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Abstract. Numerical computations often show that the Gierer-Meinhardt
system has stable solutions which display patterns of multiple interior
peaks (often also called spots). These patterns are also frequently ob-
served in natural biological systems. It is assumed that the diffusion
rate of the activator is very small and the diffusion rate of the inhibitor
is finite (this is the so-called strong-coupling case). In this paper, we
rigorously establish the existence and stability of such solutions of the
full Gierer-Meinhardt system in two dimensions far from homogeneity.
Green’s function together with its derivatives plays a major role.

1. Introduction

In this paper, we continue our study of the Gierer-Meinhardt system (see

[14]) which models biological pattern formation. Suitably rescaled, this sys-

tem takes the form

(GM)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

At = ε2∆A − A + A2

H
, A > 0 in Ω,

τHt = D∆H − H + ξεA
2, H > 0 in Ω,

∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω,

where

ξε =
2π

ε2 log 1
ε

∫
R2 w2(y) dy

(1.1)

and w is the unique solution of the problem{
∆w − w + w2 = 0, w > 0 in R2,
w(0) = maxy∈R2 w(y), w(y) → 0 as |y| → ∞.

(1.2)

The unknowns A = A(x, t) and H = H(x, t) represent the concentrations of

the biochemicals called activator and inhibitor at a point x ∈ Ω ⊂ R2 and
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at a time t > 0, respectively; ε, τ,D are positive constants; ∆ :=
∑2

j=1
∂2

∂x2
j

is

the Laplace operator in R2; Ω is a smooth bounded domain in R2; ν(x) is

the outer normal at x ∈ ∂Ω.

Let us first put the Gierer-Meinhardt system in its proper historical per-

spective. In 1957, Turing [43] proposed a mathematical model for mor-

phogenesis, which describes the development of complex organisms from a

single cell. He speculated that localized peaks (which are sometimes called

spots) in the concentration of a chemical substance, known as an inducer

or morphogen, could be responsible for a group of cells developing differ-

ently from the surrounding cells. He then demonstrated, with linear analysis

around constant states, how a nonlinear reaction diffusion system could pos-

sibly generate such isolated peaks. Later in 1972, Gierer and Meinhardt [14]

demonstrated the existence of such solutions numerically for what was later

termed the Gierer-Meinhardt system, which is a simple system for explaining

complex patterns and serves as a reasonably good model for many biological

systems such as multicellular tissues or cells. See also the monography [29].

The theory has also very successfully been applied to beautiful patterns on

sea shells [30].

In particular, numerical studies by Gierer and Meinhardt and more re-

cently by Holloway [19] have revealed that when ε is small and D is finite,

(GM) seems to have stable stationary solutions with the property that the

activator concentrates around a finite number of points in Ω. Moreover, as

ε → 0 the pattern exhibits a “point condensation phenomenon”. By this

we mean that the activator concentrates in narrower and narrower regions

of size O(ε) around these points and eventually shrinks to the set of points

itself as ε → 0. Furthermore, the maximum of the inhibitor diverges to +∞.

Note that in contrast the typical size of structures for the inhibitor is of the

order log 1
ε
. The presence of these two different length scales is the main

reason why the analysis becomes difficult and we have to be very careful in

choosing good approximations to the solution.

One issue in pattern formation has been pattern selection, in particular the

issue of “stripes versus spots”. Our result gives an example of a system where
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spots are stable and therefore are a preferred pattern. There are some results

based on nonlinear analysis close to homogeneous solutions [10], [25]. In this

paper we present a nonlinear analysis close to solutions which are far from

homogeneity. More precisely, we prove existence and stability of solutions

with multiple spots. To the best of our knowledge, this is the first study of its

kind for a full reaction-diffusion in a two-dimensional bounded domain. We

point out that the main idea of the paper, namely to take H ≡ 1 to leading

order in ε, simply does not work in higher space dimensions (N > 2).

The stationary equation for (GM) is the following system of elliptic equa-

tions: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2∆A − A + A2

H
= 0, A > 0 in Ω,

D∆H − H + ξεA
2 = 0, H > 0 in Ω,

∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω.

(1.3)

Generally speaking system (1.3) is quite difficult to solve since it does

neither have a variational structure nor a priori estimates. One way to study

(1.3) is to examine the so-called shadow system. Namely, we let D → +∞
first. It is known (see [26], [36], [39], [45]) that the study of the shadow

system amounts to the study of the following single equation for p = 2:⎧⎨
⎩

ε2∆u − u + up = 0, u > 0 in Ω,

∂u
∂ν

= 0 on ∂Ω.
(1.4)

Equation (1.4) has a variational structure and has been studied by nu-

merous authors. It is known that equation (1.4) has both boundary spike

solutions and interior spike solutions. For boundary spike solutions, see [5],

[9], [15], [17], [24], [34], [35], [36], [45], [50], [52], and the references therein.

(When p = N+2
N−2

, N ≥ 3, boundary spike solutions of (1.4) have been studied

in [1], [2], [3], [12], [13], [32], etc.) For interior spike solutions, please see [4],

[6], [18], [23], [46], [47], [51]. For stability of spike solutions, please see [20],

[37], [48] and [49].

In the case when D is finite and not large (this is the so-called strong

coupling case), there are only very few results available. For N = 1, one can

construct spike solutions for all D ≥ 1. See [42]. The stability problem has

recently been solved for N = 1 [21]. (See [8], [33], and [39] for the study of
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related systems.) In [53], we first constructed single interior spike solutions

to (1.3) in the case N = 2 and D = 1. Note that D = 1 is set to simplify

the presentation but that the proof works for any fixed positive constant D.

Therefore for the rest of the paper we assume that D = 1. We establish the

first rigorous result about existence and stability of multiple-spike solutions

for the full Gierer-Meinhardt system (not the shadow system!) in higher

dimensions. We would like to emphasize that our analysis is around the

solutions which show the multiple-spot pattern and not just around constant

solutions. To state the result, it is necessary to introduce the following

notation.

Let G(P, x) be Green’s function of −∆ + 1 under the Neumann boundary

condition, i.e., G satisfies⎧⎨
⎩

−∆G + G = δP in Ω,

∂G
∂ν

= 0 on ∂Ω,

where δP is the Dirac delta distribution at a point P ∈ Ω. It is well-known

that

G(P, x) = K(|x − P |) − H(P, x),

where K(|x|) is the fundamental solution of −∆ + 1 in R2 with singularity

at 0 and H(P, x) is C2 in Ω. It is also known that

K(r) = − 1

2π
log r − µ + O(r) as r → 0. (1.5)

We denote by h(P ) := H(P, P ) the Robin function.

In [53], the following theorem is proved, which gives existence of solutions

with one spot.

Theorem A Let P0 ∈ Ω be a nondegenerate critical point of h(P ). Then for

ε sufficiently small and D = 1, problem (1.3) has a solution (Aε, Hε) with

the following properties:

(1) Aε(x) = w(x−Pε

ε
)+o(1) uniformly for x ∈ Ω̄, where Pε → P0 as ε → 0,

w is the unique solution of the problem (1.2).

(2) Hε(x) = 1 + O( 1
| log ε|) uniformly for x ∈ Ω̄.

(3) ξ−1
ε = ( 1

2π
+ o(1))ε2 log 1

ε

∫
R2 w2.
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The main goals of this paper are twofold: first we construct equilibrium

solutions with K interior peaks (interior K−peaked solutions), second we

establish the stability of such solutions.

First let

P = (P1, ..., PK) ∈ Ω × ... × Ω ∩ {|Pi − Pj| > δ > 0 for i �= j}.

Then we define

F (P) =
K∑

k=1

H(Pk, Pk) −
∑

i,j,=1,...,K,i �=j

G(Pi, Pj), (1.6)

Fj(P) = H(Pj, Pj) −
∑

i=1,...,K,i �=j

G(Pi, Pj), j = 1, ..., K, (1.7)

M(P) = (
∂2

∂P∂P
F (P)), (1.8)

where

∂

∂Pk,i

H(Pk, Pk) :=
∂

∂xi

H(x, Pk)

∣∣∣∣∣
x=Pk

, k = 1, . . . , K, i = 1, 2

in contrast with the usual definition.

(We arrange P such that P = (P1,1, P1,2, P2,1, P2,2, ...., PK,1, PK,2)).

Our first result is about existence of solutions with multiple spots.

