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ABSTRACT 

The basic understanding of mixing in the process of polymer melt 
extrusion by twin screw extruder is limited by their geometrical 
complexity and the interactions of the process parameters. 

Mixing and flow in a 100mm diameter, trapezoidal channeled, 
intermeshing co-rotating twin-screw extruder have been characterised 
by determination of residence time distribution (RTD) and of the paths 
taken by tracers added to the melt. 

The axial mixing and the effects of varius parameters on it were 
established by studying RTD using tracer techniques. As the tail of 
the distribution is of paramount importance, the reproducibility of 
the RTD curve was extensively studied. 

Radioactive NnO2 was used as a tracer and detected by gamma ray 
spectroscopy. giving more reproducible results than added barytes 
estimated gravimetrically after ashing. 

Shock cooling of the extruder and sectioning of the solidified 
compound in the screw channels was used to-study the flow mechanism. 

The maximum throughput achieved, polymer melting mechanism, filled 
volume and axial mixing Are interrelated, and are dependent on the 
configuration and position of segmented mixing discs present in the 
screw profile. 

In the upstream position these act as melting discs and their 
efficiency is increased in a closed configuration. Initial melting is 
achieved over a remarkably short distance along the screw profile. 

The screw speed affects the axial mixing which is shown to be related 

- to the net relative pressure change at the--screw tips` 

A flow model is proposed such that the overall material flow taking 
place in an anticlockwise direction along the screw channel comprises 
two separate flow regimes. The upper regime rotates anti-clockwise and 
is made up of main and small tetrahedron flow and calender flow. The 
lower flow regime rotates clockwise and is made up of main and small 
side leakage flows and a portion of the main tetrahedron flows 
together with a central flow. 

The flow studies show conclusively that the melt from a particular 
site ahead of the intermeshing zone occupies a predestined site after 
passing through the intermeshing zone. 
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CNAPEER_. INIRQDUcuUN 
Extrusion is one of the most important mixing and forming techniques 

of polymer processing. With a few exceptions, all thermoplastics can 

be extruded and many may pass a screw extruder not once but twice 

during their journey from the reactor to the finished product - first 

through a pelletizing extruder after the reactor, then through a 

shaping extruder. More thermoplastics are converted into useful 

products by extrusion than by any other method. 

The extrusion process can be accomplished by a screw rotating in a 

cylindrical barrel. The feed to the extruder may be solid or it may 

sometimes be liquid. When fed by a solid, it is called a plasticating 

extruder while if it is fed by liquid, it is termed as a melt 

extruder. In a plasticating extruder, the solid feed is introduced at 

one end of the extruder and as it advances along the extruder length. 

it is melted, homogenised (mixed) and transported to the die at high 

pressure and temperature for forming into a product. 

As discussed above, one of the functions carried out by the extruder 

is homogenising or rather mixing. This function of the extruder is of 

prime importance. The thorough mixing is required to ensure complete 

dispersion (dispersive mixing) of ingredients and also to create a 

homogeneous mass, such that each particle has been subjected to the 

same mechanical and thermal treatment. As the flow path followed by 

each particle and the shear, temperature and residence time for each 

particle can vary widely, it can lead to variations in the viscosity 

of the melt and the final characteristics of each particle. So in an 

extrusion process it is desirable that particles change position with 

each other, in order to receive the same average treatment. This 
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continuous reorientation also distributes additives (distributive 

mixing) - such as colours, stabilizers, fillers, lubricants, as the 

case may be - throughout the material thereby rendering the mixture 

uniform. So in a nutshell it can be said that mixing is of two types 

- dispersive and distributive. 

Dispersive mixing concerns the breaking up of the agglomerates. So the 

component breaks up only upon reaching a certain yield stress. 

Distributive mixing can be achieved only by inducing physical motion 

of the ingredients. The homogeneity or rather randomness of 

distribution of components of the material passing through extruder, 

is achieved by distributive mixing. The distributive mixing can be of 

two types. First being the axial or longitudinal mixing - in this the 

distribution of ingredients occurring in axial direction (in direction 

of flow). The second type being the transverse mixing - in this the 

randomisation or distribution of the ingredients happening in 

transverse to flow direction. 

Twin screw extruders have established their place in two key areas. 

These being profile extrusion of thermally sensitive materials and 

speciality polymer processing operations such as alloying, 

compounding, devolatilization and chemical reactions etc. . In some of 

these applications, distributive mixing or rather longitudinal mixing 

is central to their successful application. The longitudinal mixing is 

being defined as the random movement in the axial direction, thus 

making the mixture more random. For example in chemical reactions and 

in extrusion of thermally sensitive polymers, the time spent by each 

polymer particle within the extruder (Residence time distribution or 

RTD) should be the same so that all the particles receive the same 

treatment. But at the same time the particles have to spend a certain 
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minimum time within the extruder (residence time) so as to get the 

thermal treatment, e. g. to achieve good gelation in PVC extrusion. 

However in other cases, such as in polymer compounding, it is 

desirable that the time spent by polymer particles, in the extruder, 

should be different from each other. This would even out the feed 

irregularities. So detailed information on axial mixing could be 

instrumental in selecting screw design and extruder type for a 

particular application area. The theoretical work on characterising of 

axial mixing (by RTD studies) has been extremely limited ( Janssen et 

al. 1979 ; Werner and Eise 1979). Some researchers have carried out 

some work in characterising RTD by using model fluids ( Todd and Irwin 

1969 ; Todd 1975 ; Janssen and Smith 1975 ; Kim et al. 1978 and Sakai 

1981 ; Kao and Allison 1984). Similarly others have carried out work 

on the polymer melt in extruders t Janssen 1979 ; Werner and Eise 1979 

; Kim et al 1980 ; Rauwendaal 1981 and Walk 1982; Nichols et al 1983; 

Sakai et al 1987). However in all these investigations no one has done 

work on a large size extruder with polymer melt (it is either based on 

model system or if a polymer system is used then the size of extruder 

being small) and no one has studied the complete set of processing 

variables. 

The transfer mixing and flow pattern studies inside single screw 

extruder have been established for a long time. However, as the mixing 

mechanism ( distributive mixing ) in twin screw extruders is quite 

complex and difficult to describe. It is rather difficult to calculate 

it theoretically. A number of workers have carried out work on the 

mixing and flow patterns. Most of them have ignored the effect of 

helix angle and/or intermeshing zone ( Kim et al 1973, Wyman 1975, 

Burkhardt et al 1978, Denson and Hwang 1980 and Eise et al 1981 ). As 

the overall extruder performance seems to be dominated by the effect 
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of the intermeshing region, these studies are of limited use. On the 

other hand, work that attempts to accurately describe the flow in the 

intermeshing region can easily become very complex ( Maheshri 1977 and 

Maheshri and Wyman 1979). 

In twin screw extruders, there are several flow regimes which tend to 

contribute towards axial mixing. So to understand flow and mixing 

behaviour empirically, the flow behaviour and various leakage flows 

become rather important. The knowledge of flow is of considerable 

importance in giving information of the following :, 

(1) In monitoring the flow patterns and extent of intermixing of 

various zones in the tangential direction thus giving information on 

temperature uniformity achieved. 

(2) The shear history of material during its passage through extruder. 

(3) In monitoring the stagnant zone detrimental to colour changes and 

stagnation of temperature sensitive polymers. 

In the past some experimental work has been done by various 

researchers using a model fluid ( Jewmenow and Kim 1973 ; Kim, 

Skatschkow and Stungur 1976 ; Janssen and Smith 1975 ; Janssen 1978). 

However up to now, the studies in twin screw extruders have been based 

on flow visualization techniques using model fluids with either model 

or actual extruders. Naturally studies are of significant importance 

but of limited practical use. Some work has been done by the following 

investigators using actual polymer systems (Kim et al (1975) ; Janssen 

(1978); Howland and Erwin (1983); Bigio and Erwin (1985); Sakai et al 

(1987) and Hornsby (1987)). In the case of Howland and Erwin (1983) 

and Bigio and Erwin (1985), the work is based on low viscosity curable 

silicone rubber and not on polymer melts. In all these cases it is 

either the local mixing in a confined chamber of twin screw which is 
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discussed. or just the interaction between the chambers. 

So there is a need for some experimental work in order study the flow 

mechanism inside the extruder, to recognise the various types of flows 

and study their contribution in mixing and also to demonstrate how the 

various operating variables could affect the mixing performance of the 

extruder. Besides, as the maximum throughput rate is achieved, filled 

volume, power consumption and melting behaviour give indication on the 

melt state of the polymer and available flow path to the melt. By 

studying the effect of variables on the above, this tends to give a 

clear picture of their influence on the melt state and therefore on 

its conveying and mixing action. 

This kind of work would give a better understanding of mixing process 

and thus it can be used to design better extruders. The one which are 

not so much dependent on processing variables and with optimum amount 

of mixing of various flows. Or at least to be familiar with the 

parameters which seems to affect the mixing performance substantially. 

In this work. the mixing studies were carried out on GKN 250X. The 

extruder used is a low speed co-rotating intermeshing twin screw 

extruder. It has a closely fitted flight and channel profile and 

therefore has a higher degree of positive conveying character. However 

because of its small mechanical clearances. the processing screw speed 

is lower. 

The mechanism of flow path taken by various flows and their 

intermixing during their subsequent travel down the channel was 

studied by use of various coloured tracers. This was done by 

introducing tracers in the feed, stopping the extruder, freezing the 
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polymer in solid state, withdrawing the barrel, removing the polymer 

skeleton and sectioning it. Furthermore an attempt was made to relate 

these various flows the transverse distributive mixing behaviour. 

The longitudinal or axial distributive mixing was characterised by 

residence time distribution (RTD) studies. The tracer was introduced 

at the feed hopper and tracer concentration was measured at the output 

to find the time (distribution) spent by particles inside the 

extruder. The effect of various variables (processing , material and 

machine design) on RTD were studied. 

This investigative study was unique and different from the other work 

to date in the following ways. 

1. A low speed, co-rotating intermeshing twin screw extruder with 

closely fitted flight and channel profile was used. 

2. An industrial extruder( 100 mm diameter) was used and thus results 

obtained from this would be more meaningful and realistic for 

industrial application. Thus it contrasts with experiments and results 

published on small scale laboratory size extruder from which it is 

rather difficult to extrapolate the results due to scale up problems. 

A small extruder generally differs from a large machine in some 

fundamental respects, e. g. relative gap size, surface to volume ratio 

and the relative contribution of shear and conductive heating. 

Particularly if a certain combination of critical factors is being 

examined the probability of direct correlation is small. 

3. It has a devolatilization vent-port as a regular feature, which 

makes it unique and interesting from other twin screw extruders 
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studied so far. It behaves as if there are two extruders operating in 

series mode. 

4. The effect of whole range of variables on RTD were studied so as to 

see the relative effect of variables on RTD. 

S. In this study it has been tried to find a link between the effect 

of variables on RTD with overall behaviour of filled volume, melt 

behaviour, power consumption and throughput rate etc. 

G. The flow mechanism including its various flow constituents were 

studied in detail together with its correlation with RTD. 
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CHAPTER 2 lT RATLJRP RFVJEJ' 

The recent arrival of the twin screw extruder in the polymer field has 

significantly changed the outlook. They not only compete with single 

screw extruders but also expand their extrusion potential. For example 

twin screw extruders commercial significance has steadily increased in 

specialised operations such as PVC powder and reground processing 

etc. However there is an enormous variety in twin screw extruders, 

which differ considerably from each other in their principle of 

operation. The diversity among twin screw extruders is so large that 

the comprehensive analysis of all the various types would be an 

enormous undertaking. Theoretical analysis of twin screw extruders 

lags behind that of the single screw machines, because of the great 

variety of design and screw configurations in use. 

As mentioned above, several types of twin screw extruders exist which 

have different conveying characteristics. The diversity among twin 

screw extruders is so large that a comprehensive analysis of all the 

various types would be an enormous undertaking. A classification of 

twin screw extruders is shown in Fig 2.1 . 

The classification is based on the intermeshing/non-intermeshing (i. e. 

whether flights of one screw protrude into the channel of the other 

screw), direction of screws rotating relative to each other, screw 

speed and shape of the barrel/screw and relative lengths of the screw. 

A fuller account is given by Rauwendaal (1981). Some typical screw 

geometries are illustrated in Fig 2.2 . In this work, a GKN 250X twin 

screw extruder is used. This was 100 mm in diameter and was similar to 

the commercial GKN 250 varient except for its extended length and 

reduced diameter. This extruder falls in the category of low speed co- 

rotating intermeshing twin screw extruder. Its schematic design is 
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Low Speed Corotating High Speed Corotating 

Conical CTR rotating Cylindrical CTR rotating 

Fig. 2.2 Typical screw geometries of various types (After Rauwendaal 1981) 

ý, ý- 

1, main motor; 2, oil circulation pump; 3, manually operated withdrawal mechanism for trolley 

mounted barrel; 4, independent oil cooling for front barrel zone; 5, twin screws with interchangeable 

sections; 6, quick release barrel clamp; 7, controlled material feed; 8, multipal element screw thrust 

bearing; 9, large diameter standerd screw thrust bearing; 10, epicyclic primary gearbox. 

Fig 2.3 GKN Windsor TS 250 twin screw extruder (Courtsy GKN Windsor Ltd. ) 



given in Fig 2.3 . The detailed information on this is given in 

chapter 3. 

Twin screw extruders are successfully used in speciality polymer 

processing such as in alloying, devolatization, chemical reaction and 

in profile extrusion. The main requirement and advantage of twin screw 

extruders in these applications is their ability to give good 

distributive mixing. The homogeneity or rather randomness of 

distribution of components of the material passing through extruder is 

achieved by distributive mixing. Three basic mechanisms of mixing are 

involved in distributive mixing 

(1) Molecular Diffusion. 

(2) Eddy Diffusion. 

(3) Convection or Bulk Diffusion. 

Molecular diffusion is a process that occurs spontaneously driven by a 

concentration gradient but in polymer processing it is almost 

insignificant as it occurs extremely slowly. However, it may become 

of significance in mixing of low molecular weight material e. g. 

antioxidants, blowing agents etc. The eddy diffusion or turbulent flow 

being the best to achieve mixing. However the flow becomes turbulent, 

only when a high Reynolds number has been reached. The Reynolds number 

depends on the fluid viscosity N, channel diameter D and average 

velocity of the flow in the channel V. the fluid density g, as shown 

in following equation. 

DVg 
Re = 

N 
However, with the extremely high viscosities associated with polymer 

melts (% 104 Pa. sec) turbulent flow is not possible and thus the flow 

in polymer remains laminar. Thus effective and efficient mixing due to 

turbulence is never realized. Therefore only convection is the 



12 

dominant mixing mechanism in polymer mixing. 

The convection mixing can be achieved by two methods: 

(a) Bulk rearrangement. 

(b) Laminar flow. 

(a) Bulk rearrangement: This is achieved by a simple rearrange- ment 

of the material that involves a plug type flow and requires no 

continuous deformation of material. This kind of mixing, through 

repeated rearrangement of the minor component, can in principle reduce 

non-uniformities to the molecular level. The repeated rearrangement 

can be either random or ordered. The former is the process that takes 

place e. g. in many solid/solid mixers whereas the later forms part of 

the mixing mechanism in certain motionless mixers. 

(b) Laminar flow: The mixing is also achieved by imposing deformation 

on a system through laminar flow. It occurs through various types of 

flow: shear, elongation (stretching) and squeezing (kneading). How- 

ever, shear flow plays the major role in processing. It is clear that 

for the interfacial surface to increase both phases must undergo flow. 

The viscosity ratio plays an important role in laminar mixing. The 

laminar mixing of polymeric fluid is often a limiting parameter for 

achieving good mixing in screw extruders. 

The decisive variable in laminar mixing is the strain, whereas the 

rate of application of stress and strain play no role. The 

interruption in screw or mixing section improves distributive mixing 

significantly. The simplified theory developed by Mohr et al. (1957) 

is unable to explain such an improvement. The theory developed by 

Erwin (1978) can explain such an improved mixing. This is based on 
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reorientation of interfacial planes as the critical mechanism. 

The co-rotating twin screw extruders do have a laminar as well as bulk 

rearrangement through flow within the extruder. Basically the 

distributive mixing occurs in two directions viz. in axial direction 

(in the direction of flow) and in the transverse direction 

transverse to direction of transport). As discussed before, the 

distributive mixing in twin screw extruders occurs as a result of 

contribution of various leakages. The mechanism for distributive 

mixing can be studied by the detailed study of the various leakages 

flows together with the influence of intermeshing zone of twin screw 

extruder. The knowledge of flow in the intermeshing zone is of 

considerable importance because it not only improves transverse mixing 

considerably by providing 90 degrees angle reorientation, an ideal 

requirement for optimum distributive mixing (Erwin 1978), but it also 

divides the melt, reblends it, thus giving good axial as well as 

transverse mixing. 

However the longitudinal distributive mixing alone can be studied by 

the use of the residence time distribution ( RTO ) concept, while the 

progress in the transverse mixing can be studied by the sectioning the 

polymer in transverse direction all along the extruder. 

2.1 FLOW AND MIXING IN EXTRUDERS 

A considerable amount of work regarding flow within single screw 

extruders, has been carried out and by now it is an established 

mechanism. The flow studies on single screw extruder were done by 

Street (1961) using colour sequenced feed stock. Mohr, Clapp and Starr 

(1961) studied flow patterns in the channel of a model single screw 

extruder. Shah (1979) and Gailus(1980) investigated the mixing 
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efficiency by using two streams of pigmented silicone fluid. Boyd 

(1983) used silicone streams of differing viscosity ratios to examine 

the behaviour of multiviscosity mixtures in single screw extruder. The 

above work together with substantial theoretical work on single screw 

extruders has well established their flow mechanism. 

However, twin screw extruder's case is rather different and 

complicated. This is due to cumulative effect of various factors as 

mentioned below. The rather late (i. e. recent) arrival on the scene of 

twin screw extruders in any substantial way. As there exist various 

types of twin screw extruder differing substantially from each other 

in mode of operation (Rauwendaal 1981) it is very difficult to 

generalise them. Furthermore as compared to single screw extruder, the 

conveying and mixing mechanism in twin screw extruder is rather 

complex and difficult to describe. A considerable work has been 

carried out theoretically as well as experimentally which is being 

reviewed below. The work on mixing and flow pattern was carried out by 

various researchers such as Kim et al. (1973), Wyman (1975), Burkhardt 

et a1(1978). Denson and Hwang (1980) and Eise et al (1981). However it 

should be noted that in most of these studies the influence of helix 

angle or/and intermeshing zone etc. are ignored. As the overall 

extruder perfomance (in twin screw extruder) seems to be dominated by 

the effect of the intermeshing region, these studies are of rather 

limited use. On the other hand work by Mahesheri (1977) and Maheshri 

and Wyman (1979) shows that the analysis which takes the effect of 

intermeshing zone in consideration can become quite complex. 

A limited amount of theoretical work is being carried out on mixing 

and flow pattern in twin screw extruders. Wyman (1975) has examined 

the down channel component of velocity for a leak-proof twin screw 



Is 

extruder chamber and concluded that the shear rate is the inverted 

image of a no net flow single screw extruder. Haheshri and Wyman 

(1979) have concluded that the interaction of the intermeshing second 

screw lands with the fluid in the chamber, produces a uniform absolute 

strain for down channel flow in a leak proof chamber and could play an 

important role in down channel mixing. Kim et al (1973) predicted 

strain due to the three components of velocity by averaging the shear 

rate component over the channel depth far from the intermeshing second 

screw land. 

Their analysis only includes the cross channel circulation between the 

screw flights but ignores the fluid circulation and resultant strain 

distribution due to the controlled down channel flow. However as the 

intermeshing second screw land regulates the down channel flow in a 

twin screw extruder chamber to some degree (depending on leakage), a 

down channel circulation pattern will exist. So Maheshri and Wyman 

(1980) examined the combined cross and down channel flow in an 

idealized leakproof twin screw extruder and concluded that in addition 

to normal cross channel flow (similar to single screw) fluid 

circulation between the independent set of channel depths in the down 

channel direction occurs (in channel direction). This is due to the 

seal provided by the second screw land. So combined, these two flows 

give a complex flow path. 

Some experimental work is being carried out by various researchers on 

counter-rotating twin screw extruders to understand the flow and 

mixing within one chamber and also interaction between the chambers. 

The flow profile in a model extruder was established by Jewmenow and 

kim (1973) and Kim Skatschkow and Stungur (1976). Jewmenow and Kim 

established this by injecting aluminum particles in a model fluid of a 
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polyisobutene solution whilst Kim et al carried it out by using 

aluminum powder. Good agreement was found with the above work of 

Jewmenow and Kim. Later on Janssen and Smith (1975) obtained flow 

profiles by using a model extruder with "Perspex" barrel with aqueous 

polyvinyl-pyrolidone solutions. The aluminum particles and coloured 

dyes were injected and streamlines were observed by video recorder. 

Later on these streamlines were traced during frame by frame video 

replay of the tape. 

In a single screw extruder the helical flow fluid is fully developed 

and is essentially the same at all sections along a uniform screw 

filled with melt. In contrast to this, the essentially closed nature 

of the chamber in twin screw leads to a flow field of a fully three 

dimensional character as is clearly established by experiments 

(Jewmenow and Kim 1973: Janssen and Smith 1975). Because of the great 

influence of the flight walls a well defined zero velocity layer 

exists in the chamber dividing fluid moving in opposite directions. 

Since the flow near the intersecting area cannot readily be analysed 

numerically, Janssen (1978) investigated it by flow visualisation with 

colour injection and video recording. To simplify the complex 

situation he used a disc model and from this he formed a "where 

to/where from" balance over a cross section of the chamber related to 

the converging side of the screw ( Fig. 2.4). Janssen (1978) also 

carried some work with real screws by decolouration experiments (i. e. 

first extruding a coloured compound through extruder followed by 

extruding a colourless compound) and found that bottom volume mixes 

very slowly with the bulk of the chamber. Such mixing as does occur is 

produced mainly by rotation of the processing fluid in the X-Y plane. 

So he concluded that only if the calender gap was relatively wide, is 

fluid from this region drawn into this gap where it is sheared and 
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then mixed with that in the rest of the chamber. 

Kim et al (1975) used a twin screw extruder with soft PVC and aluminum 

powder. The dielectric constant of samples taken out of the C shape 

was measured and the mixing calculated using a variational 

coefficient. So they showed that in the middle of the chamber the 

variational coefficient was much higher than near the intermeshing 

zone indicating better mixing at the intermeshing zone. Janssen (1978) 

also carried out work on the interaction between the chambers for four 

conditions based on the large or no significant calender gap coupled 

with either a large or small back pressure, during processing. 

Howland and Erwin (1983) carried out work on a counter-rotating 

tangential, non intermeshing twin screw extruder by pumping pigmented 

curable silicone fluid, curing the fluid and analysing it. In this, 

the extruder was always operated in a completely filled condition. 

From these transverse sections, they studied the presence of various 

flow patterns in sections (Fig 2.5) and also discussed the method to 

quantify distributive mixing in a transverse plane. As regards the 

flow mechanism, they showed a backward flow regime in the region 

created by the flight sweep. This flow then moves in the intermeshing 

zone, just behind the flight. This flow then penetrates and forms 

reoriented region across the depth of the channel. This, they showed 

contributes towards distributive mixing. 

Bigio and Erwin (1985) studied the distributive mixing, in a similar 

study to that described above, in self wiping corotating twin screw 

extruder. They carried out the experiments by pumping optically 

pigmented curable silicone fluid, curing the fluid and analysing it. 

They found that the standard conveying elements provided no 
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reorientation of laminar stratiform. Therefore, while distributive 

mixing could be obtained in local regions by use of kneading block 

arrangements, it was not effectively applied over large sections of 

the extruder screws. 

Sakai et al (1987) studied the flow patterns inside an interchangeable 

model twin screw extruder (both in co and counter-rotating). They 

reported that the intermeshed counter-rotating shows a figure of eight 

shape whilst the flow in co-rotating extruder takes place around the 

two screws just like as if there is only one oval single screw axes. 

Hornsby (1987), while this thesis was in its manuscript form, has 

reported the flow and mixing in a small co-rotating twin screw 

extruder. This work is quite interesting one as the extruder on which 

the work was done, was designed as a result of the current thesis 

work. The extruder used had a 40mm screw diameter and operated at 

considerably higher screw speeds than GKN Windsor 250, the extruder 

used in the present work. He has reported the possible flow paths from 

where the flow can take place. These possible flow paths are 

illustrated with the help of section of the polymer screw skeleton. 

However no proof for such flow paths was given. Further he has shown 

the presence of two flow regimes in the section of the chamber. 

As discussed above, the longitudinal part of the distributive studies 

can be studied by residence time distribution. 

2.2 RESIDE! cE_IIHEJ3ISRBIBUIIEW 

2.2.1 Concept of Residence Time Distribution : The longitudinal 

mixing in an extruder can be conveniently described by studying the 
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flow of material through it with respect to time. The flow of material 

through an apparatus can be described by two ideal situations, plug 

flow and perfect mixing. In a perfect mixer all the elements are 

perfectly mixed (in longitudinal direction) before leaving the vessel 

while in plug flow, no longitudinal mixing takes place. However, the 

extruder never fully satisfies these requirements. Some designs can be 

considered ideal with negligible errors, whereas other cases 

deviations from the ideal can be considerable. These deviations can be 

caused by channelling of fluid through the apparatus, by the recycling 

of the fluid within the apparatus (backflow) or by the existence of 

stagnant regions of pockets of fluid in the apparatus. 

A knowledge of the flow path taken by the fluid elements in an 

apparatus (as described above) helps prediction of the exact behaviour 

of the apparatus. This could be easily deduced if the complete 

velocity distribution over the range were known. However, in the case 

of twin screw extruders, it is rather difficult to get precise 

information regarding velocity distributions. So the other, rather 

simple, approach is applied concerning the time duration for which 

individual particles stay in the apparatus. This is described by the 

term residence time distribution. 

This concept of mixing in terms of residence time distribution is 

valid only in a single component, homogeneous system and is related to 

the degree of backmixing in a system. This is the mixing that occurs 

in the primary flow direction i. e. the randomisation occurs in the 

direction of flow and not transverse to the flow direction ( as 

discussed before). It differs from the mixing concept in a two 

component system involving a major and minor component where scale and 

degree of mixing are studied. In practical application flow through an 



21 

apparatus always results in a certain residence time distribution. 

Fluid elements entering the apparatus simultaneously will generally 

leave it at different times. The distribution in residence time can be 

described quantitatively with two distribution functions which are 

closely related, viz. the E and the F function. (Bird et. al. 1960). 

A. Exit age distribution (E Function): It is the measure of the 

distribution of ages of all elements of the fluid stream leaving an 

apparatus i. e. age distribution of elements at exit or leaving the 

apparatus. The fraction of the material in the exit stream with 

residence time between t and (t + dt) is given by E. dt. Since the 

total area under the E function is by definition equal to unity 

therefore, 

j"E. dt 
0 

In practical terms, the exit age distribution curve can be measured 

from a pulse tracer input signal as stimulus and monitoring its 

response as output signal i. e. concentration (c) as a function of time 

at a downstream point (Fig 2.6). Since the total area under the E 

curve function is by definition equal to unity, the concentration 

readings are normalised for a time invariant system with a constant 

throughput. This can be done by dividing the concentration in the 

output by the total amount of tracer injected. 

c(t) 
E(t) = 

j"c(t). dt 
0 

where c(t) is the tracer concentration at the output at time t. 

However Eft) is dependent on the time. The dimensionless E curve is 

obtained by plotting E(O) against 0. 

Where 0= t/t 
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Where T is mean residence time. It can be calculated from either 

jt. E(t). dt % t~t. E(t). öt 
00 

I t. c. St 

r c. St 

or from 

Vf 

0 
v 

where Vf is the filled volume of the apparatus and 0vis the 

volumetric throughput rate. 

B. Internal age distribution: It is the measure of the distribution 

of ages of the fluid in the apparatus. The symbol I is a measure of 

the distribution of ages of the fluid in the apparatus defined in such 

a way that I. dt is the fraction of the material with ages between t 

and (t+dt). Since the sum of all the fractions of the material in the 

vessel is unity, this sum must also be the total area under the I 

versus t curve. Thus 

J"I. dt 
0 

A plot of I against time t is given in Fig 2.7, as being a typical 

internal age distribution curve. The advantage of the RTD in integral 

form is that RTD's of different machines can be readily compared on a 

one to one basis. 

Experimentally this can be obtained by one of the following methods: 

(i) By step tracer stimulus: With no tracer initially present in 

the entering fluid stream, a step signal of concentration c0 is 

imposed on the fluid stream entering the apparatus. Then the 
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concentration-time curve at the apparatus outlet, measuring tracer 

concentration in terms of inlet tracer concentration and measuring 

time in reduced units, is called the F curve. I is related to F by 

following relation: 

I-F=I 

So from the above curve it is easy to get an internal age distribution 

curve. 

(ii) By pulse tracer stimulus: As described earlier in above 

section 2.2.1. A , the E function can be readily deduced by pulse 

tracer stimulus. From E function. internal age distribution is 

calculated by the following relationship 

F(e) = IaE(o). öt 
a 

Or better still 1-F(A) can be derived from basic principles 

1jec. ae 
C0 

While c(t) = 
Co 

CC 

J Cale Ipc. dt 
Eqn t 

00 

NC 
So, 1-F (6) =1-j 11 x dA Eqn 2 

0tjc. dt 
0 

However as E (0) =E (t) xt 

The equation 2 becomes 

j"E (0). d0 
0 
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2.2.2 RTD functions in some model systems: The two extreme flow 

systems, with respect to the RTD are the plug flow system, which 

exhibits no RTD and the continuous stirred tank, which exhibits 

complete back mixing. 

