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ABSTRACT 

In this thesis, the author studies recursIve subdivision algorithms for 

curves and surfaces. Several subdivision algorithms are constructed and 

investigated. Some graphic examples are also presented. 

Inspired by the Chaikin's algorithm and the Catmull-Clark's algorithm, 

some non-uniform schemes, the non-uniform corner cutting scheme and the 

recursive subdivision algorithm for non-uniform B-spline curves, are 

constructed and analysed. The adapted parametrization is introduced to 

analyse these non-uniform algorithms. In order to solve the surface 

interpolation problem, the Dyn-Gregory-Levin's 4-point interpolatory scheme 

is generalized to surfaces and the 10-point interpolatory subdivision scheme 

for surfaces is formulated. The so-called Butterfly Scheme, which was firstly 

introduced by Dyn, Gregory Levin in 1988, is just a special case of the 

scheme. By studying the Cross-Differences of Directional Divided Differences, 

a matrix approach for analysing uniform subdivision algorithms for surfaces is 

established and the convergence of the 10-point scheme over both uniform 

and non-uniform triangular networks is studied. Another algorithm, the 

subdivision algorithm for uniform bi-quartic B-spline surfaces over arbitrary 

topology is introduced and investigated. This algorithm is a generalization of 

Doo-Sabin's and Catmull-Clark's algorithms. It produces uniform Bi-quartic 

B-spline patches over uniform data. By studying the local subdivision matrix, 

which is a circulant, the tangent plane and curvature properties of the limit 

surfaces at the so-called Extraordinary Points are studied in detail. 
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INTRODUCTION 

With the development of science and technology, shape design 

techniques have been forging ahead tremendously, especially in the past few 

decades, to meet the increasing demands for machine tool design and 

manufacture. The CAD/CAM systems, the UNISURF system and various 

CAGD systems are only a few examples of this development. It is obvious 

that the recursive subdivision technique plays a more and more important 

role in this development. 

Recursive subdivision methods consist of a class of numerically stable, 

highly efficient, easily manipulated and implemented algorithms for the 

generation of parametric curves and surfaces. All these methods use the idea 

that the desired curves and surfaces are to be generated from some finite 

points, called control points, control polygon or control net, by some iterative 

methods consisting predominantly of simple local H'eighting processes. Some 

of them can be exrplained as generalized corner cutting algorithms. For 
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INTRODUCTION 

example, algorithms with the convex-hull property, such as de Casteljau's 

and Catmull-Clark's algorithms, are this type of algorithm. These algorithms 

are eminently suited for use in interactive computer aided design systems 

because the produced curves and surfaces are smooth and can be controlled 

locally by adjusting corresponding parameters. Therefore, they are very 

popular and widely used in computer systems. Hence, more and more such 

algorithms are being studied. 

In order to study mathematically the properties of the the schemes as 

well as their generated curves and surfaces, a variety of techniques are 

introduced: Dyn-Gregory-Levin's generator matrix analysis, Micchelli­

Prautzsch's invariant approach and Cavaretta-Dahmen-Micclelli's regular 

subdivision technique. These methods are only suitable for analysing the 

so-called uniform subdivision schemes. The non-uniform schemes, which are 

very useful in practice but difficult to analyse, are now being studied. 

In order to develop the existing curve and surface design techniques and 

mathematical analyses, the thesis is concerned with the construction and 

mathematical analysis of recursive subdivision algorithms, especially for 

non-uniform subdivision schemes and interpolatory schemes. The major part 

of our research work is contained in Chapter 3, 5 and 6. Chapter 1 is a 

brief review of recursive subdivision algorithms. Some currently used 

examples are briefly described. Chapter 2 is a survey of mathematical 

methods used to analyse subdivision algorithms for curves and surfaces. In 

Chapter 3, we study the non-uniform subdivision scheme for smooth curve 
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INTRODUCTION 

generation and derive a recursive subdivision algorithm for B-spline curves 

with simple knots. The Adapted Parametrization technique is introduced to 

analyse non-uniform subdivision schemes. Chapter 4 describes the existing 

surface generating algorithms and their corresponding mathematical 

descriptions. In Chapter 5, we derive the subdivision algorithm for uniform 

bi-quartic B-spline surfaces and generalize it to arbitrary networks. The 

tangent plane and (normal) curvature properties of the limit surface at 

extraordinary points are studied. Using the Block Circulant Matn"x technique, 

the Ball-Storry's method for c1 and c2 surface analyses at an extraordinary 

point is generalized. In Chapter 6, we study a 10-point interpolatory 

subdivision scheme for surfaces over both uniform and non-uniform triangular 

control nets. The Cross-Differences of Directional Divided Difference 

approach for analysing uniform subdivision algorithms for surfaces is 

presented. Using this method, the necessary and sufficient conditions for the 

IO-point interpolatory scheme to produce c! and c 1 surfaces are 

investigated in details. Chapter 7 is a brief summary of the thesis. 

The concern of this thesis is the mathematics and the techniques of 

analyses for recursive subdivision schemes and so the applications of these 

algorithms will not be discussed further. However, most of the discussed 

schemes have been implemented in FORTRAN. Hence, some computer 

graphics are included. 

-3-



CHAPTER ONE 

A REVIEW OF RECURSIVE SUBDIVISION ALGORITHMS 

In this Chapter, we present a brief introduction to the development of 

recursive subdivision algorithms. Some mathematical notations are introduced 

and some of the most widely used examples are also described. 

1.1. A Brief History of Recursive Subdivision Techniques 

Recursive subdivision algorithms can be viewed as a class of iterative 

algorithms that are used to calculate, to generate and to approximate curves 

and surfaces. Their main feature is that they use initially only some finite data 

points (control points) to finally produce continuous, or even differentiable 

curves or surfaces. These methods are mainly based on using some form of 

local line averaging processes. The most important advantage of using these 

algorithms in interactive computer aided design is that they are numerically 
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CHAPTER ONE: A REVIEW OF RECURSIVE SUBDIVISION ALGORITHMS 

stable, very efficient, locally adjustable and easily implemented. 

AI though Recursive Subdivision Algon'thms, or RSA for short, have been 

used for curve and surface generation for a long time by both mathematicians 

and other scientists and technicians, they only received a good deal of 

research attention in recent years. Some of the early examples are the 

Carpenter's Technique which was used to produce a smooth corner from a 

sharp angular corner with simple tools [46] and the corner cutting technique 

that was used by some ancient Chinese mathematicians to approximate a 

circle from a regular hexagon by repeatedly chopping off corners in order to 

find the circumference of the circle [72]. 

About forty years ago, de Rahm studied a subdivision algorithm from a 

mathematical point of view in order to find some generally sillgular functions 

(in the sense of Lebesgue). This triggered off the modern era for the 

investigation of subdivision algorithms. He used a functional equation to 

introduce the curve subdivision idea and then studied a simple corner cutting 

algorithm, the "trisection algon'thm", in detail in [I 0 I, I 02]. In the early sixties, 

de Casteljau from the French car company Citroen developed an iterative line 

averaging algorithm, the de Casteljau algorithm (a subdivision algorithm), for 

the calculation of Bemstein-Bezier curves [9,26]. These techniques play a 

central role in the rapid development of recursive subdivision algorithms. 

With the advent of computers, recursive subdivision algorithms are being 

used increasingly in approximation theory and computer aided geometric 
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design as a method for the generation and definition of curves and surfaces. 

Consequently, more and more attentions are being given to the studies of 

stable and efficient algorithms for the computation of curves and surfaces. 

Other problems, such a~ efficiency and user friendly software in interactive 

computer aided design, also arise. As a result, de Boor and Cox derived 

independently a recursive algorithm for the calculation of B-spline curves 

[24,37]; and G.M. Chaikin, in 1974, constructed an algorithm (Chaikin's 

algorithm) for high speed curve generation [30]. In 1975, Riesenfeld proved 

that the curves produced by Chaikin's algorithm were uniform quadratic 

B-spline curves [103]. The success of the studies of these algorithms 

encouraged more and more studies in curve and surface generation algorithms 

[1,28,33,69,71,76,81,85,92, ... ] 

In 1978, Doo and Sabin constructed and analysed a surface generating 

recursive subdivision algorithm over arbitrary topology (Doo-Sabin's 

algorithm) [44,46]. In the same year, CatmUll and Clark, in order to seek 

subdivision algorithms producing smoother fitted patches over arbitrary 

networks, developed a subdivision algorithm for uniform bi-cubic B-spline 

patches (CatmUlI-Clark's algorithm) [27]. This algorithm was then fully 

analysed by Ball and Storry in [1,2,3,116]. Since then, a huge amount of 

research work on subdivision algorithms and techniques have been developed. 

The studies and implementations of recursive subdivision algorithms has 

been developing very fast in the recent years. As a result, many new and 

powerful methods and techniques are being developed to construct and 
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analyse more and more useful, flexible and complicated schemes. In the next 

section, we give a brief list of some of the important results about recursive 

subdivision algorithms. These include the Oslo algorithm [33] and Boehm's 

knot insertion algorithm for the calculation of B-spline curves [14]; the DG~ 

(Dyn-Gregory-Levin) scheme for curve and surface design [50,51]; the 

Micchelli-Prautzsch invariant curve technique [85,86,88-90]; the regular 

subdivision approach [28,29] (or generating polynomial analysis) of 

Cavaretta-Dahmen-Micchelli and some analyses of non-uniform subdivision 

schemes [53,70,71,81]. 

1.2. Examples of Recursive Subdivision Algorithms 

In this section, for the sake of notational convenience, some mathematical 

notations are introduced. These notations will be used throughout the whole 

thesis to describe recursive subdivision algorithms. Some examples of 

currently used subdivision algorithms are also given. 

1.2.1. Mathematical Representations of Recursive Subdivision 

Algorithms 

What is a recursive subdivision algorithm? How to describe it 

mathematically? In order to get some intuitive ideas about subdivision 

algorithms, we describe some examples of the currently used recursive 

subdivision algorithms below. 

-7-



CHAPTER ONE: A REVIEW OF RECURSIVE SL'BDIVIS/O.V ALGORITHMS 

For simplicity, we suppose that the control points for curves are in R2 and 

the control points for surfaces are in ~. We also assume that the curves and 

surfaces are functions instead of parametric curves and surfaces. Unless 

stated, the Uniform Parametrization is assumed (this will be discussed in 

detail in Chapter 2). 

In order to describe the algorithm clearly and mathematically, some 

terminology and mathematical notations are needed. In the curve case, a 

control polygon (fo' f l , f 2, f 3, ... , f), or just (f
i
} for short, is a piecewise linear 

curve which interpolates the ordered data (fo' f l , f2' ... , fn}' Any 

parametrization of the piecewise linear curve is called the parametrization of 

the control polygon, which is also called the parametrization of the limit curve 

if the limit of the control polygon sequence is considered. 

The basic idea of recursive subdivision algorithms is quite simple. Given 

an initial control polygon (f}, a RSA uses certain rules to 
I 

generate a 

refined control polygon (I~} and this process is repeated successively to obtain 

(f~}, the control polygon at level k, k = 1, 2, .... Therefore, the RSA can be 
I 

described by some formulae corresponding to the rules which relates the 

control polygon Lf;+l} and Lf;}. Hence, in the thesis, we use the refinement 

formulae to describe its scheme for both curves and surfaces. 

In the surface case, the control polygon (Ii)' or sometimes called control 

net or control polyhedron, is the piecewise linear (for triangular networks) or 
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piecewise bi-linear (for tensor-product type schemes) surface which 

interpolates the ordered data (j, .}. These control polygons may have some 
',J 

"holes" near the so-called extraordinary points, where some special treatments 

are used to make the control polygons continuous. However, this irregular 

situation will not be dealt with in this Chapter. 

1.2.2. Some Currently Used Recursive Subdivision Algorithms 

In this subsection, we list some important algorithms in curve and surface 

calculation and generation. Although some of them are not recursive 

subdivision algorithms, in the sense that we define them in this thesis, for 

example, the de Boor algorithm and the Boehm's knot insertion algorithm, 

they provide an importan t tool for the analyses of certain subdivision 

algorithms. 

Example 1.1. The Carpenter's Technique 

No one knows when the Carpenter's Technique was firstly used by 

carpenters though it is one of the oldest and the most popular example of 

RSA. The technique is to use simple tools to produce smooth corners by a 

corner cutting process, as it is called now. 

The technique is like this. Suppose a corner B is to be smoothed off from 

A to c (Figure 1.1), the carpenter will divide AB and BC into an equal 

number of portions. By sawing along the straight lines joining the 
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corresponding markings, as shown in the figure, a fairly smooth curve can be 

obtained. 

B 

A 
c 

Figure 1.1. 

It can be proved that the line segments left form the "envelope" of the 

sawing lines if the number of portions is infinitely large. Furthermore, the 

envelope is a parabolic curve [46,1 15]. 

There are many ways to prove the result. A simple proof can be obtained 

by comparing the algorithm with the de Casteljau's algorithm, or Chaikin's 

algorithm, for quadratics, which are described later in this subsection. The 

technique is exactly the same as the Chaikin's algorithm if the number of 

portions goes to infinity in a doubling way 2, 4, 8, 16, 32, .... So from the 

known result of Chaikin's algorithm we know that the resulting smooth curve 

is a parabolic segment. 
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Example 1.2. The De Casteljau Algorithm 

In 1959, de Casteljau formulated an algorithm for the computation of 

polynomial curv~s [26]. The algorithm for quadratics is the same as the 

Carpenter's algorithm and the Chaikin's algorithm (locally). So the algorithm 

for cubic polynomial curves is presented here. 

Given four control points, say {f.}, the cubic Bemstein-Bezier polynomial 
I 

curve is defined by: 

(1.2) P(t) := 2:i 3 f. B. 3(t), 
=::() I I, 

for 0 < t < I, 

where, B (t) is the Bemstein-Bezier basis of the cubic polynomials: 
i,3 

6 
(1.2) B

i3
(t):= ti (l_t)3-i, for 0 < t < 1. 

, "(3-')' I. 1 • 

The de Casteljau algorithm asserts that the curve P(t) can be split into 

two cubic segments at any point on the curve and that their control polygons 

can be calculated from the original one by a line averaging algorithm. For 

example, suppose the curve is split at the midpoint P(1/2), then the new control 

polygons are given by the following formulae (Figure 1.2): 

f~ := fo 

f~ := (fo + f1 )/2 

f~ := (f 0 + 2f 1 + f 2 )/ 4 

( 1.3) 
f; := (fo + 3f1 + 3f2 + f3 )/8 

R := (fo + 3f1 + 3f2 + f3 )/8 fo 

fR 
1 := (fo + 2f1 + f 3)/4 

f~ := (f2 + f3 )/2 

f~ .- f 3· 
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If we define: 

(1.4 ) P(t) := 2: 3 f. B (t). pL(t) := ". 3 fL B. (t) and pR(t) :=" 3 f~ B (t) 
;=0 I ;.3 U,=O , '.3 U;=o , ;.3 

then 

(1.5) P(t)-
pL(2t) for 0 <t< 1/2 

p
R
(2t-1) for 1/2 < t < 1. 

The importance of the algorithm lies in the fact that the produced curve 

has the invariant property, that is, the original curve can be split into two 

parts and each part can be represented in the same form as the original curve. 

It is just this property that leads to the recent intensive investigation of 

invariant curves and their corresponding subdivision algorithms [41,42,85] 

and [86,88,90 ... ]. From this example, it can be easily shown, by some simple 

calculations, that the new, subdivided control polygons are much smaller (the 

convex hull) and smouther (less variation of the control polygons) than that 

of the original one. Another important idea in recursive subdivision 

algorithms, the so called Bernstein Bezier Polygon (net) Iteration technique, is 

initiated. These studies lead to the rapid development of the RSA. 

Figure 1.2. 
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Because of the stability, efficiency and simplicity of the algorithm, many 

computations concerning piecewise polynomial curves are firstly transformed 

into their equivalent Bemstein-Bezier forms and then manipulated [56,60]. 

Example 1.3. The Chaikin's Algorithm 

In 1974, G.M. Chaikin derived a high speed curve generation algorithm 

from data points [30]. The algorithm is the very case de Rahm omitted to 

study [101,102]. The study of the algorithm uncovers an area of control point 

representation of curves and surfaces, sometimes referred to as "discrete CUlVes 

and surfaces" [122]. 

The motivation of the algorithm is to generate smooth curves by a series 

of continuous piecewise linear segments, the control polygon series as it is 

called now, which can be computed sequentially by a local, simple and 

adjustable algorithm from the previous ones. The algorithm is as follows. 

Given the data {t:},. which is also called the initial control polygon (Figure 

1.3), the algorithm generates a series of control polygons {I;}, k=l, 2, ... by 

the following formulae (mask): 

( 1.6) 
rk+l 
J 2; 

1.+ 1 
2; +l 

- (31; + 1;+1)/ 4 

- (I; + 3!t+l)/4-

The curve of the algorithm is defined as the limit of the control polygon 
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sequence. In 1975, Riesenfeld proved that the limit curve was just a uniform 

quadratic B-sp1ine curve [103]. The result could also be obtained by 

comparing the algorithm with the de Casteljau algorithm for quadratics or by 

using Boehm's knot insertion algorithm for uniform quadratic B-spline curves 

[14]. 

.G+3 

Figure 1.3. 

Example 1.4. The Catmull-Clark Algorithm (for curves) 

As the demands for smooth surface generation algorithms increased, in 

1978, Catmull and Clark [27] and Doo and Sabin [45] formulated an 

algorithm for surfaces. Although the algorithm was derived for surfaces, it 

mainly came from the corresponding algorithm for the generation of uniform 

cubic B-spline curves since it is a tensor-product type algorithm. 

In the curve case, the idea of the algorithm is the same as the Chaikin's 

algorithm. More explicitly, the algorith~ produces cubic B-spline curves with 

uniform knots partition from given data points {,f;}. The subdivision 
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CHAPTER ONE: A REVIEW OF RECL'RSIVE SL'BDIVISIOS ALGORITHJfS 

rk+l 
J 2; 

characterize the subdivision algorithm. Figure 104 shows the subdivision 

process. 

k+l 
f 2 ; +4 _ - --

l I 

Figure 104. 

Example 1.5. The Uniform Quartic 8-spline Algorithm 

This algorithm is a generalization of the Chaikin's and Catmull-Clark's 

algorithm for the generation of uniform quartic B-spline curves. It is shown in 

[50,76,85] that any uniform B-spline curve can be produced by such an 

algorithm (this can also be proved by Boehm's knot insertion algorithm). The 

process is similar to those described in example 1.3 and 1.4. Thus, it is 

suffices to just give the subdivision formulae of the algorithm: 
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( 1.8) 
j k+1 

2i = (5j~ + 101;+1 + .1;+2 )/16 

Figure 1.5 shows the smoothing process. 

£k+l jk+l 
J 2i 2i+l ...---- ---..... 

....- " ...... 

" 

Figure 1.5. 

Example 1.6. Non-uniform Corner Cutting Algorithm 

~+1 
f2;~ 

This algorithm is just a complement of the Chaikin's algorithm for 

smooth curve generation. The motivation came from de Boor's corner cutting 

studies [21] and de Rahm's original works [101,102]. The algorithm seeks 

(sufficient) conditions for smooth corner cutting conditions (Chapter 3). It is 

proved that the scheme produces smooth curves if a proper parametrization 

(adapted parametrization) is used. However, it should be noted that the result 

thus obtained can not be proved by using the "diadic parametrization" 

-16-



CHAPTER ONE: A REVIEW OF RECURSIVE SUBDIVISION ALGORITHMS 

technique as it is used in [50,51,85,86]. The scheme will be studied in detail 

in Chapter 3. 

Example 1.7. The Subdivision Algorithm for Non-uniform B-spline 

Curves 

Since both the Chaikin's algorithm and the Catmull-Clark's algorithm are 

for the generation of B-spline curves with uniform knot partition, we present 

here a generalization of these algorithms such that the B-spline curves with 

simple knots can be produced in a similar way. The scheme can be regarded 

as a generalisation of Boehm's knot insertion or a special result of the Oslo 

algorithm (Chapter 3). The difference is that the scheme uses a special 

simultaneous knot insertion technique (knot doubling process) so that the 

whole spline curve can be approximated. 

In order to give an outline of the subdivision algorithm, we present only 

the schemes for cubic and quartic B-spline curves. Their corresponding 

subdivision formulae are given by equation~ (1.9) and (1.10) respectively. T~e 

subdivision processes are shown in Figure 1.7a and 1.7b. 

( 1.9) 

and 

(1.10) 
rk+ 1 Ie rk Ie k rk Ie rk 
J 2 ;+1 =X; J; + (I-Xi -Y)Ji+l +Y; Ji+2' 
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where the weights {a~, b~, c~, ,J., v~, x~, I) are determined by the chosen knots 
: I I I I 1 1 I 

S~ < S~+1 and the chosen shape parameter t~, 0 < t~ < 1, in the following 

way: 

(1.11) 

and 

( 1.12) 

and 

(1.13) 

k 
a. 

1 

u~ 
I 

v~ 
1 

Xk 
1 

Ie 
Yi 

-

-

-

-

=i 
I 

k+1 k 
(S2i+1- Si_1) (1- k ) 

k k a i+1 
(s. 1-S , 1) 

1+ 1-

k k+1 k k+ 1 ) 
(Si+5- S2i+5) (Si+5-S2i+7 

k k k k 
(Si+5 -Si+1)(Si+5 -Si+2) 

k+1 k k+1 k) 
(S2i+5 - Si+4) (S2i+7 -Si+4 

k k k k 
(s i+5-S i+2)(SH_6-S i+2) 

k+1 k+1 ') (k _Sk+1) 
(s 2 i +9 - S 2 i +7 S i+5 2 i +7 

k k k Ie 
(Si+5 - Si+1) (Si+5 - Si+2) 

k+ 1 k) (~+ 1 Ie) 
(S2i+7 - Si+4 2i+9 - Si+4 

k k Ie k 
(Si+5 - Si+2) (Si+6 - Si+2 ) 
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Figure 1.7 a. 

Figure 1.7b. 
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Example 1.8. The De Boor's Algorithm (for B-splines) 

Since the de Boor algorithm for B-splines [24,37] plays a very important 

role in the construction and study of recursive subdivision algorithms, this 

part is devoted to a brief discussion on the de Boor algorithm. 

Although the de Boor algorithm is not a RSA as we will define it in 

Chapter 2, many RSA concerning the generation, computation and 

approximation of spline curves can be derived from this algorithm. The main 

feature of the algorithm is the use of the de Boor-Cox recurrence relation of 

the normalized B-spline basis function B., the i-th normalized B-spline of I.n 

order n with knots x., x.+
1 
. ••• , X. , where x. < x. for all i. More concretely, 

I I I+n I I+n 

the recurrence relation of {B. } is given by: I.n 

x-x. 
(1.14) B. 1-I.n+ 

I 
B. (x) + I.n 

where, x is the variable which is omitted in the basis functions. 

From (1.14), the de Boor algorithm for B-spline curves can be easily 

formulated. Suppose the spline curve is given by 

( 1.15) P(x) := "'. P. B. (x) 6 , I 1ft 

then the value of the curve at x = t, xm < t < xm+l is given by the de Boor 

algorithm: 
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( 1.16) P(t) - 2:i=m-n+7 P. B. (t) 
I I.n 

- 2:i=m-n+7 Pu(t) B
i
.n_

l 
(t) 

- 2:i=m-n+: PU(t) B i.n_
2 

(t) 

-

= 2:i=: Pi.n(t) B i .l (t) 

- P (t) m.n 

where, P .. (t) is determined by the recursion: 
I.J 

( 1.17) P .. (t) .-
I.j 

t - X. 
I 

--- P i -1.i-1 (t) + 
X. - t 

I+n-l P ( ) 
.. 1 t 
I.j-

xj+n_1-Xi Xi+n_ 1 - Xi 

for j = 1, 2, ... , n-l and i = m-n+j+l, ... , m, and P'o{t):= P., i = m-n+l, m-n+2, ... , m. 
I. I 

The algorithm comes from the repeated applications of the B-spline 

recursion relations (1.14). 

The algorithm has the following properties. 

(i). Each step IS a convex combination combination, so it is a stable 

algorithm. 

(ii). The algorithm can be regarded as a corner cutting process (from 

the geometric construction). 

(iii). The algorithm reflects the local property of the B-splines. 
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Figure 1.8 shows the geometric construction of the algorithm for a 

cubic B-spline curve. 

. " 
.. .------~ 

F!,.-----p-- P ....... 
/1+1.2 i+2.3 i+2.2 ............. 

/ ...... 
/ 

/ 
/ 

/ 

P. 1 1-

Figure 1.8. 

Example 1.9. The Boehm's Knot Insertion Algorithm (for B-splines) 

Although the de Boor algorithm is the best algorithm for calculating 

B-splines (the algodthm dominates the point-evaluation of splines), W Boehm in 

1980 provided yet another powerful alternative to the algorithm for 

manipulating B-spline curves [14]. The technique was introduced not from the 

viewpoint of calculating B-splines, but from the viewpoint of spline curve 

design, construction and subdivision. 

The algorithm is even more important than the de Boor algorithm since 
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the latter is just a special result of its inferences. More explicitly, the de Boor 

algorithm can be obtained by inserting the same knot repeatedly for a number 

of times. By inserting some proper new knots and adjusting their 

corresponding control points, one can obtain the desirc,d curve very 

conveniently. Another advantage of the knot insertion algorithm is that it 

combines the calculation (exact value) of B-splines with the approximation (by 

control polygons) of B-splines by means of a recursive subdivision algorithm. 

It will be shown in the later Chapters that the recursive subdivision algorithm 

for non-uniform B-spline curves can be constructed by the knot insertion 

technique. 

