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ABSTRACT

We consider the task of computing reliable numerical approximations of the solutions of elliptic equa-
tions and systems where the coefficients vary discontinuously, rapidly, and by large orders of magni-
tude. Such problems, which occur in diffusion and in linear elastic deformation of composite materials,
have solutions with low regularity with the result that reliable numerical approximations can be found
only in approximating spaces, invariably with high dimension, that can accurately represent the large
and rapid changes occurring in the solution. The use of the Galerkin approach with such high di-
mensional approximating spaces often leads to very large scale discrete problems which at best can
only be solved using efficient solvers. However, even then, their scale is sometimes so large that the
Galerkin approach becomes impractical and alternative methods of approximation must be sought.

In this thesis we adopt two approaches. We propose a new asymptotic method of approximation
for problems of diffusion in materials with periodic structure. This approach uses Fourier series ex-
pansions and enables one to perform all computations on a periodic cell; this overcomes the difficulty
caused by the rapid variation of the coefficients. In the one dimensional case we have constructed
problems with discontinuous coefficients and computed the analytical expressions for their solutions
and the proposed asymptotic approximations. The rates at which the given asymptotic approxima-
tions converge, as the period of the material decreases, are obtained through extensive computational
tests which show that these rates are fundamentally dependent on the level of regularity of the right
hand sides of the equations. In the two dimensional case we show how one can use the Galerkin
method to approximate the solutions of the problems associated with the periodic cell. We construct
problems with discontinuous coefficients and perform extensive computational tests which show that
the asymptotic properties of the approximations are identical to those observed in the one dimen-
sional case. However, the computational results show that the application of the Galerkin method
of approximation introduces a discretization error which can obscure the precise asymptotic rate of
convergence for low regularity right hand sides.

For problems of two dimensional linear elasticity we are forced to consider an alternative approach.
We use domain decomposition techniques that interface the subdomains with conjugate gradient
methods and obtain algorithms which can be efficiently implemented on computers with parallel
architectures. We construct the balancing preconditioner, M}, and show that it has the optimal
conditioning property x(M;'Sk) < C (1 + log(H/h))? where Sy, is the discretized Steklov—Poincaré
operator, C' > 0 is a constant which is independent of the magnitude of the material discontinuities, H
is the maximum subdomain diameter, and h is the maximum finite element diameter. These properties
of the preconditioning operator M}, allow one to use the computational power of a parallel computer
to overcome the difficulties caused by the changing form of the solution of the problem. We have
implemented this approach for a variety of problems of planar linear elasticity and, using different
domain decompositions, approximating spaces, and materials, find that the algorithm is robust and
scales with the dimension of the approximating space and the number of subdomains according to the
condition number bound above and is unaffected by material discontinuities. In this we have proposed
and implemented new inner product expressions which we use to modify the bilinear forms associated
with problems over subdomains that have pure traction boundary conditions.
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Miscellaneous Symbols: I.1

I SYyMBOLS

II.1. Miscellaneous.

A¥B A is equal to B by definition.

]ﬁ ,C | - The ﬁeids of r;eal and complex numbers.
I An abstract field of numbers (= R, C).
Z¥0, £1, £2,...} The integers.

N£{1,2..} The natural numbers.

N, ¥INu {0} The non-negative integers.

N2 = [Ir_, No The set of n—tuples of elements of Nj.
le[1,1,...,1]]eN" The unit n—tuple n € N.

e €ENG, (e,)s =65, L<T,5<n The canonical basis vectors for R".

R" & [T, R Real n—-dimensional Euclidean space.

def

Z,={0, x1,..., £n}
N, £{1,2,...,n}

R[2], 2] Real and imaginary parts of z € C.
fle,v),vEV For v € V, the map f(e,v):U — W where
fUXV > W.
N(A) € {z € X | Az =0} The null space of the linear operator
A:X =Y.
Uy — Uy, Uy, Uy € R’ ' The straight. line connecting v, to. Uy.

SYMBOLS A



Norm Symbols: I.8

D(f), R(f)
(L,v)

AT.BL(W;F) = BL(V; F)

II.2. Function Spaces.
c"(),m>0

cm™(Q), m>0

06"'(9), m2>0

CmAQ), m>0,0< A< 1

The domain and range of a map f: X — Y.

The value of the functional L:V - F
atv € ‘V.

The transpose operator of A:V — W given
by (ATf,v) ¥ (f, Av), f € BL(W; F),veV

where V, W are linear spaces over F.

Space of functions with continuous derivatives
of order < m (Chap. 1§2).

Subspace of functions of C™(2) with uniformly

continuous derivatives of order < m (Chap. 1§2).

Subspace of functions of C™(f2) with compact
support in  (Chap. 1§2).

Subspace of functions of C™ () which are
Hélder continuous with exponent A (Chap. 1§2).

Cr.(Q) = {v € C"(R") | v(z + (b — &)n) = v(z), z € R", n € 2"}, m > 0, @ = [T, (as, by).

L), p21

H*(Q),s€R,s>0
H:(Q),s€R,s>0

H*(T), T Co seR,s>0
BV(Q)

II.3. Norms. )
e o0 1 4
lall, % [ 22, ol

lzlla & /2T Az

IMl: = /o(M7 M)

Lebesgue space of (equivalence classes of)
functions with finite ||e; £,(2)|| norm
(Chap. 1§2).

Sobolev space of (equivalence classes of) weakly
differentiable functions in Q (Chap. 1§2).

Subspace of H*(f2) obtained as the closure, in
the ||e; H*(Q)|| norm topology, of C$°(S2)
in £2(Q).

Sobolev trace space (Chap. 1§2).

Spaces of functions of bounded variation
over Q) (Chap. 1§2).

¢, norm of z = (2;)1>1 € £p.

Energy norm of £ € R" w.r.t A € R™" where

A is symmetric and positive definite.

The specfral norm of the matrix M € C™".

SYMBOLS vi
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l|e; BJ|

|e; B|

II.4. Topology.
B(z,p,4) £ {z € R" | |z — zll, < p}

A norm mapping B =+ R (Chap. 1§2).

A semi-norm mapping B — R (Chap. 1§2).

The open ¢, ball with centre z € R"

and radius p.

intOL{ze0 | 3p > 0 s.t. B(z,p,£,) C O} The interior of the set © C R™.

0= 0U{zeR"|Hz,}us1 COst. |z — Z,|l2 = 0 (n — o0)}

0 Z0\int O = ONR™\0
AcCB

dist(0,z) ¥ inf{ |}z ~ y|l» | y € O}
HI(X) ‘;f {.’L‘,‘ | (xli"'azi,"wzn) € X}

flox) im0y f(z L €)

T, =T asn — o (in B)

II.5. Matrices.
MH 3"

def

oM)={\eC |3z e C"st. Mz=Az}

def

p(M) = max{|) : A € o(M)}
r(A) Z Al - 147,

ks(4) Z|Alls - 1475

The closure of the set O C R".
The boundary of the set O C R".
A is a compact subset of B.

Distance between the point z € R"
and O C R"™.

Projection of X =[]/ _, X
onto X;, 1 <i<n.

Left or right hand limit of f at z € D(f).

Weak convergence of {z,} C B to z € B
where B is a Banach space (Chap. 3§081).

h has the asymptotic order f as £ — ¢, i.e,,
there exist constants K,d > 0 such that
|h(z)l < K|f(z)| for |lz — tll, < é.

h(z)/f(z) +0asz —t.

The Hermitian transpose of M € C™™.

The spectrum of a matrix M € C™", i.e.,
the set of all eigenvalues of M.

The spectral radius of the matrix M € C™",
The spectral condition number of A € R™".

The energy condition number of 4 € R™"
with respect to the S € R™" where S is

symmetric and positive definite.

SYMBOLS vii
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II.6. Homogenization.

€ The period of a material with periodic
structure.

P < (0,1)" The canonical periodic cell.

C L (-1,1)m

def

Ho = {(c, t) e R? |et =2mn}, n € 2\{0} A family of hyperbolae.

fa The antisymmetric extension of f:Q2 — R
to A, i.e., falo = f (Chap. 381, 481).

fe The periodic extension to R™ of the
function f4, D(fa) =C.

V4 The number of terms in a truncated

series expansion.

II.7. Domain Decomposition.

QUL 0, UNQ;=0,i#j A Non-overlapping decomposition of  with
o ’ ' simply connected subdomains §;, 1 < i < k.
I; 50, \oQ, T &f Uk Ty Subdomain interfaces and global interface.

Gg(T) Geometrical components of the interface

polygon T, e.g., straight lines and vertices
(Chap. 5§381).

v({T) Vertices of the interface I' (Chap. 5§381).

H; ¥ diam(9;) Diameter of subdomain Q;, 1 <1i < k.

H % max{H; | 1<i<k}

S;: (HY2(;))* = BL((HY*(T))?; R) The local Steklov—Poincaré operators
(Chap. 5§152).

S: (HY2(T))* = BL((HV*(I"))*; R) The Global Steklov-Poincaré operator
(Chap. 5§1§2).

E;: (HY?(T))? = (H(S%))? A local Harmonic extension operator
(Chap. 5§1§1).

E:(HV¥())* = (H'(Q))? A global Harmonic extension operator
(Chap. 5§1§1).

Rr,: (HY?(D))? —» (HY*(T)))? The interface trace operator (Chap. 5§1§1).

Rp, p: (SM(I))? = (S™(T))? . The interface restriction operator. '
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Finite Element Symbols: 1.8

Si,h) Sh

Ein

Rl";,ha

II.8. Finite Element Approximation.
Ta(@), h> 0

def

h = max{diam(7) | 7 € To(Q)}

TE{(&n)|0<E+7<1,0<En<1})

U,.:T =71, 7€Th()

S* ()
5S¢ (2;09p)
SHT) £ {v:I' = C | Jw € $*(Q) such that v

The local and global Schur complement
matrices (or the discrete Steklov—Poincaré

operators).

The discrete restriction and extension
matrices (Chap. 5§1§3).

An admissible triangulation of Q (Chap. 2§1).

The diameter of the triangulation 75 ()
(Chap. 281).

The reference element in a local coordinate
system (Chap. 2§2§1).

Affine (isoparametric) transformation that
maps the reference element, T, to a global
element 7 € T,(2) (Chap. 2§281).

The space of continuous piecewise linear
functions defined for 7,(2) (Chap. 2§1).

The subspace of S*(2) of functions with

zero restriction on the boundary 9 p

(Chap. 2§1).
= wlr}, I'con

SYMBOLS
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1 INTRODUCTION

It is an aim in numerical analysis to devise robust computational algorithms which enable
one to compute reliable approximations to the solutions of problems of interest and also to
analyse the resulting approximation errors. These problems may come from engineering,
physics, ecohomics,. .. and the mathematical models are formulated so that they describe
physical or even abstract processes. It is our aim to devise numerical algorithms for systems
of elliptic boundary value problems. In particular, we shall treat those problems which arise
in the linear elastic deformation of a heterogeneous body, = U0, @ R?, ie., a body
composed of different materials in each §2,, 1 < 7 < K whose characteristics may vary rapidly
and may give solutions of different orders of magnitude across 2. Models of this type lead to
classical problems of the form: Find u € (C?(Q) N C*(Q))? such that

- Z [%kt SZ’ (z)] =filz), z€Q, 1<1<2 (1.1)
1,j,k=1
E(Q) =up, ZE€ aQDa O(H(E)) o Q(Q) = i(&)) S 3QN (12)

where 0Q = 0Qn UOQp with 9Qy an open subset of the boundary 92 where surface traction
forces, t, apply and 9Qp a closed subset of the boundary where displacements, v, are
imposed; aijri, 1 < 1,4,k,! < 2 define the material properties of the body Q (differing with
each Q,,1 <r < K) and f;, 1 <1< 2 define the body forces acting across 2. The existence
of a solution u depends on the regularity of the coefficients a;;x, 1 < 1,7, k,1 < 2, the body
force f, the boundary tractions, ¢, the displacements, up,, and the boundary 022, cf. KNOPS
& PAYNE (1971). However, we shall take a more general view of the problem and interpret
the solution in the weak sense, cf. Section 1.3. This will allow us to work with discontinuous
. coefficients @y, 1 < ,7,k,1 < 2 and data for which problem (11), (1.2) has no meaning in

the above defined space. Furthermore, as a step towards our stated goal, we first study models
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of steady state diffusion in composite materials over domains @ R", n = 1,2 because
they provide scalar elliptic boundary value problems which are simpler to study. Numerical
techniques for approximating these simpler problems can correspondingly be generalized to
the case of problems of linear elasticity. The classical prol;lems arising from models of diffusion
of this type have the form: Find u € C?*(Q) N C*(Q) such that

- 2w 2w]-i@. zcn 13)
u(z) =up, z€ NMp, Z ai;(z) 'aa%(&) ni(z) = g(z), z €N (1.49)

ij=1
We shall again allow for discontinuous] data in this problem by taking a weaker form with
u € H'(Q) as a weak solution in a Sobolev space setting, cf. Section 1.3.

In fact, we are especially interested in the difficulties which arise when the coefficients
aijriy 1 <4,7,k,0 £2in (1.1) and a;5, 1 < 4,5 < 2in (1.2) change rapidly and by many orders
of magnitude over (, i.e., when the variations Vqai;u], Valai;], 1 < 4,J,k,1 < 2 are large.
Indeed, we anticipate that the weak solutions, u, u, which arise for problems of this kind will
also have large variations, Vq[u), Va[u], which cannot be accurately approximated unless one
employs high dimensional approximating subspaces, $*(Q2) c H!(Q), h > 0, cf. BABUSKA .
(1974i). Furthermore, for heterogeneous materials, the coefficients a;ju, ai5, 1 < 4,5, k,1 < 2
vary discontinuously along the interfaces 9, N 9Q,, 1 < r,s < K between the component
materials Q,, 1 <r < K of Q. This causes the weak solutions to have lower regularity than
is the case for a homogeneous body and singularities can arise if the subdomain boundaries
90, 1 < r < K have vertices, cf. BABUSKA (1974i), KELLOGG (1972). When features of
this type occur the resulting numerical schemes need to reflect the discontinuities, for example
by being adaptive, and in general the resulting algebraic systems are simply too large and
ill-conditioned for practical solution so that special methods are required.

We now summarise the work of the thesis. In Chapter 1 we briefly introduce some of the
mathematical concepts required of the theories of Functional Analysis and Sobolev spaces
to construct the weak formulations of problems (1.1), (1.2) and (1.3), (1.4). We make no
attempt to be comprehensive and direct the reader to KREYSZIG (1978) and ADAMS (1975)
for a more rigorous treatment. In Chapter 2 we introduce some h—version techniques of finite
element approximation for elliptic boundary value problems and provide some elements of
the theory of approximation; we direct the reader to Az1Z & BABUSKA (1972) or ODEN
& REDDY (1976) for a more comprehensive treatment of these concepts. We should inform
the reader that the results provided in Chapters 1 and 2 are frequently employed throughout
the remainder of the thesis and, for the complete definition of any symbols in the text which
seem unfamiliar, please consult the symbol table on page v.

The behaviour of either analytical or computational approaches for problems of the type
(1.1)-(1.2) and (1.3)-(1.4) in R?, can be difficult to assess for the case of irregular data.

INTRODUCTION 2




Introduction: 1

Analytical solutions are rarely available, even for test problems. We emphasize that the as-
sessment is often further complicated by the presence, in IR?, of singular points occurring at
corners or edges where different materials interface with one another. In order to avoid some
of the difficulties, initially, in Chapter 3 we begin by investigating one dimensional elliptic
boundary value problems in which the underlying heterogeneous material, §2, consists of a
periodically repeating cell, P, & ¢P, of diameter € < diam(€?) comprised of the elemental
materials ,, 1 < r < K. This property of the material is represented in the boundary value
problem by a periodic coefficient, a, of period ¢, with € assuming values in the range (0, &)
with €9 small when the material properties change rapidly. However, problems of this type
have been studied in the vast array of literature for problems in @ C R"*, n > 1, e.g., conver-
gence in homogenization processes is analysed in TARTAR (1980), the idea of H-convergence
is introduced and studied in MURAT & TARTAR (1994), and the notion of two-scale ex-
pansions are analysed in ALLAIRE (1992). Indeed, we follow this philosophy and adapt
the analysis of BABUSKA & MORGAN (1991ii) and construct asymptotic approximations
uy, € > 0, N > 0 of the solution of the original problem which we now denote v to indi-
cate the different cells. However, general asymptotic treatments of this type do not provide
. accurate error bounds; generally, the complexities of a general analysis lead to uninforma-
tive and pessimistic results. This difﬁ.culty has been partially remedied in BAKHVALOV &
PANASENKO (1989) where accurate error bounds are included for Q = IR?. However, their
analysis requires the restrictive conditions a;;, aiju, f € C°°(]R2), 1<14,7,k,1 <2 and pro-
vides little insight into the application of these techniques for more general problems of low

regularity which often occur in practice.
In the one dimensional case we obtain an assessment of convergence by employing ana-

lytical and computational results to determine the rates of decay,
|lu® —uf; H*(Q)|| =0 (¢—0), N>0, 0<n<l1, (1.5)

and to determine how problem regularity affects these. Our results demonstrate that the rate
of convergence, uf — u® (¢ — 0), in the sense of (1.5), occurs at a rate which is independent
of the regularity of a but depends primarily on the regularity of f.

In Chapter 4 we generalize this approach to include analogous elliptic boundary value
problems in R?. However, because analytical solutions are no longer available, we find it
necessary to include approximating methods and we demonstrate how one can efficiently
implement the h-version of finite element approximation for domains @ « R?. Indeed,
it is apparent from the formulation of our approach that one can quite simply incorporate
approximating techniques such as the h, p, or r-adaptive finite element methods into the
homogenization process.

The asymptotic approach employed in Chapters 3 and 4 is clearly not suited to prob-

lems in which the coefficients, a;;, a;jx, 1 < %,7,k,1 < 2 are non-periodic or ¢ is large, i.e.,
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€ ¢ (0,&0). However, if the features of the problem which led us to consider applying asymp-
totic techniques are still present, e.g., highly heterogeneous materials, coefficients with large
variation over €2, existence of singularities, low regularity, then the need to employ high di-
mensional approximating spaces, S*(Q2), h > 0, still exists. However, such spaces lead to large
scale systems, i.e., algebraic systems which include many unknown parameters. In Chapter
5 we therefore change our approach to that of domain decomposition and consider ways in
which we can exploit the increased computational power provided by modern computers with
parallel architecture, in particular, the MIMD — multiple instruction, multiple data — family
of machines, cf. BRIGGS & HWANG (1986). Machines of this type possess an array of in-
dependent processing nodes which are interconnected through a high speed network allowing
rapid communication of data. To obtain algorithms which are suitable for implementation on
machines of this type we shall work within the framework provided by the theory of domain

decomposition using non—overlapping decompositions ©;, 1 <1 < k of Q, i.e.,
ﬁ = U:’c=1§i, Qi N Qj = @, ) 7é j (16)

In this we employ extension, restriction, and Steklov—Poincaré operators, cf. AGOSHKOV
(1988) and reformulate our problem as a system of boundary value problems, one for each .

2N

Q; whose solution we denote by up. However, from our comments above it also follows that

subdomain 2; with solution uq_, 1 <4 < k, coupled by an interface problem on T’ oo Uf' =1
the approximating spaces S*(Q), h > 0 lead to large scale interface problems and, as is
apparent in Section 1 of Chapter 5, it is impractical to construct the interface systems of such
large dimension. We therefore turn to iterative solution techniques, in particular, conjugate
gradient methods and demonstrate how they can be employed to compute approximations,
Up », b > 0, of ur without explicitly constructing the interface problems. However, a difficulty
with iterative techniques of this kind is that, to achieve rapid convergence, they require
the discretized Steklov-Poincaré operator, Sy, associated with the interface problem to have
a compactly distributed spectrum, o(S), though in fact, as the material heterogeneities,
the number of subdomains, k, and dim(S*(f2)) grow, the spectrum ¢(S,) becomes more
sparsely distributed and the rate of convergence slows. This feature of conjugate gradient
algorithms can be improved by using a preconditioner; this possibility has been examined
in many of the early papers treating domain decomposed interface problems with conjugate
gradient type iterative schemes. Indeed, in BJORSTAD & WIDLUND (1986) a number of
preconditioners, Py, h > 0, are constructed which are optimal in the sense that the condition
number «(P1S,) & |27  Skll2 [|S7* Pull2 — a measure of the dispersion of the preconditioned
spectrum o(P;'S;) — does not vary with A and the convergence rate is therefore unaffected
by the dimension of the approximating space S*(2), A > 0. However, the early papers
of this kind deal with relatively simple problems and decompositions Q .=_§1 U £, ie.,

k = 2, and, as one should expect, there is little consideration for difficult problems and
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general decompositions (1.6). Subsequent work by, for example, BRAMBLE, PASCIAK, &
SCHATZ (1986), DRYJA & WIDLUND (1991), has led to the construction of preconditioners,
Py, h > 0, for rather general problems and decompositions which are optimal in the sense

that
2
w(P1S1) < C [1+1og(H/B)| ', H,h>0 (L.7)

where H = max{diam($;), 1 < ¢ < k}. Although these algorithms are often rather elaborate
they do allow one to implement the inverse operator, P!, h > 0, efficiently on computers with
a parallel architecture because the preconditioner is designed to have a parallel structure that
requires little communication between processing nodes. However, the Neumann-Neumann
preconditioner, N, h > 0, studied in LETALLEC & DEROECK (1991), provides a simpler
approach which can also be implemented efficiently on a MIMD type computer. The difficulty
with this approach is that the preconditioner does not scale well as the number of subdomains,

k, increase; this is explained in LETALLEC & DEROECK (1991) where they prove the bound

K(NLS,) < % [t +108(/m)]", H,h>0 (18)

Following an idea introduced in MANDEL (1993) for scalar elliptic boundary value problems
we demonstrate how one can introduce, for problems of heterogeneous linear elasticity, an
additional coarse problem in the definition of the Neumann-Neumann preconditioner to ob-
tain a new preconditioner, M, h > 0, which has the optimal spectral property (1.7) and
where the constant C' > 0 is independent of the material heterogeneities. We implement this
approach for a variety of problems and compare the computational results with a number of
other preconditioners.

To summarize: we introduce asymptotic techniques of approximation in Chapter 3 for
elliptic problems in R having discontinuous and periodic data of period e. We construct
asymptotic approximations uy, N > 0 of the weak solution u° and, using a combination
of analytical and computational methods, assess the rates of convergence of the errors u® —
u§, N > 0 as ¢ — 0 in the norm topologies |o; H?(22)|,0 < p < 1. In Chapter 4 we
describe how finite element techniques of approximation can be combined with our asymptotic
approach to compute approximations, uj ,, N > 0, of the solution, ¢, for elliptic problems
in R? when the coefficients, ay;, 1 < i,j < 2, are discontinuous and periodic. We apply this
approach to a number of problems of varying levels of regularity and assess the corresponding
rates of convergence of u% , = u® as € — 0 in the norm topologies ||e; H?(Q)||, 0 < p < 1.
In Chapter 5 we employ domain decomposition techniques to reformulate problems of linear
elasticity as systems of coupled problems with each corresponding to either a subdomain
or an interface. We describe how one can add a coarse problem to the definition of the
Neumann-Neumann preconditioner to obtain an iterative solution algorithm for the domain
decomposed interface system which is optimal ip the sense of (1.7). Finally, we demonstrate '

the optimality of this approach using a number of computational exafnples.
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1.1. Elements of Functional Analysis.

In Chapters 2, 3, and 4 we use some of the ideas from the theory of functional analysis. A
summary of the ideas which we use are assembled below. However, because the theorems are
well known we do not, except for the Lax-Milgram Lemma, provide proofs and instead we
refer the reader to KREYSZIG (1978) or RIESZ & Sz.-NAGY (1965).

1.1.1. Bounded Linear Operators.

Let X;,1 < ¢ < 2 denote normed linear spaces over the field F (= R, C) with norms
||; X:|l, 1 <4 < 2 and assume identical linear space operations of addition and scalar mul-
tiplication for X;, 1 <1 < 2. If X;, 1 <4 < 2 are function spaces then we call a mapping

A: X, — X, an operator and say that it is antilinear (or conjugate linear) if it satisfies the

property
A(oq:zl + C!2$2) = EIA:z:l +62A$2, a; € ]F, z; € Xi, 1 S ) S 2 (111)

We define the norm, ||Al|, of an operator A:X; — X, as follows
Az; X,||
Al| ¥ sup IAz Xl _ sup | Az; X, (1.1.2)
Al z#0 ||T; Xa| ||a:;X1||=1| 2
and say that A is bounded if ||A|| < co. Indeed, we dencte the set of all bounded antilinear

operators by BL(X; ; X»), ie.,
BL(X,; Xy) & {A | A:X; = X,, A is antilinear and ||4]| < oo} (1.1.3)

We observe that if X, is a Banach space with respect to the norm ||e; X;|| then BL(X; ; X2 ) is
also a Banach space with respect to the operator norm defined in relation (1.1.2). If X, = IF
then the Banach space BL(X, ; F) is referred to as the conjugate or dual space of X; and
its elements are called functionals.

While studying weak formulations of elliptic boundary value problems we will have the
need to consider operators A:X; — X, where, using the notation introduced above, X; =
XxX, X, =T and X is a Hilbert space with the inner product (e, ; X). For operators of
this kind we generalize the notion of antilinearity defined in relation (1.1.1) and say that the
mapping A: X x X — I is sesquilinear if the following relations are satisfied

(Linear) A(az + By, z) = c¢A(z, z) + BA(y, 2)
(Antilinear)  A(z, ay + Bz) = @A(z, y) + BA(z, 2)
and we also define the norm of a sesquilinear operator A: X x X — F as follows

o (MA@l
|4l = uP{||:z;X||-||y;X|| : ,yeX\{O}} (1.1.5)

Vo, BEF, z,y,z€ X (1.1.4)

where ||z; X|| &' (z,z; X)'/?, z € X and say that A is bounded if ||A]| < co. We denote the
collection of all such bounded sesquilinear operators by BL(X x X ; F), i.e.,

BL(XxX; F) % {A] 4:XxX - T, Ajs sesquilinear and [|4]| <o}~ (L16)
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and we observe that this is a Banach space with respect to the norm (1.1.5). We shall call
elements of this space bilinear forms if FF = R and sesquilinear forms if IF = C to distinguish
between problems using real or complex fields. We now define some additional concepts
associated with elements A € BL(X x X ; IF ) which we shall require

(Hermitian symmetric) A(z,y) = Ay, z), z,y€X (1.1.7)
(Non-negative) Alz,z) >0, ze X (1.1.8)
(Positive) Az, z) >0, z#0 (1.1.9)

(X-elliptic) Az, z) 2 pllz; X|?, ze€X (1.1.10)

where p > 0 is a constant that is independent of z € X.
To answer questions concerning the existence and uniqueness of weak solutions of elliptic
boundary value problems one generally works within the framework provided by the Lax—

Milgram Lemma. We now state this theorem and provide a proof of the result.

Lax—Milgram Lemma 1.1. Let A € BL(HxH; F) be H-elliptic where # is a Hilbert
space over the field F. Then, for any F € BL(H ; ), there exists a unique u € H such that

Alu, ¢) = (F,¢), ¢€H ' (1.1.11)
The map R : u s F defined by (1.1.11) is a linear bijection of H onto BL(H ; F') and
p<IRI< AL 417 < IR S 67 (1.112)

where p > 0 is the ellipticity constant of A.

Proof If A € BL(H xH ; F) then it follows that the norm of 4, ||All, is bounded and satisfies
the inequality
|A(u,v)| < Al lw; H| los HIl, w,v €H (1.1.13)

Therefore A(u, o) € BL(H ; F) for any u € H and, thus, R:H — A(H,e) is a well defined

linear operator. Furthermore, from the boundedness relation (1.1.13),
IRull < [|Al| llw; HIl, ueH (1.1.14)
and therefore R € BL(H ; BL(H; F)). The H-ellipticity of A implies the inequalities

pllv HI* < |A(v, )]
= [(Rv,v)| < [[Rv]l [|v; H||
= pllviH| <Ry (1.1.15)

and, therefore, R is an injective map with a bounded inverse R~! on the domain R(#). It

only remains to prové that R(H) = BL(H; F ).> Let (Ru,)n>1 be a convergent sequence in
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BL(H ; F) then, from (1.1.15), (us)n>1 is a Cauchy sequence in H which converges to some
limit u € H because H is a Hilbert space. However, because R is continuous, cf. (1.1.14),
Ru is the limit of the sequence (Run)n>1 and this implies that R(#) is a closed subspace
of BL(H; F). Thus, BL(H; F) = R(H) @ R(H)* where R(H)* & {v e H | (f,v) =
0, f € R(H)}. We now show that R is a surjective map with image BL( ; IF) by proving
that R(H)* = 0. Suppose that there exists a v, € R(H)* with vy # 0 then we have the

contradiction

0 = (Ruo, Vo) = A(vo,v0) > pl|lve; H]? (1.1.16)

Finally, the inequalities (1.1.12) follow immediately from (1.1.14) and (1.1.15) and the theo-

rem is proved. [}

We shall employ the Lax-Milgram lemma throughout the thesis to demonstrate the existence
and uniqueness of weak solutions of elliptic boundary value problems, in particular, problems
(1.1)—-(1.2) and (1.3)—(1.4). We note that the property of H-ellipticity is often the most
difficult to prove. Indeed, for problems of linear elasticity, we use Korn’s inequalities and, for
problems of steady state diffusion, we use Poincaré’s inequality to establish H—ellipticity for
the appropriate a and H. ,Howeyer, we now introduce the function spaces that are required
to construct the weak formulations of problems (1.1)-(1.2) and (1.3)—(1.4).

1.2. Function Spaces.

Below, we provide definitions of the function spaces which we shall use and, where necessary,
we describe some of their properties. We direct the reader to WLOKA (1987) or HACKBUSCH
(1992) for a rigorous treatment of these function spaces.

We begin by specifying the notation which we shall use throughout this section. Let the
symbol © denote a simply connected bounded open set in R*, n = 1,2 with closure  and
boundary 9Q. We shall write O @ R" if  is a compact subset of R", i.e., a bounded and
closed subset. If @ & (e, ... ,a,) € IN? then we call & a multi-index of degree |a| & S
and, for D; & 8/8z;, 1 <i < n, we define the differential operator D*, o € INg of degree |¢f
according to the relation

D* ¥ pga... pon (1.2.1)

where DY € 1,1 <i < nand I is the identity operator. If ¢: 9 — C then we define the
support of ¢ as

supp ¢ = {z € Q| ¢(z) # 0} (1.2.2)

We now provide a collection of definitions and lemmas which we shall use to define function
spaces of weakly differentiable functions and to introduce the notion of domain regularity.
We begin by defining function spaces which consist of functions, ¢, that can be differentiated

in the classical sense and for which the derivatives, D*¢, are continuous in some sense for
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|e| < m, m € Ny. Thus, for m € Ny we define C™(R2) as
C™(Q) € {$:Q o C | D¢ € C°(Q), |a| <m} (1.2.3)

where C%(f2) is simply the linear space of functions which are continuous over 2. We then let
C°(Q) € Ne2,C™(Q) and define the subspaces C5*(Q) C C™(R), m € Ny U {0} as follows

Cr(Q) ¥ {¢ € C™(Q) | suppg T 9} (1.2.4)

However, because  is an open set, the functions ¢ € C°(2) need not be bounded on 2 and
we therefore define C°(Q2) C C°(Q2) to be the subspace consisting of all continuous functions
whose domain of definition, €2, can be extended to the boundary, 02, such that they become

uniformly continuous on . We now define the function spaces C™(Q), m € IN, as follows

c™(Q) ] {¢ € C™(Q) | for each |a| < m there exists a 9, € C°(Q) such that D*¢ = th,|a}
(1.2.5)
and let C*°(Q) & N2, C"(Q). We observe that the spaces C™((), m € N, are Banach spaces

with respect to the norm

.om Q)| 4f @ . o
4C@N ¥ iz suplD4(a) (126)

The linear spaces of Holder continuous functions are also required, thus, we let 0 < A <
1, m € N, and define the subspace C™*(Q) C C™(Q) as follows

C™ () ¥ {¢ € C™(Q) | there exists a constant C > 0 such that

(1.2.7)
|D*¢(z,) — D*¢(2,)| < Cllzy — 2oll3, lof <m, 2, €Q,1<i <2}
which is a Banach space with respect to the norm
a R »1-
16O @ 40" @)+ max  sup LA Z DG (128

0<|a|<m z,2eQ, z#£2 ”ﬁ - .&”ﬁ\

We now assume that Q is measurable with respect to the Lebesgue measure, p, and de-
fine £,() to be the linear space of equivalence classes of functions u which are Lebesgue

measurable on Q and satisfy ||u; £,(Q)|| < oo where, for 1 < p < o0,

llus £, ()] & [ / lu(z) [P dx] (1.2.9)
where dz & du and, for p = oo,
llu; Loo(2)]] £ ess sup fu(z)| = lnf{ sup |u(z)| : O CQ, p(0) = 0} (1.2.10)
z€EQ zeQ\o

We note that the elements of the equivalence classes of the Lebesgue spaces L,(2), 1 <p < 00
are functions that differ only on sets of Lebesgue measure zero. See ADAMS (1975) for a

thorough treatment of the Lebesgue spaces L,(£).
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In order to generalize the classical problems (1.1)—(1.2) and (1.3)—(1.4) we now introduce
the notion of the weak derivative which we use to define the Sobolev spaces below: If, for
o€ NP, u€ L°(Q) € {v | v e Li(K), K @ Q}, there exists a v € L1°°() satisfying

[ e@ve)dz= (-1 [ w@) Do()dz, v e Cr@) (1.211)

where D%y is defined in the classical sense then we call v the weak D* derivative of u and
write v = D®u. If u € C!*/(Q) then we note that the weak and classical derivatives of wu,
up to those of order |a|, coincide except on sets of measure zero, cf. EDMUNDS & EVANS
(1989), and the weak derivative is clearly, therefore, an extension of the classical definition
of differentiation. For m € IN, we now define the Sobolev space of (equivalence classes of)
functions H™(R2) as

H™(Q) = {u € £,(Q) | D*u € L5(R), |a| < m} (1.2.12)
Indeed, these spaces are Hilbert spaces with respect to the inner product
(u,v; H™()) def/ Z D®u(z) Dov(z)dz, wu,v € H™(Q) (1.2.13)
Q |a|<m

where the complex conjugate is necessary only when considering spaces over the complex
field C. We note that the linear subspace C°(2) N H™(R) is dense in H™(R) in the sense
that if u € H™() then there exists a sequence {un}n>1 C C®() N H™(Q) such that
lu — un; H*(2)]| = 0 (n = o0). We shall also consider boundary value problems with
homogeneous boundary conditions and we therefore require the spaces HJ*(2), m € N,
defined as
HMO) = {ve L2(9) | there exists a sequence {v,}n>1 C C5°(R)
such that ||v — v,; H™(Q)|| = 0 (n = o0)}
For boundary value problems of low regularity we will also require Sobolev spaces of fractional
order, s € R\IN. Thus, for s > 0 let s = m+ A, m € Ny, 0 < A < 1 and define the
function space H*(Q) as the linear space of (equivalence classes of) functions v € £,(2) for
which ||v; H*(Q)]] < co where |[v; H*(Q)|| = (v, v; H*(Q))"2, (v,v; H*(Q)) = (v,v; H™(Q)) +
(v,v; H*(2)) and

(u v; H)‘ def Z //[;[Da ( )] [.Da’i)(l') Dav(g)] dg:_dg (1.2.15)

| 2[5

(1.2.14)

le|<m

The density properties observed above for the integer ordered spaces H™(2), H*(2) are also

valid here, i.e., C®(Q) N H*(2) and C$°(Q) are dense in H*(Q) and HE(2) with respect to
the norm topology ||e; H*(€)]|.

When studying boundary value problems we often find it necessary to consider function

spaces of elements which are defined on the boundary, 8, of the domain §2. The regularity

or smoothness of the domain, {2, is crucial in the definition of these spaces and we therefore

formalize the notion of domain regularity in definition 1.2 below.
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Definition 1.2. (Domain Regularity). Let @ «C R". Then we shall write Q@ € C™* with
m € No, 0 < A < 1 if, for every z € 0Q, there exists a neighbourhood O; C R" and a
bijective map ¢,:0, — S where S ¥ B(0,1,£,) satisfying

@z € C*MO,), 7! € CH(S) (1.2.16)
pz(0, NOQ) = {(&1,---,€n) €S| €a =0} (1.2.17)
02(0, N Q) = {(&,--+,&) €S| & > 0} (1.2.18)
P (0 NQ°) = {(&1,++,6n) €S| & < 0} (1.2.19)
where (1.2.16) is understood in terms of the components of Pz = (<p(£1), . (p:(;)) and Q° &
R"\Q2 is the complement of Q in R". u

For the problems in which we are interested  is a polygonal domain with vertices, which
we denote V; € 9Q,1 < i <V, lying on the boundary 0. We assume that the interior
domain angle at each vertex, 6;,1 < i@ < V, satisfies the inequality 0 < 6; < 2m: this
eliminates domains with cuts. If a vertex, say V,, r € {1,---,V}, is located at the origin, O,
then, within a neighbourhood Oy, of V,, the arms of the vertex are the lines I';, 1 <17 < 2

where

Ty ={(z,a5,) | 0< 7 < xa} C T (1.2.20)
Ty = {(z1, Bz1) | —x2 <7, <0} (1.2.21)

The bijective maps ¢y, (p;rl corresponding to the vertex point V, defined in Definition 1.2
are, for z € 0, = ¢;,}(S), £ € S,

—az ifo0<z, < _ , & +&), if£>0
ov.(z) = { (1, 22 1), <z1<x1 o (€) = {(X1§1 xié1+&2), ifé& >

(-’151, Z2 — ,Bml)’ if —x, <z, <0’ (X261, Bx261 +&), if& <0
(1.2.22)

Clearly, oy, is continuous and piecewise linear on the bounded domain Oy, and is therefore
Lipschitz continuous although it is not continuously differentiable. Thus, ¢y, € C%(0y,)
and Q € C%1,

The following lemmas are required to define the Sobolev spaces of functions whose domain
of definition is a subset of the boundary 0f2: they provide some important properties of the
boundary of a domain and they also define what is meant by a chart of 52 and a partition

of unity of €.

Lemma 1.3. Let € C™? be a bounded open subset in R". Then there exists a B € N,

bounded open subsets 0;, 0 < i < B with Oy C 2, and, for T; L 0,NdN,1<i<B,

bijective maps a;:T'; — o;(T;), 1 < i < B where o;(T;) C R*™*, 1 < i < B such that
QcU2,0, o0 = Ul T, o005t € C™0y(T; NT;)) (1.2.23)

Furthermore, there exist maps ¢; : O; » 8,1 < i < B which satisfy properties (1.2.16)—
'(1.2.19) - with X' = 1. "The pairs C; & (s, &), 1 < i < B are called the charts of . -
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Lemma 1.4. Let O;, 0 < i < B be defined as in Lemma 1.3. Then there exist functions
o; € CP(R™), 1 <1 < B satisfying suppo; C O0;, 0 < i < B with

B
Y o¥z)=1, z€Q (1.2.24)
i=0
The functions o;, 0 < i < B are said to form a partition of unity of § subordinate to the
covering O0;, 0 <1 < B. [ |

We can now define the Sobolev spaces of functions which are defined on the boundary, 99, of
Q: Let Q € C™! then there exist charts (T';, o;), 1 <1 < B, an open covering 0;, 0 < i< B
of ©, and a partition of unity ¢;, 0 < i < B subordinate to O;, 0 < i < B satisfying Lemmas
1.3 and 1.4. For s < m + 1 we define the Sobolev space H*(92) as

H*(09) & {u:09 = C | (0,u) 0 0! € Hi(eu(Ty)), 1 < i < B} (1.2.25)

and, with respect to the inner product (e, e; H*(9$2)) where

B
(u,v; H*(8Q)) =Y “((0wu) 0 o7, (010) 0 05" H*(eu(TV))), w,v € H*(09),  (1.2.26)
i=1
'H ‘(BQ) is a Hilbert spéce. Howévef, because supp((oiu) o ;') C a;(Ty), 1 < i < B, the
definition (1.2.25) is unchanged if we replace H¢(0;(T;)) by H¢(R"™') and use any bounded
extension of o ! from ¢4(T;) to R*™!. An important property of these spaces is that they do
not depend on the open covering O;, 0 < i < B of Q, the charts (I';, 2;), 1 < i< B, or the
partition of unity o;, 0 < i < B. Thus, if one uses a different open covering Q;, 0 < i < M of
Q, different charts (Y, ;), 1 <i < M of 8%, and a different partition of unity 7;, 0 <7 < M
of © which is subordinate to the covering Q;, 0 < i < M, then these quantities also lead to
the identical space H*®(0S?) defined in relation (1.2.25). However, using these quantities, the
inner product

M
(u,0; H(09)) £ > ((rw) 0 87", (10) 0 BT HY(Bi(Y4)), w,v € H'(BQ),  (1.2:27)

i=1
will then differ from that defined in (1.2.26) although the norm that this inner product induces
will be equivalent to the norm induced by the inner product (1.2.26), cf. HACKBUSCH (1992).
In our study of elliptic problems with mixed boundary conditions we will often find it
necessary to consider spaces of functions which are defined on a subset I" C 952. For Q € C™!

we assume that I'NT;,1 <4 < B, cf. Lemma 1.3, is given by an equation of the form
r N F,; = {(151, v ,a:n_l,'(,b;(:z:l, o ,.’Dn_l)) I .'z:j [S ai(l",v), 1 S J S n— 1} (12.28)
Then, for s > 0, we define the Sobolev space H*(T') as follows

H'() & {ﬁ:[‘ = C | .there exists a:v é'H’(BQ) such that u = v|r}, s>0 (1.2.29)
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In our study of domain decomposition algorithms we are interested only in the case 0 < s < 1
and therefore, following GRISVARD ( 1985) we define the norm ||e; H*(T')|[, 0 <s< 1 as
s 2 def 2 —u Z)|2 8
lus HE(D)|I? = [ |u(z)|? do(z —————r-do(z)do(z), ue€ H*([) (1.2.30)
r rxr ”3: - —”2

where o is the surface element defined according to the relation, cf. WOLKA (1987),
1/2
[1 +Z|31,{), /8:1:,|2] diEl "'dxn—la T e I"ﬂl", (1231)

Clearly, for polygonal domains 9;, 1 < ¢ < B is piecewise linear and the derivatives 8v;/0z;,
1<i<B,1<j<n-—1 are defined everywhere except at the vertices of I'. We note that, if
[ = 99 then the spaces (1.2.25) and (1.2.29) are identical and the norm defined in relation
(1.2.30) is equivalent to the norm induced by the inner product defined in relation (1.2.26),
cf. GRISVARD (1985)

In formulating boundary value problems it is necessary to specify some condition which
the solution must satisfy on the boundary, 052, of the domain Q. For problems understood
in the classical sense the solutions, u, belong to C°(Q) and their boundary values can be
obtained simply by taking the restriction u|sq. However, for functions u € H*(Q2), s > 0
with Q € C'?"l, m > 0 the boundary, 89, has zero Lebesgue measure, i.e., £(99) = 0 é.nd it
therefore makes no sense to consider the restriction to 02 of functions in such spaces. Thus,
for Q € C™!, m > 0, we employ the trace operator which is defined to be the surjective map
Tr € BL(H*(Q); H*Y/?(69)), m+1 > s > 1/2 which satisfies Tr (u) = u|gn, u € C°(Q)
and has a right inverse Tr ! € BL(H*~*/2(8Q) ; H*(Q)), i.e.,, Tr o Tr ! = I, cf. GRISVARD
(1985). We note that, for € C%!, there is the identity

HYQ) ={ve H(Q) | Tr(v) =0} (1.2.32)
and, for I' C 99, we define the closed subspace H;(Q2;T') C H(Q) as
HYQT) & {v e H(Q) | Tx (v)|r = 0} (1.2.33)

In our study of asymptotic methods in Chapter 3 we consider functions u: Q2 — R, Q
R", 1 < n <2 which we say have bounded variation if Vo(u) < oo where, for Q = (a, b),

d—efsup{zm z;) — u(zi1)| : a=m0<w1<---<xn_1<mn=b} (1.2.34)

If a function u: Q2 — R has bounded variation then it is bounded and can be written as the
difference of two positive non—decreasing functions ¢, 9, i.e., u = p—1p, cf. SMIRNOV (1964).
If u: 2 — C then we say that u has bounded variation if, and only if, Vo (R[u]), Va(S[y]) < oo.

