
 

 

Semantic Information Systems Engineering: 

A Query-based Approach for Semi-automatic 

Annotation of Web Services 

 

A thesis submitted for the degree of Doctor of Philosophy 

By 

Mohammad Mourhaf AL Asswad 

Department of Information Systems and Computing, 

Brunel University 

January 2011 



 ii  

ABSTRACT 

 

There has been an increasing interest in Semantic Web services (SWS) as a 

proposed solution to facilitate automatic discovery, composition and deployment 

of existing syntactic Web services. Successful implementation and wider adoption 

of SWS by research and industry are, however, profoundly based on the existence 

of effective and easy to use methods for service semantic description. 

Unfortunately, Web service semantic annotation is currently performed by manual 

means. Manual annotation is a difficult, error-prone and time-consuming task and 

few approaches exist aiming to semi-automate that task. Existing approaches are 

difficult to use since they require ontology building. Moreover, these approaches 

employ ineffective matching methods and suffer from the Low Percentage 

Problem. The latter problem happens when a small number of service elements - 

in comparison to the total number of elements – are annotated in a given service.  

 

This research addresses the Web services annotation problem by developing a 

semi-automatic annotation approach that allows SWS developers to effectively 

and easily annotate their syntactic services. The proposed approach does not 

require application ontologies to model service semantics. Instead, a standard 

query template is used: This template is filled with data and semantics extracted 

from WSDL files in order to produce query instances. The input of the annotation 

approach is the WSDL file of a candidate service and a set of ontologies. The 

output is an annotated WSDL file. The proposed approach is composed of five 

phases: (1) Concept extraction; (2) concept filtering and query filling; (3) query 

execution; (4) results assessment; and (5) SAWSDL annotation. The query 

execution engine makes use of name-based and structural matching techniques. 

The name-based matching is carried out by CN-Match which is a novel matching 

method and tool that is developed and evaluated in this research.  

 

The proposed annotation approach is evaluated using a set of existing Web 

services and ontologies. Precision (P), Recall (R), F-Measure (F) and Percentage 

of annotated elements are used as evaluation metrics. The evaluation reveals that 



 iii  

the proposed approach is effective since - in relation to manual results - accurate 

and almost complete annotation results are obtained. In addition, high percentage 

of annotated elements is achieved using the proposed approach because it makes 

use of effective ontology extension mechanisms.  

 



 iv  

TABLE OF CONTENTS 

CHAPTER 1: RESEARCH INTRODUCTION AND MOTIVATION ........................................................ 1 

1.1 BACKGROUND AND MOTIVATION ................................................................................................ 1 

1.1.1 Web Services ................................................................................................................... 1 

1.1.2 The Semantic Web and Ontology ................................................................................... 3 

1.1.3 Semantic Web Services (SWS) ......................................................................................... 4 

1.1.4 The Dilemma of Semantic Web Service Annotation ....................................................... 5 

1.2 RESEARCH AIM AND OBJECTIVES ................................................................................................. 6 

1.3 RESEARCH APPROACH ............................................................................................................... 7 

1.4 STRUCTURE OF THE THESIS ....................................................................................................... 10 

CHAPTER 2: LITERATURE REVIEW .............................................................................................. 14 

2.1 INTRODUCTION ...................................................................................................................... 14 

2.2 WEB SERVICES ...................................................................................................................... 15 

2.3 ONTOLOGY ........................................................................................................................... 21 

2.3.1 Ontology Engineering and Learning ............................................................................. 22 

2.3.2 Ontology Extension ....................................................................................................... 24 

2.4 SEMANTIC WEB SERVICES (SWS) ............................................................................................. 25 

2.4.1 SWS Description Frameworks ....................................................................................... 29 

2.5 IMPORTANCE AND CATEGORIES OF WEB SERVICES SEMI-AUTOMATIC ANNOTATION APPROACHES ......... 32 

2.6 MACHINE LEARNING-BASED AND WORKFLOW DEFINITION-BASED APPROACHES ................................ 33 

2.6.1 Machine Learning-based Approaches ........................................................................... 33 

2.6.2 The Workflow Definition-based Approach .................................................................... 35 

2.7 USING ONTOLOGY MATCHING FOR SEMI-AUTOMATIC ANNOTATION OF WEB SERVICES ...................... 36 

2.7.1 Ontology Matching ....................................................................................................... 36 

2.7.2 Matching-based Semi-automatic Annotation Approaches ........................................... 42 

2.8 LIMITATIONS OF PREVIOUS RESEARCH ........................................................................................ 45 

2.9 SUMMARY ............................................................................................................................ 50 

CHAPTER 3: RESEARCH DESIGN AND APPROACH ...................................................................... 52 

3.1 OVERVIEW ............................................................................................................................ 52 

3.2 RESEARCH PARADIGMS AND APPROACHES IN INFORMATION SYSTEMS.............................................. 52 

3.3 THE DESIGN SCIENCE RESEARCH (DSR) PARADIGM ...................................................................... 55 

3.3.1 DSR Processes ............................................................................................................... 56 

3.3.2 DSR Evaluation .............................................................................................................. 57 

3.3.3 DSR Artefacts ................................................................................................................ 58 



 v  

3.4 THE EMPLOYMENT OF DSR IN THE CONTEXT OF THIS PROJECT ........................................................ 59 

3.4.1 Awareness of problem .................................................................................................. 60 

3.4.2 Suggestion .................................................................................................................... 60 

3.4.3 Development ................................................................................................................. 61 

3.4.4 Evaluating the Semi-automatic Annotation Approach and its Components ................ 65 

3.5 MAPPING THE ARTEFACTS OF THIS RESEARCH TO DSR ARTEFACTS .................................................. 72 

3.6 SUMMARY ............................................................................................................................ 75 

CHAPTER 4: THE DESIGN OF THE SEMI-AUTOMATIC QUERY-BASED ANNOTATION APPROACH . 76 

4.1 OVERVIEW ............................................................................................................................ 76 

4.2 DESIGN INCREMENTS COVERED IN THIS CHAPTER ......................................................................... 77 

4.3 THE NEED FOR A NEW SEMI-AUTOMATIC ANNOTATION FRAMEWORK .............................................. 77 

4.4 DESIGN STRATEGIES FOR THE NEW QUERY-BASED ANNOTATION FRAMEWORK .................................. 80 

4.5 WSDL STRUCTURE AND INTERPRETATION .................................................................................. 80 

4.6 THE DESIGN AND PHASES OF THE ANNOTATION FRAMEWORK ........................................................ 84 

4.7 THE CONCEPT EXTRACTION PHASE ............................................................................................ 89 

4.8 THE QUERY EXECUTION PHASE ................................................................................................. 92 

4.8.1 CN-Match ...................................................................................................................... 93 

4.8.2 Structural Similarity ...................................................................................................... 94 

4.9 THE SAWSDL ANNOTATION PHASE .......................................................................................... 97 

4.10 SUMMARY ....................................................................................................................... 99 

CHAPTER 5: THE DESIGN AND EVALUATION OF CN-MATCH .................................................... 100 

5.1 OVERVIEW .......................................................................................................................... 100 

5.2 MOTIVATION - THE IMPORTANCE OF CN MATCHING .................................................................. 101 

5.3 COMPOUND NOUNS STRUCTURE AND TYPES ............................................................................. 102 

5.4 PREVIOUS RESEARCH ON CN MATCHING .................................................................................. 103 

5.5 CONSIDERATIONS AND RULES FOR THE DESIGN OF CN-MATCH ..................................................... 106 

5.6 THE DESIGN AND IMPLEMENTATION OF CN-MATCH ................................................................... 109 

5.6.1 Similarity Measurement Techniques Used to Implement CN-Match .......................... 110 

5.6.2 The Six Cases of Matching Single Terms, Binary and Triple CNs ................................. 112 

5.6.3 Process Flow of CN-Match .......................................................................................... 120 

5.7 EVALUATION OF CN-MATCH .................................................................................................. 121 

5.7.1 Experiments Design .................................................................................................... 123 

5.7.2 Threshold Derivation ................................................................................................... 124 

5.7.3 Evaluation Test Sets and Results ................................................................................. 126 

5.8 DISCUSSION ........................................................................................................................ 129 



 vi  

5.9 SUMMARY .......................................................................................................................... 132 

CHAPTER 6: THE EVALUATION OF THE ANNOTATION FRAMEWORK ....................................... 134 

6.1 OVERVIEW .......................................................................................................................... 134 

6.2 ONTOLOGY EXTENSION ......................................................................................................... 135 

6.2.1 The Method of Extension ............................................................................................ 135 

6.3 ILLUSTRATIVE CASES ............................................................................................................. 139 

6.3.1 Illustrative Case (1): The BookInfoPort Service ........................................................... 140 

6.3.2 Illustrative case (2): The Service43.Miscellaneous Web service.................................. 148 

6.3.3 Illustrative case (3): The Stock Information Service .................................................... 152 

6.4 EXPERIMENTAL EVALUATION .................................................................................................. 155 

6.4.1 The Experiment Design and Metrics ........................................................................... 155 

6.4.2 Evaluation Method ..................................................................................................... 158 

6.4.3 Evaluation Results ....................................................................................................... 161 

6.5 DISCUSSION AND LIMITATIONS ............................................................................................... 167 

6.5.1 Discussion of Averages across Domains ..................................................................... 167 

6.5.2 Implications of Presented Results ............................................................................... 170 

6.5.3 Limitations of the Proposed Approach ........................................................................ 174 

6.6 SUMMARY .......................................................................................................................... 177 

CHAPTER 7: CONCLUSIONS...................................................................................................... 179 

7.1 OVERVIEW .......................................................................................................................... 179 

7.2 SUMMARY OF THE RESEARCH ................................................................................................. 179 

7.3 RESEARCH CONCLUSIONS AND CONTRIBUTIONS ......................................................................... 183 

7.3.1 Contributions to the Knowledge Base ......................................................................... 184 

7.3.2 Contributions to Practice ............................................................................................ 188 

7.4 MEETING THE RESEARCH OBJECTIVES ...................................................................................... 189 

7.5 LIMITATIONS ....................................................................................................................... 192 

7.5.1 Matching-dependent Limitations ............................................................................... 192 

7.5.2 Annotation-dependent Limitations ............................................................................. 193 

7.5.3 Extension-dependent Limitations ............................................................................... 193 

7.5.4 Limitations of the Evaluation Metrics ......................................................................... 194 

7.6 FUTURE WORK .................................................................................................................... 194 

REFERENCES ............................................................................................................................ 197 

APPENDIX A ............................................................................................................................ 210 

APPENDIX B ............................................................................................................................ 213 



 vii  

APPENDIX C ............................................................................................................................. 217 



 viii  

LIST OF TABLES 

TABLE ‎1.1: THE CLASSIFICATION OF THE DSR ARTEFACTS OF THIS RESEARCH ..................................................... 9 

TABLE ‎2.1: ISSUE IDENTIFIED IN SECTION 2.2 ............................................................................................ 21 

TABLE ‎2.2: ISSUES IDENTIFIED IN SECTION 2.3 ........................................................................................... 25 

TABLE ‎2.3: A COMPARISON BETWEEN FOUR NEUTRAL SEMANTIC WEB SERVICE DESCRIPTION APPROACHES ......... 27 

TABLE ‎2.4: DESCRIPTIONS AND EXAMPLES FOR THE WEB SERVICE ELEMENTS .................................................. 28 

TABLE ‎2.5: A COMPARISON BETWEEN SEMANTIC WEB SERVICE FRAMEWORKS AGAINST SYNTHESISED SEMANTIC 

WEB SERVICE ELEMENTS .............................................................................................................. 32 

TABLE ‎2.6: ISSUE IDENTIFIED IN SECTION 2.4 ............................................................................................ 32 

TABLE ‎2.7: ISSUES IDENTIFIED IN SECTION 2.5 ........................................................................................... 33 

TABLE ‎2.8: ISSUES IDENTIFIED IN SUBSECTION 2.7.1 .................................................................................. 42 

TABLE ‎2.9: ISSUES IDENTIFIED IN SECTION 2.8 ........................................................................................... 48 

TABLE ‎2.10: AN OVERALL SUMMARY TABLE HIGHLIGHTING THE ISSUES TO BE ADDRESSED IN THE RESEARCH ........ 49 

TABLE ‎3.1: DESIGN EVALUATION METHODS (SOURCE: HEVNER ET AL., 2004) ................................................ 58 

TABLE ‎3.2: DESCRIPTION OF TEST SETS USED IN EVALUATING THE PERFORMANCE OF CN-MATCH ...................... 66 

TABLE ‎3.3: DETAILS OF SELECTED WEB SERVICES ....................................................................................... 70 

TABLE ‎3.4: DETAILS OF SELECTED ONTOLOGIES ......................................................................................... 71 

TABLE ‎3.5: THE CLASSIFICATION OF THE DSR ARTEFACTS OF THIS RESEARCH ................................................... 74 

TABLE ‎4.1: EXTRACTED CONCEPTS AND RELATIONS FROM THE BOOK INFORMATION PROVIDER SERVICE ............... 85 

TABLE ‎4.2: A SUMMARY OF THE FIVE ANNOTATION PHASES ........................................................................ 89 

TABLE ‎5.1: CN MATCHING CASES ......................................................................................................... 108 

TABLE ‎5.2: POSSIBILITIES OF CASE 2 ...................................................................................................... 115 

TABLE ‎5.3: POSSIBILITIES OF CASE 3 ...................................................................................................... 116 

TABLE ‎5.4: POSSIBILITIES OF CASE 4 ...................................................................................................... 116 

TABLE ‎5.5: POSSIBILITIES OF CASE 5 ...................................................................................................... 117 

TABLE ‎5.6: POSSIBILITIES OF CASE 6 ...................................................................................................... 119 

TABLE ‎5.7: MAPPING CASES TO METHODS ............................................................................................. 119 

TABLE ‎6.1: THE OUTPUT OF THE CONCEPT EXTRACTION PROCESS ............................................................... 140 

TABLE ‎6.2: SUMMARY OF BOOKINFOPORT ANNOTATION EXERCISE ............................................................. 148 

TABLE ‎6.3: SUMMARY OF SERVICE43.MISCELLANEOUS ANNOTATION EXERCISE ............................................ 151 

TABLE ‎6.4: SUMMARY OF SERVICE7.STOCK ANNOTATION EXERCISE ............................................................ 154 

TABLE ‎6.5: CLASSIFICATION OF MATCHING RESULTS ................................................................................. 159 



 ix  

TABLE ‎6.6: PARTIAL RESULTS OF THE GEOCASH SERVICE ........................................................................... 159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x  

LIST OF FIGURES 

FIGURE 1.1: MAPPING BETWEEN CHAPTERS AND OBJECTIVES ...................................................................... 13 

FIGURE ‎2.1: THE BASIC SOA ARCHITECTURE (SOURCE: PAPAZOGLOU, 2003) ................................................. 16 

FIGURE ‎2.2: WEB SERVICES ARCHITECTURE MODEL (SOURCE: HUHNS AND SINGH, 2005) ................................ 18 

FIGURE ‎2.3: THE GENERAL MATCHING PROCESS EXPLAINED ........................................................................ 38 

FIGURE ‎3.1: THE INFORMATION SYSTEMS FRAMEWORK (SOURCE: HEVNER ET AL., 2004) ................................. 54 

FIGURE ‎3.2: REASONING IN THE DESIGN-SCIENCE RESEARCH CYCLE (SOURCE: KUECHLER AND VAISHNAVI, 2008) . 57 

FIGURE ‎3.3: THE STEPS OF THE SUGGESTION ACTIVITY ................................................................................ 61 

FIGURE ‎3.4: THE ARCHITECTURE OF DESIGN INCREMENTS ........................................................................... 62 

FIGURE ‎3.5: THE ORGANISATIONAL SCENARIO OF THE ANNOTATION APPROACH .............................................. 68 

FIGURE ‎4.1: DESIGN INCREMENTS ADDRESSED IN CHAPTER 4 ....................................................................... 77 

FIGURE ‎4.2: WSDL FILE OF THE BOOK INFORMATION SERVICE ..................................................................... 82 

FIGURE ‎4.3: THE STANDARD QUERY TEMPLATE ......................................................................................... 86 

FIGURE ‎4.4: THE QUERY INSTANCE OF THE ‘BOOK’ COMPLEX TYPE ............................................................. 86 

FIGURE ‎4.5: THE QUERY INSTANCE OF THE ‘KEYWORD’ SIMPLE TYPE .......................................................... 86 

FIGURE ‎4.6: THE PROCESS FLOW OF THE ANNOTATION FRAMEWORK ............................................................ 88 

FIGURE ‎4.7: THE AUTOMATIC CONCEPT EXTRACTION PIPELINE ..................................................................... 91 

FIGURE ‎4.8: THE QUERY EXECUTION PHASE .............................................................................................. 93 

FIGURE ‎4.9: THE STRUCTURAL MATCHING METHOD .................................................................................. 97 

FIGURE ‎5.1: THE DESIGN INCREMENT ADDRESSED IN CHAPTER 5 ................................................................ 101 

FIGURE ‎5.2: LINGUISTIC SIMILARITY PROCESS FLOW ................................................................................. 112 

FIGURE ‎5.3: CN-MATCH CLASS DIAGRAM .............................................................................................. 120 

FIGURE ‎5.4: THE PROCESS FLOW OF CN-MATCH ..................................................................................... 121 

FIGURE ‎5.5: THE INTERSECTION BETWEEN AUTOMATIC AND MANUAL MATCHES ........................................... 123 

FIGURE ‎5.6: A SPARQL QUERY TO EXTRACT LABELS OF CLASSES ................................................................ 123 

FIGURE ‎5.7: PROCESS FLOW OF EXPERIMENTS ......................................................................................... 124 

FIGURE ‎5.8: CHANGES OF F-MEASURE AGAINST CHANGES IN THRESHOLD .................................................... 126 

FIGURE ‎5.9: P, R AND F OF THE BENCHMARK TEST SET ............................................................................. 127 

FIGURE ‎5.10: P, R AND F OF THE RUSSIA TEST SET ................................................................................... 128 

FIGURE ‎5.11: P, R AND F OF THE CONFERENCE TEST SET ........................................................................... 129 

FIGURE ‎6.1: THE DESIGN INCREMENT COVERED IN CHAPTER 6 ................................................................... 135 

FIGURE ‎6.2: EXTENSION FOR SIMPLE QUERY CONCEPT .............................................................................. 137 



 xi  

FIGURE ‎6.3: EXTENSION FOR MAIN SERVICE CONCEPT OF COMPLEX QUERY .................................................. 138 

FIGURE ‎6.4: EXTENSION FOR SERVICE RELATED CONCEPT OF COMPLEX QUERY .............................................. 139 

FIGURE ‎6.5: ‘BOOK’ QUERY RESULT ................................................................................................... 143 

FIGURE ‎6.6: EXTENDING THE BOOK ONTOLOGY WITH ‘PUBLICATIONDATE’, ‘AVAILABILITY’, 

‘PUBLICATIONPLACE’ AND ‘DISCOUNTPERCENT’ ............................................................... 144 

FIGURE ‎6.7: THE ANNOTATED ‘BOOK’ COMPLEX TYPE ........................................................................... 144 

FIGURE ‎6.8: EXTENSION FOR ‘CUSTOMERACCOUNT’ ............................................................................. 145 

FIGURE ‎6.9: ‘CUSTOMERACCOUNT’ QUERY RESULT AFTER ANNOTATION .................................................. 146 

FIGURE ‎6.10: ANNOTATED ‘CUSTOMERACCOUNT’ ............................................................................... 146 

FIGURE ‎6.11: QUERY RESULT OF ‘STATUS’ AFTER EXTENSION ................................................................ 147 

FIGURE ‎6.12: ANNOTATION OF THE ‘STATUS’ CONCEPT ........................................................................ 147 

FIGURE ‎6.13: PARTIAL ANNOTATION OF THE ‘ARRAYOFSTATION’ SERVICE CONCEPT ................................ 151 

FIGURE ‎6.14: A SNAPSHOT OF THE ANNOTATED SERVICE43.MISCELLANEOUS SERVICE ................................... 152 

FIGURE ‎6.15: A SNAPSHOT OF THE ANNOTATED SERVICE7.STOCK SERVICE ................................................... 155 

FIGURE ‎6.16: PARTIAL ANNOTATION OF A COMPLEX TYPE ......................................................................... 157 

FIGURE ‎6.17: THE EVALUATION METHOD OF THE ANNOTATION FRAMEWORK ............................................... 160 

FIGURE ‎6.18: RESULTS OF THE BOOK DOMAIN ........................................................................................ 162 

FIGURE ‎6.19: RESULTS OF THE WEATHER DOMAIN .................................................................................. 164 

FIGURE ‎6.20: RESULTS OF THE STOCK INFORMATION DOMAIN ................................................................... 165 

FIGURE ‎6.21: RESULTS OF THE COMMUNICATION DOMAIN........................................................................ 166 

FIGURE ‎6.22: RESULTS OF THE PAYMENT DOMAIN ................................................................................... 166 

FIGURE ‎6.23: AVERAGES OF METRICS FOR THE FIVE DOMAINS ................................................................... 167 

FIGURE ‎6.24: CHANGES IN AVERAGES OF R VALUES ................................................................................. 168 

FIGURE ‎6.25: CHANGES IN AVERAGES OF P VALUES ................................................................................. 169 

FIGURE ‎6.26: CHANGES IN AVERAGES OF F VALUES .................................................................................. 169 

FIGURE ‎6.27: CHANGES IN AVERAGES OF PERCENTAGE VALUES .................................................................. 170 



 xii  

ABBREVIATIONS 

 

AE: After Extension 

ANNIE: A Nearly New Information Extraction System 

API: Application Programming Interface 

ASSAM: Automated Semantic Service Annotation with Machine learning  

BE: Before Extension 

BPEL4WS: Business Process Execution Language for Web Services 

C: Concept 

Cls: Class 

CN: Compound Noun 

Cor: Correspondence 

CORBA: Common Object Request Broker Architecture 

CorM: Correspondence of the Main Service Concept  

DAML: DARPA Agent Mark-up Language 

DCOM: Distributed Component Object Model 

DSR: Design Science Research 

ebXML: Electronic Business using eXtensible Mark-up Language  

E-Commerce: Electronic Commerce 

F: F-Measure 

FOAM: Framework for Ontology Alignment and Matching 

GATE: General Architecture for Text Engineering  

HTML: Hyper Text Mark-up Language 

IR: Information Retrieval 

IRS: Internet Reasoning Service 

IS: Information Systems 

IT: Information Technology  

JAPE: Java Annotation Pattern Engine 

LCS: Least Common Subsumer 

ML: Machine Learning 

MSC: Main Service Concept 

MWSAF: Meteor-s Web Service Annotation Framework 



 xiii  

NLP: Natural Language Processing 

OAEI: Ontology Alignment Evaluation Initiative  

OASIS: Organisation of Advancements of Structured Information Standards  

OIL: Ontology Interchange Language  

OP: Object Property  

OWL: Ontology Web Language  

OWL-S: Ontology Web Language for Services 

P: Precision 

POS: Part Of Speech Tagger 

QOM: Quick Ontology Matching  

R: Recall 

SAWSDL: Semantic Annotation for WSDL 

Sc: Service Concept 

SCM: Set of Candidate Matches  

SM: Set of Matches 

SOA: Service Oriented Architecture 

SPARQL: SPARQL Protocol and RDF Query Language 

Src: Service Related Concept 

SS: Set of Candidates  

SWRL: Semantic Web Rule Language 

SWS: Semantic Web Services 

UDDI: Universal Description, Discovery and Integration 

URI: Universal Resource Identifier 

URL: Universal Resource Locator 

W3C: World Wide Web Consortium 

WSDL: Web Service Description Language 

WSFL: Web Service Flow Language  

WSML: Web Service Modelling Language  

WSMO: Web Service Modelling Ontology 

XLANG: XML-based extension of WSDL 

XML: eXtensible Mark-up Language  

XSD: XML Schema Definition 



 xiv  

DEDICATIONS 

 

I would like to dedicate this thesis to my parents. They have taught me how to be 

goal-oriented and patient to achieve what I am aiming for. Their encouragement 

and inspiration had a great impact on the successful completion of this thesis. 

Thank you very much.  

 

I am very grateful to my wife and son Abdulmalek who were very patient and 

supportive. Without their love and help, I would never be able complete this work.  

 

I also express my gratitude to my brother, sisters and brothers in law. I am very 

appreciative for all their great support during all the stages of my PhD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xv  

ACKNOWLEDGEMENTS 

 

I would like to take this opportunity to sincerely thank my supervisor Professor 

Mark Lycett for his great guidance during all stages of my PhD course. His 

inspiration, encouragement, critical thinking and, above all, his constructive 

criticism and feedback, were invaluable to the research, writing and completion of 

this thesis. Thank you Professor Mark.  

 

I am very grateful to my Second Supervisor Dr. Sergio de Cesare for all the 

constructive discussion and guidance. Sergio offered me unlimited support 

whenever and wherever I needed. Without his continuous help, this thesis would 

not be completed.  

 

I would also like to express my sincere appreciation and gratitude to Dr. Simon 

Kent and Dr. David Bell for their very useful insights and support in solving 

numerous research and technical issues.   

 

Finally, I am very thankful to all the DISC staff for the support and facilities they 

have provided to my during my PhD course.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 xvi  

PUBLICATIONS  

 

AL Asswad, M.M., de Cesare, S. and Lycett, M. 2009, Toward a Research 

Agenda for Semi-Automatic Annotation of Web Services, International 

Conference on Informatics and Semiotics in Organisations (ICISO) - IFIP WG8.1 

Working Conference, pp. 138 - 146. 

 

AL Asswad, M. M., Al-Debei, M. M., de Cesare, S., Lycett, M. 2010, Conceptual 

Modelling and the Quality of Ontologies: A Comparison between Object-Role 

Modelling and the Object Paradigm, 18
th

 European Conference on Information 

Systems, pp. 1 - 18. 

 

AL Asswad, M. M., de Cesare, S., Lycett, M. 2011, A Query-based Approach for 

Semi-Automatic Annotation of Web Services, the International Journal of 

Information Systems and Social Change, vol. 2, no. 2, pp. 37-54. 

 



Chapter 1: Research Introduction and Motivation 

 

 1  

Chapter 1:  Research Introduction and 

Motivation 

1.1 Background and Motivation 

The last decade has witnessed an increasing interest in engineering information 

systems that communicate and interoperate more easily (Hasselbring, 2000). This 

is because existing information systems are no longer isolated but they need to 

exchange data and knowledge. In addition, the emergence of the Web as a 

platform for people and machine communication has added new requirements and 

facilities for systems interoperability (Isakowitz et al., 1998). In response to the 

increasing need for effective methods and approaches to system integration and 

communication, Web services have appeared as a systematic and extensible 

approach for system to system interactions (Curbera et al., 2002).  

1.1.1  Web Services  

Web services are software components that can be published and discovered by 

other services and applications. The Web service framework is based on three 

fundamental XML-based standards. These standards are SOAP, WSDL (Web 

Service Description Language) and UDDI (Universal Description, Discovery and 

Integration) (Curbera et al., 2002). SOAP allows communication among services 

and between services and other software systems. WSDL is used to describe Web 

services as sets of communication endpoints that enable message exchange and 

http://www.refworks.com/Refworks/~0~


Chapter 1: Research Introduction and Motivation 

 

 2  

UDDI is a directory that stores information about services and allows developers 

to search for services.  

 

Many applications require a business logic that cannot be achieved using a single 

service. Therefore, a number of services need to be composed together to perform 

the desired task. Web service composition however, is not an easy task. This is 

because composition involves: (1) Discovering the right services that can do the 

specified tasks; and (2) solving potential structural and semantic mismatches that 

may occur between parameters of candidate services. Mismatches occur because 

different service developers normally have different views of data structure and 

semantics of same or similar service elements.  

 

For Web services to meet the requirements of modern applications, automatic 

discovery and composition of services is needed since the manual discovery and 

composition is difficult, time-consuming and error-prone (Agarwal et al., 2003). 

Moreover, in the future Web, intelligent agents may be responsible for service 

discovery and composition that should be performed automatically at run time 

(Narayanan and McIIraith, 2002). Unfortunately, existing Web service standards 

do not enable dynamic discovery and composition of services because they are 

missing important semantic constructs (Sivashanmugam et al., 2003a; Sycara et 

al., 2003). The use of semantics modelled in the form of ontologies can facilitate 

automatic service discovery and composition (McIIraith et al., 2001): This is 

because ontologies provide machine-understandable and precise definitions to 

service elements. This can facilitate service discovery and composition based on 

functional, non-functional and capability descriptions (Ringelstein et al., 2007). 

Moreover, semantic matching techniques can be used to resolve the semantic 

mismatching issues between parameters of composed services. Therefore it is 

important to describe Web services in a semantic manner using ontologies 

(McIIraith et al., 2001). Web service semantic description can be achieved using 

the „Semantic Web Services‟ (SWS) initiative.  



Chapter 1: Research Introduction and Motivation 

 

 3  

1.1.2  The Semantic Web and Ontology  

The Semantic Web is defined by Berners-Lee et al. (2001 pp. 3-4) as‎ “an‎

extension of the current Web in which information is given well-defined meaning, 

better enabling computers and people‎to‎work‎in‎cooperation”.‎The Semantic Web 

therefore aims to provide computer-understandable and precise descriptions of 

static and dynamic Web resources (McIIraith et al., 2001). Consequently, an 

important contribution of the Semantic Web is the addition of semantics to 

syntactic Web services, where services offered and user requirements in relation 

to desired services are described semantically (Martin and Domingue, 2007).  

 

Ontologies are significant components of the Semantic Web: They are used to 

model and provide semantics to different data elements on the Web. Ontologies 

have been employed in a wide range of applications such as; Artificial 

Intelligence and Knowledge-based systems (Janev and Vranes, 2009). In 

computational terms, an ontology can be defined as "a formal explicit 

specification of a shared conceptualisation" (Gruber, 1993 pp. 3). That is, an 

ontology is a definition of vocabulary, axioms and relations in a formal, shared 

and machine-understandable form (Jasper and Uschold, 1999).  

 

Since ontologies are important elements to many applications and systems, they 

have to be designed and engineered using suitable design methods that produce 

good quality. Building a good ontology, however, is a hard task: It requires a very 

good level of technical and domain knowledge to provide semantically and 

syntactically sound ontologies (Devedzic, 2002). Technical knowledge is needed 

because a tangible ontology has to be encoded using an ontology representation 

language such as OWL (Ontology Web Language) (De Nicola et al., 2009). Using 

such a representation language requires knowledge of the language and its 

constructs such as classes, properties, cardinality restrictions and domain and 

range axioms. In addition, domain knowledge is needed to precisely collect, 

define and model domain concepts, their relations and axioms (De Nicola et al., 



Chapter 1: Research Introduction and Motivation 

 

 4  

2009). Using imprecise and incomplete domain knowledge may result in 

ontologies that are inaccurate representations of domain knowledge (Staab, 2004).  

 

Currently, there are few approaches that seek to automate the ontology building 

task. These approaches are called ontology learning techniques (Grobelnik et al., 

2009; Wei et al., 2010), which utilise methods such as Machine Learning (ML), 

Natural Language Processing (NLP) and Statistics (Gomez-Perez and Manzano-

Macho, 2004). The learning process is generally composed of steps such as 

knowledge acquisition, concept filtering and relation learning and ontology 

organisation which improves the knowledge content of the new ontology 

(Missikoff et al., 2002; Zhou, 2007). Available ontology learning methods, 

however, provide ontologies that are of unsatisfactory quality (Zouaq and 

Nkambou, 2008) since they miss many important constructs such as axioms. In 

addition, the resulting ontologies are representations of the source documents 

rather than being precise models of described domains. Consequently, these 

ontologies may not be useful when they are shared between different applications 

since they overlook many ontological entities that are important for these 

applications.  

 

Summarising the previous literature on manual and automatic ontology 

engineering, one can conclude that manual ontology building is difficult and 

labour-intensive task (Jiang and Tan, 2010) since it requires much domain and 

technical knowledge (Devedzic, 2002). In addition, existing automatic ontology 

building methods have many understandable limitations and thus the resulting 

ontologies may not be of satisfactory quality.   

1.1.3  Semantic Web Services (SWS) 

SWS has emerged as a promising solution to solve the discovery and composition 

problems of current syntactic Web services (Vitvar et al., 2007). The SWS idea is 

based on using ontologies to provide semantic descriptions to service elements. 

Generally speaking, semantically describing a service entails two significant 



Chapter 1: Research Introduction and Motivation 

 

 5  

processes (Verma and Sheth, 2007): (1) Identifying the service elements that 

should be semantically described; and (2) annotating the identified elements to 

appropriate ontological entities. In the context of this research, annotation means 

referencing Web service elements to suitable ontological entities. Successful 

implementation of SWS in industry and research requires effective and easy to use 

SWS annotation approaches (Lara et al., 2004). 

1.1.4  The Dilemma of Semantic Web Service Annotation 

Web services are currently annotated by manual means. Manual annotation is a 

difficult, error-prone and time-consuming task for the following three reasons 

(Hepp, 2006):  

1. The large number of potential domain ontologies that can be used for 

annotation. Over time it is expected that more domain ontologies will be 

available to SWS developers requiring a developer to search manually for 

most appropriate ontologies (Patil et al., 2004). 

2. The big size of potential ontologies. Ontologies can contain hundreds or 

maybe thousands of entities. Using such heavy weight ontologies for 

annotation requires a developer to browse through their descriptions to find 

entities that suit the different service elements.  

3. The big size of candidate Web services. Many services have a high number of 

elements that should be annotated.  

 

Given these three problems, there is a pressing need in the SWS arena for 

effective and automatic Web service annotation mechanisms. A few approaches 

and tools have been developed aiming to automate the annotation task. What 

exists can be classified into learning-based, matching-based and workflow 

definition-based approaches. These categories and their limitations are briefly 

described as follows: 

 Learning-based approaches employ ontology learning techniques to 

automatically build ontologies for annotation (Chifu et al., 2007). 

Retrospectively, existing learning techniques provide poor quality ontologies 



Chapter 1: Research Introduction and Motivation 

 

 6  

as they miss many important constructs. In addition, resulting ontologies are 

representations of individual services rather than being precise and shared 

domain models.  

 Matching-based approaches require manual building of application ontologies 

to capture the semantics of candidate services. The application ontologies are 

then matched against existing domain ontologies to find corresponding 

ontological entities for given service elements. Manual building of application 

ontologies is difficult as it requires much domain and technical knowledge. 

Moreover, employed matching techniques cannot perform accurate matching 

when labels of candidate services and ontological entities are composed of 

multiple words.  

 The workflow definition-based‎ approach‎ uses‎ “tried‎ and‎ tested”‎ workflows‎

and annotated services to derive annotation for new services. Existing 

annotated‎ services‎ and‎ “tried‎ and‎ tested”‎ workflows‎ are‎ hard‎ to‎ find‎ in‎

practical settings.  

1.2 Research Aim and Objectives 

Given the difficulty of manual annotation of Web services and the limitations of 

existing semi-automatic annotation approaches, the SWS area needs a new semi-

automatic annotation approach that can help SWS developers to effectively and 

easily annotate their services. Subsequently, the aim of this research is:  

 

To develop an effective and easy to use Web service semi-automatic 

annotation approach that utilises ontology matching techniques. 

 

In fulfilling this aim, a number of objectives are considered important to be 

achieved as follows:  

O1. Analyse the previous Web service semi-automatic annotation approaches and 

study their limitations in order to derive a set of design requirements and 

strategies for the new approach.   



Chapter 1: Research Introduction and Motivation 

 

 7  

O2. Design an initial annotation framework based on the derived requirements 

and strategies and the analysis of WSDL general structure. 

O3. Develop and test the automated components of the annotation approach. 

O4. Evaluate the final annotation approach using suitable evaluation methods, 

metrics and data.  

O5. Draw conclusions from the building and evaluation phases and identify future 

research directions that are important to continue refining and developing this 

significant area of research.  

1.3 Research Approach  

To achieve the research aim and objectives, this research follows the Design 

Science Research (DSR) approach. DSR is a problem solving paradigm that aims 

to design innovative and effective artefacts that can solve significant research 

problems (Hevner et al., 2004). DSR is deemed appropriate for this project since 

the aim of this research is to design an effective and easy to use solution for the 

important problem of Web service annotation.  

 

The DSR process comprises three significant activities of „build‟, „deploy‟ and 

„evaluate‟ (March and Smith, 1995). Across these activities, the desired design 

artefact is developed, deployed and tested using suitable evaluation methods and 

metrics. The DSR process can be of iterative and/or incremental nature which 

implies that the „build-deploy-evaluate‟ process can be repeated or incremented 

until satisfactory artefacts are obtained (Markus et al., 2002). In iterative DSR, the 

build-deploy-evaluate process is repeated a number of times to improve the 

artefact. On the other hand, incremental DSR means that the design of the 

required artefact is decomposed into more granular artefacts where each one is 

developed and evaluated during an increment (Simon, 1996 pp. 120). The DSR 

process of this project is an incremental one. This is because the proposed 

annotation approach contains different components where each component or set 

of components is developed and tested in a specific increment.  



Chapter 1: Research Introduction and Motivation 

 

 8  

In presenting this research, the DSR cycle provided by Kuechler and Vaishnavi 

(2008) and presented in Figure 3.2 is utilised. This cycle is composed of five 

phases called awareness of problem, suggestion, development, evaluation and 

conclusion. Knowledge feedback is very significant in the DSR cycle. Knowledge 

is acquired during all phases of the design process and transferred to previous and 

subsequent phases. This knowledge is very important because it can help to 

improve the design process and the resulting artefacts (Kuechler and Vaishnavi, 

2008). In designing the required annotation approach, six design increments are 

defined. These increments are briefly explained as follows:  

 

(1) Increment 1 (Design of the Initial Framework): In this increment, the initial 

annotation approach is developed and its manual and automatic phases and 

components are identified. Three automatic phases are defined which are: (a) 

Concept extraction, (b) query execution and (c) SAWSDL annotation. The 

two manual phases are: (a) Concept filtering and query filling and (b) results 

assessment.  

(2) Increment 2 (Design of the Concept Extraction Technique): The extraction 

technique is designed to automatically extract candidate service elements from 

given WSDL files. This technique is implemented using text analysis 

techniques.  

(3) Increment 3 (CN-Match Design): CN-Match is the name-based matching 

mechanism that is employed by the query execution engine. String and 

linguistic matching mechanisms are used to implement CN-Match.  

(4) Increment 4 (Structural Matching Design): The structural matching 

mechanism is the second matching technique that is utilised by the query 

execution engine. Structural matching is developed and used to improve query 

execution by measuring similarities between related elements of candidate 

service concepts and related classes of candidate ontological classes.  

(5) Increment 5 (SAWSDL Annotator Design): The SAWSDL annotator is 

designed using text parsing and string similarity techniques: It takes correct 

matches and uses them to automatically annotate the given service based on 

the SAWSDL notation.  



Chapter 1: Research Introduction and Motivation 

 

 9  

(6) Increment 6 (Design of the Ontology Extension Mechanisms): The 

extension mechanisms are developed and added to the annotation approach to 

allow the addition of appropriate ontological entities for service elements that 

do not have suitable correspondences. Two extension methods are developed, 

one for simple queries and the other for complex queries.  

 

The role of design artefacts is central for any DSR project. Artefacts represent 

solutions to defined research problems (Orlikowski and Iacono, 2001). March and 

Smith (1995) classified DSR artefacts into constructs, methods, models and 

instantiations. March and Smith (1995) classification is used to classify the 

artefacts of this project. Table 1.1 presents the classification of artefacts.  

 

Category Artefact 

Construct  Standard query template 

Model None  

Method Initial annotation framework 

CN-Match 

Structural matching mechanism 

Ontology extension mechanism 

Instantiation  Concept extraction mechanism 

CN-Match 

Structural matching mechanism  

SAWSDL annotator 

Ontology extension mechanism 

Semi-automatic annotation framework  

Table ‎1.1: The Classification of the DSR Artefacts of this Research 

 



Chapter 1: Research Introduction and Motivation 

 

 10  

1.4 Structure of the Thesis  

In presenting the research, this thesis is structured as follows: 

 

Chapter 2 provides a review of related research literature. The issue of semi-

automatic semantic description (i.e., annotation) of Web services is the main topic 

to explore. To understand the semantic annotation issue, it is important to 

investigate the Web services, ontologies and Semantic Web services (SWS) areas. 

Web service is a promising technology for supporting seamless connectivity 

between distributed application systems. Automatic discovery and composition of 

services is, however, very difficult when using current Web service standards. 

SWS is a proposed solution for solving the discovery and composition problems 

of Web services. There is no consensus in the SWS arena on the service elements 

that should be semantically annotated. Therefore, this chapter provides a set of 

synthesised elements that should be semantically described. Ontologies are very 

important components of Semantic Web applications such as SWS. Consequently, 

ontologies and their manual and automatic building methods are discussed. Few 

semi-automatic annotation approaches exist: They are classified as learning-based, 

workflow definition-based and matching-based approaches. These approaches are 

discussed and their limitations are illustrated.  

 

Chapter 3 describes the research approach used in designing and evaluating the 

proposed semi-automatic Web service annotation framework. The Design Science 

Research (DSR) paradigm is chosen as the right approach for tackling the defined 

research problem. DSR is a problem solving paradigm that aims to provide novel 

and purposeful artefacts to solve significant research problems. The research 

carried out in this project is then described in light of the DSR research cycle. 

Five DSR phases are identified which are: (1) Awareness of problem; (2) 

suggestion; (3) development; (4) evaluation; and (5) conclusions. Later, the 

research increments performed during the design process of the annotation 

framework are illustrated along with the learning that happens during each 

increment. Since the evaluation is a very crucial activity in any DSR project, the 



Chapter 1: Research Introduction and Motivation 

 

 11  

methods, metrics and data used to evaluate the developed annotation approach and 

all its automatic components are described. The design artefacts produced in this 

project are also presented and classified according to a widely used DSR artefact 

classification approach.  

 

Chapter 4 presents the new annotation approach and identifies all its phases and 

components. The proposed approach is of a semi-automated nature and utilises a 

query template rather than application ontologies. The design of the new approach 

is based on a set of design requirements and strategies that are derived from 

limitations of previous annotation approaches and the analysis of the WSDL 

general structure. Analysing the WSDL structure allows the identification of 

WSDL elements that should be annotated. The proposed approach comprises five 

interrelated phases. Three phases are fully automatic which are concept extraction, 

query execution and SAWSDL annotation. Queries are executed by means of a 

novel query execution engine that employs name-based and structural matching 

mechanisms. The two manual phases are „concept filtering and query filling‟ and 

results assessment. The design of all phases is described and the techniques used 

to implement the automatic parts are illustrated.   

 

Chapter 5 presents the design and evaluation of CN-Match which is the name-

based matching mechanism employed by the query execution engine. The chapter 

starts by highlighting the significance of matching Compound Nouns (CNs) in the 

area of ontology matching. A discussion about the structure and types of CNs 

from a linguistic point of view is followed. Previous approaches of CN matching 

are discussed and their limitations are provided. The given limitations provide a 

motivation for designing a novel CN-Matching mechanism that can automatically 

and effectively measure similarities between single terms, binary and triple CNs. 

Considerations and rules for the design of the new matching approach are derived 

from the deficiencies of previous approaches and the linguistic structure of CNs. 

Six design cases are identified for CN-Match design: These cases are 

distinguished based on the number of constituents in any two candidates. Later, 

the design and implementation of CN-Match are illustrated. To assess the 



Chapter 1: Research Introduction and Motivation 

 

 12  

performance of CN-Match, it is evaluated using Precision (P), Recall (R), F-

Measure (F) and Percentage metrics. Three sets of experiments are conducted 

using three different sets of exiting ontologies. The evaluation results are then 

discussed and important implications are derived.  

 

Chapter 6 focuses on evaluating the proposed semi-automated annotation 

approach. The chapter starts by presenting the ontology extension mechanisms 

supporting the proposed annotation approach. Then, three illustrative cases are 

provided to explain the annotation steps and show how the annotation approach 

works in practice. Next, the framework evaluation method and metrics are 

presented. P, R and F metrics are again used in this evaluation. Five sets of 

experiments are performed and the evaluation results discussed. Finally, 

implications of the conducted evaluation and limitations of the proposed 

annotation approach are given. 

 

Chapter 7 summarises the research findings and conclusions: It categorises the 

research contributions into contributions to theory and contributions to practice. 

Last, this chapter discusses how this research meets its defined objectives and 

directions for further research are explored.  

 

To simplify the reading of this thesis, a mapping between the thesis chapters and 

objectives is provided in Figure 1.1.  