The algorithm is straight forward and simple. Since it deals with 

B-splines, the notations in Example 1.8 are used here. 

Now, suppose a new knot, y, Xl < Y < x l+1 is be be inserted into the 

original knot sequence (xJ, then the new knot sequence (Y i } becomes: 

( 1.18) Yi .- Y, for i 1+1 

Xi_I' for i > 1+2. 

Let (M.} denote the normalized B-spline basis over the new knot 
I.n 

sequence (y), then the spline curve given by (1.15) can also be expressed in 

terms of the new basis (M. }: I.n 

( 1.19) - ~. Q; M. (x) U , I.n 
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The new control points {QJ are given by the Boehm's knot insertion 

algorithm: 

( 1.20) 

where, c. is given by 
I 

1 for < l-n+l 

0·21 ) '-
Y-Y

i for l-n+2 < < C. 
I 

Yi+/l-Yi 

0 for > 1+1. 

Obviously, 0 < c. < 1. 
I 

Figure 1.9 shows the geometric structure of the algorithm for a cubic 

B-spline curve. 

P • Q. 1 1-1 ,-

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

Figure 1.9. 
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The algorithm has wide applications. It can be used to transfer the 

control points of a B-spline curve into its corresponding piecewise 

Bernstein-Bezier form by some comer cutting processes [56,60]. This problem 

often arises in curve and surface design and computations. Another 

application is that it can be used to prove the VD (Variation Diminishing) 

property and the shape preserving property of B-spline curves and many other 

important properties of B-spline curves and surfaces [77]. 

Example 1.10. The Oyn-Gregory-Levin Scheme (for curves) 

The DGL scheme is a class of uniform subdivision scheme, which is fully 

analysed in [50,51,85-90]. The scheme is a generalization of the Chaikin's 

and Catmull-Clark's algorithms. It can produce any uniform B-spline curves 

and some smooth interpolatory curves [48,121]. The main ideology of 

constructing this scheme is weighted local averaging or weighted moving 

averagzng. 

A special case of the scheme IS the 4-point interpolatory subdivision 

scheme. The scheme is defined by: 

( 1.22) 
rk+1 
1 2 ; 

k =j, 
I 

where, w is the tension parameter. 
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It is proved that if -1/2 < w < 1/2, the limit curve is continuous. If 0 < w 

< (y'5 - 1)/8, the scheme produces differentiable curves (with respect to the 

uniform parametrization). In addition, the scheme reproduces all parametric 

cubic polynomial curves when w = 1/16. For more details, the interested 

reader is referred to [48]. 

The subdivision process is shown in Figure 1.10. 

f k+l fk fk+l 
2 i +3 ; +2' 2 ; +4 

......... ,.,....-------
k k+l .......... 

fi+l' f 2i +2' .... 

ric fk+l 
J i+3' 2;+6 

Figure 1.10. 

Example 1.11. The Doo-Sabin Algorithm 

Inspired by the Carpenter's Technique and the Chaikin's algorithm, Doo 

and Sabin constructed a recursive subdivision algorithm for smoothing down a 

general polyhedron [44-46]. In fact, the algorithm is a tensor-product 
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generalization of the Chaikin's algorithm with special treatments for the 

so-called extraordinary points. For tensor-product type data, the scheme 

produces uniform bi-quadratic B-spline surface patches. More about the 

algorithm will be given in Chapter 4. 

Example 1.12. The Catmull-Clark's Algorithm (for Surfaces) 

AS observed in Example 1.4, Catmull and Clark [27] and Doo and Sabin 

[45] used the subdivision algorithm for bi-cubic B-spline patches. However, 

the main purpose of their papers was to consider generalizations to arbitrary 

networks. They observed that the algorithm could separate the extraordinary 

points by tensor-product type data on which smoother surfaces could be 

defined. Consequently, they modified the algorithm and hoped to get better 

results. The algorithm will be given in Chapter 4. For more details and 

mathematical analysis about the algorithm, see [1-3,27,127] 

Example 1.13. The 10-Point Interpolatory Subdivision Algorithm 

This scheme is an interpolatory RSA over arbitrary triangulations with 

three parameters. It is a generalization of the DGL's 4-point interpolatory 

scheme for surfaces [48]. In the uniform case, the three parameters work as 

three tension parameters along the three mesh directions. When they are all 

zeros, the refined control polygons are the same as the initial one; when they 

are chosen appropriately, the scheme reproduces any cubic parametric 
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polynomial surfaces. In general, the scheme is a linear combination of the 

above two cases. It is proved that it produces smooth surfaces provided that 

the parameters are chosen to satisfy certain constraints. The scheme will be 

discussed in detal in Chapter 6. 

Example 1.14. The Butterfly Scheme 

From the DGL's 4-point interpolatory subdivision scheme (1.22), a 

corresponding scheme for interpolatory surface generation is constructed over 

arbitrary triangular networks. The butterfly scheme, which is firstly introduced 

in [52], is a special case of the 10-point interpolatory scheme, when the 

parameters satisfy certain conditions. The scheme will be discussed in detail 

in Chapter 6. The main advantages of the butterfly scheme are smooth 

interpolatory, simplicity and shape control. The tension parameter w, which 

has very clear geometric explanation as in the curve case can be used to 

manipulate the shape of the surfaces. In the special case of w = -1/16, the 

scheme reproduces cubic parametric surfaces [52,69]. 

Example 1.15. The Dyn-Gregory-Levin Algorithm (for Surfaces) 

As the DGL scheme is a very general subdivision scheme for curves, it is 

natural to derive its corresponding subdivision scheme for surface generation. 

The scheme has a direct tensor-product generalization for surfaces over 
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uniform data. This will be described in Chapter 6. 

Example 1.16. The Uniform Bi-quartic B-Spline Algorithm 

The purpose of the construction of this scheme IS to develop the 

Doo-Sabin's the Catmull-Clark's algorithms in order to generate smooth 

surfaces over arbitrary networks. The scheme produces uniform bi-quartic 

B-spline surfaces over uniform data. For arbitrary networks, it is proved that 

the scheme also produces smooth surfaces if the local shape parameters are 

chosen properly. The details will be given in Chapter 5. 
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CHAPTER TWO 

SUBDIVISION ALGORITHMS FOR CURVES AND 

SURFACES-FORMULATIONS AND TECHNIQUES 

In this Chapter, some recursive subdivision algorithms for curve and 

surface generation are introduced and their underlying mathematical 

techniques are described. 

2.1. Introduction 

Recursive Subdivision Algorithms (RSA ) for curves and surfaces have 

received a good deal of research attention in recent years in the CAGD 

(Computer Aided Geometric Design) literature. As a result, many RSA have 

been developed for the generation of curves and surfaces. In some cases, due 

to different mathematical standpoints, several explanations may exist for the 

same algorithm. Consequently, different techniques are used to analyse them. 

-30-



CHAPTER TWO: RSA -FORMULATIONS AND TECHNIQUES 

In the papers by Dyn, Gregory -and Levin [50,51], the authors introduced, 

by using a constructive method, a general form of uniform subdivision 

algori thms (DGL scheme) which was called a Uniform Recursive Subdivision 

Algorithm. In their analysis, they used the diadic parametrization technique and 

the subdivision matrix (generator matrix) analysis to study the scheme, whereby 

the difference scheme and the divided dzfference scheme playa very important 

role. Recently, Cavaretta, Dyn, Levin and Micchelli used the so-called generating 

polynomial technique to analyse the uniform subdivision algori thms 

[28,29,54,89-91]. Although the ideas of the technique they used are the same 

as in the DGL's analysis, their notations are very nice which make the whole 

analysis of this type of algorithms very compact and neat. 

Micchelli and Prautzsch [85,86,88-91] took also another (different) view 

on uniform subdivision schemes. They observed that these algorithms are just 

refinement algorithms and each iteration of any of the algorithms can be 

viewed as a representation of the iimiting curve by a relatively refined basis. 

So they also introduced a general form of RSA and studied it together with the 

limiting curves in a systematic way. 

Although uniform subdivision algorithms constitute most of the RSA, 

there are still some non-uniform ones which are very important for curve and 

surface generation and also for shape design. Some examples of this class of 

RSA are the non-uniform corner cutting algorithms as described in [21,70,81] 

and some geometry based algorithms in [53,71]. 
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Using the adapted parametn'zation technique, we constructed and 

analysed a smooth non-uniform comer cutting algorithm [70]. We also 

derived a recursive subdivision scheme for non-uniform B-spline curves with 

simple knots. The details of the algorithms will be given in Chapter 3. 

Another type of non-uniform subdivision algorithms are studied by N. 

Dyn, D. Levin and D. Liu in [53] and M. J. Hejna in [71]. This class of 

algori thms consis ts of some geometry based algori thms which are 

complements of uniform subdivision algorithms. The authors analyse the 

algorithms together with limit curves by means of some special techniques. 

These techniques are different from any of the previous methods. 

For the purpose of convergence analyses, some mathematical notations 

are needed. It is assumed that all the RSA are local algorithms. So, without 

loss of generality, we suppose that the control polygons and the limit curves 

are defined on a finite interval [a, b], where, a < b. Thus, the uniform norm for 

curves and control polygons on this interval can be applied so that the norm 

(2.0) III(t)II:= max \I(t)\ 
a<t<b 

is assumed throughout the curve generating scheme analyses. Furthermore, a 

RSA is called a uniform convergent scheme if for any initial control polygon 

its refined control polygon sequence converges uniformly to a curve which is 

con tinuous with respect to a regular parametrization. 
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2.2. Unlfonn Subdivision Algorittun Analyses 

In this section, we present some methods used to analyse the uniform 

subdivision schemes. They are Dyn-Gregory-Levin's matrix analysis, 

Micchelli-Prautzsch's invariant analysis and the Cavaretta-Dahmen-Micchelli's 

regular subdivision analysis (Dyn-Levin-Micchelli's generating polynomial 

analysis). However, our method, the Differences and Cross-Difference of 

Directional Divided Differences Analysis, will be described in detail in 

Chapter 6. 

2.2.1. Dyn-Gregory-Levin's Matrix Analysis 

This uniform subdivision algorithm, or the binary subdivision scheme 

(BSS), was firstly introduced and analysed by Dyn, Gregory and Levin in 

[50,51]. The scheme is defined as follows. 

Let I E R!", i E Z, denote a sequence of control points in R!", N > 2, , 

where k is a non-negative integer. Then the DGL scheme, or a binary 

subdivision process, S(a, b), is defined by the mask 

(2.1 ) 

where, a and b are the coefficient vectors 
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(2.l a) 
a := (ao ' a l ' ... , am )' 

b := (bo ' bl ' ... , bm )' 

It is assumed that m > 0 and 

(2.2) la 1+ Ib I > o. m m 

In particular, we assume bo =1= 0 since if bo = 0 the eqations defining the 

subdivision process can be interchanged. 

Many uniform subdivision algorithms are encompassed by this scheme: 

the unifo.rm B-spline scheme [51,76], DGL's 4-point interpolatory scheme [48], 

uniform corner cutting algorithms and many other uniform subdivision 

algorithms [76,78]. 

To analyse the limit curves p the authors used the diadic parametrization, 

that is, the control point f~ is associated with the diadic parametric point 

(2.3) 

for all integer i and k. By doing so, the control polygon f(t), which is defined 
. 

as the piecewise linear curve connecting the points (j~), can then be treated as 

the parametric piecewise linear interpolant satisfying f(t~) = f~. Hence, f(t) 

is continuous. 

Notice that in an interval [t~, t~+l] at the k-th stage of the recursion, the 

limit curve is determined completely by the control point vector 
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and that the control point vectors f 2i.k+l and f 2i.k+1 at the k+lSt stage are 

determined by two linear transformations on f
iJc

, they introduced the square 

Generator Matrix A, of order M. M = n + 2, where 
1 

(2.5) 
2m-I, for a - 0 

m 

2m, for a =1= O. 
m 

In the case of am =1= 0, A is defined by 

ao a
l 

az ... a 0 ... 0 0 
m 

bo b
l 

bz ... b 0 . .. 0 0 
m 

0 ao a
l 

... a 0 0 0 
m-l 

(2.6) A '- 0 bo b
l 

b 0 0 0 .- ... 
m-l 

..................................................... 

0 0 0 ao a
l 

... a 0 
m 

0 0 0 bo b
l 

... b 0 
m 

In the case of am = 0, then, M = 2m +1, the generator matrix A is defined 

as the matrix (2.6) with the last row and column deleted. 

From the generator matrix A, they also introduced the Left and Right 

transformation (square) matrices Ao and Al ,both of order M-l. Ao is defined 

as the matrix A with the last row and column deleted, whilst Al is also 

defined as the matrix A with the first row and the last column deleted. Thus, 

from scheme (2.1), we can obtain 

(2.7) f 2i.k+1 - Ao fuc and f 2i+1.k+1 - Al f l.k 

Therefore, for any diadic po in t p defined by 
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(2.8) P 2: k 2-j 
- '=0 p. J- J 

the history of the recursion is given by 

(2.9) f i.k - A ... A f . 
Pk PI Po.O 

Furthermore, by studying the differences and the divided differences, 

they established the following analysis for the scheme together with its limit 

curves. 

Let l denote the difference t 1-1, then, it can be shown, provided 
I 1+ I 

the necessary condition (2.12) below holds, that the differences satisfy the 

Difference Scheme (we assume that the scheme produces continuous curves): 

(2.10) 

where, c. and d. are determined by (a.} and (b.}. More explicitly, 
I I I I 

(2.11 ) - ~'=oi (a. -b.) 
uJ- J J 

and d. - a. - c .. 
I I I 

Thus, the divided differences can be defined and its corresponding 

divided difference scheme can also be derived and studied. In much the same 

way, higher order difference schemes and divided difference schemes can also 

be defined, which leads to the higher order continuity analyses of the limit 

curves. 
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From the above discussion, it can be concluded that the limit curve of 

the scheme is characterized by the generator matrix A (Ao and At). By 

analysing A, they obtained the properties of the scheme and its limit curves. 

The following are the main results of their analyses. For more details, 

the interested reader is referred to [50]. We should also mention that 

throughout their analysis, the condition (2.12) is assumed. 

Proposition 2.1. A necessary condition for the scheme (2.1) on the 

diadic points to converge to a continuous (non-degenerate) limit curve on 

some interval is: 

(2.12) 

Proposition 2.2. The scheme (2.l) converges uniformly to a continuous 

curve (with respect to the diadic parametrization) if its difference scheme is a 

contraction scheme, that is, 

(2.13) Lim):-+oo maxi {\e~1} - o. 

Proposition 2.3. Scheme (2.1) converges uniformly to a differentiable 

curve f(t) if its divided difference polygon converges uniformly to d(t). 

Moreover 1'(t) = d(t). 
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Proposition 2.4 (Higher order continuity). The scheme (2.1) produces a 

en curve if its n-th order Divided Difference scheme is a (fJ scheme. 

2.2.2. Cavaretta-Dahmen-Micchelli's Regular Subdivision Analysis 

The second technique used to analyse the scheme (2.1) is the Generation 

Polynomial Method, introduced by Cavaretta, Dahmen and Micchelli [28,29]. 

The major advantage of this method is that it unifies the theories of all the 

uniform subdivision schemes (for both curves and surfaces) which can be 

written in a similar form as (2.1). This approach makes the dzfference and 

divided difference analysis much neater and simpler. The formulation of the 

method is described as follows. 

Instead of using (2.1) to describe the scheme, they use a Laurent 

Polynomial a(z) 

(2.14) a(z) := l::i 

to characterize the scheme. Thus, the scheme can be defined as a operator s" 

in the following manner 

(2.15) a. 2.X .• 
1- J J 

Explicitly, the method is just a change of notations when compared with (2.1) 

since (2.15) is equivalent to 
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(2.16) 
Y U = .,. + a2 X i_ l + aO Xi + a -2 XiH + .. . 
YUH = .,. + a3 X;_l + a l Xi + a_l Xi+l + .. . 

Therefore, for any scheme of the form (2.1), there is a unique Laurent 

Polynomial a(z) and vice versa. Further studies show that the properties of the 

scheme are fully characterized by the polynomial a(z) [28]. 

The following are some results described in [28,29]. 

Proposition 2.5. Condition (2.12) is equivalent to 

(2.17) a(l) - 2 and a(-I) o. 

Proposition 2.6. If there exists some positive integers k, n and a 

Laurent polynomial q(z) such that 

(2.18) 

and 

(2.19) II sn II 
q 

max {II S;xlI: IIxll < I} < I, 

then the scheme is a d scheme. 

Proposition 2.7 (penurbation technique). Let a(z) satisfy (2.18), (2.19) 

and 
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where, b(z) is some Laurent polynomial. Then there exists a w > 0 such that o 

the subdivision scheme corresponding to aw(Z) is a C' scheme for Iwl < wo. 

Proposition 2.8. Suppose 

(2.21 ) 

where, b(l) = 0 and bo * o. Then there exists a Wo > 0 such that for 0 < 

-w sgn(bo) < w 0' the scheme defined by aw(Z) is a C' scheme. 

Remark: The most important thing here is that the method can be 

applied to analyse uniform subdivision schemes for surfaces. The only 

difference is that the above notations should be replaced by multiple notations. 

2.2.3. Micchelli-Prautzsch's Invariant Analysis 

As early as in the forties, de Rahm studied a uniform subdivision scheme 

which he called a tn·section algorithm [10 I, I 02]. His original motivation was 

to find some functions which were solutions of certain functional equations. 

The Micchelli-PrautZ$ch analysis of subdivision schemes is just a 

generalization of de Rahm's method. However, the results they achieved are 

much more than that of de Rahm's. 

-40-



CHAPTER TWO: RSA FORMULATIONS AND TECHNIOUES 

By studying the de Casteljau's and Chaikin's algorithms from a different 

point of view, Micchelli and Praut~ch introduced a general technique to 

analyse the uniform subdivision scheme [85,86,88-91]. Their motivation was 

to find all the curves which could be uniformly subdivided. Since "Linear 

Subdivision is a Strictly Polynomial Phenomenon" [6 I ], the curves they sought 

could be called Generalized Polynomial CUlVes. 

Their main observation is the following. Suppose a curve P(t) is 

represented by some function basis (B.(t)}, i = 0, 1, , n and some 

corresponding control points, {Pi}' in a form 

(2.22) P(t) := "'.~ P. B.(t) LJ, __ v , , for 0 < t < 1 

and that the curve has the properties that it can be split into two parts. Each 

of them can also be expressed in the same form as (2.22) but with a refined 

basis. Furthermore, it is assumed that the new control points can be obtained 

from the old ones by some local weighted averaging process. More explicitly, 

the curve has the properties that there exists two matrices Ao and Al such 

that 

(2.23) pR = Ao P and pL = Al P, 

where, pR:= (~, ~, ... , ~ )t, pL:= (~. r.-, .... P;,>', P:= (Po' Pl' ... , P,.>' ' and 
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for 0 <t < 1/2 

(2.24) P(t) _ 

for 1/2 < t < 1. 

By repeating this process, one can obtain 

where, x:= Z:i= ~ xi 2-i and E:= ( 1. 1 •...• 1{ 

From the above discussion, it can be shown that the curve P(t) IS 

characterized by the functional equation 

(2.26) Y(x,P) = Lim~ v t A ... A P, for 0 < x <1 . 
... ~ xk Xl 

where, {xJ are the binary expansion coefficients of x. and v is any vector of 

dimension n whose components sum to unity. 

By studying the refinement equations (2.23), (2.26) and the subdivision 

matrices Ao and A1 ' the following results were obtained [85,86,88-91]. 

Proposition 2.9. Given two matrices Ao and A 1, then the compatibility 

condition for the matrices to define a continuous curve in the form (2.22) is 

(2.27) 
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where, v~ and v~ are the eigenvectors of Ao and Al corresponding to 

eigenvalue one. Furthermore, the matrices must be regular matrices. 

Proposition 2.10. Any polynomial curve can be produced by properly 

choosing subdivision matrices A and A • o 1 

Other properties of these curves such as continuity, differentiability and 

polynomial curve generations are fully studied in [85-91]. 

2.2.4. Cube-spline Algorithm Analysis 

In order to develop the univariate B-spline theory to cope with 

multivariate problems, the Cube-spline (Box-spline) has been intensively studied 

[11-13,16,18,20,28,40,85-91]. The core of the Cube-splines is its line-

averaging algorithm which is a generalization of the Lane-Riesenfeld's 

algorithm for multidime~sional networks. 

The Cube-splines are defined as follows. Let X := {Xl' X
2

' ••• , Xn) E ZS \ {OJ 

be a set of not necessarily distinct vectors, where n > s. For i = 1, 2, ... , S, we 

assume that x. = E., the i-th coordinate vector, and so <X> := span {x) = R'. 
I , 

Let x
k 

:= {Xl' X
2

' ••• , x
k

) for k = s, s+l, ... , n, so that xn = X. Then, for X E R', the 

Cube-spline is defined inductively by 

1, x E (0,1]'. the unit cube in R' 
(2.28) Jf(xIX,)-

0, otherwise: 
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and 

From this definition, one can derive the distributional property of 

M(x\X): 

(2.30) .J;. f(x)M(xlX)dx = t··· ~ f(<T ,x»dr 

where, T := (t l , t2 , ••• , tnt and f(t) is any continuous function. The notation 

<T, x> is the scalar product of T and x. This can be proved inductively 

(induction on k). 

From (2.30), we can obtain the Fourier Transform of the Cube-spline 

M(xlX) 

A straight forward calculation from this shows that 

(2.32) 

1\ 

M(2Y\X) 
2s~ __ 

1\ 

M(YIX) 

where, Z := (Zl' Z2' ••• , zs) and z := eiy, j = 1, 2, ... , s. It is assumed that ZCi IS 

defined by the multiple exponential role. The coefficient sequence {bal, where 

ba := ba(X), is called the mask of the subdivision algorithm. From (2.32), we 

have 
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from which it follows that 

(2.34) M(x/21X) = ~ ba M(x-alX). 
a E ZS 

From this refinement relation, we now can formulate the subdivision 

algorithm for Cube-spline curves and surfaces. Given a Cube-spline function 

(curve or surface): 

(2.35) f(x) = ~ ca M(x-aIX), 
a E ZS 

from (2.34), we can represent the surface as 

where 

(2.37) 

This equation defines a single iteration of the subdivision algorithm. It 

can also be shown that the subdivision algorithm is composed of certain line 

averages. Multiplying the equation 

(2.38) - 2-1I+s+1 n. k-l (~j + 1) 
1=1 
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by (.zXk + 1)/2, we obtain 

(2.39) 

Hence we have 

(2.40) 

Using this relation in (2.37), we obtain the recursion 

To find the initial values of the recursion, we note in the special case x, 

(2.42) L: ba(X,) za - nj=~ (zF.j + 1). 
a E Z' 

Thus 

(2.43) 
1, for a E extremes [ 0,1]', 

0, otherwise. 

Using (2.37) in this case, we find that 

-46-



CHAPTER TWO: RSA -FORMULATIONS AND TECHNIOUES 

This relation is called the expansion step (very similar to the 

Lane-Riesenjeld algorithm for univariate B-splines). The succeeding steps are 

the line averages given by (2.41). 

The convergence and smoothness analysis of the algorithm comes from 

the refinement property (2.34) and studies about the Cube-splines. It is 

proved that the algorithm converges to a piecewise polynomial surface at the 

rate O(2-k
) (exponential convergence). The interested reader is referred to 

[28,35,38,48,58]. 

2.3. Analyses for Non-unlform Subdivision Algorithms 

In this section we present some of the techniques used to analyse 

non-uniform subdivision schemes. Since non-uniform schemes are much more 

complicated than the uniform ones, successful analyses of them depend 

mainly on the special structures of the scheme. In fact, only a few 

non-uniform subdivision schemes have been studied so far. 

2.3.1. Adapted Parametrization Technique 

In order to complement Chaikin's algorithm and to investigate 

conditions on algorithms for the generation of smooth curves, especially 

non-uniform RSA for B-spline curves, some non-uniform corner cutting 

algorithms are introduced and analysed [21,70,71,80]. Unlike the diadic 
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parametrization as used in [50,51,85-91], a natural adapted parametn·zation is 

used instead to seek better results. This turns out to be a successful choice. 

Moreover, this adapted parametrization approach could also be used to 

construct and to analyse some other non-uniform subdivision algorithms. An 

immediate example is the subdivision scheme for non-uniform B-spline curves 

with simple knots, which is studied in detail in Chapter 3. 

The essence of this technique relies on the difference and divided 

dzf ference analysis of the scheme (with respect to the adapted parametn·zation) 

as described in [50,51]. The only difference, however, is the parametrization 

of the processes and the limit curves. It is also hoped that better results can 

be obtained if an appropriate parametrization is used. 

A more detailed description of this technique will be given in the next 

Chapter. However, in the remainder of this subsection, we shall describe 

briefly the non-uniform corner cutting scheme and some underlying ideas 

about the analysis. 

The non-uniform corner cutting scheme is given by 

(2.45) 
rk+l 
'2; 

rk+l 
'2; +1 

= (1- a~) I; + a~ 1;+1 

= b~ I; + (1- b~) 1;+1. 

It is assumed that the initial control points Lr:} and the parameter values (t~} 

are also given. By using (2.45), the control points Lt;} can be determined 

recursively. The parameter values (t~} associated with Lf;} are then defined 
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such that {t~} satisfy the subdivision scheme (2.45). More explicitly, the 

parameter is taken as a component of the control points. Thus, the parameter 

l satisfies the same recursion: i 

(2.46) 

We shall call this type of parametrization of the control polygons the Adapted 

Parametrization. 