We now define the space of functions of bounded variation over €2 as

BV E (w05 € Vo) <00} (1.2.35)
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For 2 = (a,b) X (c,d) we define the variation, Vo(u), of a map u:Q — R as follows, cf.
SMIRNOV (1964),

= SUP{ Z [Vay; (u)| = {Q44}752, is a subdivision of 2} (1.2.36)

i,j=1

where, for 1 <i<m,1<j<n,

Va,;(u) = u(z;, Y;) — w(Tiz1, ;) — u(Ti, Yj-1) + w(Tio1,y;-1) (1.2.37)
and {4}, is a subdivision of Q if Q;; = (z;_1,2:) X (yj-1,¥;) where
0=2)<Z; <+ <Zp1 <Tpy =D, c=h <N < <Y1 <y, =d

Using this definition of variation, we again define the function space BV () according to
(1.2.35). We note if the map u:§2 = R has bounded variation then there exist non-negative
non-decreasing functions ¢;,¥;, 1 < i < 2 such that u = ¢; — 91 — 2 + 13, cf. SMIRNOV
(1964).

In the case of functions u:§2 — C2, i.e., u = [uy, uy], we use the notation u € (H)? if
~u; €H,1<i<2 IfH is a hormed linear space with norm ||®; || then we define the norm
le; (H)?|| according to the relation

1/2

s 01 [ s, we (o (1.2:39)

Indeed, we shall use (1.2.38) to define norms for the Hilbert spaces (H*(Q2))?, (H*(I'))%, T C
09, s > 0 in Chapter 5.

1.3. Weak Formulations of Elliptic Boundary Value Problems.
We now aim to reformulate problems (1.1)-(1.2) and (1.3)—(1.4) in a Sobolev space setting
rather than the classical setting of the (C2(Q) N C*(Q))*, 1 < n < 2 spaces used in the
introduction. This will allow us to study problems with discontinuous data over polygonal
domains, €2, which, we should point out, are often excluded in the classical theory because it
typically requires conditions such as € C™*, m > 2, 0 < A < 1 or, for problem (1.1)~(1.2)
with 0Qp = 8Q, up =0, a;;, f € C™2*(Q), 1 <14,5 < 2.

We begin with problem (1.3)-(1.4) and assume that the coefficients a;j, 1 < 4,5 < 2 are

symmetric and uniformly elliptic, i.e., there exists a constant p > 0 such that

Zaa,, >p25 (¢,&)ER®, g (1.3.1)
i,j=1
‘We also assume that Q, ai;,1 < 4,5 < 2, f,up, g are sufficiently smooth to ensure the

existence of a unique classical solutxon u € C%2(Q) N CI(Q) Then, for ¢ eV & def {ve
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C>(Q) | v|sq, = 0} we multiply (1.3) by ¢ and use the divergence theorem to deduce the
equation

[ o0 @ i@z = [ f@v@iz+ [ s@e@doe 032

4,j=1

where we have used boundary condition (1.4) and the property vlsq, = 0. If u € C?3(Q) N
C'(Q) satisfies boundary conditions (1.4) and equation (1.3.2) then, applying the divergence
theorem to (1.3.2), it follows that

/Q ( 22: a% [aﬁ(g) %(z)] - f(g)) o(z)dz =0, @€V (1.3.3)

i,j=1 J

This implies that  is a classical solution, i.e., it satisfies equations (1.3) and (1.4). Thus, with

respect to classical solutions, problems (1.3)-(1.4) and (1.3.2) are equivalent. We can now

generalize the elliptic boundary value problem (1.3)—(1.4) to include domains Q € C%?; right

hand sides f € £,(2); symmetric coefficients a;; € L(£2), 1 < 4,5 < 2 which are uniformly

elliptic almost everywhere in §; boundary conditions up € H'/?(8p), g € L2(00). We do

this by interpreting derivatives in the weak sense, cf. (1.2.11), and defining u € H*($2) to be_
the weak solution of problem (1.3)-(1.4) if it satisfies Tr (u)|sq, = up and

a(u,v) = F(v), v € Hy(;8Qp) (1.3.4)
where, for u,v € H}(Q;69p),
e 3 o
a(u,v )d_f/ Zat,(m)——— 9o1 —(z) dz, F(v) df[f(:r:)‘v(w)ofx+/ (v(z)) do(z)
i,7=1
(1.3.5)
We now assume that o(9€2p) > 0 and show that problem (1.3.4) is solvable by demonstrating

that a, F' satisfy the conditions of the Lax-Milgram Lemma. The continuity of the linear
operator F follows from the Cauchy-Schwarz inequality, i.e., for v € Hj(2;9Qp),

/Q £(2)v(z) dz| + / 4@ T (0(@) doa)

< 15 L2 llv; L2 + 195 L2 ()| | Tx (v); L2(32n)| (1.3.6)

v)| <

and, from the continuity of the trace operator Tr € BL(H(Q); H/2(89) ), it is clear that
ITx (v); £2(8Qw)I| < 1Tk (0); £2(89) || < [ Tx (v); H2 @I < || T || los E* @Il (2.3.7)

and it then follows that F € BL(H'(2); R ) where || Tr || is the operator norm of Tr, i.e.,

v): H/2
|ITr || = sup { lm|(|u);’1i : Qgﬁm” Lve HI(Q)\{O}} (1.3.8)
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We use the boundedness of the coefficients a;; € Lo,(£2), 1 < 4,7 < 2 and the Cauchy-Schwarz

inequality to prove the continuity of the linear operator a as follows, for u,v € H} (Q; 8p),

ot < 3 oo [ [0 ] [ [ 2200 o]

H,j=1

< Ci llw; H' (@)l [lv; H ()] (1.3.9)

where the constant C; > 0 depends on the coefficients a;;, 1 < 4,5 < 2. The H}(Q;8p)-

ellipticity of a follows from the ellipticity relation (1.2.1) and Poincaré’s inequality, i.e.,

a(v,v) 2 p da: > Cyllv; HY(Q)|?, v € Hy(8;09p) (1.3.10)

where the constant C5 > 0 depends on p. Thus, the conditions of the Lax-Milgram Lemma
are satisfied and therefore there exists a unique solution u € H}(Q; 8Qp) of problem (1.2.4).
For the homogeneous Dirichlet problem (82p = 9Q, up = 0) it is known, cf. HACKBUSCH
(1992), that if  is convex, a;; € C*'(Q), 1 < 4,5 < 2,and f € L,(Q) thenu € H2(Q)NHE(R).
The problems which we study, however, do not have continuous coefficients and so we expect
the solutions to have lower regularlty, ie, u € H**(Q),0 < A < 1. For an analys1s of
the regularity of the solutlon u, in thé case of scalar elliptic problems with discontinuous
coefficients, we direct the reader to KELLOGG (1971) & (1972).

We now reformulate the classical linear elasticity problem (1.1)-(1.2) following the same
steps used in the reformulation (1.3.4) of problem (1.3)-(1.4). For a rigorous treatment of the
theory of elasticity we direct the reader to either MARSDEN & HUGHES (1987) or SPENCER
(1980). We will restrict ourselves to problems of isotropic linear elasticity, i.e., problems for

which the coefficients a;jx, 1 <4,5,k,1 < 2 are given by the equations

G1111 (ﬁ) = A(&) + 2#(&), 01112(22) =0, 1121 (Q) =0, anzz(&) = )\(ﬂ)
ai211(z) =0, @1212(2) = p(z), G1221(z) = p(z), Gr1222(z) =0
az11(z) =0, a2n2(z) = p(z), anai(z) = p(z), ann(z) =0
aze11(z) = A(z), az12(z) =0, azz21(z) =0, azen(z) = Az) + 2u(z)
(1.3.11)
where A and u are the Lamé and shear modulii functions defined according to the relations
Az) & '{E—(lﬂ) pz) = 0 (;) y 2€Q (1.3.12)

where v € (0,1/2) is Poisson’s ratio and E is Young’s Modulus of elasticity, cf. KNOPS &
PAYNE (1971). We shall say that the coefficients a;;x, 1 < 1,7, k,l < 2 are uniformly elliptic
if there is a constant p > 0 such that, for z € Q,

Z & aiju(z) Eu > p Zf,,, Ei=&n &ER,1<4,j<2 (1.3.13)

i,J,kl=1 i,J=1
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However, it is known, cf. KNOPS & PAYNE (1971), that the coefficients are uniformly
elliptic if, and only if,

Az) +2u(z) >0, p(z)>0, z€Q (1.3.14)
Thus, assume that Q, X, p, v, f are such that a unique solution, u € (C?(Q) N C*(Q))?,
of problem (1.1)—(1.2) exists; multiply (1.2) by v, € V, 1 < [ < 2; integrate the resulting

equation over {2; use the divergence theorem to deduce the identity

a(y,v) = F(v) (1.3.15)

where, for u, v € V2,

def au’t avk def z) vz x) - o
9% [ 3 augr@) r@in FO ¥ [ /@) w@dzt [ 1) s ol
(1.3.16)

We can now generalize the elliptic boundary value problem (1.1)—(1.2) to include domains
Q € C%; right hand sides f € (£2(£2))?; Lamé and Shear modulii ), 4 € Loo(2) which satisfy
inequalities (1.3.14) almost everywhere in Q; boundary conditions up € (H/2(82p))?%, t €
(£2(09x))2. We do this, once again, by interpreting derivatives in the weak sense, cf. (1.2.11),
and defining u € (H'(2))? to be the weak solution if it satisfies Tr (u)|en, = up and

awy) = F(v), ve(HXQ000)? (1.3.17)

where a, F' are defined in relation (1.3.16). We assume that ¢(8€2p) > 0 and use the Lax-
Milgram Lemma to show that the weak problem (1.3.17) has a unique solution u € (H*(£2))?.
We do this by demonstrating that a, F satisfy the conditions of the Lax-Milgram Lemma.
If f € (£2(2))? and ¢ € (L£2(8Qn))? then the Cauchy-Schwarz inequality implies that F €
BL((H*(Q))?; R) and if A\,p € Lo(Q) then the Cauchy-Schwarz inequality also implies
that a € BL((H*(R))? x (H*(2))?; R). The (H}(L;09p))*-ellipticity of the bilinear form
a follows from Korn’s inequality, cf. BRENNER & RIDGWAY ScCOTT (1994),

/Em @Pdz > Clly; (@Y, v e (H(®))? (1.3.18)

1,j=1
where C > 0 is a constant independent of v, 0(82p) > 0, and &;(v) & (dv:/dz; +
0v;[0z;)/2,1 < 4,7 < 2. If A\ p,up, ¢, fi,1 <1< 2, and Q are sufficiently smooth then
the weak solution, u, will belong to (H2%(Q2))2. However, for problems with discontinuous
Lamé functions A, 4 we anticipate that the weak solution, u, will possess the lower level of
regularity u € (H*t*(Q))? for some « € (0, 1].
We note that the level of regularity of the solutions u, u of problems (1.3.4) and (1.3.17)

will play an important role in determining how rapidly the approximation errors
llu = uns H* @, — s (H* ()], 0<n<1 (1.3.19)

converge to zero as the discretization parameter h — 0 where u,, u, are finite element

approximations of u, u respectively, cf. Chapter 2.
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2 FINITE ELEMENT APPROXIMATION
THEORY FOR ELLIPTIC BOUNDARY
VALUE PROBLEMS

We recall that the weak problems (1.3.4), (1.3.17) are formulated in terms of the infinite
dimensional Sobolev spaces H'(2) and that practical analytical expressions for the weak

solutions u, u of these problems are rarely available. Thus, we aim to show how one can use .

finite element techniques to construct approximating subspaces S"(Q), h > 0 of the Sobolev
space H'(2) and obtain practical algorithms which allow one to compute approximations
up € S*(Q), u, € (S*(R))? of the respective weak solutions u € H'(Q), u € (H}(Q))2. We
demonstrate how the approximations are computed using the Galerkin approach and, taking
into account the solution regularity, we provide some error estimates for the approximations.
We make no attempt to be comprehensive and direct the reader to any of the texts AzIZ &
BABUSKA (1972), ODEN & REDDY (1976), CIARLET (1978) for a rigorous treatment of

finite element methods.

2.1. Finite Element Approximating Spaces.
We assume that © @ R? is a polygonal domain and say that Th(Q) & {r; | n € Q, 1 <i < v}
is an admissible triangulation of Q if the following conditions are satisfied: (1) if 7 € T,(2)
then T is an open triangle, ie., 7 = int(7), (2) nN7; =0 & i# 7, (3) O =UL,7:, (4) if
i # j then T;N7; is either null or a common side of the elements 7;, 75, (5) max{diam(r) | 7 €
Ta()} =h.

Let 75(S2) be an admissible triangulation of § then a point z € § is said to be a node of
Tr(R2) if z is a vertex of some finite element 7 € 7,(£2). We define the approximating space

S"(2) of piecewise linear functions, over the field F, for the triangulation 7,(£2) as follows

SH(Q) = {v e C°@) | for 7 € T5(R) there exist a; €F, 1< i< 3 (2.11)

such that v(z) = a; 2, + @222 + a3, Z € T}

where, clearly, each function v € S$*(Q) is uniquely determined by its values at each node of
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T+(2). The approximating space S*(Q) C H!(RQ) is said to be conforming if S*(Q) C H*(Q),
we demonstrate the validity of this inclusion relation as follows: Let u € S*(Q2) and ¢ €
C°(R2) then, for |a] =1,

| we) Dote dz‘—Z/ £) D6l
—Z[ /a . z) n{d (z) do(z) - / Dy )dg] (2.1.2)

=-2 / D%ul(z) ¢(z)dz = - /ﬂ Du(z) ¢(z) dz (2.1.3)
®

where n(? = [n;”, gi)] is the unit outward normal vector to the boundary d7;,1 < i < v
and all derivatives are understood in the classical sense. We obtain (2.1.3) from (2.1.2) using
the continuity of u, ¢, the property supp(¢) C €, and observing that n(z) = —nl)(z), z €
O1; N 87;. Thus, D*u € L(R) is a piecewise constant function defined almost everywhere
in © and the inclusion $*(Q) C H*(2) follows. For an admissible triangulation 73 () we say
that S*(Q) is the corresponding conforming subspace.

def

For n = dim(S*(Q)) let z;, 1 < i < n denote the nodal points of 7,(f2) and define the
basis B(S™(€)) & {¢:}~, of S*(Q) where ¢;, 1 < i < n are the functions with the properties

ef (1, ifi=3 ..
¢i(§j)§':f{0: 1f:7é;s 1<4,55n (2.1.4)

In the case of elliptic problems with mixed boundary conditions on 92 we assume that the
endpoints of 9Qp are nodes of the triangulation 7;(€2) and define the subspace S(2; 9§p) C
H}(Q;00Dp) (e C*) as

S5(%095) % {v € S*Q) | vlon, = 0} (2.1.5)

For m & dim(S*(;00p)) let z, € D\, 1 < i < m, z; € 9, m < i < n denote
the nodal points of 7,(Q) and define the basis B(SH(Q;00p)) & {¢:}2, of the subspace
Sh(; 8S2p) where ¢;, 1 < i < m are the functions which satisfy

wi [1, ifi=j . .
¢i(gj)={0, iz, 1Sism1<j<n (2.1.6)

The use of the parameter s as an index in the symbol 7,(2) is ambiguous because there are
many different admissible triangulations of 2 with identical h. We restrict our attention to
the families of uniform triangulations of 2, cf. ODEN & REDDY (1976), i.e., {Tx(Q?) | h > 0}

is a family of uniform triangulations of Q if, for h, &' diam(r), 7 € TH(9),
h/min{h, | T€ TR(Q)} =1, h>0 (2.1.7)

We note that it is often necessary when attempting to approximate solutions of singular
problems to consider families of quasi—uniform triangulations, i.e., families of triangulations
{7.() | A > 0} which satisfy

h/min{p, | T€ TH(R} < C, h>0 (2.1.8)
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where C > 0 is a constant independent of k and p, is the maximum diameter of any circle
which can be inscribed in 7 € T,(R2). In Section 2.2 we introduce the Galerkin approach and
obtain approximations u, € SH(2;00p), u, € (SE(Q;62p))? of the respective weak solutions
u € H}(Q;00p), u € (HE(Q;00p))? of the weak problems (1.3.4), (1.3.17). We will deter-
mine upper bounds for the approximation errors ||u — ug; H™()]], llu — ws; (H™(2))?]], 0 <

n < 1 using the following result from approximation theory, cf. HACKBUSCH (1992).

Theorem 2.1. Let T;(2), k > 0 be an admissible triangulation of @ then, for u € H'**(2)N
Hi(200p),0< AL,

inf{ |lu — va; HY(Q)|| : v € SH(Q;0920)} < C(8) B |lu; H ()| (2.1.9)

where 0 is the smallest interior angle of any T € Tr(2). |

For the case of problems with piecewise smooth coefficients which vary discontinuously along
a polygonal curve I' C 2 we construct admissible triangulations 7;(€2), A > 0 which have the
property that 7 NT = 0, 7 € T,(2). We do this because the solution has a higher level of
regularity over a neighbourhood O when it excludes regions of discontinuity and, in this way,
we obtain more accurate approximations than would otherwise be the case. For example, if
u € H*Q)NH?*(1), 0 < A < 1, 7 € Tx(Q) then it follows from the theory of approximation,
cf. HACKBUSCH (1992), that

1/2
inf{ |[u—va; H*(Q)|| : v, € S*(Q)} < CH* ™ [ Z |2 H2('r)||2] , 0<n<1 (2.1.10)
TE€ETH(D?)
where C > 0 is a constant independexif of h. However, if there exists a 7 € 7,(2) such
that 7 NT # 0 then |[V(u — v,)|l2 = O(1) (b — 0), v, € S*(£2) and the optimal ||e; H*(Q)||
approximation order is reduced from O(h) to O(h'/?) as (h — 0), i.e.,

inf{ ||u — vp; H*(Q)|| : vs € S*(Q)} = O(h?) (R = 0)

We note that the discontinuities along I' can lead to solutions with singular points, cf. KEL-
LOGG (1971), which often result in lower orders of approximation than is suggested by
(2.1.10). For a rigorous treatment of approximation in Sobolev spaces we direct the reader
to Az1z & BABUSKA (1972) .

2.2. Galerkin Approximations.

We now introduce the Galerkin approach to approximation for the weak problems (1.3.4) and
(1.3.17). We demonstrate how the finite element spaces defined in Section 2.1 can be used to
construct approximations of the weak solutions and we establish upper bounds for the errors

which this process introduces.
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For the case of scalar problems let V' denote an infinite dimensional subspace of H'(2),
e.g., H)(2), and define u as the solution of the weak problem: Find u € V' such that

a(u,v) = F(v), veV (2.2.1)

where a € BL(V x V; C) is a V-elliptic sesquilinear form and F € BL(V; C). We let
V. denote a finite element subspace of V, cf. Section 2.1, corresponding to an admissible
triangulation, 7,(2), of @ and define the Galerkin approximation u, € V, of u € V as the
solution of the problem: Find u; € V} such that

a(ug,vp) = F(v), v €Wy (2.2.2)

Because V;, C V the Lax-Milgram Lemma shows that problem (2.2.2) is well defined, i.e.,
it has a unique solution up € V. To compute the solution, un € Vj, of problem (2.2.2) we
require a basis B(V3) of Vi,. We use the basis B(V,) = {¢:}™, where ¢;, 1 < i < m are the
functions which satisfy the nodal interpolation conditions (2.1.6). Clearly, problem (2.2.2) is
equivalent to the problem: Find u, € V}, such that

a(un, ;) = F(¢:), 1<i<m. (2.2.3)

Furthermore, this problem can be formulated as a system of algebraic equations: Find u, €
C™ such that

Ay, =F,, AeC™ F,eC™ (2.2.4)
where (A44)i;; = a(pj, ¢:), (Er); = F(#;), 1 < 4,5 < m. Indeed, defining the bijective linear

operator M :C™ — V}, according to the relation
My Z u;¢d;,, u€eC™, (2.2.5)
i=1

it is apparent that problem (2.2.3) is equivalent to the linear system (2.2.4) in the sense
that the solutions satisfy Mu, = us. In the case of linear elasticity we note the following
differences: The Hilbert space V is a subspace of (H*(2))?; the system (2.2.4) has dimension
2m (rather than m) with

() = | “@dinard) aledsend)
a(exdj, e d:) ale,dir€a9:)

the linear operator M :C?™ — V,, is defined as

) (Eh)j =

F(Ql¢j)] , 1<i,7<m; (2.2.6)
F(§2¢j)

My¥ Zgi ¢, u€C>™, y, S [u2i—1] , 1<i<m. (2.2.7)
- Ugs
i=1

Clearly, from the definition of Ay, it follows that A, = A and
a(un,va) = vp Aptiy,  Un, vh € Vi

where u, = Mu,, v, = My, and v7 £ 57 (conjugate transpose). We will sometimes use the
engineering terminology and call the system matrix A; the stiffness matrix and the system

right hand side F'), the load vector.
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2.2.1. Computation of the Stiffness Matrices.
We now describe how the stiffness matrices are computed for problems (1.3.4), (1.3.17). We

begin with scalar problems and observe that, for us, vy, € Vj,

aup,vp) = Z ar(up,vp), F(vp)= Z F,(vp) (2.2.8)
T€Th() 7€Th(R)

where the subscript 7 in (2.2.8) indicates that the integrals which define the operators a, F'
are restricted to the triangle 7 of the triangulation 7,(2), cf. (1.3.5), (1.3.16). For each
7 € Th(Q) let (P, 1 < i < 3 be local node labels for the triangle 7 which are also labelled
z,,1<i<3, cf Section 2.1, where n; = G,(i),1 <i < 3 and G,:{1,2,3} - {1,---,m}
is the globalization map which maps the local node numbers, {1,2, 3}, to their global values,
{1,---,m}. Then we define the boolean matrices A, € R™, 1 € Tr(2) according to the

relation

(Ar)pa = { é: :f' g:gg; :z y, 1<p<m, 1<¢<3 (2.2.9)

The decomposition (2.2.8) and definition (2.2.9) permit one to express A, F, as follows

> A4, Fy= ) AE., . (2.2.10)
TE€TH(R) TE€TH(R)

where, for 7 € T,(), A, 4 € R*?, F.,€ R® are defined as follows, for n; & G, (3), 1 <i < 3,

(Arn)ii Z ar(Pnysbn)s  (Fep)i E Fr(dn;), 1<6,5<3 (2.2.11)

For additional properties of the boolean matrices A,, 7 € T,(2) we direct the reader to ODEN
& REDDY (1976). For problems of linear elasticity we observe the following differences. The

boolean matrices A, € R*™%,r ¢ T+(S2) are defined blockwise as

(Ar)pq & {é i S;Egg Zb, 1<p<m, 1<¢<3 (2.2.12)

where I € R?? is the identity matrix and 0 € R>? is the zero matrix and, for 7 € Tn(f),
Arp € RS, F rh € RS are defined blockwise as

(Arn)ij = [ar(§1¢n,-,§1¢,,‘,) ar(€1¢n;> €26n:)

- ar (92 ¢n,- &1 ¢ﬂi ) ar (§2 ¢"i ’ g2¢"-‘ )

. (F, )= [F'(§1¢"f)]  1<4,i<3

FT(Q2¢115)
(2.2.13)

We determine the values of a,(@n;, Pn:)s 0r(€rbn;),Pn:), Frdn,), Frle, $;), 1<7,8<2,1<
i,j < 3 used above by employing an affine map ¥,:T — 7, T < {(¢,7) [0<¢+7<1,0<
&,m < 1} to transform integrals over elements 7 € 7,(f2) to integrals over T. Thus, if
7 € Tn(R) is a triangle with nodes (¥, 1 < i < 3 then we define ¥, as

U, (8) = sy (2) + 2P, (t) + zPos(t), teT (2.2.14)
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where 1, (t) ) ta, Pa(t) 1, s (1) &'¢, and use U, to transform integrals as follows
/b(z o dg = / b o) (T () dt, 1<4ij<2 (2.2.15)

where |J(¥,(t))| denotes the determinant of the Jacobian of ¥, (t) = [¥,1(t), ¥, 2(¢)], t € T,
ie., Jij (¥, () =T, ,()/6t;,1<i,5 <2,

IJ(\I/r(t))|=6§t’1'1(_) Z0-G205 0, ter,  (210)

and the functions 4;, 9, 1 < 4,j < 2 are determined from the following relation which, for

v € C(7), shows how derivatives change under the transformation ¥,

v 0T, , 0T, , 0

—3—32_1(2) _ 1 —a?(i) - ot (2) 3—151@) et ﬁl(i) (2217)
v @ 7T | 69, . 3\1:,1 . 8 ,, ()] o
e S o | |0

where #(t) & v(¥,(¢)),t € T. We note that the transformation (2.2.14) has a constant
Jacobian matrix J(¥,(t)) € R*?, eg., Ji;(¥,(t) = z¥}Y —28), 1 < 4,5 < 2. Thus, we
determine A4, ;, F, ,, 7 € Th(Q), cf. (2.2.11), (2.2.13), using the a.fﬁne transformation ¥, cf.

(2.2.14), which allows us to perform all computations over the reference element T

2.2.2. Analysis of the Galerkin Approximation Errors.
We provide a short description of how one combines the results from the theory of approx-
imation in Sobolev spaces with the lemmas of Céa and Aubin-Nitsche to obtain a priori
error bounds on the Galerkin approximations, us, u,, h > 0, of the weak solution u, u. The
results which we obtain are abstract in the sense that they demonstrate that the Galerkin
approximations converge to the weak solutions in the Sobolev norm topologies as h — 0 but
they do not provide estimates of the actual errors.

We begin with the important Lemma of Céa which we use to demonstrate convergence

of the Galerkin approximations in the H'(2) norm topology.

Theorem 2.2. (Céa’s Lemma) Let V,, be a finite element subspace of V' corresponding to
an admissible triangulation T,(2), h > 0 of Q. Ifu € V is the weak solution of (2.2.1) and
up € V,, is the Galerkin approximation of u € V, i.e., it is the solution of (2.2.2) then

lu — un; H(Q)|| < C inf{ ||u — vu; HY(Q)]| : va € Vi} (2.2.18)

where C > 0 is a constant independent of h > 0. |

Proof It is apparent from relations (2.2.1) and (2.2.2) that

a(u — Up, ’Uh) = 0, v € Vh. (2.219)
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Thus, using orthogonality property (2.2.19) and the continuity and V-ellipticity of the
sesquilinear form a:V x V — C we obtain the inequalities, for v, € V,

pllu—un; HH (D) < a(u — up,u — up) = a(u — up,u — vy) (2.2.20)

< llall lw — wp; HY(Q)|| ||u — va; H*(Q)] (2.2.21)

= llu — un; HH(Q)]| < Cllu — vy HY(Q)|| (2.2.22)

where C = ||a||/p. -

The importance of Céa’s Lemma is now clear: If u € H'+*(Q2), 0 < A < 1 then Theorem 2.1
and inequality (2.2.18) imply the upper bound

lu = un; H{(Q)|| £ Ch* Ju; HHQ), h>0 (2.2.23)

where C > 0 depends on 6, ||al|, p, cf. Theorem 2.1. We point out that for problems of
linear elasticity the above results are valid if one replaces u, up, H!(2) with, respectively,
u, uy, (H'(2)).

It is sometimes necessary to obtain upper bounds for the error in the £,(€2) norm topol-
ogy. We demonstrate how one can use the approach of Aubin—Nitsche to determine a bound
of this type from results which are already available. Thus, let © € V' be the weak solution
and u, € V, its Galerkin approximation and, for f € £,(f2), define Af € V as the unique

solution of the weak problem, cf. Lax-Milgram Lemma,
a(v, Af) = (f,v; £2(R)), veEV (2.2.24)
However, noting that u — u; € V we let v = u — up, in (2.2.24) and obtain the identity
a(u —un, Af) = (v — un; £2()) (2.2.25)
The orthogonality relation (2.2.19) and identity (2.2.25) then imply
(fru— up; £2(9)) = a(u —un, Af —vn), vn €Vi (2.2.26)
and we use the continuity of a to deduce the inequality
(fyu = ua; L) < laf llw — v HH Q)| inf{ |Af —va; HH(Q)]| - vn €V} (2:227)
Indeed, (2.2.27) and the identity
llu — un; L2(Q)]| = sup { [(F,u—ul/IIf; L2 = fe z:z(n)} (2.2.28)

then imply the inequality
llu = un; L2 llall llu — un; E ()]

SUP{inf{ IAf — v HH Q)| = va € RY/IIFi L2 = f € 32(9)}
(2.2.29)
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However, if A € BL(L(R2); H**(Q)),0 < A < 1 then Theorems 2.1 and 2.2 imply, for
f € ‘62(9),

nf{ A — v Q)] : v € Vi}/If; L2(@) < C(6) )

Af; H(Q)]| A
| £; L2()]| S GO ('lf;”m)

where C(6) > 0 and 6 is the minimum interior angle of any triangle 7 € 7,(Q). It now follows
from the error bound (2.2.23) and inequality (2.2.30) that there exists a constant C > 0

which is independent of u, h, u such that
llu = un; L2(Q)]] < CR? |lu; Q)] (2.2.31)

The sequence of steps leading to the upper bound (2.2.31) are to due to Aubin and Nitsche, cf.
CIARLET (1978), and require that the linear operator A:L,(2) = H'*+*(Q2) be bounded. For
problems with smooth boundaries and coefficients it is known that A € BL(L,(R); H*(Q)),
however, for general abstract problems of lower regularity this remains an open question. We
will assume that A is bounded for the problems which we consider. Furthermore, we point
out that the above steps can be generalized to include problems of linear elasticity in the

same way that we modified the steps of the proof of Céa’s result for problems of this kind.
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3 HOMOGENIZATION OF ONE
DIMENSIONAL ELLIPTIC BOUNDARY
VALUE PROBLEMS

3.0. Introduction.
The general effects of rough coefficients in elliptic problems and systems, particularly the
difficulties they cause, have been discussed in chapter 2 and, as has been stated there, we
seek to produce robust numerical schemes which are effective for solving multi-dimensional
problems, ultimately of linear elasticity, where material properties change repeatedly and
rapidly due to the presence of composite materials. As a first step towards this end we
limit our attention in this chapter to rough scalar problems with a single function u as the
solution. Moreover, for reasons given earlier we also limit consideration to problems in one
space dimension. o

A feature of problems of this type is that the coefficients and the solutions depend on a
problem defined parameter, € > 0, which is, generally, significantly smaller than the diameter
of the domain of the problem, 2. Indeed, we consider the particular circumstance in which
the coefficients are periodic with the period defined by the parameter € and introduce an
asymptotic approach which is motivated by a concept called homogenization. Thus, if the
abstract problem: Find u¢ € H}(Q) such that

/Qa‘(:z;) Dué(z) Dv(z) da;=/nf(:c)v(a:) dr, ve€ H}Q) (R)

is impractical for numerical approximation and if there is a homogenization principle, i.e.,
in some sense, a® — ag, u* — ug (€ = 0) (cf. Section 3.0.1) where uy € Hj () satisfies the

Homogenized equation
[ a0(z) Duo(e) Dofa) do = [ f(o)o(a)da, v e HY(@), (#)
Q Q

then one should employ (H) as a basis for the approximation of u¢ rather than attempting

to approximate the solution of (R) directly. This assumes, of course, that the solution, uy,
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of the homogenized problem (H) can be approximated more efficiently and accurately than
the solution, u®, of (R). This is often the case however, because the homogenized coefficient,
ao, is constant and the solution u, generally has a higher level of regularity than v°.

The difficulties with rough coefficients are reduced by studying model one dimensional
prototype differential equations because, in this case, the computations can be performed
analytically for problems exhibiting a variety of levels of regularity. We introduce our asymp-
totic approach in Section 3.3 and in Sections 3.4, 3.6-3.8 we determine how problem regularity
affects this approach through a number of examples in which analytical and computational

results and graphical illustrations are provided.

3.0.1. Motivation for the Asymptotic approach.

The asymptotic properties of the mathematical model, as € — 0, where € is the period of
the medium, are fundamental to the concept of homogenization. Thus, let us first consider
the following abstract problem, stated in the classical form, over the domain Q £ (0,1) with
mixed boundary conditions: Find u¢ € C?(2) N C*(Q) such that

0 [ ., ou . efn
~ % [a (z) % (:1:)] + v°(z)u’(z) = f(z), z€q (3.0.1)
a’(z) a;; (z) =u*(1)=0 (3.0.2)

where f € C°(Q), a* € C*(Q), b € C°(Q) and, for z € Q,

0<a<a(z)<f<x (3.0.3)
0<b(z) B <0 (3.0.4)

By rewriting relations (3.0.1), (3.0.2) in the weak form, cf. Chapter 2, and assuming that
relations (3.0.3), (3.0.4) hold for almost all z € Q, we generalize this problem to include
functions f € L2(R), af, b* € L(2) as follows: multiply (3.0.1) by a test function v €
HY(Q) ¥ {ve H'(Q) | v(1) =0} and then integrate the resulting equation by parts to

obtain

/Q o (z) aaf (z)—g%(a:) dz + /Q b (z) uf (z) v(z) dz = /Q f(@)v(z)ds, ©ve H™Q) (3.0.5)

where, as a consequence of the boundary conditions (3.0.2) and the definition of H°(Q2), we
have observed that the following boundary term vanishes:

e, Ouf =t
—a®(z) 5 (3.0.6)

(z) v(z)

z=0
The weak formulation of problem (3.0.1), (3.0.2) is then: Find v* € H*°(£2) such that (3.0.5)
holds for all v € H'°(§2). Because this problem satisfies all the conditions of the Lax-Milgram

lemma it is evident that a unique solution u® € H'%(f2) exists.
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If, conversely, we begin with the weak formulation (3.0.5) and o € C*(Q), b, f € C°(Q),
and u¢ € HYO(Q) N C?(Q) N C*(N) satisfies (3.0.5) then integrating relation (3.0.5) by parts

we deduce
o[, ou . . ey OUS
/Q{_a_m [a (z) 52 (m)] + b°(z) u* (z) —f(z)} v(z) dz + a°(x) 5
Now consider the test functions v, € C®(Q) N H1%(Q), n € N defined as follows

aef [ e~ W/m=2)T je=n i 0<z <1/n
vn(2) = {0, ifl/n<z<l1 (3.08)

Clearly, v,(0) = 1, v,(1) =0 for all n € N, ||v,; L;(Q)|| = 0 (n = o0}, and

/n {‘% [“E"”) %g(x)] + b(z) u'() - f(z)} vn(z) dz

JprT

Thus, relations (3.0.10) and (3.0.7) imply that u® satisfies the boundary conditions (3.0.2). It
then follows from (3.0.7) that u® also satisfies the differential equation (3.0.1). Thus, the weak
formulation (3.0.5) and the abstract formulation (3.0.1), (3.0.2) are, therefore, equivalent

yo(z)| =0 (3.0.7)

z=0

=0 (n—o00) (3.0.9)

(3.0.10)

a*(2) S (2) 1a(a)

z=0 =0

with regard to classical solutions, i.e., if there is a unique solution u* € C?(22) N C*(Q) of one
formulation of the problem then it also uniquely satisfies the other.

It is well known, cf. BABUSKA (1974i), that for f € £5(f2) the solution u¢ € H}°(Q) C
H'(Q) can be bounded in the H(£2) norm topology, e.g.,

lus HHQ)]| < Cles B) I £2(2)], 0<e<1. (3.0.11)

where C(a, B) > 0 is independent of f and ¢. It follows, cf. BABUSKA (1974i), that there
exists a monotonically decreasing sequence {€,}n>1 C (0,1] and an element uo € H'0(),
called the homogenized solution, such that, for 0 < p <1 and f € BL(H'(Q); R),

[uf* — uo; H*=#(Q)[| 2+ 0 (n — o0) (3.0.12)
[(fyu) = (f,u0)| = 0 (n— o0) (3.0.13)

For a homogenization principle to exist one asks — Does u, satisfy a boundary value problem
of the same type as u® ? Indeed, there are a number of theorems which establish precisely
this property, i.e., up is the solution of an elliptic problem, analogous to (3.0.1), which is
independent of €. The following is typical of such theorems, see, for example, MURAT &
TARTAR (1994), BABUSKA (1974i), and ALLAIRE (1992).

Theorem 3.0.1. Let a®, b® satisfy conditions (3.0.3), (3.0.4). Further, let1/a* — 1/aq, b5 —
bo (€ — 0) in L£,()). Then u converges to ug as in (3.0.12), (3.0.13) where uy € H'(Q)

satisfies

/ ?91;0 d:v+/b0u0 dz—/f(x)v(z)dm, ve  HY Q)
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In addition a° Ouf [0z — ap Oue/0x (e = 0) in L,(S). |

The properties of u®, described above, motivate the consideration of asymptotic ezpansions
as a form of representation for u¢. Although, the homogenization concept defined earlier is
primarily concerned with the utility of the leading term, u,, in such representations, it will be
seen that the inclusion of additional terms can provide more accurate approximations of u¢ in
the £5(€2) and H'(2) norm topologies. Thus, the homogenization approach is subsequently
assumed to encompass also the higher order asymptotics.

We take the following cell boundary value problem as our prototype for illustrating the
practical/computational difficulties caused by the irregular data. The coefficients are chosen
to model the presence of heterogeneous materials — this introduces irregularities (indeed, in
higher dimensions, singularities) — and the parameters € = 1/r (cell size), n, a;, az,b:, b,

control the variation of material properties within the medium.

5|60 G @] + @@ =10, o€ T m) (2019
[v*(z)],, = [a% (af,(z)uf(z))] =0 1gi<ur- (3.0.15)
5% (a;(z)uf(x)) _ =u() =0 (3.0.16)
where af,(z) £ a™(z/¢), b5, (z) £ b*(z/e),
z, = ¢ E(l4+m/2n)e, i=l+m, 0<I<r,0<m<2n

def 1: , _ H L - _
[v(z)]., & 61_1)1& v(z; + 0) Jgrél+v(m, §), 1<i<2nr-1

and the functions o™, p™ are 1-periodic and are defined below, 0 < i <n—1,

2i 2i+1 2i 2i41
a1, ESZ< 2n b11 2nSz< 2
def def 7
a™(z) = . " b (z) & " " (3.0.17)
aQ, 5, ST<5 by SGn <z <iE

Evidently, r € IN denotes the number of periodic cells in @ = (0,1) while 2n € N is the
number of transition points generated by a typical cell, see Figures 3.0.1a,b. Increasing the
parameters 7 or n will cause the functions af, b5 to oscillate more rapidly while varying

a,, az, by, by alters the magnitude of the discontinuities.
a
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Figure 3.0.1a: Overall problem domain, 2: ¢ =1, 0 <1 <.
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Figure 3.0.1b: Graphof at : ¢, =(+m/2n)e,0<m<2n,0<I< .

It is assumed that constants a; € R exist, which are independent of ¢, such that, for = 1,2

O0<ayy<a;f<a; <o

3.0.18
0<bh; <y <@ ( )

The weak formulation of the boundary value problem (3.0.14)—(3.0.16), obtained by mul-
tiplying (3.0.14) by v € H%(Q2), integrating by parts over (2, applying the boundary condi-
tions (3.0. 16), and observing the transition conditions (3.0.15) is: Find u® € H'(Q) &' {y ¢
H'(Q) | v(1) = 0} such that

Aau%x dﬁ/w v@m—/j@u@m,vem%mgom

If one employs, as described in chapter 2, an isoparametric piecewise linear finite element
approximation, S*(Q) c H'°(2), on a uniform triangulation with each finite element corre-
sponding to a single periodic cell, i.e., h = ¢, then, with such an arrangement, it is known

that one obtains the algebraic system of equations, cf. BABUSKA (1974i),

At =F, (3.0.20)

where A, = A+ P, € R™ is the stiffness matrix, F, € R" is the load vector, and 4 € R™"
is obtained from the identical finite element discretization of the weak problem: Find @ €
HY°(Q2) such that

/ 3™ 3z d”“’/b“ dz=/nf(m)v(w)dm, v € HY(Q) (3.0.21)

where @ = (a; +a2)/2, b= (b1 +b,)/2, and the matrix P, € R™" has the property (Pp);m —
0 (n = oo0) forl1 <I,m < r . We denote the finite element approximation of u® by
uf, = > 1_o(u5)1 ¥ and, similarly, @, = Y°7_(,): ¥1, S*(Q) = span{y;}i_, denotes the finite
element approximation of T € H'(Q). It follows from the identities (I + A71P,)u§ =
A"'F, = u, and the upper bounds ||4A71||z, (A + P.)7 Y|z < Ci(r), |Ep; bo(r)|| < Car as
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n — oo that

I — ks &)l = |1A7" Pof; (7|

< A7 2 [1Palls llugs €2(r)l

<A 2 (| Pallz 1A + Po) 7l [|E5; £o(r)]

< C(r, £,9) || Pall2

-0 (n— o0, £ =1/r fixed) (3.0.22)
In order to obtain (3.0.22) we have observed that the spectral norm ||A~!||,, which is inde-
pendent of n, remains bounded as n — oo. The continuous dependence of the spectrum,
o(A + Py), on the coefficients, (P,)i,m, cf. HORN & JOHNSON (1985), leads to the obser-
vation that [|(A + Po)7Hlz = Amin(A + Pa)/Amaz(4 + Pa) = A7z = Amin(4)/Amaz(4)
as n — 00. Thus, we can choose a common upper bound, C;(r), for the spectral norms

A= 2, I(A + P.)7||. The upper bound for ||F,;%:(r)| follows immediately from the
Cauchy-Schwarz inequality, e.g.,
2) 1/2

|Ess o) = (Z |f,|2) " (;

< ZHf L2(Q)| 145 L2(]]

S 03 (f ’ )
Consequently, from the continuity of the norm function ||e; £5(2)|], it is clear that

/ (@) hi(e) do
Q

|z — us; L2(Q)]| = ||T —Tp; L2(Q)]|  (n = oo, T fixed) (3.0.23)

Thus, the finite element approximations of u¢, obtained from the subspaces S*(Q) C H**(Q),
which do not model the fine scale variation of the coeflicients, converge, as n — oo, to the
finite element approximation, @y, of the weak solution, %, of problem (3.0.21). However, for

€, or equivalently, r, fixed and n increasing it is known that, in £,(€2),

1 1 111 1 -

—_—— = —  — b = b 3. .24

a; ao 2 [al ] ?é ) bn 2(51 + 2) ( 0 )
luf — ug; L2(Q)]| = 0 (n — o0, r fixed) (3.0.25)

where ug is then the solution of the weak problem: Find uo € H'°(£2) such that

/an aauo( z)dz + / buo(z) v(z)dz = / f(z)v(z)dz, ve€ HY(Q) (3.0.26)

So, introducing the finite element approach has in effect, cf. theorem 3.0.1, lead to a numerical
approximation of the problem (3.0.21) rather than problem (3.0.19) when n is large. However,
if a; # a, then aq # @ and, from the identities,

z 1 TA+D? |

a = E(al +a2)(a1_1 +a2_1) = 4 by ) A —al/a2
|a—a|= a1+a2_ 2 _((.1.2—(1,1)2 lla, —aII I
0 2 a;l +a;! 2(a; +a) ~ 2 CL R W]
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it is clear that the difference, |@ — ao|, increases proportionately with the magnitude of the
discontinuities, |a; — a,|. Furthermore, the quotient @/a, grows unboundedly as A = a;/a; —
0, co. Thus, if the jumps |a; — a;| are large or the quotient A = a;/a; > 1, < 1, then
the problems (3.0.21) and (3.0.19) are significantly different and, consequently, so are the
respective weak solutions %, uy. Therefore we expect the approximation u§ of u® to be
extremely poor when n is large. Indeed, in BABUSKA (1974i) it is shown that the error,
|lu® — us; L2(2)]], will exceed 70% of ||u; L2(2)|| when A = a;/a; > 10. The rapid variations
of the coefficients a® and b° of the problem cannot be practicably accounted for by simply
employing successively higher dimensional subspaces of H'%(f2), such a requirement would
rapidly exhaust the resources of most modern computers.

The difficulties illustrated by the simple analysis above demonstrate the need to consider
an alternative approach which is practical and respects the large, rapid changes in the coeffi-
cients of the problem. In section 3.2 we will consider the application of asymptotic techniques
which exploit the rapid variations of the periodic data. The approximation properties of such
methods are well understood for regular problems. However, their behaviour is an open ques-
tion in the context of problems with data possessing low regularity. In the following sections,
homogenization techniques are applied to problems with low regularity data and the results

are explained.

3.1. The Model One Dimensional Problem.
Let u® € H}(S2) be a weak solution of the classical problem

£

u®(0) = (1) =0

where a € L,(2) is a 1-periodic function which is continuous at the points n € Z and
satisfies 0 < o3 < a(y) S as < oo, for 0 <y <1, and f € £,(N) and £ > 0 is a parameter
which corresponds to the period of the medium being modelled.

