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Abstract

Due to the vast success of bioengineering techniques, a series of large-scale anal-
ysis tools has been developed to discover the functional organization of cells.
Among them, cDNA microarray has emerged as a powerful technology that en-
ables biologists to cDNA microarray technology has enabled biologists to study
thousands of genes simultaneously within an entire organism, and thus obtain
a better understanding of the gene interaction and regulation mechanisms in-
volved. Although microarray technology has been developed so as to offer high
tolerances, there exists high signal irregularity through the surface of the mi-
croarray image. The imperfection in the microarray image generation process
causes noises of many types, which contaminate the resulting image. These
errors and noises will propagate down through, and can significantly affect, all
subsequent processing and analysis. Therefore, to realize the potential of such
technology it is crucial to obtain high quality image data that would indeed
reflect the underlying biology in the samples. One of the key steps in extracting
information from a microarray image is segmentation: identifying which pixels
within an image represent which gene. This area of spotted microarray image
analysis has received relatively little attention relative to the advances in pro-
ceeding analysis stages. But, the lack of advanced image analysis, including
the segmentation, results in sub-optimal data being used in all downstream
analysis methods.

Although there is recently much research on microarray image analysis with
many methods have been proposed, some methods produce better results than
others. In general, the most effective approaches require considerable run time
(processing) power to process an entire image. Furthermore, there has been
little progress on developing sufficiently fast yet efficient and effective algo-
rithms the segmentation of the microarray image by using a highly sophisti-
cated framework such as Cellular Neural Networks (CNNs). It is, therefore,
the aim of this thesis to investigate and develop novel methods processing mi-
croarray images. The goal is to produce results that outperform the currently
available approaches in terms of PSNR, k-means and ICC measurements.
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1.1 Motivation

Arguably, the conquest of the unknown is the best description of human history during

the last few millenniums, which is the most startling one despite all other aspects of this

history. It is the journey of human to understand the life, themselves and their relation

to the universe. Through several thousands of years many schools of thoughts have tried

to give the right answer; or at least give a pathway to approach this answer. Starting

from the far east Taoism, Indian Buddhism, Mesopotamia and ancient Egypt civilizations,

through the Greek and their recent descendants, the Islamic and the last surviving, West

civilizations, everyone has its own set of rules that shape these pathways.

Regardless of all the past discoveries which are parts of a long debate about accepting

them as myths or mere other point of view of the same reality, it is the most sparkling

milestone achievements, which have been attained during the last two centuries by some

great minds in the human history, that will be the basis for this current study.

Starting from Gregor Mendel, who can be considered as the father of the modern

genetics, although his work stayed obscure until the beginning of the twentieth century, to

the most astonishing discoveries in the last century, the chromosomes, the structured of

the Deoxyribonucleic Acid (DNA) and the rules of the genetic material within the living

cell have been discovered.

Within the last thirty years, many developments have been achieved and our under-

standing of biology of the living systems has started to build up in wide steps. However,

most of these advances until mid nineties were limited to the ability to sequence the DNA.

A little has been done to improve the methods that allow human to grasp a deep insight

about the functions of the genes and the relations within the genetic material and between

these materials and the surrounding environment. Within this context, the microarray

technology appeared as an effective throughput technology for functional genomics.

With the introduction of this technology, a new era has begun. The huge data that

have been resulted from just a few experiments led to the whole novel techniques within the

data analysis methodology to cope with the high demand of such outputs. The developed

techniques covered many study areas from the data storage management tools, Intelligent

Data Analysis (IDA), to Digital Image Processing (DIP) and many more.

The analysis of the microarray image, though it might seem an easy and straightforward

task, is a difficult and challenging problem. Therefore, it is our aim in this thesis to

tackle this issue by developing and applying up-to-date techniques that merge many highly

potential ideas from various disciplines such as Artificial Neural Networks (ANNs), Partial

Differential Equations (PDEs) and Linear Diffusion (LD) filtering techniques.
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1.2 Goal of The Thesis

1.2.1 The State-of-the-art

Due to the recent success of bioengineering techniques, many large-scale analysis tools

have been developed to investigate the functional organization of the cell. Among them,

cDNA microarray has emerged as a powerful technology that enables biologists to study

thousands of genes simultaneously within an entire organism and, thus, to obtain a better

understanding of the genes’ interaction and regulation mechanisms involved. However, this

technology is still in the beginning of getting its potentials, and lots of improvements are

required in all the stages of the microarray process.

Although microarray technology has been developed so as to offer high tolerances,

there exists large signal irregularity through the surface of the microarray image. The

imperfection in the microarray image’s generation process causes noises of various types,

which contaminate the resulting image. These errors and noises will propagate down

through, and can significantly affect, all subsequent processing and analysis. Therefore, to

realize the potential of such technology it is crucial to obtain high quality image data that

will indeed reflect the underlying biology in the samples. One of the key steps in extracting

information from a microarray image is the segmentation with aim to identify which pixels

within an image represent which gene. This area of spotted microarray image analysis

has received relatively a little attention comparing to the advances in proceeding analysis

stages. This attitude towards image analysis was in part due to first, the believe that

this stage has little impact on the later stages and, second, the need for multi-disciplinary

knowledge was crucial to build effective and efficient algorithms. It is worth pointing out

that the lack of advanced image analysis including the segmentation results in sub-optimal

or even poor quality data being used in all downstream analysis methods.

Some of the research papers, which have played an essential role in the development of

proposals presented in this thesis, are now discussed as follows.

Arena et al. [2002a] proposed a real-time algorithm to process the microarray image

using the Cellular Neural Network (CNN) array. The CNN is an analogic processor array

[Chua & Roska, 1993b; Chua & Yang, 1988b,d] that allows the application of a local strat-

egy, with less computational complexity, to meet the task requirements. It is important

to note that using spatial information leads to a robust and reliable algorithm in some ap-

plications such as microarray image analysis. Due to its architecture, the two dimensional

CNN array is widely used to solve image processing and pattern recognition problems.

Furthermore, the parallelism of this structure allows one to perform the most computa-

tionally expensive image analysis tasks faster than the classical CPU-based computer does.
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Essentially, the algorithm in [Arena et al., 2002a] used two colors, red and green. The first

step consists of filtering operations; this process cleans the background noise and removes

the ill-positioned spot. The next step is to remove patches and irregular size spots. After

these operations, the following phase addresses the intensity analysis of both channels.

In [Samavi et al., 2004], a pipeline architecture was designed particularly for real-time

and semi-parallel microarray processing. This architecture, first, produces a binary map

using a threshold value. Then, the map goes through gridding and morphological operators.

Next, the masking operator assigns the original gray scale value to pixels that have 1’s in

the map. The last step is the intensity analysis; image is compared with a number of

thresholds to the intensity level of each spot.

Hirata et al. [2002] presented a technique based on mathematical morphology that per-

forms the segmentation. The procedure of image segmentation consists, basically, of: 1)

Creating one gray-scale image from the red and the green images; 2) Rotation correction;

3) Sub-array and spots gridding; and 4) Spot segmentation. The segmentation stage, in

particular, takes both the morphological gradient of the filter image and a marker image,

which is composed of the approximated centers of the spots and the grid itself. Then, a wa-

tershed operator [Beucher, 1982; Soille & Vincent, 1990; Vincent & Soille, 1991] should be

applied with a basic cross structuring element. Another algorithm based on mathematical

morphology was proposed in [Angulo & Serra, 2003]. In this algorithm, initially, a gridding

algorithm automatically produces spots’ quadrants, which will be analyzed individually in

later stages. Then, the analysis of the spot quadrant images is achieved in five steps includ-

ing spot size estimation, background noise extraction, spot position determination, spot

boundary definition which is carried out using the watershed transformation and, finally,

spot signal quantification. Siddiqui et al. [2002] applied another algorithm to carry out the

segmentation process that is based on mathematical morphology and watershed technique,

followed by quantification of the shapes of the segmented spots using B-Splines [Cohen

et al., 2001].

Fraser [2006] proposed many mapping functions that place emphasis on certain fre-

quencies or regions of interest. This methodology would not only be advantageous but

also be more effective in terms of the overall goal. These functions are named as inverse,

a summed inverse and square root, a square root and a linear function. For instance, if

the image is first filtered using the inverse function to emphasize the genes, the clustering

output is improved dramatically. Similarly, photographic polarizing filter allows details

normally hidden behind reflections to be captured. Therefore, filtering the image in this

way allows us to analyze details that would otherwise be lost.



Chapter 1. 5 Introduction

1.2.2 Thesis Contributions

Recently, much research on microarray image’s segmentation with many methods has been

proposed, some methods produce results better than others. In general, the most effective

approaches require considerable run time (processing power) to process an entire image.

Furthermore, there has been little progress in developing sufficiently fast yet efficient and

effective algorithms for the segmentation of a microarray image by using up-to-date tech-

niques such as Artificial Intelligence (AI) approaches, specifically neural networks. It is,

therefore, the aim in this thesis to investigate and develop novel analyzing methods for mi-

croarray images. In other words, our goal is to produce results that outperform the results

of currently available approaches in terms of robustness, effectiveness and time efficiency.

The following issues will be investigated in this thesis:

1) Fully Automation: The large number of spots, usually in thousands, as well as

the shape and position irregularities [Lukac et al., 2005; Wang et al., 2003b] can propagate

processing errors through subsequent analysis steps [Eisen & Brown, 1999; Lukac et al.,

2004; Wang et al., 2003a]. Furthermore, the time-consuming manual processing of the

microarrays has led to the interest in using a fully automated procedure to accomplish the

task [Bajcsy, 2004; Jain et al., 2002; Katzer et al., 2003]. Automatic algorithm guarantees

the elimination of user’s errors and is considered as an essential step towards a unified

framework for microarray image analysis.

2) Local Strategy: Considering the signal variability across the microarray image,

the emphasis will be placed on techniques that benefit from the local information in order

to achieve different tasks in the image analysis process. Therefore, it can be assumed that

the global image properties are irrelevant and, rather, a locally adaptive strategy with less

computational complexity can meet the application requirements.

3) Image Filtering: The system imperfections and the microarray generating process

restrict our ability to differentiate between spots signals and background signal as well as

our ability to get accurate measures of interest in the images. Therefore, it makes much

more sense to produce filtered versions of the image data so that the dynamic range of the

image can be increased, and hence a better ability of signal extraction could be achieved.

4) Multi-view Analysis: The mapping functions, proposed in Fraser [2006], will be

investigated thoroughly in order to draw a full understanding of their effects on the image

analysis process. In addition, the ability to approximate these functions in any possible

hardware implementation will be addressed.

5) Image Segmentation: It has been anticipated that the spot intensity value would

be independent of the segmentation algorithm if a background correction method is utilized

[Yang et al., 2002]. However, Lehmussola et al. [2006] showed that even with a correction
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procedure the segmentation method will significantly influence the identification of differ-

entially expressed genes. Therefore, investigating the segmentation process will occupy a

considerable part of this thesis.

6) Image Reconstruction: Considering the inherent variation between the gene and

background regions, image reconstruction is one of the best techniques that can be applied

to estimate the local background of every spot. By the end of this thesis, some of the most

popular reconstruction techniques for the general imagery will be adopted to be applied

on the microarray image.

7) PDE: The filtering techniques based on PDEs will be investigated in order to, first,

benefit from their potential in the image processing applications; second, utilize the fact

that PDEs can be used to build hardware architectures which approximate successfully

these systems.

8) CNN: The ultimate goal of this study is to draw a road map toward a fully auto-

mated and parallel hardware implementation of the image processing steps. CNN is one

of the best options to achieve this goal. Due to its architecture, the two-dimensional CNN

array is widely used to solve image processing and pattern recognition problems. Further-

more, the parallelism of this structure allows one to perform the most computationally

expensive image analysis tasks faster than they do in classical CPU-based computer.

1.3 Overview of The Chapters

Figure 1.1 gives a general view about the thesis structure. In the next chapter the back-

ground review of our research is presented. Chapter 2 covers the the underlying biology

behind the microarray technology, the development that led to this high throughput tech-

nology, conducting the microarray experiment and, finally, a comprehensive review of the

microarray image processing.

In Chapter 3, we will propose a new segmentation method utilizing a series of Multi-

Layer Perceptron (MLP) and Kohonen neural networks. The presented networks have a

new structure that is particularly suitable to the task at hand.

In Chapter 4, the image is filtered by applying a nonlinear anisotropic diffusion with

several diffusion functions in order to increase the dynamic range of the image, and thus

to increase the ability to extract desired signals. The proposed novel algorithm is based on

the CNN computational paradigm integrated with median and anisotropic diffusion filters.

The investigation, in Chapter 5, is to improve the processes involved in the analysis

of microarray image data. The main focus is to clarify the image features’ space in an

unsupervised manner. Instead of using the raw microarray image, it is suggested that
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Figure 1.1: The structure of thesis
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producing multiple views of the image data, i.e. highlighting certain frequencies, will

yield more reliable results in the filtering stage. In addition, this methodology will be

advantageous for the segmentation stage and the system as a whole. Therefore, the multi-

view analysis framework is combined with many filters such as Median, Top-Hat and

Complex Diffusion (CLD). Then, a thorough analysis is conducted to understand the effects

of these filters on the segmentation stage.

In Chapter 6, an automatic and non-supervised algorithm for a fast and accurate pixels’

classification is presented. The proposed approach in this chapter follows two lines: first,

the development of CNN algorithm to approximate any mapping function and, second, the

integration of diffusion based filter with an adaptive segmentation algorithm. The main

advantages of this approach are that it establishes a general framework that can make the

whole cDNA microarray technology fully parallel as well as it minimizes the processing

time.

Two new image reconstruction algorithms based on CNN are proposed in Chapter 7.

The presented methods tend to get an exemplary approximation of the background in the

gene spot region either by using diffusion based algorithm or by solving the Navier-Stokes

equation. These algorithms offer robust methods to estimate the background signal within

the gene spot region. Subtracting this reconstructed background from the original image

should lead to a more accurate quantification of genes’ signals.

Finally, conclusions and suggested future works are presented in Chapter 8.
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Imagine watching a play with thirty thousand actors.
You’d get pretty confused.

James Watson

2.1 Introduction

Certainly, Gregor Johann Mendel’s results can be considered as a major milestone in the

quest to understand the nature and the content of genetic information, though the theo-

retical realization of the genetics was not yet extended by momentous ideas that have to

be presented in the twentieth century. Although Mendel did not know the physical units

that represent the genetic information, his experiments showed quantitatively how to pre-

dict the underlying inheritance. His work, therefore, established a theory to explain this

heredity based on assumed factors; we can now understand them as genes. Unfortunately,

Mendel’s paper, “Experiments in Plant Hybridization”, had been ignored until many sci-

entists rediscovered his conclusions and cited it at the beginning of the 20th century.

In the following decades, many milestone achievements can be specified: 1) Chromo-

some was discovered and the relation between the heredity, development and the chromo-

somes have gradually become significantly evident. 2) Then, as a major breakthrough,

Watson & Crick [1953] revealed the molecular basis of the heredity, the DNA double helix.

3) The next astonishing establishment was unlocking the informational basis of heredity. 4)

The biochemical studies, which were carried out during 1950s by a group of physicists and

chemists [Roberts et al., 1955], uncovered the basic mechanisms involved in the regulations

of metabolic pathways. 5) The invention of the recombinant DNA technologies of cloning

and sequencing [Kleppe, 1971], with the knowledge of the biological mechanism, enabled

the scientists to read the genetic information.

In 1990, the National Institutes of Health (NIH) introduced a new method to accelerate

the gene discovery [Adams et al., 1993]. Molecules, which are called Expressed Sequence

Tags (ESTs) and evolved from the development of Complementary DNA (cDNA), provide

scientists with a quick and inexpensive tool for gene identification, gene expression and

genome mapping [Gerhold & Caskey, 1996; Marra et al., 1998; McLachlan et al., 2004;

Quackenbush, 2001]. Mapping genes and sequencing DNA enable researchers to draw

conclusions about the gene function from its structure. In addition, the sequencing of

specific genome offers a direct access to genome molecules using the Polymerase Chain

Reaction (PCR). With these sequences, biologists will be able to design primers, which
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can amplify a particular DNA fragment, or they can effectively screen a library for a larger

segment of DNA containing the region of interest. Furthermore, sequencing increases the

ability to search efficiently for similar genes in other organisms.

The (PCR) [Rabinow, 1997] and automated DNA sequencing technologies [Hegde et al.,

2000] were remarkable achievements. While the PCR methodologies allowed researchers to

amplify a very small amount of DNA, the automated DNA sequencing approach enhances

the ability to obtain the entire DNA sequence of microbial genomes within few days. These

achievements have initiated the human genome project [Gene, 1999]. The PCR, as an

amplification tool, is an important part of DNA analysis for many reasons: 1) It provides

a method to an essentially limitless supply of material. 2) The PCR is a procedure that

uniformly amplifies the sample so this sample will not be altered, distorted, or mutated

by the process of amplification. 3) Another rationale behind DNA amplification is the

amplification selectivity of a region which is an easy way to purify that segment from the

bulk. With sufficient amplification magnitude, the DNA product becomes such a major

material of the amplification mixture; i.e., the starting sample is reduced to a sufficiently

small percentage for most applications.

Scientists devote their efforts to sequence and assemble the genomes of various or-

ganisms, especially the human [Lander et al., 2001; Ledford, 2007; Wheeler et al., 2008].

However, genome sequencing is merely the transfer of the information contained within

the DNA which serves as the repository of the genetic information, to another carrier.

Genome sequencing provides raw data which does not provide a way to get what the

data means or how the data can be utilized in various clinical applications. On the other

hand, besides obtaining a genomic sequence and specifying a complete set of genes in any

sequencing project, the ultimate goal is to get an understanding of the functionality of

this genetic information. In other words, gaining insight about the function of a specific

gene or set of genes in the normal circumstances increases our ability to understand the

deceased situations. Investigating the relationships among genes in the DNA is another

major goal in molecule biology [Cohen, 2005]. This new field of study, which is known as

functional genomics, led to the emergence of new high throughput technologies that al-

lowed researchers to tackle difficult problems and reveal promising solutions in many fields,

i.e. cancer research [Ley et al., 2008].

DNA microarray is a remarkably successful high throughput technology for functional

genomics [Schena et al., 1995; Shalon et al., 1996]. Microarrays allow researchers to analyze

the expression level, in different cell types or conditions, of many thousands of genes in

a single experiment [Alizadeh et al., 2000; Moore, 2001]. Basically, a DNA array [Stekel,

2003] can be defined as an orderly arrangement of tens to hundreds of thousands of unique
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DNA probes of known sequence. The probes, which are either individually synthesized

on the array surface or pre-synthesized by a procedure such as PCR, are attached to the

array platform. The cDNA microarray aim to detect the abundance of various mRNA

molecules of a cell by using hybridization of the fluorescent labeled samples to the DNA

probes already existed on the array [Schena et al., 1995]. This abundance can provide

information about the related protein or the expressed gene [Gygi et al., 1999]. The end

product of the cDNA microarray experiment is a scanned array image, see Figure 2.1,

[Moore, 2001; Orengo et al., 2003]. These images must then be analyzed to identify the

arrayed spots and measure the relative fluorescence intensities for each feature.

Figure 2.1: cDNA Microarray Image

2.2 Molecular Biology

2.2.1 The Structure of The DNA

By the early beginning of the 20th century, Mendel’s works have become widely known

[Klug & Cummings, 2003] and got fully credited by Bateson [Bateson, 2007]. A couple of

years later, Sutton [1903] suggested the applicability of the Mendelian laws of inheritance to

chromosomes. Sutton suggested that chromosomes contain units (“genes”) which affect the

heredity and the development. Furthermore, he showed that meiosis, the process by which

the genetic material of eukaryotic cells is duplicated and distributed during cell division,
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gives a mechanism for Mendelian inheritance. Two decades later, the experiments of T.H.

Morgan [Allen, 1978] on the fruit fly verified Sutton’s hypothesis. Yet, the genes, their

roles or how they produce physical features in organisms, were still to be discovered years

later.

The discovery of the nucleic acid in the 19th century by the biologist Friedrich Miescher

[Allen, 1978] marked an important step toward a more advanced understanding of the

heredity in the last century. By the late 1920s, chemists had discovered both ribonucleic

acid (RNA) and deoxyribonucleic acid (DNA). Levene [1919] investigated the structure

and the function of the nucleic acids and highlighted different forms of them, namely

the DNA and RNA. However, the connection of nucleic acids with genes was yet to be

established a decade later [Lorenz & Wackernagel, 1994]. The studies, back then, showed

that the chromosomes contain DNA, which is suspected to be the genes’ material. By

the end of 1940s, DNA is proven to be the right answer, and this was finally determined

experimentally.

Figure 2.2: DNA structure.
Zygote Media Group.

The biggest breakthrough came when Watson & Crick [1953] proposed a model of

double helix as the structure of the DNA, see Figure 2.2. This model is accepted now
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as the first correct structure of DNA. The model of DNA was based on a single X-ray

diffraction image, which was called “Photo 51” and introduced in [Franklin & Gosling,

1953], see Figure 2.3. Those findings led to the proposal of the Central Dogma of the

molecule biology, which describes the relation between DNA, RNA and proteins [Crick,

1955]. Soon later, Meselson & Stahl [1958] confirmed the replication mechanism that was

implied by the double helix model.

Figure 2.3: This image is a faithful digitalization of the famous historic photograph Photo
51, the name is given to an X-ray diffraction image of DNA introduced in [Franklin &
Gosling, 1953]. http://en.wikipedia.org/wiki/File:Photo_51.jpg

Figure 2.4: Chemical structure of DNA. Hydrogen bonds shown as dotted lines.
Madeleine Price Ball.

DNA is the basic hereditary material in all cells and contains all the necessary infor-

mation to make proteins. DNA is a linear polymer made up of nucleotide units. The

http://en.wikipedia.org/wiki/File:Photo_51.jpg
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nucleotide unit consists of a base, a deoxyribose sugar and a phosphate, see Figure 2.4.

There are four types of bases: adenine (A), thymine (T), guanine (G), and cytosine (C).

In DNA, the bases are perpendicular to the helix axis and form pairs: A to T and G to

C. This relation is called a complementarity and contributes to the determination of the

whole DNA shape, which gives a high robust reproduction of the basis sequence in the

DNA chain. This invariant relation is used in the cell to duplicate the DNA during cellular

reproduction and in protein synthesis. The double helix of DNA can be divided into two

helices and then recomposed with a process called hybridization. Each specific protein is

built starting from a specific DNA sequence within the whole DNA chain, called a gene.

RNA chemicals are very similar to the DNA ones. However, there are some differences,

RNA contains uracil (U) instead of thymine (T), RNA is a single stranded and finally RNA

contains ribose sugar instead of deoxyribose sugar, see Figure 2.5.

Figure 2.5: Ribonucleic Acid (RNA). National Institute of Health

2.2.2 Central Dogma

The genetic information is stored in the DNA strands. Segments of these strands encode

genes. Generally, each gene produces a particular protein by coding each of the amino

acids that make up the protein. Every amino acid is encoded by three nucleotide bases, for

instance, the nucleotides “AAG” correspond to the amino acid phenylalanine. This three-

letter code is called a codon, see Figure 2.6. In order to understand the process of producing

proteins from genes, central dogma of molecular biology should be considered. Briefly, genes

are transcribed into messenger RNA (mRNA) and mRNA, and then translated to form
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proteins, which are the building blocks and functional elements of any living cell. Gene’s

expression is the indication of the presence of this mRNA.

Figure 2.6: The codon. National Institute of Health

Figure 2.7 shows the genetic information flow inside the cell. The first step is the

transcription which happens in the cell nucleus. From a single strand of the DNA, a

protein, also called enzyme, sets the strands apart in a small section of the DNA. This

enzyme then uses one of the DNA strands to create the mRNA molecule by a letter-for-

letter copy of this section; i.e., in every place where the gene has (C), the mRNA has

(G), and in every place where the gene has (A), the mRNA has (U). Therefore, the RNA

molecule transcribed from the gene is complementary to the coding strand of that gene.

The stability is a main character of DNA. The same copy of genomic DNA exists

almost in all the cells of an organism. Yet, cells are different in shape and function. These

differences between them are due to the different subsets of expressed genes in each of

the different cell types. In addition, different stimuli provoke different subsets of genes to

be expressed. Thus, the pattern of gene expression levels reflects both the cell type and

its condition. Microarrays allow researchers to detect the abundance of various mRNA

molecules or transcripts in a cell at a given moment. Although the relation between the

abundance of mRNA and the corresponding protein is not necessarily straightforward [Gygi

et al., 1999], it is accepted that the quantity of each mRNA detected in the cell can provide

information on the corresponding protein.

One example that reflects how important it is to characterize protein construction is

that many human diseases are due to the failed synthesis of a particular protein; for ex-
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Figure 2.7: The information transfer between DNA, mRNA and protein (the ”central
dogma”). Segments of DNA are used as a code to make mRNA, which is used as a code to
make protein. Microarray experiments exploit the relation between mRNAs and the genes
that encode them.

ample, insulin. The target here is to induce specific micro-organisms such as bacteria to

synthesize that specific protein. Here, the first step is to know which gene is responsible

for the production of the desired protein. After that, the selected gene is inserted into

the micro-organism obtaining a kind of protein factory. Another example is the impor-

tant exploration field that involves the study of the so-called oncogenes; i.e. genes that

when mutated or expressed at abnormally high levels contribute to the conversion of a

normal cell into a cancer cell. Furthermore, in [Evans, 1999], mutations in genes are used

as important determinants of drug effects, which represents a key issue in the emerging

pharmacogenomics discipline. These are only few examples of the huge possibilities that

can be derived from the discovery, characterization and recognition of genes.

Every protein is formed from a specific sequence of the 20 amino acids. Their dis-

placement information is transferred from the DNA through a translation code formed

by a subsequence of three bases of nucleotides. So, each amino acid relates to a specific

sequence of three bases, the codon. Therefore, in the classification of proteins, the major

issue to be unraveled is to discover, for each protein, the sequence of bases that generated it.

When a particular gene codifies a protein, it is said to be expressed into the protein. Since

even the most powerful microscope is unable to distinguish among genes, new methodolo-

gies are required to gain the global gene expression profile. Many laboratories are working

to make a database of gene structures as soon as they are discovered.
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2.3 Microarrays Technology

2.3.1 Introduction

Microarray technology came on time to cover the need to monitor in parallel all the DNA

sequences and to have the adequate sensibility to detect the variation of gene expression.

Furthermore, this technology affects the data volume that can be acquired during a limited

time. The crucial impact of facilitating this technology was the boost of our understanding

of organisms and various biological processes. During 1990s, some parallel methods have

been introduced, allowing the possibility to detect the expression level of a huge number

of genes simultaneously. The first method, devised in the laboratory of Pat Brown at

Stanford [Schena et al., 1995], is based on the robotic micro-deposition and the fixing of

DNA single-stranded fragments in microarrays mounted on microscope slides with a size

of 2 cm × 2 cm. The second method depends on the high density spatial synthesis of

oligonucleotides [Lipshutz et al., 1999]. Other methods depend on the development of in

situ synthesis with reagents delivered by ink-jet printer devices [Hughes et al., 2001].

The development of microarray technology and its success are sparked by the intro-

duction of many innovations in recent decades. The highly specific preferential binding of

complementary single-stranded nucleic acid sequences was first exploited experimentally

in the mid 1960s. This method achieved a remarkable success in the form of a technique

which is called the Southern blot [Gillespie & Spiegelman, 1965; Southern, 1975]. Some

other innovations are the progress in the genome sequencing, the advances in miniatur-

ization and the high density synthesis of nucleic acids on non-porous solid supports, such

as glass, nylon or silicon. Microarrays were first used to study global gene expression in

[DeRisi et al., 1997].

Remarkably, the microarray technique represents a real breakthrough in biological and

medical fields, since all traditional gene expression detection methods provide gene in-

formation in a sequential way. The availability of genes’ data-bases enables researchers to

study all the genes belonging to a given organism simultaneously. Therefore, the researcher

will obtain a quantitative information about cellular pathways and will observe the effect

of different physiological conditions on such pathways by direct comparison between the

expression levels of the genes. Microarray has already been facilitated in a wide range of

applications; notably, for novel gene discovery, expression profile analysis, drug discovery

and development, investigating biochemical pathways, diagnostics, therapeutics and pro-

teomics [Holloway et al., 2002; Leung & Cavalieri, 2003; Samartzidou et al., 2001; Schena

et al., 1998].
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2.3.2 Gene Expression

Gene expression is highly valuable for exploring genetic regulations such as investigating

metabolism. In addition, investigation of gene expression forms a very effective method-

ology in the molecular medicine such as classification of disease, diagnosis, prognostic

prediction and in a number of industrial and pharmaceutical applications [Cohen, 2005].

Maybe it is a common observation that biologists have found many genes to be co-

regulated [Eisen & Brown, 1999; Eisen et al., 1998] in an extremely efficient way. Co-

regulation under various biological conditions means that there is a relative similarity

among the corresponding expression profiles [Chou et al., 2007]. These genes include the

genes of nutrition, stress responses and metabolic pathways. Some other co-expressed

genes are the genes encoding the ribosome, the proteosome and the nucleosome [Alon,

1999; Brown & Botstein, 1999; Causton et al., 2001; Eisen et al., 1998; Hughes et al., 2000;

Lashkari et al., 1997].

The gene expression profile is the measurements of gene expression of the genes under

study. Therefore, it can be considered as a representation of the molecular definition of a

cell in a specific state [Young & Center, 2000]. Obtaining adequate information about the

transcriptional profile of biological sample is very important. Expression profile is a way for

describing a phenotype, which can be a complete set of observable inherited characteristics

of an organism [Cantor & Smith, 1999]. Furthermore, the ability to profile and match

patterns for a large number of biological samples has been used to infer the function of

un-characterized genes or some supposed drug targets [Gray et al., 1998; Hughes et al.,

2000; Marton et al., 1998]. For that reason, the National Cancer Institute offers access

to databases integrating gene expression profiles data from 60 human cancer cell lines in

order to be used for cancer research and drug design research [Ross et al., 2000; Scherf

et al., 2000; Staunton et al., 2001; Weinstein et al., 1997].