Now we can define the divided difference scheme corresponding to the 

scherrle (2.45). The divided differences {d~} are defined as 

After some simple calculations, it can be shown that {d~} satisfy the 

recursion 

(2.48) 

where 

(2.49) 

The same parameter t is used to parametrize the control polygons, 

d\t), of the divided differences {d~}, that is 

-49-



CHAPTER TWO: RSA -FORMULATIONS AND TECHSIOL'ES 

(2.50) k 
d i' i E Z, k > O. 

From the above formulation, the following result is obtained in [70,81]. 

Prollosition 2.11. If the divided difference sequence {d\t)} converges to 

a continuous curve d(t), then scheme (2.45) produces a continuously 

differentiable curve 1(t) and 1'(t) = d(t). 

The scheme can also be generalized to produce any (non-uniform) 

B-spline curve with simple knots. This will be studied in detail in Chapter 3. 

2.3.2. Geometry-Based Algorithm Analyses 

Besides the above discussed uniform and non-uniform RSA for curve 

and surface generation, there are some other subdivision algorithms which can 

not be covered by the previous analyses. In [53], N. Dyn, D. Levin and D. Liu 

presented a geometrically constructed !. ~terpolatory non-linear subdivision 

algorithm for curve and surface generation. Another one is a complement of 

Chaikin's algorithm given by M. 1. Hejna [71] in his dissertation in which he 

used a geometry based algorithm to generate smooth curves. 

The main characteristics of this type of algorithms is that they depend 

on the local geometry, that is, the algorithms depend on the tangent lines and 

tangent planes and occasionally even the local convexity property of the 

control polygons. The analyses of such schemes are then based on these 
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special geometrical properties of the algorithms. In some cases, monotonicity 

or convexity preserving feature of the schemes dominates their convergence 

and smoothness analyses. For example, the algorithm described in [53] is a 

typical local geometry based, non-uniform, non-linear interpolatory 

subdivision algorithm. However, we shall not discuss these schemes and their 

analyses here. For more details, the interested reader is referred to the papers 

[53,71 ]. 
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A NON-UNIFORM CORNER CUTTING SCHEME AND 

THE SUBDIVISION ALGORITHM FOR B-SPLINE CURVES 

The non-uniform corner cutting scheme, which is a generalization of 

Chaikin's and Catmull-Clark's algorithms to generate smooth curves, is 

discussed in detail in this Chapter. Furthermore, by using the Adapted 

Parametrization technique, a recursive subdivision algorithm for non-uniform 

B-spline curves of order k with simple knots is formulated which provides an 

alternative to the de Boor algorithm and the Oslo algorithm for the 

computation of B-splines. 
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3. 1. A Non-unlform Comer Cutting Algorithm 

The convergence of a non-uniform corner cutting process is studied in 

this section. Using a parametrization different from the diadic parametrization 

employed by Dyn-Gregory-Levin [50,51] and Micchelli and Prautzsch [83-91], 

it is shown that the process is smooth. That is, it produces differentiable 

curves provided the proportions of the corner cuts are kept within appropriate 

constraints. This work is to appear in the CAGD Journal, Gregory-Qu [70]. 

3.1.1. Background 

The motivation of the investigation of the non-uniform corner cutting 

algorithm originally came from de Boor's paper [21]. This paper showed that 

cutting comers of a control polygon always works, in a sense that the limit 

curves are Lipschitz continuous. Although Lipschiz continuous curves are the 

best possible that one can achieve from de Boor's assumptions, from the 

application point of view they are not good enough for the design of smooth 

curves. 

To develop corner cutting techniques for simple, smooth curve 

generations, we proposed the investigation of a simple non-uniform corner 

cutting process. Before we analyse the scheme mathematically, it should be 

noted that the process could produce any smooth quadratic B-spline curve by 

an appropriate choice of the parameters. This suggested that a more general 

choice of the corner cutting parameters might also produce Cl curves. The 
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aim then was to look for some natural parametrization which might be more 

appropriate than the uniform diadic parametrization as used in [50,51,83-91] 

whereby it is used to prove the smoothness properties of the limit curves. 

In the following subsections, we develop the analysis of the non-uniform 

corner cutting process. And, as a consequence, a recursive subdivision 

algorithm for B-spline curves with simple knots will be derived in section 3.2. 

3.1.2. The Non-uniform Corner Cutting Scheme 

The scheme is defined as follows. Suppose I; E If, i = O. 1 •...• n+l are the 

initial control points (n > 1), which are associated with the parameter values 

t~ < t~ < t~ < ... < t~+l. (In fact, the results are true for curves in any Euclidean 

space, although only the planar case is discussed here). The scheme is defined 

by the following mask: for k = O. 1 •... ; i = 0, 1, ...• 2kn 

(3.1 ) 
j k+l 

2i 

f k+l 
2 i +1 

where, it is assumed that 

(3.2) k bk > 0, and 1 - ak 
- b~ > O. ai' i I I 

It is also assumed that the point sequence {I;}. which represents the 

control polygon at level k, is associated with the parameter values {t~}. The 

use of adapted parametrization means that parameter values satisfy the same 
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corner cutting process 

tk+1 (l-a~) t~ + k k - a i t HI 
(3.3) 

2i I I 

l+1 bk l + ( k k - I-b,) t i +1. 2i +1 I I 

The condition (3.2) guarantees that the parametric points always form a 

strictly monotonic increasing set l < tk < tk < ... < lk +1 since o 1 2 2 n 

(3.4) t~ < for all i, k. 

Denote by jk the control polygon with vertex 1;, i = 0, 1, ... , 2kn+1. Then 

(3.l) is a process whereby jk+l is created by corner cutting of the polygon /. 

In general, this process is non-uniform since the proportions a~ and b~ of the 

corner cuts depend both on i and k. 

From the above discussion, the control polygon jk can be identified 

unambiguously as the piecewise linear interpolant /(t), where, for t E 

[t~, l 1]' i = 0. 1 •...• 2
k
n, , 1+ 

t - t~ 
(3.5) ___ '_j~ + 

I 

Since the corner cutting process is a geometric invariant process and the 

parametrization is regular (see subsection 3.1.5), it suffices from now on to 

consider the scalar case, that is, {tl are scalars, see Figure 3.1. 
I 
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f~ . 
I • 

1k+l tk+1 t k 

.2i 2i+l i+l 

Figure 3.1. 

k 
t H2' 

fk+l 
2i+5 

" .G+3 ,. 
~ 

It follows from (3.4) that {t~} and {t~kn} form monotonic increasing and 

decreasing sequences bounded above and below by t~ and t~ respectively. 

Hence there exists 

(3.6) and 

Then the uniform norm 

(3.7) \I f \I := max \J(t) I 
a<t<b 

is used on the interval (a, b) throughout this Chapter. 
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3.1.3. Cutting Corner is Co 

Although our main purpose is to find conditions under which the corner 

cutting process has a smooth limit, the <! analysis given here lays the 

foundation of the smoothness analysis. The result is a very special case of de 

Boor's results in [21]. Here we present a different proof. 

Firstly, we show that the sequence {t} defines a Cauchy sequence in 

C[a,b]. In order to do this, the following lemma is required. 

Lemma 3.1. For all k, p > 0, 

where, A is the Forward Difference Operator: 

(3.9) 

Proof. Consider fk+p and fk on [ t~t1, t~t(i+l)]' From (3.4) we have 

(3.10) l < I 

and since the corner cutting process is a convex combination, we obtain 
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where, 

which gives 

M.-m. 
I I 

so the lemma follows. 

This Lemma suggests an analysis of the difference process which is 

obtained from (3.1) as 

(3.14) 

Let 

(3.15) 

Ark+! 
J 2; 

Afk+1 
LI 2; +1 

- (1 - a~ - b~) Af~ 
I I I 

Li 
. k a = m nun. a., 

k-+OO I I 

k Li . bk 
"t:' _ Lim _~v b J. = m nun... u - ,,~. ., S! k-+OO I I k-+OO I I 

Then we have: 
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Theorem 3.2. The function sequence (/(t)} converges uniformly to a 

continuous function f(t) in C[a, b] if 

(3.16) a, l2. > 0 and 1 - 7i - 1i > o. 

Proof. From the difference process (3.14), it follows that 

(3.17) 

where 

(3.18) Bk := max. (1 - a~ - b~, b~ + a~ l}' 
1 1 1 1 1+ 

Moreover, it can be shown easily that 

(3.19) 

for some constant B, independent of k, if (~.16) holds. Hence the differences 

are contracting and from Lemma 3.1 it follows that {fk(t)} defines a Cauchy 

sequence in C[a, b]. That completes the proof. 

Conditions (3.16) are sufficient for the generation of continuous curves by 

the scheme. They require that (a, ll) and (a, 1i) lie strictly within the region Do 

depicted in Figure 3.2. In the following subsection, the conditions under 

which the scheme produces smooth curves will be discussed. 
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Figure 3.2. 

3.1.4. Smooth Corner Cutting 

The divided dzfferences play an important role for the smoothness 

analysis of the scheme. We firstly give a result about the parametric points 

under the conditions derived in subsection 3.1.3. 

Lemma 3.3. The parametric points {t~} becomes dense in [at b] when k 

goes to infinity. 

Proof. Because the parametric points satisfy the same corner cutting 

process, it follows from the same arguments as in the proof of Theorem 3.2 

that 

(3.20) ma.x.IL1t~1 < B max.IL1t~I· 
I I - I I 

So we have 
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(3.21) Limk-+'J) maxi lL1t~1 - 0 

and this completes the p:::oof. 

Now we define the divided difference process of the scheme. The divided 

difference d~ is defined by 
1 

(3.22) d
k 

.- L1f~/L1l. 
ill 

From (3.3) and (3.14), it can be shown that the divided differences 

satisfy the following recursion (the divided difference scheme, or DD scheme 

for short) 

k+1 k at t~ d
2i - d

i
, 

(3.23) 
1 

k k k k at t~+1 d k + 1 = (1 - c.) d. + c. d. l' 
2 i+1 1 1 1 ,+ 

where, 

(here the same parametrization is used). 

The importance of analysing the divided difference scheme IS gIven by 

the following theorem: 
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Theorem 3.4. If the DDS produces a continuous function d(t) in CIa, bl 

with respect to the parametric points (l}, then the corner cutting scheme 
1 

produces a differentiable function f(t). Moreover, f(t) = d(t). 

Proof. Let H/t) denote the piecewise cubic Hermite interpolant such 

that 

f~ and H~(t~) - d~ for all and k. 

Then for t E [t~, t~ 1]' with x .- (t-l)/At~. x E [0, 1]. we can find explicitly: 
1 ,+ 1 1 

2 k k 2 )Ak k + x(l-x) At j d j + x (x-l £oJt j d Hi' 

(3.27) H~(t) - (_3x2 +2x+l) d~ + (3x
2 

-2x) d~+l . 

Let d\t) be the control polygon of the divided differences, that is, it is 

the piecewise linear interpolant to data (t~. d~). Then for t E [t~, t~+1]' we have 

(3.28) 
k k 

- (l-x)d j + x d j +1 

where, by hypothesis dk(t) -> d(t) uniformly on [a, bl as k goes to infinity. 

Subtracting (3.27) from (3.28) leads to 
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(3.29) II d
k

_ H
k
' II < (3/4) max, I d~ I - d~l· 

- 1 1+ 1 

Thus, by noticing that it is necessary that maxi Id~+l - d~1 -> 0 as k 

-> infinity (by hypothesis), we have 

that is, H~ --> d uniformly on [a, b]. 

Now we show that the sequence (H k} converges on el[a,b). Assume, 

without loss of generality (because the scheme is a local scheme), that to = 

t: = .G = o. Then for all k, j~ = j~ = j~ = 0 and d~ = d~ = o. So we have j(a) = 

d(a) = 0 and H/a) = o. Now we define a differentiable function 

(3.30) F(t) .- It d(s) ds, z.e., F'(t) - d(t) and F(a) o. 
a 

Then it can be easily proved that 

(3.31) IIF - Hkll < (b-a) II d- H~II· 

Hence H k converges uniformly to F in el[a,b). Finally, we prove that F(t) is 

just the limit of the sequence (t}. This is because 
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-> ° as k -> infinity, 

where, the Cauchy reminder for linear interpolation is used. The above 

relation means that the control polygon of the corner cutting scheme 

converges uniformly to a smooth function. This completes the proof. 

This Theorem indicates that the c1 convergence of the scheme can be 

proved if the CO convergence property of its divided dzfference scheme, with 

the same parametrization, can be proved. So we now investigate the Divided 

Dzfference scheme. 

Using the same approach as in Lemma 3.1, the following lemma can also 

be proved. 

Lemma 3.5. For all k, p > 0, 

(3.33) < 2 max.IM~I. 
-- I I 

To prove that the sequence (d k
} IS a Cauchy sequence in C[a, hi, the 

following lemma is required. 

Lemma 3.6. Let 
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(3.34 ) k r. 
I 

then there exist some constants rand R such that for all i and k, 

(3.35) ° < r < r~ < R < infinity 

if 

(3.36) a, Q > 0, 2a + 1) < 1 and a + 21) < 1. 

Proof. From the recursion relations of the difference scheme (3.14), we 

can obtain the following non-linear recursion relations for r~: 
I 

(3.37) 

Choosing any positive, finite numbers rand R such that (by hypothesis 

(3.36) this can be done): 

then it can be easily shown that condition (3.35) can be satisfied, which 

completes the proof. 
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From the above results, we can now prove the main result of the smooth 

corner cutting: 

Theorem 3.7 (C1 convergence). The divided difference scheme produces a 

cO limit if (3.36) holds. Hence, the corner cutting scheme produces a c 1 

curve. 

Proof. From the divided dzfference scheme (3.23) we obtain 

(3.40) 

where, 0 < c~ < 1, and is given by (3.24). Thus 
I 

(3.41) max. IM~+ll < ck max. lL1d~l, 
I I I I 

where 

(3.42) ck = max. {c~, 1- c~} 
I I I 

and hence 

(3.43) 

Condition (3.43) is not strong enough for our purposes (to prove 

max.{lM~1} -> 0) and we wish to show a stronger contraction condition 
I I 
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(3.4 4 ) 0 < ek < e < 1 

for some constant e independent of k. From (3.24), we have 

(3.45) c
k 

= (1 + 1/lr~-1 1- c~ - (1 + l rl 
i I I I , 

where 

(3.46) k k k a, 1 r./b ,. 
1+ I I 

By Lemma 3.6 and hypothesis (3.36), it can be concluded that there exist 

two positive finite numbers £ and s such that o<£<l<s< 
I -

infinity for all i and k. For example, we can chose 

(3 46 ) S = Rill. . a £ - OJ, 

Hence (3.44) follows for some positive constant e, e < 1. 

From Lemma 3.5, it now follows that the sequence {d\t)} is a Cauchy 

sequence in era, b), which completes the proof. 

Note that condition (3.36) for e1 convergence requires (a, Q) and (a, 1i) 

to lie strictly within the region D1 depicted in Figure 3.3. 
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Figure 3.3. 

In particular, (0,0) < (a, 12) < Ca, 1i) < (1/3, 1/3) is a sufficient condition for 

a c1 limit. If condition (3.36) is violated, then the convergence to a c1 limit is 

no longer guaranteed. For example, with a~ = ao' b~ = bo' for all i and k, then 

it can be shown that 

will not converge to zero for general data if 2ao + bo > 1. This violates the 

necessary condition for c 1 convergence. Similarly, ao + 2bo > 1 is not allowable. 

Remark: A similar result to Theorem 3.7 is also obtained in [81]. 

3.1.5. The Parametrization is Regular 

It has been shown that the corner cutting process produces Cl curves 

under condition (3.36), with respect to the adapted parametrization which itself 

is defined by the corner cutting process. It is necessary to prove that this kind 
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of parametrization is regular so that the generated curves are non-singular 

curves. The following theorem shows that the parametrization is regular. 

Theorem 3.8. In the case of corner cutting in It''', N > 1, the c1 limit 

curve f(t) in Theorem 3.7 is regular, that is, 1'(t) = d(t) *" 0 for all tEla, b), 

except for the singular case, where, for some i, the initial control points 

satisfy 

(I) f o. JO 
I - ;+1 

or 

(II) - (I-x) f~ + x J? for some x > o. 
I 1-1 

Proof. Let 

(3.48) 1 :={d\t) E R!': tE [a,b]} 
k 

be the image set of dk(t). Then from the previous arguments (because the 

process of the DD scheme is a convex combination), we have 

(3.49) 1 E 1k E... E 10 for all k. 
k+l . 

Thus d(t) = 0 implies that dO(t) = 0 for some tEla, b) and this can only 

occur if (i) d~ = 0 or (ii) 
I 

for some i and x > o. These 
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are just the conditions given by (l) and (II). 

Remark. It can be proved that the limit curve is regular and is at least 

en with respect to its adapted parametn"zation if it is en with respect to the 

diadic parametrization provided that the initial parametric values (t~} are , 

chosen appropriately, that is, t~ < t~+1 for all i. 

3.1.6. Graphic Examples 

We present here four (closed) curves produced by the scheme from the 

same initial data indicated by 6.. by using different parameters. Figure 3.4a , 

is the Chaikin's algorithm, where a~ = 1/ 4. b~ = 1/4. which is just a uniform 

B-spline curve. Figure 3.4b is a smooth asymmetric curve, where a~ = 1/ 9. b~ 

= 2/9. The curve in Figure 3.4c is continuous but not smooth since the 

parameter values a~ = 5/ 12. b~ = 5/12 lie outside the c 1 convergence region 

and violate the necessary condition for c1 curves. Figure 3.4d is a smooth 

curve produced by choosing the parameters randomly within [1/9' 2/9]' which 

is in the c1 convergence range. 
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a~ = 1/ 4. b~ = 1/4' 
I I 

Figure 3Aa. Figure 3 Ab. 

Figure 3 Ac. Figure 3Ad. 
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3.1.7. A Remark 

Before going to the next section to discuss the subdivision algorithm for 

non-uniform B-sp1ine curves, we first give an interesting observation from the 

geometric structure of non-uniform corner cutting scheme. 

From the construction of algorithms for piecewise quadratic polynomial 

curves in [26,41,115], a question may arise: under what conditions does the 

above non-uniform corner cutting algorithm produce a (non-uniform) 

quadratic B-spline curve? 

The question IS answered as follows (a proof will be given In the next 

section). 

Given any strictly increasing sequence (x~} (which is the knot sequence 

of the B-spline curve to be generated), where x~ < X~+l for all i, and some 

parameters (s~} where 0 < £ < s~ < s < 1 for all i, k and some 

constants £ and s. Then scheme (3.1) produces a quadratic B-sp1ine curve, 

with knots {x~} and control points {.G}. if a~ and 

(3.50) 

where 

(3.51) 

k k k k /k k) 
a j - Sj_I(X j - Xj_l) (X j +! - X j _ l 

b~ - (1 - s~)(X~+1 -x~)/(x~+1 - X~_l)' 

k = X. 
I 
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Remark: If we chose x~ = i and x~ = 1/2 for all i and k, then (3.50) 

• k k . 
gIves a i = b i = 1/4 for all I and k. Thus scheme (3.1) becomes the 

Chaikin's algorithm. 

3.2. The recursive subdivision algorithm for Non-unlform 

B-spllne Curves 

In this section we discuss a generalization of scheme (3.1) to find a 

recursive subdivision algorithm for non-uniform B-spline curves. Here, again, 

the parametrization of the control polygons is the crux of the analysis. 

3.2.1. Motivation and Techniques 

Although Chaikin's and Catmull-Clark's algorithms (for curves) have 

been used for a long time, it seems that no similar recursive subdivision 

algorithm for non-uniform B-spline curve r has yet been developed, especially 

for cubic and quartic B-spline curves which are commonly used. From the 

above non-uniform corner cutting algorithm and the structures of parabolic 

(or piecewise parabolic) curves, we know that any quadratic B-spline curve 

can be generated by the non-uniform corner cutting scheme with parameters 

given by (3.50) and (3.51). Then, one may ask, can a cubic (or even any) 

B-spline curve be generated by a scheme similar to (3.l)? 

By analysing the non-uniform corner cutting scheme, we derive the 

-73-



CHAPTER THREE: A SMOOTH CORNER CUTTING SCHEME AND THE RSA FOR B SPL/SE CURVES 

non-uniform subdivision algorithm for B-spline curves with simple knots. 

The most important tool for the construction of the algorithm is still the 

adapted parametrization as used in our previous analysis. The ideas come 

from integrating the non-uniform corner cutting algorithm to obtain a smoother 

curve generating algorithm. Because this integrating technique works in the 

uniform subdivision case (see [51] for details), it is hoped that it should also 

work in the non-uniform case. Hence, the problem becomes how to integrate 

a non-uniform RSA. The main difficulty here is how to establish the relations 

of the parametrization of the scheme and the parametrizations of its related 

schemes such as its integrated and divided dzfference schemes. 

At first, one may think that this difficulty can be solved by using the 

same parametrization as in the case discussed in the previous section. 

However, it turned out to be too difficult to deal with for higher order 

schemes. Another choice, one may think, is to treat the scheme and its 

divided difference scheme separately as two independent schemes. In this 

case, it is hoped that the scheme might produce curvature continuous curves 

if, (i) the scheme with its adapted parametrization produces smooth curves 

and (ii) the divide difference scheme generates smooth curves with its own 

adapted parametrization. This seems at first quite tempting but, unfortunately, 

it can be proved not to work by a simple counter-example. This is because the 

divided difference scheme and the second order divided dzfference scheme are 

interrelated and they should not be treated separately. So some other 

relatively simple and effective techniques should be introduced. 
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The difficulty can be overcome when it is considered from another point 

of view. Our success of the construction of the algorithm is based on the well 

known result-the Greville's identity for B-splines. The process will be shown 

by an example discussed next. 

3.2.2. A Corner Cutting Scheme for Quadratic B-spline curves 

Now we construct the RSA for smooth quadratic B-spline curves. The 

subdivision scheme for higher order B-spline curves with simple knots can be 

cons tructed in the same way .. Suppose the scheme (3.1) produces a smooth 

quadratic B-spline curve with knots (x~} and control points {f~} associated 
I I 

with the parametric points (t~} at level k, where the knot sequence and the 
I 

parametric point sequence are strictly increasing and (x~} E (x~+l} for all k. 

Because the scheme is a continuous refinement of the control polygons, like 

the Chaikin's algorithm, this assumption is reasonable. Then, Greville's 

identity [19] suggests that the knots (x~} and the parametric points {r~} are 

in terrelated by 

(3.52) t~ = (x~ + x~) /2 for all i, k. 
I 1-1 I 

So, if a scheme in form (3.1) is constructed such that (3.52) is always 

satisfied, then the scheme should produce the quadratic B-spline curve with 

knots {x~} and de Boor points Cr:J because of the uniqueness of B-spline 

curves. 
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Now we construct the required scheme. Firstly, by 

assumption, the scheme for the knots {x~} must be in the form 
t 

k+1 x~ x
2i -

(3.53) 
t 

k+1 (1 k) k k k 
X 2i + 1 - - s, x. + s. X. 1 

t t t t+ 

where 

(3.54) 0 < ~ < s~ < S < 1, for all i, k. 

From the relation (3.52) and (3.53), the recursive relations for the 

parametric points {t~} can easily be obtained as 
t 

(3.55) 

where, 

(3.56) 
ak k (k k / ( k k) 

t
· S. 1 X. -x. 1) x. 1 - x, 1 t- t t- t+ t-

Thus, from the above discussion, we can conclude that scheme (3.1) 

produces a quadratic B-spline curve with control points CG} and knots {x~} if 

the shape parameters a~ and b~ are chosen to satisfy (3.53), (3.54) and (3.56) 

(because the adapted parametn'zation is used). 

A simple mathematical explanation of this result IS like this. From 
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Theorem 3.4, and the fact that the divided difference scheme (3.23) converges 

to the piecewise linear curve (with respect to the knot poin t {X~} , 

parametrization) which is the initial divided difference control polygon with 

both ends being cut, the scheme converges to a piecewise quadratic curve 

with broken points tx~} since t~ and x~ are very close (3.52). That is, the 

limit curve is the required B-spline curve. A systematic proof of the result will 

be given in subsection 3.2.4. 

For higher order B-spline curves, the subdivision scheme can be derived 

in a similar way which will be discussed in the next subsections. The idea is 

the same but the calculations of the corresponding coefficients are more 

complicated. We will also use the knot insertion technique to construct the 

subdivision algorithm for B-spline curves with simple knots. 

3.2.3. Recursive Subdivision Algorithms for Cubic and Quartic B-spline 

Curves 

From the above results and the Catmull-Clark's algorithm for uniform 

cubic B-spline curves, it is expected that a similar non-uniform recursive 

subdivision algorithm could generate non-uniform cubic B-spline curves. Now 

we construct the scheme. 

Firstly, we assume that the scheme is in the form 

(3.57) 
1.+1 

2 j +1 

= A~ I; + (l-A~) 1;+1 

= ~ I; + (1- ~ -C~)f~+l + c~ 1;+2 

I,+l 
2 i 
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and it produces a cubic B-spline curve with control points tt} and knots {x~}, , , 

where, x~ < X~+1 for all i and k. Then, from the discussion in the previous 

section, the parametric points (adapted parametrization) {t~} should satisfy the , 

GreviCe's identity at each level. That is, 

(3.58) t~ = (x~_2 + X~_1 + x~)/ 3 for all i, k 

where, {x~} are determined by (5.53). Furthermore, the divided difference 

scheme of scheme (3.57) given by 

(3.59) 
k k k k = (1 - a i)d i + aid i +1 

k k ( bk ) dk = b i d i + 1 - i i+1 

where 

(3.60) 
a~ - A~ Lit~+1/[(A~ -~)Lit~ + C~ Lit~+1] 

b~ - B~ At~ /[B~ Lit~ + (l-A~+1- C~)Lit~+1] 

should generate a quadratic B-spline with the same knots {x~}. More , 

precisely, the coefficients in (3.59) should satisfy the quadratic B-spline 

scheme constraints 

(3.61 ) u~ = (x~ + x~)/ 2 for all i, k , ,-1 , 

where, {u~} are the adapted parametric points of scheme (3.59). , 

Not surprisingly, the under determined linear systems (two constraints 
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(3.58) and (3.61) and three variables, the coefficients: A~, B~ and c~) has a 

unique solution 

(3.62) 

Thus, from the above discussion, we can conclude: 

Theorem 3.9. The non-uniform scheme (3.57) produces a cubic B-spline 

curve with given knots {x~} and control points {t} if the coefficients A~, It , , I , 

and c~ are chosen by (3.62) and the refined knot sequence (x~} is given by 

(3.53) satisfying (3.54). 

