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Abstract. We study a (N +1)−hypercyclical reaction-diffusion system
with nonlinear reaction rate n. It is shown that there exists a critical
threshold N0 such that for N ≤ N0 the system is stable while for N > N0

it becomes unstable. It is also shown that for large reaction rate n,
N0 remains a constant: in fact for n ≥ n0 ∼ 3.35, N0 = 5 and for
n < n0 ∼ 3.35, N0 = 4. Some more general reaction-diffusion systems of
N + 1 equations are also considered.

1. Introduction

In this paper, we are concerned with the following reaction-diffusion sys-

tem:

⎧⎨
⎩

∂Xi

∂t
= DX

∂2Xi

∂x2 − gXXi + M
∑N

j=1 kijXiX
n
j , i = 1, 2, . . . , N, x ∈ R,

∂M
∂t

= DM
∂2M
∂x2 + kM − gMM − LM

∑N
i,j=1 kijXiX

n
j , x ∈ R, (1.1)

where Xi denotes the concentration of the polymers, and M is the concen-

tration of activated monomers. N is the number of different polymer species.

The replication of each polymer Xi is catalysed by each Xj at a constant

rate kij. Linear (non-catalytic) growth terms are neglected. The activated

monomers are produced at a constant rate, kM ; gX and gM are decay rate

constants. L is the number of monomers in each polymer, and DX and DM

are constant diffusion coefficients. The exponent n is a positive number.
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We assume that the coefficients kij are represented by a hypercyclical

N × N matrix,

(kij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 k0

k0 0 · · · 0 0

0 k0 0 · · · 0

0 0 · · · · · · 0

0 0 · · · k0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

, k0 > 0.

When n �= 1, we call (1.1) is a hypercycle system with nonlinear rate. The

reason is the following: at each Xi, the kinetic reaction rate is given by

Γi = −gX + M
N∑

j=1

kijX
n
j . (1.2)

When n = 1, we have a linear growth rate for Γi and the system is called

classical hypercycle system. When n < 1, the growth rate is sublinear and

n > 1 the growth rate is superlinear.

Such nonlinear reaction rates were also introduced and studied in the

one component case, i.e., N = 1, by many authors, see [32], [33], [34] and

the references therein. In these papers the reaction-diffusion systems are

obtained as a model of a reactant whose concentration grows by autocatalysis

with arbitrary reaction rate plus decay of the autocatalyst with arbitrary

rate. System (1.1) is a generalization of autocatalysis to N reactants (the

polymers Xi) and one autocatalyst (the activated monomer M).

The classical hypercycle system (n = 1) arises as a spatial model concern-

ing the origin of life similar to the one introduced by Eigen and Schuster

[18]. A number of RNA-like polymers (“components”) catalyse the replica-

tion of each other in a cyclic way. Examples in nature include Krebs and

Bethe-Weizsäcker cycles. Eigen and Schuster argue that the hypercycle sat-

isfies important criteria of natural selection: 1. Selective stability of each

component due to favorable competition with error copies, 2. Cooperative

behavior of the components integrated into the hypercycle, and 3. Favorable

competition of the hypercycle unit with other less efficient systems.

Nonlinear rates are interesting to model different coupling strength of the

various components, where a higher rate n corresponds to stronger coupling.
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We consider stationary cluster-like solutions of (1.1). A cluster may loosely

be defined as a region of high concentration
∑N

i=1 Xi of the polymers and low

concentration of the monomer, as monomers are consumed by the replication

of polymers. (If the region shrinks to a point, this phenomenon is called

point-condensation.)

Cluster solutions for (1.1) have been studied by numerous authors. For

numerical aspects of clusters, see [5], [8], [9], [10] and the references therein.

In [59], we first made a rigorous study on the existence and stability of

cluster solutions of hypercycle system with linear rate (n = 1) in R2: it was

shown that for N ≤ 4, cluster solutions are stable while for large N , cluster

solutions become unstable. In [59], we analyzed the cluster solutions in R1

for n = 1 and we found the exact threshold for N . More precise statements

of the results of [59] will be stated later.

Let us first reduce the system (1.1) to standard form. Dividing by gX and

gM , respectively, gives

1

gX

∂tXi =
DX

gX

X
′′
i − Xi +

M

gX

N∑
j=1

kijXiX
n
j , x ∈ R,

1

gM

∂tM =
DM

gM

M
′′

+
kM

gM

− M − LM

gM

N∑
ji,=1

kijXiX
n
j , x ∈ R.

Rescaling M = (kM/gM)M̂, Xi = (gM/L)1/(n+1)X̂i, we get

1

gX

∂tX̂i =
DX

gX

X̂
′′
i − X̂i +

1

gX

kM

gM

M̂(
gM

L
)n/(n+1)

N∑
j=1

kijX̂iX̂
n
j ,

1

gM

∂tM̂ =
DM

gM

M̂
′′

+ 1 − M̂ − M̂
N∑

i,j=1

kijX̂iX̂
n
j .

Rescaling space variables x and time variable t:

x =

√
DM

gM

x̂, t =
1

gM

t̂,

renaming constants:

A =
kM

gXgM

(
gM

L
)

n
n+1 , ε2 =

DX

DM

gM

gX

, τ =
gX

gM
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and dropping the hats, we finally arrive at the following standard form⎧⎨
⎩ ∂tXi = ε2X

′′
i − Xi + AM

∑N
i=1 kijXiX

n
j , x ∈ R,

τ∂tM = M
′′

+ 1 − M − M
∑N

i,j=1 kijXiX
n
j , x ∈ R.

(1.3)

We shall study (1.3) on the real line R for ε > 0 small. Since existence and

stability of solutions might depend on A we will treat it as a parameter. We

look for solutions of (1.3) which are even:

Xi = Xi(|x|) ∈ H1(R), i = 1, . . . , N,

1 − M(x) = 1 − M(|x|) ∈ H1(R).

The stationary equation corresponding to (1.3) becomes⎧⎨
⎩ ε2X

′′
i − Xi + AM

∑N
j=1 kijXiX

n
j = 0, i = 1, ..., N, x ∈ R,

M
′′

+ 1 − M − M
∑N

i=1,j kijXiX
n
j = 0, x ∈ R. (1.4)

We first construct cluster solutions to (1.4). To this end, we need to

introduce some assumptions and notations.

Let

p = n + 1 > 1 (1.5)

and w be the unique solution of the following problem⎧⎨
⎩ w

′′ − w + wp = 0, w > 0 in R,

w(0) = maxy∈R w(y), w(y) → 0 as |y| → +∞.
(1.6)

Put

Lε :=
N

2A1+ 1
n k

1
n
0

ε
∫

R
(w(y))n+1dy. (1.7)

If limε→0 Lε < L0 := ( 1
n+1

)
1
n

n
n+1

, then the following equation has two

solutions:

η
1
n (1 − η) = Lε. (1.8)

We denote the smaller one by ηs, where 0 < ηs < 1
n+1

and the larger one by

ηl, where 1 > ηl > 1
n+1

.

