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Abstract 

Simulation techniques and a Volterra functional polynomial are applied as two alter­

native methods of calculating ship roll response to irregular waves. The roll motion is 

modeled by a single degree of freedom differential equation, with two alternative nonlinear 

damping functions. Estimation techniques are developed to obtain the coefficients of the 

damping functions from decay tests and from forced rolling tests. A linear plus quadratic 

form of damping function is found to be slightly preferable to a linear plus cubic form. 

The roll response process is found to be non-Gaussian, and characterised by negative 

values of the coefficient of kurtosis. Simulation results agree well with results obtained 

from the functional polynomial for low response levels, but show increasing disagreement 

as the response level increases, due to divergence of the functional polynomial representa­

tion. 

Analyses of results from model tests in irregular waves and from sea trials confirm 

the non-Gaussian nature of the roll response. A "constrained" form of the generalised 

gamma distribution function is found to provide an improved fit to the roll maxima and to 

the roll minima, as compared to the Rayleigh distri~ution. The model tests also show 

some asymmetry in the roll response, which is not predicted by the theoretical model. It is 

suggested that this asymmetry may primarily be due to the combined effect of horizontal 

drift forces and the restraining system used to keep the model on station. 
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1. Introduction 

The main thrust of this work is directed towards improvement of the prediction of 

ship rolling in irregular waves, of moderate severity. An ability to predict ship roll motion 

in moderate seas is useful for the assessment of: 

(a) Habitability and comfort for crew and passengers, 

(b) Operability; i.e. the ability to undertake specific operations, such as helicopter land-

ing, launching and pick-up of lifeboats or submersibles, offshore cargo handling, etc., 

(c) Sloshing of liquids in partly-filled tanks, 

(d) Inertial loads acting on cargo and lashings. 

The line of attack is motivated by the obvious inadequacy of a purely linear approach to 

roll prediction, and centres on the effect of nonlinear damping on the roll response statis­

tics. In the following, the reasoning behind this standpoint will be introduced. 

1.1. Historical Background 

Ship rolling in a seaway and ship capsizing are intimately related phenomena. Capsiz­

ing might be said to be an unstable roll motion, while rolling in a moderate seaway is here 

taken to be stable. Safety against capsizing is a basic concern of any shipbuilder even for a 

vessel constructed for the calmest water and, as such, has a scientific history as long as 

shipbuilding has. Simple static consideration of capsizing includes some of the forces 

involved in rolling, while dynamic consideration of capsizing follows on from large angle 

rolling. Consequently, both topics are entwined in the literature, with the earliest work 

mainly concerned with stability against capsizing. 

A bibliography of references relevant to ship rolling has been collected in Appendix 

A. It has not been practicable to study all of these items, and only those referred to in 

this text are listed as references in chapter 9. 

The concept of the metacentre, defined as the point under which it is necessary to 

place the centre of gravity of the ship to ensure initial stability, is attributed to Pierre 

Bouguer (1746). Bouguer's method of calculating the height of the transverse metacentre 

corresponds to methods used today. This parameter provides the basis for the hydrostatic 
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restoring coefficient in the linear equation of rolling. 

William Froude (1861) recognised that the moment exciting roll motion is related to 

the slope of the wave, and that the rolling of a given ship is dependent on the ratio 

between her natural period and the period of the waves. In the same paper, Froude also 

formulated the roll damping moment as being proportional to the square of the angular 

velocity, and used damping data determined from a roll decay experiment to estimate the 

amplitude of roll response in regular beam waves with wave period equal to the ship's 

natural roll period. Corrections to the exciting moment, due to the attenuation of the pres­

sure with depth, were added by Froude in 1862, in an appendix to the first paper. "Bilge 

pieces ... normal to the ship's bottom, on the tum of the bilge," were advocated by Froude 

(1865) to increase the resistance to rolling. In addition to "skin resistance" and "keel resis­

tance," Froude (1872) also identified "the wave-making action" as an essential component 

of roll damping, and developed a method to obtain linear and quadratic roll damping coef­

ficients from decay tests. This method is still in common use (cf. Dalzell 1978). 

Kriloff (1898) presented a theory including heaving, pitching, yawing and rolling. 

This theory rests on the hypothesis that "... the pressure which acts on the ship in every 

point of her submerged surface is that which takes place in the corresponding point of the 

wave ... ," now generally known as the Froude-Kriloff hypothesis. Both oblique headings 

with respect to the waves, and forward speed are included. 

Early evaluations of the effect of bilge keels were apparently based on test results for 

the resistance of flat plates to oscillation in water. Such an evaluation lead to the omission 

of bilge keels on the Royal Sovereign class of battleships, which were reported to roll 

heavily, by White in 1894. A preceding class of British battleships had low foredecks 

which tended to check heavy rolling. The following year, White (1895) reported the con­

siderable effect of fitting bilge keels to the HMS Repulse, a ship of the Royal Sovereign 

class. 

Watts (1883) suggested that the considerable effect of the bilge keels was due, not 

only to the pressure acting on the keels themselves, but also to the moment of the pressure 

induced on the hull through the action of the bilge keels. Bryan (1900) explained that the 

sharp edge of the bilge keel sets up a discontinuous motion of the fluid, the fluid motion 
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being divided into two parts by a surface of discontinuity thrown off from the sharp edge. 

This behaviour further explains how the bilge keel affects the pressures acting on the hull. 

Abell (1916) carried out model tests to determine the resistance of bilge keels 

appended to ship-like cross-sections. These tests show a high level of abstraction away 

from the practical ship problem, in attempting to model decaying oscillations of two­

dimensional, vertical cylinders, with four "bilge keels," in an infinite fluid. Abell reports 

" ... very large ... " resistance to the motion, presumably as compared to the resistance 

obtained for flat plates not appended to any other body. He also indicated that this ten­

dency compared favourably with the results obtained for the HMS Repulse. 

Gawn (1940) carried out a comparison between the results of roll decay tests for four 

models and the corresponding ships. He found the roll motion of the ships to decay 

slightly more rapidly than for the models, but concluded that the agreement was close 

enough to make the model tests useful guidance for the ship behaviour. His model tests 

also illustrated the importance of including appendages, and propellers, and the effect of 

shallow water. 

The milestone paper of St.Denis and Pierson (1953) gave prominence to the tech­

nique of linear superposition, to obtain ship response in an irregular seaway from transfer 

functions for the response in regular waves. Such transfer functions could be obtained 

from model tests, but knowledge of this technique also provided an incentive for the 

development of methods to calculate transfer functions. 

Korvin-Kroukovsky and Jacobs (1957) provided a strip theory for heave and pitch 

motions in regular waves, suitable for numerical calculations. The theoretical basis for this 

type of strip theory was gradually improved, and extended to include sway, roll and yaw 

motions. Tasai (1967) derived a strip theory for the lateral motions, applicable for zero 

forward speed. Forward speed effects were included by Grim and Schenzle (1969). 

1.2. Linear Equations for Coupled Rolling 

The paper by Salvesen, Tuck and Faltinsen (1970) rounds off the initial development 

of strip theory, and is representative of the current state of the art. The assumptions and 

results of this paper will be discussed in some detail, since it provides a clear derivation of 
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the linear equations for rolling coupled with sway and yaw motions. 

The equations of motion are formulated for a rigid ship advancing at constant mean 

forward speed with arbitrary heading in regular sinusoidal waves. The following assump­

tions are made: 

(a) Viscous effects are assumed to be negligible. 

(b) The oscillatory ship motions are assumed to be small, linear and harmonic. 

(c) The wave-resistance perturbation potential and its derivatives are assumed to be 

small. 

( d) The ship hull form is assumed to be long and slender. 

( e) The ship is assumed to have lateral symmetry. 

(1) The frequency of encounter is assumed to be relatively high. 

The inviscid assumption (a) is essential to allow the problem to be formulated in terms of 

potential theory. It implies that viscous forces are negligible in comparison with other 

types of forces. This seems intuitively acceptable in many ways since gravity waves and 

heave and pitch motions are involved, which are known to dissipate energy by radiated 

waves. However, this assumption is not so easily acceptable for rolling, where we are 

predisposed to consider viscous damping of importance. 

Assumptions (b) and (c) are utilised to separate the total velocity potential into four 

parts: 

(i) Time independent potential due to steady forward motion of ship, 

(ii) Potential due to incoming waves, 

(iii) Potential due to diffracted waves, 

(iv) Potential due to radiated waves. 

Assumption (c) concerning the wave-resistance perturbation potential places some unspeci­

fied requirement on the hull form and speed. Clearly, this requirement falls away at zero 

speed, but it also seems possible that some hull forms travelling at high speed may generate 

large ship waves which violate this assumption. 
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Inserted in the linearised Bernoulli equation, the time-dependent potentials (ii, iii, 

iv), and ship motions provide an expression for the pressure acting on the ship hull. This 

pressure is integrated over the hull surface to give the time-dependent hydrodynamic and 

hydrostatic forces and moments acting on the ship. Inertia forces and moments due to the 

accelerations of the dry hull also have to be included in the ship dynamics. Utilising the 

lateral symmetry assumption, and taking coordinate axes with origin on the ship centreline, 

in the mean waterplane, and directly above or below the centre of gravity, the equations of 

motion may be formulated as 

(A(w)+M)=ri{t) + B(w)-fr<t) + Cr{{t) = F(w)e iwt 
(1.1) 

The added mass matrix, A(w), and damping matrix, B(w), are both functions of the wave 

encounter frequency, w, and obtained from the potential due to the radiated waves. The 

excitation vector, F(w), is due to the incoming and diffracted waves. The restoring coeffi-

cient matrix, C, corresponds to the hydrostatic forces and moments. M is the dry inertia 

matrix, and r{{t) is the vector of ship motions, with t representing time. i is the imaginary 

unit, and it is understood that the real part is to be taken in all expressions involving e
iwt

• 

With this formulation, the sway, roll and yaw motions are not coupled to the other 

ship motions, and their equations of motion may be written out in full as 

(A2iw)+M)1j2(t) + B22(w)~2(t) 

+ (A 2i w)-M Zc)1j4(t) + B2iw)~it) 
+ A26(w)1j6(t) + B26(w)~6(t) = F2e

iwt 

(A42(W)- Mzc)1jit) + B42(w)~2(t) 

+ (A44(w)+I4)1j4(t) + B 44(w)~it) + C 44TJ4(t) 

+ (A46(w)-I~1j6(t) + B46(w)~6(t) = F4e
iwt 

A6iw)1jit ) + B6iw)~it) 
+ (A64(w)-I64)1jit) + B64(w)~it) 

+ (A66(w)+IJ1j6(t) + B66(w)~6(t) - F6e
iwt 

SWAY 

(1.2) 

ROLL 

. (1.3) 

YAW 

(1.4) 

where sway, roll, and yaw are indicated by index 2, 4, and 6 respectively, and the indivi-

dual terms arise from the matrices defined for equation (1.1). M is the mass of the ship 

and Zc is the height of the centre of gravity above the origin. 14 is the dry moment of iner-

tia for rolling, 146=164 is the roll-yaw product of inertia, and 16 is the yaw moment of iner-

tia, all with respect to the coordinate axes. 
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The added mass and damping coefficients are obtained from the pressure due to the 

radiation potential, with the application of Stoke's theorem in the separation of speed 

dependent and speed independent parts. The slenderness assumption (d) is invoked to 

permit neglect of a line integral along the waterline in this derivation. For compactness, 

each pair of added-mass and damping coefficients may be combined in one complex term, 

T jk , the radiation force coefficient, defined by 

j ,k=2,4,6 (1.5) 

The radiation force coefficient IS composed of speed-independent and speed-dependent 

terms as follows 

o U A 
T,'k = T'k + -t'k' j,k=2,4 / . / 

lW 

o U 0 U A 
T6k = T6k + -T2k + -t6k , k=2,4 

iw iw 
2 

o U 0 U A U A 
T'6 = T'6 - -T'2 + -t'6 + -t'2' / / . / . / 2/ 

lW lW W 
2 2 

o U 0 U A U A 
T 66 = T 66 + - T22 + - t 66 + - t 62 

w2 iw w2 

j=2,4 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

where U is the forward speed of the ship, superscript 0 indicates a speed-independent 

(zero speed) term, and the t1k are speed-independent, line integrals, evaluated at the aft-

most section of the ship, or at the section at which the steady flow separates from the hull 

surface. 

Note that the strip theory approximation of the ship by a series of 2-dimensional 

cross-sections is not applied prior to this point in the theory. The slenderness assumption 

(d) is applied to transform the surface integrals for the hydrodynamic pressure into the 

sum of a series of 2-dimensional integrals over such cross-sections. The high-frequency 

assumption is also needed here, to simplify the free surface boundary condition, so that 

the 3-dimensional, zero-speed, radiation potential may be replaced by a series of 2-

dimensional potentials. This assumption implies that the frequency of encounter is high, 

and makes the theoretical basis for strip theory somewhat questionable in the low-

frequency range. It is usually argued that this inconsistency has little importance, because 

the hydrostatic restoring forces dominate the heave, pitch and roll motions in the low-

frequency range. However, this does not apply to sway and yaw, which do not have any 
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restoring forces (unless the ship is moored). Furthermore, any inconsistency in the radia­

tion potential will also affect the diffraction component of the excitation forces, since the 

Haskind-Newman relationship is used to obtain the diffraction forces from the radiation 

potential, rather than directly from the diffraction potential. It should therefore, be clear 

that there is appreciable uncertainty attached to the results of strip theory for low frequen­

cies of encounter. Such low frequencies most readily occur in following seas, when even 

zero frequency of encounter may be attained if the ship velocity and the wave velocity are 

equal. 

1.3. Advances on Strip Theory 

The development of a less restrictive form of potential theory has continued, in two 

main directions. One of these is often referred to as "3-Dimensional Diffraction Theory," 

and was initially developed for zero speed of advance. Faltinsen and Michelsen (1974) give 

a version of this theory applicable to floating bodies. At zero speed, the slenderness 

assumption of strip theory is completely avoided. The 3-dimensional theory was extended 

to ships with non-zero speed of advance by Chang (1977), and Inglis and Price (1980). In 

this case, the slenderness again takes on some importance, because of its effect on the 

magnitude of the wave-resistance perturbation potential. 

The other main direction of development of potential theory may be referred to as 

"Slender Body Theory." In this case, the potential flow problem is split into a far field, 

where the ship has the effect of a slender body, and a near-field where the transverse 

extent of the ship is taken more into account. This formulation leads, eventually, to solu­

tion procedures where 2-dimensional strips again form a basis for the integration of pres­

sure over the ship hull. Newman (1983) gives a survey of both these methods. 

It is not yet clear if either of these approaches have succeeded in providing an ade­

quate formulation of the potential flow problem, for the case of low frequencies of 

encounter at forward speed in following waves. These conditions appear to be of particu­

lar importance with respect to capsizing, as discussed by Bishop, Price and Temarel (1982). 

Neither approach has lead to a reformulation of the linear equations of motion relative to 

equations (1.2 - 1.4), but rather been concerned with improving the expressions for the 
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added-mass, damping, and exciting forces. Thus, these equations should still provide a 

useful basis for consideration here. 

1.4. Single Degree of Freedom, Linear Equation for RoIling 

In subsequent chapters, a single degree of freedom equation for ship rolling is 

applied. Here, some of the implications of this assumption are discussed in relation to 

equation 1.3, which shows that linear potential theory leads to an equation of motion 

where rolling is coupled with sway and yaw. 

Consider decoupling of roll from yaw first. Fore and aft symmetry in the weight dis­

tribution is necessary to remove the inertial cross-product (/46). Fore and aft symmetry in 

submerged hull form is required to remove the zero-speed hydrodynamic coupling (T~). 

However, speed dependent terms may still be present as shown by equation (1.8). The line 

integrals at the aftmost section (t~6' t~2) may presumably be negligible if the aft body form 

is very fine. A yaw-coupling term still remains (UT~2/iw), due to zero-speed, sway-roll, 

hydrodynamic coupling. 

Next the sway-roll terms are considered. The damping cross-coupling term (B 42) may 

be split into two components; viz. a pure moment due to asymmetrical vertical forces, and 

a moment due to the net lateral force multiplied by the distance from the centre of lateral 

force. Only the second of these components is affected by the location of the roll axis, 

hence they may be eliminated by choosing an alternative location (zR=-B 42/B 22). Simi­

larly, the inertia cross-coupling may be eliminated by another choice of roll axis 

(zR=(Mzc -A 42)/(M +A22)), also taking into account the moment due to the dry inertia 

force. However, these two axes do not, in general, coincide. Thus, the optimal choice of 

roll axis, to minimise sway-roll coupling lies between these two axes (ZR,ZR). Roberts 

(1985) suggests, the use of ZR' and his example is followed, with the additional justification 

that the sway damping terms are small at low frequencies (cf. Vugts 1968). 

Summing up, a fair description of the roll motion by a single degree of freedom equa­

tion may be expected when: 

(a) The ship has fore and aft symmetry in weight distribution and submerged form, 
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(bl) The ship has zero forward speed, 

or 

(b2) The aft end is pointed and the sway-roll hydrodynamic coupling is negligible, 

(c) An appropriate roll axis (ZR) is applied consistently. 

All terms in the single degree of freedom equation for rolling must be related to the 

chosen roll axis to fulfill condition (c) above. There is no difficulty with the restoring coef­

ficient, C44 , since this term is unaffected by a change of axis. If added-mass and damping 

coefficients are determined from free rolling tests, and analysis based on single degree of 

freedom theory, then they may be taken to apply to the chosen roll axis. However, if they 

are calculated, or determined from rolling tests about a fixed axis, then it may be necessary 

to transform them to the chosen axis. Such a transformation requires information about 

the corresponding hydrodynamic cross-coupling coefficients with respect to the initial axes. 

Similarly, if the roll exciting moment, F 4' is initially determined relative to an axis in the 

waterplane, then the corresponding sway exciting force, F 2 , is required to obtain the roll 

moment about an alternative axis. The roll exciting moment about a roll axis through ZR is 

given by 

(1.10) 

Some further consideration is given to the determination of the roll exciting moment in 

chapter 2 and in appendix B. 

A roll axis passing through the centre of gravity is often assumed in conjunction with 

a single degree of freedom equation for rolling, for instance as formulated by Conolly 

(1969). The discussion above clearly illustrates the dependence of such an assumption on 

added-mass and damping terms related to sway. If these terms are negligible (or if 

A42 = -A 22ZJ then height of the roll axis ZR reduces to the centre of gravity zc. 

1.5. r·: anlinearities Affecting Rolling 

A purely linear equation is generally accepted to be an inadequate basis for the pred­

iction of ship rolling, cf. the introduction to appendix D. The most usual modification to 

the linear equations is to include some form of nonlinear damping. Froude (1872) found 

the damping to be nonlinear from his analysis of decay (or extinction) tests performed with 
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ship models. Perhaps a more direct indication of nonlinear damping may be based on the 

following typical observations for moderate roll amplitudes: 

(a) The roll response amplitude increases nonlinearly with the exciting moment ampli-

tude, for a constant excitation frequency, in the vicinity of resonance. 

(b) The roll response amplitude increases linearly with exciting moment amplitude at fre-

quencies distant from resonance. 

(c) Little variation may be found in the resonance frequency with changes 1ll the roll 

amplitude. 

Such observations may be made most clearly from model tests with mechanically generated 

exciting moments, such as presented by Gerritsma (1959), and by Spouge and Ireland 

(1986). The same observations may also be made from model tests in regular beam waves, 

assuming that the roll exciting moment is proportional to the wave amplitude. An example 

of such results is shown in Fig.I-l, with the model-scale wave amplitude shown in the key-

box. 
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At resonance, the inertia and restoring terms of the linear equation of rolling cancel, 

and the response is given by the quotient of the exciting moment and the damping moment. 

Thus, a greater than linear increase in damping moment should provide a simple explana­

tion for observation (a). Since rolling is strongly resonant, the damping may be taken to 

be light, and will have relatively little effect on the response at frequencies distant from 

resonance, in agreement with observation (b). Nonlinearities affecting the inertia or res-

toring forces would, if predominant, be expected to affect the resonance frequency, in 

some disagreement with observation (c). On this basis, it seems reasonable to hypothesize 

that a useful improvement in roll motion predictions may be made by including some 

allowance for nonlinear damping, as expressed by the following modified, uncoupled form 

of equation (1.3) 

(1.11) 

where A'44(w) is an added mass coefficient about the roll axis at ZR' as given in equation 

(B.33), j3(~4(t)) is a nonlinear damping function which incorporates the linear radiation 

damping coefficient B44(w), and the excitation moment is obtained from equation (1.10). 

Equation (1.11) is taken as a basis for the the theory developed in the subsequent chapters. 

Vugts (1968) made a relatively thorough experimental study of 2-dimensional hydro-

dynamic coefficients for a set of ship-like sections. He found nonlinear effects to be 

present due to flow separation and eddy formation, and that this influenced the roll and 

sway-roll damping coefficients, whereas the added mass coefficients were not seriously 

affected. These results support the hypothesis of nonlinear damping, but also introduce 

the possibility that nonlinear coupling with sway may be of significance. However, Vugts 

indicates that the nonlinear coupling term is less important, and it will be neglected in the 

following. 

Brown et al (1983) performed a series of experiments in regular and irregular waves 

with a model of a marine transport barge. The tests were performed at two different 

scales, and with both sharp-edged and rounded bilges. Good agreement with calculations 

by linear theory was generally obtained, except near roll resonance, where the theory over­

predicted the roll motion. The sharp-edged bilges led to considerably smaller roll response 

near resonance, than was obtained with the rounded bilges. More turbulence was also 
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observed in the water with the sharp-edged bilges, apparently indicating a greater dissipa­

tion of energy in this case. Some results showing the effect of varying the significant wave 

height of the incoming waves were also included in this paper. The roll transfer functions 

obtained from analysis of the irregular wave tests showed an opposite tendency to that 

illustrated in Fig.l-I. However, Brown et al. apparently did not consider this tendency sig­

nificant, in view of the uncertainty attached to the estimated transfer functions. A subse­

quent paper by Patel and Brown (1986), gives further information about these tests, with 

more emphasis on the results in regular waves. In this paper, some evidence of the same 

trend as given in Fig.l-l is presented, but it is not really definite. The wave heights applied 

in these tests were from 2.5 to 4.0 cm, and somewhat less than in Fig.l-l, while the model 

scale was about the same. However, the wide, flat-bottomed barge must be expected to 

have a considerably larger linear, wave-making damping component, than the elliptical 

ship-like hull used in Fig.l-I. Hence, it seems probable that larger wave heights are 

required to make apparent any trend due to nonlinear damping on the barge than on the 

ship. 

It is recognised that other forms of nonlinearity will affect the roll motion, particu­

larly when the roll amplitudes are no longer moderate, but may perhaps be approaching 

capsize. This is most easily apparent in the hydrostatic restoring moment, which does not 

continue increasing linearly with amplitude, but becomes negative when the roll angle is 

large enough. 

Denise (1983) suggested that nonlinear damping is of secondary importance for the 

rolling of marine transport barges, characterised by wide beam and shallow draught. 

Instead, he maintained that the hydrostatic restoring moment and Froude-Kriloff exciting 

moment should be treated as the primary nonlinearities, by integrating the water pressure 

acting on the vessel up to the instantaneous water surface. 

Robinson and Stoddart (1987) included both nonlinear damping and nonlinear restor­

ing moment in a prediction method for the rolling of marine transport barges. By formu­

lating the restoring moment in terms of the difference between the wave slope and the roll 

angle, some nonlinearity was also introduced into the exciting moment, with some similar­

ity to that formulated by Denise. They found the nonlinear damping terms to be essential 
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in order to obtain a reasonable correlation with model test results. 

Kerwin (1955), cited Grim (1952), and showed that rolling may be induced in regular 

head or following seas, through parametric excitation. If the ends of a ship are not wall­

sided, then waves of length close to the ship length may effectively lead to a periodic varia­

tion in the transverse metacentric height; i.e. in the restoring coefficient of the differential 

equation for rolling. The resulting form of equation of motion is also known as a Mathieu 

equation. If the variation in the restoring coefficient is appreciable, the damping is light, 

and the period of encounter of the waves is close to a half integral multiple (0.5, 1, 1.5, 2, 

... ) of the natural period of rolling, then large roll amplitudes may result. 

Paulling and Rosenberg (1959) showed that a similar type of parametric excitation 

may result through the coupling of rolling with mechanically forced heave or pitching 

motions in calm water. 

A summary of a series of capslZlng tests on radio-controlled ship models in San 

Francisco Bay is given by Paulling and Wood (1973). Models of a general cargo ship and a 

twin screw containership were used. All instances of capsizing were generated in following 

and quartering seas and none occurred in beam seas. The attenuation of stability caused 

by a wave crest amidships was found to strongly influence all three modes of capsizing that 

were identified. Parametric excitation was indicated to be the primary cause of one of the 

capsize modes, referred to as "low cycle resonance." It appears that this mechanism may 

also be involved in the generation of roll angles which do not necessarily lead to capsize; 

i.e. which might be classified as "moderate rolling." 

1.6. Rolling as a Stochastic Process 

Since ship motions are excited by ocean waves of a non-deterministic nature, it is 

appropriate to treat these motions, including rolling, as stochastic processes. The tech­

niques of linear systems analysis are relevant if the system is linear, or as a first order 

approximation for nonlinear systems, and were applied to linear seakeeping analysis by 

Pierson and St.Denis (1953). Price and Bishop (1974) give a comprehensive treatment of 

this theory, and it seems worthwhile to introduce some of the main features here, since 

they are basic to much of the present work. 
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(a) The seaway is assumed to be a Gaussian random process, which may be taken as sta-

tionary over a short period of time, of the order of a few hours. 

(b) A stationary seaway may be characterised by a wave spectrum, Sww(w), describing the 

distribution of wave energy over frequency (w). 

( c ) Linear transfer functions, G I (w), providing the magnification and phase angle for 

each mode of ship motion, relative to regular, incoming waves are required. They 

are obtainable from strip theory or model tests. 

(d) The response spectrum, Sxx(w), for each mode of motion is given by the product of 

the wave spectrum, and the squared modulus of the transfer function. 

(1.12) 

(e) Each mode of ship response has a Gaussian or normal statistical distribution, because 

it is the result of a linear operation on a Gaussian excitation process. Each such dis-

tribution has zero mean value, and variance, 0';, given by the area under the respec-

tive response spectrum. 

(1) The ship motion transfer functions act as band-pass filters, producing narrow-banded 

response processes; i.e. the response in each mode of motion is concentrated in a 

narrow band of frequencies. 

(g) The extrema (i.e. maxima and minima) of each mode of motion are distributed as 

Rayleigh distribution functions, with a single parameter obtained from the standard 

deviation of the continuous response, and equal to O'x \12. 

Cartwright and Rydill (1957) applied these techniques and made a comparIson 

between calculated and measured roll motions of a ship in sea waves. Spectral and statisti-

cal analysis techniques were applied to both ship motion and wave records. The roll 

damping coefficient and natural frequency were determined from the experimental results 

by means of autocorrelation analysis. Using these parameters in the calculation of the roll 

motion, they were able to show an impressive degree of agreement with the measured 

response. 

Cartwright and Rydill also cite an earlier application of spectral analysis to ship roll 

and wave records by Barber in 1945. He found the roll response to be concentrated about 
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a constant frequency, irrespective of the wave spectrum. 

Bledsoe, Bussemaker and Cummins (1960) analysed the results of a comparative sea 

trial of three destroyers. Empirical distribution functions were compared to fitted Rayleigh 

distributions for the roll motion and they concluded that "... there is strong evidence that 

the double-amplitude oscillations do not always follow the Rayleigh distribution." They also 

mentioned nonlinear damping and nonlinear restoring force as possible reasons for the 

disagreement. 

Yamanouchi (1964) included a quadratic roll damping term in the equation of motion 

and applied a perturbation analysis to formulate an expression for the roll response as the 

sum of a zero order convolution integral, and a first order correction. He then showed 

how the roll response spectrum could be derived from this expression, and obtained a sub­

stantial modification around the resonance frequency. 

Hasselmann (1966) suggested that bispectral analysis could be used to identify non­

linearities in ship motion response to waves. However, he was primarily concerned with 

added resistance in waves and lateral drift, which may lead to skewness in surge and a 

non-zero mean sway. 

Kaplan (1966) applied the technique of equivalent (stochastic) linearisation to the 

equation of rolling with a quadratic damping term. This provides a prediction of the stan­

dard deviation of the roll response in irregular waves. 

Vassilopoulos (1967) formulated the roll response with a cubic restoring coefficient in 

terms of a Volterra functional series. He showed that the even order kernels were zero, 

and derived an expression for the third order kernel. The first order kernel is the linear 

impulse response function. (Details of this type of technique are discussed in chapter 3 

and appendix C.) 

The equivalent linearisation technique for rolling was extended by Vassilopoulos 

(1971) to include the effects of both quadratic damping and cubic restoring terms. 

Dalzell (1973) carried out a series of time simulations of the solution of an equation 

of rolling with quadratic damping and cubic restoring terms, under Gaussian excitation. 

The object was to study the resulting distribution of roll maxima and minima. A reason-
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able fit to the Rayleigh distribution was found in the main body of the data, but this distri­

bution function led to a consistent overprediction of the upper fractiles. Typically, the 

average of the 1/10 largest roll maxima was overestimated by about 10%. 

Symmetric nonlinearities should not be discernible from a bispectral analysis of a roll 

signal according to Yamanouchi (1974). However, he showed an example of a bispectrum 

computed from a roll signal measured on a ship at sea, and attributed the non-zero bispec­

trum and associated skewness to asymmetry of the excitation from the seaway. 

The formulation of the roll response in terms of the Volterra functional series was 

extended by Dalzell (1976), to include cubic damping and restoring terms. The cubic 

damping term was introduced instead of the more usual quadratic damping term, because 

this technique requires an analytic equation of motion, and this condition is not satisfied if 

the quadratic damping term is used. Furthermore, Dalzell (1978) also shows that very 

close fits to the damping data can be obtained by either function. 

Markov process theory was employed by Haddara (1974) to formulate a Fokker­

Planck-Kolmogorov (FPK) equation for the joint probability density of the roll angle and 

roll velocity, including nonlinear damping and parametric excitation. The roll excitation 

process was assumed to be a white noise process in order to permit this formulation. The 

FPK equation was not solved, but was used to obtain expressions for the expected value 

and variance of the roll motion, which could be applied in stability evaluations. 

The technique of stochastic averaging was applied by Roberts (1982) in the develop­

ment of a FPK equation for rolling, allowing the white noise assumption for the exciting 

moment to be relaxed. Subsequently, Roberts and Dacunha (1985) modified the theory to 

include a correction to the exciting moment, based on comparison of linear response pred­

ictions with the actual roll excitation spectrum and with a white noise excitation spectrum. 

The theory predicted a deviation from the Rayleigh distribution for roll angle maxima and 

minima which was also observed in experimental results. 

1. 7. An Overview of the Present Investigation 

The work to be presented here centres on a single degree of freedom equation of 

motion for rolling, including nonlinear damping. The inclusion of nonlinear damping 
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appears to be a modification to the equation of motion that will be required for most ships. 

It also seems likely that this effect will have to be included even when other nonlinear 

effects have a major effect on the roll response. Mathieu instability, for instance, is 

known to be sensitive to the amount of damping in the system. 

The effect of this type of formulation under harmonic excitation, i.e. 'in regular 

waves, is fairly familiar. However, the effects under random excitation are not equally 

obvious. Simulation of the response time history is a useful tool to gain some experience 

with the behaviour of the mathematical model, and this technique is applied in chapter 2. 

Details of the roll exciting moment, required for this purpose, are given in appendix B. 

Simulation techniques are, however, computationally inefficient for routine predictions, 

and more efficient techniques are to be preferred. One such technique utilises the Vol-

terra functional series, and this approach is followed in chapter 3 (with details in appendix 

C), much along the same lines investigated by Dalzell (1976). This approach tends to be 

most useful for results in the frequency domain, and for moments of the response. An 

alternative technique utilising the Fokker-Planck-Kolmogorov equation may be applied to 
, 

obtain results in the probability domain, and this approach was being investigated and pub-

lished by Roberts (1985) while the present work was initiated. 

If probability distributions can be established for the response under stationary condi-

tions, then these results may be integrated with the probability of occurrence of the station-

ary, short term conditions, to obtain a long term distribution of the roll response. Chapter 

4 contains a brief discussion of such a procedure. 

Nonlinear damping coefficients are needed for application in the equation of motion 

III chapters 2 and 3, but are not readily obtainable from calculations alone, Methods of 

obtaining these coefficients from experiments are presented in chapter 6, and in appendix 

D. 

Standard methods of analysis for model tests and sea trials are available for linear, 

wave-induced responses, but they are not equally obvious for nonlinear responses. A time 

series analysis program for this purpose is described in chapter 5~ and some results of the 

analysis of test data are given in chapter 7. Alternative distribution functions to those llsed 

in the linear procedure are suggested in chapter 3 and investigated in chapter 7. 
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Chapter 8 contains the conclusions of the investigation. References and notation are 

given in chapters 9 and 10, respectively. 
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2. Direct Time Simulation of Rolling 

The single degree of freedom equation of motion for uncoupled rolling, given ill 

equation (1.11), may be solved by direct time integration techniques. Such solutions are 

fairly simply achieved. They provide quantitative results for the roll motion under specific 

conditions, and some qualitative indication of the general properties of the solution of this 

equation. Numerical results obtained by such a time simulation of the roll motion are also 

useful for testing out results obtained by other techniques. This chapter describes the 

development of a time simulation procedure for roll motion, and some results obtained by 

this approach. 

2.1. Reformulation of Equation of Motion 

Standard algorithms for time integration are usually formulated for a set of first order 

differential equations. It is therefore convenient to reformulate the roll equation (1.11) in 

this form. A vector y(t) is introduced, with components Yl(t) as the roll angle, and yz{t) 

as the roll angular velocity. Using, these variables, the equation of motion for rolling may 

be reformulated as two first order differential equations 

Yl(t) = yz{t) 

Y2(t) = [x(t) - CY1(t) - ,8(Y2(t))] / (A44+ 14) 

(2.1) 

(2.2) 

where the primes' in equation (1.11) have been dropped, and the excitation is written as 

x(t) and is no longer limited to a harmonic function. Note that the damping function, ,8, 

and the added-mass coefficient, A 44 , are here assumed to be frequency-independent. 

These assumptions simplify the time integration, and are not expected to significantly 

affect the qualitative behaviour of the solution, In the case of the added-mass, this is justi­

fied by the small magnitude relative to the dry inertia term 14 for normal ship forms. In 

the case of the damping function, it is justified if the damping moment is assumed to be 

significant only close to resonance frequency, and the variation of the function is not great 

in the resonance frequency band. 

2.1.1. Procedure for Frequency-Dependent, Linear Added-Mass and Damping 

The frequency dependence of the linear damping and added-mass terms could be 

taken into account if this should be considered necessary, using linear systems theory (d. 
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Schetzen (1980), for instance). A transfer function for the moment due to these terms 

may be written 

-oo<w<oo (2.3) 

where i represents vCi, and B 1 IS the linear damping coefficient. Subscript r is used 

because effects due to waves radiated by the roll motion are expected to dominate the 

frequency-dependent, linear moment. Although added-mass and damping are usually only 

defined for positive frequency, it is convenient to include negative frequencies here, utilis-

ing the symmetry of these coefficients. This transfer function gives amplitude and phase 

information relative to the angular velocity of rolling, y 2' 

The corresponding impulse response function is obtained by taking the mverse 

Fourier transform of the transfer function 

00 

(2.4) 
-00 

Ogilvie (1964) has discussed the difficulty arlsmg with the existence of this Fourier 

transform, since the added-mass coefficient tends to a non-zero, asymptotic value at high 

frequencies. This difficulty may be overcome by separating out the asymptotic value of the 

added-mass prior to defining the transfer function in equation (2.3), or by using generalised 

function theory. The impulse response function may be used to determine the radiation 

moment F, at any time instant t from the time history of the roll velocity up to that point 

in time (which is available when performing a time integration) 

F,(t) = J h,(t-r)yz{r) dr (2.5) 

-00 

The convolution integral required for this technique is time-consuming to simulate. Jef-

ferys(1984) has approximated a similar convolution integral for the radiation force acting 

on a wave power device by an approximate ordinary differential equation, which is more 

convenient to simulate. It seems likely that the same technique could also be applied here. 

