
A Resource Aware Distributed LSI Algorithm

for Scalable Information Retrieval

A Thesis submitted for the Degree of

Doctor of Philosophy

By

Yang Liu

Department Electronic and Computer Engineering

School of Engineering and Design

Brunel University

April 2011

i

Abstract

Latent Semantic Indexing (LSI) is one of the popular techniques in the information

retrieval fields. Different from the traditional information retrieval techniques, LSI is

not based on the keyword matching simply. It uses statistics and algebraic

computations. Based on Singular Value Decomposition (SVD), the higher

dimensional matrix is converted to a lower dimensional approximate matrix, of which

the noises could be filtered. And also the issues of synonymy and polysemy in the

traditional techniques can be overcome based on the investigations of the terms

related with the documents. However, it is notable that LSI suffers a scalability issue

due to the computing complexity of SVD.

This thesis presents a resource aware distributed LSI algorithm MR-LSI which can

solve the scalability issue using Hadoop framework based on the distributed

computing model MapReduce. It also solves the overhead issue caused by the

involved clustering algorithm. The evaluations indicate that MR-LSI can gain

significant enhancement compared to the other strategies on processing large scale of

documents. One remarkable advantage of Hadoop is that it supports heterogeneous

computing environments so that the issue of unbalanced load among nodes is

highlighted. Therefore, a load balancing algorithm based on genetic algorithm for

balancing load in static environment is proposed. The results show that it can improve

the performance of a cluster according to heterogeneity levels.

Considering dynamic Hadoop environments, a dynamic load balancing strategy with

varying window size has been proposed. The algorithm works depending on data

selecting decision and modeling Hadoop parameters and working mechanisms.

Employing improved genetic algorithm for achieving optimized scheduler, the

algorithm enhances the performance of a cluster with certain heterogeneity levels.

ii

Table of Contents

Abstract .. i

Table of Contents ... ii

List of Figures... vi

List of Tables .. viii

Acknowledgements ... ix

Author’s Declaration ... x

Statement of Copyright .. xi

Publications ... xii

Chapter 1 ... 1

Introduction ... 1

1.1 Background ... 1

1.2 The Issues Solved by LSI .. 2

1.3 Problem Statements ... 4

1.4 Motivation of Work... 5

1.5 Major Contributions .. 7

1.6 Structure of the Thesis .. 9

Chapter 2 ... 11

Literature Review.. 11

2.1 LSI ... 11

2.2 K-means .. 13

2.3 Hadoop Framework Based on MapReduce ... 15

2.4 Optimization techniques………………………………..…………………………..16

2.5 Related Work .. 18

2.5.1 MapReduce Simulator .. 18

2.5.2 Distributed LSI ... 20

2.5.3 Dynamic Load Balancing in Heterogeneous Environments 21

2.6 Summary ... 27

iii

Chapter 3 ... 28

HSim: A MapReduce Simulator .. 28

3.1 Modeling Hadoop Parameters ... 28

3.1.1 Node Parameters .. 28

3.1.2 Cluster Parameters ... 29

3.1.3 Hadoop System Parameters .. 29

3.1.4 HSim Parameters .. 32

3.2 The Design of HSim.. 33

3.2.1 HSim Architecture ... 33

3.2.2 MapperSim ... 34

3.2.3 ReducerSim .. 36

3.2.4 JobTracker and TaskTracker .. 37

3.3 Validations of HSim .. 38

3.3.1 Validating HSim with Benchmarks .. 38

3.3.1.1 Grep Task .. 38

3.3.1.2 Selection Task .. 39

3.3.1.3 UDF Aggregation Task ... 40

3.3.2 Evaluating HSim with Customized Hadoop Applications 41

3.3.2.1 The Experimental and Simulated Environments 41

3.3.2.2 MR-LSI .. 41

3.3.2.3 MR-SMO ... 43

3.3.3 Discussions ... 43

3.4 Summary ... 44

Chapter 4 ... 45

Parallelizing LSI for Scalable Information Retrieval .. 45

4.1 The Design and Implementation of MR-LSI .. 46

4.2 Static Load Balancing Strategy for MR-LSI ... 48

4.2.1 Algorithm Design ... 48

4.2.2 Crossover ... 52

4.2.3 Mutation ... 53

iv

4.3 Experimental Results .. 54

4.3.1 Evaluating MR-LSI .. 55

4.4 Simulation Results .. 58

4.4.1 MR-LSI Simulation Results ... 58

4.4.1.1Multiple Reducers in One Node ... 59

4.4.1.2 Sort Factor .. 61

4.4.1.3 Buffer Size ... 62

4.4.1.4 Chunk Size ... 63

4.4.1.5 CPU Processing Speed .. 64

4.4.1.6 Number of Reducers .. 65

4.4.2 Load Balancing Simulation Results ... 66

4.5 Summary ... 70

Chapter 5 ... 71

Dynamic Load Balancing in Heterogeneous MapReduce Environments 71

5.1 Load Balancing in Hadoop Framework .. 71

5.1.1 Dynamic Load Balancing…………………………………………………....71

5.1.2 Unbalanced Load Issue in Hadoop Framework ... 72

5.1.3 Current Load Balancing Policies in Hadoop Framework 74

5.2 Algorithm Design .. 75

5.2.1 Data Selection .. 75

5.2.2 The Design of Load Balancing Functions .. 80

5.2.3 The Design of GA .. 85

5.2.4 The Improvement of the Load Balancing Agorithm 87

5.3 Simulation ... 89

5.3.1 The Dnamic Factors in HSim ... 89

5.3.2 Heterogeneity ... 90

5.4 Simulation Results .. 91

5.4.1 Exponential Distribution of the Load of Processors 91

5.4.2 Cosine Distribution of the Load of Processors ... 97

5.5 Summary ... 103

v

Chapter 6 ... 104

Conclusion and Future Work ... 104

6.1 Conclusion .. 104

6.2 Future Work .. 108

References .. 110

vi

List of Figures
Figure 2.1: The MapReduce model ……………………………………………………………16

Figure 3.1: HSim components …………………………………………………………………33

Figure 3.2: Data flows in the MapperSim component ………………………………………...35

Figure 3.3: MapperSim sequence diagram …………………………………………………….35

Figure 3.4: Data flows in the ReducerSim component ………………………………………..36

Figure 3.5: Hardware interactions in ReducerSim …………………………………………….37

Figure 3.6: The workflow of HSim ……………………………………………………………37

Figure 3.7: Grep Task evaluation (535MB/node) ……………………………………………..38

Figure 3.8: Grep Task evaluation (1TB/cluster) ………………………………………………39

Figure 3.9: Selection task evaluation ………………………………………………………….40

Figure 3.10: Aggregation task evaluation ……………………………………………………..41

Figure 3.11: Evaluating HSim with MR-LSI ………………………………………………….42

Figure 3.12: Evaluating HSim with MR-SMO ………………………………………………..43

Figure 4.1: The precision of MR-LSI …………………………………………………………56

Figure 4.2: The recall of MR-LSI …………………………………………………………….56

Figure 4.3: The overhead of standalone LSI, ADS and CDS in computation ………………..57

Figure 4.4: The overhead of MR-LSI ………………………………………………………...57

Figure 4.5: Comparing the overhead of MR-LSI with CDS ………………………………….58

Figure 4.6: The impact of the number of reducers on mapper performance ………………….60

Figure 4.7: The impact of the number of reducers on the total process ………………………61

Figure 4.8: The impact of sort factor ………………………………………………………….62

Figure 4.9: The impact of buffer size …………………………………………………………63

Figure 4.10: The impact of data chunk size on the mappers in MR-LSI ……………………..64

Figure 4.11: The impact of data chunk size on MR-LSI ……….……………………………..64

Figure 4.12: The impact of different CPU processing speeds ………………………………...65

Figure 4.13: The impact of reducers …………………………………………………………..66

Figure 4.14: The performance of the load balancing scheme …………………………………68

Figure 4.15: The performance of the MR-LSI with difference sizes of data ………………….68

Figure 4.16: The convergence of the load balancing scheme …………………………………69

vii

Figure 4.17: The overhead of the load balancing scheme with different sizes of data ………..70

Figure 5.1 Example of computing time interval .……………………………………………….78

Figure 5.2: Example of deviation caused by IO …………………………………………………..79

Figure 5.3: A chromosome example …………………………………………………………..86

Figure 5.4: Comparison of different load balancing strategies with different heterogeneities..93

Figure 5.5: The impacts of different window sizes ……………………………………………94

Figure 5.6: Comparison of different load balancing strategies with different data sizes ……...95

Figure 5.7: The dynamic window sizes ………………………………………………………..95

Figure 5.8: Convergence of the algorithm ……………………………………………………..96

Figure 5.9: The overhead of load balancing with dynamic window size with increasing number of

mappers ………………………………………………………………………………………...97

Figure 5.10: Comparison of different load balancing strategies with different heterogeneities ...99

Figure 5.11: The impacts of different window sizes …………………………………………….100

Figure 5.12: Comparison of different load balancing strategies with different data sizes ……..101

Figure 5.13: The dynamic window sizes ……………………………………………………….101

Figure 5.14: Convergence of the algorithm ……………………………………………………102

Figure 5.15: The overhead of load balancing with dynamic window size with increasing number

of mappers ……………………………………………………………………………….……...103

viii

List of Tables
Table 3.1: Summarizes the parameters modeled in HSim ………………………….32

Table 4.1: The experimental environment …………………………………………54

Table 4.2: The simulated environment …………………………………………….59

Table 4.3: Hadoop simulation configuration ………………………….……………66

Table 5.1: The pseudo code of the data selection ………………………………………………79

Table 5.2: The simulated environment …………………………………………………………91

Table 5.3: The simulated environment …………………………………………………………97

ix

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Maozhen Li. With his

guidance, invaluable advice and support, I’ve been encouraged greatly on researching.

With the helps from him, I overcame the difficulties no matter how hard they were. I

also give my honest and sincere appreciation to the School of Engineering and Design.

I achieved the ultimate supports from the school that I’ve never thought that I could

have.

I would like to thank my parents and all my families. They helped me to pass through

the toughest time of my life. Without their continuous encouragement and help, I will

never reach the place where I am today.

I give my sincere gratitude to Suhel Hammoud, Bin Yu, Xiaotian Yang, Nasullah

Khalid Alham, Zelong Liu and Yu Zhao. They support and take care of me so much in

my study and in my life. Without them, things would not go this smoothly. I also

should say thanks to the friends who have provided not just academic but moral

support for my research.

x

Author’s Declaration

The work described in this thesis has not been previously submitted for a degree in

this or any other university and unless otherwise referenced it is the author’s own

work.

xi

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should be

acknowledged.

xii

Publications

The following papers have been published (or have been submitted for publication) as

a direct or indirect result of the research discussed in this thesis.

Journal papers:

 X. Liu, M. Li, Y. Liu and M. Qi, OBIRE: Ontology based Bibliographic

Information Publication and Retrieval, Int’l Journal of Distributed Systems

and Technologies, vol.1, no. 4, pp.59-74, October-December 2010.

 Y. Liu, M. Li, N. K. Alham, S. Hammoud, HSim: A MapReduce Simulator in

Enabling Cloud Computing, Future Generation Computer Systems (FGCS),

the International Journal of Grid Computing and e-Science, Elsevier Science

(accepted for publication)

 N. K. Alham, M. Li, Y. Liu and S. Hammoud, A MapReduce-based Distributed

SVM Algorithm for Automatic Image Annotation, Computers & Mathematics

with Applications, Elsevier (accepted for publication)

 Y. Liu, M. Li, N. K. Alham, S. Hammoud, A Resource Aware Distributed LSI

for Scalable Information Retrieval, Information Processing and Management,

Elsevier Science (under review)

 N. K. Alham, M. Li, Y. Liu and S. Hammoud, Parallelizing Multiclass Support

Vector Machines for Scalable Image Annotation, Neurocomputing, Elsevier

Science (under review)

 N. K. Alham, M. Li, Y. Liu and S. Hammoud, A Resource Aware Parallel

SVM for Scalable Image Annotation, Parallel Computing, Elsevier Science

(under review)

 G. Caruana, M. Li, N.K. Alham, and Y. Liu, A Parallel Support Vector

Machine for Large Scale Spam Filtering, information Sciences, Elsevier

Science (under review)

xiii

Conference papers:

 Y. Liu, M. Li, S. Hammoud, N.K. Alham, M. Ponraj, Distributed LSI for

Information Retrieval, Proc. of IEEE FSKD’10, pp. 2978-2982.

 N. K. Alham, M. Li, S. Hammoud, Y. Liu, M. Ponraj, MapReduce-based

Distributed SMO for Support Vector Machines, Proc. of IEEE FSKD’10, pp.

2983-2987.

 S. Hammoud, M. Li, Y. Liu, N. K. Alham, Z. Liu, MRSim: A Discrete Event

based MapReduce Simulator, Proc. of IEEE FSKD’10, pp. 2993-2997.

Yang Liu (2011)

1

Chapter 1
Introduction

This chapter briefly describes the background to the problems investigated in this

thesis, motivation of work, major contributions and the structure of the thesis.

1.1 Background

In recent years, the amount of information resources is greatly increasing which

results in generating mass volume of electronically stored data. The volume and scope

of data are increasing dramatically which forms huge document corpus or databases.

The current search engines are normally represented by World Wide Web. For

instance the largest search engine Google claims that it processes over eight billion

[38] pages and more than twenty PB (PetaByte) data processed per day while other

search engines such as Yahoo, Bing also deal with enormous volume of data. The

Information Retrieval (IR) technologies are not only needed by the larger search

engines but also required by other organizations such as companies, universities and

hospitals. However the current information retrieval approaches are in most cases

inefficient to access the information required by the users [106]. Therefore, to retrieve

the information efficiently, several improved information retrieval technology have

been developed.

Information retrieval systems are mainly based on the matching of users’ queries [39]

and the relevant information stored in the database. The traditional IR technologies

employed by most search approaches are mainly based on the keyword matching.

Matching with keyword, data is usually indexed by attributes such as author, date,

abstract and keywords. To perform a search process, firstly a user inputs a number of

keywords which represent the required information then the algorithm compares the

input keywords to the indexed attributes of the data. The system response is based on

matching the user’s words and the stored indexed information. However, there are

Yang Liu (2011)

2

mainly two issues which impact hugely the performances of current keyword

matching based IR technologies. Firstly the performance of keyword matching greatly

deteriorates with the increase of volume of data. Secondly keyword cannot describe

the semantic relationships exist in the data accurately [110]. Therefore the accuracy of

retrieved results is affected significantly due to the lack of accurate of representation

the semantic content of the information. To solve the above issues, researchers

combine ontology technologies [107] [108] [109] with keyword matching. Their

studies show that based on the knowledge expansion, the issue of lack of semantic

relationships can be solved. However, considering the efficiency and accuracy aspects,

the approach cannot supply a satisfied performance [112] [113]. And also as more and

more ontologies available online, it becomes more difficult to find a suitable ontology

that meets a user’s needs [111]. Latent Semantic Indexing (LSI) [6] [7] [8] [11] [22]

[24] [29] [36] [94] has been developed to perform intelligent IR searches [95] based

on statistics and algebra to overcome the deficiencies associated with keyword

matching retrieval techniques.

1.2 The Issues Solved by LSI

LSI has been widely used in information retrieval [9] [10] [12] such as image

processing [40] [98], audio and video retrieval systems [41] [42], and multi-language

retrieval [43]. LSI is based on the concept that latent structures exist among a number

of documents. Building on Vector Space Model (VSM) [45] [89], LSI generates a

Term-Document (T-D) matrix after removing all punctuations and stop words which

has no distinctive semantic meaning from a document. LSI employs a truncated

Singular Value Decomposition (SVD) [4] [17] [92] [93] [97] to convert the keywords

domain of the original document corpus to a conceptual domain by decomposing the

higher dimensional sparse [90] [96] matrix to a lower dimensional approximate

matrix [91] so that the latent semantic relationships among the words and documents

are highlighted and the problems of polysemy and synonymy [44] are solved. The

results retrieved by LSI are based on the similarities between query and documents.

Yang Liu (2011)

3

The similarity is normally measured by calculating the cosine value of the two vectors

which represent a query and a document.

LSI is regarded as a good replacement to the traditional keyword matching IR

technologies. Traditionally the most fundamental issues in IR are the problems of

synonymy and polysemy [44]. Synonymy is where several different words may

express one concept and the words of query may not match those in the relevant

documents. For instance the word van and vehicle have the similar meaning. However,

when a user input query with word van to search using keyword matching, the

document with word vehicle may not be returned as the field of vehicle is not covered

in the query. Even though a document with world van has been returned, the content

of the document may not belong to a topic describing automobiles however some

other content which may just simply involve a word van. Polysemy is where words

may have different meanings and the words of query may match those in the

irrelevant documents. For instance the word bank has different interpretations in the

fields of finance and nature. It can be used to describe a financial intermediary or can

be used to describe the land alongside or sloping down to a river or lake. Therefore

when a user searches the word bank with a financial meaning, the traditional keyword

matching may return incorrect results. Therefore, the precision and recall is

significantly affected by the synonymy and polysemy. Here the recall is defined as the

ratio of the number of the relevant documents retrieved to the number of relevant

documents in the database. The precision is defined as the ratio of the number of

relevant documents retrieved in the total number of documents retrieved with a query

of a user [44].

LSI addresses the problems of synonymy and polysemy by analyzing the semantic

relationships among terms and documents. LSI assumes that there must be certain

kinds of latent semantic structures, which are hidden in the context due to the existing

polysemy and synonymy within the documents and corpus. Therefore, LSI does not

use simpler keyword matching however it is based on statistics and algebraic

Yang Liu (2011)

4

calculation to discover the latent semantic relationships and underlying semantic

structures in the documents. Comparing terms used across documents, it has been

recognized that certain groups of terms frequently appear among a number of

documents. However, the groups of terms are barely appeared in the other documents.

Thus from the semantic phase, the terms and documents with the terms can be

regarded as semantically close enough to each other while the terms and documents

without the terms are considered as semantically distant [6]. Practically, LSI returns

documents which have similar meaning, even though the keywords input by users

may not appear in the target documents.

1.3 Problem Statements

LSI suffers from scalability problems especially in processing massive document

collections due to SVD which is considered to be computationally intensive.

Therefore, several techniques have been proposed to enhance the performance of LSI.

Gao [14] and Bassu [3] combined the clustering algorithm k-means [30] [31] and LSI

to reduce the overhead (large executing time consumed) of typical LSI. These

approaches show enhancement in performances however the overhead of k-means

with large document collection are not considered. An alternative approach is to

distribute the computation of LSI among nodes in a cluster environment using the

Message Passing Interface (MPI). Seshadri and Iyer [28] proposed a parallel SVD

clustering algorithm using MPI. Documents are split into a number of subsets. Each

subset of the documents is clustered by a participating node in the cluster. However,

The MPI approaches mainly target on homogeneous computing environments with

limited support for fault tolerance and incur large inter-node communication overhead

when shipping large date across the cluster. Currently heterogeneous computing

environments are increasingly being used as platforms for resource intensive

distributed applications. One major challenge in using a heterogeneous environment is

to balance the computation loads across a cluster of participating computer nodes.

Yang Liu (2011)

5

This thesis presents MR-LSI (MapReduce based LSI), a distributed LSI for high

performance and scalable information retrieval. MR-LSI improves current approaches

by focusing on three aspects. Firstly, MR-LSI employs k-means to cluster documents

into a number of subsets of documents to reduce the complexity of SVD in

computation [18] [20] [37]. Second, MR-LSI builds on MapReduce [2] [5] [23] [33]

[35] [76] to distribute the computation of LSI among a number of computers of which

each computer only processes a subset of documents. MapReduce has become a

major enabling technology in support of data intensive applications. MapReduce has

built-in fault tolerance [88] and handles I/O operations effectively which reduces

communication overhead significantly. Finally, two types of resource aware load

balancing schemes based on both static and dynamic factors are designed to optimize

the performance of the MR-LSI algorithm in heterogeneous computing environments.

In order to evaluate the effectiveness of the resource aware MR-LSI algorithm in large

scale MapReduce environments and the performance of load balancing strategies [62]

[68], a Hadoop framework simulator HSim has been developed. It can accurately

simulate the behaviors of the framework so that several studies have been done based

on the simulator.

1.4 Motivation of Work

It has been widely recognized that LSI suffers from scalability problems in processing

massive document collections due to SVD which is considered to be computationally

intensive which can be represented by ܱሺ݉ ൈ ଶሻݎ where ݉ is the number of

documents and ݎ is the rank of T-D matrix [13] [26] [99]. A combination of

clustering algorithm k-means with LSI is proposed in [3] [14] to reduce the overhead

of typical LSI. However the overhead of k-means dealing with large document

collection is not considered which affects the performance of the algorithm hugely.

Thus, an approach should be considered to solve the large overhead issue by

involving the k-means algorithm combining with LSI. Current literature shows a

number of approaches have been proposed in speeding up LSI process in computation

Yang Liu (2011)

6

[3] [14] [16] [19] [21] [25], the scalability of these approaches still remains a

challenging issue due to the lack of an effective load balancing scheme in utilization

of heterogeneous computing resources. The unbalanced load issue can deteriorate the

performance of algorithms with LSI. Therefore combining both speeding up the

computation of LSI and load balancing, an efficient distributed LSI algorithm should

be designed.

This thesis presents a distributed LSI algorithm based on the MapReduce model. One

of the most popular implementations of MapReduce model, Hadoop framework

becomes popular due to its remarkable characteristics. However, the large number of

configuration parameters of Hadoop brings a number of challenges to users to decide

on a set of parameters that are crucial for achieving high performances. It is

impractical to build up a Hadoop cluster which contains a large number of nodes to

evaluate performance of a MapReduce based algorithm. These challenges motivate

the desire to have a Hadoop environment simulator which can be used to tune the

performance of a Hadoop cluster and analyze the behaviors of Hadoop applications.

Hadoop framework based on MapReduce has become a major enabling technology in

support of data intensive applications, which facilitate to process data in a distributed

computing environment. Hadoop framework has a number of processing units called

Map instances (mappers) and Reduce instances (reducers) [35]. As mappers and

reducers are controlled by TaskTracker, therefore they work independently without

communicating with each other, which is different from traditional distributed

computing systems such as MPI. Therefore a notable feature of the Hadoop

implementation of MapReduce framework is the ability to support heterogeneous

environments. However, in the current version of Hadoop framework lacks of an

effective load balancing scheme for utilizing resources with varied computing

capabilities. This challenge motivates this work to balance the loads among mappers

in a dynamic computing environment with considering the interactions of a number of

factors including Hadoop parameters, load of IO system and load of processors.

Yang Liu (2011)

7

1.5 Major Contributions

The main contribution of the thesis is speeding up LSI in Hadoop distributed

computing environments by combining the clustering algorithm k-means to improve

the performance of the typical standard LSI algorithm. Load balancing strategies are

deployed to significantly enhance the performances of the algorithm. The following

descriptions are the detailed contributions presented in this thesis:

1. To facilitate the analysis of Hadoop framework behaviors, HSim, a Hadoop

environment simulator is designed and implemented. HSim aims to accurately

simulate the behaviors of Hadoop framework. The current version of HSim

modeled and simulated Hadoop framework from four phases. The first phase is

node phase which contains parameters of processor, memory, hard disk, network

interface, Map instances and Reduce instances. The second phase is the cluster

specifications including parameters of number of nodes, configuration of nodes,

routers, job queue, and job schedulers. The third phase has the parameters to

control the behaviors of above components, in which is including the size of data

chunks, JVM reuse, sort factor, virtual memory, the number of copying threads,

data spilled threshold. The last phase is the functions and parameters of the

simulator itself including simulating speed, system clock, accuracy levels and

system reporter. HSim supports to simulate both homogeneous and heterogeneous

Hadoop computing environment. Additionally HSim can be adopted to create

static and dynamic environments based on the interactions among ‘HDD’

component, ‘CPU’ component and ‘LoadGenerator’ component. Based on the

above characteristics, HSim can simulate types of MapReduce jobs. To validate

the accuracy, reliability and performance of HSim, several published MapReduce

applications based on Hadoop framework are simulated. The validation of HSim

follows a two step process. In the first step, HSim is validated against published

benchmark results. In the second step, a physical Hadoop environment is set up to

evaluate the performance of HSim using our Hadoop applications. The

Yang Liu (2011)

8

comparative results show high accuracy and stability of HSim in simulating

Hadoop applications.