The necessity for gene expression data in fields such as oncology has been highlighted by

the crucial application of gene expression for accurate and early diagnosis and treatment. In

addition, gene expression data has been used to specify a tumor type in clinical samples,

define a new subtype, identify misclassified cell lines and predict prognostic outcomes

[Alizadeh et al., 2000; Bittner et al., 2000; Golub et al., 1999; Perou et al., 1999; Shipp

et al., 2002]. With such a powerful technology, the personalized medicine, in which the

specific underlying problem can be identified and the prognosis can be predicted, has a

high potential in the near future. Thus, the treatment can be altered based on the genetic

information of the patient and the specific characteristics of the tumor in order to reduce

the likelihood of unwanted side effects.

Pharmaceutical industries use microarray technology extensively at various stages of
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drug design starting with a high throughput screening of small molecules, then identifying

possible drugs, drug target identification and assessment of toxicity. This situation has been

sparked by the robustness of gene expression as a representative of biological characteristics

for a wide range of samples under numerous conditions.

2.4 Microarray Experiment and Data Analysis

In general, a microarray is a chemically-treated microscope slide of glass, nylon membranes

or other specialized substrates. Onto this slide, an orderly arrangement of nucleic acid

samples, each representing a particular gene, is typically placed at fixed locations called

spots. There may be tens of thousands of spots on an array. Each spot contains tens of

millions of identical DNA molecules with lengths from tens to hundreds of nucleotides.

Afterwards, the microarray slide is exposed to a set of labeled cDNA samples, which are

derived from tissue of interest. With the completion of hybridization reaction, the amount

of the target that bounds to each sample is measured with the aid of image capturing

devices and computer technology. The measurement is based on the intensity of the spot.

Theoretically, in order to carry out gene expression studies, each molecule should represent

a single cDNA molecule or transcript for a specific gene. In practice, however, it is not

always possible to identity sequences that monitor the expression of a specific transcript

unambiguously due to the presence of families of similar genes. The spots are either printed

on the microarray by a robot or ink-jet printing, or synthesized in situ by photolithography.

2.4.1 Process Summary

There are many ways by which researchers can use microarrays to measure gene expression

levels. One of the most popular microarray applications is to compare the gene expression

levels in two different samples. The basic idea is to label the extracted mRNA from each

of the samples using two different dyes, for instance, a green label for the sample from the

first condition and a red one for the sample from the second condition.

In a nutshell, the hybridized microarray is excited by a laser and scanned at wavelengths

suitable for the detection of the applied dyes. The amount of fluorescence emitted relates

to the amount of nucleic acid hybridized to each Spot. Assuming that the nucleic acid

from the first sample is emitting green light, while the nucleic acid from the second sample

is emitting red light, then, if both are equal, the spot will be: yellow, and if neither is

present it will not fluoresce and so appears black. Thus, from the fluorescence intensities

and colors for each spot, the relative expression levels of the genes in both samples can be
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estimated. Therefore, information about expression of thousands of genes can be obtained

from a single experiment. On the other hand, the same principles have been facilitated in

the other platforms for obtaining gene expression profiles.

Experimental Design

Data Generation

Preliminary Data Analysis
(Image Processing)

Higher level data analysis
(supervised and unsupervised

methods)

No Hypothesis Hypothesis

Choice 
of the 

Appropriate 
Sample Type

Chip 
Fabrication

Sample 
Preparation

Biochemical 
Reaction

Figure 2.8: An overview of a microarray experiment and data analysis. After designing the
experiment, the data should be acquired. These data must undergo a preliminary analysis
basically by image processing step and quality assessment. The higher level analysis may
involve various methods in order to carry out normalization and clustering. Usually, these
analyses are relevant to the biological samples, the information required and the original
hypothesis to be tested.

A microarray experiment generally consists of four distinct steps, see Figure 2.8. They

are, 1) the design of the experiment which includes the choice of the appropriate sample

type, chip fabrication, sample preparation and biochemical reaction; 2) data generation;

3) image processing; and 4) high level data analysis [Schena, 2000; Yang et al., 2002].
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2.4.2 Experiment Design

2.4.2.1 Choice of Sample Type

The first decision the researcher has to make when they design a specific experiment is

to determine the type of the immobilized probes and the type of the sample. Since the

gene expression profile is the most common application for microarray, cDNA is the most

appropriate type while oligonucleotides is accounted as a second choice [Debouck & Good-

fellow, 1999; Guo et al., 1994; Leung & Cavalieri, 2003; Li et al., 2004; Nuwaysir et al.,

2002]. On the other hand, when the target of the study is genes that share a large sequence

identity such as genes that belong to the same family, oligonucleotides are a better choice

because of their fine ability to distinguish between similar sequences [Baggerly et al., 2004].

However, other probe types such as proteins and antibodies are becoming popular as re-

searchers start realizing the potential applications of the microarray technology, which will

allow proteome-wide screening of protein function in parallel [Glökler & Angenendt, 2003;

Lueking et al., 1999].

2.4.2.2 Chip Fabrication

To produce a microarray, pre-synthesized probes, usually PCR products, are immobilized

on the array slide at a pre-defined grid location. The product of this approach is usually

called “spotted microarray”. Another method to produce the microarray is by using in

situ, where each probe is individually synthesized on the surface of the slide [Debouck

& Goodfellow, 1999; Yang et al., 2002]. The product of this approach is usually called

“Oligonucleotide microarray”.

Common PCR primers can be used for the amplification of random sequences, which

is very useful when there is no knowledge about the genome of the organism under study.

Furthermore, microarrays can be used to perform a massive parallel sequencing [Diamandis,

2000; Zhou et al., 2006]. For this purpose, the target to be sequenced is immobilized, then

a very large set of short and labeled probes has to be hybridized with this target. Then,

the examination of the pattern of hybridization and the computation of the original DNA

sequence have to be done [Drmanac et al., 1998]. Either that, or one should immobilize a

very large set of short probes on a substrate and then hybridize these short probes with

the labeled target of interest. Finally, biologists can infer the DNA sequence of interest by

the analysis of the results [Pease et al., 1994].

Other materials that can be used as probes are Oligonucleotides, which are prepared

by conventional phosphoramidite pre-synthesis [Pon & Yu, 2005]. By following this ap-

proach, these oligonucleotides with their small size can minimize cross-hybridization that
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can possibly occur between distinct nucleic acids with sharing homology, from the same

family. Given the existence of genes that share large sequence similarities in the genomes

under study, oligonucleotides are often used in order to identify unique genes with greater

specificity.

In the oligonucleotide microarray, in situ synthesis is merely a sequential addition of

separate single nucleotides to a linker molecule directly onto the grid. This addition results

in the synthesis of oligonucleotides, mostly with 20 nucleotides long.

Figure 2.9: Nylon-slide Microarray.

I) Substrate: The substrates that might be used for sample spotting can be of vari-

ous types such as glass (Figure 2.1), nylon membranes (Figure 2.9) or silicon chips (Figure

2.10). However, the glass slides are the most common ones because of their low cost, avail-

ability, resistant to high temperatures, low fluorescence and generally favorable chemical

characteristics [Cheung et al., 1999; Guo et al., 1994; Moore et al., 2002]

The attachment of the probes to the slide surface is based on the binding property of

some chemicals. Generally, two substances are used to achieve this goal. The first material

is the amine rich chemicals that give positive charges to the chip and interacts with the

negatively charged probes. The second one is aldehyde chemistry where the 5’ primer,

which is used for generation of probes through PCR amplification of the desired sequence,

carries an aliphatic-amine group which attaches it to the aldehyde coated slide [Lemieux

et al., 1998].

II) Types of microarray chips fabrication technologies: Three main types of

advanced technologies are commonly used to prepare the microarray slide: in situ, me-

chanical spotting and the so-called ink-jet approach [Xiang & Chen, 2000; Yang et al.,

2002]. Each one has some advantages and some disadvantages. Thus, researchers have to
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choose the most suitable one of these technologies based on their own needs.

* In Situ: In this method, oligonucleotides are built up base by base on the surface

of the slide. The binding mechanism is based on the aldehyde chemistry. Usually, each

nucleotide added to the oligonucleotide on the glass has a protective group to prevent the

addition of more than one base at a time. The oligonucleotides in selected areas will be de-

protected using chemicals or light in order to be ready before the next round of synthesis.

This technology is very precise and highly automated since it allows direct fabrication of

the chip using a sequence database without the need to add DNA clones, PCR products

or other materials. Therefore, the risk of human error will be minimized.

Three main technologies are used for the de-protection in ”in-situ” synthesized array.

Two are based on Photolithography, and the other is based on chemical de-protection:

1) Photodeprotection using masks: this is the basis of Affymetrixr technology [Brown

& Botstein, 1999; Southern & Mir, 1999]. In this technology, specific masks are used in

order to allow light to pass to some areas on the array but not to others. Each step of

synthesis requires a different mask, and each mask is expensive to produce. This property

makes this method expensive and time-consuming, and therefore limits the wider labora-

tory usage of photolithography. In fact, in situ synthesized microarray chips are currently

produced only in commercial settings [Guo et al., 1994]. However, once a mask set has been

designed and made, it is straightforward to produce a large number of identical arrays.

2) Photodeprotection without masks: this method has been used by Nimblegen and

Febit [Nuwaysir et al., 2002]. In this method, the light is directed via micro-mirror arrays

to affect the specific area which is needed to be de-protected, instead of using masks.

3) Chemical de-protection with synthesis via inkjet technology: in this method, the de-

protection is based on a chemistry similar to the standard DNA synthesizer. The printing

device works in a similar method to the conventional color printers but with the 4 DNA

bases instead of the color [Allain et al., 2001; Gershon, 2002; Singh-Gasson et al., 1999].

Because of its flexibility, this technology has been adapted to produce microarrays with

cDNA probes [Epstein et al., 2002] in addition to oligonucleotides microarrays [Blanchard

et al., 1996].

* Spotted microarray : In this methodology, a robotic spotting device deposits the

pre-made probes on a specific location on the surface of the chip. In order to accomplish

the printing task, the spotting robot contains a set of pins, which need to come close

enough to the substrate to spot the probes. Those pins have to reload new samples after

each deposit from a microtiter well plates.

Besides the low density of this type of microarrays, the high risk of the wrong ma-

nipulation of the pre-made probes is its main drawback. However, the low cost of the



Chapter 2. 25 Background

method makes it suitable for a wider range of laboratories, with limited budgets, and it is

probably the predominantly used method for microarray chips’ fabrication in the academic

community.

* Ink jets: In a way it is similar to the spotted array methodology. The probes

should be pre-prepared and then loaded into the miniature nozzle, which is controlled by

a robotic system to ensure that the printing is at specific co-ordinates of all spots. After

the printing of each spot, the nozzle is washed and loaded with the next sample of interest.

One of the advantages of this technology is the un-necessity of the physical contact between

the nozzle and the slide surface.

Figure 2.10: Oligonucleotides Microarray.

2.4.2.3 Target Preparation and Labeling

Many biological methods have been developed in order to prepare and label samples for

microarray experiments. Basically, these methods depend on the biological query and

the type of probes used in the experiment. Generally, the first step is to extract mRNA

forming the cells or tissues of interest. These extracted mRNA will be used to synthesize

cDNA. Most laboratories use fluorescent labeling with dyes of choice, usually Cyanine-3

(Cy3, green) and Cyanine-5 (Cy5, red). In the most common experiments, two samples

are hybridized to the arrays. Molecules derived from the reference sample are labeled with

one type of dye, say Cy3, while the nucleic acid derived from the examined sample are

labeled with a second type of dye, say Cy5, and then the samples are mixed together. This

allows the simultaneous measurement of both samples. When the resulted chip is scanned,

up-regulated genes appear red (because of the high ratio Cy5/Cy3) while down-regulated

genes appear green. Therefore, genes whose expression levels have not been affected appear

yellow, as the red and green dyes are present in equal amounts.
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There are generally three labeling approaches. The first is direct incorporation by

reverse transcriptase; the fluorescent tags are immediately attached to the sample nucleic

acid in a covalent manner. The second method is indirect labeling that also uses a reverse

transcription reaction; a second molecule, commonly biotin, serves as an intermediate

between the fluorescent tag and the probe. The third and the least common method for

labeling is by random primed labeling using the Klenow fragment of DNA polymerase I.

Many approaches have been developed to reduce the sufficient amount of RNA, which is

required for an experiment to get a better quality labeling and, therefore, to improve the

sensitivity of the detection process [Baggerly et al., 2004].

2.4.2.4 Biochemical Reaction (Hybridization)

When the mixture of labeled samples (reference and testing) is ready, the next step is to

expose the slide with the specified probes to these resulted materials. Biological bonding,

which is called hybridization, is the stage in which the probes on the slide and the labeled

samples form heteroduplexes bind together. Hybridization is a very complex mechanism,

which is affected by many factors. The non-porous slides would increase the chance of

two complementary molecules to come in physical contact in a certain amount of time.

Furthermore, this type of substrate reduces the amount of samples needed for the experi-

ment. In addition to the slide substrate properties, these conditions include temperature,

humidity, salt concentrations, formamide concentration, volume of target solution and op-

erator. The hybridization could be performed manually or, alternatively, robotic-ally by a

hybridization station.

For instance, with the reference sample labeled with Cy3 (green) and the tested sample

labeled with Cy5 (red), the exposure of the chip to the mixture of both labeled samples

will cause hybridization. The amount of red and green dyes present at any specific spot

(corresponding to a particular gene) will depend on the way by which the applied treatment

affects the expression level of this specific gene in the tested tissue [Brazma et al., 2000].

For the genes that are not affected by the treatment, the amount of the corresponding

mRNA is the same in both samples. Therefore, the red and green labeled molecules are of

equal abundance and will present equal amount at these genes’ assigned spots; the reflected

color will be yellow. Besides, the genes that are over-expressed in the tested tissue would

lead to a mixture which contains more red-labeled molecules representing those particular

genes. Furthermore, the genes that are under-expressed in the tested tissue would produce

a mixture with more green labeled molecules [Sherlock & Hernandez-Boussard, 2001].

Upon completion of the hybridization reaction, the array is subjected to wash in order
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to: 1) remove any excess hybridization solution from the array and ensure that the only

labeled molecules on the array are the molecules that have specifically bound to the features

on the array. 2) increase the stringency of the experiment by reducing cross-hybridization.

After washing, the slide will be ready to be scanned.

2.4.3 Image Acquisition and Data Readout

At the end of the laboratory process, the image of the surface of the hybridized chip should

be acquired. The heteroduplexes on the slide, where the target has hybridized to the probe,

contain dye that fluoresces when excited by light of an appropriate wavelength. These dyes

allow us to detect the amount of targets bound to each spot using several technologies.

The most common one is the high resolution confocal laser scanners. The scanner contains

one or more lasers that are focused onto the array; most scanners for two-color arrays use

two lasers.

The software integrated with every scanner type extracts intensity signals from the chip

and converts them into a numerical value; i.e., monochrome image. With the two-channel

microarray, the output of the scanner is usually two monochrome images: one for each

of the two lasers in the scanner. These images are combined to create the red (green)

color images of microarrays. The images are usually stored as 16 bits Tagged Image File

Format (TIFF) [Schermer, 1999]. This means that the intensity of each pixel in each

channel is quantified as a 16-bit number, which takes values between 0 and 65535. Usually,

background is approximately 100 and saturation can occur when the average pixel intensity

is larger than 50,000. The microarray can detect intensities over an approximately 500-fold

dynamic range.

The image resolution should be appropriate so that each feature has sufficient pixels to

make the measurement of the intensity of the feature with the least possible noise.

The whole experimental procedures are highly important as the production of a good

quality chip makes data analysis easier and substantially improves results. However, read-

ing out and analyzing the result of a microarray experiment is probably the most difficult

and the most challenging aspect of microarray experiments with vast latitudes for improve-

ment. The size and the complexity of the generated data, in addition to the analysis of

these data, form the most essential obstacle that the researchers’ community faces, rather

than the performance of the microarray experiment itself.
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2.5 Data Generation, Processing and Analysis

Since the resulted image represents the raw data of the experiment, it is important to

understand and improve the methods of extracting and analyzing the data of the image.

Everything else, afterwards, is derived from those images and their initial analysis. The

first step, then, would be converting the image into numerical measures that quantify

the hybridization intensity of each channel for each gene or EST. This process is known

as feature extraction. Typically, microarray image analysis programs give few summary

statistics of the pixel intensities for each spot and for the surrounding background. The

image processing involved has a major impact on the quality of data and its interpretation

[Lehmussola et al., 2006]. In general, there are four steps in image analysis process [Schena

et al., 1995; Yang et al., 2002]:

• The filtering stage that is a low level image cleaning procedure. This stage can be

used to remove the small contaminations or the background trend such as specks and

dusts [Wit & McClure, 2004].

• The spotting stage, usually called gridding, which is used for the individual localiza-

tion of spots’ centers on the array.

• The segmentation stage which classifies pixels in a region immediately surrounding

the gene as belonging to either the foreground or background domains.

• Feature extraction stage which is the process of analyzing every spot in order to

determine the corresponding gene expression level.

2.5.1 Filtering

In this stage, the task is to identify the spots and distinguish them from spurious signals

that can arise from either biological contaminations, such as a precipitated dye or other

hybridization artefacts, or contaminants such as dust on the surface of the slide and other

sources of nonspecific background.

Due to the existence of the high signal variability across the surface of the microarray,

identifying gene spots can be counter-productive at this early stage. Therefore, rather than

using the raw image, it is better to apply some filters that produce an image data such

that emphasis is placed on certain frequencies or regions of interest. These results are more

appropriate than the original image for the specific applications at hand. The importance

of stressing “specific” is to highlight the important features of the microarray, which should
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be considered for designing and applying any filter during this stage. Irrespective of the

applied filter, however, filtering is one of the most interesting areas of microarray image

processing.

In general, regardless of the type of analyzed data, it is a normal practice to pre-process

the data such that artefacts, of one type or another, are reduced. Since the noise objects

could be incorrectly interpreted as valid data points, filtering stages are designed to reduce

such interpretation issues. A microarray image is littered with various amounts of noise

that could cause the analysis algorithm to make wrong decisions. Accordingly, a proper

filtering technique must lead to a remarkable removal of noise artefacts in the microarray

image surface.

Although microarray technology has been engineered to fine tolerances, there exist

problems regarding contamination which can corrupt the required gene signal. The most

obvious reason that causes noise is the biological processes. Since biology is based on bio-

chemical interactions, any mutation or corruption of a single component within a sequence

interaction can cause a significant effect on the final hybridization results. In general,

these types of contaminations can be divided into two categories: hybridization related

and washing related contaminations. Many factors affect the hybridization process includ-

ing temperature, humidity, salt and formamide concentration as well as the target volume

solution. The existence of the genes’ families, which share sequence similarity, may lead

to cross-hybridization during the hybridization process. This cross-hybridization produces

misleading signal on the surface of the microarray slide.

Usually, upon the hybridization completion, the slides should be washed in order to

remove these weakly bound probes and all other solutions, which have been used, from the

microarray surface thus increasing the stringency of the resultant data. However, with the

poor protocols of the washing stage, the washing material itself may drie onto the slide

surface. These materials lead to an erroneous signal on the slide surface.

Another type of noise that can enter the process is the systematic noise. This type of

noise typically has a form of internal order or structure. In the case of microarrays, it is

usually a result of poor slide preparation and hardware equipment such as printing pins.

The operator and the manual handling of the slide during the experiment may cause some

sorts of artefacts, such as hair, scratches, dust and finger prints.

Filtering could be defined as a replacement of each pixel in the image with a value

derived from the pixel and the other pixels surrounding it. It changes the dynamic range

of the image, produces a smoother image and removes local noise or interference in an

image. Two types of filter are highlighted in the literature, the median filter and the top-

hat filter. The former allows for the removal of small contaminations which affect only a
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small number of pixels, and the latter allows for the robust removal of background on an

array.

2.5.1.1 Median Filter

A median filter simply replaces each pixel with the median value among the pixels in

a window centered on the pixel. Generally, the window would be of small dimensions

[Glasbey, 2001], such as 3 × 3 or 5 × 5, for two reasons: 1) Removing small artefacts on

the array so that they are fully attenuated or are less noticeable. 2) Since a hybridized

spot size typically is much larger than the size of the smoothing window, the filter will not

affect the overall structure of the spot.

2.5.1.2 Top-hat Filter

The top-hat filter [Buckley, 2000] is a well-known filter for estimating the trend of the

image. Mainly, the top-hat filter performs morphological opening. By subtracting this

trend from the image, the background contamination will be reduced [Glasbey, 2001; Yang

et al., 2002]. This filter, first, replaces each pixel by the minimum value of a square window

centered around it. Then, it replaces each pixel of the resulted image with the maximum

value in the window. Using a window of size bigger than the spot size, only the local

background will be estimated; all spots will disappear in the morphological opening image.

Finally, the top-hat filter subtracts the morphological opening from the original image.

The important property of this filter is the preserving of non-negative estimation of the

gene expression [Glasbey, 2001; Yang et al., 2001]. Therefore, this filter effectively solves

the brightness differences of the background which makes comparison of similar features

in different parts of an image difficult.

2.5.1.3 Anisotropic Diffusion

Generally, the image has structures at different scales. In practice, however, it is not

straightforward to specify the right scale for any particular application. Thus, multiple

scale representation for the image is totally advantageous [Alvarez et al., 1993]. A multi-

scale representation of an image is an ordered set of derived images intended to represent

the original image at various levels of scale [Bovik, 2000]. A proper description of these

structures will lead to a smooth image processing in later stages.

Towards this end, Perona & Malik [1990] proposed anisotropic diffusion for adaptive

smoothing in order to formulate the problem in terms of the non-linear heat equation. Ap-
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plying anisotropic diffusion in the filtering stage of the microarray image is beneficial since

it preserves edges and simultaneously represents a good approach to achieve smoothing

[Weickert, 1998].

2.5.2 Gridding

In this stage, the position of every spot center on the microarray is specified. The image

of the microarray has a regular structure (see Figure 2.1) since the spots are located on a

uniform grid [Lonardi & Yu, 2004] with larger space between sub-grid than between the

spots within each grid. In cDNA spotted microarrays, the spots are usually arranged in

sub-groups representing each of the pen tips used to deposit the probe. In general, arrays

have their spots arranged in a rectangular grid.

However, real microarray is rarely close to the ideal desired image. In fact, microarray

has variations on the spot position, irregularities on the spot shape and size, contamination

and global problems that affect multiple spots. Many issues might arise across the array,

such as uneven grid positions, curve within the grid, uneven spot spacing and uneven spot

size [Stekel, 2003].

Although almost all the software packages have automatic gridding algorithms, they

do not produce error-free results. Practically, the manual supervision and intervention

are commonly required either on all the process or, at least on a part of it. In general,

an assumed grid is placed over the image with a little manual intervention to achieve the

gridding task. That is, the software tries to adjust the provided fixed grid and then allows

the user to tune the result. The output of this stage will be used in later stages, the

segmentation and the quantification.

The importance of the grid placement is due to the usability of the grid coordinates

for identifying the individual array spots and assigning identities to them. Shifting or mis-

aligning the grid may lead to the assignment of particular expression levels to the wrong

genes.

2.5.3 Segmentation

Once grids have been placed, discrimination between areas that are considered the spot

signal and areas that are considered the background signal must be carried out. The pro-

cess, by which each individual cell in the grid must be selected to determine the spot signal

and to estimate the background hybridization, is called segmentation. That information

will be put towards a quantitative measurement at each cell. Different software pack-
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ages, academic and commercial, employ different segmentation algorithms. In general, the

available techniques can be categorized into three main classes. These techniques could

be manual, semi-automated or complex automated methods. Practically, these methods

are time consuming and/or computationally expensive [Lukac et al., 2004]. Regarding the

segmentation process, two issues should be highlighted: 1) It has been anticipated that the

spot intensity value would be independent of the segmentation algorithm if a background

correction method is utilized [Yang et al., 2002]. However, Lehmussola et al. [2006] showed

that the segmentation method significantly influences the identification of differentially ex-

pressed genes. 2) The large number of spots and the irregularities of the spots’ shape and

position have led to the recent interest in using a fully automated procedure to accomplish

the task [Bajcsy, 2004; Jain et al., 2002; Katzer et al., 2003].

There are four widely used approaches for segmentation:

2.5.3.1 Fixed Circle Segmentation

In this approach, a circle of fixed size is placed over the center of mass of the spot. All the

pixels inside this circle are used as those that form the signal,i.e., the intensity of the spot.

The area outside the circle is considered as a background associated with this spot.

This method is computationally simple and provides a reasonable estimate of the re-

quired measures about the spot. With high-quality microarrays, where the size and the

shape of spots are highly consistent, the fixed circle segmentation is the best approach.

However, since the microarray usually is far from ideal it can lead to mis-estimation of

both the spot signal and the local background signal, in particular, when the variability in

spot size and position exists [Yang et al., 2001].

Fixed circle segmentation is the most commonly used method in cDNA image analysis

packages including ScanAlyze [Eisen, 2010], GenePix [Anonymous, 1999] and QuantArray

[Lumonics, 1999].

2.5.3.2 Adaptive Circle Segmentation

This approach is similar to the previous one but with a variable diameter of the circle.

Therefore, it is able to deal with variability of the spot size, but it does not perform well

with irregular spot shape .

Some packages are equipped with adaptive circle segmentation methodology such as

QuantArray, GenePix and Dapple [Buhler et al., 2000]. Usually, manual tuning of the

diameter of the circle is used. However, The second derivative of the image is used to

specify the diameter such as in Dapple package.
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2.5.3.3 Histogram and Threshold Segmentation

In this approach, the histogram of all the pixels in the cell, spot and background, is

produced. Typically, both extremes, highest and lowest pixels, should be omitted. With

an ideal image, this will produce a bimodal distribution of pixel values, i.e., the higher mode

corresponding to the spot and the lower mode corresponding to the background. This old

technique is simpler than the other methods with an ability to produce reliable results

for spots that shaped irregularly.Therefore, the underlying assumption of this method is

that the peaks in the histogram can be utilized in order to specify a threshold for the

discrimination between the gene spot and the background regions. Unfortunately, this

assumption can lead to incorrect observations. For example, in noisy images there could

be no peaks (valleys) that can be used to infer a threshold as the range of intensities is

very small. Thus, it is almost impossible to find a threshold value or a set of threshold

values that will result in a single connected region matching the set of spot pixels that a

biologist would determine to be the spot pixels. Furthermore, if the spot’s area is very

small comparing to the cell area the histogram method will produce an unreliable result.

On the other hand, ignoring the spatial relation between pixels makes histogram seg-

mentation prone to the contamination in the background. This can lead to a false dis-

crimination by considering this contaminating signal as a part of the spot’s signal. Note

that ImaGene [Anonymous, 2008] and Quantarray have the option of using histogram

segmentation.

2.5.3.4 Adaptive Shape Segmentation

As a flexible method, adaptive shape segmentation attempts to, precisely, identify the spot

pixels by including only those falling within a tile boundary. The Seeded Region Growing

(SRG) algorithm is the most common one among these methods [Adams & Bischof, 1994].

SRG method is perhaps the most powerful one with respect to shape identification since it

allows us more precisely to identify those pixels representing real hybridization. Therefore,

it can provide a better estimate of the actual intensity associated with each spot.

In the SRG methodology, seeds corresponding to foreground and background signals

should be specified. The spot is then grown from its seed pixels by deciding whether

adjacent pixels belong to the spot. The same is done for the background signal until all

the pixels are assigned to the background or to the spot.

However, SRG is computationally difficult, causing the image processing time to in-

crease. It relies on seed growing methodology as well as the selection of the initial seeds

[Tran et al., 2004]. Thus, depending on this particular algorithm, it may possibly lead to
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misidentification of the spot and the surrounding background areas.

Watershed segmentation is another adaptive approach to specify the spot’s pixels based

on mathematical morphology [Siddiqui et al., 2002]. It was developed in academically de-

veloped software. Angulo & Serra [2003] compared it to GenePix and ScanAlyze. However,

the watershed algorithm application to microarray image depends on the spots and back-

ground intensities distribution. In addition, watershed approach is sensitive to the noise

objects. Traditional watershed algorithms have been described as excessively slow but

there has been a lot of works toward improving their efficiency [Vincent, 1993].

2.5.4 Segmentation: Current State-of-the-art

To overcome the limitations of the techniques mentioned above, many approaches have

been proposed. Cheriet et al. [1998] developed Otsu’s method [Otsu, 1979] by proposing

a general recursive approach for image segmentation based on discriminant analysis. In

this approach, the image’s histogram is calculated for every iteration with the largest peak

being discriminated from the others. The process will stop when there are no more peaks

in the histogram. However, the method produces unreliable results if there are more than

two classes within the data. This method produces results only when the desired object

corresponds to the global minimum and this object is the darkest object, otherwise it fails

[Fraser et al., 2010]. A gradient relaxation algorithm is proposed by Parvin & Bhanu

[1983] to solve unimodal problems and compare it to a non-linear probabilistic relaxation

algorithm [Ranade & Rosenfeld, 1980]. This relaxation process is iterative and tends to

change the histogram properties by altering the values of the pixels in order to detect the

threshold value more appropriately.

Edge based algorithms depend on any significant change in intensity of the image,

which is usually spatially localized [Marr & Hildreth, 1980]. However, due to real image

characteristics, these changes are not typically abrupt. In [Ahuja et al., 1980] a pixel

neighborhood method for image segmentation has been used where each pixels’ neighbor

was identified in a specific window size. This information forms a good set of features to

classify the pixels. Perkins [1980] addressed the gap problem resulting from undetected

edge and he proposed an expansion/contraction technique to solve it.

Marr & Hildreth [1980] utilized the second derivative of the Gaussian to detect the edge.