Remark: If the initial knots are equally spaced and the subdivision 

parameter s~ = 1/2 for all i and k, then we have A~ = 1/2, and B~ = c~ = 1/8, 

and the scheme (3.57) becomes the RSA for uniform cubic B-spline curves 

(Catmull-Clark's Algorithm). 

Similarly, we can obtain the RSA for quartic B-spline curves: 

Theorem 3.10. The non-uniform scheme 

(3.63) 
rk+l 
J 2; 

f k+l 
2;+1 

- A~ I; + (l-A~-~)I;+l + ~ 1;+2 

- Y~ I; + (l-Y~-z~)f;+1 + z~ 1;+2 
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produces a quartic B-spline curve with knots {x~} and control points Cf;} if 

the coefficients Ak
,., B\ y~ and c~ satisfy " , 

( k k+l )( k k+l 

Ak 
Xi+2-x2i_l Xi+2- X 2iH) 

-, 
( k k)( k k 

X i+2-X i-2 x t+2-X i-I) 

(k+l k)( k+l k 

B~ 
X2i_l-Xi_l X2i + 1- Xi_I) 

-, 
( k k k k 

(3.64) 
Xi+2-X i_l)(Xi+3-X i-I) 

(Xk+1 k+l )( k k+l 

yk 
2i+3 -X2i + 1 Xi+2 -X2i + 1) 

-i 
( k k (k k 
Xi+2 -Xi _ 2) Xi+3 -Xi_I) 

( k+ 1 k)( k+ 1 k 

z~ 
X2i+l-Xi_l X2i +3 -Xi_I) 

-, 
( k k)( k k 

X i+2 -X i-I X 1+3 -X i-I)· 

Here the refined knot sequence {X~} is given by (3.53) satisfying (3.54). , 

Remark: If the initial knots are equally spaced and the subdivision 

parameter s~ = 1/2 for all i, k, then we have A~ = z~ = 5/16, and B~ = y~ , , 

= 1/16, and the scheme (3.63) becomes the RSA for uniform quartic B-spline 

curves (Example 1.5 in section 1.2). 

The above techniques can also be used to produce B-spline curves of any 

order with simple knots. The details will be given in subsection 3.2.5. 
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3.2.4. Theoretical Proof of these Results 

In this subsection, we give the proofs of the above results, Theorem 3.9 

and Theorem 3.10. 

It should be pointed out that from the construction of B-sp1ine curves and 

Boehm's knot insertion algorithm (or the Oslo algorithm) for such curves, 

there are non-uniform recursive subdivision algorithms, expressed in forms 

(3.1), (3.57) and (3.63), which are used in the generation of B-spline curves of 

any order [14,33,891 Here the subdivision process is explained as an insertion 

of a new knot between every two adjacent knots. From the uniqueness of 

B-splines, such algorithms are unique in some sense. 

The scheme for quadratic B-sp1ine curves can be easily proved by many 

techniques. Consequently, only scheme (3.57), that is, the scheme for cubic 

B-spline curves, is proved here. -Scheme (3.63) can be proved in much the 

same way. 

Suppose {B~ (x)} are the normalized cubic B-spline basis functions with 
1.4 

knots {x~} for all k, where the knots are defined by (3.53) and (3.54). Here, , 

the subscript 4 is the order of the spline curve. Then, by definition, we have 

(3.65) 

"'. 4 b~. 4 ~2~ 1 . 4{ x) U,=<) LJ. , +J. 
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- 2:~ b~ '4 Bk+l (X) 
',J. 2i+i.4 

where, <~, X~+l' ••• , X~+4>t is the divided difference operator with respect to 

variable t and b~.i.4 depends only on the knots {X~+l}. These {b~J.4} will be 

given explicitly later. Hence, for any twice continuously differentiable cubic 

B-spline curve with knots {x~}, we have , 

(3.66) 

where, {,G+l} are given by the following formulae 

(3.67) f~:l .- f~_2 b~_2.4.4 + ~-1 b~_1.2.4 + ~ b~.O.4 

(3.68) 

Relations (3.67) and (3.68) define a linear non-uniform subdivision 

scheme since these coefficients (b~J) (called Discrete B-spline in [33]) varies 

with i, j and k and are determined by the knot sequence. By construction we 

know that the scheme just refines the control points (de Boor points) of the 

B-spline curve with knots {x~} and control points {.t;J. Hence, in order to 

prove Theorem 3.9, we only need to prove that the scheme given by (3.67) 

and (3.68) is the same as that given by (3.57). 
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From the recurrence relations of B-splines, it can be shown that these 

coefficients (b~.j) are defined to be some ratios of the knot intervals (see 

subsection 3.2.5), 

(3.69) 

bl.: - ( 1.:+ 1 1.:). I( I.: I.:)} k 
i.O.4 - X 2i +5 -X i+2 '/ xi+4 - Xi+2 (1 - b;.3.4)· 

Therefore, the two schemes are the same except that the notations are 

different. However, from the schematic point of view, the shift of indices is 

not important and it is obvious that the two schemes produce the same curve. 

This completes the proof of the theorem. 

3.2.5. The Recursive Subdivision Algorithm for 8-spline Curves 

of Order n with Simple Knots 

In this subsection, we formulate the general subdivision scheme for 

B-spline curves of order n (n > 1) with simple knots. 

Let (Bk (x)J denote the normalized B-spline basis of order n with knots 
i.n 

(3.70) 

(B"'+l(X)J the normalized B-spline basis of order n with 
l • n 

k 
- X. 

I 
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and 

(3.71) 0 < ~ < ~ < s < 1 

for some constants ~ and s for all i, k • Then, from the definition of the 

B-spline basis [23], we have, as in (3.65), for all n> 1, 

(3.72) 

where, {b~.j.) are determined by the knots fx~+1, m - 2i, 2i+1, ... , 2i+2n} only. 

Now, suppose a B-spline curve P(x) is given by 

(3.73) P(x) .- ". P<. B~ (x). u, , '.n 

Then, by using the same arguments as in subsection 3.2.4, the following 

can be obtained: 

(3.74) P(x) _ ". P<. B~ (x) u, , '.n 

where 
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(3.75) 

~~1 := I:jJ n/2) b~-J.2j.n ~_j 

~+1 
.l"'2i+l 

" [(n-l}/2) bl pi 
6j=O l-j.2}+1.n i-j" 

It is obvious that the above relations defines a non-uniform subdivision 

scheme for B-spline curves with simple knots. Moreover, the B-spline 

relation coefficients {b~. } are just the weights of the subdivision scheme. 
l.J.n 

Now, we derive the recurrence relations {b~.} on n, the order of the 
1.J.n 

spline~. For simplicity, it is assumed that 

(3.76) ble _ 0 when j < 0 or j > n. 
i.J.n 

When n - 1 and 2, it can easily be shown that 

(3.77) 

and 

ble - (k+1 _ k+l)/(Xle _ xk) 
i.O.2 X2i +l X 2i i+1 i 

(3.78) b/c - 1 
i.1.2 

b
k k+1 _ k+1 )/(x/c _ Xl ). - (X2i+4 X 2i +3 i+2 ;+1 i.2.2 

For n > 3, we have, from (3.72), 

(3.79) d(B~ (x))/ dx 
I.n - L:j=~ 
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Substituting the above derivative terms by the B-spline formula 

(3.80) 

and then replacing the terms B~.n_l(x) by (3.72) for n-l, by rearranging the 

appropriate terms, we can obtain 

(3.81 ) 2:/=~ b~.I.n_l B~~ !/.n-l (x) 

Xk - x~ 
i+n-l I 

2:/~ b~+l./.n-l B~~!/+2.n_l(x) 
k k 

xi+n - Xi+l 

_ ~ n bk { 
Uj=O i.l.n k+l k+l 

x 2i +J+n-l - X2i +j 

Bk+l (x) 
2 i +J+1.n-l }. 

x k+1 _ Xk+l 
2i+J+n 2i+l+l 

Because the basis {B~~!_l(X)} are linearly independent for all x E R, equality 

(3.81) can only be true if and only if the coefficients of B~~!_I(X), i E Z, are 

the same in both sides. This gives the following recurrence relations (n > 3): 

(3.82) b~.I.n - b~j_1.n + 
X k+1 _ X k+1 

2i+l+n-l 2i+1 bk 
k+ 1 k+1 i j.n-l 

X2i +2n- 2 - X2 ; 

+ 
Xk+l _ Xk+l 

2i+l+n-l 2;+1 k 
Xk+1 k+l b i+1./-2.n-l" 

2 ; +2n - X 2 ; +2 

From (3.77), (3.78), (3.82) and the assumption (3.76), all the weights 

{b~. } can be obtained. A special case of (3.82) is the uniform case whereby 
, .J.tI 

all the knots are equally spaced. Then this recurrence relation becomes 

(3.83) 
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This linear difference equation, together with the initial condition (3.77), 

(3.78) and convention (3.76), has a unique solution: 

(3.84) 
(n-l)! 

(the binomial coefficients). 
j!(n-j)! 

This result is the same as the line averagzng algorithm for uniform 

B-splines described by Lane-Riesenfeld in [761 

3.2.6. Remarks 

1. The quadratic B-spline generating non-uniform corner cutting scheme 

can be proved by many methods. A simple geometric proof comes from the 

properties of parabolic curves. 

2. The subdivision scheme for B-spline curves is just a refinement 

scheme. They can be regarded as a generalized Boehm's knot insertion 

algorithm (simultaneous knot insertion). 

3. The c· condition (3.36), which is obtained in our analysis, is just a 

sufficient condition for the scheme to produce smooth curves. It can be shown 

that the necessary and sufficient condition for the scheme to produce smooth 

curves is 
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(3.85) 

4. From the perturbation point of view, more complicated smooth 

(non-polynomial spline) curves can be generated by these schemes when their 

coefficien ts are slightly perturbed [54]. 

5. The subdivision scheme can easily be generalized to surfaces. Also, 

any tensor-product B-spline (with simple knots) surface can be computed by a 

corresponding subdivision algorithm (uniform or non-uniform algorithm). 

6. An important application of these algorithms is that, due to their 

flexibility, they are very useful for interactive design. For instance, for the 

same control polygon, different curves or surfaces can be produced if different 

knots are chosen. Also, by adjusting some appropriate control points, the 

curves and surfaces can be con trolled easily . 

7. The non-uniform scheme is a special case of the Oslo algorithm for 

B-splines [33]. Hence, if the initial knots are equally spaced and the new 

knots are spread uniformly, then the scheme degenerates to the 

Lane-Riesenfeld's line average algorithm [76]. 

3.3. Conclusions 

A simple non-uniform corner cutting scheme IS investigated and the 
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sufficient conditions for smooth curve generating schemes are given. By using 

the adapted parametrization, rather than the uniform parametrization used in 

[50,85], the curves obtained are smoother than would be expected by the 

analysis in [21] in the case of simple corner cutting case. 

Based on the analysis of the non-uniform corner cutting scheme (3.1) and 

the adapted parametrization, the non-uniform recursive subdivision algorithms 

for B-spline curves of any order are derived. 

The key to the success of these studies is the Greville's identity for 

B-spline functions relating the non-uniform parametrization and the 

parametrization of their divided differences. 

Other relatively simple proofs of the results can also be obtained by using 

either the curve refinement techniques or the Boehm's knot insertion ideas. 
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CHAPTER FOUR 

RECURSIVE SUBDIVISION ALGORITHMS FOR 

SURFACES: AN INTRODUCTION 

In this Chapter, some of the curren tly used recurslve subdivision 

algori thms for the generation of surfaces are briefly described. They can 

broadly be classified into three types: (i) tensor-product type algorithms, 

which are generalizations of the curve genertating DGL schemes; (ii) 

subdivision algorithms based on uniform triangular control polyhedrons and 

(iii) non-uniform subdivision algorithms, for example, the constructive 

algorithm based on the local geometry of the control polyhedrons derived 

by N. Dyn, D. Levin and D. Liu. 
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4.0. Notation 

In order to facilitate our description on the subdivision algorithms, the 

following notations are introduced. They will be used throughout the rest of 

the thesis. 

P;.j: control points at level k, and i, j, k > 0; 

pk: a vector whose components are part of {p~ .}; 
I.J 

A: the local subdivision matrix at an extraordinary point; 

N: integer, the indicator of the extraordinary point, N > 3, N *' 4; 

{ail: local shape control parameters; 

{a , b , c , d }: weighting coefficients of algorithms; m.n m.n m.n m.n 

LB2 , LB3 , LB4: Linear operators for bi-quadratic, bi-cubic and bi-quartic 

B-spline algorithms respectively. 

4.1. Recursive Subdivision Algorithms for Tensor-product 

B-spllne Patches 

Since any uniform B-spline curve can be generated by a uniform recursive 

subdivision algorithm [51,76,91], its tensor-product counterparts can also be 

generated. For example, Doo-Sabin's algorithm generates uniform bi-quadratic 

B-spline surfaces over uniform data, Catmull-Clark's algorithm generates 

uniform bi-cubic B-spline surfaces over uniform data. In this section, we 

presen t a summary of this type of algorithms. 
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4.1.1. The Doo-Sabin's Algorithm 

The Doo-Sabin's algorithm over uniform data (tensor-product-type data) is 

the generalization of Chaikin's algon'thm for surfaces [46]. The algorithm is 

defined by the following refinement equations 

pk+l (9/16)P~ , + (1/16)P~+1.i+l + (3/ 16)~.j+l + (3/ 16)~+l.j 2' 2' -'. ) '.} 

pk+l (3/16)P~ . + (3/ 16)P~+1.i+l + (9/16)P~.i+l + (1/ 16)P~+1.j 2 i .2i+l 
(4.1 ) 

l,J 

pk+l (3/16)P~ , + (3/ 16)P~+1.j+l + (1/16)~.j+l + (9/16)P~+1.j 2 i +1.2j -
I.) 

pk+l (1/16)P~ . + (9/16)~+l.j+l + (3/16)P~.j+l + (3/16) P~+l,j 2 i +1.2j+l -
l,J 

where, {p~ ,} is the control net (control polyhedron) at the k-th lever and {p~+l,} 
l,J I • J 

the control net at the k+lst level, that is, the refined control net. 

It is obvious that the weights of the algorithm {9/16. 3/16. 3/16. 1/16} are 

just the tensor products of the weightings of the Chaikin's algorithm {3/4. 1/4}' 

In fact, this is true for any uniform tensor-product type subdivision scheme. 

The above algorithm is characterized by the linear operator LB2: Jil.2 - > R 

defined by 

(4.2) Y '-.-

The most important feature of Doo-Sabin's algorithm is the technique 

used to treat non-uniform data. The technique divides the data into uniform 
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data and non-uniform data and then isolates the non-uniform data by some 

locally uniform data on which the uniform scheme can be applied. For 

non-uniform data, some special local algorithms are introduced so that each 

group of the non-uniform data converges to the so-called Extraordinary Point 

(E-point). We should emphasize here that the number of E-points may be 

increased at the first subdivision but remains unchanged after that. 

Since the uniform scheme is applied at ordinary points, the surface, in 

the limit, is a bi-quadratic B-spline patch. Thus, the surface is smooth at 

every point except for a fixed number of the so-called extraordinary points. To 

analyse the properties of the limit surfaces, it therefore suffices to analyse 

them only at these extraordinary points. 
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Figure 4.1. 
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Figure 4.1 shows the Doo-Sabin's algorithm near some non-uniform 

data (a 5-sided face) which is isolated by uniform data. 

On applying the algorithm, a smaller N-sided face is produced. The new 

vertices of the N-sided face are obtained by the formula: 

where, the wegh tings {a) are given by 

(4.3a) ai := [3 + 2 cos (2Jl i/N)l/4N' i = 0,1,2, ... , N-l. 

Other points {p~}, j = 1, 2, ... , N-l, can be calculated symmetrically. Some 
J 

alternatives to this formula is also discussed in [46]. 

The following theorem states the main result about the Doo-Sabin's 

algorithm [33]. 

Theorem 4.1. The surface produced by the Doo-Sabin's algorithm has the 

following properties: (i) The surface is c1 at any regular point and (ii) The 

surface has a unique tangent plane at any E-point. That is, for general data, 

the limit surfaces are smooth. 
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4.1.2. The Catmull-Clark's Algorithm 

In 1 978, Catmull and Clark developed a subdivision algorithm for the 

generation of uniform bi-cubic B-spline surfaces in [27]. Initially, they hoped 

that the algorithm may produce better results than that of the Doo-Sabin's 

algorithm. In fact, it turned out that the algorithm could not, in general, 

produce curvature continuous surfaces even when some optimized parameters 

are used [1,2,3,116]. However, the generated surfaces behave quite well since 

they are c2 everywhere except the E-points. 

The algorithm over uniform data IS characterized by the following 

refinement equations 

(4.4) 

Pk+1 
2 ' 2' I, J 

Pk+l 
2 i .2j+l 

P~t~1.2j+1 = (1/64)P~.j + (36/64)P~+1.j+l + (6/64)P~.j+1 + (6/64)P~+1.j 

+ (II 64)~+2.j + (61 64)P~+2,j+1 + (II 64)P~.j+2 

The weightings of the algorithm are 1/4. 1/16. 6/16. 1/64/. 6/64. and 36
/64' 

From (4.4), we observe that the algorithm is composed of three different 

formulae: the vertex point formula (the forth equation), the edge point formula 

(the second and the third equations) and the face point formula (the first 
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(the second and the third equations) and the face point formula (the first 

equation). 

For non-uniform data, the scheme is modified, in a similar way to the 

Doo-Sabin's algorithm, to separate the non-uniform data from the uniform 

data and then isolates each group of them. The technique guarantees that 

each group of the data, which is surrounded by locally uniform data, 

converges to an extraordinary point. Thus, the analysis of the algorithm 

becomes an extraordinary point analysis. 

The algorithm at the near-extraordinary points is as follows. The 

extraordinary point in this case is an N-spoked vertex (When N = 4, the 

algorithm degenerates to the uniform algorithm). The formula for the new 

edge points and the new face points are the same as the corresponding 

formulae in (4.4). The formula for the new vertex V' is given by 

(4.5) V' := AV + BG + cQ. 

where, v is the old vertex, G is the average of the new face points 

surrounding the N-node and Q is the average of the old vertex points 

connected to V by an edge; A, B and c are the free weights satisfying 

(4.6) o < A. B. C and A + B + C = L 

By introducing the subdivision matrix at extraordinary point and 
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[46]) and using some results in differential geometry, the following result is 

obtained in [1,2,3]. 

Theorem 4.2. The algorithm produces a uniform bi-cubic B-spline patch 

over uniform data. At any extraordinary point, the lhnit surface has a unique 

tangent plane if the parameters A. B and c are chosen properly. Furthermore, 

the surface, in general, is not curvature continuous at the extraordinary point, 

although it is c2 at other points. 

Figure 4.2 shows the algorithm near an N-spoked vertex V (only when 

N=4, the vertex is called a regular vertex). Here. N = 5. 
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4.1.3. The Uniform Bi-quartic B-spline Algorithm 

This algorithm is the tensor-product generalization of the corresponding 

uniform scheme for the uniform quartic B-spline curves. It produces uniform 

bi-quartic B-spline surface patches over uniform data. For arbitrary data, the 

scheme separates the uniform data from the non-uniform data and then 

isolates the extraordinary points by using some local techniques. Hence, the 

generated surfaces are c3 continuous except at the extraordinary points. At 

these E-poin ts , special techniques are used to analyse the smoothness 

properties of the surfaces. The details about this algorithm will be given in 

Chapter 5. 

4.2. Some Uniform Tensor-product Type Algorithms 

In this section, we list some uniform subdivision algorithms generating 

tensor-product type surfaces. 

4.2.1. The Tensor-Product of Dyn-Gregory-Levin's Algorithm 

It can be shown that the DGL's subdivision scheme for curves [48] can 

be generalized to produce tensor product surfaces. For simplicity, however, 

only the DGL's 4-point interpolatory subdivision algorithm is given as an 

example. The scheme produces smooth interpolatory surfaces over uniform 

data. This scheme will be described in Chapter 6. 
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4.2.2. Other Tensor-product Type Algorithms 

Besides the above discussed recursive subdivision algorithms for surfaces, 

there are many other RSA generating tensor product surfaces. One of them is 

the generalization of the non-uniform B-spline algorithms (discussed in 

Chapter 3) to produce tensor-product non-uniform B-spline surfaces. Another 

is the subdivision algorithm for the computation of tensor-product polynomial 

surfaces. One such example may be the line averaging algorithm for certain 

Cube-spline (Box-spline) surfaces [20,28,87]. 

These algorithms are direct generalization from the curve cases. Thus the 

(smoothness) properties of the schemes remain the same if the data is 

uniform. For non-uniform data, some special techniques are needed to treat 

the extraordinary points. However, the details will not be discussed in the 

thesis. The interested reader is referred to the papers [2,28,46,92]. 

4.3. Recursive Subdivision Algorithms Based on 

Triangulations 

Another class of recurSIve subdivision algorithms is the simplex-based 

algorithms. They are constructed over triangulations in the 3-dimensional 

space. Both the DGL scheme and the Micchelli-Prautzsch (MP) scheme can be 

generalized to produce surfaces over uniform triangulations. In fact, we will 
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show in Chapter 6 that the tensor-product type algorithms is just a special 

case of this class of algorithms. 

Since the DGL approach and the MP scheme are equivalent in some 

sense, we discuss only the generalization of the DGL scheme over uniform 

triangulations. 

4.3.1. A 10-point Interpolatory Recursive Subdivision Algorithm 

This algorithm is a generalization of the DGL's 4-point interpolatory 

scheme [48] for surfaces over triangulations. The scheme has two shape 

control parameters and uses 10 local control points to refine the control nets. 

It produces smooth interpolatory surfaces over arbitrary triangulations. The 

details about this scheme will be given in Chapter 6. 

4.3.2. A General Subdivision Scheme Defined over Uniform 

Triangulations 

The DGL scheme for curves can be generalized to surfaces over uniform 

triangular control nets. The scheme is characterized by the following 

refinement equations 
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pk+l 
L:m.nEM 

a p~ . 2' 2' -I. J m.n l+m.J+n 
0 

pk+l 
L:m.nEM 

b p~ . 2 i +1.2j -
(4.7) m.n l+m.J+n 

0 

pk+1 - L:m.nEM 
c p~ . 2 i .2j+l m.n l+m.J+n 

0 

pk+l -
2":m.nEM 

d p~ . 2 i +1.2j+1 m.n l+m.J+n 
0 

where, the coefficients {a , b , c , d } are constants and non-zeros in the 
m.n m.n m.n m.n 

set Mo' This set is a fixed, finite integer set (support set) describing the local 

dependent property of the algorithm. 

It is obvious that both the lO-point interpolatory scheme, which will be 

studied in Chapter 6, and the tensor product type algorithms belong to this 

class of subdivision algorithms. 

Using the generating polynomial technique, Cavaretta, Dahmen, Micchelli, 

Dyn et al [28,29,54, ... ] analysed this scheme and some necessary and 

sufficient conditions for generating smooth surfaces are studied. While our 

method, the Matrix Analysis, which is based upon the Differences and 

Cross-Differences of Directional Divided Differences, will be presented in 

Chapter 6. 

Remark: The uniform algorithms can also be used to generate smooth 

surfaces over arbitrary triangular networks if one can construct some special 

local algorithms to cope with the extraordinary points. 
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4.4. Other Recursive Subdivision Algorithms for Surfaces 

Just as in the case of curves, there are many recursive subdivision 

algorithms for surfaces. Some of them cannot be classified into the above two 

categories, for example, the non-linear or non-uniform algorithms [53,122] 

and the subdivision algorithms for polynomial surfaces [4,7], which will now 

be described briefly below. 

4.4.1. The de Casteljau Algorithm for Bernstein-Bezier Polynomial 

Surfaces 

Like most recurSIve subdivision algorithms for curve, the de Casteljau 

algorithm can be generalized to calculate the Bernstein-Bezier surfaces (BB 

surfaces) [19]. As in the curve case, the algorithm is based on the recurrence 

relation of the bi-variate BB function basis. 

The algorithm for a cubic polynomial patch can be described as follo\vs. 

Firstly, the BB basis functions of degree n, n > 0, (B~. }, i+j+k = nand i, ,.j.k 

j, k > 0, are defined by 

(4.8) 
n! 

i _J k 
._ -- S r t , 

i!j!k! 

where, (s, T, t) IS the barycentric coordinates, which are omitted in the basis 
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function expressions. Similar to the univariate case, it can be shown the 

following recurrence relation of these basis functions 

(4.9) B~+~k - SB~+l'k + rB~ '+lk + t~ 'k l' for i+i+k = n+l and s + r + t = 1. I.J. I .J. I,J. l,}. + 

The BB surface over a triangle IS defined by (in terms of barycentn·c 

coordinates) : 

(4.10) - ~, 'k p, 'kB~ 'k UI+J+ =n I.J. I,J, 

where, {Pi.i.Ji+i+k=n are the so-called Bezier points. By applying (4.10) 

repeatedly, the following subdivision process can be obtained 

(4.11 ) P(s,r,t) - ~, 'k P .. k B~ 'k UI+J+ '=n I.J. I.}. 

