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ABSTRACT

We consider the task of computing reliable numerical approximations of the solutions of elliptic equa-
tions and systems where the coefficients vary discontinuously, rapidly, and by large orders of magni-
tude. Such problems, which occur in diffusion and in linear elastic deformation of composite materials,
have solutions with low regularity with the result that reliable numerical approximations can be found
only in approximating spaces, invariably with high dimension, that can accurately represent the large
and rapid changes occurring in the solution. The use of the Galerkin approach with such high di-
mensional approximating spaces often leads to very large scale discrete problems which at best can
only be solved using efficient solvers. However, even then, their scale is sometimes so large that the
Galerkin approach becomes impractical and alternative methods of approximation must be sought.

In this thesis we adopt two approaches. We propose a new asymptotic method of approximation
for problems of diffusion in materials with periodic structure. This approach uses Fourier series ex-
pansions and enables one to perform all computations on a periodic cell; this overcomes the difficulty
caused by the rapid variation of the coefficients. In the one dimensional case we have constructed
problems with discontinuous coefficients and computed the analytical expressions for their solutions
and the proposed asymptotic approximations. The rates at which the given asymptotic approxima-
tions converge, as the period of the material decreases, are obtained through extensive computational
tests which show that these rates are fundamentally dependent on the level of regularity of the right
hand sides of the equations. In the two dimensional case we show how one can use the Galerkin
method to approximate the solutions of the problems associated with the periodic cell. We construct
problems with discontinuous coefficients and perform extensive computational tests which show that
the asymptotic properties of the approximations are identical to those observed in the one dimen-
sional case. However, the computational results show that the application of the Galerkin jnethod
of approximation introduces a discretization error which can obscure the precise asymptotic rate of
convergence for low regularity right hand sides.

For problems of two dimensional linear elasticity we are forced to consider an alternative approach.
We use domain decomposition techniques that interface the subdomains with conjugate gradient
methods and obtain algorithms which can be efficiently implemented on computers with parallel
architectures. We construct the balancing preconditioner, M,, and show that it has the optimal
conditioning property ic(M 1 Sh) C (1 + log(H/h)) 2 where Sh is the discretized Steklov—Poincaré
operator, C> 0 is a constant which is independent of the magnitude of the material discontinuities, H
is the maximum subdomain diameter, and h is the maximum finite element diameter. These properties
of the preconditioning operator Mh allow one to use the computational power of a parallel computer
to overcome the difficulties caused by the changing form of the solution of the problem. We have
implemented this approach for a variety of problems of planar linear elasticity and, using different
domain decompositions, approximating spaces, and materials, find that the algorithm is robust and
scales with the dimension of the approximating space and the number of subdomains according to the
condition number bound above and is unaffected by material discontinuities. In this we have proposed
and implemented new inner product expressions which we use to modify the bilinear forms associated
with problems over subdomains that have pure traction boundary conditions.
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1 INTRODUCTION

It is an aim in numerical analysis to devise robust computational algorithms which enable

one to compute reliable approximations to the solutions of problems of interest and also to

analyse the resulting approximation errors. These problems may come from engineering,

physics, economics,.., and the mathematical models are formulated so that they describe

physical or even abstract processes. It is our aim to devise numerical algorithms for systems

of elliptic boundary value problems. In particular, we shall treat those problems which arise

in the linear elastic deformation of a heterogeneous body, 1 = U i1r cL 1R2 i.e., a body

composed of different materials in each 1r 1 r AC whose characteristics may vary rapidly

and may give solutions of different orders of magnitude across . Models of this type lead to

classical problems of the form: Find E (C2 (1) fl C1 ())2 such that

2	 aui-	
a	 a2Jkz()	 = fi(),	 1,	 1	 1	 2	 (1.1)

i,j,k=1	 J

( = &D,	 EDlD,	 eaclN	 (1.2)

where Dl = DQN U DD with a1N an open subset of the boundary 311 where surface traction

forces, t, apply and 311D a closed subset of the boundary where displacements, D' are

imposed; ak1, 1 ^ k,l ^ 2 define the material properties of the body 11 (differing with

each 11,., 1 r < AC) and f, 1 ^ 1 ^ 2 define the body forces acting across Il. The existence

of a solution depends on the regularity of the coefficients a 3kl , 1 i, j, k, I < 2, the body

force f, the boundary tractions, , the displacements, UD, and the boundary 511, cf. KNOPS

& PAYNE (1971). However, we shall take a more general view of the problem and interpret

the solution in the weak sense, cf. Section 1.3. This will allow us to work with discontinuous

coefficients jjki, 1 ^ i,.j,k,l ^ 2 and data for which problem (1.1), (1.2) has no meaning in

the above defined space. Furthermore, as a step towards our stated goal, we first study models
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of steady state diffusion in composite materials over domains 1 cL R', n = 1,2 because

they provide scalar elliptic boundary value problems which are simpler to study. Numerical

techniques for approximating these simpler problems can correspondingly be generalized to

the case of problems of linear elasticity. The classical problems arising from models of diffusion

of this type have the form: Find u E C2 () fl C'() such that
2	 r

-	 = f(),	 (1.3)

t,3 1

2

u() = UD,	 E aciD, > a23 (x)	 n2(x) = g(),	 E OciN	 (1.4)

We shall again allow for discontinuous data in this problem by taking a weaker form with

u H'(ci) as a weak solution in a Sobolev space setting, cf. Section 1.3.

In fact, we are especially interested in the difficulties which arise when the coefficients

1 <i, j, k, 1 ^ 2 in (1.1) and a 2 , 1 ^ i, j ^ 2 in (1.2) change rapidly and by many orders

of magnitude over ci, i.e., when the variations Vn{a kl], Vo[a 2 ], 1 i,j,k,1 2 are large.

Indeed, we anticipate that the weak solutions, , u, which arise for problems of this kind will

also have large variations, Vi [u], Vo[u], which cannot be accurately approximated unless one

employs high dimensional approximating subspaces, S'(ci) cH'(Il), h > 0, cf. BABUKA

(1974i). Furthermore, for heterogeneous materials, the coefficients a, kj, as,, 1 ^ i, j, k, 1 ^ 2

vary discontinuously along the interfaces oil,. fl Oils, 1 ^ r, s ^ IC between the component

materials ci,., 1 ^ r IC of Il. This causes the weak solutions to have lower regularity than

is the case for a homogeneous body and singularities can arise if the subdomain boundaries

Oil,., 1 r ^ 1C have vertices, cf. BABUKA (1974i), KELLOGG (1972). When features of

this type occur the resulting numerical schemes need to reflect the discontinuities, for example

by being adaptive, and in general the resulting algebraic systems are simply too large and

ill-conditioned for practical solution so that special methods are required.

We now summarise the work of the thesis. In Chapter 1 we briefly introduce some of the

mathematical concepts required of the theories of Functional Analysis and Sobolev spaces

to construct the weak formulations of problems (1.1), (1.2) and (1.3), (1.4). We make no

attempt to be comprehensive and direct the reader to KREYSZIG (1978) and ADAMS (1975)

for a more rigorous treatment. In Chapter 2 we introduce some h-version techniques of finite

element approximation for elliptic boundary value problems and provide some elements of

the theory of approximation; we direct the reader to Aziz & BABUKA (1972) or ODEN

& REDDY (1976) for a more comprehensive treatment of these concepts. We should inform

the reader that the results provided in Chapters 1 and 2 are frequently employed throughout

the remainder of the thesis and, for the complete definition of any symbols in the text which

seem unfamiliar, please consult the symbol table on page v.

The behaviour of either analytical or computational approaches for problems of the type

(1.1)-(1.2) and (1.3)-(1.4) in It2 can be difficult to assess for the case of irregular data.
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Introduction: .1

Analytical solutions are rarely available, even for test problems. We emphasize that the as-

sessment is often further complicated by the presence, in ]R 2 , of singular points occurring at

corners or edges where different materials interface with one another. In order to avoid some

of the difficulties, initially, in Chapter 3 we begin by investigating one dimensional elliptic

boundary value problems in which the underlying heterogeneous material, fI, consists of a

periodically repeating cell, P El', of diameter 6 << diam(1l) comprised of the elemental

materials il,., 1 ^ r K. This property of the material is represented in the boundary value

problem by a periodic coefficient, a, of period 6, with 6 assuming values in the range (0,60]

with c small when the material properties change rapidly. However, problems of this type

have been studied in the vast array of literature for problems in fl C 1R', n ^ 1, e.g., conver-

gence in homogenization processes is analysed in TARTAR (1980), the idea of H-convergence

is introduced and studied in MURAT & TARTAR (1994), and the notion of two-scale ex-

pansions are analysed in ALLAIRE (1992). Indeed, we follow this philosophy and adapt

the analysis of BABUKA & MORGAN (1991ii) and construct asymptotic approximations

u, & > 0, N ^ 0 of the solution of the original problem which we now denote UE to indi-

cate the different cells. However, general asymptotic treatments of this type do not provide

accurate error bounds; generally, the complexities of a general analysis lead to uninforma-

tive and pessimistic results. This difficulty has been partially remedied in BAKHVALOv &

PANASENKO (1989) where accurate error bounds are included for l = 1R2 . However, their

analysis requires the restrictive conditions a 13 , a3k1, f E C°°(112 ), 1 ^ i,j, k,l ^ 2 and pro-

vides little insight into the application of these techniques for more general problems of low

regularity which often occur in practice.

In the one dimensional case we obtain an assessment of convergence by employing ana-

lytical and computational results to determine the rates of decay,

— u; H'2 ()II —+ 0 (& —+ 0), N ^ 0, 0 ^ n ^ 1,	 (1.5)

and to determine how problem regularity affects these. Our results demonstrate that the rate

of convergence, u —* ue (& —* 0), in the sense of (1.5), occurs at a rate which is independent

of the regularity of a but depends primarily on the regularity of 1.

In Chapter 4 we generalize this approach to include analogous elliptic boundary value

problems in 1R2 . However, because analytical solutions are no longer available, we find it

necessary to include approximating methods and we demonstrate how one can efficiently

implement the h-version of finite element approximation for domains 'c 1R2 . Indeed,

it is apparent from the formulation of our approach that one can quite simply incorporate

approximating techniques such as the h, p, or r-adaptive finite element methods into the

homogenization process.

The asymptotic approach employed in Chapters 3 and 4 is clearly not suited to prob-

lems in which the coefficients, a 13 , a3k1, 1	 i,j, k, 1 < 2 are non-periodic or E is large, i.e.,
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E (0, C0]. However, if the features of the problem which led us to consider applying asymp-

totic techniques are still present, e.g., highly heterogeneous materials, coefficients with large

variation over 'l, existence of singularities, low regularity, then the need to employ high di-

mensional approximating spaces, S'(1l), h > 0, still 'exists. However, such spaces lead to large

scale systems, i.e., algebraic systems which include many unknown parameters. In Chapter

5 we therefore change our approach to that of domain decomposition and consider ways in

which we can exploit the increased computational power provided by modern computers with

parallel architecture, in particular, the MIMD - multiple instruction, multiple data - family

of machines, cf. BRIGGS & HwANG (1986). Machines of this type possess an array of in-

dependent processing nodes which are interconnected through a high speed network allowing

rapid communication of data. To obtain algorithms which are suitable for implementation on

machines of this type we shall work within the framework provided by the theory of domain

decomposition using non—overlapping decompositions Ij, 1 ^ i ^ k of , i.e.,

=UL 1 ,	 1l,nhl, =0, i	 j.	 (1.6)

In this we employ extension, restriction, and Steklov—Poincaré operators, cf. AG0sHK0v

(1988) and reformulate our problem as a system of boundary value problems, one, for each
def k -subdomain with solution 	 1	 ^ k, coupled by an interface problem on I' = U.,1lfl

, whose solution we denote by r• However, from our comments above it also follows that

the approximating spaces S' (1^), h > 0 lead to large scale interface problems and, as is

apparent in Section 1 of Chapter 5, it is impractical to construct the interface systems of such

large dimension. We therefore turn to iterative solution techniques, in particular, conjugate

gradient methods and demonstrate how they can be employed to compute approximations,

h > 0, of U without explicitly constructing the interface problems. However, a difficulty

with iterative techniques of this kind is that, to achieve rapid convergence, they require

the discretized Steklov-Poincaré operator, Sh, associated with the interface problem to have

a compactly distributed spectrum, a(Sh), though in fact, as the material heterogeneities,

the number of subdomains, k, and dim(S')) grow, the spectrum a(Sh) becomes more

sparsely distributed and the rate of convergence slows. This feature of conjugate gradient

algorithms can be improved by using a preconditioner; this possibility has been examined

in many of the early papers treating domain decomposed interface problems with conjugate

gradient type iterative schemes. Indeed, in BJ0RSTAD & WIDLUND (1986) a number of

preconditioners, Ph , h> 0, are constructed which are optimal in the sense that the condition

number l't(P,'Sh) II P,'ShII2 II SPILII2 - a measure of the dispersion of the preconditioned

spectrum cx(P,' 1 Sh) - does not vary with h and the convergence rate is therefore unaffected

by the dimension of the approximating space S'(), h > 0. However, the early papers

of this kind deal with relatively simple problems and decompositions 1 =. ci U l2 , i.e.,

k = 2, and, as one should expect, there is little consideration for difficult problems and
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general decompositions (1.6). Subsequent work by, for example, BRAMBLE, PASCIAK, &

ScHATz (1986), DRYJA & WIDLUND (1991), has led to the construction of preconditioners,

Ph, h > 0, for rather general problems and decompositions which are optimal in the sense

that

Ic(P,'Sh) ^ C [i +log(H/h)], H, h >0	 (1.7)

where H = max{diam(1l), 1 i ^ k}. Although these algorithms are often rather elaborate

they do allow one to implement the inverse operator, Pg', h> 0, efficiently on computers with

a parallel architecture because the preconditioner is designed to have a parallel structure that

requires little communication between processing nodes. However, the Neumann-Neumann

preconditioner, Nh , h > 0, studied in LETALLEC & DEROEcK (1991), provides a simpler

approach which can also be implemented efficiently on a MIMD type computer. The difficulty

with this approach is that the preconditioner does not scale well as the number of sub domains,

k, increase; this is explained in LETALLEC & DER0ECK (1991) where they prove the bound

!c(N'Sh) ^	 [i + log(H/h)] 2 H, h> 0	 (1.8)

Following an idea introduced in MANDEL (1993) for scalar elliptic boundary value problems

we demonstrate how, one can introduce, for problems of heterogeneous linear elasticity, an

additional coarse problem in the definition of the Neumann-Neumann preconditioner to ob-

tain a new preconditioner, Mh , h > 0, which has the optimal spectral property (1.7) and

where the constant C > 0 is independent of the material heterogeneities. We implement this

approach for a variety of problems and compare the computational results with a number of

other preconditioners.

To summarize: we introduce asymptotic techniques of approximation in Chapter 3 for

elliptic problems in IR having discontinuous and periodic data of period e. We construct

asymptotic approximations u, N ^ 0 of the weak solution u and, using a combination

of analytical and computational methods, assess the rates of convergence of the errors u6 -

u, N > 0 as e - 0 in the norm topologies II • ; H1 (l)II, 0 ^ p ^ 1. In Chapter 4 we

describe how finite element techniques of approximation can be combined with our asymptotic

approach to compute approximations, Uh, N ^ 0, of the solution, ue , for elliptic problems

in 1R2 when the coefficients, a2 , 1 i, i ^ 2, are discontinuous and periodic. We apply this

approach to a number of problems of varying levels of regularity and assess the corresponding

rates of convergence of Uh uc as e -+ 0 in the norm topologies II . ; H ()II, 0 ^ p ^ 1.

In Chapter 5 we employ domain decomposition techniques to reformulate problems of linear

elasticity as systems of coupled problems with each corresponding to either a subdomain

or an interface. We describe how one can add a coarse problem to the definition of the

Neumann-Neumann preconditioner to obtain an iterative solution algorithm for the domain

decomposed interface system which is optimal in the sense of (1.7): Finally, ,we demonstrate

the optimality of this approach using a number of computational examples.
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1.1. Elements of Functional Analysis.
In Chapters 2, 3, and 4 we use some of the ideas from the theory of functional analysis. A

summary of the ideas which we use are assembled below. However, because the theorems are

well known we do not, except for the Lax-Milgram Lemma, provide proofs and instead we

refer the reader to KREYSZIG (1978) or RIEsz & Sz.-NAGY (1965).

1.1.1. Bounded Linear Operators.
Let X, 1 i < 2 denote normed linear spaces over the field F (= II, C) with norms

II • ; X, 1 ^ i ^ 2 and assume identical linear space operations of addition and scalar mul-

tiplication for X1 , 1 ^ i ^ 2. If X, 1 i ^ 2 are function spaces then we call a mapping

A: X1 -^ X2 an operator and say that it is antilinear (or conjugate linear) if it satisfies the

property

A(ai x i +a2x2) =Z 1 Ax1 + 2 Ax2, c E F, x E X, 1 ^ i 2

We define the norm, V A Il, of an operator A:X1 -4 X2 as follows

hAil	 sup 
lAx; X211 =	 IIAx;X211

z^O li x ; X1 ii	 IIx;XiII=1

(1.1.1)

(1.1.2)

and say that A is bcninded if hAil <oo. Indeed, we deiidte the set of all bounded antilineàr

operators by Br(X1 ; X2 ), i.e.,

&(Xi ; X2 ) {A A:X1 —* X2 , A is antilinear and hAil <}	 (1.1.3)
We observe that if X2 is a Banach space with respect to the norm Il • ; X2hl then 13L(Xi ; X2) is

also a Banach space with respect to the operator norm defined in relation (1.1.2). If X2 = F

then the Banach space BC(Xj ; F) is referred to as the conjugate or dual space of X1 and

its elements are called functionals.

While studying weak formulations of elliptic boundary value problems we will have the

need to consider operators A: X1 -^ X2 where, using the notation introduced above, X i =

X x X, X2 = F and X is a Hilbert space with the inner product (.,.;X). For operators of

this kind we generalize the notion of antilinearity defined in relation (1.1.1) and say that the

mapping A: X xX —+ F is sesquilinear if the following relations are satisfied

(Linear)

(Antilinear)

A(ax + fiy, z) = aA(x, z) + 13A(y, z)

A(x, cry + 13z) = A(x, y) + A(x, z)
Va, 3 € F, x, y, z € X (1.1.4)

and we also define the norm of a sesquilinear operator A: X xX —* F as follows

def	 IA(x, )l
IAII = 5U	

llx;Xll.11y;Xll : 
x,y E X\{O}} (1.1.5)

where li x ; X II	 (x,x;X)1/2, xE X and say that A is bounded if hAil < oo. We denote the

collection of all such bounded sesquilinear operators by B.C(X x X; F), i.e.,

81(XxX; F) T {AiA:XxX-+F, AissesquilinearandiAhl <oo}	 (1.1.6)
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and we observe that this is a Banach space with respect to the norm (1.1.5). We shall call

elements of this space bilinear forms if F = R and sesquilinear forms if F = C to distinguish

between problems using real or complex fields. We now define some additional concepts

associated with elements A E 13.C(X xX; F) which we shall require

	

(Hermitian symmetric)
	

A(x, y) = A (y, x), 2;, y E X
	

(1.1.7)

	

(Non—negative)
	

A(x,x)^0, XEX
	

(1.1.8)

	

(Positive)
	

A(x,x)>O, x0
	

(1.1.9)

	

(X—elliptic)
	

A(x, x) ^ pllx;X112, xEX
	

(1.1.10)

where p> 0 is a constant that is independent of x E X.

To answer questions concerning the existence and uniqueness of weak solutions of elliptic

boundary value problems one generally works within the framework provided by the Lax-

Milgram Lemma. We now state this theorem and provide a proof of the result.

Lax—Milgram Lemma 1.1. Let A E BC('K x 'K; F) be 'K—elliptic where 'K is a Hubert

space over the field F. Then, for any F 13C(7-L; F), there exists a unique u E 'K such that

A(u,5)=(F,q5), q' E'K
	

(1.1.11)

The map 7?.: u i-+ F defined by (1.1.11) is a linear bijection of 'K onto 13 £( 'K ; F) and

, ^ ll'1. 11 ^ hAil
	

IAIL' ^ 11 7?.- ' II S p
	

(1.L12)

where p> 0 is the ellipticity constant of A.

Proof If A E 13L('K x 'K; F) then it follows that the norm of A, 11411, is bounded and satisfies

the inequality

A(u,v)I	 h A il II u;'K lI II v;'KII, u,v Efl	 (1.1.13)

Therefore A(u, .) 8L('K; F) for any u E 7-1 and, thus, 7?.:'K —+ A(9-t,.) is a well defined

linear operator. Furthermore, from the boundedness relation (1.1.13),

IltuII ^ h A il II u;'K Ii, u 'K
	

(1.1.14)

and therefore 7?. E 5L(9-L; 13(7-L; F)). The 'K—ellipticity of A implies the inequalities

phlv; 
7 1hl 2 ^ 1A(v,v)I

= h(7?.v,v)I	 Il Rv II IIv;'KhI

=	 p Ii v;'K hI ^ hh 7v II

	
(1.1.15)

and, therefore, 7?. is an injective map with a bounded inverse flT' on the domain R.(7-L). It

only remains to prove that 7t(7-L) = 13.C('K; F). Let (7?.u)>, be a convergent sequence in
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BC(7-t; F) then, from (1.1.15), (u),,> i is a Cauchy sequence in 7-1 which converges to some

limit u E 9-1 because 9-1 is a Hubert space. However, because 7?. is continuous, cf. (1.1.14),

7?.0 is the limit of the sequence (R.u)> 1 and this implies that R.(9-L) is a closed subspace

of BL(9-1; F). Thus, BL(fl; F) = 7?(9-L) R(9-L where fl(fl)J {v e 9-1 I (f,v) =

0, f E 7?(7-L)}. We now show that 7?. is a surjective map with image 13C(fl; F) by proving

that l?.(?L)L = 0. Suppose that there exists a v0 E 7?.(9-L)' with vo	 0 then we have the

contradiction

0 = ('R.vo,vo) = A(vo,vo) ^ pIIvo;7-111 2	 (1.1.16)

Finally, the inequalities (1.1.12) follow immediately from (1.1.14) and (1.1.15) and the theo-

rem is proved.	 N

We shall employ the Lax-Milgram lemma throughout the thesis to demonstrate the existence

and uniqueness of weak solutions of elliptic boundary value problems, in particular, problems

(1.1)-(1.2) and (1.3)-(1.4). We note that the property of 9-1-ellipticity is often the most

difficult to prove. Indeed, for problems of linear elasticity, we use Korn's inequalities and, for

problems of steady state diffusion, we use Poincaré's inequality to establish fl-ellipticity for

the appropriate a and 7-1. However, we now introduce the function spaces that are required

to construct the weak formulations of problems (1.1)-(1.2) and (1.3)-(1.4).

1.2. Function Spaces.
Below, we provide definitions of the function spaces which we shall use and, where necessary,

we describe some of their properties. We direct the reader to WLOKA (1987) or HACKBUSCH

(1992) for a rigorous treatment of these function spaces.

We begin by specifying the notation which we shall use throughout this section. Let the

symbol 11 denote a simply connected bounded open set in ]R, n = 1,2 with closure l and

boundary 3. We shall write cr ]R? if is a compact subset of Lt, i.e., a bounded and

closed subset. If a (a1 ,... , a,,) E ]N' then we call a a multi-index of degree al
def	 .	 .	 .and, for D2 = 3/9x, 1 <z <n, we define the differential operator D, a E IN 0 of degree al

according to the relation

(1.2.1)

where D,°	 I, 1 i n and I is the identity operator. If qi: ci —+ C then we define the

support of as

supp q = {x E ci q5(x) 0}	 (1.2.2)

We now provide a collection of definitions and lemmas which we shall use to define function

spaces of weakly differentiable functions and to introduce the notion of domain regularity.

We begin by defining function spaces which consist of functions, q, that can be differentiated

in the classical sense and for which the derivatives, D"q, are continuous in some sense for
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al ^ m, m E N0 . Thus, for m E N0 we define Cm (ci) as

C"(ci) {:ci - C I Da cb E C°(ci), al ^ m}	 (1.2.3)

where C°(ci) is simply the linear space of functions which are continuous over ci. We then let

n 0C(ci) and define the subspaces C(ci) C Cm (cl), m E N0 U {oo} as follows

C(ci) {q5 E Cm (ci) I supp cc fl}	 (1.2.4)

However, because ci is an open set, the functions E C°(ci) need not be bounded on ci and

we therefore define C°(?) C C°(ci) to be the subspace consisting of all continuous functions

whose domain of definition, ci, can be extended to the boundary, nfl, such that they become

uniformly continuous on ?. We now define the function spaces Cm() , m e No as follows

Cm(?) { E Cm (ci) for each Ia! ^ m there exists a	 E C°(?i) such that D'çb = Pal}
(1.2.5)

and let C°°(?) n 0 C'(?). We observe that the spaces Cm (11), m E N0 are Banach spaces

with respect to the norm

deflI;Cm(?)lI = max sup l D ()l	 . .	 (1.2.6).
O<IaI^mxEfl

The linear spaces of Holder continuous functions are also required, thus, we let 0 < A ^

1, m E N0 and define the subspace Cm. (ri) c Cm(i) as follows

{4 E Cm (?) there exists a constant C> 0 such that	
(1 2 7)

lD( 1 ) - D'q5( 2 ) ^ C 1 - 2Il', Ia! ^ m,	 E ci, 1 ^ i ^ 2}

which is a Banach space with respect to the norm

II q ; CmA()ll	 lI; C()II + max	 sup	 l D t)() - Dac()l	
(1.2.8)

O I aI^m x,zE0, ^L	 ll - Il

We now assume that ci is measurable with respect to the Lebesgue measure, p, and de-

fine £(ci) to be the linear space of equivalence classes of functions u which are Lebesgue

measurable on ci and satisfy lu; L(ci)ll <00 where, for 1 ^ p < 00,

def
llu;p(ci)Il	 [I I u ()I" d ]	 (1.2.9)

In

defwhere = dp and, for p = 00,

llu;(ci)ll	 ess sup lu()l = inf{ sup u()I	 o cci, (o) = o}	 (1.2.10)
En\O

We note that the elements of the equivalence classes of the Lebesgue spaces (ci), 1 p 00

are functions that differ only on sets of Lebesgue measure zero. See ADAMS (1975) for a

thorough treatment of the Lebesgue spaces £(ci).
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In order to generalize the classical problems (1.1)-(1.2) and (1.3)-(1.4) we now introduce

the notion of the weak derivative which we use to define the Sobolev spaces below: If, for

a e IN, u E	
d4 

{v I v £ 1 (K), K cc 1}, there exists a v e 4oc() satisfying

f() v(x) dx = (-1) f u() Dp(x) d, ço E	 (1.2.11)

where Dxco is defined in the classical sense then we call v the weak D derivative of u and

write v = Dau . If u e CIaI(l) then we note that the weak and classical derivatives of u,

up to those of order al, coincide except on sets of measure zero, cf. EDMUNDS & EVANS

(1989), and the weak derivative is clearly, therefore, an extension of the classical definition

of differentiation. For m e IN0 we now define the Sobolev space of (equivalence classes of)

functions Hm (cl) as

Hm () {u E £2 (1) Du E £2(1), al ^ m}
	

(1.2.12)

Indeed, these spaces are Hubert spaces with respect to the inner product

(u,v;Hm(1))	 > D'u(x)D°v(x)dx, u,v E Hm(1)
	

(1.2.13)

where the complex conjugate is necessary only when considering spaces over the complex

field C. We note that the linear subspace C°°(l) fl ffm(1) is dense in Hm() in the ense

that if u E Hm(cI) then there exists a sequence {u}>i C C(1) fl Hm(1) such that

lu - u; Hm (1)ll —* 0 (n -4 oo). We shall also consider boundary value problems with

homogeneous boundary conditions and we therefore require the spaces H (1k), rn E N0

defined as

H(1)	 {v e £2(1) there exists a sequence {v}> i C C°°(1)	
(1.2.14)

such that Il v —v;Hm ()lI -+0 (n —+ oo)}

For boundary value problems of low regularity we will also require Sobolev spaces of fractional

order,sER\]N. Thus,fors>Olets=m+A,mEN0,0<A<landdefinethe

function space H8(l) as the linear space of (equivalence classes of) functions v £2()) for

which ll v ; H ()ll < oo where llv;H 8 @)lI	 (v,v;H8(c2))/2, (v,v;H8(1l))	 (v,v;Hm(cl)) +

(v,v;H"(l)) and

(u, v; HA	
[D'u() - Du()] [D av() — D'v()] dx d]

	 (1.2.15)
"n+2A	 —

II. -	 II2

The density properties observed above for the integer ordered spaces H (Il), H (Il) are also

valid here, i.e., C(1l) fl H(1Z) and C000 (1) are dense in H8 (fl) and Hl) with respect to

the norm topology ll.;Hs@)ll.

When studying boundary value problems we often find it necessary to consider function

spaces of elements which are defined on the boundary, oil, of the domain il. The regularity

or smoothness of the domain, il, is crucial in the definition of these spaces and we therefore

formalize the notion of domain regularity in definition 1.2 below.
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Definition 1.2. (Domain Regularity). Let 1 1 ir. Then we shall write I E	 with

m € FJ0 , 0 < A	 1 if, for every x E D1, there exists a neighbourhood O C 1Ft and a

bijective map ço: O, -* S where S B(0, 1, £2) satisfying

(j2, €	 ç1 E
	

(1.2.16)

= {(j ••• ,n) €S	 =0}
	

(1.2.17)

(1.2.18)

coz(Oxfl1lc)={(1,...,)eSIen<0}
	

(1.2.19)

where (1.2.16) is understood in terms of the components of ço = ( 1 ) , . -. , ço)) and I1C

R'\1l is the complement ofI in IR. 	 U

For the problems in which we are interested Il is a polygonal domain with vertices, which

we denote V E 81, 1 < i < V, lying on the boundary ô^. We assume that the interior

domain angle at each vertex, 9, 1 ^ i ^ V, satisfies the inequality 0 < O < 27r: this

eliminates domains with cuts. If a vertex, say V, r E {1,... , V}, is located at the origin, 0,

then, within a neighbourhood °v,. of Vr, the arms of the vertex are the lines r, 1 <i < 2

where

(1.2.20)

r2={(x1,/3x1)I -x2^x1O}
	

(1.2.21)

The bijective maps coy,., ' corresponding to the vertex point Vr defined in Definition 1.2

are, for	 ov,. = co'(8), E 5,

coy (x) - 
I (x i , x2 —ax i), ifO ^x 1 ^ Xi	 -	 - I	 &Xii +2), if 1 ^0

- - (x i , X2 - x 1 ), if -X2 ^ xi <0' cov) - (xii, X21 + 2), if <0
(1.2.22)

Clearly, coy,, is continuous and piecewise linear on the bounded domain 75v,. and is therefore

Lipscbitz continuous although it is not continuously differentiable. Thus, coy,. E C°" (by,,)

and E C°".

The following lemmas are required to define the Sobolev spaces of functions whose domain

of definition is a subset of the boundary D: they provide some important properties of the

boundary of a domain and they also define what is meant by a chart of ôf and a partition

of unity of IL

Lemma 1.3. Let 11 e Cm , i be a bounded open subset in Ri'. Then there exists a B E ]N,

bounded open subsets 0, 0 i B with Oo CE I, and, for r, 0. n ac, 1 s B,

bijective maps a:F -* c(F), 1 i 13 where a(F) C ]R'', 1 <i B such that

c u 0o,	 oc = u 1 F 1 ,	 a. o	 cm l (a3(r, rii)	 (1.2.23)

Furthermore, there exist maps ço j 0. -+ 8, 1 ^ i	 13 which satisfy properties (1.2.16)-

(1.2 .19) with X= 1. The pairs C.	 (I's , a,), 1 <i B are called the charts of OS1. 	 U
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Lemma 1.4. Let O, 0 < i 13 be defined as in Lemma 1.3. Then there exist functions

a E C000 (]Rn ) , 1 i B satisfying supp cr, C O, 0 ^ i 13 with

o(x)=1, xEfl
	

(1.2.24)

The functions cxi , 0 < i ^ 13 are said to form a partition of unity of subordinate to the

covering O, 0 ^	 13.

We can now define the Sobolev spaces of functions which are defined on the boundary, Of, of

l: Let f E Cm,l then there exist charts (1's , ci), 1 ^ i < B, an open covering O, 0 i 13

of , and a partition of unity 0j, 0 <i 13 subordinate to O, 0 ^ i ^ 13 satisfying Lemmas

1.3 and 1.4. For .s ^ m + 1 we define the Sobolev space H8(8) as

H8 (ô1l)	 {u:9[l	 C I (uu) oaT 1 E H(a1 (F 1)), 1 <i ^ 5}

and, with respect to the inner product (.,.;Hs(Ocl)) where

13

(u,v;H8(ôl)) ! E(c:o.ju) oaT', (o 1v) oa;H8(aj(Fi))),
i= 1

(1.2.25)

(1.2.26)

H8 (all) is a Hubert space. However, because supp((aju) o aT') C a(F), 1 ^ i ^ B, the

definition (1.2.25) is unchanged if we replace H(a1 (F1 )) by H(1R'') and use any bounded

extension of a from a1 (F) to 1R 1 . An important property of these spaces is that they do

not depend on the open covering O, 0 ç i B of Il, the charts (F1 , a1 ), 1 ^ i ^ B, or the

partition of unity o, 0 i B. Thus, if one uses a different open covering Q1, 0 i ^ M of

ll, different charts (T 2 , /3,), 1 <i < M of 311, and a different partition of unity T, 0 ^ i ^ .M

of 11 which is subordinate to the covering Q, 0 ^ i ^ M, then these quantities also lead to

the identical space H8(afl) defined in relation (1.2.25). However, using these quantities, the

inner product

(u , v;Hs (8ll))	 ((r1u) o/31, (T1v) o/3;H(/3j(Tj))), u,v E H8 (311),	 (1.2.27)

will then differ from that defined in (1.2.26) although the norm that this inner product induces

will be equivalent to the norm induced by the inner product (1.2.26), cf. HACKBUsCH (1992).

In our study of elliptic problems with mixed boundary conditions we will often find it

necessary to consider spaces of functions which are defined on a subset F C 311. For 11 E Cm,i

we assume that F fl F, 1 ^ i B, cf. Lemma 1.3, is given by an equation of the form

mr1 = {(x1 ,...	 ,x_1)) x	 aj(j), 1 <j <n - i}	 (1.2.28)

Then, for s ^ 0, we define the Sobolev space H8 (F) as follows

H8 (F)	 C • there exists a v E H8 (311) such that u = vlr}, s> 0	 (1.2.29)
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In our study of domain decomposition algorithms we are interested only in the case 0 < s < 1

and therefore, following GRISVARD (1985), we define the norm II • ; H(F) II, 0< s < 1 as

u;H s (F)11 2 	 [Iu()I2da() +11 Iu(x) —u()I2 da(x)da(), u E H8 (F) (1.2.30)
IIn-1+2s

Jr	 rxr II — &112

where a is the surface element defined according to the relation, cf. WOLKA (1987),

r	 n-i	 11/2
a(x) = [1 + > ali ()/axj 2 ] dx,	 dx_ 1 , x E F fl F.	 (1.2.31)

j=i

Clearly, for polygonal domains i,b, 1 i 13 is piecewise linear and the derivatives &çb/ax,

1 ^ i 8, 1 j ^ n — 1 are defined everywhere except at the vertices of F. We note that, if

F = ôl then the spaces (1.2.25) and (1.2.29) are identical and the norm defined in relation

(1.2.30) is equivalent to the norm induced by the inner product defined in relation (1.2.26),

cf. GRISVARD (1985)

In formulating boundary value problems it is necessary to specify some condition which

the solution must satisfy on the boundary, ôfl, of the domain 11. For problems understood

in the classical sense the solutions, u, belong to C°() and their boundary values can be

obtained simply by taking the restriction u Iac^ . However, for functions u E H8 (1), s ^ Q
with fl C tm", m> 0 the boundary, 8, has zero Lebesgue measure, i.e., p(Of') = 0 and it

therefore makes no sense to consider the restriction to ÔIZ of functions in such spaces. Thus,

for Il E cm,l, m ^ 0, we employ the trace operator which is defined to be the surjective map

Tr E 13C(H(1) ; H8_V2 (Uf1)), m + 1 ^ s > 1/2 which satisfies Tr (u) = u 100, u e C°()

and has a right inverse Tr' E B(H /2 (5fl); H8 (1)), i.e., Tr o Tr = I, cf. GRISVARD

(1985). We note that, for l e C°", there is the identity

H() {v E H'(ul) Tr (v) = 0}	 (1.2.32)

and, for F c 51, we define the closed subspace H (fl; F) C H' (il) as

defH(1;F) = v EHl) I Tr(v)r' 0}	 (1.2.33)

In our study of asymptotic methods in Chapter 3 we consider functions u: —+ IR, 1 cc

R', 1 n ^ 2 which we say have bounded variation if Vc2 (u) <00 where, for 1 = (a, b),

Vç,(u)	 sup {
	

Iu(x) — tL(X_i)I : a = x0 <x1	 <X = b}	 (1.2.34)

If a function u: I - IR has bounded variation then it is bounded and can be written as the

difference of two positive non-decreasing functions i.e., u = cf. SMIRNOV (1964).

If u:1l -* C thenwesaythatuhasboundedvariationif, andonlyif, Vc(lR[u]), Vo([u]) <00.

We now define the space of functions of bounded variation over l as

BV(l)	 {u:11 -4 C I V0 (u) <oo}	 (1.2.35)
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For ^1 = (a,b) x (c,d) we define the variation, Vç(u), of a map u:	 -+ lEt as follows, cf.

SMIRNOV (1964),

m,n
def

Vc^(u) =	 1V0,(u)I	 is a subdivision of.Q} 	 (1.2.36)• 1	 ijfi,1=i
i,j=1

where,forl^i^m, 1jn,

def
Vç, (u) = u(x2 , y3 ) — u(x.. i , y3 ) — u(x, y,) + u(x_1, yj_i)	 (1.2.37)

and {1ii}Ji is a subdivision of	 = (x_ 1 ,x1 ) x (y3—i,y3) where

a=xo<xi<•••<xn_i<xm=b,	 c=yo<yi<"<yn_i<y=d

Using this definition of variation, we again define the function space BV() according to

(1.2.35). We note if the map u: 1 -^ ]R has bounded variation then there exist non-negative

non-decreasing functions çoj, 1 ^ i ^ 2 such that u = — i1'i - c02 + 2, cf. SMIRN0V

(1964).

In the case of functions : -+ C 2 , i.e., = [uj , u2], we use the notation u E (9L)2 if

u E fi, 1 i ^ 2. If fi i a hormed linear space with norm II • ; fl then we define the norm

II'; (fl) 2 11 according to the relation

2	 1/2

I&; (fl)2 II	 1> II u ; 91I12l
L	 ' •	

,	 E (fl) 2 .	 (1.2.38)

Indeed, we shall use (1.2.38) to define norms for the Hubert spaces (H8 (1Z)) 2 , (H8 (r)) 2 , F c

s ^ 0 in Chapter 5.

1.3. Weak Formulations of Elliptic Boundary Value Problems.
We now aim to reformulate problems (1.1)-(1.2) and (1.3)-(1.4) in a Sobolev space setting

rather than the classical setting of the (C2 (Q) fl C'())', 1 ^ m < 2 spaces used in the

introduction. This will allow us to study problems with discontinuous data over polygonal

domains, , which, we should point out, are often excluded in the classical theory because it

typically requires conditions such as 1 e	 m ^ 2, 0 <A < 1 or, for problem (1.1)-(1.2)

with	 D = 51k, UD = 0, a11 , f E Cm_2A (cl) , 1 i,j ^ 2.

We begin with problem (1.3)-(1.4) and assume that the coefficients a 1 , 1 ^ i,j 2 are

symmetric and uniformly elliptic, i.e., there exists a constant p> 0 such that

(1,e2)E 1R2 ,	 (1.3.1)
i,j=1	 i=1

We also assume that , a11 , 1	 i,j	 2, f, UD, g are sufficiently smooth to ensure the

existence of a unique classical solution, u e C2 () nC'(). Then, for çü E V	 {v E
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I v 80 = O} we multiply (1.3) by p and use the divergence theorem to deduce the

equation

2

I
>a3	 (x)dx= [f(x)(x)dx+ I g()()da(x)	 (1.3.2)
i,j=1	

- ax3 - 9x - - JO	 'eON

where we have used boundary condition (1.4) and the property VIOo D = O If u E C2 (ll) fl

C'() satisfies boundary conditions (1.4) and equation (1.3.2) then, applying the divergence

theorem to (1.3.2), it follows that

I	 9uL (	 T[aii	 -(J _f()) (x)dx=O, ço V	 (1.3.3)

This implies that u is a classical solution, i.e., it satisfies equations (1.3) and (1.4). Thus, with

respect to classical solutions, problems (1.3)-(1.4) and (1.3.2) are equivalent. We can now

generalize the elliptic boundary value problem (1.3)-(1.4) to include domains ll E C°"; right

hand sides f e L (Il); symmetric coefficients E £, (Il), 1 <i, i ^ 2 which are uniformly

elliptic almost everywhere in Il; boundary conditions 11D e H'/2 (allD), g E £2(UllN). We do

this by interpreting derivatives in the weak sense, cf. (1.2.11), and defining u E H'(ll) to be

the weak solution of problem (1.3)-(1.4) if it satisfies Tr (u) I aciD = UD and

a(u,v) = F(v), v E H(ll; aciD )	 (1.3.4)

where, for u,v E H'(ll;D1lD),

a(u,v)

(1.3.5)

We now assume that o(acZD) > 0 and show that problem (1.3.4) is solvable by demonstrating

that a, F satisfy the conditions of the Lax-Milgram Lemma. The continuity of the linear

operator F follows from the Cauchy-Schwarz inequality, i.e., for v E H(ll; aciD),

1F(v)i ^ ff(x)v(x)dx + fg(x)Tr(v(x))da(x)

^ ill; C2(ll)ii li v ; £2(ll)Ii + h g ; £2(allN)hi hi T (v); c2(aclN)II	 (1.3.6)

and, from the continuity of the trace operator Tr E 5c(H' (Cl); H' !2 (all)), it is clear that

Tr (v); £2 (011N) ii ^ II Tr (v); £2 (3ll) ii	 hhT (v); 111/2 (SQ) II ^ ii Tr II li v ; H' (Cl) Ii	 (1.3.7)

and it then follows that F E B(H' (Cl); II) where ll Tr is the operator norm of Tr, i.e.,

v e H'(Cl)\{O}-	 {	 (v); H"2(8Cl)Il	

}	
(1.3.8)

-	 liv; 111(11)11
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We use the boundedness of the coefficients	 E ,(1l), 1 ^ i,j 2 and the Cauchy—Schwarz

inequality to prove the continuity of the linear operator a as follows, for u, v E H (l; DI1D),

2	 -I I l 0u	 2	 1/2	 1/2

dx] [Li dx]a(u,v)l ^	 Ila;()li I	 '—()
i,j=1

^ C1 lu; H' (11)11 liv; H 1 (	 II	 (1.3.9)

where the constant C 1 > 0 depends on the coefficients a 15 , 1 ^ i, j ^ 2. The H0' (Il; ÔI1D)

ellipticity of a follows from the ellipticity relation (1.2.1) and Poincaré's inequality, i.e.,

iOv	 2
a(v,v) ^ p I > I—__(x)l dx> C2 liv ; H1 (11)11 2, v E H(1l;81lD )	 (1.3.10)--

where the constant C2 > 0 depends on p. Thus, the conditions of the Lax—Milgram Lemma

are satisfied and therefore there exists a unique solution u e H(1l; 011D) of problem (1.2.4).

For the homogeneous Dirichlet problem (anD = 011, UD = 0) it is known, cf. HACKBUSCH

(1992), that if 11 is convex, a15 E C°"(), 1 ^ i,j ^ 2, andf E 4(11) thenu E H2 (IflnH01 (Il).

The problems which we study, however, do not have continuous coefficients and so we expect

the solutions to have lower regularity, i.e., u E H(11), 0 < A < 1. For an analysis of

the regularity of the solution, u, in the case of scalar elliptic problems with discontinuous

coefficients, we direct the reader to KELLOGG (1971) & (1972).

