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Abstract. In this paper, we rigorously prove the existence and stability
of multiple spot patterns for the Gray-Scott system in a two dimensional
domain which are far from spatial homogeneity. The Green’s function
and its derivatives together with two nonlocal eigenvalue problems both
play a major role in the analysis. We establish a threshold behavior for
stability: If a certain inequality for the parameters holds then we get
stability, otherwise we get instability of multiple spot solutions. The
exact asymptotics of the critical thresholds are obtained.

1. Introduction

The irreversible Gray-Scott model [9], [10] describes the kinetics of a sim-

ple autocatalytic reaction in an unstirred flow reactor. Substance V whose

concentration is kept fixed outside the reactor is supplied through the walls

into the reactor with rate F and the products of the reaction are removed

from the reactor with the same rate. Inside the reactor V undergoes a re-

action involving an intermediate substance U . Furthermore, V reacts at the

rate k to change into P . Both reaction are irreversible, so P is an inert

product. The reactions are summarized as follows:

U + 2V → 3V

V → P

The equations of chemical kinetics which describe the spatiotemporal changes

of the concentrations of U and V in the reactor in dimensionless units are
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given by ⎧⎪⎪⎨
⎪⎪⎩

Vt = DV ∆V − (F + k)V + UV 2 in Ω,

Ut = DU∆U + F (1 − U) − UV 2 in Ω,
∂U
∂ν

= ∂V
∂ν

= 0 on ∂Ω.

(1.1)

The unknowns U = U(x, t) and V = V (x, t) represent the concentrations of

the two biochemicals at a point x ∈ Ω ⊂ R2 and at a time t > 0, respectively;

∆ :=
∑2

j=1
∂2

∂x2
j

is the Laplace operator in R2; Ω is a bounded and smooth

domain in R2; ν(x) is the outer normal at x ∈ ∂Ω; DU , DV are the diffusion

coefficients of U and V respectively.

The most interesting phenomenon related to Gray-Scott is the the so-

called “self-replicating” pattern. To begin with, in 1993, Pearson [19] pre-

sented some numerical simulations on the Gray-Scott model in a square

of size 2.5 in R2 with periodic boundary conditions. By choosing DU =

2×10−5, DV = 10−5 and varying the parameters F and k, several interesting

patterns were discovered. One of them is that the spot may self replicate in

a self-sustaining fashion and develop into a variety of time-dependent and

time-independent asymptotic states. Lin, McCormick, Pearson and Swin-

ney [14] reported their experiments in a ferro-cyanide-iodate-sulfite reaction

which showed strong qualitative agreement with the self-replication regimes

of the simulations in [19]. Moreover, those same experiments led to the dis-

covery of other new patterns, such as annular patterns emerging from circular

spots. See [15] for more details on the set-up. In 1-D, numerical simulations

were done by Reynolds, Pearson and Ponce-Dawson [21], [22], independently

by Petrov, Scott and Showalter [20]. And again self-replication phenomena

were observed. However, in 1-D, self-replication patterns were observed when

DU = 1, DV = δ2 = 0.01. Some formal asymptotics and dynamics in 1-D

were contained in [21] and [20]. Recent numerical simulations of [5] in 1-D

and [18], [16] in 2-D show that the single spot may be stable in some very

narrow parameter regimes.

The first rigorous result in constructing a single peak (or pulse or spike)

solution is due to Doelman, Kaper and Zegeling in 1997. In [5], by using

the Mel’nikov method, Doelman, Kaper and Zegeling constructed single and
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multiple pulse solutions for (1.1) in the case N = 1, DU = 1, DV = δ2 << 1.

In their paper [5], it is assumed that F ∼ δ2, F +k ∼ δ2α/3, where α ∈ [0, 3
2
).

In this case, they showed that U = O(δα), V = O(δ−
α
3 ). Later the stability

of single and multiple pulse solutions in 1-D were obtained in [3], [4]. Hale,

Peletier and Troy studied the case DU = DV in 1-D and the existence of single

and multiple pulse solutions are established in [11], [12]. In [18], Nishiura and

Ueyama proposed a skeleton structure of self-replicating dynamics. Some

related results on the existence and stability of solutions to the Gray-Scott

model in 1-D can be found in [6] and [7].

In higher dimension, as far as the authors know, there are very few rigorous

results on the existence or stability of spotty solutions for (1.1). In R2 and

R3, Muratov and Osipov [16] have given some formal asymptotic analysis

on the construction and stability of spotty solution. In [26], the first author

studied (1.1) in a bounded domain for the shadow system case, namely, it

is assumed that DU >> 1, DV << 1, F = O(1), and F + k = O(1). The

shadow system can be reduced to a single equation. In [27], (1.1) is studied

for N = 2 in R2 and rigorous results on existence and stability of single spot

ground states are established.

In the present paper, we study the Gray-Scott model in a bounded do-

main Ω ⊂ R2 (as first studied numerically by Pearson [19]). First we shall

rigorously construct multiple interior spot solutions and then we shall prove

results on the stability of such solutions.

We first write the equations (1.1) in standard form. We assume that the

domain size is l, i.e., Ω = lΩ̂, |Ω̂| = 1. Dividing the first equation in (1.1) by

F + k and dividing the second equation equation in (1.1) by F we obtain⎧⎪⎪⎨
⎪⎪⎩

1
F+k

Vt = DV

F+k
∆V − V + 1

F+k
UV 2 in Ω,

1
F
Ut = DU

F
∆U + 1 − U − 1

F
UV 2 in Ω,

∂U
∂ν

= ∂V
∂ν

= 0 on ∂Ω.

(1.2)

Setting V =
√

FV̂ gives⎧⎪⎪⎨
⎪⎪⎩

1
F+k

V̂t = DV

F+k
∆V̂ − V̂ +

√
F

F+k
UV̂ 2 in Ω,

1
F
Ut = DU

F
∆U + 1 − U − UV̂ 2 in Ω,

∂U
∂ν

= ∂V̂
∂ν

= 0 on ∂Ω.

(1.3)
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Rescaling time t = t̂
F+k

, space x = lx̂, Ω = lΩ̂ and introducing the variables

A =
√

F
F+k

, τ = F+k
F

> 1 we can rewrite⎧⎪⎪⎨
⎪⎪⎩

V̂t̂ = DV

(F+k)l2
∆x̂V̂ − V̂ + AUV̂ 2 in Ω̂,

τUt̂ = DU

Fl2
∆x̂U + 1 − U − UV̂ 2 in Ω̂,

∂U
∂ν

= ∂V̂
∂ν

= 0 on ∂Ω̂.

(1.4)

Letting ε2 = DV

(F+k)l2
,D = DU

Fl2
and dropping the hats we get⎧⎪⎪⎨

⎪⎪⎩
vt = ε2∆v − v + Auv2 in Ω,

τut = D∆u + 1 − u − uv2 in Ω,
∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω.

(1.5)

Throughout this paper, we assume that

ε << 1 does not depend on x,

τ > 0 does not depend on x or ε,

D,A > 0 do not depend on x (but may depend on ε),

D << eC/ε for some C < 1.

Let w be the unique solution of the problem⎧⎨
⎩ ∆w − w + w2 = 0, w > 0 in R2,

w(0) = maxy∈R2 w(y), w(y) → 0 as |y| → ∞.
(1.6)

For existence and uniqueness of the solutions of (1.6) we refer to [8] and

[13]. We also recall that

w(y) ∼ |y|−1/2e−|y| as |y| → ∞. (1.7)

We define two important parameters

ηε =
|Ω|

2πD
log

1

ε
, αε =

ε2
∫
R2 w2

A2|Ω| . (1.8)

We first show for K = 1, 2, . . . that multiple interior K−spot solutions

exist if and only if

lim
ε→0

4(ηε + K)αε < 1. (1.9)

The locations of the spots are determined by using a certain Green’s function

and its derivatives.
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Furthermore, concerning stability one has to study the eigenvalues of the

order O(1) which are called “large eigenvalues” and the eigenvalues of the

order o(1) which are called “small eigenvalues” separately. We show that

the small eigenvalues are related to the Green’s function and its derivatives.

Suppose these small eigenvalues, which are real, are all negative. Then for

K−spot solutions the following result holds true: If

lim
ε→0

(2ηε + K)2

ηε

αε < 1 (1.10)

then K-spot solutions are stable for a wide range of τ ≥ 0. On the other

hand, if

lim
ε→0

(2ηε + K)2

ηε

αε > 1 (1.11)

then K−spot solutions are unstable for a wide range of τ0. Precise statements

may be found in Theorem 2.3.

The structure of the paper is as follows.

In Section 2 we rigorously state our main results.

In Section 3 we discuss the relevance and novelty of our results.

In Section 4 we provide some preliminary calculations on the heights of the

spikes. In Section 5, we give a formal derivation of two nonlocal eigenvalue

problems (NLEP). Sections 4 and 5 both provide some preliminary analysis

which uses only the leading-order behavior of the steady state. Therefore

this is done first.

In Section 6, we give a rigorous study on the two NLEPs derived in Section

5 in a sequence of lemmas. This section is the key in the proof of our main

stability theorem, Theorem 2.3.

In Section 7 to Section 9, we give a rigorous account of the existence issue

and prove Theorems 2.1 and 2.2. In Section 7 contains suitable approximate

solutions are constructed. In Section 8 the inifinite-dimensional existence

problem is reduced to a finite-dimensional one. (Liapunov-Schmidt reduction

procedure). We then solve the reduced problem in Section 9.

Finally, in Section 10 we finish the stability proof by calculating the large

eigenvalues with the help of Section 6 and the small eigenvalues with the

help of Sections 7–9. This finishes the proof of Theorem 2.3.
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To simplify our notation, we use e.s.t. to denote exponentially small terms

in the corresponding norms, more precisely, e.s.t. = O(e−(1−d)/ε) as ε → 0

for some 0 < d < 1 (independent of ε).

Acknowledgments. The research of JW is supported by an Earmarked

Grant from RGC of Hong Kong. MW thanks the Department of Mathemat-

ics at CUHK for their kind hospitality. We thank two anonymous referees for

carefully reading the manuscript and many critical suggestions which helped

us to improve the presentation of the paper.

2. Main Results: Existence and Stability of K−spot Solutions

We now describe the results of the paper in detail.

Let β2 = 1
D

and assume that limε→0 β = β0 ∈ [0, +∞). If β0 = 0, we call

it the weak coupling case. If β0 > 0, we call it the strong coupling case.

We also define

η0 = lim
ε→0

ηε ∈ [0, +∞], α0 = lim
ε→0

αε ∈ [0, +∞], (2.1)

where ηε, αε are defined in (1.8).

Let P = (P1, . . . , PK) ∈ ΩK , where P is arranged such that

P = (P1, P2, . . . , PK) with Pi = (Pi,1, Pi,2) for i = 1, 2, . . . , K.

