 
analytic sets, i. e. they are locally described by a finite number of subsets. For example, an unbounded 
cone in R3 can be stratified into its apex and conical surface, since every point has a neighbourhood 
with just one 2-dimensional component. In contrast, if the conical surface is partitioned into an in- 
finite number of lines through the apex, every point has a neighbourhood with an infinite number of 
I-dimensional components; this stratification is not locally finite. 

4. Covering stratified objects with subcomplexes 

Let X= (IX I, X) be a stratified objector complex, Y CX a subset of strata in X, and JYJ =UfM: 
ME YJ its union. Then, Y= (IYI, Y) is called subcomplex of X= (IXI, X) if Y= (IYI, Y) is also 

a stratified object or complex. Note that a complex, and thus also a subcomplex, may be an empty 

complex, a singleton complex, or any collection of disjoint strata which satisfy the regularity axioms. 
A complex or a subcomplex is not required to be relatively compact. 

A series of consequences follow from the definition of subcomplex, namely: 

" An arbitrary intersection of subcomplexes is also a subcomplex. 

" An arbitrary union of subcomplexes is also a subcomplex. 

" Every union of k-strata in X With Xk-1 = fM: MEX, dim(M) :5k- 11 forms a subcomplex. 

" Every stratum lies in a locally finite subcomplex. 

" Every locally finite subset of a complex is contained in a locally finite subcomplex. 

Thus, alternatively, a complex X= (IX 1, X) may be defined as a point set IX I with a subcom- 

plex decomposition X. That is, a subcomplex decomposition of a complex is a covering of X into 

subcomplexes. Recall that there are basically two main ways to decompose a complex: partitions 

and coverings. So, a complex may be defined as a partition of strata, or, alternatively, as a covering 

of subcomplexes. In the latter case, the subcomplexes are not required to be disjoint. Nevertheless, 

either strata or subcomplexes must cover the whole complex, i. e. the union of the underlying point 

sets of either strata or subcomplexes is the whole point set IX 1. Also, if Y is a subset of X such that 

UI Yj : Yi E Y} = X, then Y is called a subcovering of X- 

In addition to stratum decomposition and subcomplex decomposition, a complex can be also 

defined through a filtration or skeletal decomposition X0 ... C Xk- IC Xk by taking Xk = X, where 

k= dimX, and defining Xk = UfM: MEX, dim(M) ý:, k} as the union of strata of dimension < k. Xk 
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is called the k-skeleton of X. That is, X' is homeomorphic to a space obtained by attachin g* a number 
of i-strata. to X'- 1. Doing so for any positive i, we obtain the containment sequence X0 CX1C... C 
Xk-I C Xk - X. Note that XX is homeomorphic to a locally finite disjoint union of relatively 
open i-strata, which are the i-strata of X. 

5. The subcomplex-tuple representation 

Let us then define the basic elements of the subcomplex-tuple structure. if X= (IX 1, X) is a di- 

mensional regular complex, a tuple - -, 7-d) of subcomplexes from X such that Zi 9X and 10 C 
11 C ... g Ed is called a subcomplex-tuple. This containment relation between subcomplexes defines 

a partial order. In fact, a subcomplex of dimension k cannot contain a subcomplex of dimension 

greater than k. Thus, each subcomplex is a subcomplex of another subcomplex, or the complex which 

represents the entire object. In the subcomplex-tuple representation, this is expressed by putting a sub- 

complex before another into a subcomplex-tuple. In case two subcomplexes intersect, an intersection 

subcomplex must be defined for them in order to keep the containment relation. In the subcomplex- 
tuple representation, this is expressed by putting the intersection subcomplex before its intersecting 

subcomplexes into their corresponding subcomplex tuples. 
The simplest subcomplex consists of a single stratum. Every stratum forms a subcomplex. This 

is important for two major reasons, namely: 

Integration of distinct coverings on the same object. The stratum covering is the simplest 

covering. It corresponds to the idea of a complex as a collection of strata. All the strati- 
fied models include this sort of structure. However, not all are able to support simultaneous 

coverings of subcomplexes as required for many applications in design engineering (e. g. en- 

gineering drafting, set-theoretic operators, and form feature modelling). The first integrated 

model of coverings for engineering artefacts in R3 was proposed by Gomes and Teixeira 

[46] in the context of form feature modelling. 
Integration of the boundary covering with any other covering. The boundary covering pro- 

vides an unique representation for a stratified subanalytic object in Rn. This representation 

consists of stratum boundary-tuples, each component representing the boundary of a stra- 

tum. Thus, instead of cells or even strata, we have boundaries of strata in the representation. 

It generalises the cell-tuple representation of Brisson to the representation of inhomoge- 

neous and non-compact objects in Rn. 
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The key for integrating distinct coverings (including the boundary covering) is the definition of 
intersection subcomplexes. Whenever two or more subcomplexes intersect, they are overstratified 
in order to accommodate and share a new subcomplex. This new subcomplex is called intersection 

subcomple-x. This avoids the verbosity of external clustering of strata for particular applications such 
as form-feature based modelling (e. g. [I I]) and boolean operations (e. g. [761). 

EXAMPLE 4.1. Figure 3 shows a single subcomplex covering of an object which may be used 
for distinct purposes or applications. The complex X is covered by three subcomplexes A, B, and 
C. There are two intersection subcomplexes, namely I= AnB and J= BnC. The subcomplexes A 

and B share the subcomplex 1, while B and C share the subcomplex J. The subcomplex-tuples are 
then: (I, A, X), (I, B, X), (J, B, X), and (J, C, X). In geometric modelling, A, B, and C may represent 

geometric primitives combined through either appropriate set-theoretic operators or eventually other 

operators. In the context of form feature design, the subcomplexes A, B, C may be considered as 

stratified subobjects corresponding to convex protrusions, while X is a non-convex protrusion which a 

embodies a mechanical component or part. The designer may even amalgamate geometric primitives 

with form features that intersection subcomplexes prevent eventual compatibility problems between 

applications running on the top of 1-kernel. 

C 

(I, A, X) 
(I, B, X) 
(J, B, X) 
(il cl X) 

(a) Subcomplex covering (b) Subcomplex-tuples (c) Subcomplex-tuple graph 

FIGURE 3. A subcomplex covering of a stratified object. 

EXAMPLE 4.2. Let us look now at Figure 4 for a more detailed subcomplex covering of a strati- 

fied object X. Subcomplexes are pictured as dashed lines. The entire complex consists of seven ver- 

tices, nine edges and two faces, X- IVIiV2, V3, V4, V5, V6, V7ei, e2, e3, e4, e5, e6, e7, e8, egfi, f2l. Four 

subcomplexes have been defined for X, namely: A= Ivi, e2, e3 1, B= IVI 
1 V21 V3, el, e3, e41 fl 1, C= 

f V2 i V4 7 V5 i V6, e5, e6, e7, e8, f2 1, and D=fV17 V7, e3, eg 1. Consequently, two intersection subcomplexes 
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have been generated, namely: I= AnBnD =:: jvj, e3j and J= Bn c =::: JV21- So, we have the 
following subcomplex-tuples: (I, A, X), (I, B, X), (I, D, X), (J, B, X), and (J, C, X). 

B 

X-': IV 
19 V2, V3, V4, V51 V6, V7, el, e2, e3, e4, e5, e6, e7, e8, eg, flf2 ) 

A=Ivl, e2, e3l 
B=[VlvV2, V3, ei, e3, e4, fl I 

C= V2, V4, V5, V6, e5, e6, e7, e8, f2 

D-- vi, v7, e3, eg) 
I=Ar-)Br, )D=Ivl, e3l 
J=BnC=IV2 I 

(I, A, X) 
(1, B, X) 
(I, D, X) 
(J, B, X) 
Ul CIX) 

(a) Subcomplex covering (b) Subcomplex-tuples (c) Subcomplex-tuple graph 

FIGURE 4. A subcomplex covering of another stratified object. 

The set T(X) = I(III 
... i 

Yk) : Iq EX7 7-1 9 
... 

9 Ikj is the set of all the subcomplex-tuples for 
X, and tj - Ii is called the i-component of the subcomplex-tuple t= (Y-h 

... i Xk). The resolution of 
a subcomplex-tuple t is the number of its components, written Rest. The largest resolution found in 

T(X) is called resolution of T(X), or resolution of the representation, and is denoted by Res T(X). 

A set of basic operators handle the components of subcomplex-tuples. Its cardinality depends on 
the resolution r= Res T (X). For 0<i<r-1, define the operator ><j: T (X) -ý T (X) by ><i (t) = 
U(X), where U(X) is a subset of tuples of T(X) such that tj 7ý- ui and tj = uj for i: A j, Vu E U(X). 

That is, the operator c><j (t) returns a subset of subcomplex-tuples which match t on all except the i-th 

component. It is called bow-tie operator. The bow-tie operator can be even generalised to multiple 
indices. In this case, the bow-tie operator mj,, ---'j, 

(t) returns a set of tuples matching t on all but the 
ij,..., il-th components, with 0< il < ... < il < r- 1. 

EXAMPLE 4.3. Let us take the tuple (I, A, X) in Figure 4. Its resolution is 3. Thus, there are 6 

possible bow-tie operators for (I, A, X): 

(i) mo (I, A, X) (*, A, X) 0, 

(ii) x, (I, A, X) (I, *, X) f (I, B, X), (I, D, X) 
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(iii) ý: 12 (I, A, X) = (I, A, *) = 0, 
(iv) No, 1 (1, A, X) = X) =t (I, B, X), (I, D, X), (J, B, X) 

, 
(J, C, X)}, 

(V) NO, 2 (I, A, X) = (*, A, *) = 0, 
(Vi) : 11,2 (1, A, X) = (I, *, *) =1 (1, B, X), (I, D, X) 19 

The bow-tie operator acts on tuples, no matter the nature of their components. That is, the bow- 
tie operator is a priori void of meaning. It means something when its components are instantiated 

or defined as, for example, subcomplexes. The containment relation between subcomplexes com- 
pletes the semantics associated to the bow-tie operatoL For example, in Example 4.3, the operator 
mo (I, A, X) = (*, A, X) =0 can be used to define an operator which returns the subcomplexes of 
A other than L The operator mo, 1 (1, A, X) = (*, *, X) =I (I, B, X), (1, D, X), (J, B, X), (J, C, X) I re- 
turns the subcomplexes of X which do not include the subcomplexes (1, A). Finally, the operator 
mi (I, A, X) = (I, *, X) =I (I, B, X), (I, D, X) I can be used to determine the subcomplexes of X which 
are the supercomplexes of I, but A. 

Note that the bow-tie operator only returns subcomplex-tuples of T(X). It does not return 

subcomplex-subtuples. To obtain such subtuples of subcomplexes we need more two operators, called 
left bow-tie and right bow-tie. 

DEFINITION 4.2. Let Y= (I Y 1, Y, Y) be a subcomplex of the complex X= (IX 1, X, X). Let T (Y) 
9 

S(Y) be the set of all subcomplex-tuples of Y and the set of subcomplex-subtuples of Y, respectively. 
The left bow-tie of Y in relation to s is the filter D< :Xx S(X) --+ S(X) defined by 

cK (Y, s) = L(Y) 

which returns the set L(Y) g S(Y) of subcomplex-subtuples of Y having 

(i) s as a subtuple of every IE L(Y). 

(ii) I (YO)YI) 
... 7Yk-2) 

for some yE T(Y), with Resy = k. (Hence, I does not include the 

higher-order component of y. ) 

Analogously, right bow-tie of Y in relation to s is the filter x: Xx S(X) -+ S(X) defined by 

x (Y, s) = R(Y) 

which returns a set R(Y) 9 S(X) of subcomplex-subtuples of X having 

(i) s as a subtuple of every rE R(Y). 
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r=(xk, xk+,,..., xi-i)forsomex=(yo7y,,. 
*., Yk-I, Xk, Xk+l, ... i Xi- 1) ET (X), with Res x= 

i, and y= (yolyl) 
**- iYk-1) E T(Y), with Resy = k. (Hence, r does not include the subcom- 

plex Y and its subcomplexes. ) 

Roughly speaking, the left bow-tie operator gives us the subcomplexes of a given subcomplex Y, 

with the restriction that they must include a (possibly empty) collection of other subcomplexes, i. e. 
the subcomplexes of the tuple s. The right bow-tie operator uses the same restriction, but it returns 
supercomplexes of Y instead. 

EXAMPLE 4.4. In Figure 4, the operator x (1,0) =f (AX), (B, X), (D, X)j returns all the subtu- 

ples of supercomplexes of I, while the operator x (X, (B)) (1, B), (J, B) I returns all the subtuples 

of subcomplexes of X containing the singular subtuple (B). 

The key of the subcomplex-tuple representation is the existence of intersection subcomplexes. 
They prevent duplications of stratum clusters as two or more subcomplexes intersect. These dupli- 

cations are usual in extensions or external data structures associated to current geometric modellers. 
Intersection subcomplexes make unnecessary the existence of such supplementary data structures. 
Intersection subcomplexes are also important to reinforce the containment relation between subcom- 

plexes. In a way, this containment relation portrays a global incidence scheme for subcomplexes. 
For example, in Figure 4, we can say that the subcomplexes A, B, D are 'incident to' the intersection 

subcomplex I somehow. This global incidence relationship is a consequence of two facts: 

e The existence of intersection subcomplexes in the representation. 

e The transitivity property of the containment relation. ACB and BCC implies ACC. 

The containment relation C is transitive for subcomplexes. The question now is to know whether 

this containment relation guarantees an incidence scheme in the sense of Thom [110, p. 245]. The 

answer is affirmative, since the subcomplexes in the incidence relation are well-defined. Recall that 

the Thom incidence scheme, associated to a regular stratum complex, states that every d-dimensional 

stratum M is associated with a finite number of strata of dimension less than d, say MI, . 'M, the 

strata of the frontier of M. Equivalently, Mi is said to be incident to M, or MI <M (0 <i< m). 
For regular stratified sets, this incidence scheme is ensured by the dimensional inequality condition 

underlying the frontier condition. The incidence relation < is obviously transitive for strata: Mi < Mj 

and Mj < Mk implies Mi < Mk. Note that < is a strict partial order of X. A sequence MO, .. -, Mk 

of strata satisfying Mo < ... < Mk is called a ascending chain of strata. Brisson used this incidence 

scheme for cells of a 'subdivided' manifold [21]. Its representation, called cell-tuple structure, was 
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defined as a set of cell-tuples representing ascending chains of cells and an operator switchk to get all 
the information related to cellular structure, ordering, dual, and boundaries. 

Our idea is to integrate the cell-tuple structure into the subcomplex-tuple structure, in order to get 
similar information through such a single operator. To successfully integrate these two representations 
we have to show that the subcomplex-tuple structure generalises the cell-tuple structure. In fact, this 
generalisation occurs at various levels: 

A stratum is a generalisation of a cell. Unlike a cell, a stratum may possess holes. 
A regular stratified set is a generalisation of a 'subdivided' manifold because it need not be 
homogeneous in dimension, neither relatively compact. That is, a regular stratified object 
may have dangling strata and its strata are not necessarily relatively compact. They may 

present incomplete boundaries. 

Redefinition of stratum-tuples as subcomplex-tuples. Stratum-tuples are generalisations of 
Brisson cell-taples. They cannot work as subcomplex-tuples provided that a stratum in 

a regular stratification is never a subset of another stratum. The strata are disjoint. The 

disjointedness of strata prevent the satisfaction of the containment relation as usual in the 

subcomplex-tuple structure. To avoid the existence of two sorts of tuples for strata and sub- 

complexes, respectively, we have to redefine stratum-tuples as subcomplex-tuples. A rede- 
fined stratum-tuple is a subcomplex-tuple, in which each component refers to the boundary 

(or boundary subcomplex) of a stratum, instead the stratum itself. Note that the boundary 

condition of regular stratified objects implies a transitive relation on boundary or incident 

strata: b (Mi) Cb (Mj) and h (Mj) Cb (Mk) implies that b (Mi) Cb (Mk), where 6 denotes 

the stratified boundary of some stratum. This partial order implies the incident relation < 

on strata: Mi < Mj and Mj < Mk implies Mi < Mk, respectively. A sequence MO,... ' Mk of 

strata that satisfies MO < ... < Mk is here called a skeletal chain of strata, and is the stratum 

counterpart for an ascending chain of cells. Thus, the incidence scheme is subsumed un- 

der the containment schema of boundaries of strata. This is possible because: (i) there is a 

one-to-one correspondence between a stratum and its boundary (and, consequently, its fron- 

tier); (ii) the dimensional inequality condition underlying the boundary (frontier) condition 

ensures an incidence scheme for regular stratified objects. 
Finally, the bow-tie operator o< generalises the operator switch of Brisson. It corTesponds to 

the single-index bow-tie operator. 
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In short, the subcomplex-tuple structure for regular stratified objects X is the pair (T(X), Q), 
where T (X) is the set of all subcomplex-tuples (including the boundary subcomplex-tuples for strata) 
for X, and Q=x, >4 1 is the set of operators consisting of the the multi-index bow-tie 
the left bow-tie x, and right bow-tie x. It generalises the cell-tuple structure as explained above. 

6. Representation of incidence and order 

Incidence and order are important requirements of any representation of geometric objects. They 
facilitate the computation of the physical properties of objects via integration, as required in many 
engineering applications (e. g. finite element analysis and modelling). For example, the circular or- 
der of strata in the boundary of face enables the integration of such a face in order to compute its 

area. In other words, ordering is the combinatorial counterpart for orientation. Note that only ori- 
entable objects are integrable. In addition, incidence and order are also essential to develop and write 
homology-based algorithms, which are used in the stepwise constructionof objects and ongoing shape 
analysis and recognition. 

In geometric modelling, the ordering information is explicitly represented by (topologically) ori- 
ented strata. These oriented strata have several names in the literature, namely: half-cells (Mlintylli 

and Sulonnen representation), cell-uses (Weiler representation), co-cells (ACIS modeller), etc. This 

explicit representation of order through oriented strata has as a result a highly verbose representa- 
tion. For example, in the radial-edge representation of Weiler, one thousand faces incident to an edge 

requires two thousands of oriented faces, two thousand of loops for such oriented faces, and two 

thousand of oriented edges for just one edge. 
Oriented representations are manageable in up to R3, but hardly they can be generalised to higher 

dimensions. Even so, this generalisation was done by Lienhardt [69]. In contrast, we have chosen 

to an orientable, but not oriented, representation of regular stratified objects. These orientable re- 

presentations are sometimes called 'implicit' representations, while the oriented are called 'explicit' 

representations of 'subdivided' or stratified objects. Orientable representations have the advantage 

that they also support the representation of non-oriented stratified objects such as, for example, the 

stratified M6bius band. 

The cell-tuple structure, proposed by Brisson [21], is a general representation of incidence and 

order, but only for stratified manifolds in Rn. The cell-tuple structure is not valid for stratified 'non- 

manifold' objects. As Yamaguchi and Kimura noted in [125], despite the mathematical background 

that makes the cell-tuple structure of Brisson -as well as the n-G-maps of Lienhardt- rigorous, 
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its power to represent shapes is very limited. For example, they cannot handle strata with holes or 
dangling strata. 

To be more accurate, we should say that if strata, instead cells, are used, we still get a valid repre- 
sentation for arbitrary regular stratified objects. Let us call it stratum-tuple structure. Unfortunately, 
only incidence is completely represented. The representation of order becomes uncertain or fuzzy. 
A fuzzy representation of order contradicts the Lemma 2 in [21, p-3991. It states that given a tuple 
tE T(X), there is a unique uE T(X) such that ui 7ý ti and uj = tj for all i =A j. Thus, the result of 
applying the single-index switch operator is always only one cell-tuple. Equivalently, an object has 
a deterministic order representation if and only if the single-index bow-tie operator always retrieves 
a single tuple. The uniqueness of the single-index bow-tie operator is ensured since the following 
conditions are satisfied: 

Local manifoldness of an object. The stratified object is locally a manifold, i. e. the neigh- 
bourhood of any of its points has the topological type of a manifold-with-boundary or a 
manifold-without boundary. 

" Local manifoldness of each stratum boundary. The boundary of any stratum is also locally 

a manifold. Thus, a stratum is not allowed to have a boundary with dangling strata. 

" Non-intersecting boundaries of an object. The boundary of a stratified object must not 
intersect with itself. This is a consequence of the local manifoldness condition. 

6.1. Order representation in stratified manifolds-without-boundary. Let us see some exam- 

ples of stratified manifolds-without-boundary. 

EXAMPLE 4.5. (Stratified tetrahedron). Let us take the stratified tetrahedron depicted in Figu- 

re 5. It is a 'subdivided' manifold in the sense of Brisson. It satisfies his Lemma 2. So, we have a 

one-to-one correspondence between the cell-tuples of Brisson and our boundary subcomplex-tuples. 
They are equivalent for any stratified manifold. For example, switcho(vi, e1ji) = (V2, ejjj) and, 

analogously, mo (ý (vi), ý (el), b (fl)) = (b (V2)) b (el), b (fl)) 
- It is easy to see that Brisson Lemma 

is valid for every cell-tuple, and corresponding boundary subcomplex-tuple, of a tetrahedron. 

EXAMPLE 4.6. (Stratified cylinder). The stratified cylinder pictured in Figure 6(a) is also a 

subdivided' manifold. Thus, the Brisson Lemma holds. The understratified cylinder (b) is not a 'sub- 

divided' manifold because the cylindrical face is not a cell. Likewise, the understratified cylinder (c) 

is not a 'subdivided' manifold because both edges are not cells. This suggests that the Brisson Lemma 

may not be satisfied. In fact, f3 in (b) possesses a hole through it as a result of its amalgamation with 
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el, e4, and f4. This causes the annihilation of eight tuples containing el and e4, namely: (vj, ejj3), 
(vj, ej, f4), (V2, ej, h), (V2, ej, f4), and (V3, e4, h), (V3, e4ih), (v4, e47f3)9 (V4, e444). Besides, the 

merge of f3 with f4 causes the replacement of f4 by f3 in the remaining tuples containing f4. The cir- 

cled f3 in Figure 6(b) denote such replacements or mergings. This makes the family of stratum-tuples 

of (b) a subfamily of straturn-tuples of (a). It is easy to see that the Brisson Lemma holds seeing that 

the outcome of the single-index bow-tie operator for any tuple is a single tuple. Let us pay attention 

now to the cylinder (c) which result from cylinder (b) after merging its four vertices with vertices 

they bound. The amalgamation of e2, V3, and e5 implies the deletion of all tuples including V3 and 

the replacement of e5 by e2 in its container tuples. Analogously, the amalgamation of e3, V4, and e6 

causes the deletion of all tuples containing V4 and the replacement of e5 by e2 in its container tuples. 

The resulting family of tuples consists of four tuples: (vi 
le21h), 

(vi, e27h), (V2, e3, h), (V2, e3J1)- 

Then, the amalgamation of v, with e2 and V2 with e3 determines the elimination of vi and V2 from the 

previous four tuples, as illustrated in Figure 6(c). Again, the resulting family of tuples of cylinder (c) 

is a subfamily of that one of cylinder (b), with the vertex components being now null. Consequently, 

the incidence of their higher strata must hold. It is easy to see that Brisson Lemma does not hold, but 

the cardinality of the single-index bowtie operator is at most a tuple singleton, or, equivalently, either 

a tuple singleton or an empty set. 

This suggests that Brisson Lemma can be generalised. to regular stratified manifold objects as 

follows. 
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LEMMA 4.1. Let X be a regular stratified manifold object. Let us assume that the boundary of 

each k-stratum has at most two (k - I) -strata incident at each one of its (k - 2)strata. Given a tuple 

tE T(X), there is at maximum another tuple uE T(X) such that ui J:: ti and uj = tj for any i :Aj. 

V2 e3 V4 

V2 e3 V4 
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PROOF. The set of tuples of a regular stratified manifold object is always a subset of its corres- 
ponding regular cellular manifold object. 0 

That is, applying the bowtie operator to any tuple, the result is always the empty set or a tuple 
singleton. Note that Lemma 4.1 does not require that the boundary of a k-stratum is manifold. But, if 
a k-stratum has a non-manifold boundary, no more than two (k - I)-strata are allowed to be incident 

at each (k - 2)-stratum of its boundary. Thus, Lemma 4.1 admits some strata with self-intersecting 
boundaries. 

(a) 
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k(vj), k(e2), L(f3) 
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EXAMPLE 4.7. In Figure 7(a), f3 has a non-manifold boundary consisting of two circles con- 

nected by an edge el at v, and V2, respectively. The cylinder (a) does not satisfy Brisson Lemma, but 

Lemma 4.1 is satisfied because there are only two edges incident at vi and V2- In fact, we have: 

(i) ><o (h (v I ), h (e2) 
,b 

(f2)) ` 0, what means that the it is not possible to go to next vertex 
bounding e2 simply because it does not exist. 

(ii) xI (ý (vi), 6 (e2), L Y2)) ýý 0, i. e. there is no more edges bounding f2 at vi. 
Gii) ý42 (L(vl), L(e2)i W2)) =: f (L(vl), L(e2), k(f3))I, i. e. there is a face f3 adjacent to f2, both 

of them incident to e2- 

Thus, the Brisson Lemma does not hold, but the cardinality of the tuple family that is returned by the 

single-index bow-tie operator is at most 1. A counterexample is the cylinder in Figure 7(b). In fact, 

the vertex v, has three incident edges bounding f3. Despite the manifoldness of the cylinder, the set 

of tuples does not provide enough order information to determine the ordering of edges about vi. This 

V2 e3 V2 e3 
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order is said to be fuzzy. In fact, the result of the operator >i (h (vi ), b (el ), h (f3)) is a set of three 
tuples, namely: (h (vi ), b (e4), h (f3)), (h (vi ), h (e5), h (f3)), and (h (vi ), b (e6) 

,6 
(f3)) 

- 

The order fuzziness will be resolved in Section 6.3. The algorithm to check whether or not a 
family of tuples define a n-manifold-without-boundary is as follows: 

ALGORITHm 4.1. (Manifold-without-boundary) 

INPUT: 

(a) a family T of tuples 
PRE-CONDITIONS: 

(a) Lemma 4.1 

Begin 

(1) foreach tET do 

if O'In t-0 and tn- I is not a (n - I) -cycle 
then [Missing adjacent n-stratum. ] 

return FALSE 

else if card(O'In t> 1) 

then [Non-manifoldness condition. ] 

return FALSE 

(2) return TRUE. 

End 

Alternatively, we could emulate the homology-based algorithm given in [3, pp. 173-175], though 

with a few changes to conform with Lemma 4.1, to determine whether or not a given family of tuples 
form a 2-cycle. 