 



Chapter 1: Research Introduction and Motivation 

 

 13  

 

Figure 1.1: Mapping Between Chapters and Objectives 



‎Chapter 2: Literature Review  

 

 14  

Chapter 2:  Literature Review 

2.1 Introduction 

This chapter investigates the state-of-the-art in Web service semantic description 

and exposes the limitations of existing semi-automatic annotation methods. In 

order to examine the semantic annotation issue, it is necessary to present Web 

services, ontologies and Semantic Web services (SWS). Ontology matching is 

also a significant area for this research because matching techniques are important 

means for achieving the desired semi-automation of annotation. 

 

The chapter is organised as follows: Section 2.2 presents Web services and their 

supporting technologies. Section 2.3 discusses ontologies, their engineering, 

learning and extension. Section 2.4 focuses on SWS and their major description 

frameworks. Section 2.5 discusses the importance of semi-automatic annotation of 

Web services and categorises existing semi-automatic annotation approaches into 

three categories. Section 2.6 illustrates the first and second categories which are 

learning and workflow definition-based approaches. Section 2.7 discusses 

matching-based annotation approaches which constitute the third category and 

illustrates the fundamental ontology matching mechanisms. Finally, Section 2.8 

presents deficiencies of previous research and Section 2.9 summarises the chapter.   



‎Chapter 2: Literature Review  

 

 15  

2.2 Web Services 

Modern applications of distributed-systems such as; electronic commerce (e-

commerce) and supply chain management require the development of platform-

independent and distributed software components (Paolucci et al., 2002). This is 

because such components are necessary to facilitate flexible communication and 

integration across heterogeneous systems. To achieve this aim, distributed 

software entities should be made discoverable, composable and reusable by 

different applications and organisations (Cheng et al., 2006). Nevertheless, 

developing such network accessible components has been a complex and 

challenging undertaking (Stal, 2002). In response to this challenge, SOA (Service 

Oriented Architecture) has been developed as a distributed computing paradigm 

that offers software components described by publishable and discoverable 

interfaces to other applications and services existing on a network (Papazoglou et 

al., 2007). Services in SOA can be defined as open, platform-independent and 

self-describing software components (software-as-a-service) that enable fast and 

low cost composition of distributed application systems (Papazoglou and 

Georgakapoulous, 2003).  

 

One can argue that SOA has roots in previous component-based software models 

such as CORBA (Common Object Request Broker Architecture) and DCOM 

(Distributed Component Object Model) (http://www.service-architecture.com/) 

since SOA services are themselves software components. Yet, services in SOA 

are different because they are capable of providing more granular business 

functionalities that can be discovered and composed in a flexible manner. In 

addition, these services are decoupled from implementation. These significant 

characteristics of services make them different from previous component-based 

software systems and enable them to be reused as effective solutions to business 

needs (Papazoglou, 2003; Stal, 2002).  

 

http://www.service-architecture.com/


‎Chapter 2: Literature Review  

 

 16  

The basic SOA architecture is composed of a service provider, service consumer 

(client) and service registry (Huhns and Signh, 2005). A service provider offers a 

service description and support for service use. A service client utilises the service 

in their application. Service descriptions are stored in a directory that makes these 

descriptions searchable by clients. Once an appropriate service is found a client 

can bind with the provider, invoke the service and implement its functionality 

(Papazoglou, 2003).  

 

 

Figure ‎2.1: The Basic SOA Architecture (Source: Papazoglou, 2003) 

 

The SOA literature provides a theoretical foundation but lacks fundamental 

pragmatic issues pertaining to service description, publishing, management, 

orchestration, coordination and security. The practical implementation of the SOA 

framework, however, can be realised by the Web service technology (Ferris and 

Farrell, 2003). Web services can be seen as the application of SOA on the Web. 

The innovation of Web services is a collaborative effort supported by different 

parties including the W3C (the World Wide Web Consortium) standards group, 

OASIS (Organisation of the Advancement of Structured Information Standards) 

and the open source community. 

 

A Web service is defined‎as‎“a‎software‎system‎identified‎by‎a‎URI,‎whose‎public‎

interfaces and bindings are defined and described using XML. Its definition can 



‎Chapter 2: Literature Review  

 

 17  

be discovered by other software systems. These systems may then interact with 

the Web service in a manner prescribed by its definition using XML-based 

messages‎ conveyed‎by‎ Internet‎ protocols”‎ (Austin‎ et al., 2004 pp. 1). The Web 

service framework is based on three fundamental standards that facilitate the 

operations performed by the three basic elements of the SOA i.e., service 

provider, client and registry. These open and XML-based standards are WSDL 

(Web Service Description Language), UDDI (Universal Description, Discovery 

and Integration) and SOAP. The three standards are briefly illustrated as follows 

(Curbera et al., 2002).  

 SOAP is a messaging protocol that facilitates message exchange among 

services and between a service provider and consumer. A SOAP message 

encompasses two components: (1) An envelope and (2) a model describing 

how the message should be processed by recipients and who should process 

the message.  

 WSDL describes the service interface as a set of communication endpoints 

that enable message exchange. A WSDL file contains two kinds of 

description: (a) Service application description including XSD (XML Schema) 

definitions that provide specifications for data types of various service 

elements and (b) concrete binding information that allows the end user to 

access the service at its endpoints. 

 UDDI is a centralised directory of service description. UDDI allows the 

description of services using a set of features called tModel. tModel contains 

information that describes service interface and category. Using tModel, a 

service client has to browse through different categories and may use 

keyword-based search in order to find their desired services (Brittenham et al., 

2001). Subsequently, this discovery process must be performed with full 

human involvement and thus can be time-consuming, error-prone and 

unsuitable for applications that require on-the-fly discovery. 

 

A more flexible, accurate and dynamic service selection mechanism than the one 

offered by UDDI is required for the following reasons: 



‎Chapter 2: Literature Review  

 

 18  

1. Services in an open and dynamic environment such as the Web should be 

discovered at run-time by other services and software agents (Paolucci et al., 

2002). Run-time discovery is fundamental to facilitate dynamic 

interoperability between different systems.  

2. Exact matching between service advertisements and requests is very unlikely 

as service clients and providers may have very different knowledge about the 

same service (Benatallah et al., 2005). Therefore, more tolerant discovery 

mechanisms should be used in order to find services that offer more or less 

than what is required by clients (Cardoso and Sheth, 2003).  

3. Services should be discovered based not only on their functional properties 

(e.g. inputs and outputs) but also their capabilities (what they offer) and 

behaviour (how they perform their tasks). The reason is that services could 

have the same inputs and outputs but perform very different functionalities 

and have different behaviour. 

 

 

Figure ‎2.2: Web Services Architecture Model (Source: Huhns and Singh, 

2005) 

 

WSDL describes Web services as a set of ports that offer operations (Austin et al., 

2004). Each operation performs a specific functionality by sending and receiving 

one or no message. Many applications and clients, however, require an 



‎Chapter 2: Literature Review  

 

 19  

implementation of a complex business logic that cannot be achieved by using a 

single service operation or available composed services. Therefore, it is necessary 

to integrate services in a specific manner in order to achieve the desired complex 

functionality (Dustdar and Schreiner, 2005). Organising single operations of 

services or existing composed services in a specific sequence to achieve the 

desired business process is called Web services composition (Khalaf and 

Leymann, 2003). In response to the high importance of Web services 

composition, different standards have been proposed such as; WSFL (Web 

Services Flow Language) from IBM, XLANG (XML-based extension of WSDL) 

from Microsoft, ebXML (Electronic Business using eXtensible Mark-up 

Language) and BPEL4WS (Business Process Execution Language for Web 

Services).  

 

The earlier XML-based composition standards differ on the necessary 

composition constructs and their semantics (Staab, 2003). Moreover, the Web 

services composition process is not an easy task: It is much more complicated 

than the design of conventional workflow-based systems for two reasons (Cardoso 

and Sheth, 2003):  

 Web services discovery cannot be performed manually as the number of Web 

services potentially appropriate for the given composition can be massive. 

Therefore, an efficient automatic discovery method based on functional and 

operational characteristics is needed.  

 The structural and semantic heterogeneities of the selected Web services. The 

structural heterogeneity happens because Web services use different data 

structures to describe their elements, while the semantic heterogeneity is due 

to the different interpretations of information used by the connected services 

in a process. These heterogeneity issues require schema and semantic 

mediation in order to enable interoperability between elements of connected 

services.   

 

These two challenges highlight the importance of automatic discovery and 

composition because the manual process can be very difficult, time-consuming 



‎Chapter 2: Literature Review  

 

 20  

and error-prone. For Web services to meet the needs of future Web applications, it 

is especially important to enable on-the-fly discovery and composition of Web 

services (Agarwal et al., 2003). Software agents may play important roles in the 

future Web where they may perform tasks such as service discovery, selection and 

composition on behalf of a human user (Narayanan and McIIraith, 2002). 

Unfortunately, using existing Web service standards alone does not enable the 

desired automation and agility because these standards lack the necessary 

semantic constructs (Sycara et al., 2003; Sivashanmugam et al., 2003a). The use 

of semantics represented in the form of ontologies can provide precise, machine-

understandable and shared meanings of service elements and thus may enable 

automatic discovery and composition of Web services (McIIraith et al., 2001; 

Sycara et al., 2003). Moreover, semantic matching techniques can resolve the 

above mentioned heterogeneity issues. Therefore utilising semantics in the area of 

Web services seems to be a natural choice (McIIraith et al., 2001). This utilisation 

launched a new and active research area called „Semantic Web Services‟ (SWS) 

which combines the Semantic Web initiative proposed by Berners-Lee et al. 

(2001) with the Web service technology.  

 

The Semantic Web is defined in the widely cited Scientific American article 

written by Berners-Lee et al. (2001 pp. 3-4)‎as‎“an‎extension‎of‎the‎current‎web‎in‎

which information is given well-defined meaning, better enabling computers and 

people to work in cooperation”.‎The‎Semantic‎Web‎idea‎was‎initially‎proposed‎for‎

static Web resources but then extended to cover dynamic resources i.e., Web 

services (McIIraith et al., 2001). Therefore, an important contribution of the 

Semantic Web is the provision of semantic mark-ups of web services where 

services offered and capabilities required by potential consumers are described 

semantically (Martin and Domingue, 2007). In summary, Table 2.1 presents the 

most significant issue discussed in this Section. 

 

 

 

 



‎Chapter 2: Literature Review  

 

 21  

Issue Number  Issue Description  

Issue 1 Existing Web service standards do not facilitate automatic 

discovery and composition because they lack the necessary 

semantics.  

Table ‎2.1: Issue Identified in Section 2.2 

2.3 Ontology 

Ontologies are fundamental components of SWS: They are used to provide 

precise, explicit and shared meanings of Web service elements. Therefore 

ontologies are discussed in detail in this section. Ontologies have been applied to 

a wide range of computer applications such as knowledge engineering and 

sharing, database design, Artificial Intelligence and Web services (Janev and 

Vranes, 2009).  

 

Ontology can be defined as "a formal explicit specification of a shared 

conceptualisation" (Gruber, 1993, pp. 3); that is, a definition of concepts, axioms 

and relations between concepts in a formal, shared and machine-understandable 

format (Jasper and Uschold, 1999). In the context of the Semantic Web, things 

that exist in the domain under consideration should be represented in an 

ontological model (Gruber, 1995). The last sentence has two important 

implications on ontology modelling. The first is the notion of existence which 

refers to ontological commitment. This notion enables an ontology to precisely 

reflect real life phenomena. The second is a representation which is achieved 

using a formal language (Zuniga, 2001).  

 

In response to the importance of ontologies in Semantic Web applications, formal 

ontology representation languages have been proposed. Examples are DAML 

(http://www.daml.org/), OIL (http://www.ontoknowledge.org/oil/) and OWL 



‎Chapter 2: Literature Review  

 

 22  

(http://www.w3.org/TR/owl-guide/) which is based on DAML and OIL. These 

languages are based on logic in order to be formal and enable machine-readability.  

2.3.1  Ontology Engineering and Learning  

According to Guarino (1998 pp. 4) ontology is defined‎as‎“engineering‎artefact” 

which comprises a set of vocabulary to describe a certain reality and some axioms 

to restrict the interpretation of this vocabulary. Due to the important role of 

ontologies in information systems applications, special attention should be taken 

when engineering an ontology. The ontology must be of good quality, in relation 

to its content, in order to serve its intended purposes and be shared and reusable 

by different applications (Staab, 2004).  

 

Building a good quality ontology, however, is not an easy task: It requires 

extensive technical and domain knowledge to ensure correctness of syntax and 

semantics (Devedzic, 2002). Technical knowledge is required because building 

tangible and usable ontologies entails representing these ontologies in one of the 

ontology representation languages such as OWL (De Nicola et al., 2009). 

Representing ontologies in an ontology representation language requires 

knowledge of this language and its constructs such as classes, properties, 

cardinality restrictions and domain and range axioms. In addition, knowledge of a 

development tool that can help developers during the representation process may 

be necessary to speed up the development process.  

 

In addition, domain knowledge is needed in order to precisely capture and 

represent domain concepts, their relations and axioms (De Nicola et al., 2009). 

Lack of domain knowledge may result in an ontology that incorrectly models the 

domain or misses many significant concepts and axioms (Staab, 2004). To help 

ontology developers in building good quality ontologies, ontology building 

methodologies are proposed (De Nicola et al., 2009; Gruninger and Fox, 1995). 

These methodologies aim to provide guidelines that can make the development a 



‎Chapter 2: Literature Review  

 

 23  

systematic process. For example, Pinto and Martins (2004) propose an ontology 

engineering process that is composed of the following five main phases; 

 Specification: Identifies goals and scope.   

 Conceptualisation: Constructs the conceptual model.  

 Formalisation: Represents the conceptual model in a formal manner in order to 

define axioms. 

 Implementation: Implements the ontology in an ontology representation 

language.   

 Maintenance: Maintains the correctness of the resulting ontology.   

 

Given the previous literature on ontology engineering, it can be inferred that 

manual ontology building is difficult and labour-intensive task (Jiang and Tan, 

2010) since it requires domain and technical knowledge and can go through 

different steps such as conceptualisation and formalisation in order to produce 

good ontologies (Devedzic, 2002). There are few approaches that aim to automate 

the ontology building process, however. They utilise ontology learning techniques 

(Grobelnik et al., 2009; Wei et al., 2010) which, in turn, employ methods 

borrowed from other disciplines such as Machine Learning (ML), Natural 

Language Processing (NLP) and statistical mechanisms (Gomez-Perez and 

Manzano-Macho, 2004). The learning process requires resources for knowledge 

acquisition such as unstructured, semi-structured and structured documents or 

databases (Sanchez, 2010). Generally speaking, the learning process consists of 

three fundamental steps (Missikoff et al., 2002; Zhou, 2007): (1) Knowledge 

extraction which involves mining a resource to obtain the required ontological 

constructs; (2) ontology discovery which entails domain concepts filtering and 

relations learning; and (3) ontology organisation which involves harmonising the 

discovered knowledge and improving the knowledge content of the new ontology.  

 

Given the current state of the ontology learning research, existing automatic 

ontology building methods have many understandable limitations. Consequently, 

resulting ontologies may not be of a satisfactory quality. These limitations are 

(Zhou, 2007; Zouaq and Nkambou, 2008):  



‎Chapter 2: Literature Review  

 

 24  

 Existing learning methods focus on detecting relations of type generalisation-

specialisation and miss other important relations such as whole-part.  

 Current techniques can only provide binary relations which link two concepts 

together. Higher-degree relations are, however, very significant components 

and must be included in resulting ontologies.  

 Produced ontologies contain many irrelevant concepts to given domains 

because effective automatic filtering techniques are still under development 

 The quality of the produced ontologies is profoundly based on the quality and 

richness of the used resources. 

 Ontologies that are learnt from specific documents are representations of these 

documents rather than being comprehensive and accurate representation of 

given domains. Consequently, these ontologies may not be useful when they 

are shared between different applications since they cannot capture and 

represent many ontological entities that are important for these applications.  

2.3.2  Ontology Extension 

Ontology extension is defined as the process of adding new ontological constructs 

to an existing ontology (Beneventano et al., 2003). These constructs can belong to 

any type of ontological entities such as classes and properties (Ovchinnikova and 

Kühnberger, 2006). Retrospectively, building an ontology from scratch is a very 

difficult and costly process; therefore, expanding an existing ontology is 

considered as an effective solution to many applications that use ontologies 

dynamically (Liu et al., 2005). So, once an application is changed or new 

requirements are added, the ontology can be updated to accommodate new 

semantics for the changes (Ovchinnikova and Kühnberger, 2006).  

 

There are few approaches that aim to extend ontologies in an automatic or semi-

automatic manner. For example, Jung et al. (2009) provide an ontology extension 

method to add concepts and relations extracted from textual documents using NLP 

techniques. A different ontology extension approach is proposed by Liu et al. 



‎Chapter 2: Literature Review  

 

 25  

(2005): It expands ontologies semi-automatically by mining textual data of 

websites. In the later approach, Spreading Activation, which is a semantic 

network search method, is used to find the most relevant terms to the given 

domain: These terms are then incorporated into the original ontology (Liu et al., 

2005). Developing an extension method is profoundly based on the nature of 

given knowledge resources. A knowledge resource such as a database or a text 

document provides knowledge that supports the addition of a subset of the 

required ontological constructs. For example, a text document could provide 

concepts and relations extracted from verbs. Extracting other important constructs 

such as cardinality and domain and range restrictions can be difficult using such a 

resource. Table 2.2 shows the significant issues identified in Section 2.3.  

 

Issue number Issue description 

Issue 2 Manual ontology building is a hard and time-consuming task 

since it needs extensive technical and domain knowledge.  

Issue 3 Automatic ontology building cannot provide good quality 

ontologies due to the immaturity of existing learning methods.  

Issue 4 Ontology extension is proposed as an effective solution which 

allows expanding and reusing an existing ontology by adding 

new ontological constructs.  

Table ‎2.2: Issues Identified in Section 2.3 

2.4 Semantic Web Services (SWS) 

The SWS proposal emerges as a solution to the problems (see section 2.2) of 

current syntactic Web services (Martin and Domingue, 2007; Vitvar et al., 2007). 

SWS can enable more agile and efficient discovery, composition and execution 

monitoring of services. The key principle of SWS is the use of ontologies to 

describe different service elements in a precise, shared and semantically rich 

manner. The SWS idea has attracted much attention and many approaches for 



‎Chapter 2: Literature Review  

 

 26  

description (Feier et al., 2005; Jacek et al., 2007; Martin et al., 2007), discovery 

(Sycara et al., 2003; Pathak et al., 2005; Sbodio et al., 2010) and composition 

(Cardoso and Sheth, 2003; Wu et al., 2007; Yeganeh et al., 2010) have been 

proposed. However, successful implementation of automatic discovery, 

composition and interoperability of SWS is based on the availability of 

appropriate methods for SWS description (Lara et al., 2004). The SWS 

description is composed of service elements such as inputs and outputs annotated 

using suitable semantic metadata (Verma and Sheth, 2007). Web service 

annotation‎means‎explicitly‎describing‎the‎service‟s‎data‎and‎functional‎elements‎

using concepts of shared ontologies in order to give these elements precise and 

machine understandable definitions (Martin et al., 2007). Subsequently, 

semantically describing a Web service entails two significant activities: (1) 

Electing the service elements that need to be semantically described; and (2) 

annotating these elements along with their data to appropriate ontological 

concepts.  

 

The existing SWS literature does not‎ agree‎ on‎ the‎ service‟s‎ elements‎ that‎

constitute a comprehensive SWS description. Table 2.3 provides a comparison 

between four neutral Semantic Web services description approaches. Drawing on 

(Cardoso, 2006; Nagarajan, 2006; Ringelstein et al., 2007; Sivashanmugam et al., 

2003a), these papers are chosen on the basis that they consider SWS description 

regardless of any particular SWS approach such as; OWL-S, SAWSDL or 

WSMO. The reason behind this selection is that the synthesised elements are used 

as a benchmark for comparing the major SWS approaches in order to judge their 

completeness.  

 

 

 

 



‎Chapter 2: Literature Review  

 

 27  

 

Paper 

In
p

u
t 

O
u

tp
u

t 

P
re

-c
o

n
d

it
io

n
 

E
ff

ec
t 

C
a

te
g

o
ry

 

N
o

n
-f

u
n

ct
io

n
a

l 

F
u

n
ct

io
n

a
li

ty
 

C
u

lt
u

ra
l 

E
x

ec
u

ti
o

n
 

Ringelstein et al. (2007) X X X X X X - - X 

Cardoso (2006) X X X X X X X X - 

Sivashanmugam et al. (2003a) X X X X X X X - X 

Nagrajan (2006) X X X X - X X - X 

Table ‎2.3: A Comparison between Four Neutral Semantic Web Service 

Description Approaches 

 

From Table 2.3, it can be inferred that inputs, outputs, pre-conditions, effects, 

category, non-functional semantics, functionality and execution semantics are the 

common service elements that are described in the SWS arena. Table 2.4 provides 

a synthesis of the common service elements and offers a definition and an 

example of each element. The examples are based on an imaginary online pizza 

ordering Web service. This service has two operations; the first for „reserving‎a‎

pizza‟ and the second for „paying the total price‟.  

 

 

 

Element 

Definition Example 

Input The formal definition of data in an input 

message of a service (Nagarajan, 2006). 

For „reserving a pizza‟ operation, the 

inputs are: PizzaName and Quantity 

Output The formal definition of data in an output 

message of a service (Nagarajan, 2006). 

For „reserving a pizza‟ operation, the 

output is the total price. 



‎Chapter 2: Literature Review  

 

 28  

 

Pre-condition 

Conditions that must be fulfilled before 

the‎execution‎of‎a‎service‟s‎operation.‎Pre‎

–conditions describe constraints on the 

inputs‟‎ values‎ as‎ well‎ as‎ the‎ state‎ of‎ the‎

world before successful execution of a 

Web service (Ringelstein et al., 2007). 

For „paying the total price‟ operation, 

the pre-condition is that the used credit 

card must be valid. 

 

 

Effect 

Describes constraints on the returned 

values and the impact of a Web service 

execution. Effects are more 

comprehensive than post-conditions as 

they cover impacts of service execution on 

the external world (Sivashanmugam et al., 

2003a). 

„Paying the total price‟ operation has 

two effects; (1) the total price amount is 

transferred from the customer account to 

the‎ restaurant‎ account.‎ The‎ customer‟s‎

balance is decreased by the total price 

amount and the destination account 

balance is increased by the same amount 

(2) the delivery process is commenced. 

Category Identifies the Web service category such 

as travel, and finance (Ringelstein et al., 

2007). 

Food selling service. 

Non-functional 

Semantics 

Formally describe quantitative or non-

quantitative constraints that support the 

Web service discovery and selection such 

as cost and security (Cardoso, 2006). 

The description of the security issues of 

the online pizza ordering service. 

 

Functionality 

Annotates‎ operations‟‎ names‎ of‎ services.‎

Functionality can be specified using a 

functionality ontology which has concepts 

of functionalities (Nagarajan, 2006). 

For „reserving a pizza‟ operation, the 

functionality is „online pizza 

reservation‟. For „paying the total price‟ 

operation, the functionality is „paying 

the total price‟. 

Cultural 

Semantics 

Describe culture - specific semantics of a 

Web service such as currencies, time and 

date formats and measurement units 

The total price must be paid in Great 

Britin Pound (GBP). 

 

 

Execution 

Semantics 

Formally define the operational behaviour 

of a service (Zaremba and Bussler, 2005). 

Execution semantics describe the flow of 

data and actions within a service or the 

flow of services in a process. Protocol 

semantics defined in (Ringelstein et al., 

2007) are similar to execution semantics. 

The customer must reserve the pizzas 

before paying the total price 

Table ‎2.4: Descriptions and Examples for the Web Service Elements 

http://www.refworks.com/Refworks/~0~


‎Chapter 2: Literature Review  

 

 29  

2.4.1  SWS Description Frameworks 

SWS can be achieved through the use of either formal Web service ontologies like 

WSMO and OWL-S, or by means for adding semantics to current Web service 

standards like SAWSDL. In this section, the SWS frameworks are reviewed 

briefly and then compared against the synthesised elements of SWS as a means of 

assessing the completeness of those SWS frameworks. 

 

SAWSDL 

SAWSDL (Semantic Annotation for WSDL) is a lightweight framework for 

Semantic Web Services (Jacek et al., 2007). SAWSDL defines a means for 

ontologically annotating elements of WSDL documents and XML schema 

(examples of such elements include input and output message structures, 

operations and interfaces). SAWSDL semantic annotations are independent of any 

particular ontology definition and mapping language. The only requirement for 

SAWSDL is that all concepts are identified with URIs. SAWSDL defines two 

extension attributes called Model Reference and Schema Mapping. Model 

Reference links (annotates) a concept in an ontology with a unit of structure in an 

XML schema or WSDL document. Model Reference can provide annotation for 

simple and complex XSD types of a WSDL document (Akkiraju and Sapkota, 

2007). The Model Reference for a complex type can provide partial or full 

annotation. Full annotation happens when both of the complex type and its child 

elements are annotated. On the other hand, partial annotation takes place when 

either the complex type or its child elements are annotated but not both of them.  

 

The Schema Mapping extension attribute is used during invocation to translate a 

semantically described concept to a syntactically defined one and vice versa. 

SAWSDL specification does not define how to represent pre-conditions and 

effects however; Akkiraju and Sapkota (2007) suggest the use of SWRL 

(Semantic Web Rule Language) rules to represent these elements. Moreover, 

SAWSDL does not deal with execution semantics.  

 



‎Chapter 2: Literature Review  

 

 30  

SAWSDL is, arguably, promising and easier to use and understand by Web 

service developers in comparison to other SWS frameworks since it does not 

introduce any new notations or languages (Sivashanmugam et al., 2003b; Verma 

and Sheth, 2007). SAWSDL utilises WSDL which is a well known language 

amongst the Web service community.  

 

OWL-S 

OWL-S is an OWL upper ontology for services and comprises three 

complementary models: (a) A profile model which describes what the service 

does; (b) a process model which defines how the service works; and (c) a 

grounding model which describes how to access the service. A profile model can 

describe the functionality and non-functional properties of a Web service. 

Moreover, functional descriptions of the service including data transformation 

(input and output) and state transformation (preconditions and results) are 

described in the profile and process sub-ontologies. OWL-S does not define the 

rules for pre-conditions and effects but recommends the use of rule definition 

languages such as SWRL (Martin et al., 2007). 

 

WSMO 

Web Service Modelling Ontology (WSMO) is another project that provides an 

abstract foundation and a formal language called WSML (Web Service Modelling 

Language) to describe features of Semantic Web services (Vitvar et al., 2007). 

WSMO comprises four main components which are: (a) Ontologies; (b) Web 

services; (c) goals; and (d) mediators. Ontologies define the terminology used by 

other WSMO components. Web services provide access to service functionalities 

that have value for users. A goal describes the desired functionality from the user 

point of view. Finally, mediators solve heterogeneity issues that arise at different 

levels including data, process and protocol levels (Roman et al., 2005). WSMO 

defines Web service capabilities in terms of pre-conditions, assumptions, post-

conditions and effects. The pre-condition and post-conditions define the state of 

information (constraints on the values of inputs and outputs) before and after the 

execution of a Web service, respectively. Assumptions and effects describe the 



‎Chapter 2: Literature Review  

 

 31  

state of the world before and after the execution of a Web service, respectively. In 

WSMO Web services, the interface describes the Web service behaviour and has 

two components - choreography and orchestration. The choreography of a Web 

service is a specification of how to invoke and interact with the Web service. The 

orchestration describes how the Web service achieves its functionality by means 

of utilising other Web services (Feier et al., 2005). WSMO does not explicitly 

define the concepts of inputs and outputs of Web service operations. Instead, the 

capability part of the Web service describes constraints on the inputs and outputs 

of a service through the use of pre-conditions and post-conditions (Lara et al., 

2004). 

 

IRS III (Internet Reasoning Service) 

IRS-III is a platform for developing and executing Semantic Web services. IRS-

III service development is based on the WSMO framework. The IRS-III service 

ontology has similarities and differences with the WSMO specification. WSMO 

and IRS-III are similar in their description of non-functional properties, Web 

service capability, choreography, grounding and orchestration. A fundamental 

difference is the declaration of input and output parameters which is explicit in 

IRS-III and implicit in WSMO (Domingue et al., 2008).  

 

Table 2.5 compares the four Semantic Web service description frameworks in 

order‎ to‎ show‎ the‎ frameworks‟‎ completeness‎ against‎ the‎ synthesised‎ SWS 

elements.  

 

 

 

 



‎Chapter 2: Literature Review  

 

 32  

 

 

Framework In
p

u
t 

O
u

tp
u

t 

P
re

-c
o

n
d

it
io

n
 

E
ff

ec
t 

C
a

te
g

o
ry

 

N
o

n
-f

u
n

ct
io

n
a

l 

F
u

n
ct

io
n

a
li

ty
 

E
x

ec
u

ti
o

n
 

OWL-S E E S S S S S S 

WSMO I I S S S S S S 

SAWSDL E E S S S NS S NS 

IRS-III E E S S S S S S 

Table ‎2.5: A Comparison between Semantic Web Service Frameworks 

against Synthesised Semantic Web Service Elements 

Table Keys: E: Explicit, I: Implicit, S: Supported and NS: Not supported.   

 

Table 2.6 Summarises the most significant issue discussed in Section 2.4.  

 

Issue Number Issue Description 

Issue 5 Major SWS description frameworks differ on the SWS 

elements that constitute a comprehensive semantic description 

of a service.  

Table ‎2.6: Issue Identified in Section 2.4 

2.5 Importance and Categories of Web Services 

Semi-automatic Annotation Approaches   

Annotation is a significant process in the area of Semantic Web. It enables 

different Web resources to have precise, machine-understandable and shared 

meaning by referencing these resources to appropriate concepts in shared 

ontologies. Manual annotation of Web services is a difficult task and requires 



‎Chapter 2: Literature Review  

 

 33  

comprehensive human involvement. Thus, automating the annotation task is 

highly desired (Hepp, 2006). Few approaches and tools have been developed to 

semi-automatically annotate Web services. What exists can be categorised 

according to the method used in performing the annotation. These categories are 

machine learning-based, semantic matching-based and workflow definition-based. 

The following two sections present a review of different approaches within those 

categories. Section 2.6 illustrates the machine learning-based and the workflow 

definition-based approaches. Section 2.7 discusses the Matching-based 

approaches and the underlying ontology matching techniques. Table 2.7 presents 

the significant issue of Section 2.5.  

 

Issue Number Issue Description 

Issue 6 Manual annotation of Web services is a difficult, error-prone 

and time-consuming task. Therefore, automating the 

annotation process is a pressing need in the SWS arena.  

Table ‎2.7: Issues Identified in Section 2.5 

2.6 Machine Learning-based and Workflow 

Definition-based Approaches 

2.6.1  Machine Learning-based Approaches 

A framework for learning domain specific taxonomies from textual descriptions 

of Web pages of Web services is proposed in (Chifu et al., 2007). The taxonomy 

learning process is composed of two steps; concept extraction followed by 

taxonomy building and pruning. Taxonomy concepts are extracted based on 

recognising linguistic patterns in a text corpus. The taxonomy learning process is 

based on hierarchical self-organising maps. The generated taxonomies represent 



‎Chapter 2: Literature Review  

 

 34  

the domain ontologies necessary for annotating Web services. Taxonomy 

concepts are used to semantically annotate inputs and outputs of Web service 

operations (Chifu et al., 2007). Though useful, the work only explains the process 

of domain ontology building and says nothing about the process of Web service 

annotation. Moreover, the taxonomies built could be used to annotate the input 

and output parameters of a Web service but without considering the other 

important Web service elements that should also be annotated. 

 

An approach to automatically create metadata from training data to semantically 

describing a Web service is developed by Heß and Kushmerick (2003). The 

training data comes from HTML pages documenting the service and the WSDL 

file of the service. Three different interrelated types of metadata are created. The 

first type is the category taxonomy that categorises Web services. The second type 

is the domain taxonomy, which describes the functionality of a specific service 

operation such as ‘searching for a book’ or ‘querying an 

airline timetable’. The third taxonomy describes the semantic categories 

of input and output data such as ‘book title’ or ‘destination 

airport’ (Heß and Kushmerick, 2003). This approach considers the 

annotations of inputs, outputs, category and functionality only.  

 

ASSAM is a tool developed by Heß et al. (2004) to semi-automatically annotate 

elements of a WSDL file. ASSAM suggests which ontology class should be used 

to annotate a WSDL element. The tool exploits an iterative relational classifier to 

semantically categorise Web services, their operations and parameters. The tool 

learns from previously annotated Web services, which provide training data 

(annotated Web services) from which ASSAM learns in order to predict 

annotations for new Web services. Furthermore, ASSAM uses a schema matching 

technique to aggregate data returned by a number of Web services that are 

semantically related. Having completed the annotation process, semantically 

annotated WSDL files can be exported into OWL-S and a concept file that 

contains complex data types. Though relatively comprehensive, ASSAM has 

limitations:  



‎Chapter 2: Literature Review  

 

 35  

 Previously annotated services are prerequisite for ASSAM. Existing annotated 

services are not always available to be used as training data for other services: 

This deficiency limits the utility of ASSAM to annotating services belonging 

to domains that have many annotated services.  

 The generated OWL-S process model allows only one atomic process per 

operation because ASSAM does not handle workflow definitions.  

 

An approach which uses knowledge that exists in domain models to train the 

semantics of Web service data represented in WSDL documents is proposed in 

(Lerman et al., 2006). The system starts by querying a domain model in order to 

populate it with instances of all the semantic types. Two classifiers are then used. 

The first classifier, which is metadata-based, predicts the data types of inputs 

using concepts taken from WSDL documents. While the second classifier, which 

is content-based, predicts the semantics of output data after successfully invoking 

the Web service with correct input data. This approach differs from (Heß and 

Kushmerick, 2003) by adding a verification stage to guarantee a correct prediction 

of input data and generation of output data, but has some drawbacks. First, the 

system does not find any semantic metadata suitable for an input if an appropriate 

semantic type does not exist in the selected domain model. In this case, the input 

under consideration is left without annotation. Consequently, a service annotated 

using this approach is likely to have many elements that are not annotated. This 

latter problem is called the „Low‎ Percentage‎ Problem‟. Second, the search for 

appropriate semantic metadata becomes expensive when the Web service has 

more than two inputs (Chifu et al, 2007).  

2.6.2  The Workflow Definition-based Approach 

A framework for automatically annotating Web services‎based‎on‎so‎called‎“tried-

and-tested”‎workflows‎is‎proposed‎in‎(Belhajjame‎et‎al,‎2008).‎Constraints on the 

annotation of Web service operation parameters are inferred based on their links 

to other annotated operation parameters in the workflow. 

 



‎Chapter 2: Literature Review  

 

 36  

The authors claim that their approach is effective in detecting errors in existing 

annotations. If a workflow produces correct results then the parameters of the 

linked operations are semantically compatible. Pre-existing annotated Web 

services‎ and‎ “tried-and-tested”‎ workflows,‎ which‎ are‎ not‎ always‎ available,‎ are‎

prerequisites for this approach to work.  

2.7 Using Ontology Matching for Semi-automatic 

Annotation of Web Services  

This class of annotation techniques utilises existing shared domain ontologies for 

annotation rather than developing new ones. Performing the desired semi-

automation of annotation requires the following two processes: (1) WSDL files of 

services along with their XSDs have to be represented using application 

ontologies; and (2) shared domain ontologies and application ontologies are 

matched using ontology matching techniques. Due to the central role of matching 

techniques in automating the annotation process, they are discussed in detail in 

Subsection 2.7.1 while previous matching-based semi-automatic annotation 

approaches are presented in Subsection 2.7.2. 

2.7.1  Ontology Matching 

IS ontologies can be heterogeneous at the syntactic as well as the semantic levels. 

The syntactic differences result from using dissimilar representation languages. 

This issue can be solved by using the same language or translating an ontology 

from one language into another. While semantic mismatches occur due to 

differences in terminology, meaning, interpretation or conceptualisation between 

ontologies developed for the same universe of discourse (Sheth and Larson, 1990; 

Euzenat and Shviko, 2007 pp. 40). 

 



‎Chapter 2: Literature Review  

 

 37  

Ontology heterogeneity prevents systems that use different ontologies from 

communicating and interoperating effectively (Shvaiko and Euzenat, 2008; 

Mascardi et al., 2009). The solution to this problem is ontology matching 

(Rodriguez and Egenhofer, 2003) which has synonyms in the literature such as; 

ontology mapping (Kalfoglou and Schorlemmer, 2003), semantic matching 

(Giunchiglia and Shvaiko, 2004) and semantic coordination (Bouquet et al., 

2003). 

 

Kalfoglou and Schorlemmer (2003 pp. 4)‎define‎ontology‎matching‎as‎“The‎task‎

of relating the vocabulary of two ontologies that share the same domain of 

discourse in such a way that the mathematical structure of ontological signatures 

and their intended interpretations, as specified by the ontological axioms, are 

respected”.‎ In‎ this‎ Subsection, the focus is on the major similarity calculation 

methods because most of the developed annotation and matching tools and 

frameworks modify one or more of the methods and combine them in a way to 

achieve the desired goal. Figure 2.3 depicts the matching process between two 

ontologies. 

 

In general, the input of the matching process is two ontological entities belonging 

to two different ontologies. The process utilises different similarity measurement 

techniques in order to perform a more accurate matching (Liping et al., 2007). The 

results of the individual techniques must be combined in an appropriate way to 

give an overall matching score for the entities under consideration (Euzenat and 

Valtchev, 2004). The matching score is then assessed against a threshold to decide 

whether the two given entities match or not. 

 



‎Chapter 2: Literature Review  

 

 38  

 

Figure ‎2.3: The General Matching Process Explained 

 

Several authors have classified matching techniques (Shaviko and Euzenat, 2005; 

Rahm and Bernstein, 2001; Noy, 2004; Giunchglia and Shvaiko, 2004; Choi et al., 

2006; Euzenat and Shaviko, 2007 pp. 61). The classification of Euzenat and 

Shaviko (2007 pp. 61) is adopted here as it is the latest and most comprehensive.  

They classify the basic techniques into four major non-mutually exclusive 

categories which are explained in some details as follows: 

 

Name-based Techniques 

These techniques utilise labels of ontological entities and can be further 

categorised into string-based and linguistic-based techniques. String-based 

techniques such as Edit Distance (Levenshtein, 1965) are syntactic-based 

techniques which consider a concept as a string of characters (see Cohen et al., 

(2003) for a comparison between string-based techniques).  Linguistic-based 

methods exploit external thesauri such as WordNet (Miller, 1995) which 

accommodates concepts with synonym and hyponym relations. These methods 

can discover that ‘Car’ and ‘Automobile’ are synonyms. Thesauri usually 

organise linguistic resources in a graph or network like structure, which is used to 

find paths between nodes and calculate similarities. Effective use of linguistic 

methods is, however, subject to availability of linguistic relations between 

concepts under consideration. General purpose thesauri might miss domain 

specific concepts and thus could be unable to find some matches. Therefore, it is 



‎Chapter 2: Literature Review  

 

 39  

possible to design domain specific linguistic databases and utilise them in 

applications (Budanitsky and Hirst, 2006). Labels of ontological entities are 

normally composed of single or multiple words (Castano et al., 2006; Nagy et al., 

2009). Consequently, name-based matching methods must be able to effectively 

measure similarities between labels that contain multiple words. These labels are 

called Compound Nouns (CNs) (Sorrentino et al., 2009). A few name-based 

matching approaches can match labels that contain CNs, however, they cannot 

perform accurate automatic matching (Su and Gulla, 2004; Castano et al., 2006). 

Due to the high significance of CN matching in the context of this research, 

existing CN matching approaches and their limitations will be discussed in detail 

in Chapter 5. In addition, a novel and effective CN matching mechanism will be 

proposed and evaluated in Chapter 5.  

 

Structure-based Techniques  

These can be broken down into internal and relational structural techniques. 

Internal techniques exploit the internal structure of ontological entities such as; 

primitive datatypes, and cardinality restrictions. These techniques can be used for 

clustering purposes prior to the actual matching process (Rahm and Bernstein, 

2001). Though, relational techniques make use of the structural relations such as 

super/subclass and properties of ontologies. For example, if a subclass in one 

ontology matches a subclass in another ontology, then their superclasses can 

potentially match. An example of using properties of ontologies for matching is 

when an ontology has two classes (B1 and B2) linked by a property X and another 

ontology has other two classes (D1 and D2) linked by a property Y. If B1 matches 

D1 and X matches Y then, B2 probably matches D2. This class of techniques is 

useful however; they have some deficiencies such as: (1) A matcher based on 

super/subclass relation might consider subclasses of a super-class as being the 

same; and (2) a matcher based on the relational structure might give inaccurate 

matching. This deficiency can be explained by the following example. Let us 

assume that an ontology has that two classes ‘individual’ and ‘Product’ 

linked by a property ‘is bought by’ and another ontology which has two 

classes ‘Organisation’ and ‘Product’ linked by a property ‘is 



‎Chapter 2: Literature Review  

 

 40  

bought by’. A relational-based matcher matching the previous two ontologies 

may find that ‘Individual’ and ‘Organisation’ are correspondences 

because ‘Product’ match with ‘Product’ and ‘is bought by’ matches 

with ‘is bought by’. Therefore, relational techniques are usually used with 

other techniques. Structure-based techniques can be syntactic when the similarity 

calculation is based on syntactic means like string-based matching whilst they are 

semantic when the similarity computation is performed by semantic means. In the 

later case, meaning of ontological entities along with domain and structural 

knowledge are represented using logical formulae. Therefore, the problem of 

finding a match turns into a logical deduction (Bouquet et al., 2003) which can be 

carried out using a logical reasoner such as the SAT (propositional SATisfiability 

technique) decider.     

 

Extensional techniques 

These techniques are only feasible when instances of classes and properties are 

available. The main idea behind these techniques is: If two concepts have the 

same set of individuals then they can be the same. A more tolerant approach can 

define two concepts as overlapping when they share some of their individuals. An 

example of this category is formal concept analysis which can analyse the given 

data and organise it in a concept lattice (Zhao et al, 2006). Extensional techniques 

are not always applicable since individuals are not always available in ontologies.   

 

Semantic-based techniques  

These techniques are based on logical deduction and thus cannot work alone, 

requiring an initial processing to produce prior matching entities in order to 

deduce new matches. The prior matching can be produced by matching the two 

given ontologies to an external common ontology using name or structure-based 

techniques. Based on the prior matching results, logical formulas can be 

constructed. Having had the formulas, a reasoner such as; SAT decider or 

description logic reasoner can be used to deduce new matches.  



‎Chapter 2: Literature Review  

 

 41  

The above techniques cannot perform a good matching when used in isolation; 

therefore, composing a number of techniques is usually needed in order to 

produce a better matching. Grouping individual techniques is generally based on 

producing a weighting system to combine the separate similarity scores. 

Weighting is an important mechanism as it enables maximising scores of more 

important techniques and minimise scores of less important ones. Weights can be 

assigned manually or automatically. Automatic weighting can be performed using 

methods such as machine learning (see Ehrig and Sure (2005) for an example). 

Manual weighting can present some problems when dynamic weighting is needed 

to optimise the overall similarity score.     

 

The matching problem has gained monument during the last decade (Rahm and 

Berrnstein, 2001; Kalfoglou and Schorlemmer, 2003). Many fully and semi-

automatic tools (Giunchiglia et al., 2004; Do and Rahm, 2002; Madhavan et al, 

2001) have been proposed to solve the matching problem. Some of these attempts 

target the general matching issue. Examples are FOAM (Framework for Ontology 

Alignment and Matching) developed by Ehrig and Sure (2005), QOM (Quick 

Ontology Matching) proposed by Ehrig and Staab (2004) and Prompt (Noy and 

Musen, 2000). Other approaches are designed as solutions to specific problems 

such as; catalogue integration (Bouquet et al., 2003) and Web service composition 

(Wu et al., 2007; Pahi and Zhu, 2006). 

 

Ontology matching is a very difficult and computationally expensive problem 

especially when considering the matching at a general level. It is more efficient 

and effective to design matching solutions for specific problems rather than 

designing general solutions, however. The reason is that the more internal and 

external ontological features and constraints are available to the matching process, 

the more accurate the matching is (Euzenat and Valtchev, 2004). To summarise 

the important issues discussed in Subsection 2.7.1, Table 2.8 presents the most 

significant ones.  

 

 



‎Chapter 2: Literature Review  

 

 42  

Issue Number Issue Description 

Issue 7 Individual matching techniques do not normally provide 

satisfactory results thus combinations of these techniques are 

usually used to perform better matching.  

Issue 8 Existing name-based matching techniques cannot provide 

accurate automatic CN matching. 