We now reformulate the classical linear elasticity problem (1.1)—(1.2) following the same

steps used in the reformulation (1.3.4) of problem (1.3)—(1.4). For a rigorous treatment of the

theory of elasticity we direct the reader to either MARSDEN & HUGHES (1987) or SPENCER

(1980). We will restrict ourselves to problems of isotropic linear elasticity, i.e., problems for

which the coefficients aI5kl, 1 <i, j, k, 1 ^ 2 are given by the equations

a1i11 () = A(x)+2p(), aj, i2 () = 0,	 ai,21() = 0,	 ai,22() = A()

= 0,	 a12,2() = p(), a1221 () = p(), a i222 () = 0

= 0,	 a2112() = p(), a2121 () = p(x), a2122 (x) = 0

a221 ,(x) = A(),	 a22i2() = 0,	 a222j() = 0,	 a2222() = A(x) +2p()
(1.3.11)

where A and p are the Lamé and shear modulii functions defined according to the relations

	

zE(x)	 def E(x)	
E 11	 (1.3.12)

	

A() = 1-v2 '	 - 2(1+v)'

where v E (0, 1/2) is Poisson's ratio and E is Young's Modulus of elasticity, cf. KNOPS &
PAYNE (1971). We shall say that the coefficients a15k1, 1 ^ i,j, k, 1 ^ 2 are uniformly elliptic

if there is a constant p> 0 such that, for E 11,

15a15k)k1 ^ p	 = jj,	 eR, 1 ^ i,j	 2.	 (1.3.13)
i,j,k,1=1
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However, it is known, cf. KNOPs & PAYNE (1971), that the coefficients are uniformly

elliptic if, and only if,

A(x) + 2p(x) > 0, p(x) > 0, x	 (1.3.14)

Thus, assume that ci, A, p, ii, f are such that a unique solution, u E (C2 (cZ) n C1())2,

of problem (1.1)-(1.2) exists; multiply (1.2) by v1 E V, 1 ^ 1 ^ 2; integrate the resulting

equation over Ii; use the divergence theorem to deduce the identity

a(u,v) = F()
	

(1.3.15)

where, for u, E V2,

a(,)	
'ijkZ-_1	

C)dx, F()	 .)d+

(1.3.16)

We can now generalize the elliptic boundary value problem (1. 1)-( 1.2) to include domains

Ii E C°"; right hand sides f E (C2 (ci)) 2 ; Lamé and Shear modulii A,p E C(ci) which satisfr

inequalities (1.3.14) almost everywhere in ci; boundary conditions JJD 6 (H"2 (ôciD )) 2, e

(A(OIZN)) 2. We do this, once again, by interpreting derivatives in the weak sense, cf. (1.2.11),

and defining € (H (1l))2 to be the weak solution if it satisfies Tr (!&)IocD ltD and

a(lt,) :=F(v), 11€ (H(cz;aciD )) 2	 (1.3.17)

where a, F are defined in relation (1.3.16). We assume that a(011D ) > 0 and use the Lax-

Milgraxn Lemma to show that the weak problem (1.3.17) has a unique solution E (H'(ci))2.

We do this by demonstrating that a, F satisfy the conditions of the Lax-Milgram Lemma.

If f E (A(ci)) 2 and E (.C2 (DciN )) 2 then the Cauchy-Schwarz inequality implies that F E

13L((H 1 (ul))2; JR) and if A, p € 40 (cl) then the Cauchy-Schwarz inequality also implies

that a L3C((H'(ci)) 2 x (H1 (1l))2 ; IR). The (H(ci;ôciD )) 2-ellipticity of the bilinear form

a follows from Korn's inequality, cf. BRENNER & RIDGWAY SCOTT (1994),

fi c(v) 2 dx ^ C v; (H'(1l))211,	 E (H'(ci)) 2	 (1.3.18)
i,j=1

where C > 0 is a constant independent of v, a(8ciD) > 0, and cjj (v) T (t9v 1 /&c +

8v,/3x)/2, 1 < i,j < 2. If A, p, !&D, t, f, 1 ^ I 2, and ci are sufficiently smooth then

the weak solution, u, will belong to (H2 (ci) )2. However, for problems with discontinuous

Lamé functions A, p we anticipate that the weak solution, lt, will possess the lower level of

regularity u 6 (H1 (ci)) 2 for some a E (0, 1].

We note that the level of regularity of the solutions u, lt of problems (1.3.4) and (1.3.17)

will play an important role in determining how rapidly the approximation errors

- uh; H ()II,	 II - t; (H 72 (ci)) 2 11,	 0	 n ^ 1	 (1.3.19)

converge to zero as the discretization parameter h - 0 where Uh, lth are finite element

approximations of u, U respectively, cf. Chapter 2.
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Approximating Spaces: 2.1

2 FINITE ELEMENT APPROXIMATION

THEORY FOR ELLIPTIC BOUNDARY

VALUE PROBLEMS

We recall that the weak problems (1.3.4), (1.3.17) are formulated in terms of the infinite

dimensional Sobolev spaces H' ('Z) and that practical analytical expressions for the weak

solutions u, u of these problems are rarely available. Thus, we aim to show how one can use

finite element techniques to construct approximating subspaces S' (1), h> 0 of the Sob olev

space H1 (Il) and obtain practical algorithms which allow one to compute approximations

Uh E Sh (1l),	 (S"(l))2 of the respective weak solutions u E H1 (1z),	 (H'(1))2. We

demonstrate how the approximations are computed using the Galerkin approach and, taking

into account the solution regularity, we provide some error estimates for the approximations.

We make no attempt to be comprehensive and direct the reader to any of the texts Aziz &

BABUKA (1972), ODEN & REDDY (1976), CIARLET (1978) for a rigorous treatment of

finite element methods.

2.1. Finite Element Approximating Spaces.

We assume that 1 cc R2 is a polygonal domain and say that 7(1) {r2 I Ti C l, 1 ^ i ^
is an admissible triangulation of 1 if the following conditions are satisfied: (1) if T E 7()

then r is an open triangle, i.e., T = int(T), (2) Tj fl T3 = 0	 i j, (3)	 =	 (4) if

i j then F fl is either null or a common side of the elements r, 'T2 , (5) max{diam(r) T E

7)}=h.
Let 7 (Il) be an admissible triangulation of 1 then a point E is said to be a node of

7(1) if x is a vertex of some finite element r e 7(1l). We define the approximating space

S'(12) of piecewise linear functions, over the field F, for the triangulation 7(Q) as follows

Sh1 (1l) T {v E C°() J for T E 7(12) there exist a E F, 1 ^ i ^	
(2.1.1)

such that v(x) = a, x, + a2 x2 + a3,

where, clearly, each function v Sl() is uniquely determined by its values at each node of
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(2.1.3)

Approximating Spaces: 2.1

7(). The approximating space S') C H'(cl) is said to be conforming if S'() C H'(1),

we demonstrate the validity of this inclusion relation as follows: Let u E SIc(1) and q5 €

C0°°(l) then, for al	 1,

[u(x) D(x) dx = ) [u(x) D(x) dx

'u(x) qS(x)	 dc7(x) - f Du() q) d]

Dau(x) q5(x) d	
- f Dau() q(x) dg

where (t) = [n, n] is the unit outward normal vector to the boundary D;, 1 ^ i :^ v

and all derivatives are understood in the classical sense. We obtain (2.1.3) from (2.1.2) using

the continuity of u, , the property supp() C 1, and observing that (i)() = xE

5r fl 3r3 . Thus, Dau E £() is a piecewise constant function defined almost everywhere

in Il and the inclusion S' () C W (1) follows. For an admissible triangulation 7 (1k) we say

that S' (1) is the corresponding conforming subspace.
clef.	 hFor n = dmi(S (1)) let , 1 ^ ^ n denote the nodal points of 71) and define the

def	 h	 .basis B(S (1)) =	 of S (1k) where q, 1 z ^ n are the functions with the properties

ii,jn	 (2.1.4)

In the case of elliptic problems with mixed boundary conditions on 	 we assume that the

endpoints of 5I1D are nodes of the triangulation 7Z) and define the subspace Sl; U1r) C

H(;01D) (1 E C0") as

def5h(ç. ôID) 
= {v E gh(ç) 

I V80, = O} (2.1.5)

For m	 dim(S(; DI D )) let	 e \8 D , 1 ^ i m,	 E DAD, m < i ^ n denote

the nodal points of 7(1) and define the basis B(S(; 9c1D))	 of the subspace

ST; 3RD) where çb, 1 <i <rn are the functions which satisfy

1 i m,1^j<n
	

(2.1.6)

The use of the parameter h as an index in the symbol 7(1) is ambiguous because there are

many different admissible triangulations of with identical h. We restrict our attention to

the families of uniform triangulations of 1, cf. ODEN & REDDY (1976), i.e., {7() I h > O}

is a family of uniform triangulations of if, for h7 diam(T), r E 7(1),

h/min{h,. T E 7(1)} = 1, h > 0	 (2.1.7)

We note that it is often necessary when attempting to approximate solutions of singular

problems to consider families of quasi-uniform triangulations, i.e., families of triangulations

{7() h> 0} which satisfy

h/min{pr I r E 7()} C, h> 0
	

(2.1.8)
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Galerkin Approximations:

where C> 0 is a constant independent of h and Pr IS the maximum diameter of any circle

which can be inscribed in 'r E 7(1l). In Section 2.2 we introduce the Galerkin approach and

obtain approximations U,, S(1l; alD), (S(1l; 3D))2 of the respective weak solutions

u E H(1l;31 D), E (H(1;O1 D )) 2 of the weak problems (1.3.4), (1.3.17). We will deter-

mine upper bounds for the approximation errors u - uh; H'(1flhI, Ili - ith; (H"(1))2Il, 0 ^

n < 1 using the following result from approximation theory, cf. HACKBUSCH (1992).

Theorem 2.1. Let 71), h >0 bean admissible triangulation of Il then, foru E H'(1)fl

H(Il;UlD ), 0 ^ A ^ 1,

inf{IIu—vh ;H1 (l)II : Vh ESI;l91lD)} ^ C(9)hA lIu;H(c)II	 (2.1.9)

where 9 is the smallest interior angle of any 'r E 71).

For the case of problems with piecewise smooth coefficients which vary discontinuously along

a polygonal curve r C we construct admissible triangulations 7 (11), h > 0 which have the

property that T fl F = 0, i- E 7(1). We do this because the solution has a higher level of

regularity over a neighbourhood 0 when it excludes regions of discontinuity and, in this way,

we obtain more accurate approximations than would otherwise be the case. For example, if

U E H'() flH2 (r), 0 < A < 1, r E 7(1) then it follows from the theory of approximation,

cf. HACKBUSCH (1992), that

1/2

inf{ II u—vh; H ()II	 Vh e S'(c)} <Ch2	 j	 Il u ; H2 (r)11 2	, 0 ^ n ^ 1 (2.1.10)

where C > 0 is a constant independent of h. However, if there exists a r € 7(1) such

that r n F 0 then II V (u - V ,,)112 = 0(1) (h -^ 0), Vh € Sh (c) and the optimal ll•;H'(1)II
approximation order is reduced from 0(h) to 0(h1/2 ) as (h - 0), i.e.,

inf{ ll u—vh; H'( ì)Il : Vh E Sh(ç)} = 0(h1/2 ) (h -^0)

We note that the discontinuities along F can lead to solutions with singular points, cf. KEL-

LOGG (1971), which often result in lower orders of approximation than is suggested by

(2.1.10). For a rigorous treatment of approximation in Sobolev spaces we direct the reader

to Aziz & BABUKA (1972)

2.2. Galerkin Approximations.

We now introduce the Galerkin approach to approximation for the weak problems (1.3.4) and

(1.3.17). We demonstrate how the finite element spaces defined in Section 2.1 can be used to

construct approximations of the weak solutions and we establish upper bounds for the errors

which this process introduces.
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For the case of scalar problems let V denote an infinite dimensional subspace of H1 (1),

e.g., H01 (1), and define u as the solution of the weak problem: Find u E V such that

a(u,v) = F(v), v e V	 (2.2.1)

where a BC(V x V; C) is a V-elliptic sesquilinear form and F E BC(V; C). We let

Vh denote a finite element subspace of V, cf. Section 2.1, corresponding to an admissible

triangulation, 7(fl), of 1 and define the Galerkin approximation u, E Vh of u E V as the

solution of the problem: Find U,, E Vh such that

a(uh ,vh)=F(vh), v,,V,,	 (2.2.2)

Because Vh C V the Lax-Milgram Lemma shows that problem (2.2.2) is well defined, i.e.,

it has a unique solution u E Vh. To compute the solution, Uh E Vh , of problem (2.2.2) we

require a basis 13(Vh) of Vh. We use the basis B(Vh) = {cb}, where çb, 1 ^ ^ m are the

functions which satisfy the nodal interpolation conditions (2.1.6). Clearly, problem (2.2.2) is

equivalent to the problem: Find Uh E Vh such that

a(u,,, q ) = F(q5), 1 i ^ m.	 (2.2.3)

Furthermore, this problem can be formulated as a system of algebraic equations: Find 	 E

C tm such that

Ah,, =Eh, A E C tm 'm , Eh E C tm	 (2.2.4)

where (A,,) = a( 5 , q),	 = F(cb,), 1 ^ i,j m. Indeed, defining the bijective linear

operator M :	 —* V, according to the relation

uEC m ,	 (2.2.5)

it is apparent that problem (2.2.3) is equivalent to the linear system (2.2.4) in the sense

that the solutions satisfy My,, U,,. In the case of linear elasticity we note the following

differences: The Hubert space V is a subspace of (H' (1))2; the system (2.2.4) has dimension

2m (rather than rn) with

(Ah)13 
=	

(E)	
F(e,q53) , 

1 ^ i,j ^ m;	 (2.2.6)
a( 2q5,e,) a(e2 q52 , 2 )	 F(2q3)

the linear operator M: 2	 V,, is defined as

C 2 ,	 U.[u2i_1], 1 ^i^m.	(2.2.7)

Clearly, from the definition of Ah , it follows that Ah A,,H and

a(u,,, V) = vA,,u,,, U, Vh E V,,

where U = Mu,,, v,, = Mj,, and (conjugate transpose). We will sometimes use the

engineering terminology and call the system matrix A,, the stiffness matrix and the system

right hand side E,, the load vector.
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2.2.1. Computation of the Stiffness Matrices.
We now describe how the stiffness matrices are computed for problems (1.3.4), (1.3.17). We

begin with scalar problems and observe that, for Uh, Vh E Vh,

a(uh,vh) = :i: a7 (uh,vh), F(vh) = :: F7 (vh )	 (2.2.8)
rET.(2)

where the subscript r in (2.2.8) indicates that the integrals which define the operators a, F

are restricted to the triangle r of the triangulation 7(1l), cf. (1.3.5), (1.3.16). For each

T E T,,(l) let 4 ) , 1 ^ i ^ 3 be local node labels for the triangle T which are also labelled

x, 1 ^ i ^ 3, cf. Section 2.1, where ri2	 G7 (i), 1	 i ^ 3 and G7 :{1,2,3} -+ {1,...,m}

is the globalization map which maps the local node numbers, {1, 2, 3}, to their global values,

{1,.. ,m}. Then we define the boolean matrices A7 E ]Rm,3 , r E 7() according to the

relation

(Ar)p,q {:
	

gr	 1 ^p^m, 1 ^ q^ 3	 (2.2.9)

The decomposition (2.2.8) and definition (2.2.9) permit one to express Ah ,	 as follows

Ah =	 ArAr,A,	 =	 (2.2.10)
rE7((Z)	 TETh(())

where, for T e 7(), A,. , ,, E R33	 ,, e ]R3 are defined as follows, for n	 G7-(i), 1 ^ i ^ 3,

	

def	 def

	

(A,. ,h ) 3 =	 (i,h)j = F,.(q 3 ), 1 ^ i,j ^ 3	 (2.2.11)

For additional properties of the boolean matrices A,., r E 7 (Il) we direct the reader to 0 DEN

& REDDY (1976). For problems of linear elasticity we observe the following differences. The

boolean matrices A,. E R2m,6,r e 7(1) are defined blockwise as

def i ifG,.(q) =p
(Ar)p,q	

if G,.(q)	
1 p<m, 1 <q<	 (2.2.12)

where I e 1R2 ' 2 is the identity matrix and 0 E ]R2 ' 2 is the zero matrix and, for r E Yh(1),

A,. , ,, E 1R6 '6 , EL,.,,, E	 are defined blockwise as

(A,. h) 
=	 1	 = 1i,j3(,.,h)i

L a,.( 21 ,i q )	 LF,.2cbn1)]
(2.2.13)

We determine the values of a,. ((/, çbJ, a,. (e çb715 , e3 q'i, , ), F,. (,), F,. (ercbj), 1 ^ r, s ^ 2, 1 ^
,-,-, def

i,j 3 used above by employing an affine map W,.:T -^ 'r, .L = {(,i) 10 ^ +i7 ^ 1,0

1} to transform integrals over elements 'r e 7(l) to integrals over T. Thus, if

r e 7() is a triangle with nodes	 , 1 i 3 then we define	 as

'1',.()	 +2)4'2()	 E T	 (2.2.14)
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del	 delwhere ()	 1 - t, - t2 , (t) = t, () = t2 and use Wr to transform integrals as follows

J

Du	 Dv	
(W(t))u.(.(t)IJ(W(t))I	 1i,j2.	 (2.2.15)

	

-	 Dxi- - IT

	

b(x)	 () —(x)dx= b

where IJ('1J ())I denotes the determinant of the Jacobian of W(t) = [W 7,,(), W 7,2 ()], t E T,

i.e.,	 'Ji,.,(t)/Dt, 1 <i,j < 2,

DWr,i	 U'1 r,2 	DWr,2	 DWr,i

= ______ ______ - a,	 at2	
E T,	 (2.2.16)

and the functions uz, , 1 i, j ^ 2 are determined from the following relation which, for

v e C1 (f), shows how derivatives change under the transformation '1!,-

r8	 1	 1
I()_	 1	 I	 Dt2
I Dv	 I - IJ(Wr ())I I
L5x2 - j	 8t2

DWr,2	
t

- at,	 11(t)

- v2(t)
Dt, ''	 Dt2

(2.2.17)

-	 clef
where v() = V(Wr()), t e T. We note that the transformation (2.2.14) has a constant

Jacobian matrix J('(t)) E R2 '2 , e.g., J(W(t)) x? - 4', 1 ^ i,j ^ 2. Thus, we

determine A,h , £h, r E 7(1l), cf. (2.2.11), (2.2.13), using the affine transformation W, cf.

(2.2.14), which allows us to perform all computations over the reference element T.

2.2.2. Analysis of the Galerkin Approximation Errors.

We provide a short description of how one combines the results from the theory of approx-

imation in Sobolev spaces with the lemmas of Céa and Aubin-Nitsche to obtain a priori

error bounds on the Galerkin approximations, uh, , h> 0, of the weak solution u, u. The

results which we obtain are abstract in the sense that they demonstrate that the Galerkin

approximations converge to the weak solutions in the Sobolev norm topologies as h -^ 0 but

they do not provide estimates of the actual errors.

We begin with the important Lemma of Céa which we use to demonstrate convergence

of the Galerkin approximations in the H' (Il) norm topology.

Theorem 2.2. (Céa's Lemma) Let Vh be a finite element subspace of V corresponding to

an admissible triangulation 72), h > 0 of ft If u E V is the weak solution of (2.2.1) and

'Uh E Vh is the Galerkin approximation of u E V, i.e., it is the solution of (2.2.2) then

Il u - uh;H(12)II	 C inf{ Il u - vh; H'( l )II	 Vh E Vh}
	

(2.2.18)

where C> 0 is a constant independent of h> 0.	 U

Proof It is apparent from relations (2.2.1) and (2.2.2) that

a(u - h, Vh) = 0, v1 E Vh .	 (2.2.19)
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Thus, using orthogonality property (2.2.19) and the continuity and V-ellipticity of the

sesquilinear form a:V x V - C we obtain the inequalities, for Vh E Vh,

	

pllu - uh; H' (11)11 2 ^ a(u - Uh,U Uh) = a(u - Uh,U - Vh)
	

(2.2.20)

	

^ M a ll ll u - uh ;H'(lI)II ll - vh;H'(Il)l
	

(2.2.21)

u-uh ;H(Il)Il ; Chlu-vh;H'(11)
	

(2.2.22)

where C = hall/p. U

The importance of Céa's Lemma is now clear: If U E H'(11), 0 < A < 1 then Theorem 2.1

and inequality (2.2.18) imply the upper bound

lu-nh;H(Il)hl ^ Ch' llu;H1+A (11)hl, h>0	 (2.2.23)

where C > 0 depends on 0, h a ll, p, cf. Theorem 2.1. We point out that for problems of

linear elasticity the above results are valid if one replaces u, uh, H' (Il) with, respectively,

!&,' (H'(1l))2.

It is sometimes necessary to obtain upper bounds for the error in the £2 (Il) norm topol-

ogy. We demonstrate how one can use the approach of Aubin-Nitsche to determine a bound

of this type from results which are already available. Thus, let u e V be the weak solution

and Uh E Vh its Galerkin approximation and, for I E £2(11), define Af e V as the unique

solution of the weak problem, cf. Lax-Milgram Lemma,

a(v,Af)	 (f,v;L2(1^)), v E V
	

(2.2.24)

However, noting that u - Uh E V we let V = U - U1, in (2.2.24) and obtain the identity

a(u-uh,Af) = (f,u—u1,;12(11))

The orthogonality relation (2.2.19) and identity (2.2.25) then imply

(f,u_uh;I2(1Z)) = a(u — uh, Af —Vh), Vh EVh

and we use the continuity of a to deduce the inequality

(f, u - u; £2(11))l	 Ik'II lu - uh; H' (Il) II inf{ hAl - vh; H1 (1l)ll : Vh E V1,}

Indeed, (2.2.27) and the identity

lu - uh; £2(1l)ll = sup { l(f u - uh)h/IIf; £2(fl)ll : f E

then imply the inequality

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

hl u - uh; £2(11)	 lu - uh; H' (11)11

suP{ inf{lIAf_ vh; H '(11)ll : Vh E Vh}/llf;2(11)ll : f E2(11)}

(2.2.29)
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However, if A E B(C2 (l); H'(fZ)), 0 < A ^ 1 then Theorems 2.1 and 2.2 imply, for

I E £2(l),

inf{ hAl —vh;H 1 ()II : Vh Vh}/hIf;2()hI 
^ C(0)hAhIAf;Hl+A(()lI ^ C(0) hAIIAIJ

Ill; £2 (Il)1I

(2.2.30)

where C(G) > 0 and 0 is the minimum interior angle of any triangle T 7(cl). It now follows

from the error bound (2.2.23) and inequality (2.2.30) that there exists a constant C > 0

which is independent of u, h, Uh such that

hl u	 uh;A2(cz)hI ^ Ch	 lu; H'() II	 (2.2.31)

The sequence of steps leading to the upper bound (2.2.31) are to due to Aubin and Nitsche, ci.

CIARLET (1978), and require that the linear operator A:L 2 (cl) -+ H'(1l) be bounded. For

problems with smooth boundaries and coefficients it is known that A E BC(C2 (1); H2(1)),

however, for general abstract problems of lower regularity this remains an open question. We

will assume that A is bounded for the problems which we consider. Furthermore, we point

out that the above steps can be generalized to include problems of linear elasticity in the

same way that we modified the steps of the proof of Céa's result for problems of this kind.
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Introduction: 3.0

3 HOMOGENIZATION OF ONE
DIMENSIONAL ELLIPTIC BOUNDARY
VALUE PROBLEMS

3.0. Introduction.

The general effects of rough coefficients in elliptic problems and systems, particularly the

difficulties they cause, have been discussed in chapter 2 and, as has been stated there, we

seek to produce robust numerical schemes which are effective for solving multi—dimensional

problems, ultimately of linear elasticity, where material properties change repeatedly and

rapidly due to the presence of composite materials. As a first step towards this end we

limit our attention in this chapter to rough scalar problems with a single function u as the

solution. Moreover, for reasons given earlier we also limit consideration to problems in one

space dimension.

A feature of problems of this type is that the coefficients and the solutions depend on a

problem defined parameter, c> 0, which is, generally, significantly smaller than the diameter

of the domain of the problem, f. Indeed, we consider the particular circumstance in which

the coefficients are periodic with the period defined by the parameter c and introduce an

asymptotic approach which is motivated by a concept called homogenization. Thus, if the

abstract problem: Find u E H' (2) such that

f
aE (x)Du6 (z)Dv(x)dx = ff(x)v(x)dx, v E H(11)	 (R)

is impractical for numerical approximation and if there is a homogenization principle, i.e.,

in some sense, ae a0, UE -4 U (r -4 0) (cf. Section 3.0.1) where u0 E H(1l) satisfies the

Homogenized equation

j
ao(x)Duo(x)Dv(x)dx = f f(x)v(x)dx, v E H(1),	 (H)

then one should employ (H) as a basis for the approximation of ue rather than attempting

to approximate the solution of (R) directly. This assumes, of course, that the solution, u0,
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Introduction: 3.0

of the homogenized problem (H) can be approximated more efficiently and accurately than

the solution, UC, of (R). This is often the case however, because the homogenized coefficient,

a0 , is constant and the solution u0 generally has a higher level of regularity than uc.

The difficulties with rough coefficients are reduced by studying model one dimensional

prototype differential equations because, in this case, the computations can be performed

analytically for problems exhibiting a variety of levels of regularity. We introduce our asymp-

totic approach in Section 3.3 and in Sections 3.4, 3.6-3.8 we determine how problem regularity

affects this approach through a number of examples in which analytical and computational

results and graphical illustrations are provided.

3.0.1. Motivation for the Asymptotic approach.

The asymptotic properties of the mathematical model, as E —+ 0, where e is the period of

the medium, are fundamental to the concept of homogenization. Thus, let us first consider
defthe following abstract problem, stated in the classical form, over the domain l = (0, 1) with

mixed boundary conditions: Find uc E C2 (1) fl C'() such that

or	 1

__Iae(x)_(x)I +be(x)uE(x)=f(x), xEf
Dx[	 Dx J

	

ae(x) Du
e	 I

—(x)I =ue(1)=0

	

Dx	 I
z=O

where f E C°(1l), ac E C'(), b6 e C°(1l) and, for x E f,

0 <cit < ae (x) </3<00

0<b6(x)</3<oo

(3.0.3)

(3.0.4)

By rewriting relations (3.0.1), (3.0.2) in the weak form, cf. Chapter 2, and assuming that

relations (3.0.3), (3.0.4) hold for almost all x e 1, we generalize this problem to include

functions f E C2 (1l), ac , bC E L(1Z) as follows: multiply (3.0.1) by a test function v E

H' ;°(Il) T {v H1(c) I v(1) = 0} and then integrate the resulting equation by parts to

obtain

aC	
Due	Dv

(x) —(x) —(x) dx + be (x) ue (x) v(x) dx 
= J f(x) v(x) dx, v E H°(f2) (3.0.5)

Ox

where, as a consequence of the boundary conditions (3.0.2) and the definition of H°(11), we

have observed that the following boundary term vanishes:

x=i
_ae (x) —(x)v(x)I	 (3.0.6)

Dx	 Iz=O

The weak formulation of problem (3.0.1), (3.0.2) is then: Find uc E H"°(Q) such that (3.0.5)

holds for all v E H1 '°(I^). Because this problem satisfies all the conditions of the Lax-Milgram

lemma it is evident that a unique solution C E H"°(Il) exists.

HOMOGENIZATION	 27



-4 0 (n -4 oo) (3.0.9)

(3.0.10)

Introduction: .9.0

If, conversely, we begin with the weak formulation (3.0.5) and ac E C'(), be, f e C°(fZ),

and u6 E H 1 '°() fl C2 (l) fl C() satisfies (3.0.5) then integrating relation (3.0.5) by parts

we deduce

—(x)v(x)I	 = 0 (3.0.7)f { 0 1ac(x)(x) 1 +bc(x)uc(x)_f(x)}v(x)dx+ac(x)
Ox	 IOxL	 Ox j 1x0

Now consider the test functions v, E C00(1) fl H'°(1), n E N defined as follows

del I e_'1 x)_1 /e, if 0 ^ x < 1/n
ifl/n^x^1

Clearly, v(0) = 1, v,(1) = 0 for all n E IN, II vn;2()II -40 (n -+ oo), and

(3.0.8)

1 
8[aE	

Ouc 1J-- (x)—(x)I +bc(x)ue(x)_f(x)} v0(x)dx
Ox J

Ouc	 x=1 Ouc
ac (s) —(x)v(x)	 = a(x) _—(x)l

Ox	 1x0

Thus, relations (3.0.10) and (3.0.7) imply that u6 satisfies the boundary conditions (3.0.2). It

then follows from (3.0.7) that UC also satisfies the differential equation (3.0.1). Thus, the weak

formulation (3.0.5) and the abstract formulation (3.0.1), (3.0.2) are, therefore, equivalent

with regard to classical solutions, i.e., if there is a unique solution uc e C2 (l) fl C1 () of one

formulation of the problem then it also uniquely satisfies the other.

It is well known, cf. BABUKA (1974i), that for I E A() the solution uc E H"°(Il) C

H'(cz) can be bounded in the H'(l) norm topology, e.g.,

line ; H1 (cl)II ^ C(a,13) iif;2()ll,	 0< E <1.
	 (3.0.11)

where C(a, 3) > 0 is independent of f and c. It follows, cf. BABUKA (1974i), that there

exists a monotonically decreasing sequence {c}fl>i C (0, 1] and an element u0 e
called the homogenized solution, such that, for 0 <p 1 and f E BJ(H'(f); ]R),

	

11 u6" - U0; H1 ()ll -4 0 (n -+ oo)
	

(3.0.12)

	

(f,uc) — (f, uo)I -4 0 (n -4 oo)
	

(3.0.13)

For a homogenization principle to exist one asks - Does u0 satisfy a boundary value problem

of the same type as uC ? Indeed, there are a number of theorems which establish precisely

this property, i.e., u0 is the solution of an elliptic problem, analogous to (3.0.1), which is

independent of c. The following is typical of such theorems, see, for example, MuRAT &

TARTAR (1994), BABuKA (1974i), and ALLAIRE (1992).

Theorem 3.0.1. Let ac , bE satisfy conditions (3.0.3), (3.0.4). Further, let 1/ac	 1/ao, bE

b0 (c -4 0) in £2 (1). Then UC converges to u0 as in (3.0.12), (3.0.13) where u 0 E H1°(l)

satisfies

	

I

Ov

	

	
(x)v(x)dx=ff(x)v(x)dx,ao—(x)—(x)dx+ b0u0

Ox	 Ox	 .L
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In addition a6 ôn/(9x -4 a0 9u0 /(9x (r —* 0) in £2(l).	 U

The properties of uc, described above, motivate the consideration of asymptotic expansions

as a form of representation for u6 . Although, the homogenization concept defined earlier is

primarily concerned with the utility of the leading term, uo, in such representations, it will be

seen that the inclusion of additional terms can provide more accurate approximations of u6 in

the £2 (2) and H' (Il) norm topologies. Thus, the homogenization approach is subsequently

assumed to encompass also the higher order asymptotics.

We take the following cell boundary value problem as our prototype for illustrating the

practical/computational difficulties caused by the irregular data. The coefficients are chosen

to model the presence of heterogeneous materials — this introduces irregularities (indeed, in

higher dimensions, singularities) — and the parameters e = 1/r (cell size), n, a,, a2 ,b,, b2

control the variation of material properties within the medium.

2nr-1UU6 )] 
+ b(x)tt(x) = f(x), x e	 (xi, x±)

_ 

[a (x) —(x
12

ID
[u6(x)]. 

= [	
(a(x)u6 (z)) ] ,
	

0, 1 ^ i 2nr — 1

= ue (1) = 0

where a(x) ! a(x/), b(x)
def

xj m = (l+m/2n), i=l+m, 0t^r, 0<m<2n

[v(x)].	 lim v(x1 + 5) - lim v(x - 5), 1 ^ ^ 2nr - 1
6-40+	 6-40+

and the functions a12 , b12 are 1—periodic and are defined below, 0 ^ i ^ n - 1,

Ia,,	 ^x<'	 (b,,	 ^x<±i
a(x)	 -	 b12(x)	

.	
(3.0.17)

	

1a2, !±i<x<.±	 b2,	 ±i<<.!±2

Evidently, r E FT denotes the number of periodic cells in = (0, 1) while 2n e FT is the

number of transition points generated by a typical cell, see Figures 3.0. la,b. Increasing the

parameters r or n will cause the functions a, b to oscillate more rapidly while varying

a,, a2 , b1 , b2 alters the magnitude of the discontinuities.

Figure 3.0.la: Overall problem domain, 1: 	 = lr, 0 1 r.
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'O	 1	 '2	 3	 4	 2n-4 2n-3 '2n-2 '2n-1 O

Figure 3.0.lb: Graph of a :	 = (1 + m/2n) E, 0 ^ m ^ 2m, 0 < 1 <r.

It is assumed that constants a2 E H exist, which are independent of e, such that, for j 1, 2

o < a1 ^ a2 ^ a2 <00
(3.0.18)

0<b2^a2<oo

The weak formulation of the boundary value problem (3.0.14)-(3.0.16), obtained by mul-

tiplying (3.0.14) by v E H'°(fZ), integrating by parts over Il, applying the boundary condi-

tions (3.0.16), and observing the transition conditions (3.0.15) is: Find UE E H'°(1) {v e

H'(Il) I v(1) = 0} such that

f a(x) -(x) -(x) dx+f b(x) u6(x) v(x) dx f f(s) v(x) dx, v E H°(I) (3.0.19)
S	 5

If one employs, as described in chapter 2, an isoparametric piecewise linear finite element

approximation, S'(1) C H°(2), on a uniform triangulation with each finite element corre-

sponding to a single periodic cell, i.e., h = c, then, with such an arrangement, it is known

that one obtains the algebraic system of equations, cf. BABUKA (1974i),

Ahj=	 (3.0.20)

where Ah = A + P E H'' is the stiffness matrix, Fh e R is the load vector, and A E 1R'

is obtained from the identical finite element discretization of the weak problem: Find i1 E

H' ;°(c) such that

	

Di	 DV	 J () v(x) dx 
= f f(s) v(x) dx, v E H'°(1)	 (3.0.21)/ —(x)—(x)dx+

	

j- Dx	 Dx

where = (a1 + a2 )/2, 1 = (b + b2 )/2, and the matrix P, E W" has the property (P) j,m -4

0 (m -^ 00) for 1 ^ 1, rn	 r . We denote the finite element approximation of u by

=	 i/, and, similarly, i1h = >Io(h)i	 sh(cl) = span{?11}r 0 denotes the finite

element approximation of 2 E H°(cl). It follows from the identities (I + A 1 P)	 =

AFh = JAh and the upper bounds 11 A '112, Il(A + P0Y'112 ^ Ci (r), IIEh; E2(r)II ^ C2 r as
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Il -* 00 that

Iih-!&h;2(r)Il = IIA'P&;2(r)II

^ II A 	 112 lI P II2 II; £2 (r) II

^ 11 A1 112 II P II2 II(A + P )'II2 Ilh; £2(r)I

C(r,f,Q) IIPII2

-40 (n-+oo,c=1/rflxed) (3.0.22)

In order to obtain (3.0.22) we have observed that the spectral norm IA- 1 112, which is inde-

pendent of n, remains bounded as li -* oo. The continuous dependence of the spectrum,

a(A + Pa), on the coefficients, (Pn ) im , cf. HORN & JOHNSON (1985), leads to the obser-

vation that II(A + P )'II2 = )tmin(A + Pyj )/Amax (A + P) -* lI 4T1 112 )tmin(A)/Amax(A)

as n - 00. Thus, we can choose a common upper bound, Ci (r), for the spectral norms

II A-1 112, II(A + P ) 1 II2 . The upper bound for II;2(r)II follows immediately from the

Cauchy-Schwarz inequality, e.g.,
1.	 1/2

IIh;2(r)II = (EIfiI2)

^	 IIf;.C2@1)II

^ C3(f,l)r

= (E l f f(x)i(x)dx)
'Z= 1 l 0

'cl'i; t2()II

Consequently, from the continuity of the norm function II • ; £2()II, it is clear that

Ii—uC2()Il -4 lI u—Uh;A( l)lI (n-*oo, rfixed)	 (3.0.23)

Thus, the finite element approximations of u, obtained from the subspaces S'(1) C H'°(Il),

which do not model the fine scale variation of the coefficients, converge, as n -4 oo, to the

finite element approximation, 1h, of the weak solution, i, of problem (3.0.2 1). However, for

6, or equivalently, r, fixed and n increasing it is known that, in .C2(1),

1	 1	 lii	 ii	 1	 -
——=—L—+—17,	 b--(b1+b2)=b
a	 a0	 2a 1 a	 2

IIue_ uo;L2 ()II -40 (n-^oo,rfixed)

where u0 is then the solution of the weak problem: Find u0 E H10 (1) such that

	

fa
0 9-(x) !?-(x)dx+fuo (x)v(x)dx = ff(x)v(x)dx, v E H1 °(1)	 (3.0.26)

So, introducing the finite element approach has in effect, cf. theorem 3.0.1, lead to a numerical

approximation of the problem (3.0.21) rather than problem (3.0.19) when n is large. However,

if a 1 a then a0 	and, from the identities,

- 1	 —1 - 1 (.X + 1)2	 def
--(a1+a2)(a1 +a 2 )-;j.	 , A=a/a2
a0	 A

-	 a1+a2	 2	 (a2-ai)2	 1	 I\-1l
a-a0 =	 - 1	 =	 ^-1a2—aiI

2	 a1 +a2	2(ai+a2)	 2
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it is clear that the difference, l - aol, increases proportionately with the magnitude of the

discontinuities, a2 - a 1 . Furthermore, the quotient /ao grows unboundedly as A = a1 /a2 —*

0, oo. Thus, if the jumps a2 — au are large or the quotient A = au/a2 >> 1, << 1, then

the problems (3.0.21) and (3.0.19) are significantly different and, consequently, so are the

respective weak solutions i1, u0. Therefore we expect the approximation u of uE to be

extremely poor when n is large. Indeed, in BABuKA (1974i) it is shown that the error,

ll u — i4; £2(1l)II, will exceed 70% of hue; £2 (l) II when A = a,/a2 ^ 10. The rapid variations

of the coefficients ac and b6 of the problem cannot be practicably accounted for by simply

employing successively higher dimensional subspaces of H'° (1), such a requirement would

rapidly exhaust the resources of most modern computers.

The difficulties illustrated by the simple analysis above demonstrate the need to consider

an alternative approach which is practical and respects the large, rapid changes in the coeffi-

cients of the problem. In section 3.2 we will consider the application of asymptotic techniques

which exploit the rapid variations of the periodic data. The approximation properties of such

methods are well understood for regular problems. However, their behaviour is an open ques-

tion in the context of problems with data possessing low regularity. In the following sections,

homogenization techniques are applied to problems with low regularity data and the results

are explained.

3.1. The Model One Dimensional Problem.

Let .UC E H0' (cl) be a weak solution of the classical problem

a	 ôU	 1
-	 a(x/e)-(x) I = f(x), x E = (0, 1)

= ue (1) = 0
(3.1.1)

where a E £(1Z) is a 1-periodic function which is continuous at the points n E Z and

satisfies 0 <a1 ^ a(y) ^ a < oo, for 0 < y ^ 1, and f E C2 (l) and c> 0 is a parameter

which corresponds to the period of the medium being modelled.

Application of the Lax-Milgram lemma to the weak form of (3.1.1), interpreted in a

Sobolev space setting, establishes the existence of a unique solution ue E H0' (cl) which,

furthermore, satisfies the regularity estimate

llue ;Hl (l)lh ^ Cf;.C2 ()	 (3.1.2)

where C = C(f) > 0 is independent of tt. However, this problem is also obtained as the

restriction to 1 of the related problem

51	 aL	 1
--Ia(x/e)—(x)I fc(x), _OO<X<OO

SxL	 Dx ]

where Ic is then the periodic extension to ]R of the function

(3.1.3)

dcl ( -f(-x), if-1^x0 (3.1.4)fA(x)= t 1(x),	 ifO<x^1

HOMOGENIZATION	 32



Model Problem: 8.1

Thus, Ic can be represented with a Fourier series expansion

def
fc(x) = >	 xE ]R	 (3.1.5)

nEZ\{O}
where

def
a =	 j f(x) ein7t2 dx, C	 (-1, 1)	 (3.1.6)

Thus, following the analysis of BABUKA & MORGAN (1991), one can write the solution

of (3.1.1) in the form

ue(x)=	 afleitI(x/6,e,tfl)	 (3.1.7)
nEZ\{O}

where t, = nir and a, n E Z\{O}, are the Fourier coefficients of fc and x '— q5(x,c,t) is a

complex-valued, 1-periodic function that satisfies the periodic boundary value problem, for

> 0, It > 0,

__?_ [a(x)_(eute(x,c,t))] = E2 eit , 0 <x < 1

= (1,c,t)	 (3.1.8)

a(x)	 (x,E,t)	 = a(x)

The differential equation (3.1.8) is evidently defined within the standard periodic cell P

(0, 1) and, therefore, if one determines q, either analytically or approximately, the corre-

sponding expression for uc is provided by (3.1.7). Thus, instead of analysing the global

problem (3.1.1) one can, alternatively, examine a related problem within the periodic cell,

P. However, before considering techniques of approximation, the properties of the weak

formulation of problem (3.1.8) and the respective weak solution, ç, will be studied.

3.1.1. Properties of the Cell Problem.
The weak formulation of the cell problem (3.1.8) is derived by multiplying equation (3.1.8)

by the function e_zt v(x), v E Hgr (P)	 {v E H'(Q) I v(0) = v(1)} and then integrating

by parts to obtain the problem: Find q(.,E,t) E H er (P) such that

r	 a
/ a(x) _(e1tq5(x,e,t)) __(e_itEJ7) dx = 62 fv(x)dx, V E H er (P)	 (3.1.9)

Jp

where it has been observed that the boundary terms

(ite a(x) (x, &,t) + a(x)	 (x, e,t))	 (3.1.10)

vanish as a consequence of the continuity hypothesis for a and the boundary condition pro-

vided in (3.1.8) for q(., , t). Observe that v(x) = R[v(x)] - i [v(x)] is the complex conju-

gate of v(x) E C. Clearly, the sesquilinear form for this problem is defined as follows, for
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U, v e Hier(P),

def	 itex(E,t)[u, vi	 / a(s) - e u(sf _ e_ite7) dx
ax(	 )ax\

=	 —(x)—(x)dx+eit a(s) 	
v	 ôu -

a(s) 
au	 0vL	 ax	 ox	 f	 (u(x)-_(s)—--(x)v(x))dx

+62t2f a(x)u(x)dx
p

def	 r
= oLtL,v] +ci(t)[u,v] +E22(t)[u,v]

The sesquilinear form is clearly Hermitian symmetric, that is, (c, t) [u, v] = (€, t) [v,uJ,

u, v e Hp'r(P) . Furtberfllore, that (c, t) is continuous over Hp'er (P) X Hp'er(l') follows from

the inequalities

io{u, vJ I	 a2 I(Du, Dv; £2 (1')) I	 a2 II Du; £2 (1') II llDv; £2 (P) II

a llu ; .E1 '(P)ll llv;H1CP)lI
a l t I(l(u , Dv;2(P))l + l(Du,v;.C2(7'))l)

2 t (ilu ; £2(1')lI ti Dy ; £2(1')lI + Il Du; £2(P)ll li v ; £2(P)ll)

2cy Iti lu; 1I'('P) II li v ; .11' (7') II

l2(t)[u , vii	 a2t2I(u,v;c2(7'))I

a2 t2 llu ; . 2(p )II li v ; £2(P)il

a t2 ll u• 1"(P)II li v ; .H'(P)ll

(,t)[u, vu	 lo[u , v]l +el i (t)[u,v]l +62 
l2(t)[u,viI

C(e, t) lI u ; H' (P) ii li v ; H' ()ll

(3.1.11)

(3.1.12)

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

where C(&, t) = a2( 1 +26 1 tI+t262 ) >0. Thus, the sesquilinear mappings o, 1 (t), 2(t), and

(6, t) E 13(H er (P) '< H(P); C) with li'(E , t)Ii ^ C(c, t) and	 is positive semi—definite

over H'er(P) x H,er(P) i.e., o[v,v] ^ 0, v E H, er (P). In fact, from (3.1.11), o[1,v] =

[u, 1] = 1] = 0 and, furthermore, from (3.1.13), ,(t)[1, 11 = 0. In arriving at the

following H(P)_Ellipticity property of (e, t) we have employed Lemma 2 of BABUKA

& MORGAN (1991ii):

2
l(E,t){v, vii = [a(s) iD(eitj Y)i dx

Jp

^ a, [ lD(e t v (x)) 1 2 dx
Ji,

> Cai (1 + I t t) -1 lv; Her(P)ll

where C> 0 is a constant independent from 6. Thus, the Lax—Milgram lemma proves that

there exists a unique solution /i(s,E,t), 6 > 0, Itt > 0 of (3.1.9) in H,r(P). Furthermore,
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with v e Hp'er (7'), we observe that

4(E,t)[q5(.,E,t),v] _e2fidx

=	 —t)[q(.,e, —t),v]

However, it follows from this relation and the definition of (c, t) that

= 62 L v(x) dx, v E Her(P)

and, therefore,

(e,t)[q(.,e,t)	 q!(',E,),v]	 0,	 V EH,er(P)

Thus, with v = q5(., E,t) -	 , e, —t) in this relation we deduce that

tj(x,,—t) = (x,6,t), x El', e>0, tI >0

Furthermore, if it occurs that a is symmetric about the origin then, exploiting periodicity

and employing a sequence of elementary transformations for the defining integral of the

sesquilinear form (6, t), 6 > 0, tI > 0, we deduce the following equations, for v E

aI a(—x) a 
( it	 6, t)) - (e	 v(_x)) dx = 62 I v(—x) dx

ax \ ii,

,.	 (e,t)[(.,e,t),v] = 62 [ v(x)dx
Ji:'

del	 /
where '(x,E,t) = —x,e,t), x E IR, c > 0, > 0. However, from these relations we now

deduce the following conjugate symmetry properties of

4(6,t){çb(.,E,t) —1j(.,E,t),v] =0, v e Her(P)

q(x,e,t) =

(Periodicity)	 = q5(1 - x,c,t), x ER, c > 0, tI > 0

Consequently, if a is symmetric about the origin then çb(., 6, t) is conjugate symmetric about

both the origin and x = 1/2 for 6> 0, ItI > 0. Now consider the circumstance in which a in

(3.1.9) is a piecewise C' function, i.e., suppose that, with = 7, fl 7' = 0, i j,

there exist functions a1 E C1 (,), 1 < I ^ ni such that

a(x) = a,(x), x E 7',, 1 ^ I ^ in	 (3.1.18)

where a	 C°(P) and 7', = (x,_ i ,x,). The weak solution, q5(.,e,t), of problem (3.1.9) is

then also piecewise defined, i.e., çb(x,E,t) = q5,(x,E,t), x E 7',, 1 1 m with çbz(.,E,t) E
02(7',) nO' (p,) and the piecewise components q5, of satisfy the following ordinary differential

equations, for 1 <1 m - 1, 6 > 0, I > 0,

__[az(x)_(ehtl(x,6,t))]	 62itcx, xE?,	 (3.1.19)

with interface transition conditions, for 1 <1 <in - 1,
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(3.1.20)

(3.1.21)

(3.1.22)

(3.1.23)

Model Problem: 3.1

'9(9
(a;)— (eite z+i (x, e, t))ai(x)_(eitz(x,c,t))	 = az+i

ax x=xl	 x=xI

and periodic boundary conditions at a; = 0, 1

q 1 (0,E,t) = q5m(1,e,t)

'9 (9 (zteai(x)_(eitei(x,E,t))	
=

am(x)— e	 rn
ax z=1

It is assumed, without loss of generality, that a(0+) = a(1—) and, therefore, the boundary

condition (3.1.23) simplifies as follows

ôç/)m
---(x,e,t)I	 =---(x,,t)I

Ix=0	 Ix1

However, if this assumption is invalid then one considers the related problem of the form

(3.1.1) with coefficient a(s) a(x + a) and right hand side f(s) = f(x + ale) where a

is chosen such that ä(0+) = a(1-). The solution of this related problem is thus u(x) =
uE(a; + a/c) - u(a/c), a; E K The general solution, q5, is synthesized from the components

q which we have determined have the form

'X

-itq51 (x, e, t) = —e	 dz + cj (c, t) e_it [ —L.dz + dj(e, t)	 (3.1.24)
t	 a(z)	 a(z)

where the arbitrary functions c1 , d1 are determined from the transition conditions specified

in (3.1.20), (3.1.21). If a E C°(P) but a C(P), n ^ 1 then we observe that the transi-

tion conditions (3.1.20), (3.1.21) imply the continuity (9q(., c, t)/t9x E C°(P). If, however,

a C'(7') then the transition conditions (3.1.20), (3.1.21) are redundant and q is obtained

directly in the form

X it	 t	 1
(x, e, t)	 _e_tt J	 dz + c(e, t) et / —dz + d(e, t) et	 (3.1.25)

Jo a(z)

where the arbitrary functions c, d are then determined solely from the boundary conditions

specified in relations (3.1.22), (3.1.23).

