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Abstract
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This thesis examines theoretical methods of modelling radio wave propagation in built-up

areas, with particular application to mobile radio systems Theoretical approaches allow precise

quantitative description of the environment in terms of parameters such as mean building

heights and densities, in contrast to the ambiguous nature of more conventional empirical

models.

The models are constructed using both scalar and vector field analysis techniques. The vector

analysis is accomplished using the Geometrical Theory of Diffraction to describe the detailed

effects of building shape and positioning, particularly for short-range situations. Over longer

ranges propagation can often be described in terms of multiple edge diffraction over building

rooftops using a scalar field representation. This mechanism accounts well for measured field

strength variations, but is time consuming to calculate accurately using standard methods. A

rapid algorithm for calculating scalar diffraction over multiple building edges with arbitrary

positioning is constructed. This model can be used for deterministic prediction of sector

median field strengths including slow fading variations when appropriate building data exists.

It is also applicable to terrain diffraction problems.For the case when only average building

parameters are available a closed form solution to the problem of multiple diffraction over

buildings of equal heights and spacings is derived. The solution is applicable to any antenna

heights and so provides a rapid and efficient way to predict gross propagation characteristics.

Both models are tested against measurements made in the UHF band and are found to yield

good prediction accuracy.
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Introduction	 Chapter One

Chapter One

Introduction

1.0 : Overview

The performance of any communications system must be considered as the result of the

performance of all of its component parts acting together. In the particular case of a mobile

radio system the radio channel is usually the most variable system component, yet its

behaviour is usually dominant in determining system quality (see figure 1.1). If the

channel's performance is poorly understood, then either the system has to be needlessly

over-engineered to provide an adequate safety margin, or else degraded system reliability has

to be tolerated. Thus considerable motivation exists for understanding and predicting the

behaviour of the radio channel.

HCoding

Modulation
and

1
lill Transmitter

Information '4	 AlfSink 

Decoding
and

Demodulation

Radio
Channel

Receiver

Figure 1.1: A generalised radio communication system.

This work describes one approach to improving methods of predicting the process of radio

wave propagation, usually taking place between a fixed base station and a mobile terminal
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Introduction	 Chapter One

such as a car or a pedestrian. The usual method of doing this is represented pictorially in

figure 1.2. The area within which the mobile may be travelling is divided into a number of

regions, each of which is considered by the engineer to be an example of a fixed class of

environment. Using the results of measurements which have previously been made in other -

areas of the same class, together with some elementary physical laws, a prediction of the

propagation characteristics across the area can be made. This leads to an assessment of

projected service quality in the area, which is the ultimate measure of success for the system

under design. This is an empirical approach, since the methods used are based principally

upon the results of measurements. The characteristics of the whole of an area within a given

class are considered identical and usually no account is taken of the differing classes through

which the signal has had to propagate before reaching the mobile. More importantly, the

classification process relies upon the designer's judgement of the the area, based upon little

or no physical data_ All of these factors can result in ambiguities and inaccuracies, leading to

a poorly designed system.

Figure 1.2: Qualitative classification of the environment.

In this report another approach to propagation prediction will be considered. If the

propagation process is sufficiently well understood then it may be described in terms of a

theoretical model. Such a model would have as its input a physical description of the

environment. This description would be quantitative and hence, as far as possible,

unambiguous. It may consist of a deterministic description of the positions and
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Introduction	 Chapter One

characteristics of environmental features in a given region, or it may comprise a set of

statistical parameters which have been selected to give enough information to allow

predictions to be made. This approach is pictured in figure 1.3.

(8,0.6) (9,0.5) (6,1.0) (7,0.6)

(5,0.1) (10,1.2) (8,0.6) (12,1.2)-...............

(14,0.4) (13,0.7) (8,0.6) (8,0.6)

(8,0.6) (5,0.2) (9,0.4)

1

(5,0.9)

Figure 1.3: Quantitative environmental description.

The next step in a prediction is to perform an analysis, the characteristics of which will

depend upon both the physical description available and the purpose for which the prediction

will be used. If the physical description and the analysis technique were exact, then the

resulting prediction would be essentially identical to the results of measurements. In

practice, the quantity of data available is limited and analysis techniques have to rely upon

approximations in order to be tractable. As a result, the theoretical model may need to be

modified by corrections found by measurement. The success of the model may thus be

measured by how little correction is required.

The prediction process is summarised in figure 1.4. The input for the model consists of the

physical description and a limited quantity of measurement data. both of which may require

some initial processing before being passed to some combination of the available analysis

tools. This report will concentrate on developing the analysis tools, although some

consideration of the input data and the output requirements is necessary. The work will

mainly be concerned with developing tools for analysis of the effects of buildings, both in
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Introduction	 Chapter One

isolation and in built-up areas. This topic is important for two reasons: firstly, the mobile

radio signal is subject to greatest variation (and hence most uncertainty) in these areas

[Okumura, 1968] and secondly because this is where 90% of mobile radio usage takes place.

Analysis
Tools

Figure 1.4: The prediction process.

In built-up areas the principal mechanism of propagation over a large range (when there is no

direct line between the antennas) is diffraction, while reflection and scattering play an

increased role over shorter distances. For this reason and because analysis of reflection and

scattering processes is relatively well established, the analysis of diffraction effects will be

central to this work. The main contribution presented is in the selection and critical

examination of analysis techniques for mobile radio applications. Additionally these

techniques are used to analyse some particular situations, resulting in some new results

which should be of value in the future.

Although the work has been motivated by the study of mobile radio systems, it has many

other applications: these include multiple terrain diffraction effects for fixed link radio

systems, as well as less obvious wave propagation problems in acoustics and other fields.
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Introduction	 Chapter One

1.1 : Chapter Summary

Chapter Two gives some history, examines common systems and then describes the factors

which affect the mobile radio signal in a built-up area, giving pointers to the processes which

need to be modelled. The resulting characteristics of the signal are expnined, including the

causes to which others have attributed each of the observed effects. Any successful model

must be capable of predicting these variations.

Chapter Three describes a selected group of existing prediction methods, pointing out their

strengths and weaknesses. The methods examined include both traditional empirical

methods and newer theoretical models. Predictions from the methods are compared using

system parameters appropriate to modern systems in order to ascertain their areas of

agreement and disagreement. It is found that the theoretical models offer considerable scope

for development these ideas are developed in subsequent chapters.

Chapter Four examines the likely success of theoretical models which are driven by the

physical data which is likely to be available in practice. Measurements of the physical

structure of the radio wave field encountered in urban situations are surveyed to determine

whether enough structure exists to be amenable to analysis. The necessary assumptions

about the environment are explained, as are the approximations used in practical analysis

techniques. Previous attempts to model the effects of buildings are also examined.

In Chapter Five, diffraction modelling techniques based on ray theory are examined and it is

found that these offer considerable scope and flexibility, particularly for modelling the effects

of the detailed structure of buildings immediately adjacent to the mobile. The geometrical

theory of diffraction is used to model the effects of various building shapes and multiple

building configurations. The same theory is also used to develop a model of the effect of

street orientation on slow fading. It is concluded that these techniques are useful in these

situations provided that care is taken in situations such as multiple buildings at close to

grazing incidence.

5



Introduction	 Chapter One

Chapter Six examines techniques for predicting diffraction over multiple buildings, an

important situation for wide area coverage predictions. Efficient techniques for calculating

these fields are described, for use when sufficient information about the locations and

heights of buildings is available.

In Chapter Seven a technique for predicting diffraction over multiple buildings of the same

height and spacing is constructed. This is used as the basis of two new models of

propagation in built-up areas. The first of these is stochastic, relying only on average

building parameters to characterise an area. The second is deterministic, using a detailed

description of the buildings between two locations to provide a prediction of median field

strength at a particular location. The models are then used in simulations of the effects of

buildings on signal variability.

Chapter Eight describes two sets of measurements conducted in built-up areas. Data

describing the building positions and heights in the area were gathered and used with the

prediction methods developed in the previous chapters, so as to provide some verification of

the approaches used. Good agreement between the theory and the measurements is found.

Finally, Chapter Nine examines the success of the various methods introduced, and

examines their applicability in other situations than those for which they were originally

developed. The work concludes by setting directions for future extension of this work.

Four conference papers and one journal paper have been published describing various

aspects of this work. The first of the conference papers [Saunders,1990a] described general

aspects of the feasibility of theoretical modelling, while the others examined location

variability due to building height variations as in Chapter Seven

[Saunders,1990b,1991,1991b]. The journal paper [Saunders,1991d presented the Flat

Edge model derived in Chapter Seven. This model has also been presented to the COST-231

programme together with a comparison with measurements in the form of

[Saunders,1991d].
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Chapter Two

The Mobile Radio

2.1 : Mobile Radio Systems : Past, Present and Future

A mobile radio system is any radio-linked communication system in which the position of at

least one of the terminals is not fixed, thereby creating flexibility for the user but uncertainty

for the designer. The range of possible mobile terminals includes boats and planes, as well

as the more familiar situations in cars and as personal portables. Indeed, the first

demonstration of a mobile system was in 1897 when Marconi successfully communicated

with a tugboat over an 18 mile radio path [Lee,1982]. The first regular mobile service was

provided in 1921 for the Detroit police department, followed in 1932 by the New York

police department. Both systems were operated at around 2MHz and constituted the first

services in the group known as private mobile radio or PMR. This group continues to be of

major importance today and includes all of the emergency services (police, fire, ambulance,

coastguard and mountain rescue) as well as taxi operators, haulage companies and other

users requiring good service over a defined area.

In 1938 the United States Federal Communications Commission licensed regular services in

the range 30-40MHz, establishing an upward trend in frequencies which is now resulting in

the development of equipment for use in the microwave bands. The use of VHF/UHF

frequencies (above 30MHz) is important for the system designer since propagation

characteristics are better defined than at BF, with fewer and less frequently occuring

anomalous modes of propagation.

7
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In 1947 the first private radio licences in the UK were issued for use on tugs on the Tyne

and Wear rivers and by a fleet of taxis in Cambridge [Parsons,1989]. By 1977 there were

200,000 licensed PMR transceivers in use in the UK alone. In 1964 and 1969 mobile radio

telephone systems at 150MHz and 450MHz were established, providing the first commercial

services for the private individual. Although private users were then an elite group, the

concept of personal communications for all is rapidly becoming entrenched, as evinced by

the current level of interest in personal communications networks (PCNs).

This massive growth in the number of users to be accommodated within the finite radio

spectrum has made frequency re-use techniques essential, requiring ever increasing care and

accuracy in propagation design. The primarily line of sight propagation modes at high

frequencies allow hills and other obstacles to be used in clearly defining coverage areas, but

re-use distances for PMR have previously been as high as 150km [Pye,1979].

Today mobile radio services are well-established and still growing, creating an ever greater

demand on finite spectrum resources, together with a need for higher service quality as

greater quantities of information are passed by each service. Since 90% of mobile radio

usage takes place in built-up areas, the need for good propagation predictions in such areas is

intense. However, the combined uncertainties of the mobile position and the nature of the

way buildings affect propagation make this task very difficult.

Currently most interest in the mobile radio world is being generated by so-called second

generation mobile systems. In 1983 the UK government decided to opt for a system known

as TACS - the total access communication system. This system was based upon the North

American Advanced Mobile Phone System, and is now the fastest growing network in

Europe, supporting some 3/4 million users [Groves,1990]. The system is better known as

simply the cellular telephone network, having been the first systematic use of the cellular

concept to improve frequency re-use. This concept is now briefly explained.

8



The Mobile Radio Signal 	 Chapter Two

Figure 2.1: The cellular structure of modern radio systems

A group of cells is illustrated in figure 2.1. The coverage area is divided into cells, which

are taken to be hexagonal for easy conceptualisation. Within each cell a group of frequencies

is in use, although coverage may be provided by several base stations in some cases. The

cells are then grouped into clusters, where every cell within a cluster occupies a distinct

frequency group. Examples of four cell, seven cell and twelve cell clusters are shown. If

the field strength decreases sufficiently rapidly away from the cells, frequency groups may

be re-used at intervals equal to the distances between the centres of clusters. A seven cell

cluster is ordinarily taken to be the smallest useful cluster size, so, according to this simple

model, an arbitrarily large area may be covered using just seven frequency groups.

In practice, of course, the safe re-use distance is not constant across an area, but is strongly

dependent upon the environment in which the mobile travels. Additionally real cells are

neither hexagonal nor even symmetrical, but vary rapidly in shape according to local terrain

and clutter variations. Typically the TACS system uses cell radii of from 11cm in Central

London to some 20km in rural areas. Cells of this magnitude are generally termed

macrocells. Good propagation predictions are crucial in this situation, in two particular

respects. Firstly it is essential that coverage within a given cell is adequate, to ensure that the

user receives an acceptable quality of service. Secondly interference must be kept to low

levels to permit as much frequency re-use as possible.

In 1991/2 the GSM (Groupe Speciale Mobile ) pan-European digital cellular telephone

system will be deployed. This is another telephone system operating on macro-cellular
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principles in the 890-960MHz region, using a common standard to allow operation right

across Europe. The new DCS 1800 system is the first use of PCNs and is likely to be

operational by 1992/3. This system will operate between 1710 and 1880 MHz and will use

considerably smaller cells than GSM, the first of the projected microcell based systems.

The CT2 or telepoint series of systems are already operational at 864-8§8 MHz. These allow

a small handset to access the public telephone network from one of a large number of fixed

locations spread across the country. For such systems interference planning is eased since

there is no requirement to provide seamless coverage across any large area. Similar systems

are likely to emerge shortly in the US, again around the 1.7-2.3GHz bands [Taylor,1991].

The clear trend for future systems is towards systems designed for the ordinary person,

operating around 1.5-4GHz. Cell sizes are likely to get smaller, creating a greater need for

prediction methods which take careful account of building characteristics, since these may be

the dominant influence on microcellular propagation. This work will thus be concerned with

predicting propagation at high frequencies (above 100MHz) over relatively short paths.

10
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2.2 : Factors Affecting Mobile Radio Propagation

Firstly the major mechanisms which need to be considered when modelling mobile radio

propagation are examined. The resulting signal characteristics are then described. A

fundamental definition is first required: 	 -

2.2.1: Path Loss

In any radio channel only a small proportion of the power transmitted will be received by the

intended receiving antenna. This phenomenon is commonly described by the path loss, a

quantity which is most convenient when expressed relative to two isotropic radiators,

hypothetical antennas which radiate and receive equally in all directions with no power loss.

If the power transmitted and received by these antennas is PT and PR respectively, then the

total path loss LT is normally expressed in decibels as :

LT = 10 logi0 (PpR)

Equivalently LT may be expressed as:

LT = 20 logi0 (1)

where A is the attenuation function, expressing the ratio between received and transmitted

field strengths.

2.2.2: Free Space Loss

At a distance d from an isotropic radiation source the total power has to pass through the

surface of a sphere of area (4 Ir d2 ) (see figure 2.2).

11
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Figure 2.2: Isotropic radiation causing free space loss

The power density on this surface is therefore F = PT 1 (4 it d2 ). The effective receiving

aperture of an isotrope can be expressed as A e = A,2 I 4 g . The power received is

therefore:
1

PR = F . Ae 
D

= 1 T (-47rd y,

PT (47rd )2
So pR = 7.,

When expressed in decibels this is the free space loss, LF . Since, in the far field, the

wavefronts from any antenna can be regarded as spherical, this loss will effectively always

apply. Only under anomalous atmospheric conditions can the received field exceed the free

space field strength. This field is therefore taken as a basic reference in propagation

calculations. Calculations are usually concerned with predicting the excess loss, LE = LT

- LF . Note that LF increases at a rate of 20dB per decade of distance or of frequency. In

the real atmosphere, loss may be increased beyond the free space value at microwave

frequencies due to absorption by oxygen or water vapour [CCIR,370-1] or by rain

[CCIR,721-2].

12
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2.2.3: Plane Earth Loss

Another fundamental propagation situation is illustrated in figure 2.3:

-1(

Figure 2.3: Propagation over a plane

When propagation takes place over a slightly lossy plane, power is received as the sum of

two discrete waves. If it is assumed that the antenna heights hb and hm above the plane are

small compared with the horizontal distance, d between them then, to a good approximation,

the ground has a reflection coefficient of (-1) for vertical or horizontal polarisation. If the

power received in the absence of the plane is Po then the attenuation function is given by

[Shearrnan,1989]p.36 as:

A = 2 sin
2 ithmhb 

The assumption commonly made for propagation calculations is that the argument of the sine

term is very small. Under these conditions it follows that:

PO ç dA 

PR I41thmhb

When expressed in decibels this is the excess plane earth loss, Lp . Taken together with

the free space loss the total loss increases by 40dB per decade of distance and is independent

of frequency. The plane earth loss is often used as the basis of models of propagation in

built-up areas as will be seen in Chapter Three.

13



The Mobile Radio Signal	 Chapter Two

2.2.4: Real Situations

Except in unusually barren areas, real-world propagation will be affected by obstacles such

as hills, trees and buildings. These will obstruct the direct (line-of-sight) path between the

base station and the mobile, increasing the excess path loss. It is assumed first that

atmospheric and other conditions are sufficiently stable that there is no appreciable time

variation of signal strength [Saunders,1989]. There are then three main mechanisms by

which these obstructions can affect propagation:

i) Specular Reflection:

This is reflection from a large flat surface, such as that treated in the plane earth calculation.

If the electrical characteristics of the surface are known then the reflected field strength may

be calculated using the Fresnel reflection coefficients (see, for example, [Born,1980], p40).

Such a situation may occur at the faces of a large building.

Scattering:

More commonly, the surface of an obstacle is rough, so the field is scattered over a range of

angles, with the scattered beam becoming wider as the roughness is increased. The range of

surface variation over which reflection may be considered specular is predicted by the

Rayleigh criterion [Reudink,1974]. Beyond this it is usual to assume that the surface heights

are statistically distributed, and then scattered fields can be predicted by modifying the

Fresnel coefficients appropriately. This technique has successfully been applied to

predicting scattering from rough terrain [Luebbers,1984].

Diffraction:

If waves propagated only according to the laws of classical geometrical optics, then the field

in the shadow of any building would be zero (see figure 2.4). In practice some field is

present in this region due to the complex interaction of the electromagnetic field with the

obstacle, especially at the top edge of the building. This phenomenon is diffraction, and

the resulting field diminishes only slowly as the mobile moves further into the shadow

14
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region, and an interference pattern is observed along the shadow boundary. Whenever the

building density in an area is moderate and propagation is taking place over a reasonable

distance, line-of-sight paths will rarely exist. Diffraction is then the major mode of

propagation and will be crucial to this study.

Figure 2.4: Diffraction into the shadow region

All three of the mechanisms described act together to produce considerable variations in field

strength as the mobile moves around within its designated service area. The resulting

fluctuations can themselves be conveniently separated into three classes: fast fading, slow

fading and path loss, each of which is examined in the next section.

15
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2.3 : Signal Variation : Parameters of Interest

An example of a typical mobile radio signal, measured in an urban area, is shown in figure

2.5. As the mobile moves the signal is subject to some very deep fades and small

enhancements occuring at intervals comparable to half a wavelength. :This is known as fast

fading. If the median value of the signal is calculated over sliding intervals of around 10

wavelengths another level of variation is apparent : this is slow fading. Finally, if the

distance between the mobile and the base station is significantly altered then the overall level

of the signal will change. This represents the overall path loss characteristic. Each of

these variations is now examined in more detail.

— Measured signal	 — Median

,iiMLIIMIIIIIMI

IIIIMMIS11111111111111111

11111111.11.11111111111111 .':i IIIII5

i 1111111111111111111111111111111=

-101 11111111111111111111111111111 1111111

1111111.111111111111111111111 IIIII

-85

Signal -90
Level (dBm)

-11

-12
-10	 0	 10	 20	 30	 40	 50	 60

Distance along sector (wavelengths)

Figure 2.5: A typical mobile radio signal

2.3.1: Fast Fading

It is useful to first divide the area being examined into sectors, defined as a region over

which the median level is essentially constant so that slow fading may be neglected. Sectors

have dimensions which are typically of the order of tens of wavelengths, comparable with

the size of major features such as buildings which may affect propagation.
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Figure 2.6: The multipath nature of the mobile radio signal

Figure 2.6 shows that in a typical built up area the field may arrive at the mobile via a large

number of ray paths, with each ray having its own magnitude and associated phase which

will depend upon the precise characteristics of the scatterers adjacent to the mobile. The

addition of such rays produces fast fading as the position of the mobile varies over distances

comparable with a half wavelength. This fast fading, also known as multipath fading, is

therefore usually described statistically. The most usual distribution suggested is a Rayleigh

distribution of amplitudes, which is the result of adding a large number of sinusoids of equal

amplitude and uniformly distributed phase. A number of different distributions have been

proposed to cater for a wider range of situations than the simple Rayleigh case, such as the

Rice distribution which is appropriate when one wave dominates, usually at short distances

where a line-of-sight path exists. Other distributions such as the Weibull, Nakagami and

Suzuki distributions have also been proposed [Parsons,1983]. In the time domain fast

fading appears as a smearing of the channel's impulse response or delay spread. This

effect has important implications for the operation of digital modulation schemes, so

considerable work has gone into attempting to correlate measured delay spreads with types

of environment, such as [COST207,1989].

The median value of the signal within a sector, by definition, is constant: this median value is

known as the sector median or local median. (Note that it is sensible to use the median
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rather than some other measure of central tendency such as the mean because the mean tends

to be very sensitive to changes in extreme data points when a distribution is asymmetric.

The median is also independent of whether the field is expressed in amplitude terms or in

decibels) This median level arises from the gross propagation characteristics of the whole

sector, although the instantaneous signal level may fluctuate widely. .

2.3.2: Slow Fading

Consider a ring of sectors, all a distance R from the base station and within a similar

environment (figure 2.7).

Figure 2.7: Distribution of sectors at a range R.

If the local median values for all of the sectors around the ring are measured in decibels and

grouped into equally sized (dB) bins, the resulting relative frequencies are found to exhibit

an approximately normal distribution, or, equivalently, the underlying amplitudes are

distributed lognormally [Lee,1982]. This is the slow fading, or shadowing component

of signal variability. An example is shown in figure 2.8, where the data was collected in

New Jersey [Jakes,1974],p119. Despite the fact that the terrain and clutter features along the

propagatior path to each sector are of similar types and sizes, the precise arrangement will be

different for each sector. It has been argued [Chrysanthou,1991] that, since each factor

causes a multiplicative loss (a consequence of the linearity of the propagation channel), a

lognormal distribution is to be expected from central limit theory. Confirmation of this idea,

however, requires detailed modelling of propagation processes.
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Figure 2.8: Typical slow fading distribution

The standard deviation of this distribution, the location variability, depends upon just

how irregular the scatterers are. Note that the term 'location' is being used here to denote a

sector's local median and not just an arbitrary position. The location variability (denoted

henceforth by 0L) varies between around 4dB and 8dB [Holbeche,1985] p.36, and is

usually highest in suburban areas. Within a built-up area az, appears to increase with the

proportion of high buildings and with frequency, but is essentially independent of range

[Ibrahim,1983]. Longley [Longley 1978] has produced an empirical formula to predict

location variability, but more accurate prediction methods remain to be found. Certainly the

value is likely to increase with the range of terrain heights and will be larger in built up areas

than in open ones. Standard prediction techniques do not account explicitly for this

variation, and the system designer has to assign an estimated value across a given area, with

no precise knowledge of where the propagation 'black spots' might be. Deterministic

propagation methods capable of predicting these variations are the ultimate aim of this study.
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2.3.3 Path Loss Characteristic

Finally, the mean of the lognormal distribution (ie the value of local median not exceeded for

50% of sectors at constant R) ii called simply the median field strength, arising from

the median transmission loss. This is the parameter predictesi by most existing

prediction models. It is conventionally assumed that field strength is proportional to R -n .

In built-up areas many reported measurements eg[Ibrahim,1983] have found that n is

between 1.5 and 2 (30 to 40dB per decade of range). There is some evidence to suggest that

n is still smaller at very short distances [Steele,1991]. Establishing physical reasons why

this should be the case is part of the aim of this work.

2.4 : Summary

This chapter has described the history of some the uses to which the radio channel may be

put, as well as some of the reasons for variations in its characteristics. This study aims to

produce quantitative predictions of the relationships between some of the physical

characteristics of the environment and the measured characteristics of the mobile signal. The

path loss characteristic and the slow fading behaviour will be of particular interest, since fast

fading effects require very detailed modelling for accurate prediction and can usually be

considered in terms of simple statistical descriptions.

Specifically the study will concentrate on predicting the effects of buildings on determining

the value of the sector median of the signal by taking both average and specific data

regarding the positions and types of buildings and analysing their effects using theoretical

models. These models will be found to have certain advantages over existing models, a

selection of which is described in the next chapter.
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Chapter Three

Existing Prediction Methods

3.0 : Introduction

This chapter describes in depth a set of standard models for predicting path loss

characteristics, which has been the main aim of prediction models in the past. Theoretical

models are capable of giving information in more detail than this, but it is important to

examine their performance in this respect first. Common terms will first be discussed and

defined.

3.1: Definition of Terms

3.1.1: Great Circle Path

Propagation predictions are usually made between two points close to the surface of the

earth. The propagation characteristics between the two points are mainly determined by

points which lie along the great circle path, which is the geodesic or shortest path

between the points. This does not, in general, correspond to the straight line path which

would be drawn between the two points on a conventional map, but for short paths (less

than, say, 501(m) the error is considered negligible. The path profile is a two dimensional

slice along the path which shows the terrain and other features affecting propagation.

Features well off the main path may occasionally affect propagation, but such cases are

unusual and are not often considered. See, however [Lebherz,1991] for some discussion of

this effect.
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3.1.2: Terrain

Terrain heights are the heights of the bare ground along the propagation path relative to some

fixed datum. In the past this datum was the sea level, so heights were specified above this

(eg 200' asp. More recently, to avoid ambiguity, the datum has been fixed to a level which

corresponds approximately to median ocean levels, but is internationally agreed. Heights are

therefore now specified above the ordnance datum (eg 180m aod).

In the past, terrain data has been collected using conventional land based surveying

techniques. Now methods involving aerial photography and satellite imaging are common

(resolutions of around 10m are available from commercial satellites). Interpolation

techniques are used to reconstruct a continuous path profile from a fmite set of data points

between the terminals of the path. For the long distances involved in fixed links (both

terminals stationary), terrain is usually dominant in determining whether a given path will be

viable.

3.1.3: Clutter

The term clutter is used to describe all features found on the path besides terrain. Trees,

buildings and other man-made structures are all examples. Clutter heights are usually

specified above local ground (terrain) level (eg 10m agl). There is currently some debate as

to how clutter databases should be collected and used for propagation prediction purposes

[Mehler,1991]. Clutter has previously been collected into a number of categories in a given

area (eg [Okumura,1969]). However, considerable overlap between categories often exists

since they are only specified in descriptive terms. There is thus considerable potential for

ambiguity and inaccuracy. Usually only two classifications of built-up areas (urban and

suburban) are available to describe the regions having the greatest location variability. This

work will concentrate on describing clutter in built-up areas in a consistent and reliable

manner.
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3.1.4: System Parameters

R (km), d (m)

Figure 3.1 : Definitions of physical dimensions in a path profile.

Figure 3.1 shows a path profile in a situation where there is essentially no terrain variation

along the great circle path, and defines many of the geometrical parameters which will be

used in this text. Other system parameters are defined as follows:

fc	 Frequency (MHz)

f = fc . 106; Frequency (Hz).