Table ‎2.8: Issues Identified in Subsection 2.7.1 

 

The following Subsection describes how matching techniques are utilised by the 

existing research to semi-automate the annotation of Web services. 

2.7.2  Matching-based Semi-automatic Annotation 

Approaches  

The METEOR-S Web Service Annotation Framework (MWSAF) which is part of 

the METEOR-S Project (http://lsdis.cs.uga.edu/projects/meteor-s/) is developed 

by (Patil et al., 2004) to add semantics to WSDL documents of Web services. 

MWSAF (METEOR-s Web Service Annotation Framework) uses ontology 

matching techniques to semi-automatically annotate WSDL documents with 

appropriate concepts from domain ontologies. The framework suggests a 

transformation of domain ontologies and the XML schema of WSDL documents 

into a common representation called SchemaGraph in order to enable structural 

matching. Once a common representation is achieved, every concept in the WSDL 

graph is matched against every concept in the domain ontology graph using two 

matching techniques. The two techniques are element level (name-based) and 

schema level (structural-based) matching techniques. The element level matching 

utilises N-Gram as a string-based mechanism and synonym-based similarity as a 

linguistic mechanism. Having completed the matching process, only the best 

matches are selected by a function called getBestMapping. Moreover, MWSAF 

classifies Web services into semantic categories taken from domain ontologies 

where the percentage of domain ontology concepts, used to annotate the Web 



‎Chapter 2: Literature Review  

 

 43  

service, is considered (Patil et al., 2004). This framework suffers from some 

limitations: 

 XSD and OWL transformation to schema graph is performed by manual 

means which makes this transformation hard to achieve. In addition, this 

transformation is no longer necessary as OWL is the dominant ontology 

representation language. This drawback limits the expressiveness of the 

produced ontology as OWL is more expressive than a graph. 

 This approach can measure similarities between labels containing CNs using 

basic similarity mechanisms that ignore the linguistic structure of CNs 

(Compound Nouns). Other authors (Kim and Baldwin, 2005) have noted that 

this ignorance may result in imprecise similarity scores, however. 

 This framework becomes computationally expensive when the number of 

candidate ontologies increases.  

 

METEOR-S was modified to enable the generation of OWL-S descriptions from 

semantically annotated WSDL documents (Rajasekaran et al., 2005). The 

modified framework implements a Naïve Bayesian Classifier to classify a service 

into a specific domain. Then, an ontology describing the same domain is selected 

to annotate the service. This addition of the classifier makes the approach less 

computationally expensive but on the price of limiting the annotation scope to a 

single ontology. A service description may span more than one domain, however. 

Therefore, many service elements may not have appropriate ontological matches 

and thus may be left without annotation. Many none annotated service elements 

cause the Low Percentage Problem.    

 

A framework for generating OWL-S descriptions from WSDL files was 

developed by Duo et al. (2005). The process of generating OWL-S starts with 

manually translating XML schema of a WSDL description into an intermediate 

OWL ontology. This transformation uses rules such as: (1) Complex, simple and 

global XSD elements are translated into Owl:Class; while (2) local element of 

type of simple type is translated into Owl:DatatypeProperty. Then, the 

intermediate ontology is mapped to existing domain ontologies using name-based 



‎Chapter 2: Literature Review  

 

 44  

and structural similarity measures. The mapping result is used to generate the 

desired OWL-S description from the WSDL file. The mapping rules from WSDL 

to OWL-S are given as follows: 

 A WSDL port type becomes a process model in OWL-S. 

 An operation in WSDL is mapped to an atomic process in OWL-S. 

 Inputs and outputs messages of an operation are mapped to inputs and 

outputs of an OWL-S atomic process. 

 A WSDL message part type becomes an OWL-S parameter for that message 

part. 

 

The approach has some drawbacks:  

1. The implemented name-based matching uses Levenshtein Distance to measure 

similarities between labels containing single terms only. Though relatively 

effective, this approach cannot measure similarities between labels that have 

CNs. 

2. The approach requires manual ontology building which is a hard and time-

consuming task.  

3. Many service elements could end up without annotation since this approach 

uses a limited set of ontologies and do not utilise an effective ontology 

extension mechanism.  

 

Subsequently, services annotated using the latter approach may suffer from the 

Low Percentage Problem.  

 

Lei et al. (2008) proposed an approach for annotating WSDL files. They claim 

that their approach can improve the efficiency of the annotation process by 

performing an initial name-based matching step to create a set of ontological 

concepts that are the best matches of the given XSD element. Having had the set, 

structural matching is implemented to find the best matches among elements of 

the set. Nevertheless, this approach is not a comprehensive one because it does not 

provide clear guidance for transforming an XSD to a temporary ontology. 



‎Chapter 2: Literature Review  

 

 45  

Moreover, the approach uses very basic matching mechanisms that cannot provide 

accurate CN matching.  

 

Another Web service annotation approach is developed by Zhang et al. (2008). 

This approach is similar to the one proposed by Duo et al. (2005) since it utilises 

the same XSD to ontology transformation rules. This approach produces services 

in the SAWSDL format. In this annotation mechanism, H-MATCH (Castano et 

al., 2006) is utilised as a matching tool to find correspondences between an 

intermediate ontology that represents a service and shared ontologies. H-Match 

can measure similarities between CNs but it requires the addition of CNs, that do 

not have entries in WordNet, to a newly constructed thesaurus. Once that is done, 

a similarity calculation can be carried out between CNs and other single terms or 

CNs that already exist in WordNet. The addition of new CNs to a newly 

developed thesaurus may delay and complicate the semi-automatic annotation 

process. This is because creating new entries needs some degree of human 

involvement to extend the constructed thesaurus with new entries. For more 

details about H-Match see Section 5.4.    

2.8 Limitations of Previous Research 

Unsurprisingly, given the immature nature of the state-of-the-art, current semi- 

automatic annotation frameworks need more development to be able to achieve 

the required Web service annotation task more efficiently and effectively. We 

therefore now use the outcomes of the previous section to summarise four 

important issues.  

 

First, no approach can annotate all the required service elements provided in the 

synthesised set. Second, approaches based on ontology learning have some 

deficiencies: 

 Ontology learning mechanisms are still under development and thus may 

produce semantically poor ontologies. The learned ontologies are usually in 



‎Chapter 2: Literature Review  

 

 46  

the form of taxonomy where important ontological constructs such as; 

properties and axioms are not captured.  

 The data required for learning purposes is not always available. For example, 

ASSAM requires annotated services as training data to annotate similar 

services. These existing annotated services cannot be always found due to the 

limited number of existing SWS.  

 The resulting application ontologies are representations of sole services 

instead of being precise representations of shared domain knowledge. 

Therefore, matching the produced ontologies against shared ontologies is still 

required either at design time or at run time when service related activities 

such as discovery and composition are performed. 

 

Third, the approach based on workflow definition is only effective for checking 

the correctness of an annotation rather than performing the annotation itself. The 

reason is that already annotated services that can be composed with new services 

and‎ “tried‎ and‎ tested‎ workflow”‎ are‎ very‎ hard‎ to‎ find‎ in‎ practical‎ cases. And 

fourth, using semantic matching to perform Web service semi-automatic 

annotation is promising due to the following reasons: (1) The existence of a 

family of matching techniques that can produce reasonable matching results; and 

(2) the ability to reuse and share existing ontologies for annotating many services. 

The later is a significant reason as manual ontology building is not an easy task 

and automatic ontology building, at best, produces semantically poor ontologies. 

Existing semantic matching-based techniques suffer from numerous limitations;   

 They require manual development of application ontologies to model implicit 

semantics of WSDL files of candidate services. Manual ontology building is a 

tedious and difficult process that requires extensive domain and technical 

knowledge.  

 Implemented matching approaches cannot provide effective and precise 

matching results when labels of service data and/or ontological entities contain 

CNs. The reason is that these matching approaches do not take the linguistic 

structure of CNs into consideration during the similarity calculation process 

(Kim and Baldwin, 2005).  



‎Chapter 2: Literature Review  

 

 47  

 The Low Percentage Problem: Using existing annotation approaches may 

result in many unannotated service elements. This is because the shared 

ontologies used for annotation may not have suitable correspondences for all 

service elements that should be annotated. Used ontologies are relatively 

incomprehensive and miss some domain concepts. Subsequently, annotating 

Web services to these ontologies without a dynamic and effective ontology 

extension mechanism that can add necessary concepts to ontologies will lead 

to the Low Percentage Problem. This latter problem has a very negative 

impact on the performance and utility of annotation approaches.  

 The matching process is computationally expensive when a framework uses 

many existing ontologies for annotation. This expensiveness limits the 

efficiency and usability of semi-automatic annotation. Therefore, a method is 

usually needed to reduce the number of potential ontologies and improve the 

efficiency of automatic annotation. 

 

To summarise, Table 2.9 defines the significant issues discussed in Section 2.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



‎Chapter 2: Literature Review  

 

 48  

Issue Number Issue Description 

Issue 9 All existing semi-automatic annotation approaches cannot 

annotate the whole set of synthesised elements.  

Issue 10 Learning-based approaches suffer from the following 

limitations: (1) Poor quality ontologies; (2) training data is 

hard to find; and (3) ontologies are not representations of 

shared domain knowledge but models of individual services.  

Issue 11 The workflow-based approach is only useful for checking 

annotated services but not to produce new annotations. 

Issue 12 Matching based approaches are promising however they 

share the following deficiencies: (1) They require manual 

building of application ontology; (2) implemented name-

based matching cannot perform accurate CN matching; (3) 

the low Percentage Problem; and (4) they can be 

computationally expensive when annotating to many 

ontologies.  

Table ‎2.9: Issues Identified in Section 2.8 

 

This research will address the issues that are relevant to its aim. Other issues can 

be addressed in future research. Table 2.10 presents the issues to be tackled in this 

research.  

 

 

 

 

 

 

 

 

 

 



‎Chapter 2: Literature Review  

 

 49  

Issue Number Issue Description Reason for Addressing 

Issue 1 Existing Web service 

standards lack the necessary 

semantics. 

This research will add 

semantics to Web services. 

Issue 2 Manual ontology building is 

hard. 

To avoid manual ontology 

building in the provided 

approach. 

Issue 4 Ontology extension is useful 

for expanding and reusing 

ontology. 

To extend and reuse 

ontologies for annotation.  

Issue 6 The difficulty and 

ineffectiveness of manual 

annotation of Web services. 

The research semi-automate 

the annotation task.  

Issue 7 Individual matching 

techniques do not provide 

satisfactory results and thus 

they should be combined. 

To develop and use a 

combination of individual 

techniques in the annotation 

approach.  

Issue 8 Existing name-based 

matching techniques cannot 

provide automatic and 

accurate CN matching.  

Labels of Web service 

elements and ontological 

entities contain CNs.  

Issue 12 Matching-based annotation 

approaches have limitations.  

The research will overcome 

many limitations of existing 

approaches.  

Table ‎2.10: An Overall Summary Table Highlighting the Issues to Be 

Addressed in the Research 



‎Chapter 2: Literature Review  

 

 50  

2.9 Summary  

This chapter presented previous research in the area of semi-automatic annotation 

of Web services. Web services and their industrial standards were discussed. The 

discussion showed that existing standards such as; WSDL, UDDI and SOAP do 

not support automatic discovery and composition of services because they miss 

the important semantic constructs modelled in ontologies. Due to their central role 

in the SWS area, ontologies, their engineering, learning and extension were 

presented. The SWS idea which is a proposed solution to automate the discovery 

and composition of Web services was then illustrated. After, the major SWS 

description frameworks were presented. Since those major frameworks do not 

agree on the service elements that should be annotated, a synthesis of service 

elements that should be semantically described was developed and used to assess 

the completeness of the major frameworks.  

 

The SWS literature reports that SWS adoption by developers is low because of the 

difficulty of manual annotation of Web services. Consequently, automating the 

annotation process is a key issue for SWS success. Therefore, the existing semi-

automatic annotation approaches were discussed and classified into three 

categories which are: Learning-based, workflow definition-based and matching-

based approaches. Limitations of those annotation approaches were uncovered 

and issues like annotation difficulty and efficiency, matching effectiveness and the 

Low Percentage Problem were raised. This chapter concludes that matching-based 

annotation approaches are promising because exiting ontologies can be effectively 

shared between services and there are some matching approaches that can be 

combined and used to automate the annotation task. Those matching-based 

frameworks, however, suffer from numerous limitations which require attention.  

 

In order to benefit from matching-based semi-automatic annotation, the difficulty 

of the annotation process which results from the manual ontology building of 

application ontologies should be minimised. Furthermore, the effectiveness and 

accuracy of matching especially when it comes to CNs should be improved. In 



‎Chapter 2: Literature Review  

 

 51  

addition, the Low Percentage Problem has to be sorted in order to improve the 

adoption of semi-automatic annotation approaches. Finally, a method should be 

developed to automatically select ontologies when performing annotation. Such 

an automatic selection mechanism can reduce the computational expensiveness of 

matching approaches when multiple ontologies are used for annotation.   

 

 



Chapter 3: Research Design and Approach  

 

 52  

Chapter 3:  Research Design and Approach 

3.1 Overview 

This chapter describes DSR (Design Science Research) as the research approach 

used in designing and testing the proposed semi-automatic Web service 

annotation framework. DSR is a problem solving paradigm: It offers solutions to 

research problems by providing useful design artefacts. These artefacts should be 

designed and evaluated using appropriate methods.  

 

This chapter is structured as follows: Section 3.2 highlights the different research 

approaches employed in IS research showing the importance of selecting the right 

research method in answering the defined research question. Section 3.3 discusses 

in detail the Design Science Research (DSR) paradigm, its philosophies and 

processes. Section 3.4 describes the employment of DSR in the context of this 

research and illustrates the design increments and evaluation of the proposed 

approach and its artefacts. Section 3.5 defines the artefacts produced in this 

research and classifies them based on a widely used classification approach. 

Finally, Section 3.6 summarises the chapter.  

3.2 Research Paradigms and Approaches in 

Information Systems  

Research in Information Systems (IS) has attracted increasing attention in the last 

decade because IS can improve effectiveness and capabilities of organisations 



Chapter 3: Research Design and Approach  

 

 53  

(Nunamaker et al., 1991). The nature of IS research is complex because the IS 

field is multidisciplinary as IS has strong links with other domains such as 

medicine, engineering and social science. These richness and varieties in the IS 

field result in having different IS research methods (Land, 1992). Traditional IS 

research such as Chua (1986) and Orlikowski and Baroudi (1991) differentiate 

between two major research paradigms which are Positivist and Interpretive: 

These two types are briefly explained as follows:  

 The IS research can be categorised as positivist when there are: (1) hypothesis 

generation and a set of quantifiable dependent and independent variables; (2) 

tests of proposed hypothesis; and (3) drawing of conclusions and inferences 

about the examined phenomenon from a representative sample set of the 

population (Orlikowski and Baroudi, 1991). Positivist researchers believe that 

hypothesises about reality can be tested independently of the researcher and 

the used tools. 

 The IS research is described as interpretive when knowledge of reality is 

characterised by social context and factors such as language, shared 

understanding and meaning, tools and documents. Hence, interpretive research 

aims to investigate and understand the reality represented by IS context and 

the mutual influence between IS and its context (Walsham, 1993 pp. 62).   

 

The other IS research approach that has emerged and characterised in the last 

decade is the DSR paradigm. DSR aims to produce useful and usable novel 

artefacts that can solve important research problems and change current social or 

organisational states into better ones (Hevner et al., 2004). Research iterations or 

increments are very significant in DSR processes since they result in generating 

knowledge and learning about the studied phenomenon and produce and improve 

the desired artefacts (Nunamaker et al., 1991; Vishnavi and Kuechler, 2004).  

 

Hevner et al. (2004) provide a framework for IS research for both behavioural and 

design science. In their framework, they insist on the mutual relation between 

knowledge base and IS research. The existing knowledge base provides 

background knowledge that helps conducting the intended research work. In 



Chapter 3: Research Design and Approach  

 

 54  

addition, IS research should add significant contributions to the knowledge base. 

Contributions of IS research are, however, examined by applying them to business 

or social needs in appropriate environments. Research rigour is guaranteed by 

applying existing foundations and methodologies in a suitable manner.   

 

It is worth mentioning that behavioural science and DSR are not isolated but 

mutually related to each other (Gregor and Jones, 2007). For example, DSR can 

utilise knowledge produced by behavioural science to improve existing IT 

artefacts while behavioural science can be effectively used to examine the impact 

of produced artefacts on organisations and individuals.  

 

 

Figure ‎3.1: The Information Systems Framework (Source: Hevner et al., 

2004) 

 

This research tackles the problem of Web service annotation: This problem is 

significant since it prevents a wider adoption of SWS by Web service developers 

and researchers. Aiming to change the current state of SWS adoption, this 

research designs a new semi-automatic Web service annotation approach that 

overcomes limitations of existing approaches. Retrospectively, IS research is 

considered DSR when it aims to change a current state of an organisation into a 



Chapter 3: Research Design and Approach  

 

 55  

new state by developing novel IT artefacts (Hevner et al., 2004). Consequently, 

this research follows the DSR paradigm. The way in which DSR is employed in 

this research along with DSR processes and artefacts are discussed in detail in 

Sections 3.4 and 3.5.  

3.3 The Design Science Research (DSR) Paradigm 

DSR has recently attracted increasing attention in the IS and computing discipline: 

It is seen as another analytical perspective that can complement the behavioural 

science paradigm, traditionally the dominant paradigm in the IS area (Hevner et 

al., 2004; Vaishnavi and Kuechler, 2004; March and Storey, 2008). Research in 

DSR‎ is‎ impacted‎ by‎ Simon‟s‎ view‎ of‎ the‎ “Science‎ of‎ the‎Artificial”‎where‎ the‎

term artificial implies a hand-made product or artefact (Simon, 1996 pp. 123). The 

term design implies creating something novel that does not already exist in nature. 

Hevner‎ et‎ al.‎ (2004‎ pp.‎ 78)‎ defines‎ the‎ notion‎ of‎ design‎ as‎ the‎ “purposeful‎

organisation of resources to‎accomplish‎a‎goal”.‎ 

 

DSR is necessarily a problem solving paradigm that seeks to build IT artefacts 

addressing an existing problem (Nunamaker et al., 1991; Vaishnavi and Kuechler, 

2004). Particularly, DSR focuses on developing and evaluating IT artefacts that 

are described as innovative, purposeful and novel (Hevner et al., 2004). 

Purposeful indicates that developed artefacts should potentially offer to 

organisations and individuals a „utility‟ that addresses unresolved problems or 

provide better solutions that can enhance existing practices (Vaishnavi and 

Kuechler, 2004).  

 

Unlike typical routine design activities which only focus on creating working 

artefacts, DSR signifies the systematic creation, capturing and communication of 

knowledge about and within the design process (Baskerville, 2008). Knowledge 

and understanding of design problems and solutions are obtained during the 

development, evaluation and application of designed artefacts (Simon, 1996 pp. 



Chapter 3: Research Design and Approach  

 

 56  

120). This is because the design process is seen as a learning process where 

understanding is enhanced as researchers are progressing in design activities. This 

understanding helps to improve the quality of the design process and the resulting 

design artefacts (See Figure 3.2).  

3.3.1  DSR Processes 

Researchers such as Hevner et al. (2004) and Kuechler and Vaishnavi (2008) 

argue that DSR projects are normally composed of certain activities or steps. The 

latter define five important project steps as the „anatomy‟ of DSR (See Figure 

3.2). The DSR process starts with awareness of problem then followed by 

suggestion, development and finally evaluation which in turn leads to a 

conclusion. All these phases are good opportunities for knowledge generation that 

can feed into earlier or subsequent steps.  

 

A distinctive feature of DSR is its iterative or incremental nature which implies 

that‎the‎„build-evaluate‟‎process‎can‎be‎repeated‎or‎incremented‎until satisfactory 

artefacts are obtained (Markus et al., 2002). Unfortunately, most DSR scholars 

(Gregor and Jones, 2007; March and Story, 2008) focus on the iterative DSR and 

ignore incremental DSR. A description of incremental DSR, however, can be 

found in Simon (1996 pp. 120) stressing that the design process of a complex 

artefact can be broken down into more granular and semi-independent 

components. These components cumulatively make the desired artefact. In 

addition, Hevner et al. (2004) argue that DSR activities can be incremental. In 

incremental DSR, each artefact, part of artefact or a set of artefacts are designed 

during a DSR phase called an increment. It is worth mentioning that incremental 

design is necessarily associated with incremental learning since the understanding 

of the design process is improved as the design grows and more components of 

the final artefact are developed and evaluated. 

 



Chapter 3: Research Design and Approach  

 

 57  

 

Figure ‎3.2: Reasoning in the Design-Science Research Cycle (Source: 

Kuechler and Vaishnavi, 2008) 

3.3.2  DSR Evaluation 

The evaluation process is significant in the context of DSR because it can generate 

feedback and knowledge that can lead to better understanding of the problem 

domain and improvements of the artefacts and design activities. To perform 

correct and effective evaluation, appropriate methods and metrics must be selected 

and used (Kuechler et al., 2005). Hevner et al. (2004) define a set of evaluation 

methods that can match different types of design artefacts. These methods are 

presented in Table 3.1.  

 

 

 

 

 

 

 

 

 

 



Chapter 3: Research Design and Approach  

 

 58  

Guideline Description 

Observational Case Study: Study artefact in depth in business environment. 

Field Study: Monitor use of artefact in multiple projects. 

Analytical  Static analysis: Examine structure of artefact for static 

qualities (e.g. complexity). 

Architecture Analysis: Study fit of artefact into technical IS 

architecture. 

Optimisation: Demonstrate inherent optimal properties of 

artefact or provide optimality bounds on artefact behaviour. 

Dynamic Analysis: Study artefact in use for dynamic qualities 

(e.g. performance). 

Experimental  Controlled Experiment: Study artefact in controlled 

environment for qualities (e.g., usability). 

Simulation: Execute artefact with artificial data.  

Testing  Functional (Black Box) Testing: Execute artefact interfaces to 

discover failures and identify defects.  

Structural (White Box) Testing: Perform coverage testing of 

some metric (e.g., execution paths) in the artefact 

implementation.  

Descriptive  Informed Argument: Use information from the knowledge 

base (e.g., relevant research) to build a convincing argument for 

the‎artefact‟s‎utility.  

Scenarios: Construct detailed scenarios around the artefact to 

demonstrate its utility.  

Table ‎3.1: Design Evaluation Methods (Source: Hevner et al., 2004) 

3.3.3  DSR Artefacts 

March and Smith (1995) and Baskerville (2008) describe DSR as a problem 

solving paradigm that aim to provide solutions to problems by designing useful 

artefacts.‎Orlikowski‎and‎Iacono‎(2001)‎call‎a‎DSR‎artefact‎“core‎subject‎matter”.‎

Consequently, the role of an artefact is central for any DSR project. Despite the 

significance of artefacts in design research, there is a lack of consensus about 

what constitutes a DSR artefact. Some researchers such as Orlikowski and Iacono 

(2001) and Benbasat and Zmud (2003) argue that IT artefacts are the only 

acceptable outputs of DSR. On the other hand, other researchers like (Winter, 

2008) suggest that pure organisational artefacts such as those related to 



Chapter 3: Research Design and Approach  

 

 59  

organisational culture should be considered as valid DSR artefacts since the IS 

field is interested in not only technology but also organisations and individuals.  

 

The classification of design artefacts provided by March and Smith (1995) is 

widely accepted in the DSR literature (Hevner et al., 2004), these being:  

 Constructs: These are conceptual vocabulary and symbols that provides a 

language to define and share design problems and solutions.  

 Models: They use design constructs to conceptualise the problem and its 

proposed solution in order to improve understanding.  

 Methods: They define processes that aid the activities of searching the 

solution domain. These methods can be formal such as formal mathematical 

algorithms, informal such as natural language descriptions of approaches or a 

mixture of both.  

 Instantiations: These are implementations of constructs, models and methods 

in a form of working systems. Instantiations allow IS researches to examine 

the applicability and appropriateness of design artefacts to their intended 

purposes in practical settings. 

3.4 The Employment of DSR in the Context of this 

Project 

Since the research presented in this work follows the design research paradigm, it 

is important to carefully and clearly present the research in the DSR format. We 

adopt the DSR cycle provided by (Kuechler and Vaishnavi, 2008) and presented 

in Figure 3.2 to illustrate the design activities carried out in this research. These 

activities are described as follows:  



Chapter 3: Research Design and Approach  

 

 60  

3.4.1  Awareness of problem 

As presented earlier in Section 2.4, the interest in SWS has increased in the last 

few years because they promise to facilitate automatic discovery and composition 

of Web services. Semantically describing (annotating) a Web service is, however, 

a difficult and error-prone task when performed manually (See Issue 6). This is 

due to the size of Web services and ontologies as well as to the number of 

ontologies that can potentially annotate a given service (Hepp, 2006). 

Subsequently, many researches call for a solution to solve the problem of manual 

annotation of Web services. Having reviewed the literature, few approaches exist 

that aim to semi-automate the annotation task. These approaches, however, suffer 

from numerous deficiencies that significantly limit their usefulness (See Issues 10, 

11 and 12). The main deficiencies are:  

1. The approaches are difficult to use since they require ontology building which 

can be hard for many Web service developers.  

2. The implemented matching mechanisms produce inaccurate results when the 

matching task involves compound nouns (CNs). 

3. The Low Percentage Problem which indicates that many service elements may 

be left without annotation when appropriate ontological correspondences are 

missing. 

 

This research is seen as a response for the calls of effective and easy to use semi-

automatic Web service annotation approach which can improve the adoption of 

SWS by researchers and industrial practitioners. This research bridges the 

annotation gap by proposing a novel semi-automatic annotation approach that 

uses queries and employs improved name-based and structural matching 

mechanisms.  

3.4.2  Suggestion 

At this phase of the design process, the limitations of previous approaches are 

studied thoroughly and a subset of these deficiencies that require urgent solutions 



Chapter 3: Research Design and Approach  

 

 61  

is selected as a motivation for improvements. This subset is used to set up 

requirements which should be met by the new approach in order to be effective 

and useable. Then, the requirements are used to derive a set of design strategies 

for the new approach. Later, it becomes apparent that it is important to analyse the 

WSDL general structure in order to define what service elements can be annotated 

when having a WSDL file as the input for the annotation process. The processes 

of the suggestion activity are presented in Figure 3.3.  

 

 

Figure ‎3.3: The Steps of the Suggestion Activity 

3.4.3  Development 

The development stage of any DSR project involves design increments or 

iterations carried out to provide the concrete artefacts proposed in the suggestion 

activity (Vaishnavi and Kuechler, 2004). The development stage of this project is 

composed of six design increments. In each increment an artefact or set of 

artefacts is developed. Additionally, every increment feeds issues and knowledge 

into the next increment. These issues and knowledge improve the understanding 

of the problem and solution domains and provide ideas and avenues to extend and 

improve the proposed solution. Figure 3.4 presents the architecture of design 

increments which are discussed in detail in the subsequent paragraphs.  



Chapter 3: Research Design and Approach  

 

 62  

 

Figure ‎3.4: The Architecture of Design Increments 

 

Increment 1: The Design of the Initial Annotation Framework  

The design of the initial framework is driven by the design strategies and analysis 

results of WSDL structure. The initial framework identifies the components and 

phases of the approach. Five phases are defined: (1) The concept extraction phase; 

(2) the concept filtering and query filling phase; (3) The query execution phase; 

(4) the results assessment phase; and (5) the SAWSDL annotation phase. Three 

phases are fully automatic while the other two phases require the involvement of a 

human user. The three automatic phases are: (1) The concept extraction phase; (2) 

the query execution phase; and (3) the SAWSDL annotation phase. The role of 

concept extraction phase is to automatically extract the required concepts from a 

given WSDL files. The query execution phase is responsible for executing queries 

against existing ontologies using a query execution engine. The query execution 

engine involves two significant artefacts; the name-based matching mechanism 

which is called CN-Match and the structural matching mechanism. The output of 

a query execution is a set of recommended correspondences along with their 

matching degrees. The SAWSDL annotation component uses correct matches that 

result from manual assessment to automatically annotate given service elements 

based on the SAWSDL format using the Model Reference technology. 

 

 



Chapter 3: Research Design and Approach  

 

 63  

Increment 2: The Design of the Concept Extraction Technique  

Since the input of the annotation process is always a WSDL file, it is necessary to 

extract candidate elements from this file before they can be used for the 

annotation task. Manual extraction of required WSDL elements is a tedious, 

difficult and time-consuming task; therefore the concept extraction mechanism 

has been developed to automate it. This mechanism employs a set of text analysis 

techniques of the GATE (General Architecture for Text Engineering) tool to 

automatically extract simple and complex XSD types. This mechanism is 

explained in detail in Section 4.7.  

 

Increment 3: The Design of CN-Match 

An important matching technique utilised by the query execution engine is the 

name-based matching: This technique measures similarities between labels of 

service elements and ontological entities. These labels can contain more than two 

constituents i.e., Compound Nouns (CNs). Unfortunately, existing name-based 

matching approaches cannot perform accurate and automatic similarity 

measurements when labels of candidates are CNs. The reason is that these 

approaches ignore the linguistic structure of CNs. Consequently, a new approach 

called CN-Match is developed. CN-Match performs automatic similarity 

measurements between single terms, binary and triple CNs. The design of CN-

Match is based on a set of matching rules derived from the English linguistic 

literature on CN structure (See Section 5.3). CN-Match is implemented in Java 

1.6.0 to provide a useful tool for the annotation approach and any other possible 

applications that require automatic CN matching. 

 

Increment 4: Structural Matching Design 

Individual matching approaches such as name-based matching cannot alone 

provide good results (See Issue 7). For instance, name-based matching may detect 

that ‘Apple’ (which represents a fruit) and ‘Apple’ (which represents the 

technology company) as matches since the labels are identical. Taking the 

structure as a similarity criterion may help in eliminating such wrong matches 

since the structures or context of candidates is considered. Consequently, a 



Chapter 3: Research Design and Approach  

 

 64  

combination of name-based and structural matching should be used for query 

execution. Therefore, a structural matching mechanism is developed and 

implemented. The implemented structural technique finds structural similarities 

based on matching labels of related elements of the given service element against 

related classes of a candidate ontological class. Related classes of an ontological 

class are those that have object property axioms with the given ontological class. 

Labels of object properties are, however, not taken into account because they do 

not have counterparts in queries of service elements.  

 

Increment 5: SAWSDL Annotator Design 

The annotation is performed based on the SAWSDL notation using the Model 

Reference technology: This technology adds a URI of the appropriate ontological 

correspondence to the given service element. Performing the SAWSDL 

annotation manually is a tedious and time-consuming task therefore, automation is 

needed and thus an annotator is designed. The new annotator parses a given 

WSDL document line by line and searches for the concept to be annotated. Once 

this concept is found, a model reference element with the URI of the appropriate 

ontological correspondence is added to the tag of the service element.  

 

Increment 6: Design of the Ontology Extension Mechanism 

The ontology extension mechanism is designed and added to support the 

annotation framework. This is because matching-based annotation approaches 

may suffer from the Low Percentage Problem if they do not use an appropriate 

and effective ontology extension method (See Issue 12). The provided mechanism 

extends the required ontology with appropriate ontological classes providing 

correspondences for the given service elements. Two extension methods are 

designed: One for simple elements and the other for complex types. The addition 

of these methods to the proposed annotation framework can alleviate the Low 

Percentage Problem since a higher percentage of service elements can be 

annotated. This learning about the latter problem and the added extension methods 

provide important knowledge that can be fed back to the knowledge base.  



Chapter 3: Research Design and Approach  

 

 65  

3.4.4  Evaluating the Semi-automatic Annotation 

Approach and its Components 

This section describes in detail the evaluation methods and metrics of the 

annotation approach and its components. Evaluation methods such as testing 

(functional), experimental (controlled experiment) and descriptive (scenario) are 

employed to evaluate the different design artefacts provided by this project. In 

addition, measures such as Precision (P), Recall (R) and F-measure which are well 

known Information Retrieval (IR) metrics are utilised in the evaluation of some 

components.  

 

A. Evaluating the Components of the Annotation Framework 

This evaluation exercise concerns the evaluation of the automated components of 

the annotation framework.  

 

A.1 Evaluating CN-Match: 

CN-Match is evaluated using the experimental (controlled experiment) evaluation 

method. The evaluation is performed to ensure that CN-Match is capable of 

precisely measuring similarities between labels containing CNs.  Precision (P), 

recall (R), and F-measure (F) are used as metrics for this evaluation. These three 

metrics are deemed appropriate since they are widely used to evaluate other name-

based and ontology matching techniques (Euzenat et al., 2009; Giunchiglia et al., 

2009). The evaluation is conducted by employing CN-Match to measure 

similarities between labels of classes taken from existing ontologies. Existing 

ontologies are utilised in the evaluation to avoid any potential bias that can result 

from using ontologies built for the specific purpose of this evaluation. The 

evaluation task is composed of two different sets of experiments. The first set 

comprises two experiments conducted to derive a suitable threshold for CN-Match 

and uses data belonging to two different domains which are the knowledge 

acquisition and the travel domains. The reason for having two experiments is to 

derive a general and domain independent threshold.  



Chapter 3: Research Design and Approach  

 

 66  

The second set of experiments is performed to evaluate the performance of CN-

Match using P, R and F. Three different sets of existing ontologies (the 

Benchmark set, the Russian set and the Conference set) are used for this 

evaluation. These sets have ontologies describing different domains and having 

different CN coverage. Table 3.2 presents a brief description of these sets. For 

each set, a number of tests are performed to generate matching scores. Then, P, R 

and F values are measured and presented. Based on the provided results, 

important conclusions about CN-Match are drawn.  

 

Set Number of Tests Domain Covered 

Benchmark 4 Bibliographic  

Russia 3 Country 

Conference 8 Organisation of Conferences  

Table ‎3.2: Description of Test Sets Used in Evaluating the Performance of 

CN-Match 

 

A.2 Evaluating the Other Components of the Annotation Framework:  

The other automatic components of the annotation framework which are the 

concept extraction mechanism, the structural matching mechanism and the 

SAWSDL annotation technique are evaluated according to the functional (black 

box) evaluation method. In other words, each component is employed individually 

to ensure that it is not faulty and can produce the expected results. Individual 

evaluations of these components are explained briefly as follows: 

 Evaluation of the concept extraction technique: Three different WSDL files 

are used in this evaluation. The evaluation is devoted to ensure that the 

extraction method is able to extract all the required WSDL elements 

including simple types, complex types and complex relations.  

 Evaluation of the structural matching mechanism: This mechanism is tested 

by calculating the structural matching scores of a number of pairs of classes 

belonging to two different ontologies.  



Chapter 3: Research Design and Approach  

 

 67  

 Evaluating the SAWSDL annotation mechanism: This mechanism is 

evaluated by providing the annotator with annotation results from the query 

execution engine and then employing this annotator to annotate simple and 

complex types of source WSDL files.  

 

A.3 Evaluating the Ontology Extension Mechanism:  

The evaluation of this technique is also conducted using the functional (black box) 

evaluation method. The evaluation is performed by employing the extension 

technique to automatically add appropriate ontological correspondences of some 

given service elements.   

 

B. Evaluating the Whole Annotation Framework 

The developed annotation framework is evaluated by applying it to a typical 

organisational scenario. The scenario itself is not directly identified from a live 

SWS project because no real industrial SWS applications are available. The 

scenario, however, is drawn from a proposed use case of the provided annotation 

approach in an organisational environment. According to Go and Carroll (2004) 

design‎that‎supports‎a‎specific‎scenario‎represents‎the‎development‎of‎a‎“proof‎of‎

concept”‎ research‎ whose‎ relevance‎ is‎ agreed‎ and‎ whose‎ results‎ are‎ evaluated‎

against the research objectives. Scenarios are accepted as an evaluation method 

and strategy in different disciplines, such as computer science, since they provide 

grounding for design and evaluation of research and support real-world use cases 

(Wack, 1985). The organisational scenario adopted in this research is presented 

graphically in Figure 3.5 and explained in detail in the following paragraph. In 

addition, the ontologies and Web services used in this evaluation and their search 

and selection processes are described in details in Subsection (B.1). 

 

Scenario: 

Organisation X is specialised in SWS development: It receives 

WSDL files of Web services from other organisations and migrates 

these syntactic services into semantic ones by annotating them to 



Chapter 3: Research Design and Approach  

 

 68  

existing ontologies based on the SAWSDL W3C recommendation. 

Organisation X owns a repository of OWL ontologies describing 

different domains. For every domain covered in the repository, there 

is one and only one ontology describing this domain. Consequently, 

Organisation X shares an ontology between elements belonging to 

different services but the same domain. The reason is that sharing 

ontologies between services allows this organisation to provide SWS 

that are pre-equipped with shared semantics that enable these 

services to interoperate easily and effectively. In addition, using a 

limited set of ontologies enable organisation X to maintain the 

quality of these ontologies and perform an ongoing maintenance of 

them. The annotation process at Organisation X is currently 

manual, difficult and time-consuming therefore, it is seeking to 

utilise an effective and easy to use semi-automatic annotation 

approach that can be used by any Web service developer.  

 

Figure ‎3.5: The Organisational Scenario of the Annotation Approach 

 

B.1 Collecting Web Services and Ontologies for the Evaluation of the 

Annotation Approach 

Existing Web services and ontologies are used to evaluate the proposed annotation 

approach. Using ontologies and Web services that are developed by different 

parties is deemed useful in this research because it allows us to mimic real life 



Chapter 3: Research Design and Approach  

 

 69  

cases when a set of Web services are annotated to a limited set of ontologies 

available in an ontology repository. Moreover, using available Web services and 

ontologies allows us to avoid any potential bias that may result from building 

ontologies pre-equipped with good matches of Web service elements. The 

selected ontologies and Web services are carefully gathered from available 

resources.  In this subsection, the methods of searching for and selecting Web 

services and ontologies are illustrated. Moreover, these Web services and 

ontologies are briefly described.  

 

Selecting Domains of Web Services 

The selection process starts by finding domains that can have several Web 

services. This is an important selection strategy for the following reasons:  

1. It limits the scope of the process of searching for ontologies. Finding 

appropriate ontologies describing many different domains is hard because a 

limited number of existing ontologies is available in open access repositories.  

2. Having different Web services in the same domain enables us to experiment 

the extension exercise. The later reason is very important since annotating 

different Web services from the same domain using the same ontology allows 

us to extend this ontology when appropriate correspondences for service 

elements are unavailable. 

3. Using the proposed approach to successfully annotate Web services belonging 

to different domains proves that it can be used to annotate a wide range of 

Web services and it is not limited to a single domain or a set of domains.   

 

The domain selection is performed by conducting searches in available Web 

service repositories. As a result of the conducted search, we find that we can 

collect Web services from few domains to satisfy our selection strategy. An 

average of ten Web services is collected for each selected domain. The chosen 

domains are; Book, Stock Information, Weather, Communication and Payment. 

Many of the selected Web services contain data that belong to the User 

Information domain, however. Consequently, a decision to search for User 

Information ontology is taken.  



Chapter 3: Research Design and Approach  

 

 70  

Selecting Web Services for Each Domain 

After selecting Web services‟‎ domains‎ and‎ sets,‎ selected‎ Web‎ services‎ are 

examined and those with relatively rich XSDs are taken. As a result, twenty five 

Web services are gathered to conduct the evaluation process. Every five of these 

twenty five services belong to one of the five selected domains.  Table 3.3 

provides some details about the selected Web services.  

 

Domain Web Service 

Book BookInfoPort, Service11.Accounts, Books, BookService, 

BookStore1 

Weather service38.Accounts, service47.Utility 

service43.Miscellaneous, service185 

service51.Utility 

StockInfo Service3.Stock, Service7.Address, Service11.Stock, 

Service7.Stock, service17 

Communication  Service9.Specialist, Service4.Specialist 

Service50.Miscellaneous, Service60.DeveloperTools 

Service80.Miscellaneous 

Payment Service72.Accounts, GeoCash Service24.Accounts, 

Service39.Accounts, Service68.Accounts 

Table ‎3.3: Details of Selected Web Services 

 

Selecting Ontologies for the Ontology Repository 

Once the Web service selection is finalised, the process of searching for existing 

ontologies, that describe the general theme of the selected domains, is started. The 

selection criteria are:  

1. Selected ontologies should be rich enough and have satisfactory level of 

details about the specified domains. 

2. Ontologies should be developed by recognised bodies or research projects.  

 



Chapter 3: Research Design and Approach  

 

 71  

The search is performed in sixteen ontology repositories and search engines such 

as; the Ontology Yellow Pages, TONES Ontology Repository of Manchester 

University, Knowledgeforge, Protégé Ontology Library, Ontoselect, Sweet NASA 

repository and Swoogle Search Engine. As a result of the conducted search, two to 

four ontologies are selected for each domain. Then, for each domain, the richest 

ontology is selected and added to the repository. The final version of the 

repository contains five ontologies since the same ontology is selected for the 

Stock Information and Payment domains. Table 3.4 provides details about 

selected ontologies.   

 

Ontology Domain Ontology developer 

BookProperty Book ISLAB at the Hanyang 

University of South Korea 

LSDIS-Finance Stock Information 

and Payment 

LSDIS research project at 

University of Georgia  

WeatherConcepts Weather LSDIS research project at 

University of Georgia 

MoguntiaDataTypes Communication Moguntia Semantic Web 

research project at Manchester 

University 

Contact User Information The SWAP research project at 

the W3C 

Table ‎3.4: Details of Selected Ontologies 

 

B.2 Black Box Testing 

After conducting the evaluation of the individual components of the annotation 

approach, these components are combined and evaluated together based on the 

black box testing method using the proposed organisational scenario. The purpose 

of this evaluation is to ensure that the components can work jointly to provide the 

desired annotation results. For this evaluation, three Web services from the Book, 



Chapter 3: Research Design and Approach  

 

 72  

Weather and Stock Information domains are selected from the set of the twenty 

five Web services. Then, these three services are annotated using the proposed 

semi-automatic annotation approach to ontologies residing in the repository. Last, 

the annotation steps and results are presented in Section 6.3 to prove that the 

annotation framework is capable of providing the expected outcomes.  

 

B.3 Experimental (Controlled Experiment) 

The experimental evaluation of the proposed annotation approach is undertaken 

through its application to the typical organisational scenario. P, R and F measures 

are used as metrics in this evaluation: These three measures are deemed 

appropriate for this evaluation because: (1) They are used in the evaluation of 

other similar annotation approaches such as METEOR-S (Patil et al., 2004); and 

(2) the annotation process is matching-based and these measure are normally used 

to evaluate matching approaches. Five sets of experiments are conducted. In each 

set, five Web services belonging to the same domain are annotated to the 

ontologies existing in the repository. For each experiment, values of P, R and F 

are recorded and then presented to show the strengths and weaknesses of the 

proposed approach.  

3.5 Mapping the Artefacts of this Research to DSR 

Artefacts   

In light of March and Smith (1995) classification of DSR artefacts (See 

Subsection 3.3.3), the artefacts produced in this project are presented and 

described as follows:  

 

 The initial annotation framework: This framework represents a design 

method artefact because it provides steps to solve the problem tackled in this 

research. Steps of this method are executed by the other artefacts provided by 

this research.  



Chapter 3: Research Design and Approach  

 

 73  

 The standard query template: This template is categorised as a design 

construct since it is seen as a set of vocabularies that defines a part of the 

solution.  

 The concept extraction mechanism: This extraction mechanism is a design 

instantiation artefact: It is a working prototype that can have input and provide 

outputs as results of processing.  

 CN-Match: This name-based matching framework and tool is a key 

component of this research. CN-Match is classified as a design method and 

instantiation artefact: It is a method since it provides a set of steps that can be 

implemented to measure similarities between any two single terms, binary or 

triple CNs. In addition, CN-Match is considered as an instantiation because it 

is the Java-based implementation of the similarity measurement method. This 

working tool can be used not only for annotation purposes but also for the 

general ontology matching task and other matching activities. It is worth 

mentioning that the similarity measurement method can be implemented in 

other programming languages if it is going to be used in a none Java-based 

application.  

 The structural matching mechanism: The structural matching is also a 

method and an instantiation. This matching mechanism is a method as it 

provides specific steps for measuring structural similarities. Furthermore, this 

mechanism is an instantiation because the structural similarity method is 

implemented in the Java programming language. This implementation 

provides a utility that can be employed by the query execution engine to 

measure similarities between related elements of service concepts and 

ontological classes.  

 The SAWSDL annotator: This is an instantiation as it is an implementation 

that solves the problem of manual addition of model references to tags of 

service elements. The input of this annotator is the set of correct matches and 

the output is an annotated WSDL file.  

 The ontology extension mechanism: This mechanism is a method and 

instantiation artefact: It is a method because it provides steps that can 

successfully perform ontology extension. These steps are implemented in the 



Chapter 3: Research Design and Approach  

 

 74  

Java language to provide a working system that can add new classes to 

ontologies based on a set of defined rules.  