For the rest of the paper we assume that P ∈ Λ̄, where for δ > 0 fixed we

define

Λ = {(P1, P2, . . . , PK) ∈ ΩK : |Pi − Pj| > 2δ for i �= j

and d(Pi, ∂Ω) > δ for i = 1, 2 . . . , K}. (2.2)

For β > 0 fixed let Gβ(x, ξ) be the Green’s function⎧⎪⎪⎨
⎪⎪⎩

∆Gβ(x, ξ) − β2Gβ(x, ξ) + δ(x − ξ) = 0 x, ξ ∈ Ω,

∂Gβ(x, ξ)

∂νx

= 0 x ∈ ∂Ω, ξ ∈ Ω. (2.3)

and let

Hβ(x, ξ) =
1

2π
log

1

|x − ξ| − Gβ(x, ξ)



GRAY-SCOTT SYSTEM 7

be the regular part of Gβ(x, ξ). If β = 0, we define G0(x, ξ) to be the Green’s

function ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∆G0(x, ξ) − 1
|Ω| + δ(x − ξ) = 0 x, ξ ∈ Ω,∫

Ω
G0(x, ξ) dx = 0,

∂G0(x, ξ)

∂νx

= 0 x ∈ ∂Ω, ξ ∈ Ω.

(2.4)

and let

H0(x, ξ) =
1

2π
log

1

|x − ξ| − G0(x, ξ)

be the regular part of G0(x, ξ).

For P ∈ Λ and β ≥ 0 we define

Fβ(P) =
K∑

k=1

Hβ(Pk, Pk) −
∑

i,j=1,...,K,i �=j

Gβ(Pi, Pj) (2.5)

and

Mβ(P) = ∇2
PFβ(P). (2.6)

Note that Fβ(P) ∈ C∞(Λ).

Throughout the paper, we assume that

lim
ε→0

4(ηε + K)αε < 1, (2.7)

and

(T1) lim
ε→0

(2ηε + K)2

ηε

αε �= 1. (2.8)

We first consider the existence of K−spot solutions in the strong coupling

case:

Theorem 2.1. (Existence of K-spot solutions in the strong coupling case).

Suppose that limε→0 β = β0 �= 0. Assume that (2.7) and (2.8) hold. Let

P0 = (P 0
1 , P 0

2 , . . . , P 0
K) ∈ Λ be a nondegenerate critical point of Fβ0(P) (de-

fined by (2.5)). Then for ε sufficiently small problem (1.5) has two stationary

solutions (v±
ε , u±

ε ) with the following properties:

(1) v±
ε (x) =

∑K
j=1

1
Aξ±ε

(w(
x−P ε

j

ε
) + O( 1

log 1
ε

)) uniformly for x ∈ Ω̄. Here

ξ±ε =
1 ±√

1 − 4ηεαε

2
+ O(αε) (2.9)
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(2) u±
ε (x) = ξ±ε (1 + 1

log 1
ε

)) uniformly for x ∈ Ω̄.

(3) P ε
j → P 0

j as ε → 0 for j = 1, ..., K.

Next we consider the existence of K−spot solutions in the weak coupling

case.

Theorem 2.2. (Existence of K-spot solutions in the weak coupling case).

Suppose that limε→0 β = 0. Assume that (2.7) and (2.8) hold. Let P0 =

(P 0
1 , P 0

2 , . . . , P 0
K) ∈ Λ be a nondegenerate critical point of F0(P) (defined

by (2.5)). Then for ε sufficiently small problem (1.5) has two stationary

solutions (v±
ε , u±

ε ) with the following properties:

(1) v±
ε (x) =

∑K
j=1

1
Aξ±ε

(w(
x−P ε

j

ε
) + O(h(ε, β))) uniformly for x ∈ Ω̄, where

ξ±ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ±√
1 − 4Kα0

2
+ O(k(ε, β)) if ηε → 0,

1 ±√
1 − 4 limε→0 ηεαε

2
+ O(k(ε, β)) if ηε → ∞,

1 ±
√

1 − 4(K + η0)α0

2
+ O(k(ε, β)) if ηε → η0 > 0,

(2.10)

k(ε, β) =

⎧⎪⎪⎨
⎪⎪⎩

ηεαε if ηε → 0,

αε if ηε → ∞,

β2αε if ηε → η0 ∈ (0, +∞),

(2.11)

and

h(ε, β) = min

{
1

log 1
ε

, β2

}
. (2.12)

(2) u±
ε (x) = ξ±ε (1 + O(h(ε, β)) uniformly for x ∈ Ω̄.

(3) P ε
j → P 0

j as ε → 0 for j = 1, ..., K.

In each of Theorems 2.1 and 2.2, we have obtained two solutions. We call

(v−
ε , u−

ε ) the small solution and the other one the large solution. When

there is no confusion, we drop ± for simplicity.

Finally we study the stability and instability of the K-spot solutions con-

structed in Theorems 2.1 and 2.2. We say an eigenvalue problem is stable

if there exists a constant c0 > 0 such that for all eigenvalues λ, we have

Re(λ) ≤ −c0. We say it is unstable if there exists an eigenvalue λ with

Re(λ) > 0. We consider all τ ≥ 0.
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Theorem 2.3. (Stability of K−spot solutions). Assume that (2.7) and (2.8)

hold. Let 0 < ε << 1 and let P0 be a nondegenerate critical point of Fβ0(P)

and let (vε, uε) be the K−spot solutions constructed in Theorem 2.1 or The-

orem 2.2 for ε sufficiently small, whose peaks approach P0 ∈ Λ. Further

assume that

(∗) P0 is a nondegenerate local maximum point of Fβ0(P).

Then the large solutions are all linearly unstable for all τ ≥ 0. For the

small solutions the following holds:

Case 1. ηε → 0. (Then β → 0.)

If K = 1, then there exists a unique τ1 > 0 such that for τ < τ1, (uε, vε)

is linearly stable, while for τ > τ1, (uε, vε) is linearly unstable.

If K > 1, (uε, vε) is linearly unstable for any τ ≥ 0.

Case 2. ηε → +∞. (uε, vε) is linearly stable for any τ ≥ 0.

Case 3. ηε → η0 ∈ (0, +∞). (Then β → 0.)

If α0 < η0

(2η0+K)2
, then (uε, vε) is linearly stable for τ small enough or τ

large enough.

If K = 1, α0 > η0

(2η0+1)2
, then there exist τ2 > 0, τ3 > 0 such that (uε, vε)

is linearly stable for τ < τ2 and linearly unstable for τ > τ3.

If K > 1 and α0 > η0

(2η0+K)2
, then (uε, vε) is linearly unstable for any τ ≥ 0.

The statements of Theorems 2.1, 2.2 and 2.3 are rather long. Let us

therefore discuss our results in the following section.

3. Remarks and Discussions

Let us discuss what has been achieved in this paper and which important

questions are still left open.

We have investigated the Gray-Scott system which is a very important

reaction-diffusion system in the study of self-replicating phenomena. We

study both the strong coupling case (i.e., D is finite) and the weak coupling

case (i.e., D → +∞), for small diffusion coefficients ε2 of the activator V .

In a bounded domain we rigorously prove the existence of K−spot patterns

and are able to locate the peaks in terms of the Green’s function and its

derivatives. Furthermore, we derive rigorous results on linear stability. There
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are small eigenvalues which are given to leading order in terms of the Green’s

function and its derivatives. We also have O(1) eigenvalues which are given

as eigenvalues of related nonlocal eigenvalue problems in R2.

Roughly speaking, the following condition

α0 <
1

4(η0 + K)
(3.1)

guarantees the existence of two interior K−spot solutions – one is small and

the other is large.

On the other hand, the inequality

α0 <
η0

(2η0 + K)2
(3.2)

gives the critical threshold for determining the stability of K-spot small

solutions. (The large ones are always unstable.) So we have the following

picture of K−spot solutions.
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�

�
ξε

1

1
2

0 4(η0 + K) α−1
0(2η0+K)2

η0

�

(v+
ε , u+

ε ) – unstable

(v−
ε , u−

ε ) – unstable

(v−
ε , u−

ε ) – stable

Fig. 1: Bifurcation diagram when τ is large.

A stability threshold also occurs for the Gierer-Meinhardt system, [30].

However, for the Gierer-Meinhardt system there are no large-amplitude so-

lutions. Furthermore, the values for the thresholds are markedly different

from here.

We first comment about the conditions on the locations of interior K−spots

which are imposed for existence and stability. The condition on the locations

of P0 is not so severe. For any bounded smooth domain Ω, the functional

Fβ0(P) always admits a global maximum at some P0 ∈ Λ. In fact, this can

be seen very easily: if |Pi − Pj| → 0 or d(Pi, ∂Ω) → 0, then Fβ0(P) → −∞.

(Note that as d(Pi, ∂Ω) → 0, Hβ(Pi, Pi) → −∞.) This point P0 is a criti-

cal point of Fβ0(P). If P0 is also a nondegenerate critical point of Fβ0(P),

then the matrix Mβ0(P0) has only negative eigenvalues. (It is an interesting

question to numerically compute the critical points of Fβ0(P).)

Next we discuss our stability result.

Let us recall what has been proved in R1. In [3], the stability of a single-

pulse in R1 is studied, though the scalings are quite different here. In a

bounded interval in R1, stability of multiple-peaked solutions for the Gray-

Scott system is studied in [23] by a matched asymptotic analysis approach.
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There it is shown that the critical thresholds are independent of ε. Moreover,

the critical thresholds arise in the computation of the small eigenvalues.

In R2 the analysis is very different since it has to reflect the geometry of

the domain, which is trivial for an interval on the real line. Here in R2, the

critical thresholds go to infinity as ε → 0. Furthermore, they are obtained in

the study of the large eigenvalues. Since these are independent of the peak

locations results about stability can be achieved without studying the higher-

order terms of the equilibrium in detail. However, for the small eigenvalues

this fine analysis is required.

Assuming that the eigenvalues of Mβ0(P0) are all negative, the stability

behavior for Case 1 (ηε → 0) and Case 2 (ηε → ∞) of the small-amplitude

solutions for τ small or large is summarized in the following table:

Case 1. Case 2.

K = 1, τ small stable stable

K = 1, τ large unstable stable

K > 1, τ small unstable stable

K > 1, τ large unstable stable

In Case 3 for η0 < α0(2η0 + K)2 the results are the same as in Case 1. In

Case 3 for η0 > α0(2η0 + K)2 the results are the same as in Case 2.

Case 1 resembles the shadow system case and Case 2 is similar to the

strong coupling case.

Let us now discuss the role of τ for the stability.

In the Gray-Scott model, τ = F+k
F

> 1 is a very important control pa-

rameter and thus the effect of τ on the stability plays an important role in

self-replicating phenomena.

In the strong coupling case (Case 2), τ has no effect on the stability or

instability of K−spot solutions.
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In the very weak coupling case (Case 1), τ has no effect on the instability of

multiple-spot solutions. Only in the single-spot case, τ gives a critical thresh-

old on the stability. Theorem 2.3 contains a new result on the uniqueness

of the Hopf bifurcation point.

In the mild weak coupling case (Case 3), from Theorem 2.3, we see that

large τ may increase stability: if α0 < η0

(2η0+K)2
and τ large, K−spot solutions

are stable. In Lemma 6.5, an explicit lower bound for τ in terms of η0 and

α0 is given.

In fact in Case 3, if α0 < η0

(2η0+K)2
, then for small τ , K−spot solutions are

also stable (Lemma 6.5). We conjecture that the solution is stable for all

τ ≥ 0. If this is true, it will imply that τ has no effect on the stability (as in

Case 1).

There are still many problems remaining open.

For many cases we can show that the O(1) eigenvalues lie on the left- or

right half of the complex plane. Some of the cases, in particular for finite

τ > 0, are still missing.

It would also be desirable to characterize the small eigenvalues not in

terms of the Green’s function and its derivatives but directly in terms of the

domain Ω instead.

