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Abstract 
 

Latent Semantic Indexing (LSI) is one of the popular techniques in the information 

retrieval fields. Different from the traditional information retrieval techniques, LSI is 

not based on the keyword matching simply. It uses statistics and algebraic 

computations. Based on Singular Value Decomposition (SVD), the higher 

dimensional matrix is converted to a lower dimensional approximate matrix, of which 

the noises could be filtered. And also the issues of synonymy and polysemy in the 

traditional techniques can be overcome based on the investigations of the terms 

related with the documents. However, it is notable that LSI suffers a scalability issue 

due to the computing complexity of SVD. 

 

This thesis presents a resource aware distributed LSI algorithm MR-LSI which can 

solve the scalability issue using Hadoop framework based on the distributed 

computing model MapReduce. It also solves the overhead issue caused by the 

involved clustering algorithm. The evaluations indicate that MR-LSI can gain 

significant enhancement compared to the other strategies on processing large scale of 

documents. One remarkable advantage of Hadoop is that it supports heterogeneous 

computing environments so that the issue of unbalanced load among nodes is 

highlighted. Therefore, a load balancing algorithm based on genetic algorithm for 

balancing load in static environment is proposed. The results show that it can improve 

the performance of a cluster according to heterogeneity levels. 

 

Considering dynamic Hadoop environments, a dynamic load balancing strategy with 

varying window size has been proposed. The algorithm works depending on data 

selecting decision and modeling Hadoop parameters and working mechanisms. 

Employing improved genetic algorithm for achieving optimized scheduler, the 

algorithm enhances the performance of a cluster with certain heterogeneity levels. 
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Chapter 1 
Introduction 

This chapter briefly describes the background to the problems investigated in this 

thesis, motivation of work, major contributions and the structure of the thesis. 

 
1.1 Background 

In recent years, the amount of information resources is greatly increasing which 

results in generating mass volume of electronically stored data. The volume and scope 

of data are increasing dramatically which forms huge document corpus or databases. 

The current search engines are normally represented by World Wide Web. For 

instance the largest search engine Google claims that it processes over eight billion 

[38] pages and more than twenty PB (PetaByte) data processed per day while other 

search engines such as Yahoo, Bing also deal with enormous volume of data. The 

Information Retrieval (IR) technologies are not only needed by the larger search 

engines but also required by other organizations such as companies, universities and 

hospitals. However the current information retrieval approaches are in most cases 

inefficient to access the information required by the users [106]. Therefore, to retrieve 

the information efficiently, several improved information retrieval technology have 

been developed.  

 

Information retrieval systems are mainly based on the matching of users’ queries [39] 

and the relevant information stored in the database. The traditional IR technologies 

employed by most search approaches are mainly based on the keyword matching. 

Matching with keyword, data is usually indexed by attributes such as author, date, 

abstract and keywords. To perform a search process, firstly a user inputs a number of 

keywords which represent the required information then the algorithm compares the 

input keywords to the indexed attributes of the data. The system response is based on 

matching the user’s words and the stored indexed information. However, there are 
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mainly two issues which impact hugely the performances of current keyword 

matching based IR technologies. Firstly the performance of keyword matching greatly 

deteriorates with the increase of volume of data. Secondly keyword cannot describe 

the semantic relationships exist in the data accurately [110]. Therefore the accuracy of 

retrieved results is affected significantly due to the lack of accurate of representation 

the semantic content of the information. To solve the above issues, researchers 

combine ontology technologies [107] [108] [109] with keyword matching. Their 

studies show that based on the knowledge expansion, the issue of lack of semantic 

relationships can be solved. However, considering the efficiency and accuracy aspects, 

the approach cannot supply a satisfied performance [112] [113]. And also as more and 

more ontologies available online, it becomes more difficult to find a suitable ontology 

that meets a user’s needs [111]. Latent Semantic Indexing (LSI) [6] [7] [8] [11] [22] 

[24] [29] [36] [94] has been developed to perform intelligent IR searches [95] based 

on statistics and algebra to overcome the deficiencies associated with keyword 

matching retrieval techniques.  

 

1.2 The Issues Solved by LSI 

LSI has been widely used in information retrieval [9] [10] [12] such as image 

processing [40] [98], audio and video retrieval systems [41] [42], and multi-language 

retrieval [43]. LSI is based on the concept that latent structures exist among a number 

of documents. Building on Vector Space Model (VSM) [45] [89], LSI generates a 

Term-Document (T-D) matrix after removing all punctuations and stop words which 

has no distinctive semantic meaning from a document. LSI employs a truncated 

Singular Value Decomposition (SVD) [4] [17] [92] [93] [97] to convert the keywords 

domain of the original document corpus to a conceptual domain by decomposing the 

higher dimensional sparse [90] [96] matrix to a lower dimensional approximate 

matrix [91] so that the latent semantic relationships among the words and documents 

are highlighted and the problems of polysemy and synonymy [44] are solved. The 

results retrieved by LSI are based on the similarities between query and documents. 
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The similarity is normally measured by calculating the cosine value of the two vectors 

which represent a query and a document. 

 

LSI is regarded as a good replacement to the traditional keyword matching IR 

technologies. Traditionally the most fundamental issues in IR are the problems of 

synonymy and polysemy [44]. Synonymy is where several different words may 

express one concept and the words of query may not match those in the relevant 

documents. For instance the word van and vehicle have the similar meaning. However, 

when a user input query with word van to search using keyword matching, the 

document with word vehicle may not be returned as the field of vehicle is not covered 

in the query. Even though a document with world van has been returned, the content 

of the document may not belong to a topic describing automobiles however some 

other content which may just simply involve a word van. Polysemy is where words 

may have different meanings and the words of query may match those in the 

irrelevant documents. For instance the word bank has different interpretations in the 

fields of finance and nature. It can be used to describe a financial intermediary or can 

be used to describe the land alongside or sloping down to a river or lake. Therefore 

when a user searches the word bank with a financial meaning, the traditional keyword 

matching may return incorrect results. Therefore, the precision and recall is 

significantly affected by the synonymy and polysemy. Here the recall is defined as the 

ratio of the number of the relevant documents retrieved to the number of relevant 

documents in the database. The precision is defined as the ratio of the number of 

relevant documents retrieved in the total number of documents retrieved with a query 

of a user [44]. 

 

LSI addresses the problems of synonymy and polysemy by analyzing the semantic 

relationships among terms and documents. LSI assumes that there must be certain 

kinds of latent semantic structures, which are hidden in the context due to the existing 

polysemy and synonymy within the documents and corpus. Therefore, LSI does not 

use simpler keyword matching however it is based on statistics and algebraic 
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calculation to discover the latent semantic relationships and underlying semantic 

structures in the documents. Comparing terms used across documents, it has been 

recognized that certain groups of terms frequently appear among a number of 

documents. However, the groups of terms are barely appeared in the other documents. 

Thus from the semantic phase, the terms and documents with the terms can be 

regarded as semantically close enough to each other while the terms and documents 

without the terms are considered as semantically distant [6]. Practically, LSI returns 

documents which have similar meaning, even though the keywords input by users 

may not appear in the target documents. 

 

1.3 Problem Statements 

LSI suffers from scalability problems especially in processing massive document 

collections due to SVD which is considered to be computationally intensive. 

Therefore, several techniques have been proposed to enhance the performance of LSI. 

Gao [14] and Bassu [3] combined the clustering algorithm k-means [30] [31] and LSI 

to reduce the overhead (large executing time consumed) of typical LSI. These 

approaches show enhancement in performances however the overhead of k-means 

with large document collection are not considered. An alternative approach is to 

distribute the computation of LSI among nodes in a cluster environment using the 

Message Passing Interface (MPI). Seshadri and Iyer [28] proposed a parallel SVD 

clustering algorithm using MPI. Documents are split into a number of subsets. Each 

subset of the documents is clustered by a participating node in the cluster. However, 

The MPI approaches mainly target on homogeneous computing environments with 

limited support for fault tolerance and incur large inter-node communication overhead 

when shipping large date across the cluster. Currently heterogeneous computing 

environments are increasingly being used as platforms for resource intensive 

distributed applications. One major challenge in using a heterogeneous environment is 

to balance the computation loads across a cluster of participating computer nodes. 

 



Yang Liu (2011) 

5 
 

This thesis presents MR-LSI (MapReduce based LSI), a distributed LSI for high 

performance and scalable information retrieval. MR-LSI improves current approaches 

by focusing on three aspects. Firstly, MR-LSI employs k-means to cluster documents 

into a number of subsets of documents to reduce the complexity of SVD in 

computation [18] [20] [37]. Second, MR-LSI builds on MapReduce [2] [5] [23] [33] 

[35] [76] to distribute the computation of LSI among a number of computers of which 

each computer only processes a subset of documents. MapReduce has become a 

major enabling technology in support of data intensive applications. MapReduce has 

built-in fault tolerance [88] and handles I/O operations effectively which reduces 

communication overhead significantly. Finally, two types of resource aware load 

balancing schemes based on both static and dynamic factors are designed to optimize 

the performance of the MR-LSI algorithm in heterogeneous computing environments. 

In order to evaluate the effectiveness of the resource aware MR-LSI algorithm in large 

scale MapReduce environments and the performance of load balancing strategies [62] 

[68], a Hadoop framework simulator HSim has been developed. It can accurately 

simulate the behaviors of the framework so that several studies have been done based 

on the simulator. 

 

1.4 Motivation of Work 

It has been widely recognized that LSI suffers from scalability problems in processing 

massive document collections due to SVD which is considered to be computationally 

intensive which can be represented by ܱሺ݉ ൈ ଶሻݎ  where ݉  is the number of 

documents and ݎ  is the rank of T-D matrix [13] [26] [99]. A combination of 

clustering algorithm k-means with LSI is proposed in [3] [14] to reduce the overhead 

of typical LSI. However the overhead of k-means dealing with large document 

collection is not considered which affects the performance of the algorithm hugely. 

Thus, an approach should be considered to solve the large overhead issue by 

involving the k-means algorithm combining with LSI. Current literature shows a 

number of approaches have been proposed in speeding up LSI process in computation 
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[3] [14] [16] [19] [21] [25], the scalability of these approaches still remains a 

challenging issue due to the lack of an effective load balancing scheme in utilization 

of heterogeneous computing resources. The unbalanced load issue can deteriorate the 

performance of algorithms with LSI. Therefore combining both speeding up the 

computation of LSI and load balancing, an efficient distributed LSI algorithm should 

be designed.  

 

This thesis presents a distributed LSI algorithm based on the MapReduce model. One 

of the most popular implementations of MapReduce model, Hadoop framework 

becomes popular due to its remarkable characteristics. However, the large number of 

configuration parameters of Hadoop brings a number of challenges to users to decide 

on a set of parameters that are crucial for achieving high performances. It is 

impractical to build up a Hadoop cluster which contains a large number of nodes to 

evaluate performance of a MapReduce based algorithm. These challenges motivate 

the desire to have a Hadoop environment simulator which can be used to tune the 

performance of a Hadoop cluster and analyze the behaviors of Hadoop applications. 

 

Hadoop framework based on MapReduce has become a major enabling technology in 

support of data intensive applications, which facilitate to process data in a distributed 

computing environment. Hadoop framework has a number of processing units called 

Map instances (mappers) and Reduce instances (reducers) [35]. As mappers and 

reducers are controlled by TaskTracker, therefore they work independently without 

communicating with each other, which is different from traditional distributed 

computing systems such as MPI. Therefore a notable feature of the Hadoop 

implementation of MapReduce framework is the ability to support heterogeneous 

environments. However, in the current version of Hadoop framework lacks of an 

effective load balancing scheme for utilizing resources with varied computing 

capabilities. This challenge motivates this work to balance the loads among mappers 

in a dynamic computing environment with considering the interactions of a number of 

factors including Hadoop parameters, load of IO system and load of processors.  
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1.5 Major Contributions 

The main contribution of the thesis is speeding up LSI in Hadoop distributed 

computing environments by combining the clustering algorithm k-means to improve 

the performance of the typical standard LSI algorithm. Load balancing strategies are 

deployed to significantly enhance the performances of the algorithm. The following 

descriptions are the detailed contributions presented in this thesis: 

1. To facilitate the analysis of Hadoop framework behaviors, HSim, a Hadoop 

environment simulator is designed and implemented. HSim aims to accurately 

simulate the behaviors of Hadoop framework. The current version of HSim 

modeled and simulated Hadoop framework from four phases. The first phase is 

node phase which contains parameters of processor, memory, hard disk, network 

interface, Map instances and Reduce instances. The second phase is the cluster 

specifications including parameters of number of nodes, configuration of nodes, 

routers, job queue, and job schedulers. The third phase has the parameters to 

control the behaviors of above components, in which is including the size of data 

chunks, JVM reuse, sort factor, virtual memory, the number of copying threads, 

data spilled threshold. The last phase is the functions and parameters of the 

simulator itself including simulating speed, system clock, accuracy levels and 

system reporter. HSim supports to simulate both homogeneous and heterogeneous 

Hadoop computing environment. Additionally HSim can be adopted to create 

static and dynamic environments based on the interactions among ‘HDD’ 

component, ‘CPU’ component and ‘LoadGenerator’ component. Based on the 

above characteristics, HSim can simulate types of MapReduce jobs. To validate 

the accuracy, reliability and performance of HSim, several published MapReduce 

applications based on Hadoop framework are simulated. The validation of HSim 

follows a two step process. In the first step, HSim is validated against published 

benchmark results. In the second step, a physical Hadoop environment is set up to 

evaluate the performance of HSim using our Hadoop applications. The 
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comparative results show high accuracy and stability of HSim in simulating 

Hadoop applications. 

2. The combination of k-means and LSI to speed up the performance of typical LSI 

has been implemented. To solve the overhead issue brought by k-means, which 

remain a research issue, MR-LSI distributes k-means and LSI using Hadoop 

framework.  

a) MR-LSI distributes the k-means algorithm and LSI using Hadoop framework, 

which enhances the performance of typical LSI significantly when 

processing large document collection. 

b) The scalability of MR-LSI has been studied using HSim. The impacts of 

tuning the cluster parameters for MR-LSI are analyzed in details. 

c) A static load balancing strategy based on genetic algorithm has been 

proposed which considers the heterogeneous environment with various 

computing resources. 

3. The work also considers the load balancing issue in dynamic Hadoop distributed 

computing environment. A dynamic load balancing strategy for Hadoop framework 

has been put forward. 

a) The dynamic load balancing strategy designed for Hadoop framework has been 

proposed. Comparing to the other load balancing solutions such as computing 

ratio based scheduler strategy, it modeled the characteristics of Hadoop 

framework in dynamic environment which the load of processors and hard disks 

are following certain distributions. The evaluation shows it outperforms the 

other schedulers and enhances the performance of the cluster significantly. 

b) Comparing to a number of established dynamic load balancing strategies with 

fixed window size (the time interval of executing load balancing algorithm), the 

algorithm has dynamically changed window sizes which is fully determined by 

the algorithm itself. 

c) The traditional genetic algorithm has large overhead due to its iterations. 

Though a number of works claim that controlling the iterations within a small 

number can still gain optimized solutions, it is not suitable in a complex 
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dynamic environment in a Hadoop cluster. The work generates a way to reduce 

the number of iterations of genetic algorithm with considering the characteristics 

of Hadoop framework, which can significantly enhance the performance of the 

dynamic load balancing algorithm. 

d) Dynamic load balancing strategy is evaluated with both fixed window size and 

dynamic window size, computing ratio based strategy. The results show that the 

work significantly improves the performance of the cluster. 

 

1.6 Structure of the Thesis 

The rest of this thesis is organized as follows. Chapter 2 is a literature review. Section 

2.1 and Section 2.2 introduce the basics of LSI algorithm based on vector space model 

and k-means algorithm. This is essential to understand the knowledge which this 

thesis is based. Section 2.3 introduces the Hadoop framework based on MapReduce 

model. Section 2.4 discusses the related work of the thesis. Section 2.5 concludes the 

chapter. 

 

Chapter 3 is dedicated to the design and implementation of the Hadoop simulator 

HSim. Section 3.1 describes the modeling of parameters in Hadoop framework from 

four aspects. Section 3.2 gives the details of the design of the simulator. In section 3.3 

a number of validations have been down using the computing environments and 

results of published benchmarks and customized experiments. Section 3.4 concludes 

the chapter that HSim is provided to be suitable for simulating Hadoop framework. 

 

Chapter 4 presents the MR-LSI algorithm which aims for scalable information 

retrieval. Section 4.1 describes the design and implementation of MR-LSI in detail. 

Section 4.2 describes the design and implementation of the static load balancing 

algorithm in details. Section 4.3 and 4.4 gives the experimental and simulation results 

of MR-LSI. Section 4.5 concludes the chapter. 
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Chapter 5 proposes a dynamic load balancing strategy for Hadoop framework to 

enhance the performance the cluster. Section 5.1 reviews the current load balancing in 

Hadoop framework. Section 5.2 gives the details of the design of the dynamic load 

balancing algorithm. Section 5.3 presents the simulation environment. Section 5.4 

simulated and evaluated the algorithm and shows the performance compared to some 

other load balancing strategies. Section 5.5 concludes the chapter. 

 

Finally, Chapter 6 summarizes the contributions of the thesis and proposes directions 

for future work. 
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Chapter 2 
Literature Review 

 
2.1 LSI 

In the Vector Space Model (VSM) [45], if a document corpus has a number of n 

keywords, then an n-dimension vector can be built up of which each dimension 

represents combination of keywords for one document. The documents of the corpus 

and the queries can be represented by the vectors by the concept of VSM based on the 

weight of the key words. It is quite obvious that the greater the weight is, the more 

important the word is. Therefore, in one vector if the weight equals to or greater than 

1, it means the word appears in a document. Otherwise if the weight is 0, it means the 

word does not appear in a document. Based on these vectors, by calculating the cosine 

values of query and document, the similarities can be measured and useful document 

collections can be retrieved. VSM abstracts the documents to be vectors and does 

information retrieval by mathematical computation. Thus VSM does not do any 

simpler traditional keywords matching. 

 

Though VSM opened up a new way of text mining technologies, there are still some 

drawbacks existing in the model. The first point is that the key words are assumed to 

be independent without any relationship. However, there might be certain kinds of 

relationships among the keywords of documents, which means that VSM is not 

suitable enough to deal with the associated keywords. The second point is if the scale 

of the vector space is too large, the processing speed will become highly considerable. 