We now state the existence result. In fact, this is quite easy. We search

for solutions of the following type

Xi = X0, i = 1, . . . , N. (1.9)
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Substituting (1.9) into (1.4), we see that (X0,M) satisfies⎧⎨
⎩ ε2X

′′
0 − X0 + AMk0X

p
0 = 0, x ∈ R,

M
′′

+ 1 − M − Mk0NXp
0 = 0, x ∈ R.

(1.10)

Existence of solutions to (1.10) can be shown as in the case p = 2: the

standard Gray-Scott model. Similar to the proof of Theorem 2.1 of [56], we

can obtain the following existence theorem:

Theorem 1.1. Assume that

ε << 1 (1.11)

and

ε << Lε, lim
ε→0

Lε < L0. (1.12)

Then problem (1.4) admits two solutions (Xs
ε ,M

s
ε ) = (Xs

ε,1, . . . , Xs
ε,N , M s

ε )

and (X l
ε,M

l
ε) = (X l

ε,1 . . . , X l
ε,N , M l

ε) with the following properties:

(1) all components are even functions.

(2) Xs
ε,i = 1

AMs
ε (0)k0)

1
n
(1 + o(1))w( |x|

ε
), i = 1, . . . , N, where w is the unique

solution of (1.6).

(3) M s
ε (x) → 1, M l

ε(x) → 1 for all x �= 0 and M s
ε (0), M l

ε(0) satisfy

M s
ε (0) ∼ ηs, M l

ε(0) ∼ ηl,

0 < M s
ε (0) < M l

ε(0) < 1.
(1.13)

(4) There exist a > 0, b > 0 such that

1 − M s
ε (x) ≤ Ce−a|x|, 1 − M l

ε(x) ≤ Ce−a|x|,

Xs
ε,i(x) ≤ C 1

(AMs
ε (0)k0)

1
n
e−b

|x|
ε , X l

ε,i(x) ≤ C 1

(AM l
ε(0)k0)

1
n
e−b

|x|
ε

(1.14)

Finally, if limε→0 Lε > L0 , then there are no single-cluster solutions.

We note that existence of single-pulse solution has also been studied in

[14].

The main goal of this paper is to study the stability and instability of the

cluster solution constructed in Theorem 1.1. To this end, we first linearize

the equations (1.4) around (Xs
ε ,M

s
ε ) or (X l

ε,M
l
ε), respectively. From now
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on we omit the superscripts s or l where this is possible without confusing

the reader. The linearized operator is as follows:

Lε

⎛
⎜⎜⎝

φε,i

ψε

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ε2φ
′′
ε,i − φε,i + AMε

∑N
j=1 kij(φε,iX

n
ε,j + nφε,jXε,iX

n−1
ε,j )

+Aψε
∑N

j=1 kijXε,iX
n
ε,j

ψ
′′
ε − ψε − ψε

∑N
i,j=1 kijXε,iX

n
ε,j

−Mε
∑N

i,j=1 kij(φε,iX
n
ε,j + nφε,jXε,iX

n−1
ε,j )

⎞
⎟⎟⎟⎟⎟⎠ ,

(1.15)

where i = 1, . . . , N . The eigenvalue problem becomes

Lε

⎛
⎝ φε,i

ψε

⎞
⎠ =

⎛
⎝ λεφε,i

τλεψε

⎞
⎠ , i = 1, . . . , N. (1.16)

We consider Lε in the Sobolev space (H2(R))⊗H2(R) and equip (H2(R))N⊕
H2(R) with the following norm

‖(X, u)‖2
(H2(R))N⊕H2(R) = ‖X(y)‖2

(H2(R))N + ‖u(x)‖2
H2(R).

Certainly 0 is an eigenvalue of Lε. The criterion for linearized stability of

a cluster solution is that the spectrum σ(Lε) of Lε (except for 0) lies in a

left half plane {λ ∈ C : Re (λ) < −c0} where c0 > 0, and that 0 is a simple

eigenvalue, where C denotes the set of complex numbers.

In [60], the linear case n = 1 is studied and the following result is proved.

Theorem A: Let n = 1. Assume that

ε << 1, ε << Lε, lim
ε→0

Lε <
1

4
. (1.17)

Let (Xs
ε ,M

s
ε ) and (X l

ε, X l
ε) be the solutions constructed in Theorem 1.1.

Then for ε << 1, we have the following.

(1) (stability) Assume that N ≤ 4 and τ << 1. Then (Xs
ε ,M

s
ε ) is linearly

stable.

(2) (Instability) Assume that N > 4. Then (Xs
ε ,M

s
ε ) is linearly unstable.

(3) (Instability) (X l
ε,M

l
ε) is linearly unstable.

A natural question is the following: what is the effect of n on the stability of

cluster solutions? What is the relation between n and the critical threshold?

Will large n increase the critical threshold? We shall answer these questions

affirmatively in this paper and prove the following theorem.
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Theorem 1.2. Assume that

ε << 1, ε << Lε, lim
ε→0

Lε < L0. (1.18)

Let (Xs
ε ,M

s
ε ) and (X l

ε, X l
ε) be the solutions constructed in Theorem 1.1.

Let

N0 :=

⎧⎨
⎩ 4, n ≤ n0 ∼ 3.35,

5, n > n0 ∼ 3.35,
(1.19)

where n0 satisfies

(cos
2π

5
)(4(n0 + 2) cos

2π

5
+ n0 + 4)2((n0 + 2) cos

2π

5
+ 2)

− (n0 + 2)n2
0(sin

2π

5
)2 = 0. (1.20)

Then for ε << 1, we have the following.

(1) (stability) Assume that N ≤ N0 and τ << 1. Then (Xs
ε ,M

s
ε ) is linearly

stable.

(2) (Instability) Assume that N > N0. Then (Xs
ε ,M

s
ε ) is linearly unstable.

(3) (Instability) (X l
ε,M

l
ε) is linearly unstable.

Remarks: 1. As we see from the theorem, if p increases, the critical thresh-

old can only grow by at most 1. This means that stability is only very

marginally influenced by growing interaction strength which is a new and

surprising fact as one would think that stronger interaction would improve

stability.

2. As in [59], we may generalize the results in this paper to the case of

a general matrix (kij). We will mention the results in the last section and

present some examples.

It is interesting and important to know the exact threshold also to verify

the validity of our model by and experiment: It can now be studied if the

thresholds given by theory and the one determined by experiments are the

same. Furthermore, the agreement between theoretical values and numer-

ically calculated ones for related models play an important role in finding

which model to choose preferably. (We refer to the works quoted at the end

of the introduction for related numerical investigations, in particular to [8],
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where among others multi-cluster states in one space dimension have been

computed numerically).

Let us conclude this introduction by mentioning some related results.

In [9] the parameter dependence of stability of clusters and spirals against

parasites (i.e., rival polymers which receive catalytic support from the hyper-

cycle but do not contribute to the catalysis of any other polymer) is studied

numerically. A parasite may or may not destroy the hypercycle depending on

the rate constants. In [10] clusters (for N = 5) are established numerically

for the elementary N -hypercycle system,

In [8] for a closely related reaction-diffusion model the dependence of clus-

ter states on diffusivities is shown numerically including the cluster size, their

shape, and the distance between different clusters.

The effect of faulty replication on the hypercycle has been studied by an

analysis of the geometry of bifurcations around steady states and numerical

computations in the framework of an ODE reaction model [1].