With this formulation for the frequency dependent effects, equation (2.2) for the 

angular velocity would be modified to 

(2.6) 

where f3. represents a purely nonlinear damping function. 
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2.2. Roll Excitation Function 

It is convenient to consider four types of excitation: 

(a) Zero excitation, with appropriate initial values of roll amplitude and velocity, 

corresponding to a roll decay test, 

(b) Harmonic excitation with a constant amplitude and single forcing frequency, 

corresponding to a forced rolling test, 

(c) Random Gaussian excitation, corresponding to rolling in an irregular seaway. 

(d) Random excitation, from the square of a Gaussian process, corresponding to rolling 

excited by an irregular wind spectrum. 

Case (d) is not covered here. Cases (a) and (b) are straightforward to simulate. Some 

more effort is required to tackle case (c), random excitation. Here, random excitation is 

generated by Fourier synthesis, utilising an inverse fast Fourier transform (FFf) algorithm. 

Suppose the exciting moment is to be simulated at a set of N time instants 

t j' j=O,l, ... ,(N -1), separated by a constant time step !:::.t. The wave spectrum is first 

discretised into M frequency bands, with approximately one frequency band for every two 

time instants to be simulated. 

M _ { N /2+1, 
- (N+1)/2, 

N even 

N odd 
(2.7) 

The width of the frequency bands is given by the inverse of the basic time period of the 

simulation 

211'" 
!:::.W=--

N!:::.t 
(2.8) 

The basic time period (N!:::.t) is one time step longer than the duration of the simulation 

«N-1)!:::.t), and is the period with which the excitation would duplicate itself, if allowed to 

continue. The highest frequency defined is then 

{ 

11'" /!:::.t , 
wM = (N-1) 11'" /(N t:::.t), 

N even 

N odd 
(2.9) 

which is approximately half the sampling frequency (211'"/!:::.t) , thus complying with the sam-

pIing theorem (cf. Gtnes and Enochsen (1978)). 
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The wave energy of each frequency band is represented by the amplitude of a spectral 

line at the centre of the band. 

k=1,2, ... ,M -1 (2.10) 

Wo = 0 (2.11) 

where wk=k·~w,k=O,l, ... ,M-I. S...., represents the wave spectrum, with parameters sig-

nificant wave height Hs' and zero-up-crossing period T....,. The mean surface elevation 

corresponds to the amplitude of the spectral line at zero frequency WOo In practice, the 

width of the frequency bands is usually very small relative to the rate of variation of the 

wave spectrum, and trapezoidal integration provides a satisfactory numerical approxima-

tion, with a single step for each frequency band. 

A two-parameter Pierson-Moskowitz wave spectrum, as recommended by the ISSC 

(Int. Ship Structures Congress), and quoted by Bishop and Price (1979), is adopted here 

(2.12) 

For simplicity, only long-crested waves, and zero speed of advance are considered in the 

present simulation procedure. 

Each component wave amplitude is assigned a random phase angle €k' uniformly dis-

tributed on the interval (0,211"). 

The amplitudes of the spectral lines of the excitation signal are obtained by multiply-

ing the wave amplitudes wk by the transfer function for the roll exciting moment G.r(wk), 

The component roll moment amplitudes are split into cosine and sine components xck,xsk 

using the random phase angles. 

Xck = Re[G.r(wk)(cOS€k +i sin€k)]wk 

xsk = Re[G.r(wk) (- sin€k +iCOS€k)]wk 
k=O,l, ... ,M -1 (2.13) 

Three expressions for the roll exciting moment transfer function have been considered: 

(a) A slight generalisation of Froude's (1861) expression, equation (B.22), 

(b) A long wave approximation, equation (B.21), 

(c) The strip theory approximation given by Salvesen, Tuck and Faltinsen (1970). 
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Expression (a) is the simplest to use, since it does not require any hydrodynamic coeffi-

cients, but it is only applicable in waves sufficiently long that diffraction effects may be 

neglected. The long wave approximation is derived in appendix B. It includes an approxi-

mation for diffraction effects which is applicable in long waves, and should cover some-

what shorter waves than expression (a). The strip theory expression for the exciting 

moment also includes short waves. 

Fig.2-1 
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Comparison of different expressions for the transfer function for the roll ex­
citing moment, using data for the FPV Sulisker model. 

A strip theory program, based on the theory due to Salvesen, Tuck and Faltinsen 

(1970), has been used to compute the radiation coefficients required for the long wave 

approximation for the roll exciting moment, and to provide type (c) exciting moments. A 

comparison of the three expressions is shown in Fig.2-1. All three expressions agree 

closely at low frequencies (long waves) and diverge as the frequency increases. Hence, any 

of the expressions may be adequate for roll response in regular waves near resonant fre-

quency, since resonance tends to occur at low frequencies. However, it was considered 

worthwhile to use the strip theory exciting moment, since considerable energy would be 

present at higher frequencies in irregular waves. The relative locations of the three curves 
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in Fig.2-1 is dependent on the location of the roll centre. A location of 0.023 m above the 

still water level has been determined for the model of the FPV Sulisker, based on equation 

(B.32), and used in the calculation of the exciting moment. 

A realisation of the roll exciting moment is then obtained from the cosine and sine 

components, using an inverse fast Fourier transform of the type described by Singleton 

(1969). This FFT algorithm does not require the number of frequencies to be an exact 

power of two, as is often the case, but instead permits a product of small prime numbers 

(i.e. 2i 3 i 5
k
), thus giving more freedom in the choice of the number of time instants to be 

simulated. 

Note that this simulation technique employs equal numbers of random variables in 

both frequency domain and time domain representations of the waves. Simulation of the 

waves by direct superposition of a limited number (say 10 to 50) of sine waves, without 

interposing an FFT algorithm, is an alternative technique that is sometimes used. This 

technique has the disadvantage that it can only be applied to generate a wave signal of lim-

ited time length before the signal is duplicated, as shown by Tucker et al. (1984). 

2.2.1. Checking Simulation of Random Wave Elevation 

A check of the generated wave record was carried out prior to the inclusion of the 

conversion to rolling moment with equation (2.13) in the algorithm. One sea state was 

simulated, and the wave elevation time history was analysed with the techniques described 

in chapter 5. A long time series, with duration 8000 seconds, and a sampling frequency of 

10 Hz, was employed to ensure a low level of random error in the ensuing analysis. 

Results of the tests are given in Table 2-1. 

Parameter Specified Simulated 

Significant Wave Height, !Is [m] 0.2 0.200 
Zero-up-crossing period, Tw [s] 1.4 1.38 
Mean surface elevation fml 0.0 0.000 

Table 2-1 Check of Simulated Wave Spectrum 

The agreement shown in Table 2-1 is taken to be satisfactory. The slight bias in the zero-

up-crossing period is assumed to he introduccd through the spectral analysis. Fig. 2-2 

shows a comparison of specificd and simulatcd wa\'c spcctra. Some slight leakagc of 
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energy from the spectrum peak to low frequencies appears to be present. A resolution of 

0.02 Hz, with averaging over 156 periodograms, is employed in this spectrum calculated 

from the simulation . 
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Fig.2-2 Specified Pierson-Moskowitz and simulated wave spectra. 

Fig.2-3 shows good agreement with a normal distribution fitted to the simulated sur-

face elevation. Fig.2-4 shows a Rayleigh distribution fitted to the maxima of the surface 

elevation between zero-up-crossings. A satisfactory fit is apparent for the higher wave 

crests, with some deviation for the lower levels. This deviation is assumed to be allowable, 

since the Pierson-Moskowitz spectrum is wide-banded, implying that a Rice-distribution 

should provide a better fit to the local maxima than a Rayleigh distribution does. All these 

tests indicate a satisfactory simulation of the wave spectrum. 

2.2.2. Interpolation on Excitation Signal 

The numerical integration techniques used here reqUIre the excitation signal to be 

available at arbitrarily spaced time instants. However, the simulation of the irregular exci-

tation signal, described above, generates results evenly spaced in time. Hence, some form 

of interpolation is required. Linear interpolation is used, for simplicity. Inaccuracies may 
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Fig.2-3 Normal distribution fitted to simulated surface elevation 
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be introduced into the solution if there is significant difference between interpolated 

values, and the underlying excitation signal. To avoid such inaccuracies, the time step 

between simulated excitation values must be sufficiently small. This requirement could be 

eased by using some more sophisticated form of interpolation. 

2.2.3. Initial Tapering of Excitation Signal 

Initial response values are generally set to zero in the simulations. This sometimes 

leads to transients which decay slowly, when arbitrary values of excitation are applied at 

t=O. An initial taper is applied to the excitation signal, to smooth the start up of the simu-

lation, and reduce this problem. The un smoothed excitation is multiplied by a cosine taper 

of the following form 

0, 

fs(t) = O.sCOS(1T+1Tt /Ts)+0.5, 
1, 

where Ts is the duration of the smoothing. 

2.3. Numerical Integration Technique 

(2.14) 

The simulation has been implemented with two different standard types of software 

for numerical integration. This was done because simulations were carried out both at 

BruneI University, and at Veritas Research, but the same software packages were not avail-

able at both sites. 

At BruneI, a Runge-Kutta-Merson method was used (routine D02BBF of the NAG 

(1983) library). At Veritas Research, an Adams method, due to Hindmarsh (1980), was 

used. Both methods solve a set of first-order ordinary differential equations, given initial 

values at t=t 0' and providing results at t=t 1. Results calculated at intermediate points in 

the range, (to,t 1)' are used in both algorithms, and the Adams method also uses points 

beyond the range, t >t 1. 

2.4. Simulation Parameters 

It is convenient to set the parameters governing the simulation to make the resulting 

inaccuracy in the roll motion insignificant. 
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2.4.1. Time Step 

In general, it is expected that the roll response will be dominated by the resonant fre-

quency, with individual peaks and troughs approaching sinusoidal shape. Good accuracy is 

required for the description of such maxima. An estimate for the inaccuracy caused by a 

time displacement of the largest observed point away from the exact peak may be obtained 

by considering this effect for a sine wave. If the inaccuracy from this effect is to be less 

than 0.1%, then the closest observed point must be within a phase angle of ±2.6°, and 

360/(2X2.6)=70 samples per cycle are required. The test case considered here has a reso-

nance period of about 2 s, so a sampling frequency of 35 Hz is needed to satisfy this 

requirement. A time step of 0.025 s is applied in the test simulations, corresponding to a 

sampling frequency of 40 Hz. 

Since nonlinear response is being considered, it is also necessary to be able to detect 

higher harmonics of the excitation frequency. Assuming that harmonics up to the fifth 

order are to be evaluated, then, by the Sampling Theorem, at least 10 points per excitation 

cycle must be sampled. Hence, for excitation frequencies close to the resonance fre-

quency, this requirement is amply covered by the accuracy requirement discussed above. 

2.4.2. Tolerances 

The input parameters used to control the accuracy of the integration were adjusted 

for both types of integration technique. Table 2-2 shows the results of this adjustment for 

the Adams method. 

Test 1 Test 2 Test 3 Test 4 

Relative tolerance 0.01 0.001 0.0001 0.00001 
Amp. 1st harmonic [rad] 0.373 0.382 0.381 0.381 
Amp. 2nd harmonic [rad] 0.00157 0.000365 0.0000413 o . 0000411 
Amp. 3rd harmonic [rad] 0.00129 0.00155 0.00151 0.00151 
Phase 1st harmonic [deg] -94.9 -91.3 -90.3 -90.2 
Phase 2nd harmonic [deg] 150.3 163.9 -79.2 -93.7 
Phase 3rd harmonic r deg 1 -169.4 -171.7 -175.7 -174.8 

Table 2-2 Adjustment of Tolerances for Time Integration 

The parameters of the equation of motion for this tolerance test correspond to the model 

of the FPV Sulisker, as described below. Resonant, harmonic excitation was applied, and 

an absolute tolerance of 10-7 rad was allowed, in addition to the relative tolerance 
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specified in Table 2-2. Harmonic analysis was applied to the simulated roll response, to 

provide the tabulated results. The accuracy provided by test 3, with a relative tolerance of 

0.0001 is considered satisfactory. 

Note that the roll response is dominated by the fust harmonic, but there is also an 

identifiable third harmonic present, while the second harmonic is insignificant. 

2.5. Some Simulation Results 

The following simulation results are all obtained using coefficients in the equation of 

roll motion for a model of the FPV Sulisker. as described in appendix D. Coefficients for 

the model in the series 1 configuration are used, and the damping coefficients are based on 

the results of forced rolling tests near resonance, at a frequency of 3.2 rad/s. The coeffi-

cients are given in Table 2-3. Slightly different inertia and restoring coefficients are used in 

the irregular wave simulations, as compared to the actual model data, in order to be con-

sistent with the calculated exciting moments. 

Table 2-3 

Linear damping Dl 0.512 
Quadratic damping D) 3.43 
Linear damping Bl 1.47 
Cubic damping B, 2.54 

Simulation type: 
Decay and 
harmonic 

Roll inertia A 6.94 
Restoring Coefficient C 71.97 
Natural frequency w" 3.22 

Coefficients for roll motion simulations, 
based on a model of the FPV Sulisker. 

2.5.1. Simulation of Roll Decay 

Nms/rad 
Nm(s/rad)2 

Nms/rad 
Nm(s/rad1

3 

Irregular 
waves 

7.40 kgm 
2 

71.57 Nm/rad 
3.11 rad/s 

Results of two simulated decay tests are presented, corresponding to the two different 

damping models; viz. linear plus quadratic damping, and linear plus cubic damping. Both 

decay tests start from an initial roll angle of 0.4 rad and zero roll velocity. The resulting 

time series are shown in Fig.2-5 and Fig.2-6. The damping effect due to the two damping 

models should be fairly equivalent, since the coefficients of both models are obtained by 

estimation from the same set of forced rolling tests, and both models show a fairly good fit 

to this data in Fig.J of appendix D. However, there is a definite differcnce in the thc roll 

motion shown in Fi~.~-S and Fi~.2-6. \Vhile thc initial parts of the decay rccords are \'cry 
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similar, the latter part of the decay record due to the linear plus cubic damping model 

shows a more rapid attenuation of the roll motion. This behaviour might be expected from 

comparison of the magnitudes of the two linear damping coefficients, which dominate the 

decay rate at small amplitudes. The visual impression of the difference is amplified by the 

decay process, which effectively integrates the effect of the difference in damping over the 

preceding roll cycles. 

The tolerances applied in the numerical integration of of these two decay records 

were reduced by a factor of 100, compared to thoses specified in section 2.4.2. This was 

done to provide increased accuracy for a numerical test of the damping coefficient estima­

tors, described in section 6.3. 

2.5.2. Roll Response to Harmonic Excitation 

A harmonic excitation signal is shown in Fig.2-7, illustrating the initial taper applied 

to the first 20 s of the signal, in order to reduce the transient response. The corresponding 

simulated roll response is shown in Fig.2-8, with a steady state attained after about 50 s of 

simulation. Harmonic analysis (q.v. chapter 5) is applied to the steady roll response to 

obtain the harmonics of the response. The results of several such simulations are given in 

Table 2-4, and in Fig.2-9. Only the third harmonics are included in addition to the first 

harmonics in Table 2-4, since the other harmonics (up to order 5) were even smaller. The 

results at a frequency of w=3.2 rad/s, close to resonance, show a gradual change in the 

phase angle as the response amplitude increases, due to the nonlinear increase in damping. 

The relative amplitude of the third harmonic also becomes slightly larger, though there is 

still very little difference between the largest roll angle in each simulation, and the ampli­

tude of the fITst harmonic. The nonlinearity of the roll response at the frequency of w=3.2 

rad/s is apparent in Fig.2-9, while linearity is displayed at the other 3 frequencies, further 

away from resonance. 

Most of the simulations with harmonic excitation employ the linear plus cubic damp­

ing model, but a few results are also included in Table 2-4 for the linear plus quadratic 

damping model. Good agreement between the roll response with the two damping models 

is obtained for an excitation amplitude of -+ Nm. As the excitation increases above this 
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Excitation 
Maximum Roll response harmonics 

Roll 1st 
Frequency Amplitude 

Angle Amplitude Phase 
frad/sl [Nml [radl frad] [°1 

Linear plus cubic damping 
3.2 0.5 0.0940 0.0940 -80.4 

" 1.0 0.158 0.158 -82.0 
" 2.0 0.240 0.240 -84.1 
" 4.0 0.338 0.338 -86.1 
" 8.0 0.455 0.455 -88.0 
" 12.0 0.536 0.534 -89.1 
" 16.0 0.599 0.597 -89.8 
" 20.0 0.652 0.649 -90.4 

1.0 4.0 0.0615 0.0615 -1.3 
" 8.0 0.123 0.123 -1.3 

2.0 4.0 0.0906 0.0903 -4.0 
" 8.0 0.181 0.180 -4.4 

4.0 4.0 0.102 0.101 -169.7 
" "- 8.0 0.200 0.197 -164.9 

Linear plus ( uadratic dam ping 
3.2 4.0 0.340 0.340 -86.0 
" 8.0 0.492 0.491 -87.3 
" 16.0 0.707 0.706 -88.4 

Table 2-4 Simulation results with harmonic excitation, 
based on a model of the FPV Sulisker . 
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level, the deviation in response with the two damping models also increases. In fact, the 

highest excitation level used in the experiments on which the damping coefficients are 

based was between 4 and 5 Nm, as shown in Fig.3 of appendix D. The damping due to the 

two models diverges above this level, leading to the difference in response observed here. 

These results show that the mathematical model reproduces the same response 

characteristics (a, b) that are discussed on the basis of model tests, in the beginning of sec­

tion 1.5. The third characteristic (c); viz. little variation in resonance frequency with roll 

amplitude, has not been studied in detail by simulation. However, the results shown here, 

and additional simulations that have been carried out, certainly do not indicate any con­

tradiction of this behaviour. 

2.5.3. Irregular Waves 

Rolling in irregular waves has been simulated with a range of significant wave heights, 

and a wave zero-up-crossing period of 1.4 s. This period was chosen because the 

corresponding peak period of the Pierson-Moskowitz spectrum lies at about 2 s, which is 

close to the natural roll period of the ship model. Initially, the simulations were carried 

out with a duration of 2400 s, and a sampling frequency of 40 Hz. 

Samples of the exciting moment and roll response time histories are shown in Fig.2-

10 and Fig.2-11, with the corresponding spectra in Fig.2-12 and Fig.2-13. The narrow­

banded nature of the roll response is apparent, while the exciting moment is somewhat 

more wide-banded. 

The first four cumulants of both exciting moment and roll response have been calcu­

lated from the simulations, and are shown in Table 2-5 and Table 2-6, excluding the zero 

mean values. It was convenient to use the stationarity test of the time series analysis pro­

gram (cf. chp.5) for this purpose, since this also provides some indication of the uncer­

tainty of the results. An approximate standard error is provided for each cumulant, confer 

the description of the sIn directive in chapter 5. Since the roll exciting moment is 

modelled as a Gaussian process, the skewness and kurtosis should be zero, and this is con­

firmed by the results in Table 2-5. The linear variation of the standard deviation of the 

exciting moment with increasing significant wave height is also apparent (the wave zero-up-
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Significant Exciting Moment 
Wave 

Height std.dev. [Nm] skewness kurtosis 

rml {Iy std.err. K", std.err. KA 

0.025 0.412 0.005 0.01 0.01 -0.04 
0.050 0.820 0.016 -0.00 0.03 0.05 
0.075 1.23 0.02 -0.03 0.02 -0.09 
0.100 1.64 0.02 0.00 0.02 0.03 
0.125 2.05 0.02 0.03 0.02 0.00 
0.150 2.46 0.03 -0.01 0.01 0.02 
0.175 2.87 0.05 -0.02 0.03 -0.05 
0.200 3.28 0.04 0.00 0.02 -0.01 

Excitation Statistics from Irregular Wave SiQIulations, 
FPV Sulisker Model Series 1, Wave Period Tw=1.4s 

Significant Roll Response 
Wave 

std.err. 

0.09 
0.05 
0.03 
0.07 
0.06 
0.06 
0.06 
0.10 

Height std.dev. [rad] skewness kurtosis 

rml (Iy std.err. K,,- std.err. KtI 

Linear plus cubic damping 
0.025 0.0256 0.0005 0.00 0.00 -0.34 
0.050 0.0485 0.0014 0.00 0.00 -0.23 
0.075 0.0687 0.0018 0.00 0.00 -0.28 
0.100 0.0870 0.0022 0.00 0.00 -0.44 
0.125 0.104 0.002 0.00 0.00 -0.55 
0.150 0.116 0.003 0.00 0.00 -0.38 
0.175 0.129 0.004 0.00 0.00 -0.48 
0.200 0.142 0.003 0.00 0.00 -0.52 

Linear plus quadratic damping 

0.100 0.0879 0.0016 0.00 0.00 -0.48 
0.200 0.141 0.003 0.00 0.00 -0.55 

Response Statistics from Irregular Wave Si~ulations, 
FPV Sulisker Model Series 1, Wave Period Tw=1.4s 

std.err. 

0.09 
0.12 
0.06 
0.08 
0.05 
0.05 
0.07 
0.07 

0.07 
0.07 

crossing period is held constant). 

Nonlinear and non-Gaussian characteristics of the roll response are observable from 

the results in Table 2-6. First and foremost from the standard deviation of the roll angle, 

which increases at a less than linear rate with the exciting moment. Negative values of kur-

tosis are shown in all cases, with some tendency to increase in magnitude with increasing 

excitation. The standard errors associated with the results for kurtosis are large, and 

perhaps somewhat too pessimistic, but indicative of the statistical uncertainty associated 

with higher order moments and cumulants. Some additional simulations were also carried 

out with longer durations, leading to lower levels of uncertainty in the results, and confirm-

ing the behaviour shown here. In particular, the tendency for the magnitude of the kur-
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tosis of the roll response to increase with increasing excitation was brought out more 

clearly. The symmetry of the roll motion is reflected by the zero skewness. 

Although most of the results were obtained with the linear plus cubic damping model, 

a few results are also shown in Table 2-6 for the linear plus quadratic damping model. The 

results for the two damping models appear to agree well for these two cases. 
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3. A Functional Model for Ship Rolling 

Ship roll response to excitation by irregular waves is a stochastic process. Hence, 

predictions about the roll motion should be expressed in statistical, rather than determinis-

tic terms. These might include the mean value, standard deviation, and higher order 

moments, spectral density, and probability distributions. In the present chapter, ship roll 

response to a stationary, irregular sea state is expressed by means of a Volterra functional 

polynomial, and this representation is used to obtain some statistics of the roll motion. 

Although this analysis does not lead directly to probability distributions for rolling, two 

possible candidates for the distribution functions of roll motion and roll extrema are also 

discussed. 

3.1. Linear Systems Theory 

Analysis by techniques employing Volterra functional polynomials may be viewed as a 

generalisation of the techniques used in linear systems analysis. A brief summary of some 

of the relationships involved in linear systems theory is, therefore, included here as an 

introduction to the Volterra functional techniques. This section supplements the introduc-

tion in section 1.6 with some of the equations involved. Price and Bishop (1974) give a 

more comprehensive exposition with seakeeping applications, while Newland (1975) 

focuses on applications to random vibrations. 

In the present case, a convenient starting point is a linear, one degree of freedom, 

differential equation for rolling 

Ay(t) + B j(t) + Cy(t) = x(t) (3.1) 

where y (t) is the roll angle, A, B 1 and C are linear inertia, damping and restoring coeffi-

cients respectively, and x (t) is the exciting moment. A and B 1 may be frequency depen-

dent. A, B l' and C are time invariant. A includes both dry inertia and added maS3. This 

equation corresponds to equation (1.11), with omission of the nonlinear damping term, and 

a slight change of notation. 

The complex form of the linear transfer function (frequency response function, or 

response amplitude operator G 1) may be obtained by solution of the differential equation 

(3.1) for harmonic excitation, giving 
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(3.2) 

where w is the frequency of both excitation and response. Seakeeping theories usually give 

the transfer function with respect to the amplitude of the incoming waves, whereas it is 

here expressed relative to the amplitude of the exciting moment. 

The linear transfer function forms a Fourier transform pair with the impulse response 

function hI ( 7) 

00 

(3.3) 

00 

(3.4) 
---<Xl 

The response to an arbitrary input may be obtained from the impulse response function by 

means of the convolution integral 

00 

yet) = J hl(7) X(t-7) d7 (3.5) 
---<Xl 

The principle of causality (present response is not affected by future excitation) requires 

hl(7) to be zero for 7<0. 

If a harmonic excitation is defined by 

x(t) = xocos(wt) 

xo. . 
= - (e lwt +e -Iwt) 

2 

then substitution in equation (3.5), and application of equation (3.3) gives 

00 

yet) = Xo J hl(7) (e iw(t-r)+e-iw(t-r»)d7 
2 

---<Xl 

xo. . 
) 

I wt G ( ) -I wt ] = - [G 1 (w e + 1 -w e 
2 

= Xo I G1(w) I cos[wt + arg(G1(w»] 

as might be expected. 

(3.6) 

(3.7) 

If the excitation is a stationary, ergodic, stochastic process, then its autocorrelation 

function Rxx(7) may be expressed by 



T 

2 

1 
Rxx(r) = lim - J x(t) x(t+r) dt 

T-+oo T 
-T 

2 
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(3.8) 

where r is a time lag. The (two-sided) spectral density S=(w) forms a Fourier transform 

pair with the autocorrelation function 

00 

(3.9) 
-00 

00 

(3.10) 
-00 

These two equations are known as the Wiener-Khintchine relations. It may be shown that 

the response spectrum is obtained from the input spectrum and the transfer function by 

2 

Syy(w) = I G1(w) I Sxx(w) (3.11) 

The variance of the response is given by the area under the spectrum 

(3.12) 

where fly is the mean response, which may be taken as zero for a linear system when the 

mean excitation is zero. (The presence of the 1/(211") factor here is due to its location in 

equations (3.9) and (3.10).) 

The cross-spectral density Sxy (w) between input and response is defined in terms of 

the Fourier transform of the cross-correlation function, and may be obtained from 

(3.13) 

If the input is a stationary, Gaussian or normal stochastic process, then the response 

Y from a linear system will also be Gaussian, and completely specified in the probability 

domain by its first two moments; i.e. the mean fly and variance O":y. The probability density 

function of the normal distribution for a random variable Y is defined by 

1 {_(Y_fly )2 } 
f y(y ;fly ,O"yy) = v:?: exp 2 

O"yy 211" 20"yy 

(3.14) 

Furthermore, if the response is narrow-banded, then the response extrema Y. (i.e. maxima 

or minima of the process) are distributed according to the Rayleigh distribution, with pro-

babilitv density gi\'cn by . .. ..... ' ~ 
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f (y. ) _ 2y -~l/Y/: 
y. ,7]y - 2 e (3.15) 

7]y 

where 7]y=Uyy V2 is the parameter of the distribution. The mean period between maxima 

(or minima) of the process is equal to the zero-up-crossing period, which is given by 

00 00 

(3.16) 
o o 

3.2. A Functional Polynomial for Nonlinear Rolling 

The Volterra functional series, giving the response yet) of a system to an excitation 

X(t), may be written 

00 

yet) = J hl(T)X(t-T) dT 
-00 

00 

-00 

00 

-00 

(3.17) 

where the functions hI' h 2' ... are called the Volterra kernels of the system. It may be 

seen that the first term in the series is identical to the response of a linear system, given in 

equation (3.5); i.e. the first order Volterra kernel is identical to the impulse response func-

tion of a linear system. Schetzen (1980) provides an excellent presentation of the Volterra 

functional series, and related techniques of analysis. Schetzen states that this series may 

be used to represent the output of a nonlinear system which is time invariant and has a 

stable first order kernel. Furthermore, the Volterra series solution of a nonlinear differen-

tial equation is stated to be a perturbation about the linear solution. Hence, convergence 

of the series may only be expected for a limited range of solutions in the vicinity of the 

linearised equation. 

Truncation of a Volterra senes after a limited number of terms leads to a system 

representation which is termed a Volterra functional polynomial. A functional polynomial 

is derived in appendix C for nonlinear ship roll response, described by the differential 

equation 

(~.lX) 

where ;\ cubic daIl1pin~ tcrlll has been introduced III addition to the terms III the linear 
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equation (3.1). Following Vassilopoulos (1967) and Dalzell (1976), the linear plus cubic 

damping model is preferred to the linear plus quadratic model in the present context, 

because this allows useful expressions for the higher order transfer functions to be derived. 

While the quadratic damping term is not analytic (it cannot be expressed as a power series 

about the origin), the cubic damping term is analytic in any finite range. Hence, advantage 

may be taken of a theorem given by Rugh (1981), which guarantees that there is a conver-

gent Volterra system representation for all sufficiently small inputs, if a solution to an 

unforced linear-analytic state equation for the system exists. 

The analysis in appendix C shows that all terms of even order are zero for this sys-

tern, due to the symmetric nature of the terms in the differential equation (3.18). In order 

to obtain some improvement on a linearised solution, with a minimum of complexity, the 

series is truncated after the third order term. The basic results of the functional polyno-

mial solution are the linear and cubic transfer functions, obtained in equations (C.24) and 

(C.23) of appendix C. The fifth order transfer function is also given in equation (C.28). 

These results correspond to those derived by Dalzell (1976) by a slightly different 

approach, and including a nonlinear restoring term in addition. The linear transfer func-

tion of the functional polynomial is identical with the result in equation (3.2), while the 

cubic transfer function is given by 

(3.19) 

Note the symmetry of the cubic transfer function G3; i.e. the order of the arguments is 

interchangeable. If the linear transfer function shows a sharp resonance near wn = V C /A , 

then equation (3.19) indicates that the cubic transfer function G 3 will have a number of 

very sharp local maxima, with global maximum near (wn,wn,-wn)· 

The system response to a single harmonic excitation, as in equation (3.6), may now 

be derived from equation (3.17), with a little more effort than in the linear case given in 

equation (3.7), to obtain 
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+ G ( ) 3iwt G ( -3iwt} 3 W,W,W e + 3 -W,-w,-w)e (3.20) 

This includes the linear response term of equation (3.7), with an additional term at the 

same frequency, and a third harmonic term. 

Under excitation by a stationary, Gaussian, stochastic process, with zero mean value 

and spectral density Sxx(w), the response spectrum is obtained in equations (C.39), (C.43), 

and (C.4S), which are reproduced in the following. 

Syy(W) = Syl(w)+Syiw) 
2 

Syl(W) = 1 G1(w) 1 

00 

3 2 2 

·11--iB3wG1(w) J w: 1 G1(w1) 1 Sxx(w1)dw11 Sxx(w) 
7r o 

2 2 

·1 G1(w1) 1 ·1 G1(w2) 1 ·Sxx(w-wl-w2)Sxx(wl)Sxx(w2)dwldw2 

(3.21) 

(3.22) 

(3.23) 

Note that both input and response spectra are real, even functions, extending from -00 to 

00. Hence, ordinates of one-sided spectra are given by twice the ordinates of the two-sided 

spectra for positive frequencies. This result for the roll response spectrum also 

corresponds with the result obtained by Dalzell (1976). The above expressions show that 

input at one frequency can lead to response at more than one frequency. Thus, the fre-

quency components of the scalar response spectrum will be correlated to some extent. 

As in the linear case, the variance of the roll response may be obtained from the area 

under the response spectrum 

00 

2 1 
Cfyy = - J[SYl(W)+Sy3(W)]dw (3.24) 

7r 0 

Bedrosian and Rice (1971) have given expressIOns for the first four cumulants of the 

response. Since the even order kernels are zero in the present case, the odd order cumu-
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lants are also zero. Their result for the kurtosis is given by 

00 

Ky. ~ + {24 J J J G,(W,)G,(W2)G,(W,;)G,( -w,,-w,,-W3) 

(Jyy --00 

00 

--00 

(3.25) 

Higher order cumulants and cross-cumulants between roll angle and roll velocity can, in 

principle, be obtained in a similar manner. Hence, it is possible to determine the probabil-

ity structure of the non-linear roll response and the roll extrema by this method. However, 

the computational effort involved appears to be large. 

3.2.1. Numerical Evaluation of Roll Response Spectrum 

The roll response spectrum is composed of the two terms defined by equation (3.22) 

and equation (3.23). The first of these two terms is fairly easily evaluated, noting that the 

integral in equation (3.22) is independent of the response frequency w, and corresponds to 

the variance of a purely linear roll velocity. The infmite extent of the integrals does not 

pose too much of a problem either, since each 1 G1(w) 12 term is of order w -4 for large w, 

and the excitation spectra S.rx(w) may also be expected to rapidly tend to zero. However, 

the integral in equation (3.23) requires more care. 

This integral may be split into an inner and an outer integral, such that 

00 

(3.26) 

--00 

where I
1
(w,w

1) is the integrand of the outer integral, expressed by 

00 

(3.27) 

--00 



and the inner integrand is given by 

[2(W,W1,W2) = (W-W1-W2)2 W; IG1(W-Wl-W2)12·IG1(W2)12 

. Sxx(W-W1-W2)Sxx(W2) 
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(3.28) 

Since both wand w1 are held constant under evaluation of the inner integral, it is con-

venient to introduce \II'=w-w1, and simplify the inner integrand as 

(3.29) 

The inner integral has to be evaluated a large number of times in the course of calculating 

the roll response spectrum, so it is advisable to expend some care to make each evaluation 

sufficiently accurate and reasonably efficient. Inspection of equation (3.29) indicates that 

the inner integrand may have four sharp peaks, occurring whenever one of the terms in the 

linear transfer function G1 attains resonance; i.e. at the frequencies w2 ::::; ±wn or±wn+\II', 

where wn is the natural frequency. The frequency terms provide zeros at w2=O and w2 =\11'· 

An example of the inner integrand is plotted in Fig.3-1, showing the sharp peaks very 

clearly. 

Fig.3-1 
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model of the FPV Sulisker for Hs=l m and T..,=4 s. 

The terms involving the excitation spectrum modify the behaviour of the integrand somc-

what, but the peaks due to the resonances of the linear transfer function terms appear to 
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be the dominant feature, providing the linear damping is light. Accurate numerical evalua-

tion of the inner integral clearly requires many evaluations of the inner integrand in the 

vicinity of the peaks, while fewer evaluations are required over the remainder of the range 

of w2• Accordingly the full range of w2 is split into a number of segments, taking care of 

the various possibilities arising when some of the peaks or zeros coalesce as \II varies. The 

segments are integrated separately, using a Romberg integration algorithm to ensure a 

specified accuracy, and the inner integral is obtained as the sum of the integrals for each of 

these segments. 

A similar segmentation scheme is used in the evaluation of the outer integral, smce 

equation (3.27) indicates that there will be a peak in the outer integrand at wI ~ ±w
n 

and a 

zero at wI =0. 

3.3. The Edgeworth Probability Distribution 

According to linear systems theory, a Gaussian input process to a linear system will 

yield an output which is also Gaussian. However, rolling is being treated as a non-linear 

response, so it is not necessarily a Gaussian process. In fact, the results of chapter 6 indi-

cate that rolling experiences a non-linearly increasing damping. Intuitively, this should lead 

to lower probability for large roll angles than indicated by a normal distribution, while the 

probability for roll angles near zero is little changed. Hence, a probability distribution is 

sought, which can take the normal form for some values of its parameters, and which can 

also deviate from the normal by reduced probability for large values of its argument. The 

Edgeworth probability distribution is one such distribution which has already been applied 

to other types of seakeeping responses by Nordenstr0m (1972), Vinje (1976), and Jensen 

and Pedersen (1980). Furthermore, the cumulants of a random variable, form the parame-

ters of an Edgeworth distribution, if and when this distribution is appropriate, and cumu-

lants for ship rolling have been obtained above to the 4th order. 

The Edgeworth distribution is discussed by Cramer (1946), Ord (1972), and Kendall 

and Stuart (1977). Its probability density function may be written 

, 
X-Jl 

!.,-(x;P.cr,t':,.I\"4'· .. . K,) = <IJ(--)'(l + ~gJ 
(J ;=3 
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where Jl is the mean, (J is the standard deviation, the "'i' (i =3,4, ... ,r) are standardised 

cumulants, gi are the terms of the Edgeworth series expansion, (r-2) is the order of the 

expansion, and <I>(u) is the standardised normal density function, given by 

X-Jl 1 2 
<I>(u) = <1>(-) = -e -u /2 

(J \12; (3.31) 

where u=(x-Jl)/(J is the standardised variate. The "zero" order Edgeworth distribution 

corresponds to the normal distribution in the terminology adopted here. If the central 

moments of the distribution of a random variable X are defined as 

00 

-00 

then the standardised cumulants are given by 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

The third cumulant ("'3) is referred to as the coefficient of skewness, and the fourth cumu-

lant ("'4) as the coefficient of kurtosis. Only the first and second cumulants (mean and 

standard deviation) of a normal distribution may take non-zero values. The terms of the 

Edgeworth expansion are defined by 

H j indicates the Hermite polynomial of order i , given by 

3 
H3(U) = U - 3u 

4 ') 
H 4 (u) = u - 6u ~ + 3 

Hj(u) = uHj_1 (u) - (i -1)Hj _ 2(u) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Thc Edgeworth distribution is somewhat similar to the Gram-( ~harlicr Type A distribution. 