~ p~, B~-~ 
- Ui+j+k=n-l ',J,k , . Jlk 

~ p~, B~-~ 
- Ui+i+k=n-2 "J,k I. J.k 

- ~ P". 'k B~ 'k Ui+i+k=O I,J. I.J. 

_ pn 
0.0.0 

where the Bezier points {r, } are determined recursively by 
, ',J.k 

(4.12) pm+l sP~, +rpm , +tr. ,for 0 <m< n,i+i+k =m+l 
i . i.k·- ,+1.J,k '.J+1.k ',J.k+l 
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and 

(4.13) p~ . .- P. 'k' for all i, j and k. I.,.k I.,. 

The property of the subdivision algorithm for BB surfaces can be 

concluded by the following theorem: 

Theorem 4.3. Using the above recursive algorithm, the BB surface P(r,s,t) 

can be split into three sub-patches, pO, pi and p2 whereby the Bezier points 

(expressed in the BB form) are given by 

(4.14 ) 

( 4.15) 

( 4.16) 

{p~ '0' i+j = n-m, m = 0, 1, ... , n}, I.,. 

{ pm 'k' j+k =n-m, m = 0, 1, ... , n}, 0.,. 

{p~ i+k = n-m, m = 0, 1, ... , n}. 
1.0.k. 

respectively. 

Figure 4.3 shows the geometric structure of the algorithm for a cubic 

surface. 

More about the algorithm is discussed in [19,61, 113]. 
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Figure 4.3. 

4.4.2. Geometry Based Algorithms 

This class of algorithms is introduced by N. Dyn, D. Levin and D. Liu 

[53] to construct convexity preserving interpolatory recursive subdivision 

algorithms for surfaces. The scheme is neither uniform nor linear. It is a local, 

geometry dependent algorithm. 

The idea of the scheme is to refine the control nets under some convexity 

(shape) preserving constraints. The scheme is a generalization of the chape 

preserving subdivision algorithm used to produce interpolatory curves [47,48]. 
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The main difference is that in the surface case the constructions and the 

constraints are much more complicated. For details, see [53]. 

4.4.3. The Cube-spline Algorithm 

The algorithm for the computation of multivariate Cube-splines 

(Box-splines) [11,13,16,39,85-91] belongs to a very special class of recursive 

subdivision algorithms. This algorithm can be regarded as a generalization of 

the uniform de Boor algorithm, the Lane-Riesenfeld algorithm or the de 

Casteljau algorithm. The main feature of them is that they are moving line 

averagzng processes. 

The algorithm has been described in Chapter 2. For more details the 

reader is referred to [11,16,39,85-91]. 
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A SUBDIVISION ALGORITHM FOR UNIFORM BI-QUARTIC 

B-SPLINE SURFACES OVER ARBITRARY NETWORKS 

A schematic analysis of the subdivision algorithm for uniform bi-quartic 

B-spline surfaces over arbitrary networks is presented in this Chapter. Our 

main result is the spectrum analysis of the subdivision matrix and the Nonnal 

Curvature property analysis of the limit surfaces at an extraordinary point. 

The Block-Circulant Matrix method is used to simplify our analysis. 

5. 1. Fonnulation of the Algorithm 

Since any uniform B-spline curve can be produced by a recursive 

subdivision algorithm as discussed in the previous Chapters, the RSA for 

uniform bi-quartic B-spline surfaces can easily be derived. The scheme will be 
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described in detail later in this section. From the construction we know that 

the algorithm produces a uniform bi-quartic B-spline surface if the initial data 

is uniform. However, since non-uniform topology often arises in practice. we 

will adapt this algorithm to non-uniform data. 

5.1.1. The Ideas of the Analysis 

In the papers by Doo/Sabin and Ball/Storry [1-3,44-46], the Doo-Sabin's 

and the Catmull-Clark's algorithms are thoroughly analysed. Their analyses 

are, in fact, an extraordinary point analysis. It will be shown later that the 

properties of the subdivision matrix A at the extraordinary point determine 

the behaviour of the limit surfaces at the extraordinary point. 

Their analyses come from the following observations. Without loss of 

generality, we suppose that the initial control polyhedron has only one 

N-extraordinary point (or facet, where N =1= 4), which is surrounded by locally 

uniform data. Since the scheme does not introduce any more E-points, at any 

subdivision stage the limit surface is well defined everywhere except an 

N-sided hole around the E-point. By repeating the subdivision process, the 

N-sided hole will be covered by smaller and smaller 4-sided, well defined 

polynomial patches apart from the central point and will finally converge to 

the E-point provided that the scheme produces a continuous surface (this is 

always assumed). It should be noted that for c1 convergence, the tangent 

plane of the limit surface at the E-point is defined as the limit of the tangent 

planes of the well-defined surface patches defined by the near-the-hole points. 
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see Figure 5.1 (it is assumed that the limit exists). This is reasonable since 

the tangent planes vary continuously on the well defined B-spline surface 

patches. 

Figure 5.1. 

The following result is obtained [3,46,116]: 

Proposition 5.1. The algorithm produces a continuous surface if the hole 

converges to a point. Furthermore, the surface is c1 if the well defined 

surface patches are c1 and the tangent planes of them at the near-the-hole 

points converge to a plane, which is the tangent plane of the limit surface at 

the E-point. 

For c2 convergence, the analysis is more difficult and will be studied in 

-109-



CHAPTER FIVE: A RSA FOR UNIFORM BI OUARTIC B SPLINE SURFACES OVER ARBITRARY SETWORKS 

section 5.3. 

5.1.2. The Eigen-range of the Algorithm 

In this subsection, we shall concentrate on the study of the N-sided hole 

problem. However, before we proceed our studies, two natural questions are 

raised: on which points the behaviour of the N-sided hole depend and what 

the control points are that determine the uniform tensor-product B-spline 

surface patches just around the hole. 

In order to answer these questions, the Eigen-range of the algorithm 

should be introduced. 

Definition: The eigen-range of the algorithm is defined as the number of 

control points and its topology near the N-sided hole that have effects on the 

behaviour of the limit surface at the E-point. 

For example, the Eigen-range of the Doo-Sabin's algorithm is the 4N 

control points around the hole (only two rings); the Eigen-range of the 

Catmull-Clark's algorithm is the (6N+l) points around the hole (three rings) 

and the Eigen-range of the bi-quartic uniform B-spline algorithm is the 16N 

points around the hole (four rings). Generally, the Eigen-range of a scheme is 

m2N (for even m) or m(m-l)N+l (for odd m), where m is the degree of the 

B-spline patches produced by the algorithm over uniform data, m > 1). The 

algorithm is called an even (odd) algorithm if m is even (odd). Figure 5.2 
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shows the Eigen-ranges of the first three B-spline algorithms. 

Figure 5.2. 

It will be shown in the following subsections that the properties (the 

position and the partial derivatives) of the limit surface at the E-point 

depend only on the Eigen-range of the scheme. 

5·1.3. The Local Subdivision Matrix A 

Since the algorithm is a local, linear (in fact, convex combination) 

process, it can easily be shown that its Eigen-range at level k+l can be 

obtained by a linear transformation (in fact, affine transformation) of the 
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Eigen-range at level k, where k > 0 is the iteration count. Using the block 

circulant ordering technique, this relation can be written in the form 

(5.1 ) pc+! - Ape for all k > 0, 

where, A is the Local Subdivision Matrix and pk and pk+l are the Eigen-range 

vectors at level k and k+ 1 respectively and pk is defined by 

(~.1' ~.2' ... , ~.m' ~.1' ••• , P!-l.m>' (for even m) 

(5.2) PC.-

(Vk, ~.l' ~.2' ••• , ~.m-l' ~.l' ••• , P!_1.m_l)t ( for odd m). 

and pk+! is defined similarly. Figure 5.3 shows the details of the 

Block-Circulant ordering technique for the Eigen-ranges. 

When m is even, the iteration matrix A is a Block-Circulant Matrix 

(B-circ matrix for short) of the form 

Ao Al A 
11-1 

A Ao A 
11-1 11-2 

.-
••••••••••••••••••••••••••••••••••••••••••• 0 •• 

where, A., i = 0, ... , N -1 is a square matrix of order m
2

• , 

When m is odd, then the subdivision matrix A is in the form 

(5.4) A .-
a V~ \' 
V

1 
A' 
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where, a is a (positive) number and A' is a B-ciTC matrix of order m(m-l)N. 

Vl and v
2 

are some specific (positive) vectors. 

As an example, the subdivision matrix A for the cases m - 4 lS 

constructed in subsection 5.1.5 

Figure 5.3. 
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5.1.4. The Role of the Eigen-range 

In this subsection, we shall prove that the local properties of the limit 

surface at the E-point are completely determined by the Eigen-range of the 

algori thm at any level. 

By definition, the tensor-product B-spline surface is given by 

(5.5) P(u, v) := IF yt P MY. 

where 

v ._ (yn, yn-l, ... , v, 1)t 

(5.6) 
a 

M ·-.- , the subdivision matrix for B-spline curves, 
o 

P .- {Pi.}' i,j = O, ... ,m}, control points. 

Direct evaluation from (5.6) gives the following result: 

Theorem 5.2. For all ° < i. j < m, 

(5.7) { 
(j+lp(U, v) 

} are determined by {P,.n\l.n < m} 
aui Ov.i u=O 

On applying this theorem to the control points of the B-spline patches 

around the N-sided hole, we can conclude that all the values and the partial 

derivatives of the patches given by (5.7) which converge to the E-point are 
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determined by the corresponding Eigen-ranges. 

Since these well defined patches are connected very smoothly (c3 

continuous), the properties of the limit surface at the E-point depend on the 

properties of the patches near the hole. Consequently, we can conclude that 

the properties of the limit surface at the E-point depend on any of the 

Eigen-ranges (the Eigen-range at a lower level determines the Eigen-range at a 

higher level). 

5.1.5. The Subdivision Scheme for Uniform Bi-quartic B-spline Surfaces 

over arbitrary networks' 

As an example, we give a brief description of the subdivision scheme for 

uniform bi-quartic B-spline patches. For uniform data, the scheme is 

characterized by the linear operator LB4: If·3 -> R defined by (see Figure 

5.4): 

Xu 

- --Y2 
\ 
\ X 

X:2.2 \ 2.3 

\ 
-- -Y4 

'------x 3.2 X 3.3 

Figure 5.4. 
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By symmetry, other refined points, such as Y
2
, Y

3 
and Y" can also be 

computed. 

For non-uniform data, the algorithm is like this. For 'any point away from 

the N-sided hole, the operator LB" is applied. For the two layer points 

around"the hole, N pseudo-points, {Q.} are introduced so that the operator can , 

also be applied. Figure 5.5 shows the construction of the algorithm over the 

hole. 

These N (N =1= 3) pseudo-points {Q) are defined by the following 

symmetric formula: 

(5.9) Q a P + ~. [(NI2] a. (P. . + PN . j I)' i = 0, 1 •... , N-l 
i .- 0 i.l L...IJ=1 J '+J.l +'-. 

where, {a.} are some weightings satisfying , 

(5.10) a + 2 ~. [(NI2) a. = 1. o L...I,=1 , 

Thus, the refined points over the hole can then be defined: for i = 0, 1, .... 

N-l, 
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':Q, 
e .. . 1. 

Figure 5.5. 

p~ 1 = LB4(Q" P'-II' P'-I5' P'+II ' P'I' P. 2' P'+I2' p, 5' P. 6) t. t t. t. t, t. t. t, t. t. 

p~ 2 = LB
4
(P. 15' P'-II ' Q., p, 2' p, l' P'+II' p, 6' p, 5' P'+I2) I. 1-. I. 1 I. I. t. t. t. t. 

(5.11) 
p~ 5 = LB

4
(P. 12' p, 11' Q., P. 5' P· I , P'-II' P. 6' P. 2' P'- l 5) I. 1+. 1+. 1 I. t. t. t. t, I, 

p~ 6 = LB4(P· 6, P'2' P'-I5' P· 5, P· I, P'-II ' P'+12' P'+lI' Q.). I. I, I, I. t. I. I. I, I. 1 

Other refined points are determined by the bi-quartic B-spline subdivision 

process. This is also shown in Figure 5.5. 
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For simplicity, in our analysis, we assume that a
i 
= 0 for i > 3. 

""i---t----T~ __ _+=---~i.4 

i-1.8 

Figure 5.6. 

In the case of N = 3, these pseudo-points can be introduced similarly. 

For example, Q
i 

can be defined as a symmetric affine combination of Pi. l , 

P , P. ,p, P 15' P'-lS' P· 2, Pi 12 and P. 1 • One simple choice is 
1+1.1 1-1.1 1.5 i+. I. I. + . J- .2 
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(5.12) 

where 

(5.13) 

The refined points near the hole {p~ .\. }. N-l are given by (5.11). This 
I.J J=1. 2, 5.6 1=0 

process is demonstrated in Figure 5.6 where, the labels of the new control 

points are omitted. 

From the above construction of the algorithm over the hole, we can see 

clearly that the process IS linear and the subdivision matrix A, as 

introduced in (5.1) is a Block-Circulant Matrix. 

5.2. Convergence Analyses 

In this section, we study the conditions under which the algorithm 

produces continuous and differentiable surfaces. The result obtained here is a 

generalization of the results reported in [1-3,45,116], whereby the quadratic 

and cubic B-spline algorithms are studied respectively. 
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5.2.1. The Extraordinary Point Analysis due to Ball and Storry 

In a series of papers by BalllStorry [1-3,116], they analysed the 

Catmull-Clark's algorithm in detail. Their analysis, much like the Doo-Sabin's 

analysis for the quadratic algorithm, is mainly composed of the extraordinary 

point analysis. Their idea for the high order continuity analysis of the limit 

surface at an extraordinary point is as follows. 

For the c1 convergence, they assert that the surface is c1 at the E-point if 

the tangent planes of the well-defined B-spline patches near the E-point 

converge to a plane. This plane is then defined as the tangent plane of the 

limit surface at the E-point. Hence, their c1 analysis is based on the study of 

the tangent plane series of the B-spline patches near the E-point. This 

investigation involves further studies on the eigen-properties of the local 

subdivision matrix. Similar techniques will be used in our analysis. 

Although they have proved·that the Catmull-Clark's algorithm could not, 

in general, produce c2 continuous surfaces over arbitrary topology, they still 

studied the curvature properties of the limit surface at the E-point. In their 

analysis it is implied that the limit surface may be c2 if the following 

conditions are satisfied: (i) any aligned face or edge loci on the surface 

(passing through the E-point), which has tangent continuity at the E-point, 

has curvature continuous property and (ii) the normal curvatures of these loci 

at the E-point satisfy the Gaussian normal curvature condition (5.15), which 

will be studied in detail later. The second condition is very important since 

-120-



CHAPTER FIVE: A RSA FOR UNIFORM BI-OUARTIC B SPLINE SURFACES OVER ARBITRARY SETWORKS 

condition (i) is not sufficient to guarantee c2 continuity. This can be shown 

by a simple counter-example. However, anyone of the conditions is a 

necessary condition for the surface to be c2
• Hence, they only used condition 

(i) to prove the curvature discontinuous property of the limit surfaces. 

In order to study the tangent planes and some appropriate loci on the 

surface, the eigenvalues and their corresponding eigenvectors of the local 

subdivision matrix should be analysed. In fact, it can be shown that given the 

initial data, the tangent planes and the curvatures of the loci can be expressed 

explicitly in terms of these eigenvalues and eigenvectors. To this end, they 

used both direct evaluation and the Fourier Transformation technique to find 

these values. 

The mathematics behind this analysis is a combination of differential 

geometry and mathematical analysis. The whole theory lies on the technique of 

pointwise analysis, which is based on the local structure of surfaces. 

Since our algorithm has a similar property, that is, the limit surface is 

curvature continuous (c3 to be more precise) everywhere except at the 

E-points, the Ball-Storry's ideas for the smoothness analysis will be used to 

analyse the convergent property of the scheme at these E-points. Moreover, 

one major difference from the Ball-Storry's analysis is that their ideas will be 

developed to study the curvature property at the E-point. 

Another difference of our analysis from theirs IS that we use 
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Block-Circulant-Matrix technique (this is equivalent to (Block) Fourier 

Transformation Technique) to analyse the subdivision matrix instead of the 

direct evaluation method. This difference in techniques is due to the fact that 

the subdivision matrix in our case is more complicated than that in 

Ball-Storry's analysis, and thereby making the process of direct evaluation of 

the eigenvalues and eigenvectors very dificult (but not impossible). 

5.2.2. Continuity at the Extraordinary-point 

As we have already known that the algorithm produces in general a c3 

surface over uniform data, our attention is therefore restricted to the analysis 

at the E-points. In order to prove the c 1 property of the surface, it is 

imperative that the cO property should be proved first. To this end, the 

Adapted Parametrization technique, that is, the parameter values satisfy the 

subdivision algorithm, is used to prove the cO continuity of the surface at the 

E-point. 

Since the limit surface is smooth at any point except the E-point, the 

surface must have the same differentiability with respect to the Adapted 

Parametrization as with the diadic parametrization provided that the initial 

(adapted) parametrization values are chosen appropriately in the parameter 

plane. This is because the limit surface is locally a uniform bi-quartic 

B-spline patch except the E-point. In fact, a general result, as in the curve 

case, can be proved that the limit surface has at least the same 
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differentiability with respect to the adapted parametn'zation as with the diadic 

parametrization, That is, adapted parametn'zation could be a better 

parametrization. Hence, we use the adapted parametrization to analyse the cO 

convergence of the algorithm at the E-point. 

5.2.3. Spectrum Analysis 

By choosing proper weightings (that is, the local shape control 

parameters {aJ), the following properties of the subdivision matrix A can be 

obtained. It should be emphasized that these properties playa very important 

role in the convergence and smootliness analysis of the limit surfaces. 

Let {A.}, Ikl > Ik I, be the eigenvalues of A and {v.} be the 
1 1 - 1+1 I 

corresponding (generalized) eigenvectors. Then we define the following 

eigen -properties. 
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A6 > IAJ for all > 6. 

Remark. It is required that Vi' i = 1, 2, ... , 5,6, are eigenvectors of A. 

In the cases of quadratic and cubic B-spline algorithms, that is, when m = 

2 and m = 3, it is shown explicitly in [45,116] that properties Bo and Bl 

can be satisfied. However, in the case of cubic B-spline algorithm, property B2 

can not be obtained though property B
20 

be achieved. When m = 4, it can be 

shown that all the above properties can be obtained by an appropriate choice 

of the shape parameters (a.}. 
I 

5.2.4. cO Convergence 

U sing the adapted parametrization, we can obtain the following result. 

Theorem 5.3. If the local subdivision matrix A has property Bo' then, 

with respect to the adapted parametrization, the limit surface is uniformly 

continuous. 

Proof. The condition Bo guarantees that the eigen-range sequence of the 

algorithm converges uniformly to a point, which means that the limit surface 

is continuous at the E-point. It is obvious that the surface is uniformly 

continuous, respect to the adapted parametrization, at regular points. This 

-124-



CHAPTER FIVE: A RSA FOR UNIFOR,I,{ BI--QUARTIC B SPLINE SURFACES OVER ARBITRARY ,VETWORKS 

completes the proof. 

Remark. This Theorem can also be proved by using piecewise diadic 

parametrization method. 

5.2.5. c1 Convergence 

For c1 convergence, we need to prove that the tangent planes of the 

B-splineopatches around the N-sided hole converges uniformly to a plane, the 

tangent plane of the limit surface at the E-point. 

Theorem 5.4. If the subdivision matrix A has the properties Bo and Bl' 

then the limit surface is c1 at the E-point. 

Proof. If properties Bo and Bl hold, then it can be shown, in the same 

way as in [2,45,116], that all the tangent planes of the well defined B-spline 

patches around the hole at level k' have the form 

(5.14) nk _ span(a, p} + R(k), 

where, a, /3 E ~ are constants depending on the initial data and the shape 

parameters and R(k) = O(A/A2)k. For general data, <a, If> =1= o. Property 

Bl quarantees that R(k) goes to zero uniformly when k goes to infinity. That 

is, all these tangent planes converge to the plane spanned by a and /3. This 

completes the proof. 
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5.3. Normal Curvature Analysis 

In this section, we investigate the curvature properties of the surface at 

the E-point. The main result is the Normal Cwvature (N-culVature) analysis 

about the surface at the E-point. This result is also valid for higher (even) 

order schemes. 

5.3.1. Formulation of the Curvature Continuous Problem 

Since the B-spline patches around the N-sided hole are well defined, some 

simple calculations show that the N-culVatures of these patches can be 

represented by their corresponding control points. By definition, these 

N-culVatures can also be expressed in terms of the points in the Eigen-range. 

As a consequence, we have the following lemma: 

Lemma 5.5. The normal CUlVatures of the well-defined patches adjacent 

to the N-sided hole at level k+l can be represented by the Eigen-range at 

level k. 

To analyse the curvature continuity of the limit surface at the E-point, we 

assume that the surface is at least c 1 at the E-point (tangent plane 

continuity). 

We now define the Normal-culVatures of the limit surface at the E-point 
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to be the corresponding limits (suppose the limits exist and are finite) of the 

N-culVatures of the well defined B-spline patches near the N-sided hole. It is 

obvious that the definition is compatible with the ordinary definition of c2 

surfaces if the limit surface is c2 at the E-point. 

From differential geometry, we know that the normal curvature K of a 
n 

c
2 

surface at point Q must satisfy the Gaussian CUlVature Condition 

(G-condition) : 

(5.15) 

where, K 
max and K. are respectively the maxImum and minimum 

11U11 

N-culVatures of the surface at Q and ex is the angle <Tn' T ma:>. Here, Tn' 

T . and T are the unit tangent vectors of the corresponding N-culVatures. 11U11 max 

It should be pointed out that, in our isolated E-point case, the c2 

conditions and the G-condition at the E-point are equivalent. Furthermore, 

since the surface is a sufficiently smooth parametric surface, it can be 

regarded as a function (locally) at the E-point [79]. Hence, the Gaussian 

condition is a necessary and sufficient condition for the surface to be a c2 

surface. Consequently, if we can prove that the Gaussian condition is satisfied 

at the E-point, we can conclude that the limit surface is curvature continuous 

at that point. 
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(j=I, 2, 3) respectively, where T, T. are the corresponding tangent vectors of 
J 

some c2 curves passing through Q- on the surface. If (Tj } satisfy 

(5.18) T j X T; * 0, i, j = 1, 2, 3, i * j, 

then we have the following Guassian Normal CUlVature Condition 

(5.19) 
1 <Tj,T.X{Tj 1 x T), (T x T. 1» 

K _ <T T>- ~. 3 J - J- K 
, UrI j 

- <(T. 1 X T.), (T. x T. 1» 
J- J J J+ 

where, !(X, y> is the scalar product of x and Y, and x x Y is the cross 

product of x and Y. The index j is cyclic within the range (I, 2,3). 

Remark. If we define T4 := T, K4 := K in Proposition 5.6 and suppose 

that 

(5.20) angle <T
i
, T;+1> = a = constant, i = 1, 2, 3, 

then the G-condition (5.19) becomes 

This condition is very useful to prove the curvature properties of the 

surface. In particular, if we solve (5.21) as a difference equation (of order 

three), then we can obtain the the following real basic solutions: 

(5.22) 1, cos (2ia) and sin{2ia). 

Thus, the general solution of (5.21) is given by 
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where, c
1

, c
2 

and c
3 

are some general constants. 

Conditions (5.21) and (5.23) will be used later in our analysis. 

5.3.3. Special Loci on the Surface Incident to the Extraordinary Point 

In order to study the N-curvatures of the surface at the E-point, we need 

to introduce some special loci on the limit surface incident to the E-point. We 

then investigate the N-curvature properties of the surface on these loci and 

establish the curvature analysis about the limit surface at the E-point. 

As in Ball and Storry's analysis, some special loci on the surface passing 

through the E-point can be introduced. For example, the edge loci and the 

diagonal loci on the well-defined B-spline patches around the hole can be 

defined. Other loci can also be studied in a similar way. Figure 5.7 shows 

these loci and their corresponding B-spline patches. 

Mathematically, the i-th diagonal locus can be defined like this. At level k, 

those newly produced patches {B~.n<u,v)ln=1. 2 ..... 12}i=O. 1. .... N-1' 0 < u, v < I, which 

are defined by near-the-hole control points, are well defined (Figure 5.7). 

Then, the i-th diagonal locus D;(·) is defined by 

(5.24) 
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where, 

(5.24a) ~ .- {[B~./t, t): 0 < t < 1] U [B~.9(t, t): 0 < t < l]}. 

Other loci can be defined in the same way. For example, the i-th edge 

locus E.(·) is given by 
I 

(5.25) E. 
I UkE~ 

where, 

(5.25a) {[B~.t<0' t): 0 < t < 1] U [B~.1/0, t): 0 < t < 1]}. 

/ 
./ 

/ 

E i+1 / 

/ 

/ 
/ 

/ 

L. 
I.n 

/ 
/ E. 

• I 

<f~point-- -------- --
" , 
" , 

" '\. 
'E 

{ 

" , 

Figure 5.7. 
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The general loci, L
i
.
n

, given by 

(5.26) 

where, 

(5.26a) Lk ._ 
i.n 

where, unit) and vn}t) are some special linear functions of t, can also be 

studied in the same way. Obviously, Di and Ei are special cases of Li.n • 

Since the patches are uniform bi-quartic patches, we can obtain the 

following result: 

Lemma 5.7. Both the diagonal loci {Di} and the edge loci {Ei} are c3 

curves. Furthermore {L.} are also c3 if {un .(t), V n .(t)} and n. are chosen 
t.n J J J 

appropriately. 