Theorem 1.1. Suppose that Ω is convex. Let P0 = (P 0
1 , ..., P 0

K) ∈ ΩK be

a nondegenerate critical point of F (P). Then for ε sufficiently small and

D = 1, problem (1.3) has a solution (Aε, Hε) with the following properties:

(1) Aε(x) =
∑K

j=1 w(
x−P ε

j

ε
)+o(1) uniformly for x ∈ Ω̄, P ε

j → P 0
j , j = 1, ...K

as ε → 0, and w is the unique solution of the problem (1.2).

(2) Hε(x) = 1 + O( 1
| log ε|) uniformly for x ∈ Ω̄.

(3) ξ−1
ε = 1

2π
ε2 log 1

ε

∫
R2 w2.

Remark: It is a technical assumption that Ω is convex. In fact, from the

proofs, it is easy to see that we just need that Fj(P0) < 0, j = 1, ..., K, which

is satisfied when Ω is convex. (See Section 2 and the Appendix.)

Our second result is on stability:
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Theorem 1.2. Let P0 and (Aε, Hε) be defined as in Theorem 1.1. Then for

ε and τ sufficiently small (Aε, Hε) is stable if all eigenvalues of the matrix

M(P) are negative. (Aε, Hε) is unstable if one of the eigenvalues of the

matrix M(P) is positive.

Remark: In a general domain, the function F (P) always has a global max-

imum point P0 in Ω × ... × Ω. (A proof of this fact can be found in the

Appendix.) At such a point P0, the matrix M(P0) is semi-negative definite.

Thus our assumptions in Theorems 1.1 and Theorems 1.2 are reasonable

ones.

Theorem 1.1 is proved by following the strategy in [53]. Namely, we use

the Liapunov-Schmidt reduction method.

But in the multiple spot case great care is needed to handle their inter-

action. We shall frequently consult [53] and point out the new ideas and

extensions which are needed.

Theorem 1.2 is completely new and can be proved by studying the small

eigenvalues and the large eigenvalues of the linearized operator separately.

The proof involves a lot of computations.

Now we lay down the basic ideas of the proof of Theorem 1.1.

As ε → 0, if we assume that Hε(x) → 1 in L∞
loc(Ω), we have that Aε(x) ∼∑K

j=1 w
(

x−P ε
j

ε

)
in H2

loc(R
2), where w satisfies (1.2). (Here and thereafter

A ∼ B means A = (1 + o(1))B as ε → 0 in the corresponding norm.)

To ensure that Hε(Pj) ∼ 1 for j = 1, . . . , K we note that

Hε(P
ε
j ) =

∫
Ω

G(P ε
j , x)ξεA

2
ε(x)dx

= ε2ξε

∫
Ωε

G(P ε
j , P

ε
j + εy)A2

ε(P
ε
j + εy)dy

= ε2ξε

K∑
k=1

∫
Ωε

G(P ε
j , P

ε
k + εy)w2(y)dy(1 + o(1))

(by (1.5), K(r) = − 1
2π

log r − µ + O(r) as r → 0; K(r) is bounded for

r ∈ [r1, r2] for r1, r2 > 0; see also Lemma 1.3 below)

=
1

2π
ξεε

2 log
1

ε

∫
R2

w2(y) dy(1 + o(1)).
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This suggests that we should choose ξε as in (1.1). Hence we should look for

solutions of (1.3) with the following properties

Aε(x) =
K∑

i=1

w
(

x − P ε
i

ε

)
+ φε(y), φε ∼ 0,

where |P ε
i − P 0

i | = o(1) as ε → 0, i = 1, 2 . . . , K,

Hε(x) = 1 + ψε(x), ψε ∼ 0.

We first recall the following definition from [53]: Suppose that W ∈
H1(R2). The projection PUW is defined by PUW = W − QUW , where

QUW satisfies ⎧⎨
⎩

∆QUW −QUW = 0 in U,

∂QUW
∂ν

= ∂W
∂ν

on ∂U
(1.9)

for an open set U ⊂ R2.

The proof of Theorem 1.1 consists of the following steps:

A)-Choose good approximate solutions.

For ε small enough and µ < 0 with |µ| small we first construct a particular

radially symmetric solution (Aε,µ(x), Hε,µ(x), ξε,µ) of the following problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2∆A − A + A2

(H−µ)
= 0, x ∈ R2,

∆H − H + ξε,µA
2 = 0, x ∈ R2,

H(0) = 1.

(1.10)

Next we choose µ := µε,j(P), where

µε,j(P) = QΩ(Hε,µ(· − Pj))(Pj) −
∑
k �=j

PΩ(Hε,µ(· − Pk))(Pj), j = 1, ..., K.
(1.11)

(The assumption that Ω is convex is needed to ensure that µ < 0.)

Note that µ ∼ 1
log 1

ε

. Therefore µ is small but not algebraically small in

ε and for our approach to work we need to construct an approximation to

(A,H) as in (1.10). It is simply not good enough to try the first guess which

comes to mind: setting µ = 0.

From this first approximation to the solution (A,H) in R2 we construct

an approximation to a K-spike solution in Ω in three steps: translation,

projection, and superposition. Translation locates the j-th spike near Pj.

Then projection produces Neumann boundary conditions, where the function
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after projection is still very close to a solution. Finally superposition gives

a multiple spike approximation out of a single spike approximation.

First we introduce the translation (Âε,j, Ĥε,j) to the point Pj ∈ Ω of the

solution to (1.10):

Âε,j(x) := Aε,µε,j(P)(x − Pj), Ĥε,j(x) := Hε,µε,j(P)(x − Pj).

Then we project the translated approximations

Aε,j(y) = PΩεÂε,j(εy)

and

Hε,j(x) = PΩĤε,j(x),

where PU was defined in (1.9) and

Ωε = {y ∈ R2|εy ∈ Ω}.
Here we have used different scalings for activator and inhibitor, respec-

tively, since then both resulting equations are independent of ε and the

ε-dependence only appears in the scaling of the domain Ωε. Therefore one

can formally pass to a limit in both equations. Note that also the approx-

imate solution for fixed P ∈ ΩK converges to a limit as ε → 0 in the norm

H2(Ωε) × W 2,t(Ω) for some t > 1. Later, in the derivation of Lemma 3.4 we

will use these properties to construct a solution by applying the contraction

mapping principle for a fixed operator in varying domains. We found that

this is more transparent than using operators which do not have a limit. (See

also Step B)- below).

Finally, we choose our approximate solutions by superposing the projected

and translated approximations:

Aε,P(y) :=
K∑

j=1

Aε,j(y) (1.12)

and

Hε,P(x) :=
K∑

j=1

Hε,j(x) (1.13)

for

x ∈ Ω, y ∈ Ωε = {y ∈ R2|εy ∈ Ω}.
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the norm H2(Ωε) × W 2,t(Ω) for some t > 1. (See Step B)- below).

For later use we introduce the following notation: Translation plus super-

position (without projection) is denoted by

Âε,P(x) :=
K∑

j=1

Âε,j(x), Ĥε,P(x) :=
K∑

j=1

Ĥε,j(x),

ξε,j := ξε,µε,j
.

The error of the projection of the j-th translation is denoted by

ϕε,j(y) := Âε,j

(
y

ε

)
− Aε,j(y), ψε,j(x) := Ĥε,j(x) − Hε,j(x).

The sum of the errors of all K projections is denoted as follows:

ϕε,P(y) := Âε,P

(
y

ε

)
− Aε,P(y), ψε,P(x) := Ĥε,P(x) − Hε,P(x).

It will be proved that ϕε,P(y) = e.s.t. in H2(Ωε) and ψε,P = O
(

1
log 1

ε

)
in

L∞(Ω).

We will analyze Aε,P and Hε,P in Section 2.

B)-The idea now is to look for a solution of (1.3) of the form

Aε(y) = Aε,P(y) + φ(y), Hε(x) = Hε,P(x) + ψ(x).

We will show that, provided P is properly chosen, φ and ψ are negligible.

We now write system (1.3) in operator form.

For any smooth and open set U ⊂ R2, let

W 2,t
N (U) =

{
u ∈ W 2,t(U)

∣∣∣∣∣∂u

∂ν
= 0 on ∂U

}
, H2

N(U) = W 2,2
N (U).

For A(y) ∈ H2
N(Ωε), H(x) ∈ W 2,t

N (Ω), where 1 < t < 1.1, we set

Sε

(
A
H

)
=

(
S1(A,H)
S2(A,H)

)
,

where S1(A,H) = ∆yA − A + A2/H, S2(A,H) = ∆xH − H + ξεA
2. (We

need t > 1 so that the Sobolev embedding W 2,t(Ω) ⊂ L∞(Ω) is continuous.)