A. Plug flow: Elements of fluids which enter the apparatus at 

the same moment move through it with constant and equal velocity on 

parallel paths and leave at the same moment. Thus there is no axial 

dispersion and no RTD. 

Therefore, the 1-F curve is described by 

1- F= 1 for t(T 

1- F= 0 for t>t 

and for the E curve 

E=0 for t*T 

B. Perfect mixer flow: A perfect mixer is a vessel in which 

stirring is so effective that the composition of its contents is 

identical at all places. The effluent from this vessel has the same 

composition as its contents. 

1-F curve is described by 

1-F- e-A 

and for the E curve 

E_ e-8 

It cuts the ordinate 8=I at 1/e and its initial slope is unity. As 

shown above, both external and internal RTD functions are identical. 

C. Laminar flow in a circular tube: In this case residence time 

distribution is caused by the differences in velocity and by 

diffusion. By neglecting the effect of diffusion a relationship can be 

derived. 
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For any streamline with velocity v and residence time t 

Vt- r2 t 
-2xI 1- =0 

<v> R2 t 

Because the maximum velocity at the centre is twice the mean velocity, 

both E and F functions are zero for 

(V> 
<2 and 0.5 respectively 

All the above RTD functions, together with some extreme results from 

the present work, are shown in Fig. 4.17. 

2.2.3 Advantages of knowledge of RTD: The knowledge of RTD is quite 

useful as it gives the information on the following: 

(a) Cleaning efficiency of the machine: The channelling of fluid or 

the existence of stagnant pockets are to be guarded against since they 

always result in decrease in performance. Recycle flow is usually 

undesirable too, the exception to the rule being certain complex 

reactions and most autocatalytic and autothermal reactions. 

(b) Thermal and deformational history of material through machine: 

RTD quantifies the above histories experienced by the polymer system 

during processing and thus it is useful for material requiring closely 

controlled melt history. 

(c) Type of flow in machine: This could play an important part in the 

design of the machine e. g. most transfer and reaction processes are 

executed more efficiently under plug flow than under perfectly mixed 

conditions. A narrow RTD may be essential to limit further widening of 

molecular weight distribution (MWD) in polycondensation or broad RTD 
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is required when mixer task is primarily blending of the different 

constituents and damping of the, feed irregularities. 

(d) It gives an experimental verification of theoretical model for 

flow for the extrusion process. 

(e) Basis for scale-up: It could be used as a guide to the 

development of specific equipment and to provide the basis for scale- 

up where effects of reaction, diffusion and heat transfer are coupled 

together. 

2.2.4 Limitation of RTD data: Residence time is governed by the 

flow pattern or the path along which the particles move. It does not 

give any indicative difference in microscopic or macroscopic scale 

mixing i. e. RTD by itself can not predict whether elements of fluids 

with same residence time can be considered well mixed. 

The particles following the different flow paths can appear at the 

same time at exit thus giving similar residence time functions. So RTO 

analysis should be regarded as only supporting evidence on the 

validity of the proposed reactor flow model. 

2.2.5 Method of monitoring RTD: It could be monitored 

experimentally using stimulus-response technique in which stimulus is 

applied to system and its response to stimulus is monitored. The 

stimulus can well be a tracer input signal to the apparatus. It could 

be a random, cyclic, step or a pulse signal. But for the ease of 

analysis and because of the close similarity in shape between the 

output signal and age distribution function, only the pulse signal is 

commonly used. It involves introduction of tracer as a pulse or delta 

function and its response is monitored, as shown in Fig 2.6 
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The tracer system must have the following characteristics. 

(a) A rheological response nearly identical to that of the process 

stream. 

(b) Be stable in the process environment. 

(c) Should have a large and reproducible response with concentration. 

(d) It should have a linear relationship in response and 

concentration. 

(e) It should be effective at low concentration which would also 

satisfy the requirement of a short and instantaneous pulse. 

(fl It should respond slowly with temperature and pressure. 

(g) The detection system must be sensitive, precise, stable and be 

easily calibrated. 

(h) It should be preferably "visible" throughout the extrudate. 

TRACER SYSTEMS 

Tracer systems have been used extensively in chemical engineering over 

the years and cover a wide range of techniques. However an extensive 

survey has been made and only those tracer systems, which could be 

applicable in extrusion process are discussed here. The advantages and 

limitations are also summerised in tabulated form. 
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Amongst all of the techniques discussed above, two tracer techniques 

were used in this work. These being ashing and radioactive tracer 

techniques. The radioactive tracer technique was selected because of 

its accuracy. sensitivity and its flexibilty in sample size etc.. 

Furthermore, because of sensitivity, only a small amount of tracer is 

required. The small tracer concentration in the polymer does not alter 

the flow behaviour significantly and thus helps to deduction of the 

"real" flow behaviour. 

Review of radioactive tracer technique 

A brief account of basic activation theory and its application to 

present work is described below: 

Basic Theory: The basic principle underlying the neutron activation 

method is that when stable isotopes are irradiated with neutrons, they 

may give rise to radioactive products as a result of nuclear 

reactions. The unique characteristics such as the half life and 

spectrum of the radioactive isotope produced, permit identification 

of the isotope. The amount of induced activity is proportional to the 

mass of isotope present in the original material. 

The disintegration rate IAinduced at the end of irradiation time "t 

and measured at subsequent time `tt after the end of irradiation is 

given by the equation. (Kruger 1971). 
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-e- 
0.693 x ti/ t 0.5 x e-0.693 x tt/t 0.51 

I=NopWxE1 
3.7 x 10 

Where 

IA = activity induced at the end of irradiation time, ti 

(disintegration. sec 
1) 

N= Avogadro's number 6.023 x 1023 mol 
ý. 

a= cross section of isotope to nuclear reaction (cm 2 

(P = Neutron flux (neutrons cm. '2 s- 
I) 

A= Natural abundance of active isotope (fraction) 

W= Weight of irradiated sample (g) 

M= Atomic weight of the element. 

t. = Time of irradiation (sec. ) 
1 

to. 
5 = Half life of produced isotope (Mn56) (sec. ) 

tt= time elapsed from end of irradiation (sec. ) 

There are great difficulties in measuring the exact weight of the 

irradiated sample as a is often not known with great accuracy, p is 

difficult to measure exactly and it is not always easy to determine the 

absolute disintegration rate. It is for these reason that a 

comparative analysis is usually carried out. The details of the 

technique are discussed in section 3.2.2. 

2.2.6 RTO studies in extruders: The measurement of polymer flow 

through processing apparatus, in terms of its RTD can provide useful 

information concerning mixing and conveying characteristics, of the 

machinery. In addition it can give information regarding the shear and 

thermal history of the material. This approach has been adopted for 

many years, for example, in general chemical engineering studies for 

determining mixing efficiencies in steady flow reactors or blenders. 

But only in relatively recent times has RTD technique been applied to 
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polymer processing equipment. RTD functions may be derived and 

analysed from theoretical principles where appropriate flow models are 

available, as in the case for single screw extruders (Pinto and Tadmor 

1970; Bigg and Middleman 1974). But often direct experimental methods 

have been employed, especially in twin screw extruders. This is 

because the conveying mechanism in twin screw extruders is quite 

complex and difficult to describe by theoretical analysis. The known 

theoretical analysis of twin screw extruders considers only highly 

idealized cases of simple geometry, polymer flow properties and 

operating conditions. The practical applicability of most of this work 

is quite limited. Besides, twin screw extruders have additional 

geometrical design parameters. 

However RTD studies in extruders can be conveniently divided between 

single and twin screw extruders. 

A. RTD studies in single screw extruders 

(i) Review of theoretical work: Pinto and Tadmor (1970) derived 

RTD theoretically, assuming an isothermal Newtonian flow model between 

parallel plates with no leakage flow. However their model does not 

predict the influence of process parameters on RTD. But they showed 

that the channel curvature does influence RTD. This model was extended 

to a non-Newtonian power law model fluid by Hirschberger (1972) and 

also by Bigg and Middleman (1974). Sek (1979) proved on the basis of 

the papers by Roemer and Durbin (1967), Kim and Skathkov (1979) and 

Tadmor and Klein (1970), that the RTD in an extruder may depend on the 

leakage flow and radial temperature distribution. 

(ii) Experimental (in real systems): Experimental measurements of 

RTD in both melt and plasticating extruders were carried out by Wolf 
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and White (1975) who developed a sensitive radioactive tracer 

technique for RTD measurements and reported a good agreement between 

experimental and theoretical results. 

Schott and Saleh (1976) investigated effect of variables on RTD in 

38mm single screw extruder. The variables studied included screw 

speed, die length, pressure, melt index of polymer, addition of 

blowing agent and the effect of motionless mixer elements. A 

radioactive tracer technique was also used. The detailed conditions 

used are not included in the paper therefore it is of limited 

practical use. 

Kembloski and Sek (1981) investigated RTD in industrial single screw 

extruders (both in melt and plasticating extruders). The RTD curves 

were quantitatively characterised using three calculated parameters 

including dimensionless variance (measure of spread of distribution). 

The investigation was limited to finding the dependence of 

dimensionless variance of RTO on dimensionless volumetric output and 

Reynold's number for which a correlation was found. They concluded 

that RTD of the material in an extruder depends mainly on the flow 

mechanism in the melt conveying zone. It was found that resistance to 

flow through die head of the extruder is important from the RTD point 

of view, as well as other parameters like screw speed and screw 

channel depth. Sebastian and Biesenberger(1984)investigated RTD and 

transverse mixing simultaneously on the same sample, using a colour 

intensity measurements technique. 

B. RTD studies in twin screw extruders 

ii) Theoretical work review : As described before, theoretical work 
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on twin screw extruder has been extremely limited. Janssen et. al. 

(1979) made a computational model based on a series of ideally mixed 

chambers. They assumed that leakage flows in a pump zone have most 

influence on the residence time. In first three zones, plug flow is 

assumed. The model further assumes that each chamber is perfectly 

mixed with the incoming leakage flow in each revolution. This model 

shows a good agreement with the experimental values of residence time. 

The mean residence times are within reasonable limits independent of 

operating changes. However the theory and experimental show 

differences in RTD when plotted on log-linear scale in the tail 

region. This shows that the material in the C shape chamber is not 

ideally mixed. 

Werner and Eise (1979) studied conveying characteristics in kneading 

elements and developed a model based on a number of ideal mixers which 

is related to RTD spectrum by an axial mixing coefficient. 

(ii) Experimental work review: The work done on experimental 

RTD determination can be conveniently divided into two sections. 

a. Model systems. b. Real systems. 

a. Model systems: The work included in this category is the one in 

which model fluid and/or model devices were used. Todd and Irving 

(1969) measured RTD in a co-rotating extruder with glucose solution. 

RTD was determined by an electrical conductivity method. KNO3and NaNO3 

were used as tracers. They compared the twin screw geometry 

incorporating a mixing device called the Poly-con. Poly-con can be 

best described as a series of length of co-rotating paddles of ellip- 

tical section, effectively operating as a twin screw extruder with a 

low positive displacement forward transport. They characterised the 
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mixing process from a Peclet number (Peclet number is ratio of the 

back and forth movement compared to the average transport). It can be 

calculated by multiplying average linear velocity and mixer length and 

dividing the product by eddy diffusivity - Todd & Irving 1969). 

They found that the axial mixing was greater for the continuous twin 

screw arrangement (Pe < 6). It was concluded that Peclet number was 

independent of feed rate at a constant screw speed. Increasing screw 

speed from 100 to 200 rpm decreases the Peclet number from 6 to 3. 

The study overall indicated only minor effect of throughput and screw 

speed and an overwhelming effect of screw configuration on axial 

mixing. 

Todd (1975) measured RTD in a 101 mm diameter co-rotating extruder 

with polybutene using methylene blue as a tracer. The technique used 

to determine RTD have particular attention to the determination of the 

tail of the distribution curve. The effect of various screw 

configurations, feed rate, screw speed and viscosity were studied on 

RTD. It was concluded from this study that the effect of viscosity 

will be particularly important if the axial distance over which 

material can be pushed is great provided the time for this spreading 

is sufficient. Very little axial mixing can be achieved with very low 

helix angle and with straight paddles. But with helix angles 

intermediate between the above two, the degree of axial mixing is 

greater than for either extreme. With straight paddles residence time 

is not inversely proportional to screw speed, as it is with helical 

screws. In this paper cumulative RTD curve is plotted on log- 

probability paper. Janssen (1978) comments on these results that if 

these data are presented in log-linear co-ordinates, they would show a 

kink, thus showing two different flow regimes. 
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Janssen and Smith (1975) reported experiments in a counter-rotating 

extruder with a PMMA barrel. A step change from clear PVP (polyvinyl 

pyrolidine solution) to PVP coloured with methylene blue was imposed 

and RTD obtained optically. The effect of calender gap (gap in 

between the flight tip of one screw and screw land of other screw) and 

die pressure on RTD studied. It was found that the usual response of 

output concentration to a step change in input concentration when 

plotted with log-linear co-ordinates shows a kink. This reflects at 

least partial segregation of fluid passing through the extruder and by 

implication a limited amount of mixing within the chambers. Only when 

a wide calender gap, is the kink not significant, suggesting that this 

geometry is most suitable for good homogenisation. 

Kim, Skatschkow and Stungur (1978) have reported experiments in a co- 

rotating extruder with a viscous medium. Sakai (1981) reported ex- 

periments in transparent non intermeshing and intermeshing counter 

rotating twin screw extruders. The silicone oil was used as a polymer 

melt model and RTD was studied using an emission diode - glass fibre 

conductor - photo transistor. The RTD studies were carried out to 

analyse the effect of various mixing elements designs including 

pinned, pin full flight screws, continuous rotors, discontinuous 

rotors etc. A clear dependence of flow behaviour on the mixing element 

geometry was found. 

Kao and Allison (1984) studied RTD in a fully intermeshing co-rotating 

twin screw extruder (Werner Pfleiderer ZSK 30 type). They studied 

various variables including throughput. screw speed, barrel tempera- 

ture. The two screw designs were also studied: one containing four 

kneading block mixing sections. and the other consisting only of 
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regular screw bushings. They concluded that although screw 

configuration was an important variable, for both the configuration 

the throughput had the largest effect on RTD followed by screw speed 

whilst barrel temperature change had no effect. 

b. Real systems : This category includes the work carried on the 

polymer melt and extruder devices. Janssen et al. (1979) carried out 

work on a Pasquetti extruder of 47.7 mm screw diameter and 360 mm 

effective screw length. This extruder fits in the cylindrical, counter 

rotating, intermeshing twin screw category. The polymer used was 

polypropylene and RTD was determined by means of a radioactive tracer 

technique using manganese dioxide (Mn02) as tracer. The 

reproducibility of the tracer technique was investigated in detail and 

special attention was given to the tail of the distribution curve. 

The effect of die pressure, screw speed and temperature on RTD 

characteristics were studied. The tail of the RTD becomes shorter at 

high die pressure while no significant correlation was found for 

effect of variation in screw speed. They concluded that extruder type 

studied has remarkably stable RTD characteristics. The results were 

compared with that of a single screw extruder, an empty pipe and with 

a theoretical model in which chambers in the extruder are assumed to 

be well mixed. It was found that a plasticating twin screw extruder 

does not differ very much from the distribution calculated for a 

single screw extruder. 

Werner and Eise (1979) studied conveying characteristics of a 28 mm 

diameter Werner & Pfleiderer extruder. This extruder fits in the high 

speed, co-rotating, self-wiping, intermeshing twin screw category. The 

polymer used was low density polyethylene and RTD was determined by a 

relative permittivity method using iron powder as tracer. The effect 
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of screw speed, throughput rate and different screw designs having 

different pitches and different'width of kneading discs were studied. 

From these, the degree of fill was calculated and correlation was 

determined with material transport in the screw and kneading elements. 

The conveying characteristics of screw and kneading elements were 

compared by calculating a conveying factor (p). They showed that 

kneading disc combinations have lower conveying factor values than 

screw elements. ' The conveying factor and, therefore the actual 

conveying velocity at constant screw speed, increases with an 

increasing degree of fill. 

Kim et al. (1980) studied RTD in a co-rotating extruder with polymer 

media. Rauwendaal (1981) carried out the evaluation of co- and counter 

rotating extruders. He studied 28 mm diameter Werner L Pfleiderer 

extruder, which fits in the high speed, co-rotating, intermeshing twin 

screw category and 34 mm diameter Leistritz LSM 30.34 of the 

cylindrical counter-rotating intermeshing twin screw type. The 

polymer used was high density polyethylene (HDPE) of melt index of 

0.2. The RTD was determined by using antimony trioxide as tracer and 

the concentration of the tracer was measured by X-Ray fluorescence. 

The effect of throughput and screw speed on RTD characteristics was 

studied. It was found that both forms of machines show better 

positive displacement characteristics at high throughput rate and low 

screw speeds, however, overall the counter-rotating facility showed 

butter positive displacement. A dramatic increase in residence time 

and widening of RTD occurs when the throughput is reduced to low 

values, which results in a correspondingly large increase in specific 

power consumption. The minimum residence time, throughput and speci- 

fic power consumption are shown to be closely related. In these 

studies a proportionality is found between throughput and mean 
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residence time suggesting that the fully filled length of the extruder 

varies only slightly with changes in screw speed or in throughput. 

Walk (1982) carried out experimental work on a non intermeshing 

counter-rotating twin screw extruder (5.08 mm - of Welding Engineers) 

using PMMA (of melt flow index of 1.2) as feed material. The tracer 

used was cadmium selenide, with concentration monitored by an X-Ray 

fluorescence technique. The effects of screw speed, feed rate, barrel 

temperature and finally screw configuration on RTD characteristics 

were studied. The variance of RTD curve and filled volume was 

calculated. The experimentally determined cumulative distribution 

curve was compared to various flow models. The studies concluded that 

a mathematical model combining the equations for plug flow and perfect 

mixing is a good description of RTD of the extruder studied. The model 

provides a value, the fraction of plug flow, which can be used to 

evaluate different screw configurations. The value is independent of 

operating conditions such as screw speed, feed rate or barrel 

temperature. 

Nichols et al (1983) carried out RTD studies on non intermeshing twin 

screw extruder. They showed that the mean residence time varied 

approximately linearly with the inverse flow rate, with deeper 

channels yielding longer residence times. It was also shown that the 

mean residence time increased markedly as the screw speed was 

decreased, with the greatest increase occurring approximately 100 rpm. 

Sakai et al (1987) carried out work on model and real twin screw 

extruders. They analysed the melting behaviour in real extruders and 

concluded that in non intermeshing twin screws. melting behaviour is 

very similar to that of single screw extruder. But in case of 
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intermeshing twin screw extruders, a distinct solid bed and melt pool 

regions in the channel do not exist, but are intermingled. Further in 

the model extruder it was shown that the stagnant layer on screw 

surface, generally present in single screw extruder, is absent in twin 

screw extruders and co-rotating extruders show a broader RTD as 

compared to counter-rotating twin screw extruders. 

2.2.7 Interpretation of RTO curves: Once RTD has been obtained, it 

can then be quantitatively described with two distribution functions 

which are closely related, the E and the F function. However. 

different researchers, over the years, have tried to get more 

information from it, basically from the point of applicability in 

polymer extrusion. Some of them are described below with their 

relative merits. 

(1) Hold back area: It is a measure of degree of positive conveying. 

It is the difference in area from t/t =0 to t/t =I between pure plug 

flow and the actual age distribution curve. 

i 
Ah =1-j F(t/-)-d(t/t) (t= average residence time 

0 

However it gives indication of majority of polymer flow and does not 

describe the tail of distribution curve (Rauwendaal 1981). 

(2) Self cleaning number: This number describes the self-cleaning 

ability of the extruder. It can be calculated from RTD curve as 

follows. 

S 

--b W/t 
t 

where s= self cleaning time 
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t= average residence time 

b= width of spectrum 

w= distance from turning point describing the 

longitudinal mixing. 

The distance between points of inflection indicates axial mixing 

whilst the width is influenced by the extent of stagnation (Herrmann 

and Eise 1981). The self cleaning number for the various residence 

time spectrums are generally between 2.5 and 5 for polymer melts. This 

varies depending on product and operating conditions. 

(3) Blending efficiency (0): It is a measure of dispersion in the 

primary flow direction and is similar to the Peclet number. It can be 
calculated as follows 

AAI 
ß=1- 

AA2 

where AAS = area between a perfect mixer and mixer in question 

AA2 = area between a perfect mixer and a plug flow device. 

(4) Dimensionless variance: It is a measure of the spread of the 

distribution about the mean. It can be calculated as 

2 
tt2 c rtc 2 

o-- 
EC cc 

As 8=t/t 

02 
and therefore, 02 

0 t2 

For the idealized cases of plug flow and perfect mixing flow, the 

dimensionless variance takes the value 0 and I respectively. For a 

real systems oe varies in range 0( oe < 1. The value of dimension- 
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less variance enables the evaluation of the deviation of the flow 

investigated from the limiting cases of plug flow and perfect mixing 

flow and an approximate comparison of different distributions. For 

this reason it is used in the present work. 

S. Peclet number : This is a number relating the axial mixing in a 

system. A large Peclet number implies a low axial diffusion. The width 

or spread of the curve, relating tracer concentration and time, can be 

used as a measure of axial mixing. 

Todd (1975) has suggested a method to calculate the Peclet number of a 

system. He solved an equation, interpreting the mixer as a semi- 

infinite column with dimensionless time. He solved one of the derived 

equations for various Pe numbers, and integrated with respect to T to 

provide cumulative distribution curves for these. By plotting the 

logarithm of the ratios of the emergence times for 841 and 16X of the 

tracer leaving the system against Peclet number, a plot was obtained. 

From this plot, the determination of the Peclet number becomes a 

problem of curve matching. A value of Pe greater than 10 represents a 

case of predominantly plug flow. Further details of this procedure can 

be found elsewhere (Todd 1975). 

2.2.8 Residence time distribution models : As discussed before, 

there are two ideal flow behaviour, viz. Plug flow and perfect mixing. 

However the conditions in an extruder are neither that of perfect 

mixing nor of plug flow. So several investigators have suggested 

various models. Some of those models are described as under. 

1. Plug flow number : The flow in extruder does not follows the 

idealized flow. So the flow can be described by the combination of 
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these idealized flows, e. g. by seeking the fraction of the flow which 

follows the ideal flow - say plug flow (Wolf and White 1976). 

It can described as 

r1-P 

F(8) = 1-e-L 
1- P10l; 0)P 

F(O) =o ;o<e<P 

2. Tank in series The tanks in series model considers that the 

screw flights divide the screw into V number of separate chambers 

equal to the number of turns in the screw (Levenspiel 1972). 

N( NO ) N-1 
-NO 

E (0) =e 
(N-1)1 

If N (number of tanks) equals to 1. the model for perfect mixing is 

obtained and when N equals infinity the plug flow is simulated. The 

cumulative distribution F(8) is obtained by graphically integrating 

E(8). 
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CUMER-3 EreERI eºIAL 
This chapter covers in depth the details of the polymers, extrusion 

line and its operation. It also deals with the operating details of 

the tracer techniques used and finally with the description of 

variables studied. Finally it also covers the experimental details for 

determination of cross channel flow and transverse mixing. 

3.1 CUARACIEBISIICS-DE-MMER1ALS : 
The polymer used for the bulk of this work was a commercial injection 

moulding grade of polypropylene homopolymer in granular form - 

Propathene* GW22M and its equivalent in powder form - Propathene 

GW522M. The injection moulding grade was chosen due to interest in the 

extruder's compounding application. However, some work was carried out 

using extrusion grade of polystyrene in granular form - Lustrex** HF66 

EX The physical properties of these polymers are tabulated in 

Table 4.6 

The melt flow characteristics of these polymers were obtained using 

Davenport extrusion rheometer at 2000C (1920C for polystyrene) over a 

shear rate range of 100 to 3500 S-1. The polymer granules loaded into 

the barrel were preheated for 15 minutes under compression. A die of 

1.04 mm diameter and L: D ratio of 38.3 was used. The pressure was 

measured using a Dynisco (5000 psi. approximately 35 MN/m2) pressure 

transducer. The flow curves so obtained are given in Fig 4.1 . 

3.2 IdEEX RUSI0YLLI! IE 

3.2.1 Extrusion line's description : This work was done on 

GKN Windsor TS 250X co-rotating twin screw extruder. This extruder 

* Trade mark of I. C. I. *� Trade mark of B. P. Chemicals 

Am 



47 

differs from the GKN Windsor TS 250 in being slightly smaller in screw 

diameter (100 mm instead of 105 mm) and is also slightly longer ( l: d 

ratio of 17: 1) . It was designed to allow for modifications and access 

to the screws. The screws are of a building block type. The first 

block is integrated with the shaft onto which various screw elements 

are mounted. The screw elements consist of further four blocks and 

five mixing discs segments. The screw elements are secured against 

turning by means of fitted keys and held on the shaft by means of a 

threaded screw tip. The twin screws are of the closely intermeshing 

type. An important feature of these screws are the segmented "mixing" 

discs (covered by British Patent OP 1264415 of 1972). The name "mixing 

discs" is a misnomer as these discs act both as melting and mixing 

discs. Sometimes they are named by their prime function. So when they 

are placed upstream it is referred as melting disc and when placed 

downstream, they are referred to as mixing discs. However for ease of 

convenience, these are hereafter referred to mostly as the mixing 

discs. 

The screw consists of two sets of intermeshing mixing discs each 

rotatable with one of the screws and each having five axially spaced 

mixing discs. The perspective and details of mixing disc segment are 

given in Fig 3.1 
. Each of these mixing discs has twelve 

circumferentially spaced gaps forming flow paths for the polymer melt. 

The mixing discs are adjustable relative to each other to vary the 

position of the gaps in the flanges of one mixing disc relative to the 

position of gaps in flanges of the other mixing disc. The details of 

various screw segments and settings and positions of mixing discs are 

shown in Fig 3.2 and 3.3 together with the details in Table 3.1 . The 

overall picture of the extruder is given in Fig 2.3. 

Am 



TABLE 3.1. SPECIFICATIONS OF GKN WINDSOR 250X. 

Direction of rotation Co 
Screw Diameter 100 mm 
Centre Distance between 
two screws . 85 mm 
Flight Depth 15 mm 
Length to Diameter Ratio : 17.1 
Screw Speed up to 30 rpm 

(variable)-small 
pulley 
up to 60 rpm 
(variable)-large 
pulley. 

DETAILS OF SCREW SECTION 

Length Pitch Flight Land Land * Helix 
(cm) (cm) (cm) (cm) Angle 

Feed Section 33.50 
Compression Section 17.78 3.175 0.635 1.27 2107' 
Devolatilization Section 34.93 3.81 0.965 2.54 15 
Compression Section 36.83 3.175 0.635 1.27 2107' 
Metering Section 33.50 3.175 0.637 1.27 2107' 

DETAILS OF MIXING DISCS 

Overall 5 pairs of mixing discs 12 slots - 
6.35 mm wide Equispaced slots with 3.175 mm 
radius. 
Thickness of mixing disc = 13.3 mm. 

Length of Mixing Discs. 
For 3 short base M. D 28.57 mm 
For 1 medium base M. D 44.45 mm 
For one large base M. D 57.45 mm 

Thus overall M. D length (set of 5) = 130.47 mm. 

* This is the length of screw section which is without thread. 
It is the total of length of both sides. 
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M. D. in'Upstream Position' 
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M. D. in'Downstream Position' 
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Fig. 3.3 Mixing disc positions in GKN Windsor 250X 
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The twin screw extruder line consisted of the following units. Twin 

screw extruder, a strip die, strip cooling bath, sizing plates, 

Floataire 165 mm capacity caterpillar haul off unit, and a Floataire 

100 mm capacity travelling saw unit. The material was fed into the 

extruder by a volumetric feeder regulated independently from screw 

speed. Thus the amount of material fed did not change with screw 

speed. Flood feeding would result in overloading of the extruder 

drive, due to torque limitations. Three 0.5 tonne polymer storage bins 

and an automatic pneumatic conveying system were installed to cope 

with the supply of feed stock. The extruder had three holes located 

axially along the barrel and five holes in the adapter plate situated 

at the screw tip. The locations are shown in Fig 3.2 . Five Dynisco 

pressure transducers were installed in these holes to give pressure 

readings at various locations. The strain gauge attached to fly wheel 

at 220 angle gave a measure of screw torque and together with ammeter 

readings gave an indication of current input to mechanical drive of 

extruder. The temperature of the melt extrudate was measured using a 

thermo-probe (Digitrons model 2751-K). 

3.2.2 Modifications to the extrusion line: The progress of the 

work was considerably slowed down due to the initial installation 

problems, associated delays and the extensive machine modifications 

and repairs done during the programme. The modifications included 

(a) The screw cleaning and stripping proved to be a very time con- 

suming. operation. The screw tips were modified to enable prestressing 

when fitting screw segments, which assisted in preventing the ingress 

of molten polymer between the segments. 

(b) A special support assembly was designed and constructed for 

barrel removal while extruder is filled with polymer - for shock 

cooling and barrel withdrawal experiments. 
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(c) A new larger pulley was manufactured to permit running at higher 

screw speeds. This necessitated raising the main motor platform by 50 

mm to accommodate the existing Poly V belt drive. 