In the next subsection, the N-culVatureS of the diagonal loci and the 

surface at the E-point will be fully studied. It should be pointed out that the 

N-culVatureS of these loci at the E-point are defined as the limits (suppose the 

limits exist, and they may be zeros) of the N-culVatureS of the corresponding 

loci when k goes to infinity. 
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5.3.4. The N-curvatures of the Surface at the E-point 

Since these loci defined above are c3 except at the E-point, the 

N-curvature of these loci at this point can also be defined. For example, they 

are defined as the limits of the corresponding N-CulVatures of {U} as k goes 
I 

to infinity. In general, the N-culVature of the surface at the E-point is defined 

as the limit of any c2 continuous locus on the surface passing through the 

E-point which has a proper tangent direction at the E-point. It will be shown 

that the limits exist and are finite if the parameters {a.} are chosen 
I 

appropriately. 

In order to study these N-curvatures, more about the well defined 

patches around the N-sided hole should be investigated and some special 

techniques are also required to analyse them. 

5.3.5. Results About Block-Circulant Matrices 

The eigenvalues and their corresponding eigenvectors of the subdivision 

matrix play a very important role in the investigation of the curvature 

properties of the surface. In this subsection, some results about the 

subdivision matrix are presented. The proofs of these results can be found in 

or derived from [43]. 

Let .A be a square Block-Circulant-Matn"x of order mN: 

-133-



CHAPTER FIVE: A RSA FOR UNIFORM BI-QUARTIC B SPLINE SURFACES OVER ARBITRARY NETWORKS 

(5.27) A := B-circ( A A A) 0' l' •.. , N-l 

where, m and N are some non-negative integers and define, 

(5.28) D. .- ~ NO-l wnj A, j = 0,1, ... , N-l, 
J ~n= n 

and 

where, w is the i-th root (complex) of unity: 

(5.30) w .- e2J1i/N '- COS(21C/ N) + i sin(21C/ N) = cos(f3) + i sin(f3), 

and f3 := 21C/N. Then we have the following results: 

Proposition 5.8 [43]. The matrix A is unitarily similar to D. 

Corollary 5.9. The spectrum of A is given by: 

(5.31 ) {A .} j = 0, 1, ... , N-l, 1= 1,2, ... , m, 
'.J 

where, {A,) I = 1, 2, ... , m is the spectrum of D j , j = 0, 1, ... , N-l. 

proposition 5.10 [43]. The eigenvectors of A, {Vi}' have a very special 
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form: 

(5.32) 

where, V,, E r and 
1.1 

(5.33) Vi.) = wiMi v i .O for all i, j and some integer 0 < M; < N-l. 

Applying this result to our subdivision matrix, we can obtain: 

Theorem 5.11. The subdivision matrix A for bi-quartic B-spline surfaces 

has the following properties provided that the weights (aJ are chosen 

properly: the eigenvectors V2' V3' V4' V5 and V6 can be chosen to be in the form: 

V2 
'- Real Part(u

l
}, V3 '- Imaginary Part (u

l
}, .-

(5.34) v 4 .- Real Part( u
2
}, V5 .- Imaginary Part (u

2
}, 

v6 '-.- (v6.0' v 6.0' v 6.0' v 6.0' ••• , V6.0)~ if ).4 = ).5= \, 

where, the vectors u
1 

and u2 have the form: 

(5.35) 

u, := (u, 0' U'l' U, 2' U, 3' ••• , U;.N_l)~ i = 1, 2. 
I I. I. I. I. 

U. , 
1.1 

is a vector of length 16, i = 1, 2 and j = 0, 1, ... , N-1, 

U,' = wi; u'o' j = 0, 1 • ... N-1. i = 1.2. 
1.1 I. 

Proof. The proof comes from the fact that 

(5.36) 
1\ 

D; - D
N

_;, for i = 1. 2 ..... N-2, 

h D is the complex conjugate of Dj" Moreover, it can be proved that were, ; 
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eigenvalues of Dl and D2 respectively. If A4 = /.5 = \' then it is shown that 

A6 is an simple eigenvector of Do' In the case of N = 3, similar results hold. 

This completes the proof. 

Remark 1. Any vector in the invariant space span(v2, v3} is an eigenvector 

of A corresponding to eigenvalue A2• This happens to the eigenvalue )'4 too. 

The above special choices of the eigenvectors will simplify our curvature 

analysis. 

Remark 2. This Theorem can also be proved by using the Fourier 

Transform Technique. 

Remark 3. By some simple formulation, it can be shown that all the 

eigenvalues and eigenvectors of A can be obtained analytically. In fact, we 

have: 

l. D., i = 0, 1, 2, ... , N-l, has eigenvalues \,a, \,b, \,e, \,d, 1/16' 1/32, 1/64, 
I 

1/128,1/256,0,0,0,0,0,0,0. 

ll. A = 1, A = 1/4 AO = 1/16 \ d = 1/ 16' 
O,a O,b "e " 

A 1 1 1 1 _1 A.d=AN-'d i=I.2 .... ,(N-l)/2· 
IV = /\.. /\"b = /1.\' . b /I.. - /\.N '- I I • i,a N-I.O, I, , -I. ,I.e -1.(.,. ' , 
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v. A. A..b A and A.
d

, i * 0, i * N12, are four roots of a quartic 
I.a, I, i.e I. 

polynomial Pj(A) which depends on the weights raJ of the algorithm. 

For the purpose of the curvature analysis, we state here a further result 

about the subdivision matrix. This result can be obtained by direct evaluation. 

Theorem 5.12. The local subdivision matrix can have properties Bo' B I , 

B2 and B
20 

(see section 5.2.3) if the shape control parameters raJ are 

chosen appropriately. 

5.3.6. The Curvature Property Analysis of the Surface at the E-point 

In this subsection, we shall prove our main result: the normal curvature 

properties of the surface at the E-point. 

Theorem 5.13. The tangent vector T; of locus Di at the extraordinary 

poin t V has the following form: 

(5.37) T; 
e. f + e f = (f f) rot(-iI3) (cl' c2)', for i = 0, 1,2, ... , N-1, 

- 1.2 2 ;.3 3 2' 3 

h d are constants depending on N and the initial data and were, CI an C2 

rot{-ifJ) := the rotation matrix with angle -if3. The tangent T j is defined as 

the limit of the Tangent Vector of the i-th diagonal locus segment ~ as k 

goes to infinity. 
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Proof. Since the surface is c1
, the results follow from the results in the 

previous subsection about the eigenvectors and the recurrence relation of the 

eigen -ranges: 

(5.38) 

where, At is a proper Tangent Operator. 

Let To := e/2 + ez!3' then, from the above relation and the properties of 

the eigenvectors, we obtain that T; = U
2

' J
3
)rot(-i/J)(c1, e2>'- This completes 

the proof. 

Here the rotation matrix rot (a) is defined explicitly by: 

eos(a) sin (a) 

(5.39) rot(a) .-
-sin(a) eos(a) 

Similarly, we have 

Corollary 5. 14. The tangent vector TLi.n 
of the locus L. '.n 

at the 

extraordinary point v has the form: 

(5.40) 
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Remark 1. It should be pointed out that the tangent vectors {TL. } given 
'.n 

by (5.40) may be a multiple of the actual tangent vectors. However, this will 

not affect our analysis. 

Remark 2. {TL. } have the following properties 
I.n 

(5.41 ) 
TL. = - TL. NI for even N. '.n l.n+ 2 

Remark 3. Due to the symmetry of the algorithm and (5.41), we can 

conclude: 

l. For even N, the edge loci E; is aligned with E;+NI2 and the 

diagona110ci D; is aligned with Di+NI2' i = O. 1. 2 •... , N /2-1. 

ll. For odd N. the edge loci E; IS aligned with the diagonal locus 

D
i
+

N
-

1h
, for i = O. 1. 2 •...• N-l. 

These results are consistent with that obtained in [116]. 

Theorem 5.15. Let c~ denote the N-curvature of the diagonal locus 

segment ~. If conditions Bo' B t , and B2 (or B2o) hold, then 

( 5.4 2) Lim k-+OO C~ ._ c. is finite for i = O. 1 ..... N-l. , 

Proof. As in [45,46], it can be proved that the curvature c~ has the 
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form 

(5.43) 

where, const; is a constant depending on both the initial data and the tangent 

direction. Hence the result follows. 

Corollary 5.16. Let CL~ denote the N-curvature of the locus L~ on 
1.11 1ft 

patch B~.II at level k. If conditions Bo' B
t

, and B2 (B2o) hold, then 

.- CL. is finite for i = O. 1 •... N-i. 
1.11 

From this result, we can conclude that for general data, the limits are 

zeros if 

(5.45) O < 1 < 122 A4 A 

the limits are finite (zeros or non-zeros) if 

(5.46) 

and the limits are infinities if 

(5.47) 

Using the above results, we can prove the following N-curvature property 

of the surface at the E-point. 
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Theorem 5.17. If conditions Bo' B1 and B2 (B20) hold, then there are 

some constants 8
1
, 8

2
, 8

3
, 8

4 
and C, which depend only on the initial data, the 

weights {aJ and the valency N of the E-point, such that 

Proof. From the analysis of the eigenvectors v
4

' vs' V6 (Theorem 5.11), we 

have 

(5.49) C i .- Limk~(x) C~ 

where, A is a proper curvature operator and N is the unit normal vector of 
c 

the surface at the E-point. 

Let 8
1

:= <1
4

, 11>, 8
2

:= <1s' 11>, 83 := Ac(Re(u2.0», 84 := Ac(Im(u2.o» 

C:= <f
6

A
c
v

6
.
0

, 11>. Then, from Theorem 5.l1, we have 

and 

From these results, (5.49) becomes 
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This completes the proof of the lemma. 

In the same way, we can prove 

Corollary 5.18. If conditions B, B and B (B ) hold then there are o 1 2 20 ' 

some constants g'; and C' which depend only on the initial data, the weights 

{a.} and N, such that 
I 

Remark 1. The N-curvatures {CL. } satisfy 
I.n 

(5.54) CL. - CL. N/ ' i = 0, 1, ... , N/2-1 for even N. 
I.n 1+ 2.n 

Remark 2. These normal curvatures {CL. } may be a constant multiple 
I.n 

of the actual N-curvatures. However, this will not affect our results. 

Now, we prove that the normal curvatures (C;l in (5.48) satisfy the 

G-condition. It is sufficient to show that in such a case, G-condition is an 

Theorem 5.19. Suppose N > 5, then, the N normal curvatures (C;lj='~'-l 

satisfy the G-condition. 
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Proof. The G-condition (5.19) can be written in the form 

(5.55) 

where 

(5.56) 

Here, the cyclic convention for in the range (j, j+l, j+2) is assumed. 

From (5.37), we can obtain 

(5.57) <T; x T j> - (c~ + c~) sin( -(j-i)f3) U 2 x 13) 

and hence 

(5.58) M; = I, M;+1 = - M;+2 = -sin (-3f3)/sin(-f3) = 1 - 4con2(-f3). 

Combining this result with (5.56), equation (3.55) becomes 

(5.59) (8
1
,8

2
) {rot (-2(j+3)f3) - rot (-2jf3) 

_ (4cos2(-f3)-I)(rot(-2(j+2)f3) -rot (-2(j+l)f3»} (83, 84i - o. 

This is an identity for all {8;l. j, N and U1, 12) since, for any f3 and 

integer j, we know from (5.21), (5.22) and (5.23), that 

(5.60) rot(-2(j+3)f3) - rot(-2jf3) 

_ (4coi(-f3) - 1)[rot(-2(j+2)f3) - rot (-2(j+l)f3)]. 
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This completes the proof. 

Corollary 5.20. The normal curvatures (CLi,n}' given by (5.53) also 

satisfy the G-condition. 

This result strongly suggests that all the N-curvatures of the surface at 

the E-point could satisfy the G-condition (5.19). Unfortunately, we cannot 

provid~ a mathematical proof. However, we believe that the surface should be 

5.3.7. Remarks 

1. The reason we cannot conclude that the surface is c2 at the E-point is 

that we cannot prove any four N-curvatures of the surface at the E-point 

satisfy the G-condition (5.19). Even though all the aligned loci passing 

through the E-point is e2
, we still can not say that the surface is c2

• A 

simple (counter) example IS F(r,e) := r2 coi(Me + eo). M * 1, in polar 

coordinates. 

2. From our analyses, the surface at the E-point has certain symmetric 

properties. For example, the tangent vector Ti and the N-curvature ci are just 

some rotations of T and c after affine maps. This is shown clearly in 
o 0 

(5.37) and (5.48) etc. 

3. Computer experiments show that the surfaces behave very well at 
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E-points. 

4. The limit surface has zero curvatures (locally flat [3]) at the E-point if 

(5.47) holds therefore it is c2
• 

5. It is suggested by M. Sabin [109] that condition (5.46) should be 

sufficient for the surface to be curvature continuous at the E-point. However, 

as far as we know, no mathematical proof is available now. 

5.4. Conclusions 

In this Chapter, the subdivision algorithm for bi-quartic B-spline surfaces 

IS generalized to arbitrary networks. The main result is that the scheme 

produces almost c2 surfaces over arbitrary topology. Curvature properties of 

the limit surfaces at the E-point are studied in detail. 

The Ball-Storry's curvature' analysis at the E-point for the Catmull-Clark's 

algorithm is developed to cope with even order tensor-product B-spline 

surface algorithms. The Block-Circulant-Matrix method provides a very 

powerful tool to study the tangent plane and (Nonnal) curvatures of the limit 

surfaces at one point. 

Some graphic examples are given to show the smoothing process of the 

scheme over both uniform and non-uniform data. 
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5.5. Graphic Examples 

The graphics were produced by Nichlet Drum Plotter at Bnmel University, 

UK., 1988-1990. 

Figure 5.8. Th£ urUform bi-quartic B-spline surface, k = 0, I, 4, 5. 
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Figure 5.9. Smoothing down a 3-sided hole with different shape controls, Ie = 4. 

Figure 5.10. Smoothing down a 6-sided hole with different shape controls, k = 4. 
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~--~----------

Figure 5.11. The scheme at an E-point, N = 5, k = 2. 
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CHAPTER SIX 

SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS 

In this Chapter, we shall restrict our attention to the study of recursive 

subdivision algorithms for the generation of surfaces over triangulations. A 

generalization of the Dyn-Gregory-Levin scheme defined over uniform 

triangulations will be discussed. By studying the Cross-Differences of 

Directional Divided Dzfferences, a lO-point interpolatory subdivision scheme 

will then be constructed and studied. And, in particular, a special case of it, 

the so called butterfly scheme, will be analysed in detail. Finally, the lO-point 

interpolatory schemes will be generalized to non-uniform triangular networks. 

In both cases, the scheme generates smooth surfaces. Some graphic examples 

produced by the scheme over uniform data are also presented. 
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It should be noted that the uniform or diadic parametrization, is assumed 

in the convergence analysis, unless stated otherwise. 

The use of diadic parametrization means that the (uniform) control nets, 

say, {~.j / (i,j) E Z2} are associated with the corresponding diadic values 

(2-k (i,j) /(i,j) E Z2} in the u-v parameter plane. Hence the control net at level 

k, which is denoted by PC, can then be represented unambiguously as the 

piecewise linear interpolant to the triangulated data {(2-k(i,j),~) /(i,j) E Z2}. 

Using this type of parametrization, a generalized form of RSA for 

surface generation over uniform triangular control polyhedrons can be derived. 

For notational convenience, the notations introduced in Chapter 4 are used in 

this Chapter to formulate this algorithm. 

A subdivision scheme, s, is said to be a convergent scheme if for 

every set of control points pk = {P . / (i,j) E Z2 }, there is a continuous function 
1./ 

p on If- such that for all (i,j) E Z2, 

We denote the above function p by ~ pO, and call it the limit function 

of s on pO. If p is a en surface, then the scheme is called a en scheme. 

We say that the convergence is uniform if for a given compact region D and 

an arbitrary real number, € > 0, there exists a positive integer K(€, D) such 

that for all n > K(€, D), a E Z2}, 
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In order to define the uniform triangulation of the control net, we need to 

introduce the uniform triangulation of the parameter values, that is, the 

diadic points, in the parameter plane first. The triangulation of the control net 

is then defined according to the triangulation on the u-v plane. We assume 

that the uniform triangulation of the parameter plane is taken to be the 

standard uniform 3-D triangulation, that is, it is the uniform triangular mesh 

produced by directions: (0, 1), (1, 0) and (1, 1) as shown in Figure 6.1. 

Figure 6.1. 

6.2. A Unlfonn Subdivision Scheme Defined on Unlfonn 

Triangular Control polyhedrons 

In this section, we firstly describe a generalization of the IXJL scheme 

for surfaces over a uniform triangulation of the control polyhedron and then 

study its basic properties. For the sake of clarity, several special cases of this 
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scheme will be briefly introduced. 

6.2.1. Mathematical Description of the Scheme 

The Dyn-Gregory-Levin scheme for surfaces can be described as follows. 

Given initial data (P~), then the refined control points are given recursively by 

the following formulae (masks): for k = 0, 1, 2, ... 

~+1 - Em.nEJIo a ~ ) 2 i .21 m.n '+m. +n 

~+1 
Em.nEJIo b ~ . 2 i +1.2) -

(6.3) 
m.n +m.J+n 

~+1 - 2:m.nEJIo cm.n ~+m,)+n 2 i .21+1 

~+1 - Em.nEJIo d m.n ~+m.)+n 2 i +1.21+1 

where, (a
m

.
n

, bm,n' c
m

.
n

' d
m

.
n

} are constants and Mo is a fixed finite integer set 

describing the local structure of the scheme. For convenience, the summation 

2:m.nEJIo will be replaced by Em.n· 

By the use of multiple notations, scheme (6.3) can be written in a more 

compact form: 

(6.4) 
2 a EZ. 

An equivalent form of this formula is 

(6.5) 
2 a E Z. 

where, y := ("1' "2): "j = 0 or 1, i = 1, 2}. Thus, the scheme is interpolatory if and 

only if 
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(6.6) aa = da,O for all a E Z2. 

Scheme (6.3) is a 4-step scheme, or a scheme with four simple masks. 

That is, there are four formulae to calculate the refined control points and 

each control point is calculated by using one of the masks according to its 

relative position and its local topology. 

6.2.2. Basic Properties of the BSS 

From (6.3), the following properties of the scheme can be easily obtained. 

They are very similar to the properties of the curve generating DGL scheme. 

I. The algorithm is a weighted local averaging algorithm. 

zz. The scheme is a linear scheme. 

iii. The scheme is translation-and-rotation invariant (coordinate-free). 

iVa The Doo-Sabin's algorithm and the Catmull-Clark's algorithm are 

special cases of the algorithm. 

v. The algorithm can produce piecewise tensor-product polynomial 

surfaces. 

VI. Any uniform tensor-product type DGL algorithm is a special case of 
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this algorithm. 

VlZ. Multivariate box (cube)-spline algorithms are encompassed by this 

scheme. 

viii. A necessary condition for the scheme to produce continuous surfaces 

is that it reproduces any constant surface, that is, 

(6.7) 2:m.n am.n - 2:m.n b m.n = 2:m.n C m.n = 2:m.n d m.n = 1. 

Further properties of the algorithm are also studied. For instance, the 

necessary and sufficient conditions for the scheme to produce en surfaces 

were derived by several methods. The directional divided difference approach 

using matrix analysis and the generating polynomial method are just two of 

them. The former method will be discussed in section 6.4 as a means to prove 

the c 1 property of the 10-point scheme and the latter one was used to obtain 

the same result by Dyn, Levin and Micchelli [54]. Other studies about this 

algorithm can also be found in [12,13,28,40,51,85,88]. 

It is interesting to point out that the Interpolatory Subdivision Scheme 

(ISS) also belongs to this category. Such schemes for curves and surfaces have 

been analysed by Dubec [47], Dyn, Gregory and Levin [48,49], Dyn, Levin and 

Liu [53], Gregory and QU [69], Dyn and Levin [49], Dyn, Levin and Micchelli 

[54], and Weissman [121]. 
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In the case of ISS, one of the masks is the identity mask which maps all 

the control points of level k into level k+l, that is, pk E pk+l. This implies 

that the convergence of ISS is uniform. 

In the paper by Dyn and Levin [53a], the following special properties of 

ISS are obtained. 

Proposition 6.1. Let s be an ISS of the form (6.3). If s generates C" limit 

functions, then s reproduces 1t (the space of all bivariate polynomials of 
n 

degree < n). 

Proposition 6.2. Let s be an ISS of the form (6.3). If s generates C" 

limit functions, then there exists a (not unique) matrix BSS, s<,m) of order m+l 

such that for pk =: Sk pO, k > 0, 

Moreover, for any initial data of the form dmpo, g.,m) converges uniformly to 

C"-m limit vector-valued functions. 

Proposition 6.3. Let s be an ISS of the form (6.3) which reproduces 

1t • Then the following conditions are equivalent: 
n 

(i). s converges uniformly to C" functions. 

(ii). The matrix scheme g.,m), m = 0, 1. 2 •...• n. converges uniformly to C"-m 
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vector-valued functions for any initial data of the form dmpo. 

(iii). For any initial data, 1/2g-n+1
) converges uniformly to zero. 

In the next subsection, we will study a special ISS for the generation of 

surfaces using only one mask and its duals. 

6.2.3. The 10-point Interpolatory Scheme for Surfaces 

Here, a special interpolatory scheme, the IO-point scheme, is described in 

this subsection. One of the advantages of this scheme is that it can be used 

on both uniform and non-uniform triangular networks. This will be discussed 

in detail in section 6.5. The main property of the scheme is that it 

reproduces cubic bivariate parametric polynomials when the parameters are 

chosen properly. In addition to this, there is a free parameter t, which can 

be used as a control to manipulate the shape of the surface. 

The construction of the IO-point interpolatory scheme is, originally, 

motivated by the ideas described in [47] and [48]. The scheme is formulated 

in order to solve the problems of high accuracy surface fitting and the fast 

surface generation. Thus, our aim is to generalize the 4-point interpolatory 

subdivision scheme as described in [47,48] to surfaces. The scheme is so 

constructed that it preserves all its advantages. The main properties of the 

scheme, in addition to the properties of BSS, are interpolatory, shape control 

and reproductivi ty for cubic parametric polynomial surfaces when the 
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parameters are well chosen. 

The lO-point interpolatory scheme is defined by the following choice of 

the coefficients in (6.3): 

=1 

= b
10 

= 1/2 -2w -w -w 
, 1 2 3 

b_1,o = b = W 2,0 3 

bO,_l = b = W 1.1 2 

= c = 1/2 -2w -w -w 0,1 1 2 3 

c =c =c =c =W 
-1.-1 -1.1 1.0 1.2 1 

d = d = 1/2 -2w -w -w 
0,0 1.1 1 2 3 

d_1._1 = d 2,2 = W3 

where, Wj' I = 1, 2, 3 are three shape control parameters. 

Due to the 3-direction-symmetry property of the scheme, a simple way, 

which uses only a single formula (one mask and its rotations), to describe the 

algorithm is given below (Figure 6.2). Since the scheme is interpolatory, 

only the inserted values are to be evaluated. The formula for the inserted 

points is given by 
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(6.10) Po := 1/2{ Pe + Pf } + w
1

{ Pa +Pc +P
h 

+Pj - 2Pe -2Pf } 

+ W 2 { P b +P. - P - Pf} + W {p +P - P - P } 
I e 3 d g e f' 

where, 0 is the midpoint of the edge joining the vertices e and f in the 

parameter plane and wi' i = 1, 2, 3 are three shape controls. 

P 
g 

Figure 6.2. The 10-point scheme. 

In this process, formula (6.10) is used to evaluate all the surface values at 

the midpoints in the u-v parameter plane to produce a refined uniform 

triangulation. The triangulation of the refined control polyhedron is formed 

accordingly by the refined uniform triangulation of the u-v plane. Repeated 

applications of this process will therefore result in finer and finer control 
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polyhedrons which will finally converge to a smooth interpolatory surface 

provided that the parameters (wi} are chosen appropriately. This will be 

discussed in sections 6.4 and 6.5. 

From formula (6.10), it can be easily shown that the scheme has the 

following properties. 

t. The scheme is interpolatory. 

ii. The tension parameters (Wi} working along three mesh directions 

respectively. 

iii. The scheme reproduces linear surfaces for all (Wi}' Furthermore, it 

reproduces any bivariate cubic polynomial surface if (wJ satisfies the 

conditions 

Wi - (16t-9}/16 

(6.11) - -2(16t-9}/16 

W3 - (8-16t)/16· 

where, t is any real number. 

lV. If the tension parameters are chosen to be 

(6.12) 

then the scheme reduces to the Butterfly Scheme, which will be discussed in 
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section 6.4. 

v. The scheme has certain data-dependent shape preserving properties. 

vi. Under certain conditions, the scheme produces c1 surfaces. This will 

be shown in sections 6.4 and 6.S. 

6.2.4. The Butterfly Scheme 

The butterfly scheme is just a special case of the IO-point interpolatory 

subdivision scheme, where the parameters {Wi} are given by (6.12). Thus, in 

the scheme, there is only one free parameter w. The parameter w has an 

obvious geometric meaning. When w = o. the scheme has no effect on the 

control polyhedron (linear precision); when w = -1/16. the scheme reproduces 

cubic bivariate polynomials (cubic precision); when -1/16 < w < o. the scheme 

is justa convex combination of the above linear precision and the cubic 

precision schemes. 