Then solving equation (1.3) is equivalent to

Sε

(
A
H

)
= 0, A ∈ H2

N(Ωε), H ∈ W 2,t
N (Ω). (1.14)
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We now substitute A(y) = Aε,P(y) + φ(y), H = Hε,P(x) + ψ(x) into

(1.14). The system determining φ and ψ can be written as

S ′
ε

(
Aε,P

Hε,P

) [
φ
ψ

]
+

(
E1

E2

)
+

(
O(‖φ‖2

L2(Ωε)
+ ‖ψ‖2

Lt(Ω))

O(‖φ‖2
L2(Ωε)

+ ‖ψ‖2
Lt(Ω))

)
= 0,

where Ei, i = 1, 2 denote the error terms. For these we need very good

estimates. Much of Section 2 is devoted to this analysis.

It is then natural to try to solve the equations for (φ, ψ) by a contraction

mapping argument. The problem is that the linearized operator S ′
ε

(
Aε,P

Hε,P

)

is not uniformly invertible with respect to ε.

Therefore, we now replace the equation above by

S ′
ε

(
Aε,P

Hε,P

) [
φ
ψ

]
+

(
E1

E2

)
+

(
O(‖φ‖2

L2(Ωε)
+ ‖ψ‖2

Lt(Ω))

O(‖φ‖2
L2(Ωε)

+ ‖ψ‖2
Lt(Ω))

)
=

(
vε,P

0

)
,

(1.15)

where vε,P lies in an appropriately chosen approximate cokernel of the linear

operator

Lε := ∆y − 1 + 2Aε,PH−1
ε,P − 2

∫
Ωε

Aε,P·∫
Ωε

A2
ε,P

A2
ε,P,

Lε : H2(Ωε) → L2(Ωε)

and φ is orthogonal in L2(Ωε) to the corresponding approximate kernel of

Lε.

C)-We solve (1.15) for (φ, ψ) in the orthogonal complement of the approx-

imate kernel. To this end, we need a detailed analysis of the operators Lε

and S
′
ε. This together with the contraction mapping argument is done in

Section 3.

D)-In the last step, for P ∈ ΩK we study a vector field P → Wε(P) such

that Wε(P) = 0 implies vε,P = 0 (and hence solutions of the system (1.3)

can be found). To discuss the zeros of P → Wε(P) we need the estimates

for the error terms E1 and E2 given in Section 3.

We discover that under the geometric condition described in Theorem 1.1

there is a point Pε in a small neighborhood of P0 ∈ ΩK such that Wε(P
ε) = 0.

This will complete the proof of Theorem 1.1 and is done in Section 4.
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Throughout this paper, we always assume that |P−P0| < r for some fixed

small number r > 0. We shall frequently use the following technical lemma.

Lemma 1.3. Let u be a solution of

∆u − u + f = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.

Suppose

|f(x)| ≤ ηe−
α|x−P |

ε

for some α > 0. Then we have

|u(P )| ≤ C1ηε2 log
1

ε
(1.16)

and

|u(P ) − u(x)| ≤ C2ηε2 log

( |x − P |
ε

+ 1

)
, (1.17)

where C1 > 0, C2 > 0 are generic constants (independent of ε > 0 and

η > 0).

Proof: By the representation formula we calculate

u(x) =
∫
Ω

G(x, z)f(z)dz

and

u(P ) =
∫
Ω

G(P, z)f(z)dz = ε2
∫
Ωε,P

G(P, P + εy)ηe−α|y|dy

≤ C1ηε2 log
1

ε
.

Similarly we can obtain (1.17).

�
To establish stability and prove Theorem 1.2 the eigenvalues and eigen-

functions of the linearized operator of (1.3) have be calculated and their sign

has to be determined.

For large eigenvalues by taking the limit ε → 0, we can reduce the problem

to a nonlocal eigenvalue problem (NLEP) which has been studied by Wei [49].

This is done in Section 5.

For small eigenvalues fine calculations are needed as the interplay of the

two equations of the Gierer-Meinhardt system enters into the analysis in a

very intricate way. In particular, the different spots interact with each other
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and with the boundary. By representing the eigenfunctions with respect to

the new approximate kernel Knew
ε,Pε of the linearized operator we manage to

reduce this problem to the positive definiteness of the matrix M(P). This

analysis is carried out in Section 6.

To simplify our notations, we use e.s.t. to denote exponentially small terms

in the corresponding norms, i.e. e.s.t. = O(e−d/ε) for some d > 0 (indepen-

dent of ε).

Acknowledgements. Both authors are supported by Stiftung Volkswa-

genwerk (RiP Program at Oberwolfach) and by RGC of Hong Kong/DAAD

of Germany (Hong Kong–Germany Joint Research Collaboration). The re-

search of JW is supported by an Earmarked Grant from RGC of Hong Kong.

MW thanks the Department of Mathematics at CUHK for their kind hospi-

tality.

2. Construction of the Approximate Solutions

In this section, we study the approximate solutions.

We first have

Lemma 2.1. (Lemma 2.1 of [53]) The operator

L := ∆ − 1 + 2w − 2

∫
R2 w·∫
R2 w2

w2

with w defined in (1.4) is an invertible map from H2
r (R2) to L2

r(R
2), where

H2
r (R2) (L2

r(R
2)) is the subset of those functions of H2(R2) (L2

r(R
2)) which

are radially symmetric.

We next have

Lemma 2.2. For ε << 1 and µ < 0, |µ| << 1, there exists a unique radially

symmetric solution (Aε,µ, Hε,µ, ξε,µ) of the following parametrized equation⎧⎪⎪⎨
⎪⎪⎩

ε2∆A − A + A2

H−µ
= 0, x ∈ R2,

∆H − H + ξε,µA
2 = 0, x ∈ R2,

A(x) = A(|x|), H(x) = H(|x|), H(0) = 1.

(2.1)

Moreover, (Aε,µ, Hε,µ) is C1 in µ with respect to the norm of H2(R2) ×
W 2,t(R2).
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Proof: A proof based on the contraction mapping principle is given as Step

1 in [53]. �

Remarks: 1. In Lemma 2.2, we need that µ < 0, since otherwise H − µ

may not be well-defined.

2. From the proof of Lemma 2.2 by the contraction mapping principle the

following estimates are immediate:

A = w

(
1 + O(|µ|) + O

(
1

log 1
ε

))
in H2

loc(R
2),

H = 1 + O

(
1

log 1
ε

)
in W 2,t

loc (R
2),

ξε,µ = ξε

(
1 + O(|µ|) + O

(
1

log 1
ε

))

as ε, µ → 0 are immediate.

We now choose different µ for different Pj, j = 1, ..., K.

For each j = 1, ..., K, we define µ = µε,j by

µ = Hε,µ(0) −
K∑

k=1

PΩ(Hε,µ(· − Pk))(Pj), (2.2)

which is equivalent to (1.11).

Note that, using Remark 2 after Lemma 2.2, this is also equivalent to

µ =
∫

R2

(
K(|z|) −

K∑
k=1

G(Pk, Pj + z)

)
ξε,µA

2
ε,µ (z) dz

=
∫

R2

⎛
⎝H(Pj, Pj + z) − ∑

k �=j

G(Pk, Pj + z)

⎞
⎠ ξε,µA

2
ε,µ(z) dz

= Fj(P)ξε,µε
2

∫
R2

A2
ε,µ(εy)dy + ξε,µ

∫
R2

O(ε3|y|)A2
ε,µ(εy)dy

= Fj(P)ξε,µε
2

∫
R2

w2(y) dy(1 + O(|µ| + ε)).

By the implicit function theorem (2.2) has a unique solution µε,j < 0 with

|µε,j| small.

We further calculate

µε,j =
2π

log 1
ε

Fj(P)

(
1 + O

(
1

log 1
ε

))
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and

ξε,j = ξε

(
1 + O

(
1

log 1
ε

(|Fj(P)| + 1)

))
(2.3)

as ε → 0.

We have for |x| ≥ δ:

Ĥε,j(x) =

∫
R2 K(|x − εy|)Â2

ε,µ(εy) dy∫
R2 K(|εy|)Â2

ε,µ(εy) dy

=
1

log 1
ε

[K(|x − Pj|)
(

1 + O

(
1

log 1
ε

))
] as ε → 0,

where µ = µε,j.

We note that ϕε,j(y) = Âε,j(y) − PΩεÂε,j(y) satisfies

∆yϕε,j − ϕε,j = 0 in Ωε,

∂ϕε,j

∂ν
=

∂Âε,j

∂ν
= O(e−d(Pj ,∂Ω)/ε) in L2(∂Ωε).