Perona & Malik [1990] developed the work of Witkin [1984] by replacing the scale-space

analysis using isotropic diffusion with the one using anisotropic diffusion. In their method,

the diffusion coefficient is chosen to vary spatially in such a way as to the real edge sharp.

The selection of gradient threshold in the coefficient function is essential. Pixel-level-Snakes
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techniques have also been applied [Ho & Hwang, 2007; Srinark & Kambhamettu, 2004].

However, these methods are sensitive to the noise degree in the image.

Although SRG algorithm is fairly robust, it has an obvious problem due to its depen-

dency on the pixel ordering process. That is, the result of the process taking left-to-right

order is different from the result of processing the opposite direction. To solve this prob-

lem, Mehnert & Jackway [1997] improved the SRG algorithm by making it independent of

pixel ordering. Their algorithm has the advantages of the original SRG, but if any conflict

occurs the process tries to solve it after all other pixels are labeled. The problem with this

method is that the remaining unresolved conflict requires the intervention of the human to

re-examine it.

Clustering is an unsupervised technique used for image segmentation that allows the

discrimination between pixels and forms groups of pixels with similar intensity values. Ar-

guably, k-means [MacQueen, 1967] and fuzzy c-means [Dunn, 1973] are the most common

approaches. K-means creates k random cluster centers that correspond to k different par-

titions. Each data point is then assigned to the nearest cluster center which is recalculated

using its current members. The process is of iterative nature, and the stopping condition

can be such as no more reassignment of data points or a minimal decrease in squared error.

With the fuzzy logic based algorithms on the other hand, instead of assigning the data

point in a crisp fashion to a specific group, every pixel will be assigned to every group with

a specific membership value between [0, 1], which describes the degree of adherence to a

particular cluster. Therefore, fuzzy logic based clustering offers inherent advantages over

non-fuzzy methods; as they cope better with the space problem which does not have well

defined boundaries.

However, the main disadvantages of these clustering techniques are: 1) they are heavily

influenced by initial starting conditions; 2) they can become trapped in local minima.

A clustering of the full microarray image area in one step has been proposed [Bozinov

& Rahnenfuhrer, 2002], but this might not be computationally feasible with current pro-

cessing power. To overcome such a computational issue, the authors in [Bozinov, 2003]

proposed an abstraction of the k-means clustering technique. Furthermore, Bayesian ap-

proach has been applied in [Lawrence et al., 2003]. Gaussian Mixture Model (GMM),

utilized in a fully automated framework, was presented in [Blekas et al., 2003, 2005]. Yet,

all these methods ignore the spatial dependencies among adjacent pixels. More recently,

Fraser et al. [2004] presented a copasetic analysis framework that attempted to improve

the full workflow processing of microarray image analysis employing traditional clustering

techniques. Other methods such as the applications of wavelets [Noda et al., 2002; Wang

et al., 2003a] and Markov random fields [Demirkaya et al., 2005; Katzer et al., 2003; Li,
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1994] showed great promise. Lukac et al. [2004] utilized the multi-channel nature of the

cDNA image data. Particularly, Arena et al. [2002a] showed the potential of CNNs in

the cDNA microarray image’s analysis. The CNNs’ parallelism characteristic makes them

an ideal computational platform for kernel-based algorithms and image processing [Chua,

1997].

2.5.5 Background Separation

Usually, during the hybridization process some non-specific probes and other fluorescence

from the glass contaminate the surface of the slide. This effect should be considered in

some way in the later analysis. By accounting that the background signal is a good esti-

mate to these contaminations, subtracting the local background signal from the foreground

signal will yield a more reliable value for the hybridization intensity of each spot. How-

ever, there is no standard approach to specify an appropriate background area. Figure

2.11 highlights three most common background separation methods, which are utilized by

several commercial or academic packages.

GenePix’s approach is the most popular one, see Figure 2.11(1). For every spot in this

method, four diamond shapes located at the valleys between the spots are considered to-

gether the background region for the center spot. The pixels of the spot area and the pixels

of the background area represent the intensity of the foreground and background group

respectively. Considering the position of the diamonds, one can note that these regions do

not represent the real background, and then they may lead to a wrong measurement.

In Figure 2.11(2), the circular background method, such as in ImaGene package, at-

tempts to eliminate the mentioned problem. In this approach, the background region is

closer to the spot area but, on the other hand, determining the gap between the spot and

the background regions has a considerable effect on the later measurement, due to the fact

that the intensity of the boarder pixels of the spot represents genetic material other than

the gene spot material. Therefore, including these pixels in the background estimation

will yield incorrect high background signal. On the other hand, the large gap will produce

either the same results as those of the GenePix or will include pixels from the neighboring

spots.

When applying adaptive approach to achieve the segmentation step, the most appro-

priate method to represent the background region is to consider every pixel in the cell as

a background one except those belong to the spot itself, see Figure 2.11(3).
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Figure 2.11: Gene Spot Background Region as Used by Common Packages: a) GenePix;
b) ImaGene; c) ScanAlyze

2.5.6 Gene Quantification

Having obtained the pixels representing the hybridization region of every spot and its

background region, suitable summary statistic measurements need to be calculated. The

extraction of these measurements is called Quantification. Typically, this information

includes, for each spot and its background: 1) the mean value; 2) the median value; 3)

standard deviation; 4) diameter; 5) the number of each spots’ pixels.

The rationale behind using median (mean) is that the level of fluorescence is directly

proportional to the amount of hybridizations for that gene and, therefore, to the amount

of RNA produced by the gene [Smyth et al., 2003]. The standard deviation is a quality

measure of the hybridization. This information will be the input for the next stages of

data analysis.

2.5.7 Microarray Data Analysis

Having these statistical summaries computed, two points should be considered, 1) the large

amount of data produced even from single experiment, and 2) the fact that the microarray

measurements provide a rough estimate of the relative relation between two conditions per

gene and on average over a possibly large population of cells. Therefore, some software

packages should be utilized in order to get meaningful inferences from the data.

Several tools have been developed to carry out different tasks such as clustering, pre-

dicting and visualizing patterns in a high-dimensional space. The most common methods

applied to microarray data are correlation based approaches. The applied analysis on a

large data provides new insights about the situation under study. For instance, comparing

expression profiles leads to a better understanding for molecular pathogenesis of a variety
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of diseases, which forms a step towards achieving a true understanding of genome function.

Statistical analyzes, such as clustering and class prediction, are typical methods currently

used in gene expression data analysis. Some goals of the analysis are: improving the data,

finding regulated genes and representing the data in a human readable way.

2.5.8 Microarray Image Reconstruction

Regardless of the microarray image analysis methodologies, all of them deal with the same

set of knowledge, for example, the position of the spot and the way to discriminate between

gene signal and background signal (either edge or mask). Then, the median of the gene

spot and the median of the background pixels are taken to be foreground and background

intensities. Assuming that there is a little variation within the gene and the background

regions, the background median is subtracted from the foreground and the result is sum-

marized as a log2 ratio.Unfortunately, this is not always the case. A good example of the

low-level signal produced in the image can be seen in Figure 2.11. The image may have

many problems such as the missing or partial gene spots, shape inconsistencies and back-

ground variation, i.e, the scratch and the variation of the background illuminations around

the presented genes. Therefore, several statistic techniques are employed to estimate the

microarray background [Bengtsson & Bengtsson, 2006].

However, what is needed is a more specific background determination process that can

account for the inherent variation between the gene and background regions. One of the

first techniques applied specifically to reconstruct microarray images is the proposal of

O’Neill et al. [2003]. In particular, the gene area is replaced by selecting pixels, which

are most similar to the known border, from a known background region. The underlying

assumption is that the similarity with the given border intensities guarantees the transition

of the local background structures through the new region. Fraser et al. [2007] applied Fast

Fourier Transform (FFT) on two lists representing the foreground and background regions

in a specified window centered at the target spot. Then, a minimization function of the

real part of the transform has been used in order to retain the subtle intensity information

within the background region and to allow the gene spot area to inherit it. To produce the

reconstructed area a reversed FFT should be applied on this output. Most recently, graph-

Cut Image Reconstruction (SCIR) has been proposed in [Fraser et al., 2008]. Particularly,

this technique creates a chain of pixels through the area that has a maximal(minimal)

intensity. Therefore, the algorithm replaces the high-contrast pixels (edge) within the gene

spot area with the low-contrast pixels within the local background area.
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2.6 Testing Dataset

The images used in this thesis are derived from the human gen1 clone set data. These

experiments are designed to contrast the effects of two cancer inhibiting drugs (PolyIC and

LPS) over two different cell lines. One cell line represents the control (untreated) sample,

and the other represents the treated (HeLa) line over a series of several time points. In

total, there are 47 distinct slides with the corresponding GenePix results presented. The

size of each slide is approximately (2000×5000) pixels. Each slide consists of 24 gene blocks,

with each block containing 32 columns and 12 rows of gene spots. The gene spots in the

first row of each odd-numbered block are known as the Lucidea ScoreCard [Samartzidou

et al., 2001] and consist of a set of 32 pre-defined genes that can be used to test various

experiment characteristics. The remaining 11 rows of the odd-numbered blocks contain the

human genes themselves. The even-numbered blocks are duplicates of their odd-numbered

counterparts. This means that each slide has 24 repeats of the 32 ScoreCard genes. Note

that it is generally accepted that extreme pixel values should be ignored as these values

could go beyond the scanning hardware’s capabilities.



Chapter 3

A Novel Neural Network Approach

for Microarray Image Segmentation

The discussion in this chapter based on:

Zineddin, B., Wang, Z. & Liu, X., 2010. A Novel Neural Network Approach To cDNA
Microarray Image Segmentation. Pattern Recognition Letters, submitted.
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If you just have a single problem to solve, then fine, go
ahead and use a neural network. But if you want to do
science and understand how to choose architectures, or
how to go to a new problem, you have to understand
what different architectures can and cannot do.

Marvin Minsky

Microarray technology has become a great source of information for biologists to un-

derstand the work of DNA, which is one of the most complex codes in nature. Microarray

images typically contain several thousands of small spots, which represent different genes

in the experiment. One of the key steps in extracting information from a microarray im-

age is the segmentation whose aim is to identify which pixels within an image represent

which gene. This task is greatly complicated by the noise within the image and the wide

degree of variation in the values of the pixels belonging to a typical spot. In the past there

have been many methods proposed for the segmentation of microarray images. In this

chapter, a new method utilizing a series of artificial neural networks, which are based on

multi-layer perceptron (MLP) and Kohonen networks, is proposed. The proposed method

is applied to a set of real-world cDNA images. Quantitative comparisons between the pro-

posed method and the commercial software GenePix are carried out in terms of the peak

signal-to-noise ratio (PSNR). This method is shown to not only deliver results comparable

and even superior to existing techniques but also have a faster run time.

3.1 Classification

Generally, there are two types of classification methods, namely, unsupervised learning and

supervised learning. The former, also called clustering, establishes a number of clusters

in a set of observations. The later, called classification in this thesis, aims to derive some

rules based on a set of pre-classified data points. These rules will be used later to assign

any new observation into one of these classes. In this chapter, both methods will be used

to deal with different issues through the stages of microarray image analysis.

The rationale behind the application of classification procedures is fundamentally based

on the intrinsic characteristics of microarray image as well as the general consideration

related to the array production process, see Section 2.5. The crucial impact of segmentation

methodology on all subsequent analysis is an important reason to ensure high standards for

implementing classification approaches. Furthermore, the imperfection of the spots’ quality
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and the huge number of spots in the image justify the tendency to develop automatic

classification procedures.

There are some caveats that must be made about many issues relating to any algorithm

proposed for microarray analysis. First, there should be a measure in which one would

be able to specify the accuracy of the results. Every investigated technique produces a

mask that classifies the pixels as belonging either to signal (the gene spot) or to noise (the

local background). The reliability of the segmentation algorithm is usually represented

by the percentage of correct classified pixels. However, the lack of a golden standard that

defines precisely the ideal mask necessitates the development of some comparison methods;

these methods are the only way to qualify the performance of any algorithm. Two general

methods, subjective and objective, have been utilized in this thesis toward this goal.

The evaluation of the proposed algorithm is carried out using the dataset that high-

lighted in Section 2.6. The dataset will be divided into two groups, namely, the training

set and the testing set. Note that the performance over the training set especially in tech-

niques such as neural networks is usually different from the performance over the testing

set. Therefore, the evaluation using the unseen data is of practical importance. For this

purpose, the dataset has been divided into two groups. The first group is a randomly

selected training set, and the remaining data is the testing set. The randomness of the

training set selection guarantees the unbiased estimate of the accuracy.

On the other hand, in order to have a better estimate of the performance of the proposed

classifier, the time issue should be considered. The time factor can be divided into two

components: the training time and the speed of the classifier when applied on the testing

data (or the real application of the classifier). In the microarray analysis, the time is not

as essential as a real time application. However, the time for analysis should be practical

yet the results are, as has been mentioned before, appropriately accurate.

Another issue is the comprehensibility of the decision of the applied tool. Neural net-

works are well known for their ability to model nonlinear functions; i.e., classification rules

in our case. However, they use no-parametric approach. Therefore, the model obtained

with neural network (black box) is not comprehensible in terms of physical parameters. To

overcome this lack of understanding, analysis of the proposed system has been carried out

to gain a general explanation to the results of this approach.

3.2 Neural Networks

A first interest in the ANNs [Bishop, 1995; Haykin, 1999; Rumelhart et al., 1986], as parallel

distributed processing, has emerged after the publication of the research of McCulloch &
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Pitts [1943] about a simple neuron. McCulloch-Pitts’s neuron was a model of the biological

neuron as well as a conceptual component for circuits that carry out computational tasks.

These neurons represented the pursuit of researchers, both in academia and industry, to

mimic human abilities such as the speech and the use of language. Recent discoveries

showed that the utilized models of the artificial neural networks seem to introduce over

simplification of the biological models [Bower & Beeman, 1998]. Yet, this approach has

been dedicated to solve many practical issues such as pattern recognition [Ripley, 2008],

modeling [Polycarpou & Ioannou, 1992], and prediction [Ozkaya et al., 2007].

In general, artificial neural network consists of layers of interconnected processing units

called “cells” or “neurons”. Each neuron has a nonlinear function, called activation func-

tion, that determines the output of the neuron based on its input. The input to a neuron

may come from the input data and/or other neurons. The output of the network is iden-

tified by the output of a specified layer; a set of specified neurons which form the output

layer. The network represents a very complex set of interdependencies, which can model

any degree of non-linearity. Therefore, it allows approximation of very general functions

at least in theory,.

In the simplest networks, the connections between the units allow propagating mes-

sages through the layers. Generally, each connection is defined by a weight that specifies

the effect from each neuron on a neuron at the other end of the connection. The network

becomes a recurrent neural network when the output units are connected with the earlier

units. The recurrent network achieves much more complex behavior. Therefore, it is able

to model a highly nonlinear system with feedback. The weights of the connections are de-

termined usually by a combination of some statistical techniques with the machine learning

techniques; this process is called learning. However, the learning process is achieved in a

way that lacks the ability to make the learned rules transparent to the user.

3.2.1 Artificial Neurons

The artificial neuron is the information processing unite in the network. The neuron,

basically, receives the input signal and uses it to produce the output signal which will

propagate to other neurons, or will represent the network output. Generally, the neurons

can be divided into three general types: input layer neurons which receive data from

outside the system; hidden layer neurons which interact only with other neurons inside the

system; and output layer neurons which send out the final output of the system. It should

be mentioned that the whole system of neurons is totally parallel in the way that many

neurons can carry out their computations simultaneously.
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Figure 3.1 shows the model of a neuron. There are four basic components of the model:

1) Input Vector is multiplied by the synaptic weights’ vector and connected to the

neuron. The input values are a vector x ∈ ℜn×1, with individual components given as xi,

i = 1, . . . , n. Therefore, every component xi is input to the ith synapse and connected to

a neuron j through a synaptic weight wji.

Figure 3.1: The model of an artificial neuron

2) The summing junction
∑

acts to add all the signals fed by the synapses. Thus, every

input is multiplied by a synaptic weight and then summed. netj is a linear combination of

the input to the synapses.

3) The activation function f(.) produces the final output of the neuron yj. Usually,

the activation function is a nonlinear function, but it can be a binary or a bipolar. The

non-linearity enhances the ability of the network to achieve a desired outcome, such as

classification and approximation.

4) The threshold, or bias, θj is an external signal, usually with a fixed value ’−1’(or
’1’). The threshold lowers the cumulative input to the activation function. Therefore, θ is

subtracted from the output of the linear combination netj before the activation is applied.

Therefore, the total input to neuron j is simply the weighted sum of the separate

outputs from each of the connected neurons and the bias or threshold term θj :

netj(x) =

n
∑

i=1

wjixi + θj , (3.1)

where θ is a bias. The contribution for positive wji is considered as an excitation and for

negative wji as an inhibition.
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3.2.2 Activation Function

There are several different types of activation functions. Each one gives a better perfor-

mance for different problems that neuron has to solve. We can define some of the most

used functions as follows:

I) The Linear Function:

Identity function, as in regression problems, is a good example of this type. This

function, as shown in Figure 3.2, is a continuous-valued and its output at j neuron is:

yj = f(netj) = netj (3.2)

1

2

−1

−2

1 2−1−2

f(netj)

netj

Figure 3.2: Linear activation function

II) The Hard Limiter Function:

This type can be a bipolar (or binary) function, as shown in Figure 3.3, that hard-limits

the linear combination of the summing junction to a ‘−1’ or a ‘1’ for the bipolar function

(or a ‘0’ or a ‘1’ for the binary function). The output of the binary hard-limiter for j

neuron can be written as:

yj = f(netj) =

{

0 if netj < 0

1 if netj ≥ 0
(3.3)

For the bipolar hard limiter (see Figure 3.3), the j neuron output is written as:

yj = f(netj) =











−1 if netj < 0

0 if netj = 0

1 if netj > 0

(3.4)
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1

2

−1

−2

1 2−1−2

f(netj)

netj

Figure 3.3: Symmetric hard limiter activation function

Usually, The neuron with hard limiter activation function is called McCulloch-Pitts

model [McCulloch & Pitts, 1943]. In this model, there is no learning process and the

weights are derived from analysis.

III) Symmetric Saturating Linear Function:

This function has two region types, see Figure 3.4. The first one is the saturating

regions which have bipolar output; either ‘1’ or ‘-1’. The other one is the linear region.

The output of the j neuron can be written as:

yj = f(netj) =











−1 if netj < 0

netj if −1 ≤ netj ≤ 0

1 if netj > 0

(3.5)

1

2

−1

−2

1 2−1−2

f(netj)

netj

Figure 3.4: Symmetric saturating linear activation function

IV) Sigmoid Function:

The nonlinear sigmoid function is the most common activation function. Its character-

istics, continuity and differentiability, guarantee the desired performance for a wide range



Chapter 3. 47 A Novel Neural Network Approach

of applications. At this stage, it should be mentioned that the derivative of the activation

function plays a crucial role in the learning process of the neural network. In the binary

sigmoid function (see Figure 3.5), the saturating output has a binary range. The binary

sigmoid function for j neuron is:

yj = f(netj) =
1

1 + e−αnetj
(3.6)

where α is the slop parameter of the function. This parameter affects the shape of the

sigmoid function.

Figure 3.5: Binary sigmoid activation function.

Another sigmoidal function is the hyperbolic tangent sigmoid (see Figure 3.6), which

has a bipolar form. In this function, the saturating limits have a bipolar range. The output

of the j neuron can be written as:

yj = f(netj) =
1− e−2αnetj

1 + e−2αnetj
(3.7)

where α is the slope value. The hyperbolic tangent and the binary sigmoid functions

are equivalent. With basic linear transformations to inputs and outputs, each one of these

functions can be transferred into the other. Practically, the hyperbolic activation functions

achieve faster convergence of training algorithms than the binary sigmoid functions.

The derivative of the binary sigmoid function with respect to the output of the summing

unit can be written as in (3.8). And the derivative of hyperbolic tangent function with

respect to the output of the summing junction can be written as in (3.9). Observing these
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Figure 3.6: Hyperbolic tangent sigmoid function.

derivatives, Figure 3.7 shows that the main advantage of the sigmoidal activation functions

is the derivative dependency only on the activation function output. This characteristic is

of crucial importance for the training algorithms as we will see later.

gj(netj) = αf(netj)[1− f(netj)] (3.8)

gj(netj) = α[1 + f(netj)][1− f(netj)] (3.9)

By using the linear activation function, (3.1) has the following simple geometrical inter-

pretation [Duda & Hart, 1973] (as cited in [Bishop, 1995]). Let’s assume that our discussion

is based on 2-dimensional input space. The decision boundary netj(x) = 0 is a straight

line, see Figure 3.8. The vector w is normal to the decision line, and also w determines

the orientation of the decision boundary. In Figure 3.8, the bias θj determines the position

of the decision line on the x-Axe.

This interpretation can be generalized in order to cover a space of any dimension. Sig-

moidal functions, on the other hand, represent a generalization form of the linear function;

when |α| is too small, in (3.6) (or (3.7)), the sigmoidal function can be approximated by a

linear function. However, it is advantageous to interpret the output of the sigmoid function

as posterior probabilities [Bishop, 1995]. Therefore, the neural network will give more than

a simple classification decision.
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Figure 3.7: Derivatives of hyperbolic tangent and binary sigmoid functions.

x1

x2

netj(x)

w

−θj
||w||

Figure 3.8: A linear decision boundary, corresponding to netj(x) = 0, in a 2-dimensional
input space (x1, x2). The weight vector w, which can be represented as a vector in x-space,
defines the orientation of the decision plane, while the bias too defines the position of the
plane in terms of its perpendicular distance from, the origin [Bishop, 1995, page 79]
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3.2.3 Network Topologies

Regardless of the type of the activation function and its properties that affect the design of

the neural network, the model of connection between neurons is another issue that should

be considered. The topology of the neural network dictates the data flow, the training

algorithm and the overall performance that can be achieved using the networks under

study.

Generally, there are two main patterns of connections:

I) Feedforward networks where the data propagate from input layer to output layer

in a feedforward way; there are no connections to facilitate the data flow from any layer

to the same layer or to any other previous layer. The Perceptron, Adaline and MLP are

some examples of the feedforward networks [Fausett, 1994].

II) Recurrent networks are networks that allow feedback connections. The main

advantages of these connections are the dynamical properties of the network. In some

applications, the network can be designed in a way such that the system will converge to

a stable state by assuming that this stable state is the desired output. On the other hand,

in some applications the system undergoes oscillation behavior where the activation values

change significantly. In such cases, the dynamical behavior represents the desired output

[Pearlmutter, 1990]. Some examples of recurrent networks can be found in [Hopfield, 1982;

Kohonen, 1977].

3.2.4 Training of Artificial Neural Networks

In order to have the desired output, the weights (the parameters) of the neural network

have to be configured. In principle, two approaches are available to specify the weights’

values. For explicate approach, the weight configured is based on available knowledge

about the problem under study. The implicate approach is another possible methodology.

In this way, the weights of the network have to be initialized by some values followed by a

training process which tends to change the weights’ values, based on some learning rules,

to meet the requirement of the application.

In general, the implicate approaches dominate a wide range of applications of the neural

networks. In such methods, the training process falls into two distinct categories:

I) Supervised Learning:

The training is achieved by providing the network with inputs and their desired outputs

pairs. Usually, this information can be provided by the user. However, some systems

provide the neural network, which constitutes part of the system, with the required data

(self-supervised).
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II) Unsupervised Learning:

This method is also called self-organization. In these techniques, the training here is

the process in which the system alters the weights based on the intrinsic properties in

the input data; the system is assumed to discover statistically salient patterns within the

input. Therefore, with no predefined set of desired outputs to be followed, the system has

to produce its own set of rules.

Regardless of the paradigm of training, there should be a rule to alter the weights’

value; adapting the parameters of the network in a way that makes the system achieve the

desired goal. Generally, most learning rules are a development of the Hebbian learning rule

[Hebb, 2002]. The underlying principle is that if two neurons are active simultaneously,

then the strength of their connection should be increased. For instance, if i gets an input

form j, Hebbian rule states that the weight wij should be updated by:

∆wij = ηyiyj (3.10)

where η is a positive constant called the learning rate. Least Mean Square (LMS), also

called Delta rule, is another learning rule. However, rather than using the actual output

of neuron j it facilitates the error value between the j outputs and its desired output:

∆wij = ηyi(tj − yj) (3.11)

where tj is the target that provided by the user. This approach is widely known to be

related to the Backpropagation (BP) algorithm, which will be discussed later.

3.3 Multilayer Perceptron (MLP) Neural Networks

3.3.1 FeedForward Neural Networks

McCulloch & Pitts [1943] model (MP), which slightly mimics the structure of the organic

neuron, is similar to the model proposed by Fisher [1936] to carry out statistical classifi-

cation. Hebb [2002] method has given MP neurons the ability to learn. Hebb’s method

states that if output of the network is close to the desired target, then the weights should

be modified in a way that makes the network produce a similar response for similar inputs

in the future. On the other hand, if the output of the network is far from the desired tar-

get, then the weights should be modified to decrease the reported error. Rosenblatt [1958]

studied Perceptron network, which contains a single layer of neurons. Then, the Percep-

tron Learning Rule has been proposed in [Rosenblatt, 1962] to specify suitable weights for
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classification problems.

In spite of all these brilliant developments, the single layer network was still only able

to solve quite small numbers of applications. One way to overcome these limitations was by

introducing a network with many layers of neurons. This formed the MLP which is widely

in use today. Minsky & Papert [1972] discussed the potential of two layers feedforward

network to overcome many limitations. However, there was no solution to the learning

problem, that is, there was no specified method to adjust the weights that connect the

input layer to the hidden layer. Here, any layer between the input and the output layers

is called hidden layer. Many algorithms were proposed later to solve this problem [Parker,

1985; Rumelhart et al., 1986; Werbos, 1974]. The underlying principle of these solutions is

that the errors of the hidden layer neurons are specified by feeding backwards the errors of

the neurons in the output layer. Therefore, the name of this approach is the BP learning

rule, and it represents a generalization of the delta rule for non-linear activation functions

and multi-layer networks. By introducing this technique, a wide range of models with

different connection structures or architectures can be trained. Therefore, the academic

and industrial interest has emerged and developed. Currently, neural networks have many

applications in many fields.

Let one data point p be represented by a vector xp, and the target vector for this point

be tp. By feeding the network with this data point it produces the output yp; which has

the same form as tp. The weights of the network are adjusted to minimize the total square

error:

E =
1

2

∑

p

(tp − yp)2 (3.12)

The importance of this error function is that it is smooth and differentiable.

A MLP network has a layered structure. Figure 3.9 shows a model of a standard

two-layers perceptron. The neurons of each layer receive their input from neurons from a

directly preceding layer and send their output to neurons in a directly succeeding layer.

There are no connections within a layer. In Figure 3.9, the m inputs are fed into the h

layer of N hidden neurons. The input neurons are merely ‘fan-out’ units; no processing

takes place in this layer. The activation of a hidden unit can be any one of the functions

discussed in Subsection 3.2, which consists of the weighted inputs plus a bias as given in

(3.1). The output of the hidden layer is distributed over the next layer, in this case K

Output’s neurons.

Generally, BP can be applied to networks with any number of layers. However, many

studies have shown that using one hidden layer is enough to approximate any nonlinear

mapping with an acceptable degree of error, assuming that the activation function of the
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Figure 3.9: A multi-layer neural network architecture

hidden layer is non-linear, such as the sigmoidal function, [Cybenko, 1989; Funahashi,

1989; Hartman et al., 1990; Hornik et al., 1989]. The hidden layer differs from the other

layers with its flexible and unfixed size; some techniques allow the learning rule to update

the hidden layer size based on the characteristics of input data. The hidden layer is often

utilized to force the network to mimic a desired system model and, at the same time, to

sustain the ability to generalize to cover new data.

In Figure 3.9, let x0 = 1 be the bias input and wi0 the bias “weight”. The operation of

the network can be defined by:

y
(H)
i = f (H)

(

m
∑

j=0

w
(HI)
ij xj

)

y
(T )
i = oi = f (T )

(

N
∑

j=0

w
(TH)
ij y

(H)
j

)

(3.13)

where X, Y(H), Y(T ) (also called O) are the input, the hidden layer output and the

output layer output (network output) vectors, respectively. w
(HI)
ij , w

(TH)
ij are the weights

that connect hidden to input and output to hidden layers, respectively. f (H), f (T ) are the

activation functions of the hidden and output layer, respectively. Equations (3.13) map

the input vector into an output vector through the hidden layer. The weights that connect

the layers represent the parameters of this system.
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3.3.2 Hidden Layer Configuration & Generalization

The number of hidden layers is an important issue in the configuration process of the neural

networks. A large number of hidden neurons yield good performance when it is fed with

input patterns that belong to the training data. But, the large hidden neurons’ number

would lead to over-fitting to the training set [Ham, 1994; Vogl et al., 1988]. With the

hidden layer nodes’ number less than the number of degrees of freedom within the training

data, the hidden neurons try to produce an orthogonal set of variables. By applying some

more conditions, these internal variables construct a linear (nonlinear) principal component

representation of the attribute of the input set. In this case, the final system will be able

to deal with noisy data. Therefore, the multilayer perceptron has the ability to generalize

to cover the new and unseen data by modeling the abstract features of the input set, and

the hidden layer forms a detector for these features.

3.3.3 Independent Validation

Since using the same dataset for training and testing will lead to biased error rates, it is

a common practice to divide the available data into two datasets; the training dataset is

usually used to build the system (training) and the testing set is used to estimate the error

rate and evaluate the classification system. On the other hand, the complex structure of

the classification model may incur over-fitting problem and perform badly on the testing

dataset especially with noisy data. Therefore, in order to get an effective classifier, the

system should be as simple as possible to be used with noisy datasets and, at the same

time, very complex to be used with noise-free datasets.