If one includes in equation (3.1.19) the additional term ao(x) ei t1 q5(x, e, t) where ao(x) ^

> 0, a; E 7' and a0 E £ (1') is 1—periodic, then the weak solution, q , of the resulting

problem exhibits the important property of holomorphism within a neighbourhood, (e, t) e

C, of 1R2 . This property is established in BABUKA AND MORGAN (1991i) which, thus,

establishes that one can justifiably represent the function q(x, ., s) a; E P as a convergent

power series within the neighbourhood C. Similarly, to provide a theoretical basis for the

power series representations subsequently employed for ç!5(x,.,.) 7', which is the weak

solution of problem (3.1.9), we propose the following Theorem, which is supported by the

computational results provided in Sections 3.2.1 and 3.2.2.
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Conjecture 3.1.1. A neighbourhood GC C 2 of V {(e,t) E R2 : I&tI <2ir, t 0} can be

found such that for each (E,t) E G, there exists a function q5(.,c,t) E H er (P) that satisfies,

uniquely for (E, t) e G, the weak problem

(E,t)[i(.,e,t),v] =e2f)dx, v EH,er(P)

Furthermore, the mapping (E,t) €	 -+ (.t) E Hp1 er (P) is holomorphic, i.e., there exist

functions q( . , t) e H er (P) n ^ 0 such that for each point (, t) E G one can write

E, t) 
=	

q(x, t) , x E P	 (3.1.26)

which is convergent in Hp'er(P), i.e.,

Il(.,E, t)	 N(.,E,t);H(P)M *O (N —+ oo)

where
N

E, t)	 > çb(x, t) E'2

n=O

forN^0.

This property provides the basis for the asymptotic approach developed in Section 3.2 when

the data are piecewise regular, cf., (3.1.19)—(3.1.23). The methods thus developed are then

used to obtain asymptotic approximations for a number of sample problems of varying levels

of regularity, thereby illustrating the behaviour conjectured above.

3.2. Homogenization: Expansions in powers of E.

It has been observed in Conjecture 3.1.1, that with respect to H'er (P), q5(x, ., t) is holomor-

phic. Consequently one can employ the expansion

(x,E,t) =qo(x,t)+eq5i(x,t)+e2q2(x,t)+...,	 () eG	 (3.2.1)

where q5(., t) E H er (P), n E ]NT0 . To determine the functions çb, we substitute the expan-

sion (3.2.1) of j into the weak formulation (3.1.9), then, equate the coefficients of identical eT

terms, n E ]N10 . This process will generate a sequence of equations in Her(P) with çb, n E N0

as the unknowns. Thus, substitution of (3.2.1) into (3.1.9) produces, for v E

e(o[(.,t),v] + 61(t)[q(.,t),v] + E 2 2(t)[(.,t),v]) = E2 jdx,	 (3.2.2)

where the linearity and continuity of (E, t) have been employed to extract the sum from

the sesquilinear mappings	 , i(t), 2 (t). Comparing the coefficients of E'1 , ri = 0,1,... one
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(3.2.3)

(3.2.4)

(3.2.5)

k=0

k>1

Homogenization: 3.2

obtains the relations, for v E Hper(P),

60:	 tI1o[o(.,t),v] =0

e:	 4o[1(.,t),v] = —1(t)[qo(.,t),v]

62:	 o[q52(.,t),v] = f J(dx - i(t)[qi(.,t),v] -

E':	 1o[çb(.,t),v] = -41(t)[q_i(.,t),v] -

Now, write the above equations as follows, for k = 0, 1,...,

4o[k(.,t),v] = Fk (çbo,.. ,k_1;v),	 k(,t), V E Her('P)

(3.2.6)

(3.2.7)

Then, from the properties of 	 observed in Section 3.1.1, it is clear that problems (3.2.3)-

(3.2.6) are solvable if, and oniy if, Fk(cbo,. .. , -i; 1) = 0 for k ^ 0. Furthermore, the

semi-positive definiteness of over H, er(P) x Her(P) implies that, if q(. , t) is a solution

of (3.2.7) then so is q k (.,t) + ck () where Ck is an arbitrary mapping Ck : ]R\{0} —+ C.

However, the solvability requirements Fk(o,... , h-i; 1) = 0, k ^ 0 uniquely determine the

arbitrary functions Ck. Indeed, this is demonstrated in the following theorem, cf. B ABUKA

& MORGAN (1991ii), which also illustrates that the functions q5k(•, t) can be determined in

a systematic fashion.

Theorem 3.2.1. For each k ^ 1 define xk(• , t) E Hp'er,0 (P) {v H'er (P) I j;, v(x) dx =

0} to be the solution of

—	 k=1

o[xk(.,t),vI =	 -i(t)[i(.,t),v] —
	 k = 2	 (3.2.8)

—1(t)[xk_1(.,t),vJ -
	 k>3

for all v E Hp1 er,o(7'), and for each k ^ 0 define gk(t) E C by

{ [	
(t) [x' (., t), 1] + 2 (t) [1, ii] 

-1

9k (t -	
- 90 (t)	 =- g(t) {1(t)[xk+1—j(., t), 1] + 2 (t) [Xk—i(•, t), ii],

Then the coefficient of 6k in (3.2.1) is given by

(g0(t),
k(.,t) 

=	
Tg(t)xk(.,t) +gk(t),

where Xk, k ^ 0 are the functions defined in (3.2.8).

k=0
(3.2.9)

k>1

(3.2.10)

Thus, examining, for example, expressions (3.2.8) for k = 1 and (3.2.9) for k = 0, the leading

term, go, is evidently

Ja(x)[1 
3Xi 1go(t) =	 A =	 + —(x) I dx	 (3.2.11)
8x j
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where A is commonly referred to as the homogenized coefficient and Xi E Her,(P) is the

solution of the weak problem

I	 1o[Xi, v ]	 Ja(x)(x)dx	 v E Hpe.r,o(P)	 (3.2.12)

and xi(x, t) it 90 (t) Xi(x), see Theorem 3.2.1. We observe that, although Theorem 3.2.1
clearly provides a systematic process for the construction of the functions cbk(., t) E Her(P),

the expansion (3.2.1) is constructed using direct knowledge of the function q rather than

employing the above process for the specific sample problems provided in Sections 3.2.1,

3.2.2. Now we define the asymptotic approximations N, U 1 according to the expressions

N(X,E,t)	 Cmm(X,t),	 o(x,t) = go(t), XE P, t	 0	 (3.2.13)

a, e' cbN (x/E, e, nit), x E	 (3.2.14)
nEZ1 \{o}

Because q5o and, thus, Ut do not depend on e we subsequently denote u by uo,L . We observe

here that for the homogenized problem (H), discussed in the introduction, i.e.,

_A - 0(x)__fc(x), — oo<x<oo	 (3.2.15)

= g0 and UO,c,, = uo E H2 (1) is the solution. The utility of the asymptotic approximations,

(3.2.14), is established in the following theorem, cf. BAKHVALOV & PANASENKO (1989),

which is restricted to the context of elliptic boundary value problems of the type (3.1.1) with

high regularity, i.e., fc E C°°(]R), a1 E C°°(11 ), 1 ^ 1 ^ m. In the statement of the following

theorem we employ the notation t4 u0.

Theorem 3.2.2. The asymptotic approximation u exhibits the following properties, for

l^1,

__[a(x/e) ±L(x)]	 f +EN_1Oi(x,c), x/e	 {x1}	 (3.2.16)

[u],/E = 0	 (3.2.17)
r	 1
[a(x) _±L (x )j	 = ENO2(x,E)	 (3.2.18)

5X	 X/e

ju(x)dx = 03 (e)	 (3.2.19)

where IOi (x,e)I ^ C1, 102(x,e)I c2 , 103(x,e)I ^ c(a)E for any a, and the positive con-

stants a, C1, c2 , c3 (a) are independent of e. Then the function t4 is 2-periodic and has the

approximation property

hue -u;H1 (C)II ^ CeN	 (3.2.20)

where C = (-1, 1) and C> 0 is a constant independent of E.	 U

Theorem 3.2.2 will be used later, in sections 3.4 and 3.7, to justify the computational results

obtained. We observe that conditions (3.2.17), (3.2.18) become redundant if a E

Before applying the homogenization (3.2.1) to problems of low regularity, the behaviour of

such techniques will be investigated computationally for specific problems with smooth data.
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3.2.1. Smooth Problems: Homogenization and the Classical Taylor Series.
It will be demonstrated below that the homogenization described in section 3.2 coincides

precisely with a classical Taylor series expansion of q(x, ., t) when a E Cr(P) and that, even

In thIs fa,ourab1e circumstance can have an infiuiitë number of singularities which are not

isolated and, therefore, in the classical context, cannot be represented in the neighbourhood

of any such singular point by even the more general Laurent series expansion. Thus assume

that a E	 and consider the equations (3.1.22) and (3.1.23) that one obtains for the

determination of the arbitrary functions c, d with (E, t)	 '7-L a where '1-tn is the hyperbola

et = 2irn, ri E Z

	

c(e, t) B(1) + d(e, t) (1 - e et ) = - A(1, e, t)	 (3.2.21)

c(e, t) (B(1) + _-j-	 (1 - ette)) + d(e, t) (1 - eute ) = - A(1, e t)	 (3.2.22)

and the mappings A, B, c9q/t9x are specified below

= (e2A(x,e,t) +c(e, t)(___-y _iteB(x)) -ited(, t)) et + _-y (3.2.23)

z itez	 X 1
A(x,e,t) 

= f __ydz	 B(x) 
= j	

- - dz	 (3.2.24)

Thus, solving the equations (3.2.21) and (3.2.22), the functions c, d are deteimined by the

following expressions.

ie	 1
c(e, t) = 0,	 d(e, t) = -	 A

t eite -1 (1,e,t)	 (3.2.25)

Then, substituting the values (3.2.25) for the arbitrary constants into the general solution,

(3.1.25), one obtains the following identity

je	 I.E	 ie	 1 eitez
q(x, e, t) = &EtX J	 dz +	

- J ----y dz	 (3.2.26)

The solution q5(x,.,.) is then defined everywhere in the (e, t)-plane except on the hyperbolae

n E Z\{0} where, generally, (x, c, t)l -+	 as dist ((e, t), ?-t) —* 0. Furthermore,

substituting the Fourier series representation of the 1-periodic function 1/a, i.e.,

1/a(x) =	 cme2m2, x E 7

mEZ

into relation (3.2.26) for , one obtains the relation

	

fE wtz	 e_it	 Eet	
jj;	

Cm___
(x,e,t) = e2etEJ —dz+co	 +	

et+2irrn

	

a(z)	
m^O

def,-, def
Thus, with LI = ]R2 \7-L, 'H = UnEZ\{O}'1tfl it follows that q5(x,.,.) E C°°(0) and therefore

one can employ the representation, for x E 7), ItI > 0, e E B(0, rt )	 {e E It: id <Tt},

N-i
C	

N 8N

-	 , .—(x,e,t)	 +	 j- --(x,e(c),t),	 (e) E B(0,rt) (3.2.27)
n=O

def ,,
= IN(X,C,t) +RN(x,E,t)
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where r < dist((0,t),H) and the remainder, RN (x,c,t), is written in the classical differen-

tial form. We observe that, because 4(x,.,.) E C00(0) and 1( . ,E,t) e C,r(P), it is clear

that the Nh partial sum of the series, TN( S , c,t), belongs to Cp°r('P) and, from the defining

relations (3.2.3)-(3.2.6) and the smoothness of the coefficient function a, it is evident that

(., t), #N(. ,E,t) E C,(P), where n, N E N. It is demonstrated next that, in a neighbour-

hood of E = 0, the classical Taylor series expansion, (3.2.27), coincides with the asymptotic

expansion, (3.2.1), obtained from the homogenization described in section 3.2, in the sense

that both converge to the identical function in the H1 (7)) norm topology. The property of

holomorphism proposed in Conjecture 3.1.1 implies that

t9m = > m!c' mçb(x,t), rn EN	 (3.2.28)
n=m

with convergence, again, in terms of the H' (1) topology, i.e.,

(.,c,t) -	
(. E,t);H(P)	 0 (NaN

where IN is defined in theorem 3.2.1. This is established as follows: Let (Eo, t) E (cf.

Conjecture 3.1.1), eo 0, then representation (3.2.13) converges in H' (7') for id <rt where

rt < I col . This is immediate from the following inequality, the Weierstrass test, and the ratio

test

IIE'(., t); H1 (P)Il = I -f-I IIE^(., t); H' (7))	 (3.2.29)
I	 I

rt
<McrTh, a=—<1	 (3.2.30)

lEo I

where M > 0 is a constant satisfying IlEc72(., t); H' (P)II ^ M, n ^ 0. Indeed, the con-

vergence of the series (3.2.13) in H'(P) guarantees the existence of such a constant, M.

However, it is then evident that

,n-1

= n I--(	
II E 'c/ (. , t); H1 (P)ll

I E

^ --Mc'	 (3.2.31)
I o I

where, from the ratio test, the upper bounds of both (3.2.30) and (3.2.31) yield convergent

series. Thus, the Weierstrass test shows that the termwise derivative of (3.2.13) converges

in H'(P) whenever the power series (3.2.13) does. Let (E, t) E be an arbitrary point such

that fri <rt and let p > 0 be any value such that <p < r. If h E C is an arbitrary value,

for which IhI <p - Id = ö (8 > 0), then Ic + hJ <p and, formally,

•	 (x2e+h,t)—q5(x,c,t) 
=372 (h) 72 (x,t)	 (3.2.32)

h	
72=1
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where

f3(h) - 
(6+h)-E

(3.2.33)
-	 h

= (e+h)"' + (c±h)' 2e+ ... + 'i , n 1	 (3:2.34)

-* ric' -1 (h -* 0)	 (3.2.35)

Thus the functions /3, n ^ 1 are continuous within the domain hi < 8. However, it follows

from (3.2.35) that Ifi(h)I < np' and, therefore,

n
iII3(h) q ( . , t); H1 (P)iI < - M pfl_l	 (3.2.36)

I Eo I

Therefore, by the Weierstrass and ratio tests, the sum, (3.2.32), of continuous functions

h i-+ /3(h) q(x, t) converges uniformly with respect to h, Ihi <c in H'(P) and, therefore,

= Jim 
(x,E + h,t) - (x,e,t)	

(3.2.37)
c9E	 h—+O	 h

=	 (3.2.38)

=	 nc',t)	 (3.2.39)

Clearly, this argument can then be repeated for derivatives with respect to c of any order,

m ^ 1, and thus, with & 0, leads to the following identity

_-m!çbm(x,t)
	

(3.2.40)

Consequently, the asymptotic expansion (3.2.1) becomes

Co	 I
q5(x,E,t)	

n=O	 IC0
	 (3.2.41)

which is, evidently, the Taylor series expansion of 4)(x, ., t). Now, if (e, t) E ?-t, for some

n E Z\{O} then equations (3.2.21), (3.2.22) become linearly dependent and yield the solution

c(E, t) -	
A(1,E,t)

d an arbitrary function of e, t	 (3.2.42)
it B(1)

Thus, for (e, t) E 1-L,, n E Z\{0} the solution 4) is determined, up to the function d, by the

relation

-.	 _______EA(1,E,t)	
[ ---dz	 (3.2.43)= —e wtx —dz+

t	 Jo a(z)	 it B(1)	 j0 a(z)

However, it has already been demonstrated in Section 3.1.1 that the solution, 4), of the weak

problem (3.1.9) possesses the following property, for x e 7', c > 0, II > 0,

4)(x,&,t) =4)(x,E,-t)	
:	

(3.2.44)

=	 (4)(x,E,t)) = (4)(x,E,Lt)),	 (4)(6,t)) = —(4)(x,6,—t))	 (3.2.45)
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u6 (x) =

+

Homogenization: 3.2

Property (3.2.44) then implies, in the context of the current problem, that

d(E,t) = d(E, —t),	 (6, t) El-Is, mE Z\{0}
	

(3.2.46)

If it occurs that (c,±tk ) E	 k E 1(6) c N where 1(6) is an index set (varying with e)

then the weak solution of (3.1.3), ue , so obtained can be written

a, et(x/c, 6, nit)

nEZ\{O}

[a_k e_1d7 d(E, —kit) e 1	+ ak e i d(c, kit) e_k7]

kEI(e)

a, eTm çb(x/e, , nit) +	 ak [d(e kit) - d(E, —kit)]
nEZ\{O}	 kEI(e)

(3.2.47)

where it has been observed that, because of the antisymmetry of the function fc, a =

- a_a , n E Z\{0} and, depending on the nature of the point (&, tk), 4 is given by either of

the relations (3.2.26) or (3.2.43). If the coefficient a is symmetric about x 1/2 then the

boundary condition u(0) = 0; expression (3.2.43); the property [(0,&, kit)] = 0, k E Z\{0}

(this follows from the infinite series form of (3.2.26) obtained by expanding 1/a as a 1—periodic

Fourier series) imply the following identities

	

ue (0) =	 (Z [(o, e, kit) - q (O , e, —kit)] +
kEl'.\I(e)

	

=	 2i ak £'[q(O, 6, kit)] +
kE\I(e)

	

=	 2i aj, £{d(6, kit)]
kEI(e)

=0

[d(e, kit) - d(e, —kit)]
kEI(e)

(3.2.48)

2i ak [d(c, kit)]
kEI()

However, the function d and the coefficients ak, k E 1(6) are independent from one another;

this indicates that, for (e, t) E ?L, d(6, t) E ]R or, equivalently, d(c, t) = d(e, —t). Of course,

the symmetry properties of f and 4 imply that u can be rewritten in the following fashion

(x) 
=	

b	 [e"	 (/)(x/E 6, nit)]
	

(3.2.49)

where b = 2i a, n E N are the Fourier coefficients of a sine series expansion of Ic

Thus, if one maintains the proviso that the relation (3.2.48) is satisfied, then the choice

of the arbitrary constant, d(c, t), is inconsequential insofar as it has no influence upon the

o1ution uE. Finally, if (c, t) ?-1, i.e., t = 2itn/E, n E Z\{0}, then, selecting d(E, t) = 0, the

cell function q is given by (3.2.44) and becomes a quadratic in c along the hyperbola 9-La, i.e.,

-z e2'"'	 i62 A(1, 6, t)	
[ --- dz,	 (e, t) E 7-1(x , e, t) =	 e2'	 dz -	 ________

2itn	 a(z)..	 B(1)	 Jo a(z)

(3.2.50)
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Computational aspects: 3.3

One can then employ Taylor series expansions along the hyperbolae, ?-L,, which are equivalent

to the asymptotic approximations derived from the power series (3.2.1), i.e., the homogeniza-

tion. However, the form (3.2.50) of , for (c,t) 'H,, suggests that (3.2.1) is then, simply, a

finite polynomial. The application of these results to a boundary value problem of infinitely

high regularity are illustrated in Section 3.4

3.3. Computational aspects of the asymptotic approximations u, N, £ e IN.

We now want to make some comments regarding the computational aspects of our approach.

We focus, in particular, on the role of convergence, as £ (Fourier series truncation as in

(3.2.14)) and N (Taylor series truncation as in (3.2.27)) tend, respectively, to infinity and

how this affects the application of the asymptotic approximations u, N, £ E IN.

We demonstrate in Theorem 3.3.1, below, how the formulae provided in Theorem 3.2.1 for

the terms, q5(., t) E H, er (P), n ^ 0, t > 0, of the homogenization (3.2.1), can be rewritten

in an alternative form in which the functional dependence on the variables z, t of these terms

is separated. We show that this property is important because the homogenization (3.2.1)

can then be determined more efficiently by solving problems, cf. (3.3.3), which are analogous

to the t-dependent formulations (3.2.8) but which do not depend on the unbounded variable

t. Thus, we show how the expansion (3.2.1) can be constructed more efficiently when the

computations are based on Theorem 3.3.1 rather than Theorerm 3.2.1. The details of this

alternative representation for	 n ^ 0 are provided below:

Theorem 3.3.1. The functions çbk (.,t) E Hp'er (P), t 0, n ^ 1, defined in relation (3.2.10)

of Theorem 3.2.1, can also be expressed in the form

t)	 (it)12g0(t)	 j Xnj() + icn]	 x E P, t	 0	 (3.3.1)

where jç,	 1 and the constants in, n ^ 1 are given by the relation
n—i

= —t2go(t) E'i [- i[x+i_, 1] +2{xfl_j, 11]	 (3.3.2)
3=0

del
Furthermore, Xo	 1 and Xn E Hp'er,o(P), n ^ 1 is defined as the solution, over the field It,

of the problem

o[x,v1 = O(v), V E Hper,oCP)	 (3.3.3)

where	 E X3C(L1 er,0 (1') x Hj er,o(7'); JR.), n > 1 is defined in relations (3.3.4), (3.3.5).

Proof Define xn	 H;e r,oCP) i ^ 1 as the solution of problem (3.3.3) where, for v E

H;er,o (?),

del
if	 1,	 ®' ) (v) = - i [1,vJ	 (3.3.4)

del
if ri ^ 2, &'(v) = — i[Xn_1, v] + 4I: 2 [XT2 _2 ,V]	 (3.3.5)

where X-i = 0, Xo = 1 and, for u, v E
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(3.3.6)

Computational aspects: 3.3

i[u,v]

2[u,v]

i9v	 au
a(x)(u(x) —(x) - _(x)v(x)) dx

a(x) u(x) v(x) dx

We now substitute expression (3.3.1) into relation (3.2.4) and, employing the functions Xk E

H r0 (P) k ^ 1 defined in problem (3.3.3), we deduce the following equations

= —1(t)[go(t),v]

= _go()itcIi[1,v]

= ga(t)it .1'o[x j ,v]
	

(3.3.8)

Thus, i (., t) E 11p'er(1 ) can be written in the form (3.3.1). Now substitute relation (3.3.1)

for q5 into (3.2.5) thereby obtaining the equation, for v E Hp'er(P),

To[q2( . , t), v] 
= f	 - g0 (t) [it i(t)[i, v] + it ic 1 1 (t)[1, v] + 2 (t)[1, vi]	 (3.3.9)

Let v = 1 in this equation and note that 0 [v, 1] = 1 (t)[1, 1] = 0, v E Hp'er (P). The following

identity for g0 is thus obtained

g0 (t)	
t [- iIXi, 1] + 2[1,1]]

	
(3.3.10)

However, if v E Hp'er,ø(P) then relation (3.3.9) becomes

øo[çb2(.,t),v] =-9o(t)[itl(t)[Xl,v]+itIcll(t)[1,v]+2(t)[lvJ]

= (it)290(t) [- 'i[xi, v] + 2 [1,v]] - (it) 2g0 (t),c1 i[1,v]

= (it) 2g0(t)	 ic	 o[x2_j, v ]	 (3.3.11)

Comparing relations (3.3.11) and (3.3.1), it is now evident that 4ii, q 2 have the form specified

in (3.3.1) where ic, ic2 are constants, which we have yet to demonstrate, are determined by

(3.3.2). We now assume inductively that, for some k > 3, ,c, E R, q(.,t) E H;er (P), fl

k - 3 are given by (3.3.2), (3.3.1) respectively and 4(.,t) E H, er (P), n ^ k - 2 has the

form (3.3.1) but the constants ic, ri ^ k - 2 are unknown. Thus, substitution of (3.3.1) into

(3.2.6) yields

I n-2

o [n (, t), V]	 - (it)'go (t) I	 ,c1 i (t) [Xnij, V] + sn_i	 (t) [1,
L ,=o

rn-3

- (it) 2 go (t)	 j 2 (t) [xfl_2_, v] + n-2 2 (t) [1, v]
]

Setting v = 1 in (3.3.12) yields the equation

n-3
n-2

—t2	 [- i[xn—i—j, l] +2[Xfl_2_,1]] -
	

= 0
j=o

(3.3.12)

(3.3.13)
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Computational aspects: 3.3

Thus, solving (3.3.13) for ic_2 and shifting the index n —+ n + 2 we obtain relation (3.3.2)

for ,, n ^ 1. However, with v E Hp'er ü(P) equation (3.3.12) becomes

o[çb(.,t),v]	 (it)g0 ()	 [_i[Xni_jV] +2[Xn_2_j,V]]

= (it)'2g0 (t)	 k	 o[Xn-j, V]	 (3.3.14)

Thus, comparing relations (3.3.14) and (3.3.1), it is now evident that q5n(s , ) E H, cr (P),	 0

is uniquely determined by expressions (3.3.1), (3.3.2) and satisfies (3.2.3)—(3.2.6).

If we substitute the expression (3.3.1) for 	 into the definition (3.2.14) of the asymptotic

approximation	 N > 0, £ E F then we observe that the following relation arises

u ,1 (x) =	 ae''o(riir) +6	 afle'q5l(x/E,n1r) +
nEZt\{O}	 nEZ\{O}

fllrxiA+ 2 E a	 'c'2 (x/E, nir) +... + 6N	 a,-, e	 S'-'N (x/e, nir)

nEZ1\{ O}	 nEZe\{O}

32tt0,1
(x) + G,€(x)] + 62 [X2(x/E) 8x2 (x) += UO,t(X) + C	 ôx

aNu0

	

k... + 6N [xN(x/E) DxN (s) + GN,t (x)]	 (3.3.15)

where, clearly,

n-i

	

del	 "del del
uo,t(x) =	 a, n7rz2c/0(nr), Gk , 1 (x) =	 a, efl7g(n1r), X(x) =	 ,c, Xn_j (X) + 'n

nEZt\{O}	 nEZ\{O}	 j=O

and, as commented above, uo (= u0 ) is the solution of the homogenized problem

a2u0
—A--(x)=fc(x), —OO<x<oO	 (3.3.16)

3x2

where A is the homogenized coefficient defined in relation (3.2.11) and we assume the level of

regularity Ic E H°(C)\H'(C). The coefficients, an(fc), n E Z\{0}, of the Fourier expansion

of fc will then satisfy the asymptotic relation >IflEZ\{O} I an(fc)1 2 < oo, cf. Theorem 15.14 of

CHAMPENEY (1987). It now follows from Theorem 3.3.1 that gk(t) = O(Itlk_2) (I t i —* oo)

and, therefore, q( s , t) = O (I t I' 2 ) (I t i .—* cc). However, from these asymptotic relations,

we can now deduce the convergence behaviour, as £ -4 oc, of the functions Gkt, k ^ 1 and

m ^ 0, as follows

(1) The sum G1, converges uniformly, as £ —* cc, to the limit function G 1 . This follows

immediately from the asymptotic inequality Ia(fc) C na,(fc), x E C, fl E

Z\{0} and, from Holder's inequality,

n	 a(fc)I	 2 II{n }>i;2( ]N )II . II{ an(fc)}n^i;t2(]N )II < cc.
nEZ\{O}
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Computational aspects: 3.3

Now, we consider the well defined function h obtained from the following series expression

h(x) =	 ann.7rie1nigi(n7r), 	 ;
nEZ\{O}

The asymptotic realtion ngi (nir) = 0(1) (ml -^ oo) implies the existence of a positive

constant K > 0, independent of ri, such that, given Ic E 40C(R) and Theorem 15.11 of

CHAMPENEY (1987),

ariirigi(nr)I2 <K	 <00

nEZ\{O}	 nEZ\{O}

However, according to Theorem 15.10 of CHAMPENEY (1987), h E 40(1R) and, furthermore,

it then follows that G1, can be expressed as an indefinite integral of h, i.e.,

Gi, (x)=j h(z)dz+	 agl(nir)
0	 nEZ\{0}

where	 EZ\{0} ag1 (nir) is a constant. Thus, from Theorem 15.18 of CHAMPENEY (1987),

it is correct and valid to write

a1,, er2tgi (nir) =	 - [an e7l igi (n7r)], x E C
I .LnEz\{o}	 nZ\{O}

(2) If the Fourier coefficients, a(fc), satisfy :nEZ\{0} lan(fc)1' <00 1 <p 2 then the

sum, G2,€, must converge non-uniformly to some discontinuous, locally integrable 2-periodic

function. However, uniform convergence is a necessary condition for the valid termwise

differentiation of a series of uniformly continuous functions, thus, for almost all x E C,

a 1	 a
a, e''g2 (nit)	 - Ia enig2(n7r)]	 (Pointwise limit)ax

LnZ\{0}	 nEZ\{0}

(3) The sums Gk,1, k ^ 3 are divergent as £ —* 00 — unless g, = 0, k ^ 3 — because the general

term, F(x) = a e Xig(rj7r), has the property IF(x)I 74 0 (ml —* oo) for all x E C.

(4) From the observation that amuo,€(x)/axm 
= > E2\{O} a (nii)me12io(n7r) it is evident

that, employing the same arguments used in (1) above, the sum of the derivatives of order m

converges uniformly, as £ —+ oo, to the corresponding derivative of uo , provided 0 ^ rn ^ 1.

However, as m increases to 2 the type of convergence weakens to the non-uniform pointwise

variety and for ni ^ 3 the sequence of partial sums of derivatives diverge.

Thus, for fc E H°(C)\H'(C), the approximations u	 provided by relation (3.3.7) are

well defined for 0 N 2. However, the termwise derivative of the partial sums u, £ E ]NT

provide valid approximations of the derivative of the limit functions u	 T	 only for

0	 N	 1. Although it is clear that the partial sums which define these , asymptotic

approximations, Ut, 0 N 2, £ E IN, converge, with the type of convergence specified
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(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)

Sample problems: 3.4

in paragraphs (1)- (4) above, they are derived from a representation of 4'(x,., .), x E P

which is valid only within a neighbourhood G C C 2 of I = {(E,t) eR2 IEtI <2ir, ti >

cf. Conjecture 3.1.1. Therefore, based on the properties of q5 furnished by Conjecture 3.1.1,

we propose the following higher order aiymptotic approximations 
4M1' N ^ 2, 1 ^ M ^

2, £ e ]

fl71Xi I n7rxi,/uN, M,L(x )	 a,e	 qN(x/e,e,nlr) +	 ae	 'M(x/E,c,n7r)	 (3.3.17)
nEZ,.()\{O}	 nEZL\2,.()

where T(E) max{n E IN I n < 2/c}. It is apparent from the definition of the approximations

UN , M,t that the type of convergence, as £ - oo, is dictated by the choice of M. Indeed,

the comments regarding u above provide the necessary information to deduce how the

approximations ÜM1 converge as £ -^ 00.

3.4. Sample problem: Smooth Data, a E C°°(P), Ic E C(IR).
Let a(x) = 1/(1 + cos(2irx)/2), cf. Figure 3.4.0, f(x) = sin(irx) then the boundary value

problem (3.1.1) becomes: Find UE E C(1) fl C°(?) such that

0.	 . 1 .	 Ouc
-(x)' = siri(irx), x E 1 = (0,1)

-	 + cosxie Ox

uc (0) = ue (1) = 0

where a 1 = 2/3, a2 = 2 (cf. (3.1.1)). Because f is 2-periodic and antisymmetric the

extension fc described in relations (3.1.4) and (3.1.5) is automatic, i.e., fc(x) = f(x), x E JR.

and therefore problem (3.1.3) is as above but with ft replacing 1 and with the boundary

conditions (3.4.2) omitted. The cell problem (3.1.19)-(3.1.23) then becomes

0	 1	
-(eit(x,c,t))) = 62eitEx, 0 <x <1, &>0, tI >0

(1+cos(2x) Ox

q5(0,e,t) =

=

The equations (3.4.4) and (3.4.5) are linearly independent everywhere in 0 = 1R2 \(7-L.. 1 u?t1)

and, solving this problem in 0, one obtains

—8ir2 + 62 t2 (2 + cos(2irx)) - 2iElrtsin(2lrx)	
(3.4.6)çb(x,c,t) 

=	 2t2(E2t2 - 4ir2)

which is then, evidently, singular only on the hyperbolae 9L where is then specified as

follows

ç/(x,E,t)
g2.

(16(1 - e_wtv) + 2(ewtz -	 +&i2Etx - 1), n =11 (3.4.7)
=
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0

x

Sample problems: 3.4

a(x)

0.0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1.0
Fig.3.4.O.a(x)=1/(1 + cos(2pix)/2),O<x< 1.

where, in this instance, condition (3.2.46) is explicitly satisfied by the choice d(c, t) 0. How-

ever, for this problem, 6 < p (I ) = 1 and t is restricted to the circle C = {t E lEt ti = ir},

consequently, q is analytic within the domain of the cell problem x E P, 0 <e < 1, t E C,..

Thus, observing that E = 1/ne ^ 1, ri E N and a 1 = —a_i = 1/2i, a = 0, n ± 1, the

analytical solution, tt, is

uE(x) = a_ 1 e_i7Txq5(x/6,e, —ir) + a 1 e'q5(x/6,E,1r)	 (3.4.8)

- sin(2/e - 1)irx sin(lrx)	 sin(2/c + 1)irx
- 4 2 (2/6 - 1) +
	

+ 4ir2 (2/ + 1)	
(3.4.9)

However, employing simple trigonometric identities and power series expansions for 161 < 2

the solution, e, is rewritten in the following form

sin(lrx)	 6	 .	 2	 E	 &6
ut(x) =	 2	 +	 sln(27r1/E) cos(lrx)(1 + 	 +	 +	 +...)	

(3.4.10)

---

It is evident from relation (3.4.6) that the function q5(x,., .), x E P belongs to C°°(0).

Thus, computing the Taylor series expansion up to 6t1L order asymptotic terms, one obtains,

for (e,t) e B(0,2/,4), the expression

1	 i sin(2irx)	 2 cos(27rx)	 itsin(2rx)
()(X, 6, t)	

2 + C	 - 6	
2	 + 6

t	 4rt	 8ir	 167r	 3411

	

t2 cos(2irx)	 it3. sin(27rx)	 6 4 cos(2irx)	 7
— E	 +6	 —6	 +0(e), xEP

	32ir4	64ir5	 128ir6

HOMOGENIZATION	 49



Sample problems: .9.4

However, we can now confirm, for this problem, that expansion (3.4.11) and (3.2.1) are

identical. We compute the solution, Xi(.,t) E H er0 (P), of problem (3.2.8), k = 1, to be

Xi (x, t) = it Xi (x) where Xi (x) = sin(2irx)/4ir is the solution of problem (3.2.12) and, from

(3.2.9), 3.2.1I), the homogenized coefficient is therefore given by

A = 1/(i(t)[i(.,t), 1] + 2 (t)[1, 1])

=fa(x)(1+(x))dx=1

Thus, from relations (3.2.10), (3.2.11),

1
q50(t)=

Furthermore, solving problems (3.2.8) for Xk(•, t) e H er , 0 (P), k ^ 1 we determine

Xk(X,t) -
	 (it) c	 dk_1 sin(2irx)

- 221 ir21 '	 dxk_1	
, 2; E P, Iti > 0

Now, noting the above expression for Xk(•, t), k ^ 1 we calculate

'J1(t)[xk(.,t), 11 + 2(t)[Xk_i(.,t), 11 =

(3.4.12)

(3.4.13)

(3.4.14)

= 
-itJ 

a(x) (it)' dksin(2irx) 
v(x)dx + t2

2ir_ 1 	 dx'

(it)k+1 

If 
a(x)d sin(2irx)

v(x)dxf= 22kir2l L i'	 dxk

=0

f a(x)	
(it)k_1	 d'2 sin(2irx) -

22(_1 ) ii 2 (k_1)_1	 dxk_2	 v(x) dx

a(
dk sin(2irx) 

(x)dx]x)	 v
dxc

(3.4.15)

Thus, observing formulae (3.2.9), we deduce that g = 0, k ^ 1 and, therefore, from (3.2.10),

the terms, q5,, k > 1, of the homogenization (3.2.1) are given as follows

(it) c	 d' 1 sin(2irx)
/k(X , t) = g0(t) 2kq2k-1	 dxc_l	

x E P ti > 0, k ^ 1	 (3.4.16)

It is now evident that the functions in (3.4.16) coincide with the corresponding terms of the

Taylor series expansion (3.4.11). This demonstrates, for this problem, the equality of the

expansions (3.2.1) and (3.2.27) as proven generally in Section 3.2.1. Indeed, within the open

ball B(0, £2), the power series expansion (3.2.11) of q(x,.,.) is unique and, therefore,

we expect this result. For 0 ^ N ^ 2, we now employ the approximations

N

N(X,6,t) =	 c'(x,t)
n=O

	1 	 21
= - + E	 sin(2irx) Tm, (E, t) - E	 cos(27rx) Tm 2 (E, t)	 (3.4.17)

	

t 2	 4irt

u(x) =	 aecbN(x/e,e,ri7r)
nEZ\{O}

- sin(irx)	 e	 E2
+ - sin(27rx/c) cos(irx) Tmi (E, it) - - cos(2irx/e) sin(irx) Tm2 (6, it) (3.4.18)

-	 it2	 4ir2	 8ir2
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Sample problems: 3.

where
2 2	 4 4	 2m 2m

Tm(, t)	 1 +	 +	 +	 + (27r)2m	
(3.4.19)

aid(1)m1 =n2=rn-L1ifN=2m,(2)mi=m,m2=m--1ifN=2m+tThefollowirig

relation for the homogenization error is simply deduced from expressions (3.1.7) for 'u6 and

(3.2.14) for i4, 0 N ^ 2,

(t4 - u ,t )(x) =	 2i [an C72	
( c/ - cbN ) (x/E, e, nir)], x	 , & > 0	 (3.4.20)

nEI'

With this expression, we have computed the homogenization errors in both L 2 (l) norm

and H1 () semi—norm topologies with the analytical expressions for qS, q N, 0 N ^ 2,

determined above, used to compute the errors q5 - cb N . The integrals are approximated

numerically by splitting each integral over l into a sum of integrals over subdomains C

Il, i E ]N and then applying to each of these integrals the 5—point Gauss—Legendre quadrature

formula

L(x) dx =	 H (Xk) + E5 (7)	 (3.4.21)

where the quadrature points, Xk, 1	 k ^ 5, are determined as the roots of the Legendre

polynomial P5 (x) = (63x5 - 70x3 + 15x)/8, i.e.,

135+ i1"12
Xk	 ± 

L	
63	

] , 1 ^ k ^ 5	 (3.4.22)

and the quadrature weights, Ilk , 1 ^ k ^ 5, are defined by the identity

(1—x)
1	 k	 5	 (3.4.23)

- 18[P6(xk)]2'

where P6 is the Legeudre polynomial of degree 6 and, for 'y E C6 (-1, 1), the quadrature error

is E5 ('y) = 13'y (6) ()/756 . 6!, —1 < < 1, cf. HILDEBRAND (1987), pages 414-420.

Table 3.4.1: a C°°(P), Ic E C°°(C)

Cell Size, e	 IIu - u0 ; £2()II	 lue - U0 ; H'(1)I
	0.5	 6.96263411(-3)	 7.95774914(-2)

	

0.25	 3.24157818(-3)	 7.95774914(-2)

	

0.125	 1.59245348(-3)	 7.95774914(-2)

	

0.0625	 7.92732513 (-4)	 7.957749 14( —2)

	

0.03125	 3.95930946(-4)	 7.95774914(-2)

0.015625	 1.97911105(-4)	 7.95774914(-2)

_______________	 0(E)	 0(1)

HOMOGENIZATION	 51



Cell S

0.5

0.25
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0.5

0.25

0.125

0.0625

0.03125

0.015625

Sample problems: 3.4

Table 3.4.2: a E C°°(PI. f..' E C°°(C)

hue - ul; £2(

1. 74065853 (_•3

4.05197273(-4

9.95283422(-5

2.47728910(-5

6.18642103(-6

1.54618051(-7

0(e2)

Table 3.4.3: a E C°°(7

C_____________

4.35164632(-4

5.06496591(-5

6.22052139(-6

7.74152850 (-7

9.66628300(-8

_____	 1.20795400(-8

0(e3)

lue -u;H1(1

1.98943729(-2

9.94718643 (-3

4.97359322(-3

2.4867966 1 (-3

1.24339830(-3

7.95774914 (-4

0(e)

EC°°(C)

-	 4.97359322(-3

-	 1.24339830(-3

-	 3.10849576(-4

-	 7.77123940(-5

-	 1.94280985(-5

-	 4.85702462(-6

0(e2)

The graphs illustrated in Figures 3.4.1 - 3.4.6 clearly reveal the high accuracy of the asymp-

totic approximations, N, 0 ^ N ^ 2, of . Indeed, it is difficult to distinguish between

the various approximations and the weak solution, , of problem (3.1.9). Thus, although

graphical in nature, the figures demonstrate the utility of the low order asymptotic func-

tions, N, 0 ^ N ^ 2, which provide accurate approximations of . However, we observe

the disparity, characterized by a spike, between the asymptotic approximations and at the

discrete points t = ± 27r/e where becomes singular and N, 0 N 2 do not.

The results illustrated in the tables 3.4.1 -3.4.3 clearly fulfill the error estimates provided

by theorem 3.2.2., i.e.,

hue -t4;H'(l)hh	 C1 e", N = 0,1,2,...