 The semi-automatic annotation framework: This framework is the main 

artefact of this research. It represents the solution to the defined research 

problem. This artefact is an instantiation that provides a purposeful utility 

which can help SWS developers in semi-automatically annotating Web 

services.  

 

Table 3.5 provides classification of the DSR artefacts of this research based on 

March and Smith (1995) categories.  

 

Category Artefact 

Construct  Standard query template 

Model None  

Method Initial annotation framework 

CN-Match 

Structural matching mechanism 

Ontology extension mechanism 

Instantiation  Concept extraction mechanism 

CN-Match 

Structural matching mechanism  

SAWSDL annotator 

Ontology extension mechanism 

Semi-automatic annotation framework  

Table ‎3.5: The Classification of the DSR Artefacts of this Research 

 



Chapter 3: Research Design and Approach  

 

 75  

3.6 Summary 

This chapter presented the research method of designing and evaluating the semi-

automatic annotation approach. In order to support the selection of DSR as the 

right method for undertaking this research, the different IS research methods were 

discussed and reasoning for choosing DSR was provided. After, the DSR 

paradigm, philosophy, processes, evaluation and artefacts were illustrated in 

detail. The research was then described in light of the DSR paradigm. In 

describing the research, increments that were performed to solve the defined 

problem were presented. In addition, the incremental learning that happened 

throughout the research activities was highlighted. Moreover, the methods, 

metrics and data used to evaluate the proposed annotation framework and its 

underlying artefacts were illustrated. Due to the central role of artefacts in any 

DSR project, the artefacts produced in this research were discussed and classified.  



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 76  

Chapter 4:  The Design of the Semi-automatic 

Query-based Annotation Approach 

4.1 Overview  

This chapter proposes an annotation approach that can overcome a significant part 

of the limitations discussed in Chapter 2. The new approach is of a semi-

automated nature and utilises query instances rather than application ontologies. 

In addition, this approach develops and uses a new matching mechanism for query 

execution employing name-based and structural matching techniques.  

 

This chapter is organised as follows: Section 4.2 presents the design increments 

addressed in this chapter. Section 4.3 shows the importance of designing a new 

annotation approach and sets the design requirements for the new approach. 

Section 4.4 presents the design strategies derived from the provided requirements 

and the limitations of previous annotation approaches. Section 4.5 analyses the 

WSDL general structure to show what WSDL elements should be semantically 

described. Section 4.6 provides the overall design of the initial annotation 

approach and explains the five annotation phases. Section 4.7 illustrates the design 

of the concept extraction. Section 4.8 shows the design of the query execution. 

Section 4.9 discusses the design of the SAWSDL annotator and Section 4.10 

summarises the chapter.  

 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 77  

4.2 Design Increments Covered in this Chapter  

The design of the annotation approach is composed of six increments as discussed 

in Subsection 3.4.3. This chapter illustrates the design of the initial annotation 

framework (Increment 1), the design of the concept extraction technique 

(Increment 2), structural matching design (Increment 4) and the SAWSDL 

annotator design (Increment 5). These three increments are shaded in Figure 4.1 to 

indicate that they are addressed in this chapter.  

 

 

Figure ‎4.1: Design Increments Addressed in Chapter 4 

4.3 The Need for a New Semi-automatic 

Annotation Framework 

This research overcomes important limitations of existing annotation frameworks 

by proposing a novel approach. The proposed approach can be classified under the 

matching-based annotation category since a novel matching system is designed 

and implemented by the query execution engine. The approach presented is 

designed to overcome the following deficiencies:  



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 78  

1. The prerequisite of building an application ontology to model service 

semantics. Manual ontology building is a very hard process and automatic 

building is ineffective since low quality ontologies are produced (See Issues 2 

and 3 in Table 2.2).  

2. The inaccuracy of employed matching mechanisms: Earlier annotation 

approaches use matching techniques that cannot provide accurate matching 

results especially when labels of service elements as well as labels of 

ontological entities contain Compound Nouns (CNs) (See Issue 8 in Table 

2.8).  

3. The Low Percentage Problem: Many service elements are left without 

annotation for two reasons (See Issue 12 in Table 2.9): (1) The lack of an 

effective ontology extension mechanism that can expand the used ontologies 

when they miss corresponding classes of given service elements that belong to 

domains of used ontologies; and (2) the annotation of all service elements that 

belong to multiple domains to a single domain ontology.  

4. Annotating service elements belonging to the same domain to multiple 

ontologies: Many earlier approaches especially learning-based ones do not 

allow the sharing of an ontology between service elements belonging to the 

same domain. These approaches build a domain ontology for each service and 

use it to annotate this service. This annotation process results in services that 

are annotated to non-shared ontologies and thus matching these ontologies is 

still required at run time when discovering or composing services. This extra 

automatic matching process which is performed by software agents may result 

in errors and delays in any future automatic discovery or composition task.  

 

Resolving these four limitations is, arguably, seen more urgent than sorting out 

the other annotation problems such as; the annotation of all service elements and 

expensiveness of the annotation process (see Section 2.8 for a discussion about 

limitations). The reasons are:  

1. The priority in the SWS area is to improve the SWS adoption by developing 

easy to use automatic annotation approaches (Patil et al., 2004). Approaches, 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 79  

that can successfully annotate a subset of service elements and be extended to 

annotate other elements, are pressing needs.  

2. The processing speed of computers is improving rapidly and thus having 

superfast computers can significantly decrease the computational cost of the 

annotation process.   

 

To overcome the four previous deficiencies, the proposed approach should satisfy 

the following requirements: 

R1. No application ontologies are needed to capture service semantics: The new 

approach should avoid the difficult process of application ontology building in 

order to make the approach usable by Web service developers who do not 

normally have knowledge and experience in ontology development.  

R2. A name-based matching mechanism that can accurately measure similarities 

between labels containing CNs and single terms should be developed and used 

by the matching system.  

R3. The proposed annotation approach should allow annotating a single service to 

multiple ontologies covering different domains. 

R4. The proposed annotation approach should be able to annotate a high 

percentage of WSDL elements. In other words, the proposed approach should 

not suffer from the Low Percentage Problem.  

R5. Elements that belong to the same domain but different services should share 

the same ontology. This will make the produced SWS ready for tasks such as 

discovery, composition and interoperability.  

 

These five requirements lead to design strategies for the new semi-automatic 

annotation approach.  



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 80  

4.4 Design Strategies for the New Query-based 

Annotation Framework 

To design an effective annotation approach, a set of design strategies that are 

derived from the earlier five requirements and knowledge acquired from 

reviewing previous annotation approaches must be adopted and presented before 

starting the implementation stage. These design decisions are: 

1. The input of the proposed approach is a WSDL file and a set of domain 

ontologies describing different domains. A WSDL file is the only source of 

data that is always available with any service. Other service related files such 

as textual descriptions may not always be available (See Subsection 2.6.1).  

2. The approach is query-based. A standard query template is designed and used 

in preference to the ontology building process used in previous matching-

based approaches. This standard template can be filled with data extracted 

from WSDL files to produce query instances.  

3. The approach is matching-based. Query instances will be executed using a 

novel query execution engine; which utilises name-based and structural 

matching mechanisms.  

4. The approach is semi-automated. The output of query execution is a set of 

recommended correspondences along with their confidence degrees. The user 

of the annotation approach can select an appropriate correspondence from the 

provided set or rejects all matches if such a correspondence does not exist in 

the set.  

5. The output of an annotation process is a service annotated based on the 

SAWSDL format.   

4.5 WSDL Structure and Interpretation 

As a precursor to the approach presented here and since WSDL files are the inputs 

of the proposed approach, it is necessary to analyse the WSDL general structure in 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 81  

order to make clear what WSDL elements can be semantically described. In 

overall terms, a WSDL file is composed of an element declaration, type definition, 

interface, binding and service. The element declaration, type definition and 

interface provide an abstract definition of a service, while binding and service 

describe the implementation aspects of a service (Jacek et al., 2007).  

 

Element declaration and type definitions are defined in the schema part of a 

WSDL file and provide data type definitions for input and output messages of 

operations and their parts. In an XSD, the elements that are direct children of a 

schema element are called global elements. Other XSD elements are called local 

elements. Furthermore, sub-elements of a complex type element are called direct 

child elements of that complex type. To give more insight onto WSDL structure, 

Figure 4.2 presents an example of a WSDL file of a Book Information service. 

The binding and service elements of this service are removed due to space 

limitation. 

 

The data type definition (XSD) part of this WSDL document defines five global 

elements: ‘Book’, ‘VendorPrice’, ‘ArrayOfBookInfo’, ‘Keyword’ 

and ‘Source’. These data types are used to define data of input and output 

message parts of WSDL operations. The ‘Book’, ‘VendorPrice’ and 

‘ArrayOfBookInfo’ are defined as complex types while ‘Keyword’ and 

‘Source’ are simple types. Every complex type has a set of child elements. For 

example, the ‘Book’ complex type element has nine child elements: ‘ISBN’, 

‘Title’, ‘Author’, ‘PubDate’, ‘Publisher’, ‘Format’, 

‘ImageUrl’, ‘TimeStamp’ and ‘VendorPrice’. On the other hand, 

elements that are of a simple type such as ‘Keyword’ and ‘Source’ do not 

have child elements.  

 

Based on the previous brief analysis of WSDL elements, one can conclude that 

XSD elements including simple types and complex types along with their child 

elements should be annotated since they describe‎ data‎ of‎ operations‟‎messages.‎

Other WSDL elements such as bindings and service define technical details and 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 82  

thus do not require semantic annotation. XSD definition embeds implicit semantic 

information that requires disambiguation, however. For example, the relation 

between a complex type and each of its child elements is similar to an ontological 

property.  

 

 

Figure ‎4.2: WSDL File of the Book Information Service 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 83  

Previous research (Duo et al., 2005; Zhang et al., 2008) defines sets of rules for 

interpreting the implicit semantic information embedded in an XSD definition of a 

WSDL file. A subset of these rules is adopted and implemented for the purpose of 

disambiguating the semantic information and extracting the set of concepts that 

will be considered during the annotation process. The rules are presented as 

follows. 

 

Rule One: Each global complex or simple XSD element is considered 

as a concept that should be annotated.  

Rule Two: Each local complex of simple XSD element is considered 

as a concept that should be annotated. 

Rule Three: The set of child elements of a complex element 

formulates the set of related elements of a complex type concept. 

 

Labels of complex and simple types do not necessarily carry significant meanings. 

Consequently, there are few types that should be filtered out and excluded from 

the annotation process. These types are:  

A. Computing-specific terminologies: Computing-specific terminologies are 

those words or expressions that are reserved for programming languages such 

as Java and C++. Consequently, these terminologies do not carry a significant 

meaning outside of their programming languages and thus they are excluded 

from the annotation process. Examples of such computing-specific 

terminologies are ‘ArrayOfBooks’ and the request response patterns such 

as ‘BookSearchResponse’.  

B. Elements denoting processes rather than data. An example is 

‘GetWeatherByZipCode’. These elements cannot be annotated using 

available ontologies because most existing ontologies are representations of 

data rather than being representations of methods or processes. An ontology 

can be defined as "a formal explicit specification of a shared 

conceptualisation" (Gruber, 1993 pp. 3); that is, a definition of concepts, 

axioms and relations between concepts in a formal, shared and machine-

understandable format (Jasper and Uschold, 1999). Subsequently, we do not 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 84  

expect existing ontologies used for annotation to contain correspondences for 

methods or processes. Nevertheless, some researchers argue that ontologies 

could be built to represent processes. Since this research merely utilises 

existing ontologies for annotation and most existing ontologies represent data, 

only service elements that denote data can be annotated. It is out of the scope 

of this project to build ontologies representing processes and use them for 

annotation.  

C. Some service elements denote individuals (instances) rather than a class of 

individuals. An example is the service element ‘Html’. ‘Html’ represents 

an individual of a class ‘Languages’. Since this annotation approach 

references service elements to classes only, the proposed approach cannot 

annotate service elements that denote individuals.  

4.6 The Design and Phases of the Annotation 

Framework 

The design strategies and analysis results presented earlier are used to design an 

annotation framework that meets the provided requirements. This section presents 

the design of the proposed framework. The framework is composed of phases 

where each phase performs a specific role and has an input and output. The phases 

are: (1) Concept extraction; (2) concept filtering and query filling; (3) query 

execution; (4) results assessment; and (5) SAWSDL annotation. These five phases 

are explained in detail as follows: 

1. Concept extraction: The purpose of this phase is to automatically extract the 

service elements that will be annotated during the subsequent phases. The 

input of this phase is a WSDL file and the output is a set of extracted 

concepts. The set of extracted concepts contain simple types, complex types 

and relations between complex types and their child elements. Table 4.1 

presents the output of the extraction phase of the Book Service shown in 

Figure 4.2. Section 4.7 shows how the concept extraction phase is automated.  



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 85  

Service Element Child Elements 

Book ISBN, Title, Author, PubDate, Publisher, Format, 

ImgUrl, TimeStamp, VendorPrice 

VendorPrice Name, SiteUrl, PricePrefix, Price 

ArrayOfBookInfo Book 

Keyword None  

Source None  

Table ‎4.1: Extracted Concepts and Relations from the Book Information 

Provider Service 

 

2. Concept filtering and query filling: This is a manual process. The input is a 

set of extracted concepts and the output is a set of query instances. The set of 

extracted concepts may include some concepts that should be excluded from 

the annotation process since they do not carry significant meanings. These 

concepts can belong to one of the three categories defined earlier in Section 

4.5. For example, the complex type ‘ArrayOfBookInfo’ should be 

excluded since it denotes a syntactic definition of an array of things of type 

‘Book’. Nevertheless, the ‘Book’ concept is considered for annotation and 

therefore it can provide semantics for ‘ArrayOfBookInfo’ when it is 

annotated. Figuring out the concepts that belong to the earlier categories 

cannot be performed automatically due to the lack of effective filtering 

techniques. Consequently, the filtering process is manual.  

 

The query filling part involves instantiating the standard query template to 

create query instances for simple and complex types. It is worth mentioning 

that the query filling phase is straightforward and requires neither domain 

knowledge nor technical knowledge since the filling process follows pre-

defined steps. Figure 4.3 presents the Standard Query Template.  

 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 86  

 

Figure ‎4.3: The Standard Query Template 

 

The Query Template is designed to provide a standard format for all query 

instances. This Query Template has place holders for a service element and its 

related service elements. The template contains two clauses as shown in 

Figure 4.3. When filling a query for a complex type, the label of the complex 

type is used in Clause (1) and labels of related concepts are used in Clause (2). 

The resulting query instance for the complex type ‘Book’ is given in Figure 

4.4. 

 

 

Figure ‎4.4: The Query Instance of the ‘Book’ Complex Type 

 

All query instances for simple types contain Clause (1) only because they do 

not have related concepts (child elements). Figure 4.5 shows the query 

instance for the simple type ‘Keyword’. 

 

 

Figure ‎4.5: The Query Instance of the ‘Keyword’ Simple Type 

 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 87  

3. Query execution: This is a fully automatic phase whose inputs are a query 

instance and an ontology. The output of the query execution phase is a set of 

query results. The role of this phase is to execute query instances against an 

ontology using the query execution engine.  

4. Results assessment: The input of this phase is a set of query results and the 

outputs are a set of appropriate correspondences and a set of inappropriate 

correspondences. In this phase, the user receives a set of matches as a result of 

query execution. The user then verifies the matches (recommendations) and 

chooses the correct ones as appropriate correspondences and the wrong ones 

as inappropriate correspondences. Nevertheless, this assessment process 

should be performed manually by a human user because fully automatic 

matching is still under development and thus human involvement can 

significantly increase the accuracy of query results.  

5. SAWSDL annotation: This is a fully automatic process. The input is the set of 

appropriate ontological correspondences and the output is the annotated 

WSDL elements based on the SAWSDL format.  

 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 88  

 

Figure ‎4.6: The Process Flow of the Annotation Framework 

 

Table 4.2 provides a summary of the five phases and their important 

characteristics.  

 

 

 

 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 89  

Phase Automatic/Manual Input Output 

Concept extraction Automatic WSDL file A set of 

extracted 

concepts 

Concepts filtering 

and queries filling 

Manual A set of 

extracted 

concepts 

Query instances 

Query execution Automatic Query instances 

and ontology 

Queries‟‎

answers 

Results assessment Manual Recommended 

correspondences 

Appropriate and 

inappropriate 

correspondences  

SAWSDL 

annotation 

Automatic Appropriate 

correspondences 

Annotated 

elements 

Table ‎4.2: A Summary of the Five Annotation Phases 

 

The following three Sections; 4.7, 4.8 and 4.9 present the design of the three 

automatic phases which are concept extraction, query execution and SAWSDL 

annotation, respectively.  

4.7 The Concept Extraction Phase 

This phase is designed to allow automatic extraction of necessary concepts and 

relations between concepts from the given WSDL file based on the three rules 

noted earlier in Section 4.5. Retrospectively, WSDL files are very significant 

source of service knowledge that accompanies any service. Manual extraction of 

knowledge existing in a WSDL file is a difficult, time consuming and tedious 

task. Consequently, automating the extraction process is needed. In automating 

the extraction process, text analysis techniques that are packaged in the ANNIE 

system (A Nearly New Information Extraction System) of the GATE tool 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 90  

(General Architecture for Text Engineering) are utilised (Cunningham et al., 

2002). GATE is an open source tool created by the Natural Language Processing 

Research Group at the Sheffield University. Gate is a system that takes text as an 

input and provides a table of annotations applicable to this text as an output 

(Cunningham et al., 2002). Using ANNIE, a developer can bundle a set of 

components to create a sequence of processing resources called a pipeline. 

Examples of these ANNIE processing resources are: Sentence Splitter, Part Of 

Speech (POS) Tagger, Tokenizer and JAPE (Java Annotations Patterns Engine) 

Rules.  

 

The ANNIE pipeline designed to automate the concept extraction phase is 

collaborative effort between the author and Alfaries (2010): This pipeline contains 

the following language processing components:  

 

1. Document Reset: This resource returns the document to its original state by 

removing all annotations and their sets: It is always required as a preparation 

step before processing any text document by a pipeline.  

2. ANNIE Tokenizer: The tokenizer splits the text into very simple tokens such 

as numbers, punctuation and words of different types. For example, the 

tokenizer differentiates between words in uppercase and lowercase, and 

between certain types of punctuation. The tokenizer is defined in terms of 

JAPE Rules and can be specified for a particular language. For instance, the 

English tokenizer is a processing resource that comprises a tokenizer and a 

JAPE transducer that is specific for the English language. The transducer has 

the role of adapting the generic output of the tokenizer to the requirements of 

the English part-of-speech tagger. The English Tokenizer should always be 

used on English text that needs to be processed later by the POS Tagger. 

3. ANNIE Sentence Splitter: The sentence splitter is a cascade of finite-state 

transducers which splits the text into sentences. The splitter utilises a gazetteer 

list to distinguish sentence-marking full stops from other kinds. Each sentence 

is annotated with the type ‘Sentence’. Each sentence break (such as a full 

stop) is also annotated as ‘Split’.  



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 91  

4. JAPE Rules: JAPE is a pattern matching transducer consisting of regular 

expressions. A JAPE transduction contains a set of phases, each of which 

consists of a set of pattern/action rules. Patterns can be described in the 

following three ways: 

 Specifying a string of text. For example, one can write {Token.String = 

“of”}. 

 Specifying the absence or presence of an annotation previously provided 

by a tokenizer or another processing resource. For example, {!Lookup} 

describes the absence of a lookup annotation. 

 Specifying the attribute-value pairs of an annotation. For instance, the 

pattern {Token.length != 4} states that the length of the token must not be 

4.  

 

Figure 4.7 presents the developed pipeline for the automatic concept extraction 

task. 

 

Figure ‎4.7: The Automatic Concept Extraction Pipeline 

 

Three JAPE rules are developed to facilitate the desired automation of concept 

and relation extraction. These three rules are: 

 SimpleTypes rule: To detect simple types. 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 92  

 ComplexTypes rule: To capture complex types. 

 ComplexRelations rule: To find the relations between complex types and 

their child elements.  

4.8 The Query Execution Phase 

A query instance is executed during the query execution phase requiring a query 

instance and an ontology as inputs. The Query Execution Engine is the means of 

performing the similarity calculation.  

 

Each iteration of query execution takes a query instance and a candidate 

ontological class as inputs and produces a similarity score in the range [0-1] as an 

output. This score indicates how similar a query instance concept and an 

ontological class are. If this score is over a defined threshold, then the 

corresponding ontological class is added to the set of candidates (SS). Otherwise 

the matching is ignored. After executing the candidate query instance against all 

classes in ontology i, all classes over threshold are taken as candidates. If the SS 

set is empty, i.e., there are no recommended correspondences; the service element 

is added to the set of missing correspondences. A graphical representation of the 

query execution phase is given in Figure 4.8. 

 

To allow an effective and accurate query execution, a new query execution engine 

is designed and implemented specifically for the purpose of semi-automatic 

annotation of Web services. This execution engine implements name-based and 

structural matching mechanisms. Name-based matching is achieved using CN-

Match which is a novel name-based matching tool. Structural similarity is used to 

measure similarities between related concepts of a service element and those of 

the ontological class when executing the query. The following two subsections 

present CN-Match and the implemented structural matching mechanism. 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 93  

 

Figure ‎4.8: The Query Execution Phase  

4.8.1  CN-Match 

CN-Match is a novel and automatic name-based matching approach that can 

calculate similarities between labels containing single terms and compound nouns 

(CNs). The reason for developing and using CN-Match is that existing name-

based matching techniques do not provide accurate matching results when labels 

of candidates are CNs - primarily because these techniques ignore the linguistic 

structure of CNs - (Kim & Baldwin, 2005). The CN-Match similarity calculation 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 94  

mechanism is based on the fact that similarities between any two CNs can be 

derived successfully from similarities between their constituents (Kim & Baldwin, 

2005). CN-Match employs string-based and linguistic-based matching techniques 

in its similarity calculation. CN-Match design, implementation and evaluation are 

discussed thoroughly in Chapter 5.  

4.8.2  Structural Similarity 

Structural matching is usually performed to enable more accurate similarity 

measurements between ontological entities (Euzenat & Shvaiko, 2007). Two 

ontological classes could have the same label but might denote different 

meanings. Let us assume that the main concept in a query instance is ‘Book’ 

which denotes the ‘written book’ and the candidate ontological concept has 

label ‘Book’ which means ‘reserve’. Matching these two concepts using 

name-based matching only will provide a full matching score however, they have 

different meanings. Performing structural similarities can figure out that the 

previous two candidates are not similar since their related concepts are unlikely to 

be the same. Therefore, it is important to take the structural similarity into 

consideration.  

 

Generally speaking, measuring structural similarities between two classes 

belonging to two different ontologies involves matching their super-classes, sub-

classes and properties and their domains or ranges (Euzenat & Shvaiko, 2007). In 

the context of this research, structural similarity between a query instance concept 

and a candidate ontological class is performed based on calculating similarities 

between related concepts of the query instance concept (service element) and 

related concepts of the candidate ontological class. Related concepts of an 

ontological class are those classes that are linked to this class and its superclasses 

through object properties. Related concepts of superclasses are taken into account 

because an ontological class inherits the relations (properties) of its superclasses. 

Super and subclasses of a candidate ontological class are ignored in this structural 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 95  

similarity approach because they do not have counterparts in query instances. In 

other words, the interpretation of an XSD of a WSDL file do not provide neither 

implicit nor explicit super or sub classing relations between defined data types 

(Jacek et al., 2007). Related concepts of ontological classes are extracted from 

candidate ontologies using the OWL API (Euzenat, 2004). The OWL API is a 

Java API that allows developers to manipulate ontologies represented in the Web 

Ontology Language (OWL) formalism. Figure 4.9 presents the process flow of the 

implemented structural matching approach.  

 

The structural matching process starts by obtaining two concepts; one from the set 

of related concepts of the query instance concept (Set 1) and one from the set of 

related concepts of the candidate ontological class (Set 2). The similarity between 

labels of these two concepts is measured using CN-Match. If the resulting score is 

higher than the CN-Match threshold then the corresponding concept is added to 

the set of candidate matches. Otherwise, this matching is ignored. When a related 

concept from Set 1 is matched against all concepts of Set 2, the candidate with the 

highest score is selected as a match of the given Set 1 element. This match is 

added to the set of matches. If the set of candidate matches is empty, then there is 

no match for the given related concept. 

 

The earlier steps are repeated for every concept from Set 1. Once all concepts of 

Set 1 are taken, the content of the „Set of matches‟ SM is checked. If SM is not 

empty, the final structural similarity score is calculated according to Equation 

(4.1). Otherwise, the structural similarity score is 0.  

 

S
n

Si
ni

iS




 1

  (4.1) 

 

Where: 

Ss is the final structural similarity score. 

n is the number of elements in set 1. 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 96  

Si is the highest similarity score between each element of set 1 and all 

elements of set 2.  

 

The final score of a query execution which represents the similarity score between 

a query instance concept and a candidate ontological class is calculated as a 

weighted sum of the name-based and structural similarities scores as given in 

Equation 4.2. In the context of this research, Wn and Ws are given equal values as 

of 0.5 to provide equal weights to structural and name-based matching. Equal 

weights are given because both similarity measurements are equally important for 

the automatic annotation task.  

 

ssnn SWSWS    (4.2) 

 

Where: 

S is the final score. 

Wn is the weight of the name-based matching. 

Sn is the name-based matching score between the label of the 

candidate service element and the label of the selected ontological 

class. 

Ws is the weight of the structural matching. 

Ss is the structural similarity score. 

 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 97  

 

Figure ‎4.9: The Structural Matching Method 

4.9 The SAWSDL Annotation Phase 

During the SAWSDL Annotation Phase, the appropriate correspondences that are 

provided by the results assessment phase are used to annotate the candidate 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 98  

service concepts. Service annotation is done based on the SAWSDL format (Jacek 

et al., 2007) which is a W3C recommendation for SWS description (See 

Subsection 2.4.1 for a discussion on SAWSDL). 

The annotation process is performed automatically once an appropriate 

correspondence is provided for a given query instance. The automatic annotation 

is conducted by adding a model reference element (URI) to the tag of the given 

service element. This automatic addition is carried out by parsing the given 

WSDL file line by line and checking if the given service element exists in this 

line. If the element exists in the current line, a model reference for the appropriate 

ontological class is added to the current line; i.e., the tag of the current element. 

Otherwise, the parser moves to the next line and performs the same checking 

process. 

 

For simple queries, a model reference is added to the simple element tag only. For 

complex queries, if the label of the given complex type carries a significant 

meaning, model references are added to the tags of the complex type and to all of 

its child elements. This latter annotation is called full annotation. If the complex 

type does not carry a significant meaning because it falls in one of the three 

categories provided in Section 4.5, then model references are added to child 

elements only. The name of the later annotation is partial annotation. It is worth 

mentioning that full and partial annotations are both considered as valid 

SAWSDL annotations (Jacek et al., 2007).  

 

When the given service element does not have an appropriate correspondence, this 

service element is added to the set of non-annotated elements (See Figure 4.6). In 

this case, either the query instance should be executed against another ontology 

that exists in the repository if the query concept belongs to a different domain, or 

the current ontology should be extended with an appropriate correspondence of 

the given service element. The extension method is fully explained in Section 6.2.  

 



Chapter 4: The Design of the Semi-automatic Query-based Annotation Approach 

 

 99  

4.10 Summary 

This chapter presented the proposed query-based annotation approach: This 

approach overcomes very important limitations of existing annotation 

frameworks. These limitations are: (1) The need for building application 

ontologies to represent service semantics; (2) the inaccuracy of implemented 

similarity measurement techniques; (3) the Low Percentage Problem; and (4) the 

annotation of service elements belonging to same domain to different domain 

ontologies. In eliminating these deficiencies, a set of design requirements were set 

up. Based on these requirements and knowledge acquired from reviewing 

previous approaches, design strategies were considered to lead the design process.  

 

The proposed approach takes a WSDL file and ontologies as inputs and produces 

an annotated WSDL file as an output. The approach is composed of five phases 

which are concept extraction, concepts filtering and query filling, query execution, 

results assessment and SAWSDL annotation. The concept extraction, query 

execution and SAWSDL annotation are fully automatic processes while the 

concept filtering and query filling and results assessment phases are manual ones. 

The design of the three automatic phases was discussed in detail in this chapter. 

The concept extraction is performed using text analysis techniques implemented 

using the GATE tool. The query execution engine utilises name-based and 

structural matching mechanisms. Name-based matching is performed using CN-

Match which is a novel and effective CN matching mechanism. The SAWSDL 

annotator is designed using text parsing and string look up techniques.  

 

 

 

 

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 100  

Chapter 5:  The Design and Evaluation of 

CN-Match 

5.1 Overview 

This chapter presents the design and evaluation of CN-Match. CN-Match 

measures similarities between labels composed of single terms, binary and triple 

compounds. The design of CN-Match is based on a set of considerations and rules 

derived from limitations of previous CN matching approaches and the linguistic 

structure of CNs. To perform accurate matching, six design cases are identified 

and adopted in CN-Match design. CN-Match design represents Increment 3 of the 

design approach which is shaded in Figure 5.1.  

 

This chapter is organised as follows: Section 5.2 discusses the significance of 

matching Compound Nouns (CNs) in the area of ontology matching. Section 5.3 

provides literature about the structure and types of CNs from a linguistic point of 

view. Section 5.4 discusses previous CN matching approaches and presents their 

limitations. Section 5.5 provides considerations and rules for the design of CN-

Match. Section 5.6 illustrates the design and implementation of CN-Match. 

Section 5.7 presents the evaluation of CN-Match to ensure its applicability and 

assess its performance. Section 5.8 provides a discussion derived from the 

evaluation results and Section 5.9 summarises the chapter.  

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 101  

 

Figure ‎5.1: The Design Increment Addressed in Chapter 5 

5.2 Motivation - The Importance of CN Matching 

Ontology matching research has attracted increasing attention in the Semantic 

Web area. Ontology matching is considered as a very promising solution to the 

ontology heterogeneity dilemma (See section 2.7.1). Name-based matching is one 

of the key ontology matching mechanisms: It has been widely used by matching 

approaches and tools (Euzenat and Valtchev, 2004; Ehrig and Sure, 2005; Castano 

et al., 2006; Choi et al., 2006; Tagarelli et al., 2009). The weight of this matching 

technique comes from the fact that similar ontological constructs (classes, 

properties and individuals) are very likely to have similar names of labels. 

 

Labels of ontological constructs can be composed of multiple words i.e., 

Compound Nouns (Castano et al., 2006; Nagy et al., 2009; Sorrentino et al., 

2009). The reason is that CNs are very commonly used in the English language 

and constitute a considerable amount of words denoting ontological concepts 

(Girju et al., 2005). Examples of well known ontologies that contain CNs are the 

Ka ontology (Horrocks, 2003) and the Portal ontology (Akt Partners, 2010).   



Chapter 5: The Design and Evaluation of CN-Match  

 

 102  

5.3 Compound Nouns Structure and Types 

A CN is a noun that is made up of two or more nouns (Girju et al., 2005). Plag 

(2003 pp. 186) categorises CNs into three main categories; endocentric, 

exocentric and copulative. An endocentric compound is one that has a (modifier, 

head) structure and its meaning is inherited from the meaning of its head. In 

linguistic terms, a head refers to the most important unit in complex linguistic 

structures such as CNs (Plag, 2003 pp. 189). In an endocentric compound, the 

constituent‎ at‎ the‎ right‎ side‎ of‎ a‎ compound‎ is‎ called‎ a‎ “head”‎ while‎ other 

constituents are called modifiers or descriptors (Kim and Baldwin, 2005). An 

example of an endocentric CN can be ‘Tennis Player’ where ‘Player’ is 

the head and ‘Tennis’ is the modifier. It is well known in linguistic research 

that the set of things denoted by an Endocentric compound can be seen as a subset 

of things denoted by its head (Kim and Baldwin, 2005). Exocentric is a type of 

compound that does not have a (modifier, head) structure and it denotes a 

characteristic of a person. The head of an exocentric compound is implicit, is 

located outside a compound and refers to a human being. Examples of exocentric 

compounds are ‘loud mouth’ and ‘grey head’ which refer to ‘loud 

mouthed person’ and ‘grey headed person’ respectively. Copulative 

compounds, on the other hand, have two constituents that contribute equally to the 

overall meaning of CNs. Examples of copulative compounds are, ‘singer-

songwriter’ and ‘doctor-patient’ in ‘doctor-patient gap’.  

 

In this matching approach, we only consider endocentric compounds for the 

following reasons (Sorrentino et al., 2009): (1) Endocentric compounds are the 

most common type of compounds in the English language; and (2) exocentric and 

copulative compounds usually exist in dictionaries such as WordNet, therefore, 

their meanings can be looked up by a direct use of a thesaurus. Consequently, 

from this point forward, we will refer to endocentric compounds as compound 

nouns (CNs).  

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 103  

CNs can also be classified based on the number of their constituents. For example, 

a binary CN is one that is composed of two constituents and a triple compound is 

composed of three constituents. An example of a triple CN can be ‘Player 

First Name’. Nevertheless, the interpretation of triple CNs is not an easy task 

because triple CNs can be syntactically ambiguous (Lauer, 1995 pp. 34). The 

reason for ambiguity is that single terms and binary CNs are considered the 

building blocks of triple compounds and these blocks can be organised in two 

different ways to form triple CNs (Plag, 2003 pp. 170). To further explain the two 

possibilities of a triple CN structure; let us assume that we have the triple CN 

[C1C2C3] that is composed of three constituents [C1], [C2] and [C3]. The first 

possibility happens when the first and second constituents ([C1] and [C2] 

respectively) form a binary compound that is a descriptor of the head [C3]. The 

second possibility occurs when the second constituent [C2] and the head [C3] 

together form a compound [C2C3] that is described by the first constituent [C1] 

which represents the modifier of the CN. An example of the first case is 

‘Tennis Player Name’ where ‘Tennis Player’ is a binary CN that 

represents the modifier and ‘Name’ is the head of the triple CN. An example of 

the second case is ‘Player First Name’ where ‘First Name’ is the 

head and ‘Player’ is the modifier of the triple CN. This confusion can cause 

difficulties for Natural Language Processing (NLP) techniques and CN matching 

tools that automatically interpret and match CNs (Girju et al., 2005; Kim and 

Baldwin, 2005). 

5.4 Previous Research on CN Matching 

Previous research has looked at the problem of similarity measurement between 

CNs in the context of ontology matching using different methods. These methods 

normally combine name-based matching with other mechanisms such as structural 

and extensional when addressing an ontology matching problem. In the following 

paragraphs, existing CN matching approaches are reviewed and analysed and their 

limitations in relation to CN similarity measurement are provided.  



Chapter 5: The Design and Evaluation of CN-Match  

 

 104  

Sorrentino et al. (2009) propose a method for semi-automatically normalising 

labels of schema elements that contain CNs and abbreviations. The purpose of this 

normalisation is to maximise the number of labels that can be compared during a 

further matching process. The normalisation process of CNs is based on 

disambiguating their meanings by creating new WordNet entries for those CNs 

that do not already exist in WordNet. However, this approach requires an initial 

manual process to associate the right relationship to the pairs of super-concepts 

(beginners) of CN constituents. This type of relation is used to create a WordNet 

gloss for new entries. Furthermore, a human user has to select the right 

relationships among a set of given relations between new entries and existing ones 

in order to fit new entries into the WordNet hierarchy. This approach could be 

useful for applications that do not require full automation of the CN matching 

process because it is based on the idea of adding new CNs to WordNet. In 

addition, CNs that are composed of more than two constituents are not considered 

in this approach because the WordNet lexicon can accommodate single terms and 

binary CNs only. 

 

DSSim (Nagy et al., 2009) is another ontology matching algorithm that takes into 

account similarities between labels denoted by CNs. Similarity computation 

between any two compounds is based on similarities between the semantic 

relations that hold between constituents of each CN candidate. However, the 

process of detecting semantic relations is based on manually created classification 

rules. These rules classify a relation between constituents of any given binary CN 

into one of a set of pre-defined semantic relations that best describes the meaning 

of the given compound. The creation of the classification rules is based on the use 

of comments associated with labels of given compounds (definitions of 

compounds) (Nagy et al., 2009). This approach, however, deals with binary 

compounds only and requires human intervention to define the set of relations 

based on given comments that are not always available. 

 

Su and Gulla (2004) propose an approach for improving semi-automatic matching 

of ontologies. The matching process is composed of two phases; semantic 



Chapter 5: The Design and Evaluation of CN-Match  

 

 105  

enrichment and similarity calculation. Semantic enrichment of underling 

ontologies is performed by adding instance information to ontologies. Instance 

information is taken from documents accompanying concepts of ontologies. The 

similarity calculation phase uses linguistic and structural similarity and takes into 

account binary CNs of labels. A similarity score between a CN and another word 

(whether a CN or a single term) is the average of similarity scores of each 

constituent and the other word. This method of similarity calculation can yield 

imprecise matching scores when matching a single term against a binary CN 

because head contribution to a CN meaning is more than that of the modifier as it 

is well known among the linguistic community (Kim and Baldwin, 2005).  

 

H-Match (Castano et al., 2006) is an ontology matching tool designed to match 

ontologies in open networked systems. This approach is based on creating a 

thesaurus that exploits WordNet linguistic structures. CNs that do not exist in 

WordNet are added to the constructed thesaurus‎using‎a‎set‎of‎“offline‎extension 

steps”.‎ These‎ steps‎ are:‎ (1)‎ Entries‎ are‎ defined‎ for‎ each‎ single‎ term,‎ CN‎ and‎

constituents of a CN; (2) terminological relations that hold between entries are 

defined using WordNet linguistic relations and a set of rules that are exploited 

from compounds‎structure.‎These‎rules‎are‎“broader‎term”‎that‎is‎defined‎between‎

a‎ head‎ of‎ a‎ compound‎ and‎ a‎ compound,‎ and‎ “related‎ terms”‎ that‎ is‎ defined‎

between a modifier and the compound itself. H-Match, however, necessitates the 

addition of CNs that do not have entry in WordNet to the constructed thesaurus 

prior to similarity calculation between these CNs and other single terms or CNs 

that already exist at WordNet. This necessity could affect applications that require 

full automation of CN matching because creating new entries requires some 

degree of human involvement to extend the constructed thesaurus with new 

entries.  

 

Based on the preceding analysis of previous research on measuring similarities 

between CNs for ontology matching, one can conclude that earlier approaches 

have some or all of the following limitations. 

1. They can match binary CNs against other binary CNs and single terms only.  



Chapter 5: The Design and Evaluation of CN-Match  

 

 106  

2. The similarity calculation between a pair of binary CNs in (Sorrentino et al., 

2009; Castano et al., 2006) is based on adding CNs that do not have entries in 

WordNet to the thesaurus prior to matching. This could be useful for future 

processing as linguistic similarity scores are saved and can be retrieved easily. 

This additional process, however, can have some limitations in that: (a) It may 

require offline processing and human intervention and thus cannot be applied 

for settings that require high automation; and (b) CN production is an active 

process and thus new CNs need always to be added.  

3. Similarity calculation between a pair of binary CNs in DSSim is based on the 

similarity between the semantic relation that holds between constituents of the 

first CN and this of the second CN. In line with (Downing, 1977; Finin, 1980; 

Lapata, 2002), we argue that the number of possible types of semantic 

relations between constituents of binary CNs is infinite. Therefore it is very 

hard to obtain a comprehensive set of predefined relations that could hold 

between constituents of any CN. Subsequently, it is very hard to achieve 

automatic matching that takes into account similarities between relations 

holding between constituents of candidate CNs.   

4. The approach of Su and Gulla (2004) computes similarities between two 

binary CNs or a binary CN and a single term based on similarities between 

constituents (heads and modifiers). However, their approach does not take the 

linguistic structure of CNs into consideration. The reason is that their 

similarity calculation mechanism between a binary CN and a single term is 

based on finding the average of similarity scores between each constituent of 

the CN and the single term. As discussed earlier, the head contribution to the 

whole meaning of a CN is more than that of the modifier.  

5.5 Considerations and Rules for the Design of 

CN-Match 

The analysis of previous research on CN similarity measurement shows some 

limitations that require attention. To overcome these limitations, we adopt the 



Chapter 5: The Design and Evaluation of CN-Match  

 

 107  

following set of considerations (requirements) when designing CN-Match.  

R1. CN-Match should be able to measure similarities between single terms, binary 

CNs and triple CNs.  

R2. CN-Match should perform automatic name-based matching in order to 

facilitate full automation of query execution. Retrospectively, the query 

execution phase is fully automatic and thus it must be performed with no 

human intervention (See Sections 4.6 and 4.8). Consequently, unlike other 

approaches that require the addition of CNs that do not exist in WordNet to a 

thesaurus prior to similarity calculation, CN-Match should perform automatic 

and dynamic similarity calculation for cases that involve CNs which do not 

have entry in WordNet.  

R3. Similarity calculation in CN-Match is based on measuring similarities 

between constituents of CNs with respect to their linguistic structures. 

Subsequently, the overall matching score is a weighted sum of individual 

similarities between pairs of constituents.  Similarities of internal relations 

between constituents of CNs are not taken into account for two reasons. First, 

the set of possible relations between constituents of binary CNs is infinite and 

thus similarities between these relations cannot always be detected (Finin, 

1980). Measuring these similarities becomes even harder when considering 

triple CNs because each triple CN contains two relations, one inside the binary 

CN and one between the binary CN and the single term. Second, similarities 

between any two CNs can be calculated based on similarities between their 

constituents (Finin, 1980; Lauer, 1995; Plag, 2003 pp. 189). 

 

In order to perform effective similarity calculation between CNs, the linguistic 

structure of CNs must be taken into consideration during the calculation process 

(Plag, 2003 pp. 189). Therefore, we set up the following rules that are derived 

from literature on CN linguistic structure (see Section 5.3) to restrict and lead the 

similarity calculation process performed by CN-Match. 

 

Rule 1: The meaning of a CN is mostly inherited from the meaning of 

its head (Kim and Baldwin, 2005). This is because the set of things 



Chapter 5: The Design and Evaluation of CN-Match  

 

 108  

denoted by a CN is considered as a subset of things denoted by its 

head. An example is the ‘Book Price’ denoting a ‘Price’ 

concept that is specific for books only.  

 

Rule 2: Similarity measurement between any two CNs can be 

successfully derived from similarities between their constituents 

(modifiers and heads) (Lauer, 1995; Finin, 1980; Plag, 2003 pp. 189). 

Simply put, matching a CN against another CN involves matching the 

modifier of the first CN against the modifier of the second CN and the 

head of the first CN against the head of the second CN.  

 

Rule 3: A triple CN can always be decomposed into a Binary CN and 

a single term (Plag, 2003 pp. 170). Either the head or the modifier of a 

triple CN can be a binary CN while the other will be the single term. 

    

Since the CN-Match similarity measurement process involves measuring 

similarities between candidates that can differ in relation to the number of 

constituents, it is necessary to analyse all the possible matching cases in terms of 

the number of constituents that any pair of candidates may have (See Table 5.1 for 

a brief explanation of cases). The reason is that taking into account all the cases of 

matching a single term, a binary CN or a triple CN against other single terms, 

binary CNs, or triple CNs will result in different cases where each case requires a 

special processing and different weights.  

 

F
ir

st
  
C

a
n

d
id

a
te

  Second Candidate 

Single Term Binary CN Triple CN  

Single Term Case One Case Two Case Four 

Binary CN Case Two Case Three Case Five 

Triple CN Case Four Case Five Case Six 

Table ‎5.1: CN Matching Cases 

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 109  

In order to show the need for having different cases within CN-Match processing, 

let us discuss how the process of matching a triple CN against another triple CN is 

different from the process of matching a triple CN against a single term. For this 

example, the triple CN ‘Tennis Player Name’ is matched against the triple 

CN ‘Player First Name’ and the single term ‘Name’.  

 

When matching ‘Tennis Player Name’ against ‘Player First 

Name’, ‘Tennis Player Name’ is broken down into the binary CN 

‘Tennis Player’ which represents the modifier and the single term ‘Name’ 

which represents the head (Rule 3). Similarly, ‘Player First Name’ is 

decomposed into the single term ‘Player’ which represents the modifier and 

the binary CN ‘First Name’ which represents the head. Based on Rule 2, the 

binary CN ‘Tennis Player’ is matched against the single term ‘Player’ 

because they both represent the modifiers of the first and second triple CNs, 

respectively. Moreover, the single term ‘Name’ is matched against the binary CN 

‘First Name’ because they both represent the heads of the first and second 

triple CNs, respectively. The overall score is a weighted sum of similarities of 

modifiers and heads. However, the method used to derive weights is explained 

later in Section 5.6.2.  