Wavelength (m)

hb , hm Base station / mobile antenna heights, measured from the local ground

level to the effective radiation centres of the antennas.

Range of mobile from base station. (km)

d = R. 103 ; Range (m)

Street width (m)

dm	 Distance between mobile and nearest building in the direction of the

base station.

ho	 Height of last building before mobile.

If terrain variation is moderate, the same definitions are used by simply increasing or
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decreasing effective building heights appropriately. Isolated terrain obstacles (hills) have to

be treated more carefully.

3.2 : Description of Existing Models

A selection of path loss prediction models is described here. Although they comprise only a

small subset of all the models published, it is believed that they are representative in that they

describe a wide spread of types, including fully empirical and fully theoretical models. All of

those described are frequently quoted in the literature and applied in practice.

3.2.1: The Egli Model

The method due to Egli [Egli,1957] is semi-empirical, being based upon a large number of

measurements taken around American cities. Field strength is calculated as the plane earth

value decreased by an empirical correction factor to account for clutter and terrain effects.

This approach was adopted because Egli's data showed a better fit to plane earth loss than to

free space loss, rather than from any theoretical argument.

Egli's overall results were originally presented in nomograph form, but [Delisle,1985] has

given an approximation to these results for easier computation:

m if .
LT = 20 log i of + 40 log i o R - 20 log i o hb+ 

76.3-10 log i oh; h< 10
85.9 - 20 log i oh ; if /2. ni > 10

Note that this approximation involves a small discontinuity at hm = 10m (30').

Although plane earth loss is frequency independent, the results show that, with irregular

terrain consisting of hills with a height of around 500 feet, an additional fc4 field strength

dependence is introduced down to around 40 MHz. Thus the sector median field strength is

inversely proportional to frequency measured with respect to 40 MHz.

The distribution of local median field strength is stated to be lognormal, with a frequency

dependent location variability (o-L, ). Egli gives a = 8.3 dB at 127.5 MHz and crL= 11.6

dB at 510 MHz. For very large antenna heights the predicted field strength may exceed the
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free-space value, in which case the free-space value is used.

The base station antenna height gain characteristic is found similar to the plane earth

calculation so long as the 50 percentile (median) locations are considered. The receiving

antenna characteristic is found linear with height ( as with plane mail) for antennas which

clear the surrounding terrain features. Elsewhere there is a square root variation for heights

in the range 6-30 feet, linear above 30 feet. The transition value (30') presumably

corresponds to the mean obstruction height, although no correction is made for other

heights. The average effect of polarisation is considered negligible.
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3.2.2: The Okumura Model:

This is a fully empirical prediction method [Okumura,1968], based entirely upon an

extensive series of measurements made in and around Tokyo city between 200MHz and

2GHz. Predictions are made via a series of graphs, the most important of which have since

been approximated in a set of formulae by Hata [Hata,1980]. The thor9ughness of these two

works taken together has made them the most widely quoted prediction model, often

regarded as a standard against which to judge new approaches.

The method involves dividing the prediction area into a series of clutter and terrain

categories, summarised as follows:

Clutter definitions

Open Are

Open space, no tall trees or buildings in path, plot of land cleared for 300  100m ahead, e.g.

farm land, rice fields, open fields etc.

Suburban Area:

Village or highway scattered with trees and houses, some obstacles near the mobile but not

very congested.

Urban Area:

Built up city / large town with large buildings and two or more storied houses, or larger

villages with close houses and tall, thickly grown trees.

These definitions rely heavily upon subjective judgement and the method has often been

criticised on these grounds. Additionally, it is clear that the categories are quite specific to

the Tokyo area.

Okumura takes urban areas as a reference and applies correction factors for conversion to the

other classifications. This is a sensible choice since such areas avoid the large location

variability in suburban areas and yet include the effects of obstructions better than could be

done with open areas. A series of terrain types is also defined, but is not particularly relevant

to the current discussion. Quasi-smooth terrain is taken as the reference and correction

factors are added for the other types.
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Okumura's predictions of median path loss are usually calculated using Hata's

approximations [Hata,1980] as follows:

Urban:

LT = 69.55 + 26.16 log f c - 13.82 log hb - a (hm) + (44.9 - 6155 log hb) log R

(1.1 logfc - 0.7) h,n -(1.56 log f c - 0.8); Medium / small city

a (h,).	 8.29 ( log 1.54 h„,) 2 - 1.1; Large cityfe � 200MHz

3.2 ( log 11.75 hm ) 2 - 4.97; Large city, fc � 400MHz

The behaviour of a (hm) in between 200 and 400 MHz does not appear to be specified by

either Okumura or Hata. To avoid the small discontinuity which would result from taking

a(hm ) = 0, a transition frequency of 300MHz has been adopted in the comparisons which

follow.

Suburban:

{LT = LT (urban area) - 2 log
f 12

'28) } - 5'4

Another formulation exists for open areas, but is not relevant here. It should be noted that the

above equations represent only best fit approximations to Okumura's graphs and should not

be considered indicative of underlying propagation mechanisms.

Base station antenna height, hb , is defined as the height above the average ground level in

the range 3-15Icm from the base station; hb may therefore vary slightly with the bearing of

the mobile from the base. The height gain factor varies between 6dB/octave ( E cc hb) and

9dB/octave ( E cc hb312 ) as the height is increased from 30m to lkm. Measurements also

suggested that this factor depends upon range. The value of n in the regime E c. R 'n was

found to decrease as hb increases for R <15km. For 40km <1? <100km, n reaches a

maximum of 3.3 when hb = 200m, and decreases from this value when hb � 70m.

Mobile antenna height gain was found to vary between 3cIB/octave up to hm = 3m agl and

8dB/octave for greater antenna heights. It depends partially upon urban density, apparently
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as a result of the effect of building heights on the angle-of-arrival of wave energy at the

mobile and the consequent shadow loss variation (location variability). Urban areas are

therefore subdivided into large cities and medium/small cities, where an area having an

average building height in excess of 15m is defined as a large city.

Other correction factors are included for the effects of street orientation (if an area has a large

proportion of streets which are either radial or tangential to the propagation direction) and a

fine correction for rolling hilly terrain (used if a large proportion of streets are placed at either

the peaks or valleys of the terrain undulations). Application of the method involves first

finding the basic median field strength in concentric circles around the base station, then

amending these according to the terrain and clutter correction graphs.

Okumura's predictions have been found useful in many cases [COST207,1989J, particularly

in suburban areas. However, other measurements have been in disagreement with these

predictions, with the reasons for error often being cited as the difference in the characteristics

of the area under test with Tokyo [Eggers,1990]. Other authors such as [Kozono,1977]

have attempted to modify Okumura's method to include a measure of building density, but

such approaches have not found common acceptance.
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3.2.3: The Ibrahim and Parsons Model:

This method [Ibrahim,1983] is based upon a series of field trials around London. The

method is not intended as a fully general prediction model, but as a first step towards

quantifying urban propagation loss. It integrates well with , a previous method

[Edwards, 1969] for predicting terrain diffraction effects since the same 0.5km square

database is also used. Each square is assigned three parameters, H, U and L, defined as

follows:

Terrain height, H

Overall terrain height in each square is defined in the same way as in the [Edwards,1969]

model, as follows:

a) the actual height of a peak, basin, plateau or valley found in each square, or

b) the arithmetic mean of the minimum and maximum heights found in the square if it does

not contain any of the features listed under (a).

Degree of urbanisation factor, U:

The percentage of building site area within the square which is occupied by buildings having

four or more floors. For the 24 test squares in inner London which were analysed, U

varied between 2% and 95%, suggesting that this parameter is sensitive enough for the

purpose.

Land usage factor, L:

The percentage of the test area actually occupied by any buildings. This parameter would

perhaps be better termed land coverage factor, since land usa ge is conventionally used by

cartographers to denote the crop types grown in an area.

These parameters were selected empirically as having good correlation with the data. Two

models were proposed. The fully empirical method shows marginally lower prediction

errors, but relies on a complex formulation which bears no direct relationship to propagation
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principles.

The semi-empirical method, as with the Egli method, is based upon the plane earth loss

together with a clutter factor fi , expressed as a function off, , L, H and U. The latter

method will be examined here since it has been quoted in later work by the same author

[Parsons,198913], and since it forms a better basis for future development. The model is

given as:

LT= 40 log d - 20 log Vimil + fi
Ifcwherefi= 20 + —4.0 )+ 0.18L- 0.34H+K

and K ‘ 10.094 U - 5.9

Data is extracted from the data bases compiled by local authorities in the UK. Since

information on U is only available in highly urbanised city centres, K is set to zero

elsewhere. Considerably lower accuracy may be expected in such areas since K = 0 would

correspond to U = 63%. RMS errors calculated from the original data on which the model is

based vary from 2.0 to 5.8 dB as frequency is increased from 168 to 900 MHz. A

comparison is also shown for some independent data, but error statistics are not given.

A companion paper [Parsons,1983] discusses signal variability. It concludes that the data is

Rayleigh distributed within areas of the order of a few tens of wavelengths and lognormally

distributed over areas within which the Rayleigh process cannot be regarded as stationary,

with a standard deviation of approximately 4dB. The Suzuki distribution is examined as a

means of providing global statistics, by combining both fast fading and shadowing. It is

proposed that this should be used in conjunction with the median prediction when a given

system's area coverage is required to be predicted. It is suggested that location variability

increases with U and with the spread of H within the considered area but unfortunately the

data is insufficient to establish a reliable relationship. The model is of limited use in

suburban areas since U will normally be zero, giving no measure of building height

distribution.
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3.2.4: The Allsebrook and Parsons Model:

Although this model [Allsebrook,1977] is based upon a series of measurements, it may be

regarded as an early attempt to provide a theoretical basis for urban prediction models.

•

Measurements are made in three British cities (Bradford, Bath and Birmingham) at 86, 167

and 441MHz. These cities cover a wide range of terrain and building classifications. A

40dB/decade range dependence is again forced, as would be expected for plane earth loss.

This results in an Egli type model with a maximum RMS error of 8.3dB at 4411V1Hz. (Note

that a least-squares approximation at this frequency results in a range dependence of only

24dB/decade). A clutter factor fi is introduced to account for excess loss relative to the plane

earth calculation.

The frequency dependence of the measured clutter factor is compared with an approximation

to the excess loss which would be expected from a 10m absorbing knife edge, placed 30m

away from a 2m high mobile antenna. The predictions compare reasonably well with the

mean values of /3 at 86 and 167 MHz, but considerably underestimate it at 441MHz. The

knife edge calculation is used as a generalised means of calculating building diffraction

adjacent to the mobile, with a UHF correction factor y included to force agreement with the

measured values above 200MHz. It is suggested that this deviation is the result of building

width being more significant at the higher frequencies, but this is not confirmed by any

analysis. Also, the same small sector size (250m) has been used at all frequencies. This

may be expected to cause greater variability (and prediction error) at UHF.

Allsebrook and Parsons' "flat city "model can be expressed as :
L T = Lp+ L B + y

f 	

For ease of computation in the comparisons which follow, the prediction curve for r has

been replaced by the following quadratic approximation:
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y = - 2.03 - 6.67f + 8.1x10-5f2

Note that in the calculation of Lp here the effective antenna heights are those of the base

station and the building, resulting in a physical model which may be represented by figure

3.2:

Figure 3.2: Physical interpretation of Allsebrook model

A discussion of this model by Delisle [Delisle,1985] finds that the correction factor 7 is

necessary in open areas as well as in (sub)urban areas, although the physical cause

suggested for y cannot apply in line-of-sight situations. Additionally, the quoted value of 7

is found to be too large in all situations, casting doubt upon the model's generality. The

model is only physically valid in terms of the final building diffraction; the use of the plane

earth calculation suggests the existence of a specular ground reflection, which is highly

unlikely in a built-up area. Despite this, the model may be considered an improvement over

empirical methods since it is the first that attempts to allow for the geometry of the specific

path being considered.

3.2.5: The Ikegami Mod2I

This model attempts to produce an entirely deterministic prediction of field strengths at

specified points [Ikegami,1983],[Ikegami,1984],[lkegami,1991]. Using a detailed map of

buildin g_ heights, shapes and positions, ray paths between the transmitter and receiver are

traced, with the restriction that only single reflections from walls are accounted for.
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Diffraction is calculated using a single edge approximation at the building nearest the mobile,

and reflection loss is assumed to be fixed at a constant value (6dB). The model itself relies

on an approximation to single knife edge diffraction: the two rays (reflected and diffracted)

are power summed, resulting in the following model:

LE= 10 log i oh + 10 log i jsin 4)) + 20 log 1 dho - 124

- 10 log i ow - 10 log i o(1 +	 -5.8
Lr`

This assumes that the mobile is in the centre of the street and that 4) is the angle between the

street and the direct line from base to mobile. It further assumes that the elevation angle of

the base station from the top of the knife edge is negligible in comparison to the diffraction

angle down to the mobile level.

A comparison of the results of this model with measurements at 200, 400 and 600MHz

shows that the general trend of variations along a street is accounted for succesfully. The

predictions suggest that field strength is broadly independent of a mobile's position across

the street. This is confirmed by the mean values of a large number of measurements,

although the spread of values is rather high. Acceptable agreement is also obtained for

variations with street angle and width.

Although it accounts reasonably well for 'close-in' variations in field strength, the

assumption that base station antenna height does not affect propagation is flawed. The same

assumption means that the free space variation with range is assumed, so the model tends to

underestimate loss at large distances. Similarly, the variation with frequency is

underestimated compared with measurements.
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3.2.6: The Walfisch Model

This model of urban propagation [Walfisch,1988] examines the case when propagation

takes place over the rooftops of a large number of buildings of equal height and spacing (see

figure 3.3). The propagation process is split into two independent parts: multiple forward

diffraction over the rooftops, followed by a single edge diffraction down to the mobile at

ground level. The buildings are modelled as absorbing knife edges with a plane wave

incident upon them at a given elevation angle, a. Using a numerical evaluation of the

Kirchhoff-Huygens integral the field at the n-th edge is calculated for various values of a

and of the edge spacing, w, and it is found that the excess field settles to a constant value if n

is taken large enough. Since the calculations are extremely time consuming to perform, a

simple power-law formula is fitted to the results for the setttled field, which, in combination

with a simple approximation to single edge diffraction at the building nearest the mobile,

forms a complete theoretical model of propagation over buildings.

Figure 3.3: Geometry for W alfisch model

The settled field approximation is as follows:

A settled '' 0-1

This is only valid over a limited range of the parameter ( a -\1 (wl A, )} (between 0.03 and

0.4). The 0.9 power suggests that the field will decrease by around 38dB per decade of

range, which is usefully close to expectations from measurements.
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Overall the median field strength relative to the free-space value is given by:

U A

—uo = il settled D downa

Ddown is the single knife edge approximation, while the 42 factor is intended to account for

the ray reflected from the opposite side of the street. It is argued that, since multipath fading

is observed to cause very deep fading of the total signal, the two rays must be of comparable

amplitude. The sector median field strength is then the power sum of two equal waves. The

complete model is expressed as:

R 2 '
L e = 57.1 +A + log i ofc + 18 log i oR - 18 logio(hb /1)-	 - 18 log i o 1 17 (lib- ho) [

w 2
where A = 5 log i (-

2
) + (h

°
- haj2 - 9 log i o w + 20 log io{tan 2(h ° - h 4 I	 -f w }}

Since it is assumed that all of the buildings are of equal height and spacing, significant

inaccuracies may be expected when these assumptions are violated. Additionally, the concept

of the settled field requires that large numbers of buildings are present, particularly when a

is small. Despite these limitations, the Walfisch model is the first to have accounted for

observed path loss variation using realistic physical assumptions rather than relying upon

forcing agreement using propagation models of entirely different situations.
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3.3 : Comparison of Models

In this section the path loss predictions of all of the models are compared in two

environmental classes, urban and suburban. Additionally the plane earth calculation is

included as a reference assuming antenna heights to be very much greater than their

horizontal spacing (see §2.2.3). It is used in this form because this is the basis used for

some of the models, but a real calculation over a plane earth would have to include the

possibility of signal level nulls.

Variations with all of the significant system parameters are examined: range, frequency, and

base station and mobile antenna heights. In the suburban case a building height of 8m and a

street width of 40m are assumed. Moderate urban parameters are used, with a building

height of 15m and a street width of 30m. In both situations fc = 933.5MHz, R = llcm, hb =

25m and hm = 1.5m. For the Ibrahim model the parameters used are {L,H,U )

=(58,12.7,54) in the urban case and (30,50,0) for suburban areas.

First examine the table shown in figure 3.4. It shows the exponents of field strength

variation predicted by each model. Thus a '-2' in the range column means that the model

predicts that field strength is inversely proportional to the square of range. In some cases

(particularly the Hata hm variation) it is difficult to express the variation in this form, but

otherwise it is very useful as a means of comparison.
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Model Range hb hm fc

Free Space -1 0 0 -1

Plane Earth -2 1 1 0

Egli -2 1 0.5 (hm < 10),
1 (hm > 10)	 .,..

-1

Okumura /
Hata

-2.25 +
0.33 log hb

0.69 +
0.33 log R

(see note) .-1.3 ( -0.055hm if
med/small city) (-0.2

extra if suburban)

Ibrahim -2 1	 ' 1 Field .10 A (- fc / 800)

Allsebrook -2 1 E . 1 / (ho - hm) -0.5 plus y
variation

Ikegami -1 0 E cc 1 / (ho - hm) -1.5

Walfisch -1.9 0.9

0.2f
2

E .{(-2-w ) +(h o -h m) I -1.05

Figure 3.4: Predictions of field strength by various models

Each of the system parameters will now be examined individually:

3.3.1: Range Variation

An accurate prediction of the variation of field strength with range is initially the most

important to the system designer, since it determines the coverage area or interference levels

for a given system.

It is clear that most of the models predict an inverse range squared variation, since they take

the plane earth calculation as a starting point (see figures 3.5 and 3.6). However, the Hata

expressions show that, with practical base station antenna heights, the measured path loss

exponent is usually rather smaller than this (-1.8 with hb = 20m, -1.6 for hb = 100m).

Other examples abound : for instance, Black [Black,1972] reports an exponent of -1.5 at

836MHz with hb = 152m in Philadelphia, and Ibrahim [Ibrahim,1983] with hb = 46m

calculates -1.8 at 168MHz. The Ikegami model fails to properly account for range variation

due to its reliance on the free-space field. The Walfisch model, however, predicts an

exponent of -1.9. Although this value is independent of hb , its approximate agreement

with measurements suggests that the multiple edge diffraction mechanism proposed may be

correct. The increase of loss at large ranges is due to a correction for the effect of earth
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curvature built in to the model.

Note that the large loss in the Allsebrook case is due to an extrapolation of the model's

frequency correction factor outside of its intended range of application.

Figure 3.5: Range variation; suburban areas
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Figure 3.6: Range variation ; urban areas
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3.3.2: Base Station Antenna Heights

The base station antenna height, together with the transmitter power, is the system parameter

which is easiest for the designer to alter. It is important to have an accurate knowledge of the

antenna height gain, since additional antenna height is very expensive. Similar conclusions

obtain for the base station antenna height gain as for range, suggesting that the two

parameters are closely linked. The plane earth calculation predicts simple proportionality

between field strength and antenna height, so this law is adopted by most models (see

figures 3.7 and 3.8). Empirically, however, the exponent is rather smaller (between 0.69

for R = 1 km and 0.99 for R = 10km according to the Hata expressions). Again the

Ikegami free space approach is misleading, while Walfisch usefully predicts 0.9. It is

interesting to note that Walfisch predicts that loss will increase rapidly when the antenna is

close to rooftop height. This is an effect which may occur in practice but has not been

measured by most studies.

Figure 3.7: Base station antenna height variation ; suburban
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3.3.3: Mobile Antenna Heights

The mobile antenna height is rarely under the designer's control, but is likely to be fixed by

the type of system under design. As a result, few studies actually measure this information,

with the exception of Okumura. The non-theoretical methods (Egli, Ibrahim) therefore

assume the plane earth variation, which figure 3.9 suggests is rather too gradual. The

remaining methods (Allsebrook, Walfisch aid ikegarth) all use approximate knife edge

diffraction at the final building to predict this effect. The result is a sensible variation for

moderate antenna heights, but a very abrupt change when hm approaches the building

height. Use of a more complete diffraction calculation is likely to account for this change.
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3.3.4: Frequency

Empirically, field strength is proportional to frequency raised to a power between -1.5 and -

1.3 depending upon the density of buildings. This is considerably greater than the free space

value of -1 which is adopted by Egli and appears to be accounted for by the extra -0.5

exponent introduced by single knife edge diffraction in the Ikegami model. This advantage

is lost in the Allsebrook calculation due to the use of plane earth field strength as a basis.

The result is that the extra function y has to be introduced, whose extrapolation produces a
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major overestimation of loss above 450MHz. Ibrahim also overestimates loss at the higher

frequencies due to the empirical correction factor. Note that the Hata expressions are only

based upon the Okumura measurements up to 1GHz. More recent work [Eggers,1990] has

extended the applicable range up to 2GHz.

Finally, the Walfisch model produces a frequency variation which is only slightly more

rapid than free space, rather smaller than the measured effect. This results from a prediction

of rooftop field which actually increases with the square root of frequency, tending to reduce

the variation overall. It will be seen in Chapter Six that this is a consequence of assuming

that the number of significant buildings is always very large. It does not affect the absolute

values of the loss predictions unduly, but it would be useful for the model to correctly

predict this since it would help to confirm that the correct mechanism is being modelled.

Suburban Frequency (MHz)

Figure 3.11: Frequency variation ; suburban areas
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Figure 3.12: Frequency variation; urban

3.3.5: Overall Prediction Level

Apart from the variations due to each parameter, it is of course important to consider the

absolute level of the loss predictions. In this case the differences between the models are

large, due mainly to the different characteristics of the cities in which the measurements

were made. This emphasises the need for a clear method of quantifying the environment.

The Allsebrook predictions are consistently higher than the others, due to the extrapolation of

the frequency correction factor outside of its intended range of application. It does have the

virtue of having at least some variation according to building density. The Ibrahim model

also has a tendency to overestimate loss, particularly in the suburban case. This shows that

it is really only useful in the environment in which the measurements were originally made :

dense urban.

Although it is convenient to account for range variations using the plane earth model, it is

clear that the cause of the measured variation in built-up areas is not the same. The multiple

edge diffraction mechanism appears far more likely since it accounts for all the other major

variations with good accuracy with the exception of frequency variation. The new model

proposed in Chapter Seven overcomes this difficulty also.
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3.4 : Conclusions

A selection of models having different approaches to the problem of making propagation

predictions have been described and compared. The results of the comparisons suggest that

the best way to proceed with the development of new models in futureis to consider models

that have a clear physical and theoretical foundation, although such methods still require

further development It is useful to explicity state the merits of theoretical models:

• A quantitative description of the environment via building heights, street widths etc. is

embodied in theoretical models, avoiding ambiguous subjective classification techniques. If

this information is not directly available, then an intelligent estimate is a more consistent

approach than simple classification.

• Greater resolution is possible, since the description parameters can vary continuously over

a region. The only limitations here are the accuracy required from the predictions and the

availability of physical data.

• Potentially greater range of application: It is clear from the foregoing discussion that all

models will be valid over only a limited range of parameters. In the case of empirical models

this corresponds only to the original range of measurements, since no accuracy in describing

the physics of the process is implied. For theoretical models, however, the range of validity

depends only upon the reliability of the basic assumptions made in constructing the model.

The same is true for applying them in environments different from those originally surveyed.

• Accuracy at least comparable with empirical methods. In the comparisons above it is clear

that there is little to choose between the methods in the parameter ranges they are intended

for, while the theoretical models are probably more consistent across the whole range

considered.

• Although the ultimate test of any model must of course be how well it agrees with real
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measurements, it is vital to account for the measurements via physical theories to avoid the

need to repeat measurements for every new system combination.

• Point to point predictions: Empirical models give only average characteristics, while

theoretical ones can do just this when required, or can additionally predict on a point-by-

point basis when physical data is available. It may be anticipated that, when theoretical

methods are used to make predictions for individual sectors, errors may be considerably

smaller than would be the case using a mean prediction for the whole area.

• Theoretical models relate the physical processes involved in propagation to loss

predictions in a form which allows the designer to make useful modifications of the system

to vary performance.

These merits have to be weighed against the greater computational expense of theoretical

models as compared with their simpier empinca) counterparts. This -rs an -2mportant

consideration, especially when it is required to make calculations for many sectors in an area

coverage prediction. However, with the use of modern computing devices and rapid

numerical algorithms, very many calculations may be made within acceptable processing

times.

The other important consideration is the increased quantity of physical data which must be

collected and stored to drive the models. Some important unknowns remain in this subject,

so this work will identify those parameters which are actually significant in determining

propagation characteristics so as to minimise the data needed.

The rest of this work will be concerned with constructing and testing theoretical models of

propagation around and over buildings, which may be of genuine use in making better

predictions.
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Chapter Four

Modelling Concepts

4.0: Introduction

The aim of this chapter is to introduce and examine the fundamental concepts of theoretical

modelling for built-up areas. Measurements of the structure of field variation in such areas

are surveyed to determine whether sufficient regularity exists to be amenable to prediction.

Using a simple model of multiple ray arrival at the mobile, the effect of neglecting low-level

field components is determined and found to cause acceptably small errors. A paradigm for

modelling sector median field strengths is thus established, which will be applied throughout

the rest of this work. Scalar diffraction theory is introduced and then used in conjunction

with the modelling paradigm to predict the effect of varying mobile antenna position and

height.

4.1 : Measurements of Scattered Field structure from Buildings

Here previous measurements of the 3D structure of the scattered field in built-up

environments are considered in order to establish whether any coherent physical structure is

discernible.

Bramley and Cherry [Bramley,1973] made measurements of the scattering coefficients of

some tall buildings at 9.4GHz using a helicopter-borne bistatic radar. They found that,

although energy was scattered in all directions, the predominant component was always in

the specular direction, with a reflection loss some 20-30dB lower than in in other directions.

The specular component was measured at between 3.5dB and 7dB below the incident field

for buildings of mixed glass, concrete and metal construction. Direct measurements of the

Fresnel reflection coefficient produced values in the range -2 to 8 dB, with reflection loss

46



Modelling Concepts	 Chapter Four

being greatest for rough surfaces such as pebble dash, and smallest for smooth surfaces such

as glass. The horizontally polarised field component was generally around 2dB lower than

the vertically polarised signal. Overall the authors suggest that the level and angular

dependence of the field can be explained in terms of reflections from visible features of the

buildings. In general the buildings did not act as a single scattering element but as a

collection of imperfectly aligned smaller elements which give rise to the non-specular

components.

These findings were supported by [Ranade,1987]. Using geometrical optics and the

geometrical theory of diffraction radiation patterns from the face of a large building were

simulated. The building surface was modelled as a large number of small panels with

random deviations from flat. The resulting patterns show that the directions of strong

reflection correspond to the specular components, with non-specular components some 30-

40dB lower.

More detailed measurements of received signal structure in an urban environment have been

made by [Ikegami,1980]. A directional receiving antenna was used to receive a pulsed

signal from a base station at around 200MHz to allow measurements of wave angular

distribution and path length. The conclusions suggested that the signal could be decomposed

into two classes of components. The first - main rays - were strong in amplitude and varied

only slowly in direction of arrival as the measurement position was varied. They were

reasonably independent of frequency and their path lengths showed good correspondance

with those that would be predicted from a simple geometrical model. There were generally

no more than four such rays at a given location. The second class of components-weak rays

- were diffuse in character and varied very rapidly along the measurement route, showing no

clear relationship to the buildings around them and being at a much lower level than the

principal rays.