2. The combination of k-means and LSI to speed up the performance of typical LSI

has been implemented. To solve the overhead issue brought by k-means, which

remain a research issue, MR-LSI distributes k-means and LSI using Hadoop

framework.

a) MR-LSI distributes the k-means algorithm and LSI using Hadoop framework,

which enhances the performance of typical LSI significantly when

processing large document collection.

b) The scalability of MR-LSI has been studied using HSim. The impacts of

tuning the cluster parameters for MR-LSI are analyzed in details.

c) A static load balancing strategy based on genetic algorithm has been

proposed which considers the heterogeneous environment with various

computing resources.

3. The work also considers the load balancing issue in dynamic Hadoop distributed

computing environment. A dynamic load balancing strategy for Hadoop framework

has been put forward.

a) The dynamic load balancing strategy designed for Hadoop framework has been

proposed. Comparing to the other load balancing solutions such as computing

ratio based scheduler strategy, it modeled the characteristics of Hadoop

framework in dynamic environment which the load of processors and hard disks

are following certain distributions. The evaluation shows it outperforms the

other schedulers and enhances the performance of the cluster significantly.

b) Comparing to a number of established dynamic load balancing strategies with

fixed window size (the time interval of executing load balancing algorithm), the

algorithm has dynamically changed window sizes which is fully determined by

the algorithm itself.

c) The traditional genetic algorithm has large overhead due to its iterations.

Though a number of works claim that controlling the iterations within a small

number can still gain optimized solutions, it is not suitable in a complex

Yang Liu (2011)

9

dynamic environment in a Hadoop cluster. The work generates a way to reduce

the number of iterations of genetic algorithm with considering the characteristics

of Hadoop framework, which can significantly enhance the performance of the

dynamic load balancing algorithm.

d) Dynamic load balancing strategy is evaluated with both fixed window size and

dynamic window size, computing ratio based strategy. The results show that the

work significantly improves the performance of the cluster.

1.6 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 is a literature review. Section

2.1 and Section 2.2 introduce the basics of LSI algorithm based on vector space model

and k-means algorithm. This is essential to understand the knowledge which this

thesis is based. Section 2.3 introduces the Hadoop framework based on MapReduce

model. Section 2.4 discusses the related work of the thesis. Section 2.5 concludes the

chapter.

Chapter 3 is dedicated to the design and implementation of the Hadoop simulator

HSim. Section 3.1 describes the modeling of parameters in Hadoop framework from

four aspects. Section 3.2 gives the details of the design of the simulator. In section 3.3

a number of validations have been down using the computing environments and

results of published benchmarks and customized experiments. Section 3.4 concludes

the chapter that HSim is provided to be suitable for simulating Hadoop framework.

Chapter 4 presents the MR-LSI algorithm which aims for scalable information

retrieval. Section 4.1 describes the design and implementation of MR-LSI in detail.

Section 4.2 describes the design and implementation of the static load balancing

algorithm in details. Section 4.3 and 4.4 gives the experimental and simulation results

of MR-LSI. Section 4.5 concludes the chapter.

Yang Liu (2011)

10

Chapter 5 proposes a dynamic load balancing strategy for Hadoop framework to

enhance the performance the cluster. Section 5.1 reviews the current load balancing in

Hadoop framework. Section 5.2 gives the details of the design of the dynamic load

balancing algorithm. Section 5.3 presents the simulation environment. Section 5.4

simulated and evaluated the algorithm and shows the performance compared to some

other load balancing strategies. Section 5.5 concludes the chapter.

Finally, Chapter 6 summarizes the contributions of the thesis and proposes directions

for future work.

Yang Liu (2011)

11

Chapter 2
Literature Review

2.1 LSI

In the Vector Space Model (VSM) [45], if a document corpus has a number of n

keywords, then an n-dimension vector can be built up of which each dimension

represents combination of keywords for one document. The documents of the corpus

and the queries can be represented by the vectors by the concept of VSM based on the

weight of the key words. It is quite obvious that the greater the weight is, the more

important the word is. Therefore, in one vector if the weight equals to or greater than

1, it means the word appears in a document. Otherwise if the weight is 0, it means the

word does not appear in a document. Based on these vectors, by calculating the cosine

values of query and document, the similarities can be measured and useful document

collections can be retrieved. VSM abstracts the documents to be vectors and does

information retrieval by mathematical computation. Thus VSM does not do any

simpler traditional keywords matching.

Though VSM opened up a new way of text mining technologies, there are still some

drawbacks existing in the model. The first point is that the key words are assumed to

be independent without any relationship. However, there might be certain kinds of

relationships among the keywords of documents, which means that VSM is not

suitable enough to deal with the associated keywords. The second point is if the scale

of the vector space is too large, the processing speed will become highly considerable.

As an improvement of VSM, LSI uses the terms processed by statistics to index the

documents. Therefore the semantic relationships among the term-term and

document-document are highlighted. It also reduces the impacts caused by polysemy

and synonymy.

Yang Liu (2011)

12

LSI processes the relationships among the terms and documents based on the concept

of VSM. Additionally LSI assumes that there must be certain kinds of latent semantic

structures, which are hidden in the context because of polysemy and synonymy

existing within the documents and corpus. As a result, LSI does not use simpler

keyword matching but uses a way of statistics computation to discover the latent

semantic relationships. The core computation of LSI is to do the SVD (Singular Value

Decomposition) operation on the formed Terms-Documents matrix. And then LSI

keeps a pre-given number of largest singular values and corresponding ܷ and ܸ

matrices to form a new approximate matrix, which can represent the original matrix

approximately. Thus the original terms-documents matrix removes the unnecessary

noises and reduces the density of the original matrix, which can reduce the computing

complexity of the future computation. The detail of the LSI algorithm is given below.

The terms and documents of a document collection could form a T-D (Terms and

Documents) matrix ܣ௠ൈ௡ where m is the number of the terms and n is the number of

documents.

[]ijA a
 1 i m  , 1 j n 

The original matrix ܣ௠ൈ௡ can be factored into the product of three sub matrices

using SVD (Singular Value Decomposition):

TA U V 

 is a diagonal matrix. The diagonal elements in the matrix are the singular values

of matrix m nA  in descending order. The matrices U and V are orthogonal and

normalized which satisfy the equation:

 T TU U V V I  .

LSI computes a low rank approximation to m nA  using a truncated SVD. The first k

elements which are larger than a certain value  will be kept and the values of the

rests of the diagonal elements ()r k will be set to zero in the matrix  .

Simultaneously matrices U and V will be truncated to be kU (First k columns

Yang Liu (2011)

13

are kept.) and kV (First k rows are kept). Thus the original T-D matrix m nA  will

be presented by an approximate matrix kA with k , kU and kV :

T
k k k kA U V 

The submitted query q will be processed by equation to gain vq :

1T
v k kq q U  

Thus to compare the similarities of query and documents can be measured by

calculating the cosine values of vector vq and document jD .

2 2

cos
|| || || ||

v j
j

v j

q D

q D





Thus if the value of cos j is greater than certain given threshold  , the document

jD is the target document. Thus the set of jD can be represented by:

{ | cos cos(,) }k j j v jD d q D   

LSI does not do keywords matching simply compare to the other traditional text

mining technologies, in which due to the polysemy and synonymy, the semantic

relationships of terms and documents are hidden deeply in the context. However,

based on the SVD computation, LSI can form an approximate matrix from the

original terms-documents matrix. The new matrix reduces the so called ‘noise’ and

highlights the semantic relationships of terms and documents.

2.2 K-means

K-means [30] [31] is a clustering algorithm based on calculating distances between

centroids and points (vectors). It calculates the Euclid Distance between vectors as the

criterion function of clustering. The following steps represent how the algorithm

works.

1. At the beginning, the algorithm selects several (number of k) points randomly

from the input vectors to be the initial centroids.

Yang Liu (2011)

14

2. It calculates the distances between the points of input vectors and the initial

centroids. And then each point is clustered to the sub-cluster of which the centroid

is closest to the point.

3. Acquire the new centroids of newly formed sub-clusters by calculating the

average value of points which are in the same sub-cluster.

4. Execute 2 and 3 repeatedly. After several iterations if the centroids of clusters are

not changed any more, then the algorithm can be regarded as finished.

The workflow of k-means algorithm is described below:

Input: Number of clusters to be clustered (k)

 Data set including n vectors

Methods:

1. For the input data set, choose number of k vectors randomly as the initial

centroids.

2. Calculate the distances between the vectors of input data set and the initial

centroids.

3. According to the distances, assign each vector to the cluster with the shortest

distance from it.

4. Calculate the average value of the vectors in the sub cluster as the new centroid.

5. Using the new centroids, re-cluster the vectors.

6. Repeat 3, 4, and 5.

7. Until the centroids of sub-clusters are stable. Algorithm is finished.

During the computation, the distances among vectors can be measured by Euclid

Distance which is expressed as:

2

1

(,) ()
n

i i
i

d x y x y x y


   

where ix is the coordinates of the points and iy is the coordinates of the centroids.

Yang Liu (2011)

15

From the above descriptions we know that k-means has strong abilities to process

vector based clustering jobs. It offers convenient and flexible ways to achieve

satisfied results. As k-means shows strong self-adaptabilities, thus during the whole

computation of k-means algorithm the only factor should be noticed is the number of

chosen centroids k.

2.3 Hadoop Framework Based on MapReduce

MapReduce [2] [5] [23] [33] [35] [48] is a distributed programming model for data

intensive tasks which has become an enabling technology in support of Cloud

Computing. Programmatically inspired from functional programming, at its core there

are two primary features, namely a map and a reduce operation. From a logical

perspective, all data is treated as a Key (K), Value (V) pair. Multiple mappers and

reducers can be employed. At an atomic level however a map operation takes a {K1,

V1} pair and emits an intermediate list {K2, V2} pairs. A reduce operation takes all

values represented by the same key in the intermediate list and processes them

accordingly, emitting a final new list {V2}. Whilst the execution of reduce operations

cannot start before the respective map counterparts are finished, all map and reduce

operations run independently in parallel. Each map function executes in parallel

emitting respective values from associated input. Similarly, each reducer processes

keys independently and concurrently. Figure 2.1 shows the structure of the

MapReduce model. Popular implementations of the MapReduce model include Mars

[46], Phoenix [47], Hadoop [2] [5] [33] [35] and Google’s implementation [48].

Among them, Hadoop has become the most popular one due to its open source

feature.

Yang Liu (2011)

16

Figure 2.1: The MapReduce model.

2.4 Optimization Techniques

Optimization techniques can help to enhance the performance of solutions. The

algorithms of optimization have been considered and developed during a long period.

Optimization consists in trying variations on an initial concept and using the

information gained to improve on the idea. Many optimization problems from the

industrial engineering world, in particular the manufacturing systems, are very

complex in nature and quite hard to solve by conventional optimization techniques

[114]. At present, several optimization algorithms have been widely used in a number

of fields. Neural network [116] [120] is one of the algorithms. It is a complicated

network system that can realize parallel disposing and nonlinear transformation for

information by simulating the way of human cerebral nerves to dispose information. It

has a favourable ability to learn itself, adapt itself, associate and recollect, process

parallel etc [115]. However, neural network has several drawbacks which may reduce

the performance. It can be easily to fall into the local optimum. And also the

convergence speed of neural network is quite slow [116]. Moreover, in neural network

several important factors such as the structure of network, momentum factor and the

training ratio are frequently based on experiences of researchers. These factors highly

affect the performances of neural network in terms of the training speed and the

disposing ability [117]. Ant Colony Algorithm [121] is another optimization algorithm

Yang Liu (2011)

17

which is based on new heuristic biological modeling method. It imitates the behaviors

of real ant colony. In the animate nature ants have the ability to find out the food from

the nest in the shortest path without any visible reminder. The core of the algorithm is

to find the optimal path based on processing of the pheromone left by ants. Ants

release the pheromone in the path. The other ants can perceive the pheromone in

certain range and their behaviors will be affected. The pheromone will accumulate

along with the number of ants passing through the path. As a result, the following ants

have higher chance to select the paths with more pheromone [118]. The ant colony

algorithm has the ability of processing in parallel and searching in global. However, it

has two issues which may affect the performance of the algorithm. The first one is the

ant colony algorithm can be easily to fall to local optimum. The second one is that the

convergence speed is slow.

Compared to the above discussed algorithms, Genetic Algorithm has several

characteristic which can help to avoid the issues of local optimum and slow

convergence speed. Genetic algorithm is an adaptive, heuristic and stochastic

searching algorithm which is based on the idea of evolutions in natural selection and

inheritance during biology circles. The algorithm is widely used on solving complex

problems such as function optimization, image processing, classification, machine

learning and so on. And also it is proved that the genetic algorithm has strong

robustness and global parallel searching [119]. Genetic algorithm is mainly consisted

by the following parts.

1. Coding: It models a problem with mathematical model. Thus the computer can

parse the coded data and process it further. Binary coding is frequently used in

most of the cases of genetic algorithm. However, considering different conditions

of the problem to be solved, the other coding approaches such as decimal coding

can be used

2. Initial population: A set of initial solutions are involved as the first population

which is to be evolved in the algorithm.

3. Genetic operators: it has a series of components which are selection, fitness,

Yang Liu (2011)

18

crossover and mutation. Selection selects the individuals which will be evolved.

The most popular approach for selection is Russian roulette wheel method which

is based on probability. Fitness is involved to evaluate the quality of an individual.

In this thesis, mean square error (MSE) is the fitness function. Thus the lower the

fitness is, the better the individual is. Crossover recomposes the homologous

chromosomes via mating to generate new chromosomes. The generated offspring

inherit the basic characteristics of their parents. Some of them may adapt to the

fitness function better than their parents did, so they may be chosen as parents in

next generation. Thus the diversity of the chromosomes could be maintained

which results in avoiding local optimum. Mutation could mutate genes in a

chromosome based on smaller probabilities so that the searching space can be

expanded. As a result, the local optimum can also be avoided.

4. Stop: When certain requirement of the solution is satisfied, the algorithm stops

and outputs the best or optimal result.

Thus compared to the neural network and ant colony algorithms, genetic algorithm is

able to adapt to the complex problems quite well. And also it can avoid the local

optimum issue which exists both in neural network and ant colony algorithms. Thus,

this thesis proposes load balancing strategies based on the genetic algorithm due to its

remarkable characteristics.

2.5 Related Work

2.5.1 MapReduce Simulator

Few existing MapReduce simulators are available and MRPerf [49] [50] is a

representative one. The MRPerf can serve as a design tool for MapReduce

infrastructure, and as a planning tool for making MapReduce deployment far easier

via reduction in the number of parameters that currently have to be manually tuned.

From the published testing results, MRPerf shows its high accuracy in simulating the

impacts of network topologies due to its adoption of NS2 [51] for network simulation.

Yang Liu (2011)

19

However it should be pointed out that although MRPerf achieves high accuracy in

simulating behaviors related to the underlying networks, it can simulate limited

behaviors of Hadoop framework. The behaviors of Hadoop are affected by a large

number of parameters.

For example, in the Map phase, the performance of Map instances is highly coupled

with the current states of node processors, buffers, hard disk and networks. When

thresholds are reached, certain components may be interrupted to guarantee the

performance and synchronizations. In the Reduce phase, the performances of Reduce

instances are highly depended on the current IO states. The copying, shuffling and

sorting procedures are quite dynamic based on the current system states. MRPerf does

not simulate these real time interactions accurately due to its heavy dependencies on

the estimations of the values of parameters. The major limitations of MRPerf are

listed below:

 The processing resources for each user are fixed in MRPerf. However, resources

in a Hadoop environment are dynamically changing and are usually shared by a

number of users dynamically.

 MRPerf does not simulate the exact behaviors of Map and Reduce phases. In a

Map instance, the spilled data will be kept writing into buffer while Map task is

running. When the occupied size of the buffer is less than a certain threshold, the

in-memory data is also kept spilling into hard disk simultaneously. Due to the

highly uncertain real time states of the system, this mechanism significantly

affects the number of spilled files which will further affect the IO behaviors.

MRPerf simply ignores these procedures and uses a pre-defined data value.

 If the occupied size of the buffer is larger than a certain threshold, the CPU

processing will be blocked until the whole content in buffer is flushed. This event

can also affect system behaviors but MRPerf does not consider this.

 In the Reduce phase, MRPerf still performs a simple simulation to start reduce

tasks simultaneously due to lack of accurate simulations in Map phase.

 Another drawback of MRPerf is that it only supports homogeneous environment,

Yang Liu (2011)

20

but Hadoop can be applied to both homogeneous and heterogeneous

environments.

These approximations and simplifications in terms of parameterization cannot reflect

real world Hadoop applications. MRPerf was validated using TeraSort, Search and

Index [49] [50]. All these three algorithms do not involve complex behaviors of

Hadoop framework when the tests were carried out in a homogeneous environment.

So the estimations and simplifications of MRPerf did not affect much of its accuracy.

It would become a problem when using MRPerf to simulate complex behaviors of

Hadoop.

The limitations of MRPerf motivated the work on HSim. Our focus in HSim is to

accurately simulate the behaviors of Hadoop framework. Using HSim, the

performances of Hadoop applications can be studies from a number of angles

including the impacts of the parameters on the performance of a Hadoop cluster, the

scalability of a Hadoop application in terms of the number of nodes used, and the

impact of using heterogeneous environments. HSim complements the design of

MRPerf in that HSim focuses on simulating the Map and Reduce behaviors of

Hadoop, and MRPerf focuses on the impact of network topologies of Hadoop.

2.5.2 Distributed LSI

The current research efforts in speeding up LSI computation generally fall into two

approaches. One approach combines LSI with clustering algorithms such as k-means

[16] [19] to cluster a set of documents into a number of smaller subsets and process

each subset of documents individually to reduce the complexity of SVD in

computation. One representative work of this approach is presented in [14] in which

three clustering schemes are introduced, i.e. non-clustered retrieval (NC), full

clustered retrieval (FC) and partial clustered retrieval (PC). The NC scheme employs

a truncated SVD to pre-process the original data without any clustering. The FC

scheme fully clusters data with a k-means algorithm, and then makes use of SVD to

Yang Liu (2011)

21

approximate the matrix of the document vectors in each cluster. The PC scheme only

works on a few clusters that are closely related to a given query for high efficiency.

Another approach distributes the computation of LSI among a cluster of computers

using the Message Passing Interface (MPI). For example, Seshadri and Iyer [28]

proposed a parallel SVD clustering algorithm using MPI. Documents are split into a

number of subsets of which each subset of the documents is clustered by a

participating computer. Experimental results have shown that the overhead in LSI

computation is significantly reduced using a number of processors.

Although the two aforementioned approaches are effective in a certain way in

speeding up LSI computation, a number of challenges still remain. For example, the

k-means approach does not consider the overhead incurred in clustering documents

which can be high when the size of document collection is large. The MPI approach is

restricted to homogeneous computing environments without any support for fault

tolerance. It should be noted that modern computing infrastructures are mainly

heterogeneous computing environments in which computing nodes have a variety of

resources in terms of processor speed, hard disk and network bandwidth. As a result,

distributing LSI computation in a heterogeneous computing environment with MPI

can cause severe unbalanced workload in computation which leads to poor

performance.

2.5.3 Dynamic Load Balancing in Heterogeneous Environments

To solve the unbalanced load issue in a dynamic distributed computing environment,

a number of studies have been done in enabling load balancing among a number of

computing nodes. In the Hadoop framework currently it has no proper scheduler

designed for a dynamically heterogeneous environment. Therefore the performance of

the framework running on a heterogeneous cluster has chance to be enhanced. At

present there are a few researches focusing on studying load balancing for

MapReduce. One research contributed by Groot [57] pointed out that due to the

Yang Liu (2011)

22

overheads of data copying, network transferring, local hard disk reading and writing,

a mapper may limit the job execution time. The author also claimed that the slower

mapper may hold the whole job processing up, which delays the job finishing time.

To show the impacts of unbalanced load issue, the author use Jumbo based on Google

Distributed File System [58], which is claimed that has the similar performance as

Hadoop framework has. In the author’s scenario he implemented two algorithms of

which one is a single algorithm called ‘word count’ [2] and the other one is a complex

one called ‘Parallel FP-Growth frequent item set mining algorithm’ [87]. In the

evaluations the results show that the slower nodes delay the processing which causes

that the faster nodes are not fully utilized. Based on the results, the author claimed

that both mapper and reducer impact the performance of Hadoop framework.

However, firstly in this paper only a number of experiments have been done without

any solution on solving the unbalanced load issue. Secondly, the impacts brought by

reducer should be considered. For theoretical algorithm experiments, multiple

reducers may be involved in terms of efficiency. Contrarily, for a practical algorithm,

reducer is normally involved to collect the final output which should be regarded as a

whole data set without any segmentation. Thus for the data integrity, single reducer is

better than multiple reducers which needs another job to collect parts from different

reducers to form a whole data set. Therefore it is regarded that in the data processing,

the load issues among multiple mappers are more critical.

One group of researchers realized the importance of load balancing issue in Hadoop

as well. Sadasivam et al. [56] try to optimize the performance of the Hadoop cluster

so that they proposed an approach called Parallel Hybrid PSO-GA using MapReduce

based on genetic algorithm. In their algorithm they use Hadoop framework itself to

deal with the genetic algorithm [81] which aims to solve the unbalanced load issue in

Hadoop. Their algorithm mainly aims on achieving an optimized scheduler for

multiple users based on the different resource capacities. During the processing, they

made the number of iterations maximally 30 times to guarantee the efficiency. Their

results show that the PSO-GA algorithm outperforms Max MIPS, typical PSO and

Yang Liu (2011)

23

typical GA. However, several points can be criticized from their design and

implementation. The first point is that the overhead of Hadoop is quite considerable.

When the framework is involved to compute a Hadoop job scheduler for Hadoop

itself, though the overhead of following jobs may be reduced, the overhead of the

scheduler computation definitely cannot be avoided. The second point in their design

is they just simply consider the capacity of a resource in terms of utilization of

processor. This simply idea is lack of accuracy to describe the real Hadoop system. As

studied in paper [77], there are a number of factors which may impact the

performances of the framework including processing features, IO features and

Hadoop working mechanisms. Therefore the fitness function based on pure

utilizations of processors in Parallel Hybrid PSO-GA cannot compute the scheduler

accurately. The third point is just 30 times iterations involved in their algorithm

cannot get the optimized solution. The existing errors may differentiate the

performance of the scheduler from the actual optimized scheduler. However to

increase the number of iterations will increase the overhead of the algorithm, the

authors have not done any compensation to calibrate these two issues. The forth point

is they considered to balance the load among multiple users but they do not consider

the load among mappers for one job. Thus the unbalanced load will make certain

number of mappers unutilized, which delays one job. Moreover the total number of

jobs will be affected.

