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ABSTRACT

In this thesis, the author studies recursive subdivision algorithms for
curves and surfaces. Several subdivision algorithms are constructed and

investigated. Some graphic examples are also presented.

Inspired by the Chaikin’s algorithm and the Catmull-Clark’s algorithm,
some non-uniform schemes, the non-uniform corner cutting scheme and the
recursive subdivision algorithm for non-uniform B-spline curves, are
constructed and analysed. The adapted parametrization is introduced to
analyse these non-uniform algorithms. In order to solve the surface
interpolation problem, the Dyn-Gregory-Levin’s 4-point interpolatory scheme
is generalized to surfaces and the 10-point interpolatory subdivision scheme
for surfaces is formulated. The so-called Butterfly Scheme, which was firstly
introduced by Dyn, Gregory Levin in 1988, is just a special case of the
scheme. By studying the Cross-Differences of Directional Divided Differences,
a matrix approach for analysing uniform subdivision algorithms for surfaces is
established and the convergence of the 10-point scheme over both uniform
and non-uniform triangular networks is studied. Another algorithm, the
subdivision algorithm for uniform bi-quartic B-spline surfaces over arbitrary
topology is introduced and investigated. This algorithm is a generalization of
Doo-Sabin’s and Catmull-Clark’s algorithms. It produces uniform Bi-quartic
B-spline patches over uniform data. By studying the local subdivision matrix,
which is a circulant, the tangent plane and curvature properties of the limit

surfaces at the so-called Extraordinary Points are studied in detail.
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INTRODUCTION

With the development of science and technology, shape design
techniques have been forging ahead tremendously, especially in the past few
decades, to meet the increasing demands for machine tool design and
manufacture. The CAD/CAM systems, the UNISURF system and various
CAGD systems are only a few examples of this development. It is obvious
that the recursive subdivision technique plays a more and more important

role in this development.

Recursive subdivision methods consist of a class of numerically stable,
highly efficient, easily manipulated and implemented algorithms for the
generation of parametric curves and surfaces. All these methods use the idea
that the desired curves and surfaces are to be generated from some finite
points, called control points, control polygon or control net, by some iterative
methods consisting predominantly of simple local weighting processes. Some

of them can be explained as generalized corner cutting algorithms. For
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example, algorithms with the convex-hull property, such as de Casteljau’s
and Catmull-Clark’s algorithms, are this type of algorithm. These algorithms
are eminently suited for use in interactive computer aided design systems
because the produced curves and surfaces are smooth and can be controlled
locally by adjusting corresponding parameters. Therefore, they are very
popular and widely used in computer systems. Hence, more and more such

algorithms are being studied.

In order to study mathematically the properties of the the schemes as
well as their generated curves and surfaces, a variety of techniques are
introduced: Dyn-Gregory-Levin’s generator matrix analysis, Micchelli-
Prautzsch’s invariant approach and Cavarerta-Dahmen-Micclelli’s regular
subdivision technique. These methods are only suitable for analysing the
so-called uniform subdivision schemes. The non-uniform schemes, which are

very useful in practice but difficult to analyse, are now being studied.

In order to develop the existing curve and surface design techniques and
mathematical analyses, the thesis is concerned with the construction and
mathematical analysis of recursive subdivision algorithms, especially for
non-uniform subdivision schemes and interpolatory schemes. The major part
of our research work is contained in Chapter 3, 5 and 6. Chapter 1 is a
brief review of recursive subdivision algorithms. Some currently used
examples are brieﬂy- described. Chapter 2 is a survey of mathematical
methods used to analyse subdivision algorithms for curves and surfaces. In

Chapter 3, we study the non-uniform subdivision scheme for smooth curve

_2-
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generation and derive a recursive subdivision algorithm for B-spline curves
with simple knots. The Adapted Parametrization technique is introduced to
analyse non-uniform subdivision schemes. Chapter 4 describes the existing
surface generating algorithms and their corresponding mathematical
descriptions. In Chapter 5, we derive the subdivision algorithm for uniform
bi-quartic B-spline surfaces and generalize it to arbitrary networks. The
tangent plane and (normal) curvature properties of the limit surface at
extraordinary points are studied. Using the Block Circulant Matrix technique,
the Ball-Storry’s method for ¢' and ¢? surface analyses at an extraordinary
point is generalized. In Chapter 6, we study a [0-point interpolatory
subdivision scheme for surfaces over both uniform and non-uniform triangular
control nets. The Cross-Differences of Directional Divided Difference
approach for analysing uniform subdivision algorithms for surfaces is
presented. Using this method, the necessary and sufficient conditions for the
10-point interpolatory  scheme to produce ¢® and <C¢' surfaces are

investigated in details. Chapter 7 is a brief summary of the thesis.

The concern of this thesis is the mathematics and the techniques of
analyses for recursive subdivision schemes and so the applications of these
algorithms will not be discussed further. However, most of the discussed
schemes have been implemented in FORTRAN. Hence, some computer

graphics are included.



HAPTER ONE

A REVIEW OF RECURSIVE SUBDIVISION ALGORITHMS

In this Chapter, we present a brief introduction to the development of
recursive subdivision algorithms. Some mathematical notations are introduced

and some of the most widely used examples are also described.

1.1. A Brief History of Recursive Subdilvision Techniques

Recursive subdivision algorithms can be viewed as a class of iterative
algorithms that are used to calculate, to generate and to approximate curves
and surfaces. Their main feature is that they use initially only some finite data
points (control points) to finally produce continuous, or even differentiable
curves or surfaces. These methods are mainly based on using some form of
local line averaging processes. The most important advantage of using these

algorithms in interactive computer aided design is that they are numerically
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stable, very efficient, locally adjustable and easily implemented.

Although Recursive Subdivision Algorithms, or RSA for short, have been
used for curve and surface generation for a long time by both mathematicians
and other scientists and technicians, they only received a good deal of
research attention in recent years. Some of the early examples are the
Carpenter’s Technique which was used to produce a smooth corner from a
sharp angular corner with simple tools [46] and the corner cutting technique
that was used by some ancient Chinese mathematicians to approximate a

circle from a regular hexagon by repeatedly chopping off corners in order to

find the circumference of the circle [72].

About forty years ago, de Rahm studied a subdivision algorithm from a
mathematical point of view in order to find some generally singular functions
(in the sense of Lebesgue). This triggered off the modern era for the
investigation of subdivision algorithms. He used a functional equation to
introduce the curve subdivision idea and then studied a simple corner cutting
algorithm, the "trisection algorithm”, in detail in [101,102]. In the early sixties,
de Casteljau from the French car company Citroen developed an iterative line
averaging algorithm, the de Casteljau algorithm (a subdivision algorithm), for
the calculation of Bernstein-Bezier curves [9,26]. These techniques play a

central role in the rapid development of recursive subdivision algorithms.

With the advent of computers, recursive subdivision algorithms are being

used increasingly in approximation theory and computer aided geometric

_5-
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design as a method for the generation and definition of curves and surfaces.
Consequently, more and more attentions are being given to the studies of
stable and efficient algorithms for the computation of curves and surfaces.
Other problems, such as efficiency and user friendly software in interactive
computer aided design, also arise. As a result, de Boor and Cox derived
independently a recursive algorithm for the calculation of B-spline curves
[24,37); and G.M. Chaikin, in 1974, constructed an algorithm (Chaikin’s
algorithm) for high speed curve generation [30]. In 1975, Riesenfeld proved
that the curves produced by Chaikin’s algorithm were uniform quadratic
B-spline curves [103]. The success of the studies of these algorithms

encouraged more and more studies in curve and surface generation algorithms

[1,28,33,69,71,76,81,85,92,...]

In 1978, Doo and Sabin constructed and analysed a surface generating
recursive subdivision algorithm over arbitrary topology (Doo-Sabin’s
algorithm) [44,46]. In the same year, Catmull and Clark, in order to seek
subdivision algorithms producing smoother fitted patches over arbitrary
networks, developed a subdivision algorithm for uniform bi-cubic B-spline
patches (Catmull-Clark’s algorithm) [27]. This algorithm was then fully
analysed by Ball and Storry in [1,2,3,116]. Since then, a huge amount of

research work on subdivision algorithms and techniques have been developed.

The studies and implementations of recursive subdivision algorithms has
been developing very fast in the recent years. As a result, many new and

powerful methods and techniques are being developed to construct and

_6-
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analyse more and more useful, flexible and complicated schemes. In the next
section, we give a brief list of some of the important results about recursive
subdivision algorithms. These include the Oslo algorithm [33] and Boehm’s
knot insertion algorithm for the calculation of B-spline curves [14]; the DGL
(Dyn-Gregory-Levin) scheme for curve and surface design [50,51]; the
Micchelli-Prautzsch invariant curve technique [85,86,88-90]; the regular
subdivision approach [28,29] (or generating polynomial analysis) of
Cavaretta-Dahmen-Micchelli and some analyses of non-uniform subdivision

schemes [53,70,71,81].

1.2. Examples of Recursive Subdivision Algorithms

In this section, for the sake of notational convenience, some mathematical
notations are introduced. These notations will be used throughout the whole
thesis to describe recursive subdivision algorithms. Some examples of

currently used subdivision algorithms are also given.

1.2.1. Mathematical Representations of Recursive Subdivision

Algorithms

What is a recursive subdivision algorithm? How to describe it
mathematically? In order to get some intuitive ideas about subdivision
algorithms, we describe some examples of the currently used recursive

subdivision algorithms below.
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For simplicity, we suppose that the control points for curves are in R* and
the control points for surfaces are in R®. We also assume that the curves and
surfaces are functions instead of parametric curves and surfaces. Unless

stated, the Uniform Parametrization is assumed (this will be discussed in

detail in Chapter 2).

In order to describe the algorithm clearly and mathematically, some
terminology and mathematical notations are needed. In the curve case, a
control polygon (f, f, f,» f, - f ), OF just {f} for short, is a piecewise linear
curve which interpolates the ordered data {f, f, f,, .. fJ) Any
parametrization of the piecewise linear curve is called the parametrization of
the control polygon, which is also called the parametrization of the limit curve

if the limit of the control polygon sequence is considered.

The basic idea of recursive subdivision algorithms is quite simple. Given
an initial control polygon ({f}, a RSA uses certain rules to generate a
refined control polygon {f;} and this process is repeated successively to obtain
{f\], the control polygon at level &, k =1, 2, ... Therefore, the RSA can be
described by some formulae corresponding to the rules which relates the
control polygon {f{*'} and {f;}. Hence, in the thesis, we use the refinement

formulae to describe its scheme for both curves and surfaces.

In the surface case, the control polygon { fu}, or sometimes called control

net or control polyhedron, is the piecewise linear (for triangular networks) or

-8-
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piecewise Dbi-linear (for tensor-product type schemes) surface which
interpolates the ordered data {f,}. These control polygons may have some
"holes” near the so-called extraordinary points, where some special treatments

are used to make the control polygons continuous. However, this irregular

situation will not be dealt with in this Chapter.

1.2.2. Some Currently Used Recursive Subdivision Algorithms

In this subsection, we list some important algorithms in curve and surface
calculation and generation. Although some of them are not recursive
subdivision algorithms, in the sense that we define them in this thesis, for
example, the de Boor algorithm and the Boehm’s knot insertion algorithm,
they provide an important tool for the analyses of certain subdivision

algorithms.

Example 1.1. The Carpenter’s Technique

No one knows when the Carpenter’s Technique was firstly used by
carpenters though it is one of the oldest and the most popular example of
RSA. The technique is to use simple tools to produce smooth corners by a

corner cutting process, as it is called now.

The technique is like this. Suppose a corner B is to be smoothed off from
A to c (Figure 1.1), the carpenter will divide 4B and BC into an equal

number of portions. By sawing along the straight lines joining the

-9-
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corresponding markings, as shown in the figure, a fairly smooth curve can be

obtained.

Figure 1.1,

It can be proved that the line segments left form the "envelope” of the

sawing lines if the number of portions is infinitely large. Furthermore, the

envelope is a parabolic curve [46,115].

There are many ways to prove the result. A simple proof can be obtained
by comparing the algorithm with the de Casteljau’s algorithm, or Chaikin’s
algorithm, for quadratics, which are described later in this subsection. The
technique is exactly the same as the Chaikin’s algorithm if the number of
portions goes to infinity in a doubling way 2, 4, 8, 16, 32, ... So from the

known result of Chaikin’s algorithm we know that the resulting smooth curve

1S a parabolic segment.

-10-
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Example 1.2. The De Casteljau Algorithm

In 1959, de Casteljau formulated an algorithm for the computation of
polynomial curves [26]. The algorithm for quadratics is the same as the
Carpenter’s algorithm and the Chaikin’s algorithm (locally).  So the algorithm

for cubic polynomial curves is presented here.

Given four control points, say {f}, the cubic Bernstein-Bezier polynomial

curve is defined by:

(1.2) P@ = 2122 f, B, for 0 < t <1,
where, B () is the Bernstein-Bezier basis of the cubic polynomials:

6
(1.2) B () = £ (1=, for 0 < ¢+ <1
: 1(3—i)!

The de Casteljau algorithm asserts that the curve P(r) can be split into
two cubic segments at any point on the curve and that their control polygons
can be calculated from the original one by a line averaging algorithm. For
example, suppose the curve is split at the midpoint P(1/,), then the new control

polygons are given by the following formulae (Figure 1.2):

fe = fo
=@ +£)2
L= +2f1 + £,)/a

(13) fro= + 3+ 35, + £3)/8
A= 430 436+ £ /3
2=y + 261+ f)/a
2=+ )2
i = fs

-11-
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If we define:

(14) Py =3 _ £ B0 P =3B 0 ad P =3 _»"B @
then

P  for o
PR@—1) for 1/, < @

IA
AN

(1.5) Pe = 1/2

IN

The importance of the algorithm lies in the fact that the produced curve
has the invariant property, that is, the original curve can be split into two
parts and each part can be represented in the same form as the original curve.
It is just this property that leads to the recent intensive investigation of
invariant curves and their corresponding subdivision algorithms [41,42,85]
and [86,88,90...]. From this example, it can be easily shown, by some simple
calculations, that the new, subdivided control polygons are much smaller (the
convex hull) and smoother (less variation of the control polygons) than that
of the original one. Another important idea in recursive subdivision
algorithms, the so called Bernstein Bezier Polygon (net) Iteration technique, is

initiated. These studies lead to the rapid development of the RSA.

Figure 1.2.

-12-
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Because of the stability, efficiency and simplicity of the algorithm, many
computations concerning piecewise polynomial curves are firstly transformed

into their equivalent Bernstein-Bezier forms and then manipulated [56,60].

Example 1.3. The Chaikin’s Algorithm

In 1974, GM. Chaikin derived a high speed curve generation algorithm
from data points [30]. The algorithm is the very case de Rahm omitted to
study [101,102]. The study of the algorithm uncovers an area of control point
representation of curves and surfaces, sometimes referred to as "discrete curves

and surfaces” [122].

The motivation of the algorithm is to generate smooth curves by a series
of continuous piecewise linear segments, the control polygon series as it is
called now, which can be computed sequentially by a local, simple and

adjustable algorithm from the previous ones. The algorithm is as follows.

Given the data {f°), which is also called the initial control polygon (Figure
1.3), the algorithm generates a series of control polygons {(f;}, k=1, 2, ... by

the following formulae (mask):

fil = G+

(1.6)
f:-r-:—l = (f; +3fin)a

The curve of the algorithm is defined as the limit of the control polygon
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sequence. In 1975, Riesenfeld proved that the limit curve was just a uniform
Quadratic B-spline curve [103]. The result could also be obtained by
comparing the algorithm with the de Casteljau algorithm for Quadratics or by

using Boehm’s knot insertion algorithm for uniform quadratic B-spline curves

[14].

Figure 1.3.

Example 1.4. The Catmull-Clark Algorithm (for curves)

As the demands for smooth surface generation algorithms increased, in
1978, Catmull and Clark [27] and Doo and Sabin [45] formulated an
algorithm for surfaces. Although the algorithm was derived for surfaces, it
mainly came from the corresponding algorithm for the generation of uniform

cubic B-spline curves since it is a tensor-product type algorithm.

In the curve case, the idea of the algorithm is the same as the Chaikin’s
algorithm. More explicitly, the algorithm produces cubic B-spline curves with

uniform knots partition from given data points {f%). The subdivision
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equations:

f‘;‘:-l =(fi + f‘i(+l)/2
fJZ‘T-lH = (f’: + 6ff+1 + fl:+2)/8

(1.7)

characterize the subdivision algorithm. Figure 1.4 shows the subdivision

process.

k
fi+3

Figure 1.4.

Example 1.5. The Uniform Quartic B-spline Algorithm

This algorithm is a generalization of the Chaikin’s and Carmull-Clark’s
algorithm for the generation of uniform quartic B-spline curves. It is shown in
[50,76,85] that any uniform B-spline curve can be produced by such an
algorithm (this can also be proved by Boehm’s knot insertion algorithm). The
process is similar to those described in example 1.3 and 1.4. Thus, it is

suffices to just give the subdivision formulae of the algorithm:
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(18 aH =(5f; + 10F5,+ ££.,)/16
faim  =UF +1084, 457 /g6

Figure 1.5 shows the smoothing process,

Figure 1.5.

Example 1.6. Non-uniform Corner Cutting Algorithm

This algorithm is just a complement of the Chaikin’s algorithm for
smooth curve generation. The motivation came from de Boor’s corner cutting
studies [21] and de Rahm’s original works [101,102]. The algorithm seeks
(sufficient) conditions for smooth corner cutting conditions (Chapter 3). It is
proved that the scheme produces smooth curves if a proper parametrization
(adapted parametrization) is used. However, it should be noted that the result

thus obtained can not be proved by using the "diadic parametrization”
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technique as it is used in [50,51,85,86]. The scheme will be studied in detail

in Chapter 3.

Example 1.7. The Subdivision Algorithm for Non-uniform B-spline

Curves

Since both the Chaikin’s algorithm and the Carmull-Clark’s algorithm are
for the generation of B-spline curves with uniform knot partition, we present
here a generalization of these algorithms such that the B-spline curves with
simple knots can be produced in.a similar way. The scheme can be regarded
as a generalisation of Boehm’s knot insertion or a special result of the Oslo
algorithm (Chapter 3). The difference is that the scheme uses a special
simultaneous knot insertion technique (knot doubling process) so that the

whole spline curve can be approximated.

In order to give an outline of the subdivision algorithm, we present only
the schemes for cubic and quartic B-spline curves. Their corresponding
subdivision formulae are given by equations (1.9) and (1.10) respectively. The

subdivision processes are shown in Figure 1.7« and 1.7s.

- . k
£ = a-a) ff + df fip

(1.9) ! ' k___ky ck k- gk
ft = 1+ Qb+ e Fh

and

(1.10) firt =+ D Y fln

1.1

f;:lq = x‘: fi+ (l—xi"—y‘:)ffﬂ + y': fisn
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where the weights {a*, b*, ¢, *, V%, x*, y*} are determined by the chosen knots
; g 13 1] ! i 13 1 [}

sk < sf+l and the chosen shape parameter f 0 < ¢ < 1, in the following

way:
k41 _
S5 =g
(1.11)
k+1
3141 =(1 t)s +t :+1
and
k gk+1
k _ (Si+l 21—1)( z+1 t 1)
a, = ; X
(Si+l_si—1)( i1 Sz 2)
k k41
(s..—s.7.)
(1.12) | o = & 2 g
i 3 x i
(Si+1—si——1)
k+1 k
(7. ,—S.
k 2i+1 i—1 k
¢ = 3 ) (-a;,)
(Si+l—si—1
and
k G+ Gkl
K (S5~ 21+5)( i+5 52147
u =
i k k k k
(si+5_si+l)(si+5 si+2)
k+1 ) (551 s )
k (s2i+5 i+4 2i47 i+4
VvV =
i k k ko k
(1.13) (840551420 46 Si42)
k+1 g+l gkt
X (S2i49 — 2l+7) (sz+5 Syi47)
x, = X
H k ——
(si+s"si+1) (Si+5 Siv2)
k+1 +1 _
X (S2i+7— z+4) (sk x+4)
i T S ) (55 —sk )
(Sips = Siv2) Gite ~ Sig2
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+1
2i42 +1 /
2i43

~~7

Figure 1.7a.

fiss

+1
/2|+4

Figure 1.7b.
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Example 1.8. The De Boor's Algorithm (for B-splines)

Since the de Boor algorithm for B-splines [24,37] plays a very important
role in the construction and study of recursive subdivision algorithms, this

part is devoted to a brief discussion on the de Boor algorithm.

Although the de Boor algorithm is not a RSA as we will define it in
Chapter 2, many RSA concerning the generation, computation and
approximation of spline curves can be derived from this algorithm. The main
feature of the algorithm is the u-se of the de Boor-Cox recurrence relation of
the normalized B-spline basis function B, , the i-th normalized B-spline of

order » with knots x, x,_,. .., x,, where x, <x, for all i. More concretely,

the recurrence relation of {B, } is given by:

x—x,, )C——)C‘,_H
(1.14) B = ——— B, (0)+ —— B, (%)

Ll X X X X
i+n—1 i i4n  Titl

where, x is the variable which is omitted in the basis functions.

From (1.14), the de Boor algorithm for B-spline curves can be easily

formulated. Suppose the spline curve is given by
(1.15)  Px) =), P, B (0

then the value of the curve at x=rx_ < ¢ < x,,, IS given by the de Boor

algorithm:
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(1.16) P(1)

Zi=m—n+1 Pi Bi.n (I)
m

= Zi:.m-—n+2 Pi.l(t) Bi,n—l (t)
m

= Licmnss P By @

= > " P ()B, @

i=m

P (1)

where, P.@® is determined by the recursion:

t— X,

(1.17) P () = ———P 0 + —xi’-‘i‘—‘—:t—P )

i—-1,j—1 x ij—1
i+n—1 i i+n—1 i

for j=12 ..n-1and i= m—n+j+1, .., m, and P‘..o(t) = Pi, i = m—n+1, m—n+42, ..., m.

The algorithm comes from the repeated applications of the B-spline

recursion relations (1.14).

The algorithm has the following properties.

(i). Each step is a convex combination combination, so it iS a stable

algorithm.

(ii). The algorithm can be regarded as a corner cutting process (from

the geometric construction).

(iii). The algorithm reflects the local property of the B-splines.
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Figure 1.8 shows the geometric construction of the algorithm for a

cubic B-spline curve.

i+2

Figure 1.8.

Example 1.9. The Boehm’s Knot Insertion Algorithm (for B-splines)

Although the de Boor algorithm is the best algorithm for calculating
B-splines (the algorithm dominates the point-evaluation of splines), W. Boehm in
1980 provided yet another powerful alternative to the algorithm for
manipulating B-spline curves [14]. The technique was introduced not from the
viewpoint of calculating B-splines, but from the viewpoint of spline curve

design, construction and subdivision.

The algorithm is even more important than the de Boor algorithm since
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the latter is just a special result of its inferences. More explicitly, the de Boor
algorithm can be obtained by inserting the same knot repeatedly for a number
of times. By inserting some proper new knots and adjusting their
corresponding control points, one can obtain the desired curve very
conveniently. Another advantage of the knot insertion algorithm is that it
combines the calculation (exact value) of B-splines with the approximation (by
control polygons) of B-splines by means of a recursive subdivision algorithm.
It will be shown in the later Chapters that the recursive subdivision algorithm

for non-uniform B-spline curves can be constructed by the knot insertion

technique.

The algorithm is straight forward and simple. Since it deals with

B-splines, the notations in Example 1.8 are used here.

Now, suppose a new knot, y, x, < y < x| is be be inserted into the

original knot sequence {x}, then the new knot sequence {»} becomes:

X, fori < I
(1.18) y, = | » fori = 141
X, . fori > 142

i—-1 -

Let {M,} denote the normalized B-spline basis over the new knot
sequence {y}, then the spline curve given by (1.15) can also be expressed in

terms of the new basis {M, }:

(1.19) P =3 PB,(0) =3, &M, &
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The new control points {Q]} are given by the Boehm’s knot insertion

algorithm:

(1.20) 0, =0-¢)P_ +¢ P,

[

where, ¢, is given by

1 for i < Il-n41
y=y,
(1.21) ¢, = —_ for I—n42 < i <1
yi+n—yt
0 for i > 41

Obviously, 0 < ¢, < 1.

Figure 1.9 shows the geometric structure of the algorithm for a cubic

B-spline curve.

Qi+3

Figure 1.9.
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The algorithm has wide applications. It can be used to transfer the
control points of a B-spline curve into its corresponding piecewise
Bernstein-Bezier form by some corner cutting processes [56,60]. This problem
often arises in curve and surface design and computations. Another
application is that it can be used to prove the VD (Variation Diminishing)
property and the shape preserving property of B-spline curves and many other

important properties of B-spline curves and surfaces [77].