Furthermore, they also suggest the following C2 (1l) error estimates, for N = 0,1,...,

IuE -u;.C2()hI ^ C2 e
	

(3.4.24)

here C1 , C2 > 0 are constants independent of e. Further, the results imply that one will

benefit from the inclusion of additional asymptotic terms in the expansion (3.2.1) or, equiv-

alently, (3.2.14), with approximations of ever greater accuracy in both .C 2 (Il) and H'(l)

norms. Indeed, tables 34.1 T34•3 illustrate precisely the successive, improvements obtained

by including higher order asymptotics where, in this instance, the coefficients are smooth.
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Sample problems: 3.4

Figure 3.4.1

7

I	 I

-1	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I
0	 5	 10	 15	 20	 25	 30

t

Figure 3.4.2

0	 5	 10	 15	 20	 25	 30

t

Graphs of the real or imaginary parts of q(O.6,E,t), qN(O.6,E,t), e = 1/2, 1 ^ n ^ 3, 0

N < 2, andi < t < 30. The curves are distinguished by the symbols, e.g., L	 q, 0

*	 1,	
.	 .	 .
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Sample problems: 3.4

Figure 3.4.3

0	 5	 10	 15	 20	 25	 30

t

Figure 3.4.4

1

0

-1

-2
e

-3

-5 1 1111 1 1111 1 111	 II	 11111111111
0	 5	 10	 15	 20	 25	 30

t

Graphs of the real or imaginary parts of q5 (O.6 , , t), 11N(0.6, E, t), E = 1/212 , 1	 n	 3, 0 <

N	 2, and 1 < t	 30.. The curves are distinguished by the symbols, e.g., A	 ç, o =

*	 1,	 . .	 .
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Sample problems: 3.4

Figure 3.4.5
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Figure 3.4.6
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C

-6-

-7-

-8- i	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

	

0	 5	 10	 15	 20	 25	 30

t

Graphs of the real or imaginary parts of q(0.6,6,t), N(0.6,E,t), = 1/2', 1 ^ n ^ 3, 0

N	 2, and 1	 t	 30. The curves are distinguished by the symbols, i.e., A	 q, o

1,	 .
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Sample problems: 3.5

This is explained by the following identities for the errors tt - u, 5(ue - u)/Dx, obtained

directly from the above expressions for uc,

2N+12 (sin(21rx/E)os(7rx)— cos(2rx/c) sin(irx)) S'uc (x) - u(x) =_____

-- 1 - - 1 cos(2lrx/E) cos(irx) S
3(UC_U)EN (

	

62\

Dx	 2N.71	 22)

where S = (1 - = (1 + 62/22 + E/2 +.. .). From these error equations the asymptotic

error estimates (3.2.20), (3.4.24) now follow immediately with C1 = 2/ir, C2 = 3/2ir2 . The

behaviour of the results tabulated in Tables 3.4.1 -3.4.3 are also explained by these error

identities.

3.. Homogenization for Problems with Piecewise Smooth Data.

It has been shown above that boundary value problems, such as (3.1.1), with smooth coeffi-

cients lead to homogenizations, (3.2.1), which are nothing more than classical Taylor series

expansions about an appropriate point in the (6, t)-plane that converge in a generalized sense

(compared to. the classical concepts of pointwise or uniform convergence of formal power series

expansions). By contrast we now consider problems of the type (3.1.1) but with non-smooth

data; actually, piecewise smooth. We observe that the location of the singular points of

q5(x, ., .), x E P then depends on the coefficients and cannot, therefore, be easily determined

for an abstract problem of this type. Thus, only the general characteristics are examined.

Let a(x) = aj (x), x E P1 , 1 E JNm where P = ULEIL,,P1, P fl P, = 0 if i j and a1 E

C1 ( 1 ), 1 1 m but a C°(P). The weak formulation (3.1.9) is equivalent to (3.1.19)-

(3.1.23) and the solution is given by q5(x,c,t) = q51 (x,c,t), x E 11, I E Nm, 6 > 0, ItI > 0

where

iC
(x, 6, t) = _et	 — dz + cz(6, t) et [	 dz + d1 (e, t) et	 (3.5.1)

a(z)	 j1 a(z)

with the boundary and transition conditions (3.1.20)-(3.1.23) determining the arbitrary func-

tions c1, d1 , 1 F. However, the resulting system of equations for these constants can be

written

A(e, t) (c, t) = jE, t) 	 (3.5.2)

where the column matrices c,t), w(6,t) E C 2m are as follows

T
c(c,t) = [cl(E,t), di (c,t), ..., Cm_i(6,t), dmi(, t), Cm(6,t), dm (,t)]	 (3.5.3)

T

o, ..:,	 A ni ( Xmi ,E,t), 0,	 Am (1,,t), o}	 (3.5.4)
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Sample problems: 8.5

and the matrix A(E, t) e C2m2m has the coefficients specified in the identity below

	

Bi (x i )	 1	 0
	 -1

	

1 .. .	 .0.	 -1
	

0

B2(x2) 1	 0 -1

1
	

0 -1 0

	

B_i(Xm_i) 1	 0	 -1

1	 0	 -1	 0

0	 ewt	 0	 0	 0	 0 ...	 0	 0	 Bm(1)	 1

&et	 0	 0	 0	 0	 0 ...	 0	 ü	 -1	 0

(3.5.5)

Rows 1,... ,2m - 2 represent the interface conditions (3.1.20), (3.1.21) and rows 2rn - 1, 2rn

represent the boundary conditions (3.1.22), (3.1.23). Furthermore, after examining (3.5.5),

we observe some additional properties of the matrix function A below:

(1) If (, t) € n	 UflEz\{o}Lfl, n E Z\{0} then rows 2n, 1 ^ n ^ m of A(e, t) are linearly

dependent, e.g.,	 r =T2m where	 1 ^ n ^ 2m is row n of A(e, t) and, otherwise,

for (E, t) E 0 R2 \7L, the rows of A(e, t) are linearly independent.

(2) The characteristic function, p(A(e, t)) = IA(E, t) - )t(E, t) I, has the quadratic form

= ..Yl e	 +72 e+73	(3.5.6)p (A (e, t))	
2iet

where 'y E lEt, 1 < n < 3 are constants which are independent of e, t. The characteristic

equation, p(A(c, t)) = 0, thus implies the identities

	

72	 1
4yi'y ,	 +—s/'y-4'y1'y3	 (3.5.7)

27	 27	 - 2'y	 27
1	 1 72= —i in - -	 J72 - 47173] ln	 + - \/7 - 47173]	 (3.5.8)

If (, t) 9-L then the components of the solution, w (E, t), are given by the expressions

cj (c,t)	 0,	 d1(c,t) =	 + > As(x8 Et)]	 1 ^ I	 rn	 (3.5.9)

and, denoting by 8(A) the set of all singular points defined according to the relation,

S(A)	 {(e,t) ER2 I II( e , r) - (E , t )112 -^0 = jqi(.,f,T);H1(P) —^ oo}	 (3.5.10)

it is now evident from (3.5.9) that if singularities exist they arise, as in Section 3.2.1, along

the hyperbolae 9-L,, n E Z\{0}, i.e., 8(A) C 7-L. Thus, (x, ., s) x e P is holomorphic for

(, t) € 0 = R2 \fl and the analysis of the Taylor series representation performed in Section

3.2.1 is also valid here.
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Sample problems: 3.6

Conversely, if (e, t) e fl then A(c, ) becomes singular with rank 2m - 1 and the coef-

ficients w(c, t) are underdetermined. However, it is clear from the definition of A(e, t) that

c1 (c,t) = c(e,t), 1 ^ 1 <m for unknown c(c,t) and the coefficients c, d1 , 2 1 ^ m can then

be expressed in terms of d1 as follows	 .

1	 c
c(c,t) =	 A(l,e,t) - (rn - 1) di (e,t)] ,	 (3.5.11)

B(1)
B(x1) rc

d1 (c,t) = -
	

A(x1 ,e,t) - ldi(c,t)] - B(l) {A(let) - (rn - 1)di (e,t)J (3.5.12)

where A, B are defined in relation (3.2.24). Furthermore, the boundary condition uE (0) = 0
and the conjugate symmetry property (3.2.44) together imply the equations

uE (0) =	 a,. [(o, e, nir) - q(0, &, —nit)] +	 a,. [d1 (, nit) - d1 (&, —nit)]
nEI'T\I(e)	 flEI(E)

= >	 2i a,. [q5(0, e, nit)] +	 2ia,.[dj(c,nir)]
kEIN\I(e)	 nEI(E)

=	 2ia,.$[d1(&,nir)]
nEI()

= 0	 (3.5.13)

However, because the function d1 and the coefficients a,., n € Z\{0} are independent from -

one another it follows that d1 (e, t) E IR for (c, t) 7-1. Thus, in the same fashion as Section

3.2.1, if one maintains the proviso that relation (3.5.13) is satisfied, then the choice of the

function, d1 (E, t), is inconsequential insofar as it has no influence upon the solution UE.

The homogenization (3.2.1) is now applied to a number of sample problems with piece-

wise defined coefficients to determine the effects of low regularity on the behaviour of the

asymptotic approximations obtained from this approach.

3.6. Sample problem: Piecewise smooth data, a e PC°°(P), fc E PC(1R).
Now let f(z) = 1, x	 = (0,1) and define fA(x), x E C = (-1,1) and the coefficient a, on
the canonical periodic cell, P = (0, 1), as follows

1 aj =1	 0<x<1/3	 1,	 0<z1	 I2/niri, ifnisodda(x)=1a2 =lO, 1/3^x<2/3,fA(x)={1 i<<2a10,	 ifnisevena3 =1, 2/3^x<1

where, then, Ic is the periodic extension of IA to lEt defined by relation (3.1.5). In this

instance a1 = 0.1, a2 = 1 and, clearly, a C(7'), n ^ 0. However, a is a piecewise C°°

function, see (3.1.18) with a1 e C°°( 1 ), ? = ((1— 1)/3,1/3), 1 I ^ 3. With this data, the

cell problem is then given by (3.1.19)—(3.1.23). The solution, , is, correspondingly, piecewise

defined, i.e.,

I 4i(xct) if 0^x<1/3
qi(x,E,t) =
	 if l/3<x<2/3

	
(3.6.1)

- t.q3(x,E,t),. if 2/3<z<1
where
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Sample problems: 3.6

1	 9	 6iet/3	
e_tE

	

tji (x, 6, t) =	
- io: - 1 + e6t/3 + e2'et/3

1	 9	 e2ut3 + eiet	 —ietxq2(x,E,t) 
= lot2 + l0t 1 + eIEt/3 ± e?jet/3e

1	 9	 e'jI

	

=	
-	 1 + &et/3 + e2jEt/3

(3.6.2)

(3.6.3)

(3.6.4)

Evidently, q(x, s , s), x E P is defined by relations (3.6.1)-(3.6.4) for all (e, t) E ]R2 \fl where

	

S(A) = {(e,t) E ]2 1 + e t/3 + e 2t13 = o}
	

(3.6.5)

However, the roots of the quadratic, 1 + et/3 + et2et/3 , are given by

	

eit/3 = -1/2 + i v/2, -1/2 - i //2
	

(3.6.6)

='.	 et = 2ir + 6irn, 4ir + 6irn, n Z
	

(3.6.7)

It is now apparent that 8(A) C fl where fl is the family of hyperbolae fl 1 , n E Z\{0}

defined in Section 3.2.1. Thus, from direct knowledge of q5, we have determined that the

singularities of ci5(x,.,.), x E P occur along hyperbolae, 7-L, in the (e, t) plane, as indicated

in Section 3.5. Evidently, q(.,e,t) C°(P) and /(.,E,t) CTh (P), n ^ 1 while 1(x,.,.)

C°°(0), x 'P1 , 1 ^ 1 ^ 3 where 0 = R2 \n. One can therefore employ the classical Taylor

series representation of /(x,.,.) in the neighbourhood (c, t) E B(0, 2'F, £2), which are, to

third order terms,

7	 3ix	 2-2+27x2

	

(x, E,t) 
=	 + 6	 + 6	

180	
+ l80 - 9x2) + O(c)

7	 3i	 ________________-11+54x-54x
lot	 180

+ e ---(-1 + lix - 27x2 + 18x3 ) + O(e)
180

7	 3i
	q3(x,E,t) 

=	
+ej(-1 +x)+e2 25 -54x+27x2

180

+ 6	 - 25x + 27x2 - 9x3 ) + O(c)

(3.6.8)

(3.6.9)

(3.6.10)

The proof of the equivalence between the homogenization, (3.2.1), and the Taylor series,

(3.2.27), provided in Section 3.2.1 is clearly applicable here. Thus, the expansions (3.6.8) -

(3.6.10) determine the homogenization (3.2.1) and the asymptotic approximations, qf N , N ^

0, defined in relation (3.2.13). Indeed we deduce the following identities from the asymptotic

expansions (3.6.8)-(3.6.1O)

A 
JO	 - 7	

- { 

3x/7,	 if 0 ^ x < 1/3

-	
xi(x) - 3/7 - 6x/7,	 if 1/3 x < 2/3	 (3.6.11)

-3/7+3x/7, if 2/3 <x <1

where A is the homogenized coefficient occurring in the homogenized problem (3.2.15) and

q5 1 (x,t) = itgo(t)x j (x). Furthermore, from the asymptotic expansions (3.6.8)-(3.6.10) we
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Sample problems: 3.6

deduce the following expressions for q 2 (w, t), X3 (w)

( -2+27w2

I	

180
-11+54w-54w2

q52 (x,t) = ____________
180

25 - 54w + 27w2

180

( 2w - 9w3

-1+11w--27x 2 + 18w3
,<x<,3(w)=	

180

0<x<	

I 

180

7 - 25w + 27w2 - 9w3

180

where 3 (w,t) = itX3 (x) and, for this problem, therefore

gk(t)=0, k=1,2,...

The errors Iu-v; £2()II, Iu-v; H'(c)I have been computed, for v = u ,1 , ÜEN,M,t , £ 1201,

in the same manner as for problem 3.4 and are reported in tables 3.6.1 -3.6.4 below.

Table 3.6.1: a E PC(P)\C°(P), f E H° (C)\H' (C)

Cell Size, 6	 IIu - U0,1; £2 (1) II	 - UO ,1; H' ()

	

0.5	 3.24138702(-3)	 3.97572749(-2)

	

0.25	 1 .48888933(-3)	 4.15677910(-2)

	

0.125	 7.27036348(-4)	 4.20081448(-2)

	

0.0625	 3.61309379(-4)	 4.21174938(-2)

	

0.03125	 1.80377530(-4)	 4.21447906 (-2)

	

0.015625	 9.01540847(-5)	 4.21516346(-2)

0.0078125	 4.50727117(-5)	 4.21533404(-2)

___________	 0(c)	 0(1)

Table 3.6.2: a E PC°°(P)\C°(

Cell Size, c	 IIu -u11;C2(1

0.5	 1.22808159(-3

0.25	 3.07020378(4

0.125	 7.67550388(-5

E H°(C)\H'(C

-

9.99242444(-3

4.99623845(-3

2.49786206(-3

1.91889366(-5

4.79701252 (-6

1.19894035(-

3.01178450(-
O(c2'

1.24907035(-3

6.24551693(-4

3.12262628

1.56140607

0(c'

Although, in contrast to problem 3.4, the coefficient a is only piecewise smooth the fig-

ures 3.6.1-3.6.6 illustrate that the asymptotic functions, cbN , 0 N 2, provide accurate

approximations of, the weak solution of (3.1.9). Indeed, we again observe that it is diffi-

cult to distinguish between the various curves which represent these approximations. This
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Sample problems: 3.6

Table 3.6.3: a E 7'C°°(l')\C°(P), f E H°(C)\H1(C)

Cell Size, e	 IIu -u t;2(l)II	 1i4 -i4,;H'(l)I

	0.5	 9.59140389(-4)	 4.26226183(-3)

	

0.25	 2.38943249 (-4)	 1.51247677(-3)

	

0.125	 5.96432445(-5)	 5.35989505(-4)

	

0.0625	 1.49242031(-5)	 1.89453716(-4)

	

0.03 125	 3.73256197(-6)	 6.71881678(-5)

	

0.015625	 9.33039470(-7)	 2.37763798(-5)

	

0.0078 125	 2.35106500(-7)	 8.44198637(-6)
______________________	 0(E2)	 0(63/2)

Table 3.6.4: a E PC°° ('P)\C°(P), f E H°(C)\H'(C)

Cell Size, &	 IIu - U3,2,; C2(1)II	 - ü 1t ; .U'(l)I

	0.5	 7.95161939(-4)	 2.46108688(-3)

	

0.25	 2.14111498(-4)	 8.95024032(-4)

	

0.125	 5.59894312(-5)	 3.19064235(-4)

	

0.0625	 1.43982448(-5)	 1.12981244(-4)

	

0.03125	 3.65790302(-6)	 .	 4.01071110(-5)

	

0.015625	 9.22584800(-7)	 1.41892658(-5)

	

0.0078125	 2.33660560(-7)	 5.14193646(-6)
____________________	 0(62)	 0(c3/2)

supports, once more, the utility of the lower order approximations, N, 0 ^ N S 2. The

large amplitudes, or spikes, apparent in q5(x, &,.) at the points t = 2irn/, n E Z\{0} are an

obvious manifestation of the singularities, 9-t, observed above.

The computational results illustrated in tables 3.6.1 -3.6.4, suggest, in contrast to prob-

lem 3.4, that the order of convergence of the approximations u never exceeds Q(g2) in the

norm topology and 0(6) in the H' (C) norm topology. However, as demonstrated gener-

ally in Section 3.3, an important consequence of the low regularity fc E H°(C)\H'(C) is that

the higher order homogenization approximations, u, N ^ 3, £ E N, are unavailable, again

contrasting with problem 3.4. This is evident from the homogenization (3.3.15) and series

(3.2.14), for the term in (3.2.14) has the asymptotic order 0(1) (II -+ oo) and U 1 , N ^ 3

therefore diverges as £ -4 00, i.e., II u ,t; L 2()II - oo( -+ oo). Thus, in Tables 3.6.3, 3.6.4

we examine instead the asymptotic approximations UNMt, N ^ 1, 1 M 2, £ E IN defined

in Section 3.3, i.e.,

UN , M,1(X) =	 a, e'N(x/E, 6, n7r) +	 a ecbM (x/e, e, nir)
nEZ,.()\{O}

where r(E) = {ri, E IN n <.2/c}. •The results suggest that, by employing these approxi-

mations, one can improve upon the accuracy, if not the order of convergence, of the 2(1l)
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Sample problems: 3.7

norm errors of the lower order approximations u, 0 < N ^ 2. Furthermore, the tables

demonstrate that these approximations produce smaller H' () semi-norm errors which also

converge a half order of E more rapidly as E —f 0. The influence of low regularity is further

examined in problem 3.7.

3.7. Sample problem: Mixed regularity data, a e C°°(P), Ic E £2(C)\H'(C).

The previous problem demonstrated the consequences for convergence order and accuracy

when both a and Ic have low regularity. The convergence rate quickly reached a finite

upper limit in problem 3.6 while, by contrast, no such limit was observed in problem 3.4

and, comparing tables 3.6.1-3.6.4, 3.4.1-3.4.3, it is clear that the reduced regularity also

degraded the accuracy of the approximations. We now attempt to isolate the different roles

of a and Ic on the homogenization approach by considering the following related problem of

mixed regularity where, now, a E C°'(7') and, once again, Ic E H°(C)\H'(C) are defined as

follows

1	 - { 1,	 if 0 <z ^ 1	 1 2/niri, if n is odda(x) 
= 1 + cos(2irx)'	 -1, if 1 <x ^ 2' a = 1o,	 if n is even

(3.7.1)

• where fc is then obtained via relation (3.1.5). The.analytical expressionfor q5, the solutionof

the complex valued boundary value problem (3.1.9), is provided in problem 3.6. The errors

IIu - v;.2(l)II, Iu - v;H'(l)I have been computed, for v = u, ü, £ = 1201, and are

reported in the tables 3.7.1-3.7.2.

Table 3.7.1: a E C(1-'), f E H°(C)\H'(C)

Cell Size, c	 Ilt6 - u01 ; £2 (l) II	 - u0 ,t; H'(Il)I

	0.5	 3.32870592(-3)	 3.58210497(-2)

	

0.25	 1.46891484(-3)	 3.53030964(-2)

	

0.125	 7.07923164(-4)	 3.51720311(-2)

	

0.0625	 3.50566358(-4)	 3.51390935(-2)

	

0.03125	 1.74856196(-4)	 3.51308997(-2)

	

0.015625	 8.73 746467(-5)	 3.512891 37( -2)

0.0078 125	 4.36806389(-5)	 3.51284249(-2)
__________________	 0(c)	 0(1)

Tables 3.7.1 - 3.7.2 demonstrate that, although the coefficient, a, is infinitely smooth, the

homogenization exhibits the same characteristics as observed for problem 3.6 in which a E

?C(P)\C°(P). Indeed, all of the characteristics noted for tables 3.6.1-3.6.2 concerning the

asymptotic approximations t4y, 0 N 2, 1 M 2, £ E IN are again apparent

in this problem.

•The restriction, Ue 1 0 , of the analytical solution, UE, can, evidently, be obtained directly.

by solving the boundary value problem (3.1.1). Performing this computation one obtains the
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Table 3 7 2 a E C°°(P), f E H°(C)\H1(C)

Cell Size, e	 IIu —u ,1 ,C2(l)II	 1t4 -u1,H'(fl)

o 5	 1 33471402(-3)	 9 68484915(-3)

o 25	 3 33678477(-4)	 4 84176303(-3)

o 125	 8 34196183(-5)	 2 42094460(-3)

o 0625	 2 08548898(-5)	 1 21065961(-3)

0 03125	 5 21377082(-6)	 6 05201079(-4)

0 015625	 1 30343163(-6)	 3 02621469(-4)

0 0078125	 3 25858180(-7)	 1 51314183(-4)
_________________	 0(e2)	 0(e)

Table 3 7 3 a E C°°(P), f E H°(C)\H'(C)

Cell Size, e	 IIu - U t, C2(1)II	 Iu - i4 11, H'()I

0 5	 1 09169502(-3)	 4 87789107(-3)

0 25	 2 72684686(-4)	 1 72902040(-3)

0 125	 6 79958552(-5)	 6 12103867(-4)

0 0625	 1 70033284(-5)	 2 16481353(-4)

0 03125	 4 25200 134(-6)	 7 49622435(-5)

0 015625	 1 06405310(-6)	 2 72828034(-5)

0 0078125	 2 66009860(-7)	 9 73324486 (-6)
_________________	 0(e2)	 0(e3/2)

Table 3 74 a E C(P), f E H°(C)\H'(C)

Cell Size, e	 11t4 —u,i,t,2()Il	 lute —f6,2,,H'(c)l

0 5	 9 21893991(-4)	 2 97189811(-3)

0 25	 2 47140955(-4)	 1 07162895(-3)

0 125	 6 42423423(-5)	 3 81218187(-4)

0 0625	 1 64641798(-5)	 1 36084073(-4)

0 03125	 4 17605998(-6)	 4 72273363(-5)

0 015625	 1 05335661(-6)	 1 70200860(-5)

0 0078125	 2 64529370(-7)	 6 15656966(-6)
____________________ 	 0(e2)	 0(eu/2)

following identity for ue(x),

ue (x) = (x - x2 ) + e (1/2 - x)	 sin(2irx/e) + 62	 cos(2irx/e) +	 (3 72)
L 

82

where it is assumed that 1/c e FT We now construct uC as the 2-periodic anti-symmetric

=uo(x)-i-c---(x)1(x/e)---e I—(x
5u0	 2	

) X(/) +
ax	 Lox2
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extension of the solution u c1 by computing, with the aid of Fourier series expansions, 2-

periodic extensions of the functions ci(x) = (x—z2 )/2, /3(x) = (1/2-x) of ue The respective

antisymmetric and symmetric extensions of c and /3 are thus, for x E

	

a(x) — 	
1	 __

	

—

	

	 a -- e	 ,	 /3(x) —	 a, —f-- em	 (3 7 3)
nit

nEZ\{O}	 nEZ\{O}

Substituting relations (3 7 3) into (3 7 2), the following 2-periodic antisymmetric extension

is obtained for uc

i1	 sln(2irx/E)	
+ 2 (1 — cos(2irx/c))

	

u6 (x) =	 afl	 +6	
4ir	 8ir2	 ] 

e
nEZ\{O}

	

=	 a [o (nit) + cq5i (x/E, nit) + 2 
(2 (x/c, nir) + 

1 )

nEZ\{O}

where the identity in the second line follows immediately from the expansion (3 4 11) How-

ever, from the homogenization (3 2 14) and the above Fourier series expression for ue , the fol-

lowing error estimates are now immediately apparent for the limit functions u T u,, 0 ^

N<2

N
Il u 	 q,.C2(1)Il	

C1cmin(N+i,2), Iu —u,,H'(cZ)I ^ C2c

where C1 , C2 > 0 are constants independent of e Furthermore, for this problem, if N = 2

then one can select C2 = 0 Indeed, these error bounds are confirmed by the results illustrated

in Tables 3 7 1-3 7 4 However, as observed in Section 3 3, the regularity property Ic E

H° (C) \H' (C) means that one cannot obtain, for £ —* oo, vand Hi (1) norm estimates of uc

from the approximations N ^ 2, £ € INT or valid £2 (f^) norm estimates of U! from the

approximations u ,1 , N ^ 3, £ E N because of the nature of convergence of these functions as

£ -+ oo Thus, we apply, as in problem 3 6, the functions ÜMt, N ^ 2, 1 ^ M ^ 2, £ E N

and the results provided in Tables 3 7 1-3 7 4 suggest the following error bounds, for £ E

N? 2,

11i4 — uNM,t ,J2(fZ)II	 c	 1(M+1 2), 
1 ^ M 2

lu1 — N,M,tJ' ()I < C2 6min(N,3/2) M = 1

In a private communication Professor Ivo Babuäka has demonstrated that for a specific prob-

lem of the type being considered here the rate of convergence of u to u as e —* 0 cannot

exceed 3/2 Indeed, the results of Table 3 7 3 bear out this finding We observe that, al-

though the level of regularity of a is an important factor in obtaining accurate asymptotic

approximations derived from the homogenization approach, it does not affect the rate of

convergence It is the regularity properties of Ic which exert the dominant influence on the

convergence behaviour for e —* 0 This property of the homogenization is examined further

in problem 3 8
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3 8 Sample problem Mixed regularity data, a PC(P), Ic E C(C)

It has been determined from problems 3 6, 3 7 that the behaviour of the homogenization when

Ic E H°(1')\H1(P) and a is either piecewise or globally smooth is unchanged To emphasize

the effect of the regularity of the function fc on the homogenization, we consider, with respect

to the regularity of the data a, Ic, the converse situation to the previous problem, 3 7, i e,

define
Iai=1, if 0<x<1/3

a(x)= a2 =10, if 1/3^x<2/3 ,	 fc(x)=sin(7rx)	 (381)
1.a3 =1,	 if 2/3^x^1

The weak solution, q, of the cell problem (3 119)- (3 1 23), which is also piecewise defined, is

given in relations (3 6 1) -(3 6 4) and the weak solution, uC , of problem (3 11) is determined

from relation (317) Once again, the errors, lit - u,C2 ()II, Iu - u,H1 (1l)l, have been

computed and are reported in the tables 3 8 1-3 8 3

Table 3 8 1 a E PC°°(P)\C°(P), f E C°°(C)

Cell Size, e	 hue —uo,C2()hI	 it —uo,H'(1)l

o 5	 7 11253489(-3)	 9 54929897(-2)

o 25	 3 32217720(-3)	 9 54929897(-2)

o 125	 1 63344765(-3)	 9 54929897(-2)

o 0625	 8 133 16124(-4)	 9 54929897(-2)

0 03125	 4 06233558(-4)	 9 54929897(-2)

0 015625	 2 03063761(-4)	 9 54929897(-2)

0 0078125	 1 01525255(-4)	 9 54929897(-2)

__________________	 0(e)	 0(1)

Table 3 8 2 a E 'C(P)\C°(1) f E C°°(C)

Cell Size, e	 hue - t4, t2(l)hl	 Iue - u, Hi(1)l

0 5	 1 73930827(-3)	 2 04124196(-2)

0 25	 4 05197388(-4)	 1 02062098(-2)

0 125	 9 95487155(-5)	 5 10310490(-3)

0 0625	 2 47792450(-5)	 2 55155245(-3)

0 03125	 6 18808814(-6)	 1 27577623(-3)

0 015625	 1 54660220(-6)	 6 37888113(-4)

0 0078125	 3 86624310(-7)	 3 18944056(-4)

____________	 0(e2)	 0(e)

Thus, despite the low regularity of the coefficient a, the higher order approximations,

?4q , N ^ 3, are available once again and the lower order approximations, u, N = 0, 1,2,

behave in an identical fashion to that observed for problem 3 4 which also possessed an
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Table 3 8 3 a E 7'C°°(P)\C°(P), f e C°°(C)

Cell Size, e	 hue —u2 ,L2(l)hl	 hue -t4,H1()I

o 5	 4 32587839(-4)	 4 97495505(-3)

o 25	 5 03594314(-5)	 1 24373876(-3)

o 125	 6 18519067(-6)	 3 10934691(-4)

o 0625	 7 69765770(-7)	 7 77336726(-5)

0 03125	 9 61153600(-8)	 1 94334182(-5)

0 015625	 1 20111300(-8)	 4 85835454(-6)

0 0078125	 1 50129000(-9)	 1 21458863(-6)
__________________	 0(c)	 0(E2)

infinitely smooth inhomogeneous term fc The problems 3 6-3 8 and their results are now

analysed and explained Furthermore, a Theorem is proposed which both summarizes and

generalizes the properties of the homogemzation approach described here

3 9 Analysis and Conclusions

The homogenization (3 2 1) was observed, in problem 3 4, to provide asymptotic approxi-

mations 14i, N ^ 0, defined by relation (3 2 14), of the solution, uc , of the boundary value

problem (3 11), which become ever more accurate, as N -4 oo, in precise accordance with

the Bakhvalov and Panasenko Theorem 3 2 2 This is exactly what one should expect for

a E C°°(P), fc E C°°(C) where also, therefore, it E C00 (C) However, to determine both the

roles and affects of the functions a, f on the homogenization we considered various problems

with regularity characteristics lower than those displayed in problem 3 4

We assume that fc E Hm(C)\Hm+l(C) and observe from the regularity theory that

E Hm+2 (C)\Hm+i(C) However, if we recall the two-scale expansion (3 3 15), 1 e,

ô2u0,1
t4 1 (x) = ho £(x) + 6 [xixIe 

OuO,t() 
+ G1 ,(x)] + 2 

[X2x/E)	 2 (z) +

aNUOL
+ + 6N [XNx/6 öxN (x) + GN,t(x)]	 (3 9 1)

where

n,rz
U,t(X) =	 a, e"'q5o (nir), Gk,t(x) =	 a, e	 gkn7r)	 (3 9 2)

nEZe\{O}	 nEZ\{O}

then the property u0 E Hm+2 (C)\Hm+3(C) suggests that the derivative Dauot , a ^ m + 3

and, therefore, the asymptotic approximation a > m + 3, cannot converge as £ —+ co,

in either £2 (C) or Hi (C) norm topologies Indeed, as a consequence of the property Dmfc E

£2 (C) it follows that an(fc) = o(InI_m) (hI -^ cc), lnm+/c an (fc)l —* 00 (ml — oo), k ^ 1

and, therefore, because the modulus of the general term of D'uo ,L , a ^ m + 3 satisfies

I a,(fc) (r z)ae121to(n7r)I = A 1r0 Inc2an (fc)l 4 0 (fri —+ oo) the termwise derivatives

Du0,1 , a ^ m+3 all diverge as £ -^ 00 as observed above Thus, for low regularity problems
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of this type we must consider alternative asymptotic approximations to u 1 , £ e ]N for

N ^ m + 3 It is for this reason that we introduced in Section 3 3 the approximations

UN , M ,t, N ^ m + 3, M < rn + 2 which exploit the good approximation properties of cN

within the region of analyticity of q5(x, ., .), x E 1

Based on the analysis and computations performed in Sections 3 4, 3 6-3 8 we propose

the following theorem for the general asymptotic behaviour of the homogenization approach

founded on (3 2 1)

Conjecture 3 9 Let a PCr(P), I e H(C) then the functions u, u	 t4, and

UN , M £ have the following asymptotic approximation properties

hue - u,H9 (C)hh ^ Cemh1(N+1,m+2)_p, 0 <N<rn+2
	

(3 9 3)

hI u —
	 H(C)hh ^ Cmh1(N+1,m+2)_p, O<N<m+2-p

	
(3 9 4)

hl u — lLN , M,t ' H(C)hI ^ Cem (N-I-i,m+2)p/2 N^m+2,M = m+2-p (395)

where 0 ^ p ^ 1, £ E Fl, C> 0 is a constant independent of c, and ue € Hm (C)flH(C) , 1 <

A < 2 is the weak solution of problem (3 11)

We have not included H' (C) error estimates for 14n+2 £ in relation (3 9 4) because, as indicated

above, hl u +2,t, H' (C) —+ cio (t —4 oo) and, consequently, this function cannot provide a valid
ffi (C) norm approximation of ue This occurs because the asymptotic approximation, U+2t,

cannot be differentiated term by term - this was demonstrated in Section 3 7 However, in

Sections 3 4, 3 6-3 8 it occurred that g = 0, k ^ 1 and. in such a circumstance, (3 9 1) then

implies that, for 0 ^ N <m + 2, x € C,

i9u0	 a2u0
u(x) = uo(x) + exi(x/E) —(x) + E2 X2(X/C) --j-(x) + + cN XN(XIE) 3N (x) (3 9 6)

ax

It may then be preferable to seek the asymptotic approximations t4, (= t4 0) in the form

(3 9 6), cf BAKHVALOV & PANASENKO (1989), clearly, there are no series truncation errors

and possibly no reduction in the convergence rates occasioned by termwise differentiation as

observed in (3 9 5)
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Introduction 4 0

4 HOMOGENIZATION OF Two
DIMENSIONAL ELLIPTIC BOUNDARY

VALUE PROBLEMS

4 0 Introduction

As part of the route towards our stated goal we now move to problems with the next higher

order of difficulty and follow the format of Chapter 3 Thus, we now consider elliptic boundary

problems in lEt2 where the material properties of the medium, , change periodically and

irregularly on a scale, e, due to the presence of composite materials The asymptotic approach

developed in Chapter 3, i e, homogenization, is extended to include boundary value problems

of this type However, we observe that, for 1 C R', n ^ 2, the analytical expressions for it

and u, N ^ 0 employed in the homogenization approach are generally unavailable In order

to overcome this lack of analytical information we resort to using finite element techniques

to construct accurate and robust discrete asymptotic approximations which are analogous

to those employed in Chapter 3 In using finite element methods, we naturally wish to

exploit known a priori estimates for the error Such estimates depend on the regularity of

the solution, which, in turn, depends on the geometry of the domain, the geometry of the

material interface and material properties With polygonal interfaces, singularities will occur

at the vertices The approach adopted here is to take finite element meshes which coincide

with these interfaces and to state the finite element error estimates in terms of parameters

defining the dominant form of the singularity It is not our purpose here to embark on a

detailed treatment of these singularities Guided by our experiments in the one dimensional

setting in Chapter 3, we assess the behaviour of the combined homogenization/finite element

approach for a variety of problems exhibiting various levels of regularity In this way we

determine how the various regularity characteristics of the problem affect the homogenization

approach

The difficulties caused by the presence, in the model problem, of rapidly changing coef-
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ficients of low regularity for the direct application of conventional finite element approaches

were considered in the one dimensional case in the previous chapter, cf Section 3 0 It was ob-

served that finite element techniques applied directly to the model problem could not resolve,

within practical constraints, the variations of the coefficients necessary to construct accurate

numerical approximations However, the observations in Theorem 3 0 1 of the asymptotic

behaviour, as e -+ 0, of the coefficients and solutions of elliptic boundary value problems led

to the approach called homogenization In Chapter 3 we observed that this approach intro-

duces errors which decrease as g —^ 0, i e, as the variation of the coefficient, Vp(a), increases

Indeed, for e-periodic coefficients it was demonstrated that the asymptotic approximations,

u, N ^ 0, obtained from the homogenization approach, exhibit the following properties for

llu —u,C2 (1l)II -+0 (& -^0), N ^ 0

u,H(1l)j —^0 (e -+ 0), N ^ 1

where the rate of convergence, as E - 0, of the errors increase, irrespective of the regularity

of the coefficient a, as N -* oo Thus, the approach based on homogenization, described in

Chapter 3, is particularly well adapted for the treatment of the inherent difficulties caused

by the rapid variation of low regularity coefficients

4 1 The Model Two Dimensional Problem
We employ the following elliptic boundary problem as the model two dimensional prototype to

illustrate a combined approach based on both homogenization techniques and finite element

discretizations Find the weak solution uc E H (1k) of the elliptic equation

8u	 -I def

—(x)I	 = f() xE = (0,1)2	 (411)_-_[akL(/E)	

-j

where f E £2 (f) and A = (akz) ,11 E ((p))2X2 is a symmetric 1-periodic matrix with

elements satisfying the property, cf Figure 4 1,

Tr(a kz)l	 Tr(akz)I	 , 1< s <2	 (412)
Ir.	 I1'.+2

and, for almost all x E f, E > 0

0<ailkI2<	 kakz(x/e),^a2EIkI 2 < oo, (i,2)E R2	 (413)
k=i	 k,L=i	 k=i

where a 1 , a2 > 0 are constants which are independent from c The weak formulation of

problem (4 1 1) can be obtained by multiplying relation (4 11) by v E H (l) and integrating

by parts to obtain the problem Find u E H (il) such that

2

a,z(x/&) 
ÔU	 DV	

f f(x)v(x)d, v E H(1)	 (414)—(x)—(w)dx =
- DX k - 8w 1 - -
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Application of the Lax-Milgram lemma to the weak form (4 1 4) of (4 11) establishes the

existence of a unique solution, uc E H (fl), which also exhibits the regularity property, cf

MURAT & TARTAR (1994),

hue , Hi () II	 C Ilf £() Ii	 (4 1 5)

where C = C(f, aj) > 0 is independent of c If the data A are piecewise constant, i e,

A(/E) =A", xEclr ,A [n] E]R2 ' 2 , 1^ r ^ m 	 (416)

where fl = U i r and 1r, 1 <r < in are simply connected polygonal regions with 1r fl1 8 =

0, r s then in a neighbourhood of the vertices of the interfaces F, U1l, n 1 ^ r, s ^
m the solution, uc , of problem (4 11) will generally exhibit the characteristically singular

behaviour commonly observed for problems with smooth coefficients formulated in nonconvex

polygonal regions Indeed, following KELLOGG (1971) we define the Hubert space

D(1l,a){vEH(fl) IfEA()st a(vE,w)=(f,w,12(rl)), wEH()} 	 (417)

(v,w,V(,a))	 (Lv,Lw,C2(1)), v,w e D(1,a)	 (418)

where a € BL(H0' () x 1T (il), ]R) is the bilinear form associated with the weak formulation

(4 1 4) and L e B.C(V(1, a), L2()) is the operator defined pointwise as Lue f, f E £2(ffl

if, and only if, UC E H () is the solution of the weak problem (4 1 4) It is shown in

KELLOGG (1971) that UC can then be written in the form

ue =av+wve +wE 	 (419)

where a3 € R, vf, v e D(1, a), 1	 ^ M and

li Ly6 , £2@)ll + hiwe , Hi (1)hl +	 ll w , H2 ()li ^ C hl Lu , £2(I)hi	 (4110)

The form of the singular functions v € H' (Q) 0 < a < 1, 1 < < M will de-

pend precisely on the coefficients akz, 1 ^ k, I < 2 arid the geometry of the interfaces

r8, 1 ^ r, s ^ ins, cf BLUMENFELD (1985) The regularity properties of u6 are clearly

important because they determine how rapidly the errors introduced by finite element ap-

proximations diminish as h - 0 Clearly, there are techniques of approximation which are

particularly appropriate for problems of this type, e g, the class of a-posteriori adaptive

methods and the non-conforming approach of BABUKA & OSBORN (1985) for which,

in the norm 
11 v 1l 2 >IrE1h(0) li v , H' (T )l1 2 , the optimal 0(h) error bound can be attained,

however, we have found that, to assess our approach, it is sufficient to employ piecewise

linear approximations constructed for triangulations, 7(1), h> 0, which have the property

TflFr8 0, 1 ^ r,s ^ m for 'r E 7(1), cf Section 22
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(4 114)

(4 1 15)

(4 116)

Model Problem 4 1

We observe that problem (4 1 1) can be obtained as the restriction to of the planar ellip-

tic problem Find the weak solution u6 E H(R2) {v R2 —* C For any open subset C

C It2 , v E H'(1)} of the elliptic equation

3u	 1—(x)l =fc(x), xER2	(4111)
—	

_ [aitxiE	
, —

where the function fc is defined as the periodic extension to It 2 of the function IA where IA
is defined as follows

—f(—x1, z2),
fA(x) 

def { 

f(xi,x2),

— 
=	 f(—xi, —x2),

—f(xi, —x2),

if (xi ,x2 ) E 1
if ( —Xi,X2) € Il
if (—x 1 , —x2 ) E Il
if (x i , —x2) Il

(4 1 12)

Thus, Ic is formally defined by the Fourier series expansion

del

	

nz7ri	 del
Ic (x) =	 a, e— - ,	 a = f IA (x) e

EZ2\{O}

(4 113)

where C (-1, 1)2 The partial differential equation (4 111) evidently implies (4 11) while

the periodicity and antisymmetry of Ic imply the following properties of u6 , for almost all

E Il,

( + 2n) = u (a), k E

ue ((_1) rnl xi, (_1) rn2 x2 ) = (_ 1) m l +m2 Ue (Xi , Z2 ),	 E 1N\{O}

JB(O,
u)d=O, p>O

p,00)

Furthermore, the regularity property tt E H'+P (C) for some p> 0, the Sobolev embedding

Hi+P(C) C C°"(), 0 <A < 1, cf ADAMS (1975), and the antisymmetry of u, cf (4 115),

imply that tt E H() Following BABUKA & MORGAN (1991i) we observe that for

f(x) =	 the mapping

(41 17)

solves (4 1 11) where '-+	 e, ) is a complex-valued, 1-periodic function that, in the weak

sense, satisfies, for &> 0,	 0, the partial differential equation

ki	
Iakz()_(e'	 (,c,))] = E2e', x	 = (0,1)2

= XkL	 Dx,

and periodic boundary conditions on DP, for 1 s < 2,

= Tr((.,E,t))
I-'.	 r+2

(4 118)

(4 119)

Tr (TAv (. , e, t)] ,)
	

= Tr ([Av(., e,)]	
i'.+2	

(4 1 20)
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(0,1)	 r3	 (1,1)

Figure 4 1 The periodic cell r 4	 p

(0,0)	 F1	 (1,0)

where n(x) is the unit outward normal vector to the boundary, 87', at the point , and

1 9 1 s ^ 4 are the boundary segments of the periodic cell, 7', illustrated in Figure 4 1

Thus, employing simple linear superposition, the solution, tt, can be written as follows,

see BABUKA & MORGAN (1991ii) for the analysis,

fl z iru(x) =	 ace-- q5(x/E,E,1r)	 (4121)
aEZ2\{O}

Expression (4 1 21) now provides the opportunity to investigate the development of approxi-

mation techniques based on the cell problem (4 1 18)—(4 1 20) rather than the original bound-

ary value problem (4 1 1) However, before considering techniques of approximation, the

properties of the weak formulation of problem (4 1 18)—(4 1 20) and the respective weak so-

lution, q, will be studied

4 1 1 Properties of the Cell Problem
The weak formulation of the cell problem (4 1 18)—(4 1 20) is derived by multiplying equation

(4 118) by the function	 v E H er (?) and then integrating by parts to obtain the

problem Find	 E H er (P) such that, for v E
2

J >akl(x) ____(ewL(,e,)) __(e_2etJ) dx=c2 fv()d	 (4122)
ox1k1=i	

OXk\

where it has been observed that the boundary term

fJJ (w(x,,) [A(x)t] + A()Vq5(,e,)) n() d	 (41 23)

varnshes as a consequence of the boundary trace properties of A (akz) j=l , çb(., E, t) specified

in relations (4 1 2), (4 119), and (4120) Observe that = R[v()] - is the

complex conjugate of v (x) C Clearly, for u, v E H er (7'), the sesquilinear form for this

problem is defined as follows
2

(E,t)[u, v] = I	 akz() _ _(ewtu()) __(e
Ox1

k,i=1	 l9Xk

2	 2
Ov	 On -

akl(x) 
Ott	 DV

=	 ___(x)_(x)dx+zEJ i: akl(x) (tku(x)—(x) _tz_()v())dxL k 1=1	 -	 - Dxl -	 k 1=1	
Ox1	 OXk	 -

+62 J	 tktlakz(x)u()v()d

k,l=1

= 40[u,v] +EIi(t)[u,vJ +22(t)[u,v]
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The sesquilinear form is clearly Hermitian symmetric, i e , (,t)[u, v] = 1(E,t)[v, u], U, V E

H'er (P) Further, it follows from applications of relation (4 1 3) and the Cauchy-Schwarz

inequality that the following relations are valid

2
Du	 DIL Dv	 t9v

io[u , v]I ^ 
J	

ak1() — (x) —() d1 If	 akl(x)	
1/2

—(x) —(x) dx

	