A third class of components was also identified by [Ikegami,1991]. These are waves which

are channeled down a long straight street oriented almost radially from the base station.
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These occur relatively infrequently (around 3% of the time- see Chapter Five) and are

therefore not considered further in this work. It is likely that they may be modelled in terms

of propagation along an open waveguide, or by using a multiple ray model such as that

proposed in [Rustako,1991].

A more detailed set of direction of arrival measurements was performed by [Matthews, 1991]

using a phased array antenna system. This showed that the multipath signal often consists of

relatively few strong components whose directions of arrival could be identified with the

physical positions of large buildings around the measurement position and having elevation

angles which often correspond to diffraction over the tops of adjacent buildings.

In summary, it would appear that the stronger components of the signal received at a typical

urban location are produced by simple specular reflections and diffractions from building

surfaces and edges; they would probably be amenable to reasonably accurate predictions

using tractable theory. The remainder of the signal, resulting from small surface

irregularities of the buildings would be very much harder to predict accurately given

reasonable quantities of physical building data, but it is at a much lower level and has

negligible effect over most of the service area.
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4.2: Main Ray / Weak Ray model

Here a simple model of ray arrival within a sector is constructed and considered, with the

aim of examining the effect of 'weak' rays on a prediction method which considers main

rays only. Main rays are those which may be predicted using straigfitforward geometrical

theories, while weak rays account for all other field contributions.

It is assumed that the parameter of interest is the sector median field strength. This is

measured by recording field strength at a large number of positions equally spaced along a

straight track, represented in fig 4.1.

Figure 4.1: Model of ray arrival within a sector

Assume that N main rays arrive at the sector. Using the definition of a sector (§2.3.1) the

amplitudes of all of these may be assumed constant along the length of the sector, L. It is

further assumed that the azimuthal angle of arrival of each main ray can be assumed constant

along the sector since the source for the ray is very distant by comparison with L. The effect

of the vertical angle of arrival of the rays is not modelled.

Weak rays differ from the strong rays in having no coherent phase structure. They are

modelled in overall effect by two components in quadrature, p(x) and q(x), where x is

distance measured along the sector. Both of these are assumed to be normally distributed

with zero mean and equal variance, o- 2 • The resultant distribution is therefore Rayleigh
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when no main ray component is present, and Rician-like when N 1.

Total instantaneous field strength, v(x), can therefore be expressed as :
N	

Or kx cosi; i)
V fr) = EA i.(	 4-p(x)+jq(x)

i=1

where:

k is the wavenumber

Ai is the amplitude of the i th main ray

Oi is the reference phase of the i th main ray at x = 0 relative to p(x). In practice the

values would depend on the arbitrarily chosen initial position of the measuring antenna.

Here they are all set to zero since they will not materially affect the results.

0 i is the azimuthal angle of the i th main ray to the x direction in the sense shown in

figure 4.1.

All quantities are assumed to be time-invariant.

The sector median m, is defined by

/A y )I � m)= 1/2

An experimental estimate mm. of the median is produced from measurements of the field

strength at a large number of points within the sector range. In this work, various

propagation models will be used to produce estimates me of the median as follows:

me=

This estimate is exact if the phase variation of all the rays is uniformly distributed and

independent. If the modelling process is to be successful then the estimation error, (mm"

me), should be acceptably close to unity.

First consider the case when weak rays are absent (a2 = 0 ). Under certain extreme

conditions it is possible that no phase variation in the arriving rays is encountered at all and a
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very misleading estimation of the median would be made. This is a possible limitation of the

measuring process but is usually prevented in practice by small irregularities in building

reflection and diffraction characteristics; a better measurement procedure would sample the

field over an area, but this is usually impractical. The difficulty is avoided here by

considering only oblique incidence to ensure that there is some phase variation along x. The.—

greater this variation, the smaller the estimation error.

As a representative example, take N = 2 and 01 = 80°, 02 = 260°. Then with L = 502L. and

unit ray amplitudes, me =-42 and the following results would be obtained experimentally:

sampling points

Measured
median

Mtn

1.078
1.402
1.426
1.427
1.423

Estimation error

[

Number of

10
25
50
100

1000

(mmlme) dB]
-2.36

-0.078
0.469
0.080
0.05

Figure 4.2 shows the way in which the measured value of Iv(x) I varies in this case:

Figure 4.2: Field strength variation : two strong rays
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Notice that in this case the error is actually an artifact of the measurement process rather than

the estimation, since 42 is the true median. It is clear from these results that the error

reduces rapidly as the number of sample points per wavelength is increased; best results are

obtained with several points per wavelength. In the results that follovy L = 50X throughout.

and 4 points per wavelength are used.

Recall first from §4.1 that measurements suggested that weak rays may be typically 30dB

below main rays in a representative situation. The total power in p and q combined is (2a

2). If this were 30dB below a main ray of unit amplitude then a = 4(10- 3/2). Using this

value an appropriate set of realisations of p and q was produced at each of the sample points

and the estimation error was calculated. This procedure was then repeated for varying a,

with the same main rays as above, yielding the following results:

Figures 4.3 and 4.4 show the variation of Iv(x) I with OdB and 10dB ratio between one main

ray and the total weak contribution. In the latter case little field structure is visible, yet an

acceptably low estimation error is obtained. Overall the results show that even quite large

weak components can be tolerated with low estimation errors provided the assumptions of

the model are valid. The effect of lar ger numbers of main rays is to reduce the estimation

error still further since greater phase variation occurs within the sector.
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A paradigm for prediction of sector median field strengths has now been established : by

power summing main ray contributions, sector medians may be predicted without significant

error caused by weak rays except in very extreme cases.

00
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4.3: Previous Modelling Work

This section surveys some previous attempts to model propagation in built-up areas,

excluding the Walfisch and Ikegami models which were covered in Chapter Three. Little

work in this area has previously been published, but two particular studies are worthy of

mention.

The first, by Kafaru [Kafaru,1989], uses a physical model of the building scattering process

to predict path delay profiles. Significant scatterers close to the mobile are identified from a

database of buildings. The amplitude of their contribution to the received energy is predicted

by knowledge of their physical dimensions and assumed reflection properties. The resulting

predictions correlate well with measurements, in terms of both the delay times and the

amplitudes of individual signal components. This confirms that the mechanisms of

propagation in built-up areas are sufficiently well understood to be amenable to prediction

and that the field structure is simple enough to allow field components from individual

buildings to be correctly modelled. Note however that no diffraction effects were modelled.

The other work of interest here is by Thomas et al. [Thomas,1990]. Measurements were

made of field variation in the presence of some simple building arrangements, simulated by

placement of stackable shipping containers in a disused airfield, as well as some direct

measurements on single buildings. This enabled the mechanisms of propagation around

individual buildings to be isolated and predicted. A model based on the Geometrical Theory

of Diffraction (see Chapter Five) was used to predict the field in a large number of cases.

Excellent agreement was found, except in cases where the original modelling assumptions

are contravened. This study confirms that theoretical models can account for diffraction

around buildings.
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4.4: Scalar Diffraction

4.4.0: Introduction

This section produces a simple model of diffraction over the rooftop of the single building

closest to the mobile in the direction of the base station (the final building) using some

approximate theory. This is useful as a task in itself and also serves to introduce the

concepts of modelling which will be employed in more depth later. In this chapter only

scalar waves will be considered, since such waves provide a sufficiently accurate approach

for many simple problems and are amenable to more straightforward analysis. Chapter Six

will show that scalar waves are also useful in cases where complete vector field analysis

becomes intractable.

4.4.1: Scalar Waves

Electromagnetic waves in free space are polarised. Electric and magnetic field components

exist in a direction transverse to the direction of propagation, so that a complete description

of the field's properties requires a vector formulation. If, however, the main parameter of

interest is the variation in the power transmitted by the wave, then a purely scalar

description will usually suffice. This is so in propagation predictions whenever overall path

loss alone is to be calculated. The wave can then be considered as simply carrying power in

a manner analogous to the propagation of an acoustic wave through a gas.

In a region where the medium is homogeneous and contains no charges or currents,

Maxwell's equations lead to:
2

2	 Ell a E
V E -	 = 0

c
2 

at 
2

2
2 Ep a H

V H -	 = 0
c

2 
at 

2

These are the equations of wave motion with a propagating velocity of v = c I 4(11E). Thus

each of the field components, V, satisfies the homogeneous scalar wave equation :
2

T., 2,	 1 D V ,
VVv - — — = u

v 
2 

at 
2

The Kirchhoff integral theorem introduced in §4.4.2 relies on this equation and is therefore
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valid in current and charge free regions. In principle the theorem should be applied

separately to each of the Cartesian components of the field, but can usually be applied to a

single complex scalar wave function with good accuracy, when the main parameter of

interest is the relative power contained in the wave rather than the field components

themselves. As a consequence, a purely scalar model can express no polarisation_

dependence.

In such a case the quantity of interest is the time average power flow per unit area at a given

point, the intensity in optical terminology, or, more commonly, the average Poynting

vector:

=IE x H1

This will be assumed to be represented by a single complex scalar wave,V ,as : I IV 12.

Such a representation will be sufficient in most cases dealt with here, except when the effect

of polarisation is considered. A more rigorous approach is used in Chapter Five for

considering such effects.

4.4.2: Fresnel-Kirchhoff Diffraction Theory

This theory arises from the original supposition by Huygens that the field at a given point

arising from any source can be considered as the superposition of contributions from a series

of virtual secondary sources located on the wavefronts of the original source. Fresnel

subsequently made calculations using the theory, which was then made mathematically more

rigorous by Kirchhoff [Born,1980],p.370.
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Figure 4.5 : Huygens-Fresnel diffraction

The field at a point P in figure 4.5 arises from the superposition of a number of secondary

sources located across a surface, known as the aperture, located between P and the source

at Po. These secondary sources are determined from the incident field at the aperture. The

theory is embodied mathematically in the following Fresnel-Kirchhoff diffraction integral

[Born,1980],p382 :

U(P)=--1(1, . = _A j cos 8
I	 A, r' s' I j'Ap exp Uk (r + s D dS

where the quantities are defined in figure 4.5 and the incident field is that of a point source at

Po , so :
0) A exptikr) 

U=
r

This formulation assumes that the distances of P0 and P from the aperture are large

compared to the linear dimensions of the aperture. The integration is over the aperture Ap

and may be regarded as an infinite sum of point sources located on Ap at points such as Q.

It may be derived from the scalar wave equation using Green's theorem.
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The aperture is chosen as the xy-plane, with the x direction being the projection of Po P

onto the aperture. The integral can then be rewritten as U (P) = B.(C+jS), where :

C =1 dx 1 dy N,, cos {Lr Li -4)G 2 cos 2 3 + y 2)
I	 Ar st

s =.1 dx f dy 
AP 

sin {-z-- (-1, +1(X 2 cos 2 8 + y2)
A., r	 s

B = - A L cos8 exP t i k (r' + s 1
X	 r' s '

Now a change of variable from (x, y ) to (u, v ) is introduced:

.ir ( 1	 1 ) 2	 2 0	 71- 2
— — +'
	

0— X COS = — U2A. r'	 s 

7C ( 1	 i\2	 it 2
x r
— + y =-Vv

s

Then:

I V 2 1}
C = b f duAp . j. dv . COS — U +v

S = b 1 .du Idv - {ir ( 2 21 \
,,

	

	
-

. SITI — U +V If
2

A.

2 k1 1
+H cos (5

r	 s

The domain of integration is now Ap', the transformation of Ap from the xy -plane into the

uv -plane. The above expressions can, in principle, now be applied to any aperture shape.

where b =
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4.4.3: Modelling Assumptions - The half plane

It is now necessary to choose an appropriate aperture shape for the building diffraction

problem. In effect, the building will be represented by a canonical scatterer. This is an

idealised shape for which the corresponding diffraction problem has been solved : The set of.

such problems includes single scattering by conducting and dielectric wedges and cylinders,

together with a small class of multiple scattering problems involving these scatterers. In the

single building case a very simple shape will be used, the absorbing half-plane, more often

called a knife-edge in propagation applications. Both terms will be used interchangeably

throughout this report. This is a screen of negligible thickness, with an edge of infinite

lateral extent. Above the edge energy may propagate freely, while below it no energy at all

propagates through the screen. Usin g such a representation implies certain assumptions

about the characteristics of the building being modelled and these should be examined here:

Assumptions:

• The building rooftop may be represented by a single diffracting edge. Although this

assumption is more exactly valid for a pointed rooftop than for a flat one, appropriate choice

of the edge position makes the error small.

• The edge width is infinite and transverse to the direction of propagation, implying that no

energy can propagate around the sides of the building. At high frequencies diffraction is a

localised phenomenon, so extending the edge width beyond the diameter of the first few

Fresnel zones (see §4.4.6) will have little effect. In the case of terraced houses the infinite

width assumption is well justified. Over reasonable path lengths even detached buildings

will act in a similar way since previous buildings will block energy arrival at a vertical edge.

Work has been performed by [Gong,1991] on solutions for a truncated edge, but the extra

complexity of a solution is unlikely to be justified by improved prediction accuracy.

• No energy propagates through the building. This will depend to some extent upon

building materials and construction, but for most buildings the assumption is likely to be
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justified even at relatively low VHF frequencies. In any case, the energy propagated through

the building will be far smaller than the diffracted field.

• Forward diffraction only is calculated. This assumption is valid on the grounds of the

diffraction angles involved, since backward diffraction from subseque.nt buildings along the

path will produce a far smaller field. The only exception to this would be in the unusual case

of multiple diffraction between very closely spaced buildings, but this possibility is

discounted here.

• Diffraction at the final building may be separated from any effects of the buildings nearer to

the base station. Later chapters will discuss this point further, but the assumption is valid

provided the height of the buildings is reasonably uniform. Non-uniform building heights

will also be considered.

The ultimate justification for any of these assumptions is whether the resulting theory

successfully predicts measured effects, which will be found true in this case.

4.4.4: Fresnel Integrals

Here the Fresnel integrals are defined, since they are needed for the half-plane analysis

and will be used frequently in later results. Many definitions have been used by various

authors, but here the most common and widely used definitions from

[Abramowitz,1970],p.300 are adopted:

The Fresnel cosine integral : C (w ) = f cos (-
2 

"1"
 

2) 
dig

W

0

The	

.

e Fresnel sine integral : S (w ) =	 sin ( jrf

0	

f
2

T) dT
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The integrals are usually evaluated using a series expansion [Abramowitz,1970],p.301 or, as

here, via a standard library algorithm, [NAG,S2OACF] which uses Tchebychev

polynomials. The forms of C (w ) and S (w) are plotted in figure 4.6 for positive values of

w.
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Figure 4.6: The Fresnel Integrals

Note that both integrals settle to a constant value for large w

C (05)=S 7)!

It is convenient to also define a complex Fresnel integral :

F (w) = C (w) + j S (w) =J exp(j	 clz
ir 2

The path of integration here is along the real axis, but may be deformed to any oblique half-

line through the origin. The magnitude of F(w ) is also plotted in figure 4.6.
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To calculate the integrals for negative values of w, the following symmetry relations are

used:

C (-w )= - C (w ); S (-w )= - S (w )

Using integration by parts the following asymptotic representations for E(w) may be derived ,

and will be used later:
(iirw 2

lr 	 0 131
If w is positive, F (w )=	

j exp	 4. i

IN 1E	 1,11 )

eXp(f irW2)	 1
If w is negative, F (w )= - VI j  	 + 0

wir	 w
H

4.4.5: Single Half-Plane Diffraction

The geometry of the half-plane is shown in figure 4.7.

Figure 4.7: Half plane geometry

In this case, the aperune is the whole of the xy -plane not occupied by the half-plane, so Ap

is defined by : - .0 < x < h, -0. <y <o... Note that h is negative when P is in the shadow
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region and that the line Po P is perpendicular to the edge. As before, (5 is the angle

between PoP and the normal to the half-plane.

This transforms into Ap': -. <u <w, -0. <v <co, where:

w = h cos 3 - I-2(1, + 1,11/ A, V	 s I

Hence:

C = b f du i dv {cos (ji ul cos 1-I2E v 1— sin K,r ul sin ( 72± v1}

S =b f dui dv {sin Kr ul cos (-2-11- v1+ cos Kr /4 2) sin (721 v1}

Using the definitions given previously for the Fresnel integrals these results may be

expressed as:

C =b ([T1 + C ),d-E-2-,-1 + S 3,,,)}}

S =b a + C (w)1+[fl + S (w)]}

The field may now be expressed relative to the incident field at P (the field at P in the

absence of the edge):
U (P)  _ 	 B (C + j S ) 

U 
(i 1p) {A exp(jk (r' + s ')))

(r' + s')

exP (-i 141) 	 1
(c (w ) + i s (w )) + 1

a

F (w ) exp(- j )
=	 4  

+ -
1

= A
ff.	 2 hp

where Ahp is the half-plane attenuation function and will be used extensively later on.

In propagation prediction applications, the geometry of the situation is likely to resemble

figure 4.8, where the half-plane represents the peak of a hill or, in this case, a building

rooftop.

63



dl

w e

5

111111111111111r1 6
1111111111.411111111111
111111111111111111111
11111111111111111111 
Mal111111111

-10

-15

-20

-25

Modelling Concepts 	 Chapter Four

d2
	 >-

Figure 4.8: Practical half plane diffraction

It is then desirable to express the parameter w in terms of the diffraction angle 0 (negative

as illustrated) and the distances di and d2. If these distances are assumed large compared

with the vertical heights, then 5 .= 00 and

Figure 4.9 illustrates the result of plotting the diffracted field as the height- of P is varied.

Here di —>. and d2 = 1021.

-12.5	 -10	 -7.5	 -5	 -2.5	 0	 2.5
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10
	

125
Height above edge (wavelengths)

Figure 4.9: Half plane diffraction pattern

The field diminishes monotonically as P is moved below the edge (h < 0): when P is just

above the edge there is the possibility of an obstacle gain, or enhancement of the field

relative to the free space level. In terrain diffraction applications this possibility is usually
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discounted, since the large radii of curvature usually encountered at hilltops tend to mask this

effect. In building diffraction cases, however, such effects may be significant, particularly

when the analysis is extended to multiple buildings as in Chapter Six.

4.4.6: Fresnel Zones

A normalisation of the diffraction parameter, w, produces the concept of Fresnel Zones,

which is also useful for visualising the properties of the field. These are zones bounded by

ellipsoids with foci at the source and field points Po and P. defined such that a point F on

the Fresnel ellipsoids satisfies the relation:
n A.

Po F +FP =Po P +;n =1,2...

where n denotes the order of the zone. An example is shown in figure 4.10. Under the

usual assumption that vertical heights are much smaller than horizontal distances it can be

shown that:
n A. d i d2

R „-- V (d11-d2)

using the same notation as in figure 4.8. Later on an expression for the Fresnel zone in the

case of a very distant source will be needed. In such a case, di —> .0 and :

R n =1 I n A. d2

Figure 4.10: Fresnel zones
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The diffraction parameter w can then be expressed in terms of the Fresnel zone radius:

0 ViR i 0 R2
w =

A	 A

x Ali 2x
or w = 

R 1	R2

The diffraction parameter is therefore a measure of the fractional obstruction of the Fresnel

Zone, positive values representing edges which do not obstruct the line-of-sight (P0 P ). A

common criterion for an 'unobstructed' propagation path is that 0.6 of the first Fresnel zone

radius be clear. Figure 4.9 shows the field strengths corresponding to R 1 and 0.6 R 1 .

4.5: Analysis of Direct and Reflected Ray Diffraction

Using the tool for half-plane diffraction developed above, a simple but important analysis of

building diffraction will now be attempted. It is assumed that close to the mobile terminal,

propagation may be represented by two main rays. The first of these is diffracted from the

rooftop of the building nearest the mobile in the direction of the base station (the direct-

diffracted or d-d ray), while the second is reflected from the face of the building across the

street (the diffracted-reflected or d-r ray). This process is illustrated in figure 4.11.

Figure 4.11: Ray arrival at the mobile
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The result used is therefore :

where Ad,r represents the amplitudes of the d-d and d-r rays respectively.

In the case of the d-d ray the Fresnel diffraction parameter is given by:.

W d 41d 	 x(1 2

di + dm)

with d= — tan -1 (	 ) a
2 ho - h.

Here di represents the distance of the effective source from the building rooftop. For plane

wave incidence, di —> D.• If it is further assumed that a « ed then :

lit	 - - 	
dm

Direct ray: W d = -	 tan (ho _ h.) iv 
2 d.

In exactly the same manner the diffraction parameter for the d-r ray is found to be:

[Jr

	 _1(2w -2 (2w - do2)
Reflected ray: w =	 tan h o - h,n)1A I

The direct-diffracted ray is diffracted through the larger angle and is therefore subject to

greater attenuation than the other ray. However, the diffracted-reflected ray is also attenuated

by the reflection coefficient of the building face, so it has been suggested [Walfisch,1988]

that it is appropriate to consider both rays as being of equal magnitude. The total median

field strength would then be simply the field strength of the direct ray multiplied by 42. This

suggestion is now examined and compared with the use of the more complete paradigm

discussed in §4.2. In the latter case the median field strength is given by:

IU I= A 2d +(p A )2

67



1210

Modelling Concepts	 Chapter Four

The aim next is to investigate, on the basis of this model, how field strength may be expected

to vary across the street and as the relative height of the buildings and the mobile antenna is

varied. The reflection coefficient of the building face (p) is assumed to be 0.5, independent

of the angle of incidence. This has been found representative for concrete walls by

[Mitobe,1974]. Comparisons are made here at 900MHz.

In figure 4.12 the variation of the field with the mobile antenna height is examined, with the

mobile at the centre of the street. The significant parameter here is (ho - hm), so the same

variation may be expected if building height is varied. System parameters are ho= 10m, dm

= 20m, w = 40m andfc = 900MHz.The field strength increases smoothly as hm increases

and both representations predict a similar variation. However a small, approximately

constant error of slightly more than ldB exists, however, with the single ray approximation

suggesting a higher field. This may be an acceptable error in some cases.
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;Igure 4.12: Knife edge model of mobile antenna height gain

'igure 4.13 shows the corresponding variation as the mobile is moved across the street, with

!in = 1.5m. Both curves predict a field minimum near to the diffracting building, but the

wo-ray representation predicts a rather shallower variation, and significant differences in

redicted field strength are evident at some places.
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Figure 4.13: Knife edge model of mobile positioning on street

Measurements [Ikegami,1984] have suggested that field strength varies relatively little across

a street, so the two ray model is to be preferred on these grounds as well as for analytic

completeness. It is likely that the predicted minimum would not be noticed in most

measurements, since these would only probe the field across the road width rather than

across the entire space between adjacent buildings.

It is concluded that both rays should be included in modelling whenever the extra

computation required is not prohibitive, although the single ray approach may be acceptable

in some cases.

For a more practical comparison, figure 4.14 compares the two-ray knife edge model with

the measured mobile antenna height gain factor, a(hm) for suburban areas from

[Olcumura,1968]. The parameters used in the comparison, considered typical for a suburban

environment, were: 110 = 8m, dm = 20m, w = 40m and fc = 900MHz. Good agreement

between the two curves is evident. The empirical curve does not reveal the full structure of

the field variation since it results from averaging measurements over a large number of

locations, at each of which the building height, mobile positioning and other factors will

Vary.
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Figure 4.14: Comparison of knife edge model with empirical data_

It is reasonable to conclude that the two-ray knife edge model accounts for observed

variations in signal at the mobile terminal with good accuracy.

4.6: Summary

In this chapter the feasibility of theoretical modelling of propagation in built-up areas was

asserted by reference to measurements and calculations, while the assumptions necessary for

the use of such theory were justified. The principles of modelling have been introduced and

shown to produce useful results, even using only simple theory. Subsequent chapters will

use these principles to produce models of more realistic situations.
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Chapter Five

Ray Methods

5.1: Geometrical Optics

Here the concepts of geometrical optics are briefly explained as background to the

geometrical theory of diffraction, which will be found well suited to analysing building

diffraction in many cases.

Geometrical optics is an approximate method of analysis of electromagnetic fields, having its

roots in classical theories of light propagation. Energy is assumed to propagate along narrow

beams or rays which are easy to determine and which have considerable appeal in helping to

visualise the mechanisms of propagation.

When a ray impinges on a smooth surface, it is reflected at a point of reflection which is

such as to make the total path length APB a minimum (see figure 5.1).

Figure 5.1: Reflection according to Fermat's principle

This is an example of Fermat's principle (the principle of least time), which states that the
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total optical path length S(C) of a ray path C is stationary with respect to small variations in

C . The path length is defined as:

S	 )= Ica do

where the refractive index, n, is a function of position, a. If n is constant, then rays travel

in straight lines. This is a reasonable assumption for tropospheric radio wave propagation

over small paths, but for longer ranges the vertical lapse rate of temperature causes n to

decrease with height, so that rays tend to curve towards the earth's surface when launched

horizontally. This effect is usually accounted for by drawing path profiles with an effective

earth radius rather larger than its true value, allowing straight line ray tracing to be carried

out.

Classically, the theory of geometrical optics neglects the wave nature and the polarisation of

the field, but these may be included by treating ray theory as an asymptotic (high-frequency)

solution to Maxwell's equations (see, for example, [Kouyoumjian,1975] p.166). If the

electric field is represented as a Luneberg-Kline expansion in decreasing powers of

frequency, then Maxwell's equations result in the following asymptotic representation,

assuming that the frequency is high enough to justify retaining only the first term of the

expansion:

E (s)=Ei, (0) exp	 (0)) 	 PIP2 	 exp (-jks)

(P i + s )(P2 + s )	 (5.1)

Here s is the distance measured along the ray path from a reference point and 1,1 and p2 are

the principal radii of curvature of the wavefront at s = 0. t,v(s) is the phase function which

describes the ray trajectory in accordance with the eikonal equation, which is essentially an

expression of Fermat's principle :
2	 2

V Vf l n

and E0 (0) is the reference field strength at s=0. The quantity under the square root in

equation (5.1) is the divergence factor, which can be interpreted as expressing the principle

of conservation of energy within a narrow tube of rays, as illustrated in figure 5.2.
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Caustics

Figure 5.2: Astigmatic ray pencil

This allows a very general representation of a ray as an astigmatic ray pencil which has

caustics at s = - p1 and s = - p2 . The divergence factor allows the intensity of the ray to

be determined at all values of s except at the caustics, where ray theory breaks down since

the asymptotic assumptions are violated.

Finally, the Maxwell curl equation allows the corresponding representation of the magnetic

field to be determined:—
s xE	 —

H = 	  ,where s is a unit vector along the ray in the direction of propagation and Z,Zc. 

is the characteristic impedance of the medium. This expression shows that the geometric

optics field can be regarded as behaving locally as a plane wave. This enables plane wave

analysis to be used to determine ray reflection and refraction properties, which has been used

classically in the design of optical systems. Only more recently, however, has such an

approach been possible in the case of diffracted fields, which is our main interest.
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5.2: The Geometrical Theory of Diffraction
5.2.1: Introduction

The geometrical theory of diffraction, or GTD was first devised by Joseph Keller in the

1950s [Keller,1962]. In the past, GTD has been applied mainly to the analysis of small

shapes such as antennas, or for calculating the radar cross sections otcomplex objects. More

recently it has been succesfully applied to terrain modelling [Luebbers,1984]. In this chapter

GTD will be used for predicting the effects of building shape and orientation. Some previous

work has been carried out in this field by [Lebherz,1991b].