Another group of researchers aim to assign different volumes of so-called data

fragments to different computing nodes on balancing the loads. Xie et al. [55]

established a heterogeneous Hadoop cluster and measured the processing speed of

each node based on the overhead of processing 1GB data. And then according to

different computing ratio, they allocated the nodes with different number of fragments

proportionally. They claimed that their strategy enhances the performance of Hadoop

framework. However, there are three arguments about their research. The first one is

that is it proper to define the computing ratio for one node based on simply testing the

overhead of processing 1GB data? It is well recognized that the processing steps of

Yang Liu (2011)

24

Hadoop are quite complex. The number of processor, hard disk, memory buffer,

network and parameters’ operations are involved. For instances, two absolutely same

nodes from hardware aspects will definitely give different performances on

processing 1GB data with different buffer size configurations. And also, a machine

with slower hard disk may outperform a machine with faster hard disk on processing

1GB data with different sort factor configurations. Therefore the simply way of

defining the processing speed of a node cannot represent the real processing capacity

of the node. The second argument is that in the current version of Hadoop framework,

one job cannot decide how many data chunks to be sent to a node. The only way of

Hadoop data chunk allocation is each mapper copies one data chunk from HDFS

without any interference from users. They may find a particular way to test their

strategy in the practical Hadoop cluster. However, they do not mention that. The third

argument is in their paper they claims that their computing ratio is based on the

response time of each node which is proportional to the processing speed of the

processor. For some of the algorithms which have less data output, their computing

ratio may perform well. However, when the algorithm has a number of IO operations,

which cause the response time is not proportional to the processing speed to the

processor, the performance of their algorithm will be definitely deteriorated.

The above studies aim to solve the unbalanced load issue in Hadoop framework based

on MapReduce computing model. Though their approaches give ways to enhance the

performances, they do not consider multiple factors involved in Hadoop. Therefore

their results are not that representative. Moreover, they do not consider any dynamic

issues of the algorithm while it is well known that the Hadoop computing

environment is dynamic from aspects of loads of processors, speed of IO devices and

states of the cluster. Though currently there is little research to study the load

balancing strategy in a dynamic Hadoop distributed computing environment, a large

number of dynamic load balancing strategies have been published for the other

scenarios. These strategies can also give enlightens for designing a dynamic load

balancing algorithm especially for Hadoop framework.

Yang Liu (2011)

25

One famous way to design a dynamic load balancing algorithm is to implement a

static load balancing algorithm repeatedly in a number of time intervals for a

dynamically changed environment [61]. Maeng et al. [63] proposed an algorithm

named as ‘Dynamic Load Balancing of Iterative Data Parallel Problems on a

Workstation Clustering’ following the above way. The experimental results show that

it is a proper way of implementing static load balancing algorithm in a time interval to

adapt to a dynamic environment. The approach can enhance the performance of the

cluster. Zomaya et al. [64] follow the same way to design their load balancing

algorithm. They involve genetic algorithm [82] [83] [85] in each time interval to

achieve the optimized job scheduler according to the speeds of processor employed in

the cluster. To facilitate the design, they firstly use a fixed ‘window size’ [60] [63]

representing the time interval. Secondly they restrict the iterations of the genetic

algorithm to be 10 times. From their experimental results, the performance of cluster

is enhanced greatly using their scenario. However, they do not test the impacts of

different window sizes. It should be pointed out that the various window sizes may

vary the performances according to the changes incurred in the environment. Also

they stiffly set the generation of the genetic algorithm to be 10. As the same as we

argued in [56], it is quite doubtful that if the solution with only 10-times evolution

suffices the optimized solution. However, their studies still can be referenced in the

design of dynamic load balancing algorithm for Hadoop framework. Another point

should be considered is where the load balancing algorithm can be computed. H. C.

Lin and et al. [60] proposed a way to balance load for dynamic environment using a

centralized job dispatcher [84]. In their algorithm a number of nodes can be handled

by the job dispatcher which uses global state information in making decisions. Based

on their evaluations they claim that the policy is most suitable for systems with

high-speed communications. And also Bonomi et al. [80] proposed an adaptive

optimal load-balancing algorithm in a heterogeneous multiple server system with a

central job scheduler. The central job scheduler decides the load in a similar way

which [60] [84] do. Their study is quite helpful in designing the dynamic load

Yang Liu (2011)

26

balancing algorithm for Hadoop as the framework has two features which are quite

similar to their scenario. The first is there is a component called JobTracker [33] [35]

which holds the global information of the cluster. The second is though

communications exist in the framework, the communication overhead is less than the

other distributed computing systems like MPI. Thus based on their idea, a centralized

job dispatcher is quite suitable.

In order to facilitate the experiments, to design a dynamic computing environment is

necessary. As stated by Dhakal et al. [65], although somewhat restrictive, this is a

meaningful assumption in order to obtain an analytically tractable result. So they

designed the load of processor following exponential distribution. Based on that

dynamic load, they develop their own strategy to balance the load among nodes. Their

research gives a way to establish an environment with dynamic factors in which the

performances of the load balancing algorithms can be evaluated.

Summarizing, researches on load balancing for Hadoop framework are mainly focus

on enhancing the performance without considering the lower layer and dynamic

features in detail. In their designs, they only simply consider the processing speed of

the nodes. However, it is known that the processing steps in Hadoop involve a number

of interactions among hardware and cluster parameters. These detailed mechanisms

affects the performances of a Hadoop cluster quite a lot. And also they do not

consider how to balance loads among nodes in a dynamic environment, which the

situation practically exists in a real varying resources Hadoop cluster caused by

operating system loads or the resource sharing. Another point should be mentioned is

that due to the differences of processing mechanisms between the Hadoop framework

and the other distributing computing systems, the dynamic load balancing algorithms

designed for the other systems are not suitable for Hadoop. Therefore these challenges

motivate the design of our dynamic load balancing algorithm which targets on

balancing load among nodes in a dynamic heterogeneous Hadoop computing

environment.

Yang Liu (2011)

27

2.6 Summary

Due to the scalability issue of the LSI algorithm, several works to speed up the

performance in term of overhead have been done. To combine the clustering

algorithm such as k-means is regarded as a remarkable way. However, the newly

involved clustering algorithm brings new overhead so that the new issue should be

solved. And also in most of the works, the load balancing issue has never been

considered. Thus, a solution for balancing loads among nodes in the distributed

computing environment with both static and dynamic factors should be considered.

Therefore, to evaluate the performance of MR-LSI in a large Hadoop environment

and the performance of load balancing algorithm, a Hadoop simulator which can

accurately simulate the Hadoop framework is needed.

Yang Liu (2011)

28

Chapter 3
HSim: A MapReduce Simulator

MapReduce is an enabling technology in support of Cloud Computing. Hadoop which

is a MapReduce implementation has been widely used in developing MapReduce

applications. This chapter presents HSim, a MapReduce simulator which builds on

top of Hadoop. HSim models a large number of parameters that can affect the

behaviors of MapReduce nodes, and thus it can be used to tune the performance of a

MapReduce cluster. HSim is validated with both benchmark results and user

customized MapReduce applications.

3.1 Modeling Hadoop Parameters

The performance of a Hadoop application can be affected by a large number of

parameters. In this section, we present the modeling work on these parameters.

3.1.1 Node Parameters

 Processor: HSim supports one processor per computer by default design, but the

number of processors could be changed. One processor can have one or more

cores. The processing speed of a processor core is defined as the volume of data

units processed per seconds which can be measured from real experimental tests.

 Hard disk: In hard disk entity, the speeds of IO operations vary from time to time.

Several parameters are introduced to build the degressive reading/writing model.

Let ݔ௠௔௫ represent the maximum reading/writing speed of hard disk. For

example from the experimental results of testing Seagate Barracuda 1 TB hard

disk ݔ௠௔௫ is about 120MB/s in reading, and 60MB/s in writing. Let ݔ௠௜௡

represent the minimum reading/writing speed of hard disk, ݔ௠௜௡ is around

55MB/s in reading and 25MB/s in writing. Another parameter which is

degressive factor r is used to represent in each second the value of lost speed. The

value of the factor is around 0.0056 based on experimental tests. Using these

parameters we can calculate the real time speed x of hard disk using formula

Yang Liu (2011)

29

(3.1).

ሻݐሺܪ ൌ
.௠௜௡ݔ ௠௔௫ݔ

ሺݔ௠௜௡ െ ௠௔௫ሻ݁ି௥௧ݔ ൅ ௠௔௫ݔ
	ሺ3.1ሻ

 Memory: In each memory entity two parameters are modeled, reading and

writing. In our experimental tests, the reading speed of standard DDR2-800

memory with dual-channel could reach up to 6000MB/s and the writing speed is

up to 5000 MB/s. It is quite obvious that both the reading and writing speeds

would not be the bottlenecks of the system due to their fast speeds.

 Ethernet adaptor: In each Ethernet adaptor entity, two parameters are modeled,

upstream bandwidth and downstream bandwidth. The bandwidth can be in the

range of 100Mbps and 1000Mbps.

3.1.2 Cluster Parameters

The cluster parameters represent the details of a simulated Hadoop cluster. It involves

several aspects which include the number of nodes, topology and network facilities.

 Number of nodes: The number of nodes can vary from 1 to a few hundreds.

 Topology: The number of nodes can be organized with a certain network

topology. Currently HSim only supports simple racks.

 Network facilities: The speed of a router can be in the range of 100Mbps and

1000Mbps. When the bandwidth of a router is defined, a number of standalone

computers must be configured to connect to the router to decide on their network

capacities.

 Job queue and job schedulers: A job queue holds the waiting job entities.

According to different job schedulers, jobs are waiting for processing resources.

HSim supports two job schedulers of Hadoop framework – first come first serve

and fair scheduler. These two types of schedulers generate different job

processing orders.

3.1.3 Hadoop System Parameters

Before a Hadoop application starts processing data, the data should be saved into

Yang Liu (2011)

30

Hadoop Distributed File System (HDFS) [33] [35] in advance. The number of files

affects the number of Map instances involved. Normally the number of Map instances

equals to the number of file chunks. If the number of chunks is larger than the

maximum number of Map instances in the cluster, Map instances will be assigned

with data chunks via waves. If a whole data set is only saved in one file, the single file

could be separated into a number of chunks logically via supplied APIs of the Hadoop

framework. When data is being processed, it would go through a number of

processing steps such as sorting, merging, combining, copying, reducing. These steps

highly affect the performances of the system so that several parameters are modeled

to control the behaviors of these steps. As these parameters are configurable and most

of them are involved in the actual Hadoop framework so we named these parameters

Hadoop system parameters.

 Job specifications: In a job specification, a number of parameters are involved to

describe the properties of a job. Job ID refers the unique id assigned to each job

for tracking. The JobSize is the total size of the input data. No matter how many

chunks of the data are submitted, this value should be the total size of the whole

data. When the simulation starts, the data will be fetched from the HDFS. The

NumberOfRecords parameter is used to represent the number of records in the

data so that the size of each record can be calculated by this value and the size of

the job. In the simulator this parameter is experimentally used to measure the

number of records combined by Combiners, which may affect the performances

of the system when certain types of Hadoop applications are executed. The

MapOutputRatio parameter represents the volume of intermediate data to be

generated by Map instances which has an impact on IO performance. The

ReduceOutputRatio parameter is quite similar to MapOutputRatio. In some

Hadoop applications the Reduce instances do not only copy data from Map

instances but also generate their own intermediate data which affects IO

performance. This parameter specifies the size of intermediate data to be

generated in the Reduce phase. The ReducingRatio parameter represents the size

of final results which will be reduced in HDFS. This parameter can affect the

Yang Liu (2011)

31

performance of the underlying network and also the performance of a local hard

disk. The NumberOfChunks parameter is used to specify the number of files to be

used to carry data. This parameter determines the number of Map instances

assigned to the job. If the number of chunks is only one, a number of logically

separated files should be specified. The NumberOfReducers parameter represents

the number of required Reduce instances for the job. If this parameter is defined,

then a number of Reduce instances will be allocated for the current job according

to their availabilities.

 Simulated Hadoop parameters: This group of parameters is highly related to

Hadoop framework. The io.sort.mb parameter represents the size of memory

buffer to use while sorting map output. The io.sort.record.percent parameter

represents the proportion of io.sort.mb reserved for storing record boundaries of

the map output results. The remaining space is used for the map output records

themselves. The io.sort.spill.percent parameter is a threshold that determines

when the Map instance should start spilling processes writing data into memory.

If the threshold is reached, the CPU processing will be suspended and the buffer

will be flushed, which means all the data saved in virtual memory will be spilled

into hard disk. The io.sort.factor (1) parameter specifies the maximum number of

streams to merge when sorting files in the Map phase. It significantly affects the

IO performance of the system. The mapred.reduce.parallel.copies parameter

refers to the number of threads used to copy map outputs to the reducer. Using a

proper number of copying threads according to hardware resources, the

performances of the system would be enhanced. The io.sort.factor (2) parameter

represents the maximum number of streams to merge when sorting files is

carrying out in the reduce phase. The mapred.job.shuffle.input.buffer.percent

parameter is the proportion of total heap size to be allocated to the map outputs

buffer during the copy phase of the shuffle. The mapred.inmem.merge.threshold

parameter represents the threshold number of map outputs for starting the process

of merging the outputs and spilling to hard disk. Using this parameter a number

of smaller mapper outputs could be operated in memory but not local hard disk.

Yang Liu (2011)

32

Therefore the sorting and merging involve less overhead generated by hard disk.

The JVM Reuse parameter is partially simulated in HSim. Using JVM reuse, the

overhead generated by some short-lived tasks will be significantly reduced.

3.1.4 HSim Parameters

HSim itself needs several parameters to control its own behaviors. Five important

parameters are introduced in HSim:

 System Clock: The System Clock parameter is an absolutely and continuously

timing component. In each change of the system clock, its current value will be

added by one second. It is used to record the current system time, and to measure

the performances of Hadoop applications in different cluster configurations.

 Executing Speed: This parameter controls the execution speeds of all the

components in HSim.

 Accuracy Level: For normal Hadoop applications, it is enough to set this

parameter to the level of seconds. To maintain high accuracy in simulation,

milliseconds can be set for the applications as well.

 Shared Parameters: These parameters can control the rates of the shared resources

include hard disk and bandwidth. The ratio is defined by

r AssignedResource /TotalResource.

 Reporter: This parameter records several important system states for analysis.

Table 3.1: Summarizes the parameters modeled in HSim.

Category Specification

Node Parameters processor, hard disk, memory, Ethernet card,

Map instance, Reduce instance

Cluster Parameters number of nodes, topology, network facilities,

job queue, job scheduler

Hadoop System Parameters job specifications, Hadoop parameters

HSim Parameters system clock, execution speed, accuracy level,

shared parameters, reporter

Yang Liu (2011)

33

3.2 The Design of HSim

This section presents the design of HSim in detail. The prototype is based on Hadoop

framework.

3.2.1 HSim Architecture

Figure 3.1 shows the data flow of HSim. To perform a simulation, the Cluster Reader

component reads the cluster parameters from the Cluster Spec to create a simulated

Hadoop cluster environment. A specified number of nodes are initialized and arranged

using a certain type of topology. After the cluster is configured, the node parameters

will be processed by the Cluster Reader as well to specify the types of nodes

including processors, hard disk, memory, Master node, Slave nodes, Map instances

and Reduce instances. This initialization process can create both homogeneous nodes

and heterogeneous nodes. Then the simulated cluster is ready for incoming jobs

retrieved from the job queue using different job schedulers. The Job Spec will be

processed by the Job Reader component and jobs will be submitted to HSim for

simulation.

Figure 3.1: HSim components.

HSim follows a master-slave mode. The simulated Map instances (MapperSim),

Reduce instances (ReducerSim), JobTracker and TaskTrackers are located on these

Yang Liu (2011)

34

nodes. The Master node is the Namenode of Hadoop framework which contains

JobTracker to correspond and schedule the tasks. The Slave nodes are the Datanodes

of Hadoop framework which contains TaskTrackers. On Slave nodes Map instances

and Reduce instances perform data processing tasks. From Figure 3.1 it can be

observed that when a job is submitted to a simulated Hadoop cluster, the JobTracker

splits the job into several tasks. Then TaskTracker and JobTracker will communicate

with each other via messaging based on heartbeats. One thing should be pointed out

that in Hadoop framework, the communications among JobTracker and TaskTrackers

are based on HTTP. However in the simulator simplicity has been done. The HTTP

communications are not simulated but using the times consumed by the

communications to measure the overhead generated by HTTP communications. If the

JobTracker finds that all the Map tasks have been finished, and then the Reduce

instances will be notified to be ready for merging phase. Moreover if the JobTracker

finds all Reduce tasks have been finished, then the job will be considered as finished.

If the Map tasks have not been finished yet, the TaskTrackers will be notified to

choose a Map task or a Reduce Task based on their availabilities.

3.2.2 MapperSim

When a Hadoop application is submitted to HSim, the input data will be split into a

number of data chunks and each chunk is associated with a Map instance. During the

processing, each task will be assigned to a Map instance for execution. The operations

of a Map instance are simulated by the MapperSim component. MapperSim simulates

the operations of a Map instance (mapper) on each node. It copies data which is saved

in HDFS to its own local hard disk. Commonly each MapperSim processes one file

chunk but if only one file chunk is saved in HDFS, then a logically separated number

of chunks can control the number of MapperSim instances involved in the job. When

the data is copied and saved in the local hard disk, MapperSim starts processing the

data based on the job spec of the simulated Hadoop application. During the processing

steps, intermediate data will be generated. To improve the IO performance, the

intermediate data will be written into a memory buffer. In the buffer, the data can be

Yang Liu (2011)

35

pre-sorted to gain high efficiency. As long as data is writing into the buffer, if a

threshold is reached, a background thread will start spilling the data to hard disk. The

intermediate data will be kept writing into the buffer while the spilling takes place. If

the buffer is full during this time, the CPU processing will be blocked until the spill

procedure is complete. This step means that the processor involved in MapperSim

does not simply keep processing, it may be interrupted by the current states of

memory buffer. For each spilled chunk of the output, before it is written to the hard

disk the background thread will divide the chunk into partitions which are associated

with the Reduce instances. During this step, the in-memory pre-sorting is occurred.

And if a Combine function is needed, combiner will be involved in this step after

sorting. After the task is finished, the partitions will be merged into a single file which

contains sorted data to be copied to the Reduce instances. Figure 3.2 shows the

working mechanism of MapperSim.

 Figure 3.2: Data flows in the MapperSim component.

Figure 3.3 shows a sequential diagram shows the interactions of MapperSim with

other components in HSim.

Yang Liu (2011)

36

Figure 3.3: MapperSim sequence diagram.

3.2.3 ReducerSim

The ReducerSim component simulates the Reduce instances in Hadoop framework. It

is used to collect the outputs from MapperSim and reduce the final outputs into HDFS.

Figure 3.4 shows the data flows in ReducerSim.

 Figure 3.4: Data flows in the ReducerSim component.

The output files of the MapperSim component are saved in the local hard disk. The

ReducerSim component needs the output from several MapperSim components for its

particular partition. The ReducerSim starts copying data when an output is ready.

Each ReducerSim has a number of copying threads so that it can copy the output

results from a number of MapperSim components in parallel. If the size of the output

is small, it will be copied into a memory buffer otherwise it will be copied into the

hard disk directly. If the output results are copied into memory, when a certain

threshold is reached, e.g. a percentage of buffer used or a number of file copied, these

Yang Liu (2011)

37

outputs will be merged and spilled into hard disk. As the number of files increases, a

background thread merges them into larger and sorted files. When all the output

results from the MapperSim components have been copied, the sorting step will start.

This step merges the map outputs and maintains sorting orders of outputs. After the

files have been sorted, they will be reduced into HDFS as one final output. For some

Hadoop applications, the Reduce instances may need to process data involving

processors but without IO operations. The ReducerSim in HSim supports this feature.

Figure 3.5 shows its sequence diagram.

Figure 3.5: Hardware interactions in ReducerSim.

3.2.4 JobTracker and TaskTracker

JobTracker is mainly used to track a simulated job and TaskTracker is used to run

individual tasks. When a job is submitted, the job ID will be sent to JobTracker for

tracking. The JobTracker starts computing the input splits for the job. Then it creates

one map task for each split. TaskTrackers periodically send messages to the

JobTracker via heartbeats which tell the JobTracker that a TaskTracker is working. As

part of the heartbeat, a TaskTracker will tell that if the current task is finished and

ready to run a new task. Figure 3.6 shows the work flows of the components in HSim

Yang Liu (2011)

38

Figure 3.6: The workflow of HSim.

3.3 Validations of HSim

To validate HSim, a number of tests have been conducted. The performances of HSim

against published benchmark results have been compared. And also an experimental

environment of a Hadoop cluster has been set up and the simulator HSim is evaluated

with our Hadoop applications.

3.3.1 Validating HSim with Benchmarks

HSim is validated firstly with 3 benchmark results presented in [27] [54] - Grep Task,

Selection Task and UDF Aggregation Task.

3.3.1.1 Grep Task

This task simulated exactly what [27] [54] did in their benchmarking work. HSim

simulated the cluster using 1 node, 10 nodes, 25 nodes, 50 nodes and 100 nodes

respectively. Two different scenarios have been tested, one is that each node is

assigned 535MB data to process, and the other is that 1TB data is submitted to the

cluster. Each scenario was evaluated 5 times. The simulation results are plotted in

Figure 3.7 and Figure 3.8 respectively which are close to the benchmark results. Both

the simulation results and benchmark results are in the same scale. Regarding the

complex physical environments, the simulation results can supply acceptable accuracy.

The gaps between simulation results and benchmark results can be ignored. The

confidence intervals of the results are small in both scenarios (in the range of 0 and

2.6 seconds in the first scenario and in the range of 4.1 and 7.6seconds in the second

scenario) showing a stable performance of HSim.

3.3.

The

deal

targ

are

phy

1.2 Selectio

e Selection T

ling with c

get pageURL

shown in

ysical bench

Figur

Fig

on Task

Task was d

omplex task

Ls with a u

Figure 3.9

hmark envi

0

5

10

15

20

25

30

35

40

45

O
ve

rh
ea

d
(s

)

re 3.7: Grep T

gure 3.8: Gre

designed to

ks. Each no

user defined

9. Regardin

ironments,

1 10

Bench

Task evaluati

ep Task evalu

observe the

ode process

d threshold.

ng the mul

the simula

0 25

Number of n

hmark

ion (535MB/n

uation (1TB/c

e performan

ses 1GB ra

This task i

ltiple factor

ation results

50

nodes

HSim

Y

node).

luster).

nces of Had

nking table

s simulated

rs and com

s are highl

100

Yang Liu (201

doop framew

e to retrieve

d and the re

mplexity of

ly close to

11)

39

work

e the

sults

f the

o the

Yang Liu (2011)

40

benchmark result. The simulation results show that considering the complex working

mechanisms and parameters of Hadoop framework, the simulator HSim can supply

sufficiently close results compared to the benchmark results.

Figure 3.9: Selection task evaluation.

From Figure 3.9 it can be clearly observed that the simulated results are close to the

benchmark results, and the confidence intervals are small, in the range of 2.6 and 6.6

seconds.

3.3.1.3 UDF Aggregation Task

The UDF Aggregation Task reads the generated document files and searches for all

the URLs appeared in the contents. And then for each unique URL, HSim counts the

number of unique pages that refers to that particular URL across the entire set of files.

The simulation results are shown in Figure 3.10 which again are close to the

benchmark results considering the complexities of the simulations. The simulation

results show a high stability of HSim for the task.

0

20

40

60

80

100

120

1 10 25 50 100

O
ve

rh
ea

d
(s

)

Number of nodes

Benchmark HSim

Yang Liu (2011)

41

Figure 3.10: Aggregation task evaluation.

3.3.2 Evaluating HSim with Customized Hadoop Applications

Two customized Hadoop applications are involved for validation secondly - one is for

information retrieval and the other one is for content based image annotation. The two

applications were evaluated in both a Hadoop experimental cluster and HSim. This

section presents the evaluation results.

3.3.2.1 The Experimental and Simulated Environments

The Hadoop experimental cluster consists of 4 nodes. Three nodes were used as

Datanodes with CPU Q6600@2.4G, RAM 3GB, 120GB Seagate Hard Disk, and

running OS Fedora 12. One node is used Namenode with CPU C2D7750@2.26G,

2GB RAM and running OS Fedora 12. Each Datanode employed 4 mappers and 1

reducer with default cluster configurations. The network bandwidth is 1Gbps. We

used HSim to simulate a Hadoop cluster with the same configurations as those of the

experimental cluster.

