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Abstract 

  

 

Machine learning techniques have facilitated image retrieval by automatically classifying and 

annotating images with keywords. Among them Support Vector Machines (SVMs) are used 

extensively due to their generalization properties. However, SVM training is notably a 

computationally intensive process especially when the training dataset is large.  

 

In this thesis distributed computing paradigms have been investigated to speed up SVM 

training, by partitioning a large training dataset into small data chunks and process each 

chunk in parallel utilizing the resources of a cluster of computers. A resource aware parallel 

SVM algorithm is introduced for large scale image annotation in parallel using a cluster of 

computers. A genetic algorithm based load balancing scheme is designed to optimize the 

performance of the algorithm in heterogeneous computing environments.  

 

SVM was initially designed for binary classifications. However, most classification problems 

arising in domains such as image annotation usually involve more than two classes. A 

resource aware parallel multiclass SVM algorithm for large scale image annotation in parallel 

using a cluster of computers is introduced.  

 

The combination of classifiers leads to substantial reduction of classification error in a wide 

range of applications. Among them SVM ensembles with bagging is shown to outperform a 

single SVM in terms of classification accuracy. However, SVM ensembles training are 

notably a computationally intensive process especially when the number replicated samples 

based on bootstrapping is large. A distributed SVM ensemble algorithm for image annotation 

is introduced which re-samples the training data based on bootstrapping and training SVM on 

each sample in parallel using a cluster of computers. 

 

The above algorithms are evaluated in both experimental and simulation environments 

showing that the distributed SVM algorithm,  distributed multiclass SVM algorithm,  and 

distributed SVM ensemble algorithm,  reduces the training time significantly while 

maintaining a high level of accuracy in classifications. 
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Chapter 1  

 Introduction 

 

This chapter briefly describes the background to the problems investigated in this thesis, 

motivation of work, major contributions and the structure of the thesis. 

1.1 Background  

The increasing volume of images being generated by digitized devices has brought up a 

number of challenges in image retrieval. Content Based Image Retrieval (CBIR) was 

proposed to allow users retrieve relevant images based on their low-level features such as 

colour, texture and shape. The past decade has seen a rapid development in CBIR. In CBIR 

systems images are first segmented into regions or fixed size blocks, and then image features 

can be extracted. For example, by extracting colour histograms, the colour content of an 

image can be represented [21]. In a retrieval process, users feed the retrieval system with 

query images. The CBIR system then computes these images into its internal representation 

of feature vectors. The similarities or distances between the feature vectors of a query image 

and those of the images in the image database can be calculated and retrieval is performed 

with the aid of an indexing scheme such as HG-tree [23]. HG-tree is a multi dimensional 

Point Access Method (PAM) which is used to index multi-dimensional data to support 

queries such as ―Find all images that are similar to a query image‖. Figure 1.1 shows the 

processes of CBIR. 

 

Figure 1.1: CBIR main processes 
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One of the primary components in CBIR is colour analysis [95]. Each image is analyzed to 

compute a colour histogram which shows the proportion of pixels of each colour within the 

image. The colour histogram for each image is then stored in the database. Colour moments 

are also measures that can be used to compute the similarity of images based on their colour 

features. Colour moments are based on the theory that the distribution of colour in an image 

can be interpreted as a probability distribution. Probability distributions are characterized by 

a number of unique moments; the moments of the distribution can be used as features to 

identify that image based on colour. Stricker and Orengo [125] use three moments of an 

image's colour distributions which are Mean, Standard deviation and Skewness. These values 

of similarities can then be compared with the values of images indexed in a database for tasks 

like image retrieval [95].  

Another key component in CBIR is the analysis of the texture of an image which is the 

perception of smoothness or coarseness of an object. Similar to the colour histogram 

mentioned above, many of the current techniques for image texture analysis while quantified, 

lack the spatial information that allows one to compare the location of a coarse object with a 

smooth object within an image [100]. There is a notable use of Local Binary Pattern (LBP) in 

CBIR. Block based methods which divides a query image and database images (or database 

images only) into blocks and compare their LBP histograms are found to perform 

significantly better than the methods based on global LBP histograms [71]. Other texture 

features such as Gabor Filters are applied to images convert image texture components into 

graphs. A comparison of these images is performed based on the mathematical representation 

of these graphs. This makes it possible to compare the textures of two different images [136].  

The ability to retrieve images based on shapes is perhaps the most obvious requirement at the 

primitive level [28]. Unlike texture, shape is a fairly well-defined concept and there is 

considerable evidence that natural objects are primarily recognized by their shapes. In 

contrast to colour and texture features, shape features are described after an image is 

segmented into objects. Since accurate image segmentation is difficult to achieve 

automatically. Using shapes in CBIR is limited to specific application where objects are 

readily available [93]. 

The accuracy of CBIR is not adequate due to the existence of a Semantic Gap, a gap between 

the low-level visual features such as textures and colours and the high-level concepts that are 
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normally used by the user in the search process [122]. Annotating images with labels is one 

of the solutions to narrow the semantics gap [132]. Automatic image annotation is a method 

of automatically generating one or more labels to describe the content of an image, a process 

which is commonly considered as a multi-class classification. Typically, images are 

annotated with labels based on the extracted low level features. Machine learning techniques 

have facilitated image annotation by learning the correlations between image features and 

annotated labels.  

Support Vector Machine (SVM) techniques have been used extensively in automatic image 

annotation [12] [26] [34] [48] [49] [85] [147]. The qualities of SVM based classification have 

been proven remarkable [30] [40] [119] [143]. In its basic form SVM creates a hyperplane as 

the decision plane, which separates the positive and negative classes with the largest margin 

[119]. SVMs have shown a high level of accuracy in classifications due to their generalized 

properties. SVMs can correctly classify data which is not involved in the training process. 

This can be evidenced from our previous work in evaluating the performance of 

representative classifiers in image annotation [77]. The evaluation results showed that SVM 

performs better than other classifiers in term of accuracy, however the training time of the 

SVM classifier is notably longer than that of other classifiers.  

SVM was initially designed for binary classifications. However classification problems in 

domains such as image annotation usually involve more than two classes. Extending binary 

SVM solutions effectively to solve multi-class classification is an ongoing research issue 

[59]. Due to various complexities, a direct solution to multiclass problems using a single step 

SVM training is usually avoided [44]. A superior approach is to combine a number of binary 

SVM classifiers to solve a multiclass problem. Various approaches have been proposed such 

as One Against Rest [45] (OAR), One Against One (OAO) [79] and decision trees based 

multiclass SVM techniques [114].  

Due to various complexities in classification problems, it is difficult to systematically create 

classifiers with enhanced performance. The combination of classifiers leads to considerable 

reduction of misclassification error in a wide range of applications. Among them SVM 

ensembles is shown to outperform a single SVM in terms of classification accuracy [18]. 

Bagging [15] is the most commonly used combination method which combines multiple 

classifiers by introducing randomness in the training data. The bagging method is useful in 
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reducing the variance component of the expected misclassification error of a classifier. 

Bagging is effective particularly for classifiers with high variance and low bias, which is 

described in [15] as unstable classifiers. Unstable classifiers experience significant changes 

with small change of the training data or other parameters [54]. 

1.2 Motivation of Work 

A number of machine learning techniques are available for image annotation. These 

techniques are usually evaluated under different environments using different low level 

features of images. To facilitate the selection of best machine learning techniques to be used 

in image annotation, there is a need for evaluating some representative techniques under the 

same environment using the same set of low level features. 

It has been widely recognized that SVMs are computationally intensive when the size of a 

training dataset is large. A SVM kernel usually involves an algorithmic complexity of 

O(m
2
n), where n is the dimension of the input and m represents the training instances. The 

computation time in SVM training is quadratic in the number of training instances.  

To speed up SVM training, distributed computing paradigms have been investigated to 

partition a large training dataset into small data chunks and process each chunk in parallel 

utilizing the resources of a cluster of computers [24] [41] [61] [153]. The approaches include 

those that are based on the Message Passing Interface (MPI) [8] [10] [20] [21] [148] [153].  

A comparative study of the most popular multiclass SVM approaches indicates that OAO 

approaches usually perform better than others in terms of training efficiency and 

classification accuracy [27]. However OAO does not perform well when the datasets of the 

classes to be processed are different in size. 

To speed up multiclass SVM training, distributed computing paradigms have been 

investigated to partition a large training dataset into small data chunks and process each 

chunk in parallel utilizing the resources of a cluster of computers [20] [21] [41] [63] [105]. 

The approaches include those that are based on the Message Passing Interface (MPI) [155]. 

However, MPI is primarily targeted at homogeneous computing environments and has 

limited support for fault tolerance. Although some progress has been made by these 

approaches, exiting distributed multiclass SVM algorithms employ naive and ineffective 

schedulers to address the problem of unbalanced multiclass datasets in homogeneous 
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computing environments in which the computers have similar computing capabilities. 

Currently heterogeneous computing environments are increasingly being used as platforms 

for resource intensive distributed applications. One major challenge is to balance the 

computation loads across a cluster of participating computer nodes. 

SVM ensembles based on bagging show improvement in classification performance compare 

to a single SVM. Although some progress has been made by these approaches in 

classification accuracy, current method of builds replicates training data sample by randomly 

re-sampling with replacement, from the given training data set repeatedly. The number of 

samples required to create an effective ensemble SVM is debatable. Improving classification 

performances for fixed number replicates training data has not been studied. Ensemble 

learning is extremely computational intensive which limits their applications in real 

environments. Moreover SVM classifiers applied in ensemble learning require large 

computing resources due to the fact that computation time in SVM training is quadratic in 

terms of the number of training instances. 

 

1.3 Major Contributions 

Evaluation of seven representative machine learning classifiers for image annotation namely 

SVM, Bayesian Network, Naive Bayes, Boosting, Bagging, kNN and Decision tree from the 

aspect of accuracy and efficiency is presented. To facilitate performance evaluation, an image 

annotation prototype has been implemented which builds training models on low level 

features extracted from sample images. The evaluation results showed that SVM performs 

better than other classifiers in term of accuracy, however the training time of the SVM 

classifier is notably longer than that of other classifiers. 

Resource Aware Sequential Minimal Optimization (RASMO), a distributed SVM algorithm 

for automatic image annotation has been implemented. RASMO builds on the Sequent 

Minimal Optimization (SMO) algorithm [113] for high efficiency in training and employs 

MapReduce [37] for parallel computation across a cluster of computers. MapReduce has 

become a major enabling technology in support of data intensive applications. RASMO is 

implemented using the Hadoop implementation [3] of MapReduce. The MapReduce 

framework facilitates a number of important functions such as partitioning the input data, 

scheduling MapReduce jobs across a cluster of participating nodes, handling node failures, 
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and managing the required network communications. A notable feature of the Hadoop 

implementation of MapReduce framework is the ability to support heterogeneous 

environments but without an effective load balancing scheme for utilizing resources with 

varied computing capabilities. For this purpose, a genetic algorithm based load balancing 

scheme is designed to optimize the performance of RASMO in heterogeneous computing 

environments.  

The RASMO algorithm is designed based on a multi-layered cascade architecture which 

removes non-support vectors early in the training process and guarantees a convergence to 

the global optimum [58] [151]. The genetic algorithm based load balancing scheme is applied 

in the first layer computation in RASMO as this layer is the most intensive part in 

computation in optimizing the whole training dataset. The resulting support vectors from the 

first layer computation are used to create the input data for next layers which is usually much 

smaller in size in comparison with the original training data [104]. The size of each data 

chunk at the first layer is computed by the load balancing scheme based on the resources 

available in a cluster of computers such as the computing powers of processors, the storage 

capacities of hard drives and the network speeds of the participating nodes.  

The performance of RASMO is first evaluated in a small scale experimental MapReduce 

environment. Subsequently, a MapReduce simulator is implemented to evaluate the 

effectiveness of the resource aware RASMO algorithm in large scale heterogeneous 

MapReduce environments. Both experimental and simulation results show that RASMO 

reduces the training time significantly while maintaining a high level of accuracy in 

classification. In addition, data chunks with varied sizes are crucial in speeding up SVM 

computation in the training process. It is worth pointing out that using different sizes for data 

chunks has no impact on accuracy in SVM classification due to the structure of the RASMO 

algorithm in which the training work in the first few layers is merely a filtering process of 

removing non-support vectors and the resulting support vectors of the last layer are evaluated 

for a global convergence by feeding the output of the last layer into the first layer. 

Resource Aware Multiclass Sequential Minimal Optimization (RAMSMO), a resource aware 

distributed multiclass SVM algorithm for scalable image annotation has been designed and 

implemented. RAMSMO is built on MapReduce framework for parallel computation across a 

cluster of computers. A genetic algorithm based load balancing scheme is used to optimize 
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the performance of RAMSMO when processing binary data chunks with different sizes in 

heterogeneous environments in which the participating computers have varied resources in 

terms of the computing powers of processors, the storage capacities of hard drive and the 

network speeds of the participating nodes. 

The performance of RAMSMO is evaluated in both small scale experimental and large scale 

MapReduce environments including the effectiveness of the load balancing scheme in large 

scale heterogeneous MapReduce environments. Both experimental and simulation results 

show that RAMSMO reduces the training time significantly while maintaining a high level of 

accuracy in classification.  

MapReduce Ensemble Sequential Minimal Optimization (MRESVM), a distributed SVM 

ensemble algorithm for automatic image annotation has been implemented. MRESVM builds 

on the SMO algorithm for high efficiency in training and employs MapReducefor parallel 

computation across a cluster of computers. 

The MRESVM algorithm is based on the bagging architecture which train multiple SVMs on 

bootstrap samples and combines the output in appropriate manners. Two types of 

combination methods are considered, firstly majority voting which is the commonly used 

combination method for bagging. Secondly combination of SVMs based double layer 

hierarchical combining that use second layer SVM to combine the first layer SVMs. Balanced 

sampling strategy for bootstrapping is introduced to increase classification accuracy for fixed 

number samples. The performance of the MRESVM algorithm is evaluated in both small 

scale experimental and large scale MapReduce environments. Both experimental and 

simulation results show that MRESVM reduces the training time significantly while increase 

the classification accuracy compare to a single SVM.  

 

1.4 Structure of the Thesis 

The rest of this thesis is organised as follows. Section 2.1 introduces image annotation 

techniques. Section 2.2 describes the basic concepts of SVM while Section 2.3 introduces 

distributed SVM. Section 2.4 introduces distributed Multiclass SVM Section 2.5 describes 

distributed SVM ensemble. Section 2.6 reviews and discuss the related work. Section 2.7 

concludes the chapter. 
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Chapter 3 describes the implementation of an image annotation system which is essential for 

evaluating most commonly used machine learning classifiers in automatic image annotation. 

The evaluation results are presented in this chapter.  

