

Parallelizing Support Vector Machines for

Scalable Image Annotation

A Thesis submitted for the Degree of

Doctor of Philosophy

By

Nasullah Khalid Alham

Department of Electronic and Computer Engineering

School of Engineering and Design

Brunel University

April 2011

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

ii

Abstract

Machine learning techniques have facilitated image retrieval by automatically classifying and

annotating images with keywords. Among them Support Vector Machines (SVMs) are used

extensively due to their generalization properties. However, SVM training is notably a

computationally intensive process especially when the training dataset is large.

In this thesis distributed computing paradigms have been investigated to speed up SVM

training, by partitioning a large training dataset into small data chunks and process each

chunk in parallel utilizing the resources of a cluster of computers. A resource aware parallel

SVM algorithm is introduced for large scale image annotation in parallel using a cluster of

computers. A genetic algorithm based load balancing scheme is designed to optimize the

performance of the algorithm in heterogeneous computing environments.

SVM was initially designed for binary classifications. However, most classification problems

arising in domains such as image annotation usually involve more than two classes. A

resource aware parallel multiclass SVM algorithm for large scale image annotation in parallel

using a cluster of computers is introduced.

The combination of classifiers leads to substantial reduction of classification error in a wide

range of applications. Among them SVM ensembles with bagging is shown to outperform a

single SVM in terms of classification accuracy. However, SVM ensembles training are

notably a computationally intensive process especially when the number replicated samples

based on bootstrapping is large. A distributed SVM ensemble algorithm for image annotation

is introduced which re-samples the training data based on bootstrapping and training SVM on

each sample in parallel using a cluster of computers.

The above algorithms are evaluated in both experimental and simulation environments

showing that the distributed SVM algorithm, distributed multiclass SVM algorithm, and

distributed SVM ensemble algorithm, reduces the training time significantly while

maintaining a high level of accuracy in classifications.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

iii

Table of Contents

Chapter 1

Introduction..1

 1.1 Background..1

 1.2 Motivation of Work..4

 1.3 Major Contributions...5

 1.4 Structure of the Thesis..8

Chapter 2 Literature Review Related to the Thesis..10

 2.1 Image Annotation Techniques..10

 2.3 Support Vector Machines (SVM)..11

 2.3 Distributed SVM..12

 2.4 Distributed multiclass SVM...12

 2.5 SVM Ensemble..13

 2.6 Related Work...13

 2.6.1 Image Annotation Techniques...13

 2.6.2 Distributed SVM..17

 2.6.3 Distributed multiclass SVM..19

 2.6.4 SVM Ensemble..21

 2.7 Summary..23

Chapter 3 Evaluation of Machine Learning Classifiers for Image Annotation...............25

 3.1 SVM...25

 3.2 Bayesian network...25

 3.3 k-Nearest Neighbour..26

 3.4 Artificial Neural Network..26

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

iv

 3.5 Composite Classifiers...27

 3.5.1 Bagging...27

 3.5.2 Boosting...27

 3.6. Performance Evaluation..27

 3.6.1 Preparing Training Images..29

 3.6.2 Experiment Results..30

 3.7 Summary..32

Chapter 4 Resource Aware Parallel SVM for Scalable Image Annotation......................33

 4.1 The Design of MRSMO..34

 4.1.1 SMO Algorithm..34

 4.1.2 Cascade SVM...35

 4.2 The RASMO Algorithm...36

 4.2.1 MapReduce model..36

 4.2.2 RASMO Design..37

 4.3 Load Balancing...39

 4.4 Experimental Results..43

 4.4.1 Image Corpora...44

 4.4.2 Performance Evaluation..44

 4.5 Simulation Results...47

 4.5.1 Simulator Design...48

 4.5.2 Validation of HSim with Benchmarks..49

 4.5.3 Comparing of HSim with MRPerf..52

 4.5.4 Simulation Results...53

 4.5.5 Load Balancing...54

 4.5.5.1 Overhead of the Load Balancing Scheme..56

 4.6 Summary...58

Chapter 5 Parallelizing Multiclass SVM for Scalable Image Annotation........................59

 5.1 The Design of RAMSMO..59

 5.1.1 One Against One method...59

 5.1.2 Pairwise Coupling...60

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

v

 5.2 RAMSMO..61

 5.2.1 The Algorithm Design...61

 5.3 Load Balancing..63

 5.4 Experimental Results..63

 5.4.1 Image Corpora..64

 5.4.2 Performance Evaluation...64

 5.5 Simulation Results...67

 5.5.1 Scalability...67

 5.5.2 Load Balancing..69

 5.5.3 Overhead of the Load Balancing Scheme..72

 5.6 Summary...73

Chapter 6 Distributed SVM Ensembles for Scalable Image Annotation.........................74

 6.1 SVM Ensemble..74

 6.1.1 Aggregation Methods...75

 6.1.2 Balanced Bootstrapping...76

 6.2 Bias Variance Decomposition..77

 6.3 The MRESVM Algorithm..78

 6.4 Experimental Results..81

 6.4.1 Image Corpora..81

 6.4.2 Performance Evaluation...81

 6.4.3 Measuring bias and variance..83

 6.5 Simulation Results...85

 6.5.1 Scalability...86

 6.6 Summary..88

Chapter 7 Conclusions...89

 7.1 Conclusions..89

 7.2 Future Work...91

References..92

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

vi

List of Figures

Figure 1.1: CBIR main processes...1

Figure 3.1: Image annotation system architecture..28

Figure 3.2: A snapshot of the system..29

Figure 3.3: Sample images..30

Figure 3.4: Accuracy in image annotations... 31

Figure 3.5: Overheads in training models..32

Figure 4.1: A cascade SVM example...36

Figure 4.2: The MapReduce model..37

Figure 4.3: The architecture of RASMO…………………………………………………...38

Figure 4.4: A snapshot of the image annotation system...44

Figure 4.5: The efficiency of RASMO using 12 mappers...45

Figure 4.6: The efficiency of fully converge RASMO using 12 mappers............................46

Figure 4.7: The overhead of RASMO..47

Figure 4.8: HSim Architecture...48

Figure 4.9: Grep Task evaluation (533MB/node)..50

Figure 4.10: Grep Task evaluation (1TB/cluster)...50

Figure 4.11: Selection Task evaluation..51

Figure 4.12: UDF Aggregation Task evaluation..52

Figure 4.13: A comparison of HSim with MRPerf..52

Figure 4.14: The scalability of RASMO in simulation environments...................................54

Figure 4.15: The performance of RASMO with load balancing..55

Figure 4.16: The performance of RASMO with varied sizes of data....................................56

Figure 4.17: The convergence of the RASMO..57

Figure 4.18: Overheads of the load balancing algorithm...58

Figure 5.1: The architecture of RAMSMO………………………………………………....61

Figure 5.2: A snapshot of the image annotation system...64

Figure 5.3: The efficiency of RAMSMO in SVM training using 12 mappers......................65

Figure 5.4: A comparison of RAMSMO and MRSMO...66

Figure 5.5: The overhead of RAMSMO using equal and unequal binary chunks.................66

Figure 5.6: The scalability of RAMSMO in simulation environments..................................68

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

vii

Figure 5.7: The performance of RAMSMO with load balancing..70

Figure 5.8: The performance of RAMSMO with different datasets..71

Figure 5.9: A comparison RAMSMO with MinMin and MaxMin..71

Figure 5.10: The convergence of the RAMSMO...72

Figure 5.11: Overheads of the load balancing scheme...73

Figure 6.1: Architecture of SVM ensemble...75

Figure 6.2: MRESVM architecture double hierarchical combination.....................................79

Figure 6.3: MRESVM architecture with majority voting combination...................................79

Figure 6.4: A snapshot of the image annotation system...81

Figure 6.5: The efficiency of MRESVM using 12 mappers..82

Figure 6.6: The overhead of MRESVM...83

Figure 6.7: Bias–variance decomposition..84

Figure 6.8: Classification error of MRESVM with random and balanced sampling...............85

Figure 6.9: The scalability of MRESVM in simulation environments....................................87

Figure 6.10: Comparison of simulation results between chunk sizes 11.4 MB and 100MB...87

Figure 6.11: Comparison of simulating results with CPU power of 0.1 MB/s and 0.9 MB....88

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

viii

List of Tables

Table 4.1: HADOOP Configuration for RASMO...45

Table 4.2: Summarized performance results of RASMO..47

Table 4.3: Configurations for scalability evaluation..53

Table 4.4: Configurations for load balance evaluation..54

Table 5.1: HADOOP Configuration for RAMSMO..65

Table 5.2: Summarized performance results of RAMSMO..67

Table 5.3: Configurations for scalability evaluation of RAMSMO...68

Table 5.4: Configurations for load balance evaluation of RAMSMO.....................................69

Table 6.1: HADOOP Configuration for MRESVM..72

Table 6.2: Summarized performance results of MRESVM...85

Table 6.3: Configurations for scalability evaluation of MRESVM...86

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

ix

List of Algorithms

Algorithm 4.1: Sequential Minimal Optimization Algorithm...35

Algorithm 4.2: RASMO Algorithm...39

Algorithm 5.1: RAMSMO Algorithm..62

Algorithm 6.1: MRESVM Algorithm..80

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

x

Acknowledgments

I would like to thank all those who have given me academic and moral support for my

research work over the last three years. I would like to thank the department of Electronic and

Computing Engineering, in particular to my supervisor, Dr. Maozhen Li for his guidance and

valuable advice.

I would like to thank all my family members, My mother, My wife, My brothers and sisters

for their support and to whom I dedicate this work.

I would like to thank my friends and fellow PhD students Yang Liu and Suhel Hammoud for

their help and advice over the last three years.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

xi

Author’s Declaration

The work described in this thesis has not been previously submitted for a degree in this or

any other university and unless otherwise referenced it is the author’s own work.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

xii

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be published

without his prior written consent and information derived from it should be acknowledged.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

xiii

Publications

The following papers have been accepted for publication or under review as a direct or indirect result

of the research discussed in this thesis.

Journal Papers

N. K. Alham, M. Li, Y. Liu and S. Hammoud, A MapReduce-based Distributed SVM

Algorithm for Automatic Image Annotation, Computers & Mathematics with Applications,

Elsevier (accepted for publication)

Y. Liu, M. Li, N. K. Alham, S. Hammoud, HSim: A MapReduce Simulator in Enabling

Cloud Computing, Future Generation Computer Systems (FGCS), the International Journal of

Grid Computing and e-Science, Elsevier Science (accepted for publication)

N. K. Alham, M. Li, Y. Liu and S. Hammoud, Parallelizing Multiclass Support Vector

Machines for Scalable Image Annotation, Neurocomputing, Elsevier Science (under review)

N. K. Alham, M. Li, Y. Liu and S. Hammoud, A Resource Aware Parallel SVM for Scalable

Image Annotation, Parallel Computing, Elsevier Science (under review)

G. Caruana, M. Li, N.K. Alham, and Y. Liu, A Parallel Support Vector Machine for Large

Scale Spam Filtering, information Sciences, Elsevier Science (under review)

Y. Liu, M. Li, N. K. Alham, S. Hammoud, A Resource Aware Distributed LSI for Scalable

Information Retrieval, Information Processing and Management, Elsevier Science (under

review)

Conference Papers

N. K. Alham, M. Li, S. Hammoud, Y. Liu, M. Ponraj, MapReduce-based Distributed SMO

for Support Vector Machines, Proc. of IEEE FSKD’10, pp. 2983-2987.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

xiv

N. K. Alham, M. Li, S. Hammoud and H. Qi, Evaluating Machine Learning Techniques for

Automatic Image Annotations, Proc. of IEEE ICNC09-FSKD09, pp.245-249, 2009 (invited

paper).

N. K. Alham and M. Li, Content Based Image Retrieval: A Review, Proc. of ICAC’08, Sept.

2008, Brunel University, UK.

Y. Liu, M. Li, S. Hammoud, N.K. Alham, M. Ponraj, Distributed LSI for Information

Retrieval, Proc. of IEEE FSKD’10, pp. 2978-2982.

S. Hammoud, M. Li, Y. Liu, N. K. Alham, Z. Liu, MRSim: A Discrete Event based

MapReduce Simulator, Proc. of IEEE FSKD’10, pp. 2993-2997.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

1

Chapter 1

 Introduction

This chapter briefly describes the background to the problems investigated in this thesis,

motivation of work, major contributions and the structure of the thesis.

1.1 Background

The increasing volume of images being generated by digitized devices has brought up a

number of challenges in image retrieval. Content Based Image Retrieval (CBIR) was

proposed to allow users retrieve relevant images based on their low-level features such as

colour, texture and shape. The past decade has seen a rapid development in CBIR. In CBIR

systems images are first segmented into regions or fixed size blocks, and then image features

can be extracted. For example, by extracting colour histograms, the colour content of an

image can be represented [21]. In a retrieval process, users feed the retrieval system with

query images. The CBIR system then computes these images into its internal representation

of feature vectors. The similarities or distances between the feature vectors of a query image

and those of the images in the image database can be calculated and retrieval is performed

with the aid of an indexing scheme such as HG-tree [23]. HG-tree is a multi dimensional

Point Access Method (PAM) which is used to index multi-dimensional data to support

queries such as ―Find all images that are similar to a query image‖. Figure 1.1 shows the

processes of CBIR.

Figure 1.1: CBIR main processes

Query Image

Feature

extraction

Similarity

Matching

 Image

Database

Image Features

Feature

extraction

Feature database

Retrieved

Image

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

2

One of the primary components in CBIR is colour analysis [95]. Each image is analyzed to

compute a colour histogram which shows the proportion of pixels of each colour within the

image. The colour histogram for each image is then stored in the database. Colour moments

are also measures that can be used to compute the similarity of images based on their colour

features. Colour moments are based on the theory that the distribution of colour in an image

can be interpreted as a probability distribution. Probability distributions are characterized by

a number of unique moments; the moments of the distribution can be used as features to

identify that image based on colour. Stricker and Orengo [125] use three moments of an

image's colour distributions which are Mean, Standard deviation and Skewness. These values

of similarities can then be compared with the values of images indexed in a database for tasks

like image retrieval [95].

Another key component in CBIR is the analysis of the texture of an image which is the

perception of smoothness or coarseness of an object. Similar to the colour histogram

mentioned above, many of the current techniques for image texture analysis while quantified,

lack the spatial information that allows one to compare the location of a coarse object with a

smooth object within an image [100]. There is a notable use of Local Binary Pattern (LBP) in

CBIR. Block based methods which divides a query image and database images (or database

images only) into blocks and compare their LBP histograms are found to perform

significantly better than the methods based on global LBP histograms [71]. Other texture

features such as Gabor Filters are applied to images convert image texture components into

graphs. A comparison of these images is performed based on the mathematical representation

of these graphs. This makes it possible to compare the textures of two different images [136].

The ability to retrieve images based on shapes is perhaps the most obvious requirement at the

primitive level [28]. Unlike texture, shape is a fairly well-defined concept and there is

considerable evidence that natural objects are primarily recognized by their shapes. In

contrast to colour and texture features, shape features are described after an image is

segmented into objects. Since accurate image segmentation is difficult to achieve

automatically. Using shapes in CBIR is limited to specific application where objects are

readily available [93].

The accuracy of CBIR is not adequate due to the existence of a Semantic Gap, a gap between

the low-level visual features such as textures and colours and the high-level concepts that are

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

3

normally used by the user in the search process [122]. Annotating images with labels is one

of the solutions to narrow the semantics gap [132]. Automatic image annotation is a method

of automatically generating one or more labels to describe the content of an image, a process

which is commonly considered as a multi-class classification. Typically, images are

annotated with labels based on the extracted low level features. Machine learning techniques

have facilitated image annotation by learning the correlations between image features and

annotated labels.

Support Vector Machine (SVM) techniques have been used extensively in automatic image

annotation [12] [26] [34] [48] [49] [85] [147]. The qualities of SVM based classification have

been proven remarkable [30] [40] [119] [143]. In its basic form SVM creates a hyperplane as

the decision plane, which separates the positive and negative classes with the largest margin

[119]. SVMs have shown a high level of accuracy in classifications due to their generalized

properties. SVMs can correctly classify data which is not involved in the training process.

This can be evidenced from our previous work in evaluating the performance of

representative classifiers in image annotation [77]. The evaluation results showed that SVM

performs better than other classifiers in term of accuracy, however the training time of the

SVM classifier is notably longer than that of other classifiers.

SVM was initially designed for binary classifications. However classification problems in

domains such as image annotation usually involve more than two classes. Extending binary

SVM solutions effectively to solve multi-class classification is an ongoing research issue

[59]. Due to various complexities, a direct solution to multiclass problems using a single step

SVM training is usually avoided [44]. A superior approach is to combine a number of binary

SVM classifiers to solve a multiclass problem. Various approaches have been proposed such

as One Against Rest [45] (OAR), One Against One (OAO) [79] and decision trees based

multiclass SVM techniques [114].

Due to various complexities in classification problems, it is difficult to systematically create

classifiers with enhanced performance. The combination of classifiers leads to considerable

reduction of misclassification error in a wide range of applications. Among them SVM

ensembles is shown to outperform a single SVM in terms of classification accuracy [18].

Bagging [15] is the most commonly used combination method which combines multiple

classifiers by introducing randomness in the training data. The bagging method is useful in

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

4

reducing the variance component of the expected misclassification error of a classifier.

Bagging is effective particularly for classifiers with high variance and low bias, which is

described in [15] as unstable classifiers. Unstable classifiers experience significant changes

with small change of the training data or other parameters [54].

1.2 Motivation of Work

A number of machine learning techniques are available for image annotation. These

techniques are usually evaluated under different environments using different low level

features of images. To facilitate the selection of best machine learning techniques to be used

in image annotation, there is a need for evaluating some representative techniques under the

same environment using the same set of low level features.

It has been widely recognized that SVMs are computationally intensive when the size of a

training dataset is large. A SVM kernel usually involves an algorithmic complexity of

O(m
2
n), where n is the dimension of the input and m represents the training instances. The

computation time in SVM training is quadratic in the number of training instances.

To speed up SVM training, distributed computing paradigms have been investigated to

partition a large training dataset into small data chunks and process each chunk in parallel

utilizing the resources of a cluster of computers [24] [41] [61] [153]. The approaches include

those that are based on the Message Passing Interface (MPI) [8] [10] [20] [21] [148] [153].

A comparative study of the most popular multiclass SVM approaches indicates that OAO

approaches usually perform better than others in terms of training efficiency and

classification accuracy [27]. However OAO does not perform well when the datasets of the

classes to be processed are different in size.

To speed up multiclass SVM training, distributed computing paradigms have been

investigated to partition a large training dataset into small data chunks and process each

chunk in parallel utilizing the resources of a cluster of computers [20] [21] [41] [63] [105].

The approaches include those that are based on the Message Passing Interface (MPI) [155].

However, MPI is primarily targeted at homogeneous computing environments and has

limited support for fault tolerance. Although some progress has been made by these

approaches, exiting distributed multiclass SVM algorithms employ naive and ineffective

schedulers to address the problem of unbalanced multiclass datasets in homogeneous

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

5

computing environments in which the computers have similar computing capabilities.

Currently heterogeneous computing environments are increasingly being used as platforms

for resource intensive distributed applications. One major challenge is to balance the

computation loads across a cluster of participating computer nodes.

SVM ensembles based on bagging show improvement in classification performance compare

to a single SVM. Although some progress has been made by these approaches in

classification accuracy, current method of builds replicates training data sample by randomly

re-sampling with replacement, from the given training data set repeatedly. The number of

samples required to create an effective ensemble SVM is debatable. Improving classification

performances for fixed number replicates training data has not been studied. Ensemble

learning is extremely computational intensive which limits their applications in real

environments. Moreover SVM classifiers applied in ensemble learning require large

computing resources due to the fact that computation time in SVM training is quadratic in

terms of the number of training instances.