3.3.2.2 MR-LSI

MR-LSI [52] is a MapReduce based distributed LSI algorithm for information

retrieval. The details will be described in the next chapter. MR-LSI is designed and

implemented using the Hadoop framework. It involves both Map and Reduce

0

200

400

600

800

1000

1200

1 10 25 50 100

O
ve

rh
ea

d
(s

)

Number of nodes

Benchmark HSim

Yang Liu (2011)

42

functions, and contains a number of IO operations. MR-LSI was evaluated in both an

experimental environment and HSim, and plotted the results in Figure 3.11.

Figure 3.11: Evaluating HSim with MR-LSI.

It can be observed that the overall performance of HSim is substantially close to that

of the real Hadoop cluster, especially for scenarios dealing with MapReduce jobs with

larger sizes of datasets and involving an increased number of mappers. One thing

should be pointed out that HSim is designed to simulate a large scale Hadoop cluster

so that if only one node is in the cluster the errors may occur due to inaccuracy of

simulating a cluster consisted by a single node (In this case one machine employs four

mappers so when the number of mappers is less than 5, there is only one node in the

cluster.). For comparison purpose, the performance of the MRPerf simulator is also

tested using the same configurations as that of HSim. From the results presented in

Figure 12 it can be seen that HSim significantly outperforms MRPerf in comparison

with the performance of the real Hadoop cluster. As discussed in Section 2, using too

much estimation on the values of Hadoop parameters limits MRPerf in simulating

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

O
ve

rh
ea

d
(s

)

Number of mappers

Hadoop HSim MRPerf

Yang Liu (2011)

43

MapReduce behaviors accurately.

3.3.2.3 MR-SMO

MR-SMO [53] is a MapReduce based distributed SMO algorithm for content based

image annotation. MR-SMO is built on Hadoop framework, and also involves both

Map and Reduce functions. MR-SMO was evaluated in the experimental Hadoop

cluster as well as in HSim. The MRPerf simulator is also employed to evaluate the

performance of MR-SMO. From the results presented in Figure 3.12 it can be

observed that the performance of the simulated cluster using HSim is considerably

close to that of the real Hadoop cluster. Again MRPerf does not produce accurate

simulation results.

Figure 3.12: Evaluating HSim with MR-SMO.

3.3.3 Discussions

The Hadoop framework is a complex system involving a number of components.

HSim is designed and implemented to simulate such components and interactions. It

Yang Liu (2011)

44

works similarly like the way of the Hadoop framework works. However we cannot

simply conclude that HSim can accurately simulate Hadoop without any limitations.

The accuracy of HSim can be affected by a number of factors such as the time of job

propagations, cold starts of Map instances, key distributions, system communications,

shared hardware resources and dynamic IO loads. These dynamic factors may affect

the performance of both experimental and simulated results depending on user

applications. Enabling the Combiner feature of Hadoop also can affect the accuracy of

HSim. However, the combiner instance has not been fully implemented in HSim. A

combiner can be considered as an in-memory sort process. The output of mappers will

be combined and written into an intermediate file by a combiner. And then the file

will be sent to a reducer. So when the number of mappers is small, the benefits gained

from using combiners are not significant. However when the number of mappers gets

large, system IO operations includes hard disk reading, writing and network utilities

will benefit a lot from combiners. Though HSim does not work that well with

simulated combiners in large clusters, it still performs well in a simulated cluster with

up to 100 nodes.

3.4 Summary

This chapter presents HSim, a Hadoop simulator for simulating data intensive

MapReduce applications. HSim was validated with established benchmark results and

also with experimental environments which have shown that HSim can accurately

simulator MapReduce behaviors. HSim can be used to investigate the impacts of the

large number of Hadoop parameters by tuning their values. It can also be used to

study the scalability of MapReduce applications which might involve hundreds of

nodes.

Yang Liu (2011)

45

Chapter 4
Parallelizing LSI for Scalable Information Retrieval

Latent Semantic Indexing (LSI) has been widely used in information retrieval due to

its efficiency in solving the problems of polysemy and synonymy. However, three

drawbacks affect the performance of LSI. The first disadvantage is that LSI is notably

a computationally intensive process because of the computing complexities of

singular value decomposition and filtering operations involved in the process. The

second disadvantage is several studies show that the truncated SVD can be lack of

efficiency in processing large inhomogeneous text collections [14] [17]. The third

disadvantage is for large datasets the SVD computation may be too expensive to be

carried out on conventional computers. Also, the dense data structure of the truncated

SVD matrices poses a huge challenge for both disk and memory spaces of

conventional computers [13] [14]. Thus, a number of researchers proposed algorithms

based on clustering technologies [3] [13] [14] [92] [93] to solve the issues stated of

LSI. One of the clustering algorithm k-means has been involved by [3] [13] [14].

Combining with k-means, the original dataset of documents can be clustered into

several sub-clusters according to the similarities of topics of the documents. As a

result, the dimension of the original T-D matrix formed from the inhomogeneous text

collections is reduced. Also, the computing complexity and cost are reduced. However,

it should be noted that the combined clustering algorithm k-means can also generate

large overhead when it is dealing with large dataset. Thus to distribute the k-means

combining with LSI is an efficient way to solve the above issue.

This chapter presents a MapReduce based distributed LSI algorithm (MR-LSI) for

high performance and scalable information retrieval. MR-LSI distributes k-means

using Hadoop framework based on MapReduce computing model. Each mapper

processes a data chunk which is separated from the original dataset by running

k-means algorithm. After the dataset is clustered, a number of sub-clusters are output

Yang Liu (2011)

46

by reducer. And then, a number of mappers are started to do truncated SVD

computation in each sub-cluster. Finally, reducer outputs the final results into HDFS.

The performance of MR-LSI is first evaluated in a small scale experimental

environment. Subsequently, HSim is involved for further evaluation of MR-LSI in

large scale simulation environments. By partitioning the dataset into smaller subsets

and optimizing the partitioned subsets across a cluster of computing nodes, the

overhead of the MR-LSI algorithm is reduced significantly while maintaining a high

level of accuracy in retrieving documents of user interest. A genetic algorithm based

load balancing scheme is also designed to optimize the performance of MR-LSI in

heterogeneous computing environments in which the computing nodes have varied

resources.

4.1 The Design and Implementation of MR-LSI

MR-LSI employs k-means to group documents into a number of clusters of

documents. To minimize the overhead of k-means in clustering documents, MR-LSI

partitions the set of documents into a number of subsets of documents and distributes

these subsets of documents among a number of processors in a MapReduce Hadoop

environment. Each processor only clusters a portion of the documents and

subsequently performs a truncated SVD operation on the generated document cluster.

The details on the design of MR-LSI are given below.

Let

 ܦ represent the set of ݌	documents, ܦ ൌ ሼ݀ଵ, ݀ଶ, ݀ଷ, … , ݀௣ሽ.

 ܲ represent the set of ݉ processors in a Hadoop cluster,

ܲ ൌ ሼ݌ଵ, ,ଶ݌ ,ଷ݌ … , .௠ሽ. Each processor runs one map instance called mapper݌

 ܯ represent the set of ݉ mappers running in the Hadoop cluster, ܯ ൌ

ሼ݉ܽ݌ଵ,݉ܽ݌ଶ,݉ܽ݌ଷ, … .௠ሽ݌ܽ݉,

In LSI, the set of ܦ documents can be represented by a set of vectors denoted by ܸ,

Yang Liu (2011)

47

ܸ ൌ ሼݒଵ, ,ଶݒ ,ଷݒ … , ௜ represents the frequencies of keywords thatݒ ௣ሽ. Each vectorݒ

appear in document ݀௜. The input of each mapper includes two parts. The first part is

a centroid set of ܥ with ݇ initial centroids which are randomly selected from the

vector set ܸ, ܥ ൌ ሼܿ௜ ∈ ܸ|ܿଵ, ܿଶ, ܿଷ, … , ܿ௞ሽ	. The second part of the input of a mapper

is a portion of ܸ denoted by ௜ܸ . The vector set ܸ is equally divided into ݉

portions according to the number of mappers. Thus ௜ܸ satisfies ⋃ ௜ܸ ൌ ܸ௠
௜ୀଵ .

Each mapper ݉௜ runs on one processor ݌௜ calculating the Euclid distances between

௜௝ݒ ∈ ௜ܸ and ܥ which is denoted by ݀௜௝, then

 ݀௜௝ ൌ ฮݒ௜௝ െ ܿ௤ฮ, ݆ ൌ 1, 2, … , ௣
௠
ݍ			,	 ൌ 1, 2, … , ݇

Let ݀௠௜௡ represent the shortest distance between ݒ௜௝ and ܥ , then

݀௠௜௡ ൌ ݉݅݊	ሺ݀௜ଵ, ݀௜ଶ, ݀௜ଷ, … , ݀௜ ೛
೘
ሻ.

Based on the shortest distance, the mapper selects the corresponding ܿ௜ and ݒ௜௝ to

generate a key-value pair as one output record. The output pairs of all the mappers are

fed into the reduce instance (called reducer). The reducer groups the values with the

same key ܿ௜ into a set of clusters denoted by ,௜ݎ݁ݐݏݑ݈ܥ

௜ݎ݁ݐݏݑ݈ܥ ൌ ሼݒଵ
′ , ଶݒ

′ , ଷݒ
′ , … , ௔௜ݒ

′ ሽ, where ݅ ൌ 1, 2, 3, … , ݇ and ∑ ܽ௜ ൌ
௞
௜ୀଵ .݌

For each ݎ݁ݐݏݑ݈ܥ௜, the reducer calculates a new centroid denoted by ܿ௜
′ ,	 ܿ௜

′ ൌ
∑ ௩ೕ

′ೌ೔
ೕసభ

௔೔

The reducer outputs a set of centroids denoted by ܥ ܥ ,′ ′ ൌ ሼܿଵ
′ , ܿଶ

′ , ܿଷ
′ , … , ܿ௞

′ ሽ which

will be fed into the mappers for computing another set of centroids ܥ ′′until the values

of the centroids in set ܥ ′	are the same as those in ܥ ′′, then the reducer outputs the

 ௜. Each of the ݇ jobs runs a mapper performing a truncated SVD operation inݎ݁ݐݏݑ݈ܥ

௔௜ݒ ௜, the vectorsݎ݁ݐݏݑ݈ܥ ௜. In eachݎ݁ݐݏݑ݈ܥ
′ form a T-D matrix ܣ, where ܣ ൌ .்ܸߑܷ

After performing a truncated SVD operation, the matrix ܣ can be represented by an

approximate matrix ܣ௞, where ܣ௞ ൌ ܷ௞ߑ௞ ௞ܸ , k is the rank of the matrix.

In LSI, for a submitted query ݍ, it is processed using equation (4.1).

Yang Liu (2011)

48

௩ݍ ൌ ௞ߑ௞்ܷݍ
ିଵ (4.1)

The similarities of the query to the documents can be measured by calculating the

cosine values of vector ݍ and the vectors of matrix ௞ܸ using equation (4.2).

ݏ݋ܿ ௝ߠ ൌ
௤ೡ∙஽ೕ

‖௤ೡ‖మฮ஽ೕฮమ
 (4.2)

where j represents the jth document in the clustered document set.

If the value of ܿݏ݋ ௝ willܦ ௝ is larger than a given threshold ߬, then the documentߠ

be a target document. Therefore the set of target documents ܦ can be represented as

ܦ ൌ ሼ ௝݀| ݏ݋ܿ ௝ߠ ൌ ,௩ݍሺݏ݋ܿ ௝ሻܦ ൒ ߬ሽ . Finally, the reducer generates ݇ clusters of

documents. For each cluster of documents, a truncated SVD operation is performed

and targeted documents are retrieved.

4.2 Static Load Balancing Strategy for MR-LSI

A remarkable characteristic of the MapReduce Hadoop framework is its support for

heterogeneous computing environments. Therefore computing nodes with varied

processing capabilities can be utilized to run MapReduce applications in parallel.

However, current implementation of Hadoop only employs first-in-first-out (FIFO)

and fair scheduling without support for load balancing taking into consideration the

varied resources of computers. A genetic algorithm based load balancing scheme is

designed to optimize the performance of MR-LSI in heterogeneous computing

environments.

4.2.1 Algorithm Design

To solve an optimization problem, genetic algorithm solutions need to be represented

as chromosomes encoded as a set of strings which are normally binary strings.

However, a binary representation is not feasible as the number of mappers in a

Hadoop cluster environment is normally large which will result in long binary strings.

Yang Liu (2011)

49

A decimal string to represent a chromosome in which the data chunk assigned to a

mapper is represented as a gene is employed.

In Hadoop, the total time (ܶ) of a mapper in processing a data chunk consists of the

following four parts:

 Data copying time (ݐ௖) in copying a data chunk from Hadoop distributed file

system to local hard disk. It depends on the available network bandwidth and

the writing speed of hard disk.

 Processor running time (ݐ௣) in processing a data chunk.

 Intermediate data merging time (ݐ௠) in combining the output files of the

mapper into one file for reduce operations.

 Buffer spilling time (ݐ௕) in emptying filled buffers.

ܶ ൌ ௖ݐ ൅ ௣ݐ ൅ ௠ݐ ൅ ௕ (4.3)ݐ

Let

 ܦ௠ be the size of the data chunk.

 ܪௗ be the writing speed of hard disk in MB/second.

 ܤ௪ be the network bandwidth in MB/second.

 ௥ܲ be the speed of the processor running the mapper process in MB/second.

 ܤ௙ be the size of the buffer of the mapper.

 ܴ௔	be the ratio of the size of the intermediate data to the size of the data chunk.

 ௙ܰ be the number of frequencies in processing intermediate data.

 ௕ܰ be the number of times that buffer is filled up.

 ௕ܸ be the volume of data processed by the processor when the buffer is filled

up. 	

 s be the sort factor of Hadoop.	

Yang Liu (2011)

50

Therefore

௖ݐ ൌ
஽೘

୫୧୬	ሺு೏,	஻ೢሻ
 (4.4)

Here ݐ௖ depends on the available resources of hard disk and network bandwidth. The

slower one of the two factors will be the bottleneck in copying data chunks from

Hadoop distributed file system to the local hard disk of the mapper.

௣ݐ ൌ
஽೘
௉ೝ

 (4.5)

When a buffer is filling, the processor keeps writing intermediate data into the buffer

and in the mean time the spilling process keeps writing the sorted data from the buffer

to hard disk. Therefore the filling speed of a buffer can be represented by ௥ܲ ൈ ܴ௔ െ

 ௗ. Thus the time to fill up a buffer can be computed byܪ
஻೑

௉ೝൈோೌିு೏
. As a result, for a

buffer to be filled up, the processor will generate a volume of intermediate data with

the size of ௕ܸ which can be computed using equation (4.6)

௕ܸ ൌ ௥ܲ ൈ ܴ௔ ൈ
஻೑

௉ೝൈோೌିு೏
 (4.6)

The total amount of intermediate data generated from the original data chunk with a

size of ܦ௠ is ܦ௠ ൈ ܴ௔. Therefore the number of times for a buffer to be filled up

can be computed using equation (4.7).

௕ܰ ൌ
஽೘ൈோೌ
௏್

 (4.7)

The time for a buffer to be spilled once is
஻೑
ு೏

, therefore the time for a buffer to be

spilled for ௕ܰ times is
ே್ൈ஻೑
ு೏

. Then we have

௕ݐ ൌ
ே್ൈ஻೑
ு೏

 (4.8)

Yang Liu (2011)

51

The frequencies in processing intermediate data ௙ܰ	can be computed using equation

(4.9).

௙ܰ ൌ ቔே್
௦
ቕ െ 1 (4.9)

When the merging occurs once, the whole volume of intermediate data will be written

into the hard disk causing an overhead of
஽೘ൈோೌ
ு೏

. Thus if the merging occurs ௙ܰ

times, the time consumed by hard disk IO operations can be represented by
஽೘ൈோೌൈே೑

ு೏
.

We have

௠ݐ ൌ
஽೘ൈோೌൈே೑

ு೏
 (4.10)

The total time ௧ܶ௢௧௔௟	to process data chunks in one processing wave in MapReduce

Hadoop is the maximum time consumed by ݇ participating mappers, where

 ௧ܶ௢௧௔௟ ൌ max	ሺ ଵܶ, ଶܶ, ଷܶ, … , ௞ܶሻ (4.11)

According to divisible load theory [102] [103] [104] [105], to achieve a minimum

௧ܶ௢௧௔௟, it is expected that all the mappers to complete data processing at the same time:

 ଵܶ ൌ ଶܶ ൌ ଷܶ ൌ 	… ൌ 	 ௞ܶ (4.12)

Let

 ௜ܶ be the processing time for the ݅௧௛	mapper.

 തܶ 	be the average time of the ݇	mappers in data processing, തܶ ൌ
∑ ்೔
ೖ
೔సభ

௞

Based on equations (4.11) and (4.12), the fitness function is to measure the distance

between ௜ܶ and തܶ. Therefore, the fitness function can be defined using equation

(4.13) which is used by the genetic algorithm in finding an optimal or a near optimal

solution in determining the size for a data chunk.

Yang Liu (2011)

52

 ݂ሺܶሻ ൌ ට∑ ሺതܶ െ ௜ܶሻଶ௞
௜ୀଵ (4.13)

4.2.2 Crossover

To maintain the diversity of the chromosomes, the algorithm needs functions of

crossover. Crossover recomposes the homologous chromosomes via mating to

generate new chromosomes or so called offspring. The generated offspring inherit the

basic characteristics of their parents. Some of them may adapt to the fitness function

better than their parents did, so they may be chosen as parents in next generation.

Based on crossover, the algorithm can keep evolving until an optimal offspring has

been found. In this algorithm, to gain the effective of design and operations,

single-point crossover which refers to set only one crossover point randomly in the

chromosome has been employed. The processes of crossover could be regarded as:

1. Randomly select pairs of the chromosomes (schedulers) as parents to mate.

2. In each pair, randomly select a position as crossover point. If the length of the

chromosome is k then there will be 1k  available points.

3. In each pair, the chromosomes change their parts which are after the crossover

point with each other according to crossover probability p .

However in the algorithm simply crossing the chromosome may cause one problem.

As each gene is the value of the actual volume of data each Map instance takes, to

change the members of genes may differentiate the original total volume of data
1

k

i
i

D

 .

Assume the original total volume of data is
1

k

i
i

D

 and the volume of data after

crossover is
1

k

i
i

d

 , then the difference

1 1

k k

i i
i i

D D d
 

    should be considered and

processed. In the algorithm D is divided into k parts. The size of each part is

randomly assigned. And then these k parts will be randomly added to or removed

Yang Liu (2011)

53

from k genes in the chromosome. Thus the total size of processed data in one wave

could be guaranteed.

4.2.3 Mutation

To avoid the local optimum of the algorithm, mutation has been introduced into our

algorithm. Mutation could mutate genes in a chromosome based on smaller

probabilities. Moreover new individuals could be generated. So that combined with

crossover the information loss due to the selection could be avoided. Thus the validity

of the algorithm could be guaranteed. The mutation contributes in two main aspects in

our algorithm.

1. Improving the local search ability of the algorithm. The crossover operation could

find a number of chromosomes with better adaptability from a global angle. These

chromosomes are close to or helpful to gain the optimal solution. However

crossover cannot execute local search in details. So using mutation to tune the

values of certain genes from local detailed phase could make the chromosome

much closer to the optimal solution. So the search ability is enhanced compare to

that of only crossover involved.

2. Maintaining the diversity of the colony moreover preventing the premature

convergence of the algorithm. Mutation replaces the original genes with newly

mutated genes so that the structure of a chromosome could be significantly

affected. The diversity of the colony could be maintained.

The algorithm mutates genes mainly based on simple mutation which refers that to

mutate one or several genes in the chromosome based on mutation probability p .

There are two steps in the simple mutation.

1. Randomly select a gene to be the mutation point. Base on mutation probability p

to decide if the chromosome mutates.

Yang Liu (2011)

54

2. If the probability decides the gene should mutate, then the value of the gene will

be mutated which means a new value replaces the original value. As a result a new

individual is generated.

However, it is quite similar to crossover processes that when the value of one gene

mutates, the original total volume of data
1

k

i
i

D

 has been changed. Assume the

original volume of the gene is iD and the volume after mutation is id , then the

difference i iD D d   . To solve D issue, D is divided into k parts. The size

of each part is randomly assigned. And then these k parts will be randomly added to

or removed from k genes in the chromosome. Thus the total size of processed data

in one wave could be guaranteed. Based on this design, the algorithm has a strong

ability to change its searching direction to gain the optimal solution in a large search

space.

4.3 Experimental Results

To evaluate the performances of MR-LSI a small scale Hadoop cluster consisting four

computer nodes has been set up. Table 4.1 shows the configurations of the Hadoop

cluster.

Table 4.1: The experimental environment.

Number of Hadoop nodes: 4

Nodes’ specifications: Three Datanodes: CPU Q6600@2.4G,

RAM 3GB and running OS Fedora 11.

One Namenode: CPU C2D7750@2.26G,

RAM 2GB and running OS Fedora 12.

Number of mappers per node: 2

Number of reducer: 1

Network bandwidth: 1000Gbps

To evaluate the performances of MR-LSI, 1000 papers were collected from the IEEE

XPlore data source. For each paper selected, a T-D matrix will be constructed. In the

Yang Liu (2011)

55

tests, also two strategies Closest Distance Searching (CDS) and All Distances

Searching (ADS) for clustering documents which are similar to the clustered

strategies proposed in [14] have been designed.

Processed by k-means, the original dataset is clustered into a number of sub-clusters.

Within these sub-clusters, one or a few of them may be close to the query while the

others are far away from the query. CDS calculates the distances between a query ݍ

and the centroid of each sub-cluster. The closest sub-cluster to the query ݍ will have

the highest probability in containing the target documents. A truncated SVD will only

be performed on the closest sub-cluster. As CDS just retrieves information in one

cluster, the time consumed for executing CDS is least. ADS calculates the distance

between a query and the centroid of each sub-cluster, and a truncated SVD will be

performed on all the sub-clusters. As ADS retrieves information in all sub-clusters, the

misclassified documents may have chance to be retrieved.

4.3.1 Evaluating MR-LSI

MR-LSI was evaluated from the aspects of precision and recall in comparison with

standalone LSI, standalone LSI combined with k-means using the CDS strategy, and

standalone LSI combined with k-means using the ADS strategy. From the results

presented in Figure 4.1 and Figure 4.2 it can be observed that the performance of

MR-LSI is close to that of the standalone LSI. It is worth pointing out that the CDS

strategy only works on the closest sub-cluster of documents related to a query.

Compared with other algorithms, CDS retrieves a smaller number of documents

which resulting in lower performance in recall.

Yang Liu (2011)

56

Figure 4.1: The precision of MR-LSI.

Figure 4.2: The recall of MR-LSI.

There are a number of tests have been conducted to evaluate the overhead of MR-LSI

in computation. The number of documents to be retrieved varied from 100 to 1000.

However, the size of the dataset was not large. From Figure 4.3 and Figure 4.4 it can

be seen that MR-LSI consumed more time than other algorithms in processing the

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

P
re

ci
si

on
 (

%
)

Number of papers

Standalone LSI MR-LSI ADS CDS

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

R
ec

al
l (

%
)

Number of papers

Standalone LSI MR-LSI ADS CDS

Yang Liu (2011)

57

dataset. This is mainly due to the overhead generated by the Hadoop framework

which is effective in processing large scale data. Both the ADS and the CDS strategies

perform faster than the standalone LSI indicating the effectiveness of a combination

of LSI with k-means.

Figure 4.3: The overhead of standalone LSI, ADS and CDS in computation.