As an improvement of VSM, LSI uses the terms processed by statistics to index the 

documents. Therefore the semantic relationships among the term-term and 

document-document are highlighted. It also reduces the impacts caused by polysemy 

and synonymy. 
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LSI processes the relationships among the terms and documents based on the concept 

of VSM. Additionally LSI assumes that there must be certain kinds of latent semantic 

structures, which are hidden in the context because of polysemy and synonymy 

existing within the documents and corpus. As a result, LSI does not use simpler 

keyword matching but uses a way of statistics computation to discover the latent 

semantic relationships. The core computation of LSI is to do the SVD (Singular Value 

Decomposition) operation on the formed Terms-Documents matrix. And then LSI 

keeps a pre-given number of largest singular values and corresponding ܷ and ܸ 

matrices to form a new approximate matrix, which can represent the original matrix 

approximately. Thus the original terms-documents matrix removes the unnecessary 

noises and reduces the density of the original matrix, which can reduce the computing 

complexity of the future computation. The detail of the LSI algorithm is given below. 

 

The terms and documents of a document collection could form a T-D (Terms and 

Documents) matrix ܣ௠ൈ௡ where m is the number of the terms and n is the number of 

documents. 

[ ]ijA a
 1 i m  , 1 j n   

The original matrix ܣ௠ൈ௡ can be factored into the product of three sub matrices 

using SVD (Singular Value Decomposition): 

TA U V   

  is a diagonal matrix. The diagonal elements in the matrix are the singular values 

of matrix m nA   in descending order. The matrices U  and V  are  orthogonal and 

normalized which satisfy the equation: 

                             T TU U V V I  . 

LSI computes a low rank approximation to m nA   using a truncated SVD. The first k  

elements which are larger than a certain value   will be kept and the values of the 

rests of the diagonal elements ( )r k  will be set to zero in the matrix  . 

Simultaneously matrices U  and V  will be truncated to be kU  (First k columns 
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are kept.) and kV  (First k  rows are kept). Thus the original T-D matrix m nA   will 

be presented by an approximate matrix kA  with k , kU  and kV : 

T
k k k kA U V   

The submitted query q  will be processed by equation to gain vq : 

1T
v k kq q U    

Thus to compare the similarities of query and documents can be measured by 

calculating the cosine values of vector vq  and document jD . 

2 2

cos
|| || || ||

v j
j

v j

q D

q D



  

Thus if the value of cos j  is greater than certain given threshold  , the document 

jD  is the target document. Thus the set of jD  can be represented by: 

{ | cos cos( , ) }k j j v jD d q D     

LSI does not do keywords matching simply compare to the other traditional text 

mining technologies, in which due to the polysemy and synonymy, the semantic 

relationships of terms and documents are hidden deeply in the context. However, 

based on the SVD computation, LSI can form an approximate matrix from the 

original terms-documents matrix. The new matrix reduces the so called ‘noise’ and 

highlights the semantic relationships of terms and documents. 

 

2.2 K-means 

K-means [30] [31] is a clustering algorithm based on calculating distances between 

centroids and points (vectors). It calculates the Euclid Distance between vectors as the 

criterion function of clustering. The following steps represent how the algorithm 

works.  

1. At the beginning, the algorithm selects several (number of k) points randomly 

from the input vectors to be the initial centroids. 
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2. It calculates the distances between the points of input vectors and the initial 

centroids. And then each point is clustered to the sub-cluster of which the centroid 

is closest to the point.  

3. Acquire the new centroids of newly formed sub-clusters by calculating the 

average value of points which are in the same sub-cluster.  

4. Execute 2 and 3 repeatedly. After several iterations if the centroids of clusters are 

not changed any more, then the algorithm can be regarded as finished.  

 

The workflow of k-means algorithm is described below: 

Input: Number of clusters to be clustered (k) 

     Data set including n vectors 

Methods: 

1. For the input data set, choose number of k vectors randomly as the initial 

centroids. 

2. Calculate the distances between the vectors of input data set and the initial 

centroids. 

3. According to the distances, assign each vector to the cluster with the shortest 

distance from it. 

4. Calculate the average value of the vectors in the sub cluster as the new centroid. 

5. Using the new centroids, re-cluster the vectors. 

6. Repeat 3, 4, and 5. 

7. Until the centroids of sub-clusters are stable. Algorithm is finished. 

 

During the computation, the distances among vectors can be measured by Euclid 

Distance which is expressed as: 

2

1

( , ) ( )
n

i i
i

d x y x y x y


      

where ix  is the coordinates of the points and iy  is the coordinates of the centroids. 
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From the above descriptions we know that k-means has strong abilities to process 

vector based clustering jobs. It offers convenient and flexible ways to achieve 

satisfied results. As k-means shows strong self-adaptabilities, thus during the whole 

computation of k-means algorithm the only factor should be noticed is the number of 

chosen centroids k. 

 

2.3 Hadoop Framework Based on MapReduce 

MapReduce [2] [5] [23] [33] [35] [48] is a distributed programming model for data 

intensive tasks which has become an enabling technology in support of Cloud 

Computing. Programmatically inspired from functional programming, at its core there 

are two primary features, namely a map and a reduce operation. From a logical 

perspective, all data is treated as a Key (K), Value (V) pair. Multiple mappers and 

reducers can be employed. At an atomic level however a map operation takes a {K1, 

V1} pair and emits an intermediate list {K2, V2} pairs. A reduce operation takes all 

values represented by the same key in the intermediate list and processes them 

accordingly, emitting a final new list {V2}. Whilst the execution of reduce operations 

cannot start before the respective map counterparts are finished, all map and reduce 

operations run independently in parallel. Each map function executes in parallel 

emitting respective values from associated input. Similarly, each reducer processes 

keys independently and concurrently. Figure 2.1 shows the structure of the 

MapReduce model. Popular implementations of the MapReduce model include Mars 

[46], Phoenix [47], Hadoop [2] [5] [33] [35] and Google’s implementation [48]. 

Among them, Hadoop has become the most popular one due to its open source 

feature.  

 



Yang Liu (2011) 

16 
 

 

Figure 2.1: The MapReduce model. 

 

2.4 Optimization Techniques 

Optimization techniques can help to enhance the performance of solutions. The 

algorithms of optimization have been considered and developed during a long period. 

Optimization consists in trying variations on an initial concept and using the 

information gained to improve on the idea. Many optimization problems from the 

industrial engineering world, in particular the manufacturing systems, are very 

complex in nature and quite hard to solve by conventional optimization techniques 

[114]. At present, several optimization algorithms have been widely used in a number 

of fields. Neural network [116] [120] is one of the algorithms. It is a complicated 

network system that can realize parallel disposing and nonlinear transformation for 

information by simulating the way of human cerebral nerves to dispose information. It 

has a favourable ability to learn itself, adapt itself, associate and recollect, process 

parallel etc [115]. However, neural network has several drawbacks which may reduce 

the performance. It can be easily to fall into the local optimum. And also the 

convergence speed of neural network is quite slow [116]. Moreover, in neural network 

several important factors such as the structure of network, momentum factor and the 

training ratio are frequently based on experiences of researchers. These factors highly 

affect the performances of neural network in terms of the training speed and the 

disposing ability [117]. Ant Colony Algorithm [121] is another optimization algorithm 
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which is based on new heuristic biological modeling method. It imitates the behaviors 

of real ant colony. In the animate nature ants have the ability to find out the food from 

the nest in the shortest path without any visible reminder. The core of the algorithm is 

to find the optimal path based on processing of the pheromone left by ants. Ants 

release the pheromone in the path. The other ants can perceive the pheromone in 

certain range and their behaviors will be affected. The pheromone will accumulate 

along with the number of ants passing through the path. As a result, the following ants 

have higher chance to select the paths with more pheromone [118]. The ant colony 

algorithm has the ability of processing in parallel and searching in global. However, it 

has two issues which may affect the performance of the algorithm. The first one is the 

ant colony algorithm can be easily to fall to local optimum. The second one is that the 

convergence speed is slow. 

 

Compared to the above discussed algorithms, Genetic Algorithm has several 

characteristic which can help to avoid the issues of local optimum and slow 

convergence speed. Genetic algorithm is an adaptive, heuristic and stochastic 

searching algorithm which is based on the idea of evolutions in natural selection and 

inheritance during biology circles. The algorithm is widely used on solving complex 

problems such as function optimization, image processing, classification, machine 

learning and so on. And also it is proved that the genetic algorithm has strong 

robustness and global parallel searching [119]. Genetic algorithm is mainly consisted 

by the following parts. 

1. Coding: It models a problem with mathematical model. Thus the computer can 

parse the coded data and process it further. Binary coding is frequently used in 

most of the cases of genetic algorithm. However, considering different conditions 

of the problem to be solved, the other coding approaches such as decimal coding 

can be used 

2. Initial population: A set of initial solutions are involved as the first population 

which is to be evolved in the algorithm. 

3. Genetic operators: it has a series of components which are selection, fitness, 
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crossover and mutation. Selection selects the individuals which will be evolved. 

The most popular approach for selection is Russian roulette wheel method which 

is based on probability. Fitness is involved to evaluate the quality of an individual. 

In this thesis, mean square error (MSE) is the fitness function. Thus the lower the 

fitness is, the better the individual is. Crossover recomposes the homologous 

chromosomes via mating to generate new chromosomes. The generated offspring 

inherit the basic characteristics of their parents. Some of them may adapt to the 

fitness function better than their parents did, so they may be chosen as parents in 

next generation. Thus the diversity of the chromosomes could be maintained 

which results in avoiding local optimum. Mutation could mutate genes in a 

chromosome based on smaller probabilities so that the searching space can be 

expanded. As a result, the local optimum can also be avoided. 

4. Stop: When certain requirement of the solution is satisfied, the algorithm stops 

and outputs the best or optimal result. 

 

Thus compared to the neural network and ant colony algorithms, genetic algorithm is 

able to adapt to the complex problems quite well. And also it can avoid the local 

optimum issue which exists both in neural network and ant colony algorithms. Thus, 

this thesis proposes load balancing strategies based on the genetic algorithm due to its 

remarkable characteristics. 

 

2.5 Related Work  

2.5.1 MapReduce Simulator 

Few existing MapReduce simulators are available and MRPerf [49] [50] is a 

representative one. The MRPerf can serve as a design tool for MapReduce 

infrastructure, and as a planning tool for making MapReduce deployment far easier 

via reduction in the number of parameters that currently have to be manually tuned. 

From the published testing results, MRPerf shows its high accuracy in simulating the 

impacts of network topologies due to its adoption of NS2 [51] for network simulation. 
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However it should be pointed out that although MRPerf achieves high accuracy in 

simulating behaviors related to the underlying networks, it can simulate limited 

behaviors of Hadoop framework. The behaviors of Hadoop are affected by a large 

number of parameters. 

 

For example, in the Map phase, the performance of Map instances is highly coupled 

with the current states of node processors, buffers, hard disk and networks. When 

thresholds are reached, certain components may be interrupted to guarantee the 

performance and synchronizations. In the Reduce phase, the performances of Reduce 

instances are highly depended on the current IO states. The copying, shuffling and 

sorting procedures are quite dynamic based on the current system states. MRPerf does 

not simulate these real time interactions accurately due to its heavy dependencies on 

the estimations of the values of parameters. The major limitations of MRPerf are 

listed below: 

 The processing resources for each user are fixed in MRPerf. However, resources 

in a Hadoop environment are dynamically changing and are usually shared by a 

number of users dynamically. 

 MRPerf does not simulate the exact behaviors of Map and Reduce phases. In a 

Map instance, the spilled data will be kept writing into buffer while Map task is 

running. When the occupied size of the buffer is less than a certain threshold, the 

in-memory data is also kept spilling into hard disk simultaneously. Due to the 

highly uncertain real time states of the system, this mechanism significantly 

affects the number of spilled files which will further affect the IO behaviors. 

MRPerf simply ignores these procedures and uses a pre-defined data value. 

 If the occupied size of the buffer is larger than a certain threshold, the CPU 

processing will be blocked until the whole content in buffer is flushed. This event 

can also affect system behaviors but MRPerf does not consider this. 

 In the Reduce phase, MRPerf still performs a simple simulation to start reduce 

tasks simultaneously due to lack of accurate simulations in Map phase. 

 Another drawback of MRPerf is that it only supports homogeneous environment, 
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but Hadoop can be applied to both homogeneous and heterogeneous 

environments. 

 

These approximations and simplifications in terms of parameterization cannot reflect 

real world Hadoop applications. MRPerf was validated using TeraSort, Search and 

Index [49] [50]. All these three algorithms do not involve complex behaviors of 

Hadoop framework when the tests were carried out in a homogeneous environment. 

So the estimations and simplifications of MRPerf did not affect much of its accuracy. 

It would become a problem when using MRPerf to simulate complex behaviors of 

Hadoop. 

 

The limitations of MRPerf motivated the work on HSim. Our focus in HSim is to 

accurately simulate the behaviors of Hadoop framework. Using HSim, the 

performances of Hadoop applications can be studies from a number of angles 

including the impacts of the parameters on the performance of a Hadoop cluster, the 

scalability of a Hadoop application in terms of the number of nodes used, and the 

impact of using heterogeneous environments. HSim complements the design of 

MRPerf in that HSim focuses on simulating the Map and Reduce behaviors of 

Hadoop, and MRPerf focuses on the impact of network topologies of Hadoop. 

 

2.5.2 Distributed LSI 

The current research efforts in speeding up LSI computation generally fall into two 

approaches. One approach combines LSI with clustering algorithms such as k-means 

[16] [19] to cluster a set of documents into a number of smaller subsets and process 

each subset of documents individually to reduce the complexity of SVD in 

computation. One representative work of this approach is presented in [14] in which 

three clustering schemes are introduced, i.e. non-clustered retrieval (NC), full 

clustered retrieval (FC) and partial clustered retrieval (PC). The NC scheme employs 

a truncated SVD to pre-process the original data without any clustering. The FC 

scheme fully clusters data with a k-means algorithm, and then makes use of SVD to 
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approximate the matrix of the document vectors in each cluster. The PC scheme only 

works on a few clusters that are closely related to a given query for high efficiency.  

 

Another approach distributes the computation of LSI among a cluster of computers 

using the Message Passing Interface (MPI). For example, Seshadri and Iyer [28] 

proposed a parallel SVD clustering algorithm using MPI. Documents are split into a 

number of subsets of which each subset of the documents is clustered by a 

participating computer. Experimental results have shown that the overhead in LSI 

computation is significantly reduced using a number of processors. 

 

Although the two aforementioned approaches are effective in a certain way in 

speeding up LSI computation, a number of challenges still remain. For example, the 

k-means approach does not consider the overhead incurred in clustering documents 

which can be high when the size of document collection is large. The MPI approach is 

restricted to homogeneous computing environments without any support for fault 

tolerance. It should be noted that modern computing infrastructures are mainly 

heterogeneous computing environments in which computing nodes have a variety of 

resources in terms of processor speed, hard disk and network bandwidth. As a result, 

distributing LSI computation in a heterogeneous computing environment with MPI 

can cause severe unbalanced workload in computation which leads to poor 

performance. 

 

2.5.3 Dynamic Load Balancing in Heterogeneous Environments 

To solve the unbalanced load issue in a dynamic distributed computing environment, 

a number of studies have been done in enabling load balancing among a number of 

computing nodes. In the Hadoop framework currently it has no proper scheduler 

designed for a dynamically heterogeneous environment. Therefore the performance of 

the framework running on a heterogeneous cluster has chance to be enhanced. At 

present there are a few researches focusing on studying load balancing for 

MapReduce. One research contributed by Groot [57] pointed out that due to the 
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overheads of data copying, network transferring, local hard disk reading and writing, 

a mapper may limit the job execution time. The author also claimed that the slower 

mapper may hold the whole job processing up, which delays the job finishing time. 

To show the impacts of unbalanced load issue, the author use Jumbo based on Google 

Distributed File System [58], which is claimed that has the similar performance as 

Hadoop framework has. In the author’s scenario he implemented two algorithms of 

which one is a single algorithm called ‘word count’ [2] and the other one is a complex 

one called ‘Parallel FP-Growth frequent item set mining algorithm’ [87]. In the 

evaluations the results show that the slower nodes delay the processing which causes 

that the faster nodes are not fully utilized. Based on the results, the author claimed 

that both mapper and reducer impact the performance of Hadoop framework. 

However, firstly in this paper only a number of experiments have been done without 

any solution on solving the unbalanced load issue. Secondly, the impacts brought by 

reducer should be considered. For theoretical algorithm experiments, multiple 

reducers may be involved in terms of efficiency. Contrarily, for a practical algorithm, 

reducer is normally involved to collect the final output which should be regarded as a 

whole data set without any segmentation. Thus for the data integrity, single reducer is 

better than multiple reducers which needs another job to collect parts from different 

reducers to form a whole data set. Therefore it is regarded that in the data processing, 

the load issues among multiple mappers are more critical.  

 

One group of researchers realized the importance of load balancing issue in Hadoop 

as well. Sadasivam et al. [56] try to optimize the performance of the Hadoop cluster 

so that they proposed an approach called Parallel Hybrid PSO-GA using MapReduce 

based on genetic algorithm. In their algorithm they use Hadoop framework itself to 

deal with the genetic algorithm [81] which aims to solve the unbalanced load issue in 

Hadoop. Their algorithm mainly aims on achieving an optimized scheduler for 

multiple users based on the different resource capacities. During the processing, they 

made the number of iterations maximally 30 times to guarantee the efficiency. Their 

results show that the PSO-GA algorithm outperforms Max MIPS, typical PSO and 
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typical GA. However, several points can be criticized from their design and 

implementation. The first point is that the overhead of Hadoop is quite considerable. 

When the framework is involved to compute a Hadoop job scheduler for Hadoop 

itself, though the overhead of following jobs may be reduced, the overhead of the 

scheduler computation definitely cannot be avoided. The second point in their design 

is they just simply consider the capacity of a resource in terms of utilization of 

processor. This simply idea is lack of accuracy to describe the real Hadoop system. As 

studied in paper [77], there are a number of factors which may impact the 

performances of the framework including processing features, IO features and 

Hadoop working mechanisms. Therefore the fitness function based on pure 

utilizations of processors in Parallel Hybrid PSO-GA cannot compute the scheduler 

accurately. The third point is just 30 times iterations involved in their algorithm 

cannot get the optimized solution. The existing errors may differentiate the 

performance of the scheduler from the actual optimized scheduler. However to 

increase the number of iterations will increase the overhead of the algorithm, the 

authors have not done any compensation to calibrate these two issues. The forth point 

is they considered to balance the load among multiple users but they do not consider 

the load among mappers for one job. Thus the unbalanced load will make certain 

number of mappers unutilized, which delays one job. Moreover the total number of 

jobs will be affected. 