6.2. Order representation in stratified manifolds-with-boundary. The Brisson Lemma still 
holds for 'subdivided' manifolds-with-boundary. As noted in [21, p. 416], in generalising the cell- 

tuple structure to the manifolds-with-boundary, the problem is that switchk(t) is not defined if tk-1 

belongs to the stratified boundary of a manifold-with-boundary, The result of switchk W will be to go 
9 nowhere'. The immediate consequence is that the topological dual cannot be determined. Brisson 

proposed two equivalent approaches to overcome this problem. Intuitively, the solution consists of 
imagining the space 'outside' of the k-dimensional manifold-with-boundary as simply another k-cell 

that encloses it up on itself. 
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EXAMPLE 4.8. (Stratified tetrahedral manifold-with-boundary) Let us take again the tetrahedron 
in Figure 5, but now with the face f2 removed. The resulting object is a tetrahedral stratified manifold- 
with-boundary. The cell-tuple representation requires that family of cell-tuples remain the same, but 
f2 is labelled as 'absent', 'closing up', 'off', or anything else. In our representation, the number of 
tuples decreases because all tuples containing f2 are removed. Thus, the outcome of the x operator 
will be either a tuple singleton for any stratum in the interior of a stratified manifold or the empty set 
for any stratum in the boundary of a stratified manifold. 

ALGORITHm 4.2. (Manifold-with-boundary) 

INPUT: 

(a) a family T of tuples 
PRE-CONDITIONS: 

(a) Lemma 4.1 

Begin 

(1) foreach tcT do 

if res(t) :ýn+1 or card(ýýn t) >1 
then [Non-manifoldness condition. ] 

return FALSE 

else if Nn t=0 and tn-, is not a (n - I)-cycle 

then [Missing adjacent n-straturn. ] 

return FALSE 

(2) return TRUE. 

End 

The identification of the boundary of an n-dimensional manifold-with-boundary is essential when 

an n-stratum is attached to it, transforming it into a manifold-without-boundary. 

6.3. Order representation in stratified non-manifold objects. As seen above, the order be- 

comes fuzzy if the boundary of any stratum is not locally a manifold or, more generally, if Lemma 4.1 

is not satisfied. The order also becomes fuzzy for dimensionally inhomogeneous stratified objects, 

usually called 'non-manifold' objects in geometric modelling. 

COUNTEREXAMPLE 4.1. (Stratified non-manifold tetrahedral object) Let us remove the face f2 

from the tetrahedron-with-boundary pictured in Figure 5. The result is a tetrahedron-with-boundary 

consisting of three faces fl, f3, and f4, as depicted in Figure 8(a). Deleting now f, from it, we 
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obtain a non-manifold tetrahedral object as drawn in Figure 8(b). The non-manifoldness is obvious 

because the resolution is not the same for all tuples. An immediate consequence is that the order 

round v, and v4 is no longer completely represented. For example, three tuples are definable for vi: 

(h(vj), h(ej), h(f3)), (b(vj), b(e2)ih(f3)), and (b(vj), b(e3)). Thus, it is allowed to go from el 

to e2 through c><0 (ý (v 1), 6 (e 1), 6 (f3)) = (6 (v I ), 6 (e2) 
,6 

(M). However, the bow-tie operator does 

not enable to path the way from e3 to e2 or somewhere else since mo (L (vj), 6 (e3)) = 0. However, 

from the homology point of view, there is an order for all those edges incident at vi. Each one 

belongs two different I-cycles. This is an unsolved problem in geometric modelling, since only I- 

cycles bounding faces are usually represented. The situation gets worse as long as f3 is removed 

from the non-manifold tetrahedral object. An incomplete representation of order at vi gives place 
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to a fuzzy representation of order. In fact, deleting f3 gives rise to the appearance of three tuples of 
resol ution 2 at vI (b (v I ), b (e I )), (b (v I ), b (e2)), (b (v I ), b (e3)), and therefore xI (b (v (e I 
I (b (v I ), b (e2) 

i (h (v I ), h (e3)) I- 

Two possible solutions to overcome this problem come to mind immediately. The first consists 
of extending Brisson technique to two 'dummy' or missing faces by labelling them as 'off', though 
keeping their tuples in the representation. This allows one to traverse the 1 -cycles which bounded fi 

and f2 as before. Alternatively, the explicit representation of cycles in the tuples solve the problem. 
The latter solution has been adopted by the I-representation, and as explained further below it is also 

essential to cope with relatively non-compact strata and objects. Note that Brisson technique fails for 

objects containing strata with non-manifold boundaries, i. e. boundaries with spikes or dangling strata 

as usual in geometric modelling. 
6.3.1. Ordering ofpetals about a vertex. Let us start with a face with non-manifold boundary. 

COUNTEREXAMPLE 4.2. Figure 9 depicts a stratified manifold object and its boundary subcom- 

plex-tuples. Its face f, has a non-manifold boundary, and therefore it does not satisfy the Lemma 4.1. 

Looking at its subcomplex-tuples, we easily see that they do not provide a deterministic way to 

traverse the boundary of fl. This is because the object has four edges bounding f, which are incident 

at the same vertex V3 - So, there are four tuples whose first component is the vertex V3. The bifurcation 

of the boundary of fi at V3 makes difficult the selection of the next edge to go in the boundary of fl. 

The ordering about V3 is said to be fuzzy. 
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The existence of subcomplexes in the representation allows to solve this problem easily For 

example, in Figure 9, b(e4) can be considered as an intersection subcomplex of two subcomplexes, 
b (e2)Uh(e4) and h(e4)Ub(e6), so that to go from e2 to e6, the edge e4must be visited first. So, for 

each pair of consecutive fuzzy tuples, two additional tuples are defined. For example, 
UV3), b (e2), 
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incident at v, in R2 

rI- ý-ý 

ý(vj) k(el), Wl) 
ý(vj): k(eAWI) 
k(vj), k(e3), L(fl) 
k(vj), k(e4), Wl) 

FIGURE II 

Fuzzy ordering of edges 
incideq at V4 in R2 

6(V4), k(e3), 6(f) ) 
6(V4), 6(e4), 6vl ) 

6(V4), 6(eq), 6(fj) 
6(V4), k(ejO), k(fj) 
6(V4), k(e 

II), 
k(f, ) 

6(V4), 6(el2), 6(fl) 

Order-resolvent tuples 
about V4 

b(V4)pb(e3). b(e, 
0), 

b(fj) 
ý(VAk(ejo)ý(ej )ý(fj) 
b(V4), k(e 

II )ý (eq), k(f, ) 
b(V4), b(eq), b(elAk(fl) 

k(VAb(e12)ý(e4), b(fl) 

b(V4), k(e4) b(eiAkfl) 
k(VAb(e5ý1(eq), k(fl) 
6(V4), k(eg) 

, 
b(e, 

1) , 
k(fl) 

b(V4)pb(e: )ý(e3jo)ý(fj) 

k(V4), k(e 
0)ý(e ), k(fl) 

Order-resolvent tuples 
about v, 

ý(vj), ý(ej), ý(eAkfl) 
k(vj), ý(eAý(eAWI) 
ý(vj), k(eAk(eAWI) 
6(vj), k(e2), 6(ej), k(fj) 
6(vj), 6(ej),: 

](e2), 
k(fI) 

L(vj), 6(e2),: 
](e3), 

6(fI) 
6(vj), 6(e3), 6(e4), 6(fI) 
ý(vj), k(e4), 6(ej), k(fj) 
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h (fl)) containing e2 bounding f, at V3 is given two supplementary tuples, (h (V3) 
7b 

(e2) 
,ý 

(e2) 

b(e4)ih(fj)) and (b(V3)ih(e4)ib(e4)Ub(e2)iL(fl)), one for each orientation about V3. Likewise, 
(L (V3) 

iL 
(e4) 

,L 
(M) is associated with two additional tuples, (L (V3) 

7L 
(e4) 

,k 
(e4) Uk (e6) 

,h 
(M) 
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and (h (VA h (q), b (e6) Ub (e4) (A )), with the first tuple defining the opposite orientation to the 

second. 
For simplicity, an order-resolvent subcomplex-tuple I (V3) (q) (e6) Ub (e4) 

,b (M) is de- 

noted as I (V3)) b (q), b (e4) 
,ý 

(A)) from now on. Such order-resolvent tuples have one more com- 

ponent concerning the edge which comes after another. Thus, in Figure 9, the four tuples defining 

a fuzzy ordering of edges incident at V3 give rise to 2(n - 1) = 2(4 - 1) =6 order-resolvent tuples 

which define a circular order of edges bounding f, at V3, namely: 
(b(v3)jb(e2), b(e4), b(fl))q 

(b (V3) 
7h 

(e4) 
,b 

(e6) 
,b 

(fl)), 

(b (V3)) 6 (e6), 6 (e3), b (fl )), 

Ov) I (V3) b (e3) ,b 
(e6) 

,b (fl)), 

(V) (b (V3) 6 (e6), b (e4) ,b Ul 

(Vi) I (V3) 6 (e4) ,b 
(e2) ,b (fl)) - 

Now, the boundary of f, of the object depicted in Figure 9 can be traversed without fuzzi- 

ness. For example, x, (b(VAh(e2)ib(fI)) " (b(V3), b(e4)7b(fI))q with the intermediate tuple 

I (V3) 
7b 

(e2) 
,6 

(e4), b (M) to be determined before returning (b (V3) 
ih 

(e4) 
,L 

(fi)). Thus, access- 

ing next edge bounding a given face is done as before, using the bow-tie operator >iI, but internally 

it has to be re-designed as follows: 

ALGORITHm 4.3. (Bow-tie operator ml) 

INPUT: 

(a) a tuple t (to) (h) 

Begin 

(1) if card(>11 t) =1 then 

(i) Determine the tuple u= (to) (4) 76 
(0 (ti)) such that 6 (t*) (h) 

(2) if card(><1 t) >1 then 

Begin 

(i) Determine the tuple u= (to) (h) 
,6 

(4) 02) (ti)) such that 

dim(tl)=dim(t*). 

(ii) Remove tj from u. 

End 

(3) Return u. 

End 
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Note that h(e4) (respectively, k(eO of the object pictured in Figure 9 is the second component 
of two order-resolvent tuples, each one of which concerns an orientation of fl. This is so because 

e4 (respectively, e6) is a spike edge bounding fl. Thus, applying x, UV3), h(e4)ýWO) yields two 

tuples: its predecessor (e. g. (h(V3)ib(e2)ib(f1))) and sucessor (e. g. (b(V3), b(e4)7h(f1))). For ob- 

vious reasons, the predecessor is eliminated in the traversal of the frontier of fl. Thus, the uniqueness 

of the bowtie operator holds. In case that the traversal of the frontier of f, starts with a spike edge, 

we have onlY to pick up either the predecessor or the sucessor. This determines an orientation in the 
traversal of the frontier of fl. This is not described in the Algorithm 4.3 for simplicity. 

Other examples are provided in Figure 10 and Figure 11. In these cases, we have some 1 -cycles 
bounding fl, instead a single 1 -cycle for cells. Note that it does not matter whether a bounding edge 
is part of I-cycle or a spike in the circular order about a vertex. However, the object depicted in 

Figure II has four fuzzy tuples for edges incident at vI, but 2n =- 2x4=8 order-resolvent tuples, i. e. 

more two tuples than expected. This is because el is first and the last edge in the ordering about vI. 
Let us now generalise the circular ordering of edges bounding a face at a vertex tojust the circular 

ordering of edges about a vertex. This generalisation only makes sense in R2. In fact, it is not possible 

to order dangling edges incident at a vertex in R3 or higher dimensional spaces, unless they belong to 

a1 -cycle or they bound a face. Then, it is possible to have a partial ordering of edges about a vertex 
for such a1 -cycle or face, respectively. But, this is what the bow-tie operator above does. 

II 

(a) Circular order about v in R2 (b) Fuzzy circular order about v in R' 

FIGURE 12 

Before proceeding, let us illustrate this by considering five edges incident at a vertex in W, 

Figure 12(b). Assume that f, has not been attached to the object yet. There is no circular order round 

such a vertex, because intuitively it is not possible to say which edge comes first. This implies that 

attaching a face fl to edges el and e2 incident at v, is an easy task in Rý because there is not order. 

However, after attaching fl to el, vi, e2, the edges el and e2 are said to have a partial ordering at v, 
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for fl, Figure 12(b). That is, f, imposes an ordering to el and e2. But, in R2, we cannot do the same 
without including the intermediate edge e4 in the boundary of the attached face, Figure 12(a). 

Therefore, to generalise the ordering of edges round a vertex, we have to consider the case of a 
bouquet of 1 -dimensional petals (edges) and 2-dimensional petals (with faces) incident at a vertex in 
R2. The ordering technique is similar to that one used for faces, in which the target face is R2 itself. 
Basically, it consists of ordering edges independently of possible faces in R. 

V5 

Fuzzy ordering 
of edges incident 

at vi in R2 

ý(VAý(eO 6(vj), ý(ej) 
k(V5), ý(eO ý(vj), 6(e5) 

6(V6), 6(el) k(v, ), 6(e7) 
6(V4), ý(eO 6(vl), k(e6) 
6VA (e8), 6(fl ) k(vl), (eAWI) 
k(V8), 6(e4), k(fl ) 6(vi), ý(e8), 6(fl) 
6(V8), k(eA6(fl ) k(v ), 6(e4), ý(fl ) 
k(V2), 6(eAk(fl) 6(vj), 6(eq), Lff2) 
k(VAL(eAk(fl) 

Order-resolvent tuples of 
edges about vi in R2 

ý(vj), k(ej), k(eO 
k(vj), k(eAý(e7) 
k(vj), k(e7), [](e2) 
ý(vj), k(e4), k(eO 
ý(vj), ý(eO, [ýeq) 

Order-resolvent tuples of 
edges about v, forf, 

ý(vi), k(eAL(e8), L](fl) 
ý(vj), L(e8), k(eAk(fl) 
L(v 

1 
), k(e4), L(e8), k(fj ) 

ý(v 
I), 

L(e8), k(eAk(ft ) 

FIGURE 13 

COUNTEREXAMPLE 4.3. Figure 13 pictures a 2-dimensional object in R2. It is clear that there is 

a circular order of edges about vj. The partial orderings of edges bounding f, and f2 are easily given 
by the previous bow-tie operator. But, the dangling edges at v, are ftizzy-ordered. The existence of 
dangling edges incident at v, makes difficult to determine a total ordering of edges round it. There are 
two reasons for that. First, the bow-tie operator does not allow to snap between tuples with distinct 

resolutions. Therefore, it is not allowed to go from an edge of an I-dimensional petal to another 

edge of an 2-dimensional petal through a vertex. For example, it is not possible to go from e6 to 

e4 by using the bow-tie operator >ij (b (vi), b (e6)) because their corresponding tuples have different 

resolutions. Second, the result of the single-index bow-tie operator is not unique. For example, 
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><i (b (vi), 6 (e6)) =ý (b (vi), b (el)), (b (vi), 6 (e5)), (b (vi), b (e7)) I. The ordering round vi is then 
fuzzy. It is not possible to order edges round a vertex in R2 without additional fuzzy-resolvent tuples 
for dangling edges, namely: 

(b(vj), b(e4), b(e6)), 

(b (vi), 6 (e6), b (eq)), 

(b (vi), b (eq), b (el)), 

(iv) (6 (V 1) 76 
(e I) ,b 

(e5)), 

(V) (b (vi), h (e5), 6 (e7)) 

(vi) (b (vi), 6 (e7) 
,b 

(e2)) 

The general idea of our order algorithm about a vertex is then to snap from an edge to the next 

one, no matter to which petal each edge belongs. Algorithm 4.3 has then to be modified to conform 

with our generalisation. 

ALGORITHm 4.4. (Generalised bow-tie operator ml) 

INPUT: 

(a) the set of tuples T(X) of an object X 

(b) a tuple t= (b (to), b (ti ), ---, 
h (ti)) 

(c) the ambient space A 

PRE-CONDITIONS: 

(a) tE T(X) or tE S(X) 

Begin 

(1) if Res(t) =1 then [A vertex tuple] Return 0. 

(2) if Res(t) =2 then 

if dim A=2 then 

(i) Determine R(t) [The set of fuzzy-resolvent tuples for edges in A. ] 

(ii) Determine S(t) (The set of fuzzy-resolvent subtuples for edges bounding 

faces in A. ) 

(iii) S(t) = S(t) U R(t) - 
(iv) Determine s= (to) t 17 S2) c S(t) such that t= (to, ti) 

(v) Returns. 

else [dim A> 3] Return 0 

(3) if Res(t) ý! 3 then [an edge bounding a face] Former operator applies. 

End 
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ý(VD, k(ej) 
60,6e3) 

k(V4), k(e2) 

k(-), k(eAk(fD 

k(-), L(eO, Wl) 

ý(VAý(ej) 
L(VAL(e3) 

L(VA6(eD 

k(-), L(e4), 6(f2) 

6(-), k(e5), L(fj) 

k(v ), ý(e 
1) ý(vj), ý(eD 

k(vj), k(e3) 
k(v, ), k(f, ) 
6v 

, 
lkh) 

vi), ý(el), L(PI) 

vi), k(e, ), ýW2) 

vj), k(e3), k(P3) 

VI), Wl)lk(p4) 

VI IWA ý(PO 

(Pi, -) (p2qP5) 

(P3lP4) 

(P41-) 

(P51p4) 

Spherical ordering of petals 
about v, in R3 

ý(vj), k(ej) ý(vj), L(e ), ý(Pj) (P I, k(vj), k(e2) k(vi), ý(eAk(P2) (P2, P5) 
(vj), k(e3) k(vj), k(eAk(P3) W34) 

k(VOIWI) k(VAWI), k(P4) (P49-) 
k(VI)Pk(f2) k(VI), W2)q k(P5) 

- 
(P59P4) 

ý(v 
1), 

L(e6) k( v, ), k(e6), L(P6) (P61 -) 
(P69P4) 

FIGURE 14 

Attaching strata in higher dimensional spaces seems to be easier because there are less ordering 
constraints to satisfy. However, the variety of shapes is larger in higher-dimensional spaces, what 
means that more new ordering configurations are possible. Figure 14 shows two objects with distinct 

ordering configurations at a vertex. Gursoz and Prinz [50] and Yamaguchi and Kimura [125] extended 
the Weiler technique to define a circular ordering about a vertex, using explicitly oriented cells in R3. 

However, their technique is only applicable to vertices whose ordering configurations are similar to 
that one depicted in Figure 14(a). Their methods only work if there is a clear hierarchy of petals round 
a vertex. A petal cannot be a subpetal at the same vertex, as it is the case of the petal P6 containing e6 

at vI, Figure 14(b). This petal at v, is also a subpetal of the petal P4 containing the face fl. Thus, there 
is not any circular order of edges incident at a vertex in R3. What exists is a partial circular ordering 
for each petal, and a spherical ordering about a vertex based on the containment relationship of petals. 
This containment relationship is derived from the partition of a small neighbourhood of a vertex into 

sectors or regions. For example, in Figure 14(a) the face f, subdivides a small neighbourhood of vi 

into two sectors. 
6.3.2. Ordering of sheets of a book about an edge. Let us consider now the circular ordering 

round an edge. In Rý, no non-manifold situation is possible because two faces at maximum are 

197 

Spherical ordering of petals 
about v, in R3 

adjacent to an edge. In W, several faces may be incident to an edge, what is a non-manifold situation. 
It is the counterpart of edges incident at a vertex in R1. 

V3 

V3 
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V3 
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(V4), L(e5), k 
2 

(VAk(eAW3 

(vi) 
k(eAWI 

(v, ): k(e5), L(f2 

(VAL(eAkfl 

(v5ki(eq), 

(VO, ý(eA 
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FIGURE 15 

Fuzy circular order of 
edges boundingf5 at V2 

ý(v-, ), ý(eA6(M, k(S 
I) 

6(v, ), k(e6), k(f5), k(s 
1) 
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Circular order of 
faces about e, 

6(vj), ý(ej), Aý(A), 6(Sl) 

ý(vj), ý(ej), : j(f4), 
k(f2), k(sj) 

6(v, ), 6(e ALUAL(A), L(S 
I) 

k(vj), k(ej), ý(f4), k(fj), ý(sj) 
6(V2), 6(e 

I 
)9[1(fl )qk(A), k(S 

I) 
k(V2), k(e 

I) 
6(f4)iW2)v6(SI) 

ý(VAL(e 1): 
6(f2), k(f4), L(s 

I) 

EXAMPLE 4.9. Let us look at the object depicted Figure 15. The boundary of the interior solid 
(or 3-stratum) s, is not manifold along the edge el. There are three faces fl, f4, f2 incident to el. The 

circular order of these faces about el is then fuzzy. To eliminate the uncertainty in selecting the next 
face through el, eight tuples of resolution 5 have to be generated. They are: 

(vi), L (el), L (f4), L (fl), L (si)), and 
(i) (L(V2), L(el), L(fl), L(f4), L(si)), 

W (L(V2), L(el), L(f4), L(f2), L(si)), 

W (b (V2) 
ib (e I ), b (f2), b (f4), b (s I )), 

(i) (h(V2)ib(el), b(f4), b(fi), b(si))- 

These tuples order faces about e I. For example, 

ý42 (L(vj), L(ej), L(fj), L(sj)) = (L(vj), L(ej), L(fj), L(f4), L(sj)) 

= (k(vj), 6(ej), L(f4), L(sj)), 

i. e. f4 comes after fl - 
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Thus, the Algorithm 4.3 can be generalised to higher dimensions as follows: 

ALGORITHm 4.5. (Bow-tie operator Mk) 

INPUT: 

(a) a tuple t (to) (tl) (ti)) 

Begin 

(1) if card(>-i t) =1 then 

(i) Determine the tuple u (to) (tl) (tk- 1) (4) (tk+l) (ti)) such 
that h (t*) =A b (tk). 

(2) if card(>i 0>1 then 

Begin 

(i) Determine the tuple u (to) (tl) 
7 

(tk- 1) (tk) (4) (tk+l) (ti)) 

such that dim(tk)=dim(t*). 

(ii) Remove tk from u. 
End 

(3) Return u. 
End 

A possible problem with these order resolvent tuples is that the local order is repeated for each 

vertex bounding the stratum for which the order is defined. For example, in Example 4.9, each bound- 

ing vertex of el gives rise to four uncertainty resolvent tuples. That is, the resolution of uncertainty 
is repeated for each vertex bounding a fuzzy-order stratum. Similar to edges incident at a vertex in 

R2, there is an order for faces incident to an edge in R3. Therefore, if f4 were outside of the solid sl, 

we would still have an order of three faces incident to el. In this case, the fuzzy circular orderings of 

edges bounding f3 and f5 at v, and V2, respectively, would disappear, but the fuzzy circular ordering of 
faces incident to el would remain. However, the partial ordering of faces bounding sl along el would 
be deterministic. In order to keep the total ordering of faces incident to e I, we have only to replace the 

component s, by s,, in the tuples (ý (vi), b (el), b (f4), b (si)) and (b (v2), b (el), b (f4), b (si)), with s. 
denoting the exterior anti-solid. 

7. Representation of relatively non-compact objects 

In this chapter, we have only considered relatively compact stratified objects, i. e. objects whose 

strata have no missing frontier stratum. By a relatively non-compact stratified object we then mean an 
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object with at least one stratum with at leat one missing frontier stratum. The problem with relatively 
non-compact strata is that they introduce ambiguity in the representation. 

COUNTEREXAMPLE 4.4. Figure 16 depicts two 1-dimensional objects, X and Y. Both objects 

contain a vertex v, and an edge el. They are then represented by the same tuple (h (vi), b (el)). Thus, 

they are indistinguishable in the I-representation. This is a problem because they are quite different. 
X is a relatively non-compact object, while Y is relatively compact. Besides, Y has a hole through it, 

what means that they are homotopy inequivalent. 

COUNTEREXAMPLE 4.5. Figure 17 shows two 2-dimensional objects, X and Y. X is a 2- 

manifold-with-froutier, while Y is a 2-manifold-without-frontier. Both objects contain a vertex v1 

and a face fl. Their I-representation consists of a single tuple (6 (vl), -, h (fl)). They are then 

representation-indistinguishable. But, their compactness and homotopy properties are distinct. X is 

a relatively non-compact object, while Y is relatively compact. Also, X has no holes at all, while Y 

possesses a 2-hole. 

ei rý VI *-- b(vi), b(ei) 
ei 

(D 
(a) 

mz- 

(a) 

FIGURE 16 

Y 
b(vi), b(-), b(fi) 

(b) 

FIGURE 17 

To overcome this representation ambiguity problem, we have embedded compactness, homology 

and homotopy information into the subcomplex-tuples of the I-representation. (All this information 

is also crucial for the Euler operators to be introduced and described in Chapter 5. ) Recall that the 

components of the tuples describing relatively compact objects are related by the containment of the 

boundaries of strata in a skeletal chain. All this works quite well for relatively compact strata because 

their boundaries coincide with their frontiers. But, for relatively non-compact strata, boundaries do 



7. REPRESENTATION OF RELATIVELY NON-COMPACT OBJECTS 201 

not necessarily coincide with frontiers. This is the case of the object X depicted in Figure 16(a). 
The boundary of the edge el consists of a single vertex vI, but its frontier includes el and a second 
'missing' vertex. 

In order to cope with relatively non-compact objects, the I-representation has been re-designed 
as follows: 

Shape-descriptors tuples. The shape of each stratum is described by a family of shape- 
descriptor tuples. This shape information is the core of shape reasoning algorithms. The 
Euler operators introduced in Chapter 5 make usage of this information extensively. It in- 

cludes the cycles, boundary components, holes, and frontier components of each stratum. 

0 Augmented boundary subcomple-x-tuples. The essential shape-descriptor component of each 

stratum is incorporated into each boundary subcomplex-tuple. This eliminates the ambiguity 

of I-representation of relatively non-compact objects and strata. That is, I-representation 

becomes a complete representation for objects, being possible to distinguish two objects by 

comparing their families of tuples. 

Vi 
i2 

ei V3 

V2 i3 

VI 

e 
V3 

j4 

V2 

Subcomplex-tuples 

P(vj), Ej(ej), P(ej), 
IV-, ), V-1) 
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-i-i 
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Ei(el), -, -, - P(ei) 

-, p , (f-. ), P(f-, ) 
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I (e2), -, -, 
P(e2) 
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FIGURE 18 
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7.1. Shape-descriptors tuples of strata. By definition, a shape-descriptor of a stratum is a 
tuple of five shape components which satisfies the containment relationship that features the I- 
representation. These five shape components are: 

Cycle. Every cycle in a stratum gives rise to a distinct shape descriptor, It comes before any 
other shape component. It the most essential shape in a stratum. It denotes the existence 
of a hole of the same dimension. A k-cycle is the homological counterpart for a k-hole. A 
cycle is denoted by the symbol r-. 