The central idea of GTD is that an extended version of Ferrnat's principle may be used to

predict the existence of diffracted rays, which may then be treated with the ease of any other

ray in geometrical optics. Figure 5.3 shows a ray obliquely incident upon the edge of an

obstacle at an angle 00 to the edge. Ferrnat's principle for edge diffraction predicts that a

cone of diffracted rays will be produced, where the cone has semi-angle 0. In the simpler

case of normal incidence 00 = 7r/2 and the cone reduces to a disc.

Figure 5.3: The generation of edge diffracted rays

Once the diffracting point is determined, the diffracted field is given by:
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{ Ezd} { Ezi De

= H zipm 1 	}/ S()+S)
exp (-jks)

which is of the same form as (5.1). In this expression p is the distance between the caustics

of the diffracted field. In the two-dimensional problems considered here p = 0., so :

{Ezd } { Ez i D e } exp kiks

and the field appears to emanate from a line source situated along the edge with polar diagram

modified by D e and D m . These are the diffraction coefficients describing the

diffraction characteristics of the scatterer at the point of diffraction, assuming that the

frequency is high enough that the diffraction characteristics can be determined with regard to

local characteristics only, rather than by those of the entire scatterer. Thus, in the case of

building rooftop diffraction, once the diffraction point has been determined, only the

characteristics of the building at that point are significant rather than across its entire

geometry, greatly easing the data requirement and the complexity of the calculation.

An analysis of a given structure using GTD therefore takes place in three stages:

i) Ray Tracing : Fermat's principle is used to calculate the trajectories of direct, reflected and

diffracted rays between the source and field points. Although this is simple in principle, this

stage is usually the most time consuming.

ii) From the calculated ray paths appropriate diffraction and reflection parameters are

calculated_ These parameters include distances and diffraction/reflection angles.

iii) Finally the amplitude of each of the ray fields is calculated using using the appropriate

diffraction or reflection coefficients and the individual ray contributions are summed to

produce a total prediction of the field strength at a given point.

In GTD, the diffraction coefficients are determined from one of a number of canonical

problems. These are diffraction problems for simple scattering objects such as a half-plane,

a wedge or a cone which have been solved using exact methods. The resulting solutions are

reduced via asymptotic assumptions to the terms which correspond to a ray theoretical

Hzd = H:D m	 G
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description of the field. Such assumptions are only valid if the obstacle dimensions are large

compared to a wavelength and if the spatial variation of the scattered field is not too rapid.

Despite these restrictions, GTD has been applied with reasonable accuracy to scatterers

having dimensions comparable with a single wavelength [James,1980].

5.2.2: Wedge Diffraction

The canonical problem of particular interest here is the wedge, of which the half-plane is a

special case. Figure 5.4 shows a perfectly conducting wedge with a ray incident upon it.

The field component in the z - direction (E for soft ,Dirichlet or transverse electric

polarisation, H for hard ,Neumann, or transverse magnetic polarisation) produces a

diffracted ray in the same plane as the incident ray if oblique incidence (90 = 7r12) is
"

assumed.

Reflection
Boundary

Figure 5.4: Geometry for wedge diffraction

There are three distinct regions to consider: in region (1) the field is composed of a direct

component, an edge diffracted component and a component reflected from the upper face of

the wedge. The total field is calculated as the superposition of these three rays. In region (2)

the image of the source in the upper wedge face is no longer visible, so the reflected ray no
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longer contributes. In region (3), the shadow region, the direct ray is blocked by the

wedge, so only the diffracted ray can contribute. This is the most important region for

mobile radio applications due to the absence of a line-of-sight path in most cases. Diffraction

increases with diminishing frequency, accounting for the principally line-of-sight propagation

modes encountered at microwave frequencies. The precise level of the diffracted ray will,

however, depend upon the particular shape of the scatterer.

In the case of a perfectly conducting wedge, the GTD diffraction coefficients are given by

[James,1980] as:

{ (r + 0 
cot

1 	 r	 2N i) ± cot ( z 2:i) }
C N
	

I

r
D 

me,
=

sin 0 o Al 87cfk
±{ cot

(ir+ 0	 (- 0
2N	 2N

	

1 ± cot	 1}

with 0 = 0 ± 00 ;0 � 0, (¢0 � 27r;N =

where the quantities are defined in figure 5.4.

An algorithm was devised and constructed to enable arbitrary two dimensional building

profiles to be entered, with the buildings represented by a series of wedges and/or half-

planes. The algorithm traces direct and diffracted rays for single and double diffraction

which reach the specified mobile position. Polarisation and source types can be varied as

required. The algorithm was implemented in PASCAL for a SUN workstation. From this

ray tracing the necessary diffraction parameters are calculated and field strengths can then be

calculated as necessary.
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5.2.3: Limitations of GTD - Uniform Theories

A limitation of the GTD approach is quickly manifest when plotting fields on or close to

either of the geometrical boundaries shown in figure 5.4. The derivation of the GTD

diffraction coefficient involves an asymptotic approximation to a modified Fresnel integral

whose argument is s = lai,r 14(kp) where:

a
r ,i 

= if cos 1/2 (0 ± 00)

and it is assumed that s —>c,... This is invalid on each of the boundaries where one of the a

terms becomes zero. Moreover, one of the cotangent terms in Dc becomes singular on each

boundary. The regions within which s is too small for the asymptotic assumption to be valid

(usually taken as s � 247r) are the transition regions and are parabolic with the edge as

their focus. On the optical boundaries themselves the field has plane wave characteristics,

but elsewhere in the transition regions the field is in an intermediate state between plane and

cylindrical behaviour. The general shape of the transition regions is shown in figure 5.5.

Figure 5.5: Transition regions

The difficulty is avoided by introducing the transition functions F(X) to each of the Gil)

terms. These provide for the proper behaviour of the field inside the transition regions and

cancel the singularities on each optical boundary ensuring that the field remains always finite.
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This approach is the uniform geometrical theory of diffraction or UTD and was first

suggested by [Kouyoumjian,1974]. The UTD wedge coefficient is given by:

e,m
D u —

cot(7r	 iFIkIni01+ cot( z2:)F [kLa10)}}
1	 2N

+ {cot( g	F IM+ cot ( 1r
2	 :

r) F [kLa {4}
2N

N sin 9 01,1-8-7—rjk

I	 2)
where F (X) = 2j	 expVX )1 exp	 )

2(2n7d± - 0)
al0)= 2cos

2

and 1± are the integers which most nearly satisfy:

211NI- - 0 = -±tr
2L = s sin eo for plane wave incidence

Outside the transition regions, F(X) —> 1 and the diffraction coefficient is identical to the

GTD case.

As an example of the use of UTD, the ray tracing algorithm previously mentioned is used to

predict field strength contours for the two edge diffraction problem illustrated in figure 5.6,

with results shown in figure 5.7. The units are wavelengths and the first edge, as in all of

the examples which follow, is arbitrarily situated 10Icm away from the origin. Vertical

polarisation is assumed, which is magnetic polarisation with respect to both of the edges in

this situation.
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Incident Plane Wave 	 (10000, 0)

(10120, -5)

Figure 5.6: Example building diffraction geometry

Well above both edges a direct path exists so the field is close to its free-space value. At

heights below the first edge but above the second, the field changes only slowly as a result of

the slowly varying diffraction angle in the singly diffracted ray from the first edge. Lower

down, however, this singly diffracted component is blocked and the total field arises only

from a doubly diffracted ray emanating from the second edge. In the shadow of this edge the

field strength diminishes rapidly. This illustrates the ease with which UTD may be applied in

relatively complex diffraction problems, but also shows how rapid spatial field variation may

be for multiply diffracted fields, especially in the vicinity of shadow boundaries.
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Rapid spatial field variation does result in complications when an edge is illuminated by the

transition region field of a previous edge. In this case the spatial field variation is too rapid to

permit use of the asymptotic assumptions of UTD so special methods must be applied. In

these cases higher order terms in the series expansion of the field must be considered,

resulting in the use of slope diffraction coefficients (see [Kouy,oumjian,1975],p.180).

This severely limits the usefulness of ray methods for multiple building diffraction problems

when adjacent buildings are of similar heights. Authors such as [Tiberio,1984] have

developed UTD methods for the case of two wedges illuminated at grazing incidence, but the

methods are complex, losing the intuitive appeal of ray methods and are unlikely to be of use

for more than two wedges.

Ray methods are therefore most useful for predicting the effects of the shape of a particular

building, or the field around a complex arrangement of buildings of simple shapes rather than

for predictions of propagation across large numbers of buildings. Notwithstanding these

limitations, the diffraction algorithm constructed has been found particularly useful for rapid

visualisation of the effect of varying building profiles.
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5.3: Rooftop Diffraction
This section examines the application of ray theories to rooftop diffraction over buildings of

various shapes. The main region of interest is the deep shadow region, since the mobile is

located in this region for most practical situations. The field close to the shadow boundary is

also of interest, however, since it reveals the influence of building shape on fields diffracted

by succesive rooftops in a multiple building situation.

5.3.1: Conducting Half Plane

As previously noted, the simplest canonical structure likely to be of use in representing

building diffraction is the half-plane. Here the conducting half-plane is examined using ray

theories_ It differs from the absorbing half plane examined in Chap= Four in that it supports

a reflected field. This field also has associated with it a diffracted field, which influences the

field in regions beyond the reflection boundary to a small extent

Figure 5.8 shows the field scattered by a conducting half-plane according to both the Gil)

and UTD solutions. Electric polarisation is used and the field point is moved around a circle

ten wavelengths in radius, centred on the edge. Marked on the diagrams are the optical

boundaries, with the regions as specified in figure 5.4.

Region (1)
Visible

Region (2)
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Figure 5.8: Comparison of GTD and UTD solutions for conduting half-plane
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In the visible region the interference between the direct and reflected rays is clearly visible.

In region (2) the field strength is nearly at its free space value since the diffracted ray is well

below the direct ray in amplitude. In the deep shadow region (3) only the diffracted ray is

present, so the resulting field decreases very rapidly as the diffraction angle increases. The

singularities in the Gil) solution at the optical boundaries are visible. In these regions

serious errors may result, particularly close to grazing incidence (0 = 270 0) where the UTD

coefficient is essential. The UTD will therefore be used throughout in the examples which

follow. Note that, on the shadow boundary, the field is -6dB, exactly half of the free space

field strength, just as for the absorbing half-plane.

Figure 5.9 displays the diffracted field from the half-plane in the deep shadow region as it

varies in space as a simple model of a building rooftop. The half-plane is located along the

left-hand vertical edge of the diagram and it is assumed that the elevation of the base station

antenna from the rooftop is close to zero, which will be the case in most macrocellular

applications. Small deviations from this value (within a few degrees) make little difference

to single edge diffracted field strengths. It is clear that the field varies more rapidly in the

vertical direction than the horizontal direction, implying that building heights are a more

significant factor in determining propagation loss than building spacing and mobile

positioning, so correspondingly more precision must be applied in determining them.
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Figure 5.9: Spatial variation of field strength due to conducting half-plane (in dB)

(dimensions in wavelengths relative to edge at (10000,0) )

In figure 5.10 the effect of polarisation on the single edge field is considered by varying the

field point along a vertical line 50 wavelengths from the half-plane. The vertically polarised

field shows a considerable gain compared to the opposite polarisation for points deep in the

shadow region, but a more modest difference exists close to grazing incidence.
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Conducting Half-Plane

Distance below edge (wave engths)

Figure 5.10: Comparison of vertical and horizontally polarised field on half-plane field

5.3.2: Conducting wedge

Whatever the attractions of the simple representation of buildings which may afforded by the

half-plane, the assumption of negligible building thickness must clearly be examined. A

canonical wedge structure is more realistic in this respect. Here the UTD is used to examine

the effect of a peaked rooftop. Figure 5.11 shows the spatial variation resulting from a 900

conducting wedge used to represent a building.

Incident Plane Wave	 (10000, 0)
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Figure 5.11: Spatial variation of field strength due to conducting 90 0 wedge

Comparison with the half-plane solution in figure 5.9 shows that the field diminishes rather

less rapidly deep in the shadow region, but the field is identical on the shadow boundary. It

would therefore seem that the shape of the building roof has negligible influence on the field

close to grazing incidence, but is significant lower down. The conclusion to be drawn from

this is -that only the buildings in the immediate vicinity of the mobile need their shapes to be

modelled in any detail, while those earlier along the path can be represented by simple half-

planes. This saves considerable computational effort and complexity in the modelling

process.

Figure 5.12 shows the same comparison between polarisations as for the half-plane case.

The results are similar in form, but the vertical polarisation gain is considerably reduced. In

both cases the diffracted field is larger than for the half plane.
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Figure 5.12: Comparison of polarisation for conducting wedge

It is therefore concluded that the half-plane representation is only really adequate for

modelling building diffraction when the diffraction angles are small (ie near to grazing) and

that building shape may influence the field in the deep shadow region significantly.

However, often there will not be sufficient information or computational effort available to

justify the use of a more complex scatterer.

5.5.3: Rough Lossy Wedge

In practice, a typical building will not be a particularly good conductor, so it would be helpful

to use UTD to analyse the effects of finite conductivity. In addition, the surface of a given

building will have some surface roughness. If the roughness at the point of diffraction or

reflection is significant then the field will develop phase and amplitude irregularities and the

field structure will be altered. Unfortunately, the canonical problems corresponding to these

cases have not been solved, so the basic geometrical theories cannot predict these effects.

However, this problem has been studied in connection with applying GTD to terrain

diffraction by [Luebbers,1984]. Since each of the terms of the UTD diffraction coefficient is

associated asymdtotically with the direct and reflected parts of the diffracted field separately,

the UTD wed ge coefficient can be heuristically extended to include finite conductivity by
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modifying each of the diffraction terms using the Fresnel reflection coefficient and a term for

roughness. One study [Bergljung,1991] has found that inaccuracies do occur for dielectric

wedges well away from the shadow boundaries when compared with an exact solution, but

for UTD analysis this coefficient is the only option. The coefficient has been found

[Luebbers,1984] to give good predictions of field strength in terrain applications and there is

every reason to expect similar performance for buildings. It is difficult to obtain appropriate

electrical parameters for building materials, but by examining the effect over an appropriately

wide range the general effects may be determined. When more particular data are availabk

the model may then be used for actual predictions.

The heuristic diffraction coefficient for rough, lossy wedges, Dri is given as:

Dre

f	 i

1
{cot	 r F {IcLa-(011+	 (7 	 F 1.1d,d(011)cot

2N

N sin 0 olIWIc

1R Ne 'mcot (	 + F [kLa4{01+ R "ncot (	 - (DI F [kLai(1
[r)]}

2N
0

2N

where the terms are as defined for the perfectly conducting wedge previously. RN and R0

are the reflection coefficients for plane wave illumination on the N face (away from the

source) and the 0 face respectively. These terms are composed of the Fresnel reflection

cOefficients multiplied by a factor to account for the effect of roughness, assuming a normal

distribution of surface heights whose standard deviation may be specified. The Fresnel

coefficients are determined by the relative dielectric constant £ r and the conductivity a of

the wedge material. If RN and R0 are +1 for electric or -1 for magnetic polarisation then Dri

reduces to the perfect conductivity coefficient.

Figure 5.13 shows the result for high conductivity but with a 1 wavelength surface

roughness. The attenuation is increased relative to the smooth wedge and the field varies

differently close to the wedge surface.
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Figure 5.13: Rough wedge

It is interesting to compare the polarisation difference for varying roughness. Figure 5.14

shows the difference between the vertically and horizontally polarised field in various cases.

As the roughness is increased the difference between polarisations decreases rapidly, so that

with more than one wavelength of surface roughness the polarisation hardly affects the field

in most circumstances. This has been confirmed in practice by measurements by [Egli,1957].

-45	 -40	 -35	 -30	 -25	 -20	 -15
	 -1
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Figure 5.14: Effect of roughness on polarisation gain
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Electrical parameters for buildings are difficult to obtain, so for the comparison here an

estimate will be adopted. For poor (low conductivity) ground r = 4 typically and a =

0.001 S/m, while good ground has typically E r = 10 typically and a = 0.01 S/m. For a

typical building a reasonable estimate is thus E r = 5 and a = 0.005 S/m. Using these

parameters the spatial field variation around the wedge is again plotteslin figure 5.15, with no

roughness. The difference in attenuation between this and the perfectly conducting wedge is

small, so roughness would appear to be the more important factor to model. Plenty of

measurement data would however be required to reach firm conclusions here.

Figure 5.15: Low conductivity building

5.3.4: Complex Building Geometries

In principle the methods described here can be extended, subject to the outlined limitations of

the theory, to predicting the field scattered by specific buildings. However, no adequate
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measurements relating to these problems are currently available, partly due to the difficulties

of isolating the effects of individual buildings, with the possible exception of the study

described in Chapter Four [Thomas,1990] which examined good conductors only. This

makes it difficult to validate the models constructed. However, some directions for future

work will be indicated here.

Most buildings encountered in modern towns and cities have two main rooftop shapes: flat

and peaked, so it would be useful to develop at least two-dimensional models of these (see

figure 5.16).

Figure 5.16: Two generalised building shapes

In the peaked roof case, as shown in §5.3.2, the field near to rooftop level can be

investigated by modelling the roof as a single wedge. Lower down, however, the field

comes under the influence of a second wedge structure as the roof joins the building wall.

Since the field incident on this second wedge is the singly diffracted field from the first edge

at grazing incidence to the face of the roof, sin gle-term diffraction methods are inadequate for

this problem. Slope diffraction techniques such as that described in [Tiberio,1984] are

appropriate. The situation is further complicated by another wedge at the leading face of the

building. However the field diffracted from this edge is unlikely to be significant on the

shadow region field since a triple diffraction process through a large angle is involved. The

canonical structure shown in figure 5.17 is therefore proposed.
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Figure 5.17: Canonical structure for peaked roof building

As the calculations in previous sections have shown, it is important to consider the finitc

conductivity and roughness of buildings. A heuristic UTD slope diffraction coefficient has

been developed which would address these needs [Luebbers,1989], but the heuristic nature

of the solution implies that careful validation of the model would be required.

The case of the flat-roofed building is simpler since only two significant wedges are

involved. Essentially the same technique as for the peaked roof is therefore applicable, with

appropriately rearranged edge angles. An appropriate diffraction coefficient for this situation

in the perfectly conducting case has been described by [Tiberio,1989] and used succesfully in

building diffraction calculations by [Lebherz,1991]

More detailed building features could also be studied, but the analysis required is unlikely to

be justified by the utility of the results. One useful aspect. however, is to extend the

modelling to three dimensions, which cannot be studied using scalar analysis. The next

section will commence this process by constructing a UTD model of street orientation, but

further studies could particularly consider the effect of diffraction around vertical building

edges, which is likely to be of particular importance for short-range propagation.
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5.4: Street Orientation Model

5.4.1: Introduction

Here a UTD model of building diffraction is constructed for the prediction of signal variability

due to street orientation

-
Consider a base station placed within a city composed of a large number of streets of differing

orientations. As the mobile position is varied around a circle of radius R centred on the base

station, the street orientation relative to a radial will vary rapidly, with no preference for any

particular orientation. Even in a city planned on a regular grid system, the orientations

encountered vary over a wide range. Figure 5.18 illustrates this point and shows the definition

of street orientation, Os . This angle is defined relative to the great circle path from base to

mobile rather than the ray path itself since the two are not in general coincident.

Figure 5.18: The variation of street orientation as a mobile moves around a city

It is thus reasonable to assume that Os is equally likely to take on any value, so it will be

assumed that Os is distributed uniformly on [0,7r]. It is not necessary to explicitly consider

the interval [sr, 2sr ] since the results on this interval will be the same on the grounds of

symmetry. A two ray model is taken, with a constant reflection coefficient for wall reflection,

just as in the oblique incidence scalar model in Chapter Four.
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5.4.2: Ray Path Analysis

Direct Ray:

The three dimensional geometry of the situation is shown in figure 5.19. Only the direct ray

path is considered first for simplicity. The reflected ray follows in an analogous manner and

will be considered later.

Figure 5.19: Diffraction geometry for oblique incidence on building edge

The building is represented in the diagram as a conducting half-plane. The distance eliF = dm

between the building and the mobile is fixed, so F is constrained to rotate about M on the

circle shown. When es � arcsin(dm I R ), the base station is on the same side of the building

as the mobile and the model becomes invalid (eg. Os = 0.75° with dm = 20m and R =

1520m). For radial streets other models have to be considered, such as [Rustako,1991].

When the direct ray BE impinges on the edge, diffracted rays are produced, emanating as

though from a line source coincident with the tangent to the edge at the diffraction point. In

accordance with Fermat's principle the total path length (BE +EM ) is stationary with respect

to variations in the diffraction point E. A necessary consequence of this is that the angles made

by both the direct and diffracted rays to the edge are equal, so that BEA = GEM = 130 .

Thus:

CM _  
V dm2 + h20

tan So = CE = CE
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Using the similarity of ACEM and AAEB

EC EA
CM AB	 .

EC EA + EC	 AC 
Hence 

CM
—
 CM + AB CM + AB

Thus tan /30 - 
CM + AB 1/ 4

. 	
+ h! + V GD 2 + H2

AC	 R cos es

where H = h b - Ito

When es = ir/ 2, then Os = fio .

This expression for the diffraction angle can now be used to determine the parameters for the

UTD wedge diffraction coefficient as defined in figure 5.4. The angles of incidence and

diffraction are defined in the plane normal to the edge at E.

00 = ;,-r + BAK

0 = 27r+ MCF

BAK. tan-IN, 1( 	 H 	1
AK tan R sin es — dm)

MCF . tarIFF). tan-it dm )

ho - h.)

s . Em .  cm V (I? sin es — dm) 2 + H2

sin 130	 sin po

It is also useful to consider the distance that the diffraction point moves along the edge as the

orientation is varied away from normal incidence on the edge:

dm V d,n2 +1202
Shift of diffraction point = FX - CE =

tan es	 tan )30
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Essentially the analysis for the reflected ray is identical to the direct case, except that the mobile

position is replaced by its reflected image, so that dm becomes (2W - dm ), where W is the

street width. When combining the direct and reflected rays, however, it is important to note

that the effective street orientation is different in each case, as follows:

'
Let Osd be the orientation for the direct ray and est. be the corresponding value for the

reflected ray. The relationship between these parameters is shown in figure 5.20.

Figure 5.20: Geometry for reflected image of field point

97



The resulting analysis gives the parameters for the reflected ray:
R cos Osd

cos 0,—
BT

‘ 2 	 12

where B T2 =	 cosesd) + (12 sinOsd + 2W- d „,))

R cos Osd
cos I 9 sr= 	 	

4 R 2 + 4.(W - dm) 2 + 4R(W - dm) sin Osd
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In conjunction with the UTD wedge diffraction coefficient given in §5.2.3, the above

parameters constitute a complete model of street orientation.

5.4.3: Results

First the model must be verified by comparison to some measured data. Little published wor

is available to provide this, but some independent confirmation can be given by examining th

street orientation results measured by [Loew,1991]. The measurements were compiled from a

large number of measurements in Darmstadt in Germany, with varying range and base station

antenna height at 945MHz. All of the measurements made in 50 increments of street orientation

were grouped together and a mean prediction curve was constructed. Figure 5.21 shows the

average building parameters for the area which are used here to obtain simulation results.

Figure 5.21: System parameters for comparison with measurements

The comparison is shown in figure 5.22. The model performs rather poorly close to 00 as

expected. The size of the variation elsewhere is close, confirming use of the model as a
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simulation tool. A discrepancy in the absolute level of the prediction could arise from

variations in the characteristics of particular buildings, multiple building effects or variation in

the transmission range over the complete set of measurements.

Figure 5.22: Comparison of simulation results and measurements

The remainder of this section is concerned with examining the effect which various system

parameters have upon the median field strength using the model. The following parameters are

used :

R = 1.52Icm; dm = 20m; (120 - hm) = 6.5m; W = 40m; (hb - ho ) = 10m; p = 0.5. Vertical

polarisation is assumed throughout.

Figure 5.23 shows the variation of received field strength due to the direct-diffracted and

diffracted reflected ray separately. It is evident that the reflected image is less shadowed,

resulting in a larger field. The minimum field strength occurs when the street is oriented

tangentially, but changes only slowly close to this orientation. As the street becomes closer to

radial variation becomes increasingly rapid. Note that the abscissa here is the direct street

orientation, so the two curves are slightly shifted with respect to one another. Figure 5.24

shows that the differences are small.
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Figure 5.23: Direct and reflected ray field strengths
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Figure 5.24: Difference in apparent street orientation for each of the main rays

Figure 5.25 illustrates the way in which the diffraction point shifts away from its normal

incidence value. This calculation is useful in examining approximations which do not explicitly

account for Fermat's edge diffraction principle in calculating the point of diffraction. A

variation of some 10m over the range considered is evident. This value will be of use when

considering real street geometries in Chapter Eight. It shows that, when streets are close to

radial, the diffraction point estimated from the intersection of the edge with the great circle

propagation path may be substantially in error.
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Figure 5.25: Diffraction point shift for oblique incidence
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Figure 5.26: Overall sector median field strength versus street orientation

Finally the rays are power summed in figure 5.26 according to the usual modelling paradigm to

give an estimate of sector median field strength.

Now the assumption that esd is uniformly distributed on [0,/r ] can be used for transforming

the results into a cumulative distribution (CDF) of field strengths. Figure 5.27 shows the CDF

corresponding to the results of figure 5.26:
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Figure 5.27: Cumulative distribution of field strength variation due to street orientation

Notice from this diagram that the median (50%) value shows only a small uplift from the zero

percentage value. Nevertheless it is important to remember that the median corresponds to esd

= 45° rather than the tangential value. It may therefore be more sensible to use average street

widths corrected to this value when applying prediction models which do not explicitly

consider the effects of oblique incidence.

For about 3% of locations data are unavailable since the model is not valid for streets close to

radial. This does not affect the CDF outside these limits provided that the relative field strength

does not decrease. In particular, the median value is unaffected.
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Now it is useful to determine which system parameters significantly affect these statistics. The

first of the parameters investigated here is the frequency. Figure 5.28 shows the variation of

the CDF with frequency, with the field strength normalised to the 00 value in each case.
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Figure 5.28: Street orientation statistics with vrying frequency

The only significant variation is at the high percentile values and even this is small. For area

coverage predictions the low percentiles are of most interest and the model is expected to be

most valid in this region. It is therefore assumed that the variation with frequency is small

enough to be neglected in most situations. A similar assumption is made for the variation with

street width, which figure 5.29 shows to be very small.

18 	

16

14

12

10

8

O	 10	 20	 30	 40	 50	 60	 70	 80
	

90
	

100
Percentage of locations for which ordinate is not exceeded

Figure 5.29: Street orientation statistics with varying street width
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The variations with (ho - hm ) and dm are also negligible, although not shown here. If,

however, the overall transmission range is varied, the CDF is markedly affected as shown in

figure 5.30.
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Figure 5.30: Street orientation ststistics with varying transmission range

Figure 5.31 uses this fact to provide a prediction curve showing the difference between the

median (45°) and the oblique (90°) field strength values, plotted against the elevation angle of

the base station antenna from the building rooftop, a.

4

Figure 5.31: Median uplift for street orientation effects
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The simulation results indicate overall that the statistics of field strength variation due to street

orientation are substantially independent of frequency, street width, relative antenna heights

and the mobile's position on the street, but are strongly affected by the range (and base station

antenna height), being most variable at short range. This work could form the basis of one

factor in a complete theoretical model of slow fading which incorporates physical building

parameters.