Application of the Lax-Milgram lemma to the weak form of (3.1.1), interpreted in a
Sobolev space setting, establishes the existence of a unique solution u¢ € Hj(2) which,

furthermore, satisfies the regularity estimate
lus @)l < Cllf; LoD (3.1.2)

where C = C(f) > 0 is independent of u*. However, this problem is also obtained as the

restriction to © of the related problem

0 ou®
where fc is then the periodic extension to R of the function
o [ —f(~z), if-1<z<0
e = {0 LS @10
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Thus, fc can be represented with a Fourier series expansion

fe(@) = D> a.eé™™=, zeR (3.1.5)
neZ\{0}
where
o 1 .
an "=‘§ / fa(z) e dz, C % (~1,1) (3.1.6)
C

Thus, following the analysis of BABUSKA & MORGAN (1991), one can write the solution
of (3.1.1) in the form

u(z)= D ane™"(z/e,e,tn) (3.1.7)
n€Z\{0}
where t,, = nw and a,, n € Z\{0}, are the Fourier coefficients of f¢ and z — ¢(z,¢,t) is a

complex—valued, 1-periodic function that satisfies the periodic boundary value problem, for

e>0, [t >0,

—6—633 [a(z)% (e“"qﬁ(m, €, t))] =g, 0<z<l1
¢(0a5’ t) = 4)(1’ g, t) (318)
0
a(z) g—i(w,e, t) . = a(z) -E%(m, g, t) .

The differential equation (3.1.8) is evidently defined within the standard periodic cell P oo

(0, 1) and, therefore, if one determines ¢, either analytically or approximately, the corre-
sponding expression for u° is provided by (3.1.7). Thus, instead of analysing the global
problem (3.1.1) one can, alternatively, examine a related problem within the periodic cell,
P. However, before considering techniques of approximation, the properties of the weak

formulation of problem (3.1.8) and the respective weak solution, ¢, will be studied.

3.1.1. Properties of the Cell Problem.

The weak formulation of the cell problem (3.1.8) is derived by multiplying equation (3.1.8)
by the function e~ v(z), v € H),.(P) & (v € H'() | v(0) = v(1)} and then integrating
by parts to obtain the problem : Find ¢(e,¢,t) € H.,,.(P) such that

per
/ a(z) 9 (e“" #(z, e t)) 2—(e‘“" v(m)) dz = €* / v(z)dz, veH.,.(P) (3.1.9)
P oz ") 8z P per
where it has been observed that the boundary terms

=1

(itsa(x) é(z,¢,t) + a(z) %(x, €, t)) (@)

(3.1.10)

z=0

vanish as a consequence of the continuity hypothesis for a and the boundary condition pro-

vided in (3.1.8) for ¢(e,e,t). Observe that v(z) = R[v(z)] — i S[v(z)] is the complex conju-

gate of v(z) € C. Clearly, the sesquilinear form for this problem is defined as follows, for
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u, v € H),  (P),

per

B(e, )fu, 0] & /P o(z) % (eftsz u(x)) % (e_um @) dz
=Aa(w)%(z)%dz+eit/

P
+e2e? -/’;a(z) u(z) v(z) dz

= Ogu, v] 4 € D1 (t)[u, v] + €% @,(t)[u, v]

(@) (ula) 92 (z) ~ 92(2) o(@)) d

The sesquilinear form is clearly Hermitian symmetric, that is, ®(e,t)[u, v] = ®(e,)[v, u},

u, v € H}, (P). Furthermore, that ®(e, t) is continuous over Hy,,(P) x H,,,(P) follows from

the inequalities

[@olu, o]l £ % |(Du, Do L3(P)| < a3 1Dus (P IDw; £(PY] - (3111)
< @ |lu; H(P)|| llv; H* (P)|| (3.1.12)

103(8)[w ]l = e t1(1(a, Do; L2(P))] + (D, v L2(P))])
< ] Jlus Lo(P)Il |Dv; £5(P) + 1D La(P)l 13 La(P)I) - (3:1.13)

= 20, [t {|lu; H(P)|| llv; H* (P)| (3.1.14)
|8, (8)[u, ]| = @2 t?|(u,v; Lo (P))| (3.1.15)

< g ?lu; Lo(P)|| llvs L2(P) ]|

£ @ *lu; H(P)|| {lv; H* (Pl (3.1.16)

£ |Do[u, v]| + €| D1 (), v]| + € |82 (2)[u, v]|
< Cle, &) s H (Pl llo; H* (P)| (3.1.17)

= |¢’(5, t)[u: U]

where C(g, t) = az(1+2€ [t|+t€?) > 0. Thus, the sesquilinear mappings ®o, @1(t), P2(t), and
®(e,t) € BL(HY,,(P)* Hp, (P); C) with |2(e, t)|| < C(e, t) and &, is positive semi-definite
over H,,(P) x HL, (P), ie, ®fv,v] 2 0,v € H,,(P). In fact, from (3.1.11), Bo[l,v] =
®o[u,1] = ®o[1,1] = 0 and, furthermore, from (3.1.13), &,(t)[1,1] = 0. In arriving at the
following H,,(P)-Ellipticity property of ®(¢,t) we have employed Lemma 2 of BABUSKA
& MORGAN (1991ii):

|® (€, t)[v, v]| = La(z) ID(eitezm)lz dz

> o [ DG o@) do
P
> Con(1+[t)) s HL, (P

where C' > 0 is a constant independent from €. Thus, the Lax—Milgram lemma proves that

there exists a unique solution ¢(s,e,t), € > 0, [t| > 0 of (3.1.9) in H_, (P). Furthermore,
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with v € H,,.(P), we observe that

(e, )[d(e, e, 1), 0] = 2 / 9@ do
— 56, ~D)(o,2,~1),0
However, it follows from this relation and the definition of ®(e,t) that
(e, —1)[p(e,, 1), 0] = (e, 1)[§(o, €, 1), 7]
= /Pv(x) dz, ve€H,, (P)

and, therefore,
(e, 1)[g(e,e,t) — ¢(o,6,~1),0] =0, v € Hy, (P)
Thus, with v = ¢(e,€,t) — m in this relation we deduce that
=  ¢(z,e,—t) = §(z,6,8), TEP,e>0,|t|>0

Furthermore, if it occurs that @ is symmetric about the origin then, exploiting periodicity
and employing a sequence of elementary transformations for the defining integral of the

sesquilinear form ®(e, ), € > 0, [t| > 0, we deduce the following equations, for v € H,,(P),
0 itex —_‘_t ﬁ —itez o0 = 2/ T—d
/Pa(_a;) 3_:1:(6 d(—z, €, )) po (e v( :c)) dr=¢ Pv( z)dz
=  ®(e,t)[¢Y(e,e,t),v] = 62/ v(z) dz
P

where ¥(z,¢,t) £ ¢(—z,¢,t), T € R, e > 0, |t| > 0. However, from these relations we now

deduce the following conjugate symmetry properties of ¢
(e, t)[p(e:6,t) — P(o,6,1),0] =0, v € H) (P)
= d(z,€,t) = $(—z,¢€,1)
(Periodicity) =¢(l—1z,6t), z€R,e>0,[t|>0
Consequently, if a is symmetric about the origin then ¢(e,€,t) is conjugate symmetric about
both the origin and z = 1/2 for € > 0, |t| > 0. Now consider the circumstance in which a in

(3.1.9) is a piecewise C! function, i.e., suppose that, with P = U, P, ,NP; =0, 1 # 7,
there exist functions a; € C*(P;), 1 <! < m such that

a(z) =a/(z), z€P, 1<I<m (3.1.18)

where a ¢ C°(P) and P, = (z;_1,7;). The weak solution, ¢(e,¢,t), of problem (3.1.9) is
then also piecewise defined, i.e., ¢(z,¢,t) = @i(z,¢6,t), z € P, 1 <1 < m with ¢(e,¢,t) €
C%(P,)NC*(P;) and the piecewise components ¢, of ¢ satisfy the following ordinary differential
equations, for 1 <I<m—1,e>0, |t| > 0,

6 6 itex — =2 jitex
_8_:1;[(1'(1;)%(6 ¢1(z,e,t))} =¢’e™* zeP (3.1.19)

with interface transition conditions, for 1 <!/ <m —1,
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¢l (‘Th €, t) = ¢l+l (mla €, t) (3120)
W@ (= h@et)|  =an@Z(hmean)| @12y
l o1 I\Ly &y s 1+1 oz ) e,
and periodic boundary conditions at z =0, 1
¢1(0a5, t) = ¢m(1,5,t) (3122)
a (z)g—(eitszﬁb (z,¢ t)) =a (z)i(e"t“(ﬁm(x, €, t)) (3.1.23)
1 3:1: nhE z=0 " 63" z=1

It is assumed, without loss of generality, that a(0+) = a(1—) and, therefore, the boundary

condition (3.1.23) simplifies as follows

8¢1 _ a¢m
oz (:II, €, t) o = —67(:336,'5) o

However, if this assumption is invalid then one considers the related problem of the form
(3.1.1) with coefficient a(z) £ a(z + @) and right hand side f(z) = f (z + a/e) where «
is chosen such that @(0+) = @(1—). The solution of this related problem is thus #(z) =
u®(z + o/e) — u*(a/e), z € R. The general solution, ¢, is synthesized from the components
¢, which we have determined have the form

€ _, T eiter ; 1 )
) ,t — —itex d t —:tsz/ d , t —itex 1.
di(z,e,t) = e /ZH a@ z+cle, t)e - —a(z)dz +di(e, t)e (3.1.24)

where the arbitrary functions ¢;, d; are determined from the transition conditions specified
in (3.1.20), (3.1.21). If a € C°(P) but a ¢ C*(P), n > 1 then we observe that the transi-
tion conditions (3.1.20), (3.1.21) imply the continuity 8¢(e,e,t)/8z € C°(P). If, however,
a € C'(P) then the transition conditions (3.1.20), (3.1.21) are redundant and ¢ is obtained
directly in the form

d(z, e, 1) = 'i_Ee-itez /z i dz + c(e, t) e " /z Lofz + d(e, t) e7™® (3.1.25)

T i o a(z) o a(2)

where the arbitrary functions ¢, d are then determined solely from the boundary conditions
specified in relations (3.1.22), (3.1.23).

If one includes in equation (3.1.19) the additional term ao(z) ei*z¢(z, €,t) where ao(z) >

7> 0,z € P and a9 € L(P) is 1-periodic, then the weak solution, ¢, of the resulting
problem exhibits the important property of holomorphism within a neighbourhood, (e,t) €
G, of R?. This property is established in BABUSKA AND MORGAN (1991i) which, thus,
establishes that one can justifiably represent the function ¢(z,e,s), z € P as a convergent
power series within the neighbourhood G. Similarly, to provide a theoretical basis for the
power series representations subsequently employed for ¢(z,e,e) € P, which is the weak
solution of problem (3.1.9), we propose the following Theorem, which is supported by the

computational results provided in Sections 3.2.1 and 3.2.2.
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Conjecture 3.1.1. A neighbourhood GC C? of V & {(e,t) e R%:et| < 2m, t # 0} can be
found such that for each (e,t) € G, there exists a function $(e,¢,t) € H!, (P) that satisfies,

per

uniquely for (,t) € G, the weak problem

B(e,8)[d(o, €, 1), v] = €2 / @) dz, ve H. (P)

P

Furthermore, the mapping (¢,t) € G — ¢(e,¢€,t) € H,,.(P) is holomorphic, i.e., there exist
functions ¢,(e,t) € H}

per

(P),n > 0 such that for each point (e,t) € G one can write
P(z,¢,t) Eq&nmt , TEP (3.1.26)

which is convergent in Hye (P), ie.,

|4(%,€,2) — dn(o,6,8); H(P)|| =0 (N — o0)
where
N
dn(z,e,t) & Z bn(z,t) €™
n=0
for N > 0. [ ]

This property provides the basis for the asymptotic approach developed in Section 3.2 when
the data are piecewise regular, cf., (3.1.19)—(3.1.23). The methods thus developed are then
used to obtain asymptotic approximations for a number of sample problems of varying levels

of regularity, thereby illustrating the behaviour conjectured above.

3.2. Homogenization: Expansions in powers of ¢.
It has been observed in Conjecture 3.1.1, that with respect to H,,.(P), ¢(z,,t) is holomor-

phic. Consequently one can employ the expansion
b(z,€,t) = oz, 1) + 1 (7, 1) + 2 da(z,8) + -+, (6,8) € G (3.2.1)

where ¢, (e,t) € H}, (P), n € Ny. To determine the functions ¢,, we substitute the expan-

per

sion (3.2.1) of ¢ into the weak formulation (3.1.9), then, equate the coefficients of identical g™

terms, n € Ny. This process will generate a sequence of equations in H ;er(’P) with ¢,,, n € Ny

as the unknowns. Thus, substitution of (3.2.1) into (3.1.9) produces, for v € H},_ (P),

per

[]8

™ (Bolgn(e, 1), 0] + £ 1 (1) (o, 1),0] + €8 Ba(O)gn(s,8),0]) = &2 /P v@dz, (3.2.2)

l
o

T

where the linearity and continuity of ®(e,t) have been employed to extract the sum from

the sesquilinear mappings ®,, ®,(t), ®2(¢t). Comparing the coefficients of e*, n =0,1,... one
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obtains the relations, for v € H}, .(P),

€% Bo[o(e,t),v] =0 (3.2.3)
el: Doy (e, t),v] = — B, (t)[do(e, 1), ] (3.2.4)
e’ Bo[p2 (e, 1),v] = Lmdz — &, (t)[p1(e,t),v] — Da(t)[do(e,1),v] (3.2.5)

e Rolgn(e,1),v] = = 1(t)[¢n-1(%:1),v] — D2(t)[Bn-2(e,1), ] (3.2.6)

Now, write the above equations as follows, for £ =0,1,...,

Bolg(e,8),v] = Fi(do, - Be-15v),  (o,2), v € H,,, (P) (3.2.7)

Then, from the properties of ®, observed in Section 3.1.1, it is clear that problems (3.2.3)-
(3.2.6) are solvable if, and only if, Fy(do,.--,Pk-1;1) = 0 for k& > 0. Furthermore, the
(P) x H},.(P) implies that, if ¢x(e,?) is a solution
of (3.2.7) then so is ¢y (e,t) + cx(t) where ¢ is an arbitrary mapping ¢, : R\{0} — C.

semi-positive definiteness of @, over H;,,,.
However, the solvability requirements Fy(¢o,. - -, #x—1;1) = 0, k > 0 uniquely determine the
arbitrary functions c;. Indeed, this is demonstrated in the following theorem, cf. BABUSKA
& MORGAN (1991ii), which also illustrates that the functions ¢x(e,t) can be determined in

a systematic fashion.

Theorem 3.2.1. For each k > 1 define xi(e,t) € H},, o(P) YweH per(P) | [pv(z)dz =
0} to be the solution of

- ®,(t)[1,v], k=1
Do[xk(e,t),v] = ¢ —D1(t)[x1 (e, 1), 9] — D2(2)[1, 9], k=2 (3.2.8)
— &,(t)[xk-1(2 1), 9] — @5(t)[xk—2(e,1),0], k23

for all v € H},,,(P), and for each k > 0 define g,(t) € C by

oy & 4 [B1ODaC 9,1+ 2,0)[L1] =0 oo
—go(t) Zf:ol g:(t) [<1>1(t)[xk+1_,-(°,t), 1] + @2(t) Dxe—i(®, 1), 1]], k>1

Then the coefficient of € in (3.2.1) is given by

gO(t)a k=0
Pr(0t) =9 iy (3.2.10)
E,’=o gi(t) Xk—i(.,t) + gk(t)) k>1
where Xk, k > 0 are the functions defined in (3.2.8). [ |

Thus, examining, for example, expressions (3.2.8) for k = 1 and (3.2.9) for k = 0, the leading
term, gy, is evidently

go(t) = ﬁ, A= /p a(z) [1 + %l;l(m)] dx (3.2.11)
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where A is commonly referred to as the homogenized coefficient and x; € H,,, o(P) is the

solution of the weak problem

Do[x1,9] = — La(m)g—Z(m) dz, v€ H:w_,o('P) o (3.2.12)
and xi1(7,t) ¢ 90(t) x1(z), see Theorem 3.2.1. We observe that, although Theorem 3.2.1
clearly provides a systematic process for the construction of the functions ¢y (e, t) € H,.(P),
the expansion (3.2.1) is constructed using direct knowledge of the function ¢ rather than
employing the above process for the specific sample problems provided in Sections 3.2.1,

3.2.2. Now we define the asymptotic approximations ¢y, uf, , according to the expressions

dn(z,e,t) & Z €™ dm(z,t), o(z,t) = go(t), TEP, t#0 (3.2.13)

=0

uy o(z Z an €™ dn(z/e,e,n), TEQ (3.2.14)
neZ\{0}
Because ¢, and, thus, u§ , do not depend on € we subsequently denote ug , by uo,.. We observe

here that for the homogenized problem (H), discussed in the introduction, i.e.,

0?
~ A5 ()

= fe(z), —oc0o<z <00 (3.2.15)
¢ = go a.nd Ug oo = Ug € H? (Q) is the solution. The utlhty of the asymptotlc approximations,
‘(3.2.14) is established in the followmg theorem, of. BAKHVALOV & PANASENKO (1989), |
which is restricted to the context of elliptic boundary value problems of the type (3.1.1) with
high regularity, i.e., fe € C®(R), a; € C®(), 1 <1 < m. In the statement of the following

. def
theorem we employ the notation uy = uf .

Theorem 3.2.2. The asymptotic approximation u$, exhibits the following properties, for
[>1,

55 ot/ G2 @) = fer " autae), afe ¢ Gted (3:2.16)
[uivlzye =0 (3.2.17)

[a(a) 85‘;( )., =" 00 (3.2.18)

/C s, () dz = 64(e) (3.2.19)

where |0 (z,€)| < ¢, |02(z,€)| < ¢z, |03(z,€)| < cs(a)e* for any @, and the positive con-
stants a, ¢;, C2, cs(a) are independent of . Then the function u$, is 2-periodic and has the
approximation property

|lu — usy; H*(C)|| < CeN (3.2.20)
where C = (—=1,1) and C > 0 is a constant independent of . |

Theorem 3.2.2 will be used later, in sections 3.4 and 3.7, to justify the computational results
obtained. We observe that conditions (3.2.17), (3.2.18) become redundant if a € Cg,(P).
Before applylng the homogemzatlon (3 2.1) to problems of low regularity, the behaviour of

such techniques will be mvestlga.ted computationally for specnﬁc problems with smooth data.
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3.2.1. Smooth Problems: Homogenization and the Classical Taylor Series.
It will be demonstrated below that the homogenization described in section 3.2 coincides

precisely with a classical Taylor series expansion of ¢(z,,t) when a € Cg;,.(P) and that, even

" " in this favourable circumstance, ¢ car have an infinité number of singularities which are not

isolated and, therefore, in the classical context, cannot be represented in the neighbourhood
of any such singular point by even the more general Laurent series expansion. Thus assume
that a € Cg,,.(P) and consider the equations (3.1.22) and (3.1.23) that one obtains for the
determination of the arbitrary functions c, d with (g, t) ¢ H, where H, is the hyperbola
et=2mn,n€ 2

c(e, t) BQ1) +d(e, t) (1 — ) = -iitA(l, e,t)  (3.2.21)

cle, 1) (BO)+ a_(l(ﬁ é (1-6) +dle, ) (L= e) = CA(Let)  (3:2.22)
and the mappings A, B, 0¢/0z are specified below
. 1
g—f(m,e, t) = (ezA(a:,e,t) + c(e, t) (t_z(_lxj ~ite B(a:)) —ited(e, t)) —iter 4 wm (3.2.23)
T itez z
A(z,e,t) = /0 % dz, B(z)= /0 @) dz (3.2.24)

Thus, solving the equétions (3.2.21) and (3.2.22), the functions ¢, d are determined b.y the
following expressions.
i€ 1

Then, substituting the values (3.2.25) for the arbitrary constants into the general solution,

c(e, t) =0, d(e, t) =

(3.1.25), one obtains the following identity

; z ictz ; —itex 1 itez
d(z,€,t) = %e—’”’ /0 Z(z) dz + %;t /. Z(z) dz (3.2.26)
The solution ¢(z, e, e) is then defined everywhere in the (g, t)-plane except on the hyperbolae
Ha, n € Z\{0} where, generally, |¢(z,¢, t)] = oo as dist((, t),H,) = 0. Furthermore,
substituting the Fourier series representation of the 1-periodic function 1/a, i.e.,

1/a(z) = Y cme™™™, z€P

mezZ

into relation (3.2.26) for ¢, one obtains the relation

; T _ictz —itex —ilex
e _; e (4 Ee Cm
s = e |
0

d
t a(z) Zt t? + t m¢oet+27rm

Thus, with @ & R2\H, % & Unez\{o}Hn it follows that ¢(z,e,e) € C~(O) and therefore

one can employ the representation, for z € P, [t| > 0, € € B(0,r,) & {e € R: [e| < .},

¢(z,€,t) = Z %'- W(m,e,t)’e_ + FN' gN}?(z £(e), t) &(e) € B(0,r) (3.2.27)

def

= TN(.’L‘.E t) + Rn(z,¢,1)
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where r, < dist ((0,t), H) and the remainder, Ry(z,¢,1), is written in the classical differen-
tial form. We observe that, because ¢(z,,9) € C°(0) and ¢(e,¢,t) € Cx.(P), it is clear
that the N** partial sum of the series, Tx(e,¢,t), belongs to Cge.(P) and, from the defining
relations (3.2.3)—(3.2.6) and the smoothness of the coefficient function ‘a, it is evident that
Pnle,t), dn(e,,t) € C2.(P), wheren, N € N. It is demonstrated next that, in a neighbour-
hood of € = 0, the classical Taylor series expansion, (3.2.27), coincides with the asymptotic
expansion, (3.2.1), obtained from the homogenization described in section 3.2, in the sense
that both converge to the identical function in the H!(P) norm topology. The property of
holomorphism proposed in Conjecture 3.1.1 implies that

?2(& &t) = i mle" "¢(z,t), meN (3.2.28)

n=m
with convergence, again, in terms of the H*(P) topology, i.e.,

am 0
las_j(.’e’ t) — 3¢N( g,t); H'( ?)ll =0 (N -5 )
where ¢y is defined in theorem 3.2.1. This is established as follows: Let (eo,t) € G (cf.
Conjecture 3.1.1), €9 # 0, then representation (3.2.13) converges in H!(P) for |¢| < r; where
r¢ < |€o]- This is immediate from the following inequality, the Weierstrass test, and the ratio
test

e (e, 8); B (P = |— ez ¢,.(-,t);H1(1>)n (3.2.29)

€o

<Mod*, a=—<1 (3.2.30)
|€0|

where M > 0 is a constant satisfying ||eJ¢n(e,t); H*(P)|| < M, n > 0. Indeed, the con-
vergence of the series (3.2.13) in H'(P) guarantees the existence of such a constant, M.

However, it is then evident that

lles ™" ¢n(e,2); H' (P)]

Mo ! (3.2.31)

where, from the ratio test, the upper bounds of both (3.2.30) and (3.2.31) yield convergent
series. Thus, the Weierstrass test shows that the termwise derivative of (3.2.13) converges
in H(P) whenever the power series (3.2.13) does. Let (g,1) € G be an arbitrary point such
that |¢] < r, and let p > 0 be any value such that |[¢|] < p < . If A € C is an arbitrary value,
for which |h] < p— |e| = 6 (8 > 0), then |¢ + h| < p and, formally,

¢(z,e + h, t’Z — ¢(z, 6,'t) _ gﬂ”(h) bu(z,t) - (3.2.32)
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where
Ba(h) = (H—’Z);E- (3.2.33)
=(€+h" T +E+h)"2e+...+E", n>1- - (3:2.34)
— ne™ ! (h > 0) (3.2.35)

Thus the functions (., n > 1 are continuous within the domain |h| < 8. However, it follows
from (3.2.35) that |B,(h)| < np™! and, therefore,

n

18 (R) $als, t); H (P < Mpmt (3.2.36)

l€ol”
Therefore, by the Weierstrass and ratio tests, the sum, (3.2.32), of continuous functions

h > Bn(h) ¢n(z,t) converges uniformly with respect to h, |h| < § in H'(P) and, therefore,

%?(sc, &) = lim Hae+hy t,)z —d@et) (3.2.37)
= Z IBn(O) d’n (III, t) (3238)
o= ins.’“lqb,,(x, t) . - (3.2.39)

Clearly, this argument can then be repeated for derivatives with respect to € of any order,

m 2> 1, and thus, with € = 0, leads to the following identity

¢ = m! $,n(z, 1) (3.2.40)

Consequently, the asymptotic expansion (3.2.1) becomes

_ e )
¢($757t) - ; m 55(:37 £, t)

(3.2.41)

e=0
which is, evidently, the Taylor series expansion of ¢(z,e,t). Now, if (¢,t) € H, for some
n € Z\{0} then equations (3.2.21), (3.2.22) become linearly dependent and yield the solution

e A(1,¢,t) . .
= ——" 242
c(e, t) i B d an arbitrary function of €,¢ (3 )

Thus, for (g,t) € H,, n € Z\{0} the solution ¢ is determined, up to the function d, by the

relation

1€ _iyn [°€°H e A(l,e,t) _i /’ 1
== ictz d = wEelT —d 2.
&(z,¢€,t) e /0 @) z+it—B(1) e 20 z (3.2.43)

However, it has already been demonstrated in Section 3.1.1 that the solution, ¢, of the weak
problem (3.1.9) possesses the following property, for z € P, € > 0, |t| > 0,

¢(z,¢,t) = ¢(z,¢,—1) , (3.2.44)

S RG,et) = Rig(me,~0), S e t) = - S(d(ze,—1)  (3.2.45)
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Property (3.2.44) then implies, in the context of the current problem, that
d(e, t) = d(e, —t), (e, t) € Hay n € 2\{0} (3.2.46)

If it occurs that (g, £ ty) € He ,,,,; kel (s) C N where I(¢) is an index set (varyiﬁg with e)

then the weak solution of (3.1.3), u, so obtained can be written

ut(T) = Z an €"* ¢(z /€, €,n7)

n€eZ\{0}
+ Z [a_k e ¥ d(e, —km) e*™* + ay, ¥ d(g, k) e"“”-‘i]
kel(e)
= Z a, €™ p(z/e,€,nm) + Z ax [d(e, k) — d(e, _]W)] (3.2.47)

where it has been observed that, because of the antisymmetry of the function f¢, a, =
—a_n, n € Z\{0} and, depending on the nature of the point (,%), ¢ is given by either of
the relations (3.2.26) or (3.2.43). If the coefficient a is symmetric about z = 1/2 then the
boundary condition u¢(0) = 0; expression (3.2.43); the property $(¢(0, ¢, km)] = 0, k € Z\{0}
(this follows from the infinite series form of (3.2.26) obtained by expanding 1/a as a 1-periodic

Fourier series) imply the following identities

w(= S ak[qS(O,e, kr) — ¢(0, e, —k7r)]+ 3 ak[d(e, kr) — de, —kw)]

keEN\I(e) kel(e)
= Y 2ia:S[0,6,km)]+ > 2ia, S[d(e, kn)]
kEN\I(¢) kel(e)
= ) 2iaSd(e, kn)]
k€l(e)
=0 (3.2.48)

However, the function d and the coefficients ax, k € I(¢) are independent from one another;
this indicates that, for (e,t) € H, d(e,t) € R or, equivalently, d(e,t) = d(g,—t). Of course,

the symmetry properties of f; and ¢ imply that u® can be rewritten in the following fashion

NgE

u(z) =) b, [e""i d(z/e, ¢, 'mr)] (3.2.49)

1

n
where b, = 21a,, n € N are the Fourier coefficients of a sine series expansion of fc.

Thus, if one maintains the proviso that the relation (3.2.48) is satisfied, then the choice
of the arbitrary constant, d(e,t), is inconsequential insofar as it has no influence upon the
solution u¢. Finally, if (e,t) € H,, i.e., t = 2an/e, n € Z\{0}, then, selecting d(e, t) = 0, the
cell function ¢ is given by (3.2.44) and becomes a quadratic in € along the hyperbola H,,, i.e.,

o . [T e ie? A(l,e,t) 71
) = — —2nnzi dz — 1+ —2nnzi
¢(.x’€’ ) omn /0. a(z) " 9 B(1) ¢ /0 a(z) d.z, (E’t.) € #a

(3.2.50)
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One can then employ Taylor series expansions along the hyperbolae, #,,, which are equivalent
to the asymptotic approximations derived from the power series (3.2.1), i.e., the homogeniza-
tion. However, the form (3.2.50) of ¢, for (5 t) € Ha, suggests that (3.2.1) is then, simply, a
finite polynomlal The apphcatlon of these results to a boundary value problem of infinitely .

high regularity are illustrated in Section 3.4

3.3. Computational aspects of the asymptotic approximations u ,, N,£ € IN.
We now want to make some comments regarding the computational aspects of our approach.
We focus, in particular, on the role of convergence, as £ (Fourier series truncation as in
(3.2.14)) and N (Taylor series truncation as in (3.2.27)) tend, respectively, to infinity and
how this affects the application of the asymptotic approximations uj ,, N, £ € N.

We demonstrate in Theorem 3.3.1, below, how the formulae provided in Theorem 3.2.1 for
the terms, ¢n(e,t) € H,,.(P), n > 0, |t| > 0, of the homogenization (3.2.1), can be rewritten
in an alternative form in which the functional dependence on the variables z, ¢ of these terms
is separated. We show that this property is important because the homogenization (3.2.1)
can then be determined more efficiently by solving problems, cf. (3.3.3), which are analogous
to the t—-dependent formulations (3.2.8) but which do not depend on the unbounded variable
t. Thus, we show how the expansion (3.2.1) can be constructed more efficiently when the
computations are based on Theorem 3.3.1 rather than Theorerm 3.2.1. The details of this

alternative representation for ¢,, n > 0 are provided below:

Theorem 3.3.1. The functions ¢(e,t) € H}

per

(P), t #£0, n > 1, defined in relation (3.2.10)

of Theorem 3.2.1, can also be expressed in the form

n-1
pn(z,t) = (zt) go(t [Zn, Xn—i(T) +n,,], TEP,t#0 (3.3.1)
j=0
where kg 4 1 and the constants kn, n > 1 are given by the relation
n—1
= =t200(t) D 55 [ = Pilnti—ss 1] + Balns, 11 (3:3.2)
Jj=0

Furthermore, Xo = 1 and Xn € H;e,,o('P), n > 1 is defined as the solution, over the field R,

of the problem
Bo[xnrv] = O (v), v € Hppro(P) (3.3.3)

where ©™ € BL(Hzero(P) % H!,.0(P); R), n > 1 is defined in relations (3.3.4), (3.3.5).
Proof Define Xn € Haero(P)ym 2 1 as the solution of problem (3.3.3) where, for v €
Hp,po(P),
ifn=1 0OM() = -d,1,9 (3.3.4)
ifn > 2, @<")( ) & —®1[xn_1,9] + DalXn-2,7] (3.3.5)

where X | = 0 Xo = 1 and, for u, v € H,,, ,(P),
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&, [u,v] & /P a(z) (u(m) Z—;(m) - %(x) v(:l:)) dz (3.3.6)
®,[u,v] d=°f/ a(z) u(z) v(z) dz (3.3.7)
P . Lo

We now substitute expression (3.3.1) into relation (3.2.4) and, employing the functions xx €

H},.o(P), k > 1 defined in problem (3.3.3), we deduce the following equations
q)0[¢1(.7t),v] = —Ql t. [g()(.t_)'iv]
= '—go Zt @1 [1 ‘U]
= go Zt <I>0[xl,‘u] (338)

Thus, ¢1(e,t) € H},.(P) can be written in the form (3.3.1). Now substitute relation (3.3.1)
for ¢, into (3.2.5) thereby obtaining the equation, for v € H,.(P),

Do[p2(e,t),v] = / ) dz — go(t) [it ®1(t)[x1,v] + it k1 @1 (2)[1,v] + 2,(2)[1, 'v]] (3.3.9)

Let v = 1 in this equation and note that ®o[v,1] = ®,(¢)[1,1} = 0, v € H},.(P). The following
identity for go is thus obtained

goft) = 72— Bufxs, 1] + <1>2[1,A11]'~’ ~ (3.3.10)

However, if v € H},, ,(P) then relation (3.3.9) becomes

Bolga(s,8),0] = —go(t) it &1 (B)xs, o] + it sy B (B)[L, 0] + D21, 0]

= (it)go(t) [— @1[x1,v] + ‘I)z[la"]] — (it)*go (t) 51 ®1(1, 9]

= (it)?go(2) Z k; Po[x2—j, 7] (3.3.11)

=0

Comparing relations (3.3.11) and (3.3.1), it is now evident that ¢1, ¢, have the form specified
in (3.3.1) where k1, K, are constants, which we have yet to demonstrate, are determined by
(3.3.2). We now assume inductively that, for some k > 3, k, € R, ¢,(e,1) € H,, (P), n <
k — 3 are given by (3.3.2), (3.3.1) respectively and ¢,(e,t) € H,,, (P), n > k — 2 has the
form (3.3.1) but the constants k,, n > k — 2 are unknown. Thus, substitution of (3.3.1) into
(3.2.6) yields

Bolda(e,1),) = — (it)*go() [ S 53 81 ()15 0] + s <I>1(t>[1,v]]

=0

s (3.3.12)
— (it)" 2 go(t) [ Y 5 ®a(t)[Xn-2-7,9] + Kn2 ‘I’z(t)[l,v]]
j=0
Setting v = 1 in (3.3.12) yields the equation
n—-3 K
42 | — . i _ Pn-2 — .
¢ ;n, [ B1[Xno1-j 1] + Ba[Xn—2-3, 1]] =0 (3.3.13)
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Thus, solving (3.3.13) for £,_, and shifting the index n — n + 2 we obtain relation (3.3.2)
for k., n > 1. However, with v € H},, (P) equation (3.3.12) becomes

n—1

Do[¢n (e, ), 0] = (it)"go(2) Z Kj [ = &, [Xn-1-50] + BaXn—2-5, v]]
= (it)"go(t) i K5 Po[Xn—j, ] (3.3.14)

Thus, comparing relations (3.3.14) and (3.3.1), it is now evident that ¢,(e,t) € H.,.(P), t # 0
is uniquely determined by expressions (3.3.1), (3.3.2) and satisfies (3.2.3)—(3.2.6). [ ]
If we substitute the expression (3.3.1) for ¢ into the definition (3.2.14) of the asymptotic

approximation ujy ,, N > 0, £ € N then we observe that the following relation arises

uly (T Z a, """ go(nm) Z an €% $1(z /e, nm) +

n€Z,\{0} ﬂEZt\{O}

Z an €™ Py(z/e,nm) + ... + €V Z a, e gy (z /e, nr)

nezZ,\{0} n€Z/\{0}

_uu(z)n[xl(z/e) (@) + Guule)] +* [ala/e) %

(;" (z) + Gzlg(m‘)]
4o te [XN(:B/E) %3’—‘(3;) + GN,,(x)] (3.3.15)

where, clearly,

UO,t(-'L') g_éf Z an emrzi ) Gk oz ef Z a, e mr:ng (nﬂ_), n def Z K Xn_] + K
neZ\{0} neZ,\{0} j=0

and, as commented above, 1 (= uo,c0) is the solution of the homogenized problem

32'u.0

or?

(z) = fe(z), —0<z<00 (3.3.16)

where A is the homogenized coefficient defined in relation (3.2.11) and we assume the level of
regularity fc € H°(C)\H*(C). The coefficients, an(fc), n € Z\{0}, of the Fourier expansion
of fe will then satisfy the asymptotic relation Y ,¢ 2\(0} [an(fc)|* < o0, cf. Theorem 15.14 of
CHAMPENEY (1987). It now follows from Theorem 3.3.1 that g, (t) = O(|t|*?) (|| = o)
and, therefore, ¢y(e,t) = O(|t]*~2) (|t| — o0). However, from these asymptotic relations,
we can now deduce the convergence behaviour, as £ — oo, of the functions Gy, k > 1 and

O*ug ¢ /0z*%, m > 0, as follows
(1) The sum G, converges uniformly, as £ — 00, to the limit function G . This follows

immediately from the asymptotic inequality |a.(fc) e"™*g, (n7)| < C |n"la.(fc), z €C,n €
Z\{0} and, from Hoélder’s inequality,

D In an(fe)l < 2{n Yoz LM - [{an(fe) bnpis L2(N)|| < oo.

neZ\{0}
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Now, we consider the well defined function h obtained from the following series expression

h(z) = Z annie" g, (nm), zE€R
neZ\{0} —

The asymptotic realtion ng;(nt) = O(1) (|n|] — o0) implies the existence of a positive

constant K > 0, independent of n, such that, given fo € L{°(R) and Theorem 15.11 of

CHAMPENEY (1987),

Z |la,, nwi gy (nm)|> < K Z lan)? < 00
nezZ\{0} n€Z\{0}
However, according to Theorem 15.10 of CHAMPENEY (1987), h € £Y°(R) and, furthermore,

it then follows that G o, can be expressed as an indefinite integral of h, i.e.,

Gloo(-']c /h dz+ Z angl(nﬂ-)

neZ\{0}

where Y ..c z\{0) @ 91(n7) is a constant. Thus, from Theorem 15.18 of CHAMPENEY (1987),

it is correct and valid to write

0 : " ' 07 om

gl Z an e""“gl(mr)] = Z %[ e” "gl(mr)] z€el
neZ\{0} nezZ\{0}

(2) If the Fourier coefficients, a.(fc), satisfy 3 cz\(0) |n(fe)|? <00 = 1 <p < 2 then the

sum, G, ¢, must converge non—uniformly to some discontinuous, locally integrable 2-periodic

function. However, uniform convergence is a necessary condition for the valid termwise

differentiation of a series of uniformly continuous functions, thus, for almost all z € C,

[ Z a, e g, (nw ] # Z [ eV g, (mr)] (Pointwise limit)
neZ\{0} 'IEZ\{O}

(3) The sums Gy, ¢, k > 3 are divergent as £ — oo — unless g = 0, k > 3 — because the general
term, F,,(r) = a, e" g, (n7), has the property |F,(z)| /4 0(|n| = oo) for all z € C.

(4) From the observation that 0™u,(2)/03™ = 3_ ¢ 2,0 (0} @n (nmi)me™™* Py (n) it is evident
that, employing the same arguments used in (1) above, the sum of the derivatives of order m
converges uniformly, as £ = oo, to the corresponding derivative of ug o provided 0 < m <1.
However, as m increases to 2 the type of convergence weakens to the non—uniform pointwise
variety and for m > 3 the sequence of partial sums of derivatives diverge.

Thus, for fo € H°(C)\H*'(C), the approximations uj , provided by relation (3.3.7) are
well defined for 0 < N < 2. However, the termwise derivative of the partial sums uy ,, £ € N
provide valid approximations of the derivative of the limit functions ujy o Ul oo 0TIy for
0.< N < 1 Although it is clear that the partial sums which define these asymptotic

approxxma,tlons Uy 0 £ N < 2, ¢ € N, converge, with the type of convergence specified
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in paragraphs (1)-(4) above, they are derived from a representation of ¢(z,e,e), z € P
which is valid only within a neighbourhood G C €2 of V = {(e,t) e R* [et| < 2m, |t| > 0},
cf. Conjecture 3.1.1. Therefore, based on the properties of ¢ furnished by Conjecture 3.1.1,
" we propose the followmg highet order asymptotic approzimations uN Mo N>221<M<
2,LeN

W@ E Y ane™™gy(z/e,enm) + Y e €@y (z/e,enm)  (3.3.17)

nEZ.,.(g)\{O} nEZl\Zf(:)

where 7(¢) £ max{n € N | n < 2/e}. It is apparent from the definition of the approximations
i pr¢ that the type of convergence, as £ — o0, is dictated by the choice of M. Indeed,
the comments regarding u§, above provide the necessary information to deduce how the

approximations 4y s, converge as £ — co.

3.4. Sample problem: Smooth Data, a € C*(P), fc € C*(R).
Let a(z) = 1/(1 + cos(2nz)/2), cf. Figure 3.4.0, f(z) = sin(nz) then the boundary value
problem (3.1.1) becomes: Find u¢ € C*(Q) N C°(Q) such that

o
dr \1+ 1 cos(2rz/e) Oz
u(0) =v°(1) =0 (3.4.2)

(:z:)) = sii(nz), z€Q=(0,1) (3.4.1)

where a; = 2/3, a; = 2 (cf. (3.1.1)). Because f is 2-periodic and antisymmetric the
extension f¢ described in relations (3.1.4) and (3.1.5) is automatic, i.e., fe(z) = f(z), z € R
and therefore problem (3.1.3) is as above but with R replacing 2 and with the boundary
conditions (3.4.2) omitted. The cell problem (3.1.19)—(3.1.23) then becomes

a 1 a 1. 4] o2 itex
—a—z(max( * ¢($6t))) e2e™®, 0<z<1,e>0 >0 (3.4.3)
$(0,¢,t) = ¢(1,¢,t) (3.4.4)
% (26,0 3% &9 (3.45)

The equations (3.4.4) and (3.4.5) are linearly independent everywhere in @ = R?\(H_; UH,)

and, solving this problem in O, one obtains

—8n? + €2¢?(2 + cos(2nz)) — 2ient sin(27z)
2t2(e2¢? — 47?)

¢($a & t) = (346)

which is then, evidently, singular only on the hyperbolae H.; where ¢ is then specified as

follows

¢(z,¢6,t) = ¢(z,¢,n7)

= 5r5 (16(1— e717) 4 2(e1e —g7ite) yr™ 2 1) =41 (347)
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a(x)
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Fig. 3.4.0. a(x) = 1/(1 + cos(2pix)/2),0<x< 1.

where, in this instance, condition (3.2.46) is explicitly satisfied by the choice d(e,t) = 0. How-
ever, for this problem, ¢ < x(Q) =1 and ¢ is restricted to the circle C, = {t e R : |t| = =},
consequently, ¢ is analytic within the domain of the cell problem z € P, 0 <e < 1, t € C,.
Thus, observing that € = 1/n. < 1,n, € Nand a; = —a_; = 1/2i,a, = 0, n # %1, the

analytical solution, u¢, is

u(z) = a_1 e P(z /e, e, —T) + a; €7 P(z /€, €, ) (3.4.8)

_ sin(2/e = )7z + sin(rz)  sin(2/e + 1)7z
T 4n2(2/e—-1) 2 4n2(2/e + 1)

However, employing simple trigonometric identities and power series expansions for |e| < 2

(3.4.9)

the solution, u®, is rewritten in the following form

4 6

sin(rz £ . e e €
ui(z) = _7r(2—)_ + ) sin(27z/e) cos(nz) (1 + 5 + 7 + 2 +.. )
2 2 g4 e (3.4.10)
= cos(2nz[e) sin(mz) (1 + 5 + o + 7 +.. )

It is evident from relation (3.4.6) that the function ¢(z,e,e), z € P belongs to C>*(0).
Thus, computing the Taylor series expansion up to 6" order asymptotic terms, one obtains,
for (e,t) € B(0,2/,£,), the expression

e, t) =L 4o LS0ETT) o cos(mz) |, itsin(2na)
2 47t 872 1673 64 "
— ¢t tz_cos(lr_ac_) + &5 it® sin(27x) _ g8 t4 cos(27z) +OE), zeP o .