Example 1.10. The Dyn-Gregory-Levin Scheme (for curves)

The DGL scheme is a class of uniform subdivision scheme, which is fully
analysed in [50,51,85-90]. The scheme is a generalization of the Chaikin’s
and Catmull-Clark’s algorithms. It can produée any uniform B-spline curves
and some smooth interpolatory curves [48,121]. The main ideology of
constructing this scheme is weighted local averaging or weighted moving

averaging.

A special case of the scheme is the 4-point interpolatory subdivision

scheme. The scheme is defined by:

+ = f*
(1.22) ol :

;7 = (/2 + WS + fio) —wlio+ £i))

where, w is the tension parameter.
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It is proved that if —1/, < w < 1/5, the limit curve is continuous. If 0 < w
< (VS — 1)/, the scheme produces differentiable curves (with respect to the
uniform parametrization). In addition, the scheme reproduces all parametric

cubic polynomial curves when w = 1/4c. For more details, the interested

reader is referred to [48].

The subdivision process is shown in Figure 1.10.

Figure 1.10.

Example 1.11. The Doo-Sabin Algorithm

Inspired by the Carpenter’s Technique and the Chaikin’s algorithm, Doo
and Sabin constructed a recursive subdivision algorithm for smoothing down a

general polyhedron [44-46]. In fact, the algorithm is a tensor-product
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generalization of the Chaikin’s algorithm with special treatments for the
so-called extraordinary points. For tensor-product type data, the scheme

produces uniform bi-quadratic B-spline surface patches. More about the

algorithm will be given in Chapter 4.

Example 1.12. The Catmull-Clark’s Algorithm (for Surfaces)

As observed in Example 1.4, Catmull and Clark [27] and Doo and Sabin
[45] used the subdivision algorithm for bi-cubic B-spline patches. However,
the main purpose of their papers was to consider generalizations to arbitrary
networks. They observed that the algorithm could separate the extraordinary
points by tensor-product type data on which smoother surfaces could be
defined. Consequently, they modified the algorithm and hoped to get better
results. The algorithm will be given in Chapter 4. For more details and

mathematical analysis about the algorithm, see [1-3,27,127]

Example 1.13. The 10-Point Interpolatory Subdivision Algorithm

This scheme is an interpolatory RSA over arbitrary triangulations with
three parameters. It is a generalization of the DGL’s 4-point interpolatory
scheme for surfaces [48]. In the uniform case, the three parameters work as
three tension parameters along the three mesh directions. When they are all
zeros, the refined control polygons are the same as the initial one; when they

are chosen appropriately, the scheme reproduces any cubic parametric
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polynomial surfaces. In general, the scheme is a linear combination of the
above two cases. It is proved that it produces smooth surfaces provided that

the parameters are chosen to satisfy certain constraints. The scheme will be

discussed in detal in Chapter 6.

Example 1.14. The Butterfly Scheme

From the DGL’s 4-point interpolatory subdivision scheme (1.22), a
corresponding scheme for interpolatory surface generation is constructed over
arbitrary triangular networks. The burterfly scheme, which is firstly introduced
in [52], is a special case of the 10-point interpolatory scheme, when the
parameters satisfy certain conditions. The scheme will be discussed in detail
in Chapter 6. The main advantages of the butterfly scheme are smooth
interpolatory, simplicity and shape control. The tension parameter w, which
has very clear geometric explanation as in the curve case can be used to
manipulate the shape of the surfaces. In the special case of w = —1/44, the

scheme reproduces cubic parametric surfaces [52,69].

Example 1.15. The Dyn-Gregory-Levin Algorithm (for Surfaces)

As the DGL scheme is a very general subdivision scheme for curves, it is
natural to derive its corresponding subdivision scheme for surface generation.

The scheme has a direct tensor-product generalization for surfaces over
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uniform data. This will be described in Chapter 6.

Example 1.16. The Uniform Bi-quartic B-Spline Algorithm

The purpose of the construction of this scheme is to develop the
Doo-Sabin’s the Catmull-Clark’s algorithms in order to generate smooth
surfaces over arbitrary networks. The scheme produces uniform bi-quartic
B-spline surfaces over uniform data. For arbitrary networks, it is proved that
the scl'leme also produces smooth surfaces if the local shape parameters are

chosen properly. The details will be given in Chapter 5.
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SUBDIVISION ALGORITHMS FOR CURVES AND

SURFACES-FORMULATIONS AND TECHNIQUES

In this Chapter, some recursive subdivision algorithms for curve and
surface generation are introduced and their underlying  mathematical

techniques are described.

2.1. Introduction

Recursive Subdivision Algorithms (RSA ) for curves and surfaces have
received a good deal of research attention in recent years in the CAGD
(Computer Aided Geometric Design) literature. As a result, many RSA have
been developed for the generation of curves and surfaces. In some cases, due
to different mathematical standpoints, several explanations may exist for the

same algorithm. Consequently, different techniques are used to analyse them.
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In the papers by Dyn, Gregory-and Levin [50,51], the authors introduced,
by using a constructive method, a general form of uniform subdivision
algorithms (DGL scheme) which was called a Uniform Recursive Subdivision
Algorithm. In their analysis, they used the diadic parametrization technique and
the subdivision matrix (generator matrix) analysis to study the scheme, whereby
the difference scheme and the divided difference scheme play a very important
role. Recently, Cavaretta, Dyn, Levin and Micchelli used the so-called generating
polynomial technique to analyse the wuniform subdivision algorithms
[28,29,54,89-91]. Although the ideas of the technique they used are the same
as in the DGL’s analysis, their notations are very nice which make the whole

analysis of this type of algorithms very compact and neat.

Micchelli and Praurzsch [85,86,88-91] took also another (different) view
on uniform subdivision schemes. They observed that these algorithms are just
refinement algorithms and each iteration of any of the algorithms can be
viewed as a representation of the iirniting curve by a relatively refined basis.
So they also introduced a general form of RS4 and studied it together with the

limiting curves in a systematic way.

Although uniform subdivision algorithms constitute most of the RSA4,
there are still some non-uniform ones which are very important for curve and
surface generation and also for shape design. Some examples of this class of
RSA are the non-uniform corner cutting algorithms as described in [{21,70,81]

and some geometry based algorithms in [53,71].
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Using the adapted parametrization technique, we constructed and
analysed a smooth non-uniform corner cutting algorithm [70]. We also
derived a recursive subdivision scheme for non-uniform B-spline curves with

simple knots. The details of the algorithms will be given in Chapter 3.

Another type of non-uniform subdivision algorithms are studied by N.
Dyn, D. Levin and D. Liu in [53] and M. J. Hejna in [71]. This class of
algorithms consists of some geometry based algorithms which are
complements of uniform subdivision algorithms. The authors analyse the
algorithms together with limit curves by means of some special techniques.

These techniques are different from any of the previous methods.

For the purpose of convergence analyses, some mathematical notations
are needed. It is assumed that all the RSA are local algorithms. So, without
loss of generality, we suppose that the control polygons and the limit curves
are defined on a finite interval [a, b), Where, a < b. Thus, the uniform norm for

curves and control polygons on this interval can be applied so that the norm

(2.0)  If@l = max |f(n]
a<t<b

is assumed throughout the curve generating scheme analyses. Furthermore, a
RSA is called a uniform convergent scheme if for any initial control polygon
its refined control polygon sequence converges uniformly to a curve which is

continuous with respect to a regular parametrization.
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2.2. Uniform Subdivision Algorithm Analyses

In this section, we present some methods used to analyse the uniform
subdivision schemes. They are Dyn-Gregory-Levin's matrix analysis,
Micchelli-Prautzsch’s invariant analysis and the Cavaretta-Dahmen-Micchelli’s
regular subdivision analysis (Dyn-Levin-Micchelli’s generating polynomial
analysis). However, our method, the Differences and Cross-Difference of

Directional Divided Differences Analysis, will be described in detail in

Chapter 6.

2.2.1. Dyn-Gregory-Levin’s Matrix Analysis

This uniform subdivision algorithm, or the binary subdivision scheme
(BSS), was firstly introduced and analysed by Dyn, Gregory and Levin in

[50,51]. The scheme is defined as follows.

Let s ¢R", iez denote a sequence of control points in RY, N > 2,
where k is a non-negative integer. Then the DGL scheme, or a binary

subdivision process, S(a, b), is defined by the mask

i = 20 4 i
(2.1)
f;T-:—l = Zj.—:’(')' bi ff.;.j

where, a and b are the coefficient vectors
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(2.1a) a =(a,a,.qa, )
b :=(b,,b ,.b_ )

It is assumed that m > 0 and
(22)  laf+|5] >0 and |a |+]p | >0.

In particular, we assume b = 0 since if b = 0 the eqations defining the

subdivision process can be interchanged.

Many uniform subdivision algorithms are encompassed by this scheme:
the uniform B-spline scheme [51,76], DGL’s 4-point interpolatory scheme [48],

uniform corner cutting algorithms and many other uniform subdivision

algorithms [76,78].

To analyse the limit curves, the authors used the diadic parametrization,

that is, the control point f’: is associated with the diadic parametric point

(2.3) 6 = i2™*

for all integer i and k. By doing so, the control polygon f*(), which is defined
as the piecewise linear curve connécting the points (f%}, can then be treated as

the parametric piecewise linear interpolant satisfying f*¢*) = f. Hence, ()

is continuous.

Notice that in an interval [, ¢ ] at the k-th stage of the recursion, the

limit curve is determined completely by the control point vector

(2.4) fio = [f':' Firr = fl:+n1+l]‘

i+1’
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and that the control point vectors Foigat

and f

uxy at the k+ist stage are

determined by two linear transformations on f,» they introduced the square

Generator Matrix A, of order M, M = n +2, where

2m—1, =0
(2.5) A m for a_
2m, for a + 0.

In the case of a_ =+ 0, 4is defined by

a, a a, a_ 0.. 0 0
b0 bl b2 bm 0... 0 O
0 a, a, a_ 0 ... 0 0
(26) 4 =l0 b b b 0 0 0

-----------------------------------------------------

In the case of ¢ =0, then, M =2m +1, the generator matrix 4 is defined

as the matrix (2.6) with the last row and column deleted.

From the generator matrix 4, they also introduced the Left and Right
transformation (square) matrices 4, and 4, , both of order M-1. 4, is defined
as the matrix A with the last row and column deleted, whilst 4  is also
defined as the matrix A4 with the first row and the last column deleted. Thus,
from scheme (2.1), we can obtain

(2.7) = A f, and f = A f,

fZi.k+l 2+1.k+1

Therefore, for any diadic point p defined by
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(28) p = Z}:ﬁ p]_ 2"j

the history of the recursion is given by

(2.9) fo = A, A f
Furthermore, by studying the differences and the divided differences,

they established the following analysis for the scheme together with its limit

Curves.

Let ¢! denote the difference £ H—f’lf, then, it can be shown, provided
the necessary condition (2.12) below holds, that the differences satisfy the

Difference Scheme (we assume that the scheme produces continuous curves):

k+1 — m—1 k

ezi - j=0 Ci ei+j
(2.10)

k+1 _ m k

e21+1 - Z,‘:O di ei+j

where, ¢, and 4, are determined by {a} and {b}. More explicitly,

(2.11) c, = ZF:) (a; —b) and d = a —c,.

Thus, the divided differences can be defined and its corresponding
divided difference scheme can also be derived and studied. In much the same
way, higher order difference schemes and divided difference schemes can also
be defined, which leads to the higher order continuity analyses of the limit

Curves.
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From the above discussion, it can be concluded that the limit curve of
the scheme is characterized by the generator matrix 4 (4, and Al). By

analysing A4, they obtained the properties of the scheme and its limit curves.

The following are the main results of their analyses. For more details,
the interested reader is referred to [50]. We should also mention that

throughout their analysis, the condition (2.12) is assumed.

Proposition 2.1. A necessary condition for the scheme (2.1) on the
diadic points to converge to a continuous (non-degenerate) limit curve on

some interval is:

(2.12) Do 4 = Do b =1

Proposition 2.2. The scheme (2.1) converges uniformly to a continuous
curve (with respect to the diadic parametrization) if its difference scheme is a
contraction scheme, that is,

(2.13) Lim,_,  max, {|e'l‘|} = 0.
Proposition 2.3. Scheme (2.1) converges uniformly to a differentiable

curve f(r) if its divided difference polygon converges uniformly to d().

Moreover f'(t) = d(1).
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Proposition 2.4 (Higher order continuity). The scheme (2.1) produces a

C" curve if its n-th order Divided Difference scheme is a ¢’ scheme.

2.2.2. Cavaretta-Dahmen-Micchelli's Regular Subdivision Analysis

The second technique used to analyse the scheme (2.1) is the Generation
Polynomial Method, introduced by Cavaretta, Dahmen and Micchelli [28,29].
The major advantage of this method is that it unifies the theories of all the
uniform subdivision schemes (for both curves and surfaces) which can be
written in a similar form as (2.1). This approach makes the difference and

divided difference analysis much neater and simpler. The formulation of the

method is described as follows.

Instead of using (2.1) to describe the scheme, they use a Laurent

Polynomial a(z)

(2.14) a(z) =Y, a7

to characterize the scheme. Thus, the scheme can be defined as a operator S,

in the following manner

(2.15) y, = Sx), = D 4%

Explicitly, the method is just a change of notations when compared with (2.1)

since (2.15) is equivalent to
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y21 =...+a2x'__l+aoxi+a + ...

-2 xi+1

(2.16)

Y=t a3  +a x +a + o

-1 xi+l

Therefore, for any scheme of the form (2.1), there is a unique Laurent
Polynomial a(z) and vice versa. Further studies show that the properties of the
scheme are fully characterized by the polynomial a(z) [28].

The following are some results described in [28,29].

Proposition 2.5. Condition (2.12) is equivalent to

(2.17)  a1) = 2 and a(-1) = O.

Pr ition 2.6. If there exists some positive integers k, n and a

Laurent polynomial g(z) such that

(2.18) a@ =2 (1+7")*"gq@z and q1)=1

and

(2.19) sl = max (Il Syl Il <1} < 1,

then the scheme is a ¢* scheme.

Proposition 2.7 (perturbation technique). Let a(2) satisfy (2.18), (2.19)

and
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(2.20)  a(2) =a(z) + 271427y wiz),

where, b(z) is some Laurent polynomial. Then there exists a w, > 0 such that

the subdivision scheme corresponding to a(z) is a c* scheme for [|w| <w,

Proposition 2.8. Suppose

(221) e = 270+ + wh(2)),

where, b(1) = 0 and b, # 0. Then there exists a w, > 0 such that for 0 <

—wsgn(b)) < w,, the scheme defined by a (2) is a C* scheme.

Remark: The most important thing here is that the method can be
applied to analyse uniform subdivision schemes for surfaces. The only

difference is that the above notations should be replaced by multiple notations.

2.2.3. Micchelli-Prautzsch’s Invariant Analysis

As early as in the forties, de Rahm studied a uniform subdivision scheme
which he called a trisection algorithm [101,102]. His original motivation was
to find some functions which were solutions of certain functional equations.
The  Micchelli-Prautzsch  analysis of subdivision schemes is just a
generalization of de Rahm’s method. However, the results they achieved are

much more than that of de Rahm’s.
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By studying the de Casteljau’s and Chaikin’s algorithms from a different
point of view, Micchelli and Prautzsch introduced a general technique to
analyse the uniform subdivision scheme [85,86,88-91]. Their motivation was
to find all the curves which could be uniformly subdivided. Since “Linear
Subdivision is a Strictly Polynomial Phenomenon” [61], the curves they sought

could be called Generalized Polynomial Curves.

Their main observation is the following. Suppose a curve P() is
represented by some function basis {B(t)}, i = 0, 1, .. n and some

corresponding control points, {P}, in a form

(222) PpPey = )¢ P, B(r) for 0 < r <1

and that the curve has the properties that it can be split into two parts. Each
of them can also be expressed in the same form as (2.22) but with a refined
basis. Furthermore, it is assumed that the new control points can be obtained
from the old ones by some local weighted averaging process. More explicitly,

the curve has the properties that there exists two matrices 4, and 4, such

that

(2.23) PR =A, P and Pt =A P,

where, PR .= (Pﬁ, Pf, v PRY, PL = (P’(;, P’l‘, .o PH, P=(P,P, .. Pn)' , and
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Yo PS B(21) for 0

IN
IA

1/
(2.24) P =

Do PEB-1)  for 1/, < ¢

IN

By repeating this process, one can obtain

(2.25) Lim_,_ A, A P= Px)E,

where, x = Zizof X, 27 and E =(11,.,1)

From the above discussion, it can be shown that the curve P() is

characterized by the functional equation

— T3 4
(2.26) Y(x,P) = Lim VA4, .4 P for 0 < x <1,

where, {x} are the binary expansion coefficients of x, and v is any vector of

dimension » whose components sum to unity.

By studying the refinement equations (2.23), (2.26) and the subdivision

matrices 4, and 4, , the following results were obtained [85,86,88-91].

Proposition 2.9. Given two matrices 4, and 4, then the compatibility

condition for the matrices to define a continuous curve in the form (2.22) is

(2.27) VA = vi A
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where, v, and v{ are the eigenvectors of 4, and A~ corresponding to

eigenvalue one. Furthermore, the matrices must be regular matrices.

Proposition 2.10. Any polynomial curve can be produced by properly

choosing subdivision matrices A, and 4.

Other properties of these curves such as continuity, differentiability and

polynomial curve generations are fully studied in [85-91].
2.2.4. Cube-spline Algorithm Analysis

In order to develop the univariate B-spline theory to cope with
multivariate problems, the Cube-spline (Box-spline) has been intensively studied
[11-13,16,18,20,28,40,85-91]. The core of the Cube-splines is its line-
averaging algorithm which is a generalization of the Lane-Riesenfeld’s

algorithm for multidimensional networks.

The Cube-splines are defined as follows. Let X == {x, x,, ..., x } € 2°\ {0}

n

be a set of not necessarily distinct vectors, where n > s. Fori=1,2, ., s we
assume that x, =e¢, the i-th coordinate vector, and so <X> := span{X} =R’

X, o

Let X, ={x . %) for k=s, s+1,.,n sothat X =X. Then, for x € &', the

l)

Cube-spline is defined inductively by

1, x € [0,1), the unit cube in K’
(228) M@EX) = .
0, otherwise;
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and

1
(229) M@|x) = (( M(x—tx |X, )d, for k = s+1, .., n.

From this definition, one can derive the distributional property of

M(x|X):
2.30 '
(2.30) L FEOMx|X)dx = £ JOJ FKT x>)d,

where, T = (¢, t, -~ t) and f(r) is any continuous function. The notation
<T, x> is the scalar product of T and x. This can be proved inductively

(induction on k).

From (2.30), we can obtain the Fourier Transform of the Cube-spline

M%)

J]

(231) Moo = k"“”M(xIX)dx = [1_1 (< —1)/(i<x;, y>).

A straight forward calculation from this shows that

(2.32) 2 Mo 1. +1) > R
. o —_— = ._n (zi +1 = b e
Mlx) = a’€z

where, z =(z, z, ..., z) and z := ¥, j =1, 2, .., s. It is assumed that 2% is
defined by the multiple exponential role. The coefficient sequence {»,}, where
by =by(X), is called the mask of the subdivision algorithm. From (2.32), we

o

have
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(233) 2M@i0 = 3 5, &< Ko,
acZ -

from which it follows that

(2.34) ME/,x) = >, by M(x—alX).
acZ

From this refinement relation, we now can formulate the subdivision

algorithm for Cube-spline curves and surfaces. Given a Cube-spline function

(curve or surface):

(235 fx) = Y.y Mx—alX),
aecZ

from (2.34), we can represent the surface as

(236) fx) = 33 ¢ bg M(2x—2a—g|X)
xcZ BeEZ

BeZ

This equation defines a single iteration of the subdivision algorithm. It
can also be shown that the subdivision algorithm is composed of certain line

averages. Multiplying the equation

(2.38) Y, buX, )2* = 27 ﬂj;“‘ (25 +1)
R WA
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by (& + 1)/,, we obtain

(2.39) > X, D+by (X, )2 = 23 b X) 2"
acZ k acZ o

Hence we have

(2.40) boX) = [0 X, )+by X, DV>

A—xi

Using this relation in (2.37), we obtain the recursion
(2.41) C}g(xk) = [ C};(Xk_l) + C}g_,k(Xk_l) 172.

To find the initial values of the recursion, we note in the special case X,

= {€,, €, -€} that

(2.42) Yo b X)) =[] @+
acZ

Thus

1, for « € extremes [ 0,1},
(2.43) by(X) = )
0, otherwise.

Using (2.37) in this case, we find that

(2.44) Cili(xs) = ¢. for p =2a + extreme| 0, 1F.

o
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This relation is called the expansion step (very similar to the

Lane-Riesenfeld algorithm for univariate B-splines). The succeeding steps are

the line averages given by (2.41).

The convergence and smoothness analysis of the algorithm comes from
the refinement property (2.34) and studies about the Cube-splines. It is
proved that the algorithm converges to a piecewise polynomial surface at the

rate O(27%) (exponential convergence). The interested reader is referred to

[28,35,38,48,58].

2.3. Analyses for Nonuniform Subdivision Algorithms

In this section we present some of the techniques used to analyse
non-uniform subdivision schemes. Since non-uniform schemes are much more
complicated than the uniform ones, successful analyses of them depend
mainly on the special structures of the scheme. In fact, only a few

non-uniform subdivision schemes have been studied so far.

2.3.1. Adapted Parametrization Technique

In order to complement Chaikin’s algorithm and to investigate
conditions on algorithms for the generation of smooth curves, especially
non-uniform RSA for B-spline curves, some non-uniform corner cutting

algorithms are introduced and analysed [21,70,71,80]. Unlike the diadic
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parametrization as used in [50,51,85-91], a natural adapted parametrization is
used instead to seek better results. This turns out to be a successful choice.
Moreover, this adapted parametrization approach could also be used to
construct and to analyse some other non-uniform subdivision algorithms. An
immediate example is the subdivision scheme for non-uniform B-spline curves

with simple knots, which is studied in detail in Chapter 3.

The essence of this technique relies on the difference and divided
difference analysis of the scheme (with respect to the adapted parametrization)
as described in [50,51]. The only difference, however, is the parametrization
of the processes and the limit curves. It is also hoped that better results can

be obtained if an appropriate parametrization is used.

A more detailed description of this technique will be given in the next
Chapter. However, in the remainder of this subsection, we shall describe
briefly the non-uniform corner cutting scheme and some underlying ideas

about the analysis.

The non-uniform corner cutting scheme is given by

g ma-df o+,

(2.45) » \ )
f:i+l = b f'i‘ + (1=0)) fl:+1'

It is assumed that the initial control points {f)} and the parameter values (¢}
are also given. By using (2.45), the control points (f;} can be determined

recursively. The parameter values {rf} associated with {ff} are then defined
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such that {f} satisfy the subdivision scheme (2.45). More explicitly, the

parameter is taken as a component of the control points. Thus, the parameter

r’; satisfies the same recursion:

k+1 ky k
t = —_—
2i (I-d)r, + d t¢+1

(2.46)
G = Uf o+ (A=)

We shall call this type of parametrization of the control polygons the Adapted

Parametrization.

Now we can define the divided difference scheme corresponding to the

scheme (2.45). The divided differences {d%} are defined as

l

(247) d& =4af14ad = (ff,, - £, — 1)

After some simple calculations, it can be shown that {4} satisfy the

recursion
k+1 R ;
d21 _di
(2.48) o )
dlzpzrlx =(1- ci) d;+ C d.+1
where
kK .k k
a, (t; —t. )
k. i+1V 42 i+l
(2.49) ¢ = o 5+ a @ )
t(’i - P41V P42 i+1

The same parameter : is used to parametrize the control polygons,

d*r), of the divided differences {4}, that is
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(2.50) d* (%) = di, i€Z k >0

From the above formulation, the following result is obtained in [70,81].

Proposition 2.11. If the divided difference sequence {d*(r)) converges to

a continuous curve d(r), then scheme (2.45) produces a continuously

differentiable curve f(¢) and () = d().

The scheme can also be generalized to produce any (non-uniform)

B-spline curve with simple knots. This will be studied in detail in Chapter 3.

2.3.2. Geometry-Based Algorithm Analyses

Besides the above discussed uniform and non-uniform RSA for curve
and surface generation, there are some other subdivision algorithms which can
not be covered by the previous analyses. In [53], N. Dyn, D. Levin and D. Liu
presented a geometrically constructed i-.terpolatory non-linear subdivision
algorithm for curve and surface generation. Another one is a complement of
Chaikin’s algorithm given by M. J. Hejna [71] in his dissertation in which he

used a geometry based algorithm to generate smooth curves.