Hence,

‖ϕε,j‖H2(Ωε) = O(e−d(Pj ,∂Ω)/ε). (2.4)

This implies

‖ϕε,P‖H2(Ωε) = e.s.t.. (2.5)

We further calculate for |x − Pj| ≥ δ:

PΩĤε,j(x) =

∫
Ωε,P

G(x, Pj + εy)Â2
ε,j(εy) dy∫

R2 K(|εy|)Â2
ε,µ(εy) dy

(1 + O(ε))

=
1

log 1
ε

[K(|x − Pj|) − H(x, Pj)]

(
1 + O

(
1

log 1
ε

))
.

This implies

ψε,P(x) =
1

log 1
ε

⎡
⎣ K∑

j=1

H(x, Pj)

⎤
⎦ (

1 + O

(
1

log 1
ε

))
. (2.6)

By (2.5) and (2.6), we see that the term involving ϕε,P is negligible in com-

parison with ψε,P. We will use this in the later sections.
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The reason for choosing Aε,µ and Hε,µ as we did lies in the following two

estimates:

S1(Aε,P, Hε,P) = ∆yAε,P − Aε,P +
A2

ε,P

Hε,P

=
A2

ε,P

Hε,P

−
K∑

j=1

Â2
ε,j

Ĥε,j − µε,j

=
(Âε,P − ϕε,P)2

Ĥε,P − ψε,P

−
K∑

j=1

Â2
ε,j

Ĥε,j − µε,j

=
(
∑K

j=1(Âε,j − ϕε,j))
2∑K

k=1(Ĥε,k − ψε,k)
−

K∑
j=1

Â2
ε,j

Ĥε,j −QΩĤε,j(Pj) +
∑

k �=j PΩĤε,k(Pj)

=
(
∑K

j=1(Âε,j − ϕε,j))
2∑K

k=1(Ĥε,k − ψε,k)
−

K∑
j=1

Â2
ε,j

Ĥε,j − ψε,j(Pj) +
∑

k �=j(Ĥε,k(Pj) − ψε,k(Pj))

= e.s.t. +
K∑

j=1

(Âε,j)
2

×
⎧⎪⎨
⎪⎩

[
K∑

k=1

(Ĥε,k − ψε,k)

]−1

−
⎡
⎣Ĥε,j − ψε,j(Pj) +

∑
k �=j

(Ĥε,k(Pj) − ψε,k(Pj))

⎤
⎦
−1

⎫⎪⎬
⎪⎭

= e.s.t. +

(
1 + O

(
1

log 1
ε

))
K∑

j=1

(Âε,j)
2

+
K∑

j=1

(Âε,j)
2∑K

k=1(Ĥε,k(Pj))2

⎡
⎣ K∑

k=1

(ψε,k − ψε,k(Pj)) −
∑
k �=j

(Ĥε,k − Ĥε,k(Pj))

⎤
⎦

for y ∈ Ωε.

Now we calculate

S2(Aε,P, Hε,P) = ∆xHε,P − Hε,P + ξεA
2
ε,P

= ξε(Âε,P − ϕε,P)2 − ξε(Âε,P)2

= e.s.t.

for x ∈ Ω.

We have thus obtained
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Lemma 2.3. The following estimates hold:

S1(Aε,P, Hε,P) (2.7)

= e.s.t. +

(
1 + O

(
1

log 1
ε

))
K∑

j=1

(Âε,j)
2

+
K∑

j=1

(Âε,j)
2∑K

k=1(Ĥε,k(Pj))2

⎡
⎣ K∑

k=1

(ψε,k − ψε,k(Pj)) −
∑
k �=j

(Ĥε,k − Ĥε,k(Pj))

⎤
⎦

for y ∈ Ωε and

S2(Aε,P, Hε,P) = e.s.t. (2.8)

for x ∈ Ω.

Hence,

‖S1(Aε,P, Hε,P)‖L2(Ωε) = O

(
ε

log 1
ε

)
, (2.9)

‖S2(Aε,P, Hε,P)‖Lt(Ω) = e.s.t. (2.10)

for any 1 < t < 1.1.

Proof: By direct computation. (See before the statement of Lemma 2.3).

�

3. The Liapunov-Schmidt Reduction Method

This section is devoted to studying the linearized operator defined by

L̃ε,P := S ′
ε

(
Aε,P

Hε,P

)
,

L̃ε,P : H2
N(Ωε) × W 2,t

N (Ω) → L2(Ωε) × Lt(Ω),

where 1 < t < 1.1 is a fixed number.

Set

Kε,P := span

{
∂Aε,P

∂Pj,l

|j = 1, . . . , K, l = 1, . . . , 2

}
⊂ H2

N(Ωε),

Cε,P := span

{
∂Aε,P

∂Pj,l

|j = 1, . . . , K, l = 1, . . . , 2

}
⊂ L2(Ωε),
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Lε := ∆ − 1 + 2Aε,PH−1
ε,P − 2

∫
Ωε

Aε,P·∫
Ωε

A2
ε,P

A2
ε,P

and

Lε,P := π̂ε,P ◦ Lε : K⊥
ε,P → C⊥

ε,P,

where π̂ε,P is the projection in L2(Ωε) onto C⊥
ε,P.

We remark that since Aε,P(y) =
∑K

j=1

(
1 + O

(
1

log 1
ε

))
w

(
y − P ε

j

ε

)
, it is

easy to see that

lε,P := π̂ε,P ◦ (∆ − 1 + 2Aε,P) : K⊥
ε,P → C⊥

ε,P

is an injective and surjective map. For the proof please see the proof of

Propositions 6.1–6.2 in [47].

The following proposition is the key estimate in applying the Liapunov-

Schmidt reduction method.

Proposition 3.1. For ε sufficiently small, the map Lε,P is an injective and

surjective map. Moreover the inverse of Lε,P exists and is bounded uniformly

with respect to ε.

Proof: We will follow the method used in [11], [40], [41], [47] and [50]. We

first show that there exist constants C > 0, ε̄ > 0 such that for all ε ∈ (0, ε̄),

‖Lε,PΦ‖L2(Ωε) ≥ C‖Φ‖H2(Ωε) (3.1)

for all Φ ∈ K⊥
ε,P.

Suppose that (3.1) is false. Then there exist sequences {εk}, {Pk}, and

{φk} with Pk ∈ ΩK , φk ∈ K⊥
εk,Pk

such that

‖Lεk,Pk
φk‖L2(Ωεk

) → 0, (3.2)

‖φk‖H2(Ωεk
) = 1, k = 1, 2, . . . . (3.3)

Namely, we have the following situation

∆yφk − φk + 2Aεk,Pk
H−1

εk,Pk
φk − 2

∫
Ωεk

Aεk,Pk
φk∫

Ωεk
A2

εk,Pk

A2
εk,Pk

= fk,
(3.4)

where

‖fk‖L2(Ωεk
) → 0,

φk ∈ K⊥
εk,Pk

, ‖φk‖H2(Ωεk
) = 1. (3.5)
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We now show that this is impossible. Set Ak = Aεk,Pk
, Ωk = Ωεk

.

Note that

Hεk,Pk
= 1 + o(1) in L∞(Ω),

(∆y − 1 + 2Ak)Ak = A2
k + o(1) in L2(Ωk).

Thus we have

(∆y − 1 + 2Ak)(φk − 2

∫
Ωk

Akφk∫
Ωk

A2
k

Ak) = fk + o(1) in L2(Ωk).

Since the projection of Ak onto Kεk,Pk
is o(1) in H2(Ωk) and the operator

∆y − 1 + 2Ak

is a one-to-one map (with the inverse bounded uniformly with respect to ε)

from K⊥
εk,Pk

to C⊥
εk,Pk

, we have

φk − 2

∫
Ωk

Akφk∫
Ωk

A2
k

Ak = o(1) in H2(Ωk). (3.6)

Multiplying (3.6) by Ak and integrating implies that∫
Ωk

Akφk = 0

and therefore

‖φk‖H2(Ωk) = o(1).

A contradiction !

Thus (3.1) holds and Lε,P is a one-to-one map.

Next we show that Lε,P is also surjective. To this end, we just need to

show that the conjugate of Lε,P (denoted by L∗
ε,P) is injective from K⊥

ε,P to

C⊥
ε,P.

Let L∗
ε,Pφ ∈ C⊥

ε,P, φ ∈ K⊥
ε,P. Namely, we have

∆yφ − φ + 2Aε,PH−1
ε,Pφ − 2

∫
Ωε,P

A2
ε,Pφ∫

Ωε
A2

ε,P

Aε,P ∈ Cε,P. (3.7)

We can assume that ‖φ‖H2(Ωε) = 1.