The basic idea is that randomly selected members of the dataset, considered as training

data, should be used to establish the classification rule (toning the weights of the network).

Another part should be used to test the resulted rule; usually the true classification of these

data points are known, but have not been fed to the classifier. Then, by comparing the

classifier outputs and the true classification, an unbiased error rate of the classifier can

be estimated. Apart from this two sets, training and testing, there is a good procedure

called independent-validation [Haykin, 1999]. Independent-validation consists of dividing

the data, randomly, into three sub-sets. The first two are the training and testing sets, and

the third set is validation set. In this technique, the training set is used usually to tune

the network weights and the validation set is considered as a validating data; calculating

the error rate which is the reference to stop the training process. Finally, the test data is

used to asses the generalization of the network.
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3.3.4 Back-Propagation Algorithm (Delta Rule)

A simple network, such as in (3.1), is able to form a linear relation between the input and the

output. As has been highlighted, the network defines a hyperplane in the high dimensional

input space, and this fact can be generalized to multi inputs (outputs) situation. Let our

objective be to train the network to make this hyperplane fit an input patter xp and its

target tp. Now, for every input sample the network output op will differ from the target

tp by (yp − tp). Finally, let’s call the summation output s, equivalent to net in Figure 3.1.

The delta rule uses an error function based on this difference value to tune the weights.

Based on the error function in (3.12), which is the summed squared error, the total

error is defined by:

E =
∑

p

Ep =
1

2

∑

p

(tp − yp)2 (3.14)

where index p refers to patterns in the input sets, and Ep is the error of patter p. The

LMS, the delta rule, searches for weights’ values that minimize the error function by using

a method called gradient descent. The idea is to make a change in the weight proportional

to the negative of the derivative of the error as measured on the current pattern with

respect to each weight:

∆pwj = −η
∂Ep

∂wj

(3.15)

where η is the learning rate, a constant of proportionality. The derivative is:

∂Ep

∂wj

=
∂Ep

∂yp
∂yp

∂wj

(3.16)

When the linear Eqn. (3.1) is used:

∂yp

∂wj

= xj (3.17)

and
∂Ep

∂yp
= −(tp − yp) (3.18)

we have

∆pwj = ηδpxj (3.19)

where δp = tp − yp is the difference between the target and the neuron outputs for data

point p.

In order to deal with neurons with nonlinear activation function, this rule should be
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generalized. Let’s define the function by

ypk = f(spk) (3.20)

where spk is calculated by (3.1). To get the desired generalization of the delta rule, we must

set

∆pwjk = −η
∂Ep

∂wjk

(3.21)

The error measure Ep is defined as the total quadratic error for pattern p at the output

neurons:

E =
∑

p

Ep =
1

2

K
∑

i=1

(tpi − ypi )2 (3.22)

We can write:
∂Ep

∂wjk

=
∂Ep

∂spk

∂spk
∂wjk

(3.23)

By (3.1), we see that the second factor is

∂spk
∂wjk

= ypj (3.24)

When we define

δpk = −∂E
p

∂spk
(3.25)

we will get an update rule which is equivalent to the delta rule as described in (3.19),

resulting in a gradient descent on the error surface if we make the weight changes according

to:

∆pwjk = ηδpky
p
j (3.26)

To compute δpk from (3.25), we can write

δpk = −∂E
p

∂ypk

∂ypk
∂spk

(3.27)

By (3.20), we see that
∂ypk
∂spk

= f ′(spk) (3.28)

Assuming that the neuron k is an output neuron, we will have

∂Ep

∂ypk
= −(tpk − y

p
k) (3.29)



Chapter 3. 57 A Novel Neural Network Approach

which is the same result we obtain with the standard delta rule. Substituting this and

(3.28) into (3.27), for any output neuron, we get

δpk = (tpk − y
p
k)f

′(spk) (3.30)

This will work fine for the output neuron, but what about the hidden neuron? Let h the

hidden neuron, then we should specify the contribution of the neuron h to the output error

of the network. However, the error measure can be written as a function of the net inputs

sj from hidden to output layer; i.e., Ep = Ep(sp1, s
p
2, . . . , s

p
j , . . .) and we use the chain rule

to write

∂Ep

∂yph
=

K
∑

o=1

∂Ep

∂spo

∂spo
∂yph

=
K
∑

o=1

∂Ep

∂spo

∂

∂yph

N
∑

j=1

whoy
p
j

=

K
∑

o=1

∂Ep

∂spo
who

=
K
∑

o=1

δpowho (3.31)

Substituting this into (3.27), for any hidden neuron, we get

δph = f ′(sph)
K
∑

o=1

δpowho (3.32)

Equations (3.30) and (3.32) give a recursive procedure for computing the δ’s for all

neurons in the network, which are then used to compute the weight changes according to

(3.26). This procedure constitutes the generalized delta rule for a feed-forward network of

non-linear neurons, and its significance is distributing the error of an output neuron to all

the hidden neurons that it is connected to, weighted by this connection.

Generally, many experiments have to be conducted to specify the largest value for η that

will work. However, large learning rate will lead to significant change in the gradient. A

practical technique is used usually to overcome this problem. The idea of this modification

is to update the weights in the direction that is a linear combination of the current gradient

of the current error surface and the one obtained in the previous step of the training. This
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is accomplished by adding a momentum term to (3.21) involving a parameter α≪ 1:

∆pwjk = −η
∂Ep

∂wjk

+ α∆oldwjk (3.33)

where ∆oldwjk refers to the most recent weight change. The momentum term improves

the performance of the convergence of the standard algorithm by introducing stabilization

in weight changes. Based on (3.33), if the current change is in the same direction as the

previous one, the algorithm will increase the rate of change. On the other hand, if the

current change is not in the same direction as the previous one, the algorithm will decrease

the rate of change.

3.4 Kohonen Neural Networks

3.4.1 Self-Organizing Neural Networks

All different types of self-organizing neural networks have the ability to assess the input

patterns that are fed to the network and to learn the inherent features presented in the

inputs on their own. Therefore, they have the ability to categorize the input patterns into

groups each having members of similar characteristics. The absence of the exemplar gives

these algorithms the name, i.e., unsupervised learning algorithms. Generally, the lack of

classes’ information that guide the clustering process gives the unsupervised learning its

importance. The unsupervised methods can often detect some unknown features in the

data.

In this type of learning, the network performs frequent modifications to its weights in

response to the input data. The weights’ adjustment is achieved by a set of learning rules.

Basically, from random patterns that applied to the network, a global order will emerge.

This global order represents the desired outcome of these types of neural networks.

Some classes of self-organizing networks are based on competitive learning where the

output neurons compete among themselves to specify a winner. One type of these networks

is the Kohonen self-organizing map (SOM) [Kohonen, 1982, 1989]. In Kohonen network,

the order of the output neurons is an application dependent. The order of the neurons

specifies the neighboring neurons for every neuron. When input patterns are fed into the

network, the weights of the network will be adjusted in a way that keeps the order present

in the input space. The input patters, which are close to each other in the input space,

would be mapped to close output neurons in the output space. In other words, Kohonen

network transforms input patterns, of any dimension, into 1- or 2-dimensional map of
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features in a topologically ordered fashion.

During training process, the winning neuron, the nearest neuron to a given training

pattern, adjusts its weights to be closer to that pattern and, at the same time, affects the

neighboring neurons in the network topology. This leads to a smooth distribution of the

network topology in a non-linear subspace of the training data.

3.4.2 Competitive Learning Algorithm

In the competitive learning, the learning procedure clusters the input patterns into groups,

each has members with shared characteristics among themselves. The competitive learning

network, such as Kohonen network, is fed only by input patterns, and it applies an unsu-

pervised learning algorithm. In this algorithm, when a specific input pattern is provided,

one output neuron will be activated. In the resulted network, all the patterns in one cluster

will activate the same winner. In general, there are two learning rules that are used to

specify the winner: 1) dot-product; 2) Euclidean distance.

Let x and wj be normalized input and weight vectors. In dot-product winner selection,

each output neuron j calculates its activation value yj according to the dot product of

input and weight vector:

yj =
∑

i

wijxi = wT
i x (3.34)

Then, the winner neuron k would be:

∀i 6= k : yi ≤ k (3.35)

Therefore, yk = 1 and the rest are 0. Once the winner k has been selected, the weights

updating rule will be:

wk(n+ 1) =
wk(n) + η(x(n)−wk(n))

||wk(n) + η(x(n)−wk(n))||
(3.36)

where all w are normalized. And only the winner’s weights are updated.

Based on the rule (3.36), each time an input x is presented, the nearest weight vector

to this input is selected and therefore rotated towards the input.

On the other hand, in order to eliminate the normalization, the nearest neuron k is

selected such that the weight vector wk closest the input x based on the Euclidean distance

measure:

∀i 6= k : k : ||wk − x|| ≤ ||wi − x|| (3.37)



Chapter 3. 60 A Novel Neural Network Approach

where only the winner neuron’s weights are updated. Here, instead of rotating the weight

vector, the weight updating must be changed to implement a shift towards the input:

wk(n + 1) = wk(n) + η(x(n)−wk(n)) (3.38)

However, in the applications of Kohonen neural network, not only the winner neuron’s

weight k is updated but its neighbors are also adapted using the learning rule:

∀o ∈ Sk : wo(n+ 1) = wo(n) + ηg(o, k)(x(n)−wo(n)) (3.39)

where S is a predefined neighborhood of neuron k. g(o, k) is a decreasing function of the

defined distance between o and k such that g(k, k) = 1. For instance, g(o, k) can be a

Gaussian function (in one dimension) such that g(o, k) = exp(−(o − k)2). Therefore, the

behavior of this function will tend to make the input’s pattern, which are similar (close),

to be mapped on neighboring neurons in output layer.

3.5 Microarray Image

Based on the discussions made in Chapter 2, we have the following observations. 1) Mi-

croarray image segmentation, see Fig. 3.10, is an important yet challenging problem since

the discrimination between the foreground and the background signal strongly affects the

gene expression value for every spot. 2) Improving the quality of the extracted gene ex-

pression is one of the ultimate goals of microarray image processing. 3) It is essential that

the segmentation stage be given significant attention. 4) Many microarray image segmen-

tation (clustering) methods have been proposed with some producing better results than

others. In general, the most effective approaches require considerable run time (processing

power) to process an entire image. 5) Although many approaches have been proposed in

the literature, there has been little progress on developing sufficiently fast, efficient yet

effective algorithms to segment a microarray image by using up-to-date techniques such as

ANN approach. Based on these observations, we, in this paper, aim to propose a novel

method for segmenting microarray images with hope to produce results that are as good

as, if not better than, the results of most advanced microarray segmentation algorithms

but with less running time.

In this chapter, a new segmentation method, which is based on artificial neural net-

works, is investigated. Towards the end of this chapter, the method is tested on a set

of real cDNA microarray images. Quantitative comparisons between the proposed algo-
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Figure 3.10: Two-channel cDNA microarray image

rithm and commercial GenePix software are carried out in terms of subjective comparison

methods. It is shown that the proposed technique is not only very powerful in clustering

but also very efficient in terms of runtime. To deliver the proposed method and justify its

advantages, the remainder of the chapter is arranged as follows. 1) The method of gridding

images used to create training and test data for the neural networks is briefly discussed.

2) The approach of determining the optimal number of spot region classes as well as the

competitive neural network with kohonen learning algorithm, which is used to classify the

spot’s region, is described. 3) The proposed ANN for the segmentation of the spot’s local

area is put forward. 4) The results of the new clustering approach are analyzed. 5) The

results from this method are validated on real-world microarray images and also compared

with the commercially available software GenePix.

3.6 The Proposed Approach

The task of spot segmentation falls within the category of classification, that is, assigning

pixels into spot and non-spot classes. ANNs are a well established tool for classification

problems [Bishop, 1995]. Once trained, ANNs can produce very impressive classification

results in a significant short runtime. ANNs are motivated by an interest in modeling the
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working of neurons [Hebb, 2002; McCulloch & Pitts, 1943], the cells that comprise the brain.

Just like a brain, neural networks can be taught new skills on how to specifically recognize

patterns. The training of a MLP neural network (with delta rule learning algorithm)

involves the use of a training set, a set of input values and the desired response for each.

A natural question is that how to obtain the quality training data in the case of the spot

segmentation problem. The most logical answer is to train the network with output from

one of the best spot segmentation algorithms developed to date, namely the CC approach

[Fraser et al., 2010]. In addition, GenePix is used to produce another training set in order

to validate the proposed method.

3.6.1 Creation of Training Sets

The training sets for the neural networks, which are used in the subsequent stages of our

new segmentation approach, have to be created for the use of ANN. These sets contain:

1) a set of inputs as spots’ regions - areas taken from a raw microarray image with each

containing a single spot as well as some background and possibly noise pixels; and 2) the

desired outputs, which are corresponding to these inputs, as binary images.

A complete blind microarray image gridding framework developed in [Morris, 2008] is

used to accomplish the spotting task. The input of the framework is the microarray image

that can be at any resolution, and the gridding is accomplished without any prior assump-

tions. The framework includes an Evolutionary Algorithm (EA) and several methods for

various stages of the gridding process including sub-grid detection. Actually, it is not crit-

ical which method is used to accomplish these tasks as long as the result is appropriate.

Nevertheless, the results of [Morris, 2008] have experimentally demonstrated to be both

robust and effective for this task.

The chosen image features many of the characteristics that hinder traditional segmen-

tation approaches. Such characteristics include, but are not limited to, poorly expressed

spots, malformed spots, high valued noise artefacts and uneven background. A square

region is taken around each spot center as the spot region. These regions are taken from

the raw microarray image to form the input set. The corresponding regions are taken from

the binary output of the CC algorithm [Fraser et al., 2010] in order to form the desired

output set. A second output set is created by taking output of GenePix package, which

will be used to validate our developed ANN-based segmentation approach.
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3.6.2 Single Neural Network Implementation

The first attempt made at segmentation is performed using a three layer neural network

with the BP learning algorithm. This network uses 50% of the CC dataset as training set

and 30% of the same set for validation purposes.

The output of the neural network for a given spot region is a real valued image of

the same size. The higher a given pixel value is the more likely it should belong to the

foreground. Each output region is, by threshold, assigned into either the foreground or the

background. The threshold value is obtained using Otsu’s method [Otsu, 1975].

The trained network is then tested using approximately 20% of the spots from the CC

dataset. The outcome for the majority of the spots is a very poor match to the desired

output. This result highlights the inability of the network to cope with poorly expressed

spots whose values are close to or below their local background values.

With a typical microarray image, there is a wide variety of spots. Intensity wise,

the spots range from ideal spots, which are valued well above their local background,

down to very poorly expressed spots, which may be valued below their local background.

Considering the spot’s shape, the spots range from perfectly formed round shape spots with

clearly defined edges down to disfigured spots with blurred edges and even disconnected

regions. Clearly, it is inconceivable for a single BP neural network to learn how to segment

all these contradictory types of spots. A way to simplify this task, with the ability to process

all the spots within an image, is to classify the spots within a microarray image into one

of the several classes. For each class, a BP neural network can achieve the segmentation

for that specific class, see Figure 3.11.

Post−processing
(Binary Mask)

MLP Neural Network
(Back−propagation)

Pre−processing
(Spot Classifier)

Figure 3.11: Microarray image processing steps

3.6.3 Spot Classifier

One appropriate solution to classify the spot’s regions is to employ an unsupervised com-

petitive network. This network seeks to find patterns/regularities, known and unknown,
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in the input data. Figure 3.12 shows an illustration of the architecture of the competitive

layer [Demuth et al., 2007].
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Figure 3.12: The architecture for the competitive later.

In order to obtain better results, the training data is pre-processed in the way depicted

in Figure 3.13. 1) The extreme values within each spot region are eliminated by applying a

median filter with window size 3×3. 2) The values within each spot region are normalized

between values of 0 and 1. 3) A Laplacian pyramid filtering technique [Burt & Adelson,

1983] is applied in order to extract gradient information of the cropped image. Therefore,

information of less importance in the image has been eliminated.

The learning algorithm used to train the network is the Kohonen Learning algorithm

(Winner-Take-All) [Fausett, 1994; Ham & Kostanic, 2000]. In this kind of learning, the

units of the network update their weights by forming a new weight vector that is a linear

combination of the old weight vector and the current input vector. Typically, the cell

whose weight vector is the closest to the input vector is allowed to learn. The measure

of closeness/distance can be specified by two methods, both of which are based on the

assumption that the weight vector of each cluster cell serves as an exemplar for the input

vectors which have been assigned to that cell in the learning stage. In the first method, the

smallest squared Euclidian distance between the input vector and weight vectors marks

the winning cell. In the second method, the largest dot product marks the winning cell,

where the dot product can be interpreted as a correlation measure between the input and

weight vectors [Haykin, 1999]. Using Kohonen training method, the individual neurons of

the network learn to specialize on ensembles of similar patterns; in doing so, they become

feature detectors for different classes of input patterns.

In order to determine how many classes the spot regions could be grouped into, an

iterative training approach is used. The network is trained to classify the spot regions into
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Figure 3.13: Spot classifier.

(3, 4, 5, ..., N) classes. Working with all the spots from real microarray images, this method

can define 9 classes of spot regions. Figure 3.14 shows ten spot regions from each of the 9

classes.

Figure 3.14: 10 examples from each of the 9 classes of spots determined by the network.
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By investigating the classification outputs, some key rules for the membership can be

inferred such as the degree of noise, the size of spot, the position of the spot and the

distribution of the pixels’ values. However, in some of the classes the rules for membership

are more obvious than they are in the others. Class 4, for example, is clearly the class that

contains the noisiest spot regions while class 3 contains spots that are in high contrast to

their background. Not only has the iterative training approach detected the number of

classes (9) to divide the many spot regions within an image into, but it has also provided

a mean to classify quickly a given spot region into one of the 9 classes.

3.6.4 Multiple Neural Networks Implementation

Having determined the number of classes to divide the spot regions into (9) classes, the

next task is to train a neural network for each class. This is accomplished in the same

manner as the single neural network experiment described above. However, it is worth

mentioning that each network is trained with its own custom training set where all the

spot regions, within each training set, belong to the same spot region class.

One possible way to accomplish this task is to use Pattern Association [Fausett, 1994].

In such a type of neural networks, learning is the process of forming association between

related patterns. A key question for all associative nets is that how many patterns can

be stored before the net starts to forget the learned pattern. Many factors influence the

number of patterns that can be learned. The complexity of the patterns and the similarity

of the input patterns, which are associated with significantly different output patterns,

both play a role.

Based on the previous discussion, the associative nets are not a good solution for the

addressed problem. Therefore, a new, partially connected and 3-dimensional MLP topol-

ogy is proposed to tackle this problem, see Figure 3.15. In addition to the pre-processed

intensity value for each pixel, additional inputs are determined to result in a better seg-

mentation process. A 3 × 3 window is placed around every pixel, and the mean and the

standard deviation of the window are used as inputs to the network. The network, there-

fore, features 1875 inputs as well as a hidden layer with 625 neurons and 625 outputs. Each

of the output and hidden layers is arranged in 2D 25 × 25 array. More specifically, every

pixel (represented by pixel’s value, the mean and the standard deviation) is connected to

one hidden cell. Every cell in the output layer is connected to the corresponding hidden

cell and its neighboring cells located within a prescribed sphere of influence Nr of radius

r = 1 centered at this hidden cell.

Two sets of nine neural networks are trained. The first is trained with the segmentation
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Output Layer

Hidden Layer

Input Layer

Figure 3.15: The proposed network architecture

results of the GenePix package, then the second is trained with the segmentation results

from the CC algorithm. Training data is taken from the raw image, GenePix output image

and the CC output image, which are used to produce an image with pixels’ values falling

within [0, 1]. Therefore, further processing is required to get the final binary image.

Figure 3.16: Microarray image sample input

In order to produce a binary mask, the Otsu’s thresholding technique [MathWorks,

2007] is used. Figures 3.16 and 3.17 show the input sample and its output.

3.7 Experimental Results

In order to quantify the performance of different filtering methods, a quality measure is

required in order to evaluate the validity of the pixels selected for a given spot. Note that
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Figure 3.17: Example of the MLP segmentation algorithm output.

Figure 3.18: Comparison of segmentation results for 24 subgrids between GenePix (GP)
and the copasetic clustering (CC) algorithm.
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the proposed algorithm produces a binary mask that classifies the pixels as belonging to

either signal (the gene spots) or noise (the local background). For this purpose, an image

quality measurement, known as the Peak Signal-to-Noise Ratio (PSNR), is used and the

rational is justified as follows.

The Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are two

error metrics frequently used to compare image compression quality. The MSE represents

the cumulative squared error between the compressed and the original image. The lower the

value of MSE, the lower the error. The PSNR represents a measure of the peak error. The

PSNR is most commonly used as a measure of quality of reconstruction of lossy compression

codecs (e.g. for image compression). The signal in this case is the original data, and the

noise is the error introduced by compression. Though a higher PSNR would normally

indicate that the reconstruction is of a higher quality, in some cases one reconstruction

with a lower PSNR may appear to be closer to the original than another.

To compute the PSNR, the block first calculates the mean-squared error using the

following equation:

MSE =

∑

m,n

[I1(m,n)− I2(m,n)]2

M ∗N (3.40)

where M and N are the numbers of rows and columns in the input images, respectively, I1

is the grayscale and I2 is the mask image. Then, we obtain the PSNR using the following

equation:

PSNR = 10 log

[

R2

MSE

]

(3.41)

where R is the maximum fluctuation in the input image data type. For example, if the

input image has a double-precision floating-point data type, then R is 1. If it has an 8-bit

unsigned integer data type, R is 255, etc.

The PSNR returns the ratio between the maximum value in the signal and the mag-

nitude of the signal’s background noise. The output of the PSNR is decibel units (dB).

An increase of 20dB corresponds to a ten-fold decrease in the MSE difference between two

images. The higher the PSNR value the more strongly the binary spot mask fits with the

raw image surface. The PSNR is a much better measure of the suitability of a spot mask

to the raw image area containing the spot as it is more resilient against large intensity

ranges within the spot area compared to the MSE [Fraser et al., 2010]. Figure 3.18 shows

the PSNR comparison between the results of segmenting an image using the CC method

and the GenePix software. Comparisons are made between all 2 subgrids within the image.

Clearly, using copasetic clustering gives a much better segmentation outcome.

Having trained the two sets of nine neural networks, we use them to segment the image
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that they are trained from. The results are shown in Figure 3.19, where the four columns

represent the PSNR for GenePix, CC, the neural network trained with the GenePix data,

and the neural network trained with the CC data. In the first two subgrids, the neural

network results are approximately equal to the results of segmentation using GenePix and

the CC algorithm. Both neural networks even slightly surpass the results of the approaches

from which they are trained in the second subgrid. In all other subgrids, the CC algorithm

still produces the best results, but the ANN results are clearly very competitive with the

GenePix results.

Figure 3.19: Comparison of segmentation results between genepix, the neural network
trained with the genepix data (nnGP), CC and the neural network trained with the CC
data (nnCC).

An advantage of the ANN based approach is the computational time saving. Once a

network has been trained, it can be applied to many other images and achieve the task

faster than GenePix and CC approaches. Figure 3.20 shows the results of the clustering

of 48 subgrids in an image. The neural networks used are the same ones as those used to

produce Figure 3.19. The CC algorithm does produce the best segmentation result for all

48 subgrids, but the NN results are clearly comparable to the results obtained using the

GenePix package.
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Figure 3.20: Comparison of segmentation results for 48 subgrids. The neural networks
used did not see this image during their training.

3.8 Conclusions and Future Work

The task of spot segmentation is a critical one in the processing of any microarray image.

Also, the impact of the accuracy and consistency with which spot pixels are identified

is very significant. In this chapter several methods of segmenting microarray images have

been discussed. One of the most advanced approaches is the so-called CC algorithm [Fraser

et al., 2010], which has been shown to surpass regularly the clustering results of the widely

used GenePix package that relies heavily upon manual interaction. The main contribution

of this chapter is the development of a new neural network based method for spot segmen-

tation. This method not only produces very impressive results that are very competitive

to the results obtained using the GenePix package, but it can also produce the outputs

more quickly than previous approaches. Clearly, this is a valuable addition to the area of

microarray segmentation.

Future work in this area will allow an improvement on the results of the segmentations

achieved using a neural network. It may even be possible to train a network to produce

consistently better segmentation results than the CC algorithm.

In order to improve the algorithm, many alternatives could be utilized. Among others,
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we list three future topics here.

• Our dataset, although big, is not vast enough to be sure that a single training would

be enough for analyzing several microarray experiments. For instance, the slide might

be a bit different when prepared by another protocol. The approach, that has been

followed in this chapter, based on the assumption that the BP network is able to

infer the rules by which the classification of the pixels will be achieved. However,

the generalization study should be discussed in much more details during the design

phase of the system.

One possible improvement is to think about a second hidden layer in the BP networks,

as it has been mentioned in Section 3.3.2. If the network has only one hidden layer,

the neurons seem to interact with one another [Haykin, 2001]. In such a case, it is

difficult to improve the approximation for one point in the mapping without degrading

it at some other point. Therefore, considering two-hidden-layers BP network can be

a potential development that could lead to a better generalization.

• In this chapter, a one-dimension Kohonen network has been used to divide the spots’

regions into a maximum number of class. This can be considered in two ways: 1)

Instead of the one-dimension Kohonen network, a two-dimensions self-organizing

map competitive neural network [Haykin, 1999] could be used where the neurons

are placed at the nodes of a lattice that is usually one or two dimensional, thus, the

pixel’s neighborhood will be squared shape. The neurons become selectively tuned to

various input patterns or classes of input patterns throughout a competitive learning

process. The locations of the neurons so tuned become ordered with respect to each

other in such a way that a meaningful coordinate system for different input features

is created over the lattice. The self-organizing map is, therefore, characterized by the

formation of a topographic map of the input patterns in which the spatial locations

of the neurons in the lattice are indicative of intrinsic statistical features contained in

the input patterns. 2) Optimizing the number of spots’ regions’ classes, by conducting

more experiments on a different number of classes, can be advantageous.

• A 5×5 window can be used to calculate some properties based on “sum and difference

histogram” [Sridhar et al., 1993]. Then, these properties would be used as input for

fully connected neural network with target value either from CC or GenePix outputs.

Furthermore, The employment of Maximum Covariance Technique may improve the

generalization ability [Lehtokangas et al., 1996].
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Finally, a road map should be specified based on the outcomes of this chapter. Consid-

ering the results in Section 3.7, it should be mentioned that the neural network approach

has given results outperforming the results of GenePix software, but it is unable to repeat

the results of CC. In addition, the supervised applied methodology can only deal with

cases for which they have been trained. Thus, when all the networks are learned from the

output of CC or GP, the proposed method can only be at best as good as the method from

which the training notation comes. On the other hand, the hardware implementation of

the neural networks (BP and Kohonen) has been improved [Botros & Abdul-Aziz, 2002;

Gadea et al., 2000; Kim & Jung, 2004; Omondi & Rajapakse, 2006]. In particular, the

currently available neurocomputers based on Field-Programmable Gate Arrays (FPGAs)

have achieved a good capacity and performance, though it would be advantageous to re-

gard a more specified architecture that is dedicated to image processing and much more

suitable for local processing strategies.

In the following chapters, the investigation will be focused on: 1) The local adaptive

strategies are the main approaches that will lead a highly successful developed system to

deal with the problems at our hand. 2) Pre-filtering stage is a main step which helps to

improve the outcome of the microarray image processing system. 3) The proposed method

assumes no gold standard segmentation results. Therefore, it follows an unsupervised

approach. 4) An analogic computer [Chua & Roska, 1992b] will be considered as a potential

alternative to assure the hardware implementation, particularly, the suitability of these

computers to analyze the images using a local strategy.
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It makes all the difference whether one sees darkness
through the light or brightness through the shadows.

David Lindsay

In this chapter, the approach will be built based on the conclusions of the previous

chapter, particularly, the importance of the filtering stage and its implications on the final

outcome of the microarray image processing. However, the proposed filtering methodologies

have no effects on the quantification of the image. Their only role is to prepare the image for

feature detection purpose. The principal objective of filtering is to process an image so that

the result is more adequate than the original image for the specific task at hand, namely the

segmentation process. Specifying the task is crucial, since the developed techniques are a

problem oriented to a high degree. For instance, a method that is quite useful for enhancing

X-ray images may not necessarily be suitable for enhancing microarray images. In spite of

that, however, image filtering is one of the most interesting and visually appealing areas

of image processing.

Referring to the background of Chapter 2, DNA microarray technology has enabled

biologists to study all the genes within an entire organism to obtain a global view of

genes’ interaction and regulation. This technology has a great potential in obtaining a

deep understanding of the functional organization of cells. Yet, it is still early in its

development, and needs improvements in all the main stages of the microarray process.

Therefore, this chapter is concerned with improving the processes involved in the analysis

of microarray image data. The main focus is to clarify an image’s feature space in an

unsupervised manner. Rather than using the raw microarray image, it suggests to produce

filtered versions of the image data by applying nonlinear anisotropic diffusion (see Section

4.2), so that the dynamic range of the image could be increased and, hence, a better ability

of signal extraction could be achieved.

In this chapter, a novel segmentation algorithm is proposed. This algorithm is based on

CNN computational paradigm (see Section 4.1), integrated with median and anisotropic

diffusion filters. The AnaLogic CNN Simulation Toolbox for MATLAB (InstantVision

Toolboxes for MATLAB) is used during the segmentation process. Quantitative compar-

isons among the proposed methods and GenePix are carried out in terms of objective and

subjective point of view. It is shown that the analogic algorithm integrated with Complex

Diffusion filter is the best one to be applied to achieve the segmentation.
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4.1 Cellular Neural Networks

A Cellular Neural/Nonlinear Network is defined by two mathematical constructs [Chua

& Yang, 1988b,d]: 1) A spatially discrete collection of continuous nonlinear dynamical

systems called cells, where information can be encrypted into each cell via three indepen-

dent variables called input, threshold and initial state; and 2) A coupling law relating one

or more relevant variables of each cell to all neighboring cells located within a prescribed

sphere of influence Nr(ij) of radius r centered at ij. Analog circuit has played a very impor-

tant role in the development of modern electronic technology. Even in our digital computer

era, analog circuits still dominate such fields as communications, power, automatic control,

audio and video electronics because of their real-time signal processing capabilities.