- Dx 1 	 I	 I ' k 1=1	 - Dx 1 - — 11' k,t=1

: a2 il u , H'(7')ll li v , f'(7')lI
2

DvJ Eakz(x)tku(x)—(x)dj+' k,1=1

(4 1 24)
2

J 
>ak:(x)tl 

i9u
—(x) 7Ydx

7'IcL=1	
- DXk -

J	
a/1(x) Dv
	 Dv	

1/2I	 2	 11/21	 2

I	
ak'(x)tktLlu(x)'2dx	

I 	

—(x)—(x)dx +
DXk	 Dx1 -

k,L=1	 I	 , =1
2	 1/2	 2	 1/2

	

akl(x) — (x) — (x) dxi	 j	 a,(x) t, tj lv(x)i2dxLIE	
Dui'

-	 5xk3x1	 I k,L=1

2 iili2 (iiu , £2 (7') ii lv, H' (7') I + lu, H' (7') I li v , £2 (7') ii)

^ 2a iltil2 il u , H' (7') ii li v , H1 (7') ii	 (4 1 25)

l2()[?L,v]l	 2llli2i(u,v,2CP))i
	

(4 1 26)

2 lltll ll u, £2(7') II li v , £2(P ) ii ^ a2 Iill iu, H' (7')	 v, H' (7') ii (4 1 27)

i(E,) [u , vii ^ io[u, v]i +eii(){u,v]i +E2lI2(){u,v]i

^ C(e, ) llu , H '(7')Il ii v , H'(P)li
	

(4 1 28)

where Cfr, ) = cx2(1 + 2e IIIl2 + e2 iiii) > 0 Thus, the mappings	 ,	 () are

sesquihnear and o is also positive semi–definite over H, er (7') x Hier (7') In fact, from

(4 1 24),	 vi	 O[u, ii =	 1] = 0 and, furthermore, from (4 1 25), ,(t)[1, 1] = 0

To establish the	 (P)–Ellipticity of (e, t) the following lemma is required

Lemma 4 2 2 There exists a constant C, > 0 such that

1
liv, H' (7') II <v e' (•), H' (7') ^ C1 (1+ iilI2) lI v , H' (7') iiC1 (1 + iIII2)

for all v E H1 (P),	 It2

(4 1 29)

Proof If v € H1 (7') then the inequality on the right follows from the following relations

2	 P	 J20	 Dv&M,H1(p) 
=J 

v(x)v(x)dx+ E-__(v(x)eEt.)
7'	 7'

2	

---(x)dxl= li v , £2 (P)11 2 + iv, H'(P) i 2 + 2 iiii li v , £2(P)il 2 + 2E 
[f7'n=1 

v(x)8	
—j

2 ______ 
Dv^ iv, £2(7')ii 2 + lv,H1 (P)l 2 +c2 iili liv, £2 (P)ll 2 +2 J E tv (x )	 ()di

7' n=i

^ li v , £2 (7') Il 2 + iv, H 1 (7') 2 + &2	 li v , £2 (7') 1 2 + 2e IIlI2 li v , £2 (7') l lv, H' (7') I

^ li v , £2(7)ii 2 + (1 + E iill2) li v , H 1 (P)1i 2 ^ 2(1 + E il t ii2) li v , H1(P)I12
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The inequality on the left is similarly proved by applying the inequality on the right to the

function w() = v() e'-, i e

liv, 1Ji 
( 7') II = 11w e_ lt t (s) jji (p) II	 C, (1. + llll2) 11 w , II' (7') II

Lemma 4 2 A constant C2 > 0 exists such that

1
- liv e2E L ('), H' (7') II ^ lv e e t (•), H' (P) I ^ C2 liv e'	 H1 (7') II,	 (4 1 30)

for v E Hp'er (P) when c 72 and for v E H'(7') when E E 7-t2

Proof The inequality on the right follows immediately for any C2 ^ 1 Let v E C(P) fl

H er (P) and define w() v()	 x e 7', w(x) 0, E ]R2 \7' then

2

lw()I 2	 jw()	 ^ (x, +)f I w 1(, x2)I 2d , p>0

lw()I 
<j 

l w ,(e,2) d

Integrating this expression over P then yields the following inequality

11 w , £2(P)II ^ IIwz i , c2(2)Il ^	 II(P)

from which we deduce

liv e2 (•), H' (7') 11 2 = IIve ('), £2(7') 11 2 + Ive () , Hl(p) 1 2 ^ 2 Iv e'4	 Hi(P)12

However, because v E C°°(7') fl Her(P) is arbitrary the norm equivalence claimed aboved is

established for all v E C°°(7') fl Her(P) and C2 1// Furthermore, by completing the

function space C (7') fl Hp'er (7') within L 2 (7') using the H1 (7') norm topology one obtains

H r (P), i e, C°°(P) fl H er (P) is densely embedded in er(7') Thus, the norm equivalence

follows also for the completion Hp'er (P) of C°°('P) flH;er (P), cf HACKBUSCH (1992) How-

ever, the norm equivalence represented by the above inequality fails when Et E 2, this is

apparent with v(x) = C_2E, x El' for, then, e' (') e H er (P) But, replacing C°°(P) with

C°(P) in the above steps, the norm equivalence (4 1 30) then follows immediately 	 U

Thus, from Lemmas 4 1 and 4 2 the V—Ellipticity of 4 (c, t) follows immediately from the

inequalities below

2 8
_(e) dx

OXk	
v(x)) 

Ox,
l(&,t)[v, vii = jakz(x) 0(e2E

2

^ai f	
_- _ie2ctv(x)) __(e7)dx

8Xk

a, C 2 liv eiE (•), H' (7') 112

^ C() li v , H' (7') 11 2	 (4 1 31)
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where V Hp'er('P) for (c,t) ?-t 2 , V = H0'(P) for (E,) E	 and C(t) = a i C 2 C 2 (1 +

I III2) is independent from e Thus, treating c, t as parameters, the Lax-Milgram lemma

demonstrates that a unique solution (s, , ) E Her(2), Et fl 2 exists for the weak problem

(4 1 22) However, if Et E 7-t 2 then the sesquilinear form 4:(E,) is not positive on 	 x

H;er (P), e g,

= 0, e() E 11p'er,o(7) C Hp'er ('P)	 (4132)

and the weak formulation (4 1 22) does not then satisfy the Hp'er (P)Cllip t1CitY condition of

the Lax-Milgram lemma, however, the weak formulation Find q5(., e, t) E H (P) such that

= c2 fv(x)d, v E H(P)	 (4133)

does satisfy the Lax-Milgram lemma Thus, from the direct sum decomposition H r(P) =

H (1') e C and relation (4 1 32), we observe that any function defined according to the

following relation is also a solution

del 4(.,e,) +	 e E 2	 (4 1 34)

where x is an arbitrary function satisfying xfr,) = x(c, -t), E > 0,	 0 Furthermore, if a

is symmetric about the lines x 1 = 1/2, r2 = 1/2, i e,

a(xi,x2) = a(1 — xl,z2) =a(x1, 1—x2), (xi,x2)EP	 (4135)

then, as demonstrated in Section 3 1 1, the following conjugate symmetry relations are satis-

fied

q5(,e,) =q'((1—xi,z2),e,) =((x1,1—x2),e,), 	 EP,e>0,t^0 (4136)

Tr [c (i(.e ))] = 0
	

(4 1 37)

We now define the index set 1(E) [ { e 22 \{0} x FT (enir) e 'N 2 } and observe that the

solution, it, can be written

it(x) =	 ae(x/c,E,!7r) +	 2za(X(E,nir))	 (4138)
nEZ2 \{O}	 nEI(e)

Thus, applying the boundary condition Tr (ut) = 0 and property (4 1 37) to equation (4 1 38)

and noting the continuity of the trace operator, i e, Tr E 1iC(H' (1') , H1/2 (ÔP)), we deduce

the following identities

0 =	 2zae1z17flTr [(q5(./c,E,n7r))] +	 2za(X(E,n1r))
aEZ\{O}XN	 EI(E)

=
!iEI(e)
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Model Problem 4 1

However, the independence of the coefficients a, n E Z2 \{0} and the function x suggests

that, for (c, ) E 9-t 2, x(6, t) E It Indeed, with this proviso the choice of function x is of no

consequence to the construction of it

In the same vein as the 1-dimensional treatment, we observe that, in the circum-

stance in which the elliptic boundary value problem (4 1 1) models a heterogeneous body

comprised of different homogeneous materials, the coefficients are piecewise smooth, i e,

A e [PC00(P)\C0(P)]22, cf (4 1 6) It is then evident from the weak formulation (4 1 22)

of the cell problem that the following interface transition conditions for 1 r, s ^ nii are

implied

Ti [q5,(., c, t)] I
- Ir.

Tr [AV(e t 	 cbr(s,&,))]
Ii'..

=

=	 [A(ew) &(1,E,t))]

where n() is a normal vector to the interface Frs 1 ^ r, s	 mi at the point E r8,
(.,e,t),1 , 1 1 ^ m1 defines the restriction of the cell function, q5(.,e,), to

each homogeneous element, ?, of?, and Tr is the linear operator which maps a function to

its trace on the boundary pf its domain Qf definition In the 1-dimensional setting analytical

expressions for qfi were employed to assess the asymptotic approach for a variety of different

problems However, in a 2-dimensional setting the problem of computing analogous analyt-

ical expressions for 4', 4's, 1 ^ 1 ^ yn1 is often intractable Therefore we now consider the

application of finite element techniques for the weak formulation (4 1 22) of problem (4 118)-

(41 20) and, in this way, we compute approximations qSh (.,e,t) of 4'(.,) for E> 0,	 0

where h> 0 is the discretization parameter

4 1 2 Finite Element approximation of 4'(. , c, t)

The variables e, t which appear in the formulation (4 1 22) are determined by the model

(4 11), the period of the material, e, is prescribed and t corresponds to a Harmonic com-

ponent of the right hand side fc Thus, these variables are subsequently interpreted as

fixed parameters in (4 1 4) We begin by constructing the finite dimensional subspaces

Spr (1') c er (?), h > 0 Let S' ('P) C H' (P) be the finite dimensional space over the

complex field, C, of piecewise hnear polynomials introduced in Chapter 21 and let 13(S'(P))

denote a basis for this function space The basis l3(S'(P)) can be partitioned into disjoint

subsets 8h(p) !3 h (OP\v) , 13 h (v), i e

13(S"(P)) = 13'(P) U B'(ôP\V) U 13h(V)
	

(4 1 41)

where V	 {v E? v is a vertex of a} and, for arbitrary J C P, we define the subsets

(bases), cf (2 1 4),
del 'Bh(.) = 2 E B(Sh(1)) I 9- '({1}) c .F} (4 1 42)
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where it is assumed that Il', C°()lI = 1, çü E 13(s z (P)) and ccri(A)	 {x	
J 
q(x) E A}

is the inverse image of A c 11. Therefore, with 3' equal, respectively, to 7), aP\V, V the bases
13h(p), 13'(ôP\v) 13'(V) are obtained fronL (4 1 42) We now construct a basis, B(Ser('P)),

of S:er (7)) according to the definition

13(Ser(P)) 13h(7)) U Bir (8P\V) U B7 (V)
	

(4 1 43)

where j3h (P\V) = u 1B and the bases B r (V), B, 1 < s < 2 are defined below, cfper
Figure 4 j,

e 5h(F,+2(I_l)\V), 1 ^ 1 ^ 2, ll8 (supp i ) = fl8(suPP 2 )}	 (4144)
1=1

where 118 x1 x X2 —+ X8 , 1 ^ s ^ 2 is the projection operator and

(
def I

Br(V) 
=	 I {} = Bh(V)}

1=1

(4 1 45)

It now follows immediately from Chapter 2 and the above relations that Sr (7) is a con-

forming finite element space, i e, Ser(7)) c jer(), h > 0 and, furthermore,

S 1	 C S' (7)) c	 C S;r (P) C	 C H,erCP)	 (4 1 46)perk I	 per

where 7, (7)), i ^ 2 are successive refinements of the triangulation 7 (7)) Thus, employing

the Galerkin approach, we obtain the discretized problem Find q h (s,e,t) E S r (P) such

that

621 v(x) d, Vh E gh (7)'	 (4 1 47)pert )
7,

In Section 4 1 1 it was demonstrated that, for (,t) fl 2 , the sesquilinear operator (e,)

Hpier (P) X Hp'er (P) —* C is continuous and H(P)—elliptic However, because Sr(P) C

these properties also hold when the domain is restricted to S er (P) x s:er() and,

thus, the Lax—Milgram lemma can be applied to demonstrate the existence of a unique

solution ç (., c, t) E S e,. (7') for the Galerkin problem (4 1 47) Similarly, if (6, t) E fl 2 then

we replace S er ('P) by S(P) in (4 1 47) and seek çbh (.,E,) E S(7')

4 2 Homogenization Construction of the Asymptotic Expansion
We should like to begin here by commenting that Conjecture 3 11, asymptotic expansion
(3 2 1), and Theorem 3 2 1 introduced in the one dimensional context in Chapter 3 gener-

alize immediately to the 2—dimensional setting with only simple modifications and we shall,

therefore, refer directly to these results as stated in Chapter 3 with the understanding that

they are to be interpreted in the appropriate two dimensional context

The task of determining analytical expressions for the weak solution q(., e,t) E H,er(7'),

e > 0, t	 0 of problem (4 1 22) is usually intractable and, similarly, so is the problem of
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computing analytical expressions for the terms cj(.,t) E Hp'et (P), n ^ 0 of the asymptotic

expansion (cf Theorem 3 2 1),

=	 xEP, (c,) E G,	 t) EHper(P)	 (421)

Thus, we employ finite element techniques for the approximation of the terms q 7 (.,t), t

0, n ^ 0 using, as a basis for approximation, the expressions (3 2 10) provided in Theorem

3 2 1 However, we observe that for problems of low regularity, i e, fc E Hm(C)\Hm+l(C),

the parameter t is unbounded and, consequently, an approach based on the direct approxi-

mation of the functions Xn(• , ) E 1T er o(7'), i-i> 1 (cf Theorem 3 2 1) would be impractical

We demonstrate how this difficulty can be overcome by (i) Separating the variables , for

each function xn(, ), E 7', t 0, and then (ii) Approximating independently the separate

components of Xn, n ^ 1 The construction of approximating finite element subspaces

S er 0(7') c Hpier (P), h > 0 is described together with their application to determine accu-

rate and robust approximations Xn,h( • ,!) e S:er,o(P) of X(,Q E Hp'ero(P) and the errors

introduced by applying this finite element approach are analysed

4 2 1 Separating the variables in g5,(x,t)

The term / (, ) is, ultimately, employed in a series expansion of the form (4 2 1) in which

the variable corresponds to a specific Harmonic frequency of Ic, cf (4 1 13), and E P

However, we shall demonstrate that it is possible to deduce expressions for t) in which

the functional dependence on the variable x is separated from that of the variable t, i e, cb,,

can be wntten in the form

(,	
=	

k () )'k ()	 (4 2 2)

where 0k E He ,0 (7'), 0 k ^ n are obtained as the solution of a weak problem formulated

in a Sobolev space setting and Ak, 0 k n are rational functions whose coefficients are

determined by the weak solutions °k E Her (7'), 0 ^ k n The property (4 2 2) provides

the opportunity to introduce finite element approximations 9k h, Ak,h, h > 0 of, respectively,

0k, Ak where Ak h, Ak differ only in the value of their coefficients and, in this way, we construct

approximations n,h of , i e,
n

del V
=	 Ok,h()Ak,h()	 (42 3)

k=0

The separated variable expression (4 2 2) is a direct corollary of the following theorem which

demonstrates that the functions Xn(•,) E Hero(P),	 0, n ^ 1, introduced in Theorem

3 2 1, can be represented in the form (4 2 2)

Theorem 4 2 1 The functions Xn(•,) E Hpiero (P), t 0, ri 1 defined in Theorem 321

can be written in the form, for a E

Xn(,) =' :ii:	 xa(),	 EP,	 ri^ 1	 (424)
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(c5)	 ,if ISI = 1, e 6 (v)	 —i [1,vj

if ll ^ 2, e5(v)	 - ::	 [x,v] 
+ ::	 2[Xa,V1

	

II= 1	 IflI IiI='

del
where Xo = 1 and, for l al, lil	 1, u,v E Hp'er(P),

Asymptotw Expansion 4 2

where xa E Hp'er o(P), al ^ 1 is defined as the unique solution of the weak formulation

O[Xa, V1 = O(v), v e Hier,o(P)
	

(4 2 5)

where e(a) E 13 £(H' er,o(7') , R), H ^ 1 is defined in relations (4 2 8), (4 2 9,) Furthermore,

for	 0, go() = (IlI=2 ka )_1 and the functions g, n ^ 1 can be written

n—i

g() = —go(L) i z	 'cta, t 0, n ^ 1
cel=n+2-3

where the constants 'a E IR, al ^ 2 are given by

dcl
= -
	 11 +	 7'[xa, i ll,	 al ^ 2

111 =1 	 II 151=1

(426)

(4 2 7)

arid	 E t3C(H'er,o (P) X	 er,o(7 '), It) for 1/31, Fy1

Proof We first define the mappings g(a), 	 eInkd in relations (4 2 5) and (4 2 7)

as follows, for a,f3,'y,S E N, V E

(4 2 8)

(4 2 9)

(4 2 10)

(4211)

(4212)

(aj3)

::	
[u,v]

del I
'[u,v]	

J 
a(x) (u(x) Dv() - D'3u(x)v()) dx

p

del 
f= , 
a(x)u(x)v(x)dx

2

where we have, evidently, employed the multi-index flotation,

4!!	 def

- Dx1' 9a2'	 a = aki,	 a l, 1/3 1 = 1	 (4 2 13)

where k ai + 2a2 and 1	 + 2/32 Clearly, that	 f3) 
E 8C(H er0 (P) x H' r o(7)), IR),

for l a I, 113 1 = 1, is apparent from the relations, for u,v Her,(P),

LuD	 d + faa (x)v(x)Du(x) d

1/2	 1/2

^ [I Iaa ()I 2 Iu()I 2 d]	 [LlDv l 2d ] +

1/2	 1/2

[fIaal2Ivcl2d]	 [I IDu()Id.]

^ Il a m	 (7)) II (lI u £2 (7') II lv, H 1 (7') I + li v , £2 (7)) II lu, H' () i)

^ C fla, £,,(2) Ju, H1 (7') li v , H' (7') Ii	 (4 2 14)
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where C > 0 is a constant independent of u, v E H er 0 (P) It is, similarly, demonstrated

in Lemma 4 2 2 that	 ,	 E	 x H er,o(P), IR) for a l, l/l = 1 and, thus,

e(a) E 13 £(H' er,o(7 ') , IR) for Ial ^ 1

We now demonstrate that the functions xn, n > 1 defined in (4 2 5) satisfy relations

(3 2 8) Let n = 1 in (4 2 4) and observe from (3 2 4), (4 2 5), and (4 2 8), that, for v E

Hp1er 0CT'),

o[Xi(,),v] = >2	 o[xa,v1

1a11

= -i >2	 [1,v]
1a11

= _41(t)[1,v]	 (42 15)

Thus, Xi(• , ) e H er,(P), as expressed in (4 2 4), uniquely satisfies (3 2 8) However, if

n ^ 2 then, employing (4 2 4), (4 2 5), and (4 2 9), we deduce the following identities, for

V E Hp1 ero(2),

4o[xn(s,),v]	 i >jj	 o[Xa,v]
IaI=n

>2 I -	 [xmv1 + >2
Ion	 L	 8+v

	

1 .1 ,_i	 il I6I1

>2 >2 c'[xfi ,v1 +iTh >2 >2

	

113 1 121	 h1 i 	1131=n-2	 IlrHol=1

=	
>2	 i(){x,v] — z2 >

1131=n-1	 II3In-2

—i()[xn_i(.,),v] —2()[x_2(.,Q,v]	 (42 16)

This demonstrates the validity of the separated variable expression (4 2 4) We now substitute

expression (4 2 4) for xi( • ,) E H er0 ('P), 0 into relation (3 2 9) to provide the following

equations

(go(t))_i = >112 L	 i()[x, 11 + 2()[1, 1]
IcI=i

= - >2	 Y[xa,11 + >2 t[l,1]

	

I a I,I/3 1=i	 IaI,1a11

= >2	 >2 [Xa,11+ >2
II=2	 S+

IPI IiI=1

and, employing definition (42 7), we obtain the expression g0(t) = (IIaI=2 icat),	 0

Similarly, substituting expression (4 2 4) for Xn( • , ) E Hp'er ( 7'), ^ 1, t	 0 into relation

(3 2 9) we deduce the following equations, for	 0,

= —go ()	 g ()	 >2	 i () [xe, 11+ fl-2 
>2	 () [xe, 1]]

j0	 IaI=n+1-3	 IaI=n-2
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n—i

= —go()	
g3()jfl_3F_ 

>2 ta+/3r)[xo,11+ 
>2

3=0

	

81=1	 ill hI1

—go (L) >j1 t 3 g3 () >12	 >112	 [x 1] + >2	 [x0 1]] (42 17)
3=0	 IoI=n+2—,

181=1	 181 I-I='

Thus, comparing relation (4 2 15) with (4 2 5) and (4 2 6) and noting expression (4 2 7) for

kI ^ 3, the theorem is proved

From the Lax-Milgram Lemma and the knowledge gained from Theorem 4 2 1 it is clear

that one can compute finite element approximations, Xa,h E H er o (1'), of the functions

xa, e I'\{0} which do not depend on the unbounded variable Thus, we now consider

techniques for the construction of finite element subspaces Ser 0C1 ) C	 (1) from which

the approximations Xa,h will be selected

4 2 2 Construction of the finite element spaces S ,0 (P) C Hpr,o(P)

Let B(S r (1')) denote the basis for S er (P) introduced in Section 4 1 2 with elements ç9, I ^
def __

n <V where V = d1m(S r (p)), then, define the functions i' E Ser (1'), 1 n ^	 = v—i,

which span S r o(P), according to the relation, for 1 ^ fl ^ D0,

9() - 
Ii, 4C)iL çon+i(),	 E 1'	 (4 2 18)

Il+i, £(P)II
suppi = suppqS,, U SUPPn-l-1	 (42 19)

We claim that B(S er0 (P))	 is then a basis for a finite element subspace S er 0 (P) C

Hp' r () Indeed, it is evident from the relation Spher0 (P) c Sp'er(P) that ,, E S er (P) and,

furthermore, f. , i,b () d = 0 because

f
çb, () dx	 [con@r) d -	 I co+i ()

p	 ii'	 Il'+i,C1(P)fl ii'

IP,CiCP)II 1140n+i, L 1 ('1')
IIwn+i, L:i (P) If

0, 1^n^V
	

(4 2 20)

Now suppose there are constants c, 1 ^ n V0 such that

cii'J'n(x)+	 +av00(),= 0,	 EP	 (4221)

then this implies, for x E 1', the following identities

Do	 DO

> a'?3b,(x) 
= >2 a [9(x) - lI, (i')Il 2fl+i()]

II , +i, £1(p)II
n=1	 n=i

V

(4222)
n=i
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where

/31 =a1 , /3=a—a_ lko,—i, £i(P)II 1 <n <i'o, 13v = —az,0 It 'Pvo, £i(l')IJ 
'4 2 23)llco,Ci(P)l	 jIcov,Ci(P)IJ

Because {}	 is a basis for S(1) it follows that /3,, = 0, 1 ^ n ^ D and, therefore,
relations (4 2 23) imply that a,, = 0, 1 ^ n ^ Do Thus, the set 13(S,r (P)) {i,bn }	 is
a basis for the finite element subspace er,(7') C H er,o(P) Once again we observe that,
because S r,(P) C	 the Lax-Milgram Lemma guarantees the existence of a unique
solution U,, E S er,0 (7') of the abstract Galerkin problem Find U,, E Sp"ero (7') such that

O[Uh, Vh] = F(vh), Vh E Ser,o(P)
	

(4 2 24)

where F E 13L(H, er,o(P), JEt)

4.2.3. Analysis of the Finite Element Approximation Errors.
The discretization errors which arise as a consequence of the application of Galerkin finite

element techniques to problems (4 2 5), e g, Find Xa E H er0 (7') such that

'I'o[Xa ,v} = 0(v), v E H er,o(P), IaI ^ 1,	 (4 2 25)

are analysed below where we provide error bounds for the approximation errors XaXa,h, a E
in both 4(7') and H'(7') norm topologies

We observe, cf (4 2 9), that the functionals 0(a), lal ^ 2 are unknown elements of
the Banach space &(Her,0(P), R) because they depend directly on the unknown weak

solutions x E H, r,0 (7'), 1/31 <la l, h> 0 Clearly, however, one cannot base computational

approaches on purely abstract problems of this type and we therefore employ finite element

approximations X,h E Sr,o(P), l < l al, h > 0 to construct approximating functionals

E I3C(H, er,o(7'), R) of 0(a) E l3L:(Hpero (7'), lEt) which we define according to the
relation

(a)	 dcl
0h (v) = - i	 4[xp,h, v1 + >11	 "5[xf3,h,"1, v E H er,o(P),	 al ^ 2 (42 26)

IiI1	 171 151'

and 0j	 0(a), h > 0, lal = 1 Thus, we define the Galerkm problems as Find Xa,h E

S r,0 (P) such that

o[Xa h,Vh] = ® -' (vh), Vh e S'er o(P)
	

(4 2 27)

where a E lN\{O}

We now demonstrate in the Lemma 4 2 2 that the various mappings in (4 2 26) from which

a E N\{0} is composed are continuous The corollary of this Lemma is, of course, the

conclusion that	 a e F\{0} is a functional, i e, an element of l3L(H' ero(7') , JEt)
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Lemma 4 2 2 The mappings	 Hp1er0(P) x Hpi0(7J) -4 R defined in relations

(42 10) and (4 2 12) are continuous, i e, for u,v E H er (P), l a i, iil = 1,

[u, v] I ^ Ci Il u , JI1 (2)11 liv, ,fi ()li
	

(4 2 28)

[u, v] I ^ C2 il u , if' (2)11 li v , H1 (2)11
	

(4 2 29)

where C1 , C2 > 0 are constants independent of u, v

Proof It has been established in the proof of Theorem 4 2 1 that, for la l, ltI = 1, aj3) 
E

t3C(H;ero (P) x Her0(P), ]R) and because a) =
	

Ii), 
al = 1 it follows that

a) E BL(H, er o (2) x Her,0 (2), R) Furthermore, from relation (4 2 14), it is clear that

an upper bound for the BC(H er0 (P) x Her,0(P), IR) norm of	 is the following

(a)i	 4 max ll aa, £(2)Il,	 lal = 1ii	 i	 II
113

Similarly, from the Cauchy—Schwarz inequality, it is evident that

i/2	 1/2

^ [f 
la()l iu(x)12dx]	

EL 
lv(x)l2d]

^ ll a ø, £(p) II li v , H' (2)11 llu, H' (2)11

(4 2 30)

(4231)

Thus, for a l, l/i = 1, it follows that	 j3) 
BC(Hiero (P) x Hjer o(P) R) and ll'Il ^

lIam4,o(P)ll	 1

The rate at which the piecewise linear approximations Xa,h € S ,0 (2) converge, as the finite

element diameter h —4 0, to the analytical solution xa E H er,o(2) for a € I'T\{0} in the

H (7'), 0 p S 1 norm topologies is detailed in the following Theorem

Theorem 4 2 3 For a € 1\{0} let	 h € S ,0 (P) be the Galerkin solution of (4 2 5),

i e, it satisfies (4 2 27) then, for 0 <p 1,

liXa Xa,h, H '(P)II	 Cah(8_1)(2_P), h >0	 (42 32)

def	 '
where s = maxi r X3 Hr(P) flH0(p), 1/3 1 = 1} and Ca >0 is a constant independent

of h> 0

Proof Let xa € H, er o (7'), Xa,h S,er0 (2) C Her,o (2) be, respectively, the solutions of

problem (4 2 5), Galerkin problem (4 2 27), then, for vh E S er,0 (7') and al ^ 2, we observe

that

o[Xa - Xce,h, Vh] = o[Xa, Vh] -	 h, VhI

= ®(a)(vh) - e'(vh)

i	 N[Xfl—X13,h,vh]+

I-Il

f' [x - X13 h, vh] (42 33)
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The continuity of the mappings I4 , demonstrated in Lemma 4 2 2 for 'y, 5 F\{O}

imply that there exist positive constants K1 , K2 , and K0, which are independent of the

solutions Xa, X h, such that, for Vh E S er (P) Io[xa X0, h,Vh]I

<
 [

ii0,	 —xØ,h,H'(P)II +K2,0, 	 llX	 Xh,H(P)IIl
113 1 = I a I— i 	1131=1aH2	 J

I13I=kI—i

<K0,	 >12 IIx - X/3 , h ,H i (P)II II'vh,H(P)II

II3kIacI-2

II vh, H1('P)l

(4 2 34)

However, setting Vh = x0, - x0, h in this relation and using the H, 0 (P)-Ellipticity of the

sesquihnear form o we deduce the following inequality

I/31=IaI—i

Ilx	 Xa,h,H1(P)lI	 E IIx —xflh,H'(P)lI
CE I/31=IaI-2

where CE > 0 is the ellipticity constant of o Itis then evident that, if

IIxa - Xp,h, Hi (P) II ^ C13 h'', 1/31 < lal

then there is a constant CO3 > 0, independent of xa and h, such that

IIx - Xa,h, Hi (7') II	 CO3 h7,

However, from Céa's Theorem, cf Section 2 2 2, we have, for 
1/3 1 

= 1,

lIoII
11x13 - xfl,h,HiCP)Il	 CE 

inf{ Ilx - vh ,Hi (p)ll Vh E S er,0 (P) }

(4 2 35)

(4236)

(4 2 37)

(4 2 38)

where CE > 0 denotes the ellipticity constant of the bounded sesquihnear operator 4 o E

t3C(Hp'er ('1') x Hp'8r (7'), R) However, from the approximation property, cf HACKBUSCH

(1992),

inf{ lv Vh ,H(P)lI Vh E Sper o(P) } ^ C(0)h	 Il v , H8 (7')II, 1 ^ s<2	 (42 39)

where v is an arbitrary element of H8 (7') fl Hp'er, (7') and 0 is the mimmum interior angle of

any triangle in the set 7 (7') of finite elements, we thus have,

11x13 - X13,h, H 1 (7') II	 C(0) h8_l 11x13, H8 (7)) 1	 h > 0, I/S I = 1	 (42 40)

Thus, if we define .s max{ r x13 e H(P) fl H er0 (7'), 1/31 = 1 } then, in (4236), 'y = s—i

and the approximation property (4 2 40) and the error bound (4 2 35) imply the error bounds

Ilx0, - xa,h,H1(P)lI <(0)h8_i >1 Ilxa, H8 (7')Il,	 al = 2	 (4241)
CE

1131=1
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Clearly, inequality (4 2 32) now follows directly from (4 2 41) for p = 1 and Ial ^ 2 and the

remaining estimate for p = 0 is obtained with the application of the Aubin-Nitsche Theorem,

cf Section 2 2 2, which provides the following alternative error estimate to (4 2 40)

lx - Xf3,h, £2 (7') ^ C1 (0) h2(8_l) llx, H8 (7') , h> 0, 
1/3 1 

= 1	 (4 2 42)

The error bound (4 2 35) and the error bound (4 2 32), now established for JaI	 2, and

the Aubin-Nitsche Theorem together imply the error bounds (4 2 32) for the higher order

approximations Xcx,h € S er,o(P), kl ^ 3, h > 0	 U

We observe, for the specific case of piecewise constant coefficients, cf (4 1 6), that with

/31 = 1, x E H(P), for some a> 0 and Theorem 4 2 3 provides the error bounds, for

O ^ p ^ 1,

IXa - Xa,h, H"(P)lI ^ Co	 h > 0, Ial ^ 1	 (4243)

However, if the finite element triangulations 7 (7'), h > 0 are constructed such that no finite

element, r e 7(fl, can overlap an interface boundary, Frs, 1 ^ r, s ^ m, cf Section 4 1,

then the triangle inequality and the regularity property xp E H2 (Ph), 1/3 1 = 1 where Ph is any

convex union of triangles r E Th (7'), h > 0 satisfying dist(Ph , V) > p > 0 for p sufficiently

large and where V {v E F I v is a vertex } suggest the error estimate, for 0 ^ p ^ 1,

IIxa - Xcr h, H(Ph ) II ^ C(0) h2 "IlXa, H2 (Ph)Il + lIXcx,h - llhXcx, H(Ph)lI, kl ^ 1 (4244)

where flh H2 (P) .^ S'(P) is the interpolation operator and 0 is the smallest interior angle

of any T C Ph, h > 0 The first term in (4 2 44) reflects the optimal approximation errors

possible in each element, r, as a consequence of the type of triangulation 7 (7') while the

second term represents the pollution effect of the singularities on the region Ph C P and will,

consequently, have a lower asymptotic order with respect to h, cf NITscHE & ScHA'rz

(1974) Thus, for Ia ^ 1, we expect the approximations xa h E Sp"er,o(P) to converge to

Xcx € H er,ü(P), as h —+ 0, more rapidly than is indicated by the global error bound (42 43)

for an arbitrary triangulation 7 (7') Indeed, we exploit the approximation properties (4 2 44)

in the computational examples provided in Sections 4 4 1-4 4 4 for which the coefficients

aa, al, I1I	 1 are piecewise constant

The constants 'ia, al ^ 2 defined in relation (4 2 7) are unknown because they are defined

in terms of the weak solutions xa E II1 er,O (7'), 1/3 1 < lal Thus, we define the approximations

'a h, h> 0 as follows

del

	

= - II	 h, 1] + >	 '2 [xfl h, 1], lal ^ 2	 (42 45)

	

1,1 =1 	lu 161=1

where X,h E S r (P), /3J < a l, h > 0 are the finite element approximations introduced in

problem (4 2 27) The rate at which the error 'a — ic h decays is considered in the following

Corollary to Theorem 4 2 3
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Corollary 4 2 4 There exist constants C0 > 0, c ^ 2, independent of h > 0, such that

Ikacc,hI^Cah, h>O	 (4246)

where s max{ r x e ff() n H,er , (P), I/I = 1 } and Ic0 , K0 h are defined in relations

(4 2 7) and (4 2 45) respectively

Proof The error bound (4 2 46) follows immediately from relations (4 2 34), (4 2 39) and

(4 2 40) provided in the proof of Theorem 4 2 3 	 U

We observe, however, that if the coefficients a0fl , Ia, 1/3 1 = 1 are piecewise constant we obtain

- Icc, h1 = O(h°), 0 <a- < 1, however, by constructing 7(l'), h> 0 as above we find that

there are components of the error which are bounded by terms of the order 0(h) as h —* 0

4 3 Estimation of the Finite Element/Homogenization Error.

It has already been noted that, generally, there are no algorithms available which can be

employed to provide explicit analytical expressions for the weak solutions, , tt, of problems

(4 1 4) and (4 1 22) However, to assess our approach we require, at least, approximations,

lh, t4 h' £ E N, h > 0, with which the asymptotics

'UN ,t ,h()	 ae	 x ER2 , £ E Fl, N ^ 0	 (4 3 1)
nEZ\{O}

can be meaningfully compared, i e, such that the error t4 h — 1.tN,t ,I closely parallels the

actual error - u h' £ E N for h > 0 sufficiently small Clearly, this requires accurate

approximations h, u , of q, u and, thus, we employ finite element techniques to construct

approximations j h( s , e,), Uth, t 0,6, h >0 where

def n z
u h(x) =	 a,e-- h(/e,e,7rn), xER2 	(432)

n62\{O}

The errors which these approximations introduce are analysed, and, finally, they are employed

to investigate the errors Ue —
	 h' N ^ 0, h > 0

4 3 1 Finite Element Approximations h(•,E,), h>0.

Let (1') be the function space of periodic, piecewise linear functions over the field (C,

defined in Section 4 1 2, and define S (1') as the subspace of functions of S r (P) with zero

trace on the boundary, 9P We now define the approximation bh(s, e,t) as the solution of

the Galerkin problem Find q5,,(., e,t) E Vh such that

= E2 fVh ()d, Vh E Vh	 (433)

where Vh	 S er (P) if (E,)	
7.2 and Vh	 S(P) if (c,t) E 2, cf 4 11 The errors

introduced by this approximation are considered in the following Theorem
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Theorem 4 3 1 Let q5h (.,e,t) E Vh, h> 0 be the solution of the Galerkm problem (433)

then, for 0 <p ^ 1,

ll q5 ( . , c ,) — 4h(,C,),H'(P)II < C(e,t) h(8_2_ IIq(.,e,t),H8(P)l, 	 h >0	 (434)

where s ?max{r I çb(.,€,) H(P) flH er (P) } and Cfr,) = O(IftII) (IIII2 —+ oo)

Proof From Cea's Theorem, relations (4 1 28), (4 1 31), and the approximation property, cf

HACKBUSCH (1992),

inf{ li v — Vh,H(P)lI Vh E Spher(P) } ^ C(0) h8 
li v , H8 (P)Il, 1 s 2	 (435)

where v is an arbitrary element of H8 (7') n H er (7') and 9 is the minimum interior angle of

any triangle in the set 7(P) of finite elements, we thus have,

- q5h(.,e,),H (P)	 C(c,t)h'' j i4(. , e , t), H8 (P)lI, h>0	 (436)

where the positive function C(c, ) = CC(a2 /ci1 )(l + g II t lI2) 2 ( l + 2c 11 tH2 + e2 11 t 11 2 ) and s

max {r I qf(., e,t) E H'(P) fl 11er(2) } Thus, forp = 1, property (4 3 4) follows immediately

from (4 3 6) and, for p = 0, we apply the Aubm—Nitsche Theorem to obtain (4 3 4) 	 U

The local finite element approximation q'h(•, e, ) E S r (P), €, h> 0, t 0 shall be employed

in the computational examples in Sections 4 4 1-4 4 4 to construct the global approximations

h £ E FT defined in relation (4 3 2) The errors introduced by such an approximation over

Il are considered in Section 4 3 2

4 3 2 Analysis of the Global, l, Approximation Errors

The errors introduced by the approximations X,h E Ser,(P, IR), Ial ^ 1, q5h(•, e, ) E

for c> 0, t 0, and h > 0 were analysed in Sections 4 2 3, 4 3 1 to determine the

effects of approximation within the reference cell P However, to assess the homogenization

approach we require some indication of the errors introduced over 1 by the global approxima-

tions t4h, U Lh, cf (4 3 1), (4 3 2), which are constructed from these local approximations

We perform an analysis to determine error bounds for UE —	 h in the H"(cl), 0 p < 1

norm topologies

We begin by bounding the truncation error ue — t4 and the approximation error -

for £ E N, h > 0 in Lemmas 4 3 2 and 43 3 below

Lemma 4 3 2 Define fj E C2 (l), £ E N by the following relation

def
ft() =	 ae'-, x E R2

nEZ\{O}

and define t4 e H (1k) to be the unique function which has the property

(4 3 7)

[

2

	

	
OUe	 ôv 

(x) dx 
= [ft(x) v(x) dx, v e H (il)	 (43 8)au(x/e)
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then, forO ^p^ 1, andEN,

hue - t4, H'(1)il ^ C1 Ill - ft, £2( l )Il	 C2 II.,41,2(z2)I

where A = (Ak),	 is the 2 (Z2 ) sequence

At Jo, ifnEZ
- '1 a, otherwise

(4 3 9)

(4 3 10)

and C1 , C2 > 0 are constants which are independent off, It, the weak solutions uc, t4, and

a

Proof It is clear from (4 1 4) and (4 3 8) that the function uC - u E H () has the property

2

(x)_(x)dx=J(f_fL)(x)v(x)dx, 
vH(1Z)	 (4311)[	 ak(x)

DXk	 -

Thus, employing the Cauchy-Schwarz inequality, the H (1)-el1ipticity of the bilinear form

in relation (4 3 8), and Parseval's relation we deduce that relation (4 3 11) imphes (4 3 9)

Lemma 4 3 3 For finite, bounded £ E FT the approximation errors u - U , h are bounded

above as follows

Il u€ - u Ii' H ()Il ^ C() h(2_p)(8), h> 0, 0 ^ p 1
	

(4 3 12)

where C(s) -+ o ( -4 oo) is independent of e, h> 0

Proof The error u - '14,h, £ E N, h > 0 in the norm topologies H'(1), 0 p ^ 1 can be

written

a e-hi u - U1,h,H(cz)ii	 H7fl((./e,E,fl1T) - 4h(./c,e,71r)),H'(1	 (4313)
nEZ\{O}

However, for finite £ E Fl, the Holder inequality implies the relation, for al ^ 1,

E
aDa(e 7u((x/c , c ,fl7r) — ch(/c,c,n2r)))

EZ\{O}
i/2

lift, A(C)ll I	 I	 D (ena ((x/c, e, sir) — h(/E, e riir))) 
21 (4314)

LEz\{o}	 ]

and, substituting this relation in (4 3 13), we obtain the upper bound, for 0 ^ p ^ 1,

Il v -	 IL' H ()hl 2 ^ C lift, C2(C )h1 2	 II hl e	(q(./6, ,rr) - /h( s /C, c,nir)), H"(P)112
nEZ?\{O}

(4 3 15)
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where we have observed that 7	 1 and, from Parseval's relation,

lift, .C2 (C)li 2 =	 a2,	 £ E ]t
	

(4 3 16)
nEZ\{O}

Furthermore, Lemma 4 2, the weak formulation (4 1 22), and the Cauchy-Schwarz inequality

imply the relations

(.)i ((c(./c, E, t) - /h( S /6, e, t)), H' (7)) 112

^ C2 ie" ((cb(./e,e,t) -

^ C2 	)[q'i(./c, e, t) - cb h (SIE, E, t), c15(./c, e, ) - h(s/E, , )1i

= C2 	 'i(e,)[cb(./c,E,),cb(./g,c,)

= 
C2aj' L(.1c,6,)

^ C2 aj iIc(./e,e,t) - h(./E,E,:),i:2(P)ii
	

(43 17)

defwhere we have observed that, for v E Hper (P), P = (z - 1,z) x ( - 1,3), 1 < z, < 1/c,

v(x)dx

Now, if p 1 we employ inequality (4 3 17) in relation (4 3 15) and otherwise, if p = 0, we

use identity

li e-	 (q(./c, c,t) - 4h(s /E, c, t)), £2(7')ii = ll(• , c, ) - c5h( • , e,), £2(P)ii
	

(4 3 18)

and, thus, from Theorem 4 3 1 we deduce the error estimate, for 0 ^ p ^ 1,

1/2

ll u - Uth, IP'(1) fi ^ C h 2- lift, L 2 (7))	 C2() q5(., c, pr), H8(P)
nEZ\{O}

(4319)

where (72 (n) —* 00 as lIflhI2 —+ 00 The functions D(,.,nir), ^ 1 are Holomorphic for

Ic - sr(rn,n)I > 6 where 6 > 0 is fixed and Sr(!fl,73) = 2mr/nr, 1 r ^ 2, rn,n E 22 \{0} , cf

Theorem 3 1 1 Thus, within this bounded domain the functions Da q , ., riir), al 1 can

be bounded independently of c and because q!(., e, fir), H8 (7)) is defined in terms of these

functions, e g, for s = 1 + a,

q5( s , c, ri7r), H8 (7)ll 2 =	 [iir. , E, !ir), £2(P)li + Ii D (. , C, riir), H0(P)Il2]

IcI^1

it can also be bounded independently of c The error bound (4 3 12) now follows directly

from (4 3 19)	 U

We observe that the asymptotic property C() —+ oo ( —+ oc) precludes the use of Lemma

4 3 3 to deduce the asymptotic properties of the error ue — u	 limt *oc,(?4 — u€h) (with the
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limit taken in the H' (1k) sense) Indeed, the asymptotic character of the function C(e,.),

deduced in Theorem 4 3 1 using Cea's Theorem, suggests that we can do no better The

triangle inequality and Lemma's 4 3 2, 4 3 3 are now apphed to analyse the error tiC - U e Ia

into separate components as follows, for t ^ A, 0 ^ p 1,

line -	 £ Ia' HP (1Z)fl ^ hue — 14, H'()lh + ii t4 - Ia' H"(l)ll + I 14 Ia -

C, f - f1,L2(1)It + C(s) h 2 " 1 + IIU h - U(h,H"(c^)il (4320)

where A is a fixed positive integer Thus, by employing fimte element triangulations 7htP)

with h > 0 sufficiently small and £ large, ie, such that the errors ili4 - 14 Ia' HP(Cl)Ii

and If - ft,Li(1)ii are an order of magmtude smaller than hlu - t4lh,H(I)lI, the

behaviour of 1114 - t4j1 Ia' HP (IZ) provides an accurate guide to the character of the er-

ror UE - 
uNth , H (1l)ii in the norm topologies H1'(l), 0 < p < 1 Indeed, this analy-

sis motivates the computations undertaken in Sections 4 4 1-4 44 which assess the errors

hut h - UN £ Ia' H'(Il)lI, 0 ^ p ^ 1 for a variety of problems possessing different regular-

ity characteristics However, the task of constructmg accurate approximations cbh (., e, ) E

S r(1), U h of 4(.,c,t) E H1 (P), 14 H,,.(P) becomes impractical for very large £

and e 0 Indeed, to construct 14 Ia is necessary to solve the Galerkm problem (4 3 3)

for each t = !r, fr"l, l2l ^ £ and, on any computer architecture, to assess the global er-

rors 14 h - 141 £,h requires, as e —* 0, an unboundedly mcreasmg proportion of cpu time