1.3 Major Contributions

Evaluation of seven representative machine learning classifiers for image annotation namely

SVM, Bayesian Network, Naive Bayes, Boosting, Bagging, kNN and Decision tree from the

aspect of accuracy and efficiency is presented. To facilitate performance evaluation, an image

annotation prototype has been implemented which builds training models on low level

features extracted from sample images. The evaluation results showed that SVM performs

better than other classifiers in term of accuracy, however the training time of the SVM

classifier is notably longer than that of other classifiers.

Resource Aware Sequential Minimal Optimization (RASMO), a distributed SVM algorithm

for automatic image annotation has been implemented. RASMO builds on the Sequent

Minimal Optimization (SMO) algorithm [113] for high efficiency in training and employs

MapReduce [37] for parallel computation across a cluster of computers. MapReduce has

become a major enabling technology in support of data intensive applications. RASMO is

implemented using the Hadoop implementation [3] of MapReduce. The MapReduce

framework facilitates a number of important functions such as partitioning the input data,

scheduling MapReduce jobs across a cluster of participating nodes, handling node failures,

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

6

and managing the required network communications. A notable feature of the Hadoop

implementation of MapReduce framework is the ability to support heterogeneous

environments but without an effective load balancing scheme for utilizing resources with

varied computing capabilities. For this purpose, a genetic algorithm based load balancing

scheme is designed to optimize the performance of RASMO in heterogeneous computing

environments.

The RASMO algorithm is designed based on a multi-layered cascade architecture which

removes non-support vectors early in the training process and guarantees a convergence to

the global optimum [58] [151]. The genetic algorithm based load balancing scheme is applied

in the first layer computation in RASMO as this layer is the most intensive part in

computation in optimizing the whole training dataset. The resulting support vectors from the

first layer computation are used to create the input data for next layers which is usually much

smaller in size in comparison with the original training data [104]. The size of each data

chunk at the first layer is computed by the load balancing scheme based on the resources

available in a cluster of computers such as the computing powers of processors, the storage

capacities of hard drives and the network speeds of the participating nodes.

The performance of RASMO is first evaluated in a small scale experimental MapReduce

environment. Subsequently, a MapReduce simulator is implemented to evaluate the

effectiveness of the resource aware RASMO algorithm in large scale heterogeneous

MapReduce environments. Both experimental and simulation results show that RASMO

reduces the training time significantly while maintaining a high level of accuracy in

classification. In addition, data chunks with varied sizes are crucial in speeding up SVM

computation in the training process. It is worth pointing out that using different sizes for data

chunks has no impact on accuracy in SVM classification due to the structure of the RASMO

algorithm in which the training work in the first few layers is merely a filtering process of

removing non-support vectors and the resulting support vectors of the last layer are evaluated

for a global convergence by feeding the output of the last layer into the first layer.

Resource Aware Multiclass Sequential Minimal Optimization (RAMSMO), a resource aware

distributed multiclass SVM algorithm for scalable image annotation has been designed and

implemented. RAMSMO is built on MapReduce framework for parallel computation across a

cluster of computers. A genetic algorithm based load balancing scheme is used to optimize

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

7

the performance of RAMSMO when processing binary data chunks with different sizes in

heterogeneous environments in which the participating computers have varied resources in

terms of the computing powers of processors, the storage capacities of hard drive and the

network speeds of the participating nodes.

The performance of RAMSMO is evaluated in both small scale experimental and large scale

MapReduce environments including the effectiveness of the load balancing scheme in large

scale heterogeneous MapReduce environments. Both experimental and simulation results

show that RAMSMO reduces the training time significantly while maintaining a high level of

accuracy in classification.

MapReduce Ensemble Sequential Minimal Optimization (MRESVM), a distributed SVM

ensemble algorithm for automatic image annotation has been implemented. MRESVM builds

on the SMO algorithm for high efficiency in training and employs MapReducefor parallel

computation across a cluster of computers.

The MRESVM algorithm is based on the bagging architecture which train multiple SVMs on

bootstrap samples and combines the output in appropriate manners. Two types of

combination methods are considered, firstly majority voting which is the commonly used

combination method for bagging. Secondly combination of SVMs based double layer

hierarchical combining that use second layer SVM to combine the first layer SVMs. Balanced

sampling strategy for bootstrapping is introduced to increase classification accuracy for fixed

number samples. The performance of the MRESVM algorithm is evaluated in both small

scale experimental and large scale MapReduce environments. Both experimental and

simulation results show that MRESVM reduces the training time significantly while increase

the classification accuracy compare to a single SVM.

1.4 Structure of the Thesis

The rest of this thesis is organised as follows. Section 2.1 introduces image annotation

techniques. Section 2.2 describes the basic concepts of SVM while Section 2.3 introduces

distributed SVM. Section 2.4 introduces distributed Multiclass SVM Section 2.5 describes

distributed SVM ensemble. Section 2.6 reviews and discuss the related work. Section 2.7

concludes the chapter.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

8

Chapter 3 describes the implementation of an image annotation system which is essential for

evaluating most commonly used machine learning classifiers in automatic image annotation.

The evaluation results are presented in this chapter.

Chapter 4 is dedicated to the implementation of the RASMO and evaluation of the algorithm

in experimental and simulation environment. A Genetic algorithm is introduced to enhance

the performances in heterogonous computing environment.

Chapter 5 presents the implementation of the RAMSMO for training multiclass SVM and

evaluation of the algorithm in experimental and simulation environment. A Genetic algorithm

is introduced to enhance the performances in heterogonous computing environment.

Chapter 6 presents the implementation of the MRESVM for training SVM ensemble and

evaluation of the algorithm in experimental and simulation environment.

Finally, chapter 7 summarises the contributions of the thesis and proposes directions for

future work.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

9

Chapter 2

Literature Review

This thesis is conducted from four different aspects, namely evaluated automatic image

annotation techniques, distributed binary SVM, distributed multiclass SVM and distributed

SVM ensemble. This chapter briefly describes the above techniques, reviewing the related

literatures and summarising the weakness of the existing techniques.

2.1 Image Annotation Techniques

In recent years image annotation has become a major approach to bridging the semantic gap.

This section describes some the main techniques used in image annotation.

Currently a great number of images are widely available on the World Wide Web. In order to

organize and efficiently retrieve this vast number of images, contextual information of the

images such as surrounding text and links is used for image annotation.

Semantic Web technologies such as ontologies have been used to annotate images with

semantic descriptions. Ontology [123] is a specification of an abstract which defines a set of

representational terms called concepts. Ontology based semantic image annotation focuses on

describing the contents of an image, and tries to describe image contents as fully as possible.

Automatic image annotation is a method of automatically generating one or more labels to

describe the content of an image. Typically, images are annotated with labels based on the

extracted low level features. Machine learning techniques such SVM, Bayesian Networks,

Artificial Neural Networks, Decision Tree and Composite Classifiers such bagging and

boosting have facilitated image annotation by learning the correlations between image

features and annotated labels.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

10

2.2 Distributed SVM

It has been widely recognized that training SVMs is computationally intensive when the size

of a training dataset is large. A SVM kernel usually involves an algorithmic complexity of

O(m
2
n), where n is the dimension of the input and m represents the training instances. The

computation time in SVM training is quadratic in terms of the number of training instances.

To speed up SVM training, distributed computing paradigms have been investigated to

partition a large training dataset into small data chunks and process each chunk in parallel

utilizing the resources of a cluster of computers.

2.3 Distributed Multiclass SVM

Due to various complexities, a direct solution to multiclass problems using a single step SVM

training is usually avoided [44]. A superior approach is to combine a number of binary SVM

classifiers to solve a multiclass problem. Various approaches have been proposed such as

One Against Rest [45] (OAR), One Against One (OAO) [79] and decision trees based

multiclass SVM techniques [114]. To speed up SVM training, distributed computing

paradigms have been investigated to partition a large training dataset into small data chunks

and process each chunk in parallel utilizing the resources of a cluster of computers.

2.4 SVM Ensemble

The combination of classifiers leads to significant reduction of classification error in a wide

range of applications. Among them SVM ensembles is shown to outperform a single SVM in

terms of classification accuracy. However, SVM ensembles training are notably a

computationally intensive process especially when the number replicated samples based on

bootstrapping is large. Ensemble learning is extremely computational intensive which limits

their applications in real environments.

2.5 Related Work to this Thesis

This section reviews the related literatures in automatic image annotation techniques,

distributed binary SVM, distributed multiclass SVM and SVM ensemble.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

11

2.5.1 Image Annotation Techniques

In order to organize and efficiently retrieve vast number of images on the Web, contextual

information of the images such as surrounding text and links are used for image annotation.

Hua et al. [66] introduce a system which automatically acquires semantic knowledge for Web

images. A page layout analysis method is used to assign context to Web images. Joshi et al.

[72] propose a scheme for automated story picturing using stop word elimination and

identification of a set of proper nouns. The text of a story is processed based on the Wordnet

[102] which forms a list of keywords.

Although image retrieval techniques based on textual information can retrieve many relevant

images, the accuracy level of image retrieval is low [92]. The main reasons for low level of

accuracy are; firstly the Web images are used freely in the Web pages and there is no

standard exists for the relationships between the texts and embedded images in the same Web

pages, secondly Web images are fairly comprehensive in meaning, and are created by

different people for different purposes, thirdly the qualities of the Web images vary greatly

[57]. The users need to go through the entire list of retrieved images to find the desired ones.

To improve Web image retrieval performance, there is an on-going research to combine the

textual information and visual image contents [92].

Marques and Barman [100] propose three layer architecture for image annotation. The

bottom layer extracts low level features of images, which are mapped to semantically

meaningful keywords in the middle layer, which are then connected to schemas and

ontologies on the top layer. Petridis et al. [112] present a software environment called M-

Onto Mat-Annotizer to bridge the gap between the low level visual descriptors and high level

semantic concepts. M-Onto Mat-Annotizer allows linking low level MPEG-7 visual

descriptions to the Visual Descriptor Ontology (VDO). Hollink et al. [65] argue that

ontologies serve two purposes in image annotation. Firstly, user is immediately provided with

the right context to find an adequate index term. This ensures quicker and more precise

indexing. Secondly, the hierarchical presentation of concepts helps to disambiguate terms.

They propose a scheme for semantic image annotation and retrieval in a collection of art

images using multiple ontologies to support this process. Srikanth et al. [123] use a hierarchy

of annotation words derived from text ontology for automatic image annotation.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

12

Wang et al. [141] compare ontology-based image annotation with keyword-based image

annotation. It has been found that keyword based approach is user friendly and easy to apply

with acceptable retrieval accuracy, while semantically rich ontology addresses the need for

complete descriptions of image retrieval and improves the accuracy of retrieval. Ontology

works better with the combination of low level image features. However there is a trade-off

between the complexity and performance. Ontology based annotation work better by

combining low level features with high level textual information due to usefulness of visual

information to filter a majority of inaccurate results. For instance, from an indoor background

it can be inferred that a wild fox is not likely to exist in an image.

SVM is considered as a good candidate for image annotations due to its high generalisation

performance without the need to add prior knowledge [25]. Zhang et al. [154] used a SVM

classifier to separate two classes of relevant images and irrelevant images. A classifier is

trained with training data of relevance images and irrelevance images marked by users. The

trained model is used to find more relevance images in an image database. Tsai et al. [131]

propose a system which is composed of three modules of SVMs for colour, texture, and high-

level concept classification. Cusano et al. [34] present an image annotation tool for

classifying image regions in one of seven classes- sky, skin, vegetation, snow, water, ground,

and buildings using multi-class SVM. Wang et al [40] used SVM and point out the main

drawback of the SVM models are too large to be used in a practical system with limited

memory space. As a result, the speed of the classification is also slow when using SVM

models with many support vectors.

Barrat and Tabbone [5] use a Bayesian network to classify images based on visual and textual

features and to automatically annotate new images. Kane and Savakis [73] employ low-level

classification based on colour and texture, semantic features such as sky and grass detections,

along with indoor and outdoor ground truth information, to create a set of features for

Bayesian network structure learning. It is reported that a Bayesian network provides

classification rates which are 97% correct. Benitez and Chang [7] use a Bayesian network in

combination of meta-classifiers. For a new image, the presence of concepts is first detected

using the meta-classifiers and then is refined using Bayesian inferences. Niedermayer [35]

claims weakness of Bayesian network lays on the quality and extent of the prior beliefs used

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

13

in Bayesian inference process. A Bayesian network is only is useful when this prior

knowledge is reliable.

One of the widely used techniques is to predict the class of a new instance based on the most

common class amongst the k Nearest Neighbours [9]. k Nearest Neighbours classifiers are

known as non-parametric classifiers. Non-parametric classifiers can naturally handle a huge

number of classes, and avoid over fitting of parameters which is a central issue in learning

based approaches. In addition, non-parametric classifiers do not require learning/training

phases. Makadia et al. [99] introduce a technique for image annotation that treats image

annotation as a retrieval problem, using low-level image features and a simple combination of

basic distances to find the nearest neighbours of a given image. The keywords are then

assigned using a greedy label transfer mechanism. Pakkanen et al. [108] use MPEG-7 feature

vectors to perform a kNN classification of the images. They report that the results are

generally satisfactory especially the Colour Structure and Homogeneous Texture descriptors

seem to perform well. Lepisto et al. [67] present a method for combining different visual

descriptors in rock image classification. In their approach, the k-NN classification is first

carried out for each descriptor separately. After that, a final decision is made by combining

the nearest neighbours in each base classification. The total numbers of the neighbours

representing each class are used as votes in the final classification.

In image annotation, low-level feature vectors are fed into the input layer of a multilayer

perceptron (MLP) where each of the input neurons corresponds to each of the feature vectors

and the output neurons of the MLP represent the class labels of images to be classified. Zhao

et al [156] propose an annotation system based on a neural network for characterising the

hidden association between the visual and the textual modalities. Latent semantic analysis

(LSA) is employed to discover the latent contextual correlation among the keywords. Shah

and Lim et al [89] use a three-layer feed-forward neural network with dynamic node creation

capabilities to learn 26 visual keywords from 375 labelled image patches collected from

home photos. Colour and texture features are computed for each training region as an input

vector for the neural network. Breen et al. [14] propose an annotation system which uses

ontologies and neural networks as object identifiers to provide a high level of accuracy in

automatic classification of images.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

14

ID3 and C4.5 are well known algorithms to construct a decision tree classifier; however ID3

has some disadvantages such as preference bias and the inability to deal with unknown

attribute values [149]. Tseng and Su [133] use the decision tree algorithm to build a classifier

with low-level features extracted from images. The classifier is then used for classifying

images with one representative object. Huang et al [68] use decision tree to categorize new

images. It has been suggested that this scheme performs better than standard k-nearest

neighbour techniques, and also has both storage and computational advantages [68].

Feng and Chua [50] propose bootstrapping approach to deal with the problem of providing

large labelled training data which is needed in the training stage of a classifier to annotate a

large collection of images. The idea is to start from a small set of labelled training images,

and consecutively annotate a larger set of unlabeled images by using the co-training

approach, in which two statistically independent classifiers are used to co-train and co-

annotate the unlabeled images. This process offers the advantage of requiring only a small

initial set of training images. Huan [95] claim boosting method such as adaboost, boosts a

weak learning algorithm by updating the sample weights iteratively. They propose to

integrate feature reweighting into boosting scheme, which not only weights the samples but

also weights the feature elements iteratively. Fan et al [48] propose a hierarchical boosting

algorithm by integrating concept ontology and multi-task learning to achieve hierarchical

image classifier training with automatic error recovery.

2.5.2 Distributed SVM

SVM training is a computationally intensive process especially when the size of the training

dataset is large. Numerous avenues have been explored with an effort to increase efficiency

and scalability, to reduce complexity as well as ensure that the required level of classification

accuracy can be maintained. SVM decomposition is a widespread technique for performance

improvement [4] [107] [127].

Decomposition approaches work on the basis of identifying a small number of optimization

variables and tackling a set of problems with a fixed size. One approach is to split the training

data set into a number of smaller data chunks and employs a number of SVMs to process the

individual data chunks.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

15

Various forms of summarizations and aggregations are then performed to identify the final

set of global support vectors. Hazen et al. [61] introduced a parallel decomposition algorithm

for training SVM where each computing node is responsible for a pre-determined subset of

the training data. The results of the subset solutions are combined and sent back to the

computing nodes iteratively. The algorithm is based on the principles of convex conjugate

duality. The key feature of the algorithm is that each processing node uses independent

memory and CPU resources with limited communication overhead. Zanghirati et al. [153]

presented a parallel SVM algorithm using MPI which splits the problem into smaller

quadratic programming problems. The output results of the sub-problems are combined. The

performance of the parallel implementation is heavily depended on the caching strategy that

is used to avoid re-computation of the previously used elements in kernel evaluation which is

considered as computationally intensive. Similarly, MPI based approaches have been

proposed for speeding up SVM in training [8] [10] [20] [21] [148]. Whilst good performance

improvements can be achieved by MPI based parallelization, these approaches tend to suffer

from poor scalability, high overhead in inter-node communication, and limited support for

heterogeneous computing environments.

Collobert et al. [31] proposed a parallel SVM algorithm which trains multiple SVMs with a

number of subsets of the data, and then combines the classifiers into a final single classifier.

The training data is reallocated to the classifiers based on the classification accuracy and the

process is iterated until a convergence is reached. However the frequent reallocation of

training data during the optimization process may cause a reduction in the training speed.

Huang et al. [67] proposed a modular network architecture which consists of several SVMs

of which each is trained using a portion of the whole training dataset. It is worth noting that

speeding up the training process can significantly reduce the generalization performance due

to the increase in the number of partitions. Lu et al. [97] proposed a distributed SVM

algorithm based on the idea of partitioning training data and exchanging support vectors over

a strongly connected network. The algorithm converges to a global optimal classifier in finite

steps. The performance of this solution is depended on the size and topology of network. The

larger a network is, the higher communication overhead will incur. Kun et al. [83]

implemented a parallel SMO using Cilk [130] and Java threads. The idea is to partition the

training data into smaller parts, train these parts in parallel, and combines the resulting

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

16

support vectors. However Cilk's main disadvantage is that it requires a shared-memory

computer [81].

An interesting alternative is considered and discussed in [21]. The work on updating

optimality condition vectors is performed in a parallel way leading to a speedup in SVM

training. However this approach can incur considerable network communication overhead

due to the large number of iterations involved. Another approach utilizes Graphics Processing

Units (GPU) for SVM speedup [27]. MapReduce was adopted in this work exploiting the

multi-threading capabilities of graphics processors. The results show a considerable decrease

in processing time. A key challenge with such an approach lies in the specialized

environments and configuration requirements. The dependency of specific development tools

and techniques as well as platforms introduces additional, non-trivial complexities.

SVM algorithms rely on the number of support vectors for classification. Removing non-

support vectors in an early stage in the training process has proven to be useful in reducing

the training time. Dong et al. [43] proposed a parallel algorithm in which multiple SVMs are

solved with partitioned data sets. The support vectors generated by one SVM are collected to

train another SVM. The main advantage of this parallel optimization step is to remove non-

support vectors which can help reduce the training time. Graf et al. [58] proposed a similar

parallel SVM algorithm using a homogenous Linux cluster. The training data is partitioned

and an SVM is solved for each partition. The support vectors from each pair of classifiers are

then combined into a new training dataset for which an SVM is solved. The process carries

on until a final single classifier is left. Although the convergence to the global optimum can

be guaranteed, partitioning a large dataset into smaller data chunks with the same size can

only be effective in a homogeneous computing environment in which computers have similar

computing capabilities. Another similar work is presented in [146].

Given the focus that most of the current approaches are primarily on the SVM solver,

parallelization using a number of computers may introduce significant communication and

synchronization overheads. Frameworks such as MapReduce are believed to provide an

effective application scope in this context [56]. Chu et al. [29] capitalized natively on the

multi-core capabilities of modern day processors and proposed a distributed linear SVM

using the MapReduce framework; batch gradient descent is performed to optimize the

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

17

objective function. The mappers calculate the partial gradient and the reducer sums up the

partial results to update weights vector. However the batch gradient descent algorithm is

extremely slow to converge with some type of training data [119].