There are no results in either the weak or the strong coupling case on

the dynamics of the full Gray-Scott system in a two-dimensional domain.

Furthermore, there are no results at all about existence or stability of K-

spot solutions in a three-dimensional domain. These important questions

are still open.

4. Formal Analysis I: Calculating the heights of the peaks

In this section we are calculating the heights of the peaks as needed in the

sections below. It is found that the heights depend on the number of peaks

but not on their locations. This is a leading order asymptotic statement that

is valid for ε → 0. A rigorous derivation for the heights ξε,j will be given in

Lemma 7.1 below.
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For the rest of the paper, we always assume that P, P0 ∈ Λ, where Λ

was defined in (2.2), and that |P−P0| < r for some fixed and small enough

number r > 0.

For β > 0 let Gβ(x, ξ) and G0(x, ξ) be the Green’s functions defined in

(2.3) and (2.4), respectively. Then we can derive a relation between G0 and

Gβ in the limit β → 0 which is as follows. From (2.3) we get∫
Ω

Gβ(x, ξ) dx = β−2.

Set

Gβ(x, ξ) =
β−2

|Ω| + Gβ(x, ξ).

Then ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∆Ḡβ − β2Ḡβ − 1
|Ω| + δξ = 0 in Ω,∫

Ω
Ḡβ(x, ξ) dx = 0,

∂Ḡβ

∂ν
= 0 on ∂Ω.

(4.1)

(2.4) and (4.1) imply that

Ḡβ(x, ξ) = G0(x, ξ) + O(β2) as β → 0

in the operator norm of L2(Ω) → H2(Ω). (Observe that the embedding of

H2(Ω) into L∞(Ω) is compact.)

Hence

Gβ(x, ξ) =
β−2

|Ω| + G0(x, ξ) + O(β2) (4.2)

in the operator norm of L2(Ω) → H2(Ω).

We define cut-off functions as follows: Let r0 = δ
4

> 0, where δ was defined

in (2.2), and let χ be a smooth cut-off function which is equal to 1 in B1(0)

and equal to 0 in R2 \ B2(0).

Let us assume the following ansatz for (vε, uε):⎧⎨
⎩ vε ∼ ∑K

j=1
1

Aξε,j
w(x−Pj

ε
)χε,j(x),

uε(Pj) ∼ ξε,j,
(4.3)
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where w is the unique solution of (1.6), (P1, ..., PK) ∈ Λ, ξε,j is the height at

Pj , and

χε,j(x) = χ
(

x − Pj

r0

)
, x ∈ Ω, j = 1, . . . , K. (4.4)

Then we can make the following calculations. Later we will rigorously

prove Theorems 2.1 and 2.2 which includes the asymptotic relations given in

(4.3) with error terms of the order O(h(ε, β)), in suitable norms. Therefore

the following calculations can be rigorously justified.

Let us first consider the case β → 0 (weak coupling case). From the

equation for uε in (1.5),

∆(1 − uε) − β2(1 − uε) + β2uεv
2
ε = 0,

we get by (4.2)

1 − uε(Pi) = 1 − ξε,i =
∫
Ω

Gβ(Pi, ξ)β
2uε(ξ)v

2
ε (ξ) dξ

=
∫
Ω
(

1

|Ω| + β2G0(Pi, ξ) + O(β4))

⎛
⎝ K∑

j=1

1

A2ξε,j

w2(
ξ − Pj

ε
)χ2

ε,j(ξ)

⎞
⎠ dξ.

Thus

1−ξε,i =
K∑

j=1

1

A2ξε,j

ε2

|Ω|
∫

R2
w2(y) dy+

1

A2ξε,i

β2
∫
Ω

G0(Pi, ξ)w
2(

ξ − Pi

ε
)χ2

ε,i(ξ) dξ

+β2
∑
j �=i

G0(Pi, Pj)
1

A2ξε,j

ε2
∫

R2
w2(y) dy +

K∑
j=1

1

A2ξε,j

O(β4ε2 + β2ε4).
(4.5)

Using the decomposition for G0 in (4.5) gives

1 − ξε,i =
K∑

j=1

1

A2ξε,j

ε2

|Ω|
∫

R2
w2(y) dy

+
1

A2ξε,i

β2
∫
Ω

(
1

2π
log

1

|Pi − ξ| − H0(Pi, ξ)

)
w2(

ξ − Pi

ε
)χ2

ε,i(ξ) dξ

+
K∑

j=1

1

A2ξε,j

O(β4ε2 + β2ε4)

=
K∑

j=1

1

A2ξε,j

ε2

|Ω|
∫

R2
w2(y) dy
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+
1

A2ξε,i

β2

2π
ε2 log

1

ε

∫
R2

w2(y) dy +
K∑

j=1

1

A2ξε,j

O(β2ε2). (4.6)

Recall the definition of ηε and αε in (1.8). Then from (4.6) we obtain the

following system of algebraic equations

1 − ξε,i − ηεαε

ξε,i

=
K∑

j=1

αε

ξε,j

+ O(
K∑

j=1

β2αε

ξε,j

). (4.7)

A similar (and in fact simpler) calculation shows that in the case β →
β0, β0 ∈ (0,∞), (strong coupling case) which is part of Case 2 below (ηε →
∞) (4.7) holds with the error term replaced by

O(
K∑

j=1

αε

ξε,j

).

Assuming asymptotically that

lim
ε→0

ξε,i

ξε,1

= 1,

i.e., there exists ξ0 > 0 such that lim
ε→0

ξε,j = ξj = ξ0, (4.8)

from (4.7) we get the basic equation for the height

1 − ξ0 − (η0 + K)α0

ξ0

= O(
β2αε

ξ0

). (4.9)

Case 1: ηε → 0.

Then (4.9) becomes

1 − ξ0 =
Kα0

ξ0

+ O(
ηεαε

ξ0

).

This quadratic equation has a solution if and only if

4Kα0 < 1 (4.10)

and the solution is given by

ξ±0 =
1 ±√

1 − 4Kα0

2
+ O(k(ε, β)),

where k(ε, β) is defined in Theorem 2.2.

Case 2: ηε → ∞.

Then from (4.9) we get

1 − ξ0 =
ηεαε

ξ0

+ O(
αε

ξ0

)
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and so, in the same way as in Case 1, there exist solutions if and only if

4 lim
ε→0

ηεαε < 1, (4.11)

and solutions are given by

ξ±0 =
1 ±√

1 − 4 limε→0 ηεαε

2
+ O(k(ε, β)).

Case 3: ηε → η0, (0 < η0 < ∞).

We derive for ξ0

1 − ξ0 =
(K + η0)α0

ξ0

+ O(
β2αε

ξ0

)

which has a root if and only if

4(η0 + K)α0 < 1 (4.12)

The solution is given by

ξ±0 =
1 ±
√

1 − 4(K + η0)α0

2
+ O(k(ε, β)).

In conclusion, the results in this section show that the heights satisfy (2.9)

anhd (2.10) in Theorem 2.1 and Theorem 2.2, respectively.

5. Formal Analysis II: Derivations of Two Nonlocal

Eigenvalue Problems

Linearizing the system (1.5) around the equilibrium states (vε, uε) given

in Theroem 1.1, we obtain the following eigenvalue problem. Here we the

leading-order approximation of the solution, i.e, that⎧⎨
⎩ vε ∼ ∑K

i=1
1

Aξε,i
w(

x−P ε
i

ε
)χε,i(x),

uε(P
ε
i ) ∼ ξε,i,

(5.1)

where the leading order of ξε,i ∼ ξ±ε → ξ±0 is given in Section 4.

In this section, we derive two important nonlocal eigenvalue problems

(NLEP). In Section 6 they will be studied which will give the critical thresh-

olds for stability. In particular, we will show that the study of large eigen-

values is independent of the locations Pj, j = 1, ..., K.
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Linearizing around the equilibrium states (vε, uε)⎧⎨
⎩ v = vε + φε(y)eλεt,

u = uε + ψε(x)eλεt,

and substituting the result into (1.5) we deduce the following eigenvalue

problem ⎧⎪⎨
⎪⎩

∆yφε − φε + 2Auεvεφε + Aψεv
2
ε = λεφε,

1
β2 ∆ψε − ψε − 2uεvεφε − ψεv

2
ε = τλεψε.

(5.2)

Here D = 1
β2 , λε is some complex number and

φε ∈ H2
N(Ωε), ψε ∈ H2

N(Ω), (5.3)

where the index N indicates that φε and ψε satisfy the no flux boundary

condition and

Ωε = {y ∈ R2|εy ∈ Ω}.
Let us study the large eigenvalues first, i.e., let us assume that liminfε→0|λε| >

0. We observe that if Re (λε) ≤ −c0 for some c0 > 0, then these eigenvalues

only contribute to stability. (As ε → 0, λε may approach the essential spec-

trum of the limiting operator on the entire space, which is contained in the

interval (−∞,−c0) with c0 > 0.) Therefore, we have only to consider the

behavior of eigenvalues satisfying the condition Re (λε) ≥ −c0. Furthermore,

we may assume that 0 < c0 < 1. Let λε → λ0 �= 0 as ε → 0 (possibly after

taking a subsequence).

The second equation in (5.2) is equivalent to

∆xψε − β2(1 + τλε)ψε − 2β2uεvεφε − β2v2
ε ψε = 0. (5.4)

We introduce the following

βλε = β
√

1 + τλε (5.5)

where in
√

1 + τλε we take the principal value. (This means that the real

part of
√

1 + τλε is positive, which is possible because Re (1 + τλε) ≥ 1
2
).

Let us assume that

‖φε‖H2(Ωε) = 1.
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We cut off φε as follows: Define

φε,j(y − P ε
j

ε
) = φε(y)χε,j(x),

where χε,j(x) was introduced in (4.4).

From (5.2) using the fact that Re
√

1 + λε > 0 and the exponential decay

of w it follows that

φε =
K∑

j=1

φε,j + e.s.t. in H2(Ωε).

Then by a standard procedure we extend φε,j to a function defined on R2

such that

‖φε,j‖H2(R2) ≤ C‖φε,j‖H2(Ωε), j = 1, . . . , K.

Then ‖φε,j‖H2(R2) ≤ C. By taking a subsequence of ε, we may also assume

that φε,j → φj as ε → 0 in H2
loc(R

2) for j = 1, . . . , K.

We have by (5.4)

ψε(x) = −
∫
Ω

β2Gβλε
(x, ξ)(2uε(ξ)vε(ξ)φε(

ξ

ε
) + ψε(ξ)v

2
ε (ξ)) dξ.