" Boundary component. Every boundary component of a stratum is the second component 
of a shape-descriptor tuple. It comes in second place because it may contain a cycle. The 

symbol h is used to denote a boundary component of a stratum, and its boundary as well. 
" Hole. The third component denotes the existence of a hole in a stratum. It is necessary 

because a k-hole in relatively non-compact stratum does not correspond to a k-cycle. A k- 

cycle is always manifold, but a k-hole can be degenerated, i. e. it can be non-manifold in a 

stratum. Moreover, a hole is not necessarily relatively-compact. For example, the 'missing' 

vertex ^ in the relatively non-compact face fj in Figure 18(b) defines a relatively non- V4 

compact 1 -hole through f ... 1, while V3 defines a relatively compact 1-hole through the same 
face. But, none of these two holes corresponds to a 1-cycle bounding fij. A stratified hole 

is denoted by the symbol 6. 

0 Frontier component. A frontier component contains a hole if it is an inner frontier compo- 

nent of a stratum. Otherwise, the hole shape-component is null. Note that its corresponding 
boundary component may be also null, seeing that it may not include any boundary stratum. 
A frontier component and its frontier are denoted by the symbol P. 

Frontier. A stratified frontier of a stratum has at least one frontier component. 

EXAMPLE 4.10. Figure 18(a) shows an object with a single relatively non-compact face f"'1. Its 

stratified frontier P (fc,,,, ) has only one component PI It has no holes, but its frontier compo- 
f 1) The first bound component nent PI (f, I) has two boundary components, 61 (f ... )and b2( ". ary 

consists Of Vli, V2, and el, while the second boundary component b2VOOO includes only V3- 
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So, we have: 

P (fool) 
= 

(foo 
1) 

Pl(f e2 e3 001) = Ll VOOO U L2VOOO U 

LI (fool) = IVI 
7 V2, el 1, 

L2(fOOO = JV31- 

Note that the 'missing' edges 02,03 are not part of the I-representation. They are used here only to 
better differentiate the boundary from the frontier of f,, ý,. The two shape-descriptors tuples for f. 1 
are shown alongside the object (a). There is also one shape descriptor for el. It includes a O-cycle 
C1 (el) because its frontier consists of two vertices. Note there is no shape-descriptors tuples for 

vertices for obvious reasons. 

EXAMPLE 4.11. In Figure 18(b), the stratified frontier P(f,.,, ) has three components, Pl(f,. I), 
P2(fool), and P3(fO,, l). The first component Pl(f,,, j) concerns the outerfrontier componentof f,,,, I. 
It has no holes and cycles, but includes a boundary component LI (fool) : -- JVI 

i V2, el }. The corres- 
ponding shape-descriptor tuple is then (-, bI-, P1 (foq), P (f,, I)). The second frontier com- 
ponent P2(f,, I) has no cycles, one boundary component boo2VOOO fV31 which coincides with a 
relatively compact 1-hole hl(f,, ol); hence, the shape tuple (_, ý2(f l)761(fOOl)7P2(fOOl)7P(fOOl))' 

EXAMPLE 4.12. In Figure 18(c), the stratified frontier P(f,,, ) consists of three frontier compo- 

nents, PI (f,,,, 1) and P2 V00 1). The outer frontier component PI (fio 1) forms a1 -cycle c: I (f,,,, 1) = 
jvj, el 1, which coincides with its only one boundary component 61 (f,,, ) 1). This shape description is 

synthesised by the shape-descriptortuple (C I (f. 1), b II (f,, 
0j), 

P(f,, 
0j)). The inner fron- 

tier component P2V001) concerns a relatively non-compact 1-hole 6.1 (f,, 01). It contains a relatively 

non-compact boundary component hoo2VOOO = {V2, e2, eoo3}9 which in turn comprises a 1-cycle C: 2 
(f. 

ol) = fv2, e2}- SO, (1: 2 V th ap 001)7h2(fc, 01)76ool(fOOI)IP2(fOOI)7P(f 
))is e corresponding sh e- 

descriptor tuple. In addition to the shape-descriptors for foo I, we have a single shape-descriptor for 

each edge. The frontier of edge el has only one frontier component PI (el) =bI (el) = Iv, }. The edge 

e2 also has only one frontier component PI (e2) =b, (e2) = jv2 1. But, the relatively non-compact 

edge eoo3 has two frontier components. The first is given by FI (e(., 3) =hI (e,, 
03) = IV2}, While the 

second is P2(e,,,: 
)3) = concerns the 'missing' vertex ^. So, the shape-descriptor tuples for edges are: V3 

b, (el), -, 
P, (el), P (el)), (e2) PI (e2) 

,P 
(e2)), and (_ 

7-7-7 
P2 (eoo3) 

7P 
(el)). 
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7.2. Frontier subcomplex-tuples. The generalisation of the I-representation to relatively non- 
compact objects and strata makes mandatory the replacement of boundary subcomplex-tuples by 

frontier subcomplex-tuples. This happens because the boundary of a stratum is no longer necessarily 
identical to its frontier. Thus, the symbol 6 gives place to the symbol P in the boundary subcomplex- 
tuples. It is clear that this generalisation does not imply any loss of incidence and order information. 

Only a few small changes have to be carried out in the bow-tie operator because the subcomplex 

tuples have been almost doubled in size in order to include shape information. With the exception 

of the first component, each one of the remaining components concerning edges, faces, solids, .. -, 
n-strata is preceded by the first component of its corresponding shape-descriptor which contains it. 

EXAMPLE 4.13. Let us look again at the object shown in Figure 18(c). Let us construct their 

frontier subcomplex tuples without any shape information. They are as follows: 

(F(Vj), -, P(ej)1-7F(fool))l 

(P (V2) 
i -, 

p (e2) 
i-IP 

(foo 1)) , and 
(P(V2), -, P(eoo3)) -i P (fool))- 

Looking at the shape descriptor of el, we see that the first shape component that includes v, is ýI (el). 

Likewise, we obtain the first shape component E, (f,,., ) that contains el for f ... 1. After introdu- 

cingthis shape information into F(vi), -, P(ej), -, P(f, ýj)), wegetthetuple F(vj), hj(ej), P(ej), E: l 

(f,,,, 1), P (f, 1)). Analogously, the first shape components of e2 and f, ) 1 which include v2 and e2 are 

bl(e2) and E: 2 (fcq), respectively.. So, the second frontier subcomplex-tuple must be updated to 

P(v2), bj(e2)7P(e2)7C: 2 (f.,, j), P(f.. j)). At last, the third frontier subcomplex-tuple gives to the 

augmented frontier subcomplex-tuple P(V2)ibl(ec>o3))P(eoo3); boo2(fc0l)lp(f,,. I)). Note that the 

first shape component of fo,, I that contains eo,, 3 is not the first component of its shape descriptor, but 

the second one. This is so because eco3 does not belong to the 1-cycle 1: 2 (fool)- It belongs to the 

relatively non-compact boundary component b,, 2(fOOI)' which includes E: 2 Vool)- 

Summary 

One of the main problems in geometric modelling is the non-existence of general data structures 

capable of representing objects independently of dimension, manifoldness, and compactness. Another 

problem of current geometric data structures is their known inability to cope with separate manipula- 

tion of subobjects as required by CAD systems, and feature-based modellers in particular. The result 

is a poor abstraction and design of geometric modellers and proliferation of ad hoc solutions, say 

external data structures, for new problems, with consequent difficulties in software maintenance. 
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As shown in Chapter 1, the theory of homotopy allows us to get a better understanding of the 
shape structure of objects in higher dimensions and the relation between objects and their boundaries. 
As seen above, this is absolutely crucial for the design of a n-dimensional boundary representation as 
the I-representation. It represents regular stratified subanalytic objects in R. 

I-representation has been designed to cope with: 

" The representation of regular stratified objects as a generalisation of regular cellular objects. 
" The representation of subcomplexes as required for a variety of geometry-based applica- 

tions. 

" The representation of incidence and order even under non-manifold conditions. 
" The representation of incidence and order even under non-compactness conditions. 
" The representation of shape. 

" The representation of incidence and order independently of the implementation i. e. the data 

structure. 

There are several possible implementations or data structures for the I-representation. It can 
be implemented as a set of 2-dimensional arrays whose rows represent subcomplex-tuples, a graph 
data structure, or even as a database which is particularly adequate for Web-based applications and 

multiresolution geometric systems. List-based languages as Prolog and Lisp are particularly adequate 

to implement the I-representation, with the advantage that effective and natural shape reasoning 
techniques can be easily developed and implemented. A language as LogTalk [89] which combines 

the advantages of Prolog, object-oriented languages, and event-driven programming provides another 

excellent support to quickly implement the I-representation. 

In short, I-representation can be characterised as follows: 

lo Geometric objects can be represented in higher dimensions. 

" Geometric objects are regular stratified subanalytic sets. That is, both geometry and struc- 

ture are general enough to cover practically all engineering artefacts. The geometry (suban- 

alytic geometry) comes alongside structure (regular stratification). 

" The building blocks are strata, not just topological cells. 

" The structure of any geometric object extends the two-layered structure 'complex-cell' of 

conventional boundary representations to a three-layered structure 'complex-subcomplex- 

manifold'. 
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Every complex is primarily viewed as a collection of subcomplexes. These subcomplexes 
may be used as stratified subobjects for geometric features (Hadwiger shapes), boolean 

primitives, or even user-defined subobjects. 
The geometric objects are not oriented, neither geometrically nor topologically. There is 

no need to having topologically oriented strata in the data structure. These oriented mani- 
folds (e. g. 'halfedges', 'coedges', 'face-use', etc. ) are usual in boundary representation data 

structures, but are extremely verbose. Besides, oriented strata are not easily extendable to 

higher dimensions. I-representation makes use of orientable strata, not oriented strata. All 

the incidence and order information is retrieved by a bow-tie operator. 
Any geometric object satisfies a general Euler-Poincar6 formula valid for regular stratifica- 

tions in R' (see Chapter 5). 



CHAPTER 5 

Shape operators 

Where there is no imagination there is no horror 

C. Doyle, A Study in Scarlet 

This chapter deals with the third module of the X-geometric kernel architecture: shape operators. 
Euler operators will be subject to considerable discussion, but other shape operators will be described. 

Euler operators here proposed enjoy the dimension-independence property. They are appropriate 
to stepwise construct regular stratifications of subanalytic varieties, semi-varieties, and, in general, 
stratified subanalytic sets in Rn. 

Compactness- independence is their second property. They do not impose restrictions on the 

relative compactness a regular stratified object and their strata. This means that the stratified frontier 

of a stratum is not required to be in its ambient object. Unbounded lines, semi-surfaces, and other 
relatively non-compact point sets are admissible strata. 

The third fundamental property enjoyed by these Euler operators is that they are design-order 
independent, i. e. they do not constrain the construction order of an object. This means that any 
stratum can be attached to or detached from an object at any time. This facilitates and significantly 

shortens the re-designing tasks of engineering artefacts which do not meet manufacture requirements. 
Altogether, these properties provide the user with a significant freedom in interactive geometric 

applications and programming, namely computer graphics, computer aided design and computational 

geometry. 

1. Euler formulm review 

Let us remember that this work follows the guidelines of the geometric kernel architecture here 

proposed: shape (geometry), structure (stratification), and operators (e. g. Euler operators). 
The focus now is on the operators, namely Euler operators. A set of Euler operators have been 

designed for regular stratified subanalytic objects, after finding out an appropriate Euler formula. An 

important aspect in boundary representation modellers is precisely whether an algebraic invariant 

(i. e. Euler formula) is used or not. If so, a boundary representation is said to be combinatorial, and 
207 
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non-combinatorial otherwise. The combinatorial method relies on an elementary process of counting 
through invariants, the Euler characteristic in particular. This reliance on counting is what distin- 
guishes a representation from another, as it distinguishes algebraic topology from other branches of 
topology and geometry [57, p-5]. In this sense, SGC-rep [991 and Djinn-rep [2] cannot be consi- 
dered as combinatorial boundary representations. On the contrary, boundary representations used by 
Parasolid, ACIS, 1-kernel are combinatorial. Combinatorial representations enable not only the cons- 
truction of complicated objects from simple ones but also the inference of properties (e. g. incidence, 
order, shape, etc. ) of the complicated from the simple. 

The operators we use (e. g. bowtie operator, Euler operators, etc. ) depend on the conceptual 
structure (say stratification) of an object. The converse is not true, that is, the (data) structure should 
be independent of the operators. For example, an object with strata other than relatively open strata 
does not satisfy any Euler formula used in geometric modelling. Therefore, Euler operators could not 
be used in this case. On the other hand, the structure of an object depends on the sort of geometry 
or geometric coverage of the objects. Recall that regular stratifications are admissible for subanalytic 
sets, but it is difficult to believe that non-analytic sets admit any sort of regular stratification. 

In respect to the topological coverage of a combinatorial boundary representation, it depends on 
its associated Euler formula. (Obviously, this dependence does not exist for non-combinatorial boun- 
dary representations. ) As shown below, the Euler formula may restrict the topological coverage of a 
boundary representation. In fact, the higher topological coverage, the lesser topological consistency 

problems for boundary representations. 

1.1. Baumgart's Euler formula. The boundary representation of Baumgart [7], usually called 

winged edge representation, used Euler operators satisfying the Euler equation 

(17) v-e+f =2B-2H 

where v, e, f, B and H stand for the number of vertices, edges, faces, bodies and handles in bodies 

(or 'visual' holes through bodies). In spite of the geometric coverage of the Baumgart's objects is 

restricted to planar faceted objects, the formula (17) covers a larger class of geometric objects, for 

example, spheres and tori. Baumgart used faceted approximations for these curved objects, but his 

formula enables an exact geometric representation for some curved objects. 

EXAMPLE 5.1. A sphere S2 = IX = (x, y, z) E R3 :IIxII=I} has a stratification generated by the 

Euler operator m]Bf e (make body, face and vertex). The result is a new body B, ,: Zý S2 consisting of a 
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new face f, and a new vertex vj, Figure 1 (a). The vertex v, is redundant, but without it the topological 
validity of the formula (17) is broken. 

FIGURE 1. Construction of a 2-sphere 92 
,a cylinder C and a torus T2. 

EXAMPLE 5.2. In Figure 1(c), the stratification of a torus T2 includes one vertex vj, two edges el 

and e2, and one face fl. The construction of any conventional B-rep object starts with the creation of a 
topological 2-sphere stratified into a face f, and a vertex v1, as in Figure 1 (a). It seems unlikely that we 

can topologically deform a 2-sphere into a torus. However, this is consistent with formula (17) since 

we apply a topological operation called connected sum (#) of two 2-spheres (they can be the same). 
First, we topologically deform such a sphere S2 into a cylinder C with an edge connecting two vertices, 

each bounding a circular edge of C, Figure l(b). (Note that S2 and C are topologically equivalent or 
homeomorphic. ) Finally, we apply the Euler operator corresponding to the connected sum of the 

cylinder with itself, which is described as follows: (i) first, we proceed to a tearing operation of 

cutting or eliminating the top and bottom circular faces f2, f3 of the cylinder; (ii) and then sew up 

their boundaries together by identifying or merging the vertices vj, v2 and the circular edges e2, e3 - 
Thus, this Euler operator eliminates two faces (f2 and f3) (tearing operation), one edge (e3) and one 
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vertex (v2) (sewing up or merging operation), and generates one handle in the object. Altogether, 
these operations are carried by the Euler operator k (2 f) evmH (kill two faces, edge, vertex, make 
handle). The resulting torus consists of the face fl, the edges el and e2, and the vertex vI, but only 
the stratum f, is not redundant. 

1.2. Braid-Hillyard-Stroud's Euler formula. The formula (17) can be extended in order to 
include 2-strata with holes, i. e. not necessarily simply-connected faces. (Note that the face fj of T2 
in Figure 1(c) does not contain any through hole. ) This extended formula is given by 

(18) v-e+(f -fh) =2B-2H 

where the new variable fh denotes the number of holes through faces. In geometric modelling lite- 
rature, these holes through faces are called "rings". In homotopy theory, they are called I-holes, and 
1 -cycles in homology theory. This formula was introduced by CAD Group of Cambridge University 
in the construction of Build modeller, in the late 70s. This formula reduces slightly the redundancy of 
a boundary representation because faces need -not to be homeomorphic to R2, they may contain holes - 

EXAMPLE 5.3. The formula (18) enables the construction of a torus T2 from a cylinder without 
the intermediate edge e1 pictured in Figure 1 (c). In fact, according to formula (18), the face f, is now 
allowed to have a hole. The resulting cylinder has one edge less, but now f, possesses one through 
hole such that the formula (18) holds. The connected sum of this cylinder with itself -as described 
in previous example- implies the identification of two vertices (vj and V2) and two edges (e2 ande3),, 
i. e. the elimination of one vertex and one edge. The result is a torus with one face, one edge, and one 

vertex. In summary, one redundant edge el has been thrown away, but two redundant strata, vj and 
e2, still remain. 

Note that the elimination of redundant strata only aims to generalise the Euler invariant. It can be 

seen as a de-subdivision algorithm that undoes the subdivision algorithm that supports the mathema- 
fical proof of the Euler formula. However, redundant strata may be useful to have a more complete 

shape description of a stratum or manifold. For example, a torus T2 has the homotopy type of S1xS 17 

and, consequently, it is easier for shape recognition algorithms to identify its, shape if two edges ---one 
for each S I- incident at a vertex bound a toroidal surface. 

1.3. General Euler formula for closed surfaces. As suggested by the examples above, the 
topological redundancy of boundary representations (B-reps) can be eliminated by increasing the 

topological coverage of the manifolds or strata which constitute a closed surface. The immediate 
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consequence is the generalisation of the Euler formula, although it has not been accomplished by 
geometric modelling researchers. An important step towards such a general Euler formula for closed 
surfaces in R3 is the following formula: 

v- (e- eh)+ (f 
-fh+fv) ý--2B-2H 

where the new variables eh, f, stand for the number of holes through edges (or 1 -holes, or closed edges 
without boundary, or spheres S 1) and voids in faces (or 2-holes, or closed faces without boundary, or 
spheres S2) , respectively. A circle is an example of an edge with a hole, and a sphere S2 is an example 
of a face with a void. Therefore, the topological coverage is higher for this formula than for Euler 
formulas used in conventional B-reps. This allows us to construct less-stratified closed surfaces, and 
thus with a lower number of Euler operators. 

EXAMPLE 5.4. A sphere S2 without any 'dummy' vertex can be now generated by using the 

operator mB ff, (make body and face with a 2-hole), Figure 2(a). The topological deformation of 
a sphere S2 into a cylinder is made by using twice the operator meehf fh (make edge with a 1- 

hole andface with a 1-hole), Figure 2(b). Once again, no 'dummy' vertices or edges are required. 
At last, the topological deformation of such a cylinder into a torus is made by the connected sum 
C#C=k (2 f) eehMH (kill two faces and edge with 1 -hole, make handle), which deletes fj and f2, 

identifies el with e2, and creates an handle (the torus itself), Figure 2(c). 

The Euler formula (19) disables the generation of a torus with a single 2-stratum. or face. A 

redundant edge is still required to comply with (19). This suggests a new generalisation of the Euler 

formula. However, no other sorts of strata are admissible for closed surfaces than those of (19). This 

means that the left-side of (19) has reached the maximum generalisation for surfaces. But, the right- 

side of (19) can be re-interpreted by taking components (C) with possibly 1-holes (Ch) or 2-holes (Q), 

instead of components (C) and handles (H. ). 

THEOREm 5.1. Every relatively compact surface S satisfies the Eulerfonnula 

(20) v- (e-eh) + (f -fh+fv): -- C-ch+ cc 

where C, Ch, Cc standfor the number of components of S, 1-holes through components, and 2-holes 

or cavities (voids) in components, respectively. 

PROOF. The global Euler characteristic X(S) =C- Ch +Q is well-known in mathematics; it is 

the alternate sum of the first three Betti numbers, namely 00 - C, 01 = Ch, and P2 = Q. They describe 
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mBff, (B,, f,, f 
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FIGURE 2. Construction of a 2-torus T2 using the Euler formula v- (e - eh) + (f 

fh + f, ) = 2B - 2H for closed surfaces. 
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the global topological properties (or hornotopic properties) of a topological space, in particular a 
surface, no matter their constituents or strata. Surfaces cannot possess holes other than through holes 
(or I-holes) and voids (2-holes), even in R, n>3. 

On the other hand, the local Euler characteristic X(S) =v- (e - eh) + (f 
-A+M is basically 

the alternate sum of the number of strata of increasing dimension in S. Because edges only admit 
holes (or I -holes) through them, and faces admit holes through them and holes (or 2-holes) which are 

voids, we conclude that the formula (20) is the most general Euler formula for surfaces. 
The alternate sums can be explained by subdivision techniques simi-lar to those illustrated in [66, 

Section 5.41. In fact, let X, Y be two stratified sets such that Y is obtained from X after applying 

the Euler operator me kf h (make edge, kill hole through face), which inserts a new edge between two 

frontier components (e. g. between the outer frontier component and a defining-hole inner frontier 

component). The result is the merge of such two frontier components into one, and the elimination of 

a face hole. Denote the vertices, edges, edge I -holes, faces, face I -holes, face 2-holes of X by v, e, eh, 

f, fh, fv and those of Y by ve e', Note that V=v, e' =e+1, e' = eh, h V. hA- 
Ah 

II-A 
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and f, =f, so X(Y) =v'- (e'-e)+(f'-fh+f, ) =v- [(e+1) -ehl+[f - (fh- 1)+fc] =X(X)- h 

That is, the Euler characteristic holds. F-1 

Note that the formula (20) is valid for any relatively compact surfaces, either they are surfaces- 

with-boundary or surfaces-without-boundary. (These surfaces- without-boundary are sometimes called 

closed surfaces because in some sense they are closed up on themselves. ) 

EXAMPLE 5.5. With reference to formula (20), let us see how to construct a regular stratification 

of, for example, a four-sided Bezier surface, Figure I 

myC. This operator creates a vertex v, associated to a control point, which constitutes a point- 

component from the homotopy point of view. 
3 omye. The operator mve is used three times to introduce the other three vertices V2, V3, V4 and the 

edges el, e2, and e3. 

meCh- It introduces the new edge e4 which originates the appearance of a new 1-hole through the 

object. 
mf kCh- Such a hole disappears from the object after inserting the face fl - 
meehf f h. This operator subdivides f, into two faces f2 and f3 by a new edge el with a 1-hole. 

kfMCh. At last, f3 is removed from the surface, what becomes the 1-hole through f2 also a global 

1 -hole of the whole surface. 

mvC ED (3(&mvi 

kfinCh 

meChE) mj7cCh 

A 

meelffh 

FIGURE 3. Construction of a stratified surface. 

EXAMPLE 5.6. The formula (20) also admits the construction of any orientable surface-without- 

boundary in R3. According to Theorem of Surface Classification (see, for example, [3, p. 181) any 
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orientable closed surface is homeomorphic to the sphere or to the sphere with a finite number of 
handles, say a finite connected sum of tori. Figure 4 illustrates the generation of a regular stratification 
for each one of these surfaces. So, we have: 

mf (2 x0f h) f, (2 x0 Ch) C, This operator creates a stratification for a sphere without handles, 
Figure 4(a), which consists of a single 2-stratum, the sphere itself. 

mf (2x If h) f, (2 x1 Ch) Cc- In this case, the result is also a stratification with a single 2-stratum 

corresponding to a sphere with one handle, i. e. a torus, Figure 4(b). 

mf (2 x2f h) fc (2 x2 Ch) Cc. This operator generates a stratification with a single stratum for a 
double torus, Figure 4(c). 

mf (2 xnf h) f, (2 xn Ch) C,. This operator creates a stratification with a single stratum for the 

n-order torus (i. e. a sphere with n handles), and thus is a generalisation for the preceding operators. 

FIGURE 4. Construction of orientable n-order tori through a single Euler operator. 

According to homotopy theory, a k-stratum admits ak+1 distinct sorts of holes in RI, with n>k. 

For example, a O-straturn may only possess O-holes, a 1-stratum may have 0-holes and 1-holes, a 2- 

stratum may contain 0-holes, 1-holes and 2-holes, a 3-stratum may have 0-holes, 1-holes, 2-holes, 

and 3-holes, etc. 
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A 0-hole of a stratum is related to the number of components of a stratum. For example, a 0- 

stratum with three components (or points) is said to be a O-stratum with two 0-holes. A 0-hole denotes 
the absence of a path between two points of a stratum; analogously, a1 -stratum with two components 
(or edges) possesses a 0-hole, etc. Therefore, the number of 0-holes of any stratum is equal to the 

number of its components less one. In terms of Euler formula, such stratum components are counted. 
Alternatively, if multi-connected strata are admissible for a geometric modeller, the variables v, e, 
f stand for the number of components for O-strata, 1-strata, 2-strata, respectively, instead of strata 
themselves. 

A 1-hole of a stratum has the homotopy type of a 1-sphere S' (or circle). This hole prevents 

the contraction of a loop in such a stratum into a point. For example, the circle X2 + ý2 =I is the 

simplest 1-stratum with a 1-hole. The toroidal surface T2 as a whole (right-hand side of formula 20) 

has two 1-holes (Ch = 2) because it contains two non-contractible 1-spheres (e. g. the edges el and e2 

in Figure 1(c) considered as two imaginary 1-spheres in T2 are not contractible to a point in T2; hence 

eh = 2). But, if we consider that T2 in Figure l(c) is 'filled' with material, then the corresponding 

solid torus has only one 1-hole (Ch = 1), which corresponds to the imaginary 1-sphere el (eh = 1) in 

T2. In fact, because of the material filling T2, e2 is now contractible to a point in such material. Also, 

a sphere x2 + y2 + z2 =1 has no 1 -holes because every 1 -sphere in it is contractible to a point. 

A 2-hole of a stratum is homotopy-equivalent to a 2-sphere S2 in such a stratum. This hole 

prevents the contraction to a point of any balloon contained in such a stratum. The sphere x2 +)ý + 

z2 =1 is the simpler 2-stratum with a 2-hole. It is its own balloon. 

Analogously, a 3-hole of a stratum is homotopy-equivalent to a 3-sphere S3 in such a stratum that 

is not contractible to a point in it. The sphere x2 + y2 + z2 + w2 =I is the simplest 3-stratum with a 

3-hole. 
As demonstrated later, this process can be generalised to higher dimensions and used to find 

out the corresponding Euler formula for multi-dimensional objects in R'. For the time being, it 

is convenient to retain that a k-hole is only definable for strata of dimension greater or equal to k. 