 

Chapter 4 is dedicated to the implementation of the RASMO and evaluation of the algorithm 

in experimental and simulation environment. A Genetic algorithm is introduced to enhance 

the performances in heterogonous computing environment. 

 

Chapter 5 presents the implementation of the RAMSMO for training multiclass SVM and 

evaluation of the algorithm in experimental and simulation environment. A Genetic algorithm 

is introduced to enhance the performances in heterogonous computing environment. 

 

Chapter 6 presents the implementation of the MRESVM for training SVM ensemble and 

evaluation of the algorithm in experimental and simulation environment.  

 

Finally, chapter 7 summarises the contributions of the thesis and proposes directions for 

future work. 
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Chapter 2 

Literature Review 

 

This thesis is conducted from four different aspects, namely evaluated automatic image 

annotation techniques, distributed binary SVM, distributed multiclass SVM and distributed 

SVM ensemble.  This chapter briefly describes the above techniques, reviewing the related 

literatures and summarising the weakness of the existing techniques.   

  

2.1 Image Annotation Techniques 

 
In recent years image annotation has become a major approach to bridging the semantic gap. 

This section describes some the main techniques used in image annotation. 

 

Currently a great number of images are widely available on the World Wide Web. In order to 

organize and efficiently retrieve this vast number of images, contextual information of the 

images such as surrounding text and links is used for image annotation. 

 

Semantic Web technologies such as ontologies have been used to annotate images with 

semantic descriptions. Ontology [123] is a specification of an abstract which defines a set of 

representational terms called concepts. Ontology based semantic image annotation focuses on 

describing the contents of an image, and tries to describe image contents as fully as possible. 

 

Automatic image annotation is a method of automatically generating one or more labels to 

describe the content of an image. Typically, images are annotated with labels based on the 

extracted low level features. Machine learning techniques such SVM, Bayesian Networks, 

Artificial Neural Networks, Decision Tree and Composite Classifiers such bagging and 

boosting have facilitated image annotation by learning the correlations between image 

features and annotated labels. 
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2.2 Distributed SVM 

It has been widely recognized that training SVMs is computationally intensive when the size 

of a training dataset is large. A SVM kernel usually involves an algorithmic complexity of 

O(m
2
n), where n is the dimension of the input and m represents the training instances. The 

computation time in SVM training is quadratic in terms of the number of training instances. 

To speed up SVM training, distributed computing paradigms have been investigated to 

partition a large training dataset into small data chunks and process each chunk in parallel 

utilizing the resources of a cluster of computers. 

 

2.3 Distributed Multiclass SVM 

Due to various complexities, a direct solution to multiclass problems using a single step SVM 

training is usually avoided [44]. A superior approach is to combine a number of binary SVM 

classifiers to solve a multiclass problem. Various approaches have been proposed such as 

One Against Rest [45] (OAR), One Against One (OAO) [79] and decision trees based 

multiclass SVM techniques [114]. To speed up SVM training, distributed computing 

paradigms have been investigated to partition a large training dataset into small data chunks 

and process each chunk in parallel utilizing the resources of a cluster of computers. 

 

2.4 SVM Ensemble 

The combination of classifiers leads to significant reduction of classification error in a wide 

range of applications. Among them SVM ensembles is shown to outperform a single SVM in 

terms of classification accuracy. However, SVM ensembles training are notably a 

computationally intensive process especially when the number replicated samples based on 

bootstrapping is large. Ensemble learning is extremely computational intensive which limits 

their applications in real environments.  

 

2.5 Related Work to this Thesis 

This section reviews the related literatures in automatic image annotation techniques, 

distributed binary SVM, distributed multiclass SVM and SVM ensemble.   
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2.5.1 Image Annotation Techniques 

 

In order to organize and efficiently retrieve vast number of images on the Web, contextual 

information of the images such as surrounding text and links are used for image annotation. 

Hua et al. [66] introduce a system which automatically acquires semantic knowledge for Web 

images. A page layout analysis method is used to assign context to Web images. Joshi et al. 

[72] propose a scheme for automated story picturing using stop word elimination and 

identification of a set of proper nouns. The text of a story is processed based on the Wordnet 

[102] which forms a list of keywords.  

 

Although image retrieval techniques based on textual information can retrieve many relevant 

images, the accuracy level of image retrieval is low [92]. The main reasons for low level of 

accuracy are; firstly the Web images are used freely in the Web pages and there is no 

standard exists for the relationships between the texts and embedded images in the same Web 

pages, secondly Web images are fairly comprehensive in meaning, and are created by 

different people for different purposes, thirdly the qualities of the Web images vary greatly 

[57]. The users need to go through the entire list of retrieved images to find the desired ones. 

To improve Web image retrieval performance, there is an on-going research to combine the 

textual information and visual image contents [92]. 

 

Marques and Barman [100] propose three layer architecture for image annotation. The 

bottom layer extracts low level features of images, which are mapped to semantically 

meaningful keywords in the middle layer, which are then connected to schemas and 

ontologies on the top layer. Petridis et al. [112] present a software environment called M-

Onto Mat-Annotizer to bridge the gap between the low level visual descriptors and high level 

semantic concepts. M-Onto Mat-Annotizer allows linking low level MPEG-7 visual 

descriptions to the Visual Descriptor Ontology (VDO). Hollink et al. [65] argue that 

ontologies serve two purposes in image annotation. Firstly, user is immediately provided with 

the right context to find an adequate index term. This ensures quicker and more precise 

indexing. Secondly, the hierarchical presentation of concepts helps to disambiguate terms. 

They propose a scheme for semantic image annotation and retrieval in a collection of art 

images using multiple ontologies to support this process. Srikanth et al. [123] use a hierarchy 

of annotation words derived from text ontology for automatic image annotation.  
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Wang et al. [141] compare ontology-based image annotation with keyword-based image 

annotation. It has been found that keyword based approach is user friendly and easy to apply 

with acceptable retrieval accuracy, while semantically rich ontology addresses the need for 

complete descriptions of image retrieval and improves the accuracy of retrieval. Ontology 

works better with the combination of low level image features. However there is a trade-off 

between the complexity and performance. Ontology based annotation work better by 

combining low level features with high level textual information due to usefulness of visual 

information to filter a majority of inaccurate results. For instance, from an indoor background 

it can be inferred that a wild fox is not likely to exist in an image. 

 

SVM is considered as a good candidate for image annotations due to its high generalisation 

performance without the need to add prior knowledge [25]. Zhang et al. [154] used a SVM 

classifier to separate two classes of relevant images and irrelevant images. A classifier is 

trained with training data of relevance images and irrelevance images marked by users. The 

trained model is used to find more relevance images in an image database. Tsai et al. [131] 

propose a system which is composed of three modules of SVMs for colour, texture, and high-

level concept classification. Cusano et al. [34] present an image annotation tool for 

classifying image regions in one of seven classes- sky, skin, vegetation, snow, water, ground, 

and buildings using multi-class SVM. Wang et al [40] used SVM and point out the main 

drawback of the SVM models are too large to be used in a practical system with limited 

memory space. As a result, the speed of the classification is also slow when using SVM 

models with many support vectors. 

Barrat and Tabbone [5] use a Bayesian network to classify images based on visual and textual 

features and to automatically annotate new images. Kane and Savakis [73] employ low-level 

classification based on colour and texture, semantic features such as sky and grass detections, 

along with indoor and outdoor ground truth information, to create a set of features for 

Bayesian network structure learning. It is reported that a Bayesian network provides 

classification rates which are 97% correct. Benitez and Chang [7] use a Bayesian network in 

combination of meta-classifiers. For a new image, the presence of concepts is first detected 

using the meta-classifiers and then is refined using Bayesian inferences. Niedermayer [35] 

claims weakness of Bayesian network lays on the quality and extent of the prior beliefs used 
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in Bayesian inference process. A Bayesian network is only is useful when this prior 

knowledge is reliable. 

 

One of the widely used techniques is to predict the class of a new instance based on the most 

common class amongst the k Nearest Neighbours [9]. k Nearest Neighbours classifiers are 

known as non-parametric classifiers. Non-parametric classifiers can naturally handle a huge 

number of classes, and avoid over fitting of parameters which is a central issue in learning 

based approaches. In addition, non-parametric classifiers do not require learning/training 

phases. Makadia et al. [99] introduce a technique for image annotation that treats image 

annotation as a retrieval problem, using low-level image features and a simple combination of 

basic distances to find the nearest neighbours of a given image. The keywords are then 

assigned using a greedy label transfer mechanism. Pakkanen et al. [108] use MPEG-7 feature 

vectors to perform a kNN classification of the images. They report that the results are 

generally satisfactory especially the Colour Structure and Homogeneous Texture descriptors 

seem to perform well. Lepisto et al. [67] present a method for combining different visual 

descriptors in rock image classification. In their approach, the k-NN classification is first 

carried out for each descriptor separately. After that, a final decision is made by combining 

the nearest neighbours in each base classification. The total numbers of the neighbours 

representing each class are used as votes in the final classification.  

 

In image annotation, low-level feature vectors are fed into the input layer of a multilayer 

perceptron (MLP) where each of the input neurons corresponds to each of the feature vectors 

and the output neurons of the MLP represent the class labels of images to be classified. Zhao 

et al [156] propose an annotation system based on a neural network for characterising the 

hidden association between the visual and the textual modalities. Latent semantic analysis 

(LSA) is employed to discover the latent contextual correlation among the keywords. Shah 

and Lim et al [89] use a three-layer feed-forward neural network with dynamic node creation 

capabilities to learn 26 visual keywords from 375 labelled image patches collected from 

home photos. Colour and texture features are computed for each training region as an input 

vector for the neural network. Breen et al. [14] propose an annotation system which uses 

ontologies and neural networks as object identifiers to provide a high level of accuracy in 

automatic classification of images.  
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ID3 and C4.5 are well known algorithms to construct a decision tree classifier; however ID3 

has some disadvantages such as preference bias and the inability to deal with unknown 

attribute values [149]. Tseng and Su [133] use the decision tree algorithm to build a classifier 

with low-level features extracted from images. The classifier is then used for classifying 

images with one representative object. Huang et al [68] use decision tree to categorize new 

images. It has been suggested that this scheme performs better than standard k-nearest 

neighbour techniques, and also has both storage and computational advantages [68]. 

 

Feng and Chua [50] propose bootstrapping approach to deal with the problem of providing 

large labelled training data which is needed in the training stage of a classifier to annotate a 

large collection of images. The idea is to start from a small set of labelled training images, 

and consecutively annotate a larger set of unlabeled images by using the co-training 

approach, in which two statistically independent classifiers are used to co-train and co-

annotate the unlabeled images. This process offers the advantage of requiring only a small 

initial set of training images. Huan [95] claim boosting method such as adaboost, boosts a 

weak learning algorithm by updating the sample weights iteratively. They propose to 

integrate feature reweighting into boosting scheme, which not only weights the samples but 

also weights the feature elements iteratively. Fan et al [48] propose a hierarchical boosting 

algorithm by integrating concept ontology and multi-task learning to achieve hierarchical 

image classifier training with automatic error recovery. 

 

2.5.2 Distributed SVM 

 

SVM training is a computationally intensive process especially when the size of the training 

dataset is large. Numerous avenues have been explored with an effort to increase efficiency 

and scalability, to reduce complexity as well as ensure that the required level of classification 

accuracy can be maintained. SVM decomposition is a widespread technique for performance 

improvement [4] [107] [127]. 

 

Decomposition approaches work on the basis of identifying a small number of optimization 

variables and tackling a set of problems with a fixed size. One approach is to split the training 

data set into a number of smaller data chunks and employs a number of SVMs to process the 

individual data chunks. 
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Various forms of summarizations and aggregations are then performed to identify the final 

set of global support vectors. Hazen et al. [61] introduced a parallel decomposition algorithm 

for training SVM where each computing node is responsible for a pre-determined subset of 

the training data. The results of the subset solutions are combined and sent back to the 

computing nodes iteratively. The algorithm is based on the principles of convex conjugate 

duality. The key feature of the algorithm is that each processing node uses independent 

memory and CPU resources with limited communication overhead. Zanghirati et al. [153] 

presented a parallel SVM algorithm using MPI which splits the problem into smaller 

quadratic programming problems. The output results of the sub-problems are combined. The 

performance of the parallel implementation is heavily depended on the caching strategy that 

is used to avoid re-computation of the previously used elements in kernel evaluation which is 

considered as computationally intensive. Similarly, MPI based approaches have been 

proposed for speeding up SVM in training [8] [10] [20] [21] [148]. Whilst good performance 

improvements can be achieved by MPI based parallelization, these approaches tend to suffer 

from poor scalability, high overhead in inter-node communication, and limited support for 

heterogeneous computing environments. 

 

Collobert et al. [31] proposed a parallel SVM algorithm which trains multiple SVMs with a 

number of subsets of the data, and then combines the classifiers into a final single classifier. 

The training data is reallocated to the classifiers based on the classification accuracy and the 

process is iterated until a convergence is reached. However the frequent reallocation of 

training data during the optimization process may cause a reduction in the training speed. 

Huang et al. [67] proposed a modular network architecture which consists of several SVMs 

of which each is trained using a portion of the whole training dataset. It is worth noting that 

speeding up the training process can significantly reduce the generalization performance due 

to the increase in the number of partitions. Lu et al. [97] proposed a distributed SVM 

algorithm based on the idea of partitioning training data and exchanging support vectors over 

a strongly connected network. The algorithm converges to a global optimal classifier in finite 

steps. The performance of this solution is depended on the size and topology of network. The 

larger a network is, the higher communication overhead will incur. Kun et al. [83] 

implemented a parallel SMO using Cilk [130] and Java threads. The idea is to partition the 

training data into smaller parts, train these parts in parallel, and combines the resulting 
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support vectors. However Cilk's main disadvantage is that it requires a shared-memory 

computer [81]. 

 

An interesting alternative is considered and discussed in [21]. The work on updating 

optimality condition vectors is performed in a parallel way leading to a speedup in SVM 

training. However this approach can incur considerable network communication overhead 

due to the large number of iterations involved. Another approach utilizes Graphics Processing 

Units (GPU) for SVM speedup [27]. MapReduce was adopted in this work exploiting the 

multi-threading capabilities of graphics processors. The results show a considerable decrease 

in processing time. A key challenge with such an approach lies in the specialized 

environments and configuration requirements. The dependency of specific development tools 

and techniques as well as platforms introduces additional, non-trivial complexities. 