(d) The clamp system of the 'Floataire" 100 mm capacity travelling 

saw unit was adjusted and modified to cut 7.5 cm wide strips into 

short lengths which could then either be stored for analysis or 

granulated for recycling using a Cumberland granulator. 

(e) Problems were encountered with overshooting of the barrel temper- 

ature during the start up. However, it was reduced by heating the 

extruder to initial preset low temperature followed by setting to the 

required temperature. 

3.2.3 Operation: In all, about two tonnes of polymer was extruded 

on this machine during the course of this project. Due to the size of 

the machine, a long running time of the extruder was necessary to 

achieve steady state, e. g. it took approximately 2.5 hours at 9 rpm. 

The criterion used to establish the steady state was the stability in 

the temperature profile along the whole extruder. To save material, 

reground material feed was used initially e. g. say first two hours at 

9 rpm. The extruder was kept scrupulously clean as the analytical 

technique used was very sensitive to contaminants. The hopper feed 

control was calibrated for the polymer feedstock used. 

3.3 DETERMINATION OF RTD (TRACER TECHNIQUE DEVELOPMENT) 
Two tracer techniques were used to determine the Residence Time 

Distribution characteristics of the extruder. Both the techniques 

were started at the same time, but the ashing technique being simpler, 

required shorter development time. The ashing technique gave initial 

trends in effect of various variables. i. e. qualitative effect of 

variables on RTD. However, as discussed later, the radio-active 
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technique was more accurate and sensitive, therefore it was 

extensively used to characterise the various conditions. 

3.3.1 Ashing technique: This involved burning of the extrudate 

containing an inert inorganic filler collected at known time intervals 

and weighing the ash. This technique was chosen mainly for being 

cheap, easy to carry out, rather simple in principle, not requiring 

any special apparatus and expertise. The factors which dictated the 

choice of filler were the stability of the filler at higher 

temperature (used in the procedure to get rid of carbonaceous 

products), density of the filler and its effect on rheological 

properties of the, polymer melt system. The density is important 

parameter as the higher density would give more weight for the same 

volume used, thus giving more accuracy to the detection. 

A. Selection of tracer 

In the present study silica and Barytes were chosen from a range of 

available fillers 

(1) Silica: Silica (Gasil 35 -a product from Crosfield Ltd. ) was 

initially chosen as tracer because of associated interest in project 

of silica dispersion in polypropylene by a co-worker. At the time it 

was thought that both investigations could result in establishing a 

relationship between degree of dispersion and RTD. 

(a) Preparation of tracer compound: This was prepared by using an 

oil heated Joseph Robinson two roll mill (0.3 x 0.15 m) with even 

speed rolls. The front and rear roll temperatures were 1TO°C and 

1150C respectively. First polypropylene granules were fed to the mill 

and on formation of a continuous band, silica (40 Z by weight) in the 
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powder form was added to the melt. Cross blending was done to ensure 

concentration uniformity throughout the mix. The material was taken 

off the roll mill in approximately 1 mm thick sheet form. It was then 

granulated in a Cumberland granulator. The tracer compound so 

obtained was in the form of irregular shaped particles with dimensions 

determined by retention on a4 mm screen. Very fine particles of this 

tracer compound were discarded. 

(b) Heat stability of silica: A crucible was heated in a 'Carbolite 

furnace at 6000C for 24 hours and then cooled to room temperature in a 

vacuum desiccator for 16 hours. The crucible was then weighed 

accurately and a known amount of silica was placed in the crucible. 

The crucible was then again heated for 8 hours at 600a C in the fur- 

nace. The crucible was cooled in a vacuum desiccator for another 16 

hours and then weighed accurately to five decimal places. The silica 

tracer showed an overall loss of 7.3 X in weight. This could be due to 

some volatile present. However, on exposure to air for one hour it 

regained 0.34 1 of weight. 

However. due to considerable loss in weight at elevated temperature. 

and its comparatively low density (2100 kg/m-3) form , it was 

considered necessary to use an alternative inert filler as the tracer. 

(2) Barytes: Barytes (Fordabar ground barytes 200 mesh - a product 

from Wilfred Smith Ltd, High Street, Edgeware) was also chosen as a 

tracer. This was done because of its inherent higher density (4200 

kg/m3), its inert nature and heat stability at 6000C. The barytes 

grade used contains approximately 92.71 barium sulphate, 2.05Z silica 

and 0.49Z iron (Fe2 03) . 
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(a) Preparation of tracer compound: It was prepared in the same 

manner as in the case of the silica tracer except front and rear roll 

temperatures were set at 1900C and 1700C respectively. 

(b) Heat stability of barytes: The same procedure as described above 

for silica was used for ashing and the loss in weight after 8 hours of 

heating at 6000C was found to be 1.1 X. However, this weight loss 

remained the same even at an extended heating time of 24 hours. 

(c) Flow curve of the tracer compound: The apparent viscosity - 

shear rate behaviour of barytes in polypropylene at 40 Z by weight 

concentration was obtained using Davenport extrusion rheometer. 

Measurements were made at 2000C using the same procedure, as described 

in Section 3.1 and the flow curve is given in Fig 4.1 . 

(d) Filler distribution in the tracer compound: The ashing of 

barytes compound (which is to be used as tracer) was carried out using 

the procedure described later (by the slow degradation method). The 

residue was weighed and found to be 40 1 of the initial masterbatch 

weight thus giving an indication of uniform dispersion of barytes in 

the compound. 

As a result of these observations, barytes was finally chosen as the 

prefered tracer, due to its inherent higher density (4200 kg/m3), its 

inert nature and heat stability at 6 

also remains constant as compared to 

where this loss tends to change with 

normal atmosphere, the silica powder 

weight as compared to when in vacuum 

000 C (only a loss of IX which 

7.3 X loss in the case of silica 

humidity. Thus on exposure to 

shows a gradual increase in 

desiccator). 
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B. Tracer inclusion and sampling procedure: Steady state extrusion 

was achieved and then 80 g of barytes compound (40 X by weight) was 

added. The initial samples were taken after the extruder had been 

running for a period coinciding with the minimum residence time (e. g. 

8 minutes at 9 rpm screw speed), and samples were taken at appropriate 

intervals, ranging from 20 seconds to 2 minutes. Sampling was 

discontinued before the ashing technique's limit of detection. This 

was established experimentally, as discussed later. However, as the 

sampling duration is shown to have an effect on the result (Fig 4.8 

the overall sampling duration in different runs was chosen to lie in 

0.75 to a maximum of 5.0 units of dimensionless time. The samples 

were taken from the whole width of the strip. The effect of sampling 

position was studied by comparing samples from the centre and edges of 

the strip extrudate. The samples from the strip were cut in small 

pieces (about 2 mm) so as to be packed neatly into the crucible. The 

results quoted in this section were obtained following the slow 

degradation method (see later). 

C. Ashing procedure: The concentration of tracer was determined in 

the samples from the output. This involved heating the samples to a 

temperature at which no carbonaceous residue remained, thus leaving 

inorganic inert filler. Two procedures were used to measure the 

tracer concentration. 

(1) Direct burning off: This involved initially heating a set of 

crucibles in furnace at 6000C for 24 hours and cooling these at room 

temperature in a vacuum desiccator for 16 hours. The crucibles were 

weighed accurately and a known amount of sample in the form of small 

pieces was placed in crucibles. The crucibles were then placed in a 

furnace at 6000C for eight hours. During this time all the polymer 
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was burnt off and only barytes powder was left. The crucibles were 

then again cooled to room temperature in a vacuum desiccator for an- 

other 16 hours. The crucible and ash were then weighed accurately. 

However, when the reproducibility of this technique was checked, it 

was found unsatisfactory. The cause of the above behaviour is thought 

to be the rapid burning off of the samples, thus some of the barytes 

and the burning polymer comes out of crucible together with the 

evolving flames. 

(2) Slow degradation method: The procedure described above was used 

except the approach for burning off the samples. In this procedure the 

crucibles with samples were initially heated at 380 0C for eight hours 

(slow degradation of the polymer) followed by heating at 6000C for 

another two hours (to burn off all the carbonaceous products). The 

initial degradation temperature of 3800C was determined experimentally 

as being the maximum temperature at which samples did not catch fire 

(below onset of ignition) or boiled over crucible while still 

degrading at relatively high rate. For this method a special ashing 

furnace "carbolite' was used which also had special venting facility. 

This procedure is different and modified from the method described in 

ASTM D817-72. In this standard platinum crucibles are used, and it is 

suggested to burn off the samples directly over the flame. 

This technique gives much more reproducible results compared to one in 

which the polymer containing tracer compound is heated directly to 

GOO 0 C. The reason for this being that in the modified technique most 

of the polymer is slowly degraded and when the temperature is raised 

to 6000C, there is very little combustible material left and thus no 
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'swirling action' takes place. 

The reproducibility of the technique using the above method was deter- 

mined by taking samples adjacent to each other from the same extrudate. 

Furthermore the effect of magnitude of the final temperature reached 

in the ashing procedure, was also determined. The results are shown 

in Fig 4.4 . It clearly shows that relatively reproducible results are 

obtained using above method. The final ashing temperature (in between 

500 and 6000C) does not affect the results substantially. 

3.3.2 Radio-active tracer technique: This involved adding MnO 
2 

compound tracer to the polymer in the extruder, then irradiating the 

samples with thermal neutrons and determining the concentration of 

MnO2, by measuring the induced radioactivity. This technique is very 

accurate and sensitive and has been used by various researchers, Wolf 

and White (1976), Janssen (1978), in the past in the extrusion 

process. A schematic representation of steps involved is given in 

Fig. 3.4. 

The activity induced is proportional to the quantity of Mn present in 

the sample. Therefore, from equation of section 2.2.5, when other 

terms and constants are known. concentration of Mn tracer can be 

determined. But this has serious drawbacks as (i) the magnitude of 

activation cross section of the target element, i. e. Mn is not 

sufficiently accurately known. (ii) The flux may vary during the 

irradiation process. (iii) A self shielding correction must be worked 

out or be experimentally determined or else some procedure must be 

adopted to render self shielding effect negligible. (iv) The 

efficiency of the detector must be known. However, in RTD studies, 

only relative concentrations are required to calculate RTD curve, so 
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FIG. 3.4 DETERMINATION OF R TO BY NEUTRON ACTIVATION ANALYSIS 
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this procedure becomes quite simple as only count rates are taken. 

These count rates give a comparative concentration for various 

samples. 

In the present study a considerable amount of work was carried out on 

the choice of procedure within the scope of this technique and in the 

choice of nuclear reactor etc (Hornsby et al 1985). Finally the 

reproducibility of the technique was also established extensively. 

A. Mn02 as tracer: The tracer was prepared by adding 5X by weight 

of MnO 
2 powder to polypropylene. Mn02 powder (Mallinckrodt Inc. ) used 

was analytical grade and was minimum 99 1 pure. The maximum limit of 

impurities are alkaline earth 0.2 X, chloride 0.01 Z, insoluble in 

acid 0.05 X, nitrate 0.05 X, sulphate 0.05 X. MnO2 was chosen as a 

tracer because it (MnSG) has a short life of 2.5785 hours. The 

irradiation site was at a distance (approximately 80 kilometers). This 

half-life gave a sufficient cover for delay in transport and in count- 

ing while it also gave a reasonable residual activity as not to pose 

problems for disposal. 

The procedure and conditions for preparation of masterbatch were the 

same as in 3.3.1. A . The apparent viscosity - shear rate behaviour of 

this compound was obtained using Davenport rheometer using same method 

as in 3.1 and results are shown in Fig 4.1 . 

IB). Preparation and irradiation of specimens. 

I1) Preparation of Specimens: 10 g of tracer containing 51 Mn02 was 

introduced instantaneously at the feed port of the extruder. The 

samples of precise weight were taken from the centre of the extruded 
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strip at appropriate intervals ranging from 20 seconds to 2 minutes 

(described in detail in 3.3.1. B). The samples were then compression 

moulded in the form of discs of 21 mm diameter and 3 mm thickness. The 

mould consisted of three plates of dimensions 0.3 x 0.3 m. The two 

outer plates were thin stainless steel plates while central plate was 

a steel plate of 3 mm thickness having 25 equally spaced 21 mm 

diameter holes. The polyethylene terephthalate release film was used 

when moulding the specimens. The material was heated in the mould at 

1700C for 5 minutes in electrically heated upstroke press (Moore of 

Birmingham) at contact pressure and then cooled under pressure in a 

water cooled downstroke press (Bradley & Turton) for 3 minutes. The 

samples were then neatly trimmed and accurately weighed. 

(2) Irradiation of the specimens: The prepared specimens were 

systematically packed in a plastic tube (2.2 cm diameter and 65 cm 

long) with one reference disc (with known amount of Mn02) placed at 

the top and bottom ends. The prepared samples were irradiated with 

thermal neutrons in a Reactor at Atomic Weapon Research Establishment 

(AWRE) in Aldermaston. Two neutron fluxes (1.6 x 1012 and 3.2 x 1011 

neutron cm 
2) 

were investigated for the effect of non uniform 

activation in beta and gamma ray counting. The details are given below 

under the heading of non uniform activation. However, because of the 

unavailability of the high neutron flux reactor, due to its higher 

usage, all the subsequent irradiations were done at lower neutron 

flux. Once the specimens had been irradiated, they were returned to 

Brunel University with minimum delay for counting of the induced 

radioactivity of MnS6 decaying to Fes6 

(C). Errors associated in neutron activation analyses: There are 

various errors associated with neutron activation analysis. These 
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have been discussed by Kruger (1971). These errors can be broadly 

classified into three categories as shown below. 

(1). Errors associated with activation of sample. 

(a) Flux inhomogeneities 

(b) Neutron self shielding (pile effect) 

(2). Errors associated with measurement of activity 

(a) Self absorption 

(b) Specimen geometry 

(c) Delay time 

(3). Errors associated with data counting 

(a) Background correction 

(b) Dead time correction 

(c) Counting statistics 

As the above errors can arise in neutron activation analysis, steps 

were taken either to make the factor ineffective by adjustment of 

parameters or to minimize its magnitude and make corrections for their 

effect. In the following paragraphs, the cause for these errors are 

discussed together with steps taken to minimize the errors. 

M. Errors associated with activation of sample : From the 

neutron activation process, a non uniform activation occurs in the 

samples packed in the tube. This is considered to be due to the flux 

inhomogeneities in the reactor and the neutron self shielding of the 

sample along the tube. Both of these effects lead to a non uniform 

activation along the tube and are considered in detail as follows 
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(a) Flux inhomogeneities: The unperturbed flux in a reactor may be 

expected to be fairly constant under irradiation conditions although a 

spatial flux gradient may exist in the vicinity of an irradiation 

position. The flux gradient can be particularly large, so the 

irradiation position in nuclear reactor is chosen with an insignifi- 

cant flux gradient. However, as discussed above, the spatial flux 

gradient present in reactor would lead to a produced activity 

gradient, i. e. a successive increase or decrease in activity amongst 

the samples with same concentration along the tube. 

(b) Neutron self shielding: The material can absorb neutrons and 

thus the neutron flux becomes progressively smaller with its travel 

through material. However, this effect could lead to a non uniform 

activation if the position of tube in the reactor is such that 

neutrons travel through one end of the tube to the other end. In such 

a case, due to self shielding the neutron flux becomes progressively 

smaller and thus leads to a differential activation along the tube. 

The effect of above two parameters on non-uniform activation was 

determined experimentally for two neutron fluxes (1.6 x 1012 and 3.2 x 

1011 neutron cm 
2). The polypropylene samples containing 0.5 X w/w 

Hn02 tracer were packed in a plastic tube and after irradiation, were 

counted for gamma rays for each of the sample. After making all the 

corrections, the induced activity Vs sample position in tube was 

plotted (Fig 3.5). The higher neutron flux shows a straight line and 

shallow gradient while low neutron flux shows a non linear rela- 

tionship with much steeper gradient. However due to a heavy work 

schedule the high neutron flux source was unavailable most of the time 

so it was necessary to use the low neutron flux. One sample with 

0.5 X w/w of MnO 
2 concentration in polypropylene was placed at each 



65 

q 
ff 

f 

A 

A 
6 

" 

f~3.2 x1011 Neutrons cm 
2 

0 
A 

Xf"" 

pI .6xtÖ2 Neutrons CM 
2 

W\ 

f 

\i 

f" 
5 

fý�i 

4 

0 10 20 30 40 50 60 

Distance through Sample (mm) 

Fig. 3.5 Effect of neutron flux on nc, utron activition uniformity. 



66 

end of the tube so as to check the magnitude of correction which found 

to remain the same (as shown in Fig 3.5). 

2. Errors associated with measurement of activity. 

(a) Self absorption: The absorption and scatter of emitting rays 

in the sample itself can cause error. After certain thickness, the 

linear relationship in count rate and thickness, is not maintained and 

the count rate stabilizes for very thick sample. However, this self 

absorption should not present any serious error because this effect 

would be of the same degree in all the samples. The sample dimensions 

were kept virtually identical for all the tests. 

(b) Specimen geometry: Radiations generally escape from the 

samples in all directions and only those particles actually directed 

towards the counter can be counted. So whilst counting, the sample 

shape, position, position of the probe and its shape, distance between 

probe and sample etc. are kept constant. This is done so that the 

same fraction of particles will always be counted. In other words 

measurements are made under conditions such that the detection coef- 

ficient, i. e. the ratio of measured activity to disintegration rate 

remains constant. 

(c) Delay time: The radionuclide MnSC decays with its 

characteristic half life after irradiation. So as to get a 

comparative induced activity, the induced activity of each sample 

is calculated at some fixed arbitrary time. At a time t from the 

arbitrary time its activity At is given by relationship 

At =A exp (-0.693 t/t0.5) 

where t0.5 z 2.5785 hours. 
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(31. Errors associated with count data. 

(a) Background correction: Due to cosmic radiations, the counting 

system registers some of these counts. In scintillation counting sys- 

tem used. this is found to be about 100 counts min-1. So when 

counting the radiations from the samples, these background counts are 

also counted. So to get the net counts, these background counts are 

subtracted from the indicated counts. The samples with low activity 

pose problems. Thus these samples give low count rate together with a 

high noise level of background and thus the net counts are 

statistically not very accurate. 

(b) Dead time correction: All detectors of radioactive radiation 

have an inherent recovery time following interaction of a radioactive 

ray and during this period a second incident can not be recorded. 

This is of the order of microsecond for a scintillation counter. The 

measurement of the activity was performed using the live time mode of 

the pulse height analyser, this permits automatic correction of the 

count rate for dead time losses. 

(c) Counting statistics: Due to the random nature of radio- active 

decay process, the relative statistical standard error (a) for the 

accumulated counts is given by the equation. 

Relative std. deviation (a) 
IN 1 

N IN 

where N is the number of counts counted. 
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The irradiation time of 7 minutes was calculated from equation of 

section 2.2.5 for the samples so as to get a high count rate range 

(say 100-20,000 counts min' so that higher counting statistics could 

be obtained. 

(D). Techniques for analysis: The Mn02 (Manganese dioxide) tracer 

concentration was analysed by neutron activation analysis. The 

samples containing Mn02 were irradiated with neutrons. Mn SG decays by 

giving beta and gamma rays. The energy level constitution of beta rays 

are 2.838 MeV (47 X). 1.028 (34 X), 0.718 (18 X) and 0.30 MeV (» IN. 

and gamma rays have the energy levels 0.85 (98.87 X), 1.81072 and 

2.113054. The concentration of Mn tracer could be determined by 

counting either of the two rays. Both of these have some merits of 

their own. Generally the choice of method of counting is based on the 

method giving the highest count rate with the greatest precision. The 

following counting techniques being evaluated in the present work 

especially from the point of view of reproducibility of the results. 

(1). Gamma counting: The detection of the Y ray emitted by the 

active tracer was made with a sodium iodide probe and a scintillation 

discriminator counter (Canberra). All of the gamma rays emitted by 

the specimen were counted. The counting schedule adapted was such as 

to count less radioactive sample at the start and higher concentration 

specimens later. All the specimens were counted at constant geometry. 

This was achieved by fixing the detector in a horizontal position and 

placing the sample in a fixed position on a 'perspex' plate holder. 

After counting all the specimens, the corrections were made to the 

counts to compensate for background counts. decay of radio nuclide 

during counting procedure and unequal activation of specimens in the 

irradiation process. For the fixed setting the background counts were 
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determined by counting gamma rays without putting any specimen under 

Na! probe before and after the total specimen counting. The mean of 

these counts was subtracted from the sample count. As the resolution 

time, for counter, is much less than I NS, the p 

counting is from 100-100,000 counts min-. The 

seven minutes in low neutron flux of 3.2 x 1011 

chosen to give a count rate range of 100-20,000 

(calculated from equation of section 2.2.5). 

ossible range for 

irradiation time of 

Neutron cm-2 was 

counts min-I 

The gamma ray counting is preferred to beta ray counting because a 

number of corrections such as self absorption and dead time can be 

avoided. Furthermore as the concentration of tracer in samples varies 

from very high in some to very low in some, it renders beta counting 

unsuitable for high count rates as the dead time correction becomes 

excessive and thus unreliable. 

Disadvantages of gamma ray counting As discussed above, this 

technique suffers seriously from the inaccuracy at the low count 

rates. The concentration of Mn02 in the sample would be expected to 

range from a high value at the stage just after breakthrough which is 

associated with the mean residence time, to a very low value in the 

tail region, thus having two extremes of concentration. In the above 

method where scintillation counter was used, the counts at higher 

concentrations are quite accurate, as it has microsecond dead time. 

But counts of the sample with low count rate are not accurately 

determined as the scintillation counter, as discussed above, has a 

rather higher background count. 

The reproducibility of this technique was determined by analysing two 

sets of specimens from adjacent positions of a run (Fig 4.5 ). 



70 

(2) Beta - gamma ray counting: In this technique both beta and 

gamma rays were counted. At higher concentration the gamma rays were 

counted using scintillation counter described above while at lower 

concentration the beta rays were counted using organic quench Geiger- 

Muller counter tube with Panax counter. The voltage in Geiger-Muller 

counter was set in the region of plateau, i. e. where an applied high 

voltage Vs count rate curve for sample of fixed disintegration rate 

yields a plateau. The plateau for the tube used was 300 volts long 

and the increase in count rate with an applied voltage was less than 

31 per 100 volts. Similar to gamma ray counting, various errors are 

associated with beta ray counting. So the corrections were made for 

background counts, dead time correction, non uniform activation and 

the decay of radionuclide during counting. The decay correction was 

made using equation in section 3.3.2 C, and correction for non- 

uniform activation was made by using the curve in Fig 3.5. 

The Geiger-Muller counter has the benefit of having rather low back- 

ground count, and for the assembly used it was 8 counts min'I (as 

compared to 100 counts min-1 for gamma scintillation counter). Thus 

this is quite accurate when the tracer concentration is quite low and 

therefore offers a low limit of detection. 

All detectors of radioactive radiations have an inherent recovery 

time following interaction of a radioactive ray and during this period 

a second incident can not be recorded. This can be somewhat greater 

than 100 ps for Geiger-Muller counter. To offset this effect a known 

dead time of 200 ps was set electronically in the counter and a cor- 

responding correction was made from the standard correction table. 

Under electronically set dead time (T) the observed counting rate is 
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related to the true counting rate by the relation. 

No 
N true 

1- No. t 

where t is electronically imposed deadtime and No is the observed 

count rate. However, this error is not significant in samples with 

count rate less than 10,000 counts per minute but above this count 

rate, the error is quite significant. 

It is clear from the above discussion that low count rates are best 

counted with Geiger-Muller counter (beta ray counting) while high 

count rates are best counted with Scintillation counter (gamma ray 

counting). The two count ranges were covered in this way with count 

rate covered by both the above counters, were counted for beta and 

gamma counts and appropriate corrections were made to them. A ratio 

was then calculated in beta and gamma counts obtained from same 

sample, which served as conversion factor to convert beta counts to 

equivalent gamma counts. Once all counts have been obtained in gamma 

count value, RTD data were calculated. 

Beta to gamma count ratio was found to vary from 1.63 to 2.16 which 

was quite reasonable. However, when its reproducibility was checked 

by re-irradiating, the ratio varied from 1.72 to 2.34. This increased 

deviation could be attributed to the presence of active contamination. 

Furthermore Geiger-Huller counter was found to be sensitive to voltage 

fluctuation which occurred over the span of counting data. However, 

by replacing the "Panax" counter by 'Canberra' counter the stability 

improved substantially. 

As some manganese decays to iron on irradiation, which on subsequent 

second irradiation, could contribute towards the total count. 
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Therefore to check reproducibility two sets of specimens from adjacent 

position of a run were used instead of using one set and re- 

irradiating it (Fig 4.6 ). 

C. Gamma ray spectroscopy: In this technique the amount of energy 

dissipated by the gamma ray in its interaction with the Nat crystal is 

measured using photomultiplier tube and pulse height analyser. The 

pulses are sorted by height in step function and each channel counts 

only those pulses in the narrow pulse height step. So using this 

technique only gamma rays from Mn tracer (selected energy range) were 

counted thus avoiding interference from other active elements. Mn56 

gives radiation of energy 847 KeV. However, the radiations from Mn56 

can also give rise to the peak (in spectrum of energy channels) at 

high energy level (1380 KeV) which is formed due to the summation of 

the energy deposited in a detector either by random or coincidence 

gamma rays within the resolving time of the system or by true 

coincident in the decay of Mnss. The absence of any interference in 

measurement of 847 KeV photopeak of MnSG was checked by measuring the 

half life which was found to be 2.5 hours in agreement with the pub- 

lished value for Mn56_ 

The apparatus consists of cylindrical NaI (Tl) crystal detector 

coupled with 800 channel (Packard model 942) analyser together with 

Packard spectrazoom integrator and a Visual display unit. The channel 

on this set up were calibrated using Na22. Co60 and Cs137 which 

represent energies of (511 and 1280), (1170 and 1330) and 662 KeV 

respectively. The calibration curve was constructed by plotting the 

known gamma photopeak energies along the Y-axes against the channel 

number along the X-axes. The time of irradiation (40 minutes at low 

neutron flux) was calculated (equation in Section 2.2.5) as to give a 
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count rate, for the specimens with very low tracer concentration, 

which was distinct from background after an initial decay time of two 

hours( transport time), while at the same time not making the 

specimens with higher concentration of tracer 'too hot`, i. e. too 

active. Furthermore the counting time was also adjusted to the sample 

activity, e. g. longer for specimens with lower tracer concentration. 

During transport and handling the radioactivity decayed to 60 X of 

original value. The limit for the most active specimens was 

arbitrarily chosen to give 20 1 dead time for assembly. The counting 

schedule adopted was such as to count the less active samples at the 

start and the higher concentration (highly active) samples later. 

The analyser was set on a timing system which permits counting in live 

time mode. Thus in this mode the timer only operates during the time 

when an analogue to digital converter is accepting the counts. Thus 

it gives an automatic compensation for analyser dead time. 

Because of the inherent nature of the electronic counting system, the 

peak in gamma ray spectrum of a radionuclide drifts sometimes. This 

phenomenon was observed particularly at high count rate. To minimize 

such potential source of error the integration and read out for a 

given spectrum were performed over a constant number of channels. the 

range starting from a point located at fixed number of channel from 

that with the maximum count rate. 

As discussed before the number of accumulated counts does have an 

effect on accuracy of the method. The radioactive decay process is a 

random process and relative statistical standard error, o, for the 

accumulated counts, N is given by equation. 
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A large number of counts were accumulated to minimize the statistical 

standard error. In general approximately 105 counts were accumulated 

for each sample to yield a statistical standard error of about 0.1 X. 

However, samples with low concentration of tracer do show a very low 

count rate, but even in these a minimum of 103 counts were accumulated 

in some cases by counting over a period of 12 minutes. This yields a 

standard error of about 3 Z. It is not possible to count the weaker 

samples for any more longer time than as stated above. This is due to 

the relatively short half life and thus restricted time span available 

for sets of samples. 

In order to evaluate the photopeak areas, initially two methods were 

utilized - Total peak area method (Baedecker 1971) and Sterlinski's 

method (Sterlinski 1968). Total peak area method was chosen for 

detailed study and hence results are based on this method unless 

otherwise stated. After evaluating the photopeak area, the 

corrections were made for weight of sample, background counts, non 

uniform activation, delay time and self absorption etc., similar to 

that in gamma ray counting. 

The reproducibility of this technique was established by irradiating 

and counting the two sets of specimens taken from adjacent positions 

from an extrudate (Fig 4.9 ). 

So overall it can be said that by using radioactive tracer technique, 

the tracer concentration can be measured to a high degree of accuracy 

when account is taken of potential errors arising from activation of 
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the sample, measurement of the radioactivity, or analysis of count 

data. Reproducibility of the technique is good, particularly when 

combined Y- and ß-ray or -i-ray spectroscopy counting procedures are 

employed. One likely source of error, which may result in some 

irreproducibility at very low tracer concentration, is tracer 

agglomeration. 

Ashing of polymer containing a dense mineral powder, such as barytes, 

provides an alternative means for assessing tracer concentration. 

Although this method has limited accuracy at low amounts of tracer (an 

order of magnitude less than the radioactive technique), the 

experimental and analysis procedures are much less complex, requiring 

inexpensive and readily available facilities. A further point of 

concern is the effect of the mineral tracer on the melt rheology of 

the polymer, particularly at high filler loadings. 

There are various other factors which can significantly effect the 

reproducibility. These are discussed later in section 4.1 . These 

include the effect of position of sampling (analysed by taking samples 

from the centre and edges of the same strip, at same position along 

the length - Fig. 4.10 )and the effect of two different extruder runs 

using the same conditions - Fig. 4.9 ). 