For a cellular automata model it was shown numerically that a spiral wave

structure may be stable against parasites [5]. The chaotic dynamics for this

type of model has been investigated numerically in [31], [44].

There are a number of recent results on the special case N = 1, n = 1 of

our model, which is then also called Gray-Scott system [20], [21]. We would

like to recall them here. In [14], by using Mel’nikov method, Doelman, Kaper

and Zegeling constructed single and multiple pulse solutions for (1.1) in the

one-dimensional case with DM = 1, DX = δ2 << 1, where Xi = X. In their

paper [14], it is assumed that kM = gM ∼ δ2, gX ∼ δ2α/3, k11 = 1, L = 1,

where α ∈ [0, 3
2
). In this case, they showed that M = O(δα), X = O(δ−

α
3 ).

Later the stability of single and multiple pulse solutions in 1-D are obtained

in [12], [13]. (The techniques are extended to other reaction-diffusion equa-

tions in [15].) Some related results on the existence and stability of solutions

to the Gray-Scott model in 1-D can be found in [16], [26], [27], [41] and [45].

In R2 and R3, Muratov and Osipov [35] have given some formal asymptotic

analysis on the construction and stability of spiky solution. In [55], the

system (1.1) for N = 1 is studied on the real axis in the shadow system
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case, namely, DM >> 1, DX << 1 and kM = gM = O(1), gX = O(1), k11 =

1, L = 1. The shadow system can be reduced to a single equation. For spike

solutions of single equations and other systems, we refer to [3], [4], [6], [11],

[19], [22], [24], [25], [29], [30], [43], [37], [38], [39], [40], [42], [48], [50], [49],

[51], [52], [53], [54], [57], [58], and the references therein.

In the two-dimensional case rigorous existence and stability results on

the Gray-Scott system have been established in [56]. The existence of one-

spike solutions is proved. Their stability is established and rests upon the

derivation and analysis of a related NLEP (nonlocal eigenvalue problem).

The structure of the paper is as follows:

In Section 2, we separate the eigenvalue problem into two cases: small

eigenvalues and large eigenvalues. The small eigenvalue is shown to be 0

with dimension 1. The case of large eigenvalues is then reduced to a system

of nonlocal eigenvalue problems (NLEP).

In Section 3, we analyze the system of NLEP and show that it can be

reduced to two eigenvalue problem-one is local but with complex coefficients,

another one is a NLEP.

In Section 4, we study the two eigenvalue problems and thus finish the

proof of Theorem 1.3.

In Section 5, we make we drop the condition that the system is a classical

hypercycle and make some remarks about the general matrix case.

Finally, in Section 6, we discuss our results.

Throughout this paper, the letter C will always denote various generic

constants which are independent of ε, for ε sufficiently small. The notation

A ∼ B means that limε→0
A
B

= 1 and A = O(B) is defined as |A| ≤ C|B|.

2. Reduction to a system of NLEP

Let (Xε,Mε) be one of the two solutions constructed in Section 1. We now

study the eigenvalue problem associated with (Xε,Mε). We assume that

ε << Lε, lim
ε→0

Lε < L0.
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We need to analyze the following eigenvalue problem (letting x = εy)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆yφε,i − φε,i + AMε
∑N

j=1 kij(X
n
ε,jφε,i + nφε,jXε,iX

n−1
ε,j )

+Aψε
∑N

j=1 kijXε,iX
n
ε,j = λεφε,i, y ∈ R,

∆xψε − ψε − ψε
∑N

i,j=1 kijXε,iX
n
ε,j

−Mε
∑N

i,j=1 kij(X
n
ε,jφε,i + nXε,iX

n−1
ε,j φε,j) = τλεψε, x ∈ R,

λε ∈ C.

(2.1)

We assume that (φε,1, ..., φε,N , ψε) ∈ (H2(R))N ⊕ H2(R).

Since Xε,i = X0, n = p− 1, kij = k0k̂ij = k0δi,j+1 modulo N , problem (2.1)

becomes ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆yφε,i − φε,i + Ak0MεX
p−1
0 k0

∑N
j=1 k̂ij(φε,i + nφε,j)

+Ak0ψεX
p
0 = λεφε,i,

∆ψε − ψε − Nk0ψεX
p
0

−Mεk0
∑N

i,j=1 k̂ij(φε,i + nφε,j)X
p−1
0 = τλεψε.

(2.2)

Let us first formally derive the limiting eigenvalue problems.

Since (X0,Mε) satisfies (1.10), we have

X0(y) ∼ (AMε(0)k0)
− 1

p−1 w(y) in H1(R) (2.3)

and

M
1

p−1
ε (0)(1 − Mε(0)) ∼ Lε :=

Nk0

2(Ak0)
p

p−1

ε
∫

R
w(y)pdy. (2.4)

The eigenvalue problem is changed into⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆yφε,i − φε,i +
∑N

j=1 k̂ij(φε,i + (p − 1)φε,j)w
p−1

+Ak0(AMε(0)k0)
− p

p−1 ψεw
p ∼ λεφε,i,

∆ψε − ψε − Nk0(AMε(0)k0)
− p

p−1 ψεw
p

−Mεk0(AMε(0)k0)
−1 ∑N

i,j=1 k̂ij(w
p−1φε,i + (p − 1)wp−1φε,j) ∼ τλεψε.

(2.5)

From the equation for ψε, we formally have (setting β2 = 1 + τλ)

ψε(0) =
1

2β

∫
R

e−β|x|
⎛
⎝ − k0N(AMε(0)k0)

− p
p−1 ψεw

p

−Mεk0(AMε(0)k0)
−1

N∑
i,j=1

k̂ij(w
p−1φε,i + (p − 1)wp−1φε,j)

⎞
⎠

∼ 1

2β
ε[−ψε(0)k0N(AMε(0)k0)

− p
p−1

∫
R

wp(y) dy



HYPERCYCLICAL REACTION-DIFFUSION SYSTEM 11

−Mε(0)k0N(AMε(0)k0)
−1

∫
R

p(
N∑

i=1

φε,i)w
p−1 dy].

By (1.8), we have

ψε(0) ∼ −
⎛
⎝1 +

1

2β
k0N(AMε(0)k0)

− p
p−1 ε

∫
R

wp

⎞
⎠

−1

⎛
⎝ 1

2β
Mε(0)k0N(AMε(0)k0)

−1ε(
∫

R
wp−1p(

N∑
i=1

φε,i))

⎞
⎠

∼ −(1 +
1 − Mε(0)

βMε(0)
)−1

⎛
⎝ 1

2β
Mε(0)k0N(AMε(0)k0)

−1ε(
∫

R
wp−1p(

N∑
i=1

φε,i))

⎞
⎠

Substituting this relation into the equation for φi, we obtain the following

nonlocal eigenvalue problem (NLEP):

∆φε,i − φε,i + wp−1φε,i + (p − 1)
N∑

j=1

k̂ijφε,jw
p−1 (2.6)

− p(1 − Mε(0))

βMε(0) + 1 − Mε(0)
wp

∫
R wp−1 ∑N

i=1 φε,i

N
∫

wp
∼ λεφε,i.

Although we have formally obtained (2.7), however we can rigorously prove

the following separation of eigenvalues.