Figure 4.4: The overhead of MR-LSI.

And also a number of additional tests have been as well conducted to further evaluate

0

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d
(m

s)

Number of papers

Standalone LSI ADS CDS

108000

110000

112000

114000

116000

118000

120000

122000

100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d
(m

s)

Number of papers

Yang Liu (2011)

58

the overhead of MR-LSI in processing a large collection of documents. The size of the

document collection is increased from 5KB to 20MB and the overhead of MR-LSI

with that of the CDS strategy is compared as CDS is faster than both the standalone

LSI and the ADS strategy. From the results plotted in Figure 4.5 it can observed that

when the data size is less than 1.25MB, the overhead of CDS is stable. However, the

overhead of CDS starts growing when the size of dataset is larger than 2.5MB. When

the size of data reaches to 10MB, the overhead of CDS increases sharply. Compared

with CDS, the overhead of MR-LSI is highly stable with an increasing size of dataset

shows its better scalability than the CDS strategy. It also should be mentioned that

when the size of data increases higher than 20MB, the heap space exception occurs

when CDS processes data due to the memory limitation of applications in a

standalone node.

Figure 4.5: Comparing the overhead of MR-LSI with CDS.

4.4 MR-LSI Simulation Results

To further evaluate the effectiveness of MR-LSI in large scale MapReduce

environments, HSim has been developed using pure JAVA programming language.

This chapter accesses the performance of the MR-LSI in simulation environments.

4.4.1 Simulation Results

0

50000

100000

150000

200000

250000

5 150 300 625 1250 2500 5000 10000 15000 20000

O
ve

rh
ea

d
(m

s)

Data size (KB)

CDS MR-LSI

Yang Liu (2011)

59

To study the impacts of Hadoop parameters on performance of MR-LSI, a cluster has

been simulated with the configurations as shown in Table 4.2. Each node has a

processor with 4 cores. The number of mappers is equal to the number of processor

cores. There are two mappers running on a single processor with two cores. The

speeds of the processors were simulated in terms of the volume of data in MB

processed per second. In the following sections, the impacts have been shown of a

number of Hadoop parameters on the performance of MR-LSI.

Table 4.2: The simulated environment.

Number of simulated nodes: 250

Data size: 100,000MB

CPU processing speed: Up to 0.65MB/s

Hard drive reading speed: 80MB/s

Hard drive writing speed: 40MB/s

Memory reading speed: 6000MB/s

Memory writing speed: 5000MB/s

Network bandwidth: 1Gbps

Number of mappers: 4 per node

Number of reducers: 1 or more

4.4.1.1 Multiple Reducers in One Node

From Figure 4.6 it shows that the number of reducers does not affect the performance

of mappers greatly. This is because mappers and reducers work almost independently

in Hadoop environments.

Yang Liu (2011)

60

Figure 4.6: The impact of the number of reducers on mapper performance.

Figure 4.7 shows the impact of the number of reducers on the overall overhead when

processing a job. Allocating multiple reducers on one node increases results in the

shared resources issue. Especially for MR-LSI a number of hard disk operations

involved, the shared hard disk gives worse performance in reducing phase of the

reducers than that of unshared hard disk.

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

M
ap

pe
r

 o
ve

rh
ea

d
(s

)

Number of mappers

1 Reducer per node 2 Reducer per node

Yang Liu (2011)

61

Figure 4.7: The impact of the number of reducers on the total process.

4.4.1.2 Sort Factor

In Hadoop, The parameter of sort factor controls the maximum number of data

streams to be merged in one wave when sorting files. Therefore, the value of sort

factor affects the IO performance of MR-LSI. From Figure 4.8 it can be observed that

the case of using sort factor 100 gives a better performance than sort factor 10. When

the value of sort factor is changed from 10 to 100, the number of spilled files will be

increased which reduces the overhead in merging.

0

2000

4000

6000

8000

10000

12000

14000

100 200 300 400 500 600 700 800 900 1000

T
ot

al
 o

ve
rh

ea
d

(s
)

Number of mappers

1 Reducer per node 2 Reducer per node

Yang Liu (2011)

62

Figure 4.8: The impact of sort factor.

4.4.1.3 Buffer Size

The buffer size in Hadoop contributes to IO performance, and it affects the

performance of a processor. The default value of a buffer size is 100MB. The

performance of MR-LSI with a data size of 1000MB is tested. As shown in Figure 4.9,

the mappers generate a small number of spilled files when using a large size buffer

which reduces the overhead in merging. Furthermore, a large buffer size can keep the

processor working without any blocking for a long period of time.

0

1000

2000

3000

4000

5000

6000

7000

8000

100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d
(s

)

Number of mappers

Sort Factor 100 Sort Factor 10

Yang Liu (2011)

63

Figure 4.9: The impact of buffer size.

4.4.1.4 Chunk Size

Each mapper processes a data chunk at a time. Thus the size of data chunks highly

affects the number of processing waves of mappers. From Figure 4.10 it can be

observed that using a large size for data chunks reduces the overhead of mappers in

processing, and also reduces the total overhead of the process as shown in Figure 4.11.

However, both of the two chunk sizes produce the same performance when the

number of mappers increases to 800 and 900 respectively. In the case of chunk size

64MB, to process 100,000MB data, using 800 mappers needs ቒଵ଴଴,଴଴଴ெ஻
଼଴଴ൈ଺ସெ஻

ቓ ൌ 2 waves

to finish the job. In the case of chunk size 100MB, using 800 mappers needs

ቒ ଵ଴଴,଴଴଴ெ஻
଼଴଴ൈଵ଴଴ெ஻

ቓ ൌ 2 waves to finish the job. Similarly, using 900 mappers needs 2 waves

to process the 100,000MB data in both cases. When the number of mappers reaches

1000, the performance of the two cases with different data sizes varies.

0

1000

2000

3000

4000

5000

6000

100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d
(s

)

Number of mappers

Memory Buffer 100MB Memory Buffer 1000 MB

Yang Liu (2011)

64

Figure 4.10: The impact of data chunk size on the mappers in MR-LSI.

Figure 4.11: The impact of data chunk size on MR-LSI.

4.4.1.5 CPU Processing Speed

Figure 4.12 shows the impacts caused by different processing speed of processors.

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

M
ap

pe
r

 o
ve

rh
ea

d
(s

)

Number of mappers

Chunk size 64MB Chunk size 100MB

0

1000

2000

3000

4000

5000

6000

100 200 300 400 500 600 700 800 900 1000

T
ot

al
 o

ve
rh

ea
d

(s
)

Number of mappers

Chunk size 100MB Chunk size 64MB

Yang Liu (2011)

65

From the figure we can observe clearly that a faster processor can gain better

performance compared to that of a slower processor.

Figure 4.12: The impact of different CPU processing speeds

4.4.1.6 Number of Reducers

Figure 4.13 shows that increasing the number of reducers enhances the performance

of MR-LSI when the number of reducers is small. More reducers are used more

resources will need to be consumed due to Hadoop's management work on the

reducers. In some cases multiple reducers need an additional job to collect and merge

the results of each reducer to form a final result. This can also cause larger overhead.

0

2000

4000

6000

8000

10000

12000

14000

16000

100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d
(s

)

Number of mappers

CPU Power 0.1MB/s CPU Power 0.75MB/s

Yang Liu (2011)

66

Figure 4.13: The impact of reducers.

4.4.2 Load Balancing Simulation Results

Table 4.3 shows the configurations of the simulated Hadoop environments in

evaluating the effectiveness of the load balancing scheme of MR-LSI.

Table 4.3: Hadoop simulation configuration.

Number of simulated nodes: 20

Number of processors in each node: 1

Number of cores in each processor: 2

Size of data: Test 1: 10GB

Test 2: 10GB to 100GB

The processing speeds of processors: Depending on heterogeneities

Heterogeneities: From 0 to 2.28

Number of hard disk in each node: 1

Reading speed of hard disk: 80MB/s

Writing speed of hard disk: 40MB/s

Number of Map instances: Each node contributes 2 Map instances.

Number of Reduce instances: 1

Sort factor: 100

To evaluate the load balancing algorithm, a cluster with 20 computers has been

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 20 30 40 50 60 70 80 90 100

O
ve

rh
ea

d
(s

)

Number of reducers

Yang Liu (2011)

67

simulated. Each computer has one processor with two cores. The number of mappers

is equals to the number of processor cores. Therefore two mappers are running on a

single processor with two cores. The speeds of the processors are generated based on

the heterogeneities of the Hadoop cluster. In the simulation environments the total

processing power of the cluster was ܲ ൌ ∑ ௜݌
௡
௜ୀଵ where n represents the number of

the processors employed in the cluster and ݌௜ represents the processing speed of the

ith processor. For a Hadoop cluster with a total computing capacity ܲ, the levels of

heterogeneity of the Hadoop cluster can be defined using equation (4.14).

ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ ൌ ට∑ ሺ̅݌ െ ௜ሻଶ௞݌
௜ୀଵ (4.14)

In the simulation, the value of heterogeneity was in the range of 0 and 2.28. The

reading and writing speeds of hard disk were generated based on the real

measurements from the experiments conducted.

Firstly 10GB data has been tested in the simulated cluster with different levels of

heterogeneity. From Figure 4.14 it can be observed that when the level of

heterogeneity is less than 1.08 which indicates a nearly homogeneous environment,

the load balancing scheme does not make any difference to the performance of

MR-LSI. However, the load balancing scheme reduces the overhead of MR-LSI

significantly with an increasing level of heterogeneity.

Yang Liu (2011)

68

Figure 4.14: The performance of the load balancing scheme.

The levels of heterogeneity are keeping the same in the tests but varied the size of

data from 1GB to 10GB. This set of tests was used to evaluate how the load balancing

scheme performs with different sizes of datasets. Figure 4.15 shows that the load

balancing scheme can always reduce the overhead of MR-LSI.

Figure 4.15: The performance of the MR-LSI with difference sizes of data.

The load balancing scheme builds on a genetic algorithm whose convergence affects

the efficiency of MR-LSI. To analyze the convergence of the genetic algorithm, the

0

500

1000

1500

2000

2500

3000

0 0.38 0.48 0.68 0.88 1.08 1.28 1.48 1.68 1.88 2.08 2.28

O
ve

rh
ea

d
(s

)

Levels of heterogeneity

Without Load Balancing With Load Balancing

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

O
v
e
r
h
ea
d
 (
s
)

Data Sizes(GB)

Without Load Balancing With Load Balancing

Yang Liu (2011)

69

number of generations is varied and the overhead of MR-LSI in processing a 10GB

dataset in the simulated Hadoop environment is measured. Figure 4.16 shows that

MR-LSI reaches a stable performance when the number of generations in the genetic

algorithm reaches 300.

Figure 4.16: The convergence of the load balancing scheme.

The load balancing scheme also produces some overhead during execution. Figure

4.17 shows an increased overhead of the load balancing scheme when the number of

mappers increases together with an increasing size of data. However the MR-LSI

algorithm can still achieve benefit from load balancing algorithm. For example, for

heterogeneity 2.08, the overhead of load balancing algorithm is 331s. The time

consumed for one processing wave of mappers is 363s with load balancing. The time

consumed for one processing wave of mappers is 2256s without load balancing. Thus

the performance is enhanced 69.2%. As in the static computing environment, the

scheduler only needs to be computed once, thus it can be claimed that for a long-time

processing job with proper heterogeneities, the load balancing algorithm can enhance

performances greatly.

0

50

100

150

200

250

1 50 99 14
8

19
7

24
6

29
5

34
4

39
3

44
2

49
1

54
0

58
9

63
8

68
7

73
6

78
5

83
4

88
3

93
2

98
1

O
ve

rh
ea

d
of

 M
R

-L
S

I
(s

)

Number of generations

Yang Liu (2011)

70

Figure 4.17: The overhead of the load balancing scheme with different sizes of data.

4.5 Summary

This chapter presents MR-LSI for scalable information retrieval. MR-LSI is effective

when processing a large dataset due to high scalability of MapReduce in support of

data intensive applications. Both experimental and simulation results have shown that

the MR-LSI algorithm speeds up the computation process of SVD while maintaining

a high level of accuracy in information retrieval. The simulating results also indicate

that the load balancing strategy can enhance the performance of the Hadoop cluster

when it is running a Hadoop application.

2.56GB 3.84GB 5.12GB 7.68GB 10.24GB15.36GB
20.48GB

30.72GB

40.96GB

61.44GB

0

50

100

150

200

250

300

350

400

40 60 80 120 160 240 320 480 640 960

O
ve

rh
ea

d
(s

)

Number of mappers

Yang Liu (2011)

71

Chapter 5
Dynamic Load Balancing in Heterogeneous

MapReduce Environments

The distributed computations are widely used in the modern world for processing

large scale jobs. Hadoop framework which is based on Google MapReduce model

becomes popular due to its great processing power and ease to use. However as the

lack of load management, in a dynamic heterogeneous computing environment, the

performance of Hadoop framework may be deteriorated. Therefore this chapter

presents a dynamic load balancing algorithm which aims to balance the load among

heterogeneous nodes. Due to the complexity of changing code of the Hadoop, the

Hadoop simulator HSim is involved to evaluate the performance of the dynamic load

balancing algorithm. The results indicate that the performances have been

significantly enhanced due to the balanced load gained from the load balancing

algorithm.

5.1 Load Balancing in Hadoop Framework

This section will be consisted by two sub sections. This first one states the reasons

that why Hadoop framework needs load balancing and the second sub section states

the current job schedulers employed by Hadoop framework.

5.1.1 Dynamic Load Balancing

It’s quite obvious that a large job can achieve performance enhancement when it’s

processed in a distributed computing environment. At present the distributed

computing systems have become more and more popular in data processing due to the

reduced hardware costs and advanced computer network technologies. A standard

distributed computing environment is normally consisted by a number of nodes with

same or different dynamic computing capacities. The nodes are connected by different

types of networks. Via the network, resources of the nodes can be share by a number

of users or tasks. The distributed computing environment contains huge computing

Yang Liu (2011)

72

capacity due to its mass amount of resources. Compare to an expensive standalone

machine, no matter how much resource the machine has, it definitely will go over due

to the occupations of large number of running applications. It has been pointed out

that even with a proper scale of cheaper hardware, the overall computing power of the

standalone nodes can easily exceed that of a supercomputer. However though a

distributed computing environment can supply a huge adaptability to deal with mass

data, it is obviously observed that if nodes have different deployments of hardware,

software or networks, certain number of nodes may be overloaded and some others

may be idle simultaneously. Thus the performance enhancement for distributed

computing systems has become a key issue. The simplest way to enhance the capacity

of a cluster is to add more nodes in which may result in high cost. However, it is easy

to see that if people use advanced hardware and optimized software, the performance

of the cluster will definitely be improved. This solution can solve the case that all

nodes are overloaded, which is no matter some of them are faster and some of them

are slower. However if the deteriorated performance is caused by the reason of

unbalanced load among nodes due to their own individual and dynamic processing

capacities, just simply enlarging the number of nodes or upgrading the hardware and

software can hardly gain the expected efficiencies. Thus to improve the performance

of the system in the way of redistributing load from the currently heavily loaded

nodes to lightly loaded nodes in a heterogeneous and dynamic computing

environment should be considered.

5.1.2 Unbalanced Load Issue in Hadoop Framework

As described earlier, Hadoop framework is designed to process large scale data in a

distributed computing environment. As being claimed by Hadoop, the framework

facilitates the developments of distributed computing based applications. These kinds

of facilities are based on the interactions among three important components mainly

which are named HDFS, Map instances (mappers) and Reduce instances (reducers).

Though the overall structure of the Hadoop framework simplifies the processing, the

components hide a lot of complex low-layer details including hardware and software

Yang Liu (2011)

73

aspects at the background. At present, a number of well known Hadoop clusters are

running in highly homogenous environments. For example Hadoop at Yahoo [100]

employs a homogenous cluster with 4000 processors, 3T RAM and 1.5PB storage

capacity. A large number of benchmarks and sorting competitions have been tested

based on the environment. The results have been published to show the powerful of

Hadoop framework. In these distributed computing tasks, people focus on the extreme

performances using homogenous environment which can ideally avoid the unbalanced

load issues. Therefore, behind these highlighted results, the load balancing issue is

quite considerable of which has been hidden deeply by the homogeneous

environments. Normally, it is extremely hard to build up a homogenous cluster with a

number of nodes up to several thousands. As a result, a number of Hadoop clusters

with heterogeneous nodes are quite common. The architecture of Hadoop framework

has been designed quite flexible to adapt to heterogeneous resources. Thus, it can be

seen clearly that the heterogeneities of the resources will affect the performance of the

cluster. For instance various processing powers of processors, different writing and

reading speeds of hard disks, different accessing times and seeking times of magnetic

heads, different writing and reading speed of memory, different speeds of networks,

and even different software deployments may vary the overall performance of a

Hadoop cluster. A simple test has been done to evaluate the performance of the

framework in a small heterogeneous environment which contained three machines

and two out of the three were actual processing nodes. The faster machine has

quad-core processor AMD Phenom II x4 940 BE@3.0GHz and a RAID0 storage

system. The slower machine has a single core with hyper-threading processor Pentium

4@2.66GHz. Based on this heterogeneous cluster the MR-LSI algorithm has been

executed in terms of evaluating the differences between two nodes. The result shows a

huge gap between these two nodes: the time which faster machine spent on finishing

its own map tasks is nearly five times faster than those of the slower machine spent on.

This huge difference results in delay of finishing the job. It indicates clearly that the

heterogeneity deteriorates the performance of the cluster due to the unbalanced

workload. Devaraj Das [59], the engineering manager of Yahoo Bangalore Grid

Yang Liu (2011)

74

Computing Group concludes the load issue from four aspects:

1. Imbalance in input splits

2. Imbalance in computations

3. Imbalance in partition sizes

4. Imbalance in heterogeneous hardware

So it can be clearly observed that there is a huge opportunity to enhance the

performance of Hadoop framework in a way of balancing workload in a

heterogeneous environment. To solve the unbalanced load issue, Hadoop framework

employs a job scheduler which aims to balance the load among the nodes.

5.1.3 Current Load Balancing Policies in Hadoop Framework

Hadoop framework is designed to serve multiple jobs which are located in the job

pool. In Hadoop, the framework supplies a simple job scheduler FIFO (First In First

Out). The scheduler serves the jobs in order of their submissions. The sequential

scheduler could ease the management of job to some extent and sometimes it is

efficient when the framework deals with the job queue. The simpler scheduling

algorithm only generates little overhead compared to those of complex balancing

algorithms. So the job scheduler may response the jobs as quick as possible. However

the drawback of the scheduler policy is quite obvious. As Hadoop framework

prescribes, with the FIFO scheduler when a job is processed the job will occupy the

whole computing resources across the cluster. The other jobs will never have chance

to be processed when the job is running. Until the last job has been finished and then

the next job in the queue will be served, which would use the whole cluster again. As

we know different jobs need different amount of computing resources. Some light

jobs may just need only little resources to deal with and in contrast some heavy jobs

may need more resources. It is clearly shows that if a light weight job has been

processed using the whole cluster, the hardware abuse may occur. In this case the

performance of the cluster may be worse than using less computing resources.

Simultaneously a heavy weight job which really needs lots of resources yet has to

wait until the occupied resources are released. So the drawback of using scheduler

Yang Liu (2011)

75

FIFO can be mainly summarized as: although a shared cluster offers great potential

for offering large resources to multiple users, the problem of sharing resources fairly

between users requires a better scheduling. Otherwise the performances of the cluster

may be worse than expected due to the unfairly allocated resources. Therefore to

avoid the above issue, the Hadoop framework offers new functions to control the

priorities of different jobs. Now Via the mapred.job.priority property or the

setJobPriority() method on JobClient five different hierarchies include: VERY_HIGH,

HIGH, NORMAL, LOW, VERY_LOW. These four properties can control the

selecting behaviors of the job scheduler. When the job scheduler finishes the current

processed job and is ready to choose next to run, it will select a job with the highest

property from the job pool based on the values of the priorities. Thus a number of jobs

with higher priorities would be processed before those jobs with lower priorities. But

one weakness is pointed out by [35]. With the FIFO scheduler in Hadoop, priorities do

not support preemption. As a result, a high-priority job may has chance to be blocked

by a low-priority job which starts before the high-priority job is scheduled.

According to the current job scheduling policy involved in Hadoop Framework, it is

recognized that the scheduler in the framework can only schedule the jobs simply.

Some important heterogeneous factors have not been considered by the Hadoop

framework yet. Actually the basic heterogeneous factor is the processing capacity of

mappers. And also, the computing capacity of a Hadoop cluster may be varying

according to the utilities of the nodes. Thus, considering dynamic features, an

advanced dynamic job scheduling algorithm which can balance the load among the

most basic processing unit mappers is proposed in the later section.

5.2 Algorithm Design

5.2.1 Data Selection

In a dynamic distributed computing environment, the computing capacities of

different of nodes are dynamically changing. Therefore, in a certain time interval the

Yang Liu (2011)

76

total amount of computing capacity across the cluster may have a chance to stay at a

higher level. Contrarily in another time interval, the total amount of computing

resources across the whole cluster may be in a lower level. To use the higher

computing capacity to process data can enhance the utilization of the cluster. Thus to

find a time interval with higher computing capacity for a processing wave and the

volume of data should be processed in this time interval are significant. In this chapter

an approach that can approximately predict the computing capacity of the cluster [72],

and the amount of data will be assigned to the cluster during the time interval has

been proposed. Therefore, for each processing wave, the mappers have bigger chance

to process data using higher computing capacities.

Let ௜݂ሺݐሻ represent the processing speed of ݅th mapper. Thus the total computing

speed at the time point ݐ of the cluster employed a number of ݊ mappers ݌ can be

represented by

ሻݐሺ݌ ൌ෍ ௜݂ሺݐሻ
௡

௜ୀଵ

				ሺ5.1ሻ

Let ܦ represent the total amount of data for a Hadoop job. Thus, considering only

processing of processors, the overhead ݐ to complete processing the total amount of

data can be represented by

න ݐሻ݀ݐሺ݌ ൌ ܦ
௕

௔
				ሺ5.2ሻ

ݐ ൌ ܾ െ ܽ				ሺ5.3ሻ

 where ܾ is the finishing time and ܽ is the starting time.

Let ݓ represent the number of waves of mappers involved to process the total

amount of data ܦ. In the time interval ݐ, there are a number of ݊ two types of trends

of the processing speed ݌ሺݐሻ. The first one is ‘increasing trend’. We define it as

below: from time point ݐ௔′ to ݐ௕
′ , the average processing speed during this time

interval

Yang Liu (2011)

77

௔௕݌
′തതതതത ൌ

׬ ݐሻ݀ݐሺ݌
	௧್
′

௧ೌ
′ 	

௕ݐ	
′ െ ′௔ݐ 	

				ሺ5.4ሻ

keeps increasing until it becomes decrease. The second trend is ‘decreasing trend’. It

is defined as below: from time point ݐ௔′ to ݐ௕
′ , the average processing speed ݌௔௕

′തതതതത

during this time interval keeps decreasing until it becomes increase. Therefore the

algorithm selects a number of ݓ greatest ݌௔௕ప
′തതതതത.