 

SVM algorithms rely on the number of support vectors for classification. Removing non-

support vectors in an early stage in the training process has proven to be useful in reducing 

the training time. Dong et al. [43] proposed a parallel algorithm in which multiple SVMs are 

solved with partitioned data sets. The support vectors generated by one SVM are collected to 

train another SVM. The main advantage of this parallel optimization step is to remove non-

support vectors which can help reduce the training time. Graf et al. [58] proposed a similar 

parallel SVM algorithm using a homogenous Linux cluster. The training data is partitioned 

and an SVM is solved for each partition. The support vectors from each pair of classifiers are 

then combined into a new training dataset for which an SVM is solved. The process carries 

on until a final single classifier is left. Although the convergence to the global optimum can 

be guaranteed, partitioning a large dataset into smaller data chunks with the same size can 

only be effective in a homogeneous computing environment in which computers have similar 

computing capabilities. Another similar work is presented in [146]. 

 

Given the focus that most of the current approaches are primarily on the SVM solver, 

parallelization using a number of computers may introduce significant communication and 

synchronization overheads. Frameworks such as MapReduce are believed to provide an 

effective application scope in this context [56]. Chu et al. [29] capitalized natively on the 

multi-core capabilities of modern day processors and proposed a distributed linear SVM 

using the MapReduce framework; batch gradient descent is performed to optimize the 
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objective function. The mappers calculate the partial gradient and the reducer sums up the 

partial results to update weights vector. However the batch gradient descent algorithm is 

extremely slow to converge with some type of training data [119]. 

 

2.5.3 Distributed Multiclass SVM 

 

Existing research efforts in multiclass SVM classifications generally fall into two approaches. 

One approach is to consider all the classes in a single optimization step and the other 

approach is a combination of several binary classifiers. 

 

A multiclass SVM classification method based on a single optimization process was 

introduced in [33]. A major advantage of this method is that the training of all the classes 

occurs in a single optimization step. Keerthi et al. [75] presented a dual method based on 

direct multiclass formulations of linear SVM. The main idea is to sequentially pass through 

the training dataset and optimize the dual variables associated with one example at a time. 

However a single step multiclass optimization is not practical to many classification 

applications due to the creation of a large optimization problem [44]. While directly 

extending a binary SVM into a multiclass SVM is not practical, a commonly used approach is 

to create a multiclass classifier based on the combination of binary classifiers. The One 

Against Rest (OAR) method is one of the popular methods to solve multiclass problems in 

which a binary classifier is trained for each class, which separates a single class from the rest 

of the classes and then combines the classifiers for multiclass inference. OVR can achieve 

high accuracy in classification [75] but the training process is not efficient due the 

involvement of all training data for creating binary classifiers for each class.  

 

OAO method trains a binary classifier for each pair of classes. To classify an unlabelled 

instance, all binary classifiers are used. One advantage of the OAO method lies in its 

efficiency in training process. However, OAO does not perform well when the binary 

classifiers have different dataset in size. 

 

An interesting solution is the use of error correcting output codes (ECOC) together with 

binary classifiers for solving multiclass classification problems [39]. Li et al. [88] combined 

different feature selection methods using ECOC strategies for multiclass cancer 
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classifications. One of the main limitations of the ECOC framework is the requirement of 

considering all classes for each binary classifier, hence is slow in training process. Platt et al. 

[114] introduced Directed Acyclic Graph SVM (DAGSVM) in which each node represents a 

classifier trained with the dataset of a pair of classes. DAGSVM depends on a rooted binary 

directed acyclic graph to make a decision on classifying unlabelled instances. However 

DAGSVM does not work well on an unequally distributed training data where the number of 

samples of each class is not equal. 

 

To speed up multiclass SVM training, distributed computing paradigms have been 

investigated to partition a large training dataset into small data chunks and process each 

chunk in parallel utilizing the resources of a cluster of computers. Zhang et al. [155] 

presented a parallel multiclass SVM based on OAO using Message Passing Interface. 

Although the heterogeneity of multiclass training datasets is considered in their 

implementation, the scheduling of the computation tasks among multiple processors is based 

on a naive cyclically approach which does not consider the processing power of participating 

computing nodes. Additionally MPI is primarily targeted at homogeneous computing 

environments and has limited support for fault tolerance. Herrero-Lopez et al. [63] utilized 

GPU which is a specialized processing hardware. Here the authors considered a parallel 

multiclass SVM approach based on OAR exploiting the multi-threading capabilities of 

graphics processors. The results show a considerable decrease in processing time. Although 

the accuracy level of the GPU based SVM is comparable to the original OAO method, the 

training process is considerably less efficient.  

 

Munoz- Mari et al. [105] presented a parallel SVM algorithm for multiclass problems based 

on OAO method using Medusa cluster [103] in a homogenous environment. Although the 

different sizes of classes in multiclass training datasets is considered in their implementation, 

however the scheduling of the computation tasks among multiple processors is simply to 

keep all the processor busy without considering the resources available on the underlying 

computing nodes. Lu et al. [94] presented a part-versus-part method to decompose a large 

multiclass classification problem into a number of two class sub-problems. A significant 

difference of the part-versus-part method with existing popular OAO multiclass classification 

approaches is that a large-scale two-class sub-problem can be further divided into a number 

of relatively smaller and balanced two-class sub-problems to increase training efficiency. 
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However the classification of par-versus-part method is slow in computation compared with 

the OAO classification approach due to the large number of support vectors to be processed. 

 

2.5.4 SVM Ensemble 

 

Ensemble methods represent one of the main current research issues in machine learning for 

improving classification accuracy [115].  Mason et al [101] show that ensembles enlarge the 

margins, consequently improve the generalization performances of learning algorithms while 

Schapire et al [117] present analysis of  ensemble learning methods based on bias variance 

decomposition of classification error which shows that ensemble classifiers reduce variance 

and bias, therefore reducing the overall classification error rate. 

Bagging is the most commonly used method for constructing ensemble classifiers. Bagging 

introduces randomness in the training data. Recently a number of SVM ensemble based on 

bagging have been proposed. Kim et al. [78] proposed SVM ensembles based bagging to 

improve the classification accuracy. The experimental results show improvement of 

classification accuracy of SVM ensemble. However, the experiments were performed with 

small datasets. This approach of ensemble learning is extremely computational intensive for 

large data set and large number of samples which limits their applications in real 

environments. Yan et al. [150] presented a SVMs ensemble method based on bagging. The 

results show the ensemble method performs better than a single SVM. The ensemble method 

involves tuning each of the base SVMs. However, the algorithm is evaluated using a small 

number of bootstrap samples, evaluating the algorithm with large number bootstrap samples 

is extremely computational intensive. Tao et al. [129] presented a SVMs ensemble method 

based on bagging and random subspace to improve the user relevance feedback performance 

in content-based image retrieval. The results show improvement in classification accuracy. 

However the ensemble method cannot guarantee diversity within SVMs base classifiers due 

to use only negative user feedback in the training process of SVMs. 

Theoretical analysis of the performance of bagging in classification show that expected 

misclassification probability of bagging has the same bias component as a single bootstrap 

sample while the variance component is reduced significantly [54]. Valentini et al. [134] 

present a low bias SVMs ensemble based on bagging. The aim is to reduce bias of base 

SVMs before applying bagging. They consider the bias variance tradeoffs to improve the 
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classification accuracy of SVM ensemble. The experiments show improvement in 

classification accuracy. However, the idea was only tested on small datasets and no efficiency 

analysis was given. This approach of ensemble learning is also extremely computational 

intensive for large data set and large number of samples. Silva et al. [121] proposed a 

distributed SVM based ensemble system. Processing times is reported to have shown notable 

improvements over sequential approaches. Furthermore, the deployment of ensemble 

techniques improves classification performance in terms of accuracy. The system is evaluated 

using evaluate Condor and Alchemi middleware platforms. 

    Re et al. [115] evaluate the performance of several SVM ensemble, in which each base 

classifier is trained on different data types, the output are aggregated based on different 

combination methods. Their results show that heterogeneous data integration through 

ensemble methods is highly accurate for gene function prediction. Derbeko et al. [38] 

propose a new technique for aggregating SVM classifiers based on bootstrapping. In this 

method a linear combination of the base classifiers using weights are optimized to reduce 

variance. However efficiency of the ensemble is not analysed.  

Lei et al. [86] propose the ensemble of support vector machines based on the bagging and 

boosting for text-independent speaker recognition, the experimental results show 

improvement of classification accuracy of SVM ensemble compare to single SVM. However, 

this approach of ensemble learning is extremely computational intensive for large data set 

and large number of samples which limits their applications in real environments.  Tang et al. 

[128] applies bootstrapping to create samples from the original training dataset. An SVM is 

trained on each sample. The SVMs output are aggregated by Bayesian Sum Rule for a final 

decision. The algorithm is efficient and scalable. However there is slight reduction in the 

accuracy level compare to standard SVM. 

 

2.7 Summary 

Research on distributed SVM algorithms has been carried out from various dimensions, but 

mainly focuses on specialized SVM formulations, solvers and architectures [22] [58] [61] 

[67]. Although some progress has been made in speeding up SVM computation in training, 

existing approaches on high performance SVMs are mainly targeted at homogenous 
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computing environments using an MPI based solution. Scalability still remains a challenging 

issue for parallel SVM algorithms. These challenges motivated the design of RASMO which 

targets at a scalable SVM in heterogeneous computing environments empowered with a load 

balancing scheme. 

 

Although some progress has been made in speeding up multiclass SVM computation in 

training, existing approaches on multiclass SVMs are mainly targeted at the classifications in 

which the classifiers have equal sizes of datasets deployed in homogenous computing 

environments without effective load balancing scheme. Scalability still remains a challenging 

issue for multiclass SVM classifications. These challenges motivate the design of RAMSMO 

which targets at a scalable multiclass SVM in heterogeneous computing environments 

empowered with a load balancing scheme. 

 

Research on SVM ensemble algorithms has been carried out from various dimensions, but 

mainly focuses on improving classification accuracy, however solving the training 

inefficiency of SVM ensemble remains a huge challenge. This challenge motivates the design 

of MRESVM which is an efficient distributed SVM ensemble algorithm building on a highly 

scalable MapReduce implementation for image annotation with higher level classification 

accuracy compare to a single SVM. 

This chapter started with briefly description of automatic image annotation techniques, 

distributed binary SVM, distributed multiclass SVM, distributed SVM ensemble and 

reviewing the related literatures. The chapter concluded and summarising the weakness of the 

existing techniques.    
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Chapter 3 

Evaluation of Machine Learning Classifiers for 

Image Annotation   

 

This chapter review seven representative machine learning classifiers for automatically image 

annotation. To facilitate performance evaluation, an image annotation prototype has been 

implemented which builds training models on low level features extracted from sample 

images. This chapter concludes on presenting the evaluation results. 

 

3.1 Support Vector Machine (SVM) 

 

SVM is based on creating a hyperplane as the decision plane, which separates the positive 

(+1) and negative (-1) classes with the largest margin. An optimal hyperplane is the one with 

the maximum margin of separation between the two classes, where the margin is the sum of 

the distances from the hyperplane to the closest data points of each of the two classes. These 

closest data points are called Support Vectors (SVs) [119]. Given a set of training data D, a 

set of points of the type   ii cxD ,  │    11,1,  i
n

i

p

i cx , where ic  is either 1 or -1 

indicative of the class to which the point xi belongs, the aim is to give a maximum margin 

hyperplane which divide points having 1ic from those having 1ic . Any hyperplane can 

be constructed as a set of point x satisfying .0. bxw  The vector w  is a normal vector. We 

want to choose w  and b  to maximize the margin. These hyperplanes can be described by the 

following equations: 

                                                              1. bxw                                                               (3.1) 

                                                              1. bxw                                                             (3.2) 

The margin ./1
2

wm        

The dual of the SVM is shown to be the following optimization problem: 
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 Maximize (in αi )      

                                                                                                                                              (3.3) 

                                                      Subject to                and   

 

yi indicates the class of an instance, there is a one-to-one association between each Lagrange 

multiplier αi and each training example xi. Once the Lagrange multipliers are determined, the 

normal vector 


w and the threshold b  can be derived from the Lagrange multipliers as follow: 

 

                                                          (3.4)  

                                                         kk yxwb 


.                                                                (3.5) 

for some 0ka . Not all data sets are linearly separable. There may be no hyperplane exist 

that separate separates the positive (+1) and negative (-1) classes. SVMs can be further 

generalized to non-linear classifiers. The output of a non-linear SVM is computed from the 

Lagrange multipliers as follow:  
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                                                    (3.6)      

where K is a kernel function that measures the similarity or distance between the input vector 

Xi and the stored training vector X. 

 

3.2 Bayesian Networks 

Formally, a Bayesian network is directed acyclic graphs in which the nodes represent 

variables and the edges encode conditional dependencies between the variables [7]. Let 

  1,..1  nxxU n
 be a set of variables. A Bayesian network B  over a set of variables U  is a 

network structure SB . The classification job is to classify a variable 0xy  called the class 

variable given a set of variables nxxx ....1 called attribute variables. A classifier yxh : is 
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a function that maps an instance of x  to a value of y . The classifier is learned from a dataset 

D consisting of samples over  yx, .To use a Bayesian network as a classifier, one simply 

calculates  xyPymaxarg  using the distribution  UP represented by the Bayesian network. 

The advantage of using Bayesian Networks is that they can be used to reason in the two 

different directions. Another advantage of a Bayesian Network is the usefulness of the graph 

itself; the graph is a compact representation of the knowledge surrounding the system [53]. 

 

3.3 k Nearest Neighbour 

The k Nearest Neighbour (kNN) algorithm is a non-parametric classifier. The training 

examples are vectors in a multi dimensional feature space. The space is partitioned into 

regions by locations and labels of the training samples. A point in the space is assigned to the 

class c if it is the most frequent class label among the k nearest training samples. The training 

stage of the algorithm only stores the feature vectors and class labels of the training samples. 

In the classification stage, a test sample is represented as a vector in the feature space. 

Distances from the new vector to all stored vectors are computed and k closest samples are 

selected. There are a number of ways to classify a new vector to a particular class. One of the 

widely used techniques is to predict the new vector to the most common class amongst the k 

nearest neighbors [10]. Non-parametric classifiers can naturally handle a huge number of 

classes, and avoid over fitting of parameters which is a central issue in learning based 

approaches. In addition, non-parametric classifiers do not require learning/training phases. 

 

3.4 Artificial Neural Networks (ANN) 

ANN consists of an interconnected group of artificial neurons and processes. The input to 

neuron consists of a number of values x1, x2, ...xn, while output is single value y. Both input 

and output have continuous values, usually in the range (0, 1). The neuron computes the 

weighted sum of its inputs, subtracts some threshold T, and passes the result to a non-linear 

function f. Each element in ANN computes the following: 

                                                                                        
)(

1

Txwfy i

N

i

i  


                                                   (3.7) 

where wi are the weights. The outputs of some neurons are connected to inputs of other 

neurons. A multi-layer perceptron is especially useful for approximating a classification that 

maps input vector (x1,x2, ... xn) to one or more classes C1,C2,...Cm.. By optimizing weights and 
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thresholds for all nodes, the network can represent a wide range of classification functions. 