 

Another group of researchers aim to assign different volumes of so-called data 

fragments to different computing nodes on balancing the loads. Xie et al. [55] 

established a heterogeneous Hadoop cluster and measured the processing speed of 

each node based on the overhead of processing 1GB data. And then according to 

different computing ratio, they allocated the nodes with different number of fragments 

proportionally. They claimed that their strategy enhances the performance of Hadoop 

framework. However, there are three arguments about their research. The first one is 

that is it proper to define the computing ratio for one node based on simply testing the 

overhead of processing 1GB data? It is well recognized that the processing steps of 
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Hadoop are quite complex. The number of processor, hard disk, memory buffer, 

network and parameters’ operations are involved. For instances, two absolutely same 

nodes from hardware aspects will definitely give different performances on 

processing 1GB data with different buffer size configurations. And also, a machine 

with slower hard disk may outperform a machine with faster hard disk on processing 

1GB data with different sort factor configurations. Therefore the simply way of 

defining the processing speed of a node cannot represent the real processing capacity 

of the node. The second argument is that in the current version of Hadoop framework, 

one job cannot decide how many data chunks to be sent to a node. The only way of 

Hadoop data chunk allocation is each mapper copies one data chunk from HDFS 

without any interference from users. They may find a particular way to test their 

strategy in the practical Hadoop cluster. However, they do not mention that. The third 

argument is in their paper they claims that their computing ratio is based on the 

response time of each node which is proportional to the processing speed of the 

processor. For some of the algorithms which have less data output, their computing 

ratio may perform well. However, when the algorithm has a number of IO operations, 

which cause the response time is not proportional to the processing speed to the 

processor, the performance of their algorithm will be definitely deteriorated. 

 

The above studies aim to solve the unbalanced load issue in Hadoop framework based 

on MapReduce computing model. Though their approaches give ways to enhance the 

performances, they do not consider multiple factors involved in Hadoop. Therefore 

their results are not that representative. Moreover, they do not consider any dynamic 

issues of the algorithm while it is well known that the Hadoop computing 

environment is dynamic from aspects of loads of processors, speed of IO devices and 

states of the cluster. Though currently there is little research to study the load 

balancing strategy in a dynamic Hadoop distributed computing environment, a large 

number of dynamic load balancing strategies have been published for the other 

scenarios. These strategies can also give enlightens for designing a dynamic load 

balancing algorithm especially for Hadoop framework. 
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One famous way to design a dynamic load balancing algorithm is to implement a 

static load balancing algorithm repeatedly in a number of time intervals for a 

dynamically changed environment [61]. Maeng et al. [63] proposed an algorithm 

named as ‘Dynamic Load Balancing of Iterative Data Parallel Problems on a 

Workstation Clustering’ following the above way. The experimental results show that 

it is a proper way of implementing static load balancing algorithm in a time interval to 

adapt to a dynamic environment. The approach can enhance the performance of the 

cluster. Zomaya et al. [64] follow the same way to design their load balancing 

algorithm. They involve genetic algorithm [82] [83] [85] in each time interval to 

achieve the optimized job scheduler according to the speeds of processor employed in 

the cluster. To facilitate the design, they firstly use a fixed ‘window size’ [60] [63] 

representing the time interval. Secondly they restrict the iterations of the genetic 

algorithm to be 10 times. From their experimental results, the performance of cluster 

is enhanced greatly using their scenario. However, they do not test the impacts of 

different window sizes. It should be pointed out that the various window sizes may 

vary the performances according to the changes incurred in the environment. Also 

they stiffly set the generation of the genetic algorithm to be 10. As the same as we 

argued in [56], it is quite doubtful that if the solution with only 10-times evolution 

suffices the optimized solution. However, their studies still can be referenced in the 

design of dynamic load balancing algorithm for Hadoop framework. Another point 

should be considered is where the load balancing algorithm can be computed. H. C. 

Lin and et al. [60] proposed a way to balance load for dynamic environment using a 

centralized job dispatcher [84]. In their algorithm a number of nodes can be handled 

by the job dispatcher which uses global state information in making decisions. Based 

on their evaluations they claim that the policy is most suitable for systems with 

high-speed communications. And also Bonomi et al. [80] proposed an adaptive 

optimal load-balancing algorithm in a heterogeneous multiple server system with a 

central job scheduler. The central job scheduler decides the load in a similar way 

which [60] [84] do. Their study is quite helpful in designing the dynamic load 



Yang Liu (2011) 

26 
 

balancing algorithm for Hadoop as the framework has two features which are quite 

similar to their scenario. The first is there is a component called JobTracker [33] [35] 

which holds the global information of the cluster. The second is though 

communications exist in the framework, the communication overhead is less than the 

other distributed computing systems like MPI. Thus based on their idea, a centralized 

job dispatcher is quite suitable. 

 

In order to facilitate the experiments, to design a dynamic computing environment is 

necessary. As stated by Dhakal et al. [65], although somewhat restrictive, this is a 

meaningful assumption in order to obtain an analytically tractable result. So they 

designed the load of processor following exponential distribution. Based on that 

dynamic load, they develop their own strategy to balance the load among nodes. Their 

research gives a way to establish an environment with dynamic factors in which the 

performances of the load balancing algorithms can be evaluated. 

 

Summarizing, researches on load balancing for Hadoop framework are mainly focus 

on enhancing the performance without considering the lower layer and dynamic 

features in detail. In their designs, they only simply consider the processing speed of 

the nodes. However, it is known that the processing steps in Hadoop involve a number 

of interactions among hardware and cluster parameters. These detailed mechanisms 

affects the performances of a Hadoop cluster quite a lot. And also they do not 

consider how to balance loads among nodes in a dynamic environment, which the 

situation practically exists in a real varying resources Hadoop cluster caused by 

operating system loads or the resource sharing. Another point should be mentioned is 

that due to the differences of processing mechanisms between the Hadoop framework 

and the other distributing computing systems, the dynamic load balancing algorithms 

designed for the other systems are not suitable for Hadoop. Therefore these challenges 

motivate the design of our dynamic load balancing algorithm which targets on 

balancing load among nodes in a dynamic heterogeneous Hadoop computing 

environment. 
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2.6 Summary 

Due to the scalability issue of the LSI algorithm, several works to speed up the 

performance in term of overhead have been done. To combine the clustering 

algorithm such as k-means is regarded as a remarkable way. However, the newly 

involved clustering algorithm brings new overhead so that the new issue should be 

solved. And also in most of the works, the load balancing issue has never been 

considered. Thus, a solution for balancing loads among nodes in the distributed 

computing environment with both static and dynamic factors should be considered. 

Therefore, to evaluate the performance of MR-LSI in a large Hadoop environment 

and the performance of load balancing algorithm, a Hadoop simulator which can 

accurately simulate the Hadoop framework is needed. 
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Chapter 3 
HSim: A MapReduce Simulator  

 
MapReduce is an enabling technology in support of Cloud Computing. Hadoop which 

is a MapReduce implementation has been widely used in developing MapReduce 

applications. This chapter presents HSim, a MapReduce simulator which builds on 

top of Hadoop. HSim models a large number of parameters that can affect the 

behaviors of MapReduce nodes, and thus it can be used to tune the performance of a 

MapReduce cluster. HSim is validated with both benchmark results and user 

customized MapReduce applications. 

3.1 Modeling Hadoop Parameters 

The performance of a Hadoop application can be affected by a large number of 

parameters. In this section, we present the modeling work on these parameters. 

3.1.1 Node Parameters 

 Processor: HSim supports one processor per computer by default design, but the 

number of processors could be changed. One processor can have one or more 

cores. The processing speed of a processor core is defined as the volume of data 

units processed per seconds which can be measured from real experimental tests. 

 Hard disk: In hard disk entity, the speeds of IO operations vary from time to time. 

Several parameters are introduced to build the degressive reading/writing model. 

Let ݔ௠௔௫  represent the maximum reading/writing speed of hard disk. For 

example from the experimental results of testing Seagate Barracuda 1 TB hard 

disk ݔ௠௔௫  is about 120MB/s in reading, and 60MB/s in writing. Let ݔ௠௜௡ 

represent the minimum reading/writing speed of hard disk, ݔ௠௜௡  is around 

55MB/s in reading and 25MB/s in writing. Another parameter which is 

degressive factor r is used to represent in each second the value of lost speed. The 

value of the factor is around 0.0056 based on experimental tests. Using these 

parameters we can calculate the real time speed x of hard disk using formula 
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(3.1).  

ሻݐሺܪ ൌ
.௠௜௡ݔ ௠௔௫ݔ

ሺݔ௠௜௡ െ ௠௔௫ሻ݁ି௥௧ݔ ൅ ௠௔௫ݔ
	ሺ3.1ሻ 

 Memory: In each memory entity two parameters are modeled, reading and 

writing. In our experimental tests, the reading speed of standard DDR2-800 

memory with dual-channel could reach up to 6000MB/s and the writing speed is 

up to 5000 MB/s. It is quite obvious that both the reading and writing speeds 

would not be the bottlenecks of the system due to their fast speeds. 

 Ethernet adaptor: In each Ethernet adaptor entity, two parameters are modeled, 

upstream bandwidth and downstream bandwidth. The bandwidth can be in the 

range of 100Mbps and 1000Mbps. 

 

3.1.2 Cluster Parameters 

The cluster parameters represent the details of a simulated Hadoop cluster. It involves 

several aspects which include the number of nodes, topology and network facilities. 

 Number of nodes: The number of nodes can vary from 1 to a few hundreds. 

 Topology: The number of nodes can be organized with a certain network 

topology. Currently HSim only supports simple racks. 

 Network facilities: The speed of a router can be in the range of 100Mbps and 

1000Mbps. When the bandwidth of a router is defined, a number of standalone 

computers must be configured to connect to the router to decide on their network 

capacities. 

 Job queue and job schedulers: A job queue holds the waiting job entities. 

According to different job schedulers, jobs are waiting for processing resources. 

HSim supports two job schedulers of Hadoop framework – first come first serve 

and fair scheduler. These two types of schedulers generate different job 

processing orders. 

 

3.1.3 Hadoop System Parameters 

Before a Hadoop application starts processing data, the data should be saved into 
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Hadoop Distributed File System (HDFS) [33] [35] in advance. The number of files 

affects the number of Map instances involved. Normally the number of Map instances 

equals to the number of file chunks. If the number of chunks is larger than the 

maximum number of Map instances in the cluster, Map instances will be assigned 

with data chunks via waves. If a whole data set is only saved in one file, the single file 

could be separated into a number of chunks logically via supplied APIs of the Hadoop 

framework. When data is being processed, it would go through a number of 

processing steps such as sorting, merging, combining, copying, reducing. These steps 

highly affect the performances of the system so that several parameters are modeled 

to control the behaviors of these steps. As these parameters are configurable and most 

of them are involved in the actual Hadoop framework so we named these parameters 

Hadoop system parameters. 

 Job specifications: In a job specification, a number of parameters are involved to 

describe the properties of a job. Job ID refers the unique id assigned to each job 

for tracking. The JobSize is the total size of the input data. No matter how many 

chunks of the data are submitted, this value should be the total size of the whole 

data. When the simulation starts, the data will be fetched from the HDFS. The 

NumberOfRecords parameter is used to represent the number of records in the 

data so that the size of each record can be calculated by this value and the size of 

the job. In the simulator this parameter is experimentally used to measure the 

number of records combined by Combiners, which may affect the performances 

of the system when certain types of Hadoop applications are executed. The 

MapOutputRatio parameter represents the volume of intermediate data to be 

generated by Map instances which has an impact on IO performance. The 

ReduceOutputRatio parameter is quite similar to MapOutputRatio. In some 

Hadoop applications the Reduce instances do not only copy data from Map 

instances but also generate their own intermediate data which affects IO 

performance. This parameter specifies the size of intermediate data to be 

generated in the Reduce phase. The ReducingRatio parameter represents the size 

of final results which will be reduced in HDFS. This parameter can affect the 
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performance of the underlying network and also the performance of a local hard 

disk. The NumberOfChunks parameter is used to specify the number of files to be 

used to carry data. This parameter determines the number of Map instances 

assigned to the job. If the number of chunks is only one, a number of logically 

separated files should be specified. The NumberOfReducers parameter represents 

the number of required Reduce instances for the job. If this parameter is defined, 

then a number of Reduce instances will be allocated for the current job according 

to their availabilities. 

 Simulated Hadoop parameters: This group of parameters is highly related to 

Hadoop framework. The io.sort.mb parameter represents the size of memory 

buffer to use while sorting map output. The io.sort.record.percent parameter 

represents the proportion of io.sort.mb reserved for storing record boundaries of 

the map output results. The remaining space is used for the map output records 

themselves. The io.sort.spill.percent parameter is a threshold that determines 

when the Map instance should start spilling processes writing data into memory. 

If the threshold is reached, the CPU processing will be suspended and the buffer 

will be flushed, which means all the data saved in virtual memory will be spilled 

into hard disk. The io.sort.factor (1) parameter specifies the maximum number of 

streams to merge when sorting files in the Map phase. It significantly affects the 

IO performance of the system. The mapred.reduce.parallel.copies parameter 

refers to the number of threads used to copy map outputs to the reducer. Using a 

proper number of copying threads according to hardware resources, the 

performances of the system would be enhanced. The io.sort.factor (2) parameter 

represents the maximum number of streams to merge when sorting files is 

carrying out in the reduce phase. The mapred.job.shuffle.input.buffer.percent 

parameter is the proportion of total heap size to be allocated to the map outputs 

buffer during the copy phase of the shuffle. The mapred.inmem.merge.threshold 

parameter represents the threshold number of map outputs for starting the process 

of merging the outputs and spilling to hard disk. Using this parameter a number 

of smaller mapper outputs could be operated in memory but not local hard disk. 
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Therefore the sorting and merging involve less overhead generated by hard disk. 

The JVM Reuse parameter is partially simulated in HSim. Using JVM reuse, the 

overhead generated by some short-lived tasks will be significantly reduced. 

 

3.1.4 HSim Parameters 

HSim itself needs several parameters to control its own behaviors. Five important 

parameters are introduced in HSim: 

 System Clock: The System Clock parameter is an absolutely and continuously 

timing component. In each change of the system clock, its current value will be 

added by one second. It is used to record the current system time, and to measure 

the performances of Hadoop applications in different cluster configurations. 

 Executing Speed: This parameter controls the execution speeds of all the 

components in HSim. 

 Accuracy Level: For normal Hadoop applications, it is enough to set this 

parameter to the level of seconds. To maintain high accuracy in simulation, 

milliseconds can be set for the applications as well. 

 Shared Parameters: These parameters can control the rates of the shared resources 

include hard disk and bandwidth. The ratio is defined by  

r AssignedResource /TotalResource. 

 Reporter: This parameter records several important system states for analysis. 

 

Table 3.1: Summarizes the parameters modeled in HSim. 

Category Specification 

Node Parameters processor, hard disk, memory, Ethernet card, 

Map instance, Reduce instance 

Cluster Parameters number of nodes, topology, network facilities, 

job queue, job scheduler 

Hadoop System Parameters job specifications, Hadoop parameters 

HSim Parameters system clock, execution speed, accuracy level, 

shared parameters, reporter 

 



Yang Liu (2011) 

33 
 

3.2 The Design of HSim 

This section presents the design of HSim in detail. The prototype is based on Hadoop 

framework. 

3.2.1 HSim Architecture 

Figure 3.1 shows the data flow of HSim. To perform a simulation, the Cluster Reader 

component reads the cluster parameters from the Cluster Spec to create a simulated 

Hadoop cluster environment. A specified number of nodes are initialized and arranged 

using a certain type of topology. After the cluster is configured, the node parameters 

will be processed by the Cluster Reader as well to specify the types of nodes 

including processors, hard disk, memory, Master node, Slave nodes, Map instances 

and Reduce instances. This initialization process can create both homogeneous nodes 

and heterogeneous nodes. Then the simulated cluster is ready for incoming jobs 

retrieved from the job queue using different job schedulers. The Job Spec will be 

processed by the Job Reader component and jobs will be submitted to HSim for 

simulation. 

 

Figure 3.1: HSim components. 

 

HSim follows a master-slave mode. The simulated Map instances (MapperSim), 

Reduce instances (ReducerSim), JobTracker and TaskTrackers are located on these 
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nodes. The Master node is the Namenode of Hadoop framework which contains 

JobTracker to correspond and schedule the tasks. The Slave nodes are the Datanodes 

of Hadoop framework which contains TaskTrackers. On Slave nodes Map instances 

and Reduce instances perform data processing tasks. From Figure 3.1 it can be 

observed that when a job is submitted to a simulated Hadoop cluster, the JobTracker 

splits the job into several tasks. Then TaskTracker and JobTracker will communicate 

with each other via messaging based on heartbeats. One thing should be pointed out 

that in Hadoop framework, the communications among JobTracker and TaskTrackers 

are based on HTTP. However in the simulator simplicity has been done. The HTTP 

communications are not simulated but using the times consumed by the 

communications to measure the overhead generated by HTTP communications. If the 

JobTracker finds that all the Map tasks have been finished, and then the Reduce 

instances will be notified to be ready for merging phase. Moreover if the JobTracker 

finds all Reduce tasks have been finished, then the job will be considered as finished. 

If the Map tasks have not been finished yet, the TaskTrackers will be notified to 

choose a Map task or a Reduce Task based on their availabilities. 

 

3.2.2 MapperSim 

When a Hadoop application is submitted to HSim, the input data will be split into a 

number of data chunks and each chunk is associated with a Map instance. During the 

processing, each task will be assigned to a Map instance for execution. The operations 

of a Map instance are simulated by the MapperSim component. MapperSim simulates 

the operations of a Map instance (mapper) on each node. It copies data which is saved 

in HDFS to its own local hard disk. Commonly each MapperSim processes one file 

chunk but if only one file chunk is saved in HDFS, then a logically separated number 

of chunks can control the number of MapperSim instances involved in the job. When 

the data is copied and saved in the local hard disk, MapperSim starts processing the 

data based on the job spec of the simulated Hadoop application. During the processing 

steps, intermediate data will be generated. To improve the IO performance, the 

intermediate data will be written into a memory buffer. In the buffer, the data can be 
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pre-sorted to gain high efficiency. As long as data is writing into the buffer, if a 

threshold is reached, a background thread will start spilling the data to hard disk. The 

intermediate data will be kept writing into the buffer while the spilling takes place. If 

the buffer is full during this time, the CPU processing will be blocked until the spill 

procedure is complete. This step means that the processor involved in MapperSim 

does not simply keep processing, it may be interrupted by the current states of 

memory buffer. For each spilled chunk of the output, before it is written to the hard 

disk the background thread will divide the chunk into partitions which are associated 

with the Reduce instances. During this step, the in-memory pre-sorting is occurred. 

And if a Combine function is needed, combiner will be involved in this step after 

sorting. After the task is finished, the partitions will be merged into a single file which 

contains sorted data to be copied to the Reduce instances. Figure 3.2 shows the 

working mechanism of MapperSim. 

             Figure 3.2: Data flows in the MapperSim component. 

 

Figure 3.3 shows a sequential diagram shows the interactions of MapperSim with 

other components in HSim. 
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Figure 3.3: MapperSim sequence diagram. 

 

3.2.3 ReducerSim 

The ReducerSim component simulates the Reduce instances in Hadoop framework. It 

is used to collect the outputs from MapperSim and reduce the final outputs into HDFS. 