 ௚ܲ ൌ ൛݌௔ଵ௕ଵ
′തതതതതതത, ௔ଶ௕ଶ݌

′തതതതതതത, ௔ଷ௕ଷ݌
′തതതതതതത, … , ௔௪௕௪݌

′തതതതതതതതൟ				ሺ5.5ሻ

After the greatest values selected, the algorithm starts merging the other two trends

which are on the left and right sides of greatest ݌௔௕ప
′തതതതത based on

௔ഢషభ௕ഢశభ݌
′തതതതതതതതതതത ൌ

׬ ݐሻ݀ݐሺ݌
௕೔షభ
௔೔షభ

൅ ׬ ݐሻ݀ݐሺ݌
௕೔
௔೔

൅ ׬ ݐሻ݀ݐሺ݌
௕೔శభ
௔೔శభ

ܾ௜ାଵ െ ܽ௜ିଵ
				ሺ5.6ሻ

Thus a number of ݓ new average values ݌௔ഢషభ௕ഢశభ
′തതതതതതതതതതത are generated. Simultaneously

the number of ݊ trends reduces to the number of ݊ െ ݊ Then in these .ݓ2 െ ݓ2

trends, the algorithm selects a number of ݓ greatest ݌௔௕ప
′തതതതത again and merges the

other two trends which are on the left and right sides of them. Until there are a

number of ݓ trends left. Thus the time intervals

ܶ ൌ ሼሺܽଵܾଵሻ, ሺܽଶܾଶሻ, ሺܽଷܾଷሻ, … , ሺܽ௪ܾ௪ሻሽ				ሺ5.7ሻ

may have the higher average processing capacities.

Therefore, amount of data which is processed in the time interval ݐ ൌ ܾଵ െ ܽଵ can be

fed to the cluster to be actually processed. It can be expected to be processed within a

higher computing capacity interval of the cluster. The amount of data ܦଵ can be

represented by

1ܦ ൌ න ݐሻ݀ݐሺ݌
௕ଵ

௔ଵ
				ሺ5.8ሻ	

Yang Liu (2011)

78

However, due to the uncertainties and IO operations of the actual processing in the

cluster, when the amount of data ܦଵ for the first wave is finished, the deviations of

ܾଵ is inevitable. Thus the prediction for next wave should be corrected. The

correction strategy is designed as following. In next wave, the algorithm re-executes

the time interval computation as described above with changes of values of the

parameters.

ݓ ൌ ݓ െ 1					ሺ5.9ሻ

ܦ ൌ ܦ െ ሺ5.10ሻ				ଵܦ

Therefore with new values of ݓ and ܦ, a new ܦଵ can be calculated and assign the

amount of data to the second wave in processing. Until ݓ ൌ 1, the rest of the data is

assigned to the last processing wave to be processed.

The following examples help to show how the algorithm works.

Figure 5.1: Example of computing time interval

In Figure 5.1 when the processing occurs in time point b to c, the average processing

capacity is keeping increasing until 3.17. Thus the time interval ݐ௕௖ is regarded as

increasing trend. Then from time point c to d, the processing capacity is keeping

decreasing until next increasing trend appears. Thus the time interval ݐ௖ௗ is regarded

as decreasing trend. Similarly, the trend ݐ௔௕ which is before ݐ௕௖, is a decreasing

trend as well. When the algorithm selects ݐ௕௖ as one of the most efficient time

interval among a number of increasing trends, it merges ݐ௕௖ with ݐ௔௕ and ݐ௖ௗ to

expand the time interval according equation 5.6. And then the algorithm computes the

average processing capacity of newly generated time interval ݐ௔ௗ and marks it as

efficient interval. Afterwards it selects a number of most efficient time intervals

Yang Liu (2011)

79

among the rest increasing trends and newly generated efficient intervals. The

algorithm keeps selecting and merging until a number of ݓ time intervals generated.

And then the algorithm chooses the first interval as the approximately predicted

efficient time interval and computes the volume of data fed to the cluster according to

equation 5.8. As this prediction is based on pure processing capacities of processors,

thus when the cluster is dealing with data, errors occur due to the delays caused by

data IO. Figure 5.2 shows the deviation caused by data IO.

Figure 5.2: Example of deviation caused by IO.

From the figure, it can be observed that due to the IO operations, the actual processing

time ݐ௔௖ is different from the predicted time ݐ௔௕. Thus for the next processing wave,

the computed volume of data fed to the cluster will be less of accuracy. To solve this

issue, the algorithm will select and merge time intervals again based on equation 5.6.

However, as the first wave of processing is already finished, in this time the algorithm

starts computing at time point c but not a according to equations 5.9 and 5.10.

The following pseudo code summarizes the steps of the algorithm in the Table 5.1.

Table 5.1: The pseudo code of the data selection

Algorithm: Data Selection

1. Compute the overall load of the cluster ݌ሺݐሻ ൌ ∑ ௜݂ሺݐሻ
௡
௜ୀଵ .

2. Calculate time ݐ for processing the whole data.

3. Calculate average value ݌௔௕
′തതതതത for each trend.

4. Select a number of ݓ greatest values of ݌௔௕
′തതതതത.

5. Merge the two trends at both sides of the greatest ݌௔௕
′തതതതത.

6. Calculate new ݌௔௕
′തതതതത in the new time interval ܾ௜ାଵ െ ܽ௜ିଵ.

7. Re-select the number of ݓ greatest values of ݌௔௕
′തതതതത.

8. Repeat 4, 5, 6, 7

9. Until the number of ݓ greatest values left.

10. In the first time interval ሺܽଵ, ܾଵሻ calculate the amount of data

can be processed ܦଵ. ܦଵ is assigned to the cluster to be actually

Yang Liu (2011)

80

processed.

11. In next wave of processing ݓ ൌ ݓ െ 1 and ܦ ൌ ܦ െ .ଵܦ

12. Re-execute the algorithm until ݓ ൌ 1.

It should be pointed out that the algorithm using to feed amount of data into the

cluster should has one premise. It is that ݌ሺݐሻ cannot be monotonically increasing

function or monotonically decreasing function. Otherwise the data will be equally

separate to a number of ݓ portions which will be fed to a number of ݓ processing

waves.

5.2.2 The Design of Load Balancing Functions

The embedded FIFO scheduler in Hadoop aims to serve a job queue. However for one

Hadoop job, the framework cannot deal with it well, which means the Hadoop cluster

cannot manage the heterogeneous resources well for the job. In the reason of four

aspects stated by [59], for a specified Hadoop job, to balance its work load we need to

consider proper partition sizes, computations and heterogeneous hardware in a

dynamic computing environment which contains dynamic CPU processing ability and

dynamic IO ability. Before we introduce the way of the algorithm design we should

point out one thing in advance that in the practical Hadoop cluster, the size of data

chunks should be the same according to the configuration. However to implement the

algorithm, the simulator has been expanded to support different sizes of data chunks.

When the system starts computing the optimized scheduler, a central job dispatcher

located in the JobTracker will execute the load balancing algorithm based on the

volume of data ܦଵ assign to the current processing wave.

In a processing unit which is called Map instance (mapper), for processing one data

chunk of a Hadoop job, the total processing time could be considered by:

ܶ ൌ ଵݐ ൅ ଶݐ ൅ ଷݐ ൅ ሺ5.11ሻ				ସݐ

Yang Liu (2011)

81

In the equation, ݐଵ represents the copying time; ݐଶ represents the processor

processing time; ݐଷ represents the emptying time when the buffer of the Map

instance is filled up; ݐସ represents the merging time.

For the copying time ݐଵ:

Let

 ݇ represent the number of Map instances employed in the cluster.

 ܦ௠ represent the corresponding volume of data assigned to mth Map instance.

 ܪ௪ሺݐሻ represent the writing speed of the hard disk.

 ܤ represent the bandwidth of the network.

෍ ௠ܦ ൌ

௞

௠ୀଵ

 ሺ5.12ሻ				ଵܦ

ଵݐ ൌ
௠ܦ

min	ሺܪ௪ሺݐሻ, ሻܤ
				ሺ5.13ሻ

For the processing time ݐଶ:

Let

 ݌ ൌ ݂ሺݔሻ represent the dynamic CPU processing power of the Map instance

where ݔ is time points.

 ܽ represent the start of the copying time of the Map instance.

 ݐ௦௜ represent the time of filling up of the buffer.

 ݐ௘௜ represent the time of finishing spilling operation of the buffer.

 ݐଶ௜ represent the processing time of the processor during two blocking intervals.

 ܦ௠೔
 represent the volume of data which the processor can process during two

blocking intervals.

 ݊ represent the number of spilled files during the processing.

 ܤ௙ represent the size of the buffer.

The Map instance starts copying data at time point ܽ then after time ݐଵ the

Yang Liu (2011)

82

processor starts processing the copied data. For processing the whole volume of data

 .௠, several equations should be satisfiedܦ

 ௠భܦ
ൌ ׬ ݂ሺݐሻ݀ݐ

௧௦ଵ
௔ା௧భ

௠మܦ
ൌ න ݂ሺݐሻ݀ݐ

௧௦ଶ

௧௘ଵ

௠యܦ
ൌ න ݂ሺݐሻ݀ݐ

௧௦ଷ

௧௘ଶ

 .

 .

 .

௠೙ܦ
ൌ න ݂ሺݐሻ݀ݐ

௧௦௡

௧௘ሺ௡ିଵሻ

෍ܦ௠೔

௡

௜ୀଵ

ൌ ሺ5.14ሻ				௠ܦ

 ଶଵݐ ൌ ௦ଵݐ െ ሺܽ ൅ ଵሻݐ
ଶଶݐ ൌ ௦ଶݐ െ ௘ଵݐ
ଶଷݐ ൌ ௦ଷݐ െ ௘ଶݐ

 .

 .

 .

ଶ௡ݐ ൌ ௦௡ݐ െ ௘ሺ௡ିଵሻݐ

ଶݐ ൌ෍ݐଶ௜

௡

௜ୀଵ

				ሺ5.15ሻ

For the blocking time ݐଷ:

Let

 ݎ represent the output-input ratio of the Map instances.

It is noted that the processing power of the processor can be represented as ݌ ൌ ݂ሺݔሻ.

Yang Liu (2011)

83

Therefore the buffer filling speed while both the processor is processing and the

buffer is spilling simultaneously can be represented by:

݂ሺݔሻ ൈ ݎ െ ሺ5.16ሻ				ሻݔ௪ሺܪ

Therefore, the first processing interval ݐଶଵ ൌ ௦ଵݐ െ ሺܽ ൅ ଵሻ to fill up the buffer canݐ

be represented by

௙ܤ ൌ න ሾ݂ሺݐሻ ൈ ݎ െ ݐሻሿ݀ݐ௪ሺܪ
௧௦ଵ

௔ା௧భ

				ሺ5.17ሻ

The time ∆ݐଵ of the buffer emptying while the processor is blocked can be

represented by

ଵݐ∆ ൌ ௘ଵݐ െ ሺ5.18ሻ				௦ଵݐ

 ௦ଵ satisfyݐ ௘ଵ andݐ

௙ܤ ൌ න ሻݐ௪ሺܪ
௧೐భ

௧ೞభ

 ሺ5.19ሻ				ݐ݀	

As the same as the first processing interval, the second processing interval ݐଶଵ ൌ

௦ଶݐ െ ௘ଵ to fill up the buffer can be represented byݐ

௙ܤ ൌ න ሾ݂ሺݐሻ ൈ ݎ െ ݐሻሿ݀ݐ௪ሺܪ
௧௦ଶ

௧௘ଵ
				ሺ5.20ሻ

The time ∆ݐଶ of the buffer emptying while the processor is blocked can be

represented by

ଶݐ∆ ൌ ௘ଶݐ െ ሺ5.21ሻ				௦ଶݐ

 ௦ଶ satisfyݐ ௘ଶ andݐ

௙ܤ ൌ න ሻݐ௪ሺܪ
௧೐మ

௧ೞమ

 ሺ5.22ሻ				ݐ݀	

Until the ݊௧௛ the first processing interval ݐଶ௡ ൌ ௦௡ݐ െ ௘ሺ௡ିଵሻ to fill up the bufferݐ

can be represented by

௙ܤ ൌ න ሾ݂ሺݐሻ ൈ ݎ െ ݐሻሿ݀ݐ௪ሺܪ
௧௦௡

௧௘ሺ௡ିଵሻ
				ሺ5.23ሻ

Yang Liu (2011)

84

The time ∆ݐ௡ of the buffer emptying while the processor is blocked can be

represented by

௡ݐ∆ ൌ ௘௡ݐ െ ሺ5.24ሻ				௦௡ݐ

Finally the emptying time ݐଷ when the buffer of the mapper is filled up can be

represented by

ଷݐ ൌ ଵݐ∆ ൅ ଶݐ∆ ൅ ⋯൅ ሺ5.25ሻ				௡ݐ∆

For the merging time ݐସ:

Let

 ܦூ೔ represent in each processing-spilling step, the intermediate data one mapper

can generate.

 ܰ represent the number of the merging times.

 ݏ represent the value of the sortfactor.

 ݐ௠௙ represent the merging finishing time.

In the first processing-spilling step, one mapper can generate a volume of

intermediate data with a size of

ூభܦ ൌ ܤ ൅න ݐሻ݀ݐ௪ሺܪ
௧ೞభ

௔ା௧భ

				ሺ5.26ሻ

In the following processing-spilling steps, the intermediate data one mapper can

generate can be represented by

ூ೔ܦ ൌ ܤ ൅ න ݐሻ݀ݐ௪ሺܪ
௧ೞ೔

௧೐ሺ೔షభሻ

				ሺ5.27ሻ

From the 1௧௛ to ݊௧௛ intermediate data chunks they satisfy the equation

෍ܦூ೔

௡

௜ୀଵ

ൌ ௠೔ܦ
ൈ ሺ5.28ሻ				ݎ

Therefore the number of the merging times ܰ can be represented by

ܰ ൌ ቔ
݊
ݏ
ቕ െ 1				ሺ5.29ሻ

Finally the merging time ݐସ can be computed by

Yang Liu (2011)

85

௠ܦ ൈ ݎ ൈ ܰ ൌ න ݐሻ݀ݐ௪ሺܪ
௧೘೑

௧೐೙

				ሺ5.30ሻ

ସݐ ൌ ௠௙ݐ െ ሺ5.31ሻ				௘௡ݐ

Based on the equations, the relationships related to the data chunks ܦ௠ and the

overall processing time ܶ are established. Therefore the total time ௔ܶ to process

data in one processing wave in Hadoop cluster is the maximal time consumed by the

number of ݇ Map instances that are involved in the file processing:

௔ܶ ൌ maxሼ ଵܶ, ଶܶ, ଷܶ, … , ௞ܶሽ 			ሺ5.32ሻ

According to divisible load theory, to achieve a minimal processing time ܶ, it is

expected that all the Map instances involved to complete the data processing at the

same time:

ଵܶ ൌ ଶܶ ൌ ଷܶ … ൌ ௞ܶ				ሺ5.33ሻ

However, from the equations above it can be observed that it is difficult to get the

solutions of ܦ௠೔
 which can represent ௜ܶ in a straight way so that we introduce

genetic algorithm to help to achieve the solutions.

5.2.3 The Design of GA

Due to the complexity of the equations, it is difficult to achieve the solutions so that

genetic algorithm is involved to solve the equations. As the target of the algorithm is

to balance the processing time ௜ܶ among ݇ Map instances, so a proper set of ܦ௠೔

should be found out as solutions to satisfy the equation ଵܶ ൌ ଶܶ ൌ ଷܶ … ൌ ௞ܶ. Thus

the number of chunks with size of ܦ௠೔
 assigned to number of ݇ Map instances

could be regarded as genes to form the chromosome. Figure 5.3 shows a chromosome

sample with 6 genes.

Yang Liu (2011)

86

 Chromosome

1mD
2mD

3mD
4mD

5mD
6mD

 Gene

 Figure 5.3: A chromosome example.

Thus, a fitness function should be established to evaluate the fitness of the

chromosomes. As the processing time ௜ܶ of mappers should be close enough, so

Mean Square Error (MSE) is employed to assess the fluctuations among ௜ܶ. Therefore,

the fitness function can be defined as follows:

 ݂ሺܶሻ ൌ ට∑ ሺതܶ െ ௜ܶሻଶ௞
௜ୀଵ , തܶ ൌ

∑ ்೔
ೖ
೔సభ

௞
				ሺ5.34ሻ

Where ௜ܶ represents the processing time for the ݅௧௛ Map instance.

 ݇ represents the number of map instances employed in the Hadoop cluster.

 തܶ represents the average time in processing of map instances.

In the algorithm the single point crossover is used. However, one issue should be

pointed out that just simply crossing the chromosomes may cause one problem. To

cross the genes may differentiate the original total volume of data ܦଵ ൌ ∑ ௠௞ܦ
௠ୀଵ .

Consider the original total volume of the data is ∑ ௠௞ܦ
௠ୀଵ and the volume of data

after crossover is ∑ ݀௠௞
௠ୀଵ . Then the difference ∆ܦ ൌ ห∑ ௠௞ܦ

௠ୀଵ െ ∑ ݀௠௞
௠ୀଵ ห

should be polished. In the algorithm ∆ܦ is divided into ݇ parts randomly. And then

these ݇ parts will be randomly added to or removed from the number of ݇ genes

accordingly. Thus the total size of processed data in one wave can be guaranteed.

To avoid the local optimum of the genetic algorithm, the standard mutation is also

Mapper1 Mapper2 Mapper3 Mapper4 Mapper5 Mapper6

Yang Liu (2011)

87

used in the algorithm. Due to the mutations, the original total volume of data

ଵܦ ൌ ∑ ௠௞ܦ
௠ୀଵ may be changed. Thus consider the original volume of the data is

ଵܦ ൌ ∑ ௠௞ܦ
௠ୀଵ and the volume after mutation is ∑ ݀௠௞

௠ୀଵ . Then the difference

ܦ∆ ൌ ห∑ ௠௞ܦ
௠ୀଵ െ ∑ ݀௠௞

௠ୀଵ ห should be polished. In the algorithm ∆ܦ is divided

into ݇ parts randomly. And then these ݇ parts will be randomly added to or

removed from the number of ݇ genes accordingly. Thus the total size of processed

data in one wave can be guaranteed.

5.2.4 The Improvement of the Load Balancing Algorithm

To get the solutions of the equations based on genetic algorithm and algebraic

methods, a number of iterations are involved for instance the iterations brought by

Newton Tangent Method (NTM). Consider that in one generation of the genetic

algorithm, ݊௜ iterations with consumed time ݐ௜ for each iteration are involved, thus

after a number of ݃ generations with a number of ܿ chromosomes, the overhead of

NTM can be roughly represented by ே்ܶெ ൌ ∑ ܿ ൈ ݊௜ೕ ൈ ௜ೕݐ
௚
௝ୀଵ . Consider the rest

overhead in one generation of the genetic algorithm is ௜ܶ , therefore the overall

overhead of GA could be represented by

ܶ ൌ෍ܿ ൈ ݊௜ೕ ൈ ௜ೕݐ ൅ ௜ܶ ൈ ݃

௚

௝ୀଵ

				ሺ5.35ሻ

From the equation it can be observed that along with increasing the number of

generations ݃, the overhead of solving solutions of the load balancing algorithm will

be enlarged approximately proportionally. So to control the number of generations can

enhance the performance of the load balancing algorithm. However, reducing the

number of generations will definitely bring one issue. The accuracy of the solution

may be lost which may unbalance the load among mappers. Therefore, for gaining a

lower overhead with less number of iterations, the genetic algorithm needs an

efficient and reliable correctness to make up the loss of accuracy. We reduce the

Yang Liu (2011)

88

number of iterations to a smaller value ଵ݃ . Thus the solutions of

,ଵܦሼ	௠ܦ ,ଶܦ ,ଷܦ … , ௞ሽ for the optimized scheduler contain unbalanced issue whichܦ

will cause the processing time ௠ܶሼ ଵܶ, ଶܶ, ଷܶ, … , ௞ܶሽ unbalanced. It is known that if

{ ଵܶ ് ଶܶ ് ଷܶ … ് ௞ܶ}, the mapper which has the longest processing time will

deteriorate the performance of the load balancing algorithm. Especially if a large

number of waves have been involved in the processing, the error in each wave will

enlarge the overall overhead of the job processing time. If the overhead of computing

the scheduler increases to a quite considerable level, the performance of the algorithm

will be reduced. Thus after the scheduler is computed with errors, a strategy which

can do a compensation is in the following way.

Select the slowest processing time ௦ܶ of a mapper

௦ܶ ൌ maxሼ ଵܶ, ଶܶ, ଷܶ, … , ௞ܶሽ 			ሺ5.36ሻ

The errors ∆ݐ between the slowest mapper and the ݅௧௛ mapper can be represented

by

௜ݐ∆ ൌ ௜ܶ െ ௦ܶ				ሺ5.37ሻ

As the genetic algorithm with less number of generations can still find a solution

which is close to the optimized solution, so the errors ∆ݐ௜ are normally not large.

Thus it can be considered that if the faster mappers finish processing, they can take

amount of data to be processed in time ∆ݐ௜. Since ∆ݐ௜ is not large so that the buffer

is hardly filled up, which means no complex IO operations involved. Finally the

compensation can be done. The idle faster mappers can start processing smaller

amounts of data while the slowest mapper is still in processing.

Let

 ܽ represent the finishing time of the ݅௧௛ mapper.

 ߬ represent a given threshold so that if ∆ݐ௜ is smaller than ߬, the algorithm does

not compute the following equation.

 ܦ௘ represent the volume of data will be processed in ∆ݐ௜.

௜ݐ∆ ൌ ௜ܶ െ ௦ܶ ൒ ߬				ሺ5.38ሻ

Yang Liu (2011)

89

௘ܦ ൌ න ݂ሺݐሻ݀ݐ
௔ା∆௧೔

௔
				ሺ5.39ሻ

The algorithm supports balance loads among mappers with different loads of

processors. If the loads are not computable, they can be known by statistical

computing based on historical data of loads.

5.3 Simulation

Due to the limitations of the experimental environment, it is difficult to implement the

load balancing algorithm. So HSim is involved to help to evaluate the algorithm,

which can facilitate to observe the load balancing behaviors of Hadoop framework.

5.3.1 The Dynamic Factors in HSim

To evaluate the dynamic load balancing algorithm, HSim needs to be designed with

abilities to supply simulated dynamic Hadoop computing environment. In paper [77]

they claim that the most influential factors of a dynamic computing environment is

the processor and hard disk. As the accuracies on simulating Hadoop working

mechanisms have been validated in chapter 3, therefore based on these accuracies the

CPU model has been modified, which can supply different kinds of loads. The details

of the load are presented later in this chapter. The hard disk model in HSim is

designed to be dynamically changed as time passes. In [86], R. Sharykin reports that a

hard disk can be modeled following an exponential distribution due to the loss of

speed of a traditional mechanical hard disk. However, the simple exponential

distribution cannot describe the performance of a hard disk accurately enough so that

in HSim, based on experimental hard disk tests three extra parameters have been

involved: max speed ݔ௠௔௫, min speed ݔ௠௜௡ and speed reducing ratio ݎ (The speeds

and ratio include both reading and writing speeds of a standard mechanical

Winchester architecture based hard disk). Therefore, when the speed of hard disk is

reduced from ݔ௠௔௫ to ݔ௠௜௡ while the speed is at ݔ௠௜௡, ݎ is 0. Thus, the equation

can be represented by

ሻݔሺݎ ൌ ݎ െ ,ݔݏ ௠௜௡ሻݔሺݎ ൌ 0				ሺ5.40ሻ

Yang Liu (2011)

90

Where ݏ is the relational reducing coefficient between instantaneous speed ݔ and 	ݎ.

Therefore ݏ can be represented by

ݏ ൌ ି௥

௫೘೔೙
				ሺ5.41ሻ

Thus

ሻݔሺݎ ൌ ݎ ൬1 ൅
ݔ

௠௜௡ݔ
൰			ሺ5.42ሻ

Therefore a differential equation can be established to describe the relationships

among ݔ௠௔௫, ݔ௠௜௡ and ݎ.

ݔ݀
ݐ݀

ൌ ݎ ൬1 ൅
ݔ

௠௜௡ݔ
൰ ,ݔ ሺ0ሻݔ ൌ ሺ5.43ሻ				௠௔௫ݔ

Solve the equation the instantaneous speed ܪሺݐሻ related to current time ݐ can be

achieved.