Optimizing the weights can be done by supervised learning, where the network learns from 

the large number of examples [64]. Shah and Gandhi [118] claim ANNs are useful because 

they can handle non-convex decisions. One disadvantage of ANNs is that the output values 

do not come with any confidence measure, inspecting specific features is highly nontrivial. A 

gross sense of confidence in a neural network approach can be found by ("winner takes all 

approach") determining the difference between the two largest outputs [118]. 

3.5 Composite Classifiers 

In machine learning, a number of classifiers can be used together for high accuracy in 

classifications.  They are proposed to improve the classification performance of a single 

classifier [127]. The combination makes it possible to complement the errors made by the 

individual classifiers on different parts of the input space.  

 

3.5.1 Bagging 

In the bagging technique, a number networks are trained separately by different training sets 

using the bootstrap method [15]. Bootstrapping builds n replicated training data sets by 

random re-sampling the original training data sets with replacements. Each training instance 

may appear repeatedly or not at all in any particular replicated training data set of n. Then, the 

n classifiers are combined using an appropriate combination method, such as majority voting. 

The most commonly used base classifier with bagging is Decision Tree.  

3.5.2 Boosting 

The boosting algorithm consists of iteratively learning weak classifiers with respect to a 

distribution and adding them to a final strong classifier [51]. When they are added, they are 

typically weighted in a way that is usually related to the weak learner's accuracy. After a 

weak learner is added, the data is reweighed: examples that are misclassified gain weight and 

examples that are classified correctly lose weight. Thus future weak learners focus more on 

the examples that previous weak learners misclassified. One of the main drawbacks of 

boosting algorithm is in its initial assumptions; hence a large number of training examples are 

required [52]. 
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3.6. Performance Evaluation  

 

To evaluate the performances of the 7 representative classifiers in image annotations, we have 

implemented a prototype system using Java programming language and the WEKA package 

version 3.5[144]. Figure 3.1 shows the structure of the system. 

 

Figure 3.1: Image annotation system architecture. 

 

The system learns the correspondence between low level visual features and image labels. 

Low-level MPEG-7 descriptors such as scalable colour [120] and edge histogram are used. 

The Edge Histogram Descriptor (EHD) proposed for MPEG-7 expresses the local edge 

distribution in an image. MPEG-7 edge histogram is designed to contain only 80 bins 

describing the local edge distribution [120]. The Scalable Colour Descriptor extracts a 

quantized HSV colour histogram from a given image. The probability values of each bin are 

calculated and indexed. The resulting histogram is transformed using a discrete Haar 

transformation, non-uniformly quantized and offset, and the resulting array of values is then 

sorted [120]. The image annotation systems can classify visual features into pre-defined 

classes. First images are segmented into blocks. Then, the low-level features are extracted 

from the segmented images. Each segmented block is represented by feature vectors. Next 

stage is to assign the low-level feature vectors to pre-defined categories. Training stage 
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requires choosing a classifier and create an empty training set, the classifier is fed with a set 

of training images in the form of attribute vectors with the associated labels  After a model is 

trained, it is able to classify an unknown instance, into one of the learned class labels in the 

training set. Figure 3.2 shows the user interface of the prototype system which supports 

automatic annotation of images using 7 classifiers. 

 

 

Figure 3.2: A snapshot of the system [32]. 

 

3.6.1 Preparing Training Images 

 

The images are collected from the Corel database [32]. Images are classified into 10 classes, 

and each class of the images has one label associated with it. The 10 pre-defined labels are 

people, beach, mountain, bus, food, dinosaur, elephant, horse, flower and historic item. 

Typical images with 384x256 pixels are used in the training process. Low level features of 

the images are extracted using the LIRE (Lucene Image REtrieval) library [90]. After 

extracting low level features a typical image is represented in the following form: 

 

0,256,12,1,-56,3,10,1,18,...........2,0,0,0,0,0,0,0,0,beach 
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Each image is represented by 483 attributes which include 58 attribute that represent edge 

histogram and 424 attributes represent Scalable Colour Descriptor and the last attribute 

indicates the class name which indicates the category to which the image belongs to. Figure 

3.3 shows some of the sample images used in training classifiers. 

         

 

Figure 3.3: Sample images [32]. 

 

3.6.2 Experiment Results 

A number of tests were carried out on a Dell computer, Microsoft Vista, RAM- 1.00 GB, 

Processor-520 @1.60Ghz. The 7 classifiers were evaluated from the aspects of accuracy in 

annotating images and efficiency in training the models. In total 50 unlabeled images were 

tested (10 images at a time), the average accuracy level was considered. Figure 3.4 shows the 

accuracy of the 7 classifiers increases when the numbers of sample images are increased in 

the training process.  
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Figure 3.4: Accuracy in image annotations. 

Among the 7 classifiers, SVM performs the best producing most accurate results in 

annotating images. SVM achieves a level of accuracy over 90% when 5000 images are used 

in the training. SVM accuracy level is due to its high generalization performance without the 

need to add a priori knowledge, even when the dimension of the input space is very high. The 

ability of a classifier to correctly classify data not in the training set is known as its 

generalization [119]. The decision tree C4.5 algorithm performs the worst with a level of 

accuracy of just 70%.  The low level of accuracy is possibly due to the instability of the 

decision tree algorithm. Slight variations in the training data can result it different attribute 

selections at each choice point within the tree [157]. The effect can be significant since 

attribute choices affect all descendent sub trees.  
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Figure 3.5: Overheads in training models. 

 

However, from the results presented in Figure 3.5 we observe that SVM incurs one of the 

highest overhead in training the model. Training a SVM is equivalent to solve a quadratic 

programming problem with linear and constraints in a number of variables equal to the 

number of data points [110]. The training time of SVM can increase to almost 100 seconds 

even though the sequential minimal optimization (SMO) [113] is used, a fast algorithm for 

training SVM models. 

 

3.7 Summary 

This chapter started with the review of seven representative machine learning classifiers for 

automatically image annotation. An image annotation prototype was presented which builds 

training models on low level features extracted from sample images. This chapter concluded 

on presenting the evaluation results. 

 

 

 

 

0

50

100

150

200

250

300

350

400

450

O
v

er
h

ea
d

 (
s)

Number of Images

Bagging Decision Tree Bayes net naïve bayes LogitBoost kNN SVM



Nasullah Khalid Alham (2011) 

 

Parallelizing Support Vector Machines for Scalable Image Annotation  

 

31 

 

Chapter 4 

 Resource Aware Parallel SVM for Scalable 

Image Annotation 

 

This chapter presents RASMO, a resource aware parallel SVM algorithm for large scale 

image annotation which partitions the training data set into smaller subsets and optimizes 

SVM training in parallel using a cluster of computers. A genetic algorithm based load 

balancing scheme is designed to optimize the performance of RASMO in heterogeneous 

computing environments.  

 

4.1 The design of RASMO 

This section starts with a brief description of the SMO algorithm followed by a detailed 

description of RASMO. 

4.1.1 SMO Algorithm 

The SMO algorithm was developed by Platt [113] and further enhanced by Keerthi et al. [74].  

Platt takes the decomposition to the extreme by selecting a set of only two points as the 

working set which is the minimum due to the following condition: 

 

                                                                                                                                              (4.1)                                                    

 

where ia  is a Lagrange multiplier and y is a class name. This allows the sub-problems to have 

an analytical solution. Despite the need for a number of iteration to converge, each iteration 

only uses a few operations. Therefore the algorithm shows an overall speedup of some orders 

of magnitude [119]. The SMO has been recognized as one of the fastest SVM algorithms 

available. We define an index set I which denotes the following training data patterns: 
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   cayicayiI iiii  0,1:0,1:0  

 0,1:1  ii ayiI (Positive Non-Support Vectors) 

 cayiI ii  ,1:2
(Bound Negative Support Vectors) 

 cayiI ii  ,1:3
(Bound Positive Support Vectors) 

 0,1:4  ii ayiI (Negative Non-Support Vectors)  

 

where c is the correction parameter. Bias upb and lowb  are defined with their associated indices 

as follows: 

 210:min IIIifb iup   

i
i

up fI minarg  

 430:max IIIifb ilow   

i
i

owl fI maxarg  

 

The optimality conditions are tracked through the vector fi in equation (4.2). 

 

                                               
iij

l

j

jji yXXKyaf 


),(
1                                                    (4.2)

 

 

where K is a kernel function and Xi is a training data point. SMO optimizes two ia values 

related to upb and lowb according to equation (4.3) and equation (4.4). 

 

                                                 oldoldoldnew ffyaa 21222                                        (4.3) 

 

                                                 newoldoldnew aasaa 2211                                              (4.4) 
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where ),(),(),(2 221121 XXkXXkXXk  . After optimizing 
1a and

2a , if which denotes 

the error of the i th
 training data can be updated according to equation (4.5).

 

 

                                        ),()(),()( 22221111 i

oldnew

i

oldnewold

i

new

i XXkyaaXXkyaaff                                 (4.5) 

 

To build a linear SVM, a single weight vector needs to be stored instead of all the training 

examples that correspond to non-zero Lagrange multipliers. If the joint optimization is 

successful, the stored weight vector needs to be updated to reflect the new Lagrange 

multiplier values. The weight vector is updated according to equation (4.6). 

 

                                          


 xaayxaayww clippednewnew

new

)()( 2

,

22111
                               (4.6) 

 

We check the optimality of the solution by calculating the optimality gap between the blow 

and bup. The algorithm is terminated when 2 uplow bb  as shown in Algorithm 4.1. 

 

 

 

 

 

 

 

 

 

 

 

4.1.2 Cascade SVM 

SVM training can be speeded up by splitting the training data set into a number of smaller 

data chunks and trained separately with multiple SVMs. When the training process is 

completed, the generated training vectors have support vectors and non-support vectors. 

Algorithm 4.1: Sequential Minimal Optimization Algorithm 

Input: training data xi, labels yi, 

Output: sum of weight vector, α array, b and SV    

 

1:   Initialize: αi = 0, fi = -yi 

2:   Compute: bhigh, Ihigh, blow, Ilow 

3:   Update αIhigh and αIlow 

4:   repeat 

5:   Update fi  

6:   Compute: bhigh, Ihigh, blow, Ilow 

7:   Update αIhigh and αIlow 

8:   until 2 uplow bb  
9:   Update the threshold b 

10:  Store the new α1 and α2 values 

11:  Update weight vector w if SVM is linear 
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Removing the non-support vectors in an early stage in the training process is an effective 

strategy in speeding up SVM. The multilayered cascade architecture follows such an 

approach until a global optimum is reached. The SVM classifiers can be considered as the 

nodes in a binary tree.  Figure 4.1 shows an example of a cascade SVM.  

 

 

Figure 4.1: A cascade SVM example. 

In this architecture a single SVM is trained with a smaller data chunk. The support vectors 

generated from one layer are combined as input for the next layer. The cascade architecture is 

guaranteed to converge to a global optimum as the support vectors of the last layer are fed 

back into the SVMs in the first layer to determine the level of convergence.  

4.2 The RASMO Algorithm 

RASMO builds on MapReduce for parallelization of SVM computation in training. This 

section starts by a brief description of the MapReduce programming model followed by a 

detailed description of the RASMO algorithm. 

4.2.1 MapReduce Model 

MapReduce provides an efficient programming model for processing large data sets in a 

parallel and distributed manner. The Google File System [137] that underlies MapReduce 

provides an efficient and reliable data management in a distributed computing environment. 
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The basic function of MapReduce model is to iterate over the input, compute key/value pairs 

from each part of input, group all intermediate values by key, then iterate over the resulting 

groups and finally reduce each group. The model efficiently supports parallelism. Figure 4.2 

presents an abstraction of a typical MapReduce framework. Map is an initial transformation 

step, in which individual input records are processed in parallel. The system shuffle and sort 

the map outputs and transfer them to the reducers. Reduce is a summarization step, in which 

all associated records are processed together by a single entity. 
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Figure 4.2: The MapReduce model. 

4.2.2 RASMO Design 

The RASMO algorithm partitions the entire training data set into smaller data chunks and 

assigns each data chunk to a single map task. The number of map tasks is equal to the number 

data chunks. Each map function optimizes a data chunk in parallel in each layer. The output 

of each map function is the alpha array (Lagrange multipliers) for a local partition and the 

training data Xi which corresponds Lagrange multipliers 0ia  in order to create input for 

the next layer, the output of the last layer includes the alpha array, bias threshold b and the 

training data Xi which correspond 0ia  in order to calculate the SVM output u using 

equation (4.7). 
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                                                  (4.7) 

 

where X is an instance to be classified, yi is class labels for Xi and K is the kernel function. 

 

Each map task processes the associated data chunk and generates a set of support sectors. 

Each set of support sectors is then combined and forwarded to the map task in the next layer 

as input. The process continues until a single set of support sectors is computed. The set of 

support sectors of the last layer is then fed back into the first layer together with non-support 

vectors to determine the level of convergence. The entire process stops until a global 

optimum is reached indicating that no further optimization is needed in the first layer, and the 

generated SVM model will be used in the classification. Figure 4.3 presents a high level 

pictorial representation of this approach, in part similar to the approach adopted in [58]. 

 

Algorithm 4.2 shows the pseudo code of RASMO with a 3 layers structure. Lines 1-4 show 

the optimization process of SMO for each data chunk and combine support vectors of layer 1. 

Lines 5-8 show the assembling results from layer 1 which are used as input for layer 2. Lines 

9-12 show the assembling results from layer 2 which are used as input for layer 1, and the 

training process in layer 3. 

 

 
Figure 4.3: The architecture of RASMO. 
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4.3 Load Balancing 

A remarkable characteristic of the MapReduce Hadoop framework is its support for 

heterogeneous computing environments. Therefore computing nodes with varied processing 

capabilities can be utilized to run MapReduce applications in parallel. However, current 

implementation of Hadoop only employs first-in-first-out (FIFO) and fair scheduling with no 

support for load balancing taking into consideration the varied resources of computers. A 

genetic algorithm based load balancing scheme is designed to optimize the performance of 

RASMO in heterogeneous computing environments. 

To solve an optimization problem, genetic algorithm solutions need to be represented as 

chromosomes encoded as a set of strings which are normally binary strings. However, a 

binary representation is not feasible as the number of map instances (operations) in a Hadoop 

cluster environment is normally large which will result in long binary strings. A decimal 

string has been employed to represent a chromosome in which the data chunk assigned to a 

map instance (also called a mapper) is represented as a gene. The numbers of gene are 

defined based on the number of available mappers. The crossover rate of the genetic 

algorithm is 0.9 and the mutation rate is 0.01. 