The main characteristics of this type of algorithms is that they depend
on the local geometry, that is, the algorithms depend on the tangent lines and
tangent planes and occasionally even the local convexity property of the

control polygons. The analyses of such schemes are then based on these
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special geometrical properties of the algorithms. In some cases, monotonicity
or convexity preserving feature of the schemes dominates their convergence
and smoothness analyses. For example, the algorithm described in [53] is a
typical local geometry based, non-uniform, non-linear interpolatory
subdivision algorithm. However, we shall not discuss these schemes and their

analyses here. For more details, the interested reader is referred to the papers

[53,71].
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A NON-UNIFORM CORNER CUTTING SCHEME AND

THE SUBDIVISION ALGORITHM FOR B-SPLINE CURVES

The non-uniform corner cutting scheme, which is a generalization of
Chaikin’s and Catmull-Clark’s algorithms to generate smooth curves, is
discussed in detail in this Chapter. Furthermore, by using the Adapted
Parametrization technique, a recursive subdivision algorithm for non-uniform
B-spline curves of order k with simple knots is formulated which provides an
alternative to the de Boor algorithm and the Oslo algorithm for the

computation of B-splines.
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3.1. A Non-uniform Corner Cutting Algorithm

The convergence of a non-uniform corner cutting process is studied in
this section. Using a parametrization different from the diadic parametrization
employed by Dyn-Gregory-Levin [50,51] and Micchelli and Prautzsch [83-91],
it is shown that the process is smooth. That is, it produces differentiable
curves provided the proportions of the corner cuts are kept within appropriate

constraints. This work is to appear in the CAGD Journal, Gregory-Qu [70].

3.1.1. Background

The motivation of the investigation of the non-uniform corner cutting
algorithm originally came from de Boor’s paper [21]. This paper showed that
cutting corners of a control polygon always works, in a sense that the limit
curves are Lipschitz continuous. Although Lipschiz continuous curves are the
best possible that one can achieve from de Boor’s assumptions, from the
application point of view they are not good enough for the design of smooth

Curves.

To develop corner cutting techniques for simple, smooth curve
generations, we proposed the investigation of a simple non-uniform corner
cutting process. Before we analyse the scheme mathematically, it should be
noted that the process could produce any smooth quadratic B-spline curve by
an appropriate choice of the parameters. This suggested that a more general

choice of the corner cutting parameters might also produce C' curves. The
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aim then was to look for some natural parametrization which might be more
appropriate than the uniform diadic parametrization as used in [50,51,83-91]

whereby it is used to prove the smoothness properties of the limit curves.

In the following subsections, we develop the analysis of the non-uniform
corner cutting process. And, as a consequence, a recursive subdivision

algorithm for B-spline curves with simple knots will be derived in section 3.2.

3.1.2. The Non-uniform Corner Cutting Scheme

The scheme is defined as follows. Suppose f € R, i =0, 1, .., n+1 are the
initial control points (» > 1), which are associated with the parameter values
o < 1) < H< < zg+1. (In fact, the results are true for curves in any Euclidean

space, although only the planar case is discussed here). The scheme is defined

by the following mask: for k=0, 1, .;i =0, 1, ., 2n
A sy S A,

(3.1) k+1 _ pk gk _py
f2i+l - bi fi +@ i) fi+l’

where, it is assumed that

(3.2) at, o >0, and 1—a’§—b’; > 0.

It is also assumed that the point sequence {ff), which represents the
control polygon at level &, is associated with the parameter values (i{}. The

use of adapted parametrization means that parameter values satisfy the same
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corner cutting process

k+1 _ ky Lk k _k
(3 3) Yi - (l_ai) t,+ a, tin
k+1 _ kK k ky Lk
L1 - bz‘ L + (l_bi) Lt

The condition (3.2) guarantees that the parametric points always form a

strictly monotonic increasing set «f < ¢ <15 < .. <, +1 since

(3.4) o< gt < gt <A forall gk

Denote by f* the control polygon with vertex f%,i=0, 1, ., 2*»+1. Then
(3.1) is a process whereby f“*' is created by corner cutting of the polygon £~
In general, this process is non-uniform since the proportions a; and b of the

corner cuts depend both on i and «.

From the above discussion, the control polygon f* can be identified
unambiguously as the piecewise linear interpolant @), where, for ¢
[% 4, 1i=01, .. 2kn,

i+1

(3.5) sO

I
~
~

Since the corner cutting process is a geometric invariant process and the
parametrization is regular (see subsection 3.1.5), it suffices from now on to

consider the scalar case, that is, { f‘f] are scalars, see Figure 3.1.
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ko k+1 k1 ok Co gkl kbl ko k+1 Skl ok

k
i T B i D a0 i N 2i41 vt
: »
Figure 3.1.

It follows from (3.4) that {¢f} and {},,} form monotonic increasing and

decreasing sequences bounded above and below by  and ¢ respectively.

Hence there exists

(3.6) a = Lim * < and b =

o
3
\Y

Then the uniform norm

BT Nl = max |fO)
a<t<b

is used on the interval [a, b] throughout this Chapter.
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3.1.3. Cutting Corner is C°

Although our main purpose is to find conditions under which the corner
cutting process has a smooth limit, the ¢® analysis given here lays the
foundation of the smoothness analysis. The result is a very special case of de

Boor’s results in [21]. Here we present a different proof.

Firstly, we show that the sequence {f*} defines a Cauchy sequence in

Cla,b]. In order to do this, the following lemma is required.
Lemma 3.1. Forall x,p > 0,
(3.8) I — I < 2 max, \4f]),

where, 4 is the Forward Difference Operator:
(39) 48 = £, - £
Proof. Consider f**# and f* on [ ##%, z’;;‘(’i )k From (3.4) we have

(3.10) & < A48 < Gy <t

and since the corner cutting process is a convex combination, we obtain
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(3.11) m < ff“’ < M, forall 2% < j < 2P(i+1)

where,

(3.12) m, = min, { ft’ f’:+1’ f§+2 } and M, =max, {f‘:’ f‘i(+1’ f’;+2}'

Hence m, < £, f00 < M,

which gives

(3.13) |0~ ol < M, —m < |41+ 145 )

so the lemma follows.

This Lemma suggests an analysis of the difference process which is

obtained from (3.1) as

314 At = (1-d - 4f;
2i+1 i i i+1 i+1
Let
(3.15) a = Lim,_,  max, af, a=Lim,_  min d,
b = L"”:Hoo max b*, b= Li’"k—»go min b"‘

Then we have:
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Theorem 3.2. The function sequence {f*(t)} converges uniformly to a

continuous function f() in Cla, b} if

(3.16) g, b > 0 and 1—-a-7% > 0.

Proof. From the difference process (3.14), it follows that

(3.17)  max, l4F*] < B" max, |Af'i‘|,

where

(3.18) B* :=max {1 — a'tf — b':, b': + a’;+1 }.

Moreover, it can be shown easily that

(3.19) B < B <1

for some constant B, independent of k, if (3.16) holds. Hence the differences
are contracting and from Lemma 3.1 it follows that {f*¢)} defines a Cauchy

sequence in Cla, b]. That completes the proof.

Conditions (3.16) are sufficient for the generation of continuous curves by
the scheme. They require that (g, b) and (@, ) lie strictly within the region Q;
depicted in Figure 3.2. In the following subsection, the conditions under

which the scheme produces smooth curves will be discussed.
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//

0 /s 2, )

\ 4

Figure 3.2.

3.1.4. Smooth Corner Cutting

The divided differences play an important role for the smoothness
analysis of the scheme. We firstly give a result about the parametric points

under the conditions derived in subsection 3.1.3.

Lemma 3.3. The parametric points {:{} becomes dense in [a, b] when &

goes to infinity.

Proof. Because the parametric points satisfy the same corner cutting

process, it follows from the same arguments as in the proof of Theorem 3.2

that

(3.20) maxilAt':I < B max 4]

So we have
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(3.21)  Lim_ _ max |4| = 0

and this completes the proof.

Now we define the divided difference process of the scheme. The divided

difference df is defined by

(3.22) & = 4fi /4l

From (3.3) and (3.14), it can be shown that the divided differences

satisfy the following recursion (the divided difference scheme, or DD scheme

for short)

d;Tl = d’:, at t’;
(3.23) e )

k+1 _ k

d2i+l =l —-cpd; +¢ 4y at tist

where,
k . k k k k k k

(3.24) & = df,, Al /O A a4

(here the same parametrization is used).

The importance of analysing the divided difference scheme is given by

the following theorem:
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Theorem 3.4. If the DDS produces a continuous function d(:) in Cla, b]

with respect to the parametric points (¢}, then the corner cutting scheme

produces a differentiable function f(r). Moreover, f() = d().

Proof. Let H,() denote the piecewise cubic Hermite interpolant such

that
(3.25) H() = f; and H() = d} forall i and «k.
Then for ¢ €[, ¢, ] with x = (—ty/a, x € [o, 1], we can find explicitly:
(326) H@» = (1—x)* (2x+1) 54 P (—2x43) £
+ x(1—x0)? 4t d* + Pa-Dadf dl

(327) H)() = (=3x" +2x+1) d* + (3x* —2x) d}, .

Let a*(r) be the control polygon of the divided differences, that is, it is

the piecewise linear interpolant to data (*, d¥). Then for € [ ¢ ], we have

(3.28) dr) = (1-0d +xd]

i+1

where, by hypothesis d“(¢) —> d() uniformly on [a, b] as k goes to infinity.

Subtracting (3.27) from (3.28) leads to
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(3.29) la*‘— H, || < 3/4) max, |d -

i+1 il*

Thus, by noticing that it is necessary that max, |4}  — di| —>0 as«

—> infinity (by hypothesis), we have

Lim_, _ ||ld —HJ| < Lim

k—00

ld — | + Lim,_, lla* — H;]| =0,

k—C0

that is, H, —> d uniformly on [a, b].

Now we show that the sequence {H,} converges on C'la,b]. Assume,
without loss of generality (because the scheme is a local scheme), that f, =
£ =f)=0.Then for all &, ff=f=f=0and d;=d =0.50 we have f(a) =

d@@) =0 and H(a)=0. Now we define a differentiable function

(3.30) F@) = f ! d(s)ds, ie, F'(@) = dr and F@) = 0.
a

Then it can be easily proved that

331) NIF-HI < @-olld-H]

Hence H, converges uniformly to F in C'[ab]. Finally, we prove that F() is

just the limit of the sequence { £4). This is because

332) F-#£1 < IF-HJl+IH - £
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< |IF = H |l + (1/2)max, (4 ||H}|
—> 0 as k —> infinity,
where, the Cauchy reminder for linear interpolation is used. The above
relation means that the control polygon of the corner cutting scheme
converges uniformly to a smooth function. This completes the proof.
This Theorem indicates that the ¢' convergence of the scheme can be
proved if the ¢° convergence property of its divided difference scheme, with

the same parametrization, can be proved. So we now investigate the Divided

Difference scheme.

Using the same approach as in Lemma 3.1, the following lemma can also

be proved.

Lemma 3.5. For all & p>0,

(3.33) la*P —d*|| < 2 max, |ad’].

To prove that the sequence ({a*) is a Cauchy sequence in Cla,b], the

following lemma is required.

Lemma 3.6. Let
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(3.34) r': = At’;+1 /At'l‘

then there exist some constants r and R such that for alli and k,
335 o0<«<r < r¥ < R < infinity
if

(3.36) a¢b >0,22+% <1 and T+2F < L

Proof. From the recursion relations of the difference scheme (3.14), we

can obtain the following non-linear recursion relations for r

k+1 [k kK k k Gk

(3.37) T2i - [bi T4 ri]/[l_ai_bi]
) k+1 _ k k kK ik kK k
T2i+ - [1—ai+1 —bi+1 ]rt /[bi Ta, ri]

Choosing any positive, finite numbers r and R such that (by hypothesis

(3.36) this can be done):
(3.38) R > max (V/-d-b-d ), a-df, —b}, —bhyd, ),

(339) 0 < r < min {b/(—d'~ b~ d* ), (1—a*, b, —biydt,))

then it can be easily shown that condition (3.35) can be satisfied, which

completes the proof.
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From the above results, we can now prove the main result of the smooth

corner cutting:

Theorem 3.7 (C' convergence). The divided difference scheme produces a

c® limit  if (3.36) holds. Hence, the corner cutting scheme produces a C'

curve.

Proof. From the divided difference scheme (3.23) we obtain

Ad*H! = & Adk
(3.40) 24 S
k+1 _ k k
Ad2i+l = (1= ci) Adi’

where, 0 < ¢ < 1, and is given by (3.24). Thus

(3.41)  max, |ad**!| < C* max, |4d”),

where

(3.42) C* =max {c';, 1— c':}

and hence

(3.43) 1/, < C* <1

Condition (3.43) is not strong enough for our purposes (to prove

max {|ad"|) —> 0) and we wish to show a stronger contraction condition
i i
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(344) 0 < ¢t < c <1

for some constant ¢ independent of . From (3.24), we have

(3.45) = a+ysh?t 1=k = a4

where

(3.46) s = a’:H r';/bl;.

By Lemma 3.6 and hypothesis (3.36), it can be concluded that there exist

two positive finite numbers s and ¥ such that 0< s < i <3 <

infinity for all i and k. For example, we can chose

(3.46a) s = gr, 5 =R/p.

Hence (3.44) follows for some positive constant C, C < 1.

From Lemma 3.5, it now follows that the sequence {d*(r)} is a Cauchy

sequence in Cla, b], which completes the proof.

Note that condition (3.36) for ¢' convergence requires (g, b) and (a, b)

to lie strictly within the region @ depicted in Figure 3.3.
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0 ls Y, .

Figure 3.3.

In particular, (0,0) < (¢, ) < (@, B) < (1/3.1/3) is a sufficient condition for
a ¢! limit. If condition (3.36) is violated, then the convergence to a ¢' limit is
no longer guaranteed. For example, with a‘: =a, b‘f =b, forall i and %, then

it can be shown that

K+l _ Kk k=l _ kK k=l k=2 ... 40
(3.47) adi™' = cf ady™t =k ckik Ad,

will not converge to zero for general data if 2a) + b, > 1. This violates the

necessary condition for ' convergence. Similarly, a, + 25, > 1 is not allowable.

Remark: A similar result to Theorem 3.7 is also obtained in [81].

3.1.5. The Parametrization is Regular

It has been shown that the corner cutting process produces C' curves
under condition (3.36), with respect to the adapted parametrization which itself

is defined by the corner cutting process. It is necessary to prove that this kind
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of parametrization is regular so that the generated curves are non-singular

curves. The following theorem shows that the parametrization is regular.

Theorem 3.8. In the case of corner cutting in RY, N > 1, the ¢! limit
curve f(z) in Theorem 3.7 is regular, thatis, f(r) =d() #0 for all r € [q, 8],

except for the singular case, where, for some i, the initial control points

satisfy

or

an £, = 1) fi +x £~ for some x>0

Proof. Let

(3.48) J, ={(d") € R": 1€ [a b] )

be the image set of a*(¢). Then from the previous arguments (because the

process of the DD scheme is a convex combination), we have

(349) J._ e J € .. € J forall

k+1

Thus d() = 0 implies that d°(¢) = 0 for some ¢ € [a, b] and this can only

occur if (i) 4% =0 or (i) d® =-xd} for some i and x > 0. These
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are just the conditions given by (1) and (1.

Remark. It can be proved that the limit curve is regular and is at least
C" with respect to its adapted parametrization if it is ¢" with respect to the
diadic parametrization provided that the initial parametric values (%) are
chosen appropriately, that is, «; <~ for all .

1

3.1.6. Graphic Examples

We present here four (closed) curves produced by the scheme from the
same initial data indicated by A, by using different parameters. Figure 3.4a
is the Chaikin’s algorithm, where af = 1/4, b = 1/4, Which is just a uniform
B-spline curve. Figure 3.45 is a smooth asymmetric curve, where of =1/, b
= 2/9. The curve in Figure 3.4c is continuous but not smooth since the
parameter values o} = 5/1,, b = 5/;, lie outside the ¢’ convergence region
and violate the necessary condition for ¢! curves. Figure 3.44 is a smooth
curve produced by choosing the parameters randomly within [1/g, 2/9], which

is in the C' convergence range.
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a¥=1/4 b5 =1/4 at =1/9, b =2/9.

Figure 3.4a. Figure 3.4b.

a3 J
4
a a3 .

k 1 k
at =5/15. b5 =5/12. 1/9 < a*, b* < 2/, random.

Figure 3.4c. Figure 3.44.
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3.1.7. A Remark

Before going to the next section to discuss the subdivision algorithm for
non-uniform B-spline curves, we first give an interesting observation from the

geometric structure of non-uniform corner cutting scheme.

From the construction of algorithms for piecewise quadratic polynomial
curves in [26,41,115], a question may arise: under what conditions does the

above non-uniform corner cutting algorithm produce a (non-uniform)

quadratic B-spline curve?

The question is answered as follows (a proof will be given in the next

section).

Given any strictly increasing sequence (x}} (which is the knot sequence
of the B-spline curve to be generated), where X< x?H for all i, and some
parameters (s} where 0 < s < s < s <1 forall ik and some

constants s and s. Then scheme (3.1) produces a quadratic B-spline curve,

with knots {x°} and control points (s, if &f and b* are chosen to be

i

k koK k Kok
350 d; = 50— x_ ) xy X))
(3.50) Bo— (1= sk =)ot RV

i (I = $)X 4y i i+1 i-17
where

A =
(3.51)

k41 _ Ky K Kok

X2i41 = —=sx; s, 3,
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Remark: If we chose x* =i and x{ =1/, for all i and « then (3.50)

gives a’; = b = 1/4 for all i and «. Thus scheme (3.1) becomes the

Chaikin’s algorithm.

3.2. The recursive subdivision algorithm for Non-uniform

B-spline Curves

In this section we discuss a generalization of scheme (3.1) to find a
recursive subdivision algorithm for non-uniform B-spline curves. Here, again,

the parametrization of the control polygons is the crux of the analysis.

3.2.1. Motivation and Techniques

Although Chaikin’s and Carmull-Clark’s algorithms (for curves) have
been used for a long time, it seems that no similar recursive subdivision
algorithm for non-uniform B-spline curves has yet been developed, especially
for cubic and quartic B-spline curves which are commonly used. From the
above non-uniform corner cutting algorithm and the structures of parabolic
(or piecewise parabolic) curves, we know that any quadratic B-spline curve
can be generated by the non-uniform corner cutting scheme with parameters
given by (3.50) and (3.51). Then, one may ask, can a cubic (or even any)

B-spline curve be generated by a scheme similar to (3.1)?

By analysing the non-uniform corner cutting scheme, we derive the
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non-uniform subdivision algorithm for B-spline curves with simple knots.

The most important tool for the construction of the algorithm is still the
adapted parametrization as used in our previous analysis. The ideas come
from integrating the non-uniform corner cutting algorithm to obtain a smoother
curve generating algorithm. Because this integrating technique works in the
uniform subdivision case (see [51] for details), it is hoped that it should also
work in the non-uniform case. Hence, the problem becomes how to integrate
a non-uniform RSA. The main difficulty here is how to establish the relations
of the parametrization of the scheme and the parametrizations of its related

schemes such as its integrated and divided difference schemes.

At first, one may think that this difficulty can be solved by using the
same parametrization as in the case discussed in the previous section.
However, it turned out to be too difficult to deal with for higher order
schemes. Another choice, one may think, is to treat the scheme and its
divided difference scheme separately as two independent schemes. In this
case, it is hoped that the scheme might produce curvature continuous curves
if, (i) the scheme with its adapted parametrization produces smooth curves
and (ii) the divide difference scheme generates smooth curves with its own
adapted parametrization. This seems at first quite tempting but, unfortunately,
it can be proved not to work by a simple counter-example. This is because the
divided difference scheme and the second order divided difference scheme are
interrelated and they should not be treated separately. So some other

relatively simple and effective techniques should be introduced.
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The difficulty can be overcome when it is considered from another point
of view. Our success of the construction of the algorithm is based on the well

known result-the Greville’s identity for B-splines. The process will be shown

by an example discussed next.
3.2.2. A Corner Cutting Scheme for Quadratic B-spline curves

Now we construct the RSA for smooth quadratic B-spline curves. The
subdivision scheme for higher order B-spline curves with simple knots can be
constructed in the same way. Suppose the scheme (3.1) produces a smooth
quadratic B-spline curve with knots {x*} and control points {f*} associated
with the parametric points {*} at level k, where the knot sequence and the
parametric point sequence are strictly increasing and {x*} ¢ {x**'} for all &
Because the scheme is a continuous refinement of the control polygons, like
the Chaikin’s algorithm, this assumption is reasonable. Then, Greville’s
identity [19] suggests that the knots {x} and the parametric points {!} are

interrelated by
(3.52) (= o+ x5) /o for all i, k.

So, if a scheme in form (3.1) is constructed such that (3.52) is always
satisfied, then the scheme should produce the quadratic B-spline curve with
knots {x°} and de Boor points {f}} because of the uniqueness of B-spline

curves.
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Now we construct the required scheme. Firstly, by

assumption, the scheme for the knots {x*} must be in the form

-
(3.53)
k+1 _ Kk | k _k
Xyitt = (M =s)x; +5, %,

where

(3.54) 0<s <sf <3<, forall ik

From the relation (3.52) and (3.53), the recursive relations for the

parametric points {r} can easily be obtained as

k+1 ek oy
s =(1—-a ) +a.t,
2i i i [ |+1
3.55
( ) k+1 I A ol N ¢ U W
Lt = b +-b)r,,
\vhere,
ko _ ok ko _xk ko=
Gse | T O =2 iy = %)
b’: — (1 —_ SI:) (x’:+1 - xt)/(xl:“ —xl:_l).

Thus, from the above discussion, we can conclude that scheme (3.1)
produces a quadratic B-spline curve with control points {f} and knots () if
the shape parameters o' and 5% are chosen to satisfy (3.53), (3.54) and (3.56)

(because the adapted parametrization is used).

A simple mathematical explanation of this result is like this. From
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Theorem 3.4, and the fact that the divided difference scheme (3.23) converges
to the piecewise linear curve (with respect to the knot point [xf}
parametrization) which is the initial divided difference control polygon with
both ends being cut, the scheme converges to a piecewise quadratic curve
with broken points {x(:} since ¢ and x* are very close (3.52). That is, the

limit curve is the required B-spline curve. A systematic proof of the result will

be given in subsection 3.2.4.

For higher order B-spline curves, the subdivision scheme can be derived
in a similar way which will be discussed in the next subsections. The idea is
the same but the calculations of the corresponding coefficients are more
complicated. We will also use the knot insertion technique to construct the

subdivision algorithm for B-spline curves with simple knots.

3.2.3. Recursive Subdivision Algorithms for Cubic and Quartic B-spline

Curves

From the above results and the Catmull-Clark’s algorithm for uniform
cubic B-spline curves, it is expected that a similar non-uniform recursive
subdivision algorithm could generate non-uniform cubic B-spline curves. Now

we construct the scheme.

Firstly, we assume that the scheme is in the form

1 k k
2T = 4] fl: + (1-4)) ft+1

S B (- B O+ O,

2i+1 i i

(3.57)
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and it produces a cubic B-spline curve with control points {f} and knots {x"},
where, xf < x’;+1 for all i and k. Then, from the discussion in the previous

section, the parametric points (adapted parametrization) {¢'} should satisfy the

Greville’s identity at each level. That is,
(3.58) o =6f,+x5  + xli‘)/3 for all i, k

where, {x} are determined by (5.53). Furthermore, the divided difference

scheme of scheme (3.57) given by

k+1 _ ky sk k gk
(3.59) 4y =1 —a)d; +a; d,,
) k+1 _ ok gk ky gk
d2i+l =b, d; +( - b) di+1
where
al: = Al: Atl:+1/[(A’i( _BIE)A”: + C’: At’:+l]
(3.60)

k k K k k k k
b = BX a4t /[B* At + (1-at - CHak ]

should generate a quadratic B-spline with the same knots {x{}. More
precisely, the coefficients in (3.59) should satisfy the quadratic B-spline
scheme constraints

(3.61) =4 +xl) forallik

where, {u*} are the adapted parametric points of scheme (3.59).

Not surprisingly, the under determined linear systems (two constraints
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(3.58) and (3.61) and three variables, the coefficients: 4%, B* and ¢!) has a

unique solution

A= (=6 - )

i i+1 21—1 i=2
(362) | By = &~ /0, ) 4
Ci = {(x’zuzrl1 X 1)/(xz+1 i— 1)}( _A‘:+1

Thus, from the above discussion, we can conclude:

Theorem 3.9. The non-uniform scheme (3.57) produces a cubic B-spline
curve with given knots {x’} and control points {f}} if the coefficients 4], B]
and c* are chosen by (3.62) and the refined knot sequence {x’f} is given by

(3.53) satisfying (3.54).

Remark: If the initial knots are equally spaced and the subdivision
parameter s* =1/, for alli and &, then we have 4* =1/, and B} =C| =1/,
and the scheme (3.57) becomes the RSA for uniform cubic B-spline curves
(Catmull-Clark’s Algorithm).