For example, a 2-stratum only admits 0-, l-, and 2-holes, that is, 2-dimensional components less 1, 

through holes and voids, respectively. They are denoted by the variables f, fh and f, But the ambient 

space may restrict the strata and their holes definable in it. No stratum of dimension greater than n is 

definable in Rn, while no k-hole (k > n) is definable in W. This is because the general Euler formula 

for closed surfaces does not include holes of dimension greater or equal to 3. Therefore, the formula 

(20) is absolutely general for current B-reps. Furthermore, the redundancy of B-rep data structures 

can be eliminated by generalisation of the Euler formula that rules the creation and manipulation of 
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surfaces and their manifold constituents or strata. This allows programmers and users to make use of 
geometnc kernels in a more flexible and intuitive manner. 

1.4. Masuda's Euler formula. Before proceeding let us note that 'non-manifoldness' is a term 
to name modem B-reps. This is because the neighbourhood of a k-dimensional stratum point is not 
necessarily homeomorphic to a k-dimensional manifold in the ambient object. But, both 'manifold' 
and 'non-manifold' boundary representations are data structures for regular stratified objects. So, we 
prefer to call them stratified representations, or simply I-representations. 

The first 'non-manifold' B-rep was introduced by Weiler in his doctoral work [116]. However, 
Weiler did not propose explicitly any Euler formula in order to cover general relatively compact 
objects. Such formulas were introduced later by Wu [124], Masuda [76], and Yamaguchi [125]. 

The Masuda's Euler formula [76] is certainly the most general formula for relatively compact 
'non-manifold' objects found in the geometric modelling literature. It is given by 

(21) v-e+(f -fh) - (s-sh+s, ) =C-Ch+C, 

where the new variables s, Sh, Sc stand for the number of solids, 1 -holes through solids, and 2-holes 

or cavities (voids) in solids, respectively. 
Following the guidelines of our discussion, we see that Masuda's objects suffer from topological 

redundancy because holes through edges (eh) and voids in faces (f, ) have not been considered. A 

major novelty of the Masuda's B-rep data structure is that for the first time solids or 3-strata are used 

to model engineering parts and assemblies. However, the Masuda's interpretation of the global Euler 

characteristic was a bit misleading because C, Ch, and C, were supposed to stand for the number of 

complexes, holes through complexes, and voids in complexes, respectively, instead of the number 

of components (of a complex), holes through these components, and voids in these components. 

Consequently, the Masuda's model considers that each complex has only one component. 

EXAMPLE 5.7. Figure 5 illustrates a 'non-manifold' technique to construct a torus. It differs 

from the "manifold' technique in the sense that it does not require the attachment of an handle to a 

sphere, neither the topological deformation of a surface-without-boundary. The sequence of operators 

is as follows: 

20mvC. This operator is called twice to create a vertex v1 (and then v2) and a point-component C, 

(C2, respectively). 
20meCh. This operator is applied twice to the current object to create two 1-holes Ch,, Ch2by attach- 

ing the edges el, e2, respectively. 
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Mf f hkCCh. Despite this operator has not been introduced by Masuda, it can be used to attach a face 
with a 1-hole to an object. 
kveMChC,. This operator has not been introduced by Masuda, but it can be used to attach a surface 
to itself by identifying two of its frontier components. 

V1 
0 

VI 

ejO 

mvC(vl, Cl) ED mvC(v2, C2) 

VI V2 

(a) 

meCh(el, Chi) (D meCh(e2, Ch2) 

VI V2 
V2 
0 

(b) elo e20 

mffhk CCh (fifh 1, C2, Ch, 2) 

V2 

e20 (C) 

kvemChC, (v2, e2, Ch2, CI) 

FIGURE 5. The 'non-manifold' construction of 2-torus T2 based on the Masuda's formula. 

2. General Euler formulae 

The Masuda's Euler formula can be generalised by including edges with a 1-hole and faces with 

a 2-hole: 

THEOREm 5.2. Every relatively-compact regular stratified point set X in W satisfies the follow- 

ing Eulerfortnula 

Ilý v-(e- eh)+ (f -fh+fv)-(S-Sh+Sv) ý--C-Ch+Cc (i 

where v, e, f, s standfor the number of connected 0-, 1-, 2-, 3-strata (or vertices, edges, faces and 

solids), respectively, and C the number of components of the X. The other variables denote holes 
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in strata and components; the subscripts h and v denote through holes and holes which are voids, 
respectively. So, eh, A, A denote holes through edges, faces and solids, respectively; and f,, sv 
denote voids infaces and solids; at last, Ch and Cc standfor the number of holes through components 
and voids in components, respectively. 

PROOF. The proof of this theorem is similar to that one given Theorem 5.1. The proof technique 
is based on the subdivision or partition of strata with holes into strata without holes in such a way 
that we obtain the well-known Euler formula (23) for cell complexes. Note that 3-holes for solids (or 
3-strata) and 3-holes for components are not considered here because they do not exist in R3, only in 
R4 and above. r_1 

EXAMPLE 5.8. Let us take an undecorated 2-dimensional torus T2. It has no vertices and edges. 
In local shape terms (left-hand side of formula 22), it has a face (f = 1) with two essential 1-holes 
(fh = 2) and one 2-hole (f, = 1). In global shape terms (right-hand side of formula 22), it is a surface 
with one component (C = 1), two 1 -holes or through holes (Ch = 2), and one 2-hole or hollow cavitY 
(Q). Filling in it with a solid, its global shape changes to C=1, Ch = 1, and Q=0. No local shape 

changes occur in the face, but now we have a new solid (s = 1) with a hole through it (Sh = 

Therefore, Euler operators locally and globally change the shape of a point set or space. The 
Euler formula is an algebraic shape invariant that regulates the local and global shape changes on 

an object. In fact, the Euler formula left-side denotes the shape changes on strata of an object. In 

contrast, the Euler formula right-side features the global shape changes on the object as a whole. 
Let us now generalise formula (22) as follows: 

1. The generalisation is extended to objects in R7. 

2. The objects are not necessarily compact, and each of its strata is not required to be relatively 

compacti. 

2.1. General Euler formula left-side. It is known from mathematics that a point set regularly- 

stratified into strata without holes has the Euler characteristic X(X) given by the alternate sum of the 

number of strata of each dimension, that is, 

(23) 
n 

X(X) = 
D-Oisi 

i=O 

IOnly by abuse of language, we can say that a stratum is relatively compact. In fact, a stratum is, by definition, 

relatively open (e. g. an open line segment in R'). By a relatively compact stratum we mean here a relatively open stratum 

whose boundary and frontier in its ambient stratified object coincide. 
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where s' denotes the number of relatively compact i-dimensional strata in the object. 
If a regular stratified object X contains strata with holes, the Euler characteristic becomes 

(24) 
n 

+ 
i=O j=l 

219 

where hjj stands for the number of j-dimensional holes of relatively compact i-dimensional strata. 
This formula takes into account that a i-dimensional stratum has at most holes of dimension (i - 1) - 

In fact, by induction on the dimension, and for: 

= 0, we have (- 1)1[sl + ol = sO =v 
i=l, we have (-1)1[sl + (-I)lhll] = -(sl - h1l) = -(e-eh) 
i= 2, we have (-1)2[S2+ (-I)hl+q] = S2 -hl +/ý =f -fh+f, 2 
i=3, we get (_ 1)3 [S3 + (- 1)hl + h23 + (- 1)h 3] = -(s3 -hl 

3) = -(s-sh+s, -h3) 333+ h23 - h3 3 

Dropping down the compactness condition, we have the following Euler characteristic: 

(25) X(X) = Z(-1)i[Si+ 
i=O 

I)Jhji] 
j=l 

[Soo 1)jhj 00 j=l 

where sý, denotes the number of relatively non-compact i-dimensional strata in the objqct, and hj,, 
001 

the number of j-dimensional holes for relatively non-compact i-dimensional strata. Therefore, the 
formula (25) consists of two terms. The first term concerns the relatively compact subset of X, while 
the second term concerns the relatively non-compact subset of X. Note that the stratum dimension i 

of the second term starts at 1, because O-strata or vertices are always relatively compact. Note that 

h3=0 in 93; it only exists in R4 and above. 3 

In R3, the formula (25) becomes 

(26) X(X)=[v-(e-eh)+(f-fh+fc)-(8-Sh+-5c)]+ 

(e,,,, ) + (foo - fooh) - (Soo - Sooh + Sooc)l 

where e,,,, fi,, and s,,. stand for the number of relatively non-compact edges, faces and solids, respec- 

tively; Aah and Sooh denote the number of non-compact 1 -holes through faces and solids, respectively, 

and s,,, the number of non-compact 2-holes in solids. 

EXAMPLE 5.9. Figure 6 shows three objects which have relatively non-compact strata and holes. 

The object (a) has one relatively non-compact edge e,,,, I because one of its frontier vertices is missing. 

Its circular face fi,. 1 is also relatively non-compact because its boundary and frontier do not coincide. 
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These two strata are not compact because they are not closed in the relative topology. The object 
(b) is a regular stratification of the Cartan umbrella. The positive z-axis corresponds to the relatively 
non-compact edge e,,,, I, while the negative z-axis concerns the relatively non-compact edge e,, 2. The 
Cartan sheets refer to relatively non-compact strata and foo2- In this case, the strata are not 
compact because they are not bounded, i. e. their size is infinite. At last, the object (c) consists of 
a non-compact solid s, ), because it is bounded by a relatively non-compact face f, 01. This face is 

relatively non-compact because it has two points missing. The absence of these two points implies the 
existence of a non-compact 1-hole foohl through such a face. Besides, there is a missing line inside 

s,,, l between the those two missing points of f,,, ),; hence, the non-compact 1-hole Soohl through s,,. l . 

e-I 

(a) 
--4 

(b) (c) 

FIGURE 6. Some examples of relatively non-compact strata and holes. 

2.2. General Euler formula right-side. In mathematics, the Euler characteristic X(X) of a 

compact point set X in W may be also given by 

(27) X(X) = C+ 

where C stands for the number of components of X, and H' the number of i-dimensional hOles for 

these components. So, H1 = Ch denotes the number of 1-holes through components (simply called 

through holes in geometric modelling literature), H2 =Q denotes the number of 2-holes in compo- 

nents (usually called voids in components), etc. 
Relaxing the compactness condition, the relatively compact subset of X still satisfies (27), but not 

its complement in X. In this general situation, we have the following formula: 

P1 0*1 
nnj 

., 
(- 1)'H'] + 1)'[C' 

,, + I) jH,,,, 
i] ki-0) X(X) = [C+ I 

i=1 j=1 j=1 

The first term is concerns the relatively compact subset of X as in (27), while the second term has to 

do with the relatively non-compact subset of X. C. ' denotes the number of i-dimensional relatively 

non-compact components, or, in other words, the number of relatively non-compact i-strata in X. Note 
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that all components in X are always disjoint, no matter whether they are compact or not. Therefore, 
every relatively non-compact i-stratum in X constitutes a non-compact component of dimension i. On 
the other hand, every relatively compact i-stratum in X is part of a relatively compact component of 
dimension > i. 

In R3, the formula (28) becomes 

(29) X (X) = (C - Ch + C, ) - (E, ),, ) + (Foo - Foch) - (Soo - Soch + Socc) 

where E,,,,, F,,, and S,, stand for the number of relatively non-compact edge components, face com- 
ponents and solid components, respectively; F ... h and Soch denote the number of non-compact I -holes 
through face components and solid components, respectively, and S,,,,, the number of non-compact 
2-holes in solid components. 

EXAMPLE 5.10. Figure 7 illustrates the notions of relatively compact subset and relatively non- 

compact subset of a point set. The sets A and E are relatively compact because all of their strata 
are relatively compact. But the sets B, C and D are not relatively compact since some of their strata 

are not relatively compact. B is obtained from A after attaching a relatively non-compact edge e,,,,, 1, 
and, therefore, A is the relatively compact subset of B. So, A constitutes the only relatively compact 

component of B, while e,,,, I constitutes the only relatively non-compact edge component E ... I of B. 

Similarly, C results from B by attaching a new relatively non-compact edge e,,, 2 to B. Thus, the rela- 

tively compact subset of C is still A, but now we have two relatively non-compact edge components, 
E, ), ) I= jec,,, 11 and Eoc2 = jeoc2 1. Analogously, D stems from E by attaching a relatively non-compact 

face I to E. This introduces a new relatively non-compact face component F,, I= Ifo, 
) II into D. 

At last, we get E from D by attaching a new vertex to D. Consequently, the three relatively non- 

compact components disappear since their underlying strata e,,,,,, e,, 2, and f, I are transformed into 

the relatively compact strata el, e2, and fl, respectively. That is, the relatively non-compact subset of 

E is now the empty set. 

VI 
0 

e ei �e 
-0 0-0 0-0 00 

E 

FIGURE 7. The relatively compact subset and relatively non-compact subset of a 

point set. 
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Let us see now the second term of (29) in more detail for each dimension: 

* For i=0, we have no relatively non-compact components since any vertex is relatively 
compact. 
For i=1, we have (- 1) 1 [C,. I + 0] = -E,,,, where C. 1 = E. denotes the number of relatively 
non-compact edge components in X. Note that edges with 1 -holes are not considered here 
because they are compact indeed. 
For i=2, we have (_ 1)2 [C2 + (_ 1) 1 H2 1] 00 00 = Foo - Fmh, where C. 2 = Fcc) and H, 2,., = Fmh 

denote the number of relatively non-compact face components and the number of 1-holes 

through these face components, respectively. Again, faces with 2-holes are not considered 
here since they are compact faces. 
For i=3, we have (-1)3[C3 + (-I)IH. 31 +(_1)2H3 - (Soo - Sooh + Sooc) 

) where 00 oo2] = 

C33= SO, denote the number of relatively non-compact solid oo = Soo 9 HOO I= Sooh and H12 

components, the number of 1-holes through these solid components, and the number of 2- 

holes in such solid components, respectively. Again, solids with 3-holes are not considered 
here since they are compact solids. 

In summary, the Euler formula for regularly- stratified subanalytic point sets is formed by equating 

the right-side of (25) to the right-side of (29): 

nin 
1)'[s' + 1)jhj (30) 1,, (-l)'[s'+I(-l)jhjil+l 00 00 

i=O j=l j=l 
nn i-i 

[C + 1)'H'] + 1)'[Cýo + 1) iHojoi] 

j=l 

This algebraic topological invariant is the cornerstone of the design and implementation of the I- 

geometric kernel Euler operators. Its generality allows us to construct geometric objects and engi- 

neering artefacts without restrictions on the dimension, compactness, construction order, etc. 

3. Euler algebra: the rationale 

By definition, an algebra is a set of (undefined) elements and a set of (undefined) operations. 

Here, our elements are regular stratified subanalytic sets and the operations are Euler operators which 

satisfy the formula (30). Hence, the Euler algebra of regular stratified subanalytic sets. Subanalyticity 

of a point set guarantees its regular stratification in the sense of Whitney or Thom-Boardman, that is, 

the topological regularity is a priori guaranteed. 
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To be useful for geometric modelling purposes, an Euler algebra of regular stratified subanalytic 
sets must be closed. This ensures that the outcome of any Euler operator applied to a regular stratified 
subanalytic set is also a regular stratified subanalytic set. The closure of this Euler algebra is then 
guaranteed by observing two points: 

Stratification closure. The action of applying an Euler operator to a regular stratified object 
is also a regular stratified object. That is, the resulting object satisfies the Whitney regularity 
conditions or Thom regularity condition. 
Subanalyticity closure. An object is subanalytic if and only if its constituent strata are sub- 
analytic. This means that subanalyticity of a stratified set is preserved by Euler operators 
since its constituent strata are all subanalytic sets. 

Euler operators are essentially shape operators. They change the shape of an object from many 
different ways at distinct levels of understanding and describing shape. In general terms, Euler opera- 
tors carry out shape changes on objects according to the shape taxonomy introduced in Chapter 1, 
namely: 

Geometric changes. The shape changes at the geometric level can be local or global. Global 

geometric changes occur whenever the underlying point set of an object changes, e. g. by 

attaching or detaching a stratum or by re-defining the geometry of a particular stratum or 
even the whole object. Local geometric changes do not change the underlying point set of 
an object are due to topological subdivision of a stratum, e. g. the subdivision of a face into 

two by a new edge. 
Topological changes. Topological shape changes also occur locally and globally. They 

happen whenever the topological properties of any stratum or an object change. Local topo- 
logical changes are related to shape changes on strata. If the number of strata changes, 

we say that a local topological change has occurred because the local Euler characteristic 

changes. If we remove an edge bounding a compact face, it becomes a non-compact face, 

what constitutes a local topological change. Obviously, this local compactness change im- 

plies a global compactness change on the whole object. In this case, we say that a global 

topological change has occurred. 
Homotopic changes. Homotopic changes are also called global topological changes. They 

are related to the number of holes associated to strata and their ambient object. 
Differential changes. They may occur in the resolution of singularities or at setting up the 

continuity conditions of two touching surfaces. 
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Convex changes. They occur by changing the geometry of a stratum or an object, e. g. during 

a morphing operation as usual in animation systems or after detaching a form feature from 

an object modelled through a CAD system. 
Let us see some examples: 

EXAMPLE 5.11. Let us take the objects (a) and (b) in Figure 8 and apply the Euler operator 

meehf fh (make edge with ]-hole andface with ]-hole) to (a) to obtain (b). It subdivides a face into 

two by a new edge e with a 1-hole eh. The resulting two faces are a simply-connected face f and 

the original face now reshaped to a face with a 1-hole f h. So, we can count these shape changes as 
follows: 

Geometric changes. The global geometric shape has not changed because the point set underlying the 

object has not changed either. But, locally, the geometry of the original face has been re-defined. 
Topological changes. The local topological changes are: (i) a new edge e has been introduced, (ii) a 

new face f has been generated by the subdivision of the original face by e. 
T-1 - humotopic changes. The object has not suffered any global topological changes. But, the original 
face has acquired a new hole after its subdivision by e. 
Differential changes. None. All the strata remain smooth. 
Convex changes. None. The geometry has not changed. 

FIGURE 8. Iflustrating shape changes through Euler operators. 

EXAMPLE 5.12. Let us consider now the object (c) in Figure 8 which is obtained from (b) by 

applying the Euler operator kf MCh (killface, make component 1-hole) to 8(b). It removes the simply- 

connected face f, from (b). The consequent shape changes are then: 

Geometric changes. The point subset corresponding to the simply-connected face f has been deleted. 

This is a local geometric change that implies a global geometric change on the object. 

Topological changes. A face f has been deleted, so the number of strata has changed. This is a local 

topological change. 
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homotopic changes. The removal of f also implies a global topological change on the object. In fact, 
the hole through the only face of the object (b) has also become a hole through the object (c). 
Differential changes. None. All the remaining strata are smooth. 
Convex changes. The edge e defines now a concavity in the object. 

EXAMPLE 5.13. Let V=f (x, y) EV: X2/3 + y2/3 =1} an I -dimensional algebraic variety in W, 

Figure 9. It is named astroid. It is also a CO manifold, so it can be taken as a topological stratification of 
itself with just one non-smooth edge e. This edge possesses a 1-hole eh. However, it has differential 

singularities at the points (1,0), (071), (-1,0), and (0, -1). So, its differential singularities can be 

"removed" by applying two Euler operators: 

mvkeh. The operator mvkeh (make vertex, kill edge 1-hole) introduces a vertex at the singularity 
(1,0), breaking up the 1 -hole eh of e, Figure 9(a). 

30mve. The Euler operator mve (make vertex and edge) is called three times to subdivide the current 
longest edge into two by a new vertex at each remaining singularity, Figure 9(b) and (c). 

At any time we can undo these operators by means of their inverses, getting back -no matter the 

order- non-smooth strata. 

mvkeh 

(a) 

30 mve 

(b) 

FIGURE 9. Differential shape changes through Euler operators. 

As illustrated in Figure 9, Euler operators may carry out differential shape changes on strata, 

which correspond to subdivisions (also unsubdivisions) of strata into other strata. Note that the 

resolution of differential singularities on a variety does not change its geometric shape, neither its 

homotopic shape. What changes is its local topological shape. 
In the X-geometric kernel there are particularly important Euler operators to handle the compact- 

ness of an object and its strata. They are topological operators seeing that they change the topological 

property of compactness. Some Euler operators act on the non-compact subset of an object, some 

operators operate on the compact subset of an object, and other operators bridge both subsets. 

2B +y V3 
=1 
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4. Euler algebra 1: family of global hole constructors (SAT) 

There two subfamilies of n-hole constructors which use the stratum attaching technique (SAT). 
The first is defined by attaching a stratum homeomorphic to Rn. The second subfamily is generated 
by taking an attaching stratum with holes. 

4.1. n-hole constructor by attaching a n-stratum homeomorphic to Rn. In this case, we in- 
tend to construct a global hole as a result of attaching a stratum homeomorphic to Rn . These Euler 
operators are then homotopic operators, that is, they operate on the global shape properties of an ob- 
ject. Besides, they are local hole-invariant because the attaching stratum has no holes. In particular, 
we impose the condition that the dimension of the attaching stratum is equal to the dimension of the 
resulting global hole. In short, this global hole constructor must satisfy two conditions: 

o The attached n-stratum is homeomorphic to Rn, i. e. a n-cell. 
* The dimensions of the attached stratum and resulting global hole are identical. 

The general n-hole constructor is achieved by using the induction method on the dimension: 

(i) mvC, kvC. The operator mvC (make vertex and Component) adds a new isolated vertex to an 

object, and, consequently, a new component, Figure 10(a). Alternatively, Figure 10(b), we 

can think of this operator as a subdivider for a O-hole: adding a vertex to 0-hole subdivides 
this 0-hole into two O-hole. So, this operator introduces a new O-stratum sO and a new 0-hole 

HO, and we can write mvC--msOHO. The result is a new O-sphere in the object. The inverse 

operator kvC (kill vertex and Component) undoes the action of mvC, i. e. it eliminates a 
0-hole by the removal of a point-component. 

(ii) meCh, keCh. The operator meCh (make edge and I-dimensional Component hole) creates 

a1 -hole H1 =Ch by attaching a new edge s1 =e, Figure 11 (a). Alternatively, a1 -hole can be 

generated by subdividing a1 -hole into two 1 -holes by a new edge, as illustrated in Figu- 

re 11 (b). The result is a new 1 -sphere in the object. Its inverse Euler operator is keCh which 

eliminates a 1-hole Ch by deleting a 1-stratum e. 

mfC, kfc,. The Euler operator mf Cc (make face and 2-dimensional Component hole) 

forms a 2-hole H2=Cc by attaching a new 2-stratum S2=f or face, Figure 12(a). The result 

is a new 2-sphere in the object. This operator also subdivides a 2-hole into two 2-holes by 

attaching a new face as depicted in Figure 12(b). The operator kf Cc undoes a 2-hole by 

deleting a constituent face, eventually merging two 2-holes. 
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(n) msnHn, ksnHn. The operator msnHn encloses a n-hole by attaching a new n-straturn, or, 
alternatively, subdivides a n-hole into two n-holes by a new n-straturn. Its inverse is the 
operator ks"H". 

mvc=MSOHO mvC=msoHO 

kvC=ksOHO kvC=ksOHO 

(a) (b) 

FIG U RE 10. The operator mvC: construction of 0-holes. 

meCh=ms1H1 4 ('0 meCh=ms'HI 

keCh=ks'Hi 
0, 

i 

keCh=ks1H1 

vj 

(a) (b) 

FIGURE 11. The operator meCh: construction of 1-holes. 

A ýký 
mfc, =Ms 21F 

lm-F 

kfC =ks2H2 S2_D2 C S2 

(a) 

mfcc=ms 2H2 

kfC, =ks'H2 

(b) 

FiGURE 12. The operator mf C,: construction of 2-holes. 

The Algorithm 5.1 for the Euler operator msH' (and its inverse ksnHn) is dimension-independent. 

There is no need to have a Euler operator for each dimension as usual in 3-dimensional geometric ker- 

nels. However, the usual operators mvC, meCh, and mf Cc, as well as their inverses, have been included 

in I-geometric kernel for convenience of developers of 3D applications. These 3D operators just call 

the dimension-independent Euler operator ms"Hn (resp. ksnHn) by instantiating the dimension n. 
The fact that a global n-hole, say a n-sphere Sn' is formed by attaching a n-stratum implies that 

the relatively compact subset of the modelling object is to be changed. Thus, we can say that these 

hole constructors are in the class of relatively compact geometry operators. However, as illustrated 
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in Figure 13, these operators work identically well even in conjunction with relatively non-compact 
strata. 

ALGORITHm 5.1. (Euler operator MSnHn) 

INPUT: 

(a) the dimension n of the attaching stratum s. 
(b) the frontier subcomplex of the attaching stratum s, i. e. a (n - I)-cycle. 

Begin 

(1) Creates a new stratum s, with dim(s)=n. [it is an instance of the class Stratum. ] 
(2) Set up the frontier relationships between s and the strata of its frontier subcomplex. 
(3) Creates a new hole H, with dim(H)=n. [It is an instance of the class Hole. ] 
(4) Creates a new subcomplex H for H. [It is an instance of the class Subcomplex. ) 
(5) Add all the strata (including s) which form H to H. [This requires homotopic and homo- 

logical reasoning on the data structure. ] 
(6) Re-arrange possible containment and intersection relationships between the new sub- 

complex H and pre-existing subcomplexes. 
End 

Nevertheless, after running msnHn, relatively non-compact geometry Euler operators must be 

called to make the necessary arrangements. In fact, relatively compact geometry operators are in 

some extent 'blind' to non-compact strata. For example, in Figure 13(a), the non-compact face is 

not visible for the operator mvC. Only its bounding circle is visible. Thus, as long as we insert a 

vertex into the object, a new component arise; hence, the operator mvC. But, the resulting object is 

no longer non-compact, so other Euler operators must called to compact the object and its relatively 

non-compact face. These operators which look for the non-compact subset of an object, as long as 
those responsible for controlling the compactness of its strata win be detailed ahead. 

Analogously, in Figure 13(b), the operator meCh ignores the presence of the both non-compact 
faces in the object. It only recognises the presence of two 1 -dimensional components, and thus linking 

two vertices by a new edge results into a new global 1 -hole; hence, the operator meCh. This easily 

generalises to higher-dimensional objects. 

4.2. n-hole constructor by attaching a n-stratum with a n-hole. Attaching a n-straturn with a 

n-hole to an object gives rise to the appearance of a global n-hole in the object. Let us see how this 

works at each dimension. 
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meehCCh, keehCCh. The Euler operator meehCCh forms a I-sphere S' from the empty set. 
The global 1 -hole H1 =Ch is due to insertion of an edge that contains aI -hole h' =eh - Con- 

versely, the operator keehCCh eliminates a global 1-hole by deleting an edge that contains 
a1 -hole. This is illustrated in Figure 14. 

mf f CC,, kf f hCCc. The Euler operator Mf f hCCc forms a 2-sphere '92 from the empty set. 
The global 2-hole H 2=Cc comes up by inserting a face with a 2-hole h 2=f 

c. Conversely, the 

operator kf f hCCc undoes a 2-hole by deleting a face with a local 2-hole. This is illustrated 

in Figure 15. 