3.4 APPLICATION OF RTD TO CHARACTERISE TS250X EXTRUDER 

Once the tracer technique had been established, then RTO studies were 

carried out on GKN Windsor 250X to study the influence of variables on 

it. Since the variables available on the extruder are to a certain 

extent interdependent, it is not generally possible to see the effect 

of only one variable, keeping others constant. However, every effort 
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was made to keep other variables constant with the commercial 

relevance of the results in mind. In all of the following runs 

granular polypropylene (GWM 22) being used unless otherwise stated. 

Manganese dioxide tracer was used and samples were collected for 

radioactive analysis. However. for some runs barytes tracer compound 

was also used and samples were taken for ashing analysis. When both 

the tracers were used for similar runs, then the run for MnO 
2 

tracer 

was performed first followed by run for barytes because of the 

sensitivity of the radioactive tracer technique towards contaminants 

which could result from barytes compound if used initially. After 

using barytes, the extruder was cleaned by further running it for some 

time with reground polypropylene (e. g. say at 9 rpm for further 30 

minutes). 

The runs carried out are tabulated in Table 3.2 and are described in 

the following headings. The detailed information on these, however, 

are given in Table 4.1. The justification for the selection of the 

variables studied is discussed in chapter 4. The variables studied can 

be broadly categorised as follows: 

1. Process variables 

2. Machine variables 

3. Material variables 

3.4.1 Process variables: The variables studied in this category 

are set up type i. e. which processor can change from control console. 

A. Throughput rate: The feed to the extruder is governed by 

the variable hopper feeder. Two runs using the identical conditions 

but different throughput rate were carried out. In the first run the 
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feed rate was adjusted until material began to emerge from the vent 

port and the feed was reduced to give the maximum permissible output 

without this happening. In the second run the feed was reduced by a 

further 13 X weight of the previous feed (A4 and AS). 

B. Temperature profile: Two runs were carried out using identical 

conditions except for temperature setting on the heating zones. In 

first run the standard temperature setting was used (as used in all 

the other runs) while in second run the temperature setting was 

reduced by 100C in Zone 3 and 4 (see Fig 3.2), mixing discs are 

situated in Zone 4 (run A6 and A6). 

C. Screw speed: In this work this variable was most comprehensively 

studied. Three screw speeds, covering the whole available speed range, 

were used with maximum output. As these screw speeds were studied by 

changing other variables, these are described under appropriate vari- 

ables. 

3.4.2 Machine variables: In this category those variables are in- 

cluded which involves the change in the parts of the extruder or in 

screw profile. 

A. Pulley size: The pulley is connected to main motor and it 

drives epi-cyclic gearbox (10 in Fig 1.2) through Poly V belt. Thus 

increasing the motor pulley diameter would increase the screw speed. 

So a large pulley was manufactured at Brunel University as to replace 

the smaller pulley thus increasing the maximum screw speed of the 

extruder from 30 to 60 rpm. The two sets of runs, one for each pulley 

system, were performed at three screw speeds. (Run A 1,2,3 and A 

13,14,15). In a big pulley system, the output was restricted by 
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available current rather than conveying capacity. The runs at maximum 

speed were also performed using barytes tracer. 

8. Mixing discs: The screws are of a building block type. The 

mixing discs are five pairs of slotted disc type with two sets of 

slots cut in the internal diameter. Thus being segmented in construc- 

tion, have two main variants available. 

(a) Position along the screw length 

(b) Configuration of the discs relative to each other. 

The configuration of the discs can be varied by virtue of slots in 

their internal diameter which fitt on to the screw shaft. Thus in the 

'open' position, all the slots of mixing discs, coincide with each 

other, while in 'closed' position the slot or space in one mixing disc 

coincides with the solid flange of the other(next) mixing disc and 

this in turn coincides with the gap of the next mixing disc. Thus 

making the longest possible travelling passage for polymer melt. As 

regards to the position of the mixing discs along the screw, two 

positions were chosen ( Fig 3.2 ). 

(a) All the five pairs of mixing discs situated at 5 to 6.5. L: D 

position i. e. nearer to hopper end or 'UPSTREAM POSITION'. 

(b) One pair situated at 5 l: d ratio position while 

pairs are situated at 13 l: d position i. e. nearer to 

"DOWNSTREAM POSITION". By separating mixing discs at 

spacer segments (just tubular structure with outside 

screw land) ware included thus total segments decrea 

four mixing discs. 

the other three 

die end or 

two positions 

diameter equal to 

ses from five to 
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So in this study, runs at three screw speeds (9,18 and 2? rpm) were 

carried out on the following screw settings. 

(i) Upstream 

(a) Open mixing discs 

(b) Closed mixing discs 

(ii) Downstream 

(a) Open mixing discs 

(b) Closed mixing discs 

C. Melt pressure: Melt pressure at the screw tips was varied 

using a strip die with provision of varying die lip gap in thickness. 

The upper die lip could be moved and fixed in position with position- 

ing screws. As the die lip gap was varied, it was associated with 

change in melt pressure at the screw tips. These runs at die lip gaps 

of 2.15,4.8 and 6.25 mm were performed at screw speed of 9 rpm (run 

A7,10 and 12). 

3.4.3 Material variables: This category includes the work carried 

out using different form or type of polymer feed. 

A. Polymer form: In this the polypropylene homopolymer as granules 

was compared with its equivalent powder form. For both polymer forms, 

the feed was adjusted to give the maximum output. 

B. Polymer type: The two types of polymer, polypropylene and 

polystyrene granules were compared. Once again suitable temperature 

profiles for both were chosen. The feed rate was adjusted as to give 

the maximum output without material coming out of vent port. The 

mixing discs arrangement in screws being "upstream" and 'open" setting. 
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For each polymer runs at three screw speeds (21,42 and 60 rpm) were 

carried out (run A13,14,15, and A18,19,20). The HnO2 tracer com- 

pound used for polystyrene was made using polystyrene as base polymer 

and using the same technique as used for preparation for polypropy- 

lene/Mn02 tracer compound. 

3.5 DETERMINATION OF CROSS CHANNEL FLOW AND TRANSVERSE MIXING 

The flow inside the extruder was established by using a coloured 

tracer, combined with a shock cooling - barrel withdrawal technique. 

In this technique the extruder was run to steady state and then 

coloured tracer granules were introduced through the feed hopper. The 

polypropylene masterbatch containing carbon black (Plasblack PP 1359 

of Cabot Carbon , UK) and 101 red pigment (Masterbatch number 401 of 

I. C. I. ) were used as tracers. After a precalculated time from the 

tracer input in the extruder, the extruder was stopped. The extruder 

was then shock cooled by circulating oil (at 400 C) through hollow 

channelled barrel section (A Churchill oil heat exchanger was 

connected up with the extruder barrel). The schematic diagram is given 

in Fig 3.6. The connections on the extruder were made such that one 

outlet from the heat exchanger cooled zone 5, while the other outlet 

cooled zone 6 and 4 respectively. in series. Thus cooling rates 

achieved were fastest in zone 5 followed by zone 6 and then zone 4. 

Zones 1.2 and 3 were not cooled as the tracer was introduced from the 

vent port. The oil in turn was cooled with water through the heat 

exchanger. 

The oil temperature reached its maximum of about 100OC within the 

first ten minutes thus indicating a much shorter time to cool the 

polymer in the extruder. The temperature reading of various zones are 
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given in Fig 3.7. Once the extruder was cooled to room temperature, 

the die head and adapter were removed. A barrel withdrawing adapter, 

manufactured at Brunel, was fixed onto the barrel. With the help of a 

hydraulic jack, the barrel was withdrawn. After unscrewing the screw 

tip caps from the screw spline, the screw segments together with 

frozen polymer "in situ" were pulled off the screw splines. The screw 

segments were unscrewed out of the solidified polymer skeleton. Some 

oil can be introduced in the ingress as to facilitate the removal. The 

Fig 3.8 shows the screw with solidified polymer, the screw skeleton. 

This was then sectioned at predetermined places, as shown in Fig 3.8. 

There is a problem of voiding in the material which occurs due to 

differential rate of cooling. This occurs inevitably as a large volume 

of molten polymer is rapidly cooled. This happens as the polymer in 

contact with the metal cools rapidly, due to better heat transfer from 

the metal and therefore leaving the polymer in the centre of the 

channel relatively molten. So when this is eventually cools, the voids 

are created. The sections of about 0.4 mm thick were cut using a 

bandsaw fitted with a locating jig. This arrangement of locating jig 

cuts a parallel section and supports the polymer skeleton during 

cutting. A fine cutting blade with appropriate speed gives the 

required smooth surface. The speed of cutting blade is dependent on 

the polymer system used. The sections so cut is shown in Fig 3.9 

together with one section, as seen magnified using transmitted light. 

To study the overall flow within the extruder, it is essential to have 

a flow pattern generated by extension of single coloured polymer 

granule. However intermixing can be observed by mixing of two 

different coloured polymer streaks. These would then also give 

indication of various zones in the chamber and probably an indication 
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of the flow mechanism. For this purpose colour tracer granules were 

dropped in every third flight, with alternate black and red colour 

granules. The relative position inside the channel of tracer is not so 

important, as it is only added to see the flow path of different 

regimes. So by introducing at several random places, a complete 

picture is obtained. 

The transverse mixing and its progression along the extruder length 

was studied by observing macro- and micro-mixing in the screw 

chambers. The sections were cut for both studies along the whole 

length, at pre determined places, so the progress in mixing could be 

established. 

In the case of macromixing, carbon black masterbatch was added to the 

polypropylene granules feed, at timed intervals, as to give 40 ppm by 

weight of carbon black in polypropylene. This type of concentration 

gives a grey colour to the coloured/dark portion of polypropylene. 

This grey colour distribution in white polymer background enables 

study of mixing possible with naked eye. So for this, the sections 

were cut at fixed places (at first 1/5th distance from intermeshing 

zone, as shown in Fig 3.8 shaded area ) along the extruder using a 

bandsaw, as described above. The photographs of such various sections, 

cut along the screw length is given in Fig 4.67 . The number mentioned 

in this figure underneath every section is the channel number and L or 

R means left or right screw and N. D. means mixing disc location. 

Similarly the micromixing was studied by adding carbon black 

masterbatch as to give 2X by weight overall carbon black concentration 

in the polymer matrix. The 10 pm thick sections were cut at fixed 

places all along the screw sections both in left and right screws. 
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These sections were then viewed through a transmitted light microscope 

and photographed. These sections have voids which are produced as a 

result of large volumes of melt being cooled rapidly. The unpigmented 

polymer and voids are distinguished from each other by using crossed 

polars and thus making voids appear grey. unpigmented polymer white 

and carbon black pigmented polymer black. However, once major 

unpigmented polymer areas were absent, then crossed polars were not 

used, as then merely shape distinguishes between striations and voids. 

These sections were then analysed for progressive mixing along the 

length. The photographs of such sections are given in Fig 4.68 and 

Fig. 6.69 . 
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CHAPTER 4- RES CUSSIDN 

BACKGROUND TO ANALYSIS OF RTD : 
The twin screw extruder's conveying characteristic is quite 

complicated which becomes even more confusing due to the effect of 

intermeshing zone and leakage flows. This makes it rather difficult to 

determine the velocity profile accurately and from it RTD. However RTD 

can be determined experimentally which gives an insight on the 

conveying mechanism. But RTD results should be interpreted carefully 

as they give an indication of the time spent inside the extruder, 

measured at outlet and so two different flow patterns may give rise to 

the same age distribution. Therefore RTO results should be regarded as 

only supporting evidence to the flow models. Furthermore as RTD is 

related to the degree of backmixing in a system, which is the mixing 

that occurs in the primary flow direction and it does not give any 

indicative difference in microscopic and macroscopic scale mixing. 

That means RTD by itself cannot predict whether elements of fluids 

with same residence time can be considered well mixed. 

4.1 Reproducibility of RTD determination: In extrusion process the 

time dependent degradation of the polymer and self cleaning actions 

are important. So the tail region of the RTD curve, which represents 

only minute amount left over after passage of majority of the material 

is quite important. However, the precise detail about this tail and 

effect of other parameters on it, can truly be obtained if the whole 

of the method and tracer technique used is quite reproducible. The 

reproducibility for the whole of the method was studied. 

The reproducibility study can conveniently be divided into three main 

phases. 
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1. Tracer effects 2. Sampling effect 3. Extruder performance 

4.1.1 Tracer effects: Although tracer technique gives a good 

picture of RTD, however it suffers from various limitations which 

could have serious implications. Some of these limitations can be 

overcome by careful planning while others remain unresolved. However, 

the results obtained are viewed with these limitations in mind, giving 

a more realistic approach. The limitations caused by use of tracer 

can be broadly classified into two main effects. 

A. Effect of tracer on flow: In the RTD studies by tracer 

technique it is assumed that tracer has the same flow pattern as poly- 

mer. However, as method relies on quantitative estimation of tracer 

after 'let down' in extrudate and as it has a short input time, the 

tracer concentration in polymer at input has to be high. In the case 

of ashing tracer technique, method relies on weighing of the tracer. A 

lower level of detection limit requires a higher concentration used 

and thus 80 g of 40 1 w/w of Barytes concentrate as tracer was used. 

Viscosity of a filled polymer melt increases with filler 

concentration. The filler chosen (Barytes) was such as to impart 

minimum effect on rheological properties of the melt. In the case of 

radioactive tracer, as the detection limit is of quite low 

concentration (compared to ashing tracer technique), a small amount of 

tracer was used. So only 10 g of Mn02 masterbatch containing 51 w/w 

of Hn02 in polypropylene was used. It has been reported that heavily 

filled polymers show an increase in viscosity. The way in which these 

heavily filled tracer masterbatches would behave in extrusion process 

was studied using Davenport capillary rheometer. The results are given 

in Fig i. 1. 
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However, this test only provides a limited information essentially 

because of difficulty in interpretation and also the important fea- 

tures of the extrusion process are not simulated by this test. The 

shear rate range investigated was 85 to 3500 sec-1. As discussed 

by DeBoo and Schneider 11978) the shear rates of significance in 

the single screw extrusion process are those in the melt film (1000- 

3000 sec-1) and those in melt pool (50-100 sec-1). 

So this whole range of shear rate was covered in the study. Since 

only one capillary was used (38.3: 1 L/D ratio) the entrance effect was 

not taken into account and thus reported viscosity is higher than true 

viscosity. The Rabinowitsch correction was also not made. However, 

as the work was done on one capillary, it gives a comparative value. 

When compared with virgin polypropylene, masterbatch containing 51 

w/w of MnO 
2 has lower viscosity at low shear rate range. The molecular 

reduction due to milling is more than increase due to incorporation of 

MnO2 . 

However. at higher shear rate, the viscosity tends to be similar. This 

is because filled thermoplastic has more pronounced structural viscos- 

ity and thus flow curves converge with increasing shearing velocity 

(DeBoo and Schneider 1978). Thus at higher shear rate, as found in 

extrusion process, it would behave similar to polypropylene and thus 

give more accurate result. However, barytes masterbatch (40 1 w/w) 

shows a consistent increase in viscosity over the whole shear rate 

range. This means that the compound would show a retarded motion as 

compared to polypropylene and thus give RTD curve with more stagnation 

than actually present. 

As discussed before in section 3.3.2 D. in neutron activation anaiy- 
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sis, Gamma ray spectroscopy technique was found to be the best suited 

for the purpose. Logically this technique was used for all the 

further investigations, unless otherwise mentioned. Although 

considerable number of runs were analysed with the aching tracer 

technique as well. As discussed before, this ashing technique does 

not give accurate results. Thus the results obtained by this 

technique are not given in this thesis except as an example in figure 

4.4,4.8 and 4.10 . The results obtained by ashing technique and by 

Gamma Ray spectroscopy are compared in Fig 4.2 . 

B. Amount of tracer material used: The amount of tracer used in 

experiment can also effect the results. To study this effect, two 

quantities of Hn02 tracer (10 and 20 g) were used (Fig 4.3). The RTD 

curve from 20 g tracer shows a slightly longer tail with not much 

difference in overall longitudinal mixing to that obtained with 10 g. 

This clearly shows that the tracer amount itself can affect the RTD 

results significantly especially below the concentration of 51 of 

total amount. 

This is probably due to different flow behaviour of masterbatch 

particles in unmolten form. As the MnO 
2 masterbatch granules are 

relatively smaller in size as compared to base polymer, this relative 

size could give rise to different flow behaviour in unmolten form. So 

this adds to the different flow observed. 

C. Reproducibility of the tracer technique 

1. Ashing technique: The reproducibility of the ashing technique 

'slow degradation method' was studied. In this case samples were 

taken from the adjacent positions in extrudate and results calculated. 
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The final temperature used for ashing was 600 0 C. The results are 

given in Fig 4.4. Although due to the limited sensitivity the lower 

end of the RTD tail can not be measured and hence limited to 98 Z, but 

up to that range the reproducibility is quite good. The final ashing 

temperature selection is quite important. At 5000C the curve obtained 

shows somewhat more stagnation. This may be due to the presence of 

some carbonaceous products. However by using 6000C the results become 

quite reproducible, up to 981 of total flow. The stability of the 

barytes at 500-6000C was confirmed by heating the barytes powder on 

its own and precisely determining the weight loss which accounted for 

only 0.1 1. 

2. Radioactive tracer technique : In this technique Mn56 is used 

as tracer which has very low limit of detection. As discussed before 

the rays emitted from active Mn can be counted by three methods. The 

reproducibility of all these three methods was determined. One set of 

sample was taken for all the three methods and results were obtained 

after activation. The samples were allowed to decay completely. 

Again, after a few days, the sets of samples were reactivated and 

recounted and thus their reproducibility determined. The results so 

obtained are given in Fig 4.5,4.6,4.7 & 4.9 . 
Gamma ray method (Fig 

4.5) shows an overall reasonable reproducibility, being quite good up 

to 90 X of the flow beyond which it shows some deviations in results. 

As compared to ashing technique, this technique has lower detection 

limit and thus detection of tail for longer time. However the 

reproducibility of results is somewhat inferior to that of ashing 

technique. The reason for such a poor reproducibility in the results 

at lower end is due to the high background (higher counts) in 

scintillation counting and total of low count rate available from 

weaker samples in tail region. Furthermore, due to limited time 
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duration available for counting (net 6 hours experimental time 

available), a higher total count was not possible from weak samples 

and thus not very statistically accurate results were achieved. 

The reproducibility of the results obtained by beta/gamma ray method 

(Fig 4.6) shows much improvement over gamma and ashing technique. As 

discussed earlier in section 3.3.2. D, the improvement was achieved 

because of accuracy of beta ray counting at low count rate, associated 

with low background count, and gamma ray counting at high count rate, 

as scintillation counter has low dead time. The reproducibility is 

quite good up to about 99 X of the flow beyond which it shows some 

deviation. In the case of gamma ray spectroscopy (Fig 4.7 and 4.9), a 

further improvement in reproducibility over the previous methods was 

obtained and this extends to 99.5 X on the same samples. Thus there is 

a further substantial improvement on beta/gamma mixed counting, 

especially in the tail region. 

4.1.2 Sampling effect : The various factors associated with the 

sampling do affect the RTD. These are discussed below. 

A. Sample time: As the RTD result is obtained from all of the 

samples taken in a run and it shows an overall (cumulative) effect of 

these samples. So the variables such as the duration of the total 

sampling period, the number of the samples taken, or the time at which 

the sampling started etc. can have an effect on RTD. To get results, 

which could then be compared with each other, requires eliminating 

these variables, which if not carefully controlled can affect RTD. 

Comparing two calculations from the same set of samples, shows that 

extending the sampling time broadens the overall RTD curve (Fig 4.8). 

However, the number of samples within the given sampling time range 
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does not affect the result. This is clearly shown in Fig 4.8 where 

two sets of results are calculated, one with 22 samples while other 

with only 18 samples. The sampling time is of significant importance. 

Thus initial samples (associated with minimum residence time) are more 

detrimental, if not taken into account, as compared to the later 

samples (associated with samples in the tail region). So by leaving 

out only one sample, associated with the start of the distribution 

curve, can influence and thus shift the whole curve (Fig 4.8). 

B. Sample position : As the samples are taken from the output at a 

minimum time interval of 20 seconds, it represents a rather long strip 

of polymer output. So sample from a similar axial position but next to 

each other along the strip were taken and results obtained. The sample 

shows quite good reproducibility up to 99.3 1 of the total flow, 

beyond which there is a slight deviation (Fig 4.9). There is obviously 

more deviation in this case than the case when one set of samples was 

irradiated, counted and then after complete decay was reirradiated and 

recounted. This suggests that though tracer is nearly well distributed 

but still lacks complete homogeneity in the area along the strip. 

However across the strip, it is a different case. Due to the near 

laminar flow, velocity profiles are present over the cross section. 

This leads to the difference in the samples taken from the centre and 

the edge of the strip. Two such sets of samples were prepared and 

results calculated by ashing technique (Fig 4.10). The RTD curve for 

samples taken from centre demonstrates an overall spread and thus more 

longitudinal mixing. Similarly overall less stagnation occurs in the 

centre as compared to the edge. This is due to the stagnation 

occurring due to the die geometry. 

C. Agglomeration: As discussed above, manganese tracer is 
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considered to be in well dispersed form in the masterbatch. However, 

it was noticed that sometimes rather big agglomerates of tracer 

occurred in the output. On one occasion, run at high screw speed, a 

whole MnO 
2 masterbatch particle was present in the output. This quite 

clearly indicated extruder's inability to completely melt and 

distribute the whole of the polymer passing through it at this 

condition. Janssen (1978) also observed such a behaviour, of small 

agglomeration, in his studies. The samples with agglomeration of Mn02 

do give an erroneous result. However, they are quite obvious in the 

final calculated concentration form and do show up as a discrepancy. 

If left in calculation, this would give a RTD curve with a different 

shape. Fig 4.7 shows a typical curve with and without this erroneous 

concentration. 

4.1.3 Extruder performance : Finally the sensitivity of the RTD to 

the extruder settings was considered. Janssen (1978) also carried out 

similar work. The fluctuation in extrusion condition may have been 

caused by the temperature fluctuations or a small fluctuation in feed 

rate in the extruder. As the machine was quite big and took rather a 

long time to achieve steady state, even then the temperature always 

varied, though within a very narrow range. So two runs were performed 

on extruder with same temperature settings and RTD's were determined. 

Fig 4.9 shows the results obtained. The overall reproducibility is 

quite good up to the 99Z, after which the two curves show different 

tail regions. So it can be said that although the accuracy of the 

measurement holds well up to 99.5Z, but the reproducibility due to the 

extruder's fluctuations make it difficult to be accurate beyond 99X. 

This should be kept in mind when comparing the effect of variables. 
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4.2 FACTORS INFLUENCING THE RTD: 

The variables in extrusion process which affect either the polymer 

state, or its flow behaviour or the flow path of material, lead to a 

change in RTD. In this study it is tried to change one variable at a 

time. As the variables in the extrusion process are interdependent, it 

was achieved with limited success. 

The RTD studies were carried out by changing various parameters viz. 

Polymer, processing variables and machine variables. An overall trend 

was observed in the following four important aspects as a function of 

the effect of other variables. As the following four parameters do 

affect the melt state and the available flow path of the polymer melt, 

the effect of various variables on the following gives an in depth 

insight of their effect on mixing behaviour and so on the RTD results. 

4.2.1 Throughput rate 

4.2.2 Melting behaviour 

4.2.3 Filled volume 

4.2.4 Power consumption 

4.2.1 Throughput rate: In these experiments, a maximum throughput 

was aimed for. The work has given an insight of how the changing of 

one parameter such as polymer form or mixing disc location changes the 

maximum achievable throughput. This in turn, has given information 

about melting behaviour/polymer packing in the pre-vent- port section 

or the pressure generation in post-vent-port section. This is because 

the throughput of GKN Windsor 250X, as shown below, is affected by the 

limitation in the availability of the space in pre- vent-port section 

or the pressure generation in the post vent-port section. 
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The throughput of an extruder of a given diameter is generally 

restricted by 

(a) Geometry of the inlet 

(b) Melting capacity of the machine 

(c) Pressure generation in the devolatilization region 

(d) Drive power of the machine 

(e) Polymer conveying capacity of the extruder (design) 

(f) Screw speed 

In GKN Windsor 250X the conveying capacity of the inlet zone and other 

zones was quite high. The drive power of the machine was quite high 

(in small pulley assembly) for various processing conditions (except 

for run AS and 23) So the main restriction imposed on the throughput 

was the pressure generation in the devolatilization zone. However on 

changing the pulley to bigger size the available torque was reduced 

and consequently throughput was limited by drive power/torque (Run A 

13 to A 20- see current consumption in Table 4.1 where current rating 

of 50-60 ampere shows torque restriction). However beyond a certain 

output, the heating capacity of the machine was insufficent and thus 

polymer was not completely molten. Moving the disc to backward 

position i. e. in upstream position, the polymer was melted but then 

due to the limited available torque, the output was reduced. 

In this research programme the throughput obtained by the extruder was 

basically restricted by the extruder's capacity in conveying the melt 

past the devolatilization zone. The conveying past the vent-port was 

controlled by 

(a) Melting behaviour/polymer packing in pre vent-port section. 

(b) Pressure generation in post vent-port section. 
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TABLE 4.1 : DETAILED CONDITIONS OF EXTRUSION RUNS - PART 1 

Run Screw Output Current Screw 
Melt pref sure 

MIXING DISCS No. speed (kg/hr) (amp. ) Torque Before At Remarks 
(KNM) Mixing screw 

Disc Tips 

Posi- Config - 
tion uratio n Small Pulley System 

Al 9 33.1 23 1.86- - 2.48 
2.07 

A2 18 63.8 28 2.62- - 3.24 
2.86 

0 A3 27 89.1 38 2.86- - 3.72 
P 3.26 
E 
N A4 9 34.3 33 2.62- - 2.27 

2.78 

AS 9 29.8 27 2.15- - 1.58 Lower feed 
2.23 rate 

U A6 9 34.3 40 3.26- - 2.20 Lower tem?. 
P 3.34 profile 
S 
T A7 9 35.3 35 - - 3.79 
R 
E A8 18 73.2 50 - - 4.00 
A 
M C A9 27 - 55 - - 4.41 

L 
0 AID 9 35.3 35 - - 4.12 2.15 mmx76 mm 
S Die opening 
E 
D All 9 35.3 37 - - 4.12 Tracer 

through vent 
port 

A12 9 35.3 32 - - 2.65 6.25x76 mm 
Die opening 

A21 9 30.8 26 1.83- 0.69 2.9 
1.98 

A22 18 74 50 3.5- 4.34 4.41 
3.66 

C 
L A23 27 105 53 3.05- 5.1 4.89 
0 4.21 
S 
E A24 9 30 17 1.11- 2.76 Polypropylene 
D 1.19 0 Powder 

A25 18 64.5 27 2.15- 1.59 3.89 
2.31 Li 

A26 27 95.4 32 2.56- 2.34 4.48 

- 
2.62 
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TABLE 4.1 : DETAILED CONDITIONS OF EXTRUSION RUNS - PART 2 

Melt Pre1sure 
Run Screw Output Current Screw MN/m 

MIXING DISCS No. Speed (kg/hr) (amp. ) Torque Before At Remarks 
(Rpm)) (KNM) Mixing Screw 

Disc Tips 

Posi- Config- 
tion uratio n Small Pulley System 

- -D 
0 A27 9 28.7 18 1.59 - 2.76 Polypropylene 
W Powder 
N 0 
S P A28 18 60.1 24 1.98 - 3.72 " 
T E 
R N A29 27 97 33 2.78 - 4.48 
E 
M Large Pulley System 

A13 21 53 60 2.45 2.27 2.89 

A14 42 83.1 57 2.44 3.44 3.51 

U A15 60 113.5 60 2.48 2.48 3.93 
P 
S 0 A16 21 58 55 2.42 2.75 3.44 Polypropylene 
T P Powder 
R E 
E N A17 60 116 55 2.29 3.08 4.20 
A 
M A18 21 45.6 63 2.54 - 3.51 Polystyrene 

Granules 

A19 42 88 60 2.51 - 3.17 

A20 60 - 60 2.47 - - " 
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Thus the throughput rate obtained under one given condition gives an 

indication about its influence on the melting behaviour, relative 

pressure generation of the screw arrangement and the passage of the 

polymer. The throughput rate directly affects the degree of fill which 

in turn also directly affects the power consumption. 

If the output is controlled by polymer in pre-vent section then 

obviously it would be affected by factors affecting the volume of 

material in pre-vent zone. The main part is played by melting 

mechanism, heat generation and upstream pressure generation. This is 

clear in the case of polypropylene granules where an increase in 

throughput results by changing the discs configuration from open to 

closed in upstream position. (Table 4.3 A reference Run Al, 2 and A7 

and A8). This shows an increase of 6.6 and 141 by weight at 9 and 18 

rpm screw speed respectively. The closed configuration of mixing disc 

imparts more resistance to flow and thus associated higher pressure 

generation at the point results in more melting and compaction. This 

is confirmed by barrel withdrawal technique. The photograph (Fig 4.11) 

shows two different throughput rates at the same screw speed. The 

condition with higher throughput rate shows higher filled volume (Fig 

4.11). Mixing discs in upstream position also function as melting 

discs and moving them to downstream position results in less pressure 

build up in upstream position which is associated with less melting. 