32m4 6475 12876
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However, we can now confirm, for this problem, that expansion (3.4.11) and (3.2.1) are
identical. We compute the solution, x,(e,t) € H},, o(P), of problem (3.2.8), k = 1, to be
x1(z,t) = it x1(z) where xl( ) = sin(27z) /47 is the solutlon of probIem (3.2.12) and from
(3.2.9), (3.2.11), the homogenlzed coefficient is therefore glven by '

A=1/(3:(t)bxa (e, 1), 1] + B2(H)[1L, 1))

=/ alz )(1+Q&( )) de =1 (3.4.12)
P
Thus, from relations (3.2.10), (3.2.11),

%@=%,up0 (3.4.13)

Furthermore, solving problems (3.2.8) for x(s,) € H},. o(P), k > 1 we determine

(@)% d*lsin(2nz)
Xxx(z,t) = 92k r2k—1 dzk-1 ’

Now, noting the above expression for x(e,t), k > 1 we calculate

T€P,|t|>0 (3.4.14)

Ql(t)[Xk(‘,t)a 1] + @2(t)[Xk—l (.a t)a 1] =

it olz) (it)k . d* sin(21rx)ﬁ et [ alz) — (it)F1 dk=2 sin(21rm)ﬁ— »
= tA(ﬂ ()d+tL() @) d

92k r2k—1 dk 92(k—1) r2(k-1)-1 dzk-2

() k sin 27ra;) sin(27z) ——
= T 92kg2k-1 |:/ a(z) (a:) d:z—‘/pa(:l:)‘d—k v(z) dz
~0 (3.4.15)

Thus, observing formulae (3.2.9), we deduce that g; = 0, k¥ > 1 and, therefore, from (3.2.10),

the terms, @i, k > 1, of the homogenization (3.2.1) are given as follows

it)k  d¥lsin(2nz
$u(z,1) = o(t) g I e p >0,k 21 (3.4.16)

It is now evident that the functions in (3.4.16) coincide with the corresponding terms of the
Taylor series expansion (3.4.11). This demonstrates, for this problem, the equality of the
expansions (3.2.1) and (3.2.27) as proven generally in Section 3.2.1. Indeed, within the open
ball B(0,2/m,£,), the power series expansion (3.2.11) of ¢(z, e, ) is unique and, therefore,

we expect this result. For 0 < N < 2, we now employ the approximations

~n(zZ, &, t) Zscﬁnzt

n=0

1 1
= +e ﬁ sin(27z) Ty, (g,t) — 628—7r—2 cos(2nz) T, (,8)  (3.4.17)

Z an €™ dn(z /e, €,n7)

nezZ\{0}
_sin(mz) e L o e
=3 +47r2 sin(2rz/e) cos(nz) Tpy, (€, ) oz cos(27r:z;/6)sm(7ra:) ,(e,m) (3.4.18)
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where
def 52t2 €4t4 €2mt2m
Trn(e,t) =1+ gig2 T i Tt @nm
and (1) iny =my =m—1if N'=2m, (2) m, =m;my=m-=1if N =2m+ 1. The following
relation for the homogenization error is simply deduced from expressions (3.1.7) for u¢ and

(3.2.14) for uf ,, 0 < N < 2,

(3.4.19)

(ug — uly )( Z 2z\s[a e"™ (¢ — dn)(z /e, E,mr)] z€N, €>0 (3.4.20)
neN,

With this expression, we have computed the homogenization errors in both £,(2) norm
and H'(Q) semi-norm topologies with the analytical expressions for ¢, ¢y, 0 < N < 2,
determined above, used to compute the errors ¢ — ¢n. The integrals are approximated
numerically by splitting each integral over Q into a sum of integrals over subdomains Q; C
2, ¢ € N and then applying to each of these integrals the 5~point Gauss-Legendre quadrature

formula

[ @)z =Y Hirton) + B() (3.421)

where the quadrature points, z,, 1 < k < 5, are determined as the roots of the Legendre

polynomial P;(z) = (63z® — 70z® + 15z)/8, i.e.,

35+ 280"

zk=0,i[ = ] , 1<k<5 (3.4.22)

and the quadrature weights, Hx, 1 < k < 5, are defined by the identity

1-—-
O=2) o ck<s (3.4.23)

o= BB

where F; is the Legendre polynomial of degree 6 and, for v € C%(—1,1), the quadrature error
is Es(v) = 134©®(£)/756-6!, —1 < £ < 1, cf. HILDEBRAND (1987), pages 414-420.

Table 3.4.1: a € C®(P), fc € C*(C)

Cell Size, e lu® — uo; L2(Q)]| |uf — ug; H(Q)]
0.5 6.96263411(—3) 7.95774914(—2)
0.25 3.24157818(—3) 7.95774914(—2)
0.125 1.50245348(—3) 7.95774914(—2)

0.0625 7.92732513(—4) 7.95774914(—2)
0.03125 3.95930046(—4) 7.95774914(—2)
0.015625 1.97911105(—4) 7.95774914(—2)
' Ofe) oQ)
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Table 3.4.2: a € C®(P), fc € C*(C)

Cell Size, € lut — u$; L£2(2)]] |us — u§; H'(Q)|
0.5 1.74065853(—3) 1.98943729(—2)
0.25 4.05197273(—4 " 0.94718643(—3)

0.125 9.95283422(—5) 4.97359322(—3)
0.0625 2.47728910(—5) 2.48679661(—3)
0.03125 6.18642103(—6) 1.24339830(—3)

0.015625 1.54618051(—7) 7.95774914(—4)
O(e?) O(e)
Table 3.4.3: a € C®(P), fc € C*(C)

Cell Size, € flus — us; Lo(Q)]| |us — u§; H(Q)]
0.5 4.35164632(—4) 4.97359322(—3)
0.25 5.06496591(—5) 1.24339830(~3)

0.125 6.22052139(—6) 3.10849576(—4)
0.0625 7.74152850(="7) 7.77123940(—5)
0.03125 9.66628300(—8) 1.94280985(—5)

0.015625 1.20795400(—8) 4.85702462(—6)
O(e?) O(e?)

The graphs illustrated in Figures 3.4.1-3.4.6 clearly reveal the high accuracy of the asymp-
totic approximations, ¢n, 0 < N < 2, of ¢. Indeed, it is difficult to distinguish between
the various approximations and the weak solution, ¢, of problem (3.1.9). Thus, although
graphical in nature, the figures demonstrate the utility of the low order asymptotic func-
tions, ¢n, 0 < N < 2, which provide accurate approximations of ¢. However, we observe
the disparity, characterized by a spike, between the asymptotic approximations and ¢ at the
discrete points ¢ = + 27 /e where ¢ becomes singular and ¢n, 0 < N < 2 do not.

The results illustrated in the tables 3.4.1-3.4.3 clearly fulfill the error estimates provided
by theorem 3.2.2, i.e.,

”us_uiv;Hl(Q)”S CIEN, N=0,12,...
Furthermore, they also suggest the following £»(f2) error estimates, for N =0,1,...,
|u — uy; L2(Q)]| < Cp eV (3.4.24)

where C;, C, > 0 are constants independent of €. Further, the results imply that one will
benefit from the inclusion of additional asymptotic terms in the expansion (3.2.1) or, equiv-
alently, (3.2.14), with approximations of ever greater accuracy in both £,(Q2) and H()
norms. Indeed, tables 3.4.1-3.4.3 illustrate precisely the successive improvements obtained

by including higher order asymptotics where, in this instance, the coefficients are smooth.
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Figure 3.4.1
74
6 —a— phi
—&— phi0
. —e— phit
5 —8— phi2
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Figure 3.4.2
-

Re[phi(0.6,0.25.t), phin(0.6,0.25.1)]

T T T T [ T T T T [ T T T T T T T T T [ T I T T [T T 71T
0 5 10 15 20 25 30

t

Graphs of the real or imaginary parts of ¢(0.6,¢,t), ¢n(0.6,¢,8), e =1/2",1 <n <3,0<
N <2,and 1 <t < 30. The curves are distinguished by the symbols, e.g., A = ¢,0=
¢01*=>¢1,M=>¢2- o ' ' . '

HOMOGENIZATION 53



Sample problems: 3.4

Figure 3.4.3
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Graphs of the real or imaginary parts of ¢(0.6,¢,t), ¢n(0.6,€,t),e =1/2",1<n <3,0<
N <2,and 1 <t < 30.. The curves are distinguished by the symbols, e.g., A = ¢,0=

¢Oa * = ¢11 N.::} ¢2'
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Figure 3.4.5
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Graphs of the real or imaginary parts of ¢(0.6,¢,t), ¢n(0.6,¢6,t), e =1/2",1<n <3,0<
N <2,and 1 <t < 30. The curves are distinguished by the symbols, i.e., A = ¢,0=

¢0) * = ¢1a.[><1=> ¢2-
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This is explained by the following identities for the errors u® — u%,, 8(u¢ — u%)/dz, obtained
directly from the above expressions for u®, uj,
g+t S g .
uf(z) — ufy(z) =SNFisE (sin(27m:/£) cos(mz) — 3 cos(2mz /e) sin(ﬂz)) S

W(z) 225_1:; (1 - g;) cos(2mz /) cos(mz) S

where S = (1—¢/2)7! = (14€2/22+¢*/2% +...). From these error equations the asymptotic
error estimates (3.2.20), (3.4.24) now follow immediately with C; = 2/m, C; = 3/2n%. The
behaviour of the results tabulated in Tables 3.4.1-3.4.3 are also explained by these error

identities.

3.5. Homogenization for Problems with Piecewise Smooth Data.
It has been shown above that boundary value problems, such as (3.1.1), with smooth coeffi-
cients lead to homogenizations, (3.2.1), which are nothing more than classical Taylor series
expansions about an appropriate point in the (¢, t)-plane that converge in a generalized sense
(compared to.the classical concepts of pointwise or uniform convergence of formal power series
expansions). By contrast we now consider problems of the type (3.1.1) but with non-smooth
data; actually, piecewise smooth. We observe that the location of the singular points of
¢(z,e,9), € P then depends on the coefficients and cannot, therefore, be easily determined
for an abstract problem of this type. Thus, only the general characteristics are examined.
Let a(z) = ai(z), € P, | € N,,, where P = Uien,, Pi, PiNP; =B if i # j and q; €
C'(Py), 1 <1 < m but a ¢ C°(P). The weak formulation (3.1.9) is equivalent to (3.1.19)-
(3.1.23) and the solution is given by ¢(z,¢,t) = ¢i(z,¢,t),z € P, 1 € Ny, e > 0,[t| > 0

where

z itez

dz + ci(e, t) e'““/ L

dz + di(e, t) e~z 3.5.1
e et aE (3:5.1)

by = e |

with the boundary and transition conditions (3.1.20)-(3.1.23) determining the arbitrary func-
tions ¢, di, | € N,,. However, the resulting system of equations for these constants can be

written

Ae, t) w(e, t) = 7(e, t) (3.5.2)
where the column matrices 7, t), w(e, t) € C?™ are as follows

wle,t) = [er(et), dilet), -.r ena(6t), dmos(6,), cnlert) dmlest)] (359

. T
(e, t) = [% Ay (z1,6,1), 0, ..., %A;n_l(zm‘_l,e,t), 0, %A}n(l,é, t), 0} (3.5.4)
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and the matrix A(e,t) € C2™2™ has the coefficients specified in the identity below

Bi(z,) 1 0 -1

Alet) = Bpi(zma) 1 0 -1
1 0 -1 0

0 &t o0 0 0 0 0 0 —B,(1) -1

| &t 0 0 0 0 0 .. 0 0 -1 0|

(3.5.5)

Rows 1,...,2m — 2 represent the interface conditions (3.1.20), (3.1.21) and rows 2m — 1, 2m
represent the boundary conditions (3.1.22), (3.1.23). Furthermore, after examining (3.5.5),

we observe some additional properties of the matrix function A below:

1) If (e,8) € H & UnEZ\{O}Hna n € Z\{0} then rows 2n,1 < n < m of A(e,t) are linearly
dependent eg, > r2n = Tom where r,, 1 < n < 2m is row n of A(e,t) and, otherw1se,
for (e,t) € O = o R?\#, the rows of A(e,t) are hnea.rly independent.

(2) The characteristic function, p(A(e, t)) = |A(e, t) — (e, t) I|, has the quadratic form
(A1) =me* ™ + e + s (3.5.6)

where v, € R, 1 < n < 3 are constants which are independent of ¢,¢. The characteristic

equation, p(A(g, t)) = 0, thus implies the identities

i€ v 1 1
e t=___2___ /73_4,7173, _l+_\/7§—4fylfy3 (357)

2n  2m 2n  2m
. 1 1
>  et=—iln|- - — /P —dyy|, In |-+ —/E— s (3.5.8)
2n  2m 2 21
If (¢,t) ¢ H then the components of the solution, w(e,t), are given by the expressions
i€ (1,¢,1)
Cl(E,t) = 0, d[(E,t) = 7 I: gt _ 1 ZA (383,6 t ] 1<Il<m (359)

and, denoting by S(A) the set of all singular points defined according to the relation,
S(A) i_if {(E’ t) € ]R'2 I ”(6,7‘) - (Eat)”2 —+0= ”¢(.16’ T);Hl (P)” - OO} (3510)

it is now evident from (3.5.9) that if singularities exist they arise, as in Section 3.2.1, along
the hyperbolae #H,, n € Z\{0}, i.e., S(A) C H. Thus, ¢(z,e,e), z € P is holomorphic for
(e,t) € O = R*\H and the analysis of the Taylor series representation performed in Section

3.2.1 is also valid here.
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Conversely, if (e,t) € #H then A(e,t) becomes singular with rank 2m — 1 and the coef-
ficients w(e,t) are underdetermined. However, it is clear from the definition of A(e,t) that
ale, t) = c(e, t), 1<i<m for unknown c(g, t) and the coeﬂicxents ¢, d,2<I<m can then

be expressed i in terms of dl as follows

ole, t) = ﬁ (£ A0,et) - (m -V di(e,)], (3.5.11)

di(e,t) = — [% Az, e,t) — Udy (e, t)] - %((Ll’)) [f—t AL e,t) — (m — 1)dy (e, t)] (3.5.12)

where A, B are defined in relation (3.2.24). Furthermore, the boundary condition u*(0) =0
and the conjugate symmetry property (3.2.44) together imply the equations

uf(0) = Z an [qb(O, g, nm) — (0, ¢, —n7r)] + Z Qn [dl (e, nm) — d, (e, —mr)]

neMI(e) nel(e)
Z 2i a, S[#(0,€,n7)] + Z 2ia, S dl(s nm)]
kEMN\I(e) nel(e)
= ) 2ia, S[dy(e,nm)]
nel(e)
=0 (3.5.13)

However, because th‘e function d; and the coefficients an, N € Z\{O} are ihdependent from
one another it follows that d,(¢,t) € R for (¢,t) € H. Thus, in the same fashion as Section
3.2.1, if one maintains the proviso that relation (3.5.13) is satisfied, then the choice of the
function, d, (¢,t), is inconsequential insofar as it has no influence upon the solution u®.

The homogenization (3.2.1) is now applied to a number of sample problems with piece-
wise defined coefficients to determine the effects of low regularity on the behaviour of the

asymptotic approximations obtained from this approach.

3.6. Sample problem: Piecewise smooth data, a € PC*(P), fc € PC*(R).
Now let f(z) =1, z € 2 = (0,1) and define f4(z), £ € C = (—1,1) and the coefficient a, on
the canonical periodic cell, P = (0,1), as follows
a(z)z{iz=ia, 1322 o, = by, 0S25h e = (Y Hnisodd
a3=1 2/3<z<1 1, = !
where, then, f¢ is the periodic extension of f4 to R defined by relation (3.1.5). In this
instance a; = 0.1, @z = 1 and, clearly, a ¢ C™*(P), n > 0. However, a is a piecewise C*®
function, see (3.1.18) with a; € C=(P,), P, = ((I — 1)/3,1/3), 1 <1 < 3. With this data, the
cell problem is then given by (3.1.19)—(3.1.23). The solution, ¢, is, correspondingly, piecewise
defined, i.e.,
$1(z,e,t), if 0<z<1/3
o(z,e,t) = {d)z(a:,e, t), if 1/3<z<2/3 (3.6.1)

¢3($’51t),. if 2/3 <z<l1
where
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1 9 eiet/3 iets
b1 6t) = 5 — [0p T owts 1 orietfs © (3.6.2)
1 9 eriet/d 4 gict
#oe)=Tat op Trem v (36.3)
1 9 gtiet/3 : ' '
—_ e — — —ictz
¢3 (za &, t) 12 10t2 1 + eugt/3 + e2igt/3 e (3.6.4)

Evidently, ¢(z, e, ), = € P is defined by relations (3.6.1)~(3.6.4) for all (¢,t) € R*\ where
S(A) = {(s,t) €R? | 14 ¢t/3 4 ei2t/3 = 0} (3.6.5)

However, the roots of the quadratic, 1 + e¥t/3 4 ei2¢t/3_ are given by

et? = —1/2 +iV3/2, —1/2 —i/3/2 (3.6.6)
= et =27+ 6mn, dr +6mn, ne€ 2 (3.6.7)

It is now apparent that S(A) C H where A is the family of hyperbolae H,, n € Z\{0}
defined in Section 3.2.1. Thus, from direct knowledge of ¢, we have determined that the
singularities of ¢(z,e,e), z € P occur along hyperbolae, #, in the (g,t) plane, as indicated
_in Section 3.5. Evidently, ¢(e,€,t) € C°(P) and ¢(e,¢,t) ¢ C"(P), n > 1 while ¢y(z,e,9) €
C*(0),z € P, 1 <1< 3 where O = R*\#. One can therefore employ the classical Taylor
series representation of ¢(z,e,e) in the neighbourhood (e,%) € B(0,2+/7, £,), which are, to

third order terms,

7 iz, —2+427z% izt 4
¢1(z,¢,t) = o2 teq t g g0 TE 180(2 9z%) + O(e*) (3.6.8)
7 3i —11 + 54z — 5422
2 (1-2z 2
$r(@,61) = 1z +eqg; (1 - 22) +e 180
it
+ & 1"80( 1+ 11z ~ 2722 4 182%) + O(&?) (3.6.9)
7 2 25 — 54z + 272
t) = ——
¢80 = 155 T 1 10t 7 (1 +' =)+ 180
+ & (7 25z + 2722 — 92%) + O(e?) (3.6.10)

180

The proof of the equivalence between the homogenization, (3.2.1), and the Taylor series,
(3.2.27), provided in Section 3.2.1 is clearly applicable here. Thus, the expansions (3.6.8) -
(3.6.10) determine the homogenization (3.2.1) and the asymptotic approximations, ¢y, N >
0, defined in relation (3.2.13). Indeed we deduce the following identities from the asymptotic
expansions (3.6.8)—(3.6.10)

10 7 3z /17, if 0<z<1/3
A=—, g(t)=-—5, xifz)= { 3/7—6z/7, if 1/3<z<2/3 (3.6.11)
4 10¢ —3/7+3z/7, if 2/3<z<l

where A is the homogenized coefficient occurring in the homogenized problem (3.2.15) and

#1(z,t) = it go(t) x1(z). Furthermore, from the asymptotic expansions (3.6.8)-(3.6.10) we
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deduce the following expressions for ¢.(z,t), xa(z)

(-2 + 2722
180 °

¢§(w,t) =

—11 + 54x — 54z2 ;

180
25 — 54z + 27x?

. 180 ’

0<z<3

o
A
8
A

w2

lcz<l

(27 — 928

- = 0 <l
180 ° <T<3
—1+ 11z =272 + 182° | ,
1 <2
180 '3 <TS%

7 — 25z + 2722 — 9z°
L 180 BEASA

where ¢3(z,t) = it x3(x) and, for this problem, therefore

gk(t) = 0?

k=1,2,...

The errors ||luf—v; L2(Q)||, |ug—v; H* ()] have been computed, for v = ufy 4, Uy ar,er £ = 1201,

in the same manner as for problem 3.4 and are reported in tables 3.6.1-3.6.4 below.

Table 3.6.1: a € PC®(P)\C°(P), f € H(C)\H*(C)

Cell Size, € |u§ — uo,e; L2(D)|] [u§ — ug ¢; H ()]
0.5 3.24138702(3) 3.97572749(~2)
0.25 1.48888933(—3) 4.15677910(—2)
0.125 7.27036348(—4) 4.20081448(—2)
0.0625 3.61300379(—4) 4.21174938(~2)
0.03125 1.80377530(4) 4.21447906(~2)
0.015625 9.01540847(—5) 4.21516346(—2)
0.0078125 4.50727117(=5) 4.21533404(—2)

O(e) o)

Table 3.6.2: a € PC®(P)\C°(P), f € H*(C)\H*(C)

Cell Size, € llug — uf s L2(D)]] |ug —uf o H' ()]
0.5 1.22808159(—3) 9.99242444(—3)
0.25 3.07020378(—4) 4.99623845(—3)
0.125 7.67550388(—5) 2.49786206(—3)
0.0625 1.91889366(—>5) 1.24907035(—3)
0.03125 4.79701252(—6) 6.24551693(—4)
0.015625 1.19894035(—6) 3.12262628(—4)
0.0078125 3.01178450(—7) 1.56140607(—4)

O(e?) O(¢)

Although, in contrast to problem 3.4, the coefficient a is only piecewise smooth the fig-
ures 3.6.1-3.6.6 illustrate that the asymptotic functions, ¢y, 0 < N < 2, provide accurate

_approximations of ¢, the weak solution of (3.1.9). Indeed, we again observe that it is diffi-

cult to distinguish between the various curves which represent these approximations. This
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Table 3.6.3: a € PC®(P)\C*(P), f € H'(C)\H*(C)

Cell Size, € llug — us ¢ L2 |ug — G540 H* ()]

0.5_ 9.59140389(— ) _4.26226183(-3)
025 2.38943249(—4 A .1:51247677(—3)‘
0.125 5.96432445(— 5) 5.35989505(—4)
0.0625 1.49242031(—5) 1.89453716(—4)
0.03125 3.73256197(—6) 6.71881678(—5)
0.015625 9.33039470(—7) 2.37763798(—5)

0.0078125 2.35106500(—7) 8.44198637(—6)

O(e?) O(e*?)
Table 3.6.4: a € PC*(P)\C*(P), f € H*(C)\H(C)

Cell Size, € llug — 52,6 L2(D)l |uf — 54,6 H ()]
0.5 7.95161939(—4) 2.46108688(—3)
0.25 2.14111498(—4) 8.95024032(—4)
0.125 5.59894312(—5) 3.19064235(—4)

0.0625 1.43982448(~5) 1.12981244(—4)
0.03125 3.65790302(—6) |  4.01071110(~5)
0.015625 9.22584800(—"7) 1.41892658(—5)
0.0078125 2.33660560(—"7) 5.14193646(—6)
O(e?) O(e¥?)

supports, once more, the utility of the lower order approximations, ¢n, 0 < N < 2. The
large amplitudes, or spikes, apparent in ¢(z,€, ) at the points ¢t = 2mn/e, n € Z\{0} are an
obvious manifestation of the singularities, 7, observed above.

The computational results illustrated in tables 3.6.1-3.6.4, suggest, in contrast to prob-
lem 3.4, that the order of convergence of the approximations uf , never exceeds O(e?) in the
L,(€Q) norm topology and O() in the H*(C) norm topology. However, as demonstrated gener-
ally in Section 3.3, an important consequence of the low regularity fe € H°(C)\H!(C) is that
the higher order homogenization approximations, uj ,, N > 3, £ € N, are unavailable, again
contrasting with problem 3.4. This is evident from the homogenization (3.3.15) and series
(3.2.14), for the €3 term in (3.2.14) has the asymptotic order O(1) (|n| — oo) and u%,, N >3
therefore diverges as £ = o0, i.e., |lufy ¢; L2(Q)]| = oo (£ = 00). Thus, in Tables 3.6.3, 3.6.4
we examine instead the asymptotic approximations %y a4, N > 1,1 < M < 2, £ € N defined
in Section 3.3, i.e.,

Uy are) = Z a, e ¢y (z/e, e, nm) + Z an € du(z /e, €,m7)
n€Z.(c)\{0} nEZ\Zr ()
where 7(e) = {n € N | n <.2/e}. The results suggest that, by employing these approxi-

matlons one can improve upon the accuracy, if not the order of convergence, of the L:(9)
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norm errors of the lower order approximations u% ,, 0 < N < 2. Furthermore, the tables
demonstrate that these approximations produce smaller H*(f2) semi-norm errors which also

converge a half order of € more rapidly as € — 0. The influence of low regularity is further

examined in problem 3.7.

3.7. Sample problem: Mixed regularity data, a € C*(P), fc € L,(C)\H(C).

The previous problem demonstrated the consequences for convergence order and accuracy
when both a and f. have low regularity. The convergence rate quickly reached a finite
upper limit in problem 3.6 while, by contrast, no such limit was observed in problem 3.4
and, comparing tables 3.6.1-3.6.4, 3.4.1-3.4.3, it is clear that the reduced regularity also
degraded the accuracy of the approximations. We now attempt to isolate the different roles
of a and f¢ on the homogenization approach by considering the following related problem of

mixed regularity where, now, a € Cg,(P) and, once again, f¢c € H°(C)\H'(C) are defined as
follows

_ 1 _J1, if0<z<1 _ }2/nmi, ifnisodd
a(z) = 1+ 1 cos(2nz)’ falz) = {—1 fl<z<2r 97 {O, if n is even
(3.7.1)

. where f¢ is then obtained via relation (3.1.5). The analytical expression for ¢, the solution of
the complex valued boundary value problem (3.1.9), is provided in problem 3.6. The errors
lug — v; Lo(Q)|, |ug — v; H ()| have been computed, for v = uf,,, %% ,, £ = 1201, and are

reported in the tables 3.7.1-3.7.2.
Table 3.7.1: a € C*(P), f € H°(C)\H*(C)

Cell Size, € ||u§ — uoe; L£2(2)]] [u§ — uge; H(Q)]
0.5 3.32870592(—3) 3.58210497(—2)
0.25 1.46891484(—3) 3.53030964(—2)

0.125 7.07923164(—4) 3.51720311(—2)

0.0625 3.50566358(—4) 3.51390935(—2)

0.03125 1.74856196(—4) 3.51308997(—2)

0.015625 8.73746467(—5) 3.51289137(—2)

0.0078125 4.36806389(—5) 3.51284249(—2)
O(e) . 0(1)

Tables 3.7.1-3.7.2 demonstrate that, although the coefficient, a, is infinitely smooth, the
homogenization exhibits the same characteristics as observed for problem 3.6 in which a €
PC>(P)\C°(P). Indeed, all of the characteristics noted for tables 3.6.1-3.6.2 concerning the
asymptotic approximations ufy ,, Uy a4 0 S N < 2,1 < M <2,{ € N are again apparent
in this problem.

The restriction, u®|q, of the analytical solution, u°, can, evidently, be obtained directly.

by solving the boundary value problem (3.1.1). Performing this computation one obtains the
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Table 372 a € C*(P), f € H*(C)\H!(C)

Cell Size, € llug — us,, £2(Q)]| lug — us ,, H(Q)|
05 1 33471402(—3) 9 68484915(—3)
025 3 33678477(—4) 4 84176303(—3)
0125 8 34196183(—5) 2 42094460(—3)
0 0625 2 08548898(—5) 1 21065961(—3)
003125 5 21377082(—6) 6 05201079(—4)
0 015625 1.30343163(—6) 3 02621469(—4)
00078125 3 25858180(—7) 151314183(—4)

O(e?) O(¢)

Table 373 a € C®(P), f € H'(C)\H'(C)

Cell Size, € llug — us g, L2(D)l |ug — 5,40 H ()]
05 1 09169502(—3) 4 87789107(—3)
025 2 72684686(—4) 172902040(—3)
0125 6 79958552(—5) 6 12103867(—4)
0 0625 1 70033284(—5) 2 16481353(—4)
003125 4 25200134(—6) 7 49622435(—5)
0 015625 1 06405310(—6) 2 72828034(—>5)
0 0078125 2 66009860(—"7) 9 73324486(—6)

O(e?) 0(e?)
Table 374 a € C®(P), f € HY(C)\H(C)

Cell Size, ¢ llug — 51,0, L2(D] |ug — 5, 0, H' ()]
05 9 21893991 (—4) 2 97189811(—3)
025 2 47140955(—4) 1 07162895(—3)

0125 6 42423423(—5) 3 81218187(—4)

0 0625 1 64641798(—5) 1 36084073(—4)

003125 4 17605998(—6) 472273363(—5)

0 015625 1 05335661(—6) 1 70200860(—5)

0 0078125 2 64529370(=7) 6 15656966(—6)
O(?) O(e*?)

following 1dentity for u¢(z), z €

uf(z) = %(.’L‘ —z?) +e(1/2 - 1x) % sin(2nz/e) + €2 [—i cos(2nz/e) + é—] (372)

an
= Uo(.'E) + € E

82

@) xi(a/0)+ ¢ |0 @) xalefe) + g

HOMOGENIZATION
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extension of the solution uf|qp by computing, with the aid of Fourier series expansions, 2-
periodic extensions of the functions a(z) = (z—z?)/2, B(z) = (1/2—z) of u* The respective

antisymmetric and symmetric extensions of o and 3 are thus, for z € R,

1 nnrt t nwTt
a(z)= Y €™, flz)= > an—e (373)

nezZ\{0} neZ\{0}

Substituting relations (3 7 3) mto (3 7 2), the following 2-periodic antisymmetric extension

1s obtained for u®

' (z) = Z o [ 1 te sin(2rz/e) @ +e? (1 — cos(2mz/e)) ] e

2,2 2
ne 2\ (0} n2xw 47 nmw 8n

= Y a. [¢o(n1r) + e ¢1(z/e,nm) + € (¢2(x Je, ) + #)] Jress

neZ\{0}

where the 1dentity 1n the second line follows 1mmediately from the expansion (3 4 11) How-
ever, from the homogenization (3 2 14) and the above Fourier series expression for «¢, the fol-
lowing error estimates are now i1mmediately apparent for the limit functions u, &f Uy 0y 0 <
N<2

lus — usy, Lo(Q)|| < Cy FHBWNHLD - e — s HY(Q)| < Cp eV,

where C;, C; > 0 are constants independent of € Furthermore, for this problem, if N = 2
then one can select C; = 0 Indeed, these error bounds are confirmed by the results illustrated
in Tables 371-374 However, as observed 1 Section 3 3, the regularity property fc €
H°(C)\H'(C) means that one cannot obtain, for £ — oo, valid H'(f2) norm estimates of u*
from the approximations u% ,, N > 2, £ € N or valid £;(2) norm estimates of u* from the
approximations uf ,, N > 3, £ € N because of the nature of convergence of these functions as
£ — oo Thus, we apply, as 1n problem 3 6, the functions %, Mo N22,1<M<2,LeN
and the results provided in Tables 37 1-3 7 4 suggest the following error bounds, for £ €
N, N > 2,

lug — G are L2(Q)]] < CLe™HMHIA 1 < M <2

[|luz — ﬂfv,M,u H Q) <G, Emm(N,s/z), M=1

In a private communication Professor Ivo Babuska has demonstrated that for a specific prob-
lem of the type being considered here the rate of convergence of uf , to u; as € — 0 cannot
exceed 3/2 Indeed, the results of Table 3 73 bear out this finding We observe that, al-
though the level of regularity of a 1s an 1mportant factor 1 obtaming accurate asymptotic
approximations derived from the homogenization approach, 1t does not affect the rate of
convergence It 1s the regularity properties of fe which exert the dominant influence on the
convergence behaviour for e -+ 0 This property of the homogenization 1s examined further

1n problem 3 8

— —
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3 8 Sample problem Mixed regularity data, a € PC*(P), fc € C>(C)

It has been determined from problems 3 6, 3 7 that the behaviour of the homogenization when
fc € H°(P)\H*(P) and a 1s either piecewise or globally smooth 1s unchanged To emphasize
the effect of the regularity of the function f on the homogenization, we consider, with respect

to the regularity of the data a, f¢, the converse situation to the previous problem, 3 7, 1 ¢,
define

a, =10, if 1/3<z<2/3 , fe(z) = sin(nz) (381)
az=1, 1f 2/3<z<1
The weak solution, ¢, of the cell problem (3 1 19)-(3 1 23), which 1s also piecewise defined, 1s
given 1n relations (3 6 1) — (3 6 4) and the weak solution, u*, of problem (3 1 1) 1s determined

from relation (3 17) Once again, the errors, ||u® — ufy, L2()]l, |u® — ufy, H(Q)[, have been

ay=1, of 0<z<1/3
a(z) =

computed and are reported in the tables 381-38 3

Table 381 a € PC™(P)\C°(P), f € C=(C)

Cell Size, ||lu — uo, L2(Q)]| [uf — ug, H* ()]
05 7 11253489(-3) 9 54929897(—2)
025 3 32217720(—3) 9 54929897(—2)
0125 1 63344765(~3) 9 54929897(—2)
00625 8 13316124(—4) 9 54929897(—2)
003125 4 06233558(—4) 9 54929897(—2)
0 015625 2 03063761(—4) 9 54929897(—2)
0 0078125 1 01525255(—4) 9 54929897(—2)
O(e) o)

Table 382 a € PC*(P)\C°(P), f € C=(C)

Cell Size, € |lu¢ — uf, Lo(Q)]] lu — us, H(Q)|
05 173930827(—3) 2 04124196(—2)
025 4 05197388(—4) 1 02062098(—2)

0125 9 95487155(=5) 5 10310490(—3)
00625 2 47792450(—5) 2 55155245(—3)
003125 6 18808814(—6) 1 27577623(3)

0 015625 1 54660220(—6) 6 37888113(—4)
0 0078125 3 86624310(—7) 3 18944056(—4)
O(e?) O(e)

Thus, despite the low regulanty of the coefficient a, the higher order approximations,
uy, N > 3, are available once again and the lower order approximations, u%, N = 0,1,2,

behave 1n an identical fashion to that observed for problem 3 4 which also possessed an
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Table 383 a € PC®°(P)\C°(P), f € C*(C)

Cell Size, € lue — us, £o(9)]] |u — u§, H* ()|
05 4 32587839(—4) 4 97495505(—3)
025 5 03594314(—5) 1 24373876(~3)
0125 6 18519067(—6) 3 10934691(—4)
0 0625 7 69765770(~7) 7 77336726(5)
003125 9 61153600(—8) 1 94334182(—5)
0 015625 1 20111300(—8) 4 85835454(—6)
0 0078125 1 50129000(—9) 121458863(—6)
O(€%) O(e?)

infinitely smooth mnhomogeneous term f. The problems 3 6-3 8 and their results are now
analysed and explaimmed Furthermore, a Theorem 1s proposed which both summarizes and

generalizes the properties of the homogenization approach described here

3 9 Analysis and Conclusions
The homogemzation (3 2 1) was observed, n problem 3 4, to provide asymptotic approxi-
mations uly, N > 0, defined by relation (3 2 14), of the solution, u¢, of the boundary value
problem (3 1 1), which become ever more accurate, as N — oo, 1n precise accordance with
the Bakhvalov and Panasenko Theorem 322 This 1s exactly what one should expect for
a € C*(P), fc € C*=(C) where also, therefore, u¢ € C°(C) However, to determine both the
roles and affects of the functions a, fc on the homogenization we considered various problems
with regularity characteristics lower than those displayed mn problem 3 4

We assume that fo € H™(C)\H™*+!(C) and observe from the regularity theory that

uo € H™+2(C)\H™*+*(C) However, if we recall the two-scale expansion (3 3 15), 1 e,

ou

e (2) = o (2) + € [ra(o/6) T2l (2) + Guslo)] + €2 [ralofe) Z22(@) + G )]
+ 4N [XN(z/e) 6;;:," (z) + GN,g(:c)] (391)
where
Upe(z) = Y ane™hy(nm), Grelz)= Y. ane"™gi(nn) (392)

neZ\{0} nezZ,\{o}

then the property ug € H™t2(C)\H™+3(C) suggests that the derivative D*ug, o > m + 3
and, therefore, the asymptotic approximation u, ,, @ > m + 3, cannot converge as £ — oo,
m either £,(C) or H*(C) norm topologies Indeed, as a consequence of the property D™ fc €
L£,(C) 1t follows that a,(fe) = o(|n|™™) (In] = ), [n™+*a,(fe)] = oo (In] = ),k >1
and, therefore, because the modulus of the general term of D*ug,, @ > m + 3 satisfies

lan(fc) (nma)*e ™ ¢o(nmr)| = A7 7% |n*"2an(fe)| # 0 (In] = o0) the termwise derivatives

D%ugp e, o > m+3 all diverge as £ — oo as observed above Thus, for low regularity problems
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of this type we must consider alternative asymptotic approximations to u% ,, £ € N for
N > m+ 3 It s for this reason that we introduced in Section 3 3 the approximations
Uy peo N =2 m+ 3, M < m + 2 which exploit the good approximation properties of ¢y
within the region of analyticity of ¢(z,e,e), z € P

Based on the analysis and computations performed in Sections 3 4, 3 6-3 8 we propose

the following theorem for the general asymptotic behaviour of the homogenization approach
founded on (321)

Conjecture 39 Let a € PC,..(P), fc € H™(C) then the functions u ,, ufy o UYy o, and

Uy o have the following asymptotic approximation properties

lu® — ufy, HP(C)|| £ CemnNHm+2=p 0 < N <m+2 (393)
lug — uly o HP(C)|| < Cem™nNV+Lm+2=P < N<m+2-p (394)
llug — @y .0 HP(C)]| S CemNHLmt22/2 N >m+2, M=m+2-p (395)

where0 < p <1, £ € N, C > 0 1s a constant independent of €, and u* € H™**(C)NH;(C), 1 <
A < 2 15 the weak solution of problem (311) [ |

We have not included H*(C) error estimates for u¢, ,, , mn relation (3 9 4) because, as indicated
above, ||[uf, 45 ¢, H*(C)|| = 0o (€ = c0) and, consequently, this function cannot provide a valid
H'(C) norm approximation of u* This occurs because the asymptotic approximation, uS, ., ,,
cannot be differentiated term by term — this was demonstrated in Section 37 However, 1n

Sections 3 4, 3 6-3 8 1t occurred that g, =0, k > 1 and, 1n such a circumstance, (3 9 1) then
imples that, for < N <m+2,z €C,
200 N

0 U
)+ +e xn(z/e) 5o

u(z) = uo(z) + € x1(x/¢) %(z) + €2 x3(z/€) 9

- (=) (396)

It may then be preferable to seek the asymptotic approximations uy (= ufy o) 1n the form
(396), cf BAKHVALOV & PANASENKO (1989), clearly, there are no series truncation errors

and possibly no reduction n the convergence rates occasioned by termwise differentiation as
observed 1n (3 9 5)
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4 HOMOGENIZATION OF TwO

DIMENSIONAL ELLIPTIC BOUNDARY
VALUE PROBLEMS

4 0 Introduction

As part of the route towards our stated goal we now move to problems with the next higher
order of difficulty and follow the format of Chapter 3 Thus, we now consider elliptic boundary
problems 1n IR?> where the material properties of the medium, €, change periodically and
irregularly on a scale, e, due to the presence of composite materials The asymptotic approach
developed 1n Chapter 3, 1 e , homogenization, 1s extended to include boundary value problems
of this type However, we observe that, for @ C R", n > 2, the analytical expressions for u®
and uyy, N > 0 employed 1n the homogenization approach are generally unavailable In order
to overcome this lack of analytical information we resort to using fimite element techniques
to construct accurate and robust discrete asymptotic approximations which are analogous
to those employed in Chapter 3 In using fimite element methods, we naturally wish to
exploit known a prior1 estimates for the error Such estimates depend on the regularity of
the solution, which, 1n turn, depends on the geometry of the domain, the geometry of the
material interface and material properties With polygonal interfaces, singularities will occur
at the vertices The approach adopted here 1s to take finite element meshes which coincide
with these interfaces and to state the finite element error estimates 1n terms of parameters
defining the dominant form of the singularity It 1s not our purpose here to embark on a
detailed treatment of these singularities Guided by our experiments in the one dimensional
setting in Chapter 3, we assess the behaviour of the combined homogenization/finite element
approach for a variety of problems exhibiting various levels of regularity In this way we
determine how the various regularity characteristics of the problem affect the homogenization

approach

The difficulties caused by the presence, 1n the model problem, of rapidly changing coef-
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ficients of low regularity for the direct application of conventional fimte element approaches
were considered 1n the one dimensional case 1n the previous chapter, cf Section 3 0 It was ob-
served that finite element techniques applied directly to the model problem could not resolve,
within practical constraints, the variations of the coefficients necessary to construct accurate
numerical approximations However, the observations 1n Theorem 3 0 1 of the asymptotic
behaviour, as € — 0, of the coefficients and solutions of elliptic boundary value problems led
to the approach called homogenization In Chapter 3 we observed that this approach intro-
duces errors which decrease as € — 0, 1 e, as the variation of the coefficient, Vp(a), increases
Indeed, for e-periodic coefficients 1t was demonstrated that the asymptotic approximations,

uSy, N > 0, obtained from the homogenization approach, exhibit the following properties for

QCR
flu® — uy, L2(2)|| 2 0(e = 0), N>0

fluf —usy, H' ()| 2 0(e—=0), N>1
where the rate of convergence, as € — 0, of the errors increase, irrespective of the regularity
of the coefficient a, as N = oo Thus, the approach based on homogenization, described 1n

Chapter 3, 1s particularly well adapted for the treatment of the mnherent difficulties caused
by the rapid variation of low regularity coefficients

41 The Model Two Dimensional Problem
We employ the following elliptic boundary problem as the model two dimensional prototype to
illustrate a combined approach based on both homogenization techniques and finite element

discretizations Find the weak solution u® € Hy(2) of the elliptic equation

- aizk[ak,(z/e Z’;, (z)] =f(z), ze€Q¥(0,1)? (411)

k =1

where f € £,(Q2) and A = (ak,)i_,=l € (Loo(P))?*? 15 a symmetric 1-periodic matrix with
elements satisfying the property, cf Figure 4 1,

'TI‘ (ak,)

=Tr (akl)

, 1<s<2 (412)

and, for almost allz € 2, >0

2 2 2
0<on D Il < Y thanlz/e) & <o) Il <oo, (&,6) €R’ (413)
k=1 k,l=1 k=1
where o4, @; > 0 are constants which are independent from € The weak formulation of
problem (4 1 1) can be obtained by multiplying relation (4 1 1) by v € H}(Q2) and integrating
by parts to obtain the problem Find uf € H(f2) such that

( m—/f@aﬂa,ueﬂmn (414)

Qki=1
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Application of the Lax-Milgram lemma to the weak form (4 14) of (41 1) establishes the

existence of a umque solution, u¢ € Hy(2), which also exhibits the regularity property, cf
MURAT & TARTAR (1994),

llus, H (@) < C I f, L)l (415)
where C = C(f, 1) > 0 1s independent of ¢ If the data A are piecewise constant, 1€,
Alz/e) =AY zeQ, ATe R, 1<r<m, (416)

where Q = U2, Q, and Q,, 1 < r < m, are simply connected polygonal regions with Q,NQ, =
0, r # s then 1n a neighbourhood of the vertices of the interfaces I',, &f 002.NoN,, 1 <r,s<
me the solution, u, of problem (4 1 1) will generally exhibit the characteristically singular
behaviour commonly observed for problems with smooth coefficients formulated 1n nonconvex

polygonal regions Indeed, following KELLOGG (1971) we define the Hilbert space

D(Qa) E {v° € HY(Q) | 3f € L2(Q) st a(vf,w) = (f,w, L5(Q)), w € HE(Q)} (417)
(v,w, D(Q,a)) £ (Lv, Lw, £,(R)), v,w € D(R, a) (418)

where a € BL(HE () x H}(2), R) 1s the bilinear form associated with the weak formulation
(414) and L € BL(D(Q,a), L£2()) 15 the operator defined pomtwise as Lu¢ & f, 7 € £,(Q)
if, and only if, u* € H}(Q) 1s the solution of the weak problem (414) It i1s shown in
KELLOGG (1971) that u® can then be written in the form

M
u‘=20,v§+w5d=erve+w‘ (419

=1

where 0, € R, wf, v € D(Q,a),1 <3 <M and

Me
1Zw*, Lo (N + llw®, @) + 3 o, H (@)]] < CllLuf, Lo(Q)]] (4110)

1=1
The form of the singular functions v{ € H**(Q),0 < o, < 1,1 < 3 < M will de-
pend precisely on the coefficients ay, 1 < k,I < 2 and the geometry of the interfaces
Iy1<rs<me,cf BLUMENFELD (1985) The regularty properties of u® are clearly
mmportant because they determine how rapidly the errors introduced by finite element ap-
proximations dimmmish as h — 0 Clearly, there are techniques of approximation which are
particularly appropriate for problems of this type, e g, the class of a—posterior:1 adaptive
methods and the non—conforming approach of BABUSKA & OSBORN (1985) for which,
m the norm |jv]|? & > retii@ vy HH(7)]|?, the optimal O(h) error bound can be attained,
however, we have found that, to assess our approach, 1t 1s sufficient to employ piecewise
linear approximations constructed for triangulations, 7,(2), A > 0, which have the property

def

N, =0,1<rs<mfor v € To(R), cf Section 2 2
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We observe that problem (4 1 1) can be obtained as the restriction to € of the planar ellip-
tic problem Find the weak solution u¢ € H\ (R?*) £ {v R? — € | For any open subset  C
C R?, v € H'(Q)} of the elliptic equation

S otz

k=1

?91;: (z)] = fe(z), zeR? (4111)

where the function fc 1s defined as the periodic extension to R? of the function f4 where f4

1s defined as follows

fg.'m,:l:z),) if Eml,zz) ? Q
def _f —I,T2), if ~I;,T2) € Q
falz) = f(=21,—%2), of (—z1,—x3) €Q (4112)
_f(xl) _$2): if (:I"la _$2) e}
Thus, f¢ 1s formally defined by the Fourier series expansion
e e 1
@ Y e o7 p@er (4113)

ne22\{0}

where C & (—=1,1)? The partial differential equation (4 1 11) evidently imples (411) while

the periodicity and antisymmetry of fe 1mply the following properties of u, for almost all
ze,

u*(z+2n) =u(z), ne2? (4114)
ut((—1) ™y, (—1)™z,) = (=1)™* ™0 (21, 1,), m € No\{0} (4115)
/ u*(z)dz =0, p>0 (4116)

B(0,p,00)

Furthermore, the regularity property u* € H+#(C) for some p > 0, the Sobolev embedding
H@?(C) C C**(C), 0 <A <1, cf ADAMS (1975), and the antisymmetry of ¢, cf (41 15),
imply that u® € Hj(Q) Followmmg BABUSKA & MORGAN (19911) we observe that for
f(z) = e*tZ the mapping

z+ L2 g(z/e e 1) (4117)

solves (4 1 11) where z — ¢(z, €, t) 15 a complex—valued, 1-periodic function that, in the weak

sense, satisfies, for € > 0, t # 0, the partial differential equation

2
i i wtz g2tz _ 2
-> 720 [akz(z) 5 (e ¢z, s,t))] =gtz zeP=(0,1° (4118)

kl=1
and periodic boundary conditions on 0P, for 1 < s < 2,

Tr (¢le,6,0)| = Tr (9(e,e,)

(4119)

42

Tr ([AV(e,&,8)] n)

= Tx ([AV4(e,e,1)] n)

(4120)

r, T2
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01 1, (1,1)

Figure 41 The periodiccell T P T,

(0,0) Iy (1,0)
where n(z) 1s the unit outward normal vector to the boundary, P, at the pomnt z, and
Ty, 1 < s < 4 are the boundary segments of the periodic cell, P, illustrated in Figure 4 1

Thus, employing simple linear superposition, the solution, u®, can be written as follows,

see BABUSKA & MORGAN (1991u) for the analysis,

Z a, €22 §(z/e, €, n7) (4121)

neZ2\{0}

Expression (4 1 21) now provides the opportunity to investigate the development of approxi-
mation techniques based on the cell problem (4 1 18)—(4 1 20) rather than the original bound-
ary value problem (411) However, before considering techniques of approximation, the

properties of the weak formulation of problem (4 1 18)-(4 1 20) and the respective weak so-
lution, ¢, will be studied

411 Properties of the Cell Problem
The weak formulation of the cell problem (4 1 18)-(4 1 20) 1s derived by multiplying equation

(41 18) by the function e~*t2y(z), v € H), (P) and then integrating by parts to obtamn the
problem Find ¢(e,¢,t) € H}, (P) such that, for v € H...(P),

5 - S
a .'B)— e“tZ g(z,6,t) ) =—(e 7tz d =52/'u:n dz 4122
/ Z W@ g (420l ) o (@) de= [WDaz (1)
where 1t has been observed that the boundary term

| @ (eeed @8+ A@VHE D) n@de (4129
oP

vanishes as a consequence of the boundary trace properties of A = (ax)} ;=;, $(®,¢€,1) specified
m relations (412), (4119), and (4120) Observe that v(z) = Rlv(z)] — +S[v(z)] 15 the
complex conjugate of v(z) € C Clearly, for u, v € H!

per

(P), the sesquilinear form for this

problem 1s defined as follows

el )= [ 3 aula) 2 (420@) o (¢450@) de

P k=1 !
2 NN 2 v, ., Ou,  —
-/ gjlak,(z)a(z)%@) dg +1e /P 3 eule) (10(0) (o) ~ b 5 (@) VD) e
+ €2 Z trtion(z _(—)dz

P ki=1
= Oo[u, v] + € @, (¢)[u, v] + €% B,(t)[u, )
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The sesquilinear form 1s clearly Hermitian symmetric, 1e , ®(e, t)[u, v] = ®(¢,t)[v, u), u, v €

H...(P) Further, 1t follows from applications of relation (41 3) and the Cauchy-Schwarz
inequality that the following relations are valid

1/2 1/2
[Bolu] <| [ Z oz Ba:, Y (z)dz / Z a(z) —(z) —(:z:)
<l H‘( e, Hl( ) (4129)
ou 2 2 )o@
@@l | [ Z D teulg) 22 (@) de| +| [ 3 ou@)t 5 (@) oD e
1/2 5 1/2
< /Hzlakt(fb‘ tety |u(z)]® dz /,g_:akl(z a:l( z)dz| +
._———-u 1/2 1/2
/ > oule) i) L@y | | 3 au(e) et b@)Pdz
P k=1 l k=1
< a1l (I, £2(P) fo, 5 (P)] + |, H' (P o, L2(P))
< 20, |tz [, H*(P)|[ o, H' (P)I (4125)
122D ]| £ alltl (v, v, £2(P))] (4136)

< |t} llu, Lo(P) v, L2(P)|| < aalltl llu, H* (Pl llo, H (P)]| (4127)
= |26 Dy, v]| = |Rofu, v]| +]1(8)[u, v]| +€* [22()[u, 0|
< C(e, ) llu, H' (P)|l llo, H* (P)|| (4128)

where C(e, t) = o2(1 + 2e||t|ls + €*||t]|2) > 0 Thus, the mappings ®g, ®,(t), D2(t) are
sesquilinear and ®o 15 also positive semi-defimite over H...(P) x Hp, (P) In fact, from
(4124), ®o[1,v] = Rofu,1] = P[1,1] = 0 and, furthermore, from (41 25), &;(¢)[1,1] =0
To establish the H. ;e, (P)-Ellipticity of @(e,t) the following lemma 1s required

Lemma 4 2 2 There exists a constant C; > 0 such that
1
—— _|lv,HY(P <||ve'f£<'> H17>H<0 1+ Itll2) llv, H (P 4129
for allv € H'(P), t € R?