 

Unlike the former case, matching the CN ‘Tennis Player Name’ against 

the single term ‘Name’ involves matching the head of the triple CN which is 

‘Name’ against the single term ‘Name’ only (see Rule 1). Therefore, no 

similarity between modifiers is involved in this calculation.  

5.6 The Design and Implementation of CN-Match 

In order to prove the applicability of the proposed similarity measurement 

approach and make it usable by applications, CN-Match has been implemented 

using the Java Programming Language version 1.6.0. A set of techniques has been 



Chapter 5: The Design and Evaluation of CN-Match  

 

 110  

utilised to enable the desired similarity measurement for the six cases of similarity 

calculation. The adopted techniques, the six defined cases and the process flow of 

CN-Match are discussed in the following subsections. 

5.6.1  Similarity Measurement Techniques Used to 

Implement CN-Match 

CN-Match involves matching of single terms and CNs using string-based and 

linguistic-based similarities. For linguistic-based similarities, synonym similarity 

and path length-based linguistic similarity of WordNet 2.1 are implemented. 

These techniques are deemed useful for matching labels in the context of ontology 

matching and have been utilised by different matching tools and frameworks 

(Choi et al., 2006; Ehrig and Sure, 2005; Euzenat and Shvaiko, 2007 pp. 78). 

These techniques are described briefly as follows. 

1. String-based similarity: In this similarity measurement, a word is considered 

as a sequence of letters. Therefore, similarity is calculated based on existence 

of the same characters at specific positions of the two candidates (Euzenat and 

Shvaiko, 2007 pp. 76). For this similarity, we use Levenshtein Distance which 

is a method proposed by (Levenshtein, 1965) to compute the distance between 

two strings. The distance is calculated based on the number of insertions, 

deletions and substitutions of letters required to transform one string into 

another. The higher the distance is, the more different the two strings are. In 

implementing Levenshtein distance, Gilleland (2009) produced a method to 

calculate string-based similarity which can provide similarity scores between 

two given strings in the range [0 1] where 0 means no similarity and 1 means 

identical. However, before calculating similarity between any two candidates 

using string matching, it is normally necessary to stem the two candidates 

using a stemmer. A stemmer such as Porter Stemmer (Porter, 2006) is used to 

remove suffixes from words and thus transfer these words into their origin. 

For example, a stemmer will convert „Computers‟ into „Computer‟.  

2. Synonym Similarity: This similarity measurement utilises WordNet synsets. It 

is performed based on the following consideration (Euzenat and Shvaiko, 



Chapter 5: The Design and Evaluation of CN-Match  

 

 111  

2007 pp. 89). Any two candidates are synonyms if one candidate exists in the 

synset of the other. However, the output of synonym similarity is either 1 

when the two candidates are synonyms or 0 otherwise. Synonym similarity is 

implemented in CN-Match using WordNet 2.1 Thesaurus of the 

MorphAdorner API (Burns, 2006). 

3. Path length-based linguistic similarity: This measurement exploits the lexical 

relations of the WordNet hierarchal structure by using a path length-based 

method (Budanitsky and Hirst, 2006; Lin and Sandkuhl, 2008). In path length 

measures, the shorter the path between any two nodes, the more similar the 

two concepts represented by these two nodes are. An example of a path-based 

length method is the Wu and Palmer method (Wu and Palmer, 1994). The Wu-

Palmer method calculates similarity between two concepts in a graph by 

finding the path length between the least common subsumer (LCS) of the 

nodes of these two concepts and the root node. The value of the resulting path 

length is then divided by the sum of the path length from the node of each 

individual concept to the root element. Wu-Palmer similarity for WordNet is 

implemented in CN-Match‎using‎ the‎ “Wu-Palmer Similarity”‎method‎of‎ the‎

„JWNLDistance‟ class of the Alignment API 3.6 (Euzenat, 2004). This later 

similarity measurement provides similarity scores in the range [0 1]. 

 

In the context of this research, the two linguistic-based similarity techniques are 

merged in CN-Match into‎ a‎ single‎ algorithm‎ called‎ „Linguistic Similarity‟. The 

reason for this merge is to improve the design of CN-Match by creating one 

linguistic similarity class that can easily be used by other classes. The new 

linguistic similarity process is demonstrated in Figure 5.2.  

 

It is worth mentioning that the „Linguistic Similarity‟ algorithm can measure 

similarities between two candidates that both have entry in WordNet. These 

candidates can be single terms and binary CNs only. Similarity measurements 

involving CNs that do not have entry in WordNet are performed by a set of 

heuristics that are implemented by the six similarity measurement cases of CN-

Match. 

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 112  

 

Figure ‎5.2: Linguistic Similarity Process Flow 

5.6.2  The Six Cases of Matching Single Terms, Binary 

and Triple CNs 

CN-Match performs similarity calculation between candidates that can be 

composed of numbers of constituents ranging from one to three. As explained 

earlier in Section 5.5, it is necessary to distinguish between the different cases and 

explain each one individually. This subsection provides a detailed explanation of 

these cases. In explaining the cases, we use symbols such as [C11C12] and 

[C21C22C23]. These symbols are used to generalise and simplify the explanation of 

cases. The first index in a constituent of a CN refers to the order of this CN. The 

second index refers to the order of the constituent in a CN. For example, the 

leftmost 1 in [C11] indicates that the binary CN [C11C12] is the first (source) 

candidate. While the rightmost 1 in [C11] indicates that [C11] is the first constituent 

of the binary CN [C11C12]. Similarly, 2 in [C12] indicates that [C12] is the second 

constituent of the binary CN [C11C12]. For example, if ‘TennisPlayer’ is the 

first candidate in a matching process then ‘Tennis’ would be [C11] and „Player‟ 

would be [C12]. 

 

Similarity scores of Cases 2 to 6 are calculated as a weighted sum of individual 

similarity scores. The similarity scores are generally given by the following 

equation:  

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 113  

2211 SWSWS                                                        (5.1)   

Where:  

S is the overall score. 

W1 is‎the‎weight‎of‎the‎modifiers‟‎similarity. 

W2 is the‎weight‎of‎the‎heads‟‎similarity.‎ 

S1 is‎the‎score‎of‎the‎modifiers‟‎similarity. 

S2 is‎the‎score‎of‎the‎heads‟‎similarity. 

 

When measuring similarity between a single term and a CN as in Cases 2 and 4, 

similarity between the head of the candidate CN and the single term is taken into 

account only and no similarity between modifiers is involved. Subsequently, the 

overall score is given by the following equation:  

 

33 SWS                                                                       (5.2) 

Where:  

S is the overall score. 

W3 is the weight of similarity between the CN head and the single 

term. 

S3 is the score of similarity between the CN head and the single term. 

 

The values of the preceding weights have been assigned based on linguistic 

structure of CNs and verified by conducting two experiments. First, initial values 

of W1 and W2 were assigned based on Rule 2 which declares that similarity 

between any two CNs can be derived from the similarities between their modifiers 

and between their heads. Similarly, an initial value of W3 which is the weight of 

similarity between a single term and a CN is set up by taking into consideration 

Rule 1 which indicates that the meaning of a CN is mostly inherited from the 

meaning of its head.  

 

These initial values were then evaluated by conducting two experiments that 

involve matching ontologies describing the book selling and the academic 

domains. The used ontologies contain single terms and CNs. During these 



Chapter 5: The Design and Evaluation of CN-Match  

 

 114  

experiments, the initial values were changed and the similarity scores were 

evaluated in order to find the most appropriate values of weights. The two 

experiments lead to 0.5, 0.5 and 0.96 as the most appropriate values for W1, W2 

and W3 respectively. 

 

Case 1  

This case measures similarities between any two single terms [C1] and [C2] and is 

called „Single‎Terms‎Matching‟. Similarity between [C1] and [C2] is first measured 

using string-based similarity. If the resulting score is 1.0, then the final score is 1.0 

which means that the terms are identical. Otherwise, linguistic similarity is used to 

measure similarity between [C1] and [C2] and the final score is the linguistic 

similarity score. An example of this case can be the matching of ‘Price’ 

against ‘Cost’.  

 

However, „Single‎ Terms‎ Matching‟ and „Linguistic‎ Similarity‟ are the basic 

techniques that are utilised by the five subsequent cases to perform the required 

similarity calculations. Therefore, the following two assumptions hold for the 

Cases 2 to 6. 

 „Single‎ Terms‎ Matching‟ is the method that is always used to measure 

similarities between any two single terms. Consequently, whenever calculating 

a similarity between a pair of single terms the „Single Terms Matching‟ 

method is implemented. 

 „Linguistic‎ Similarity‟, on the other hand, is the method used for similarity 

measurements that involve binary CNs that exist in WordNet. Therefore, from 

this point forward, any similarity measurement that involves two binary CNs 

that both have entry in WordNet or a binary CN and a single term that also 

both have WordNet entry is performed using „Linguistic Similarity‟. 

 

Case 2  

The second case performs matching of a single term [C11] against a binary CN 

[C21C22] and has two possibilities which are highlighted in Table 5.2 and explained 



Chapter 5: The Design and Evaluation of CN-Match  

 

 115  

as follow. 

P1. If both [C11] and [C21C22] have WordNet entries, then similarity between them is 

measured using „Linguistic Similarity‟. An example of this case is comparing 

‘Person’ as being [C11] against ‘Sales Representative’ as being 

[C21C22] which both are available in the WordNet. 

P2. But if [C21C22] or [C11] does not have entry, similarity between [C11] and the 

head of [C21C22] which is [C22] is measured using „Single Terms Matching‟. An 

example of this occasion is measuring similarity of ‘Book Price’ against 

‘Cost’. The ‘price’ is the head and it is matched against the single term 

‘Cost’. 

 

Possibility Explanation 

P1 C11 against C21 C22 

P2 C11 against C22 

Table ‎5.2: Possibilities of Case 2 

Case 3  

The third case examines the matching between two binary CNs [C11C12] and 

[C21C22]. An example of these binary CNs could be ‘Book Price’ and ‘Book 

Cost’. The following possibilities can be distinguished. 

P1. If both CNs have WordNet entries, then similarity between them is measured.  

P2. If only one CN has entry and the head of the other CN has entry as well, 

similarity between the CN that has entry and the head of the other CN is 

measured. 

P3. If both CNs do not have WordNet entry, then similarities between the heads of 

the first and second CNs and the modifiers of the first and second CNs are 

measured and the overall score is a weighted sum of the two resulting scores.  

 

Table 5.3 summarises the different possibilities of Case 3.  

 

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 116  

Possibility Explanation 

P1 C11C12 against C21 C22 

P2 C12 against C21C22 

P3 C11C12 against C22  

P4 C11 against C21 & C12 against C22 

Table ‎5.3: Possibilities of Case 3 

Case 4  

The current case looks at measuring similarities between a single term [C11] and a 

triple CN [C21C22C23]. An example is matching ‘Name’ against ‘Person 

First Name’. Two possibilities are identified and shown in Table 5.4. 

P1. If the binary CN [C22C23] and the single term [C11] both have WordNet entries, 

then [C22C23] is considered as the head of the triple CN and thus similarity 

between [C11] and [C22C23] is measured.   

P2. Otherwise, similarity between [C11] and [C23] is measured because [C23] is 

considered as the head of the triple CN. In this case [C21C22] is the modifier of 

the triple CN. 

 

Possibility Explanation 

P1 C11 against C22 C23 

P2 C11 against C23 

Table ‎5.4: Possibilities of Case 4 

Case 5  

The fifth case examines matching a binary CN [C11C12] against a triple CN 

[C21C22C23]. According to Rule 2 (see Section 5.5) the Triple CN [C21C22C23] can be 

broken down into either ([C21] and [C22C23]) or ([C21C22] and [C23]). An example of 

this case is when measuring similarity between the triple CN ‘Sales 

Representative Name’ and the binary CN ‘Person Name’. For this 

example, the triple CN can be decomposed into a binary CN ‘Sales 

Representative’ which represents the modifier and a single term ‘Name’ 



Chapter 5: The Design and Evaluation of CN-Match  

 

 117  

which is the head.  

In general, this case involves the following four possibilities: 

P1. If [C22C23] and [C11C12] both have entries, then [C22C23] represents the head of the 

triple CN. Subsequently, similarity between [C22C23] and [C11C12] is measured 

and score S1 is obtained. 

P2. If [C22C23] and [C12] both have entries, then similarities between ([C22C23] and 

[C12] which are heads) and between ([C21] and [C11] which are modifiers) are 

measured. Score S2 is obtained as a weighted sum of the two previous 

similarity measurements. 

P3. If [C21C22] and [C11] both have entries, then similarities between ([C21C22] and 

[C11] which are modifiers) and between ([C23] and [C12] which are heads) are 

measured. The overall score S3 is a weighted sum of the two previous scores. 

P4. If none of [C22C23], [C21C22] and [C11C12] have entry, similarities between ([C11] 

and [C22]) and ([C12] and [C23]) are measured and score S4 is obtained.  

After taking into account all possibilities, S1, S2, S3 and S4 are compared and the 

highest one will be the final score.  Table 5.5 highlights the different possibilities 

of Case 5. 

  

Possibility Explanation 

P1 C11C12 against C22 C23 

P2 C11 against C21 & C12 against C22C23 

P3 C11 against C21C22 & C12 against C23 

P4 C11 against C22 & C12 against C23 

Or 

C11 against C21 & C12 against C23 

Table ‎5.5: Possibilities of Case 5 

Case 6  

Case 6 looks at measuring similarity between a pair of triple CNs [C11C12C13] and 

[C21C22C23]. However, the first triple CN can be broken down into ([C11] and 

[C12C13]) or ([C11C12] and [C13]). Similarly, [C21C22C23] can be broken down into ([C21] 

and [C22C23]) or ([C21C22] and [C23]). For instance, when matching the triple CN 

‘Sales Representative Name’ against the triple CN ‘Person First 



Chapter 5: The Design and Evaluation of CN-Match  

 

 118  

Name’ the first one is broken down into the binary CN ‘Sales 

Representative’ and the single term ‘Name’ as shown in the example of 

case five. The second triple CN, however, is decomposed into a single term 

‘Person’, which is the modifier, and a binary CN ‘First Name’ which 

forms the head of this triple CN.  

 

The following four general possibilities are considered when matching a triple CN 

against another triple CN.  

P1. P1. If both of [C11C12] and [C21C22] have entries, similarities between 

([C11C12] and [C21C22] which are modifiers) and between ([C13] and [C23] 

which are heads) are measured. The overall score S1 is a weighted sum of the 

results of the two previous measurements. A very similar processing happens 

when [C12C13] and [C22C23] are heads and [C11] and [C21] are their 

modifiers. The overall score is S2. 

P2. If [C11C12], [C13], [C21] and [C22C23] all have entries, similarities between ([C11C12] 

and [C21] which are modifiers) and between ([C13] and [C22C23] which are heads) 

are measured. The overall score S3 is a weighted sum of the two previous 

measurements. A very similar processing happens when [C11], [C12C13], [C21C22] 

and [C23] have entries in WordNet. In this case, heads are [C12C13] and [C23] and 

modifiers are [C11] and [C21C22]. The overall score of the later case is S4. 

P3. If only [C11C12] and [C22] have entries, similarity between [C11C12] and [C22] is 

measured. In this case, [C21] is considered as a modifier of the binary CN 

[C21C22] where [C22] is its head. [C21C22] as a whole forms the modifier of the 

triple CN [C21C22C23]. Moreover, [C13] and [C23] are considered as heads of the 

two triple CNs and similarity between them is measured. The overall score S5 

is a weighted sum of the results of the two previous similarity measurements. 

A very similar processing happens for cases when only one of [C21C22], [C12C13] 

or [C22C23] has entry in WordNet where scores S6, S7, and S8 can be obtained. 

P4. If none of [C11C12], [C12C13], [C21C22] and [C22C23] have entry, similarities between 

([C11] and [C21]) and ([C12] and [C22]) and ([C13] and [C23]) are measured. In this 

case, no indication can be found to figure out how the two triple CNs can be 

decomposed. Therefore, the only possible way to calculate similarity is by 



Chapter 5: The Design and Evaluation of CN-Match  

 

 119  

measuring similarities between each constituent of the first triple CN against 

its counterpart in the other triple CN. The overall score S9 is a weighted sum of 

the three individual scores. 

 

After taking into account all possibilities, S1, S2, S3, S4, S5, S6, S7, S8 and S9 are 

compared and the highest score will be taken as the final score. Table 5.6 

summarises all the possibilities of Case 6.  

 

Possibility Explanation 

P1 C11C12 against C21C22 & C13 against C23 

Or 

C11 against C21 & C12C13 against C22C23 

P2 C11C12 against C21 & C13 against C22C23 

Or 

C11 against C21C22 & C12C13 against C23 

P3 C11C12 against C22 & C13 against C23 

Or 

C11 against C21C22 & C13 against C23 

Or 

C11 against C22 & C12C13 against C23 

Or 

C11 against C21 & C13 against C22C23 

P4 C11 against C21 & C12 against C22 & C13 against C23 

Table ‎5.6: Possibilities of Case 6 

 

Table 5.7 presents mappings between each case and the method implementing it. 

Case Method 

Case 1 Perform Single Terms Matching 

Case 2 Perform Single Term And Binary CN Matching 

Case 3 Perform Binary CN Matching 

Case 4 Perform Single Term and Triple CN Matching 

Case 5 Perform Binary And Triple CN Matching 

Case 6 Perform Triple CN Matching 

Table ‎5.7: Mapping Cases to Methods 



Chapter 5: The Design and Evaluation of CN-Match  

 

 120  

Figure 5.3 presents the class diagram of CN-Match design in order to show 

interactions between different classes used to implement the logic of CN-Match.  

 

 

Figure ‎5.3: CN-Match Class Diagram 

5.6.3  Process Flow of CN-Match 

To fully explain the design of CN-Match, the process flow of similarity 

measurement between any two given candidates is explained in this subsection. 

The process flow starts by tokenising the two candidates and then automatically 

selecting the appropriate matching case out of the six cases based on the number 

of constituents in each candidate. After selecting the appropriate case, similarity 

measurement is calculated based on the logic flow and assigned weights of the 

selected case. Finally, the process flow of CN-Match is presented in Figure 5.4. 

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 121  

 

Figure ‎5.4: The Process Flow of CN-Match 

5.7 Evaluation of CN-Match 

Having designed and implemented CN-Match, it is very important to evaluate the 

quality of similarity results it produces. The evaluation is designed to ensure and 

demonstrate the effectiveness of CN-Match as a matching approach for finding 

correspondences between labels of ontological constructs. 

A comparative evaluation between CN-Match results and other results obtained 

by ontology matching systems that cater for CN matching is inappropriate: This is 

because the CN-Match target is different from the target of the approaches 

reviewed in Section 5.4. These approaches tackle the general ontology matching 



Chapter 5: The Design and Evaluation of CN-Match  

 

 122  

problem and combine additional matching techniques with the name-based 

matching. CN-Match, however, presents an automatic and systematic approach 

for measuring similarities between ontological labels containing CNs based on 

CN linguistic structure and using string and linguistic-based similarities. The 

quality of matching results of CN-Match is evaluated using three ontological test 

sets.  To avoid bias and ensure the applicability of CN-Match, published and 

recognised test sets are utilised to evaluate CN-Match performance. 

 

The metrics used in this evaluation are precision (P), recall (R) and F-Measure 

(F). These three measures are borrowed from the Information Retrieval research 

and have proved to be effective in evaluating performance of retrieval algorithms 

(Buckland and Gey, 1994). In Information Retrieval research, P indicates the 

purity (cleanliness) of retrieval and R denotes completeness of retrieval results 

(Buckland and Gey, 1994).  These two measures are then adopted by the ontology 

matching research to measure the effectiveness of similarly measurement 

approaches (Euzenat et al., 2009; Giunchiglia et al., 2009). In the ontology 

matching context, P indicates cleanliness of similarity results and R means 

completeness of these results (Giunchiglia et al., 2009). However, using these two 

measures individually could result in misleading evaluation. The reason is that 

there is a trade-off between P and R. For example, P can be maximised but at the 

expense of R and vice versa. Hence, a third measure called the F-measure (F) is 

normally used to combine P and R (Castano et al., 2006). The values of P, R and 

F fall in the range [0 1]. These three metrics are defined in the following 

equations. 

 

A

MA
p


                                                               (5.3) 

M

MA
R


                                                              (5.4)   

)( RP

RP
F






2
                                                                 (5.5) 

A is the set of total number of matches automatically found. 

M is the set of total number of matches manually found. 



Chapter 5: The Design and Evaluation of CN-Match  

 

 123  

 

Figure ‎5.5: The Intersection between Automatic and Manual Matches 

 

Based on the previous definitions of P and R, one can understand that these two 

metrics require reference results (M) to compare against in order to find out the 

correct automatic results (Ehrig and Euzenat, 2005). This reference (gold 

standard) is usually obtained by performing manual matching.  

5.7.1  Experiments Design 

We have conducted three experiments to evaluate the matching results of CN-

Match. For each experiment, the input of the matching process is two sets of 

labels extracted from two ontologies. In these experiments, labels are extracted 

from ontologies using SPARQL queries. SPARQL is a query language for RDF 

graphs‎(Prud‟Hommeaux‎and‎Seaborne,‎2009).‎ARQ‎2.8.0‎API‎(Hewlett-Packard, 

2009) is used as a SPARQL execution engine. An example of a query to extract 

class labels from an ontology is given in Figure 5.6. 

 

 

Figure ‎5.6: A SPARQL Query to Extract Labels of Classes 

 

After extracting labels of the two candidate ontologies, each label of the first 

ontology is compared against all labels of the second ontology in order to find its 

matches. A match is defined as the one that has a matching score over a defined 

constant threshold. 

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 124  

A threshold is defined as a cut-off-value that separates correct results from 

incorrect ones (Castano et al., 2006). Having obtained matching pairs that have 

scores higher than the threshold, these pairs are compared against the gold 

standard to check if they exist in this standard. If they exist, then they are added to 

the list of automatically detected correct matches. Otherwise, these matches are 

ignored. Next, P, R and F values are calculated using Equations 5.3, 5.4 and 5.5. 

Figure 5.7 presents the process flow of conducted experiments. 

 

 

Figure ‎5.7: Process Flow of Experiments 

 

Nevertheless, the threshold value plays a significant role in the performance of any 

matching approach. Subsequently, the threshold value should be derived carefully 

using a set of experiments.  

5.7.2  Threshold Derivation 

In order to set up an accurate threshold, two experiments were conducted. These 

two experiments involve matching concepts of: (1) The Yahoo! (Yahoo!, 2010) and 

the Open Directory Project (The Open Directory Project, 2010) travel categories; 

and (2) the Portal and Ka ontologies. The travel categories of the Yahoo! and the 



Chapter 5: The Design and Evaluation of CN-Match  

 

 125  

Open Directory Project contain concepts describing the travel domain. For the 

purpose of the first experiment, 40 concepts were considered. The Portal and Ka 

ontologies contain concepts that describe the knowledge acquisition domain. Each 

one of these two ontologies contains more than one hundred classes. Performing the 

preceding two matching tests is deemed appropriate for our experiment because: (1) 

They contain good ratio of CNs; (2) the two tests have been used before to test other 

matching techniques (Castano et al., 2006; Su and Gulla, 2004); and (3) these two 

test cases are different in terms of domain and number of concepts and thus can 

provide an average threshold that is more generally applicable than a threshold 

derived from a single experiment. 

 

In each experiment, the threshold value is changed and P, R and F values were 

measured for each threshold value. In order to calculate P and R, a gold standard is 

needed. Unfortunately, these two matching cases do not have published gold 

standards and thus it was necessary to produce them manually. To this aim, six 

computer science PhD students (three for each experiment) were asked to perform a 

manual matching between concepts of the first and second sets of each experiment 

based on their intuitive understanding of the involved domains. They were allowed 

to use a dictionary when required. A matching pair is counted as a correct match 

when it is given by at least two out of three students. Otherwise, the matching pair 

is ignored.  

 

Figure 5.8 presents F values for both of the travel category experiment and the 

Portal and Ka experiment. The reason for considering the F measure as an 

indication of good results is because it combines both of the P and R values. The 

best F value of the travel category experiment is obtained when the threshold is 

0.86. The best F value of the Portal and Ka experiment is achieved when the 

threshold is 0.87. Therefore, the final threshold is taken as 0.865 which is the 

average of the two previous thresholds. 

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 126  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.76 0.78 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

Threshold

F
-M

e
a
s
u

re

F-Measure Of Travel

Category

F-Measure of Ka and Portal

 

Figure ‎5.8: Changes of F-Measure against Changes in Threshold 

5.7.3  Evaluation Test Sets and Results  

Having acquired the threshold, the performance of CN-Match is now evaluated 

using three published test sets which are the Benchmark of OAEI 2009 (Euzenat et 

al., 2009), the Russia test set of the FOAM (Ehrig, 2009) and the conference test set 

of the OAEI 2009 (Euzenat et al., 2009). These test sets cover different domains and 

contain different levels of CN coverage.  These three test sets are chosen for the 

following reasons. First, they all have published gold standards which make the 

evaluation of CN-Match more valid and less biased. Second, they all contain a good 

number of CNs. And third, they describe domains (Bibliography, Country and 

organisation of Conferences) that are understandable by the general audience.  

 

A. The Benchmark Test Set 

The benchmark test set of the OAEI (Euzenat et al., 2009) contains tests that 

compare ontologies describing the bibliographic domain. This test set is composed 

of fifty four different tests that are designed to evaluate strengths and weaknesses of 

different matching systems that implement different techniques. Since the focus of 

this evaluation is on testing the performance of CN-Match which is a name-based 



Chapter 5: The Design and Evaluation of CN-Match  

 

 127  

matching system using recognised and published ontologies, a subset (301 to 304) 

of the Benchmark test set is used. The reason is that the first fifty tests (101 to 104 

and 201 to 266) match the reference ontology (101) against modified versions of 

this ontology. On the contrary, 301, 302, 303 and 304 tests match the reference 

ontology against other four different ontologies that are created and used by 

different organisations. These four ontologies are BibTex/MIT, BibTex/UMBC, 

Karlsruhe and INRIA. These four ontologies contain 30 classes in average where 

about 15% of their labels are CNs. Figure 5.9 presents the P, R and F values of these 

four tests. 

 

Figure 5.9 shows that the worst F value is achieved by the 302 test. The reason is 

that the 302 gold standard provides more domain specific pairs than the other three 

tests. Examples of these domain specific correspondences are (Unpublished, 

Resource), (Collection, Book) and (Part, Publication) just to mention a few. These 

domain-specific matches cannot be discovered using a general purpose thesaurus 

such as WordNet. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

301 302 303 304 Average

Precision

Recall

F-Measure

 

Figure ‎5.9: P, R and F of the Benchmark Test Set 

 

B. The Russia Test Set 

This test set includes three individual tests that involve matching three pairs of 

ontologies describing the location and cultural aspects of the Russia country (Ehrig, 



Chapter 5: The Design and Evaluation of CN-Match  

 

 128  

2009). These six ontologies individually contain an average of 130 classes of which 

about 30% are CNs. This test set contains much more classes and a higher 

percentage of CNs in comparison to the Benchmark test set. Figure 5.10 presents 

the P, R and F values of the three Russia tests. Using Figure 5.10, one can conclude 

that the worst F value is obtained by the „Russia1, 2‟ test. This is because there are 

domain-specific matches provided by the gold standard that cannot be captured by 

CN-Match. Examples of these matching pairs are (TravelEvent, RecreationSport), 

(CultureOffer, PublicSpace) and (PoliticalFact, Overview). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Russia1,2 RussiaA,B RussiaC,D Average

Precision

Recall

F-Measure

 

Figure ‎5.10: P, R and F of the Russia Test Set 

 

C. The Conference Test Set 

This test set contains 15 ontologies describing the organisation of conferences 

(Euzenat et al., 2009). 21 tests have gold standards. Out of these 21 tests, 8 tests 

that involve ontologies containing the highest number of classes and percentages 

of CNs have been selected for the purpose of this evaluation. The ontologies of 

selected tests have a number of classes ranging from 49 (Sigkdd ontology) to 140 

(Iasted ontology). Moreover, the average percentage of class labels that are CNs is 

65%. This percentage is significantly higher than the previous two test sets. This 

makes this test set very suitable for the purpose of CN-Match Evaluation. Figure 

5.11 shows the P, R and F values of the seven conducted tests. 

 



Chapter 5: The Design and Evaluation of CN-Match  

 

 129  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
m

t-C
on

fe
re

nc
e

C
on

fe
re

nc
e-

C
on

fO
f

C
on

fe
re

nc
e-

E
ka

w

C
on

fO
f-E

da
s

E
da

s-
Ia

st
ed

E
ka

w
-Ia

st
ed

Ia
st

ed
-S

ig
kd

d

C
on

fe
re

nc
e-

Ia
st

ed

A
ve

ra
ge

Precision

Recall

F-Measure  

Figure ‎5.11: P, R and F of the Conference Test Set 

 

Having looked at Figure 5.11, one can tell that Edas-Iasted, Ekaw-Iasted and 

Conference-Iasted have achieved the lowest F value. The reason is that the gold 

standards of these tests provide domain-specific concepts relevant to the Iasted 

ontology that match with concepts from other ontologies. Examples of these 

matching pairs are (SlideSet, Transparency), (Paper, Submission) and 

(WelcomeTalk, WelcomeAddress) from the Ekaw-Iasted test and 

(PassiveConferenceParticipant, Listener), (ActiveConferenceParticipant, Speaker) 

and (CameraReadyContribution, FinalManuscript) from the Conference-Iasted test. 

5.8 Discussion 

CN-Match measures similarities between labels containing all three types 

(endocentric, exocentric and copulative) of CNs. Exocentric and copulative CNs 

can be matched using linguistic and/or string matching. Using WordNet, meanings 

of exocentric and copulative CNs can be looked up. Endocentric CNs, which are the 

most common in the English Language, can be matched using the six pre-defined 

cases and the matching techniques utilised by CN-Match.  



Chapter 5: The Design and Evaluation of CN-Match  

 

 130  

 

Three test sets have been used to evaluate the performance of CN-Match in terms of 

P (cleanliness of matching results), R (completeness of results) and F which is the 

harmonic measure of the previous two metrics. The resulting values of these 

measures (See Figures 5.9, 5.10 and 5.11) demonstrate the effectiveness of CN-

Match. Importantly, high R values (The lowest is 0.68 obtained by Test 302) were 

obtained indicating that a high percentage of correct matches were retrieved by CN-

Match.   

 

Unsurprisingly, different values of the three measures were obtained by the 

different test sets. These differences are due to the following reasons: (1) Issues of 

the used datasets and their gold standards; and (2) issues of the techniques 

implemented by CN-Match. Calculating the values of P and R necessitates the 

existence of a gold standard, which is used as a baseline against which resulting 

automatic matches are compared (see Equations 5.3 and 5.4). Therefore, the 

accuracy and completeness of a gold standard significantly affects the resulting P 

and F values which are the metrics against which the performance of the 

underlining matching system is evaluated. Unfortunately, existing gold standards 

are currently generated by manual means. This leads to incompleteness and 

sometimes inaccuracy of the produced matches of these standards. For example, the 

gold standard of the 304 test of the Benchmark dataset misses some important 

matches such as the pairs (Organisation, University) and (Book, Reference). 

Moreover, the 303 test provides some imprecise matches such as the pairs (Book, 

BookTitle) and (Collection, BookTitle).  

 

Since CN-Match is a domain-independent name-based matching tool, it makes use 

of WordNet which is a general purpose thesaurus. Consequently, the performance 

of CN-Match is affected by WordNet performance. As WordNet is a general 

purpose linguistic database, domain-specific matches that have same meanings in a 

specific domain but different meanings in general or in different domains might not 

be discovered by WordNet and subsequently by CN-Match. Thus, if a test contains 

a very high number of domain specific correspondences then the resulting F value 



Chapter 5: The Design and Evaluation of CN-Match  

 

 131  

could be lower than that of other tests which have moderate numbers of domain-

specific matches. 

 

Based on the conducted evaluation, the lowest F value of 0.57 is obtained by the 

302 test of the Benchmark test set. While, the highest F value of 0.94 is obtained by 

the RussiaA,B test of the Russia test set. The reason for having such a relatively low 

value for the 302 test is mainly because of the existence of many domain-specific 

and imprecisely structured CNs. On the contrary, the reason for having the highest 

F value for the RussiaA,B test is that most of the matching pairs are domain 

agnostic matches that have same meaning in general as well as in the underling 

domain. We understand that having domain specific correspondences is sometimes 

unaffordable, but accounting for these matches requires the existence of domain-

specific thesauri that cover many different domains and can be used in automatic 

settings. Unfortunately, very few domain-specific thesauri can be found. This is 

because building a domain-specific thesaurus is a very difficult task that requires 

extensive effort and domain knowledge (Chen et al., 2003). An example of a 

domain specific thesaurus is the UMLS (Unified Medical Language System) which 

describes biomedical concepts (Lindberg et al., 1993). Moreover, using domain 

specific thesauri within an automatic and domain-agnostic matching task may result 

in additional difficulties since a domain of a concept should be discovered 

dynamically and a concept could belong to several domains and might have 

different meanings in different domains (Giunchiglia et al., 2006).  

 

Another important WordNet-related factor that can affect the performance of CN-

Match is the quality of matching results produced by WordNet and similarity 

measurement approaches that make use of WordNet such as the Wu-Palmer 

similarity measure. WordNet-based linguistic similarity measures have some 

understandable limitations. Incomplete as well as imprecise linguistic similarity 

results could sometimes be obtained by WordNet-Based measures. For example, 

some matching candidates - that are expected to be synonyms or semantically 

similar - might sometimes not be discovered by a WordNet-based similarity 

measure. Just to give an example, (Citizen, Inhabitant) are not synonyms in 



Chapter 5: The Design and Evaluation of CN-Match  

 

 132  

WordNet 2.1. Moreover, the similarity score of (Woman, Human) is relatively low 

when using Wu-Palmer similarity of WordNet. These later issues can affect any 

matching system that uses WordNet and its similarity approaches. 

5.9 Summary  

This chapter described CN-Match which is the name-based matching approach 

implemented by the query execution engine of the proposed semi-automatic 

annotation approach. The chapter began by showing the importance of matching 

CNs in ontology matching research. Next, a review of the structure and types of 

CNs from a linguistic perspective was provided. Also, previous approaches that 

match CNs and limitations of these approaches were given. To setup an 

appropriate design for the automatic name-based matching approach that can 

perform precise and effective CN matching, considerations and design rules were 

then adopted and presented. The design cases and implementation of CN-Match 

were then followed.  

 

The performance of CN-Match, which is a matching approach capable of 

measuring similarities between all types of CNs, was evaluated using three 

published and well recognised test sets. Precision (P), which indicates cleanliness 

of results, recall (R), which denotes completeness of results, and F-Measure (F), 

which is a harmonic measure that combines P and R, were the metrics used in the 

evaluation of CN-Match. The evaluation revealed that CN-Match achieved good 

results in terms of P, R and F. Importantly; high R values were obtained indicating 

that almost all correct matches in relation to gold standards were retrieved. The 

matching results, however, differ from a test to another. These differences were 

mainly because of two reasons: (1) The nature of the test data, the amount of 

domain specific matches contained in a specific test and the gold standard of this 

test; and (2) the basic matching techniques that are implemented by CN-Match. 

Although the evaluation results were affected by few CN-Match dependent and 

independent factors, these results were generally very promising and proved the 



Chapter 5: The Design and Evaluation of CN-Match  

 

 133  

effectiveness of CN-Match since very good results in terms of P, R and F values 

were obtained.  

 

 

.  

  



Chapter 6: The Evaluation of the Annotation Framework  

 

 134  

Chapter 6:  The Evaluation of the Annotation 

Framework 

6.1 Overview 

This chapter discusses the ontology extension mechanisms and the evaluation of 

the semi-automatic annotation approach. The ontology extension mechanisms are 

developed and utilised by the annotation approach to add ontological entities to 

ontologies used for annotation. The design of the extension mechanisms 

represents Iteration 6 of the research design as demonstrated in Figure 6.1. The 

evaluation of the annotation approach is important to assess its performance and 

assure its appropriateness.    

 

The chapter is organised as follows: Section 6.2 illustrates the design of the 

extension mechanisms. Section 6.3 presents three illustrative cases that explain 

the annotation steps and show how the annotation approach works in practice. 

Section 6.4 illustrates the experimental evaluation methods and metrics and 

presents the evaluation results. Section 6.5 discusses the evaluation results and 

highlights the strengths and limitations of the approach. Last, Section 6.6 

summarises this chapter. 



Chapter 6: The Evaluation of the Annotation Framework  

 

 135  

 

Figure ‎6.1: The Design Increment Covered in Chapter 6 

6.2 Ontology Extension 

In the context of this research, ontologies used for annotation should be extended 

when they do not have correspondences for query concepts (service concepts). 

Since a limited set containing unique ontologies is used for annotation (See the 

Scenario in Subsection 3.4.4), ontology extension is a very important activity as it 

allows us to increase the number of annotated service elements by extending the 

used ontologies with appropriate correspondences for service elements. In other 

words, Ontology extension is proposed as a solution to alleviate the Low 

Percentage Problem (See Section 2.8).  

6.2.1  The Method of Extension 

Ontology extension is defined as the process of adding new entities to existing 

ontologies (Liu et al., 2005). In the context of this research, an ontology is 

extended by adding a class and/or object property. When extending an ontology, a 

class should not be added to the ontology as an isolated entity. This is because 

ontological classes normally participate in relations (properties) that form axioms. 



Chapter 6: The Evaluation of the Annotation Framework  

 

 136  

Object properties can be seen as links that relate two or more classes together. 

Subsequently, a newly added class should be appropriately linked to other classes 

in an ontology.  

 

The proposed query-based annotation approach defines two types of queries 

called simple and complex queries. Subsequently, we differentiate between two 

types of extension methods based on the query type. This is because simple and 

complex queries require different kinds of extensions. Complex queries have a 

main concept and a set of related concepts that are conceptually linked to the main 

concept with implicit relations that are derived from the XSD structure of 

complex types. Therefore, the user already has an idea about the classes that the 

added class can be linked to. On the other hand, simple queries contain a single 

concept and thus no clue about related concepts is given by a simple query. 

 

A. The extension method for simple queries:  

In order to extend the ontology with a concept that can be a correspondence for a 

simple query concept, the following steps can be followed: 

1. The user finds a concept (or concepts) that can possibly have a conceptual 

relation with the given query concept.  

2. Name-based matching is used to check if such a concept exists in the 

ontology.  

3. If the name-based matching detects a matching class for the provided concept, 

this class can be used as a basis for extension. In other words, a class that 

denotes the given query concept and an object property can be added to the 

ontology. The class that denotes the given query concept and the class found 

by the matcher are domain and range for the new object property.  

4. If the name-based matching does not detect a match, the user can think of 

another concept or a corresponding class to the given query concept can be 

added directly to the ontology.  

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 137  

 

Figure ‎6.2: Extension for Simple Query Concept 

 

B. The extension method for complex queries: 

When a correspondence for the main service concept is missing: 

1. Create a class that denotes the given main service concept.  

2. Find a correspondence (Cor) of a service related concept.  

3. Create an object property (the object property name is given by the user).  

4. The new class and the class that is the correspondence of the service related 

concept are the domain and range of the new object property. Either the new 

class or the correspondence of the service related concept is the domain of the 

object property and the other will be the range of this property.  

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 138  

 

Figure ‎6.3: Extension for Main Service Concept of Complex Query 

 

When a correspondence for a related service concept is missing:  

1. Use name-based matching to check if the given ontology has a correspondence 

for the given service related concept. This checking process is important since 

the structural matching calculates similarities between related service concepts 

and related classes of candidate ontological classes only. The required 

correspondence of the given related concept could exist in the ontology but 

might not be linked through an object property to the correspondence of the 

main service concept. Consequently, it is very important that all classes of the 

given ontology are matched against missing service related concepts to 

prevent any potential redundancy that may happen when adding a duplicated 

correspondence of a service related concept.  

2. If the ontology contains such a correspondence, create an object property and 

give it an appropriate name. The found correspondence and the 

correspondence of the main service concept are the domain and range of the 

new object property.  

3. But, if the ontology does not contain such a correspondence, create a class that 

denotes the given service related concept. Create an object property (the object 

property name is given by the user). The created class and the correspondence 



Chapter 6: The Evaluation of the Annotation Framework  

 

 139  

of the main service concept are the domain and range of the new object 

property.  

 

Figure 6.4 shows the extension process of a related concept.  

 

 

Figure ‎6.4: Extension for Service Related Concept of Complex Query 

6.3 Illustrative Cases  

In this section, the annotation framework is utilised to annotate three different 

Web services that belong to the selected set of twenty five Web services. The 

reasons for providing these three working examples are: (1) To show the reader 

how the framework performs in practice; and (2) to perform a black box testing to 

ensure that the proposed approach is free from faults and it can lead to the desired 



Chapter 6: The Evaluation of the Annotation Framework  

 

 140  

aim of this research. All the annotation steps including ontology extension are 

applied and explained.  

6.3.1  Illustrative Case (1): The BookInfoPort Service 

The BookInfoPort service allows users to search for book information such as 

„authors’,‎ „title’,‎ „Isbn’ and‎ „publisher’ using one of these 

parameters as a search criterion. The steps followed to annotate this service are 

described in the subsequent paragraphs. 

 

A. Concept Extraction:  

The novel concept extraction mechanism (See Section 4.7) is used to 

automatically extract simple and complex XSD data types of the BookInfoPort 

service. The output of the concept extraction step is given in Table 6.1. 

 

Service Element Child elements 

Book Title, Edition,  PublicationPlace, Isbn, 

Availability, Author, Publisher, PublicationDate, 

ListPrice, DiscountPrice, DiscountPercent  

GetBookInfoByISBN CustomerAccount, CustomerSubAccount, 

LoginName, LoginPassword, ISBN 

BookInfoResponseType Status, Book, Marc 

GetBookInfoByISBNResponse GetBookInfoByISBNResult 

Table ‎6.1: The Output of the Concept Extraction Process 

 

Please note that the output does not contain simple types because the XSD of the 

given service does not have simple types.  

 

B. Concepts Filtering and Queries Filling: 

Each complex type has a set of related concepts. The complex type represents the 

Main Service Concept (MSC) in the jargon of this project. Related concepts of a 



Chapter 6: The Evaluation of the Annotation Framework  

 

 141  

main service concept are the child elements that are placed to the right of an MSC 

in the Table (See Table 6.1). For instance, the ‘Book’ complex type has nine 

related concepts which are: ‘Title’, ‘Author’, ‘ISBN’, ‘Publisher’, 

‘PublicationDate’, ‘PublicationPlace’, ‘Edition’, 

‘DiscountPrice’ and ‘Availability’.  

 

When a label of a complex type is one of the categories that cannot be annotated 

(see Section 4.5), only child elements of complex types can be semantically 

described. Annotating child elements of complex types provides partial semantic 

descriptions for these types (Akkiraju and Sapkota, 2007).  

 

Query for ‘Book’:  

The ‘Book’ MSC will have a complex query since this MSC is defined as a 

complex type in the XSD of the service. The constructed query is:  

 

Find a concept in an ontology that:  

Clause (1): Target concept name is semantically similar to „Book‟. 

Clause (2): Target concept is related by object properties to concepts that are 

similar to the concepts in the following set: {„Title‟, „Author‟, „Isbn‟, „Publisher‟, 

„PublicationDate‟, „PublicationPlace‟, „Edition‟, „DiscountPrice‟, „Availability‟}. 

 

Queries for child elements of ‘GetBookInfoByISBN’: 

Since the label of the ‘GetBookInfoByISBN’ complex type denotes a 

method, we ignore this complex type and only annotate its related concepts. 

Therefore, we create simple queries for the following concepts: 

‘CustomerAccount’, ‘CustomerSubAccount’, ‘LoginName’, 

‘LoginPassword’. No query for ‘Isbn’ is created since the concept 

‘Isbn’ already exists in the ‘Book’ query. The created queries are as follows:  

 

Find a concept in an ontology that: 

Clause (1): Target concept name is semantically similar to „CustomerAccount‟. 



Chapter 6: The Evaluation of the Annotation Framework  

 

 142  

Similar queries to the earlier one are created for ‘CustomerSubAccount’, 

‘LoginName’ and ‘LoginPassword’. 

 

Queries for child elements of ‘BookInfoResponseType’:  

‘BookInfoResponseType’ is a complex type that does not carry a 

significant meaning: It belongs to the first category of complex types that can only 

have partial annotation (See Section 4.5). Therefore, we only annotate child 

elements of this complex type. The ‘BookInfoResponseType’ has three 

child elements which are: ‘Status’, ‘Book’ and ‘Marc’ (MAchine 

Readable Cataloging). A query has already been created for the ‘Book’ concept 

so there is no need to construct a query for it. Simple queries of ‘Status’ and 

‘Marc’ are shown below. 