Similarly, we can obtain the RSA for quartic B-spline curves:

Theorem 3.10. The non-uniform scheme

o |F S AesAn B
(3.63
fL = MARORE e,
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produces a quartic B-spline curve with knots {x’} and control points {f%} if

3

the coefficients 4%, BY, ¥¥ and c* satisfy

ko k k+1
;40— 21—1)(xz+2 X3i41)

X X
CHP i—2)(xi+2—x i)

k+1 k+1 k
Bk _ (x2i—l i— l)( 21+1 l l)
.

kK k k
(% )F %)

(3.64)

K+l _ ki k+1
(i — 2e+1)(x1+2 —Xyi41)

k k k k
(xi+2 _xi—Z)(xH—S — 1—1)

k+1 __k k41 k
(x2i+1 xi—l)(x2i+3_xi—l)

k k k k
(xi+2 —xi—l)(xi+3 —xi—l)'

Here the refined knot sequence [x’:} is given by (3.53) satisfying (3.54).
Remark: If the initial knots are equally spaced and the subdivision
parameter s* =1/, for alli, k, then we have A = Z* =5/15, and B =r*

= 1/16, and the scheme (3.63) becomes the RSA for uniform quartic B-spline

curves (Example 1.5 in section 1.2).

The above techniques can also be used to produce B-spline curves of any

order with simple knots. The details will be given in subsection 3.2.5.
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3.2.4. Theoretical Proof of these Results

In this subsection, we give the proofs of the above results, Theorem 3.9

and Theorem 3.10.

It should be pointed out that from the construction of B-spline curves and
Boehm’s knot insertion algorithm (or the Oslo algorithm) for such curves,
there are non-uniform recursive subdivision algorithms, expressed in forms
(3.1), (3.57) and (3.63), which are used in the generation of B-spline curves of
any order [14,33,89]. Here the subdivision process is explained as an insertion
of a new knot between every two adjacent knots. From the uniqueness of

B-splines, such algorithms are unique in some sense.

The scheme for quadratic B-spline curves can be easily proved by many
techniques. Consequently, only scheme (3.57), that is, the scheme for cubic
B-spline curves, is proved here. Scheme (3.63) can be proved in much the

same way.

Suppose [B':A(x)} are the normalized cubic B-spline basis functions with
knots (x*} for all k, where the knots are defined by (3.53) and (3.54). Here,

the subscript 4 is the order of the spline curve. Then, by definition, we have

(3.65) B0 =<k Xk e xh >, )2

4 gk +1
= Zz:o bi,j.4 B:i+j.‘(x)
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_ 4 Lk pk+l
2iico Yija Byitid®

k k . . e .
where, <, x| ,, .., x;, >, is the divided difference operator with respect to
variable rand 5], depends only on the knots {x}*1}. These {},,} will be

given explicitly later. Hence, for any twice continuously differentiable cubic

B-spline curve with knots {x*}, we have

(3.66) P(x) = £ B (%)
= Zi f ’f Zi::) bl:.j,4 B’z‘*i’ij“‘(x)

= 2T BT
where, {f**'} are given by the following formulae

k+1 k k k k
(3'67) fzj T fi—z bi—2.4.4 + ‘f’i‘—l bi-—l.2.4 + f’l‘ bi.O.l

(3.68) £t = f Vs t £ .

Relations (3.67) and (3.68) define a linear non-uniform subdivision
scheme since these coefficients {¢% } (called Discrete B-spline in [33]) varies
with i, jand k and are determined by the knot seqﬁencc. By construction we
know that the scheme just refines the control points (de Boor points) of the
B-spline curve with knots {x} and control points (). Hence, in order to
prove Theorem 3.9, we only need to prove that the scheme given by (3.67)

and (3.68) is the same as that given by (3.57).
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From the recurrence relations of B-splines, it can be shown that these

coefficients {bf,,-ﬂ are defined to be some ratios of the knot intervals (see

subsection 3.2.5),

b’:.u = ( x,;+ ;Jiris)/(x:«m - xk)

(3.69) =&k, - A ek, -

iva ~ %2047 i+2)} b' 34

b:.o,4 = {(x’;:is _xl:+2)/ (fo - x’i‘+2)}(l - bf,3.4)'

Therefore, the two schemes are the same except that the notations are
different. However, from the schematic point of view, the shift of indices is
not important and it is obvious that the two schemes produce the same curve.

This completes the proof of the theorem.

3.2.5. The Recursive Subdivision Algorithm for B-spline Curves

of Order n with Simple Knots

In this subsection, we formulate the general subdivision scheme for

B-spline curves of order n(n> 1) with simple knots.

Let {B’;_"(x)] denote the normalized B-spline basis of order » with knots
i, 2 < x4, ) and {B**'(x)} the normalized B-spline basis of order » with

knots {x**': ¥{*' < "fii}' where

k
xk! = x

(3.70)

k+1

2041 = (l—s)x +s x1+1
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and

BT 0< s <5 £ 5 <1

for some constants ¢ and ¥ for all i k. Then, from the definition of the

B-spline basis [23], we have, as in (3.65), forall n>1,

(72 B0 = N0 8, B0

where, {#%, )} are determined by the knots {x}*', m = 2i 2i+1, ., 2i+2n} only.
Now, suppose a B-spline curve P(x) is given by

(3.73) Px) = Y, Pi B (.

Then, by using the same arguments as in subsection 3.2.4, the following

can be obtained:

(3.74) Px) = Y, PiB, (™

n 1k k+1
= Zi Pl: Zj:O b in B 2i+j.n(x)

S A

where
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+1 — {n/2] Lk
P:l "— Z,':o bl-—j.Zj.n i—j
(3.75)
+1 — ((n—1)/2] .k
P; i+ Zj:O bi—j.2]+l.n i—j°

It is obvious that the above relations defines a non-uniform subdivision
scheme for B-spline curves with simple knots. Moreover, the B-spline

relation coefficients {b:j.n} are just the weights of the subdivision scheme.

Now, we derive the recurrence relations {bf.,m} on n, the order of the

splines. For simplicity, it is assumed that

(3.76) ¥, =0 when j < 0 or j > n

When » = 1 and 2, it can easily be shown that

k
(3.77) b’:.o.n = b, =1
and
k+1 K+l /g k k
bl:.o.z = (x2T+l - xz? Y/ (xyy — x;)
k —
(3.78) b; 12 =1
k+1 k K
b’:.z.z = (x,zct; - x2'2'+3)/ CHPRR i)

For n> 3, we have, from (3.72),

(3.79) d(B* (x)y/dx = 3. n bt d BT (x)/dx.

j=0 ij.n 2i+j.n
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Substituting the above derivative terms by the B-spline formula

3

(3.80) 4B (ydx = -V B, )/, — ) — B, /G, - ))

and then replacing the terms BY (x) by (3.72) for n—1, by rearranging the

appropriate terms, we can obtain

n k k+1 n k k+1
(3 8 1 ) Zj:o ijn-1 ""2i +j.n——1(x) _ Zj:() bi-H.j.n—l B2 i +j+2.’l—l(x)

k k k k
ivn—1 — %i Xien — %ipt
Bet! k41
X
— Z n pk { 21+J'-n—l( ) Bzi+j+1.n—1(x) }
j=0 " ij.n k+1 _ k1 k+1 _ k41
2i+j+n—1 2i4j 2i+j+n 2i+j+1

Because the basis {B’i‘f,‘,_l(x)] are linearly independent for all x € R, equality
(3.81) can only be true if and only if the coefficients of B (x), i€z are
the same in both sides. This gives the following recurrence relations (n > 3):

k+1 k1

X X,
k _ k 2i4j+n—1 2i+4j .k
(3'82) bi.j.n - bi.j—l.n + xk+l k+1 biJm-—l

2i42n—2 " 2i

k+1 Y 3

2ivjtn—1 — %2i4i ok

+ i+1.j-2.n—1"
TR +1.j-2.n
2i+2n 2i42

From (3.77), (3.78), (3.82) and the assumption (3.76), all the weights

{»* ) can be obtained. A special case of (3.82) is the uniform case whereby

ijn

all the knots are equally spaced. Then this recurrence relation becomes

k ok k K
(3.83) bijn = biy-1n +1/206; 5, b 1 jmrnt)”
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This linear difference equation, together with the initial condition (3.77),

(3.78) and convention (3.76), has a unique solution:

(384) (n—1)!

ijn

o (the binomial coefficients).
Ji(n—j)

This result is the same as the line averaging algorithm for uniform

B-splines described by Lane-Riesenfeld in [76].

3.2.6. Remarks

1. The quadratic B-spline generating non-uniform corner cutting scheme
can be proved by many methods. A simple geometric proof comes from the

properties of parabolic curves.

2 The subdivision scheme for B-spline curves is just a refinement
scheme. They can be regarded as a generalized Boehm’s knot insertion

algorithm (simultaneous knot insertion).

3. The ¢! condition (3.36), which is obtained in our analysis, is just a
sufficient condition for the scheme to produce smooth curves. It can be shown

that the necessary and sufficient condition for the scheme to produce smooth

curves is
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(3.85) Lim, _ ma.xllAd"‘I = 0.

4. From the perturbation point of view, more complicated smooth

(non-polynomial spline) curves can be generated by these schemes when their

coefficients are slightly perturbed [54].

5. The subdivision scheme can easily be generalized to surfaces. Also,
any tensor-product B-spline (with simple knots) surface can be computed by a

corresponding subdivision algorithm (uniform or non-uniform algorithm).

6. An important application of these algorithms is that, due to their
flexibility, they are very useful for interactive design. For instance, for the
same control polygon, different curves or surfaces can be produced if different
knots are chosen. Also, by adjusting some appropriate control points, the

curves and surfaces can be controlled easily .

7. The non-uniform scheme is a special case of the Oslo algorithm for
B-splines [33]. Hence, if the initial knots are equally spaced and the new
knots are spread uniformly, then the scheme degenerates to the

Lane-Riesenfeld’s line average algorithm [76].

3.3. Conclusions

A simple non-uniform corner cutting scheme is investigated and the
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sufficient conditions for smooth curve generating schemes are given. By using
the adapted parametrization, rather than the uniform parametrization used in

[50,85], the curves obtained are smoother than would be expected by the

analysis in [21] in the case of simple corner cutting case.

Based on the analysis of the non-uniform corner cutting scheme (3.1) and
the adapted parametrization, the non-uniform recursive subdivision algorithms

for B-spline curves of any order are derived.

The key to the success of these studies is the Greville’s identity for
B-spline functions  relating the non-uniform parametrization and the

parametrization of their divided differences.

Other relatively simple proofs of the results can also be obtained by using

either the curve refinement techniques or the Boehm’s knot insertion ideas.
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HAPTER FOUR

RECURSIVE SUBDIVISION ALGORITHMS FOR

SURFACES: AN INTRODUCTION

In this Chapter, some of the currently used recursive subdivision
algorithms for the generation of surfaces are briefly described. They can
broadly be classified into three types: (i) tensor-product type algorithms,
which are generalizations of the curve genertating DGL schemes; (ii)
subdivision algorithms based on uniform triangular control polyhedrons and
(iii) non-uniform subdivision algorithms, for example, the constructive
algorithm based on the local geometry of the control polyhedrons derived

by N. Dyn, D. Levin and D. Liu.
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4.0. Notation

In order to facilitate our description on the subdivision algorithms, the

following notations are introduced. They will be used throughout the rest of

the thesis.

PX . control points at level k, and i, ik >0

P*: a vector whose components are part of {P"f.j];

A:  the local subdivision matrix at an extraordinary point;

N: integer, the indicator of the extraordinary point, N >3, N = 4;

{a}: local shape control parameters;

{a,, b, €0 4, ) Weighting coefficients of algorithms;

LB, LB, LB Linear operators for bi-quadratic, bi-cubic and bi-quartic

B-spline algorithms respectively.

4.1. Recursive Subdivision Algorithms for Tensor-product

B-spline Patches

Since any uniform B-spline curve can be generated by a uniform recursive
subdivision algorithm [51,76,91], its tensor-product counterparts can also be
generated. For example, Doo-Sabin’s algorithm generates uniform bi-quadratic
B-spline surfaces over uniform data, Catmull-Clark’s algorithm generates
uniform bi-cubic B-spline surfaces over uniform data. In this section, we

present a summary of this type of algorithms.
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4.1.1. The Doo-Sabin’s Algorithm

The Doo-Sabin’s algorithm over uniform data (tensor-product-type data) is
the generalization of Chaikin’s algorithm for surfaces [46]. The algorithm is

defined by the following refinement equations

Pitai = GNP, + (W190P%, ,, + 3/160P5,, + (3/160P,,,
@) Pilam = G/0P5; + G/160P%, 5, + O/160P%,, + (1/16)P%,,,
Piing = G/1OP5 + G/160P4,, 0 + (1/160P5,,, + (9/16)P%,,,
Pitham = W1OPY, + O/1600P% 0 + G/16)PF ., + (3/16) P~

where, {P’i‘J.} is the control net (control polyhedron) at the k-th lever and (P}

the control net at the k+1st level, that is, the refined control net.

It is obvious that the weights of the algorithm {9/1¢, 3/1¢. 3/16 1/16) aT€
just the tensor products of the weightings of the Chaikin’s algorithm {3/4, 1/4}.

In fact, this is true for any uniform tensor-product type subdivision scheme.

The above algorithm is characterized by the linear operator LB: R** —> R

defined by

(42) y = LB(X) = (916X, + (1/16)X,, + G/16)X,, + 3/16)X,,-

The most important feature of Doo-Sabin’s algorithm is the technique

used to treat non-uniform data. The technique divides the data into uniform
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data and non-uniform data and then isolates the non-uniform data by some
locally uniform data on which the uniform scheme can be applied. For
non-uniform data, some special local algorithms are introduced so that each
group of the non-uniform data converges to the so-called Extraordinary Point
(E-point). We should emphasize here that the number of E-points may be

increased at the first subdivision but remains unchanged after that.

Since the uniform scheme is applied at ordinary points, the surface, in
the limit, is a bi-quadratic B-spline patch. Thus, the surface is smooth at
every point except for a fixed number of the so-called extraordinary points. To
analyse the properties of the limit surfaces, it therefore suffices to analyse

them only at these extraordinary points.

Figure 4.1.
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Figure 4.1 shows the Doo-Sabin’s algorithm near some non-uniform

data (a 5-sided face) which is isolated by uniform data.

On applying the algorithm, a smaller N-sided face is produced. The new

vertices of the N-sided face are obtained by the formula:

(43) Pl i= YN gp

0 [}

where, the weghtings {a} are given by

(4.3a) @ = [3+2cos@ni/\)/an, i=0,1,2, .., N-L

Other points {P}’,}, j =12, ., N-1, can be calculated symmetrically. Some

alternatives to this formula is also discussed in [46].

The following theorem states the main result about the Doo-Sabin’s

algorithm [33].

Theorem 4.1. The surface produced by the Doo-Sabin’s algorithm has the
following properties: (i) The surface is C¢' at any regular point and (ii) The
surface has a unique tangent plane at any E-point. That is, for general data,

the limit surfaces are smooth.
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4.1.2. The Catmull-Clark’s Algorithm

In 1978, Catmull and Clark developed a subdivision algorithm for the
generation of uniform bi-cubic B-spline surfaces in [27]. Initially, they hoped
that the algorithm may produce better results than that of the Doo-Sabin’s
algorithm. In fact, it turned out that the algorithm could not, in general,
produce curvature continuous surfaces even when some optimized parameters
are used [1,2,3,116]. However, the generated surfaces behave quite well since

they are C? everywhere except the E-points.

The algorithm over uniform data is characterized by the following

refinement equations

P = (P54 (VP + (VP + (VaPY,

P = (1/160P%, + (6/160PF, 40 + (6/16)P 0 + (1/16)P14,,
+(1/16)P% ,,  + (1/16)P 42

Pl = (/1605 + (6/16)Pim + (1/16)P% ;. + (6/16)P

(4.4)
+ (/1600P%,; + (V/16)Pigin

k
PEL = (VeaPr, + (36/6a)Ply i+ /6Py + (6/60P0,

+ (VedPr,, + 6/6aPi 50 + (/6P

+ (6/64/)P5 102 + (/68P 10y

The weightings of the algorithm are 1/4, 1/16. 6/16: 1/64/- 6/64 and 36/¢4.
From (4.4), we observe that the algorithm is composed of three different
formulae: the vertex point formula (the forth equation), the edge point formula

(the second and the third equations) and the face point formula (the first
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(the second and the third equations) and the face point formula (the first

equation).

For non-uniform data, the scheme is modified, in a similar way to the
Doo-Sabin’s algorithm, to separate the non-uniform data from the uniform
data and then isolates each group of them. The technique guarantees that
each group of the data, which is surrounded by locally uniform data,

converges to an extraordinary point. Thus, the analysis of the algorithm

becomes an extraordinary point analysis.

The algorithm at the near-extraordinary points is as follows. The
extraordinary point in this case is an N-spoked vertex (When N = 4, the
algorithm degenerates to the uniform algorithm). The formula for the new
edge points and the new face points are the same as the corresponding

formulae in (4.4). The formula for the new vertex ¥ is given by

(4.5) v = AV + BG + CQ,

where, ¥ is the old vertex, G is the average of the new face points
surrounding the N-node and Q@ is the average of the old vertex points
connected to ¥ by an edge; A4, B and C are the free weights satisfying

(4.6) 0 < ABC and A+B+C = L

By introducing the subdivision matrix at extraordinary point and
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[46]) and using some results in differential geometry, the following result is

obtained in [1,2,3].

Theorem 4.2. The algbrithm produces a uniform bi-cubic B-spline patch
over uniform data. At any extraordinary point, the limit surface has a unique
tangent plane if the parameters 4, B and C are chosen properly. Furthermore,

the surface, in general, is not curvature continuous at the extraordinary point,

although it is C? at other points.

Figure 4.2 shows the algorithm near an ~N-spoked vertex ¥ (only when

N=4, the vertex is called a regular vertex). Here, N = 5.

Figure 4.2.
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4.1.3. The Uniform Bi-quartic B-spline Algorithm

This algorithm is the tensor-product generalization of the corresponding
uniform scheme for the uniform quartic B-spline curves. It produces uniform
bi-quartic B-spline surface patches over uniform data. For arbitrary data, the
scheme separates the uniform data from the non-uniform data and then
isolates the extraordinary points by using some local techniques. Hence, the
generated surfaces are €* continuous except at the extraordinary points. At
these E-points, special techniques are used to analyse the smoothness

properties of the surfaces. The details about this algorithm will be given in

Chapter 5.

4.2. Some Uniform Tensor-product Type Algorithms

In this section, we list some uniform subdivision algorithms generating

tensor-product type surfaces.

4.2.1. The Tensor-Product of Dyn-Gregory-Levin's Algorithm

It can be shown that the DGL’s subdivision scheme for curves [48] can
be generalized to produce tensor product surfaces. For simplicity, however,
only the DGL’s 4-point interpolatory subdivision algorithm is given as an
example. The scheme produces smooth interpolatory surfaces over uniform

data. This scheme will be described in Chapter 6.
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4.2.2. Other Tensor-product Type Algorithms

Besides the above discussed recursive subdivision algorithms for surfaces,
there are many other RSA generating tensor product surfaces. One of them is
the generalization of the non-uniform B-spline algorithms (discussed in
Chapter 3) to produce tensor-product non-uniform B-spline surfaces. Another
is the subdivision algorithm for the computation of tensor-product polynomial
surfaces. One such example may be the line averaging algorithm for certain

Cube-spline (Box-spline) surfaces [20,28,87].

These algorithms are direct generalization from the curve cases. Thus the
(smoothness) properties of the schemes remain the same if the data is
uniform. For non-uniform data, some special techniques are needed to treat
the extraordinary points. However, the details will not be discussed in the

thesis. The interested reader is referred to the papers [2,28,46,92].

4.3. Recursive Subdivision Algorithms Based on

Trlangulations

Another class of recursive subdivision algorithms is the simplex-based
algorithms. They are constructed over triangulations in the 3-dimensional
space. Both the DGL scheme and the Micchelli-Prautzsch (MP) scheme can be

generalized to produce surfaces over uniform triangulations. In fact, we will
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show in Chapter 6 that the tensor-product type algorithms is just a special

case of this class of algorithms.

Since the DGL approach and the MP scheme are equivalent in some

sense, we discuss only the generalization of the DGL scheme over uniform

triangulations.

4.3.1. A 10-point Interpolatory Recursive Subdivision Algorithm

This algorithm is a generalization of the DGL’s 4-point interpolatory
scheme [48] for surfaces over triangulations. The scheme has two shape
control parameters and uses 10 local control points to refine the control nets.
It produces smooth interpolatory surfaces over arbitrary triangulations.The

details about this scheme will be given in Chapter 6.

4.3.2. A General Subdivision Scheme Defined over Uniform

Triangulations

The DGL scheme for curves can be generalized to surfaces over uniform
triangular control nets. The scheme is characterized by the following

refinement equations
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P12Hi-¥2j = Zm,neMo am.n Pl:+m.j+n

(4 7) IZHi—-:-l.Zj = vanwo bm.n Pl;+m.j+n
PIZHi—?2j+l = Zm,neMo Conn P’i‘+m.j+n

g“i—-}—ll}}l = Zm‘neMo dm,n PI:+m.j+n

where, the coefficients {a, b, ¢ d_} are constants and non-zeros in the
set M. This set is a fixed, finite integer set (support set) describing the local

dependent property of the algorithm.

It is obvious that both the 10-point interpolatory scheme, which will be

studied in Chapter 6, and the tensor product type algorithms belong to this

class of subdivision algorithms.

Using the generating polynomial technique, Cavaretta, Dahmen, Micchelli,
Dyn et al [28,29,54,..] analysed this scheme and some necessary and
sufficient conditions for generating smooth surfaces are studied. While our
method, the Matrix Analysis, which is based upon the Differences and
Cross-Differences of Directional Divided Differences, will be presented in

Chapter 6.

Remark: The uniform algorithms can also be used to generate smooth
surfaces over arbitrary triangular networks if one can construct some special

local algorithms to cope with the extraordinary points.
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4.4. Other Recursive Subdivision Algorithms for Surfaces

Just as in the case of curves, there are many recursive subdivision
algorithms for surfaces. Some of them cannot be classified into the above two
categories, for example, the non-linear or non-uniform algorithms [53,122]

and the subdivision algorithms for polynomial surfaces [4,7], which will now

be described briefly below.

4.4.1. The de Casteljau Algorithm for Bernstein-Bezier Polynomial

Surfaces

Like most recursive subdivision algorithms for curve, the de Casteljau
algorithm can be generalized to calculate the Bernstein-Bezier surfaces (BB
surfaces) [19]. As in the curve case, the algorithm is based on the recurrence

relation of the bi-variate BB function basis.

The algorithm for a cubic polynomial patch can be described as follows.

Firstly, the BB basis functions of degree n, n > 0, {B';,,-,k}' i+j+k =n and i,

j,k > o0, are defined by

n! o
(48) B, = sk,

igk itjlk!

where, (s, r, 1) is the barycentric coordinates, which are omitted in the basis
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function expressions. Similar to the univariate case, it can be shown the

following recurrence relation of these basis functions

n+1 _ ..
(4.9) B = SB';+1.j.k +- rB’l"_HLk + tB';_j’kH, for i+j+k=n+t1and s+r+1=1

The BB surface over a triangle is defined by (in terms of barycentric

coordinates):

(4.10) PG = 3w Piju Bl

ijk

where, (P are the so-called Bezier points. By applying (4.10)

i.j,k}j+i+k=n

repeatedly, the following subdivision process can be obtained

(4.11)  P(srd) = Yyisen Py B

ijk
1 n—1
- Zi+j+k=n—l Pi.j.k i.jk

2 n—2
= B
Zi+j+k=n—2 Pi.j.k i, jk

0
- Zi+j+k=0 P’il.j.k B ijk
—_ P"

0.0.0

where, the Bezier points {PT.,-.k} are determined recursively by

1 — m .. _
(4.12) P’:'H.’;'.k = s Pk TP ik +tp’?.j.k+l' for 0 < m< n itk =mtl
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and

(4.13) P‘j_j_k = P for all i, j and «.

ijk’

The property of the subdivision algorithm for BB surfaces can be

concluded by the following theorem:

Theorem 4.3. Using the above recursive algorithm, the BB surface P(r.s.t)
can be split into three sub-patches, P°, P' and P* whereby the Bezier points

(expressed in the BB form) are given by
(4.14) {PT.j,o’ i+j =n—m, m=0,1, .., n},

(4.15) | Py o Jtk=n—m m=0,1, .., n},

(4.16)  {pP™

i Ok, i+k = n—m, m = 0,1, .., n}.

respectively.

Figure 4.3 shows the geometric structure of the algorithm for a cubic

surface.

More about the algorithm is discussed in [19,61,113].
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Figure 4.3.

4.4.2. Geometry Based Algorithms

This class of algorithms is introduced by N. Dyn, D. Levin and D. Liu
[53] to construct convexity preserving interpolatory recursive subdivision
algorithms for surfaces. The scheme is neither uniform nor linear. It is a local,

geometry dependent algorithm.