5.5: Conclusions

The ray methods described in this chapter have been used for modelling various building

diffraction geometries in an adaptable and versatile manner. The principal application for the

methods is in short-range applications, for determining likely coverage areas and interference

levels in cases where considerable geometrical detail is available. In these cases complete

deterministic prediction of field strengths may be feasible, although the ultimate prediction

accuracy of such an approach is likely to be limited by the extent to which 'weak ray'

contributions which cannot be predicted by ray optical methods with the limited amounts of

data which are extant. Various limitations of the techniques, however, prevent their use for

predicting diffraction effects in situations where many buildings are involved. Other methods

for doing this will be sought in the next chapter. Ray methods do nevertheless allow

consideration of the effects of final building diffraction by buildings of various shapes,

appropriate to the buildings in a particular area whenever this process may be considered

separable from the gross characteristics of the rest of the path. Buildings might therefore be

classified in terms of the shape of roof they possess and the degree of surface roughness

typical of buildings in a given are& Ray methods would provide an appealing method of

analysis if such data were available and recent discussions have suggested that aerial

photography could provide a reliable means of providing this [Keech,1991].
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Chapter Six

Multiple Knife Edge Diffraction

6.0: Introduction

For multiple building problems the building rooftops will often constitute a system of edges

illuminated at near grazing incidence, with a large number of buildings involved in the process

(see figure 3.3). For an area coverage prediction this diffraction problem may need to be

solved a very large number of times, so any method used must be capable of rapid evaluation

to be practical, while providing acceptable prediction accuracy. Since Chapter R ye showed that

ray methods have limitations in the grazing incidence case, alternative methods are needed.

Existing solutions to the problem are examined here and found useful in some non-critical

cases. A more accurate approach is described and efficient methods of evaluating results using

this approach are proposed and compared.

6.1: Approximate Methods

6.1.0: Discussion

A number of approximate methods for calculating multiple edge diffraction have been

published and widely used, based upon simple geometrical constructions used to calculate a

total diffraction loss in terms of combinations of single edge diffractions between adjacent

edges. These were developed primarily for application in terrain diffraction, where the number

of edges within low-order Fresnel zones is usually small (less than 5) and the source and field

points are frequently in deep shadow. Examples are [Bullington,19771, [Epstein,1953J,

[Deygout,1966] and [Giovanelli,1984]. As pointed out by Pogorzelski [Pogorzelski,1982],

the Deygout method [Deygout,1966] uses appropriate diffraction angles between adjacent

edges, while the Epstein approach [Epstein,1953] uses the correct individual diffraction angles
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but combines the losses due to individual edges inappropriately. The Giovanelli method

[Giovanelli,1984] is probably the best compromise, using the correct diffraction angles and an

accurate combining factor. Only this method will be examined in any detail here.

6.1.1: The Giovanelli Method

The geometry for the method is shown in figure 6.1. Only two edges are shown here, but the . .

method is straightforward to extend to multiple edges. The solution involves the single edge

result given previously (§4.4.5), which will be denoted here by As (di , d2 , h ) where di

and d2 are the distances between the source and field points and the edge, and h is the height

of the edge above the straight line joining the source and field points.

Figure 6.1: Geometry for Giovanelli method

First the main edge is identified. This is the edge having the smallest clearance relative to

the Fresnel zone radius. Assume edge A to be the main edge in this case. Then a reference

field point F' is found by projecting AB onto F F'. An effective height for edge A, hi" is

(6.1)

where H = h2 + m d3 and m = (h2 - h 1 ) I d2 . The effective height for the secondary

107



1

100m	 th2

51cm	 5km
F	 No

fc = 100MHz

10km 10Icm

Multiple Knife Edge Diffraction	 Chapter Six

obstacle B is then given by :
d3 h1

h 2 = h 2 d2+ d3

(6.2)

The diffracted field strength is now given by the following expression:'

A T = A s (d 1 , d2+d3 ,h 1 ) x A s (d2 , d3 , h2)

(6.3)

The results are not unconditionally reciprocal (that is, swapping source and field points may

give slightly different results.) The method is conveniently extended to more than two edges

by recursively applying the above described procedure. Some particular cases of results

obtained from this method are now examined to determine its usefulness in multiple building

configurations.

Giovanelli Comparisons

The three sets of calculations presented are compared with an evaluation of the multiple edge

integral solution (§6.2), which may be regarded as exact in this context. The comparisons were

calculated using succesive applications of equation (6.3), implemented as a PASCAL program

running on a SUN workstation.

The first situation (figure 6.2) shows a three edge arrangement which might be encountered in

a terrain diffraction calculation. The edges obstruct the line-of-sight path, and grazing

incidence occurs when h2 = 100m and when h2 = 150m.
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Figure 6.2: Giovanelli comparison (I)

The results show good agreement with the exact solution, with the positioning of all maxima

and minima predicted correctly. The absolute accuracy of the predictions is also reasonable,

particularly when only one edge dominates the process (h2 large), as would be expected. The

propagation loss is however overestimated when the edges are almost in line and there is a

considerable discontinuity at h2 = 100m.

The next situation (figure 6.3) is more severe. Three edges and the field point are colinear,

which would be an unusual situation in terrain diffraction situations, but is important for

building diffraction since many adjacent houses may be of the same, height. Figtue., 6.4 StKIWS

the way in which the predicted field strength varies with source height.

A.
	 fc = 300MHz

101an	 10m 10m 10m

Figure 6.3: Giovanelli comparison (2)

The Giovanelli method considerably overestimates the propagation loss in this case, although
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the rate of change of field strength with source height is accurate.
— Giovanelli	 — Exact
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Figure 6.4: Giovanelli predictions for three edge grazing incidence problem (2)

To examine this effect in more detail, the next comparison (figure 6.5) examines the grazing

incidence case as the number of edges, n ,is varied.
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Figure 6.5: Giovanelli comparison (3)
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Figure 6.6: Giovanelli predictions for varying number of edges at grazing incidence

Here the Giovanelli approach predicts 6dB loss per edge, resulting in a serious overestimate of

loss for n >1 (figure 6.6). It is concluded that the method is inadequate for situations involving

large numbers of edges, particularly when a series of edges is colinear although the ease of

implementation and speed of calculation make it attractive for terrain diffraction. Alternative

methods are now sought.
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6.1.2: The Near Field Method

The near-field method for calculating multiple edge diffraction [Whitteker,1984] is unusual

since it is an asymptotic ray technique, like GTD, but it uses a scalar description of the field. It

is specifically designed to overcome some of GTD's limitations in ,dealing with transition

region fields, whilst retaining some of GTD's intuitive appeal. The method will be described.

in general terms here and some numerical calculations performed. Considerable effort was

devoted to producing a reliable implementation of this method and to extending the method to

overcome some of its limitations, since it held considerable promise initially for making rapid

calculations with large numbers of edges. Ultimately, however, the method was found to be

fundamentally limited.

)
The near-field method assumes that every edge in a system of multiple edges is illuminated by

an astigmatic pencil of rays as in §5.1. Since all of the edges are assumed parallel, with

oblique ray incidence throughout, it is considered that the centre of wavefront curvature in the

horizontal plane passes through the source point, while in the vertical plane the focus is a line

parallel to the edges, at a position dependent on the observation point_ In the special case of the

first edge, both focal lines are coincident and point source illumination is assumed.

m th edge

Figure 6.7: Geometry for near-field calculations
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Figure 6.7 shows the general case: edge m is illuminated from the left by a point source and

the resulting diffracted field is observed at a point P in the plane of the m+1 edge. If P is in

the deep shadow region then wavefronts have a caustic at the edge, so illumination is assumed

to emanate from a focal line at the edge, just as in GTD. When P is, very high, the centre of

curvature is at the real source and diffraction is negligible. In between these extremes is the -

near-field region associated with edge m. This corresponds to the transition region in GTD.

In this region the focal line is allowed to shift upwards and to recede from P as the height of P

is increased, following the centre of curvature calculated from Fresnel-Kirchhoff theory (see

figure 6.8). This variation is the key to the technique's improvement over GTD. Having

determined the position of the new focal line, this is used to represent the illumination on the

m+1 edge and so on. The field point for observing diffraction over the (nz-1) edge is

determined from the line joining the (m+1) field point and the source as it intersects the plane

of the mth edge.

True
Source

X

.•••••••
=IP/m=1.•

Field point for (m-1)
diffraction "n,..e,...

Locus of focal line as y m+1
increases

Observation
point

— -- 4(-
(xrn+ 1 , ym+ 1 )

Figure 6.8: Variation of apparent source point

The first step in any analysis using the method is to determine the focal lines and field points

which constitute the ray trajectory over the edges. Since only the final field point and the first

source point are fixed, the focal lines are initially assumed to be coincident with the edges and

iterated calculations across all the edges are made until the ray path settles. A typical path is
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shown in figure 6.9. Note that the field point above each edge lies on the direct line from the

previous focal line to the following field point The ray path calculation is thus best performed

by starting from the field point and working backwards towards the source. In principle the

result of starting at either end should be the same according to the reciprocity theorem, but

faster convergence of the path is obtained using backwards iterations.

X Focal Lines
	

4— — 4' Ray Path

/

-20
0
	

5000
	

10000
	

15000	 20000
	

25000
	

30000
	

35000
Horizontal Distance (m)

Figure 6.9: Ray path positioning in near-field method

Once the path has been determined, the Fresnel diffraction parameter for each edge is

calculated relative to the ray path and repeated applications of the two-dimensional Fresnel-

Kirchoff integral yield an overall path loss prediction.

Low edges

The procedure described usually works well if all of the edges are reasonably high relative to

the line joining the preceding and succeding points on the ray path. When, however, the edge

is low, the the wavefront is highly corrugated and a single ray is a poor description of the field.

This difficulty is partially overcome by plotting a new ray path which corresponds to replacing

the low edge first with a complementary edge occupying y > ym and then removing it entirely

and applying Babinet's principle [Boni,1980,p.381J. A 'low' edge is defined in terms of a

threshold value of the Fresnel diffraction parameter. In principle this increases complexity

dramatically, since new ray paths should be calculated for all combinations of complementary

edges and absent edges, but Whitteker makes the approximation that of any two adjacent low
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edges, the lower of the two may be removed entirely. The ray path is also assumed to be

unaffected by a complementary edge for more than two edges in either direction. This prevents

calculation time from rising exponentially with the number of edges, but limits the accuracy

available. Trials were performed where all complementary ray paths were calculated. The

prediction accuracy improved in some cases, but generally the improvement is not justified by

the increase in computation time.

A further limitation to the method exists. In regions where the radius of curvature varies

rapidly small errors in the field point positioning can cause large errors in the ray path

calculation and hence large prediction errors. An heuristic extension to the theory is therefore

suggested by Whitteker : over a certain range of the diffraction parameter, the wavefront

curvature is calculated as an average over approximately the effective aperture. This extension

to the theory does improve the calculated results in many cases (see comparisons below), but

the improvement is strongly dependent upon the particular situation under analysis. In some

cases the results may be highly unreliable. Although various remedies were attempted to

improve this situation, it was eventually concluded that the rapidity of spatial variation of the

field in many multiple edge cases is simply too great to be approximated by a method based

fundamentally upon the properties of single edge diffraction.

Calculations

Here the variants of the near-field method are applied to the same situations as used in §6.1.1

for comparison purposes. Figure 6.10 shows that the method provides considerably better

prediction accuracy than Giovanelli in the first situation, particularly around h2 = 100m

(compare with figure 6.2). Some errors are evident for large h2 in the basic method, which

are mitigated to a large extent by the use of the heuristic extension. At some isolated points,

however, the ray path calculation in the extended case fails and large errors result. This is due

to an abrupt change in the calculated edge types resulting in errors in the ray path calculation.

A different definition of a low edge will change the points at which this occurs, but no

consistently better definition was found.
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Figure 6.10: Near Field evaluation (1)
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Figure 6.11: Near Field evaluation (2)

Results for the three edge grazing problem (figure 6.11) show a still greater improvement over

the Giovanelli geometrical approximation, with the improvement produced by the heuristic

extension being particularly marked in this case.

Finally, figure 6.12 shows that the heuristic extension allows the near-field method to be used

for up to five edges at grazing incidence. Beyond this value, however, the results are

unreliable.
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Figure 6.12: Near Field evaluation (3)

In conclusion, the near field method is an interesting and unusual approach to calculating

multiple edge effects. Its principal appeal is in the extension of a ray method to overcome the

usual difficulties of GTD within transition regions, thus retaining a physical description of the

propagation process. The method is reasonably rapid to compute and is capable of acceptable

accuracy within certain limits. However, since the method lacks the analytical rigour of GTD,

its results are frequently unpredictable : it should thus be used with care in any cases where

accurate results are important. Its main application would probably be in terrain diffraction

analysis where the number of edges of importance is usually small.
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6.1.3: Double Knife Edge Diffraction
a,b,c>>hl,h2, 2.

Figure 6.13: Geometry for double krufe-edge solution

This problem of two edges with arbitrary positioning (figure 6.13) has been solved

analytically by Millington et al. [Millington,1962] using Fresnel-Kirchhoff assumptions.

The attenuation function A can be expressed in terms of a Fresnel surface integral F2

as follows:

. A =- .1.- F
2 2

where F2 = 1e jig)2) dS
2

S..

is a surface integral taken over the region shown in figure 6.14, where p is the distance from

the origin to the integration point.

Figure 6.14: Region of integration for double knife-edge problem
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The geometry of the region is related to the physical geometry of the problem as follows:

sin a=
,11b(a+b+c) 

(a + L.) (b + c)

p = hi "s
1 2 (a+ b + c) 

x a (b + c)

q =h2
V2(a+b+c) 

A, (a + b)c	 .

Another paper is devoted [Millington,1962b] to methods of evaluating the integral.

Whitteker [Whitteker,1990] has used the method to calculate diffraction over a flat topped

reflecting obstacle. Essentially the solution is the same as that for 2 edges, plus a field

contribution reflected from the top of the obstacle in the same form as the direct field.

A comparison between measurements and two edge theory for a Bat topped builiipg is now

given as an example. The geometry of the building is shown in figure 6.15.

,
>e.

Varying t
Height

X

35m
1000m

16m

Figure 6.15: Geometry for building measurements

The measurements are taken from [Haslett,1991], and were made at 11.2GHz. Two different

approaches to modelling are used : the first is a single knife edge placed at the building face

closest to the field point, while the second uses two edges, one for each building face.
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Figure 6.16: Comparison of predictions with measurements for a flat roofed building

The results are shown in figure 6.16: the two edge approach is by far the most successful,

showing good agreement with the measurements, although with some tendency to

underestimate the loss as the field point is moved into deeper shadow. The single edge

representation shows a more serious loss underestimate. Building geometry should thus be

taken into account whenever appropriate data exists. A single edge representation is likely to

be more acceptable for near-grazing incidence or for buildings with pointed rooves.

The Millington two-edge method has not been widely used in propagation predictions,

however, due to the complexities of evaluation and due to the fact that approximate methods are

capable of acceptable approximations in the two edge case, but it is useful as a standard of

comparison. In principle the method could be directly extended to more than two edges, but

the resulting geometry of the integration region becomes impractical to handle. The next

section examines a more complete approach to multiple knife edge diffraction.
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6.2: The Multiple Edge Diffraction Integral

6.2.1: Development of the Integral

In 1963 Furutsu [Furutsu,1963] published complete expressions for propagation over various

configurations of inhomogeneous terrain. One of the cases considered was a two dimensional

representation of propagation over multiple cascaded circular cylinders, which includes the

multiple knife edge case when the radius of curvature becomes vanishingly small. The results

were given in the form of a residue series, which is slow to converge in the knife-edge case.

Using a variation on a procedure described by [Bremmer,1949] the series was transformed by

Vogler [Vogler,1981] into a multiple integral representation of the attenuation function.

Essentially the same representation was derived by [Sharples,1989] using repeated applications

of Green's theorem. The same author also showed that the non-zero cylinder radius case may

be treated as the superposition of the field due to an array of equivalent knife edges with a

perturbation term to describe the effect of the cylinders' non-zero radii and surface impedances.

The multiple edge integral is therefore an important result and will be examined in some

depth here.

6.2.2: The Multiple Edge Integral
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Figure 6.15: Geometry for the multiple edge integral
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Vogler [Vogler,1981] expresses the attenuation due to n knife edges as :

0-A „ = C,, r nh e  In
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where :

1in =	 . . .	 exp 2f - i x 2p, dx i ... dx„
m=1

(6.5)

n -1
f= E am (x „,- /3m) n,	 fin, i) for n _� 2

m= 1

where
rmrm +2

a =	
(rm+rm +i)(rm +1+r m +2) 

;m =	 (n -1)

•
Note that 0 < am < 1.

1 j rmrm+i
Pm = 04 2irm+rm +1)

2	 2

Crt = 1+ —+ fin
r2r3...rnrT

(r 1 +r2)(r2 +r3)...(rn +rn +1)

rT =ri + +rn +1

and the geometrical parameters are defined in figure 6.15 (note that 01 and 03 are positive in

this diagram, 02 is negative.)

This expression is valid in general, subject only to the usual assumptions of the Kirchhoff-

Fresnel theory. It therefore potentially constitutes an extremely powerful tool, provided that

efficient methods of evaluation can be found. This problem is non-trivial, since some of the

characteristics of the integral present special computational difficulties. Additionally, the high

dimensionality of the integral when n is large maim computation slow. These characteristics

will now be examined in detail.

;m = 1,...,n

Cn=
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6.2.3: Characteristics of The Integral

Here the behaviour of the integrand in particular cases is examined to illustrate the difficulties

involved in evaluating the integral. This is most easily done if the integral is expressed in a

slightly different form:

The Pm terms can be expressed as :

where the bm are entirely real. Now under the transformation urn =xm - Pm the argument of

the exponential may be rearranged as:

n-1
x---% 2	 f	

2	 21

2f- L xm = - (tu i + bog) +... +(is ,z + b „Y.
r

)
 

p

m=1

n-1

+	 amunzum+1
m=1

n-11	 21	 .2

I12amu,num+i - (u m +	 p-(un+ bnir:1)

m=1

- 1
2	 1	 2	

n

=	 ; 2a u	

÷1
mu -urn -ifu,nb mf -un -ifunb„-J 	(ff1mbm+b,n2)

m =1 k m m	 —	 m

E A -j B

where:

2	 2
A =	 2amumum+i - urn - irfumb m) - li n - fflin bn

m=1‘

B =	 (ffll,,,bm bm2

m=1

The term in brn2 in the definition of B may be neglected without affecting the magnitude of the
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attenuation function, and this convention will be adopted from now on. The integral is now in

the following form:

in =	 du i. . .f —du n {leA [cos(B )- j sin(B )1}
0	 0

The integral may now be separated into its real and imaginary parts, resulting in two real -

integrals with fixed limits which may be examined directly. Notice firstly that, when all of the

edges are at grazing incidence, bi,...,bn = 0, so B = 0 and In is entirely real.

The bm parameters can be expressed in terms of the Fresnel zone radius as follows:

b,n = eniArit

where Rj is the radius of the first Fresnel zone about a ray joining the (m -1) and the (m + 1)

edges. Thus these terms are analogous to the Fresnel integral argument w in the single edge

calculation, while the a m terms express the coupling between adjacent edges. When there is

little coupling (rm+1 » rm , rm+2) , the a m term is negligible so the m and (m +1) integrals

may be separated into the product of two independent terms. In such cases approximate

methods such as the Giovanelli method may be applicable.

Now consider the eA factor which appears in both integrands.The factor diminishes as

exp(-um2 -um bm 42) along any of the u -axes, but less quickly elsewhere due to the positive

exponents of the form : exp(2 am umum+ ). Resulting from this behaviour the exponential

factor reaches a maximum when A is maximised. This occurs when :

= —2u . +? a.u- ,+ 2a- u• -	 b•= 0 j =	 n
au •

This maximum does not necessarily occur within the domain of integration. When the bm are

small (near-grazing incidence) the major contribution to the integral will come from a region

close to this maximum, so the limits of integration may be truncated for easier evaluation. In

physical terms this truncation is equivalent to placing a conceptual inverted half plan . in the

aperture of the real half-planes, sufficiently high as to make no material difference to the
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-esulting field.

rhe integrand is now plotted for some simple two edge configurations. The first case (figure

5.16) produces the smooth, symmetrical and always positive function illustrated in figure 6.17.

'n such cases the integral is relatively easy to evaluate.

rigure 6.16: First edge geometry for examination of integrand

igure 6.17: Integrand in first case
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In the second problem, the first edge is allowed to move along the line between the source and

the second edge, affecting the coupling between the edges. When the coupling is large the a

term is large and the integrand decays only slowly away from the maximum.

Figure 6.18: First edge geometry for examination of integrand

Figure 6.19 shows the results with relatively little coupling (ai = 0.3, xi = 900), neglecting

the oscillatory component in the integrand -for the time being. In this case, the major

contribution is still close to the origin, but some asymmetry has been introduced, reflecting the

asymmetry in the edge arrangement.

— 0.2

0.3

------ 	 — 1,0 `‘,

1.6	 N.„ `9\ \ 
•\ 

0	 1 2	 3

0 s

gus0.8

4

Figure 6.19:Integrand in second case, exponential part only. xi = 900
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In the next case the edges are much closer, (al = 0.95, xj = 999). Now figure 6.20 shows

a greater contribution away from the origin, with the integrand diminishing only slowly away

from the axes where the term in a has the greatest effect. In a practical evaluation method this

would usually require a greater number of integrand evaluations to be made, resulting in a

longer evaluation time.

Figure 6.20: Integrand in second case, exponential part only. xi = 999

The cosine and sine terms in the integrands make them oscillatory away from grazing

incidence. Positive and negative contributions from adjacent half-cycles tend to cancel, leaving

only a small difference which constitutes the complete result. Such processes are very prone to

numerical round-off errors. The frequency of oscillations increases with the bm and hence

with the diffraction angles Om . In figures 6.21a and 6.2 lb the real and imaginary parts of the

complete integrand is illustrated for the same edge arrangement with x2 = 990.
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Figure 6.21a: Real part of inte grand

Figure 6.21b: Imaginary part of integrand
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Note that there is no oscillatory behaviour along one axis since the source, edge 1 and edge 2

are in line, while the other axis shows variation resulting from a positive diffraction angle 02 .

In summary, the principle difficulties in evaluation of the integral come from situations where

edges are very close, resulting in high coupling and slow decay of the integrand away from the

maximum. Other difficulties occur when edge heights are highly irregular, causing oscillatory

behaviour of the integrand, although this problem may be mitigated to some extent by

removing edges which are low enough not to substantially affect the field. A procedure for

doing this is given in §7.2.

6.3: Closed Form Solutions of Multiple Edge Diffraction

The solutions examined here are essentially complete solutions of the multiple edge integral

which apply to a special set of cases. Closed form solutions are to be preferred whenever

possible since they allow very rapid evalution compared to numerical evaluation of the general

problem. They also provide insight into the nature of the solution via examination of their

form. The limitations are that such solutions exist only for a very limited set of edge

arrangements, and their initial formulation requires a large amount of analytic effort. All

previously published solutions have been for grazing incidence situations only, although a

more general solution will be presented in Chapter Seven.

When all of the edges and the source and field points are colinear (figure 6.22), the multiple

edge integral is equivalent to a formulation derived by Lee [Lee, 1978] using a method of path

integrals. This formulation is solved by Lee for certain special cases. These solutions are

presented here since they are useful results in themselves and because they were used

extensively in developing the more general evaluation methods described next.
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• • •

Figure 6.22: Colinear edge arrangement

If a —)..o and c -->«, then the attenuation function takes on the following form:
1

A n = f

This implies that, when the spacing between the edges is small compared with their distances

from the source and field points, a system of edges may be replaced by a single equivalent

edge.

If a —>«, and c = 0, or c -->oe and a = 0 then:

r(n - J2-)

2In -1)! r()

If a = b and c = 0, or a = 0 and c =b then:

A	 1
' ' n = 2n

If a = 0 and c = 0, then:
1

An-4(n-1)

If a = b =c then :
1

A n_ (n +1)

This case is very useful for testing evaluation schemes of the more general multiple edge

problem since, in this case, all of the am and bm parameters are equal.

If a .—.0 and c = b, or c —>«, and a = b then:

 
+ 12)

A n = 	 r(i 
n ! -f)

This is an important practical case for determining the effect of plane wave incidence onto a
130

•
bbba

k.



-6

8

-10

-12

-14

-16

-18

-20

-22

Multiple Knife Edge Diffraction
	

Chapter Six

series of rooftops as received at a point on the final rooftop. The result is plotted in figure

6.23: it is clear that every additional edge reduces the field strength, although the effect per

edge decreases as n is increased.

Ik11111111111111111111111111111111111111.1111
INIIIIIIIII1111111111111111111111111111111
11110111111111111111•111•11111111•111111111
Iiiiii01111111111111111111111111111.111111
111111111111111111111111111111111
1111111111.11011111111111111111
111111111111111111111111. 

	

-24 	 •	 =	 •	 •	 -•

	

0	 5	 10	 15	 20	 25	 30	 35	 40
	

45
	

50
	

55
	

60
Number of edges, n

Figure 6.23: Plane wave incidence on multiple edges at grazing incidence

The task of §7.1 will be to extend this result to include arbitrary angles of incidence.
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6.4: Methods of Evaluating the Multiple Edge Integral

6.4.0: Introduction

This section examines a number of methods of evaluating the multiple edge integral discussed

in §6.2 in the general case, where edges may be at arbitrary positions and heights. Some of the

methods will be more suited to evaluation of particular sets of edge configuration, so the

methods will be examined according to their suitability for the multiple building case, where

edges are usually illuminated from above. The important criteria for determining a method's

usefulness are as follows:

i) Speed: This is the most significant factor. Many calculations may be needed in a short time,

particularly for area coverage applications, so even small speed improvements may be

important.

ii) Accuracy: In all of the methods presented here, essentially arbitrary accuracy may be

obtained if sufficient time is available (subject to numerical limitations). It is important,

however, that a method provides an appropriate measure of accuracy to determine how long to

allow the evaluation process to continue, or else that the accuracy may be reasonably well

estimated in advance.

iii) Computing resources : In addition to processing time, some methods use large quantities of

storage space, which may be limited in some cases.

6.4.1: The Vogler Evaluation

The overall method proposed in [Vogler, 1981] is as follows:

C
n 

e ci'' —
A =   	 E

2n m = 0

	

„,	 m - mi
	where in, = 2 —	 ai	 / (,/ - m 1 , p i) c (2,m, , m)

m1=0

The function C (.) is defined by the recursive relationship

C )11	 1(1c-i P n _JC_ 01U _ )! f n - L

132



Multiple Knife Edge Diffraction 	 Chapter Six

and the terminating value :

C (n - 1,p , q) = m n -31 aPn -1 I	 ' n -1)1(11'Sn)

The method was derived by expanding the exponential in the integrand into a power series,

which is then integrated term by term resulting in an expression involving the function I(n,18)

(the repeated integrals of the complementary error function) which is defined by:

n!dn, fi)=
f(

Ix - P)fl exp(-xl dx

This function is tabulated in a number of standard texts eg [Abramowitz,1970] and several

algorithms are available for its calculation eg [Gautschi,1961]. Most of these methods involve

calculating succesive terms in a power series until a given accuracy criterion is met. It has been

found that many terms are required when n is large or when )3 is large and negative, which

occurs when an edge is illuminated by a highly elevated source. The method outlined above for

evaluation has been implemented in PASCAL for two differesst computer systems (SUN acid

PYRAMID) and tested extensively. The calculation of 1(n,P) requires careful programming

according to the particular computer system used to avoid errors due to lack of precision in the

representations used. In practice the series for A is terminated at an upper value of m

appropriate to the accuracy required, which depends upon the precise arrangement of edges.