(5.6)

In the case β → 0 we calculate at x = P ε
i , i = 1, . . . , K:

ψε(P
ε
i ) = −β2

∫
Ω
(
(βλε)

−2

|Ω| + G0(P
ε
i , ξ) + O(β2))

⎛
⎝2

K∑
j=1

1

A
w(

ξ − P ε
j

ε
)φε,j(

ξ − P ε
j

ε
) +

K∑
j=1

ψε(P
ε
j )

1

A2ξ2
ε,j

w2(
ξ − P ε

j

ε
)

⎞
⎠ dξ (1+o(1))

=

⎡
⎣ 1

1 + τλε

⎛
⎝− 2ε2

A|Ω|
K∑

j=1

∫
R2

wφj − ε2
∫
R2 w2

A2|Ω|
K∑

j=1

ψε(P
ε
j )

1

ξ2
j

⎞
⎠

+
β2 log 1

ε

2π

(
−2ε2

A

∫
R2

wφi − ε2
∫
R2 w2

A2
ψε(P

ε
i )

1

ξ2
i

)⎤⎦(1 + o(1))

=

⎡
⎣ 1

1 + τλε

⎛
⎝−2Aαε

∑K
j=1

∫
R2 wφj∫

R2 w2
− αε

K∑
j=1

ψε(P
ε
j )

1

ξ2
j

⎞
⎠

+

(
−2Aηεαε

∫
R2 wφi∫
R2 w2

− αεηεψε(P
ε
i )

1

ξ2
i

)⎤⎦(1 + o(1))
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Let

ψε(P
ε
j )

1

ξ2
j

= ψ̂ε,j, Ψ̂ε = (ψ̂ε,1, ..., ψ̂ε,K). (5.7)

Then we have

ξ2
i ψ̂ε,i =

⎡
⎣ 1

1 + τλ0

⎛
⎝−2Aαε

∑K
j=1

∫
R2 wφε,j∫

R2 w2
− αε

K∑
j=1

ψ̂ε,j

⎞
⎠

+

(
−2Aηεαε

∫
R2 wφi∫
R2 w2

− αεη0ψ̂ε,i

)⎤⎦(1 + o(1)).

Writing in matrix form, we obtain[
(ξ2

0 + α0η0)I +
α0

1 + τλ0

E
]
lim
ε→0

Ψ̂ε

= (−2Aη0α0I − 2Aα0

1 + τλ0

E)

∫
R2 wΦ∫
R2 w2

,

where

Φ =

⎛
⎜⎜⎜⎜⎜⎝

φ1

φ2

...

φK

⎞
⎟⎟⎟⎟⎟⎠ ∈ (H2(R2))K ,

I is the identity matrix, and

E =

⎛
⎜⎜⎜⎝

1 · · · 1
...

...
...

1 · · · 1

⎞
⎟⎟⎟⎠ . (5.8)

Thus for λ0 �= 0 in the limit ε → 0 from (5.2) we obtain the following

nonlocal eigenvalue problem (NLEP):

∆Φ − Φ + 2wΦ − 2B
∫
R2 wΦ∫
R2 w2

w2 = λ0Φ, (5.9)

where

B = ((ξ2
0 + α0η0)I +

α0

1 + τλ0

E)−1(η0α0I +
α0

1 + τλ0

E).
(5.10)

More precisely, we have the following statement:
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Theorem 5.1. Assume that (vε, uε) satisfies (5.1).

Let λε be an eigenvalue of (5.2) such that Re(λε) > −c0, where 0 < c0 < 1.

(1) Suppose that (for suitable sequences εn → 0) we have λεn → λ0 �= 0.

Then λ0 is an eigenvalue of the problem (NLEP) given in (5.9).

(2) Let λ0 �= 0 be an eigenvalue of the problem (NLEP) given in (5.9).

Then for ε sufficiently small, there is an eigenvalue λε of (5.2) with λε → λ0

as ε → 0.

Proof:

(1) of Theorem 5.1 follows the asymptotic analysis at the beginning of this

section.

To prove (2) of Theorem 5.1, we follow the argument given in Section 2 of

[1], where the following eigenvalue problem was studied:

⎧⎪⎨
⎪⎩

ε2∆h − h + pup−1
ε h − qr

s+1+τλε

∫
Ω

ur−1
ε h∫

Ω
ur

ε
up

ε = λεh in Ω,

h = 0 on ∂Ω, (5.11)

where uε is a solution of the single equation⎧⎨
⎩ ε2∆uε − uε + up

ε = 0 in Ω,

uε > 0 in Ω, uε = 0 on ∂Ω.

Here 1 < p < n+2
n−2

if n ≥ 3 and 1 < p < +∞ if n = 1, 2, qr
(s+1)(p−1)

> 1 and

Ω ⊂ Rn is a smooth bounded domain. If uε is a single interior peak solution,

then it can be shown ([25]) that the limiting eigenvalue problem is an NLEP

∆φ − φ + pwp−1φ − qr

s + 1 + τλ0

∫
Rn wr−1φ∫

Rn wr
wp = λ0φ (5.12)

where w is the corresponding ground state solution in Rn:

∆w − w + wp = 0, w > 0 in Rn, w = w(|y|) ∈ H1(Rn).

Dancer in [1] showed that if λ0 �= 0, Re(λ0) > 0 is an unstable eigenvalue

of (5.12), then there exists an eigenvalue λε of (5.11) such that λε → λ0.

We now follow his idea. Let λ0 �= 0 be an eigenvalue of problem (5.9) with

Re(λ0) > 0. We first note that from the equation for ψε, we can express ψε
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in terms of φε. Now we write the first equation for φε as follows:

φε = −Rε(λε)

⎡
⎣2Auεvεφε + Aψεv

2
ε

⎤
⎦, (5.13)

where Rε(λ) is the inverse of −∆ + (1 + λε) in H2(Ωε) (which exists if

Re(λε) > −1 or Im(λε) �= 0) and ψε = T [φε] is given by (5.6), where T

is a compact operator acting on φε. (Note that we have assumed that Re

(λε) > −c0 > −1.) The important thing is that Rε(λε) is a compact operator

if ε is sufficiently small. The rest of the argument follows exactly that in [1].

For the sake of limited space, we omit the details here.

�
Therefore, the study of large eigenvalues can be reduced to the study of

the system of nonlocal eigenvalue problems (5.9). We can further reduce the

problem by computing the eigenvalues of B.

The eigenvalues of B can be computed as follows:

b1 =
η0α0(1 + τλ0) + Kα0

(ξ2
0 + η0α0)(1 + τλ0) + Kα0

, (5.14)

b2 = · · · = bK =
η0α0

ξ2
0 + η0α0

. (5.15)

Thus the study of the large eigenvalue problem is reduced to the study of

the following two NLEPs:

∆Φ − Φ + 2wΦ − 2(η0α0(1 + τλ0) + Kα0)

(ξ2
0 + η0α0)(1 + τλ0) + Kα0

∫
R2 wΦ∫
R2 w2

w2 = λ0Φ,
(5.16)

and

∆Φ − Φ + 2wΦ − 2η0α0

η0α0 + ξ2
0

∫
R2 wΦ∫
R2 w2

w2 = λ0Φ. (5.17)

Note that in Case 1 (η0 = 0), we have

b1 =
Kα0

ξ2
0(1 + τλ0) + Kα0

, b2 = ... = bK = 0.

In Case 2 (η0 = +∞), we get

b1 = b2 = ... = bK = 1.
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In Case 3 (η0 ∈ (0,∞)), we study (5.16) and (5.17) directly. In the strong

coupling case (β → β0) similar and in fact simpler calculations than in this

section give the same result as in Case 2.

Problems (5.16) and (5.17) will be studied in the next section.

6. Study of Two nonlocal eigenvalue problems

In this section, we give a rigorous study of problems (5.16) and (5.17). To

this end, we write them in a unified form:

Lφ := ∆φ − φ + 2wφ − f(τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2),
(6.1)

where w is the unique solution of (1.6) and f(τλ0) is a continuous function.

We first have

Lemma 6.1. If f(0) < 1 and 0 < c ≤ f(α) for α > 0, then there exists a

positive eigenvalue of (6.1) for any τ > 0.

Proof: First, we may assume that φ is a radially symmetric function,

namely, φ ∈ H2
r (R2) = {u ∈ H2(R2)|u = u(|y|)}. Let L0 = ∆ − 1 + 2w.

Then L0 is invertible in H2
r (R2). Let us denote the inverse as L−1

0 . On the

other hand, L0 has a unique positive eigenvalue (see Lemma 1.2 of [25]). We

denote this eigenvalue by µ1. Let us assume that λ0 �= µ1. Otherwise the

proof is already complete.

Then λ0 > 0 is an eigenvalue of (6.1) if and only if it satisfies the following

algebraic equation:∫
R2

w2 = f(τλ0)
∫

R2
[((L0 − λ0)

−1w2)w]. (6.2)

Equation (6.2) can be simplified further to the following

ρ(λ0) := (1 − f(τλ0))
∫

R2
w2 − λ0f(τλ0)

∫
R2

[((L0 − λ0)
−1w)w] = 0.

(6.3)

Note that ρ(0) = (1− f(0))
∫
R2 w2 > 0. On the other hand, as λ0 → µ1, 0 <

λ0 < µ1, we have
∫
R2((L0 − λ0)

−1w)w → +∞ and hence ρ(λ0) → −∞. By

continuity, there exists λ0 ∈ (0, µ1) such that ρ(λ0) = 0. Such a positive λ0

will be an eigenvalue of (6.1).

�
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Similarly, we have

Lemma 6.2. If limτ→+∞ f(τλ) = f+∞ < 1 and 0 < c ≤ f(α) for α > 0,

then there exists a positive eigenvalue of (6.1) for τ > 0 large.

Proof: Using the same notation as in the proof of Lemma 6.1, we fix a

λ1 ∈ (0, µ1) so that λ1

∫
R2 [((L0 − λ1)

−1w)w] < (1− f+∞)
∫
R2 w2. For τ large,

it is easy to see that ρ(λ1) > 0. Now the rest follows from the same proof as

in Lemma 6.1.

�
Next we consider the case when f(0) > 1. To this end, we need the

following lemma:

Lemma 6.3. Consider the eigenvalue problem

∆φ − φ + 2wφ − γ

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2), (6.4)

where w is the unique solution of (1.6) and γ is real.

(1) If γ > 1, then there exists a positive constant c0 such that Re(λ0) ≤ −c0

for any nonzero eigenvalue λ0 of (6.4).

(2) If γ < 1, then there exists a positive eigenvalue λ0 of (6.4).

(3) If γ �= 1 and λ0 = 0, then φ ∈ span { ∂w
∂y1

, ∂w
∂y2

}.
(4) If γ = 1 and λ0 = 0, then φ ∈ span {w, ∂w

∂y1
, ∂w

∂y2
}.

Proof: (1), (3) and (4) have been proved in Theorem 5.1 of [26]. (2) follows

from Lemma 6.1. �
We now consider the function f(τλ) = µ

1+τλ
. We then have

Lemma 6.4. Let γ = µ
1+τλ0

where µ > 0, τ ≥ 0.

(1) Suppose that µ > 1. Then there exists a unique τ = τ1 > 0 such that

for τ > τ1, (6.1) admits a positive eigenvalue, and for τ < τ1, all eigenvalues

of problem (6.1) satisfy Re(λ) < 0. At τ = τ1, L has a Hopf bifurcation.

(2) Suppose that µ < 1. Then L admits a real eigenvalue λ0 with λ0 ≥
c2 > 0.

Proof of Lemma 6.4:
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(2) follows from Lemma 6.1. We only need to prove (1).

Set

Lφ := ∆φ − φ + 2wφ − µ

1 + τλ0

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2).
(6.5)

Let µ > 1. Observe that the eigenvalues depend on τ continuously and

that there is no eigenvalue λ0 such that Re (λ0) > 0 and |λ0| → +∞ as

τ → 0. (This fact follows from the inequality (6.23) below.) By Lemma 6.3

(1), for τ = 0 (and by perturbation, for τ small), all eigenvalues lie on the

left half plane. By Lemma 6.2, for τ large, there exist unstable eigenvalues.

Thus there must be an point τ1 at which L has a Hopf bifurcation, i.e., L

has a purely imaginary eigenvalue λ0 =
√−1λI . To prove Lemma 6.4 (1),

all we need to show is that τ1 is unique.