The idea of the scheme is to refine the control nets under some convexity
(shape) preserving constraints. The scheme is a generalization of the chape

preserving subdivision algorithm used to produce interpolatory curves [47,48].
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The main difference is that in the surface case the constructions and the

constraints are much more complicated. For details, see [53].

4.4.3. The Cube-spline Algorithm

The algorithm for the computation of multivariate Cube-splines
(Box-splines) [11,13,16,39,85-91] belongs to a very special class of recursive
subdivision algorithms. This algorithm can be regarded as a generalization of
the wuniform de Boor algorithm, the Lane-Riesenfeld algorithm or the de
Casteljau algorithm. The main feature of them is that they are moving line

averaging processes.

The algorithm has been described in Chapter 2. For more details the

reader is referred to [11,16,39,85-91].
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=

A SUBDIVISION ALGORITHM FOR UNIFORM BI-QUARTIC

B-SPLINE SURFACES OVER ARBITRARY NETWORKS

A schematic analysis of the subdivision algorithm for uniform bi-quartic
B-spline surfaces over arbitrary networks is presented in this Chapter. Our
main result is the spectrum analysis of the subdivision matrix and the Normal
Curvature property analysis of the limit surfaces at an extraordinary point.

The Block-Circulant Matrix method is used to simplify our analysis.

5.1. Formulation of the Algorithm

Since any uniform B-spline curve can be produced by a recursive
subdivision algorithm as discussed in the previous Chapters, the RSA for

uniform bi-quartic B-spline surfaces can easily be derived. The scheme will be
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described in detail later in this section. From the construction we know that
the algorithm produces a uniform bi-quartic B-spline surface if the initial data
is uniform. However, since non-uniform topology often arises in practice. we

will adapt this algorithm to non-uniform data.

5.1.1. The Ideas of the Analysis

In the papers by Doo/Sabin and Ball/Storry [1-3,44-46], the Doo-Sabin’s
and the Carmull-Clark’s algorithms are thoroughly analysed. Their analyses
are, in fact, an extraordinary point analysis. It will be shown later that the
properties of the subdivision matrix 4 at the extraordinary point determine

the behaviour of the limit surfaces at the extraordinary point.

Their analyses come from the following observations. Without loss of
generality, we suppose that the initial control polyhedron has only one
N-extraordinary point (or facet, where N = 4), which is surrounded by locally
uniform data. Since the scheme does not introduce any more E-points, at any
subdivision stage the limit surface is well defined everywhere except an
N-sided hole around the E-point. By repeating the subdivision process, the
N-sided hole will be covered by smaller and smaller 4-sided, well defined
polynomial patches apart from the central point and will finally converge to
the E-point provided that the scheme produces a continuous surface (this is
always assumed). It should be noted that for ¢' convergence, the tangent
plane of the limit surface at the E-point is defined as the limit of the tangent

planes of the well-defined surface patches defined by the near-the-hole points,
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see Figure 5.1 (it is assumed that the limit exists). This is reasonable since

the tangent planes vary continuously on the well defined B-spline surface

patches.

P
=113

\&:t- .
AL
YT

i-1.4

i-2.1

Figure 5.1.

The following result is obtained [3,46,116]:

Proposition 5.1. The algorithm produces a continuous surface if the hole
converges to a point. Furthermore, the surface is ¢! if the well defined
surface patches are C' and the tangent planes of them at the near-the-hole

points converge to a plane, which is the tangent plane of the limit surface at

the E-point.

For C? convergence, the analysis is more difficult and will be studied in
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section 5.3.

5.1.2. The Eigen-range of the Algorithm

In this subsection, we shall concentrate on the study of the N-sided hole
problem. However, before we proceed our studies, two natural questions are
raised: on which points the behaviour of the N-sided hole depend and what

the control points are that determine the uniform tensor-product B-spline

surface patches just around the hole.

In order to answer these questions, the Eigen-range of the algorithm

should be introduced.

Definition: The eigen-range of the algorithm is defined as the number of
control points and its topology near the N-sided hole that have effects on the

behaviour of the limit surface at the E-point.

For example, the Eigen-range of the Doo-Sabin’s algorithm is the 4N
control points around the hole (only two rings); the Eigen-range of the
Catmull-Clark’s algorithm is the (6N+1) points around the hole (three rings)
and the Eigen-range of the bi-quartic uniform B-spline algorithm is the 16N
points around the hole (four rings). Generally, the Eigen-range of a scheme is
m*N (for even m)or m(m—1)N+1 (for odd m), where m is the degree of the
B-spline patches produced by the algorithm over uniform data, m > 1). The

algorithm is called an even (odd) algorithm if m is even (odd). Figure 5.2

-110-



CHAPTER FIVE: A RSA FOR UNIFORM BI-QUARTIC B—SPLINE SURFACES OVER ARBITRARY NETWORKS

shows the Eigen-ranges of the first three B-spline algorithms.

Figure 5.2.

It will be shown in the following subsections that the properties (the
position and the partial derivatives) of the limit surface at the E-point

depend only on the Eigen-range of the scheme.

5.1.3. The Local Subdivision Matrix A

Since the algorithm is a local, linear (in fact, convex combination)
process, it can easily be shown that its Eigen-range at level k+1 can be

obtained by a linear transformation (in fact, affine transformation) of the
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Eigen-range at level k, where k > 0 is the iteration count. Using the block

circulant ordering technique, this relation can be written in the form

(5.1) P = 4 pf | forall ¥ > o,

where, A is the Local Subdivision Matrix and P* and P**' are the Eigen-range

vectors at level &k and k41 respectively and P* is defined by

(P Pryy oo Py o Pi L, oy PY_ Y (fOr €ven m)
(52) P =

VP, Py, Py P, ., Py ) ( fOr 0dd m).

and P! is defined similarly. Figure 5.3 shows the details of the

Block-Circulant ordering technique for the Eigen-ranges.

When m is even, the iteration matrix A4 is a Block-Circulant Matrix

(B—circ matrix for short) of the form

(5.3) A= B—ir(A, A, ..., A _)
A, A .. A
_ n—1 AO e n—2

A A, . A4

where, A,i=0,., N—1 is a square matrix of order m?,
i

When m is odd, then the subdivision matrix A4 is in the form

(5.4) A = :
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where, a is a (positive) number and A’ is a B—circ matrix of order m(m—1)N.

V. and v, are some specific (positive) vectors.

As an example, the subdivision matrix A4 for the cases m =4 is

constructed in subsection 5.1.5

Pi.l6

P
i—1 ‘z—l 5 \t—l 9 Jl—l 13

—1.10 i—1.14

Figure 5.3.
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5.1.4. The Role of the Eigen-range

In this subséction, we shall prove that the local properties of the limit

surface at the E-point are completely determined by the FEigen-range of the

algorithm at any level.

By definition, the tensor-product B-spline surface is given by

(5.5) @ P, v) = UMPMYV,

where
U = @ ul, ., u ly
V = (vr,v*l, v 1)
(5.6)
a at
M = , the subdivision matrix for B-spline curves,
M’ 0

P = {Pu’ i.,j =0,..,m}, control points.

Direct evaluation from (5.6) gives the following result:

Theorem 5.2. For all 0< i, j <m,

P, v)
(5.7) ( —— } are determined by (P | . <m}
ol v u=0
On applying this theorem to the control points of the B-spline patches

around the N-sided hole, we can conclude that all the values and the partial

derivatives of the patches given by (5.7) which converge to the E-point are
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determined by the corresponding Eigen-ranges.

Since these well defined patches are connected very smoothly (C3
continuous), the properties of the limit surface at the E-point depend on the
properties of the patches near the hole. Consequently, we can conclude that
the properties of the limit surface at the E-point depend on any of the

Eigen-ranges (the Eigen-range at a lower level determines the Eigen-range at a

higher level).

5.1.5. The Subdivision Scheme for Uniform Bi-quartic B-spline Surfaces

over arbitrary networks-

As an example, we give a brief description of the subdivision scheme for
uniform bi-quartic B-spline patches. For uniform data, the scheme is

characterized by the linear operator LB, R** —> R defined by (see Figure

5.4):
XW X1,2 X13
N
I \
\ \
XN l’ X \ X, 3
y—=f—— —Y, \
X1 X2 X3
Figure 5.4.
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(5.8) y, =LB(X) = (25X, +50(X,,+ X, } +100X,,

+5 (X, ,+Xu} +10 (X,, + Xu} + X, Vas6.

By symmetry, other refined points, such as y, y, and y, can also be

computed.

For non-uniform data, the algorithm is like this. For any point away from
the N-sided hole, the operator LB, is applied. For the mwo layer points
around-the hole, N pseudo-points, (@} are introduced so that the operator can

also be applied. Figure 5.5 shows the construction of the algorithm over the

hole.

These N (N * 3) pseudo-points (@} are defined by the following

symmetric formula:

(59) 0, = ap, +3,Mla (P

i (P + PN+4'-].1)' i=01,.,N-1

where, {a} are some weightings satisfying
(5.10) a, + 2 3 Ve =1

Thus, the refined points over the hole can then be defined: for i=0,1, ..,

N-1,
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i.16

P
i—19 11—1 13

l\ft 1.14

N—1.7 \ 1.11 i—1.15

P \(

\_i=14 i-1.8 i—1.12 i—1.16

Figure 5.5.

1
P, =LB (Q Pz 1.1 Pi—l.S’ Pi+l.1’ Pi.l’ Pi.2' Pi+1.2' Pi.S’ Pi,6)

il
1
Pi,2 =LB (P -1.5 : 1.1’ Q P, i2’ P P:+1.1’ Pi.6' Pi.5’ Pi+1.2)
(5.11)
| S,
Pi.5 - LB4(Pi+1.2’ Pi+1.l’ Qi’ Pi,S’ Pi,1’ Pi-—-l.l’ Pi.6' Pi.z’ Pi—l.S)

1 —_
Pi.6 - LB4(P P P: 1.5° P' 5 Pu’ Pi——l.l’ Pi+1,2' i+1.1° Q)

Other refined points are determined by the bi-quartic B-spline subdivision

process. This is also shown in Figure 5.5.
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For simplicity, in our analysis, we assume that ¢ =0 for i>3
‘ > 3.

i-19 i—1.13

/Pi—1.14

Figure 5.6.

In the case of N =3, these pseudo-points can be introduced similarly.

For example, 0, can be defined as a symmetric affine combination of P,

S PoPois PysPirPia and P,_ ¢ One simple choice is
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(5.12) Q =apP, +a (P, +P )+a, (P, +P,_)

where

(5.13) a,+2a +2a,=1
The refined points near the hole {P}J,l}_:l‘ N 5'6},,:’;"1 are given by (5.11). This

process is demonstrated in Figure 5.6 where, the labels of the new control

points are omitted.

From the above construction of the algorithm over the hole, we can see
clearly that the process 1is linear and the subdivision matrix A4, as

introduced in (5.1) is a Block-Circulant Matrix.

5.2. Convergence Analyses

In this section, we study the conditions under which the algorithm
produces continuous and differentiable surfaces. The result obtained here is a
generalization of the results reported in [1-3,45,116], whereby the quadratic

and cubic B-spline algorithms are studied respectively.
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5.2.1. The Extraordinary Point Analysis due to Ball and Storry

In a series of papers by Ball/Storry [1-3,116], they analysed the
Catmull-Clark’s algorithxﬁ in detail. Their analysis, much like the Doo-Sabin’s
analysis for the quadratic algorithm, is mainly composed of the extraordinary
point analysis. Their idea for the high order continuity analysis of the limit

surface at an extraordinary point is as follows.

Far the ¢! convergence, they assert that the surface is ¢' at the E-point if
the tangent planes of the well-defined B-spline patches near the E-point
converge to a plane. This plane is then defined as the tangent plane of the
limit surface at the E-point. Hence, their ¢! analysis is based on the study of
the tangent plane series of the B-spline patches near the E-point. This
investigation involves further studies on the eigen-properties of the local

subdivision matrix. Similar techniques will be used in our analysis.

Although they have proved-that the Catmull-Clark’s algorithm could not,
_in general, produce c? continuous surfaces over arbitrary topology, they still
studied the curvature properties of the limit surface at the E-point. In their
analysis it is implied that the limit surface may be ¢? if the following
conditions are satisfied: (i) any aligned face or edge loci on the surface
(passing through the E-point), which has tangent continuity at the E-point,
has curvature continuous property and (ii) the normal curvatures of these loci
at the E-point satisfy the Gaussian normal curvature condition (5.15), which

will be studied in detail later. The second condition is very important since
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condition (i) is not sufficient to guarantee C? continuity. This can be shown
by a simple counter-example. However, any one of the conditions is a
necessary condition for the surface to be ¢* Hence, they only used condition

(i) to prove the curvature discontinuous property of the limit surfaces.

In order to study the tangent planes and some appropriate loci on the
surface, the eigenvalues and their corresponding eigenvectors of the local
subdivision matrix should be analysed. In fact, it can be shown that given the
initial data, the tangent planes and the curvatures of the loci can be expressed
explicitly in terms of these eigenvalues and eigenvectors. To this end, they
used both direct evaluation and' the Fourier Transformation technique to find

these values.

The mathematics behind this analysis is a combination of differential
geometry and mathematical analysis. The whole theory lies on the technique of

pointwise analysis, which is based on the local structure of surfaces.

Since our algorithm has a similar property, that is, the limit surface is
curvature continuous (C® to be more precise) everywhere except at the
E-points, the Ball-Storry’s ideas for the smoothness analysis will be used to
analyse the convergent property of the scheme at these E-points. Moreover,
one major difference from the Ball-Storry’s analysis is that their ideas will be

developed to study the curvature property at the E-point.

Another difference of our analysis from theirs is that we use
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Block-Circulant-Matrix technique (this is equivalent to (Block) Fourier
Transformation Technique) to analyse the subdivision matrix instead of the
direct evaluation method. This difference in techniques is due to the fact that
the subdivision matrix in our case is more complicated than that in
Ball-Storry’s analysis, and thereby making the process of direct evaluation of

the eigenvalues and eigenvectors very dificult (but not impossible).

5.2.2. Continuity at the Extraordinary-point

As we have already known that the algorithm produces in general a c
surface over uniform data, our attention is therefore restricted to the analysis
at the E-points. In order to prove the c' property of the surface, it is
imperative that the ¢° property should be proved first. To this end, the
Adapted Parametrization technique, that is, the parameter values satisfy the
subdivision algorithm, is used to prove the ¢® continuity of the surface at the

E-point.

Since the limit surface is smooth at any point except the E-point, the
surface must have the same differentiability with respect to the Adapted
Parametrization as with the diadic parametrization provided that the initial
(adapted) parametrization values are chosen appropriately in the parameter
plane. This is because the limit surface is locally a uniform bi-quartic
B-spline patch except the E-point. In fact, a general result, as in the curve

case, can be proved that the limit surface has at least the same
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differentiability with respect to the adapted parametrization as with the diadic
parametrization. That is, adapted parametrization could be a better

parametrization. Hence, we use the adapted parametrization to analyse the C°

convergence of the algorithm at the E-point.

5.2.3. Spectrum Analysis

By choosing proper weightings (that is, the local shape control
parameters {a}), the following properties of the subdivision matrix 4 can be
obtained. It should be emphasized that these properties play a very important

role in the convergence and smootliness analysis of the limit surfaces.

Let {3}, Ir] > |2l be the eigenvalues of A4 and (v} be the
corresponding (generalized) eigenvectors. Then we define the following

eigen-properties.
B. i =11Lv=(L1., 1y, |l <1, for all i > 1.

0

A, =24,2>0, Al < Ay, foralli >3

B,.

dimspan {v,, v;} = 2.

A= Ay > Ag >0, A, =4
B,. A, > |a| foralli > 7

dimspan[v.,. Vs} =2
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Ay=hg > A >0, 4, < A
20°

As > |a| forall i > 6.

Remark, It is required that v, i=1,2,..,5, 6, are eigenvectors of A.

In the cases of quadratic and cubic B-spline algorithms, that is, when m =
2 and m =3, it is shown explicitly in [45,116] that properties B, and B,
can be satisfied. However, in the case of cubic B-spline algorithm, property B,
can not be obtained though property B, be achieved. When m = 4, it can be

shown that all the above properties can be obtained by an appropriate choice

of the shape parameters {a}.

5.2.4. ¢® Convergence

Using the adapted parametrization, We can obtain the following result.

Theorem 5.3. If the local subdivision matrix A has property B, then,
with respect to the adapted parametrization, the limit surface is uniformly

continuous.

Proof. The condition B, guarantees that the eigen-range sequence of the
algorithm converges uniformly to a point, which means that the limit surface
is continuous at the E-point. It is obvious that the surface is uniformly

continuous, respect to the adapted parametrization, at regular points. This
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completes the proof.

Remark, This Theorem can also be proved by using piecewise diadic

parametrization method.

5.2.5. ¢' Convergence

For C' convergence, we need to prove that the tangent planes of the
B-spline-patches around the N-sided hole converges uniformly to a plane, the

tangent plane of the limit surface at the E-point.

Theorem 5.4. If the subdivision matrix 4 has the properties B, and B,,

then the limit surface is C' at the E-point.

Proof, If properties B, and B, hold, then it can be shown, in the same
way as in [2,45,116], that all the tangent planes of the well defined B-spline

patches around the hole at level «* have the form

(5.14) m* = span{a, B} + R(k),

where, a, B € R® are constants depending on the initial data and the shape
parameters and R(x) = O(4 /Az)". For general data, <a, > # 0. Property
B, quarantees that R(k) goes to zero uniformly when k goes 1o infinity. That

is, all these tangent planes converge to the plane spanned by « and 8. This

completes the proof.
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5.3. Normal Curvature Analysis

In this section, we investigate the curvature properties of the surface at
the E-point. The main result is the Normal Curvature (N-curvature) analysis

about the surface at the E-point. This result is also valid for higher (even)

order schemes.

5.3.1. Formulation of the Curvature Continuous Problem

Since the B-spline patches around the N-sided hole are well defined, some
simple calculations show that the N-curvatures of these patches can be
represented by their corresponding control points. By definition, these
N-curvatures can also be expressed in terms of the points in the Eigen-range.

As a consequence, we have the following lemma:

Lemma 5.5. The normal curvatures of the well-defined patches adjacent
to the N-sided hole at level k+1 can be represented by the Eigen-range at

level «k.

To analyse the curvature continuity of the limit surface at the E-point, we
assume that the surface is at least C' at the E-point (tangent plane

continuity).

We now define the Normal-curvatures of the limit surface at the E-point
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to be the corresponding limits (suppose the limits exist and are finite) of the
N-curvatures of the well defined B-spline patches near the n~-sided hole. It is

obvious that the definition is compatible with the ordinary definition of ¢2

surfaces if the limit surface is ¢* at the E-point.

From differential geometry, we know that the normal curvature X of a

Cc* surface at point Q@ must satisfy the Gaussian  Curvature Condition

(G-condition):
(5.15) K = cos¥a) K_. + sin’(a) K

where, k .. and kK are respectively the maximum and minimum

N-curvatures of the surface at 9 and o is the angle <T, T, > Here, T,

T, and T are the unit tangent vectors of the corresponding N-curvatures.

It should be pointed out that, in our isolated E-point case, the 2
conditions and the G-Condition'at the E-point are equivalent. Furthermore,
since the surface is a sufficiently smooth parametric surface, it can be
regarded as a function (locally) at the E-point [79]. Hence, the Gaussian
condition is a necessary and sufficient condition for the surface to be a C’
surface. Consequently, if we caﬁ prove that the Gaussian condition is satisfied

at the E-point, we can conclude that the limit surface is curvature continuous

at that point.
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53.2. C? Conditions of a Parametric Surface

In this subsection, some conditions for a parametric surface, G(uyv), to be
c? continuous at a point Q on the surface are presented. To this end, we first

introduce the definition of the normal curvature of a regular smooth curve r(r)

on G(uyv) passing through Q.

Let the unit normal direction of the surface at Q be denoted by N, and

the derivative of r) at @ with respect to ¢ be denoted by . Then, from

[79,116], the curvature of r(r) at Q is defined as

(5.16) K 0 = <r', r'>r" — <", r'>r)/<r, r'>?

Thus the N-curvature of r(r) at Q is given by

(5.17) K(Q) =<K, N> =<r" N>/<r'r>

It can be shown that K (Q) depends only on the surface G(u,v) and the

unit tangent vector r'(r)/”,r(t)“ at Q (r'(r)/”,:(,)” and K (Q) are invariants).

Thus, K (Q) s defined as the N-curvature of the surface G(u,v)at Q along the

direction 7®)/|1r )|

The following proposition describes the G-condition for a parametric

surface.

Proposition 5.6 [79,116]. Suppose K, X, (j=1, 2, 3) are four normal

curvatures of a ¢* parametric surface G(u,v) at Q along tangent direction T, T
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1 . .
(=1, 2, 3) respectively, where T, T, are the corresponding tangent vectors of

some C* curves passing through ¢ on the surface. If {T;} satisfy

(5.18) T, X T, #0, i,j=1,2,3, i #},

then we have the following Guassian Normal Curvature Condition

(5.19) kK = <T,7>!

LT, X T, @XT, >
=T XT), @, XT, )> ’

where, <X, Y> is the scalar product of X and ¥, and X x Y is the cross

product of X and Y. The index j is cyclic within the range (1, 2, 3).

Remark, If we define T, =T, K, := K in Proposition 5.6 and suppose

that

(520) angle <T, T, > = o = constant,i=1,23,
then the G-condition (5.19) becomes

(521) Kk, +K, =K, +K, +4cos¥(a) (K, — K)).

This condition is very useful to prove the curvature properties of the
surface. In particular, if we solve (5.21) as a difference equation (of order

three), then we can obtain the the following real basic solutions:

(5.22) 1, cos (2ie) and sin(ia).
Thus, the general solution of (5.21) is given by

(5.23) K, =c, +c,cos(2ia) + cysin(ia) = ¢, + c,cos(2ia + cy),
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(5.23) K, =c +cos(2ia) + csin(2ia) = ¢, + c,cos(ix + c,),

where, ¢, ¢, and c, are some general constants.

Conditions (5.21) and (5.23) will be used later in our analysis.
5.3.3. Special Loci on the Surface Incident to the Extraordinary Point

In order to study the N-curvatures of the surface at the E-point, we need
to introduce some special loci on the limit surface incident to the E-point. We
then investigate the N-curvature properties of the surface on these loci and

establish the curvature analysis about the limit surface at the E-point.

As in Ball and Storry’s analysis, some special loci on the surface passing
through the E-point can be introduced. For example, the edge loci and the
diagonal loci on the well-defined B-spline patches around the hole can be
defined. Other loci can also be studied in a similar way. Figure 5.7 shows

these loci and their corresponding B-spline patches.

Mathematically, the i-th diagonal locus can be defined like this. At level ,

those newly produced patches (B} wwl,_, , ot w0 wv<L which
are defined by near-the-hole control points, are well defined (Figure 5.7).

Then, the i-th diagonal locus D) is defined by

(524) Db, = UD
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where,

(5.24a) D = ([Bf . 0 < e <1JUYI[BY (0 o) 0 < e < 1)

Other loci can be defined in the same way. For example, the i-th edge
locus E(+) is given by

(525) E, = |, E
where,

(5.25a) Ef = {[B5,(0,0:0<: <1]J[B} 0.0 0<e< 1]}

Figure 5.7.
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The general loci, L, . given by

(526) L, = UL

Ln

where,

(526a) L = U, [B'i‘_nj(u"j(t), v, (@0): 0 <1 < 1].

where, u”j(t) and vnj(t) are some special linear functions of ¢ can also be

studied in the same way. Obviously, D, and E, are special cases of L .

Since the patches are uniform bi-quartic patches, we can obtain the

following result:

Lemma 5.7. Both the diagonal loci {D} and the edge loci {E] are c
curves. Furthermore (L, } are also ¢ if [u”j(t), v,,j(:)} and n, are chosen

appropriately.

In the next subsection, the N-curvatures of the diagonal loci and the
surface at the E-point will be fully studied. It should be pointed out that the
N-curvatures of these loci at the E-point are defined as the limits (suppose the
limits exist, and they may be zeros) of the N-curvatures of the corresponding

loci when k goes to infinity.
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5.3.4. The N-curvatures of the Surface at the E-point

Since these loci defined above are C® except at the E-point, the
N-curvature of these loci at this point can also be defined. For example, they
are defined as the limits of the corresponding N-curvatures of (D} as k goes
to infinity. In general, the N-curvature of the surface at the E-point is defined
as the limit of any C? continuous locus on the surface passing through the
E-point which has a proper tangent direction at the E-point. It will be shown
that the limits exist and are finite if the parameters {a} are chosen

appropriately.

In order to study these N-curvatures, more about the well defined
patches around the N-sided hole should be investigated and some special

techniques are also required to analyse them.