Multiplying (3.7) by Aε,P and integrating over Ωε, we obtain∫
Ωε

A2
ε,Pφ = o(1)

Hence φ satisfies

∆yφ − φ + 2Aε,PH−1
ε,Pφ + o(1) ∈ Cε,P, φ ∈ K⊥

ε,P
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which implies that ‖φ‖H2(Ωε) = o(1). A contradiction !

Therefore Lε,P is also surjective.

�
We now deal with system (1.14).

The operator L̃ε,P is not uniformly invertible in ε due to the approximate

kernel

Kε,P := Kε,P ⊕ {0} ⊂ H2
N(Ωε) × W 2,t

N (Ω).

We choose the approximate cokernel as follows:

Cε,P := Cε,P ⊕ {0} ⊂ L2(Ωε) × Lt(Ω).

We then define

K⊥
ε,P := K⊥

ε,P ⊕ W 2,t
N (Ω) ⊂ H2

N(Ωε) × W 2,t
N (Ω),

C⊥
ε,P := C⊥

ε,P ⊕ Lt(Ω) ⊂ L2(Ωε) × Lt(Ω).

Let πε,P denote the projection in L2(Ωε)×Lt(Ω) onto C⊥
ε,P. (Here the second

component of the projection is the identity map.) We then show that the

equation

πε,P ◦ Sε

(
Aε,P + Φε,P

Hε,P + Ψε,P

)
= 0

has the unique solution Σε,P =

(
Φε,P(y)
Ψε,P(x)

)
∈ K⊥

ε,P if ε is small enough.

As a preparation in the following two propositions we show the invertibility

of the corresponding linearized operator.

Proposition 3.2. Let Lε,P = πε,P ◦ L̃ε,P. There exist positive constants ε, λ

such that for all ε ∈ (0, ε)

‖Lε,PΣ‖L2(Ωε)×Lt(Ω) ≥ λ‖Σ‖H2(Ωε)×W 2,t(Ω) (3.8)

for all Σ ∈ K⊥
ε,P.

Proposition 3.3. There exists a positive constant ε such that for all ε ∈
(0, ε) the map

Lε,P = πε,P ◦ L̃εP : K⊥
ε,P → C⊥

ε,P

is surjective.
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Proof of Proposition 3.2: This proposition follows from Proposition 3.1.

In fact, suppose that (3.8) is false. Then there exist sequences {εk}, {Pk},
and {Σk} with Pk ∈ ΩK , Σk =

(
φk(y)
ψk(x)

)
∈ K⊥

εk,Pk
such that

‖Lεk,Pk
Σk‖L2(Ωεk

)×Lt(Ω) → 0, (3.9)

‖Σk‖H2(Ωεk
)×W 2,t(Ω) = 1, k = 1, 2, . . . . (3.10)

Namely, we have the following situation

∆yφk − φk + 2Aεk,Pk
H−1

εk,Pk
φk − A2

εk,Pk
H−2

εk,Pk
ψk = fk, ‖fk‖L2(Ωεk

) → 0,
(3.11)

∆xψk − ψk + 2ξεk
Aεk,Pk

φk = gk, (3.12)

where

‖gk‖Lt(Ω) → 0,

φk ∈ K⊥
εk,Pk

, (3.13)

‖φk‖2
H2(Ωεk

) + ‖ψk‖2
W 2,t(Ω) = 1. (3.14)

We now show that this is impossible. Set Ak = Aεk,Pk
, Ωk = Ωεk

, Pk =

(P k
1 , P k

2 , . . . , P k
K), ξk = ξεk

.

We first note that by (3.12) we have

‖ψk‖L∞(Ω) ≤ C

and hence by Lemma 1.3 and Sobolev embedding,

|ψk(x) − ψk(P
k
j )| ≤ C|x − P k

j |α +
1

log 1
ε

log

(
1 +

|x − P k
j |

ε

)

for some α > 0 since t > 1. Thus

‖A2
k(ψk − ψk(P

k
j ))‖L2(Ωk) → 0 in L2(Ωk) as k → ∞

(3.15)

for every j = 1, 2, . . . , K. Moreover by (3.12),

ψk(P
k
j ) =

∫
Ωk

G(P k
j , z)2ξk(Aj,kφk − gk)

= (2 + o(1))ξk log
1

εk

∫
Ωk

Aj,kφk + o(1)
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and so

ψk(P
k
j ) = 2

∫
Ωk

Aj,kφk∫
Ωk

A2
j,k

+ o(1) for j = 1, 2, . . . , K.

Thus we have

Lεk,Pk
φk = o(1) in L2(Ωk), φk ∈ K⊥

εk,Pk
. (3.16)

By Proposition 3.1, ‖φk‖H2(Ωk) = o(1). Hence ψk(Pk) = o(1) and by elliptic

estimates ‖ψk‖W 2,t(Ω) = o(1).

This contradicts the assumption (3.14) and the proof of Proposition 3.2 is

completed. �

Proof of Proposition 3.3: We just need to show that the conjugate op-

erator of Lε,P (denoted by L∗
ε,P) is injective from K⊥

ε,P to C⊥
ε,P. Suppose not.

Then there exist φ ∈ K⊥
ε,P, ψ ∈ W 2,t(Ω) such that

∆yφ − φ + 2Aε,PH−1
ε,Pφ + 2ξεAε,Pψ ∈ C⊥

ε,P,

∆xψ − ψ − A2
ε,PH−2

ε,Pφ = 0,

‖φ‖2
H2(Ωε) + ‖ψ‖2

W 2,t(Ω) = 1.

Similar to the proof of Proposition 3.2, we have

ψ(Pj) = −(1 + o(1))ξε

∫
Ωε

A2
ε,Pφ∫

Ωε
A2

ε,P

and substituting into the equation for φ we obtain

Lε,Pφ + o(1) ∈ C⊥
ε,P, φ ∈ K⊥

ε,P.

By Proposition 3.1, ‖φ‖H2(Ωε) = o(1) and hence ‖ψ‖W 2,t(Ω) = o(1). A con-

tradiction !

�
Now we are in a position to solve the equation

πε,P ◦ Sε

(
Aε,P + φ
Hε,P + ψ

)
= 0. (3.17)

Since Lε,P|K⊥
ε,P

is invertible (call the inverse L−1
ε,P) we can rewrite (3.17) as

(
φ

ψ

)
= Mε,P

(
φ

ψ

)
, (3.18)
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where

Mε,P

(
φ

ψ

)
= −(L−1

ε,P ◦ πε,P)(Sε

(
Aε,P

Hε,P

)
) − (L−1

ε,P ◦ πε,P)Nε,P

(
φ

ψ

)

for
(

φ
ψ

)
∈ H2

N(Ωε) × W 2,t(Ω) and

Nε,P

(
φ

ψ

)
= Sε

(
Aε,P + φ
Hε,P + ψ

)
− Sε

(
Aε,P

Hε,P

)
− S ′

ε

(
Aε,P

Hε,P

) [
φ
ψ

]
.

We now use introduce the shorthand

Σ =

(
φ

ψ

)
.

We are going to show that the operator Mε,P is a contraction on

Bε,δ ≡ {Σ ∈ H2(Ωε) × W 2,t(Ω)|‖Σ‖H2(Ωε)×W 2,t(Ω) < δ}
if δ is small enough. We have by Lemma 2.3, Propositions 3.2 and 3.3

‖Mε,P(Σ)‖H2(Ωε)×W 2,t(Ω) ≤ λ−1(‖πε,P ◦ Nε,P(Σ)‖L2(Ωε)×Lt(Ω)

+

∥∥∥∥∥πε,P ◦ Sε

(
Aε,P

Hε,P

)∥∥∥∥∥
L2(Ωε)×Lt(Ω)

)

≤ λ−1C(c(δ)δ +
ε

log 1
ε

),

where λ > 0 is independent of δ > 0 and c(δ) → 0 as δ → 0. Similarly we

show

‖Mε,P(Σ) − Mε,P(Σ′)‖H2(Ωε)×W 2,t(Ω) ≤ λ−1c(δ)δ‖Σ − Σ′‖H2(Ωε)×W 2,t(Ω),

where c(δ) → 0 as δ → 0. If we choose δ small enough, then Mε,P is a

contraction on Bε,δ. The existence of a fixed point Σε,P now follows from the

contraction mapping principle and Σε,P is a solution of (3.18).