Theorem 2.1. Let λε be an eigenvalue of (2.2).

(1) Suppose that λε → 0 as ε → 0. Then we have λε = 0 if ε is small

enough and

(φε, ψε) ∈ span {(X ′
ε,M

′
ε)}.

(2) Suppose that λε → λ0 �= 0. Then λ0 is an eigenvalue of the following

NLEP

∆φi − φi + wp−1φi + (p − 1)
N∑

j=1

k̂ijφjw
p−1 (2.7)

− p(1 − η)

β0η + 1 − η
wp

∫
R wp−1 ∑N

i=1 φi

N
∫

wp
= λ0φi, i = 1, ..., N

where η = limε→0 Mε(0), β0 =
√

1 + τλ0.
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Proof:

(2) follows from asymptotic analysis.

To prove (1), we can proceed exactly as in Section 6 of [56], where stability

of a single cluster state is studied. Let us denote the linear operator on the

left hand side of (2.7) as L, where L : (H2(R))N → (L2(R))N . The key

point is to prove the following lemma:

Lemma 2.2. (1). Let φ be an eigenfunction of (2.7) with λ0 = 0. Then we

have

φ ∈ K0 := span {w′
(y)e0},

where e0 = (1, . . . , 1)τ . (This implies that Ker(L) = K0.)

(2). The operator L is an invertible operator if restricted as follows

L : K⊥,1
0 → K⊥,2

0 ,

where

K⊥,1
0 = {u ∈ (H2(R))N |

∫
R

uw
′
(y)e0 = 0},

K⊥,2
0 = {u ∈ (L2(R))N |

∫
R

uw
′
(y)e0 = 0}.

The proof of Lemma 2.2 is technical and thus left to appendix A.

The rest of the proof is exactly the same as in Section 6 of [55]. For the

sake of limited space, we omit the details here.

3. Analysis of system of NLEP

In this section we analyze the nonlinear eigenvalue problem (NLEP) which

we have obtained in Section 2. To this end, we introduce two eigenvalue prob-

lems: the first is the following eigenvalue problem with complex coefficients⎧⎨
⎩ ∆φ − φ + wp−1φ + (p − 1)σwp−1φ = λφ

σ = σR +
√−1σI = eiθ, θ ∈ (−π, π], φ ∈ H1(R),

(3.1)

where w is defined by (1.6).

The second is a nonlocal eigenvalue problem (NLEP):

∆φ − φ + pwp−1φ − p(1 − η)

η
√

1 + τλ + 1 − η

∫
R wp−1φ∫

R wp
wp = λφ, φ ∈ H2(R)

(3.2)
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where

0 < η < 1, τ ≥ 0, λ ∈ C, λ = λR + iλI , λR ≥ 0

and we take principal branch for
√

1 + τλ.

We show that the study of NLEP (2.7) can be reduced to the study of

(3.1) and (3.2). We say an eigenvalue problem is stable if there exists a

constant c0 > 0 such that all eigenvalues λ we have Re(λ) < −c0. We say it

is unstable if there exists an eigenvalue λ with Re(λ) > 0.

We then have the following

Lemma 3.1. Suppose that (3.2) with η = limε→0 Mε(0) has no Hopf bifurca-

tion (as given in Lemma 4.6 below). Then (2.7) is stable if and only if both

(3.1) (with σ = e−
2jπ

√−1
N , j = 1, ..., N − 1) and (3.2) (with η = limε→0 Mε(0))

are stable.

Proof:

(1) Suppose (3.1) and (3.2) are stable. We now show that (2.7) is stable,

too: Assuming that there exists λ0 ≥ 0 such that (2.7) holds we show that

φi = 0, i = 1, . . . , N.

We first take care of the nonlocal terms. Adding all equations for i =

1, . . . , N , we get

∆(
N∑

i=1

φi) − (
N∑

i=1

φi) + pwp−1(
N∑

i=1

φi)

−p
1 − η

βη + 1 − η

∫
R(

∑N
i=1 φi)w

p−1∫
R wp

wp = λ0φi.

Since (3.2) is stable and we have no Hopf bifurcation, we have

N∑
i=1

φi = 0. (3.3)

Suppose (3.3) holds so the nonlocal terms in (NLEP) all vanish. We end

up with the following:

∆φi − φi + wp−1φi + (p − 1)
N∑

j=1

k̂ijφjw
p−1 = λ0φi. (3.4)
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After diagonalizing k̂ij (keeping the notation for φi) we get

∆φi − φi + (1 + (p − 1)e2πi
√−1/N)wp−1φi = λ0φi, (3.5)

Since (3.1) is stable, we have φi = 0. Therefore (2.7) is stable.

(2) Suppose (3.2) is unstable. Then there exists an eigenfunction φ0 �= 0

with an eigenvalue λ0 to (3.2) such that Re(λ0) > 0. Now we take φ1 = ... =

φN = φ0 in (2.7) and we see that (2.7) also admits the eigenvalue λ0. So

(2.7) is unstable.

On the other hand, suppose (3.2) is not unstable and (3.1) is not stable.

Since (3.2) has no Hopf bifurcations, (3.2) is stable. Then similar to (1), we

must have
N∑

i=1

φi = 0

and so all the nonlocal terms vanish. We are left with the following local

eigenvalue problem

∆φi − φi + wp−1φi + (p − 1)
N∑

j=1

k̂ijw
p−1φj = λφi,

N∑
i=1

φi = 0.
(3.6)

It is easy to see that (3.6) is not stable because (3.1) is not stable.

Lemma 3.1 is thus proved.

�

4. Study of the two eigenvalue problems

In this section, we study two eigenvalue problems (3.1) and (3.2) derived

from Section 3. The analysis presented in this section is the key estimate for

this paper.

To study (3.1) and (3.2), we first collect some important properties asso-

ciated with the function w. We first study some local eigenvalue problems.

Lemma 4.1. (1) The linear operator⎧⎨
⎩ L0φ := φ

′′ − φ + pwp−1φ,

φ ∈ H1(R)

has the kernel

Ker (L0) = span
{
w

′
(y)

}
.
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(2) The eigenvalue problem (EVP)

(EV P )

⎧⎨
⎩ φ

′′ − φ + µwp−1φ = 0,

φ ∈ H1(R)

admits the following set of eigenvalues

µ1 = 1, v1 = span {w},
µ2 = p, v2 = Ker (L0),

µ3 > p.

(3) If µR > 0, then the following eigenvalue problem⎧⎨
⎩ φ

′′ − φ + wp−1φ + µRwp−1φ = λφ,

µR > 0, φ ∈ H1(R)

admits a positive (principal) eigenvalue λ1 such that

−λ1 = inf
φ∈H1(R)\{0}

∫
R(φ′)2 + φ2 − (1 + µR)wp−1φ2∫

R φ2
< 0.

(4) Let φ (complex-valued) satisfy the following eigenvalue problem⎧⎨
⎩ φ

′′ − φ + wp−1φ + (p − 1)σwp−1φ = λφ

Re(σ) ≤ 0, φ ∈ H1(R), λ �= 0.

Then

Re(λ) ≤ −c0 < 0.

Proof: For (1) and (2) please see Lemma 4.1 of [49].