In propagation applications the signiiican. accuracy is 'cht.re.1.6.Ntvat\txkVax-va.lmokutt

so additional terms are calculated until the last term obeys the following accuracy criterion:
LastTerm)20 log ( 1 +  A	 <

11 sub

where Er is the required accuracy in decibels.

When the edge illumination is from above, the series requires many terms to converge and a

large amount of computer storage space is occupied. Note also that the method requires the use

of complex arithmetic, which is inherently slower than purely real calculations.

In order to ease the storage requirement and to make the use of the multiple edge integral more

practical in the case of an elevated source and large n, alternative methods of evaluation are

sought.

The first method adopted was a modification of the Vogler approach. The recursive structure
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of the basic method, although elegant and simple to program, is very slow and inefficient,

since the program compiler must ultimately translate the algorithm into an iterative sequence

of low-level instructions. The structure of the algorithm was therefore amended to remove

recursion, as follows:

1) Set m to O.

2) Find /(i,/3) for i varying from 0 to m and for every value of p . Store the results.

3) Set 1 to n -1.

4) Calculate C(l, i,m) for i varying from 0 to m using stored values of C(n-l+1, i,m) and

store the result.

5) If 1> 2 then decrement I and go to (4).

6) Use stored values of C( 2, ., .) to find	 . Add this to the running total.

7) If /In does not obey the accuracy criterion then increment m and go to (2).

No recursion is required now, since the modified algorithm uses only previously calculated and

stored values of C() at any stage. Also it avoids the recalculation of previously calculated

values of CO. The penalty for this improvement is that greater storage space is required for the

values of /() and CO. To examine the performance of this method and those to be described

subsequently, the problem illustrated in figure 6.24 is used.
Source
Point

100m	 100m
100m	 100m

10,0002. 

X
Field
Point

Figure 6.24: Edge configuration for comparison of evaluation methods
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This problem is chosen for two reasons : first the problem is an important configuration for

multiple building problems and secondly the method derived in §7.1 allows exact values for

this problem to be found so that errors can be properly calculated.

Figure 6.25 compares the evaluation times required for the straightforward recursive method

and for the modified iterative method as the number of edges is varied, with the accuracy set at

ldB. In both cases the times shown are user cpu times for a PYRAMID mainframe.

Figure 6.25: Timing for Vogler evaluation

It is clear that the iterative method is a considerable improvement over the recursive approach.

The execution time does, however, rise rapidly with n in both cases due to the increased

number of terms required for a given accuracy for large n. Also the execution time is strongly

dependent upon the particular problem due to the time required to calculate I(n,f3) . The time

taken is particularly large in large n cases where p is large and negative. Other methods were

therefore examined.
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6.4.2: Quadrature Methods

Most conventional formula for the numerical evaluation of multiple integrals are of the

following form:

dx i ...fdxn w	 „)f	 f	 ot)
Rn	 i=1

where the Bi are the coefficients and the vi are the abscissa of the formula, all of which

are chosen to make the approximation a good one for the smallest possible P, the number of

points in the formula [Stroud,1971]. The w (x) is a weighting function. The theory of such

formula for univariate integration is well established, but the multivariate case presents a

number of extra difficulties. Firstly, the construction of integration formula depends closely

on the theory of orthogonal polynomials, which is well known and complete for one variable,

but is only known for special cases when n > 1. Next, functions of several variables usually

take considerably longer to evaluate than one dimensional functions. Finally, more points are

required to obtain acceptable accuracy with a multiple integral, causing computation times to be

long.

If a formula has degree of exactness, d , then it produces exact results (withln maclime

accuracy) for all f(x) which are polynomials of degree d, and there exists at least one

polynomial of degree (d+1) for which it is not exact. In the case of primitive formula such as

Simpson's rule, d = N, where N is the number of points used in each dimension. Using the

theory of orthogonal polynomials, Gaussian formula may be constructed having d =2N - 1,

which is the highest possible using only N points. Gaussian formula therefore represent an

optimum in some sense. The success of such formula then depends upon how closely the

integrand resembles a polynomial of degree d.

For the multiple edge integral the polynomial behaviour is improved by separating out the

major part of the decay term in the multiple edge integral as follows:

fA =	 dx 1 ...	 dxn exp (-x21-...-xlf (x i ,....x n)
0	 0

136



Multiple Knife Edge Diffraction 	 Chapter Six

This suggests the use of a weight function w(x) with:
2

W = exp

A standard univariate Gaussian rule for w(x) = exp(-x 2) is available, based upon the zeros of

the Hermite polynomials [Davis,1975], p34, but these are defined relative to	 It is

possible to simply define the integrand as zero on 	 but this is an inefficient approach. A

search of the literature reveals a Gaussian formula for the evaluation of:
b

exp (-x2)f (x) dx andi exp (-xlf (x) dx
0

This is referred to as the Gauss-Steen quadrature henceforth [Steen,1969]. The paper supplies

weights and abscissw for N = 2,(1),10,(15dp) when b = 1 and for N = 2,(1),15, (15dp) in the

semi-infinite case. The semi-infinite integral is particularly useful since it avoids any need for

truncation. It also avoids the need to perform any algebraic transformations on the coefficients

and abscissw when b �1.

To extend the univariate formula to the multiple edge integral, use can be made of a product

region. Assuming f(x) is of polynomial form, the integral may be expressed as a linear

combination of integrals of the form:

where the c ...cn are appropriate exponents. This can now be separated into a product of n

one-dimensional integrals:

fl	 exp -x 1 jx. dx
= 1 0

Each of these can be evaluated using an N - point univariate formula:

cc c fA n -, is	 ii,� N	 „	 (11	 —111 i,ni
k =

If the one dimensional formula is exact to degree d, then the n - dimensional formula using

P = Nn points also has degree d. In the case of the Gauss-Steen formula, d= 2N-1.

The major disadvantage with such an approach is that the number of functional evaluations

rises very rapidly with n. To some extent this can be eased by choosing the number of
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abscissae differently in each dimension according to the amount of variation in the integrand

in that direction. This corresponds essentially to the magnitude of the b parameter for that

dimension and some success has been obtained in estimating the number of points required

according to this criterion. A reliable automatic strategy for doing this remains to be found,

however, so the results shown here were obtained using the same number of points in every

dimension. The number of evaluations and hence the total evaluation time therefore rises

approximately as N.

In order to minimise the evaluation time required an efficient scheme was devised which takes

advantage of the properties of the integand to enable each integrand evaluation to be as rapid as

possible. The portion of the integand which must be calculated may be expressed as:

n -1 i

f (u i . ... ,u „) =	
1

exp 1 (2 a fiz u „zum +1)-B „{cop nyi- j sin (/3 n))

m =1

n

where B„= E iff umb.
m=1

The terms (42 umbm ) in Bn need only be calculated once for each of the abscissw. Similarly

the expression (2 amum) may be calculated outside the main summation and stored for later

use. Multiplication of the weights may be avoided by precakulating the natural logarithms of

each of the weights and simply adding the transformed values to the exponent, which is far

more rapid. Real arithmetic may then be used throughout until the final step of including the

phase term.

This procedure may be summarised as follows:

1)For each abscissa, calculate (\12 umbm) and (2 amum) and store these values.

2) For each integrand evaluation :

2.1) Sum the appropriate transformed weights.

2.2) Add to them the appropriate set of (2amumum+1 ) values.

2.3) Calculate and store B n , subtracting it from the sum from 2.2.

2.4) Raise e to the power of the results at 2.3.
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2.5) Multiply by the phase term, (cosBn +j sinBn )

2.6) Add the result to the integral approximation.

This approach has been found to be far more rapid than a straightforward evaluation of the

integrand in its standard form.

In the comparisons which follow, GSk means an application of the Gauss-Stein formula with k

points in each dimension. Figure 6.26 shows the times taken, which, as expected, rise very

rapidly with n although the times are moderate for n � 5. The execution times are

independent of the particular problem under evaluation, although the corresponding errors will

vary as shown in figure 6.27.

n

Figure 6.26: Gauss-Stein execution times
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Figure 6.27: Gauss-Stein errors.

It is clear that the method consistently underestimates the field strength and does so in a

smooth, well-behaved manner. The errors reduce rapidly as the number of integration points is

increased. This method is therefore probably useful in all cases of up to 5 edges.
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6.4.3: Monte Carlo Evaluation

This section describes an original approach to evaluating the multiple edge integral using a class

of methods which has some special merits in multiple integral calculations. Monte Carlo

methods are based upon the assumption that a given integral can be regarded as the expected

value of a certain stochastic process. For instance, given: 	 ,

I
 = f

b

a f (x) dx

then the mean value off(x) is II(b-a) . If a sample average is constructed:

^	 1 x--,isi
iN = Iv 2.,.t. (,x

i.1

by randomly selecting N abscissa on [a,b ], then
ii	 Nrb

I = j f (x)dx =V If (xi)

where the approximation may be expected to improve as N increases. When the xi are

distributed uniformly on [a,b ], statistical considerations suggest that the absolute error

decreases as 1/4(N ) for a fixed level of confidence [Davis,19751p290. Although this rate of

convergence is relatively slow, the rate is essentially independent of the dimension, which is

the Monte Carlo method's principal advantage.

In practice, number-theoretic methods are more often used. Their abscissae are not strictly

random but are chosen using a pseudo-random technique whose numeric properties produce

more rapid convergence. The method used here is that of Korobov [Korobov,1957]. The

resulting formula is:
1

1 i il ia ll .. lianllI dx 1 ... 0 dx n g (x 1 , . . . ,x 
n) = P— i = ig \\PT - '1 P 1 i

where (x ) denotes the fractional part of x and the ai are the Korobov optimal coefficients,

given in terms of a parameter a as:

a l = 1; ai= a
i -1 

(mod p )

and a procedure for calculating a is given. The number of points, p must be relatively

prime to all the ai .

This method has been found useful for evaluating the multiple edge integral using a standard

numerical algorithm [NAG,dOlgctl. Since the basic method is intended for real integrals only,
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the Monte-Carlo method has been applied to the real and complex parts of the integral

independently, separated as described in §6.2.3.

The method does not allow for an error estimate as standard, but by calculating the variance in

the integrand at a number of random vectors an error may be estimated. This approach has

been adopted in the routine implemented in [NAG,dOlgcf], but increases the execution times

appreciably, with the time becoming greater as the reliability of the estimation improves.

In the comparisons below the key corresponds to the following numbers of points used:

Key Number of Points

M1 2129

M2 5003

M3 10007

M4 20011

M5 40009

M6 80021

Thus the number of points approximately doubles in each case, so the evaluation time is

expected to rise in the same way. Figure 6.28 confirms this behaviour, where the comparisons

presented have been performed with no error estimation. The increase in time taken with the

number of edges is approximately linear, reflecting the increased time taken in each evaluation

of the integrand.
0 M1	 El M2

0 M4
	

+ M5

A M3

X M6

111111111111111•11111111111111111111

1111111111111111
	1111111111E' 	

MIIMI1111	 _.../i111111=1111111111

	 11111=1111111111111111111111111
rt

Figure 6.28: Evaluation time for Monte Carlo method
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he consequent errors are shown in figure 6.29. It is clear that the errors are very low in most

ases, but when the method fails the errors are unpredictable and erratic
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i'igure 6.29: Monte Carlo errors

le speed of the method for high dimensionality thus makes it useful for large numbers of

dges, but it should be ensured that the number of evaluation points is sufficient for reliable

esults. Alternatively, some speed may be sacrificed for a degree of error estimation.
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6.4.4: Comparison of Methods

To facilitate easy comparisons between the methods, a figure of merit is defined as execution

time in seconds, multiplied by the magnitude of the error in decibels. The figure of merit

should be as low as possible for a good method over as wide a range of numbers of edges and

problem types as possible. Figure 6.30 compares the figure of merit for all three of the

methods discussed here. The enhanced Vogler evaluation performs consistently well, but its

figure of merit increases steadily with n . The method's major advantage is in allowing the

error to be pre-specified, but the resulting evaluation time may be long. Implementation of the

method is highly machine dependent for good results and the memory required is large.

I:aIterative Vogler

Figure 6.30: Figure of merit comparisons

The Gauss-Stein method's f.o.m. rises rapidly with n resulting from the way its evaluation

time rises. Although it takes a long time to evaluate for large numbers of edges, its error

performance is reliable and the method is straightforward to program, needing little memory

and only simple arithmetic operations. Such an approach makes the approximate geometrical

constuctions of the methods described in §6.1 redundant, making Gauss-Stein ideal for most

terrain diffraction applications.

Finally, in the range presented here, the figure of merit for the Monte-Carlo approach is

essentially zero. making it a very useful approach, particularly when the number of edges is
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apt to be large. Its major disadvatage is in its error performance when operating with

inappropriately large n . In the calculations presented in later sections and chapters, the

Monte-Carlo method was used together with an error estimation. When the error

occasionally exceeded a predefined maximum, the calculation was simply repeated with more

functional evaluations. This was found to be a highly reliable approach.

6.5: Summary

This chapter has examined methods of calculating multiple edge diffraction, resulting in at least

one highly efficient approach which overcomes the limitations of conventional approximate

methods in this application. If the propagation mechanism proposed by [Walfisch,1988] is

valid then multiple diffraction is an essential component of any successful theoretical model of

propagation in built-up areas. The next chapter will extend the methods developed here to

construct complete models of propagation, capable of application to real-world situations.
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Chapter Seven

New Propagation Models

7.0: Introduction

Although the techniques presented in Chapter Six are capable of utilising highly detailed

building position and height data, such data are difficult to obtain at present. There are also

cases in which such a level of detail is not useful since only average propagation characteristics

are required. A model of multiple building diffraction for such cases is derived and examined

here. This method is then extended to incorporate the variable building position techniques

from Chapter Six, producing a complete model which can incorporate whatever level of detail

is available.

7.1: The Flat Edge Model

7.1.0: Introduction

This section establishes a novel closed form solution to the multiple edge integral for the case

when all the edges are of the same height and spacing, but the source and field points are at

arbitrary heights. This is essentially the same problem treated by [Walfisch,1988] in numerical

simulations, but the solution presented here allows much more rapid evaluation and is

applicable to any source height or number of edges. The problem is important in building

diffraction since it describes the characteristics of areas of reasonably uniform building cover

in terms of the building packing density, a relatively easily obtained physical quantity. The

solution to be described has been described in [Saunders, 1991c]

7.1.1: Flat Edge Solution

A reduced problem is first solved, which has an arbitrary source height, but the field point is

fixed at the same height as the edges. Later the solution is extended to allow arbitrary
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positioning of the field point.

The geometry for the flat edge problem is illustrated in figure 7.1. The separation between all

of the n adjacent edges and between the last edge and the field point is w. The source is

distant from the edges and has an elevation 0 from the first edge, where 0 is negative as

illustrated.

x-....z. .. ......

	

	 ,
.......... Ir._ a_ .............

point..... - _ _ ..Source
0	

......_ .... ... _. _point	 i

.. •
r

w....4—.

Figure 7.1: Geometry for fiat edge problem

First the attenuation function for this situation is expressed using equation (6.4) :

C e 
0.

A=  n. 1 In

72

with an = j t
2 

; t= O
V  krw 

2fr + w)

c _ V  w n -1(r+ nw) V  (r + nw) 
n—

(r + w)(2w) n-1
(r + w) 2

n-1

(7.1)

Since all of the edges are colinear and equally spaced, 02 = 03 = ... = en . 0 and
a2 = a3 = . • • = an _1 = 0.5 so that, from eqn (6.5):

n
2v--,I n = I du i ...1 dun ex 2a lu iu2 + E u m u	 2, 	 TT0	 0 m =1	 m =1

Jr

1
(7.2)
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The eventual result is that S(t) is given by the starting value So (t) a. 1 and the relation :
n-1

S n (t)=—n I S m (t)Fj-jttfl-nn ; n � 1
M=0

2

where F }= —ejt
J

el
.
P

z
dp

AI.71	 -
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Now assume that r » nw. This is equivalent to assuming plane-wave incidence on the first

edge. Then al = 1/42, and use of the simple substitution 112 , ... , un =x2 12, ... , xn 42,

and ui = xi results in an integral of the form:

..	 n-1	 n

I	
1i ,n -if - 

n =tY2.)	 dxi...1 dxn ex 2 I x m x,,i+i - x
2i - 2 L x.- 2 t x i eTi-

0	 0	 m =2	 m =2 .

(73)

Now define a new function as follows :

1 fir	 9	 n	 n - 1

S n CbC 1 . dx. ex - 2 t x i	 x - 2 I xm̀ + 2 I x mx. +1=

Wi)
	 m =2	 m = 2

(7.4)

and recall that r >> nw, then the attenuation function can be expressed in the convenient

form:

2

A n* eft s n(t ); t . A	 0 V giv
V 2

(7.5)

The evaluation of S(r) now proceeds according to a general method proposed by

[Boersma,1978]. The method involves reducing the problem to an integral equation which

is solved using the Wiener-Hopf factorisation and a method of successive approximations

[Moiseiwitsch,1977]. The procedure is lengthy, but essentially follows Boersma's

evaluation of Tn (t) .

(7.6)

Fs (t ) is a definition of the complex Fresnel integral. It may be evaluated in terms of our

previous definitions of the Fresnel sine and cosine integrals (§4.4.4) as follows:
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(7.7)

The final result (7.6) has apparently not been reported elsewhere, and certainly not in this

context. The result performs all that Walfisch's approximate calculations did, but with the

following advantages:

• Speed: Walfisch reported that calculation of the field at given values of a and w took

several hours on a VAX computer for n varying from 1 to 100. On a similar system the same

calculation using a FORTRAN implementation of (7.6) required only 0.09 seconds.

• Flexibility: This speed advantage allows the method to be used for any n, whether the field

has settled or not. This is important in practical cases, where the number of buildings along a

given path will often be considerably less than the number required for settling.

• Uniformity: The result in (7.6) is valid for 0 positive as well as negative. This case (source

antenna below building heights) may be important for interference calculations and for

prediction of site shielding effects, especially in micro-cellular applications.

The Flat Edge model may be calculated either directly from (7.6), or the results may be

estimated from the prediction curves in figures 7.2 (elevated base antenna) or 7.3 (antenna

below building rooftops) by first calculating the value of the characteristic parameter t .
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Figure 7.2: Flat Edge prediction curves; elevated base antenna
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Figure 7.3: Flat Edge prediction curves; low base antenna

7.1.2: Example Calculations

!mom.Bunn

The graph below (figure 7.4) illustrates the behaviour of the function for varying a at w =

150A. It is evident that the excess field strength settles to a constant value for n large and a

positive. Note also that large differences between the settled field and the small n value are

apparent, particularly when a is very small.
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20	 25	 30	 35

Number of edges, n
45	 50

Figure 7.4: Behaviour of flat edge model

Marked on the curves is the number of edges, ns which just fill the first Fresnel zone about the

ray from source to field points, showing that the field may be considered settled once this value

has been reached. For a plane-wave source, the first Fresnel zone radius R1 is given by

R 1 =1/Ts , where s is the distance along the ray from the field point.

.1(R1 )	 'N/ A ns w 
Hence, for a small, a = tan I	 —

n w	 n ws	 s

A
So ns — 2

a w

(7.8)

Note that the number of edges required for settling rises very rapidly with decreasing a.

Whenever a � 0 the field does not settle at all, but decreases monotonically for all n.

7.1.3: Normalising Properties

It is useful to express this solution in terms of the wavelength,), with r » nw so that

0 = -a

2	 2

A JO= eft S „(0 i I -I-r2-v-) — 	 A I 1-l±v-)
A

(7.9)

This formally confirms Walfisch's observation that his calculations appeared independent of
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the quantity a -4(w I ).).

7.1.4: Grazing Incidence

A special case occurs when 0 = 00, the grazing incidence case. Lee [Lee,1978] gives the

	

following attenuation function for this case: 	 .

Iln + ,-)

	

La -

nt r( 1)

(7.10)

2

Hence:
1.3.5...(2n + 1)

L
2n+1

— L

(7.11)

(7.12)

n +1=
2 n In +1) I.

In terms of the flat edge solution in (7.6):

1	 n-1
A n (0) = S„(0) = 171 E

m .0

n 2.in +1)

S.10)F,(0)

and

, 111 1, ,0,1 + ; [c, (0,4- IfFs (0) = ,r—ri\ - t , 2

1
2
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: . A n (0) = S 40) = 21 "X. 0S .()

Hence A n + 1 (0) = S, JO) = 1	 i S . (0)21n +1) . 0

— 1 ( y S ,n(o) + S(0))
— 2(n +1) . _ 0

1

(7.13)

Now, since Li = 1/2 = Ai (0), then An (0) = Ln for all n � 1.

This proof by induction is a validation of the function Sn (t ) since Lee's result was obtained

by different means.

7.1.5: Inclusion of Final Building Diffraction

In a typical mobile radio situation the field point will actually be considerably below the last

edge rather than at the same level as in the flat edge problem (figure 7.5). In this section the

flat edge function is heuristically extended to include this process, thereby providing a complete

propagation prediction tool.

Figure 7.5: Complete geometry for flat edge model
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The full solution to diffraction by a conducting half plane reveals that the diffracted field on the

optical boundaries has plane wave characteristics [James p119], with a slow transition to

cylindrical wave behaviour outside the transition regions (defined in Chapter Five). If the angle

a is small, then wave incidence upon the final building is very close to grazing and is certainly

well within the transition region. It is therefore reasonable to assume that the incident fieldlas

plane wave characteristics. This allows the final diffraction process to be separated from the

multiple edge process as follows: If the total number of edges involved is n, then the overall

field is given by Aflar =A n _ iDib , where Dpi, accounts for the final building and An_i is

found from equation (7.5) . If it is assumed that the final building may also be modelled as a

simple absorbing half-plane, then the calculations of §4.5 are relevant. The result used is

therefore :

D fb = VA d+(pA
2	 ,)2

(7.14)

where

F (w d.r )exp(- —4-./ g )

112

The Fresnel diffraction parameter is given by:

[Direct ray: w d --- - 	 tan ho _ hm
-1 	 dm  ) ag

I
g	 _112w - d

In /V	

m)
aReflected ray: w r = 'T — tan h o - h,n)
	

12 (2w -d

yl,

This approach should be applied whenever no better information on the final building is

available. However, the shape and electrical characteristics of the final building are likely to be

relatively influential on the street-level field due to the large diffraction angle. If better

information is available, then Dib may be found using the methods of Chapter Five.

I

2 dm

A.
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7.1.6: Characteristics of the Flat Edge Model

Figure 7.6 shows the variation of An with a for varying n, with w = 100,1,, showing that the

rate of change increases with n. This suggests that increasing building density increases the

range dependence of the field, which is consistent with measured effects in built-up areas such

as [Ibrahim,1983].
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Figure 7.6: Elevation angle variation

Figure 7.7 compares the n = 100 curve with the Walfisch approximation to the settled field,

given by :

a

0.03

This results in -38dB/decade of range when taken together with the free space variation, and

assuming that a is proportional to 1/R, which is valid for small a . Such variation is

comparable with the results of many measurements, but more rapid than most.
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Comparison of Exact and Q

alpha

Figure 7.7: Power law approximation to settled field

To examine the effect of small n , a function of the same general form is fitted to the results fo

small a. Parameters c and p are found according to the following definition:

A n (c a	
w IP

The results are shown below:

n P c

2 0.126 0.02

5 0.225 0.10

10 0.335 0.29

25 0.54 0.93

50 0.742 1.83

100 0.946 2.90

The path loss law thus varies from -22.5dB/decade to -39dB/decade over the range

examined. This covers the range of variation encountered in measurement programmes.

Figure 7.8 shows the variation with inter-edge spacing w, with a = 0.3°. The variation is

relatively insensitive to w, but increases slowly with n.
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Figure 7.8: Variation with building spacing

Finally the complete model is used to show the effect of building height variation for constan

base and mobile antenna heights (figure 7.9). This results from a compound variation of a i]

An and ed in D . Here (hb - ho ) = 100m, R = 10Icm, dm = 40m and w = 20m. The result

suggest that, although the overall field strength depends on the number of buildings, the

variation with building height is almost constant.
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Figure 7.9: The effect of building heights.
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7.1.7: Frequency Variation

It has previously been noted (§ 3.3.4) that the settled field does not account properly for

observed variations of field strength with frequency since the rooftop field actually increases

with frequency, resulting in a street-level field which decreases only slowly as frequency is

increased. Measurements suggest that the overall field strength is proportional to fc- r where r

is between approximately 1.5 and 1.3 depending upon building density. This corresponds to a

variation in excess loss of between 6 and 8dB per decade of frequency. Figure 7.10 shows the

corresponding variation of street-level field predicted by the flat-edge model with w = 40m, dm

= 20m, (hb - /to ) = 100m and R = 101cm for various values of n (where n does not include

the final building). It is clear that the frequency variation is consistent with measurements

when n is small, but too small for large n. This is evidence that relatively small numbers of

buildings are involved in diffraction in most practical cases and that the flat-edge mode

provides a distinct improvement over the settled field approach.

Figure 7.10: Field strength versus frequency for varying building numbers

It is necessary to confirm, however, that the field for small n still retains sensible variation

with range. Figure 7.11 illustrates this point using the same edge geometry as previously with

k = 900MHz. The range variation increases rapidly with n, so that sensible predictions result

even for moderate numbers of buildings.
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Figure 7.11: Field strength versus range for varying bulding numbers

7.1.8: Remote Base Station Model

Here a model for the situation of a base station in an open area some distance from the start of

the built-up area is proposed. This occurs often in practice.

The validity of the Flat Edge model for any n is particularly important here. In figure 7.12, the

base station is shown at a perpendicular distance r0 from a series of parallel building rows

with a spacing w. The path BM makes an angle y with this perpendicular.

'I

A

ro

Figure 7.12: Geometry for remote base station effect.
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In this case:

mo [R cosy -ro]
n

w	 w

where [.] denotes the integer less than or equal to the quantity in brackets, subject to the

restriction that n 0 always. When nda then propagation is essentially the same as in free

space. The edge spacing in the flat edge model must be replaced by w', the row spacing

measured along BM, given by :

w' =
cosy

The contour plot in figure 7.13 shows the rooftop field calculated using this model, with fc=

933MHz, w = 40m, (hb - 110 ) =17m and ro 500m.

Figure 7.13: Contour plot for remote base station model

The contours are flatter than a circular arc centred on the base station would be.Thus they

tend to run along lines of constant n (streets), emphasising that variation with number of
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edges is rather more significant than the variation with street width.

In practice, both w and the street orientation are likely to remain constant over only small

ranges of 7, so the contour plot indicates the gross variations only.

7.1.9: Conclusions	 .

The Flat Edge model establishes a physical mechanism which accounts for measured path loss

characteristics. This applies to both the variation with distance and the base station antenna

height. The simplicity of the formulation allows base station antenna heights to be carefully

planned for both optimum coverage and interference predictions. Since the formulation is valid

for any number of buildings, it is useful in cases where the base station is situated outside of

the built-up area or in a region of open space within such an area, a common situation in

practice. The validity of the formulation for antennas below the building roof level makes it

applicable to prediction of site shielding effects for microcells. Although the model does not

account for irregular building heights, in many situations only an estimate of average building

heights will be available. In such cases the Flat Edge model represents an optimum use of

available physical data. The remaining sections in this chapter will address the issues of

applying this model and that from the previous chapter to real-world cases.
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7.2: Edge Reduction Technique

When applying a model to practical predictions it is essential that the model may be evaluated in

as short a time as possible. The most direct method of reducing the evaluation time is to reduce

the number of edges required in the evaluation by eliminating edges which do not appreciably

affect the diffracted field. This occurs when an edge is much lower than its nearest

neighbours. This can be done using the concept of the Fresnel zone radius, introduced in

§4.4.6.