2.5.3 Distributed Multiclass SVM

Existing research efforts in multiclass SVM classifications generally fall into two approaches.

One approach is to consider all the classes in a single optimization step and the other

approach is a combination of several binary classifiers.

A multiclass SVM classification method based on a single optimization process was

introduced in [33]. A major advantage of this method is that the training of all the classes

occurs in a single optimization step. Keerthi et al. [75] presented a dual method based on

direct multiclass formulations of linear SVM. The main idea is to sequentially pass through

the training dataset and optimize the dual variables associated with one example at a time.

However a single step multiclass optimization is not practical to many classification

applications due to the creation of a large optimization problem [44]. While directly

extending a binary SVM into a multiclass SVM is not practical, a commonly used approach is

to create a multiclass classifier based on the combination of binary classifiers. The One

Against Rest (OAR) method is one of the popular methods to solve multiclass problems in

which a binary classifier is trained for each class, which separates a single class from the rest

of the classes and then combines the classifiers for multiclass inference. OVR can achieve

high accuracy in classification [75] but the training process is not efficient due the

involvement of all training data for creating binary classifiers for each class.

OAO method trains a binary classifier for each pair of classes. To classify an unlabelled

instance, all binary classifiers are used. One advantage of the OAO method lies in its

efficiency in training process. However, OAO does not perform well when the binary

classifiers have different dataset in size.

An interesting solution is the use of error correcting output codes (ECOC) together with

binary classifiers for solving multiclass classification problems [39]. Li et al. [88] combined

different feature selection methods using ECOC strategies for multiclass cancer

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

18

classifications. One of the main limitations of the ECOC framework is the requirement of

considering all classes for each binary classifier, hence is slow in training process. Platt et al.

[114] introduced Directed Acyclic Graph SVM (DAGSVM) in which each node represents a

classifier trained with the dataset of a pair of classes. DAGSVM depends on a rooted binary

directed acyclic graph to make a decision on classifying unlabelled instances. However

DAGSVM does not work well on an unequally distributed training data where the number of

samples of each class is not equal.

To speed up multiclass SVM training, distributed computing paradigms have been

investigated to partition a large training dataset into small data chunks and process each

chunk in parallel utilizing the resources of a cluster of computers. Zhang et al. [155]

presented a parallel multiclass SVM based on OAO using Message Passing Interface.

Although the heterogeneity of multiclass training datasets is considered in their

implementation, the scheduling of the computation tasks among multiple processors is based

on a naive cyclically approach which does not consider the processing power of participating

computing nodes. Additionally MPI is primarily targeted at homogeneous computing

environments and has limited support for fault tolerance. Herrero-Lopez et al. [63] utilized

GPU which is a specialized processing hardware. Here the authors considered a parallel

multiclass SVM approach based on OAR exploiting the multi-threading capabilities of

graphics processors. The results show a considerable decrease in processing time. Although

the accuracy level of the GPU based SVM is comparable to the original OAO method, the

training process is considerably less efficient.

Munoz- Mari et al. [105] presented a parallel SVM algorithm for multiclass problems based

on OAO method using Medusa cluster [103] in a homogenous environment. Although the

different sizes of classes in multiclass training datasets is considered in their implementation,

however the scheduling of the computation tasks among multiple processors is simply to

keep all the processor busy without considering the resources available on the underlying

computing nodes. Lu et al. [94] presented a part-versus-part method to decompose a large

multiclass classification problem into a number of two class sub-problems. A significant

difference of the part-versus-part method with existing popular OAO multiclass classification

approaches is that a large-scale two-class sub-problem can be further divided into a number

of relatively smaller and balanced two-class sub-problems to increase training efficiency.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

19

However the classification of par-versus-part method is slow in computation compared with

the OAO classification approach due to the large number of support vectors to be processed.

2.5.4 SVM Ensemble

Ensemble methods represent one of the main current research issues in machine learning for

improving classification accuracy [115]. Mason et al [101] show that ensembles enlarge the

margins, consequently improve the generalization performances of learning algorithms while

Schapire et al [117] present analysis of ensemble learning methods based on bias variance

decomposition of classification error which shows that ensemble classifiers reduce variance

and bias, therefore reducing the overall classification error rate.

Bagging is the most commonly used method for constructing ensemble classifiers. Bagging

introduces randomness in the training data. Recently a number of SVM ensemble based on

bagging have been proposed. Kim et al. [78] proposed SVM ensembles based bagging to

improve the classification accuracy. The experimental results show improvement of

classification accuracy of SVM ensemble. However, the experiments were performed with

small datasets. This approach of ensemble learning is extremely computational intensive for

large data set and large number of samples which limits their applications in real

environments. Yan et al. [150] presented a SVMs ensemble method based on bagging. The

results show the ensemble method performs better than a single SVM. The ensemble method

involves tuning each of the base SVMs. However, the algorithm is evaluated using a small

number of bootstrap samples, evaluating the algorithm with large number bootstrap samples

is extremely computational intensive. Tao et al. [129] presented a SVMs ensemble method

based on bagging and random subspace to improve the user relevance feedback performance

in content-based image retrieval. The results show improvement in classification accuracy.

However the ensemble method cannot guarantee diversity within SVMs base classifiers due

to use only negative user feedback in the training process of SVMs.

Theoretical analysis of the performance of bagging in classification show that expected

misclassification probability of bagging has the same bias component as a single bootstrap

sample while the variance component is reduced significantly [54]. Valentini et al. [134]

present a low bias SVMs ensemble based on bagging. The aim is to reduce bias of base

SVMs before applying bagging. They consider the bias variance tradeoffs to improve the

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

20

classification accuracy of SVM ensemble. The experiments show improvement in

classification accuracy. However, the idea was only tested on small datasets and no efficiency

analysis was given. This approach of ensemble learning is also extremely computational

intensive for large data set and large number of samples. Silva et al. [121] proposed a

distributed SVM based ensemble system. Processing times is reported to have shown notable

improvements over sequential approaches. Furthermore, the deployment of ensemble

techniques improves classification performance in terms of accuracy. The system is evaluated

using evaluate Condor and Alchemi middleware platforms.

 Re et al. [115] evaluate the performance of several SVM ensemble, in which each base

classifier is trained on different data types, the output are aggregated based on different

combination methods. Their results show that heterogeneous data integration through

ensemble methods is highly accurate for gene function prediction. Derbeko et al. [38]

propose a new technique for aggregating SVM classifiers based on bootstrapping. In this

method a linear combination of the base classifiers using weights are optimized to reduce

variance. However efficiency of the ensemble is not analysed.

Lei et al. [86] propose the ensemble of support vector machines based on the bagging and

boosting for text-independent speaker recognition, the experimental results show

improvement of classification accuracy of SVM ensemble compare to single SVM. However,

this approach of ensemble learning is extremely computational intensive for large data set

and large number of samples which limits their applications in real environments. Tang et al.

[128] applies bootstrapping to create samples from the original training dataset. An SVM is

trained on each sample. The SVMs output are aggregated by Bayesian Sum Rule for a final

decision. The algorithm is efficient and scalable. However there is slight reduction in the

accuracy level compare to standard SVM.

2.7 Summary

Research on distributed SVM algorithms has been carried out from various dimensions, but

mainly focuses on specialized SVM formulations, solvers and architectures [22] [58] [61]

[67]. Although some progress has been made in speeding up SVM computation in training,

existing approaches on high performance SVMs are mainly targeted at homogenous

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

21

computing environments using an MPI based solution. Scalability still remains a challenging

issue for parallel SVM algorithms. These challenges motivated the design of RASMO which

targets at a scalable SVM in heterogeneous computing environments empowered with a load

balancing scheme.

Although some progress has been made in speeding up multiclass SVM computation in

training, existing approaches on multiclass SVMs are mainly targeted at the classifications in

which the classifiers have equal sizes of datasets deployed in homogenous computing

environments without effective load balancing scheme. Scalability still remains a challenging

issue for multiclass SVM classifications. These challenges motivate the design of RAMSMO

which targets at a scalable multiclass SVM in heterogeneous computing environments

empowered with a load balancing scheme.

Research on SVM ensemble algorithms has been carried out from various dimensions, but

mainly focuses on improving classification accuracy, however solving the training

inefficiency of SVM ensemble remains a huge challenge. This challenge motivates the design

of MRESVM which is an efficient distributed SVM ensemble algorithm building on a highly

scalable MapReduce implementation for image annotation with higher level classification

accuracy compare to a single SVM.

This chapter started with briefly description of automatic image annotation techniques,

distributed binary SVM, distributed multiclass SVM, distributed SVM ensemble and

reviewing the related literatures. The chapter concluded and summarising the weakness of the

existing techniques.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

22

Chapter 3

Evaluation of Machine Learning Classifiers for

Image Annotation

This chapter review seven representative machine learning classifiers for automatically image

annotation. To facilitate performance evaluation, an image annotation prototype has been

implemented which builds training models on low level features extracted from sample

images. This chapter concludes on presenting the evaluation results.

3.1 Support Vector Machine (SVM)

SVM is based on creating a hyperplane as the decision plane, which separates the positive

(+1) and negative (-1) classes with the largest margin. An optimal hyperplane is the one with

the maximum margin of separation between the two classes, where the margin is the sum of

the distances from the hyperplane to the closest data points of each of the two classes. These

closest data points are called Support Vectors (SVs) [119]. Given a set of training data D, a

set of points of the type  ii cxD , │    11,1,  i
n

i

p

i cx , where ic is either 1 or -1

indicative of the class to which the point xi belongs, the aim is to give a maximum margin

hyperplane which divide points having 1ic from those having 1ic . Any hyperplane can

be constructed as a set of point x satisfying .0. bxw The vector w is a normal vector. We

want to choose w and b to maximize the margin. These hyperplanes can be described by the

following equations:

 1. bxw (3.1)

 1. bxw (3.2)

The margin ./1
2

wm 

The dual of the SVM is shown to be the following optimization problem:

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

23

 Maximize (in αi)

 (3.3)

 Subject to and

yi indicates the class of an instance, there is a one-to-one association between each Lagrange

multiplier αi and each training example xi. Once the Lagrange multipliers are determined, the

normal vector


w and the threshold b can be derived from the Lagrange multipliers as follow:

 (3.4)

 kk yxwb 


. (3.5)

for some 0ka . Not all data sets are linearly separable. There may be no hyperplane exist

that separate separates the positive (+1) and negative (-1) classes. SVMs can be further

generalized to non-linear classifiers. The output of a non-linear SVM is computed from the

Lagrange multipliers as follow:

bXXKayu ii

n

i

i 


),(
1

 (3.6)

where K is a kernel function that measures the similarity or distance between the input vector

Xi and the stored training vector X.

3.2 Bayesian Networks

Formally, a Bayesian network is directed acyclic graphs in which the nodes represent

variables and the edges encode conditional dependencies between the variables [7]. Let

  1,..1  nxxU n
 be a set of variables. A Bayesian network B over a set of variables U is a

network structure SB . The classification job is to classify a variable 0xy  called the class

variable given a set of variables nxxx1 called attribute variables. A classifier yxh : is

jijij

ji

i

n

i

i xxyy  
 ,1

2/1

0
1




i

n

i

i y0i

ii

n

i

i xayw







1

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

24

a function that maps an instance of x to a value of y . The classifier is learned from a dataset

D consisting of samples over  yx, .To use a Bayesian network as a classifier, one simply

calculates  xyPymaxarg using the distribution  UP represented by the Bayesian network.

The advantage of using Bayesian Networks is that they can be used to reason in the two

different directions. Another advantage of a Bayesian Network is the usefulness of the graph

itself; the graph is a compact representation of the knowledge surrounding the system [53].

3.3 k Nearest Neighbour

The k Nearest Neighbour (kNN) algorithm is a non-parametric classifier. The training

examples are vectors in a multi dimensional feature space. The space is partitioned into

regions by locations and labels of the training samples. A point in the space is assigned to the

class c if it is the most frequent class label among the k nearest training samples. The training

stage of the algorithm only stores the feature vectors and class labels of the training samples.

In the classification stage, a test sample is represented as a vector in the feature space.

Distances from the new vector to all stored vectors are computed and k closest samples are

selected. There are a number of ways to classify a new vector to a particular class. One of the

widely used techniques is to predict the new vector to the most common class amongst the k

nearest neighbors [10]. Non-parametric classifiers can naturally handle a huge number of

classes, and avoid over fitting of parameters which is a central issue in learning based

approaches. In addition, non-parametric classifiers do not require learning/training phases.

3.4 Artificial Neural Networks (ANN)

ANN consists of an interconnected group of artificial neurons and processes. The input to

neuron consists of a number of values x1, x2, ...xn, while output is single value y. Both input

and output have continuous values, usually in the range (0, 1). The neuron computes the

weighted sum of its inputs, subtracts some threshold T, and passes the result to a non-linear

function f. Each element in ANN computes the following:

)(

1

Txwfy i

N

i

i  


 (3.7)

where wi are the weights. The outputs of some neurons are connected to inputs of other

neurons. A multi-layer perceptron is especially useful for approximating a classification that

maps input vector (x1,x2, ... xn) to one or more classes C1,C2,...Cm.. By optimizing weights and

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

25

thresholds for all nodes, the network can represent a wide range of classification functions.

Optimizing the weights can be done by supervised learning, where the network learns from

the large number of examples [64]. Shah and Gandhi [118] claim ANNs are useful because

they can handle non-convex decisions. One disadvantage of ANNs is that the output values

do not come with any confidence measure, inspecting specific features is highly nontrivial. A

gross sense of confidence in a neural network approach can be found by ("winner takes all

approach") determining the difference between the two largest outputs [118].

3.5 Composite Classifiers

In machine learning, a number of classifiers can be used together for high accuracy in

classifications. They are proposed to improve the classification performance of a single

classifier [127]. The combination makes it possible to complement the errors made by the

individual classifiers on different parts of the input space.

3.5.1 Bagging

In the bagging technique, a number networks are trained separately by different training sets

using the bootstrap method [15]. Bootstrapping builds n replicated training data sets by

random re-sampling the original training data sets with replacements. Each training instance

may appear repeatedly or not at all in any particular replicated training data set of n. Then, the

n classifiers are combined using an appropriate combination method, such as majority voting.

The most commonly used base classifier with bagging is Decision Tree.

3.5.2 Boosting

The boosting algorithm consists of iteratively learning weak classifiers with respect to a

distribution and adding them to a final strong classifier [51]. When they are added, they are

typically weighted in a way that is usually related to the weak learner's accuracy. After a

weak learner is added, the data is reweighed: examples that are misclassified gain weight and

examples that are classified correctly lose weight. Thus future weak learners focus more on

the examples that previous weak learners misclassified. One of the main drawbacks of

boosting algorithm is in its initial assumptions; hence a large number of training examples are

required [52].

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

26

3.6. Performance Evaluation

To evaluate the performances of the 7 representative classifiers in image annotations, we have

implemented a prototype system using Java programming language and the WEKA package

version 3.5[144]. Figure 3.1 shows the structure of the system.

Figure 3.1: Image annotation system architecture.

The system learns the correspondence between low level visual features and image labels.

Low-level MPEG-7 descriptors such as scalable colour [120] and edge histogram are used.

The Edge Histogram Descriptor (EHD) proposed for MPEG-7 expresses the local edge

distribution in an image. MPEG-7 edge histogram is designed to contain only 80 bins

describing the local edge distribution [120]. The Scalable Colour Descriptor extracts a

quantized HSV colour histogram from a given image. The probability values of each bin are

calculated and indexed. The resulting histogram is transformed using a discrete Haar

transformation, non-uniformly quantized and offset, and the resulting array of values is then

sorted [120]. The image annotation systems can classify visual features into pre-defined

classes. First images are segmented into blocks. Then, the low-level features are extracted

from the segmented images. Each segmented block is represented by feature vectors. Next

stage is to assign the low-level feature vectors to pre-defined categories. Training stage

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

27

requires choosing a classifier and create an empty training set, the classifier is fed with a set

of training images in the form of attribute vectors with the associated labels After a model is

trained, it is able to classify an unknown instance, into one of the learned class labels in the

training set. Figure 3.2 shows the user interface of the prototype system which supports

automatic annotation of images using 7 classifiers.

Figure 3.2: A snapshot of the system [32].

3.6.1 Preparing Training Images

The images are collected from the Corel database [32]. Images are classified into 10 classes,

and each class of the images has one label associated with it. The 10 pre-defined labels are

people, beach, mountain, bus, food, dinosaur, elephant, horse, flower and historic item.

Typical images with 384x256 pixels are used in the training process. Low level features of

the images are extracted using the LIRE (Lucene Image REtrieval) library [90]. After

extracting low level features a typical image is represented in the following form:

0,256,12,1,-56,3,10,1,18,...........2,0,0,0,0,0,0,0,0,beach

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

28

Each image is represented by 483 attributes which include 58 attribute that represent edge

histogram and 424 attributes represent Scalable Colour Descriptor and the last attribute

indicates the class name which indicates the category to which the image belongs to. Figure

3.3 shows some of the sample images used in training classifiers.

Figure 3.3: Sample images [32].

3.6.2 Experiment Results

A number of tests were carried out on a Dell computer, Microsoft Vista, RAM- 1.00 GB,

Processor-520 @1.60Ghz. The 7 classifiers were evaluated from the aspects of accuracy in

annotating images and efficiency in training the models. In total 50 unlabeled images were

tested (10 images at a time), the average accuracy level was considered. Figure 3.4 shows the

accuracy of the 7 classifiers increases when the numbers of sample images are increased in

the training process.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

29

Figure 3.4: Accuracy in image annotations.

Among the 7 classifiers, SVM performs the best producing most accurate results in

annotating images. SVM achieves a level of accuracy over 90% when 5000 images are used

in the training. SVM accuracy level is due to its high generalization performance without the

need to add a priori knowledge, even when the dimension of the input space is very high. The

ability of a classifier to correctly classify data not in the training set is known as its

generalization [119]. The decision tree C4.5 algorithm performs the worst with a level of

accuracy of just 70%. The low level of accuracy is possibly due to the instability of the

decision tree algorithm. Slight variations in the training data can result it different attribute

selections at each choice point within the tree [157]. The effect can be significant since

attribute choices affect all descendent sub trees.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy
 l

ev
el

Number of Images

Decision Tree naïve bayes Bagging LogitBoost kNN Bayes Net SVM

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

30

Figure 3.5: Overheads in training models.

However, from the results presented in Figure 3.5 we observe that SVM incurs one of the

highest overhead in training the model. Training a SVM is equivalent to solve a quadratic

programming problem with linear and constraints in a number of variables equal to the

number of data points [110]. The training time of SVM can increase to almost 100 seconds

even though the sequential minimal optimization (SMO) [113] is used, a fast algorithm for

training SVM models.

3.7 Summary

This chapter started with the review of seven representative machine learning classifiers for

automatically image annotation. An image annotation prototype was presented which builds

training models on low level features extracted from sample images. This chapter concluded

on presenting the evaluation results.

0

50

100

150

200

250

300

350

400

450

O
v

er
h

ea
d

 (
s)

Number of Images

Bagging Decision Tree Bayes net naïve bayes LogitBoost kNN SVM

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

31

Chapter 4

 Resource Aware Parallel SVM for Scalable

Image Annotation

This chapter presents RASMO, a resource aware parallel SVM algorithm for large scale

image annotation which partitions the training data set into smaller subsets and optimizes

SVM training in parallel using a cluster of computers. A genetic algorithm based load

balancing scheme is designed to optimize the performance of RASMO in heterogeneous

computing environments.

4.1 The design of RASMO

This section starts with a brief description of the SMO algorithm followed by a detailed

description of RASMO.