Conventional digital computation methods have run into a serious speed bottleneck

due to their serial nature. To overcome this problem, a new computation model called

“neural networks” has been proposed, which is based on some aspects of neurobiology and

adapted to integrated circuits. The key features of the neural networks are asynchronous

parallel processing, continuous-time dynamics and global interaction of network elements.

Some encouraging, if not impressive, applications of neural networks have been proposed for

various fields such as optimization, linear and nonlinear programming, associative memory,

pattern recognition and computer vision.

4.1.1 Application Potential

The CNN paradigm provides a flexible framework to describe spatiotemporal dynamics

in discrete space. Especially, the acceptance of the CNN approach as a computational

paradigm [Chua & Roska, 1993b] and the design of the hardware architecture (i.e., the CNN

Universal Machine CNN-UM [Chua & Roska, 1992b]), allow efficient VLSI implementation

of analogue array-computing structures. Such devices possess a huge processing power

that can be employed to solve numerically expensive problems. The CNN-UM is the first

parallel, analogic stored program and visual array microprocessor that can be fabricated

on a single chip [Cruz & Chua, 1998; Dominguez-Castro et al., 1994, 1997; Linan et al.,

2003]. These devices are programmed by analogic algorithms [Csapodi & Roska, 1996;

Rekeczky & Chua, 1999; Rekeczky et al., 1995, 1999; Zarandy et al., 1996], i.e. using

analog operations in sequence combined with local logic at the cell level.

Over the last two decades, CNNs have been applied in a wide range of applications.

In signal processing, CNNs show great promise in solving many complex problems that

cannot be solved satisfactorily using conventional approaches [Chua et al., 1991; Crounse,

1997; Crounse & Chua, 1995; Krieg et al., 1990; Tanaka et al., 1992]. In image processing,
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CNNs can be applied to perform many tasks, such as feature extraction and classification

[Feng et al., 2006; Fernández-Muñoz et al., 2006; Haung et al., 2009; Namba, 2008; Shitong

& Min, 2006; Sziranyi & Csapodi, 1998], image thining [Matsumoto et al., 1990a], motion

detection or estimation [Dumontier et al., 1999; Roska & Chua, 1990; Roska et al., 1990,

1992; Shi et al., 1993], objects counting [Bertucco et al., 1998], process color images [Inoue

& Nishio, 2009], detect and identify microscopic organisms[Tokes et al., 2008], enhance

the image [Abrishambaf et al., 2008; Aizenberg et al., 2001; Park & Nishimura, 2007; Su

& Jhang, 2006], moving-object segmentation [Rodriguez-Fernandez et al., 2008], robotic

motion [Fasih et al., 2008] and inn solving partial differential equations [Chedjou et al.,

2009; Chua, 1997; Kozek & Roska, 1996; Kozek et al., 1995; Roska et al., 1995].

4.1.2 Architecture of Cellular Neural Networks

The structure of cellular neural networks is similar to that found in cellular automata;

namely, any cell in a cellular neural network is connected only to its neighbor cells. The

adjacent cells can interact directly with each other. Cells not directly connected together

may affect each other indirectly because of the propagation effects of the continuous-time

dynamics of cellular neural networks, see Figure 4.1.
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Figure 4.1: A 2-dimensional CNN defined on a squared grid. The ij-th cell of the array is
colored by black, cells that fall within the sphere of influence of neighborhood radius r = 1
(the nearest neighbors) by blue

The basic circuit unit of cellular neural networks is called a cell. It contains linear and

nonlinear circuit elements, which are typically linear capacitors, linear resistors, linear and

nonlinear controlled sources, and independent sources. All the cells of a CNN have the

same circuit structure and element values. A typical circuit of a single cell is shown in the

Figure 4.2.
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Figure 4.2: A CNN base cell circuit

Each cell contains one independent voltage source uij (Input), one independent current

source zij (Bias), several voltage controlled current sources Zu(uij,kl), Zy(yij,kl), and one

voltage controlled voltage source yij (Output). The controlled current sources Zu(uij,kl) are

coupled to neighbor cells via the control input voltage of each neighbor cell. Similarly, the

controlled current sources Zy(yij,kl) are coupled to their neighbor cells via the feedback from

the output voltage of each neighbor cell. The time constant of a CNN cell is determined

by the linear capacitor (C) and the linear resistor (R) and it can be expressed as τ = RC.

As the basic framework, let us consider a two-dimensional M ×N CNN array in which

the cell dynamics is described by the following nonlinear ordinary differential equation with

linear and nonlinear terms:

C
d

dt
xij(t) = −R−1xij(t) +

∑

k,l∈Nr

Ai,j;k,lykl(t)

+
∑

k,l∈Nr

Bi,j;k,lukl + zij

+
∑

k,l∈Nr

Di,j;k,l(∆vnn)

yij(t) = f(xij(t))) = 0.5(|xij(t) + 1| − |xij(t)− 1|) (4.1)
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where

∆vnn = nkl − nij

n ≡ x(t), y(t), u

|xij(0)| ≤ 1

|uij| ≤ 1

|zij | ≤ zmax

1 ≤ i ≤ M , 1 ≤ j ≤ N

where xij , uij and yij are the state, input and output voltages of the specific CNN cell,

respectively. The state and output vary in time, the input is static (time-independent),

ij refers to grid point associated with a cell on a 2D grid, and kl ∈ Nr is a grid point

in the neighborhood within a radius r of the cell ij. Term Aij,kl represents the linear

feedback, Bij,kl is the linear control, Dij,kl represents the nonlinear template and zij is the

cell current (also referred to as bias or threshold), which could be space and time variant.

A CNN cloning template, the program of the CNN array, is given with the linear and

nonlinear terms completed by the cell current. The block diagram of a cell C(i, j) is shown

in the Figure 4.3. The piecewise-linear function f(xij(t)) is a widely used nonlinearity, see

Figure 4.4.

Figure 4.3: A block diagram representing CNN
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Figure 4.4: A piecewise-linear function, CNN cell output function

The bias (also referred to as the bias map) of a CNN layer is a gray-scale image. The

bias map can be viewed as the space variant part of the cell current. Using pre-calculated

bias maps, the linear spatial adaptivity can be added to the templates in CNN algorithms.

If the bias map is not specified it is assumed to be zero.

Any cell that belongs to a neighborhood of any cell yet not part of N ×M grid is called

virtual cell. These cells must be initialized by one of the boundary conditions, which are

most commonly used for a 3× 3 neighborhood.

1. Fixed (Dirichlet) boundary conditions.

2. Zero-flux (Neumann) boundary conditions.

3. Periodic (Toroidal) boundary conditions.

4.1.3 Global Behavior of Cellular Neural Networks

In image processing applications, a M × N rectangular grid array usually represents the

image, where M and N are the number of rows and columns, respectively. Each cell in a

CNN corresponds to a pixel in the image.

With local connectivity and the space invariant assumptions, the template set, which

contains 19 coefficients (A, B, z), represents the program of the neural network. The

behavior of the CNN is completely determined by these set values.

To define these programs, several methods have been utilized. New template can be

specified by defining the global task’s rules, local rules or by training algorithms. Usually,

the local rules are used to specify the equilibrium state of a cell based on the inputs and
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outputs in the local neighborhood. The inputs and the outputs of the neighbor cells are

assumed to be constant. The dynamics of the cell is not specified. Simulation, usually, is

a useful method to test the dynamic global behavior of the entire clone of cells.

Optimal coefficient calculation leads to solutions, which converge after a short time.

That is, the output of every cell reaches its final output after a specific short time.

4.2 Nonlinear Diffusion Filtering

4.2.1 Introduction

The importance of approximation and noise filtering comes from its implication on the

image analysis and computer vision applications. Its target is to replace the image by its

smother version by removing undesired data that may complicate the image processing

steps. Dealing with the noise has evoked a lot of research over the years [Mitra & Sicu-

ranza, 2000; Pitas, 1993, 2000; Pitas & Venetsanopoulos, 1990; Yaroslavsky & Eden, 1996].

Recently, nonlinear techniques have attracted an increasing attention in order to process

both the impulsive and the Gaussian noises. Furthermore, it is inevitable to attenuate the

corrupted pixels to facilitate other image processing operations such as edge detection and

image segmentation.

In the literature, there is a considerable number of techniques that have been used to

filter an image. Regardless of the detailed algorithms of these techniques, the underlying

idea is to preserve edges and other important details, and to eliminate different kinds of

noise. In particular, the crucial importance of the edges’ information for human perception

makes their preservation and enhancement very important for judging the performance of

image filters, both linear and nonlinear.

Figure 4.5: The filtering mask of size 3× 3 with the pixel I00 in the center

The earliest and the most simple methods are the linear filters. Basically, these filters

are based on the convolution of the image with the filter kernel of constant coefficients.



Chapter 4. 82 Adaptive Segmentation

Thus, with a 3 × 3 window in Figure 4.5, the filter will replace the central pixel value

I00, from the set of pixels Ixy ( x = −1, 0, 1; y = −1, 0, 1), with the weighted average of

the gray-scale values of the central pixel I00 and its neighbors [González & Woods, 2008;

MCDONNELL, 1981]. The result of the convolution I∗00 of the kernel A is

I∗00 =
1

Z

1
∑

x=−1

1
∑

y=−1

AxyIxy, Z =
1
∑

x=−1

1
∑

y=−1

Aij (4.2)

Although most linear filters are simple and remarkably fast, they cause blurring to the

edges throughout the image. This drawback can be overcome by introducing an appropri-

ate adaptive nonlinear filter kernel. The nonlinear filters are usually applied on a selected

neighborhood. The adaptivity refers to the fact that the coefficients’ values are set accord-

ing to the pixels’ values in every neighborhood to be smoothed [Erler & Jernigan, 1994;

Haykin, 2001]. Therefore, adaptive filtering can be considered as a nonlinear process that

attenuates the noise while preserving the important image’s features such as edges.

A powerful adaptive filter has been proposed in [Saint-Marc et al., 1989, 1991]. In this

technique, which is similar to the anisotropic diffusion, the central pixel I00 is replaced by

a weighted sum of all the pixels contained in the filtering mask

I∗00 =
1

Z

1
∑

x=−1

1
∑

y=−1

WxyIxy (4.3)

where

Wxy = exp

(

−|Gxy|2
β2

)

Z =
1
∑

x=−1

1
∑

y=−1

wxy (4.4)

Here |Gxy| is the magnitude of the gradient calculated in the local neighborhood of the

pixel I00 and β is a smoothing parameter.

Anisotropic diffusion is a powerful filtering technique. It has been proposed by Perona

and Malik [Perona & Malik, 1990] in order to selectively enhance the image required details

and reduce noise using a modified heat diffusion equation coupled with the concept of scale

space [Witkin, 1983]. Since then, Anisotropic diffusion became a popular tool for a wide

range of applications, for example, medical image processing [Bajla et al., 1993; Gerig et al.,

1992; King & Glick, 1993; Lamberti et al., 2002; Loew et al., 1994; Sijbers et al., 1997; Steen

& Olstad, 1994], improved sub-sampling algorithms [Ford et al., 1992], post-processing of

fluctuating [Weickert, 1996], blind image restoration [Kaveh, 1996], computer-aided qual-

ity control [Weickert, 1995], segmentation of textures [Whitaker & Gerig, 1994; Whitaker,

1993], remotely sensed data [Acton & Crawford, 1992; Acton et al., 1994], multigrid meth-
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ods [Acton, 1998], mathematical morphology inspired techniques and many others [Biswas,

1996; Fischl & Schwartz, 1997; Gerig et al., 1992; Kimia & Siddiqi, 1994; Maeda et al.,

1998; Shah, 1996; Torkamani-Azar & Tait, 1996].

4.2.2 Isotropic Diffusion

Basically, the anisotropic diffusion is developed, based on the modification of isotropic

diffusion (4.6), in order to prevent blurring effect at the image edges. This modification

is done by introducing a conductivity coefficient function that encourages the intra-region

smoothing over inter-region smoothing.

Physically, we can define diffusion as a transport process that tends to compensate

concentration differences. Thus, it leads to equalization of the spatial concentration differ-

ences. Fick’s law of diffusion states that flux density Γ is directed against the gradient of

concentration I in a given medium Γ = −c∇I, where c, the diffusion coefficient, describes

the relation between the gradient and the flux. In the isotropic case, the coefficient func-

tion is replaced by a positive scalar-valued. The transformation process can be expressed

by using the continuity equation and applying Fick’s law

∂I

∂t
+ divΓ = 0, ⇒ ∂I

∂t
= div [c∇I] (4.5)

where t is the time. This equation represents many physical transport processes [Crank,

1975], including heat transfer where it is called heat equation. Having a space independent

and constant scalar coefficient, the technique will be homogeneous filtering and it is called

isotropic diffusion. On the other hand, the space-dependent diffusion coefficient produces

an inhomogeneous filtering, also called anisotropic diffusion.

Assuming that I(x, y, 0) is the initial state, if I(x, y, t) denotes a real valued func-

tion representing the digital image in 2D, and the grey value at any point represents the

concentration, then the equation of linear and isotropic diffusion can be written as

∂I(x, y, t)

∂t
= c

[

∂2I(x, y, t)

∂x2
+
∂2I(x, y, t)

∂y2

]

(4.6)

where x, y are the image coordinates, t denotes time, c = 1 is the diffusion coefficient.

Isotropic diffusion is a well established filtering technique. Although Witkin [1983]

paper is considered as the first study to discuss this technique, there is, however, a previous

study that considered isotropic diffusion [Iijima, 1962] (in [Weickert, 1998]). More detailed

investigations can be found in [Lindeberg, 1993; Weickert et al., 1997].
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The remarkable properties of the isotropic diffusion have been reflected by the vast

applications of this technique. However, two main disadvantages have to be dealt with.

Firstly, since isotropic filter does not consider the natural boundaries of the objects, it does

not incorporate the semantically meaningful descriptions of the image which help toward

achieving the desired target [Perona & Malik, 1990] such as edge detection. The isotropic

diffusion filter, in addition to the noise filtering, destroys the edge junctions which contain

the spatial information of the edges drawing. Secondly, the dislocation of the edges at

the coarse scale [Bergholm, 1987; Witkin, 1983] needs further analysis for the resultant

structure.

4.2.3 Anisotropic Diffusion

In order to tackle blurring and localization issues of isotropic diffusion, Perona & Malik

[1990] suggested that conductivity coefficient c should be dependent on the image structure

such that the diffusivity at large gradient locations, most likely edges, is minimized. If

Ω ∈ R2 is a rectangular image domain, the image U(x, y) : Ω → R. Therefore, for the

filtered image I(x, y, t), they proposed the following partial derivative equation (PDE)

∂I(x, y, t)

∂t
= div [c(x, y, t)∇I(x, y, t)] (4.7)

where

I(x, y, 0) = U(x, y) (4.8)

The diffusion coefficient c(x, y, t) is a monotonically decreasing function of the image

gradient magnitude and usually contains a free parameter K, which determines the gra-

dient threshold value which marks the amount of smoothing introduced by the non-linear

diffusion process. Many functions of c(x, y, t) have been suggested in the literature [Acton,

1998; Alvarez et al., 1992b; Black et al., 1998; Charbonnier et al., 1994; Guillermo Sapiro,

2001; Rudin et al., 1992; ter Haar Romeny, 1994]. The most popular functions are those

introduced in [Perona & Malik, 1990], i.e.,

c(x, y, t) = exp

(

−
(

|∇I(x, y, t)|2
K2

))

(4.9)

c(x, y, t) =
1

1 +
(

|∇I(x,y,t)|
K

)2 (4.10)

Note that c(x, y, t) is a time and space-varying function, and its value is large in homo-
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geneous regions to encourage smoothing and small at edges to preserve image structures.

One of the major practical drawbacks of the anisotropic approach is that, even though

many methods have been proposed to estimate the parameter K value [Kim, 2006; Perona

& Malik, 1990; Szatmari et al., 2000; Voci et al., 2004; Yi et al., 2005; Zhang et al., 2007],

the optimal value of this parameter is unknown. Also, some stopping criterion is required

to finish the iteration process before the image converges to a staircase solution or to the

average value of the image pixels [Weickert, 1998; You et al., 1996].

Furthermore, the properties of the diffusion function make it difficult to differentiate

between the semantically important edge and the impulsive noise with large gradient that

might contaminate the image. Increasing the value of K in (4.9) and (4.10), to get rid of

this type of noise will increase the blurring effects on the edges, which is the main problem

that leads to anisotropic diffusion in the first place. In our approach, to deal with these

issues, many components have been added to the algorithm.

In addition to these practical problems, there is a theoretical problem regarding the

PDE solution: ill-posedness. That is, the solution of (4.7) should have a unique solution

that depends on the initial condition. The main manifestation of this problem is the ap-

pearance of so-called staircase effect. However, Weickert & Benhamouda [1997] has proven

that using spatial finite difference discretization is sufficient to transfer the Perona-Malik

equation (4.7) into a well-posed system. However, to eliminate the numerical implementa-

tion effect, regularization has been added to (4.7) in [Catte et al., 1992; Nitzberg & Shiota,

1992]. Thus, In order to improve the efficiency of the original process, a regularization

was introduced [Alvarez et al., 1992b; Catte et al., 1992]. This addition makes the orig-

inal equation have a unique solution and, apparently, more robust against noise. In this

method, the diffusion coefficient is a function of the gradient convolved with a Gaussian

linear filter Gσ with standard deviation σ > 0. Therefore, the new equation is

∂I(x, y, t)

∂t
= div [ĉ(x, y, t)∇I(x, y, t)] (4.11)

ĉ(x, y, t) = g (|∇(Gσ ∗ I(x, y, t))|)

Gσ = G0
1√
σ
exp

(

−|z|
2

4σ2

)

where G denotes the Gaussian kernel with standard deviation σ, ∗ denotes the convolution
and g is a decreasing function. The advantages of this formulation are that it can enhance

the edges [Weickert & Benhamouda, 1997], reduce the staircase effect [Nitzberg & Shiota,

1992] and it is less prone to discretization effect [Froehlich & Weickert, 1994] (in [Weickert,

1998]). Yet, this technique leads to a higher computational complexity of the anisotropic
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diffusion process.

Other approaches have been proposed in which robust statistic norms were chosen to

design the anisotropic diffusion process [Black et al., 1998; Scharr et al., 2003; You et al.,

1996]. In these methods, the diffusion coefficient function preserves the edges and improves

the automatic stopping of the diffusion. However, these diffusion coefficient functions are

not effective in case of strong Gaussian or impulsive noise.

4.2.4 Complex Diffusion

Based on simplified Schrödinger equation, a generalization of linear and nonlinear diffusion

in the complex domain has been proposed in [Gilboa et al., 2001, 2004]. The underlying idea

is to facilitate the complex diffusion-type processes and the time-dependent Schrödinger

equation from the quantum mechanics. In the simplest case, the Schrödinger operator is

H = − ℏ2

2m
∆+ V (x) (4.12)

where x is the spatial coordinates, ℏ is Planck’s constant, V (x) is the external field po-

tential and ∆ is the Laplacian operator. The relation between the diffusion equation and

Schrödinger equation has been investigated in [Nagasawa, 1993].

Gilboa et al. [2001] considered the following problem

∂I(x, y, t)

∂t
= c∇2I, t > 0, x, y ∈ R (4.13)

I(x, y, 0) = I0 ∈ R, c, I ∈ C

In order to solve the generalized equation (4.7), with the same conditions, they utilize the

Laplacian operator to produce the diffusion coefficient function. The second derivative

(Laplacian) operator is a suitable choice since it has a high magnitude near the edges and

low magnitude everywhere else. Therefore, it enables the nonlinear diffusion process to

reduce noise within a ramp. The system equations can be written as

∂I(x, y, t)

∂t
= div(c(ℑ(I)∇I)

c(ℑ(I)) =
eiθ

1 +
(

ℑ(I)
Kθ

)2 (4.14)

where i =
√
−1, K is a threshold parameter. The phase angle θ should be small (θ << 1),

and ℑ(I) is the imagery part of I.
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4.3 Microarray Image

To summarize the idea presented in this chapter, we have the following points. 1) Microar-

ray image processing is an important yet challenging problem due to the system imperfec-

tions and microarray generating process, which restricts both our ability to differentiate

between spots’ signals and background signal and our ability to get accurate measures of

interest in the images. 2) Instead of using the raw image, it makes much more sense to

produce filtered versions of the image data by applying nonlinear anisotropic diffusion so

that the dynamic range of the image could be increased, thereby achieving a better ability

of signal extraction. 3) The ability to transform images, in complex and non-linear ways,

makes CNNs ideal for microarray image processing. 4) Although many approaches have

been proposed, there has been little progress in developing effective algorithms that au-

tomatically clarify an image’s features by using up-to-date techniques such as integrated

diffusion filtering and CNNs approach. It is, therefore, the aim of this chapter to inves-

tigate the microarray image analysis by implementing filtering techniques to reduce the

microarray images’ noise and, at the same time, to enhance the position of gene spots.

Motivated by the above discussions, in this chapter, novel segmentation algorithms are

investigated. These algorithms are based on the CNN computational paradigm combined

with median and anisotropic diffusion filters. The proposed methods are applied to a set of

real-world cDNA images. Quantitative comparisons are carried out among different filters

in terms of objective and subjective evaluation methods. It is shown that the proposed

algorithm with complex diffusion filter surpasses other methods as well as the output of

GenePix software. The presented algorithms can also be applied on CNN-UM [Chua &

Roska, 1993b]. These algorithms, even when applied on GPU [Dolan & DeSouza, 2009; Ho

et al., 2008; Soos et al., 2008], offer a view of parallel computation that remains reasonably

efficient.

4.4 The Framework

In order to demonstrate the proposed algorithm, a standard model of microarray image

analysis is followed, see Figure 4.6. The test dataset features many of the characteristics

that hinder traditional segmentation approaches. These characteristics include poorly ex-

pressed spots, malformed spots, high valued noise artefacts and uneven background. With

such a test dataset, the effectiveness, efficiency and robustness of the algorithm can be

evaluated.

To get the preliminary coordinates of the spots, the robust girdding algorithm proposed
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Gridding - Segmentation - Features Extraction

Figure 4.6: Microarray image analysis

by Morris [2008] is used. When the girdding information is ready, each Region Of Interest

(ROI) is put to the two-stage process. In the first stage (see Algorithm 1), the filtering

stage is carried out by applying different versions of Anisotropic Diffusion techniques.

Ideally, the output of this stage would be the best candidate as input for the segmentation

stage. However, analyzing the performance of different diffusion functions has led to some

conclusions and future recommendations to be discussed later. In the second stage (see

Algorithm 2), the intermediate output is fed into the segmentation stage. A novel CNN

algorithm is then proposed and performed using MatCNN Matlab toolbox from AnaLogic

Computers Kft. The algorithm can be applied on CNN-UM.

4.4.1 Gridding

A completely blind microarray image gridding framework [Morris, 2008] is used to accom-

plish the spotting task. The input of the framework is the microarray image that can

be at any resolution, and the gridding is accomplished without any prior assumptions.

The framework includes an Evolutionary Algorithm (EA) and several methods for various

stages of the gridding process, including sub-grid detection.

Remark 1. The output of this stage is the coordinates of all ROIs, i.e., the region of every

spot in the input image. Therefore, the input of the later steps will be the microarray raw

image and these coordinates .

4.4.2 Segmentation Algorithm

Incorporating the global information is very important for successful segmentation algo-

rithms. However, the objective of our application is a two-level segmentation. Therefore,

it can be assumed that the global image properties are irrelevant and, rather, a locally

adaptive strategy with less computational complexity can meet the application require-

ments. It is important to note that using local information leads to a robust and reliable

segmentation algorithm in some applications such as microarray image analysis.
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Algorithm 1 The Main Body Algorithm of the proposed approach

Require: Cy3 {Image: The green channel}
Require: Cy5 {Image: The red channel}
Require: Gridd {Rough spots’ coordinates}
Ensure: Io {Image: the output MASK}
1: while There are more spots to be processed do
2: tG← median(Gi, 5)
3: tR← median(Ri, 5)
4: tG← diffusion(tG)
5: tR← diffusion(tR)
6: tg ← median(tG)
7: tG← tG− tg
8: tr ← median(tR)
9: tR← tR− tr

10: mdg ← median(tG)
11: mdr ← median(tR)
12: mng ← mean(tG)
13: mnr ← mean(tR) {Check the noise degree in the current ROI} {produce one

representative image}
14: if mdg > mng||mdr > mnr then
15: I ← tG + mdg

mdr
tR

16: else
17: I ← max(tG, tR)
18: end if
19: I ← AdSeg(I)
20: Ioi← I
21: return Io
22: end while

Algorithm 2 AdSeg Algorithm: Adaptive segmentaion steps

Require: I {Image: specify gene spot region pixels}
Ensure: Io {Image: the output mask}
1: tI ← mean(I, 5)
2: mdI ← median(I)
3: mnI ← mean(I)
4: Θ← tI −max(mdI, mnI) {Estimate the threshold}
5: tI ← THRESH(I, Θ) {Adaptive threshold}
6: tI ← checkSize(tI, α, β) {Eliminate objects that are smaller than α or bigger than
β}

7: tI ← checkHoles(tI) {Eliminate objects that are with holes}
8: Io ← checkGridd(tI) {Eliminate objects that ovarlaps the borders}
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The algorithm, illustrated in Figure 4.7, consists of five stages. 1) In the pre-filtering

stage, every channel (the red and the green) is put to three processing steps. First, a

basic median filter with window’s size (5 × 5) is applied, followed by further smoothing

stage, which could be either diffusion filtering or unitary operation (the output of the

previous stage transferred to the next one). Then, median filter is used to estimate the

background level of the ROI. 2) The red and the green channels are combined to produce

a gray-scale image. 3) The gray-scale image is used to estimate the local thresholds. 4)

Locally adaptive segmentation is applied on the gray-scale image taking into account the

estimated threshold. 5) A series of binary operation is applied in order to remove the small

and the big objects (based on a specified threshold), i.e., the objects that have holes and

the objects that overlap the edge of the ROI.

Locally
Adaptive

Segmentation

Local
Threshold
Estimation

Combine
The

channels

Pre−filtering

Binary
Post−processing

MIX−CHANNELS

BIAS

THRESH

SIZE

HOLES

GRID

DIFFUSIONDIFFUSION1

MEDXMEDX

RG

MED5MED5

1

Figure 4.7: Microarray segmentation algorithm
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4.4.2.1 Median 5× 5

The fundamental property of the median filter is its ability to eliminate impulsive noise.

Basically, this filter replaces the value of the current pixel, assumed corrupt, by the median

of the ordered input sample (values of the window that centered by current pixel). Median

filter has been extensively investigated and extended into many different versions.

The median filter, as a nonlinear filter, is able to attenuate the strong impulsive noise

and, at the same time, preserve image edges. However, this filter will affect the objects

that have the size similar to or smaller than the size of the filter window, thus it distorts

the texture of the filtered image. On the other hand, median filter, in addition to the

noisy areas, will affect the noise free areas since it does not differentiate between noisy and

noise-free pixels. Therefore, many methods have been proposed to accomplish the balance

between attenuation of the noise and the preservation of image fine details, i.e., a trade-off

between the suppression of noise and preservation of minute details [Alparone et al., 1996;

Arce, 1998; Arce et al., 1986; Chen, 2001; Ko & Lee, 1991].

A typical microarray image contains several kinds of artefacts and noise (hair, scratches

and fingerprints, for example). If the operator of traditional microarray image analysis

software is to be removed from the analysis process, the input images must be cleaned

(have noise artefacts removed). However, this cleaning process should not affect the gene

spot intensities themselves as later stages will use such information to help determine the

spots’ locations.

The first median filter simply parses the red and the green channels independently with

a sampling window of 5× 5 pixels centered on each pixel in turn. This center pixel is thus

calculated as the median of all the pixels in the 5×5 region. The 5×5 region of the median

filter process effectively removes the small artifacts on the array. Since a hybridized spot

is much larger than the smoothing window, the filter will reserve the overall structure of

the spot.

Remark 2. The smoothing process can remove the small region with high intensity pixels

that are of no value in a gene spot’s identification context. Therefore, applying a smoothing

operator as a first stage will be of additional benefit.

4.4.2.2 Anisotropic Diffusion

It is generally accepted that images contain structures at different scales. Practically, it is

usually ambiguous to specify the right scale to obtain the desired information. Therefore,

it is beneficial to have an image representation at multiple scales [Alvarez et al., 1993].

A multi-scale representation of an image is an ordered set of derived images intended to
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represent the original image at various levels of scale [Bovik, 2000]. Having these structures

eases the image’s processing in later stages.

Basically, the Gaussian representation introduces a scale dimension by convolving the

original image with a Gaussian noise with a standard deviation σ =
√
2t. This is analogous

to solving the linear diffusion equation:

It = c∇2I, I|t=0 = I0, 0 < c ∈ R (4.15)

with a constant diffusion coefficient c = 1.

A major breakthrough comes from Perona & Malik [1990] who proposed anisotropic

diffusion for adaptive smoothing in order to formulate the problem in terms of the non-

linear heat equation. The main benefit of the anisotropic diffusion is the edge preservation,

which is achieved by the introduction of the coefficient function c(x) [Weickert, 1998]. This

function encourages the intra-region smoothing over the inter-region smoothing [Bovik,

2000]. If c(x) is allowed to vary according to the local image gradient, then we have an

anisotropic filter. Here is a basic anisotropic diffusion PDE:

∂It(x)

∂t
= div{c(x)∇It(x)} (4.16)

with I0 = I [Bovik, 2000]. Recently, Gilboa et al. [2001] generalized the linear and the

non-linear scale spaces to the complex diffusion processes by combining the diffusion and

the free Schrödinger equation.