ሻݐሺܪ ൌ
.௠௜௡ݔ ௠௔௫ݔ

ሺݔ௠௜௡ െ ௠௔௫ሻ݁ି௥௧ݔ ൅ ௠௔௫ݔ
				ሺ5.44ሻ

Thus ܪሺݐሻ in HSim is a dynamic factor which can supply a dynamic IO environment.

5.3.2 Heterogeneity

HSim supports to simulate heterogeneous computing environment. To describe the

differences among nodes, the concept of heterogeneity is introduced. Heterogeneity

can define how different the machines in the cluster are and give a quantified

indicator to make the differences clear. The most important difference among nodes is

the processing speed of processor. Though the other hardware would affect the

performances of the execution, the speed of processor is the core factor which decides

the overall performance significantly. So the level of heterogeneity of our cluster is

defined based on the processing speeds of the processors. The total processing speed

of the cluster is kept fixed, which means the value of the total processing speed is a

constant value. Then according to different heterogeneities, the speeds of the

processors will have different values. The heterogeneity can be represented by

Let

 ܲ represent the total processing speed of the cluster.

 ݌௜ represent the processing speed of the ݅௧௛ processor.

Yang Liu (2011)

91

 ̅݌ represent the average processing speed of the cluster.

 ݇ represent the number of processor employed in the cluster.

ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ ൌ ඩ෍ሺ̅݌ െ ௜ሻଶ݌
௞

௜ୀଵ

	where	̅݌ ൌ
∑ ௜݌
௞
௜ୀଵ

݇
,෍݌௜

௞

௜ୀଵ

ൌ ܲ				ሺ5.45ሻ

The equation could represent the varieties of the machines of the cluster. If the value

of ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ is greater than zero, it means the cluster is heterogeneous. The

greater the value is, the larger the differences are. If the value of ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ is

zero, it means the cluster is a homogeneous one. However, due to the multi dynamic

elements in the computing environment ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ can not exactly describe the

computing difference. The initial processing speed of a processor has been employed

to generate the ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ. Therefore the ݕݐ݅݁݊݁݃݋ݎ݁ݐ݁ܪ can show an overall

heterogeneous trend but at some points some exceptions may exist.

5.4 Simulation Results

5.4.1 Exponential Distribution of the Load of Processors

In this simulation the load of the processors follows a distribution which is similar to

exponential distribution. Due to the long processing time for the simulated job, the

normal exponential distribution cannot satisfy the simulator due to its fast attenuating

speed no matter what value of ߣ is. Therefore two parameters are added to the

exponential distribution to control its attenuating speed. The newly formed

distribution can be represented by

݂ሺݔሻ ൌ ܽ ∙ ି݁ߣ
ఒ௫
௕ 				ሺ5.46ሻ

Table 5.2: The simulated environment.

Simulation environment

Simulated algorithm: MR-LSI

Size of data: Simulation 1: 40GB

Simulation 2: From 10GB to 100GB

Yang Liu (2011)

92

Load balancing strategies: 1. Without load balancing

2. Load balancing with dynamic window size

3. Computing ratio

4. Load balancing with fixed window size

Number of simulated nodes: 20

Number of processors in each node: 1

Number of cores in each processor: 2

The processing speeds of processors: Depending on heterogeneities

Heterogeneities: from 0 to 2.28

Number of hard disk in each node: 1

Max writing speed of hard disk: 80MB/s

Min Writing speed of hard disk: 40MB/s

Number of Map and Reduce instances: Each node employs 2 map instances. The

cluster employs 1 reduce instance.

Sort factor: 100

Figure 5.4 shows the results of different load balancing strategies in processing 40GB

data using the distribution discussed above.

In Figure 5.4 it can be observed that when the heterogeneity is smaller, the scheduler

without any load balancing strategy outperforms the other schedulers. However, when

the heterogeneity increases larger, it can be seen that both load balancing with

dynamic window size and fixed window size perform better. Especially dynamic

window size outperforms fixed window size because the fixed window size may

cause mappers idle to wait for the solution of the scheduler. The computing ratio

strategy performs worse due to the affections of the reducing time.

Yang Liu (2011)

93

Figure 5.4: Comparison of different load balancing strategies with different heterogeneities.

In Figure 5.4 the window size of one second is used for fixed window size strategy.

According to the results of the tests, the smaller window can give better performance.

To study the impacts of the window size, the performance of the simulated Hadoop

cluster in terms of overhead is tested with window size from one second to one

hundred seconds. Figure 5.5 shows the results. From the figure it can be observed that

along with the window size increases, the overhead becomes larger.

0

500

1000

1500

2000

2500

3000

0 0.38 0.48 0.68 0.88 1.08 1.28 1.48 1.68 1.88

O
ve

rh
ea

d
(s

)

Heterogeneity

Without Load Balancing With Load Balancing CR1GB Fixed Window Size

Yang Liu (2011)

94

Figure 5.5: The impacts of different window sizes.

For evaluating the load balancing algorithm with different data size, the data size from

10GB to 100GB with heterogeneity 2.28 has been simulated to observe the

performances of the algorithm. Figure 5.6 shows the results.

In Figure 5.6 it can be observed that from the data size of 10GB to 100GB, the

processing times of the scheduler without load balancing are nearly the same. The

reason is the slowest mapper becomes the bottleneck. The processing time for the

mapper is extremely longer which affects the performances hugely. In another

simulation with data size of 120GB, the processing time increases to 4489 seconds,

which means the slowest mapper starts its second wave which causes the other

approximate 2240 seconds overhead. From the figure it also can be seen that the load

balancing with dynamic window size outperforms the other strategies for any data

size. Due to the lack of measuring the computing capability of MR-LSI algorithm,

computing ratio gives the worst performance.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 5 10 20 30 40 50 60 70 80 100

O
ve

rh
ea

d
(s

)

Size of window (s)

Yang Liu (2011)

95

Figure 5.6: Comparison of different load balancing strategies with different data sizes.

As the algorithm is designed with dynamic window sizes to implement the load

balancing algorithm, so the size of the window should be various. Figure 5.7 shows

the window sizes in different waves for processing 40GB data with heterogeneity 2.28.

It also gives that due to the attenuation of the processing power of the processor cross

the cluster, the sizes of the window become longer.

Figure 5.7: The dynamic window sizes.

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

O
ve

rh
ea

d
(s

)

Size of data (GB)

Without Load Balancing With Load Balancing CR1GB Fixed Window Size

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W
in

do
w

s
S

iz
es

 (
s)

Number of Windows

Yang Liu (2011)

96

The load balancing scheme builds on a genetic algorithm whose convergence affects

the efficiency of the tested algorithm MR-LSI. To analyze the convergence of the

genetic algorithm, the number of generations is varied and the overhead of MR-LSI is

measured in the simulated Hadoop environment. Figure 5.8 shows that MR-LSI

reaches a stable performance when the number of generations in the genetic algorithm

reaches 300. For the simpler load of processors, the solution of 300 generations can

supply enough accuracy to perform the load balancing algorithm.

Figure 5.8: Convergence of the algorithm.

The load balancing scheme also produces some overhead during execution. Figure 5.9

shows an increased overhead of the load balancing scheme when the number of

mappers increases across the cluster. However the load balancing overhead is small

compared with the overall processing time of mappers.

0

20

40

60

80

100

120

140

160

1

3
7

7
3

1
0
9

1
4
5

1
8
1

2
1
7

2
5
3

2
8
9

3
2
5

3
6
1

3
9
7

4
3
3

4
6
9

5
0
5

5
4
1

5
7
7

6
1
3

6
4
9

6
8
5

7
2
1

7
5
7

7
9
3

8
2
9

8
6
5

9
0
1

9
3
7

9
7
3

O
ve

rh
ea

d
of

 M
R

-L
S

I
(s

)

Number of generations

Yang Liu (2011)

97

Figure 5.9: The overhead of load balancing with dynamic window size with increasing number of

mappers.

5.4.2 Cosine Distribution of the Load of Processors

In the previous a distribution which is based on exponential distribution has been used.

However the distribution is simple which makes the load of the cluster simply

keeping reducing. Thus complex loads for processors should be designed to vibrate

the load of the cluster to make a complex computing environment. Based on the

fluctuations of the load, the performance of the load balancing algorithm can be

evaluated strictly. To design a load which can keep vibrating, the cosine function is

employed to build up our load function for each processor. It can be represented by

݂ሺݔሻ ൌ ݔܾݏ݋ܿܽ ൅ ܿ				ሺ5.47ሻ

Thus the load of the cluster ݌ሺݐሻ ൌ ∑ ௜݂ሺݐሻ
௡
௜ୀଵ is not a simple monotonically

increasing or decreasing function. The dynamic environment can be more complex.

Table 5.3: The simulated environment.

Simulation environment

Simulated algorithm MR-LSI

Size of data Simulation 1: 40GB

Simulation 2: From 10GB to 100GB

Load balancing strategies 1. Without load balancing

2. Load balancing with dynamic window size

0

2

4

6

8

10

12

14

16

20 40 60 80 100 120 140 160

O
ve

rh
ea

d
(s

)

Number of mappers

Yang Liu (2011)

98

3. Computing ratio

4. Load balancing with fixed window size

Number of simulated nodes 20

Number of processors in each node 1

Number of cores in each processor 2

The processing speeds of processors Depending on heterogeneities

Heterogeneities from 0 to 2.28

Number of hard disk in each node 1

Max writing speed of Hard disk 80MB/s

Min Writing speed of Hard disk 40MB/s

Number of Map and Reduce instances Each node employs 2 map instances. The

cluster employs 1 reduce instance.

Sort factor: 100

Figure 5.10 shows the results of different load balancing strategies in processing

40GB data in the complex dynamic computing environment.

From Figure 5.10 it can be observed that the processing overheads without load

balancing of different heterogeneities are highly various. The reason is as discussed

above that due to the complex dynamic environment, our heterogeneous equation can

only show a trend of the heterogeneity but cannot exactly describe the heterogeneity

in detail. The figure indicates that when the heterogeneity is lower, the strategy

without load balancing performs better. However, when the heterogeneity is larger,

the other three load balancing strategies outperform the strategy without load

balancing. It is also quite clearly that with larger heterogeneities, the performances of

load balancing with dynamic window size are the best.

Yang Liu (2011)

99

Figure 5.10: Comparison of different load balancing strategies with different heterogeneities.

In Figure 5.10 the window size of one second is used for fixed window size strategy.

According to the results of the tests, the smaller window can give better performance.

To study the impacts of the window size, the performance of the simulated Hadoop

cluster is tested in terms of overhead with window size from one second to one

hundred second. Figure 5.11 shows the results. From the figure it can be observed that

along with the window size increases, the overhead becomes larger.

0

200

400

600

800

1000

1200

1400

1600

0 0.38 0.48 0.68 0.88 1.08 1.28 1.48 1.68 1.88 2.08 2.28

O
ve

rh
ea

d
(s

)

Heterogeneity

Without Load Balancing With Load Balancing CR1GB Fixed Window Size

Yang Liu (2011)

100

Figure 5.11: The impacts of different window sizes.

For evaluating the load balancing algorithm with different data sizes, the data size

from 10GB to 100GB is simulated to feed to the cluster with heterogeneity 2.28.

Figure 5.12 shows the results.

In Figure 5.12, it shows that the three load balancing strategies outperform the

scheduler without load balancing at the most sizes of data. However, it can be

observed that at certain point (like 70GB), the slowest mapper finish processing its

own data without assigning new data chunk occasionally, thus the overall

performance of the cluster is not affected by the slowest mapper greatly. The figure

also shows that the load balancing with dynamic window size gives the best

performance while the performances of the other two strategies are various.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 5 10 20 30 40 50 60 70 80 90 100

O
ve

rh
ea

d
(s

)

Sizes of window (s)

Yang Liu (2011)

101

Figure 5.12: Comparison of different load balancing strategies with different data sizes.

Figure 5.13 indicates the dynamic window sizes during the processing. It can be

observed that the windows sizes dynamically changed according to the changing of

dynamic environment.

Figure 5.13: The dynamic window sizes.

The load balancing scheme builds on a genetic algorithm whose convergence affects

0

500

1000

1500

2000

2500

3000

10 30 40 50 60 70 80 90 100

O
ve

rh
ea

d
(s

)

Size of data (GB)

Without Load Balancing With Load Balancing CR1GB Fixed Windows Size

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

W
in

do
w

s
si

ze
 (

s)

Windows number

Yang Liu (2011)

102

the efficiency of the tested algorithm MR-LSI. To analyze the convergence of the

genetic algorithm, the number of generations is generated and the overhead of

MR-LSI is measured in the simulated Hadoop environment. Figure 5.14 shows that

MR-LSI reaches a stable performance when the number of generations in the genetic

algorithm reaches 300. However it needs to be pointed out that even the solution with

300 generations cannot give enough accuracy for the complex loads of processors.

Therefore more generations are need for example 800 generations as shown in the

figure. Thus the overhead of the genetic algorithm is large. So the improved dynamic

load balancing algorithm needs less number of generations, which generates less

overhead.

Figure 5.14: Convergence of the algorithm.

Figure 5.15 shows an increased overhead of the load balancing scheme when the

number of mappers increases across the cluster. However the load balancing overhead

is small compared with the overall processing time of mappers.

0

20

40

60

80

100

120

1

3
7

7
3

1
0
9

1
4
5

1
8
1

2
1
7

2
5
3

2
8
9

3
2
5

3
6
1

3
9
7

4
3
3

4
6
9

5
0
5

5
4
1

5
7
7

6
1
3

6
4
9

6
8
5

7
2
1

7
5
7

7
9
3

8
2
9

8
6
5

9
0
1

9
3
7

9
7
3

O
ve

rh
ea

d
of

 M
R

-L
S

I
(s

)

Number of generations

Yang Liu (2011)

103

Figure 5.15: The overhead of load balancing with dynamic window size with increasing number

of mappers.

5.5 Summary

This chapter proposes a centralized, unsupervised, dynamic window-sized load

balancing algorithm for Hadoop framework which is based on MapReduce model.

The performance of the algorithm has been evaluated by the Hadoop simulator HSim.

The results show that the algorithm has remarkable efficiency on solving the load

issue when the heterogeneity increases to a certain level. Especially for the improved

algorithm, it can solve the issue even with a lower heterogeneity. The results also

show that either with small volume of data or great volume of data, the algorithm can

still perform well. The dynamic window can control the time when the balancing

algorithm starts to execute so that there is no need for people to determine and

intervene the computation to get the solution of the optimized scheduler.

0

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140 160

O
ve

rh
ea

d
(s

)

Number of mappers

Yang Liu (2011)

104

Chapter 6
Conclusion and Future Work

6.1 Conclusion

This thesis proposes a resource aware distributed LSI algorithm based on Hadoop

framework which is an implementation of MapReduce model. The typical LSI

suffers a considerable issue that it is extremely computationally intensive. It is also

reported that when the scale of a T-D matrix is large, the performance of LSI is

deteriorated. Though several works have been done on solving the scalability issue of

the algorithm, the proposed approaches are simply combined the clustering algorithm

k-means with LSI. From the experimental results it can be observed that the

scalability issue has been solved to some extent. However, a new issue has been

introduced, which is the overhead of the involved clustering algorithm k-means. The

experimental results indicate that when the size of the document corpus increases to a

certain level, the overhead of the pre-clustering becomes highly considerable due to

both the computing complexity and the limitations of the computing resources.

MR-LSI successfully solved such an issue based on distribute the k-means algorithm

in a Hadoop cluster. The experimental results show that with a proper number of

centroids, the recall and precision of the MR-LSI algorithm are highly close to the

typical standard LSI. In terms of algorithm executing time, due to the system

overhead of the Hadoop framework, it is quite high with processing small size of

document collections. The work also shows, when the size of the document collection

increases to a certain critical boundary, the overhead of the framework ca be

overcome, which means MR-LSI outperforms the other algorithms in terms of

overhead with maintaining the similar recall and precision levels.

Firstly the MR-LSI algorithm has been evaluated in a small Hadoop cluster which

contains a number of four nodes. However, the small environment cannot help to

Yang Liu (2011)

105

study the performance of MR-LSI with mass computing resources. Thus to study the

scalability of the MR-LSI algorithm, a simulator has been developed to perform a

number of simulations. Though currently there is one published simulator MRPerf

available and it claims that it can simulate the Hadoop framework accurately.

However, according to the results of evaluating a number of MapReduce applications,

MRPerf cannot give satisfied performance. The simulator proposed in the thesis HSim

modeled the parameters of Hadoop framework from several aspects including node

parameters, cluster parameters and Hadoop system clusters. These parameters can

help HSim to create a simulated Hadoop cluster with detailed specifications which are

mainly employed in a real cluster. The validations show that the performance of HSim

is quite close to that of the practical experimental cluster. And also HSim outperforms

MRPerf of which the performance is highly different from that of experimental

environment.

Therefore based on HSim, a simulated Hadoop cluster with the number of 25 nodes

up to 250 nodes has been created. Thus a number from 100 to 1000 mappers are

involved to evaluate the scalability of MR-LSI. The evaluations indicate that

generally along with the number of mappers increased, the performance of MR-LSI

enhanced in terms of overhead. However, due to the wave mechanism in the Hadoop

framework, at the points of certain number of mappers, simply keep increasing the

number of mappers cannot gain the performance enhancement. A number of tests

have also been done to study the impacts brought by tuning parameters on the

MR-LSI algorithm. The results indicate that the performance of the algorithm can be

significantly affected by the different configurations of the cluster.

It is recognized that in the current version of Hadoop framework, the load balancing

strategy is quite weak. Only two types of the strategies FIFO and fair scheduler have

been supported yet. The two types of the schedulers aim to balance the resources

among jobs of different users. However, as the framework supports heterogeneous

nodes, only balancing the resources among users may not get the satisfied optimized

Yang Liu (2011)

106

performance due to the unbalanced load among mappers employed by different nodes.

Thus a static load balancing strategy has been proposed firstly by this work. In the

strategy, the working mechanism of mapper is modeled from four aspects which

include copying time, processing time, spilling time and merging time. The copying

time represents the time of copying a data chunk to local hard disk of the mapper. The

processing time represents the actual data processing by a processor. The spilling time

represents the time of emptying a buffer while the buffer is filled up. The merging

time represents the time of merging intermediate data into a whole chunk which will

be ultimately send to reducer(s). By modeling these overheads of working mechanism

of a mapper, the data sizes that are initially sent to mappers involved in the processing

can be calculated. Therefore to balance the load among mappers, according to a

certain scheduler, if the overall overhead which is the sum of the above four

sub-overheads of each mapper could be close enough to those of the other mappers.

And then the scheduler can be regarded as a best solution. Instead of stiffly and

directly measuring a solution with a complex way, the Means Square Error (MSE) has

been used. MSE can represent how different a series of data is. Therefore, by

calculating the MSE of all mappers’ overhead, the differences among them can be

quantitatively measured. Aiming to get the optimized solutions from the combinations

of a number of complex equations, the genetic algorithm has been involved. The

genes are the volume of data to be allocated to mappers while the chromosomes are

the schedulers and the fitness is using MSE. Within a number of generations, an

optimized scheduler can be found. In a static environment, as long as the scheduler

has been worked out, the mappers can use the scheduler in the whole data processing

duration until the job is finished. The evaluations of the load balancing algorithm have

been done in a simulated cluster with different heterogeneities. The concept of

heterogeneity is involved to measure the level of differences among nodes employed

in the cluster. The evaluated results show that:

 The load balancing algorithm significantly enhances the performance of the

cluster when the heterogeneity increasing to a certain level. When the levels of

heterogeneity are lower, due to the overhead of the load balancing algorithm

Yang Liu (2011)

107

itself, it cannot outperform the scheduler without load balancing in terms of

overhead. However, with large levels of heterogeneity, the algorithm can be

three times faster compared to the scheduler without load balancing strategy.

 The load balancing algorithm is suitable for jobs with different sizes. In the

simulation result, it indicates that the when size of data increases from 10GB

to 100GB, the algorithm can give stable performance with varying sizes of

data.

 Though along with the increasing of number of mappers and size of data, the

overhead of the load balancing algorithm keeps increasing, compared to the

enhancement gained by the algorithm, the impact brought by the overhead is

negligible.

However, frequently a cluster is not simply static but dynamic. There are lots of

factors affects the computing capacity of a cluster dynamically along with the time

passes. To balance the load among mappers in a dynamic computing environment, a

dynamic load balancing strategy has been proposed by this work. The strategy is

consisted by two parts.

1. A data selection solution has been given to decide the volume of data for each

processing wave. The target is trying to use the higher computing capacity

time interval to process the data. The algorithm will be executed in next wave

again to correct the error caused by the IO operations. The data selection also

results in dynamic window sizes in launching the load balancing algorithm.

2. The copying time, processing time, spilling time and merging time have been

modeled in the dynamic environment. Based on the equations of these four

times, the overall overhead of a mapper can be represented. Finally the

relationships between sizes of data and the allocated mappers can be

established.

Due to the complexity of the equations to get the optimized scheduler, genetic

algorithm has been involved which the fitness function is based on calculating the

MSE of the overhead of mappers. In the previous researches, a number of researchers

Yang Liu (2011)

108

claimed that with a less number of generations the GA algorithm can gain the

optimized solution. However, based on the experimental results, it is not suitable for

the Hadoop framework. Therefore, to reduce the overhead of the genetic algorithm,

combining with the characteristics of the Hadoop framework, an improvement has

been done for the genetic algorithm, which can significantly reduce the number of

generations. The simulator HSim also offers a way based on two features to create a

dynamic environment. The dynamic features include speed of hard disk and load of

processor. The dynamic factor of hard disk can create dynamic IO environments for

the cluster. Similarly the dynamic factor of the processor load can create dynamic

computing capacity of the cluster. This work presents two different kinds of processor

loads of which one is simple and the other one is complex. Thus, based on different

heterogeneities, a number of evaluations have been done. Compared to the

performances of computing ratio strategy and fixed window size strategy, the dynamic

load balancing algorithm achieves significant enhancement when the level of

heterogeneity is larger than a certain value.

6.2 Future Work

The work presented in this thesis opens a new way to build up a resource aware

distributed LSI algorithm for scalable information retrieval. Though based on the

experimental and simulation results the algorithm shows satisfied performance, it is

clear that still a variety of opportunities exist, for example:

 Determining the best value of rank k that is used in SVD can be investigated

further to gain the most efficient computation.

 Determining the best value of centroids k which is used in k-means can be

considered further to get the best clustering results.

 Evaluating the MR-LSI algorithm in a large Hadoop cluster such as Amazon

Elastic Compute Cloud (Amazon EC2).

 Though the experimental code of combiner in HSim shows certain level of

accuracy, it can be improved further by using a better mathematical model.

Yang Liu (2011)

109

 The load balancing strategies are implemented based on the simulator HSim.

They may have a chance to be added in the practical Hadoop code to gain

better performance in a real Hadoop cluster.

Yang Liu (2011)

110

References

[1] Aarnio, T. (2009). Parallel Data Processing with Mapreduce. TKK T-110.5190,
Seminar on Internetworking, [Online] Available:
http://www.cse.tkk.fi/en/publications/B/5/papers/Aarnio_final.pdf.

[2] Apache Hadoop! Available at: http://hadoop.apache.org/ [Accessed November 2,
2009].

[3] Bassu, D., and Behrens, C. (2003). Distributed LSI: Scalable Concept-based
Information Retrieval with High Semantic Resolution. In Proceedings of Text Mining
2003, a workshop held in conjunction with the Third SIAM Int'l Conference on Data
Mining.

[4] Berry, M. W. (1992). Large scale singular value computations. International
Journal of Supercomputer Applications and High Performance Computing, 6, 13–49.

[5] Dean, J., and Ghemawat, S. (2004). MapReduce: Simplified Data Processing on
Large Clusters. In Proc. of OSDI'04: Sixth Symposium on Operating System Design
and Implementation, San Francisco, CA.