(n) msnhnnHOHn, kSnhnHOHn- These operators generalise previous operators to higher dimen- 
n 

n denotes the dimension of the local hole, while its subscript n sions. The superscript n of hn 

denotes the dimension of the hosting stratum s. 

meehCCh 

k-4eehCCh 

0s1 

FIGURE 14. The oPerator meehCCh- 

mffcccc 
0< 

kff, C C, 

FIGURE 15. The operator mf f CC, - 

Note that the stratum attached by this Euler operator has minimum dimension n=1, because a 

vertex does not have holes. The coresponding algorithm is then as follows: 
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ALGORITHm 5.2. (Euler operator mshnnHOHn) 

INPUT: 

(a) the dimension n of the attaching stratum s. 
Begin 

(1) Creates a new stratum s, with dim(s)=n. [it is an instance of the class Stratum. ] 
(2) Creates a new local hole h, with dim(h)=n. [It is an instance of the class Hole. 1 
(3) Creates a new subcomplex h for h. [it is an instance of the class Subcomplex. ] 

(4) Adds s to h. 

(5) Creates a new component C. [it is an instance of the class Component. ] 

(6) Creates a new global hole H, with dim(H)=n. [it is an instance of the class Hole. ] 

(7) Assigns H to C, and vice-versa. 
(8) Creates a new subcomplex H for H. [It is an instance of the class Subcomplex. ] 

(9) Adds s to H. 

(10) Re-arrange possible containment and intersection relationships between the new sub- 

complex H and pre-existing subcomplexes. 
End 

The operator mshnnHoHn clearly belongs to the class of compact geometry operators. But, as 

for previous operator, its usage with non-compact objects is straightforward, because it ignores the 

presence of non-compact strata. Let us look at Figure 16 to show how this works. We intend to 

fill in the I-dimensional space between the two non-compact faces by inserting a new circular edge, 

i. e. an edge e with a 1-hole eh. Assuming that these two faces are absent from the object, such a 

circular edge comes into the object by applying the operator meehCCh. The arrangements to be done 

to validate the resulting object are up to non-compact geometry Euler operators described later. 

meehCCh 

(D 
Euler operatorsfor 
non-compactfaces 

FIGURE 16 
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5. Euler algebra 11: family of global hole constructors (SDT) 

There two classes of Euler operators to construct a global (n - I)-hole by detaching a n-stratum 
from an object. Simply-connected strata feature the first class, while the second class generalises the 
construction of a (n - I)-hole by detaching a n-stratum with holes. 

kemC=kslmtP 

nwkC=nulkIP 

FiGURE 17. The operators kemC and mekC. 

2 kfmCh=kS M114 0 

mfkCh=nu 
2&0 

FIGURE 18. The operators kf mCh and mf kCh- 

ksmC, =ks 
3 
mH 

2 

filled S 20 3 20S 2 
mskC, =ms W 

FIGURE 19. The operators ksmC, and ms kC,. 

5.1. (n - I)-hole constructor by detaching a n-stratum without holes. A (n - I)-hole can be 

created by removing a n-stratum. This occurs whenever we remove a n-stratum from an object, but 

its frontier remains in the object. Its frontier becomes a (n - l)-a hole. Thus, the following condition 

must be satisfied: 

o The detaching n-straturn is horneornorphic to W, i. e. it is a n-cell. 

Using induction on the dimension, we get the following hole constructors at each dimension: 

kemC, mekC. The Euler operator kemC (kill edge, make Component) generates a 0-hole 

HO=C or component by deleting an edge s 1=e between two vertices, Figure 17. The operator 

mekC is its inverse. 
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kfmCh, mf kCh. The operator kfMCh (killface, make 1-dimensional Component hole) cre- 
ates a 1-hole H"Ch by deleting a face S2=f is carried out by the operator kfMCh, Figure 18. 
Thus, the frontier of f becomes a 1-hole in the resulting object. Its inverse is the operator 
mf kCh- 

ksmC,, mskCc. The operator ksmCc (kill solid, make 2-dimensional Component hole) 
deletes a solid S3=S, but leaving its frontier in the object. Its frontier becomes a 2-hole 
H2=Cc. This is what the operator ksmCc does and its inverse mskCc undoes. 

(n) We abstract these operators and their inverses in higher dimensions as ksmH-1, mskH'-1, 
respective y. 

According to this generalisation, we have the following algorithm: 

ALGORITHm 5.3. (Euler operator ks'mH'-1) 

INPUT: 

(a) the detaching stratum s. 
Begin 

(1) Creates a new global hole H, with dim(H)=n - 1. [It is an instance of the class Hole. ] 
(2) Assigns H to the component of s, and vice-versa. 
(3) Promotes the frontier subcomplex of s to subcomplex H of H. 

Removes s. 
(5) Re-arrange possible containment and intersection relationships between the re-defined 

subcomplex H and pre-existing subcomplexes. 
End 

5.2. (n - I) -hole constructor by detaching a n-stratum with (n - 1) -holes. Let us consider 

now a detaching n-stratum with a (n - I) -hole. This relaxes the previous condition that the detached 

stratum must be simply connected. The result is another class of Euler operators that can be also 

generalised to higher dimensions. 

(i) kf f hMCChý Mf f hkCCh. The kf f hMCCh means killface and 1-dimensional localface hole, 

kill Component and 1-dimensional global Component hole. Let us look at Figure 20. The 

idea is to remove a face f =S2 with a 1-hole fh=hl from an object. The result is the appea- 2 

rance of a new component C=HO and a new 1-hole Ch=Hl; hence we get the Euler operator 
kf f hMCCh or kS2h1mHOHI- The operator Mf f hkCCh or MS2h1kHOH' is its inverse. 22 
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(ii) kss, mCC,, mss, kCC,. The semantics behind the operator kss, mCC, (kill solid and 2- 
dimensional local solid hole, kill Component and 2-dimensional global Component hole) 
is the analogous as for the previous operator. The difference is that now we have solids 
instead of faces and 2-holes instead of I-holes. Let us then consider a 2-sphere inside 

another 2-sphere with the inner 2-sphere filled with material, as well as the space between 

them, Figure 21. Here the idea is to remove the solid S=S3 placed between the outer and 
inner 2-spheres, i. e. a solid with a 2-hole s, =h2. This 2-hole is nothing more than the inner 3 
2-sphere. Doing so, the result is the appearance of a new component C=HO consisting of 

the outer 2-sphere, and a new 2-hole Cc=H2 concerning the outer 2-sphere; hence the Euler 
3h2mHOH2. The operator ms sckCCc or MS3h2kHOH2 is its inverse. operator ks scmCCc or kS 33 

n-I n-'mHOH n- 1 and ms nhn- 1 kHOH (n) For higher dimensions, we get the Euler operators kSnhn n 

FIGURE 20. The operators kf f hMCCh and Mf f hkCCh- 

kss, mCC, =ks 
3h2 WPH2 

3 

filled S2 filled S2 

2! 
filled S10 SiO2 

FiGURE21. The operators kss, mCC, and mssckCCc. 

We have implicitly assumed that the removing stratum had only one hole. But, if the removing 

stratum has more holes, the operator is no longer correct. In order to overcome this difficulty, a more 

general operator must be used. So, if a removing n-stratum has i number of (n - I)-holes, we have 

n-1) m (iHO) Hn-1, being ms" (ihn-1) k (iHO) Hn-1 its inverse. This is 
the Euler operator ks' (ihn n 
illustrated in Figure 22 for a face with i=2 number of I-holes. Deleting this face we get two new 

components, each for a1 -hole. 
Note that each (n - I)-dimensional local hole of the n-stratum originates a (n - I)-dimensional 

global hole in the resulting object. This means that, we have to be sure that each (n - I)-dimensional 
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FIGURE22. The operator kf 2f hm2CCh. 

local hole will be part of a single global component after removing the n-stratum. But, this is should 
be decided by the geometric kernel engine, not by an Euler operator. This means that the geometric 
kernel engine observe a set of rules that determine how a stratum is detached. In other words, which 
Euler operators are called when the user or programmer wants to remove a stratum. 

So, the corresponding algorithm is as follows: 

n-1) m (iHoHn-1)) ALGORITHm 5.4. (Euler operator ksn (ihn 

INPUT: 

(a) the detaching stratum s. 

Begin 

(1) Creates a new global hole H, with dim(H)=n - 1. [it is an instance of the class Hole. ] 

(2) Assigns H to the component of s, and vice-versa. 

(3) Promotes the outer frontier subcomplex of s to subcomplex H of H. 

(4) For each (n - I)-hole h of s 

Begin 

(i) Determines the (n - I)-hole H of the object that coincides with h. 

(ii) Creates a new component C. [it is an instance of the class Component. ) 

(iii) Assigns H to C, and vice-versa. 

(iv) Removes h. 

End 

(5) Removes s. 

(6) Re-arrange possible containment and intersection relationships between the re-defined 

subcomplex H and pre-existing subcomplexes. 

End 
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6. Euler algebra III: family of stratum subdividers 

We have described Euler operators that change the global shape of an object. Let us concentrate 
now on operations that just subdivide/unsubdivide strata without changing the global shape of an 
object. A subdivider is an Euler operator that subdivides a n-stratum into two n-strata and a (n - 
stratum, called the subdividing stratum. 

6.1. n-stratum subdivider by a (n - 1) -stratum without holes. The Euler operators mve (make 

vertex and edge), me f (make edge andface), and mf s (makeface and solid) are the usual subdividers 
in B-Rep geometric kernels; their inverses kve, kef, and kf s are the corresponding coalescers. In 

the X-geometric: kernel, subdivision operators encapsulate the dimension-independent Euler operator 

msn-I Sn, while coalescing operators encapsulate the inverse dimension-independent Euler operator 
ksn-I Sn. Note that the subdividing stratum sn-1 has a dimension n-1 and the subdivided stratum Sn 
has a dimension n. In addition to conventional subdividers for compact strata, this operator msn-I Sn 
is also encapsulated by subdividers for non-compact strata in the data structure. 

Thus, these operators can be characterised by: 

Keyfeature. A stratum is cut off into two equidimensional strata. More precisely, n-stratum 
is split into three pieces: two n-strata and one (n - 1) -stratum, called the subdividing stra- 

tum. 

e Shape invariance. Subdivision and coalescence Euler operators do not change the global or 

homotopic: shape of an object. Besides, the resulting three strata are all point subsets of the 

original stratum, what means that the geometric shape of the object is not changed either. 

Compactness invariance. They do not depend on the compactness of the stratum to be sub- 

divided. That is, the operator works identically well for relative compact and non-compact 

strata. 

So, this local-invariant T-shaped Euler operator only must satisfy two conditions: 

The subdividing (n - l)-stratum is homeomorphic to Rn-1, i. e. it is a (n - l)-cell. 

* The dimension of the subdivided stratum is n. 

Let us see this subdivision Euler operator at each dimension: 

mve, kve [edge subdivider (coalescer)]. The operator mve (make vertex and edge) subdi- 

vides an edge into two by a new vertex. In first case, Figure 23(a), the vertex subdivides a 

non-compact edge into two non-compact edges; hence we have mve,,,,,. In the second case, 
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FIGURE 23. The operators mve and mve,,,, to subdivide an edge by a new vertex. 
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FIGURE 24. The operators me ... f me f ,, and me f to subdivide a face by a new edge. 
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Figure 23(b), the edge is top-compact but not bottom-compact, so the subdivision by a ver- 

tex gives rise to a compact edge and a non-compact edge; hence, we have mve. The third 

case, Figure 23(c), is the usual mve for conventional B-Reps, which subdivides a compact 
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FIGURE 25. The operators mf mf s,,,,, and mf s to subdivide a solid by a new face. 
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edge into two compact edges. Thus, this operator introduces a new vertex v= so and a new 
(eventually non-compact) edge e=s', and we can wfitemve=msos. 

(ii) me f, ke f [face subdivider (coalescer)]. The operator me f (make edge andface) subdivides 
a face into two by a new edge. Figure 24(a) illustrates the subdivision of a non-compact face 
into two non-compact faces by a non-compact edge, by using the operator me,, f So, we 
obtain a new non-compact edge e,, and a new non-compact face f,,,. The second case, 
in Figure 24(b), is the subdivision me f of a non-compact face into two faces by a compact 
edge. Note that one of the resulting faces is compact. The third case, in Figure 24(c), depicts 

the subdivision mef,,,, of a non-compact face into two non-compact faces by a compact 

edge. The new strata are now a compact edge e and a non-compact face f, '. A possible 
fourth case, in Figure 24(d), would be the operator me,, f, but it is meaningless because 

we cannot subdivide a compact face into two compact faces by a new non-compact edge. 
Otherwise, the topological regularity condition on strata is broken. Thus, geometric engine 

must manage this situation, calling the operator mve twice to subdivide each vertical edge 
by a new vertex, an only then to call the operator me f as usual. In short, the subdivision of 

a face by a new edge corresponds to the the operator ms Is2, where sIa new subdividing 

edge and s2 is a new face that stems from subdividing a face. 

(iii) mf s, kf s [solid subdivider (coalescer)]. The operator mf s=ms 2S3 (make face and solid) 

subdivides a solid into two by a new face. Figure 25(a) shows the subdivision mf,,,, s,, of a 

non-compact solid into two non-compact solids by a new non-compact face. The operator 

mf s,,,, Figure 25(b), subdivides a non-compact solid into two non-compact solids by a new 
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compact face (bounded by a circular edge). The operator mf s, Figure 25(c), subdivides 
a non-compact solid (in this example) into two solids, being the new solid compact, by a 
new compact face. This operator is also used to subdivide a compact solid by a compact 
face. In respect to the tentative Euler operator mf,,,, s, once again we have a topological 

regularity-breaking operator. 

(n) Thus, by generalisation, we obtain the dimension-independent operators ms' I sn (respec- 

tively, ks'- 1 Sn) to subdivide (respectively, coalesce) a n-stratum into two by a simply- 

connected (n - I) -stratum. 
The corresponding algorithm is as follows: 

ALGORITHm5.5. (Euler operator MS, -Isn) 

INPUT: 

(a) the n-stratum t to be subdivided. 
(b) the frontier subcomplex b of the subdividing (n - 1) -stratum s. 

Begin 

(1) Subdivides the boundary subcomplex c of t into two subcomplexes, c* and cl, by the 

frontier subcomplex b of s. [c* is c reshaped after subtracting the strata going into 

cl. The boundary subcomplex cl is created just before this transference of strata by 

instantiating the class Subcomplex. ] 

(2) Adds b to c* and cl. 
(3) Creates the new subdividing stratum s with dim(s)=n - 1. [it is an instance of the class 

Stratum. ] 
(4) Adds s to c* and ci . 
(5) Creates a new stratum ti, with dim(tl)=n, as a result of the subdivision of t into t* and 

tj. [It is an instance of the class StratuM. ] 

(6) Updates the bounding relationships between t* and c*. 

(7) Sets up the bounding relationships between tj and cl - 
(8) Re-arrange possible containment and intersection relationships between the re-defined 

subcomplex H and pre-existing subcomplexes. 

End 

6.2. n-stratum subdivider by a (n - 1) -stratum with a (n - 1) -hole. Unlike the first class of 

stratum subdividers (respectively, coalescers), this second class directly change the homotopic shape 
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of the stratum to be subdivided. These shape changes result from inserting a (n - I)-dimensional hole 
in such a stratum. However, these subdividers do not introduce any global holes in the object, i. e. 
they do not imply global shape changes. Thus, a n-stratum subdivider by a (n - I)-stratum with a 
(n - I)-hole is a topological operator. 

To understand how it works, let us remember that the simpler (n - I)-dimensional hole is S` 1. 

Moreover, a (n - I)-hole may be the frontier of a n-stratum. Thus, a (n - I)-hole only exists in a n- 
dimensional Euclidean space (i > n), possibly bounding a n-stratum. For example, So is embeddable 
in R>O, S1 is embeddable in R' 1, S2 is embeddable in R >2 

, and so on. 
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mee, iffh 
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FIGURE 26. Subdivision operators by holes. 

This suggests that, once again, we can use the induction method on dimension to define a dimen- 

sion-independent subdivider denoted by ms- 1 hn- I Sn h n_ where hi denotes a j-hole in a i-stratum: 
n-I ni 

(i) meehf fh, keehf fh [subdivider (coalescer) of a face by 1 -holes 'I The operator meehf fh 

(make edge, ]-dimensional edge hole, face and ]-dimensional face hole) subdivides a face 

into two faces by an edge with a I-dimensional hole. This edge is homeomorphic to S', 

which leaves a 1-hole in the original face. So, the corresponding Euler operator is meehf fh 

or ms 1 h, S2 h2l. This is illustrated in Figure 26(a). 

mf f, ss,, kf f, ss, [subdivider (coalescer) of a solid by 2-hole S2]. The operatormf f, ss, 

(make face, 2-dimensional face hole, solid and 2-dimensional solid hole) or MS2h2 S3h3 22 
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subdivides a solid into two solids by a 2-hole, i. e. a hole homeomorphiC S2 or 2-sphere. The 
2-hole is filled in by the new solid. This is illustrated in Figure 26(b). 

(n) Thus, by generalisation, we obtain the dimension-independent operators Msn- i hnn- Snhn- n 
(respectively, ksn-lhn-I IhIn-1) to subdivide (respectively, coalesce) a n-stratum into two n-I S 
by a (n - 1) -stratum with a (n - 1) -hole. 

The algorithm is as follows: 

ALGORITHm 5.6. (]Euler operator msn-lhn-I Snhnn_, ) n-I 

INPUT: 

(a) the n-stratum t to be subdivided. 
Begin 

(1) Creates a new stratum s, with dim(s)=n - 1. [It is an instance of the class Stratum. ] 

(2) Creates a new hole b for s, with dim(b)=n - 1. [it is an instance of the class Hole. ] 

(3) Creates a new empty subcomplex K, with dim(K)=n - 1. (It is an instance of the class 
Subcomplex. ] 

(4) Adds s to K. 

(5) Creates a new simply-connected stratum tj, with dim(tl)=n, as a result of splitting t into 

t* and tj. [it is an instance of the class StratuM. ] 

(6) Sets up K as the frontier subcomplex of tj. 

(7) Creates a new hole c for t, with dim(c)=n - 1, what reshapes t into t*. (It is an instance 

of the class Hole. ) 

(8) Sets up K as a new frontier subcomplex for t*. 

(9) Sets up K as the subcomplex for c. 
(10) Re-arrange possible containment and intersection relationships between the re-defined 

subcomplex H and pre-existing subcomplexes. 

End 

6.3. Subdivider of a n-stratum with a n-hole by a (n - i)-stratum with a (n - l)-hole. Let 

us consider a n-stratum with a n-hole; for example, the 2-sphere S2 is a 2-stratum with a 2-hole. The 

idea here is to subdivide S2 by S' (a 1-stratum with a 1-hole). The outcome consists of two faces 

without holes, but the global 2-hole remains. Thus, the global or homotopic shape of the original 

object is unchanged by local subdivision of a stratum. However, the local or homotopic shape of the 

subdivided stratum changes. The result is a local shape operator. 
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me eh f kf , keeh fMf c [subdivider (coalescer) of a face with a 2-hole by I -hole S 11 
. 

The 
operator me eh f kf c (make edge, I -dimensional edge hole, andface, kill 2-dimensionalface 
hole) subdivides a face with a 2-hole into two faces without 2-holes by a edge with a I- 
dimensional hole, as illustrated in Figure 27. Thus, meehf kf c=ms 

I hl S2kh 2 subdivides a 12 
2-stratum with a 2-hole f c=h2 

2 by a 1-stratum e*=sl with a 1-hole eh=hl implies the dis- 
appearance of the former 2-hole in the 2-stratum. 

(n) Generalising this operator to higher dimensions, we have the dimension-independent Euler 
operator ms'- 1 hn- I Sn khn n-I n, that is, the subdivider of a n-stratum. with a n-hole by a (n - I) - 
stratum with a (n - 1) -hole. The corresponding coalescer is then ks- i hn- I SnMhnn. n-I 

The algorithm is as follows: 

ALGORITHmS. 7. (Euler operator MS, -Ihn-ISnkhn) n-I n 

INPUT: 

(a) the n-stratum t to be subdivided. 
PRE-CONDITION: 

(a) t has the shape of a n-hole. 
Begin 

(1) Creates a new (subdividing) stratum s, with dim, (s)=n - 1. [It is an instance of the class 
Stratum. ] 

(2) Creates a new hole b for s, with dim(b)=n - 1. [It is an instance of the class Hole. ] 

(3) Creates a new empty subcomplex K, with dim(K)=n - 1. fit is an instance of the class 
Subcomplex. ] 

(4) Adds s to K. 

(5) Sets up b has hole of s. 
(6) Creates a new simply-connected stratum tj, with dim(tl)=n, as a result of splitting t into 

t* and tj. [it is an instance of the class StratuM. ] 

(7) Sets up K as the frontier subcomplex of tj. 

(8) Sets up K as the frontier subcomplex of t*. [t* is the reshaped t after subdivision. ] 

(9) Re-arrange possible containment and intersection relationships between the re-defined 

subcomplex H and pre-existing subcomplexes. 
End 
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FIGURE27. The Euler operator meehf kf,. 

7. Euler algebra IV: family of local hole constructors 

242 

Local hole constructors change the homotopic shape of strata, but not the homotopic shape of an 
object. Thus, these operators are local shape operators. As shown in the sequel, these operators can 
be considered as partial stratum coalescers. Thus, the point set or geometry of the underlying object 
is not changed. 

There are two subclasses of local hole constructors: 

(i) The first makes use of a Stratum Merging Technique (STA): two adjacent strata are merged 
into one. Because the merging involves two, instead of three strata, we say that this class is 

also a class of partial stratum coalescers. 
(ii) The second follows a Stratum Emerging Technique (SET): a manifold point subset of di- 

mension m of a n-stratum, with (m < n) emerges as or is transformed into a m-stratum. That 

is, the original n-stratum is split into two, instead three, strata: a n-stratum a m-stratum. 

Therefore, a pre-condition must be satisfied: both merging stratum (first case) and emerging 

stratum (second case) cannot possess any holes; otherwise, they fall in a different class Of Operators. 

7.1. Local hole constructors by merging a stratum. These operators must observe that follow- 

ing pre-conditions: 

9A merging stratum nust be void of holes; otherwise, the merging operation would involve 

three strata, instead of two. 

A merging stratum cannot be part of any cycle of the same dimension bounding the absorb- 

ing stratum; otherwise, the merging operation would involve three strata, instead of two. 

It is worthy to note the following: 

A merging n-stratum need not to be relatively closed in the object, because the first pre- 

condition imposes that it is homeomorphic to r. 

9 As a first consequence, the frontier of the 'disappearing' stratum is not required to exist in 

the object. 
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As a second consequence, a merging stratum is not required to be a cut stratum for the 
boundary of the absorbing stratum. Equivalently, the merge does not necessarily cause the 
separation of the boundary of the absorbing stratum into two boundary components. 

kvmeh_ 

(a) 

.. m2cm-, 9b 
kvmeý kvmeh 

filled S1 filled S' SI s 
NOT ADMISSIBLE 

(C) 

FIGURE 28. The Euler operator kvmeh- 

kvmf, kvmf, 
p kvmf, 00 0 

2 s2 S2 
NOT 

S2 s \(PI fllIed Sýf pI filled SNPI ADMISSIBLE 

(a) (b) (c) 

FIGURE 29. The Euler operator kvmf . 

Let us consider the local n-hole constructors by merging a vertex with a stratum of dimension 

>0: 

(i) kvmeh, mvkeh [Vertex bounding edge]. The operator kvmeh (kill vertex, make I-dimen- 

sional edge hole) also ksorahl', merges a vertex v with its bounding edge, which home- 

ornorphic to R The result is a I-dimensional edge hole eh, Figure 28(a). Note that v 

cannot bound any other edges; otherwise, the topological regularity condition is broken, 

Figure 28(c). 

(ii) kvinf , mvkf , [Vertex bounding face. ] The operator kvmf , (kill vertex, make 2-dimension- 

2, merges a vertex v with its bounding face, which homeomorphic alface hole), also ksomh2 

to V. The result is a 2-dimensional face hole f, Figure 29(a). Analogously, v cannot bound 

any other faces, in order to keep topological regularity on the stratification, Figure 29(c). 

(n) kvmh", mvkh" [Vertex bounding n-stratum. ] The operator kvmhn (kill vertex, make n- nnn 

dimensional stratum hole), also ksomhn, merges a vertex with an absorbing n-stratum, what n 

originates a new n-hole hn in the n-straturn. The operator mvkh" is its inverse operator. nn 
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n The kvmh" is only operator of this class that is inherently a compact Euler operator because the 
result is always a n-stratum with a n-hole, i. e. a relatively compact edge. However, its performance 
is not affected whether the resulting n-stratum with a n-hole bounds a relatively compact stratum, a 
relatively non-compact stratum, or neither. 

ke. mf-h 0 

(C) -- 

a4 

kemfh ke-mf-h 

(e) 

FIGURE 30. The Euler operator kemf 

Let us consider now the situation of an edge bounding a higher-dimensional stratum: 

kemf h, mekf h [Cut edge bounding face]. In Figure 30, the operator kemf h (kill edge, 

make I -dimensional face hole) or kemh 1, creates aI -dimensional hole f h=h 1 in a face by 22 

merging this face with one of its boundary cut edges e. Thus, because e is a cut edge for the 

boundary of its bounding face, the merge operation gives rise a new boundary component 
for such a face. Obviously, the inverse operator mekh' puts back the edge between those 2 
two vertices, and merges two boundary components of a face into one boundary component. 

(ii) kems, meks, [Cut edge bounding solid]. In Figure 3 1, the operator kems, (kill edge, 

make 2-dimensional solid hole) or kemh 2, 
creates a 2-dimensional hole s, =h 

2 in a solid by 33 

merging it with one of its boundary cut edges e. Obviously, this originates a new boundary 

component for the absorbing solid. 
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kemsc ke-msc 

(b) 

ke.. ms, 

kems, kems, 

CD 

(d) (e) 

kems, kems, 

(g) 

FIGURE 3 1. The Euler operator kems,. 