Figure 3.4 shows the data flows in ReducerSim. 

                Figure 3.4: Data flows in the ReducerSim component. 

 

The output files of the MapperSim component are saved in the local hard disk. The 

ReducerSim component needs the output from several MapperSim components for its 

particular partition. The ReducerSim starts copying data when an output is ready. 

Each ReducerSim has a number of copying threads so that it can copy the output 

results from a number of MapperSim components in parallel. If the size of the output 

is small, it will be copied into a memory buffer otherwise it will be copied into the 

hard disk directly. If the output results are copied into memory, when a certain 

threshold is reached, e.g. a percentage of buffer used or a number of file copied, these 
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outputs will be merged and spilled into hard disk. As the number of files increases, a 

background thread merges them into larger and sorted files. When all the output 

results from the MapperSim components have been copied, the sorting step will start. 

This step merges the map outputs and maintains sorting orders of outputs. After the 

files have been sorted, they will be reduced into HDFS as one final output. For some 

Hadoop applications, the Reduce instances may need to process data involving 

processors but without IO operations. The ReducerSim in HSim supports this feature. 

Figure 3.5 shows its sequence diagram.  

 

Figure 3.5: Hardware interactions in ReducerSim. 

 

3.2.4 JobTracker and TaskTracker 

JobTracker is mainly used to track a simulated job and TaskTracker is used to run 

individual tasks. When a job is submitted, the job ID will be sent to JobTracker for 

tracking. The JobTracker starts computing the input splits for the job. Then it creates 

one map task for each split. TaskTrackers periodically send messages to the 

JobTracker via heartbeats which tell the JobTracker that a TaskTracker is working. As 

part of the heartbeat, a TaskTracker will tell that if the current task is finished and 

ready to run a new task. Figure 3.6 shows the work flows of the components in HSim 
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Figure 3.6: The workflow of HSim. 

 

3.3 Validations of HSim 

To validate HSim, a number of tests have been conducted. The performances of HSim 

against published benchmark results have been compared. And also an experimental 

environment of a Hadoop cluster has been set up and the simulator HSim is evaluated 

with our Hadoop applications.  

3.3.1 Validating HSim with Benchmarks 

HSim is validated firstly with 3 benchmark results presented in [27] [54] - Grep Task, 

Selection Task and UDF Aggregation Task. 

3.3.1.1 Grep Task 

This task simulated exactly what [27] [54] did in their benchmarking work. HSim 

simulated the cluster using 1 node, 10 nodes, 25 nodes, 50 nodes and 100 nodes 

respectively. Two different scenarios have been tested, one is that each node is 

assigned 535MB data to process, and the other is that 1TB data is submitted to the 

cluster. Each scenario was evaluated 5 times. The simulation results are plotted in 

Figure 3.7 and Figure 3.8 respectively which are close to the benchmark results. Both 

the simulation results and benchmark results are in the same scale. Regarding the 

complex physical environments, the simulation results can supply acceptable accuracy. 

The gaps between simulation results and benchmark results can be ignored. The 

confidence intervals of the results are small in both scenarios (in the range of 0 and 

2.6 seconds in the first scenario and in the range of 4.1 and 7.6seconds in the second 

scenario) showing a stable performance of HSim. 
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benchmark result. The simulation results show that considering the complex working 

mechanisms and parameters of Hadoop framework, the simulator HSim can supply 

sufficiently close results compared to the benchmark results. 

 
Figure 3.9: Selection task evaluation. 

 

From Figure 3.9 it can be clearly observed that the simulated results are close to the 

benchmark results, and the confidence intervals are small, in the range of 2.6 and 6.6 

seconds. 

 

3.3.1.3 UDF Aggregation Task 

The UDF Aggregation Task reads the generated document files and searches for all 

the URLs appeared in the contents. And then for each unique URL, HSim counts the 

number of unique pages that refers to that particular URL across the entire set of files. 

The simulation results are shown in Figure 3.10 which again are close to the 

benchmark results considering the complexities of the simulations. The simulation 

results show a high stability of HSim for the task. 
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Figure 3.10: Aggregation task evaluation. 

 

3.3.2 Evaluating HSim with Customized Hadoop Applications 

Two customized Hadoop applications are involved for validation secondly - one is for 

information retrieval and the other one is for content based image annotation. The two 

applications were evaluated in both a Hadoop experimental cluster and HSim. This 

section presents the evaluation results. 

3.3.2.1 The Experimental and Simulated Environments 

The Hadoop experimental cluster consists of 4 nodes. Three nodes were used as 

Datanodes with CPU Q6600@2.4G, RAM 3GB, 120GB Seagate Hard Disk, and 

running OS Fedora 12. One node is used Namenode with CPU C2D7750@2.26G, 

2GB RAM and running OS Fedora 12. Each Datanode employed 4 mappers and 1 

reducer with default cluster configurations. The network bandwidth is 1Gbps. We 

used HSim to simulate a Hadoop cluster with the same configurations as those of the 

experimental cluster. 

 

3.3.2.2 MR-LSI 

MR-LSI [52] is a MapReduce based distributed LSI algorithm for information 

retrieval. The details will be described in the next chapter. MR-LSI is designed and 

implemented using the Hadoop framework. It involves both Map and Reduce 
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functions, and contains a number of IO operations. MR-LSI was evaluated in both an 

experimental environment and HSim, and plotted the results in Figure 3.11. 

 

Figure 3.11: Evaluating HSim with MR-LSI. 

 

It can be observed that the overall performance of HSim is substantially close to that 

of the real Hadoop cluster, especially for scenarios dealing with MapReduce jobs with 

larger sizes of datasets and involving an increased number of mappers. One thing 

should be pointed out that HSim is designed to simulate a large scale Hadoop cluster 

so that if only one node is in the cluster the errors may occur due to inaccuracy of 

simulating a cluster consisted by a single node (In this case one machine employs four 

mappers so when the number of mappers is less than 5, there is only one node in the 

cluster.). For comparison purpose, the performance of the MRPerf simulator is also 

tested using the same configurations as that of HSim. From the results presented in 

Figure 12 it can be seen that HSim significantly outperforms MRPerf in comparison 

with the performance of the real Hadoop cluster. As discussed in Section 2, using too 

much estimation on the values of Hadoop parameters limits MRPerf in simulating 
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MapReduce behaviors accurately. 

 

3.3.2.3 MR-SMO 

MR-SMO [53] is a MapReduce based distributed SMO algorithm for content based 

image annotation. MR-SMO is built on Hadoop framework, and also involves both 

Map and Reduce functions. MR-SMO was evaluated in the experimental Hadoop 

cluster as well as in HSim. The MRPerf simulator is also employed to evaluate the 

performance of MR-SMO. From the results presented in Figure 3.12 it can be 

observed that the performance of the simulated cluster using HSim is considerably 

close to that of the real Hadoop cluster. Again MRPerf does not produce accurate 

simulation results. 

 

Figure 3.12: Evaluating HSim with MR-SMO. 

 

3.3.3 Discussions 

The Hadoop framework is a complex system involving a number of components. 

HSim is designed and implemented to simulate such components and interactions. It 
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works similarly like the way of the Hadoop framework works. However we cannot 

simply conclude that HSim can accurately simulate Hadoop without any limitations. 

The accuracy of HSim can be affected by a number of factors such as the time of job 

propagations, cold starts of Map instances, key distributions, system communications, 

shared hardware resources and dynamic IO loads. These dynamic factors may affect 

the performance of both experimental and simulated results depending on user 

applications. Enabling the Combiner feature of Hadoop also can affect the accuracy of 

HSim. However, the combiner instance has not been fully implemented in HSim. A 

combiner can be considered as an in-memory sort process. The output of mappers will 

be combined and written into an intermediate file by a combiner. And then the file 

will be sent to a reducer. So when the number of mappers is small, the benefits gained 

from using combiners are not significant. However when the number of mappers gets 

large, system IO operations includes hard disk reading, writing and network utilities 

will benefit a lot from combiners. Though HSim does not work that well with 

simulated combiners in large clusters, it still performs well in a simulated cluster with 

up to 100 nodes. 

 

3.4 Summary 

This chapter presents HSim, a Hadoop simulator for simulating data intensive 

MapReduce applications. HSim was validated with established benchmark results and 

also with experimental environments which have shown that HSim can accurately 

simulator MapReduce behaviors. HSim can be used to investigate the impacts of the 

large number of Hadoop parameters by tuning their values. It can also be used to 

study the scalability of MapReduce applications which might involve hundreds of 

nodes. 
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Chapter 4 
Parallelizing LSI for Scalable Information Retrieval 

 
Latent Semantic Indexing (LSI) has been widely used in information retrieval due to 

its efficiency in solving the problems of polysemy and synonymy. However, three 

drawbacks affect the performance of LSI. The first disadvantage is that LSI is notably 

a computationally intensive process because of the computing complexities of 

singular value decomposition and filtering operations involved in the process. The 

second disadvantage is several studies show that the truncated SVD can be lack of 

efficiency in processing large inhomogeneous text collections [14] [17]. The third 

disadvantage is for large datasets the SVD computation may be too expensive to be 

carried out on conventional computers. Also, the dense data structure of the truncated 

SVD matrices poses a huge challenge for both disk and memory spaces of 

conventional computers [13] [14]. Thus, a number of researchers proposed algorithms 

based on clustering technologies [3] [13] [14] [92] [93] to solve the issues stated of 

LSI. One of the clustering algorithm k-means has been involved by [3] [13] [14]. 

Combining with k-means, the original dataset of documents can be clustered into 

several sub-clusters according to the similarities of topics of the documents. As a 

result, the dimension of the original T-D matrix formed from the inhomogeneous text 

collections is reduced. Also, the computing complexity and cost are reduced. However, 

it should be noted that the combined clustering algorithm k-means can also generate 

large overhead when it is dealing with large dataset. Thus to distribute the k-means 

combining with LSI is an efficient way to solve the above issue. 

 

This chapter presents a MapReduce based distributed LSI algorithm (MR-LSI) for 

high performance and scalable information retrieval. MR-LSI distributes k-means 

using Hadoop framework based on MapReduce computing model. Each mapper 

processes a data chunk which is separated from the original dataset by running 

k-means algorithm. After the dataset is clustered, a number of sub-clusters are output 
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by reducer. And then, a number of mappers are started to do truncated SVD 

computation in each sub-cluster. Finally, reducer outputs the final results into HDFS. 

The performance of MR-LSI is first evaluated in a small scale experimental 

environment. Subsequently, HSim is involved for further evaluation of MR-LSI in 

large scale simulation environments. By partitioning the dataset into smaller subsets 

and optimizing the partitioned subsets across a cluster of computing nodes, the 

overhead of the MR-LSI algorithm is reduced significantly while maintaining a high 

level of accuracy in retrieving documents of user interest. A genetic algorithm based 

load balancing scheme is also designed to optimize the performance of MR-LSI in 

heterogeneous computing environments in which the computing nodes have varied 

resources. 

 

4.1 The Design and Implementation of MR-LSI 

MR-LSI employs k-means to group documents into a number of clusters of 

documents. To minimize the overhead of k-means in clustering documents, MR-LSI 

partitions the set of documents into a number of subsets of documents and distributes 

these subsets of documents among a number of processors in a MapReduce Hadoop 

environment. Each processor only clusters a portion of the documents and 

subsequently performs a truncated SVD operation on the generated document cluster. 

The details on the design of MR-LSI are given below.       

 

Let  

 ܦ represent the set of ݌	documents, ܦ ൌ ሼ݀ଵ, ݀ଶ, ݀ଷ, … , ݀௣ሽ. 

 ܲ represent the set of ݉  processors in a Hadoop cluster,               

ܲ ൌ ሼ݌ଵ, ,ଶ݌ ,ଷ݌ … ,   .௠ሽ. Each processor runs one map instance called mapper݌

 ܯ  represent the set of ݉  mappers running in the Hadoop cluster, ܯ ൌ

ሼ݉ܽ݌ଵ,݉ܽ݌ଶ,݉ܽ݌ଷ, …   .௠ሽ݌ܽ݉,

 

In LSI, the set of ܦ documents can be represented by a set of vectors denoted by ܸ, 
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ܸ ൌ ሼݒଵ, ,ଶݒ ,ଷݒ … ,  ௜ represents the frequencies of keywords thatݒ ௣ሽ. Each vectorݒ

appear in document ݀௜. The input of each mapper includes two parts. The first part is 

a centroid set of ܥ with ݇ initial centroids which are randomly selected from the 

vector set ܸ, ܥ ൌ ሼܿ௜ ∈ ܸ|ܿଵ, ܿଶ, ܿଷ, … , ܿ௞ሽ	. The second part of the input of a mapper 

is a portion of ܸ  denoted by ௜ܸ . The vector set ܸ  is equally divided into ݉ 

portions according to the number of mappers. Thus ௜ܸ satisfies ⋃ ௜ܸ ൌ ܸ௠
௜ୀଵ .  

 

Each mapper ݉௜ runs on one processor ݌௜ calculating the Euclid distances between 

௜௝ݒ ∈ ௜ܸ and ܥ which is denoted by ݀௜௝, then  

               ݀௜௝ ൌ ฮݒ௜௝ െ ܿ௤ฮ, ݆ ൌ 1, 2, … , ௣
௠
ݍ			,	 ൌ 1, 2, … , ݇ 

 

Let ݀௠௜௡  represent the shortest distance between ݒ௜௝  and ܥ , then               

݀௠௜௡ ൌ ݉݅݊	ሺ݀௜ଵ, ݀௜ଶ, ݀௜ଷ, … , ݀௜ ೛
೘
ሻ. 

Based on the shortest distance, the mapper selects the corresponding ܿ௜ and ݒ௜௝ to 

generate a key-value pair as one output record. The output pairs of all the mappers are 

fed into the reduce instance (called reducer). The reducer groups the values with the 

same key ܿ௜  into a set of clusters denoted by  ,௜ݎ݁ݐݏݑ݈ܥ

௜ݎ݁ݐݏݑ݈ܥ ൌ ሼݒଵ
′ , ଶݒ

′ , ଷݒ
′ , … , ௔௜ݒ

′ ሽ, where ݅ ൌ 1, 2, 3, … , ݇ and ∑ ܽ௜ ൌ
௞
௜ୀଵ   .݌

For each ݎ݁ݐݏݑ݈ܥ௜, the reducer calculates a new centroid denoted by ܿ௜
′ ,	 ܿ௜

′ ൌ
∑ ௩ೕ

′ೌ೔
ೕసభ

௔೔
 

The reducer outputs a set of centroids denoted by ܥ ܥ ,′ ′ ൌ ሼܿଵ
′ , ܿଶ

′ , ܿଷ
′ , … , ܿ௞

′ ሽ which 

will be fed into the mappers for computing another set of centroids ܥ ′′until the values 

of the centroids in set ܥ ′	are the same as those in ܥ ′′, then the reducer outputs the 

 ௜. Each of the ݇ jobs runs a mapper performing a truncated SVD operation inݎ݁ݐݏݑ݈ܥ

௔௜ݒ ௜, the vectorsݎ݁ݐݏݑ݈ܥ ௜. In eachݎ݁ݐݏݑ݈ܥ
′  form a T-D matrix ܣ, where ܣ ൌ  .்ܸߑܷ

After performing a truncated SVD operation, the matrix ܣ can be represented by an 

approximate matrix ܣ௞, where ܣ௞ ൌ ܷ௞ߑ௞ ௞ܸ , k is the rank of the matrix. 

 

In LSI, for a submitted query ݍ, it is processed using equation (4.1). 
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௩ݍ ൌ ௞ߑ௞்ܷݍ
ିଵ        (4.1) 

 

The similarities of the query to the documents can be measured by calculating the 

cosine values of vector ݍ and the vectors of matrix ௞ܸ using equation (4.2). 

 

ݏ݋ܿ                           ௝ߠ ൌ
௤ೡ∙஽ೕ

‖௤ೡ‖మฮ஽ೕฮమ
               (4.2) 

 

where j represents the jth document in the clustered document set. 

 

If the value of ܿݏ݋  ௝ willܦ ௝ is larger than a given threshold ߬, then the documentߠ

be a target document. Therefore the set of target documents ܦ can be represented as               

ܦ ൌ ሼ ௝݀| ݏ݋ܿ ௝ߠ ൌ ,௩ݍሺݏ݋ܿ ௝ሻܦ ൒ ߬ሽ . Finally, the reducer generates ݇  clusters of 

documents. For each cluster of documents, a truncated SVD operation is performed 

and targeted documents are retrieved.   

 

4.2 Static Load Balancing Strategy for MR-LSI 

A remarkable characteristic of the MapReduce Hadoop framework is its support for 

heterogeneous computing environments. Therefore computing nodes with varied 

processing capabilities can be utilized to run MapReduce applications in parallel. 

However, current implementation of Hadoop only employs first-in-first-out (FIFO) 

and fair scheduling without support for load balancing taking into consideration the 

varied resources of computers. A genetic algorithm based load balancing scheme is 

designed to optimize the performance of MR-LSI in heterogeneous computing 

environments. 

4.2.1 Algorithm Design 

To solve an optimization problem, genetic algorithm solutions need to be represented 

as chromosomes encoded as a set of strings which are normally binary strings. 

However, a binary representation is not feasible as the number of mappers in a 

Hadoop cluster environment is normally large which will result in long binary strings. 
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A decimal string to represent a chromosome in which the data chunk assigned to a 

mapper is represented as a gene is employed. 

             

In Hadoop, the total time (ܶ) of a mapper in processing a data chunk consists of the 

following four parts: 

 

 Data copying time (ݐ௖) in copying a data chunk from Hadoop distributed file 

system to local hard disk. It depends on the available network bandwidth and 

the writing speed of hard disk.  

 Processor running time (ݐ௣) in processing a data chunk. 

 Intermediate data merging time (ݐ௠) in combining the output files of the 

mapper into one file for reduce operations. 

 Buffer spilling time (ݐ௕) in emptying filled buffers. 

ܶ ൌ ௖ݐ ൅ ௣ݐ ൅ ௠ݐ ൅  ௕            (4.3)ݐ

 

Let 

 ܦ௠ be the size of the data chunk.  

 ܪௗ be the writing speed of hard disk in MB/second. 

 ܤ௪ be the network bandwidth in MB/second. 

 ௥ܲ be the speed of the processor running the mapper process in MB/second. 

 ܤ௙  be the size of the buffer of the mapper. 

 ܴ௔	be the ratio of the size of the intermediate data to the size of the data chunk.  

 ௙ܰ be the number of frequencies in processing intermediate data.  

 ௕ܰ be the number of times that buffer is filled up. 