4.1.1 SMO Algorithm

The SMO algorithm was developed by Platt [113] and further enhanced by Keerthi et al. [74].

Platt takes the decomposition to the extreme by selecting a set of only two points as the

working set which is the minimum due to the following condition:

 (4.1)

where ia is a Lagrange multiplier and y is a class name. This allows the sub-problems to have

an analytical solution. Despite the need for a number of iteration to converge, each iteration

only uses a few operations. Therefore the algorithm shows an overall speedup of some orders

of magnitude [119]. The SMO has been recognized as one of the fastest SVM algorithms

available. We define an index set I which denotes the following training data patterns:

0
1




i

n

i

i y

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

32

   cayicayiI iiii  0,1:0,1:0

 0,1:1  ii ayiI (Positive Non-Support Vectors)

 cayiI ii  ,1:2
(Bound Negative Support Vectors)

 cayiI ii  ,1:3
(Bound Positive Support Vectors)

 0,1:4  ii ayiI (Negative Non-Support Vectors)

where c is the correction parameter. Bias upb and lowb are defined with their associated indices

as follows:

 210:min IIIifb iup 

i
i

up fI minarg

 430:max IIIifb ilow 

i
i

owl fI maxarg

The optimality conditions are tracked through the vector fi in equation (4.2).

iij

l

j

jji yXXKyaf 


),(
1 (4.2)

where K is a kernel function and Xi is a training data point. SMO optimizes two ia values

related to upb and lowb according to equation (4.3) and equation (4.4).

   oldoldoldnew ffyaa 21222  (4.3)

  newoldoldnew aasaa 2211  (4.4)

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

33

where),(),(),(2 221121 XXkXXkXXk  . After optimizing
1a and

2a , if which denotes

the error of the i th
 training data can be updated according to equation (4.5).

),()(),()(22221111 i

oldnew

i

oldnewold

i

new

i XXkyaaXXkyaaff  (4.5)

To build a linear SVM, a single weight vector needs to be stored instead of all the training

examples that correspond to non-zero Lagrange multipliers. If the joint optimization is

successful, the stored weight vector needs to be updated to reflect the new Lagrange

multiplier values. The weight vector is updated according to equation (4.6).



 xaayxaayww clippednewnew

new

)()(2

,

22111
 (4.6)

We check the optimality of the solution by calculating the optimality gap between the blow

and bup. The algorithm is terminated when 2 uplow bb as shown in Algorithm 4.1.

4.1.2 Cascade SVM

SVM training can be speeded up by splitting the training data set into a number of smaller

data chunks and trained separately with multiple SVMs. When the training process is

completed, the generated training vectors have support vectors and non-support vectors.

Algorithm 4.1: Sequential Minimal Optimization Algorithm

Input: training data xi, labels yi,

Output: sum of weight vector, α array, b and SV

1: Initialize: αi = 0, fi = -yi

2: Compute: bhigh, Ihigh, blow, Ilow

3: Update αIhigh and αIlow

4: repeat

5: Update fi

6: Compute: bhigh, Ihigh, blow, Ilow

7: Update αIhigh and αIlow

8: until 2 uplow bb
9: Update the threshold b

10: Store the new α1 and α2 values

11: Update weight vector w if SVM is linear

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

34

Removing the non-support vectors in an early stage in the training process is an effective

strategy in speeding up SVM. The multilayered cascade architecture follows such an

approach until a global optimum is reached. The SVM classifiers can be considered as the

nodes in a binary tree. Figure 4.1 shows an example of a cascade SVM.

Figure 4.1: A cascade SVM example.

In this architecture a single SVM is trained with a smaller data chunk. The support vectors

generated from one layer are combined as input for the next layer. The cascade architecture is

guaranteed to converge to a global optimum as the support vectors of the last layer are fed

back into the SVMs in the first layer to determine the level of convergence.

4.2 The RASMO Algorithm

RASMO builds on MapReduce for parallelization of SVM computation in training. This

section starts by a brief description of the MapReduce programming model followed by a

detailed description of the RASMO algorithm.

4.2.1 MapReduce Model

MapReduce provides an efficient programming model for processing large data sets in a

parallel and distributed manner. The Google File System [137] that underlies MapReduce

provides an efficient and reliable data management in a distributed computing environment.

SVM 1

SVM 12

SVM 11SVM 10

SVM 9SVM 8SVM 7

SVM 5SVM 4SVM 3SVM 2 SVM 6

S
V

 s
et

S
V

 s
et

S
V

 s
et

SV set
SV set

SV se
t

layer 1

Layer 2

Layer 3

Layer 4

S
V

 set

S
V

 set

S
V

 set

SV set

SV set

SV set

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

35

The basic function of MapReduce model is to iterate over the input, compute key/value pairs

from each part of input, group all intermediate values by key, then iterate over the resulting

groups and finally reduce each group. The model efficiently supports parallelism. Figure 4.2

presents an abstraction of a typical MapReduce framework. Map is an initial transformation

step, in which individual input records are processed in parallel. The system shuffle and sort

the map outputs and transfer them to the reducers. Reduce is a summarization step, in which

all associated records are processed together by a single entity.

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Input Dataset

Split

Split

Split
Map

Task

Output

Result

Map

Task

Map

Task

Shuffle

and

Sort

Reduce

Task

Reduce

Task

Output

Result

ValueKey

Key

Key

Key

Value

Value

Value

Key

Key

Value

Value

Value

Value

Value

Key

Key

Key

Value

Value

Value

Value

Value

Value

Key

Key

Key

Key

Value

Value

Value

Value

Figure 4.2: The MapReduce model.

4.2.2 RASMO Design

The RASMO algorithm partitions the entire training data set into smaller data chunks and

assigns each data chunk to a single map task. The number of map tasks is equal to the number

data chunks. Each map function optimizes a data chunk in parallel in each layer. The output

of each map function is the alpha array (Lagrange multipliers) for a local partition and the

training data Xi which corresponds Lagrange multipliers 0ia in order to create input for

the next layer, the output of the last layer includes the alpha array, bias threshold b and the

training data Xi which correspond 0ia in order to calculate the SVM output u using

equation (4.7).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

36

bXXKayu ii

n

i

i 


),(
1

 (4.7)

where X is an instance to be classified, yi is class labels for Xi and K is the kernel function.

Each map task processes the associated data chunk and generates a set of support sectors.

Each set of support sectors is then combined and forwarded to the map task in the next layer

as input. The process continues until a single set of support sectors is computed. The set of

support sectors of the last layer is then fed back into the first layer together with non-support

vectors to determine the level of convergence. The entire process stops until a global

optimum is reached indicating that no further optimization is needed in the first layer, and the

generated SVM model will be used in the classification. Figure 4.3 presents a high level

pictorial representation of this approach, in part similar to the approach adopted in [58].

Algorithm 4.2 shows the pseudo code of RASMO with a 3 layers structure. Lines 1-4 show

the optimization process of SMO for each data chunk and combine support vectors of layer 1.

Lines 5-8 show the assembling results from layer 1 which are used as input for layer 2. Lines

9-12 show the assembling results from layer 2 which are used as input for layer 1, and the

training process in layer 3.

Figure 4.3: The architecture of RASMO.

MR1

Data

Chunk 1

MR4

MR3

 MR2

MR6

MR5

SV set 1

SV set 2

SV set 3

SV set 4

MR7

Com.

Data

SV set 5

S
V

 s
et

 6

SVM

Com.

Data

Com.

Data

Data

Chunk 4

Data

Chunk 3

Data

Chunk 2

Layer 1 Layer 2 Layer 3

feedback

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

37

4.3 Load Balancing

A remarkable characteristic of the MapReduce Hadoop framework is its support for

heterogeneous computing environments. Therefore computing nodes with varied processing

capabilities can be utilized to run MapReduce applications in parallel. However, current

implementation of Hadoop only employs first-in-first-out (FIFO) and fair scheduling with no

support for load balancing taking into consideration the varied resources of computers. A

genetic algorithm based load balancing scheme is designed to optimize the performance of

RASMO in heterogeneous computing environments.

To solve an optimization problem, genetic algorithm solutions need to be represented as

chromosomes encoded as a set of strings which are normally binary strings. However, a

binary representation is not feasible as the number of map instances (operations) in a Hadoop

cluster environment is normally large which will result in long binary strings. A decimal

string has been employed to represent a chromosome in which the data chunk assigned to a

map instance (also called a mapper) is represented as a gene. The numbers of gene are

defined based on the number of available mappers. The crossover rate of the genetic

algorithm is 0.9 and the mutation rate is 0.01.

Algorithm 4.2: RASMO Algorithm

Map tasks

Input: training data ix

Output: support vectors isv , b and data lx

1: train SMO on m chunks;

2: obtain msv set for m chunks;  0 mmsv  ;

3: combine each two msv sets ;
4: store all mx for msv to create k input chunks for next layer Map tasks;

5: train SMO on k chunks;

6: obtain ksv set for k chunks;  0 kksv 
7: combine two ksv sets;
8: store all kx for ksv to create input chunk for next layer Map task;

 9: train SMO on kx

6: obtain isv set for kx ;  0 iisv 
10: evaluate isv for global convergence;
12: store the final set isv if further optimization is not required

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

38

However simply crossing the chromosome can be problematic. As each gene is the value of

the actual volume of data each Map instance takes, to change the members of genes may

differentiate the original total volume of data
1

k

i

i

D


 . Assume the original total volume of data

is
1

k

i

i

D


 and the volume of data after crossover is
1

k

i

i

d


 , then the difference

1 1

k k

i i

i i

D D d
 

    should be considered and processed, D is divided into k parts. The

size of each part is randomly assigned. And then these k parts will be randomly added to or

removed from k genes in the chromosome.

In Hadoop, the total time (T) of a mapper in processing a data chunk consists of the following

four parts:

 Data copying time (tc) in copying a data chunk from Hadoop distributed file

system to local hard disk. It depends on the available network bandwidth and the

writing speed of hard disk.

 Processor running time (tp) in processing a data chunk.

 Intermediate data merging time (tm) in combining the output files of the

mapper into one file for reduce operations.

 Buffer spilling time (tb) in emptying a filled buffer.

 bmpc ttttT 

(4.8)

Let

 Dm be the size of the data chunk.

 Hd be the writing speed of hard disk in MB/second.

 Bw be the network bandwidth in MB/second.

 Pr be the speed of the processor running the mapper process in MB/second.

 Bf be the size of the buffer of the mapper.

 Ra be the ratio of the size of the intermediate data to the size of the data chunk.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

39

 Nf be the number of frequencies in processing intermediate data.

 Nb be the number of times that buffer is filled up.

 Vb be the volume of data processed by the processor when the buffer is filled

up.

 S be the sort factor of Hadoop.

We have

),min(wd

m
c

BH

D
t  (4.9)

Here
ct depends on the available resources of hard disk and network bandwidth. The slower

one of the two factors will be the bottleneck in copying data chunks from Hadoop distributed

file system to the local hard disk of the mapper.

 r

m

p
P

D
t  (4.10)

When a buffer is filling, the processor keeps writing intermediate data into the buffer and in

the mean time the spilling process keeps writing the sorted data from the buffer to hard disk.

Therefore the filling speed of a buffer can be represented by
dar HRP  . Thus the time to

fill up a buffer can be represented by
dar

f

HRP

B


 . As a result, for a buffer to be filled up,

the processor will generate a volume of intermediate data with the size of
bV which can be

computed using equation (4.11)

 dar

f

arb
HRP

B
RPV


 (4.11)

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

40

The total amount of intermediate data generated from the original data chunk with a size of

mD is
am RD  . Therefore the number of times for a buffer to be filled up can be computed

using equation (4.12).

 b

am
b

V

RD
N


 (4.12)

The time for a buffer to be spilled once is
d

f

H

B
, therefore the time for a buffer to be spilled

bN times is
d

fb

H

BN 
 . Then we have

d

fb

b
H

BN
t


 (4.13)

The frequencies in processing intermediate data can be computed using equation (4.14).

1







s

N
N b

f
 (4.14)

When the merging occurs once, the whole volume of intermediate data will be written to the

hard disk causing an overhead of
d

am

H

RD  . Thus if the merging occurs
fN times, the time

consumed by hard disk IO operations can be computed by
d

fam

H

NRD 
 . We have

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

41

 d

fam

m
H

NRD
t


 (4.15)

The total time
totalT to process data chunks in one processing wave in Hadoop is the maximum

time consumed by participating mappers:

),...,,,max(321 ktotal TTTTT  (4.16)

According to divisible load theory, to achieve a minimum
totalT , it is expected that all the

mappers to complete data processing at the same time:

 kTTTT ...,321  (4.17)

Let


iT be the processing time for the mapper.

 T be the average time of the k mappers in data processing,

 k

T

T

k

i

i
 1

.

According to equations (4.16) and (4.17), the fitness function is to measure the distance

between
iT and T . Therefore, the fitness function can be defined using equation (4.18)

which is used by the genetic algorithm in finding an optimal or a near optimal solution in

determining the size for a data chunk.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

42

2

1

)()(i

k

i

TTTf  


 (4.18)

4.4 Experimental results

RASMO has been incorporated into our image annotation system which is developed using

the Java programming language and the WEKA package. The image annotation system

classifies visual features into pre-defined classes. Figure 4.4 shows a snapshot of the system.

Figure 4.4: A snapshot of the image annotation system [32].

4.4.1 Image Corpora

The images are collected from the Corel database. Images are classified into 10 classes, and

each class of the images has one label associated with it. The 10 pre-defined labels are

people, beach, mountain, bus, food, dinosaur, elephant, horse, flower and historic item.

Typical images with 384x256 pixels are used in the training process. Low level features of

the images are extracted using the LIRE (Lucene Image REtrieval) library. After extracting

low level features a typical image is represented in the following form:

0,256,12,1,-56,3,10,1,18,...........2,0,0,0,0,0,0,0,0,beach

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

43

Each image is represented by 483 attributes which include 58 attribute that represent edge

histogram and 424 attributes represent Scalable Colour Descriptor and the last attribute

indicates the class name which indicates the category to which the image belongs to.

4.4.2 Performance Evaluation

RASMO is implemented using Weka’s base machine learning libraries written in the Java

programming language and tested in a Hadoop cluster. To evaluate RASMO, the SMO

algorithm provided in the Weka package, has been extended, configured and packaged it as a

basic MapReduce job. The Hadoop cluster for this set of experiments consist of a total of 12

physical cores across 3 computer nodes as shown in Table 4.1.

Table 4.1: Hadoop Configuration.

Hardware environment

 CPU Number of

Cores

RAM

Node 1 Intel Quad

Core

4 4GB

Node 2 Intel Quad

Core

4 4GB

Node 3 Intel Quad

Core

4 4GB

 Software environment

SVM WEKA 3.6.0 (SMO)

OS Fedora10

Hadoop Hadoop 0.20

Java JDK 1.6

The performance of RASMO has been evaluated from the aspects of efficiency and accuracy.

Polynomial kernel function has been used in the experiments. Figure 4.5 shows the

efficiency of the RASMO in SVM training which achieves close to 12 times in speedup.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

44

Figure 4.5: The efficiency of RASMO using 12 mappers.

Figure 4.6 shows the efficiency of the RASMO in SVM training in two iterations which

converge to the global optimum.

Figure 4.6: The efficiency of fully converge RASMO using 12 mappers.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
ra

in
in

g
 o

v
er

h
ea

d

(s

)

Number of training instances

Sequential SMO RASMO

0

200

400

600

800

1000

1200

1400

1600

1800

2000

o
v
er

h
ea

d
(s

)

Number of traing intances

Sequential SMO RASMO

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

45

The experiments demonstrated that Hadoop startup and the associated overhead introduce

performance penalties for the cases with smaller numbers of training instances. However,

RASMO starts to outperform the sequential SMO with an increasing number of instances in

terms of training time required. Figure 4.7 shows the increasing efficiency with the number of

participating MapReduce mappers varying from 4 to 12.

Figure 4.7: The overhead of RASMO.

Furthermore the accuracy of the sequential SMO and RASMO have been evaluated in

classification and presented the results in Table 4.2 using 5000 instances. In total 50

unlabeled images were tested (10 images at a time), the average accuracy level was

considered. It is clear that the parallelization of RASMO has no affect on the accuracy level

even after the first iteration which is close to global optimum. The results show that RASMO

achieves 94% which was the same as the sequential SMO.

Table 4.2: Summarized performance results.

 Sequential SMO RASMO 12 Mappers

Correctly Classified ≈ 94 % ≈ 94 %

Incorrectly Classified ≈ 6% ≈ 6%

Training time 240 (s) 34 (s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5000 20000 40000 60000

O
v

er
h

ea
d

 (
s)

Number of Instances

Sequential SMO 4 Mappers 8 Mappers 12 Mappers

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

46

4.5 Simulation results

To further evaluate the effectiveness of RASMO in large scale MapReduce environments,

HSim, a MapReduce Hadoop simulator has been implemented using the Java programming

language by a research group which I was a member. In this section, the design of HSim is

briefly presented and the performance of the RASMO in simulation environments is assessed.

4.5.1 Simulator Design

HSim follows a master-slave mode in its design. Parameters related to a simulated cluster

include the number of Hadoop nodes, the topologies of these nodes (currently only

supporting simple racks), the number of mappers and reducers, the CPU speed, memory size,

the average reading and writing speeds of hard disk and network bandwidth of each node.

HSim supports one processor per node and each processor can have one or more processor

cores. The processing speed of each core is defined as the volume of data processed per

second. The values of some parameters such as CPU speed and the writing and reading

speeds of hard disk can be assigned based on measurements from real-world experiments.

Each job in HSim has a job ID which is used for job tracking. The size of a job is the total

size of input data. The MapOutputRatio parameter represents the volume of intermediate data

that will need to be generated by map instances. The NumberOfChunk parameter specifies

the number of splits to be used in the map process which is related to the number of mappers.

The Number of Reducers specifies the number of reduce instances. Figure 4.8 shows the

architecture of HSim.

HSim

Job Spec Cluster Spec

Job Reader Cluster Reader

Master node Slave node

Job Tracker

Tasks

Task Tracker

MapperSim ReducerSim

Heartbeat

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

47

Figure 4.8: HSim Architecture.

When a job is submitted to the simulated Hadoop cluster, the JobTracker splits the job into

several tasks. Each task will be assigned to a map instance. The TaskTrackers and JobTracker

communicate with each other via heartbeat based messaging. When all the map tasks have

finished, the reduce instances will be notified to be prepared for merging. Each map instance,

called a mapper, is simulated by the MapperSim component. For a simulation job,

MapperSim reads the input data in the form of chunks, processes the job, generates a number

of output data splits and subsequently performs a sort and merge process based on the keys of

the input data chunks. Finally, MapperSim splits the output dataset based on the number of

reducers specified in the job configuration. The ReducerSim component collects output data

splits from the MapperSim component and performs a merge process generating a single

output result.

4.5.2 Validation of HSim with Benchmarks

For validation, HSim is evaluated against the benchmark results presented in [111] using 3

scenarios - Grep Task, Selection Task and UDF Aggregation Task. In HSim, the exact

physical environments adopted in the benchmarking have been simulated.

A. Grep Task

A cluster with 1 node, 10 nodes, 25 nodes, 50 nodes and 100 nodes respectively are

simulated. 2 scenarios are tested. In the first scenario 535MB of data is assigned to each

node. In the second scenario, 1TB of data is submitted to the cluster. Each scenario was

evaluated 5 times. The simulation results of the 2 scenarios are plotted in Figure 4.9 and

Figure 4.10 respectively which are close to the benchmark results. The confidence intervals

of the results are small in both scenarios (between 0 and 2.6 seconds in the first scenario and

between 4.1 and 7.6 seconds in the second scenario) demonstrating a high stability of HSim

in performance.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

48

Figure 4.9: Grep Task evaluation (533MB/node).

Figure 4.10: Grep Task evaluation (1TB/cluster).