(n) kemh- 1n 
nj mekh" [Cut edge bounding n-stratum]. In higher dimensions, the merge of an 

edge with an absorbing n-stratum originates a new (n - I)-hole hnn-1 in the n-stratum, and 

a new boundary component as well. The operator me kh' I is its inverse operator. n 

Using the same approach for faces embedded in n-strata (n > 3), we end up with an analogous 
operator with edges replaced by faces: 

(i) kfMSh. mf kSh [Face bounding solid]. In Figure 32, the operator kf MSh (kill face, make 
]-dimensional solid hole) or kfnih', creates a I-dimensional hole Sh=h' for a solid. This 33 

hole Sh=h' corresponds to the frontier of the merging face f, which is homeomorphic to a 3 

I-sphere S1. Note that f is a face surrounded by a solid, and it is not necessarily relatively 

closed in that solid. That, its boundary may have several components. The inverse operator 

mf kSh puts back the face, what eliminates the corresponding I-dimensional hole Sh in a 

solid. 
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(n) knn frnhn- 1, mf khn- I [Face bounding n-stratum]. In higher dimensions, merging a face c 
with its surrounding n-stratum originates a new n 

(n - 1) -hole hl- I in a n-stratum. Again, the 
new hole is determined by the frontier of f, and its boundary may have several components. 
Some of these boundary components of f will be transformed into boundary components 
for the n-stratum after merging f with it. The operator mf khn n-1 is the inverse operator 

All this process can be generalised for any k-stratum bounding a n-stratum of dimension n>k. 
Merging such a bounding k-stratum with a surrounding n-stratum gives rise to a (n - k)-hole for 

kMy-k, with n>k, being MSkkhnn -k its inverse the n-stratum. So, the corresponding operator is ks 
n 

operator. The corresponding algorithm is as follows: 

kmhn-k) ALGORITHm 5.8. (Euler operator ks 
n 

INPUT: 

(a) the merging k-straturn s. 
(b) the absorbing n-straturn u. 

PRE-CONDITIONS: 

(a) sE Bd(u), what means that dim(s) < dim(u). 

(b) s is not in any k-cycle. 

Begin 

(1) Subdivides frontier component f (u) (which contains s) into two by s, i. e. f (u) = fj (u) U 

Isl U f2 (u). [ This implies an analogos subdivision of the boundary component b(u) C 

f (u), i. e. b(u) = b, (u) Uf s} U b2W such that bj (u) g f, (u) and b2W 9 f2(U)- 1 

(2) Creates a new (n - k)-dimensional local hole h for u. (It is an instance of the class Hole. ] 

(3) If f2(u) ýý 0 then [particular case of f (s) = 5ý 

(i) Identifies h with the new frontier component f2(u). 

(4) If b, (u) (u) has c components then 

Begin 

(i) Creates at most (c - 1) new boundary components for the surrounding stratum u. 

(ii) Identifies h with the frontier of s. 

End 

(5) Unites the point set of s to the point set of t. [Geometric merging. ] 

(6) Deletes s. 
End 
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kfinSh kf-MS-h 

(b) 

kf-ms-h kf-MS-h 
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0. ' ., -0 
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FIGURE 32. The Euler operator kf MSh- 
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7.2. Local hole constructors by emerging a stratum. Merging operators are caracterised by 

the union of the point sets of two adjacent strata. Unlike these Merging Euler operators, Emerging 

Euler operators are local hole constructors which are characterised by an emerging stratum, that is, 

a stratum whose point set is subtracted to the point set of another stratum of an object. Again, we 
impose the condition that the emerging k-stratum must be homeomorphic to k. The ambient n- 

stratum has no restrictions in respect to shape and compactness. Such an emerging k-stratum will 
determine a (n -I- k)-dimensional hole in a n-stratum, with n>k+1. 

Let us start with the case of a vertex emerging from faces and higher dimensional strata, Figu- 

re 33: 

10 MVf h, kvf h [Vertex in a face. ] The operator MVf h (make vertex and I -dimensional face 

hole) introduces an isolated vertex v in a face, what originates a1 -dimensional hole f h=h' 2 

through such a face, Figure 33(a) and (b). The point set of the new vertex is a singleton, i. e. 
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a set with a single point withdrawn from the face. Note that the face may be compact as in 
Figure 33(a) or non-compact as in Figure 33(b). 

mvs, kvsc (Vertex in a solid. ] The operator MVf h (make vertex and 2-dimensional solid 
hole) inserts a vertex v into a solid, what defines a 2-hole sc=h 

2 for this solid, Figure 33(c) 3 

and (d). Note that the solid (c) is compacted by its frontier, while the solid (d) is not bounded 
by its frontier in the object. 

mvh'-', kvh"-l [Vertex in a n-stratum. ] The operator mvh"-' (make verte-x and (n - I)- nnn 

dimensional hole in n-stratum) generates a (n - I)-dimensional hole h n-1 in a n-straturn n 

by stratifying one of its points into a vertex. This can be undone by the inverse operator 
n-I kvhn 

m Vfh m Vfh 
o* 

-"\ 

p 

-- 0 14ý 4ý 
% 

p 

2 2ýAlp»Utpl 2 S'UD 
(a) S'U(D D- 

(b) 
(D ý-41P1) ulpl 

0 mvs, 00 mvsc 0 

S2 UD 
3 S2 U(D 

3H(p»Ulp) D3 (D 3H1p»Ulpl 

(c) (d) 

FIGURE 33. The Euler operator mvhn-I that inserts a vertex with an stratum. n 

Let us take now edges as emerging strata: 

me Sh, ke Sh [Edge through or in a solid. ] The operator me Sh (make edge and I -dimensional 

solid hole) transforms a1 -dimensional manifold point subset of a solid into an edge e, with 

the restriction that the new edge must start and end at a frontier of such a solid. Several 

cases are shown in Figure 34. The new edge must be then homeomorphic to R. Inserting e 

through or in a solid produces a new 1 -dimensional hole Sh through or in such a solid. The 

inverse operator keSh undoes this hole Sh by merging e with a solid. 

e meh 
2, keh 2 [Edge through or in a 4-stratum. ] Following the same restrictions described 
44 

just above, a 2-hole h2 is defined by an edge e embedded in a 4-stratum. 4 
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mehl-2 keh'-2 [Edge through or in a n-stratum. ] The operator mehn-2 creates a (n - 2)- nnn 
hole hnn-2 defined by an edge e embedded in a n-stratum. The new edge is homeomorphic to 

n-2 TV, and its point set is subtracted from the ambient stratum point set. The operator kehn 

undoes the action of mehn n-2 by merging the point sets of e and its ambient stratum point 
set. 

Thus, in general, we have the operator MSkh'- I -k that inserts a k-stratum (homeomorphic to Rk) n 
with an embedding n-stratum, in which such a k-stratum defines a (n -1- k) -hole hn- I -k. n 

The algorithm for this Euler operator follows: 

khý-I-k) ALGORITHm 5.9. (Euler operator ms n 
INPUT: 

(a) the dimension dim(s) =k of the new emerging k-stratum s. 

(b) the point set or geometry of s. 

(c) the ambient n-stratum u. 

PRE-CONDITIONS: 

(a) s must be homeomorphic to Rk. 

(b) s must not form a (n - I)-cycle bounding u. 

(c) n> k+ 1 

Begin 

(1) Creates a new stratum s, with dim(s)=k. [it is an instance of the class Stratum. ] 

(2) Creates a new local hole h for u, with dim(h)=n -1-k. [it is an instance of the class 

Hole. ] 

(3) Creates a new subcomplex h for h. [It is an instance of the class Subcomplex. ] 

(4) Adds s to h. 

End 

8. Euler algebra V. - family of stratum attachers 

This section deals with a new class of Euler operators which allow us to attach (respectively, 

detach) relatively non-compact strata to (respectively, from) an object. The attaching (respectively, 

detaching) n-stratum must be homeomorphic to Rn. 

These operators feature the following properties: 

e Shape variance. The global shape of the object changes because a new point set is added to 

an object. In particular, a new non-compact stratum component is inserted into the object. 
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FIGURE 34. The Euler operator me Sh- 

However, the number of global holes does not change, and the number of local holes of 
strata neither. 

9 Compactness variance. The compact point subset of an object does not change either. How- 

ever, because a relatively non-compact stratum is to be attached to (respectively, detached 
from) an object, the non-compact point subset of an object will certainly change. 

Therefore, these operators deal with the non-compact strata and components of the object in the 

relative topology induced by the ambient space. Let us enumerate them: 

meocEcxý, ke(ýOEcýo. The operator mec3(3Ec3c) (make edge and edge component) introduces a 

new relatively non-compact edge e,,,, and its corresponding non-compact edge component 
E,,,, into the object, Figure 35(a). The subscript oo says us that the new edge is not compact 
in the data structure, i. e. at least one of its frontier strata is missing in the data structure. The 

operator kecýcEcýo undoes the effect of mec3c)Ecýc, and is then its inverse. 

(ii) mf OOFOO, kf c)OFOc). The operator mf,,,, F... (make face and face component) introduces a 

new relatively non-compact face f,,,,, as well as its respective non-compact face component 

e,,,,, into the object Figure 35(b). As for the operator for edges, at least one of the frontier 

strata of the new face must be missing in the object. The operator kfcýc)Fcxý is the inverse 
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operator of mf OOFOO, and deletes a non-compact face and its corresponding component from 
an object. 

(11) ms' S" , ks' Sn an 00 00 . The operator MSn Sn (make stratum and stratum component) d its 00 00 00 00 
inverse ksn Sn (kill stratum and stratum component) generalise previous operators for 00 00 
non-compact n-dimensional strata. 

The dimension-independent Euler operator MSn Sn has then the following algorithm: 00 00 

ALGORITHm 5.10. (Euler operator MSn Sn 00 00 
INPUT: 

(a) the dimension dim(s,,,,, ) =n of the new relatively non-compact n-stratum s.. 
(b) the point set or geometry of s,,,. 
(c) the boundary subcompiex b of sc, 

PRE-CONDITIONS: 

(a) sco must be homeomorphic to Rn. 

(b) b must not belong to a (n - 1)-hole. 

Begin 

(1) Creates a new stratum s,,,,, with dim(s,,,, )=n. [it is an instance of the class Stratum. ) 

(2) Creates a new frontier subcomplex f for soo. [It is an instance of the class Subcomplex. ] 

(3) Sets up b as boundary subcomplex b for f. 

(4) Creates a new non-compact stratum component S,,,, with dim(SOO)=n. [it is an instance 

of the class Component. ] 

(5) Adds Soo to the set of components of the object. 

End 

For convenience, the X-geometric kernel includes explicitly the attachers (detachers) meOOEOO 

(keooEcýO), mf OOFOO (kf OOFw), msOOSOO (kvmSoo) for non-compact edges, faces and solids, because 

most applications in geometric modelling handle objects in R3. All these operators call the dimension- 

independent Euler operators ms' S' (make n-stratum and n-dimensional stratum component) and 00 00 
ksn Sn (kill n-stratum, and k-dimensional stratum component), respectively. 00 00 

00 must be homeomorphic to RI does not prevent the insertion REMARK 14. The fact that Sn 

(respectively, deletion) a non-compact stratum with holes into (respectively, from) and object. This 

can be carried out with the proto-Euler operator ms,,,. _ which calls first the Euler operators that 
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FIGURE 35. Attachers and detachers of relatively non-compact strata. 
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remove all the holes of such a stratum Sn , and then calls the operator ms' S" to proceed to its 00 00 Oc 
deletion. 

9. Euler algebra VI: family of 'black & decker' hole constructors 

These operators could be named direct hole constructors or 'black & decker' hole constructors. 
They constitute the first class of Euler operators which do not change the number of strata of an object. 
Only the number of holes is changed. Hence, we call them 'black & decker' hole constructors. 

For obvious reasons, the new hole to be made in or through a n-stratum has dimension k at most, 

with I<k<n-1, and such an n-straturn cannot have the shape of a n-hole. Note that k>I because 

only faces and higher dimensional strata may carry holes of lower dimension holes. According to the 

Euler formula, all strata are connected, i. e. they do not possess 0-holes. 

Besides, it is assumed that such a n-stratum is already relatively non-compact. But, if we want 

to make a 'black & decker' hole in a compact stratum, we have to uncompact it first by means of 

adequate Euler uncompacters, and only then a 'black & decker' hole maker can be invoked. Such 

Euler uncompacters will be described further ahead. 
The 'black-decker' makers for holes are: 

'0 Mf oohFoch, kf ochFooh. The operator Mf oohF, ),, h (make ]-dimensional face hole and I- 

dimensional face component hole) makes a hole f och through a face and, consequently, 

a hole Fcx)h through its face component, Figure 36(a). Note that the situation illustrated in 
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Figure 36(b) is not admissible viewing that the 'black-decker' perforation of S2 does not 
make any hole through S2. It just redefines its frontier. 
MSoohSooh, ksoohSooh. The operator MSoohSooh (make 1-dimensional solid hole and 1- 
dimensional solid component hole) makes a 'black-decker' hole through a solid, what also 
originates a hole through its component, Figure 36(c). The inadmissible situation occurs in 
R4 when we try to make a 'black-decker' hole through S 3. 

msoocS(ýOc, kscýOcSooc- The operator ms,, OcS,, Oc (make 2-dimensional solid hole and 2- 
dimensional solid component hole) makes a 2-dimensional 'black-decker' hole in a solid, 
Figure 36(d). Note the missing point inside the solid prevents any 2-sphere containing it in 
the solid to contract into a point. 

Mhk Hk khkoonHkoon. The generalisation to higher dimensions gives these operators, with oon oon, 
1<k< n- 1. 

Therefore, the algorithm for the Euler operator Mhk k 
oonHoon is as follows: 

ALGORITHm 5.11. (Euler operator mhk A 
00 oon) 

INPUT: 

(a) the ambient non-compact stratum s, with dim(s) =n 
(b) the dimension of the new 'black & decker' hole h, with dim(h) = k. 

(c) the point set or geometry g of h in s. 
PRE-CONDITIONS: 

(a) s must be relatively non-compact 
(b) 1<k< n- 1. 

Begin 

(1) Determines the non-compact component S of s. 

(2) Creates a new 'black & decker' hole h for s, with dim(h)=k. [It is an instance of the class 

Hole. ] 

(3) Sets up g as the geometry of h. 

(4) Creates a new component hole H for S, with dim(H)=k. [It is an instance of the class 

Hole. ] 

(5) Sets up h as the local counterpart for H. 

End 
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FIGURE 36. 'Black & Decker' hole constructors for relatively non-compact strata. 

10. Euler algebra VII: family of local compacters 
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Because the 1-geometric kernel handles both compact and non-compact strata, we need Euler 

operators capable of transforming a compact stratum into a non-compact stratum, and vice-versa. 
These Euler operators are here called local compacters. They are subsumed under general attach- 

ers, and detachers of strata. In fact, they are invoked by the geometric kernel engine whenever the 

attachment or detachment of a stratum changes the local compactness of adjacent strata. 
Let us see how they work: 

ke 9 ke,,, me, me,,,, ke. [Edge compacter] The operator kecme (kill non-compact edge, ma 

compact edge) transforms a non-compact edge into a compact edge by only changing its 

compactness state. Figure 37 gives us an example of application of this operator It is 

invoked three times after the insertion of a new vertex at the origin in R2 to compact three 

edges. The bottom edge remains a non-compact edge because, despite the new vertex, 

another vertex is missing in its frontier. 

9 kf,,, mf, mf,,,, kf. [Face compacter] The operator kf,, mf (kill non -compact face, make 

compactface) is the compacter for faces. It transforms a non-compact face into a compact 

face by changing its compactness state. This is illustrated in Figure 37, where the only face 

in the object becomes a compact face as another consequence of the incoming vertex. 

ksn Msn' Msn ksn. [Stratum compacterl The generalised n-dimensional stratum compacter 00 cc 
ks, ', ms' is used to compact a n-stratum. 
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It is clear that the compactification of a stratum requires the usage of different Euler operators. 
The corresponding local compacter is always necessary, but insufficient to complete the entire com- 
pactification operation. For example, in Figure 37, the compactification of the strata starts by calling 
the operator mvC. It is up to geometric kernel engine to decide which operators are called in order 
to compact three edges and one face. Amongst these operators we certainly find local compacters. 
Note that, according to the topological regularity conditions, the attaching stratum -a vertex, in this 

case- must be of dimension less than the enclosing strata. 

ke-me 
ke-me 
ke-me 
kf-mf 

FIGURE 37. Use of stratum compacters after attaching a vertex. 

The algorithm for the Euler operator kso'cms' can be described as foRows: 

ALGORITHm 5.12. (Euler operator ks" ms") 00 
INPUT: 

(a) the non-compact stratum s, with dim(s) =n 

(b) the compactifying stratum u. 

PRE-CONDITIONS: 

(a) dim(u) < dim(s) [To conform with regularity conditions. ] 

Begin 

(1) Adds u to boundary subcomplex b(s) of s, which is now a (n - I)-cycle. [The frontier 

subcomplex f (s) is droped from the point set of u, which is now associated with b(s) by 

means of u itself. ] 
(2) Changes the compactness state of s from 'RNC' ('Relatively Non-Compact') to 'RC' 

('Relatively Compact'). 

End 

For convenience, the 1-geometric kernel includes the operators ke, ", me, kf , mf, kv, "mv, and 

respective inverses for geometric modelling applications up to W. These operators are particular 

cases of the dimension-independent operator ks' ms". Thus, internally, they call ks" ms". 00 00 
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11. Euler algebra VIII: family of local hole compacters 

In addition to strata, local holes can be also compacted. A non-compact local hole becomes 

compact by filling in it with a suited stratum, or just a point set. This family of local hole compacters 
assumes that the filling 'material' is a point set already associated to a stratum. 

The local hole compacters are: 

kf oohMf hi Mf c)ohkf h- [1-dimensional hole compacterforfaces] The operator kf 00hMfh 
(kill non-compact face hole, make compact face hole) literally changes the state 'RNC' 

(Relatively Non-Compact) of a face hole to the state 'RC' (Relatively Compact). This is 

illustrated in Figure 38. In Figure 38(a), a one-point hole fooh is filled in with a vertex, 

what transforms it into a relatively compact face hole f h. The vertex is attached by means 

of the operator mvC, and then the operator kf oohMfh is called to change compactness state 

of the face hole. In Figure 38(b), the non-compact face hole f,,, ch consists of the union of 

three point sets: two one-point sets, each one associated with a vertex, and I-dimensional 

point set between those two vertices. So, filling in f, "h with an edge between these two 

vertices results in a compact face hole fh with the same underlying point set, but now com- 

pletely stratified and relatively closed. Thus, the operator kf ,,, hMf h comes after attaching 

the edge to that face through the operator mekC. Still, in Figure 3 8(c), another f ,,. h is trans- 

formed into fh after attaching a circular edge, i. e. an edge with the shape of- a1 -hole. This 

attachment is, of course, carried out the operator meehCCh- 

No more hole compacters are possible for faces because every face with the shape of a 

2-hole is already compact. 
ksc*hInSh, MSc)ohkSh- [1-dimensional hole compacterfor solids] The operator ks,, ChMSh 

(kill 1-dimensional non-compact solid hole, make 1-dimensional compact solid hole) is 

the 1-dimensional hole compacter for solids. It transforms a non-compact solid hole Sc'oh 

into a compact solid hole Sh. Figure 38(d) illustrates the most simple case of a solid hole 

Sooh through a non-compact solid: just a missing point. Filling in Sooh with such a point 

transforms Sooh into a 1-dimensional compact solid hole Sh. The usage of kS,, OhMSh in 

Figure 38(c) is far more subtle. In this case, non-compact edge completely fills in a 1- 

dimensional non-compact solid hole Sooh; hence the compactification Of Sooh into Sh. To be 

sure of this just imagine the homotopic contraction of this non-compact edge into a point. 

The result is a deformation of the non-compact cylinder in Figure 38(c) into the non-compact 

torus in Figure 38(d). 
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kswcmsc, ms,,. cksc. [2-dimensional hole compacterfor solids] The operator kscocmsc 
(kill 2-dimensional non-compact solid hole, make 2-dimensional compact solid hole) is a 2- 
dimensional hole compacter for solids. Figure 38(e), a simple 2-dimensional non-compact 
hole s,,, in a solid is depicted. It becomes a 2-dimensional compact hole sc by filling in it 

with a vertex. In Figure 38(f), the compactification of the only 2-hole in a solid is obtained 

by attaching an edge. 
No more hole compacters are possible for solids because every solid with the shape of a 
3-hole is already compact in R4. 

khk Mhk Inhk khk. [k-dimensional hole compacterfor n-stratal The generalised k-di- oon n, oon n 

mensional hole compacter khkoonmhkn is used to compact a k-dimensional hole of a n-stratum, 

with 1<k< n- 1. 

Its algorithm is as follows: 

ALGORITHm 5.13. (Euler operator khk 
nMhk) 00 n 

INPUT: 

(a) the non-compact local hole h, with dim(h) =k 
(b) the compactifying stratum u. 

PRE-CONDITIONS: 

(a) 1<k<n-1, where n is the dimension of the ambient stratum. 

Begin 

(1) Determines the ambient stratum s of h. 

(2) Adds u to boundary subcomplex b(s) of s, which has the homotopic shape of a (k)-hole. 

[The frontier subcomplex f (s) is droped from the point set of u, which is now associated 

with b(s) by means of u itself. ] 

(3) Changes the compactness state of s from 'RNC' ('Relatively Non-Compact) to 'RC' 

('Relatively Compact'). 

End 

12. Euler algebra IX: family of global compacters 

Global compactness-handling Euler operators constitute a new class of operators. The designer 

is free to add/remove any stratum to/from an object at any time and order, so the Z-geometric kernel 

provides various families of Euler operators to handle the relative compactness of strata and objects. 
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FIGURE 38. Local hole compacters. 

The focus of this section is on families of global compacters, i. e. compacters that regulate the global 
or homotopic shape of an object. 

12.1. Alexandroff one-point compacters. These global compacters perform Alexandroff one- 
point compactifications on manifolds or strata. They are aplicable wheneyer we want to compact a 
stratum whose frontier is a point. This surely implies global shape changes on an object. 

Let us see how they work: 

" kEooMCh, mEmkCh. The operator kEooMCh (kill non-compact edge component, make I- 

dimensional component hole) is a global compacter that finishes the Alexandroff one-com- 

pactification of an edge, as illustrated in Figure 39(a). The overall Alexandroff one-point 

compactification involves three Euler operators, namely: mvC, keocpe, and the global com- 

pacter kEooMCh. The non-compact edge component EOC' is eliminated by the incoming ver- 

tex, whose attachment to the non-compact edge also produces a new 1-dimensional global 

hole Ch. That is, the attaching vertex changes the relative compactness of the target edge, as 

well as the global shape of an object. 

" kFoOmCc, mFOOkCc. The operator kFOOmCc (kill non-compact face component, make 2- 

dimensional component hole) finishes the Alexandroff one-point compactification of a face. 
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So, a non-compact face component Fcýo is eliminated and a new global 2-dimensional com- 
ponent hole C, is formed by the union of the face and the attaching vertex, Figure 40(a). 
Obviously, this operator is preceeded by the operators mvC and the local compacter kf c .. mf - 

kCn n, MCn kHn ooMH . The operator kCn MHn (kill non-compact n-stratum component, make 00 00 
n-dimensional component hole) This operator takes the Alexandroff one-point compactifi- 
cation to higher dimensions. 

mvC ED ke-me ED kE-mCh 

mvC E) 2(9(keme ED kEmCh) 

mvC @ n(&(ke-me (D kEmCh) 

aals : tals 

FIGURE 39. Alexandroff one-point compactification of edge bouquets through the 
local compacter ke,,. me and global compacter kEoc)MCh- 

A nice property of the compacters (and, in general, the Euler operators) is their independence in 

relation to shape complexity. The following two examples corroborate our statement. 

EXAMPLE 5.14. Let us look again at Figure 39. It illustrates the construction of bouquets of 

1-holes by attaching a vertex. The compact geometry Euler operator mvC is called to attach a vertex 

and a vertex-component to each bouquet. 
D- 

Douquet with one edge petal, Figure 39(a). After attaching a vertex by means of mVC, the first bou- 

quet consists of only one petal. This petal consists of an edge. This edge will become a compact edge 

after applying the local compacter ke,,, me. Because a 1-hole is formed by attaching a vertex, the 

non-compact geometry Euler operator kEc)oMCh is called. 
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Bouquet with two edge petals, Figure 39(b). Now, suppose we have two edge petals instead of only 
one. After calling the operator mvC to attach a vertex, we invoke both the operators ke ... me and 
kEooMCh for each petal. 
Bouquet with n edge petals, Figure 39(c). In case we have a bouquet of n edge petals, we call the 
attaching -vertex operator mvC once, and both operators ke ... me and kE,,,, MCh for each one of the 
n petals. The first operator will make each edge a compact edge, and the second will eliminates an 
edge-component E,,.,, and at the same time creates aI -hole Ch - 

mvC ED (kf-mf E) kF-mCc) 
0 

S2\j P) s2 

mvC (D 2(&(kf-mf 6) kF-mC, ) 
00 

s 2US2ýj 
P) 

00 

slus, 

FIGURE 40. Alexandroff one-point compactification of face bouquets through the 
local compacter kf ,, mf and global compacter kFOOmCc. 

EXAMPLE 5.15. Let us look at the face bouquets in Figure 40. It illustrates the construction of 

n-bouquets of 2-dimensional holes by attaching a vertex to n faces simultaneously. The compact ge- 

ometry Euler operator mvC is called once for each bouquet to attach a vertex and a vertex-component. 
Bouquet with one face petal, Figure 40(a). After attaching a vertex, the first bouquet has only one 
face petal. The local compacter kf,,,, mf transforms its non-compact face kf,, into a compact face 

f. At last, the global compacter kFcýOmCc finishes the Alexandroff one-point compactification of the 

face petal, what originates the appearance of a new global 2-dimensional hole Cc and the elimination 

of the non-compact face component kF,,,. 

Bouquet with two face petals, Figure 40(b). Now, suppose we have two face petals instead of only 

one. In this case, all we have to do is to call both operators kf , mf and kFcýOmFc for each petal. 
Bouquet with n face petals. For a bouquet of n face petals, both operators kf... mf and kFocmCc are 

called n times, once for each petal. The operator kf c .. mf carries out the local compactification of 

each face f,,,,, while the operator kF,,,, mC, does the global compactification of its corresponding 

component F,, O. 
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Remarkably, these operators work quite well independently of whether a petal stratum bounds 
higher dimensional strata or not. For example, let us consider a1 -bouquet of edges bounding one or 
more faces, as illustrated in Figure 41. The sequence of Euler operators to be used is the same as in 
Figure 39(a). The difference is that we need now additional operators to compact the bounded faces. 

The algorithm for these Alexandroff one-point compacters is then as follows: 

ALGORITHm 5.14. (Euler operator kCn MHn) 00 
INPUT: 

(a) the non-compact component Coo still associated to a compact stratum s, with dim(s) =n 
(b) the already attached vertex v. 

PRE-CONDITIONS: 

(a) s is homeomorphic to Rn. 

(b) dim(Fr(s)) =0 
(c) Fr(s) is connected. 

Begin 

(1) Creates a new global hole H, with dim(H) = n. (It is an instance of the class Hole. ] 
(2) Creates a new subcomplex H for H. [it is an instance of the class Subcomplex. ] 
(3) Adds s and v to H. 