5.3.5. Results About Block-Circulant Matrices

The eigenvalues and their corresponding eigenvectors of the subdivision
matrix play a very important role in the investigation of the curvature
properties of the surface. In this subsection, some results about the
subdivision matrix are presented. The proofs of these results can be found in

or derived from [43].

Let A4 be a square Block-Circulant-Matrix of order mN:
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(5.27) A = B—cir¢ A, A A )

o Ay
Ao A ) ) -

_ AN—-l 4, 4, AN_z
A4, A4, A, A,

where, m and N are some non-negative integers and define,
— N-1 _nj P

(528) D, = ) 7 w'A, j=01 .., N-L,

and

(529) D := disg(D, D, D, .., D, ),

where, w is the i-th root (complex) of unity:
(5.30) w = &N = cos(2a/p) + isin(2n/y) = cos(B) + isin(B),

and g :=2xn/p. Then we have the following results:

Proposition 5.8 [43]. The matrix A is unitarily similar to D.

Corollary 5.9. The spectrum of 4 is given by:

(531) {1} =01, N—1,1=12, ..,m,

where, {4, J} ]=1,2, ..m is the spectrum of D,j=01 N-1.

Proposition 5.10 [43]. The eigenvectors of 4, (v}, have a very special
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form:

(5.32) Vi = (Vig» Vips - Vinoy)

where, v, € R™ and

(533) v, =wMy for all i j and some integer 0 < M, < N-1.

Applying this result to our subdivision matrix, we can obtain:

Theorem 5.11. The subdivision matrix 4 for bi-quartic B-spline surfaces
has the following properties provided that the weights {q} are chosen

properly: the eigenvectors v,, vy, v,, vs and v, can be chosen to be in the form:

v, = Real Part{u}, v, = Imaginary Part {u),
(5.34) v, = Real Part{u)}, v, = Imaginary Part (),
Ve = (Vgp Yeor Voo Voo v 1if A, =Ag=4

where, the vectors u, and u, have the form:

— t . __

u, = (W YoYUy Uiy e U ) i=1 2,

(5.35) u, is a vector of length 16, i=1,2 and j=0,1,.,N-1,
u =w'wu, j=01.N-1i=12
ij i.0

Proof. The proof comes from the fact that

(536) D, =D, , fori=12.N-2

t

where, b.- is the complex conjugate of D, Moreover, it can be proved that

U P all real and for N > 5, if 4, =A,=4, 4, and 2, are simple
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eigenvalues of D and D, respectively. If 4, =7, =, then it is shown that

A 1s an simple eigenvector of D,. In the case of N =3, similar results hold.

This completes the proof.

Remark 1. Any vector in the invariant space span(v,, v;} is an eigenvector
of A corresponding to eigenvalue 4,. This happens to the eigenvalue 2, too.

The above special choices of the eigenvectors will simplify our curvature

analysis.

Remark 2. This Theorem can also be proved by using the Fourier

Transform Technique.

Remark 3. By some simple formulation, it can be shown that all the

eigenvalues and eigenvectors of A can be obtained analytically. In fact, we

have:

i. D,i=0,1,2, ., N-1, has eigenvalues 4, 4, 4 4, /16 /30 Vear

1/ 108 V256 0 0,0,0,0,0,0.
o Ay, =12, =1/4 2. = /16, %0a = 1/16°
iii. When N iseven, i, . =1/4 Ay = Vao Ay = 16 *njpa = Vs

V. Aig =%*n_iaq, Aip = Avoiny Aie = Anic, Aia = An_ig, i=1,2, ., (N=1)/s.
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V.o A, A, A and A, i=*0i=% N/p are four roots of a quartic

polynomial P(1) which depends on the weights {a} of the algorithm.

For the purpose of the curvature analysis, we state here a further result

about the subdivision matrix. This result can be obtained by direct evaluation.
Theorem 5.12. The local subdivision matrix can have properties B, B,

B, and B, (see section 5.2.3) if the shape control parameters {a} are

chosen appropriately.

5.3.6. The Curvature Property Analysis of the Surface at the E-point

In this subsection, we shall prove our main result: the normal curvature

properties of the surface at the E-point.

Theorem 5.13. The tangent vector T, of locus D, at the extraordinary

point ¥ has the following form:

(5.37) T, = e f,+e3fy =, ;) rot(—iB) (cy, c), for i=0,1,2 .., N1

where, ¢, and ¢, are constants depending on N and the initial data and
rot(—ig) = the rotation matrix with angle —ip. The tangentT, is defined as

the limit of the Tangent Vector of the i-th diagonal locus segment D} as k

goes to infinity.
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Proof. Since the surface is ¢!, the results follow from the results in the

previous subsection about the eigenvectors and the recurrence relation of the

eigen-ranges:

(5.38) T, := Lim

k—00 " i
= Lim_, 4 vt f,v, +£v; +.)
= 4, ((f,ReWuy) + f,Im(Wu,y)},

where, 4, is a proper Tangent Operator.

Let T, = cf,+ c,f, then, from the above relation and the properties of
the eigenvectors, we obtain that T, = (f,, f)rot(—ip)(c,, c,). This completes

the proof.

Here the rotation matrix rot(a) is defined explicitly by:

cos(a)  sin(a)
(5.39) rot(a) =

—sin()  cos(@)

Similarly, we have

Corollary 5.14. The tangent vector TL of the locus L, ~at the

extraordinary point v has the form:

(5.40) TL,, = e f,teisfy = (fy £y rot(—ip) (c'y, C'Z)"
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Remark 1. It should be pointed out that the tangent vectors {rL ) given

by (5.40) may be a multiple of the actual tangent vectors. However, this will

not affect our analysis.

Remark 2. {TL,} have the following properties

TL =—TL. for even N
.n i.n+N ’
(5.41) ‘ N

Remark 3. Due to the symmetry of the algorithm and (5.41), we can

conclude:

i. For even N, the edge loci E, is aligned with E_, and the

diagonal loci D, is aligned with D

P —1.
vy P 0,1,2, .., N/2

ii. For odd N, the edge loci E, is aligned with the diagonal locus

D,y 1)y for i=0,1,2,.,N-L

These results are consistent with that obtained in [1 16].

Theorem 5.15. Let ¢* denote the N-curvature of the diagonal locus

segment D. If conditions B, B,, and B, (or B,) hold, then
(5.42) Lim_Ci = C, is finite for i=01..N-1

Proof. As in [45,46], it can be proved that the curvature ¢! has the
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form
(543) & = const, (A /2D + O /1),

where, const, is a constant depending on both the initial data and the tangent

direction. Hence the result follows.

Corollary 5.16. Let CL’;n denote the N-curvature of the locus L".‘ﬁ on

patch B% atlevel . If conditions B, B, and B, (B,) hold, then

(5.44) Lim__cL = cL_ is finite for i=0, 1,.N-1
— n Ln

oo

From this result, we can conclude that for general data, the limits are

zeros if

(545) 0< A < A

the limits are finite (zeros or non-zeros) if
(546) }.4 = 3.;

and the limits are infinities if

(547) i, > A

Using the above results, we can prove the following N-curvature property

of the surface at the E-point.
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Theorem 5.17. If conditions B, B, and B, (B,) hold, then there are
some constants g, g,, g,, g, and C, which depend only on the initial data, the

weights {a} and the valency N of the E-point, such that

(5.48) ¢, ={(g,grot(-2ip)(g, 8) + CY<T,T>, i=0,1,2, ., N-L

Proof. From the analysis of the eigenvectors v,, v,, v, (Theorem 5.11), we

have

(5.49) C, = Lim__ C’
= Lim_ _ <A(fv + fv,+ f:,‘v3 + v, 4 fy+ ) N>/ <T, T>

= <A(f, RewW'u,) + f Imw*u, ) + S ), N>/<T, T, >,

where, 4_is a proper curvature operator and N is the unit normal vector of

the surface at the E-point.

Let g = <f, N> g = <fy N> g = ARew,p), g, = A(Imu,p) and

C=<f Ay, N> Then, from Theorem 5.11, we have

(5.50) A (Re(w”u,p) = g,cos(—2if) — g, sin(—2ip)
and
(5.51) AUmWw u,g) = g,sin(=2if) + g, cos(—2ip).

From these results, (5.49) becomes
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(3.32) ¢, = {(g, gyron—2ip)g, g) +C)/<T,T>.

This completes the proof of the lemma.

In the same way, we can prove

Corollary 5.18. If conditions B, B, and B, (B,) hold, then there are

some constants g, and ¢ which depend only on the initial data, the weights

{a} and N, such that

(5.53) crL,, ={(g,8)rot(=2iB) (g g) + CY/<TL, ,TL >, i=0,1,2 ., N-L
Remark 1, The N-curvatures {CL,} satisfy

(5.54) CL, = CL y,p» i=0.1 . N/5—1 for even N.
Remark 2. These normal curvatures {CL,} may be a constant multiple

of the actual N-curvatures. However, this will not affect our results.

Now, we prove that the normal curvatures {C} in (5.48) satisfy the
G-condition. It is sufficient to show that in such a case, G-condition 1is an
identity for all the constants (f,, f,), (8, &,) (83 &) and C.

Theorem 5.19. Suppose N > 5, then, the N normal curvatures {C} ;™'

satisfy the G-condition.
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Proof. The G-condition (5.19) can be written in the form

(555) Ki+3 = M Ki + M K£+1 + Mj+2K£+2
where

i
M '_ <Ti—1 X Tj+3’ Tj+3 ~ Ti+1>/ <Ti—1 X Ti’ Ti X Ti+1>
(5.56)

i
k! =C,<T,T> —C

Here, the cyclic convention for i in the range (j, j+1, j+2) is assumed.

From (5.37), we can obtain

(5.57)  <T,xT> = (¢} + cy) sin(~(=)B) (f, X f))
and hence

(5.58) M =1 M= —M*? = —sin(—3ﬂ)/sin(__ﬂ) = 1 — 4con’(—B).
Combining this result with (5.56), equation (3.55) becomes

(5.59) (g, 8, {rot(—2(j+3)B) — rot (=2jP)
_ (4cos (—B)—1) (rot (—2(j+2)B) —rot (=2(j+ DB} (8, 8) = O
This is an identity for all {g}, j, N and (f,, f, since, for any g and
integer j, we know from (5.21), (5.22) and (5.23), that
(5.60)  ros(—2(j+3)B) — ror(—2jB)

= (dcos¥—B) — Vot (—2(j+2)B) — o (—2(j+1)B)].
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This completes the proof.

Corollary 5.20. The normal curvatures (CL, )}, given by (5.53) also

satisfy the G-condition.

This result strongly suggests that all the N-curvatures of the surface at
the E-point could satisfy the G-condition (5.19). Unfortunately, we cannot

provide a mathematical proof. However, we believe that the surface should be

C2

5.3.7. Remarks

1. The reason we cannot conclude that the surface is C* at the E-point is
that we cannot prove any four N-curvatures of the surface at the E-point
satisfy the G-condition (5.19). Even though all the aligned loci passing
through the E-point is €?, ~we still can not say that the surface is €% A
simple (counter) example is F(r.0) = * cos* (MO + 0), M = 1, in polar

coordinates.

2. From our analyses, the surface at the E-point has certain symmetric
properties. For example, the tangent vector T, and the N-curvature C, are just
some rotations of T, and C; after affine maps. This is shown clearly in

(5.37) and (5.48) etc.

3. Computer experiments show that the surfaces behave very well at
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E-points.

4. The limit surface has zero curvatures (locally flat [3]) at the E-point if

(5.47) holds therefore it is C>.

5. It is suggested by M. Sabin [109] that condition (5.46) should be
sufficient for the surface to be curvature continuous at the E-point. However,

as far as we know, no mathematical proof is available now.

5.4. Conclusions

In this Chapter, the subdivision algorithm for bi-quartic B-spline surfaces
is generalized to arbitrary networks. The main result is that the scheme
produces almost C? surfaces over arbitrary topology. Curvature properties of

the limit surfaces at the E-point are studied in detail.

The Ball-Storry’s curvature analysis at the E-point for the Carmull-Clark’s
algorithm is developed to cope with even order tensor-product B-spline
surface algorithms. The Block-Circulant-Matrix method provides a very
powerful tool to study the tangent plane and (Normal) curvatures of the limit

surfaces at one point.

Some graphic examples are given to show the smoothing process of the

scheme over both uniform and non-uniform data.
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5.5. Graphic Examples

The graphics were produced by Nichlet Drum Plotter at Brunel Un

UK., 1988-1990.

2704400

Figure 5.8. The uniform bi—quartic B—spline surface, k =0, 1, 4, 5.
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Figure 5.10. Smoothing down a 6—sided hole with dif ferent shape controls, k = 4.
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Figure 5.11. The scheme at an E—point, N = 5, k = 2.
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CHAPTER SIX

SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS

In this Chapter, we shall restrict our attention to the study of recursive
subdivision algorithms for the generation of surfaces over triangulations. A
generalization of the Dyn-Gregory-Levin scheme defined over uniform
triangulations will be discussed. By studying the Cross-Differences of
Directional Divided Differences, a 10-point interpolatory subdivision scheme
will then be constructed and studied. And, in particular, a special case of it,
the so called butterfly scheme, will be analysed in detail. Finally, the 10-point
interpolatory schemes will be generalized to non-uniform triangular networks.
In both cases, the scheme generates smooth surfaces. Some graphic examples

produced by the scheme over uniform data are also presented .
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6.1. Introduction

In complete analogy to the generalization of the Chaikin’s algorithm and
the DGL’s 4-point interpolatory algorithm to a general Dyn-Gregory-Levin
scheme discussed in Chapter 1, a uniform subdivision algorithm for surfaces
can be easily formulated. Similarly, uniform subdivision algorithms for

surfaces in higher dimensional spaces can also be derived.

A scheme is said to be uniform if all its weightings are constants and

non-uniform otherwise. Since the uniform parametrization, that is, the diadic

parametrization, is used to analyse the convergent property of the scheme,

uniform subdivision schemes are also called Binary Subdivision Schemes

(BSS).

Before we consider the construction of the algorithm, two important

features of the Doo-Sabin’s and Catmull-Clark’s algorithms should be noted.

Firstly, both algorithms consist of repeated averages, which provides an easy

means to increase the smoothness of the surfaces. Secondly, the underlying

surface spaces are somehow nested which is reflected by the simple structural

characterization of uniform tensor product splines as piecewise polynomial

patches. Thus, for instance, Catmull-Clark’s algorithm can be thought of a

generalization of the Doo-Sabin’s algorithm. Therefore, it 1S hoped that the

scheme should also have similar properties.
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It should be noted that the uniform or diadic parametrization, is assumed

in the convergence analysis, unless stated otherwise.

The use of diadic parametrization means that the (uniform) control nets,
say, {P'f.j / (i,j) € Z*}) are associated with the corresponding diadic values
{27%G.j) /Gi.j) € Z*}} in the u—v parameter plane. Hence the control net at level
k, which is denoted by P*, can then be represented unambiguously as the

piecewise linear interpolant to the triangulated data {(27*(.j). P‘:J) /(i) € Z%).

Using this type of parametrization, a generalized form of RS4 for
surface generation over uniform triangular control polyhedrons can be derived.
For notational convenience, the notations introduced in Chapter 4 are used in

this Chapter to formulate this algorithm.

A subdivision scheme, S, is said to be a convergent scheme if for
every set of control points P* = {P’:J /(.j) € Z* }, there is a continuous function
P on R such that for all (i.j)€ Z%,

. k A=k .=k —
(6.1) Lim _, | (s*P),, — P(2," j2 ) = 0.

We denote the above function P by S®P° and call it the limit function
of s on P°.If P isa C"surface, then the scheme is called a C" scheme.
We say that the convergence is uniform if for a given compact region Q and

an arbitrary real number, e > 0, there exists a positive integer X(e, Q) such

that for all n > K(e, Q), a€ zZ%,
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(6.2) (5"P)y — P278) | < e

In order to define the uniform triangulation of the control net, we need to
introduce the uniform triangulation of the parameter values, that is, the
diadic points, in the parameter plane first. The triangulation of the control net
is then defined according to the triangulation on the u—v plane. We assume
that the uniform triangulation of the parameter plane is taken to be the

standard uniform 3-D triangulation, that is, it is the uniform triangular mesh

produced by directions: (0, 1), (1,0) and (1, 1) as shown in Figure 6.1.

A
pdvdravd
z

.

Figure 6.1.

6.2. A Uniform Subdivision Scheme Defined on Uniform

Triangular Control Polyhedrons

In this section, we firstly describe a generalization of the DGL scheme
for surfaces over a uniform triangulation of the control polyhedron and then

study its basic properties. For the sake of clarity, several special cases of this
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scheme will be briefly introduced.

6.2.1. Mathematical Description of the Scheme

The Dyn-Gregory-Levin scheme for surfaces can be described as follows.

Given initial data {P?J}, then the refined control points are given recursively by

the following formulae (masks): for k= 0,1, 2, ..

+1 _
P;x' .25 - Zm.neuo am.n P’:+m.j+n
+1 _
P§i+1,2j - Zm.n@lo bm.n P’ic+m.j+n
6.3)
+1 _
P’;i L2j+1 - Zm.nelo Cm.n Pf+m,j+n
+1 _
2i+1,2j41 Em.nello dm,n P‘i‘+m,j+n

where, {a,_, b d_} are constants and M, is a fixed finite integer set

(o
mn’ “mn’

describing the local structure of the scheme. For convenience, the summation

Y omnen, Will b€ replaced by . .

By the use of multiple notations, scheme (6.3) can be written in a more

compact form:

64 P = X camly O z.

An equivalent form of this formula is

(6.5) P;:;" =[3€Zz2 ar—zﬂPdﬂB' a ez

where, y = {(r, ) 7,=00r 1,i=1, 2}. Thus, the scheme is interpolatory if and

only if
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(6.6) ay = Oy forall « e Z°

Scheme (6.3) is a 4-step scheme, or a scheme with four simple masks.
That is, there are four formulae to calculate the refined control points and
each control point is calculated by using one of the masks according to its

relative position and its local topology.

6.2.2. Basic Properties of the BSS

From (6.3), the following properties of the scheme can be easily obtained.

They are very similar to the properties of the curve generating DGL scheme.

i. The algorithm is a weighted local averaging algorithm.

ii. The scheme is a linear scheme.

iii. The scheme is translation-and-rotation invariant (coordinate-free).

iv. The Doo-Sabin’s algorithm and the Catmull-Clark’s algorithm are

special cases of the algorithm.

v. The algorithm can produce piecewise tensor-product polynomial

surfaces.

vi. Any uniform tensor-product type DGL algorithm is a special case of
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this algorithm.

vii. Multivariate box (cube)-spline algorithms are encompassed by this

scheme.

viii. A necessary condition for the scheme to produce continuous surfaces

is that it reproduces any constant surface, that is,

(6.7) Zm,n am.n = Zm.n bm,n = Zm.n cm.n = Zm.n dm.n = 1'

Further properties of the algorithm are also studied. For instance, the
necessary and sufficient conditions for the scheme to produce C" surfaces
were derived by several methods. The directional divided difference approach
using matrix analysis and the generating polynomial method are just two of
them. The former method will be discussed in section 6.4 as a means to prove
the ¢! property of the 10-point scheme and the latter one was used to obtain
the same result by Dyn, Levin and Micchelli [54]. Other studies about this

algorithm can also be found in [12,13,28,40,51,85,88].

It is interesting to point out that the Interpolatory Subdivision Scheme
(ISS) also belongs to this category. Such schemes for curves and surfaces have
been analysed by Dubec [47], Dyn, Gregory and Levin [48,49], Dyn, Levin and
Liu [53), Gregory and QU [69], Dyn and Levin [49], Dyn, Levin and Micchelli

[54], and Weissman [121].
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In the case of ISS, one of the masks is the identity mask which maps all
the control points of level k into level k+1, thatis, P* ¢ P**'. This implies

that the convergence of ISS is uniform.

In the paper by Dyn and Levin [534], the following special properties of

ISS are obtained.

Proposition 6.1. Let s be an ISS of the form (6.3). If s generates C" limit
functions, then S reproduces =, (the space of all bivariate polynomials of

degree < n).

Proposition 6.2. Let s be an ISS of the form (6.3). If s generates C°
limit functions, then there exists a (not unique) matrix BSS, s{™ of order m+1

such that for P* = S*P° k > 0,

(6.8) dmptt = sm™@mpY), forall 1 < m <n

Moreover, for any initial data of the form d™P°, s™ converges uniformly to

c*™ limit vector-valued functions.

Proposition 6.3. Let s be an ISS of the form (6.3) which reproduces

x . Then the following conditions are equivalent:

(i). s converges uniformly to C" functions.

(ii). The matrix scheme S™ m =0, 1, 2, .., n, converges uniformly to ¢"™"
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vector-valued functions for any initial data of the form 4™P°.

(iii). For any initial data, 1/,8"*Y converges uniformly to zero.

In the next subsection, we will study a special ISS for the generation of

surfaces using only one mask and its duals.

6.2.3. The 10-point Interpolatory Scheme for Surfaces

Here, a special interpolatory scheme, the 10-point scheme, is described in
this subsection. One of the advantages of this scheme is that it can be used
on both uniform and non-uniform triangular networks. This will be discussed
in detail in section 6.5. The main property of the scheme is that it
reproduces cubic bivariate parametric polynomials when the parameters are
chosen properly. In addition to this, there is a free parameter which can

be used as a control to manipulate the shape of the surface.

The construction of the 10-point interpolatory scheme is, originally,
motivated by the ideas described in [47] and [48]. The scheme is formulated
in order to solve the problems of high accuracy surface fitting and the fast
surface generation. Thus, our aim is to generalize the 4-point interpolatory
subdivision scheme as described in [47,48] to surfaces. The scheme is so
constructed that it preserves all its advantages. The main properties of the
scheme, in addition to the properties of BSS, are interpolatory, shape control

and reproductivity for cubic parametric polynomial surfaces when the
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parameters are well chosen.

The 10-point interpolatory scheme is defined by the following choice of

the coefficients in (6.3):

a,, = 1

boo = bl'o =1/y —2w1 —W, —w,

b o =5y =W,

byt =b1 =W,

b = b= b =b,, =W,

Coo =Co1 = 1/2 —2wl —W, =W,
(6.9) Co—1 T C2= s

Cio T=Uu="

C Tl T % T % =W

do,o = d1,1 =1/p —2w —w, —w,

d_,_,=4d,,=W,

d, =dy, =W,

dy_ =d_,=4d,= d), =W,

where, w,i =1,2,3 are three shape control parameters.

Due to the 3-direction-symmetry property of the scheme, a simple way,
which uses only a single formula (one mask and its rotations), to describe the
algorithm is given below (Figure 6.2). Since the scheme is interpolatory,
only the inserted values are to be evaluated. The formula for the inserted

points is given by
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6.10) P =
(6.10) P, = 1/,{P,+P )} +w(P, +P +P +P —2P —2P]

+w{P+P — P, — Pf} +w(P, +P, — P, — Pf},

where, o is the midpoint of the edge joining the vertices e and s in the

parameter plane and w, i =1, 2, 3 are three shape controls.

Figure 6.2. The 10-point scheme.

In this process, formula (6.10) is used to evaluate all the surface values at
the midpoints in the u—v parameter plane to produce a refined uniform
triangulation. The triangulation of the refined control polyhedron is formed
accordingly by the refined uniform triangulation of the u—v plane. Repeated

applications of this process will therefore result in finer and finer control
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polyhedrons which will finally converge to a smooth interpolatory surface

provided that the parameters (w]} are chosen appropriately. This will be

discussed in sections 6.4 and 6.5.

From formula (6.10), it can be easily shown that the scheme has the

following properties.

i. The scheme is interpolatory.

ii. The tension parameters {w} working along three mesh directions

respectively.

iii. The scheme reproduces linear surfaces for all {w}. Furthermore, it

reproduces any bivariate cubic polynomial surface if {w)} satisfies the

conditions
W, = (166=9)/16
(6.11) W, = =2(16t-9)/1¢6
W, = (8-16t)/16

where, ¢ is any real number.

iv. If the tension parameters are chosen to be

(6.12) Wl = W, w2 = —2W, W3 — O'

then the scheme reduces to the Butterfly Scheme, which will be discussed in
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section 6.4,

v. The scheme has certain data-dependent shape preserving properties.

vi. Under certain conditions, the scheme produces C' surfaces. This will

be shown in sections 6.4 and 6.5.

6.2.4. The Butterfly Scheme

The butterfly scheme is just a special case of the 10-point interpolatory
subdivision scheme, where the parameters {w} are given by (6.12). Thus, in
the scheme, there is only one free parameter w. The parameter w has an
obvious geometric méaning. When w = 0, the scheme has no effect on the
control polyhedron (linear precision); when w = —1/14, the scheme reproduces
cubic bivariate polynomials (cubic precision); when —1/;¢ < w < 0, the scheme
is just a convex combination of the above linear precision and the cubic

precision schemes.