The main advantage of the butterfly scheme over the IO-point ISS is that 

it uses only eight points instead of ten points and that the tension parameter 

w has an intuitive interpretation. Another important feature of the butterfly 

scheme is that if the initial data satisfy certain convex conditions, the scheme 

can produce smooth interpolatory convex surfaces. More about the scheme 

will be described in section 6.4. 
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6.2.5. The Tensor-product of OGL's Interpolatory Scheme 

Another ISS for surfaces is the tensor-product DGL's 4-point 

interpolatory scheme. On uniform triangular networks, the scheme is given by 

the following choice of the coefficients in (6.3): 

ao.o - 1 

bo.o - b1.0 - 1/2 + w t 

b 
-1.0 - b2.0 = -Wt 

Co.o Co.t - 1/2 + w 2 

(6.13) co._t - CO.2 
=-w

2 

do.o - dO.1 - d1.0 - d1.l - (1/2 +wt )(1/2 +W2) 

d -1.-t - d 2.2 d 2._t - d - w
t 

W
2 -1.2 

d-1.0 - d-1.l - d2.0 - d2.t - -wt(1/2 + w 2) 

do._t - d t._t - d O•2 d 1.2 - -w2(1/2 +w t), 

where, W 1 and W 2 are two tension parameters along two parametric directions 

respectively. 

The tension parameters W t and W 2 have obvious geometric meanings. 

When W t = 0, the generated surfaces are piecewise linear surfaces along one 

parametric direction. Similar result holds for w2' When Wi = w2 = 1/16' the 

scheme reproduces parametric bi-cubic polynomial surfaces. When 0 < Wi' W2 

< 1/16' the scheme is a convex combination of the above two schemes. 
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As a consequence of the results obtained in [27,48], we can conclude the 

following. 

Theorem 6.4. If the tension parameters (w.} are chosen such that 
I 

(6.14 ) 

then the scheme produces smooth interpolatory tensor-product type surfaces. 

Proof. The proof comes from a simple observation that the fundamental 

function tjJ(u,v) produced by the scheme on the cardinal data p~.j = 0;.0 0;.0 is 

just the product of the univariate fundamental functions ¢(u) and ¢(v). That 

is, 

(6.15) tjJ(u,v) = ¢(u) ¢(v) for all u and v. 

In fact, by simple calculations, we can prove that the control points 

satisfy the condition 

( 6.16) p~ . 
l.J 

pk pk for all i, j and k, 
; j 

where, (p~} IS the control polygon produced by DGL's scheme on the 
I 

cardinal data (o.}. This completes the proof. 
1.0 

A simple way to describe the scheme is to write it in a more compact 

form. In fact, the algorithm can be described by the following recurSlve 

relation: for all i, j E Z, k > 0, 

-163-



CHAPTER SIX: SUBDIVISION ALGORITll.WS BASED ON TRIASGULATIOf,'S 

( 6.17) P~~~1.2j - (1/2 + Wl)(P~.j + ~+l.j) - Wl(P~_l.j + ~+2) 

P~~~1'+1 - (1/2 + W )(p~+l. + p~H. ) _ W (PH + pH ) 
2 I • 21 I • 21+2 2 i. 2j-2 i . 2j+4 • 

Other properties of the scheme, such as approximation property and 

shape preserving conditions, can also be investigated. However, we will not 

discuss these properties in this thesis. The interested reader is referred to the 

papers [48,53a]. 

6.3. Convergence Theories about the BSS 

In this section, we discuss some of the methods and techniques used for 

the analysis of the uniform subdivision scheme. Although the results are quite 

similar to those obtained for curve generating schemes, the proofs in the 

surface case are much more difficult than that in the curve case 

[28,29,42,47,48,50,51,69,85,88,90,91,etc.]. 

6.3.1. Some General Results about Convergence 

There are several ways to analyse the convergent property of the binary 

subdivision scheme. Among the techniques are the generating function 

(polynomial) method introduced by Cavaretta, Dahmen and Micchelli (also see 

Dyn, Levin and Micchelli in [54]) in [28,29], difference and cross-dlfference 

of directional divided dlfferences method using matrix analysis used by 
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Gregory and QU [69] (which comes from the univariate matrix analysis [51]) 

and the junctional equation method employed by Micchelli and Prauzstch etc. 

in [42,86,88,101,102]. Here, we state some of the convergent and 

smoothness results about the BSS. 

Proposition 6.5 [29, ... ]. A BSS is a (fJ scheme if it is contractive. More 

explicitly, there exists a constant ° < M < 1 and some positive integer p, 

such that 

(6.l8) 

where 

(6.19) 

and 

(6.20) 'Y E {(O, 1), (1, 0), (1, I)}. 

Remark. (6.l8) is only a sufficient condition, it is not necessary. It can 

be shown that a necessary condition for (fJ convergence is that {El} converges 

to zero. 

Proposition 6.6 [28,53a, ... ]. The above scheme is a en scheme if all its 

corresponding n-th order divided difference schemes (there are a total of n+l 

such schemes since there are n+l possible combinations of the divided 

differences of order n along two different parameter directions) of the scheme 

are (fl schemes. 
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Proposition 6.7 [28,54, ... ]. Let sa' Sq be convergent BSS and their 

Laurent polynomials are denoted by a(z) and q(z) respectively. If for some 

<X E Z2\{O} 

(6.21) a(z) - (1 + z-a) q(Z)/2, for z E c2
• 

Then 

Proposition 6.8 [28,29, ... ]. Suppose a BSS converges for all initial data 

and the limit surface is not always trivial. Then its mask {aex: ex E Z2} 

determines a unique compactly supported continuous function f with the 

following properties. 

(i) 

(ii) 

Here, (i) is referred to as the functional equation associated with the mask 

Proposition 6.9 [53a, ... ]. Let f E en be a non-trivial solution to the above 

functional equation associated with the mask faa: a E Z2}. Then 

(6.23) It (R) E -z" 
n 
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where 

(6.24) iP := span{ f(. -/J): /J E Z2}. 

In the following sections, we will study the IO-point scheme and the 

butterfly scheme in detail. 

6.4. The Convergence Analysis of the Butterfly Scheme over 

Uniform Triangular Networks 

In this section, by using the matrix analysis of the dlfferences and the 

cross-differences of the directional divided differences, we analyse the cfJ and 

c1 properties of the butterfly scheme over uniform triangular networks. 

6.4.1. Introduction to the Butterfly Scheme 

The Butterfly Scheme, as discussed in the previous sections, is an 

interpolatory subdivision scheme which is defined over arbitrary triangular 

networks. When the initial network is uniform, its smoothness properties have 

already been investigated by several authors in [52,54,69]. Different 

techniques are employed to analyse the convergence properties of the limit 

surfaces. One such method involves the analysis of the generating polynomial 

of the scheme as described in the paper by Dyn, Levin and Micchelli [54]. 

Equivalently, by using the matrix analysis, we study its corresponding 

difference and directional divided dlfference schemes. This approach is a 
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generalization of the binary subdivision analysis for curves in [69]. Here, the 

main task is to show that all the directional divided difference schemes of the 

butterfly scheme are (fJ schemes in order to prove that the limit surfaces are 

c1 continuous. 

The analysis presen ted in this section is based on the uniform 

parametrization to the uniform triangular network. More explicitly, we assume 

that the initial surface triangulation consisting the given network is a uniform 

triangulation, that is, each face of the network is a triangular face and every 

vertex of it is of valency six. Thus, six and only six edges meet at a vertex. 

Under this assumption, the network is equivalent, topologically, to a uniform 

triangulation of a u-v parameter plane as shown by Figure 6.1. It is this 

property that makes the uniform (diadic) parametrization to be a proper 

parametrization. The use of uniform binary subdivision parametrization also 

simplifies the analysis. In order to prove that the surface is (fJ or c1
, we will 

show that any component of the limit surface is (fJ or C
1

• Thus, throughout 

the rest of the Chapter, we shall restrict our attention to discuss the function 

surfaces instead of three-component parametric surfaces. 

6.4.2. Mathematical Formulation of the Scheme 

The butterfly scheme is an 8-point interpolatory recursive subdivision 

algori thm defined as follows. 
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Let a, b, C, d, ... denote the vertices of a uniform triangulation of the u-v 

parameter plane. Suppose the values of a function F(u,v) are also given at 

these discrete points. These values are denoted by F , F
b

, F F, ... respectively 
a c. d 

(Figure 6.3). The scheme uses a formula to estiII1ate the value of F(u.v) at the 

midpoint of any edge of the triangulation in the u-v plane. The formula is 

given by 

(6.25) 

where, 0 is the midpoint joining d and e, w is a real number called the tension 

parameter. 

p 
c 

Figure 6.3. The Butterfly Scheme. 

The formula (6.25) is used to compute all the function values at all the 

midpoints of the triangulation in the parameter plane. Thus, function values 
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are now given on a refined triangulation which is formed by adding all the 

halving lines to the original triangulation. The use of midpoint subdivision 

means that the new triangulation vertices are created by a binary subdivision 

of the previous ones. This process defines one level of the recursion. In 

general, the recursion will define a new set of values at level k+l from an old 

set of values at level k. The piecewise linear interpolant on the triangulation 

to the values at level k is called the control polyhedron (control net) FA: of 

the recursion. The process is interpolatory since the values at level k are 

included in those given at level k+ 1. The surface of the scheme is thus defined 

as the limit surface (if it exists) of the control net sequence {FA:}. 

The scheme has the following properties. 

I. The sum of the eight coefficients is unity. 

ll. The scheme is exact for linear functions for all w. 

iii. The scheme is exact for cubic polynomials if w = -1/16, that is, it has 

cubic precision. 

IV. For general -1/16 < w < 0, the scheme is a convex combination 

of the linear precision scheme and the cubic precision scheme. 

V. The scheme is both local and linear. 
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For the purpose of analysis, the following notations will be used. The 

initial function values of the control net pfl are assumed to be given on the 

uniform integer grid {(i,j)/ (i,j) E Z2}. Then, at level k, the values 

(6.26) 

of the control net pk are given on the refined grid {(i2~k j2-le )j (i,j) E Z2}. 

The triangulation of the grid, which is used in the definition of the 

butterfly scheme, is taken along the directions (1, 0), (0, 1) and (1, 1) as shown 

in Figure 6.1. Using this notations, the butterfly scheme is then defined by a 

binary subdivision on the uniform grid as 

(6.27) 

P k+1 
2 · 2' , . } 

pk+1 
2 i +1.2) 

- F~. 
L} 

{ k pk pk pk } 
+w Pi-1.)-1 + i+1.)-1 + iJ+1 + i+2.)+1 

with pk+! and pk+1 being the duals (according to the local topology) 
2 i .2j+1 2 i +1.2)+1 

of the second equation. Also, the forward difference operators {..1;} along the 

grid directions are defined by 

k k k 
..11 P .. . - Pi+1.) Pi.) 

"} 

(6.28) ..12 p~J p~J+1 
Ie .- PiJ 

..13 p~J P~+1J+1 
k . - p ... 
I.} 
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6.4.3. CO Convergence Analysis-Difference Analysis 

In this subsection, we discuss the (fl property of the limit surface of the 

butterfly scheme. To this end, we will prove that the control net sequence {pk} 

is a Cauchy sequence for some properly chosen tension parameter w. 

Theorem 6.10. The sequence (pk} is a Cauchy sequence in (fl if 

(6.29) -0.1215 < w < 0.0740. 

Consequently, its limit P(u,v) is continuous. 

Proof. The proof that {pk} is a Cauchy sequence is a direct result of 

Lemmas 6.1 1 and 6.12. 

Lemma 6.11. For k = 0, 1, ·2, 3, .... 

(6.30) 

where 

ProQf. Let Err := \pk+l - pk\. Then, by definition, Err is a piecewise 

linear function. Thus its extremes can only be achieved at the vertices of 

the k+lst triangulation. Hence 
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(6.32) 

Here, 0 is some midpoint on the k-th triangulation on the parameter 

plane and p:+1 is given by (6.25). This completes the proof. 

Lemma 6.12. For k = 0, 1, 2, 3, ... , 

(6.33) 

where, ° < C(w) < 1 if condition (6.29) holds. 

Proof. By expressing the differences at level k+1 in terms of differences 

at level k gives, for w < 0, 

(6.34) 

and hence (6.33) holds for -1/12 < w < 0. 

The proof of (6.33) under condition (6.29) can be obtained by expressing 

differences at level k+2 in terms of differences at level k and then use the 

triangle inequality to bound Ek+2. For example, 

(6.35) Pk+2 pk+2 
4l+1.4j 4i.4} 

/ {
pk+l pk+ 1 } 2 {pk+ 1 + pk+l } 

- 1 2 2l.2J + 2l+1.2j - W 2l+1.2j+l 2l.2j-l 
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+w {pk+l + pk+l pk+l pk+l} pk+l 
2 i .2j+l 2 i +2.2j+l + 2 i -1.2/-1 + 2 i +1.2/-1 - 2; .2/ 

1/ {pk+l _ pk } +w {pk+l _ 2pk+l pk+l} 
- 2 2;+1.2/ ;./ 2; .2/+1 2;+1.2j+l + 2/+2.2/+1 

+w {pk+l 2pk+l pk+l } 
2; -1.2/-1 - 2 i .2/-1 + 2; +1.2/-1 • 

Writing the above control points at level k+l in terms of the control points at 

level k and arranging them in a proper combination, we obtain 

It is obvious that A
1
(w) < 1 if (6.29) holds. In a similar way, one can 

also prove the lemma. 

In fact, the constant C(w) is the infinity norm of a 14 x 14 w-matrix 

A(w). This matrix is defined explicitly by 

(6.37) A(w) .-

-b b 0 a 0 0 -b b 0 0 0 0 0 0 

b -b 0 a 0 0 b -b 0 0 0 0 0 0 

b 0 d d 0 b c b 0 0 0 0 0 0 

0 0 b c b 0 d d 0 0 b 0 0 0 

0 b 0 d d 0 b c b 0 0 0 0 0 

0 0 -b b 0 a 0 0 -b b 0 0 0 0 

0 0 b -b 0 a 0 0 b -b 0 0 0 0 

0 0 0 -b b 0 0 c 0 0 -b b 0 0 

0 0 0 b -b 0 0 c 0 0 b -b 0 0 

0 0 0 0 0 b c b 0 d d 0 b 0 

0 0 0 b 0 0 d d 0 b c b 0 0 

0 0 0 0 0 0 b c b 0 d d 0 b 

0 0 0 0 b 0 -b b 0 0 a 0 -b b 

0 0 0 0 0 0 b -b 0 0 a 0 b -b 
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where, a = 1/2• b = w. c = 1/2 +3w and d = -3w. 

Remark. Weaker <fJ conditions can also be obtained by applying the 

same technique for more subdivision levels. Since we are interested in the c1 

conditions, we will not discuss this further. 

6.4.4. C1 Analysis-the Directional Divided Difference Analysis 

In order to prove the c1 property of the limit surface F, the Cross 

Differences of the Directional Divided Differences (CDD for short) of the 

control net should be investigated. This process is similar to the Divided 

Difference analysis as described in [48,49,50]. 

First, we gIve the definition of the CDD at the k-th level along one 

direction (there are three such directions in all, see Figure 6.4). Since the 

three directions are mutually symmetric, only one of them is studied here. By 

symmetry, the results are also true for the other directions. 

The eDD along direction 1 and 2 at level k is defined by 
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p~. T"""---_. pic 
'J+l i+1J+l 

p~. '.J 

p~ . 
'.J 

pic 
L.-__ .....I i+1J 

pic 
·+1.1+2 

pic 
i 1'------1.& 

Figure 6.4. The CDD. 

pic 
1+1.1+1 

From (6.27), it can be shown that the CDn values satisfy the uniform 

subdivision scheme defined by the following refinement equations: 

CIc+1 
2 i .21 

(6.39) 
CIc+1 2 CIc +2wClc 2wCIc 8wCIc + 2wCIc 

2 i .21+1 = - w i-1J i-1J-l - iJ+l - iJ I+1J+l 
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22 

23 

24 

Figure 6.5. The CDD scheme. 

Let ck := (C~, c~, ... , C~4)t denote a local labelling of the CDD values 

defined on the u-v plane centred on the point with index 15 as shown in 

Figure 6.5. Thus C~5 denotes C~.j on the k-th level mesh and C~;l denotes 

C~~\j on the k+lst level mesh. Then, from (6.39), we obtain 

(6.40) Ck+1 = B(w) c~ 

where, B(W) is a w-matrix of order 24 x 24 defined by (6.41), where, a = 

2w, b = -2w, C = 4w, d = -4w, e = -8w and f = 1+8w and the omitted 

elements in (6.41) are zeros. 
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(6.41) B(w):= 

o 0 
o a 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

0 a f 
e 
a 

a d 
b 
a 

a 

0 0 
b 

f 

a 
d 
b a 

a 

0 d a 00000000000000 
a b 

d a 

f a 
b e 

a f 

f a 
b e 

e b 
a f 

a d 

e b 
a f 

b a 
a d 

a 

b a 
a d 

a 

a 

d a 
a b 

a 

d a 
a b 

d a 

f a 
b e 

f a 
b e 

f a 
e b 
a f 

e b 
a f 

a d 
b a 
a d 

a 

a 

a b 
d a 
a b 

d a 
f a 
b e a 

f a 

We have chosen the order of ck of sufficient order such that 

(6.42) 

contains all possible types of eDD terms at level k+2 if the relation is 

applied at every vertex at level k. Therefore, for k = O. 1. 2 •...• we can easily 

obtain 

(6.43) 

where 

(6.44) C
d

k := max _ max .. {I2k .£1 .£1 F~ .1}. 
m~n IJ m n I.J 

-178-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS 

It will be shown later that our c1 analysis is mainly based on this relation 

about the eDD. Further studies of B(w) leads to the following result. 

Lemma 6.13. The iteration matrix B(w) has the properties: 

(6.45) IIB(w) II > 1 for all w, 

and 

(6.46) 1I.a2(w) II < 1 for -1/12 < w < o. 

Proof. From (6.4 1), we have 

(6.47) II B(w)1I > 12wl + 11+8wl + l-4wl +12wl 

_ 18wl + 11+8wl > 1. 

Furthermore, multiplying B(w) by itself, numerical results indicate that 

(6.46) holds. To show that -1/2 is the exact lower bound of w, the explicit 

form of II B2(W) II (which is a piecewise quadratic of w) is calculated for for w 

near -1/12' Thus, for w near -1/12, 

(6.48) 

2 = -4w +96w. 
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Hence, we have, when w is close to -1/12, 

(6.49) IIIr(w) II < 1 

<=> -4w +96w2 < 1 

<=> (-12w -I)(-8w+l) < 0 

<=> -1/12 < w < o. 

This completes the proof. 

Remark. The explicit form of IIIr(w)1I can be obtained since we know 

B(w) is given by (6.41). 

Now we study the Directional Divided Difference function of the control 

net. As mentioned previously, due to symmetry, we need only to investigate 

the divided differences in one direction. 

Let d~ be the piecewise linear interpolant to the divided difference data 

(2k LtlF~) at the k-th level diadic points. Then, the following Lemma 6.14 

and Theorem 6.15 will show why the Cross Differences of the Directional 

Divided Differences are preferred to the ordinary differences of divided 

dlfferences along one direction. 

LeOlma 6.14. Suppose that -1/12 < w < 0, then for k = 0, I, 2, 3, ... , we 

-180-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS 

have 

(6.50) 

Proof. The result comes from the direct calculation of the butterfly 

scheme and a proper arrangement of the terms in order to obtain the desired 

resul t. The factor 1 + 16\w\ is not important to the analysis which will be 

shown clearly in our analysis later. For example, by definition we can obtain 

the following estimates, where the parameters (u~, v~) := (i2-k
, j2-

k
). 

+ 2Wpk -4wpk; . 1 +2wP~+1· l}· 1-1.j-l .}- I J-

By the definition of C:' see (6.44), we have 

(6.52) Idk+1(Uk Vk) - dk(U~ v~)\ 
1 i' j 1 I' } 

\ \ {\ k pk pk +pk I < 2w P iJ+l - i+1J+1 - IJ I+1J 

\ 
A: pA: pA: +pA: \ + Pi J - i+1J - i+1J+l i+2J+l 

\ 
A: _ A: _ FA: pk \ } + P iJ F i+1J iJ-l + i+1J-l 
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In the same way, we can obtain 

(6.53) 

(6.54) 

(6.55) 

Therefore, we have (since d:+1 and d~ are piecewise linear functions): 

(6.56) 

< (1+ 16Iwl)c:. 

This completes the proof. 

From (6.43), Lemmas 6.13 and 6.14, we can conclude: 

Theorem 6.15. The Directional Divided Difference function sequence {d~} 

is a Cauchy sequence in cO, thus it converges uniformly to a continuous 

function d
1
(u,v) if 

(6.57) -1/12 < w <0. 
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This result will be used to prove the c1 convergence property of the 

scheme. 

6.4.5. C1 Convergence of the Butterfly Scheme 

We can now prove our main result about the smooth convergence of the 

butterfly scheme. 

Theorem 6.16. The butterfly scheme produces c1 surfaces if (6.57) holds, 

that is, if -1/12 < w < o. 

Proof. The proof of the theorem comes directly from Theorem 6.15, the 

symmetry of the butterfly scheme and the following lemma. 

Lemma 6.17. If the directional divided difference function sequence (d~} 

converges uniformly to a (fJ function da , then the butterfly scheme produces 

a c 1 function F(u,v). Furthermore, we have 

(6.58) D~(u,v) - da(u, v), 

where D is the directional derivative operator along the direction a, a E 
, a 

{(O, 1), (1, O)}. 

proof. Without loss of generality, we assume that a = (1, 0), the u-axis 

direction and that the initial data is the cardinal data, that is, 
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(6.59) 

Then, D a = D(l.O) and the function d
1
(u,v} has a local support contained in 

[_3.3)2. Moreover, for k = 0, 1.2 •... , we define, 

(6.60) G\u.v} .- f d~(x.v) dx, 

where, a := -3, which is a proper point outside the support of the function 

d
1
(u.v}. Hence, from the definition of the uniform convergence and the local 

support properties of the scheme, we have 

(6.61 ) Lim ..... oo d(u.v) - r Lim ..... oo d~(x.v) dx = ! d,(x.v) dx 

.- G(u.v}. 

Hence, G(u.v} is differentiable with respect to u. We can also prove that 

{pk(U.V}} converges uniformly to G(u.v}. This means that P(u.v}, the limit of the 

control polyhedrons, is also differentiable with respect to u. The convergence 

can be shown by the following inequalities, where, k '2-k u. :=, . , 

(6.62) IIp k(u.v) -G(u.v)1I < II pk(u.v) - G\u.v)1I + II Gk(u.v) - G(u.v)1I 

The right hand side can be estimated respectively by: 

(6.63) IIF '(u.v)--G'(u.v)1I - II i'D .. (F'(x.V)dX- [ «x.v)dx)1I 
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--> 0 as k --> infinity. 

By hypothesis, 

(6.64) I\G
k
(u,v) - G(u,v)1\ -> 0 as k goes to infinity. 

Thus, we complete the proof of the lemma. 

Note that this lemma can easily be extended to any uniform subdivision 

scheme. In fact, in a similar way, we can prove the following theorem. 

Theorem 6.18. If two of the different directional divided difference 

function sequences {d~)i=1.2' (Vi E {(O, 1), (1, 0), (1, I)}, converge uniformly to CJ 

functions {d
a

), then the original scheme is a c1 scheme. Furthermore, we have 

(6.65) 

Remark. Higher order continuity of the surfaces can also be analysed 

similarly by using Higher order Cross-Differences of Directional Divided 

Differences. 

6.5. Convergence of the 1O-polnt Scheme 

In this section, we generalize the convergence results about the butterfly 

scheme over uniform triangular polygons to the lO-point interpolatory 

-185-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIAVGULATIOXS 

subdivision scheme. For simplicity, the notations used in the previous section 

such as Ek (6.31) and c~ (6.44) etc. will also be used in this section. 

6.5.1. CO Convergence of the scheme 

Suppose, like in the analysis of the butterfly scheme, that the initial data 

(real numbers) is given on the uniform grid which are denoted by (F~ o} for all 
I.) 

(i,j) E Z2. Then, the 10-point subdivision scheme is defined by (6.3) with 

masks given by (6.9). It can also be described in a similar form as (6.27). 

The Difference Operators {Ao} and the Cross Differences of Divided 
I 

Differences {c~ o} will be introduced as In (6.28) and (6.38) respectively. 
I.J 

similar to the matrices A(w) and B(w) defined by (6.37) and (6.41), can also 

be introduced. 

We now prove some of the cO convergent results about the 10-point 

ISS. In particular, conditions on the parameters of the scheme are given 

explicitly to quarantee the generation of smooth surfaces. 

Theorem 6.19. The 10-point interpolatory scheme is a cO scheme if 

(6.66) 

A sufficient symmetric solution to this condition is given by 
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(6.67) 

A simple solution to (6.66) is provided by 

(6.68) 

IWII < 1/30 

IW21 < 1/18 

IW31 < 1/18' 

Proof. The proof comes from a direct estimate of the the differences of 

the control polyhedron at two adjacent levels. That is, the difference of pk+1 

and pk. It can be shown that the difference is bounded by the maximum 

difference, Ek, defined by (6.31). In fact, we have 

(6.69) 

By expressing the directional differences defined by (6.28) recursively, 

we can show further that 

(6.70) < M(w ,w ,w )Ek, for all k = 0,1, ... 
- 1 2 3 

where 

Hence, the control polyhedron sequence {pk} is a Cauchy sequence and 

therefore converges to a continuous surface if (6.66) holds. This completes 

the proof. 
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Remark. The condition (6.66) is a very simple condition although better 

results can also be obtained by applying the same technique for more 

iteration levels. 