I10\\'C\Tr. according to Cramer (1946), the Edgeworth series cOIl\'erges more rapidly. and 

is therefore to be preferred. :\ first order Fdge\\"orth di-;tributiol1 introduces some 
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asymmetry in the distribution if the skewness is not zero. Fig.3-2 illustrates how the Edge-

worth distribution to 2nd order varies from the normal distribution, which has zero kur-

tosis. Note that some values of the parameters may lead to negative probability densities, 

which are theoretically inadmissible. This undesirable effect is due to truncation of the 

series. A 2nd order Edgeworth distribution with zero skewness will have positive density 

for kurtosis in the range 0<K4<2.4, according to Ord (1972). For roll angles, a distribution 

is required with less area under the tails of the probability density function than is the case 

for the normal distribution. Fig.3-2 shows this to correspond to negative kurtosis, which 

will lead to negative probability densities in a second order Edgeworth distribution. A 

magnified view of these negative densities is shown in Fig.3-3 and Fig.3-4 shows that the 

problem may be reduced in a fourth order Edgeworth distribution with positive sixth cumu-

lant. However, it may be necessary to include a considerable number of terms in the 

Edgeworth distribution to completely eliminate the negative densitiest. The coefficient 

t Recently. Winterstein (1987) has proposed an alternative to the Edgeworth distribution, which does not 
suffer from the problem of negati\'e densities. while still making use of both Hermite polynomials and cu­

mulants. 
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values used in Fig.3-3 and Fig.3-4 are comparable to the model test results obtained III 
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chapter 7. Odd order cumulants are set to zero in these figures, since these coefficients 

primarily affect the symmetry of the distribution. 

3.4. The Generalised Gamma Probability Distribution 

The same type of argument as used to introduce the Edgeworth distribution for the 

continuous roll response, may also be applied to the response extrema; i.e. the nonlinearly 

increasing damping may be expected to decrease the probability of large extrema, while not 

affecting the probability of small extrema very much, as compared to a linear response. 

Hence, a more flexible distribution function is sought, which may approach the Rayleigh 

distribution for some parameter values. A generalised gamma distribution is one possible 

candidate for such a distribution. Ochi (1976), Andrew and Price (1978), and Gran (1979) 

have discussed this distribution, including some applications to ship motion response. The 

probability density function may be written 

/3 X)..f3 1 { x fJ} /x(x;)",/3,a) = (-) - exp -(-) 
f().,)a a a 

(3.44) 

where )." /3, and a are parameters which may be referred to as shape, slope and scale 

parameters, respectively. r(.) is the gamma or factorial function. 

3.4.1. A Constraint on the Generalised Gamma Distribution 

Since a distribution is required which approaches the behaviour of the Rayleigh distri-

bution as the argument approaches zero, this requirement may be utilised to place some 

constraint upon the generalised gamma distribution. This constraint may be determined by 

expanding both distributions as exponential series, and equating them as the argument 

tends to zero. The result is 

).,/3=2 (3.45) 

Fig.3-5 shows some gamma distributions with this constraint applied. The case ().,=1,j3='2) 

corresponds to the Rayleigh distribution. For ).,<1 and /3>2, the upper tail probabilities 

are clearly reduced, conforming to the trend expected for rolling. The opposite effect 

occurs if ).,> 1 and /3<2. The curves approach each other as the argument tends to zero. 

With this constraint, the notation for the probability density simplifies to 

;3 x {x <} 1\"(.'(";j1,0) = - cxp -(-y 
. I'(2/;3)a a Q 

(3.46) 



Fig.3-5 

, ." 
" , 

.'1 \ 

.8 

.7 

.6 

.5 

.4 

.3 
>-
~ ..... 
Vl 
z .2 w 
0 

>-
~ ..... 
~ ..... . , 
CD 
cC 
CD 
a 
a: 
0- " " ARGUMENT X / ALPHA 

\ 

\ 

\\ 
\\ 
\\ 

\ \ 
\ , \ 
\ '\.. 
'" "" " "-... ..... ~ 

3-14 

'.8 2." 2.2 2.4 2.6 2.8 3.0 

Probability density function of constrained gamma distribution, with Q=l, and 
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A strong similarity to the Weibull distribution may perhaps be apparent, but the two distri-

butions are not identical, as shown by comparison with equation (3.47) which gives the 

Weibull density 

13' x {x} /x(x;f3',Q') = - (_)",'-1 exp -(-l! 
Q' Q' Q' 

(3.47) 

where 13' is the slope and Q' is the scale parameter of the Weibull distribution. The con-

strained gamma and the Weibull distributions are only identical when both reduce to the 

Rayleigh distribution, w~th /3=/3'=2. Fig.3-6 is included to show a comparison of cumulative 

distribution functions for the constrained generalised gamma distribution and the Rayleigh 

distribution in the upper tail region. The two distributions are arranged to have the same 

mean square value by setting Q'=Q Vr(4/f3). The difference in the argument approaches 

20% at the higher probability levels, giving some indication of the effect of the distribution 

functions on predicted roll angles. The value of the slope parameter chosen for this figure 

(/3=2.5) corresponds to some of the results obtained for roll in section 7. 
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3.4.2. Estimation of Parameters 

Some difficulty has previously been experienced in estimation of the parameters of 

the generalised gamma distribution (cf. Ochi (1976». The applied constraint has reduced 

the number of parameters from 3 to 2, and should ease this problem. Maximum likelihood 

techniques were applied by Mathisen (1983) to develop estimators for the parameters. The 

resulting equations are 

13 . 2 2 . 2 13 . . 2 . 
- ~x! +-'I/;(-)~x! +-In(-ijf)ij! --132:(xflnxJ=O 
n n 13 n 2n n 

(3.48) 

A ~A P 
Q = j3iji (3.49) 

2n 

where all the summations are taken from i=1 to i=n, Xi are observed values, the A notation 

is used to emphasise estimated values, and '1/;(.) is the digamma function defined by 

d In r(z) 
'I/;(z) = 

dz 
(3.50) 

The solution for the slope parameter 13 is inconvenient, but can be obtained numerically, 

quite economically, provided the number of observations n involved in the summations is 
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not too large. 

3.5. Some Results with the Functional Model 

Coefficients for the differential equation (3.18), appropriate to the model of the FPV 

Sulisker, and taken from Table 2-3, are applied in the following. 

3.5.1. Visualisation of the Cubic Transfer Function. 

Fig.3-7 shows the modulus of the linear transfer function for rolling, as defined by 

equation (3.2). The abscissa is given relative to the natural frequency 

(3.51) 
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Fig.3-7 Modulus of the linear transfer function for rolling. 

The cubic transfer function is awkward to visualise, since it is complex and has three argu-

ments. The approach adopted here is to show surface and contour plots of the modulus 

with the third argument (w 3) held constant. Only positive values of W3 need be considered 

since 

• Gi -wl'-W2,-w3) = G3 (wl'w2,w3) (3.52) 

where the * indicates a complex conjugate. A surface plot is shown in Fig.3-8. The vcrv 

"spikey" nature of the cubic transfer function is immediately apparent. In order to obtain 
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Fig.3-8 Linear surface plot of the modulus of the cubic transfer function with 03=1.0. 

more detail, logarithms to base 10 have been taken of the cubic transfer function in subse-

quent figures, Fig.3-9 to Fig.3-14, showing both surface and contour plots. In these cases, 

the function has been truncated at a value of 10--8 Only half of the W1-W2 plane need be 

considered since 

(3.53) 

The w1=w2 axis thus provides a symmetry axIS, and the cubic transfer function is only 

shown on one side of this axis. The wI=-w2 axis is normal to the w1=w2 axis. These two 

axes are utilised in the figures. They represent a 45 degree rotation with respect to the WI 

and w2 axes. 

The cubic transfer function is shown for three values of W3 in Fig.3-9 to Fig.3-14. It is 

identically equal to zero for w3=0.0. The largest value is apparent in Fig.3-8, Fig.3-11 and 

Fig.3-12 where 03=1.0, occurring at 01=02=-1.0. The ridges apparent on the plots follow 

lines where one of the G1-component factors of equation (3.19) attains resonance; i.e. for 

01 or 02 equal to ±1.0, or 01+02+03=±1.0. (The jagged appearance of these ridges in the 

surface plots is due to a weakness in the plotting algorithm.) 
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Logarithmic surface plot of modulus of cubic transfer function with °3=0.5. 
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Logarithmic surface plot of modulus of cubic transfer function with 03=1.0. 
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Logarithmic surface plot of modulus of cubic transfer function with 03=1.5. 
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It is quite simple to evaluate equation (3.19) for the values of the cubic transfer func­

tion. The figures shown here also indicate that this function is quite well-behaved. How­

ever, the "spikey" nature of the function requires some care to be taken in integrations 

involving this function, as discussed in section 3.2.1. 

3.5.2. Response to Harmonic Excitation 

The first harmonic of the roll response to sinusoidal input has been calculated from 

equation (3.20) for comparison with simulation results in Table 3-1. 

Excit. 

Freq. 

frad/sl 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

Table 3-1 

Functional Series 
Simulation 

Linear Cubic Quintic 
Amp. Phase Amp. Phase Amp. Phase Amp. Phase 
fradl fdegl fradl fdegl fradl fdegl fradl [degl 

.180 -4.4 .1806 -3.8 .1804 -4.5 .1804 -4.4 
.1929 -4.3 .1927 -5.2 .1926 -5.2 

.207 -6.1 .2077 -4.8 .2074 -6.1 .2073 -6.1 
.2259 -5.5 .2253 -7.4 .2251 -7.4 

.247 -9.1 .2485 -6.3 .2475 -9.2 .2469 -9.1 
.2775 -7.3 .2755 -11.9 .2740 -11.7 

.308 -15.6 .3156 -8.7 .3121 -16.2 .3071 -15.8 
.3679 -10.5 .3622 -24.0 .3433 -22.3 

.392 -31.1 .4435 -13.19 .4435 -39.6 .3480 -32.6 
.5611 -17.4 .6732 -72.1 .1229 59.8 

.454 -58.2 .7632 -24.9 1.984 -119.3 7.709 79.0 

Comparison of first harmonic of roll response obtained from simulation with 
results from functional series to various orders. Based on data for the model 
of the FPV Su/isker with excitation amplitude of 8.0 Nm. 

Additional results are given in the last 2 columns of Table 3-1, due to inclusion of the fifth 

order term of the functional series. At low frequencies the various results agree closely. 

As the frequency approaches resonance, the response amplitude increases, the nonlinear 

damping takes effect, and the agreement with the simulation results is improved by includ-

ing the cubic and quintic terms of the functional series. However, the results of the func-

tional series in the last two rows of Table 3-1 show an erratic behaviour. This illustrates a 

basic property of the Volterra series representation; viz. that it is only convergent for a 

certain range of excitation amplitudes. Considering sinusoidal excitation at the natural frc-

quency, the ratio between the first harmonic amplitudes due to the cubic and linear terms 

may be obtained from equation (3.20) as 

(3.54 ) 
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Clearly, q must be less than 1.0 for convergence. Also, the range of excitation amplitudes 

Xo that provides convergence will be dependent on the relative magnitude of the linear and 

cubic damping terms. 

Fig.3-15 shows a comparison of results from model tests with results from the func-

tional series. In these tests, the model of the FPV Sulisker was excited with a mechanical 

roll moment generator, as described by Schafernaker (1982), designed to produce a 

monofrequency, sinusoidal, roll exciting moment . 

Fig.3-15 
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Comparison of amplitude of roll response obtained from model tests with 
results from functional series to various orders. Based on the model of the 
FPV Sulisker with excitation frequency w=3.5 rad/s. 

Again, good agreement is shown for the lowest excitation amplitudes. As the exciting 

moment and roll response increase, the model test response falls below the linear predic-

tion. This tendency is followed by the cubic and quintic results of the functional series, 

bi.:: less accurately than in the comparison with simulation above. Subsequently, the 

results of the functional series diverge, for the largest excitation levels. As the results 

begin to diverge, it is apparent from Fig.3-15 that the fifth order term is larger than the 

third order term. Hence, a convergence criterion constructed from the ratio of the fifth 

and third order terms would bc more restricti\'c than the criterion based on thc third ordcr 
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and linear terms in equation (3.54). 

3.5.3. Response to Irregular Waves 

A comparison of roll standard deviations obtained from simulation and from the 

functional polynomial are given in Table 3-2 and in Fig.3-16. The zero-up-crossing period 

of the irregular waves is held constant at Tw=1.4s, to provide peak wave energy near the 

resonance frequency, while the significant wave height is varied. The purely linear results 

are obtained by disregarding the effect of the nonlinear damping term in the equation of 

motion, equation 3.18. The simulation results show that the nonlinear damping reduces 

the magnitude of the roll response. As in the case of harmonic excitation, the results from 

the functional polynomial initially follow the trend given by the simulation results, and then 

diverge for higher levels of excitation and response. 

Table 3-2 

Significant Roll Standard Deviation [rad] 

Wave Functional Polynomial 
Height Simulation 

rml linear O'Y1 O'y 1+3 

0.025 0.0256 0.0259 0.0254 0.0254 
0.050 0.0485 0.0517 0.0478 0.0479 
0.075 0.0687 0.0776 0.0652 0.0659 
0.100 0.0870 0.103 0.0770 0.0802 
0.125 0.104 0.129 0.0874 0.0979 
0.150 0.116 0.155 0.108 0.132 
0.175 0.129 0.180 0.155 0.197 

Comparison of computed roll standard deviations for the FPV Sulisker Model 
Series 1, in irregular waves, with zero-up-crossing period Tw=1.4s. 

In Table 3-2, the column labeled O'Y1 gives the standard roll response due to part of the 

response spectrum defined as Sy1 in equation (3.22), while the column labeled O'YI+3 also 

includes Sy3 from equation (3.23). It may be seen that the correction to the linear response 

included in Sy1 is initially dominant, while Sy3 also comes into playas the excitation 

increases. Results obtained by stochastic linearisation technique, as described by Kaplan 

(1966), are also included in Fig.3-16. These results agree well with the simulation results, 

although they do give a slightly lower response. The stochastic linearisation results are 

obtained by an iterative procedure, from a linearised equation with the equivalent linear-

ised damping B Ie determined to minimise expected variance between the damping func-

') 

tions E[ (-] 
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(3.55) 

where Z is the Gaussian response process obtained as an approximation for the actual 

non-Gaussian roll response Y. 

Two examples of response spectra underlying the standard deviations discussed above 

are given in Fig.3-17 and Fig.3-18. A. significant wave height of Hs=O.05m applies in Fig.3-

17, where it may be seen that the response spectrum due to the third order functional poly-

nomial agrees' well with the simulation result. A significant deviation from the purely 

linear result is also apparent. The excitation level is increased in Fig.3-18, with Hs=O.lm, 

and considerable deviation is apparent between the third order functional polynomial 

result, and the simulation result near the resonance frequency. 
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. In .the numerical evaluation of the integrals for the functional polynomial, the follow-
mg relatIve accuracies were specified to the Romberg integration algorithm: 

0.001 for integral part of Syl in equation (3.22) 
0.01 for outer integral of S 3 in equation (3.26) 
0.002 for inner integral of .s; 3 in equation (3.27) 

Slightly higher accuracy was specified for the inner integral, than for the outer integral. 

Fairly low accuracy for Sy3 was specified in order to reduce computing time, while intended 

to be sufficiently accurate for the present comparison. However, about 2 hours of CPU 

time (on Vax780 or Sun-3 computers) were still required to obtain results for one response 

spectrum at 30 frequencies, based on the functional polynomial. Although the computer 

time required could probably be reduced by improving the integration procedures, it 

appears that the resources required are of the same order of magnitude as for simulation. 

The simulated response spectra shown in Fig.3-17 and Fig.3-18 were calculated with a 

resolution of 0.005 Hz, and averaged over 46 periodograms. The sampli~g frequency was 

reduced from 40 Hz to 10 Hz in order to provide a long duration signal without increasing 

the amount of data to be handled. This was considered to be permissible, since it had 

already been ascertained that negligible response was present at frequencies above 2 Hz. 

However, further reduction of the sampling frequency was avoided, since it was found to 

lead to some reduction in the response standard deviation. If a longer duration response 

signal had been obtained, then additional frequency resolution could have been obtained 

without increasing the random error, and somewhat improved agreement would probably 

have been obtained on the flanks on the spectrum peak in Fig.3-17 and Fig.3-18. 
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4. Long Term Distribution of Roll Response 

Stationary environmental conditions are assumed to prevail for the determination of 

roll response, throughout the other chapters of this work. Some implications of the remo-

val of this restriction are considered in the present chapter. Consider, for instance, a com-

paris on of the roll response of two alternative ship designs. A design which is favourable 

in one sea state may well be unfavourable in another sea state. Some way of combining 

the response in various sea states is clearly desirable, and this is provided in the long term 

distribution of the response. In a sense, this may be seen as a technique of averaging the 

response over a set of different sea states. Usually, the entire set of sea states that may be 

encountered is taken, and the averaging process takes the probability of occurrence of 

each sea state into account. Thus, the long term distribution becomes indicative of the 

response expected for the ship lifetime. As such, it is a useful measure for the comparison 

of alternative ship designs. There has also been a tendency to incorporate the results of 

long term response analyses into design procedures and classification rules (d. Abraham-

sen (1967) and Lersbryggen (1978». However, this tendency applies to hull girder loads 

rather than to roll motion and safety against capsize. Apparently, the general level of con-

fidence in the accuracy of roll response calculations under extreme conditions, has not yet 

reached a stage where such calculations may replace empirically based procedures for the 

evaluation of safety against capsize. 

Early work on long term response distributions was done by Jasper (1956) and 

Nordenstn~m (1963). More recently, Spouge (1985) and Roberts et al. (1983) have dis-

cussed applications to ship rolling. 

4.1. Basic Derivation of Long Term Distribution 

It is assumed that the wave environment may be modeled as a piecewise stationary 

process, defined primarily by the two random variables, significant wave height H s ' and 

zero-up-crossing period of the waves Tw. Their joint probability density function is 

denoted f H T (hs,tw)· The rate of change of the wave conditions is assumed to be suffi-
:s w 

ciently slow compared to the roll response frequency, that effects of a preceding environ­

mental state on the response in subsequent states may be neglected. Furthermore, it is 
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assumed that the distribution of roll maxima Z (or minima) conditional on any stationary 

sea state, defined by values of significant wave height and zero-up-crossing period, may be 

determined. This is referred to as a short term response distribution, since it is condi-

tional on wave conditions which are stationary for a short period of time, perhaps of the 

order of one hour. The short term distribution of roll maxima is denoted by 

FZIHs,Tw (z Ihs,tw)' Since the roll response is narrow-banded, the zero-up-crossing period of 

the roll response may be taken as the mean period between roll maxima T/hs,tw)' which is 

also dependent on the stationary wave conditions. It is required to determine the marginal 

distribution of the response maxima Fz(z), referred to as the long term distribution, taking 

into account all sea states. 

D is introduced as the total time duration to be considered, perhaps representing the 

design life of the ship. Then the (infinitesimal) duration of any sea state may be expressed 

by 

(4.1) 

The expected number of response maxima in the sea state is given by the duration of the 

sea state divided by the mean response period 

Tz(hs,tw) 
(4.2) 

The number of response maxima not exceeding a level z is obtained from the product of 

the expected number of response maxima in the sea state, and the cumulative probability 

Ns(z;hs,tw) = Ns(hs,tw) FZlh t (z I hs,tw) 
8 w 

D f H T (hs,tw) FZlh t (z I hs,tw) 
s wsw 

--------------------------dhs dtw 
Tz(hs,tw) 

(4.3) 

The number of response maxima not exceeding the level z in the long term is obtained by 

integrating the short term result over the range of sea states that may be experienced 

(4.4) 

Finally, the long term probability of not exceeding the level z IS gIven by dividing the 
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number of response maxima that do not exceed this level by the total number of response 

maxima 

N(z) 
Fz(z) =--

N(oo) 

f H T (hs,tw ) FZlh t (Z I hs ,tw ) 

= Tz J J s wsw dh
s 

dtw 
Tz(hs,tw ) 

(4.5) 

where the total number of response maxima, are simply the number of response maxima 

below a level which is never exceeded N(oo), and the long term mean response period has 

been obtained by dividing the long term duration by the total number of response cycles 

(4.6) 

The effect of variation in the mean period between response maxima is included in 

the above derivation of the long term distribution. This effect was omitted in some early 

work on long term distributions, but was included by Battjes (1972) in work on the distri-

bution of wave heights, and by Ochi and Chang (1978) for response. It may well be justifi-

able to exclude this effect when considering the long term distribution of ship rolling, since 

the roll response tends to be strongly dominated by the natural roll period. However, it is 

important for responses with more variable periods, especially in the case of bow slamming 

pressures (cf. Mathisen (1986)). 

4.2. Further Aspects of the Long Term Distribution 

The derivation above illustrates the basic principles involved in determination of a 

long term response distribution, but is otherwise an over simplification. In particular, the 

roll response is dependent on the speed of the ship and on the heading angle relative to the 

waves. These effects may be incorporated by including them as variables defining the sta-

tionary conditions under which the short term roll response is computed, and in the 

domain of environmental variables over which the long term integration has to be carried 

out. For instance, let the vector \V be a random variable whose value defines any set of 

environmental conditions that a ship may encounter. The components of \ii might include 

significant wave height, zero-up-crossing period, ship speed, heading angle, and any other 
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relevant factors. A joint probability density function f -p> would then have to be esta­

blished for the components of W. Provided the short term distribution of response 

Fzrlz I~ could also be determined, the long term distribution from equation (4.5) would 

now take the form 

f-P> Fzrlz I ~ 
Fz(z) = Tz J d¢ 

Tz~ 
(4.7) 

Nordenstr0m and Pedersen (1966) incorporated features of this type into long term 

response calculations. They assumed the heading angle of the ship to be statistically 

independent of the wave conditions, while the forward speed was modeled as a determinis-

tic function of the wave conditions, based on the expected frequencies of bow slamming 

and green water on deck. Spouge (1985) has elaborated this type of approach further, 

including allowance for change of course to avoid heavy rolling, and modification of the 

wave climate to take account of rough weather avoidance action by the ship's master. 

Since a major objective of a long term response calculation is to predict the probabil-

ity of extreme events, it is vital that the distribution of the variables defining the wave con-

ditions gives an accurate description of the severe conditions that lead to such events. 

This implies that a probability description based directly on relative frequencies of sea 

states from limited numbers of observations is inadequate. The quality of the probability 

description should be improved by fitting suitable distribution functions to the data. This 

process smooths out random variations in the observed relative frequencies, and permits 

careful extrapolation to infrequently observed sea states. A comparison of some available 

joint probability distributions for significant wave height and zero-up-crossing period has 

been made by Mathisen and Bitner-Gregersen (1988). A combination of a marginal 3-

parameter Weibull distribution for significant wave height, with a conditional log-normal 

distribution for zero-up-crossing period is recommended. 
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5. Time Series Analysis Program 

A computer program has been written to perform the analysis of model test data 

described in chapter 7. It has been formulated as a fairly general tool for the analysis of 

time series, with emphasis on measured data from wave-induced responses. The program 

is named "Timser." The general structure of the program and the associated database is 

described in this chapter, together with some details of the algorithms involved in the 

analysis procedures. 

The primary assumption about the input data to be analysed is that each sequence of 

input data contains values of one variable, sampled and digitised at equidistant steps in time. 

Such a data sequence is referred to as a time series, or, as a signal. In this con text, time 

acts as an index invariable. Other index variables may be substituted for time, provided 

equidistant steps are maintained, and the interpretation of the results is modified accord­

ingly. In order to investigate the relationship between two variables, the corresponding 

pair of time series must be synchronised by means of information about their starting 

points, and should have the same sampling frequency. 

The program is built up around a database, where input data must be stored prior to 

any analysis, and where analysis results may also be stored. The program is structured in a 

modular fashion, such that the user may perform any of the available analyses, on any sig­

nal in the database. This modular structure is also designed to allow new types of analysis 

to be incorporated easily. Emphasis is given to the provision of suitable graphical presen­

tations of the time series and the analysis results, in order to ease their interpretation. The 

program may be run interactively or in batch mode. Interactive use is ideal for preliminary 

analysis, while batch mode is more convenient for the analysis of large amounts of data, 

when the choice of analysis procedures and parameters has been made. Each analysis of 

data is initiated by a command, referred to as a "directive," using a mnemonic name 3 

characters long. A list of the available directives is given in Table 5-1, together with a 

brief indication of their purpose. Experience with a similar program, named "SAMPAN" 

(cf. Omundsen et al. (1975», has influenced the design of this program. The program 

contains 118 routines and about 31,000 lines of Fortran code, of which 46% are explana­

tory comment lines. Standard mathematical and graphics library routines are not included 



Mnemonic Purpose 
dbs DataBaSe - general information (text only) 
edf plot of observed and expected Cumulative Distribution Func. 
eov direct COVariance or autocovariance function 
erd moves data from a formatted file (or CaRDs) to database 
dey calculates roll damping coefficients from a DeCaY test 
dee downwards or upwards DECimation of a time series 
dif DIFferentiates a signal. 
dlt DeLeTes entries from database 

dmp DuMPs database arrays on file and prints attributes 
eng determines envelope process on ENerGy basis using derivative 
env determines ENVelope process using Hilbert transform 
fit FIT distribution functions to observed data 
fit FiLTer and wild point editing 
gen GENerates sine wave, normal, or uniform random process 
hlp HeLP - introduction to program or specified directive 
hrm HaRMonic analysis - Fourier series, not by FFT 
inf INput Format - detailed explanation (text only) 
lea Level Crossing Analysis - maxima, minima, peak-to-trough 
Idr List DiRectives - gives mnemonic and purpose (text only) 
opn OPeNs existing database, or creates a new one 
pit PLoT 
ppp PP-Plot of observed and expected cdf 
psd Power Spectral Density by FFT 
rst ReSeT - sets print switches and secondary output unit 
stn STatioNarity check along sample record 
tnd deTreNDing 
tpe moves data from magnetic TaPE to database 

Table 5-1 List of directives available in the time series analysis program Timser. 

in this sum. 

5.1. The Database 

The primary function of the database is to store and retrieve a large number of time 

series, each of which may hold a large number of sampled data values (up to 100,000 at 

present). These functions are to be carried out with a minimum of effort by the user. A 

system of numerical keys is used to achieve this. The user refers to the database entry by 

means of it's key, while the database routines carry out the related tasks involved in locat-

ing and manipulating the entry on direct access files. Each key is composed of 3 com-

ponents: 

• the experiment set number set, 

• the experiment number xpm , 

• the reference number ref· 
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Logically, set indicates the set of experiments for one object, xpm indicates an experiment 

under constant conditions, and ref initially indicates one transducer or data channel. This 

logical structure of the database key aligns quite well with typical numbering schemes used 

in experimental work. When a signal identified by one value of reference number has been 

analysed, the results may be stored at a new value of reference number, while the set 

number and experiment number are held constant. Thus, the implication of the reference 

number is widened to differentiate between various types of analysis results as well signals 

from different transducers. Allowed ranges are: set(l, 2), xpm (1, 999999), and ref (1, 

1(0). Up to 30 different values of xpm may be used at present. 

Field no. Name Content 

1 liattr length in words of aggregate of integer attributes. 
2 iset set key 
3 ixpm experiment key 
4 iref reference no. 
5 mrkdlt delete mark for integer attributes 

next narray no. of equisized, real, array attributes 
next iadrch address of first character of aggregate of 

character attributes for this entry 
next iadrre address of first word of aggregate of real 

attributes for this entry 
next idim number of dimensions of real array attributes 

next 2 iorigx(l), experiment nos. for data from which present 
iorigx(2) results have been derived 

next 2 iorigr(l) , reference nos. for parent data from 
iorigr(2) which present data are derived 

next idim nwdaxs(i) (omitted if narray=O) 
number of data-points along axis i of real array attributes 

last ienda~ = 999 999 indicating end of aggregate 

Table 5-2 Aggregate of integer attributes for one entry on database 

Each entry on the database contains a number of different types of information, 

referred to as attributes. An attribute may contain one or many data values of similar 

type; e.g. a time series may be one attribute of a database entry. A collection of attributes 

is termed an aggregate. The database utilises 3 files for separate storage of integer, real, 

and character aggregates. The attributes contained in these 3 classes of aggregates, and 

associated with every database entry, are listed in Table 5-2 to Table 5-4. 

The file addresses defining the locations of the real and character aggregates for one 

database entry arc contained in the associated integer aggregate, as indicated in Table 5-2. 

In addition, a hierarchy of index tables arc maintained to keep track of the locations 



Field no. 

1 
2 
3 
4 
5 

next mchxpm 

next nspace 
next npar 

next maxres 

next narray 

next narray 

next idim 

next idim 

next 

next larray 

next 
next larray 

last 

Name 

rlreat 
rset 

rxpm 
rref 

rmrkdl 
rxpma(i) 

-

rdparv(i) 

redres(i) 

varmin(i) 

varmax(i) 

of fset(i ,1) 

axstep (i ,1) 

a rrk ey 

5-4 

Content 
length of this aggregate of real attributes in words 
set key 
experiment key 
reference number key 
delete mark for real attributes 
experiment attributes, 
identified by corresponding fields on character file 
empty spaces for later use 
values of parameters used by directive generating 
these attributes (param. mnemonics on char. file) 
single entity results from directive 
(identified by corresponding fields on char . file) 
(omitted if narray=O) 
minimum value of variate for each array attribute 
(omitted if narray=O) 
maximum value of variate for each array attribute 
(omitted if narray =0) 
offset of first data-point along axis i of first array 
(omitted if narray=O) 
step between points along axis i of first array 

until offset and axstep have been given for all arrays 
(omitted if narray=O) 
array key for first array. 
(omitted if narray =0) 
contains first array (e.g. a time series) 

arrkey array key for last array. 
contains last array 

renda~ = 999 999.0 indicates end of aggregate 

Table 5-3 Aggregate of real attributes for one entry on database. 
Current parameters are: mchxpm=5, nspace=10, npar=20, maxres=5. 

of the integer aggregates for each entry. These index tables comprise: 

• the main index - one for the entire database, 

• the experiment set index - one for each set of experiments, 

• the experiment index - one for each experiment, within each set. 

Separate subroutines are dedicated to manipulations of each type of index, and to each 

class of aggregates. The application interface to the database module is through 2 routines 

to open and close the database, and 3 routines to fetch or store integer, real and character 

aggregates. All manipulations of the indexes and the file addresses are invisible to the 

application routines which make use of the database. There is a separate file handling 

module located below the database routines, which carries out the actual operations of 

reading and writing on the files. The terminology and organisation of this database has 

been based on some of the principles advocated by Martin (1977). 



5-5 

Field no. Name Content 
1-6 lchatr length in characters of this aggregate 
7-9 chset set key, maximum unique value is '999' 

10-12 chxpm experiment key, max. value is '999999' 
13-15 chref reference no. key, max. value is '999' 

next 3 chmrkd delete mark for character attributes 
next mchxpm *lchxpm chxpma(i) mnemonics for mchxpm experiment 

attributes, with values stored on real file 
next Idirna dirnam mnemonic for directive generating results 

next nspcch *lspace - empty spaces for future use 
next npar*ldparn dparn (i) mnemonics for directive parameters 

next maxres*lchdre chdres(i) mnemonics for single entity results 
from this directive (values in real file) 

next lsettx settxt identifying text for experiment set 
next lxpmtx xpmtxt identifying text for experiment 

next Idirtx dirtxt identifying text for directive 
next ldate date date and time for input to directive 

next (idim+l)*laxnam axnam(i ,1) (omitted if narray=O) 
axis names for first array on refile 

next (idim+l)*laxuni axunit(i ,1) (omitted if narray=O) 
axis units for first array on real file. 

next lcrvtx crvtxt (omitted if narray=O) 
curve text for first array on real file . 

. . . 

... etc. until text given for all such arrays, then 
last 6 chendaf{ = '999999' indicating end of aggregate 

Table 5-4 Aggregate of character attributes for one entry on database. 
The field no. is given in characters, and each entity is arranged to contain a 
multiple of 3 characters. 
Current parameters are: mchxpm=5, lchxpm=3, Idirna=3, nspcch=9, 
lspace=6, Idparn=3, lchdre=6, lsettx=9, lxpmtx=18, Idirtx=30, Idate=15, lax­
nam=42, laxuni=21, lcrvtx=12, in addition to values given with Table 5-3. 

In some cases, an analysis may well yield more than one array of results; e.g. the fit 

directive provides both an observed probability density function and a probability density 

function for the fitted distribution. This possibility has been allowed for by permitting the 

aggregate of real attributes to contain more than one array attribute. Some provision for 

multi-dimensional arrays is also present in the database, but this has not been utilised in 

"Timser . " 

Experience has shown that the considerable effort put into the design and implemen-

tation of the database has been worthwhile. Large amounts of data have been analysed 

with very little manual bookkeeping work being needed to keep proper track of the data. 

Inclusion of data labels in the database, and their use in automatic labeling of result plots 

have helped to avoid confusion in the interpretation of results. Two weaknesses in the 

design have sometimes made themselves felt: 
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(a) There is no provision to utilise the results of one analysis directive in a second 

analysis directive without intermediate storage on the database. When working 

interactively, this results in having to wait while some unnecessary data transfer 

operations are carried out. 

(b) The indexes are not copied from core to the database files until the database is 

closed at the termination of a program run. If some error arises during the run, lead­

ing to an uncontrolled error termination of the run, then modifications of the indexes 

are likely to be lost, and results stored on the database during that run will not be 

retrievable. 

5.2. cdf Cumulative Distribution Function Plot 

Observed and expected cumulative distributions are integrated from the probability densi­

ties generated by directive fit and plotted. Linear plots, normal probability paper, Weibull 

probability paper, and Gumbel probability paper are available. 

For normal probability paper: 

the variate axis is linear, 

the inverse of the standard normal distribution for the cumulative probability is used 

for the ordinate axis. 

For Weibull probability paper: 

the variate axis is logarithmic, 

the ordinate axis is double logarithmic In { -In[l-F(x ) J}. where x IS the variate and 

F(x) is the cumulative probability. 

For Gumbel probability paper: 

the variate axis is linear, 

the ordinate axis is double logarithmic, -In[-lnF(x)]. 

Examples are shown in chapter 7. 
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5.3. eov Covariance Function 

The autocovariance of one time series or the covariance function between two syn-

chronised time series x j and Y j' j =0,2, ... ,n -1 is calculated. Standard estimators are 

used for the mean values and standard deviations. The mean values are extracted from the 

series if they exceed 0.001 of the standard deviations. The covariance function C
j 

is com­

puted by direct calculation 

1 
k=k 

2 

Cj = ~Xk'Yj+k' 
n -I j 1 k=k} 

]=-m, ... ,m (5.1) 

where m is the maximum number of lag points required (m «n), k
1
=0 for positive lags 

and - j for negative lags, while k2=n-1- j for positive lags and n-1 for negative lags. The 

algorithm is taken from Otnes and Enochsen (1978). Only positive lag points are calcu-

lated when the autocovariance is required, and the results for negative lag points are 

obtained by symmetry. Note that this procedure does not calculate a circular covariance 

function, which would effectively assume that the signals are periodic outside the range of 

time values provided. Instead there is a reduction in the number of points that are aver-

aged as the lag length increases. For graphical presentation, the covariance function is 

normalised by the standard deviations, to provide the cross-correlation function. An 

example of the results is given in Fig.5-l. 

5.4. dey Roll Decay Test Analysis 

Linear plus cubic, and linear plus quadratic roll damping coefficients are determined using 

the methods described in chapter 6 and in appendix D. The input data (on the database) 

must be in the form of a descending sequence of positive roll amplitudes, including both 

the maxima and minima. If directive lea is used to extract the amplitudes from the decay 

time series, then separate arrays for the maxima and minima, as stored by this directive, 

are acceptable, otherwise the maxima and minima should be combined into one sequence. 