In this chapter, three diffusion coefficient functions are used, that is, ‘Diff1’ [Perona &

Malik, 1990], ‘Diff2’ [Perona & Malik, 1990] and ‘CDiff’ (complex valued - ramp preserving

Gilboa et al. [2001]), denoted as follows, respectively,

c = exp(−( |∇(J)|
K

)2) (4.17)

c =
1

1 + ( |∇(J)|
K

)2
(4.18)

c =
exp(i ∗ θ)

1 + ( Im(∇(J))
K∗θ

)2
(4.19)

where K is a threshold parameter and Im is the imaginary part of a complex number. The

phase angle θ should be small (θ ≪ 1).
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4.4.2.3 The Median of ROI

The second median filter is essentially the same as the first except that the second filter uses

a larger window region. In this case, the window is slightly bigger than a gene spot local

region. This filter results in a simple estimation of the image’s background features. Such

smoothing operators have two positive effects on the image data: 1) low-level background

noise is either reduced substantially or removed altogether from the image; and 2) the large

scale artefacts have their internal structure been removed from the image data.

4.4.2.4 Two Channels to One Channel

By applying the pre-filtering operators, the ‘salt and pepper’ type artefacts and the large

artefacts regions have been attenuated or completely removed. In order to proceed with the

segmentation process, a single combined view has to be created by merging the processed

information of both channels. Hence, the computational complexity would be reduced. The

merging approach is used to reduce the effects of the artefacts and get the most essential

information for the later stages. The mean and median of the ROI for every channel are

used to estimate the quality of the area.

If median(I) > mean(I), where I is the green or the red channel, then

J = GREEN + (
MED(GREEN)

MED(RED)
) ∗RED (4.20)

otherwise

J = max(GREEN,RED) (4.21)

Remark 3. The median and mean values of both channels are used to specify the degree of

contamination in each one of them. Investigating the dataset gives rise to the formulation

of this relationship. (4.20) is used to exploit the most available information in both channels

and (4.21) is used when at least one of the channels is less contaminated. Hence, the effect

of the noisy channel can be reduced as much as possible.

4.4.2.5 Local Threshold Estimation

The threshold estimation can be described by the following equation:

Θ = Tr(U) = µr(U)−max(MED(U),MEAN(U)) (4.22)

where µr(U) is the image which is composed of the mean in local neighborhood Nr, U is

the input image, Θ is the threshold estimate which is used as a bias map of the CNN.
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(4.22) defines space-variant threshold levels. This information should support an optimal

separation of the objects from the background [Sezgin & Sankur, 2004; Venkateswarlu &

Boyle, 1995].

4.4.2.6 Locally Adaptive Segmentation

The segmentation process performs the following gray-scale to binary mapping:

Y ′ = Sr(Y,Θ) (4.23)

where Y is the gray-scale image, Θ is the space-variant threshold level (local threshold

estimation) and Y ′ is the binary output of the mapping. Sr compares the image to the

threshold in the local neighborhood Nr and specifies the binary output.

ADTHRESA =







0.2 0.2 0.2

0.2 2.0 0.2

0.2 0.2 0.2






; ADTHRESB = 0; ADTHRESI = 0.7; (4.24)

CNN is used to achieve the adaptive segmentation with a single template operation

ADTHRES (4.24), which gives the binary segmentation output.

4.4.2.7 SizeClass

In this stage, two CNN templates are used to remove the small objects from the output

image of the previous step. The morphological operator “EROSION” is applied to peel

off from the input image one layer of boundary pixels every time. The algorithm tends

to remove any object with 5 pixels’ diameter or less. Then, the reconstruction operation,

which uses the so-called “RECALL” template, is used. The later template operates on

two images: 1) the segmentation result contains the objects which are regarded as a spot

signal; and 2) the output of the “EROSION” operator contains the markers. where n is

Figure 4.8: SizeClass algorithm

the number of times the EROSION operator will be applied and, thus, it is the number

that specifies the smallest size for detected objects.
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Remark 4. In the marker’s image, if at least one active pixel of an object survives the

peeling process, the whole object will be restored.

4.4.2.8 HoleClass

CNN template, for connected component detection [Matsumoto et al., 1990b], is used to

detect any holes or irregular object results from the artefacts.

4.4.2.9 GridClass

Assume that the spots do not overlap the boundary of the ROI (the spot should roughly

be in the middle area). In this case, it is essential to treat any segmentation result that

overlaps the borders as a noise. Two CNN templates are used to this end: 1) “LOGAND”

operator is applied with two input images, the first one is the output of the previous step

and the second is an empty image with active boundary pixels; and 2) the reconstruction

operator is applied (“RECALL” operator) to get an image with an object assumed to be

the spot’s signal.

4.4.3 Features’ Extraction

There are many methods to separate the background in order to calculate the statistics

of the spots and their local background. The most popular one is that associated with

GenePix. This method uses the valleys’ regions (the center of four gene spots’ regions)

as a background of the central circular gene spot. However, using these valleys may lead

to incorrect representation of the background. Another popular method is the circular

background region around the spot, which adopted by ImaGene. The background is spec-

ified by a circular region around the gene area with a gap between both. Yet, the main

drawback of this method is that one has to specify the size of the gap which may result in

inaccurate measures.

By regarding the whole ROI (except the spot’s pixels) as the background, the true

background distribution should be represented more rigorously. The intense variations in

a microarray image background make the last method the representative of a more global

background calculation. Therefore, it is our choice to facilitate the last approach in order

to separate the background and to calculate the required statistic measurements.
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4.5 Results and Evaluation

In order to quantify the performance capabilities of the different techniques, a quality

measure is required to allow the judgment of how well the calculated template fits the

gene’s spot position. Every investigated technique produces a mask that classifies the pixels

as belonging either to signal (the gene spot) or to noise (the local background). For this

purpose, 1) two subjective quality measures are used. The first is known as PSNR, Section

3.7, and the second is the k-means’s objective function; and 2) a systematic objective

method, which is based on the descriptive statistic Interclass Correlation Coefficient (ICC)

measures, is used in order to compare the results produced by different techniques. The

rational is justified as follows.

Remark 5. Throughout the discussion the algorithm has been given the following four

names to highlight four integrated filtering techniques that are used in the pre-processing

stage: 1) Median method where only the median filter is used; 2) Diff1 method where the

anisotropic diffusion filter with (4.17) is used as diffusion coefficient function; 3) Diff2

method where the anisotropic diffusion filter with (4.18) is used as diffusion coefficient

function; and 4) CDiff method where the complex diffusion filter with (4.19) is used as

diffusion coefficient function.

4.5.1 The Peak Signal-to-Noise Ratio (PSNR)

From Figure 4.9, we directly compare PSNR values determined by GenePix and the pro-

posed techniques for the dataset images and on average. Our algorithm shows a marked 3

to 6 dB improvement. Essentially, the algorithmic process has consistently outperformed

the human expert using GenePix in terms of gene spot identification. Note that Diff1

and Diff2 methods are slightly different while CDiff outperforms all the other techniques.

The performance of CDiff is related to the edge preserving characteristic of the diffusion

coefficient function (4.19).

4.5.2 The k-means Objective Function

K-means [MacQueen, 1967] is one of the simplest unsupervised learning algorithms that

solve clustering problems. The procedure follows a simple and easy way to classify a given

dataset through a certain number of clusters (k). The main idea is to define k centroid,

one for each cluster. The next step is to take each point in the dataset and associate it

with the nearest centroid. When no point is pending, the first step is completed and an
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Figure 4.9: PSNR for the Dataset. Comparison of segmentation results between GenePix
(GP), Median, Diff1, Diff2 and CDiff (CLD) algorithms.

early groupage is done. At this point, we need to re-calculate k new centroid (4.25) for the

clusters resulting from the previous step.

µi =
1

Si

∑

xj∈Si

xj (4.25)

With these k new centroid, a new binding has to be done between the same dataset points

and the nearest new centroid. Therefore, a loop has been generated. Pursuant to this

loop, we may notice that the k centroids change their location step by step until no more

changes is done. Finally, this algorithm aims at minimizing an objective function, in this

case a squared error function:

Ω =

k
∑

i=1

∑

xj∈Si

‖xj − µi‖2 (4.26)

where µi is the center of Si.

In our case, clustering is already done with k = 2. Therefore, (4.25) is used to calculate

the centers and (4.26) is used to evaluate the results of the segmentation process. In

Figure 4.10, we can directly compare the k-means values determined by GenePix and by
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our techniques for the dataset images and on average. The proposed algorithms show an

improvement. Essentially, the superiority of the algorithmic process over the human expert

using GenePix, in terms of gene spot identification, is experimentally demonstrated.

GenePix Median Diff1 Diff2 CDiff
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Figure 4.10: k-means for the Dataset. Comparison of segmentation results between
GenePix (GP), Median, Diff1, Diff2 and CDiff (CLD) algorithms.

Figure 4.11 shows the segmentation results for one spot with the values of the k-means

and the PSNR. Although using only the median filter in the smoothing stage gives the best

value when comparing the segmentation results using k-means’s objective function, it is

better to use the diffusion filter (compare the PSNR values and the corresponding edge).

We note that, with diffusion filter, especially complex diffusion, we reduce the chance of

getting false negative segmentation (losing valuable information of the spot signal).

4.5.3 The Objective Comparison

Although we have compared the segmentation processes using subjective methods, it is now

essential to compare them using an objective method. Due to the difficulties of comparing

the estimated expression levels from cDNA microarrays by using the gold standards such

as Northern blot analysis or quantitative PCR, we decide to achieve the objectivity by

using the Interclass Correlation Coefficient (ICC) measures [Fleiss, 1986; McGraw &Wong,

1996]. Therefore, by comparing the results both between methods within arrays and within
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Figure 4.11: Examples of the PSNR and k-means values for a spot

methods between replicated arrays (replicate spots on the same array in our dataset),

and by assessing the observed variations relative to the variations between genes, we can

objectively compare image processing methods [Korn et al., 2004].

The dataset images have been obtained from experiments that carried out using Locidea

Microarray ScoreCard [Anonymous, 2001]. Therefore, a specific part of the microarray

image data is used in the comparison process. The microarray ScoreCard reagents consist of

control spotting samples and control mRNA solutions (spike mixes). The control spotting

samples have been designed to be replicated 24 times per array. Using these controls, we

base our analysis on the following assumptions. 1) The better the segmentation is, the

higher the correlation within the same control should be (minimum σ2
e). 2) The better the

segmentation is, the lower the correlation between the genes within the array should be

(maximum σ2
g). 3) The better the segmentation is, the higher the ICC value should be.

In order to compare the segmentation methods, we estimate the reliability of each

method for each experiment using components of the variance model Korn et al. [2004],

Yij = gi + eij (4.27)

where Yij is the log expression ratio for the ith spot and jth replicate. The error variance

component σ2
e , associated with eij , represents the reproducibility of the method. The
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variance component σ2
g , associated with gi, represents the true spot-to-spot (gene-to-gene)

variability. Then intra-class correlation Coefficient (ICC) represents the reliability of the

method [McGraw &Wong, 1996]. ICC is used as a measure of reproducibility over measures

such as the error variance or its square root σe alone, because it guards against algorithms

that produce ratio estimates that all shrunk to a central value.

The variance component, which is the error within-gene and between replicates, is

estimated by,

σ̂2
e =

ng
∑

i=1

na
∑

j=1

(Yij − Ȳi.)2/[ng(na − 1)] (4.28)

where na is the number of replicate arrays, ng is the number of genes, and

Ȳi. =

na
∑

j=1

Yij/na

The between-gene variance component is estimated by,

σ̂2
g =

ng
∑

i=1

(Ȳi. − Ȳ..)2/(ng − 1)− σ̂2
e/na (4.29)

where

Ȳ.. =

ng
∑

i=1

na
∑

j=1

Yij/(ngna)

The estimated ICC is

ICC =
σ̂2
g

σ̂2
g + σ̂2

e

(4.30)

Figures 4.12-4.14 present the estimated variance components and ICC for the dataset

images and on average. The reliabilities of all methods are high, with our methods ap-

pearing on average to be perhaps slightly more reliable than GenePix. Note that even

the within-spot variability σ̂2
e (the noise) is smaller for our method, and the between-spot

variability (the signal) is bigger for our method.

Although Diff1, Diff2 and CDiff have almost the same σ2
e and ICC, CDiff has a bigger

between-spot variability, and therefore, it outperforms the other proposed techniques as

well as the human expert using GenePix in terms of gene spot identification.
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Figure 4.12: Average within-spot estimated variance over the dataset. Comparing between
GenePix (GP), Median, Diff1, Diff2 and CDiff (CLD) algorithms.
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Figure 4.13: Average between spot estimated variance over the dataset. Comparing be-
tween GenePix (GP), Median, Diff1, Diff2 and CDiff (CLD) algorithms.
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Figure 4.14: Comparing the results of the proposed adaptive segmentation algorithms.
ICC over the dataset

4.6 Conclusions

In this chapter, we have presented a novel segmentation framework that attempts to im-

prove the full workflow processing of microarray image analysis. Specifically, the framework

consists of several components that process a microarray image from its raw 16-bit scanned

representation to the final log ratios and related statistics without human intervention.

The proposed adaptive segmentation methodology based on Cellular Neural Networks

(see Fig. 4.7) offers several advantages. In the following, we will discuss some properties

of current implementations:

1. The proposed algorithm is a simple and a robust one for the segmentation of the

microarray image. Our approach to analysis the image is by dividing the problem

into two parts, the first part is to filter the image in a way that maps the image into

a better representation for the second part. The second part, on the other hand, is

to achieve the segmentation.

However, there is another way to look at the approach. In this way, the approach

can be divided into two parts. The first part is the one that deals with the low

level information of the image. In other words, any process applied on the pixels’

values, either to map them into new values or by classifying them into two defined

categories, is considered to be a low process. On the other hand, dealing with the
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detected objects in order to decide whether the object belongs to the spot or merely

a high noise signal is considered as a meta level process.

The robustness can be referred to both these parts. The proposed filtering techniques

are well established and proved to be suitable for the real microarray image with

several degrees of noise. Meta’s analysis of the objects of the binary image, although

it is simple, has shown a good degree of robustness. Nevertheless, many things can

be done to improve this stage and this will be considered later in this thesis.

2. The algorithm is totally blind, and it takes only the raw data as the input. The

importance of the blind algorithm has been discussed in Section 2.5.3 in Chapter 2.

The algorithm requires no prior knowledge about the image, the intensity distribution

as a global information and the noise distribution. Furthermore, no information or

assumption have been made about the shape of the image or the strength of the

signal in different parts on the image surface.

The only assumptions about the spots are some general points which have been

used to develop the algorithm, particularly the meta-level analysis. These general

assumptions are: 1) there should be a spot somewhere in the middle of the ROI,

where the gridding process has guessed the existence of this spot; 2) there should be

no two spots or more within the single ROI; 3) there is, at least, a slight difference

between the spot signal and the background signal with no preference on which one

has the higher value.

These assumptions are general and applied to all cDNA microarray images no matter

in what machines and which laboratory they have been conducted, or which operator

has carried out the experiment. However, improvements can be done to the system

in general if these assumptions have been considered again to cover more situations

that might arise in the real images. This is especially important since the algorithm

has been developed to be adaptive.

3. Applying anisotropic diffusion filtering in the pre-processing stage improves the seg-

mentation output and the subsequent gene expression analysis. In Chapters 2 and

3, the importance of the filtering stage has been highlighted. In this chapter, Sec-

tion 4.2, the properties of nonlinear diffusion have been discussed before proving the

applicability of this technique for the filtering of the microarray image.

However, in Section 4.2.3, one particular drawback has been mentioned. The inability

of the anisotropic diffusion to detect the impulsive noise was dealt with by adding one

median filter before the application of diffusion filter. The median filter windows were
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small enough to remove the impulsive noise and, at the same time, to keep the spatial

information around the edges without any significant modification. Furthermore, the

bigger noise areas, with a pattern similar to a spot signal, were smoothed so the meta

analysis will detect and separate them from the spot signal.

4. In the result section, we have demonstrated the potential of the algorithm using

direct comparisons between our proposed approach and GenePix approach, the com-

mercially accepted package, over a real imagery dataset. First of all, the GenePix

mask (output) was achieved by a semi-automated method. Recently, another ver-

sion of the GenePix has been released with the ability to carry out fully automated

algorithm. Part of the future work should be testing our algorithm against the new

GenePix system.

Due to the lack of golden standard, which would enable us to evaluate the output

of any algorithm dealing with the segmentation problem of the microarray image,

comparison rules have to be defined in order to evaluate the relative performance of

different algorithms.

In this chapter, three methods have been used to compare the results with the

GenePix segmentation output. The first is PSNR, which is usually used to test

the compression algorithm. In this context, however, the argument is that PSNR is

assumed to give an indication about what the difference between methods might be.

The stress on indication is important, for some reasons: 1) with this method, when

the area under study is noisy the ratio will increase with the size of the mask (pixels

with ‘1’ as a value); 2) when the spot signal is weak- pixels with small values- the

PNSR does not give a significant difference between the applied method.

The second comparison method is the K-means. This method outperformed PNSR

by giving a better estimate for the difference between applied algorithms in most

cases. However, when the spot signal has some variability the objective function will

give the evaluation for the method that takes the spot partially better than the one

that captures the whole spot. Finally, in order to have a full overview about the

proposed algorithms, ICC method has been applied.

In conclusion, the three methods indicate, with a slight difference, that the proposed

algorithms outperformed the well-known GenePix method. In addition, the three

comparison methods suggested that the complex diffusion gives a better result than

the other proposed combinations.
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A Multi-View Analysis of Microarray

Image

The discussion in this chapter based on:

Zineddin, B., Wang, Z. & Liu, X., 2010. A Multi-View Approach to cDNA Microarray
Analysis. International Journal of Computational Biology and Drug Design, 3(2), 91–111.

Zineddin, B. et al., 2008. Investigation on filtering cDNA microarray image based mul-
tiview analysis. In S. Zhang & D. Li, eds. Proceeding of the 14th International Conference
on Automation & Computing. London, UK: Pacilantic International Ltd., 201-206.
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Looking for patterns trains the mind to search out and
discover the similarities that bind seemingly unrelated
information together in a whole.
. . . A child who expects things to ‘make sense’ looks
for the sense in things and from this sense develops
understanding. A child who does not see patterns often
does not expect things to make sense and sees all events
as discrete, separate, and unrelated.

Mary Baratta-Lorton

In Chapter 4, We have presented a novel segmentation framework that attempts to

improve the microarray image processing stage. The main part of the algorithm is the

filtering components. For filtering purpose, the idea was to facilitate diffusion model in

order to enhance the ability to segment the image. Three diffusion coefficient functions

have been used, see Section 4.4.2.2. These functions smooth the surface of the image

and preserve the edges considerably. Integrating median filter with diffusion model is

advantageous since it surpasses the impulsive noise yet with a minimum edge disturbing

phenomena.

This chapter is concerned with improving the processes involved in the analysis of mi-

croarray image data. The main focus is to clarify an image’s feature space in an unsuper-

vised manner. Rather than using the raw microarray image, it is suggested that producing

multiple views of the image data such that emphasis is placed on certain frequencies or

regions of interest would not only be advantageous but also be more effective in terms of

the overall goal. In this chapter, the multi-view analysis combined with Median, Top-Hat

and CLD filters is investigated. The proposed image processing methods are applied to

a set of real-world cDNA images. The AnaLogic CNN Simulation Toolbox for MATLAB

(InstantVision Toolboxes for MATLAB) is used during the segmentation process. Quan-

titative comparisons among different filters are carried out in terms of PSNR. It is shown

that the CLD filter is the best one to be applied with the image transformation engine.

5.1 Introduction

The underlying principle of the microarray technology is that the measured color intensity

of the hybridized mRNA gives an indication for the transcribed mRNA, i.e., the gene

expression. Conducting a microarray experiment involves many steps with accumulating

errors introduced in each step. As we have seen in the previous chapters, the aim of the
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filtering stage is to smooth the image surface and remove some small contamination. In

addition, filtering might help in predicting the trend of the background. The inherent

characteristics of the microarray image oblige us to use some transformation techniques.

These transformations will help us getting the most of the image information for later

stages.

To summarize the discussions made so far, we have the following conclusions:

1. Image processing for analysis of microarray images is an important yet challeng-

ing problem since imperfections and fabrication artifacts often spoil our ability to

measure accurately the quantities of interest in the images.

2. Rather than using the raw microarray image, it makes much more sense to produce

multiple views of the image data so that emphasis can be placed on certain frequencies

or regions of interest.

3. Although many approaches have been proposed in the literature, the requirement

of multidisciplinary knowledge resulted in little progress on developing efficient and

effective algorithms to automatically clarify an image’s feature space by using up-to-

date techniques such as multi-view analysis [Fraser et al., 2010], filtering and CNNs.

It is, therefore, the aim of this chapter to investigate the multi-view analysis by

implementing filtering techniques to microarray images to reduce the artifacts’ noise

and, at the same time, to enhance the position of gene spots.

In this chapter, the focus is that several efficient and effective algorithms have been

proposed to automatically clarify the microarray image’s features by using up-to-date tech-

niques such as multi-view analysis, filtering and CNN and the best filter is applied with the

image transformation engine by quantitative comparisons among different filters in terms

of PSNR. The multi-view paradigm combined with Median, Top-Hat and CLD filters is

investigated. The proposed image processing methods are applied to a set of real-world

cDNA images. It is shown that the CLD filter is the best one to be applied with the

image transformation engine. In particular, a fully automated segmentation algorithm,

based on the cellular neural networks [Chua & Yang, 1988b,d], is implemented in this

chapter as an integrated part of the proposed framework. The proposed algorithms, which

can be applied on CNN-UM [Chua & Roska, 1992b], offer a view of parallel computation,

which remains reasonably efficient even when applied on Graphics Processing Unit (GPU)

simulators [Dolan & DeSouza, 2009; Ho et al., 2008; Soos et al., 2008].

All the issues addressed previously, in addition to the large amount of time that has

to be spent on manually processing the microarrays, have stirred a great deal of research
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interests in using a fully automated procedure to accomplish the task [Bajcsy, 2004; Jain

et al., 2002; Katzer et al., 2003]. The main purpose of this chapter follows the same trend by

investigating the multi-view analysis and implementing filtering techniques to microarray

images to reduce the artifacts’ noise and, at the same time, to enhance the position of gene

spots.

5.2 Cellular Neural Networks

The basic representation of the CNN cell electronically consists of a single capacitor with

nonlinear controlled sources that is coupled to neighboring cells, see Section 4.1.2. The

equation that describes the network is Eqn. 4.1, we will state here again:

C
d

dt
xij(t) = −R−1xij(t) +

∑

k,l∈Nr

Ai,j;k,lykl(t)

+
∑

k,l∈Nr

Bi,j;k,lukl + zij

yij(t) = f(xij(t))) = 0.5(|xij(t) + 1| − |xij(t)− 1|) (5.1)

The main characteristic of cellular neural network is the local interaction between each

cell and all neighboring cells within a prescribed sphere of influence on a regular grid. The

importance of this formation comes when the task at hand can be solved on a regular

grid. This configuration can be implemented efficiently on VLSI. One manifestation of

this possibility is the cellular neural network universal machine. CNN-UM is based on the

dynamics of CNN and has direct photosensor connections on single VLSI. Therefore, it

offers an asynchronous parallel processing, continuous-time dynamics and indirect global

interaction of network cells, for more details see Section 4.1.

5.3 The Algorithm

As the algorithm to be developed is concerned with rough gridding information, the seg-

mentation method has to be robust. To get the preliminary coordinates of the spots, the

robust gridding algorithm proposed by Morris [2008] has been used. When the girdding

information is ready, each region of interest is put to the two-stage process. First, the

multi-view analysis is carried out by applying the multi-view function [Fraser et al., 2010].

Ideally, the output of this stage would be the best candidate as input for the segmentation

stage. However, analyzing the performance of different multi-view functions in terms of the
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combinations of the parameters α and β has led to some conclusion and future recommen-

dations to be discussed later. Second, the intermediate output is fed into the segmentation

stage. A novel CNN algorithm is then proposed and performed using MatCNN matlab

toolbox from AnaLogic Computers Kft. The algorithm could be applied on CNN-UM or

GPU.

5.3.1 Multi-View Analysis of cDNA Microarray

Figure 5.1 illustrates the multi-view analysis process, which is called Image Transformation

Engine (ITE) in [Fraser et al., 2010] and applied to a dual channel microarray image.

After various testing stages are carried out to determine relative performance and speed

of execution, a good compromise for the multi-view function is found to be the elements,

the square root and inverse transforms, see (5.2). Ideally, such a hybrid function needs

to harness the gene spot intensity ranges as calculated by the square root function while,

at the same time, taking a higher percentage of the gene spot with similar background

intensities from the inverse function.

S(x) =
√
x

I(x) = 1−
(

1
x
28

+ 1

)

28

MV (x) = αI(x) + βS(x) (5.2)

where x is the 16-bit intensity value that is converted into 8-bits.

Applying a smoothing operator before the actual re-scaling process takes place will

be of additional benefit as this smoothing process can remove small region high intensity

pixels that are of no value in a gene spot identification context. In the basic multi-view

process, the two channels of the input image are first smoothed by two different median

filters before the actual multi-view filter itself is applied. The role of the first median filter

is to render every channel so that the spikes signal will be removed. Yet, this filter will

cause the least blurring since the window size is smaller than the spot’s size. A 3 × 3

window will be used to determine the central pixel.

The second median filter is essentially the same as the first in that the second filter

uses a larger window region and sampling ratio. In this case, the window measures 57×57

pixels with the sampling or centered pixel set to every forth pixel in turn. This second

filter sampling process results in a simple estimation of the image’s background features

(if the median value is subtracted from every pixel in the image). The background trend

estimation will help in attenuating the low-level noises as well as minimizing the effects of
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Figure 5.1: Pipeline of multi-view feature response curve generation

large-scale noise.

5.3.1.1 Median Filter

For microarray image processing tools to work independently from the operator, a funda-

mental step should be considered, that is, the filtering component should be used to clean

the image. On the other hand, the effective filter will reduce the noise while reserving the

major data required from the image, namely, spots’ areas.

Let us emphasize again the importance of the first median filter and its role in removing

some sort of contaminations which cannot be removed by the diffusion filter. As has been

mentioned before, the median filter will calculate the median of the pixel falling within a

predefined window. In this chapter, the window’s size is 5× 5. Therefore, it has no effect

on the spots which have a bigger size.

5.3.1.2 Top-Hat Filter

The top-hat filter can be used to remove the background trend as proposed in [Yang

et al., 2002]. The background trend is estimated by using morphological opening, which is

obtained by replacing each pixel with the minimum local intensity and then performing a

similar operation on the resulting image via the local maximum.

For a region, we use a square of size (2m+1)× (2m+1) centered on each pixel, where

m is a non-negative integer used to specify the size of the top-hat filter. Mathematically,

the pixels oi in the opened image is given by [González & Woods, 2008]

oi = max
j
pi+j , (5.3)

where pk = minj Ik+j (for |j1|, |j2| ≤ m) with I again denoting the original pixel values. Ifm

is set to a very large value (i.e. m =∞), then oi ≡ Ii and the filter has no effect. If the top-

hat filter is applied, then by using a structuring element obtained through autocorrelation

on horizontal and vertical axes mean value vectors, only the pixels in the spots will be



Chapter 5. 111 A Multi-View Analysis

substantially changed from Ii to oi. In this case, by subtracting o from I, these spots will

be made more distinct.

5.3.1.3 Complex Diffusion Filter

Linear complex diffusion is another filter that has been used within this chapter. It is one

manifestation of the multi-scale approaches, for full discussion see Section 4.2. Complex

diffusion follows Perona & Malik [1990] work, and extends it to cover the complex numbers’

realm. The generalization step has been achieved by introducing the free Schŕ’odinger

equation to the anisotropic diffusion. In this chapter, we incorporate the complex diffusion

process (CLD: complex valued - ramp preserving (5.4)) and the multi-view approach in

order to enhance the quality of the image. The real part can be considered as filtered

image and the imaginary part can be regarded as a smoothed second derivative by time,

when the complex diffusion coefficient approaches the real axes (Gaussian and Laplacian

pyramids of the real part).

c(Im(I)) =
exp(i ∗ θ)
1 + ( Im(I)

K∗θ
)2

(5.4)

where K is a threshold parameter, Im is the imaginary part of a complex number, I is the

image (at any given time). The phase angle θ should be small (θ ≪ 1).

5.3.2 Segmentation

In order to qualify the different filtering combinations, we use a modified version of the

method proposed by Rekeczky et al. [1998b], where Rekeczky used both local threshold

estimation and locally adaptive segmentation.

5.3.2.1 Local Threshold Estimation

In the case of using Median Filter or Top-Hat Filter (see Figure 5.2), the threshold estima-

tion is carried out by scaling the mean and standard deviation in the local neighborhood

(window 3 × 3 in our case) and adding them up to create the bias map of the adaptive

segmentation. The result, therefore, defines a space variant threshold level as a linear

combination of the first and second order local statistics (see [Sezgin & Sankur, 2004;

Venkateswarlu & Boyle, 1995]).

Since the imaginary part of the complex diffusion filter’s output is a smoothed second

derivative, we use the imaginary part to create the bias map of the adaptive segmentation,

see Figure 5.3.
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Figure 5.2: Locally adaptive segmentation with median and top-hat filters
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Figure 5.3: Locally adaptive segmentation with complex diffusion filter
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5.3.2.2 Locally Adaptive Segmentation

The same method that has been used in Section 4.4.2.6 is applied here. However, the CNN

used to carry out the adaptive segmentation with a single template operation ADTHRES

in (5.5) gives the binary segmentation output [Rekeczky, 2002].