(3) follows by the variational characterization of the eigenvalues:

−λ1 = inf
φ∈H1(R),φ�≡0

∫
R(φ′)2 + φ2 − (1 + µR)wp−1φ2∫

R φ2
< 0

since by the last inequality for φ = w

−λ1 ≤ −µR

∫
R wp+1∫

R wp
< 0.

To prove (4) note that

σ = σR +
√−1σI , φ = φR + i

√−1φI , λ = λR +
√−1λI

and write the eigenvalue problem for real and imaginary parts separately:

φ
′′
R − φR + (1 + σR)wp−1φR − σIw

p−1φI = λRφR − λIφI , (4.1)
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φ
′′
I − φI + (1 + σR)wp−1φI + σIw

p−1φR = λRφI + λIφR. (4.2)

Multiplying (4.1) by φR, (4.2) by φI , integrating over R, and adding up, we

get∫
R
[−(φ′

R)2 − φR + (1 + σR)wp−1φ2
R] +

∫
R
[−|φ′

I |2 − φ2
I + (1 + σR)wp−1φ2

I ]

= λR

∫
R

φ2
R + φ2

I .

Since in the last equation l.h.s.≤ 0 we also get r.h.s.≤ 0. Therefore λR ≤ 0.

Now assume that λR = 0. Then by (2) we get φR = c1w, φI = c2w (with

c1, c2 ∈ R) and σR = 0. But this implies λI = 0, σI = 0 and we get λ = 0,

contrary to what we assumed. Therefore λR can not be zero and we conclude

Re(λ) ≤ −c0 < 0.

�
We are ready to study the first eigenvalue problem (3.1). We consider θ as

a parameter. By Lemma 4.1 (3) and a perturbation argument, for |θ| small,

there is an unstable eigenvalue λ for problem (3.1), i.e. λ = λR + iλI where

λR > 0. On the other hand, by Lemma 4.1 (4), for |θ| ≥ π
2
, problem (3.1)

has only stable eigenvalues, i.e. λ = λR + iλI where λR < 0. Now if we vary

θ, then there must be a point θh such that for θ = θh, problem (3.1) has a

Hopf bifurcation, i.e. there is an eigenvalue λ = iλI . Let us now compute

θh. That is

Lemma 4.2. Let φ (complex-valued) satisfy the eigenvalue problem (3.1).

Then there exists some θh with θh = arccosσR, where σR is the unique zero

with 0 < σR < 1 of the following polynomial

g(σ) := σR(4(p + 1)σR + p + 3)2(p + 1)σR + 2) − (p + 1)(p − 1)2(1 − σ2
R)

(4.3)

such that (1) If

|θ| > θh,

then

Re(λ) ≤ −c0 < 0.

(2) If

|θ| < θh,
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then there exists an eigenvalue λ with Re(λ) > 0.

(3) If |θ| = θh, then there exists an eigenvalue λ with λ = iλI .

Proof: We are looking for a Hopf bifurcation for problem (3.1). Therefore

we have to solve

∆φ − φ + (1 + (p − 1)σ)wp−1φ = λφ (4.4)

with

λ =
√−1λI

(i.e. the real part λR of λ vanishes) and

σ = σR +
√−1σI , |σ|2 = σ2

R + σ2
I = 1.

Let

γ =
√

1 + λ, µ = 1 + (p − 1)σ, φ = wγF.

Then F satisfies

F
′′

+ 2γ
w

′

w
F

′
+ (µ − (γ +

2

p + 1
γ(γ − 1)))wp−1F = 0. (4.5)

Next we introduce the following new variable

z =
1

2
(1 − w

′

w
). (4.6)

Then

w
′

w
= 1 − 2z, wp−1 = 2(p + 1)z(1 − z),

dz

dx
= (p − 1)z(1 − z).

This yields the following equation for F as function of z

z(1 − z)F
′′

+ (c − (a + b + 1)z)F
′ − abF = 0, (4.7)

where

a + b + 1 = 2 +
4γ

p − 1
, ab = 2

2γ(γ − 1) − (µ − γ)(p + 1)

(p − 1)2
, c = 1 +

2γ

p − 1
.

(4.8)

The solutions to (4.7) are standard hypergeometric functions. See [47] for

more details. Now there are two solutions to (4.7):

F (a, b; c; z), z1−cF (a − c + 1, b − c + 1; 2 − c; z).
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Since by our construction, F is regular at z = 0. At z = 1, F (a, b; c; z) has

a singularity

lim
z→1

(1 − z)−(c−a−b)F (a, b; c; z) =
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)

where c − a − b = − 2γ
p−1

. Note that since λ =
√

1 + iλI , the real part of γ is

positive. So a solution that is regular at both z = 0 and z = 1 can only exist

if Γ(x) has a pole at a or b, respectively. In other words, a = 0,−1,−2, ... or

b = 0,−1,−2, ....

From (4.8), we compute that

a =
2γ

p − 1
− α

or

b =
2γ

p − 1
− α,

where α satisfies

α2 + α − 2(p + 1)

(p − 1)2
µ = 0. (4.9)

By symmetry we may assume that a = 2γ
p−1

− α = −l, l ≥ 0 and α =

αR +
√−1αI . So we have to solve the system⎧⎪⎨

⎪⎩
α2

R + αR − α2
I − 2(p+1)

(p−1)2
(1 + (p − 1)σR) = 0,

2γ

p − 1
= α − l.

(4.10)

Since we take the principal branch for γ =
√

1 + iλI , it follows that

α > l.

Moreover we have
4

(p − 1)2
= (αR − l)2 − α2

I

which implies that

αR ≥ l +
2

p − 1
(4.11)

On the other hand, we have

4

(p − 1)2
= (αR − l)2 − α2

I = α2
R − α2

I − 2lαR + l2

= −(2l + 1)αR + l2 +
2(p + 1)

(p − 1)2
(1 + (p − 1)σR).
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So we obtain

αR =
1

2l + 1
(l2 +

2

p − 1
+

2(p + 1)

p − 1
σR).

By (4.11), we have

1

2l + 1
(l2 +

2

p − 1
+

2(p + 1)

p − 1
σR) ≥ l +

2

p − 1

which is impossible unless l = 0 or l = 1. For l = 1 we just recover the case

λ = 0 with the eigenfunction w′ given by Lemma 4.1 (1). This clearly does

not correspond to Hopf bifurcation.

For Hopf bifurcation to occur we must have a = 0 or b = 0. In this case,

we have

αR =
2

p − 1
+

2(p + 1)

p − 1
σR, αI =

2(p + 1)

(p − 1)(2αR + 1)
σI .

Substituting this relation into (4.10) we obtain that σR must be a zero of

the polynomial g defined by (4.3).

In summary, Hopf bifurcation can occur only at the point σh
R such that

g(σh
R) = 0. Since such a point is unique, we conclude that for |θ| < θh =

arccos σh
R, there is unstable eigenvalues and for |θ| > θh, all eigenvalues are

stable.