 ௕ܸ be the volume of data processed by the processor when the buffer is filled 

up. 	

 s be the sort factor of Hadoop.	
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Therefore 

 

௖ݐ                               ൌ
஽೘

୫୧୬	ሺு೏,	஻ೢሻ
             (4.4) 

 

Here ݐ௖ depends on the available resources of hard disk and network bandwidth. The 

slower one of the two factors will be the bottleneck in copying data chunks from 

Hadoop distributed file system to the local hard disk of the mapper. 

 

௣ݐ ൌ
஽೘
௉ೝ

                (4.5) 

 

When a buffer is filling, the processor keeps writing intermediate data into the buffer 

and in the mean time the spilling process keeps writing the sorted data from the buffer 

to hard disk. Therefore the filling speed of a buffer can be represented by ௥ܲ ൈ ܴ௔ െ

 ௗ. Thus the time to fill up a buffer can be computed byܪ
஻೑

௉ೝൈோೌିு೏
. As a result, for a 

buffer to be filled up, the processor will generate a volume of intermediate data with 

the size of ௕ܸ which can be computed using equation (4.6) 

௕ܸ ൌ ௥ܲ ൈ ܴ௔ ൈ
஻೑

௉ೝൈோೌିு೏
         (4.6) 

 

The total amount of intermediate data generated from the original data chunk with a 

size of ܦ௠ is ܦ௠ ൈ ܴ௔. Therefore the number of times for a buffer to be filled up 

can be computed using equation (4.7). 

௕ܰ ൌ
஽೘ൈோೌ
௏್

             (4.7) 

The time for a buffer to be spilled once is 
஻೑
ு೏

, therefore the time for a buffer to be 

spilled for ௕ܰ times is 
ே್ൈ஻೑
ு೏

. Then we have 

 

௕ݐ ൌ
ே್ൈ஻೑
ு೏

              (4.8) 
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The frequencies in processing intermediate data ௙ܰ	can be computed using equation 

(4.9). 

 

௙ܰ ൌ ቔே್
௦
ቕ െ 1           (4.9)  

 

When the merging occurs once, the whole volume of intermediate data will be written 

into the hard disk causing an overhead of 
஽೘ൈோೌ
ு೏

. Thus if the merging occurs ௙ܰ 

times, the time consumed by hard disk IO operations can be represented by 
஽೘ൈோೌൈே೑

ு೏
. 

We have  

௠ݐ ൌ
஽೘ൈோೌൈே೑

ு೏
          (4.10) 

The total time ௧ܶ௢௧௔௟	to process data chunks in one processing wave in MapReduce 

Hadoop is the maximum time consumed by ݇ participating mappers, where  

 

                           ௧ܶ௢௧௔௟ ൌ max	ሺ ଵܶ, ଶܶ, ଷܶ, … , ௞ܶሻ   (4.11) 

 

According to divisible load theory [102] [103] [104] [105], to achieve a minimum 

௧ܶ௢௧௔௟, it is expected that all the mappers to complete data processing at the same time: 

                          

 ଵܶ ൌ ଶܶ ൌ ଷܶ ൌ 	… ൌ 	 ௞ܶ       (4.12) 

 

Let 

 ௜ܶ be the processing time for the ݅௧௛	mapper. 

 തܶ 	be the average time of the ݇	mappers in data processing, തܶ ൌ
∑ ்೔
ೖ
೔సభ

௞
 

 

Based on equations (4.11) and (4.12), the fitness function is to measure the distance 

between ௜ܶ and തܶ. Therefore, the fitness function can be defined using equation 

(4.13) which is used by the genetic algorithm in finding an optimal or a near optimal 

solution in determining the size for a data chunk. 
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                           ݂ሺܶሻ ൌ ට∑ ሺതܶ െ ௜ܶሻଶ௞
௜ୀଵ         (4.13) 

 

4.2.2 Crossover 

To maintain the diversity of the chromosomes, the algorithm needs functions of 

crossover. Crossover recomposes the homologous chromosomes via mating to 

generate new chromosomes or so called offspring. The generated offspring inherit the 

basic characteristics of their parents. Some of them may adapt to the fitness function 

better than their parents did, so they may be chosen as parents in next generation. 

Based on crossover, the algorithm can keep evolving until an optimal offspring has 

been found. In this algorithm, to gain the effective of design and operations, 

single-point crossover which refers to set only one crossover point randomly in the 

chromosome has been employed. The processes of crossover could be regarded as: 

1. Randomly select pairs of the chromosomes (schedulers) as parents to mate. 

2. In each pair, randomly select a position as crossover point. If the length of the 

chromosome is k  then there will be 1k   available points. 

3. In each pair, the chromosomes change their parts which are after the crossover 

point with each other according to crossover probability p . 

 

However in the algorithm simply crossing the chromosome may cause one problem. 

As each gene is the value of the actual volume of data each Map instance takes, to 

change the members of genes may differentiate the original total volume of data
1

k

i
i

D

 . 

Assume the original total volume of data is 
1

k

i
i

D

  and the volume of data after 

crossover is
1

k

i
i

d

 , then the difference 

1 1

k k

i i
i i

D D d
 

     should be considered and 

processed. In the algorithm D  is divided into k  parts. The size of each part is 

randomly assigned. And then these k  parts will be randomly added to or removed 
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from k  genes in the chromosome. Thus the total size of processed data in one wave 

could be guaranteed. 

 

4.2.3 Mutation 

To avoid the local optimum of the algorithm, mutation has been introduced into our 

algorithm. Mutation could mutate genes in a chromosome based on smaller 

probabilities. Moreover new individuals could be generated. So that combined with 

crossover the information loss due to the selection could be avoided. Thus the validity 

of the algorithm could be guaranteed. The mutation contributes in two main aspects in 

our algorithm.  

1. Improving the local search ability of the algorithm. The crossover operation could 

find a number of chromosomes with better adaptability from a global angle. These 

chromosomes are close to or helpful to gain the optimal solution. However 

crossover cannot execute local search in details. So using mutation to tune the 

values of certain genes from local detailed phase could make the chromosome 

much closer to the optimal solution. So the search ability is enhanced compare to 

that of only crossover involved. 

2. Maintaining the diversity of the colony moreover preventing the premature 

convergence of the algorithm. Mutation replaces the original genes with newly 

mutated genes so that the structure of a chromosome could be significantly 

affected. The diversity of the colony could be maintained.  

 

The algorithm mutates genes mainly based on simple mutation which refers that to 

mutate one or several genes in the chromosome based on mutation probability p . 

There are two steps in the simple mutation. 

1. Randomly select a gene to be the mutation point. Base on mutation probability p

to decide if the chromosome mutates. 
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2. If the probability decides the gene should mutate, then the value of the gene will 

be mutated which means a new value replaces the original value. As a result a new 

individual is generated. 

 

However, it is quite similar to crossover processes that when the value of one gene 

mutates, the original total volume of data 
1

k

i
i

D

  has been changed. Assume the 

original volume of the gene is iD  and the volume after mutation is id , then the 

difference i iD D d   . To solve D  issue, D  is divided into k  parts. The size 

of each part is randomly assigned. And then these k  parts will be randomly added to 

or removed from k  genes in the chromosome. Thus the total size of processed data 

in one wave could be guaranteed. Based on this design, the algorithm has a strong 

ability to change its searching direction to gain the optimal solution in a large search 

space. 

 

4.3 Experimental Results 

To evaluate the performances of MR-LSI a small scale Hadoop cluster consisting four 

computer nodes has been set up. Table 4.1 shows the configurations of the Hadoop 

cluster.  

Table 4.1: The experimental environment. 

Number of Hadoop nodes: 4 

Nodes’ specifications: Three Datanodes: CPU Q6600@2.4G, 

RAM 3GB and running OS Fedora 11. 

One Namenode: CPU C2D7750@2.26G, 

RAM 2GB and running OS Fedora 12. 

Number of mappers per node: 2 

Number of reducer: 1 

Network bandwidth: 1000Gbps 

 

To evaluate the performances of MR-LSI, 1000 papers were collected from the IEEE 

XPlore data source. For each paper selected, a T-D matrix will be constructed. In the 
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tests, also two strategies Closest Distance Searching (CDS) and All Distances 

Searching (ADS) for clustering documents which are similar to the clustered 

strategies proposed in [14] have been designed.  

 

Processed by k-means, the original dataset is clustered into a number of sub-clusters. 

Within these sub-clusters, one or a few of them may be close to the query while the 

others are far away from the query. CDS calculates the distances between a query ݍ 

and the centroid of each sub-cluster. The closest sub-cluster to the query ݍ will have 

the highest probability in containing the target documents. A truncated SVD will only 

be performed on the closest sub-cluster. As CDS just retrieves information in one 

cluster, the time consumed for executing CDS is least. ADS calculates the distance 

between a query and the centroid of each sub-cluster, and a truncated SVD will be 

performed on all the sub-clusters. As ADS retrieves information in all sub-clusters, the 

misclassified documents may have chance to be retrieved. 

 

4.3.1 Evaluating MR-LSI 

MR-LSI was evaluated from the aspects of precision and recall in comparison with 

standalone LSI, standalone LSI combined with k-means using the CDS strategy, and 

standalone LSI combined with k-means using the ADS strategy. From the results 

presented in Figure 4.1 and Figure 4.2 it can be observed that the performance of 

MR-LSI is close to that of the standalone LSI. It is worth pointing out that the CDS 

strategy only works on the closest sub-cluster of documents related to a query. 

Compared with other algorithms, CDS retrieves a smaller number of documents 

which resulting in lower performance in recall.  
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Figure 4.1: The precision of MR-LSI. 

 

 
Figure 4.2: The recall of MR-LSI. 

 

There are a number of tests have been conducted to evaluate the overhead of MR-LSI 

in computation. The number of documents to be retrieved varied from 100 to 1000. 

However, the size of the dataset was not large. From Figure 4.3 and Figure 4.4 it can 

be seen that MR-LSI consumed more time than other algorithms in processing the 
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dataset. This is mainly due to the overhead generated by the Hadoop framework 

which is effective in processing large scale data. Both the ADS and the CDS strategies 

perform faster than the standalone LSI indicating the effectiveness of a combination 

of LSI with k-means.   

 

Figure 4.3: The overhead of standalone LSI, ADS and CDS in computation. 

 

 

Figure 4.4: The overhead of MR-LSI. 
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the overhead of MR-LSI in processing a large collection of documents. The size of the 

document collection is increased from 5KB to 20MB and the overhead of MR-LSI 

with that of the CDS strategy is compared as CDS is faster than both the standalone 

LSI and the ADS strategy. From the results plotted in Figure 4.5 it can observed that 

when the data size is less than 1.25MB, the overhead of CDS is stable. However, the 

overhead of CDS starts growing when the size of dataset is larger than 2.5MB. When 

the size of data reaches to 10MB, the overhead of CDS increases sharply. Compared 

with CDS, the overhead of MR-LSI is highly stable with an increasing size of dataset 

shows its better scalability than the CDS strategy. It also should be mentioned that 

when the size of data increases higher than 20MB, the heap space exception occurs 

when CDS processes data due to the memory limitation of applications in a 

standalone node. 

 

Figure 4.5: Comparing the overhead of MR-LSI with CDS. 

 

4.4 MR-LSI Simulation Results 

To further evaluate the effectiveness of MR-LSI in large scale MapReduce 
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To study the impacts of Hadoop parameters on performance of MR-LSI, a cluster has 

been simulated with the configurations as shown in Table 4.2. Each node has a 

processor with 4 cores. The number of mappers is equal to the number of processor 

cores. There are two mappers running on a single processor with two cores. The 

speeds of the processors were simulated in terms of the volume of data in MB 

processed per second. In the following sections, the impacts have been shown of a 

number of Hadoop parameters on the performance of MR-LSI. 

 

Table 4.2: The simulated environment. 

Number of simulated nodes: 250 

Data size: 100,000MB 

CPU processing speed: Up to 0.65MB/s 

Hard drive reading speed: 80MB/s 

Hard drive writing speed: 40MB/s 

Memory reading speed: 6000MB/s 

Memory writing speed: 5000MB/s 

Network bandwidth: 1Gbps 

Number of mappers: 4 per node 

Number of reducers: 1 or more  

 

4.4.1.1 Multiple Reducers in One Node 

From Figure 4.6 it shows that the number of reducers does not affect the performance 

of mappers greatly. This is because mappers and reducers work almost independently 

in Hadoop environments.  
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Figure 4.6: The impact of the number of reducers on mapper performance. 

 

Figure 4.7 shows the impact of the number of reducers on the overall overhead when 

processing a job. Allocating multiple reducers on one node increases results in the 

shared resources issue. Especially for MR-LSI a number of hard disk operations 

involved, the shared hard disk gives worse performance in reducing phase of the 

reducers than that of unshared hard disk. 
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Figure 4.7: The impact of the number of reducers on the total process.  

 

4.4.1.2 Sort Factor 

In Hadoop, The parameter of sort factor controls the maximum number of data 

streams to be merged in one wave when sorting files. Therefore, the value of sort 

factor affects the IO performance of MR-LSI. From Figure 4.8 it can be observed that 

the case of using sort factor 100 gives a better performance than sort factor 10. When 

the value of sort factor is changed from 10 to 100, the number of spilled files will be 

increased which reduces the overhead in merging. 
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Figure 4.8: The impact of sort factor. 

 

4.4.1.3 Buffer Size 

The buffer size in Hadoop contributes to IO performance, and it affects the 

performance of a processor. The default value of a buffer size is 100MB. The 

performance of MR-LSI with a data size of 1000MB is tested. As shown in Figure 4.9, 

the mappers generate a small number of spilled files when using a large size buffer 

which reduces the overhead in merging. Furthermore, a large buffer size can keep the 

processor working without any blocking for a long period of time.  
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Figure 4.9: The impact of buffer size. 

 

4.4.1.4 Chunk Size 

Each mapper processes a data chunk at a time. Thus the size of data chunks highly 

affects the number of processing waves of mappers. From Figure 4.10 it can be 

observed that using a large size for data chunks reduces the overhead of mappers in 

processing, and also reduces the total overhead of the process as shown in Figure 4.11. 

However, both of the two chunk sizes produce the same performance when the 

number of mappers increases to 800 and 900 respectively. In the case of chunk size 

64MB, to process 100,000MB data, using 800 mappers needs ቒଵ଴଴,଴଴଴ெ஻
଼଴଴ൈ଺ସெ஻

ቓ ൌ 2 waves 

to finish the job. In the case of chunk size 100MB, using 800 mappers needs 

ቒ ଵ଴଴,଴଴଴ெ஻
଼଴଴ൈଵ଴଴ெ஻

ቓ ൌ 2 waves to finish the job. Similarly, using 900 mappers needs 2 waves 

to process the 100,000MB data in both cases. When the number of mappers reaches 

1000, the performance of the two cases with different data sizes varies. 
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Figure 4.10: The impact of data chunk size on the mappers in MR-LSI. 

 

 

Figure 4.11: The impact of data chunk size on MR-LSI. 

 

4.4.1.5 CPU Processing Speed 
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From the figure we can observe clearly that a faster processor can gain better 

performance compared to that of a slower processor. 

 

Figure 4.12: The impact of different CPU processing speeds 

 

4.4.1.6 Number of Reducers 

Figure 4.13 shows that increasing the number of reducers enhances the performance 

of MR-LSI when the number of reducers is small. More reducers are used more 

resources will need to be consumed due to Hadoop's management work on the 

reducers. In some cases multiple reducers need an additional job to collect and merge 

the results of each reducer to form a final result. This can also cause larger overhead. 
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Figure 4.13: The impact of reducers. 

 

4.4.2 Load Balancing Simulation Results 

Table 4.3 shows the configurations of the simulated Hadoop environments in 

evaluating the effectiveness of the load balancing scheme of MR-LSI.  

Table 4.3: Hadoop simulation configuration. 

Number of simulated nodes: 20 

Number of processors in each node: 1 

Number of cores in each processor: 2 

Size of data: Test 1: 10GB 

Test 2: 10GB to 100GB 

The processing speeds of processors: Depending on heterogeneities 

Heterogeneities: From 0 to 2.28 

Number of hard disk in each node: 1 

Reading speed of hard disk: 80MB/s 

Writing speed of hard disk: 40MB/s 

Number of Map instances: Each node contributes 2 Map instances. 

Number of Reduce instances: 1 

Sort factor: 100 

 

To evaluate the load balancing algorithm, a cluster with 20 computers has been 
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simulated. Each computer has one processor with two cores. The number of mappers 

is equals to the number of processor cores. Therefore two mappers are running on a 

single processor with two cores. The speeds of the processors are generated based on 

the heterogeneities of the Hadoop cluster. In the simulation environments the total 

processing power of the cluster was  ܲ ൌ ∑ ௜݌
௡
௜ୀଵ  where n represents the number of 

the processors employed in the cluster and ݌௜ represents the processing speed of the 

ith processor. For a Hadoop cluster with a total computing capacity ܲ, the levels of 

heterogeneity of the Hadoop cluster can be defined using equation (4.14).  

ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ                        ൌ ට∑ ሺ̅݌ െ ௜ሻଶ௞݌
௜ୀଵ             (4.14)  

 

In the simulation, the value of heterogeneity was in the range of 0 and 2.28. The 

reading and writing speeds of hard disk were generated based on the real 

measurements from the experiments conducted. 

 

Firstly 10GB data has been tested in the simulated cluster with different levels of 

heterogeneity. From Figure 4.14 it can be observed that when the level of 

heterogeneity is less than 1.08 which indicates a nearly homogeneous environment, 

the load balancing scheme does not make any difference to the performance of 

MR-LSI. However, the load balancing scheme reduces the overhead of MR-LSI 

significantly with an increasing level of heterogeneity.  
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Figure 4.14: The performance of the load balancing scheme. 

 

The levels of heterogeneity are keeping the same in the tests but varied the size of 

data from 1GB to 10GB. This set of tests was used to evaluate how the load balancing 

scheme performs with different sizes of datasets. Figure 4.15 shows that the load 

balancing scheme can always reduce the overhead of MR-LSI.  

 

Figure 4.15: The performance of the MR-LSI with difference sizes of data. 
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number of generations is varied and the overhead of MR-LSI in processing a 10GB 

dataset in the simulated Hadoop environment is measured. Figure 4.16 shows that 

MR-LSI reaches a stable performance when the number of generations in the genetic 

algorithm reaches 300.  

 

Figure 4.16: The convergence of the load balancing scheme. 

 

The load balancing scheme also produces some overhead during execution. Figure 

4.17 shows an increased overhead of the load balancing scheme when the number of 

mappers increases together with an increasing size of data. However the MR-LSI 

algorithm can still achieve benefit from load balancing algorithm. For example, for 

heterogeneity 2.08, the overhead of load balancing algorithm is 331s. The time 

consumed for one processing wave of mappers is 363s with load balancing. The time 

consumed for one processing wave of mappers is 2256s without load balancing. Thus 

the performance is enhanced 69.2%. As in the static computing environment, the 

scheduler only needs to be computed once, thus it can be claimed that for a long-time 

processing job with proper heterogeneities, the load balancing algorithm can enhance 

performances greatly. 
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Figure 4.17: The overhead of the load balancing scheme with different sizes of data. 