Let λ0 =
√−1λI be an eigenvalue of L. Without loss of generality, we

may assume that λI > 0. (Note that −√−1λI is also an eigenvalue of L.)

Let φ0 = (L0 −
√−1λI)

−1w2. Then (6.5) becomes∫
R2 wφ0∫
R2 w2

=
1 + τ

√−1λI

µ
. (6.6)

Let φ0 = φR
0 +

√−1φI
0. Then from (6.6), we obtain the two equations∫

R2 wφR
0∫

R2 w2
=

1

µ
, (6.7)

∫
R2 wφI

0∫
R2 w2

=
τλI

µ
. (6.8)

Note that (6.7) is independent of τ .

Let us now compute
∫
R2 wφR

0 . Observe that (φR
0 , φI

0) satisfies

L0φ
R
0 = w2 − λIφ

I
0, L0φ

I
0 = λIφ

R
0 .

So φR
0 = λ−1

I L0φ
I
0 and

φI
0 = λI(L

2
0 + λ2

I)
−1w2, φR

0 = L0(L
2
0 + λ2

I)
−1w2. (6.9)

Substituting (6.9) into (6.7) and (6.8), we obtain

∫
R2 [wL0(L

2
0 + λ2

I)
−1w2]∫

R2 w2
=

1

µ
, (6.10)
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R2 [w(L2

0 + λ2
I)

−1w2]∫
R2 w2

=
τ

µ
. (6.11)

Let h(λI) =

∫
R2 wL0(L2

0+λ2
I)−1w2∫

R2 w2 . Then integration by parts gives h(λI) =∫
R2 w2(L2

0+λ2
I)−1w2∫

R2 w2 . Note that h
′
(λI) = −2λI

∫
R2 w2(L2

0+λ2
I)−2w2∫

R2 w2 < 0. So since

h(0) =

∫
R2 w(L−1

0 w2)∫
R2 w2

= 1,

h(λI) → 0 as λI → ∞, and µ > 1, there exists a unique λI > 0 such that

(6.10) holds. Substituting this unique λI into (6.11), we obtain a unique

τ = τ1 > 0.

�
Finally, we consider another NLEP:

∆φ − φ + 2wφ − f(τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2),
(6.12)

where

f(τλ) =
2(η0α0(1 + τλ) + Kα0)

(η0α0 + ξ2
0)(1 + τλ) + Kα0

(6.13)

and 0 < τ < +∞.

Then we have

Lemma 6.5. Let

a =
6η2

0α
2
0(η0α0 − ξ2

0)
2
∫
R2 w4

(ξ2
0 + η0α0)2

∫
R2 w2

, b =
8Kη2

0α
3
0ξ

2
0

∫
R2 w4

(ξ2
0 + η0α0)2

∫
R2 w2

,

c =
3

2
((K + η0)α0 − ξ2

0)
2 (6.14)

and 0 < τ2 ≤ τ3 be the two solutions (if they exist) of the following quadratic

equation

aτ 2 − bτ + c = 0 (6.15)

(1) If η0α0 > ξ2
0 , then for τ < τ2 or τ > τ3 problem (6.12) is stable.

(2) If η0α0 < ξ2
0 , for τ small problem (6.12) is stable while for τ large it

is unstable.
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Remark: Problem (6.15) may not have a solution if η0α0 is large. It is also

easy to see that

τ2 ≤ τ3 :=
4ξ2

0Kα0

3(η0α0 − ξ2
0)

(6.16)

Proof: We prove (1) first. To this end, we apply the following inequality

(Lemma B.1 in [26]): For any φ ∈ H2
r (R2), we have∫

R2
(|∇φ|2 + φ2 − 2wφ2) + 2

∫
R2 wφ

∫
R2 w2φ∫

R2 w2
−
∫
R2 w3

(
∫
R2 w2)2

(
∫

R2
wφ)2 ≥ 0,

(6.17)

where equality holds if and only if φ is a multiple of w.

Now let φ = φR +
√−1φI satisfy (6.12), i.e.

L0φ − f(τλ)

∫
R2 wφ∫
R2 w2

w2 = λφ. (6.18)

Multiplying (6.18) by φ̄ – the conjugate function of φ – and integrating over

R2, we obtain that∫
R2

(|∇φ|2 + |φ|2 − 2w|φ|2) = −λ
∫

R2
|φ|2 − f(τλ)

∫
R2 wφ∫
R2 w2

∫
R2

w2φ̄.
(6.19)

Multiplying (6.18) by w and integrating over R2, we obtain that∫
R2

w2φ =

(
λ + f(τλ)

∫
R2 w3∫
R2 w2

)∫
R2

wφ. (6.20)

Hence ∫
R2

w2φ̄ =
(
λ̄ + f(τ λ̄

) ∫
R2 w3∫
R2 w2

)
∫

R2
wφ̄. (6.21)

Substituting (6.21) into (6.19), we have that

∫
R2

(|∇φ|2 + |φ|2 − 2w|φ|2) (6.22)

= −λ
∫

R2
|φ|2 − f(τλ)

(
λ̄ + f(τ λ̄)

∫
R2 w3∫
R2 w2

) | ∫R2 wφ|2∫
R2 w2

.

We just need to consider the real part of (6.22). Now applying the in-

equality (6.17) and using (6.21) we arrive at

−λR ≥
⎡
⎣Re

(
f(τλ)

(
λ̄ + f(τ λ̄)

∫
R2 w3∫
R2 w2

))
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−2Re

(
λ̄ + f(τ λ̄)

∫
R2 w3∫
R2 w2

)
+

∫
R2 w3∫
R2 w2

⎤
⎦ | ∫R2 wφ|2∫

R2 |φ|2 ∫R2 w2
.

Assuming that λR ≥ 0, then we have∫
R2 w3∫
R2 w2

|f(τλ) − 1|2 + Re(λ̄(f(τλ) − 1)) ≤ 0. (6.23)

Using the fact that λR ≥ 0, we arrive at the following inequality

3

2
(Kα0 + (η0α0 − ξ2

0))
2 +
(

3

2
(η0α0 − ξ2

0)
2τ 2 − 2τKα0ξ

2
0

)
λ2

I ≤ 0
(6.24)

since multiplying (1.6) by rw′ and integrating over R2 implies
∫
R2 w3 =

3
2

∫
R2 w2.

If τ ≥ τ3, then (6.24) does not hold. To study the case τ < τ3, we need to

have an upper bound for λI . From (6.19), we have

λI

∫
R2

|φ|2 = Im

(
f(τλ)

∫
R2 wφ∫
R2 w2

∫
R2

w2φ̄

)

Hence

|λI | ≤ |f(τλ)|
√√√√∫R2 w4∫

R2 w2
≤ 2η0α0

ξ2
0 + η0α0

√√√√∫R2 w4∫
R2 w2

. (6.25)

Substituting (6.25) into (6.24), we see that if

aτ 2 − bτ + c > 0

where a, b, c are defined at (6.14), then (6.24) is impossible.

We next prove (2). For τ large, we see that f(τλ) → f+∞ := 2η0α0

ξ2
0+η0α0

< 1,

then the perturbation argument of Dancer [1] shows that there exists a real

and positive eigenvalue of (6.12). For τ small, we follow the same argument

as in (1). We omit the details.

Lemma 6.5 is thus proved.

�

7. Existence Proof I: Approximate Solutions

Let us start to prove Theorem 2.1 and Theorem 2.2. The first step is to

choose a good approximate solution. The second step is to use the Liapunov-

Schmidt process to reduce the problem to a finite dimensional problem. The

last step is to solve the reduced problem. Such a procedure has been used in
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the study of the Gierer-Meinhardt system (both in the strong coupling case

[28], [29] and in the weak coupling case [30]). We shall sketch it and leave

the details to the reader.

Since the proof in the strong coupling case (i.e., D = O(1)) is exactly the

same as in the Gierer-Meinhardt case, we consider the weak coupling case

only. So we assume that β → 0.

Motivated by the results in Section 4, we rescale

v̂(y) = Av(εy), y ∈ Ωε = {y|εy ∈ Ω}. (7.1)

Then an equilibrium solution (v̂, u) has to solve the following rescaled

Gray-Scott system:⎧⎨
⎩ ∆yv̂ − v̂ + v̂2u = 0, y ∈ Ωε,

∆xu + β2(1 − u) − β2

A2 v̂
2u = 0, x ∈ Ω.

(7.2)

For a function v̂ ∈ H1(Ω), let T [v̂] be the unique solution of the following

problem

∆T [v̂] + β2(1 − T [v̂]) − β2

A2
v̂2T [v̂] = 0 in Ω,

∂T [v̂]

∂ν
= 0 on ∂Ω.

(7.3)

In other words, we have

1 − T [v̂](x) =
∫
Ω

Gβ(x, ξ)
β2

A2
v̂(

ξ

ε
)2T [v̂](ξ)dξ. (7.4)

System (7.2) is equivalent to the following equation in operator form:

Sε(v̂, u) =

⎛
⎝ S1(v̂, u)

S2(v̂, u)

⎞
⎠ = 0, (7.5)

where

S1(v̂, u) = ∆yv̂ − v̂ + v̂2u, H2
N(Ωε) × H2

N(Ω) → L2(Ωε),

S2(v̂, u) = ∆xu + β2(1 − u) − β2

A2
v̂2u, H2

N(Ωε) × H2
N(Ω) → L2(Ω).

Here the index N indicates that the functions satisfy the no flux boundary

conditions
∂v̂

∂ν
= 0, y on ∂Ωε,

∂u

∂ν
= 0, x on ∂Ω.
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Let P ∈ Λ and (ξ1, ..., ξK) = (ξ0, ..., ξ0) where ξ0 is given by (2.10) for

ε = 0. We now choose a good approximate function. Let (ξε,1, ..., ξε,K) be

such that |ξε,j − ξj| ≤ δ0 for δ0 small. Set

v̂ε,j(y) :=
1

ξε,j

w(
εy − Pj

ε
)χε,j(εy), y ∈ Ωε, (7.6)

where χε,j was defined in (4.4). Note that ξε,j is still undetermined.

We choose our approximate solutions:

vε,P(y) :=
K∑

j=1

v̂ε,j(y), uε,P(x) := T [vε,P](x) (7.7)

for

x ∈ Ω, y ∈ Ωε = {y ∈ R2|εy ∈ Ω}.
Note that uε,P satisfies

0 = ∆uε,P + β2(1 − uε,P) − β2

A2
v2

ε,Puε,P

= ∆uε,P + β2(1 − uε,P) − β2

A2

K∑
j=1

v̂2
ε,juε,P + e.s.t.

Let ξ̂ε,j = uε,P(Pj). Then we have

1 − ξ̂ε,j =
β2

A2

∫
Ω

Gβ(Pj, ξ)
K∑

j=1

v̂2
ε,j(

ξ

ε
)uε,Pdξ + e.s.t.

By way of computations similar to those in Section 4, we obtain

1 − ξ̂ε,i =
K∑

j=1

αεξ̂ε,j

ξ2
ε,j

+
ηεαεξ̂ε,i

ξ2
ε,i

+ O

⎛
⎝ K∑

j=1

β2αεξ̂ε,j

ξ2
ε,j

⎞
⎠ , i = 1, ..., K.