�
Let us now analyze the polynomial g(σR) for σ = e

2π
√−1
N . We note that as

p → +∞, the zeroes of g approach the zeroes of

g0(σR) = σ2
R(4σR + 1)2 − (1 − σ2

R). (4.12)

The zero of g0 is approximately 0.3726. Thus as p becomes large, Ncritical-the

critical threshold- can not exceed 6. In fact, one can compute explicitly that

in the case p > n0 + 1, where n0 is given by (1.20), we have g(cos(2π
N

)) < 0

for N ≤ 5 and g(cos(2π
N

)) > 0 for N ≥ 6. In the case p < n0 + 1, we have

g(cos(2π
N

) < 0 for N ≤ 4 and g(cos(2π
N

)) > 0 for N ≥ 5. That is we have the

following corollary
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Corollary 4.3. For N ≤ N0, the problem (3.1) is stable, while for N > N0,

problem (3.1) is unstable, where

N0 =

⎧⎨
⎩ 4 if p ≤ p0,

5 if p ≥ p0

and p0 ∼ 4.35.

We next study the NLEP (3.2). We first recall the following lemma

Lemma 4.4. [61] Consider the following eigenvalue problem

∆φ − φ + pwp−1φ − γ(p − 1)

∫
R wp−1φ∫

R wp
w2 = λφ, φ ∈ H2(R).

(4.13)

Then if γ ≤ p, we have Re(λ) < −c1 < 0 for some c1 > 0.

From Lemma (4.4), it follows immediately we have the following

Lemma 4.5. Consider the eigenvalue problem (3.2).

(1) If τ << 1 and 0 < η < 1
p
. Let λ0 �= 0 be an eigenvalue of (3.2). Then

we have Re(λ0) ≤ −c1 for some c1 > 0.

(2) Suppose that 1
p

< η < 1, then problem (3.2) admits a real eigenvalue

λ0 with λ0 ≥ c2 > 0 for some c2 > 0.

Proof:

(1). When τ = 0, we have

p(1 − η)

η
√

1 + τλ + 1 − η
= p(1 − η) > p − 1

if 0 < η < 1
p
. By Lemma 4.4, we must have that λR < −c1 < 0. The case

τ << 1 follows from a perturbation argument.

g (2). Assume that 1
p

< η < 1. By Lemma 4.1 (3), L0 has a positive

eigenvalue µ1 > 0. Consider the following function

h(α) =
∫

R
((L0 − α)−1wp−1)wp−1.

It is easy to see that

h
′
(α) =

∫
R
((L0 − α)−2wp−1)wp−1 =

∫
R
[(L0 − α)−1wp−1]2 > 0
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and

lim
α→µ1

h(α) = +∞.

Next we consider the function

ρ(λ) =
η
√

1 + τλ + 1 − η

p(1 − η)
− 1 − (

∫
R

wp)−1λh(λ). (4.14)

Note that

ρ(0) =
1

p(1 − η)
− 1 > 0

since 1
p

< η < 1. On the other hand,

lim
λ→µ1−

ρ(λ) = −∞.

Hence there must exist an λ0 ∈ (0, µ1) such that ρ(λ0) = 0.

It is easy to see that this λ0 > 0 is an eigenvalue of (3.2).

�
In the general case τ > 0, 0 < η < 1

p
, there are no analytic results for

problem (3.2). Fortunately, we can use hypergeometric functions and gen-

eralized hypergeometric functions to reduce problem (3.2) to a computable

problem. Such an idea has already been used in [12]. However, here we

propose a different transformation so that the eigenvalue problem becomes

computable more easily. We recall that by Lemma 4.3 (2) for τ = 0, all

eigenvalues are stable. So if we vary τ , either we obtain stability or Hopf

bifurcation. All we need is to compute when Hopf bifurcation occurs.

Let us first introduce the so-called generalized Gauss function. Let a1, a2, ..., aA

and b1, b2, ..., bB be two sequences of numbers. Consider the following series

1 +
a1a2...aA

b1b2...bB

z

1!
+

(a1 + 1)(a2 + 1)...(aA + 1)

(b1 + 1)(b2 + 1)...(bB + 1)

z2

2!
+ ... (4.15)

≡ AFB

⎧⎪⎪⎨
⎪⎪⎩

a1, a2, ..., aA ;

z

b1, b2, ..., bB ;

⎫⎪⎪⎬
⎪⎪⎭

AFB is called generalized Gauss function or generalized hypergeometric func-

tion. For more details on such functions, we refer to [47].

Now we have the following lemma, whose proof is technical and thus de-

layed to Appendix B.
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Lemma 4.6. Let λ =
√−1λI be an eigenvalue of problem (3.2). Then λ is

a solution of the following algebraic equation

(3p − 1)(p2 − 1 − λ)

p(p2 − 1)

η
√

1 + τλ + 1 − η

p(1 − η)

= 4F3

⎧⎪⎪⎨
⎪⎪⎩

1, 1
2
, 2p

p−1
, p

p−1
+ 1 ;

1
p−√

1+λ
p−1

+ 1, p+
√

1+λ
p−1

+ 1, p
p−1

+ 3
2

;

⎫⎪⎪⎬
⎪⎪⎭ (4.16)

By Lemma (4.6), problem (3.2) can be solved by using Mathematica. We

will not produce any numerical results here. The readers can refer to [12] for

some numerical results.

5. General Matrix Case

Theorems 1.1 and 1.3 can be extended to more general matrices (kij).

Let us consider system (1.3):⎧⎨
⎩ ∂tXi = ε2X

′′
i − Xi + AM

∑N
i=1 kijXiX

n
j , x ∈ R,

τ∂tM = M
′′

+ 1 − M − M
∑N

i,j= kijXiX
n
j , x ∈ R,

(5.1)

where (kij) is a general matrix. To ensure existence, we put the following

symmetric condition

N∑
i=1

kij =
N∑

j=1

kij = k0. (5.2)

Then Theorem 1.1 holds true without any change.

The main problem is the stability. To this end, we need to put an extra

assumption

(H1) [1 + spec(B)] ∩ spec(EVP) = {p}, (5.3)

where B = (k̂ij) and the EVP is defined in Lemma 4.1.

The following is our main result on stability.

Theorem 5.1. Assume that

ε << 1, ε << Lε, lim
ε→0

Lε < L0, (5.4)
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and that assumption (H1) holds. Let (Xs
ε ,M

s
ε ) and (X l

ε, X l
ε) be the solutions

given in Theorem 1.1.

Let σ = σR +
√−1σI be an eigenvalue of (k̂ij) and let the polynomial g be

defined as in (4.3).

Then for ε << 1, we have the following.

(1) (stability) Suppose that τ << 1. Assume that σ = 1 is a simple

eigenvalue and that for all σ with σR > 0 , we have g(σ) < 0. Then (Xs
ε ,M

s
ε )

is linearly stable.

(2) (Instability) Assume that either σ = 1 is not simple or there exists

σ �= 1 with σR > 0 such that g(σ) > 0. Then (Xs
ε ,M

s
ε ) is linearly unstable.

(3) (Instability) (X l
ε,M

l
ε) is linearly unstable.

The proof of Theorem 5.1 is the same as that of Theorem 1.2. We omit the

details. Note that the analysis in Sections 2 - 4 deals with general matrices

k̂ij and is not restricted to merely the hypercycle case k̂ij = δi,j+1 modulo

N . Let us now apply Theorem 5.1 to some interesting examples.