Algorithm 4.2: RASMO Algorithm 

Map tasks 

Input: training data ix  

Output: support vectors isv , b and  data lx  

1:    train SMO on m chunks; 

2:    obtain msv  set for m chunks;  0 mmsv  ;
 

3:    combine each two msv sets ; 
4:    store all mx for msv  to create k input chunks for next layer  Map tasks; 

5:     train SMO on k chunks;
 

6:     obtain ksv  set for k chunks;  0 kksv   
7:     combine two ksv sets;  
8:     store all kx for ksv  to create input chunk for next layer Map task;  

 9:    train SMO on kx  

6:     obtain isv  set for kx ;  0 iisv   
10:   evaluate isv for global convergence; 
12:   store the final set isv  if further optimization is not required 
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However simply crossing the chromosome can be problematic. As each gene is the value of 

the actual volume of data each Map instance takes, to change the members of genes may 

differentiate the original total volume of data
1

k

i

i

D


 . Assume the original total volume of data 

is 
1

k

i

i

D


  and the volume of data after crossover is
1

k
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i

d


 , then the difference 

1 1

k k

i i

i i

D D d
 

     should be considered and processed, D  is divided into k  parts. The 

size of each part is randomly assigned. And then these k  parts will be randomly added to or 

removed from k  genes in the chromosome.  

  

In Hadoop, the total time (T) of a mapper in processing a data chunk consists of the following 

four parts: 

 

 Data copying time (tc) in copying a data chunk from Hadoop distributed file 

system to local hard disk. It depends on the available network bandwidth and the 

writing speed of hard disk.  

 Processor running time (tp) in processing a data chunk. 

 Intermediate data merging time (tm) in combining the output files of the 

mapper into one file for reduce operations. 

 Buffer spilling time (tb) in emptying a filled buffer.                        

                                              bmpc ttttT 

                                                       

(4.8) 

Let 

 Dm be the size of the data chunk.  

 Hd be the writing speed of hard disk in MB/second. 

 Bw be the network bandwidth in MB/second. 

 Pr be the speed of the processor running the mapper process in MB/second. 

 Bf be the size of the buffer of the mapper. 

 Ra be the ratio of the size of the intermediate data to the size of the data chunk.  
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 Nf be the number of frequencies in processing intermediate data.  

 Nb be the number of times that buffer is filled up. 

 Vb be the volume of data processed by the processor when the buffer is filled 

up.  

 S be the sort factor of Hadoop. 

 

We have 

                                     ),min( wd

m
c

BH

D
t                                                              (4.9) 

 

Here 
ct  depends on the available resources of hard disk and network bandwidth. The slower 

one of the two factors will be the bottleneck in copying data chunks from Hadoop distributed 

file system to the local hard disk of the mapper. 

 

                                      r

m

p
P

D
t                                                                     (4.10) 

 

When a buffer is filling, the processor keeps writing intermediate data into the buffer and in 

the mean time the spilling process keeps writing the sorted data from the buffer to hard disk. 

Therefore the filling speed of a buffer can be represented by 
dar HRP  . Thus the time to 

fill up a buffer can be represented by
dar

f

HRP

B


 .  As a result, for a buffer to be filled up, 

the processor will generate a volume of intermediate data with the size of 
bV  which can be 

computed using equation (4.11) 

 

                                              dar

f

arb
HRP

B
RPV


                                                   (4.11) 
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The total amount of intermediate data generated from the original data chunk with a size of 

mD  is 
am RD  . Therefore the number of times for a buffer to be filled up can be computed 

using equation (4.12). 

 

                                                     b

am
b

V

RD
N


                                                                 (4.12) 

 

The time for a buffer to be spilled once is 
d

f

H

B
, therefore the time for a buffer to be spilled 

bN times is 
d

fb

H

BN 
  . Then we have 

 

                                                       
d

fb

b
H

BN
t


                                                                 (4.13) 

 

The frequencies in processing intermediate data    can be computed using equation (4.14). 

 

 

                                                       
1







s

N
N b

f
                                                             (4.14) 

 

When the merging occurs once, the whole volume of intermediate data will be written to the 

hard disk causing an overhead of 
d

am

H

RD  . Thus if the merging occurs 
fN  times, the time 

consumed by hard disk IO operations can be computed by
d

fam

H

NRD 
 . We have 
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                                                      d

fam

m
H

NRD
t


                                                        (4.15) 

 

 

The total time 
totalT to process data chunks in one processing wave in Hadoop is the maximum 

time consumed by   participating mappers: 

 

                                         ),...,,,max( 321 ktotal TTTTT                                               (4.16) 

 

According to divisible load theory, to achieve a minimum 
totalT , it is expected that all the 

mappers to complete data processing at the same time: 

 

                                           kTTTT ...,321                                                          (4.17) 

                          

Let 

 
iT be the processing time for the     mapper. 

 T be the average time of the k mappers in data processing,

 k

T

T

k

i

i
 1  

.
 

 

According to equations (4.16) and (4.17), the fitness function is to measure the distance 

between 
iT  and T . Therefore, the fitness function can be defined using equation (4.18) 

which is used by the genetic algorithm in finding an optimal or a near optimal solution in 

determining the size for a data chunk. 
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2

1

)()( i

k

i

TTTf  


                                                   (4.18) 

 

4.4 Experimental results 

RASMO has been incorporated into our image annotation system which is developed using 

the Java programming language and the WEKA package. The image annotation system 

classifies visual features into pre-defined classes. Figure 4.4 shows a snapshot of the system.  

 

Figure 4.4: A snapshot of the image annotation system [32]. 

4.4.1 Image Corpora 

The images are collected from the Corel database. Images are classified into 10 classes, and 

each class of the images has one label associated with it. The 10 pre-defined labels are 

people, beach, mountain, bus, food, dinosaur, elephant, horse, flower and historic item. 

Typical images with 384x256 pixels are used in the training process. Low level features of 

the images are extracted using the LIRE (Lucene Image REtrieval) library. After extracting 

low level features a typical image is represented in the following form: 

0,256,12,1,-56,3,10,1,18,...........2,0,0,0,0,0,0,0,0,beach 
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Each image is represented by 483 attributes which include 58 attribute that represent edge 

histogram and 424 attributes represent Scalable Colour Descriptor and the last attribute 

indicates the class name which indicates the category to which the image belongs to. 

4.4.2 Performance Evaluation 

RASMO is implemented using Weka’s base machine learning libraries written in the Java 

programming language and tested in a Hadoop cluster. To evaluate RASMO, the SMO 

algorithm provided in the Weka package, has been extended, configured and packaged it as a 

basic MapReduce job. The Hadoop cluster for this set of experiments consist of a total of 12 

physical cores across 3 computer nodes as shown in Table 4.1. 

Table 4.1:  Hadoop Configuration. 

Hardware environment 

  CPU Number of 

Cores 

RAM 

Node 1 Intel Quad 

Core 

4 4GB 

Node 2 Intel Quad 

Core 

4 4GB 

Node 3 Intel Quad 

Core 

4 4GB 

     Software environment  

   

SVM WEKA 3.6.0 (SMO)  

OS Fedora10  

Hadoop Hadoop 0.20  

Java JDK 1.6  

 

The performance of RASMO has been evaluated from the aspects of efficiency and accuracy. 

Polynomial kernel function has been used in the experiments.  Figure 4.5 shows the 

efficiency of the RASMO in SVM training which achieves close to 12 times in speedup.  
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Figure 4.5: The efficiency of RASMO using 12 mappers. 

Figure 4.6 shows the efficiency of the RASMO in SVM training in two iterations which 

converge to the global optimum. 

 

Figure 4.6:  The efficiency of fully converge RASMO using 12 mappers. 
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The experiments demonstrated that Hadoop startup and the associated overhead introduce 

performance penalties for the cases with smaller numbers of training instances. However, 

RASMO starts to outperform the sequential SMO with an increasing number of instances in 

terms of training time required. Figure 4.7 shows the increasing efficiency with the number of 

participating MapReduce mappers varying from 4 to 12. 

 

Figure 4.7: The overhead of RASMO. 

Furthermore the accuracy of the sequential SMO and RASMO have been evaluated in 

classification and presented the results in Table 4.2 using 5000 instances. In total 50 

unlabeled images were tested (10 images at a time), the average accuracy level was 

considered. It is clear that the parallelization of RASMO has no affect on the accuracy level 

even after the first iteration which is close to global optimum. The results show that RASMO 

achieves 94% which was the same as the sequential SMO.  

 

Table 4.2: Summarized performance results. 

 Sequential SMO RASMO 12 Mappers  

Correctly Classified ≈ 94 % ≈ 94 % 

Incorrectly Classified ≈ 6% ≈ 6% 

Training time  240 (s) 34 (s) 
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4.5 Simulation results 

To further evaluate the effectiveness of RASMO in large scale MapReduce environments, 

HSim, a MapReduce Hadoop simulator has been implemented using the Java programming 

language by a research group which I was a member. In this section, the design of HSim is 

briefly presented and the performance of the RASMO in simulation environments is assessed. 

 

4.5.1 Simulator Design 

HSim follows a master-slave mode in its design. Parameters related to a simulated cluster 

include the number of Hadoop nodes, the topologies of these nodes (currently only 

supporting simple racks), the number of mappers and reducers, the CPU speed, memory size, 

the average reading and writing speeds of hard disk and network bandwidth of each node. 

HSim supports one processor per node and each processor can have one or more processor 

cores. The processing speed of each core is defined as the volume of data processed per 

second. The values of some parameters such as CPU speed and the writing and reading 

speeds of hard disk can be assigned based on measurements from real-world experiments. 

Each job in HSim has a job ID which is used for job tracking. The size of a job is the total 

size of input data. The MapOutputRatio parameter represents the volume of intermediate data 

that will need to be generated by map instances. The NumberOfChunk parameter specifies 

the number of splits to be used in the map process which is related to the number of mappers. 

The Number of Reducers specifies the number of reduce instances. Figure 4.8 shows the 

architecture of HSim.  

HSim

Job Spec Cluster Spec

Job Reader Cluster Reader

Master node Slave node

Job Tracker

Tasks

Task Tracker

MapperSim ReducerSim

Heartbeat

 



Nasullah Khalid Alham (2011) 

 

Parallelizing Support Vector Machines for Scalable Image Annotation  

 

47 

 

Figure 4.8: HSim Architecture. 

 

When a job is submitted to the simulated Hadoop cluster, the JobTracker splits the job into 

several tasks. Each task will be assigned to a map instance. The TaskTrackers and JobTracker 

communicate with each other via heartbeat based messaging. When all the map tasks have 

finished, the reduce instances will be notified to be prepared for merging. Each map instance, 

called a mapper, is simulated by the MapperSim component. For a simulation job, 

MapperSim reads the input data in the form of chunks, processes the job, generates a number 

of output data splits and subsequently performs a sort and merge process based on the keys of 

the input data chunks. Finally, MapperSim splits the output dataset based on the number of 

reducers specified in the job configuration. The ReducerSim component collects output data 

splits from the MapperSim component and performs a merge process generating a single 

output result. 

 

4.5.2 Validation of HSim with Benchmarks 

For validation, HSim is evaluated against the benchmark results presented in [111] using 3 

scenarios - Grep Task, Selection Task and UDF Aggregation Task. In HSim, the exact 

physical environments adopted in the benchmarking have been simulated.  

A. Grep Task  

A cluster with 1 node, 10 nodes, 25 nodes, 50 nodes and 100 nodes respectively are 

simulated. 2 scenarios are tested. In the first scenario 535MB of data is assigned to each 

node. In the second scenario, 1TB of data is submitted to the cluster. Each scenario was 

evaluated 5 times. The simulation results of the 2 scenarios are plotted in Figure 4.9 and 

Figure 4.10 respectively which are close to the benchmark results. The confidence intervals 

of the results are small in both scenarios (between 0 and 2.6 seconds in the first scenario and 

between 4.1 and 7.6 seconds in the second scenario) demonstrating a high stability of HSim 

in performance.  
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Figure 4.9: Grep Task evaluation (533MB/node). 

 

 

Figure 4.10: Grep Task evaluation (1TB/cluster). 
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B. Selection Task  

The Selection Task scenario was designed to observe the performances of the Hadoop 

framework in dealing with complex tasks. Each node processes one 1GB ranking table to 

retrieve the target pageURLs using a user defined threshold. The simulation results shown in 

Figure 4.11 are again close to the benchmark results with small confidence intervals in the 

range between 2.6 and 6.6 seconds. 

 

 

Figure 4.11: Selection Task evaluation. 

 

 

C. UDF Aggregation Task  

The UDF Aggregation Task reads the generated document files and searches for all the URLs 

appearing in the content. For each unique URL, the system counts the number of unique 

pages that refer to that particular URL across the entire set of files. Each node processes 

around 7GB documents. Figure 4.12 shows the simulation results in the respective scenario, 

which are also close to benchmark results with small confidence intervals in the range 

between 2.6 and 13.4 seconds. 
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Figure 4.12: UDF Aggregation Task evaluation. 

 

4.5.3 Comparing HSim with MRPerf  

It should be pointed out that HSim has been designed because few exiting MapReduce 

simulators are available and MRPerf [142] is a representative one. MRPerf is evaluated and 

compared its performance with that of HSim using real Hadoop configurations. Figure 4.13 

shows the comparison from which it can be observed that HSim significantly outperforms 

MRPerf when compared with real Hadoop cluster behavior.  

 
Figure 4.13: A comparison of HSim with MRPerf. 
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One reason for such performance mismatch is that MRPerf does not simulate exactly the 

behaviors of Hadoop. For example, in a map operation, the spilled data will be kept writing 

onto buffer space while the map task is running. When the occupied size of the buffer is less 

than a certain threshold, in-memory data will be kept spilling onto hard disk simultaneously. 

Due to the highly changing capacities of system resources, this mechanism can have an 

impact on the number of spilled files and further I/O behavior will be significantly affected. 

However, MRPerf simply ignores these events and writes a pre-defined value onto the hard 

disk. 

 

4.5.4 Simulation Results 

Using HSim, a number of Hadoop environments are simulated and evaluated the performance 

of RASMO from the aspects of scalability, the effectiveness in load balancing and the 

overhead of the load balancing scheme.  

Scalability 

To further evaluate the scalability of the RASMO algorithm, HSim has been employed and 

simulated a number of Hadoop environments using a varying number of nodes up to 250. 

Each Hadoop node was simulated with 4 mappers, and 4 input data sets were used in the 

simulation tests. Table 4.3 shows the configurations of the simulated Hadoop environments.  

Table 4.3 Configurations for scalability evaluation. 