If the parameters {wJ satisfy condition (6.ll), then we can obtain the 

following cO convergent result about the cubic precision scheme: 

Theorem 6.20. The cubic precision scheme is a cO scheme if: 

(6.72) 1/2 < t < 37/64· 

Assuming w = -2w and by using the same techniques as in Lemmas 
2 1 

6.11 and 6.12, other sufficient cO conditions rather than condition (6.66) 

can be obtained. One of them is given by 

(6.73) 

where, the iteration matrix A(w
1

,W
2
,W) is defined by (6.74), where, a := 1/2• b =: 
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-b b -f a f 0 -b b 0 0 0 0 0 0 
b -b f a -f 0 b -b 0 0 0 0 0 0 
g 0 d d 0 b c b 0 f f 0 0 0 
f f b c b 0 d d 0 0 g 0 0 0 
0 g 0 d d 0 b c b 0 f f 0 0 
0 o -b b -f a f 0 -b b 0 0 0 0 
0 0 b -b f a -f 0 b -b 0 0 0 0 
0 0 o -b b 0 -f c f 0 -b b 0 0 
0 0 0 b -b 0 f c -f 0 b -b 0 0 
0 0 f f 0 b c b 0 d d 0 g 0 
0 0 0 g 0 0 d d 0 b c b f f 
0 0 0 f f 0 b c b 0 d d 0 g 
0 0 0 0 b f -b b 0 f a f -b b 
0 0 0 0 0 0 . b -b 0 f a -f b -b 

In next subsection, we will study the smooth convergence property of the 

scheme. 

6.5.2. The C 1 Convergence of the Scheme 

On applying the same techniques and analyses as used in section 6.4, we 

can obtain the following c 1 convergence results about the 10-point 

interpolatory subdivision scheme over uniform triangulations. 

Lemma 6.21. Suppose 

(6.75) 

Then, the CDD of the 10-point scheme satisfy the following recurrence 

relation (7.76), where, the parameters w and v are defined as 
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Ck+1 
2 · 2· I • .J 

Ck+1 
2 i +1.2} 

- 2WCk
i _ 1} -(4w-2v)C~ I) 1 +2vC~ . +(1+8 )Ck 2 k 

• 1- • - 1.}+1 Wi.) + WCi.}_l 

+2VC~+1.}+1 +2vC~+1.} 

- (2w-2v)C~_1.}_1 - 8wC~.) -(2w-2v)C~.}_1 

+(2w-2v)C~+1 .+1 -(2w-2v)C~ . 
I .J 1+1.J 

C~~\}+1 - -(2w+2v)C~ 1· + (2w-2v)C~ . - (2w+2v)C~. 1 
1- .J 1-1.J-l l.J+ 

- 8WCk
i

. + (2w-2v)Ck 

.J 1+1.1+1 

Ck+1 _ 
2 i +1.2}+1 2VC~_1 . + 2v C

k
i 1· 1 + 2wC~ .+1 + (1+8w)C~ . 

I J - J- lJ lJ 

+ 2vC~. 1 -(4w-2v)Ck +2wC
k 

z.)+ i + 1.}+ 1 1+ l.j 

From this Lemma, we obtain 

Lemma 6.22. Suppose (6.77) holds, then 

where, B(w,v) is a (w,v)-matrix of order 24 x 24 defined by (7.79) and the 

parameters are defined as: a:= 2w, b := -2w+2v, c:= 2w-2v, d := -4w+2v, e := 

-8w, f := 1+8w, g:= 2v and the omitted entries are zeros. 
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(6.79) B(w.v).-

g g 0 a f g 0 0 d a 0 0 0 0 0 o 0 0 0 o 0 000 
0 a e b c b 
0 g g a f g d a 
0 a d g f a g g 
0 b c b e c 
0 a d g f a g g 
0 b c b e c 
0 g g a f g d a 
0 c e b a b 
0 g g a f g d a 
0 c e b c b 

0 g g a f g d a 
0 a d g f a g g 

0 b c b e c 

0 a d g f a g g 

0 b c b e c 

0 a d g f a g g 

0 c e b c b 

0 g g a f g d a 

0 c e b c b 

0 g g a f g d a 

0 a d g f a g g 

0 b c b e c 

0 a d g f a g g 

Here, as in section 6.4.5, we have chosen the order of ck of sufficient 

order such that 

(6.80) 

con tains all possible types of eDD terms at level k+2 if the relation is 

applied at every vertex at level k. Therefore, for k = O. 1. 2 •.... we can easily 

obtain 

(6.81 ) 

where, the c~ is defined by (6.44). 
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l&mma 6.23. The iteration matrix B(w,v) has the following properties: 

(6.82) II B(w, v) II >1 for all (w, v) E r 

and 

(6.83) IIlf(w,v) II < 1, w < 0 and w and v are sufficiently small. 

More explicitly, by using computer experiments, we obtain an explicit 

condition for (6.83): 

(6.84) (w, v) E D
1
. 

The region D1 is depicted in Figure 6.6. 

v10-2 

-11 0 1 W 10-2 

-1 

-2 

-3 

-4 

-s 

-6 

-7 

-8 

-9 

-10 

-11 

Figure 6.6. The c1 convergence region Qr 
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To prove the c1 property of the scheme, the Directional Divided 

Differences of the scheme are to be investigated. As a result, the following 

lemma is needed. The proof of this lemma is the same as that of Lemma 6.14. 

Lemma 6.24. Suppose that condition (6.75) holds, then, for k = 0, 1,2, 3, 

... , we have 

(6.85) \ d~+1 - d~\ < (1+16\w\ + 16\v\) c~. 

From Lemmas 6.22, 6.23 and 6.24 and Theorem 6.20, we can conclude 

our c1 convergence about the 10-point scheme: 

Theorem 6.25. The 10-point interpolatory scheme produces c1 surfaces 

over uniform triangulations provided that conditions (6.75) and (6.84) hold. 

Remark 1. This condition is only a sufficient condition for the scheme to 

produce smooth surfaces. Better conditions may be obtained by studying the 

recurrence relation (6.76) at more levels. 

Remark 2. Condition (6.75) is used to quarantiee the existence of the 

recurrence relation of the CDD (6.76). Thus this condition is vital to our 

analysis. 

To end this subsection, we give an explicit approximate solution to the 

sufficient c 1 condition (6.83). 
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An simple approximation to D] is D~, which is small region within D] 

bounded by four straight line segments {Ii}' i = 1, 2, 3, 4. These lines are given 

explicitly by: 

w + 7v = 0 

(6.86) 
1

2
: 8 (w + 0.07) - 3(v - 0.01) = 0 

13: (w + 0.10) + (v + 0.07) = 0 

14: lOw - 7v = O. 

So, an easy solution to (6.83) is that w and v satisfy the following 

linear inequalities: 

(6.87) 

w =1= 0, w + 7v < 0 

8 (w + 0.07) - 3(v - 0.01) > 0 

(w + 0.10) + (v + 0.07) > 0 

lOw -7v < O. 

The region D~ is depicted in Figure 6.6a. 

For the cubic precision scheme, where, w = t - 9/16 and v = 1/2 - t, 

condition (6.83) is satisfied if the shape control parameter t is chosen such 

that 

(6.88) 49/100 < t < 54/100. 

This condition is just the thick lines within the region D] and D; depicted in 

Figure 6.6 and Figure 6.6a respectively. 
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-11 

-1 

-2 

-3 

-4 

-s 

-6 

-7 

-8 

-9 

-10 

-11 

Figure 6.6a. The c1 convergence region D~. 

Some graphic examples produced by the scheme with different 

parameters will be given at the end of the this Chapter. 

6.6. The 1G-polnt Scheme over Non-unlfonn Triangulations 

In this section, we study the 10-point scheme over non-uniform 

triangulations. Our main result is that the limit surface is smooth even at 

the extraordinary points provided that the scheme is modified properly at 

these points. In particular, these results are valid for the butterfly scheme. 
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The (fl and c1 analyses of the scheme here are different from the previous 

analyses of the scheme over uniform data. In fact, the analysis to be presented 

here is an extraordinary point analysis. The Blocl-Circulant Matrix theory is 

used here. This technique is quite suitable for the non-uniform analysis. 

6.6.1. Generalization of the Scheme to Arbitrary Triangulations 

In section 6.5, we studied the IO-point scheme over uniform 

triangulations in detail in which the uniform binary parametrization is used. 

However, since non-uniform triangular control polyhedrons often arise in 

practice, it is significant to investigate the behaviour of the scheme over 

non-uniform triangulations. 

From its construction, we know that the scheme can be used to generate 

surfaces over arbitrary triangular networks. This can be done by introducing 

some local schemes only at the Extraordinary points (E-point) so that the 

E-points can be isolated by locally regular data. An E-point is a control point 

to which N edges (N * 6) of the control polyhedron incident. Otherwise, the 

vertex is called an ordinary point. 

Depending on the local topology (more explicitly, the valances of the 

E-points), the modified IO-point scheme is defined as follows. At any 

ordinary point, the IO-point scheme is applied. However, at the near 

extraordinary points, some local schemes are used which are hoped to 

produce smooth surfaces. For each recursion, the scheme refines the control 
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polyhedron but does not introduce any more E-points. Hence, the E-points can 

be isolated by locally regular data. Thus, the convergence analysis of the 

modified scheme becomes an extraordinary point analysis since we know that 

the scheme produces c1 surfaces everywhere except at the E-points. 

Consequently, we will focus our analysis on these extraordinary points. 

For simplicity, we assume that at regular points the parameter {w.} 
I 

satisfy condition (6.12), that is, the scheme reduces to the butterfly scheme. 

However, the results are still true for the 10-point scheme with parameters 

{w.} satisfying (6.75) and (6.83). 
t 

The details of the scheme at an E-point will be given in the next 

subsection. 

For the purpose of our analysis, the following notations are used 

throughout this section. 

n: the indicator of the E-point, (n+l) is the valency of the point, n = 2, 3, ... ; 

k: the subdivision level indicator, k = 0, 1,2 ... ; 

i: a cyclic indicator, i = 0, 1, 2, ... , n-1, n; 

V, Pi' Q;, R; ... : the control points near an extraordinary point, say, vertex V at 

level k, note, V k+
1 = vk = v for all k; 
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Pi' qi' ri' ••• : the refined control points near an extraordinary vertex v (at level 

(k+l»); 

A: the local subdivision matrix (square) of order 3(n+l)+I; 

POi' vJ the eigenvalues and their corresponding eigenvectors (generalized 

eigenvectors) of A; 

Ai' i = 0. 1.2 •... n: matrices of order 3 x 3; 

C
i
, i = 0, 1, 2, ... (n-l), n: basic subdivision matrices of order 3 x 3; 

pk: control point vector of length 3(n+l)+1 at level k which will be defined 

explicitly in the context later; 

Wi' w, t: (local) shape control parameters. 

6.6.2. Formulation of the Scheme at an Extraordinary Point 

The local scheme at an extraordinary point is constructed according to 

its valance. Before describing the modified scheme, we introduce some 

conventions. In the following formulae, the index i is a cyclic integer in the 

range i = 0, 1,2, ...• n-l, n, that is, 

-198-



CHAPTER SIX: SUBDIVISION ALGORITHMS BASED ON TRIANGULATIONS 

(6.89) Pi := Pi' if and only if i = j mod(n+l), j = 0, 1, 2, "0, n. 

It is also assumed l'n I h h case sc erne (n - 2) t at the cubic precision 

parameters are used. That is 

(6.90) 

w := 1/2 - 2w - w - w = t 
4 1 2 3 

t: shape parameter (local). 

Note that, for any real number t, 

For simplicity, we assume also, without loss of generality, that the initial 

data is locally uniform except one extraordinary point v and that Pi' Q; and 

R. denote the control points at level k and 
I 

r. denote the 
I 

corresponding refined control points. In fact, this situation can be achieved 

locally after the first subdivision. 

Case 1. n = 2, valency = 3. 

In this case, there are several alternative schemes that can be used. One 

of them is described by the following (Figure 6.7). For i = 0, 1, 2, ... , n-l, n, 
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:= w .. v + (W 1+W .. ) P,. + (W 1+W3) Q,. + W
2 

R,. + W P + w R 
1 ;+1 3 i+1 

(6.92) 

Figure 6.7. n = 2. 

Case II. n > 3. valency > 4. 

In this case, the scheme is just the butterfly scheme. That is, using the 

butterfly formula everywhere. Since in this case the scheme also produces c1 

surfaces (to be proved later), it is not necessary to construct more complicated 

schemes at the E-points although some other schemes may also be used. In 

fact, a cubic precision scheme can be constructed but the the coefficients of 
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the formulae are quite complicated. 

The scheme is like this. Applying the butterfly scheme near the 

extraordinary point v, we obtain the following subdivision formulae (Figure 

6.8). 

(6.93) 

where, w is the (local) tension parameter and 

(6.94) w
2

:= -2w. 

R -, 
.,+-~ 

. .. P ;+2 r7":i+71----::111:--------~ 

Figure 6.8. n > 3. 
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6.6.3. The Subdivision Matrix at the E-point 

Writing (6.93) in a matrix form, we obtain: 

Pj 

(6.95) qj 

rj 

1/2 0 

- 1 0 

1/2 w 

w 0 

+ 0 0 

W 0 

w 0 

+ 0 0 

o 0 

w 

0 • 

w
2 

0 

0 • 

0 

0 

0 • 
0 

Pi W
2 

0 0 

Q; + 0 0 0 

R. 1/2 w 0 , 

P. ,+ w
2 

0 W 

Qi+ + 0 0 0 

Ri+2 
W 0 0 

P. 1 ,- 1/2 

i-I + 000 ·V 

R. 1 ,-

P i+1 

;+1 

Rj+1 

P· 2 ,-
• Q. 2 ,-

R· 2 ,-

From this expression, we introduce the following basic matrices: 

(6.96) 

1/2 0 w 

Co := 1 0 0 , 

1/2 W w2 

w
2 

0 W 

C
3

:= 0 0 0 

wOO 

and the control point vectors: 

w2 " 0 

C
1

:= 0 0 0 

c 0-

4 0

-

1/2 w 0 

wOO 

000 

wOO 
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and 

Here, pk+1 and are vectors of length 3(n+l}+1. Thus, the 

subdivision process at the E-point can be written in a more compact form: 

(6.99) 

where, A is the local subdivision matrix. More explicitly, the matrix is given 

by 

1 0 
(6.100) A.-

a A' 

and a is a vector of length 3(n+ I}, and A' is a block circulant matrix defined 

by 

(6.101) A':= B-ciTC( Ao' AI' A 2 • ...• An} 

A A 
n-3 n-2 A A 

n-1 n 

......................................................... 

A2 A3 A4 As 

Al A2 A3 A4 

and {A) i = O. 1, 2. """' n-l. n are some 3 by 3 matrices given explicitly 

below. 
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Similar results hold for n = 2 (valency = 3). In fact, in this case, we have 

Wl+W4 w l+W3 w
2 w l 0 w3 

(6.102) A .- 1 0 0 A .- 0 0 0 0·- , 1·- , 
W4 Wl W2 W4 Wl W3 

W
l 0 W

2 

A2 := 0 0 0 

2Wl 0 W3 

For n = 3. (valency = 4), {At} are given by 

Ao .- Co .-

Al 
.- c

l (6.1 03) 
.-

A2 .- c
2 + c

4 .-

A3 .- C. .- 3 

For n > 4, {A) are given by 

Ao .- Co .-

Al .- Cl 

A2 .- C
2 (6.104) 

.-
A. .- 0, for i = 3. 4. 5 •...• n-2 , 
A .- C 3 n-l .-

A .- C4 • n .-

Now, we have constructed all the subdivision matrices {A.} upon which 
I 

the properties of the limit surfaces depend. In the following subsections, we 

will study the convergent properties of the modified schemes at the E-point. 
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6.6.4. The Spectrum Analysis of the Subdivision Matrix 

In order to study the (fJ and c1 properties of the 10-point scheme over 

arbitrary triangulations, it is sufficient to prove that the limit surfaces of the 

scheme are (fJ or c1 at the extraordinary points since the limit surfaces are 

c 1 everywhere else provided that the tension parameter w satisfies 

(6.105) -1/12 < w < o. 

In much the same way as in Chapter 5, it can be shown that the 

eigen-properties of the subdivision matrix A playa very important role in 

the (fJ and c l analyses. Hence, we first study the eigen-properties of A. It 

should be stressed that its eigenvalues and their corresponding eigenvectors 

can be evaluated analytically since the matrix is a Blocl-Circulant-Matrix 

composed of 3 x 3 sub-matrices, therefore these eigenvalues are roots of cubic 

polynomials hence they can be obtained analytically. 

Let the eigenvalues and their corresponding (generalized) eigenvectors of 

A be denoted by {Ai' Vi}' where, IAil > IAi+11 for all i. Then, we can obtain the 

following result: 

Theorem 6.26. The subdivision matrix A has the following properties: 

(6.106) Al = 1, v l = (l,l, ... ,I)t and 
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(6.107) 1;.;\ < 1, for all i = 2, 3, ... , 3n+3, 3n-t4 

if 

(6.l 08) 
0.3125 < t < 0.6000, for n = 2 

-1/12 < w < 0, for n > 3. 

Furthermore, we have 

if 

0.5275 < t < 0.5500, for n = 2 
(6.110) 

-1/12 < w < 0, for n > 3. 

Proof. This theorem can be proved by direct evaluation. 

From this theorem, we will establish our lfJ and c1 convergence analyses 

in the next subsection. 

Remark. The eigenvalue ;'2 is a double root of A and has two linearly 

independent eigenvectors V2 and V3• This can be shown clearly by using 

Block-Circulant matrix theory or Foun'er Transform technique. 
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6.6.5. The Convergence Analysis 

In this section, We will prove that the limit surface has tangent plane 

continuity at the E-point. Thus, the surface is smooth everywhere. Firstly, 

from Theorem 6.27, we can obtain a (fJ convergence result: 

Theorem 6.27. The limit surface is (fJ if: 

0.3125 < t < 0.6000, for n = 2 
(6.111) 

-1/12 < w < 0, for n > 3. 

Proof. The proof of this is almost the same as that of Theorem 5.4 1n 

Chapter 5. The details are omitted here. 

For the c1 convergence, we have the following: 

Theorem 6.28. The limit surface is c1 if 

0.5275 < t < 0.5500, for n = 2 

(6.112) 
-1/12 < w < 0, forn > 3. 

To prove this result, the following Eigen-properties of the subdivision 

matrix are needed: 

Theorem 6.29. The limit surfaces of the interpolatory scheme is c 1 
at an 
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extraordinary point v, that is, it has a unique tangent plane at v, if the 

subdivision matrix A has properties: 

(i). Al = 1 is a simple eigenvalue and VI = (I, I, I, ... , I, l)t; 

(6.113) 

(iii). IAil < A2, i = 4, 5, ... , 3n+4. 

It can also be shown that a necessary condition for the limit surface to 

have a unique tangent plane at the extraordinary point is: 

(i). Al = 1 is a simple eigenvalue and VI = (1, 1, I, ... , I, l)t; 

(ii). there exists an integer No > 3 , such that: 

(6.114) 

Proof. We just prove the sufficient conditions. Suppose (113) is satisfied. 

So, from the subdivision relation (6.99), we have: for k > 0, 

(6.115) 

where, for general data, <a, fJ> =1= O. 

As in Chapter 5, we can prove that any well defined tangent plane of 

the limit surface near to v, say, at point Ql' has the form 
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(6.116) 

Hence, we have 

(6.117) 

This means that all the tangent planes which are well defined near the 

E-point V converge to the unique plane span {a. Pl. That is, the limit surface 

has a tangent plane at v and the tangent plane varies continuously at the 

E-point. This completes the proof. 

Remark 1. Since the scheme is interpolatory, Theorem 6.29 can also be 

proved by using Directional Divided Difference method or adapted 

parametrization technique. 

Remark 2. The necessary conditions(6.114) can be easily proved. These 

necessary conditions are still true at regular points. 

Remark 3. It can be shown that conditions Limk oomIJXl . {lLt F~.I} = 0 -+ J.m m t.J 

and Lim max. {12k Lt ~ F~.I} = 0 are necessary conditions for the 10-point 
k-+OO l,j,rr'*n m n I.J 

scheme to produce c1 surfaces over uniform data. In fact, this is true for any 

uniform subdivision schemes. 

6.7. Conclusions 

In this Chapter, we have studied the subdivision algorithms based on 

triangulations. The following results are obtained. 
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1. The butterfly scheme produces c1 surfaces over uniform triangular 

control nets provided that -1/12 < w < o. 

2. The 10-point interpolatory scheme is introduced and explicit sufficient 

conditions for it to produce cO and c1 surfaces are also given. A simple 

sufficient c1 
condition is that the parameters w and v should lie in the 

polygonal region 0: depicted in Figure 6.6. 

3. The cubic precision scheme produces smooth surfaces if the shape 

control parameter t satisfies 49/100 < t < 54/100. 

4. The cubic precision scheme is always recommended since its 

approximation order is four instead of two. Hence it might produce better 

results. Another reason for this is that it has the potential to produce even 

smoother surfaces [53a]. Our graphics also show that this scheme produces 

very nice surfaces. 

5. The 10-point scheme over non-uniform data is investigated and it is 

proved that the limit surfaces are smooth everywhere provided that the 

parameters are chosen appropriately. 

6. The method, Divided Difference and Cross Difference of Directional 

Divided Differences analyses, can also be used to study the higher order 

continuity of the surfaces generated by (uniform) subdivision algorithms. The 

only difference is that higher order Cross Differences 0/ DIrectional Divided 
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Differences should be studied and this process is much more complicated 

than that of our c 1 analysis. 

7. The Extraordinary Point analysis is still valid for other subdivision 

algori thms. 

6.8. Graphic Examples 

Here, we present some graphic examples of the lO-point subdivision 

algorithm with different parameters. The surfaces are plotted by Nichlet Drum 

Plotter at Brunei University, UK. 1988-1990. The software used to produce 

surfaces on a rectangular grid and hence the triangulation along the (1,1) 

direction is unfortunately not displayed. 

r'O 
1.9 1.9 

I.S 
I .7 1.7 

I .2 
I .~ I .~ 

.8 
1.3 1.3 

.1 
1.1 

1.9 

1.7 

I .~ 

I.) 

1.1 

).0 

2.0 

I.Q 

Figure 6.9. Butter Jly scheme. the cardinal Junction. w = -1/16. k = O. 1. 2, 3. 
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? }, :2 ~ 
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o 0 0 0 0 0 0 
011'10 ., 0 W') 0 0 . .. ~...: ~ ~ 

~ 

-;-
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';' 

~ 
';' 

';' 

'" I 

Figure 6.10. Cubic precision scheme with t = 0.40, 0.50, 0.53, 0.62, k = 3. 
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oil: 0 

on 

o 
If' 

Figure 6.11. Cubic precision scheme with t = 0.52, k - 3. 

Figure 6.12. Cubic precision scheme with t = 0.52, k = 3. 
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Figure 6.13. 10-point scheme, with w = -0.06, v = -0.06 k - 3. 

... N 0 ~ ~ ~ 
N N N ... 

Figure 6.14. 10-point scheme, with w = -0.08, v - -0.04 k - 3. 
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Figure 6.15. Butterfly scheme, W = -0.08, k = 4. 

Figure 6.16. Butterfly scheme, cardiTUll function. W = -1/16. k = 4. 
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SUMMARY 

In this thesis, we studied some subdivision algorithms for curves and 

surfaces. The thesis can be summarised briefly as follows . 

• A brief reVlew of recursive subdivision algorithms for curves and 

surfaces and a survey of the mathematical methods used to analyse them were 

presented. 

• We studied a non-uniform subdivision scheme for smooth curve 

generation and derived the recursive subdivision algorithm for B-spline curves 

with simple knots. The Adapted Parametrization technique was introduced to 

analyse these non-uniform schemes. 

• Necessary and sufficient conditions for the corner cutting schemes to 

produce smooth curves were studied and an explicit sufficient condition was 

given. 
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• The subdivision algorithm for uniform bi-quartic B-spline surfaces was 

formulated and generalized to arbitrary networks. The tangent plane and 

curvature properties of the limit surfaces at the Extraordinary Points were 

studied. 

• The Block Circulant Matrix technique was used to simplify the 

Extraordinary Point analysis. This method could also be used to analyse 

higher eVen order uniform tensor-product B-spline algorithms. 

• We constructed and studied the lO-point interpolatory subdivision 

scheme for surfaces over both uniform and non-uniform triangular control 

nets. 

• The Cross-Differences of Directional Divided DIfference approach for 

analysing uniform subdivision algorithms for surfaces was formulated. Using 

this method, the lO-point interpolatory subdivision scheme and the butterfly 

scheme were studied in detail. The necessary and sufficient condition for it to 

produce continuous and smooth surfaces were also discussed. 

• The butterfly scheme produces smooth surfaces over uniform triangular 

networks if the tension parameter -1/12 < w < o. 

• The 1 O-poin t scheme produces smooth surfaces over uniform triangular 

networks if the shape parameters (wi} satisfy: W := Wi' v := W3' W2 = -2wi 
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and (w. v) E D]. The region D] is depicted in Figure 6.6 . 

• Sufficient conditions for the IO-point scheme to produce smooth 

surfaces over arbitrary triangular networks were also given . 

• Most of the discussed algorithms are implemented in FORTRAN. The 

non-uniform corner cutting algorithm, the uniform bi-quartic B-spline 

algorithm, the 10-point scheme for surfaces and the DGL scheme for curves 

as well are all programmed in F.ORTRAN routines which can be called to 

design curves and surfaces. 
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