Our first example is the following cyclical bi-diagonal matrix

(kij) = k0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − α α 0 ... 0

0 1 − α α ... 0

0 0 1 − α ... 0

... ... ... ... α

α 0 ... 0 1 − α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

, k0 > 0.
(5.5)

It is easy to calculate that the eigenvalues are σ = 1−α(1− e2πj
√−1/N), j =

1, . . . , N and are all simple.

We substitute σ into the polynomial and compute the critical threshold

Ncritical. It turns out that Ncritical depends on both α and p: Ncritical will

increase of the order α as α increases but Ncritical increases only slowly in p.

In fact, let us fix α and consider the case p → +∞. Then as p → +∞, the

zeroes of f approach the zeroes of the polynomial

g0(σ) := σ2
R(4σR + 1)2 − σ2

I
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which was defined in (4.12) above. Substituting σR = 1− α + α cos(θ), σI =

α sin(θ) into (4.12), we obtain the following

ρ(θ, α) = (1 − α + α cos(θ))2(5 − 4α + 4 cos(θ))2 − α2(1 − cos2(θ)) = 0.
(5.6)

Note that for α large and αθ = O(1)

θ ∼ 5

α

which by θ = 2π/N0 implies that

N0 ∼ 2π

5
α.

On the other hand for p = 2 we get under the same assumptions

N0 ∼ 2π
√

3

17
√

5
.

In both cases the critical threshold N0 grows linearly in alpha but it is

bigger by the factor 17√
15

∼ 4.39 in the first case. Thus in this case large p

changes quantitative but not the qualitative behavior of N0. This shows a

more striking change of behavior than in the hypercycle case.

Our second example is a system with (N − 1) interactions.

(kij) = k0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 ... 1

1 0 1 ... 1

1 1 0 ... 1

... ... ... ... 1

1 1 ... 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

, k0 > 0. (5.7)

The eigenvalues of (k̂ij) are σ = 1 (which is simple) and σ = 0. The small

cluster state is stable for all N independent of the rate p.

From all the previous examples, we see as a general trend that if the system

is not too much dominated by diagonal terms we have stability. Otherwise,

a parasite emerges. This means that cooperative behavior in contrast with

self-enhancement is needed to stabilize the cluster.

For large p stability in increased somewhat. We point to the second exam-

ple where the stability threshold N0 for large α grows linearly in α and large p

can improve N0 by a constant factor of about 4.39. In the case α > 1 (which

means that the diagonal becomes negative and the off-diagonal elements are
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positive and bigger than the diagonal), this describes self-inhibition coupled

with cooperative enhancement and leads to particularly good stability.

Furthermore, the second and the third example indicate that coupling

between more and more different components Xi also improves stability.

Note that in the last example the system can be arbitrarily large.

6. Discussion

We have studied a general system of N +1 equations with nonlinear rate n

describing the interaction of N polymer species which catalyse each other in

a hypercyclic way and are all composed of the same type of monomer. In the

special case N = 1, n = 1 the system reduces to the well-known Gray-Scott

system.

We study the case of single-cluster solutions in the whole 1-D space. These

are in some sense the simplest concentrated solutions in 1-D. This case ap-

pears to be relevant if the early biochemical reactions take place in very thin

lines for example on the edges of rocks.

Besides the existence proof we provide the first rigorous results on stability

for cluster states of a hypercyclic system with nonlinear rate. Namely, we

establish the exact threshold between stability and instability in terms of

the system size and the nonlinear rate n. It is shown that as n ≤ 3.35,

the stability regimes extends exactly in the range N = 1, 2, 3, 4. If n >

3.35, the stability regime extends to N = 1, 2, 3, 4, 5. This shows that the

maximum critical threshold for hypercycle system with nonlinear rate is 5.

This result might be important for making predictions about the outcome of

experiments in biological applications and also for the testing of the validity

of the models used. Furthermore, now a comparison of this theoretical result

with numerical computations becomes possible.

We have also studied reaction-diffusion systems with nonlinear rate and

general connection matrix (kij). There we have observed that the nonlinear

rate can help increase the critical threshold Ncritical when there is large self-

inhibition (Example 1, Section 5). We show that large self-inhibition and to

some lesser extent large n can help stabilize large reaction system.
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So how can very large systems be stabilized?

One possibility is to increase self-inhibition and the nonlinear rate, as in

Example 1, Section 5.

Another possibility which is frequently observed in nature is by the forma-

tion of a block-diagonal structure. Then, since the spectra of different blocks

are independent, they can for example be chosen as small hypercycles which

are stable up to size 5. On the other hand, by assembling a large number of

blocks the system can become arbitrarily large and still be stable.

In fact, it is much simpler to create systems which display block-diagonal

structure with only a few interactions than systems with many components

catalysing each other. Therefore block-diagonal structures are frequently

observed and are very important for natural phenomena.

Finally, let us recall attention to the point made in the introduction nu-

merically it is known that parasites may destroy stable cluster states. Our

results complement the picture by the rigorously proved fact that even pure

cluster states may turn unstable if they become two large. This implies that

the hypercycle although it has some very preferable properties (see the be-

ginning of the introduction) on the other hand it has an inherent instability

behavior which may be an obstruction to the evolution of large biological

systems.
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7. Appendix A: Proof of Lemma 2.2

We prove Lemma 2.2 in this appendix.

(1). Recall that L0 = ∆ − 1 + pwp−1. It is easy to check that w
′
e0 ∈

Ker (L). All we need to show is that the dimension of Ker (L) is at most 1.

To this end, let φ ∈ Ker (L). We first show that the nonlocal term vanishes.
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In fact, summing all the equations together, we obtain

∆(
N∑

j=1

φj) − (
N∑

j=1

φj) + pwp−1(
N∑

j=1

φj) − p(1 − η)

β0η + 1 − η

∫
R wp−1(

∑N
j=1 φj)∫

R wp
wp = 0.

That is

∆(
N∑

j=1

φj − cw) − (
N∑

j=1

φj − cw) + pwp−1(
N∑

j=1

φj − cw) = 0,
(7.1)

where

c =
p(1 − η)

β0η + 1 − η

∫
R wp−1(

∑N
j=1 φj)∫

R wp
.

By Lemma 4.1 of [49]
N∑

j=1

φj − cw ∈ Ker (L0).

So we have ∫
R

wp−1(
N∑

j=1

φj − cw) = 0.

Substituting this into (7.1) we get

∫
R

wp−1
N∑

j=1

φj = 0,

since
p(1 − η)

β0η + 1 − η
�= 1.

Thus the nonlocal term vanishes and we obtain the following system of

equations

∆φi − φi + wp−1φi + (p − 1)
N∑

j=1

k̂ijw
p−1φj = 0, i = 1, ..., N.

After diagonalizing k̂ij, we obtain

∆φi − φi + wp−1φi + (p − 1)σwp−1φi = 0 (7.2)

where σ = e
2πj

√−1
N , j = 1, ..., N .

Consider the following eigenvalue problem

(EV P )

⎧⎨
⎩ φ

′′ − φ + µwp−1φ = 0,

φ ∈ H1(R).
(7.3)
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It is known (see Lemma 4.1 of [49]) that (7.3) admits the following set of

eigenvalues

µ1 = 1, µ2 = p, µ3 > p.