0

200

400

600

800

1000

1200

25 50 100

O
ve

rh
ed

 (s
)

Number of nodes

Benchmark HSim

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

49

B. Selection Task

The Selection Task scenario was designed to observe the performances of the Hadoop

framework in dealing with complex tasks. Each node processes one 1GB ranking table to

retrieve the target pageURLs using a user defined threshold. The simulation results shown in

Figure 4.11 are again close to the benchmark results with small confidence intervals in the

range between 2.6 and 6.6 seconds.

Figure 4.11: Selection Task evaluation.

C. UDF Aggregation Task

The UDF Aggregation Task reads the generated document files and searches for all the URLs

appearing in the content. For each unique URL, the system counts the number of unique

pages that refer to that particular URL across the entire set of files. Each node processes

around 7GB documents. Figure 4.12 shows the simulation results in the respective scenario,

which are also close to benchmark results with small confidence intervals in the range

between 2.6 and 13.4 seconds.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

50

Figure 4.12: UDF Aggregation Task evaluation.

4.5.3 Comparing HSim with MRPerf

It should be pointed out that HSim has been designed because few exiting MapReduce

simulators are available and MRPerf [142] is a representative one. MRPerf is evaluated and

compared its performance with that of HSim using real Hadoop configurations. Figure 4.13

shows the comparison from which it can be observed that HSim significantly outperforms

MRPerf when compared with real Hadoop cluster behavior.

Figure 4.13: A comparison of HSim with MRPerf.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

51

One reason for such performance mismatch is that MRPerf does not simulate exactly the

behaviors of Hadoop. For example, in a map operation, the spilled data will be kept writing

onto buffer space while the map task is running. When the occupied size of the buffer is less

than a certain threshold, in-memory data will be kept spilling onto hard disk simultaneously.

Due to the highly changing capacities of system resources, this mechanism can have an

impact on the number of spilled files and further I/O behavior will be significantly affected.

However, MRPerf simply ignores these events and writes a pre-defined value onto the hard

disk.

4.5.4 Simulation Results

Using HSim, a number of Hadoop environments are simulated and evaluated the performance

of RASMO from the aspects of scalability, the effectiveness in load balancing and the

overhead of the load balancing scheme.

Scalability

To further evaluate the scalability of the RASMO algorithm, HSim has been employed and

simulated a number of Hadoop environments using a varying number of nodes up to 250.

Each Hadoop node was simulated with 4 mappers, and 4 input data sets were used in the

simulation tests. Table 4.3 shows the configurations of the simulated Hadoop environments.

Table 4.3 Configurations for scalability evaluation.

Simulation environment

Number of simulated

nodes:

250

Data size: 100,000MB

CPU processing speed: 0.75MB/s

Hard drive reading

speed:

80MB/s

Hard drive writing

speed:

40MB/s

Memory reading speed: 6000MB/s

Memory writing speed: 5000MB/s

Network bandwidth: 1Gbps

Total number of Map

instances:

4 mappers per node

From Figure 4.14 it can be observed that the processing time of RASMO decreases as the

number of nodes increases. It is also worth noting that there is no significant reduction in

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

52

processing time of RASMO beyond certain number of nodes. This is primarily due to the fact

that Hadoop incurs a higher communication overhead when dealing with a larger number of

computing nodes.

Figure 4.14: The scalability of RASMO in simulation environments.

4.5.5 Load Balancing

Table 4.4 shows the configurations of the simulated Hadoop environments in evaluating the

effectiveness of the load balancing scheme of RASMO.

Table 4.4 Configurations for load balance evaluation.

Simulation environment

Number of simulated nodes 20

Number of processors in

each node

1

Number of cores in each

processor

2

The processing speeds of

processors

depending on heterogeneities

Heterogeneities from 0 to 2.28

Number of hard disk in

each node

1

Reading speed of Hard disk 80MB/s

Writing speed of Hard disk 40MB/s

Number of Mapper each node employs 2 map

instances

Sort factor: 100

0

500

1000

1500

2000

2500

3000
O

v
e
r
h

e
a

d
 (

s
)

Number of Mappers

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

53

To evaluate the load balancing algorithm a cluster with 20 computing nodes is simulated.

Each node has a processor with two cores. The number of mappers is equals to the number of

cores. Therefore two mappers on a single processor with two cores have been run.

The speeds of the processors are generated based on the heterogeneities of the Hadoop

cluster. In the simulation environments the total processing power of the cluster was

 where n represents the number of the processors employed in the cluster and

represents the processing speed of
processor. For a Hadoop cluster with a total computing

capacity denoted with , the levels of heterogeneity of the Hadoop cluster can be defined

using equation (4.19).

 (4.19)

In the simulation, the value of heterogeneity varied from 0 to 2.28. The reading and writing

speeds of hard disk were measured from the experimental results. In the RASMO algorithm,

mappers are the actual processing units. Therefore balancing the workloads of the mappers in

the first layer in the cascade SVM model is the core part of the load balancing algorithm.

10GB data in the tests has been employed.

Figure 4.15: The performance of RASMO with load balancing.

0

500

1000

1500

2000

2500

O
v

er
h

ea
d

 (
s)

Hetrogenity

Without Load Balacing With load Balancing

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

54

Figure 4.15 shows the performance of RASMO with load balancing. It can be observed that

when the level of heterogeneity is less than 1.08 indicating homogeneous environments, the

load balancing scheme does not make any difference to the RASMO algorithm in

performance. However the load balancing scheme reduces the overhead of RASMO

significantly with an increasing levels of heterogeneity showing that the resource aware

RASMO can optimize resource utilization in highly heterogeneous computing environments.

The degree of heterogeneity is kept the same in the simulated cluster but varied the size of

data from 1GB to 10GB. This set of tests was used to evaluate how the load balancing

scheme performs with different sizes of data sets. Figure 4.16 shows that the load balancing

scheme always reduces the overhead of RASMO in SVM training using varied volumes of

data.

Figure 4.16: The performance of RASMO with varied sizes of data.

4.5.5.1 Overhead of the Load Balancing Scheme

The load balancing scheme builds on a genetic algorithm whose convergence speed affects

the efficiency of RASMO in training. To analyze the convergence speed of the genetic

algorithm, the numbers of generations are varied and the overhead of RASMO in processing

a 10GB dataset in a simulated Hadoop environment are measured. Figure 4.17 shows that

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

O
v

e
r
h

e
a

d
(s

)

Data size (GB)

Without Load Balancing With Load Balancing

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

55

RASMO has a quick convergence process in reaching a stable performance. After

approximately 300 generations an optimal or near optimal solution is found.

Figure 4.17: The convergence of the RASMO.

The load balancing algorithm incur overhead during execution. Figure 4.18 shows the

overheads of the algorithm with the increasing of number of Map instances and job data size.

However the overhead of the load balancing algorithm is insignificant in comparison to total

overhead of RASMO.

0

50

100

150

200

250

300

350

P
e
r
fo

r
m

a
n

c
e
 O

v
e
r
h

e
a

d
s

o
f

R
A

S
M

O

(s

)

Number of Generations

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

56

 Figure 4.18: Overheads of the load balancing algorithm.

4.6 Summary

 This chapter presented RASMO, a resource aware parallel SVM algorithm for large scale

image annotation which partitions the training data set into smaller subsets and optimizes

SVM training in parallel using a cluster of computers. RASMO was evaluated in both

experimental and simulation environments showing that the distributed SVM algorithm

reduces the training time significantly while maintaining a high level of accuracy in

classifications.

2.56GB 3.84GB 5.12GB 7.68GB 10.24GB 15.36GB
20.48GB

30.72GB

40.96GB

61.44GB

0

50

100

150

200

250

300

350

400

40 60 80 120 160 240 320 480 640 960

O
v

e
r
h

e
a

d
s

(s
)

Number of Mappers

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

57

Chapter 5

 Parallelizing Multiclass SVM for Scalable Image

Annotation

This chapter presents RAMSMO, a resource aware parallel multiclass SVM algorithm for

large scale image annotation which partitions the training dataset into smaller binary chunks

and optimizes SVM training in parallel using a cluster of computers. A genetic algorithm

based load balancing scheme is designed to optimize the performance of RAMSMO in

balancing the computation of multiclass data chunks in heterogeneous computing

environments.

5.1 The Design of RAMSMO

This section starts with a brief description of the One Against One technique followed by a

detailed description of RAMSMO.

5.1.1 OAO Method

Multiclass classification based on OAO method is the formation of a binary classifier for

every pair of distinct classes. The decision function of the SVM classifier for classes such as

class (1, 2) and class (2, 1) has reflectional balance; hence only one of these pairs of

classifiers is required. Therefore a total of 2/)1(kk binary classifiers are created where k is

the number of classes. The training data for each classifier is a subset of the available training

data which only contains the data for the two classes involved. A binary classifier
ijC is

trained with the training samples from class i as positive and the training samples from class

j as negative. The output of each binary classifier can be interpreted as the posterior

probability of the positive class [44]. Hastie and Tibshirani [60] proposed a pairwise coupling

strategy for combining the probabilistic outputs of all the OAO binary classifiers to estimate

the posterior probabilities x)|(Pr iobpi  , .,......1 ki  Once posterior probabilities are

estimated, based on pairwise coupling technique unlabeled instance is assigned to the class

with the largest ip . Based on a comparative study carried out in [44] the pairwise coupling

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

58

scheme is highly recommended as the best kernel discriminate method for solving multiclass

problems.

5.1.2 Pairwise Coupling

Pairwise coupling is the learning of k 2/)1(kk pairwise decision rules and couples the pair

wise class probability estimates into a joint probability estimate for the entire classes [116].

In comparison to other commonly used multiclass classification techniques, pairwise

coupling is more suitable in reducing the computational cost which is closely related to the

size of the training data [116]. Pairwise coupling process is as follows. Let ijr denote the

probabilistic output of
ijC then j).or i |(Pr iobrij  here the objective is to couple the sets

ijr

into a general set of probabilities)(Pr iobpi  , this problem has no general solution due to the

existence of 1k independent parameters and 2/)1(kk equations. However Hastie and

Tibshirani [60] proposed a new set of auxiliary variables μij which are related to
ip .

 ji

i
ij

pp

p




 (5.1)

ip need to be found such that the corresponding
ij are in some sense close to ijr . The

Kullback-Leibler [82] distance between
ij and ijr is chosen as the suitable measurement of

closeness.




















 ij

ij

ij

ij

ij

ij

ji

ij

r
r

r
rnpl

 1

1
log)1(log)(

 (5.2)

The associated gradient equations are as follow:

ij

ji

ij

ji

ijij nrn 


 , ki ...2,1 (5.3)

subject to 1
1




k

i

ip

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

59

The
ip values are computed using the following iterative procedure:

 set
 ip with some initial guess values and the correspoding

ij values.


ip is computed which minimizes)(pl by iterating










ji

ijij

ij

ji

ij

ii
rn

n

pp



 (5.4)

 Renormalize the
ip ’s ,




i i

i
ii

p

p
pp

 Re-compute the
ij and check for convergence.

5.2 RAMSMO

RAMSMO builds on MapReduce for parallelization of SVM computation in training. This

section starts with a detailed description of the RAMSMO algorithm.

5.2.1 Algorithm Design

The RAMSMO algorithm partitions the entire training dataset into binary subsets (data

chunks) and assigns each subset to a single mapper in MapReduce. The number of mappers

is equal to the number of binary chunks. Each mapper optimizes a data chunk in parallel.

Figure 5.1 presents a high level pictorial representation of this approach.

Figure 5.1: The architecture of RAMSMO.

MR1
 pair 1

MRj

MR3

 MR2

SV
 set 1

SV set 2

SV set 3

SV
 se

t j

Multiclass SVM Model

Pair j

pair 3

pair 2

Reduce

Collect results of all pairs
Multiclass Dataset

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

60

The output of each mapper is the alpha array (Lagrange multipliers) for a binary subset, the

training data Xi which corresponds to alpha 0ia and a bias b in order to compute SVM

output u using equation (5.5).

bXXKayu ii

n

i

i 


),(
1

. (5.5)

where X is an instance to be classified and K is the kernel function.

In the case of a linear SVM the output of each mapper includes a weight vector and the value

b in order to calculate the SVM output u using equation (5.6).

 bxwu 


. . (5.6)

The reduce task simply collects and stores generated binary classifiers which are used as the

trained multiclass SVM model for classification. Algorithm 5.1 shows the pseudo code of

RAMSMO. Line 1-2 show the construction of all the binary data chunks. Lines 3-6 show the

optimization process of SMO for each binary chunk. Line 7 shows the assembling results

from all the mappers.

5.3 Load Balancing

A genetic algorithm based load balancing scheme is designed to optimize the performance of

RAMSMO in heterogeneous computing environments. The load balancing scheme computes

Algorithm 5.1: RAMSMO Algorithm

Input: training data
ix

Output: support vectors
ksv , weight vectors

iw if SVM is

linear

1: split training data
ix into single class chunks

2: combine single chunks to create all possible binary

pairs bx ;

MAPj  nj ..1 , 2/)1( kkn

Input: binary chunks
bx

Output: support vectors
ksv and data

kx

3: train SMO on each binary pair

4: obtain ksv set for k pair;  0 kksv 

5: store all weight vectors
ksv

6: weight vectors

iw if SVM is linear

REDUCE

7: collect and store all results.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

61

optimal number of binary chunks processed by available Mappers, a single Mapper may

process a number of binary chunks based on the resources available in a cluster of computers

such as the computing powers of processors, the storage capacities of hard drives and the

network speeds of the participating nodes.

A genetic algorithm is similar to the algorithm describe in section 4.3 of chapter 4. However

the major difference is that there is no crossover due to the uniqueness of the binary subsets

which is regarded as a evolutionary algorithm. Assume there are a fixed number of binary

subsets (genes)

in a chromosome. A random number of genes are allocated to the available

Mappers. The positions of two randomly selected genes belonged to the corresponding

Mappers are changed to perform mutation, the mutation rate is 0.01. The fitness of newly

generated chromosome is evaluated based on equation (5.7) which is used by the genetic

algorithm in finding an optimal or a near optimal solution in determining the number binary

data chunks processed by available Mappers.

 (5.7)

5.4 Experimental Results

RAMSMO has been incorporated into our image annotation system which is developed using

the Java programming language and the Weka package. The image annotation system

classifies visual features into pre-defined classes. Figure 5.2 shows a snapshot of the system.

Figure 5.2: A snapshot of the image annotation system [32].

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

62

5.4.1 Image Corpora

The images are collected from the Corel database. Images are classified into 10 classes, and

each class of the images has one label associated with it. The 10 pre-defined labels are

people, beach, mountain, bus, food, dinosaur, elephant, horse, flower and historic item.

Typical images with 384x256 pixels are used in the training process. Low level features of

the images are extracted using the LIRE (Lucene Image REtrieval) library. After extracting

low level features a typical image is represented in the following form:

0,256,12,1,-56,3,10,1,18,...........2,0,0,1,0,0,0,0,0,0,0,0,0,beach

Each image is represented by 483 attributes which include 58 attribute that represent edge

histogram and 424 attributes represent Scalable Colour Descriptor and the last attribute

indicates the class name which indicates the category to which the image belongs to.

 5.4.2 Performance Evaluation

MRSMO is implemented using WEKA base machine learning libraries written in the Java

programming language and tested in a Hadoop cluster. To evaluate RAMSMO, the SMO

algorithm provided in the Weka package is extended, configured and packaged it as a basic

MapReduce job. The Hadoop cluster for this set of experiments consist of a total of 12

physical processor cores across 3 computer nodes as shown in Table 5.1.

Table 5.1 Hadoop Configurations for RAMSMO.

Hardware environment

 CPU Number of Cores RAM

Node 1 Intel Quad Core 4 4GB

Node 2 Intel Quad Core 4 4GB

Node 3 Intel Quad Core 4 4GB

 Software environment

SVM WEKA 3.6.0 (SMO)

OS Fedora10

Hadoop Hadoop 0.20

Java JDK 1.6

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

63

RAMSMO is evaluated the performance of from the aspects of efficiency and accuracy.

Polynomial kernel function has been used in the experiments. Figure 5.3 shows the efficiency

of the RAMSMO in SVM training which achieved close to 12 times in speedup.

Figure 5.3: The efficiency of RAMSMO in SVM training using 12 mappers.

Figure 5.4 shows the efficiency of the RAMSMO in comparison with MRSMO [76] which is

one against all based distributed multiclass SVM. RAMSMO is more efficient due to the fact

that training data for each binary classifier is a subset of the available training data which

only contains the data for the two classes involved. One against all based MRSMO incurs

higher training overhead due to the involvement of all training data for creating binary

classifiers for each class.

0

50

100

150

200

250
O

v
er

h
ea

d
 (

s)

Number training instances

Sequential SMO RAMSMO

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

64

Figure 5.4: A comparison of RAMSMO and MRSMO.

RAMSMO is evaluated with an unequal number of instance for each class, resulting in the

fact that the mapper that processes the largest data chunk is the last to finish before the

reduce phase can start. Figure 5.5 shows the increase in the overhead of RAMSMO with

unequal binary data size which highlights the need for an effective load balancing scheme for

heterogeneous environments.

Figure 5.5: The overhead of RAMSMO using equal and unequal binary chunks.

Furthermore the accuracy of the sequential SMO and RAMSMO is evaluated in classification

and presented the results in Table 5.2. In total 50 unlabeled images were tested (10 images at

a time), the average accuracy level was considered. It is clear that the parallelization of

0

5

10

15

20

25

30

35

40

O
ve

rh
ea

d
 (

s)

Number of training instances

One Against All One Against One

0

5

10

15

20

25

30

35

40

O
ve

rh
ea

d
 (

s)

Number of training instances

Equal size Unequal size

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

65

RAMSMO has no affect on the accuracy level due to the way of the algorithm is parallelized.

The results show that RAMSMO achieves 94% which was the same as the sequential SMO.

Table 5.2 Summarising Performance Results.

 Sequential SMO RAMSMO 3 computers (12 Mappers)

Correctly Classified ≈ 94 % ≈ 94 %

Incorrectly Classified ≈ 6% ≈ 6%

Training time for 5000 instances 241 (s) 35 (s)

5.5 Simulation results

To further evaluate the effectiveness of RAMSMO algorithm in MapReduce environments, a

number of Hadoop environments are simulated and the performance of RAMSMO is

evaluated using HSim from the aspects of scalability, the effectiveness in load balancing and

the overhead of the load balancing scheme.

5.5.1 Scalability

To further evaluate the scalability of the RAMSMO algorithm, HSim is employed and a

number of Hadoop environments are simulated using a varying number of nodes up to 250.

Each Hadoop node was simulated with 4 mappers, and 4 input datasets were used in the

simulation tests. Table 5.3 shows the configurations of the simulated Hadoop environments.

Table 5.3: Configurations for Scalability Evaluation.

Simulation environment

Number of simulated

nodes:

250

Data size: 100,000MB

CPU processing speed: 0.75MB/s

Hard drive reading

speed:

80MB/s

Hard drive writing

speed:

40MB/s

Memory reading speed: 6000MB/s

Memory writing speed: 5000MB/s

Network bandwidth: 1Gbps

Total number of Map

instances:

4 Mappers per node (1000

Mappers)

From Figure 5.6 it can be observed that the processing time of RAMSMO decreases as the

number of nodes increases. It is also worth noting that there is no significant reduction in

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

66

processing time of RAMSMO beyond a certain number of nodes. This is primarily due to the

fact that Hadoop incurs a high communication overhead when dealing with a large number of

computing nodes. There is no significant difference between mapper overhead and total

overhead (involving both mapper and reducer) which the reducer dose not incur significant

overhead.

Figure 5.6: The scalability of RAMSMO in simulation environments.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

67

5.5.2 Load Balancing

Table 5.4 shows the configurations of the simulated Hadoop environments in evaluating the

effectiveness of the load balancing scheme of RAMSMO.

Table 5.4 Configurations for Load Balancing Evaluation.