5.5. dee Decimation 

This directive allows the sampling frequency of a time series to be changed. The sampling 

frequency can easily be reduced by omitting all but the sample points which are spaced at 

an increased time interval. However, this may introduce aliasing effects if frequency 
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Fig.5-1 Cross-correlation between surface elevation and roll angle from experiment 3 
of the irregular wave tests in chapter 7. 

components are present in the signal at frequencies between the original and the reduced 

folding frequencies. 

Three possibilities are available for decimation of a series: 

(a) Simple downwards decimation without filtering. 

(b) Downwards decimation with anti-aliasing filtering. 

(c) Upwards decimation by inserting zeros and filtering at the original folding frequency. 

The sample period can only be changed by an integer multiplier or divisor in one pass of 

the directive. A non-recursive, symmetric, finite impulse response (FIR) filter is used, as 

described for the flt directive. An example is given in Fig.5-2, showing how upwards deci-

mation may be used to provide a more precise definition of a sine wave. 

5.6. dif Differentiation 

The derivative )'i of a time series x j , j=0,1,2, ... ,n-1 is obtained by finite differ-

ence methods (cf. Dahlquist et al. (197'+)). First and second order central differences are 

available. Using first order differences, the derivative is given by 
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X j+l-X j _ 1 
j =1,2, ... ,n-2 (5.2) 

where ~ is the sampling interval. The derivatives at the end points of the signal are 

obtained by forward or backward differences. 

U sing second order differences, the derivative is given by 

8(x j+l-X j-l) - (x j+2 -x j-2) 

12~ 
j =2,3, ... ,n-3 (5.3) 

The derivatives one step away from the end points are obtained by first order central 

differences in this case. An example is shown in Fig.5-3, for an input sine wave with an 

amplitude of 3, and 10 sample points per cycle. In this case the second order differences 

are a little closer to the exact amplitude of the derivative which is 1.88. 

5.7. eng Envelope Process on Energy Basis 

The derivative Y j of a time series x j' j =0,1,2, ... ,n -1 is calculated as described for 

directive dif. The envelope process Z j is then obtained from 

(5.4) 

where w is the zero-up-crossing frequency of the input process. This expression for the 

envelope process is taken from Madsen et al. (1986). It is most appropriate when the 

input process is very narrow-banded. An example is shown in Fig.5-4. The input signal in 

this example is fairly narrow-banded, and yet the quality of the envelope is not very good. 

s.s. env Envelope Process Using Hilbert Transform 

The Hilbert transform y(t) of a function x(t) may be defined as 

00 

1 x(s) 
y(t) = - J - ds (5.5) 

7r s-t 

where t is real, and the integral is a Cauchy principal value (cf. Sneddon (1972)). In the 

env directive, the Hilbert transform is implemented by means of a finite impulse response 

filter (FIR) given by Oppenheim and Schafer (1975). The filter weights wkare obtained as 

ideal filter weights multiplied by a Blackman smoothing window 
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Fig.S-4 Roll signal and envelope process computed with directive eng, usmg data 
from experiment 3 of the irregular wave tests in chapter 7. 

0, k=0,2,4, ... ,m-1 

2 k+m k+m 
- [0.42-0.Scos(1r ) +O.08cos(21r )], k =1,3,S, ... ,m 

(S.6) 

k1r m m 

where m is the (odd) span of the filter. The filter is symmetrical about k=O, thus the total 

number of filter weights is 2m+1, of which m are zero. The Hilbert transform Y j of the 

input time series Xj ,j=0,1,2" ... ,n-1 is given by 

Yj = ~ Xj+k·wk ' 
k=-m 

j=m,m+1, ... ,n-m-1 

The envelope process Z jis then obtained as 

(S.7) 

Zj = v'x: +Y;' j=m,m+1, ... ,n-m-1 (S.8) 

An example is given in Fig.S-S, with the associated filter weights in Fig.S-6, and the magni-

tude of the frequency response of the filter in Fig.S-7. t 

t The two directives producing envelope processes were written with the intention of using them as an alter­
native means of investigating the distribution of maxima and minima of a narrow-banded process. This in­

tention has not been pursued. 
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5.9. fit Fit of Unidimensional Distribution Functions to Data 

Four different distribution functions may be fitted to the observed data 

X j , j=0,1,2, ... ,n-l, as described in the following sections. Observed and fitted proba-

bility density functions may be plotted, and two tests of fit may be applied. Examples of 

applications of this directive are given in chapter 7. 

5.9.1. Normal Distribution. 

The normal (or Gaussian) probability density function may be written 

1 {(X-f1-)2} f x(x ;f1-,0') = .. ~ exp - 2 ' 
O'v2rr 20' 

-oo<X<oo (S.9) 

Standard estimators for the mean value f1- and standard deviation 0' are applied. 

1 
j =1'1-1 

f1-= - ~ X· ) 
(S.10) 

n jdJ 
1(2 

[n~1 
j=n-1 

(Xi -1')' 1 0'= ~ 
jdJ 

(5.11) 
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5.9.2. Edgeworth Distribution 

The Edgeworth distribution is defined in equation (3.30) to equation (3.43) of chapter 

3. Orders of the distribution from 1 to 4 may be specified in the fit directive, where order 

o would be identical to the normal distribution. The estimators for the mean value and 

standard deviation of the normal distribution are also used for the Edgeworth distribution. 

Additional parameters are obtained by the method of moments, as indicated by equation 

(3.32) to equation (3.36). 

5.9.3. Rayleigh Distribution 

The probability density function of the Rayleigh distribution may be written 

o<x<oo (5.12) 

where the parameter 'fJ is obtained from the root mean square value, which is the maximum 

likelihood estimator 

[ 
j=n-l ]1/2 

'fJ = ~ ~ x: 
n j:IJ 

(5.13) 

5.9.4. Constrained Generalised Gamma Distribution 

The constrained gamma distribution is obtained from the generalised gamma distribu-

tion in section 3.4. It's probability density may be written 

fx(x;/3,Ci) = /3 ~exp[-(~l], 
f(2j/3)Ci Ci Ci 

O<x<oo (5.14) 

Maximum likelihood estimators given in equation(3.48) and (3.49) are used for the slope 

parameter /3 and the scale parameter Ci. 

5.9.5. X
2 

Test of Fit 

The H 0 hypothesis to be tested is that the data values are randomly drawn from an 

underlying distribution F o(x), which is specified to be one of the 4 distribution functions 

defined above (in terms of their densities). The / test of fit is often used for this purpose. 

In this case, the general procedure is as follows: 
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(a) The range of the variate x is arbitrarily divided into m mutually exclusive classes 

[Ek , Ek+1), k=O,1,2, ... ,m-I. The number of classes is chosen according to 

m = I.87(n _1)°.4 (5.15) 

given by Otnes and Enochsen (1978), and suitable for a test of normality at the 5% 

level of significance. The observed range of the variate is extended by 2% at the 

upper end. The lower end of the range is also extended by 2% for normal and Edge-

worth distributions, and otherwise set to zero. This range is then evenly divided into 

classes. Additional open-ended classes are also included beyond the ends of this 

range, where relevant. 

(b) The observed frequency of occurrence (nk ) of each class is determined by counting 

the number of sample points falling into each class. 

(c) The expected probability of each class is determined from the distribution F o(x) 

(5-16) 

(d) The test statistic «(/) is then calculated as the sum of the squared difference in fre-

(e) 

quency divided by the expected frequency 

m-l 2 
(nk - n POk) 

(/ = L: (5.17) 
k=!J n POk 

If any class has an expected frequency less than 5 observations, then it is grouped 

together with the adjoining group, and the number of classes is reduced accordingly. 

The probabilityF 2(r/;d) that the test statistic will not be exceeded is then determined 
x 

from the x2 distribution. Usual practice is to consider the number of degrees of free-

dom d to be m-1 minus the number of parameters determined from the data. Since 

the parameters are calculated from ungrouped data in directive fit, less degrees of 

freedom are lost due to estimation, and the number of degrees of freedom are not 

known precisely (cf. Kendall and Stuart (1979». This being the case, the probability 

of exceedence of the 02 statistic is computed for the two values which form the 

bounds for the degrees of freedom. 

(f) The computed probability of the 0
2 

statistic may be compared to the size Q chosen for 

.., 
the test. On a formal basis, the lIo hypothesis is accepted if F z(O~; d)<l-a, and 

\ 
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rejected otherwise. 

Under the Ho hypothesis, the observed frequencies may be considered to be distri­

buted according to a multinomial distribution function, provided the sample points are 

independent. The X
2 

distribution of the test statistic is derived from this multinomial distri­

bution. If the sample points are not independent, then the distribution of the test statistic 

(/ is no longer known, and the formal basis for the i test is missing. In general, adjacent 

sample points from a stochastic process are not independent. How then, can the X2 test of 

fit properly be applied to a realisation of a stochastic process? 

Although the interdependence of adjacent points in such a time series may be consid­

erable, points picked at random from the set of sample points will usually be "almost 

independent." This line of thought indicates that it might be possible to neglect the "slight" 

interdependence of the sample points. However, there are then no constraints on the sam­

pling frequency, it may be high or low. If the sampling frequency is very low then there 

will be few sample points. The power of the X2 test to detect deviations from the Fo distri­

bution is dependent on the number of sample points. If the number of sample points is 

very low, then the test is more likely to accept the H 0 hypothesis in cases where the 

hypothesis is false (type II error). Conversely, the test is more powerful for large samples. 

Thus, the result of the test may be strongly affected by the chosen sampling frequency. 

Sometimes it is suggested that a sampling frequency, which is sufficiently low to 

ensure that adjacent sample points are uncorrelated, may be determined by examination of 

the autocorrelation function. This may well be feasible for a wide-banded signal, but is not 

practicable for a narrow-banded signal, whose autocorrelation continues to oscillate for a 

large lag time. The conclusion seems to be that an adequate basis is lacking for the formal 

application of the X2 test of fit to time series. However, elements of the test procedure 

may still be useful on something more of an ad hoc basis, as in chapter 7. 

5.9.6. Testing Fit of Tails of Distribution Functions 

The tails test is used to compare the observed frequency in the tails with the expected 

frequency under the hypothesis of a specified distribution function. The difference in 

these frequencies can be assigned a probability through the binomial distribution, and this 
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probability indicates if the hypothesised distribution is acceptable. The test is applied in 

the following steps: 

(a) The user must first specify an expected frequency for the tails. This may be con­

sidered to define the size of the tails relative to the total number of observations. 

The expected frequency must not be too small, 2 is suggested as an absolute 

minimum. If the distribution parameters are determined from the observations, then 

the tails frequency must be small enough to have little effect on these parameters. 

(b) The bounds for the tails are then determined from the expected frequency and the 

hypothesised distribution. Two-sided tests are applied to the normal and Edgeworth 

distribution functions, with half the expected frequency in the lower tail and half in 

the upper tail. Only an upper tail is applied to the Rayleigh and constrained gamma 

distributions. 

(c) The observed frequencies in the tails may then be determined by counting the 

number of observations that lie within the tails, as specified by these bounds. 

(d) The probability P that the difference between the observed and expected frequencies 

will not be exceeded is finally computed using the binomial distribution. Both posi­

tive and negative differences in frequency are included in this probability. 

This probability may be interpreted in a similar manner as for the chi-squared test; 

i.e. in a formal test with a 100a% significance level, the hypothesis would be accepted for 

a probability a(2 <P < 1-a(2 and rejected otherwise. This probability is accurate only if 

the hypothesised distribution has been determined independently of the observed frequency 

in the tails. This is not the case here, thus making the test slightly optimistic. The same 

objections as discussed for the x2 
test make themselves felt for the tails test too, but 

presumably to a lesser extent, since fewer adjacent data points are expected to fall within 

the tails. The advantage of the tails test over the x2 
test is that it concentrates on the fit to 

the tails of the distribution, while the i test lays most emphasis on the main body of the 

distribution. The tails test was developed for the analysis of model test data on ship rol­

ling, cf. Mathisen (1984). 
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5.10. fit Filter and Wild Point Editing 

Wild points further than a threshold from the mean are replaced by interpolated or 

extrapolated points. This threshold may be specified as a factor times the standard devia-

tion. Filtering is carried out with symmetric finite impulse response (FIR) filters, which 

induce no phase lag, but lose m data points from both ends of the input signal. An algo-

rithm due to Potter, Bickford and Glaze, quoted by Otnes and Enochsen (1978), is used to 

determine the filter weights by windowing the basic boxcar weights. The weights 

wk ,k=O,1,2, ... ,m are symmetric, and initially provide a low-pass filter. Modified 

weights for a high-pass filter are provided by 

(5.18) 

For a bandpass filter, weights Uk' vk for two lowpass filters are determined for two cutoff 

frequencies such that f u is the lower cutoff frequency and f v is the upper cutoff frequency. 

The weights of the bandpass filter are then given by 

k=O,1,2, ... ,m-1 (5.19) 

The span of the filters m is specified by the user. Sharper transition bands are obtained by 

increasing the span, but at some computational cost. The filtered signal is obtained as in 

equation (5.7) for the Hilbert transform. 

The raw mean value and standard deviation of the input signal are provided, together 

with the corresponding statistics after wild point editing, and after filtering, to allow a sim-

pIe check on the effect of this directive on the input signal. Plots of the input and output 

signals, and of the frequency characteristic of the filter may also be produced, as shown in 

Fig.7-17 and Fig.7-18. 

5.11. gen Generate Test Data 

The following types of test signals may be generated, separately or in combination: 

(a) Sine wave, specified by amplitude, frequency and phase angle. 

(b) Normal random data, specified by mean value and standard deviation. 

(c) Uniform random data, specified by lower and upper limits of the uniform distribu-

tion. 
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These test signals have been extensively used in the validation of the analysis directives of 

the program. 

5.12. hrm Harmonic Analysis 

Harmonic analysis is carried out by a direct implementation of a Fourier senes 

expansion. The Fourier series expansion of a function x(t) over an interval (O,T) may be 

written 

00 

1 
x(t) = -ao+ 2: [ajcos(jwt)+bjsin(jwt)] 

2 j=l 
(5.20) 

where w = 2rr /T is the base frequency of the expansion. The Fourier coefficients a j ,b j are 

given by 

2 T 

a j = - J x(t)cos(jwt)dt, 
To 

j=0,1,2, ... (5.21) 

? T 

b j = ~ J x (t) sin(j wt) dt , 
To 

j=1,2, ... (5.22) 

The sampled input signal x j , j=0,1,2, ... ,n-1 is only known at n discrete time instants, 

and the base period T of the required expansion need not be an integral multiple of the 

sampling interval 6. The above expressions for the Fourier coefficients are approximated 

by the following sums, based on trapeze-type integration and on linear interpolation to 

determine the value of x at the exact end of the base period 

2 
a· =-

J T 

2 
b·=­

J T 

k=m-l 

2: xk wk cos(j w6k), 
k=O 

k=m-l 

2: xk wk sin(j w6k) , 
k=O 

j=0,1,2, ... 

j=1,2, ... 

(5.23) 

(5.24) 

where the number of points included m is chosen such that 6(m-1) exceeds the basic 

period T by at most one sampling interval 6, and the maximum number of harmonic com-

ponents that may be obtained is no more than half the number of data points. 
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The weights of the summation are given by 

I::. /2, k=O 

1::., k=1,2, ... ,m-3 
wk = 

1::./2+8-tl /(21::.), k=m-2 (5.25) 

tl /(21::.) , k=m-l 

where 8= T - (m -2)1::. is the portion of the last sampling interval required to make up the 

base period. 

This procedure IS repeated over a number p of non-overlapping base periods to 

obtain a set of estimates for amplitudes Ie jk I and phases e jk for the first q harmonic com­

ponents of the signal. 

j=1,2, ... , q, k=0,1,2, ... ,p-l (5.26) 

The mean values of the set of p estimates of amplitude and phase of each harmonic com-

ponent are then computed to provide the final estimates. In addition, the corresponding 

standard deviations are also provided, in order to give information about the variability of 

the estimates. 

The circular nature of the phase angles requires some extra work to obtain sensible 

mean values and standard deviations. The individual estimates of the phase angles are ini-

tially calculated for the interval (-1r, 1r). The sums of the positive and negative phases are 

calculated separately to begin with. If the mean of the sum of their absolute values is less 

than 1r/2, then the overall mean may be obtained directly, otherwise the range of the phase 

angles is transformed to (0,21r) before calculating the overall mean. The same choice of 

range for the phase angles is employed in the calculation of their standard deviation. This 

procedure is designed to handle deviations of ±1r /2 about the mean value. Greater devia-

tions may lead to poor results. 

\ 

Examples of results obtained with this harmonic analysis are given in chapter 2. 
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5.13. lea Level Crossing Analysis--

This is similar to zero-crossing analysis, but a non-zero level may be specified, and sub­

tracted from the results if so required. The analysis starts by finding the first level crossing 

of the time series. If this is an up-crossing, then peak-to-trough heights are subsequently 

collected from down-crossings between a peak and the following trough, otherwise they are 

collected from up-crossings between a trough and the following peak. The procedure then 

follows the time series one step at a time pausing whenever a level crossing is detected. If 

this is a down-crossing, then the maximum value after the previous up-crossing IS 

extracted. If it is an up-crossing, then the minimum value after the previous down-crossing 

is extracted. Only pairs of maxima and minima are retained, corresponding to each peak­

to-trough height. This may lead to the rejection of one maximum or minimum near the 

end of the time series. Mean values and standard deviations are calculated from each of 

the sets of maxima, minima, and peak-to-trough heights. The ratio between the number of 

data points above and below the level is computed, and the mean level-crossing period is 

found from the sum of these data points divided by the number of peak-to-trough heights. 

Three arrays of results may be stored on the database: (i)maxima, (ii)minima, (iii)peak-to­

trough heights. 

Maxima below the defined level, and minima above the level are not detected by the 

level crossing analysis. This is adequate for a narrow-banded signal, but would be inade­

quate for a wide-banded signal if all the maxima and minima should be required. Some 

error is introduced since analog signals are not sampled and digitised exactly at the maxima 

and minima. However, this error is small when the sampling frequency is high relative to 

the frequency characterising the extrema (cf. discussion in section 2.4.1). This type of 

error may sometimes be reduced by performing upwards decimation with directive dee, 

prior to the level-crossing analysis. 

The lea directive has been used, both to obtain maxima and minima of the random 

signals analysed in chapter 7, and to obtain sequences of roll amplitudes from roll decay 

signals in chapter 6. 



5.14. ppp PP-Plot 

The expected cumulative distribution function is plotted against the observed cumulative 

distribution, using data generated by directive fit. A good fit of the distribution function to 

the data is indicated if the plot is close to a straight line. An example is shown in Fig.5-B. 

Fig.5-B 
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PP-Plot showing fit of Rayleigh distribution to roll angle mImma obtained 
from experiment 3 of the results in chapter 7. 

5.15. psd Power Spectral Density 

The spectral density of a time series is calculated by the segment averaging technique, 

as described by Yuen and Fraser (1979). The user must specify the resolution {) required in 

the spectrum; i.e. the maximum frequency interval between spectral lines. The number m 

of spectral lines to be determined is then approximately given by the folding frequency 

divided by the resolution, and the number n of data points needed for one finite Fourier 

transform is twice as large. The same type of Fast Fourier Transform (FFf)t as employed 

in chapter 2 is also used here, and requires that the number of data points be factorable in 

the form 2i 3k 51. If necessary, the number of data points n is increased to fulfill this condi-

The FFf routine lIsed has been written hy P. Swarztr(luoer at the :\ational Center for Atmospheric 
Research (NCAR). and ohtained from "NAUB." the :\'umerical Analysis Library. 
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tion, which may also lead to a slightly smaller resolution. The time series is divided into a 

number of segments p of this length. The FFT routine is used to calculate a set of Fourier 

coefficients C jk' j=0,1,2, ... , m-1 for each segment k=0,1,2, ... ,p-1 , corresponding 

to the Fourier coefficients in the hrm directive. A periodogram is obtained from the 

squared magnitude of the Fourier coefficients for one segment. The periodogram is 

smoothed with a Tukey window to provide the basic spectral estimates. 

1 
S'k =-

J ~ 

0.5, C jk ,2 +0.5, C(j+l)k ,2, 

0.25 ic(j_l)k ,2 +0.5ic jk ,2 +0.25 ic(j+l)k ,2, 

0.5ic(j_l)k ,2+0.5icjk ,2, 

j=o 

j=1,2, ... ,m-2 

j=m-1 

The final spectral estimates are obtained by averaging across the segments 

k=p-l 

1 
Sj = - ~ Sjk' 

P kdJ 

j =0,1,2, . . . , m -1 

(5.27) 

(5.28) 

An estimate of the standard deviation of the basic spectral estimates is also obtainable by 

this approach, and given by 

j=0,1,2, ... ,m-1, p>l (5.29) 

Yuen and Fraser (1979) show that the standard deviations of the spectral lines of a 

periodogram are approximately equal to their mean values, for Gaussian signals. Tukey 

smoothing provides some reduction in the variability of the spectral estimates, and segment 

averaging can provide high accuracy when a long enough signal is available, so that many 

segments can be used. Applying the sampling theory of mean values (cf. the discussion 

under the sin directive), the coefficient of variation of the spectral estimates is given by 

U j 
v· :::::: 

J s/'vl; , j=0,1,2, ... ,m-1, S·>o J 
(5.30) 

This coefficient of variation may be plotted together with the spectrum. Examples of spec-

tra obtained with the psd directive are shown in Fig.7-19 to Fig.7-26. 

Spectral moments Ak are calculated from 

j=m-l 

A k = ~ (j 8) k S r 5 
jdJ 

(5.31) 

Inaccuracies in the higher order moments, due to errors in the high frequency tail of the 
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estimated spectrum, may be reduced by truncating this summation at a suitable frequency. 

The following signal statistics are estimated from the spectral moments: 

standard deviation = ~ 

mean period = >"0/>"1 

zero-up-crossing-period = V>"0/>"2 

crest period = V>"2/>"4 

spectral width = Vr-1-->";:<-/-(>"-0->"4-) 

5.16. stn Stationarity Check Along a Sample Record 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

This directive is introduced with a brief discussion of the concepts of stationarity and 

ergodicity in an experimental context. Consider a real stochastic process (e.g. ship rolling) 

denoted by x (t , j), where t represents time (defined over the real line), and j may be con-

sidered to be an index variable, taking integer values from the range (1,00) t. If the index 

variable j is held fixed, and the time variable t is varied over its range, then one realisation 

of the stochastic process is obtained. A roll time history, obtained from one experiment 

might be considered to be part of such a realisation, but not a complete realisation, since it 

would only extend over finite time. A set of such realisations for varying j is usually 

referred to as an ensemble of realisations. If the time variable is held fixed at t l' then the 

sequence of values of X(tl,j) for j=1,2, ... ,n, may be considered sample values of a ran-

dom variable. In the present context, it may be useful to exemplify the index variable (j) 

by the various roll time histories that would have been obtained, if one experiment could 

be repeated under "similar" conditions. Statistics of a stochastic process are, in general, 

defined across the ensemble of realisations with time held constant. Hence, the statistics 

are, in general, functions of time. For example, the mean value x(t) might be expressed by 

j=n 

1 
x(t) = lim - L: x(t,j) (5.37) 

n->oo n j=1 

Similarly, the autocorrelation R (t 1 ,t 2) would be a function of two times 

j=n 

(5.38) 
n->oo n ;=1 

If the mean value of a stochastic process is invariant with time, and its autocorrelation 

t Although a countabk inde'\ set is indicated here. an uncountable set would be more precise, correspond­
ing to the sd of all possible initial (:unditions. 
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depends only on the time difference (t 2-t 1)' then the process is said to be weakly station­

ary, or stationary in the wide sense. Stationarity of higher order requires corresponding 

results for higher order cross products than the autocorrelation. The statistics of a Gaus­

sian process are uniquely determined by its mean and its autocorrelation function, hence 

weak stationarity implies strict stationarity for Gaussian processes. 

Since each experiment carried out only provides one realisation of the stochastic pro­

cess underlying that experiment, it is not practicable to determine statistics across an 

ensemble of realisations. Instead, temporal averages along that time series are calculated. 

This implies an assumption of ergodicity; viz. that the process is stationary and that expec­

tations across the ensemble of realisations are equal to the corresponding temporal aver­

ages taken along the single realisation. Price and Bishop (1974), or Papoulis (1965) provide 

further details concerning the concepts of stationarity and ergodicity. 

If stationarity is required, then it is desirable to control experimental conditions to 

ensure that stationarity is obtained. This is not always possible, for instance in ship trials 

at sea, where the waves are provided by nature. If analysis of the results is to be based on 

stationarity, then it may be advisable to check that stationarity prevails. Lacking an 

ensemble of realisations, the stationarity check cannot be constructed directly from the 

definition. Instead, some representative statistics of the process are estimated as temporal 

averages, and the variation of these statistics during the experiment is examined. The fol­

lowing procedure is applied: 

(a) A time series from one experiment is split into a number of segments, each of suffi­

cient duration to allow sensible estimates to be made of the test statistics. Sequence 

numbers j=1,2, ... ,m are assigned to each segment in order. 

(b) A number of sample statistics Y j are calculated for each segment J. These sample 

statistics may include the mean, standard deviation, skewness, kurtosis, 5th and 6th 

central moments, mean period, zero-up-crossing period, crest period, and spectral 

width. The spectral statistics are calculated from a periodogram obtained by a FFf 

of each segment (cL directive psd). 

(c) The correlation coefficient r is calculated for each sample statistic and the sequence 
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(5.39) 

where j ,yare estimated mean values, and U j ,uy are standard deviations of the seg-

ment index and sample statistic respectively. 

(d) The probability FR(r) that the sample correlation coefficient will not be exceeded, is 

calculated applying Student's distribution with (m-2) degrees of freedom and argu­

ment 7 defined by 

(5.40) 

This test is based on the procedure suggested in section 31.19 of Kendall and Stuart (1979). 

It provides a test for the hypothesis that the calculated values of the test statistic are ran-

dom samples from the same underlying distribution, against the alternative of linear trend. 

This ,test is distribution-free, in the sense that no ,specific form of distribution function is 

assumed to underly the test statistic. However, the exact permutation distribution function 

of the sample correlation coefficient is approximated using Student's distribution. This 

approximation is obtained by fitting moments, and is exact up to the third moment, with an 

error term of order m -1 in the fourth moment. Hence, the resulting probabilities will have 

reduced accuracy for a small number of segments m. 

For a chosen significance level Q', the hypothesis of randomness is accepted provided 

(5.41) 

and rejected otherwise, where F R (r) is the probability that the value r of the sample corre-

lation coefficient will not be exceeded. Hence, at a 10% significance level, the time series 

will be accepted as being stationary if F R(r) lies between 0.05 and 0.95 for all the test 

statistics considered. This choice of significance level also implies that there is a 10% pro-

bability of wrongly rejecting the hypothesis of stationarity. 

If the test indicates that a time series is not stationarY. then the magnitude of the 

trend in the test statistic should be examined. Accepting linear trend to be present, the 

trend range in the sample statistic y between the first and last segments of the time series 

is gin'Il by 
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(5.42) 

The amount of trend may possibly be sufficiently small as to be considered insignificant. 

However, this judgement requires considerable insight. The directive provides plots of the 

sample statistics against time, which include the estimated trend lines. Examples are 

shown in Fig.7-8 to Fig.7-16. 

If the hypothesis of stationarity is accepted, then the stn directive provides additional 

results for estimated standard errors in the mean values of the sample statistics for the 

whole time series. The mean value of each sample statistic listed in step (b) above is given 

by 

j=m 

1 
Y = - ~Yj (5.43) 

m j=l 

and the standard deviation in the individual estimates Y j for a sample statistic is estimated 

by 

j=m 

1 
u y = [ ~ (y j _j)2]1/2 (5.44) 

m-l j=l 

Assuming this standard deviation to be a reasonable estimate for the underlying value, then 

the standard error in the mean value y of the sample statistic is 

f. -;::;:, u IV;;; 
y y (5.45) 

The standard error is, in effect, the standard deviation in the estimated value of a statistic. 

This estimate of the standard error is based on classical results from the sampling theory 

of mean values. This simple procedure to obtain the standard error is most useful for the 

estimates of statistics whose theoretical sampling distributions are not available. The 

number of segments m into which the time series is divided affects the estimates of the 

standard errors. Increasing the number of segments tends to reduce the estimate of the 

standard error until the condition of sufficient duration, from step (a) above, is violated. 

5.17. tnd Detrending 

Detrending is accomplished llsmg a procedure described by Otnes and Enochsen (1978). 

Given a time series Xj ,j=-n/2, ... ,n(2, a polynomial is first fitted to the data by the 

method of least squares, and then subtracted from the input time series to provide the 

detrendcd output time series. For numerical efficiency, the number of data points 
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included n' =n +1 is forced to be odd, and the polynomial is given an origin at the mid 

point of the time series. The detrending polynomial is written 

j=-n/2, ... ,n/2, 0<m<4 - - (5.46) 

where dk are the coefficients of the polynomial, and m is the order of the polynomial. To 

solve for the coefficients, the following moments are required 

P2 = ~ / = n(n
2 
-1)/12 

~.4 (2 ) ') P 4 = LJ ] = n n -1 (3n ~ - 7) /240 

P6 = ~ / = n(n
2 
-1)(3n

4
-18n

2 
+31)/1344 

Ps = ~ / = n(n
2
-1)(5n

6
-55n

4
+239n 2-381)/11520 

k=0,1,2,3,4 

(5.47) 

(5.48t) 

(5.49) 

(5.50) 

(5.51) 

where the summations are taken from j=-n/2 to j=n/2. The coefficients may then be 

obtained in descending order, starting with the highest order coefficient required 

(n 'q 4 -P4qo)(pi -n 'q 4)+(P2qo-n 'q2) (P4P2- n 'P6) 
d 4 = -------------------------------------

(PzP4- n 'P6)2 -(P; -n'ps)(pi -n'P4) 

d 3 = (P2Q3-P4ql)/(PzP6-P;) , m>3 

d 2 = [(P2Qo-n'Q2- d 4(PzP4- n 'P6)l!(pi -n'P4)' m>2 

d 1 = (Ql-P4d3)/P2' m>l 

do = (QO-dzP2-d4P4) In' 

m=4 (5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

where n'=n+1 is the number of data points, and the coefficients are set to zero if they are 

not required dk=O, k >m . 

The detrending calculations are done in double precision, to reduce problems with 

numerical error. For more convenient interpretation, the coefficients are transformed to a 

polynomial with origin at the beginning of the time series, prior to output. An example of 

results obtained with this directive is shown in Fig.7-18. Experience has shown linear 

detrending to be effective, while a test with higher order detrending led to numerical errors 

when the magnitude of the trend was large compared to the actual signal. 

t There is a correction in equation (5.48) relative to Otoes and Fnochseo (1978). 
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6. Estimation of Roll Damping Coefficients 

In order to apply the present theory to a variety of ships, it is necessary to have some 

means of obtaining the relevant inertia, damping, and restoring coefficients of the equation 

of motion. Prediction of the exciting moment has already been discussed in section 2.2 

and in appendix B. The hydrostatic restoring coefficient C is traditionally expressed III 

terms of the transverse metacentric height OM and the ship's displacement volume v 

C = pg\lOM (6.1) 

where p is the water density, and g is the acceleration due to gravity. A derivation may be 

found in Newman (1977). If the ship's natural frequency Wn may be determined from 

experiment, either on the ship or a model, then knowledge of the restoring coefficient may 

be used to obtain the inertia coefficient A 

2 - 2 
A = C /wn = pg\lGM /wn (6.2) 

Failing this, it is necessary to estimate the dry inertia coefficient 14 from the ship's mass 

distribution and obtain the hydrodynamic added-mass coefficient A44 by means of potential 

theory. For instance, the close-fit technique formulated by Frank (1967) may be applied. 

Such an approach can also be utilised to provide sway and sway-roll added mass coeffi-

cients, thus allowing a roll axis to be determined to minimise the coupling with sway (d. 

section 1.4 and appendix B). Having disposed of the other coefficients of the equation of 

motion, we may now proceed with the damping coefficients, as the main topic of this 

chapter. 

Two alternative damping functions f3(j) are considered 

f32(j) = DJ; +D~ Ij I 
f33(j) = BJ; +B-J3 

(6.3) 

(6.4) 

referred to as linear plus quadratic damping, and linear plus cubic damping, respectively. 

The linear plus quadratic form of damping has been widely applied since Froude's paper of 

1872, while the linear plus cubic form is less commonly used, but convenient for applica-

tion in the theory involving Volterra functionals. Dalzell (1978) has discussed both forms 

of damping function, and found both models fitted a few sets of roll decay data reasonably 

well. 
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Let us consider the basis for the choice of these two damping models. Transfer func­

tions for roll response, obtained from model tests (cf. Fig.l-l), show that the roll response 

is highly resonant in nature, implying that the damping is relatively small. Linear potential 

theory calculations, assuming a non-viscous fluid, lead to damping coefficients correspond­

ing to the energy in radiated waves. Intuitively, or through experiment, we may observe 

that the other ship motions tend to dissipate more energy through radiated waves than the 

roll motion does. In fact, a circular cylinder, oscillating about an axis in the still water 

plane, would not radiate waves; i.e. would have zero roll damping in terms of potential 

theory. It thus seems likely that other damping mechanisms, not present in linear potential 

theory, may have to be included. The physical mechanisms that are usually considered in 

addition to radiation damping are: (a) skin friction, (b) eddy-making, and (c) lift effects on 

appendages due to forward speed. Himeno (1981) and Schmitke (1978) discuss roll damp­

ing components in these terms. Sometimes the terms "viscous damping" and "eddy­

making damping" are used interchangeably, but this usage is imprecise since skin friction is 

also an effect of viscosity. 

(a) Skin friction is due to the tangential stress between the ship hull and the sur­

rounding water. Myrhaug and Sand (1980) have made a theoretical study of skin friction 

damping for both laminar and turbulent boundary layers, considering only 2-dimensional 

flow. The roll damping effect of skin friction was found to be linear for laminar flow con­

dItions, which tend to be obtained in model tests. In turbulent flow, the damping moment 

due to skin friction was found to be slightly nonlinear, and a relatively smaller part of the 

total damping than in laminar flow. Since turbulent flow tends to be the case at full scale, 

this indicates that some correction to the skin friction component of roll damping may be 

necessary when scaling up from model test results. 

(b) Eddies or vortices are induced when the boundary layer flow separates from the 

hull surface. This effect leads to a change in the pressure distribution over the hull sur­

face, producing a moment about the roll axis, part of which is in phase with the roll velo­

city and acts as a damping moment. Separation is most readily induced by a sharp edge 

such as a bilge keel, but may well occur in the absence of any such edge, if the necessary 

flo\\' conditions arise. It appears to be common practice to assume that the eddy-making 
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component of roll damping is quadratic (cf. Schmitke 1978). The theoretical basis for this 

assumption is not clear, but an analogy with the quadratic expression for the drag force 

acting on a flat plate in a steady flow springs readily to mind, and seems likely to have had 

some influence on this formulation. Himeno (1981) suggests that there is an element of 

amplitude dependence in the component of the eddy-making damping, due to the pressure 

forces acting directly on the bilge keel. 

(c) Roll damping due to lift effects is discussed by Schmitke (1978). Appendages 

may be considered to act as wings, protruding into the water flowing past the ship, generat­

ing lift forces and the associated roll moments. This damping component is treated as a 

linear function of the roll velocity, and as being proportional to the forward speed of the 

ship. 

Clearly, there is a strong basis for a linear roll damping component; from wave­

making, from skin friction (a), and from lift effects (c). The theoretical basis for a qua­

dratic roll damping component is not equally strong, but there is at least a traditional basis, 

founded on observations of rolling and various forms of analysis of such observations. In 

comparison, there is hardly any basis for a cubic roll damping component, except that the 

linear plus cubic model can be made to fit the data about as well as the linear plus qua­

dratic model does. 