Proof If v € H'(P) then the inequality on the right follows from the following relations

Hve’”w Hl('P)” —/v(z d:v+/ 269:,, v(x)e“”)—n(ﬁ _"””) dz
= llo, La(P)I + o, HE(P)P + e v, Lo (P + m[ [ Zm
/Zt v

< v, Lo(PY + o, H (P + € |2z llv, L2 (P + 2e Itz llv, L2(P)] Iv,Hl( )
< o, L2(P)I* + (1 + elltll)*llo, H (P)I1* < 2(1 + ellgll2)*[lo, H* (P)|?

* (z) dg:_]

n

< Mv, Lo(PY? + o, HY(P)* + € itz v, L2(P)I* + 26

HOMOGENIZATION 76



Maodel Problem {1

The mequality on the left 1s similarly proved by applying the inequality on the right to the
function w(z) = v(z) e*tz, 1,

llv, H(P)|| = llwet®, H(P)|| < Ci(1 + ||¢ll2) |lw, H* (P)]] .

Lemma 4 2 A constant C, > 0 exists such that
1
C; lvet®, H (P)|| < ju et ), H'(P)| < C; [lv et ), HY (P, (4130)

forv € H,, (P) when et ¢ H? and for v € H}(P) when et € H?
Proof The mequality on the right follows immediately for any C, > 1 Let v € C®°(P) N
H},,(P) and define w(z) = v(z) ez, £ € P, w(z) £ 0, £ € R*\P then

lw(z)|* =

[T

> W@l < [ o) d

Integrating this expression over P then yields the following inequality

<@+p) [ lwaEalPde, p>0
at 4

llw, Lo(P| < ey, L2(P)|| < |w, H(P)|

from which we deduce
lv et @, B (P = |lve*t ), Lo(P)|I? + |verst @), HY(P)|* < 2|v et ), HY(P)[?

However, because v € C*°(P) N pe,('P) 15 arbitrary the norm equivalence claimed aboved 1s
established for all v € C*(P) N H,,,.(P) and C; = 1/+/2 Furthermore, by completing the
function space C*(P) N H},.(P) within £,(P) using the H'(P) norm topology one obtans
H...(P),1e,C*(P)NH,,(P) 1s densely embedded n H, rer(P) Thus, the norm equivalence
follows also for the completion H,, (P) of C*(P) N H,,,(P), cf HACKBUSCH (1992) How-
ever, the norm equivalence represented by the above inequality fails when et € H2, this 1s
apparent with v(z) = e™*tZ, z € P for, then, e*t(*) € H! (P) But, replacing C®(P) with

per

C°(P) 1n the above steps, the norm equivalence (4 1 30) then follows immediately [ |

Thus, from Lemmas 4 1 and 4 2 the V-Ellipticity of ®(g,t) follows immediately from the
inequalities below

|®(e, t)[v, V]| —|/ Z ax(z 8_( w”'u(:c)) ail (e—w££@) dz

k=1
O (et O (metsis
> /P?_::l —('H (e ’U(-'B)) oz (e 'U(E)) dz
> 0, Ci % |lvet ™, H (P)|
C(t) ||v, H' (7’)”2 (4131)
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where V = H}, (P) for (,t) ¢ H?, V = H)(P) for (,t) € H?, and C(t) = 0, C;2CT? (1 +
ltllz)~2 1s independent from € Thus, treating €, ¢t as parameters, the Lax-Milgram lemma
demonstrates that a umque solution ¢(e,¢,t) € H), (P), et ¢ 1 ? exists for the weak problem

(4122) However, if et € H? then the sesqulinear form ®(g, ) 1s not positive on H},, (P) x
H;er (P)’ e g 4

o, et @, et ] =0, et € Hy, o(P) C H,,(P) (4132)

and the weak formulation (4 1 22) does not then satisfy the H}, (P)-ellipticity condition of

per

the Lax—Milgram lemma, however, the weak formulation Find ¢(e,¢,t) € H}(P) such that

B(e, t)[¢(e,6,1),v] = €* / v(z)dz, v € Hy(P) (41 33)
P

does satisfy the Lax-Milgram lemma Thus, from the direct sum decomposition H,.(P) =
H!(P) @ C and relation (41 32), we observe that any function defined according to the

following relation 1s also a solution
P(o,6,8) & p(o,6,8) + e L2 x(e, 1), et e H? (4134)

where x 1s an arbitrary function satisfying x(¢,t) = x(e,—t), € > 0, £ # 0 Furthermore, if a

15 symmetric about the lines z; = 1/2, 2, =1/2,1¢,
a(z1,%2) = a(l — z1,%2) = a(21,1 — 33), (21,72) €P (4135)

then, as demonstrated 1n Section 3 1 1, the following conjugate symmetry relations are satis-
fied

¢(§,E,£) = ¢((1 bt $1,Iz),6,£) = ¢((-'L'171 _EZ))eii)) z € P) €> 07 i# 0 (4 1 36)
= T [s(g(ee )] =0 (4137)

We now define the index set I(¢) & {n € 22\{0} x N | (¢,n7) € 2} and observe that the

solution, u¢, can be written

u(z) = Z an €2E™ P(z /€, €,n7) + Z 21 0,5(x(g,n)) (4138)

neZ3\{0} nel(e)
Thus, applying the boundary condition Tr (uf) = 0 and property (4 1 37) to equation (4 1 38)
and noting the continuity of the trace operator,1e, Tr € BL(H!(P), HY%(3P)), we deduce

the following 1dentities

0= Z 210, €M™ Tr [S(QS('/& E,B_”T))] + Z 210, S(x(e, nm))

neZ\{0}xN nel(e)

= Y 24, S(x(e,nn))

nel(e)
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However, the independence of the coefficients a,,n € Z2\{0} and the function x suggests
that, for (e,t) € H?, x(¢,t) € R Indeed, with this proviso the choice of function x 1s of no
consequence to the construction of u®

In the same vein as the 1-dimensional treatment, we observe that, in the circum-
stance 1 which the elliptic boundary value problem (4 1 1) models a heterogeneous body
comprised of different homogeneous materials, the coefficients are piecewise smooth, 1e,
A € [PC®(P)\C°(P))**, ¢f (416) It 1s then evident from the weak formulation (41 22)

of the cell problem that the following interface transition conditions for 1 < r,s < m,; are

mmplied

Trlge(o,e, 0l =Tr[g(e,e,0) (4139)

e [49 (40 4,000)] o]

Trs

(41 40)

= Tr [AV(eL® ¢,(0,6,8))| n

Cra Fr‘

where n(z) 1s a normal vector to the interface I';,, 1 < r,s < m; at the pomnt z € T,,,
di(s,e,t) = &(e,&,t)|p,, 1 <1 < my defines the restriction of the cell function, ¢(e,¢,t), to
each homogeneous element, Py, of P, and Tr 1s the linear operator which maps a function to
1ts trace on the boundary of 1ts domain of defimition In the 1-dimensional setting analytical
expressions for ¢ were employed to assess the asymptotic approach for a variety of different
problems However, 1n a 2-dimensional setting the problem of computing analogous analyt-
1cal expressions for ¢, ¢, 1 <1 < m, 1s often mntractable Therefore we now consider the
application of finite element techniques for the weak formulation (4 1 22) of problem (4 1 18)-
(41 20) and, in this way, we compute approximations ¢ (e,¢,t) of ¢(e,€,t) for e > 0,1 # 0

where h > 0 1s the discretization parameter

412 Finite Element approximation of ¢(s,¢,t)

The variables €, t which appear 1n the formulation (4 1 22) are determined by the model
(411), the period of the materal, €, 1s prescribed and £ corresponds to a Harmonic com-
ponent of the right hand side fe Thus, these variables are subsequently interpreted as
fixed parameters mn (414) We begin by constructing the finite dimensional subspaces
St.(P) C H},.(P),h >0 Let S*(P) C H'(P) be the finite dimensional space over the
complex field, C, of piecewise Linear polynomials introduced 1in Chapter 2§1 and let B(S*(P))
denote a basis for this function space The basis B(S*(P)) can be partitioned mto disjont
subsets B*(P), B*(aP\V), B*(V), 1e,

B(S"(P)) = B*(P) u BM(oP\V) U B*(V) (4141)

where V & {'u € P | v 1s a vertex of B’P} and, for arbitrary F C P, we define the subsets
(bases), cf (21 4),

BYF) = {p € B(S*(P)) | v ({1}) C F} (4142)
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where 1t 15 assumed that ||, C*(P)|| = 1, ¢ € B*(S*(P)) and p~'(4) = {z € P | ¢(z) € A}
1s the iverse 1mage of A C R Therefore, with F equal, respectively, to P, 9P\V, V the bases

B*(P), BH(@P\V), B*(V) are obtaned from (4 1 42) We now construct a basis, B(S%,,.(P)),
of Sk..(P) according to the definition

B(SL,.(P)) = B*(P)UBL, (8P\V) UBL (V) (4143)

where B! (9P\V) = U?_,B} and the bases B (V), B!, 1 < s < 2 are defined below, cf
Figure ¢ 1,

2
BF & {Z o | o € B*(Tst2q-1y\V), 1 <1 <2, I, (supp ;) = I, (supp 902)} (4144)

=1

where IT, X, x X, = X,, 1 < s <218 the projection operator and

=1

By, (V) = {i ol {pi}ie = B"(V)} (4145)

It now follows immediately from Chapter 2 and the above relations that S;‘e,('P) 1S a con-

forming finite element space, 1e, S*_(P) C H.,.(P), h > 0 and, furthermore,

per per
Sh(P)cSk(P)c cSw(P)c cH,(P) (4 146)

where 75, (P), 1 > 2 are successive refinements of the triangulation 74,(P) Thus, employing

the Galerkin approach, we obtain the discretized problem Find ¢x(e,€,t) € St (P) such
that

Q(Ea t)[¢h(.)87 E)avh] = 52/ @dz, Vp (S Sger(P) (4 1 47)

P

In Section 4 1 1 1t was demonstrated that, for (¢,1) ¢ H?2, the sesquilinear operator ®(e,t)
H,,.(P) x H,.(P) = C 15 continuous and H},,(P)-eliptic However, because S, (P) C

per

H_,,.(P), these properties also hold when the domain 1s restricted to S}, .(P) x S, (P) and,
thus, the Lax-Milgram lemma can be applied to demonstrate the existence of a unique
solution ¢y (e,€,t) € Sk, (P) for the Galerkin problem (4 147) Sumlarly, if (¢,t) € H? then

we replace S}, (P) by S§(P) mn (4 147) and seek ¢n(e,¢,t) € SE(P)

4 2 Homogenization Construction of the Asymptotic Expansion
We should like to begin here by commenting that Conjecture 3 1 1, asymptotic expansion
(321), and Theorem 3 2 1 mtroduced 1n the one dimensional context i1n Chapter 3 gener-
alize immediately to the 2-dimensional setting with only simple modifications and we shall,
therefore, refer directly to these results as stated in Chapter 3 with the understanding that
they are to be interpreted 1n the appropriate two dimensional context

The task of determining analytical expressions for the weak solution ¢(se,¢,t) € H,,.(P),
€ > 0,t # 0 of problem (41 22) 1s usually intractable and, similarly, so 1s the problem of
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computing analytical expressions for the terms ¢,(e,t) € H,.(P), n > 0 of the asymptotic
expansion (cf Theorem 3 2 1),

$(z.6,8) =Y _€"$u(z,t), z€P, (6,t) €G, pn(e,t) € Hp,, (P) (421)

Thus, we employ fimte element techniques for the approximation of the terms ¢, (e,1), £ #
0, n > 0 using, as a basis for approximation, the expressions (3 2 10) provided in Theorem
321 However, we observe that for problems of low regulanty, 1e, fc € H™(C)\H™*!(C),
the parameter t 13 unbounded and, consequently, an approach based on the direct approxi-
mation of the functions x,(e,t) € H,, o(P), n > 1 (cf Theorem 3 2 1) would be impractical
We demonstrate how this difficulty can be overcome by (1) Separating the variables z, ¢ for
each function xn(z,t), z € P, t # 0, and then (1) Approximating independently the separate
z, t components of x,, n > 1 The construction of approximating finite element subspaces
Spero(P) C Hper o(P), b > 0 15 described together with their application to determine accu-
rate and robust approximations X, n(®,t) € Spe,o(P) of xn(e,t) € H,,,(P) and the errors
mtroduced by applying this finite element approach are analysed

421 Separating the variables 1n ¢,(z,1)

The term ¢,(z,1) 1s, ultimately, employed 1n a series expansion of the form (4 2 1) 1n which
the variable ¢ corresponds to a specific Harmonic frequency of f¢, cf (4113), and z € P
However, we shall demonstrate that 1t 1s possible to deduce expressions for ¢,(z,t) 1n which
the functional dependence on the variable z 1s separated from that of the variable £, 1e, ¢,

can be written 1 the form .
t) = Zek (z) A (2) (422)
k=0

where 6, € H_,,,(P), 0 < k < n are obtaned as the solution of a weak problem formulated
m a Sobolev space setting and Ax, 0 < k < n are rational functions whose coefficients are
determined by the weak solutions 6 € H_, ,(P), 0 <k < n The property (4 2 2) provides
the opportunity to introduce finite element approximations 6y p, Ag,n, b > 0 of, respectively,
0, A\ where Ai , A\x differ only 1n the value of their coefficients and, in this way, we construct

approximations ¢, of ¢, 1€,

Snn(z,8) =Y Oun@)en(t) (423)

k=0
The separated variable expression (4 2 2) 1s a direct corollary of the following theorem which
demonstrates that the functions x.(e,t) € H},.o(P), t # 0, n > 1, mtroduced 1n Theorem
321, can be represented 1n the form (4 2 2)

Theorem 4 2 1 The functions xn(e,t) € H,,.o(P), t # 0, n > 1 defined n Theorem 32 1

can be written 1n the form, for « € N,

Xn(z,t) = Zt"xdw), z€P,t#0, n>1 (424)

|al=n
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where xo € Hy,,.o(P), |a| > 1 1s defined as the unique solution of the weak formulation
Bo[Xayv] = 0@ (v), we HL, o(P) (425)

where ©(®) € BL(H]},,,(P), R), |a| > 1 1s defined n relations (4 2 8), (42 9) Furthermore,
fort # 0, go(t) = (E|a|=2 kat*)™! and the functions g,, n > 1 can be written

n—1
9n(t) = —go(®) D" 7g,(t) D Kat®, t#0, n>1 (426)
1=0 |lal=n+2—7

where the constants k, € R, || > 2 are given by

ke = > e, 1+ S B, 1), ol 2 427)

a=p+y a=p4v48
[v1=1 Ivl 18]=1

and &7, @™ € BL(H,,.o(P) X Hl,,o(P), R) for 8], |y| =1

Proof We first define the mappings ©(@), 3{"), &{"” employed 1n relations (425)and (427)
as follows, for o, 8,7,6 € N2, v € H3, o(P),

if 6] =1, 0@ (v) ¥ _g@[1, ] (428)
if 6] >2, ©W(w) ¥ _ > 2P xar ] + 3 3P x4, v] (429)
i el

where xo & 1 and, for lal, 1Bl =1, u,v e H,.(P),

70, 0] = 3 2" Mu, o] (42 10)
18l=1
L My, v] & /P Qop(Z) (‘U(E) DPv(z) - D‘Bu(g)v(g)) dz (4211)
2 lu,v] & /7> aop(z)u(z)v(z) dz (4212)
where we have, evidently, employed the multi-index notation,
Dt e T e, ol 1A=t (4213)

where k & 0y + 20 and [ £ B, + 26, Clearly, that (9 € BL(HL,,o(P) x HY, o(P), R),
for |af,|B| = 1, 15 apparent from the relations, for u,v € H2, ,(P),

oAy, v]l ’ / aop(z)u(z) DPv(z) dz \ / aap(z)v(z) DPu(z) dz

< [/P|aaﬁ(£)|2 |u(z) ? d§:| v [/ DPu(a)P d£]1/2+
[/P|aaﬂ( ) |v(z I2dx] [/ DPuz) |2d:1;]1/2

lags Loo (P (It L2 (P o, H(P)] + lfo, Lo(P)ll fu, H' (P)))
C ll0ags Loo (Pl 1w, H (P I, H (P)] (4214)

IA

IA
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where C' > 0 1s a constant independent of u,v € H}, o(P) It 1s, similarly, demonstrated
m Lemma 4 2 2 that (%, &{*? € BL(H,, o(P) x H,,4(P), R) for |al,|B| = 1 and, thus,
0@ e BL(H],,o(P), R) for |a| > 1

We now demonstrate that the functions x,, n > 1 defined 1 (4 2 5) satisfy relations
(328) Let n = 1 1 (424) and observe from (324), (425), and (42 8), that, for v €
Hpero(P),

Bo[xa(e,2),9] =1 ), £*@olXar?]

lal=1

=1y 1201, ]

|e|=1

= —&,()[1,v] (42 15)

Thus, x1(e,t) € H},,o(P), as expressed m (42 4), unmiquely satisfies (328) However, if
n > 2 then, employing (424), (425), and (429), we deduce the following 1dentities, for

vE H;er D(P))

Bo[Xn(e,2),0] = 1" D | 1% Bolxa, 0]
|axl=n
= Y| =Y ool + Y e
S i
Z tﬁ Z Y Q(‘Y)[Xﬁ ’U] + " Z tﬁ Z t'y+6 @('7,6)[X ’U]
1Bl=n~1  |y|=1 1Bl=n—2  |vll6]=1
Y P Oks el - Y (D)X, 0]
|1Bl=n—1 |Bl=n—2
= _(I)l(t)[x"—l (.,t)a'u] - ¢2(t)[Xn—2(.,£), 'U] (4 2 16)

This demonstrates the validity of the separated variable expression (4 2 4) We now substitute

expression (4 2 4) for xi1(e,t) € H},, o(P), ¢ # 0 1nto relation (3 2 9) to provide the following

equations

)7 =1) 175 (8)[xao 1] + @2(2)[1, 1]

|a|=1
=— > %P xa, 1+ Y. e 1,1
lal.l8]=1 |, 181=1
-5 ¢ ]- X Whens 3 @gmu,u]
e T

and, employing definition (4 2 7), we obtain the expression go(t) = (22 aj=2 foa £ 1Lt#0

Similarly, substituting expression (4 2 4) for x.(e,t) € H,,,,(P), n > 1, ¢ # 0 into relation
(329) we deduce the following equations, for t # 0,

= —go(t 29; () [ i Z % @1 (8)[Xa, 1] + 477 Z ia@z(i)[Xml]]

lee]=n+1-3 la|=n~;
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n-1
= —go(t) Eg,(t)z""[— Yo 270 xa, 1]+ Y f*"*’@&"”[xmll]

7=0 falmnt1=2 foten s
n—-1

=—g(t) D "7 g(t) Y. f[— Y oPa 1]+ > @bg"*’[xa,u] (4217)
7=0 Bl=ntams LS Tt

Thus, comparing relation (4 2 15) with (4 2 5) and (4 2 6) and noting expression (4 2 7) for
Kay || > 3, the theorem 1s proved n

From the Lax-Milgram Lemma and the knowledge gained from Theorem 421 1t 1s clear
that one can compute fimte element approximations, Xes € Hpero(P), of the functions
Xo, @ € N2 c\{0} which do not depend on the unbounded variable ¢ Thus, we now consider
techmques for the construction of finite element subspaces Sh., o(P) C Hp,,o(P) from which

the approximations X, » will be selected

42 2 Construction of the finite element spaces Spo(P) C Hy,.o(P)-
Let B(S}..(P)) denote the basis for Sh..(P) mtroduced m Section 4 1 2 with elements @,, 1 <
def

n < D where D = dim(S},,(P)), then, define the functions ¥, € Sh(P),1<n <Dy = D-1,
which span S}, ,(P), according to the relation, for 1 < n < Do,

def _ llon, £1(P)|l TeP (4218
¥alz) #a(2) len+1, L2(P)l prn(2)h £ )
= SUppt, = SUPP ¢n U SUPP $ni1 (4219)

We claim that B(SP,, o(P)) = {1, }Pe, 15 then a bas:s for a finite element subspace Sy, (P) C
H,,,o(P) Indeed, 1t 1s evident from the relation S, o(P) C Sk.-(P) that ¢, € S}..(P) and,
furthermore, [, ¥, (z) dz = 0 because

z)dz = T — llsons L1 (Pl (z
/Pw"(‘) “ /p"’"(l) o TP Jp P B

n £1(P)Il
= |lon, L1 (P)| _ e L@ La(P
lln, L1( )l ||<.0n+1,£1('P)|| [l¢¥n+1 2 )Il

=0, 1<n<D, (42 20)
Now suppose there are constants a,, 1 £ n < D, such that
al'l/)n(Q) + + aDo¢'Do (E)a = 0’ T€ P (4 2 21)

then this imples, for z € P, the following 1dentities

o, L2(P)]
Z""”’" Z"" [“"" " Temn L) T E )]

= Zﬂnwn(z) =0 (4222)
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where
”‘Pn-l,ﬂl(P)” ”‘PD Cl(P)ll
=0y, frh=op—0p g e 1 <1 < Dy, = —Qp, T
hi=c A Tem L(PY] LSS Po Po=—en g (4229)

Because {¢,}5_, 15 a basis for S, (P) 1t follows that 8, = 0,1 < n < D and, therefore,
relations (4 2 23) 1mply that o, = 0,1 < n < Dy Thus, the set 5( St o(P)) = {¢n}22, 1s
a basis for the fimte element subspace S}, ((P) C H,,,o(P) Once agamn we observe that,
because St (P) C HL,, o(P), the Lax-Milgram Lemma guarantees the existence of a unique
solution u, € Sk, o(P) of the abstract Galerkin problem Find u, € S * ro(P) such that

(Do[uh,'vh] = F(’Uh), v, €S erO(P) (4 2 24)
where F € BL(H,,,,(P), R)

4.2.3. Analysis of the Finite Element Approximation Errors.
The discretization errors which arise as a consequence of the application of Galerkin finite
element techniques to problems (42 5), e g, Find x, € HY,, ,(P) such that

Bo[xe,v] =0 (v), vEH,, o(P), o >1, (4225)

are analysed below where we provide error bounds for the approximation errors y, —Xa,hy @ €
N;\{0} 1n both £,(P) and H'(P) norm topologies

We observe, cf (429), that the functionals ©(®, |o| > 2 are unknown elements of
the Banach space BL(H,,,o(P), R) because they depend directly on the unknown weak
solutions xp € H}., o(P), |8| < |a|, h > 0 Clearly, however, one cannot base computational
approaches on purely abstract problems of this type and we therefore employ finite element
approximations xg, € Sp.,o(P), |B| < |al, A > 0 to construct approximating functionals
el ¢ BL(H},.o(P), R) of ©® € BL(H}, (P), R) which we define according to the

relation

O W) == Y o pm vl + Y @ xgnv], vEHL oP), |o|>2 (4226)

a=g+vy a=f+y+38
lvl=1 71 1é]=1

and 0 ¥ ©@, h > 0, |a] =1 Thus, we define the Galerkin problems as Find xa s €
Sk . o(P) such that
Do[Xa hyVa] = O (v4), va € SE,_(P) (4227)

where a € N2\ {0}
We now demonstrate in the Lemma 4 2 2 that the various mappings in (4 2 26) from which
0 N3\ {0} 15 composed are continuous The corollary of this Lemma 1s, of course, the

conclusion that ©{®, o € N2\{0} 1s a functional, 1 e , an element of BL(H,,,,(P), R)
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Lemma 4 2 2 The mappings ®{*, {*# H}, o(P) x H,,. o(P) = R defined 1n relations

(4210) and (4 2 12) are continuous, 1 e, for u,v € H},.(P), |o,|8| = 1,

19 [, v]| < Cy llu, H(P)|| |lv, H (P)|| (42 28)
1852w, v)| < Gy llu, H (Pl |lv, H (P)| (4229)

where Cy, C, > 0 are constants independent of u, v

Proof It has been established 1n the proof of Theorem 4 2 1 that, for |af,|8] = 1, () ¢
BL(H}ro(P) X H,.o(P), R) and because ¥ = ¥, 9 |a| = 1 1t follows that
3 e BL(H, pero(P) X Hy. o(P), R) Furthermore, from relation (4 2 14), 1t 15 clear that
an upper bound for the BL(H),, o(P) x H},, o(P), R) norm of &{*) 1s the following

1231l < 4 max laas, Loo(P,  lol =1 (4230)

Similarly, from the Cauchy-Schwarz nequality, 1t 15 evident that

609 <[ [ lewtaP o] [ [ o]
< laass Lo (Pl I, P s 2 (P)] (4231

Thus, for |a,|8| = 1, 1t follows that ®*® € BL(H aero(P) x Hy o(P),R) and ||<I’£°'ﬁ)|| <
“aaﬁv ( )" |

The rate at which the piecewise linear approximations x,,n € "" o(P) converge, as the finite
element diameter h — 0, to the analytical solution xo € H},o(P) for a € IN2\{0} 1n the
H?(P), 0 £ p < 1 norm topologies 15 detailed 1n the following Theorem

Theorem 4 2 3 For o € NJ\{0} Iet Xah € Sh,o(P) be the Galerkin solution of (4 2 5),
1e, 1t satisfies (4 2 27) then, for 0 <p <1,

IXa ~ Xah, H (P)|| < Co VPP h>0 (4232)

where s = max{r | xg € H'(P)NH,, ((P), |§| = 1} and C, > 0 1s a constant independent
ofh>0

Proof Let Xa € Hpero(P), Xah € Spero(P) C H ser0(P) be, respectively, the solutions of

problem (4 2 5), Galerkin problem (4 2 27), then, for v, € S P r0(P) and |o] > 2, we observe
that

(I)O[Xa — Xa,h» vh] = @O[Xm 'Uh] - (I)O[Xa hs 'Uh]
= 0(,) — 01 (v,)

=- Z 8 [xg ~ xom V8] + Z 85 Olxg — Xp nrvs) (4233)

o=p+y a=p+y+8
lvl=1 171 18(=1
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The continuity of the mappings ", "% demonstrated in Lemma 4 2 2 for 7, § € N2\{0}
mmply that there exist positive constants K «, K3 o, and K, which are independent of the

solutions X, Xa n, such that, for v, € % erO (P), 1®o[Xa — Xa Ry V)| <

Kia S lixs = xem H (Pl + Kna Y lxs=xam H' P | llvw, H(P)|

18l=|a|-1 |B|=|a| -2
18l=|a|—1 )

<Koa > lxg~xomH P llvs H' (P (42 34)
|8l=]a|—2

However, setting v5 = X4 — Xa » 10 this relation and using the H,  (P)-Ellipticity of the

per,0
sesquilinear form ®, we deduce the following 1nequality
IXe = Xam H*PIN S G5 3. lxe=Xonm H'(P)| (4235)
|B|=|u|—2

where Cg > 0 1s the ellipticity constant of @, It 1s then evident that, if

lIxa = xp.0, H' (P)I| < Coh”, 18] <l (4236)

then there 1s a constant C, > 0, independent of x, and h, such that

IXe — Xahs H (P)|| < Co b7, (4237)

However, from Céa’s Theorem, cf Section 2 2 2, we have, for || = 1,

ll o||

Ixs = xan, H (Pl < “=== mf {lIxa = vs, H*(P)|| v € Spero(P) } (4238)

where Cg > 0 denotes the ellipticity constant of the bounded sesquilinear operator &, €
BL(H},.(P)xH.,,.(P), R) However, from the approximation property, cf HACKBUSCH

per

(1992),
mf { v — v, HY(P)| va € Sppo(P) } SCO)V Rl H*(P)|l, 1<s<2  (4239)

where v 15 an arbitrary element of H*(P) N H.,

ser0(P) and 6 15 the mmmum 1nterior angle of

any triangle n the set 75(P) of finite elements, we thus have,

-~

Ixs = Xg.0, H' (P < CO) R~ lIxo H*(P)ll, h>0, |B]=1 (42 40)

Thus, if we define s = max{r | x5 € H"(P) NH), oP), |8 =1} then,n (4236), y=s-1

and the approximation property (4 2 40) and the error bound (4 2 35) 1mply the error bounds

K,
Xa = X, H (P )||<—0 R lxs, H (P, ol =2 (4241)
|8|=1
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Clearly, mequality (4 2 32) now follows directly from (4 2 41) for p = 1 and |a| < 2 and the
remaining estimate for p = 0 1s obtained with the application of the Aubin-Nitsche Theorem,

cf Section 2 2 2, which provides the following alternative error estimate to (4 2 40)

Ixp = Xp.1, L2(P)I| < CL(O) K2~V |Ixg, H*(P)Il, B >0, [B]=1 (4242)

The error bound (4 2 35) and the error bound (4 2 32), now established for |o| < 2, and

the Aubin—Nitsche Theorem together imply the error bounds (4 2 32) for the higher order

approx1mations Xa,n € Sero(P); @] >3, h >0 [ |

We observe, for the specific case of piecewise constant coefficients, cf (4 1 6), that with

1Bl =1, xs € H'*(P), for some o > 0 and Theorem 4 2 3 provides the error bounds, for
0<p<,

Xa = Xooho HP(P)|| < Co BEP7, R >0, |of 21 (4243)

However, if the finite element triangulations 7;(P), h > 0 are constructed such that no fimite
element, 7 € T4(P), can overlap an iterface boundary, I',,, 1 < r,s < m, cf Section 41,
then the triangle mequality and the regularity property xg € H2(Ps), |8| = 1 where P}, 1s any
convex union of triangles 7 € T,(P), h > 0 satisfying dist(P,,V) > p > 0 for p sufficiently

def

large and where V = {v € I" | v 15 a vertex } suggest the error estimate, for 0 < p <1,

IXa = Xa w1y HP(Pa) || < C(0) h* 7?1 Xa, H*(Pa)ll + lxan = MaXa, H* (P, o 21 (4244)

where II, H?(P) — S*(P) 1s the mterpolation operator and 6 1s the smallest interior angle
of any 7 C Pp, h > 0 The first term 1n (4 2 44) reflects the optimal approximation errors
possible 1 each element, 7, as a consequence of the type of triangulation 7;(7P) while the
second term represents the pollution effect of the singularities on the region P, C P and will,
consequently, have a lower asymptotic order with respect to h, cf NITSCHE & SCHATZ
(1974) Thus, for |a| > 1, we expect the approximations Xo s € Sper0(P) to converge to
Xa € H,.o(P), as h — 0, more rapidly than 1s indicated by the global error bound (4 2 43)
for an arbitrary triangulation 7;(P) Indeed, we exploit the approximation properties (4 2 44)
n the computational examples provided in Sections 44 1-4 44 for which the coefficients
asps |, |B| = 1 are precewise constant

The constants &, || > 2 defined 1n relation (4 2 7) are unknown because they are defined
1n terms of the weak solutions x5 € Hjero(P), |B| < || Thus, we define the approximations

Ka hy b > 0 as follows

e 0
fan 2= 3 @ en 1+ D 7 xen 1], lal 22 (42 45)
=t i

where Xpn € Spero(P), 18] < |al, h > 0 are the finite element approximations introduced in

problem (4 2 27) The rate at which the error K, — K4 5 decays 1s considered 1n the following
Corollary to Theorem 4 2 3

HOMOGENIZATION 88



Ervror Analysis { 3

Corollary 424 There exist constants C, > 0, |a| > 2, independent of h > 0, such that

ko — Kan) < Cah®™, h>0 (4 2 46)

where s & max{r | xs € H(P)n H, o(P), |8l = 1} and Ka, ko & are defined 1n relations

(427) and (4 2 45) respectively

Proof The error bound (4 2 46) follows immediately from relations (4 2 34), (42 39) and
(4 2 40) provided 1n the proof of Theorem 4 2 3 |

We observe, however, that if the coefficients ag, |a|, |3| = 1 are piecewise constant we obtain
|ka — Ka | = O(h?), 0 < o < 1, however, by constructing 7,(P), h > 0 as above we find that

there are components of the error which are bounded by terms of the order O(h) as h — 0

4 3 Estimation of the Finmite Element/Homogenization Error.

It has already been noted that, generally, there are no algorithms available which can be
employed to provide explicit analytical expressions for the weak solutions, ¢, u°, of problems
(414) and (4122) However, to assess our approach we require, at least, approximations,
On, UG, £ € N, h > 0, wath which the asymptotics

uhl‘v,l,h(z_) d=Gf Z a‘geﬁgm(ﬁN,h(g/E,E,ﬂ"r)’ z€ ]R'21 e N: N >0 (4 3 1)
neZ7\{0}

can be meaningfully compared, 1e, such that the error uj, — ujy,, closely parallels the

actual error uj — ufy 45, £ € N for b > 0 sufficiently small Clearly, this requires accurate

approximations ¢y, uf, of ¢, u and, thus, we employ fimite element techmques to construct

approximations ¢y (e, €,t), u5,, t # 0, £, h > 0 where

def

i@ E ) enetiT¢u(z/e,e,mn), zER’ (432)
n€Z2\{0}

The errors which these approximations introduce are analysed, and, finally, they are employed

to investigate the errors u¢ —u%,, N>0,h >0

431 Fiite Element Approximations ¢,(e,¢,t), h > 0.

Let Sk (P) be the function space of periodic, piecewise linear functions over the field C,
defined 1n Section 4 1 2, and define S?(P) as the subspace of functions of Sk, (P) with zero
trace on the boundary, 37 We now define the approximation ¢y (e,¢,t) as the solution of
the Galerkin problem Find ¢4(e,¢€,t) € V4 such that

B(B)bn (o, €, 1), 4] = €7 /P @ dz, v €Vh (433)

where V, & Sho(P) if (g,t) ¢ H? and V, & SH(P) of (e,t) € H2, cf 411 The errors

introduced by this approximation are considered 1n the following Theorem
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Theorem 431 Let ¢p(e,€,t) € Vi, h > 0 be the solution of the Galerkin problem (4 3 3)
then, for 0 <p <1,

lp(e,€,8) — du(s,€,8), H*(P)|| < Cle, 1) AV (o, 6,t), H'(P), h>0 (434)

where s = max {r | ¢(e,€,t) € H(P) N HL,(P) } and C(e,t) = O(|It3) (itll. = oo)

per

Proof From Cea’s Theorem, relations (4 1 28), (4 1 31), and the approximation property, cf
HACKBUSCH (1992),

1nf{||v—vh,H1(’P)I| v, €S pe, } <COR o, H'(P)|, 1<s<2 (435)

where v 15 an arbitrary element of H*(P) N H,,.(P) and 6 1s the minimum 1nterior angle of

any triangle 1n the set 7,(P) of fimte elements, we thus have,

lig(e,€,2) — dnle,e,8), H' (P)| < Cle,t) h*7* ||g(o,6,8), H'(P), h>0 (436)

where the positive function C(g, t) = C?C2(az/a)(1 + €l|t]]2)2 (1 + 2¢ |[2]|2 + €2)2])2) and s &
max {r | ¢(e,¢,t) € H(P) N HL,,(P)} Thus, for p = 1, property (4 3 4) follows immediately
from (4 3 6) and, for p = 0, we apply the Aubin—Nitsche Theorem to obtain (4 3 4) | |

The local fimte element approximation ¢ (e,¢,t) € Sy, .(P), €,h > 0, t # 0 shall be employed

in the computational examples 1 Sections 4 4 1-4 4 4 to construct the global approximations

u5,, £ € N defined 1n relation (4 3 2) The errors introduced by such an approximation over

) are considered 1n Section 4 3 2

4 3 2 Analysis of the Global, Q, Approximation Errors

The errors mtroduced by the approximations Xan € Sh,o(P,R), [ > 1, u(e,¢6,t) €
Sh..(P) for e > 0, ¢ # 0, and h > 0 were analysed m Sections 42 3, 43 1 to determimne the
effects of approximation within the reference cell P However, to assess the homogenization
approach we require some 1ndication of the errors introduced over €2 by the global approxima-
tions uj , ufy ,n, ¢f (43 1), (43 2), which are constructed from these local approximations
We perform an analysis to determine error bounds for u® — uf,, 1n the H P(),0<p<1

norm topologies

We begin by bounding the truncation error u° —uj and the approximation error uj —uj
for e N, h > 0 1n Lemmas 4 3 2 and 4 3 3 below

Lemma 4 3 2 Define f, € L2(R2), £ € N by the following relation

filz) = Z a, e, zeR? (437
nezZi\{0}
and define u§ € H} () to be the unique function which has the property

/Qzau -’B/E ) dz—/ft z)v(z)dz, ve€ Hy(Q) (438)

k=1

—
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then, for 0 <p<1,and £ € N,

lu€ —ug, H*( Q)| < Cy|If = for L2(Q)| < Ca || A, £2(27))] (439)
where Ay = (AL), n € 22 1s the £,(Z?) sequence

Ai:{o, ifn € Z}

Gy, oOtherwise (4310)

and C,, C; > 0 are constants which are independent of f, f,, the weak solutions u®, uj, and

a

Proof It 1s clear from (4 1 4) and (4 3 8) that the function u® — u§ € H(f2) has the property

[ @2 R aa= (- @ vem@ @

k,i=1

Thus, employing the Cauchy-Schwarz inequality, the H}(2)—ellipticity of the bilinear form
n relation (4 3 8), and Parseval’s relation we deduce that relation (4 3 11) implies (43 9) B

Lemma 4 3 3 For finite, bounded £ € N the approximation errors uj — uj , are bounded

above as follows

luf = uf, HP @) S COAEPED, h>0, 0<p<1 (4312)

where C(£) = oo (£ — o) 15 independent of €, h > 0
Proof The error uj — uj,, £ € N, A > 0 1n the norm topologies H?(Q2), 0 < p < 1 can be
written

”‘U,i - U’:,ha H?(Q

S aner @ (g(o/e,c,nm) — gu(o/e,e,nm) ), HP()

n€Z;\{0}

(4313)

However, for finite £ € IN, the Holder inequality implies the relation, for || <1,

Y axD* (€22 (4(z/e,e,nm) — dalafe,,nm))) | <

neZ\{0}

) 1/2
s £2(C)1 [ > |p(e=m (¢(g/e,e,mr)—¢h<z/e,e,m)>)|] (4314)

neZZ\{0}

and, substituting this relation in (4 3 13), we obtain the upper bound, for 0 <p <1,
g = 1, HH Q) < Cllfe, L2 D €2 @™ (¢(o/e,€,n7) — $n(o/e,6,n7)), HP(P)|?

neZZ\{0}
(43 15)

HOMOGENIZATION 91



Error Analysss 4 3

where we have observed that P = Q and, from Parseval’s relation,
lfe L2001 = 3 lauf, €€N (4316)
neZi\{0}
Furthermore, Lemma 4 2, the weak formulation (4 1 22), and the Cauchy-Schwarz mequality
1mply the relations
llet @ ((¢(o/e, €,) — dnlo/e,e,t)), H' (P)|?