Simulation environment

Number of simulated nodes 20

Number of processors in

each node

1

Number of cores in each

processor

2

The processing speeds of

processors

depending on heterogeneities

Heterogeneities from 0 to 2.28

Number of hard disk in

each node

1

Reading speed of Hard disk 80MB/s

Writing speed of Hard disk 40MB/s

Number of Mappers and

Reducers

each node employs 2

mappers instances and 1

reducers

Sort factor: 100

To evaluate the load balancing algorithm a cluster with 20 computing nodes is simulated.

Each node has a processor with two cores. The optimal number of mappers is equals to the

number of cores. Therefore two mappers on a single processor with two cores are run. The

number of reducer is set to one on each node.

The speeds of the processors are generated based on the heterogeneities of the Hadoop

cluster. In the simulation environments the total processing power of the cluster was

 


n

i ipp
1

 where n represents the number of the processors employed in the cluster and

represents the processing speed of processor. For a Hadoop cluster with a total computing

capacity denoted with , the levels of heterogeneity H of the Hadoop cluster can be defined

using equation (4.19).

In the simulation, the value of heterogeneity varied from 0 to 2.28. The reading and writing

speeds of hard disk were measured from the experimental results. Figure 5.7 shows the

performance of RAMSMO with load balancing. It can be observed that when the level of

heterogeneity is less than 1.08 indicating homogeneous environments, the load balancing

scheme does not make any difference to the RAMSMO algorithm in performance. However

the load balancing scheme reduces the overhead of RAMSMO significantly with an

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

68

increasing levels of heterogeneity showing that the resource aware RAMSMO can optimize

resource utilization in highly heterogeneous computing environments.

Figure 5.7: The performance of RAMSMO with load balancing.

The degree of heterogeneity is kept the same in the simulated cluster but varied the total size

of data from 1GB to 10GB. This set of tests was used to evaluate how the load balancing

scheme performs with different sizes of data sets. Figure 5.8 shows that the load balancing

scheme always reduces the overhead of RAMSMO in SVM training using varied volumes of

data.

Figure 5.8: The performance of RAMSMO with different datasets.

0

200

400

600

800

1000

1200

1400

1600

O
v

e
r
h

e
a

d
 (

s)

Heretrogeneity

Without Load Balacing With load Balancing

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

69

Figure 5.9 compares the performance of RAMSMO with that of MinMin, MaxMin in load

balancing. It can be observed that RAMSMO performs better than both MinMin and

MaxMin, and the performance of MinMin is the worst due to the existence of a large number

of tasks with short processing times and a small number task with long processing times.

Figure 5.9: A comparison RAMSMO with MinMin and MaxMin.

5.5.3 Overhead of the Load Balancing Scheme

The load balancing scheme builds on a genetic algorithm whose convergence speed affects

the efficiency of RAMSMO in training. To analyze the convergence speed of the genetic

algorithm, the numbers of generations are varied and the overhead of RAMSMO in

processing a 10GB dataset in a simulated Hadoop environment are measured. Figure 5.10

shows that RAMSMO has a quick convergence process in reaching a stable performance.

0

50

100

150

200

250

300

350

400

450

O
v

er
h

ea
d

 (
se

c)

Data size (GB)

RAMSMO MinMin MaxMin

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

70

Figure 5.10: The convergence of the RAMSMO.

The load balancing scheme incurs overhead during execution. Figure 5.11 shows increased

overhead of the scheme with the increasing number of mappers and job data sizes. The

overhead is usually insignificant compare to the overall processing time of map operations.

Figure 5.11: Overheads of the load balancing scheme.

0

50

100

150

200

250

300

350

P
e
r
fo

r
m

a
n

c
e
 O

v
e
r
h

e
a
d

 o
f

R
A

M
S

M
O

 (
s
)

Number of Generations

10 GB
20GB

40 GB
80 GB

160 GB

320 GB

640 GB

0

200

400

600

800

1000

1200

1400

12 24 48 96 192 384 678

O
v

er
h

ea
d

 (
s)

Number of mappers

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

71

5.6 Summary

This chapter presented RAMSMO, a resource aware parallel multiclass SVM algorithm for

large scale image annotation which partitions the training data set into smaller subsets and

optimizes SVM training in parallel using a cluster of computers. RASMO was evaluated in

both experimental and simulation environments showing that the distributed SVM algorithm

reduces the training time significantly while maintaining a high level of accuracy in

classifications.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

72

Chapter 6

 Distributed SVM Ensemble for Scalable Image

Annotation

This chapter presents MRESVM, a distributed SVM ensemble algorithm for image

annotation which re-samples the training data based on bootstrapping and trains SVM on

each sample in parallel using a cluster of computers. Balanced sampling strategy for

bootstrapping is introduced to increase classification accuracy of SVM ensemble for fixed

number samples.

6.1 SVM Ensemble

An ensemble of classifiers is a set of multiple classifiers based on the idea of combining a

number of weak learners to create a strong learner. Training a diverse set of classifiers from a

single training data set and to vote or average their predictions is simple and powerful [148].

There are a number of techniques for creating a diverse set of classifiers. The most common

technique is to use re-sampling to diversify the training sets based on Bootstrap Aggregating

(bagging). Breiman [136] showed bagging techniques reduces the variance component of

misclassification error, therefore increase the reliability of the predictions. When the number

of classifiers is large, the probability of error becomes small, bagging have been successfully

applied to different classification problems [54] [78] [117] [129] [134] [150].

A single SVM may not always provide a good classification performance over all test data.

To overcome this limitation, ensembles of SVMs have been proposed as a solution [78].

Figure 6.1 shows a general architecture of SVM ensemble.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

73

Figure 6.1: Architecture of SVM ensemble.

Each SVM is trained separately with a sample of training data created from the original data

set based on bootstrapping technique. Bootstrap constructs m training data samples by

random re-sampling with replacement, from the original training data set repeatedly. A

particular training instance x may appear repeatedly or not appear in any particular sample.

Once the training process is complete, trained SVMs are combined based on a suitable

combination approach.

6.1.1 Aggregation Methods

Two types of combination methods are described in [78]. A linear combination approach that

combines several SVMs linearly such as combining based on majority voting. A nonlinear

combination approach is the nonlinear combination of several SVMs based double layer

hierarchical combining that use second layer SVM to combine the first layer SVMs.

Majority voting is one of the commonly used and simplest combination techniques. The

ensemble classifier predicts a class for a test instance which is predicted by the majority of

the base classifiers [124]. Let us define the prediction of the i
th

 classifier
iP as

iip ji ,....,1},0,1{,  and cj ,...,1 where i the number of classifiers is and C is the number

SVM 1

SVM 2

Training

data

Sample m SVM m

Sample 2

Sample 1

Results AggregationSVM 3Sample 3

Sampling based on

bootstrapping
Training

SVM Model

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

74

of classes. If i
th

 classifier chooses class j , then 1, jip otherwise 0, jip . The ensemble

predict for class k if:








I

i

ji

c

j

I

i

ki pp
1

,
1

1

, max

 (6.1)

Double layer hierarchical is a combining method which uses a single SVM to aggregate the

outputs of a number of SVMs. Therefore, this method of combination consists of two layers

of SVMs hierarchy where the outputs SVMs in the first layer feed as input into a single SVM

in the second layer [78]. Let),...3,2,1(Mmfm  be a decision function of the m
th

 SVM in the

SVM ensemble and F be a decision function of SVM in the second layer. Then, the final

decision of the SVM ensemble)(xfSVM
 for a given test vector x based on double-layer

hierarchical combining is determined by))(),.....(),(()(21 xfxfxfFxf mSVM  , m is the

number of SVMs in the SVM ensemble.

6.1.2 Balanced Bootstrapping

In Monte Carlo algorithms [13], variance reduction is a technique used to increase the

precision of the estimates that can be obtained for a fixed number of iterations in simulation.

Balanced bootstrapping is a variance reduction technique for efficient bootstrap simulation

proposed by Davison et al. [36]. Esposito and Saitta [47] have established the link between

Bagging and Monte Carlo algorithms. Despite some differences, these two algorithms

compute the very same function.

Balanced bootstrapping is based on the idea of controlling the number of times training

instances appear in the bootstrap samples, so that in the B bootstrap samples, each instance

appears the same number of times. For the bootstrap to work, some instances must be missing

in certain bootstrap samples, while others may appear two or more times [36]. Balanced

sampling dose not force each bootstrap sample to contain all training instances; the first

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

75

instance may appear twice in the first bootstrap sample and not appear at all in the second

bootstrap sample, while the second instance may appear once in each sample.

A number of techniques introduced for creating balanced bootstrap samples. However a

simple way of creating balanced bootstrap samples described in [36] is to construct a string of

the instances
nXXXX ,.......,,, 321
 repeated B time, here we have the sequence

BnYYYY ,.......,,, 321
. We take a random permutation p of the integers from 1 to

nB . We create

the first bootstrap sample from)(),.......,3(),2(),1(nYYYY pppp
, the second bootstrap sample

from),2(),1( nYnY pp)2(),.......,3(nYnY pp  and so on, until),2)1((),1)1(( nBYnBY pp

)(),.......,3)1((BnYnBY pp  is the B
th

 bootstrap sample. The balanced bootstrapping

variance reduction technique can be in bagging to increase the classification accuracy.

6.2 Bias Variance Decomposition

Given a training set }....,{ 21 nxxx a trained classifier f is created, given a test instance x , the

classifier predicts).(xfy  Let a be the actual value of the predicted variable for the test

instance .x A loss function),(yaL measures the cost of predicting y when the true value is

a [42]. One of the commonly used loss functions is zero-one loss 0),(yaL if ,ay 

otherwise 1),(yaL . The aim is to create a classifier with the smallest possible loss. For

classification problems, several authors proposed bias–variance decompositions related to

zero-one loss [16] [53] [62] [80].

Bias–variance decomposition of the classification error is useful tool for analyzing supervised

learning algorithms and ensemble techniques to examine the relationships of learning

algorithms and ensemble methods with respect to their bias– variance characteristics

[135].Bias measures how closely a classifier’s average predictions over all possible training

sets of the given training set size matches the true value of class. Variance measure how

much the classifiers prediction changes for the different training sets of the given size

[135].Variance is large if different training sets D give rise to very different classifiers, bias

is large in cases where a learning method produces classifiers that are consistently wrong

.The bias and variance decomposition is crucial in understanding the bias/variance tradeoffs,

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

76

for example where the bias shrinks but the variance increases or bias increases but the

variance decreases, the aim is to find the optimal point of the trade-off.

6.3 The MRESVM Algorithm

MESVM builds on MapReduce for parallelization of SVM ensemble computation in training.

The MRESVM algorithm is based on the bagging architecture which trains multiple SVMs

on bootstrap samples. Both random sampling with replacement and balanced sampling have

been used.

As a first step data samples to train the base classifiers have to be generated. For random

sampling with replacement, m samples of size s are generated according to the uniform

probability distribution from a data set
mD , such m data samples are used to train base

classifiers which create the SVM ensembles. In balanced sampling which is an alternative

sampling method which forces each training instances to occur t times in the B bootstrap

samples. Balanced bootstrap samples are generated by constructing a data set of m copies of

the original data, after performing random permutation, the data set is partition into m

samples.

In majority voting combinations, each map function optimizes a sample in parallel. The

number of map tasks is equal to the number of sample. The reduce task simply collects and

stores generated classifiers which are used in majority voting.

In double hierarchical combinations, each map function optimizes a sample in parallel in first

layer. The number of map tasks is equal to the number of sample. The output of each map

function is the alpha array (Lagrange multipliers) for a sample and the training data Xi which

corresponds Lagrange multipliers 0ia in order to create input for the second layer, the

output of the second layer includes the alpha array, bias threshold b and the training data Xi

which correspond 0ia in order to calculate the SVM output u using equation (6.2).

bXXKayu ii

n

i

i 


),(
1

 (6.2)

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

77

where X is an instance to be classified, yi is class labels for Xi and K is the kernel function.

Each map task processes the associated sample and generates a set of support sectors. Each

set of support sectors is then combined and forwarded to the map task in the second layer as

input. In this layer single set of support sectors is computed and the generated SVM model

will be used in the classification. Figures 6.2 and 6.3 present a high level pictorial

representation of double hierarchical combination and majority voting.

Figure 6.2: MRESVM architecture with double layer hierarchical is a combination.

MR1

Reduce

Collect results of all SVMs

SVM Model

Data

Chunk 1

MR3

MRm

MR2

Data

Chunk 2

Data

Chunk 3

Data

Chunk 6

Training

data

Sample m

Sample 3

Sample 2

Sample 1

Replication based on

balanced sampling

Figure 6.3: MRESVM architecture with majority voting combination.

MR1

MR Com.

Data

S
V

 set 1

SV se
t 3

SVM Model

Data

Chunk 1

MR3

MRm

MR2

Data

Chunk 2

Data

Chunk 3

Data

Chunk 6

Training

data

Sample m

Sample 3

Sample 2

Sample 1

SV set 2

S
V

 s
et

 m

Replication based on

balanced sampling

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

78

Algorithm 6.1 shows the pseudo code of MRESVM with double layer hierarchical

combination. Lines 1-3 show the bootstrapping process to create balance sample for training

SVM. Lines 4-8 show the training process of SVM. Lines 9-12 show the assembling results

of layer 1 which are used as input for layer 2, and the training process in layer 2.

6.4 Experimental results

MRESVM has been incorporated into our image annotation system which is developed using

the Java programming language and the WEKA package. The image annotation system

classifies visual features into pre-defined classes. Figure 6.4 shows a snapshot of the system.

Algorithm 6.1: MRESVM Algorithm

Input: training data
ix

Output: support vectors
msv , weight vectors

iw if SVM is linear

1: replicate training data
ix based on balanced sampling;

2: perform random permutation;

3: create data chunks m to train SVM;

MAPj  mj ..1 ,

Input: data chunks m

Output: support vectors
msv and data

mx

4: train SVM on data chunks m

5: obtain msv set for m chunks;  0 mmsv 

6: store all support vectors
msv

7: store weight vectors

iw if SVM is linear

8: combine msv sets;

9: store all mx for msv to create input chunk for next layer Map task;

10: train SVM on mx

11: obtain isv set for kx ;  0 iisv 

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

79

Figure 6.4: A snapshot of the image annotation system [32].

6.4.1 Image Corpora

The images are collected from the Corel database. Images are classified into 2 classes, and

each class of the images has one label associated with it. The 2 pre-defined labels are people

and beach. Typical images with 384x256 pixels are used in the training process. Low level

features of the images are extracted using the LIRE library. After extracting low level

features a typical image is represented in the following form:

0,256,12,1,-56,3,10,1,18,...........2,0,0,0,0,0,0,0,0,beach

Each image is represented by 483 attributes which include 58 attribute that represent edge

histogram and 424 attributes represent Scalable Colour Descriptor and the last attribute

indicates the class name which indicates the category to which the image belongs to.

6.4.2 Performance Evaluation

MRESVM is implemented using WEKA’s base machine learning libraries written in the Java

programming language and tested in a Hadoop cluster. To evaluate MRESVM, the SMO

algorithm provided in the Weka package is extended, configured and packaged it as a basic

MapReduce job. The Hadoop cluster for this set of experiments consist of a total of 12

physical cores across 3 computer nodes as shown in Table 6.1.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

80

Table 6.1: HADOOP Configuration.

Hardware environment

 CPU Number of Cores RAM

Node 1 Intel Quad Core 4 4GB

Node 2 Intel Quad Core 4 4GB

Node 3 Intel Quad Core 4 4GB

 Software environment

SVM WEKA 3.6.0 (SMO)

OS Fedora10

Hadoop Hadoop 0.20

Java JDK 1.6

The performance of MRESVM is evaluated from the aspects of efficiency and accuracy.

Polynomial kernel function has been used in the experiments. Figure 6.5 shows the efficiency

of the MRESVM in SVM training which achieves close to 12 times in speedup.

Figure 6.5: The efficiency of MRESVM using 12 mappers.

0

500

1000

1500

2000

2500

O
v

er
h

ea
d

 (
s)

Number of Bootstrap Samples

SVM Ensemble MRESVM

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

81

Figure 6.6: The overhead of MRESVM.

MRESVM outperform the single SVM with an increasing number of samples in terms of

training time required. Figure 6.6 shows the increasing efficiency with the number of

participating MapReduce mappers varying from 4 to 12.

6.4.3 Measuring Bias and variance

Figure 6.7 shows a simple Bias–variance decomposition process. The training samples are

used to train SVMs. The leaned SVM models are applied on a test set. The bias and variance

are then estimated for each instance in the test set and for 0-1 loss the bias and variance are

calculated from the number of incorrect classifiers for the instance [11].

0

500

1000

1500

2000

2500

10 40 80 120

O
v

e
rh

e
a

d
 (

s)

Number of Bootstrap Samples

SVM Ensemble 4 Mappers 8 Mappers 12 Mappers

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

82

Figure 6.7: Bias–variance decomposition.

The bias for an instance is calculated as;

1/)1()(2  cpppx iiii i

 (6.3)

where i sums over the class values, c is the number of classifiers,
ix is a variable that is

indicates whether the instance class value equals the thi value, and
ip the part of classifiers

that correctly predicted
ix . The variance for an instance is calculated as; .1 2 i ip

To analyse the behaviour of MRESVM, the bias variance decomposition method described in

[80] is used because it can be applied to any classifier and decomposition does not require the

training sets to be sampled in any specific manner. The idea of tuning SVMs to minimize the

bias presented in [134] is adopted before apply bagging to reduce variance; resulting

MRESVM has lower classification error than a single SVM. As stated in [134] the bias of

SVMs is controlled by two parameters. First, the parameter C which controls the tradeoffs

between fitting the data and maximizing the margin, setting C with a large value tend to

minimize bias. Second in polynomial kernel, the parameter is the degree d of the polynomial.

In MRESVM, base SVM algorithm was tune with the value of 4d and .100C

Bagging based on random sampling with replacement and balanced sampling have been

applied to the base SVMs. Bias, variance and error rate of MRESVM were measured.

Figure

6.8 show comparison of classification error of MRESVM with random and balanced

SVM 1

SVM 2

 Data set

Sample 2

Sample 1

Sample 2

Sample 1

SVM Model

Training Samples Training

Classification

Bias Variance

Calculation

Test Samples

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

83

sampling indicating lower classification error rate for MRESVM with balanced sampling.

Balanced sampling based bagging has lower variance than random re-sampling with

replacement, although the bias is almost the same in both cases.

Figure 6.8: Classification error of MRESVM with random and balanced sampling.

Furthermore the accuracy of MRESVM with different sampling strategies and combination

methods are evaluated in classification and presented the results in Table 2 using 2000

instances. In total 250 unlabeled images were tested (10 images at a time), the average

accuracy level was considered. The results show that MRESVM achieves up to 98% which is

higher than single SVM.

Table 6.2 Summarized Performances Results.

 SVM MRESVM random

Majority Vote

MRESVM random

Two Layer

MRESVM Balanced

Majority Vote

MRESVM Balanced

Two Layer

Correctly Classified ≈ 94 % ≈ 95% ≈ 96 % ≈ 96 % ≈ 98 %

Incorrectly Classified ≈ 6% ≈ 5 % ≈ 4 % ≈ 3 % ≈ 2 %

6.5 Simulation results

To further evaluate the effectiveness of MRESVM algorithm in MapReduce environments, a

number of Hadoop environments are simulated and the performance of MRESVM is

evaluated using HSim from the aspects of scalability.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
la

ss
if

ic
a

ti
o

n
 E

rr
o

r

Number of samples

MRESVM Random MRESVM Balanced

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

84

6.5.1 Scalability

To further evaluate the scalability of the MRESVM algorithm, HSim is employed and a

number of Hadoop environments are simulated using a varying number of nodes up to 250.

Each Hadoop node was simulated with 4 mappers, and 4 input datasets were used in the

simulation tests. Table 6.3 shows the configurations of the simulated Hadoop environments.