Numerical methods to predict eddy-making damping have been developed by Bear­

man, Downie and Graham (1982), Patel and Brown (1981), Ikeda and Tanaka (1983), and 

by Braathen and Faltinsen (1987). In general, these methods are only applicable when a 

sharp edge is present on the ship hull, to define the location of the separation point. The 

effect of the free surface is sometimes neglected in these calculations. Braathen and Fal­

tinsen have found that inclusion of a free surface in the theoretical formulation, and the 

ensuing radiated waves, sufficiently alters the flow pattern to have a noticeable effect on 

the calculated damping moment. This finding has some bearing on another problem; viz. 

roll dan1ping is usually estimated in the absence of incoming waves, but incoming waves 

are present in the practical response problem, and may affect the damping terms. This 

problem is briefly addressed in the discussion included in appendix D. 
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6.1. Estimation of Roll Damping Coefficients from Experiments 

Methods to estimate roll damping coefficients from decay tests and forced rolling 

tests are derived in appendix D. Damping coefficients may be obtained for both the damp­

ing models given by equations (6.3) and (6.4). Estimators for the linear plus cubic damping 

coefficients only, have also been presented by Mathisen and Price (1984) in a prior report. 

A perturbation method is used to develop the estimators for decay tests, while harmonic 

analysis and energy methods are used for the two types of forced rolling tests. The results 

of the perturbation analysis lead to somewhat different estimators that those which are 

most widely used (cf. Dalzell 1978), and which date back to Froude (1872). Froude's 

method assumes that the decrement in roll amplitude between a pair of successive maxima 

and minima may be related to the energy absorbed by damping with a constant amplitude, 

equal to the mean magnitude of the two adjacent extrema. This assumption appears to be 

valid in the case of linear damping, but slightly inaccurate in the case of nonlinear damp­

ing, and it is avoided with the perturbation analysis. Some improvement in the estimated 

damping coefficients may be expected on the basis of the relaxation of this assumption, 

with the greatest effect when the roll decrements are relatively large. In addition, Froude's 

method requires the use of the differences in amplitudes between pairs of adjacent 

extrema, in the estimation process, while the perturbation estimators use the amplitudes of 

the extrema directly. Such differences in amplitude are likely to be more affected by 

experimental errors, particularly for small roll angles. Thus, there are some grounds for 

expecting an improvement with the perturbation estimators, due to effects at both ends of 

the decay process. 

The estimators derived in appendix D have been applied by Spouge and Ireland 

(1986), though little discussion of the results is given in that paper. Results from five dif­

ferent methods of analysing decay tests have been compared by Spouge (1987), and good 

results were reported with the perturbation estimators. 

6.2. Results from Estimation of some Damping Coefficients 

Dimensionless damping coefficients are presented. in order to case comparison 

between the results for different ships. The linear damping coefficients arc presented in 
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terms of the critical damping for the response frequency; that is as D d(2A w), and as 

B d(2A w). No equally obvious way of presenting the nonlinear damping coefficients is 

available. To make them comparable to the linear coefficients, the expressions for the 

energy dissipated in one cycle of harmonic rolling (given in section 4.2 of appendix D) are 

divided by the energy which would be dissipated by critical damping. A roll amplitude 

must be specified for this formulation, and 0.1 radians or 5.7 ° is chosen, as a convenient, 

representative, small amplitude. Hence, the nonlinear damping ratios are presented as 

D2 ·OA/(37rA) and B3· 0.03w /(8A). The quadratic damping ratio is proportional to the 

chosen amplitude (0.1 radians), and the cubic damping ratio is proportional to the square 

of this amplitude. 

6.2.1. Damping coefficients for the FPV Sulisker 

Nlodel tests with the FPV Sulisker were used to obtain the results given in the paper 

in appendix D. Some additional results and figures are included here, that were omitted 

from the paper for the sake of brevity. Refer to appendix D for details of the ship model 

and the tests. Fig.6-1 and Fig.6-2 show data from two decay tests, together with the 

corresponding sequence of roll angles given by the estimated damping coefficients for the 

two damping models. The data from decay test 3A in Fig.6-1 may be seen to be of some­

what poorer quality than the data from test 3B in Fig.6-2, since many adjacent pairs of 

extrema have about the same value. This may be due to an inaccuracy in the calibration of 

the mean (upright) position, or in manually reading off the amplitudes. A little additional 

difficulty was encountered in locating the coefficient values which provided the minimum 

residual sum of squared deviations for the poorer data. This required some variation of 

the initial estimates of the coefficients in the minimisation procedure. The results of the 

three decay tests are reproduced as percentages of critical damping in Table 6-1. Observe 

that approximately the same sum is obtained from the two terms in either model, about 

3.5% of critical damping. If the roll amplitude is doubled to 11..+°, then the total damping 

increases to about 5.5%. 

Results of a forced rolling test are shown in Fig.6-3 and estimated damping coelfi­

dents arc given in Table 6-2. A slightly better agreement between the observed data and 
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Series 1 Series 3A Series 3B 
Linear plus quadratic damping model 

Dd(2Aw) 0.0128 0.0153 0.0163 
D,·0.4/(37rA) 0.0215 0.0191 0.0198 

Linear plus cubic damping model 

Bd(2Aw) 0.0262 0.0270 0.0293 
B,,·0.03w/(BA) 0.0069 0.0063 0.0059 

Damping ratios estimated from decay tests with a model of the FPV Sulisker. 

Series 1 Series 3 
w=3.2 rad/s w-2.85 rad/s 

Linear plus quadratic dam Ding model 

Dt/(2Aw) 0.0115 0.0129 
D?·0.4/(37rA) 0.0210 0.0198 

Linear plus cubic damping model 

Bt/(2Aw) 0.0331 0.0387 
B ,,·0.03w/(8A) 0.00439 0.00351 

Damping ratios estimated from forced rolling tests with a model of the FPV 

Sulisker . 
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the linear plus quadratic model is discernible in Fig.6-3, than for the linear plus cubic 

model. Better agreement between the damping coefficients estimated from the decay tests 

in Table 6-1 and the coefficients estimated from the forced rolling tests in Table 6-2 is also 
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evident for the linear plus quadratic model. Additional points in favour of the linear plus 

quadratic damping model are mentioned in appendix D; viz. a smaller residual sum of 

squared deviations between fitted model and observed data, and a tendency to constant 

values for the estimated coefficients irrespective of the roll amplitude. 

Damping coefficients estimated from forced rolling tests are shown as a function of 

frequency in Fig.6-4, for the linear plus quadratic damping model. As the frequency devi-

ates from the resonance frequency, wn =3.22 rad/s, the phase angle between the exciting 

moment and the roll response approaches 0° or 180°. Since the energy absorbed by the 

damping is proportional to the sine of the phase angle (cf. equation 42 of appendix D), the 

accuracy of the estimated coefficients is critically dependent on the accuracy of the phase 

angles. These angles are difficult to determine accurately far from resonance, hence the 

ragged tendency shown by the results in Fig.6-4. The negative linear damping coefficient at 

a frequency of 3.0 rad/s is assumed to be due to this type of inaccuracy. Any definite 

trend with frequency is concealed by the uncertainties present in these results. However, 

Fig.6-4 is based on a set of preliminary data, and it is possible that additional experimental 

work might provide an improvement in the results. 

6.2.2. Damping Coefficients for a Containership 

Principal parameters of a model of a containership are given in Table 6-3. A series 

of decay tests, forced roll tests, and regular wave tests with this model, have been carried 

out and described by Blok (1985). During the tests, the model was held in position in the 

tank with an arrangement of soft springs. The springs were also used to tow the model for 

tests with forward speed. There was some concern that this spring arrangement might 

affect the results, but variation of the spring rates and the location of the connections to 

the model did not reveal any significant influence on the results. The rudder was inactive 

during the tests. A magnetic tape of the test results was obtained and data from the decay 

tests were analysed for inclusion here. The original analysis of the decay tests had been 

carried out with Froude's method. 

The level crossing algorithm of the time series analysis program, described in chapter 

;;;; ,< S used to extract the maxima and minima of each decay record from the data in time _ , \\ .1. 
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length / beam 
beam / draught 
block coefficient 
transverse metacentric height / beam 
roll gyradius / beam, in water 
bilge keel span / beam 
bilge keel length / ship length 
model scale 

Principal parameters of the containership model. 

6.5 
4.3 
0.52 
0.092 
0.37 
0.016 
0.30 

1:40 

series form. Inspection of plots of the decay records showed some inaccuracy in the zero, 

and 7 of the 26 record were corrected for this effect. Damping coefficients were estimated 

for each test, using the estimators described in appendix D. The first extremum was omit-

ted from the estimation process in all cases. The results are shown in Fig.6-5 and Fig.6-6., 

with the damping ratios plotted against the Froude number. Fig.6-5 shows the linear damp-

ing ratios, while Fig.6-6 shows the quadratic and cubic damping ratios. Results were 

obtained both with and without bilge keels (indicated by B.K. on the figures). The bilge 

keels provide a consistent increase in the damping coefficients. Many of the tests were 

repeated three times, and the separate values are shown as individual symbols in the fig-

ures. Satisfactor~' a~rcemcnt is indicated he tween the repeated tests. A marked increase 
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III the linear damping coefficients with forward speed IS exhibited in Fig.6-5, possibly 

mainly due to lift effects. A less marked decrease in the nonlinear damping coefficients 

with forward speed is shown in Fig.6-6. Taken together, these two tendencies indicate that 

the nonlinearity in the damping is less at forward speed than at zero speed . 
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6.3. Check of Estimators from Simulation Results 

A brief description of a check of the estimators for damping coefficients against data 

generated by numerical simulation is described in section S of reference D. Subsequently, 

an attempt was made to obtain an improved confirmation of the estimators by improving 

the accuracy of the numerical simulation results. A pair of decay records, corresponding 

to the two damping models, were generated with increased accuracy, and are described in 

sel~ion 2.S.1. Damping coefficients were in turn estimated from these simulated records, 

and the results are given in Table 6-4. The difference between the estimates and the input 

values ranges from 0.0% to 0.7%, showing a slight improvement relative to the results in 

appendix D, again confirming the validity of the estimators with respect to the assumed 

damping models. 
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Simulation 
Estimates 

input same model alternate model 
Linear plus quadratic damping model 

Dl Nms/rad 0.5120 0.5109 Bl 0.8248 
D? Nm(s/rad)2 3.430 3.442 B-" 5.811 

Linear plus cubic damQ.ing model 

Bl Nms/rad 1.470 1.470 Dl 1.250 
B't Nm(slrad)3 2.540 2.557 D, 1.844 

Comparison of damping coefficients used as input to numerical simulation 
with results estimated from the output. 

The input data for the two damping models were equivalent, to some extent, since 

both sets of damping coefficients were obtained from the same set of forced rolling tests. 

Hence, it seemed possible that fairly similar decay records would be produced by simula-

tion of both decay models, and that estimated damping coefficients would not be strongly 

dependent on which damping model had been simulated. The results for the alternate 

models in Table 6-4 show that this is not the case; e.g. coefficients for the linear plus cubic 

model estimated from simulation with the linear plus quadratic model differ strongly from 

the estimates originally obtained from the forcf:d rolling model test. 
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7. Results of Analysis of Experimental Data for Ship Rolling in Irregular Waves 

7.1. The Irregular Wave Tests 

The tests were carried out by NMI Ltd., using the same model of the FPV Sulisker, as 

described in Appendix D, but with a slightly different loading condition, specified in Table 

7-1. The present loading condition has considerable trim, while there was no trim in the 

mechanically forced rolling tests, cf. Spouge and Ireland (1986). 

Model Scale Full Scale 
Draught amidships m 0.230 4.60 
Trim, aft m 0.14 2.8 
Displacement t 0.1915 1532 
Transverse metacentric height, GM m 0.0390 0.78 
Measured natural roll period s 1.96 8.77 

Table 7-1 Loading condition for model of FPV Sulisker during irregular wave tests. 
The model scale is 1:20. 

The model had twin rudders, but no other appendages. Roll and pitch were measured by a 

gyro located near the model centre of gravity, while surface elevations were measured with 

2 resistance-type wave gauges fore and aft of the model. The accuracies of the transducers 

were stated to be approximately % 0 for the gyro and 0.05 inch for the wave probes at 

model scale (0.025 m full scale). Surge, sway and heave were measured using light lines 

attached to the model, and passing around pulleys attached to rotary potentiometers on the 

towing tank carriage. Only roll motion and wave elevation data from tests in irregular, 

long-crested, beam waves are considered here. The tests were carried out in the No.3 tow-

ing tank of NMI Ltd at Feltham, which is 400 m long, 14.6 m wide and 7.6 m deep, and 

has an electro-hydraulic, plunger type wavemaker. The model was positioned about 100m 

from the wavemaker and prevented from drifting along the tank by light lines attached to 

the bow and stern, near the waterline. These lines passed over pulleys on the tank walls 

and were held in tension by weights, as shown in Fig.7-1. 

Data from experiments with four different sea states were provided on digital mag-

netic tape, digitised at 16 Hz model scale, corresponding to 3.58 Hz full scale. The test 

results had already been scaled up to full scale, and this scaling was retained in the subse-

quent analysis. Since experiments 1 to 3 were rather lengthy, each signal was split into two 

files on the magnetic tape. Prior to analysis. the data for each signal were read from the 
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~RAVEL 

Fig.7-1 Arrangement to restrain model from drifting. 

tape, the two files rejoined, and the data entered in the database of the time series analysis 

program described in chapter 5. The long duration of the experiments, up to 3% hours full 

scale, is unusual, and particularly valuable for the present investigation of the response 

statistics of a nonlinear system. It also implies that the total amount of data is quite large; 

viz. 423,360 data values, or 51/2 million characters. Roberts and Dacunha (1985) have also 

utilised data from a different subset of the same model tests, and state that it was neces­

sary to generate the data for each experiment from two runs in the tank, in order to avoid 

excessive distortion of the wave motion due to reflection from the tank ends and walls. 

7.2. Visualisation of the Data 

Having entered the data in the database, some plots of the time traces were made, to 

gain familiarity with the data, and to check for any anomalies. Fig.7-2 to Fig.7-4 show sam­

ple plots of the three signals for experiment 3. These time traces are fairly typical of all 4 

experiments. Good agreement is generally shown between the two wave probes in Fig.7-2 

and Fig.7-3, although individual wave crests and troughs may be seen to differ in magni­

tude. The surface elevation is defined as positive in a wave trough. The roll signal in 
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Fig.7-4 exhibits a somewhat less irregular nature than the wave signals, indicative of it's 

more narrow-banded spectrum. The two files comprising each of the signals are joined 

together in the middle of these time traces, at 5566 s on the time axis. There is no visible 

sign of a discontinuity at this point on any of the three time traces included here, or at the 

corresponding points on the time traces from experiments 1 and 2 (not shown). Thus, the 

joining together of the signal pieces should not have any significant effect on the subse-

quent analysis. However, a sharp spike is apparent at 5546 s along the time axis on all 3 

time traces. This spike appears to be too narrow to represent the true wave and roll 

motion, and is very likely the result of some electrical disturbance in the signal processing. 

A little roughness may also be discernible on some of the peaks and troughs of the signals, 

possibly indicative of some high frequency noise in the signals. Hence, it appears 

wo. thwhile to low-pass filter the signals, in order to reduce the effects of such spikes and 

high frequency noise. 

Fig.7-5 to Fig.7-7 show compressed time traces of the entire signals for experiment 3. 

These compressed time traces confirm a fairly uniform behaviour of the signals throughout 

the experiments. and show that there are no large amplitude drop-outs present. Some 
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asymmetry is clearly present in the wave signals in Fig.7-5 and Fig.7-6, with a tendency for 

high waves to have greater peaks (negative values) than troughs. A corresponding ten-

dency for large roll oscillations to have greater positive than negative extrema may also be 

discerned, though this tendency is not quite so obvious. Again, the compressed time 

traces shown for experiment 3 are typical of the corresponding figures for the other experi-

ments (not shown). 

7.3. Stationarity Check 

A stationarity check was carried out on all the data, using the method described in 

chapter 5. This appeared advisable, because the long duration of the experiments might 

have lead to a gradual build-up of reflected waves in the tank. Each of the signals were 

split into a number of segments for the stationarity check. The length of the segments was 

chosen to be of about 1000 s duration, giving about 100 roll cycles in each segment. The 

following statistics were calculated for each segment: mean, standard deviation, skewness. 

kurtosis, mean period, zero-up-crossing period, crest period, and spectral width. Integra-

tion of the spectra was truncated above 0.4 Hz in the calculation of the periods and spec-
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tral widths. Evidence of linear trend at a 10% significance level was found for the mean 

surface elevation in most cases. The magnitude of this trend was small, and may well have 

been caused by a slight drift in the instrumentation. 

Exp. 
No. 

1 

2 

3 

4 

Table 7-2 

Fig.7-8 

No. of 
Signal 

Mean Correlation Trend 
segments value coefficient 

Probability 
range 

wave probe 1 m 0.001 0.87 0.996 0.071 
9 wave probe 2 m 0.009 0.83 0.994 0.033 

roll angle 0 -0.39 -0.65 0.040 --0.27 

wave probe 1 m -0.021 --0.66 0.012 --0.032 
13 wave probe 2 m 0.004 -0.65 0.014 --0.033 

roll angle 0 -0.17 0.41 0.908 0.24 

wave probe 1 m -0.009 0.85 0.998 0.045 
11 wave probe 2 m 0.002 0.86 0.999 0.036 

roll angle 0 -0.38 -0.45 0.095 --0.15 .-
wave probe 1 m 0.023 -0.17 0.377 --0.002 

6 wave probe 2 m 0.035 -0.31 0.280 --0.005 
roll angle 0 --0.78 -0.06 0.454 -0.02 

Results of stationarity check on mean values. 
The correlation coefficients refer to the mean values for each segment and 
the segment no. The probability of non-exceedence is given for the correla­
tion coefficients. The trend range gives the drift in the mean value over the 
length of the experiment under the assumption of a linear trend . 
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The results of the check on the mean values are given in Table 7-2. and are plotted In 

Fig.7-8 to Fig.7-10 for experiment I. Both the O\'erall mean values, and the estimated drift 
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are small. With the exception of experiment 1, little further evidence of linear trend was 

found at the 10% significance level, for the other statistics investigated. However, in the 

case of experiment 1, some further evidence of non-stationarity was found in some of the 

statistics for both the surface elevation and the roll response. These results are given in 

Table 7-3, and in Fig.7-11 to Fig.7-16. The results for wave probe 2 are very similar to 

those for wave probe 1 and are not included amongst these figures. Since the largest varia­

tion appears to be due to the first two segments of this experiment (d. Fig.7-11 to Fig.7-

16), it might be considered advisable to omit these segments from the subsequent analysis. 

This has not been done here, but the deviation from stationarity in experiment 1 should be 

kept in mind in the evaluation of the results. 

Signal Statistic Overall Correlation 
Probability 

Trend 
value coefficient range 

std. dev. m 1.39 -0.67 0.034 -0.14 
wave probe 1 skewness -0.19 0.18 0.672 0.04 

kurtosis 0.52 -0.62 0.050 -0.89 
std. dev. m 1.41 -0.66 0.036 -0.12 

wave probe 2 skewness -0.16 0.050 0.549 0.01 
kurtosis 0.49 -0.59 0.059 -0.81 
std. dev. 0 10.5 0.12 0.618 0.19 

roll angle skewness 0.13 -0.65 0.038 -0.08 

I kurtosis -0.33 -0.47 0.115 -0.33 

Table 7-3 Further results of stationarity check on experiment 1. 
The correlation coefficients refer to the respective statistics for each segment 
and the segment no. The probability of non-exceedence is given for the 
correlation coefficients. The trend range gives the drift in the respective 
statistics over the length of the experiment under the assumption of a linear 
trend. 

7.4. Detrending and Filtering 

Based on the results of the stationarity check, it was decided to detrend all the data; 

I.e. to remove drift in the mean values of each of the signals under the assumption of a 

linear trend. This may not have been absolutely essential, since the mean values and linear 

trend shown in Table 7-2 are small compared to the general variability of the signals as 

illustrated in Fig.7-2 to Fig.7-7. However, the detrending may have had some beneficial 

effect on the subsequent analysis. 

The mean roll angles deserve some additional comment, before they are eradicated 

by the detrending process. Table -;-2 shows them to be consistently negative, and relatively 
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larger than the mean surface elevations when compared to the corresponding trend ranges. 

Taking the mean roll angles to be significant, though quite small, it seems worthwhile to 

attempt an explanation as follows: The model restraining arrangement shown in Fig.7-1 is 

intended to counteract the mean effect of wave drift forces. Assuming that the mean hor-

izontal drift forces have a line of attack below the mean waterline, while the restraining 

force acts just above the waterline, then these mean forces will impose a couple on the 

model, which will lead to a mean roll angle. Since the wave periods are relatively long, the 

heave motion will tend to follow the waves fairly closely, thus tending to support the 

assumption that the wave drift forces act below the mean waterline of the model. Unfor-

tunately, information on the positive sense of the roll angle is not available at the time of 

writing, in order to check the consistency of this reasoning. 

After detrending, the signals were low-pass filtered. The cut-off frequency of the 

filter was set to 0.5 Hz, based on a preliminary spectral analysis of the data. The filter 

characteristic is shown in Fig.7-17. 
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Fig. 7 -17 Characteristic of low-pass filter applied to data signals. 
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A symmetric filter was used, which does not introduce any phase shift into the signals, but 

d f h t· . A check on the mean values and 50 data points are lost at both en s 0 eac tme serIes. 
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standard deviations of the s· I b f d f . Igna s e ore an a ter the filtenng process showed that no sig-

nificant changes were introduced into these statistics. Fig.7-18 shows part of the same time 

trace as shown in Fig.7-4, including the spurious spike. Both raw and filtered signals are 

plotted in the figure, confirming that the filtering process has partially smoothed out the 

spike without leading to any undesirable distortion of the signals. The effect of detrending 

may also be discernible at the maxima and minima of the signal. 

Fig.7-18 
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7.5. Wal'e and Roll Spectra 

Spectra have been calculated from all three filtered signals for the four experiments. The 

spectra are shown in Fig.7-19 to Fig.7-26. The wave spectra from the two wave probes are 

plotted on one figure, followed by a separate figure with the roll spectrum for each experi-

ment. A resolution of 0.003 Hz was specified for these spectra, allowing the average of 

from 39 to 15 periodograms to be taken (dependent on the length of each experiment), and 

leading to a coefficient of variation between 0.08 and 0.2 for the spectral densities. Zero-

up-crossing periods and spectral widths have been calculated from the spectra, and arc 

given in Table 7-4. The integration was truncated at 0.4 lIz in the calculation of these 
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spectral parameters. Good agreement is shown between the wave spectra derived from the 

two wave probes. The roll spectra may be seen to be narrower than the wave spectra in all 

4 experiments, and to peak near the natural frequency of 0.114 Hz. Although the signifi-

cant wave height is least in experiment 2 (ct. Table 7-5), comparison of the wave spectra 

shows this experiment to have the greatest wave energy in the region of the roll natural fre-

quency, and to give the largest roll standard deviation (ct. Table 7-6). There is some low-

frequency content in the roll spectra, which appears to be greater than the roll response to 

be expected from the corresponding low-frequency content of the wave spectra. This low-

frequency roll motion might possibly be due to the same sort of mechanism as suggested 

for the mean roll angles above; i.e. a roll moment being produced by the restraining lines 

in conjunction with the slowly varying horizontal wave drift forces, and now complicated 

by the dynamics of the slow drift sway motion. 

Exp. No. of 
Zero-up-crossing period [s] Spectral width 

periodo- wave wave 
roll 

wave wave 
roll no. 

zrams probe-1 probe-2 probe-1 probe-2 
1 28 8.95 8.96 8.84 0.64 0.64 0.43 
2 39 7.40 7.48 8.46 0.57 0.57 0.37 
3 33 8.18 8.24 8.72 0.65 0.64 0.38 
4 15 8.90 8.96 8.85 0.67 0.66 0.43 

Table 7-4 Results derived from spectral analysis. 

7.6. Distribution of Continuous Signals 

Normal and Edgeworth distributions have been fitted to the continuous signals for the 

roll angle, and from the wave probes. The parameters of the fitted distribution functions 

are given in Table 7-5 and Table 7-6. Since the signals have been detrended, the mean 

values are zero in all cases. Standard errors have been estimated for the distribution 

parameters, and are included in Table 7-5 and Table 7-6t. In general, the values of skew­

ness and kurtosis are large compared to the standard errors, confirming that these statistics 

are significant. The kurtosis obtained for the surface elevation in experiment -+ forms an 

exception in that it has a negative sign, while it is positive for the other 3 experiments. 

This result should not be taken as significant, since it's standard error is relatively large. 

t U h b made of the stationarity check to obtain the standard errors. There is some difference in 
se as een . . . .. d Th' 

al S "crl'ved from the stationarity analysis and in the dlstnbutlOn flttmg proce ure. IS the parameter v ue u . k . f 
. I I ean \alues and standard deviations are used to estImate the skewness and urtosls or arises because oca m 
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No. of Wave probe - 1 Wave probe - 2 

data std.dev. 
skewness std.dev. 

fml kurtosis 
fm] 

skewness kurtosis 

33980 1.40 -0.19 0.59 1.41 -0.16 0.54 
47900 1.18 -0.25 0.31 1.19 -0.22 0.26 
39744 1.27 -0.15 0.08 1.28 -0.13 0.07 
19100 1.54 -0.21 -0.10 1.55 -0.18 0.13 

Standard errors 
- 0.022 0.024 0.141 0.020 0.024 0.134 
- 0.011 0.013 0.082 0.011 0.010 0.071 
- 0.019 0.018 0.051 0.020 0.014 0.051 
- 0.032 0.034 0.095 0.031 0.031 0.089 

Distribution parameters for continuous signals from wave probes. The 
second half of the table gives the standard errors in the estimates of the 
corresponding parameters. 

Exp. No. of Roll angle 

No. data std.dev. fOl skewness kurtosis 
1 33980 10.5 0.13 -0.31 
2 47900 11.8 0.19 -0.49 
3 39744 10.8 0.16 -0.33 
4 19100 11.3 0.11 -0.62 

Standard errors 

1 - 0.15 0.012 0.067 
2 - 0.12 0.010 0.054 
3 - 0.28 0.009 0.039 
4 - 0.17 0.009 0.038 

Distribution parameters for continuous roll signal. The second half of the 
table gives the standard errors in the estimates of the corresponding parame­
ters. 

Values of skewness and kurtosis different from zero indicate that the underlying sto-

chastic process is not a Gaussian process. Since this analysis aims, in part, to check 

theoretical results derived from an assumption of a Gaussian excitation process, it is unfor-

tunate that this assumption should not be adhered to in the available model test data. 

However, the skewness of the wave elevation may well reflect a tendency to higher peaks 

and flatter troughs that is often claimed for ocean waves. Bitner-Gregersen (1983) gives 

some results for skewness and kurtosis obtained from analysis of wave buoy measurements 

in the northern North Sea, at a water depth of 144m. These statistics are estimated from 

records of only 17 minutes duration and must suffer from considerable random error. 

Selecting the 20 cases given with significant wave height between 4 m and 6 m, there are 13 

each segment in the one case, while overall mean values and standard deviations are used in the other case. 

The difference was considered insignificant for the present data. 
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negative and 7 positive values of skewness in the range (-0.164, 0.069). The positive sense 

of the skewness in the reference is not given. There are 8 negative and 12 positive values 

of kurtosis in the range (-0.367, 0.626). Hence, this data gives some confirmation that the 

values of skewness and kurtosis obtained for the waves in the model tests are not 

unrepresentative of ocean waves. 

If a stationary stochastic process is Gaussian, then an ordinary scalar spectrum pro­

vides an adequate frequency-domain description of the process. Higher order spectra are 

required to describe non-Gaussian processes. Such higher order spectra provide a descrip­

tion of relationships between different frequency components in the process. This descrip­

tion is superfluous for a Gaussian process, since it's frequency components are indepen­

dent. In the frequency domain, the skewness in the wave signal may be interpreted as the 

result of some preferential phase relationship between peak frequency and high frequency 

components in the waves, by analogy with a Stoke's wave. The tuning of the present 

experiments would provide a resonant roll response to the peak frequency component, but 

little response to the high frequency component, thus attenuating the skewness in the 

response. However, the skewness of waves and roll response is of much the same magni­

tude in the present tests. It is possible that an explanation of the skewness in the roll 

response may be found through the interaction of a different set of frequency components; 

viz. the resonant and low frequency components of the roll response. In the discussion of 

the roll spectrum, it was suggested that the low-frequency components might arise through 

the joint effects of the wave drift force and the model restraining system. During the pas­

sage of a large wave the wave drift force tends to increase, and this could produce an 

increase in the roll moment in conjunction with the restraining system. The unidirectional 

nature of such a nonlinear effect would explain a skewness in the roll response. 

The positive kurtosis of the surface elevation indicates a preponderance of large 

elevations as compared to a Gaussian process, while the negative kurtosis of the roll signal 

indicates an opposite effect. Intuitively, it seems unreasonable that the positive kurtosis in 

the excitation process should lead to the opposite effect in the response. The same sort of 

frequency response reasoning as applied to the skewness would also seem to lead to an 

attenuation of the kurtosis. HO\\'C\'er, the negative kurtosis in the roll response can be 
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explained very well by nonlinear damping. In fact the magnitude of the kurtosis obtained 

from the model tests in Table 7-6 compares favourably with the results by numerical simu­

lation in Table 2.6. 

Normal and 2nd order Edgeworth distributions have been fitted to the surface eleva­

tion and roll signals, using the fit directive of the time series analysis program. Observed 

and fitted distribution functions are plotted in Fig.7-27 to Fig.7-31. Most of these figures 

refer to experiment 3, which was selected because the surface elevation signal showed the 

smallest deviation from the normal distribution, in terms of skewness and kurtosis. Fig.7-

27 and Fig. 7-28 show probability density functions and cumulative distribution functions for 

the surface elevation. Close agreement between the observed data and the fitted distribu­

tion functions is exhibited in Fig.7-27. The long negative tail gives an indication of some 

skewness. The cumulative distribution function in Fig.7-28 is plotted on normal probability 

paper, which provides straight lines for Gaussian distributions. This form of plot 

highlights the deviations in the tails of the distribution. A tendency is apparent in the data 

for large negative values (peaks) to occur more frequently, and for large positive values 

(troughs) to occur less frequently than predicted by the fitted Gaussian distribution. This 

tendency is followed somewhat better by the Edgeworth distribution. Fig.7-29 and Fig.7-30 

show the corresponding density functions and cumulative distributions for the continuous 

roll response in experiment 3. The observed probability density lies below the normal den­

sity, both in the negative tail, and at the mean value, while agreeing closely in the positive 

tail in Fig.7-29. The reduced probability of large negative roll angles relative to the normal 

distribution is brought out more clearly in the cumulative distribution in Fig.7-30, and some 

tendency for reduced probability of large positive roll angles may also be indicated. Again, 

the 2nd order Edgeworth distribution follows the observed distribution more closely than 

the normal distribution does. Although experiment 4 was the shortest in duration, it did 

produce the smallest roll skewness and largest roll kurtosis of the set of experiments. As a 

result, this experiment most clearly exhibits a tendency to reduced probability of large roll 

angles relative to the normal distribution, and the resulting cumulative distribution function 

is also included in Fig.7-31. 
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Fig.7-31 Cumulative distribution functions for roll angle in experiment 4. 

x2 tests were applied to test the fit of the normal and 2nd order Edgeworth distribu-

tions to the observed continuous data. In most cases, this test led to a formal rejection of 

the hypothesised distribution functions. However, this formal result should not be taken 

seriously, because: 

(a) The data values are not fully independent, and therefore do not fulfill one of the con-

ditions of the test. 

(b) The test does not allow for the effects of random experimental error. 

(c) The i test is very powerful when applied to such large amounts of data. 

It is sometimes suggested that the first objection (a) can be avoided by reducing the sam-

pIing frequency, in order to reduce the correlation between adjacent data points. This 
., 

approach discards information about the random variable, reducing the power of the \. ~ 

test, and can easily lead to acceptance of a hypothesised distribution by disregard of a suf­

ficient amount of evidence (d. also the discussion in chapter 5). Instead of using the / 

test as a formal test of fit, the \: 2 statistic is used as an indicator of the amount of deviation 

between the observed data and a fitted distribution, in the present context. Provided that 

approximately the same number of degrees of freedom (DOF) are applied, small values of 
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Waveprobe-l Roll angle 
Exp. Normal Edgeworth Normal Edgeworth 

2 
DOF 2 2 2 no. X X DOF X DOF X DOF 

1 747 83-85 187 91-95 498 109-111 241 95-99 2 879 113-115 186 117-121 1468 129-131 490 121-125 3 276 104-106 123 105-109 576 117-119 166 102-106 4 293 81-83 125 79-83 629 9395 196 84-88 

Table 7-7 Results of X2 test for fit of continuous data to normal and 2nd order Edge­
worth distributions. 

the X2 statistic indicate a better fit than large values do. The results in Table 7-7 confirm a 

closer fit to the data by the Edgeworth than by the normal distribution. This applies to 

both the surface elevation and the roll angles. Except for experiment 1, the results also 

indicate a greater deviation from the normal distribution by the roll angles than by the sur-

face elevations. 

7.7. Distributions of Maxima and Minima 

Maxima and minima of the surface elevation and roll signals have been found using 

the level crossing directive of the time series analysis program. The sampling frequency of 

3.58 Hz implies 31.4 samples per cycle at the roll natural frequency, and a maximum error 

of 0.5% in the detected maxima and minima, under assumption of a sinusoidal peak shape 

(cf. section 2.4.1). The greater width of the wave spectrum may well cause a slightly larger 

error in peak and trough heights. 

Rayleigh and constrained gamma distributions have been fitted to the maxima and 

minima of both processes. The parameters of the fitted distributions are given in Table 7-8 

to Table 7-11. 

Table 7-8 

Waveprobe-1 Waveprobe-2 
Exp. 

No. of Maxima Minima No. of Maxima Minima 
no. extrema T} rml 1] rml extrema 1] fml Tl rml 
1 1016 1.85 2.13 1016 1.87 2.14 
2 1755 1.53 1.82 1733 1.56 1.83 
3 1323 1.67 1.91 1317 1.70 1.93 
4 562 2.04 2.39 565 2.06 2.37 

Parameters of Rayleigh distributions for maxima and minima of surface eleva­
tion. 

Probability density functions and cumulative distribution functions for the observed data 

and fitted distributions are shown in Fig.7-32 to Fig.7-39. Distributions of maxima and 
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Waveprobe-1 Waveprobe-2 
Exp. slope f3 scale fr [m] slope f3 scale fr [m] 

no. max. mm. max. mm. max. mIll. max. mIll. 
1 1.69 1.40 1.62 1.50 1.68 1.44 1.62 1.58 
2 1.96 1.44 1.51 1.34 1.93 1.53 1.52 1.44 
3 1.91 1.59 1.61 1.57 1.77 1.65 1.54 1.64 
4 2.70 1.75 2.41 2.15 2.65 1.74 2.41 2.11 

Table 7-9 Parameters of constrained gamma distributions for maxima and minima of 
surface elevation. 

Exp. No. of Maxima Minima Mean From std. dev. 
no. extrema 1] -l- [0] 1] rOl ( 1].!. +1] J /2 rOl (J V2 rOl 
1 1064 15.0 14.6 14.8 14.8 
2 1579 16.9 16.3 16.6 16.7 
3 1275 15.5 15.0 15.3 15.3 
4 592 16.2 15.8 16.0 16.0 

Table 7-10 Parameters of Rayleigh distributions for roll angle maxima and minima. 

Exp. 
Slope parameter f3 Scale parameter fr [0] 

. . . . 
no. maxIma mmIma maxIma mIllIma 

1 2.20 3.37 15.9 18.6 
2 2.42 5.50 19.0 22.6 
3 2.12 3.56 16.1 19.4 
4 3.20 5.38 20.4 21.9 

Table 7-11 Parameters of gamma distributions for roll angle maxima and minima. 

mImma are shown separately, with corresponding density and distribution functions on 

each page. The cumulative distribution functions are plotted on Weibull probability paper, 

which provides a straight line for Rayleigh distributions, while gamma distributions may 

produce curves in this format. (Note that the abscissa values of 5 on the Weibull paper 

apply with the corresponding exponent of 10 shown to their left.) The figures shown apply 

to experiment 3, but these results are reasonably representative of the 4 experiments. 

The Rayleigh parameter for the distribution of maxima and minima of a narrow-

banded Gaussian process may be estimated from the standard deviation of the continuous 

process as (J \.12. This estimate of the parameter is compared with the mean value of the 

Rayleigh parameter estimated from the extrema themselves in Table 7-10. Surprisingly 

good agreement is shown. 