Simulation environment 

Number of simulated 

nodes: 

250 

Data size: 100,000MB 

CPU processing speed: 0.75MB/s 

Hard drive reading 

speed: 

80MB/s 

Hard drive writing 

speed: 

40MB/s 

Memory reading speed: 6000MB/s 

Memory writing speed: 5000MB/s 

Network bandwidth: 1Gbps 

Total number of Map 

instances: 

4 mappers per node 

 

From Figure 4.14 it can be observed that the processing time of RASMO decreases as the 

number of nodes increases. It is also worth noting that there is no significant reduction in 
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processing time of RASMO beyond certain number of nodes. This is primarily due to the fact 

that Hadoop incurs a higher communication overhead when dealing with a larger number of 

computing nodes. 

 

Figure 4.14: The scalability of RASMO in simulation environments. 

4.5.5 Load Balancing 

Table 4.4 shows the configurations of the simulated Hadoop environments in evaluating the 

effectiveness of the load balancing scheme of RASMO. 

Table 4.4 Configurations for load balance evaluation. 

Simulation environment 

Number of simulated nodes 20 

Number of processors in 

each node 

1 

Number of cores in each 

processor 

2 

The processing speeds of 

processors 

depending on heterogeneities 

Heterogeneities from 0 to 2.28 

Number of hard disk in 

each node 

1 

Reading speed of Hard disk 80MB/s 

Writing speed of Hard disk 40MB/s 

Number of Mapper  each node employs 2 map 

instances  

Sort factor: 100 
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To evaluate the load balancing algorithm a cluster with 20 computing nodes is simulated. 

Each node has a processor with two cores. The number of mappers is equals to the number of 

cores. Therefore two mappers on a single processor with two cores have been run.  

The speeds of the processors are generated based on the heterogeneities of the Hadoop 

cluster. In the simulation environments the total processing power of the cluster was    

   
 
    where n represents the number of the processors employed in the cluster and    

represents the processing speed of     
processor. For a Hadoop cluster with a total computing 

capacity denoted with  , the levels of heterogeneity of the Hadoop cluster can be defined 

using equation (4.19).  

                                                               
 
                                               (4.19) 

In the simulation, the value of  heterogeneity varied from 0 to 2.28. The reading and writing 

speeds of hard disk were measured from the experimental results. In the RASMO algorithm, 

mappers are the actual processing units. Therefore balancing the workloads of the mappers in 

the first layer in the cascade SVM model is the core part of the load balancing algorithm. 

10GB data in the tests has been employed.  

 

Figure 4.15: The performance of RASMO with load balancing. 
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Figure 4.15 shows the performance of RASMO with load balancing. It can be observed that 

when the level of heterogeneity is less than 1.08 indicating homogeneous environments, the 

load balancing scheme does not make any difference to the RASMO algorithm in 

performance. However the load balancing scheme reduces the overhead of RASMO 

significantly with an increasing levels of heterogeneity showing that the resource aware 

RASMO can optimize resource utilization in highly heterogeneous computing environments. 

The degree of heterogeneity is kept the same in the simulated cluster but varied the size of 

data from 1GB to 10GB. This set of tests was used to evaluate how the load balancing 

scheme performs with different sizes of data sets. Figure 4.16 shows that the load balancing 

scheme always reduces the overhead of RASMO in SVM training using varied volumes of 

data.  

 

Figure 4.16: The performance of RASMO with varied sizes of data. 

 

4.5.5.1 Overhead of the Load Balancing Scheme 

The load balancing scheme builds on a genetic algorithm whose convergence speed affects 

the efficiency of RASMO in training. To analyze the convergence speed of the genetic 
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RASMO has a quick convergence process in reaching a stable performance. After 

approximately 300 generations an optimal or near optimal solution is found.  

 

Figure 4.17: The convergence of the RASMO. 

 

The load balancing algorithm incur overhead during execution. Figure 4.18 shows the 

overheads of the algorithm with the increasing of number of Map instances and job data size. 

However the overhead of the load balancing algorithm is insignificant in comparison to total 

overhead of RASMO. 
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                         Figure 4.18: Overheads of the load balancing algorithm. 

 

4.6 Summary  

      This chapter presented RASMO, a resource aware parallel SVM algorithm for large scale 

image annotation which partitions the training data set into smaller subsets and optimizes 

SVM training in parallel using a cluster of computers. RASMO was evaluated in both 

experimental and simulation environments showing that the distributed SVM algorithm 

reduces the training time significantly while maintaining a high level of accuracy in 

classifications. 
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Chapter 5 

 Parallelizing Multiclass SVM for Scalable Image 

Annotation 

 
 

This chapter presents RAMSMO, a resource aware parallel multiclass SVM algorithm for 

large scale image annotation which partitions the training dataset into smaller binary chunks 

and optimizes SVM training in parallel using a cluster of computers. A genetic algorithm 

based load balancing scheme is designed to optimize the performance of RAMSMO in 

balancing the computation of multiclass data chunks in heterogeneous computing 

environments.  

 

5.1 The Design of RAMSMO 

 
This section starts with a brief description of the One Against One technique followed by a 

detailed description of RAMSMO. 

 

5.1.1 OAO Method  

Multiclass classification based on OAO method is the formation of a binary classifier for 

every pair of distinct classes. The decision function of the SVM classifier for classes such as 

class (1, 2) and class (2, 1) has reflectional balance; hence only one of these pairs of 

classifiers is required. Therefore a total of 2/)1( kk binary classifiers are created where k  is 

the number of classes. The training data for each classifier is a subset of the available training 

data which only contains the data for the two classes involved. A binary classifier 
ijC is 

trained with the training samples from class i  as positive and the training samples from class 

j  as negative. The output of each binary classifier can be interpreted as the posterior 

probability of the positive class [44]. Hastie and Tibshirani [60] proposed a pairwise coupling 

strategy for combining the probabilistic outputs of all the OAO binary classifiers to estimate 

the posterior probabilities  x)|(Pr iobpi  , .,......1 ki   Once posterior probabilities are 

estimated, based on pairwise coupling technique unlabeled instance is assigned to the class 

with the largest ip . Based on a comparative study carried out in [44] the pairwise coupling 
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scheme is highly recommended as the best kernel discriminate method for solving multiclass 

problems.  

5.1.2 Pairwise Coupling 

Pairwise coupling is the learning of k 2/)1( kk pairwise decision rules and couples the pair 

wise class probability estimates into a joint probability estimate for the entire classes [116]. 

In comparison to other commonly used multiclass classification techniques, pairwise 

coupling is more suitable in reducing the computational cost which is closely related to the 

size of the training data [116]. Pairwise coupling process is as follows. Let ijr  denote the 

probabilistic output of 
ijC then j).or  i |(Pr iobrij   here the objective is to couple the sets 

ijr

into a general set of probabilities )(Pr iobpi  , this problem has no general solution due to the 

existence of 1k independent parameters and 2/)1( kk equations. However Hastie and 

Tibshirani [60] proposed a new set of auxiliary variables μij which are related to
ip .  

                                                                 ji

i
ij

pp

p




                                                       (5.1)       

 

ip  need to be found such that the corresponding 
ij are in some sense close to ijr . The 

Kullback-Leibler [82] distance between 
ij and ijr  is chosen as the suitable measurement of 

closeness. 
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The associated gradient equations are as follow: 
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The
ip  values are computed using the following iterative procedure: 

 set
 ip  with some initial guess values and the correspoding 

ij  values. 

 
ip is computed which minimizes )( pl by iterating  

                                                         







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ji

ijij

ij

ji

ij

ii
rn

n

pp



                                                (5.4)

 

 Renormalize the
ip ’s ,




i i

i
ii

p

p
pp  

 Re-compute the 
ij and check for convergence. 

 

5.2 RAMSMO 
 

RAMSMO builds on MapReduce for parallelization of SVM computation in training. This 

section starts with a detailed description of the RAMSMO algorithm. 

 

5.2.1 Algorithm Design 

The RAMSMO algorithm partitions the entire training dataset into binary subsets (data 

chunks) and assigns each subset to a single mapper in MapReduce. The number of mappers 

is equal to the number of binary chunks. Each mapper optimizes a data chunk in parallel. 

Figure 5.1 presents a high level pictorial representation of this approach. 

 

Figure 5.1: The architecture of RAMSMO. 
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The output of each mapper is the alpha array (Lagrange multipliers) for a binary subset, the 

training data Xi which corresponds to alpha 0ia  and a bias b in order to compute SVM 

output u using equation (5.5). 

                                                       
bXXKayu ii

n

i

i 


),(
1

.                                              (5.5) 

where X is an instance to be classified and K is the kernel function. 

In the case of a linear SVM the output of each mapper includes a weight vector and the value 

b in order to calculate the SVM output u using equation (5.6). 

                                                           bxwu 


. .                                                               (5.6) 

The reduce task simply collects and stores generated binary classifiers which are used as the 

trained multiclass SVM model for classification. Algorithm 5.1 shows the pseudo code of 

RAMSMO. Line 1-2 show the construction of all the binary data chunks. Lines 3-6 show the 

optimization process of SMO for each binary chunk. Line 7 shows the assembling results 

from all the mappers. 

 

 

 

 

 

 

 

 

 

 

 

5.3 Load Balancing 

A genetic algorithm based load balancing scheme is designed to optimize the performance of 

RAMSMO in heterogeneous computing environments. The load balancing scheme computes 

Algorithm 5.1: RAMSMO Algorithm 

Input: training data 
ix  

Output: support vectors 
ksv , weight vectors 

iw  if SVM is 

linear 

1:    split  training data
ix  into  single class chunks 

2:    combine single chunks to create all possible binary 

pairs bx ;  

MAPj  nj ..1  , 2/)1(  kkn  

Input: binary chunks 
bx  

Output:  support vectors 
ksv and data 

kx   

3:    train SMO on each binary pair 

4:    obtain ksv  set for k pair;  0 kksv 
 

5:    store all weight vectors 
ksv  

 
6:    weight vectors 

iw  if SVM is linear 

REDUCE  

7:    collect and store all results. 
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optimal number of binary chunks processed by available Mappers, a single Mapper may 

process a number of binary chunks based on the resources available in a cluster of computers 

such as the computing powers of processors, the storage capacities of hard drives and the 

network speeds of the participating nodes.  

A genetic algorithm is similar to the algorithm describe in section 4.3 of chapter 4. However 

the major difference is that there is no crossover due to the uniqueness of the binary subsets 

which is regarded as a evolutionary algorithm. Assume there are a fixed number of binary 

subsets (genes)
 
in a chromosome. A random number of genes are allocated to the available 

Mappers. The positions of two randomly selected genes belonged to the corresponding 

Mappers are changed to perform mutation, the mutation rate is 0.01. The fitness of newly 

generated chromosome is evaluated based on equation (5.7) which is used by the genetic 

algorithm in finding an optimal or a near optimal solution in determining the number binary 

data chunks processed by available Mappers. 

                                                                     
 
                                                    (5.7) 

5.4 Experimental Results 

RAMSMO has been incorporated into our image annotation system which is developed using 

the Java programming language and the Weka package. The image annotation system 

classifies visual features into pre-defined classes. Figure 5.2 shows a snapshot of the system. 

 

Figure 5.2: A snapshot of the image annotation system [32]. 
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5.4.1 Image Corpora 
 

The images are collected from the Corel database. Images are classified into 10 classes, and 

each class of the images has one label associated with it. The 10 pre-defined labels are 

people, beach, mountain, bus, food, dinosaur, elephant, horse, flower and historic item. 

Typical images with 384x256 pixels are used in the training process. Low level features of 

the images are extracted using the LIRE (Lucene Image REtrieval) library. After extracting 

low level features a typical image is represented in the following form: 

0,256,12,1,-56,3,10,1,18,...........2,0,0,1,0,0,0,0,0,0,0,0,0,beach 

Each image is represented by 483 attributes which include 58 attribute that represent edge 

histogram and 424 attributes represent Scalable Colour Descriptor and the last attribute 

indicates the class name which indicates the category to which the image belongs to. 

 5.4.2 Performance Evaluation 

 

MRSMO is implemented using WEKA base machine learning libraries written in the Java 

programming language and tested in a Hadoop cluster. To evaluate RAMSMO, the SMO 

algorithm provided in the Weka package is extended, configured and packaged it as a basic 

MapReduce job. The Hadoop cluster for this set of experiments consist of a total of 12 

physical processor cores across 3 computer nodes as shown in Table 5.1. 

 

 

Table 5.1 Hadoop Configurations for RAMSMO. 

Hardware environment 

  CPU Number of Cores RAM 

Node 1 Intel Quad Core 4 4GB 

Node 2 Intel Quad Core 4 4GB 

Node 3 Intel Quad Core 4 4GB 

     Software environment  

   

SVM WEKA 3.6.0 (SMO)  

OS Fedora10  

Hadoop Hadoop 0.20  

Java JDK 1.6  
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RAMSMO is evaluated the performance of from the aspects of efficiency and accuracy. 

Polynomial kernel function has been used in the experiments. Figure 5.3 shows the efficiency 

of the RAMSMO in SVM training which achieved close to 12 times in speedup.  

 
Figure 5.3: The efficiency of RAMSMO in SVM training using 12 mappers. 

Figure 5.4 shows the efficiency of the RAMSMO in comparison with MRSMO [76] which is 

one against all based distributed multiclass SVM. RAMSMO is more efficient due to the fact 

that training data for each binary classifier is a subset of the available training data which 

only contains the data for the two classes involved. One against all based MRSMO incurs 

higher training overhead due to the involvement of all training data for creating binary 

classifiers for each class. 
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Figure 5.4: A comparison of RAMSMO and MRSMO. 

RAMSMO is evaluated with an unequal number of instance for each class, resulting in the 

fact that the mapper that processes the largest data chunk is the last to finish before the 

reduce phase can start. Figure 5.5 shows the increase in the overhead of RAMSMO with 

unequal binary data size which highlights the need for an effective load balancing scheme for 

heterogeneous environments. 

 

Figure 5.5: The overhead of RAMSMO using equal and unequal binary chunks. 

Furthermore the accuracy of the sequential SMO and RAMSMO is evaluated in classification 

and presented the results in Table 5.2. In total 50 unlabeled images were tested (10 images at 

a time), the average accuracy level was considered. It is clear that the parallelization of 
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RAMSMO has no affect on the accuracy level due to the way of the algorithm is parallelized. 

The results show that RAMSMO achieves 94% which was the same as the sequential SMO.  

Table 5.2 Summarising Performance Results. 

 Sequential SMO RAMSMO 3 computers (12 Mappers)  

Correctly Classified ≈ 94 % ≈ 94 % 

Incorrectly Classified ≈ 6% ≈ 6% 

Training time for 5000 instances 241 (s) 35 (s) 

 

5.5 Simulation results 

To further evaluate the effectiveness of RAMSMO algorithm in MapReduce environments, a 

number of Hadoop environments are simulated and the performance of RAMSMO is 

evaluated using HSim from the aspects of scalability, the effectiveness in load balancing and 

the overhead of the load balancing scheme.  