The main advantage of the butterfly scheme over the 10-point ISS is that
it uses only eight points instead of ten points and that the tension parameter
w has an intuitive interpretation. Another important feature of the butterfly
scheme is that if the initial data satisfy certain convex conditions, the scheme
can produce smooth interpolatory convex surfaces. More about the scheme

will be described in section 6.4.
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6.2.5. The Tensor-product of DGL’s Interpolatory Scheme

Another ISS  for surfaces is the tensor-product DGL’s  4-point
interpolatory scheme. On uniform triangular networks, the scheme is given by

the following choice of the coefficients in (6.3):

a, = 1
bo = b, = V2tw
b_io = by =W
Coo = Gu = V2tw,
(6.13) Coy = Cp =W,
doy = 4oy = 4, =4, = (I/724+w)(1/2 +w))
d,_,=4d,, = d,_, = d, = W%
d_jo = d_y1 = dzo = du = —w(l/2+Ww,)
dy , =d,_, = 4, = 4, = —w,(1/2+w),

where, w and w, are two tension parameters along two parametric directions

respectively.

The tension parameters w, and w, have obvious geometric meanings.
When w, =0, the generated surfaces are piecewise linear surfaces along one
parametric direction. Similar result holds for w,, When w = w, = 1/ the
scheme reproduces parametric bi-cubic polynomial surfaces. When 0w, w,

< 1/16 the scheme is a convex combination of the above two schemes.
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As a consequence of the results obtained in [27,48], we can conclude the

following.

Theorem 6.4. If the tension parameters {w} are chosen such that

(6.14) 0 < w,w, < (vV5—-1)/8

then the scheme produces smooth interpolatory tensor-product type surfaces.

Proof. The proof comes from a simple observation that the fundamental

function wy(@u,v) produced by the scheme on the cardinal data P':j =0,,0,,1S

just the product of the univariate fundamental functions ¢@) and (). That
is,
(6.15)  p@y) = ¢@) ¢(v) forall u and v.

In fact, by simple calculations, we can prove that the control points

satisfy the condition

(6.16) P';_j = F’jF’; for all i, j and &,

where, {F".‘} is the control polygon produced by DGL's scheme on the

cardinal data {o,}. This completes the proof.

A simple way to describe the scheme is to write it in a more compact
form. In fact, the algorithm can be described by the following recursive

relation: forall i, j€Z k >0,

-163-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS

k+1 _ pk
P2i \2j - Pi-i
k+1 - k
(6.17) Pty = Wa+w)P + P ) —w (P 4P
pk+l — (1 k+1 k+1 +1 1
i, 2j+1 (t/2+ w (P, 2t P .2/'+2) - WZ(Pl:»Zf-Z + Pf’-sz’f“)'

Other properties of the scheme, such as approximation property and
shape preserving conditions, can also be investigated. However, we will not

discuss these properties in this thesis. The interested reader is referred to the

papers [48,53a].

6.3. Convergence Theories about the BSS

In this section, we discuss some of the methods and techniques used for
the analysis of the uniform subdivision scheme. Although the results are quite
similar to those obtained for curve generating schemes, the proofs in the
surface case are much more difficult than that in the curve case

[28,29,42,47,48,50,51,69,85,88,90,91 ete.].
6.3.1. Some General Resuits about Convergence

There are several ways to analyse the convergent property of the binary
subdivision scheme. Among the techniques are the generating function
(polynomial) method introduced by Cavaretta, Dahmen and Micchelli (also see
Dyn, Levin and Micchelli in [54]) in [28,29], difference and cross-difference

of directional divided differences method using matrix analysis used by
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Gregory and QU [69] (which comes from the univariate matrix analysis [51])
and the functional equation method employed by Micchelli and Prauzstch etc.

in  [42,86,88,101,102]. Here, we state some of the convergent and

smoothness results about the BSS.

Proposition 6.5 [29,..]. A BSS is a ¢® scheme if it is contractive. More

explicitly, there exists a constant 0 < M < 1 and some positive integer p,

such that

(6.18) E*P < ME* forall k > 0,

where
(6.19)  E* = maxy, {(IPg,, — Pell acZ
and

(6.20) ¥ € {0, 1), (1,0), @1 D}

Remark, (6.18) is only a sufficient condition, it is not necessary. It can
be shown that a necessary condition for ¢ convergence is that (E*} converges

to zero.

Proposition 6.6 [28,53a4,..]. The above scheme is a C* scheme if all its
corresponding n-th order divided difference schemes (there are a total of n+1
such schemes since there are n+l possible combinations of the divided
differences of order » along two different parameter directions) of the scheme

are C° schemes.
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Proposition 6.7 [28,54,..]. Let S, S, be convergent BSS and their

Laurent polynomials are denoted by a(z) and q(z) respectively. If for some

o € Z2\{0}

(6.21) a = 1+2% q@)/, for z €cC

Then

(622) 4.S,(X) _—_Sq(AaX).

Proposition 6.8 [28,29,..]. Suppose a BSS converges for all initial data
and the limit surface is not always trivial. Then its mask {a; o« € Z7)

determines a unique compactly supported continuous function f with the

following properties.

(i) fX) = ), a, f2X —o).
acZ
(i1) 3, ay fX—) =1
acz *

Here, (i) is referred to as the functional equation associated with the mask

{a,).

Proposition 6.9 [534,..]. Let f€C” be a non-trivial solution to the above

functional equation associated with the mask {a @ € z%). Then

623) m® €@
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where
(6.24) & = span{ f(. —B): B € Z*}.

In the following sections, we will study the 10-point scheme and the

butterfly scheme in detail.

6.4. The Convergence Analysis of the Butterfly Scheme over

Uniform Triangular Networks

In this section, by using the matrix analysis of the differences and the
cross-differences of the directional divided differences, we analyse the ¢® and

c! properties of the butterfly scheme over uniform triangular networks.

6.4.1. Introduction to the Butterfly Scheme

The Butterfly Scheme, as discussed in the previous sections, is an
interpolatory subdivision scheme which is defined over arbitrary triangular
networks. When the initial network is uniform, its smoothness properties have
already been investigated by several authors in [52,54,69]. Different
techniques are employed to analyse the convergence properties of the limit
surfaces. One such method involves the analysis of the generating polynomial
of the scheme as described in the paper by Dyn, Levin and Micchelli [54].
Equivalently, by using the matrix analysis, we study its corresponding

difference and directional divided difference schemes. This approach is a
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generalization of the binary subdivision analysis for curves in [69]. Here, the
main task is to show that all the directional divided difference schemes of the

butterfly scheme are ¢® schemes in order to prove that the limit surfaces are

¢! continuous.

The analysis presented in this section is based on the uniform
parametrization to the uniform triangular network. More explicitly, we assume
that the initial surface triangulation consisting the given network is a uniform
triangulation, that is, each face of the network is a triangular face and every
vertex of it is of valency six. Thus, six and only six edges meet at a vertex.
Under this assumption, the network is equivalent, topologically, to a uniform
triangulation of a u—v parameter plane as shown by Figure 6.1. It is this
property that makes the uniform (diadic) parametrization to be a proper
parametrization. The use of uniform binary subdivision parametrization also
simplifies the analysis. In order to prove that the surface is c® or ¢!, we will
show that any component of the limit surface is ¢° or ¢'. Thus, throughout
the rest of the Chapter, we shall restrict our attention to discuss the function

surfaces instead of three-component parametric surfaces.

6.4.2. Mathematical Formulation of the Scheme

The butterfly scheme is an 8-point interpolatory recursive subdivision

algorithm defined as follows.
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Let a, b, ¢, 4, ... denote the vertices of a uniform triangulation of the u—v
parameter plane. Suppose the values of a function F(uv) are also given at
these discrete points. These values are denoted by F,F, F_F, .. respectively
(Figure 6.3). The scheme uses a formula to estimate the value of F(u,v) at the

midpoint of any edge of the triangulation in the »—v plane. The formula is

given by

(625) F, = 1/5{F,+F}+wF,+F + F +F} —2w(F, + F },

where, o is the midpoint joining 4 and e, w is a real number called the tension

parameter.

Figure 6.3. The Butterfly Scheme.

The formula (6.25) is used to compute all the function values at all the

midpoints of the triangulation in the parameter plane. Thus, function values
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are now given on a refined triangulation which is formed by adding all the
halving lines to the original triangulation. The use of midpoint subdivision
means that the new triangulation vertices are created by a binary subdivision
of the previous ones. This process defines one level of the recursion. In
general, the recursion will define a new set of values at level k+1 from an old

set of values at level k. The piecewise linear interpolant on the triangulation
to the values at level & is called the control polyhedron (control net) F* of
the recursion. The process is interpolatory since the values at level k are
included in those given at level k+1. The surface of the scheme is thus defined
as the limit surface (if it exists) of the control net sequence {F*}.

The scheme has the following properties.

i. The sum of the eight coefficients is unity.

ii. The scheme is exact for linear functions for all w.

iii. The scheme is exact for cubic polynomials if w = —1/1¢, that is, it has

cubic precision.

iv. For general -1/, < w <0, the scheme is a convex combination

of the linear precision scheme and the cubic precision scheme.

v. The scheme is both local and linear.
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For the purpose of analysis, the following notations will be used. The
initial function values of the control net F° are assumed to be given on the

uniform integer grid {(i.j)/ (i.j) € Z2?}. Then, at level &, the values

(626)  FY, = F@2* 2™

of the control net F* are given on the refined grid {Gi27* j27™%/ (i.j) € Z%}.

The triangulation of the grid, which is used in the definition of the
butterfly scheme, is taken along the directions (1, 0), (0, 1) and (1, 1) as shown
in Figure 6.1. Using this notations, the butterfly scheme is then defined by a

binary subdivision on the uniform grid as

k+1 ok
2i.2j - Fi.j
k+1 K K K K
(6.27) F2-:+1.2j = 1/3 {Fi.j + Fi+1.j} —2w {Fi.j-—l + Fi+1.j+l}
K K K K
+w {Fi—l.j—l +F it Fiat Fi+2-}'+l}

with F3*! and F**! being the duals (according to the local topology)

,2j+1 2i+1.2j+1

of the second equation. Also, the forward di fference operators {4} along the

grid directions are defined by

k — k _ gk
Al Fi.i T Fi+1.j FU
k — k gk
(6-28) A2 Fu T Fu+1 FiJ
k — k _ pk
As Fu '_ Ft+1J+1 Fi-j'
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6.4.3. C° Convergence Analysis-Difference Analysis

In this subsection, we discuss the ¢ property of the limit surface of the
butterfly scheme. To this end, we will prove that the control net sequence {F*}
is a Cauchy sequence for some properly chosen tension parameter w.

Theorem 6.10. The sequence (F*} is a Cauchy sequence in C° if
(629) —01215 < w < 0.0740.

Consequently, its limit F(uv) is continuous.

Proof. The proof that (F*} is a Cauchy sequence is a direct result of

Lemmas 6.11 and 6.12.

Lemma 6.11. For k=0,123, ..,

(6.30) || F* = F* || < alw| B,
where
(6.31) E* = max, . max, {lAmF’:.j”'

Proof. Let Err := |F**' — F*. Then, by definition, Err is a piecewise
linear function. Thus its extremes can only be achieved at the vertices of
the k+1st triangulation. Hence
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(6.32)  max(Err) = |F**' —1/, (F* + FY)|

< 4|w| EX.

Here, o is some midpoint on the k-th triangulation on the parameter

plane and F**' is given by (6.25). This completes the proof.

Lemma 6.12. For k=0,1,23,..,

(6.33) E¥*? < c(w) EX,
where, 0 < Ccw) < 1 if condition (6.29) holds.

Proof. By expressing the differences at level k+1 in terms of differences

at level & gives, for w < 0,

(6.34) EMY < (175 — 6w) EF,

and hence (6.33) holds for -1/12 < w < 0.

The proof of (6.33) under condition (6.29) can be obtained by expressing
differences at level k+2 in terms of differences at level x and then use the

triangle inequality to bound E**2. For example,

(6.35) Fiihiy —Fiiy

4it14

k+1 k+1 k+1 k41
= 1/2 {th.zj + F21+1.2/} —2w {F21+1.21+l + FZI.ZJ—l}
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k41 k+1 k+1 k
+w{F F +1 — Fktl
{ 2i2im1 T Faigagin T F2i—1.2j-1 + F2i+l.2j—1] F

= 1/7{F;t. , — F} o — 2F! k1
/2{ 2i+1.2j :.j] +W{F2i.2j+1 2F ) iiiaim T F2i+2.2j+l]
k+1 k+1 k+1
wiF —_ +
+w { 2i-12i-1 —2F57 24 +F2i+l.2j—1}'

Writing the above control points at level k+1 in terms of the control points at

level k and arranging them in a proper combination, we obtain

(6.36) |F72, . —F2 < {2 17w? +3w+6w?| + |1/9 +w4+4w?|} EX

A (w) EX.

It is obvious that 4 w) < 1 if (6.29) holds. In a similar way, one can

also prove the lemma.

In fact, the constant C(w) is the infinity norm of a 14 x 14 w-matrix

A(w). This matrix is defined explicitly by

(6.37) Aw) =
5 b 0 a 0O 0 —=b b 0 0 0 0 0 O
b—-b 0 a O O b —-b 0 0 0 0 0 0
» 0 d d 0 b ¢ b 0 0 o0 0 0 0
o 0 b ¢ b 0 d d 0 0 b 0 0 0
o b 0 d d 0 b ¢ b 0 0 0 0 0
o 0 -b b O a 0 O0-b b 0 0 0 0
o 0 b—-b O a O O b-b 0 0 00
o 0 0 —b b O 0 ¢ O 0 -=b b 00
o 0 0 b —-b 0O 0 ¢ O O b —-b 0 0
o 0 0 0 O b ¢ b 0 4 d4 0 b O
o 0o 0 » O 0 d d 0 b ¢ b 0 0
o 0 0 0 0O O b ¢ b 0 d d 0 b
o 0 0 0 b O —-b b 0 0 a 0 —-b b
o 0 0 0 O O b —-b O O a 0O b —b

-174-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS

where, a = 1/, b=w, c= 1/5 +3w and 4= -3w.

Remark. Weaker ¢° conditions can also be obtained by applying the
same technique for more subdivision levels. Since we are interested in the ¢!

conditions, we will not discuss this further.

6.4.4. C! Analysis-the Directional Divided Difference Analysis

In order to prove the ' property of the limit surface F, the Cross
Differences of the Directional Divided Differences (CDD for short) of the
control net should be investigated. This process is similar to the Divided

Difference analysis as described in [48,49,50].

First, we give the definition of the CDD at the k-th level along one
direction (there are three such directions in all, see Figure 6.4). Since the
three directions are mutually symmetric, only one of them is studied here. By
symmetry, the results are also true for the other directions.

The CDD along direction 1 and 2 at level & is defined by
(6.38) -, = 2*44F; forall ik

iJ
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k k

.. F k
ij+1 i+1j+1 5 i+1,j+1
k k
. F k k
L) i+1.j Fi i+|J
4.4 F* k
1727 0 A1A3Fu
k
i+1.j42
k k
ij+1 i+1.j+1
k
ij
k
A2A3Fi,j

Figure 6.4. The CDD.

From (6.27), it can be shown that the CDD values satisfy the uniform

subdivision scheme defined by the following refinement equations:

K41 . k _ X K x
CZ‘,'” = 2wCi_U, 4WC‘_”_1 +(1+8w)C‘J + ZWCU__l
k+1 _ k k K X _ X
Cliviy = 2wC,_y; , —8wC,, — 2wCy,_ +2wC i — 2
(6.39) \ \
k+1 _ " k ok
Chigjpn ==2wC_, +2wC |, —2wC,  —8wC, +2wC i
k+1 _ K k X X
C o = W€ T AR8WC,, —awC, +2wCl L
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8 13 i8 22
4 9 14 19 23
1 5 10 15 20 24
2 6 11 16 21
3 7 12 17

Figure 6.5. The CDD scheme.

Let ¢t = (¢ ¢, .. c})' denote a local labelling of the CDD values
defined on the u—v plane centred on the point with index 15 as shown in
Figure 6.5. Thus c*, denotes c; on the k-th level mesh and ¢!!' denotes
C‘;jfzj on the k+1st level mesh. Then, from (6.39), we obtain

(6.40) C**' =Bw)C;

where, B(w) is a w-matrix of order 24 x 24 defined by (6.41), where, a =
2w, b=—2w, c= 4w, d=—4w, e= —8w and f= 1+8w and the omitted

elements in (6.41) are zeros.
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OOOafOOOdaOOOOOOOOOOOOOO
0 a e b a b

0 a f d a

0 a d f a

0 b a b e a

0 a d f

0 b a b e a

0 a f d a

0 a e b a b

0 a f d a

0 a e b a b

0 a f d a

0 a d f a o
0 b a b e a

0 a d f a

0 b a b e a

0 a d f a

0 a e b a b

0 a f d a

0 a e b a b

0 a f d a
0 a d f a

0 b a b e a
0 a d f a

We have chosen the order of ¢* of sufficient order such that

(6.42) Cc*** = B}w)C*

contains all possible types of CDD terms at level k42 if the relation is
applied at every vertex at level k. Therefore, for k=0, 1, 2, ..., we can easily

obtain

(6.43) i < |IBwl C,
where

(6.44)  CY = max_, max (|2"4 4 F}|}.
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It will be shown later that our ¢! analysis is mainly based on this relation

about the CDD. Further studies of B(w) leads to the following result.

Lemma 6.13. The iteration matrix B(w) has the properties:

(6.45) lIBwIl > 1 forallw,

and

6.46) |IBPwll <1 for -1/; < w <O.

Proof. From (6.41), we have

6.47) |I|BwWIl > |2w] + [1+8w| + |—4w| +[2w]

= Bl + 148w > 1.

Furthermore, multiplying B(w) by itself, numerical results indicate that
(6.46) holds. To show that —1/3 is the exact lower bound of w, the explicit

form of ||B¥w)|| (which is a piecewise quadratic of w) is calculated for for w

near —1/1o. Thus, for w near —1/12,

(6.48) 1B*w)ll = |-20w?| + |aw?| + [48w?| + |-2w—aw?|
+ |—20w?| + |—2w—aw?| + |-8w?| + |aw’|

= —4w +96W2.
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Hence, we have, when w is close to -1/12,

(6.49) IBPw)l < 1

<=> —Aw 496wt < 1
<=> (12w —1)(—-8w+1) < 0
<= -1 < w0,

This completes the proof.

Remark., The explicit form of ||B*w)|| can be obtained since we know

B(w) is given by (6.41).

Now we study the Directional Divided Difference function of the control
net. As mentioned previously, due to symmetry, we need only to investigate

the divided differences in one direction.

Let 4} be the piecewise linear interpolant to the divided difference data
(2'aF;} at the k-th level diadic points. Then, the following Lemma 6.14
and Theorem 6.15 will show why the Cross Differences of the Directional
Divided Differences are preferred to the ordinary differences of divided

differences along one direction.

Lemma 6.14. Suppose that —1/;» < w <0, then for k=0,1,2,3, .., we
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have

(6.50) it —a¥ll < (+16w)) CX.

Proof. The result comes from the direct calculation of the butterfly
scheme and a proper arrangement of the terms in order to obtain the desired
result. The factor 1+ 16|w| is not important to the analysis which will be

shown clearly in our analysis later. For example, by definition we can obtain

the following estimates, where the parameters @}, V}) = @i27%, j27).
k+l, k _k ko k _k _ [gk+l k+1 Yok+l _ [k _ gk 1ok
(6.51) ler (;, vj) — 4, vj) - {F2i+1,2j —F;i .2;'}2 {Fi+1.j Fi.j]z
—  ok[ypk+l _ gk _pk
= 2 [2F2i+1.21 Fi,j Fi+l.j}

k k k k
= 28 (2wFy, —AWF i Y2

+ 2wF*

Kk k
Lt —4WFU__1 +2wF }

i+1,j-17"

By the definition of c%, see (6.44), we have

(6.52) |a**'@wh, VA — dii V)

k k k
< |2W| {lFtJ.',] —Fi+1.j+1 _Fu +Fl+lJI

K k X x
+ IFiJ' _Fi+l.i —Fl+1J+1 +Fi+2J+l|

k kK _pk k
+ IFz-u-l _Fi.j—l FiJ +F1+1JI
k k k k
+ IFiJ _Fi+lJ _Fij—l +Fi+lJ—1| }

-181-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS

< 8w CZ.

In the same way, we can obtain

k+1, k+1 k41
(6.33) WML — SN < a8k,

(6.54)  lafratvitly — dkakty vird)l < (Vahelwh

k+1, k+1 _ k+1 ke k+1
(6.55) Ch W iarvaje) — 4057, ;Tll)l < (/26w Cy

Therefore, we have (since d*' and d; are piecewise linear functions):

(6.56)  lai*' —afll < max{ slwl, 148}w], 1/5+16l%] } C*

< (14 16jw]ct.

This completes the proof.

From (6.43), Lemmas 6.13 and 6.14, we can conclude:

I'heorem 6.15. The Directional Divided Difference function sequence {d;}
is a Cauchy sequence in ¢° thus it converges uniformly to a continuous

function d (uv) if

(6.57) —1/12 < w <0.
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This result will be used to prove the C' convergence property of the

scheme.

6.4.5. C' Convergence of the Butterfly Scheme

We can now prove our main result about the smooth convergence of the

butterfly scheme.

Theorem 6.16. The butterfly scheme produces ¢' surfaces if (6.57) holds,

that iS, if —1/12 <w<L0.

Proof. The proof of the theorem comes directly from Theorem 6.15, the

symmetry of the butterfly scheme and the following lemma.

Lemma 6.17. If the directional divided difference function sequence {dg}
converges uniformly to a ¢® function 4, then the butterfly scheme produces

a ¢! function F(,v). Furthermore, we have

(6.58) D Fuy) = dym.v),

where, D, is the directional derivative operator ~ along the direction @, a €

{0, 1), 1, 0)}.

Proof. Without loss of generality, we assume that a = (1, 0), the w-axis

direction and that the initial data is the cardinal data, that is,
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(6.59) F‘:J = 6.0

i0 7j.0°

Then, D, = D(Lo) and the function 4 (uv) has a local support contained in

[-3,3]%. Moreover, for k =0, 1, 2, ..., we define,

(6.60) Guy) = .[‘ d’l‘(x,v) dx,

where, a :=—3, which is a proper point outside the support of the function
d (uv). Hence, from the definition of the uniform convergence and the local

support properties of the scheme, we have

(6.61) Lim,_ _ G'uv) = f Lim,_ _ d%(xv)dx = f d (xv) dx

= Gu,v).

Hence, G(uv) is differentiable with respect to ». We can also prove that
{F*u,v)} converges uniformly to G(.v). This means that F(uv), the limit of the
control polyhedrons, is also differentiable with respect to «. The convergence

can be shown by the following inequalities, where, =27
662) IIFwy) —6amll < || Fay) — Gl + 1l 6" @) — Gl

The right hand side can be estimated respectively by:
k u k k d "
(663) P @n -l = || [ DyF*(x)dx= f ¢ (xv) dv)
< (3—a) max, |d}(W},v) —dil, W
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—> 0 as k —> infinity.

By hypothesis,

(6.64) |IG*w.v) — Guwll —> 0 as k goes to infinity.

Thus, we complete the proof of the lemma.

Note that this lemma can easily be extended to any uniform subdivision

scheme. In fact, in a similar way, we can prove the following theorem.

Theorem 6.18. If two of the different directional divided difference

function sequences {dc’;.-} a € {0, 1), (1,0, 1)}, converge uniformly to C°

i=12’

functions {4}, then the original scheme is a ¢' scheme. Furthermore, we have

(6.65) DaiF(u,v) =dy(uv),i=12

Remark. Higher order continuity of the surfaces can also be analysed

similarly by using Higher order Cross-Differences of Directional Divided

Differences.

6.5. Convergence of the 10-point Scheme

In this section, we generalize the convergence results about the butterfly

scheme over uniform triangular polygons to the 10-point interpolatory
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subdivision scheme. For simplicity, the notations used in the previous section

such as E* (6.31) and c* (6.44) etc. will also be used in this section.

6.5.1. C° Convergence of the scheme

Suppose, like in the analysis of the butterfly scheme, that the initial data

(real numbers) is given on the uniform grid which are denoted by {F* } for all
tJ

(i.j) € Z*. Then, the 10-point subdivision scheme is defined by (6.3) with

masks given by (6.9). It can also be described in a similar form as (6.27).

The Difference Operators {4} and the Cross Differences of Divided
Differences {C’;J} will be introduced as in (6.28) and (6.38) respectively.
Consequently, the iteration matrices A(w w,w,) and B(w,w,w.), which are
similar to the matrices A(w) and B(w) defined by (6.37) and (6.41), can also

be introduced.

We now prove some of the C° convergent results about the 10-point
ISS. In particular, conditions on the parameters of the scheme are given

explicitly to quarantee the generation of smooth surfaces.