(7.8)

Now we have

Lemma 7.1. Let (ξ1, ..., ξK) = (ξ0, ..., ξ0). Then, for ε sufficiently small,

there exists a unique solution (ξε,1, ..., ξε,K) of (7.8) such that

ξ̂ε,j = ξε,j j = 1, ..., K, (7.9)

and ξε,j = ξ0 + O(k(ε, β)), where k(ε, β) was defined in Theorem 2.2.

Proof: Let ξ = (ξ0, ..., ξ0), ξε = (ξε,1, ..., ξε,K) and ξ̂ε = (ξ̂ε,1, ..., ξ̂ε,K). Note

that ξ̂ε is a function of ξε. We write (7.8) as a functional equation

G(ε, ξε, ξ̂ε) = 0, ‖ξ − ξε‖ < δ0, (7.10)
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where

G(ε, ξε, ξ̂ε) = r.h.s. of (7.8) − l.h.s. of (7.8)

and the norm is the vector norm. Note that G(0, ξ, ξ̂)|ξ̂=ξ=(ξ0,... ,ξ0) = 0. Now

we claim that ∇ξ̂G(0, ξ, ξ̂)|ξ=ξ̂=(ξ0,... ,ξ0) is nonsingular. Once this is proved,

then the implicit function theorem gives the result.

Now it follows that

−∇ξ̂G(0, ξ, ξ̂)|ξ=ξ̂=(ξ0,... ,ξ0) =

⎛
⎜⎜⎜⎝

1 + α0η0

ξ2
0

. . .

1 + α0η0

ξ2
0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

α0

ξ2
0

· · · α0

ξ2
0

...
...

...
α0

ξ2
0

· · · α0

ξ2
0

⎞
⎟⎟⎟⎠ .

It is easy to see that ∇ξ̂G(0, ξ, ξ̂) is strictly negative definite and hence

nonsingular.

�
The reason for choosing the functions in (7.7) as approximations to sta-

tionary states lies in the following calculations: We insert our ansatz (7.7)

into (7.5) and calculate

S2(vε,P, uε,P) = 0, (7.11)

S1(vε,P, uε,P) = ∆yvε,P − vε,P + v2
ε,Puε,P

=
K∑

j=1

1

ξε,j

[
∆yw(y − Pj

ε
) − w(y − Pj

ε
)]

+
K∑

j=1

1

ξ2
ε,j

w2(y − Pj

ε
)uε,P + e.s.t.

=
K∑

j=1

1

ξ2
ε,j

w2(y − Pj

ε
)(uε,P − ξε,j) + e.s.t.

=
K∑

j=1

1

ξ2
ε,j

w2(y − Pj

ε
) (ξ̂ε,j − ξε,j)︸ ︷︷ ︸

=0

+
K∑

j=1

1

ξ2
ε,j

w2(y − Pj

ε
)(uε,P(x) − ξ̂ε,j) + e.s.t.

=
K∑

j=1

1

ξ2
ε,j

w2(y − Pj

ε
)(uε,P(x) − uε,P(Pj)) + e.s.t. (7.12)

by Lemma 7.1.
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On the other hand, we see from (7.7) that for i = 1, ..., K and x = Pi + εy,

|εy| < δ:

uε,P(x) − uε,P(Pi) = uε,P(Pi + εy) − uε,P(Pi)

=
β2

A2

∫
Ω
(Gβ(Pi, ξ) − Gβ(Pi + εy, ξ))

K∑
j=1

v̂2
ε,j(

ξ

ε
)uε,Pdξ + e.s.t.

=
β2

A2

∫
Ω
(Gβ(Pi, ξ) − Gβ(Pi + εy, ξ))v̂2

ε,i(
ξ

ε
)uε,Pdξ

+
β2

A2

∫
Ω
(Gβ(Pi, ξ) − Gβ(Pi + εy, ξ))

∑
j �=i

v̂2
ε,j(

ξ

ε
)uε,Pdξ + e.s.t.

=
|Ω|β2αε

ξε,i

(ε
1

2
∇Pi

F0(P) · y + O(εβ2|y| + ε2|y|2))

+
|Ω|β2αε

ξε,i

∫
R2 w2

∫
R2

log
|y − z|
|z| w2(z)dz. (7.13)

(Recall the definition of F0 in (2.5).)

Substituting (7.13) into (7.12) and noting that S1(vε,P, uε,P) = e.s.t. for

|x − Pj| ≥ δ, j = 1, 2, ..., K, we have the following estimate

‖S1(vε,P, uε,P)‖H2(Ωε) = O(β2αε) = O(h(ε, β)).

The last equality follows by considering the three cases separately.

In Case 1, we have O(β2αε) = O(β2) = O(h(ε, β)) since αε → α0 and

β2 <<
(
log 1

ε

)−1
due to ηε → 0.

In Case 2, we have O(β2αε) = O(β2η−1
ε ) = O((log 1

ε
)−1) = O(h(ε, β)) since

limε→0 ηεαε exists, O(ηε) = O(β2 log 1
ε
), and β2 >>

(
log 1

ε

)−1
due to ηε → ∞.

In Case 3, we have O(β2αε) = O(β2) = O(h(ε, β)) since αε → α0 and

O(β2) = O((log 1
ε
)−1) due to ηε → η0 > 0.

Summarizing the results, we have the following key lemma:

Lemma 7.2. For x = Pi + εy, |εy| < δ, we have

S1(vε,P, uε,P) = S1,1 + S1,2 (7.14)

where

S1,1(y) = |Ω|β2αε
1

ξ3
ε,i

w2(y)(ε∇Pi
F0(P) · y + O(εβ2|y| + ε2|y|2))

(7.15)
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and

S1,2(y) =
|Ω|β2αε

ξ3
ε,i

∫
R2 w2

w2(y)
∫

R2
log

|y − z|
|z| w2(z)dz. (7.16)

Furthermore, S1(vε,P, uε,P) = e.s.t. for |x − Pj| ≥ δ, j = 1, 2, ..., K and we

have the estimate

‖S1(vε,P, uε,P)‖H2(Ωε) = O(h(ε, β)). (7.17)

8. Existence II: Reduction to finite dimensions

In this section, we use the Liapunov-Schmidt reduction method to reduce

the problem of finding an equilibrium to a finite-dimensional problem.

We first study the linearized operator defined by

L̃ε,P := S ′
ε

⎛
⎝ vε,P

uε,P

⎞
⎠ ,

L̃ε,P : H2
N(Ωε) × W 2,2

N (Ω) → L2(Ωε) × L2(Ω),

where ε > 0 is small and P ∈ Λ̄.

To obtain the asymptotic form of L̃ε,P we cut off φε as follows: Introduce

φε,j(y − Pi

ε
) := φε(y)χε,j(x),

where χε,j(x) was introduced in (4.4) and y ∈ Ωε. By taking a subsequence of

ε, we may also assume that φε,j → φj as ε → 0 in H2
loc(R

2) for j = 1, . . . , K.

Similar to Section 5, the asymptotic limit of L̃ε,P is the following system of

linear operators

LΦ := ∆Φ − Φ + 2wΦ − 2B0

∫
R2 wΦ∫
R2 w2

w2, Φ =

⎛
⎜⎜⎜⎜⎜⎝

φ1

φ2

...

φK

⎞
⎟⎟⎟⎟⎟⎠ ∈ (H2(R2))K ,

(8.1)

where

B0 = ((ξ2
0 + α0η0)I + α0E)−1(η0α0I + α0E) (8.2)

where E is in (5.8). The eigenvalues of B0 are given by

b1 =
η0α0 + Kα0

ξ2
0 + η0α0 + Kα0

, b2 = ... = bK =
η0α0

ξ2
0 + η0α0

.
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It is easy to see that 2b1 �= 1 and 2b2 = 1 if and only if α0 = η0

(2η0+K)2
.

Now we have the following key lemma which reduces the infinite dimen-

sional problem to a finite dimensional one.

Lemma 8.1. Assume that assumption (2.8) holds. Then

Ker(L) = Ker(L∗) = X0 ⊕ X0 ⊕ · · · ⊕ X0, (8.3)

where

X0 = span

{
∂w

∂y1

,
∂w

∂y2

}

and L∗ is the adjoint operator of L under the (L2(R2))K inner product.

As a consequence, the operator

L : (H2(R2))K → (L2(R2))K

is an invertible operator if it is restricted as follows

L : (X0 ⊕ · · · ⊕ X0)
⊥ ∩ (H2(R2))K → (X0 ⊕ · · · ⊕ X0)

⊥ ∩ (L2(R2))K .

Moreover, L−1 is bounded.

Proof: By (2.8) and the argument above, we see that 2bi �= 1. If LΦ = 0,

then by diagonalization, it can be reduced to (5.16) with τ = 0, or to (5.17),

respectively. By Lemma 6.3, Φ ∈ X0 ⊕ X0 ⊕ · · · ⊕ X0.

Next, let Ψ ∈ Ker(L∗). Then we have

∆Ψ − Ψ + 2wΨ − 2Bt
0

∫
R2 w2Ψ∫
R2 w2

w = 0, Ψ =

⎛
⎜⎜⎜⎜⎜⎝

ψ1

ψ2

...

ψK

⎞
⎟⎟⎟⎟⎟⎠ ∈ (H2(R2))K .

(8.4)

Multiplying the above equation by w (componentwise) and integrating, we

obtain

(I − 2Bt
0)
∫

R2
w2Ψ = 0. (8.5)

Since Bt
0 = B0 we know that I − 2Bt

0 is nonsingular. This implies that∫
R2 w2Ψ = 0. Thus all the nonlocal terms vanish and Ψ ∈ X0⊕X0⊕· · ·⊕X0.

The rest follows from the Fredholm Alternatives Theorem. �
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From the above lemma, we now define the approximate kernel and co-

kernel as follows:

Kε,P := span {∂vε,P

∂Pj,l

|j = 1, . . . , K, l = 1, 2} ⊂ H2
N(Ωε)

and

Cε,P := span {∂vε,P

∂Pj,l

|j = 1, . . . , K, l = 1, 2} ⊂ L2(Ωε),

Kε,P := Kε,P ⊕ {0} ⊂ H2
N(Ωε) × W 2,2

N (Ω),

Cε,P := Cε,P ⊕ {0} ⊂ L2(Ωε) × L2(Ω).

We then define

K⊥
ε,P := K⊥

ε,P ⊕ W 2,t
N (Ω) ⊂ H2

N(Ωε) × W 2,2
N (Ω),

C⊥
ε,P := C⊥

ε,P ⊕ L2(Ω) ⊂ L2(Ωε) × L2(Ω),

where C⊥
ε,P and K⊥

ε,P denote the orthogonal complement for the scalar prod-

uct of L2(Ωε) in H2
N(Ωε) and L2(Ωε), respectively.

Let πε,P denote the projection in L2(Ωε) × L2(Ω) onto C⊥
ε,P. (Here the

second component of the projection is the identity map.)

We are going to show that the equation

πε,P ◦ Sε

⎛
⎝ vε,P + Φε,P

uε,P + Ψε,P

⎞
⎠ = 0

has the unique solution Σε,P =

⎛
⎝ Φε,P(y)

Ψε,P(x)

⎞
⎠ ∈ K⊥

ε,P if ε is small enough.

That is equivalent to the following equation

S1(vε,P + Φε,P, T [vε,P + Φε,P]) ∈ Cε,P, Φε,P ∈ K⊥
ε,P. (8.6)

The following two propositions show the invertibility of the corresponding

linearized operator.