 

5.5.1 Scalability  

To further evaluate the scalability of the RAMSMO algorithm, HSim is employed and a 

number of Hadoop environments are simulated using a varying number of nodes up to 250. 

Each Hadoop node was simulated with 4 mappers, and 4 input datasets were used in the 

simulation tests. Table 5.3 shows the configurations of the simulated Hadoop environments.  

 

Table 5.3: Configurations for Scalability Evaluation. 

Simulation environment 

Number of simulated 

nodes: 

250 

Data size: 100,000MB 

CPU processing speed: 0.75MB/s 

Hard drive reading 

speed: 

80MB/s 

Hard drive writing 

speed: 

40MB/s 

Memory reading speed: 6000MB/s 

Memory writing speed: 5000MB/s 

Network bandwidth: 1Gbps 

Total number of Map 

instances: 

4 Mappers per node (1000 

Mappers) 

 

From Figure 5.6 it can be observed that the processing time of RAMSMO decreases as the 

number of nodes increases. It is also worth noting that there is no significant reduction in 
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processing time of RAMSMO beyond a certain number of nodes. This is primarily due to the 

fact that Hadoop incurs a high communication overhead when dealing with a large number of 

computing nodes. There is no significant difference between mapper overhead and total 

overhead (involving both mapper and reducer) which the reducer dose not incur significant 

overhead. 

 

 

Figure 5.6: The scalability of RAMSMO in simulation environments. 
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5.5.2 Load Balancing 

Table 5.4 shows the configurations of the simulated Hadoop environments in evaluating the 

effectiveness of the load balancing scheme of RAMSMO. 

Table 5.4 Configurations for Load Balancing Evaluation. 

Simulation environment 

Number of simulated nodes 20 

Number of processors in 

each node 

1 

Number of cores in each 

processor 

2 

The processing speeds of 

processors 

depending on heterogeneities 

Heterogeneities from 0 to 2.28 

Number of hard disk in 

each node 

1 

Reading speed of Hard disk 80MB/s 

Writing speed of Hard disk 40MB/s 

Number of Mappers and 

Reducers  

each node employs 2 

mappers instances and 1 

reducers 

Sort factor: 100 

 

To evaluate the load balancing algorithm a cluster with 20 computing nodes is simulated. 

Each node has a processor with two cores. The optimal number of mappers is equals to the 

number of cores. Therefore two mappers on a single processor with two cores are run. The 

number of reducer is set to one on each node.  

The speeds of the processors are generated based on the heterogeneities of the Hadoop 

cluster. In the simulation environments the total processing power of the cluster was  

 


n

i ipp
1

 where n represents the number of the processors employed in the cluster and    

represents the processing speed of     processor. For a Hadoop cluster with a total computing 

capacity denoted with  , the levels of heterogeneity H of the Hadoop cluster can be defined 

using equation (4.19).  

In the simulation, the value of heterogeneity varied from 0 to 2.28. The reading and writing 

speeds of hard disk were measured from the experimental results. Figure 5.7 shows the 

performance of RAMSMO with load balancing. It can be observed that when the level of 

heterogeneity is less than 1.08 indicating homogeneous environments, the load balancing 

scheme does not make any difference to the RAMSMO algorithm in performance. However 

the load balancing scheme reduces the overhead of RAMSMO significantly with an 
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increasing levels of heterogeneity showing that the resource aware RAMSMO can optimize 

resource utilization in highly heterogeneous computing environments. 

 

Figure 5.7: The performance of RAMSMO with load balancing. 

The degree of heterogeneity is kept the same in the simulated cluster but varied the total size 

of data from 1GB to 10GB. This set of tests was used to evaluate how the load balancing 

scheme performs with different sizes of data sets. Figure 5.8 shows that the load balancing 

scheme always reduces the overhead of RAMSMO in SVM training using varied volumes of 

data. 

 

Figure 5.8: The performance of RAMSMO with different datasets. 
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Figure 5.9 compares the performance of RAMSMO with that of MinMin, MaxMin in load 

balancing. It can be observed that RAMSMO performs better than both MinMin and 

MaxMin, and the performance of MinMin is the worst due to the existence of a large number 

of tasks with short processing times and a small number task with long processing times. 

 

 

Figure 5.9: A comparison RAMSMO with MinMin and MaxMin. 

 

 

 

5.5.3 Overhead of the Load Balancing Scheme 

The load balancing scheme builds on a genetic algorithm whose convergence speed affects 

the efficiency of RAMSMO in training. To analyze the convergence speed of the genetic 

algorithm, the numbers of generations are varied and the overhead of RAMSMO in 

processing a 10GB dataset in a simulated Hadoop environment are measured. Figure 5.10 

shows that RAMSMO has a quick convergence process in reaching a stable performance. 

 

0

50

100

150

200

250

300

350

400

450

O
v

er
h

ea
d

 (
se

c)

Data size (GB)

RAMSMO MinMin MaxMin



Nasullah Khalid Alham (2011) 

 

Parallelizing Support Vector Machines for Scalable Image Annotation  

 

70 

 

 

Figure 5.10: The convergence of the RAMSMO. 

The load balancing scheme incurs overhead during execution. Figure 5.11 shows increased 

overhead of the scheme with the increasing number of mappers and job data sizes. The 

overhead is usually insignificant compare to the overall processing time of map operations. 

 

Figure 5.11: Overheads of the load balancing scheme. 

 

 

 

 

0

50

100

150

200

250

300

350

P
e
r
fo

r
m

a
n

c
e
 O

v
e
r
h

e
a
d

 o
f 

R
A

M
S

M
O

 (
s
)

Number of Generations

10 GB
20GB

40 GB
80 GB

160 GB

320 GB

640 GB

0

200

400

600

800

1000

1200

1400

12 24 48 96 192 384 678

O
v

er
h

ea
d

 (
s)

Number of mappers



Nasullah Khalid Alham (2011) 

 

Parallelizing Support Vector Machines for Scalable Image Annotation  

 

71 

 

5.6 Summary  

This chapter presented RAMSMO, a resource aware parallel multiclass SVM algorithm for 

large scale image annotation which partitions the training data set into smaller subsets and 

optimizes SVM training in parallel using a cluster of computers. RASMO was evaluated in 

both experimental and simulation environments showing that the distributed SVM algorithm 

reduces the training time significantly while maintaining a high level of accuracy in 

classifications. 
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Chapter 6 

 Distributed SVM Ensemble for Scalable Image 

Annotation 

 

This chapter presents MRESVM, a distributed SVM ensemble algorithm for image 

annotation which re-samples the training data based on bootstrapping and trains SVM on 

each sample in parallel using a cluster of computers. Balanced sampling strategy for 

bootstrapping is introduced to increase classification accuracy of SVM ensemble for fixed 

number samples.  

6.1 SVM Ensemble  

An ensemble of classifiers is a set of multiple classifiers based on the idea of combining a 

number of weak learners to create a strong learner. Training a diverse set of classifiers from a 

single training data set and to vote or average their predictions is simple and powerful [148]. 

There are a number of techniques for creating a diverse set of classifiers. The most common 

technique is to use re-sampling to diversify the training sets based on Bootstrap Aggregating 

(bagging). Breiman [136] showed bagging techniques reduces the variance component of 

misclassification error, therefore increase the reliability of the predictions. When the number 

of classifiers is large, the probability of error becomes small, bagging have been successfully 

applied to different classification problems [54] [78] [117] [129] [134] [150]. 

A single SVM may not always provide a good classification performance over all test data. 

To overcome this limitation, ensembles of SVMs have been proposed as a solution [78]. 

Figure 6.1 shows a general architecture of SVM ensemble.  
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Figure 6.1: Architecture of SVM ensemble. 

 

Each SVM is trained separately with a sample of training data created from the original data 

set based on bootstrapping technique. Bootstrap constructs m  training data samples by 

random re-sampling with replacement, from the original training data set repeatedly. A 

particular training instance x  may appear repeatedly or not appear in any particular sample. 

Once the training process is complete, trained SVMs are combined based on a suitable 

combination approach.  

6.1.1 Aggregation Methods 

Two types of combination methods are described in [78]. A linear combination approach that 

combines several SVMs linearly such as combining based on majority voting. A nonlinear 

combination approach is the nonlinear combination of several SVMs based double layer 

hierarchical combining that use second layer SVM to combine the first layer SVMs.  

Majority voting is one of the commonly used and simplest combination techniques. The 

ensemble classifier predicts a class for a test instance which is predicted by the majority of 

the base classifiers [124]. Let us define the prediction of the i
th

 classifier 
iP  as

iip ji ,....,1},0,1{,   and cj ,...,1  where i the number of classifiers is and C  is the number 
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of classes. If i
th

 classifier chooses class j , then 1, jip  otherwise 0, jip . The ensemble 

predict for class k  if: 

 

                                                                                  








I

i

ji

c

j

I

i

ki pp
1

,
1

1

, max

                                                                                (6.1)

 

 

Double layer hierarchical is a combining method which uses a single SVM to aggregate the 

outputs of a number of SVMs. Therefore, this method of combination consists of two layers 

of SVMs hierarchy where the outputs SVMs in the first layer feed as input into a single SVM 

in the second layer [78]. Let ),...3,2,1( Mmfm   be a decision function of the m
th

 SVM in the 

SVM ensemble and F  be a decision function of SVM in the second layer. Then, the final 

decision of the SVM ensemble )(xfSVM
 for a given test vector x  based on double-layer 

hierarchical combining is determined by ))(),.....(),(()( 21 xfxfxfFxf mSVM  , m  is the 

number of SVMs in the SVM ensemble. 

 

6.1.2 Balanced Bootstrapping 

In Monte Carlo algorithms [13], variance reduction is a technique used to increase the 

precision of the estimates that can be obtained for a fixed number of iterations in simulation. 

Balanced bootstrapping is a variance reduction technique for efficient bootstrap simulation 

proposed by Davison et al. [36]. Esposito and Saitta [47] have established the link between 

Bagging and Monte Carlo algorithms. Despite some differences, these two algorithms 

compute the very same function.  

Balanced bootstrapping is based on the idea of controlling the number of times training 

instances appear in the bootstrap samples, so that in the B bootstrap samples, each instance 

appears the same number of times. For the bootstrap to work, some instances must be missing 

in certain bootstrap samples, while others may appear two or more times [36]. Balanced 

sampling dose not force each bootstrap sample to contain all training instances; the first 
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instance may appear twice in the first bootstrap sample and not appear at all in the second 

bootstrap sample, while the second instance may appear once in each sample. 

A number of techniques introduced for creating balanced bootstrap samples. However a 

simple way of creating balanced bootstrap samples described in [36] is to construct a string of 

the instances 
nXXXX ,.......,,, 321
 repeated B time, here we have the sequence

BnYYYY ,.......,,, 321
. We take a random permutation p of the integers from 1 to

nB . We create 

the first bootstrap sample from )(),.......,3(),2(),1( nYYYY pppp
, the second bootstrap sample 

from ),2(),1(  nYnY pp )2(),.......,3( nYnY pp   and so on, until ),2)1((),1)1((  nBYnBY pp

)(),.......,3)1(( BnYnBY pp  is the B
th

 bootstrap sample. The balanced bootstrapping 

variance reduction technique can be in bagging to increase the classification accuracy. 

 

6.2 Bias Variance Decomposition 

Given a training set }....,{ 21 nxxx  a trained classifier f  is created, given a test instance x , the 

classifier predicts ).(xfy   Let a be the actual value of the predicted variable for the test 

instance .x  A loss function ),( yaL  measures the cost of predicting y when the true value is 

a [42]. One of the commonly used loss functions is zero-one loss 0),( yaL  if ,ay   

otherwise 1),( yaL . The aim is to create a classifier with the smallest possible loss. For 

classification problems, several authors proposed bias–variance decompositions related to 

zero-one loss [16] [53] [62] [80].  

Bias–variance decomposition of the classification error is useful tool for analyzing supervised 

learning algorithms and ensemble techniques to examine the relationships of learning 

algorithms and ensemble methods with respect to their bias– variance characteristics 

[135].Bias measures how closely a classifier’s average predictions over all possible training 

sets of the given training set size matches the true value of class. Variance measure how 

much the classifiers prediction changes for the different training sets of the given size 

[135].Variance is large if different training sets D  give rise to very different classifiers, bias 

is large in cases where a learning method produces classifiers that are consistently wrong 

.The bias and variance decomposition is crucial in understanding the bias/variance tradeoffs, 
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for example where the bias shrinks but the variance increases or bias increases but the 

variance decreases, the aim is to find the optimal point of the trade-off. 
 

 

6.3 The MRESVM Algorithm 

MESVM builds on MapReduce for parallelization of SVM ensemble computation in training. 

The MRESVM algorithm is based on the bagging architecture which trains multiple SVMs 

on bootstrap samples. Both random sampling with replacement and balanced sampling have 

been used. 

As a first step data samples to train the base classifiers have to be generated. For random 

sampling with replacement, m samples of size s  are generated according to the uniform 

probability distribution from a data set
mD , such m data samples are used to train base 

classifiers which create the SVM ensembles. In balanced sampling which is an alternative 

sampling method which forces each training instances to occur t  times in the B bootstrap 

samples. Balanced bootstrap samples are generated by constructing a data set of m copies of 

the original data, after performing random permutation, the data set is partition into m

samples.  

In majority voting combinations, each map function optimizes a sample in parallel. The 

number of map tasks is equal to the number of sample. The reduce task simply collects and 

stores generated classifiers which are used in majority voting. 

In double hierarchical combinations, each map function optimizes a sample in parallel in first 

layer. The number of map tasks is equal to the number of sample. The output of each map 

function is the alpha array (Lagrange multipliers) for a sample and the training data Xi which 

corresponds Lagrange multipliers 0ia  in order to create input for the second layer, the 

output of the second layer includes the alpha array, bias threshold b and the training data Xi 

which correspond 0ia  in order to calculate the SVM output u using equation (6.2). 

 

                                      
bXXKayu ii

n

i

i 


),(
1

                                                   (6.2) 
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where X is an instance to be classified, yi is class labels for Xi and K is the kernel function. 

Each map task processes the associated sample and generates a set of support sectors. Each 

set of support sectors is then combined and forwarded to the map task in the second layer as 

input. In this layer single set of support sectors is computed and the generated SVM model 

will be used in the classification. Figures 6.2 and 6.3 present a high level pictorial 

representation of double hierarchical combination and majority voting. 

 

Figure 6.2: MRESVM architecture with double layer hierarchical is a combination. 
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Figure 6.3: MRESVM architecture with majority voting combination. 
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Algorithm 6.1 shows the pseudo code of MRESVM with double layer hierarchical 

combination. Lines 1-3 show the bootstrapping process to create balance sample for training 

SVM. Lines 4-8 show the training process of SVM. Lines 9-12 show the assembling results 

of layer 1 which are used as input for layer 2, and the training process in layer 2. 