In Fig.7-:32, both fitted density functions follow each other closely. They also follow 

the observed density of the \\avc troughs quite well, except for the smallest wave troughs. 
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This deviation is consistent throughout the experiments, and is related to the width of the 

wave spectrum. The deviation for small wave troughs shows up more markedly in the 

cumulative distribution in Fig.7-33. The slope parameter of the gamma distribution is 1.91 

(d. Table 7-9),and fairly close to the value of 2.0 which coincides with the Rayleigh distri­

bution. The distribution of the wave peaks in Fig.7-34 and Fig.7-35 may be seen to differ 

somewhat from the wave troughs in the 2 previous figures, although the same deviation 

between observed data and fitted distributions is apparent for small wave peaks. The slope 

parameter of the fitted gamma distribution is now 1.59 (d. Table 7-9), and this is reflected 

in a deviation with respect to the fitted Rayleigh distribution, which is apparent both 

around the mode of the density function in Fig.7-34 and at the upper tail of the distribution 

function in Fig.7-35. It appears that the gamma distribution follows the observed data 

slightly better than the Rayleigh distribution does. 

Since the roll spectrum is narrower, the observed probability density of small roll 

angles approaches zero much more closely in Fig.7-36 and Fig.7-38, than for the wave 

elevations. Otherwise, the distribution of roll maxima in Fig.7-36 and Fig.7-37 appears 

much as the distribution of wave troughs in Fig.7-32 and Fig.7-33, though the gamma slope 

parameter is now slightly greater than 2.0 at 2.12 (cf. Table 7-11). For the roll minima, the 

gamma slope parameter is 3.56, and a corresponding reduction in the probability of large 

roll minima is apparent in both the density function in Fig.7-38, and in the distribution 

function in Fig.7-39. Comparing the magnitudes of the roll angles at a probability level of 

0.99, Fig.7-37 shows about 33° for the maxima, while Fig.7-39 shows about 27° for the 

minima from the gamma distribution and observed data, and 32° from the Rayleigh distri­

bution. 

x2 tests have also been applied to the fit of the Rayleigh and constrained gamma dis­

tributions to the data for minima and maxima. The results of these tests are given in Table 

7-12 and Table 7-13. In all cases, the i statistic indicates an improved fit with the gamma 

distribution, although this improvement may not be significant for the wave elevation max­

ima or for the roll maxima. However, the improvement is quite definite for the wave 

elevation minima and the roll minima, and appears to be the largest for the roll angle 

minima. 
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Table 7-12 

Table 7-13 

Table 7-14 
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Maxima Minima 
Exp. Rayleigh Gamma Rayleigh Gamma 

2 
DOF 2 

X2 2 no. X X nOF DOF nOF X 
1 77 19-20 67 18-21 114 17-18 66 17-20 
2 140 30-31 135 28-31 131 27-28 53 27-30 
3 191 28-29 183 26-29 115 22-23 77 21-24 
4 54 20-21 42 16-19 51 16-17 48 15-18 

2 
Results of ~ test for fit of maxima and minima from waveprobe-1 to Rayleigh 
and constramed gamma distributions. 

~Aaxima Minima 
Exp. Rayleigh Gamma Rayleigh Gamma 

no. X2 DOF 2 
DOF X2 DOF 2 

X X DOF 
1 23 23-24 19 20-23 96 26-27 25 19-22 
2 68 29-30 59 26-29 300 33-34 46 29-32 
3 22 26-27 18 23-26 119 27-28 36 22-25 
4 37 21-22 11 16-19 107 22-23 25 1720 

Results of X2 test for fit of roll angle maxima and minima to Rayleigh and 
constrained gamma distributions. 

Exp. Exp. 
Maxima Minima 

frq. 
Obs. Bound Prob- Obs. Bound Prob-

no. 
frq. rOl ability frq. rOl ability 

Rayleigh distribution 

1 106 109 22.7 0.427 70 22.2 1.000 
2 158 138 25.6 0.915 70 24.7 1.000 
3 128 129 23.5 0.111 99 22.8 0.994 
4 59 51 24.6 0.757 29 23.9 1.000 

Gamma distribution 

1 106 104 22.5 0.202 95 21.2 0.761 
2 158 157 25.2 0.100 159 22.8 0.100 
3 128 133 23.4 0.392 118 21.7 0.672 
4 59 65 23.6 0.628 63 22.2 0.463 

Results of tails test for fit of roll angle maxima and minima to Rayleigh and 
constrained gamma distributions. 

The fit of the Rayleigh and constrained gamma distributions to the observed roll 

angle maxima and minima has also been investigated by means of the tails test described in 

chapter 5. The results of this test are given in Table 7-14. For each experiment, tail 

regions of the probability distributions are defined by bounds at the value of roll angle 

which is expected to be exceeded by 10% of the roll maxima or minima. The expected fre-

quency in the tail region is compared to the observed frequency, and the probability that 

their difference will not be exceeded is computed. Little difference between expected and 
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observed frequencies is shown for the fit of both distribution functions to the roll angle 

maxima. Large differences are shown for the roll angle minima, and the Rayleigh distribu­

tion is rejected while the gamma distribution is accepted at a significance level of 10%. 

In their analysis of data obtained from model tests with the FPV Sulisker, Roberts 

and Dacunha (1985) averaged the histograms obtained for roll maxima and roll minima. 

By this means, a more consistent deviation from the Rayleigh distribution was obtained, 

while differences between the maxima and minima were not as apparent as in the present 

analysis. 

7.8. Additional Results from Model Tests on an Elliptical Hull 

A similar analysis to that described above was carried out by Mathisen (1984), based 

on model tests with an elliptic hull. Some of the results of this analysis are reproduced in 

Table 7-15 to Table 7-18. Three of these experiments were carried out at zero speed while 

one test (no. 2729) was carried out at a forward speed of 1 m/s. The model scale was 40:1, 

and the wave elevations are positive for a wave peak (the opposite to the tests above). 

Soft springs located in the still water plane were used to restrain the model from drifting 

off station. 

Table 7-15 

Table 7-16 

Test 2632 2631 2630 2729 
No. of observations 7171 7198 7202 7380 
Mean (cm) -0.09 -0.13 -0.08 -0.02 
Std. deviation (cm) 1.26 1.98 2.34 2.12 
Skewness 0.059 0.128 0.122 0.158 
Kurtosis 0.285 0.049 0.399 1.26 

Distribution of surface elevation for model tests on an elliptic hull in irregular 
waves, taken from Table 4.1 of Mathisen (1984). 

Test 2632 2631 2630 2729 

No. of observations 7171 7198 7202 7380 
Mean (deg) 0.180 0.316 0.543 0.341 
Std. deviation( deg) 5.66 7.77 9.75 7.84 
Skewness 0.0640 0.0858 0.108 0.0599 
Kurtosis -0.244 -0.342 -0.294 -0.648 

Distribution of continuous roll response from model tests on an elliptic hull 
in irregular waves, taken from Table 4.2 of Mathisen (1984). 

The values of skewness and kurtosis obtained for the surface elevation in Table 7-15 

able to those in Table 7-::;' except for the test with forward speed (no. 2729). are compare - , 



7-35 

The skewness in the roll response in Table 7-16 is somewhat less than in Table 7-6, while 

the values of kurtosis are comparable. 

The gamma slope parameters for the wave peaks and troughs in Table 7-17 tend to be 

somewhat less than 2.0, as in Table 7-9, while the gamma slope parameters for the roll 

maxima and minima in Table 7-18 are larger than 2.0, as in Table 7-11. The difference 

between the gamma slope parameters for roll maxima and for roll minima in Table 7-18 is 

less than the corresponding difference in Table 7-11. 

Test 2632 2631 2630 2729 
No. of max. or min. 228 227 226 229 

Rayleigh distribution parameters 
1] for maxima (em) 1.84 2.96 3.45 3.35 
rj for minima (em) 1.75 2.73 3.15 2.92 

Gamma distribution parameters 
Slope par. maxima (13) 1.93 1.86 1.70 1.27 
Slope par. minima (13) 1.84 2.35 1.95 1.60 
Scale par. max.(a) (em) 1.82 2.81 3.02 2.06 
Scale par. min.(a) (em) 1.64 3.02 3.09 2.41 

Table 7-17 Distribution of wave peak and trough heights from model tests on an elliptic 
hull in irregular waves, taken from Table 5.1 of Mathisen (1984). 

Test 2632 2631 2630 2729 
No. of max. or min. 192 193 193 205 

Rayleigh distribution parameters 

1] for maxima (deg.) 8.08 11.1 14.0 11.1 
1] for minima (deg.) 7.96 10.9 13.7 11.0 

Gamma distribution parameters 

Slope par. maxima (13) 2.32 2.38 2.11 3.79 
Slope par. minima (13) 2.60 2.91 2.99 4.83 
Scale par. max.(a)(deg) 8.87 12.4 14.4 4.7 
Scale par. min.(a)(deg) 9.24 13.3 16.9 15.1 

Table 7-18 Distribution of roll maxima and minima from model tests on an elliptic hull in 
irregular waves, taken from Table 5.2 of Mathisen (1984). 

7.9. Additional Results from Full Scale Tests with the CFAV Quest 

Full scale data from sea trials with the CF A V Quest were also subjected to the same 

type of analysis by Mathisen (1985). Some of the results of this analysis are reproduced 

below in Table 7-21 to Table 7-24. The CFAV Quest is a twin-screw, twin-rudder, diesel-

electric research vessel, of 77m overall length, designed for underwater acoustics experi-

ments. The ship is fitted with free-surface roll stabilisation tanks and bilge keels. In order 

to increase roll motion. the flume tanks were emptied for the trials. During the sea trials, 
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the natural roll period was f t d t b 9 8 . es Ima e 0 e . s. The expenments were carried out off the 

coast of Nova Scotia, about 44°N and 62°W, under conditions summarised in Table 7-19 

and Table 7-20. 

Exp. Date Time Wave Ship 

no. 1988 (AST) hdg. RPM Speed (knots) Hdg.(deg) 
39 Dec.6 1255-1358 beam 0 0 175-201 
40 Dec.6 1406-1458 beam 60 5 190 
41 Dec.6 1507-1600 beam 100 10 9 
43 Dec.7 1008-1330 beam 0 0 284-305 
44 Dec.7 1358-1459 beam 55 - 301-305 
45 Dec.7 1505-1612 bow 60 - 207-260 
46 Dec.8 0813-0840 head 60 2 255 
47 Dec.8 1245-1612 head 60 2.4 260 265 

Table 7-19 Time, ship speed and heading during sea trials with the CFAV Quest, 
taken from Table 2.3 of Mathisen (1985). 

Exp. 
Significant Wave Height (m) Wind 

NRC Endeco Sedco Bowdrill Speed Direction 
no. buoy buoy 709 II (knots) (deg) 

39 2.2-1.9 2.1 1.9-2.0 2.1-2.2 4-7 165-195 
40 2.2-2.3 2.3 2.0-2.2 2.2 4-5 95-135 
41 2.3 2.2 2.2 5 125-135 
43 2.8-4.4 2.8-3.9 25-40 165-225 
44 4.4-4.7 3.9-4.4 20-30 215-225 
45 4.6-4.7 4.4 30-35 -

46 7.0 7.2-7.4 40 245-255 
47 5.7-6.0 6.1-6.8 25-40 235-245 

Table 7-20 Wave and wind conditions from sea trials with the CFAV Quest, 
taken from Table 2.4 and Table 2.5 of Mathisen (1985). 

A few wave measurements were made with buoys launched from the ship, but the majority 

of the wave data in Table 7-20 were obtained from Waverider buoys near drilling rigs 

located to the south and south-east of the trials area. Since detailed wave measurements 

were not available from the sea trials, the vertical acceleration of the ship was included in 

the analysis instead. The vertical acceleration signal was obtained from a transducer 

located slightly aft of amidships, on the ship centreline. This response has a flatter fre-

quency characteristic than rolling, and should be more sensitive to any changes in the \vave 

excitation frequencies. It is also expected to have a quite linear input/output behaviour, 

thus providing some basis for evaluation of any nonlinear effects indicated for the roll 

response. The roll signal was obtained from a gyroscope at the same location on the ship. 



7-37 

Experiments 43 and 47 were made of long duration, with the object of obtaining a 

good level of confidence in statistics of the roll motion. However, stationarity checking 

showed that some trend was present in these experiments, and they were subdivided into 
, . 

sections (A, B, C) in the analysis. Checks on the yaw angle also led to portions of the 

data being discarded prior to the analysis, due to change of ship heading. 

Exp. No.of Std. Coeff.of Coeff.of 
No. obs. deviation Skewness Kurtosis 

rgl 
39 21740 0.0242 -0.02 -0.00 
40 29250 0.0321 0.03 -0.02 
41 22823 0.0264 0.04 0.20 
43A 28516 0.0465 0.03 -0.10 
43B 28516 0.0462 0.10 0.17 
43C 28516 0.0477 0.02 -0.06 
44 16353 0.0504 0.00 0.03 
45 18200 0.0645 0.01 -0.14 
46 12541 0.0647 -0.11 -0.18 
47A 37050 0.0600 0.02 -0.06 
47B 38900 0.0536 -0.00 -0.17 

Table 7-21 Distribution of continuous vertical acceleration from sea trials 
with the CFAV Quest, taken from Table 5.2 of Mathisen (1985). 

Exp. No.of Std. Coeff.of Coeff.of 
No. obs. deviation Skewness Kurtosis 

rdeg.l 
39 21740 2.00 0.07 0.17 
40 29250 1.93 0.05 0.37 
41 22823 2.64 0.01 -0.41 
43A 28516 3.13 0.14 -0.23 
43B 28516 2.94 0.16 0.54 
43C 28516 2.92 0.16 0.18 
44 16353 4.94 0.10 -0.33 
45 18200 5.61 0.11 -0.05 
46 12541 5.37 0.04 -0.64 
47A 37050 3.90 0.09 -0.01 
47B 38900 3.68 0.12 0.50 

Table 7-22 Distribution of Continuous roll response from sea trials 
with the CFAV Quest, taken from Table 5.1 of Mathisen (1985). 

The level of roll motion during the sea trials is characterised by a standard deviation 

from 1.90 to 5.60 in Table 7-22, while the model tests provide from 5.70 to 11.80 in Table 7-6 

and Table 7-16. Thus, nonlinear effects may be expected to be less evident in the sea tri-

also The skewness of the roll motion is comparable in both sea trials and model tests, but 

in the sea trials it may be expected to be influenced by the action of wind. There is negligi-

ble skewness in the vertical acceleration in Table 7-21, and the kurtosis is irregular and of 
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moderate magnitude. Taken together with the additional analysis carried out, but not 

reproduced here, this confirms that the vertical acceleration signal may be treated as a 

Gaussian process, to a close approximation. Hence, if there is any non-Gaussian 

behaviour in the wave process, it is not sufficiently strong to be reflected in the vertical 

acceleration response of the ship. The kurtosis values of the roll motion are certainly 

larger than for the vertical acceleration, and are comparable in magnitude to the values 

obtained in the model tests. However, they are not consistently negative in the sea trials. 

Some trend in favour of negative kurtosis for the larger roll angles appears to be present, 

in the experiments where the roll standard deviation exceeds 4°. 

Table 7-23 

Table 7-24 

Exp. SloRe Parameter f3 Scale parameter a r g 1 
No. Maxima Minima Maxima Minima 
39 1.74 1.71 0.0300 0.0298 
40 1.80 1.93 0.0420 0.0440 
41 1.66 1.86 0.0322 0.0351 
43A 1.74 2.10 0.0581 0.0675 
43B 1.57 2.03 0.0534 0.0656 
43C 1.87 2.01 0.0632 0.0674 
44 1.67 1.84 0.0609 0.0669 
45 1.98 2.23 0.0889 0.0994 
46 2.02 1.70 0.0879 0.0814 
47A 1.78 2.04 0.0766 0.0858 
47B 1.79 1.86 0.0684 0.0718 

Parameters of fitted gamma distribution for vertical acceleration, from sea tri­
als with the CFAV Quest, taken from Table 6.4 of Mathisen (1985). 

EX12· Slope Parameter (13) Scale parameter (a) r deg] 
No. Maxima Minima Maxima Minima 

39 1.59 1.91 2.34 2.70 
40 1.58 1.60 2.24 2.21 
41 2.73 2.84 4.42 4.50 
43A 2.08 3.00 4.63 5.39 
43B 1.29 1.76 2.68 3.69 
43C 1.33 2.00 2.74 4.03 
44 2.31 2.73 7.74 8.11 
45 1.74 2.28 7.12 8.51 
46 4.24 4.27 10.36 10.24 
47A 1.71 2.08 4.91 5.57 
47B 1.30 1.75 3.36 4.59 

Parameters of fitted gamma distribution for roll, from sea trials with the 
CFAV Quest, taken from Table 6.3 of Mathisen (1985). 

The slope parameter of the gamma distribution for the maxima and minima of vert i-

I . . Table 7-23 tends to be fairly close to or somewhat below the value of cal acce eratlOn ill 

n i s to a Rayleigh distribution There is a greater spread in the 2.0, which correspo l, . ' . 
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corresponding values for roll in Table 7-24, and values greater than 2 are predominant only 

for the experiments with a roll standard deviation greater than 4°; i.e. experiments 44, 45, 

and 46. None of the model tests yielded gamma slope parameters for roll less than 2.0, 

while half the values from the sea trials lie below 2.0. 

7.10. Correlation between Kurtosis and Slope Parameter of Gamma Distribution 

The mean values of the gamma slope parameters for roll maxima and minima from 

each experiment are plotted against the corresponding values of kurtosis for the continuous 

roll signal in Fig.7-40. Results from model tests with the FPV Sulisker and the elliptic hull, 

and from sea trials with the CFAV Quest are all included. A strong correlation is present, 

indicating that the mean gamma slope parameter f3 can be estimated from the kurtosis of 

the continuous signal. The comparison in Table 7-10 also indicates that the root mean 

square of the extrema (or Rayleigh parameter 1]) can be estimated from the standard devia­

tion of the continuous signal. This being the case, a relationship from chapter 3 may be 

used to obtain an estimate for the gamma scale parameter a=1]/'V'r(4/f3). Thus, it may be 

possible to estimate parameters of the constrained gamma distribution for roll extrema, 

from the standard deviation and kurtosis of the continuous roll response. However, such a 

procedure would lead to a common distribution for the maxima and minima, omitting the 

differences present in the test data analysed here. 
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8. Conclusions 

Most of the theoretical work presented here is based on a single degree of freedom 

differential equation for ship rolling, including nonlinear damping. The basis for this 

assumption is discussed in chapter 1. Necessary conditions for the assumption to apply are 

best fulfilled in moderately severe beam seas, with zero forward speed. The roll axis to be 

used in this context should be chosen so that coupling effects with sway are minimised. 

Two alternative forms of damping function are suggested; namely linear plus quadratic and 

linear plus cubic damping. 

A solution of the equation of roll motion by simulation techniques is developed in 

chapter 2. Froude-Krylov and long wave approximations for the roll exciting moment are 

compared with strip theory exciting moments. It is found advisable to apply strip theory 

roll exciting moments in irregular waves, when high-frequency components are also 

present, while the other approximations are acceptable for low frequencies only. The 

simulation results show that the applied roll equation leads to: 

symmetric roll response, 

a difference in the roll decay behaviour with the 2 damping models, 

• With harmonic excitation -

the increase in roll amplitude with excitation is less than linear near resonance, 

while it is linear away from resonance, 

only very small amplitudes of higher harmonics of the roll response are present, 

agreement between response with the two damping models is only obtained 

within the original range of excitation on which the damping coefficients are 

based, 

• In irregular \vaves -

the increase in the standard deviation of the roll response with excitation is less 

than linear, 

the non-Gaussian nature of the roll response is characterised by a coefficient of 

kurtosis (based on the fourth moment of the response), which increases in I1cga-
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tive magnitude with increasing excitation. 

A Volterra functional polynomial for roll response is derived in chapter 3 and appen­

dix C. Scalar roll response spectra, standard deviations and coefficients of kurtosis can be 

obtained from this representation. In addition to a linear transfer function, a cubic 

transfer function is also required with this technique. The cubic transfer function has 

three frequency arguments. An example of a cubic transfer function is visualised, and 

shown to have a very rapidly varying behaviour near combinations of the frequency argu­

ments related to the roll natural frequency. This implies that considerable effort must be 

expended in the numerical integrations involving the cubic transfer function. Numerical 

results obtained for roll response spectra and standard deviations show good agreement 

with simulation for low response levels, but diverge for high response levels. Results for 

roll response to harmonic excitation are also obtained, and show a corresponding tendency 

to diverge at high response levels. The limited range of convergence is a typical property 

of a truncated Volterra series, since this is a form of perturbation solution. The results 

obtained here correspond to similar work by Dalzell (1976), however he did not report any 

problems with divergence. This difference may well be caused by differing degrees of non-

linear behaviour in the examples considered here and considered by Dalzell. Due to the 

divergent behaviour, the Volterra functional technique is not recommended for general use 

in the evaluation of ship rolling. 

Two probability distributions are investigated as alternatives to the distribution func-

tions normally applied for linear response to waves. For the continuous roll response pro-

cess, the Edgeworth distribution forms an alternative to the Gaussian distribution, since it 

can readily incorporate the non-Gaussian values of kurtosis. However, the Edgeworth 

series has to be truncated for practical use, and this leads to negative probability densities 

for a range of large arguments, with the values of kurtosis that are typical for rolling. This 

is a serious breach of the properties of a probability distribution, indicating that the Edge-

worth distribution is unsuitable for ship rolling, at least for large roll angles. A "con-

strained" form of the generalised gamma distribution is suggested as an alternative to the 

Rayleigh distribution for roll angle maxima or miIli!:la. This distribution is chosen because 

l
't h thl' Ra~'lcidl distribution for small roll angles. while allowing reduced approac l'S ~' 
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probability density for large roll angles. 

Estimation procedures to obtain damping coefficients from both decay tests, and 

from forced rolling tests, are developed in chapter 6 and appendix D. Separate estimators 

are obtained for the two damping models. Both damping models give satisfactory fits to 

the data sets considered. However, the linear plus quadratic damping model consistently 

provides a slightly better fit to the data, and is less sensitive to the range of roll angles 

covered by the data. The present results, and other investigations, indicate that the estima­

tion procedure developed to obtain linear plus quadratic damping coefficients from decay 

tests provides more accurate results than the procedure due to Froude. It is recommended 

for practical application, and further investigation for a wider range of ships. 

Experimental results for rolling in irregular waves from model tests and sea trials are 

analysed with a time series program developed for this purpose. Non-Gaussian behaviour 

of the roll motion is found, as characterised by negative values of kurtosis, and by the 

observed probability distributions. Although estimates of kurtosis are more uncertain than 

corresponding estimates of standard deviation, they tend to provide more robust indica­

tions of non-Gaussian behaviour than observed probability distributions based on short 

time series, and it is recommended that the kurtosis statistic be reported more frequently 

in data analyses. The observed values of kurtosis compare favourably with the values 

obtained by numerical simulation. However, the observed roll motion is also found to be 

asymmetric, as characterised by non-zero mean roll angles and coefficients of skewness. 

For the model tests, it is suggested that this asymmetry is induced by the combined action 

of horizontal wave drift forces and horizontal restraining forces from the soft spring system 

used to keep the model on station. In the sea trials, the asymmetry is believed to be due 

to the effect of wind loads. Alternatively, the asymmetry might be due to the deviation of 

the wave exciting process from a Gaussian process, or from other sources of nonlinearity 

in the roll response. Although the Edgeworth distribution is not recommended, it is found 

to fit the observed range of roll data well. The constrained gamma distribution is also 

found to give an improved fit to the roll maxima and minima, as compared to the Rayleigh 

distribution. 
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The evidence of the present work confirms that the nonlinear nature of the roll 

damping should be taken into account in the prediction of roll response to irregular waves. 

The effect of nonlinear damping on the standard deviation of the roll response is most 

easily obtained by the technique of equivalent linearisation. Evidence is also presented 

showing that the distributions of roll maxima and minima deviate significantly from the 

Rayleigh distribution, and may be approximated by the constrained gamma distribution. 

However, the asymmetry also found in the observed roll motion indicates that some cau­

tion should be exercised in any utilisation of this deviation from the Rayleigh distribution. 
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10. Notation 

In general, notation is defined in the text, where it is introduced. The following table gives 

a summary of most of the notation that is used herein, excluding chapter 5 and the appen­

dices. In statistical contexts, the convention is adopted of using a capital for a random 

variable, and the corresponding lowercase letter for realised values of that random vari­

able. 

A 

A44 

A(w) 

Bl 

B3 

B(w) 

C 

C 

D 

Ds(hs,tw) 

Dl 

D2 

E[.] 

F(t) 

Fr(t) 

FJr(x) 

Fz1W(z I~ 

F(w) 

G l(W) 

G
r

(,,-,) 

G
1 
(~I) 

GM 

11,(11) 

total roll inertia coefficient 

roll added mass coefficient 

added mass matrix 

linear roll damping coefficient (lin.+cubic model) 

cubic roll damping coefficient 

potential damping matrix 

roll restoring coefficient 

restoring coefficient matrix 

design lifetime 

duration of a sea state 

linear roll damping coefficient (lin.+quad. model) 

quadratic roll damping coefficient 

mathematical expectation function 

roll exciting moment 

radiation force 

cumulative distribution function of X 

distribution function of Z conditional on \Ii 

vector of complex amplitude of wave exciting forces 

linear transfer function 

cubic transfer function 

transfer function for radiation force 

transfer function for roll exciting moment 

tranS\l'rse ml'tacl'lltric height 

I krmill' pol~'nomial of order i 



M 

N(z) 

M 

p, 

Sxy(W) 

Syl(W) 

Sy3(W) 

u 

x 

y 

Is(t) 

/.'"(X) 

II! T (hs' T,..) 
s w 

g 

Iz,(r) 
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Significant wave height 

dry roll inertia 

i-th central moment of a distribution 

mass of the ship 

number of response maxima not exceeding z in long term 

number of response maxima not exceeding z in a sea state 

number of response maxima in a sea state 

dry inertia matrix 

probability 

autocorrelation function for X 

wave spectrum 

spectral density function of X 

cross-spectral density function between X and Y 

part of response spectrum in equation (3.22) 

part of response spectrum in equation (3.23) 

wave zero-up-crossing period 

long term zero-up-crossing period for Z 

zero-up-crossing period for Z in a sea state 

speed-dependent complex radiation force coefficient 

speed-independent complex radiation force coefficient 

duration of smoothing of roll excitation 

forward speed of the ship, 

roll exciting moment 

roll angle 

cosine taper, smoothing function 

probability density function for X 

joint probability density for sign. wave ht. and zero-up-cro~s. period 

acceleration due to gra\"ity 

terms in Edgeworth expan~ioIl 

impulse response function for radiatioIl force 



h. 
I 

i 

t 

u 

x(t) 

y(t) 

1(t) 

r(.) 

D.t 

£1" 

/3' 

Volterra kernels (impulse response functions) 

linear impulse response function 

quadratic impulse response function 

imaginary unit 

line integral components of Tjk at aftmost sections 

time 

standardised variate =(x-j1)/rJ 

amplitude of wave spectral line 

amplitude of harmonic roll exciting moment 

roll exciting moment 

roll angle 

roll response vector, Y 1 = roll angle, y 2= roll velocity 

height of the centre of gravity above origin 

height of roll axis 
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height of roll axis to minimise sway coupling through damping 

gamma function 

displacement weight 

time step 

width of frequency band 

standard normal distribution function 

difference frequency= W - wI 

vector random variable defining environmental conditions 

non-dimensional angular frequency = W / wn 

scale parameter of generalised gamma distribution 

scale parameter of Weibull distribution 

slope parameter of generalised gamma distribution 

slope parameter of Weibull distribution 

roll damping function 

linear plus quadratic roll damping function 

linear plus cubic roll damping function 



E 

r{(t) 

K,. 
l 

p 

2 
()" 

T 

¢(u) 

V;(.) 

w 

10-.+ 

purely nonlinear roll damping function 

difference between nonlinear and linearised damping functions 

uniformly distributed, random phase angles 

parameter of Rayleigh distribution 

vector of rigid body ship motions 

sway motion 

roll motion 

yaw motion 

standardised cumulants 

coefficient of skewness 

coefficient of kurtosis 

shape parameter of generalised gamma distribution 

mean value 

water density 

standard deviation 

variance 

time lag 

standardised normal probability density 

digamma function 

angular frequency 

natural frequency. 

displacement volume 
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Appendix B - The Roll Exciting Moment 

An expression for the transfer function of the roll exciting moment is derived in the 

following, utilising a long wave approximation. The present expressions are based on the 

theory, and notation, presented by Salvesen, Tuck, and Faltinsen (1970). In order to pro-

vide some further simplification, the additional assumption of long waves is introduced; 

i.e. the incoming waves are assumed to be long relative to the dimensions of the ship, so 

that the corresponding velocity field may taken to be constant over the ship. The applica-

tion of this assumption follows the approach discussed by Newman (1977). 

In beam seas, it is sufficient if the ship beam and draught are small relative to the 

incoming wavelength, and the long wave approximation should not be unduly restrictive. 

At other heading angles, the assumption is also dependent on the ship length, and may 

well become untenable. 

The potential theory development proceeds from a separation of the total velocity 

potential, <1>, into a time-independent steady contribution due to the forward motion of the 

ship, and an oscillatory part, ¢>T' 

<1>(X ,y ,z ;t) = [-Ux +¢>s(x ,y ,Z)]+¢>T(X ,y ,z)eiwe, (B.1) 

where U is the forward velocity of the ship, ¢>s is the steady perturbation potential due to 

the forward speed of the ship, i is the complex unit, w is the frequency of encounter, and t 

represents time. It is understood that the real part be taken in expressions involving e
iwt

. 

The coordinate system x ,y ,z is flXed with respect to the mean position of the ship, with x 

in the direction of forward motion, z vertically upwards through the centre of gravity, and 

the origin in the plane of the undisturbed free surface. The potentials must satisfy 

Laplace's equation and the appropriate boundary conditions as discussed by Salvesen, 

Tuck and Faltinsen (1970). 

The oscillatory potential may be further subdivided 

6 

), ), ), "'), (B.2) 
VJT = 'I'[+VJD + L.J ~ jVJ j' 

j=l 

where ¢>[ is due to the incoming wave, ¢>D is the diffraction potential, ~ j is the complex 

amplitude in the j-th mode of motion, and ¢> j is the radiation potential due to unit ampli­

tude in the j-th mode of motion. According to classical, linear, gravity-wave theory, the 
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potential due to the incoming wave in deep water is given by 

A. (x Y ) _ igex ik(-xcosf3+ysinf3)+kz 
'PI , ,Z - e , (B.3) 

Wo 

where g is the acceleration due to gravity, ex is the wave amplitude, k is the wave number, 

{3 is the heading angle ({3=O in following seas), and wo= Vki is the wave frequency. 

From Bernoulli's equation, the pressure may be expressed by 

a<I> 1 2 

P(x,y,z;t) = -p(-+-I ~<I> I +gz), 
at 2 

(B.4) 

where p is the fluid density. Expanding and linearising this expression, the dynamic pres-

sure amplitude is obtained (excluding terms corresponding to the restoring coefficients in 

the equations of motion) 

a 
p(x,y,z) = -p(iw-U-)¢>r 

ax 
6 

(B.5) 

In the following, the excitation forces resulting from the incoming wave and diffraction 

potentials, are derived. However, the complex coefficients for the body motion forces are 

also required, and obtained by integrating the pressure forces due to the radiation poten-

tials over the submerged hull, 

a 
Tjk = -p J J n j(iw- U-)¢>k ds , 

s ax 
j ,k=1,2, ... ,6, (B.6) 

where n j' j =1,2,3 are the components of Tf, the unit normal vector pointing into the ship 

hull, n j' j=4,5,6 are the components of rxTf, and r is the position vector on the hull sur­

face. The integration is taken over the mean submerged surface of the hull, S, up to the 

undisturbed free surface. This complex force coefficient is related to the real added-mass, 

A jk' and damping, B jk' coefficients by 

j,k=1,2, ... ,6. (B.7) 

Now, consider the Froude-Krylov force due to the incoming wave potential, 

expressed by integrating the corresponding component of the pressure force acting on the 

submerged hull, 



= -ip I In j(w+kUcos{3)(h ds , 
s 

j=1,2, ... ,6. 
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Inserting the relationship between the wave frequency, and the encounter frequency, 

Wo = w+kUcos{3, 

gives 

~ = -ipwoII¢>[njds, 
s 

j=1,2, ... ,6. 

(B.B) 

(B.9) 

(B.lO) 

The subsequent manipulations are most conveniently carried out in vector form, with 

indicated by z: T, k. Gauss' theorem is applied to replace the surface integral over the sub-

merged body by a volume integral over the displaced volume (V), and a surface integral 

over the still water plane (WP), 

pI = -ipWoI I ¢>[ffds 
s 

= ipwo [I II'V¢>[dv + I I ¢>lfdsj. 
v WP 

(B.II) 

Invoking the long wave approximation, 'V¢>[ may be evaluated at the centre of buoyancy 

(B -+O,O,ZB) to simplify the volume integral, and a Taylor expansion of ¢>[ about the centre 

of buoyancy may be substituted in the surface integral 

pI = ipwo [V\l¢>~ _ [a4>I(B)+ax il4>
l l_aZB il4>1 1

1J 
B ox B OZ BY' J 

(B.12) 

where a is the waterplane area, and ax is the moment of the waterplane area about the y-

axis. In the waterplane, 1f -k, and lateral symmetry of the ship implies that the moment 

of the waterplane about the x-axis is zero. 

Another integral identity, derived from Gauss' theorem, is used to replace the hull 

surface integral for the exciting moments due to the incoming wave, 

!;t = -ipWoI I ¢>ir'Xffds 
s 

= -i pWo [I I I'VX(¢>i"dv - I I (¢>i"Xffdsj. 
~. WP 

(B.13) 

Applying the long wave approximation, as above, the moment is obtained 
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(B.l.+ ) 

where au and ayy are the second moments of the waterplane area about the y and x axes 

respectively. 

Proceeding next to the diffraction force, expressed by 

D . 8 
F j = -p f f n/zw-U-)¢D ds , 

s 8x 
j =1,2, ... ,6, (B.IS) 

The long wave approximation and the body-boundary condition are utilised to express the 

diffraction potential in terms of the incident wave and radiation potentials, 

i [8¢I 8¢I O¢I 1 
¢D = - ¢1-1 +¢2-1 +¢3-1 . 

w 8x B 8y B OZ B 
(B.16) 

Perhaps an intuitive appreciation of this expression may be achieved by considering the 

ship to have a translatory motion corresponding to the velocity of the incident wave 

(evaluated at the centre of buoyancy), and noting that this sum of radiation potentials satis-

fies the body boundary condition in this case. Substituting equation (B.16) in (B.IS) gives 

ip 0 [8¢I o¢I 8¢I 1 Ff = --ffnj(iw-U-) ¢1-1 +¢2-1 +¢3-1 ds, j=I,2, .. ,6. 
w s ox 8x B oy B OZ B 

(B.17) 

Substituting from equation (B.6), 

i [8¢I 8¢I 8¢I 1 Ff = - T j1 --1 + T j2--1 + T j3--1 ' 
w 8x B 8y B 8z B 

j=1,2, ... ,6. (B.18) 

In the present context, only sway, F 2 , and roll, F 4 , exciting forces are required. Col-

lecting the incident wave and diffraction contributions from equations (B.12), (B.14) and 

(B.18) they are obtained as 

F2 = ~+F~ 
1 o¢[ 

= i(pwoV +-T22)-1 
w 8y B 

I D 
F4=Ml+F4 

(B.19) 

1 8¢>[ 
[ ( V ) T] I (B. ~O) 

= i -pwo zB+lln +- 42-
.' w oy B 

I [ere the hydrodynamic coupling coefficients between sway and roll on one side. and surge 
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and heave on the other side are assumed to be negligible' i e T2 -T -T -T -0 Thl's , .. 1- 23- 41- 43- . 

is certainly the case at zero forward speed, and would follow if strip-theory assumptions 

were made for non-zero forward speed. However, high frequency is included in the strip 

theory assumptions, and this conflicts with the present long wave assumption. 