< Gy et ((d(o/e,6,t) ~ dn(o/es e, 1)), H (P)?

S G o |0(6,t)[B(e/s6:2) — Bu(o/es6, L), d(o/e, 1) — gu(o/e, e, 1))

= Cao7 " |2(e, )[B(o/, €,1), B(o/e, 8, ) — pn(o/e, €, 2)]]
| o=t Tee D

< Crog'|lg(e/e,6,t) — du(o/e6, 1), Lo(P)|| (4317)

— -1

where we have observed that, for v € HL, (P), P, & (1 — 1,2) X (7-1,2), 1 <1,7 <1/,

per

/pv(z)dz=/7> v(z) dz

)

Now, if p = 1 we employ mequality (4 3 17) 1n relation (4 3 15) and otherwise, if p = 0, we
use 1dentity

llet % (¢(o/e, €,2) — Bnlo/e,,0)), L2(P)Il = lg(o,€,) — Gulo,e,8), L2(P)|  (4318)

and, thus, from Theorem 4 3 1 we deduce the error estimate, for 0 <p <1,

1/2
lfug — g HP Q)| < CREPED | 5, £,(P)| >~ Can)|¢(e,e,nm), H* (P)|
nezZ7\{0}

(43 19)
where C(n) = oo as ||n]lz = oo The functions D*¢(z, e, nm), |a| < 1 are Holomorphic for
le — s,(m,n)| > § where § > 0 1s fixed and s.(m,n) = 2m,/n,, 1 <7 <2, m,n € Z%\{0}, cf
Theorem 3 11 Thus, within this bounded domain the functions D*¢(z, e, nn), || < 1 can
be bounded 1independently of ¢ and because ||¢(e, e, n7), H*(P)| 15 defined in terms of these
functions, eg, for s =1+ o,

lg(s,&,nm), H(P)I> = 3~ [ID*6(s,€,0m), L2(P)IP + D¢ (e, €, mm), H* (P

| <1

1t can also be bounded independently of € The error bound (4 3 12) now follows directly
from (4 3 19) n

We observe that the asymptotic property C(¢) — oo (£ — 00) precludes the use of Lemma

433 to deduce the asymptotic properties of the error u® — u§, = limy_, o (ug — ug ;) (with the
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limit taken n the H'(Q) sense) Indeed, the asymptotic character of the function C(e,1),
deduced 1 Theorem 4 3 1 using Cea’s Theorem, suggests that we can do no better The
triangle 1nequality and Lemma’s 4 3 2, 4 3 3 are now applied to analyse the error u* —ujy ¢ p

into separate components as follows, for £ <A, 0<p <1,

l[u® — uy ¢ no HP(ON < luf — u§, HP(Q)|| + llug — uf o, HPEQN + | 65, — v e HH (I
<G If = for L@ + C(@) KD 4 [t — uSy o ns HP()] (43 20)

where A 1s a fixed positive mteger Thus, by employing finite element triangulations Ta(P)
with A > O sufficiently small and £ large, 1e, such that the errors [[u§ — u§,, H?(Q)|
and ||f — fo, £2(Q)|| are an order of magmitude smaller than |luf, — uy o5 HP(Q)]], the
behaviour of [|u§, — uf,,, H?(Q)| provides an accurate gwde to the character of the er-
ror ||u® — ufy 4, H?(Q)|| 0 the norm topologies H?(2),0 < p < 1 Indeed, this analy-
s1s motivates the computations undertaken in Sections 4 4 1-4 4 4 which assess the errors
luip — ufy e n, HP(Q)|, 0 < p < 1 for a variety of problems possessing different regular-
ity charactenistics However, the task of constructing accurate approximations ¢y (e,¢,t) €
Sp..(P), uf, of §(e,e,t) € H) (P), ui € H., (P) becomes impractical for very large £
and € = 0 Indeed, to construct uj, 1t 1s necessary to solve the Galerkin problem (4 3 3)
for each t = nm, |n,|, In2| < £ and, on any computer architecture, to assess the global er-
IOIS g, — Uy, Tequires, as € — 0, an unboundedly mcreasing proportion of cpu time
Thus, we attempt to obtain a reliable and accurate assessment of our approach by employng
e=1/r, 1 <r < R with ¢, R sufficiently large so that the principal approximation properties
of u ; , become apparent while remaining within the constramts imposed on time and space

by the resources of a computer architecture

44 Computational Examples.
Following the one dimensional setting of Chapter 3 we now find 1t necessary to make some
comments regarding the effect of problem regularity on the convergence properties of the
asymptotic approximations 4% ,, as £ = oo The functions ufy,,, N >0, £ € N, h > 0
where

tha(@E ) an e gya(z/e,e,n), ZER?, £>0 (441)

neZ\{0}

are evidently constructed from the discrete approximations ¢nn, N > 0, h > 0 which are
defined as follows

N
¢Nh(:_z_1€1£) dzefzenqsnh(;g,.t.)a ge'P,i#O (442)

n=0

where go n(£) = (XjoizpFa 1), £ £ 0 and, for € P, £ £0,n > 1,

n-1
¢n h(za L) d=°‘ Z gJ h(é) Xn-J "(2: z) + gﬂ h(é) (4 4 3)
1=0
where

HOMOGENIZATION 93



Computational Ezamples 4 4

-1

thxt Ztth ) gnh =—90h Zin‘, 9.k ) z :‘ia,hia (444)

la|=n = |a|=n+2—3

and Kq h, || 2 2, B > 0 15 defined 1 relation (4 245) However, from (41 25), (41 27),
Lemma 10, and Theorem 9 of BABUSKA & MORGAN (1991n) 1t follows that there exist
constants 7,8 > 0, which are independent of ¢ € R*\{0}, such that

9on(® <1/ (vulltlD),  lgenlet), H'(P)| S ngon() 6° lItl5, k>0,£#0 (445)
= gen(e,), H' (Pl = O(lltll3™*) (lizll2 — o) (446)
Furthermore, if fo € BV(C) then there exist functions ¢,, 9,, 1 < 1+ < 2 which are non-

decreasing and non—negative and are such that f¢c = ¢ — 9, — Y2 + ¢ The second mean

value theorem for integrals then shows that

/P[wr(z),d)r(z)] e 22" dz = O(lnyns|™") (llnfl; & 00), 1<r<2 (447)
= ap = O(|nin2|™") (llnll, — oo) (448)

The convergence properties, as £ — oo, of the approximations uy,,, N > 0, &,h > 0 m the
H?(Q), 0 < p < 1 sense are now apparent from relations (4 4 5), (44 8) and

lufy e.p0 HP ()| < Z |as| [|e2 2™ n,n(e /e, €,nm), HP(Q)]| (449)
neZ2\{0}
< Y lagl (14 llnll2) 1w a(e/e 6,nm), HAQ))  (4410)
nezZ2\{o0}
< Y lag| (L + llmll2)? e [[gnnle,e,nm), HP (P (4411)
neZi\{o}

for, by the comparison test, Uy ,p — uy, absolutely wrt ||o, H?(Q)[,0 < N+p<1as

£ 00,1¢€,

lag) (14 [21]2)7 €77 [lgn n(o, £2m), HP(P)| < K lag] (1 + lla)” i}y
< K, [aa] (0} + n) V4P = K, a7

<K, gWN+P=2/2 |, |(NH)2=2 < Ky [,y |™3/2 (4412

and, for N+p > 3, |lufy ¢ s, HP(Q)|| = 00 (£ = 00) Furthermore, 1if N+p = 2 then (4 4 5) 1m-
plies the asymptotic relation [|¢n (e, n7), H?(P)|| = O(1) (||zll: = o) and therefore we need
only establish the H?(§2) convergence of the term (5, W(z) = de 22\{0) o €® ™ b n(z /e, nm)
as { & oo However, ¢y 1(e,t) € H., (P), t # 0 and therefore we can expand this function

as a Fourier series, e g,

1
dnilzd = ¥ alteme, b0 =7 [ an@hermee @en)

mezZ?2
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and therefore
Chen@ = D D apali(nw)entim/e)zm (4414)

nez?\{0} me2?

We assume that ¢y (e,t) € BV(P) and thus, from (4 4 5), a*(t) = O(|Itl|3 ~*/|mumy|) as
|lm|l2 = oo and |||z = co The orthogonality of the exponential functions e(®+22/¢) () €
Z2\{0}, m € Z? with respect to the £2(C) mner product then suggests that

”Cz‘.t.mﬁz(c)Ilz: Z Z |a£|2 lafn_"’(wr)lz

nezZ}\{0} me2?
<G Y lal Y mmal P < Collfe, LOIP (4415)
nez2\{o} mez?

Thus, the function {5, , converges in £,(C) as £ = oo and, consequently, so does u3,, The
property of absolute convergence, as £ — 00, of the approximations u{ ,,, £ € N, h > 0, with
respect to the £;(C) norm, observed above, means that 1t 1s valid to differentiate the function

Cin & im0 ¢ ¢n (with convergence 1n the £;(C) sense) termwise, 1¢, for h > 0,

D% a(z) = Z a, e =™ [g"m $1u(z/e,6,nm) + €71 D%y u(z /e, €, g‘lr)] , |af=1

nez2\{0} ( )
4416

The convergence of uj,, 1 H'(C) as £ = oo now follows, as above, fram the asymptotic
relation (4 45), the series expansion (4 4 13), the £;(C) orthogonality of the exponential
functions e®@+2m/e) (1 n € Z2\{0}, m € 22, and Bessel’s inequality We now follow the
approach taken in the one dimensional setting and propose the H?({2) convergent approxi-
mations uy p o4, N +p > 3, M,£ €N, h > 0 defined as follows

8y pron(@) = Z ap €= ¢y n(z/e,€,n) + Z a, e =" o n(z /e, €, )
nez? ,\{0} Eeztz\z?-(c)
(4417)

where 7(¢) = max{n € N | n < 2/e} Below, we apply our approach to the R? counterparts
of the boundary value problems investigated in Chapter 3 and assess their behaviour using
the computational techniques described above With this approach we expect to demonstrate

that the features of the asymptotic approximations observed in the one—-dimensional context

readily generalize to the R? setting

4.4.1. Sample problem Smooth Data, a € C*(P), fc € C=(C).
We define the coefficients ay, £ dua,1<k,l<2, f, employed in the elliptic boundary value
problem (4 1 1), below

a(z) & [1 + %Zcos(%rz,,)] ) , fl@¥ H sin(nz,) (4418)
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It 1s evident that a, f € C*°(R?) and f 1s antisymmetric and 2-periodic, 1¢, for z € R?,

flz+2n) = f(z), ne2’ (4419)
FU(=1)™zy, (=1)™zy) = (=1)™*™ f(z1,72), m € Ng\{0} (4 4 20)

and, therefore, f = fc where f¢ 1s given by the Fourler series expansion (41 13) and a, &f

QpyGn,, n € Z2\{0} where

d_ef{l/Zm, fn=+1

=0, fnte1 "EEO (4421)

Furthermore, a 1s a 1-periodic function which satisfies the periodic boundary condition
(4 12), the ellipticity mnequality (4 1 3) with ; = 2/3, a; = 2, and u® € C%(R?), ¢(e,¢,1) €
H},.(P)NC*(P)NC*(P) are the classical solutions of problems (4 1 11), (4 1 22) respectively

We employ a uniform finite element triangulation, U, (P), of P with h =1/16, 1e, each
finite element 7 € U, (P) 1s obtained by translating and/or rotating the right angled triangle
Th={(&n)| & n>0, £4+n<h} Notethat n Theorems4 23,4 3 1 and Corollary 4 2 4 the
parameter s = 2 The errors ||[u§ — u% 5, H*(P)|, 0 <p <1, 0 < N <3 have been computed
and are presented mn tables 4411-4413 where e =27, 1 <r <4 and because, therefore,
2771m # 2rm, r > 1, m € Z2\{0} 1t follows that enm ¢ H? where n, = +1,1 <1 <2 Each
mntegral over 7 € U,(P) 1s approximated by a 7 pomnt quadrature rule, cf AKIN (1982),
and the algebraic equations which arise are solved by a Cholesky factorization technique
We poimnt out that there 1s no subscript £ € IN 1n tables 4411-441 3 because there 1s no
truncation error committed 1n the computations, 1 e, the Fourier series 1s summed 1n 1ts

entirety

Table4411 a€ C®(P), fe € C(C)

Cell Size, € lu§, — uo,n, L2(Q)]| |u§, — ug,n, H(Q)]
05 1 39403508(—3) 1 92809615(—2)
025 7 74303030(—4) 2 00011017(—2)
0125 3 96255426(—4) 2 02073130(2)
0 0625 1 99238516(—4) 2 02602928(—2)
O(e) o)
Table 4412 a€ C®(P), fe € C(C)
Cell Size, ¢ l|lug, — uf 5, L2 ()| |u§, — uy 5, H ()]
05 2 84813088(—4) 3 30893241(—3)
025 4 57597122(—5) 117921226(~3)
0125 9 80590435(—6) 5 18420187(—4)
0 0625 2 34887912(—6) 2 49722298(—4)
O(e?) O(e)

— — —
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Table 4413 a € C®(P), fo € C®(C)

Cell Size, € |5, — 5 5, L2 ()]l |u, — ug pn, H ()]
05 2 44001085(—4) 2 74778793(—3)
025 2 68637426(—5) 6 66596767(—A4)
0125 3 22450617(—6) 1 65123796(—4)
0 0625 3 98734188(—7) 4 11817089(—5)
O(e?) 0(e?)

The graphs of the real and imagmary components of ¢,(1/2,e,9), ¢nr(1/2,0,¢), 0 <
N < 2, h > 0 1llustrated 1n Figures 4411-4416 clearly demonstrate the utility of the
asymptotic approximations ¢y, 0 < N < 2, h > 0 of ¢, indeed, as ¢ — oo, 1t becomes
difficult to distinguish between the various approximations The principal features evident 1n
these graphs, 1 e , the monotone convergence of the approximations, ¢y ,, 0 < N <2, h > 0,
to the asymptote y = 0 and the extrema of ¢, h > 0 — which correspond to the singularities
of ¢ — were also observed for the analogous analytical functions ¢, ¢n, 0 < N < 2 1n the
one dimensional setting of Chapter 3 Furthermore, we find 1t interesting that the graphs
reveal that the functions ¢n x(z,¢€,e), z € P, 0 < N < 2 provide accurate approximations of
dn(z,€,0), z € P outside the region, @, where the expansion (4 2 1) 1s analytically justified

Clearly, for f defined by relation (4 4 18) the Fourier series (4 1 13) has finitely many
terms and, therefore, questions of convergence of the sums (4 1 21), (4 4 1) never arise, thus,
one can construct asymptotic approximations ujy ,, h > 0 of any order N € N Indeed, the

computational results presented 1n Tables 441 1-44 1 3 suggest the following property for
h > 0 sufficiently small

lluh = ufvn HH(Q) < C(R) NP, N20, 0<p<1 (4422)
where C(h) > 0 1s a constant which 1s independent of € > 0

442 Sample problem Piecewise smooth Data, a € C®(P), fe € Pc*(C)

Let ay; € C®(R?), 1 < k,I < 2 be defined as 1n Section 44 1 and define f(z) ¥ 1,z € Q
then f4 € PC™(C) 15 a step function which extends f antisymmetrically to C and 1s given
by relation (4 1 12) Simuilarly, the 2-periodic extension of f4 to fo € PC®(IR?) 15 defined by
the Fourier series expansion (4 1 13) where the coefficients are a, & g, 1t € 22\{0} and

a, & — [1 - (—1)"], n € 2\{0} (4423)

nm

The weak solutions u¢ € H}(Q2), ¢(,¢,t) € H,,.(P) are, as in Section 4 4 1, classical solutrons
of (4 14), (4122) respectavely,1e , u¢ € C*(Q)NC°(Q), ¢(s,¢,t) € HL,(P)NC2(P)NC*(P),
however, 1n contrast to Section 4 4 1, u® 1s not a classical solution of problem (4111), 1e,

ut ¢ C*(C) N C°(C) but u¢ € H*(C) N Hy(C), cf Theorem 91 22 of HACKBUSCH (1992),
and, because fo € H/2-*(C), p > 0, u¢ € H%/?>~#(B) for any open ball B @ C
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The errors |luj, — uy 44, HP(P)|l, 0 < p < 1,0 < N < 3 have been computed and are
presented 1n tables 4421-4423 where £ = 7l,e = 27", 1 < r < 4 and, thus, (&,i,) ¢
H,1 < g < 2 because 277(2n + 1)m # 27m,r > 1,n, m € Z2\{0} The finite element
triangulation U, (P), h = 1/16 1s employed once again to obtain the computational results

reported 1n the tables
Table 4421 a € C®(P), fc € PC™(C)

Cell Size, € g 5, — 2o ¢ ny La(Q)| |ug ), — vo,e ny H ()]
05 2 55209846(—3) 3 30043356(—2)
025 1 33536187(—3) 3 36109462(—2)

0125 6 65648382(—4) 3 37290018(—2)
0 0625 3 32510592(—4) 3 37623695(—2)
O(e) 0(1)

Table 4422 a€ C®(P), fc € PC*(C)

Cell Size, & llugn — ¥ L2(D)] |ugn — vr,en H (D)
05 7 19260110(—4) 6 98363635(—3)
025 2 62528987(—4) 4 34283106(—3)

0125 6 51723448(-5) 2 43346296(—3)
0 0625 1 54817208(—5) 129349317(—3)
O(e?) O(e)
Table 4423 a € C*®(P), fe € PC*(C)

Cell Size, € [l — ©5 200 L2 ()l [ugn — Uz 1,60, H(Q)]
05 9 29159899(—4) 2 02676373(—2)
025 2 57005360(—4) 5 35188282(—3)

0125 5 10135998(—5) 1 48569648(—3)
0 0625 8 96991395(—6) 4 20775584(—4)
0(82) O(EH"')

4 43 Sample problem Piecewise smooth Data, a € PC*(P), fc € PC®(C)
Define f as in Section 4 4 2 and the 1-periodic coefficients ay et Sra, 1 < k,l <2 where, for

z € P, a 1s the step function

1, 1ifzeP\(1/4,3/4)*
a(z) & (44249)
10, ifz € (1/4,3/4)*
and, therefore, there exists a partition of 2
Q=Um0,, &N, i#) (4 4 25)

HOMOGENIZATION 101



Computational Examples 4 4

such that a(z/e) =alM € R, z € Q%, 1 <r <m, It 1s evident from defimtion (4 4 18) that
a € PC™(IR?) satisfies the boundary condition (4 1 2) and the ellipticity inequality (41 3)
with @) = 1, a; = 2 Furthermore, Theorem 9 1 26 of HACKBUSCH (1992) shows that, for
any open ball B @ Q%, 1 < r < m,, there 1s the interior regulanty u* € H*(B), k € IN (cf
HACKBUSCH (1992)), however, the continuous embedding H?+?(B) — C2*(B), 3 € Ny, 0 <
A <1 (cf ADAMS (1975)), and the weak formulation (4 14) then umply that the weak
solution u® € H3 () 15 also a classical solution 1n the region Q\I' where I' & y™e_ (505 N9NE)

r,8=

and, on I, satisfies the weak continuity condition

> /6 o dVui(z) nlN(z)v(z)dz =0, veCP(Q) (4426)
r=1 H

where nll(z) € R? 1s the unit outward normal vector to the boundary 9Q¢ at the pont
z € 0Q¢ If, however, u® € W_,(Q) then, for ¢ < 1/2, 1t 1s clear that (cf (1215))

£ € 1
o, H ¥ @) < e, A @I + [ g dedz <oo (4427)
QxQ |[L£ ~ £]|2

1e, u* € H}(Q) N H¥?*(Q), p > 0 Indeed, 1t 1s the mterior nterface vertices ((2n +
)p/4,(2m + 1)q/4), 0 < m,n < 1, p,q € N, which cause the singular components of the
solution to arise and, therefore, the reduced regularity of 4* (compared to Section 4 4 1)
The errors [[u§, — uy 0, H?(P), 0 < p < 1,0 < N < 3 have been computed and
are presented 1n tables 4431-4433 where £ = 71, = 277, 1 < r < 4, and (¢,t,) ¢
H,1 < q <2 because 277(2n + 1)1 # 27m, r > 1,n, m € 2%2\{0} The finite element
triangulation U, (P), h = 1/16 1s employed to obtain the computational results reported in
the tables where, clearly, the finite elements 7 € U, (P) do not cross the interface boundaries,
1e, 7TNIP, =0, 1 <r < m, where P, oo 00, see (44 25) We recall the analysis of Section
4 4 and observe that the termwise derivative of the approximation u§ ,, diverges as £ — oo

and we therefore employ the approximation uj, ,, instead

Table4431 a € PC®(P), fo € PC7(C)

Cell Size, € l|f ), — wo g0, L2(2)]] |u, — vo,en, H ()]
05 5 13260128(—3) 7 92495894(—2)
025 2 59876887(—3) 7 53652399(—2)

0125 129971219(-3) 7 65957443(—2)
0 0625 6 50236166(—4) 7 70283492(—2)
O(e) 0(1)

The graphs of the approximations ¢,(z,¢,9), dn r(z,€,0), 2 =1/2,e =271 <n <
3,0< N <2, h=1/16 presented 1n Figures 44 3 1-4 4 3 6 reveal the now famihar features

observed during the preceding computations It 1s also apparent from the graphs that the
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Table 4432 a € PC™(P), fc € PCZ(C)

Cell Swze, e || llugy — uens La(@I | lug, — e, H' (D)
05 1 22649269(—3) 2 04409797(—2)
0‘25 4 43631691(—4) 123931444(-2)
0125 121902193(—4) 6 63802373(~3)

0 0625 3 12648593(—5) 3 44159199(-3)
O(e?) O(e)
Table 4433 a € PC*(P), fc € PC®(C)

Cell Size, € |5, — 5.0 hs L2()]) [ug ), — ua 1 ¢n, H(Q)]
05 1 64063523(—3) 3 41231714(-2)
025 3 98818364(—4) 8 94704807(—3)
0125 7 57837897(—5) 2 45068320(—3)

00625 1 30882661(—5) 6 85638290(—4)
O(e?) O('*2)

discontinuities, cf (4 4 24), do not significantly reduce the quality or utility of the asymptotic
approximations ¢y 5 of ¢n

The computational results obtained 1n Tables 4 4 3 1-4 4 3 3 suggest the following error
bounds, for 0 < N <2, h=1/16,£=T71,

s — uly 0 n HP (@)l < Ci(R) NP, 0K N+p<2

(4 428)
llug p — 151 en H ()] < Ca(R) el

where C;(h), C2(h) > 0 are constants independent of € and 0 < @ <1 Thus, the computed
errors converge 1n a similar manner to the analogous approximations computed analytically
n the one dimensional examples of Chapter 3 This suggests — while, clearly, not proving —

that, with our choice of h, ¢, the error
llug — u§ ., HP(Q)|] < C(g) hE-P=1) (4429)

1s sufficiently small that one can obtain meaningful results by mvestigating the errors |jug , —
va,thp(Q)” and ||u , — Uy ps ¢ 5, HP(Q)]| as 1n Tables 4431-4433

444 Sample problem Piecewise smooth Data, a € PC®(P), fc € C=(C).
Define the coefficients ay = 6y a, 1 <k,l<2and f as follows

da{L if 2 € P\(1/4,3/4)?

10, if z € (1/4,3/4)? ) f(z) = '];—:Ilsm(vr:c,,) (4 4 30)

The properties of the functions a, f, f¢ have been studied 1n problems 4 4 1-4 4 3, further-

more, the weak solution u¢ € H}(Q2) exhibits the same regularity properties as observed 1n
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Figure 4431
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Graphs of the real or imaginary parts of ¢4(z,¢,t), dnn(z,€,t), 2 =1/2,e =1/2",1<n <
3,1<t<30,0< N <2 h=1/16 The curves are distinguished by the symbols, e g,
A=>¢1D=>¢07*=>¢17 N:>¢2
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Figure 4433
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Figure 4435
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problem 4 4 3, 1e, u° has singularities at the interior interface vertex poits, u* € C*(Q\I'),
u* € H*(B), k € N for any open ball B @ Q£,1 < r < m,, and if u* € WL() then
ut € H¥?77(Q), p> 0

The errors ||uf, — uy ,, H?(P)|, 0 < p < 1,0 < N < 3 have been computed and are
presented 1n tables 444 1-444 3 where e = 277, 1 < r < 4 and because, therefore, 27717 #
2mm, r > 1, m € Z2\{0} 1t follows that enm ¢ H? wheren, = 1,1 <1 < 2 The
finite element triangulation U, (P), h = 1/16 1s employed to obtain the computational results
reported 1n the tables where, clearly, the finite elements 7 € U,(P) do not cross the interface
boundaries, 1e, TN P, =0, 1 < r < m,; where P, = 9QL, see (4 4 25)

Table 4441 a € PC®(P), fc € C=(C)

Cell Size, € || w5, — uo,n, L2 ()]l |u, — o p, H ()]
05 3 04183197(-3) 4 61609913(—2)
025 1 55530030(—3) 4 63470369(—2)

0125 7 79908828(—4) 4 63884111(—2)
D D625 3 90161435(—4) 4 63983690(—2)
0() 0Q)

Table 4442 a € PC™(P), fec € C=(C)

Cell Size, € flug, — uf 5, Lo (D)) |u — uy 5, H ()]
05 7 98611323(~4) 1 28522393(—2)
025 1 94706196(—4) 6 29434012(—3)

0125 4 86812019(—5) 3 13265547(—3)
0 0625 1 21750108(—5) 1 56458260(—3)
O(e?) O(e)

Table 4443 a € PC®(P), fe € C*(C)

Cell Size, € uj, — us p, Lo (Q)]l |ug — ug 5, HY(Q)]
05 3 57718390(—4) 452235561(—3)
025 3 58931520(—5) 1 04462517(—3)
0125 4 18362046(—6) 2 55424836(—4)
0 0625 513263414(-7) 6 34934365(—5)
O(e%) O(e?)

4 5 Conclusions
Our aim 1n Section 44 was to demonstrate that the asymptotic approach introduced n
Chapter 3 could be generalized to the two dimensional setting and combined with finite

element techniques of approximation to produce functions vy ,,, N >0, £ € N, h > 0 which
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approximate the weak solutions, u¢, of scalar elliptic problems (4 1 1) such that the errors
decrease, as € =+ 0, 1n the H?(2), 0 < p < 1 norm topologies

The computational results obtained 1n Section 4 4 and the analysis of Section 4 3 — which
led to the error estimate (4 3 20) — evidently generalize the computational/analytical results

of Chapter 3, 1¢e, for fo € H™(C)\H™*!(C), u* € H'*?(2), 0 >0 and 0 < p < 1 we have
lluf — iy 0 HH Q) < CuIIf = for L2 + C(€) RCP7 4+ CpemnNHLmi—r  (457)

where 0 < N <m+2-pand € <A, A a fixed positive integer The analysis of Section 4 3 2
suggested that C(¢€) = oo as £ — co and, indeed, whether 1t 18 possible to replace C(£) by a
constant which can be bounded independently of £ € NN 18 an open question However, because
the asymptotic approximations uf ,,, h > 0 converge as £ — oo for functions fe € BV(C),
cf Section 4 4, we expect such a constant to exist The computational results obtained 1n
our assessment of the approximation 3, , , were, as commented 1n Section 4 4, mnconclusive
However, based on the defimtion of iy p,s (cf (4417)) and the computational results
obtained we suggest that there exists an «, 0 < o < 1 such that

lu® = a0 N S LU — for L2 @] 4+ CE) RO 4 CyemeiN+1m42-e0  (459)

where N>m+2, M =m+2—p and C; > 0 18 a constant independent of €
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5 DOMAIN DECOMPOSITION
FOR TwWO DIMENSIONAL
LINEARLY ELASTIC MODELS OF
HETEROGENEOUS MATERIALS

5 0. Introduction

In chapters 3 and 4 we have been able to use homogenization techniques which employ
asymptotic expansions to treat problems with rough coefficients of large variation because
the problems considered had periodic and asymptotic structures However, these characteris-
tics are not always present and, even If they are, asymptotic parameters such as &, which are
not within the control of the numerical analyst, may simply be too large to obtain accurate
approximations Thus, if there 1s no periodic structure and/or € 1s large 1t becomes necessary
to consider alternative methods and, here, as a general approach we use the techmque of non—
overlapping domain decomposition with preconditioning algorithms to obtain approximate
solutions of linear elastic models of heterogeneous materials This will lead to algorithms
which can be efficiently implemented on parallel machines with MIMD type architectures
In particular, we extend the domain decomposition with preconditioning approach first n-
troduced for scalar elliptic boundary value problems in MANDEL (1993) to two—dimensional
elastic problems over Lipschitz domains 2 and demonstrate, both theoretically and compu-
tationally, that the convergence properties established there remain valid

Boundary value problems which are formulated to describe physical problems over regions
! with complex geometry can be difficult to solve 1n the classical sense of the continuously
differentiable C™ type spaces However, if 2 can be viewed as the union of a number, mn
this case two, smooth, geometrically elementary, overlapping subdomains 2, € C?*, 0 < A <

1,1<1<2,1¢,

Q=91UQ2, angz#m (501)

and analogous boundary value problems formulated over each subdomain 2,,1 <1 < 2 can

be solved analytically, then, for suitable boundary conditions and decompositions (50 1),
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of KANTOROVICH & KRYLOV (1964), Schwarz’s alternating method SCHWARZ (1890)
demonstrates that the Harmonic function u, u|sq = g can be synthesized from the poimntwise
limits of the solutions of the boundary value problems Find uf") € C**(Q,),1 <1< 2such
that, for n > 1,

Vi) =0, z€Q, (502)
u™(z) = g(z), z €N, (503)
ul(z) = w7 (2), ze€INUNQ, (50 4)

where u§°’ & » on 99, N Q, for arbitrary ¢ € C? A(Q) such that the Dirichlet boundary
values m (503), (504) define Holder continuous functions on 952, with exponents v, €
(0,1), 1 <2 <2 Thus, u|g, = muse uf"), 1 <1 <2 and, if ¢ = u|sn,na, then the iteration
(502)-(5 0 4) converges 1n one step, 1€, ulg, = ul, 1 <1 <2 Schwarz’s decomposition
concept found renewed interest with the advent of modern parallel computer architectures
where the approach based on the recurrence equations (5 0 2)-(5 0 4) became known as the
multiplicative Schwarz method However, the need to obtain an algorithm which 1s better
suited for a parallel machine architecture led to the innovation of the additive Schwarz method

m which the coupling conditions (5 0 4) are modified as follows
uV(2) = u"(2), £€IUNQ,, 1<1<2

where ugo_), & pon I NQ_,,1 <1 <2 Ths modification removed the need to strictly
alternate the order of iteration between adjacent subdomains and therefore freed the pro-
cessing nodes from having to synchromze their computations at each iterative step Further
generalizations of the Schwarz approach have led to decompositions which allow more than
two subdomains with each subdomain having lower regularity than C?*, 0 < A < 1, cf

LETALLEC (1994) However, by constructing non—overlapping domain decompositions of 2,
1e, subsets 2, C Q, 1 <1 < k such that

Q=UL 0, 9NQ, =0 1#; (505)

a new class of domain decomposition techniques arose in which the global problem was
reformulated as a system of local problems, each pertaining to a specific subdomain, 2,, 1 <

1<k, and an interfacing problem on I"' where

def

I, T, ¥50,\60 (506)

Thus, as one may nfer from Schwarz’s approach, one first solves the interface problem on
I' for a trace function, ur, and then, using ur, solves the problems on 2,,1 <1 < k Non-

overlapping domain decomposition algorithms generally interface local problems by employing
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either Lagrange multipliers to enforce weak continuity between the local solutions, uqg , 1 <
1<k, e,

(Tr (uq, = uq, ), v, (HY/2(0Q, N 09,))*) =0, ve (H200,n09,))° 1<43<k (507)
leading to an interface problem of the form Find . € BL((H/2(T))?, R) such that
S =t, te(HYYI))? (508)

where § (H'Y2(T"))2 — BL((H'/2(T))?, R) 1s the global Steklov-Poincaré operator, or en-
force strong continuity conditions

Tr(ug,) = Tr (¥g,) on 002N, 1<43<k (5009)

using Steklov-Poincare operators to reformulate the boundary value problem and obtain the
mterface problem Find u € (H1/2(T"))? such that

(Sup,v) = (L,v), wve (HYD)) (50 10)

where L € BL((HY*(T"))?, R) The Lagrange multipher approach leads to a saddle point
problem 1n which the auxihary unknown A € BL((H'/?(T"))?, R) can be interpreted as the
normal stress o(u) on on the interface I', cf FARHAT (1991), BREZZI (1974) However, with
this interfacing approach, subdomains €, ,, 1 <¢,3 < k are coupled 1f, and only if, (02, N
9Q,) > 0 Ths contrasts with the strong interfacing approach of (5 0 10) in which subdomains
Q,, Q, are coupled 1f 9Q,NI, # @ Thus, the weak interfacing approach leads to subproblems
with a greater level of independence than the strong interfacing approach and therefore
requires fewer costly interprocessor communications on a MIMD machine to interface the
system, however, 1t does mtroduce the additional unknown A € BL((H'/?(T"))?, R) and we
therefore employ approach (5 0 10)

In particular, we will employ non—overlapping domain decompositions to construct prob-
lem (5 0 10) for hinearly elastic models of heterogeneous materials We recall that the weak for-

mulation of the elastic model of material deformation has the form Find u € (H}(S2,88p))?
such that, for v € (H3(2,00p))?,

2
Oou, , , 0
[ Y en@zr@s@d= [ i@ wwdz+ [ to) w@dz (o)
Q 1,7,k =1 ax’ 617[ Q 8Qr

where f € (£2(02))? 1s the body force acting over Q, t € (£2(9Qr))? 1s the surface traction
acting across the open subset 0Q7 of the boundary 092, and a,;x, 1 < 2,7,k,! < 2 are material
coefficients given 1n terms of the Lame functions, cf (13 11),

def V E(z)

Mz) = 7=, u(z)é—i'%%, z

€en (5012)
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where v € R 1s Poisson’s ratio and E € L, () 1s Young’s Modulus of elasticity for the
material £ We then construct a preconditioner My, h > 0 and treat problem (50 10)
with a preconditioned conjugate gradient algorithm, cf AXELSSON (1994) We analyse the
spectrum o(M;'S},) of the preconditioned nterface operator M; S, h > 0 and obtam an
upper bound for the condition number x(M;'Sk) & |M; Sulla |(M;2Sk)~"|l» We confirm
the validity of the condition number bound by applying our approach to a number of problems

and compare the computational results with the condition number bound obtained 1n our

analysis

51 Elements of the Theory of Domain Decomposition

It has been observed that the domain decomposition concept was originally conceived to
answer a purely theoretical question concerning the existence of Harmonic functions over re-
gions, 2, with complex geometries However, domain decomposition concepts have also been
prevalent among engineers where subdomains 2,, 1 < 2 < k correspond to distinct, elemental
substructures of a system and, 1n this context, the Steklov—Poincaré problem (5 0 10) models
the physics of the interfaces between adjacent substructures Indeed, a common engineering

approach was to discretize (5 0 10) to obtain the Schur complement system
Shﬁl",h = Lh’ h > 0 (5 1 1)

where h > 0 1s the discretization parameter, I' the union of the physical interfaces, Sy, 1s the
matrix representing the discretized Steklov-Poincaré operator, and then solve the resulting
equations using a direct solution technique However, for systems with many substructures
the Schur complement system (5 1 1) can have many parameters and the computational cost
of constructing and then solving the resulting equations can be impractical The advent of
practical iterative conjugate gradient algorithms allowed one to solve systems, such as (51 1),
without explicitly constructing Sy and, thus, provided the opportunity to employ substruc-
turing concepts where previously they were impractical and, furthermore, to consider the pos-
sibility of devising solution techniques based on decompositions of 2 where the subdomains
Q,, 1 <1 < k have no physical significance, cf BJORSTAD & HVIDSTEN (1987), BIORSTAD
& WIDLUND (1986) The Steklov-Poincare operator, S, 1s a continuous linear operator
which, when discretized using finite element techniques yields, however, a Schur complement
matrix, Sy, with condition number £(S;) < ||Slla 11572l = O(1/H? + 1/(IIh)) (h, H = 0)
where H & max; <,<, diam(Q,) Consequently, «(S,) grows rapidly as h, H — 0 and the
application of simple conjugate gradient algorithms usually suffer from poor convergence
properties, as one should anticipate from the error estimate, cf AXELSSON (1994),

n vVe—-11"
”Q‘Z._Hr,h”&, 32[\/,—9_1_1 Ilq—”’g"())h_ﬁl‘h"sh’ n2>1 (612)
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Thus, we investigate how one can construct a symmetric positive definite preconditioner

P!, h > 0 which can be efficiently implemented and 1s such that the preconditioned system
Ph_lshﬂr.h = P'L, (513)

has a condition number k(P; ' S,) which grows slowly compared to x(Ss) as h, H — 0 so that
the conjugate gradient algorithm, applied to the symmetric form of system (5 1 3), produces

iterates u(r ,),, n > 1 which converge rapidly to ur , as n = oo

511. The Interface Problem
Let Q be partitioned 1nto k non—overlapping subdomains €, 1 < 1 < k satisfying

Q=u- Q, QN =0 & 1#; (5111)
and define each subdomain 1nterface, I',, 1 <t < k, and the global interface, I, as follows
r,£60\0Q, TEU T, (5112)

Then, corresponding to each local interface I';, 1 < 1 < k and the global interface I, we let
30, p = 02, N 8Qp and define the respective trace spaces Hod”(T,), H/2(T) as follows

H{'(r) % {2| D) =T, and 3w € H}(,,8Q, ) such that 'n(g)l = Q} (5113)
r,

o) E{o| D) =T, o] € HJ*(T), 1< <k} (5114)

and we define a, € BL(H'(Q,) x H'(), R), F, € BL(HY(,), R),1 < 1 < k to be the
respective restrictions to €2, of the bilnear form a € BL(H!(Q) x H (), R) and the func-
tional F € BL(H'(R2), R), cf (1316),1¢, foru,v € H'(Q,)

(10) Zaum(z) t(0) 32 (@) dz, ) ¥ / §(@) v(z) de+ / 1(z) v(e) do(z)

n'klmn—

(5115)
where 8,7 & 8 N Mr,1 <1 < k and 0y C 09 15 the subset of the boundary

where surface traction forces apply Furthermore, 1t will be required to define extension
operators E, (Hé({z(f‘.))2 = (H'(9,))* which are right inverses of the trace operators
T € BL((H*(W))?, (HY?(09))?) on T,, 1 < ¢ < k and, for this purpose, we 1dentify
E,, 1 <1 <k with the Harmonic extension operators defined as follows Let u € (1’-1(}({2(1".))2

and define E;u € (H'(S%))? to be the function which has the properties Tr(Eu)|r, =
YU, “(E;y)lan p — 0 and

a.(Bu,v) =0, ve€(Hy(,T))? (5116)

where T, T, U 0, p Clearly, the properties of the bilinear form a, and the Lax Milgram

Lemma, ¢f Section 11 1, guarantee the existence of a unique Harmonic extension E,u €
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(H'(9,))? for any u € (HY*(T',))?, 1 <1 <k The continuity of the linear operators E,, 1 <
2 < k follow from the 1equalty, for u € (Ho*(T.))%, of DEROECK & LETALLEC (1991),

I B, (H' ()] < Ch llug, (H' (2))*1] < Ca ITx (wo), (HY?(B))*ll = C ||u, (HY(T))?
(5117
where C;,C> > 0 are constants independent of u € (H, H)*(T.))? and u, € (H'(S))? 15 the
Harmonic extension of u satisfymng Tr (u,)|r = u, Tr (ug)]aa.\r. = 0 The global Harmonic
extension operator E (H!/2(I"))? — (H(Q2))? 1s then defined according to the relation
Eul ¥ ERru, ue(H/AD)?, 1<1<k (5118)

Q.

where Rr, (HY2())? — (Hal*(T.))? 1s the restriction operator defined by Rr up ol
However, 1n accordance with the decomposition (51 1 1) of the domain 2, the Sobolev space
(H}(R,00p))? can be decomposed mto the local spaces E((H'/?(T'))?), (H3 (2, T,))%, 1 <
1<k, 1e,

(H; (92,090))* = E(H*())") @ (Hy (2, T1))* & @ (Hp(, Ti))? (5119

where E((HY/?(I"))?) = {Eu | u € (H**())*} and elements in (H}(Q,,T,))?, 1 <1 < k are
extended by zero to € It then follows that the global problem Find u € (H*(f2))? such that

Tr (u)|oe, = up and

k k
> awy) =) F(), ve(H®00)) (51110)

=1
can be replaced by the equivalent formulation Find uy € (HY%(T))?, ug € (H'(,))%, 1 <

1 < k such that Tr (gg)lr = upr,, Tl‘(%) = Uplea, , and

a,(uq,,2) = F(v), 2 € (Hy(,T.))? (61111)

> a(ug,,By) =Y F(Bv), ve(H/T)) (51112)

1=1 =1

The problems (511 10) and (511 11), (511 12) are then equivalent in the sense that

=gr|r, 1<1<k (51113)

ul =uq, Tr(ug,) .

o
Thus, problems (511 11) and (511 12) form a coupled system m which (511 11) models
the problem locally, 1 e, within each subdomain €,,1 <1 <k and (511 12) models the n-
terfacing problem on I' between the subdomains It 1s this problem which we study 1n Section
51 3, discretize using finite element techniques, and finally solve using preconditioned con-
Jugate gradient methods However, we first observe, from the hypothesis of linear elasticity,

the relation

Omn(uq, (Z )—Zamnpq aug'”(g), 1<m,n<2 z€Q, 1<:<k (51114)

oz
p =1 7
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where, 1f we assume that V o(ug ) € (£2(£2,))? then, employing Green’s theorem, we deduce
the following 1dentities on T,, 1 <1 < k, for v € (H/2(T))?,

a.(ugq ,Ev) — F.(Ev) = /Q o(uq,(2)) VEu(z)dz — | f(z) Ev(z)dz
Q,
- [ 1) w@)ao(g)
=— /Q [V a(gal(_@))*'f(ﬂ)] Ev(z)dz + / [o(ug, (2)) o n,(z)] w(z)do(z)
o9,
= | tz) wlz)do(z)

= r'[a(gn_(g))on_,(.fé)] u(z) do(z) (51115)

where w & Tr (Bv), n, (£) 1s the unmit outward normal vector to 852, at z,and, forz €9Q,,1 <
1<k,ve(H(?)? 1<p, g2,

a 2
Vu(z ) [3:::( )] € R*?, o(uq (z)) Vu(z) & Z Oyl .(:r)) av,, (:v)
g 2 ao - def
Vo(uq,(2)) = [ oz, = (uq, (z ))] € R’ o(ug,(z)) on(z) & [Zapq(_n (x))nq(a:)] € R?