 

4.5 Summary 

This chapter presents MR-LSI for scalable information retrieval. MR-LSI is effective 

when processing a large dataset due to high scalability of MapReduce in support of 

data intensive applications. Both experimental and simulation results have shown that 

the MR-LSI algorithm speeds up the computation process of SVD while maintaining 

a high level of accuracy in information retrieval. The simulating results also indicate 

that the load balancing strategy can enhance the performance of the Hadoop cluster 

when it is running a Hadoop application. 
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Chapter 5 
Dynamic Load Balancing in Heterogeneous 

MapReduce Environments 
 

The distributed computations are widely used in the modern world for processing 

large scale jobs. Hadoop framework which is based on Google MapReduce model 

becomes popular due to its great processing power and ease to use. However as the 

lack of load management, in a dynamic heterogeneous computing environment, the 

performance of Hadoop framework may be deteriorated. Therefore this chapter 

presents a dynamic load balancing algorithm which aims to balance the load among 

heterogeneous nodes. Due to the complexity of changing code of the Hadoop, the 

Hadoop simulator HSim is involved to evaluate the performance of the dynamic load 

balancing algorithm. The results indicate that the performances have been 

significantly enhanced due to the balanced load gained from the load balancing 

algorithm. 

5.1 Load Balancing in Hadoop Framework 

This section will be consisted by two sub sections. This first one states the reasons 

that why Hadoop framework needs load balancing and the second sub section states 

the current job schedulers employed by Hadoop framework. 

5.1.1 Dynamic Load Balancing 

It’s quite obvious that a large job can achieve performance enhancement when it’s 

processed in a distributed computing environment. At present the distributed 

computing systems have become more and more popular in data processing due to the 

reduced hardware costs and advanced computer network technologies. A standard 

distributed computing environment is normally consisted by a number of nodes with 

same or different dynamic computing capacities. The nodes are connected by different 

types of networks. Via the network, resources of the nodes can be share by a number 

of users or tasks. The distributed computing environment contains huge computing 
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capacity due to its mass amount of resources. Compare to an expensive standalone 

machine, no matter how much resource the machine has, it definitely will go over due 

to the occupations of large number of running applications. It has been pointed out 

that even with a proper scale of cheaper hardware, the overall computing power of the 

standalone nodes can easily exceed that of a supercomputer. However though a 

distributed computing environment can supply a huge adaptability to deal with mass 

data, it is obviously observed that if nodes have different deployments of hardware, 

software or networks, certain number of nodes may be overloaded and some others 

may be idle simultaneously. Thus the performance enhancement for distributed 

computing systems has become a key issue. The simplest way to enhance the capacity 

of a cluster is to add more nodes in which may result in high cost. However, it is easy 

to see that if people use advanced hardware and optimized software, the performance 

of the cluster will definitely be improved. This solution can solve the case that all 

nodes are overloaded, which is no matter some of them are faster and some of them 

are slower. However if the deteriorated performance is caused by the reason of 

unbalanced load among nodes due to their own individual and dynamic processing 

capacities, just simply enlarging the number of nodes or upgrading the hardware and 

software can hardly gain the expected efficiencies. Thus to improve the performance 

of the system in the way of redistributing load from the currently heavily loaded 

nodes to lightly loaded nodes in a heterogeneous and dynamic computing 

environment should be considered. 

 

5.1.2 Unbalanced Load Issue in Hadoop Framework 

As described earlier, Hadoop framework is designed to process large scale data in a 

distributed computing environment. As being claimed by Hadoop, the framework 

facilitates the developments of distributed computing based applications. These kinds 

of facilities are based on the interactions among three important components mainly 

which are named HDFS, Map instances (mappers) and Reduce instances (reducers). 

Though the overall structure of the Hadoop framework simplifies the processing, the 

components hide a lot of complex low-layer details including hardware and software 
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aspects at the background. At present, a number of well known Hadoop clusters are 

running in highly homogenous environments. For example Hadoop at Yahoo [100] 

employs a homogenous cluster with 4000 processors, 3T RAM and 1.5PB storage 

capacity. A large number of benchmarks and sorting competitions have been tested 

based on the environment. The results have been published to show the powerful of 

Hadoop framework. In these distributed computing tasks, people focus on the extreme 

performances using homogenous environment which can ideally avoid the unbalanced 

load issues. Therefore, behind these highlighted results, the load balancing issue is 

quite considerable of which has been hidden deeply by the homogeneous 

environments. Normally, it is extremely hard to build up a homogenous cluster with a 

number of nodes up to several thousands. As a result, a number of Hadoop clusters 

with heterogeneous nodes are quite common. The architecture of Hadoop framework 

has been designed quite flexible to adapt to heterogeneous resources. Thus, it can be 

seen clearly that the heterogeneities of the resources will affect the performance of the 

cluster. For instance various processing powers of processors, different writing and 

reading speeds of hard disks, different accessing times and seeking times of magnetic 

heads, different writing and reading speed of memory, different speeds of networks, 

and even different software deployments may vary the overall performance of a 

Hadoop cluster. A simple test has been done to evaluate the performance of the 

framework in a small heterogeneous environment which contained three machines 

and two out of the three were actual processing nodes. The faster machine has 

quad-core processor AMD Phenom II x4 940 BE@3.0GHz and a RAID0 storage 

system. The slower machine has a single core with hyper-threading processor Pentium 

4@2.66GHz. Based on this heterogeneous cluster the MR-LSI algorithm has been 

executed in terms of evaluating the differences between two nodes. The result shows a 

huge gap between these two nodes: the time which faster machine spent on finishing 

its own map tasks is nearly five times faster than those of the slower machine spent on. 

This huge difference results in delay of finishing the job. It indicates clearly that the 

heterogeneity deteriorates the performance of the cluster due to the unbalanced 

workload. Devaraj Das [59], the engineering manager of Yahoo Bangalore Grid 
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Computing Group concludes the load issue from four aspects: 

1. Imbalance in input splits 

2. Imbalance in computations 

3. Imbalance in partition sizes 

4. Imbalance in heterogeneous hardware 

So it can be clearly observed that there is a huge opportunity to enhance the 

performance of Hadoop framework in a way of balancing workload in a 

heterogeneous environment. To solve the unbalanced load issue, Hadoop framework 

employs a job scheduler which aims to balance the load among the nodes. 

 

5.1.3 Current Load Balancing Policies in Hadoop Framework 

Hadoop framework is designed to serve multiple jobs which are located in the job 

pool. In Hadoop, the framework supplies a simple job scheduler FIFO (First In First 

Out). The scheduler serves the jobs in order of their submissions. The sequential 

scheduler could ease the management of job to some extent and sometimes it is 

efficient when the framework deals with the job queue. The simpler scheduling 

algorithm only generates little overhead compared to those of complex balancing 

algorithms. So the job scheduler may response the jobs as quick as possible. However 

the drawback of the scheduler policy is quite obvious. As Hadoop framework 

prescribes, with the FIFO scheduler when a job is processed the job will occupy the 

whole computing resources across the cluster. The other jobs will never have chance 

to be processed when the job is running. Until the last job has been finished and then 

the next job in the queue will be served, which would use the whole cluster again. As 

we know different jobs need different amount of computing resources. Some light 

jobs may just need only little resources to deal with and in contrast some heavy jobs 

may need more resources. It is clearly shows that if a light weight job has been 

processed using the whole cluster, the hardware abuse may occur. In this case the 

performance of the cluster may be worse than using less computing resources. 

Simultaneously a heavy weight job which really needs lots of resources yet has to 

wait until the occupied resources are released. So the drawback of using scheduler 



Yang Liu (2011) 

75 
 

FIFO can be mainly summarized as: although a shared cluster offers great potential 

for offering large resources to multiple users, the problem of sharing resources fairly 

between users requires a better scheduling. Otherwise the performances of the cluster 

may be worse than expected due to the unfairly allocated resources. Therefore to 

avoid the above issue, the Hadoop framework offers new functions to control the 

priorities of different jobs. Now Via the mapred.job.priority property or the 

setJobPriority() method on JobClient five different hierarchies include: VERY_HIGH, 

HIGH, NORMAL, LOW, VERY_LOW. These four properties can control the 

selecting behaviors of the job scheduler. When the job scheduler finishes the current 

processed job and is ready to choose next to run, it will select a job with the highest 

property from the job pool based on the values of the priorities. Thus a number of jobs 

with higher priorities would be processed before those jobs with lower priorities. But 

one weakness is pointed out by [35]. With the FIFO scheduler in Hadoop, priorities do 

not support preemption. As a result, a high-priority job may has chance to be blocked 

by a low-priority job which starts before the high-priority job is scheduled.  

 

According to the current job scheduling policy involved in Hadoop Framework, it is 

recognized that the scheduler in the framework can only schedule the jobs simply. 

Some important heterogeneous factors have not been considered by the Hadoop 

framework yet. Actually the basic heterogeneous factor is the processing capacity of 

mappers. And also, the computing capacity of a Hadoop cluster may be varying 

according to the utilities of the nodes. Thus, considering dynamic features, an 

advanced dynamic job scheduling algorithm which can balance the load among the 

most basic processing unit mappers is proposed in the later section. 

 

5.2 Algorithm Design 

5.2.1 Data Selection 

In a dynamic distributed computing environment, the computing capacities of 

different of nodes are dynamically changing. Therefore, in a certain time interval the 
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total amount of computing capacity across the cluster may have a chance to stay at a 

higher level. Contrarily in another time interval, the total amount of computing 

resources across the whole cluster may be in a lower level. To use the higher 

computing capacity to process data can enhance the utilization of the cluster. Thus to 

find a time interval with higher computing capacity for a processing wave and the 

volume of data should be processed in this time interval are significant. In this chapter 

an approach that can approximately predict the computing capacity of the cluster [72], 

and the amount of data will be assigned to the cluster during the time interval has 

been proposed. Therefore, for each processing wave, the mappers have bigger chance 

to process data using higher computing capacities. 

 

Let ௜݂ሺݐሻ represent the processing speed of ݅th mapper. Thus the total computing 

speed at the time point ݐ of the cluster employed a number of ݊ mappers ݌ can be 

represented by 

ሻݐሺ݌ ൌ෍ ௜݂ሺݐሻ
௡

௜ୀଵ

				ሺ5.1ሻ 

Let ܦ represent the total amount of data for a Hadoop job. Thus, considering only 

processing of processors, the overhead ݐ to complete processing the total amount of 

data can be represented by 

න ݐሻ݀ݐሺ݌ ൌ ܦ
௕

௔
				ሺ5.2ሻ 

ݐ ൌ ܾ െ ܽ				ሺ5.3ሻ 

 where ܾ is the finishing time and ܽ is the starting time. 

 

Let ݓ represent the number of waves of mappers involved to process the total 

amount of data ܦ. In the time interval ݐ, there are a number of ݊ two types of trends 

of the processing speed ݌ሺݐሻ. The first one is ‘increasing trend’. We define it as 

below: from time point ݐ௔′  to ݐ௕
′ , the average processing speed during this time 

interval  
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௔௕݌
′തതതതത ൌ

׬ ݐሻ݀ݐሺ݌
	௧್
′

௧ೌ
′ 	

௕ݐ	
′ െ ′௔ݐ 	

				ሺ5.4ሻ 

keeps increasing until it becomes decrease. The second trend is ‘decreasing trend’. It 

is defined as below: from time point ݐ௔′  to ݐ௕
′ , the average processing speed ݌௔௕

′തതതതത 

during this time interval keeps decreasing until it becomes increase. Therefore the 

algorithm selects a number of ݓ greatest ݌௔௕ప
′തതതതത. 

                     ௚ܲ ൌ ൛݌௔ଵ௕ଵ
′തതതതതതത, ௔ଶ௕ଶ݌

′തതതതതതത, ௔ଷ௕ଷ݌
′തതതതതതത, … , ௔௪௕௪݌

′തതതതതതതതൟ				ሺ5.5ሻ  

After the greatest values selected, the algorithm starts merging the other two trends 

which are on the left and right sides of greatest ݌௔௕ప
′തതതതത based on 

௔ഢషభ௕ഢశభ݌
′തതതതതതതതതതത ൌ

׬ ݐሻ݀ݐሺ݌
௕೔షభ
௔೔షభ

൅ ׬ ݐሻ݀ݐሺ݌
௕೔
௔೔

൅ ׬ ݐሻ݀ݐሺ݌
௕೔శభ
௔೔శభ

ܾ௜ାଵ െ ܽ௜ିଵ
				ሺ5.6ሻ 

Thus a number of ݓ new average values ݌௔ഢషభ௕ഢశభ
′തതതതതതതതതതത are generated. Simultaneously 

the number of ݊ trends reduces to the number of ݊ െ ݊ Then in these .ݓ2 െ  ݓ2

trends, the algorithm selects a number of ݓ greatest ݌௔௕ప
′തതതതത again and merges the 

other two trends which are on the left and right sides of them. Until there are a 

number of ݓ trends left. Thus the time intervals  

 

ܶ ൌ ሼሺܽଵܾଵሻ, ሺܽଶܾଶሻ, ሺܽଷܾଷሻ, … , ሺܽ௪ܾ௪ሻሽ				ሺ5.7ሻ 

 

may have the higher average processing capacities. 

 

Therefore, amount of data which is processed in the time interval ݐ ൌ ܾଵ െ ܽଵ can be 

fed to the cluster to be actually processed. It can be expected to be processed within a 

higher computing capacity interval of the cluster. The amount of data ܦଵ can be 

represented by 

1ܦ ൌ න ݐሻ݀ݐሺ݌
௕ଵ

௔ଵ
				ሺ5.8ሻ	 
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However, due to the uncertainties and IO operations of the actual processing in the 

cluster, when the amount of data ܦଵ for the first wave is finished, the deviations of 

ܾଵ  is inevitable. Thus the prediction for next wave should be corrected. The 

correction strategy is designed as following. In next wave, the algorithm re-executes 

the time interval computation as described above with changes of values of the 

parameters.  

ݓ ൌ ݓ െ 1					ሺ5.9ሻ 

ܦ ൌ ܦ െ  ሺ5.10ሻ				ଵܦ

Therefore with new values of ݓ and ܦ, a new ܦଵ can be calculated and assign the 

amount of data to the second wave in processing. Until ݓ ൌ 1, the rest of the data is 

assigned to the last processing wave to be processed.  

 

The following examples help to show how the algorithm works. 

 

Figure 5.1: Example of computing time interval 

In Figure 5.1 when the processing occurs in time point b to c, the average processing 

capacity is keeping increasing until 3.17. Thus the time interval ݐ௕௖ is regarded as 

increasing trend. Then from time point c to d, the processing capacity is keeping 

decreasing until next increasing trend appears. Thus the time interval ݐ௖ௗ is regarded 

as decreasing trend. Similarly, the trend ݐ௔௕ which is before ݐ௕௖, is a decreasing 

trend as well. When the algorithm selects ݐ௕௖ as one of the most efficient time 

interval among a number of increasing trends, it merges ݐ௕௖ with ݐ௔௕ and ݐ௖ௗ to 

expand the time interval according equation 5.6. And then the algorithm computes the 

average processing capacity of newly generated time interval ݐ௔ௗ and marks it as 

efficient interval. Afterwards it selects a number of most efficient time intervals 
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among the rest increasing trends and newly generated efficient intervals. The 

algorithm keeps selecting and merging until a number of ݓ time intervals generated. 

And then the algorithm chooses the first interval as the approximately predicted 

efficient time interval and computes the volume of data fed to the cluster according to 

equation 5.8. As this prediction is based on pure processing capacities of processors, 

thus when the cluster is dealing with data, errors occur due to the delays caused by 

data IO. Figure 5.2 shows the deviation caused by data IO. 

 

Figure 5.2: Example of deviation caused by IO. 

From the figure, it can be observed that due to the IO operations, the actual processing 

time ݐ௔௖ is different from the predicted time ݐ௔௕. Thus for the next processing wave, 

the computed volume of data fed to the cluster will be less of accuracy. To solve this 

issue, the algorithm will select and merge time intervals again based on equation 5.6. 

However, as the first wave of processing is already finished, in this time the algorithm 

starts computing at time point c but not a according to equations 5.9 and 5.10.  

 

The following pseudo code summarizes the steps of the algorithm in the Table 5.1. 

Table 5.1: The pseudo code of the data selection 

Algorithm: Data Selection 

1. Compute the overall load of the cluster ݌ሺݐሻ ൌ ∑ ௜݂ሺݐሻ
௡
௜ୀଵ . 

2. Calculate time ݐ for processing the whole data. 

3. Calculate average value ݌௔௕
′തതതതത for each trend. 

4. Select a number of ݓ greatest values of ݌௔௕
′തതതതത. 

5. Merge the two trends at both sides of the greatest ݌௔௕
′തതതതത. 

6. Calculate new ݌௔௕
′തതതതത in the new time interval ܾ௜ାଵ െ ܽ௜ିଵ. 

7. Re-select the number of ݓ greatest values of ݌௔௕
′തതതതത. 

8. Repeat 4, 5, 6, 7 

9. Until the number of ݓ greatest values left. 

10. In the first time interval ሺܽଵ, ܾଵሻ calculate the amount of data 

can be processed ܦଵ. ܦଵ is assigned to the cluster to be actually 
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processed. 

11. In next wave of processing ݓ ൌ ݓ െ 1 and ܦ ൌ ܦ െ   .ଵܦ

12. Re-execute the algorithm until ݓ ൌ 1. 

           

It should be pointed out that the algorithm using to feed amount of data into the 

cluster should has one premise. It is that ݌ሺݐሻ cannot be monotonically increasing 

function or monotonically decreasing function. Otherwise the data will be equally 

separate to a number of ݓ portions which will be fed to a number of ݓ processing 

waves. 

 

5.2.2 The Design of Load Balancing Functions 

The embedded FIFO scheduler in Hadoop aims to serve a job queue. However for one 

Hadoop job, the framework cannot deal with it well, which means the Hadoop cluster 

cannot manage the heterogeneous resources well for the job. In the reason of four 

aspects stated by [59], for a specified Hadoop job, to balance its work load we need to 

consider proper partition sizes, computations and heterogeneous hardware in a 

dynamic computing environment which contains dynamic CPU processing ability and 

dynamic IO ability. Before we introduce the way of the algorithm design we should 

point out one thing in advance that in the practical Hadoop cluster, the size of data 

chunks should be the same according to the configuration. However to implement the 

algorithm, the simulator has been expanded to support different sizes of data chunks. 

When the system starts computing the optimized scheduler, a central job dispatcher 

located in the JobTracker will execute the load balancing algorithm based on the 

volume of data ܦଵ assign to the current processing wave. 