 

 

 

 

 

 

 

 

 

 

 

 

  

6.4 Experimental results 

MRESVM has been incorporated into our image annotation system which is developed using 

the Java programming language and the WEKA package. The image annotation system 

classifies visual features into pre-defined classes. Figure 6.4 shows a snapshot of the system. 

 

Algorithm 6.1:  MRESVM Algorithm 

 

Input: training data 
ix  

Output: support vectors 
msv , weight vectors 

iw  if SVM is linear 

1:    replicate  training data
ix  based on balanced sampling; 

2:    perform random permutation;  

3:    create data chunks m  to train SVM; 

MAPj  mj ..1  ,  

Input: data chunks m  

Output:  support vectors 
msv and data 

mx   

4:     train SVM on  data chunks m  

5:     obtain msv  set for m  chunks;  0 mmsv 
 

6:     store all support vectors 
msv  

 
7:     store weight vectors 

iw  if SVM is linear 

8:     combine msv sets;  

9:     store all mx for msv  to create input chunk for next layer Map task;  

10:   train SVM on mx  

11:   obtain isv  set for kx ;  0 iisv   
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Figure 6.4: A snapshot of the image annotation system [32]. 

6.4.1 Image Corpora 

The images are collected from the Corel database. Images are classified into 2 classes, and 

each class of the images has one label associated with it. The 2 pre-defined labels are people 

and beach. Typical images with 384x256 pixels are used in the training process. Low level 

features of the images are extracted using the LIRE library. After extracting low level 

features a typical image is represented in the following form: 

0,256,12,1,-56,3,10,1,18,...........2,0,0,0,0,0,0,0,0,beach 

Each image is represented by 483 attributes which include 58 attribute that represent edge 

histogram and 424 attributes represent Scalable Colour Descriptor and the last attribute 

indicates the class name which indicates the category to which the image belongs to. 

6.4.2 Performance Evaluation 

MRESVM is implemented using WEKA’s base machine learning libraries written in the Java 

programming language and tested in a Hadoop cluster. To evaluate MRESVM, the SMO 

algorithm provided in the Weka package is extended, configured and packaged it as a basic 

MapReduce job. The Hadoop cluster for this set of experiments consist of a total of 12 

physical cores across 3 computer nodes as shown in Table 6.1. 
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Table 6.1:  HADOOP Configuration. 

Hardware environment 

  CPU Number of Cores RAM 

Node 1 Intel Quad Core 4 4GB 

Node 2 Intel Quad Core 4 4GB 

Node 3 Intel Quad Core 4 4GB 

     Software environment  

   

SVM WEKA 3.6.0 (SMO)  

OS Fedora10  

Hadoop Hadoop 0.20  

Java JDK 1.6  

 

The performance of MRESVM is evaluated from the aspects of efficiency and accuracy. 

Polynomial kernel function has been used in the experiments. Figure 6.5 shows the efficiency 

of the MRESVM in SVM training which achieves close to 12 times in speedup.  

 

Figure 6.5: The efficiency of MRESVM using 12 mappers. 
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Figure 6.6: The overhead of MRESVM. 

MRESVM outperform the single SVM with an increasing number of samples in terms of 

training time required. Figure 6.6 shows the increasing efficiency with the number of 

participating MapReduce mappers varying from 4 to 12. 

6.4.3 Measuring Bias and variance 

Figure 6.7 shows a simple Bias–variance decomposition process. The training samples are 

used to train SVMs. The leaned SVM models are applied on a test set. The bias and variance 

are then estimated for each instance in the test set and for 0-1 loss the bias and variance are 

calculated from the number of incorrect classifiers for the instance [11]. 
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Figure 6.7: Bias–variance decomposition. 

The bias for an instance is calculated as; 

                                                                              
1/)1()( 2  cpppx iiii i

                                                           (6.3)
 

where i  sums over the class values, c  is the number of classifiers, 
ix  is a variable that is 

indicates whether the instance class value equals the thi value, and 
ip  the part of classifiers 

that correctly predicted 
ix . The variance for an instance is calculated as; .1 2 i ip

 

To analyse the behaviour of MRESVM, the bias variance decomposition method described in 

[80] is used because it can be applied to any classifier and decomposition does not require the 

training sets to be sampled in any specific manner. The idea of tuning SVMs to minimize the 

bias presented in [134] is adopted before apply bagging to reduce variance; resulting 

MRESVM has lower classification error than a single SVM. As stated in [134] the bias of 

SVMs is controlled by two parameters. First, the parameter C which controls the tradeoffs 

between fitting the data and maximizing the margin, setting C with a large value tend to 

minimize bias. Second in polynomial kernel, the parameter is the degree d of the polynomial. 

In MRESVM, base SVM algorithm was tune with the value of 4d and .100C  

 

Bagging based on random sampling with replacement and balanced sampling have been 

applied to the base SVMs. Bias, variance and error rate  of MRESVM were measured.
 
Figure 

6.8 show comparison of classification error of MRESVM with random and balanced 
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sampling indicating lower classification error rate for MRESVM with balanced sampling. 

Balanced sampling based bagging has lower variance than random re-sampling with 

replacement, although the bias is almost the same in both cases. 

 

Figure 6.8: Classification error of MRESVM with random and balanced sampling. 

 

Furthermore the accuracy of MRESVM with different sampling strategies and combination 

methods are evaluated in classification and presented the results in Table 2 using 2000 

instances. In total 250 unlabeled images were tested (10 images at a time), the average 

accuracy level was considered. The results show that MRESVM achieves up to 98% which is 

higher than single SVM.  

Table 6.2 Summarized Performances Results. 

 SVM MRESVM random 

Majority Vote 

MRESVM random 

Two Layer 

MRESVM Balanced 

Majority Vote 

MRESVM Balanced 

Two Layer 

Correctly Classified ≈ 94 % ≈ 95% ≈ 96 % ≈ 96 % ≈ 98 % 

Incorrectly Classified ≈ 6% ≈ 5 % ≈ 4 % ≈ 3 % ≈ 2 % 

 

6.5 Simulation results 

To further evaluate the effectiveness of MRESVM algorithm in MapReduce environments, a 

number of Hadoop environments are simulated and the performance of MRESVM is 

evaluated using HSim from the aspects of scalability.  
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6.5.1 Scalability  

To further evaluate the scalability of the MRESVM algorithm, HSim is employed and a 

number of Hadoop environments are simulated using a varying number of nodes up to 250. 

Each Hadoop node was simulated with 4 mappers, and 4 input datasets were used in the 

simulation tests. Table 6.3 shows the configurations of the simulated Hadoop environments.  

 

Table 6.3: Configuration for Scalability Evaluation. 

Simulation environment 

Number of simulated 

nodes: 

250 

Data size: 100,000MB 

CPU processing speed: 0.75MB/s 

Hard drive reading 

speed: 

80MB/s 

Hard drive writing 

speed: 

40MB/s 

Memory reading speed: 6000MB/s 

Memory writing speed: 5000MB/s 

Network bandwidth: 1Gbps 

Total number of Map 

instances: 

4 Mappers per node (1000 

Mappers) 

 

From Figure 6.9 it can be observed that the processing time of MRESVM decreases as the 

number of nodes increases. It is also worth noting that there is no significant reduction in 

processing time of MRESVM beyond a certain number of nodes. This is primarily due to the 

fact that Hadoop incurs a high communication overhead when dealing with a large number of 

computing nodes. There is no significant difference between mapper overhead and total 

overhead (involving both mapper and reducer) which the reducer dose not incur significant 

overhead. 



Nasullah Khalid Alham (2011) 

 

Parallelizing Support Vector Machines for Scalable Image Annotation  

 

85 

 

 

Figure 6.9: The scalability of MRESVM in simulation environments. 

 

The performance of MRESVM can be observed by increasing the data chunk size that is 

processed by each mapper. A comparison of simulating results of mapper overhead between 

chunk size 11.4 MB and 100MB is presented in Figure 6.10 which indicates higher 

performances with chunk size of 100 MB due to the involvement of smaller number mapper 

waves. 

 

Figure 6.10: Comparison of simulation results between chunk sizes 11.4 MB and 100MB. 
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The performance of MRESVM can be further observed by changing the CPU power. The 

CPU power is measured by the size of data processed per seconds. A comparison of 

simulating results between CPU power of 0.1 and 0.9 MB/sec is made as shown in Figure 

6.11. The results indicate significant decrease in level of performances for low CPU power.  

 

 
Figure 6.11: Comparison of simulating results with CPU power of 0.1 MB/s and 0.9 MB. 

 

 

6.6 Summary 

 

This chapter presented MRESVM, a distributed SVM ensemble algorithm for image 

annotation which re-samples the training data based on bootstrapping and training SVM on 

each sample in parallel using a cluster of computers. Balanced sampling strategy was used for 

bootstrapping is introduced to increase classification accuracy for fixed number samples. The 

chapter concludes with evaluating MRESVM in both experimental and simulation 

environments showing that the distributed SVM ensemble algorithm reduces the training time 

significantly and achieves high level of accuracy in classifications. 
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Chapter 7 

 Conclusions and Future Work 

 

 
This chapter presents the main conclusions of the thesis and highlights future research work 

in the related areas. 

 

7.1 Conclusions  

 

The main solutions proposed in recent years to reduce the semantic gap is the automatic 

annotation of images which takes into account the low level features of images in the 

annotation process. Automatic annotation is usually presented as a classification problem. 

The evaluation of the representative classifiers for image annotation shows that in order to 

achieve high level of accuracy in image annotation; Support Vector Machine performs better 

than other classifiers in term of accuracy. However the training time of the classifier is longer 

than other classifier especially with larger dataset. The evaluation results confirm that SVM 

models are too large to be used in a practical hence the speed of annotation is lower. 

 

The thesis have presented and evaluated RASMO, a resource aware distributed SVM 

algorithm that capitalizes on the scalability, parallelism and resiliency of MapReduce for 

large scale image annotations. By partitioning the training dataset into smaller subsets and 

optimizing the partitioned subsets across a cluster of computing nodes in multiple stages, the 

RASMO algorithm reduces the training time significantly while maintaining high level of 

accuracy in classification. A genetic algorithm based load balancing scheme is introduced to 

optimize the performance of RASMO in heterogeneous environment. Both the experimental 

and simulation results have shown the effectiveness of RASMO in training. The load 

balancing scheme reduces the overhead of RASMO significantly with an increasing levels of 

heterogeneity showing that the resource aware RASMO can optimize resource utilization in 

highly heterogeneous computing environments. In addition, data chunks with varied sizes are 

crucial in speeding up SVM computation in the training process. It is worth pointing out that 

using different sizes for data chunks has no impact on accuracy in SVM classification due to 
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the structure of the RASMO algorithm in which the training work in the first few layers is 

merely a filtering process of removing non-support vectors and the resulting support vectors 

of the last layer are evaluated for a global convergence by feeding the output of the last layer 

into the first layer. 

 

The thesis have presented and evaluated RAMSMO, a resource aware distributed Multiclass 

SVM algorithm that capitalizes on the scalability, parallelism and resiliency of MapReduce 

for large scale image annotations. RAMSMO is based on OAO multiclass method by 

partitioning the training dataset into smaller binary data chunks and optimizing the 

computation of the binary data chunks across a cluster of computing nodes. Experimental 

results have shown that RAMSMO reduces the training time significantly while maintaining 

a high level of accuracy in classification. A genetic algorithm based load balancing scheme is 

introduced to optimize the performance of RAMSMO in heterogeneous environment which 

addresses the problem of unbalanced multiclass datasets. The processing times of all binary 

data chunks which have different sizes are equalized, hence reducing training overhead 

significantly. RAMSMO performances were compared with that of MinMin, MaxMin in load 

balancing.  RAMSMO performed better than both MinMin and MaxMin, and the 

performance of MinMin is the worst due to the existence of a large number of tasks with 

short processing times and small number tasks with long processing times. 

 

The thesis have presented and evaluated MRESVM, a scalable distributed SVM ensemble 

algorithm that capitalizes on the scalability, parallelism and resiliency of MapReduce for 

large scale image annotations. By re-samples the training data based on bootstrapping and 

training SVM on each sample in parallel using a cluster of computers. Balanced sampling 

strategy used for bootstrapping is introduced to increase classification accuracy for fixed 

number samples. MRESVM is evaluated in both experimental and simulation environments 

showing that the distributed SVM algorithm reduces the training time significantly and 

achieves high level of accuracy in classifications. The efficiency of the MRESVM was 

evaluated with 12 mappers which achieves close to 12 times in speedup SVM ensemble. The 

classification accuracy of accuracy of MRESVM is significantly higher than a single SVM.  
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7.2 Future work 

As part of the future works more than one label can be used to describe an image in order to 

evaluate classification accuracy of different classifiers. Additionally more image can be used 

in training process. In this thesis only two low level features represent an image however a 

number of different low level features with various combinations methods can be used to 

analyse the behaviour of image annotation system. 

 

In this thesis SMO was used to train SVM classifiers, however there are a number crucial 

parameters which significantly effects the performances of SMO, therefore an optimization 

study can be carried out by tuning different parameters to enhance the performances of the 

SVM based applications. Additionally different data set can be used to analyse the behaviour 

of the algorithm.  

 

Different methods of distributing SVM can be explored using a cluster environment to further 

improve the efficiency of training SVM with large data sets while maintaining high level of 

classification accuracy.  

 

A number of different static load balancing algorithms can be evaluated with the MapReduce 

framework. Dynamic load balancing scheme can be applied to the MapReduce framework to 

further enhance the performances MapReduce based application by dynamically allocating 

work load during the execution time. 

 

The load balancing strategies are implemented based on the simulator HSim. The load 

balancing schemes can be added to the Hadoop code to achieve better performance in a real 

Hadoop cluster. 

 

The effect of different sizes of classes on classification accuracy in OAO based multiclass 

SVM techniques should be analyzed, solving the undesirable bias towards the classes with a 

smaller training dataset. 
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The distributed SVM Ensemble algorithm MRESVM was evaluated in small scale 

homogenous environment however the genetic algorithm described in chapter 4 can be used 

to optimize the performance of MRESVSM in heterogeneous environment.   

 

A distributed SVM Ensemble algorithm based on Boosting for high accuracy should be 

considered. Boosting based SVM ensembles have shown high performance in term of 

accuracy. However the training process is highly computationally expensive. The 

computation task has to be distributed among a cluster of computers. 

 

In this research work a small scale cluster of participating nodes were employed to evaluate 

the performance of MapReduce based algorithms, in future work algorithms can be evaluated 

with a much larger cluster such as Amazon Elastic Compute Cloud (EC2). 

 

Larger number MapReduce parameters which are considered to be crucial for MapReduce 

based application performances can be evaluated using the HSim simulator to improve 

performances of MapReduce based applications.  
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