Proposition 8.2. Let Lε,P = πε,P ◦ L̃ε,P. There exist positive constants

ε, β, C such that for all ε ∈ (0, ε), β ∈ (0, β),

‖Lε,PΣ‖L2(Ωε)×L2(Ω) ≥ C‖Σ‖H2(Ωε)×H2(Ω) (8.7)

for arbitrary P ∈ Λ̄, Σ ∈ K⊥
ε,P.
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Proposition 8.3. There exist positive constants ε, β such that for all ε ∈
(0, ε), β ∈ (0, β) the map

Lε,P = πε,P ◦ L̃ε,P : K⊥
ε,P → C⊥

ε,P

is surjective for arbitrary P ∈ Λ̄.

The proofs of Propositions 8.2 and 8.3 follow from Lemma 8.1 and are

similar to those in [30]. We omit the details.

By using the Contraction Mapping Principle, we get from Lemma 7.2

Lemma 8.4. There exist ε > 0, β, C > 0 such that for every triple (ε, β,P)

with 0 < ε < ε, 0 < β < β, P ∈ Λ̄ there exists a unique (Φε,P, Ψε,P) ∈ K⊥
ε,P

satisfying Sε

⎛
⎝ vε,P + Φε,P

uε,P + Ψε,P

⎞
⎠ ∈ Cε,P and

‖(Φε,P, Ψε,P)‖H2(Ωε)×H2(Ω) ≤ Ch(ε, β). (8.8)

More refined estimates for Φε,P are needed. We recall that S1 can be

decomposed into two parts, S1,1 and S1,2. S1,1 is an odd function and S1,2 is

an even function . Similarly, we can decompose Φε,P:

Lemma 8.5. Let Φε,P be defined in Lemma 8.4. Then for x = Pi + εy, we

have

Φε,P = Φ1
ε,P + Φ2

ε,P, (8.9)

where Φ2
ε,P is an even function in y and

Φ1
ε,P = O(εh(ε, β)). (8.10)

Proof: Let S[v] := S1(v, T [v]). We first solve

S[vε,P + Φ2
ε,P] − S[vε,P] +

K∑
j=1

S1,2(y − Pj

ε
) ∈ Cε,P, Φ2

ε,P ∈ K⊥
ε,P.

(8.11)

Then we solve

S[vε,P + Φ2
ε,P + Φ1

ε,P] − S[vε,P + Φ2
ε,P] +

K∑
j=1

S1,1(y − Pj

ε
) ∈ Cε,P, Φ1

ε,P ∈ K⊥
ε,P.

(8.12)
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Using the same proof as in Lemma 8.4, both equations (8.11) and (8.12)

have unique solutions for ε << 1. By uniqueness, Φε,P = Φ1
ε,P + Φ2

ε,P. Since

S11 = S0
11 + S⊥

11, where ‖S0
11‖H2(Ωε) = O(εh(ε, β)) and S⊥

11 ∈ C⊥
ε,P, it is easy

to see that Φ1
ε,P and Φ2

ε,P have the required properties.

�

9. Existence III: The reduced problem

In this section, we solve the reduced problem and prove our main theorem

on existence.

By Lemma 8.4 there exists a unique solution (Φε,P, Ψε,P) ∈ K⊥
ε,P such that

Sε

⎛
⎝ vε,P + Φε,P

uε,P + Ψε,P

⎞
⎠ ∈ Cε,P.

Our idea is to find P ∈ Λ such that

Sε

⎛
⎝ vε,P + Φε,P

uε,P + Ψε,P

⎞
⎠ ⊥ Cε,P.

Let

Wε,j,i(P) :=
2ξ4

ε,j

αε|Ω|β2ε2

∫
Ωε

(S1(vε,P + Φε,P, uε,P + Ψε,P)
∂vε,P

∂Pj,i

),

Wε(P) := (Wε,1,1(P), ...,Wε,K,2(P)),

where ξε,j is given by Lemma 7.1.

Note that Pj,i denotes the i-th component of the j-th point. Then Wε(P)

is a map which is continuous in P and our problem is reduced to finding a

zero of the vector field Wε(P).

To simplify our notation, we let ũε,P = uε,P + Ψε,P = T [vε,P + Φε,P] and

Ωε,Pj
= {y|εy + Pj ∈ Ω}. (9.1)

We calculate ∫
Ωε

S1(vε,P + Φε,P, ũε,P)
∂vε,P

∂Pj,i

=
∫
Ωε

S1(vε,P + Φε,P, ũε,P(Pj))
∂vε,P

∂Pj,i

+
∫
Ωε

(vε,P + Φε,P)2(ũε,P(x) − ũε,P(Pj))
∂vε,P

∂Pj,i

= I1 + I2
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where I1 and I2 are defined by the last equality.

For I1, we have using integration by parts,

I1 = ε
∫
Ωε,Pj

[∆(vε,P + Φε,P) − (vε,P + Φε,P)

+(vε,P + Φε,P)2(ũε,P(Pj))](− 1

ξε,j

∂w

∂yi

)dy + O(εh(ε, β))

= ε
∫
Ωε,Pj

[(vε,P+Φε,P)2(ũε,P(Pj))−2w(vε,P+Φε,P )](− 1

ξε,j

∂w

∂yi

) dy+O(εh(ε, β))

= ε
∫
Ωε,Pj

2Φ1
ε,Pw2(ũε,P(Pj))(− 1

ξε,j

∂w

∂yi

) dy + o(εh(ε, β))

= O(εh(ε, β))

by Lemma 8.5.

For I2, we have similar to the computation in (7.13):

ũε,P(Pj + εy) − ũε,P(Pj) =
|Ω|β2αε

2ξε,j

(ε∇Pj
F0(P) · y + O(εβ2|y| + ε2|y|2))

+
|Ω|β2αε

ξε,j

∫
R2 w2

∫
R2

log
|y − z|
|z| w2(z)dz

Hence

I2 =
|Ω|β2αεε

2

2ξ2
ε,j

∫
Ωε,Pj

(
1

ξε,j

w + Φε,P)2(∇Pj
F0(P) · y + O(εβ2|y| + ε2|y|2))

×(−∂w

∂yi

+ O(ε + β2)|y|)

= −|Ω|β2αεε
2

2ξ4
ε,j

[
∫

R2
w2 ∂w

∂yi

yi∇Pj,i
F0(P) + O(ε + β2))]. (9.2)

Combining I1 and I2, we obtain

Wε(P) = c0∇PF0(P)(1 + O(ε + β2)),

where

c0 = −
∫

R2
w2 ∂w

∂yi

yi =
1

3

∫
R2

w3.

Suppose for P0 we have ∇PF0(P0) = 0, det(∇P∇P(F0(P0)) �= 0, then,

since Wε is continuous and for ε, β small enough maps balls into (possibly

larger) balls, standard Brouwer’s fixed point theorem shows that for ε << 1

there exists a Pε such that Wε(P
ε) = 0 and Pε → P0.

Thus we have proved the following proposition.
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Proposition 9.1. For ε sufficiently small there exist points Pε with Pε → P0

such that Wε(P
ε) = 0.

Finally, we prove Theorem 2.2.

Proof of Theorem 2.2: By Proposition 9.1, there exists Pε → P0 such

that Wε(P
ε) = 0. In other words, S1(vε,Pε + Φε,Pε , uε,Pε + Ψε,Pε) = 0. Let

vε = 1
A
(vε,Pε + Φε,Pε), uε = uε,Pε + Ψε,Pε . It is easy to see that uε = ξε,j(1 +

O(h(ε, β))) and hence vε ≥ 0. By the Maximum Principle, vε > 0. Therefore

(vε, uε) satisfies Theorem 2.2.

�

10. Stability Analysis

We now study the eigenvalue problem (5.2) for the solutions (vε, uε) which

we have constructed in Section 9. Let v̂ε = 1
A
vε. Then (5.2) becomes⎧⎨

⎩ ∆yφε − φε + 2v̂εuεφε + v̂2
ε ψε = λεφε,

1
β2 ∆ψε − ψε − 2

A2 v̂εuεφε − 1
A2 v̂

2
ε ψε = τλεψε,

where

φε ∈ H2(Ωε), ψε ∈ H2
N(Ω),

and finish the proof of Theorem 2.3.

We divide it into two cases: λε → λ0 �= 0 and λε → 0. In the first case, by

Theorem 5.1, the problem is reduced to the study of two (NLEP)s:

∆Φ − Φ + 2wΦ − 2(η0α0(1 + τλ0) + Kα0)

(ξ2
0 + η0α0)(1 + τλ0) + Kα0

∫
R2 wφ∫
R2 w2

w2 = λ0Φ,
(10.1)

and

∆Φ − Φ + 2wΦ − 2η0α0

η0α0 + ξ2
0

∫
R2 wφ∫
R2 w2

w2 = λ0Φ. (10.2)

If ξ0 = ξ+
0 , then it is easy to see that when τ = 0,

b1 =
(K + η0)α0

ξ2
0 + (K + η0)α0

<
1

2

and hence by Lemma 6.1, the large solution is unstable for all τ > 0. There-

fore only the small solutions ξ0 = ξ−0 can be stable.
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For the small solutions, in Case 1 (η0 = 0) we have therefore b2 = ... =

bK = 0. So if K > 1, the small solution is unstable for all τ > 0. If η0 = 0

and K = 1, we have

2b1 =
2α0

ξ2
0(1 + τλ0) + α0

=
µ0

1 + τ0λ0

,

where µ0 = 2α0

ξ2
0+α0

> 1, τ0 =
τξ2

0

ξ2
0+α0

> 0. By Lemma 6.4(1), there exists τ1 > 0

such that for τ < τ1, we have stability of large eigenvalues and for τ > τ1,

we have instability of large eigenvalues.

In Case 2, we have η0 = +∞ and b1 = ... = bK = η0α0

ξ2
0+η0α0

> 1
2
. So by

Lemma 6.3(1), we have the stability of large eigenvalues for all τ > 0.

Finally, we consider Case 3. By Lemma 6.3, problem (10.2) admits only

stable eigenvalues if and only if

η0α0 > ξ2
0 (10.3)

which is equivalent to (3.2).

So if α0 > η0

(2η0+K)2
and K > 1, problem (10.2) admits a positive eigen-

value λ0. So we have instability. If α0 > η0

(2η0+K)2
and K = 1, we need to

consider problem (10.1) only. By Lemma 6.5, problem (10.1) has only stable

eigenvalues if τ < τ2 or τ > τ3, where τ2 and τ3 are given in Lemma 6.5.

Suppose α0 < η0

(2η0+K)2
. Then since (10.2) has only stable eigenvalues we

need to consider problem (10.1) only. By Lemma 6.5, problem (10.1) is stable

for τ small enough and unstable for τ large enough.

This finishes the study of large eigenvalues.

It remains to study small eigenvalues. Namely, we assume that λε → 0

as ε → 0. This part of the analysis is similar as in [29]. Therefore to save

space, we shall only give a sketch.

Again let (vε, uε) be the equilibrium state of (1.5). Since λε → 0 and τ is

finite, τλε << 1. So in (5.2) we have τλεψε << ψε. Therefore without loss

of generality we may take τ = 0.

Let us define

ṽε,j(y − P ε
j

ε
) = χε,j(x)v̂ε(y), j = 1, ..., K, y ∈ Ωε,

where χε,j was defined in (4.4).
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Then it is easy to see that

v̂ε(y) =
K∑

j=1

ṽε,j(y − P ε
j

ε
) + e.s.t. in H2(Ωε).