Table 6.3: Configuration for Scalability Evaluation.

Simulation environment

Number of simulated

nodes:

250

Data size: 100,000MB

CPU processing speed: 0.75MB/s

Hard drive reading

speed:

80MB/s

Hard drive writing

speed:

40MB/s

Memory reading speed: 6000MB/s

Memory writing speed: 5000MB/s

Network bandwidth: 1Gbps

Total number of Map

instances:

4 Mappers per node (1000

Mappers)

From Figure 6.9 it can be observed that the processing time of MRESVM decreases as the

number of nodes increases. It is also worth noting that there is no significant reduction in

processing time of MRESVM beyond a certain number of nodes. This is primarily due to the

fact that Hadoop incurs a high communication overhead when dealing with a large number of

computing nodes. There is no significant difference between mapper overhead and total

overhead (involving both mapper and reducer) which the reducer dose not incur significant

overhead.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

85

Figure 6.9: The scalability of MRESVM in simulation environments.

The performance of MRESVM can be observed by increasing the data chunk size that is

processed by each mapper. A comparison of simulating results of mapper overhead between

chunk size 11.4 MB and 100MB is presented in Figure 6.10 which indicates higher

performances with chunk size of 100 MB due to the involvement of smaller number mapper

waves.

Figure 6.10: Comparison of simulation results between chunk sizes 11.4 MB and 100MB.

0

500

1000

1500

2000

2500

3000

O
ve

rh
ea

d
 (

s)

Number of Mappers

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

86

The performance of MRESVM can be further observed by changing the CPU power. The

CPU power is measured by the size of data processed per seconds. A comparison of

simulating results between CPU power of 0.1 and 0.9 MB/sec is made as shown in Figure

6.11. The results indicate significant decrease in level of performances for low CPU power.

Figure 6.11: Comparison of simulating results with CPU power of 0.1 MB/s and 0.9 MB.

6.6 Summary

This chapter presented MRESVM, a distributed SVM ensemble algorithm for image

annotation which re-samples the training data based on bootstrapping and training SVM on

each sample in parallel using a cluster of computers. Balanced sampling strategy was used for

bootstrapping is introduced to increase classification accuracy for fixed number samples. The

chapter concludes with evaluating MRESVM in both experimental and simulation

environments showing that the distributed SVM ensemble algorithm reduces the training time

significantly and achieves high level of accuracy in classifications.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

87

Chapter 7

 Conclusions and Future Work

This chapter presents the main conclusions of the thesis and highlights future research work

in the related areas.

7.1 Conclusions

The main solutions proposed in recent years to reduce the semantic gap is the automatic

annotation of images which takes into account the low level features of images in the

annotation process. Automatic annotation is usually presented as a classification problem.

The evaluation of the representative classifiers for image annotation shows that in order to

achieve high level of accuracy in image annotation; Support Vector Machine performs better

than other classifiers in term of accuracy. However the training time of the classifier is longer

than other classifier especially with larger dataset. The evaluation results confirm that SVM

models are too large to be used in a practical hence the speed of annotation is lower.

The thesis have presented and evaluated RASMO, a resource aware distributed SVM

algorithm that capitalizes on the scalability, parallelism and resiliency of MapReduce for

large scale image annotations. By partitioning the training dataset into smaller subsets and

optimizing the partitioned subsets across a cluster of computing nodes in multiple stages, the

RASMO algorithm reduces the training time significantly while maintaining high level of

accuracy in classification. A genetic algorithm based load balancing scheme is introduced to

optimize the performance of RASMO in heterogeneous environment. Both the experimental

and simulation results have shown the effectiveness of RASMO in training. The load

balancing scheme reduces the overhead of RASMO significantly with an increasing levels of

heterogeneity showing that the resource aware RASMO can optimize resource utilization in

highly heterogeneous computing environments. In addition, data chunks with varied sizes are

crucial in speeding up SVM computation in the training process. It is worth pointing out that

using different sizes for data chunks has no impact on accuracy in SVM classification due to

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

88

the structure of the RASMO algorithm in which the training work in the first few layers is

merely a filtering process of removing non-support vectors and the resulting support vectors

of the last layer are evaluated for a global convergence by feeding the output of the last layer

into the first layer.

The thesis have presented and evaluated RAMSMO, a resource aware distributed Multiclass

SVM algorithm that capitalizes on the scalability, parallelism and resiliency of MapReduce

for large scale image annotations. RAMSMO is based on OAO multiclass method by

partitioning the training dataset into smaller binary data chunks and optimizing the

computation of the binary data chunks across a cluster of computing nodes. Experimental

results have shown that RAMSMO reduces the training time significantly while maintaining

a high level of accuracy in classification. A genetic algorithm based load balancing scheme is

introduced to optimize the performance of RAMSMO in heterogeneous environment which

addresses the problem of unbalanced multiclass datasets. The processing times of all binary

data chunks which have different sizes are equalized, hence reducing training overhead

significantly. RAMSMO performances were compared with that of MinMin, MaxMin in load

balancing. RAMSMO performed better than both MinMin and MaxMin, and the

performance of MinMin is the worst due to the existence of a large number of tasks with

short processing times and small number tasks with long processing times.

The thesis have presented and evaluated MRESVM, a scalable distributed SVM ensemble

algorithm that capitalizes on the scalability, parallelism and resiliency of MapReduce for

large scale image annotations. By re-samples the training data based on bootstrapping and

training SVM on each sample in parallel using a cluster of computers. Balanced sampling

strategy used for bootstrapping is introduced to increase classification accuracy for fixed

number samples. MRESVM is evaluated in both experimental and simulation environments

showing that the distributed SVM algorithm reduces the training time significantly and

achieves high level of accuracy in classifications. The efficiency of the MRESVM was

evaluated with 12 mappers which achieves close to 12 times in speedup SVM ensemble. The

classification accuracy of accuracy of MRESVM is significantly higher than a single SVM.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

89

7.2 Future work

As part of the future works more than one label can be used to describe an image in order to

evaluate classification accuracy of different classifiers. Additionally more image can be used

in training process. In this thesis only two low level features represent an image however a

number of different low level features with various combinations methods can be used to

analyse the behaviour of image annotation system.

In this thesis SMO was used to train SVM classifiers, however there are a number crucial

parameters which significantly effects the performances of SMO, therefore an optimization

study can be carried out by tuning different parameters to enhance the performances of the

SVM based applications. Additionally different data set can be used to analyse the behaviour

of the algorithm.

Different methods of distributing SVM can be explored using a cluster environment to further

improve the efficiency of training SVM with large data sets while maintaining high level of

classification accuracy.

A number of different static load balancing algorithms can be evaluated with the MapReduce

framework. Dynamic load balancing scheme can be applied to the MapReduce framework to

further enhance the performances MapReduce based application by dynamically allocating

work load during the execution time.

The load balancing strategies are implemented based on the simulator HSim. The load

balancing schemes can be added to the Hadoop code to achieve better performance in a real

Hadoop cluster.

The effect of different sizes of classes on classification accuracy in OAO based multiclass

SVM techniques should be analyzed, solving the undesirable bias towards the classes with a

smaller training dataset.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

90

The distributed SVM Ensemble algorithm MRESVM was evaluated in small scale

homogenous environment however the genetic algorithm described in chapter 4 can be used

to optimize the performance of MRESVSM in heterogeneous environment.

A distributed SVM Ensemble algorithm based on Boosting for high accuracy should be

considered. Boosting based SVM ensembles have shown high performance in term of

accuracy. However the training process is highly computationally expensive. The

computation task has to be distributed among a cluster of computers.

In this research work a small scale cluster of participating nodes were employed to evaluate

the performance of MapReduce based algorithms, in future work algorithms can be evaluated

with a much larger cluster such as Amazon Elastic Compute Cloud (EC2).

Larger number MapReduce parameters which are considered to be crucial for MapReduce

based application performances can be evaluated using the HSim simulator to improve

performances of MapReduce based applications.

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

91

References

[1] S. Abe, Support Vector Machines for Pattern Classification (Advances in Pattern

Recognition, Springer Verlag, New York, Inc., pp. 83-127, (2005).

[2] E. Akbas and F. Vural. "Automatic Image Annotation by Ensemble of Visual Descriptors",

Intl. Conf. on Computer Vision (CVPR), Workshop on Semantic Learning Applications in

Multimedia, pp. 1-8, (2007)

[3] Apache Hadoop! [Online]: http://hadoop.apache.org (Last accessed: 1 April 2011).

[4] F. Bach and M. Jordan, ―Predictive low-rank decomposition for kernel methods‖, In

Proceedings of the 22nd International Conference on Machine Learning (ICML), pp. 33-40,

(2005).

[5] S. Barrat, S. Tabbone, ―Classification and Automatic Annotation Extension of Images

Using Bayesian Network‖, SSPR/SPR, pp. 937-946, (2008).

[6] I. Bartolini, P. Ciaccia ,M. Patella. ―Accurate Retrieval of Shapes Using Phase of Fourier

Descriptors and Time Warping Distance‖. IEEE Transaction on Pattern Analysis and Machine

Intelligence, 27(1) pp.142–147, (2005).

[7] A. Benitez, S. Chang, ―Image classification using multimedia knowledge networks‖, ICIP

(3), pp. 613-616, (2003).

[8] D. Bickson, E. Yom-Tov, D. Dolev, ―A Gaussian belief propagation solver for large scale

support vector machines‖, In Proceedings of the 5th European Conference on Complex

Systems, pp. 1640-1648, (2008).

[9] O. Boiman, E. Shechtman, M. Irani ―In Defense of Nearest-Neighbor Based Image

Classification‖, Computer Vision and Pattern Recognition (CVPR), pp. 1-8, (2008).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

92

[10]L. Bottou, A. Bordes, S. Ertekin, LASVM, [Online]: http://leon.bottou.org/projects/lasvm

(Last accessed: 24 March 2011).

[11] R. Bouckaert. ―Practical Bias Variance Decomposition‖, Australasian Conference on

Artificial Intelligence, pp. 247-257, (2008).

[12] M, Boutell , J. Luo , X. Shen, ―Brown learning multi-label scene classification, Pattern

Recognition‖, 37(9), pp. 1757-1771, (2004).

[13] G. Brassard and P. Bratley, ―Algorithmic: theory and practice‖, Prentice-Hall, (1988).

[14] C. Breen, L. Khan, A. Ponnusamy, ―Image Classification Using Neural Networks and

Ontologies‖, DEXA Workshops pp. 98-102, (2002).

[15] L. Breiman, ―Bagging predictors, Machine Learning‖ 24(2), pp.123-140 (1996).

[16] L. Breiman, ―Bias, variance and arcing classifiers‖, Technical Report TR 460, Statistics

Department, University of California, Berkeley, CA, (1996).

[17] D. Brickley and R. Guha, ―Resource description framework (RDF) schema specification

1.0‖, W3C Candidate Recommendation, pp. 2000-2013, (2000).

[18] G. Brown, J. Wyatt, R. Harris, X. Yao, ―Diversity creation methods: a survey and

categorisation‖, Information Fusion 6(1), pp. 5-20, (2005).

[19] H. Byun, S. Lee, ―Applications of Support Vector Machines for Pattern Recognition: A

Survey‖, SVM, pp. 213-236, ((2002).

[20] L. Cao, S. Keerthi, C. Ong, P. Uvaraj, X. Fu, H. Lee, ―Developing parallel sequential

minimal optimization for fast training support vector machine‖, Neurocomputing, 70 (1-3),

pp. 93-104, (2006).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

93

[21] L. Cao, S. Keerthi, C. Ong, J. Zhang, U. Periyathamby, X. Fu, H. Lee, ―Parallel

sequential minimal optimization for the training of support vector machines‖, IEEE

Transactions on Neural Networks, 17 (4), pp. 1039-1049, (2006).

[22] B. Catanzaro, N. Sundaram, K. Keutzer, ―Fast support vector machine training and

classification on graphics processors‖ In Proceedings of the 25th International Conference on

Machine learning (ICML), pp. 104-111, (2008).

[23-] G. Cha, C. Chung, ―A New Indexing Scheme for Content-Based Image Retrieval‖,

Multimedia Tools Applications, 6(2), pp. 263-288, (1998).

[24] E. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, ―PSVM: parallelizing support vector

machines on distributed computers‖, In Proceedings of Advances in Neural Information

Processing Systems, pp. 257–264, (2007).

[25] O. Chapelle, P. Haffner, V. Vapnik, ―Support vector machines for histogram-based

image classification‖, IEEE Transactions on Neural Networks 10(5), pp. 1055-106, (1999).

[26] Y. Chen, J. Wang, ―Image categorization by learning and reasoning with regions‖,

Journal of Machine Learning Research, 5 pp. 913-939, (2004).

[27] H. Chih-Wei and L. Chih-Jen, ―A comparison of methods for multiclass support vector

machines‖, IEEE transactions on neural networks, 13(2), pp. 415-425, (2002).

[28] V. Chitkara, M. Nascimento,C. Mastaller, ―Content based image retrieval using binary

signatures.‖ In Technical Report TR0018, Department of Computing Science, University of

Alberta, Edmonton, Alberta, Canada (2000).

[29] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, K. Olukotun, ―Map-Reduce for machine

learning on multicore‖, B. Schölkopf, J.C. Platt, T. Hoffman (Eds.), NIPS, MIT Press, pp.

281-288, (2006).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

94

[30] F. Colas and P. Brazdil, ―Comparison of SVM and some older classification algorithms

in text classification tasks‖, In Proceedings of IFIP-AI World Computer Congress, pp. 169-

178, (2006).

[31] R. Collobert, S. Bengio, and Y. Bengio, ―A parallel mixture of SVMs for very large

scale problems‖, Neural Computation, 14(5), pp. 1105-1114, (2002).

[32] Corel Image Databases, [Online]: http://www.corel.com (Last accessed: 24 March

2011).

[33] K. Crammer, Y. Singer, ―On the algorithmic implementation of multiclass kernel-based

vector machines‖, Journal of Machine Learning Research, 2, pp. 265–292, (2001).

[34] C. Cusano, G. Ciocca, R. Schettini, ―Image annotation using SVM‖ Proc. SPIE, Vol. 5,

pp. 304-330, (2003).

[35] I. Daryle-Niedermayer, ―An Introduction to Bayesian Networks and Their Contemporary

Applications‖, Innovations in Bayesian Networks, pp. 117-130, (2008).

[36] A. Davison, D. Hinkley, E. Schechtman, ―Efficient bootstrap simulation―, Biometrika 73

, pp. 555 – 566, (1986).

[37] J. Dean and S. Ghemawat, ―Mapreduce: simplified data processing on large clusters‖,

Communications of the ACM, 51(1), pp. 107-113, (2008).

[38] P. Derbeko, R. El-Yaniv, R. Meir, ―Variance Optimized Bagging‖, ECML, pp. 60-71,

(2002).

[39] T. Dietterich, G. Bakiri, ―Solving multiclass learning problems via error-correcting

output codes‖, Artificial Intelligence Research, 2, pp. 263-286, (1995).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

95

[40] T. Do, V. Nguyen, F. Poulet, ―Speed up SVM algorithm for massive classification

tasks‖, In Proceedings of the 4th International Conference on Advanced Data Mining and

Applications (ADMA), pp. 147-157, (2008).

[41] T. Do and F. Poulet, ―Classifying one billion data with a new distributed SVM

algorithm‖, In Proceedings of the international Conference on Research, Innovation and

Vision for the Future (RIVF), pp.59-66, (2006).

[42] P. Domingos, ―A Unified Bias-Variance Decomposition for Zero-One and Squared

Loss‖, In Proceedings of the Seventeenth National Conference on Artificial Intelligence and

Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 564-569,

(2000).

[43] J. Dong, A. Krzyżak, C. Suen, ―A fast parallel optimization for training support vector

machine‖, In Proceedings of the 3rd International Conference on Machine learning and Data

Mining in Pattern Recognition (MLDM), pp. 96-105, (2003).

[44] K. Duan, S. Keerthi, ―Which is the best multiclass SVM method? an empirical study‖, In

Proceedings of the 6
th

 International Workshop on Multiple Classifier Systems, pp. 278-285,

(2005).

[45] R. Duda and P. Hart, ―Pattern Classification and Scene Analysis‖, Wiley, New York,

(1973).

[46] P. Duygulu, K. Barnard, N. de Fretias, D. Forsyth, ―Object recognition as machine

translation: Learning a lexicon for a fixed image vocabulary‖. In Proceedings of the European

Conference on Computer Vision, pages 97-112, (2002).

[47] R. Esposito and L. Saitta, ―Monte Carlo Theory as an Explanation of Bagging and

Boosting‖ In Proceeding of the Eighteenth International Joint Conference on Artificial

Intelligence, pp. 499–504, (2003).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

96

[48] J. Fan, Y. Gao, H. Luo, ―Hierarchical Classification for Automatic Image Annotation‖,

ACM SIGIR, Amsterdam, pp. 111-118, (2007).

[49] J. Fan, Y. Gao , H. Luo , G, Xu, ―Automatic image annotation by using concept-

sensitive salient objects for image content representation‖, In Proceedings of the 27th Annual

International Conference on Research and Development in Information Retrieval (SIGIR),

pp. 361-368, (2004).

[50] H. Feng, T. Chua, ―A bootstrapping approach to annotating large image collection‖,

Multimedia Information Retrieval, pp. 55-62, (2003).

[51] Y. Freund and R. Schapire, ―Experiments with a new boosting algorithm‖, In Machine

Learning: Proceedings of the Thirteenth International Conference, pp. 148–156, (1996).

[52] Y. Freund and R. Schapire, “A short introduction to boosting” Journal of Japanese

Society for Artificial Intelligence, 14(5), pp. 771—780, (1999).

[53] H. Friedman, ―On bias, variance, 0/1 loss and the curse of dimensionality‖, Data Mining

and Knowledge Discovery, pp. 55–77, (1997).

[54] G. Fumera, F. Roli, A. Serrau, ―Dynamics of Variance Reduction in Bagging and Other

Techniques Based on Randomisation‖, Multiple Classifier Systems, pp. 316-325, (2005).

[55] S. Ghemawat, H. Gobioff, S. Leung, ―The Google file system‖ In Proceedings of the

19th ACM Symposium on Operating Systems Principles (SOSP), pp. 29-43, (2003).

[56] D. Gillick, A. Faria, J. DeNero, ―MapReduce: Distributed Computing for Machine

Learning‖, [Online]http://www.icsi.berkeley.edu/~arlo/publications/gillick_cs262a_proj.pdf

(Last accessed: 22 March 2011).

[57] Z. Gong, Q. Liu, J. Zhang, ―Web Image Retrieval Refinement by Visual Contents‖,

WAIM, pp. 134-145, (2006).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

97

[58] H. Graf, E. Cosatto, L. Bottou, I. Durdanovic, V. Vapnik, ―Parallel support vector

machines: The Cascade SVM‖, In Proceedings of Advances in Neural Information

Processing Systems (NIPS), pp. 521-528, (2004).

[59] J. Guo, N. Takahashi, T. Nishi, ―An efficient method for simplifying decision functions

of support vector machines‖, IEICE Transactions, 89-A (10), pp. 2795-2802, (2006).

[60] T. Hastie, R. Tibshirani, ―Classification by pairwise coupling‖, In Proceedings of the

Conference on Advances in Neural Information Processing Systems, pp. 451-471, (1997).

[61] T. Hazan, A. Man, A. Shashua, ―A parallel decomposition solver for SVM: distributed

dual ascend using fenchel duality‖, In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1-8 (2008).

[62] T. Heskes, ―Bias/Variance Decompostion for Likelihood-Based Estimators‖, Neural

Computation, 10:1, pp. 425–1433, (1998).

[63] S. Herrero-Lopez, J. Williams, A. Sanchez, ―Parallel multiclass classification using

SVMs on GPUs‖, In Proceedings of the 3rd Workshop on General-Purpose Computation on

Graphics Processing Units (GPGPU), pp. 2-11, (2010).