Finally, the roll exciting moment about a roll axis located at Z R (q. v. section 1.5) is 

given by 

F4' = F4+F2·ZR 
1 B¢I 

= -i{pWO[V(ZB-ZR)+ayy]--(T42+ T22ZR)}-1 
W By B 

. . 1 kZB 
= zQ<wosm,B{pwO[V(ZB-zR)+ayy]--(T42+ T22zR)}e (B.21) 

w 

Only added-mass and damping coefficients for sway and roll are required, in addition to 

hydrostatic ship parameters, in order to evaluate roll exciting moments from this expres-

sion. If diffraction effects are neglected, then the terms in T42 and T22 may be omitted, 

leaving the roll exciting moment due to the incident wave alone 

(B.22) 

Only if the centre of roll (zR)is located at the centre of gravity, does the expression within 

the brackets [.] reduce to the metacentric height times the displaced volume. In this case, 

the exciting moment corresponds closely to the expression proposed by W.Froude (1861). 

Location of Roll Centre 

As discussed in section 1.5, a location of the roll axis which minimises coupling with 

sway motion is required. A brief derivation of the location of this axis is given in the fol-

lowing, similar to that given by Roberts and Dacunha (1985), but in the notation used here. 

The starting point is taken as the equations of motion for coupled sway and roll (1.2 

and 1.4), but with the yaw coupling terms deleted: 

(A 22(W)+M)7i2(t) + B2iw)~2(t) 
+ (A 2i w)-M zJ7i4(t) + B24(w)~4(t) - F2e

iwt
, 

(A 42(W)-M zJ7i2(t) + B42(w)~2(t) 

+ (A 44(w) + 14)7i4(t) + B 4iw) ~4(t) + C 4.+ 7]4(t) F 
iwt 

4e . 

SWAY 

(B.23) 

ROLL 

(B.24) 

where the notation from chapter 1 is retained In matrix form, these two equations may 

be rewritten as 



pr+QT+Rr= ~ 
with 

iwt 
e 
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(B.~5) 

(B.26) 

(B.27) 

(B.28) 

A transformation, r TY, is required, such that the roll component is unchanged (Y2=X 2), 

while the transformed sway component refers to a point located a distance ZR above the 

initial origin (y 1=X 1-ZRX 2) , at the required roll centre. (Since small displacements are 

assumed in the underlying theory, it is consistent to approximate sinx2 by x z.) Hence, the 

transformation matrix is given by 

[1 ZR] -1 [1 -ZR] 
T = and T = o 1 0 1 

(B.29) 

Substituting for x in equation(B.25), and premultiplying by the transpose T' gives 

T'PTy + T'QTy + T'RTY = T'S (B.30) 

Multiplying out the transformed inertia matrix 

T'PT= 

rA22(W)+M 

~R(A22(W)+M)+A42(W)-Mzc 

zR(Azz(w)+M)+A42(W)-Mzc ] 

Z~(A22(W)+M)+2zR(A4Z<W)-Mzc)+A44+[4 
(B.3!) 

Clearly, the inertial coupling terms may be eliminated if 

On this basis, the roll inertia with respect to the roll axis ZR may be obtained by sllbstitllt-

ing equation (B.32) in the appropriate term of the matrix in equation (B.3l) 

(B.Y~) 
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Appendix C - Derivations for Volterra Functionals 

Higher Order Transfer Functions 

In this section, expressions are derived for the Fourier transforms of some Volterra ker­

nels of order greater than one, here referred to as higher order transfer functions. The 

derivation starts from a single degree of freedom differential equation for ship rolling, 

including a cubic damping term, and assumed to be written as 

AY(t)+B vi (t)+B:J\t)+Cy(t) = x(t) (C.1) 

where A,B1,B3,C are constant coefficients. 

A Volterra functional series is required, to express the response, y (t), as a functional of 

the excitation, x(t), in the form 

y(t) = H[rx(t)] 
00 

n=l 

n=oo 00 

= :E rn J . .. Jhn(T1, •.. ,Tn)X(t-T1) •.. x(t-Tn)dTl ... dTn (C.2) 
n=l 

-00 

where r is an arbitrary constant, Hn (n =1,2, ... ) represent the terms of the senes III 

operator notation, and hn (.) are the kernels of the series. The constant r is included to 

identify terms of various order in the derivation, and it may subsequently be set to unity. 

A shorthand for the terms in the functional series is given by 

n=1,2, ... (C.3) 

The derivation may conveniently be carried out by utilising the functional series for the 

inverse system, as indicated by Schetzen (1980, chp.8). This functional series is expressed 

by 

x (t) = K[y (t ) ] 
00 

(CA) 

n=l 

where Knare the terms of the series for the inverse system. Clearly, the linear. first term 

of this series is given by 

-1 

In operator notation. the required result may be expressed by H = K . 

(C.S) 

According to 
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Schetzen, this inverse exists, provided the inverse of the linear operator (K;l) is stable for 

some finite range of excitation amplitude, and this is assumed to be the case in the follow-

mg. 

When the functional series (C.2) is substituted into the differential equation (C.I), includ-

ing the factor r on the excitation, it follows that 

00 00 

n=l n=l 
00 00 00 

00 

(C.6) 

By separating and equating terms in like powers of r, the following expressIOns are 

obtained 

x(t) = AYl(t)+B tYl(t)+CYl(t) 

= K1[Yl(t)] 

o = K1[Y2(t)] 

0= K1[Yit)]+Byi:(t) 

0= K1[Yit)]+3Byi:(t)Y2(t) 

o = Kl[y5(t)]+3B3rY:(t)Y3(t)+Yl(t)Y~(t)] 

(C.7) 

(C.B) 

(C.9) 

(C.lO) 

(C.II) 

This set of equations may be solved sequentially to the required order. Operating on both 

sides of equation (C. 7) by K;l gives 

Yl(t) = K;l[X(t)] (C.12) 

Similarly from equation (C.B) 

1 (C.l3) 
yit) = K; [0] 
Hence, it follows that yit ) is identically equal to zero, since any first order kernel gives 

zero response to zero input. Continuing in the same manner with equations (C.9) to 

(C.II) 

Y3(t) = -B3K;1[.Y:(t)] 
(C.l'+) 

Yit) = -3B3K;1[.Y:(t)Yit )] 

=0 
(C .15) 

Ys(t) = -3B3K;1[.Y~(t)Y3(t)+_\'1(Y)Y~(t)] 
= - 3B 3K;1[.Y: (t)y 3(t)] 

Schetzen applies an elegant technique to obtain the higher order transfer functions \'ia box 

(C .16) 
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diagrams, on the basis of the above expressions. Instead, the underlying anal)1ic expres-

sions are applied here, resulting in a lengthier derivation, but avoiding an explanation of 

the box diagram technique. Since the linear response derivative figures in equations (C.l'+) 

and (C.16), an additional linear term is introduced, identified by a prime, to handle this 

derivative in the following. 

00 

= J h'l(r)x(t-r)dr (C.17) 

-00 

Expanding the expression for the trilinear term in equation (C.14), and substituting Hl=K;l 

gIves 

Y 3(1) ~ - B 3HI [J J J h' I (<7 I)h' I (<72)h 'I (<73)X(I-<7 I )X (1-<72)X (1-<7J d<7l d<72d <7,] 
-00 

00 

(C.18) 

Applying a change of variable, gives 

00 

(C.19) 

From this expression, the third order kernel may be identified as 

00 

hirl,r2,T3) = -B3 J h\ (rl-r4)h 'l(r2-r4)h 'l(r3-r4)h l(r4)d r4 
(C .20) 

-00 • h' d d Frier transform of the third The cubic transfer function is obtamed from the t Ir or er ou 

order kernel 
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00 

-00 

00 

-00 

00 

-00 

·du ... du 1 4 (C.21) 

where a change of variables has again been applied. This multiple integral is clearly separ-

able into 4 simple integrals, which are seen to be the Fourier transforms of first order ker-

nels, leading to linear transfer functions. Hence, the cubic transfer function simplifies to 

G3(W1,W2,W3) = -B3G' 1(w1)G' 1(w2)G' 1(w3)Gl(wl+w2+w3) (C.22) 

Finally, substituting G' 1 (w )=i wG 1 (w) to obtain the cubic transfer function in a convenient 

form 

(C.23) 

Note that the cubic transfer function is symmetric in its arguments; i.e. it takes the same 

value independent of the order of the arguments. 

The linear transfer function, obtained from equation (C.l) when B3=O, is given by the stan-

dard result 

(C.24) 

Next, the fifth order transfer function is derived, using the same procedure as above, but 

omitting some of the details. Substituting for Yl(t) from equation (C.l7) in equation 

(C.l6), and introducingY3(t)=H'3[x(t)] to handle this derivative, (with associated kernel h'3 

and kernel transform G' 3)' leads to 



c-s 

00 

00 

00 

(C.2S) 

The fifth order kernel may now be identified as 

00 

(C.26) 

By taking the fifth order Fourier transform, an expression is obtained for the fifth order 

transfer function 

00 

00 

-i[w u + ... +w u +u (w + ... +w )] 
11 SS 61 S d d . e T •• , T 

1 6 

= -3B3G'l(W1)G'l(W2) G'3(W3,W4,WS) G1(W1+ ... +WS) 

= 3iB3WIW2(W3+W4+(VS) G1(W1) G1(W2) G3(W3,W4,WS) G1(W1+ ... +WS) (C.27) 

this form of the fifth order transfer function is not symmetric, and the - symbol is used to 

indicate this. In order to obtain a symmetric version, it is necessary to take the mean of 

the different expressions resulting from permutation of the arguments. In this case, 10 dif-

ferent expressions are obtained by selecting 2 of the five arguments of Gs to be the argu-

ments of the first two G
l 

terms. Thus, the symmetric form of the fifth order transfer func-

tion may be written as 



C-6 

( 1 [A A 
GS WI' ••• ,WS) = ~ Gs(1,2,3,4,5)+Gs(1,3,4,5,2)+Os(1,4,5,2,3)+Os(1,5,2,3,4) 

+ OS(2,3,4,5,1)+ 0 5(2,4,5,1,3) +Os(2,5,1,3,4) 

+ 0 5(3,4,5,1,2)+0 5(3,5,1,2,4)+0 5(4,5,1,2,3)] 

where the following shorthand has been applied 

(C.28) 

O(i,j,k,l,m) = G5(Wi,Wj,Wk,W/,Wm) (C.29) 

The symmetric fifth order transfer function, and the cubic transfer function in equation 

(C.23) correspond to results obtained by Dalzell (1976), when nonlinear terms other than 

the damping, B 3 are set to zero. However, an alternative method of deriving these results, 

called the "harmonic input method," was used by Dalzell. 

Response Spectrum 

To start this discussion of the derivation of the response spectrum, the autocorrelation 

function Rxx(r) of a stationary process x(t) is first defined. The autocorrelation is obtained 

as the average of the product of two values of the process, separated by a time lag of T. 

This average is indicated by the symbol <. >, and may be taken to be a statistical expecta-

tion across the ensemble of random processes, or a time average along one such process, 

if the process may be assumed ergodic. 

Rxx(r) = <x(t)· x(t +r) > (C.30) 

The stationarity and ergodicity assumptions, mentioned above, must be sufficiently strict to 

ensure that all higher order averages involved in the expressions are included. Weak sta-

tionarity and ergodicity, including only second order moments, is insufficient here. 

By the Wiener theorem of autocorrelation (cf. Schetzen), the autocorrelation function, 

Rxx(r), and spectral density function, Sxx(w), of a stationary random process, x(t), form a 

Fourier transform pair: 

00 

(C.31) 

-00 

00 

. d x (t), expressed by a Volterra functional The response to a stationary ran om proces';, -

series. as given in equation (C.2), is stationary, provided the kernels. hn (·)(n=1,2, -' .), 
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are time invariant. Convergence and stability requirements are implicit in this statement, 

since they are necessary for the existence of the functional series representation. The 

autocorrelation function of the response may then be expressed by 

Ryy(r) = <y(t)·y(t+r) > 
00 00 

m=ln=l 

= < HI [x(t)]H I [x(t +r)] + HI [x (t)]H2[X(t +r)] +H2[x (t)]H I [x (t +r)] 

+HI [x(t)]H3[x(t +r)] +H3[X (t )]HI [x(t +T)] +H2[x(t)]H2[x(t +r)] + ... > (C.33) 

In the present case, the approximation of a response by a functional polynomial truncated 

after the third term, with even order terms equal to zero, is of primary interest. The 

derivation of the response spectrum for this case from the expressions given above is 

lengthy. Instead, the result given by Rugh (1981) is quoted, assuming the excitation is a 

zero-mean, Gaussian process, 

Syy(W) = G I (w)G I (-w)Sxx(w) 
00 00 

+ :" [GJ(W) J G3(-w,wJ,-wJ)dwJ +GJ(-w) J G,(W,Wl>-WJ)dWJ]S=(W) 
-00 -00 

00 

00 

(C.34) 

The validity of this expression requires the cubic transfer function to be symmetric in its 

arguments. Noting that the transfer functions are complex, while the excitation spectra are 

real functions, a little complex algebra may be applied to reformulate the expression in a 

convenient manner. Denoting complex conjugates by an asterix (*), it is evident from the 

Fourier transform relationship between transfer functions and real kernel functions, that 

• 
Gn(-wl' ... ,-wn) = Gn(wl' . .. ,wn) 

(C.35) 

Hence, the squared modulus of a transfer function is expressed by 

2 

1 Gn(wl' ... ,wn) 1 = Gn(wl' ... ,wn)·Gn(-wl' ... ,-wn) 
(C.36) 

The following relationship is also applied 

'1' 2 

IZ 1+ Z::I- = IZll-+Z:Z::+ZIZ;+l z21 
(C .37) 
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where Zl and Z2 are complex, to obtain 

00 2 

Syy(w) = I G,(w)+ :" J G3(w,w"-w,)S,,,(w,)dw, I S",(w) 
-00 

00 

6 2 

+ 2 J J I GiW-WI-W2'Wl'W2) I Sxx(W-WI-W2)Sxx(Wl)Sxx(W2)dwldw2 
(27r) -00 

(C.38) 

This agrees with the expression applied by Dalzell (1976). 

Some further simplification is advisable prior to numerical calculation of the response 

spectrum. Two parts of the above expression for the response spectrum are considered 

Syy(W) = Syl(W)+Sy3(W) 
00 2 

Syl(W) = I G1(w)+ ~ J GiW'Wl'-Wl)Sxx(Wl)dwl I Sxx(W) 
27r 

-00 

00 

6 2 

Sy3(W) = J J I GiW-WI-W2'Wl'W2) I Sxx(W-W1-W2) 
(27r)2 -00 

(C.39) 

(C.40) 

(C.4l) 

Substituting the cubic transfer function from equation (C.23) into the integrand of the first 

part, Syl(W), gives 

(C.42) 

Inserting this expression for the cubic transfer function in equation (C.40), and replacing 

the two-sided integral by a one-sided integral (since the integrand is an even function of wI) 

gIves 

3 00 2 2 

Syl(W) = I G 1(w)--iB 3wGi(w)J W: I G1(w1) I Sxx(wl)dwll Sxx(W) 
7r o 

2 
2 3 00 2 I 

= I G1(w) I ·11--iB3wG 1(w) J W: I G1(w1) I Sxx(w1)dw1 Sxx(w) (C.43) 
7r 0 

Consider next the cubic transfer function in the integrand of equation (C.4l), and substi-

tute from equation (C.23) 



C-9 

2 

I G3(W-WI-W2,WI,W2) I = G3(W-WI-W2,WI,W2)· G3(-W+WI+W2,-WI,-""'2) 

= iB 3( W-W1-W2) WI W2 G I (W-W1-W2) G I (WI) G I (W2) G I (W-W1-W2+W1 +W2) 

. iB 3( -W+WI +W2) (-W1)( -W2) G I (-W+WI +W~ G I (-WI) G 1 (-W2) 

. GI(-W+WI+W2-WI-W2) 
2 2221 121 2 2 2 

= B 3 (w-W I-W2) W1W2 G1(W-WI-W2) . G1(WI) I ·1 G1(W2) I ·1 G1(W) I (C.44) 

Hence, replacing this expression in equation (C.4l) 

2 2 

. I G1(w l ) I . I G1(w2) I . Sxx(w-wl-w2)Sxx(wI)Sxx(w2)dwldw2 (C.45) 

Note that both input and response spectra are real, even functions, extending from -00 to 

00. Hence, ordinates of one-sided spectra are given by twice the ordinates of the two-sided 

spectra for positive frequencies. To obtain the spectra dimensioned so that the area under 

the spectrum gives the variance, it is necessary to divide the spectra by 21r, as may be seen 

by considering the variance as given by R(O) in equation (C.32). 
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SUMMARY: Methods are developed for the estimation of roll damping coefficients from both decay and forced rolling tests. 
Two nonlinear damping models are considered in a single degree of freedom equation for the roll motion. The damping 
models are referred to as linear plus quadratic damping and as linear plus cubic damping. The estimation techniques are 
checked against numerical simulations and applied to model test data. Reasonably good fits to the model test data are obtained 
for both damping models, with the linear plus quadratic damping model showing some advantage over the, linear plus cubic , 
damping model. 

1. INTRODUCTION 

The calculation of wave-induced rigid ship motions by means 
of various strip theories, as described in Refs. 1-4, has be­
come standard practice in the past decade. All but one of the 
coefficients of the equations of motion, required by these 
techniques, can be numerically determined by means of 
linear potential theory. The exception is the roll damping 
coefficient. Authors of all the strip theories cited previously 
have found it necessary to introduce a viscous roll damping 
term in addition to the linear wavemaking damping, in order 
to obtain reasonable predictions of the roll motion. Some 
progress is now being made on the numerical determination 
of viscous roll damping coefficients (cf. Refs. 5-7), but it 
seems likely to be several years before generally applicable 
methods wlll be available. Empirically determined roll 
damping coefficients are thus required, both in current roll 
motion predictions, and for the validation of the viscous 
clamping theories under development. 

When only linear damping is conSidered, then the single 
damping coefficient may be obtained from the logarithmic 
decrement of a decay test, as indicated by Conolly(S). 
Current methods for the estimation of linear and nonlinear 
damping coefficients from decay tests are described by 
Dalzell(S) and Himeno(10). Basically, these methods equate 
the loss in potential energy over each cycle of the decay 
test to the energy diSSipated by damping with an assumed 
sinusoidal motion at the mean amplitude for that cycle. 

This paper presents techniques for the estimation of roll 
damping coefficients from both roll decay tests and from 
forced rolling tests. These techniques are believed to 
represent an improvement on current methods for the 
analySiS of decay tests, because the concept of a mean 
amplitude for each cycle is avoided, and the associated 
approximations are largely eliminated. Two nonlinear 
mathematical models are conSidered; viz. linear plus quad­
ratic damping, and linear plus cubic damping, in an uncoupled 
roll equation. Nonlinear roll restoring moments have also 
been considered in many other papers, but are omitted here 
in the interest of simplicity. Results obtained on this basis 
should be useful for the majority of ships in moderate 
seaways, since the viscous damping term is essential even 
at fairly small roll amplitudes (Refs.1-4). On the other 
hand, the nonlinearity in the roll restoring moment is clearly 
more important in capsizing Situations, and possibly also for 
ships of unusual form or barges with very low freeboard. 
A more general approach applicable to the analysis of decay 

• A. S. Veritas Research, Hcevik, Norway. 
t Department of Mechanical Engineering, BruneI University, 

Uxbridge, UK. 

tests, including nonlinearities in both damping and restoring 
terms has recently been published by Roberts (11). 

Although an uncoupled roll equation is assumed in this paper, 
it is recognised that the complete linear equations describing 
wave-induced ship motions include coupling terms between 
rOll, sway, and yaw. These coupling terms are assumed to be 
of smaller order of magnitude than the nonlinear roll damping 
terms included here. This Simplifies the experiments and 
the analysis. There is some additional justification for this 
assumption in the case of roll decay and forced rOlling tests, 
as opposed to the case of wave-induced motions, since there 
is no external excitation of the sway and yaw motions in 
these tests. Hence, the sway and yaw motions will be rela­
tively small, and the coupling effects correspondingly reduced. 
However, these neglected coupling terms may be of greater 
magnitude than some of the higher order terms included in 
the present perturbation analysis of roll decay tests, though 
a discussion of the relative magnitudes of such terms is 
omitted from this paper. 

Ship rolling is recognised to be a strongly r~sonant motion. 
This implies that the roll damping is subcritical. Advantage 
will be taken of this fact in assuming that the linear damping 
coefficient is small relative to twice the natural frequency, 
as will be discussed in Section 3. 1. 

2. MATHEMATICAL MODEL 

The uncoupled mathematical model of ship rolling, as 
discussed previously, may be assumed written in the simple 
form 

Ax + l3(i) + Cx = F (1) 

where ~ is the roll angle, A is the inertia coefficient (dry 
structure plus fluid component), C is the restoring moment 
coefficient, and F is the excitation moment. Two alternative 
forms are considered for the damping function (13) 

132 = Dlx + D2x I.l-I 
133 = Blx + B3x3 

(2) 

(3) 

referred to as linear plus quadratic damping and linear plus 
cubic damping respectively. From phYSical ~easoning it is 
assumed that all the linear coefficients (A BCD ) ~re 
positive, and the inertia and damping coeffici!~t~ m~y be 
frequency dependent. The intention is to derive methods of 
estimating the damping coefficients from experimental data. 
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In order to simplify the algebra slightly, the inertia coeffi­
cient Is eliminated, and the two versions of the equation of 
motion are rewritten as 

where b l = BI/A, £b 3 = B3IA, c = CiA = wfi, d l = DI/A, 
Ed2 = D21 A, f = F I A and Wn denotes the undamped natural 
frequency of the ship or model. The small parameter t 

(4) 

(5) 

(0<£< 1) is included for use in the perturbation expansion 
below, indicating that the nonlinear damping moment terms 
are assumed to be smaller in magnitude than the linear 
damping moments. This will always be the case for non-zero 
linear damping and sufficiently small roll velocities. 

3. ROLL DECAY 

In a roll decay test, the ship or ship model is first given some 
initial roll displacement by static or dynamic means. The 
external moment is then removed, and the gradual decay of 
the roll motion is recorded. This corresponds to an initial 
value problem in equation (1), with zero excitation (F = 0). 

To describe this roll motion, a perturbation solution is 
sought in the form of a power series in the small parameter, 
E. That is, 

(6) 

where t represents time, "0 is referred to as the basic solu­
tion, \'1 as the first order term, etc. The initial roll displace­
ment is defined at time t = 0, 

3.1. Decay with linear plus quadratic damping 

This case corresponds to equation (4) with f = O. The pertur­
bation expansion (6) is inserted into equation (4) and equations 
are separated in powers of E in the form 

~o + dlxO + cXo = 0, 

Xl + dl ~l + Ct"l = - ti2i~sJ!n(.~0), 

x2 + til ~2 + CX 2 = - d2.YOY1sgn('YO+EXl)', 

(7) 

(8) 

(9) 

These equations may be solved sequentially to any desired 
order. The right hand sides of the equations may effectively 
be viewed as excitation terms, defined by the lower order 
solutions. The sgn (or sign) function is introduced to elimi­
nate the absolute value involved in the quadratic damping 
term, and is defined by 

\ +1, \'>0 
sgn(x) = \ 0, ,\,=0 

'-l,x<O 
(10) 

In deriving equations (7-9), sgn(x) has been approximated by 
using only the terms of the expansion (6) appropriate to the 
order of the particular equation. For example, in deriving 
equation (8) to the first order in E we observe that 

£d2x2 sgn(xo + E'~l + £2X2 + •.• ) "" Ed2.Y~sgn(.Yo). (11) 

Subcritical dampin!! (d~ < 4c) is characteristic for ship roll­
ing, giving the familiar solution to equation (7) in the form 

(12) 

wher.e XOI and 801 are constants determined by the initial 
condItions. The phase angle (801 ) is eliminated in the follow­
ing analYSis by suitable choice of the time origin; i.e. t = 0 
is at the first maxima or minima included in the decay 
analysis. Note that X01 is not equal to the value of the first 
roll maxima or minima included, but rather the initial 
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amplitude of a purely linear decay process. The roll velocity 
due to the basic solution is required in the determination of 
the right hand side of equation (8). It is obtained by differen­
tiation of equation (12) and is given by 

(13) 

In order to simplify the phase angles in the followinr; 
analysis, we apply the assumption that the linear damping 
coefficient is small compared to twice the natural frequency. 
This is consistent with the previous subcritical damping 
assumption so that equation (13) simplifies to 

(14) 

After substituting this expression for the roll velocity, the 
right hand side of equation (8) may conveniently be expanded 
as an odd Fourier series in the form 

8 sin(PWnI) 

7IP(P + 2)(P- 2)' 
(15) 

The homogeneous solution to equation (8) takes the same 
form as the basic solution, equation (12), and need not be 
considered separately. Thus, only a particular integral is 
required. Considerinp; only the first harmonic term of this 
Fourier series in the excitation of equation (8), the first 
harmonic of the response is then in phase with the basic 
solution given in equation (12), with an amplitude 

8d2 wn Xu = -- X2 e-dlt 3rrri
l 

01 • (16) 

This amplitude decays twice as quickly as the basic ampli­
tude, and now also involves the quadratic damping coefficient. 
The response to the higher harmonics of the Fourier series 
(15) may be neglected in comparison with the response to the 
first harmonic. There are two reasons for this: (a) the higher 
harmonic excitations have small amplitude compared to the 
first harmonic, and (b) the first harmonic occurs at the 
natural frequency in the decay test, and the strongly resonant 
roll response will tend to filter out higher frequency 
excitations. 

By continuing the above analysis to higher orders of E it 
quickly becomes apparent that the amplitude terms of 'the 
solution form a geometric series. Summation of this series 
gives 

(17) 

This summation is valid for all t ~ 0 provided that the follow­
ing convergence criterion, based on the common ratio of the 
geometric series, is satisfied. That is 

SEd2XOl wn 
--3~ < 1, t ~(). (1S) 

This condition corresponds to the initial assumption that the 
nonlinear damping moment is less than the linear damping 
moment, if harmonic rolling with frequency wand amplitude 
8X 01 1(371) is considered. n 

In accordance with the usual analysis of roll decay data we 
wish only to consider the sequence of absolute values of roll 
maxima and minima ~r, r = 0, 1, 2, ... ThiR sequence is 
simply obtained from the time function in equation (17) by 
setting 

1= rrr/w,l> r = 0,1,2, ... (19) 

and takes the form 

_ 3rrd1XOl 
~r-----.~~~------

3rrd1exp{~1::} - 8td2X01 wn 
(20) 

) 



The undamped natural frequency (Wn) may be taken as the 
mean frequency of the decay record. If significant, systematic 
variation in the frequency is apparent during the decay pro­
ceSS then this is an indication that analysis by this technique 
may 'be inappropriate. There remain three unknowns in 
equation (20), XOI ' dl , and €d2 • Hence, at least three roll 
maxima and minima must be available from a decay test to 
provide estimates for these three parameters. A much 
larger number of maxima and minima will usually be avail­
able in practice, and some form of curve fitting technique 
is appropriate to minimise the effect of random error. 

An appropriate error term Or may be defined as 

6 r = ~rOBS - Er EST (21) 

which determines the difference between the observed roll 
extrema (~roBs) and the calculated value (~rEST) obtained 
using estimates of the unknown parameters in equation (20). 
The sum of the squared error terms (i.e. ~6~) is referred 

T 

to as the residual sum of squares, and minimisation of this 
function leads to optimal estimates of the damping coef­
ficients. The residual is a fairly complicated, nonlinear 
function of the three parameters (XOI ' dl , €d2 ) and may have 
a number of local minima. Some care may be necessary to 
ensure that the minimum most appropriate to the present 
problem is found. For example, a nonlinear least-squares 
technique was tried initially, but occasionally resulted in a 
negative value of the linear damping coefficient. Such nega­
tive values are not believed to be physically realistic, and 
may be due to the effects of experimental errors. Some 
form of constrained minimisation technique is therefore to 
be preferred, with the constraint limitinll; the linear coef­
ficient to positive values. After estimatin~ the parameters, 
it is necessary to check that the convergence criterion given 
in equation (18) is satisfied. If this is not the case, then the 
largest roll angle must be omitted from the decay data, and 
the numerical estimation repeated. 

The value of the inertia (A) is required to convert to the 
normal form of the damping coefficients (D I , D2 ). The inertia 
may be estimated from the natural frequency and the restor­
ing coefficient (C), determined from the transverse meta­
centric height (GM) and displacement weight (V') of the vessel, 
since 

(22) 

3.2. Decay with linear plus cubic damping 

ThiS case corresponds to equation (5) with f = O. The pertur­
bation expansion (6) is inserted into equation (5) and the 
equations are again separated into powers of (. The result­
ing series of equations is as follows: 

-"0 + bl-"o + c'"o = 0, 

"1 + b1-"1 + C'"l = - b3"~, 

·"2 + b1 "2 + CX2 = - 3b3i-~~1' 

(23) 

(24) 

(25) 

The left hand sides of equations (23-25) correspond closely to 
equations (7 - 9), but the form of the right hand side s is dif­
ferent due to the different damping model. The solution is 
simplified somewhat for this model, since it is not necessary 
to introduce the sgn function nor a Fourier series expansion. 
The basic solution again takes the same form as in equation 
(12). That is 

(26) 

Proceeding as previously, the phase (801 ) is set to zero, and 
the roll velocity is Simplified as in equation (14) with the 
assumption that the linear damping coefficient is small 
relative to twice the natural frequency. Substitutlon into the 
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TABLE Y. Coefficients gp of the series defined by 
equation (29) 

p gp 

0 l' 0 

1 0'375 

2 O· 21093750 

3 0'13183594 

4 O' 08651733 

5 0'0583992 

6 0'04014945 

7 0'02796122 

8 0·01966024 

9 0'01392600 

10 O'{)O992228 

right hand side of equation (24) provides an excitation com­
prising first and third harmonic terms in the form 

If we consider only the first harmonic term of this 'excita­
tion', the first harmonic of the response is then in phase with 
the basic solution (26), with amplitude 

3b X3 ht~ 
X - 3 01 -'1 -3b 1//2 

11 - 8b e • 
1 

(28) 

Tn this case the amplitude decays three Umes as quickly as 
the basic solution amplitude, and now involves the cubic 
damping coefficient. The response to the third harmonic 
term in the excitation, equation (27), is neglected with the 
same reasoning presented in Section 3.1. By continuing the 
above analysis to higher orders of E, it becomes apparent 
that the solution may be expressed as the summation of a 
series in the following form 

where the calculated values of the coefficients gp are given 
in Table t, and the summation is taken to the k-th order in E. 

Since the values of the exponential terms are ~ 1 for all 
t :;, 0, and the values of the coefficients (gp) decreasing, 
convergence of this series is obtained for all t;. 0 provided 
that 

(30) 

This condition corresponds to the initial assumption that the 
nonlinear damping moment is less than the linear damping 
moment, if harmonic rolling with amplitude X and frequency 
"11 is considered. The sequence of absolute v~tues of roll 
maxima and minima is obtained from the time function in 
equation (29) by substituting for t from equation (19) and 
given by 

k 

~r = P~O [gpX01(Eb3XniwIVbl)Pe-<2P+liJ1YTT/(2Wn>1. (31) 

A constrained minimisation technique, as discussed in 
Section 3.1, is again appropriate to estimate the Wlknown 
parameters Xol,l) l' and f.b 2 from equation (31). After 
estimating the parameters, it is necessary to check that the 
convergence criterion given in equation (30) is satisfied. 
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4. FORCED ROLLING 

Forced rolling tests are usually performed in one of two 
different ways: 

(a) Monofrequency motion 
Monofrequency, sinusoidal roll motion is imposed, with 
the other degrees of freedom restrained, and the neces­
sary exciting moment is recorded. This type of test is 
only performed at model scale, with motion imposed by 
hydraulic servo-actuators, or Scotch-yoke mechanisms 
as described in Ref. 12. The roll axis must be fixed in 
this case. Its location will affect the results, and should 
be taken into account if the damping coeffiCients are 
subsequently used in a prediction model. 

(h) Monofrequency excitation 
A monofrequency, sinusoidal roll forCing moment is 
applied and the resulting roll motion is recorded. In 
model tests, this excitation is usually generated by 
means of rotating weights, or precessing gyroscopes as 
described in Ref. 13. At full scale, with forward speed, 
this type of excitation may be approximated by appro­
priate control of fin stabilisers or rudders. 

Harmonic analysis of the response signal is required in both 
cases including accurate determination of the phase angles 
betwe~n exciting moment and roll response. The analysis of 
these two types of forced rolling tests will be considered 
separately in the following diSCUSSions. 

4.1 Monofrequency motion 

In this case the prescribed motion may be expressed as 

x(t} '" Xl cos(wt} (32) 

where Xl is the amplltude, and w is the frequency of the 
excitation. The exciting moment is then Simply obtained by 
substituting the prescribed motion into the equation of 
motion (1), with the chosen damping model. 

4.1.1 Linear plus quadratic damping 

Substituting equation (32) into equation (I) with the linear plus 
quadratic damping model (2), and applying a Fourier expan­
sion to the quadratic term gives 

F = (C - Aw2)Xl cos(wt) - (DlX1 w 

+ :. D2X~w2) sin(wt) 

+ D2X~w2 ~ 8 sin(pwt) 
P=3,5,'" Trp(P + 2)(p- 2) 

(33) 

An estimation scheme to evaluate the damping coefficients 
is easily derived from this equation. The quadratic damping 
coefficient (D2 ) may be obtained by equating the amplitude of 
the third harmonic of the exciting moment (F 3) with the third 
harmonic term in equation (33), giving 

(34) 

USing the value of the coeffiCient, an expression for the 
linear damping coefficient (D l ) may be found by equating the 
out-of-phase first harmonic component of the exciting 
moment with the first harmonic sine term in equation (33). 
This coefficient is then given by 

(3S) 

where F 1 is the amplitude of the first harmonic of the excit­
ing moment, and 1/1 1 is the associated phase angle. 
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4.1.2 Linear plus cubic damping 

Substituting equation (32) into equation (1) with the linear 
plus cubic damping model, equation (3), gives 

3 
F ::::: (C - Aw2)Xl cos(wt) - (BlXl W + '4 B3X~w3) sin(wt) 

(36) 

A technique to estimate these damping coefficients is again 
easily derived from this equation. An expression for the 
cubic damping coefficient (B 3 ) Is obtained by equating the 
amplitude of the third harmonic of the exciting moment (F 3) 
with the amplitude of the third harmonic term in equation 
(36), and it follows that 

(37) 

USing the value of this coeffiCient, and equating the out-of­
phase component of the first harmonic of the exciting 
moment with the first harmonic sine term in equation (36) 
provides an expression for the linear damping coefficient 
(B l ), that is 

(38) 

The presence of Significant amplitudes for other than the 
first and third harmonics of the exciting moment would imply 
either inadequacy in the present mathematical model for the 
roll motion, or possibly experimental error. If experimental 
errors can be ruled out as the primary source of such higher 
harmonics, then the present mathematical model would 
require further refinement. 

The accuracy of the estimate for the linear damping coef­
fiCient will be dependent on the magnitude of the out-oC-phase 
first harmonic exciting moment, and consequently on the 
phase angle (1/1]). This phase angle is likely to b.e small for 
frequencies far from resonance, and it may be difficult to 
obtain useful estimates for the linear damping coefficient at 
such frequencies. However, near resonance the phase angle 
(\VI) approaches "/2. 

4.2 Monofrequency excitation 

In this case the exciting moment may be written as 

F(t) '" F 1 cos(wt) (39) 

where Fl is the excitation amplitude, and w is the forCing 
frequency. The steady- state solution to equation (1) is 
required for the two different damping models. In either 
case, and as a generalisation, the periodic solution may be 
represented as a Fourier series in the form 

k 
x(t)::::: L; Xp cos(pwl + Bp) 

P=l 
(40) 

where Xp are the amplitudes of the harmonic components of 
the roll response, ep are the phase angles, and k is the 
number of terms obtainable from the experimental results 
with acceptable accuracy. 

Now the net energy absorbed by the rOlling ship system in 
one cycle of the excitation may be expressed as 

w::::: J F(t) dr 
cycle 

211/W k 
::::: - F1w r. cos(wt) L PXp sin(pwt +ep) dt. (41) 

'0 P"'l 

The orthogonaltty relationship associated with the Fourier 
series leads to a result of this integration where only the 
first harmonic term of the roll motion (p '" 1) is present. 