Thus, we attempt to obtain a reliable and accurate assessment of our approach by employmg

= 1/r, 1 ^ r ^ R with t, R sufficiently large so that the principal approximation properties

of £ h become apparent while remaining within the constraints imposed on time and space

by the resources of a computer architecture

44 Computational Examples.

Following the one dimensional setting of Chapter 3 we now find it necessary to make some

comments regardmg the effect of problem regulanty on the convergence properties of the

asymptotic approximations Ia as £ —* oo The functions u1 h' N ^ 0, £ E , h > 0

where

tZN1h()_	 ER2, E>O	 (441)
nEZ\(O}

are evidently constructed from the discrete approximations 4N,Ia, N ^ 0, h > 0 wInch are

defined as follows

Q5N h(, c,	 h (, ),	 E P, ^ 0	 (442)

where goh(t)=( 11_2Ic,h')',^0 and,forxEP,t0,n^1,

n-i
del
= 1 gjh()xn-jh(L) +gnh()	 (443)

j=O

where
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(4 4 7)

(4 4 8)

llu,t,h, H(1)lI ^ (4 4 9)

(4410)

(4 4 11)

Computat2onal Examples 4 4

n-i
del

Xn h(, )	 >12	 h(), gfl,() = -go h() >1	 >1	 (4 4 4)
IaI=n	 3=0	 kI=n+2—j

and ic h, al ^ 2, h > 0 is defined in relation (4 2 45) However, from (4 1 25), (4 1 27),

Lemma 10, and Theorem 9 of BABUKA & MORGAN (1991u) it follows that there exist

constants ij, > 0, which are independent of t e R 2 \{0}, such that

go h() < l/('y 114112\	
lkbk h(• ,), H'(P)ll ^ ?7 g0,h (t) O' lIj,	 k > 0, t	 0 (44 5)1 II!II2),

^-	 Ihl'k,h(d), H'(P)lj = 0(llll2) (IIII2 - oo)
	

(446)

Furthermore, if fc E BV(C) then there exist functions ço, ,, 1 ^ z 	 2 which are non—

decreasing and non—negative and are such that fc = coi — i — + 2 The second mean

value theorem for integrals then shows that

J
(llll2 -+oo), 1 <r<2

1'

a,,= O (Ini n2l) (lftll2	 oo)

The convergence properties, as £ -4 oo, of the approximations 	 N ^ 0, , h > 0 in the

HP (1), 0 <p ^ 1 sense are now apparent from relations (4 4 5), (4 4 8) and

E lal	
zi,s thli e--	 N,h(s/e, e,ir), H(1)II

nEZ\{O} -

>112	 Ia (1 + lIII2) IN,h(./e,e,flir),H(1)ll
nEZ\{O}

>1	 lai (1 + ll!ll2Y' IIN,h(,E,),H'(P)l
nEZ\{O}

for, by the comparison test, t6z, h — 'UN,h absolutely w r t ., H(2)lI, 0 < N + p < 1 as

£ -4 00, 1 e,

Ian] (1 + lIzII2Y' e	 llN h(, 6 ' !3 1r) ,H(P) ^ K1 laI (1 + lIIIi) I

K2 Ian] (n + 2)(N+P-2)/2 K2 IaI	
N+p-2

lII2

^ K2 
2(N+p-2)/2	 1(N+p)/22 ^ K3 1n1n213"2 (4 4 12)

and, for N+p ^ 3, llu,t h' HP (1)II -4 00 (i —* 00) Furthermore, if N+p = 2 then (44 5) im-

plies the asymptotic relation ll4N,h( s ,! r), H(P)Il	 0(1) (IftII2 -4 oo) and therefore we need

only establish the H (I) convergence of the term 	 £ h () = IEz?\{o} a e—	 cbN,h (a/c, riir)

as £ -4 oo However,	 ,(•, ) E H'er (P), t 0 and therefore we can expand this function

as a Fourier series, e g,

it
= >1 a'(t)e2'', a"() =	 (4413)

!!! Z2
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and therefore

(N,e,h() =	 aña1L(nir) e2-" z,r,	 (4 4 14)
EZ\{O} EZ2

We assume that q5N,h(•,) E BV(1') and thus, from (44 5), a"(t) = O(IIIJ' 2/Imim2I) as

II!iII2 —+ oo and IIII2 -4 oo The orthogonality of the exponential functions e(!i+2!!!ft) ()', jj E

e Z2 with respect to the 4(C) inner product then suggests that

11C2,e,h,4(C)II =	 i IaaI2I,I&7r)I2

EZ\{O} nEZ2

^ C1 	 IaI2	 jmim2I ^ C2 IIfc, 4(C) 11 2	 (4 4 15)
EZ\{O}	 nEZ2

Thus, the function converges in 4(C) as £ —+ cc and, consequently, so does t4,t,h The

property of absolute convergence, as £ -4 cc, of the approximations t4 th' £ E N, h > 0, with

respect to the 4(C) norm, observed above, means that it is valid to differentiate the function

Ci.h !	 Ch (with convergence in the 4(C) sense) termwise, i e, for h> 0,

n xsDaCi,h (x) =	 a,e-- [1rz i,h (/e,e,nir) +e_iDl,h(/e,,fl1r)], IaI = 1
nEZ2\{O}

(4416)

The convergence of 14ih in W (C) as £ -4 cc now follows, as above, from the asymptotic

relation (4 4 5), the series expansion (4 4 13), the 4(C) orthogonahty of the exponential

functions e(n+2!!ift) (, n E Z\{0}, in E Z2 , and Bessel's inequality We now follow the

approach taken in the one dimensional setting and propose the HP (^1) convergent approxi-

mations tM1,h, N + j ^ 3, M, £ E N, h > 0 defined as follows

fi z$ n zwsUNM € h(Z) =	 O, C - N,h (/e, e, sir) +	 a, e- - M,h (je, e, sir)

(4417)

where r(e) = max{n E N n < 2/c} Below, we apply our approach to the R2 counterparts

of the boundary value problems investigated in Chapter 3 and assess their behaviour using

the computational techniques described above With this approach we expect to demonstrate

that the features of the asymptotic approximations observed in the one-dimensional context

readily generalize to the It2 setting

4.4.1. Sample problem Smooth Data, a E C°°(P), Ic E C°°(C).

We define the coefficients 0k1 ck1 a, 1 ^ k, I ^ 2, f, employed in the elliptic boundary value

problem (4 11), below

2	 —i	 2
del del TT

a(x) = [1 +	 cos(27rxn)J , 1(x) = 11 sin(irx)
n=i	 n1

(4418)
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It is evident that a, f E C0o (1R2 ) and f is antisymmetric and 2-periodic, i e, for x E lEt2,

f( + 2z) = f(),	 e	 (4 4 19)

f((-1)m'xi, (_l) 2 x2 ) = (__1)ml+m2f(xi,xi),	 E FT\{0}	 (4 420)

and, therefore, f = fc where fc is given by the Fourier series expansion (4 113) and a

a 1 a 2 , n E Z2 \{0} where

def{1/2flj, 

ifn= ±1
a= 

0,	 ifn±1' nEZ\{0}	 (4421)

Furthermore, a is a 1-periodic function which satisfies the periodic boundary condition

(4 1 2), the elhpticity inequality (41 3) with ai = 2/3, a2 = 2, and uE € C2 (R2 ), qf(.,e,t) €

H er (P) fl C2 (1') fl C1 (P) are the classical solutions of problems (4 111), (4 1 22) respectively

We employ a uniform finite element triangulation, Uh (P), of 'P with h = 1/16, i e, each

finite element T € 14(P) is obtained by translating and/or rotating the right angled triangle

Th ={(,?]) I, ii^0, +i ^h} NotethatinTheorems423,43landCorollary424the

parameters = 2 The errors II u -u h,H(P)II, 0 <p <1,0 ^ N ^ 3 have been computed

and are presented in tables 4 4 1 1-4 4 1 3 where E = 2, 1 ^ r ^ 4 and because, therefore,

2'1ir 2irrn, r> 1, rn e Z2 \{0} it follows that nir fl 2 where n, = ±1, 1 2 Each

integral over 'i- € 14(P) is approximated by a 7 point quadrature rule, cf AKIN (1982),

and the algebraic equations which arise are solved by a Cholesky factorization technique

We point out that there is no subscript £ E FT in tables 4 4 11-4 4 1 3 because there is no

truncation error committed in the computations, i e, the Fourier series is summed in its

entirety

Table44ll aEC(

C	 IIu—uo,h,L2(i

_____	 1 39403508(-3

_____	 7 74303030(-4

_____	 3 96255426(-4

_____	 1 99238516(-4
0(e')

0 5	 II	 2 84813088(-

4 57597122(-5

9 80590435(-6

2 34887912(-6

0(62')

Ic € C"(C)

-	 Iu - UO,h, H'(1)I

-	 1 92809615(-2)

-	 2 00011017(-2)

-	 2 02073130(-2)

-	 2 02602928(-2)
0(1)

fc E C°°(C)

-	 Iu _Uih,Hi()I

-	 3 30893241(-3)

-	 1 17921226(-3)

-	 5 18420187(-4)

-	 2 49722298(-4)
0(6')

Cell

05

0 25

0 125

0 0625

0 25

0 125

0 0625

Tab1e4412 aEC°°(

Cell Size, C	 IIu - U lh, L2(Z)
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Cell Size, c

05

0 25

0 125
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Tab1e4413 aEC
6	 ,,6
h-

2 44001085

2 68637426(-5

c e C°°(C)

Iu - U2,h, H1

2 74778793(-

6 6659

3 22450617(-6)	 I	 1 65123796(-

0 0625	 3 98734188(-7)	 4 11817089(-5

0(e3 )	 0(e2)

The graphs of the real and imaginary components of q'h(1/2, ., .), q5N,h(l/2, ., .), 0 ^

N 2, h > 0 illustrated in Figures 4 4 11-4 4 1 6 clearly demonstrate the utility of the

asymptotic approximations N,h, 0 < N 2, h > 0 of q5,, indeed, as t - oo, it becomes

difficult to distinguish between the various approximations The principal features evident in

these graphs, i e, the monotone convergence of the approximations, cb h , 0 ^ N ^ 2, h> 0,

to the asymptote y = 0 and the extrema of , h > 0 - which correspond to the singularities

of 4 - were also observed for the analogous analytical functions ç', 4W, 0 ^ N ^ 2 in the

one dimensional setting of Chapter 3 Furthermore, we find it interesting that the graphs

reveal that the functions 4W h (x, e, .), x E P, 0 <N ^ 2 provide accurate approximations of

4h(, e, .), x E P outside the region, G, where the expansion (4 2 1) is analytically justified

Clearly, for f defined by relation (4 4 18) the Fourier series (4 113) has finitely many

terms and, therefore, questions of convergence of the sums (4 1 21), (4 4 1) never arise, thus,

one can construct asymptotic approximations t4h, h> 0 of any order N E I' Indeed, the

computational results presented in Tables 4 4 1 1-4 4 1 3 suggest the following property for

h> 0 sufficiently small

huh - UN , h, H(l)II ^ C(h) N+iP, N ^ 0, 0 ^ p ^ 1	 (44 22)

where C(h) > 0 is a constant which is independent of e > 0

4 4 2 Sample problem Piecewise smooth Data, a E C'(P), Ic E PC(C)

Let ak, E Coo (1R2 ), 1 ^ k,l < 2 be defined as in Section 44 1 and define f()	 1, E

then IA e PC (C) is a step function which extends f antisymmetrically to C and is given

by relation (4 1 12) Similarly, the 2-periodic extension of fA to fc e PC00(1R2) is defined by

the Fourier series expansion (4 1 13) where the coefficients are a 	 a 1 a 2 ,	 Z2\{0} and

def 
1 [i - (_iY],	 E Z\{0}	 (4 4 23)a = -

nirz

The weak solutions u6 E H(1l), q5(., e, t) E H, er (P) are, as in Section 4 4 1, classical solutions

of(4 1 4), (4 1 22) respectively, i e , u6 E C2()flC°(), q(.,e,t) E Hcr(P)flC2(P)flC'(P),

however, in contrast to Section 4 4 1, u6 is not a classical solution of problem (4 111), i e,

it C2 (C) fl C°() but u6 E H2 (C) fl H,(C), cf Theorem 9 1 22 of HACKBUSCH (1992),

and, because fc e Hi/2_P(C), p> 0, u6 E H5f2 (5) for any open ball 13 c C
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Graphs of the real or imaginary parts of çbh (x, c, t), cbN h(, &, t), x = /2, E = 1/2, 1 n
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Figure 4413
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Graphs of the real or imaginary parts of çb(x, E, t), çbpj h(, &, t), = 1/2, & = 1/2, 1 fl

3, 1 < t < 30, 0 ^ N ^ 2, h = 1/16 The curves are distinguished by the symbols, e g,
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The errors II U ,h - uNth,H(P)II, 0 ^ p 1,0 N < 3 have been computed and are

presented in tables 442 1-442 3 where £ 	 71, 6	 2_p , 1 < r ^ 4 and, thus, (6,tq)

9-L, 1 < q < 2 because 2"(2m + 1)ir 2irrn, r ^ 1, n, rn E Z2 \{0} The finite element

triangulation Uh(?), h = 1/16 is employed once again to obtain the computational results

reported in the tables

Cell Size, e

05

0 25

0 125

0 0625

Cell Size, &

05

0 25

0 125

0 0625

Cell Size, 6

05

0 25

0 125

0 0625

Table 4 4 2 1 a E C°°(P)

-	 II,h —UOlh,L2()II

-	 2 55209846(-3)

-	 1 33536187(-3)

-	 6 65648382(-4)

-	 3 32510592(-4)

0(c)

Table 4422 aEC°°'
e	 e	 r

UL ,h - Uith, -'-'2

-	 7 19260110(-4

-	 2 62528987(-4

-	 6 51723448(-5

-	 I 54817208(-5,
0(62')

Table 4423 aEC°°

E	 T
U h - U2 ,t , h, 112

-	 9 29159899(-4;

-	 2 5700536o(-4:

-	 5 1o135998(-5

-	 8 96991395(-6;
0(62')

E PC°°(C)

I	 - Uo,t h,

3 30043356(-2

3 36109462(-2

3 37290018(-2

3 37623695(-2
0(1')

c E 7'C°°(C)

-	 - 1,1,h, H'(fZ

-	 6 98363635(-3)

-	 4 34283106(-3)

-	 243346296(-3)

-	 I 29349317(-3)
0(c')

E 1'C°°(C)

I	 - U2 i,t,h,

2 02676373(-2)

5 35188282(-3)

1 48569648(-3)

4 20775584(-4)

4 4 3 Sample problem Piecewise smooth Data, a E PC(P), fc E PC(C)

Define f as in Section 4 4 2 and the 1—periodic coefficients a k, Ski a, 1 ^ k, 1 ^ 2 where, for

a is the step function

if E 7'\(1/4, 3/4)2

a(x) =
-	 1 10 , if	 (1/4,3/4)2

and, therefore, there exists a partition of

_um	 cncl,i3- r=i r

(4 4 24)

(4 4 25)
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such that a(x/E) = a[n] E II, x E 1, 1 <r <me Itis evident from definition (4 4 18) that

a E PC(R2 ) satisfies the boundary condition (4 1 2) and the ellipticity inequality (4 1 3)

with a = 1, a2 = 2 Furthermore, Theorem 9 1 26 of HACKBUSCH (1992) shows that, for

any open ball B cc 1l, 1 ^ r m, there is the interior regularity UC Hk (B) , k E N (cf

HACKBUSCH (1992)), however, the continuous embedding H3+2(5) -4 C2 A (I3) , , EN0 , 0 <

A < 1 (cf ADAMS (1975)), and the weak formulation (4 1 4) then imply that the weak

solution u6 E H' (Il) is also a classical solution in the region l\F where r u:=1(3c nac)
and, on F, satisfies the weak continuity condition

fa
1 Vue(z) r(x) v(x) d = 0, v E C000 ()	 (4 4 26)

r=1

where ["] (x) E R2 is the unit outward normal vector to the boundary Ufl at the point

x e 01 If, however, it e W(1l) then, for a < 1/2, it is clear that (cf (1 2 15))

IIue,H()Il 2 < II u , H'(c )II 2 + [f	 1	
dd< oo	 (4427)II	 112+2u

JJox iiYmII2

i C, it E H(l) fl H3/21'(IZ), p > 0 Indeed, it is the interior interface vertices ((2n +

l)p/4, (2m + 1)q/4), 0 ^ rn,n ^ 1, p,q E N0 which cause the singular components of the

solution to arise and, therefore, the reduced regularity of ut (compared to Section 4 4 1)

The errors II U ,h - u , h, H (P)lI, 0 ^ p ^ 1, 0 ^ N < 3 have been computed and

are presented in tables 4431-4433 where £ = 71, e = 2, 1 ^ r ^ 4, and (E,tq)

7-1, 1 ^ q ^ 2 because 2_r(2 + fir	 2irrn, r ^ 1, ,	 E Z2 \{0} The finite element

triangulation 14(2), h = 1/16 is employed to obtain the computational results reported in

the tables where, clearly, the finite elements i- U,, (2) do not cross the interface boundaries,
def	 1i e, r fl 82,. = 0, 1 ^ r ^ mi where 2,. 81,., see (4 4 25) We recall the analysis of Section

4 4 and observe that the termwise derivative of the approximation t4th diverges as £ —+ Co

and we therefore employ the approximation U,th instead

Table 44 3 1 a E PC(P), Ic E PC

Cell Size, E	 — UO t,h, L2()II 	 I	 — Uo,t ,,, H'

05
	

5 13260128(-3)	 I	 7 22495894(-

0 25
	

2 59876887(-3
	

7 53652399(-

0 125
	

1 29971219(-3
	

7 65957443(-2

o 0625
	

6 50236166(-4
	

7 70283492(-

0(E)
	

0(1)

The graphs of the approximations çb h (,E, ․), qNh(,e,.), x = 1/2, E = 2', 1 ^ n ^

3, 0 ^ N ^ 2, h 1/16 presented in Figures 443 1-4436 reveal the now familiar features

observed during the preceding computations It is also apparent from the graphs that the
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Cell Size, E

05

0 25

0 125

0 0625

Cell Size, e

05

0 25

0 125

0 0625

Table4432 aEPC°°(7')

-	 11t4,h - Ulfh,L2(1l)Il

-	 1 22649269(-3)

-	 443631691(-4)

-	 1 21902193(-4)

3 12648593(-5

Tab1e4433 aEl'C°°(

II- t2Lh,

1 64063523(-3

3 98818364(-4

7 57837897(-5

1 30882661(-5

c e 'PC(C)

- t h, .LP

2 04409797(-2)

1 23931444(-2)

6 63802373(-3)

3 44159199(-3)

0(c)

E 1'C(C)

IUI,h —tL2ieh,H1(IZ)

3 41231714(-2)

8 94704807(-3)

2 45068320(-3)

6 85638290(-4)
0(ci+a)

discontinuities, cf (4 4 24), do not sigmficantly reduce the quality or utility of the asymptotic

approximations 'bN h of cth

The computational results obtained in Tables 4 4 3 1-4 4 3 3 suggest the following error

bounds,for0<N<2,h=1/16,=71,

11 14h -UNth,H"(l)II ^ Ci (h)c"", 0 ^ N+p ^ 2

hut 
h - U ,1 t,h ,H (11)11 ^ C2 (h) El+a

(4 4 28)

where C1 (h), C2 (h) > 0 are constants independent of c and 0 <a < 1 Thus, the computed

errors converge in a similar manner to the analogous approximations computed analytically

in the one dimensional examples of Chapter 3 This suggests - while, clearly, not proving -

that, with our choice of h, 1, the error

11t4 - u1 h' H ()II < C(s)	 (4 4 29)

is sufficiently small that one can obtain meaningful results by investigating the errors II U h -

UN,th ,H"(Il)II and 1k4,h t NMjh,H"(Il)JI as m Tables 4431-4433

4 4 4 Sample problem Piecewise smooth Data, a E 'PC°°(P), Ic E C°°(C).

Define the coefficients a k, 5k1 a, 1 <k, 1 <2 and f as follows

del Ii,	 if	 P\(1/4, 3/4)2	 2
del rra(x) 

= 1 10, if x (1/4,3/4)2	
'	 f() = lISiflfrXn)

n= 1

(4 4 30)

The properties of the functions a 1 f, Ic have been studied in problems 4 4 1 -4 4 3, further-

more, the weak solution e H (Il) exhibits the same regularity properties as observed in
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Figure443 1
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Graphs of the real or imaginary parts of cbh (x, e, t), çbN , h(x, c, t), x = 1/2, & = 1/2 12 , 1 ^ n
3, 1 t < 30, 0	 N < 2, h = 1/16 The curves are distinguished by the symbols, e g,

o= o,* = q5i,	 =q5i

HOMOGENIZATION	 104



0
0

0

0

0
0
T

0

0

Cornputatwnal Examples 44

Figure443 3
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Graphs of the real or imaginary parts of çb(x,E,t), cbNh(x,c,t), =1/2, = 1/2, 1 ^ ri

3, 1 < t < 30, 0 < N < 2, h	 1/16 The curves are distinguished by the symbols, e g,

o, *=	 1,
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Figure443 5
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Graphs of the real or imaginary parts of çbh (x, E, t), çbN,h (x, E, t), x = 1/2, c = 1/2', 1	 n

3, 1 t < 30, 0 < N < 2, h = 1/16 The curves are distinguished by the symbols, e g,

E=4, D	 *= q5 1 , r'i	 2
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Cell Size. c

05

0 25

0 125

o o

Conclwsions 4 5

problem 4 4 3, i e, it has singularities at the interior interface vertex points, it C2(cl\r),

HL (B) , k E IN for any open ball B c , 1	 r ^ m, and if u E W(1l) then

it E H3/2 (1l), p> 0

The errors II u - ?61,h, H (P)II, 0 <p	 1, 0	 N ^ 3 have been computed and are

presented in tables 4 4 4 1-4 4 4 3 where c = 2", 1 ^ r ^ 4 and because, therefore, 2_dir

2irm, r ^ 1, rn E 22\{0} it follows that crjr 7-t where n1 = ±1, 1 i 2 The

finite element triangulation Uh(P), h = 1/16 is employed to obtain the computational results

reported in the tables where, clearly, the finite elements r E Uh(P) do not cross the interface

boundaries, i e, 'r fl Dl',. = 0, 1 <r ^ m1 where P,.	 9, see (4 4 25)

Tab1e4441 aE7'C
	

e C(C

- Uo,i, L2(1l

3 04183197(-3)

1 55530030(-3)

7 79908828(-4)

0(c)

U - H'(Il

4 61609913(-2)

4 63470369(-2)

4 63884111(-2)

4 63983690(-2)
0(1)

Table 4442 aEPC(

Cell Size, c	 IIu - U h, L2(1^

05	 798611323(-4)

0 25	 1 94706196(-4)

o 125	 4 86812019(-5)

0 0625	 1 21750108(-5)
0(c2)

Tab1e4443 aEPC°°(

Cell Size, c	 IIu - U2h, L2(1l)

o 5	 3 57718390(-4)

0 25	 3 58931520(-5)

0 125	 4 18362046(-6)

0 0625	 5 13263414(-7)
0(c')

EC°°(C)

1	 I4.—ulh,H1

1 28522393(-2

6 29434012(-3

3 13265547(-3

1 56458260(-3
0(c)

452235561(-3

1 04462517(-3

2 55424836(-4

6 34934365(-5
0(c2)

4 5 Conclusions

Our aim in Section 4 4 was to demonstrate that the asymptotic approach introduced in

Chapter 3 could be generalized, to the two dimensional setting and combined with finite

element techniques of approximation to produce functions u€ h' N ^ 0, £ E N, h > 0 which
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approximate the weak solutions, uc, of scalar elliptic problems (4 1 1) such that the errors

decrease, as -+ 0, in the HP (fZ), 0 ^ p ^ 1 norm topologies

The computational results obtained in Section 4 4 and the analysis of Section 4 3 - which

led to the error estimate (4 3 20) - evidently generalize the computational/analytical results

of Chapter 3, i e, for fc E Htm (C)\Hm+i (C), uC E H 0 (cl) , a> 0 and 0 ^ p ^ 1 we have

hue -	 H(1Z)jj ^ C1 Ill - f, 4(l)hI + C(€) h 2-" + C2 m1,(N+jm+2)_	 (4 5 1)

where 0 ^ N m +2—p and £ ^ A, A a fixed positive integer The analysis of Section 43 2

suggested that C(t) -4 oo as £ -^ oo and, indeed, whether it is possible to replace C(t) by a

constant which can be bounded independently oft E N is an open question However, because

the asymptotic approximations h> 0 converge as £ -4 oo for functions Ic E BV(C),

cf Section 4 4, we expect such a constant to exist The computational results obtained in

our assessment of the approximation Üith were, as commented in Section 44, inconclusive

However, based on the definition of UN Mt h (cf (4 4 17)) and the computational results

obtained we suggest that there exists an a, 0 < a ^ 1 such that

11 th' -	 Mib' 5P (fl)lI ^ C1 Ill - It, £2(1Z)II + C(L)	 + C3 mrn(N+1,m+2)_ap (4 5 2)

where N ^ m +2, M = m+2—p and C3 > 0 is a constant independent of e
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5 DOMAIN DECOMPOSITION

FOR Two DIMENSIONAL

LINEARLY ELASTIC MODELS OF

HETEROGENEOUS MATERIALS

5 0. Introduction

In chapters 3 and 4 we have been able to use homogemzation techniques which employ

asymptotic expansions to treat problems with rough coefficients of large variation because

the problems considered had periodic and asymptotic structures However, these characteris-

tics are not always present and, even if they are, asymptotic parameters such as E, which are

not within the control of the numerical analyst, may simply be too large to obtain accurate

approximations Thus, if there is no periodic structure and/or e is large it becomes necessary

to consider alternative methods and, here, as a general approach we use the technique of non—

overlapping domain decomposition with preconditioning algorithms to obtain approximate

solutions of linear elastic models of heterogeneous materials This will lead to algorithms

which can be efficiently implemented on parallel machines with IvIIMD type architectures

In particular, we extend the domain decomposition with preconditioning approach first m-

troduced for scalar elliptic boundary value problems in MANDL (19) to two thnixsoua1

elastic problems over Lipschitz domains and demonstrate, both theoretically and compu-

tationally, that the convergence properties established there remain valid

Boundary value problems which are formulated to describe physical problems over regions

fl with complex geometry can be difficult to solve in the classical sense of the continuously

differentiable C type spaces However, if can be viewed as the union of a number, in

this case two, smooth, geometrically elementary, overlapping subdomains 	 E C2'', 0 < A

1, 1	 ^ 2, 1 e,

=1u2,	 n12O	 (501)

and analogous boundary value problems formulated over each subdomain 1l, 1 	 ^ 2 can

be solved analytically, then, for suitable boundary conditions and decompositions (5 0 1),
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cf KANTOROVICH & KRYL0v (1964), Schwarz's alternating method SCHWARZ (1890)

demonstrates that the Harmonic function u, u loci = g can be synthesized from the pointwise

limits of the solutions of the boundary value problems Find u E C2''(), 1 ^	 2 such

that, for n ^ 1,

2 (n)Vu1 (x)=0, xE1

= g(),	 E oil fl 9il

(n)	 (n-2+s)u, ()=u,	 (),	 EOi^1fl3_1

(0) del	 2A -where u1 = on Oils fl 112 for arbitrary E C (11) such that the Dirichlet boundary

values in (5 0 3), (5 0 4) define Holder continuous functions on 311 with exponents v1 E

(0,1), 1 <z <2 Thus, u, =	 1 i ^ 2 and,	 = Ulocilncz2 then the iteration

(50 2)-(5 0 4) converges in one step, i e, uuc = u, 1 z 2 Schwarz's decomposition

concept found renewed interest with the advent of modern parallel computer architectures

where the approach based on the recurrence equations (5 0 2)-(5 0 4) became known as the

multiplicative Schwarz method However, the need to obtain an algorithm which is better

suited for a parallel machine architecture led to the innovation of the additive Schwarz method

in which the coupling conditions (5 0 4) are modified as follows

(n),	 (n—i)u1 x) = u3_1 (,	 E Oil, fl	 1 ^ ^ 2

(0) del
where u3 , = on Oil, fl il3 ., 1 ^ z < 2 This modification removed the need to strictly

alternate the order of iteration between adjacent subdomarns and therefore freed the pro-

cessing nodes from having to synchromze their computations at each iterative step Further

generalizations of the Schwarz approach have led to decompositions which allow more than

two subdomarns with each subdomain having lower regularity than C2,', 0 < A < 1, cf

LETALLEC (1994) However, by constructing non-overlapping domain decompositions of 11,

i e, subsets 11, C 11, 1 ^ i <k such that

=uc_i1, il,flil,=Oi^ 3
	

(5 0 5)

a new class of domain decomposition techniques arose in which the global problem was

reformulated as a system of local problems, each pertaining to a specific subdomain, 11,, 1 ^

i ^ k, and an interfacing problem on 1' where

del i k r	 r, 
dcl 

Oil \3Il
	

(5 0 6)

Thus, as one may infer from Schwarz's approach, one first solves the interface problem on

F for a trace function, tie, and then, using ui-., solves the problems on 11,, 1 z $ k Non-

overlapping domain decomposition algorithms generally interface local problems by employing
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either Lagrange multipliers to enforce weak continuity between the local solutions,	 1 ^

k, 1 e

( 1fl (	 -	 (ff'/2(a n ai)) 2 ) = 0,	 (H'12 (9f, n a))2 1 ^ t,i ^ k (5 0 7)

leading to an inteiface problem of the form Find r E !31((H' /2 (r)) 2 , ]R) such that

S'r' = ,	 e (H' 2 (I)) 2 	(5 0 8)

where S (HV2 (r)) 2 - B.c((H112 (r)) 2 , It) is the global Steklov-Poincaré operator, or en-

force strong continuity conditions

rrr ()	 (ltQ)	 au, n 9cl, 1	 <k	 (5 0 9)

using Steklov-Poincare operators to reformulate the boundary value problem and obtain the

interface problem Find u E (Hh/2(r)) 2 such that

(Sur,!L) = (L,), ! E (H"2 (F)) 2 	 (5 0 10)

where L E B.c((H'/2(r))2, It) The Lagrange multiplier approach leads to a saddle point

problem in which the auxiliary unknown r E l3C((Hi/2 (F)) 2 , ]R) can be interpreted as the

normal stress o(u) on on the interface r, cf FARHAT (1991), BREZzI (1974) However, with

this interfacing approach, sub domains , 1 ^ z, .j ^ k are coupled if, and only if, o(51, fl

U,) > 0 This contrasts with the strong interfacing approach of (5 0 10) in which sub domains

are coupled if flaf, 0 Thus, the weak interfacing approach leads to subproblems

with a greater level of independence than the strong interfacing approach and therefore

requires fewer costly interprocessor communications on a MIMD machine to interface the

system, however, it does introduce the additional unknown E BC((H V2 (F)) 2 , It) and we

therefore employ approach (5 0 10)

In particular, we will employ non-overlapping domain decompositions to construct prob-

lem (5 0 10) for linearly elastic models of heterogeneous materials We recall that the weak for-

mulation of the elastic model of material deformation has the form Find u E (H (Il, auD))2

such that, for E (H(u, DuD))2,

2
c9u,	 DVk	

[1(x) v(x)dx+J	 )—(x)—(x)dx =a2kL() 
8; - 8x 1 - -

where f	 (C2 (u)) 2 is the body force acting over Il, E (L 2 (UuT )) 2 is the surface traction

acting across the open subset 311T of the boundary 3, and a,3k1, 1	 , , k, 1 2 are material

coefficients given in terms of the Lame functions, cf (1 3 11),

def V E(x)	 def E(x)

= 1_ i.,2 '	 = 2(1+v)' xEu
	 (5012)
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where ii E IR is Poisson's ratio and E e	 is Young's Modulus of elasticity for the

material We then construct a preconditioner Mh , h > 0 and treat problem (5 0 10)

with a preconditioned conjugate gradient algorithm, cf AXELSSON (1994) We analyse the

spectrum cY(MSh) of the preconditioned interface operator MSh , h > 0 and obtain an

upper bound for the condition number ?c(M1Sh) Il M ' S II2 II(M1Sh) 1 lI2 We confirm

the validity of the condition number bound by applying our approach to a number of problems

and compare the computational results with the condition number bound obtained in our

analysis

5 1 Elements of the Theory of Domain Decomposition

It has been observed that the domain decomposition concept was originally conceived to

answer a purely theoretical question concerning the existence of Harmonic functions over re-

gions, , with complex geometries However, domain decomposition concepts have also been

prevalent among engineers where subdomains ,, 1 ^ t ^ k correspond to distinct, elemental

substructures of a system and, in this context, the Steklov-Poincaré problem (5 0 10) models

the physics of the interfaces between adjacent substructures Indeed, a common engineering

approach was to discretize (5 0 10) to obtain the Schur complement system

Sh&r,h=Ih, h>0	 (511)

where h > 0 is the discretization parameter, F the union of the physical interfaces, Sh is the

matrix representing the discretized Steklov-Poincaré operator, and then solve the resulting

equations using a direct solution technique However, for systems with many substructures

the Schur complement system (5 1 1) can have many parameters and the computational cost

of constructing and then solving the resulting equations can be impractical The advent of

practical iterative conjugate gradient algorithms allowed one to solve systems, such as (5 11),

without explicitly constructing Sh and, thus, provided the opportunity to employ substruc-

turing concepts where previously they were impractical and, furthermore, to consider the pos-

sibility of devising solution techniques based on decompositions of 12 where the subdomains

12,, 1 <i <k have no physical significance, cf BJORSTAD & HVIDSTEN (1987), BJORsTAD

& WIDLUND (1986) The Steklov-Poincare operator, S, is a continuous linear operator

which, when discretized using finite element techniques yields, however, a Schur complement

matrix, Sh, with condition number Ic(Sh) II SJk = 0(1/H2 + 1/(IIh)) (h,H --0)

where H 
d4f 

maxi<,<k diam(12,) Consequently, ic(S,) grows rapidly as h, H —* 0 and the

application of simple conjugate gradient algorithms usually suffer from poor convergence

properties, as one should anticipate from the error estimate, cf AxELssON (1994),

I Ish<2
(n)	 IVK_hI	 (0)

IIi&rhitr,h	
— Lv+1]	

n^1	 (512)
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(5 1 1 4)

The Interface Problem 5 11

Thus, we investigate how one can construct a symmetric positive definite preconditioner
p_i h> 0 which can be efficiently implemented and is such that the preconditioned system

PShur h 	hI±h	 (5 1 3)

has a condition number ,(p,ish) which grows slowly compared to Ic(Sh) as h, H -+ 0 80 that

the conjugate gradient algorithm, applied to the symmetric form of system (5 1 3), produces

iterates	 , n ^ 1 which converge rapidly to 	 as n -+ 00

51 1. The Interface Problem

Let 1 be partitioned into k non-overlapping subdomains 1),, 1 ^ z S k satisfying

(5 1 1 1)

and define each subdomarn interface, I',, 1 t k, and the global interface, F, as foiio

F.	 af,\ac,	 F	 u.1 F.	 (5 1 1 2)

Then, corresponding to each local interface F,, 1 . z k and the global interface F, we let

oci, n ÔciD and define the respective trace spaces H 2 (F,), H1/2 (r) as. follows

doff	 I
H 2 (r1 ) =	

I 
D(!) = F, and w C H(ci,, .9ci, ,D ) such that 

rj (!)I =
deli=	 I D() = F,	 E H 2 (r,), 1 St k}

and we define a, C 8L(H'(ci,) x H'(fZ,), R), F, E 81(Hi (cz,) , R), 1 < < k to be the
respective restrictions to ci, of the bilinear form a C 8L(H' (ci) x Hi (ci), ]R) and the func-
tional FE 8C(Hi(ci), It), cf (1 3 16), i e, for u,v E H'(ci,)

2
dcl t	 ôiLk	 ôVm	 del

a,(u,v) 

=J	 aklmn(x)—(x)--(x)dx, F,(v) = [1(x)	 )dx+ f	 ) !L()do()
k I m,n1	 .111	 JO12.

(5 1 1 5)

where Ôci, ' 	 , ÔT, 1 5 t 5 k and OS1T C ôci is the subset of the boundary

where surface traction forces apply Furthermore, it will be required to define extension

operators E, (H2(r,))2	 (H(ci,)) which are right inverses of the trace operators

Tr e BL((Hi(ci,))2, (Hi/2 (ôci))2 ) on r,, 1 5 t < k and, for this purpose, we identify

E,, 1 5 t 5 k with the Harmonic extension operators defined as follows Let C (Ht2(F,))2

and define E,u E (H'(Q,)) 2 to be the function which has the properties Tr (E&)Ir' =

u,Tr(E,)lon D =0 and

a(E,u, v) = 0, v E (H(ci,, T)) 2	(5 1 1 6)

where T, I', U aci, ,D Clearly, the properties of the bilinear form a 4 and the Lax Milgram

Lemma, cf Section 1 11, guarantee the existence of a unique Harmonic extension E,u C
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(H1 (R)) 2 for any u E (H2(I',))2, 1 z < k The continuity of the linear operators E, 1 ^

z k follow from the inequality, for E (H 2 (r,)) 2 , cf DEROECK & LETALLEC (1991),

IIE,&, (11 1 (f)) 2 ^ C1 IIi&0, (.H 
())2	 C2 II'I'r (&), 

(111/2 (9))2	 C2	 , (II"2(F,))2 II

(5 11 7)

where C, C2 > 0 are constants independent of E (Ht2(r,))2 and E (H'(1l)) 2 is the

Harmonic extension of ii satisfying Tr (i&o)lr = Tr (iio)lao\r, = 0 The global Harmonic

extension operator E (H'/2(I'))2 —* (H'(1Z)) 2 is then defined according to the relation

I	 delEuI = E,Rçj, ii E (H1"2(r))2, 1	 k	 (5 11 8)
Ic^.

where Rr (Hl/2(F))2 (H 2 (F)) 2 is the restriction operator defined by Rru_r ttr(r,

However, in accordance with the decomposition (5 111) of the domain , the Sobolev space

(H(cl,aczD)) 2 can be decomposed into the local spaces E((Hu/2(F))2), (H(1l,T))2, 1 ^

^ k, i e,

(H(1l,ô1 D )) 2 E((H'/2(F))2) e (H(cZ1 ,T1 )) 2 e	 e (HO'(czk ,Tk )) 2 	 (5119)

where E((H'/2(r))2) = {E I E (H'/2(r))2} and elements in (H(Z,T))2, 1 <z< k are

extended by zero to l It then follows that the global problem Find E (H'(1)) 2 such that

Tr(u)IoO D 	 &D and

v E (H(1l, aIlD )) 2	(51 1 10)

can be replaced by the equivalent formulation Find yr E (H"2 (F)) 2 ,	 E (H'(cl)) 2 , 1 ^

z < k such that	 n,)lr. = &rIr, Tr (&,)IacD = itDIoc.D and

	

a(y, 1 ,v)	 F(v), v e (H(l, T1 )) 2	(5 1111)

	

a (ig , Ev)	 V (H1'2 (F)) 2	(5 1112)

The problems (5 11 10) and (5 1111), (5 11 12) are then equivalent in the sense that

ij	 Tr(IciiI	 i&rr	 1<z ^ k	 (51113)
IF'

Thus, problems (5 1 1 11) and (5 11 12) form a coupled system in which (5 1111) models

the problem locally, i e, within each subdomam 1 ^ k and (5 1 1 12) models the in-

terfacing problem on F between the subdomains It is this problem which we study in Section

5 1 3, discretize using finite element techniques, and finally solve using preconditioned con-

jugate gradient methods However, we first observe, from the hypothesis of linear elasticity,

the relation

2

a,(x)	 (x), 1 ^m,n^2,	 1 z ^k (51114)
pq=i	

- 9Xq -
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where, if we assume that V a(!&c^ ) E (L,(1l)) 2 then, employing Green's theorem, we deduce

the following identities on F, 1 z k, for i E (Hi!2 (F))2

a,( ,E!) - F1(Ev) 
=	

U(ç,()) VEv(x) dx - L i() $) d

-
 I

L) :iQ() do()
80 r

= - f {v	 (x)) +	 E(x) dx +	 (x)) o n(x)] w(x) da(x)

- f	 ) w(x) da(x)

= f [a(ici(x)) on(x)]	 ) da(x)	 (511 15)

del
where	 Tr (Er), z() is the unit outward normal vector to ai at , and, for x € f1, 1 <

< k, 'y E (H 1 ()) 2 , 1 p,q<2,

del

Vv() =	 E ]R2 '2 a (i 0,()) Vii()	 apq(()) ER
i9Xq -[t9Xq	 J	 p,g=i

V	
{	

E It2 oQgc (0) 0 ()	 0pq(?Ác ()) rig ()] E It2

However, the interface problem (5 1 1 12) then implies the following property

Ic	 Ic

, Ev) - Fi(Ev)]	 j (a(	 (x)) o n2 (x)) v(x) do() = 0, iL € (Hh/2(r))2

(5 1116)

Thus, the problem of determimng a global solution e (H' (1, O1D)) 2 of (5 1 1 10) is equiva-

lent to the problem of finding a function defined on the interface F, e g , r E (H'/2(F))2, such

that the local solutions	 e (H' (R)) 2 of problems (5 1 1 11) have normal stress tensors,

o	 which are continuous across the interface F, i e, they satisfy (5 1116)

5 1 2 Steklov-Poincaré Operators and the Interface Problem

In tins sect1on we reformulate the interface problem (5 1 1 12), which is central to domain

decomposition methods, to obtain an equivalent problem posed solely on the interface F

in terms of a faimly of linear operators called Steklov-Poincaré operators Then, using

finite element techniques to obtain approximating discretized Steklov-Porncaré operators we

demonstrate how one obtains the Schur complement system (5 11) and, furthermore, we

demonstrate how this system can be solved using conjugate gradient techniques without

explicitly constructing the discretized operators

Let a,(., .), a(., s) E,, E, 1 < z < k be, respectively, the local and global bilinear forms

and Harmonic extension operators defined above, the local Steklov-Poincare operator S

(Hf(F,))2	 BL ((H t2 (F2)) 2 , It) is then defined according to the relation

(S,u,v)	 a,(E,u,E,v), u,v E (H2(F2))2	 (51117)
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and the corresponding global Steklov-Porncare operator S (H' /2 (r)) 2 —^ BI((H'/2 (I')) 2 , H)

is defined as follows

k	 k
,,	 4e1	

S,Rr, ,Rrj} = >a,(E,Rr,&,E,Rr.v),	 &, p (H'I2 (1'))	 (5 1118)
,=1

If U E (H1!2 (F)) 2 denotes the E((H'!2(F))2) component of the solution of problem (5 1110)

then we observe that the solutions	 (H(l,))2, 1 z k of problems (5 1111) can be

expressed as the sum	 = E,Rr &r +, where	 E (H'(,)) 2 is uniquely defined as the

function with the following properties Tr( , )Ioci D =	 D Tr(,)Ir, = 0 and

=F,(),	 E (H(l,,T,))2
	

(5 1 119)

However, given this decomposition of 	 the interface problem (5 1 1 12) can be rewritten

in terms of the operators S, S,, 1 ^ z ^ k as follows, for E (H1 "2 (F))2,

ia,(,	
= j a,(E,Rrur +	 , E,Rrv)

= 2(S,Rr. ur, Rr v) +	 a,(-i,E,Rr,) >F,(E,Rr.v) (5 1 120)

Thus, we define L, E 13((H2(F,))2, It), 1 i k according to the relation

def
(L,, ) = F, (E,v) - a, (!Q.ci., E,v),	 e Iril/2 (F)) 2LAQ0

and (5 11 20) becomes

!&r,RrJL) = >(L,,E,Rrv)

(5 1 1 21)

(5 1 1 22)

Finally, we employ the transpose operators R I3C((Ht2 (F,)) 2 , It) —+ l3C((H'I2 (F))2 , R),

E,T 13C((H'(1,))2, II) —^ BL((H0l2(F,))2, It), 1 < z <k and define the global interlace

problem in terms of the Steklov-Poincaré operators as follows Find E (H'!2 (F) )2 such

that

(I R S,Rp,u,	
= (
	

R E'L,, ), v E (H"2 (F)) 2	(5 1 1 23)

However, if we define S (H' /2 (F)) 2 —+ B,C((H"2(F))2, lEt), L E f3C((H"2(F))2, R) as

follows
k	 k

S>RS,Rr,
z=i

then the interface problem is Find	 E (H1!2 (F)) 2 such that

(Sur,)	 (L,v), 2.E (H'!2(F))2

(5 11 24)

(5 11 25)

In Section 5 1 3 we demonstrate how the interface problem (5 1 1 25) can be discretized to

obtain a linear system of symmetric, positive definite algebraic equations
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5 1 3 The discretized Interface Problem Schur Complement Systems

Let 7(12), h > 0 be a triangulation of , cf Section 2 1, where h > 0 is the mesh diameter

and assume that each subdomain il,, 1 <i < k is the union of some subset of elements of

i e, there exist triangulations 7(R) C 7(1), 1 ^ i ^ k We now assume, without

loss of generality, that the Dirichlet and traction boundary conditions are homogeneous and

replace the infinite dimensional Sobolev spaces

(1f(fZ, Ul, D)) , (H(1l, adD))	 (H'2(P1))2, (H'!2 (I))2'	 '	 00

with the respective approximating finite dimensional subspaces

(S(cl,, adl, ,D)),	 (S(1l, odD)) 2 ,	 (S'(F,)) 2 ,	 (Sh(F))2

of piecewise linear polynomials where, for 1 ^ z k,

s'(r2 )	 I D(v) = F1 and 3w E Sh(d2) such that	 =
	 (5 1 1 26)

s"(r) { I V() = F and 3 E S'(1l) such that w 
= r,}

	
(5 1 1 27)

and S(d^, Od D), S(d1 1 , 011j,D), 1 ^ z ^ k are constructed as in section 2 1 The continu-

ous operators Rr,, E1 are thus replaced by their discrete counterparts Rr,,h, E$, h and, sim-

ilarly, the continuous Steklov-Poincare operators S, S. are replaced by their discrete ana-

logues Sh, S,,h, 1 ^ t k Given a basis B((S(d 1 , Oil, D))2) of (S'(il, OQ1D))2 define

13h (F1) c B((S(il1 , Od, ,D )) 2 ) to be the subset which contains those basis functions associ-

ated with a node E F, of Th (d) and define Bh (dl,) B((S(d,, Odl,,D))2)\Bh(F,) then

B(S(Q2, 0 ,,D)) = Bh(il,) U B,(F)	 (5 11 28)

def ,,and N, = N0, +Nr', where 2N,	 Ii3((s(1,,ail,,D))2)I, 2N0, = I bh(i )I, 2Nr , ' I!3h(I',)I

Observing that a linear operator B (Sh (il Oil, , D)) 2 —* B.C((S'(il,, Oil, D))2, ]R) can be
represented by a matrix M E IR2N,,2N, 

in the sense that, for F E BL(Sô( il,, 8il, D))2, lit),

(B, ) = (F, ii), 2, IL E (S(cl,, 
1D))	 U'MV 

=	 (5 1 1 29)

where, for B((S'(il,, Oil,,D ))) = {e (2) 2,N,
}r,s=1' functions u,v e (S'(il,,Odl,,D))2 can be writ-

ten
N,	 N,

=	 E 12,	 (5 11 30)
r=ri

and the block matrix entries of M E ]Ft2N 2N,, F E R21 ' are given by the relations

	

def F (B 1 a,') ,	 z))	 (B 1 '),	 1	 def F (F, i t)) 1F8 —	 I, 1^r, s ^ N,Mrs =

	

L (Be2 4') ,	 e)) (B2'),	 )i '	 [(F, e2q5')) J
(5 11 31)

DOMAIN DECOMPOSITION	 117



The Interface Problem 5 1 1

Thus, the linear operators A, ,,, E, h, 1 z ^ k are represented by the matrices

del	 A0 ,	 A0, , 1 del I —AA , 1 ]R2N 2Nr	 (5 11 32)A,,,,	
[ART, ,r.	 Ar. ] 

E IR2N 2N,	 E2 h 

= L	 i	 ]

Let a4'), 1 < p	 N, be the 7(l,) nodes on 17, then the restriction operator Rr ,h is

represented by the matrix Rr,,,, E R2?Vr, ,2N whose 2 x 2 block entries are defined as follows

del Ii, ifG,(p)=q
(Rr,)p,q-0 ifC,(p)q' 1 ^ pNr,, 1 q ^N	 (51133)

where I E ]R2 '2 is the identity matrix and G, {1, , N,} —^ {1, , N} maps the local

block parameter indices, {1, , N,}, of subdomain fI, to their global values, {1, , N)

Furthermore, it is apparent from relation (5 1117) that S, h = E 'h A, hE, ,h and therefore the

discrete local Steklov—Poincaré operator Se,h, 1 ^ z k can be represented by the matrix

[A ,,r. A" I] 
[An .	An.r.] [_AAo..r.

o,,r,	 Ar,

= Ar, -	 E

and the Global Steklov—Poincaré operator, Sh, is represented by the matrix

Sh = >2R,,hSI,hRr,,h = > R ,,h(Ar, - A, ,r AAn.,r,)Rr,, h E }R2N,2N

(5 11 34)

(5 11 35)

Similarly, after discretization, the expressions E,7'L,, 1 ^ z ^ k are approximated by the

analogous expressions E,ThL,,h , 1 ^ t ^ k which are represented by the following matrix—

vector identities

EhL,h 

= 

{_A , A T I][ 0.]_ [_A,,r,A	 '1
Ao,,r, {!&^.