Thus in downstream position (i. e. one mixing disc left in upstream 

position while rest are moved in downstream position) it results in a 

reduction in output at low screw speed (about 7X-Table 4.3A reference 

Runs A7,21). However this associated reduction in output is not 

observed at high screw speed (Table 4.3A reference Runs A8,22). It 

could be that one mixing disc in upstream location at high screw speed 
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Partially Filled Screw Section 

[Highly 
Filled Screw Section 

Fig. 4.11 Effect of throughput rate on screw filling . 
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Table 4.3 : Correlation of mixing disc configuration, polymer form 
and throughput 

A. POLYPROPYLENE GRANULES 

Mixing disc 9 rpm 18 rpm 27 rpm 

configuration output output * output ratio 
(Kg/hr) (Kg/hr) ratio (Kg/hr) 

open-upstream 33.1 63.8 1.92 89.1 2.69 
(Al)** (A2) (A3) 

closed-upstream 35.3 73.2 2.07 - - 
(A7) (Aß) 

closed-downstream 30.8 74 2.40 105 3.40 
(A21) (A22) (A23) 

B. POLYPROPYLENE GRANULES Vs. POWDER 

Mixing disc polymer 9 rpm 18 rpm 27 rpm 

configuration form output output ratio output ratio 
(Kg/hr) (Kg/hr) (Kg/hr) 

powder 30 64.5 2.15 95.4 3.18 
Closed-downstream (A24) (A25) (A26) 

granule 30.8 74 2.4 105 3.40 
(A21) (A22) (A23) 

C. POLYPROPYLENE POWDER 

Mixing disc 9 rpm 18 rpm 27 rpm 

configuration output output ratio output ratio 
(Kg/hr) (Kg/hr) (Kg/hr) 

closed 30 64.5 2.15 95.4 3.18 
(A24) (A25) (A26) 

open 28.7 60.1 2.09 97 3.37 
(A27) (A28) (A29) 

* It is the ratio of throughput at given screw speed and that of at 
9rpm. 

** The numbers in brackets refers to run numbers. 
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is sufficient to generate enough restriction to flow rate, and 

associated rise in pressure generated. Thus there is associated rise 

in temperature due to restricted flow and thus melting. However at low 

screw speed the polymer flow rate is comparatively low and thus less 

pressure generation at mixing disc (in upstream position). So to 

generate the similar pressure, more mixing discs are required at 

upstream position (Fig 3.2). 

The increase in output for setting of upstream mixing disc is achieved 

because there is more space and pressure generation before the vent 

port section which is available for melting. Besides, the pressure 

generation in post-vent port section is low. This is due to the 

presence of mixing disc in downstream position. Otherwise high 

pressure generated would force the material out of vent port. 

On comparing the form of polymer, for closed/downstream setting on 

mixing disc, the granules show a better output than powder (Table 4.38 

- Run A21,24 and Table 4.2A -Run A21 to A26). The low throughput for 

powder can be explained by inability of the one pair of melting discs 

(in upstream position) to completely fuse the powder and thus less 

compaction of partially molten polymer. As the pressure at vent port 

restricts the volumetric throughput, the powder throughput reduces due 

to partial melting and low bulk density. This is clearly shown by 

associated data on two sets of runs (Table 6.2A Run A21 to 26). Thus 

granules show higher throughput which leads to higher melt pressure at 

pre-melting disc position (i. e. upstream) and at die end position 

(shown by transducers). The runs with powder show higher filled volume 

(due to early but partial melting of powder) which leads to higher 

minimum and mean residence time and higher variance. The calculated 

filled volume studies (Table 4.2A) and barrel withdrawal studies 
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(section 4.4) confirm that powder polymer gives higher filled volume. 

Due to low surface area, the granules remain partially fused and thus 

show much higher melt viscosity and thus higher current consumption 

and screw torque. 

However changing the position of mixing discs i. e. moving the mixing 

discs to "upstream" position and operating extruder at twice the screw 

speed (by changing the pulley size in the drive) changes the whole of 

the scene. 

The increased number of mixing discs in upstream position (five pairs 

Vs one pair) associated with increased polymer flow rate through them 

(due to increased speed) leads to increase in pressure generation at 

pre-mixing disc positions (Table 4.1 part 2 Run A13,15 Vs A16,17). 

This helps the melting of the powder and thus better polymer 

compaction than occurs in the above case (Downstream mixing discs Run 

A21 to A26). This better melting and compaction leads to the transport 

of more polymer and thus increase in throughput than with granules. 

This leads to higher melt pressure at the end as well. However powder 

still shows a higher variance and filled volume. This is due to early 

melting of the powder (as discussed above). The granules show a higher 

current consumption and a higher screw torque (discussed above). 

This conclusively proves the part played by the mixing discs in 

upstream positions as melting discs. This was supported by 

observations made by barrel withdrawal technique which showed that the 

polymer melting was substantially improved by the presence of mixing 

discs in "upstream" position. Besides, the pre-mixing disc space is 

found to be packed with partially molten polymer if all the mixing 

discs were present in upstream position. In the case of one mixing 
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disc in upstream position and the rest in downstream position this 

space is only partially filled. 

The throughput relationship with mixing discs configuration in 

downstream position while using polymer in powder form shows 

interesting results (Table 4.3 C Run A26 to A32). At low screw speed 

(9rpm) the closed disc configuration shows the highest throughput rate 

followed by open disc configuration. However at higher screw speed (27 

rpm) the trend is quite opposite. It could be due to the fact that at 

low screw speed, the volume of the incoming polymer melt and back 

pressure generated from mixing disc plays an active part in 

determining the output. At low speed probably the closed disc 

configuration (Run A24) consumes a higher power as compared to open 

mixing disc configuration (Run A27). This results in higher melting 

and thus better conveyance due to compaction. However at higher screw 

speed there is a proportional increase in throughput in closed disc 

configuration as shown by a factor of 2.15 and 3.18 for two speeds 

(Table 6.3C). But in the case of open disc, there is a substantial 

increase in output. It could be that enough pressure is generated in 

these cases to give improved melting and transport as compared to 

closed discs where optimum is already achieved at low speed. 

4.2.2 Melting behavioviour: This is an important aspect of 

extrusion process and it gives a clear indication about physical state 

of the polymer which in turn determines the flow behaviour. As the 

physical state of polymer affects RTD substantially, the physical 

variables which change the melting behaviour, would obviously change 

the flow behaviour and thus RTD. The melting behaviour is believed to 

be influenced by screw speed, mixing disc position and configuration, 

the form of the polymer used and temperature profile. The melting 
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process will influence the ratio of molten to unmolten polymer in 

extruder. One typical example for such a relationship between RTD and 

processing variable is the restriction imposed by vent port. This 

physical volume conveyance restriction affects the the degree of fill 

which in turn affects the pressure build up at die inlet and thus in 

turn the flow profile in main stream. The pressure at die inlet also 

affects mixing in "C" shape chamber and also leakage at flight tips. 

Besides, limited melting could affect the unmolten centre position 

which then affects the flow behaviour. So this change in melting 

behaviour affects the flow in numerous ways and thus the resulting 

RTD. 

The melting process in single screw extruder is now fairly well 

understood. Three alternative mechanisms have been found by various 

investigators. (shown in Fig 4.12 ) as reviewed by Lindt (1981). 

Mechanism A is characterised by the existence of a distinct melt pool 

in contact with the pushing flight of the screw (Maddock 1959, 

Vermeulen et. al 1971). In mechanism 8 the dominant melt pool is absent 

but a centre core of solid material is present, which during the 

melting diminishes in both depth and width. The melt is accumulated in 

the molten film surrounding the bed. Mechanism C shows the existence 

of a distinct melt pool in contact with trailing flight. Lindt (1981) 

explained the reason for change of position of melt pool being cross 

channel circulation and leakage flows over the flight, which is 

related to the pressure component of the leakage flow. Fig 4.12 shows 

schematically the three different flow patterns of the transverse 

circulation which can arise during melting. The melting mechanism A is 

essentially closed transverse circulation around the solid bed. The 

transition from mechanism A to B to C is characterised by circulation 

pattern being gradually overridden by the leakage flow. 
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Sakai et al (1987) analysed the melting behaviour in real extruders 

and concluded that in non intermeshing twin screws, melting behaviour 

is very similar to that of single screw extruder. But in the case of 

intermeshing twin screw extruders as compared to single screw 

extruders, the clear solid bed and melt pool in the channel do not 

exist, but they are intermingled. Similarly Janssen (1978)reported 

that the melting mechanism in counter-rotating twin screw extruders 

differs considerably from that in single screw extruders. The melting 

zone is considerably smaller and the complete melting sequence occurs 

within one chamber. The melting mechanism depends on the die pressure. 

At low back pressure the melting process originates from the barrel 

wall while at high back pressure it originates at the solid melt 

interface. The die pressure also affects the length and place of the 

melting zone. 

However in GKN Windsor 250X, a co-rotating extruder with special 

melting discs, the mechanism is found to be considerably different 

from both types of extruder described above. However after a certain 

stage, it resembles mechanism B of single screw extruders (see above 

Fig 4.12 ). The melting process was studied by shock cooling 

experiments (described in section 3.5). The sections were cut from C 

shape chambers. In this extruder the melting was brought about by the 

introduction of restriction in the polymer flow path by the mixing 

disc, in upstream position. The initial melting was achieved over a 

remarkably short distance i. e. in one step-over the restriction. This 

is in contrast to the single screw extruder where the melting process 

extends over a considerable length (depending on operating conditions 

but generally of the order of ten screw diameters) and to the counter 

rotating where the melting generally takes place within five to six 

chambers. Although it must be remembered that this type of melting is 
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achieved as a result of presence of mixing discs in the screw design 

and therefore is not common to all the co-rotating extruders. 

The melting process in this extruder is similar in some aspects to 

some large single screw extruders. In this, like large single screw, 

the solid bed was apparently located in the middle of the chamber, 

once the polymer melt has crossed the main melting discs. The solid 

bed apparently is located in the middle of the chamber between layers 

of molten polymer. It steadily and slowly decreases in size (similar 

to found by Dekker 1976). However the presence of some interruption in 

the flow path, such as discontinuity in screw thread, can disturb the 

flow pattern and therfore can force the mixing of molten with unmolten 

part. In this the low thermal conductivity of polypropylene also plays 

a significant part. The solid unmolten core represents an isolated 

polymer unit and its melting depends on the barrel temperature, heat 

generated by shearing and power consumption during the course of it 

overcoming pressure barrier at mixing discs. However the solid 

unmolten core seems to mix fairly well by interruptions in the flow 

path (Fig 4.67 as given on page number 213) and thus enhances the 

melting process. The interruptions in the flow path are caused either 

by the interruptions in the screw flight (due to segmented nature of 

the screw) or by the presence of the mixing discs etc in downstream 

position. 

In single screw extruders. a similar approach is taken to enhance the 

melting process by interrupting the solid bed in centre. The 0DM 

(organised distributive mixing, from Rheotec- 1982 ) screw provides 

homogeneous melt by ensuring a regular. frequent redistribution of 

plasticated material between the area in contact with the screw 

flights and that in the centre of the flow path. It does this by a 
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multiflight screw section with the flight starts staggered 

circumferentially at an angle between 120 and 3600 - Fig. 4.63. 

4.2.3 Filled volume: The actual filled volume of the extruder is 

important from the RID point of view. In a chamber at the hopper end 

the process material is usually a granular solid and there is a 

considerable amount of air present. So there can be little pressure 

difference developed between adjacent chambers (Janssen et. al 1976). 

For this reason the flow of the material in this part of the machine 

can be regarded as plug flow. At the first set of mixing discs, 

melting starts. However the actual extent of melting depends on 

various variables. Once the polymer is in molten form, flow profiles 

are formed and RTD results. So it is the molten volume which actually 

determines the RTD. The filled volume in the twin screw can be 

dependent on the two parameters. 

1. Degree of fill 

2. Polymer melt zone length 

1. Degree of fill: The degree of fill does not influences the RTD 

directly. This is because the axial velocity of the polymer melt is 

independent of the degree of fill of the screw (Booy 1980). However it 

(degree of fill) affects it indirectly, by creating pressure at the 

screw tips. The pressure buildup and thus associated pressure gradient 

affects the polymer flow path (relative flows through various flow 

paths - as described later on in section 4.4) and the flow profile in 

polymer melt. 

The degree of fill, in GKN Windsor 250X, is influenced by feed rate of 

the polymer at hopper and by the volumetric conveying capacity of the 

screw section in the vent port region. However the conveying in the 
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vent port zone is influenced by melting capability of pro-vent zone of 

the extruder. The melting capability is the sum of heat input by 

heater bands and shear heat generated while crossing the mixing discs. 

2. The polymer melt zone length affects the RTD in the following 

manner. 

(i) It changes the total filled volume of the extruder, as the 

different lengths of the melt zone with same degree of fill would give 

different filled volumes. The conveying characteristics of the filled 

and compacted volume is different from that of the loosely filled 

zones. 

(ii) The polymer melt zone length, also determines the relative 

amounts of four possible zones. So in a condition with longer polymer 

melt zone, the zone where solid/melt co-exist would be longer than the 

condition with shorter polymer melt zone. Therefore as a result of 

changing polymer melt zone length, the relative amounts of four 

possible zone would change. These zones being those of particulate 

solids conveying, of melting where in solid and melt Co exist, of melt 

conveying by partially filled chambers and of fully filled chambers. 

The melt zone length is controlled by melting behaviour which in turn 

depends on various factors including temperature of polymer, set 

temperature profiles, polymer form, mixing disc configuration (only in 

upstream position) and screw speed. 

The influence of processing variables on filled volume has been 

studied by some investigators. For counter-rotating extruder 

Rauwendaal (1981) has plotted the reciprocal throughput against mean 
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residence time at different screw speeds and throughputs and found a 

linear relationship. The proportionality between i and 0-1 indicates 

that the filled volume of the extruder is about constant. This becomes 

clear from a well known relationship, 

Filled volume 
Mean residence time 

volumetric throughput 

He concluded that the fully filled length of the extruder varies only 

slightly with changes in screw speed or in throughput. 

Similarly Janssen (1978) carried out work on counter-rotating extruder 

regarding the melting zone which can be considered to be closely 

related to the melt zone length studies. This is because the earlier 

the melting position in extruder the longer would be melting zone. He 

found that melting starts at a point that is more sensitive to screw 

speed than to total die pressure. As regards to the melt state, the 

melting process itself is more dependent on the die pressure than 

screw speed. So in short, the screw speed does not affect the length 

but only the location of the melting zone. The die pressure affects 

both the length and the place of the melting zone. The former effect 

is a reflection of the time needed to bring the solids up to their 

temperature. 

In the present studies the relationship between the filled volume and 

mean residence time was studied and it was found that filled volume 

decreases with increase in screw speed (indicated by the low mean 

residence time value) for most of the conditions. However for one 

condition it remains constant (Fig 4.13). 
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Table 4.4 Distribution of the material within the various flights 

in a mixing section after few turns of the screws 

(after Martelli 1983) 

No. of 

turns 

1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 

0 100 0 0 0 0 0 0 0 0 

1 30 70 0 0 0 0 0 0 0 

2 9 4.2 4.9 0 0 0 0 0 0 

3 2.7 18 44 34 0 0 0 0 0 

4 0.8 7.5 26 41 24 0 0 0 0 

5 0.2 2.8 13 30 36 16 0 0 0 

6 0.07 1 6 18 32 30 11 0 0 

7 0.02 0.3 2.5 9.7 22 31 24 8 0 

8 0.00 0.1 1 5 14 26 29 18 5 
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The filled volume studies show that it is reasonably constant for 

various conditions except in low feed rate (A5) or when feed is 

restricted due to power or torque requirements (Run A13 to 15). The 

runs with mixing discs in upstream, open position - for both normal 

and modified pulley system (and thus increase in screw speed) show a 

decrease in filled volume with increase in screw speed. (Run Al, 2. 

3, and A13,14,15). The reason for this is that at high screw speed 

the residence time is low and melting is delayed. The heat needed to 

warm the solids up is about three times the latent heat required to 

complete the melting process. (2.8 x 1053/Kg and 8.4 x 10; 3/Kg 

respectively - Janssen 1978). The decrease in filled volume of run 

with low set temperature profile on extruder (Run A6) can similarly be 

explained. 

However on changing the mixing discs configuration to closed in 

upstream position or moving these to downstream position, a complete 

reversal of trend is found. In these cases the filled volume increases 

with increase in screw speed (indicated by the low mean residence time 

value). But the reasons for this filled volume in both of these cases 

are different, as explained below. 

For upstream mixing discs in closed position (Run A7,8) there is a 

net overall gain in filled volume as compared to upstream open disc 

configuration( Table 4.2 A ). This is probably due to more resistance 

offered by closed configuration and thus more pressure builds up. This 

is supported by the shock cooling experiments where an extended 

polymer melt zone was found before closed mixing discs as compared to 

open mixing discs (similar to work as shown in Fing 3.3). The increase 

in pressure build up in front of mixing discs improves melting which 

in turn helps compaction'of polymer and thus overall melt volume 
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increases in post mixing disc screw section. 

For downstream mixing disc position, (Run A21,22 and 23), however, 

there is a net overall loss in filled volume as compared to upstream 

open disc configuration. But in common with above condition, there is 

an increase in filled volume with increase in screw speed except when 

available current/torque is a restriction (A23). In this setting 

(downstream position) only one mixing disc is present in upstream 

position and it acts as a melting disc. As this one disc is not 

sufficient to cause restriction to flow, low heat dissipation and thus 

poor melting and poor packing of polymer results. As transportation 

across vent-port is restricted by a fixed volume, poor packing of melt 

leads to reduced polymer transport and thus less filled volume (Run 

A21 Vs Al). As is clear from the foregoing discussion the vent port 

makes this machine behave as if there are two extruders in series. 

Thus it is completely different from any twin screw extruder so far 

studied by other workers. 

However increase in screw speed increases the flow rate of material 

through melting discs (output/hour/revolution). In these conditions 

probably the one melting disc, in upstream position. is sufficient to 

cause a relatively high pressure build up in front of melting disc and 

thus increase in melting. This leads to compaction of polymer which in 

turn gives filled volume. A similar trend is observed when using 

mixing discs in downstream position with polypropylene powder. In the 

case of closed disc configuration (Run A24,25, and 26) maximum filled 

volume is achieved at 9 rpm screw speed. At this screw speed the main 

melting is done by one melting disc in upstream position while the 

rest is completed by closed disc configuration. The increase in screw 

speed does not cause any improvement for this setting. However in 
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0 open disc" configuration (Run A27,28,29). at low screw speed the 

filled volume is low due to poor melting by the first melting disc in 

upstream position and less contribution by open discs in the 

downstream position. But increase in screw speed causes the pressure 

build up at first melting disc and consequently increase in filled 

volume occurs. This is enhanced by contribution of open mixing discs 

which, due to increase polymer flow rate, exert a significant back 

pressure or rather a restriction to flow. 

The melting characteristic of powder polypropylene is quite different 

to that of granules. The large surface area of powder enhances the 

melting rate and thus for similar heat available powder shows a faster 

melting. The bulk density of the powder is low as compared to 

granules. On comparing the powder with granules for similar 

conditions, (Run A21 to A24) although the melt temperature is similar, 

the throughput and thus melt pressure are higher for the powder 

indicating that powder has higher filled volume. This is probably due 

to early melting in powder which leads to overall longer molten zone 

rather than filling of the chambers. 

4.2.4. Power consumption: This is an important consideration from 

technical as well as economic point of view. As described in 

Chapter 4, a minimum amount of energy consumption would be desirable 

to achieve good distributive and dispersive mixing. 

In this work, power consumption was studied by calculating the 

specific energy consumption (SEC) and polymer processed per unit 

current (Throughput/current). Net SEC (specific energy consumption) 

was calculated from screw torque and screw speed as follows. 
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2nxnxM 
Specific energy consumption 

m 

where n= Screw speed (Rev/sec) 

m= Mass throughput rate (Kg/sec) 

H= Screw torque (NM) 

Whilst, 

t 
Screw torque (NM) = Force (Kg) x 9.8 x distance (H) x cos 22 

* Strain gauge attached to fly wheel at 220 angle. 

The net SEC can be indicative of shearing undergone (work input) by 

the polymer during its passage through extruder. By carrying out 

theoretical work Denson and Hwang Jr (1980) concluded the following 

points. 

1. One third to nearly half the power is consumed in the clearance 

region of the co-rotating twin screw extruder. 

2. The power consumed in flow in the cross channel direction 

(Circulatory flow within the channel) is rather negligible. 

3. There is a linear relationship in power consumed with flow rate 

and pressure gradient in the down channel direction (axial flow down 

the channel). 

The effect of various factors on SEC can be explained as follows. The 

mechanical energy from the extruder motor is transferred into heat by 

frictional and viscous resistance. It follows that filled volume or 

higher pressure at screw tips would also lead to higher torque. 

provided other variables remain constant. This is because unmolten 

polymer, due to its particulate structure (in unconsolidated form as 

compared to molten form where the granular boundaries disappear), does 

not offer significant resistance to screw rotation as compared to 
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polymer melt. In short a higher SEC value would lead to excessive 

generation of heat and hence a temperature rise. The individual cases 

will be discussed under separate headings. But for general interest 

the cases dealing with throughput rate and mixing disc configuration 

are discussed. 

4.2.4.1 Throughput Rate: The condition with low throughput rate (Run 

A4 -see table4.1 part I for details on runs and table 4.20 for SEC 

values) shows a low SEC value, and marginally higher 

throughput/current value as compared to the run with similar 

conditions but higher throughput rate (Run W. The run with low 

throughput rate shows a decrease in filled volume. So it is clear that 

decrease in filled volume leads to low SEC. However it was found that 

once the extruder is nearly full, any increase in throughput leads to 

a sharp increase in the power consumption. The barrel withdrawal 

studies (discussed in section 4.4) have conclusively proved (section 

4.2.1) that increase in throughput rate increases the overall fill of 

the screw and thus filled volume (Fig 4.11). Thus this increase in 

filled volume probably leads to more leakage flow which leads to 

sudden increase in power consumption. This result is similar to the 

result of theoretical work carried out by Denson & Hwang Jr who stated 

that the One third to nearly half the power is consumed in the 

clearance region of the co-rotating twin screw extruder. 

4.3.4.2. Mixing Disc Configuration: On comparing runs at high speed 

with mixing disc in downstream position (A26,29,32) it becomes quite 

clear from throughput/current ratio that closed disc configuration 

consumes more energy than when discs are open. However it is not 

advisable to compare results at different screw speeds. This is 

because not only the throughput is changed but associated losses in 



129 

the drive occur together with the lateral forces on the screws which 

are obviously related to power loss. The heat transfer from heater 

bands is low and to maintain the enthalpy of system, more mechanical 

dissipation has to occur and thus more loss of power. 

4.3 INFLUENCE OF VARIABLES ON RTD : 
The residence time of a polymer particle leaving the co-rotating twin 

screw extruder consists of the sum of the residence times it 

experiences in the solid transport zone (t3), melt zone (tm) -a zone 

where the polymer is fully molten but the chambers are only partially 

filled (this also includes the devolatilization zone) and pump zone 

(tp)- where chambers are fully filled and pressure build up occurs. 

The influence of the die can not be overlooked. However it is assumed 

to be constant within the range effect of variables. 

tt = is " tm 4 tP 

Firstly the general flow mechanism of polymer melt along the screw is 

discussed in detail together with all the possible leakage flows. The 

effect of a selected variable is assessed by studying. 

1. the associated changes in other variables (i. e. variables not 

changed willingly). This is because in extrusion process, the 

variables are interdependent. 

2. the effect of all these changed variables on the overall flow 

mechanism. These variables affect by changing 

a. the flow path available to polymer 

b. melt state of the polymer which includes the filled volume and 

length of the complete melt zone, i. e. zone filled with molten 

polymer (both semi and completely filled). This includes the 
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effect of leakages. 

a. Flow path. 

The flow path contributes considerably in spreading RTD. The passage 

formed by the trapezoidal channels is triangular in shape and its area 

is defined by the angle of the flank of the flights (Fig 4.62). Due to 

this change of shape at intermeshing zone, a considerable amount of 

reorientation of the material takes place. Furthermore, because of 

differences in diameter in which the material lies, different linear 

velocity results for different layers. So the high linear velocity for 

the layer near the tip of flight and lower for those near the core of 

the screw causes mixing. The division of the melt at intermeshing zone 

enhances the spreading of the melt. This is shown in Table 4.4 and Fig 

4.16 where the colour of the material is suddenly changed and the 

concentration of the old material in the first flight decreases very 

rapidly (Martelli 1983). 

b Melt State of the Polymer. 

i) Flow in first two zones: 

It has been shown that in a single screw extruder the first two zones 

contribute very little to the spread of RTD (Lovegrove and Williams 

1973). In the first two zones, i. e. in solid transport zone and in the 

melt zone the leakages are negligible and the flow in these zones can 

be assumed to be plug flow. Furthermore Kemblowski and Sek (1981) 

have shown that in a single screw extruder a relationship exists 

between the RTD concerning melt extrusion as well as plasticating 

extrusion, which indicates that RTD of the material in the extruder 

depends on the flow mechanism in the pump zone. The contribution of 

the melt film to the RTD was investigated by Lidor and Tadmor (1976) 
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in single screw extruders. Their result indicated that the 

contribution due to melt film in RTD was negligible. 

On transferring the above findings to the first two zones of twin 

screw extruder the following becomes apparent. The polymer in the 

first two zones is in a non-molten state, so that distributive mixing 

due to flow profile in polymer does not take place. Consequently plug 

flow occurs. But due to different flow paths formed, along the screw, 

some spread in RTD occurs (Fig 4.54). These different flow paths are 

formed as a result of intermeshing of two screws (as discussed in 

point "a" as above). The flow of polymer and its distribution in 

various other chambers are shown in Fig 4.55. 

ii Flow of polymer in pump zone: The flow of polymer in this region 

results primarily from frictional and viscous forces. But due to 

intermeshing screws (unlike single screw) the material is constrained 

and physically prevented from rotating with the screws. A barrier is 

formed for backflow due to intermeshing regions thus giving a limited 

positive displacement action. The balance between drag flow and 

pressure flow largely determines transport due to the openness of the 

channel. The conveyance never reaches zero even in difficult cases, as 

in sticky materials. This is because of the wiping action of the 

screws. Therefore a so-called forced conveyance exists. The material 

is redistributed at the intermeshing zone. This flow behaviour is 

discussed in detail in section 4.4 . 

For the ease of understanding some typical RTD curves together with 

some extreme results from present studies are shown in Fig 4.17. This 

figure shows that the flow in GKN Windsor varies from one extreme 

(approaching to plug) to another extreme (approaching laminar mixing). 
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Some further information was extracted out of the RTD curve obtained 

from these studies, similar to the approach taken by some researcher 

earlier (discussed in section 2.2.7). The holdback area and 

dimensionless variance were calculated from the RTD curves. The hold 

back area gives an indication of the overall flow pattern. This is 

somewhat similar to the concept of blending efficiency and therefore 

the blending efficiency is not calculated. The dimensionless variance 

gives the measure of the spread of the distribution about the mean. 

This in turn gives an indication of the axial mixing of the extruder. 

As regards the flow models, the flow model based on the concept of 

plug flow number fails to represent the present flow. The model flow 

based on this plug flow number shows a straight line relationship on 

log linear plot whilst the RTD curves from the present work show a 

non-linear relationship on similar axes. 

Now having covered in general the flow and RTD characteristics, the 

effect of various variables can be studied. 

For convenience, the variables are considered in three categories: 

1. Processing variables 

2. Machine variables 

3. Materials variables 

The processing variables are those which can be changed by the machine 

controls instantaneously, while machine variables are those which nec- 

essitate change in hardware of the machine. The material variables are 

self explanatory. The detailed conditions of each run are shown in 

Table 4.1. and details on the variables studies are given in table 3.2. 

4.3.1 Effect of throughput rate: In closely intermeshing twin 
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screw extruders, the throughput rate is a realistic variable as the 

extruder shows a positive conveyance of the polymer, largely 

independent of the frictional relations. 

At a constant screw speed in GKN Windsor, the throughput rate and 

consumed current show a linear increase initially. But at higher 

throughput rate there is a substantial increase in the current with a 

small increase in throughput rate. From this it follows that it is not 

always economical to obtain maximum output from the extruder but 

instead to operate it at slightly lower throughput. Conventionally up 

to now the generally applied limitations on output used to be the ac- 

ceptable melt temperature and process stability. But in view of above 

observation the efficiency should also be added to the list. 

The effects of throughput rate have been extensively studied by 

various investigators. In the present work two different throughput 

rates at a constant screw speed were compared. The first throughput 

being the maximum achievable and second being 13 X less than the 

first(33.1 kg/hr vs 29.8 kg/hr - Run A4 and A5). This reduction in 

throughput rate leads to a 30 X decrease in melt pressure at the screw 

tip (from 2.27 to 1.58 MN/m2). Obviously this decrease in the melt 

pressure would reduce the associated leakage flows in the completely 

filled zones especially towards the screw end. The polymer processed 

per unit current (the ratio of throughput rate and current) shows an 

increase with decrease in throughput thus indicating less work input 

to the polymer at low throughput level (Table 4.2). This again adds 

evidence to the above stated observation that increase in throughput, 

at the same screw speed, leads to a substantial increase in current 

consumption. This is associated with decrease in screw torque which 

once again reflects the smaller work input. 
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The change in throughput rate affects residence time significantly. 