That is the expression for the energy absorbed reduces to 

(42) 

The energy dissipated by the system due to the damping 
terms is considered next, The dissipation due to the ~inear 
damping term will have the same form for both dampmg 
models, and is given by 

El = J B1rd'( 
cycle 

21T/W Ii , 
= Bl .r. [-w L: PXp sin(pwt + 8p»)2 rit 

o P=1 

k 
= B t1TW L; (pXp)2 

P=l 
(43) 

where Dl replaces Bl for the quadratic damping model. The 
algebra required to keep the full Fourier series representa­
tion of the roll response becomes cumbersome for the 
energy absorbed by the nonlinear damping terms, and some 
simplification is deSirable. Experience indicates that the 
response in this type of test is very well represented by the 
fir st harmonic term only, This was certainly the case for 
the model test results analysed in Section 6, and in the 
numerical simulations discussed in Section 5, Perturbation 
analysis, as applied in Ref. 14, also indicates that there will 
be very little response at higher harmonics, except for 
excitation at sub-harmonics of the resonance frequency, 
Although an analysis was undertaken including both first and 
third harmonics, it was found that the inclusion of the higher 
harmonic term had inSignificant influence on the results, 
Accordingly, as a justifiable Simplification, only the first 
harmonic of the roll response will be retained in the follow­
ing analysis of the energy dissipation, 

4.2.1 Linear pillS quadratic damping 

The energy diSSipated by the quadratic damping term during 
one response cycle is now given by 

E2 = r D2·Ylk I dx 
cy'i:le 

2!T/W 

= D2 fo 12 \'~I dt 

8 
"" 3" D2X~w2 (44) 

and the energy absorbed by the shIp model may be equated 
with the energy diSSipated over one cycle at steady state, 
Thus, using the expressions in equations (42-44) it follows 
that 

(45) 

and 

(46) 

At least two tests at different excitation amplitudes and 
constant frequency are necessary to determine the damping 
coefficients (D1 and D2 ). Usually a larger number of such 
tests (i,e, amplitude variation) is carried out at each constant 
frequency, and a least squares technique may then conveni­
ently be applied to estimate the coefficients from the test 
results, As discussed previously, an error term may be 
formulated as 

where the suffix r indicates results from test yat constant 
frequency, Minimisation of the sum of the 8luared error 
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terms leads to the following estimators for the damping 
coefficients 

where all the summations are taken over the number of 
experiments (Index r), 

4.2 2 Linear plus cubic damping 

The energy dissipated by the cubic damping term during one 
roll cycle is given by 

E3 = f B 3·,,3 dr: 
cycle 

21T/W 

= B3 fo x4 dt 

Again the energy absorbed may be equated to the energy 
diSSipated over one cycle at steady state, Combining this 
expression with equations (42-43) it follows that 

w= El + E3 

and 

(50) 

(51) 

Applying a least squares technique in the same manner as in 
the quadratic case leads to the following estimators for these 
damping coefficients 

LXhLFlrXlysin(-61r) - LXtrLFlrX~r B -
1 - w[LX¥YLX~r - {LXfr)2] (52) 

4[~X¥r~F lrX~r - Lxty~F lrXlr] B -
3 - 3w3[LX~rtX~r - (6xtr)2] (53) 

where the summations are again taken over the set of tests 
carried out with constant frequency and varying excitation 
amplitude (index r), This process may be repeated at each 
prescribed frequency of oscillation and the analysiS does not 
preclude the possibility that the damping coefficients may 
vary with frequency, 

TABLE n, A comparison of damping coefficients used as 
input to numerical simulation with results 
estimated from the output 

Input Estimates 

roll 

decay 

, forced 

rolling 

W = 3'22rad/s 

Linear plus quadratic damping model 

Dl [Nms/rad] 

D2 [Nm(s/rad)2] 

0' 5119 0' 5073 

3'427 3'446 

Linear plus cubic damping model 

Bl [Nms/rad] 

B3 [Nm(s/rad)3] 

1'472 

2'539 

1'470 

2'560 

0'5160 

3'424 

1'478 

2'525 
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TABLE III. Principal parameters of the model of the 
Fisheries Protection Vessel SULISKER 

Length between perpendiculars (m) 

Beam (m) 

Design draught (m) 

Displacement (kg) 

Model scale 

3'2 

0'58 

0'225 

186'2 

1:20 

Test Test 

Series 1 Series 3 

Transverse metacentric height. GM 
(m) 

Roll natural frequency, Wn (rad/s) 

Roll inertia, A (kg m2) 

5. NUMERICAL SIMULATION 

0'0394 0' 0305 

3'22 2'79 

6'94 7'16 

It is advantageous to use a numerical simulation to generate 
data for the initial testing of the estimation procedures 
developed in this paper. Uncertainties relating to the choice 
of the underlying mathematical model (equations (1)-(3)), 
and to experimental error can thus be avoided. 

The response time history resulting from equation (1) was 
simulated using a Runge-Kutta-Merson numerical integration, 
for both decay tests and forced rolling tests. The estimation 
techniques previously developed were used to determine the 
damping coefficients from the simulated time histories. The 
results are given in Table II, showing good agreement between 
the damping coefficients originally used as input to the 
simulation and the estimated values. Further details of the 
numerical simulations may be found in Ref. 14. From this 
evidence it is concluded that the estimation techniques 
developed are appropriate to the assumed mathematical 
models (equations (1 )-(3)). 
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Ftg.2. Roll decay test for SULISKER model configuration 
series 1. A comparison is shown between the 
different mathematical damping models and the 
observed data 

6. ANALYSfS OF MODEL TEST DATA 
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The estimation procedures have been applied to a series of 
model test results. These tank tests were carried out on a 
model of the Fisheries Protection Vessel SULISKER at 
NMI Ltd. Principal parameters of the model are given in 
Table m, and a body plan is shown in Fig. 1. Further infor­
mation about the model may be found in Ref. IS, and about 
the model tests in Ref. 16. The model was unappended in the 
tests considered here. A pair of precessing gyros, as 
described by Schafernaker(13), was used to generate a mono­
frequency exciting moment in the forced rolling tests. 

6.1 Decay tests 

One decay test record was available from test series I, and 
two records (A and B) from test series 3. The observed roll 
extrema have been extracted manually from the chart 
records obtained from the decay tests. Fig.2 shows observed 
decay test results from test series I, together with calculated 
curves determined using the estimated dampinl/; coefficients. 
Both mathematical models for the damping function appear 
to give a good fit to the experimental data. Similar agree­
ment was obtained for the results from test series 3A and 
3B, but the figures are omitted from this paper. 

The estimated values of the coefficients are given in Table 
IV and the amount of variation in the coefficients derived 

6 m T ABLE IV. Damping coefficients estimated from decay 
tests 

Fig.l. Body plan of the Fisheries Protection Vessel 
SULISKER 

300 

4m 

2m 

o 

Series 1 Series 3A 

Linear plus quadratic damping model 

Dl [N m s/rad] o· 572 0'610 

D2 [N m (s/rad)2] 3' 52 3'23 

residual [rad2 ] 0'00040 0'00073 

Linear plus cubic damping model 

B1 [N m s/rad] 

B3 [N m (s/rad)3] 

reSidual [rad2 ] 

1'17 

3'94 

0'00050 

1'08 

4'30 

0'00090 

Series 3B 

0'653 

3'34 

0'00014 

1'17 

4'04 

0'00036 
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Forced rolling test for SULISKER model configura­
tion series I, at osctllatory frequency w = 3' 2 rad/ s. 
A comparison is shown between the different mathe­
matical damping models and the observed data 

from the three decay tests does not appear excessive. 
However, the values of the reSidual sum of squares remain 
slightly smaller for the linear plus quadratic damping model 
in all the tests. This residual indicates an error variation 
between the estimated pOints and the observed data, as dis­
cussed in Section 3.1. 

It is interesting to note the variation in the results for test 
series 3A and 3B in Table IV. These tests were performed 
for the same model configuration. but slightly differing 
initial conditions. This variation is indicative of the random 
error associated with decay tests. 

Table IV also Shows the estimated values of the linear coef­
ficients derived for the two mathematical models to differ 
widely-as should be expected. 

ESTIMATION OF SHIP ROLL DAMPING COEFFICIENTS 

the amplitude of the first harmonic since the difference 
between them appeared to be insignificant. Both mathematical 
models again appear to give a reasonably good fit to the data 
in Fig. 3. Similar agreement was also obtained for tests 
performed over a narrow frequency range about the reson­
ance frequency used in Fig. 3. Comparable results were 
obtained for test series 3. From an analysis of these data 
there exists limited evidence suggesting that all the damping 
coefficients show a dependence on frequency of oscillation. 
However, additional experimental investigations and analysis 
are required before this observation can be confirmed. The 
estimated values of the coefficients are given in Table V for 
test series 1 and 3, for the chosen frequencies nearest to 
the natural frequencies. Values of the residual sum of 
squares are again smaller for the linear plus quadratic 
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6.2 Forced rolling tests 10. 
~l 

0 ~~ Fig.3 shows observed monofrequency excitation forced roll-
ing results for test series I, together with curves determined 
using the damping coefficients estimated from these tests. 
The amplitude of roll from these tests was used rather than 7. 5 ~ ~~ T ABLE V. Damping coefficients estimated from forced 

rolling tests 

Series 1 Series 3 

w = 3'2 rad/s w=2'85 rad/s 

Linear plus quadratic damping model 

D1 [N m s/rad] 

D2 [N m (s/rad)2] 

residual [(Nm)2] 

O' 512 

3'43 

0'018 

Linear plus cubic damping model 

Bl [N m s/rad] 

B3 [N m (s/rad)3] 

residual [(Nm)2] 

1'47 

2' 54 

0'144 

O' 525 

3'34 

0'012 

l' 58 

2'35 

0'056 

N 
o 

I... 
o 

M 
CD 

(b) 

5. 0 

2 .5 

.0 0.11 0.21 tl 0.3 
Largest roLL angLe (rad) 

e. 4 

Fig.4. Variation of damping coefficients with roll amplitude 
from decay test series 3B. 

(a) Linear coefficients B1 and D1 [Nms/rad]. 
(b) Non-linear coefficients B3 [Nm(s/rad)31 and 

D2 [Nm (s/rad)2]. 

It is noticeable that coefficients D 1, D2 show less 
variation with amplitude than B 1• B3 
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damping model than for the linear plus cubic damping model. 
The damping coefficients estimated for the linear plus 
quadratic damping model also show better agreement with 
the corresponding coefficients estimated from the decay 
tests in Table IV. The results shown in Fig.3 may also be 
seen to favour slightly the linear plus quadratic model. 

6.3 Amplitude variation 

It is desirable to check the amplitude dependency of the 
estimated damping coefficients. This has been done by 
successively omitting the largest roll amplitudes from the 
estimation. Results are shown in Fi~. 4 for decay test series 
3B, and in Fig. 5 for forced rolling test series 1. In both 
cases, the variation with roll amplitude of the coefficients 
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0.11 0.21 0.31 0.4 
Largest roL l angle (rad) 

0.11 0.21 0.31 0.4 
Largest roll angle (rad) 

Variation of damping coefficients with roll amplitude 
from forced rolling test series 1. 

(a) Linear coefficients B1 and D1 [Nms/rad]. 
(b) Non-linear coefficients B3 [Nm(s/rad)31 and 

D2 [Nm(s/rad)2]. 

It is noticeable that coefficients D1 , D2 show less 
variation with amplitude than B1 , B3 • 

derived for the linear plus quadratic damping model is less 
than for the linear plus cubic model. 

The decay test results show considerably more random 
deviations than the forced rolling tests. This illustrates the 
reduced accuracy of the simple decay test. In practice, it is 
proposed that a decay. test should be repeated a number of 
times, and mean values of the coefficients should be used. 

7. CONCLUSIONS 

Numerical techniques have been developec;l and successfully 
applied to estimate roll damping coefficients from both roll 
decay and forced rolling tests. Two mathematical models 
for the roll damping function were conSidered, referred to 
as linear plus quadratic and as linear plus cubic damping. 

The estimation techniques have been verified by numerical 
Simulation, and applied to a limited series of model test 
data. A reasonably good fit to the model test data was 
obtained in all cases. However, the results indicated a 
slightly, but consistently better fit of the linear plus quad­
ratic model to the available experimental data. The coeffi­
cients determined for this model also showed less dependence 
on the amplitude of the roll motion from'both decay and 
forced rOlling tests. In the forced rolling tests, the 
coefficients indicated a dependence on the frequency of 
oscillation. 

From the limited ev\dence presented in this paper it would 
appear thatthe linear plus quadratic model gives the better 
apprOXimation to the roll damping behaviour. However, this 
tentative conclusion needs further investigation, and the 
techniques developed are readily available tools suitable 
fo~ this purpose. 
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NOMENCLATURE 

A roll dry inertia plus added moment 

b1 linear damping coefficient (b 1 = BiA) 

b3 cubic damping coefficient (t:b 3 == B3/A) 

B1 linear damping coefficient (cf. eqn. (3») 

B3 cubic damping coefficient 

c restoring coefficient (c = C/ A) 

restoring coefficient 

linear damping ,coeffiCient (d1 = Di A) 

quadratic damping coefficient (€d2 = D
2
/A) 

linear damping coefficient (c!. eqn. (2» 

quadratic damping coefficient 

energy dissipated by damping aver one roll cycle 

energy dissipated by linear damping term 

energy dissipated by quadratic damping term 

energy dissipated by cubic damping term 

exciting moment (f :: F / A) 

exciting moment 



Fp 

gp 

t 

W 

p-th harmonic of excltlng moment 

constants (cf. Table I) 

time 

excitation energy absorbed in one roll cycle 

roll angle (rad.) x 
term I of perturbation expansion for roll angle 

roll amplitude for order i and harmonic j 

p-th harmonic of roll response 

damping function 

error term for r-th decay extrema, or forcing 
amplitude 

small parameter used in perturbation expansion 

9ij phase angle for order i and harmonic j roll decay 

9p phase angle for p-th harmonic roll response 

1/Ip phase angle for p-th harmonic exciting moment 

~r absolute value of r-th roll extrema from decay test 

(r = 0,1,2, ... ) 

w frequency 

Wn natural frequency 
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WRITTEN DISCUSSION 

Dr Y. Ikeda: As shown in the recent works on viscous force 
acting on oscillating bluff bodies, the drag and added mass 
coefficients depend on Keulegan-Carpenter number 
(=UmaxT /D, Umax:maximum speed of motion, T: period, 
D: representative length). In sinusoidal oscillations, the 
Keulegan-Carpenter number means a relative amplitude of 
the motion. The drag coefficient of a bilge keel signUicanUy 
depends on the Keulegan-Carpenter number too as pointed 
out in our papers(17, 18). Therefore the damping coefficients 
D2 or B3 in equations (2) and (3) can not be regarded as 
being amplitude independent. For this reason I think it is 
generally impossible to determine the coefficients in equa­
tions (2) and (3) from the data measured by a free roll test 
and a monofrequency excitation test in the strict sense. 
More detailed discussions on this problem were contained in 
my recent paper(19). Only for the case when the viscous 
effect is small, for example, for a ship without bilge keels 
and with round hull shape, wlll the proposed technique be 
applicable. 

Fortunately, the experimental data used in authors' paper 
are those for a round vessel without appendages. As shown 
in our paper(20), the coefficient of the eddymaking damping 
for 'a naked hull is regarded as amplitude independent in 
practical usage. Therefore the analysis technique proposed 
in this paper may be appropriate to this case. 

If it is necessary to determine the most resonable form of 
the roll damping of a ship, I think that the forced rolling test 
of monofrequency motion which is shown in Section 4.1 is 
suitable for this purpose. Systematic experiments have to be 
carried out for various amplitudes and frequencies to 
identUy the most reasonable form of the roll damping. A 
free roll test is suitable for obtaining the equivalent linear 
damping at moderate roll amplitudes. 

I wonder whether or not the dUference of the expressions of 
the nonlinearity in the roll damping is important in the 
practical analysis of ship roll motion, since the well known 
non-linear characteristics of roll motion at reasonance 
mainly caused by the non-linearity of the restoring moment, 
and the effect of the form of the non-linearity of roll damping 
on the characteristics may not be so significant. If different 
roll damping forms, for example equations (2) and (3), have 
the same energy dissipation for one cycle, a significant 
dUference of the roll motion may not occur. Therefore I 
think the equivalent linear damping which depends on the roll 
amplitude and frequency is convenient for the assessment of 
the non-linear characteristics of the roll motion except at 
extreme amplitudes. 

For large amplitude roll motion, the expression of non­
linearity of the roll damping may play an important role. In 
this case, however, the hydrodynamiC characteristics are 
Significantly dUferent from those in moderate amplitude 
motion. Therefore, it is dangerous to extrapolate the value 
of the roll damping at large amplitudes using expressions 
such as equations (2) and (3) with the coefficients obtained 
from the experimental results for moderate amplitude. 
I would like to emphaSise that the roll damping mechanism 
at large amplitudes should be investigated in detail. 
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Dr M.J.Downie: In the introduction to their very interesting 
paper, the authors point to the need for empirically deter­
mined roll damping coefficients for the prediction of ship 
motions in view of the fact that numerically derived linear 
coefficients cannot adequately account for the non-linear 
nature of the roll response. The non-linearity in the roll has 
been widely attributed to viscous effects, although it has been 
suggested that other factors, such as non-linearities in the 
restoring moment, become important under certain condi­
tions. The dominant viscous effect at full scale is flow 
separation from the hull and its appendages. As the authors 
mention, some progress has been made in the theoretical 
calculation of viscous roll damping coefficients. Using the 
method described in Ref. 5, as quoted by the authors, it is 
now possible to calculate the motion of a rectangular barge 
in regular beam waves at zero Froude number, allowing for 
the effects of flow separation and without recourse to 
empirical coefficients. 

Although progress in this field has been modest, the results 
that have been achieved are not without promise. Further­
more, they have implications with regard to the prediction 
of ship motions using empirical damping coefficients. The 
viscous forces have been found to depend on the local flow 
in the immediate vicinity of each of the shedding edges on the 
surface of the hull and to be proportional to the 9:J.uare of 
both the frequency and the amplitude of the motion. This 
result has a number of consequences, the first and most 
obvious being that the motions corresponding to the different 
degrees of freedom are coupled. Not only are the motions 
coupled, but there are viscous forces that may be associated 
with each one of them. In the case of a barge floating in 
regular beam waves, there are viscous forces associated 
with the sway, heave and roll motions, although the effect on 
heave appears to be comparatively small. Similarly, in forced 
roll the viscous damping coefficient in a single degree of 
freedom equation depends upon the location of the roll centre. 
This may be interpreted as being due to the effect of sway on 
roll since forced roll motion may be considered to be made 
up of a rotation and a translation, the relative contribution of 
each to the motion being fixed by the location of the roll 
centre. Finally, the local flow conditions for a vessel in 
regular beam waves, say, are quite different from those of 
a vessel undergoing forced roll in otherwise still water. 

The authors have demonstrated very good agreement between 
results obtained using their estimated damping coefficients 
and forced roll and free decay experimental results. In view 
of the foregOing observations, can they comment on how their 
results transfer to the prediction of the motions of a vessel 
in waves USing viscous damping coefficients derived from 
their estimated empirical damping coefficients? 

PaSSing on from the general to the particular, the authors 
have indicated that their method is appropriate for the pre­
diction of ship motions in moderate seaways. Could the 
authors comment further on the factors determining the 
applicability of their method? Is it limited prinCipally by the 
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fact that non-linear restoring moments have not been 
included, or also because of assumptions inherent in the 
method? Does the convergence criterion expressed by 
equation (18), for example, imply that the method is only 
valid over a small roll amplitude range if the damping is 
due largely to non-linear effects? 

Mr A. Carda: I congratulate the authors on their thorough 
investigation of so important a subject as the determination 
of ship roll damping coefficients, as has been pointed out in 
Ref. 21 where several contradictions in earlier work were 
outlined. However, I find it necessary to ask for further 
clarification. 

Free decay oscUlations and forced rolling (caused by internal 
excitation) refer to different physical situations in so far as 
the damping effects of wave rolling and the wave train pro­
duced are different. The case of forced rolling in regular 
seas (caused by external eXCitation) is also a further distinct 
case which is not considered in the paper. The physical 
differences between the first two cases probably account for 
the marked irregularity In the coefficients at small angles 
from the decay tests. These values are influenced by the 
particular fitting procedure which proceeds by succeSSively 
eliminating the experimental decay at the highest angles of 
oscillation begun at a given angle or is considered from the 
same angle, having started at a larger instead of the same 
angle. 

The tests do not permit one to deduce the dependence of the 
damping on the angle of roll. This fact was justified theoreti­
cally in Ref. 21 and is evident from the figures in the present 
paper. The apparant dependence on the angle In the cubic 
model for free decay and forced rolling is essentially due to 
the bad fit to the data. Moreover, the variation of the coef­
ficients at small amplitudes of forced rolling can also be 
attributed to a progressive worsening of the fit with decreas­
ing angle. Similar observations apply to decaying motion 
even if the deviations are less pronounced. 
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Dr P.Bogdanov,Dr R.Klshev am Mr V.Rakitin: We would 
like to express our gratitude for the opportunity we have been 
afforded to become acquainted with this interesting paper. 
We congratulate the authors on their exhaustive work, which 
proved very useful to us in view of the extensive investiga­
tions on roll damping coefficients carried out recently at 
BSHC. In partlcular, the mathematical novelties presented 
and the completeness of the analysis should be mentioned. 

Nowadays it Is common practice to base the determination 
of roll damping coefficients on methods developed on the 
grounds of the linear hydrodynamiC theory of roll motions 
which is valid for comparatively small motion amplitudes. 
The real amplitudes of ship roll motion should not be con­
sidered small when they are sufficiently intensive. In such 
cases, however, they have rather low frequency, which, as is 
known, Ref. 22, enables the application of the approximate 
hydrodynamic theory of roll motion with finite amplitude. 
This problem has found sufficiently broad coverage in BSHC 
research actlvlty(24,25,26>. 

Assuming that the transverse horizontal motions and yaw 
are negligible, the authors have developed the mathematical 
model using the shortened equation of roll motion. The 
modelling of roll motion with the aid of this equation Is 
general practice, physically predetermined by the fact that 
for conventional ships the roll damping components begin 
to have significant effect only at high frequencies, I.e. under 
the action of short transverse waves. With the aim of more 
accurately describing the damping dependence on roll motion 
amplitudes, the authors have presented the damping function 
(J3) In two known forms (equations (4) and (5». However, the 



use of the' damping function In the form linear plus quadratic 
damping leads to definite disadvantages In the determination 
of the roll characteristics. In our opinion, the presentation 
of this function In such form Is not necessary In view of the 
fact that damping begins to affect considerably the roll motion 
response only In the resonance ranges, where the amplitudes 
are large; thus only the orientation to purely quadratic 
dependence is admissible, which Is advantageous for the 
analysis. As for the linear plus cubic damping form of this 
function, its consideration is appropriate only for the cases 
when the deck edge enters the water or in the presence of 
bilge keels. In connection with the mathematical model, we 
would like to mention the follOWing: the phySical sense of the 
small parameter £ is not clearly stated In the paper. Due to 
this, no proper estimation can be made of the order of the 
remainder of the terms in equatlons (4) and (5), and parti­
cularly of d2 and b3, relative to (. In this connection we 
belleve that the proposed mathematical model Is valid for 
comparatively small amplitudes, when the damping coefficient 
can be presented as a quasi -linear function of the amplltudes, 
with respective viscous addition(22,23). At large amplitudes, 
as already mentioned, the use of a mathematical model based 
on the finite amplitude theory(2S) is necessary, as in these 
cases the nonlinear addltlons cannot be considered small. 

We consider the method of free decaying motions to be 
inapplicable in the cases of sharp bUge forms or in the 
presence of bUge keels, in view of the rapid motion decay. 

With the aim of obtaining reliable results for the prediction 
of roll motion hydrodynamic characteristics, extensive 
forced roll motion tests with a gyro roll excitation device 
have been carried out recently at BSHC. The mathematical 
model adopted has been checked for a variety of ship form 
and stability parameters, bilge keel area and speed of 
advance. The results obtained confirm the quadratic depen­
dence of the damping coefficient on the motion amplitudes 
for ships without bUge keels and the cubic dependence on the 
amplitudes for ships with bUge keels(26). 

In view of the importance of roll motion damping, we are 
Interested In the future development of the problem, as 
envisaged by the authors in the direction of the appllcatlon 
of mathematical models and new identification methods, or 
the refinement of experimental methods. 
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Mr J. R. Spouge, B.Sc. (Junior Member): The authors are to be 
congratulated on their valuable work In the field of non-linear 
roll damping. The forced roll test results shown in Fig. 3 
illustrate how non-llnear the roll motion is, at least for this 
particular model, and further results from these tests show 
that the resonant frequency does not vary significantly with 
roll amplitude, indicating that it is indeed non-linear damping, 
rather than restoring, which accounts for this. 

The authors' rather daunting mathematical analysis, as 
embodied in Mr Mathisen's software, has been used at NMI 
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Ltd for analysis of various model rolling experiments, and 
has proved very successful. 

The perturbation method for roll decay analysis (Section 3) 
has conSistently given fits to the data which have a much 
lower residual sum of squares than is obtained from the 
commonly used energy method from Ref. 9, which is itself 
derived from original work by Froude (Ref. 27). However, 
the authors' method is rather more sensitive to experimental 
errors and may, as the authors note in Section 3.1, produce 
physically unrealistic results while the less sophisticated 
methods continue to give reasonable, though not necessarily 
accurate, results. While the authors have used constrained 
mir.imisatlon in order to analyse their data, NMI has con­
centracted on reducing the experimental errors, using these 
physically unrealistic results as an indication that errors 
may be present. 

The energy method for analysis of forced roll tests with 
monofrequency excitation (Section 4.2) has also proved very 
useful, although it is not yet certain whether the frequency 
variation of the damping coefficients, which tt was intended 
to reveal, really does exist or not. This is because analysiS 
of forced roll tests far from the natural frequency is again 
very sensitive to experimental errors, since the damping 
has only a small effect on the response in this region. 

It is a little surprising that, while the perturbation method 
improves on the energy approach for roll decay, there should 
be almost no sign of a response at higher harmonics in the 
forced roll tests, and that the perturbation approach should 
not be useful at all for this type of test. Would the authors 
not agree that a unified approach to the complete rolling 
problem might be preferable? 

The relative independence from roll amplitude which the 
damping coefficients in the linear plus quadratic model 
display in Figs. 4 and 5 is very encouraging, indicating that 
this form of damping describes these experimental results 
very well. There is no reason to suppose that this might be 
true in general, and other ship types might have a variation 
of damping with angle which lies between the linear plus 
cubic and linear plus quadratic models and the basic linear 
model. Would it be possible to generalise the analysiS to 
Include more terms in the damping model, or would the 
authors recommend using these two sUghtly imperfect 
models, and showing the angle-dependence as in Figs.4 and 5? 

In view of the difficulty in minimiSing the residual error for 
the linear plus quadratic roll decay analysis in Section 3. I, 
tt might be instructive for the authors to produce a contour 
map shOWing the value of this residual over a range of linear 
and quadratic coeffiCients, including some negative values, 
for one of their experimental decays. 

REFERENCE 

27. The Papers of William Froude: The Institution of Naval 
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Mr A. Morrall, B.Sc., Ph.D. (Fellow): The authors are to be 
congratulated on formulating a method of estimating non­
linear roll damping coefficients which has already proved 
very useful at NMI in analysing the forced rolling and roll 
decrement tests of the FPV SULISKER model for part of the 
Department of Transport's SAFESHIP project. 

The method is an improvement on the previously tried 
method whereby the equation of motion is solved using a 
perturbation procedure and the damping coefficients deter­
mined from the first and third harmonics of roll response. 
Fourier analysis of the roll responses from the model 
experiments at NMI Limited showed that the third harmonic 
was small, and the calculated damping coefficients showed 
an irregular variation with frequency near to the model's 
natural roll frequency. It soon became clear that in this 
former method either the analysis was inappropriate or was 
greatly magnifying errors in the test results. 
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The main question that I would like to raise about the 
authors' method Is whether the procedure becomes inaccurate 
as the frequency moves away from the natural frequency, 
especially if the amplitude Is Insensitive to the damping 
coefficients. Could the authors indicate If this method is 
ideally suitable for large amplitude roll motion and for 
three-dimensional models with radiating waves? Further­
more, if the waves happen to be very small, the method may 
be an inaccurate way of determining wave damping. 

Finally, could the authors explain the reasons for the roll 
decrement analYSis giving different results from the forced 
roll analysis and whether there Is any phySical basis why 
this shouldbe so? 

AUTHORS' REPLY 

The authors would like to express their gratitude for the 
relatively large number of contributions, from so well­
informed discussers, to a paper expected to be of interest 
to a rather limited audience. The comments appear to fall 
broadly Into three categories; viz. (a) those related to the 
hydrodynamics of the damping and the form of the mathe­
matical model, (b) related to the results of model tests, 
and (c) related to the applIcation of the results in the 
prediction of ship rolling. 

Dr Ikeda's use of the Keulegan-Carpenter number, to para­
mete rise the nature of the flow conditions governing the 
damping moment due to vortex shedding seems a useful 
approach, worthy of further development. The definition of 
the denominator in the Keulegan-Carpenter number, which 
Dr Ikeda refers to as a 'representative length' (D), is not as 
immediately obvious in the case of ship rolling as in the case 
of a circular cylinder In oscillating flow. Himeno(lO) cites 
Ikeda(l7)ln setting this length to twice the bUge keel breadth. 
Bearman (5), on the other hand, refers to 'the cross flow width 
of the body' , presumably implying the beam of the barge 
considered. These different definitions lead to an order of 
magnitude in difference in the Keulegan-Carpenter number. 
Our understanding is that this length should relate to the 
distance between separation points (or edges), making the 
Keulegan-Carpenter number reflect the type of interaction 
between vortices arising at different locations. Any confusion 
on this issue must be avoided, if the Keulegan-Carpenter 
number is to be usefully applied to the problem of roll 
damping. 

Simpliclty was an Important factor in the choice of the 
non-linear roll damping models considered in equations (2) 
and (3). We have only had an opportunity to test these models 
on a very limited data set. It remains to be seen If the 
mathematical models will be adequate for a wider range of 
data. Results mentioned by Dr Morrall and Mr Spouge are 
encouraging. Dr Downie's and Dr Bogdanov et aI's comments 
also seem to indicate that these models should be adequate. 
Mr Cardo's discussion may possibly be interpreted as point­
ing in the opposite direction. The limitation of the damping 
models to ships with round hulls, as indicated in Dr Ikeda'S 
discussion, seems somewhat strict when conSidering his 
results(20), as cited by Himeno(lO), where the eddy com­
ponent of roll damping shows a clear quadratic form for a 
midship section with area coefficient of O' 997. Such a section 
Is most certainly not a round hull, though it does have a 
rounded bilge, and no bilge keels. 

We agree with Dr Ikeda that forced rolling tests are superior 
to decay t.ests for the purpose of obtaining roll damping 
coefficients. Our analysis also indicates some advantage for 
the monofrequency motion, relative to the monofrequency 
excitation forced rolling test. However, the level of agree­
ment between damping coeffiCients for the linear plus 
quadratic model in Tables IV and V seems to indicate that a 
fair estimate of the non-linear damping coefficients can be 
obtained from decay tests using the methods presented here. 

We also agree that a linearised roll damping coefficient can 
provide a good deal of information about the roll response, 
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including response amplitude In regular waves, and standard 
deviation in irregular waves. But,llnearised roll damping 
coefficients cannot be used to predict extreme roll amplitudes 
in irregular waves sufficiently accurately. This applies both 
in milder sea states, when roll motion Is moderate and other 
sources of non-linearity are negligible, and in more severe 
sea states, when roll motion is large and other sources of 
non-linearity may have to be taken into account. Since we 
find the prediction of extreme roll angles In moderate sea 
states to be of some importance, we also find it worthwhile 
to attempt to predict roll motion taking only non-linearity of 
damping into account. 

Dr Downie brings up the question of coupling between roll and 
other ship motions. This has only been briefly mentioned In 
the paper. He relates this coupling to the local flow in the 
vicinity of the vortex shedding edges on the hull. Some 
further justification for the neglect of coupling with the other 
ship motions may possibly be found by comparing the 
magnitudes of the velocity due to the various motions at the 
shedding edges, under the condition of roll resonance. 
Comparison of the translational velocity due to rolling with 
the particle velocity due to incoming waves, at the shedding 
edges, may also give some guidance on the need to adopt a 
different form for the equations of motion in incoming waves. 
We have not yet had an opportunity to apply the estimated 
damping coefficients to the prediction of roll In waves. 

Dr Downie asks for further comment on the applicability of 
the method. The pOints he mentions do indeed set the limita­
tions; viz. other sources of non-linearity have been excluded 
which may predominate under severe rolling, and the 
perturbation expansIon used for the decay analYSis only 
converges for a limited range of roll amplitudes. In fact, the 
decay analySiS is not applicable at all if there is no linear 
damping present, and would not tie In with the purely 
quadratic damping model which Dr Bogdanov et al advocate, 
The physical sense of the perturbation parameter E is most 
clearly exhibited In the convergence criteria in equations 
(18) and (30) wIth the comments given in the paper. It 
expresses the ratio between the damping moments due to 
nonlinear and linear terms, at roll amplitude apprOXimately 
X01 • Note the comment given about this roll amplitude 
following equation (12). 

Mr Cardo seems to consider the difference In the radiated 
waves in the decay and {arced rolling tests to be of 
importance. The damping effect due to the radiated waves 
is generally acknowledged to be predicted quite well by 
linear potential theory (cf Himeno(10». Thus, we would expect 
the linear damping coefficient to handle the effect of radiated 
waves adequately. 

Mr Cardo also attributes the apparent dependence of the 
linear plus cubic damping model to the 'bad fit to the data'. 
It is uncertain what this expression Implies. However, a 
Simple explanation could be that the linear plus quadratic 
model is more physically correct, since it results in insigni­
ficant amplitude dependence, as shown in Fig. 5. 

Mr Spouge's report of improved fit to decay test results with 
the perturbation approach as compared to the energy approach 
is encouraging. The absence of higher harmonics in the roll 
response to monofrequency excitation appears to be linked 
to the type of non-linear term included in the equation of 
motion. If the dominant non-linear term is associated with 
the restoring moment rather than the damping, then higher 
harmonics are more likely to be observed, and a perturbation 
approach may yield useful results In the case of forced 
motion. 

In response to Mr Spouge's question, we would recommend 
keeping the damping model as simple as pOSSible, provided 
an adequate fit to the data is obtained. This simplifies 
experimental work, analysis of results, and application. 
Figs. 4 and 5 are intended to show the sensitivity of the 
damping coefficient estimates to input data, rather than the 
amplitude dependence of the coefficients. Further generalisa­
tion of the damping models is certainly possible. Himeno< 10) 



cites work where linear, quadratic, and cubic damping coef­
ficients were included together. Regression analysis was 
appUed to determine those coefficients from model tests. 

The answer to Dr Morrall's question about the accuracy of 
the method away from resonance may be found in equations 
(35), (38), (48), (49), (52) and (53) for the estimation of damping 
coefficients from the forced rolling tests. These equations 
all depend on the sine of the phase angle between exciting 
moment and roll response. 

Near resonance this sine function takes a value close to 
unity, and is insensitive to the accuracy of the phase angle. 
Away from resonance, the sine function tends to zero, and is 
most sensitive to the accuracy of the phase angle. Thus, the 
accuracy with which the method may be appUed is dependent 
on the accuracy with which the phase angle may be deter­
mined, and this is likely to fall off quickly away from 
resonance. These methods are suitable for large amplitude 
rolling only so far as the main source of any non-linearity 
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may be assumed to stem from the damping rather than the 
restoring moment. We believe the methods may be applicable 
to both three-dimensional ship models and to cyUndrical 
models with ship-like cross-sections. The generation of 
radiating waves due to motion of the model should not be any 
impediment. However, the present methods do not provide 
any means of separating damping effects due to radiated 
waves from any other damping effects. 

Dr Morrall's final question relates to the difference between 
damping coefficients estimated from decay tests and forced 
rolllng tests. Clearly, there is some physical difference in 
the detailed flow conditions when the motion amplitude is 
decaying Instead of constant. However, we tend to attribute 
the difference in coefficients to the reduced accuracy of the 
decay tests, which are more dependent on the measurement 
of smaller angles. Some further insight could possibly be 
obtained by investigating the experimental variation of damp­
ing coefficients estimated by both methods. 
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