[64] M. Hofsheimer, A. Siebes, ―Data Mining: The Search for Knowledge in Databases‖,

Report CS-R9406, CWI, pp. 127-189, (1994).

[65] L. Hollink, A. Schreiber, J. Wielemaker, B. Wielinga, ―Semantic Annotation of Image

Collections‖, In Proceedings of the KCAP'03 Workshop on Knowledge Capture and

Semantic Annotation, pp. 1-8, (2003).

[66] Z. Hua X. Wang Q. Liu H. Lu, ―Semantic knowledge extraction and annotation for web

images‖ In Proceedings of the 13th annual ACM international conference on Multimedia, pp.

467 – 470, (2005).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

98

[67] G. Huang, K. Mao, C. Siew, D. Huang, ―Fast modular network implementation for

support vector machines‖, IEEE Transactions on Neural Networks, 16(6) pp. 1651-1663,

(2005).

[68] J. Huang, S. Kumar, R. Zabih, ―Automatic Hierarchical Color Image Classification,‖

EURASIP Journal on Applied Signal Processing, 2, pp. 151-159, (2003).

[69] J. Jeon, V. Lavrenko, R. Manmatha, ―Automatic Image Annotation and Retrieval Using

Cross-Media Relevance Models‖, In Proceedings of the ACM Special Interest Group on

Information Retrieval, pp. 119-126, (2003).

[70] R. Jin, J. Chai, L. Si "Effective Automatic Image Annotation via a Coherent Language

Model and Active Learning" In Proceedings of MM, pp. 892-899, (2004).

[71] F. Jing, M. Li, L. Zhang, H.-J. Zhang, B. Zhang, ― Learning in region based image

retrieval‖, Proceedings of the International Conference on Image and Video Retrieval, pp.

206–215 (2003).

[72] D. Joshi, J. Ze Wang, J. Li, ―The Story Picturing Engine - a system for automatic text

illustration.‖, IEEE Publication, pp. 68-89, (2006).

[73] M. Kane, A. Savakis, ―Bayesian Network Structure Learning and Inference in Indoor vs.

Outdoor Image Classification‖, IEEE publications, pp. 479-482, (2004).

[74] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy, Improvements to Platt's SMO

algorithm for SVM classifier design,‖ Neural Computation, 13(3), pp. 637-649, (2001).

[75] S. Keerthi, S. Sundararajan, K. Chang, Ch.Hsieh, Ch. Lin, ―A sequential dual method for

large scale multi-class linear SVMs‖, In Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 408-416, (2008).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

99

[76] N. Khalid Alham, M. Li, S. Hammoud, Y. Liu, M. Ponraj, ―A distributed SVM for

image annotation‖, In Proceedings of the 6th International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD), pp. 2983-2987, (2010).

[77] N. Khalid Alham, M. Li, S. Hammoud and H. Qi, Evaluating machine learning

techniques for automatic image annotations, in: Proceedings of the 6th International

Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 245-249 (2009).

[78] H. Kim, S. Pang, H. Je, D. Kim, S. Bang, ―Support Vector Machine Ensemble with

Bagging‖, SVM, pp. 397-407, (2002).

[79] S. Knerr, L. Personnaz, G. Dreyfus, ―Single-layer learning revisited: A stepwise

procedure for building and training a neural network, in: F. Fogelman Soulié and J. Hérault‖

(Eds.) Neurocomputing: Algorithms, Architectures and Applications, volume F68 of NATO

ASI Series, pp. 41-50, (1990).

[80] R. Kohavi and D. H.Wolpert, ―Bias plus variance decomposition for zero-one loss

functions‖, In Proceedings of the Thirteenth International Conference on Machine Learning,

The Seventeenth International Conference on Machine Learning, pp. 275–283, (1996).

[81] B. Kuszmaul, ―Cilk provides the "best overall productivity" for high performance

computing (and won the HPC challenge award to prove it)‖, In Proceedings of the 9th ACM

Symposium on Parallel Algorithms and Architectures (SPAA), pp. 299-300 (2007).

[82] S, Kullback, ―Letter to the Editor: The Kullback–Leibler distance‖, The American

Statistician, 41 (4), pp. 340–341, (1987).

[83] D. Kun, L. Yih, A. Perera, ―Parallel SMO for Training Support Vector Machines‖, SMA

5505 Project Final Report, (2003).

[84] R. Lämmel, ―Google’s MapReduce programming model — revisited‖, Science of

Computer Programming, 70 (1), pp. 1-30, (2008).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

100

[85] B. Le Saux, G. Amato, ―Image recognition for digital libraries‖, In Proceedings of the

ACM Multimedia Workshop on Multimedia Information Retrieval (MIR), pp. 91-98, (2004).

[86] Z. Lei, Y. Yang, Z. Wu, ―Ensemble of Support Vector Machine for Text-Independent

Speaker Recognition‖, International Journal Computer Science and Network Security 6

(5), pp. 163-167, (2006).

[87] L. Lepisto, I. Kunttu, A. Visa, ―Rock image classification based on k-nearest neighbour

voting‖ Vision, Image and Signal Processing, IEE Proceedings, 153, I pp. 475- 482, (2006).

[88] T. Li, C.Zhang, and M.Ogihara, ―A comparative study of feature selection and

multiclass classification methods for tissue classification based on gene expression‖,

Bioinformatics, 20 (15), pp. 2429-2437, (2004).

[89] J. Lim, Q. Tian, P. Mulhem, ―Home Photo Content Modeling for Personalized Event-

Based Retrieval‖, IEEE MultiMedia, 10 (4), pp. 28-37, (2003).

[90] Lire, An open source Java content based image retrieval library, [Online]:

http://www.semanticmetadata.net/lire/ (Last accessed: 24 March 2011).

[91] X. Liu, L. Zhang, M. Li, H. Zhang, D. Wang, ―Boosting image classification with LDA-

based feature combination for digital photograph management‖, Pattern Recognition 38(6),

pp. 887-901, (2005).

[92] Y. Liu, D. Zhang, G. Lu, W. Ma, ―A survey of content-based image retrieval with high-

level semantics‖, Pattern Recognition 40(1), pp. 262-282, (2007).

[93] F. Long, H. Zhang, D. Feng, ‖Fundamentals of Content-Based Image Retrieval‖,

Multimedia Information Retrieval and Management Technological Fundamentals and

Applications, D. Feng and W. C. Siu, eds., Springer Publishers, pp. 1-26, (2003).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

101

[94] B. Lu, K. A. Wang, M. Utiyama, H. Isahara, ―A part-versus-part method for massively

parallel training of support vector machines‖, In Proceedings of International Joint

Conference on Neural Networks (IJCNN), pp. 735-740, (2004).

[95] Y. Lu, Q. Tian, T. Huang, ―Interactive Boosting for Image Classification‖, MCAM, pp.

315-324, (2007).

[96] Y. Lu, C. Hu, X. Zhu, H.J. Zhang, Q. Yang, ‖A unified framework for semantics and

feature based relevance feedback in image retrieval systems‖, In Proceedings of the eighth

ACM international conference on Multimedia, pp. 31–37 (2000).

[97]Y. Lu, V. Roychowdhury, L. Vandenberghe, ―Distributed parallel support vector

machines in strongly connected networks‖, IEEE Transactions on Neural Networks, 19 (7),

pp. 1167-1178, (2008).

[98] J. Luo, A. Savakis, ―Indoor vs outdoor classification of consumer photographs using

low-level and semantic features‖, ICIP (2), pp. 745-748, (2001).

[99] A. Makadia, V. Pavlovic, S. Kumar, ―A New Baseline for Image Annotation‖, ECCV

(3), pp. 316-329, (2008).

[100] O. Marques, N. Barman, ―Semi-automatic Semantic Annotation of Images Using

Machine Learning Techniques‖, International Semantic Web Conference, pp. 550-565,

(2003).

[101] L. Mason, P. Bartlett, J. Baxter, ―Improved Generalization Through Explicit

Optimization of Margins‖. Machine Learning 38(3), pp. 243-255, (2000).

[102] B. McBride, A. Seaborne, J. Carroll, ―Jena tutorial for release 1.4.0‖ Technical report,

Hewlett-Packard Laboratories, Bristol, UK, (2002).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

102

[103] Medusa, [Online]: http://www.lsc-group.phys.uwm.edu/beowulf/medusa/index.html

(Last accessed: 3 April 2011).

[104] Y, Ming-Hsuan , B. Moghaddam, ―Support vector machines for visual gender

classification‖, In Proceedings of the International Conference on Pattern Recognition

(ICOR), pp. 5115-5118, (2000).

[105] J. Munoz-Mari, A. Plaza, J. A. Gualtieri, G. Camps-Valls, ―Parallel implementations of

SVM for earth observation‖, In Parallel Programming, Models and Applications in Grid and

P2P Systems, F. Xhafa (Ed.), pp. 292–312, (2009).

[106] T. Ojala, M. Pietikäinen, T. Mäenpää, ―Multiresolution Gray-Scale and Rotation

Invariant Texture Classification with Local Binary Patterns‖, IEEE Transactions on Pattern

Analysis and Machine Intelligence, pp. 971 – 987, (2002).

[107] E. Osuna, R. Freund, F. Girosit, ―Training support vector machines: an application to

face detection‖, In Proceedings of Computer Vision and Pattern Recognition (CVPR),

pp.130-136, (1997).

[108] J. Pakkanen, A. Ilvesmäki, J. Iivarinen, ―Defect Image Classification and Retrieval with

MPEG-7 Descriptors‖, SCIA, pp. 349-355, (2003).

[109] D. Park, Y. Jeon, C. Won, ―Efficient use of local edge histogram descriptor‖ ACM

Multimedia Workshops pp. 51-54, (2000).

[110] D. Pavlov, J. Mao, B. Dom ―Scaling-Up Support Vector Machines Using Boosting

Algorithm‖, ICPR, pp. 2219-2222, (2000).

[111] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, M. Stonebraker,

―A comparison of approaches to large-scale data analysis‖, In Proceedings of the 35th ACM

SIGMOD International Conference on Management of Data, pp. 165-178, (2009).

[112] K. Petridis, D. Anastasopoulos, C. Saathoff, N. Timmermann, I. Kompatsiaris, S. Staab

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

103

―M-OntoMat-Annotizer: Image Annotation. Linking Ontologies and Multimedia Low-Level

Features‖, Engineered Applications of Semantic Web Session (SWEA) at the 10th

International Conference on Knowledge-Based & Intelligent Information & Engineering

Systems, Bournemouth, U.K, (2006).

[113] J. Platt, ―Sequential minimal optimization: a fast algorithm for training support vector

machines‖, Technical Report, MSR-TR-98-14, Microsoft Research, (1998).

[114] J. Platt, N. Cristanini, J. Shawe-Taylor, ―Large margin DAGs for multiclass

classification‖, In Proceedings of Neural Information Processing Systems (NIP), pp. 547-553,

(1999).

[115]M. Re, G. Valentini, ―Prediction of Gene Function Using Ensembles of SVMs and

Heterogeneous Data Sources‖, Applications of Supervised and Unsupervised Ensemble

Methods, pp. 79-91, (2009).

[116] V. Roth, K. Tsuda, ―Pairwise coupling for machine recognition of hand-printed

Japanese characters‖, In Proceedings of the International Conference on Computer Vision

and Pattern Recognition (CVPR), pp.1120-1125, (2001).

[117] R. Schapire, Y. Freund, P. Bartlett, W. Lee, ―Boosting the margin: A new explanation

for the effectiveness of voting methods‖, The Annals of Statistics, 26(5), pp. 1651–1686,

(1998).

[118] S. Shah, V. Gandhi, ―Image Classification Based on Textural Features using Artificial

Neural Network (ANN)‖ Journal-Institution of Engineers India Part ET, pp. 1039-1053,

(2004).

[119] J. Shawe-Taylor & N. Cristianini‖An Introduction to Support Vector Machines and

other kernel-based learning methods‖, Cambridge University Press, p. 52-67, (2000).

[120] T. Sikora, ―The MPEG-7 visual Standards for content description-an overview‖, IEEE

Transaction Circuits System, Video Techniques, 11(6), pp. 696-702, (2001).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

104

[121] C. Silva, U. Lotric, B. Ribeiro, A. Dobnikar, ―Distributed Text Classification With an

Ensemble Kernel-Based Learning Approach,‖ IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, 40, pp. 287-297, (2010).

[122] A. Smeulders, M.Worring, S. Santini, A. Gupta, R. Jain, ―Content based image retrieval

at the end of the early years‖. IEEE Transaction Pattern Analysis Machine Intelegence,

22(12), pp. 1349-1380, (2000).

[123] M. Srikanth, J. Varner, M. Bowden, and D. Moldovan, ―Exploiting Ontologies for

Automatic Image Annotation‖ In Proceedings of 28th Annual International ACM SIGIR

Conference, pp. 552-558, (2005).

[124] N. Stepenosky, D. Green, J. Kounios, C. Clark R. Polikar, ―Majority vote and decision

template based ensemble classifiers trained on event related potentials for early diagnosis of

Alzheimer’s disease,‖ IEEE International Conference Acoustic, Speech and Signal

Processing, pp. 901-904, (2006).

[125] M. Stricker and M. Orengo, ―Similarity of color images‖, In SPIE Conference on

Storage and Retrieval for Image and Video Databases III, pp. 381-392, (1995).

[126] B. Suh, B. Bederson, ―Semi-automatic photo annotation strategies using event based

clustering and clothing based person recognition‖, Interacting with Computers 19(4), pp. 524-

544, (2007).

[127] J. Suykens and J. Vandewalle, ―Least squares support vector machine classifiers‖,

Neural Processing Letters, 9(3), pp. 293–300, (1999).

[128] Y. Tang, Y. He, S. Krasser, ―Highly Scalable SVM Modelling with Random

Granulation for Spam Sender Detection‖, ICMLA, pp. 659-664, (2008).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

105

[129] D. Tao, X. Tang, X. Li, X. Wu, ―Asymmetric bagging and random subspace for

support vector machines-based relevance feedback in image retrieval‖ IEEE Transactions on

Pattern Analysis and Machine Intelligence, 28(7), pp. 1088– 1099, (2006).

[130] The Cilk Project, [Online]: http://supertech.csail.mit.edu/cilk/ (Last accessed: 24 March

2011).

[131] C. Tsai, K. McGarry, J. Tait, ―CLAIRE: A modular support vector image indexing and

classification system‖, ACM Transactions on Information and System Security 24(3), pp.

353-379, (2006).

[132] C. Tsai, C. Hung, ―Automatically annotating Images with Keywords: A Review of

Image Annotation Systems‖, Recent Patents on Computer Science, 1, pp. 55-68, (2008).

[133] T. Tseng, C. Lee, J. Su, ―Classify by representative or. Associations (CBROA): A

hybrid approach for image classification”, In Proceedings of the 6th international workshop

on Multimedia data mining: mining integrated media and complex data, pp. 22-28, (2005.

[134] G. Valentini and T. Dietterich, ―Low Bias Bagged Support Vector Machines‖, ICML

pp. 752-759, (2003).

[135] G. Valentini and T. Dietterich, ―Bias-variance analysis of Support Vector Machines for

the development of SVM-based ensemble methods‖, Journal of Machine Learning Research,

5, pp. 725-775, (2004).

[136] N. Vasconcelos, ―From Pixels to Semantic Spaces: Advances in Content-Based Image

Retrieval‖ Published by the IEEE Computer Society, pp. 20-26, (2007).

[137] J. Venner, Programming Hadoop, Springer, pp 1-407, (2009).

[138] J. Vompras, and S. Conrad, ―A semi-automated Framework for Supporting Semantic

Image Annotation‖ , In Proceedings of 5th International Workshop on Knowledge Markup

and Semantic Annotation at the 4rd International Semantic Web Conference (ISWC) pp. 105-

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

106

109, (2005).

[139] C. Wang, F. Jing, L. Zhang, H. Zhang, ―Content-Based Image Annotation

Refinement‖, IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, (2007).

[140] Y. Wang and H.J Zhang ―Content-Based Image Orientation Detection with Support

Vector Machines‖, in Proc. IEEE Workshop on Content-based Access of Image and Video

Libraries, December, pp. 17-23, (2001).

[141] H. Wang, S. Liu, L. Chia, ―Does ontology help in image retrieval?: a comparison

between keyword, text ontology and multi-modality ontology approaches‖, ACM

Multimedia, pp. 109-112, (2006).

[142] G. Wang, A. Butt, P. Pandey, K. Gupta, ―Using realistic simulation for performance

analysis of MapReduce setups‖, In Proceedings of the 1st ACM workshop on Large-Scale

System and Application Performance (LSAP), pp. 19-26, (2009).

[143] C. Waring and X. Liu, ―Face detection using spectral histograms and SVMs‖, IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(3), pp. 467-476,

(2005).

[144] Weka 3, [Online]: http://www.cs.waikato.ac.nz/ml/weka (Last accessed: 1 April 2011).

[145] L. Wenyin, S. Dumais, Y. Sun, H. Zhang, M. Czerwinski B. Field, ―Semi-Automatic

Image Annotation‖, In Proceedings of INTERACT2001—8th IFIP TC.13 Conference on

Human-Computer Interaction, Hirose, M. (Ed.), IOS Press, pp.326-333, (2001).

[146] S. Winters-Hilt and K. Armond, ―Distributed SVM learning and support vector

reduction‖, [Online]: http://cs.uno.edu/~winters/SVM_SWH_preprint.pdf (Last accessed: 24

March 2011).

[147]W. Wong and S. Hsu, ―Application of SVM and ANN for image retrieval‖, European

Journal of Operational Research, 173 (3), pp. 938-950, (2006).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

107

[148] K. Woodsend and J. Gondzio, ―Hybrid MPI/OpenMP parallel linear support vector

machine training‖, Journal of Machine Learning Research, 10, pp. 1937-1953, (2009).

[149] M. Xu, J. Wang, T. Chen, ―Improved Decision Tree Algorithm: ID3‖, Intelligent

Computing in Signal Processing and Pattern Recognition, pp. 141-149, (2006).

[150] G. Yan, G. Ma, L. Zhu, ―Support vector machines ensemble based on fuzzy integral for

classification‖, ISNN, pp. 974–980, (2006).

[151] J. Yang, ―An improved cascade SVM training algorithm with crossed feedbacks‖, In

Proceedings of 1
st
 International Multi-Symposium of Computer and Computational Sciences

(IMSCCS), pp. 735-738, (2006).

[152] A. Yavlinsky, E. Schofield, S. Riuger, ―Automated image annotation using global

features and robust nonparametric density estimation‖, In Proceedings of the Computer

Image and Video Retrieval conference (CIVR), pp. 507-517, (2005).

[153] G. Zanghirati and L. Zanni, ―A parallel solver for large quadratic programs in training

support vector machines‖, Parallel Computing, 29 (4), pp. 535-551, (2003).

[154] L. Zhang, F. Lin, B. Zhang, ―Support vector machine learning for image retrieval‖, In

Proceedings of International Conference on Image Processing, pp. 721-724, (2001).

[155] C. Zhang, P. Li, A. Rajendran, Y. Deng, ―Parallel multicategory support vector

machines (PMC-SVM) for classifying microcarray data‖, In Proceedings of the 1st

International Multi-Symposiums on Computer and Computational Sciences (IMSCCS), pp.

110-115, (2006).

[156] Y. Zhao, Y. Zhao, Z. Zhu, J. Pan, ―A Novel Image Annotation Scheme Based on

Neural Network‖, ISDA (3), pp. 644-647, (2008).

Nasullah Khalid Alham (2011)

Parallelizing Support Vector Machines for Scalable Image Annotation

108

[157] Y. Zhao and Y. Zhang ―Comparison of decision tree methods for finding active

objects‖ Advances in Space Research, 41(12), pp. 1955-1959, (2008).