We have thus proved

Lemma 3.4. There exists ε > 0 such that for every pair of ε,P with 0 < ε <

ε there exists a unique (Φε,P, Ψε,P) ∈ K⊥
ε,P satisfying Sε

(
Aε,P + Φε,P

Hε,P + Ψε,P

)
∈

Cε,P and

‖(Φε,P, Ψε,P)‖H2(Ωε)×W 2,t(Ω) ≤ C
ε

log 1
ε

. (3.19)

We can improve the estimates in Lemma 3.4.
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Lemma 3.5. Let (Φε,P, ψε,P) be given by Lemma 3.4. Then we have

‖Φε,P‖L∞(Ωε) = O

(
ε

log 1
ε

)
, ‖Ψε,P‖L∞(Ω) = O

(
ε

log 1
ε

)
(3.20)

and

|Ψε,P(x) − Ψε,P(Pj)| ≤ C
ε

(log 1
ε
)2

log

(
1 +

|x − Pj|
ε

)

for x �= Pj, j = 1, 2, . . . , K. (3.21)

Proof:

By Sobolev embedding it follows that

‖Ψε,P‖L∞(Ω) = O

(
ε

log 1
ε

)
.

Then we note that by a cut-off argument

‖Φε,P‖L∞(Ωε) = O

(
ε

log 1
ε

)
. (3.22)

Finally, by Lemma 1.3

|Ψε,P(x) − Ψε,P(Pj)| = O

(
ε

(log 1
ε
)2

log

(
1 +

|x − Pj|
ε

))
, i = 1, . . . , K.

Lemma 3.5 is proved.

�

4. The reduced problem

In this section we solve the reduced problem and prove our existence the-

orem.

By Lemma 3.4 there exists a unique solution (Φε,P, Ψε,P) ∈ K⊥
ε,P such that

Sε

(
Aε,P + Φε,P

Hε,P + Ψε,P

)
=

(
vε,P

0

)
∈ Cε,P.

Our idea is to find P such that also

Sε

(
Aε,P + Φε,P

Hε,P + Ψε,P

)
⊥ Cε,P.

Let

Wε,j,i(P) :=
log 1

ε

ε2

∫
Ω

S1(Aε,P + Φε,P, Hε,P + Ψε,P)
∂Aε,P

∂Pj,i

,

Wε(P) := (Wε,1,1(P), ...,Wε,K,2(P)).
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Note that Pj,i denotes the i-th component of the j-th point (i = 1, . . . , 2, j =

1, . . . , K).

Then Wε(P) is a map which is continuous in P and our problem is reduced

to finding a zero of the vector field Wε(P).

Let us now calculate Wε(P).

By Lemma 3.5,

|Ψε,P(x) − Ψε,P(Pj)| = O

(
ε

(log 1
ε
)2

log
(
1 +

∣∣∣∣x − Pj

ε

∣∣∣∣
))

, (4.1)

j = 1, . . . , K.

By (2.7) and (2.8), we have∫
Ω

S1(Aε,P + Φε,P, Hε,P + ψε,P)
∂Aε,P

∂Pj,i

= ε2
∫
Ωε,P

(∆yΦε,P − Φε,P + 2Aε,PH−1
ε,PΦε,P − Aε,PH−2

ε,PΨε,P)
∂Aε,P

∂Pj,i

−ε2
∫
Ωε

(Âε,P)2(Ĥε,P)−2

⎡
⎣ K∑

k=1

(ψε,k(Pj + εy) − ψε,k(Pj)) −
∑
k �=j

(Ĥε,k(Pj + εy) − Ĥε,k(Pj))

⎤
⎦ ∂Aε,P

∂Pj,i

(y) dy

+O

⎛
⎝ε3

(
1

log 1
ε

)2
⎞
⎠ + e.s.t.

= I1 + I2 + O

⎛
⎝ε3

(
1

log 1
ε

)2
⎞
⎠ ,

where I1, I2 are defined by the last equality.

For I1, we note that ‖Ψε,P‖L∞(Ωε) = O( ε
log 1

ε

),
∂Aε,P

∂Pj,i
= −1+o(1)

ε
∂w
∂yi

and hence

I1 = ε
∫
Ωε

(Aε,PΨε,P)
∂w

∂yi

+ O

⎛
⎝ε2

(
1

log 1
ε

)2
⎞
⎠

= ε
∫
Ωε

(wΨε,P)
∂w

∂yi

+ O

⎛
⎝ε2

(
1

log 1
ε

)2
⎞
⎠

= ε
∫
Ωε

w(y)[Ψε,P(Pj + εy) − Ψε,P(Pj)]
∂w(y)

∂yi

+ O

⎛
⎝ε2

(
1

log 1
ε

)2
⎞
⎠

= O

⎛
⎝ε2

(
1

log 1
ε

)2
⎞
⎠
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by (4.1).

For I2, we have

I2 = Cε
∫
Ωε

⎡
⎣ K∑

k=1

(ψε,k(Pj + εy) − ψε,j(Pj)) −
∑
k �=j

(Ĥε,k(Pj + εy) − Ĥε,k(Pj))

⎤
⎦

∂w

∂yi

dy

(
1 + O

(
1

log 1
ε

))

= C
ε

log 1
ε

∫
R2

−[(H(Pj, Pj +εy)−H(Pj, Pj))−
∑
k �=j

(G(Pk, Pj)−G(Pk, Pj +εy))]

w′(|y|) yi

|y| dy

(
1 + O

(
1

log 1
ε

))

= −C
ε2

log 1
ε

∂

∂Pj,i

F (P)
∫

R2
w′(|y|)|y| dy

(
1 + O

(
1

log 1
ε

))

as ε → 0 uniformly in P, where w′(|y|) = d
dr

w(r) for r = |y| and C �= 0

denotes a generic constant.

Combining I1 and I2, we have

Wε(P) = c0∇PF (P)

(
1 + O

(
1

log 1
ε

))
,

where c0 �= 0 is a generic constant.

Suppose at P0, we have ∇PF (P) = 0, det(∇j∇k(F (P0)) �= 0, then stan-

dard Brouwer’s fixed point theorem shows that for ε << 1 there exists a Pε

such that Wε(P
ε) = 0 and Pε → P0.

Thus we have proved the following proposition.

Proposition 4.1. For ε sufficiently small there exist points Pε with Pε → P0

such that Wε(P
ε) = 0.

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1: By Proposition 4.1, there exists Pε → P0 such

that Wε(P
ε) = 0. In other words, S1(Aε,Pε + Φε,Pε , Hε,Pε + Ψε,Pε) = 0. and

therefore Sε(Aε,Pε + Φε,Pε , Hε,Pε + Ψε,Pε) = 0. Let Aε = (Aε,Pε + Φε,Pε), Hε =

(Hε,Pε +Ψε,Pε). It is easy to see that Hε = 1+O( 1
log 1

ε

) > 0 and hence Aε ≥ 0.

By the Maximum Principle, Aε > 0. Moreover Aε, Hε satisfy Theorem 1.1.

�
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5. Stability Analysis: Large Eigenvalues

In this section, we study the eigenvalues with λε → λ0 as ε → 0.

The key is the following theorem, whose proof can be found in Theorem

1.4 of [49].

Consider the following eigenvalue problem

Lφ := ∆φ − φ + 2wφ − 2

∫
RN wφ∫
RN w2

w2 = α0φ, φ ∈ H2(RN),
(5.1)

where w is the unique solution of (1.2).

We then have

Theorem 5.1. Let α0 �= 0 be an eigenvalue of L. Then we have Re(α0) ≤
−c1 for some c1 > 0.

We need to analyze the following eigenvalue problem

ε2∆φε − φε + 2
Aε

Hε

φε − A2
ε

H2
ε

ψε = λεφε, (5.2)

∆ψε − ψε + 2ξεAεφε = τλεψε, (5.3)

where λε is some complex number and

φε ∈ H2
N(Ωε), ψε ∈ H2

N(Ω). (5.4)

In this section, we study the large eigenvalues, i.e., we assume that |λε| ≥
c > 0 for ε small and c small. If Re(λε) ≤ −c, we are done. (So λε is a stable

large eigenvalue.) Therefore we may also assume that Re(λε) ≥ −c. The

analysis of (5.2), (5.3) will be presented for the case τ = 0. By a straight-

forward perturbation argument using the implicit function theorem all the

steps and therefore also all the results hold true for τ > 0 small enough.

Let us assume that

‖φε‖H2(Ωε) < +∞.

We cut off φε as follows: Let r0 > 0 be so small that B6r0(Pi) ⊂ Ω, B3r0(Pi)∩
B3r0(Pj) = ∅, i �= j, i, j = 1, ..., K. Introduce

φε,j(x) = φεχ

(
x − P ε

j

εr0

)
, x ∈ Ω,
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where χ is a smooth cut-off function which is equal to 1 in B1(0) and which

is equal to 0 in R2 \ B2(0).