ADTHRESA =







0.2 0.1 0.2

0.1 2.0 0.1

0.2 0.1 0.2






(5.5)

ADTHRESB = 0;

ADTHRESI = −0.5;

5.4 Main Results

Although the multi-view is experimentally demonstrated to be efficient in [Fraser et al.,

2010], there is still much room for further improvements. Fraser [2006] showed that the

median average operators help to reduce small artifacts. However, there is a negative

aspect associated with these operators. For instance, by applying the second level median

associated with sampling of the background elements slightly more than the sampling of

the foreground, there could be a negative effect of reducing the internal gene spot regions

intensities.

In this chapter, the second median average operator has been replaced by either mor-

phological Top-Hat filter or Complex Diffusion filter. First, Top-Hat filter is a good tool

to estimate the background of the image, and therefore, it is important to test how much

it preserves the edge. Remember that enhancing the spot location would have a positive

impact when applying hybrid equation (5.2). Second, complex diffusion is suitable to re-

duce the noise and to enhance the spots’ edge, which would be advantageous in integrating

with the multi-view process as a whole.

To test the methods proposed, the images in the dataset are divided into many region-

of-interest and then processed using the selected methods with the whole range of α and

β values, see equation (5.2). Figure 5.4 shows the percentage of each method getting the

best output. Note that the complex diffusion filter gives the best performance for most

cases (37%).

The best values for α and β specified for each method are listed in Table 5.1. We note

that the best output for median and top-hat filters are with the maximum value of α.
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Figure 5.4: The percentage of accuracy for different filters

Although it gives a good filtering performance, the high value of α means removing a lot of

information (e.g. spots’ intensities) which might be important. On the contrary, complex

diffusion gets the best output on the middle range of α and β and, therefore, keeps much

more information which might be useful in the later processing.

Filter .5− .5 .6− .4 .7− .3 .8− .2 .9− .1
Median 1.04 1.04 4.16 9.37 84.37
Top-Hat 0.0 10.41 15.62 10.41 63.54
CDiff 28.12 29.16 16.66 10.41 13.54

Table 5.1: The best α, β vlaues (percent) (see (5.2))

In order to quantify the performance of different filtering methods, a quality measure is

required that allows the judgment of how well the calculated template fits the genes’ spot

position. Note that all the methods produce a mask that classifies the pixels as belonging

to either signal (the gene spots) or noise (the local background). For this purpose, an

image quality measurement, known as PSNR, see Section 3.7, is used and the rational is

justified as follows.

Based on the above discussion, all three methods are applied on a set of raw images

to produce masks, which are then scored by using the criterion of PSNR. Figure 5.5, as

an example of the scoring outputs, shows how promising the complex filter performs when

combined with the multi-view process. From Figure 5.5, we directly compare PSNR values

determined by the commercial software GenePix and CLD for the individual images. CLD

has shown a marked 2 to 12 dB improvement. Essentially, the CLD process has consistently
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outperformed the human expert using GenePix in terms of gene spot identification.

Figure 5.5: PSNR for the Dataset

5.5 Conclusions

This chapter has dealt with the problem of how to improve the processes involved in the

analysis of microarray image data. The main focus is to clarify an image’s feature space

in an unsupervised manner. Rather than using the raw microarray image, it has been

suggested that producing multiple views of the image data such that emphasis is placed

on certain frequencies or regions of interest would be advantageous and more effective in

terms of the overall goal. Different combinations of filtering methods incorporated as a

component of multi-view analysis process have been investigated by applying them on a

set of real-world cDNA microarray images. Both Median and Top-Hat filters have shown

good performance over dataset images. Although the best optimization parameters (α

and β), when one set applied over the whole image, could have negative effects on the

segmentation process by reducing gene spot regions intensities, using the complex diffusion

filter is experimentally demonstrated to be the best among the tested filters.

Fraser [2006] has proven the potential of Multi-view framework. In this chapter, how-

ever, the investigation has yielded a more successful design by introducing diffusion based

smoothing operator. One of the main conclusions of this work is that the smoothing stage

in the framework has a crucial impact on the final performance. Furthermore, the results
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of the applied diffusion depend on the characteristics of coefficient function; This function

prioritizes interregional over intraregional smoothing or the other way around.

Finally, the next step would be designing a dynamic version of this framework. Dy-

namic version offers a better representation for the later stages of the analysis. However,

any possible proposal to this end should consider the local information, since the global-wise

approaches will increase the computation complexity significantly with no sound improve-

ment to the overall outcome. In addition, the smoothing operator affects the criteria of

any dynamic proposed framework.
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A Novel Cellular Neural Network
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The discussion in this chapter based on:

Zineddin, B., Wang, Z. & Liu, X., 2010. A Microarray Image Multiview Analysis Based
on Cellular Neural Network. IEEE Transactions on Neural Networks, Submitted.
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While CNN paradigm is an example of REDUCTION-
ISM par excellence, the true origin of emergence and
complexity is traced back to a much deeper new concept
called “local activity”

Leon O. Chua

A non-standard neural network algorithm for the segmentation of microarray image

has been presented in Chapter 3. The main parts of the algorithm have been based on

back-propagation and Kohonan networks. Despite the drawback of this algorithm, the

significant result of applying a local strategy in order to get the most of the microarray

information for later analysis has been highlighted.

In Chapter 4, our approach went on one step further. Since the signal varies remarkably

across the image surface, the global information is considerably less important than the

local information. In contrast, our algorithm utilized a locally based method that allows

some global data from the area that covers a group of neighboring spots. Therefore, the

approach has the advantages of relatively global information, which is of vital importance

and affects the interpretation of the pixels’ intensities. Furthermore, the selection of diffu-

sion based filter has been particularly successful. All diffusion filters that have been used

showed a high degree of robustness. In addition, the ability to apply the filter in a local

strategy algorithm as well as the ability to solve the PDEs equations using CNN paradigm

will be beneficial, as we will see in this chapter.

The multi-view analysis, in Chapter 5, is another approach to improving the quality

of the microarray image for the segmentation purpose. In this approach, many views

of the image have been produced in order to investigate the intensity of the pixels from

different perspectives. Combining median and diffusion based filters in the framework

has been efficient to get a fast yet robust algorithm. However, our current concerns are

the applicability of this technique on CNN based algorithm and the adaptation of the

tuning parameters dynamically. Since the applied method involves pixel-wise operations,

which cannot be applied directly in a CNN based application, an algorithm will have to be

proposed in order to overcome this limitation. In Chapter 5, the static tuning parameters

increase the limitation of this approach. Therefore, an algorithm that selects the parameter

dynamically would be highly advantageous.

Therefore, our aim in this chapter is to harness the key conclusions of the previous chap-

ters in one framework. The frequency response transformation, which has been investigated

in Chapter 5, is based on simple mathematical mapping functions. The application of this

transformation has been experimentally demonstrated to be beneficial for the analysis of
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the microarray image [Fraser et al., 2010]. However, our research showed that using static

parameters ( α, β ) in (5.2) does not produce the optimal results. Our conclusions em-

phasized that both the embedded filter and the image itself have effects over the optimum

values of the parameters. Therefore, it is highly desirable to investigate the possibility of

determining the tuning parameters ( α, β ) dynamically. On the other hand, considering

the design of the algorithm is essential in order to be applied on a CNN-UM. That is, the

range of the pixels’ values should be within [−1,+1], the mapping functions should give

the same response on this range as they do on the original one, and finally the ability of

applying a mapping function using CNN should be investigated. All these points will be

the topic of the next section.

6.1 Nonlinear Mapping Using Cellular Neural Net-

works

6.1.1 Introduction

The cellular neural networks are an important type of neural networks, see Chapter 4. Their

main advantage is their application in DIP integrated with efficient and robust hardware

implementation. The behavior of the CNN is mainly characterized by a local interaction

between its nonlinear dynamical cells. The connections between these cells guarantee the

direct interaction between local neighbors within a predefined sphere, with radius r, and

indirect interaction with the cells outside this sphere.

However, the network’s configuration leads to the main drawback in this paradigm.

This problem is the limitation in filtering capabilities to a predefined window’s templates

and the restrictions of the fixed piecewise-linear (PWL) output function. Therefore, in

order to be able to apply any mapping function, such as those in Chapter 5, an algorithm

for the approximation of any arbitrary function on the CNN-UM framework should be

introduced. In this chapter, we will approach this problem by using Chebyshev piece-wise

linear approximations [Dunham, 1973, 1974; Fernández-Muñoz et al., 2006].

6.1.2 Chebyshev Approximation

Generally, the approximation techniques deal with two broad types of problems. One sort

of problems comes from the need for a simpler type of function to approximate a given

function. The other kind of problems arises when we need to derive a best fitting function

to a given data among the functions of a specific class.



Chapter 6. 120 Cellular Neural Networks Approach

Chebeshev’s methodology is an appropriate technique for approximating any nonlinear

function g(t) by piecewise-linear function. The underlaying principle is replacing the parts

of the nonlinear function by connected linear segments such as the middle part of the CNN

output function. Applying this method will introduce some error e. By using infinite norm

as a distance measure, the error function would be:

e = max |g(t)− f(t)| (6.1)

where f(t) is the piecewise-linear function in (4.1) that approximates g(t).

The function g(t) can be approximated by a combination of first order polynomials with

coefficients (pi, ci, i = 1, 2, . . . , N), where N is the linear segments which approximate the

function g(t) with acceptable error (6.1) in the range [t0, tN ]. The PWL function can be

defined as the following:

f(t) = pit + ci ti−1 ≤ t ≤ ti, i = 1, 2, . . . , N (6.2)

This polynomial, when minimizing the error e in the range [t0, tN ], is called the Chebyshev

polynomial. Chebyshev polynomials in general are used to minimize the approximation

error by reducing the degree of an applied polynomial without suffering from high accuracy

loss [Burden & Faires, 2005].

Therefore, the problem here is to design a PWL function f(t) which minimizes the

error e between g(t) and f(t). To deal with this problem, Fernández-Muñoz et al. [2006]

have proposed an algorithm which imitates a PWL approximation for any nonlinear output

function on the CNN-UM, which is based on Chebyshev approximation. Their algorithm

utilized a Chebyshev polynomial to minimize the approximation error that can be estab-

lished using Minimax theorem.

Theorem 1. (Minimax) [Preciado, 2002]. Let g(t) be a function defined in the open

subset (ti, ti+1), ti, ti+1 ∈ R and Pn(t) a polynomial of order n. Then Pn minimizes

‖g(t)− Pn(T )‖∞ if and only if g(t) − Pn(T ) = e = max(|g(t)− Pn(t)|) at least at n + 2

points in the range (ti, ti+1) with alternating sign.

Fernández-Muñoz et al. [2006] considered the case of linear approximation of a nonlinear

function. In their approach, three points in each interval ta, tb and ti ∈ [ta, tb] have been

specified to meet the maximum error e, with the second derivative of g(t) maintaining

its sign over the full range. Therefore, starting from ta, tb, the slop of the line p and the
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constant c will be defined as follows:

p =
g(tb)− g(ta)
ta − tb

(6.3)

c = g(ta)− pta (6.4)

P1(t) = pt + c (6.5)

where P1 is the polynomial that defines the straight line segment. Then, ti will be defined

by g′(ti) = p meeting the following condition:

|P1(ti)− g(ti)| = 2e (6.6)

Therefore, based on the sign of the second derivative g′′(t), the Chebyshev polynomial that

approximates the g(t) in this specific range will be:

Q1(t) =

{

P1(t)− e g′′(t) > 0; ∀t ∈ [ta, tb]

P1(t) + e g′′(t) < 0; ∀t ∈ [ta, tb]
(6.7)

The polynomial Q1(t) guarantees the maximum approximation error e for all three points

ta, tb, ti.

By using this technique, the polynomials Qi(t) with coefficients {pi, ci}, (i = 1, 2, . . . ,

N), can be derived. However, two issues should be considered regarding the efficiency of

this technique. The first issue is how to specify the optimal number of segments in order

to guarantee the desired degree of accuracy by taking into account that the number of

segments reflects the number of templates which are needed to perform the algorithm on

CNN-UM. The second issue is to choose a more suitable data fitting algorithm to determine

the most fitting linear polynomial for every segment of the target function g(t).

6.1.2.1 Chebyshev Nodes

The idea here is that if the maximum error ǫ at ti between the nonlinear function g(t) and

the linear polynomial Pab, which is a line segment within the range {ta, tb}, is greater than
a preset value ǫ∗, then ti should be considered as a node and, therefore, the segment [ab]

becomes two segments [ai] and [ib]. Those steps should be repeated until no more nodes

are required.

Algorithm 3 illustrates the steps that are required to produce the list of nodes. Although

the algorithm is based on the desired error ǫ∗, the algorithm can be altered to accommodate

a maximum number of node number as a condition to stop the algorithm. The error ǫ∗
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should be specified based on the requirement of the underlying nature of the application.

The procedure “CHECK ERROR” (Algorithm 3, Line 8) can be approached either by

searching for the maximum error within the current range or by specifying the points,

where the first derivative of ψ and the slop of linear polynomial are equal; one of these

points should represent the maximum error.

Algorithm 3 Chebyshev Nodes Setting

Require: N {Initial nodes’ number}
Require: A {Lower limit of the range}
Require: B {Upper limit of the range}
Require: ψ {Nonlinear function, to be approximate}
Require: ǫ∗ {Threshold error}
Ensure: Lo {List of nodes}
{Assuming N = 2}

1: PUSH ( Lo, A ) {Add lower limit to the list}
2: PUSH ( Lo, B )
3: TL = Lo {Temporary list}
4: e = TRUE
5: while e == TRUE do
6: e = FALSE
7: for Every segment i ∈ Lo do
8: if CHECK ERROR( Ri, ψ, ρ, ǫ

∗ ) == TRUE then
9: {ρ is The point of Max error, Ri is the current range}

10: e = TRUE
11: PUSH ( TL, ρ )
12: end if
13: end for
14: Lo = TL
15: end while

6.1.2.2 Data modeling

The other important consideration is the way we approach data’s modelling. In other

words, how the approximation of a non-linear function g(t) by a linear polynomial within

a specific range may affect the results of the whole system.

The starting point would be producing a set of M data points that represent the

nonlinear function. Therefore, the problem is fitting a set of M data elements ( xi, gi ) to

a straight line model.

y(x) = px+ c (6.8)

We want to find the best values for p and c. This problem is often called Linear
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Regression. The linear least squares fitting technique [Burden & Faires, 2005] is the simplest

and most commonly way to approach this problem, which tends to minimize the square of

deviation of each point from this line.

χ2 =

N
∑

i=1

(gi − y(xi))2 (6.9)

6.1.3 Cellular Neural Network Implementation

The next step after obtaining Chebyshev polynomial approximation is to modify the dy-

namic ranges of input and output of the CNN cells; i.e., the PWL output function should

work on input range [m− d, m+ d] and output range [a, b].

The PWL function should be of the form [Fernández-Muñoz et al., 2006]

y(uij) =











a −∞ < uij ≤ m− d
b−a
2d

(uij −m) + b+a
2

m− d < uij ≤ m+ d

b m+ d < uij ≤ ∞
(6.10)

where |b − a| ≤ 2 and d ≤ 1. The network that can perform this mapping is defined by

the following template (LINMAP : X(0) = 0, BC = ZF ):

LINMAPA = 0; LINMAPB =
1

d
; LINMAPz =

m

d
(6.11)

This template achieves the linear mapping between [m − d, |m + d] and [a, |b]. The

output of this stage will be the input for the next network with the template (DYNRNG:

X(0) = 0, BC = ZF )

DYNRNGA = 0; DYNRNGB =
b− a
2

; DYNRNGz =
b+ a

2
(6.12)

The output of this stage is the desired output for the mapping function (6.10). These

two templates will be used to employ Chebyshev PWL linear CNN.

To make these two templates (6.11)-(6.12) sufficient to perform the target mapping,
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the template should be presented in the following manner [Fernández-Muñoz et al., 2006]:

LINMAP
[i]
A = 0; LINMAP

[i]
B =

1

di
; LINMAP [i]

z =
mi

di
(6.13)

DYNRNG
[i]
A = 0;

DYNRNG
[i]
B =

bi − ai
2

;

DYNRNG[i]
z =

bi + ai
2
− Ii (6.14)

for every segment i, [ti1, t
i
2], where ai = yi(ti1), bi = yi(ti2), mi =

ti2+ti1
2

, di =
ti2−ti1

2
. The

CNN, which produces the mapping for the any segment, will introduce the saturation

function addition. Therefore, in order to get the bias shift required for the correction of

accumulative addition, the following is required:

Ii =

{

0 i = 1

yi(ti1) 1 < i < N

The last step will be the addition of all the N segment functions applied on every

pixel in an image. Therefore, the algorithm applies any arbitrary nonlinear mapping over

intensity images.

6.2 Multi-view Analysis: Dynamical Approach

Chapter 5 was dedicated entirely for the investigation of multi-view approach. Many

alternatives were considered in order to get the best of such methodology. Furthermore,

Multi-view microarray analysis was experimentally demonstrated to be robust, efficient and

outperform the Genepix results. However, one of the main conclusions was the drawback

of static selection for the parameters α and β, see (5.2).

The application of different filtering ingredients showed that fixed values for (α and β),

even when inferred from studying the surface of the image in the dataset, do not guarantee

the same performance over different imagery set or different sub filters, such as defining

(α = 0.6 and β = 0.4). Therefore, it is beneficial to establish a methodology that can

estimate these values based on the information of image itself, for every pixel in our method

there is a specified (α&β). In such setup, the local spatial information will be of ultimate

importance over the global information, although the effects of global properties will present

indirectly.

The underlying principle of multi-view approach is that emphasis has to be placed on
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certain frequency through the image surface. Basically, the mapping functions included in

the framework tend to strengthen signals within specific ranges and to cancel some others.

Apart from the two specific functions that were used to achieve the task in (5.2), the

main concern here is the underlying argument; i.e., the square-root function is used to

emphasize the middle value signals while the inverse function is used to strengthen the low

value pixels over the others in order to be canceled later. However, since the inverse function

does not have the same characteristics over the CNN-UM input range other function will

be used in this chapter to perform the required process.

The main idea in multi-view dynamic approach is that the mean and standard deviation

of a sliding 3×3 window are sufficient to estimate the value of Ω, where Ω is the parameter

that will be used to calculate α and β for every pixel by the following algorithm:

Algorithm 4 Obtaining the parameters of multi-view methodology, α & β

Require: U {Microarray image}
Ensure: A {Array of α for every pixel}
Ensure: B {Array of β for every pixel}
{r defines the window’s size; r = 1→ 3× 3}

1: M ← MEAN( U, r )
2: M ← SCALE(M) {scale the M to the range [0, 1]}
3: S ← STD( U, r )
4: S ← SCALE(S) {scale the S to the range [0, 1]}
5: Ω← a ∗ M + b ∗ S
6: A← Ω
7: B ← 1 − Ω

The results of applying the algorithm on the dataset suggested optimum values close

to a = 0.8 and b = 0.2 (Algorithm 4, Line 5).

6.3 Microarray Image Analysis

Figure 6.1 illustrates the general structure of a microarray image analysis framework. The

vigorousness and potency of the algorithm can be evaluated using the testing dataset, see

Section 2.6. This dataset highlights many features that challenge the standard segmen-

tation approaches. These features include week spots’ signals, spots’ shape problems and

different types of noises in spots and background.

In the proposed algorithm, every channel will be processed separately, and then the

produced masks will be merged by OR operator. In Figure 6.1, the stages of the algorithm

include the smoothing stage, background trend cancellation, multi-view curve generation
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Figure 6.1: Adaptive Mulit-View Analysis AMVA algorithm

and, finally, adaptive segmentation and binary analysis, see Figure 6.2. The novel CNN

algorithm is then proposed and tested using MatCNN Matlab toolbox. The algorithm can

be applied completely on CNN-UM.

Figure 6.2: Adaptive segmentation algorithm

We have experimentally demonstrated the potential of using the spatial information

in producing a robust and reliable segmentation algorithm in microarray image processing

application. This local strategy has been kept in mind during the development of our

algorithm in this chapter.
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Figure 6.3: An example of microarray image block (green and red channels) will be used
to demonstrate the output of each stage in the algorithm
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6.3.1 Initial Smoothing

The first step in the algorithm is the median filter, see Section 4.4.2.1. The median filter

is applied on a (3× 3) window. Due to the difference between the size of the window and

the size of the spot, the filter will have a minimal effect of the boundary of the spot and,

at the same time, attenuate the impulsive noise. The Median filter can be achieved using

the template [Kék et al., 2007] (MEDIAN : X(0) = 0, BC = 0)

MEDIANA = 1; MEDIAND =







d d d

d 0 d

d d d






; MEDIANz = 0 (6.15)

where d = −SIGN(xij − ukl) and D is the non-linear template in (4.1).

After the median filter, diffusion filer is applied, see Section 4.2. The simplest form of

diffusion is the linear version [Chua & Yang, 1988d] (DIFFUS: X(0) = ORIGINAL IMAGE,

BC = ZF ):

DIFFUSA =







0 0.25 0

0.25 0 0.25

0 0.25 0






(6.16)

DIFFUSB = 0;

DIFFUSz = 0;

Another possible alternative is the anisotropic diffusion [Rekeczky et al., 1998b] with

the template (ANIDIF : X(0) = ORIGINAL IMAGE, BC = ZF ):

ANIDIFA = 1;ANIDIFD







0 d 0

d 0 d

0 d 0






(6.17)

ANIDIFz = 0;

where d = g∆vxx and

g =

{

1− |∆vxx|/2k |∆vxx| < 2k

0 otherwise
(6.18)

where ANIDIFD is the non-linear template and k is the noise level estimate.

The main advantage of diffusion type filter is that it achieves an acceptable degree of

smoothness yet preserves the edges efficiently.
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6.3.2 Background Trend Estimation

Having the image smoothed, one problem has to be dealt with is the non-uniform back-

ground intensity values. The approach that has been followed in Section 4.4.2.3 is the

median filter over a window of a size more than the size of the spot. This method produces

an image with spots that are efficiently distinguished from the background. The size of

the window is essential for removing the spots from the image and then get the trend of

the background. However, the mean filter with a suitable window’s size is suitable as well

to achieve this goal [Akbari & Albregtsen, 2003]. Furthermore, a good method to get the

average is by using the diffusion filter (6.16) with a long transient time which will lead to

a good background estimate. In the Algorithm 6.1, a proportion of the resulted image has

been canceled from the microarray image to get an enhanced features’ image.

6.3.3 Multi-view Curve Generation

The next stage is the multi-view curve production. The process follows the discussion in

Sections 6.2 and 6.1. The first step here is to define efficient functions which can achieve

the desired outputs. However, as it has been discussed earlier, the inverse function that

has been employed in Chapter 5 is inapplicable in this context. Therefore, a new function

has been proposed to replace it. The multi-view process will follow these two functions:

S(x) =
√
x (6.19)

I(x) = 1− e−0.5x (6.20)

For every function, the methodology steps will be the following. First, the number

of chebyshev nodes is specified with a maximum acceptable error ǫ∗. Second, for every

segment that has been determined, the relevant CNN template is derived. At this point,

the derived template will be part of the multi-view stage in Algorithm 6.1. Therefore, the

whole algorithm is applied to get the estimation of the mapping function.

The matrices A and B can be set using the method in Section 6.2. These two matrices

are adaptive and are based entirely on the microarray’s surface properties. At this stage,

the multi-view adaptive curve can be produced directly by applying the following equation:

Yij =
∑

ij

AijSij −
∑

ij

BijIij (6.21)

where Y is the feature enhanced image for every channel.

The mean can be estimated by the template [Rekeczky, 2002] (MEANEST :X(0) =
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ORIGINAL IMAGE, BC = ZF ):

MEANESTA = 0;MEANESTB =







0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11






(6.22)

MEANESTz = 0;

and the Standard deviation can be calculated be the template [Rekeczky, 2002] (STDEST :

X(0) = ORIGINAL IMAGE, BC = ZF ):

STDESTA = 0;STDESTB =







0 −1 0

−1 4 −1
0 −1 0






(6.23)

STDESTz = 0;

Figure ?? is the output of filtering stage for the block example Figure 6.4.

Figure 6.4: The output of filtering stage for the block example presented in Figure 6.4
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6.3.4 Adaptive Segmentation

The algorithm in Figure 6.2 highlights the main steps of the adaptive segmentation algo-

rithm. Thus, the first step is to establish the adaptive threshold. The threshold estimation

can be described by the following equation:

Θ =
√

µr(U) (6.24)

where µr(U) is the image composed of the mean in the local neighborhood of radius r (see

Template (6.22)), U is the input image, Θ is the threshold estimate which is used as a

bias map of the CNN in the next step. Equation (6.24) defines the noise level estimation

across the image surface based on proportions of mean. The (
√
.) function has been used

to emphasize the middle rage signals, which is most probably part of the spot’s signal.

The output of this last step will be the bias for the AdSegm template in Section 4.4.2.6.

However, the adaptive segmentation template applied twice. The first part is the “Locally

Adaptive Segmentation”, where the bias is applied directly. The second part is one way

to capture the spot signal even when the pixels’ intensities are less than the background’s.

In the “Inverse-Locally Adaptive Segmentation”, the inverse of the bias is applied with

thresholding template.

The outputs of the two thresholding templates will then go through the HoleF il &

SizeClass templates before mixed together by OR operation to form the last output mask

for each channel. The output of this last step would be a black and white image. The next

steps in the algorithm are first removing the spots with holes and then removing irregular

size spots.

6.3.4.1 HoleClass

In Chapter 4, the spots with holes were removed from the output image. However, inves-

tigating the outputs of applying that algorithm on the whole dataset showed that keeping

those spots and trying to fill in the holes might come with benefits to the whole performance

of the segmentation algorithm. Therefore, in this chapter the following simple template

[Fajfar et al., 1998] will be used to fill the holes, (HOLEFIL: X(0) = 1, BC = ZF ):

HOLEFILA =







0 2.5 0

2.5 4 2.5

0 2.5 0






, HOLEFILB = 10 (6.25)

HOLEFILz = 0;
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6.3.4.2 SizeClass

The main strategy for dealing with the size problem is similar to the methodology in

Section 4.4.2.7. However, removing the small clusters will follow exactly the same method

in Figure 4.8, while removing the big clusters needs an extra step. This last step is XOR

template that will produce the XOR function between the input mask and the output of

RECALL template. Note that n for the first case will be a small number in order to specify

the smallest spot, and n in the second will be big enough to keep only clusters, which are

of a size that cannot be considered as a spot. Figure 6.5 represent the output mask for

green and red channels while Figure 6.6 is the final output of the system.

Figure 6.5: Segmentation results for the green and red channels in Figure 6.4

6.4 Discussion

Before discussing and evaluating the results of the proposed algorithm, specifying the

method for defining the background of every spot should be considered. As in Chapter
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Figure 6.6: Block 6.4’s final output

4, pixels of the squared area around every spot, except the spot’s pixels, will be regarded

as a background. This area will represent more rigorously the distribution of the back-

ground and, therefore, this presentation will be used to calculate the required statistic

measurements of every spot and its background.

6.4.1 Testing Dataset

The dataset that has been used in this chapter is the same set that has been used for the

previous chapters. Every slide in these set consists of 24 blocks, each contains 32×12 gene

spots. The first row of every block contains 32 pre-defined genes from Lucidea ScoreCard

[Samartzidou et al., 2001] that can be used to test various experiment properties. The rest

of the 11 rows contain the human genes under study, each gene is repeated twice; odd and

even side blocks.

6.4.2 Evaluation

Finally, the performance capabilities of the proposed algorithm should be evaluated. Quan-

tifying the performance consists of two points; first, the operating of the mapping algorithm

will be assessed, in particular, the chebyshev approximation methodology against normal

Chebyshev approximation setting will be considered. Second, the investigated technique

produces a template that classifies the pixels into either gene spot or background. For this

purpose, a descriptive statistic Interclass Correlation Coefficient (ICC) measures are used

in order to compare the results produced by the proposed algorithm and GenePix output.

Besides, the two subjective comparison methods utilized in Chapter 4 are used as well.
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The rational is justified as follows.

6.4.2.1 Non-linear Mapping Using CNN

A methodology for mapping a non-linear function using a PWL output function of the CNN

has been discussed in Section 6.1. The best way to evaluate the algorithm is by comparing

the outputs with the approximated function. Therefore, we assume the function y =
√

(x)

is the function to be approximated. Two methods were used, the first, the proposed method

was applied with a maximum error ǫ∗ = 0.01, and the second, the original algorithm was

applied without the proposed improvements.

The proposed algorithm has shown that the maximum number of segments is 9, thus

the CNN templates will be 18 templates. Each couple of these templates will be applied

successively, then the sum of all the nine couples will be the final output of the algorithm.

Table 6.1 shows the parameters of these nine segments.

Range p c ai bi mi di
0-0.0004 35.8076 0.006 35.8076 0.006 0.0002 0.0002
0.0004-0.0019 14.7001 0.0164 14.7001 0.0164 0.0012 0.0007
0.0019-0.0078 7.35 0.0328 7.35 0.0328 0.0048 0.0029
0.0078-0.0312 3.6750 0.0657 3.675 0.0657 0.01953 0.0117
0.0312-0.07062 2.2369 0.1103 2.2369 0.1103 0.0509 0.0196
0.0706-0.125 1.6059 0.1546 1.6059 0.1546 0.0978 0.0271
0.125-0.2825 1.1184 0.2206 1.1184 0.2206 0.2037 0.0787
0.2825-0.5 0.8029 0.3092 0.8029 0.3092 0.3912 0.10875
0.5-1 0.5813 0.4259 0.5813 0.4259 0.75 0.25

Table 6.1: Chebyshev approximation for the y =
√
x function

On the other hand, nine equal segments were used in order to approximate the same

function y =
√

(x) without any dynamic data modelling. The results of both methodologies

are illustrated in Fig. 6.7.