A	 10
L

(5 11 36)

where , = [-i,,ir ] E IPI.2N represents the functional F, E Br((S(1l,,DQ,,D))2, IR),

cf (5 11 5) Thus, the right hand side of the discretized interface problem, illustrated in

(continuous) operator form in relation (5 11 22), has the matrix form

=	 - A ,,r, Ajç2, ) e JR2N	 (5 11 37)

Therefore, by discretizing the linear Steklov—Poincare operators and the associated restriction

and extension operators, one obtains the following discrete Schur complement system

- A ,r AAo, ,r, )Rr ,hr,h =	 R.,h(Er, - A , r,Ao,)
	

(5 11 38)

4==	 = Ih
	 (5 1139)
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The symmetry of Sh E IR2N,2N follows immediately from (5 11 34), (5 11 35) and, from the

definition of the bilinear forms a,(., .), 1 i < k, it is clear that

	

(Shu,u) =	 a,(E1,hRr, hu,E,hRr, hU) ^ 0, ti (Sh(F))2
	

(5 11 40)

and, thus,

	

(Sh U, u) = 0	 a1(E, hRr, hYA, E,,hRr,,hi') = 0, 1 ^ z <k
	

(5 11 41)

However, (5 11 41) holds only if E,,hRr ,hi is a rigid body motion such that o(E, ,Rr, h!&)ort,

has zero trace on the boundary, 	 i e, E,,hRr,,hJ = + R(r, 0) , a E It2 , r E It where

def r cos 9 —r sin 91
R(r, 9) 

= L r sin	 r	 8 ]	
9 = (2n + 1)ir/2, n E Z	 (5 11 42)

However, assuming that, for some p E ]N k , subdomam cl,, satisfies o9Il,, fl i911o) > 0 then

there exist constants C1 , C2 > 0 such that

C1 u, (H i ( p)) 2 II 2 <a(,) ^ C2 Jju, (H'(c))2II2,	 E (S(l,31Zp,D )) 2	 (51143)

Relations (5 11 41) and (5 11 43) then imply that E hRr ,hyA = 0 and therefore Rr,ht = 0

The zero trace i&Ir = 0 propagates to each subdomain to give Rr,,h = 0, 1 ^ i ^ k, 1 e,

= 0 and the positive definiteness of Sh follows immediately

We now aim to develop preconditioners which allow one to solve the interface problem

(5 11 39) efficiently using the conjugate gradient approach However, we first observe that the

conjugate gradient approach, applied to (5 11 39), requires one to evaluate, at each iteration,

the matrix—vector product ShI for a given d E IR2N This can be achieved without explicitly

constructing Sh E R2N,2N as follows Given d E ]R2 " define dr TRr ,h4 E It2Nr,, 1 ^ ^ k

and construct the Harmonic extension, E, hlj', E R2N, by first solving the systems

Aç2 ,	 =—A0,rI,, 1 ^i^k	 (51144)

and then observing that Es,hlr, = [—A'A0,,r,4,, Ir',] = [ci,, I,I The product S,,hlr, is

then obtained from the relation

cA0	A0, ,r, [—A 1 A0, r] d 
= F A0, A0, ,r, 11

= I AT	A i L	 i	
-'	

A ] LIr,] 
(5 11 45)

Si,,	 Lor

Thus, by summing over each subdomain we obtain Shd = Ii= R ,h S, hIr The linear sys-

tem of algebraic equations (5 11 44) is obtained from the definition of the discrete Harmonic

operator Eh (S'(r,))2 —^ (S(1,,52\F))2, cf (51 16), and the Lax—Milgram lemma

therefore guarantees the existence of a unique solution ; E 1R2N, 1 ^	 k of system
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AJ 1 Conjugate Gradient Algorithm Sh uf h = kh

Determine an initial approximation u,

Ti i— 0,

e	 AjAi,,r,Rr hi4', 1 z ^ k,

^-	 R(i4r,Rr, hi4i + A	 = s (n)
h&r,h,

Ih -	 1h -

d(n) +r(n),

While ri <flmax arid Ic (Sh)	 <T2

{

+—. -AAci,r.Rr.,hd('), 1 ^ z ^ k,
Z (n) ^_ 

1c fl h (Ar,Rp h d(ul) + Ape) = Sh,
n)	

.

(n+i)
h	 +

r(n+i) ^... i..,, -	 =	 -

p(n+i)	 (r(') r(n+1) )/(r	 '

4-. r(+i) + 13(TZ+i)d(rl+i)

n+-n+1

}

(5 1 1 44) The conjugate gradient algorithm, as applied to the discretized interface system

(5 11 39), is given in	 1

The rate at which the conjugate gradient iterations 2t' converge to &r h as n 4 00

will depend on the eigenvalue distribution of the Schur complement matrix Sh Indeed, the

error bound (5 1 2) suggests that the condition number ,c(Sh) is the critical factor in such

an approach However, for quasi-uniform triangulations 7(ci), h > 0 of ci, 1 a polygonal

domain, it is known that, cf LETALLEc (1994),

Ic(Sh) <C H 2 [i + max{H,h' I 1 ^	 k}]

where C> 0 is a constant independent of h,, H1 , h, H and

def	 ,.,- del= maxjdiam(T) T E '7(1l)},	 ii, = diam(111),
delh=maic{h,I1<z<k}, 	 Hmax{H,I1<z<k}

(5 1 1 46)

1 ^ z ^ k (51147)

(5 11 48)

Thus, it is apparent from (5 11 46) that the condition number /c(Sh ) is of the order O(H2(1+

Hh_i)) as h,H -^0 Therefore, the convergence factor C(Sh) has the property

C(Sh)Eii! 1 /1 (H,h-*O)	 (51149)
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and the error bound (5 1 2) reveals that the rate of decay of the error II!&r,h it IS,, decreases

both rapidly and monotonically for an increasing number of subdomains, k, and decreasing

mesh diameter, h Thus, we shall investigate ways to construct preconditioners P,	 R2N 2N

such that (1) lc(P'Sh ) <<ic(Sh ), H, h> 0, (2) t(P,' Sh ) grows slowly as H, h —+ 0 compared

to Ic(Sh) and employ the preconditioned conjugate gradient algorithm The preconditioned

conjugate gradient algorithm requires one to solve, at each iteration, a system of the form

Phz = r for ,	 R2A and it is necessary, therefore, that this system is more easily solved

than is Sh =	 In the following sections preconditioning strategies are investigated which,

in addition to the above properties, can be implemented by performing computations which

are local to each subdomain, ci 2 , 1 ^	 k, and are therefore inherently parallel

5 2 The Neumann—Neumann Preconditioner
It has been demonstrated how finite element techniques can be applied to discretize the

Steklov—Poincaré operators S, 1 ^ z ^ k thereby allowing one to approximate the interface

problem (5 11 25) by the algebraic system of linear equations S,, &r,h = Ih where

=	 =2,
It is apparent from Section 5 1 that in order to solve the discretized interface problem effi-

ciently with the conjugate gradient approach it is necessary to employ a preconditioner Thus,

we now introduce the preconditioner, N E lR2N2N proposed by, among others, BOURGAT,

GLOWINSKI, LETALLEC, & VIDRAsCU (1989) and obtained by constructing weighted

sums of the inverses, S, 1 ^ t ^ k, of the Schur complement matrices S, h, 1 ^ z k We

describe how the preconditioner is implemented, note its desirable features and assess the

preconditioning properties of N by examining an upper bound of the condition number

k(N,Sh) provided in LETALLEC (1994)

If the decomposition (5 111) is constructed such that the vertices of the boundary, Dcl,,

of each subdomain ^,, 1 ^ t ^ k beJong to D1 and the boundary conditions are such that

the Steklov—Poincaré operators S,h (S"(r)) 2 -^ 13C((Sh (I)) 2 , lEt), 1 ^ z ^ k are invertible

then the preconditioner

k
p-i 

E(atR ,h) S (cRr,,h) e lEt2NiN
'h

= 1

has the following property, cf LETALLEC (1994),

a,=1,	 ,^0, 1^ z ^ k	 (523)

!c(p,;i8h)<C h>0
	

(524)

where C > 0 is a constant independent of h > 0 Indeed, if k = 2, (5 1 1 1) is a uniform

decomposition of Il and the triangulations 77(cl 1 ), 1	 ^ k are similar then, for appropriate

DOMAIN DECOMPOSITION	 121



Precondtzoners 5 2

boundary conditions and coefficients amnpg E .COQ (Il), 1 ^ m,n,p,q ^ 2, R ,hSi,hRr, h =

R '2,h S2 h Rr2,h , 8h = 2R h S, ,hRr ,h , 1 i 2,

2

> Rrh SRr,,h, i= 1,2	 (525)
t=1

def
Thus, with a 1/2, 1 = 1, 2 in (5 2 3) we obtain C = 1 in (5 2 4) In general, however, C>

1, although the independence of the constant C > 0 from h > 0 suggests that the convergence

factor C(P,Sh ) will not change significantly as h —p 0, cf (5 11 49) The task of determirung

the function Sj,'L, E (S'(r,)) 2 for L, E 13C((S'(F,))2, It), S C((S"(I',))2, It) —*

(sh (r',) ) 2 is equivalent to that of computing the product S'J, E R2N1., ci (5 11 29)

Thus, from the definition of the Steklov—Poincare operators (5 1117) we determine S,,'L, E

(S"(F,)) 2 as follows Find z, E (S'(1,, ac, ,D)) 2 such that

= (L,, v Ir), y E (S(1,,91Z,,D))2	 (526)

then S,,'L, = z, Ir The equivalent system of algebraic equations obtained from this problem

are then
Aç,	 Aci,,r	 =	 0	 (5 2 7)

Ar	 Lr.

and SL = Zr The independence of the subproblems (5 2 6) allows one to implement

the preconditioner, P,, using parallel computations and the conditiomng property (5 2 4)

ensures that the number of iterations required to achieve convergence will not rapidly in-

crease if one employs more refined triangulations 7(fl) or domain decompositions These

properties are clearly desirable and motivate the generalization of the preconditioner P,

to include general boundary conditions and decompositions (5 111) which, in particular,

include interior crosspoints, 1 e, points E int(F) that are common to more than two dis-

tinct subdomains However, more general boundary conditions and decompositions allow

the possibility that there exists a p E k such that a(ôl,, D) = 0 and therefore a solution

E (S"()) 2 of problem (5 2 6) exists and is unique, except for elements of Jsf(A h), if,

and only if, L E R(S ,,)

Thus, we define S {z E JNk I u(äIl ,D) = 0} and for z E Frk \S let b, a,, cf (5 1 1 5),

and for i E S let b, E BC((S"(1l,))2 x (S"(,)) 2 , lEt) be some positive, symmetric bilinear

form, 1 e , for	 E (S"(l,))2,

b,(v,),	 (5 28)

b,(ll,i) ^ 0,	 0	 v = 0	 (5 2 9)

which is equivalent with a, on (S"(1I,))2\.Ai'(A, h), i e, there exists a constant C > 0 which

is independent of H, h such that

C b,(v,) ^	 V (S"(,))2\.N(A,,h)	 (5 2 10)
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and which, furthermore, satisfies the global equivalence property

C	 b(v,!L)	 a(,) ^	 (S(cl,arzD))2	 (52 11)

where C > 0 Let S, h (S'(F)) 2 —* Br((S'(r2))2, IR), z e S be the discrete Steklov-

Poincare operators associated with the bilinear forms b, E BC((S'(1l))2 x (S1L())2, K), i E

8, cf (5 1117) then, following DEROECK & LETALLEC (1991), we define the precondi-

tioner N,	 112N,2N as follows
k

N,	 (5212)

where, for a (c9ZD) > 0, we define B' S and, for a(l2,D) = 0, we define B' S

The symmetric matrix W2,h E IR2Nr. ,2Nr represents the weighting operator W2,h (S 2 (r2 )) 2 -+

(S12(F,))2 defined, for w(i,r) ^ 0, 1 ^ r Nr , 1 z ^ k, according to the relation
Nr,	 Nr,

	

(S'(F)) 2 —+ W,, =	 w(i,r) r cb.' E (Sh(r2))2	 (5213)

where S 2 (P1) = span{14 ) }j and the weights w(z,r), 1 ^ r ^ Nr,, 1 ^ i ^ k are chosen

such that W2,h, 1 ^ z k form a partition of unity on r, i e, for	 (S12(F))2,

	

(Wih uIrj(x) =	 E r	 (5 2 14)

The operators W2,h (Sh (F 2 )) 2 (sh(r2))2, 1 ^ z k generalize the constant weights

introduced in (5 2 3) because they allow one to weight each (S' (1) )2 component of a function

, E (Sh(I1))2, 1 ^ i ^ k differently and, in this way, one can define these operators such that

ic(N, Sh) is independent of the magnitude of any discontinuous changes in the coefficients

amnpq, 1 ^ m, n,p, q 2 when they are piecewise continuous, cf Section 5 4 The partition

of unity property (5 2 14) must, however, be satisfied, cf LETALLEC, DER0EcK, &

VIDRASCU (1991) Thus, for L, e BC((SI2(r2))2, It), BL	 z,Ir, where; E (S'(1Z 1 )) 2 is

the solution of the Neumann problem Find; E (S(1, 81 D))2 such that

b,(z,,) = (L , v I,),	 LE (S(cI2 ,acl D )) 2	 (5215)

This problem can be represented n matrix form as follows

B	 Bcip, [
	 0	 (5 2 16)

B,r.	 Br.	 Ir.

with B'L2 =	 In section 5 4 we shall employ, for z E 8, the positive, symmetric bilinear

forms b2 e 5L((Hi ())2 x (Hi (,))2, ]R) defined according to the relation
def

b,(u,v) = a2 (u,v) + (u,v, (C2(Q,))2), u,v	 (H(l))	 (52 17)

where (u,v, (C2(l2))2) j u() y()dx is the (L2 (Q,)) 2 inner product The continuity

of the mappings b2 , z e S follow immediately from the Cauchy-Schwarz inequality and the

property a2 E l3C((H 1 (Q2 )) 2 x (H'(1Z2))2, IR) while the (H1 (112 )) 2-elhpticity is proved in the

following Lemma
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Lemma 5 2 There exists a positive constant p > 0 such that

b(v,v) = a(i,) +	 (C2(1l))2) ^ p tj, (H 1 (1l)) 2 II 2, V E (H1 (112))2	 (5 2 18)

where z E $

Proof We first observe, cf BRENNER & RIDGWAY SCOTT (1994), that (H'(1l)) 2 , z e S

can be written as a direct sum of closed subspaces as follows

= fti(ç) Jtf(A),	 ES	 (52 19)

where, for i E 5,

=	 E (Hi(1h))2 I j () dx = 0, j rot() d	 o}	 (5 2 20)

AI(A1 ) = {vE (Hi(fZ))2 IiL= +R(r,9), aE ]R2 ,r EIR, 0= (2n+1)ir/2, n E z}
(5 2 21)

However, the continuity of the projection operators P1 (H'(111 )) 2 —+ .'(1h), P2 (H'(h2 )) 2 -

Ar(Aj suggests, cf BROWN & PAGE (1970), the existence of a constant C> 0 satisfying

C (IIP1, (Jf'(c1 1 )) 2 11 + II P2, (H1 (cl1 )) 2 II)	 Jlv, 
( .111 (cl1 )) 2 (, v E (H'(1l) ) 2	 (5 2 22)

We now prove the result by Reductio ad Absurdum Assume that a constant p> 0 satisfying

(5 2 18) does not exist, then, for p = 1/n, n E ]t' there must exist a v e (H'(cl,)) 2 with the

property

Iv, 
(H i (cl1))2 II = 1,	 b,(v,j) < 1/n	 (5 2 23)

It now follows from the definition of b,, cf (5 2 17), relation (5 2 23) and the second Korn

inequality, cf BRENNER & RIDGWAY SCOTT (1994), that there exists a C 1 > 0 such that,

for n E I,

C1 flP1 v, (H1 (cl 1)) 2 11 ^ a1(Piv,P1 v) =	 <b1(v,v) < 1/n	 (5224)

Il P , (H(ch,)) 2 II —* 0 (i-i -* oo)	 (5 2 25)

However, it is apparent from (5 2 22) that {P2v}> is a bounded sequence in the finite

dimensional space .N(A 1 ) (dim(f(A1)) 3) and, thus, there exists a convergent subsequence

{P2, }>i with limit v E .Af(A1) Relations (5 2 23) then imply the contradictory conclusions

Ib (ff'(cl)) 2 11 = 1 and II1L, (C2 (cl,)) 2 II	 0	 I

The local and global spectral equivalence properties (5 2 10), (5 2 11) now follow immediately

However, for uniform decompositions (5 1 11) and triangulations 7(cl) C 77(cl), 1 z k

it is demonstrated in LETALLEC & DEROECK (1991) that the preconditioner N E

]R2N2N has the property

?c(N,'Sh ) ^ CH[1 + log(H/h)]	 (5226)
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AL 2 Conjugate Gradient Algorithm N 1 ShU - N'Lh—h

Determine an initial approximation

n 4- 0,
(n)
4 4—. —AAc,r.Rr, hu)1, 1 ^ i ^ k,

-• >	 R ,h (ArRr,, y + Are) =

r(n)	 =j—Sh4',

(n)	
Rr,hi', 1 ^ ^ k,

(n)(n)	
W,hz:,	 1 ^ z k,

(n)(n)	 —B'Bo ,r 1 , 1 ^ z ^ k,

R ,h W1 (Br.i' +	 =

While n <n,	 and 1c(NSh) I(N'r('),r('))I/j(N'Lh,Lh)I <r2

{
(n) 4— —AAn.,r,Rr.,h', 1 ^ t ^ k,

Z(n)	 R,h(Ar.Rr.,hi& +

^-	 V(n) ) /(d	 ())	 !L° =

(n+i)	 (n)
4— !Lr j +

	

(n)	 (n)
- Shir,h t -

r(n+i)	 1 ^ i ^ k,

, (n+l)	 W$,h M , 1 ^ i ^ k,

4— —BB	 (n+i) 1 ^ i ^ k,n

-	 R,hW(Br,W + BT 
_(n+i)

) =

/3(n+i) 4-.. (r ('') , V(n+i) ) /(r (" ) V(n)),

4--	 +

n4—n+1

}

where C > 0 is a constant independent of H, h Thus, for Exed subdomam diameter H,

l(NSh) = O(log h_i) (h - 0) and, observing that lc(Sh) = O(h) (h -^ 0), the conjugate

gradient algorithm 2 satisfies Ic(N'Sh) <<ic(Sh), I'c (Sh) - ?c(N'Sh)I —* oo as h -^ 0,

H fixed However, for H/h ^ p (p independent of H, h), s(NSh) = O(H 2 ) (H —* 0) and

C(N'Sh ) increases rapidly to 1 as H -^ 0 thereby slowing the rate of convergence of ALG 2

until this approach becomes impractical Thus, the preconditioner N' provides improved

asymptotic conditioning with respect to h but the practicality of this approach is restricted

by the rapid growth of C(N 1 Sh) as H -^ 0 The conjugate gradient algorithm, as it applies

to the interface system (5 11 39) with the preconditioner N' € R21 '2'' defined in terms of
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the bilinear forms a,, i E ]Nk \S and b,, z E S, cf (5 2 17), is given in	 2

5 3 The Coarse problem and the Balancing Preconditioner

The introduction of the positive bilinear forms b,, z E S allowed us to construct the precon-

ditioner N 1 E IR2N,2N when P,' e ]R2N 2N, cf (5 2 3), was undefined and then to apply

algorithm AI. 2 to linearly elastic problems with general boundary conditions using de-

compositions with interior crosspoints However, the resulting preconditioner, N,, is not

uniquely defined because it depends on the choice of the b,, i E S and, as already observed

in section 5 2, the O(H 2 ) behaviour of the condition number ri(N'Sh) causes algorithm

AL g 2 to become impractical as H —+ 0 We therefore demonstrate how to construct a

preconditioner M,' E ]R2N,2N, for planar linear elastic problems, which employs a global

problem of low dimension compared to (5 11 39) (the coarse problem) following a similar

approach first proposed in MANDEL (1993) for scalar elliptic boundary value problems This

approach is essentially a modification of the Neumann-Neumann preconditionrng approach,

cf 2, and is devised such that the ambiguity of choice of the b,, 2 E S and the hmiting

O(H- 2 ) behaviour of Ic(N'Sh) are removed,i e ,such that lc(MSh ) = O(1)(H -^0) where

H/h ^ p with p> 0 independent of H, h Indeed, the preconditioner will follow directly from

the requirements that problems (5 2 6) are solvable and that M' does not depend on the

choice of the solution of (5 2 6)

Thus, we begin by assuming that a(5.l,,D) = 0, z E S and that problem (5 2 6) is solvable,

ie, for L E !3LS"(P,))2, IR), (L, W,,hi) = 0, Jf(S,,h) {iIr. I i E .A((A,,h)}, z ES,

then there exists a z, e (S"(1,)) 2 such that

=	 E (S"(cz,)) 2 	 (53 1)

However, because .Af(A, h) 0, z S, the solution z, E (S"(1l,))2 is not unique, i e, , +

is also a solution of (5 3 1) for any v, E J.f(A,,h) Therefore, we now describe how one can

determine a unique solution of (5 3 1) in 1(Q,) For problems of planar linear elasticity we

observe that v, dlm(.N(A,h)) E {0, 1, 3} arid, for 1 ^ i ^ k, fif(A, h) includes all the rigid

body motions of the linear operator A, ,,, If v, 1 then the only rigid body motions of A,,,

are rotations, i e, a = 0 in (5 1 1 42), and we define b, e 5C((H'(c^,))2 x (H1 (1,)) 2 , II) as

follows

+ j rotit()d f rot(x)d, 	(H(l,))2	 (532)

where rotw Dw i /5x2 — 8w2 /ôxi, E (H1 (1l,)) 2 However, if ii, = 3 then J'tf(A, h) contains

all possible rigid body motions, cf (5 1 1 42), and we define the bilinear operator b, E

x (H1 (1,))2 , It) as follows for u,v E (H'(cl,))2

b, (u, v)	 a, (u, v) + f () d f v(x) dx + f rot() d f rot(x) d,	 (533)
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If v, = 1 for some z E S then ORn3, D is a boundary point and, therefore, 
u ( O , flOI ,D) =

0, H(1l,, 8Z, ,D) = H'(rl,), and, at the continuous level, we therefore consider only the case

ii, = 3, i E S Itis apparent from definition (5 3 3) that the bilinear forms b,, 1 z k are

symmetric and that, for u E (H'(cl,))2,

b,(u, u) = 0	 a,(u, u) = 0, f u(x) dx = 0, 
j 

rotu(x) dx = 0,	 (5 3 4)

Thus, from the decomposition (H'(R)) 2 = ft'(ci,) Jf(A,), 1 < < k we can write, for any

E (H'(l,)) 2 , u = ü+a+ R(r,9)x where ü E H 1 (l,), eR2 , r e ]R and the positivity of

the bilinear forms b, t E S then follow from the observations that (1) a,(,!&) = a2 (,ü) =

0	 0, (2) J rotu(x) dx = f1- rot[R(r, 0) j} d = 2r ji(,)	 0	 r	 0, (3)
1	 2	 del

ft-, !&(x) dx = ap()	 0 .. a 0 Furthermore, we define the norm IIb, (H (1)) III =

max(IIü, (Hi (c^,))2 II,	 (H' ())2 II) u E (Hi(11 1 ))2 where = i+ü, à	 '(1), , E /T(A1)

and deduce the III • (H' (1))2 Ill continuity of the bilinear forms b,, z € S from the Cauchy-

Schwarz inequality as follows, for u,v E (Hl,))2,

Ib1(!t,y)l ^ Iat(,f)I + jfL(x)dx ji3(x)dx + f rotü(x)dx	 jrot3(x)d

^ C	 , (H'(1))2 IIi, (H'(1)) 2 fl + 
2p (Il,) II, (2(1t))2lI Ilk, (c2())2fl

+ [1 ( I D(°")w,()d'+
ii!	

Jci

^ Ci III&, (H' ())2 III fflV (H' (cl))2I

jV'°w2(x) d)

1/2

+p(Q) L([L ID (01) wi Cl2 d] + 
[fIv1,o)w2()I2d]V2)

^ C2 III, (H' ())2 
IIIi., (.H 1 (ç)) 2 	(5 3 5)

where = E H'(1), E ..Af(A,) and C2 > 0 depends on alone The

(H'(1l,)) 2_ellipticity of the bilinear forms b, z ES with respect to the III • , (H'(l))2 lIl norm

follows immediately from Korn's second inequality, cf BRENNER & RIDGWAY SCOTT

(1994), and the observation that all norms are equivalent on finite dimensional spaces, 1 e,

for€ (H'(1))2,

rr
b,(u,u) =a,(ü,ü)+ 

[J 
(x)dj + 

[J 
rotu(x)dxj

i-i	 i-i,

^ p ll ü , (H' (ç)) 2 11 2 + 'y lI (H' (ç)) 2 11 2 ^ min(p, ) IlI (H' (ç)) 2 111 2 (5 3 6)

where p> 0 is the ellipticity constant arising from Korn's second inequality

a,(IL, u) ^ p II:, (H' ())2 11 2 , 	 E ii' (1k,)	 (5 3 7)
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and -y> 0 is the constant arising from the norm equivalence relation

7lu , (H' (ç)) 2 112 

< [f 
ü(x) 

dx] + { f 
rot(x) dx] ^ II, (H' (c 1 )) 2 11 2, u e AP(A,)

(5 3 8)

Thus, b, z E S satisfies the conditions of the Lax-Milgram lemma and defining; E (S'(1l,))2

to be the unique solution of the problem Find € (S'( 1 )) 2 such that

b,(z,v) = (L, W ,hIr ),	 E (Sh(1Z1))2	 (5 3 9)

it follows from (533) and (538) that (1)	 EAI(A,h), 1 ^ r <2 = f0z(x)dx=0,

and (2) V	 R(1,ir/2) E Af(A,,h)	 f1 rot,()d = 0 and, thus, ; E 1(1,) is also a

solution of problem (5 3 1)

Let B,h E ]R2Nr, ,2Nr 1 < i < k be the matrices representing the Steklov-Poincare

operators S1,h, 1 <z ^ k associated with the bilinear forms b2 , 1 ^ z < k (b, = a, z E Nk\S)

in the sense of (5 11 29) and, with A1h	 fl .Af(S2,h) C fl..1 
]R2Nr v ! dlm(AIh) =

v, define, for L E R2N,

k	 k
def Tr—i	 def

h () =	 Rr , hW (B W hRr.,hJ+),	 E J4	 (53 10)
t=i

where we have assumed that W1 , hRr.,,J E fl(S ,h), 1 ^ ^ k The preconditioner M' E

]R2N 2N is then obtained by selecting = c in (5 3 4), i e, M	 phl(zc), where ZC E Jfh is

defined to be the unique solution of the coarse variational problem Find Zc Jt4 such that

J(zC) = min{J(z) I z E .A(h }	 (5 3 11)

where, for z E Jsfh,

del
J(z) = ((P,'(z) - S)j, (p,i(z) - S 1 )j )sh	 (5 3 12)

Thus, M' is obtained by modifying the local solutions of problems (5 2 6) with rigid body

motions, i e, elements of ,Af(S1,h ), 1 <z ^ k such that M 1 -	 is a minimum with respect

to the energy norm in (5 3 12) Indeed, for A(z)	 R hW', E 1h, it follows that

Jc) = ((N 1 + A() - S 1 ) , (N, -1 + A) - S))sh	 (5 3 13)

= (A(z)L, A())sh + 2((N - S'),A())Sh + ((N 1 -	 (N - S')j)sh

and, therefore, J is a minimum at ZC E J fh if, and only if,

deft9J CJ(1) [z c ,zI = —(z +T)I	 =0,	 .EJ\I,	 (5314)- -	 .9T	 Ir=O

i e, ZC E J'4 is the unique solution of the problem Find E J1h such that

Ic

RT WT z2 )sh = -((Ne Sl)LRT 
hh-3)Sh, H2 EJih (5315)

t'	 I',,h	 jh
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where N, E R2N,2T is the preconditioner defined in Section 5 2 for the bilinear forms defined

in (5 3 2), (5 3 3) It is necessary, however, to compute at each step of the conjugate gradient

algorithm, the product Mr(lc), k E IN where r(k)	 L - Shu,, However, according to

the definition of the preconditioner M' E IR2N 2N the product is only defined for

W, hRr ,, h (k) E 1?L(S, h), i e, if (W,,hRr,,hr(Ic),v) = 0, v IS/(S,,h) Thus, we define the initial

approximation, un,, as follows

k

A(6) =	 R hW h°-	 (5 3 16)
1=1

where E J'fh is defined to be the solution of the problem Find E IS/h such that

(ii — Sh,R hWv) = 0,	 E ISIh	 (5317)

The property W,,h Rr,,hL E 1(S, ,h) 4' (W,hRr,, hL,v) = 0, e .Af(S,,,,), 1 ^ i ^ k then

implies that the right hand side of the coarse problem (5 3 15) can be rewritten as follows

—((N 1 - s -i )J.,,R? hwThz) S = —(ShN,R?',hW.','hJ)	 (53 18)

(0)The choice (5 3 16) of ifr,h ensures that W,,hRr,h ) E R(S,,h), n 1, 1 z k where r(n) =

L - ShuJ', This is estabhshed inductively as follows If W, hRr,ht.(m), W,,hRri,hSh4(m) E

7?.(S, h), 1 <z k for m ri and some ri E N then, observing that r(+i) =	 -

it follows that

Sh4 = Shv ( +

= ShMr +
k

= Sh	 Rr, ,h W,,, (B W,,hRr, h7 + ) +	 (5 3 19)

However, because Zc E Ar,, is determined such that W, ,,Rr, hShll € 'it(S,,,,), 1 ^ i ^ k, it

follows that W,,hRr, hShd, € R(S, ,h ), 1 < i < k and, thus, W,,,Rr h!	 7?(S,,h), 1 <

z < k The property then follows immediately from the observation that, by the choice of

3,,	 € l(Sj,,), 1 ^ ^ k and d' = 0

We observe that, defining N,,h !	 , !g i € IR2 " ' where 7Z(N, h) .A/(S,,h) and

writing z = N,,,,, 2 E IRV., 1 ^ z < k, the matrix, B E ]R", and vector, K € Rv , of the

coarse problem (5 3 15) can be determined in block form as follows, 1 ^ i, j ^ k,

B, ,3 = NThW3 hRr',,hShRp, ,h W, h N, h	 (5 3 20)
k

=	 N',,W3 hRr,hRI' h'5'P hRI' , hRI', h W', h' t h E ]R""	 (5 3 21)

k

K3 = - > NT,,W3,hRr,,hRhSp,hRrp hRr, h W?,'hB,,Ws,hRr, hL € ]R" (5 3 22)
z,p=i
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and, therefore,

(Bz,3 ) rs = Bkl, (it)r = (i)k, k =	 Vm+T, I = >Vn+S, T E ]N,, , , sE IN,, , , 2j E INk

To determine the respective matrix and vector B E H1, ", E H1, it is necessary to compute,

as described above, the products Sr hiL, Bw for some r, . E INk , i,	 e ]R2Nr, However,

because Rr',,hRrT ,h ^ 0	 ,	 0, B, can be computed efficiently and, furthermore,

if a(ôI,,D) > 0 then the blocks corresponding to subdomain 	 can be neglected since

.Af(S1 h) = 0 The modified algorithm is presented in AL 3

5 3 1 Condition Number bound

The distribution, a(MSh ), of the eigenvalues of the preconditioned Schur complement ma-

trix MSh , h> 0 is fundamentally important in our approach because it determines how

rapidly the iterations produced by the conjugate gradient algorithm converge, cf (5 1 2)

Clearly, the spectrum a(M'Sh) is affected by, for example, the shape regularity of the ele-

ments of the mesh Th(Il), the mesh diameter h> 0, the shape regularity of the subdomains

,, 1 ^ i ^ k in the decomposition (5 1 1 2), the variation and regularity of the coefficients

a23 k1, 1 ^ 2,3,k,l ^ 2, and the magnitude of the discontinuities c, 1 ^ i ^ k, cf defi-

nition 5 2 However, following the analysis performed by BREZINA & MANDEL (1993),

BRAMBLE, PASCIAK, & SCHATZ (1986) for scalar elliptic boundary value problems, we

demonstrate that, for systems of elliptic equations with irregular coefficients, one can obtain

the bound ic(M Sh) ^ C[1 + log(H/h)J 2 where C> 0 is independent of h, H and the jumps

a, 1 ^ z <k by appropriately constructing the weight matrices W,h, 1 ^ z ^ k We begin

with some defimtions

Definition 5 1 Let V(I') be the set of vertices of ô1,, 1 ^ t ^ k which lie on the interface

r and let -	 be the straight line connecting vertex i E V(F) to vertex v2 E V(F) Then

we define

(F)	 {i c rI-y Ev(r) or'yflV(r) =0, 'y=int( 1 —*v 2 ) for some 1 , 2 EV(r)}

(5 3 23)

and, for 'y c r we define the boolean matrix L E R2"'2" in terms of its 2 x 2 block entries

(Ly ) r 8 E 1R2'2 1 ^ r, s ^ N as follows

'I) del I Ar,s, if the 7(1) nodes,. E
T,8	 0,	 if the 7l) node r	

, 1 r, s N	 (5 3 24)

where A,. 3	 8rs1 E H2 '2 and a point E F is defined to be a node of the finite element

triangulation '7(l) if it is a vertex of some element 'i- 7(1) Finally, we define the bool can

matrix I'	 flr.,,hLIRrT, ,h E IR2 ' 2Nr

Thus, (F) contains the vertices of the subdomain boundaries and the interiors of the straight

lines in F which connect them and, for 'y Q(F), the matrices L E IR2N,2N map vectors
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Ac 3 Conjugate Gradient Algorithm M 1 ShUFh = M'Ih

+- Rr,hR. h W$ N,h, 1 ^ i,p ^ k,

4- —AjAcj,rHp, t, 1 ^ i,p ^ k,

B2,

	

	 + A^,rEp, t), 1 ^ i,i ^ k,

4- NThW$,hRr,hjh, 1 ^ i k,
(n)

fl 4-0, !rj +-

1 i ^ k,

.	 R h (ArRr hU)1 + Ae) = ShY4",L,

r(n) (— Ih — 	 =—ShL,

4-	 1 ^i ^ k,
(n)

+-	 1 ^ z k,
-(n) (n)e 4- B'Bo ,r, t	 , 1 i k,

(n)	
>irr1	 ,h	 (BrJiLN +	 N'!',

x(n) 4- —(),R'hWN2,h)sh, 1	 ^ k,

ZC + B, d(n) 8(n) + A() = M;',

While n <Thmax and K(M'Sh) I(M;1rN,))I/I(MJ)I <2

{
(n)
3 4-. —AAo, ,rRr ,h4, 1 ^ 2 ^ k,

(n)Z(n) 4-	 R?',,h(ArjRr,,,ph +	 SI',

a(n) 4- (r(n),v())/(d(n),z(n)),	 (°) =

(n+i)	 (n)
14r,h 4- iLrj +

^	 -	 (n)
=

(.	 1	 t ^ k,
(n+i)

1Q.	 4--	 1 ^ z ^ k,
(n+i)ë(n+ i )	 , 1 ^ ^ k,

(n+1)	 RW(Br	 +	 = Nj(n+i),

-(n+i) f... —(s('),RhWIThN2h)sh, 1	 ^ k,

ZC	 B_1 ?2 , 	. (n+1) + A() =

/3(n+1) .	 (r(n+i ) , (n+i) )/(r(n) , v(')),

d(n)	 +

n—n+1

}

u E 2N	 E R2N where	 differs from i only in that those entries which do not

correspond to degrees of freedom of 7 (1) on 'y are zero Some elementary properties of the
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I

def
W,h =	 w(z,'y,p)I', 1 i ^ k, p ^ 1/2

1EQ,. (I')

and the weights according to the relation

Precondttwners 5 3

matrices L E R2N,2N y E 0(F) are provided in Lemma 5 1 below

Lemma 5 1 Let 'y E 0(F) then, for 1 ^ 2,3 k,

'ycôI'O

>	 = 'r E ]fl2N2N	 14' = Rr,,hRT
- = I4'L;'

-ve g (r)	 1Eg(r)

and, furthermore, F = U1EO(ryy

(5 3 25)

(5 3 26)

Proof Let -y C ôl, n l, and, for q {1,	 , N}, let the 7() node	 E 0(F) be a vertex

belonging to y then

(i ')q,,q = (Rr, ,hI1R)q3 q	 (Rr, h)q,,m	 (I1)m,p(R,,)p,q

=	 (Rr,,h)q,,m( y )m ,m (Rr , h)m,q.
	 (5 3 27)

m=1

where q,. = G;'(q), r = 2,3 However, because (Rr,,h)q,,q(Ly)qq(R )qq = I E 1Ft22 it is

clear that sum (5 3 27) is positive and, therefore, I' 0 The second relation in (5 3 25)

follows similarly The final relation in (5 3 26) can be demonstrated as follows assume

y C Dci, fl Dcii then

1"I" -1 Y - Rr,,hIlRhRr.,hIlRi,h

=	 ,hLrlr, I1R ,h

= Rr,,hIlR ,h = 14 (5 3 28)

The first relation in (5 3 26) follows immediately from the definition (5 3 24) while the second

is clear from the relations

L'=	 Rr,,hLyR,,i=Rr,,h(	 Il)RhRr3hIrRh
-rEQ(F)	 -YEQ(r)	 1eQ(r)

and the observation that Rr',,hlr = Rr,,h

The weight matrices, W, ,,, 1 <z <k employed in the definition of the preconditioner Mh in

Section 5 2 can now be defined in terms of the block matrices I', 1 ^ 2,3 ^ k as follows

.,-, def r	 def
Definition 5 2 For -y € 0(F), 2,3 € {1,	 , k} let 0(i) =	 € 0(F) I	 0}, a(z,'y) =

{j I' 0) and define the block matrices

dclw(i,y,p) =

Eo(t 1)

1<i<k,	 €0(F), p^l/2

(5 3 30)

(5 3 31)
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where akima = abklmn , a() =	 E I,, bklmn E £(l) fl C0 (i) , 1 ^ k,l,m,n 2	 R

We observe that c3 , (F) contains all the geometrical elements of F which intersect U1, fl ô1,

and a(z, 'y) is a list of all subdomams whose boundaries intersect y fl 8 The following

Theorem, proved in BREZINA & MANDEL (1993), is fundamental for our analysis because

it provides an inequality from which we subsequently obtain a bound on the condition number

,c (M, Sh)

Theorem 5 2 Let I, S h, N,,h, W1,h, 1 i ^ k, 'y E (F) be the matrices defined above

then the W,,h E R2N 2Nr 1 < j <k have the partition of unity property (5 2 14) and, if

there exists a number R > 0 such that, for	 E f(S ,h ) 1 n R(S,,hN,h)-'-, 1	 z	 k and

7EQ(F),

a II I4 &II , ^ cç'R Ib&lI9, h	 (5 3 32)

then the preconditioner Mh IR2N 2N satisfies

lc(M,Sh) ^ K2L2R	 (5 3 33)

where K = maxl<2<k I{3 I Rr,,hR h 0)1 and L = maxl<,7.<k I{7 E (F) I4	 0}j

We observe that the numbers K, L are parameters of the decomposition (5 1 1 2) of f into

the subdomains 1 ^ z ^ k, e g, K is the maximum number of domains adjacent to any

domain plus one and L is the maximum number of geometrical components, e (F), of

any sub domain interface A critical element of Theorem 5 2 is inequality (5 3 32) and the

number R> 0, the analysis of (5 3 32) for problems of planar linear elasticity will lead to a

logarithmic term in the upper bound (5 3 33)

In our analysis below we assume that the decomposition (5 1 1 2) of 1 has the following

property There exist bijective mappings T2 —*	 1 t ^ k, S T (0, 1)2,

def	 —
T2s=p+aHs,+aHs2 ,	 ES	 (5334)

where a' E It2 , 0 ^ r < 2 are constants independent of H > 0 Thus, for 1 ^ z ^ k,

diam(1) = 0(H), 0 <i(1l,) = IJ(T)I ^ CH2 where 3(T2 ) is the Jacobian of the mapping

T2 and C> 0 is a constant independent of H Furthermore, following BRAMBLE, PAsCIAK,

& SCHATZ (1986), for E (H'/2(ô2))2, 1 ^ z ^ k, we define the scaled Sobolev norm, cf