The minimum residence time increases slightly in real time value with 

decrease in throughput rate (from 9.25 to 10 minutes). Similar trends 

were observed by Rauwendaal (1981) and Walk (1982). The work by 

Rauwendaal shows that the relationship in throughput and minimum 

residence time is a hyperbolic one (Fig 4.19). Walk observed that 

increase in throughput rate is associated with decrease in the minimum 

residence time which tends to level off at higher rates. However a 

completely reversed relationship is seen if the residence time values 

are made dimensionless. The results from the experiments carried out 

show a decrease in minimum residence time (dimensionless) with 

reduction in throughput rate (from 0.8 to 0.77 - Table-4.2A) thus 

tending towards Newtonian fluid flow for which the value is 0.75. 

Walk's results, if converted to dimensionless form, give similar 

trends. 

Mean residence time, however, increases with decrease in throughput 

rate (Table-4.2A), similar to that reported by Walk (1982), Hermann 

and Eise (1981) - Fig 4.20. The barrel withdrawal results (Fig 4.11) 

show that increased throughput rate leads to highly filled screw 

sections. The longer mean residence time at low throughput rate, at 

the same screw speed is caused by the available free space as compared 

to the higher throughput case where a higher filled volume shows that 

the screw sections are more packed. The packed screw sections give 

polymer melt little chance to "rattle around" or rather restricts the 

free movement of polymer melt in the "C" shape channel. Similarly 

Tucker and Nichols (1987), by their work on counter-rotating non- 

intermeshing twin screw extruder, have found that the mean residence 

time varied approximately linearly with the inverse flow rate. They 
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have, in their paper, presumed it to be an effect of free volume. 

The effect of throughput rate on the overall RTD is being extensively 

studied by various other investigators. Theoretical studies based on a 

Newtonian isothermal flow model in single screw extruder (Pinto and 

Tadmor 1970) show that RTD is not affected by processing variables. 

But the model taking account of curvature indicates that the RTD is 

dependent on the operating conditions. Pinto and Tadmor (1970) have 

shown that the deviation from the parallel plate model increases as 

the flow rate is increased at a constant screw speed (Fig 4.21). At 

high throughput rate the conveying becomes more positive moving nearer 

to plug flow. Similar results were reported by Bigg and Middleman 

(1974) who showed that for a fixed power law index fluid the same 

behaviour is observed (Fig 4.22). In this figure G Zis variable 

throughput. In the present studies, a similar trend was observed. When 

plotted on the same axes, (as that of Bigg and Middleman 1974), the 

curve shows the same trend as that of Bigg and Middleman. Low 

throughput has relatively less portion of flow as vertical line 

(vertical portion represents plug flow). High throughput shows 

more plug flow. However as both of these conditions represent rather 

highly filled volume, the extreme case of low throughput (e. g. Gz 2 

0.5) is not seen. This is also clear from Fig 4.23 which shows that 

the flow becomes more positive (move towards plug flow) at higher 

throughput. The lower throughput shows early emergence of melt, and 90 

Z of the material leaves at less time (dimensionless) than that of 

higher throughput rate, but last 10 7 shows much longer and broader 

tail suggesting more axial mixing overall. Similarly Rauwendaal 

(1981) showed both in co and counter-rotating extruders that high 

degree of fill gives more plug flow behaviour (Fig 4.24). The results 

from the present work are plotted on the same axes (Fig 4.24). It 
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shows a similar trend to that found by Rauwendaal (1981). However the 

flow curve is quite revealing. It shows that the flow in GKN Windsor 

is substantially more plug type than the extruders tested by 

Rauwendaal (1981) viz. Werner b pfleiderer. 

The reason for plug flow behaviour at higher throughput rate could be 

as follows. 

1. At low throughput rate, the filled volume decreases as compared to 

that at high throughput (shown by barrel withdrawal experiments - 

section 4.2.3). So at low throughput rate, the polymer has more 

unoccupied space inside the screw channel (because of low amount of 

polymer melt inside the extruder) during passage through the extruder. 

This could lead to more free movement rather than compact movement (as 

in high throughput) and could lead to more intermixing with other 

polymer axially and thus to greater axial mixing. 

2. The heat for melting is derived from shearing of the polymer and 

from heat transfer from barrel wall. For the same heat input from the 

heater bands, there is restricted melting at higher output at same 

screw speed. This is because less energy per unit polymer mass is 

available at high throughput rate as compared to low throughput rate 

at the same screw speed. Furthermore the increase in throughput rate 

is associated with a decrease in residence time, and this once again 

reduces heat transfer (due to limited time available inside the 

extruder) and thus melting. In the present work it was found that at 

higher screw speed and at higher throughput rate a certain amount of 

unmolten polymer was coming out in the extrudate. The partially molten 

polymer does not show a typical viscous flow and up to a certain level 

of unmolten fraction shows a rather plug flow motion. This is because 

of restricted motion and difficulty in slipping past other polymer 
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particles. This above explanation is futher supported by the work of 

Lidor and Tadmor (1976) who have reported similar results for 2.54 cm 

diameter single screw extruder (Fig 4.25). They show that at a given 

throughput rate the RTD curve shows a good axial mixing. However, as 

the throughput rate is increased, the RTD curve starts to show a 

portion of vertical line (see Fig 4.25). This portion in the curve 

increases as the throughput rate is increased. They found this to 

correlate with the amount of solid or unmolten particles in the 

extrudate. 

3. The velocity distribution is dependent on the position of zero 

shear stress point (Y0z). This is a function of pressure gradient, 

viscosity etc. ( Hermann, Burkhardt and Jakopin 1977). The flow rate 

and Yoz/h (where h is height) are dependent on each other, and thus 

changing the throughput dues change velocity distribution which once 

again changes the RTD. 

Todd (1974) showed that in co-rotating extruders, axial mixing was 

much more strongly affected by equipment features than by feed rate. 

When plotted on log probability paper, different feed rate does give 

similar conveying for 90 Z of material, but the other 10 X of material 

flows in a different manner. The material stagnates at higher 

throughput rate. A similar trend was seen in the present work when 

plotted on log probability paper (Fig 4.27). However, in this case 80 

7 of the flow (rather than 901 as discussed above) shows a rather flat 

and linear relationship between the dimensionless time and internal 

age distribution, but for the last 20 X of the flow, the flow 

characteristic changes and it appears as if this portion of flow (20X) 

is following a different regime. On the same figure (Fig 4.27), the 

results from work of Todd (1969) are plotted. This comparison shows 
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that the GKN Windsor has more plug flow as compared to Baker Parkin's 

twin screw extruder. The flatness of the plot shows the plug type of 

flow. 

The value of variance of RTD, which is the measure of spread of dis- 

tribution, does show the difference numerically. The decrease in 

throughput at constant speed is associated with an increase in vari- 

ance from 102 to 190. which means a broader RTD. These results are 

similar to that reported by Walk (1982) for non-intermeshing twin 

screw extruder(Table 4.5). 

Kemblowski and Sek (1981) have shown that in a single screw extruder, 

at constant screw speed and Reynolds number the dimensionless variance 

decreases with increase in dimensionless volumetric throughput, reach- 

ing minimum value with a free outlet and approaching unity when die 

is closed (Fig 4.26). This once again confirms that at high 

throughput, a more plug like flow behaviour is observed due to the 

effect of velocity distribution. 

4.3.2 Effect of temperature profile: Two runs were performed using 

identical conditions except in the second case the temperature setting 

was reduced by 100C in zone 3 and zone 4 (Run A4 and AG - Fig 4.28). 

The mixing discs were situated in the zone 4 of the barrel (Fig 3.2). 

The change in the temperature profile can have a major effect in the 

three respects. 

a. Coefficient of friction in between the metal and polymer 

b. Viscosity of the polymer melt 

c. Filled volume 
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TABLE 4.5 : VARIOUS CONDITIONS FOR RTD STUDIES & ASSOCIATED RESULTS 

(AFTER WALK 1982) 

I 

screw 

config. 

variable 

studied 

screw 

speed 

(RPM) 

barrel 

temp 

C 

feed 

rate 

(kg/hr) 

I 

t 
min 

(sec) 

I 

t 

(sec) 

I 

dim. less 

t 
min 

(sec) 

I 

2 

I 

v f 

1( screw speed) 200 1 218 I 82 1 30 1 45 I 0.66 1 344 1 47.91 
I 

1I 1 
I 

275 1 218 I 
I 

82 24 143.9 
i 

0.55 1 
I 

300 1 45.31 
1 I 

1I 
I 
1 

I 
450 218 

I 
I 82 20 1 32.4 

I 
0.62 1 

I 
124 1 33.61 

2I feed rate 
I 

300 1 218 I 
I 

45 43 1 
I 

76.4 I 
I 

0.56 1 
I 

714 1 49.41 
I 

2I 
I 
1 

I 
300 1 218 I 

I 
68 1 33 1 

I 
54 I 

II 
0.61 

I 
463 1 53.01 

2 300 1 218 1 91 1 30 1 44.9 1 0.66 1 
I 

401 1 57.01 
I 

2I 1 
II 

300 1 218 1 113 1 26 1 33.1 
II 
I 0.78 1 

I 
153 1 

I 
53.61 

I 
2 

I 
Iscrew geom. 

I 
1 200 1 

I 
218 I 

1 
82 1 

1 
40 158.2 

I 
I 0.69 

II 
1 359 1 67.51 

3 Ireprodu: 
I 

200 1 
I 

218 I 82 
I 
1 38 

I 
157.9 

I 
1 0.66 

II 
1204 

I 
1 68.81 

3I 1 200 1 218 I 82 1 38 160.4 0.63 1 247 1 69.61 
I 

3I 
I 

temperaturel 
I 

200 1 232 
I 

82 
I 
138 

I 
163.2 

I 
I 0.60 

I 
1 347 

I 
171.7 

3I 
I 

1 
I 

200 260 I 82 
I 

138 
I 

162.2 

I 
I 0.61 
I 

j 450 
I 

1 73.1 

Where Vf is filled volume 

* Dimensionless tmin is calculated as 

t min 
Dim. less t= 

min - 
t 
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a. Coefficient of friction: The conveying in single screw extruders 

depends on the frictional coefficient of the polymer, its temperature 

and steel temperature. But in co-rotating twin screw extruders the 

material is conveyed semi-positively in the C shape chambers (as com- 

pared to counter-rotating where there is a positive conveyance due to 

the closed C shape chambers ). So the friction does play a small part 

in conveying. Because co-rotating extruders basically have 

interconnected C shape chambers so there is no direct cut-off in the 

flow direction (vs. counter-rotating). But at the same time the screws 

wipe each other and so there can be no prolonged stagnation. So the 

temperature of barrel relative to the screw is important in that the 

feed zone must be well below the adhesion temperature of the polymer. 

As material can stick to a warm screw it reduces the effective chamber 

volume and thus the throughput. 

b. Viscosity: The viscosity can affect the RTD results by affecting 

the manner in which the polymer flows in a given path and also a 

reduced viscosity can increase the relative leakage flows. In the 

present case, two RTD results for different temperature profiles, as 

shown in Fig 4.28, do not show any significant difference to each 

other (within the accuracy of the tracer technique) thus showing 

similar flow behaviour. However, on calculating variance from RTD data 

(spread of the distribution - see table 4.2 and section 2.2.7 for its 

value and information about its calculation respectively) it shows a 

marginal decrease in variance value with increase in temperature 

profile (Table - 4.2A variance changes from 1.02 to 1.03). This is 

similar to the theoretically derived results of Janssen et al. (1979) 

which showed that for a model counter-rotating twin screw extruder, 

the viscosity changes do affect leakage flows. The increase in 

temperature (reduced viscosity) gives a increased variance -a better 
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mixing. However this is in complete contrast with the results of 

Kemblowski and Sek (1981) on a single screw extruder who showed that 

the viscosity of the melt is inversely related to variance. Thus 

decreased temperature profile increases the viscosity which increases 

the spread about RTD curve as shown by increase in value of variance. 

However, as the temperature profile is reduced at zone 3 and 4, coin- 

tiding with the position of the melting disc. At this place the poly- 

mer temperature is lower than that in Run A4, and thus melting disc 

offers higher resistance to the polymer melt during passage through it 

which is then reflected in the higher current consumed. It also shows 

a high load on the motor as indicated by the screw torque values 

(increased from 2.78 to 3.34 KNM). This increase again shows that the 

polymer has a higher viscosity. 

c. Filled volume: The change in temperature profile can affect the 

filled volume either by changing the melting position and thus changing 

the melt zone length or by simply increasing the filling in a given 

melt zone. As already discussed earlier, the start of the melting 

zone in the present extruder is fixed by the position of the melting 

disc. However, it was observed that the filled volume increases with 

increase in temperature profile (see calculated filled volume in 

Table-4.2 A). A similar increase was observed by Walk (1982) in non- 

intermeshing twin screw extruder. However, as the increase in filled 

volume is not substantial the consequential effect on mean and minimum 

residence time remains non significant. This is similar to that 

reported by Walk (1982) as shown in Fig 4.29. Janssen et al. (1979) 

reported a marginal increase in mean residence time. 

4.3.3 Effect of screw speed: This is one of the easily attainable 
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variable available on the processor. Although in a real industrial 

sense the operational screw speed is always the maximum available, 

because maximum throughput is desired. 

The screw speed is the most comprehensively studied variable. Various 

investigators have studied its effect on RTD. In the present work 

effect of screw speed on RTD was studied with two pulley systems. 

a. Small pulley system: In this case most of the variables were 

studied at three screw speeds. Although individual effects are 

reported under separate headings the general trend of screw speed in 

all of these variables is studied. 

b. Large pulley system: The small pulley originally fitted by GKN 

Windsor in the drive assembly was replaced by a large pulley manufac- 

tured at Brunel University with the view of increasing the screw speed 

and thus throughput. However, for ease of understanding both the cases 

are studied and discussed together. It is worth noting that in all 

the cases the throughput at each screw speed was kept at maximum. In 

the small pulley system this maximum was restricted by the emergence 

of melt out of the vent port, while in the case of large pulley 

system, the throughput was restricted due to limited available torque, 

and thus complete filling of the screw sections could not be achieved. 

The results for various conditions discussed are given in Figures 4.33 

to 4.39. 

In general, it can be said that by increasing screw speed, laminar 

mixing increases due to the frequent reorientation of the melt . The 

shear rate imposed on the polymer also increases. 
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Fig. 4.37 RTD for upstream-closed mixing disc screw configuration. 

Effect of screw speed on RTD. 
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equivalent diameter x screw speed 
(shear rate = 

channel depth 

However, associated with these is the decrease in residence time which 

tends to limit the effects of shear rate and laminar mixing. This is 

due to the relatively low time exposure to these factors. 

Before looking into the general trends of effect of screw speed, it 

would be better to look into the basic differences in mixing and 

associated factors in the two pulley systems, because this will later 

help to explain the overall trends of screw speed effects. 

The set of experiments with the large pulley system shows a low mean 

residence time. low filled volume and a higher value for specific 

energy consumption. The shorter mean residence time results because of 

higher screw speed and consequently faster movement along the path. 

The low filled volume is due to the limited available torque in the 

design of the machine. The calculated values of filled volume are 

given in Table 4.2A. This is also confirmed by the barrel withdrawal 

experiments which show partially filled screw for large pulley system 

runs which are similar to the low throughput cases (Fig 4.11). The 

higher values for specific energy consumption can be attributed to 

local frictional heat generation which is related to the shear rate 

applied. 

The effect of screw speed on RTD shows some interesting trends, which 

can be broadly classified into three categories. 

1. Group A: In this case the flow shows a move towards more axial 

mixing with the increase in screw speed. This type of behaviour can 
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be said to be more the general type. The increase in screw speed 

leads to increase in melt conveyance per unit time. Exit area 

remaining the same, there is an associated increase in melt 

accumulation under pressure and thus more tangential pressure build 

up. The pressure has more effect on the leakage flow through 

tetrahedron gap i. e. at the intermeshing site more material tends to 

be pushed into the main tetrahedron flow (FTM), and thus less material 

is likely to go through (FTS) small tetrahedron gap which completely 

misses one whole rotation (see section 4.4.1. A). Similarly net drag 

flow would also be reduced due to excessive pressure build up 

tangentially. Furthermore the increase in the screw speed will also 

tend to increase the melt temperature rise due to mechanical 

dissipation. The other leakage flows, however insignificant thus might 

be, would obviously increase in backward direction. Herrmann, 

Burkhardt and Jackopin (1977) have theoretically shown, for a self 

wiping twin screw extruder, that the velocity distribution can be 

influenced by changing the screw speed or throughput, and thus 

velocity distribution can be altered considerably by preselecting 

these parameters. 

However, it should be clear that pressure alone does not cause the 

effective widening of RTD curve because with a free outlet (Kemblowski 

and Sek 1980) the screw speed alone does have a profound effect in a 

single screw extruder. 

So as discussed above, the increase in screw speed leads to flow with 

more axial mixing. This type of behaviour is found in all of the 

small pulley system runs with powder as feed material (Fig 4.35 and 

4.36) and in run with "closed" mixing disc in upstream position with 

granules as feed material (Fig 4.37). 



150 

The reason for this type of behaviour in runs with powder feed is 

quite clear. Faster heat transfer and melting due to increased surface 

area occurs in powder. Once molten it shows normal behaviour as 

described above. However, in a run with closed mixing discs in 

upstream position (Fig 4.37) there is enough pressure build up in 

upstream position due to restricted flow passage through mixing discs. 

This leads to the relatively higher heat input in polymer and subse- 

quently it behaves in manner as described above. 

Similar results, as discussed above in this group A, were obtained by 

Schott and Saleh (1976) in plasticating single screw extruder, by 

Kemblowski and Sek (1981) and Rauwendaal (1981) in twin screw 

extruder. Kemblowski and Sek (1981) have shown that for a given die 

type, increase in screw speed and its consequential increase in 

throughput rate shows increase in variance (Fig 4.32). The RTD curve 

shows a trend similar to group A for various die geometries. But as 

these results are plotted on linear-linear scale, the effect does not 

show up effectively. 

2. Group B: In this case the flow shows less axial mixing with 

initial increase in screw speed, and then it moves towards more axial 

mixing with further increase in screw speed. This type of behaviour 

is found in runs with open mixing disc configuration in upstream 

position (Fig 4.33) and closed mixing disc configuration in downstream 

position (Fig 4.34) - both of these runs being with small pulley 

system and polypropylene granule feed. As explained in group A 

section, the melt state determines the trend in total conveying be- 

haviour as a result of varying speed. However, in this case the gran- 

ules conduct heat slowly due to smaller surface area (vs powder). As 
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there is less resistance in both of the above cases (Fig 4.33 and 4.34 

in the first due to open configuration and in the second because just 

one mixing disc is present. Thus because of easy passage there is 

less pressure build up and thus less melting. On increasing speed 

(from 9 to 18 rpm) probably there is slight build up of pressure 

before melting disc, but due to increased speed the overall net result 

is relatively less melting and therefore move towards more plug flow. 

However, on further increase in screw speed (18 to 27 rpm) probably 

there is now sufficient pressure build up at melting disc position, 

and therefore the flow behaviour produces more axial mixing. 

3. Group C: In this group the behaviour is quite the opposite to that 

of group B. In this the flow shows initial increase in axial mixing 

with increase in screw speed. However, with further increase in the 

screw speed the flow becomes more of the plug flow type. This type of 

behaviour is found in runs with 'open" mixing disc in upstream posi- 

tion with large pulley system with polypropylene and polystyrene 

granules as feed material (Fig 4.39 and 4.48). The reason for this 

type of behaviour can largely be attributed to the melting mechanism. 

On studying the fundamental principles of melting in extruder it is 

quite obvious that polymer gets energy from heater bands and from 

dissipation of mechanical energy. The low heat conductivity of 

polypropylene (0.12 of solid and 0.16 of melt W/mK) causes the mass in 

the middle of the screw channel to remain relatively cool. At low 

screw speeds the dissipation of mechanical energy is insignificant, 

and the melt is heated with a temperature somewhat below the barrel 

temperature. Accordingly the heat flux is routed from the wall of the 

extruder to cold' polymer, and the temperature profile has a minimum 

in the centre of the channel. 
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At high screw speed, especially in large pulley system, the expenditure 

of mechanical energy increases and the amount of heat passing to the 

polymer from the heater decreases on account of the shortening of the 

time for which the polymer remains in the extruder. So as a result, 

with the increase in screw speed, the temperature of the melt 

decreases (due to increase in heat generated by shearing and at the 

same time reduced heat transfer from heater bands). This is confirmed 

from shock cooling experiments which clearly show the presence of 

unmolten centre due to inadequate heating. 

As for a particular shear rate, the melt with lower temperature is 

more viscous, which would result in more energy consumption and also 

show a more plug flow behaviour. So the centre with cold polymer will 

have more plug like flow at higher screw speed (large pulley system) 

which could be the reason for group *C' type behaviour. The 

polypropylene powder behaves in a manner as described in group A type 

behaviour. This is due to better heat transfer and thus better 

melting. Sek (1979) has shown that radial temperature distribution 

has significant effect on RTD. 

Similar results to that of group *C' are reported by Lidor and Tadmor 

(1976), Walk (1982). Lidor and Tadmor (1976) theoretically derived 

RTD results of simulation with a constant flow rate and varying screw 

speed for 2.5 and 6 inches diameter single screw extruder (Fig 4.40 

and 4.41). Furthermore the effect of screw speed while maintaining 

the flow rate at maximum value shows a similar trend. Similarly Walk 

(1982) has shown that in non-intermeshing twin screw extruder using 

PMMA as feed material at constant feed rate that the variance 

decreases with increase in screw speed and thus shows less axial 

mixing. 
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4.3.4 Pulley size: This variable has already been discussed in 

section 4.3.3 - screw speed. 

4.3.5 Mixing disc: The mixing discs are the special feature of GKN 

Windsor extruder and offer variations in the screw design. It has been 

shown by Todd (1975) that screw design is one of the variables which 

has a significant effect on axial mixing characteristics (Fig. 4.42). 

The mixing discs consist of five pair of slotted discs. Depending an 

their position along the screw length, they can act as melting discs 

(in upstream position) or mixing dissc (in downstream position) where 

they impart considerable distributive mixing. 

The effect of mixing disc configuration and position along the screw 

on RTD is studied. The details of the conditions used are given in 

section 3.4.2 B. The position of mixing disc together with other 

arrangement are given in Fig 3.2 and 3.3 . The effect of mixing discs 

is analysed systematically as follows. 

A. Effect of mixing disc configuration in upstream position: In this 

case all five pairs of mixing discs are situated in the upstream 

position. In this position two configurations are used - open and 

closed. The conditions for these runs are given in Table 4.1 and 

plotted in Fig 4.33 and 4.37 (Run A 1,2.3 and A 7,8,9). 

In the upstream position, the mixing discs work mainly as melting 

discs. The energy required for melting depends on the raw material. 

which is shown in Fig 4.43. This melting could be induced quickly by 
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creating a high pressure bed of 200-500 MN/m2 (only applicable in high 

pressure extruders). However, single compression does not give satis- 

factory melting. The melting achieved by mixing disc is considered to 

be more satisfactory. In this the polymer melting is achieved as 

follows. 

The heat for polymer melting is derived from internal friction or 

shearing of the polymer and from conduction of heat from heater bands. 

The mixing disc mixes the molten polymer with unmolten material and 

thus causing shearing of material. This in turn gives rise to heat 

generation which helps melting. 

Thus mixing discs at this stage act as a barrier which completes the 

melting process within a short screw length. The material fills the 

screw threads in front of the mixing discs to overcome the resistance 

or the pressure barrier imposed by the mixing discs. A backup of 

specific length is formed ahead of the mixing discs. The angular 

displacement of the mixing discs (in closed mixing disc situation), 

which are axially arranged one behind the other, enables the material 

to flow through the slot of previous mixing disc into the two adjecent 

slos of the next mixing disc and thus providing a limited intermixing 

of the material. 

In closed disc configuration, the flow path for polymer melt is more 

complicated than that formed by open disc configuration. Thus closed 

disc would offer more tedious path, and consequently more pressure is 

required to overcome this. Therefore more energy would be required 

for this purpose which is then transferred from the screw to the 

product through frictional forces and would generate heat. This 

results in higher energy input for closed disc configuration as 
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substantiated by output/current figures. These figures indicate that 

higher output/current is achieved for open disc showing more power 

consumption with closed disc configuration. 

The filled volume (Table 4.2 A) studies show that closed disc 

configuration does give higher filled volume compared with open, 

presumably due to better melting which is obviously due to high energy 

input (as discussed above). This causes the melt to become less 

viscous which could cause more axial mixing as reflected in the RTD 

curves (discussed later). 

The mean residence time (M. R. T. ) for closed mixing disc configuration 

is higher than that for open, showing better axial mixing for closed 

disc configuration. The same trend is found in variance (Table 4.2A) 

which is higher for closed configuration. Although at higher screw 

speed (27 rpm) the value for variance is the same for both and so are 

the RTD curves. This is presumably due to enough pressure build up at 

this high speed (27 r-pm) at start of mixing disc zone open 

configuration that is enough to cause melting. 

On comparing the RTD curves (Fig 4.33 and 4.37) it becomes quite clear 

that both of these curves at various speeds do not change 

substantially as found in downstream settings (see below). However. 

on comparison between these two settings the open mixing disc 

configuration is more screw speed dependent than closed one. So it can 

be said that the upstream mixing discs give an ideal setting for 

dispersion. This is because the temperature of the polymer melt is 

rather low and thus it is quite viscous at this stage. This helps in 

the dispersion for which other requirements are high torque, large 

residence time and higher shear stresses. In this setting the melt 
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which is highly viscous at low temperature (due to low overall 

residence time up to this point) passes through narrow, wedge-shaped 

gap between the segmented mixing discs and the barrel wall. 

©. Effect of mixing disc configuration in downstream position. In 

this case one pair of mixing discs is left in the upstream position 

whilst the remaining three pairs* are moved downwards along the 

processing section to be situated at 13 D position (Fig. 3.2 and Table 

3.1 ). Two mixing disc configurations viz. open and closed are used. 

For each setting three screw speeds are used. The conditions for 

these runs are given in Table 4.1 and are plotted in Fig 4.35 and 4.36 

(run A24 to A29). 

The mixing discs in upstream position cause polymer to melt, and it is 

then carried forward by other screw sections where the temperature of 

the melt rises due to conduction and shearing. At the second stage of 

mixing discs (i. e. in downstream position), the melt is less viscous. 

At this point, these discs breaks up the polymer flow pattern. Thus it 

breaks up and disperses the unmolten solid bed in polymer melt and 

thus enhances melting by increasing the contact area and thus heat 

transfer. Besides this function, these melting discs at this position 

also thermally homogenise the polymer melt. Obviously at this point 

the pressure is once more consumed while passing through the melting 

discs, though pressure drop is not of the same magnitude as it is in 

upstream position (due to reduced viscosity). This energy consumption 

*Moving mixing disc into two positions leads to the necessity for 

blanks to be used, and therefore total of 4 rather than 5 mixing 

discs can only be used. 
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(throughput per unit current) is shown in the figures (Table 4.2©). In 

the closed disc configuration, throughput per unit current is the 

lowest followed by open. (Results from 9 rpm open disc configuration 

seem to be an anomaly. ) The reason for this is similar to that 

explained above in "upstream" mixing discs settings. The closed disc 

configuration offers the maximum restriction to the flow and thus 

consumes maximum energy. 

The mixing discs, being slotted in radial direction, do not offer a 

helical flow path to the polymer melt. Instead they break up the 

polymer melt into several segments - due to the presence of the radi 

slots. Passage through these discs breaksup the velocity flow pattern 

present in the polymer melt regime. This act gives some longitudinal 

and a good deal of transverse mixing. The flow mechanism through 

mixing discs in a single screw extruder is described by Fingerale 

(1973), which is shown in Fig 4.44. However in a twin screw extruder 

this flow behaviour will get further modified by the interrupting 

influence of the intermeshing of the other screw. This will then 

generate a somewhat modified overall flow to that shown by Fingerale 

Fig 4.44 . In the case of open disc configuration, presumably most of 

this circulating flow goes into the next set of spaces while for 

closed discs this individual circulating flow is divided into two 

parts and thus offers more splitting. However. this statement is 

based on the limited work in this region and also from speculation 

based on its simple geometry. 

As discussed before, the heat for melting is derived from shearing of 

the polymer melt and from conduction from heater bands. So in the 

downstream setting of mixing discs some shearing is done by the one 

mixing disc in upstream position while the rest shearing is derived 
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from the other mixing discs in downstream position. As discussed 

before, closed mixing discs offer maximum resistance and thus give 

lowest throughput per unit current. This leads to more energy input 

which causes maximum melting, leading to high compaction and 

consequently higher filled volume. So as discussed in section 4.2.3 

the maximum filled volume is achieved at 9 rpm. The increase in screw 

speed does not cause any improvement for this closed disc 

configuration. However, for open mixing discs at low screw speed, the 

filled volume is low due to the poor melting by first melting disc in 

upstream position and smaller contribution by open discs in downstream 

position. But increase in screw speed causes pressure build up at 

first melting disc and consequently an increase in filled volume 

occurs. These results are similar to the work by Herrmann and Eise 

(1981). They showed that alternating left and right handed pitched 

kneading discs (similar to closed discs of present study) result in 

maximum degree of fill and higher mean residence time than open mixing 

disc configuration. 