As in [29], we decompose φε as follows:

φε =
K∑

j=1

2∑
k=1

aε
j,k

∂ṽε,j

∂yk

+ φ⊥
ε (10.4)

with real numbers aε
j,k, where

φ⊥
ε ⊥ Knew

ε,Pε = span {∂ṽε,j

∂yk

|j = 1, . . . , K, k = 1, 2} ⊂ H2
N(Ωε).

Accordingly, we put

ψε(x) =
K∑

j=1

2∑
k=1

aε
j,kψε,j,k + ψ⊥

ε ,

where ψε,j,k is the unique solution of the problem⎧⎪⎨
⎪⎩

1
β2 ∆ψε,j,k − ψε,j,k − 2

A2 v̂εuε
∂ṽε,j

∂yk
− 1

A2 v̂
2
ε ψε,j,k = 0 in Ω,

∂ψε,j,k

∂ν
= 0 on ∂Ω,

and ψ⊥
ε satisfies⎧⎨

⎩
1
β2 ∆ψ⊥

ε − ψ⊥
ε − 2

A2 v̂εuεφ
⊥
ε − 1

A2 v̂
2
ε ψ

⊥
ε = 0 in Ω,

∂ψ⊥
ε

∂ν
= 0 on ∂Ω.

Suppose that ‖φε,j‖H2(Ωε) = 1. Then |aε
j,k| ≤ C.

The idea then is that first we show that φ⊥
ε is small and then we obtain

the algebraic equations for aε
j,k.

We divide our proof into two steps.

Step 1: Estimates for φ⊥
ε .

Substituting the decompositions of φε and ψε into (5.2) we have

K∑
j=1

2∑
k=1

aε
j,k(ṽε,j)

2

[
ψε,j,k − ε

∂uε

∂xk

]

+∆yφ
⊥
ε − φ⊥

ε + 2v̂εuεφ
⊥
ε + (v̂ε)

2ψ⊥
ε − λεφ

⊥
ε

= λε

K∑
j=1

2∑
k=1

aε
j,k

∂ṽε,j

∂yk

in H2(Ωε). (10.5)
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Set

I3 =
K∑

j=1

2∑
k=1

aε
j,k(ṽε,j)

2

[
ψε,j,k − ε

∂uε

∂xk

]

and

I4 = ∆yφ
⊥
ε − φ⊥

ε + 2v̂εuεφ
⊥
ε + (v̂ε)

2ψ⊥
ε − λεφ

⊥
ε

Since φ⊥
ε ⊥ Knew

ε,Pε , then similar to the proof of Proposition 8.3 it follows

that

‖φ⊥
ε ‖H2(Ωε) ≤ C‖I1‖L2(Ωε). (10.6)

Let us now compute I3. The key is to estimate ψε,l,k − ε ∂uε

∂xk
near x ∈

Br0(P
ε
l ).

From the equation for ψε,j,k, we obtain that

ψε,j,k(x) = −β2

A2

∫
Ω

Gβ(x, ξ)[2v̂εuε
∂ṽε,j

∂yk

+ v̂2
ε ψε,j,k] (10.7)

Similar to Section 4, we have

ψε,j,k(P
ε
l ) = O(h(ε, β)αεε) −

K∑
s=1

αε

ξ2
ε,s

ψε,j,k(P
ε
s ) − ηεαε

ξ2
ε,l

ψε,j,k(P
ε
l ), l = 1, ..., K

which implies that

ψε,j,k(P
ε
l ) = O(h(ε, β)αεε), l = 1, ..., K. (10.8)

For x = P ε
l + εy ∈ Br0(P

ε
l ) we calculate

ψε,j,k(P
ε
l + εy) − ψε,j,k(P

ε
l )

=
β2

A2

∫
Ω
(Gβ(P ε

l , ξ) − Gβ(P ε
l + εy, ξ))[2v̂εuε

∂ṽε,j

∂yk

+ v̂2
ε ψε,j,k]dξ

=
β2

A2

∫
Ω
(Gβ(P ε

l , ξ) − Gβ(P ε
l + εy, ξ))[2v̂ε,juε

∂ṽε,j

∂yk

+ v̂ε
2ψε,j,k] + e.s.t.

If l �= j, then we have

ψε,j,k(P
ε
l + εy) − ψε,j,k(P

ε
l )

= −β2

A2

∑
m

∇P ε
l
∇P ε

j
Gβ(P ε

l,m, P ε
j,k)ε

2ym
ε2

ξε,j

∫
R2

2zkw(z)
∂w(z)

∂zk

dz

+O(β4A−2ε4|y| + β2A−2ε5|y|2) + O(β2αεε|y|
K∑

l=1

|ψε,j,k(P
ε
l )|)
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=
β2|Ω|αε

ξε,j

ε2
∑
m

∇P ε
l,m

∇P ε
j,k

Gβ0(P
ε
l , P

ε
j )ym + O(β4A−2ε4|y| + β2A−2ε5|y|2),

(10.9)

by the definition of αε and (10.8).

For l = j, similar arguments show that

ψε,j,k(P
ε
j + εy) − ψε,j,k(P

ε
j ) = −β2|Ω|αε

ξε,j

ε2
∑
m

∇P ε
j,m

∇P ε
j,k

Hβ0(P
ε
j , P

ε
j )ym

+
β2

A2ξε,j

ε2
∫

R2
2 log

|y − z|
|z| w

∂w

∂zk

+ O(β4A−2ε4|y| + β2A−2ε5|y|2).
(10.10)

Next we compute ε ∂uε

∂xk
(x) for x = P ε

l + εy ∈ Br0(P
ε
l ):

ε
∂uε

∂xk

(x) = −β2

A2

∫
Ω

∂

∂xk

Gβ(x, ξ)(εv̂2
ε uε) dξ.

So

ε(
∂uε

∂xk

(x) − ∂uε

∂xk

(P ε
l )) = −β2

A2

∫
Ω
[

∂

∂xk

Gβ(x, ξ) − ∂

∂xk

Gβ(x, ξ)|x=P ε
l
](εv̂2

ε uε) dξ

=
β2

A2ξε,j

ε2
∫

R2
2 log

|y − z|
|z| w

∂w

∂zk

+ o(β2A−2ε4|y|)
(10.11)

since

∇P ε
j
Fβ0(P

ε) = o(1).

Combining (10.10) and (10.11), we obtain that

[ψε,j,k(P
ε
l + εy) − ε

∂uε

∂xk

(P ε
l + εy)] − [ψε,j,k(P

ε
l ) − ε

∂uε

∂xk

(P ε
l )]

= −β2|Ω|αε

ξε,j

ε2
∑
m

∇P ε
l,m

∇P ε
j,k

Fβ0(P
ε)ym + o

(
β2A−2ε4|y|)

)
(10.12)

Hence we have

‖I3‖L2(Ωε) = o(β2A−2ε4
K∑

j=1

2∑
k=1

|aε
j,k|)

and by (10.6)

‖φ⊥
ε ‖H2(Ωε) = o(β2A−2ε4

K∑
j=1

2∑
k=1

|aε
j,k|). (10.13)
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As in (7.23) of [30] it is easy to show that∫
Ωε,Pε

j

(I4
∂ṽε,l

∂ym

)dξ =
∫
Ω

ṽ2
ε,l(ε

∂uε

∂xm

φ⊥
ε − ∂ṽε,l

∂xm

ψ⊥
ε )dξ

= o(β2A−2ε4
K∑

j=1

2∑
k=1

|aε
j,k|). (10.14)

Step 2: Algebraic equations for aε
j,k.

Multiplying both sides of (10.5) by −∂ṽε,l

∂ym
and integrating over Ωε,P ε

l
, we

obtain

r.h.s. = λε

K∑
j=1

2∑
k=1

aε
j,k

∫
Ωε,Pε

l

∂ṽε,j

∂yk

∂ṽε,l

∂ym

=
1

ξ2
ε,l

λε

∑
j,k

aε
j,kδjlδkm

∫
R2

(
∂w

∂y1

)2

dy (1 + o(1))

=
1

ξ2
ε,l

λεa
ε
l,m

∫
R2

(
∂w

∂y1

)2

(1 + o(1))

and

l.h.s. = ε2
K∑

j=1

2∑
k=1

aε
j,k

∫
Ωε,Pε

l

(ṽε,j)
2

[
ψε,j,k − ε

∂uε

∂xk

]
∂ṽε,l

∂ym

+
∫
Ωε,Pε

l

(I4
∂ṽε,l

∂ym

)dξ

= ε2
K∑

j=1

2∑
k=1

aε
j,k

∫
Ωε,Pε

l

(ṽε,l)
2

[
ψε,l,k − ε

∂uε

∂xk

]
∂ṽε,l

∂ym

+o(β2A−2ε4
K∑

j=1

2∑
k=1

|aε
j,k|)

by (10.14). Using (10.12), we obtain

l.h.s. =
ε2|Ω|β2αε

ξ3
ε,j

K∑
j=1

2∑
k=1

aε
j,k

×
∫
Ωε,Pε

l

w2

(
− ∂2

∂P ε
l,m∂P ε

j,k

Fβ0(P
ε)εym

)
∂w

∂ym

+o(β2A−2ε4
K∑

j=1

2∑
k=1

|aε
j,k|)

=
ε2|Ω|β2αε

ξ3
ε,j

∫
R2

w2 ∂w

∂ym

ym

K∑
j=1

2∑
k=1

aε
j,k

(
− ∂

∂P ε
l,m

∂

∂P ε
j,k

Fβ0(P
ε)

)



GRAY-SCOTT SYSTEM 45

+o(β2A−2ε4
K∑

j=1

2∑
k=1

|aε
j,k|).

Note that ∫
R2

w2 ∂w

∂ym

ym =
∫

R2
w2w

′ y2
m

|y|

=
1

2

∫
R2

w2w
′|y| < 0.

Thus we have

l.h.s. =
ε2|Ω|β2αε

2ξ3
ε,l

(−
∫

R2
w2w

′|y|)
K∑

j=1

2∑
k=1

aε
j,k

(
∂

∂P ε
l,m

∂

∂P ε
j,k

Fβ0(P
ε)

)

+o(β2A−2ε4
K∑

j=1

2∑
k=1

|aε
j,k|).

Combining the l.h.s. and r.h.s, we have

ε2|Ω|αεβ
2

2ξε,l

(−
∫

R2
w2w

′|y|)
K∑

j=1

2∑
k=1

aε
j,k

(
∂

∂P ε
l,m

∂

∂P ε
j,k

Fβ0(P
ε)

)

+o(β2A−2ε4
K∑

j=1

2∑
k=1

|aε
j,k|)

= λεa
ε
l,m

∫
R2

(
∂w

∂y1

)2

. (10.15)

We have shown that the small eigenvalues with λε → 0 satisfy λε ∼
Cε2αεβ

2 with some C �= 0. Furthermore, (asymptotically) they are eigen-

values of the matrix Mβ0(P0) and the coefficients aε
j,k are the corresponding

eigenvectors. If condition (∗) holds, then the matrix Mβ0(P0) is strictly neg-

ative definite and it follows that Re λε < 0. Therefore the small eigenvalues

λε are stable if ε is small enough.

Combining the estimates of the large eigenvalues and of the small eigen-

values, we have completed the proof of Theorem 2.3.

�
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