The asymptotic expression for the complex Fresnel integral for large positive arguments which

was given in §4.4.4 is used:

ZW

where the — sign indicates the asymptotic nature of this expression. This is now inserted into

the expression for scalar single edge diffraction :

A = F (w) +1
IT/ 2

. I. w 2)

j exp 	
A IT 	 2 )  }+ 1
- V 2	 2

ZW

(iir w 2)

exp  2 VI— 1 	 2
zw

Hence :
1

IA I — (1 +	 2
1 	 if cosir (Iv +2 -1 ) 2

4 

In this problem it is the bounds of the deviation of the field from its unobstructed value which

are of concern, so consider only the situation when the cosine term is ±1. Then:

(jz w2)

F (w) — J 	

ir j exp  2 

2ir w 
2 ZW

1
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1

IA Ipeaks — 1 + 2	
a )i(	 1  

±

(7.16)

This result is compared with the complete solution in figure 7.14:

Figure 7.14: The effect of ray path disturbance

If the above expression is now expanded using the binomial theorem, the result is:

Now define a fractional error e, where E << 1, as:

E	
IA lactual - I A 'undisturbed 
= Laud 1

IA undisturbed

An upper bound for this error is therefore given by:

I E I =	
1 

7rw

(7.17)

This expresses how close a neglected obstacle can be to the ray path without causing a

prediction error greater than £. If it is now assumed that the field between edges in a multiple

edge diffraction problem can be considered ray-like, then this error may now be expressed in

2g w 2 jrW

IA Ipeaks= 1 ±	
1 	

+ 0 ( 1 )
71-W	 w 

2
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terms of the Sni or bm parameters for a given edge:

1 b— m
 2 4I K l e ml

Vogler [Vogler,1981] suggests that edges may be neglected to a high degree of accuracy if

Re( finz ) < -3. This corresponds to I £ m I = 0.066, (0.6dB) or to bm A -4.3.

To apply this approach to reducing a system of multiple edges it is necessary to confirm that the

field is perturbed in a similar way when the perturbing edge is part of a system of more than

one edge. To this end the situation illustrated in figure 7.15 is investigated.The edge closest to

the field point might represent the final building in a mobile radio problem, while the previous

edge may need to be included in the diffraction calculation if it perturbs the field excessively.

Figure 7.15: Geometry for perturbation of multiple edge fields

The calculated excess attenuation in the absence of the perturbing edge is 24.9dB. Varying the

height of the other edge changes the parameter b 1 while maintaining a constant. The result is

shown in figure 7.16, plotted together with the error bounds calculated from equation (7.17),

where the error is now relative to the unperturbed field rather than unity. It is clear that this

approach still predicts sensible error bounds, allowing unnecessary edges to be eliminated from

calculations once a lower limit, brnin , is set, appropriate to the desired calculation accuracy.
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Figure 7.16: Multiple edge field perturbation

To summarise, edges may be removed from a calculation if their b parameters are less than

prescribed minimum. The parameters for the other edges are then recalculated and the proces

repeated until all edges are judged significant. This approach is applied as part of a complete

prediction model in the next section.
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7.3: Hybrid Prediction Model

7.3.0: Introduction

The Monte-Carlo and Gauss Steen methods together provide a reliable means of evaluating the

multiple edge integral for moderate numbers of edges. However, real building profiles over

reasonable distances often involve 20 or more buildings. Some of these buildings may be

neglected if their diffraction parameters are sufficiently small, but the remaining number may

still be too large to be predicted using the full method, particularly when the building heights

are relatively uniform. In this case it is necessary to propose an approximate method which

makes good use of the available physical data, while remaining within the limitations of the

diffraction calculations available. To this end a hybrid model is now proposed which uses

elements of both the Flat Edge model and the full diffraction integral.

,
7.3.1: Description of Model

Consider a real building profile which comprises a large number of building edges (figure

7.17).

X

Figure 7.17: Complete building profile

First any edges with diffraction parameters less than a threshold value are eliminated from the

calculation. The value used here is bm = -2.5. The next step is to approximate the street level

field using the flat edge model in conjunction with single edge down diffraction as described in

§7.1.5. The effective base station elevation angle is found by calculating a linear regression

through the edges. The average building spacing is calculated and used in the Flat Edge model

with the actual final building position in the down diffraction calculation and with n set to the

actual number of significant buildings. Let the resulting field strength be El. This represents
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the gross characteristics of the buildings (figure 7.18).

X-
awn..

Elaa•
r

Linear- — --
regression

Figure 7.18: Parameters for overall flat edge calculation

Now the full diffraction integral is used to calculate the effect of deviations from the Flat Edge

case for the most important edges. In this case assume that the number of edges which may

reliably be handled is 5. Then the 5 edges having the most positive b parameters are

identified. This is done by finding the edge with the most negative parameter, removing it and

recalculating the diffraction parameters for the other edges. This process is repeated until only

5 edges remain. In cases where the edges are of virtually constant height and the source is

elevated the important edges will be those nearest the mobile, but using the diffraction

parameters in this way enables unusual cases to be handled. For instance, an unusually tall

building distant from the mobile will then be sensibly taken into account. The field strength

resulting from the full calculation on these 5 edges is E2 (figure 7.19).

X

Figure 7.19: Calculating deviations from flat edge behaviour
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Now the two calculations must be combined in a sensible manner. This is done using the Flat

Edge calculation for 5 edges of the same average spacing and source elevation as used in

calculating El. This is shown in figure 7.20.

Figure 7.20: Normalising using flat edge for small number of edges

The resulting field strength,E3 is used to normalise E2. Finally the overall field strength, Ed

is found as the product of this normalised field and the complete flat edge calculation :
E2

Ed= El

The whole process can then be repeated, when appropriate, with the field point replaced by it

reflected image to find Er . The two rays are combined in the usual way to predict the medial

field strength, ET

2	 12
ET =Al Ed+tpEd

If the most important edges are essentially of uniform height and equal spacing then the field

strength will correctly be predicted as the flat edge value. If, conversely, the number of edges

is small enough to be handled using the full diffraction integral, then Ej and E3 will be equal

and the proper field strength results. The method can thus be fully automated, with no need for

any judgement of the type of edge arrangement by the engineer. The method forms an

integrated model, providing a broad framework for including as much or as little physical data

as is available, from an estimate of building density and height through to a detailed description

of individual building heights and positions. The method will be applied in real cases in

Chapter Eight.
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7.4: Location Variability

7.4.0: Introduction

This section examines the contribution which building variations make to location variability.

The essence of the method adopted is to simulate differing building arrangements using

assumed statistical distributions of building parameters. This is equivalent to varying the

mobile position in a given area at constant range, thus simulating the conditions under which

measured values of location variability are calculated. Only the effect of building heights are

examined here but the same methods could in principle also be applied to other parameters. The

statistics of the resulting field strength predictions can then be calculated and compared with

expectations from measurements. It is difficult here to provide direct comparison with

measurements, since it is impossible to separate these variations in real situations. It should be

expected, however, that the distribution of the resulting variability is correct and changes with

parameters such as frequency and building density in a manner consistent with the

measurements.

It is important here to be aware that building position is only one contribution to location

variability. Other important factors are the presence of trees; variations in building shape

construction and orientation; and gross terrain variations (small scale terrain variation is

accounted for by considering building height effects).

7.4.1 : Fundamentals

Here some important statistical results are reviewed briefly. If excess propagation loss (in

decibels) due to two different causes is represented by the random variables X and Y. The

total excess loss, Le is then given by :

Le=X +Y

The location variance, crL2 is then given in terms of the individual variances of X and Y as

[Winkler,1975] p.188:

2	 2	 2

LX + •Y + 2PX Y CX CY
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where pxy is the correlation coefficient of X with Y, given by:
cov (X,Y ) E (X,Y)- E	 (Y 

PxY
CrX47y	 CTXCIY

where cov() indicates covariance, and E (.) denotes the expectation of the quantity in brackets.

If X and Y are uncorrelated (independent) then the result is particularly simple:
2	 2	 2

CrL = ax + ay

It will be assumed in this section that the factors examined are substantially independent of all

others.

In practice, the location variability will be measured via a finite number of measurements, so

the measured variability will not be the same as that of the underlying distribution. The same is

true of the simulations which are presented in this chapter. The more measurements or

simulations that are performed, the greater will be the confidence that the true value lies within

specified limits around the sampled value. This confidence may be calculated using the chi-

square distribution [Chatfield,1983],p.116.

7.4.2: Previous Work

Very little work on this subject has previously been attempted. There is, however, one paper

by [Chrysanthou,1991] which examines the effect of building height variation: The method of

diffraction calculation is the multiple edge model from [Walfisch,1988] which is only valid for

finding fields at rooftop level, so the final field at street level is calculated using a single edge

approximation. Although this is valid in the constant height case, it has been found using the

multiple edge integral that this approach may lead to large errors when building heights are not

equal. Additionally the paper treats the diffracted-reflected ray by assuming it to be of the same

amplitude as the direct-diffracted ray, which may also lead to errors. For a number of

configurations of building heights and antenna heights the statistics of the street level field are

determined when the building heights are uniformly distributed on [horn - Aho / 2, horn +

Aho 1 2], where horn is the mean building height. The distribution is arbitrary, since no real

building heights are surveyed. The simulation results suggest that building height variation

tends to reduce the average signal by comparison with the constant height settled field case by

approximately (-0.43 Aho) dB over the range considered, almost independent of horn. This is
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significant in using the Flat Edge model, since it implies that the model is likely to

underestimate loss values in areas with large deviations of building heights from the mean. The

resulting distribution of field strengths is approximately uniform. Its variance increases

strongly with horn and decreases slightly with base station rooftop elevation angle. The

calculated variability is small by comparison with measurements of overall location variability,

strongly suggesting that other factors are involved. A uniform distribution on [-6.5dB,6.5dB]

is therefore combined independently with the height simulations to account for the combined

effect of building shape, construction and foliage attenuation. The resulting field strength

distribution is approximately lognormal with a standard deviation of 4.9dB.

7.4.3 : Building Height Distributions

Here the real distribution of building heights in a particular case is considered. Buildin

heights over a large area are difficult to obtain directly, but it has been pointed out

[Ibrahim, 1983] that some data are available from planning authorities.

The data used and maintained by most planning authorities in England are divided into plans,

or 500mx500m squares aligned with the Ordnance Survey grid system. For each plan, large

cities have available the number of buildings having a given number of stories, plus the total

ground floor area occupied by the corresponding buildings. From this statistics such as the

percentage of land covered by buildings and the average height of a given building may be

derived. In the first instance the distribution of heights according to the total area each building

occupies is calculated. Data was obtained for the whole of the area covered by the City of

Westminster [Westminster,1990], a total area of nearly 29.5 km2, of which 21.5% is occupied

by buildings. The area is urban, but there are relatively few very high rise buildings, some

residential regions and some large areas of parkland. Figure 7.21 shows the overall

distribution of building stories, which has a mean of 4.3 stories. The distribution is

asymmetric, with a positive skew.
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Figure 7.21: Building stories distribution for the City of Westminster

It is reasonable to assume that a linear relationship exists between the number of stories and th

actual building height, assuming level terrain. For instance, [Loew,1991] has proposed

value of 3.7m per floor for a modem urban building, although some offset to account for the

building roof may be considered necessary. In either case, figure 7.21 suggests a general form

for a building height distribution in simulations. An asymmetric distribution such as the Rice

or Rayleigh distribution would provide a good fit to the data, allowing the distribution to be

described by a small number of characteristic parameters. More data needs to be collected to

reach firm conclusions here. For the simulations made in the next sections a normal

distribution will be used.

7.4.4: Single Building Height Variation

In the case of variation in height for a single half-plane, Appendix A shows that an asymptotic

approximation may be made which enables the distribution of field strengths resulting from a

given height distribution to be calculated directly. This avoids the need to carry out large

numbers of trials in constructing the distribution. The geometry for the calculation is shown in

figure 7.22.
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a

Figure 7.22: Single edge arrangement

Results are given in figure 7.23, using hm = 2A and dm =75A . Two different distributiow

for ho are examined, a normal distribution with mean 10 A and standard deviation 1A, and a

distribution uniform on [9A. ,112,].

i
r

In the first case, a is set to 2°. When the building height is uniformly distributed, the mean

value of L is 11.75dB, or 11.62dB in the normally distributed case. It is interesting to note

that the mean loss is actually smaller than in the constant height case, contrary to the results of

[Chrysanthou,1991] for multiple buildings. This strongly suggests that this effect arises from

the interactions between buildings, again supporting the case for multiple building models in

built-up areas. The corresponding standard deviations are 1.02 and 1.33dB respectively. The

probability density function, PL is shown for both cases in figure 7.23. The result from a

uniform distribution for pho is an almost linear distribution, favouring higher loss values.

Similarly the results from a normal height distribution is rather skewed towards higher loss

values. These distributions are likely to be substantially altered in the multiple building case,

examined next.
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Figure 7.23 : Probability density functions for single building height variations

7.4.5: Multiple Building Height Variations

In the multiple building case, the asymptotic method adopted in §7.4.4 has not been solved,

although it is believed that such an approach is possible. In this case the Monte-Carlo

multiple edge calculation is used directly in the full model from §7.3. Building heights for

the last few buildings along the path (5 in this case) are drawn from a normal distribution and

a large number of trials (200) are used to find the distribution of the field strengths and the

resulting location variability. Figure 7.24 shows the default parameters used.

Figure 7.24: Parameters used for multiple building variations

Both direct and reflected rays are calculated independently, using the usual paradigm.

In figure 7.25 the distribution of transmission loss is shown for the case where the standard
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deviation of the building heights is lm. The distribution is approximately symmetrical and a

chisquare goodness-of-fit test shows that the distribution of field strengths may be assumed

lognormal with a confidence of 97.0%, a very good fit. This agrees with the findings of many

measurements and shows that the variation of building heights is alone enough to account for

such a distribution. Inclusion of other factors affecting propagation is likely to make the fit to a

normal distribution still better, in accordance with central limit theory.
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Figure 7.25: Distribution of transmission loss for multiple building variations

The loss in the constant height case is 26.1dB, compared with a sample mean of 26.9 in the

varying height case, confirming the findings from [Chrysanthou,1991]. The calculated

location variability is 2.2dB. Using a Chi-Square distribution, the 95% confidence interval for

this variability is [2.0,2.4], indicating that 200 trials are sufficient for a reliable prediction of

location variability, given that the assumptions of the model are met. This prediction of

location variability is rather low by comparison with most measurements in urban areas which

are usually in excess of 5dB although only a small height variability has been assumed. This

variability is a highly significant factor, with the field strength variability increasing to 3.8dB

for a variability of 2m in heights. If the frequency in the simulations is increased to 1800MHz,

the predicted variability increases to 3.5dB, supportin g the findings of [Okumura,1968] and

others that location variability increases with frequency. Similarly, the results at 450MHz give

175



New Propagation Models	 Chapter Seven

ciL = 1.3dB. Measurements have also indicated that location variability is substantially

independent of range [Jakes,1974] p.123. This is essentially equivalent in the multiple edge

model to varying the base station antenna elevation angle. It is found from the simulations that

even bringing the antenna down to the mean level of the buildings (equivalent to a very long

transmission range) only increases oh slightly compared with the default case from 2.2 to

2.3dB.

7.4.6 : Summary

Simulation of propagation in built-up areas using the building diffraction models of this

chapter produces results which are phenomenologically in agreement with the results of

measurement programmes, suggesting the results of such models may be useful in

estimating the relative significance of various factors on slow fading. Using more extensive

simulations combined with more physical building data and measurements it may be possible

to separate the causes of long-term signal fluctuations to the extent that models could include

correction factors which take as input parameters such as the mean and standard deviations

of building heights. This could be regarded as a second-order stochastic model, compared

with the first-order approach of the Flat Edge model. Subject to the availability of data, such

a model could yield a corresponding increase in prediction accuracy.

7.5: Conclusions

In this chapter, two models have been constructed: the Flat Edge model, which may be

regarded as a method of characterising an area according to mean parameters. The method is

therefore stochastic, since it does not attempt to predict field strength at any specific point, but

in terms of gross characteristics over an area. The Full model, which combines the Flat Edge

approach with a rapid multiple edge calculation, is deterministic in that it uses as input a path

profile specific to a particular pair of base station/mobile locations. This model has also been

found useful in investigating location variability caused by building height variations.

Together these models allow a wide range of available input data to be used for predictions. It

remains for the next chapter to validate the models by comparison with measurements.
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Chapter Eight

Measurement Programmes

8.0: Introduction

The ultimate test of any propagation model is its ability to accurately predict a set of

measurements. Two measurement programmes are used for this in the current chapter. The

first was undertaken especially for this work, involving a small set of measurements in an area

where the detailed characteristics of the environment were known, enabling both of the models

proposed in Chapter Seven to be tested. The second set came from a larger programme of

measurements in which only average characteristics were available, allowing the Flat Edge

model to be tested more rigorously.

8.1: Description of First Programme

The philosophy behind the design of the first programme was to make in-depth measurements

over a relatively small area, whose characteristics could be determined in detail. All of the

measurements were made in the King's Hedges / Arbury / Chesterton area to the north of

Cambridge. This is a mostly residential area consisting principally of two storey terraced

houses with gardens. Some taller buildings are present, together with some light industrial

buildings. In many places there are trees as tall as or rather taller than the buildings, together

with several open spaces such as parks and playing fields. The terrain in the area is relatively

flat, with the base station in a slight dip.

The base station site was chosen to be the Philips building which lies to the south east of the

measurement area. Thirty measurement sites were chosen as follows : Five radials were drawn

from the base station out across the measurement area with equal angular spacing. Six arcs

were then drawn centred at the base station with radii at 1/3 km intervals. Receiver sites were

chosen close to the intersections between the arcs and the radials, with the restriction that sites
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must fall in accesible streets.

The measurement locations are marked on the map in figure 8.1. The building positions and

density can be more clearly seen in the aerial photograph of part of the measurement area

reproduced in figure 8.2. Figure 8.3 is the view from the roof of the base station building: the

dense tree cover is clearly visible. Measurements are shown in progress at location F in figure

8.4. The receiver antenna is mounted on a trolley on the pavement on the left side of the

picture.
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Figure 8.3: View north-westwards from the base station

Figure 8.4: Measurements in progress at location F
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Figure 8.2: Aerial photograph (scale 1:10 000 approx.)
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Figure 8.5 gives the positions of the measurement sites, together with their distances from the

base station, located at national grid reference TL 46465 59635.

Radial
Number

Location
Identifier

National Grid
Reference

(r1,-..)
Range(m)

Median Path Loss
(OD

933.5 MHz 1890 MHz

B 46825 61555 1953 119.4 138.5
C 46775 61115 1512 123.9 143.3
D 46705 60885 1273 114.3 135.4

1 E 46630 60620 999 118.2 137.1
F 46555 60285 656 117.2 131.6
G 46475 59910 275 104.4 121.2

N 46080 61515 1919 124.8 144.7
M 46110 61275 1688 128.7 146.6

2 L 46145 60980 1383 120.2 139.0
K 46245 60600 990 109.7 125.2
J 46270 60270 664 101.5 121.4
H 46320 59890 293 103.1 124.4

0 45270 61230 1993 126.0 146.2
P 45415 60975 1702 128.4 148.2

3 Q 45565 60585 1309 111.9 139.8
R 45855 60395 975 115.1 136.7
S 46005 60155 694 110.8 131.0
I 46180 59930 410 93.5 119.6

T 44670 60640 2057 129.6 -
U 44905 60405 1740 120.1 138.4

4 V 45240 60405 1447 131.8 143.1
W 45490 60145 1100 116.8 136.9
X 45855 59935 680 112.4 132.9
y 46110 59700 376 104.7 121.4

AE 4310 59780 2160 134.8 -
AD 44700 59740 1768 127.9 148.3
AC 45050 59650 1415 125.0 140.8

5 AB 45450 59690 1016 123.1 141.9
AA 45795 59695 673 115.9 138.5
Z9 46050 59490 440 96.2 -

Z18 45960 59630 505 - 117.7

Notes: i) Insufficient dynamic range was available to measure the foss at AE and T.
ii) Locations Z9 and Z18 are not coincident.

Figure 8.5 : Measurement locations and median field strengths

Two frequencies were used : 933.5 and 1890 MHz. The 900M1-lz band is well established for

macrocellular services, while around 1.8GHz new short range services are being devised and

used (see §2.1). Time and resources did not allow more frequencies to be used to enable

greater examination of frequency dependent effects.
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Figure 8.6: Measurement system block diagram.
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8.2 : Measurement System

The measurement system is shown in block form in figure 8.6.
TX	 RX

Antenna	 Antenna

RX
Feeder
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Spectnun
Analyser

'Datai
ILink

Personal
Computer

At both frequencies the signal transmitted from the base station was an unmodulated carriq

produced directly from a signal generator and fed to a rooftop antenna, with an additional lineai

power amplifier in the 900MHz case. An omni-directional antenna mounted 27.4m above local

ground level was used at 900MHz, while at 1800MEz insufficient power was available to

adequately cover the measurement area A Yagi array was instead used, having 17 dBi gain,

mounted at 21.8m agl. This had to be reorientated for each radial, but the 26° horizontal 3dB

beamwidth made exact positioning uncritical. Vertical polarisation was used throughout, just

as in most common mobile radio systems.

The mobile antenna was mounted on a surveyors' distance measuring trolley. This allowed

position measurement with a reliable resolution of around 5cm to be made. This corresponds

to 0.16X at 933.5MHz and 0.32X at 1890MHz. This should be sufficient to allow the effects

of fast fading to be eliminated. At 933.5MHz a calibrated half wave dipole was used (OdBd),

while at 1890MHz a 3dBd whip antenna was employed. Both were mounted 1.5m above the

ground.

The receiver used was a digital spectrum analyser with a marker tuned to the carrier frequency

allowing the signal level to be logged on a Personal Computer via a digital interface. After each
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sweep of the spectrum analyser an audible signal was output by the PC, signifying that the

trolley could be moved to the next position. The spectrum analyser and the PC were van

mounted and powered from a portable generator. The antenna was fed via a coaxial feeder

long enough to allow the effects of the van to be minimised. At each location 200

measurements at 5cm intervals along a 10m track were made and stored on floppy disks for

later analysis. A number of measurements were also made with the trolley stationary to ensure

that time related effects were not unduly affecting the results. With the exception of occasional

signal depression and enhancement in the presence of heavy passing traffic, the median values

were considered reliable. Figure 8.5 shows the measured median path loss values.

8.3 : Link Budget

Figure 8.7 shows the system parameters used for calculating the overall path loss. The sector

median path loss is given from the received signal power as follows:

Path Loss (dB) = Link Budget Constant (dBi) - Received signal power (dBm)

Link Budget Calculation
Frequency (MHz) 933.5 1890.0

TX Power (dBm) 29.3 / 13.0 13.0

Tx Feeder Loss (dB) (2.5) (4.0)

TX Antenna Gain (dBi) 8.15 17.0

RX Antenna Gain (dBi) 2.15 5.1

RX Feeder Loss (dB) (3.5) (6)

Tuning Correction (dB) (0.0) (2.0 / 0.0)

Net Link Budget Constant (dBi) 33.6/ 17.3 23.1 /25.1

The second set of figures in the 933.5 MHz column result from an equipment
failure. They apply to locations Z9, AA, AB, AC, AD and AE. The first set in the
1890 MHz column compensate for a small tuning error, and apply to all locations
except AB, AC and AD.

Figure 8.7 Link Budget calculation.
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8.4: Collection of Building Data

At each measurement site a survey was conducted to gather building information. The

perpendicular distances to the buildings on both sides of the street was measured directly. A

clinometer was used to measure the elevation angle of the highest visible edge in the direction

of the base station. This in turn is used as a measure of the edge height (see figure 8.8).

The edge height H is given by H = t + d tan 0, with t = 1.7m

Figure 8.8: Clinometer usage.

Finally photographs showing the position of the mobile antenna relative to the adjacent

buildings were taken to enable more detailed building features to be determined later.

The profile data was obtained mainly from a set of aerial photographs covering the

measurement area [Cambridge,1991]. Locations of buildings along the straight line path from

the base station to each measurement location in turn were recorded using a digitising tablet.

Some approximation is involved here due to parallax effects on the photographs, but this was

considered negligible. In fact, this effect can be used to determine building heights using

stereoscopic techniques since overlapping photographs were available. However, the relatively

uniform nature of the buildings in this area made it more straightforward to assume a standard

building height for all the two storey houses and to take direct measurements of other buildings

using the clinometer.
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8.5: Construction of Building Profiles

The geometry of the building measurements taken is shown in figure 8.9. In general, the

incident wavefronts arrive at an oblique angle to the diffracting edge, so a two dimensional

representation is inadequate. It is assumed further that building edge diffraction is independent

of edge orientation, so that in effect all eges are replaced by a canonical knife edge transverse to

the propagation path. The reflection point no longer lies in the plane containing the point of

diffraction, so in principle a different profile should be constructed for the reflected ray. If,

however, the street orientation 0 does not lie close to 00 or 1800, then the profile encountere

will be very similar to that for the direct ray.

Figure 8.9: Relationship between building measurements and ray parameters.

The parameters g iven in figure 8.10 are calculated from the measurements of da and db as

follows. The parameters of the reflected ray are calculated using the method of images. The

street orientation was measured from the aerial photographs.
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Horizontal distance between diffracting edge and field point:

de =da
sin 0

Horizontal distance between diffracting edge and reflected image of field point :

da +2 db
dr =

sin 0

Horizontal distance between field point and diffraction point for reflected ray, measured along

the street:

dp = (da + 2 dp) cos 0

This parameter indicates the error incurred in using the same building profile for both the direct

ray and the reflected ray. It is always less than 50m. For streets close to radial, the two ray

representation will be a poor model in any case (eg point Q).
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Location da
(m)

db
(m )

de
(m)

0 (0)
he

(m)
dr

(m)
dp
(m)

B 7.3 - 7.3 60 8.5 - -
C 40.0 - 40.0 30 8.5 - -
D 27.9 12.6 35.4 128 8.2 67.4 32.7
E 13.0 23.5 15.9 125 8.3 73.3 34.4
F 10.2 24.9 12.9 128 8.1 76.1 36.9
G 8.1 17.9 9.4 60 7.8 50.7 22.0
H 10.6 25 10.6 95 7.8 60:8 5.3
I 100.0 - 100.0 90 8.0 - -
J 20.9 14.2 20.9 90 8.0 49.3 0.0
K 28.3 14.3 32.7 60 7.5 65.7 28.5
L 28.7 16-3 373.0 125 7.5 74.8 35.2
M 16.4 17.15 31.8 146 7.5 93.2 43.2
N 17.8 13.6 20.0 55 8.0 53.2 25.0
0 20.0 15.0 40.0 150 8.0 100.0 43.3
P 21.7 22.0 21.8 85 15.0 65.0 5.7
Q Radial - - 0 8.0 - -
R 24.4 7.5 24.4 90 8.0 39.4 0.0
S 15.0 7.7 15.1 85 7.5 30.5 2.7
T 7.0 17.9 7.4 70 8.0 45.6 14.6
U 26.1 16.8 26.5 80 7.5 60.6 10.4
V 26.5 14.7 27.4 75 8.5 57.9 14.5
W 16.3 16.4 47.7 20 9.5 143.6 46.1
X 64.4 15.6 70.0 113 15.0 45.7 16.5
Y 3.7 - 7.4 150 2.3 - -
Z9 150.0 - 180.0 90 10.0 - -

Z18 30.0 3.0 30.0 90 8.0 36.0 0.0
AA 13.8 16.6 15.6 62 9.1 53.2 22.1
AB 5.0 8.5 5.0 90 5.8 22.0 0.0
AC 3.0 30 3.0 90 2.15 63.0 0.0
AD 17.5 3.8 17.6 96 7.5 25.2 2.6
AE 10.5 25 10.5 90 8.5 60.5 0.0

Figure 8.10 : Close-in building parameters

These parameters were used to correct the digitised building profiles appropriately. Examples

of the resulting profiles are given in figures 8.11 and 8.12.
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Figure 8.11: Example of reconstructed path profile (location B)

Figure 8.12: Example of reconstructed path profile (location R)
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8.6: Results

Figure 8.13 shows the median path loss measurements at 933NLHz plotted versus range. Also

shown are the results of a least-squares regression analysis.