Theorem 6.19. The 10-point interpolatory scheme is a ¢° scheme if

1/, —2w —w,| +2}w | + 2w, + 2w} + pw—w] <1
(6.66)

A sufficient symmetric solution to this condition is given by
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(6.67) 5|w1| + 3|w2| + 3|w3| < 15,

A simple solution to (6.66) is provided by

w | < 1/39
(668) |w2| < 1/18
|W3l < l/1s.

Proof. The proof comes from a direct estimate of the the differences of
the control polyhedron at two adjacent levels. That is, the difference of P!
and P*. It can be shown that the difference is bounded by the maximum

difference, E*, defined by (6.31). In fact, we have
(6.69)  NF*' = F < (alw| +2lw,| + 2}w [} £

By expressing the directional differences defined by (6.28) recursively,

we can show further that

(6.70) E**' < M(w.w,w)E", forall k=0,1,..

where

(6.71) M = max (l1/,—2w, —w)| +2|w | +2[w,| +2lw | +w —w|, 1/2+4|w | +2{w,| +2|w,|}.

Hence, the control polyhedron sequence (P*} is a Cauchy sequence and

therefore converges to a continuous surface if (6.66) holds. This completes
the proof.
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Remark. The condition (6.66) is a very simple condition although better

results can also be obtained by applying the same technique for more

iteration levels.

If the parameters {w} satisfy condition (6.11), then we can obtain the

following ¢° convergent result about the cubic precision scheme:

Theorem 6.20. The cubic precision scheme is a ¢° scheme if:

(6.72) 12 < 1 < 3ea

Assuming w, = —2w  and by using the same techniques as in Lemmas

6.11 and 6.12, other sufficient ¢° conditions rather than condition (6.66)

can be obtained. One of them is given by

(6.73) || A%(w,, w,, W) I < 1

where, the iteration matrix A(w ,w,w,) is defined by (6.74), where, a =1/, b =

w, ¢ = 1/p+3w—w, d = —Bw,e=w,=—2w, f=w, and g= w, —w,=b—f.
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(674) A(Wl’ W, w3) =

b b—f a f 0 —b b 0 0 0 0 0 0
b—-b f a—-f 0 b b 0 0 0 0 0 0
g 0.4 4 0 b ¢ b 0 f F 0 0 0
f f b c b 0 d 4 0 0 g 0 0 0
0 g 0 d d4 0 b ¢ b 0 Ff f 0 0
0 0-b b—-f a f O —b b 0 0 0 0
0 0 b—-b f a —f O b —-b 0 0 O O
0 0 0-b b 0 —f ¢ f O —<b b 0 0
0 0 0 b—b 0 f ¢ —f O b —b 0 0
0 0 f f 0 b ¢ b 0 d d 0 g 0
0 0 0 g 0 0 4 d 0 b ¢ b f f
0 0 0 f f 0 b ¢ b 0 d d 0 g
0 0 0 0 » f b b 0 f a f—b b
0 0 0 0 0 0 .b —b O f a —f b —b

In next subsection, we will study the smooth convergence property of the

scheme.

6.5.2. The C' Convergence of the Scheme

On applying the same techniques and analyses as used in section 6.4, we
can obtain the following C' convergence results about the 10-point

interpolatory subdivision scheme over uniform triangulations.

Lemma 6.21. Suppose

(6.75) w, = —2w,.

Then, the CDD of the 10-point scheme satisfy the following recurrence

relation (7.76), where, the parameters w and v are defined as
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Covly = 2WC,_ | —@w=20)C_ . +20Cy . +(1+8w)CE, +2wCk |
+2vcl;+1.j+1 +2VC’:+1.;'
Coriny = @w=20C)_  —8wCk —@w—2v)Ct |
6.76) +2w=2v)C},, . —(2w=2v)C],
Cotiys = —@w20CE_ 4+ @w=2v)Ch_ | — @w+2v)C
— 8wC}, + (2w—2v)Ch
’le.zjﬂ = zvclic-—l,j +2v C,;—l.j—l + ZWC’:.;‘H + (1+8w)cf.j
+ 2vcl:.j+l —(4w—2v)C’i‘+1J+l +2wc’:+1.j
(6.77) w=w and v = w,

From this Lemma, we obtain

Lemma 6.22. Suppose (6.77) holds, then

(6.78) C**' = Bwy)C,

where, B(w,v) is a (wyv)-matrix of order 24 x 24 defined by (7.79) and the

par ameters are defined as: a = 2w, b == —2w+2v, ¢ = 2w—=2v, d = —4w+2v, e =

—8w, f = 1+8w, g:=2v and the omitted entries are zeros.
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(6 79) B(w,v) =

g 80 a f g 00da 000O0O0O0OO0O0OCO0OO0OO0UO0O00O0
0 a e b c b

0 g g a f g d a

0 a d g8 f a g 8

0 b ¢ b e c

0 a d g f g 8

0 b ¢ b e c

0 8 8 a f g d a

0 c e b a b

0 g8 8 a f g d a

0 c e b c b

0 g 8 a f g d a

0 a d § f a 8 8

0 b ¢ b e c

0 a d § f a 8 8

0 b ¢ b e c

0 a d g f a g 8

0 c e b c b

0 8 a f g d a

0 c e b c b

0 g 8 a f & d a

0 a d g f a g8 8
0 b ¢ b e c
0 a d g f a 8 8

Here, as in section 6.4.5, we have chosen the order of ¢* of sufficient

order such that

(6.80) C**? = Bwv)C"

contains all possible types of CDD terms at level k+2 if the relation is
applied at every vertex at level k. Therefore, for k=0, 1,2, .., we can easily

obtain

6.81) 7 < |IBwwlIC,

where, the C% is defined by (6.44).
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Lemma 6.23. The iteration matrix B(w,v) has the following properties:

(6.82) | Bw.,w| > 1 forall (wv) eR

and
(6.83) |IB*ww || < 1, w< 0 and w and v are sufficiently small.

More explicitly, by using computer experiments, we obtain an explicit

condition for (6.83):
(6.84) w.v) € Q

The region 0, is depicted in Figure 6.6.

) _
v1072
- — 1
\ - 10_2
11 —10___ -9 — -7 —6 _5 4 -3 -2 = 0o 1wl0Ty
-1
-2
-3
—4
-5
< o
-6
=17
-8
—9
<
—-10
-11

Figure 6.6. The C' convergence region Q,.
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. ..
To prove the c¢' property of the scheme, the Directional Divided

Differences of the scheme are to be investigated. As a result, the following

lemma is needed. The proof of this lemma is the same as that of Lemma 6.14.

Lemma 6.24. Suppose that condition (6.75) holds, then, for k =0, 1, 2, 3,

..., we have

7(6.85) |5 —df| < (1+16]w] + 16v]) CL

From Lemmas 6.22, 623 and 6.24 and Theorem 6.20, we can conclude

our ¢! convergence about the 10-point scheme:

Theorem 6.25. The 10-point interpolatory scheme produces C' surfaces

over uniform triangulations provided that conditions (6.75) and (6.84) hold.

Remark 1. This condition is only a sufficient condition for the scheme to
produce smooth surfaces. Better conditions may be obtained by studying the

recurrence relation (6.76) at more levels.

Remark 2. Condition (6.75) is used to quarantiee the existence of the

recurrence relation of the CDD (6.76). Thus this condition is vital to our

analysis.

To end this subsection, we give an explicit approximate solution to the

sufficient €' condition (6.83).
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An simple approximation to @, is €, which is small region within Q,
bounded by four straight line segments {1},i=1,2, 3, 4. These lines are given

explicitly by:

I: w+Tv=0

L: 8(w+007) —3(v—001)=0
(6.86) 7 2 )3 )

l; (w+010)+ (v+007)=0

14: 10w — 7v = 0.

So, an easy solution to (6.83) is that w and v satisfy the following

linear inequalities:

w0, w+7v <0

8 (w + 0.07) — 3(v — 0.01) >0
(6.87)

(w+0.10) + (v+007)>0

10w —7v <0.

The region Q] is depicted in Figure 6.6a.

For the cubic precision scheme, where, w =1t — 9/¢ and v=1/p -1
condition (6.83) is satisfied if the shape control parameter ¢ is chosen such

that

(6.88) 49/100 < t < %100

This condition is just the thick lines within the region &, and @, depicted in

Figure 6.6 and Figure 6.6a respectively.
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)

v 1072
1

—11 —10 -9 —8 -7 —6 -5 -4 -3 = 0o 1wl072

-1

-2

-3

-4

0, =

—6

-7

-8

-9

—10
-1

Figure 6.6a. The €' convergence region o,

Some graphic examples produced by the scheme with different

parameters will be given at the end of the this Chapter.

6.6. The 10-point Scheme over Non-uniform Triangulations

In this section, we study the 10-point scheme over non-uniform
triangulations. Our main result is that the limit surface is smooth even at
the extraordinary points provided that the scheme is modified properly at

these points. In particular, these results are valid for the butterfly scheme.
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The ¢® and ¢! analyses of the scheme here are different from the previous
analyses of the scheme over uniform data. In fact, the analysis to be presented
here is an extraordinary point analysis. The Block-Circulant Matrix theory is

used here. This technique is quite suitable for the non-uniform analysis.
6.6.1. Generalization of the Scheme to Arbitrary Triangulations

In section 6.5, we studied the 10-point scheme over uniform
triangulations in detail in which the uniform binary parametrization is used.
However, since non-uniform triangular control polyhedrons often arise in
practice, it is significant to investigate the behaviour of the scheme over

non-uniform triangulations.

From its construction, we know that the scheme can be used to generate
surfaces over arbitrary triangular networks. This can be done by introducing
some local schemes only at the Extraordinary points (E-point) so that the
E-points can be isolated by locally regular data. An E-point is a control point
to which N edges (N = 6) of the control polyhedron incident. Otherwise, the

vertex is called an ordinary point.

Depending on the local topology (more explicitly, the valances of the
E-points), the modified 10-point scheme is defined as follows. At any
ordinary point, the 10-point scheme is applied. However, at the near
extraordinary points, some local schemes are used which are hoped to

produce smooth surfaces. For each recursion, the scheme refines the control
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polyhedron but does not introduce any more E-points. Hence, the E-points can
be isolated by locally regular data. Thus, the convergence analysis of the
modified scheme becomes an extraordinary point analysis since we know that
the scheme produces c¢' surfaces everywhere except at the E-points.

Consequently, we will focus our analysis on these extraordinary points.

For simplicity, we assume that at regular points the parameter {w)
satisfy condition (6.12), that is, the scheme reduces to the butterfly scheme.
However, the results are still true for the 10-point scheme with parameters

{w} satisfying (6.75) and (6.83).

The details of the scheme at an E-point will be given in the next

subsection.

For the purpose of our analysis, the following notations are used

throughout this section.

+  the indicator of the E-point, (n+1) is the valency of the point, n=2,3, ..;

k. the subdivision level indicator, k =0, 1, 2 ..;

i a cyclic indicator, i =0, 1, 2, ., n—1, m;

V,P.Q, R . the control points near an extraordinary point, say, vertex V at

level k, note, V¥ = vk = v for all k;
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py 9, r, ... the refined control points near an extraordinary vertex V (at level

(k+1));

A:  the local subdivision matrix (square) of order 3(n+1)+1;

{2, v}): the eigenvalues and their corresponding eigenvectors (generalized

eigenvectors) of 4;

A,i=0,12 .n matrices of order 3 x 3;

C,i=0,1,2, .(n=1), m basic subdivision matrices of order 3 x 3;

F* control point vector of length 3(n+1)+1 at level k which will be defined

explicitly in the context later;
w,w, t: (local) shape control parameters.
6.6.2. Formulation of the Scheme at an Extraordinary Point
The local scheme at an extraordinary point is constructed according to
its valance. Before describing the modified scheme, we introduce some

conventions. In the following formulae, the index i is a cyclic integer in the

range i=0, 1,2, ..n—1,n, that is,

-198-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS

(6.89) p,=p, if and onlyif i =jmoed(n+1), j=0,1,2, .. n

It is also assumed in case I scheme (n = 2) that the cubic precision

parameters are used. That is

w :=t—9/16
| w, =2t +9/g = — 2w,

(6.90) w, =17y ¢

w :=1/2—2wl—w2—w3=t

. shape parameter (local).
Note that, for any real number ¢,
(6.91) 4w + 2w, + 2w, + 2w, = 1.

For simplicity, we assume also, without loss of generality, that the initial
data is locally uniform except one extraordinary point ¥ and that P, Q, and
R, denote the control points at level & and p, g, and r denote the
corresponding refined control points. In fact, this situation can be achieved

locally after the first subdivision.
Case I. n =2, valency = 3.

In this case, there are several alternative schemes that can be used. One

of them is described by the following (Figure 6.7). For i =0, 1, 2, .., n—1, n,
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6.92) | g

r.
i

Case I1.

In this case, the scheme is just the butterfly scheme. That is, using the
butterfly formula everywhere. Since in this case the scheme also produces C'
surfaces (to be proved later), it is not necessary to construct more complicated
schemes at the E-points although some other schemes may also be used. In

fact, a cubic precision scheme can be constructed but the the coefficients of

p, =wlV+ (wl+w‘) P + (wl+w3) 0 + w,R + W1P1+1 + w._R

CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS

3 i+l

twP  + WZRi—l

= P

= WZV + w4P it lei + WZRi + ¥4 P

w1 T W0, +WR

i+1 3 i+l

+2w P, + w.R,_ . '

Figure 6.7. n=2.

n > 3,valency > 4.
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the formulae are quite complicated.

The scheme is like this. Applying the butterfly scheme near the

extraordinary point ¥, we obtain the following subdivision formulae (Figure

6.8).

p,= 12V +1/5P, + wR, + wpP  +wP_,+wP  +wR_ +wP_,
(6.93) q, = P,
= sz + 1/5P ;T in + szi + 1/ 2P i T in+l +wP w2t WPi—l'

where, w is the (local) tension parameter and

(694) w, =-2w.

2

Figure 6.8. n > 3.
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6.6.3. The Subdivision Matrix at the E-point

Writing (6.93) in a matrix form, we obtain:

(6.95) g, |=| 1 0 0|.j0|+[0 0 o0

w 0 0 i+ w, 0 w P,
+ [0 0 0]« +d F|O 0 0 |- o, ,
w 0 0 2 w 0 O R, ,
w 0 0 P _ 1/5
+ 0 of, O, |+ 100 |-V
0 0 O R, w,

1/ 0 w w, " 0 W
(696) c¢,={1 0 0| C,={0 0 0] c,=10
Yy w w, g w 0 0

w, 0 w w 0 O

c,={0 0 0} C= [0 0 0

w 0 0 w 0 O

and the control point vectors:
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(6.97) F* .= W,P,Q, R, PO, Ryys s P O, RY
and

kel
(6.98) F*™*' :=(V,py dy Ty Py Ty s oo Pp G, T,

[

Here, F**' and F* are vectors of length 3(m+1)+1. Thus, the

subdivision process at the E-point can be written in a more compact form:

(6.99) F*'= AF,

where, A is the local subdivision matrix. More explicitly, the matrix is given

by

(6.100) 4 =
a A

and a is a vector of length 3(n+1), and A’ is a block circulant matrix defined

by

(6.101) A" :=B—irc(A, A, A, .. A)

---------------------------------------------------------

and (4}i=0 1,2 .. n-1 nare some 3 by 3 matrices given explicitly

below.
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Similar results hold for n =2 (valency = 3). In fact, in this case, we have

w W, w tw, W, w, 0 W,
(6.102) 4 = 1 0 0, A4=1]0 0 0]
W4 W1 W2 W4 wl W3

AO = C0

A = C
(6.103) ! !

A2 = C, + C,

A3 = C3.

Ao = C0
A1 = Cl
4, = C,
(6.104)
A = 0, for i=3,4,5,.,n-2
A"_l — C'3
An = C4.

Now, we have constructed all the subdivision matrices {4} upon which
the properties of the limit surfaces depend. In the following subsections, we

will study the convergent properties of the modified schemes at the E-point.
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6.6.4. The Spectrum Analysis of the Subdivision Matrix

In order to study the ¢® and ¢' properties of the 10-point scheme over
arbitrary triangulations, it is sufficient to prove that the limit surfaces of the
scheme are ¢° or ¢' at the extraordinary points since the limit surfaces are

C' everywhere else provided that the tension parameter w satisfies

(6105) -1/12 < w <LN0.

In much the same way as in Chapter 5, it can be shown that the
eigen-properties of the subdivision matrix 4 play a very important role in
the ¢® and ¢' analyses. Hence, we first study the eigen-properties of A. It
should be stressed that its eigenvalues and their corresponding eigenvectors
can be evaluated analytically since the matrix is a Block-Circulant-Matrix
composed of 3 x 3 sub-matrices, therefore these eigenvalues are roots of cubic

polynomials hence they can be obtained analytically.

Let the eigenvalues and their corresponding (generalized) eigenvectors of
A be denoted by (4, v}, where, |i] > |A,,| for all i. Then, we can obtain the

following result:

Theorem 6.26. The subdivision matrix 4 has the following properties:

(6.106) Ay=1,v, =(1,1,., 1) and

-205-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS

(6.107) |u] < 1, forall i=2,3, .. 3n+3, 3n4d

if

03125 < ¢t 0.6000, forn =2
(6.108) < "

-1/12 < w < 0, forn > 3.

Furthermore, we have
(6.109) 0 < 4, =4, < 4, 4] < 4, i>4 and dim spanfv,v,} =2

if

05275 < t < 05500, forn =2
(6.110)

-1/1p < w < 0O, forn > 3.

Proof. This theorem can be proved by direct evaluation.

From this theorem, we will establish our ¢® and ¢' convergence analyses

in the next subsection.

Remark. The eigenvalue A, is a double root of A4 and has two linearly
independent eigenvectors v, and v,. This can be shown clearly by using

Block-Circulant matrix theory or Fourier Transform technique.
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6.6.5. The Convergence Analysis

In this section, We will prove that the limit surface has tangent plane
continuity at the E-point. Thus, the surface is smooth everywhere. Firstly,

from Theorem 6.27, we can obtain a C® convergence result:

Theorem 6.27. The limit surface is C° if:

03125 < t < 06000, forn =2

(6.111)
—1/10 < w < 0, forn > 3.

Proof, The proof of this is almost the same as that of Theorem 5.4 in

Chapter 5. The details are omitted here.

For the ¢! convergence, we have the following:

Theorem 6.28. The limit surface is ct if

05275 < t < 05500, forn =2

(6.112)
-1/12 < w < 0, forn > 3.

To prove this result, the following Eigen-properties of the subdivision

matrix are needed:

Theorem 6.29. The limit surfaces of the interpolatory scheme is C' at an
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extraordinary point v, that is, it has a unique tangent plane at v, if the

subdivision matrix 4 has properties:

(i). 4, =1 is asimple eigenvalue and v, =(1,1,1, .. 1, 1)§

(6.113) (i). 0 < &4, = A, <1, dimspan{v, v} =2

(ii). Wl <Ani=4,5, .., 3n+4.

It can also be shown that a necessary condition for the limit surface to

have a unique tangent plane at the extraordinary point is:

(). a,=1 is asimple eigenvalue and v =(1, 1, 1, ., 1, 1)}

(ii). there exists an integer N, > 3, such that:
(6.114)

0 < Ay=Ay= .. = Ay, < 1, dimspan{vy, v, ..., Vy ) = 2;

(iii). | 4] < 4, for i >N,

Proof, We just prove the sufficient conditions. Suppose (113) is satisfied.

So, from the subdivision relation (6.99), we have: for & >0,

(6.115)  F* = 4P,
= Vv + A’Z‘a v, + /1;9 v, + O(M/Az)k»

where, for general data, <a, > # 0.

As in Chapter 5, we can prove that any well defined tangent plane of

the limit surface near to V, say, at point @, has the form
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(6.116)  m*Q) = span{a B} + OG/2)".
Hence, we have
(6.117) nyy = Lm__ 1%Q) = span{a, B).

This means that all the tangent planes which are well defined near the
E-point V converge to the unique plane span{a, g}. That is, the limit surface

has a tangent plane at ¥ and the tangent plane varies continuously at the

E-point. This completes the proof.

Remark 1, Since the scheme is interpolatory, Theorem 6.29 can also be
proved by using Directional Divided Difference  method or adapted

parametrization technique.

Remark 2. The necessary conditions(6.114) can be easily proved. These

necessary conditions are still true at regular points.

Remark 3. It can be shown that conditions Lim, Oomaxu'm{ld F<l} =0

m i

and Lim,_, max ,,,;,t,,[IZkAmA,,Ffjl} — 0 are necessary conditions for the 10-point

(0 ¢]

scheme to produce c' surfaces over uniform data. In fact, this is true for any

uniform subdivision schemes.

6.7. Conclusions

In this Chapter, we have studied the subdivision algorithms based on

triangulations. The following results are obtained.
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1. The butterfly scheme produces ¢! surfaces over uniform triangular

control nets provided that —1/1, < w < 0.

2. The 10-point interpolatory scheme is introduced and explicit sufficient
conditions for it to produce ¢® and ¢' surfaces are also given. A simple
sufficient ¢' condition is that the parameters w and v should lie in the

polygonal region Q' depicted in Figure 6.6.

3. The cubic precision scheme produces smooth surfaces if the shape

control parameter r satisfies 49/;99 < 1< 54/100-

4. The cubic precision scheme is always recommended since its
approximation order is four instead of two. Hence it might produce better
results. Another reason for this is that it has the potential to produce even
smoother surfaces [53¢]. Our graphics also show that this scheme produces

very nice surfaces.

5. The 10-point scheme over non-uniform data is investigated and it is
proved that the limit surfaces are smooth everywhere provided that the

parameters are chosen appropriately.

6. The method, Divided Difference and Cross Difference of Directional
Divided Differences analyses, can also be used to study the higher order
continuity of the surfaces generated by (uniform) subdivision algorithms. The

only difference is that higher order Cross Differences of Directional Divided
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Differences should be studied and this process is much more complicated

than that of our ¢' analysis.

7. The Extraordinary Point analysis is still valid for other subdivision

algorithms.

6.8. Graphic Examples

Here, we present some graphic examples of the 10-point subdivision
algorithm with different parameters. The surfaces are plotted by Nichlet Drum
Plotter at Brunel University, UK. 1988-1990. The software used to produce
surfaces on a rectangular grid and hence the triangulation along the (1,1)

direction is unfortunately not displayed.

5 1
1.7 ? '
&S
V.7 oY% s 1.3
S S " ®
1.5 P, >
o / S0 V3 3 o 1
s\ i ¥
<2 I > 1. 1 .
SR, .‘.“"l " \'::0:0:0::::::0"/ 3.0, 3.0 3.0
2SS S LSS
e RIS :ll"‘\ ‘,':':%.:0’0:;’ 2.0 2.0 3 2.0
2 {2 S |0 2 1.0
S >< V.0
3<%

Figure 6.9. Butter fly scheme, the cardinal function,w = —1/16. k = 0.1,23.
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HAPTER SEVEN

SUMMARY

In this thesis, we studied some subdivision algorithms for curves and

surfaces. The thesis can be summarised briefly as follows.

o A brief review of recursive subdivision algorithms for curves and
surfaces and a survey of the mathematical methods used to analyse them were

presented.

o We studied a non-uniform subdivision scheme for smooth curve
generation and derived the recursive subdivision algorithm for B-spline curves
with simple knots. The Adapted Parametrization technique was introduced to

analyse these non-uniform schemes.

« Necessary and sufficient conditions for the corner cutting schemes to

produce smooth curves were studied and an explicit sufficient condition was
given.
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o The subdivision algorithm for uniform bi-quartic B-spline surfaces was
formulated and generalized to arbitrary networks. The tangent plane and

Curvature properties of the limit surfaces at the Extraordinary Points were

studied.

o The Block Circulant Matrix technique was used to simplify the
Extraordinary Point analysis. This method could also be used to analyse

higher even order uniform tensor-product B-spline algorithms.

« We constructed and studied the 10-point interpolatory subdivision
scheme for surfaces over both uniform and non-uniform triangular control

nets.

o The Cross-Differences of Directional Divided Difference approach for
analysing uniform subdivision algorithms for surfaces was formulated. Using
this method, the 10-point interpolatory subdivision scheme and the butterfly
scheme were studied in detail. The necessary and sufficient condition for it to

produce continuous and smooth surfaces were also discussed.

o The butterfly scheme produces smooth surfaces over uniform triangular

networks if the tension parameter —1/15 < w <0.

. The 10-point scheme produces smooth surfaces over uniform triangular

networks if the shape parameters {w} satisfy: w =w,vi=w, w, =-2w
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and (w,v) € 0,. The region @, is depicted in Figure 6.6.

« Sufficient conditions for the 10-point scheme to produce smooth

surfaces over arbitrary triangular networks were also given.

o Most of the discussed algorithms are implemented in FORTRAN. The
non-uniform corner -cutting algorithm, the uniform bi-quartic B-spline
algorithm, the 10-point scheme for surfaces and the DGL scheme for curves
as well are all programmed in FORTRAN routines which can be called to

design curves and surfaces.
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