Section 1 2,

v, (H"2 (UR)) 2 II	 [rII(a2v) 0	 (4(IR))2112 + I(CutVr)	 (H1/2(R))2I2]
r z=i

(5 3 35)

However, instead of ., (Hh/2 (D1)) 2 IIs we shall employ the equivalent norm, cf Section 1 2,

J • , (H1/2 (o,)) 2 lJI defined as follows for	 (H'!2 (81l))2, 1 <z <k

[1 I Iv(x)1 2 da(x) + ff	 I ()2 
da(x) da(z)]

(5 3 36)
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where a is the surface measure defined in relation (1 2 31), cf WLOKA (1987) We now

intend to demonstrate that there exists a real number R> 0 which satisfies relation (5 3 32)

uniformly, i e, independently of i,j E {1, , k}, and, as a step towards this goal, we employ

the results originally obtained by BRAMBLE, PASCIAK, SCHATZ (1986), DRYJA (1988),

and BREZINA & MANDEL (1993) Furthermore, by establishing property (5 3 32) the

required upper bound for ?c(MSh) will follow immediately from relation (5 3 33) of Theorem

52

The equivalence of the semi-norm s (Hi/2 (51l,)) 2 l associated with the norm defined

in (5 3 36) and the scaled energy norm a • us,,. defined for appropriate functions E

(Hi/2(O1l,))2, 1 <z k is established by the following lemma, cf BREZINA & MANDEL

(1993)

Lemma 5 3 There exist constants Cr, 1	 r < 2 which are independent of h, H and

cr,., 1 ^ r < k such that

C	 (H"2 (acl,)) 2 l 2 < a1 J'l/Iv,,Ils ^ C2 bLh, (H112 (ac)) 2 I 2, ih E (S"(aIl,))2

(5 3 37)

where l • (H"2 (o1l)) 2 l is the Sobolev semi-norm (5 3 14), M' E H(S,,h) C R21'T"'' s
def

the vector of nodal values of p,, E (S"(31l))2, and s"(ô1l) 	 tVhlof2, I V E Sh (f12 )}	 U

For problems of two-dimensional linear elasticity the polygonal boundaries, ÔI I C It2 , 1 ^

^ k have measure a(Ol) = 0(H) (H - 0) and can, therefore, be parameterized in the

form 9l, = {T0 , (s) E It2 I 0 s ^ H} where T , (0, H) -* 8 is a bijective mapping

However, because (HV2 (O1l)) 2 voT80, E (Hi/2(0, H)) 2 one may equivalently consider

elements either of (H'/2(O1l))2 or (H i/i (o , H))2

We shall employ Lemma's 5 4, 5 5, established by BREZINA & MANDEL (1993) from

the work of DRYJA (1988), BRAMBLE, PASCIAK, & SCHATZ (1986), to obtain a bound

on the semi-norm of the functions I7Vh , E (Sh (3c)) 2 , y e g(I') where L S'(F) S'(1')

denotes the linear operator represented by the matrix L1 E ]R2N,2N defined in (5 3 24), i e,

for Uh E S'(F), I !Lh =	 iLi(&h)r (PnIr where	 is the canonical basis for S"(1), cf

Section 2 2 1, and w;1({i}) C 'y, 1 ^ r	 n We point out that, in the lemma's below,

(S'(0, H)) 2 (respectively (S"(R)) 2 ) denotes the space of piecewise hnear functions over the

domain (0, H) (respectively K) corresponding to the uniform partition 0 < h < 2h <	 <

nh = H, n E N (respectively <0 < h < <nh H < )

Lemma 5 4 There exists a constant C> 0 such that

8I&h), (H i !2 (H)) 2 2	 c[i + log(H/h)] IIih ' (H"2 (0,H)) 2 li1 2, !2.h e (SL(0,H))2 (5338)

where 5,(h) E (SIt (JR)) 2 , h(yLh)(0) -Lh(°), öh(vh)(x)	 0, lxi ^ h and C is independent of

iLh and the parameters h, H
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Proof The results follows immediately from the definition of the norm ifi . , (H'/2 ((0, H))) 2 III

(cf (5 3 36)), the semi-norm s (Hi/2 (IR)) 2 1 (cf Section 1 2), and Lemma 4 4 of BREZINA

& MANDEL (1993)

Lemma 5 5 There exists a constant C> 0 such that

!Qh, 
(Hi!2 (IR)) 2 12 ^ c[i. + log(H/h)] 

2 

IlI!h, 
(Jfi/2(o, H)) 2 111 2 , ?ih e (S'(0, H))2 (5 3 39)

where	 E (S'(]R)) 2 is defined as follows

Wh(x){	

ifh<x<H—h	 (5340)—	 — 0,	 if<0,x^H

and C is independent of h, H,

Proof Use the norm definitions provided above and in Section 1 2 and apply Lemma 4 5 of

BREZINA & MANDEL (1993)

We now employ the above Lemma's to prove the following important result

Theorem 5 6 There exists a constant C> 0 such that, for anyy E 0(F), V_t,h E (S'91,))2,

1 ^ z ^ k,

I1yiL:,h, (Hi!2 (acl)) 2 1 2 ^ c[i + log(H/h)] IIIV.z,h, (H"2 (c)) 2 111 2 	 (53 41)

where 7cC, C E (F) and C is independent of h,H,h

Proof Clearly, for 'y E 0(F) there exists a bijective mapping T8c (0, aH) -+ 8, a ^ 1

such that if y is a vertex then T50 , (0) = -y else T00 (0, H) = and, therefore, for v, 1, E

(S?L(ac))2, !i,h o T511, E (S'(0,aH))2 and

2

ILvL1 h' 
(H i !2 (3,))2I2 

=	 ff lLv, h,r() — LyVt,h,r(Z)12 da(x) da(z)

r=i	 oc2,xoci	 II-II

dx dz< c	 II	
h r (Tac^. (x)) — 17v, h,r(Taci, (z))12

-	
=	 O,aH)x(o,aH)	 Ix — zJ2

= C 
IL

yL,h 0 T51 , (H1/2 (0,aH)) 2 1 2 	 (5342)

where C > 0 is independent of h, H If	 0(F) is a vertex then we observe that I yiLt ,h 0 Tan,

coincides with the function 6h(,,h) E (Sh1 (]R)) 2 defined in Lemma 5 4 and we deduce the

inequality,

o T,, (Hu/2 (0, aH)) 2 2	 C [i + Iog(H/h)] Illt,h o T80, , (H"2 (0, H)) 2 1112

^ C [1 + log(H/h)] llI!24 h' 
(H u 1 2 (c)) 2 111 2	 (5 3 43)
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where C	 T00j0,H) E Q(F) If, however, y = int(v i —+ v 2) E	 e v(r), cf

(5 3 23), then we observe that '-V!L,h oTac, coincides with the function W_h E (sh(]f{))2 defined

in relation (5 3 40) of Lemma 5 5 and we deduce the inequality

0 T8ç, (Hi/2 (0, cxH)) 2 2	 C {i + log(H/h)] III!Lz,h0 T80 , (H'12 (0, H)) 2 1112

^ Ci [i + log(H/h)] 
2 

IIIIL,,h ' (H"2 (C)) 2 111 2 	 (5 3 44)

where C = Too t (0, H) = y and the constants C, C1 > 0 are independent of h, H Inequality

(5 3 41) now follows from (5 3 42), (5 3 43), and (5 3 44) 	 U

We now employ the above results to establish the bound for i(M' Sh) presented in Theorem

5 7 below

Theorem 5 7 Let l C R2 be a polygonal domain partitioned into subdomains 1 ^ z ^ k

satisfying (5 1 1 1) and let W,h E R2" 2Nr, 1 ^ i ^ k be the weight matrices defined

according to relation (5 3 30), (5 3 31) then there exists a constant C> 0 such that

i(MSh) ^ c[i + log(H/h)], h,H >0	 (5345)

where, for a triangulation 7(1l), Sh is the global Schur complement matrix (5 11 35), Mh is

the preconditioner defined in Section 5 3, and C is independent of the parameters h, H where

diam(1) = 0(H) (H —^ 0), 1 ^ ^ k

Proof Clearly, this result can be established by demonstrating the validity of inequality

(5 3 32) for R = C [1 + log(H/h)] 2 However, it is apparent from Lemma 5 3 that (5 3 32)

can be written equivalently as follows, for E g(I'), !2,h E (S'(t91Z,))2 fl.Af(S,h)1,

(H"2 (3c1,)) 2 12 ^ CRI$,h, (Hi!2 (ac 2 )) 2 1 2 ,	 (5 3 46)

Let c	 fl Ul, If = int(v 1 —+ va ), 1i	 E V() then it follows from Theorem 5 6 that

V!L2,h, (H"2 (oil,)) 2 1 2 ^ C [i + log(H/h)] III V ,h, (H"2 (7)) 2 1112

^ C [i + log(H/h)] III V ,h, (H' /2 (Oil ; )) 2 111 2 	 (5347)

while, if is a vertex and !L;i,h E (S'(0il1 u	 is any extension of E (S'(oil)) 2 to Oil,

then Theorem 5 7 implies the inequality

ILyL;,,h, (Hi!2 (Oil,)) 2 2	 C [i + log(H/h)] li v ,, h' (H' !2 (C)) 2 111 2 	 (5348)

Indeed, with	 h v,,,('y) on Oil, we use Lemma 1 of DRYJA (1988) to obtain

iII!24, h' 
(Hi!2 (C)) 2 111 2 = H_i	

h' (C2 (C)) 2 112 ^ C Iv,, h' (C(C))2 112

^ C lI!,,h,(OO(81l1))2 1 2 	C [i + log(H/h)J	 h, (Hi!2 (oil,)) 2 11I 2 (5349)
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where C > 0 is a constant which is independent from z,3 E I"T, h, H Thus, inequalities

(5 3 48) and (5 3 49) show that (5 3 47) holds when 'y E (I') is a vertex However, we

shall assume that the decomposition (5 111) is constructed such that there exists a constant

C> 0 which is independent of z E {1, , k} with the property that if 31, fl 31 D 0 then

a(c91, fl D) ^ C a(t91,) This enables one to uniformly apply the Poincare inequality

II!L,,h, (c2 (acl,)) 2 II 2 	 (H"2(ac))2I2	 (5 3 50)

to any subdomain c,, 1 <z ^ k Thus, applying the Poincaré inequality (5 3 50) to relation

(5 341) of Theorem 5 6 we replace the scaled norm, II . , (H1/2 (o)) 2 III, with the semi-norm,

s (H"2 (i)), and obtain the relation

	

I I-yiL,,h, (Hu/2 (o1,)) 2 I 2 ^ c[i + log(H/h)] 
2 

I!1, h , (H1/2 (a))2 I 2	 (5 3 51)

which is equivalent to inequahty (5 3 32) and the theorem is thus proved I

Finally, we observe that the constant C in (5 3 45) will depend on the parameters K, L defined

in Theorem 5 2, the continuous coefficients bkjmn, 1 ^ k, 1, rn, ri. ^ 2, cf definition 5 2, and

the admissible triangulation Th (cl) of 1

5 4 Computational Examples
We apply our domain decomposition algorithm of Section 5 3 to a variety of problems with

varying levels of material regularity, e g, a,,k,, 1 ^ z, 3,k, 1 ^ 2 smooth or piecewise contin-

uous with discontinuities of varying magnitude and, in particular, we consider linear elastic

boundary value problems for which a2,kz, 1 ^ i,j,k,l ^ 2 is periodic, cf Chapters 3, 4, or

is randomly defined The effectiveness of our domain decomposition approach is assessed by

comparing the results obtained with algorithms AL 1 (conjugate gradients with no precon-

ditioner) and ALc 2 (conjugate gradients with the Neumann-Neumann preconditioner) for

a variety of values of the problem and discretization parameters e, a2 , h, H, 1 ^ z k where,

in the computational examples below, we employ uniform domain decompositions (5 111),

i e, H, = H, 1	 k and , 1 z k can be obtained by translating and rotating the

square

(541)

and uniform triangulations 7(1) of each subdomain il,, 1 ^ z ^ k, i e, each T E 7() is

obtained by translating and rotating the right angled triangle

h>0	 (542)

It is apparent from the error bound (5 1 2) that the condition number,

k(PSh ) = II P, ShII2 II(PSh)_ i II 2 = Amax(P,Sh )/Am in(P,'Sh ) ^ 1,	 (543)
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of the preconditioned matrix P,Sh determines how rapidly the iterates n ^ 0 converge

to JAr,h as n —* oo However, we require some convergence criteria for our algorithm and,

for this, we employ the following bound on the relative energy norm error, cf AsHBY &

MANTEUFFEL (1990),

II (n)"2	
I(P'Sh),r.('))I — 

ti sh (Ph 
Sh) I(P,',')l	 (5 44)I uS,.	 ____________	 ____ _____

II!I'hIIS,.	 I(P'Sh1rh,Ih)I —	 I(P,'Lh,Lh)I

(n)	 (n)	 q (n)
where kS,.(P,L'Sh) = II P ' ShIIshII(P 'Sh)'IIs,.	 = i&r,h!Ar,h, !	 Lh	 hiI',h,

0 However, we observe that

ii,:' Shx II,. =	 (S/2P,' s/2, )
IIPShII,. = sup

2
IIIL9,.	 IIII

	

Amax (S'2P,S/2 ) = Amax(13Sh)	 (5 5)

where Sh = S/2 S/2 , S/2 E IR2N2N h > 0 and, similarly,

II(P, 1 Sh )_ i II h = Amax((P,' ShY') = 1/Amin(P,1Sh)	 (5 4 6)

Therefore, Iis,.(P'Sh ) =	 (P1Sh), h > 0 and we can ensure that II(IIsh/IIir,hIIsh ^ T

by iterating, cf AL 1, 2, 3, until

Ic(P'Sh) I(Ph :E ,z)I	 (5 4 7)
I(PLh)I

The parameters computed at each step of a conjugate gradient algorithm allow one to -
(n)	 nn	 (2N)compute the leading tridiagonal submatrices Th E K ' , n < 2N of Th = Th where

Th = Q7P'ShQh for some orthogonal matrix Qh E ]R2N,2N The rapid convergence of the

extreme eigenvalues of n ^ 1 to those of P'Sh , h > 0 with increasing n is established

by the Kaniel—Paige convergence Theory, cf GOLUB & VAN LOAN (1989) We employ the

rational QR algorithm with Newton Shift detailed in REINSCH & BAuER (1968) to compute

approximations of the condition number ic(P, Sh), h > 0 and use these in the convergence

criteria (5 4 7) Algorithms ALG 1,2, 3 have been implemented in C++ code and the results

are presented in Sections 5 4 1-5 4 3 below

5 4 1 Plane stress sample problem Smooth Data
We define Poisson's ratio, v, Young's modulus of elasticity, E(x), E l	 (0, 1) 2 , the
material parameters A, i K, and the body force f according to the relations

def	 del	 def V E(x)	 del E(x)
v = 3/10, E() = 1, A() = 1_v2' /2(X) 

= 2(1+v)' f(x)
1 O,	 (548)

and we determine the coefficients a 3kj E C°°(), 1 z,3,k,l 2 from relations (1 3 11) We

employ the following boundary values of displacement, , and stress, a,

u(
dcl	 X1	 1	

x E	 D, a(x)	 [A(1 - v) + 2/2	 0	

],	
E 3 Tx) = I

--	 Lv(h/2—x2)i' -	 0	 A(1—v)-21w

(5 4 9)
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del
where 0 D = {x I	 = 0, 0 ^ x2 ^ 1} U { I 0 ^ x 1 1, x2 = 1} and the surface tractions

on	 are = a on The computational results obtained with (1) Uniform decompositions,

(5 111), (2) Uniform triangulations, 77(1), 1	 k, cf Section 5 4, (3) The weights,

w(i, 7,p), 1	 z < k, E g(P), defined according to (5331) where a, = 1, 1 ^ z k and
del

p = 1, (4) Convergence criteria (5 4 7) with the relative error parameter, 'r = 10	 , and

(5) The number of iterations, n, limited by umax = 80 are provided in Table 5 4 1

Table 5 4 1
	

EC°°(Z), 1 i,3,k,l <2

ACg 1
	

A1c 2
	

ALg 3

h	 IH
	

Ti	 - n	 Ti

1/8	 1/2	 31	 43072(+1)	 14 85326(+0)	 11	 53153(+0)

1/16	 1/2	 49 8 3661(+1)	 16	 1 1108(+1)	 12	 7 2720(+0)

1/32	 1/2	 77	 1 6507(+2)	 17 1 4157(+1)	 14	 1 0121(+1)

1/16	 1/4	 NC 2 1497(+2)	 52 1 0129 (+2)	 16 5 8160(+0)

1/32	 1/4	 NC 4 2650(+2)	 64 1 2789(+2)	 21 9 1396(+0)

1/64	 1/4	 NC 8 2186(+2)	 73 1 5635(+2)	 24 1 2505(+1)

1/32	 1/8	 NC 9 2200(+2)	 NC 4 7860(+2)	 23 5 9004(+0)

1/64	 1/8	 NC 1 6059(+3)	 NC 6 0360(+2)	 27 9 3509(+0)

1/128	 1/8	 NC 2 7264(+3)	 NC 7 3753(+2)	 31 1 2781(+1)

NC No convergence after 80 iterations, w(z,'y, 1) = 1 /I a (i, y)I, 1 ^ t ^ k, 'y E (F)

Itis clearly apparent from Table 5 4 1 that, in contrast with algorithms ALG 1,2, the

rate of convergence of algorithm .,4Cg 3 does not slow significantly as H, h —+ 0, indeed, the

computational results confirm the logarithmic behaviour of ic(M' Sh) established in Theorem

5 7 This is apparent when one compares Table 5 4 1 with the following table of values

H/h	 4	 8	 16

[1 + log(H/h)] 2	5 6944008	 9 4829602	 14 23242

5 4 2 Plane stress sample problem Discontinuous Data
We now demonstrate that the convergence rates produced by the preconditioner M,, h >

0 (w(z, 'y, 1), 1 < t < k, E (F) defined by relation (5 3 31)) are independent of any

coefficient discontinuities which are aligned with the subdomain boundaries and, to do this,

we apply domain decomposition algorithms AC 1, 2,3 to a linear elastic analogue of the

scalar, periodic boundary value problem investigated in Chapters 3, 4, 1 e, a problem of the

form Find UC (Hl, 81D)) 2 such that

2

f > a,3(/E) 
ÔU	 ÔVk	

= f f(x) v(x)dx, V e (Hl,ô1 D )) 2 (5410)—(x)—(x)dx
3; -	 - -
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where the functions a,3k1 E ,0 ('P), 1 ^ z, j ,k,l ^ 2 are 1-periodic and e >0 For a >0 we

begin by defining the 1-periodic function (•, a) on the cell, ?, as follows

I a, if x E [1/4, 3/4]2	
(5 4 11)= 

1, otherwise

Young's modulus of elasticity is then defined according to the relation E(x) T 6(x, a), z E l

and ii, A, , f are given by relations (5 4 8) The boundary conditions employed are again

given by relations (5 4 9), the triangulations, 7(1 I ), 1 ^ z < k, and domain decompo-

sitions (5 11 1) are uniform, cf Section 5 4 1, the iteration parameters have values r =

10", umax = 80, and the weights, w(z,'y,p), 1 ^ 2 ^ k, 'y E	 are defined by rela-
del	 -	 Ic -tion (5 3 31) with p = 1 We construct the decomposition 1 = u 1 I such that H = E/4,

a,3k1(./e), 1 ^ z,3,k,l ^ 2 is constant in each subdomain f, 1 t ^ k (with constant value

a or 1) and, cf (5 111) and (5 4 1),

= (p, q) H + 11H, H = c/4, 1 ^ t <k,	 (5 4 12)

where z = (v'+ l)p + q, 0 ^ p, q ^ The computational results obtained for this problem

are provided in Tables 5 4 2a-f We demonstrate the effectiveness of the weights defined

in relation (5 3 31) by repeating the computations with the alternative interface weights
defw(i,7, 1) = 1/a(i,'y), 1 ^ z ^ k, E g(r), the results are presented in Tables 54 2d-f

eIH

1	 1/4

1	 1/4

1	 1/4

Table 5 4 2a a ,2k1 E PC°°(1

ACcl

h	 n	 Ic(Sh)

1/16	 NC 1 4670(+3)

1/32	 NC 2 3360(+3)

1/64	 NC 4 0347(+3)

1 ^ z,3,k,l ^ 2

ALg2

n

NC 76144(+

NC 9 3890(+

NC 1 1471(+

Acg 3

17 4 9512(+0

20 7 8869(+0

24 1 0971(+1

1/2	 1/8	 1/32	 NC 3 8933(+3)	 NC 3 0049 (+3)	 21 5 3880(+0)

1/2	 1/8	 1/64	 NC 5 2498(+3)	 NC 3 6740(+3)	 27 8 5498(+0)

1/2	 1/8	 1/128	 NC 5 4075(+3)	 NC 4 4593(+3)	 32 1 1756(+1)

1/4	 1/16	 1/64	 NC 4 9957(+3)	 NC 1 1336(+4)	 22 5 4137(+0)

1/4	 1/16	 1/128	 NC 5 2769(+3)	 NC 1 3800(+4)	 30 8 5728(+0)

1/4	 1/16	 1/256	 NC 5 1447(+3)	 NC 1 6629(+4)	 36 1 1779(+1)
a = 10, w(z, , 1)	 c/ >3Ea(t) a, 1	 z	 k, y E g(I')

The results presented in Tables 5 4 2a-c confirm the theoretical results obtained in Section 5 3

because they demonstrate that algorithm AC 3 is not significantly affected by the presence of

large discontinuities in a,, kj, 1 ^ z,, k, I ^ 2 if the interface weights w(z, y, 1), 1 < z k, Q(F)

are defined according to relation (5 3 31) This is clearly not the case for algorithm AL g 1,
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______ _______	 Table 54 2b a,3 k1 E PC°°(IZ), 1 i,3,k,1 ^ 2 _______________

A1 g 1	 AL2	 ACg3

_____	 H	 h	 ii	 !c(Sh)	 ri	 Ic(N 1 Sh)	 n Ic(MSh)

1	 1/4	 1/16	 NC 3 9096(+2)	 49 9 0650(+l)	 23 1 5212(+1)

1	 1/4	 1/32	 NC 8 3613(+2)	 56 1 1324(+2)	 23 1 2982(+1)

1	 1/4	 1/64	 NC 1 6446(+3)	 60 1 3823(+2)	 25 1 3944(+1)

1/2	 1/8	 1/32	 NC 1 4567(+3)	 NC 5 0294(+2)	 24 8 7873 (+0)

1/2	 1/8	 1/64	 NC 2 8022(+3)	 NC 6 0488(+2)	 27 1 0654(+1)

1/2	 1/8	 1/128	 NC 4 5822(+3)	 NC 7 1161(+2)	 32 1 4176(+1)

1/4	 1/16	 1/64	 NC 4 3856(+3)	 NC 1 7969(+3)	 26 7 1524(+0)

1/4	 1/16	 1/128	 NC 5 2908(+3)	 NC 2 2263(+3)	 32 1 0664(+1)

1/4	 1/16	 1/256	 NC 5 0519(+3)	 NC 2 7042(+3)	 37 1 4186(+1)
a = 1/18, w(z, 'y, 1) = a/ >2Ea(,-1) a3 , 1	 z	 k, 'y E (F)

_______	 Table 5 4 2c a ,2k1 E 7'C
	

1 ^ z,j,k,l ^ 2

ALg1
	

ALc 2
	

ALG3

e	 H	 h	 n	 ,c(Sh)
	

n	 n

1	 1/4	 1/16	 NC 1 4305(+3)	 53 1 7255(+2)	 35 5 2338(+1)

1	 1/4	 1/32	 NC 1 7579(+3)	 61 2 0968(+2)	 31 2 9882(+1)

1	 1/4	 1/64	 NC 1 7290(+3)	 73 2 5436(+2)	 29 1 9844(+1)

1/2	 1/8	 1/32	 NC 1 8337(+3)	 NC 5 7397(+2)	 31 2 0565(+1)

1/2	 1/8	 1/64	 NC 2 9227(+3)	 NC 7 1107(+2)	 31 1 5048(+1)

1/2	 1/8	 1/128	 NC 4 6207(+3)	 NC 8 4675(+2)	 32 1 4309(+1)

1/4	 1/16	 1/64	 NC 4 5866(+3)	 NC 1 8046(+3)	 29 1 0251(+1)

1/4	 1/16	 1/128	 NC 5 4589 (+3)	 NC 2 2262(+3)	 32 1 0818(+1)

1/4	 1/16	 1/256	 NC 5 3536(+3)	 NC 2 7046(+3)	 37 1 4315(+1)
a = 1/114, w(z,'y,1) = a/>3Ea()aj, 1	 t	 k, '7 E (F)

in fact, if one employs the alternative definition w(z,'7, 1) 	 1/Ia(z,'y)I, 1 ^ z ^ k, '7 E

then, compared with the results reported in Tables 5 4 2a-c, the larger number of iterations,

n, and condition numbers obtained in Tables 5 4 2d-f suggest that the behaviour of algorithm

ALc 3 is no longer independent of the coefficient discontinuities which exist in the problem

this confirms the importance of the choice of the interface weights w(i,'y,p), 1 ^ i ^ k, E

g(r), p ^ 1/2

5 4 3 Plane stress sample problem Randomly Discontinuous Data
To demonstrate the effectiveness of the preconditioner M,', h > 0 for problems with dis-
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6
	

H

	1
	

1/4

	

1
	

1/4

1

	

1/
	

1/8

	

1/
	

1/8

1/

Table 5 4 2d

h

1/16

1/32

1/64

1/32

1/64

1/128

E PC°°(1), 1 ^ i,3,k,l ^ 2

AL 2

n	 ,c(N'S,)	 n

NC 6 9794(+2)	 32

NC 8 7378(+2)	 39

NC 1 0406(+3)	 45

NC 2 6969(+3)	 37

NC 3 3622(+3)	 48

NC 4 0522(+3)	 56

AL g 3

ic(M' Sh,

2 3326(+1

3 5578(+1

5 0303(+1

2 3270(+1

3 5985(+1

5 0861(+1

1/4	 1/16	 1/64	 NC 1 0393(+4)	 42	 2 3287(+1)

1/4	 1/16	 1/128	 NC 1 2906(+4)	 52	 3 5987(+1)

1/4	 1/16	 1/256	 NC 1 5398(+4)	 60	 5 0865(+1)

a = 10, w(z,7,1) = 1/Ia(z,'y)I, 1 ^ i ^ k, E G()

_________	 Table 5 4 2e a,k1 E PC°°(1l), 1 ^ ,
	 1<2

ALO 2
	

ALg3

e	 H	 h	 n	 n

1	 1/4	 1/16	 63	 6 8076(+1)	 34	 1 4305(+1)

1	 1/4	 1/32	 73	 8 9823(+1)	 35	 1 5061(+1)

1	 1/4	 1/64	 NC 1 1624(+2)	 45	 2 5084(+1)

1/2	 1/8	 1/32	 NC 4 4321(+2)	 33	 1 0332(+1)

1/2	 1/8	 1/64	 NC 54593(+2)	 44	 17162(+1)

1/2	 1/8	 1/128	 NC 6 6131(+2)	 58	 3 0785(+1)

1/4	 1/16	 1/64	 NC 1 7025(+3)	 34	 1 0324(+1)

1/4	 1/16	 1/128	 NC 2 1276(+3)	 49	 2 0169(+1)

1/4	 1/16	 1/256	 NC 2 5831(+3)	 63	 3 2725(+1)

a = 1/18, w(z,7,1) = 1 /I a (z ,7)I, 1 ^ z ^ k, E Q(F)

continuous and non—periodic coefficients, we now apply the domain decomposition algo-

rithms AL g 1, 2, 3 to a number of problems with randomly defined material coefficients,

a,3k1 E £(l), 1 z,2,k,1 2 We achieve this by defining Young's modulus to be a step

function, constant in each subdomain 1, 1 ^ i ^ k, with the values obtained from the UNIX

stdhb h random number generator functrnns srand48, drand48, i e,

E(x)	 1 + 100 [srand48(z), drand48O] E [1, 101),	 1,, 1	 k	 (5 4 13)

Thus, we first seed the random number generator using srand48(i) where z € {1, ,k} is the

domain index and then obtain a uniformly distributed random number drand48() E [0, 1)
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_______	 Table 54 2f a13k1 PC(1z), 1 ^ z,,k,l 2

ALg2	 Acg3

_______	 H	 h	 ri	 Ic(N'Sh)	 n	 K(MSh)

1	 1/4	 1/16	 NC 1 6800(+2)	 NC 2 3370(+2)

1	 1/4	 1/32	 NC 2 5683(+2)	 NC 1 3773(+2)

1	 1/4	 1/64	 NC 4 0085 (+2)	 NC 1 1971(+2)

1/2	 1/8	 1/32	 NC 5 5316(+2)	 NC 1 0075(+2)

1/2	 1/8	 1/64	 NC 6 8480(+2)	 NC 8 4559(+1)

1/2	 1/8	 1/128	 NC 7 9447(+2)	 NC 1 3063(+2)

1/4	 1/16	 1/64	 NC 1 7003(+3)	 77	 5 9652(+1)

1/4	 1/16	 1/128	 NC 2 1278(+3)	 NC 9 0417(+1)

1/4	 1/16	 1/256	 NC 2 5864(+3)	 NC 1 7357(+2)
a = 1/114, w(z,7, 1) = 1 /Ia (i, y)I, 1 ^ z ^ k, E G()

Table 5 4 3a Random Young

Domain, z	 1	 2

x E 1.	 18 082Qj 5 1630

sModulus values

3
	

4

92 2433
	

79 3235

Domain, z	 5	 6	 7	 8

E(x), x E 11,	 66 4037	 53 4840	 40 5642	 276444

Domain, z	 9	 10	 11	 12

E(x), x E	 14 7247	 1 8049	 88 8851	 75 9653

Domain, z	 13	 14	 15	 16

E(x), x E ,	 63 0456	 50 1258	 372060	 24 2863

The range, E(1), obtained in this way is presented in Table 5 4 3a

The material parameters v, /A,A E ]R and the body force f are once again determined from

relation (5 4 8), ) 	 (0, 1)2, and we employ the boundary conditions

0,	 E	 D,	 9(i)	
[sin(x2)]	 E	 T	 (54 14)

del	 delwhere ÔI1D = {x I = 0, 0 ^ x2 ^ 1}, and ô T = D\öD The respective finite element

triangulations, 7(5), 1 ^ z ^ k, domain decompositions, i = u 1i, iteration parameters

T T1max, and weights w(i, , 1), 1 ^ ^ k, 7 E () are constructed and defined as in problem

5 4 1 The computational results obtained with algorithms AL 1, 2, 3 are presented in Table

5 4 3b

The asymptotic bound (5 3 45) is again confirmed by the results presented in Table 5 4 3b

and, comparing these results with those in Table 5 4 3c, it is revealed that the constant,

C > 0, which appears in (5 3 45), becomes dependent on the parameters cr,, 1	 z	 k
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_________ _______ Table 54 3b a,3 k1 e 1'C(), 1 ^ i,3,k,l ^ 2 ________________

AL1	 Acg2	 Acc3

h	 H	 n	 !c(Sh)	 n	 k(NSh)	 n	 ic(M,Sh)

1/16	 1/2	 38	 1 3489(+3)	 22	 7 4894(+2)	 8	 1 8573(+0)

1/16	 1/2	 NC 2 8718(+3)	 26 9 1959(+2)	 9	 2 2977(+0)

1/32	 1/2	 NC 5 8123(+3)	 29	 1 1149(+3)	 10	 2 8098(+0)

1/16	 1/4	 NC 2 6064(+3)	 NC 6 0693(+3)	 13 4 3405(+0)

1/32	 1/4	 NC 4 7821(+3)	 NC 7 3067(+3)	 17 6 3227(+0)

1/64	 1/4	 NC 2 9972(+3)	 NC 8 6525(+3)	 20 8 4442(+0)

1/32	 1/8	 NC 2 0358(+3)	 NC 2 5722(+4)	 18 5 6481(+0)

1/64	 1/8	 NC 4 1683(+3)	 NC 2 4205(+4)	 22 8 4329(+0)

1/128	 1/8	 NC 7 7705(+3)	 NC 2 2588(+4)	 27 1 1250(+1)

NC No convergence after 80 iterations, w(z,7, 1) = cxt/,Ea(I ,7) o,, 1 ^ z ^ k, E ()

Table 5 4 3c 2t2k1 E 1'C°°(1), 1 ^ t,3,k,l ^ 2

AC2
	

ALg3

h
	

H	 n	 ____ n

1/16	 1/2	 39	 4 5069(+2)	 19	 7 9592(+0)

1/16	 1/2	 48	 5 2723(+2)	 25	 1 0679(+1)

1/32	 1/2	 54	 6 0983(+2)	 29	 1 2915(+1)

1/16	 1/4	
J	

NC	 4 7172(+3)	 39	 3 1188(+1)

1/32	 1/4	 NC	 58561(+3)	 51	 46471(+1)

1/64	 1/4	 j	 NC	 7 0365 (+3)	 59	 6 1436(+1)

1/32	 1/8	 NC	 1 7856(+4)	 53	 4 2239(+1)

1/64	 1/8	 NC	 1 7347(+4)	 66	 6 3297(+1)

1/128	 1/8	 NC	 1 6872(+4)	 78	 8 9413(+1)

w(i,7, 1) = 1 /I a (z ,7)l, 1	 z	 k, 'yE (F)

when one defines w(z,'y,p) 1/la(z,'y)I, 1 ^ z k, 'y E g(I'), p ^ 1/2 Furthermore, we

point out that, based on the smaller values of k(N'Sh), h > 0 reported in Table 5 4 3c,

one may expect more rapid convergence of algorithm ALc 2 when the weights are given by

w(z,'y, 1) 1/Ia(i,'y)I, 1 ^ z k, 'y E Q(F) rather than (5331), however, if the spectrum,

a(N Sh), h> 0, consists of a smaller number of compactly clustered groups of eigenvalues

when the Neumann—Neumann preconditioner is defined in terms of the weights (5 3 30) then

one should expect these results Indeed, we suggest that this is the explanation for the results

obtained with the Neumann-Neumann preconditioner in Tables 5 4 3b,c
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5 5 Conclusions

Our aim in Section 5 4 was to demonstrate through the use of computational examples that,

for problems of heterogeneous linear elasticity, the inclusion of a globally defined coarse

problem within the definition of a Neumann-Neumann type preconditioner leads to faster

rates of convergence which do not vary significantly when the material properties change by

large orders of magnitude and possess asymptotic properties which are similar to those first

established in BREZINA & MANDEL (1993) as H, h -^ 0 It was also our aim to implicitly

demonstrate that the introduction, at the continuous level, of the bilinear forms b1 , z E S

leads to an efficient and reliable approach to the solution of the undetermined problems (5 3 1)

which are often treated in the literature with ad hoc modifications at the discrete level of the

matrices As,,,	 1 ^ i ^ k

The results obtained in Section 5 4 show that, if one solves the domain decomposed

interface problem (5 1 1) with the conjugate gradient algorithm using the preconditioner

M, E R2 "21 then, as H —* 0, this leads to

(1) Dramatic increases in the convergence rate, C(M, 1 Sh), h > 0, compared with either the

Neumann-Neumann preconditioner, Nc', h> 0, (using any definition of w(z, y,p), 1 ^ z

k, 'y E g(F), p ^ 1/2) or no preconditioner, i e, P' = I,

(2) Independence of the condition number, I(M'Sh), h > 0, and, therefore, the convergence

rate of algorithm AA 3 from material discontinuities and, thus, singularities,

(3) Logarithmic rate of growth logh 1 of K(MSh) as h —+ 0 and, therefore, a slow decrease

of the convergence rate, C(M'Sh), as h —+ 0

Finally, we observe that the coarse problem is required primarily for H 0, i e, when the

number of domains, k, is large It is cheap to implement because the coarse system matrix,

B, is small compared to Sh , h > 0 and it is computed and factored only once
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6 DISCUSSION

Motivated by the need to devise reliable numerical methods for the treatment of elliptic equa-

tions and systems with coefficients which vary rapidly, discontinuously, and by large orders of

magnitude, we have considered two different approaches In the first approach we have used

homogenization concepts and Fourier series expansions to construct asymptotic expansions

which can approximate the solutions of these problems in the case when the coefficients are

periodic with period e We have computed the asymptotic orders at which these approxi- -

mations converge using extensive computational tests and analytical results In the second

approach we have reformulated the Galerkin problem as a system of such problems using

domain decomposition techniques and showed how these problems can be efficiently inter-

faced by constructing preconditiomng operators which allow one to use conjugate gradient

algorithms for the rapid iterative solution of the interface problem We have provided the-

oretical results which establish the preconditioning properties of this operator as H, h —* 0

and, using a number of computational results, demonstrated that these properties are fulfilled

in practice

Clearly, the asymptotic approach is only applicable for problems in which e 0 because

it introduces errors of the order 0(Et ) for some t > 0 which depend on the norm topology

and the asymptotic approximations used An important property of these approximations

is that the order, t, at which they converge does not vary with the level of regularity of the

coefficients, thus, we expect identical rates of convergence for problems with either smooth

or discontinuous material properties However, the regularity of the right hand side, f, of a

problem is fundamental in this approach because it determines the rates, and the maximum

possible rates, of convergence as 6 —* 0 Furthermore, the level of regularity of I also

determines how rapidly its Fourier series expansion converges Indeed, this latter property

may cause practical difficulties, for example, if f is piecewise continuous then its Fourier
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series will converge slowly in the neighbourhoods of any discontinuities and many terms may

be required to accurately represent the solution We observe that this difficulty also arises in

BABUKA & MORGAN (1991) where, instead of a Fourier series, there is a Fourier transform

and the task is to evaluate an integral over R', n ^ 1 which may converge slowly We feel that

one may attempt to treat this difficulty by using approximations, e g splines or mollifiers,

which smooth the discontinuities of f in C and thus obtain more rapidly convergent Fourier

series Clearly, the success of this approach would depend on how well one can control the

magnitude of the additional errors which this process would introduce Unfortunately, we do

not have sufficient time to explore this possibility

We have seen that the solutions, q, of the elliptic problems of the type considered in

Chapter 3 are holomorphic functions of E and t everywhere in 1R2 \S where

del '
S = 1(E, t) E ]R2 I II(c , T) - (e , t)1l2 -*0 = Il(.,e,T),H'(P)II 

-^ oo}	 (6 1)

However, for (e, t) E A	 { E ]R2 I (0 —* x) fl S O}, the asymptotic approximations

N, N ^ 0 fail to converge, i e,

II(. , e , t) - cbN(.,e,t),H'(P)ll 740 (N -^ oo)	 (62)

Nevertheless, the good qualitative approximation properties illustrated in graphs 3 4 1-3 4 6

and 3 6 1-3 6 6 motivated our decision to use the asymptotic approximations N, N ^ 0 at

any point in A However, this differs from the elliptic problems studied in BABuKA &

MORGAN (199th) which include the zero order term, aq, in their formulation the solutions,

q5 , of such problems are holomorphic everywhere in the (e, t)-plane, 1 e,

Il4)N( s ,,t) — (.,e,t),Hi(1))II -+0 (N —* oo)	 c,t E ]R,	 (63)

and the functions N, N ^ 0 therefore provide valid asymptotic approximations everywhere

in the (E, t)-plane For fc e Hm(C)\Hm+i (C) the precise rate at which the asymptotic ap-

proximations UNMLh, N ^ m + 2, M = m + 2 - p, £ E IN, h > 0 converge to ue in the

HP (C) norm topology as c -4 0 remains an unsettled point, although we expect that more

accurate estimates of these asymptotic rates of convergence can be determined by further

reducing the discretization error through the use of more refined, perhaps, graded triangu-

lations 7 (f2), h > 0 and/or adaptive techniques of approximation The task of attaining

a given truncation error tolerance, e g, Ill — It, .C2 (1)Il < T for minimal £ € Fl, provides

a more difficult challenge, however, because the approximations Xa,h, al ^ 1, h > 0 and

çbN,L ( . , E, riir), Ti € Z2 \{0} are independent they can be computed in parallel efficiently on

computers with parallel architectures

The results which we have obtained are similar to those given by BOURGAT (1978) who

uses the classical two-scale asymptotic expansions of BENSOUSSAN, LIONS, & PAPANI-

COLAOU (1978) Indeed, in BOURGAT (1978) it is claimed that the following error estimate
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is valid for solutions of the homogenized problem, u0 , satisfying u0 E C6 A()

- u,H(1l)I ^ C&'"2, 6>0, 0 ^ N ^ 1	 (64)

where

i4(x) u0 (x) +e	 Dxuo(x)r(x/e) + +6N	 Dauo(xj(x_/e), 6>0, N ^ 0
1a11	 IaI=N

(6 5)

and the functions i, al ^ 1 are solutions of elliptic problems on 7', cf BAKHVALOV &

PANASENKO (1989) Although the regularity assumption u0 E C6"'() is unlikely to be

satisfied in practice, e g , f E £2 ()\Hi (1) or is nonconvex, this result shows that the

approximations u, N ^ 0 fulfill similar asymptotic rates of convergence as those observed in

relations (4 5 1) and (4 5 2) Indeed, the analysis of Chapter 3 showed that these approaches

are identical for the problems considered there The presence of the functions Dauo , a ^ N

in the definition for i4, N ^ 0 causes a difficulty which does not arise in our approach

the task of computing reliable numerical approximations of D'u0, al ^ N will often require

special computational schemes, e g, gradient recovery techniques, and, depending on the

form and regularity of f, these may introduce significant discretization errors

Thus, if the truncationerrors, lI(s,e,)_N(s,e,r),Hi(P)Il, 6>0, E 22 \{0} and

If - ft, £2@)ll, £ E ]NT, can be made sufficiently small then this approach provides reliable

numerical approximations Conversely, if the asymptotic truncation errors, iq5(., 6, sir) - -

1N(s ,6,n_7r),H1 (P)lI, n E Z2 \{0}, are too large for a given e > 0 then, clearly, one must

consider alternative methods of approximation for q", e g, approximations of the form

n

()	 E? C R1, t 0	 (6 6)
k=i

where Ok, 1 ^ k ^ ri are rational functions of t provide the basis for a different approach

Indeed, the task is then to compute the approximations, 44, such that the error, 	 6, jit) -

is small for mu00 ^ £, £ E IN

The asymptotic approach can also be applied to problems of linear elastic or viscoelastic

deformation, however, the difficulties described above become more pronounced because of

the need to employ Fourier series expansions for each component of the body force f = [fi, 12]

Furthermore, the materials which exist in reality do not have perfectly periodic structures,

in fact, the coefficients a,3 k1, 1 < i,j, k, I < 2 can be considered as perturbations of periodic

functions in the sense that, for almost all x e 112 and some r > 0,

Ia,kz(x+ ) - a,3kl()l < T, nZ2, 1	 z,3,k,l ^ 2	 (67)

In this case, the assumption of periodicity will introduce errors which need to be investigated
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In the second approach our decision to use domain decomposition techniques as a method

for developing practical parallel algorithms for the solution of large scale linear elastic prob-

lems was motivated by the opportunity to use the greater computational power provided by

modern computers with parallel architectures

The computational results show that Algorithm AL g 3 provides a very robust approach

for the solution of large scale elastic Galerkin problems However, the theoretical condition

number bound provided in Theorem 5 7 requires that the boundaries, 	 1 ^ i ^ k, of

the subdomains,	 1 ^ z ^ k, should be aligned with the discontinuities of the coefficients

a12 k1, 1	 i, 2, k, I	 2 In some cases this assumption may be impractical or inconvenient

and one may be compelled to construct decompositions (5 111) with the property a3kz

C°(Ilr), 1 ^ ,2,k,l ^ 2, 1 ^ r ^ k, i e,such that the discontinuities ofa 3 kL, 1 z,2,k,l ^ 2

are not aligned with the boundaries, of the subdomams 1 ^ z ^ k Although, in this

case, the condition number 1c(MjSh) can again be bounded according to relation (5 3 45)

the constant C> 0 will depend on the parameters c, 1 ^ ^ k, cf definition 5 2 Indeed,

if the condition number increases with the magnitude of the coefficient discontinuities then

the rate at which the iterates t' converge to i&r, as n —+ oo will, correspondingly, decrease

We feel that this is a shortcoming of the approach which is difficult to overcome, however, it

is a difficulty which all domain decomposition methods share

For problems in three dimensions, Il C It3 , one can also construct the preconditioning

operator Mh , h > 0 for approximating spaces Sh(f1) C H'(fl) consisting of piecewise linear

functions defined on tetrahedral triangulations 7 (1), h> 0 We feel that Theorem 5 7 can

be generalized to include problems of this type, however, because domain decomposition

methods which use Steklov—Poincaré operators cause many more subdomains to be coupled

than domain decomposition methods which use Lagrange multipliers to interface subdomains

we expect that this approach will not compare favourably with Lagrange multiplier type

approaches Finally, we feel that this approach would benefit from the use of approximating

spaces other than S'(1l), h > 0 which can be employed, for example, to treat singularities
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