However, the mterface problem (51 1 12) then implies the following property
k

> [a:(un,, Bu) - Fu(By)] E / (0(uo, () o1,(x)) n(z)do(z) =0, ve (HV (D)

= (51116)
Thus, the problem of determining a global solution u € (H*(£2,8p))? of (5 11 10) 1s equiva-
lent to the problem of finding a function defined on the mterface T, e g , ur € (H*/?(T'))?, such
that the local solutions ug € (H*(f,))? of problems (511 11) have normal stress tensors,

o(ug,) o n,, which are continuous across the mterface I, 1 e , they satisfy (51 1 16)

512 Steklov-Poincaré Operators and the Interface Problem
In this section we reformulate the interface problem (51 1 12), which 1s central to domain
decomposition methods, to obtain an equivalent problem posed solely on the interface I’
m terms of a family of linear operators called Steklov—Poincaré operators Then, using
finite element techniques to obtain approximating discretized Steklov—Poincaré operators we
demonstrate how one obtains the Schur complement system (51 1) and, furthermore, we
demonstrate how this system can be solved using conjugate gradient techniques without
explicitly constructing the discretized operators

Let a,(s,®), a(e,e), E,, E, 1 <1 <k be, respectively, the local and global bilinear forms
and Harmonic extension operators defined above, the local Steklov—Poincare operator S,
(Hol2(T,))2 = BL((HM*(T)%, R) 1s then defined according to the relation

(S, v) & a, (B, Bw), u,v € (Hy*(T,))? (51117)

—
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and the corresponding global Steklov—Poincare operator S (H'/2(T'))? — BL((H'?(T'))?, R)
18 defined as follows
k

k
(Su,v) ¥ S (S.Rr.u, Rrvy = Y a.(E.Rru, ERrv), wue(HY2C)?  (51118)

=1 1=1
If ur € (HY%(T))? denotes the E((H'/?('))?) component of the solution of problem (5 1 1 10)
then we observe that the solutions ug (H 1(f.))%, 1 <12 < k of problems (511 11) can be
expressed as the sum uq = E,Rr up +wg, where wg, € (H'(£2,))? 1s uniquely defined as the

function with the followmg properties Tr ( W, )lee » = ¥plea. ps T (wg, )Ir, =0 and
a,(w,,v) = F(v), ve€ (Hy(,T.)) (51119)

However, given this decomposition of ug the interface problem (511 12) can be rewritten
1n terms of the operators S, S,, 1 <1 < k as follows, for v € (H'/*(I))?,

k

k
Z a,(Uq,, ERr,v) = Z a,(E,Rr,ur + wg,, B, Fr,v)

=1 1=1
k

k k
= Z(Ser.yp, Rr,v) + Zaz(’l_ﬂ_g,,EaRr.Q) = Z F,(E,Rp,v) (51120)

1=1 =1 =1

Thus, we define L, € BL((HMA(T))?, R), 1 <1 < k according to the relation

L, v) ¥ F(Ew) — a,(wg,, Bw), u€ (Hof?(T,))? (61121)
—(1:

and (511 20) becomes

k

k
> (S.Rr ur, Rr.v) = Y (L, E.Rr,v) (51122

=1 =1
Finally, we employ the transpose operators Rf BL((H, H2(T))?, R) — BL((HY*(I))?, R),
ET BL((H'(W)?, R) = BL((HM(T))?, R), 1 <1 < k and define the global interface

problem 1n terms of the Steklov—Poincaré operators as follows Find up € (H'/?(T"))? such
that

<ZRr S, Rr.up, v > <ZRP ETL,v), wue (HY*(I)) (51123)

However, if we define § (HY?(T))? — BL((HY*(T))?,R), L € BL((HY*(I))?, R) as
follows

k k
SEY RLSR, L= RIEL (511 24)

1=1 =1
then the interface problem 1s Find up € (H'/2(I"))? such that

(Sur,v) = (L,v), we (H*I))? (51125)

In Section 51 3 we demonstrate how the interface problem (511 25) can be discretized to

obtain a hinear system of symmetric, positive definite algebraic equations
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513 The discretized Interface Problem Schur Complement Systems

Let 7.(2), h > 0 be a triangulation of 2, c¢f Section 2 1, where h > 0 1s the mesh diameter
and assume that each subdomain §,, 1 < 1 < k 1s the union of some subset of elements of
Tn(2), 1€, there exist triangulations 75 (2,) C Ta(R2), 1 <1 < k We now assume, without
loss of generality, that the Dirichlet and traction boundary conditions are homogeneous and

replace the infimte dimensional Sobolev spaces
(H3 (0% ), (H3(Q,090))%, (Hof*(T))%, (HY(T))?
with the respective approximating finite dimensional subspaces
(S5(%,09,0))%, (S5(2,09p))%, (SH(T))*, (SM(D))
of precewise linear polynomials where, for 1 <1 <k,

Shr,) & {Q | D(v) =T, and 3w € S*(£) such that er = g} (51126)

s"(r) & {u| D(u) = T and 3w € $*(%) such that Q|F =] }  G1129)

T,

and SH(Q,80p), SE(R,,00,p), 1 <1 < k are constructed as mn section 21 The continu-
ous operators Rr , E, are thus replaced by their discrete counterparts Rr, i, E;, and, sun-
ilarly, the continuous Steklov-Poincare operators S, S, are replaced by their discrete ana-
logues Sy, S,1,1 < ¢ < k  Guven a basis B((Sk(Q,, 8 p))?) of (SE(S,09, p))? define
By(T,) C B((S§ (%, 09, p))*) to be the subset which contains those basis functions associ-
ated with a node v € T, of 7,(2,) and define B, (%) "="fB((Sg(ﬂ,,aﬂt,D))2)\Bh(P,) then

B(So (2,80, p)) = By(,) U BA(T) (511 28)

def

and N, = Nq, + Nr, where 2N, = IB((Sg(Q;,an.D))Z)I, 2Na, def |Bh(9t)|a N, def IBA(T)
Observing that a linear operator B (S3(9.,09,p))* = BL((Sk(,08 p))*, R) can be
represented by a matrix M € R2N+2M In the sense that, for F € BL((SH(, 8%, p))?, R),

(Bu,v) = (F,0), u,v € (S3(9,, 00, ,))? <= UMV =F"V, (51129)

where, for B((Sg (%, 6Qt,D))2) = {Qrfﬁg')}f'ﬁl, functions u,v € (S%(,,%%,p))* can be writ-
ten

N N,
() =) utP @),  yz) =Y eV, zen, (511 30)

r=1

and the block matrix entries of M € RN 2N ¢ R*™ are given by the relations

O (F,e.6) , 1<rs<N,
(F)QZQS?))

M,, def (B§1¢$l)a§1¢§l)) (Bgl¢$l)a§2¢g‘))
(Bﬁzd’s‘) 1 €3 ¢S‘)) (B §z¢1(-l) ) §2¢£'))

(511 31)
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Thus, the linear operators A, , E, 5, 1 <1 < k are represented by the matrices

Al,h d=ef [ AQ, AQ, I‘.] € RZN 2N,’ E, N d=e1' [_A(-zlAQ, I"} € IR42N‘ 2Nrp (5 1 1 32)
Ag.,r. Ar I

Let _:1;5,‘), 1 < p < Nr, be the 7,(%,) nodes on T, then the restriction operator Rr j 1s

represented by the matrix Rr , € R*Mr2N whose 2 x 2 block entries are defined as follows
e I, if G,, =
(Br. r)p.g d=r{o, lfG,((B 7&3, 1<p<Nr, 1<¢g<N (51133)

where I € R?? 1s the 1dentity matrix and G, {1, ,N} - {1, ,N} maps the local
block parameter wndices, {1, ,N,}, of subdomain §, to their global values, {1, ,N}
Furthermore, 1t 1s apparent from relation (511 17) that S, = E? »A, 1B, , and therefore the

discrete local Steklov—Poincaré operator S, 5, 1 <1 < k can be represented by the matrix

-1
Sn=[~heasl 1)| o Aen | ~Aa o
' e AL . A I

= Ar, — A], rAglAa,r, € R2Nr. 2T, (511 34)

and the Global Steklov—Pomcaré operator, Sj, 1s represented by the matrix

k k
Sw=Y RE ,S.nRr.n =) Rf a(Ar, — AR r AglAa.r)Brn € RV (51135)

=1 =1

Smmularly, after discretization, the expressions ETL,,1 <1 < k are approximated by the
analogous expressions EJ, L, 5, 1 < ¢ < k which are represented by the following matrix-

vector 1dentities

; F : Aa,  Aar,
E;ThL.,h — [—Ag__r,An‘T I] I:—O-:l - [—Ag_,r,AQ,T I [ TQ Q,,T :| [Q(;)—,']
Fr, Ao, Ar

= Fr - A% A5} Fq €R*™ (51136)

where F, = [Fq,Fr] € R*" represents the functional F, € BL((St(%.,09,p))%, R),
cf (5115) Thus, the right hand side of the discretized interface problem, 1illustrated in

(continuous) operator form 1n relation (51 1 22), has the matrix form

k
L, =3 Rf . (Fp, — Af r ARlE,,) € R (51137)

=1

Therefore, by discretizing the linear Steklov-Poincare operators and the associated restriction

and extension operators, one obtains the following discrete Schur complement system

k k
> RL .(Ar, — AT r AglAa,r)Rr s, = Y RE 4 (Fr, — AR 1A' Fo)  (51138)

1=l =1

— Sh-’l—‘h",h = Lh (5 1 1 39)
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The symmetry of S, € R*M?N follows immediately from (511 34), (511 35) and, from the

definition of the bilinear forms a.(e,®), 1 <1 <k, 1t 1s clear that

k
(Shu,u) = Ea,(E:,hRI‘. nt B, wRr, pu) >0, u€ (SHI))? (511 40)

1=1

and, thus,

(Shu,u) =0 <=  a(EnBr au, B, pRr pu) =0, 1<:0<k (51141)
However, (5 11 41) holds only if E, 4 Rr ,nu 15 a ngid body motion such that o(E, nBr, au)on,
has zero trace on the boundary, 8, 1€, E, ,Rr _su=a+ R(r,0)z, a € R?, r € R where

R(r,0) % |Tcos? —rsm8l -y ont )/ nez (511 42)
rsinf rcosf

However, assuming that, for some p € Nk, subdomain §, satisfies o(98, N 90p) > 0 then
there exist constants C;, C2 > 0 such that

C llu, (H' ())*I° < ap(ww) < Co llu, (H(Q))*I7, v € (S5, 0%,0))*  (51143)

Relations (511 41) and (51 1 43) then imply that E, ,Rr, su = 0 and therefore Rr,nu =0
The zero trace u|r, = 0 propagates to each subdomain to give Rp, su = 0,1 <2 < k, 1¢e,
u = 0 and the positive definiteness of S, follows immediately B
We now aim to develop preconditioners which allow one to solve the interface problem
(511 39) efficiently using the conjugate gradient approach However, we first observe that the
conjugate gradient approach, appled to (51 1 39), requires one to evaluate, at each iteration,
the matrix—vector product Spd for a given d € R?>" This can be achieved without explicitly
constructing S, € R2V'*" as follows Given d € R2N define dr., S Rrad € R 1< <k

and construct the Harmonic extension, F, zdr, € R>M, by first solving the systems

Aq,zqg =—Aordr, 1<1<k (511 44)

1 1

and then observing that E, ndp, = [-Ag!4q. r.dr,,dr ] = [zg,,dr,] The product S, adr, 15

then obtained from the relation

D dr - AQ Ag”r‘ —Aa} AQ”I‘| _dl“ - AQ. AQ.,F. &l (5 1 1 45)
Sl h ' Ag’Iz‘ r AF I Ag.,[‘ AF- dl“.

Thus, by summing over each subdomain we obtan S,d = }:f=1 RT ;8. 1dr  The linear sys-
tem of algebraic equations (5 1 1 44) 1s obtained from the definition of the discrete Harmonic
operator E,, (S*(T,))? = (S&(Q,,0Q,\I,))%, cf (5116), and the Lax-Milgram lemma

therefore guarantees the existence of a unique solution z, € ]Rw“‘, 1 €1 < k of system
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ALG 1 Conjugate Gradient Algorithm Spup, = L,

0
Determine an mmtial approximation g%i,

n« 0,
QS") — —Ag!Aq, r, Br hug‘r:')“ 1<:<k,
£ A BE (Ar R, )+ 45 1) = Syl
E(n) -~ Lh - Shﬂg‘?[); = Lh . é("),
_d(") «— z(n)’
While n < nay and £(Sh) |(£("),£("))|/|(Lh,éh)| <7
{
e « —A3'Aa.r Rr nd™, 1< 1<k,
2™ o RE(Ar Ry d™ + AT 1 &™) = 5,4,
o™  (r™ ™)/ (d™, 2m),
etV e ol a0,
D) L - Syl = 1) ~ oMz™,
B+ (ﬂ"*l),t("H))/(r(”),i(")),
d(n+1) - l".("+1) + ﬂ(n+1)4(n+1)’

n+—n+l

(51144) The conjugate gradient algorithm, as applied to the discretized interface system
(51139),1s given n ALG 1

The rate at which the conjugate gradient 1iterations t_c%",), converge t0 uUr, as n — 0o
will depend on the eigenvalue distribution of the Schur complement matrix S, Indeed, the
error bound (5 1 2) suggests that the condition number «(S;) 1s the critical factor 1 such
an approach However, for quasi-uniform triangulations 7,(f2), A > 0 of Q, 2 a polygonal

domain, 1t 1s known that, cf LETALLEC (1994),
K(Sh) < CH™? [1+ max{H" |1 <+ < k)] (51146)
where C > 0 1s a constant independent of h,, H,,h, H and

h, £ max{diam(r) [T € Ta(Q)},  H,Edam(@Q), 1<:<k (51147)

def

h ¥ max{h, [1<1<k}, H=max{H |1<1<k} (51148)

Thus, 1t 15 apparent from (5 1 1 46) that the condition number x(S},) 1s of the order O(H~2(1+
Hh™')) as h, H — 0 Therefore, the convergence factor C(S;) has the property

def VE(S) — 1
C(Sh)——\/m+l/‘l (H,h = 0) (511 49)
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and the error bound (5 1 2) reveals that the rate of decay of the error ||uy. , — uw{™ ||s, decreases
both rapidly and monotonically for an increasing number of subdomains, &, and decreasing
mesh diameter, A Thus, we shall investigate ways to construct preconditioners P! € RN 2N
such that (1) k(P 'S,) < &(Sh), H,h > 0, (2) k(P;'S)) grows slowly as H, h — 0 compared
to x(S;) and employ the preconditioned conjugate gradient algorithm The preconditioned
conjugate gradient algorithm requires one to solve, at each 1teration, a system of the form
Pz =r for 2,7 € R*M and 1t 1s necessary, therefore, that this system 1s more easily solved
than 1s Sz = r In the following sections preconditioning strategies are investigated which,
1n addition to the above properties, can be implemented by performing computations which

are local to each subdomain, €,, 1 <1 <k, and are therefore inherently parallel

5 2 The Neumann—Neumann Preconditioner
It has been demonstrated how finite element techniques can be applied to discretize the
Steklov—Poincaré operators S,, 1 <1 < k thereby allowing one to approximate the interface

problem (5 1 1 25) by the algebraic system of linear equations Sy, uy ,, = L, where

k k

Sh = ZRIT:I,"S’J"RP-,’“ Lh, = E‘qu:,,hét,h (5 2 1)
=1 =1

51 h = A[“ - AS.,P'AEIAQ.,P., Lt,h = EI‘. - Ag‘ I‘.A(_)‘IEQ‘ (5 2 2)

It 1s apparent from Section 5 1 that in order to solve the discretized interface problem effi-
ciently with the conjugate gradient approach 1t 1s necessary to employ a preconditioner Thus,

R*V2N proposed by, among others, BOURGAT,

we now introduce the preconditioner, N, ! €
GLOWINSKI, LETALLEC, & VIDRASCU (1989) and obtained by constructing weighted
sums of the inverses, S ,}, 1 <1 <k, of the Schur complement matrices S,;,1 <1<k We
describe how the preconditioner i1s mmplemented, note its desirable features and assess the
preconditioning properties of N;* by examiing an upper bound of the condition number
k(N;71S,) provided in LETALLEC (1994)

If the decomposition (5 1 1 1) 1s constructed such that the vertices of the boundary, 952,
of each subdomain ,, 1 < 2 < k belong to dQ and the boundary conditions are such that
the Steklov—Poincaré operators S, (S*(I',))? = BL((S*(T.))?, R), 1 <1 < k are invertible

then the preconditioner
k k
Pt Z(atRIT“.,h)St—,Ii (oRr, 1) € RPV2V, Za, =1 «201<i<k  (523)
1=1 =1
has the following property, cf LETALLEC (1994),
K(P71Sy) < C, h>0 (52 4)

where C > 0 1s a constant independent of A > 0 Indeed, if £ = 2, (5111) 1s a uniform

decomposition of  and the triangulations 75 (,), 1 < < k are similar then, for appropriate
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boundary conditions and coefficients @mpp, € Loo(f2), 1 < m,n,p,q < 2, RlThhSl,thl R =
RE, 1S2 wRryny Sh = 2RE 4 SunRrop, 1 <1< 2,

1 _ 1 _
St = ERIII“.,AS.;:RI‘.,h = Z ZRiI“ wSiaBron 1=1,2 (525)

=1

Thus, with o, £ 1/2, 2 =1,2 1 (52 3) we obtain C =11 (524) In general, however, C >
1, although the independence of the constant C > 0 from h > 0 suggests that the convergence
factor C(P;S}) will not change sigmificantly as h — 0, ¢f (51149) The task of determining
the function S;iL, € (S*(T.))? for L, € BL((S*(T\))*, R), S BL((S*(T.))*, R) —
(S*(T,))? 15 equivalent to that of computing the product S;,L, € R of (51129)
Thus, from the defimition of the Steklov—Poincare operators (51 1 17) we determne S, ,:L. €
(S"(T.))? as follows Find z, € (S¢(Q,, 09, p))?* such that

at(ény) = (L‘,er,), vE (Sg(ﬂu aQt,D))2 (5 2 6)
then ST L, = 2,|r, The equivalent system of algebraic equations obtained from this problem

Ao, Aar. [z.]= 0 (527)
Ag.,r‘. Ar, Zr, Ly,

and S;pL, = zr, The mdependence of the subproblems (52 6) allows one to implement

are then

the preconditioner, P, !, using parallel computations and the conditioning property (5 2 4)
ensures that the number of iterations required to achieve convergence will not rapidly ;n-
crease 1f one employs more refined triangulations 7,(f2) or domain decompositions These
properties are clearly desirable and motivate the generalization of the preconditioner P;™*
to include general boundary conditions and decompositions (511 1) which, in particular,
include 1nterior crosspoints, 1€, pomnts z, € mt(I') that are common to more than two dis-
tinct subdomains However, more general boundary conditions and decompositions allow
the possibility that there exists a p € N, such that o(9S, p) = 0 and therefore a solution
z, € (5"(9,))? of problem (5 2 6) exists and 1s unique, except for elements of N (4, 1), 1,
and only if, L, € R(S, )

Thus, we define S & {2 € Ny | 0(6Q, p) = 0} and for © € N, \S let b, g, cf (5115),
and for 1 € S let b, € BL((S*(%))? x (S"*(5%.))?, R) be some positive, symmetric bilinear
form, 1 e, for u,v € (S*())3?,

I

)
)

which 1s equivalent with a, on (S*(£2,))2\NV'(4. 1), 1e, there exists a constant C; > 0 which
18 independent of H, h such that

NCRNE (528)

b.( b
0, b(v,2)=0& v=0 (529)

by(

I
I

i
S
v

C1 bi(u,v) < a,(v,2) < by(v,0), v € (S*(R))*\WV(A.n) (5210)
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and which, furthermore, satisfies the global equivalence property
k k
C > b(v,0) <aly,v) <Y b(vv), ve(SHR,00))> (5211)

where C > 0 Let S,, (S*(T,))? — BL((S*T,))?, R),: € S be the discrete Steklov—
Poincare operators associated with the bilinear forms b, € BL((S"(€2.))? x (S*(2,))?, R), 2 €
S, cf (51117) then, following DEROECK & LETALLEC (1991), we define the precond-

tioner N, € RV a5 follows
N1E ZR LB AW, xRy 5 (5212)
where, for 6(5€2,p) > 0, we define B;: ¥ 57} and, for 0(9,,p) = 0, we define B ¥ 57

The symmetric matrix W, , € R**2M. represents the weighting operator W, , (S*(I.))? =
(S™(T,))? defined, for w(z,7) > 0,1 <7 < Np, 1 <1 <k, according to the relation

Nr, Nr,
u=Y u g € (SN Wpn =Y wr)ud? € (ST (6213)
r=1 r=1

where S*(T,) = spa.n{z/)(‘)},_i and the weights w(z,7), 1 < r < Nr,, 1 <1 < k are chosen
such that W, ,, 1 <1 < k form a partition of umty on T, 1 e, for u € (S*(T"))?,

Z(W.,h ulr,)(z) =u(z), z€T (5 2 14)

The operators W, (S*(T,))? = (S*(T.))%, 1 < 1 < k generalize the constant weights
mtroduced 1n (5 2 3) because they allow one to weight each (S*(I',))? component of a function
u, € (S*(T,))?, 1 <1 < k differently and, in this way, one can define these operators such that
x(N;'S,) 1s independent of the magnitude of any discontinuous changes 1n the coefficients
Gmnpgy 1 < m,n,p,q < 2 when they are piecewise contiuous, cf Section 54 The partition
of umty property (52 14) must, however, be satisfied, ¢f LETALLEC, DEROECK, &
VIDRASCU (1991) Thus, for L, € BL((S*(T,))?, R), B, L, = z,|r, where 2, € (S*(€,))? 15
the solution of the Neumann problem Find 2, € (S3(Q,, 99, p))? such that

b.(z,,0) = (Li,2lr,), v € (Sg(%, 0% p))? (5215)
This problem can be represented :n matrix form as follows

Ba, Ba,r, [gg].; 0 (52 16)
Bg.,r. Br, 2r, L

1

with B7lL, = zp, In section 5 4 we shall employ, for 2 € S, the positive, symmetric bilinear
forms b, € BL((H*(2,))? x (H*(€.))?, R) defined according to the relation

b, (u v) & al(u v) + (u v, (L2())°), wu € (H'(Q)) (5217)
where (u,v, (L£2( o Jq u(z) v(z)dz 1s the (£3(%))? nmner product The contnuity
of the mappings b,, 1 € S follow lmmedlately from the Cauchy-Schwarz inequality and the
property a, € BL((H'(,))? x (H'(S%))?, R) while the (H*(12,))?*-ellipticity 1s proved 1n the

following Lemma
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Lemma 5 2 There exists a positive constant p > 0 such that

bi(v,v) = a.(2,0) + (v, 2, (L2())) = plly, (H ()1 v e (H'())? (5218)
where1 € S

Proof We first observe, f BRENNER & RIDGWAY SCOTT (1994), that (H'(%))%,: € S

can be written as a direct sum of closed subspaces as follows
(H'(Q))? = H'(Q) e N(4,), €S (52 19)

where, for 1 € S,
Q) = {y e (@@ [ vedz=o, [ rotatz)az - o} (5.2 20)
Q, Q.

N(A,) = {y € (H' ()2 |u=a+R(r,0)z, a€ R%,r R, 0= (2n+ 1)1/2, n € z}
(52 21)
However, the continuity of the projection operators P, (H'(£2,))? = 7(Q,), P (H () -
N (A,) suggests, cf BROWN & PAGE (1970), the existence of a constant C' > 0 satisfying

C (I|1Prw, (H (Q))*]| + |1 Pows (B (Q))*N) < lloy (HH Q)M we (H' () (5222)

We now prove the result by Reductio ad Absurdum Assume that a constant p > 0 satisfying

(5 2 18) does not exist, then, for p = 1/n, n € N there must exist a v, € (H'(,))? with the

property )
lon, (H Q) =1, bi(vs,0,) <1/n (5223)

It now follows from the definition of b,, cf (52 17), relation (5 2 23) and the second Korn
mequality, cf BRENNER & RIDGWAY ScOTT (1994), that there exists a C; > 0 such that,
for n € N,

Ci | Py, (H*(2.))?| < a.(Piy,, Piv,) = 6,(v,,,¥,) < b(v,,0,) <1/n  (5224)

-~

= ||Pivn, (HY(.))?]| = 0 (n — o0) (52 25)

However, 1t 1s apparent from (52 22) that {P,v,}.>1 1s 2 bounded sequence n the fimte
dimensional space N (4,) (dim(N(A,)) = 3) and, thus, there exists a convergent subsequence
{P2vp, }521 with hmit v € N'(4,) Relations (5 2 23) then imply the contradictory conclusions
llo, (H* ()% = 1 and ||z, (£2(2.))*]| =0 u
The local and global spectral equivalence properties (5 2 10), (5 2 11) now follow immediately
However, for umiform decompositions (511 1) and triangulations 75(2,) C 7Tn(2), 1 £+ < k

it 15 demonstrated mn LETALLEC & DEROECK (1991) that the preconditioner N;' €
R*M'2N has the property

s(Ni'$) < CH?[1+ log(H/h)]2 (5 2 26)
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ALG 2 Conjugate Gradient Algorithm N 'Syup , = N7'L,

Determine an mitial approximation ug);l,

n+ 0,
e™ — —Agl Aq, ,r.Rr.,hug‘",),, 1<1<k,

z<"> Yy BE 4(Ar, Br, hull) + AL 1 e™) = Spul®),

E(n,) — Lh — &(n) = Lh b Shgl'"?h,
(") — Rl" hr("), 1 S 1 S k,
(") « W, ;.rf"), 1<1<k,

‘(") « —B3'Bg,rw™, 1<1<k,
Q(n) — Yo RE W, (Br._f"’ + B, p, &) = N 1™,

While n < nmax and &(N; " Sa) |(Ny 2™, 20)|/[(N;* Ly, Ly)| < 72
{

_gf") —ASIAQ"I'.RF" d(n), 1 < k3 < k

é ") <~ E:— RI‘{ h(AI‘,RI‘,,h.Eg‘ § g I‘ —Sn)) = d("')

o™  (r™, y™)/(d™, zM), © =gO,
ulH o) + o™,

r("t) L, — Shu( M = ™) _ gl gm)
(n+1) Rr, r("‘“) 1<1<k,

L

w™ W,, 1< <k,

&Y B Bg ruw™, 1<1<k,

o) S RE W (Brw™ + BE p &™) = N,

ﬂ(ﬂ+1) — (£(n+1),2(n+1))/(£(n),Q(n)),
d("“) i y(n+1) + ,B("“)d("),
n—n+1

where C > 0 1s a constant independent of H,h Thus, for fixed subdomain diameter H,
&(N;1S,) = O(logh~!) (h — 0) and, observing that x(S,) = O(h™*) (h — 0), the conjugate
gradient algorithm ALG 2 satisfies 5(N; 1 S,) < k(Sh), [%(S,) — (N, 1 Sh)| = o0 as b = 0,
H fixed However, for H/h < p (p independent of H, k), k(N;'S;) = O(H~?) (H — 0) and
C(N;'S,) increases rapidly to 1 as H — 0 thereby slowing the rate of convergence of ALG 2
until this approach becomes impractical Thus, the preconditioner N, ! provides 1mproved
asymptotic conditioning with respect to h but the practicality of this approach 1s restricted
by the rapid growth of C(N;1S) as H — 0 The conjugate gradient algorithm, as 1t applies
to the interface system (51 1 39) with the preconditioner N;* € R*?" defined 1n terms of
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the bilinear forms a,, 2 € N,\S and b,,2 € S, cf (52 17), 1s given 1n ALG 2

5 3 The Coarse problem and the Balancing Preconditioner
The mtroduction of the positive bilinear forms b,, 2 € S allowed us to construct the precon-
ditioner N;! € R2M2N when Pl e RZVEN of (52 3), was undefined and then to apply
algorithm ALG 2 to linearly elastic problems with general boundary conditions using de-
compositions with nterior crosspoints However, the resulting preconditioner, N;!, 1s not
uniquely defined because 1t depends on the choice of the b,, 1 € § and, as already observed
in section 5 2, the O(H~2) behaviour of the condition number k(N;'S;) causes algorithm
ALG 2 to become 1mpractical as H — 0 We therefore demonstrate how to construct a
preconditioner M; ' € R*M2N | for planar linear elastic problems, which employs a global
problem of low dimension compared to (511 39) (the coarse problem) following a similar
approach first proposed in MANDEL (1993) for scalar elliptic boundary value problems This
approach 1s essentially a modification of the Neumann—-Neumann preconditioning approach,
cf ALG 2, and 1s devised such that the ambiguity of choice of the b,, 1 € S and the imiting
O(H~?) behaviour of k(N;'S}) are removed, 1 e , such that k(M; ' S;) = O(1) (H — 0) where
H/h < p with p > 0 independent of H,h Indeed, the preconditioner will follow directly from
the requirements that problems (5 2 6) are solvable and that M, ! does not depend on the
choice of the solution of (52 6)

Thus, we begin by assuming that ¢(8€,,p) = 0, + € S and that problem (5 2 6) 1s solvable,
1e, for L € BL((S*(T,))?, R), (L, W,3v) = 0,v € N(S5,1) = {tfr. | v € N(A:n)}, 2 €,
then there exists a z, € (S"(Q,))? such that

a,(2,,0) = (L, W, stlr,), v € (Sh(Qt))z (531)

However, because N'(A, ) # 0, 1 € S, the solution 2, € (S*(£2,))? 1s not unique, 1€, 2, + v,
1s also a solution of (53 1) for any v, € N(4,s) Therefore, we now describe how one can
determine a unique solution of (53 1) in H 1(Q,) For problems of planar linear elasticity we
observe that v, & dim(N (A, )) € {0,1,3} and, for 1 <1 < k, N'(A4, ) includes all the ngid
body motions of the linear operator A4,; If v, =1 then the only ngid body motions of 4,
are rotations, 1e, @ = 0 m (51 142), and we define b, € BL((H* (%)% x (H* (%)), R) as

follows
b.(u,v) = a,(u,v) + / rotu(z) dz / rotu(z)dz, u,v € (H'(L))? (532)

where rotw & dw, /8z, — Ow, /07, w € (H'(1))? However, if v, = 3 then N'(4, ) contains
all possible rigid body motions, c¢f (51142), and we define the bilinear operator b, €
BL((H'(2,))? x (H*(%,))?, R) as follows for u,v € (H*(2,))?

b(u,0) = a,(u,v) + /n u(z) dz /Q v(z) dz + ,/9 rotu(z) dz / roty(z) dz, (533)

Q,
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If v, = 1 for some ¢ € S then 9Q,NIN, p 1s a boundary point and, therefore, 0(092,N0Q, p) =
0, H3 (8,09, p) = H'(Q,), and, at the continuous level, we therefore consider only the case

v,=3,1 €S It 1s apparent from defimtion (53 3) that the bilinear forms b,, 1 <1 < k are
symmetric and that, for u € (H(Q,))?,

b(w,u) =0 & a,(y,u) =0, /n u(z)dz =0, /ﬂ rotu(z) dz = 0, (534)

Thus, from the decomposition (H!(£2,))? = H () ®N(A,), 1 <1 <k we can write, for any
v € (H' (), u=1%+a+ R(r,0)z where & € HY(,), e € R?, r € R and the positivity of
the bilinear forms b,, 2+ € S then follow from the observations that (1) a,(z,u) = a,(4, @) =
0 & &=0,(2) [, rotu(z)dz = [, rot[R(r,0)z]dz = 2rp(Q) =0 & r =0, (3)
fn. u(z)dz = ap(Q) =0 & a =0 Furthermore, we define the norm |||, (H*(5%.))?||| &
max(|, (™ ()], 1%, (B ())21), u € (HH(@))? where u = i+, & € B'(,), & € N(4)
and deduce the |||o, (H'(£,))?||| continuity of the bilimear forms b,, 2 € S from the Cauchy-
Schwarz mequality as follows, for u,v € (H'(f%))?,

/n ii(z) dz /n 5(z) dz + | /ﬂ rotii(z) de /ﬂ roti(z) dz
< C Il (B (92))71 12 CEE (9?1 + 208(2) 1, (£ ()21 18 (L))

+ IL ) |

w=i g

b, (u, v)| < |a. (&, D)| +

/ DOV, (z) dz
Q,

+ \ / DOy, (z) dz
Q!

< Ca Ml (T ()) 1 s (B (S22))7H

ru@) I1 ([ /Q |'D(°'1)w1(§)12d§]1/2+ [ /9 ‘ |’D(1'°)w2(£)|2d_$_] 1/2>

=i

€
|et

< Collw, CH ()21 e, (H ()%l (535)

where v = i+@, v = 94+, 4,0 € ﬁl(Q,), 4,9 € N(4,) and C; > 0 depends on {2, alone The
(H'(92,))?-ellipticity of the bilear forms b,, 2 € S with respect to the |||®, (F*(£2,))?||l norm
follows 1immediately from Korn’s second mequality, f BRENNER & RIDGWAY ScorT

(1994), and the observation that all norms are equivalent on finite dimensional spaces, 1 e,
for u € (H'(92.))?,

2 2
bw) = @) +| [ sede| + | [ rtite) o]
Q Q,
> pllE, (H' ()17 + 1%, (B ()*1° = mmn(p, ) [llu, (H' (Q)*l* (53 6)
where p > 0 1s the ellipticity constant arising from Korn’s second mequality

a(@, @) > pllg, (' ()12, @€ H'(Q) (537)

—
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and v > 0 1s the constant arising from the norm equivalence relation

2
vlla, (H ()] < [/ i(z) dz] + [/ rotii(z )dx] <olla, (HY(Q))I?, &€ N(4)
' ' (538)
Thus, b,, 2 € S satisfies the conditions of the Lax—Milgram lemma and defining 2z, € (S*(£2,))?
to be the unique solution of the problem Find z, € (S*(£2,))? such that

b(z,,0) = (L, Wintlr ), v € (S"(9.))? (539)

1t follows from (53 3) and (5 3 8) that (1) v Z'e, € N(An), 1<r <2 = [, 2,(z)dz =0,
and (2) v & R(1,7/2)z € N(A,4) = Jo, rotz,(z) dz = 0 and, thus, z, € A (Q,) 1s also a
solution of problem (5 3 1)

Let B,, € R2Nr. 2N f+,1 < 2 < k be the matrices representing the Steklov—Poincare
operators 5’.,,,, 1 <2 < k associated with the bilinear forms b,, 1 <1 <k (b, = a,, 1 € Ni\S)
n the sense of (51129) and, with N, < Hf=1 N(S.x) C Hf=1 Ry & dim(N,) =
>k v, define, for L € R*",

k
LéZRTh waWanBr wL +2,), Z—Hz EN, (5310)

=1

where we have assumed that W, s Rr, 4L € R(S,4), 1 <1 < k The preconditioner M; "' €
R>N 2N 15 then obtained by selecting z =2z°1n (534),1e, M;! &of ~1(2¢), where z° € N}, 15

defined to be the unique solution of the coarse variational problem Flnd z° € N, such that
J(2°) = min{J(2) | z € Ni} (56311)

where, for z € Ny,
J(@) = (B (2) = $L (B (2) = 57 ) Ds, (5312)

Thus, M; ! 15 obtained by modifying the local solutions of problems (5 2 6) with rigid body
motions, 1 e , elements of N'(S, 1), 1 <1 < k such that M; ' — S; ! 1s a mmimum with respect
to the energy norm 1n (53 12) Indeed, for A(z) & Zf=1 RT Wz, z € Ny, 1t follows that

J(2) = (N + Al2) = S;7)L, (N + Az) - S77)L)s, (6313)
= (A2)L, A(2)L)s, +2((N;* = S Ly A2)L)s, + (N = 8L, (N = 557 L)s,

and, therefore, J 1s a mimimum at 2° € N 1f, and only 1f,

def aJ

JV[z G2 = oo+ )| =0, ZE€EMN, (53 14)

=0

1€, 2° € N, 18 the unique solution of the problem Find z° € N, such that

J

A k
> (RE, Wz, RE \Whz)s, = —((N;* = S )L RE, WWhz,)s., [[z €Nu (5315)
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where N;-! € R?™?V s the preconditioner defined n Section 5 2 for the bilinear forms defined
m (53 2), (533) It s necessary, however, to compute at each step of the conjugate gradient
algorithm, the product My 'r®), k € N where r®) = L — S,u) However, accordmg to
the definition of the preconditioner M; ' € R*V 2V the product M *r®) 1s only defined for

W, wRr, 1r® € R(S,1), 1€, 1f (W, 4Br, s7® 0) =0, v € N(S.x) Thus, we define the mitial
approximation, u% )m as follows

uf’) EA Z RL WTe (5316)
where §° € N, 1s defined to be the solution of the problem Find 6° € A}, such that
(L~ Swulh, RE ,Who) =0, veN, (5317)

The property W, nRr,nL € R(S,1) © (W hRr,nL,v) = 0,2 € N(S,4),1 <2 < k then
implies that the right hand side of the coarse problem (5 3 15) can be rewritten as follows

((N_ - S—I)L Rr, hW,Thé,)s;. = _(Sth:l:L.’ Rﬁ,hwfhéj) (5318)

The choice (5 3 16) of g(rol ensures that W, 4 Rr, »r™ € R(S,s), n > 1,1 <1 < k wherer™ =
L~ Sht_tﬁ«"‘,l This 1s established inductively as follows If W, ;,Rp"hg(”‘), W.,hRn,hShd(m) €
R(S,1), 1 <1 <k for m < n and some n € N then, observing that rnt) = r(™ — g™ Shd™,
1t follows that

Spd™ = Spp™ + A G,
= SpM; '™ + B Sy d Y

= Sh Ek: RE WI(BiW, 4Rr, ir™ + 2) + g8, dmn (5319)
=1
However, because z° € N, 1s determned such that W, s Rr, 1Shv™ € R(S,4); 1 <2 < k, 1t
follows that W, ,Rr, nShd™ € R(S,4), 1 <1 < k and, thus, W, ,Rr, xr™!) € R(S,4), 1 <
2 < k The property then follows immediately from the observation that, by the choice of
u), WinRr, wr@ € R(S,4), 1<t <kand d™P =0
We observe that, defimng N, , & [n{", ,n] € R*M* where R(N, 1) = N(S.1) and
writing z¢ = N, X!, AL € R™, 1 <1 < k, the matrix, B € R™", and vector, X € R”, of the
coarse problem (5 3 15) can be determined 1n block form as follows, 1 < 2,7 <k,

B, = N W, wRr, wSwRE, JWIN, (5320)
k

= Z NT,W, hRI‘,,thT, #Sp nBre, hRE. JWIN, s € R (53 21)

X, =- Z NI, W, 1Rr, hRE. 4 SpnRr, nBE, W B IW, 4R, kL €R” (53 22)

1,p=1
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and, therefore,

-1 -1

(B1.1)7‘8=Bkl’ (—X_:)r=(2£)k, k= Vm + T, l=zyn+3a TG]NV,aSE]Nu.a"'a]e]Nk

m=1 n=1

To determine the respective matrix and vector B € R””, X € R 1t 1s necessary to compute,
as described above, the products S, v, B, tw for some r,s € Ny, v,w € R2*Mr. However,
because Rp”hR?,”h £0 & Q, ﬂﬁp # 0, B,X can be computed efficiently and, furthermore,
if 0(69Q, p) > 0 then the blocks corresponding to subdomain €2, can be neglected since
N(S,1) =0 The modified algorithm 1s presented mn ALG 3

531 Condition Number bound

The distribution, o(M; ' S}), of the eigenvalues of the preconditioned Schur complement ma-
trix M 'Sk, h > 0 1s fundamentally important 1n our approach because 1t determines how
rapidly the iterations produced by the conjugate gradient algorithm converge, cf (51 2)
Clearly, the spectrum o(M; ' Sy) 1s affected by, for example, the shape regularity of the ele-
ments of the mesh 7;(f2), the mesh diameter h > 0, the shape regularity of the subdomains
,, 1 <1 <k 1n the decomposition (51 12), the variation and regularity of the coefficients
Gk, 1 < 9,2,k,1 < 2, and the magnitude of the discontinuities o,, 1 < 2 < k, cf defi-
nition 52 However, following the analysis performed by BREZINA & MANDEL (1993),
BRAMBLE, PAsSCIAK, & SCHATZ (1986) for scalar elliptic boundary value problems, we
demonstrate that, for systems of elliptic equations with 1rregular coefficients, one can obtam
the bound k(M;!S;) < C[1 +log(H/h)]? where C > 0 1s independent of h, H and the Jump;
a,, 1 <1 < k by appropriately constructing the weight matrices W, 5, 1 <12 <k We begin

with some defimitions

Definition 51 Let V(I') be the set of vertices of 09,, 1 < 1+ < k which lie on the interface
T and let v, — Up be the straight Iine connecting vertex v, € V(T') to vertex v, € V(') Then

we define

G(T) & {y CT |y € V() or yNV(T) =0, v = mt(v; - ;) for some vy,2, € V(T')}
(5323)

R2Y2N 11 terms of 1ts 2 X 2 block entries

and, for y c I, we define the boolean matrix I, €

(Iy)rs € R??, 1 <r,s <N as follows

def | Ay, 1f the T,(S2) node z, € v
(L)re = { 0, if the T, (2) node z,. ¢ v° l<ms<N (5324)
where A, , & 0.1 € R*? and a pomnt £ € T 1s defined to be a node of the finite element
triangulation Tn(R) if 1t 15 a vertex of some element T € T+(Q2) Finally, we define the boolean

def T 2N 2Nl"
matrix I = Br, xRy , € R u

Thus, G(T") contains the vertices of the subdomain boundaries and the mteriors of the straight

lines 1n T" which connect them and, for v € G(T'), the matrices I, € R*M2N map vectors

————
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ALG 3 Conjugate Gradient Algorithm M 'Syur , = M; 'L,

H,, < Rr xRL WIL N, 1<4,p<Kk,

Ep, + An Aq,r,Hp,, 1<1,p<k,

B, « Z:p=1 P (AFPHN + An,,r,Ep,,), 1<1%3<k,
X, — NLW,wRr 4L, 1<:1%5k,

n+0, ul)«A(B1X),

e™ —Az!Ag, r,Rr, sl ;)n 1<1<k,

2™ 21=1 Rn,h(AI‘.RI‘.,h'U'(n) + An I“_fﬂ)) = Shug")‘,

™ ¢ Ly — 2 = L, — S,
(ﬂ) — Rl" hr(n) 1<1< k,

w(") W™, 1<i<k,

& « —B3'Ba, ru™, 1<1<k,

50 ¢ Yh L RE WA (Br.ul® + B &) = Ne®),

Ksn) «— _(ﬁ(n)’ RIT“ ,h N, h)Sh, 1 < 13 < k

—z_c ~— B_ll(")’ d(n) — s(n) + A(,Zc) — r(ﬂ)

While < e and K(M; ) (M52, 2/|(M5 Lo L) < 7
{
e —Agl Aq, . Rr, ad™, 1 <1<k,
(n) A Zs—l RI‘ h(AP(RI‘ huP h + A ﬂ T, —Sn)) Sh d(n)

o™  (z™,p™)/(d™, z™), v© = d°,
ufta )yl + oM™,

r+) L= Sl = p) ~ o)z,
(n+1) + Ry, r(n+1) 1<1<k,
"‘“’ +~ W e 1< <k,
..(n+1) « —B= an.,r._S"H) 1<i1<k,
40 € T RE W (B + B 80 = Nptpon)
X&) () BT WI N5, 1<i<K,
2° B—ll(nﬂ)’ p(n+l) snt1) +A(2°) = Mi‘t‘"“’,

ﬁ(n+1) — (z(n.+1),g(n+1))/(£(n),2(n)),
Y 4 y(n+1) 4 glntn) glm)

n<—n+1

u € RN — u, € R2?N where u. differs from u only 1n that those entries which do not

correspond to degrees of freedom of 7,(f2) on v are zero Some elementary properties of the

DOMAIN DECOMPOSITION 131



Preconditioners 5§ 8

matrices I, € R*N?N 4 € G(T') are provided in Lemma 5 1 below

Lemma 51 Lety € G(T') then, for1 <1,3 <k,

¥ C QNN <= I)' #0, YyC O = I'#0 (53 25)
> L=LeR™", N IF=ReuRi. I'=I'L (5 3 26)
v€G(T) v€G(T)

and, furthermore, I' = U,¢g(r)y

Proof Let v C 89, N 0Q, and, for g € {1, , N}, let the 7,() node z, € G(T') be a vertex
belonging to 7 then

N

N
(Iz,l)q,,q. = (RF,,hI'ng.,h)q, @ = Z(RF, h)q,:m Z(I'r)m,p(RT.,h)p,q-
r=1

m=1

N
= Z(RI‘,,h)q,,m(I'x)m,m(RlT, h)m,q. (5 3 27)
m=1

where ¢, = G(q), r = 1,7 However, because (Rr,1)e,q(I7)qo(RE, 1)eq. =1 € R* 1t 15
clear that sum (5 3 27) 1s positive and, therefore, I’' # 0 The second relation 1 (5 3 25)
follows similarly The final relation 1in (5 3 26) can be demonstrated as follows assume
v C 092, N 0N, then

I':zI'r = Rr, ,thRIT“.,hRI‘.,hI'yRIT“.,h
= RI‘J)"I‘YIF‘I‘YR[’I“.,!! -
= Rr,wl,Rf, 4 = I (53 28)

The first relation 1n (5 3 26) follows immediately from the defimtion (5 3 24) while the second
1s clear from the relations

2 B'= 3 BraLEf,= Rr,,h( > 1,) RE =R alcRE,  (5329)
Y€gG(T) veg(T) v€G(T)
and the observation that Rp nIr = Rr,x [ |

The weight matrices, W, 5, 1 <1 < k employed 1n the definition of the preconditioner M 1n

Section 5 2 can now be defined in terms of the block matrices I7*, 1 < 1,7 < k as follows

Defimition 52 Fory € G(T'), 1,7 € {1, ,k} let G,,(T) & {y € G(T) | I # 0}, a(2,7) &
{7 | IZ* # 0} and define the block matrices

W2 > wyp) Iy, 1<i1<k, p>1/2 (53 30)
VEg--(F)

and the weights according to the relation

P
wi,7,p) E—2 1<i<k, veGD), p>1/2 (5331)
A

J€a(r )
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where aximn = @ bimn, a(Z) = @y T € Dy, bpimn € Loo(Q)NC°(Q), 1 < k,I,m,n <2 |

We observe that G,,(I") contains all the geometrical elements of I' which intersect 92, N 992,
and a(z,7) 15 a list of all subdomains whose boundaries intersect ¥ N 952, The following
Theorem, proved in BREZINA & MANDEL (1993), 1s fundamental for our analysis because

1t provides an 1inequality from which we subsequently obtain a bound on the condition number
/-c(Mh_l.S'h)

Theorem 5 2 Let I*, S, p, N, s, Won, 1 <2 < k, v € G(T') be the matrices defined above
then the W,, € R*'™ 2Nr. 1 < 4 < k have the partition of unity property (52 14) and, if
there exists a number R > 0 such that, for u, € N(S, ,)* N R(S, 4N, 4)*, 1 <1 < k and

v € G(T),
o I ullS, , < o Rllwlls,, (5 3 32)

'y—l

then the preconditioner My € R?N 2V satisfies
x(M;'Sy) < K*L*R (5333)
where K = maxi<.<k |{7 | Br, nRT. , # 0} and L = max, <, ,<x |{y € G(T) | I2* # 0} [ |

We observe that the numbers K, I, are parameters of the decomposition (511 2) of  nto
the subdomains §2,, 1 <1 <k, eg, K 1s the maximum number of domains adjacent to any
domain plus one and L 1s the maximum number of geometrical components, v € G(T'), of
any subdomain interface A critical element of Theorem 5 2 1s mmequality (5 3 32) and the
number R > 0, the analysis of (5 3 32) for problems of planar linear elasticity will lead to a
logarithmic term 1n the upper bound (5 3 33)

In our analysis below we assume that the decomposition (511 2) of  has the following
property There exist bijective mappings T, S — &, 1 <1 <k, S £(0,1)?,

def ,

Ts=a,+a Hs +a)Hs;, s€S (53 34)

where a! € R? 0 < r < 2 are constants independent of H > 0 Thus, for 1 < 2 < k,
diam(Q,) = O(H), 0 < u(Q,) = |J(T;)| < C H? where J(T.) 1s the Jacobian of the mapping
T, and C > 015 a constant independent of H Furthermore, following BRAMBLE, PASCIAK,
& SCHATZ (1986), for v € (H/*(02,))?, 1 <1 < k, we define the scaled Sobolev norm, cf

Section 1 2,

2,m

oy (@)L = 3 [Hown) 068, (LaRIPI? + (o) oo, (A (R)PF]
=1
(53 35)
However, mstead of ||e, (H1/2(852,))*||s we shall employ the equivalent norm, cf Section 1 2,
lIle, (H/2(852,))?||| defined as follows for v € (HY/2(0,))*, 1 <1<k

e, (229071 & [ @t + [ =D (z)da(z)]
(5 3 36)
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where o 1s the surface measure defined 1n relation (12 31), cf WLOKA (1987) We now
intend to demonstrate that there exists a real number R > 0 which satisfies relation (5 3 32)
uniformly, 1 e , independently of 1,7 € {1, ,k}, and, as a step towards this goal, we employ
the results originally obtained by BRAMBLE, PASCIAK, SCHATZ (1986), DRYJA (1988),
and BREZINA & MANDEL (1993) Furthermore, by establishing property (53 32) the
required upper bound for (M S;) will follow immediately from relation (5 3 33) of Theorem
52

The equivalence of the semi—norm |e, (H/2(95,))?| associated with the norm defined
m (53 36) and the scaled energy norm ;|| e ||s,, defined for appropriate functions v €
(HY2(0%,))?, 1 < 1 < k 15 established by the following lemma, ¢f BREZINA & MANDEL
(1993)

Lemma 5 38 There exist constants Cr, 1 < r < 2 which are independent of h, H and
a,, 1 <r <k such that

Ch s, (HY?(B))* < o |M 7 uyll3,, < Co lug, (HY?(00))°,  w, € (S7(82))°
(5337)
where |o, (H'/2(89,))?| 15 the Sobolev semi~norm (5 3 14), My, € N(S,4)* C R*" ™ s
the vector of nodal values of v, € (S*(99.))2, and S*(09,) & {vi|sq, | vs € S*(SL)} [ |

For problems of two—dimensional Lnear elasticity the polygonal boundaries, 8Q, C R?, 1 <
1 < k have measure 0(0%,) = O(H) (H — 0) and can, therefore, be parameterized 1 the
form 89, = {Tsq,(s) € R? | 0 < s < H} where Tsq, (0,H) = 8%, 15 a bijective mapping
However, because v € (H'/2(89,))? < voTpq, € (H/2(0,H))? one may equivalently consider
elements either of (H/2(89,))* or (H'/?(0, H))?