The flow through mixing discs is quite different from the normal con- 

veying through the screw pitch. The molten polymer passes through the 

the slots of the mixing disc. and it undergoes orientation and 

shearing. In general it can be said that the mixing produced by 

shearing alone is linearly proportional to the shear applied (Ng and 

Erwin 1979). The mixing achieved by this mechanism is considered quite 

inefficient. However, due to orientation caused by the segments of the 

mixing disc and also by the interaction of the mixing discs of the 

other screw, much superior mixing is achieved. Thus in these mixing 

discs the mixing becomes more efficient on the available area by 

countering the tendency of the area to be oriented parallel to the 

shearing plane. The combination of separating the melt flow and 
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wiping the melt is nearly an ideal situation from mixing point of 

view. 

The theoretical work by Ng and Erwin (1979) has shown that increase in 

number of reorientations exponentially increases the interfacial area. 

Similarly Dekker (1978) and Fingerale (1973) have shown in single 

screw extruders, the beneficial effect of mixing section in achieving 

homogeneity in the extrudate temperature. 

The RTD curve (Fig. 4.35 and 4.36) does show an interesting trend. 

Both of the settings (open and closed ) show that increase in screw 

speed moves RTC curve towards more axial mixing and thus moves towards 

laminar flow. On comparing the two configurations in downstream 

position at various screw speeds it becomes clear that whilst at 9 rpm 

closed discs show more plug flow type behaviour than open discs, at 18 

rpm the differential in two settings is not high, and at 27 rpm both 

the settings give nearly same curves. The value of variance does 

support the above findings and trend. 

Similar results are reported by Herrmann and Eise (1901) who showed 

that alternating right and left handed pitch kneading discs resulted 

in greater longitudinal mixing than conveying elements with constant 

pitch and right handed mixing discs gave the least (Fig 4.45). 

4.3.6 Effect of melt pressure: Extruders are fitted with a die 

which then forms an integral part of the system. In the extrusion 

process, a melt pressure build up is required in front of the die so 

as to overcome the flow resistance of the die. The pressure at the 

screw tips depends on the following. 
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(i) Throughput rate. 

(ii) Geometry of the flow channel in the head and die. 

(iii) Rheological properties of the material being extruded. 

For a given system, all other variables being constant, increase in 

throughput increases the pressure build up at the screw tips. The 

geometry of flow channel and die have a profound effect. The die 

could be designed to give a required pressure at the screw tips by 

creating resistance to flow. The pressure build up at the screw tip 

helps in melting the "remaining" unmolten polymer. This is true in 

high pressure systems where a pressure of 200-500 MN/m is developed as2 

compared to GKN Windsor extruder where only a modest pressure (1.5-5 

MN/m2) is built up. Therefore in the case of a run with high screw 

speed (Run A15) the polymer throughput shows that the centre of 

polymer melt remains unmolten or rather partially molten. 

In the present study the pressure of the system was varied by adjust- 

ing the slot height in the die and thus changing the restriction to 

polymer flow. This in turn creates a back pressure. Overall, three 

slot heights in the die were used, these being 2.15.4.8 and 6.25 mm 

(Run A7,10, and A12 - for details see Table 4.1). These gave a melt 

pressures of 4.12,3.79 and 2.65 MN/m2 respectively in the melt pool 

in the vicinity of the screw tips. The rest of the variables, 

including throughput were kept constant. The RTD curves from these 

three conditions do not show as large and pronounced differences com- 

pared to effect of other variables on RTD (Fig 4.46). The increases in 

pressure at screw tips (from 2.65 to 3.79 and finally to 4.12 MN/m2) 

lead to an increase in axial mixing and thus broader RTD curves. This 

trend can be explained by looking at the effect of pressure on the 

flow mechanism in a co-rotating extruder. The pressure changes at the 
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screw tips lead to change in polymer conveying and leakage flows etc. 

In a co-rotating twin screw extruder, the conveying of the melt takes 

place as a result of combination of the frictional and viscous forces 

and also from the physical wiping action of the other intermeshing 

screw. The intermeshing screw physically prevents the material from 

rotating with the screw. A barrier is formed for backflow due to 

intermeshing regions thus giving a limited positive displacement 

action. However, as discussed above, the frictional force's 

contribution comes into play with the effect of the pressure on it. 

Generally speaking, the frictional forces are tied in with the 

pressure generated at the location and they increase with increase in 

pressure. (Therefore it is more effective at higher pressures). Thus 

increase in pressure (which partially travels back from screw tip) 

leads to increase in conveying and thus tends towards more positive 

flow. But the viscous force's (discussed above) contribution is in 

the opposite direction. The increase in pressure leads to better 

contact with hot metal and imparts resistance to the polymer flow. 

Both these factors tend to increase the overall rise in temperature. 

Blyumental and Safulin (1978) have shown that higher die pressure in a 

single screw extruder is associated with higher average temperature of 

the melt. 

As the results show above, the conveying mechanism, in the range of 

pressures studied, shows a more axially mixed flow with increase in 

pressure. The initial rise in pressure from 2.65 to 3.79 MN/m2 changes 

the curve marginally, but further increase in pressure (from 3.79 to 

4.12 MN/m2) leads to a big shift in overall curve especially in the 

tail region. The conveying in this co-rotating twin screw extruder is 

more dependent on the viscous forces than the frictional ones. 

Furthermore the increase in pressure at die end results in increase in 
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polymer melt temperature thus leading to lower viscosity of the 

polymer. Thus lower viscosity would obviously have a substantial 

effect on the conveying and would work towards a broader RTD curve. 

The above explanation could be used to explain, quite systematically, 

the other published work. Bigg (1973) for a single screw extruder has 

done quite fundamental research in the subject and found that for a 

Newtonian fluid the RTD curve remains the same for different values of 

GZ (ratio of pressure flow and drag flow). However, in non-Newtonian 

fluids, Bigg (1973) showed that the deviation from Newtonian behaviour 

increases as the power law index decreases. For a particular power law 

index (as power law index of 0.2 in Fig 4.22), RTD curve broadens with 

increase in GZ value (increase in pressure or decrease in throughput 

rate). At this point, as explained in above paragraph, the viscous 

forces play a major part in conveying and lead to a lower viscosity 

and thus more leakage flow and broader RTD curve. This can be seen 

in Fig 4.22 where flow becomes more axially mixed when GZvalue is 

increased from 0.5 to 1.5. Similar results are reported by Mohr et 

al. (1957). Todd and Irving (1969) and by Janssen (1976) at high screw 

speed when the pressure is increased from 4 to 6.3 MN/m. 
2 

Furthermore, Bigg (1973) showed that on further increase in GZ value. 

the flow becomes less axially mixed, and at one stage it develops an 

inflection beyond which it tends to become more of plug flow type (Fig 

4.22). This can be explained by the flow behaviour, as discussed 

above. By increased througput rate, the volume of polymer melt inside 

the channel increases, associated with the increase in pressure 

development. As a result the frictional forces start to act. Similar 

results are reported by Janssen (1978) at low screw speed (Fig 4.47) 

and also at high speed when the pressure is increased from 6.3 to 11.1 
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MN/m2. In that case the curve for 14.8 MN/m2 pressure condition also 

shows an inflection, as discussed above. 

The dimensionless residence time is relatively independent of die 

pressure. Janssen et al. (1979) found similar results, and they 

concluded that this is associated with the relatively small change in 

the number of fully filled chambers. From the data in Table 4.2A it 

is clear that increase in die pressure is associated with decrease in 

stagnation time for 11 of the material. It progressively decreases 

from 1.67 to 1.57 and finally to 1.49. 

4.3.7 Effect of physical form of polymer: Polypropylene polymer 

(of similar molecular composition) in two physical forms, in granular 

and powder form, was compared. Two types of pulley were used covering 

both screw speed ranges, low screw speed range (Run A21 to AN as in 

Fig 4.34 and 4.35) and high screw speed range (Run A13 to A17 as in 

Fig 4.39 and 4.38). 

On comparing powder with granules in general, it becomes quite clear 

and obvious that RTD curve for powder shows a much pronounced axially 

mixed system. The difference in the behaviour of powder and granules 

arises from different internal friction between particles, increased 

surface area of the powder and the lower bulk density of the powder. 

The increased surface area, as shown later, leads to faster melting of 

the powder. 

The polypropylene powder has a bulk density of 500 kg/m3 as compared 

to 578 kg/m3 of granules. This leads to less input of powder (as 

compared to granules) at feed point. As at low screw speeds (with 

small pulley system) the throughput rate is limited by the conveying 
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capacity of the screws, the powder should show less throughput and 

this is found in experiments (Run A21 to A25). However, at high screw 

speeds (with large pulley system) the throughput rate is restricted by 

the torque capability of the extruder. Therefore the type of polymer 

showing low energy consumption should show a higher throughput. This 

is shown by the powder system and therefore powder shows higher 

throughput rates. The reason for low energy consumption for powder 

can be explained on the basis of powder's faster and easier melting 

ability. Assuming that the powder and pellets are spheres, then the 

calculated times for complete melting by conduction alone are 0.13 and 

0.83 seconds respectively. 

The polypropylene powder starts melting faster and earlier (due to 

increased surface area) and therefore would give a higher filled 

volume for both low and high screw speeds (Table 4.2A). As discussed 

above powder also shows a low energy consumption and thus higher 

amount of polymer processed per unit current (throughput per unit 

current) for both speeds. 

The powder shows a higher variance or spread about mean residence time. 

The polypropylene granules in large pulley system do show different 

behaviour (Fig 4.39). It has been discussed in detail in Group C of 

section 4.3.3 . The melt pressure at the die end is directly related 

to the throughput rate. The polypropylene powder runs have low 

throughput at low speed range as compared to granules and thus show a 

low pressure at die end. At the high screw speed the opposite is 

true. 

4.3.8 Effect of polymer type: Polymers are non-Newtonian fluids 

and their rheological properties vary considerably from one to 
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another. In the present study polypropylene and polystyrene granules 

were compared. The same processing conditions were used for both the 

polymers except for processing temperatures. The details of the 

temperature settings on the extruder are given in the notes for Table 

4.1, except to say that these represent the normally used set 

temperature in industry for the respective polymers. 

On comparing the flow behaviour of polystyrene and polypropylene, the 

RTD for polystyrene shows less dependency on the screw speed (i. e. it 

does not change significantly) compared to that for polypropylene 

(Fig 4.39 and 4.48). Furthermore the RTD curves for polystyrene show 

overall more axial mixing than polypropylene. This behaviour can be 

explained by comparing the rheological characteristics of these 

polymers (Fig 4.1 ). These results were obtained using capillary 

rheometer using only one capillary die, as only the comparative values 

of the viscosities were of interest. Thus the entrance effect was not 

taken into account and Rabinowitch corrections not applied. So the 

reported viscosities are higher than the true viscosities. Anyway, on 

comparing these rheological results (Fig 4.1 ), polystyrene shows a 

higher apparent viscosity for a given shear rate and this difference 

increases with increase in shear rate. It shows a power law 

relationship for large range of shear rates. This may be one of the 

reasons for less dependency of flow characteristics of polystyrene on 

screw speed. 

Polystyrene melt is quite viscous and this leads to the relatively 

higher power consumption to process this melt. As, at this high screw 

speed range, the throughput is restricted by torque available in 

extruder assembly, this leads to a rather low volumetric throughput 

for polystyrene. This is the case as shown in Table 4.1. The 
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polystyrene's volumetric throughput is quite low as compared to 

polypropylene. Thus polystyrene runs show low filled volume (Table 

4.2A- Say polystyrene's 5988 cm3 as compared to 8480 cm3 of 

polypropylene). This low filled volume leads to more space available 

in the screw sections in which polymer melt can move around over 

itself and this leads to a higher mean residence time (Table 4.2A-7.8 

minutes for polystyrene as compared to 7.2 minutes for polypropylene). 

This fluffing and mixing leads to a higher axial mixing and a high 

variance (oe) for all the three speeds in polystyrene. 

As we know, the polymer type affects the melting behaviour / heat 

requirement. For a similar heat input different polymers would give 

different ratios of molten to unmolten polymer and this in turn would 

determine the degree of fill. This would then determine the flow 

profile and RTD in the main stream. Furthermore, the flow 

characteristics are different for different polymers and so is the 

melt zone length which would affect the RTD. Polypropylene granules 

show a higher volumetric throughput as compared to polystyrene (5.85 

vs 3.96 m3 per hour) which in turn would lead to less axial mixing for 

the polypropylene material. 

In comparson with polystyrene polypropylene has lower density (305 vs 

1150 kg/m3 of polystyrene ), higher melting temperature and lower 

thermal conductivity (0.16 vs 0.18 W/mK of polystyrene). 

On the basis of the calculations carried out elsewhere (Janssen 1978) 

the amounts of heat required to reach the usual processing 

temperatures are 690 kJ/kg and 505 kJ/kg for polypropylene and 

polystyrene respectively (Table 4.6). From these calculations it 

becomes clear that in polypropylene the mass in the middle of the 
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screw channel remains relatively cool and melting takes a longer time. 

This was confirmed by shock cooling experiments, described in section 

3.5 . In this study an unmolten polymer core was observed at high 

screw speed. So at 60 rpm, the high screw speed, the heat transfer is 

quite low and melting is really restricted, thus showing more plug 

flow (Fig 4.39 and 4.48). However, when polypropylene powder is used, 

this plug flow behaviour is not observed simply because in powder the 

heat transfer is substantially better. 
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TABLE 4.6 PHYSICAL PROPERTIES OF POLYMERS USED 

No. Physical properties Units 

Polypropylene 
Granules 

GWM 22 

Polystyrene 
Granules 

Lustrex HF66 Ext 

at Room Melt at Room Melt 
Temp. 230 C Temp. 165 C 

1. Density kg/m3 905 750 1150 990 

2. Bulk density kg/m3 0.581 0.62 

3. Melting point C 160-66 95-104 

4. Melt flow index 4.02 

5. Thermal conduct. 
A 

w/m0K 0.12 0.16 0.14 0.18 

6. Friction coeff. 
A 

at 200C 0.32 0.22 
agaist mild steel at 80aC 0.16 0.25 

7. Amount of heat re- 
quired to reach A 

kJ/kg 6900 50ý 
usual proc. temp. (250 C) (220 C) 

1) Bulk Density of powder is 0.5 9/cm3. 

2) For polypropylene granules it was measured at 230 
aC 

under load 
of 1.16 kg. 

For polypropylene powder mfi value is 22 measured at 190 
0c 

under load 10 kg. 

A) Dekker (1976). 



102 

CROSS CHANNEL FLOW AND TRANSVERSE MIXING 

In this section, the results obtained by the shock cooling experiments 

are analysed. By systematic study of sections cut along the screw 

channel, the flow path of the polymer melt inside extruder together 

with the influence of the various leakages flows was analysed. The 

study was supplemented with study of transverse mixing along the 

extruder. Later on in the chapter it was tried to relate the 

progression in transverse mixing with the overall flow mechanism. 

4.4 Flow mechanism in extruder: As described above, the flow 

mechanism inside the twin screw extruder was established by using 

colour tracer technique. The flow mechanism in twin screw extruder is 

rather difficult to understand because of its three dimensional 

nature. Therefore it has been tried to explain this with the help of 

diagrams together with sections taken from frozen polymer skeleton. 

Schematic explanation for various diagrams showing Flow Mechanism 

For ease of understanding the flow behaviour of various zones is shown 

by painting the screw skeleton. The three photographs of this screw 

skeleton showing different flow regimes are given in Fig 4.50.4.51 

and 4.52 These diagrams give a three dimensional understanding of 

this complex flow which is rather difficult to grasp. This is 

supplemented by a summary of various leakage flows showing their mode 

of grouping together with their mode of rotation. This is then 

supplemented by diagrammatical representation (Tentative model) of 

flow mechanism in pictorial form (Fig 4.54). This is then 

supplemented by "where to where" schematic diagram (Fig 4.55). In part 

A (Fig. 4.55 Al of this diagram, the flow into the start of number 2R 
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Flow direction 

I) 

a 
to 2L (start) 
Pushing edge side 

FSm from 3R (5) end 
FT (From 3R end -middle of traTng ed�e) -. \S FT `- JM 

Fcen 2R From 26 (5) end 
. 101 

From 3L (5) end 

Fs - side leakage flow 
Ts - Tetrahedron leakage 
Fcen " Central flow 
Fcal - Calender leakage flow 

Fig. 4.54 Tentative model for flow mechanism in co-rotating twin screw extruder. 
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"C" shape chamber is shown (see Fig. 4.50 for explanation of 2R etc. ). 

It shows that polymer melt comes from end of the 2L, 3L and 3R "C" 

shape chambers. In part B of this figure (Fig. 4.55 B) , the effect of 

intermeshing zone on the shifting of spatial position transversely in 

"C" shape chamber is shown. Once this basic concept is clear, the 

pictorial view of flow mechanism is given in Fig 4.56, the colour 

scheme remaining basically the same, as that used in Fig 4.50 to show 

polymer melt flow. The flow and mixing within 2R "C" shape chamber is 

shown in last two rows with first row showing the polymer flow 

contribution into 2R from different chambers of screw. In Fig 4.57 the 

original sections from screw skeleton are shown, from which the exact 

pictorial view of Fig 4.56 is made. The section A shown in Fig 4.57 

is the one showing stagnation places in flow (white material vs. black 

main region). Fig 4.58 shows the sections from screw skeleton in 

various planes showing transition from one plane (2L) to other plane 

(2R) through a 900 rotation on flow axes. In between the two sections 

are shown the horizontal section through 2R in various planes 1 to 4 

as shown in diagram. These sections substantiate the flow model and 

show the evidence of main tetrahedron leakage flows as shown in Fig 

4.56. In Fig 4.59 the flow through intermeshing zone is shown by 

actual sections from screw skeleton. So by cutting sections through 

intermeshing zone, one screw section is cut transversely while the 

corresponding other one being cut longitudinally. The later sections 

show the various planes, e. g area AA' etc. as shown in Fig 4.55 B's 

top section picture. 

Tentative model of flow mechanism in co-rotating Twin Screw Extruder 

GKN Windsor 250x is a co-rotating, closely intermeshing and conjugated 

twin screw extruder. The flights and screw channels are trapezoidal 
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shaped which result in a high degree of interchannel penetration. The 

polymer melt flows as a result of the frictional and viscous forces. 

During this flow, the polymer melt rapidly adjusts to an equilibrium 

configuration and behaves as a viscous material. On approaching the 

intermeshing zone, the polymer is prevented from remaining on the 

present screw and pushed into the chamber of the other screw. Thus it 

follows a shape of "figure 8" pattern (without the centre portion of 

8) along the length of extruder. The intermeshing zone splits the 

incoming polymer melt into several streams which move to various 

places according to their position in the channel. These then flow 

into variety of new positions in various channels thus leading to 

transverse as well as axial mixing. 

This flow can tentatively be described systematically by first 

analysing the types of various flows, their origins, the position they 

occupy soon after passage from intermeshing zone, their subsequent 

mixing with other flows and finally their behaviour in passage along 

the whole of the chamber in next intermeshing zone. 

The flow mechanism is discussed with reference to 

4.4.1 Various flows, their origins & positions 

4.4.2 Flow behaviour in passage along the *c' shape chamber 

4.4.1 Various flows, their origins & positions: For ease of 

understanding, in the following discussion, an example has been taken 

to show the polymer melt flow from various channels to 2R channel (Fig 

4.54). The following flows constitute the main flow within the twin 

screw extruder. 

A. Tetrahedron Flow : As the polymer reaches the intermeshing 
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zone, the flank of one flight acts as wedge and forces the material 

out of the channel of the other screw. This happens because the screw 

velocities in the intermeshing region are in opposite directions. 

Therefore a limited amount of melt passes through intermeshing region 

(from top of the screws to bottom) while almost the entire volume is 

transferred via the open edge area to the opposite screw. This flow 

thus forms a flow path of figure of 8 pattern (without the centre 

portion of 8) while at the sametime moving in axial direction. During 

this process. due to conjugated screw profile (intermeshing without 
a 

much gap) and staggered arrangement of the screw, it gets divided into 

two unequal parts. This is more clearly shown in Fig 4.50 and 4.56 

where FTM is represented by green colour and FTS is by red colour. 

Both of these flows constitute the bulk of the flow and are assisted 

by the motion of the screw flight surfaces. However. the flow is much 

greater through the wide gaps than the narrow one. As it can be seen, 

the tetrahedron gap is connected with the side gap, but it relates to 

flow between opposite chambers in the two screws. 

Similar flow was shown by Howland and Erwin (1983) in a counter- 

rotating, non-intermeshing. twin screw extruder. They showed that the 

material flows backwards in the region created by the flight sweep. 

This flow then moves in the intermeshing zone, just behind the flight. 

This flow then penetrates and forms a reoriented region across the 

depth of the channel. This is about the same as tetrahedron flow in 

the present work. They showed further that everytime the material 

passed through the apex, a substantial reorientation took place. They 

concluded that this occurs because of the angle (approximately 140°) 

at which the converging flow from each screw intercepts each other. So 

this collision together with the transfer of material from one shear 

orientation to another results in this enhanced reorientation. 
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On contrary, Bigio and Erwin (1985) found that the standard conveying 

elements used in a self wiping co-rotating twin screw extruder do not 

reorient the interfaces relative to the streamlines. The flow in the 

intermeshing region shows that the interfaces behave smoothly with the 

turning of the flow. In the present work similar results, as above for 

co-rotating. were obtained. Although at the intermeshing zone a 

complete change of direction takes place, but nevertheless the stream 

remains oriented. So Fig 4.58 shows the presence of red streak even 

after the passage from one channel to the next one of other screw. 

(il Main Tetrahedron Flow (FTM): It originates from the pushing 

edge side (of 2L) of the opposite screw (Fig 4.50 L 4.54). It passes 

through intermeshing zone, slightly pushed back by the flank of the 

flight of this new chamber (2R in Fig 4.54). This is because the 

screws are displaced in respect to each other in axial direction, and 

this pushing back of melt is called wedge restraint. This phenomenon 

(wedge restraint) reduces the tendency of the material to rotate in 

channel, thus increasing its conveying in axial direction. Fig 4.60 

shows wedge restraint in GKN Windsor which is caused by the wide crest 

of the screw. This rather wide wedge restraint produces considerable 

restriction in cross section and deflection in direction of the 

material. As compared to this, the narrow crest causes small wedge 

deflection in direction (Fig 4.61). 

This leakage flow carries material along the sequence of chambers num- 

bered 3L 1 3R . 3L . 2R towards the die end (Fig 4.50 and 4.54). As 

clearly shown in Fig 4.56, the flow path available to polymer melt 

dictates that the main tetrahedron leakage flow enters the trapezoidal 

channel from the top of the trailing edge's side. This is shown as 

green colour in Fig 4.56 and by signs (ox--) in Fig 4.55A. But the 
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melt from this flow occupies mostly the middle top portion of 

trapezoidal channel (Fig 4.56 and 4.55A). Furthermore, in Fig 4.58 

the flow path from 2L to 2R is shown by sections cut from frozen 

polymer. However, as this consists of most of the polymer melt flow, 

i. e. it is a large constituent of the flow, it can be divided into 

four subzones as shown in Fig 4.558. In this figure it is shown that 

the large portion of this flow occupies positions A and B. These 

final positions are due to the result of change of shape of channel 

for main flow, i. e. from trapezoidal to another trapezoidal at 

orientation of 900 and thus the passage becomes triangular, shown in 

Fig 4.62, thus the final position taken by elements C and D (or -- and 

-- in Fig 4.55A). This is once again substantiated by sections in Fig 

4.59 where area AA', B8' etc. corresponds to that in Fig 4.55 B. 

In the meantime when this lower zone C and D flows are passing through 

intermeshing zone, travelling downward in intermeshing zone, both of 

these come in contact with upgoing flow regime mainly consisting of 

main side flow (FSM). It is quite probable that main side leakage 

flow intermixes with downward position of FTM (main tetrahedron flow), 

and thus together they occupy positions C and D (Fig 4.55A and 8). 

These flows (C and D) move towards the trailing edge and lower down as 

well. 

This main tetrahedron leakage flow intermixes with the small tetra- 

hedron leakage flow of the previous chamber, e. g. flow from chamber 

3 L, as shown in Fig 4.54 and quite clearly in Fig 4.50 where red and 

green colour mixes . Together these two flow form upper circulatory 

flow regime (Fig 4.56) which appears to rotate anticlockwise within 

itself, as described later. 
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As this flow follows the proper and wider path, it does not undergo 

excessive shearing action as compared to other flows. However as 

compared to the ordinary flow through the non intermeshing parts, this 

portion of flow experiances a higher level of shear (Hornsby 1987). 

Furthermore as this type of flow regime is followed by the majority of 

the polymer, this type of flow gives an average residence time. The 

heat conducted and shearing action undergone is normal. 

(ii) Small tetrahedron leakage flow (FTS): As discussed above, this 

flow results from the smaller portion of the divided melt (as a result 

of division of melt by other screw flight). It originates from the 

trailing edge side (of 3L) of the opposite screw (Fig 4.54). It 

passes through the intermeshing zone, slightly pushed forward by the 

flank of the flight of this new chamber (2R in Fig 4.54 and 4.50). 

Thus this flow avoids completely one rotation around both screws, e. g. 

flow from 3L moves into 2R thus avoiding 3R and 2L chamber completely. 

Therefore the residence time for this portion is reduced drastically 

for such a journey. 

The flow portion originating from the trailing edge location and 

enters through intermeshing zone into the top corner of the pushing 

edge's side. Thus it changes its position from one extreme to another 

extreme location. In Fig 4.56 and Fig 4.55 it is shown as red colour 

and by signs "" respectively. Looking at the sections in Fig 4.59 it 

becomes quite clear that the space available for this flow (3L to 2R) 

through intermeshing zone is initially large (in section 1 and 2). But 

then it becomes rather narrow (in sections 3,4 and 5), and then it 

discontinues (section 6). So quite a large amount of material must 

flow in rather short distance. This supposition is quite correct, as 

it becomes quite evident in Fig 4.57, the pictorial view of flow where 
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the flow seems to spread in very short time (Fig 4.56 in picture 1-3 

and 1-5 and 2-1). 

As explained above, it mixes very well with the main flow and together 

forms the upper flow regime. As the polymer melt passes through a 

narrow passage, it undergoes a high shearing as compared to other 

flows. 

As explained above, the confluence of these two flows i. e. main and 

small tetrahedron leakage flows divide again into two unequal streams 

at the next intermeshing point. Thus each successive division into two 

stream doubles the cumulative mixing effect. Therefore the flow path 

itself imparts a considerable amount of mixing. This produces a more 

homogeneous melt, not just because of intermixing of different polymer 

stream but it also ensures a regular frequent redistribution of 

plasticized material between the area in contact with the screw flights 

and that in the centre of the flow path. Based on the above type of 

mixing Rheotec S. A. has designed staggered flights on the metering 

section of single screw extruder. These redistribute melt flow to give 

alternate contact as described above (Rheotec 1982) Fig. 4.63 . This 

redistribution not only helps mixing but also averages out the 

shearing of polymer. 

B. Side leakage flow: This occurs through the gap between 

the pushing (or trailing) face of the flight on one screw and the 

corresponding trailing (or pushing) face of the flight on the other 

screw. This gap is generally narrow on one side (connected to small 

tetrahedron flow gap) and broad on the other side (connected to the 

main tetrahedron flow gap). Therefore each channel end has one large 

(FSL ) and one small side leakage gap (FSS). The large side leakage 
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flow SL is shown as blue colour in Fig 4.56 and by sign of 00 in 

Fig 4.55A. This originates on the trailing edge of the same screw 

(Fig 4.54). 

This is the flow which takes place as a continuation of one chamber to 

the next chamber of the same screw, and it adds to that through the 

calender. So it can be said that this flow carries on as normal on 

its passage to next chamber on same screw thus escaping completely the 

other screw. As the screw velocities in intermeshing zone are in 

opposite direction, some of the polymer flow especially near edges 

undergoes reversal of flow and back in shape of 8 pattern flow. This 

flow thus undergoes intense shearing. 

The pressure build up occurs primarily because of reduction in cross 

sectional area when material enters the intermeshing zone. However, 

this pressure build up is not the same for both sides of side gaps. 

The side gap towards main tetrahedron leakage flow would have a 

relatively small pressure build up, but this increases as this leads 

to gap which is quite narrow (The side gap of small tetrahedron gap). 

However, the small tetrahedron leakage flow has a relatively higher 

initial pressure which relaxes after entrance as it leads to flow 

into the main tetrahedron leakage flow area of the next chamber. As 

regards its initial destination soon after the intermeshing zone. the 

two portions of side leakage flow occupy the lower portion of the 

trapezoidal channel. The large side leakage flow (FSL ) occupies the 

entire side portion of trailing edge side while the small side leakage 

flow (FSS) occupies the lower middle position towards pushing edge 

side (not shown in Fig 4.56, but can be considered to occupy portion 

next to central flow). These two sub flows do not mix with the other 

flow but keep their identity. Later on these two flows mix partially 
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with central flow (discussed later) and partially mix with part of 

main tetrahedron leakage flow (as described above). Unlike other 

flows, this is 
, 
fit, reoriented at 900, but remains in the same 

direction. Therefore it does not contribute to distributive mixing 

substantially. 

It occupies the lower portion of the trapezoidal section, the main 

portion being situated towards trailing edge side (Fig 4.56). As 

discussed later, this flow intermixes with other flows and moves in 

overall frame of anticlockwise rotation (Fig 4.53). On its entrance 

to the next intermeshing zone, it occupies the position "C" and "D` of 

the main tetrahedron flow (Fig 4.558). 

This type of flow completely avoids the passage through other screw 

and thus reduces the residence time to half for that particular revo- 

lution. 