 

Find a concept in an ontology that: 

Clause (1): Target concept name is semantically similar to „Status‟. 

 

Find a concept in an ontology that: 

Clause (1): Target concept name is semantically similar to „Marc‟. 

 

C. Query Execution, Results Assessment, Ontology Extension and 

SAWSDL Annotation:  

The query execution, results assessment, ontology extension and annotation steps 

are explained together because they are interrelated.  

Executing the ‘Book’ Complex Query: 

This query is executed against the ‘BookProperty’ ontology. The execution 

output is provided in Figure 6.5.  

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 143  

 

Figure ‎6.5: ‘Book’ Query Result 

 

The output presented in Figure 6.5 tells that the ‘Book’ ontological concept is a 

correspondence for the ‘Book’ service concept. In addition, the output provides: 

(1) The set of service related concepts that have potential correspondences as well 

as their corresponding ontological concepts; and (2) the set of non-matched 

service related concepts. The latter set contains the service related concepts that 

do not have correspondences in the ‘BookProperty’ ontology: This set 

provides a foundation for the extension process.  

 

The user can accept the recommendation and type in 1 to indicate their selection. 

Next, extending the ‘BookProperty’ ontology is required in order to add 

correspondences for the elements of the set of non-matched service related 

concepts. The extension is performed using the developed extension mechanisms 

(see Section 6.2). To use the extension mechanism, the user has to provide 

appropriate labels for new classes and object properties. When conducting 

extension for the ‘PublicationDate’ related concept, the user provides 

‘PublicationDate’ and ‘hasPublicationDate’ as inputs for the 

extension mechanism. As a result of extension, the ‘PublicationDate’ class 

and the ‘hasPublicationDate’ property are added to the ontology. The 

domain of the property is ‘Book’ while the range is ‘PublicationDate’. 



Chapter 6: The Evaluation of the Annotation Framework  

 

 144  

Similarly, three more extension processes are performed to add corresponding 

classes for ‘PublicationPlace’, ‘Availability’ and 

‘DiscountPercent’. The added classes are shown in Figure 6.6.  

 

 

Figure ‎6.6: Extending the Book Ontology with ‘PublicationDate’, 

‘Availability’, ‘PublicationPlace’ and ‘DiscountPercent’ 

 

After extending the ‘BookProperty’ ontology with the required entities, the 

query is executed again and the non-matched service related concepts are 

annotated to the new classes using the annotation mechanism. The annotated 

‘Book’ type is presented in Figure 6.7.  

 

 

Figure ‎6.7: The Annotated ‘Book’ Complex Type 



Chapter 6: The Evaluation of the Annotation Framework  

 

 145  

Executing the ‘CustomerAccount’, ‘CustomerSubAccount, 

‘LoginName’ and ‘LoginPassword’ Queries:  

 

First the ‘CustomerAccount’ query is executed against the 

‘BookProperty’ ontology. The query execution engine fails to find any 

appropriate correspondence for ‘CustomerAccount’ in the 

‘BookProperty’ ontology. This is a good result because the queried ontology 

does not have an appropriate correspondence for the given query concept. Since 

we could not find a correspondence for the concept under consideration, we will 

try to execute the query against another ontology existing in the repository. The 

other ontology is the ‘Contact’ ontology which describes user information. 

Again the query execution engine does not find any correspondence for 

‘CustomerAccount’ in the ‘Contact’ ontology. Subsequently, the 

decision here is to extend the ‘Contact’ Ontology with an appropriate concept 

that can be used to annotate ‘CustomerAccount’.  

 

The reason for extending the ‘Contact’ ontology rather than the 

‘BookProperty’ ontology is that the ‘BookProperty’ domain ontology 

covers concepts related to the Book domain and therefore, the 

‘BookProperty’ ontology may not include a description of 

‘CustomerAccount’. On the other hand, the ‘Contact’ Ontology provides 

semantics related to the ‘Person’ concept and can include a description of 

‘CustomerAccount’. The ‘Contact’ ontology is extended by adding a 

class called ‘CustomerAccount’ and an object property named 

‘hasCustomerAccount’ that links the ‘CustomerAccount’ class to the 

‘Person’ class. The proposed extension mechanism for simple queries is used 

to perform the required extension. Figure 6.8 shows the extended part of the 

ontology.  

 

 

Figure ‎6.8: Extension for ‘CustomerAccount’ 



Chapter 6: The Evaluation of the Annotation Framework  

 

 146  

After performing the extension, we re-execute the ‘CustomerAccount’ query 

and get the results shown in Figure 6.9.  

 

 

Figure ‎6.9: ‘CustomerAccount’ Query Result after Annotation 

 

Once the query is executed, the user can select the appropriate option (in this case, 

the user can enter 1) and the service element will be annotated automatically using 

the SAWSDL annotator.  

 

Figure ‎6.10: Annotated ‘CustomerAccount’ 

 

In a similar manner, the ‘CustomerSubAccount’ query is executed against 

the ‘Contact’ Ontology. The query execution engine provides 

‘CustomerAccount’ as a recommended correspondence. This 

recommendation is rejected since ‘CustomerSubAccount’ is different from 

‘CustomerAccount’ in the context of the given service. Consequently, the 

ontology is extended by adding a class called ‘CustomerSubAccount’ and 

an object property called ‘hasCustomerSubAccount’: This property links 

the ‘CustomerSubAccount’ class to the ‘Person’ class.  

 

Also, the ‘LoginName’ query is executed against the ‘Contact’ ontology. 

No appropriate correspondence is provided by the execution engine. 

Subsequently, this ontology is extended by adding a class called ‘LoginName’ 

and a new object property called ‘hasLoginName’. Finally, the 

‘LoginPassword’ query is executed against the ‘Contact’ ontology but no 

match is found for this service concept. Therefore, the ‘Contact’ ontology is 



Chapter 6: The Evaluation of the Annotation Framework  

 

 147  

extended by adding the ‘LoginPassword’ class and the ‘hasPassword’ 

object property.  

Executing the ‘Status’ and ‘Marc’ queries: 

The ‘Status’ query is executed against the ‘BookProperty’ ontology but 

no matches are found. Therefore, ontology extension is required to add a 

correspondence for ‘Status’. The extension is performed by adding a class 

labelled ‘Status’ and an object property called ‘hasStatus’. The domain 

of the ‘hasStatus’ property is ‘Book’ and the range is ‘Status’ as the 

concept ‘Status’ denotes a status of a book. After extending the 

‘BookProperty’ ontology with ‘Status’, the query is executed against this 

ontology to annotate the ‘Status’ service concept. Figure 6.11 presents the 

query result. 

 

 

Figure ‎6.11: Query Result of ‘Status’ after Extension 

 

When the user accepts the recommendation by entering 1, the ‘Status’ service 

concept is automatically annotated to the ‘Status’ ontological class as shown 

in Figure 6.12.  

 

 

Figure ‎6.12: Annotation of the ‘Status’ Concept 

 

In a similar way, the ‘Marc’ query is executed against the ‘BookProperty’ 

ontology because ‘Marc’ is a characteristic of a book. The query execution, 

however, does not return any match. Therefore, extension is needed. The 

extension is conducted by adding a class called ‘Marc’ and an object property 

labelled ‘hasMarc’. 

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 148  

To summarise, Table 6.2 presents an overview of the ‘BookInfoPort’ service 

annotation activity.  

Query elements Type Corresponding 

classes 

Before 

extension 

Corresponding classes 

after extension 

Ontology 

Book ( 

Isbn,  

Title,  

Author,  

PublicationDate, 

Publisher, 

Edition,  

DiscountPrice, 

ListPrice,  

PublicationPlace, 

Availability, 

DiscountPercent) 

C Book   

Isbn 

Title  

Author 

 

Publisher 

Edition 

Price 

Price 

 

Book 

Isbn 

Title  

Author 

PublicationDate 

Publisher  

Edition 

Price 

Price 

PublicationPlace 

Availability  

DiscountPercent 

BookProperty 

CustomerAccount S  CustomerAccount Contact  

CustomerSubAccount S  CustomerSubAccount Contact 

LoginName S  LoginName Contact 

LoginPassword S  LoginPassword Contact  

Status  S  Status BookProperty 

Marc S  Marc BookProperty 

Table ‎6.2: Summary of BookInfoPort Annotation Exercise  

Table keys: 

S: Simple query. 

C: Complex query. 

6.3.2  Illustrative case (2): The Service43.Miscellaneous 

Web service 

The Service43.Miscellaneous Web service has operations that provide information 

about the weather phenomena. The Web service data is described using a rich 



Chapter 6: The Evaluation of the Annotation Framework  

 

 149  

XSD which is composed of nineteen complex types and five simple types. Six 

complex types are computing-specific terminologies which are: 

‘ArrayOfPrecipitation’, ‘ArrayOfPhenomenon’, 

‘ArrayOfstring’, ‘ArrayOfExtreme’, ‘ArrayOfLayer’ and 

‘ArrayOfStation’. The remaining thirteen complex types and the five 

simple types are used to construct complex and simple queries. All the queries are 

executed‎against‎the‎Weather‎ontology.‎The‎queries‟‎concepts‎along‎with‎queries‟‎

results for BE and AE cases are given in Table 6.3.  

 

Query elements Type Corresponding 

classes 

Before extension 

Corresponding 

classes after 

extension 

Ontology 

Direction( 

Compass,  

Degrees)  

C Direction  

DirectionCompass 

 

Direction  

DirectionCompass 

Degree 

Weather  

Temperature( 

Ambient,  

Dewpoint, 

RelativeHumidity) 

C Temperature Temperature 

Ambient 

Dewpoint 

RelativeHumidity 

Weather 

Extreme( 

Temperature,  

Type,  

Hours) 

C Extreme 

Temperature 

ExtremeType 

Extreme 

Temperature 

ExtremeType 

Hours 

Weather 

Visibility ( 

Distance,  

Qualifier) 

C Visibility 

 

Qualifier 

Visibility 

Distance 

Qualifier 

Weather 

Layer ( 

Altitude,  

Extent,  

Type)  

C Layer 

 

 

ExtremeType 

Layer 

Altitude 

Range 

ExtremeType 

Weather 

WeatherReport ( 

TimeStamp,  

Station,  

Phenomena,  

Precipitation,  

C  WeatherReport 

 

Station 

 

 

WeatherReport 

TimeStamp 

Station 

Phenomenon 

Precipitation 

Weather 



Chapter 6: The Evaluation of the Annotation Framework  

 

 150  

Extreme,  

Pressure,  

Sky,  

Temperature,  

Visibility,  

Wind) 

 

Pressure 

Sky 

Temperature 

Visibility 

Wind 

Extreme 

Pressure 

Sky 

Temperature 

Visibility 

Wind 

Phenomenon( 

Type,  

Intensity) 

C Phenomenon 

PhenomenonType 

PhenomenonIntensity 

Phenomenon 

PhenomenonType 

PhenomenonIntensity 

Weather 

Wind ( 

PrevailingSpeed, 

GustSpeed, 

PrevailingDirection, 

VaryingFromDirection 

VaryingToDirection) 

C Wind 

 

 

Direction 

 

 

Wind 

PrevailingSpeed 

GustSpeed 

Direction 

VaryingFromDirectio

nVaryingToDirection 

Weather 

Pressure ( 

Altimeter,  

Slp,  

Delta,  

DeltaHours) 

C Pressure Pressure 

Altimeter 

 

 

Hours 

Weather 

Station ( 

Elevation,  

Latitude,  

Longitude,  

Name,  

Region,  

Country) 

C Station Station 

Altitude 

Latitude  

Longitude  

Name 

Region  

Country 

Weather 

Sky ( 

CeilingAltitude,  

Layers) 

C Sky Sky 

Altitude 

Layer 

Weather 

Precipitation ( 

Amount,  

Hours) 

C Precipitation Precipitation 

Amount 

Hours 

Weather 

Range ( 

From,  

To) 

C Range Range Weather 

DirectionCompass S DirectionCompass DirectionCompass Weather 



Chapter 6: The Evaluation of the Annotation Framework  

 

 151  

ExtremeType S  ExtremeType ExtremeType Weather 

PhenomenonType S  PhenomenonType PhenomenonType Weather 

VisibilityQualifier S  VisibilityQualifier VisibilityQualifier Weather 

PhenomenonIntensity S PhenomenonIntensity PhenomenonIntensity Weather 

Table ‎6.3: Summary of Service43.Miscellaneous Annotation Exercise 

 

Thirty service elements are annotated without any extension while fifty nine 

concepts are annotated after completing the extension process. The six complex 

types that denote computing-specific terminologies are partially annotated by 

linking their child elements to appropriate ontological classes: This annotation 

process is performed by constructing simple queries for child elements. For 

example, The ‘ArrayOfStation’ complex type has ‘Station’ as a child 

element. Consequently, annotating the ‘Station’ child element would result in 

partial annotation of ‘ArrayOfStation’. Figure 6.13 presents the partial 

annotation of ‘ArrayOfStation’. 

 

 

Figure ‎6.13: Partial Annotation of the ‘ArrayOfStation’ Service 

Concept 

 

Only four elements are not annotated by the annotation approach. These elements 

are ‘Slp’, ‘Delta’, ‘From’ and ‘To’. Although extension is performed to 

provide correspondences for these four elements, the query execution engine is 

unable to detect these correspondences as matches for these four elements. The 

reasons for missing these matches are:  

1. The ‘Slp’ concept is an abbreviation for the compound ‘Sea Level 

Pressure’. When performing the extension, ‘Sea Level Pressure’ 

is added to the ontology rather than the abbreviation itself. Since our name-

based matching mechanism uses WordNet which does not define ‘Slp’ as a 



Chapter 6: The Evaluation of the Annotation Framework  

 

 152  

match for ‘Sea Level Pressure’, the name-based matcher failed to 

detect this match. 

2. The ‘Delta’ service concept should be matched to the 

‘DeltaPressure’ ontological class. Since the used name-based matching 

is based on the CN convention, it cannot match ‘Delta’ to 

‘DeltaPressure’. The reason is that the service concept ‘Delta’ is not 

a correspondence for the head of the ontological class ‘DeltaPressure’ 

which is ‘Pressure’.  

3. The service concepts ‘To’ and ‘From’ should be annotated to the 

ontological classes ‘LowestValue’ and ‘HighestValue’ respectively: 

These two service concepts are not matches for the heads of the ontological 

classes and thus the matcher cannot detect these matches. A snapshot of the 

annotated service is provided in Figure 6.14.  

 

 

Figure ‎6.14: A Snapshot of the Annotated Service43.Miscellaneous Service 

6.3.3  Illustrative case (3): The Stock Information Service  

The Service7.Stock offers operations that provide stock and market news, 

headlines and briefings. The parameters of this service are described using an 



Chapter 6: The Evaluation of the Annotation Framework  

 

 153  

XSD definition that contains twenty four complex types. Only seven complex 

types have meaningful labels. The other seventeen labels are computing-specific 

terminologies. An example of a computing-specific terminology is the 

‘ArrayOfBriefing’ service element. The seventeen complex types that do 

not have meaningful labels are partially annotated by creating simple queries for 

their child elements. 

 

Seven complex queries are constructed for the seven meaningful complex types. 

The main service concepts and the related concepts of the queries along with the 

correspondences of all service concepts are given in Table 6.4. All the queries are 

executed against the LSDIS-Finance ontology.  

 

Query elements Type Corresponding 

classes 

Before extension 

Corresponding classes 

after extension 

Ontology 

Briefing ( 

Title,  

Text) 

C  Briefing 

Title 

Text 

LSDIS-

Finance 

StockHeadlines ( 

Symbol,  

HeadlineCount) 

C  StockHeadlines 

Symbol 

HeadlineCount 

LSDIS-

Finance 

StockNews ( 

Headline,  

Ticker,  

Date, 

Time,  

Source,  

Url,  

Error) 

C  StockNews 

StockHeadlines 

Ticker 

Date 

TimeInterval 

Source 

Url 

Error 

LSDIS-

Finance 

Ticker ( 

Symbol) 

C Ticker Ticker 

Symbol 

LSDIS-

Finance 

MarketNews ( 

Headline,  

Time,  

Source,  

C  

 

MarketNews 

StockHeadlines 

TimeInterval 

Source 

LSDIS-

Finance 



Chapter 6: The Evaluation of the Annotation Framework  

 

 154  

Url,  

Summary) 

Url 

Summary 

MarketNewsItem 

(Headline,  

Date,  

Source,  

Url,  

Content,  

Error) 

C  MarketNewsItem 

StockHeadlines 

Date 

Source 

Url 

Content 

Error 

LSDIS-

Finance 

EarningAnnouncement 

(AnnouncementDate, 

Symbol,  

Company,  

EpsEstimate, 

AnnouncementTime, 

Message) 

C  EarningAnnouncement 

Date 

Symbol 

Company 

EpsEstimate 

TimeInterval 

Message 

LSDIS-

Finance 

Table ‎6.4: Summary of Service7.Stock Annotation Exercise 

 

Table 6.4 shows that only one service element which is ‘Ticker’ is annotated 

before extension and thirty six elements are annotated after completing the 

extension.  Figure 6.15 presents a snapshot of the annotated service.  

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 155  

 

Figure ‎6.15: A Snapshot of the Annotated Service7.Stock Service 

6.4 Experimental Evaluation 

Evaluation is a very significant step in any research project (Hevner et al., 2004): 

It reveals the strengths and weaknesses of research approaches and can lead to 

improvements of proposed solutions. Appropriate and successful evaluation 

requires the selection of suitable evaluation methods and metrics. The following 

subsections illustrate in detail the method and metrics used to evaluate the 

proposed semi-automatic annotation approach.   

6.4.1  The Experiment Design and Metrics 

The evaluation examines the performance of the proposed annotation approach by 

testing it in practical settings. The evaluation is performed by annotating a set of 



Chapter 6: The Evaluation of the Annotation Framework  

 

 156  

twenty five Web services belonging to five different domains. The annotation 

results represent the required evaluation data. The annotation results are then 

measured using four different evaluation metrics. These metrics are Precision (P), 

Recall (R), F-measure (F) and Percentage of annotated elements.  

 

As noted in Chapter 5, P, R and F are metrics used to measure the performance of 

information retrieval approaches (Bukland and Gey, 1994) and ontology matching 

mechanisms (Euzenat et al., 2009). In this evaluation, these three metrics are also 

deemed appropriate because the annotation process involves matching executed 

by the query execution engine. Furthermore, previous Web service semi-

automatic annotation approaches (Patil et al., 2004) used P, R and F in their 

evaluation. The formulas of P, R, and F are given in Equations 5.3, 5.4 and 5.5 in 

Chapter 5.  

 

In the context of this evaluation, recall is important because it measures the 

completeness of the annotation results in relation to the gold standard. Precision, 

is also a significant measure for this evaluation because high precision means that 

clean results are provided to the user after query execution. Although the proposed 

annotation approach is semi-automated in the sense that all results over a specified 

threshold are presented to the user who has to take a decision, providing many 

wrong recommendations may have a negative impact on the annotation process. 

This is because many incorrect options could make the selection of the 

appropriate correspondence a time-consuming and an error-prone task.  

 

The percentage metric is used in this evaluation to provide a measure of how 

many elements of a given service are annotated in relation to the total number of 

candidate service elements. Unlike P, R and F which only measure the 

performance and effectiveness of the matching mechanism, percentage gives a 

clearer idea about the performance of the whole annotation approach. For 

example, a full mark of P, R and F could be obtained for a given case however; 

many service elements could be left without‎annotation.‎That‟s‎it;‎percentage‎can‎

be‎used‎ to‎ show‎how‎good‎ the‎annotation‎ framework‎ is‎ in‎ alleviating‎ the‎ „Low‎



Chapter 6: The Evaluation of the Annotation Framework  

 

 157  

Percentage‎ Problem‟.‎ Equation‎ 6.1‎ shows‎ the‎ method‎ of‎ calculating‎ the‎

Percentage metric.  

 

ElementsrOfServiceTotalNumbe

mentsnotatedEleNumberOfAn
Percentage  (6.1) 

 

The‎ „NumberOfAnnotatedElements‟‎ represents‎ the‎ number‎ of‎ all‎ elements‎ that‎

are automatically annotated either fully or partially. The 

„TotalNumberOfServiceElements‟‎stands‎for‎the‎number‎of‎all‎XSD‎elements‎in‎a‎

given service. Although, there are some sorts of elements (See Section 4.5) that 

are excluded from the annotation process, these elements are taken into account 

when calculating Percentage. Some of these concepts can, sometimes, be partially 

annotated. Figure 6.16 presents an example of partial annotation.  

 

 

Figure ‎6.16: Partial Annotation of a Complex Type 

 

In retrospect, calculating the values of P, R and F requires a gold standard against 

which the results of automatic annotation are compared in order to find these 

values. Gold standards should, ideally, be provided with the test sets like what we 

had in the evaluation of CN-Match (See Section 5.7.3). Unfortunately, no gold 

standards that describe the annotation of Web services to ontologies can be found. 

Therefore, five sets of Web services are selected and used in this evaluation 

exercise (see Subsection 3.4.4 for full description of services and their selection 

method). Every set contains five Web services belonging to a specific domain. 

Five ontologies are also selected and placed in an ontology repository. The 

selected ontologies have never been used to annotate the twenty five Web 



Chapter 6: The Evaluation of the Annotation Framework  

 

 158  

services. Consequently, generating the gold standards of the annotation is 

required.  

 

Since the annotation process involves ontology extension, the values of the four 

preceding metrics are calculated before and after extension. The purpose of 

performing the measurements in both cases is to show the impact of the extension 

process on the annotation results. Consequently, two gold standards are required 

for each Web service annotation activity (one for the annotation before extension 

and for after extension). Hence, fifty gold standards were generated manually 

prior to conducting the semi-automatic annotation. For validity purposes, theses 

gold standards are checked by three people who are native English speakers and 

have very good knowledge about the five domains and the Semantic Web 

technology. Few changes are made to the gold standards based on 

recommendations from the three people.   

6.4.2  Evaluation Method 

To perform the required evaluation the five sets of Web services are annotated 

using the ontology repository. To annotate a given service, queries are constructed 

for simple as well as complex XSD types of the given service. These queries are 

then executed using the query execution engine to provide the annotation results. 

The results of these queries cumulatively make the result of a given service. 

Generally speaking, a query answer provided by the query execution engine 

contains zero or more results. Zero or one of the provided results is correct. 

Consequently, to measure P, R, F and Percentage, results of each query are 

classified into correct-retrieved (true positive), incorrect-retrieved (true negative) 

and missing or correct-not retrieved (false negative). This classification of results 

is obtained by comparing these results against the gold standard of a specific 

service. Table 6.5 categorises the matching results.  

 

 

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 159  

 Correct Incorrect  

Retrieved True Positive True Negative 

Not-Retrieved  False Negative (Missing) False Positive 

Table ‎6.5: Classification of Matching Results 

 

Table‎6.6‎presents‎partial‎results‎of‎a‎service‎called‎„GeoCash’ which belongs to 

the Payment domain. This service allows users to search for locations of ATM 

machines.  

 

Query elements  Correct-Retrieved Incorrect-Retrieved Missing 

AtmLocations ( 

AtmMachine,  

Error) 

Location 

AtmMachine 

Error 

Address  

Error ( 

Desc,  

Number,  

Location) 

Error 

 

Number 

Location 

Confirmation 

 

WorkingKey 

 

Description 

Table ‎6.6: Partial Results of the GeoCash Service 

 

Table 6.6 shows elements of two queries. The first query has ‘AtmLocations’ 

as a main concept and ‘AtmMachine’ and ‘Error’ as related concepts. The 

‘AtmLocation’ main concept has ‘Location’ as a correct-retrieved match 

and ‘Address’ as an incorrect-retrieved match. No missing matches are found 

for this query. The second query has ‘Error’ as a main concept and three 

related concepts which are ‘Desc’, ‘Number’ and ‘Location’. The main 

concept ‘Error’ and the related concepts ‘Desc’ and ‘Location’ have 

correct-retrieved correspondences which are ‘Error’, ‘Number’ and 

‘Location’ respectively. In addition, the main concept ‘Error’ and the 

related concept ‘Number’ have ‘Confirmation’ and ‘WorkingKey’ as 



Chapter 6: The Evaluation of the Annotation Framework  

 

 160  

incorrect-retrieved matches, respectively. The related concept ‘Desc’ has a 

missing match which is ‘Description’.  

To summarise, the steps of calculating P, R, F and Percentage are given as 

follows: 

1. Generate the required gold standard using the service under consideration and 

the ontologies available in the repository. 

2. Perform the annotation activity for each query. 

3. Record the results of the executed query. 

4. Group the results of all queries together.  

5. Compare the obtained grouped results against the relevant gold standard. 

6. Calculate P, R, F and Percentage for the annotated service.  

 

To present the evaluation steps in a graphical format, Figure 6.17 shows the 

applied method.  

 

 

Figure ‎6.17: The Evaluation Method of the Annotation Framework  



Chapter 6: The Evaluation of the Annotation Framework  

 

 161  

6.4.3  Evaluation Results 

In the following paragraphs and Figures, the evaluation results in terms of the four 

selected metrics are presented. The results of each domain are discussed 

separately. For every domain, two types of results are presented. The first type is 

for the annotation results before extension (BE) while the second type is for 

results after extension (AE). The charts on the left hand side show the BE results 

while the ones on the right hand side shows the AE results.  

 

 

A. Results of the Book Domain 

The Book domain contains five services that provide operations for searching 

book information. Good results in terms of R, P, F and Percentage values are 

obtained. These results differ between BE and AE cases. For example, R values of 

the ‘BookInfoPort’ service increase from 0.9 to 0.94 and those values drop 

from 1.0 to 0.63 in the ‘Books’ service. The reason for the latter decrease in the 

R value is that the ‘Books’ service contains elements that have acronyms or 

badly-formed CNs as their labels: These elements are not annotated in the BE case 

as no ontological correspondences exist for them. Therefore extension is 

performed. For example, two correspondences are added for two concepts that are 

called ‘NumPages’ and ‘TOC’. The added correspondence of the first concept 

is ‘PagesNumber’ while the added correspondence of the second concept is 

‘ContentsTable’. These two extended classes are not detected by the 

execution engine because ‘NumPages’ is not well-formed and ‘TOC’ is an 

acronym. Consequently, these missing matches are classified as correct-not 

retrieved and hence a lower R value is obtained. Retrospectively, the matching 

techniques employed by the execution engine cannot match a full expression 

against its acronym. The reason is that matching acronyms against their original 

expressions is very hard in domain-independent settings since a specific acronym 

could denote different meanings in different domains.  

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 162  

The reason behind adding ‘PagesNumber’ and ‘ContentsTable’ as 

correspondences rather than adding classes that carry identical labels to the 

service concepts is that the quality of labels of ontological classes should be kept 

as good as possible. In other words, adding classes that have vague or not well-

formed labels will affect the quality of ontology as an ontology should always be 

a shared and precise conceptualisation (Gruber, 1993). In addition, low quality 

and unclear labels of classes are unlikely to be detected as correct 

correspondences in any future annotation activities performed by a matcher that is 

based on the name-based matching technology. Consequently, those badly-formed 

labels of classes would be of very limited use.  

 

After extension, the P values increase for all services: This is because the number 

of correct-retrieved matches increases while the number of incorrect-retrieved 

matches almost stays the same. The values of F measure increase in all cases 

except for the Books service. This increase is because the decrease in R values is 

much lower than the increase in P values.  

 

The Percentage values of AE are always higher than those values of BE. This is 

because extension provides correspondences for service elements that do not have 

matches before extension. The later result is good since it means that the proposed 

approach‎can‎beat‎the‎„Low‎Percentage‎Problem‟‎that‎previous‎approaches‎suffer‎

from. Figure 6.18 presents the results of the Book domain.  

 

Before Extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
oo

kI
n
fo
P
or

t

S
er
vi
ce

11
.A

cc
ou

nt
s

B
oo

ks

B
oo

kS
e
rv
ic
e

B
oo

kS
to
re

P

R

F

Percentage

After Extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
oo

kI
n
fo
P
or

t

S
er
vi
ce

11
.A

cc
ou

nt
s

B
oo

ks

B
oo

kS
e
rv
ic
e

B
oo

kS
to
re

 

Figure ‎6.18: Results of the Book Domain 



Chapter 6: The Evaluation of the Annotation Framework  

 

 163  

 

B. Results of the Weather Domain 

The second domain in this evaluation exercise is the Weather domain. This 

domain has five services that provide operations offering weather and forecast 

information. The P and Percentage values of the Service38.Accounts, 

Service3.Miscellaneous, Service47.Utility and Service185 increase after extension 

in comparison to these values before extension. On the contrary, the values of R 

for these four services decrease after extension. The reason for having less R 

values of AE cases in comparison to these values in the BE cases is that the 

execution engine fails to detect some of the extended concepts as correct matches 

of their corresponding service concepts. As mentioned earlier in the results of the 

Book domain, only meaningful and well-formed labels of classes are added during 

the extension activity. These newly added classes might not match with their 

corresponding service concepts when labels of these service elements are not 

well-formed or composed of parts of words or abbreviations.  

 

For the Service51.Utility, the values of the four metrics stay the same for BE and 

AE cases: This is because no extension is performed since all service concepts 

that can be annotated have corresponding ontological concepts. Although all 

concepts that can be possibly annotated have correspondences, the value of 

Percentage is not one. This is because there are service elements that cannot be 

annotated either partially or fully. These later elements belong to the categories 

defined in Section 4.5. Figure 6.19 shows the evaluation results of the Weather 

domain.  

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 164  

Before extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
rv
ic
e3

8
.A

cc
ou

nt
s

se
rv
ic
e4

3
.M

is
ce

lla
ne

o
us

se
rv
ic
e4

7
.U

til
ity

se
rv
ic
e5

1
.U

til
ity

se
rv
ic
e1

8
5

After extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
rv
ic
e3

8
.A

cc
ou

nt
s

se
rv
ic
e4

3
.M

is
ce

lla
ne

o
us

se
rv
ic
e4

7
.U

til
ity

se
rv
ic
e5

1
.U

til
ity

se
rv
ic
e1

8
5

 

Figure ‎6.19: Results of the Weather Domain 

 

C. Results of the Stock Information domain 

The third domain that is used in this evaluation is the Stock Information domain 

which also has five services. These services provide stock quotes and market 

news. Before extension, one service which is Service11.Stock has no annotated 

elements. This later result is proved by having no values for the four metrics. 

Moreover, low percentages of annotated elements in BE cases are provided for the 

other four services. Full R values, however, are obtained for these services which 

indicate that all possible correct matches are retrieved by the query execution 

engine.   

 

After extension, all the five Web services have most of their elements annotated 

since high percentages of annotated elements are given. The service 

Service11.Stock which has no annotated elements before extension has all of its 

elements annotated after extension since the value of the Percentage metric is 1. 

The R values of the Service3.Stock, Service7.Address and Service17.Stock 

decrease after extension. The reason for this decrease is the same as the one 

mentioned earlier in the previous two domains. The P and F values significantly 

increase after extension. Figure 6.20 presents the evaluation results of the Stock 

Information domain.  

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 165  

Before extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Service3.Stock Service7.Address Service11.Stock Service7.Stock service17.Stock

After extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Service3.Stock Service7.Address Service11.Stock Service7.Stock service17.Stock

 

Figure ‎6.20: Results of the Stock Information Domain 

 

D. Results of the Communication Domain 

The fourth domain used in this evaluation is the Communication domain. Services 

of this domain provide operations for sending emails, SMS, and faxes and for 

making calls. Before extension, the Service50.Miscellaneous has no annotated 

elements. The other four services have some of their elements annotated. This 

later result is shown by the low values of the Percentage metric of these four 

services. Full R values are obtained by the Service9.Specialist, Service4.Specialist 

and Service60.DeveloperTools while 0.5 R value is given to the 

Service80.Miscellaneous. In addition, low P, F and Percentage values are obtained 

for the four services.  

 

After extension, the values of P, F and Percentage significantly increase for all the 

services. The R values stay the same for Service9.Specialist and 

Service4.Specialist, slightly decrease for Service60.DeveloperTools and increase 

for Service50.Miscellaneous and Service80.Miscellaneous. Figure 6.21 presents 

the results of the Communication domain.  

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 166  

Before extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
er

vi
ce

9.
S
pe

ci
al
is
t

S
er

vi
ce

4.
S
pe

ci
al
is
t

S
er

vi
ce

50
.M

is
ce

lla
ne

ou
s

S
er

vi
ce

60
.D

ev
el
op

er
To

ol
s

S
er

vi
ce

80
.M

is
ce

lla
ne

ou
s

After extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
er

vi
ce

9.
S
pe

ci
al
is
t

S
er

vi
ce

4.
S
pe

ci
al
is
t

S
er

vi
ce

50
.M

is
ce

lla
ne

ou
s

S
er

vi
ce

60
.D

ev
el
op

er
To

ol
s

S
er

vi
ce

80
.M

is
ce

lla
ne

ou
s

 

Figure ‎6.21: Results of the Communication Domain 

 

E. Results of the Payment Domain 

The last domain in this evaluation exercise is the Payment domain. Before 

extension, Service72.Accounts has no annotated elements but the other four 

services have high R values and low P, F and Percentage values. After extension, 

the P, F and Percentage values significantly increase. The R values increase for 

Service72.Accounts and Service68.Accounts, slightly decrease for 

Service24.Accounts and GeoCash and does not change for Service39.Accounts. 

Figure 6.22 provides the evaluation results of the Payment Domain.  

 

Before extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
er
vi
ce

72
.A

cc
ou

nt
s

S
er
vi
ce

24
.A

cc
ou

nt
s

G
eo

C
as

h

S
er
vi
ce

39
.A

cc
ou

nt
s

S
er
vi
ce

68
.A

cc
ou

nt
s

After extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
er
vi
ce

72
.A

cc
ou

nt
s

S
er
vi
ce

24
.A

cc
ou

nt
s

G
eo

C
as

h

S
er
vi
ce

39
.A

cc
ou

nt
s

S
er
vi
ce

68
.A

cc
ou

nt
s

 

Figure ‎6.22: Results of the Payment Domain 



Chapter 6: The Evaluation of the Annotation Framework  

 

 167  

6.5 Discussion and Limitations 

After describing the results of individual domains, averages of P, R, F and 

Percentage per domain are calculated. These averages allow us to generalise 

evaluation results and draw important conclusions.  

6.5.1  Discussion of Averages across Domains 

Presenting averages is very important because they can be used to compare and 

discuss the evaluation results across the five domains. The comparison leads to 

implications and conclusions and capture the limitations of the proposed 

annotation approach.  

 

Averages after extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Book Weather StockInformation Communication Payment

 

Figure ‎6.23: Averages of Metrics for the Five Domains 

 

By comparing the averages before extension against the averages after extension 

and comparing the averages across domains, the following observations and 

interpretations are presented: 

A. R values are the highest amongst all metrics. R values range from 0.83 for the 

Book domain after extension to 1.0 for the Stock Information domain before 

extension. Having significantly high R values is a very important merit which 

proves that the proposed approach is effective since nearly all possible correct 

correspondences are retrieved by the proposed semi-automatic annotation 

approach. 

Averages before extension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Book Weather StockInformation Communication Payment



Chapter 6: The Evaluation of the Annotation Framework  

 

 168  

B.  R values slightly decrease after extension. Some service elements may not 

have appropriate correspondences before extension because such 

correspondences are missing from the ontologies. Consequently, relevant 

annotation gold standards do not contain such correspondences. After 

performing extensions and adding appropriate correspondences, the gold 

standards are updated to accommodate the newly added correspondences.  

 

Sometimes, service elements can have labels that are acronyms or badly-

formed CNs. Classes added by the extension process as correspondences of 

those elements can, however, have labels different from labels of those 

elements. This is because names of ontological classes must be meaningful 

and well-formed to precisely represent semantics. Since the matching 

techniques employed by the execution engine cannot always match an 

acronym against its original expression or a well-formed CN against a badly-

formed CN, some correspondences may not be retrieved by this execution 

engine. Subsequently, a decrease in R values may happen. 

 

The decrease in R values is, however, very small since most extended classes 

are retrieved by the query execution engine as correspondences of service 

concepts. The latter result is proved by the relatively low changes in the 

averages of R values shown in Figure 6.24 where the maximum decrease is 

9%. 

  

R

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Book Weather StockInformation Communication Payment

R

 

Figure ‎6.24: Changes in Averages of R Values 



Chapter 6: The Evaluation of the Annotation Framework  

 

 169  

C. P values significantly increase after extension: This is because the extension 

process adds correspondences that are very likely to be detected by the 

execution engine. Given that the P Equation is represented by the ratio of 

correct-retrieved to total number of automatic matches and the extension 

process increases the number of correct-retrieved, the P value will increase. 

Figure 6.25 shows the changes in P values from BE to AE. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Book Weather StockInformation Communication Payment

P

 

Figure ‎6.25: Changes in Averages of P Values 

 

D. F values increase after extension. The reason is that F combines P and R and 

the increase in P is much higher than the decrease in R.   Figure 6.26 presents 

the changes in F values.  

 

F

0

0.1

0.2

0.3

0.4

0.5

0.6

Book Weather StockInformation Communication Payment

F

 

Figure ‎6.26: Changes in Averages of F Values  



Chapter 6: The Evaluation of the Annotation Framework  

 

 170  

E. Percentage values significantly increase after extension. Figure 6.27 shows 

that the changes in Percentage for the Book (32%) and Weather (38%) 

domains are moderate while the changes in StockInfo (82%), Communication 

(68%) and Payment (61%) are high. The reasons behind these percentage 

results are: (1) The Book and Weather domains are relatively small domains 

and have concepts that are shared by almost all their Web services; and (2) 

The StockInformation, Communication and Payment domains are relatively 

big domains and many different concepts exist in each of these domains. 

Subsequently, extensions seem to be regularly required to add ontological 

correspondences of new service concepts in the last three domains.  

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Boo
k

W
eat

her

Sto
ck

In
fo

rm
atio

n

Com
m

uni
ca

tio
n

Pay
m

ent

Percentage

 

Figure ‎6.27: Changes in Averages of Percentage Values 

6.5.2  Implications of Presented Results 

A. The Effectiveness of CN-Match as a Name-based Matching Mechanism 

Many elements of the services and labels of ontologies used in this evaluation are 

CNs. Consequently, having an effective CN matching mechanism is very crucial 

to the success of the proposed annotation approach. CN-Match allows the query-

execution engine to detect appropriate matches that are neither synonymous nor 

identical to the given service concepts. Sometimes, more general concepts are 

appropriate correspondences to the given query concepts. Just to give a single 



Chapter 6: The Evaluation of the Annotation Framework  

 

 171  

example, the concept ‘AtmLocation’ which belongs to the Payment domain is 

correctly matched to the ontological class ‘Location’. In addition, less general 

concepts can also be suitable matches of service concepts. For instance, the 

service concept ‘Price’ which belongs to the Book domain is correctly 

matched to the ontological class ‘BookPrice’.  

These more and less general matches that are composed of different number of 

constituents would not be retrieved without having CN-Match as an effective and 

accurate CN matching mechanism. Moreover, many correct correspondences that 

are detected by the query execution engine are synonyms or have constituents that 

are synonyms. Not only synonyms but also names that carry similar meanings are 

captured by the engine. An example of these similar names that are detected as 

matches is the pair ‘BookName’ and ‘Title’ which belongs to the Book 

domain. Synonyms and semantically similar matches are retrieved because CN-

Match effectively and correctly employs WordNet and its path-based matching 

mechanism. Given all these good matching results, CN-Match is appropriately 

designed and used by the query execution engine.  

 

B. Completeness of Results in Relation to Manual Results 

The preceding experimental results show that R values are significantly high. 

Almost complete annotation results in relation to manual results (gold standard) 

are retrieved by the employed query execution engine. These complete results are 

achieved because of the effective use of the name-based and structural matching 

techniques. In retrospect, the core name-based matching mechanism allows the 

query execution engine to detect almost all candidate correspondences that have 

similar labels. In addition, the structural matching mechanism positively 

contributes to the completeness of results because it uses a balanced structural 

matching framework.  

 

The employed framework is balanced because it utilises neither too little nor too 

many matching restrictions. The employed structural matching approach searches 

for ontological classes that have related classes which are semantically similar to 

related concepts of the given query concept. This structural matching criterion is 



Chapter 6: The Evaluation of the Annotation Framework  

 

 172  

appropriate for the purpose of the proposed annotation approach since related 

concepts of a service concept constitute the context of the given service concept. 

This context is very significant to the meaning of the given concept as it allows 

the execution engine to differentiate between homonyms (same spelling but 

different meaning). Moreover, the context similarity allows the engine to detect 

correspondences that have similar related concepts but different names. 

 

On the other hand, other annotation approaches like (Patil et al., 2004) use other 

structural matching criteria such as the similarity between data types of service 

elements and data types of related concepts. We argue that imposing unnecessary 

restrictions on the employed structural matching approach will have negative 

impacts on the completeness of results because appropriate correspondences 

should not always satisfy all the imposed restrictions. For example, the 

identification of a primitive data type of a related concept can be a subjective 

matter. In other words, it is unlikely that developers always agree on the same 

primitive data type for a given concept. For example, a related concept called 

‘Price’ could have ‘Integer’, ‘Double’ or ‘String’ as its primitive 

data type.  

 

C. Significance of Semi-automation of Annotation 

Given that the query execution engine makes use of a set of matching techniques 

that do not always give perfect results, minimum human intervention can make 

big improvements. A fully automated approach that would select the 

correspondence that has the highest score as the correct match would result in 

many missing and incorrect correspondences and hence a lower P and R values 

would be obtained. The reason is that it is not always necessary that the candidate 

with the highest confidence degree is the most appropriate one since current 

matching techniques such as WordNet and string matching can have their 

understandable limitations. In the context of the developed annotation approach, 

the user has to select the appropriate correspondence from the given set of 

recommendations. The selection decision is based on the user basic knowledge 

and thus it is easy to make. The choice is based on two simple criteria: (1) The 



Chapter 6: The Evaluation of the Annotation Framework  

 

 173  

similarity of the main service concept to the candidate ontological class; and (2) 

similarities of related concepts of the main service concept to related concepts of 

the candidate ontological class.  

 

D. Usefulness of Queries 

Queries are used in the context of this research as alternatives to ontologies that 

model the semantics of candidate services. Retrospectively, ontology building is a 

very difficult task requiring extensive domain and technical knowledge (Gruber, 

1993). Consequently, making ontology building a prerequisite to annotation 

activities would make these activities very difficult and time consuming. 

Therefore, the proposed query-based annotation approach can speed up and 

simplify the annotation process since it does not require any extensive technical or 

domain knowledge. The reason behind this simplicity is that all annotation steps 

are standard, straightforward and easy to use. For example, filling the query 

template from the concept extraction outputs requires no technical or domain 

knowledge and can be performed by any computer literal person.  

 

One might argue that building an ontology to represent semantics of a candidate 

service would result in better and more accurate annotation results. We argue that 

building an ontology to capture the service semantics and then matching it against 

existing ontologies to generate correspondences would not only make the 

annotation task very difficult but also introduce many unnecessary restrictions on 

the matching process. Ontology to ontology matching requires much more 

matching techniques such as super and subclasses matching which when applied 

would decrease the opportunity of retrieving the required matches (Euzenat and 

Valtchev, 2004). The proposed approach proves that fewer matching restrictions 

would generate more candidate results and thus increase the opportunity of 

retrieving correct matches. This later result is proved by having high R scores 

which indicate that nearly all possible correspondences in relation to gold 

standards are retrieved by the query execution engine.  

 

 



Chapter 6: The Evaluation of the Annotation Framework  

 

 174  

E. Importance of Extension 

The extension process is a very significant and successful technique that supports 

the proposed annotation approach. This conclusion is derived from the annotation 

results that show significant improvements in Percentage values as well as good 

increase in P and F values after performing extensions. The extension approach 

can‎be‎seen‎as‎an‎effective‎solution‎to‎the‎„Low‎Percentage‎Problem‟‎introduced 

by previous annotation approaches. Having a high percentage of correctly 

annotated elements would significantly increase the usefulness and efficiency of 

the whole annotation approach and consequently improve the adoption of the 

SWS technology.  

 

F. The Importance of Annotation to Shared Ontologies 

According to the scenario adopted in this research (See Subsection 3.4.4), services 

are annotated to ontologies that are shared with other services. Annotation to 

shared ontologies is important because resulting services are ready to interoperate 

and be composed by software agents. When services are annotated to different 

ontologies, automatically matching these ontologies at run time becomes a 

prerequisite for any future composition or interaction activities (Patel et al., 2004). 