933 MHz Measurements

Figure 8.13: Measured path loss versus range (933MHz)

At 933.5 MHz the regression analysis indicates a total median path loss characteristic given by:

Total median path loss , LT (dBi) = 34.5 log io R + 116.7

Subtracting free space loss at this frequency yields :

Excess path loss, LE (dB) =14.5 10Rio R + 24.9
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1890 MHz measurements

Figure 8.14: Measured path loss versus range (1890 MHz)

At 1890 MHz (figure 8.14) the corresponding parameters are :

LT (dBi) = 31.5 logio R + 135.8

Subtracting free space loss at this frequency yields :

Excess path loss, LE (dB) =11.5 log io R + 37.8

The range dependence characteristic is relatively low in both cases. Many more points would

be required to establish the underlying rate of decay, indicating the difficulties of using purely

empirical models to predict individual cases.

Figure 8.15 compares the measurements at the two frequencies. Although considerable

correlation is to be expected (and is displayed) there is no reason to expect a simple relation

ship between the two cases, since the frequency characteristics depend upon the precise

geometry of the path profile compared to a wavelength. Some errors may have been

introduced by incorrect repositioning of the receiver antenna or by changes in the propagation

conditions between measurements. Ideally all measurements at a given location should be
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performed at the same time.
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Figure 8.15: Correlation between measurements at 1890 and 933MHz

8.7: Predictions

In this section actual comparisons are made between the measurements and predictions madel

by the models proposed in Chapter Seven. These are the Flat Edge model (§7.1) and the full

hybrid model (§7.3). As a standard of comparison predictions are also made using the Hata

[Hata,1980] empirical prediction model. In each case, predictions of total path loss are plotted

against the respective measured value. The line y = x is plotted, along which all of the

predictions should ideally lie. As a measure of deviation from this ideal, a prediction error is

defined as:

Prediction Error, e = Measured L T - PredictedL7

The mean of e thus indicates how close the predicted values are to the measurements on

average. However, a zero mean could arise from widely scattered points which are equally

spaced about the ideal line. This possibility is avoided by also calculating the standard

deviation of the error which reflects how widely scattered the points are, independently of the

mean. The standard deviation therefore provides an indication of how well the prediction

model follows changes in the measured signal, and thus how accurately the underlying

191



Measurement Programmes	 Chapter Eight

propagation mechanisms are being modelled.

8.7.1: 933MHz Comparisons

Figure 8.16 shows the Hata suburban predictions of total loss plotted against the measured

values at 933MHz. A low prediction mean of 0.28 dB is obtained, which is small enough for

most system design applications, so the model is well suited to comparisons in this particular

environment. However, considerable scattering of points about the mean is evident, resulting

in an error standard deviation of 5.42dB. It is important to recall at this stage that the Hata

model will always predict the same loss at a given range in a particular environment, giving no

estimate of location variability at constant range.

Figure 8.17 gives the results of applying the Flat Edge model. In accordance with §7.3.1

building parameters appropriate to each individual path are used here, reflecting variations from

location to location better than mean parameters representing the whole area would. The mean

propagation loss is underestimated by 4.21 dB, indicating that loss is being caused in practice

by factors other than the constant height buildings accounted for by the model. This level of

error is still acceptable however and shows that a purely theoretical model is capable of

accounting for measured field strengths with prediction accuracy at least comparable to that of

empirical models. Moreover, the standard deviation of the error (4.43dB) actually shows an

improvement over the Hata model, indicating that building geometry is being accounted for

with good accuracy even when only average building heights are used.

Examination of the predictions of the full multiple edge model (figure 8.18) shows that still

better predictions may be made when complete building position data is considered. The mean

prediction error is very small in this case (2.45dB), indicating that varying building positions

may be considered as a factor which causes additional loss relative to the flat edge case. The

standard deviation is smaller still in this case (4.40dB), again indicating that propagation

mechanisms are being correctly modelled. At particular locations the transmission loss is

predicted very accurately, frequently to within ldB, while the error is larger (up to 9dB) in
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other cases. This may result from errors in the digitised path profiles or from factors affecting

propagation besides those modelled. The improvement may nevertheless be considered rather

small when the extra prediction effort and data required is considered. In an area where the

building height distribution is rather less narrow, however, it may be expected that greater

improvement over the Flat Edge model would be obtained.

933 MHz Comparisons
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Figure 8.16: Comparison of Hata prediction with measurements at 933MHz.
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Figure 8.17: Comparison of Flat Edge prediction with measurements at 933MHz.
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Figure 8.18: Comparison of Full prediction with measurements at 933MHz.

8.7.2: 1890 MHz Comparisons

At the higher frequency, all of the models substantially underestimate propagation loss

although the error deviations are similar to the values at 933MHz (Figures 8.19, 8.20 and

8.21). On a point by point comparison the errors are considerably greater than at 933MHz (up

to 15dB).

100	 105	 110	 115	 120	 125	 130	 135	 140	 145	 150
Lt Measured (dB)

Figure 8.19: Comparison of Hata predictions with measurements at 1890MHz
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Figure 8.20: Comparison of Flat Edge predictions with measurements at 1890MHz
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Figure 8.21: Comparison of Full predictions with measurements at 1890MHz

The increase in the errors at the higher frequency may result from:

i) Any errors in measuring the heights and positions of the buildings increase in significance by

comparison to a wavelength at higher frequencies. Thus a given level of prediction accuracy

demands an increasing quality of data as frequency increases.

ii) The influence of actual building shapes and their electrical characteristics relative to the

canonical knife edge is likely to be more pronounced at high frequencies.

100
100
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iii) Other scatterrers such as trees become more opaque at high frequencies, so that their

importance as diffracting obstacles (and hence interference with the building diffraction model)

increases.

This last factor is also likely to be the cause of the loss underestimates. As was previously

noted, the measurement area included large numbers of tall trees. The majority of the wave

energy therefore had to penetrate relatively large foliage depths between the building rows. An

extra loss factor should ideally be included to account for this effect, but previous studies of

tree attenuation have concentrated on either dense forest areas (eg[CCIR,236-6,1986]), or

single avenues of trees at very high elevation angles (eg[Voge1,1986]) , neither of which are

appropriate here. Further work should examine this effect, particularly in terms of the

interaction between the absorption and diffraction mechanisms. Additional evidence that

foliage is the cause of the extra measured attenuation is provided in an independent study

[Morgensen,1991], which compared measurements at 900 and 1800 MHz. The area had very

little tree cover, and the results showed that the path loss at 1800MHz was fairly consistently

10dB greater than than the corresponding value at 900MHz. This corresponds well with the

predictions of the theoretical models shown here.

Another method of presenting the data shows further advantages of the theoretical methods

over empirical ones. Figure 8.22 is a plot of the measured data, interpolated across the whole

area where the data was gathered. Increasing height on the plot indicates increasing loss. The

axes are national grid references in square TL. In the case of the Hata model, the corresponding

prediction contours would be a series of concentric circles, indicating no variation with

azimuthal angle from the base station.

Contrast this behaviour with the predictions of the full model at 933.5MHz, shown in figure

8.23. The model succesfully predicts the overall structure of the spatial variation of the field,

making it a useful tool for identifying potential trouble spots and allowing appropriate

countermeasures to be taken. Note particularly the more rapid increase moving west from the

base station than to the north, where street widths are larger and buildings are lower.
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8.8: Second Measurement Programme

8.8.1: Description

In order to further verify the Flat Edge model a second set of measurements was obtained.

These were made simultaneously at 955 and 1845 MHz in the Danish cities of Aalborg and

Copenhagen as part of the COST231 initiative, which has been investigating propagation

issues for the GSM and DCS-1800 systems (see §2.1). The measurement system is described

in detail in [Morgensen,1991]. Sector medians were calculated from samples measured over a

10 meter sector length. Short ranges were in use (50-1000m) with low base station antenna

heights, often below the average building height, making prediction challenging for existing

empirical methods designed for longer ranges and higher antennas. Although detailed building

data was unavailable, mean street widths and building heights were supplied. Maps of Aalborg

and Copenhagen are shown in figures 8.24 and 8.25 respectively. Four different base stations

were in use in Aalborg: the measurement routes are indicated by dotted lines.

Figure 8.24: Map of measurement area in Aalborg.
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Figure 8.25: Map of measurement area in Copenhagen.

The Flat Edge model was applied exactly as described in §7.3 , except that an estimate of the

number of buildings along a given propagation path had to be made. This was done in

accordance with the following expression:

r _ r - d.1
n=	 + 1

where the quantities are defined in figure 8.26.

X

hb	

r

—0.7jrn
	 No-

Figure 8.26: Geometry for Flat Edge model
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The building spacing w was set to ws 42 , where ws is the mean street width ,in accordance

with the arguments of §5.4 which suggest that median predictions of field strength will be

obtained with an assumed street orientation of es = 45 0 .

For comparison purposes predictions were also made using the Hata urban model [Hata,1980]

and the settled field approximation [Walfisch,1988] , which was applie;1 with the same two ray

final diffraction calculation as for the Flat Edge case (§7.1.5). The settled model is entirely

inapplicable for base station antennas below the building heights, however, since no settling

behaviour occurs.

8.8.2: Results

Some example results are now presented. As well as displaying the behaviour of the

measurements and predictions as a function of range, the error statistics of each model will be

shown, with the error again defined as (measured loss) - (predicted loss). The following

symbols are used:

pf , crf Mean, standard deviation of error for Flat Edge model.

Ph, crh Mean, standard deviation of error for Hata urban model.

/1s' as Mean, standard deviation of error for settled field model.

Figure 8.27 shows some Aalborg data at 955MHz with hb = 14.35m and /10 = 14.4m. The

Flat Edge model performs well with pf = 4.3, o-f = 6.9 while agreement with the Hata model

is less good : ph = 10.9, cm = 6.5. The Flat Edge model displays discontinuities at each

increasing value of n which is not a feature of conventional methods, but is entirely consistent

with the measurements which show a large variation in field strength from street to street.

There is some increase in the measured loss relative to the model at large ranges in this

example. This is probably due to some taller buildings on this particular section of the

measurement run.
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Figure 8.27: Comparisons for run A at 955MHz.

The corresponding results at 1845MHz (figure 8.28) show excellent correlation with the

955M1Hz measurements and similar prediction results with pf = 4.6, of = 8.0 , ph = 12.4

and ah = 7.6. The underestimate of loss which was observed in the Cambridge data at

1.8GHz is not apparent here, further supporting the suggestion that this was due to particula

characteristics of the Cambridge measurement area.
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Figure 8.28: Comparisons for run A at 1845MHz.

The next pair of results show that such results may be consistently obtained. In figure 8.29 at

955MHz with hb = 11.55m and 120 = 15m the error statistics are ,uf = -0.6, of = 5.6
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= 9.7, crh = 5.5. The model follows the measurements throughout the range considered

this time, suggesting more homogeneous building cover.
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Figure 8.29: Comparisons for run B at 955MHz.

At 1845MHz the corresponding results (figure 8.30) are ,uf = -0.6, of = 6.1 , Ph = 12.5

o-h = 6.1 which is again very similar to the results at the lower frequency.
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Figure 8.30: Comparisons for run B at 1845MHz.

Figure 8.31 shows the performance of the Flat-Edge model with a very low base station

antenna at 1845MHz with hb = 8.5m and ho, = 15m. The error statistics are /if = -0.3, of =

5.0 , ph = 15.8, o-h = 6.1. The Hata model performs poorly, but the Flat Edge model is

entirely applicable here.
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Figure 8.31: Comparisons for run D at 1845MHz.

Figure 8.32 shows some Copenhagen data with the base station antenna slightly above the

rooftop, allowing comparison with the settled field approach. The Hata model still shows

relatively poor performance with a mean error of 6.1 dB, while both the Flat Edge and settled

field models display high accuracy with -1.0 and -4.0 dB mean errors respectively. The

discrepancies between the two models increase with range indicatin g the inaccuracies in the

settled field approximation [Walfisch,1988] when the elevation angle of the base station

Figure 8.32: Comparisons for run N at 1845MHz.
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The tables in figures 8.33 and 8.34 show the results from all of the measurement runs

considered at both frequencies. Base stations with the prefix 'A' are in Aalborg, while those

with a 'C' prefix are in Copenhagen. The parameters used in each prediction are displayed in

figure 8.35 together with the number of measured sector medians in each run. In all cases r

was set equal to w due to lack of better information. If the open gtound close to the base

station in Copenhagen was considered then the fit at short ranges in cases such as figure 8.32

would improve.

Run Flat Edge Settled
Field

Hata
Urban

Mean

Ilf

SD

of

Mean

lis

SD

crs

Mean

Ph

SD

ah

Base
Station

A 4.3 6.9 • • 10.9 6.5 Al
B -.6 5.6 • • 9.7 5.5 A2
C 6 9.1 • • 15.1 8.5 Al
D -.4 6.1 • • 12.0 5.7 A2
E 5.6 10.4 • • 16.9 9.6 Al
F 3.5 10.9 • • 16.0 9.8 Al
G 5.1 9.4 -2.3 9.6 8.0 9.4 A3
H -.3 8.2 -13.3 10.1 5.6 8.1 A4
I 9.2 9.6 • • 13.9 9.6 A3
J -1.6 10.3 • • 7.1 9.8 A4
K 10.1 9.9 • • 17.3 9.8 A3
L -1.9 12.9 • • 9.1 12.6 A4
M -3.8 6.3 -3.7 6.4 -0.2 6.3 Cl
N -2.3 6.8 -7.2 6.9 4.1 6.8 Cl
0 1.8 7.7 • • 11.3 7.9 Cl
P 3.6 8.8 • • 15.6 9 Cl

Figure 8.33: Error statistics at 955MHz
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Run Flat Edge Settled
Field

Hata
Urban

Mean

ilf

SD

af

Mean

Ps

SD

as

Mean

Ph

SD

crh

Base
Station

A 4.6 8.0 • • 12.4 7.6 Al
B -0.6 6.1 • • 12.5 6.1 Al
C 6.4 9.6 • • 18.0 9 Al
D 0.5 6.4 • • 15.8 6.1 A2
E 4.1 10.5 • • 19.0 9.5 Al
F 2.2 11.2 • • 18.7 9.9 Al
G ' 5.2 10.0 0.0 -	 10 8.9 9.9 A3
H 2.5 10.0 -8.0 11.5 9.4 9.9 A4
I 9.0 11.1 • • 15.5 11 A3
J 2.4 13.8 • • 13.4 13.6 A4
K 8.2 10.8 • • 18.4 10.7 A3
L 0.5 15.4 • • 14.7 15.7 A4
M -0.3 6.8 0.5 6.6 2.6 6.6 Cl
N -1.0 6.9 -4.0 6.9 6.1 6.9 Cl

'	 0 3.1 8.1 • • 14.6 8.3 Cl
P 4.6 8.7 • • 24.0 9.2 Cl

Figure 8.34: Error statistics at 1845MHz

Run hb ho w Points
A 14.35 14.4 56.6 514
B 11.55 15 56.6 320
C 11.55 14.4 56.6 327
D 8.5 15 56.6 312
E 8.5 14.4 56.6 323

5.25 14.4 56.6	 ' 325
13 12 56.6 319

H 14.35 14 56.6	
_

81
I 11.05 12 56.6 320
J 11.55 14 56.6  81
K 7.9 12 56.6 _ 324
L 8.5 14 86.6 79
M 26 20 70.7 1000
N 22 20 70.7 967
0 18 20 70.7 940
P 14

_
20 70.7 940

Figure 8.35: Parameters used in prediction model

The errors in the Hata model increase with frequency, while there is no significant increase in

the Flat Edge mean error, suggesting that frequency variation is being correctly modelled. The

mean errors are summarised in figure 8.36 for all three models at both frequencies, together

with one standard deviation error bars. At both frequencies the Flat Edge model outperforms

the others, both in terms of the mean error and the variability. suggesting that a degree of
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consistency has been achieved. Recall that the settled field approach is only valid in a small

number of the cases presented here. The settled field method consistently overestimates the

field, confirming the suggestion that it is unnecessarily predicting diffraction over non-existent

edges. The Hata model is clearly not applicable in low base station antenna cases. Although a

new empirical model could in principle be constructed based on the measurements used here,

the Flat Edge model would appear to offer a more consistent and reliable approach for all base

station heights and differing building densities.
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114 •

—
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-15
Flat	 Settled	 Hata	 Flat	 Settled	 Hata

Edge	 Field	 Urban	 Edge	 Field	 Urban

Figure 8.36: Mean error statistics for all measurement runs

There is some tendency for the Flat Edge model to underestimate loss, confirming that other

factors besides 'mean height' building diffraction are significant, such as variable building

heights (§7.4), foliage attenuation and street orientation (§5.4). Further development of the

model could address these issues by including appropriate corrections. The penalty would be a

need for extra data supplied on a point-by-point basis. It should be remembered that the Flat

Edge model is not truly deterministic, since only mean building parameters are used. On

particular measurement routes the characteristics of particuar buildings will affect the accuracy

of the predictions, but as a mean characterisation across an area the Flat Edge model appears to

perform well.
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8.8.3: Discussion

The Flat Edge model has shown that remarkably good performance is possible from a purely

theoretical model which requires no adjustments derived from measured data. This

performance is acheived using only two more parameters than would be required in an

empirical model (building height and spacing) and dispensing entirely with any qualitative

classification of the environment. Further improvements could be made by including a factor

to account for variability in building heights and spacings, possibly derived from simulations

such as those shown in Chapter Seven. It would also be useful to use more measurements to

indicate the limits of applicability of the model, since it may be anticipated that- the nwhipie half-

plane assumptions are not valid in very dense urban situations or at very short ranges (less tha

50-100m or within the line-of-sight of the base station).

8.9: Conclusion

This chapter has shown that the theoretical models developed offer real promise as useful an

reliable prediction models. The prediction errors are in general low suggesting that th

mechanisms of propagation across buildings have been well modelled, although factors other

than buildings require consideration to produce small overall errors in some cases. More

extensive measurements need to be performed in order to truly determine the range and limits

of applicability of the models.
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Chapter Nine

Conclusions and Further Work

9.1: Summary of Achievements

Chapter Two showed that, of the major propagation mechanisms which affect the sector

median mobile radio signal, diffraction is dominant for the ranges commonly encountered in

macrocellular systems.

The need for an improved model of propagation which accounts explicitly for diffraction

effects was expounded in Chapter Three. Most existing models do not account specifically fol

building heights or positions which can cause large errors in some cases. Those theoreticat

models which do exist were shown to have certain limitations in real situations due to

inadequate assumptions regarding multiple rooftop diffraction.

In Chapter Four the feasibility of modelling the diffraction characteristics of buildings using

simple structures was examined. The structure of measured field pattern was seen to have

sufficient regularity to allow sector median values to be predicted with good accuracy using

discrete wave representations. Mobile antenna height gain was seen to be accounted for using

a simple knife edge model.

The analysis of more complex shapes and arrangements of buildings using ray methods such

as the Geometrical Theory of Diffraction was explained in Chapter Five. These techniques

allow great flexibility and ease of calculation in many cases, although they are limited to small

numbers of buildings. Differing representations of rooftop structure were found to

significantly affect the field in the deep shadow region, but close to grazing a knife edge

representation is adequate. A model of the contribution of street orientation to location
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variability using ray techniques was derived, showing that median fields appear to be affected

principally by the transmission range.

For modelling the effect of multiple buildings a number of techniques for calculating multiple

knife edge diffraction were compared in Chapter Six. Approximate geometrical methods were

found inadequate in this application and a more exact method required lengthy computations.

More efficient evaluation techniques were proposed and found to have good performance for

large numbers of edges close to grazing incidence.

In Chapter Seven a new closed-form solution to the problem of multiple buildings of the same

height and spacing was described. This allowed rapid calculation of average propagation

characteristics in area where only limited building data is available. An heuristic extension tc

the model allowed more complete building representations to be used, representing real-world

situations rather better and allowing slow fading effects to be examined.

Finally, Chapter Eight verified the models by comparing the predictions with a set ol

measurements in a suburban area with extensive building data available and in two cities with

only average data. Good agreement was found in both cases, although the extended method

yielded only modest performance improvements since the suburban area was relatively

homogeneous.
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9.2: Further Work

Arising from the work presented here there are a number of suggestions for future work which

should be performed to extend and complement the achievements to date. These are divided

into three areas : collection of building data, modelling and measuremegts.

9.2.1: Collection of Building Data

The major limitation to extending the use of theoretical models is the lack of availability of

adequate physical building data. More work must be done in this area, particularly since the

development of new models is to some extent influenced by the nature of the data available.

Sources of data which could usefully be investigated are as follows:

• Existing Planning Data

For general characterisation of an area data such as that described in §7.4.3 can be used. This

has the advantage of being cheap and relatively simple to TOC.e.SS, but it TONits cw\L must

resolution, with no information regarding particular buildings. The data also varies in

availability and format from city to city.

• Aerial Photography

Using combinations of photographs such as that reproduced in figure 8.2 building positions

and heights can be determined, subject to practical limitations in the areas which can be covered

by the aircraft's flight path. Manual extraction of this data is laborious, so automatic methods

are needed. Advanced pattern recognition and image processing techniques offer considerable

potential, but are unlikely to be particularly reliable for extracting parameters for individual

buildings. It is more likely that these approaches will be able to provide measures of mean

building density in particular regions.

• Remote Sensing

Developments in satellite remote sensing technology offer the potential to collect data over very

wide areas. The same limitations of data extraction and processing apply as with the aerial
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photography case and this is compounded by poorer available resolution. The increasing

commercial availability of satellite data is nevertheless likely to increase the importance of this

source of data in the future.

These sources need to be critically examined for their usefulness in driving the models and their

quality and ease of availablility.

9.2.2: Modelling

As a more direct continuation of the work contained here, the following points should bt

developed:

• A model of propagation along streets close to radial is needed to complement the model o

street orientation derived in Chapter Five. This could take the form of a multiple ray model a

in [Rustako,1991] or a more complete full field solution. The latter has advantages i

describing the situation when the radial street is illuminated by diffraction over (or around) a

previous building, a situation which often occurs.

• The ray tracing algorithm mentioned in Chapter Five needs to be extended to incorporate three

dimensional building arrangements. This is important for modelling microcellular propagation.

• Using this algorithm some conclusions need to be reached regarding propagation in cases

where exact building data is unavailable and to make general recommendations for the type of

systems best suited to covering such areas.

• The asymptotic technique introduced in §7.4.4 and Appendix A can probably be extended to

multiple buildings using the multiple edge integral. This would allow direct evaluation of the

effects of varying building arrangements on location variability. The technique also has the

potential for extremely rapid multiple edge diffraction evaluation by calculating field

perturbations from a known situation such as the flat edge arrangement. This would avoid the
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need to make heuristic assumptions such as those used in §7.3 in constructing the full

deterministic model.

• More extensive simulation using either repeated applications of the full multiple edge integral

or using the technique suggested above could be used to derive correction factors for the Flat

Edge model to account for building height, spacing and orientation variability. This could be

done using either directly collected building distributions or assumed arrangements such as

regular grid structures.

9.2.3: Measurements

Ultimately, even theoretical propagation models can only be verified by direct comparison with

measurements. The following investigations would be of particular interest:

• Measurements of propagation around particular buildings should be made to permit isolation

of the effects of particular building types. The buildings should be chosen to encompass a

range of different construction materials and shapes and should preferably be as distant from

other scattering features as possible. This will enable the best choice of canonical scatterer to

be chosen for particular situations.

• Since it may be difficult to find appropriately isolated buildings, scaled down measurements

made on an appropriate test range may be necessary. This approach also allows more careful

control over the shape of the building and separation of the effects of the building from terrain

and other effects. Similar multiple building measurements could be made to determine the

effects of deviations in shape from ideal half-plane structures.

• Laboratory measurements of the high frequency electrical parameters of various common

building materials would be helpful in supporting modelling of buildings as dielectric

scatterers.
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• Most importantly, there is a great need for propagation measurements performed over

extensive areas in situations where precise building positions and shapes are known. These

would follow the approach of the first programme described in Chapter Eight, but using a far

larger data set and variety of environments.

9.2.4: Overall

This work has focused on the techniques and methods used in constructing theoretical models

for a wide variety of cases. Greater experience of applying these models in specific cases of

interest is needed to make future progress.

9.3: Conclusions

In the wake of knowledge comes understanding. Insight into the nature of measurements ha

allowed theoretical models to describe and account for observed effects, yielding mor

consistent predictions applicable in a wider range of situations. Developing these models in the

future to take account of the the availability of data and the use to which predictions will be put

has the potential to produce increasingly efficient systems, tailored to the environment in which

they will be used. It is hoped that this work has made some contribution to this process and

that this contribution will be developed and extended in the future.
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Appendix A

Single Edge Height Statistics
,

This appendix derives the statistical distribution of propagation loss due to a single knife edge

given the distribution of the height of the edge. Firstly, using the asymptotic approximation to

the Fresnel integral previously given (§4.4.4), the field after single edge diffraction deep into

the shadow zone is derived:

F (w) 1
A=  , + ,
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ig w2)
7 • exp (	 2
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	exp 	
2 ) Ali

- V 1
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1 Hence 1,41

ir Iwiff

In figure A.1 the behaviour of this expression is compared with the complete solution. The

accuracy of the approximation improves as the field point moves deeper into the shadow

region.

1
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Appendix A

Figure A.1: Asymptotic half plane diffraction in deep shadow region.

Now assuming that the source is very distant, this may be expressed in terms of the geometr)

of the situation illustrated in figure A.2:

ho

dm

Figure A.2: Single edge arrangement

Under these assumptions:
w 0 / 2 s

VA
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Appendix A

Using this expression it is desired to find the distribution of the propagation loss, L, where

L = - 20 logioA

given the distribution of h0 . This is achieved using the following relation, which follows

from elementary statistical considerations:

dh 01P LP = 13 hiho)l-dr

where the p() are the probability density functions of IA I and 120 . The differential required is

easily found and will not be explicitly stated here. It is assumed that a is independent of

variations in h0 , so that the problem is essentially concerned with plane wave incidence.

The mean PA and standard deviation crA of IA I are found using the following expressions:

'IL = f L pL (L)dL ; ciL = 1 L
2 

p L(L)dL
_

and the integrations are performed using a standard numerical algorithm.
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