(4) Labels H as a n-cycle. Determines the subcomplex I of the vertex component C con- 
cerning v. 

(5) Adds s to 1, updating dim(I) = dim(s). 

(6) Adds v to the boundary subcomplex of s. [This automatically poses v in the frontier 

subcomplex of s. ] 

(7) Drops down the point set or geometry g of v from the frontier subcomplex of s. [At this 

stage v and its geometry g are already subsumed to boundary subcomplex of s, and, 

consequently, to frontier subcomplex. ] 

(8) Eliminates the non-compact component C,,,, associated to s. 
End 

12.2. Global compacters for non-compact stratum components without holes. This subfa- 

mily of global compacters is defined by removing the pre-conditions (b) and (c) of the Alexandroff 

one-point compacters. However, the condition (a) holds. Remember that the compacting stratum u 

must be in the frontier of the stratum s to be compacted, and therefore dim(u) < dim(s) for spaces 
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FIGURE 4 1. Compactness handler kEc)oMCh for edge bounding faces. 
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with nice local properties like subanalytic sets. Thus, if dim(s) = 3, then dim(u) can be 0,1, or 2 at 
maximum. That is, a solid can be compacted by a vertex, an edge, or a face. 

These global compacters are as follows: 

kEcýOC, mEcýOC. The operator kE,,, C (kill non-compact edge component and component) is 

the global compacter for a non-compact edge component E,,, whose frontier is not con- 

nected. More precisely, its frontier consists of two point components, Figure 42(a) and (b). 
This operator carries out the global compactification of an edge, after it has been locally 

compacted, i. e. after using the local compacter ke,, me. This global compactification is 

made by eliminating the non-compact edge component E,,,,. Simultaneously, this global 

compacter is also a global shaper because it bridges the two frontier components of an edge 
by the edge itself, being then necessary to eliminate one of those vertex components C. 
kFOOCh, mFOOCh. The operator kFoc)Ch (kill non-compactface componentand ]-dimensional 

hole) terminates the compactification of a non-compact face component F,,,,. Its frontier is 

required to be already in the object and forms a global 1-dimensional hole Ch. Taking into 

account that F,,, ) fills in Ch, this hole has to be eliminated from the object; hence, kF,, C)Ch- 
Figure 43 shows the three possible ways (a), (b), (c) to compact a non-compact face com- 

ponent by means of a vertex, an edge, and an edge with aI -hole, respectively. 

kSOOCc, mSoc)Cc. The operator kS,, OCc (kill non-compact solid component and 2-dimensio- 

nal hole) runs the last stage of the compactification of a solid component S, At this stage, 

the frontier of kS,,,, is already compacted, and thus it has already the shape of a 2-hole Cc. 

Therefore, this 2-hole is already filled in by a solid. Consequently, both the non-compact 

solid component S,,, and the 2-hole Cc must be eliminated from the object. Figure 44 shows 

some cases (a), (b), (c), (d) to compact a non-compact solid component as explained later. 
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kC" H" MCn Hn The operator kCn H'"- 1 (kill non -compact n -stra tum componen t and 00 00 00 
(n - I)-dimensional hole) generalises the global compactification of a non-compact stratum 
component to higher dimensions. 

mvC E) ke-me ED kE-C 
V 

(a) 

mvC E) ke-me (D kE-C 

0-0 (9, 
E) 

e 
face Euler operators 

(b) 

FIGURE 42. Global compacter kE,,, C for non-compact edge components. 

d ce 

mvC @ (ke-me (E) kE-mCh) E) (kf-mf ED kF-Cj, ) 

face 

1--l'-ý 
meCh E) (kf-mf E) kF-Ch) 

e 

f 

(b) 

face 

meehCCh ED (kf-mf (1) kF-Cj, ) 

f 

(C) 

C) 

FIGURE 43. Global compacter kFOOCh for non-compact face components. 
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face solid 
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Fic, URE 44. Global compacter kS,,,, C, for non-compact solid components. 
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This class of global compacters are only valid for n-dimensional non-compact stratum compo- 

nents which are homeomorphic to R' and are not Alexandroff one-point compactifiable. n-strata 
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homeomorphic to S' are not considered since they are already compact. Besides, the frontier of a 
n-straturn is of dimension (n - 1) at maximum in the class of subanalytic sets. That is, the frontier of 
a n-stratum is compacted by attaching either a vertex, an edge, a face, a solid, or a (n - I)-stratum. 
It is also expected that the compactification of a n-stratum requires first the compactification of its 
frontier. That is, if the frontier of a n-stratum is of dimension k (0 <k<n- 1), edge compacters 
are invoked first, followed by face compacters, solid compacters, ..., and (n - I)-stratum compacters 
at last. Therefore, the sequence of Euler operators used in a compactification operation follows a 
predefined order. The compactification runs from the lower-dimensional strata to higher-dimensional 
strata. And, it is clear that the compactification of a non-compact stratum component always starts 
with a compact-geometry Euler operator. 

This class of global compacters has the following algorithm: 

ALGORITHm 5.15. (Euler operator kCn Hn-I 00 
INPUT: 

(a) the already compacted stratum s, with dim(s) =n-1. 
(b) the already formed global hole H, with dim(H) =n-1. 
(c) the non-compact component C. to be compacted, with dim(C,, O) = 

PRE-CONDITIONS: 

(a) C,,, is horneornorphic to Rn. [This condition will be weakened to C,,. with all of its holes 

already compacted. ] 

Begin 

(1) Breaks up the link between H and its subcomplex. [This subcomplex remains in the 

object as frontier subcomplex of the n-stratum whose non-compact component is Coo. ] 

(2) Deletes H. 

(3) Deletes C,, O. [This requires to break up the link between Coo and its corresponding 

stratum. ] 
End 

Let us detail these global compacters with some examples. 

EXAMPLE 5.16. Compactification of an edge by attaching a vertex, Figure 42(a). AR we want 

to do is to attach a new vertex v to the object. The original object consists of one vertex v=1, one 

non-compact edge e,,,,, = 1, one vertex component C=1, and one non-compact edge component Eoo = 1. 

The resulting object after attaching the new vertex has two vertices v=2, one relatively closed edge 
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e=1, and one relatively compact component C=1. That is, resulting object has no longer non-compact 
strata and non-compact stratum components. In other words, the attachment of v determines the global 
compactification of the non-compact edge component, what involves the sequence mvC E9 keome ED 
kE,,,, C of Euler operators: 
mvC. This operator introduces an isolated vertex v and, consequently, a vertex component C into the 
object. Recall that it is a compact geometry operator. It works as the relatively non-compact edge 
was not there. 
ke,,,, me. Despite the attachment of the second vertex, the edge remains a non-compact edge in the 
object. This means that the object is left temporarily, topologically inconsistent. To come back a 
consistent topological state, we first call the local edge compacter ke,,,, me. In addition to change the 
compactness state of current edge, this operator attaches the previous vertex to the frontier of such an 
edge. 
kE,, C. After that, we apply the global compacter kEOOC to finish the compactification of the edge. 
The compactification of this edge terminates with the elimination of the corresponding non-compact 
edge component Ecx3. Such an edge bridges now its two frontier vertices. Consequently, the vertex 
component C must be eliminated. The result is an object with just one component. 

EXAMPLE 5.17. Compactification ofan edge bounding aface by attaching a vertex, Figure 42(b). 

Once again, remember that compactification operators work quite independently of the strata adjacent 

to the compactifying stratum. This is illustrated in Figure 42(b), where the compactifying stratum is 

a vertex. There two strata to be compacted: an edge and a face. In this case, the edge to be compacted 

bounds a face, but the Euler operators to compact it are exactly the same as those for the object in 

Figure 42(a). The difference is that now we have also a face to compact. 

EXAMPLE 5.18. Compactification of aface by attaching a vertex, Figure 43(a). Let f:,. be such a 

face to which lacks a vertex. Thus, to compact f, ý we have first to attach a single vertex to its frontier, 

i. e. to compact its frontier Fr(fiý). The compactification of Fr(fi,. ) is made by compactifying first 

the frontier edge e,,,. through the operators kewme and kEoOMCh. The compactification of Fr(f,,,:, ). 

implies the compactification of the fi,, itself, so the compactifiers kf,,, mf and kFOO Ch must be called 

afterwards. That is, the compactification of f,, o is made by calling the following Euler operators: 

mvC. This is the first Euler operator to go into action, a compact-geometry Euler operator It attaches 

the missing vertex to frontier of the face. It triggers on the following operators. 

keoome. As a consequence of attaching the missing vertex, we have to compact first the edge bound- 

ing our face. This is carried out by calling the compactness transformer keoome for edges. 
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kEooMCh- Compacting an edge by attaching a missing vertex gives rise to a 1-hole Ch; hence the 
operator kEooMCh. This operator finishes the compactification of the edge by eliminating the non- 
compact edge component E,,.. 
kf ... mf. After that, we have to compact our face by calling the compactness transformer kf oomf for 
faces. 

kFmCh. The compactification of the face terminates after eliminating its non-compact face compo- 
nent F,, O, and the 1-hole Ch formed previously by the operator kEooMCh used to compact Fr(f ). 00 
Consequently, the face fills in the 1 -hole Ch originated by the compactification of the bounding edge; 
in other words, the 1-hole Ch is eliminated. Hence, the operator kFOOCh is called. 

EXAMPLE 5.19. Compactification of a face by attaching an edge, Figure 43(b). Here, Fr(f. ) 

lacks an edge in the object. Note that Bd(f ... ) is compact, but even so Fr(f,,. ) has to be completed. 
The compactification of f,,,, is carried out by calling the following Euler operators: 

meCh. This compact-geometry Euler operator forms a1 -hole Ch by attaching an edge e to the model. 
In this case, attaching e completes Fr(fi,. ); in fact, Fr(fi,. ) has the global shape of a 1-hole. 

kf,,, mf. After completing Fr(f,,, ), the compactness transformer kf ... mf is called to transform the 

non-compact face f,,. into the compact face f. 

kFooCh. The completion of Fr(fi. ) has introduced a 1-hole Ch into the object that is eliminated by 

filling in it with a face f. This compact face f has been introduced in the object by the previous opera- 

tor, which has transformed f ,. into f. However, the corresponding non-compact face component FOO 

has remained. Hence, we call the operator kFOOCh to maintain the topological validity of the object. 

Thus, the operators kf ,, mf and kFcýoCh have been called to transform fw into f and eliminate the 

1 -hole Ch generated by the completion of Fr(fw). 

EXAMPLE 5.20. Compactification of a face by attaching an edge with a 1-hole, Figure 43(c). 

Here, Fr(f,,,, ) as a whole is missing in the model, that is, Bd(f,,,, ) = 0. The frontier Fr(f. ) can be in- 

troduced into the object as a whole by attaching an edge e with a1 -hole eh. Thus, the compactification 

of f,,. is carried out by calling the following Euler operators: 

meehCCh. This compact-geometry Euler operator adds an edge e with a 1-hole eh to the object, which 

constitutes a component C with the global shape of a I-hole Ch. This ring-shaped edge will be the 

frontier of the face to be compacted, say Fr(fi,. ). 

kf .. pf . After attaching the previous ring-shaped edge, the compactness transformer kf mf is 

cafled to transform the non-compact face f. into the compact face f. 
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kFOOCh. The remaining non-compact face component F,, and global 1-hole Ch are eliminated by 
invoking the operator kFooCh- 

EXAMPLE 5.21. Different ways to compact of a solid, Figure 44. It is clear that a solid can be 
compacted by attaching (a) a vertex, (b) an edge homeomorphic to R1, (c) an edge with the shape 
of a 1-hole, (d) a face homeomorphic to R2, or (e) by a face with the shape of a 2-hole. As usual, 
the compactification starts with a compact-geometry Euler operator and proceeds by compactifying 
the strata of increasing dimension. Therefore, the compactification of a solid requires the preliminary 
compactification of its bounding edges and faces. It finishes with the corresponding local and global 
compacters, say ksps and kSOOCc. 

12-3. Global compacters for non-compact stratum components with holes. Let us suppose 
now that non-compact components possess holes. That is, we relax the condition (a) of the previous 
two subfamilies of global compacters. So, we have: 

(i) kFoohC, mFmhC. The operator kFoohC (kill 1-dimensional non-compact hole ofnon-compact 
face component and component) is called to finish the compactification of a face component 
hole F, )%: )h- It compactifies a hole through a non-compact face, not the face itself. A face 

with holes is compacted as a face without holes, with the pre-condition that all of its holes 

are already compacted. The compactification of a face with holes (i. e. not homeomorphic 

to R2) is accomplished by attaching either a compacting vertex or compacting edge to its 

last non-compact frontier component, no matter whether it is a inner or outer component. 
For example, the face with holes depicted in Figure 45 becomes a compact face after filling 

in the last non-compact hole with a vertex or attaching a circular edge to its outer frontier. 

In any case, such a face becomes compact after calling the operator kF,,. hC for each hole, 

in order to compact each non-compact face component hole, and the operators kf,,. mf and 

kFOOCh. These two latter operators behaviour as the face were a face without holes, see- 

ing they compact the outer frontier component of it. In short, the compactification of a 

face with holes terminates by calling the compacter kF,,,, hC as many times as the number 

of holes through such a face, followed by the usual local and global compacters for faces 

without holes, kf,, Omf and FooCh- 

(id) kS,, O, C, mS,,,,, C. The operator kS,, O, C (kill 2-dimensional non-compact hole ofnon-compact 

solid component and component) is the compacter for 2-dimensional non-compact holes in 

solid components. It compacts holes, not components. Similar to face components, a non- 

compact solid component is compacted by the usual local and global compacters for solids 
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without holes. If a solid has holes, we have first to compact its holes, and only then the outer 
frontier component. 

(n) kHn-IC, MHn-1C. The operator kHn-IC (kill (n-l)-dimensional non-compact hole of n- oon oon oon 
dimensional non-compact component and component) generalises previous operators to 

n-1 higher dimensional non-compact holes. It compactifies a (n - l)-dimensional hole Hoon 
of a n-dimensional non-compact component. Such compactification of a hole determines a 
compact component (that coincides with a inner frontier component of a n-stratum) C in the 
object that is deleted from the object because of its merging to the outer frontier component 
of such a n-stratum. 

This class of global compacters has the following algorithm: 

ALGORITHm 5.16. (Euler operator kH'- 1 C) oon 
INPUT: 

(a) the non-compact hole H of non-compact face component FOO. 
(b) the corresponding compacted, but not yet inner frontier component C. 

PRE-CONDITIONS: 

(a) the corresponding face hole h is already compacted. 
Begin 

(1) Determines the face f of h. 

(2) Detaches H from Foo. 

(3) Detaches H from h. 

(4) Deletes H. 

(5) Detaches the subcomplex of C from C and attaches it to boundary subcomplex of 
(6) Deletes C. 

End 

EXAMPLE 5.22. Let us consider a non-compact face (& = 1) with three 1-dimensional non- 

compact holes (fooh = 3), Figure 45. This determines a non-compact face component (F. = 1) with 

three 1 -dimensional non-compact holes (F, )oh = 3). Figure 45 illustrates two ways to compact such a 

non-compact face component and its corresponding non-compact face. 

First alternative on right: First inner frontier components or holes, then outer frontier component. 
Each inner frontier component of the non-compact face is compacted by first attaching a single vertex 
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FIGURE 45. Compactification of outer and inner frontier components of a face using 

kFOOC, ) and kFoohCj respectively. 

through the compact-geometry Euler operator mvc. Each vertex constitutes an inner frontier of our 

face. Consequently, each I-dimensional non-compact hole fooh through such a face is transformed 

into a compact 1-hole fh by running the Euler operator kf,, hMf h- 

On the other hand, the outer frontier component of our face is compacted as follows: (i) the compact- 

geometry operator meehCCh is called to attach an edge e with a 1-hole eh, which is, in global shape 

terms, a component C with a 1-hole Ch, and constitutes the outer frontier of our face; (ii) as long as 

the last frontier component -the outer frontier component, in this case- is formed in the object we 

apply the operator kFoohC three times, one for each non-compact 1-hole of our non-compact face to 
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finish the compactification of those three holes. Consequently, the corresponding three inner frontier 
components, which are compact components in their own, are eliminated due to the connection es- 
tablished between the inner frontier components and the outer frontier component of the face being 
compacted; (iii) after compactifying all holes of our face, it is compacted as a face without holes by 

calling the local compacter kf,,,, mf and the global compacter kF,. )Ch as usual. The deleted global 
1 -hole Chconcerns the outer frontier component of our face that has been introduced before by the 
operator meehCCh- 
Second alternative on left: First outerfrontier component, then inner ontier componen or holes fir ts 
Here, we make usage of the same operators, but following a different order. Basically, we swap the 

starting operators mvC, kf c)ohMf h and the ending operator meehCCh, because now the compactifica- 
tion is begins with the outer frontier component and ends with a inner component. 

Note that every non-compact n-component with holes has only one outer frontier component, but 

possibly many inner frontier components or holes. For example, for a non-compact face component, 
the operator kFc3oCh is called once, but the operator kF,,. hC is called to compact every inner frontier 

component'or hole. The compacters for faces, and higher dimensional strata in general, do not depend 

on the adjacent strata nor the shape complexity of the object. This is illustrated in the following 

example. 

EXAMPLE 5.23. (Bouquets offace petals). Let us look at Figure 46. It shows the construction of 
bouquets of faces by attaching a vertex. This vertex is the centre of a bouquet, while the faces are its 

petals. Such a vertex is attached to the object by applying the compact-geometry Euler operator mvC. 
The result is a bouquet with one or more face-petals. Nevertheless, we have to proceed the local and 

global shape changes (e. g. compactness, connectivity, etc) on the petals and the object. 

1-bouquet, Figure 46(a). After attaching a vertex to the object, we obtain a bouquet consisting of 

only one face-petal. The necessary local and global shape arrangements to be made on face-petals are 

described by the following sequenceof Euler operators: 

(i) kf oohMfh to compact a1 -dimensional non-compact hole of a petal face; 

(ii) kFOOhC to compact the corresponding 1-dimensional non-compact hole of its non-compact 

face component; 
(iii) kf wmf ED kF(,,:, Ch to compact the outer frontier component of a petal face; 

2-bouquet, Figure 46(b). After attaching the vertex to the bouquet, we call the previous sequence of 

Euler operators twice, one for each petal face. 
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n-bouquet, Figure 46(c). Analogously, if a bouquet has n face-petals, such a sequence of Euler 

operators is called n times, once for each petal. 

mvC E) (kf-hMfh (D kF-IC (D kf-mf ED kF-Ch) 

0(a)O 
mvC (D 2 (9 (kf- h Mfh E) kF-jC E) kf-mf E) kF-Ch) 

(b) 
EX D 

mvC ED n (9 (kf- h Mfh (D kF-jC (D kf-mf 0 kF-Ch) 

(c) 

FIGURE 46. Global compacters kF,, Ch and kFcx)hC for bouquets of faces. 

Note that, the petals of a bouquet may be of any dimension > 0. In Figure 47, the bouquet has 

two edge petals and a face petal. 

mvc 
G20 (keme $ kE.. mCh) 
ED (kfhmfh G kR*C (B kfýmf ED kF-Ch) 

FiGURE 47. Compacters for a mixed-dimensional bouquet. 
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EXAMPLE 5.24. Figure 47 illustrates the attachment of a vertex to a mixed-dimensional bouquet. 
As before, we use the compact-geometry Euler operator mvC to attach the vertex to a bouquet. Con- 

sequently, it is up to the geometric engine to detect the number of petals and dimension of each one. 
Doing so, we see that two 1-dimensional petals and one 2-dimensional petal require local compact- 
ness changes, which in turn lead to global shape changes on the resulting object. So, the non-compact 
edge e,,,, of each 1-dimensional petal is transformed into a compact edge e by applying the operator 
ke ... me. This causes the removal of the corresponding non-compact edge-component E00 and the 

appearance of a global 1-hole Ch in the object; hence, the operator kEooMCh is called twice, one for 

each 1 -dimensional petal. As far as the face-petal is concerned we have to call the sequence of Euler 

operators used in previous example to carry out the local compactness changes on that face, as well 

as local and global shape changes on that face and resulting object, respectively. 

These examples show us how the Euler operators are independent of the shape complexity of 

an object. That is, we are able to attach or detach any stratum to an object at any time, since the 

topological regularity conditions are satisfied. 
The algorithm to compact a n-dimensional non-compact component is as follows: 

ALGORITHm 5.17. (Compactification algorithm for non-compact face components) 

INPUT: 

(a) the non-compact component F,,. to be compacted, with dim(F,,,, ) = 2. 

Begin 

(1) If FOO has i inner 1 -holes then 

(i) Calls i ED kFoohC 

(2) Calls kf Oomf E) kFOOCh [Compact F. as if it were a face without holes. ] 

End 

13. Boolean algebras 

13.1. Boolean algebra of subanalytic sets. We know from Chapter 3 that the property of being 

subanalytic is closed under finite union, finite intersection and difference of any two subanalytic 

sets. That is, set-theoretic operators preserve subanalyticity. Equivalently, we say that subanalytic 

sets form a Boolean class. This makes us to think of Boolean operators as possible operators to 

construct (subanalytic) objects in general. This is not a new idea in geometric modelling as the early 

geometric modellers (e. g. PADL modeller, [112,97]) emulated a Boolean algebra of sernialgebraic 

sets to construct regularised solid objects. 
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Unfortunately, a Boolean algebra of point sets, either they are semialgebraic, semianalytic or 
subanalytic, is alone useless to shape objects because of the following shortcomings: 

Small shape coverage. They are strictly geometric operators since they operate only on 
point sets. No other sorts of shape can be handled. For a point set, we can check whether 
or not a point belongs to it (point membership test), to its interior, exterior or frontier. But, 
a point set is not a stratified set. Consequently, it is not possible to distinguish a point at a 
comer from any other point in the frontier of, for example, a cube. Thus, Boolean operators 
can not be used as general shape operators seeing that they are confined to geometric shapes. 
They are inadequate to operate on other sorts of shape as, for example, homotopic shapes. 
Small interactivity. The manipulation of point sets on computers is basically symbolic. Point 

sets lack a stratified structure, so the graphical or algorithmic interaction with geometric 

entities as vertices or edges of a solid is not possible, simply because they do not exist in a 

point set. In a point set, we have only points, no strata at all. This prevents an engineering 
designer to pick up or select vertices, edges, and so on, of a geometric object in order to 

carry out a particular design operation. 

In short, Boolean operators are essentially geometric operators because they only handle point 

sets. They are of less importance as general shape operators to model objects of interest for most 

geometric applications. However, they may have an important role in definition of the geometry of 

strata of an object, or even subobjects as required by some applications as, for example, finite element 

modelling. 

13.2. Boolean algebra of stratified subanalytic sets. Let us consider now stratified sets instead 

of point sets. Recall that a stratified set X= (X, IX 1) is a pair that consists of a set X= JmJ of strata 

and its underlying point set IX I, and satisfies a set of conditions of how strata fit together, as seen in 

Chapter 3. By abuse of language, we sometimes call Xa stratified set. A basic property of a stratified 

set X is that X= UMi is the disjoint union of its strata Mi. Therefore, each point of IX I=UAI lies 

in the interior of exactly one stratum of X. 

Let us see under which conditions stratified sets form a closed Boolean algebra. 

EXAMPLE 5.25. Let us look at Figure 48. It shows a stratified set X with two spanning stra- 

tified subsets K and L; hence, X=KUL= JVI 
7 V2 7 V3 , v4, v5, e 1, e2, e3, e4, e5 }. That is, the union of 

two stratified subsets is a stratified subset of a stratified set, Figure 48(a). Besides, the intersection 

KnL = JV2 
7 V3 } is also a stratified subset of X, Figure 48(b). This agrees to a Thom property required 

for stratifications that any finite union and intersection of stratified subsets are stratified subsets (see 
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Chapter 3 for more details). This mimics a similar property for cell complexes and simplicial com- 
plexes. In respect to difference operator between two stratified subsets, the result is also a stratified 
subset, but not relatively compact one. Figure 48(c) shows the difference between K and L, that is, 
K-L= {VhV4, V5, eje4, e5}. 

VI 

0 
V2 

VI 
0 

ei 
cl 

,m 
e4 e5 

, v3 V4 v5 

K=(Vl9V2, V3, V4, V5, ei, e4, e5} Kr)]L-- I V2, V3 K-L--f VI, V4, V5, ei, e4, e5) 
L--IV2, V3, e2, e3) 
X=KUL--(Vl9V2, V3, v4, v5, ei, e2, e3, e4, e5I 

(a) (b) (C) 

FIGURE 48. Boolean operators of subsets of a stratified set. 

v5 ei V4 

I 

X=fVl, V2, el) )Cny=o 
Y=IV3, V4, V5,, V6,, e2, e3,, e4} 
XUY= ( VI V2, V3, V4, V5,, V6, e,, e2,, e3, e4) 

(a) (b) 

FIGURE 49. Boolean operators of stratified sets. 

X-Y=X 

(c) 

Despite the subsets of a stratified set X form a Boolean algebra in X, in general, stratified sets do 

not constitute a Boolean class. This is illustrated by the following example. 

VI ei V2 
00 

EXAMPLE 5.26. Let us take the stratified sets X= JVI) V2, el I and Y= JV3 
7 V4, v5 , v6, e2, e3, e4l 

in W, Figure 49. The union of X and Y is a set that consists of the strata of X and the strata of Y, 

V4 V3 VS 

V3 
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Xuy = IVI, V2, el, V3, V4, V5, v6, e2, e3, e4l, which is not a stratified set because el intersects e2 and 
e4, that is, there are two points shared by different strata. Therefore, XUY is not a stratified set, 
although IXI u JYJ is a subanalytic set ýmd IXI U JYJ = IX U YI. The intersection of two stratified sets 
is always a stratified set, butlxl n jyj o Ix n Y1. In fact, in Figure 49, x nY=o, so Ix n YJ = o, 
but jxj n jyj= 1p, qj, where p is the intersection point of IeIInI e2 1, and q is the intersection point 
of lei In je4j. The fact that there are no strata shared by both stratified sets X and Y implies that 
X-Y=X, which is also a stratified set. But, unfortunately, IX I-IYI= IX I-fp, q} which is not 

equal to IX - YJ = IXI. 