Given the imperfect nature of current automatic ontology matching approaches, 

this matching process could delay the required interaction and composition 

activities and be error-prone. Annotating services to shared ontologies will 

significantly minimise the need for automatic ontology matching processes as 

most of the required services are annotated to the same set of ontologies (Patel et 

al., 2004).  

6.5.3  Limitations of the Proposed Approach 

Although promising results are achieved by the proposed annotation mechanism, 

limitations exist that provide future research. These limitations can be classified as 

matching-dependent, annotation-dependent and extension-dependent. 

  



Chapter 6: The Evaluation of the Annotation Framework  

 

 175  

A. Matching-dependent limitations 

The preceding evaluation results reveal that full P, R, F and Percentage values are 

not always obtained by the proposed annotation approach: This is because there 

are a few types of service elements and ontological labels that are either unlikely 

to be correctly matched or cannot be matched using the current matching 

mechanism. These types are:  

 Elements that do not carry significant meanings: These elements belong to the 

three categories already defined in Section 4.5. These categories are: (1) 

Elements representing method names; (2) elements that denoting computing-

specific terminologies; and (3) elements representing individuals rather than 

classes.    

 Elements and ontological labels composed of more than three constituents: 

CN-Match can measure similarities between CNs that have a maximum of 

three constituents. For some annotation cases, matching labels composed of 

more than three constituents is needed. Designing a matching mechanism that 

can cater for those more complicated CNs is a hard task since syntactic 

ambiguity of CNs increases as the number of their constituents increases (See 

section 5.3). Significantly more modifier-head structural cases than those 

currently covered by CN-Match must be taken into account: This is because a 

CN that has four constituents, for example, has more modifier-head structural 

possibilities than a CN that is composed of three constituents only. The six 

design cases of CN-Match can, however, provide a foundation for developing 

new cases that can match more complicated CNs.  

 Elements and ontological classes denoting acronyms or parts of words: CN-

Match employs WordNet and Sting-based matching as its basic matching 

techniques. Subsequently, CN-Match inherits the limitations of these basic 

techniques. WordNet, which is an English Thesaurus, contains a very limited 

set of acronyms. Consequently, many service elements and ontological labels 

that have acronyms as their names cannot be correctly matched to other 

elements or labels that are denoted by the full expressions of those acronyms. 

In addition, matching acronyms against their original expressions is very 

difficult in a domain-independent context because an acronym can denote 



Chapter 6: The Evaluation of the Annotation Framework  

 

 176  

different meanings in different domains. Further, matching a part of word such 

as ‘App’ to its original word cannot be performed by CN-Match. Catering 

for the later type of matches is very hard since the same part of word can 

belong to many full words. For example, ‘App’ can be a part of 

‘Approach’, ‘Apple’, ‘Application’ and many others. Therefore, 

using parts of words to denote service elements should be avoided because it 

can cause much confusion and make the matching process very hard.  

 Domain-specific elements and ontological classes: CN-Match is a domain 

agnostic name-based matching mechanism because it makes use of WordNet 

which is a domain-independent thesaurus. Subsequently, some names that are 

very domain specific are unlikely to be correctly matched and annotated using 

the current annotation approach. For example, the Service60.Developers 

which belongs to the Communication Domain has two service elements which 

are ‘From’ and ‘To’. These two elements should be annotated to 

‘Sender’ and ‘Receiver’, respectively. These two matches are not 

retrieved by the execution engine as they do not match using WordNet and its 

path-based mechanism. Matching such correspondences, however, requires 

domain specific thesauri that define all matches in particular domains.  

 Elements and ontological classes that have many identical or very close 

matches in WordNet: Since WordNet is a general purpose thesaurus; it might 

give same or very close confidence degrees when matching a given element 

against different ontological classes. These confidence degrees result in 

having many potential correspondences to the given element and thus increase 

the number of incorrect-retrieved candidates. This increase in incorrect-

retrieved results raises the number of recommendations presented to users and 

thus decreases P values.   

B. Annotation-dependent Limitation 

The proposed annotation approach can provide semantics for a subset of service 

elements identified in the set of synthesised elements (See Section 2.4). The 

approach can offer semantic descriptions for elements that use XSD for their 

descriptions because the input of the annotation approach is XSD data of WSDL 

files. These elements are; „Input‟,‎ „Output‟,‎ „Precondition‟‎ and „Effect‟. Other 



Chapter 6: The Evaluation of the Annotation Framework  

 

 177  

elements such as; „Category‟,‎ „Non-functional Semantics‟,‎ and‎ „Execution‎

Semantics‟‎ are‎ not‎ supported in the proposed approach because the semantics 

required for their descriptions cannot be extracted from WSDL and XSD files.   

C. Limitations of Extended Ontologies 

The extended ontologies miss some ontological structures. Although these 

missing structures do not directly affect the annotation process, they might have 

some impact on the software agents that will make use of these ontologies. These 

missing structures result from the nature of the extension mechanism adopted in 

this annotation approach. The extension mechanism is designed to add classes and 

object properties in order to create correspondences for elements of simple and 

complex queries. Generally speaking, an ontology can contain more axioms and 

structure than what is added by the proposed extension mechanism. Examples of 

these axioms and structures are super and subclasses, cardinality restrictions and 

data type properties. Additions of these extra structures, however, requires more 

complicated rules to detect the type of relations or axioms between a given service 

concept and existing or added ontological entities. In addition, adding these 

structures by the extension process might complicate and delay the extension and 

annotation process. Future research can study the feasibility of including 

additional structures and their impact on the annotation and SWS processes. 

Further, the quality of extended ontologies is not fully evaluated using appropriate 

evaluation metrics. This is because evaluation of ontologies is hard and requires 

much work and time. 

6.6 Summary 

This chapter concentrated on evaluating the effectiveness of the proposed 

annotation approach. The chapter started by providing a rational for the ontology 

extension process and presenting the extension mechanism for simple and 

complex queries. Next, three illustrative cases explaining the annotation steps 

were presented to show the annotation framework in practice and provide extra 

clarifications to the annotation process. Thereafter, the evaluation method and 



Chapter 6: The Evaluation of the Annotation Framework  

 

 178  

results were presented. P, R, F and Percentage were utilised as evaluation metrics. 

For every Web service, these four metrics were measured before and after 

extension to show the impact of the extension activity on the annotation process. 

Later, averages of P, R, F and Percentage were calculated for every domain of the 

five domains. These averages were then compared to show how the annotation 

results differe across domains. These differences led to significant implications 

about the proposed semi-automatic approach. The conducted evaluation 

demonstrated that the proposed approach is very effective and promising since 

nearly complete annotation results, in relation to manual results, were obtained. 

Moreover, the evaluation proved that the extension process is very useful because 

significant improvements in percentages of annotated elements were obtained 

after performing the extension. Finally, some limitations of the proposed approach 

were given which can be seen as motivations for improvements in future research.  

 

 



Chapter 7: Conclusions 

 

 179  

Chapter 7:  Conclusions 

7.1 Overview 

This chapter discusses the research conclusions and presents contributions and 

future research avenues. Section 7.2 gives a summary of this research by 

providing the theme and findings of all thesis chapters. Section 7.3 demonstrates 

the research conclusions and contributions to theory and practice. Section 7.4 

discusses how this research meets its defined objectives. Section 7.5 illustrates the 

research limitations and Section 7.6 presents future research directions.  

7.2 Summary of the Research 

The research presented in this thesis aimed at designing a semi-automatic Web 

service annotation framework that can help Web service developers in 

transforming their syntactic Web services into semantic ones in an effective and 

easy to use manner.  

 

Chapter 2 reviewed previous research in the area of semi-automatic annotation of 

Web services. Web services and their industrial standards were discussed. The 

discussion highlighted that existing standards such as; WSDL, UDDI and SOAP 

are unable to support automatic discovery and composition of services because 

they ignore important semantic constructs. The proposed solution for automation 

is Semantic Web services (SWS). Due to the central role of ontologies in the SWS 

area, ontologies, their engineering, learning and extension were illustrated. It was 



Chapter 7: Conclusions 

 

 180  

concluded that manual ontology building is difficult and knowledge-intensive and 

automatic ontology building is still under development and cannot provide good 

ontologies. Further, the major SWS description frameworks were presented and 

compared against a set of synthesised elements to assess their completeness.  

 

The SWS literature reports that SWS adoption by developers is low because Web 

services are currently annotated manually. Manual annotation is hard, error-prone 

and time-consuming and thus automation is needed. Next, the existing semi-

automatic annotation approaches were discussed and classified into: Learning-

based, workflow definition-based and matching-based approaches. Limitations of 

these approaches were uncovered and issues like annotation difficulty and 

efficiency, matching effectiveness and the Low Percentage Problem were raised.  

 

Chapter 3 discussed the research method of designing and evaluating the proposed 

semi-automatic annotation approach. In order to provide a rationale for selecting 

Design Science Research (DSR) as the right research approach for conducting this 

research, the fundamental IS research methods were presented. DSR is a problem 

solving paradigm that aims to develop purposeful and effective artefacts that can 

solve significant research problems. Later, the research was described in light of 

the DSR research cycle. This cycle is composed of five fundamental phases called 

awareness of problem, suggestion, development, evaluation and conclusion.  

 

The DSR approach adopted in this project is of an incremental nature. This means 

that the design of the approach comprises granular components that were 

developed during different increments of the design process. Six increments were 

identified and presented in this design process which are: (1) The design of the 

initial framework; (2) the design of the concept extraction technique; (3) CN-

Match design; (4) structural matching design; (5) SAWSDL annotator design; and 

(6) design of the ontology extension mechanisms. The incremental learning 

happened throughout the research increments was also highlighted. Later, the 

methods, metrics and data used to evaluate the proposed annotation framework 

and its underlying artefacts were presented. Functional (black-box) and 



Chapter 7: Conclusions 

 

 181  

experimental evaluation methods were used to evaluate the annotation approach 

and its components. To avoid any potential bias when conducting the evaluation, 

existing ontologies and Web services were used. Artefacts are very important in 

any DSR project: They are the fundamental outputs of DSR research activities. 

DSR artefacts are generally categorised into constructs, models, methods and 

instantiations. In light of this classification, the artefacts of this research were 

discussed and presented. 

 

Chapter 4 presented the proposed Query-based semi-automatic annotation 

framework: This approach eliminates four important deficiencies of existing 

matching-based annotation frameworks. These limitations are: (1) The 

prerequisite of building application ontologies to represent service semantics; (2) 

the inaccuracy and ineffectiveness of implemented matching approaches; (3) the 

Low Percentage Problem; and (4) the annotation of service elements belonging to 

same domain to different domain ontologies. In overcoming these limitations, a 

set of design requirements were defined. Based on these requirements and 

knowledge acquired from previous annotation approaches, design strategies were 

identified to direct the design process.  

 

The inputs of the proposed approach are the WSDL file of the candidate Web 

service and ontologies from the repository and the output is an annotated WSDL 

file based on the SAWSDL notation. The annotation process is composed of five 

phases which are concept extraction, concept filtering and query filling, query 

execution, results assessment and SAWSDL annotation. The concept extraction, 

query execution and SAWSDL annotation are fully automatic processes while the 

concept filtering and query filling and result assessment phases are manual ones. 

The design of the three automatic phases was illustrated in detail in this chapter. 

The concept extraction mechanism utilises text analysis techniques of the GATE 

tool. The query execution engine employs name-based and structural matching 

mechanisms. Name-based matching is performed by a novel approach called CN-

Match. CN-Match can perform effective and accurate name-based matching 

between labels containing multiple words. The SAWSDL annotator is designed 



Chapter 7: Conclusions 

 

 182  

using text parsing and string look up techniques. The query filling phase makes 

use of a standard query template that is filled with data extracted from WSDL 

files.  

 

Chapter 5 presented the design and evaluation of CN-Match which is the name-

based matching approach implemented by the query execution engine. The 

chapter began by highlighting the significance of matching CNs in the ontology 

matching arena. Thereafter, a review of the structure and categories of CNs from a 

linguistic point of view was provided. Later, previous approaches that match CNs 

were discussed and their limitations were uncovered. To provide an appropriate 

design for CN-Match, design considerations and rules were identified and 

presented. Six design cases were defined and used by CN-Match: These cases 

were differentiated based on the number of possible constituents in any two 

candidate labels. String and linguistic based matching techniques were 

implemented by CN-Match.  

 

To test CN-Match, its performance was evaluated using three published and well 

recognised test sets. Precision (P), Recall (R) and F-Measure (F) were the metrics 

used to evaluate CN-Match. The evaluation results highlighted significant 

conclusions that were presented later in the Discussion Section. Different P, R and 

F values were obtained by the different tests. These differences were due to two 

reasons: (1) The nature of the test data, the amount of domain specific matches 

contained in a specific test and the gold standard of this test; and (2) the 

underlying matching techniques, especially the linguistic one, that are 

implemented by CN-Match. Although the evaluation results were impacted by 

few CN-Match dependent and independent factors, these results were very 

promising and proved the effectiveness of CN-Match since high values of P, R 

and F were achieved.  

 

Chapter 6 was dedicated to the evaluation of the proposed annotation approach. 

The chapter began by explaining the ontology extension approach and its 

implementation which was added to the functionality of the annotation 



Chapter 7: Conclusions 

 

 183  

framework. Two extension methods were provided - one for simple queries and 

the other for complex queries -. Thereafter, three illustrative cases that show the 

annotation process in practice and explain the annotation steps in detail were 

presented. Later, the evaluation method, measures and results were presented. P, 

R, F and Percentage were utilised as evaluation metrics. For every Web service, 

these four metrics were measured before and after extension to show the effect of 

extension on the annotation process. Next, averages of P, R, F and Percentage 

were calculated for every domain of the five domains. These averages were then 

compared to find how the annotation results differe across domains. These 

differences provide significant implications about the proposed semi-automatic 

approach.  

 

The conducted evaluation showed that the proposed approach is effective since 

nearly complete annotation results, in relation to manual results were obtained. 

Moreover, the evaluation highlighted the significance of the extension method for 

the annotation process. The extension mechanism allows the proposed annotation 

approach to overcome the Low Percentage Problem. Finally, few deficiencies of 

the annotation approach were provided which can be considered as motivations 

for future improvements to the current approach.  

7.3 Research Conclusions and Contributions 

The contributions made throughout this project are diverse and cover theoretical 

and practical facets. This research adds value to research and practice 

communities concerned with Web services, Semantic Web, SWS and ontology 

matching and extension. The novel integration of these research areas also 

enhances the value added by this research. The annotation approach is composed 

of phases that employ different components to perform the required annotation 

task. Each component in its own right provides granular contribution when 

considering its application to the SWS arena.  



Chapter 7: Conclusions 

 

 184  

7.3.1  Contributions to the Knowledge Base 

A. The Semi-automatic Annotation Method 

This research adds to the knowledge base an annotation method that provides an 

effective solution to the problems associated with the manual annotation of Web 

services. This method is unique when compared with existing annotation 

approaches such as Patil et al. (2004) and Hepp (2006) since it combines and 

integrates innovative components together to facilitate the desired automation of 

annotation. These components are: (1) The concept extraction technique; (2) the 

query execution mechanism; (3) the SAWSDL annotation technique; and (4) the 

ontology extension mechanism. The new annotation method has the following 

advantages: 

 The automation of concept extraction: In previous annotation approaches, 

the process of extracting required concepts for annotation from given WSDL 

files was manual. This manual extraction activity can be difficult and tedious 

especially when WSDL files of candidate services are relatively large. The 

annotation approach developed in this research automates the extraction 

process to facilitate easy and fast extraction of required WSDL concepts.  

 The usefulness and ease of use of queries: The new annotation approach 

makes use of queries to eliminate the difficult and problematic process of 

manual or automatic ontology building. Retrospectively, manual ontology 

building is hard and error-prone and automatic ontology building by means of 

learning is ineffective. Using queries to capture and represent semantics of 

service elements is a pragmatic but useful approach. This is because 

instantiating queries from the Standard Query Template is easy to perform 

since it does not require much technical or domain knowledge.  

 The effectiveness of the query execution engine: The annotation results that 

are outputs of query execution are encouraging since they are almost complete 

in relation to gold standards (See Figure 6.23). Queries are executed using an 

effective and novel query execution mechanism that combines name-based 

and structural matching. The name-based matching is performed by means of 

CN-Match which can automatically and precisely measure similarities 



Chapter 7: Conclusions 

 

 185  

between labels containing different numbers of constituents. Results of CN-

Match are precise because the linguistic structure of CNs is taken into account 

when measuring similarities. The evaluation results of CN-Match prove that it 

can provide clean and almost complete matching results (See Section 5.7.3). 

Structural matching searches for ontological classes that have related classes 

semantically similar to related concepts of a given query concept. The 

structural matching contributes to the completeness of results because it 

implements a balanced structural matching method: It is balanced because it 

utilises neither too few nor too many structural matching restrictions. This 

balance allows the execution engine to retrieve almost all correct matches. The 

latter result is proved by the high R values obtained in the evaluation of the 

annotation approach (See Figure 6.23). A more restricted structural matcher 

would likely impose more constraints on the matching process and thus may 

result in retrieving a lower number of correct results. Consequently, lower 

values of R may be obtained. Another advantage of structural matching is that 

it allows the execution engine to differentiate between homonyms (same 

spelling but different meaning) since it is unlikely that they have similar 

related elements. In addition, structural similarity enables the engine to find 

correspondences that have dissimilar labels but similar related concepts.  

 Significance of semi-automation of annotation: The proposed approach is 

semi-automated because the „concept filtering and query filling‟ and „results 

assessments‟ are necessarily manual. The concept filtering should be 

performed by manual means since effective automatic filtering methods 

cannot be found. Such automatic methods would have to automatically 

recognise the concepts that should be excluded. We understand that the 

concept filtering process is performed to exclude the types of concepts 

presented earlier in Section 4.5 however; automatically detecting the concepts 

that belong to these categories is currently not possible. This is because 

concepts of each category do not necessarily share specific features that can be 

recognised by a computer algorithm. For‎example,‎ the‎category‎of‎„elements‎

denoting‎ processes‟‎ can‎ include instances that have many different formats 

and use many different words. Additionally, the results assessment has to be 



Chapter 7: Conclusions 

 

 186  

done by a human user because the employed matching techniques such as 

linguistic and string mechanisms are not perfect and have their understandable 

limitations. A fully automated approach that would select the correspondence 

with the highest score as the correct match would result in many missing and 

incorrect correspondences and hence a potentially lower P and R values. This 

is because it is not always necessary that the candidate with the highest 

confidence degree is the most appropriate one.  

 Importance of annotation to shared ontologies: Annotation to shared 

ontologies is important because resulting services are pre-equipped with 

shared semantics that make the interoperability of these services with other 

services annotated to same or related ontologies much easier and effective. 

This is because, when services are annotated to diverse ontologies, automatic 

matching of these ontologies at run time becomes a prerequisite for future 

composition or interaction activities (Patel et al., 2004). Given the imperfect 

nature of existing automatic ontology matching techniques, the automatic 

matching may delay the required interaction and composition activities and be 

error-prone.  

 

B. The CN-Match Method 

CN-Match provides a novel CN similarity calculation method that takes the CN 

linguistic structure into consideration when performing matching. CN matching is 

very important for Web service annotation because many service elements and 

ontological entities have labels that are CNs. CN-Match design was motivated by 

the limitations of existing name-based matching methods. The existing methods 

cannot perform accurate and automatic matching between labels containing 

multiple words: This is because they ignore the linguistic structure of CNs. 

Therefore, it was necessary to review the types and structure of CNs using the 

linguistic knowledge base. The intersection of the CN linguistic literature and the 

ontology matching literature provides significant knowledge that enables the 

definition of a set of rules for CN and single terms matching. The rules were then 

employed to derive six design cases for CN-Match. CN-Match measures 

similarities between labels containing all three types (endocentric, exocentric and 



Chapter 7: Conclusions 

 

 187  

copulative) of CNs. Exocentric and copulative CNs can be matched using linguistic 

and/or string matching. Using WordNet, meanings of exocentric and copulative 

CNs can be looked up. Endocentric CNs, which are the most common in the 

English Language, can be matched using the six pre-defined cases and the matching 

techniques utilised by CN-Match. 

 

CN-Match is a useful matching approach: It provides appropriate matches that are 

not only identical or synonymous but also having semantically similar 

constituents. Semantic similarity is measured using the path-based similarity of 

WordNet. Path-based matching measures similarities between concepts by 

exploiting the lexical relations of the WordNet hierarchy. 

 

C. The Ontology Extension Method 

The provision of a method for semi-automatic ontology extension is a 

contribution to the existing body of knowledge. The provided method can be used 

not only for Web service annotation but also for other applications such as 

annotation of HTML pages, semantic query answering and knowledge-based 

systems. The ontology extension idea is very new and thus few extension 

approaches exist in the ontology literature (Ovchinnikova and Kühnberger, 2006). 

Most existing approaches extend ontologies used for semantic description of 

textual and static Web resources (Jung et al., 2009; Liu et al., 2005). 

Consequently, there is a need for ontology extension methods that can serve 

dynamic Web resources. This is because dynamic resources are different from 

static ones in terms of the nature of provided data and the way in which this data 

can be used for extension.  

 

The proposed extension approach is different from other approaches such as Jung 

et al. (2009) and Liu et al. (2005) in that: (1) It adds not only classes but also 

object properties to extended ontologies; and (2) it performs an important check 

using CN-Match to find out if a similar concept to the candidate one exists in the 

ontology. If such a concept exists, then it will be used instead of adding a new 



Chapter 7: Conclusions 

 

 188  

class. This later check process prevents any potential redundancies in extended 

ontologies.  

7.3.2  Contributions to Practice  

Interesting and important contributions of this research are the software 

prototypes that can be used by different practitioners in the SWS domain. These 

prototypes can improve the current practice in the Web service annotation and 

ontology matching domains. The most significant contributions to practice 

provided by this research are explained as follows:  

 

A. The Semi-automatic annotation prototype  

The novel annotation method is implemented in the Java 1.6.0 programming 

language to provide a useful utility to SWS developers and enable effective 

evaluation of the proposed method. The new annotation prototype facilitates a 

semi-automatic, accurate and easy to use annotation process. The evaluation 

results prove that the annotation prototype can effectively annotate Web service 

belonging to a wide range of domains: This makes the annotation approach very 

useful for any business or organisation that is interested in transforming their 

syntactic Web services to semantic ones.  

 

Moreover, the new prototype utilises an effective semi-automatic ontology 

extension method. The extension method allows the proposed approach to 

overcome the Low Percentage Problem: This problem makes previous approaches 

ineffective since many service elements cannot be annotated. The new approach 

can provide annotation to those service elements that do not have appropriate 

correspondences in candidate ontologies by adding new and suitable ontological 

entities. Subsequently, a much higher percentage of service elements can be 

annotated. Overcoming the Low Percentage Problem is believed to improve the 

adoption of SWS by developers and industry.  

 



Chapter 7: Conclusions 

 

 189  

B. CN-Match: The Name-based Matching Prototype 

Name-based matching is one of the most significant matching criteria in the 

ontology matching domain. Therefore, there is a pressing need for effective and 

accurate matching tools especially those that can match labels composed of 

multiple words. CN-Match provides to the practice community a name-based 

matching prototype that can perform automatic and accurate similarity 

measurements between labels containing single terms and CNs. CN-Match can 

match endocentric, exocentric and copulative CNs. CN-Match prototype can be 

used by many applications that require effective name-based matching.  

7.4 Meeting the Research Objectives 

This section shows how this research successfully achieves the objectives 

formulated at the start of this project and presented in Section 1.2.  

 

Objective 1: “Analyse the previous Web service semi-automatic annotation 

approaches and study their limitations in order to derive a set of design 

requirements and strategies for the new approach”. Objective 1 was met in 

Chapter 2. SWS literature related to semantic annotation of Web services was 

reviewed in order to identify the approaches that perform semi-automatic 

annotation. Few approaches were found. These approaches were then categorised 

into; learning-based, workflow definition-based and matching-based approaches. 

Each category has a number of deficiencies that were identified. The limitations 

were studied carefully to discover avenues for improvements. The matching-based 

category was found promising because: (1) It allows sharing ontologies between 

different services; and (2) the existence of a family of matching approaches that 

can be improved, customised and integrated to achieve better and more accurate 

semi-automatic annotation. Later, the set of limitations that would be addressed 

were defined. Based on these limitations, a set of requirements for improvements 

were derived. Thereafter, a set of design strategies for the new approach were 



Chapter 7: Conclusions 

 

 190  

identified based on the defined requirements. The limitations, requirements and 

strategies were then presented in Chapter 4. 

 

Objective 2: “Design the initial annotation framework based on the derived 

requirements and strategies and the analysis of WSDL general structure”. 

Objective 2 was achieved in Chapters 3 and 4. Chapter 3 defined the research 

approach followed in this research, presented the research phases and detailed the 

research increments performed to design the desired annotation approach and its 

components. Later, WSDL general structure was analysed to specify the service 

elements that should be semantically described. The design strategies and the 

analysis results were then used to design the initial annotation framework and 

identify its phases and manual and automatic components. As significant parts of 

the annotation approach, the standard query template and the method of 

instantiating simple and complex queries were then defined.  

 

Objective 3: “Develop and test the automated components of the annotation 

approach”. This objective was met in Chapters 4, 5 and 6. After identifying the 

manual and automated components of the new annotation approach, the automatic 

components were developed and evaluated. The concept extraction mechanism 

was based on a set of text analysis techniques. The query execution engine was 

then designed: This engine employs name-based matching and structural matching 

techniques. Name-based matching is achieved by CN-Match which was designed 

and evaluated using three sets of existing ontologies to test its performance. 

Structural matching was then developed and implemented. Later, the two 

mechanisms were integrated in an appropriate manner where weights were 

assigned to each individual matching technique. To improve the automation of the 

annotation approach, a SAWSDL annotator was then developed to automatically 

annotate candidate services based on the SAWSDL format by adding a Model 

Reference element to tags of given elements. The annotator utilises text parsing 

and string look up in performing the automatic annotation. Finally, the 

components were integrated and tested together to make the required approach. 

The test showed that the approach required an effective and automatic ontology 



Chapter 7: Conclusions 

 

 191  

extension method that can add appropriate correspondences for service elements 

that do not have suitable matches in the ontology repository. Subsequently, two 

novel ontology extension methods –one for simple queries and one for complex 

queries- were developed and used.  

 

Objective 4: “Evaluate the final annotation approach using appropriate 

evaluation methods, metrics and data”. This objective was accomplished in 

Chapter 6. Twenty five existing Web services that belong to five different 

domains were selected for this experimental evaluation. Five ontologies were also 

chosen to annotate the twenty five services. Precision (P), Recall (R), F-Measure 

and Percentage were used as evaluation metrics. Measuring P, R and F requires a 

gold standard. Since the twenty five services had never been annotated using the 

given set of ontologies, generating gold standard was required. Two gold 

standards –one for before extension and one for after extension- were generated 

for each service. Later, the values of P, R, F and Percentage were measured for 

each experiment.  

 

Objective 5: “Draw conclusions from the building and evaluation phases and 

identify future research directions that are important to continue refining and 

developing this significant area of research”. This objective was met in Chapter 

7. The design and evaluation phases allowed us to derive very important 

conclusions about the provided annotation approach. The proposed approach has 

many advantages in that; it is effective and easy to use. In addition, the evaluation 

provided few limitations of the new approach. The limitations were illustrated in 

Section 7.5. The provided limitations are good opportunities for identifying future 

research directions that can further improve the current annotation approach.  



Chapter 7: Conclusions 

 

 192  

7.5 Limitations  

Although the annotation approach presented in this thesis is argued to be effective 

and easy to use, the approach and its evaluation have some limitations which are 

explained in the following subsections. 

7.5.1  Matching-dependent Limitations 

The annotation approach makes use of a query execution engine which utilises 

name-based and structural matching mechanisms. The implemented name-based 

matching approach cannot always provide very accurate matching results. This is 

because there are some types of labels that cannot be matched using the provided 

matching technique. These categories are: 

 Ontological labels and service elements that have more than three 

constituents: Unlike previous name-based matching approaches that can 

match single terms and binary CNs only, CN-Match can measure similarities 

between single terms, binary and triple CNs. Although, it makes a clear 

contribution, CN-Match cannot perform matching between labels composed of 

more than three constituents.  

 Domain-specific labels: These labels have specific meanings in specific 

domains. Since CN-Match makes use of WordNet which is a domain-

independent thesaurus, CN-Match cannot match some domain-specific labels. 

Consequently, some labels that are domain-dependent are unlikely to be 

correctly matched and annotated using the provided annotation method.  

 Labels denoting acronyms or parts of words: CN-Match cannot always 

match service elements and ontological classes that are denoted by acronyms. 

This is because string and linguistic techniques implemented by CN-Match are 

unable to match many acronyms. String matching can match identical 

acronyms only. In addition, WordNet contains a very limited set of acronyms 

and thus similarities between many acronyms cannot be measured using 

WordNet. Moreover, CN-Match is sometimes unable to match a full word or 



Chapter 7: Conclusions 

 

 193  

and expression against a part of a word or an expression that is composed of 

few letters of original words. Successfully matching a part of a word against 

its original word is very hard because a specific part could belong to many 

different words. Therefore, we argue that using parts of words in labels of 

classes and service elements should be avoided since they can result in much 

confusion and complications in the annotation process.  

7.5.2  Annotation-dependent Limitations 

The proposed approach can offer semantics for a subset of the synthesised 

elements defined in Section 2.4. These elements use XSD for their descriptions. 

These elements are: „Input‟,‎ „Output‟,‎ „Precondition‟‎and‎„Effect‟.‎The reason is 

that the input of the annotation approach is XSD data of WSDL files. Other 

elements such as „Category‟,‎ „Non-functional‎ Semantics‟,‎ and‎ „Execution‎

Semantics‟‎ are‎ not annotated using the proposed approach because semantics 

required for their descriptions cannot be extracted from XSD or WSDL files. 

Providing an approach that can offer semi-automatic or automatic annotations for 

all elements of the synthesised set is a very hard and challenging task that requires 

multiple input data. Knowledge should then be extracted from given data in order 

to provide useful inputs for the annotation approach. Such knowledge requires 

advanced automatic or semi-automatic semantic extraction and modelling 

techniques which are currently hard to achieve due to the time constraints of this 

PhD project.   

7.5.3  Extension-dependent Limitations 

Ontologies extended by the proposed extension mechanism can miss some 

ontological structures. Although these missing structures may not have a direct 

impact on the annotation process, they could affect the software agents that would 

make use of extended ontologies for service discovery and composition purposes. 

These structures are missed because the extension mechanism is designed to add 



Chapter 7: Conclusions 

 

 194  

classes and object properties in order to create correspondences for elements of 

simple and complex queries. An ontology can contain more axioms and structure 

than what is added by the developed extension mechanism. For instance, it could 

be argued that more axioms and structures such as super and subclasses, 

cardinality restrictions and data type properties should also be added by the 

extension method. Adding these extra ontological restrictions, however, requires 

more complicated rules to detect types of relations or axioms between candidate 

service concepts and existing or added ontological entities. Further, the addition of 

these structures could cause difficulties and delays to the extension and annotation 

processes. 

7.5.4  Limitations of the Evaluation Metrics 

The evaluations of the developed annotation approach and CN-Match use 

Precision (P), Recall (R) and F-Measure as metrics. These measures require the 

existence of gold standards against which automatic results are compared to 

identify correct-retrieved, incorrect-retrieved and correct-missing matches. 

Subsequently, the accuracy and completeness of “gold standards” is a key issue 

for the evaluation process. Unfortunately, the “gold standards” are currently 

created by manual means which makes them incomplete, subjective and error-

prone. In addition, manual generation of these standards is very hard. Having such 

standards as baselines for measuring P, R and F values can affect the evaluation 

results and conclusions.   

7.6 Future Work 

The provided limitations offer significant opportunities for future research that 

can continue the development of the proposed annotation approach. 

 Improvements to the query execution engine: The query execution engine 

presented in this thesis makes use of WordNet which is a domain-independent 



Chapter 7: Conclusions 

 

 195  

English thesaurus. Future research can develop domain-dependent thesauri 

and use them for matching. Developing and employing such thesauri is, 

however, a hard task as creating domain-specific thesauri requires extensive 

domain knowledge. Further, employing such thesauri within an automatic and 

domain-independent matcher can introduce numerous difficulties since the 

domain of a given concept has to be discovered dynamically. Additionally, a 

single concept can belong to different domains and denote different meanings 

in different domains. Another improvement to the query execution engine 

could result from extending the design of CN-Match to be able to measure 

similarities between labels containing more than three constituents. Matching 

more complicated CNs is, however, not an easy task because the syntactic 

ambiguity of a CN increases as the number of its constituents grows.  

 Improvements to the ontology extension method: The ontology extension 

method developed in this research can extend ontologies by adding classes and 

object properties only. Other important ontological components such as 

datatype properties and sub-super class relationships can also be added during 

extension. Adding these extra structures could, however, complicate and delay 

the annotation and extension activities and thus the feasibility of this addition 

should be studied carefully in real, practical and industrial settings.  

 The need for more effective gold standard generation methods: The 

quality of gold standards is a key issue for calculating the values of P, R and 

F. Therefore, high quality of gold standards is desired. Creating such good 

standards requires the development of generation methods that are more 

effective, objective and accurate than the existing manual generation methods.  

 The integration of the annotation approach with Web service 

development tools: The provided annotation approach can annotate existing 

Web services. Integrating the annotation approach with available Web service 

development tools can facilitate annotation that is simultaneous with the Web 

service development process. This simultaneous process would allow dynamic 

annotation of each new service element to an appropriate ontological class. 

Developing such an integrated annotation approach can improve the adoption 



Chapter 7: Conclusions 

 

 196  

of SWS since resulting services would be pre-equipped with suitable semantic 

constructs that make them semantic services rather than syntactic ones. 

 The use of the Pragmatic Web to support service description: SWS does 

not support the creation of adaptive and personalised Web service 

applications. This is because the semantic Web is unable to capture context-

aware aspects of meaning (Liu, 2008) since ontologies can represent concepts, 

relations and axioms only. The pragmatic Web is a proposed solution to 

represent context-based meaning by using semiotics (symbols) (Singh, 2002). 

Therefore, future research will focus on combining the Semantic Web and the 

Pragmatic Web to improve service description.  

 The development of an effective ontology selection method: The developed 

annotation approach uses a set of ontologies residing in a repository for 

annotation. Selecting the appropriate ontology from the repository for a given 

annotation task is currently performed by manual means. Developing and 

using an effective ontology selection mechanism could further simplify the 

annotation process.  

 

 

 



References 

 

 197  

References 

 

Agarwal, S., Handschuh, S. & Staab, S. 2003, "Surfing the Service Web", In Proceedings of the 

2nd International Semantic Web Conference, Springer, pp. 211-226.  

Akkiraju, R. & Sapkota, B. 2007, 26 January 2007-last update, Semantic Annotations for WSDL 

and XML Schema — Usage Guide [Homepage of World Wide Web Consortium], [Online]. 

Available: http://www.w3.org/TR/2007/WD-sawsdl-guide-20070126/ [2008, 15 May].  

AKT partners, 2010, The Portal Ontology. Available: http://www.aktors.org/ontology/ [2010, 

January/18].  

Alfaries, A. 2010, Ontology Learning for Semantic Web Services, PhD edn, Brunel University, 

BURA.  

Austin, D., Barbir, A., Ferris, C. & Garg, S. 2004, 11 February 2004-last update, Web Services 

Architecture Requirements, W3C Working Group Note 11 February 2004 [Homepage of 

W3C], [Online]. Available: http://www.w3.org/TR/wsa-reqs/ [2009, 01 Sep].  

Baskerville, R. 2008, "What Design Science is not", European Journal of Information Systems, 

vol. 17, no. 5, pp. 441-443.  

Belhajjame, K., Embury, S.M., Paton, N.W., Stevens, R. & Goble, C. 2008, "Automatic annotation 

of Web Services Based on Workflow Definitions", ACM Transactions on the Web, vol. 2, no. 

2, pp. 1-34.  

Benatallah, B., Hacid, M., Leger, A., Rey, C. & Toumani, F. 2005, "On automating Web services 

discovery", The International Journal on Very Large Data Bases, vol. 14, no. 1, pp. 84-96.  

Benbasat, I. & Zmud, R. 2003, "The Identity Crisis within the IS Discipline: Defining and 

Communicating‎the‎Discipline‟s‎Core‎Properties",‎MIS Quarterly, vol. 27, no. 2, pp. 183-194.  

Beneventano, D., Bergamaschi, S., Guerra, F. & Vincini, M. 2003, "Synthesizing an Integrated 

Ontology", IEEE Internet Computing, vol. 7, no. 5, pp. 42-51.  

Berners-Lee, T., Hendler, J. & Lassila, O. 2001, "The Semantic Web", Scientific American, vol. 

284, no. 5, pp. 34-43.  

Bouquet, P., Serafini, L. & Zanobini, S. 2003, "Semantic Coordination: A New Approach and an 

Application", Proceeding of 2
nd

 the International Semantic Web Conference, Springer, Berlin 

Heidelberg, pp. 130-145.  

http://www.w3.org/TR/2007/WD-sawsdl-guide-20070126/
http://www.aktors.org/ontology/
http://www.w3.org/TR/wsa-reqs/


References 

 

 198  

Brittenham, P., Curbera, F., Ehnebuske, D. & Graham, S. 2001, Understanding WSDL in a UDDI 

registry, Part 1, [Online]. Available: 

http://www.ibm.com/developerworks/webservices/library/ws-wsdl/ [2009, 06/25].  

Buckland, M. & Gey, F. 1994, "The Relationship between Recall and Precision", Journal of the 

American Society for Information Science, vol. 45, no. 1, pp. 12-19.  

Budanitsky, A. & Hirst, G. 2006, "Evaluating WordNet-based Measures of Lexical Semantic 

Relatedness", Computational Linguistics, vol. 32, no. 1, pp. 13-47.  

Burns, P. 2006, MorphAdorner: Morphological Adorner for English Text.  

Cardoso, J. 2006, "Approaches to Developing Semantic Web Services", International Journal of 

Computer Science, vol. 1, no. 1, pp. 8-21.  

Cardoso, J. & Sheth, A. 2003, "Semantic E-Workflow Composition", Journal of Intelligent 

Information Systems, vol. 21, no. 3, pp. 191-225.  

Castano, S., Ferrara, A. & Montanelli, S. 2006, "Matching Ontologies in Open Networked 

Systems: Techniques and Applications", Journal on Data Semantic, vol. 5, pp. 25-63.  

Chen, Z., Liu, S., Wenyin, L., Pu, G. & Ma, W. 2003, "Building a web thesaurus from web link 

structure", Proceedings of the 26th annual international ACM SIGIR conference on Research 

and development in information retrieval, ACM, , pp. 48-55.  

Cheng, H.K., Tang, Q.C. & Zhao, J.L. 2006, "Web Services and Service-Oriented Application 

Provisioning: An Analytical Study of Application Service Strategies", IEEE Transactions on 

Engineering Management, vol. 53, no. 4, pp. 520-533.  

Chifu, V.R., Salomie, I. & Chifu, E.S. 2007, "Taxonomy Learning for Semantic Annotation of 

Web Services", Proceedings of the 11th WSEAS International Conference on Computers, 

ACM, pp. 300-305.  

Choi, N., Song, I.Y. & Han, H. 2006, "A Survey on Ontology Mapping", SIGMOD Record, vol. 

35, no. 3, pp. 34-41.  

Chua, W.F. 1986, "Radical Developments in Accounting Thought", The Accounting Review, vol. 

61, no. 4, pp. 601-632.  

Cohen, W., Ravikumar, P. & Fienberg, S. 2003, "A comparison of string metrics for matching 

names and records", Proceedings of the workshop on Data Cleaning and Object 

Consolidation at the International Conference on Knowledge Discovery and Data Mining, 

pp. 1-6.   

http://www.ibm.com/developerworks/webservices/library/ws-wsdl/


References 

 

 199  

Cunningham, h., Maynard, D., Bontcheva, K. & Tablan, V. 2002, "GATE: A Framework and 

Graphical Development Environment for Robust NLP Tools and Applications", Proceedings 

of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL'02), 

pp. 1-8.  

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. & Weerawarana, S. 2002, "Unraveling 

the Web services web: an introduction to SOAP, WSDL, and UDDI", IEEE Internet 

Computing, vol. 6, no. 2, pp. 86-93.  

De Nicola, A., Missikoff, M. & Navigli, R. 2009, "A Software engineering approach to ontology 

building", Information Systems, vol. 34, no. 2, pp. 258-275.  

Devedzic, v. 2002, "Understanding Ontological Engineering", Communications of the ACM, vol. 

45, no. 4, pp. 136-144.  

Do, H.H. & Rahm, E. 2002, "COMA: A System for Flexible Combination of Schema Matching 

Approaches", Proceedings of the 28th International Conference on Very Large Data Bases 

ACM, pp. 610-612.  

Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B. & Pedrinaci, C. 

2008, "IRS-III: A broker-based approach to semantic Web services", Web Semantics: 

Science, Services and Agents on the World Wide Web, vol. 6, no. 2, pp. 109-132.  

Downing, P. 1977, "On the Creation and Use of English Compound Nouns", Language, vol. 53, 

no. 4, pp. 810-842.  

Duo, Z., Juan-Zi, L. & Bin, X. 2005, "Web Service Annotation Using Ontology Mapping", 

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System 

Engineering (SOSE'05), IEEE, pp. 235-242.  

Dustdar, S. & Schreiner, W. 2005, "A Survey on Web Services Composition", International 

Journal on Web and Grid Services, vol. 1, no. 1, pp. 1-30.  

Ehrig, M. 2005, Framework for Ontology Alignment and Mapping Test Ontologies and 

Alignments. Available: http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies.htm 

[2009, 12/03].  

Ehrig, M. & Euzenat, J. 2005, "Relaxed precision and recall for ontology matching",  

In Proceedings of the K-CAP Workshop on Integrating Ontologies (IntOnt), pp. 25-33.  

Ehrig, M. & Staab, S. 2004, "QOM - Quick Ontology Mapping", Proceeding of the Third 

International Semantic Web Conference, Springer Berlin, Heidelberg, pp. 683- 711.  

http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies.htm


References 

 

 200  

Ehrig, M. & Sure, Y. 2005, "FOAM-framework for ontology alignment and mapping; results of 

the ontology alignment initiative", Proceedings of the Workshop on Integrating Ontologies, 

pp. 72-76.  

Euzenat, J. 2004, "An API for Ontology Alignment", Lecture Notes in Computer Science, , no. 

3298, pp. 698-712.  

Euzenat, J., Ferrara, A., Hollink, L., Isaac, A., Joslyn, C., Malaisé, V., Meilicke, C., Nikolov, A., 

Pane,‎ J.,‎Sabou,‎M.,‎Scharffe,‎F.,‎Shvaiko,‎P.,‎Spiliopoulos,‎V.,‎Stuckenschmidt,‎H.,‎Šváb-

Zamazal, O., Svátek, V., Trojahn, C., Vouros, G. & Wang, S. 2009, "Results of the Ontology 

Alignment Evaluation Initiative 2009", , pp. 1-54.  

Euzenat, J. & Shvaiko, P. 2007, Ontology Matching, Springer Berlin Heidelberg, New York.  

Euzenat, J. & Valtchev, P. 2004, "Similarity-based ontology alignment in OWL-lite", Proceedings 

of the European Conference on Artificial Intelligence, pp. 333-338.  

Feier, C., Roman, D., Polleres, A., Domingue, J. & Fensel, D. 2005, "Towards Intelligent Web 

Services: The Web Service Modelling Ontology", International Conference on Intelligent 

Computing, pp. 1-10.  

Ferris, C. & Farrell, J. 2003, "What Are Web Services?", Communications of the ACM, vol. 46, 

no. 6, pp. 31-31.  

Finin, T. 1980, "The Semantic Interpretation of Nominal Compounds", AIII Press, pp. 310-312.  

Fonseca, F. 2007, "The double role of ontologies in information science research: Research 

Articles", Journal of the American Society for Information Science and Technology, vol. 58, 

no. 6, pp. 786-793.  

Gilleland, M. 2009, Levenshtein Distance, in Three Flavours. Available: 

http://www.merriampark.com/ld.htm [2009, November].  

Girju, R., Moldovanb, D., Tatub, M. & Antoheb, D. 2005, "On the Semantics of Noun 

Compounds", Computer Speech & Language, vol. 19, no. 4, pp. 479-496.  

Giunchiglia, F. & Shvaiko, P. 2004, "Semantic matching", The Knowledge Engineering Review, 

vol. 18, no. 3, pp. 265-280.  