From (5.2) and the fact that Re(λε) ≥ −c and that Aε has exponential

decay, we have that

φε =
K∑

j=1

φε,j + e.s.t.

Then we extend φε,j to a function defined on R2 such that

‖φε,j‖H1(R2) ≤ C‖φε,j‖H1(Ωε), j = 1, . . . , K.

Without loss of generality we may assume that ‖φε‖ε = ‖φε‖H1(Ωε) = 1.

Then ‖φε,j‖ε ≤ C. By taking a subsequence of ε, we may also assume that

φε,j → φj as ε → 0 in H1(R2) for j = 1, . . . , K.

We have by (5.3)

ψε(x) = ξε

∫
Ω

2G(x, x′)Aε(x
′)φε(x

′) dx′. (5.5)

At each x = P ε
j , j = 1, . . . , K, we get

ψε(P
ε
j ) = 2ξε

∫
Ω

G(P ε
j , x)

K∑
l=1

w
(

x − P ε
l

ε

)
φε,l

(
x

ε

)
dx

(
1 + O

(
1

log 1
ε

))

=
2π

ε2 log 1
ε

∫
R2 w2(y) dy

1

2π
ε2 log

1

ε

∫
R2

w(y)φε,j(y) dy

(
1 + O

(
1

log 1
ε

))

=

∫
R2 w(y)φε,j(y) dy∫

R2 w2(y) dy

(
1 + O

(
1

log 1
ε

))
, j = 1, . . . , K.

Substituting this into (5.2) implies

∆φε,j − φε,j + 2wφε,j − 2

∫
Ω wφε,j∫
R2 w2

w2 = λεφε,j

(
1 + O

(
1

log 1
ε

))

in H1(Ωε). Sending ε → 0 with λε → λ0, this implies

∆φj − φj + 2wφj − 2

∫
R2 wφj∫
R2 w2

w2 = λ0φj. (5.6)

By Theorem 5.1, the eigenvalue of (5.2), (5.3) satisfies Re(λ0) ≤ −c1 < 0 if

λ0 �= 0. So the non-zero eigenvalues of (5.2), (5.3) all have strictly negative

real parts. This means they are all stable. We conclude that all eigenvalues

λε of (5.2), (5.3), for which |λε| ≥ c > 0 holds, satisfy Re(λε) ≤ −c < 0 for ε

small enough. They are all stable.
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In the next section we shall study the eigenvalues λε which tend to zero

as ε → 0.

6. Stability Analysis: Small Eigenvalues

We now study (5.2), (5.3) for small eigenvalues. Namely, we assume that

λε → 0 as ε → 0. This part of the analysis is very involved and we shall need

some new calculations to carry it through.

Let

Āε = Aε,Pε + Φε,Pε , H̄ε = Hε,Pε + Ψε,Pε .

The system (5.2), (5.3) becomes

ε2∆φε − φε + 2
Āε

H̄ε

φε − (Āε)
2

(H̄ε)2
ψε = λεφε, (6.1)

∆ψε − ψε + 2ξεĀεφε = τλεψε. (6.2)

We take τ = 0 for simplicity.

Let us define

Ãε,j(x) = χ(
x − P ε

j

r0

)Āε(x), j = 1, ..., K.

Then it is easy to see that

Āε(x) =
K∑

j=1

Ãε,j(x) + e.s.t.

Note that Ãε,j(x) ∼ w(
x−P ε

j

ε
) in H2

loc(Ω) and Ãε,j satisfies

ε2∆Ãε,j − Ãε,j +
(Ãε,j)

2

H̄ε

+ e.s.t. = 0

Thus ∂Ãε,j

∂xk
satisfies

ε2∆
∂Ãε,j

∂xk

− ∂Ãε,j

∂xk

+
2Ãε,j

H̄ε

∂Ãε,j

∂xk

− (Ãε,j)
2

H̄2
ε

∂H̄ε

∂xk

+ e.s.t. = 0

Setting λ0 = 0 in (5.6) gives

∆(φj − c(φj)w) − (φj − c(φj)w) + 2w(φj − c(φj)w) = 0

where cj(φ) = 2

∫
R2 wφj∫
R2 w2 , which implies that φj ∈ span{ ∂w

∂yk
, k = 1, 2}.
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This suggests that we decompose

φε =
K∑

j=1

2∑
k=1

aε
j,kε

∂Ãε,j

∂xk

+ φ⊥
ε (6.3)

with real numbers aε
j,k, where

φ⊥
ε ⊥ Knew

ε,Pε = span {∂Ãε,j

∂xk

|j = 1, . . . , K, k = 1, 2} ⊂ H2
N(Ωε).

Accordingly, we have

ψε(x) =
K∑

j=1

2∑
k=1

aε
j,kψε,j,k + ψ⊥

ε ,

where ψε,j,k is the unique solution of the problem

∆ψε,j,k − ψε,j,k + ξεε
∂(Ã2

ε,j)

∂xk

= 0 in Ω,

∂ψε,j,k

∂ν
= 0 on ∂Ω,

and ψ⊥
ε satisfies

∆ψ⊥
ε − ψ⊥

ε + 2ξεĀεφ
⊥
ε = 0 in Ω,

∂ψ⊥
ε

∂ν
= 0 on ∂Ω.

Suppose that ‖φε,j‖ε = 1. Then |aε
j,k| ≤ C.

We divide our proof into two steps.

Step 1: Estimates of φ⊥
ε .

Substituting the decompositions of φε and ψε into (5.2) we have

ε
K∑

j=1

2∑
k=1

aε
j,k

(Ãε,j)
2

(H̄ε)2

[
−ψε,j,k +

∂H̄ε

∂xk

]
+ e.s.t.

+ε2∆φ⊥
ε − φ⊥

ε + 2
Āε

H̄ε

φ⊥
ε − (Āε)

2

(H̄ε)2
ψ⊥

ε − λεφ
⊥
ε

= λεε
K∑

j=1

2∑
k=1

aε
j,k

∂Ãε,j

∂xk

. (6.4)

Set

I1 = ε
K∑

j=1

2∑
k=1

aε
j,k

(Ãε,j)
2

(H̄ε)2

[
−ψε,j,k +

∂H̄ε

∂xk

]
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and

I2 = ε2∆φ⊥
ε − φ⊥

ε + 2
Āε

H̄ε

φ⊥
ε − (Āε)

2

(H̄ε)2
ψ⊥

ε − λεφ
⊥
ε .

Since φ⊥
ε ⊥ Knew

ε,Pε , then similar to the proof of Proposition 3.2 it follows

that

‖φ⊥
ε ‖H2(Ωε) ≤ C‖I1‖L2(Ωε).

Let us now compute I1.

We calculate that for x ∈ Br0(P
ε
l )

∂H̄ε

∂xk

(x) =
2π

ε2 log 1
ε

∫
R2 w2

∫
Ω

∂

∂xk

G(x, x′)(Āε(x
′)2 dx′

=
2π

ε2 log 1
ε

∫
R2 w2

×
⎛
⎝∫

Ω

∂

∂xk

(K(|x − x′|) − H(x, x′))(Ãε,l(x
′))2 dx′ +

∫
Ω

∑
s �=l

∂

∂xk

G(x, x′)(Ãε,s(x
′))2 dx′

⎞
⎠

(
1 + O

(
1

log 1
ε

))

and

ψε,l,k(x) =
2π

ε2 log 1
ε

∫
R2 w2

∫
Ω
(K(|x−x′|)−H(x, x′))

∂

∂x′
k

(Ãε,l)
2 dx′

(
1 + O

(
1

log 1
ε

))
.

Thus for x ∈ Br0(P
ε
l ), we have

∂H̄ε

∂xk

(x) − ψε,l,k(x)

=

⎡
⎣ 2π

ε2 log 1
ε

∫
R2 w2

(∫
Ω
[

∂

∂xk

K(|x − x′|)(Ãε,l(x
′))2 − K(|x − x′|) ∂

∂x′
k

(Ãε,l(x
′))2]dx′

)

− 2π

ε2 log 1
ε

∫
R2 w2

∫
Ω
[

∂

∂xk

H(x, x′))(Ãε,l(x
′))2 − H(x, x′)

∂

∂x′
k

(Ãε,l(x
′))2]dx′

+
2π

ε2 log 1
ε

∫
R2 w2

∫
Ω

∑
s �=l

∂

∂xk

G(x, x′)(Ãε,s(x
′))2 dx′

⎤
⎦ (

1 + O

(
1

log 1
ε

))
.