Since σ is complex for j = 1, ..., N −1 , this implies φi = 0, i = 1, ..., N −1.

Together with the fact that
∑N

i=1 φi = 0, we conclude that φi = 0, i = 1, ..., N .

In conclusion, we have proved that except for one i ∈ {1, . . . , N}, where

φi ∈ Ker (L0), for all other i ∈ {1, . . . , N}, φi = 0. This implies that the

dimension of L is at most 1.

This finishes the proof of (1).

(2). To show that L is invertible from K⊥,1
0 → K⊥,2

0 , we just need to show

that the conjugate operator of L – denoted by L∗ – has the kernel K0. In

fact, let φ ∈ ker(L∗). Then we have

∆φi − φi + wp−1φi + (p − 1)wp−1
N∑

j=1

k̂jiφj

− p(1 − η)

N(β0η + 1 − η)

∫
R wp ∑N

i=1 φi(1 +
∑N

j=1 k̂ji)∫
R wp

wp−1 = 0, i = 1, ..., N.

Summing all the equation together, we have

∆
N∑

i=1

φi − φi + pwp−1
N∑

i=1

φi − p(1 − η)

β0η + 1 − η

∫
R wp ∑N

i=1 φi∫
R wp

wp−1 = 0.
(7.4)

Multiplying (7.4) by w and then integrating over R, we obtain

(1 − p(1 − η)

β0η + 1 − η
)
∫

R
wp

N∑
i=1

φi = 0.

Since p(1−η)
β0η+1−η

�= 1, we have that

∫
R

wp
N∑

i=1

φi = 0.

That is the nonlocal term vanishes. The rest of the proof of Theorem 2.1 is

similar to (1) since spec(k̂ij) = spec(k̂ji).

�
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8. Appendix B: Proof of Lemma 4.6

In this appendix, we show how problem (3.2) can be reduced to (4.16).

Let AFB be defined by (4.15). An important property of AFB is the fol-

lowing integral property, whose proof can be found in [47]:

A+1FB+1

⎧⎪⎪⎨
⎪⎪⎩

a1, a2, ..., aA, c, ;

z

b1, b2, ..., bB, d ;

⎫⎪⎪⎬
⎪⎪⎭ (8.1)

=
Γ(d)

Γ(c)Γ(d − c)

∫ 1

0
tc−1(1 − t)d−c−1

AFB

⎧⎪⎪⎨
⎪⎪⎩

a1, a2, ..., aA ;

tz

b1, b2, ..., bB ;

⎫⎪⎪⎬
⎪⎪⎭ dt.

Let

f(λ) =
2(1 − η)

η
√

1 + τλ + 1 − η

and w be the unique solution of (1.6). It is easy to see that

w
′
= −

√
w2 − 2

p + 1
wp + 1.

Let us first solve the problem

∆φ0 − φ0 + pwp−1φ0 = wp + λφ0, φ0 ∈ H2(R). (8.2)

Since w is an even function, we may assume that φ0 is an even function as

well. Let us denote the variable by t. Note that φ0 is unique.

Set

P =
√

1 + λ,

where we take the principal branch of
√

1 + λ.

Then it is easy to see that problem (3.2) becomes

1

f(λ)
=

∫
R wp−1φ0∫

R wp
=

∫ +∞
0 wp−1φ0dt∫ +∞

0 wpdt
. (8.3)

Let us first set

φ0 = wP G.

Then by some simple computations, G satisfies

d2G

dt2
+ 2P

w
′

w

dG

dt
+ (p − P

p + 1
(1 + 2P ))wp−1G = wp−P . (8.4)
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Next we perform the following change of variables

z =
2

p + 1
wp−1. (8.5)

Note that w(0) = (p+1
2

)
1

p−1 and so z is a homeomorphism from [0, +∞] to

[0, 1].

(We remark that here we take a different transformation as in [12]. Our

transformation can be considered as a quadratic transformation for hyper-

geometric functions.)

By some lengthy computations, we obtain the following equation for G(z):

z(1 − z)G
′′

+ (c − (a + b + 1)z)G
′ − abG =

1

(p − 1)2
(
p + 1

2
)

p−P
p−1 z

p−P
p−1

−1

(8.6)

where

a =
P + α

p − 1
, b =

2α − (p + 1)

2(p − 1)
, c = 1 +

2P

p − 1
. (8.7)

To solve (8.6), we take a power series

G(z) = zs
+∞∑
k=0

ckz
k

and substitute it into (8.6). We obtain that

+∞∑
k=0

ckz
s+k−1(s + k)(s + k − 1 + c)

−
+∞∑
k=1

ckz
s+k(s + k + a)(s + k + b) =

1

(p − 1)2
(
p + 1

2
)

p−P
p−1 z

p−P
p−1

−1.

So

s − 1 =
p − α

p − 1
− 1, c0s(s − 1 + c) =

1

(p − 1)2
(
p + 1

2
)

p−P
p−1 ,

ck(s + k)(s + k − 1 + c) = ck−1(s + k − 1 + a)(s + k − 1 + b).

By regrouping the coefficients, we have that

G(z) =
1

p2 − P 2
(
p + 1

2
)

p−P
p−1 z

p−P
p−1

3F2

⎧⎪⎪⎨
⎪⎪⎩

1, 1
2
, 2p

p−1
;

z
p−P
p−1

+ 1, p+P
p−1

+ 1 ;

⎫⎪⎪⎬
⎪⎪⎭ .

(8.8)
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Now we can compute ∫ +∞

0
wp−1φ0 =

∫ 1

0
wp−1+P Gdt

=
p + 1

2(p − 1)

∫ 1

0
wp−1+P−p+1G(z)(1 − z)−

1
2 dz

=
(p + 1)

2(p − 1)(p2 − P 2)
(
p + 1

2
)

p
p−1

×
∫ 1

0
z

p
p−1 (1 − z)−

1
2 3F2

⎧⎪⎪⎨
⎪⎪⎩

1, 1
2
, 2p

p−1
;

z
p−P
p−1

+ 1, p+P
p−1

+ 1 ;

⎫⎪⎪⎬
⎪⎪⎭ dz.

By (8.1), we obtain that ∫ +∞

0
wφ0dt

=
p + 1

2(p − 1)(p2 − P 2)
(
p + 1

2
)

p
p−1

Γ( p
p−1

+ 1)Γ(1
2
)

Γ( p
p−1

+ 3
2
)

× 4F3

⎧⎪⎪⎨
⎪⎪⎩

1, 1
2
, 2p

p−1
, p

p−1
+ 1 ;

1
p−P
p−1

+ 1, p+P
p−1

+ 1, p
p−1

+ 3
2

;

⎫⎪⎪⎬
⎪⎪⎭ . (8.9)

On the other hand, it is easy to compute that∫ +∞

0
wpdt =

p + 1

2(p − 1)

∫ 1

0
wp−p+1(1 − z)−

1
2 dz

=
p + 1

2(p − 1)
(
p + 1

2
)

p
p−1

−1
Γ( p

p−1
)Γ(1

2
)

Γ( p
p−1

+ 1
2
)
. (8.10)

By (8.9), (8.10) and (8.3), we obtain (4.16).

�
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