Giunchiglia, F., Shvaiko, P. & Yatskevich, M. 2004, "S-Match: an algorithm and an 

implementation of semantic matching", Proceedings of the European Web Symposium, 

Springer, pp. 61-75.  

http://www.merriampark.com/ld.htm


References 

 

 201  

Giunchiglia, F., Shvaiko, P. & Yatskevich, M. 2006, "Discovering Missing Background 

Knowledge in Ontology Matching", ACM, pp. 382-389.  

Giunchiglia, F., Yataskevich, M., Avesani, P. & Shvaiko, P. 2009, "A Large Dataset for the 

Evaluation of Ontology Matching", The Knowledge Engineering Review, vol. 24, no. 2, pp. 

137-157.  

Go, K. & Carroll, J.M. 2004, "The blind men and the elephant: views of scenario-based system 

design", ACM Interactions, vol. 11, no. 6, pp. 44-53.  

Gómez-Pérez, A. & Manzano-Macho, D. 2004, "An overview of methods and tools for ontology 

learning from texts", The Knowledge Engineering Review, vol. 19, no. 3, pp. 187-212.  

Gregor, S. & Jones, D. 2007, "The Anatomy of a Design Theory", Journal of the Association for 

Information Systems, vol. 8, no. 5, pp. 312-335.  

Grobelnik, M., Mladenic, D. & Fortuna, B. 2009, "Semantic Technology for Capturing 

Communication Inside an Organization", IEEE Internet Computing, vol. 13, no. 4, pp. 59-67.  

Gruber, T.R. 1993, "A Translation Approach to Portable Ontology Specification", Knowledge 

Acquisition, vol. 5, no. 2, pp. 199-220.  

Gruber, T.R. 1995, "Toward principles for the design of ontologies used for knowledge sharing", 

International Journal of Human-Computer Studies, vol. 43, no. 5-6, pp. 907-928.  

Gruninger, M. & Fox, M.S. 1995, "Methodology for the design and evaluation of ontologies", In 

Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing, pp. 1-10.  

Guarino, N. 1998, "Formal Ontology and Information Systems", Formal Ontology in Information 

Systems, pp. 3-15.  

Hasselbring, W. 2000, "Information System Integration", Communications of the ACM, vol. 43, 

no. 6, pp. 32-38.  

Hepp, M. 2006, "Semantic Web and semantic Web services: father and son or indivisible twins?", 

IEEE Internet Computing, vol. 10, no. 2, pp. 85-88.  

Heß, A., Johnston, E. & Kushmerick, N. 2004, "ASSAM: A Tool for Semi-automatically 

Annotating Semantic Web Services", The Semantic Web, Springer Berlin, Heidelberg, pp. 

320-324.  

Heß, A. & Kushmerick, N. 2003, "Learning to Attach Semantic Metadata to Web Services", The 

Semantic Web, Springer Berlin, Heidelberg, pp. 258-273.  



References 

 

 202  

Hevner, A.R., March, S.T. & Park, J. 2004, "Design Science in Information Systems Research", 

MIS Quarterly, vol. 28, no. 1, pp. 75-105.  

Hewlett-Packard Development Company 2009, ARQ 2.8.0 [Homepage of Sourceforge.net], 

[Online]. Available: http://jena.sourceforge.net/ARQ/license.html [2009, 12/20].  

Horrocks, I. 2003, The Knowledge Acquisition Ontology. Available: 

http://www.daml.org/ontologies/398 [2010, January/20].  

Huhns, M.N. & Singh, M.P. 2005, "Service-oriented computing: key concepts and principles", 

IEEE Internet Computing, vol. 9, no. 1, pp. 75-81.  

Isakowitz, T., Bieber, M. & Vitali, F. 1998, "Web information systems", Communications of the 

ACM, vol. 41, no. 7, pp. 78-80.  

Jacek, K., Tomas, V., Carine, B. & Joel, F. 2007, "SAWSDL: Semantic Annotations for WSDL 

and XML Schema", IEEE Internet Computing, vol. 11, no. 6, pp. 60-67.  

Janev, V. & Vranes, S. 2009, "Semantic Web Technologies: Ready for Adoption?", IT 

Professional, vol. 11, no. 5, pp. 8-16.  

Jasper, R. & Uschold, M. 1999, "A Framework for Understanding and Classifying Ontology 

Applications", Workshop on Ontologies and Problem-Solving Methods, pp. 1-11.  

Jiang, X. & Tan, A. 2010, "CRCTOL: A Semantic-based Domain Ontology Learning System", 

Journal of the American Society for Information Science and Technology, vol. 61, no. 1, pp. 

150-168.  

Jung, J., Oh, K. & Jo, G. 2009, "Extracting Relations towards Ontology Extension", In 

Proceedings of the Third KES International Symposium on Agent and Multi-Agent Systems: 

Technologies and Applications, ACM, , pp. 242-251.  

Kalfoglou, Y. & Schorlemmer, M. 2003, "Ontology mapping: the state of the art", The Knowledge 

Engineering Review, vol. 18, no. 1, pp. 1-31.  

Khalaf, R. & Leymann, F. 2003, "On Web Services Aggregation", Proceeding of the VLDB 

Technologies for e-Services Workshop, Springer LNCS, pp. 1-13.  

Kim, S.N. & Baldwin, T. 2005, "Automatic interpretation of noun compounds using WordNet 

similarity", pp. 945-957.  

Kuechler, B. & Vaishnavi, V. 2008, "On Theory Development in Design Science Research: 

Anatomy of a Research Project", European Journal of Information Systems, vol. 17, no. 5, 

pp. 489-504.  

http://jena.sourceforge.net/ARQ/license.html
http://www.daml.org/ontologies/398


References 

 

 203  

Kuechler, B., Vaishnavi, V. & Petter, S. 2005, "The Aggregate General Design Science Cycle as a 

Perspective on the Evolution of Computing Communities of Interest", Computing Letters, 

vol. 1, no. 3, pp. 123-128.  

Land, F. 1992, "The Information Systems Domain",  

Information Systems Research: Issues, Methods, and Practical Guidelines, ed. R. Galliers, 

Blackwell Scientific Publications, Oxford, pp. 6-13. 

Lapata, M. 2002, "The Disambiguation of Nominalizations", Computational Linguistics, vol. 28, 

no. 3, pp. 357-388.  

Lara, R., Roman, D., Polleres, A. & Fensel, D. 2004, "A Conceptual Comparison of WSMO and 

OWL-s", In Proceedings of the European Conference on Web Services (ECOWS 

2004)Springer Berlin, Heidelberg, pp. 254-269.  

Lauer, M. 1995, Designing Statistical Language Learners: Experiments on Noun Compounds, 

Macquarie University.  

Lei, Z., Xiaoying, Y., Yanni, Y. & Bo, S. 2008, "An Improved Semantic Annotation Method of 

Web Services Based on Ontology", In Proceedings of the 2008 ISECS International 

Colloquium on Computing, Communication, Control and Management ACM, pp. 580-584.  

Lerman, K., Plangrasopchok, A. & Knoblock, C.A. 2006, "Automatically labelling the inputs and 

outputs of web services", In Proceedings of the National Conference on Artificial Intelligence 

AAAI, Charlotte, USA, pp. 1363-1369.  

Levenshtein, V.I. 1965, "Binary Codes Capable of Correcting Spurious and Deletions of Ones", 

Problems of Information Transmission, vol. 1, no. 1, pp. 8-17.  

Lin, F. & Sandkuhl, K. 2008, "A Survey of Exploiting WordNet in Ontology Matching", Springer 

Boston, pp. 341-350.  

Lindberg, D., Humphreys, B. & McCray, A. 1993, "The Unified Medical Language System", 

Methods of Information in Medicine, vol. 32, no. 4, pp. 281-291.  

Liping, Z., Guangyao, L., Yongquan, L. & Jing, S. 2007, "Design of ontology mapping framework 

and improvement of similarity computation", Journal of Systems Engineering and 

Electronics, vol. 18, no. 3, pp. 641-645.  

Liu, K. (2008) "Pragmatic Computing - A Semiotic Perspective to Web Services", Proceedings of 

the 2007 International joint Conference on e-Business and Telecommunications Springer, pp. 

3 - 15.  

 



References 

 

 204  

Liu, W., Weichselbraun, A., Scharl, A. & Chang, E. 2005, "Semi-Automatic Ontology Extension 

Using Spreading Activation", Journal of Universal Knowledge Management, vol. 0, no. 1, 

pp. 50-58.  

Madhavan, J., Bernstein, P.A. & Rahm, E. 2001, "Generic Schema Matching with Cupid", 

Proceedings of the 27th International Conference on Very Large Data Bases ACM, pp. 49-

64.  

March, S.T. & Smith, G.F. 1995, "Design and Natural Science Research on Information 

Technology", Decision Support Systems, vol. 15, no. 4, pp. 251-266.  

March, S.T. & Storey, V.C. 2008, "Design Science in the Information Systems Discipline: An 

Introduction to the Special Issue on Design Science Research", MIS Quarterly, vol. 32, no. 4, 

pp. 725-730.  

Markus, M.L., Majchrzak, A. & Gasser, L. 2002, "A Design Theory for Systems that Support 

Emergent Knowledge Processes", MIS Quarterly, vol. 26, no. 3, pp. 179-212.  

Martin, D., Burstein, M.H., McDermott, D., McIlraith, S.A., Paolucci, M., Sycara, K., 

McGuinness, D.L., Sirin, E. & Srinivasan, N. 2007, "Bringing Semantics to Web Services 

with OWL-S", World Wide Web, vol. 10, no. 3, pp. 243-277.  

Martin, D. & Domingue, J. 2007, "Semantic Web Services, Part 1", IEEE Intelligent Systems, vol. 

22, no. 5, pp. 12-17.  

Mascardi, V., Locoro, A. & Rosso, P. 2009, "Automatic Ontology Matching Via Upper 

Ontologies: A Systematic Evaluation", IEEE Transactions on Knowledge and Data 

Engineering, vol. PP, no. 99, pp. 1-14.  

McIlraith, S.A., Son, T.C. & Zeng, H. 2001, "Semantic Web Services", IEEE Intelligent Systems, 

vol. 16, no. 2, pp. 46-53.  

Miller, G.A. 1995, "WordNet: a lexical database for English", Communications of the ACM, vol. 

38, no. 11, pp. 39-41.  

Missikoff, M., Navigli, R. & Velardi, P. 2002, "Integrated Approach to Web Ontology Learning 

and Engineering", IEEE Computer, vol. 35, no. 11, pp. 60-63.  

Nagarajan, M. 2006, "Semantic Annotations in Web Services" in Semantic Web Services, 

Processes and Applications Springer US, pp. 35-61.  

Nagy, M., Vargas-Vera, N. & Stolarski, P. 2009, "DSSim results for OAEI 2009", In Proceedings 

of the 2009 Ontology Alignment Evaluation Initiative, pp. 1-10.  



References 

 

 205  

Narayanan, S. & McIlraith, S.A. 2002, "Simulation, Verification and Automated Composition of 

Web Services", Proceedings of the 11th International conference on World Wide Web, pp. 

77-88.  

Noy, N. 2004, "Semantic integration: a survey of ontology-based approaches", SIGMOND Record, 

vol. 33, no. 4, pp. 65-70.  

Noy, N. & Musen, M. 2000, "PROMPT: algorithm and tool for automated ontology merging and 

alignment", Proceeding of the 17th National Conference on Artificial Intelligence, pp. 1-6. 

Nunamaker, J., Chen, M. & Purdin, T. 1991, "System Development in Information Systems 

Research", Journal of Management Information Systems, vol. 7, no. 3, pp. 89-106.  

Orlikowski, W.J. & Baroudi, J. 1991, "Studying Information Technology in Organizations: 

Research Approaches and Assumptions", Information Systems Research, vol. 2, no. 1, pp. 1-

28.  

Orlikowski, W.J. & Iacono, C.S. 2001, "Research Commentary: Desperately Seeking the 'IT' in IT 

Research – A Call to Theorizing the IT Artefact", Information Systems Research, vol. 12, no. 

2, pp. 121-134.  

Ovchinnikova, E. & Kühnberger, K. 2006, "Aspects of Automatic Ontology Extension: Adapting 

and Re-generalising Dynamic Updates", In Proceedings of the Second Australasian 

Workshop on Advances in Ontologies, ACM, pp. 51-60.  

Pahi, C. & Zhu, Y. 2006, "A Semantical Framework for the Orchestration and Choreography of 

Web Services", Electronic Notes in Theoretical Computer Science, vol. 151, no. 2, pp. 3-18.  

Paolucci, M., Kawamura, T.R., Payne, T.R. & Sycara, K. 2002, "Importing the Semantic Web in 

UDDI" in Web Services, E-Business and The Semantic Web Springer Berlin / Heidelberg, pp. 

815-821.  

Papazoglou, M.P. 2003, "Service -Oriented Computing: Concepts, Characteristics and Directions",  

Proceedings of the Fourth International Conference on Web Information Systems 

Engineering, IEEE Computer Society, pp. 3-12.  

Papazoglou, M.P. & Georgakopoulos, D. 2003, "Service -Oriented Computing", Communications 

of the ACM, vol. 46, no. 10, pp. 25-28.  

Papazoglou, M.P., Traverso, P., Dustdar, S. & Leymann, F. 2007, "Service -Oriented Computing: 

State of the Art and Research Challenges", Computer, vol. 40, no. 11, pp. 38-45.  



References 

 

 206  

Pathak, J., Koul, N., Caragea, D. & Honavar, V.G. 2005, "A framework for semantic Web service 

discovery", Proceedings of the 7th annual international workshop on Web information and 

data management, pp. 45-51.  

Patil, A., Oundhakar, S., Sheth, A. & Verma, K. 2004, "Meteor-s web service annotation 

framework", Proceedings of the 13th international conference on World Wide Web ACM, 

New York, USA, pp. 553-562.  

Pinto, H.S. & Martins, J.P. 2004, "Ontologies: How can They be Built?", Knowledge and 

Information Systems, vol. 6, no. 4, pp. 441-464.  

Plag, I. 2003, Word Formation in English, 1st edn, Cambridge University Press.  

Porter, M.F. 2006, "An Algorithm for Suffix Stripping", Program, vol. 40, no. 3, pp. 211-218.  

Prud'Hommeaux, E. & Seaborne, A. 2008, , SPARQL Query Language for RDF [Homepage of 

W3C], [Online]. Available: http://www.w3.org/TR/rdf-sparql-query/ [2009, 12/15].  

Rahm, E. & Bernstein, P.A. 2001, "A survey of approaches to automatic schema matching", The 

International Journal on Very Large Data Bases, vol. 10, no. 4, pp. 334-350.  

Rajasekaran, P., Miller, J., Verma, K. & Sheth, A. 2005, "Enhancing Web Services Description 

and Discovery to Facilitate Composition", Proceedings of the First International Workshop 

on Semantic Web Services and Web Process Composition Springer Berlin, Heidelberg, pp. 

55-68.  

Ringelstein, C., Franz, T. & Staab, S. 2007, "The Process of Semantic Annotation of Web 

Services" in Semantic Web Service: Theory Tools and Application, pp. 217-239.  

Rodriguez, M.A. & Egenhofer, M.J. 2003, "Determining Semantic Similarity among Entity 

Classes from Different Ontologies", IEEE Transactions on Knowledge and Data 

Engineering, vol. 15, no. 2, pp. 442-456.  

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C., 

Bussler, C. & Fensel, D. 2005, "Web Service Modelling Ontology", Applied Ontology, vol. 1, 

no. 1, pp. 77-106.  

Sánchez, D. 2010, "A methodology to learn ontological attributes from the Web", Data & 

Knowledge Engineering, vol. 69, no. 6, pp. 573-597.  

Sbodio, M.L., Martin, D. & Moulin, M. 2010, "Discovering Semantic Web Services Using 

SPARQL and Intelligent Agents", Web Semantics: Science, Services and Agents on the World 

Wide Web, vol. Article In Press.  

http://www.w3.org/TR/rdf-sparql-query/


References 

 

 207  

Sheth, A. & Larson, J. 1990, "Federated database systems for managing distributed, 

heterogeneous, and autonomous databases", ACM Computing Surveys, vol. 22, no. 3, pp. 183-

236.  

Shvaiko, P. & Euzenat, J. 2005, "A Survey of Schema-Based Matching Approaches", Journal on 

Data Semantic, pp. 146-171.  

Shvaiko, P. & Euzenat, J. 2008, "Ten challenges for ontology matching", Proceeding of the 7th 

International Conference on Ontologies, Databases and Applications of Semantics Springer 

Berlin, pp. 1164-1182.  

Simon, H.A. 1996, The Sciences of the Artificial, 3rd edn, MIT Press, Cambridge, MA.  

Singh, M. (2002) "The Pragmatic Web", IEEE Internet Computing, vol. 6, no. 3, pp. 4-5. 

Sivashanmugam, K., Sheth, A., Miller, J., Verma, K., Aggarwal, R. & Rajasekaran, P. 2003, 

"Metadata and Semantics for Web Services and Processes", In Datenbanken und Information 

systeme (Databases and Information Systems), pp. 1-19.  

Sivashanmugam, K., Verma, K., Sheth, A. & Miller, J. 2003, "Adding Semantics to Web services 

Standards", Proceedings of the International Conference on Web Services, pp. 1-7.  

Sorrentino, S., Bergamaschi, S., Gawinecki, M. & Po, L. 2009, "Schema Normalization for 

Improving Schema Matching", Lecture Notes In Computer Science, pp. 280-293.  

Spyns, P., Meersman, R. & Jarrar, M. 2002, "Data modelling versus Ontology engineering", ACM 

SIGMOD Record, vol. 31, no. 4, pp. 12-17.  

Staab, S. 2003, "Web services: been there, done that?", IEEE Intelligent Systems, vol. 18, no. 1, 

pp. 72-85.  

Staab, S. 2004, "Why Evaluate Ontology Technologies? Because it Works!", IEEE Intelligent 

Systems, vol. 19, no. 4, pp. 74-81.  

Stal, M. 2002, "Web Services: Beyond Component -Based Computing", Communications of the 

ACM, vol. 45, no. 10, pp. 71-76.  

Su, X. & Gulla, J.A. 2004, "Semantic Enrichment for Ontology Mapping", Springer, pp. 217-228.  

Su, X. & Gulla, J.A. 2006, "An Information Retrieval Approach to Ontology Mapping", Data & 

Knowledge Engineering, vol. 58, no. 1, pp. 47-69.  

Sycara, K., Paolucci, M., Ankolekar, A. & Srinivasan, N. 2003, "Automated discovery, interaction 

and composition of Semantic Web services", Web Semantics: Science, Services and Agents 

on the World Wide Web, vol. 1, no. 1, pp. 27-46.  



References 

 

 208  

Tagarelli, A., Longo, M. & Greco, S. 2009, "Word Sense Disambiguation for XML Structure 

Feature Generation", Springer, pp. 143-157.  

The Open Directory Project 2010, The Open Directory Project Travel Directory. Available: 

http://www.dmoz.org/Recreation/Travel/ [2010, 01/15].  

Vaishnavi, V. & Kuechler, W. 2004, January 20, 2004-last update, Design Research in 

Information Systems [Homepage of Association for Information Systems], [Online]. 

Available: http://desrist.org/design-research-in-information-systems [2009, August/ 01].  

Verma, K. & Sheth, A. 2007, "Semantically Annotating a Web Service", IEEE Internet 

Computing, vol. 11, no. 2, pp. 83-85.  

Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zaremba, M., Moran, M., Cimpian, E., 

Haselwanter, T. & Fensel, D. 2007, "Semantically-enabled service oriented architecture: 

concepts, technology and application", Service Oriented Computing and Applications, vol. 1, 

no. 2, pp. 129-154.  

Wack, P. 1985, "Scenarios: Uncharted Waters Ahead", Harvard Business Review, pp. 1-17.  

Walsham, G. 1993, Interpreting Information Systems in organisations, 1st edn, Wiley series in 

Information Systems, Chichester.  

Wei, W., Barnaghi, P. & Bargiela, A. 2010, "Probabilistic Topic Models for Learning 

Terminological Ontologies", IEEE Transactions on Knowledge and Data Engineering, vol. 

22, no. 7, pp. 1028-1040.  

Winter,‎ R.‎ (2008)‎ „Design‎ Science‎ Research‎ in‎ Europe‟.‎ European Journal of Information 

Systems, vol. 17, no. 5, pp. 470-475. 

Wu, Z., Gomadam, K., Ranabahu, A., Sheth, A. & Miller, J. 2007, "Automatic Composition of 

Semantic Web Services using Process and Data Mediation", Proceedings of the 9th 

International Conference on Enterprise Information Systems, pp. 453-462.  

Wu, Z. & Palmer, M. 1994, "Verbs Semantics and Lexical Selection", In Proceedings of the 32nd 

annual meeting on Association for Computational Linguistics ACM, pp. 133-138.  

Yahoo! 2010, The Yahoo Travel Directory. Available: http://dir.yahoo.com/Recreation/Travel/ 

[2010, 01/20]. 

Yeganeh, S.H., Habibi, J., Rostami, H. & Abolhassani, H. 2010, "Semantic Web Service 

Composition Tested", Computers and Electrical Engineering, vol. 36, no. 5, pp. 805-817.  

http://www.dmoz.org/Recreation/Travel/
http://desrist.org/design-research-in-information-systems
http://dir.yahoo.com/Recreation/Travel/


References 

 

 209  

Zaremba, M. & Bussler, C. 2005, "Towards Dynamic Execution Semantics in Semantic Web 

Services", Workshop on Web Service Semantics: Towards Dynamic Business Integration, pp. 

1-9.  

Zhang, M., Duan, Z. & Zhao, C. 2008, "Semi-automatically annotating data semantics to Web 

services using ontology Mapping", Proceedings of the 12th International Conference on 

Computer Supported Cooperative Work in Design, IEEE Computer Society, pp. 470-475.  

Zhao, Y., Wang, X. & Halang, W. 2006, "Ontology Mapping based on Rough Formal Concept 

Analysis", Proceedings of the Advanced International Conference on Telecommunications 

and International Conference on Internet and Web Applications and Services, IEEE 

Computer Society, pp.1-7.  

Zhou, L. 2007, "Ontology learning: state of the art and open issues", Information Technology and 

Management, vol. 8, no. 3, pp. 241-252.  

Zouaq, A. & Nkambou, R. 2008, "Building Domain Ontologies from Text for Educational 

Purposes", IEEE Transactions on Learning Technologies, vol. 1, no. 1, pp. 49-62.  

Zuniga, G.L. 2001, "Ontology: its transformation from philosophy to information systems", 

Proceedings of the international conference on Formal Ontology in Information Systems 

ACM, pp. 187-197.  



Appendix A 

 

 210  

Appendix A 

Concept Extraction Code 
 

Complex Relation 
 

Phase: ComplexRelation 

Input: Token Tokens COTag InnerElement SeqTag 

Options: control = applet 

 

Macro: EndElementTag 

 

 (  

 {Token.string == "type"} 

 {Token.string == "="} 

 {Token.kind == punctuation} 

 {Token.kind == word} 

 {Token.kind == punctuation} 

 {Token.kind == word} 

 {Token.kind == punctuation} 

 ) 

Rule: fullElementTag 

Priority: 50 

( 

 //This looks for the complexType of <ComplexType name = 

  ( 

 ( 

    (  

   {COTag} 

     {Token.string == "name"} 

    {Token.string == "="} 

     {Token.kind == punctuation} 

   ) 

       ( 

     {Token.kind == word} 

   ):className 

   (  

   {Token.kind == punctuation} 

      {Token.string == ">"}  

  ) 

 ) 

 | 

 // This looks for the other complexType when the element tag comes before 

 (( 

   {Token.string == "<"} 

   {Token.kind == word} 

   {Token.string == ":"} 

   {Token.string == "element"} 

   {Token.string == "name"} 

   {Token.string == "="} 

   {Token.kind == punctuation} 

  ) 

  ( 

   {Token.kind == word} 

  ):className 

  ( 



Appendix A 

 

 211  

   {Token.kind == punctuation} 

      {Token.string == ">"}  

  ) 

  ( 

   {COTag} 

   {Token.string == ">"} 

  )   

  ) 

 ) 

 ({SeqTag}) 

 

  // This looks for the first element.   

 ((  

    {InnerElement} 

    ( 

     {Token.kind == word} 

  

    ):elementAtt1 

   {Token.kind == punctuation} 

    (EndElementTag)? 

   ({Token.string == "/"}) 

    ({Token.string == ">"})  

   ) ?  

 ):att1 

  // This looks for another element.   

 ((  

    {InnerElement} 

    ( 

     {Token.kind == word} 

     ):elementAtt2 

   {Token.kind == punctuation} 

    (EndElementTag)? 

   ({Token.string == "/"}) 

    ({Token.string == ">"})  

   ) ? ):att2 

 

  // This looks for another element.   

 ((  

    {InnerElement} 

    ( 

     {Token.kind == word} 

   ):elementAtt3 

   {Token.kind == punctuation} 

    (EndElementTag)? 

   ({Token.string == "/"}) 

    ({Token.string == ">"})  

   ) ? ):complexRelation 

-->  

:complexRelation.ComplexRelaion = {rule = "ComplexRelation", Class = 

:className.Token.string , Attribute=:elementAtt1.Token.string }, 

:att1.Att1 ={ Class = :className.Token.string, Attribute=:elementAtt1.Token.string}, 

:att2.Att2 ={ Class = :className.Token.string, Attribute=:elementAtt2.Token.string} 

 

Simple Element 
 
Phase: simpleElement 

Input: Token Tokens InnerElement COTag 



Appendix A 

 

 212  

Options: control = applet 

 

Macro: EndingTag 

 (  

 {Token.string == "type"} 

 {Token.string == "="} 

 {Token.kind == punctuation} 

 {Token.kind == word} 

 {Token.kind == punctuation} 

 {Token.kind == word} 

 {Token.kind == punctuation} 

 ) 

 

Rule: SimpleElement 

Priority: 50 

( 

 {InnerElement} 

 ({Token.kind == word}): SE 

 {Token.kind == punctuation} 

 (EndingTag)? 

 {Token.string == "/"} 

 {Token.string == ">"} 

) 

-->  

:SE.SimpleElement = {rule = "SimpleElement"} 

 

Complex Type 
Phase: complexOpen 

Input: Token Tokens 

Options: control = applet 

//defines opening tag till the name including " 

Rule: complexOpenning 

Priority: 50 

( 

({Token.string == "<"}) 

({Token.kind == word}) 

({Token.string == ":"}) 

({Token.string == "complexType"}) 

): complexOpenningTag 

-->  

:complexOpenningTag.COTag = {rule = "complexOpen"}



Appendix B 

 

 213  

Appendix B 

Examples of CN-Match Code 
 

Single Term and Binary CN Matching 

 
import java.io.FileNotFoundException; 

import java.io.IOException; 

import java.util.ArrayList; 

import net.didion.jwnl.JWNLException; 

import org.semanticweb.owl.align.AlignmentException; 

public class SingleWordAndCompoundMatching { 

    double score = 0.0; 

    public SingleWordAndCompoundMatching() 

    {} 

    public double performSingleAndCompoundMatching(String label1, String label2) throws 

IOException, JWNLException, FileNotFoundException, AlignmentException 

    { 

        ArrayList<String> list1 = new ArrayList<String>(); 

        ArrayList<String> list2 = new ArrayList<String>(); 

        ArrayList<String> listOfC21C22 = new ArrayList<String>(); 

        CheckingWordNetEntryOfSingleWords checkingWordNetEntryOfSingleWords = new 

CheckingWordNetEntryOfSingleWords(); 

        CheckingWordNetEntryOfCompounds checkingWordNetEntryOfCompounds = new 

CheckingWordNetEntryOfCompounds(); 

        SingleWordsMatching singleWordsMatching = new SingleWordsMatching(); 

        LinguisticSimilarity linguisticSimilarity = new LinguisticSimilarity(); 

        Tokenizer tokenizer = new Tokenizer(); 

        list1 = tokenizer.tokenize(label1); 

        list2 = tokenizer.tokenize(label2); 

        String C11, C21C22; 

        double score1 = 0.0, score2 = 0.0; 

        if(list1.size()==2) 

        { 

            C21C22 = list1.get(0) + list1.get(1); 

            listOfC21C22 = list1; 

            C11 = list2.get(0); 

        } 

        else //list2 size is 2 

        { 

            C21C22 = list2.get(0) + list2.get(1); 

            listOfC21C22 = list2; 

            C11 = list1.get(0); 

        } 

        boolean C11Entry = checkingWordNetEntryOfSingleWords.checkingEntry(C11); 

        boolean C21C22Entry = 

checkingWordNetEntryOfCompounds.checkingEntryOfCompounds(listOfC21C22); 

        String C21 = listOfC21C22.get(0); 

        String C22 = listOfC21C22.get(1); 

        /* If C21C22 has entry, 

        *       check if C11 has entry, if yes, perform linguistic matching between C11 and C21C22 

and get score */ 

        if (C21C22Entry) 

        { 

            if (C11Entry) 

            { 



Appendix B 

 

 214  

                score = linguisticSimilarity.performLinguisticSimilarity(C11, C21C22); 

                System.out.println("Score= " + score);           }        } 

                /*if C21C22 does not have entry, 

             *      match C11 with C21 using singleWordsMatching and get score1. Score = 0.2*score1. 

             *      match C11 with C22 using singleWordsMatching and get score2  Score = 0.8*score2. 

             */ 

        else 

        { 

            score1 = singleWordsMatching.performSingleWordsMatching(C11, C21); 

            score2 = singleWordsMatching.performSingleWordsMatching(C11, C22); 

            if (score2 >= score1) 

            { 

                score = 0.8*score2; 

                System.out.println("Score2= " + score2); 

            } 

            else 

            { 

                score = 0.2*score1; 

                System.out.println("score1= " + score1); 

            }   } 

        return score; 

    }} 

 

Single Term and Triple CN Matching 

import java.io.FileNotFoundException; 

import java.io.IOException; 

import java.util.ArrayList; 

import net.didion.jwnl.JWNLException; 

import org.semanticweb.owl.align.AlignmentException; 

 

/* 

 * Single Word Label:  C11 

Triple Compound Label: C21C22C23 

 */ 

public class SingleWordAndTripleCompoundMatching { 

 

    double score = 0.0;     

 

    public SingleWordAndTripleCompoundMatching() 

    {} 

 

    public double performSingleWordAndTripleCompound(String label1, String label2) throws 

IOException, JWNLException, FileNotFoundException, AlignmentException 

    { 

         

        ArrayList<String> list1 = new ArrayList<String>(); 

        ArrayList<String> list2 = new ArrayList<String>(); 

        ArrayList<String> listOfC21C22C23 = new ArrayList<String>(); 

        Tokenizer tokenizer = new Tokenizer(); 

        String C11, C21C22C23; 

        list1 = tokenizer.tokenize(label1); 

        list2 = tokenizer.tokenize(label2); 

        double score1 = 0.0, score2 = 0.0, score31 = 0.0, score32 = 0.0, score33 = 0.0; 

        int indicator = -1; 

        CheckingWordNetEntryOfSingleWords checkingWordNetEntryOfSingleWords = new 

CheckingWordNetEntryOfSingleWords(); 



Appendix B 

 

 215  

        CheckingWordNetEntryOfCompounds checkingWordNetEntryOfCompounds = new 

CheckingWordNetEntryOfCompounds(); 

        SingleWordsMatching singleWordsMatching = new SingleWordsMatching(); 

        LinguisticSimilarity linguisticSimilarity = new LinguisticSimilarity(); 

       /* C11 

        * C21C22C23 */ 

        if (list1.size() ==3) 

        { 

            listOfC21C22C23 = list1; 

            C21C22C23 = label1; 

            C11 = label2; 

        } 

        // Label2 is a Triple Compound 

        else 

        { 

            listOfC21C22C23 = list2; 

            C21C22C23 = label2; 

            C11 = label1; 

        } 

        String C21C22 = listOfC21C22C23.get(0) + listOfC21C22C23.get(1); 

        String C22C23 = listOfC21C22C23.get(1) + listOfC21C22C23.get(2); 

        String C21 = listOfC21C22C23.get(0); 

        String C22 = listOfC21C22C23.get(1); 

        String C23 = listOfC21C22C23.get(2); 

        ArrayList<String> listOfC21C22 = new ArrayList<String>(); 

        ArrayList<String> listOfC22C23 = new ArrayList<String>(); 

        listOfC21C22.add(0, listOfC21C22C23.get(0)); 

        listOfC21C22.add(1, listOfC21C22C23.get(1)); 

        listOfC22C23.add(0, listOfC21C22C23.get(1)); 

        listOfC22C23.add(1, listOfC21C22C23.get(2)); 

                 

        boolean C21C22Entry = 

checkingWordNetEntryOfCompounds.checkingEntryOfCompounds(listOfC21C22); 

        boolean C22C23Entry = 

checkingWordNetEntryOfCompounds.checkingEntryOfCompounds(listOfC22C23); 

        boolean C11Entry = checkingWordNetEntryOfSingleWords.checkingEntry(C11); 

 

        /* Case1: if C21C22 has entry, 

         *      check if C11 has entry, if yes, perform linguistic matching between C11 and C21C22 

and get score1. */ 

        if (C21C22Entry) 

        { 

            if (C11Entry) 

            { 

                score1 = linguisticSimilarity.performLinguisticSimilarity(C21C22, C11); 

            } 

        } 

 

        /* Case2: if C22C23 has entry, 

         *      check if C11 has entry, if yes, perform linguistic similarity between C22C23 and C11 

and get score2.*/ 

        if (C22C23Entry) 

        { 

            if (C11Entry) 

            { 

                score2 = linguisticSimilarity.performLinguisticSimilarity(C22C23, C11); 

            } 

        } 



Appendix B 

 

 216  

        /* Case3: if neither C21C22 nor C22C23 has entry, 

         *      match C11 with C21 using SingleWordsMatching and get score31. 

         *      match C11 with C22 using SingleWordsMatching and get score32. 

         *      match C11 with C23 using SingleWordsMatching and get score33.*/ 

         if (!C21C22Entry&&!C22C23Entry) 

         { 

             score31 = singleWordsMatching.performSingleWordsMatching(C11, C21); 

             score32 = singleWordsMatching.performSingleWordsMatching(C11, C22); 

             score33 = singleWordsMatching.performSingleWordsMatching(C11, C23); 

         } 

        double scores[] = {score1, score2, score31, score32, score33}; 

 

        /* We select the highest score because it means that the single word is most probably similar 

in meaning to the one which has the highest score with*/ 

        for (int i = 0; i<scores.length; i++) 

        { 

            if (scores[i] >= score) 

            { 

                score = scores[i]; 

                indicator = i; 

            } 

        } 

        /* If score1 is the highest, score =  */ 

 

        if (indicator == 0) 

        { 

            score = 0.2*score1; 

        } 

        else if (indicator == 1) 

        { 

            score = score2; 

        } 

        else if (indicator == 2) 

        { 

            score = 0.1*score31; 

        } 

        else if (indicator == 3) 

        { 

            score = 0.1*score32; 

        } 

        else if (indicator == 4) 

        { 

            score = 0.8*score33; 

        } 

         

        return score; 

    } 

} 

 



Appendix C 

 

 217  

Appendix C 

An Example of an Annotated Service: Bookinfoport 

       

<xml version="1.0" encoding="utf-8"?> 

<wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 

xmlns:s="http://www.w3.org/2001/XMLSchema" 

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:tns="GetBookInfoByISBN" 

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" 

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" targetNamespace="GetBookInfoByISBN" 

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> 

  <wsdl:types> 

    <s:schema elementFormDefault="qualified" targetNamespace="GetBookInfoByISBN"> 

      <s:element name="GetBookInfoByISBN"> 

        <s:complexType> 

          <s:sequence> 

            <s:element minOccurs="0" maxOccurs="1" name="Isbn" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Isbn" type="s:string" /> 

            <s:element minOccurs="0" maxOccurs="1" name="CustomerAccount" 

sawsdl:modelReference = "http://www.w3.org/2000/10/swap/pim/contact#CustomerAccount"  

type="s:string" /> 

            <s:element minOccurs="0" maxOccurs="1" name="CustomerSubAccount" 

sawsdl:modelReference = "http://www.w3.org/2000/10/swap/pim/contact#CustomerSubAccount"  

type="s:string" /> 

            <s:element minOccurs="0" maxOccurs="1" name="LoginName" sawsdl:modelReference 

= "http://www.w3.org/2000/10/swap/pim/contact#LoginName" type="s:string" /> 

            <s:element minOccurs="0" maxOccurs="1" name="LoginPassword" 

sawsdl:modelReference = "http://www.w3.org/2000/10/swap/pim/contact#LoginPassword" 

type="s:string" /> 

          </s:sequence> 

        </s:complexType> 

      </s:element> 

      <s:element name="GetBookInfoByISBNResponse"> 

        <s:complexType> 

          <s:sequence> 

            <s:element minOccurs="0" maxOccurs="1" name="GetBookInfoByISBNResult" 

type="tns:BookInfoResponseType" /> 

          </s:sequence> 

        </s:complexType> 

      </s:element> 

      <s:complexType name="BookInfoResponseType"> 

        <s:sequence> 

          <s:element minOccurs="0" maxOccurs="1" name="Status" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Status"  type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Book" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Book"  type="tns:Book" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Marc" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Marc"  type="s:string" /> 

        </s:sequence> 

      </s:complexType> 

      <s:complexType name="Book" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Book"  > 

        <s:sequence> 



Appendix C 

 

 218  

          <s:element minOccurs="0" maxOccurs="1" name="Title" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Title" type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Author" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Author" type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Isbn" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Isbn" type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Publisher" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Publisher" type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="PublicationDate" 

sawsdl:modelReference = "http://islab.hanyang.ac.kr/damls/BookProperty.daml#PublicationDate" 

type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="PublicationPlace" 

sawsdl:modelReference = "http://islab.hanyang.ac.kr/damls/BookProperty.daml#PublicationPlace" 

type="s:string" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Edition" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Edition" type="s:string" /> 

          <s:element minOccurs="1" maxOccurs="1" name="DiscountPrice" sawsdl:modelReference 

= "http://islab.hanyang.ac.kr/damls/BookProperty.daml#Price" type="s:double" /> 

          <s:element minOccurs="0" maxOccurs="1" name="Availability" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Availability" type="s:string" /> 

          <s:element minOccurs="1" maxOccurs="1" name="ListPrice" sawsdl:modelReference = 

"http://islab.hanyang.ac.kr/damls/BookProperty.daml#Price" type="s:double" /> 

          <s:element minOccurs="1" maxOccurs="1" name="DiscountPercent" 

sawsdl:modelReference = "http://islab.hanyang.ac.kr/damls/BookProperty.daml#DiscountPercent" 

type="s:double" /> 

        </s:sequence> 

      </s:complexType> 

      <s:element name="BookInfoResponseType" nillable="true" 

type="tns:BookInfoResponseType" /> 

    </s:schema> 

  </wsdl:types> 

  <wsdl:message name="GetBookInfoByISBNSoapIn"> 

    <wsdl:part name="parameters" element="tns:GetBookInfoByISBN" /> 

  </wsdl:message> 

  <wsdl:message name="GetBookInfoByISBNSoapOut"> 

    <wsdl:part name="parameters" element="tns:GetBookInfoByISBNResponse" /> 

  </wsdl:message> 

  <wsdl:message name="GetBookInfoByISBNHttpGetIn"> 

    <wsdl:part name="ISBN" type="s:string" /> 

    <wsdl:part name="CustomerAccount" sawsdl:modelReference = 

"http://www.w3.org/2000/10/swap/pim/contact#CustomerAccount"  type="s:string" /> 

    <wsdl:part name="CustomerSubAccount" sawsdl:modelReference = 

"http://www.w3.org/2000/10/swap/pim/contact#CustomerSubAccount"  type="s:string" /> 

    <wsdl:part name="LoginName" type="s:string" /> 

    <wsdl:part name="LoginPassword" type="s:string" /> 

  </wsdl:message> 

  <wsdl:message name="GetBookInfoByISBNHttpGetOut"> 

    <wsdl:part name="Body" element="tns:BookInfoResponseType" /> 

  </wsdl:message> 

  <wsdl:message name="GetBookInfoByISBNHttpPostIn"> 

    <wsdl:part name="ISBN" type="s:string" /> 

    <wsdl:part name="CustomerAccount" sawsdl:modelReference = 

"http://www.w3.org/2000/10/swap/pim/contact#CustomerAccount"  type="s:string" /> 

    <wsdl:part name="CustomerSubAccount" sawsdl:modelReference = 

"http://www.w3.org/2000/10/swap/pim/contact#CustomerSubAccount"  type="s:string" /> 

    <wsdl:part name="LoginName" type="s:string" /> 

    <wsdl:part name="LoginPassword" type="s:string" /> 

  </wsdl:message> 



Appendix C 

 

 219  

  <wsdl:message name="GetBookInfoByISBNHttpPostOut"> 

    <wsdl:part name="Body" element="tns:BookInfoResponseType" /> 

  </wsdl:message> 

  <wsdl:portType name="BookInfoServiceSoap"> 

    <wsdl:operation name="GetBookInfoByISBN"> 

      <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Stock Status Check by ISBN and 

Customer ID</documentation> 

      <wsdl:input message="tns:GetBookInfoByISBNSoapIn" /> 

      <wsdl:output message="tns:GetBookInfoByISBNSoapOut" /> 

    </wsdl:operation> 

  </wsdl:portType> 

  <wsdl:portType name="BookInfoServiceHttpGet"> 

    <wsdl:operation name="GetBookInfoByISBN"> 

      <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Stock Status Check by ISBN and 

Customer ID</documentation> 

      <wsdl:input message="tns:GetBookInfoByISBNHttpGetIn" /> 

      <wsdl:output message="tns:GetBookInfoByISBNHttpGetOut" /> 

    </wsdl:operation> 

  </wsdl:portType> 

  <wsdl:portType name="BookInfoServiceHttpPost"> 

    <wsdl:operation name="GetBookInfoByISBN"> 

      <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Stock Status Check by ISBN and 

Customer ID</documentation> 

      <wsdl:input message="tns:GetBookInfoByISBNHttpPostIn" /> 

      <wsdl:output message="tns:GetBookInfoByISBNHttpPostOut" /> 

    </wsdl:operation> 

  </wsdl:portType> 

  <wsdl:binding name="BookInfoServiceSoap" type="tns:BookInfoServiceSoap"> 

    <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" /> 

    <wsdl:operation name="GetBookInfoByISBN"> 

      <soap:operation soapAction="GetBookInfoByISBN/GetBookInfoByISBN" style="document" 

/> 

      <wsdl:input> 

        <soap:body use="literal" /> 

      </wsdl:input> 

      <wsdl:output> 

        <soap:body use="literal" /> 

      </wsdl:output> 

    </wsdl:operation> 

  </wsdl:binding> 

  <wsdl:binding name="BookInfoServiceHttpGet" type="tns:BookInfoServiceHttpGet"> 

    <http:binding verb="GET" /> 

    <wsdl:operation name="GetBookInfoByISBN"> 

      <http:operation location="/GetBookInfoByISBN" /> 

      <wsdl:input> 

        <http:urlEncoded /> 

      </wsdl:input> 

      <wsdl:output> 

        <mime:mimeXml part="Body" /> 

      </wsdl:output> 

    </wsdl:operation> 

  </wsdl:binding> 

  <wsdl:binding name="BookInfoServiceHttpPost" type="tns:BookInfoServiceHttpPost"> 

    <http:binding verb="POST" /> 

    <wsdl:operation name="GetBookInfoByISBN"> 

      <http:operation location="/GetBookInfoByISBN" /> 

      <wsdl:input> 

        <mime:content type="application/x-www-form-urlencoded" /> 



Appendix C 

 

 220  

      </wsdl:input> 

      <wsdl:output> 

        <mime:mimeXml part="Body" /> 

      </wsdl:output> 

    </wsdl:operation> 

  </wsdl:binding> 

  <wsdl:service name="BookInfoService"> 

    <documentation xmlns="http://schemas.xmlsoap.org/wsdl/" /> 

    <wsdl:port name="BookInfoServiceSoap" binding="tns:BookInfoServiceSoap"> 

      <soap:address location="http://edi.btol.com/bookinfoservice/bookinfoport.asmx" /> 

    </wsdl:port> 

    <wsdl:port name="BookInfoServiceHttpGet" binding="tns:BookInfoServiceHttpGet"> 

      <http:address location="http://edi.btol.com/bookinfoservice/bookinfoport.asmx" /> 

    </wsdl:port> 

    <wsdl:port name="BookInfoServiceHttpPost" binding="tns:BookInfoServiceHttpPost"> 

      <http:address location="http://edi.btol.com/bookinfoservice/bookinfoport.asmx" /> 

    </wsdl:port> 

  </wsdl:service> 

</wsdl:definitions> 

 

 

 