Using the fact that

∂

∂xk

K(|x − x′|) +
∂

∂x′
k

K(|x − x′|) = 0 for x �= x′

and integrating by parts we get

∂H̄ε

∂xk

(x) − ψε,l,k(x)



GIERER-MEINHARDT SYSTEM 31

=
2π

log 1
ε

(− ∂

∂xk

Fl(x)) + O((log
1

ε
)−2), (6.5)

where

Fl(x) = H(x, P ε
l ) − ∑

j �=l

G(x, P ε
j ). (6.6)

Observe that
∂

∂xm

Fl(x)|x=P ε
l

= o(1)

since Pε → P0 and P0 is a critical point of F (P). Furthermore,

I1(x) = O(ε2 1

(log 1
ε
)2

) for x ∈ ∪K
l=1Br0(P

ε
l ).

Hence we have

‖I1‖L2(Ωε) = o(
ε

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|)

and

‖φ⊥
ε ‖H2(Ωε) = o(

ε

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|). (6.7)

It is easy to show that

∫
Ω
(I2ε

∂Ãε,l

∂xm

)dx′ =
∫
Ω
(
Ã2

ε,l

H̄2
ε

(ε
∂H̄ε

∂xm

φ⊥
ε − ε

∂Ãε,l

∂xm

ψ⊥
ε ))dx′

= o(
ε4

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|)

since
∂H̄

∂xm

= O(
1

log 1
ε

) in Ω.

Step 2: Algebraic equations for aε
j,k.

Multiplying both sides of (6.4) by −ε
∂Ãε,l

∂xm
and integrating over Ω, we obtain

r.h.s. = ε2λε

K∑
j=1

2∑
k=1

aε
j,k

∫
Ω

∂Ãε,j

∂xk

∂Ãε,l

∂xm

= ε2λε

∑
j,k

aε
j,kδjlδkm

∫
R2

(
∂w

∂y1

)2

dy

(
1 + O

(
1

log 1
ε

))

= ε2λεa
ε
l,m

∫
R2

(
∂w

∂y1

)2 (
1 + O

(
1

log 1
ε

))
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and

l.h.s. = ε2
K∑

j=1

2∑
k=1

aε
j,k

∫
Ω

(Ãε,j)
2

(H̄ε)2

[
−ψε,j,k +

∂H̄ε

∂xk

]
∂Ãε,l

∂xm

+ e.s.t.

+
∫
Ω
(I2ε

∂Ãε,l

∂xm

)dx′

= ε2
2∑

k=1

aε
l,k

∫
Ω

(Ãε,l)
2

(H̄ε)2

[
−ψε,l,k +

∂H̄ε

∂xk

]
∂Ãε,l

∂xm

+o(
ε4

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|).

Using (6.5), we obtain

l.h.s. = ε2 2π

log 1
ε

2∑
k=1

aε
l,k

×
∫
Ω

(Ãε,l)
2

(H̃ε)2
(− ∂

∂xk

Fl(x))
∂Ãε,l

∂xm

+o(
ε4

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|)

= ε4 2π

log 1
ε

∫
R2

w2 ∂w

∂ym

ym

2∑
k=1

aε
l,k

(
− ∂

∂P ε
l,m

∂

∂P ε
l,k

F (Pε)

)

+o(
ε4

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|).

Note that ∫
R2

w2 ∂w

∂ym

ym =
∫

R2
w2w

′ y2
m

|y|
=

1

2

∫
R2

w2w
′|y| < 0.

Thus we have

l.h.s. = ε4 π

log 1
ε

(−
∫

R2
w2w

′|y|)
2∑

k=1

aε
l,k

(
∂

∂P ε
l,m

∂

∂P ε
l,k

F (Pε)

)

+o(
ε4

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|).

Combining the l.h.s. and r.h.s, we have

ε2 π

log 1
ε

(−
∫

R2
w2w

′|y|)
2∑

k=1

aε
l,k

(
∂

∂P ε
l,m

∂

∂P ε
l,k

F (Pε)

)
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+o(
ε2

log 1
ε

K∑
j=1

2∑
k=1

|aε
j,k|)

= λεa
ε
l,m

∫
R2

(
∂w

∂y1

)2

.

This implies that the the small eigenvalues with λε → 0 satisfy |λε| ∼
C ε2

log 1
ε

with some C > 0. Furthermore, (asymptotically) they are eigenvalues

of the matrix ( ∂2

∂P2 F (P)|P=P0) and the coefficients aε
j,k are the corresponding

eigenvectors. If the matrix ( ∂2

∂P2 F (P)|P=P0 is strictly negative definite, it

follows that λ0 < 0. Therefore the small eigenvalues λε are stable if ε is

small enough. The implicit function theorem tells us that φε together with

a suitable ψε actually is a solution of (5.2), (5.3). This finishes the proof of

Theorem 1.2. �
Our analysis is a rigorous derivation of the frequently numerically observed

fact that the two-dimensional Gierer-Meinhardt system for a finite diffusion

rate of the inhibitor have stable solutions which show a pattern of multiple

interior spots.

Appendix: Study of the function F (P)

In this appendix, we collect some facts about the functions Fj(P ), F (P).

First Fact: If Ω is convex, then Fj(P ) < 0, j = 1, ..., K for P ∈ Ω.

Proof: In fact in this case, G(Pi, Pj) > 0 for i �= j. Moreover, H(x, P )

satisfies

∆xH − H = 0 in Ω

and
∂H(x, P )

∂νx

=
∂K(|x − P |)

∂νx

= K
′
(|x − P |)< x − P, νx >

|x − P | < 0

on ∂Ω. By the Maximum Principle, H(x, P ) < 0 in Ω and G(x, P ) > 0 in

Ω. Hence Fj(P) < 0. �

Second Fact: The function F (P) admits a global maximum point.
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Proof: For δ > 0 small, let

Λ := {(P1, ..., PK)|Pi ∈ Ω, d(Pi, ∂Ω) ≥ δ, min
i�=j

|Pi − Pj| ≥ δ}
Then we consider the following maximization problem

max
P∈Λ

F (P).

Since F (P) is a continuous function, there exists a point P0 ∈ Λ such that

F (P0) = maxP∈Λ F (P). We now prove that P0 is in the interior of Λ.

Assume not. Then (i) d(Pi, ∂Ω) = δ for some i, or, (ii) |Pi−Pj| = δ for some

i, j.

In case (i): We calculate

F (P) ≤ H(Pi, Pi),

where H(x, Pi) solves

∆xH − H = 0 in Ω,

∂H(x, Pi)

∂νx

=
∂K(|x − Pi|)

∂νx

= K
′
(|x − Pi|)< x − Pi, νx >

|x − Pi|
for x ∈ ∂Ω. We estimate∣∣∣∣∣∂H(x, Pi)

∂νx

∣∣∣∣∣ =

∣∣∣∣∣∂K(|x − Pi|)
∂νx

∣∣∣∣∣
≥ C

∣∣∣∣∣ 1

|x − Pi|
< x − Pi, νx >

|x − Pi|

∣∣∣∣∣ ≥ C

∣∣∣∣∣ 1

|x − Pi|

∣∣∣∣∣ .
Let Qi ∈ ∂Ω be a point with |Pi −Qi| = d(Pi, ∂Ω). If δ > 0 is small enough,

then Qi is unique. Then for x ∈ ∂Ω.

|x − Pi| ≤ |x − Qi| + δ.

The standard representation formula implies

H(Pi, Pi) =
∫

∂Ω
G(Pi, x)

∂

∂ν
K(|x − Pi|) dx.

Parametrizing ∂Ω by arclength (with s = 0 corresponding to Qi) and using

the following estimates for δ small and s < δ

|G(Pi, x)| ≥ C log
1

s + δ
,

∣∣∣∣∣∂K(|x − Pi|)
∂νx

∣∣∣∣∣ ≥ C
1

s + δ

we calculate

|H(Pi, Pi)| ≥ C
∫ s0

0
log

(
1

s + δ

)
1

s + δ
ds
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and setting s0 = δ we conclude

|H(Pi, Pi)| ≥ C log
1

δ

→ −∞ as δ → 0.

Thus there exists P1 ∈ Λ with F (P1) > F (P) if δ is small enough. This is

a contradiction.

In case (ii): We estimate

F (P) ≤ −G(Pi, Pj) + O(1)

≤ K(|Pi − Pj|) + O(1)

= − 1

2π
log

1

2π
+ O(1)

= − 1

2π
log

1

δ
+ O(1)

→ −∞ as δ → 0.

Therefore there exists P1 ∈ Λ with F (P1) > F (P) if δ is small enough. This

is the desired contradiction. �
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