 

In a processing unit which is called Map instance (mapper), for processing one data 

chunk of a Hadoop job, the total processing time could be considered by: 

 

ܶ ൌ ଵݐ ൅ ଶݐ ൅ ଷݐ ൅  ሺ5.11ሻ				ସݐ
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In the equation, ݐଵ  represents the copying time; ݐଶ  represents the processor 

processing time; ݐଷ  represents the emptying time when the buffer of the Map 

instance is filled up; ݐସ represents the merging time. 

 

For the copying time ݐଵ: 

Let  

 ݇ represent the number of Map instances employed in the cluster. 

 ܦ௠ represent the corresponding volume of data assigned to mth Map instance.  

 ܪ௪ሺݐሻ represent the writing speed of the hard disk. 

 ܤ represent the bandwidth of the network. 

 

෍ ௠ܦ ൌ

௞

௠ୀଵ

 ሺ5.12ሻ				ଵܦ

ଵݐ ൌ
௠ܦ

min	ሺܪ௪ሺݐሻ, ሻܤ
				ሺ5.13ሻ 

 

For the processing time ݐଶ: 

Let 

 ݌ ൌ ݂ሺݔሻ represent the dynamic CPU processing power of the Map instance 

where ݔ is time points.  

 ܽ represent the start of the copying time of the Map instance. 

 ݐ௦௜ represent the time of filling up of the buffer. 

 ݐ௘௜ represent the time of finishing spilling operation of the buffer. 

 ݐଶ௜ represent the processing time of the processor during two blocking intervals. 

 ܦ௠೔
 represent the volume of data which the processor can process during two 

blocking intervals. 

 ݊ represent the number of spilled files during the processing. 

 ܤ௙ represent the size of the buffer. 

 

The Map instance starts copying data at time point ܽ  then after time ݐଵ  the 
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processor starts processing the copied data. For processing the whole volume of data 

 .௠, several equations should be satisfiedܦ

 

                                                      ௠భܦ
ൌ ׬ ݂ሺݐሻ݀ݐ

௧௦ଵ
௔ା௧భ

 

௠మܦ
ൌ න ݂ሺݐሻ݀ݐ

௧௦ଶ

௧௘ଵ
 

௠యܦ
ൌ න ݂ሺݐሻ݀ݐ

௧௦ଷ

௧௘ଶ
 

                                                                    . 

                                                                    . 

                                                                    . 

௠೙ܦ
ൌ න ݂ሺݐሻ݀ݐ

௧௦௡

௧௘ሺ௡ିଵሻ
 

 

෍ܦ௠೔

௡

௜ୀଵ

ൌ  ሺ5.14ሻ				௠ܦ

 

 

                                                      ଶଵݐ ൌ ௦ଵݐ െ ሺܽ ൅  ଵሻݐ
ଶଶݐ ൌ ௦ଶݐ െ  ௘ଵݐ
ଶଷݐ ൌ ௦ଷݐ െ  ௘ଶݐ

                                                                    . 

                                                                    . 

                                                                    . 

ଶ௡ݐ ൌ ௦௡ݐ െ  ௘ሺ௡ିଵሻݐ

 

ଶݐ ൌ෍ݐଶ௜

௡

௜ୀଵ

				ሺ5.15ሻ 

For the blocking time ݐଷ: 

Let 

 ݎ represent the output-input ratio of the Map instances. 

 

It is noted that the processing power of the processor can be represented as ݌ ൌ ݂ሺݔሻ. 
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Therefore the buffer filling speed while both the processor is processing and the 

buffer is spilling simultaneously can be represented by: 

 

݂ሺݔሻ ൈ ݎ െ  ሺ5.16ሻ				ሻݔ௪ሺܪ

 

Therefore, the first processing interval ݐଶଵ ൌ ௦ଵݐ െ ሺܽ ൅  ଵሻ to fill up the buffer canݐ

be represented by 

௙ܤ ൌ න ሾ݂ሺݐሻ ൈ ݎ െ ݐሻሿ݀ݐ௪ሺܪ
௧௦ଵ

௔ା௧భ

				ሺ5.17ሻ 

The time ∆ݐଵ  of the buffer emptying while the processor is blocked can be 

represented by 

ଵݐ∆ ൌ ௘ଵݐ െ  ሺ5.18ሻ				௦ଵݐ

 ௦ଵ satisfyݐ ௘ଵ andݐ

௙ܤ ൌ න ሻݐ௪ሺܪ
௧೐భ

௧ೞభ

 ሺ5.19ሻ				ݐ݀	

As the same as the first processing interval, the second processing interval ݐଶଵ ൌ

௦ଶݐ െ  ௘ଵ to fill up the buffer can be represented byݐ

௙ܤ ൌ න ሾ݂ሺݐሻ ൈ ݎ െ ݐሻሿ݀ݐ௪ሺܪ
௧௦ଶ

௧௘ଵ
				ሺ5.20ሻ 

The time ∆ݐଶ  of the buffer emptying while the processor is blocked can be 

represented by 

ଶݐ∆ ൌ ௘ଶݐ െ  ሺ5.21ሻ				௦ଶݐ

 ௦ଶ satisfyݐ ௘ଶ andݐ

௙ܤ ൌ න ሻݐ௪ሺܪ
௧೐మ

௧ೞమ

 ሺ5.22ሻ				ݐ݀	

Until the ݊௧௛ the first processing interval ݐଶ௡ ൌ ௦௡ݐ െ  ௘ሺ௡ିଵሻ to fill up the bufferݐ

can be represented by 

௙ܤ ൌ න ሾ݂ሺݐሻ ൈ ݎ െ ݐሻሿ݀ݐ௪ሺܪ
௧௦௡

௧௘ሺ௡ିଵሻ
				ሺ5.23ሻ 
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The time ∆ݐ௡  of the buffer emptying while the processor is blocked can be 

represented by 

௡ݐ∆ ൌ ௘௡ݐ െ  ሺ5.24ሻ				௦௡ݐ

Finally the emptying time ݐଷ when the buffer of the mapper is filled up can be 

represented by 

ଷݐ ൌ ଵݐ∆ ൅ ଶݐ∆ ൅ ⋯൅  ሺ5.25ሻ				௡ݐ∆

 

For the merging time ݐସ: 

Let 

 ܦூ೔ represent in each processing-spilling step, the intermediate data one mapper 

can generate. 

 ܰ represent the number of the merging times. 

 ݏ represent the value of the sortfactor. 

 ݐ௠௙ represent the merging finishing time. 

 

In the first processing-spilling step, one mapper can generate a volume of 

intermediate data with a size of 

ூభܦ ൌ ܤ ൅න ݐሻ݀ݐ௪ሺܪ
௧ೞభ

௔ା௧భ

				ሺ5.26ሻ 

In the following processing-spilling steps, the intermediate data one mapper can 

generate can be represented by 

ூ೔ܦ ൌ ܤ ൅ න ݐሻ݀ݐ௪ሺܪ
௧ೞ೔

௧೐ሺ೔షభሻ

				ሺ5.27ሻ 

From the 1௧௛ to ݊௧௛ intermediate data chunks they satisfy the equation 

෍ܦூ೔

௡

௜ୀଵ

ൌ ௠೔ܦ
ൈ  ሺ5.28ሻ				ݎ

Therefore the number of the merging times ܰ can be represented by 

ܰ ൌ ቔ
݊
ݏ
ቕ െ 1				ሺ5.29ሻ 

Finally the merging time ݐସ can be computed by 
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௠ܦ ൈ ݎ ൈ ܰ ൌ න ݐሻ݀ݐ௪ሺܪ
௧೘೑

௧೐೙

				ሺ5.30ሻ 

ସݐ ൌ ௠௙ݐ െ  ሺ5.31ሻ				௘௡ݐ

Based on the equations, the relationships related to the data chunks ܦ௠ and the 

overall processing time ܶ are established. Therefore the total time ௔ܶ to process 

data in one processing wave in Hadoop cluster is the maximal time consumed by the 

number of ݇ Map instances that are involved in the file processing: 

 

௔ܶ ൌ maxሼ ଵܶ, ଶܶ, ଷܶ, … , ௞ܶሽ 			ሺ5.32ሻ 

 

According to divisible load theory, to achieve a minimal processing time ܶ, it is 

expected that all the Map instances involved to complete the data processing at the 

same time: 

 

ଵܶ ൌ ଶܶ ൌ ଷܶ … ൌ ௞ܶ				ሺ5.33ሻ 

 

However, from the equations above it can be observed that it is difficult to get the 

solutions of ܦ௠೔
 which can represent ௜ܶ in a straight way so that we introduce 

genetic algorithm to help to achieve the solutions. 

 

5.2.3 The Design of GA 

Due to the complexity of the equations, it is difficult to achieve the solutions so that 

genetic algorithm is involved to solve the equations. As the target of the algorithm is 

to balance the processing time ௜ܶ among ݇ Map instances, so a proper set of ܦ௠೔
 

should be found out as solutions to satisfy the equation ଵܶ ൌ ଶܶ ൌ ଷܶ … ൌ ௞ܶ. Thus 

the number of chunks with size of ܦ௠೔
 assigned to number of ݇ Map instances 

could be regarded as genes to form the chromosome. Figure 5.3 shows a chromosome 

sample with 6 genes. 
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    Chromosome 

 

 

1mD                
2mD                

3mD            
4mD            

5mD              
6mD  

 

 

 

                   Gene 

 

                           Figure 5.3: A chromosome example. 

Thus, a fitness function should be established to evaluate the fitness of the 

chromosomes. As the processing time ௜ܶ of mappers should be close enough, so 

Mean Square Error (MSE) is employed to assess the fluctuations among ௜ܶ. Therefore, 

the fitness function can be defined as follows: 

 

                   ݂ሺܶሻ ൌ ට∑ ሺതܶ െ ௜ܶሻଶ௞
௜ୀଵ , തܶ ൌ

∑ ்೔
ೖ
೔సభ

௞
				ሺ5.34ሻ 

 

Where ௜ܶ represents the processing time for the ݅௧௛ Map instance. 

      ݇ represents the number of map instances employed in the Hadoop cluster. 

      തܶ represents the average time in processing of map instances. 

 

In the algorithm the single point crossover is used. However, one issue should be 

pointed out that just simply crossing the chromosomes may cause one problem. To 

cross the genes may differentiate the original total volume of data ܦଵ ൌ ∑ ௠௞ܦ
௠ୀଵ . 

Consider the original total volume of the data is ∑ ௠௞ܦ
௠ୀଵ  and the volume of data 

after crossover is ∑ ݀௠௞
௠ୀଵ . Then the difference ∆ܦ ൌ ห∑ ௠௞ܦ

௠ୀଵ െ ∑ ݀௠௞
௠ୀଵ ห 

should be polished. In the algorithm ∆ܦ is divided into ݇ parts randomly. And then 

these ݇ parts will be randomly added to or removed from the number of ݇ genes 

accordingly. Thus the total size of processed data in one wave can be guaranteed. 

 

To avoid the local optimum of the genetic algorithm, the standard mutation is also 

Mapper1  Mapper2  Mapper3  Mapper4  Mapper5  Mapper6 
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used in the algorithm. Due to the mutations, the original total volume of data 

ଵܦ ൌ ∑ ௠௞ܦ
௠ୀଵ  may be changed. Thus consider the original volume of the data is 

ଵܦ ൌ ∑ ௠௞ܦ
௠ୀଵ  and the volume after mutation is ∑ ݀௠௞

௠ୀଵ . Then the difference 

ܦ∆ ൌ ห∑ ௠௞ܦ
௠ୀଵ െ ∑ ݀௠௞

௠ୀଵ ห should be polished. In the algorithm ∆ܦ is divided 

into ݇  parts randomly. And then these ݇  parts will be randomly added to or 

removed from the number of ݇ genes accordingly. Thus the total size of processed 

data in one wave can be guaranteed. 

 

5.2.4 The Improvement of the Load Balancing Algorithm 

To get the solutions of the equations based on genetic algorithm and algebraic 

methods, a number of iterations are involved for instance the iterations brought by 

Newton Tangent Method (NTM). Consider that in one generation of the genetic 

algorithm, ݊௜ iterations with consumed time ݐ௜  for each iteration are involved, thus 

after a number of ݃ generations with a number of ܿ chromosomes, the overhead of 

NTM can be roughly represented by ே்ܶெ ൌ ∑ ܿ ൈ ݊௜ೕ ൈ ௜ೕݐ
௚
௝ୀଵ . Consider the rest 

overhead in one generation of the genetic algorithm is ௜ܶ , therefore the overall 

overhead of GA could be represented by 

 

ܶ ൌ෍ܿ ൈ ݊௜ೕ ൈ ௜ೕݐ ൅ ௜ܶ ൈ ݃

௚

௝ୀଵ

				ሺ5.35ሻ 

 

From the equation it can be observed that along with increasing the number of 

generations ݃, the overhead of solving solutions of the load balancing algorithm will 

be enlarged approximately proportionally. So to control the number of generations can 

enhance the performance of the load balancing algorithm. However, reducing the 

number of generations will definitely bring one issue. The accuracy of the solution 

may be lost which may unbalance the load among mappers. Therefore, for gaining a 

lower overhead with less number of iterations, the genetic algorithm needs an 

efficient and reliable correctness to make up the loss of accuracy. We reduce the 
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number of iterations to a smaller value ଵ݃ . Thus the solutions of 

,ଵܦሼ	௠ܦ ,ଶܦ ,ଷܦ … ,  ௞ሽ for the optimized scheduler contain unbalanced issue whichܦ

will cause the processing time ௠ܶሼ ଵܶ, ଶܶ, ଷܶ, … , ௞ܶሽ unbalanced. It is known that if 

{ ଵܶ ് ଶܶ ് ଷܶ … ് ௞ܶ}, the mapper which has the longest processing time will 

deteriorate the performance of the load balancing algorithm. Especially if a large 

number of waves have been involved in the processing, the error in each wave will 

enlarge the overall overhead of the job processing time. If the overhead of computing 

the scheduler increases to a quite considerable level, the performance of the algorithm 

will be reduced. Thus after the scheduler is computed with errors, a strategy which 

can do a compensation is in the following way. 

 

Select the slowest processing time ௦ܶ of a mapper 

௦ܶ ൌ maxሼ ଵܶ, ଶܶ, ଷܶ, … , ௞ܶሽ 			ሺ5.36ሻ 

The errors ∆ݐ between the slowest mapper and the ݅௧௛ mapper can be represented 

by 

௜ݐ∆ ൌ ௜ܶ െ ௦ܶ				ሺ5.37ሻ 

As the genetic algorithm with less number of generations can still find a solution 

which is close to the optimized solution, so the errors ∆ݐ௜ are normally not large. 

Thus it can be considered that if the faster mappers finish processing, they can take 

amount of data to be processed in time ∆ݐ௜. Since ∆ݐ௜ is not large so that the buffer 

is hardly filled up, which means no complex IO operations involved. Finally the 

compensation can be done. The idle faster mappers can start processing smaller 

amounts of data while the slowest mapper is still in processing. 

Let 

 ܽ represent the finishing time of the ݅௧௛ mapper. 

 ߬ represent a given threshold so that if ∆ݐ௜ is smaller than ߬, the algorithm does 

not compute the following equation. 

 ܦ௘ represent the volume of data will be processed in ∆ݐ௜. 

 

௜ݐ∆ ൌ ௜ܶ െ ௦ܶ ൒ ߬				ሺ5.38ሻ 
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௘ܦ ൌ න ݂ሺݐሻ݀ݐ
௔ା∆௧೔

௔
				ሺ5.39ሻ 

The algorithm supports balance loads among mappers with different loads of 

processors. If the loads are not computable, they can be known by statistical 

computing based on historical data of loads. 

 

5.3 Simulation 

Due to the limitations of the experimental environment, it is difficult to implement the 

load balancing algorithm. So HSim is involved to help to evaluate the algorithm, 

which can facilitate to observe the load balancing behaviors of Hadoop framework. 

5.3.1 The Dynamic Factors in HSim 

To evaluate the dynamic load balancing algorithm, HSim needs to be designed with 

abilities to supply simulated dynamic Hadoop computing environment. In paper [77] 

they claim that the most influential factors of a dynamic computing environment is 

the processor and hard disk. As the accuracies on simulating Hadoop working 

mechanisms have been validated in chapter 3, therefore based on these accuracies the 

CPU model has been modified, which can supply different kinds of loads. The details 

of the load are presented later in this chapter. The hard disk model in HSim is 

designed to be dynamically changed as time passes. In [86], R. Sharykin reports that a 

hard disk can be modeled following an exponential distribution due to the loss of 

speed of a traditional mechanical hard disk. However, the simple exponential 

distribution cannot describe the performance of a hard disk accurately enough so that 

in HSim, based on experimental hard disk tests three extra parameters have been 

involved: max speed ݔ௠௔௫, min speed ݔ௠௜௡ and speed reducing ratio ݎ (The speeds 

and ratio include both reading and writing speeds of a standard mechanical 

Winchester architecture based hard disk). Therefore, when the speed of hard disk is 

reduced from ݔ௠௔௫ to ݔ௠௜௡ while the speed is at ݔ௠௜௡, ݎ is 0. Thus, the equation 

can be represented by 

ሻݔሺݎ ൌ ݎ െ ,ݔݏ ௠௜௡ሻݔሺݎ ൌ 0				ሺ5.40ሻ 
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Where ݏ is the relational reducing coefficient between instantaneous speed ݔ and 	ݎ. 

Therefore ݏ can be represented by  

ݏ                              ൌ ି௥

௫೘೔೙
				ሺ5.41ሻ 

Thus 

ሻݔሺݎ ൌ ݎ ൬1 ൅
ݔ

௠௜௡ݔ
൰			ሺ5.42ሻ 

Therefore a differential equation can be established to describe the relationships 

among ݔ௠௔௫, ݔ௠௜௡ and ݎ. 

ݔ݀
ݐ݀

ൌ ݎ ൬1 ൅
ݔ

௠௜௡ݔ
൰ ,ݔ ሺ0ሻݔ ൌ  ሺ5.43ሻ				௠௔௫ݔ

Solve the equation the instantaneous speed ܪሺݐሻ related to current time ݐ can be 

achieved. 

ሻݐሺܪ ൌ
.௠௜௡ݔ ௠௔௫ݔ

ሺݔ௠௜௡ െ ௠௔௫ሻ݁ି௥௧ݔ ൅ ௠௔௫ݔ
				ሺ5.44ሻ 

Thus ܪሺݐሻ in HSim is a dynamic factor which can supply a dynamic IO environment. 

 

5.3.2 Heterogeneity 

HSim supports to simulate heterogeneous computing environment. To describe the 

differences among nodes, the concept of heterogeneity is introduced. Heterogeneity 

can define how different the machines in the cluster are and give a quantified 

indicator to make the differences clear. The most important difference among nodes is 

the processing speed of processor. Though the other hardware would affect the 

performances of the execution, the speed of processor is the core factor which decides 

the overall performance significantly. So the level of heterogeneity of our cluster is 

defined based on the processing speeds of the processors. The total processing speed 

of the cluster is kept fixed, which means the value of the total processing speed is a 

constant value. Then according to different heterogeneities, the speeds of the 

processors will have different values. The heterogeneity can be represented by  

Let 

 ܲ represent the total processing speed of the cluster. 