We shall employ Lemma’s 5 4, 5 5, established by BREZINA & MANDEL (1993) from
the work of DRYJA (1988), BRAMBLE, PASCIAK, & SCHATZ (1986), to obtan a bound
on the semi-norm of the functions Ly, v, € (S*(8%))?, v € G(I') where I, S*(T") — S*(T)
denotes the linear operator represented by the matrix I, € R*" defined m (53 24), 1¢,
for u, € S*T), Lyu, = 307, (u,)r on.Ir where {p,}}L, 15 the canomical basis for S*(Q), cf
Section 221, and ¢;'({1}) C 7,1 < r < n, We pomnt out that, in the lemma’s below,
(Sh(0, H))? (respectively (S*(IR))?) denotes the space of piecewise hinear functions over the
domain (0, H) (respectively R) corresponding to the unsform partition 0 < h < 2h < <
nh = H,n € N (respectively <0<h< <nh=H< )

Lemma 5 4 There exists a constant C > 0 such that
6 (wa), (2R < 1L+ Tog(H/B)] g, (B2, E)PIIE, 1, € (SH0,H))* (5338)
where 8,(v,,) € (S*(R))2, 64(2,)(0) = v,(0), du(v,)(z) £ 0, |z| > h and C 18 independent of

v, and the parameters h, H
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Proof The results follows immediately from the definition of the norm [||e, (H*/2((0, H)))?||
(cf (53 36)), the semi—norm |e, (H'/2(IR))?| (cf Section 12), and Lemma 4 4 of BREZINA

& MANDEL (1993) [

Lemma 55 There exists a constant C > 0 such that
fwa, (E/2(R)?P < Ot +1og(H/B)] wa, (20, H)PIIP, 2y € (SO, (5339)
where w, € (S"(R))? 1s defined as follows

aef [v,(2), fh<z<H-h
wy(z) = {0, 520,55 H (53 40)

and C 1s independent of h, H, v,

Proof Use the norm defimitions provided above and 1n Section 1 2 and apply Lemma 4 5 of

BREZINA & MANDEL (1993) |

We now employ the above Lemma’s to prove the following important result
Theorem 5 6 There exists a constant C > 0 such that, for any y € G(T'), v, ,, € (S*(8%))%,
1< <k,

Ly, (V2(0R) < C[1 4 Log(H/R)] s, (H2(@)PIIP (5341

where ¥ C C, C € G(T') and C 1s independent of h, H,v, ,

Proof Clearly, for v € G(T') there exists a byective mapping Tpq, (0,aH) = 69Q,,a > 1
such that if v 1s a vertex then Tpq,(0) = 7 else Toq, (0,H) = v and, therefore, for Yn €
(S"(@Q )) 1h OTaQ' € (S"(O QH)) and

2
|L,u, n, (HY?(052.)) Z// [y nr(2) = Iﬂ’z”h"(g)l do(z) do(2)
o

Q. x S, lz — z[13
< CZ// [ Ly¥s 1 r (Ton, (2)) — L:& ne(Ton, (2))? dz dz
=1 YV (0,aH)x(0,aH) |$ —Zl
= C|Lw, 1 © Toa,, (H/*(0,aH))*? (5342)

where C > 0 15 independent of h, H If v € G(T') 1s a vertex then we observe that I v, , 0 Tsq,
comncides with the function 64(v, ;) € (S*(R))? defined m Lemma 54 and we deduce the

mequality,
Ly, © Ton,, (H'(0, @B < C[1 + log(H/R)] I, Ton,, (H/*(0, EDPIIP
< Gy 1+ log(H/R)| e, , (2OPIP - (5343)
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where C = Tpq,(0,H) € G(I') If, however, v = mt(y; = v,) € G(I), v,,v, € V(I'), cf
(5 3 23), then we observe that I,v, , o Toq, comcides with the function w, € (S*(IR))? defined
mn relation (5 3 40) of Lemma 5 5 and we deduce the inequality

2
L2 © Toa, (H'/2(0,H))** < C[1 4+ Log(H/h)| I, © Ton,, (H2(0, H))?II
2
< Cu[t+1og(H/B)] o, (HP@PIE (5344)

where C = Tpq, (0, H) = 7 and the constants C,C; > 0 are independent of h, H Inequality
(5 3 41) now follows from (5 3 42), (5 3 43), and (5 3 44) |

We now employ the above results to establish the bound for (M, *S,) presented 1n Theorem
5 7 below

Theorem 5 7 Let Q C R? be a polygonal domain partitioned into subdomamsQ,, 1 <1 < k
satisfying (5111) and let W, € R* 2N 1 <4 < k be the weight matrices defined
according to relation (5 3 30), (5 3 31) then there exists a constant C > 0 such that

R(M;18) < 1+ log(H/1)] ", h,H >0 (5 3 45)

where, for a triangulation T5(S2), Sy 1s the global Schur complement matrix (51 1 35), M, 1s
the preconditioner defined 1n Section 5 3, and C 1s independent of the parameters h, H where
diam(Q,)=O(H)(H = 0),1 <1<k

Proof Clearly, this result can be established by demonstrating the validity of lnequaht)"
(5332) for R = C[1+ log(H/h)]* However, 1t 1s apparent from Lemma 5 3 that (5 3 32)
can be written equivalently as follows, for v € G(T'), v, , € (S*(9%))> NN (S, 4)*,

Ly (HY2(00)* < CRlu, 5, (HY2(00))°P, (5346)

Let v C 89, N 6Q, If y = mt(vy — v,), ¥;,3, € V(') then 1t follows from Theorem 5 6 that
Ly, (HY2OR)?F < C [1+ log(H/R)) Yl (H2 )2

< C 1+ log(H/)] e (H7OR)PIE (3347)

while, 1f 7 1s a vertex and v,, , € (S*(8, U 8,))? 15 any extension of v, € (S*(%%))? to 99,
then Theorem 5 7 implies the mequality

2
L,y 0 (P (0,))1 < C [L 4+ 10g(H/B)] M, 4, (H(C)PIIE (5348)
Indeed, with v,, = v, ,(7) on 8, we use Lemma 1 of DRYJA (1988) to obtamn

ey o (P2 = H g 1y (2 CPIP < Cllv, s (L)
< O ol LoolOR)IP < € [1+1og(H/)] T, (B2(3)7I7 (5 3 49)
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where C' > 0 1s a constant which 1s independent from 2,7 € Ny, h, H Thus, mequalities
(53 48) and (53 49) show that (53 47) holds when v € G(T') 1s a vertex However, we
shall assume that the decomposition (5 1 1 1) 1s constructed such that there exists a constant
C > 0 which 1s independent of = € {1, ,k} with the property that if 3Q, N 9Qp # @ then
(0, NONp) > Co(IN,) This enables one to uniformly apply the Poincare mequahty

l2e, (L2(02))1* < CHy, y (H'2(90))*? (5 350)

to any subdomain Q,,1 <1 < k Thus, applying the Poincaré mnequality (5 3 50) to relation
(5 3 41) of Theorem 5 6 we replace the scaled norm, |||e, (H'/2(6,))?|||, with the semi-norm,
e, (H*/2(692,))?|, and obtan the relation

Lo (HY2(00,))7 < C[1L-+ Tog(H/R)| T, (H2(0R))7P (53 51)

which 1s equivalent to inequality (5 3 32) and the theorem 1s thus proved |
Finally, we observe that the constant C in (5 3 45) will depend on the parameters K, L defined
in Theorem 5 2, the continuous coefficients brimn, 1 < k,l,m,n < 2, cf defimtion 5 2, and

the admissible triangulation 7;(€2) of Q

54 Computational Examples
We apply our domain decomposition algorithm of Section 5 3 to a variety of problems with
varying levels of material regularity, e g, a,u,1 < ¢,3,k,1 < 2 smooth or piecewise contm:
uous with discontinuities of varying magnitude and, in particular, we consider linear elastic
boundary value problems for which a,,x, 1 < 4,7,k,! < 2 15 peniodic, cf Chapters 3, 4, or
1s randomly defined The effectiveness of our domain decomposition approach 1s assessed by
comparing the results obtained with algorithms ALG 1 (conjugate gradients with no precon-
ditioner) and ALG 2 (conjugate gradients with the Neumann—-Neumann preconditioner) for
a variety of values of the problem and discretization parameters €, a,, h, H, 1 <1 < k where,
in the computational examples below, we employ uniform domain decompositions (511 1),
1e, HH=H,1<1<kand Q,1 <1<k can be obtained by translating and rotating the
square

Qg ={(&n |0<&n<H}, (541)

and umform triangulations 75(,) of each subdoman ©,, 1 <1 <k, 1e, each 7 € Tp() 18
obtained by translating and rotating the right angled triangle

T ={&mn)[&n>0,{+n>h}, h>0 (542)
It 1s apparent from the error bound (5 1 2) that the condition number,

&(PrrSh) = 1P Shllz (P Sk) ™M l2 = Amax (P Sh) /Amin (P Sh) 2> 1, (543)

DOMAIN DECOMPOSITION 137



Computational Ezamples 54

of the preconditioned matrix P, 15, determines how rapidly the iterates g‘;‘,{, n > 0 converge

to ur, as n = oo However, we require some convergence criteria for our algorithm and,
for this, we employ the following bound on the relative energy norm error, cf ASHBY &
MANTEUFFEL (1990),

lle™ |13,

llur 4ll3,

(P Spel™, r™)|

(B
|(Ph_15hur mLh)|

- 16,
= K,S,,(Ph Sh,) |(Ph—1L_h,,Lh)| 54 4)

< ks, (Py " Sh)

where ks, (Py'Sk) = |P7 Sills, |(PSk) Y |s, and e™ = yr,h—gg",)l, r(® = Lh_shﬂg,ll)n n2

0 However, we observe that

Prig (2 = oo NPa Shely, _ (8PS z)
” h h”S'. = sup 2 =su 2
z7#0 ”E”sh z#£0 "2"

= Amax(SY2P71SH?Y = Amax(P1Sh) (545)
where S, = 5,11/25,1,/2, S,I/2 e R*™*N b > 0 and, similarly,
(P71 S8) 1%, = Amax((B'S4) ™) = 1/ Amun (P52 Sh) (546)

Therefore, ks, (P;'Sh) = \/fc(P,,_IS,,), h > 0 and we can ensure that [le® |ls./lzrplls, < 7
by 1iterating, cf ALG 1, 2, 3, until

P—lr("’) r("))l
K,(P_IS I( h_— - ST2
F L, L)

The parameters computed at each step of a conjugate gradient algorithm allow one to _

(547)

compute the leading tridiagonal submatrices T,S") € R", n < 2N of T}, = T,EzN) where
T, = QT P, 18,Qy for some orthogonal matrix Q, € R*™2N  The rapid convergence of the
extreme eigenvalues of T,E"), n > 1 to those of P; 'S, A > 0 with increasing n 1s established
by the Kaniel-Paige convergence Theory, cf GOLUB & VAN LOAN (1989) We employ the
rational QR algorithm with Newton Shift detailed in REINSCH & BAUER (1968) to compute
approximations of the condition number x(P;'S:), h > 0 and use these m the convergence
criteria (54 7) Algorithms ALG 1,2,3 have been implemented in C++ code and the results

are presented 1n Sections 5 4 1-5 4 3 below

541 Plane stress sample problem Smooth Data
We define Poisson’s ratio, v, Young’s modulus of elasticity, E(z),z € § £ (0,1)3, the
material parameters A, € R, and the body force f according to the relations

vi3/10, B(z) %1, i) ¥ I2E u(z)f'—f%’ f@%0, ze (548)

and we determine the coefficients a,,,; € C®(R), 1 <1,7,k,! < 2 from relations (13 11) We

employ the following boundary values of displacement, u, and stress, o,

def T, gef [A(1—v)+2 0
T B A A e | E(esiﬂgj
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where Qp € {z |z, =0,0< 2, <1}U{z | 0 < 2, < 1, z, = 1} and the surface tractions

on O aret = con The computational results obtained with (1) Uniform decompositions,

(5111), (2) Uniform triangulations, 7,(£,), 1 <12 < k, ¢f Section 54, (3) The weights,

w(t,7,p), 1 <1<k, v € G(I), defined according to (53 31) where @, = 1,1 <2 < k and
def

p & 1, (4) Convergence criteria (54 7) with the relative error parameter, 7 = 10~V8, and

(5) The number of 1terations, n, imited by nmax = 80 are provided in Table 54 1
Table 541 a,u € C*(R),1<1,2,k1<2
ALG 1 ALG 2 ALG 3
h H n k(Sh) n  &(N;'Sh) n  k(M7'S,)
1/8 1/2 31 43072(+1

14 85326(+0) 11 5 3153(+0)
1/16 1/2 49  83661(+1 16  11108(+1) 12 72720(+0)
1/32 1/2 77 16507(+2 17 14157(+1) 14 10121(+1)
)
)
)

)
+1)
)
1/16 1/4 NC 2 1497(+2) 52 10129(+2) 16  58160(+0
1/32 1/4 NC 4 2650(+2) 64 12789(+2) 21 91396(+0
)
)
)
)

1/64 1/4 NC 8 2186(+2 73 15635(+2) 24 12505(+1
1/32 1/8 NC 9 2200(+2 NC 4 7860(+2) 23 59004(+0)
1/64 1/8 NC 16059(+3 NC 6 0360(+2) 27 9 3509(<+0)

(+1)

1/128 1/8 NC 2 7264(+3 NC 73753(4+2) 31 12781(+1
NC= No convergence after 80 iterations, w(1,7, ) = 1/|a(z,'y)|, 1<:1<k,v€ G(I‘)

It 1s clearly apparent from Table 54 1 that, in contrast with algorithms ALG 1,2, the
rate of convergence of algorithm ALG 3 does not slow significantly as H,h — 0, indeed, the
computational results confirm the logarithmic behaviour of x(M; 'S} ) established 1n Theorem

57 This 1s apparent when one compares Table 5 4 1 with the following table of values

H/h 4 8 16
[1 +log(H/R)? | 56944008 | 94829602 | 14 23242

54 2 Plane stress sample problem Discontinuous Data

We now demonstrate that the convergence rates produced by the preconditioner M; ', h >
0 (w(z,v,1),1 < ¢ < k,v € G(I') defined by relation (53 31)) are independent of any
coefficient discontinuities which are aligned with the subdomain boundaries and, to do this,
we apply domamn decomposition algorithms ALG 1,2,3 to a linear elastic analogue of the
scalar, periodic boundary value problem mnvestigated in Chapters 3, 4, 1e, a problem of the
form Find u® € (H(Q2,80Qp))? such that

/ Z a’l]k[ 6:1:,

1,7,k,1=1

a”" dz = / fl@) v(z)dz, ve (HNQ,89))® (5410)

DOMAIN DECOMPOSITION 139



Computational Ezamples 5 4

where the functions a,,1 € Lo(P), 1 <2,7,k,1 <2 are 1-periodic and € > 0 For 0 > 0 we
begin by defining the 1-periodic function £(e, ) on the cell, P, as follows
at [ o, 1f z €[1/4,3/4)?

E(z,0) = { 1, otherwise (5411)
Young’s modulus of elasticity 1s then defined according to the relation E(z) e E(z,0),z€Q
and v, A\, i, f are given by relations (548) The boundary conditions employed are again
given by relations (549), the triangulations, 7,(f2,),1 < 2 < k, and domamn decompo-
sitions (51 11) are uniform, cf Section 541, the iteration parameters have values 7 =
107V18 . ax = 80, and the weights, w(s,7,p), 1 <1 < k,v € G(T), are defined by rela-
tion (53 31) with p = 1 We construct the decomposition £ = UX_,©, such that H = ¢/4,

a,xi(e/e), 1 <1,2,k,1 <215 constant 1n each subdomain (2,, 1 <1 < k (with constant value
ocorl)and,cf (5111)and (541),

Q=mgH+Qy, H=¢€/4, 1<1<k, (5412)

where : = (Vk+1)p+4¢, 0 < p,¢ < vVk The computational results obtamed for this problem
are provided in Tables 54 2a—f We demonstrate the effectiveness of the weights defined

1in relation (53 31) by repeating the computations with the alternative interface weights
w(s,7,1) & 1/|a(z,7)], 1 <12 <k, v € G(I'), the results are presented 1n Tables 5 4 2d—f

Table 54 2a a,,u € PCT(N),1<14,7,k,1 <2

ALG 1 ALG 2 ALG 3

€ H h n £(Sh) n  K&(N7'Sy) n  &(M;'S)
1 | 174 | 1716 | nc 14670(+3) | Nc 76144(+2) | 17 49512(+0)
1 1/4 1/32 NC 23360(+3 NC 9 3890(+2) 20 7 8869(+0)
1 1/4 | 1/64 | NC 40347(+3) | No 11471(+3) | 24 10071(+1)

(+3)
(+3)
(+3)

1/2 | 1/8 1/32 | Nc 38933(+3) | NC 30049(+3) | 21 5 3880(+0
1/2 | 1/8 1/64 | Nc 52498(+3) | NC 36740(+3) | 27 85498(+0
(+3)

(+3)

(+3)

(

)
(+0)
1/2 1/8 1/128 | NC 54075(+3) | NC 44593(+3) | 32 11756(+1)
1/4 | 1/16 | 1/64 | Nc 49957(+3) | NC 11336(+4) | 22 5 4137(+0)
(+0)
(+1)

1/4 1/16 | 1/128 NC 5 2769(+3 NC 1 3800(+4) 30 85728(+0

1/4 | 1/16 | 1/256 | nc 51447(+3) | Nc 16629(+4) | 36 11779(+1
o =10, w7, 1) = /3 caum ¥ L <1 <k, 7€ G(T)

The results presented 1n Tables 5 4 2a—c confirm the theoretical results obtained 1n Section 5 3
because they demonstrate that algorithm ALG 3 1s not significantly affected by the presence of
large discontinuities 1n a5, 1 < 3,3, k,1 < 21f the interface weights w(z,,1), 1 <1 < k, G(I')
are defined according to relation (5 3 31) This 1s clearly not the case for algorithm ALG 1,
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Table 54 2b a,,.u € PC(N), 1< 1,3,k 1 <2

ALG 1 ALG 2 ALG 3

€ H h n k(Sy) n  &(N;'Sh) n  k(M;'S;)

1 1/4 | 1/16 | NC 3 9096(+2 (

1 1/4 1/32 NC 83613(+2 56 11324(+2) 23 12982(+1

1 1/4 1/64 NC 1 6446(4+3 60 13823(+2) 25 13944(+1
(

(+2) )
(+2) )
(+3) )
1/2 | 1/8 1/32 | NC 14567(+3) | NC 50294(+2) | 24 8 7873(+0)
1/2 | 1/8 1/64 | Nc 28022(+3) | NC 60488(+2) | 27 10654(+1)
(+3) )

(+3) )

(+3) )

) )

49 9 0650(+1) 23 15212(+1

1/2 1/8 1/128 NC 45822(43 NC 71161(+2) 32 14176(+1

1/4 | 1/16 | 1/64 | NC 43856(+3) | NC 17969(+3) | 26 71524(40

1/4 | 1716 | 1/128 | Nc 52908(+3) | Nc 22263(+3) | 32 10664(+1

1/4 | 1/16 | 1/256 | NC 50519(+3) | NC 27042(+3) | 37 14186(+1
o=1/18, w(z,7,1) = o,/ Ejea(t,'r) a,, 1 <1<k, yeG()

Table 54 2¢ a,,4 € PC(Q), 1< 1,7,k,1 <2
ALG 1 ALG 2 ALG 3
€ H h n k(S1) n  Kk(N7'Sh) n  k(M;'S)
1 1/4 | 1/16 | NC 14305(+3) | 53 17255(+2) | 35 5 2338(+1)
1 1/4 | 1/32 | NC 17579(+3) | 61 20068(+2) | 31 29882(+1)
1 1/4 | 1/64 | Nc 17200(+3) | 73 25436(+2) | 29 19844(+1)
172 | 1/8 1/32 | NC 18337(+3) | NC 57397(+2) | 31 20565(+1)
12 | 1/8 | 1/64 | nc 29227(+3) | nc 71107(+2) | 31 15048(+1)
) )
) )
)
)

1/2 | 1/8 | 1/128 | NC 46207(+3) | NC 84675(+2) | 32 14309(+1

1/4 1/16 1/64 NC 4 5866(+3 NC 1 8046(43) 29 10251(+1

1/4 | 1716 | 1/128 | NCc 54589(+3) | Nc 22262(+3) | 32 10818

1/4 | 1716 | 1/256 | Nc 53536(+3) | NC 27046(+3) | 37 14315(+1
o =1/114, w(s,7,1) = &/ 3 caumy @ L <1 <k, v €G(D)

n fact, 1f one employs the alternative defimtion w(z,7y,1) & 1/|a(s,7)|, 1 <2 < k, v € G(T),
then, compared with the results reported 1n Tables 5 4 2a—c, the larger number of iterations,
n, and condition numbers obtained 1n Tables 5 4 2d-f suggest that the behaviour of algorithm
ALG 3 1s no longer independent of the coefficient discontinuities which exist 1n the problem

this confirms the importance of the choice of the interface weights w(z,v,p), 1 <1 <k, v €
6(T),p>1/2

54 3 Plane stress sample problem Randomly Discontinuous Data

To demonstrate the effectiveness of the preconditioner M; ', h > 0 for problems with dis-
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Table 54 2d a,u € PC®(Q), 1 <1,2,k,1 <2

ALG 2 ALG 3
€ H h n  k(N7'S) n  w&(M7'Sh)
1 1/4 1/16 NC 6 9794(+2) 32 23326(+1)
1 1/4 1/32 NG 87378(+2) 39 35578(+1)
1 1/4 1/64 NC  10406(+3) 45 50303(+1)
1/2 1/8 1/32 NC 2 6969(+3) 37 23270(+1)
1/2 1/8 1/64 NC  33622(+3) 48 35985(+1)
1/2 1/8 1/128 NC  40522(+3) 56 50861(+1)
1/4 1/16 1/64 NC  10393(+4) 42 23287(+1)
1/4 1/16 1/128 NC 1 2906(+4) 52 35087(+1)
1/4 1/16 1/256 NC  15398(+4) 60 5 0865(+1)

o =10, w(s,v,1) = 1/a(2,7)], 1 <1 <k, v € G(T)

Table 54 2e a,,,y € PC(Q), 1 <1,2,k,1 <2

ALG 2 ALG 3
€ H h n k(N;71Sh) n k(M2 S)
1 1/4 1/16 63  68076(+1) 34 14305(+1)
1 1/4 1/32 73 89823(+1) 35 15061(+1)
1 1/4 1/64 NC  11624(+2) 45 25084(+1)
1/2 1/8 1/32 NC  44321(+2) 33 10332(+1)
1/2 1/8 1/64 NC 5 4503(+2) 44 17162(+1)
1/2 1/8 1/128 NC 66131(+2) 58  30785(+1)
1/4 1/16 1/64 NC  17025(+3) 34 10324(+1)
1/4 1/16 1/128 NC  21276(+3) 49 20169(+1)
1/4 1/16 1/256 NC  25831(+3) 63 32725(+1)

o =1/18, w(s,7,1) =1/la(s,7)], 1 <2 < k, v € G(T)

continuous and non-periodic coefficients, we now apply the domamn decomposition algo-
rithms ALG 1,2,3 to a number of problems with randomly defined material coefficients,
Gy € Loo(R), 1 <13,7,k,1 <2 We achieve this by defiming Young’s modulus to be a step
function, constant 1n each subdomain €2,, 1 <1 < k, with the values obtained from the UNIX

stdlib h random number generator functions srand48, drand48, 1 ¢,

def

E(z) =1+ 100 [srand48(z),drand48()] € [1,101), z€Q,, 1<:1<k (5413)

Thus, we first seed the random number generator using srand48(z) where s € {1, ,k} 1s the

domain 1index and then obtain a uniformly distributed random number drand48() € [0,1)
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Table 54 2f a,;, € PCT(R), 1 <1,7,k,1 <2

ALG 2 ALG 3
€ H h n k(N7'Sh) n k(M;1S;)
1 1/4 1/16 NC  16800(+2) NC 2 3370(+2)
1 1/4 1/32 NC  25683(+2) NC  13773(+2)
1 1/4 1/64 NC 40085(+2) NC 11971(+2)
1/2 1/8 1/32 NC  55316(+2) NC  10075(+2)
1/2 1/8 1/64 NC 6 8480(+2) NC  84559(+1)
1/2 1/8 1/128 NC  79447(+2) NC  13063(+2)
1/4 1/16 1/64 NC  17003(+3) 77 59652(+1)
1/4 1/16 1/128 NG 21278(+3) NC 9 0417(+1)
1/4 1/16 1/256 NC 2 5864(+3) NC  17357(+2)

o =1/114, w(1,7,1) =1/la(s,7)|, 1 <2 < k, 7 € G(T)

Table 5 4 3a Random Young’s Modulus values
Domain, 2 1 2 3 4
E(z),z€Q, 18 0828 51630 92 2433 79 3235

Domain, 2 5 6 7 8
E(z),z€Q, 66 4037 53 4840 40 5642 27 6444
Domain, 1 9 10 11 12
E(z),z €9, 14 7247 1 8049 88 8851 75 9653
Domauin, 2 13 14 15 16

E(z),z €, 63 0456 50 1258 37 2060 24 2863

The range, E(f2), obtained 1n this way 1s presented in Table 5 4 3a
The material parameters v, 4, A € R and the body force f are once again determined from

relation (5 4 8), Q & (0,1)?, and we employ the boundary conditions

u(z) €0, z€dp, gl@)¥ [Sm(gx"’)] , TEr (5414)

where 0Qp & {z|z;=0,0< 1z, <1}, and 0Qr o O0\9Qp The respective finite element
triangulations, 7,(f,), 1 <t < k, domain decompositions, Q = Uf=1§,, 1teration parameters
T, Mmax, and weights w(z,v,1), 1 <1 < k, 7 € G(T') are constructed and defined as m problem
541 The computational results obtained with algorithms ALG 1,2,3 are presented in Table
543b

The asymptotic bound (5 3 45) 1s again confirmed by the results presented in Table 5 4 3b
and, comparing these results with those in Table 5 4 3c, 1t 1s revealed that the constant,

C > 0, which appears 1n (5 3 45), becomes dependent on the parameters a,,1 < 1 < k
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Table 54 3b a,u € PCT(R), 1 <1,7,k,1 <2

ALG 1 ALG 2 ALG 3

h H n k(Sh) n  k(N7'S) n  k(M;'S,)
1/16 1/2 | 38 13489(+3) | 22 74894(+2) 8 18573(+0)
1/16 1/2 | Nc 28718(+3) | 26 91959(+2) 9 22077(+0)
1/32 1/2 | NC 58123(+43) | 20 11149(+3) | 10 28098(+0)
1/16 1/4 | NC 26064(+3) | NC 60693(+3) | 13 4 3405(+0)
1/32 1/4 | nc 47821(+3) | NC 73067(+3) | 17  63227(+0)
1/64 1/4 | Nc 29972(+3) | Nc 86525(+3) | 20 8 4442(+0)
1/32 | 1/8 | Nc 20358(+3) | Nc 25722(+4) | 18 5 6481(+0)
1/64 1/8 | Nc 41683(+3) | NC 24205(+4) | 22 84329(+0)
1/128 | 1/8 | nc 77r05(+3) | Nc 22588(+4) | 27 11250(+1)

NC= No convergence after 80 iterations, w(z,7,1) = a,/ EJEG(,”) o,,1<1<k,vyeG(I)

Table 54 3¢ a,,u € PC*(Q), 1 <1,3,k,1 <2

ALG 2 ALG 3

h H n k(N;'Sh) n k(M;'Ss)
1/16 1/2 30 45069(+2) 19 79592(+0)
1/16 1/2 48 52723(+2) 25 10679(+1)
1/32 1/2 54 6 0983(+2) 29 12915(+1)
1/16 1/4 NG 47172(+3) 39 31188(+1)
1/32 1/4 NC  58561(+3) 51 46471(+1)
1/64 1/4 NC  70365(+3) 59 61436(+1)
1/32 1/8 NC  17856(+4) 53 42239(+1)
1/64 1/8 NC  17347(+4) 66 63207(+1)
1/128 1/8 NC  16872(+4) 78 89413(+1)

w(s,7,1) =1/]a(,7), 1 <1<k, y€G(T)

when one defines w(z,7v,p) = 1/|a(t,7)), 1 <2 < k,v € G(I'), p > 1/2 Furthermore, we
point out that, based on the smaller values of x(N;'Sy), h > 0 reported i Table 5 4 3c,

one may expect more rapid convergence of algorithm ALG 2 when the weights are given by
w(z,,1) oof 1/la(z, )|, 1 <2 < k, v € G(I') rather than (5 3 31), however, 1if the spectrum,

a(N;1Sh), h > 0, consists of a smaller number of compactly clustered groups of eigenvalues

when the Neumann-Neumann preconditioner 1s defined 1n terms of the weights (5 3 30) then

one should expect these results Indeed, we suggest that this 1s the explanation for the results

obtained with the Neumann-Neumann preconditioner in Tables 5 4 3b,c
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55 Conclusions
Our aim 1n Section 5 4 was to demonstrate through the use of computational examples that,
for problems of heterogeneous linear elasticity, the inclusion of a globally defined coarse
problem within the defimition of a Neumann—-Neumann type preconditioner leads to faster
rates of convergence which do not vary significantly when the material properties change by
large orders of magnitude and possess asymptotic properties which are similar to those first
established in BREZINA & MANDEL (1993) as H,h — 0 It was also our aim to implcitly
demonstrate that the introduction, at the continuous level, of the bilinear forms b,,72 € S
leads to an efficient and reliable approach to the solution of the undetermined problems (5 3 1)
which are often treated in the literature with ad hoc modifications at the discrete level of the
matrices A,p = (a,(¢r, ¢5))20y, 1 <1<k

The results obtamned 1n Section 54 show that, if one solves the domain decomposed
mterface problem (51 1) with the conjugate gradient algorithm using the preconditioner
Mt € R*™? then, as H — 0, this leads to

(1) Dramatic increases 1n the convergence rate, C(M, 154), h > 0, compared with either the
Neumann-Neumann preconditioner, N;*, h > 0, (using any definition of w(z,v,p), 1 <2 <

k, v € G(T'), p = 1/2) or no preconditioner, 1e , P;! = I,

(2) Independence of the condition number, k(M 'S:), h > 0, and, therefore, the convergence

rate of algorithm ALG 3 from material discontinuities and, thus, singularities,

(3) Logarithmuc rate of growth logh™! of x(M;'Ss) as h — 0 and, therefore, a slow decrease
of the convergence rate, C(M;'S;), as h =0

Finally, we observe that the coarse problem 1s required primarily for H = 0, 1e, when the
number of domains, k, 1s large It 1s cheap to implement because the coarse system matrix,

B, 1s small compared to Sy, h > 0 and 1t 1s computed and factored only once
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6 DISCUSSION

Motivated by the need to devise reliable numerical methods for the treatment of elliptic equa-
tions and systems with coefficients which vary rapidly, discontinuously, and by large orders of
magnitude, we have considered two different approaches In the first approach we have used
homogenization concepts and Fourier series expansions to construct asymptotic expansions
which can approximate the solutions of these problems in the case when the coeflicients are
periodic with period e We have computed the asymptotic orders at which these approxi-
mations converge using extensive computational tests and analytical results In the second
approach we have reformulated the Galerkin problem as a system of such problems using
domain decomposition techniques and showed how these problems can be efficiently mter-
faced by constructing preconditioning operators which allow one to use conjugate gradient
algorithms for the rapid iterative solution of the interface problem We have provided the-
oretical results which establish the preconditioning properties of this operator as H,h — 0
and, using a number of computational results, demonstrated that these properties are fulfilled
In practice

Clearly, the asymptotic approach 1s only applicable for problems in which € ~ 0 because
1t mtroduces errors of the order O(e) for some ¢ > 0 which depend on the norm topology
and the asymptotic approximations used An important property of these approximations
1s that the order, t, at which they converge does not vary with the level of regularity of the
coefficients, thus, we expect 1dentical rates of convergence for problems with either smooth
or discontinuous material properties However, the regularity of the right hand side, f, of a
problem 1s fundamental 1n this approach because 1t determines the rates, and the maximum
possible rates, of convergence as ¢ — 0 Furthermore, the level of regularity of f also
determines how rapidly 1ts Fourier series expansion converges Indeed, this latter property

may cause practical difficulties, for example, if f 1s piecewise continuous then 1ts Fourier
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series will converge slowly 1n the neighbourhoods of any discontinuities and many terms may
be required to accurately represent the solution We observe that this difficulty also arises 1n
BABUSKA & MORGAN (1991) where, nstead of a Fourier series, there 1s a Fourier transform
and the task 1s to evaluate an integral over R", n > 1 which may converge slowly We feel that
one may attempt to treat this difficulty by using approximations, e g splines or mollifiers,
which smooth the discontinuities of f 1n C and thus obtain more rapidly convergent Fourier
series Clearly, the success of this approach would depend on how well one can control the
magnitude of the additional errors which this process would introduce Unfortunately, we do
not have sufficient time to explore this possibility

We have seen that the solutions, ¢, of the elliptic problems of the type considered in

Chapter 3 are holomorphic functions of € and ¢ everywhere 1n R?*\S where
S = {(e,t) € R*| ||(e,7) — (&, t)ll2 = 0 = ||p(e, €, 7), H*(P)|| = oo} (61)

However, for (¢,t) € A £ {z € R? | (0 - z) NS # 0}, the asymptotic approximations
én, N > 0 fail to converge, 1€,

¢(e,&,) ~ dn(e,6,8), H'(P)| A0 (N — o0) (62)

Nevertheless, the good qualitative approximation properties 1llustrated in graphs 34 1-34 6
and 3 6 1-3 6 6 motivated our decision to use the asymptotic approximations ¢y, N > 0 at
any pomt in 4 However, this differs from the elliptic problems studied in BABUSKA &
MORGAN (19911) which include the zero order term, a¢, i their formulation the solutions,

¢, of such problems are holomorphic everywhere 1n the (g,t)-plane, 1€,
”¢N(.,51t)_¢(.a5at)aH1(P)|l —+0 (N—)OO) E,tE]R-v (6 3)

and the functions ¢y, N > 0 therefore provide valid asymptotic approximations everywhere
in the (g,t)-plane For fe € H™(C)\H™*!(C) the precise rate at which the asymptotic ap-
proximations Uy prpp, N 2 m+2, M = m+2—p, £ € N, h > 0 converge to u° 1n the
HP?(C) norm topology as € — 0 remains an unsettled pomnt, although we expect that more
accurate estimates of these asymptotic rates of convergence can be determined by further
reducing the discretization error through the use of more refined, perhaps, graded triangu-
lations 7;(2), h > 0 and/or adaptive techmques of approximation The task of attaining
a given truncation error tolerance, e g, ||f — fi, £2(R)|| < 7 for mmimal £ € N, provides
a more difficult challenge, however, because the approximations x4, || > 1, » > 0 and
dénn(e,e,nm), n € Z2\{0} are independent they can be computed 1n parallel efficiently on
computers with parallel architectures

The results which we have obtained are similar to those given by BOURGAT (1978) who
uses the classical two-scale asymptotic expansions of BENSOUSSAN, LIONS, & PAPANI-
COLAOU (1978) Indeed, in BOURGAT (1978) 1t 1s claimed that the following error estimate
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1s valid for solutions of the homogenized problem, w,, satisfying uo € C°*(Q2)
luf — ufy, H( Q)| £ CeM*72, ¢>0, 0SN<L1 (64)

where

wiy(z) L uop(z) +¢ Y Duo(@)malz/e) + +&¥ Y Duplz)malzfe), €>0, N0
lel=1 lal=N 65)
and the functions 7, |a| > 1 are solutions of elliptic problems on P, ¢f BAKHVALOV &
PANASENKO (1989) Although the regulanty assumption u, € C**($2) 15 unlikely to be
satisfied 1n practice, e g, f € L2(Q)\H'(Q) or N 1s nonconvex, this result shows that the
approximations u$,, N > 0 fulfill similar asymptotic rates of convergence as those observed in
relations (4 5 1) and (4 52) Indeed, the analysis of Chapter 3 showed that these approaches
are 1dentical for the problems considered there The presence of the functions D®uy, |a| < N
in the defimtion for u$,, N > 0 causes a difficulty which does not arise in our approach
the task of computing reliable numerical approximations of D*ug, |a| < N will often require
special computational schemes, e g, gradient recovery techniques, and, depending on the
form and regularity of f, these may mtroduce significant discretization errors
Thus, 1f the truncation errors, ||¢(e, €, n7) —dn (o, €, n7), H(P)||, € > 0, n € Z%\{0} and
lf = fe, L2(2)]l, £ € N, can be made sufficiently small then this approach provides rehable
numerical approximations Conversely, if the asymptotic truncation errors, ||¢(e,€,n7) —
¢n(e,e,nm), H(P)|, n € 2%\{0}, are too large for a given € > 0 then, clearly, one must

consider alternative methods of approximation for ¢, e g, approximations of the form

n
$alz,t) E) G(z) (), z€PCR", t#0 (6 6)
k=1
where g, 1 < k < n are rational functions of ¢ provide the basis for a different approach
Indeed, the task 1s then to compute the approximations, ¢%, such that the error, ||¢(e, €, n7) —
¢%(e,nm), H*(P)||, 15 small for |n|l < £, £ €N
The asymptotic approach can also be appled to problems of linear elastic or viscoelastic
deformation, however, the difficulties described above become more pronounced because of
the need to employ Fourier series expansions for each component of the body force f = [f1, fa]
Furthermore, the materials which exist 1n reality do not have perfectly periodic structures,
in fact, the coefficients a,,x, 1 < 1,3,k,1 < 2 can be considered as perturbations of periodic

functions in the sense that, for almost all z € R? and some 7 > 0,
Iaukl (£+ _71) - a‘l]kl (Q)l < T, n S 223 1 S 7'1.77k7l S 2 (6 7)

In this case, the assumption of periodicity will introduce errors which need to be investigated
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In the second approach our decision to use domain decomposition techniques as a method
for developing practical parallel algorithms for the solution of large scale linear elastic prob-
lems was motivated by the opportunity to use the greater computational power provided by
modern computers with parallel architectures

The computational results show that Algorithm ALG 3 provides a very robust approach
for the solution of large scale elastic Galerkin problems However, the theoretical condition
number bound provided in Theorem 5 7 requires that the boundaries, 992,,1 < 1 < k, of
the subdomains, §2,, 1 <1 < k, should be aligned with the discontinuities of the coefficients
Gk, 1 < 2,7,k,1 <2 In some cases this assumption may be impractical or inconvenient
and one may be compelled to construct decompositions (511 1) with the property a,u ¢
C°(Q,), 1 <1,3,k,1 <2,1<r<k,1e,such that the discontinuities of a1, 1 < 2,3, k,1 < 2
are not aligned with the boundaries, 0€2,, of the subdomains §2,, 1 <1 < k Although, 1n this
case, the condition number (M, 'S}) can again be bounded according to relation (5 3 45)
the constant C > 0 will depend on the parameters a,, 1 <1 <k, cf defimtion 52 Indeed,
if the condition number increases with the magmtude of the coefficient discontinuities then
the rate at which the iterates g%",), converge to ur , as n — oo will, correspondingly, decrease
We feel that this 1s a shortcoming of the approach which 1s difficult to overcome, however, 1t
18 a dufficulty which all domain decomposition methods share

For problems 1n three dimensions, 2 C R?, one can also construct the preconditioning
operator My, h > 0 for approximating spaces S*(Q) C H!(Q) consisting of piecewise hnear
functions defined on tetrahedral triangulations 7,(2), h > 0 We feel that Theorem 5 7 can
be generalized to include problems of this type, however, because domain decomposition
methods which use Steklov-Poincaré operators cause many more subdomains to be coupled
than domain decomposition methods which use Lagrange multipliers to interface subdomains
we expect that this approach will not compare favourably with Lagrange multiplier type
approaches Finally, we feel that this approach would benefit from the use of approximating

spaces other than S*(2), A > 0 which can be employed, for example, to treat singularities
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