[6] Deerwester, S., Dumais, S. T., and Furnas, G. (1990). Indexing By Latent
Semantic Analysis. Journal of the American Society For Information Science, 41,
391-407.

[7] Ding C. (1999). A Similarity-based Probability Model for Latent Semantic
Indexing. In Proc. of 22nd ACM SIGIR Conference, 59-65.

[8] Du, L., Jin, H., de Vel, O. Y., and Liu, N. (2008). A Latent Semantic Indexing and
WordNet based Information Retrieval Model for Digital Forensics. In Proc. of
Intelligence and Security Informatics, 2008. ISI 2008, IEEE International Conference,
Taipei, 70-75.

[9] Dumais, S. (1993). LSI meets TREC: A Status Report. In D. Harman (ed.), The
First Text Retrieval Conference (TREC1), NIST Special Publication 500-207,
137-152.

[10] Dumais, S. (1994). Latent Semantic Indexing (LSI) and TREC-2. In D.Harman
(ed.), The Second Text Retrieval Conference (TREC2), NIST Special Publication
500-215, 105-116.

[11] Dumais S. (1995). Using LSI for Information Filtering: TREC-3 experiments. In
D. Harman (ed.), The Third Text Retrieval Conference (TREC3), NIST Special

Yang Liu (2011)

111

Publication, 219-230.

[12] Foltz, P., and Dumais, S. (1992). Personalized Information Delivery: An Analysis
of Information Filtering Methods. Communications of the ACM, 35, 51-60.

[13] Gao, J., and Zhang, J. (2003). Sparsification strategies in latent semantic
indexing. In Proceedings of the 2003 Text Mining Workshop, San Francisco, CA,
93–103

[14] Gao, J., and Zhang, J. (2005). Clustered SVD strategies in latent semantic
indexing. Information Processing and Management, 41, 1051–1063.

[15] He, B., Fang, W., Luo, Q., Govindaraju, N. K., and Wang, T. (2008). Mars: a
MapReduce framework on graphics processors. In PACT '08: Proceedings of the 17th
international conference on Parallel architectures and compilation techniques,
260–269.

[16] Hotho, A., Maedche, A., and Staab, S. (2001). Text clustering based on good
aggregations. In Proc. of the 2001 IEEE International Conference on Data Mining,
IEEE Computer Society, San Jose, CA, 607-608.

[17] Husbands, P., Simon, H., and Ding, C. (2001). On the use of singular value
decomposition for text retrieval. In Computational Information Retrieval,
Philadelphia, PA, 45–156.

[18] Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM
Computing Surveys, 31, 264–323.

[19] Jiménez, D., Ferretti, E., Vidal, V., Rosso1, P., and Enguix, C. F. (2003). The
Influence of Semantics in IR using LSI and K-means Clustering Techniques. In
Proceedings of the 1st international symposium on Information and communication
technologies.

[20] Karypis, M. S. G., and Kumar, V. (2000). A Comparison of Document Clustering
Techniques. Technical Report 00-034, Department of Computer Science and
Engineering, University of Minnesota.

[21] Koller, D., and Sahami, M. (1997). Hierarchically classifying documents using
very few words. In Proceedings of the Fourteenth International Conference on
Machine Learning.

[22] Kumar, C. A., and Srinivas, S. (2006). Latent Semantic Indexing Using
Eigenvalue Analysis for Efficient Information RetrIeval. International Journal of
Applied Mathematics and Computer Science, 16, 551–558.

Yang Liu (2011)

112

[23] Lämmel, R. (2007). Google's MapReduce programming model — Revisited. Sci.
Comput. Program. 68, 208-237.

[24] Majavu, W., and van Zyl, T. (2008). Classification of web resident sensor
resources using Latent Semantic Indexing and Ontologies. Proceedings of the IEEE
International Conference on Man, Systems and Cybernetics.

[25] Oksa, G., Becka, M., and Vajtersic, M. (2002). Parallel SVD Computation in
Updating Problems of Latent Semantic Indexing. In Proceedings of ALGORITMY
2002 Conference on Scientific Computing, 113-120.

[26] Park, H., and Elden, L. (2003). Matrix rank reduction for data analysis and
feature extraction. Tech. Rep., Dept. Computer Science and Engineering, University of
Minnesota.

[27] Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J., Madden, and S.,
Stonebraker, M. (2009). A comparison of approaches to large-scale data analysis. In:
Proceedings of the 35th SIGMOD international conference on Management of data,
New York, NY, USA.

[28] Seshadri, K., and Iye, K. V. (2010). Parallelization of a dynamic SVD clustering
algorithm and its application in information retrieval. Software: Practice and
Experience, 40, issue 10, 883-896.

[29] Song, W. and Park, S. (2007). Analysis of Web Clustering Based on Genetic
Algorithm with Latent Semantic Indexing Technology. In Proc. of Advanced
Language Processing and Web Information Technology, 21-26.

[30] Steinbach, M., Karypis, G., and Kumar, V. (2000). A Comparison of Document
Clustering Techniques. KDD-2000 Workshop on Text Mining, Boston, MA, USA

[31] Tarpey, T., and Flury, B. (1996). Self-Consistency: A Fundamental Concept in
Statistics. Statistical Science, 11, 229-243.

[32] Taura, K., Kaneda, K., Endo, T., and Yonezawa, A. (2003). Phoenix: a parallel
programming model for accommodating dynamically joining/leaving resources.
SIGPLAN Not., 38, 216–229.

[33] Venner, J. (2009). Pro Hadoop (1st ed). New York: Springer.

[34] Wang, G., Butt, A. R., Pandey, P., and Gupta, K. (2009). Using realistic
simulation for performance analysis of mapreduce setups. In LSAP '09: Proceedings
of the 1st ACM workshop on Large-Scale system and application performance.

Yang Liu (2011)

113

[35] White, T. (2009). Hadoop: The Definitive Guide (2nd ed.). CA : O’Reilly Media.

[36] Yan, B., Du, Y., and Li, Z. (2008). The New Clustering Strategy and Algorithm
Based on Latent Semantic Indexing. In Proc. of Natural Computation, 2008. ICNC
'08. Fourth International Conference, 1, 486-490.

[37] Yates, R. D., and Neto, B. R. (1999). Modern Information Retrieval (1st ed.). US:
Addison- Wesley.

[38] “Url: www.google.com,” 2005-2008.

[39] Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. (1987). The
vocabulary problem in human-system communication. Communications of the ACM,
30, 964-971.

[40] Zhao, R., and Grosky, W. I. (2002). Narrowing the semantic gap-improved
text-based web document retrieval using visual features. IEEE Transactions On
Multimedia, 4, 189-200.

[41] Kurimo, M. (1999). Indexing audio documents by using latent semantic analysis
and som. In: Oja, E., Kaski, S. (Eds.), Kohonen Maps. Elsevier, Amsterdam, 363-374.

[42] Souvannavong, F., Merialdo, B., and Huet, B. (2003). Video content modeling
withlatent semantic analysis. In the 3rd International Workshop on Content-Based
Multimedia Indexing.

[43] Littman, M., Dumais, S., and Landauer, T. (1996). Automatic cross-language
information retrieval using latent semantic indexing. In SIGIR'96 - Workshop on
Cross-Linguistic Information Retrieval, 16-23.

[44] Berry, M., Dumais, S., and O’Brien, G. W. (1995). Using linear algebra for
intelligent information retrieval. SIAM Review, 37, 573-595.

[45] Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for
automatic indexing. Communications of the ACM, 18, 613-620.

[46] He, B., Fang, W., Luo, Q., Govindaraju, N. K. and Wang, T. (2008). Mars: a
MapReduce framework on graphics processors. In: PACT '08: Proceedings of the
17thinternational conference on Parallel architectures and compilation techniques,
260–269.

[47] Taura, K., Kaneda, K., Endo, T., and Yonezawa, A. (2003). Phoenix: a parallel
programming model for accommodating dynamically joining/leaving resources.

Yang Liu (2011)

114

SIGPLAN Not., 38, 216–229.

[48] Aarnio, T. Parallel Data Processing with Mapreduce, Available at:
http://www.cse.tkk.fi/en/publications/B/5/papers/Aarnio_final.pdf. (Last accessed:
29-Apr-2010).

[49] Wang, G., Butt, A. R., Pandey, P., and Gupta, K. (2009). Using Realistic
Simulation for Performance Analysis of MapReduce Setups. In: Proceedings of the
1st ACM workshop on Large-Scale System and Application Performance (LSAP '09),
Garching, Germany.

[50] Wang, G., Butt, A. R., Pandey, P., and Gupta, K. (2009). A Simulation Approach
to Evaluating Design Decisions in MapReduce Setups. In: Proceedings of the 17th
Annual Meeting of the IEEE/ACM International Symposium on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS '09),
London, UK.

[51] The Network Simulator - ns-2 Available at: http://www.isi.edu/nsnam/ns (Last
accessed: 15-May-2010).

[52] Liu, Y., Li, M., Hammoud, S., Alham, N. K., and Ponraj, M. (2010). A
MapReduce based distributed LSI. In: Proceedings of the 7th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD), YanTai, China.

[53] Alham, N. K., Li, M., Hammoud, S., Liu, Y., and Ponraj, M. (2010). A
distributed SVM for image annotation. In: Proceedings of the 7th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD), YanTai, China.

[54] Stonebraker, M., Abadi, D., DeWitt, D. J., Madden, S., Paulson, E., Pavlo, A.,
and Rasin, A. (2010). MapReduce and Parallel DBMSs: Friends or Foes?
Communications of the ACM, 53, 64-71.

[55] Xie, J., Yin, S., Ruan, X., Ding, Z. Tian, Y., Majors, J., Manzanares, A., and Qin,
X. (2010). Improving MapReduce performance through data placement in
heterogeneous Hadoop clusters. Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on parallel &
distributed processing symposium., Atlanta, GA

[56] Sadasivam, G. S., and Selvaraj, D. (2010). A Novel Parallel Hybrid PSO-GA
using MapReduce to Schedule Jobs in Hadoop Data Grids. 2010 Second World
Congress on Nature and Biologically Inspired Computing, Kitakyushu, Fukuoka,
Japan.

[57] Groot, S. (2010). Jumbo: Beyond MapReduce for Workload Balancing. VLDB

Yang Liu (2011)

115

2010 , 36th International Conference on Very Large Data BasesSingapore.

[58] Ghemawat, S., Gobioff, H., and Leung, S.T. (2003). The google file system. In
SOSP '03, 29-43, New York, NY, USA.

[59] Devaraj Das. How to Hadoop. Available at:
http://trac.nchc.org.tw/cloud/raw-attachment/Fwiki/HadoopWorkshop/hadoop-assem
bled.pdf (Last accessed: 03-Aug-2010)

[60] Lin, H., and Raghavendra, C. S. (1992). A Dynamic Load-Balancing Policy With
a Central Job Dispatcher (LBC). IEEE Transactions on software engineering, 18, no.
2.

[61] Zhang, Y., Kameda, H., and Hung, S. L. (1997). Comparison of dynamic and
static load-balancing strategies in heterogeneous distributed systems. IEEE Proc.,
Comput. Digit. Tech. 144, 2, 100–106.

[62] Cai, W., Lee, B., Heng A., and Zhu, Li. (1997). A Simulation Study of Dynamic
Load Balancing for Network-based Parallel Processing. In Proceeding of ISPAN '97
Proceedings of the 1997 International Symposium on Parallel Architectures,
Algorithms and Networks. 383-389.

[63] Maeng, H. S., Lee, H. S., Han, T. D., Yang, S. B., and Kim, S. D. (2002).
Dynamic Load Balancing of Iterative Data Parallel Problems on a Workstation
Clustering. High Performance Computing and Grid in Asia Pacific Region,
International Conference on High-Performance Computing on the Information
Superhighway, HPC-Asia '97. Seoul, Korea.

[64] Zomaya, A. Y., and Teh, Y. H. (2001). Observations on Using Genetic
Algorithms for Dynamic Load-Balancing. IEEE transactions on parallel and
distributed systems, 12, 899-911.

[65] Dhakal, S., Hayat, M. M., Pezoa, J. E., Yang, C. and Bader, D. A. (2007).
Dynamic Load Balancing in Distributed Systems in the Presence of Delays: A
Regeneration-Theory Approach. IEEE transactions on parallel and distributed
systems, 18, 485-497.

[66] Tonguz, O. K., and Yanmaz, E. (2008). The Mathematical Theory of Dynamic
Load Balancing in Cellular Networks. IEEE transactions on mobile computing, 7,
1504-1518.

[67] Mahapatra, N. R., and Dutt, S. (1996). Random Seeking: A General, Efficient,
and Iinformed Randomized Scheme for Dynamic Load Balancing. 10th International
Parallel Processing Symposium (IPPS '96).

Yang Liu (2011)

116

[68] Zhou, S. (1988). A Trace-Driven Simulation Study of Dynamic Load Balancing.
IEEE transactions on software engineering, 14, no. 9.

[69] Sun, N., and Lian, G. (2009). Dynamic Load Balancing Algorithm for MPI
Parallel Computing. 2009 International Conference on New Trends in Information
and Service Science.

[70] Bahi, J. M., Vivier, S. C., and Couturier, R. (2005). Dynamic Load Balancing
and Efficient Load Estimators for Asynchronous Iterative Algorithms. IEEE
transactions on parallel and distributed systems 16,289-299.

[71] Fatta, G. D., and Berthold, M. R. (2006). Dynamic Load Balancing for the
Distributed Mining of Molecular Structures. IEEE transactions on parallel and
distributed systems. 17, 773-785.

[72] Jie, W., Cai, W., and Turner, S. J. (2001). Dynamic Load-Balancing Using
Prediction in a Parallel Object-oriented System. IPDPS '01 Proceedings of the 15th
International Parallel & Distributed Processing Symposium. Washington, DC, USA.

[73] Hui C. C., and Chanson, S. T. (1999). Improved strategies for dynamic load
balancing. Journal IEEE Concurrency, 7 Issue 3.

[74] Willebeek-LeMair, M. H., and Reeves, A. P. (1993). Strategies for Dynamic Load
Balancing on Highly Parallel Computers. IEEE transactions on parallel and
distributed systems. 4, no. 9.

[75] Dobber, M., van der Mei, R., and Koole, G. (2009). Dynamic Load Balancing
and Job Replication in a Global-Scale Grid Environment: A Comparison. IEEE
transactions on parallel and distributed systems. 20, no. 2, 207-218.

[76] Dean, J., and Ghemawat, S. (2010). MapReduce: A flexible data processing tool.
Commun. ACM, 53, 72-77.

[77] Goda, K., Tamura, T., Oguchi, M., and Kitsuregawa, M. (2002). Run-time load
balancing system on san-connected pc cluster for dynamic injection of cpu and disk
resource - a case study of data mining application. In DEXA, 182-192.

[78] Groot, S., Goda, K., and Kitsuregawa, M. (2010). A study on workload
imbalance issues in data intensive distributed computing. In DNIS, 27-32.

[79] Tamura, M., and Kitsuregawa, M. (1999). Dynamic load balancing for parallel
association rule mining on heterogenous pc cluster systems. In VLDB '99, 162-173,
San Francisco, CA, USA.

Yang Liu (2011)

117

[80] Bonomi, F., and Kumar, A. (1990). Adaptive Optimal Load-Balancing in a
Heterogeneous Multiserver System with a Central Job Scheduler. IEEE Trans.
Computers, 39, no. 10, 1232-1250.

[81] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

[82] Pico, C. A. G., and Wainwright, R.L. (1994). Dynamic Scheduling of Computer
Tasks Using Genetic Algorithms. Proc. First IEEE Conf. Evolutionary Computation,
IEEE World Congress Computational Intelligence, 2, 829-833.

[83] Kidwell, M. D., and Cook, D. J. (1994). Genetic Algorithm for Dynamic Task
Scheduling. Proc. IEEE 13th Ann. Int'l Phoenix Conf. Computers and Comm., 61-67.

[84] Lan, Y. and Yu, T. (1995). A Dynamic Central Scheduler Load-Balancing
Mechanism. Proc. IEEE 14th Ann. Int'l Phoenix Conf. Computers and Comm.,
734-740.

[85] Lee, S., Kang, T., Ko, M., Chung, G., Gil, J., and Hwang, C. (1997). A Genetic
Algorithm Method for Sender-Based Dynamic Load-Balancing Algorithm in
Distributed Systems. Proc. 1997 First Int'l Conf. Knowledge-Based Intelligent
Electronic Systems, 1, 302-307.

[86] Sharykin, R. Hard Drive Modeling in CHARON. Available at:
http://www.math.upenn.edu/~rsharyki/HDDM03.pdf. (Lasted accessed:
09-May-2010)

[87] Li, H., Wang, Y., Zhang, D., Zhang, M., and Chang, E. Y. (2008). Pfp: parallel
fp-growth for query recommendation. In RecSys '08, 107-114, New York, NY, USA.

[88] Yang, C., Yen, C., Tan, C., and Madden, S. (2010). Osprey: Implementing
mapreduce-style fault tolerance in a shared-nothing distributed database. In ICDE '10,
2010.

[89] Berry, M. W., Drmac, Z., and Jessup, E. R. (1999). Matrix, vector space, and
information retrieval. SIAM Review, 41, 335–362.

[90] Dhillon, I. S., and Modha, D. S. (2001). Concept decompositions for large sparse
text data using clustering. Machine Learning, 42, 143–175.

[91] Golub, G., and van Loan, C. (1989). Matrix computation (2nd ed.). Baltimore,
MD: John Hopkins.

Yang Liu (2011)

118

[92] Zha, H., and Zhang, Z. (1999). On matrices with low-rank-plus-shift structures:
partial SVD and latent semantic indexing. SIAM Journal on Matrix Analysis and
Applications, 21, 522–536.

[93] Zhang, Z., and Zha, H. (2001). Structure and perturbation analysis of truncated
SVD for column-partitioned matrices. SIAM Journal on Matrix Analysis and
Applications, 22, 1245–1262.

[94] April, K., and Pottenger, W. M. (2006). A framework for understanding latent
semantic indexing performance. J. Inf. Process. Manag., 42, no. 1, 56–73.

[95] AswaniKumar, C., Gupta, A., Batool, M., and Trehan, S. (2005). An information
retrieval model based on latent semantic indexing with intelligent preprocessing. J. Inf.
Knowl. Manag., 4, no. 4, 1–7.

[96] Berry, M. W., and Shakhina, A. P. (2005). Computing sparse reduced-rank
approximation to sparse matrices. ACM Trans. Math. Software, 31, no. 2, 252–269.

[97] Hua, Y. (2000). Searching beyond SVD for rank reduction. Proc. IEEE Workshop
Sensor Array and Multi Channel Signal Processing, Cambridge, MA, USA, 395 397.

[98] Praks, P., Dvorsky, J., Snasel, V., and Cernohorsky, J. D. (2003). On SVD free
latent semantic indexing for image retrieval for application in a hard real time
environment. Proc. IEEE Int. Conf. Industrial Technology, Maribor, Slovenia,
466–471.

[99] AswaniKumar, C., and Srinivas, S. (2006). On the effect of rank approximation
on information retrieval. Proc. Int. Conf.Systemics Cybernetics and Informatics,
Hyderabad, India, 876–880.

[100] Yahoo. Hadoop at Yahoo! Available at: http://developer.yahoo.com/hadoop/.
(Lasted accessed: 20-Nov-2010).

[101] Fan, J., Ravi, K., Littman, M. L., and Santosh, V. (1999). Efficient singular
value decomposition via document samplings. Tech. Rep. CS-1999-5, Dept. Computer
Science, Duke University, North Carolina.

[102] Shokripour, A., and Othman, M. (2009). Survey on Divisible Load Theory and
its Applications. International Conference on Information Management and
Engineering, 300-304.

[103] Robertazzi, T. G. (2003). Ten reasons to use divisible load theory. Computer, 36,
63-68.

Yang Liu (2011)

119

[104] Li, X., Liu, X., and Kang, H. (2007). Sensing Workload Scheduling in Sensor
Networks Using Divisible Load Theory, Global Telecommunications Conference,
2007. GLOBECOM '07, 785-789.

[105] Thysebaert, P., De Leenheer, M., Volckaert, B., De Turck, F., Dhoedt, B., and
Demeester, P. (2005). Using Divisible Load Theory to Dimension Optical Transport
Networks for Grid Excess Load Handling, Autonomic and Autonomous Systems and
International Conference on Networking and Services, 2005, 89-94.

[106] Jaber, T. (2008). Lexical Noise Modelling and Removal in Intelligent
Information Retrieval, 1.

[107] Trappey, AJ. C., Trappey, C. V., Hsu, F., and Hsiao, D. W. (2009). A Fuzzy
Ontological Knowledge Document Clustering Methodology, IEEE transactions on
systems, man, and cybernetics—part B: cybernetics, 39, 806-814.

[108] Ma, W., Wang, G., and Liu, J. (2007). Scalable Semantic Search with Hybrid
Concept Index over Structure Peer-to-Peer Network, The Sixth International
Conference on Grid and Cooperative Computing(GCC 2007), 42-48.

[109] Chong, E. I., Das, S., Eadon, G., and Srinivasan, J. (2006). 22nd International
Conference on Data Engineering (ICDE'06), 95-104.

[110] Pan, S., Mao, Q., and Zhang, Y. (2009). A Hybrid Web Service Selection
Approach Based on Singular Vector Decomposition, 2009 Congress on Services - I,
724-731.

[111] Ungrangsi, R., Anutariya, C., and Wuwongse, V. (2007). Enabling Efficient
Knowledge Reuse in the Semantic Web with SQORE*, Third International
Conference on Semantics, Knowledge and Grid (SKG 2007), 92-97.

[112] Ren, K., Liu， X., Chen, J., Xiao, N., Song, J., and Zhang, W. (2008). A
QSQL-based Efficient Planning Algorithm for Fully-automated Service Composition
in Dynamic Service Environments, 2008 IEEE International Conference on Services
Computing, 301-308.

[113] Ren, K., and Yang, C. (2008). Building Quick Service Query List(QSQL) to
Support Automated Service Discovery and Composition, Proceedings of 2008 IEEE
International Symposium on IT in Medicine and Education, 4-4.

[114] Guo, P., Wang, X., and Han, Y. (2010). The enhanced genetic algorithms for the
optimization design, 2010 3rd International Conference on Biomedical Engineering
and Informatics, 2990-2994.

Yang Liu (2011)

120

[115] Han, L. Q. (2002). Theory, design and application of artificial neural network,
Chemical industry publishing company.

[116] Yan, T., Cui, D., and Tao, Y. (2010). A New Evolutionary Neural Network
Algorithm Based on Improved Genetic Algorithm and its Application in Power
Transformer Fault Diagnosis, 2007 Second International Conference on Bio-Inspired
Computing: Theories and Applications (BIC-TA 2007), 1-5.

[117] Yan, T. (2010). An Improved Genetic Algorithm and its Blending Application
with Neural Network, 2010 International Conference on Intelligent Computation
Technology and Automation, 548-551.

[118] Dong, Y. F., Gu, J. H., Li, N. N., Hou, X. D., and Yan, W. L. (2007).
Combination of Genetic Algorithm and Ant Colony Algorithm for Distribution
Network Planning, Proceedings of the Sixth International Conference on Machine
Learning and Cybernetics, 19-22.

[119] Qiu, H., Zhou, W., and Wang, H. (2009). A Genetic Algorithm-Based Approach
to Flexible Job-Shop Scheduling Problem, 2009 Fifth International Conference on
Natural Computation, 81-85.

[120] Burke, H. B., Rosen, D. B., and Goodman, P. H. (1994). Comparing artificial
neural networks to other statistical methods for medical outcome prediction, 1994
IEEE World Congress on Computational Intelligence, 2213-2216.

[121] Bandyopadhyay, M., and Bhaumik, P. (2010). Zone based ant colony routing in
mobile ad-hoc network, Communication Systems and Networks (COMSNETS), 2010
Second International Conference on COMmunication systems and NETworks.