 ݌௜ represent the processing speed of the ݅௧௛ processor. 
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 ̅݌ represent the average processing speed of the cluster. 

 ݇ represent the number of processor employed in the cluster. 

 

ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ ൌ ඩ෍ሺ̅݌ െ ௜ሻଶ݌
௞

௜ୀଵ

	where	̅݌ ൌ
∑ ௜݌
௞
௜ୀଵ

݇
,෍݌௜

௞

௜ୀଵ

ൌ ܲ				ሺ5.45ሻ 

 

The equation could represent the varieties of the machines of the cluster. If the value 

of ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ is greater than zero, it means the cluster is heterogeneous. The 

greater the value is, the larger the differences are. If the value of ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ is 

zero, it means the cluster is a homogeneous one. However, due to the multi dynamic 

elements in the computing environment ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ can not exactly describe the 

computing difference. The initial processing speed of a processor has been employed 

to generate the ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ. Therefore the ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ can show an overall 

heterogeneous trend but at some points some exceptions may exist. 

 

5.4 Simulation Results 

5.4.1 Exponential Distribution of the Load of Processors 

In this simulation the load of the processors follows a distribution which is similar to 

exponential distribution. Due to the long processing time for the simulated job, the 

normal exponential distribution cannot satisfy the simulator due to its fast attenuating 

speed no matter what value of ߣ is. Therefore two parameters are added to the 

exponential distribution to control its attenuating speed. The newly formed 

distribution can be represented by 

݂ሺݔሻ ൌ ܽ ∙ ି݁ߣ
ఒ௫
௕ 				ሺ5.46ሻ 

 

Table 5.2: The simulated environment. 

Simulation environment 

Simulated algorithm: MR-LSI 

Size of data: Simulation 1: 40GB 

Simulation 2: From 10GB to 100GB 
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Load balancing strategies: 1. Without load balancing 

2. Load balancing with dynamic window size 

3. Computing ratio 

4. Load balancing with fixed window size 

Number of simulated nodes: 20 

Number of processors in each node: 1 

Number of cores in each processor: 2 

The processing speeds of processors: Depending on heterogeneities 

Heterogeneities: from 0 to 2.28 

Number of hard disk in each node: 1 

Max writing speed of hard disk: 80MB/s 

Min Writing speed of hard disk: 40MB/s 

Number of Map and Reduce instances: Each node employs 2 map instances. The 

cluster employs 1 reduce instance. 

Sort factor: 100 

 

Figure 5.4 shows the results of different load balancing strategies in processing 40GB 

data using the distribution discussed above. 

 

In Figure 5.4 it can be observed that when the heterogeneity is smaller, the scheduler 

without any load balancing strategy outperforms the other schedulers. However, when 

the heterogeneity increases larger, it can be seen that both load balancing with 

dynamic window size and fixed window size perform better. Especially dynamic 

window size outperforms fixed window size because the fixed window size may 

cause mappers idle to wait for the solution of the scheduler. The computing ratio 

strategy performs worse due to the affections of the reducing time. 
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Figure 5.4: Comparison of different load balancing strategies with different heterogeneities. 

 

In Figure 5.4 the window size of one second is used for fixed window size strategy. 

According to the results of the tests, the smaller window can give better performance. 

To study the impacts of the window size, the performance of the simulated Hadoop 

cluster in terms of overhead is tested with window size from one second to one 

hundred seconds. Figure 5.5 shows the results. From the figure it can be observed that 

along with the window size increases, the overhead becomes larger. 
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Figure 5.5: The impacts of different window sizes. 

 

For evaluating the load balancing algorithm with different data size, the data size from 

10GB to 100GB with heterogeneity 2.28 has been simulated to observe the 

performances of the algorithm. Figure 5.6 shows the results. 

 

In Figure 5.6 it can be observed that from the data size of 10GB to 100GB, the 

processing times of the scheduler without load balancing are nearly the same. The 

reason is the slowest mapper becomes the bottleneck. The processing time for the 

mapper is extremely longer which affects the performances hugely. In another 

simulation with data size of 120GB, the processing time increases to 4489 seconds, 

which means the slowest mapper starts its second wave which causes the other 

approximate 2240 seconds overhead. From the figure it also can be seen that the load 

balancing with dynamic window size outperforms the other strategies for any data 

size. Due to the lack of measuring the computing capability of MR-LSI algorithm, 

computing ratio gives the worst performance.  
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Figure 5.6: Comparison of different load balancing strategies with different data sizes. 

 

As the algorithm is designed with dynamic window sizes to implement the load 

balancing algorithm, so the size of the window should be various. Figure 5.7 shows 

the window sizes in different waves for processing 40GB data with heterogeneity 2.28. 

It also gives that due to the attenuation of the processing power of the processor cross 

the cluster, the sizes of the window become longer. 

 

Figure 5.7: The dynamic window sizes. 
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The load balancing scheme builds on a genetic algorithm whose convergence affects 

the efficiency of the tested algorithm MR-LSI. To analyze the convergence of the 

genetic algorithm, the number of generations is varied and the overhead of MR-LSI is 

measured in the simulated Hadoop environment. Figure 5.8 shows that MR-LSI 

reaches a stable performance when the number of generations in the genetic algorithm 

reaches 300. For the simpler load of processors, the solution of 300 generations can 

supply enough accuracy to perform the load balancing algorithm. 

 

Figure 5.8: Convergence of the algorithm. 
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Figure 5.9: The overhead of load balancing with dynamic window size with increasing number of 

mappers. 

 

5.4.2 Cosine Distribution of the Load of Processors 

In the previous a distribution which is based on exponential distribution has been used. 

However the distribution is simple which makes the load of the cluster simply 

keeping reducing. Thus complex loads for processors should be designed to vibrate 

the load of the cluster to make a complex computing environment. Based on the 

fluctuations of the load, the performance of the load balancing algorithm can be 

evaluated strictly. To design a load which can keep vibrating, the cosine function is 

employed to build up our load function for each processor. It can be represented by 

݂ሺݔሻ ൌ ݔܾݏ݋ܿܽ ൅ ܿ				ሺ5.47ሻ 

Thus the load of the cluster ݌ሺݐሻ ൌ ∑ ௜݂ሺݐሻ
௡
௜ୀଵ  is not a simple monotonically 

increasing or decreasing function. The dynamic environment can be more complex. 

 

Table 5.3: The simulated environment. 
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3. Computing ratio 

4. Load balancing with fixed window size 

Number of simulated nodes 20 

Number of processors in each node 1 

Number of cores in each processor 2 

The processing speeds of processors Depending on heterogeneities 

Heterogeneities from 0 to 2.28 

Number of hard disk in each node 1 

Max writing speed of Hard disk 80MB/s 

Min Writing speed of Hard disk 40MB/s 

Number of Map and Reduce instances Each node employs 2 map instances. The 

cluster employs 1 reduce instance. 

Sort factor: 100 

 

Figure 5.10 shows the results of different load balancing strategies in processing 

40GB data in the complex dynamic computing environment. 

 

From Figure 5.10 it can be observed that the processing overheads without load 

balancing of different heterogeneities are highly various. The reason is as discussed 

above that due to the complex dynamic environment, our heterogeneous equation can 

only show a trend of the heterogeneity but cannot exactly describe the heterogeneity 

in detail. The figure indicates that when the heterogeneity is lower, the strategy 

without load balancing performs better. However, when the heterogeneity is larger, 

the other three load balancing strategies outperform the strategy without load 

balancing. It is also quite clearly that with larger heterogeneities, the performances of 

load balancing with dynamic window size are the best. 



Yang Liu (2011) 

99 
 

 

Figure 5.10: Comparison of different load balancing strategies with different heterogeneities. 
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Figure 5.11: The impacts of different window sizes. 

 

For evaluating the load balancing algorithm with different data sizes, the data size 

from 10GB to 100GB is simulated to feed to the cluster with heterogeneity 2.28. 

Figure 5.12 shows the results. 

 

In Figure 5.12, it shows that the three load balancing strategies outperform the 

scheduler without load balancing at the most sizes of data. However, it can be 

observed that at certain point (like 70GB), the slowest mapper finish processing its 

own data without assigning new data chunk occasionally, thus the overall 
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also shows that the load balancing with dynamic window size gives the best 

performance while the performances of the other two strategies are various. 
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Figure 5.12: Comparison of different load balancing strategies with different data sizes. 

 

Figure 5.13 indicates the dynamic window sizes during the processing. It can be 

observed that the windows sizes dynamically changed according to the changing of 

dynamic environment. 

 
Figure 5.13: The dynamic window sizes. 
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the efficiency of the tested algorithm MR-LSI. To analyze the convergence of the 

genetic algorithm, the number of generations is generated and the overhead of 

MR-LSI is measured in the simulated Hadoop environment. Figure 5.14 shows that 

MR-LSI reaches a stable performance when the number of generations in the genetic 

algorithm reaches 300. However it needs to be pointed out that even the solution with 

300 generations cannot give enough accuracy for the complex loads of processors. 

Therefore more generations are need for example 800 generations as shown in the 

figure. Thus the overhead of the genetic algorithm is large. So the improved dynamic 

load balancing algorithm needs less number of generations, which generates less 

overhead. 

 

Figure 5.14: Convergence of the algorithm. 

 

Figure 5.15 shows an increased overhead of the load balancing scheme when the 

number of mappers increases across the cluster. However the load balancing overhead 

is small compared with the overall processing time of mappers. 
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Figure 5.15: The overhead of load balancing with dynamic window size with increasing number 

of mappers. 

 

5.5 Summary 

This chapter proposes a centralized, unsupervised, dynamic window-sized load 

balancing algorithm for Hadoop framework which is based on MapReduce model. 

The performance of the algorithm has been evaluated by the Hadoop simulator HSim. 

The results show that the algorithm has remarkable efficiency on solving the load 

issue when the heterogeneity increases to a certain level. Especially for the improved 

algorithm, it can solve the issue even with a lower heterogeneity. The results also 

show that either with small volume of data or great volume of data, the algorithm can 
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Chapter 6 
Conclusion and Future Work 

 
6.1 Conclusion 

This thesis proposes a resource aware distributed LSI algorithm based on Hadoop 

framework which is an implementation of MapReduce model.  The typical LSI 

suffers a considerable issue that it is extremely computationally intensive. It is also 

reported that when the scale of a T-D matrix is large, the performance of LSI is 

deteriorated. Though several works have been done on solving the scalability issue of 

the algorithm, the proposed approaches are simply combined the clustering algorithm 

k-means with LSI. From the experimental results it can be observed that the 

scalability issue has been solved to some extent. However, a new issue has been 

introduced, which is the overhead of the involved clustering algorithm k-means. The 

experimental results indicate that when the size of the document corpus increases to a 

certain level, the overhead of the pre-clustering becomes highly considerable due to 

both the computing complexity and the limitations of the computing resources. 

MR-LSI successfully solved such an issue based on distribute the k-means algorithm 

in a Hadoop cluster. The experimental results show that with a proper number of 

centroids, the recall and precision of the MR-LSI algorithm are highly close to the 

typical standard LSI. In terms of algorithm executing time, due to the system 

overhead of the Hadoop framework, it is quite high with processing small size of 

document collections. The work also shows, when the size of the document collection 

increases to a certain critical boundary, the overhead of the framework ca be 

overcome, which means MR-LSI outperforms the other algorithms in terms of 

overhead with maintaining the similar recall and precision levels.   

 

Firstly the MR-LSI algorithm has been evaluated in a small Hadoop cluster which 

contains a number of four nodes. However, the small environment cannot help to 
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study the performance of MR-LSI with mass computing resources. Thus to study the 

scalability of the MR-LSI algorithm, a simulator has been developed to perform a 

number of simulations. Though currently there is one published simulator MRPerf 

available and it claims that it can simulate the Hadoop framework accurately. 

However, according to the results of evaluating a number of MapReduce applications, 

MRPerf cannot give satisfied performance. The simulator proposed in the thesis HSim 

modeled the parameters of Hadoop framework from several aspects including node 

parameters, cluster parameters and Hadoop system clusters. These parameters can 

help HSim to create a simulated Hadoop cluster with detailed specifications which are 

mainly employed in a real cluster. The validations show that the performance of HSim 

is quite close to that of the practical experimental cluster. And also HSim outperforms 

MRPerf of which the performance is highly different from that of experimental 

environment. 

 

Therefore based on HSim, a simulated Hadoop cluster with the number of 25 nodes 

up to 250 nodes has been created. Thus a number from 100 to 1000 mappers are 

involved to evaluate the scalability of MR-LSI. The evaluations indicate that 

generally along with the number of mappers increased, the performance of MR-LSI 

enhanced in terms of overhead. However, due to the wave mechanism in the Hadoop 

framework, at the points of certain number of mappers, simply keep increasing the 

number of mappers cannot gain the performance enhancement. A number of tests 

have also been done to study the impacts brought by tuning parameters on the 

MR-LSI algorithm. The results indicate that the performance of the algorithm can be 

significantly affected by the different configurations of the cluster.  

 

It is recognized that in the current version of Hadoop framework, the load balancing 

strategy is quite weak. Only two types of the strategies FIFO and fair scheduler have 

been supported yet. The two types of the schedulers aim to balance the resources 

among jobs of different users. However, as the framework supports heterogeneous 

nodes, only balancing the resources among users may not get the satisfied optimized 
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performance due to the unbalanced load among mappers employed by different nodes. 

Thus a static load balancing strategy has been proposed firstly by this work. In the 

strategy, the working mechanism of mapper is modeled from four aspects which 

include copying time, processing time, spilling time and merging time. The copying 

time represents the time of copying a data chunk to local hard disk of the mapper. The 

processing time represents the actual data processing by a processor. The spilling time 

represents the time of emptying a buffer while the buffer is filled up. The merging 

time represents the time of merging intermediate data into a whole chunk which will 

be ultimately send to reducer(s). By modeling these overheads of working mechanism 

of a mapper, the data sizes that are initially sent to mappers involved in the processing 

can be calculated. Therefore to balance the load among mappers, according to a 

certain scheduler, if the overall overhead which is the sum of the above four 

sub-overheads of each mapper could be close enough to those of the other mappers. 

And then the scheduler can be regarded as a best solution. Instead of stiffly and 

directly measuring a solution with a complex way, the Means Square Error (MSE) has 

been used. MSE can represent how different a series of data is. Therefore, by 

calculating the MSE of all mappers’ overhead, the differences among them can be 

quantitatively measured. Aiming to get the optimized solutions from the combinations 

of a number of complex equations, the genetic algorithm has been involved. The 

genes are the volume of data to be allocated to mappers while the chromosomes are 

the schedulers and the fitness is using MSE. Within a number of generations, an 

optimized scheduler can be found. In a static environment, as long as the scheduler 

has been worked out, the mappers can use the scheduler in the whole data processing 

duration until the job is finished. The evaluations of the load balancing algorithm have 

been done in a simulated cluster with different heterogeneities. The concept of 

heterogeneity is involved to measure the level of differences among nodes employed 

in the cluster. The evaluated results show that: 

 The load balancing algorithm significantly enhances the performance of the 

cluster when the heterogeneity increasing to a certain level. When the levels of 

heterogeneity are lower, due to the overhead of the load balancing algorithm 
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itself, it cannot outperform the scheduler without load balancing in terms of 

overhead. However, with large levels of heterogeneity, the algorithm can be 

three times faster compared to the scheduler without load balancing strategy. 

 The load balancing algorithm is suitable for jobs with different sizes. In the 

simulation result, it indicates that the when size of data increases from 10GB 

to 100GB, the algorithm can give stable performance with varying sizes of 

data. 

 Though along with the increasing of number of mappers and size of data, the 

overhead of the load balancing algorithm keeps increasing, compared to the 

enhancement gained by the algorithm, the impact brought by the overhead is 

negligible. 

 

However, frequently a cluster is not simply static but dynamic. There are lots of 

factors affects the computing capacity of a cluster dynamically along with the time 

passes. To balance the load among mappers in a dynamic computing environment, a 

dynamic load balancing strategy has been proposed by this work. The strategy is 

consisted by two parts.  

1. A data selection solution has been given to decide the volume of data for each 

processing wave. The target is trying to use the higher computing capacity 

time interval to process the data. The algorithm will be executed in next wave 

again to correct the error caused by the IO operations. The data selection also 

results in dynamic window sizes in launching the load balancing algorithm. 

2. The copying time, processing time, spilling time and merging time have been 

modeled in the dynamic environment. Based on the equations of these four 

times, the overall overhead of a mapper can be represented. Finally the 

relationships between sizes of data and the allocated mappers can be 

established. 

Due to the complexity of the equations to get the optimized scheduler, genetic 

algorithm has been involved which the fitness function is based on calculating the 

MSE of the overhead of mappers. In the previous researches, a number of researchers 
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claimed that with a less number of generations the GA algorithm can gain the 

optimized solution. However, based on the experimental results, it is not suitable for 

the Hadoop framework. Therefore, to reduce the overhead of the genetic algorithm, 

combining with the characteristics of the Hadoop framework, an improvement has 

been done for the genetic algorithm, which can significantly reduce the number of 

generations. The simulator HSim also offers a way based on two features to create a 

dynamic environment. The dynamic features include speed of hard disk and load of 

processor. The dynamic factor of hard disk can create dynamic IO environments for 

the cluster. Similarly the dynamic factor of the processor load can create dynamic 

computing capacity of the cluster. This work presents two different kinds of processor 

loads of which one is simple and the other one is complex. Thus, based on different 

heterogeneities, a number of evaluations have been done. Compared to the 

performances of computing ratio strategy and fixed window size strategy, the dynamic 

load balancing algorithm achieves significant enhancement when the level of 

heterogeneity is larger than a certain value.  

6.2 Future Work 

The work presented in this thesis opens a new way to build up a resource aware 

distributed LSI algorithm for scalable information retrieval. Though based on the 

experimental and simulation results the algorithm shows satisfied performance, it is 

clear that still a variety of opportunities exist, for example: 

 Determining the best value of rank k that is used in SVD can be investigated 

further to gain the most efficient computation. 

 Determining the best value of centroids k which is used in k-means can be 

considered further to get the best clustering results. 

 Evaluating the MR-LSI algorithm in a large Hadoop cluster such as Amazon 

Elastic Compute Cloud (Amazon EC2). 

 Though the experimental code of combiner in HSim shows certain level of 

accuracy, it can be improved further by using a better mathematical model. 
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 The load balancing strategies are implemented based on the simulator HSim. 

They may have a chance to be added in the practical Hadoop code to gain 

better performance in a real Hadoop cluster. 
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