C. Central flow: The polymer melt in front of the flight tip of 

the other screw (screw flight on trailing side of 2L channel) gets 

pushed from flight tip along in 2R channel flow direction. Thus the 

melt is pushed positively towards the end of 2R channel. This 

material undergoes a circulatory flow as shown in Fig 4.54. This 

material fraction will contribute to the positive conveying 

characteristics of the extruder. However, as the flight tip is not 

substantially wide, the contribution due to this is rather low. 

As this flow is pushed positively, it gets exposed to little shearing 

and also has rather limited residence time. It continues to the next 

chamber as the central flow. This becomes quite evident in Fig 4.67 

where centre region remains unpigmented till section 11R. although 
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slow reduction in area containing white polymer. This indicates that 

there is some intermixing with some other flow. Thus this central flow 

results in a fast moving centre which in some cases has shown the 

signs of being unmolten as well. This flow is represented by yellow 

colour in Fig 4.56. This occupies the centre of trapezoidal chamber 

and it mixes partially with the main side leakage flow. The way this 

polymer portion moves in screw is shown in Fig 4.51 and 4.52 by yellow 

colour. 

D. Calender leakage flow: This flow occurs through the gap between 

root of one screw and flight land of the other. This is rather a 

misnomer as the relative movement of the screws (to each other) is 

such that no calendering takes place. This also allows flow between 

adjacent chambers on the same screw. However, it is rather of 

insignificant amount and is therefore not shown in Fig 4.5G. As screws 

are rotating against each other, a high amuunt of shearing action 

takes place. In contrast to counter-rotating extruder, no squeezing of 

the material between the flight tip of one and land of other screw's 

flight occurs. As a consequence the shearing undergone by this portion 

is less in co-rotating extruders as compared to that in counter 

rotating (Herrmann et al 1977). 

E. Flight gap flow: This flow takes place through the gap between 

barrel and flight land which is similar to that in single screw ex- 

truders. It is responsible for melt leaking backward from one chamber 

to another chamber on the same screw. 

F. Stagnation or hold back: This occurs due to the screw profile 

which does not completely wipe the other screw and has a small tip 

angle. This combination leaves layers of polymer melt which then tend 
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to stagnate for long time. In Fig 4.56 this is shown as black colour. 

The evidence of these stagnating layers is shown in section A of Fig 

4.57. This section shows the-presence of stagnating uncoloured 

polypropylene after eight minutes of black coloured polypropylene 

extrusion. However in contrast, Sakai et al (1987) on their work on 

model twin screw extruders (both co and counter-rotating extruders) 

have shown that the stagnant layer is absent in a twin screw extruder. 

4.4.2 Flow behaviour in passage along the 'c' shape chamber 

In this case the subsequent flow within the channel till it aproaches 

the intermeshing zone at end, e. g. the flow in 2R channel till the 

intermeshing zone at the end of 2R channel, is described. Once all the 

above mentioned flows pass through the intermeshing zone and enter 

into the new chamber, they tend to group and form two flow regimes 

(Fig 4.56). Hornsby (1987) has also reported the presence of two flow 

regimes, although no explanation for the presence of these regimes was 

given. This is in sharp contrast to a single screw extruder, where 

there is only one flow regime (Haddock 1959). As described above the 

top regime consists of main and small tetrahedron leakage flows, and 

calender leakage flow, while bottom flow regime consists of main and 

small side leakage flows, small portion of main tetrahedron leakage 

flow, and central flow. The stagnation flow and flight gap flow seem 

to contribute to both the regimes. (Fig 4.53). 

The top flow regime has clockwise rotation, the bottom flow has anti- 

clockwise rotation (analysed from the tracer studies). Looking at Fig 

4.56 it becomes quite clear that both of these flows move in an 

overall flow regime of anticlockwise direction. This is opposite to 

the rotation hand of the screw element, a condition similar to single 
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screw extruders. This radial flow provides for radial mixing of the 

polymer, somewhat similar to that reported by Janssen(1978). He 

reported that the bottom volume mixes very slowly with the rest of the 

chamber volume. But whatever mixing is produced, it is the direct 

result of the rotation of fluid in X-Y plane. Similar results 

(presence of two flow regimes) to the current work are reported by 

Maheshri (1979) who has shown theoretically that because of down 

channel and cross channel flow, two separate flow patterns exist. He 

showed that on increasing the helix angle, the cross channel velocity 

component becomes as effective as the down channel velocity component 

and therefore the upper region becomes more prominent. This leads to 

more fluid separation (Fig 4.65). 

In contrast to the above described flow, conveying in counter-rotating 

twin screw extruders and single screw extruders differs significantly. 

The conveying in a single screw extruder takes place in a helical 

circulating path (Tadmor 1966; Tadmor and Klein 1970). As compared to 

two flow regimes in twin screw, there is only one flow regime present. 

This is formed when the molten polymer on the barrel is collected by 

the leading edge of the screw and mixed with the previously molten 

material. This circulating flow is confined to the rear portion of the 

channel in each turn, whilst the forward portion is filled with the 

unmolten polymer. The molten portion gradually increases at the 

expense of the unmolten portion. Ideally this should produce 

completely a molten and homogeneous product before discharge from the 

screw. Similarly the flow in counter-rotating twin screw extruders 

differs from that in co-rotating twin screw extruders. In counter 

rotating there are basically two flow regimes (Janssenl9i8). But as 

compared to co-rotating, these do not exist as a separate entities. 

Instead, they exist one within the other one and are separated from 
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each other by a layer of zero velocity (Fig. 4.64). 

Furthermore, the basic rearrangement of the polymer, on passing from 

one chamber to another chamber through the intermeshing zone, as 

discussed before, is quite complex process. The detailed 

diagrammatical representation is given in Fig 4.55 A and 6.55 S. This 

is in complete contrast to the flow in the counter-rotating twin screw 

extruder. In counter-rotating twin screw extruder Janssen (1378) has 

described the flow in similar fashion with the help of a diagram (Fig 

2.4). This shows that unlike co-rotating extruder, the polymer in the 

regions near the flight wall, transfers to the opposite chamber while 

the corresponding polymer from the opposite chamber will move in a 

region near the middle of the channel. A horizontal plane of polymer, 

that goes to the converging side of the screw (made up of polymer in 

area near the zero velocity layer and from area next to it - towards 

flight wall) returns as a vertical plane. Furthermore, in the polymer 

area situated near the bottom of the channel, a remarkably closed and 

stable flow exists that mixes very poorly with the rest of the chamber 

unless the calender gap is sufficiently large. So the flow in counter 

rotating extruder is completely different from co-rotating twin screw 

extruder. 

It is quite probable that the factors which would affect the down 

channel and cross channel flows would also affect the transverse 

mixing. These factors are helix angle. channel width/depth ratio, 

intermeshing gap, screw land/flight gap, channel curvature and end 

region influence. 

4.5 Transverse mixing along the extruder: As mentioned above, this 

was studied for both the macro and micro-mixing along the extruder. In 
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this section, not only the progression of mixing along the extruder is 

discussed, but also it has been tried to correlate the transverse 

mixing with the flow model as proposed earlier. 

4.5.1 Macromixing: The sections cut along the extruder do show a 

trend of macromixing and its progression along the length. This is 

shown by taking sections along the whole melt length of the extruder 

(Fig. 4.67). The sample positions are clearly shown by photographs in 

Fig. 4.66 . The sections clearly show the distributive mixing and 

presence of various different flows. In the first section (20 R) there 

is evidence of the presence of two different flow regimes: top and 

bottom. This once again confirms the presence of two flow regimes as 

proposed in the flow model earlier. The pigmented polymer layers are 

present on the edges which in later sections tend to slowly spread 

towards the centre. This gradual spreading of pigmented polymer in 

unpigmented polymer confirms the contribution of various zones in the 

mixing mechanism. The presence of unpigmented white centre in the 

centre of the channel indicates that this portion of the flow does not 

mix with the other region. The main side leakage flow (represented by 

blue colour in model Fig 4.55) does show fast mixing. This can be 

clearly seen by taking the reference position of these flows from Fig 

4.55 and then seeing the progression of the mixing in Fig. 4.65. This 

shows that whilst reasonably good distribution of pigments occurs by 

13th channel for main side leakage flow, for the main tetrahedron flow 

it takes a further of two channels, and similar mixing is produced by 

the 11th channel (away from die). So the main tetrahedron flow 

(represented by green colour in Fig 4.55) together with other flows in 

the upper circulatory flow has slow but excellent distributive mixing. 

In this case the main side leakage flow does not mix with other flows 

but remains separate. 
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The central flow (represented by yellow colour in the model) is quite 

obvious from section 16 L onwards to section 11 R where it is present 

as unpigmented polymer. This unpigmented centre shows that it poorly 

mixes with other flows and keeps its identity. As discussed above, the 

centre slowly decreases in area from all the sides, thus indicating 

that it intermixes with other flows (Fig 4.67). The central flow is 

once more clearly visible in the portion before the zone of mixing 

disc as white colour streaks. This central flow is a fast moving part, 

being pushed forward by the crest of the flight of other screw (Fig 

4.54). This results in reduced residence time which is associated 

with poor heat transfer. The poor heat transfer which results in some 

unmolten centre. is surrounded by dark colour zone. This is clearly 

shown in sections of screw channel 6L to I R. However, when the 

polymer passes through the open space and mixing disc, it tends to mix 

and evens out the different colours. 

4.5.2 Micromixing: In this case the whole channel section was cut 

into three vertical pieces, as described in experimental section. 

However only one portion from side and the centre portion was 

analysed. Close examination of the sections shows that the polymer on 

the edge portion (Fig 4.68) shows better distribution of pigmented 

polymer in unpigmented polymer than the sections from the centre 

portion (Fig 4.69 ). This once again reinforces the observation made 

in macromixing which showed that the flows such as main side leakage 

flow and main tetrahedron flow are instrumental in getting a better 

distribution of the pigmented polymer. The sections cut from left 

screw skeleton edge (Fig 4.66 ) show the presence of streaks and 

rotational flows. It shows that different regions in the edge section 

have different degrees of distributive mixing. As the polymer 

progresses along the length, these streaks seem to become narrow and 
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also less in number. However, in the centre sections these unpigmented 

areas are rather large and concentrated at some places only. 

However an interesting observation was made from these sections. It 

was seen that a significant improvement in pigment distribution occurs 

in between 22 L and 20 L. This incidentally also represents a change 

in channel shape (from rectangular with curved edges to trapezoidal 

shape). This improvement in distribution could be attributed to the 

presence of interrupted flights or to the change in the shape of 

channel or optimum length for distributive mixing. From 21 L onward, 

however, there seems to be a slow improvement thus achieving good 

mixing by channel 8 L. In the later sections (from 20 L onwards) the 

sections show flow patterns but not of the same magnitude as before. 

The dark small particles are in fact masterbatch portions and not 

carbon black particles (e. g. in 15 L, 14 L etc. ). These portions of 

the masterbatches also raise a question about the GKN Windsor's 

capability as compounding extruder. 

The above observations made from micro and macromixing suggest that 

these techniques are quite useful, and they have a potential for 

testing screw design and also to study the other processing variables 

on transverse mixing. 

4.6 RELATIONSHIP OF RTO AND TRANSVERSE MIXING STUDIES 

Now after proposing a flow model for twin screw extruder and studying 

the influence of some variables on RTD and on other associated 

characteristics, it is reasonable to combine the observations made 

from both of these studies and get an overall picture regarding the 

twin screw extruder's behaviour. 
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The polymer melt, in GKN Windsor twin screw extruder. is conveyed semi 

positively in the "C" shape chambers (as compared to counter-rotating 

where there is a positive conveyance due to the closed `C" shape 

chambers). So friction does play a small part in conveying. This is 

because co-rotating extruders basically have interconnected 'C' shape 

chambers so there is no direct cut off in flow direction (vs. counter 

rotating extruders). But at the same time the screws wipe each other 

and so there can be no prolonged stagnation and this action also leads 

to semi positive conveyance. 

As the Reynold's number for molten polymer flow in a pipe is of the 

order of 0.01 (due to the polymer's very large viscosity value), so 

the mass diffusivities are so slow and residence times so short in an 

extruder that there is essentially no micromixing due to diffusion. As 

a result the mixing in a twin screw extruder is caused by shear and 

velocity gradient. The relative motion between the extruder barrel and 

the screws and also in between screws themselves creates a velocity 

gradient. The molten polymer is sheared in both the down channel and 

the cross channel directions. So the distributive mixing is caused by 

semi positive conveying (leading to shearing and velocity gradient) 

and also the varied available passages to the polymer melt which 

results in residence time distribution. 

So any factor which influences either of the above two, tends to 

affect RTD. As discussed before, some of the variables effects on RTD 

can be traced to the flow mechanism. However before discussing the 

effect of variable, it is tried to establish the interrelationship 

between the two - namely - RTD and flow mechanism. 
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The basic mode of melt conveyance within this extruder, as described 

above, is semi positive. The flow mechanism within the extruder leads 

to different residence times within the extruder. So the changes in 

the flow mechanism, maybe due to changed flow path or maybe the 

relative increase or decrease of specific leakage flow, result in 

change of RTD. So the procedure and the way by which the flow 

mechanism and RTD are affected can be discussed under the following 

two headings. 

A. Polymer flow path 

8. Polymer melt's flow characteristics 

A. Polymer flow path : The flow path contributes considerably in 

spreading RTD. The flow path in a co-rotating extruder is basically 

the shape of figure of 8. The passage formed by the intermeshing of 

the two trapezoidal channels is triangular in shape and its area is 

defined by the angle of the flank of the flights (Fig 4.61). Due to 

this change of shape, from trapezoidal to triangular at intermeshing 

zone, a considerable amount of reorientation of the material takes 

place (although not as much as in counter-rotating extruder). As the 

whole of the flow direction changes, through 900, this raoriQntation 

causes an optimum mixing. During this 900 reorientation some flow 

paths are changed and thus it causes distributive mixing. Furthermore 

due to differential positions occupied by the polymer within the screw 

channels, the differential linear velocities cause the different flow 

of melt. So high linear velocity for the layers near the tip of flight 

and lower for those near the core of the screw. This differential 

flow also contributes to mixing, due to the differential velocity and 

different total path length available. 
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Besides the above, the position taken by the melt within the screw 

channel also determines the flow path taken by the polymer melt. The 

polymer melt situated on the trailing edge of the channel (main side 

leakage flow - represented by blue colour) tends to remain on one 

screw, thus missing the other screw completely. Supposing this flow 

follows the same pattern all along the length, this would virtually 

result in halving the mean residence time (see later). While some 

polymer, that located on the trailing age (small tetrahedron flow - 

represented by the red colour), tends to move into next chamber of the 

other screw, thus missing one whole of the 8 shape travel along the 

two screws. This flow would reduce its residence time within the 

extruder substantially. Probably it is this flow which gives the 

minimum residence time within the extruder . This leakage flow is 

represented by in Fig 4.55 A tt. The polymer in centre (central flow - 

represented by yellow colour) is pushed forward by the crest of the 

other screw. So this portion travels relatively faster than the rest 

of the polymer within the channel. This fast travelling polymer melt, 

although following the defined path (shape of 8), due to forced 

conveying, would have reduced residence time. However the flow 

followed by the polymer located on the pushing side of the screw seems 

to be rather normal i. e. it follows the normal 8 shape flow path and 

takes an average residence time (based on semi positive conveying and 

travelling in defined 8 shape path). While doing this, it will 

obviously result in average residence time, because this flow makes up 

the majority of the polymer flow. This is confirmed by the shock 

cooling and sectioning of the polymer screw skeleton (see Fig 4.54A) 

where it is shown to constitute the major part in the section. As 

described before, these flows tend to regroup into two flow regimes, 

which tend to rotate either clockwise or anticlockwise. Besides the 

polymer melt in "C" shape chamber also shows an overall spiral motion. 
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All of the above mentioned phenomenan tend to contribute towards the 

spread of longitudinal flow and RTD. 

So it can be seen from the above description and discussion on the 

various flows that it is the the relative effect of the various flows 

which would determine the net RTD. Su, e. g., if the variable factor 

affects the flows such that there is a substantial increase in the 

small tetrahedron flow, then the comparative value of mean residence 

time would decrease with a shift of the curve towards left (Fig 4.17), 

i. e. the portion of the flow would show more short channelling. 

B. Polymer melt's flow characteristics : The polymer melt's flow 

characteristics contribute considerably in spreading of RTD. The 

polymer in the pre-mixing discs zone is in nun molten state. So 

distributive mixing, due to the flow profile in polymer does not take 

place, consequently it becomes plug flow. But due to different flow 

paths formed, along the screw, some spread in RTD occurs in this 

region (as discussed above). On its passage across the mixing discs. 

the polymer starts to melt. This brings about the change in flow 

characteristics as material tends to stick to the heated metal and 

shows a laminar viscous flow. Further along heat is generated by shear 

in polymer melt. The melt flow is affected by various parameters viz: 

viscosity, shear rate, shear stress and temperature. Thus in 

extrusion, factors which could affect one or more of these parameters. 

do affect melt state and thus RTD. 

As the polymer is a bad conductor of heat, temperature non uniformity 

exists. Therefore the viscous flow in polymer becomes quite non 

uniform due to different temperatures and shear rates applied, 

according to the position in "C" shape chamber. The portion of 
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material which sticks to the screw surface is transferred from one 

screw to the other in the intermeshing zone and thus forced conveyance 

exists. Material can stick to a warm screw thus reducing effective 

chamber volume and thus the throughput. 

4.6.1 Typical effects of a variable : As discussed above, a simple 

approach is taken to discuss the interrelationship between the RTO and 

flow model while discussing the effect of mixing discs configuration, 

From the shock cooling experiments and flow visualisation studies, it 

is clear that the filled volume decreases on changing the 

Configuration from closed to open in upstream position (Run A1,2,3, and 

4 and A7,8 and 9) . The lower filled volume is due to the vulumetric 

restriction imposed by the vent port (the closed disc configuration 

melts more efficiently, due to better pressure buildup, as compared to 

open and thus better compaction). The lower filled volume leads to low 

pressure build up at die inlet (from 4.41 to 3.72 MPa at 27 rpm - 

Table 4.1 Al which in turn affects the flow profile in the main 

stream. As a result the RTD curve shifts towards a less positive (i. e. 

more axially mixed) and becomes more dependent on the screw speed. The 

greater dependence of RTD curve (and therefore of mixing) on screw 

speed at open disc configuration as compared to closed can be 

explained on the basis of melting mechanism together with the increase 

in central flow with increased screw speed. In closed discs, the 

pressure is enough to cause melting whilst in open disc configuration 

the melting pressure is not sufficiently developed. Furthermore thv 

reduced residence time together with limited heat input also causes 

reduced melting. (see section 4.2.3) 
. 

The mean and minimum residence times increases arid alsu the variance 

about the RTD curve increases. The Cause for this can be explained on 
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the flow visualisation studies. It becomes quite clear from these 

studies that the less filled volume in the chambers will promote the 

leakage flows such as small tetrahedron flow and side leakage flow at 

the expense of the main tetrahedron flow which remains more or less 

constant. The small leakage flow is caused by the polymer located on 

the trailing edge of the flight (small tetrahedron flow - represented 

by the red colour in Fig 4.55). Whilst large side leakage flow is 

caused by the polymer situated on the trailing edge of the previous 

flight of the same screw (represented by blue colour). The small 

tetrahedron flow tends to move into next chamber of the other screw, 

thus missing one whole of the 8 shape travel along the two screws. 

Thus this flow reduces its residence time within the extruder 

substantially. Similarly the large side leakage flow tends to missout 

the other screw completely virtually reducing the residence time to 

half. So this increased contribution of these flows results in the 

increase of minimum residence time within the extruder. 

The reduced pressure at die inlet, which travels back along the 

extruder also enhances these flows (rather imposes less restriction tu 

it). The reduced pressure also affects mixing in the 'C` shape Chamber 

and also leakage from flight tips. Besides, limited melting could also 

affect the unmolten centre position which then affects the flow 

behaviour. The melting behaviour affects the flow and RTD in numerous 

ways. 

Similar to the above explanation, other factors (screw speed, mixing 

discs position etc. ) which affect the melting behaviour within the 

extruder, also act in the similar manner. 



DEAP'TEL5 CDNCLIJSIDNS 

1. A flow model is proposed which describes material transport 

within a co-rotating twin screw extruder. The overall material flow 

takes place in an anticlockwise manner along the screw channel, but 

comprises two separate flow regimes. Both of these regimes maintain 

their identity throughout the course of flow in the "CO shaped 
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chamber. Based on the model, "where to where" diagrams are constructed 

which illustrate material transport. The mudel is substantiated by 

flow patterns obtained from screw sections taken from an industrial 

extruder using polypropylene. The model differs substantially from 

models used to describe flow in both a single screw extruder and a 

counter-rotating twin screw extruder. 

2. The two flow regimes in the channntl rotate in opposite 

directions and are present predominantly in the upper and lower 

regions of the channel. The upper flow regime rotates anti-clockwise. 

and is made up of main and small tetrahedron flow, and 'calendar 

leakage flow'. The lower flow regime rotates clockwise and is made up 

of main and small side leakage flow, a portion of main tetrahedron 

leakage flow, and central flow. 

3. The flow studies show conclusively that the position of the melt 

after it crosses the intermeshing zone is dictated by the actual flow 

path available at the intermeshing zone, together with the amount of 

polymer that must pass along a particular path. The melt from a 

particular site ahead of the intermeshing zone therefore occupies a 

predestined site after passing through the intermeshing zone. 

4. Based on the explaination given above, it is concluded that the 
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main tetrahedron flow in a particular channel originates from the 

pushing edge of the screw in the opposite channel. However, on 

crossing the intermeshing zone it enters the top of the trapezoidal 

channel next to the trailing edge due to staggering of the channels. 

The actual flow path available, which is gradually constricted from 

the top to the bottom of the trapezoid, forces most of this material 

to occupy predominantly the middle top portion of the trapezoidal 

channel. In contrast, the bottom portion, which has the narrowest 

available flow path in the intermeshing zone, occupies a site on the 

trailing edge together with the main side leakage fluw. In summary, as 

a result of the change in shape of the channel at the intermeshing 

zone, the various portions of the tetrahedron flow occupy different 

locations after passing through the intermeshing zone. The spatial 

shifting of this flow is substantiated by the flow patterns. 

S. The small tetrahedron flow in a channel originates from the 

trailing edge of the previous channel from the opposite screw. The 

staggering of the channels gives rise to a connection and thus it 

misses one rotation around both screws. On passing through the 

intermeshing zone, it occupies the top corner of the pushing edge of 

the trapezoidal channel. Due to the short flow path available, 

together with the necessity for a large amount of material to flow in 

this short distance, the polymer is forced to move much faster in this 

region. This results in spreading of this flow in the mid-upper 

portion of the chamber and thus it intermixes with the main 

tetrahedron flow. This spreading and intermixing is substantiated by 

the flow pattern. Although in both the tetrahedron flows a 

perpendicular change of direction takes place at the intermeshing 

zone, the orientations within sections remain approximately unchanged, 

thus producing little distributive mixing. 
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G. The side leakage flow originates on both the pushing and trailing 

walls (towards the lower regions) in the previous channel of thu some 

screw, and it continues in the same position after passing through the 

intermeshing zone. However the flow on the trailing edge (main) is 

substantially larger than that on the pushing edge (small). 

Micromixing studies show that faster mixing is acheived in the region 

where this flow dominates, compared with the regions where main 

tetrahedron flow dominates. Unlike other flows, this flow does not 

change direction after passing through the intermeshing zone. It 

contributes mainly to a rotating flow regime which is confined to the 

lower portion of the trapezoid. 

7. Material originating in the centre of a channel meets a screw tip 

in the intermeshing zone due to staggering, and is forced into the 

centre of the corresponding channel of the other screw. Due to its 

position it is referred to as the central 

circulatory flow and adds to the positive 

poorly with the other flows which results 

undergoes little shearing and has limited 

confirmed by the presence of an unpigment 

trapezoidal channel. 

flow. It undergoes 

conveying. It mixes rather 

in a fast moving centre. It 

residence time. It has been 

ed central zone in the 

8. In addition, "calender" leakage, flight leakage and some 

stagnation are also present. The presence of stagnation is 

conclusively shown by the presence of stationary tones next to the 

edges of the trapezoidal channel. 

S. Both micro- and macro-mixing studies along the screw length have 

been correlated with the proposed flow model. The presence of an 
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unpigmented and sometimes unmolten centre, and the relatively slow 

progression of mixing in the centre (the region of main tetrahedron 

flow), compared with edges (the region of main side leakage flow), 

tend to confirm the flow model. 

10. The reasons for a link between the reduced minimum residence time 

and increased axial mixing are shown to be related to the various 

leakage flows. Similarly, the increased dependence of axial mixing an 

the screw speed with an open disc configuration, compared with a 

closed, can be explained on the basis of the melting mechanism 

together with the increase in central fluw with increased screw speed. 

11. Axial mixing in a co-rotating twin screw extruder was established 

by studying residence time distribution (RTD) by using various tracer 

techniques. As the tail of the distribution is of paramount 

importance, two tracer techniques, ashing and radioactive, were 

studied for their reproducibility. 

The ashing tracer technique, as compared with the radioactive 

technique, cannot detect at low levels (below 1X), and therefore 

requires a high tracer concentration. The method involving slow 

degradation of polymer followed by pyrolysis of carbonaceous products 

gives reproducibility for up to 98Z of the total flow. Being easily 

accessible and easy to use, it can be used for preliminary studies. 

Within the radioactive tracer technique, three methods for the 

determination of the tracer concentration were investigatud. The gamma 

ray technique gives reproducibility for up to 901 of the flow. 

Although the detection limit for this technique is lower (below 0.1X), 

the reproducibility achieved by this is inferior to the ashing 
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technique. The beta-gamma ray method shows a reproducibility of up to 

991 . Gamma ray spectroscopy is found to be the most accurate, 

sensitive and reproducible technique (for up to 99.5Z of the total 

flow). 

12. Factors which may affect the reproducibility of RTD results over 

the range tested, are named in descending order of their influence on 

the RTD results. These are: location of sample position; first sample 

time; agglomeration of tracer compound; amount of tracer used and 

sampling duration. The number of samples within a given time dues not 

affect the results. However two extrusion runs with similar running 

conditions make accuracy above 992 of the total flow difficult due to 

extruder's fluctuations 

13. Melting is brought about by the imposition of constrictions in 

the flow path by the mixing discs. Thus the initial melting is 

achieved over a remarkably short distance leaving a portion of polymer 

unmolten. After this initial start, the progress of melting 

corresponds with a steady decrease in the size of the solid core 

located in the middle of the chamber, which is surrounded by the 

molten polymer. Thus it resembles the melting mechanism in large 

single screw extruders. However this solid core can be broken by the 

interruptions in the flow path. 

14. The role of the mixing discs is proved conclusively. In the 

upstream position, they melt the polymer by imposing constrictions in 

its flow path. This is enhanced by the closed configuration as 

comparedwith an open one (more restricted flow path) which is shown by 

the increase in filled volume and increased axial mixing. As the 

difference is more pronounced at low screw speed it further confirms 
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the veiw that a critical pressure must be attained ahead of the mixing 

discs in order to acheive an optimum filled volume. 

In the downstream position the mixing discs act as distributive discs 

thus improving the mixing by interrupting the flow patterns, 

illustrated by improved axial mixing results. The RTD in this position 

is more sensitive to the screw speed, than that in the upstream 

position. This pronounced effect further confirms the distributive 

function of these discs in the downstream position. 

16. The relationship between screw speed and filled volume (at 

maximum attainable throughput rate), is determined by the overriding 

factors of available torque, pressure build-up from the mixing discs 

in the upstream position and their associated effect on the melting 

mechanism. In most cases the filled volume was found to increase with 

an increase in screw speed. 

17. The filled volume gives a qualitative representation of the 

effects of variables on RTD. The filled volume is found to be directly 

related to the throughput rate. An increase in throughput rate results 

in an increase in filled volume, which restricts the free muvernent of 

polymer melt. Thus there is an associated decrease in mean residence 

time, and more positive flow. 

Similarly, polypropylene granules, as compared with powder, show a 

higher throughput rate and therefore more restricted movement of 

polymer. This is associated with decreases in both minimum and mean 

residence times and more positive flow, as above. This is in sharp 

contrast to powder, which shows more stagnation due to a low 

throughput rate (because of the lower bulk density) and enhanced 
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melting, which creates a longer molten path in which the RTD can 

become more broader. 

18. Polystyrene shows a continuous flow with increased axial flow. 

which is more dependent on screw speed. This is in contrast to 

polypropylene which shows the presence of two segregated flows. This 

behaviour could be due to the presence of a central unmolten zone 

which results from the lower thermal conductivity and higher total 

energy requirement for melting polypropylene. 

19. The effect of screw speed on axial mixing shows three distinct 

trends. In most cases, an increase in screw speed using a small pulley 

gave rise to an increase in longitudinal mixing. Huwever in sume runs 

there was a decrease in axial mixing at an intermediate screw speed, 

compared with the lowest speed. This can be explained by poor melting 

and compaction. It is possible to relate these two types of behaviour 

with the net percentage pressure change. 

However, in a system using a large pulley, a third trend in flow 

behaviour was observed due to the restricted heating and torque 

available. In this case the initial increase in screw speed produces 

an increase in the longitudinal mixing, but a further increase in 

screw speed results in a decrease in axial mixing. It also results in 

a lower mean residence time and a lower filled volume. 

20. A trend in the effect of pressure on RTD was also observed. An 

initial increase gives rise tu a broadening of the RTD curve but a 

further increase leads to reduced axial mixing and the tail becomes 

shorter, improving cleaning efficiency. 
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