This example shows that stratified sets do not constitute a Boolean class. However, a Boolean 

algebra can be generated by first overstratifying both operands in such a way that overlapping or 
intersecting points are 'eliminated 2. More formally, we have: 

DEFINITION 5.1. The s, tratified intersectionx nY of twostratified sets, X= (IX I, X) and Y= 

(I Y 1, Y), is defined as foRows: 

(i) xnY= x* n Y*, where X* and Y* are overstratifications of X and Y, respectively, due to 

their intersecting stratified subset; 
(ii) IXI = jX*j and JYJ = IY*I; 

(iii) lx*lnly*l=lx*ny*l. 
DEFINITION 5.2. The stratified union XUY of two stratified sets, X= (IX 1, X) and Y= (I Y 1, Y), 

is defined as follows: 

(i) XUY=X*UY , where X* and Y* are overstratifications of X and Y, respectively, due to 

their intersecting stratified subset; 
(ii) IXI = jX*j and JYJ = IY*I; 

(iii) jx* Iu IY* I= jx* u Y* I- 

DEFINITION 5.3. The stratified difference X i-i Y of two stratified sets, X= (IX 1, X) and Y= 

(I Y 1, Y), is defined as foRows: 

(i) XHYX* -Y* , where X* and Y* are overstratifications of X and Y, respectively, due to 

their intersecting stratified subset; 

(ii) IXI = jX*j and JYJ = IY*I; 

(iii) IX* I- ly* I= IX* - Y* 1. 

2Conversely, Djinn partitions (i. e. overstratifications) are defined in terms of set operators (see, for example, [85] and 

[87]). Tbus, the algorithms underlying our stratified set operators are distinct from those of Djinn. 
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FIGURE 50. Stratified Boolean operators of stratified sets. 

XHY 

(c) 

EXAMPLE 5.27. Let us take again the two stratified sets X, Y depicted in Figure 49(a). First, 

we have to compute their intersection subset, which consists of two strata, v* I and v2* corresponding 
to intersection points p and q, respectively. Each intersection stratum subdivides overlapping strata 

of X and Y. So, v2* subdivides el EX and e2 E Y, whilst v*1 subdivides el EX and e4 E Y. That is, 2 
the intersecting subset imposes an overstratification X* for X and an overstratification Y* for Y. The 

resulting stratified union of X and Y is pictured in Figure 50(a). The stratified intersectionxny is 

nothing more than the intersection subset of X* and Y*, Figure 50(b). At last, the stratified difference 
XHY is drawn in Figure 50(c). 

The stratified Boolean algebra (s, I Li, n, H}) iSsurely closed in the class S of stratified subanaly- 

tic sets, where JU, nj H} is the set of stratified Boolean operators, as defined above. Stratified Boolean 

operators are useful to implement high-level geometric operations such as set-theoretic operations of 

extant geometric modellers, or even attachment and detachment of design form features of current 

CAD/CAM systems. Therefore, they are richer shape operators than conventional Boolean operators. 

Besides, they admit graphical interaction with the designer. However, they do not provide any means 

to control locally and globally the shape of an object. However, stratified Boolean operators must 

satisfy the requirement that all the strata of their operands are at least C1. That is, strata are not 

allowed to have differential singularities. Otherwise, the result may not be a stratified set. This is 

illustrated by the following example. (An analogous counterexample can be found in [87, p. 690]. ) 

277 

VI 
eeI e* V2 

COUNTEREXAMPLE 5.1. Let X= IvI, v2, el } and Y= {V3 
, v4, e2} be two stratified sets, three 

strata each, Figure 51(a). The corresponding point sets are IXI = Ivi IU lei IU Iv2I = (0 x 1) U 
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e 

V2 

(a) 

VI 

e3 
V4 

(b) 

FIGURE 5 1. Stratified Boolean operators may fail for non-smooth strata. 

(Ox]-1,1[) U (0 x (-1)) and jyj = IV31 U le2l U IV41 = (0 x 2) U (0 x [0, l[U]0,2[xO) U (2 x 0), res- 
pectively. The stratified intersection XnY=f vi, e3 } is depicted in Figure 51 (b) is not a strati- 
fied set because e3 is not a relatively open stratum. In fact, le3l = jell nle2l = (oxi - 11 1[) n (o x 
[0, l[U]0,2[xO) =0x [0,1[, which is not relatively open in the y-axis as the origin 0x0 is included. 

Thus, stratified Boolean operators require smooth strata for stratified set operands. This forces 

the stratification of non-smooth strata. However, some geometric applications such as, for example, 
finite element applications may require such non-smooth strata. A possible solution for this problem 
is to keep such non-smooth strata as stratified subsets or subcomplexes in their object. This enables 
the geometric persistence of non-smooth strata of an object. 

14. Mathematical design issues: shape operators 

Boolean operators are important shape operators because they may be used as: 

Set-theoretic operators of point sets. They can be used for sets which are point sets, i. e. 

sets defined as subsets of some Euclidean space. They are geometric operators, i. e. they 

operate on point sets, regardless whether those point sets are point sets of strata, varieties, 

semivarieties, or even more complicated point sets. Thus, they are essential either for purely 

geometric kernels (e. g. CSG modellers) or for stratified geometric kernels (B-rep modellers) 

which define the geometry of each stratum as a Boolean combination of point sets. For 

example, in Figure 52, the de-partition of fj and f2 into f3 by e2 implies the geometric 

union of Ifi 1, If2 1, and je2 I, i. e. the point set Jf3j = Ifi IU le2l U Jf2 1. This shows that Boolean 

operators may be subsumed under Euler operators to carry out geometric operations on point 

sets of strata. Equivalently, the geometric union of Ifi 1, If2 1, and I e3l may be demanded by 

merging of f2, f3, and el through the Euler operator kef (kill edge andface). Even in 
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the case that the geometry of a stratum is not defined by booleans, but by its supporting or 
relative geometry instead, set-theoretic operators are still important to determine geometric 
intersection of strata, i. e. the point set that results from the intersection of two stratum point 
sets. Clearly, this geometric intersection can be easily generalised to all stratum point sets 
of two objects in order to determine the geometric intersection of them. Thus, set-theoretic 
operators of point sets are indispensable to any kind of geometric modeller. 
Set-theoretic operators of strata. They do not constitute a Boolean algebra in the class of 
regular stratified sets. Nevertheless, they can be used to constract and de-construct stratified 
objects if the following condition is satisfied: strata of both operands are disjoint, i. e. they 
do not overlap. Otherwise, the resulting set of strata is not surely a stratified set. Recall 

that stratified set-theoretic operators overstratify the overlapping strata of their operands be- 

fore applying the corresponding set-theoretic operators. Therefore, apart of the overlapping 

strata, the stratified set-theoretic operators work as usual set-theoretic operators because it 

is ensured a priori that combining strata do not. overlap. They can be used to define other 

stratified operators such as those introduced by Middleditch et al. [87], the partition and 
de-partition operators in particular. 

0 Attachment operations (ED). By definition, an attacher is an operator that changes the ge- 

ometry (or the point set underlying) of an object by the attachment of a stratum. They are 

said to be constructors or makers of stratified objects. They allow the stepwise construction 

of stratified objects by attaching strata, as illustrated in Figure 53. To attach a stratum to 

a stratified object X we use an Euler operator, or alternatively the set-theoretic union of X 

with a stratified singleton containing such a stratum. We start with the empty stratified set 

X=0. The subsequent steps attach fvl}, lei}, Jv2J, Je2j, If, }, and Jf2j, namely: 

(1) x=xU Ivil = Ivil 

(2) X=XU fell= Ivi, el} 

(3) X=XU {v2J = Jvl, el, v2} 

(4) X=XU Je2J = Jvl, el, v2, e2} 

(5) X=XU If, I= fvl, el, v2, e21 M 

(6) X =Xu{f2J = Jvl, el, v2, e2J1J2} 

Note that the point sets of the operands do no overlap. So, this disjoint union is also 

called dis oint attacher. Obviously, the same result is obtained by using the stratified set- 

theoretic union. In case of overlapping of underlying Point sets, we cannot use set-theoretic 

union as an attacher. Instead, we use the stratified set-theoretic union, to which we call 
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V 

(a) 

X<--kef(e29 fl, f2) 

lf3l= Vil u le2l U V21 

ei 

VI 

(b) 

FIGURE 52. Topological and geometric departitions of two faces and an edge into a face. 
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jointed attacher. These attachers can be easily generalised for stratified objects that embody, 
for example, form features. Why do we need these operators if they are just stratified set 
operators? Because they are more closely related to the design level than set operators. 
Some design operations such as, for example, the interactive attachment of a through hole 
to a part or just a vertex to a line segment, can be carried out by a designer without explicitly 
referring to set operators. The attachment operation of two stratified sets X and Y is denoted 
by X 03 Y. 

Detachment operations (B). Analogously, the set-theoretic difference operator can be used 
to detach strata from a stratified object. For example, to delete the edge e2 from X in Fi- 

gure 54(a), we apply the set-theoretic difference such that X=X- fe2}. The result is 

shown in Figure 54(b). The same set-theoretic operator is used to delete the relatively non- 

compact face fi,, I, Figure 54(c). This is a disjoint detacher seeing that the point sets of 
both operands of the set-theoretic difference do not overlap. It is equivalent to the disjoint 

detacher based on the stratified set-theoretic difference. Analogously, ajointed detacher can 
be defined in terms of the stratified set-theoretic difference. However, it cannot be given in 

terms of the usual set-theoretic difference because the point sets of operands may overlap. 
The detachment operation of two stratified sets X and Y is denoted by X E3 Y. 

Partition operations (b). Partition or subdivision operators are 'trivial' Euler operators. The 

question now is to know whether these partitioners can be implemented through set-theoretic 

operators. To answer to this question, we have first to remember that set-theoretic operations 

of stratified objects operate on sets of strata, not on point sets. Consequently, attaching or 

uniting an edge to a face in order to subdivide it into two faces is nonsense. The result is an 

edge overlapping a face; no subdivision occurs through this face. Thus, we obtain a set of 

strata which is not a stratified set. We can think of boolean intersection as possible solution 

to subdivide strata, but what it does is a mere selection of strata shared by both stratified 
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operands and form a new stratified object with them. Thus, the only solution here is the 
stratified set-theoretic union. Let us take a simple example, Figure 55. The subdivision of 
the edge eI into two edges e2 and e3 by the vertex V3 may be carried out by the Euler operator 
mve. Alternatively, the partition of el by V3 can be made by the stratified set-theoretic union 
of X which includes el and Y that is a singleton stratified set which includes v3. The partition 
operation of two stratified sets X and Y is denoted by X bY. 
De-partition operations (d). De-partition operator is the inverse of the partition operator, 
and is denoted by XdY. Basically, it merges two equi-dimensional strata of dimension k 
incident at a common stratum of dimension k-I into one stratum of dimension k. Besides, 
the point set of the resulting stratum is the set-theoretic union of the point sets of the three 
involved strata. Let us look at the Figure 56. In (a), we have two stratified objects X- 
fVI 

i V2 i V3, e2, e4} and Y= {V3 }- So, Y is the intersection set of X and Y. What we want to 
do is to de-partition X against Y. In other words, we intend to merge V3 with e2 and e3. The 
de-partition operation proceeds at two levels. At the first level, the geometric level, a new 

point set lei I= le2l U Ivi JU le3l is created as the union of the point sets of the merging strata. 
At the second level, the stratification level, the de-partition operation consists of three steps: 
(i) first, the set Z=f v3, e2, e3 I of merging strata is created; (ii) Z is detached from X, i. e. we 
determine XBZ; (iii) a new stratum el and a stratified singleton W= {eI I are generated; 

(iv) el is attached to the current object through the attachment operator such that the final 

result isX bZ =XE3ZE13W. 

In short, the stratified set-theoretic operators seem to be an alternative to Euler operators as the 

fundamental shape operators of regular stratified subanalytic objects. In fact, the attachment, detach- 

ment, partition, and departition operators can be implemented on the top of stratified set-theoretic 

operators. A possible disadvantage of these operators is that they basically operate on strata and their 

corresponding point sets. They do not operate on absent point sets, say holes. So, unless we have 

adequate shape reasoning algorithms to infer and control the homotopic shape of strata and strati- 

fied objects, a stratified geometric kernel based on stratified set-theoretic operators may fail to satisfy 

significant requirements in some geometric applications such as, for example, form-feature based 

modelling. Stratified set-theoretic operators are good enough to attach and detach form features, but 

inadequate to recognise their shape transmutations as explained in [46]. Obviously, this problem can 

be solved by implementing such stratified set-theoretic operators on the top of the Euler operators 

described in this chapter, similar to what is usual in conventional B-rep modellers. 
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FIGURE 53. Stratum attachment through Boolean and Euler operators. 
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FIGURE 54. Stratum detachment through Boolean and Euler operators. 

The fundamental shape operators of the 1-kernel are Euler operators because: 
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Geometric coverage. They are applicable to a large class of point sets, say subanalytic sets. 

Thus, they are general from the geometry point of view. At this point, we can say that they 

have the same advantages as the Boolean algebra of subanalytic sets. 
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FIGURE 55. Partition of an edge through Boolean and Euler operators. 
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FIGURE 56. De-partition of an edge through Boolean and Euler operators. 
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Representation independence. Similar to the Boolean algebra of subanalytic sets, Euler 

operators are not geometry-independent. In fact, the nice local properties of regular strati- 
fications are a consequence of the geometry of the underlying point sets. However, the set- 
theoretic construction of stratified objects in the parametric form is not clear yet, while the 
Eulerian construction of the same stratified objects is straightforward, regardless of whether 
stratum point sets are implicit representations and parametric representations of geometry. 
Thus, the 1-kernel admits the simultaneous representation of point sets which are either 
level sets (or 'kernels') or images of maps. It is even possible to stitch two surfaces with 
distinct geometric representations to observe a pre-defined order of continuity or smooth- 

ness, by making use of the Boardman symbols of contact. But, this is an open issue to future 

research. 
Topological coverage. Either Eulerians or stratified Booleans do not impose restrictions of 
the topological coverage of strata or stratified objects. Strata are not required to be relatively 

closed, neither relatively open, or both. They are not required to be relatively bounded 

either. That is, they not required to be relatively compact. For Euler operators, this is a 
consequence of the general Euler formula we have used. 
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Homotopic coverage. Some Euler operators manipulate local holes, some Euler operators 
global holes, and other Euler operators handle both local and global holes. Thus, Euler 
operators enable the design of data structures that enable the representation of homotopic 
shapes, as well as homology-based homotopic reasoning algorithms. The X-kernel even 
enables the construction of 'black & decker' holes, i. e. pure point set holes in the sense 
that no stratum is used to denote such a hole. Unlike Euler operators, stratified set-theoretic 
operators do not recognize homotopic shapes. They operate only on sets of strata, inde- 
pendently of their homotopic shape. Obviously, this places difficult problems to overcome 
during shape processing and construction of objects, unless such stratified Booleans operate 
on a homological structure or Thom incidence scheme. Thus, Euler operators allow us to 
have a complete control on the homotopic shape of strata and objects. 
Algebraic atomicity. All stratified operators such as stratified set-theoretic operators, stratum 
attachers and detachers, partitioners and de-partitioners, and respective variants as those 
introduced in [87] can be expressed and implemented in terms of Euler operators. 
Hadwiger shape coverage. Stratified set-theoretic operators are better adequate to manipu- 
late Hadwiger or convex shapes than Euler operators. In fact, Hadwiger shapes as strati- 
fied subobjects are a priori easily removed from or inserted into an object by applying the 

stratified difference or the stratified union, respectively. However, to the light of the shape 
theory axioms of Chapter 1, Hadwiger shapes are related to homotopic shapes. Therefore, 

any change in the Hadwiger ring of an object most probably changes the hornotopy shape 

structure of it. Unfortunately, stratified Booleans are alien to homotopic shape changes. In 

order to keep the control on the shape of an object is then necessary to implement stratified 

set-theoretic operators on the top of Euler operators. 
Stratification closure. They inherently control the topological regularity or topological sta- 
bility of the stratification of an object whenever its shape changes. This is not clear for shape 

changes caused by stratified set-theoretic operators. 

Dimension-independence. A significant disadvantage of conventional Euler operators is that 

they have been restricted to objects of dimension up to 3. One of the achievements of this 

thesis is just their generalisation to multi-dimensional objects in Rn. Moreover, such objects, 

and their strata, need not be relatively compact. In terms of software engineering design, 

dimension-independence has two immediate consequences. First, it has a smaller kernel in 

terms of programming language code. The second consequence is ease of maintenance. 



15. Z-GEOMETRIC KERNEL REVISITED 285 

Order independence. Usually, conventional Euler operators are associated with relatively 
compact objects. They follow the principle that a stratum cannot be created before its 
frontier. This means that there is an order in the construction of objects. Unlike these 
conventional Euler operators, those of 1-kernel. allow us to construct objects without a pre- 
defined order of attaching or detaching strata. Equivalently, a stratum or a subobject may 
be removed from or inserted into the target object at any time and order. This is possible 
because the strata and objects are not necessarily relatively compact. In other words, this 
is a consequence of having a bigger topological coverage or a more general Euler formula. 
Order-independent design of objects is another significant achievement of this thesis. 

15. X-geometric kernel revisited 

The 1-geometric kernel has been designed to meet the requirements of a general-purpose shape 

modeller, either it is a geometric modeller, a feature modeller, a CAD system, a finite element system, 

or any other possible geometry machines such as, for example, morphing and animation systems. Its 

general design comes from three important points: representation independence, dimension indepen- 

dence, and design-order independence of objects. Let us focus on the latter two issues. 

15.1. Dimension independence. In Chapter 4, a dimension-independent data structure has been 

introduced. It enables a unified view of disparate research areas such as computer graphics, solid and 

geometric modelling, and computational geometry But, without an algebra of dimension-independent 

shape operators capable of handling a variety of objects with distinct properties as required for the 

more diverse geometric applications, such a data structure would be possibly useless. Moreover, 

shape operators must be atomic in such a way that any shape operation required for any geometric 

application can be constructed or programmed by a sequence of those atomic shape operators. The 

dimension-independent Euler operators fulfill these important requirements. 

15.2. Design order independence. Current CAD systems imposes serious design restrictions. 

For example, CAD systems usually do not provide any means, say n-dimensional design operators', 

to construct an object by attaching or detaching strata stepwise by direct graphical interaction. An 

n-dimensional design operator simply either attaches a n-stratum to an object or detaches a n-stratum 

from it. So, a design attacher is denoted by mv (make vertex), me (make edge), mf (makeface), and so 

on. The corresponding design detachers are the inverses of the attachers; so, we have kv (kill vertex), 

ke (kill edge), kf (kill face), etc. It is clear that they internally call an appropriate Euler operator 
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to make the corresponding attachment of a stratum. These n-dimensional design operators have two 
major advantages: 

Operator encapsulation. They encapsulate the details of seemingly complicated Euler ope- 
rators. 
Drafting-like design. They enable the design of objects by following the principles of ma- 
nual drafting and computer-assisted drafting. 

However, the use of n-dimensional design operators is only possible if we have an approach to 
map each n-dimensional design operator into a sequence of Euler operators. Surely, such an approach 
requires important homology-based reasoning algorithms and some kind of event-driven program- 
ming. It is an open issue for future research. The stepwise construction of a tetrahedron through 
design operators is illustrated in Figure 57, and described by the following example. 

EXAMPLE 5.28. (Construction of a tetrahedron without order constraints on the strata to be 

attached to it. ) The construction steps illustrated in Figure 57 are as follows: 

my. This design operator intends to add a vertex to an empty object. It calls the Euler operator mvC 
to add a point-component to the empty object. 
3 xme. The designer uses the operator me three times to add three edges to the object. The operator 

me calls the Euler operator meOOEOO to add a non-compact edge to the object. 
2xmy. Adding two vertices to the object makes two of its edges compact. So, the Euler operators 

mvC and keome are called twice. 
3 xme. The first operator me calls the Euler operator meCh which makes a 1-dimensional hole Ch 

by inserting an edge between two vertices. The second operator me calls me. E,,,, which adds a 

non-compact edge to the object. 

mf . It calls mf kCh to kill a previously created 1-dimensional hole by attaching a face (the back face). 

my. The attaching of the fourth vertex connecting the remaining two non-compact edges gives rise 

to the appearance of a 1-dimensional hole. This is made by calling the following Euler operators: 

mvC to create a vertex-component, 2x KeoOme to make two edges compact, kE,, OC to kill an edge- 

component and a vertex-component, and kEooMCh to kill the remaining edge-component and create 

the left 1 -dimensional hole. 

me. It calls meCh to attach an edge between two vertices. It implies the appearance of the right 

1 -dimensional hole. 
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3 xmf . The first mf eliminates the left I -dimensional hole by calling mf kCh. The second mf elim- 
inates the right I -dimensional hole by calling mf kCh. The third mf calls mf C, to attach the bottom 
face producing a 2-cycle (or shell), what, in homotopy terms, is called a 2-dimensional hole. 

0 

mv mvc 

. 
30me 3(gme-E- 

20mv 2(9(mvC (D ke-me @ kE-C) 
20me E) 10(meCh ED me-E-) 
I Omf ED 10 MJkch 

1(&mv (mvC E) ke-me E) kE-C) E) (ke-me E) kE-mCh) 
(D I Ome E) 1(9(meCh) 
ED 30mf (D 2(9(mfkCh) E) 10(kfC, ) 

FIGURE 57. Construction of a tetrahedron. 

The design operators are not Euler operators. The designer need not know too much about the 

mathematics underlying the geometric kernel. The designer usually intends to add or remove vertices, 

edges, faces, etc. to construct an engineering artefact. Usually, a designer does not have a rigorous 

idea of shape of an object, and thus he/she is not aware of shape changes that may occur by adding 

or removing a stratum. It should be up to geometric engine to process such shape changes, either 

they are local, zonal, or global to an object. Surely, homological reasoning algorithms are required 
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in order to determine which shape changes may occur in consequence of inserting or removing a 
stratum. This causes a series of Euler operators to be called in order to perform such shape changes. 
Therefore, design operators encapsulate Euler operators. 

However, current CAD systems do not provide such multi-dimensional facilities in designing 
artefacts, in particular artefacts with 'incomplete boundaries'. This has been essentially due to the 
lack of a sound mathematical model ruled by an Euler formula. The non-compactness of 'incomplete 
boundary' artefacts violates conventional Euler formulm. Consequently, the designer is induced to 
construct an engineering artefact by set-combinations of primitive solid objects (even for primitive 
objects defined by Euler operators). In this way, the compactness of the resulting object is ensured, 
that is, the resulting object has no "incomplete boundaries". The fact that it is not, in principle, 
possible to change the composition of primitive objects makes difficult to proceed to even small 
shape changes in the final object. It usually demands the de-construction of the resulting object into 
its primitive constituents, changing the size but not the shape of one or more primitives, and re- 
construct everything using again the same set-combinations. This lack of flexibility against shape 
changes is rather embarrassing. 

To make the design activities as flexible as possible, we have to have operators, say Euler opera- 
tors, capable of manipulating non-compact objects. The relaxation of compactness is also important 

to re-design engineering objects locally and quickly (without global reconstruction) just before their 

production. Flexibility, adaptability to traditional design techniques (or drafting), capability of locally 

and quickly re-design an artefact are engineering and competitive requirements that many industrial 

practitioners demand. Otherwise -as the author has leamt from an industrial manager working for 

a worldwide car-maker company during the ACM Symposium on Solid Modeling and Applications, 

Ann Arbor, Michigan, 1999-, CAD systems risk to become useless. 

16. Summary 

Euler formulw, are central to the design and implementation of combinatorial B-rep data struc- 

tures. We have made a series of generalisations to these formulm -what is also of significant mathe- 

matical interest- in order to encompass regular stratified objects. These stratified objects can be of 

any dimension and not necessarily compact. The compactness relaxation has enabled the construction 

of an object without a pre-defined order to attach or detach strata. Thus, the rather restrictive principle 

of conventional B-reps according to which a stratum must be attached only after its frontier strata is 

no longer necessary. This is quite useful for many geometry-based applications where significant a 

freedorn degree is required in the conception and design of geometric objects. 



Conclusions 

Well, really, I came to seek a theory, not to propound one. 

C. Doyle, The Noble Bachelor 

The mathematical design of a general-purpose geometric kernel involves many aspects related 
to algebra, function theory, point set topology, differential topology and geometry, homotopy, con- 
vexity theory, algebraic geometry, which altogether should match important requirements such as 
computability, human-machine interactivity, design intent, editing facilities, etc. 

The ultimate objective of this mathematical design is just to make possible the effective integra- 

tion of shape through engineering environments based on computer aided design and manufacturing. 
Such an integration requires: 

" The integration of geometries used in solid modelling and free-form modelling of curves 

and surfaces. 

" The integration of geometries with their structures. Recall the subanalytic geometry admits 

regular stratifications. 

" The integration of geometric structures used in B-reps and CSG-reps. This is only possible 
if a stratified geometric structure with subcomplexes is available. 

" The integration of geometric structures with other shape structures such as convex structures 

and homotopy structures. Once again, this is only possible if a stratified geometric structure 

with subcomplexes is available. 

So, the main contributions of current PhD work are: 

Chapter 1. It proposes a general shape theory that encompasses the solid modelling, free- 

form modelling of curves and surfaces, and form feature modelling. The role of the mathe- 

matics has been shown to be very important to be able to relate these research areas through 

a hierarchy of mappings. This hierarchy of shape mappings allows to establish the (con- 

tainment) relationships between different shapes in an object. As a consequence, a shape 

taxonomy has been introduced in Chapter L In particular, we have proposed a possible 
289 
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axiomatics for form feature modelling based on the relationships between homotopy shapes 
and convex shapes. 
Chapter 2. It shows that parametric representations and (explicit) implicit representations of 
objects are part of the same theory, which combines function theory with manifold theory. 
So, the C' continuity conditions can be obtained for both parametric and implicit formu- 
lations of manifolds in a similar way. Moreover, it is shown that the different notions of 
geometric continuity found in the computer-aided geometric design literature are just par- 
ticular cases of the mathematical notion of Cr smoothness or continuity. 
Chapter 3. It presents a mathematical theory that generalises and unifies the theories behind 
B-reps (boundary representations) and CSG-reps (constructive solid geometry representa- 
tions) of solids. The corresponding mathematical model congregates subanalytic geometry 
and Whitney stratifications of varieties. This theory has been extended to parametric objects 
via Thom-Boardman stratifications of the same subanalytic sets. 
Chapter 4. It introduces a dimension-independent representation for regular stratified ob- 
jects, called subcomplex-tuple representation, or simply I-representation. It generalises 

current boundary representations to higher dimensions. It generalises the cell-tuple repre- 

sentation of Brisson to regular stratified objects, not necessarily homogeneous in dimension 

nor relatively compact. The existence of subcomplexes in the data structure facilitates the 
integration of geometric modellers and form feature modellers, and provides the designer 

with significant flexibility in designing engineering artefacts. 
Chapter 5. It introduces Euler operators which are dimension-in 

' 
dependent, compactness- 

independent, and construction order-independent. These three generalisations of the Eu- 

ler operators, together with the subcomplexes embedded in the data structure, provide the 

designers and manufacturers with virtually full flexibility to locally re-design engineering 

artefacts without the need to reconstructing the whole object. 

That's all! 
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