The results in the Figure 6.7 shows that the original algorithm gives an output better

than the improved one over some part of the function. The overall performance, however,

suggests that the improved algorithm outperforms the original one. Furthermore, in order

for the original algorithm to give a similar performance with a relatively similar maximum

error, the number of templates needed to be applied will be very high, particularly if there

is a large variation in the first derivative of the approximated function.
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Figure 6.7: (a) sqrt represents the approximated function y =
√
x; (b) pwl represents the

results of the improved algorithm; and (c) pwl N is the results of the original algorithm
using the same segment number that is suggested in (b)
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6.4.3 The Subjective Comparisons

Figure 6.8 shows a direct comparison between PSNR values (see Section 4.5.1), determined

by GenePix and the proposed CNN technique for the dataset images and on average. Our

algorithm shows a remarkable 0.5 to 6 dB improvement. Although GenePix outperforms

the CNN algorithm in one block measure but, apart form that, the performance of the

proposed algorithm is remarkably better than GenePix’s. Note that the proposed algorithm

is fully automatic and totaly blind.

Figure 6.8: psnr

k-means objective function is another measurement that was used to compare the two

methods, see Section 4.5.2. Based on Figure 6.9, we can see that the proposed algo-

rithm shows an improvement. Essentially, the superiority of the algorithmic process over

the human expert using GenePix, in terms of gene spot identification, is experimentally

demonstrated.

6.4.3.1 The Objective Comparison

An objective comparison has been carried out using the Interclass Correlation Coefficient

(ICC) measures, see Chapter 4. The underlying principle is that by comparing the results

both between methods within arrays and within methods between replicate genes on the

same array, and by assessing the observed variations relative to the variations between

genes, we can objectively compare image processing methods [Korn et al., 2004].
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Figure 6.9: k-means

Figures 6.10-6.12 present the estimated variance components and ICC for the dataset

images and on average. The reliabilities of both methods are high with our method showing

results that are perhaps slightly more reliable than GenePix. Note that even the within-

spot variability σ̂2
e (the noise) is smaller for our method, and the between-spot variability

(the signal) is bigger likewise.

6.5 Conclusion

In this chapter, a novel CNN algorithm for segmentation of microarray image has been

proposed in order to improve the microarray image analysis. The framework consists of

several components that can be applied sequentially on CNN-UM, and produces a mask

that can be used to calculate the final log ratios and related statistics without human

intervention. The proposed algorithm offers a simple yet a robust way to process the

microarray image.

This chapter concludes the findings of all the previous chapters in one framework that

highlights and offers the following points:

1. All the stages in the proposed framework utilize the local information with indirect

access to the global properties of the image. Therefore, the local strategy filtering

is experimentally demonstrated to be efficient to deliver the desired outcomes in
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Figure 6.12: Interclass correlation ICC

both enhancing the image quality stages and adaptive segmentation and binary post-

processing stage.

2. The blindness of the algorithm should be emphasized since the algorithm takes only

the raw data as the input and no assumption is made about the structure of the

image or the properties of the signal.

3. The diffusion based filter is experimentally demonstrated to be beneficial and is used

within different stages of the algorithm in order to get as much as possible from any

microarray image.

4. The potential of the proposed framework is demonstrated by direct comparisons

between our proposed approach and semi-automated segmentation results achieved

by GenePix (the commercially available software), over a real imagery dataset.

5. In Chapter 5, the multi-view analysis showed a high potential as a part in microarray

image analysis. However, in this chapter many methods have been developed to

overcome the drawbacks that have been discussed in the previous chapter. Toward

this end, an algorithm based on Chebyshev approximation is improved to get a better

quality output yet with less cost; i.e., number of the CNN networks that are needed

to approximate the multi-view mapping function.
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6. The proposed algorithm has no need for prior knowledge about the gridding infor-

mation. On the contrary, the resulted image can be easily analyzed to specify the

blocks’ structure of the image with any simple algorithm.

7. Finally, the proposed framework can be a basis for a hardware realization for mi-

croarray image processing, since it can be applied directly on a CNN-UM with a raw

microarray image as input.

One last comment about the current framework is that since this algorithm has been

experimentally demonstrated to be an effective and efficient segmentation algorithm, it can

be utilized completely on CNN-UM. Therefore, it would be beneficial if we can deal with

the normalization of the image’s background within the same framework. This last point

will be the topic of the next chapter.



Chapter 7

A Cellular Neural Network for

Microarray Image Reconstruction

The discussion in this chapter based on:

Zineddin, B., Wang, Z. & Liu, X., 2010. Cellular Neural Networks, Navier-Stokes
Equation and Microarray Image Reconstruction. IEEE Transaction On Image Processing,
Revised.

Zineddin, B., Wang, Z. & Liu, X., 2010. Cellular Neural Networks, Navier-Stokes
Equation and Microarray Image Reconstruction. In IEEE International Conference on
Bioinformatics and Biomedicine Workshops (BIBMW). HK, 234-239.

Zineddin, B., Wang, Z. & Liu, X., 2010. A Cellular Neural Network for Microarray
Image Reconstruction. In Proceedings of the 16th International Conference on Automation
& Computing. Birmingham, UK, 106-111.
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Thus the partial differential equation entered theoret-
ical physics as a handmaid, but has gradually become
mistress.

Albert Einstein

Designing a robust algorithm for the microarray segmentation is the main target through-

out this thesis. In Chapter 6, a remarkable algorithm based on cellular neural network has

been proposed. The CNN algorithm has experimentally demonstrated to be a highly ro-

bust and fast way to classify the pixels of the microarray image into a background and

foreground groups. However, our algorithm gives only the mask, while the normalization

process will be later used to produce acceptable quantification values of the microarray

image. Our next step is to obtain the best values that represent the spot and background

signals during image processing stage.

Some hardware implementations of microarray image processing have been proposed in

the literature and proved to be promising alternatives to the currently available software

systems. However, the main drawback of those proposed approaches is the unsuitable

addressing of the quantification of the gene spot in a realistic way without any assumption

about the image surface.

Therefore, it is our aim in this chapter is to present new Image Reconstruction algo-

rithms using the Cellular Neural Network. These algorithms offer a robust method for

estimating the background signal within the gene spot region. The MATCNN Toolbox for

Matlab is used to test the proposed method. Quantitative comparisons are carried out

in terms of objective criteria between our approach and some available methods such as

Bertalmio’s method [Bertalmio et al., 2000] and median background estimation, which is

widely used in available packages such as GenePix, ScanAlyze and ImaGene. It is shown

that the proposed algorithm gives highly accurate and realistic measurements in a fully

automated manner, and also, in a remarkably efficient time.

7.1 Introduction

In general, analyzing the microarray image complies with the following main steps (Chap-

ter 2): 1) the filtering stage; 2) the gridding stage; 3) the segmentation stage; and 4) the

quantification stage. The available software packages for image analysis (e.g. [Anonymous,

1999; Eisen, 2010]) are largely dependent on manual, semi-automated or fully automated

methods, which consume a lot of processing time. For instance, ScanAlyze [Eisen, 2010]
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software requires the operator to take as many as 14 steps [Bassett et al., 1999] and many

of these steps have to be repeated several times. Therefore, in order to manifest the full

potential of the parallelism of the microarray technology, implementing hardware microar-

ray image analysis is an auspicious alternative to these tools. Furthermore, the hardware

utilization should process the image to obtain highly accurate and realistic data in a fully

automated manner within a remarkably efficient time.

Apart from our approach in the previous chapter, there are two hardware implemen-

tation proposals. To overcome the aforementioned bottleneck for microarray image pro-

cessing, Samavi et al. [2004] proposed a hardware architecture to analyze the microarray

image. In particular, Arena et al. [2002b] used the Cellular Neural Networks (CNN) and

analogic (analog and logical) signal dedicated CPU called CNN universal machine. Note

that the CNN [Chua & Yang, 1988b] framework provides a flexible approach to describ-

ing spatiotemporal dynamics in the discrete space. In particular, it allows for efficient

VLSI (very-large-scale integration) implementation of analogue, array-computing struc-

tures. Such devices possess a huge processing power that can be employed to solve nu-

merically expensive problems. The CNN representation of a PDE (Partial Differential

Equation) is a spatially discrete dynamical system which is qualitatively equivalent to the

original, spatially continuous system. Both systems operate in continuous time, and values

of state’s variables, interactions and parameters are all continuous. In [Arena et al., 2002b],

the proposed algorithm facilitates the parallel nature of the CNN to achieve the required

objectives. Unfortunately, there have been two limitations with the methods developed

in [Arena et al., 2002b; Samavi et al., 2004]: 1) the operator has to define, in advance, a

specific set of threshold values in order to address the intensity analysis. Consequently,

the analysis depends on a particular hypothesis about the underlying question of the ex-

periment; 2) in these methods, it is implicitly assumed that the background noise and the

other artifacts are absent in the output of the segmentation stage, which is not necessarily

the case. To this end, it is concluded that the image analysis stage should have a specific

background determination process that can analyze the inherent variation between the

gene and the background signals within any proposed hardware framework dedicated to

microarray image analysis, and this constitutes the motivation of our current investigation.

In this chapter, a new methodology for DNA microarray image reconstruction is pro-

posed. The idea is to use a practical CNN approximation to the Navier-Stokes Equation

(NSE), which describes the fluid velocity in the incompressible fluid, to obtain an exem-

plary approximation of the background in the gene spot region. The theoretical basis of

this approach can be found in Bertozzi & Bertalmio [2001] where the remarkable similar-
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Figure 7.1: Part of a microarray image gives a good example of the variations in the
background signal. The target is to reconstruct the areas of the spots, the bright circles
signals, assuming that there is no information in these areas (‘0′s)

ity has been highlighted between the steam function and the image intensity. It has also

been suggested in [Bertozzi & Bertalmio, 2001] that the NSE solution is applicable to the

inpainting (reconstruction) purpose. A CNN is an analogic processor array that allows

the application of local strategy, with less computational complexity, to meet the task

requirements. It is important to note that using local information leads to a robust and

reliable algorithm in some applications such as microarray image reconstruction as we will

see later. Due to its architecture, the two-dimensional CNN array is widely used to solve

image processing and pattern recognition problems. Furthermore, the parallelism of this

structure allows one to perform the most computationally expensive image analysis tasks in

a faster way than classical CPU-based computer. For our research, subtracting the recon-

structed background from the original should give rise to a more accurate quantification of

genes’ signals. In this chapter, the gene expression results of the proposed reconstruction

method are compared to those as produced by methods utilized in some available systems

commonly used by biologists to analyze images, such as GenePix. besides, the comparison

is carried out between our method and the results of Bertalmio’s method [Bertalmio et al.,

2000].

The main contribution of this chapter lies in two aspects: 1) two new microarray

image reconstruction algorithms are proposed. The first one is by using Cellular Neural

Networks representation for diffusion equation. Another one is by using the Cellular Neural
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Network that solves the Navier-Stokes equation and such an algorithm is experimentally

demonstrated to be robust for estimating the background signal within the gene spot region;

and 2) the CNN templates (complete set of templates) are developed with specific steps

to achieve the microarray image reconstruction. The paper is organized in the following

manner. First, we formalize the problem area as it pertains to microarray image data and

briefly explains some available approaches in Section 7.2. Section 7.3 discusses the basic

idea of our proposed algorithms with appropriate steps involved in the analysis highlighted.

We then briefly describe the data used throughout the work and evaluate the algorithm

over real-world data in Section 7.4. Section 7.5 summarizes our findings and renders some

observations into possible future directions.

7.2 Existing Techniques

The most popular method for the log2 ratio is subtracting the background median from

the foreground median. This methodology based on the assumption that there are little

variations within the spot area and within the background area.

Unfortunately, this is not always the case. A good example of the low-level signal

produced in the image can be seen in Fig. 7.2. The image may have many problems such

as the missing or partial gene spots, shape inconsistencies, and background variation, i.e,

the scratch and the variation of the background illuminations around the presented genes.

Figure 7.2: Gene spot background region as used by common packages: 1) GenePix; 2)
ImaGene; 3) ScanAlyze

In the recent years, there has been a growing need for establishing a more specific

background determination process that can account for the inherent variation between the

gene and background regions. One of the first techniques applied specifically to reconstruct
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microarray images is the proposal of O’Neill et al. [2003]. In particular, a gene area

is replaced by selecting pixels, that are most similar to the known border, from a known

background region. The underlying assumption is that the similarity with the given border

intensities guarantees the transition of the local background structures through the new

region.

7.3 Novel Techniques

7.3.1 Description

In this chapter, we propose to use CNN approximation to the Navier-Stokes equation

for Image Reconstruction (CNN-NSIR) that is a novel technique that removes gene spot

regions from a microarray image surface. The removal of these regions leads to more

accurate background estimation, which can then be used to yield yet more realistic genes’

signal. Techniques such as O’Neill’s work [O’Neill et al., 2003] in the spatial domain

exclusively and essentially utilize the gene border pixels as a reference values to produce

appropriate pixel mappings. Although this approach works well, such kind of brute force

methods are typically expensive with respect to the execution time. However, if we can

utilize the locally spatial information integrated with a hardware implementation, we are

able to overcome this limitation. Suppose we have a subset Ω ∈ D where we would like

to modify the gray-level of I based on the information of I from the surrounding region

D\Ω where Ω is the reconstructed region. The modified region I∗, the solution, will have

equal values as I in D\Ω. The process of finding the appropriate I∗ is the reconstruction

problem.

The approach proposed in Bertalmio et al. [2000] attempts to mimic techniques as used

by skilled artists to perform inpainting manually. It works on the principle of a PDE

isotropic diffusion model. Using a mask to specify the area to be inpainted, the algorithm

fills in these areas by propagating the information of the border region along a level line

(isophotes). Isophotes are level lines of equal graylevels. Mathematically, the direction of

the isophotes can be interpreted as

∇⊥I (7.1)

where ∇ is the gradient (∂x, ∂y) and ∇⊥ = (−∂y, ∂x) means the direction of the smallest

change. Next, the smoothness could be interpreted as

∆I (7.2)
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where ∆ is the usual Laplace operator (∂2x + ∂2y).

In general, ∆I will extract edge and noise in an image. Therefore, in order to mimic

the idea of artistic inpainting, we should propagate ∆I in the direction of ∇⊥I from

the boundary of the reconstructed area ∂Ω. Consequently, the solution criterion for the

inpainting problem I∗ satisfies

∇⊥I∗ · ∇∆I∗ = 0 (7.3)

and it is equal to I on δΩ, the boundary of Ω. ∆I is iteratively propagated in the direction

of ∇⊥I until a steady state (7.3) is met.

However, microarray images contain thousands of regions requiring such reconstructions

and are, therefore, computationally expensive to examine with the highlighted technique.

In an attempt to handle such a time restriction, Oliveira et al. [2001] aimed to produce

similar results to [Bertalmio et al., 2000] albeit quicker, although the approach may lead

to loss of some information in the translation.

7.3.2 CNNIR Algorithm

Again, let Ω be a small area to be reconstructed (inpainted) and let ∂Ω be its boundary.

The small size of the gene spot, Ω, allows the ability to use isotropic diffusion in order

to propagates information from one or two layers of pixels from the boundary of the gene

spot ∂Ω into Ω. Therefore, approximating inpainting procedure has been achieved.

The linear isotropic diffusion equation can be directly mapped onto the CNN array

resulting in the following simple template [Chua & Yang, 1988d],

DIFFUSA =







0 0.25 0

0.25 0 0.25

0 0.25 0






(7.4)

DIFFUSB = 0;

DIFFUSz = 0;

The simplest version of the algorithm consists of initializing Ω region by clearing Ω

and repeatedly convolving the region to be inpainted with a diffusion template. ∂Ω is a

two-pixel thick boundary. The number of iterations is dependent on the size of the mask

(Ω). However, This simple algorithm, which is similar to the method in [Oliveira et al.,

2001], produces a weak background signal as if it loses something in translation, see Fig.

7.3.
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Figure 7.3: Output sample by applying diffusion template on Ω region

7.3.2.1 The Pseudo-Code Of CNNIR (Fast-Inpainting)

In order to overcome this drawback, a CNN algorithm is proposed. A pseudo-code of

CNNIR can be found in Algorithm 5.

Algorithm 5 Pseudo-Code of Cellular Neural Network Image Reconstruction Function

Require: Ω {Image: specify gene spot region pixels}
Require: I {Image: the image to be reconstructed}
Ensure: Io {Image: the reconstructed image(without gene spot signal)}
{Ω ∈ {0, 1}} {I ∈ [−1, 1]}

1: Ω← CNNDilation(Ω), Add two pixel layer to Ω
2: I ← CNNMask(I, Ω̂), Ω̂ is The Complementary of Ω
3: while Ω is not empty, there is ’1’s pixel or more do
4: I ← CNNDiffuion(I, Ω, DIFUS)
5: I ← I + CNNMask(I, Ω)
6: Ω← CNNErosion(Ω), , Peel one pixel layer from Ω
7: end while
8: Io ← I

Essentially, the proposed algorithm takes a mask Ω and the input image I. Note that

in this algorithm we deal with each channel separately, thus, we should consider I as either

the Cy5 or Cy3 image. The mask is an image that marks the spot regions with pixels of

value ’1’. In the experiments, the mask image is the output of the segmentation algorithm

of another CNN algorithm outlined in the previous chapter. The first step in the algorithm

is to add a layer of two pixels thick. This layer guarantees the elimination of the effect of the

direct spot boundary pixels. The boundary pixels usually contain overlapping information

from the spot and the background signal, and thus, it is not a good representative of the

background signal in the local area. The lines 4, 5, 6 is the solution for the situation in



Chapter 7. 149 Microarray Image Reconstruction

Fig. 7.3. By accumulating a proportion of the result of the diffusion process, with peeling

one layer from the mask every cycle, we keep the signal’s level in the reconstructed area

close to the local background.

Fig. 7.4 presents a sample-reconstructed region, which is the same region of Figure.

7.3.
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Figure 7.4: Output sample by applying CNNIR algorithm on Ω region

7.3.3 CNN-NSIR Algorithm

In [Bertozzi & Bertalmio, 2001], an inpainting approach has been introduced based on

the ideas from classical fluid dynamics to propagate isophote lines continuously from the

border into the reconstructed region. The underlying assumption is to think of the image

intensity as a ’stream function’ for a two-dimensional incompressible flow. The Laplacian

of the image intensity plays the role of the vorticity of the fluid, i.e., it is propagated

into the inpainted area by a vector field defined by the stream function. The method is

directly based on the Navier-Stokes equations for fluid dynamics, which has the immediate

advantage of well-developed theoretical and numerical results.

The basic equation for Incompressible Newtonian flow is as follows:

∂v

∂t
+ v∇v = −∇p + µ∇2

v (7.5)

where v is the velocity vector, p is the pressure and µ is the viscosity. For two-dimensional

flows, we introduce a stream function Ψ where

∇⊥Ψ = v (7.6)
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Fluid dynamics Image processing

stream function Ψ Image intensity I
fluid velocity v = ∇⊥Ψ isophote direction ∇⊥I

vorticity ω = ∆Ψ smoothness ω = ∆I
viscosity µ anisotropic diffusion µ

Table 7.1: The counterpart between 2D Navier-Stokes equation and image inpainting

eliminates p, and identically satisfies the divergence free condition, in (7.5). Letting ω =

∆ × v, the vorticity, we obtain the vorticity-stream function formulation for the Navier-

Stokes equations:

ωt + v.∇ω = µ∆ω (7.7)

In the case of near absence of viscosity, i.e. µ ≈ 0, we have the steady state solution of

(7.7) approaching,

v.∇ω = ∇⊥Ψ.∇∆Ψ ≈ 0 (7.8)

Ψ is a continuous function defined on a continuous domain, while I is like an integer

function defined on a discrete domain. Since we will discretize Ψ using finite difference

techniques, the latter discrepancy is resolved. For the former case, values are rounded to

the nearest integer.

Notice the remarkable similarity between (7.8) and the solution criterion (7.3) for the

inpainting problem. Exploiting this fact and replacing Ψ with an image matrix I , we

summarize the counterparts between 2D incompressible fluid flow and image inpainting in

the Table 7.1 below Bertozzi & Bertalmio [2001].

In image processing terms, we have the counterpart to the vorticity-stream function

ωt + v∇ω = µ∇.(g(|∇ω|)∇ω) (7.9)

where ∆I = ω is the vorticity, ∇⊥I = v is the direction of the isophotes and g(.) accounts

for anisotropic diffusion (or edge preserving diffusion).

7.3.3.1 Designing The Templates

Again, let Ω be a small area to be reconstructed (inpainted) and let ∂Ω be its boundary.

The small size of the gene spot, Ω, allows the ability to use isotropic diffusion in order to

propagate information from one or two layers of pixels from the boundary of the gene spot

∂Ω into Ω. Therefore, approximating inpainting procedure has been achieved.



Chapter 7. 151 Microarray Image Reconstruction

We define the standard central finite difference operators applied to the grid function

uij below

Dxui,j =
ui+1,j − ui−1,j

2h
(7.10)

−Dyui,j = −
ui,j+1 − ui,j−1

2h
(7.11)

∆hui,j = (D2
x +D2

y)ui,j (7.12)

= +
1

h2
(ui+1,j − 2ui,j + ui−1,j)

+
1

h2
(ui,j+1 − 2ui,j + ui,j−1)

In all the following templates, h is the uniform grid size and R is the value of the state

resistor in a CNN cell. In addition, provided that the transient remains bounded (i.e. the

cells do not saturate), it is assumed that a CNN array is stable when it starts from a

specified initial condition.

The first derivative (Ix) can be directly mapped onto the CNN array resulting in the

following simple template (DERx: X(0) = ORIGINAL IMAGE, BC = ZF ):

DERxA =







0 0 0
−1
2h

0 1
2h

0 0 0






; (7.13)

DERxB =







0 0 0

0 1
R

0

0 0 0






;

Similarly, the first derivative (−Iy) can be directly mapped onto the CNN array resulting

in the following simple template (DERy−: X(0) = ORIGINAL IMAGE, BC = ZF ):

DERy−A =







0 1
2h

0

0 0 0

0 −1
2h

0






; (7.14)

DERy−B =







0 0 0

0 1
R

0

0 0 0






;

The linear isotropic diffusion equation can be directly mapped onto the CNN array
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resulting in the following simple template [Chua & Yang, 1988b] (DIFFUS: X(0) =

ORIGINAL IMAGE, BC = ZF )

DIFFUSA =







0 1
h2 0

1
h2

−4
h2 + 1

R
1
h2

0 1
h2 0






(7.15)

There is a considerable number of methods for numerical integration. One of the best

known techniques is the Newton-Côtes method that is based on a polynomial interpolation

on equally-spaced points. This method can be transformed into integration rules using

polynomials of any order giving an error that decreases faster and faster with the number

of points being used as higher-order polynomials are chosen [Luchini, 1984]. In the light of

Luchini’s work [Luchini, 1984] and by applying the closed Newton-Côtes formula (Simpson’s

rule)[Stoer & Bulirsch, 2002],

∫ (N+δ2)h

−δ1h

f(x)dx ≈ +h{wext(δ1)f(−h) + wint(δ1)f(0)

+
N−1
∑

i=1

f(ih)

+wint(δ2)f(Nh) + wext(δ2)f((N + 1)h)} (7.16)

where

wint(δ) = 7/12 + δ − δ2/2 (7.17)

wext(δ) = −1/12 + δ2/2 (7.18)

Equation (7.16) is an integration formula [Luchini, 1984], with equally-spaced points

for an interval not ending exactly in any of the points where f(x) is known. Therefore, we

can numerically compute the integration over x (or y) axis based on the spatial information

and the following template (INTx: X(0) = ORIGINAL IMAGE, BC = ZF )

INTxA =







0 0 0

0.4h 0 0.4h

0 0 0






; (7.19)

INTxB =







0 0 0

0 2h+ 1
R

0

0 0 0






;
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Finally, a CNN approximation of the NSE (7.9) can be created using a two-layer CNN,

see the solution of NSE for incompressible fluids in [Kozek & Roska, 1996]. With the

continuity condition in rectangular co-ordinates, the equation can be written as

∂u

∂t
= µ(

∂2u

∂x2
+
∂2u

∂y2
)− ∂u2

∂x
− ∂uv

∂y
(7.20)

∂v

∂t
= µ(

∂2v

∂x2
+
∂2v

∂y2
)− ∂uv

∂x
− ∂v2

∂y
(7.21)

Similar to the previous solutions, to obtain a spatially discrete system, spatial deriva-

tives are replaced with difference terms to yield the approximate expression for Equation

(7.20) (similarly for (7.21))

∂u

∂t
= + µ(

ui−1,j − 2ui,j + ui+1,j

h2
)

+ µ(
ui,j−1 − 2ui,j + ui,j+1

h2
)

− (
−(ui−1,j)

2 + (ui+1,j)
2

2h
)

− (
−(ui,j−1vi,j−1) + (ui,j+1vi,j+1)

2h
) (7.22)

With the developed rational in [Kozek & Roska, 1996], we can evaluate v in the Equation

(7.5) using the CNN template (7.23) for u component (those for the v component can be

generated analogously) (NSE: X(0) = ORIGINAL IMAGE, BC = ZF )

NSEAuu(ij, kl) =







0 µ

h2 0
µ

h2

−4µ
h2 + 1

R

µ

h2

0 µ

h2 0






; (7.23)

NSEÂuu(ij, kl) =







0 0 0
−1
2h

0 1
2h

0 0 0






[ui.uk];

NSEÂuv(ij, kl) =







0 −1
2h

0

0 0 0

0 1
2h

0






[uj.vl];

the lower right indexes of the templates indicate from which layer and to which layer they

connect.

Remark 6. All the derived templates have been tuned to be stable in the gray-scale area
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(the linear area in the output function, see [Chua & Roska, 2002, Chapter 6]). Therefore,

after a specific transient time elapses, the output of any specific operation would be either

the state value or the output value.

7.3.3.2 The Pseudo-Code of CNN-NSIR

As discussed previously, a common drawback with the existing microarray image processing

methods is that they cannot properly address the quantification of the gene spot in a

realistic way without any assumption about the image surface. In order to overcome this

drawback, a CNN algorithm, named as CNN-NSIR, is proposed in this paper with the

pseudo-code given in Algorithm 6.

Algorithm 6 CNN-NSIR Algorithm

Require: Ω {Image: specify gene spot region pixels}
Require: I {Image: the image to be reconstructed}
Ensure: Io {Image: the output image}
{Ω ∈ {0, 1}} {I ∈ [−1, 1]}

1: Ω← CNNDilation(Ω, 2) {Add two pixel layer to Ω}
2: I ←CNNMask(I, Ω̂) {Ω̂ is The Complementary of Ω}
3: I ← CNNDiffusion(I)
4: Set α {α: # of NSE evaluations}
5: Set β {β: transient time of NSE evaluation}
6: Ὼ← CNNDilation(Ω, 1)
7: u← CNNget u(I, ∂Ὼ, DERy−)
8: v ← CNNget v(I, ∂Ὼ, DERx)
9: for i = 1 to α do

10: [U, V ]← CNNnse(u, v, Ὼ, β) {Propagate ∂Ὼ into Ὼ}
11: I1 ← -CNNIntegration(U, INTy)
12: I2 ← CNNIntegration(V, INTx)
13: I ← I2 − I1
14: Ὼ← threshold(I) {returns 1 where cells’ values equal 0}
15: Ὼ← CNNDilation(Ὼ, 1)
16: u← CNNget u(I, ∂Ὼ, DERy−)
17: v ← CNNget v(I, ∂Ὼ, DERx)
18: end for
19: Io ← I

Essentially, the proposed algorithm takes a mask Ω and the input image I. Note that,

in this algorithm, we deal with each channel separately and, thus, we should consider I

as either the Cy5 or Cy3 image. The mask is an image that marks the spot regions with

pixels of value ’1’. The first step in the algorithm is to add a layer of two-pixels thick.



Chapter 7. 155 Microarray Image Reconstruction

This layer guarantees the elimination of the effect of the direct spot boundary pixels. In

the segmentation result, the boundary pixels usually contain overlapping information from

the spot and the background signal. Therefore, it is not a good representative of the

background signal in the local area. Figure 7.5 presents a sample-reconstructed region.

Figure 7.5: Samples of three different background signals. The reconstructed images shows
an acceptable background trend estimation. The third example represents the effect of the
noise artefacts on the spot’s area.

It should be mentioned that the spot data of the microarray are different from the

natural pattern, or usual image that would be the ordinal target for the reconstruction

technique. The boundary of the spot in the microarray data would usually show no-

correlation while, in the natural image, the pattern or arrangement is important to express

the meaning. However, in our algorithm, a smoothing operator has been applied in Al-

gorithm 1 [line 3]. This operator can achieve the smoothness to a degree that is enough

for this application. As can be seen from Figure 7.5, even the random pattern in the

surrounding area of the spot has been approximated very well in the reconstructed area.

7.4 Discussion

7.4.1 Notes About The Algorithms

Due to the high signal variability that exists across the microarray surface, when working

directly with the raw microarray information, propagating the information of the border

region ∂Ω along a level line (isophotes) would be impotent. Therefore, rather than using

the raw image, it is suggested that producing a smoothed version of the image data would

not only be advantageous, but more effective in terms of the overall goal. In our algorithm,

the DIFFUS template has been used as smoothing operator. Although this isotropic

diffusion template causes blurring effects, it can achieve the required refining result by

calculating the regions (local) average intensities.
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Anisotropic diffusion would be a better alternative for the diffusion operator, not only as

smoothing operator (see line 3 in Algorithm 1) but in evaluating NSE as well. However, the

anisotropic diffusion models require a noise-level estimateK that determines the magnitude

of the edges to be conserved during the smoothing process. K could be set according to

the priori knowledge about the noise statistics or could be estimated from the absolute

gradient histogram [Canny, 1986; Perona & Malik, 1990]. However, in a locally connected

parallel processing architecture, it would be very difficult to calculate these values. Thus,

other approaches should be sought to achieve this target. Rekeczky et al. [1998b] proposed

a possible method to estimate the noise-level roughly as the minimum of the maximal local

variations at nodes of the coarse-grid model.

To evaluate the outcome of the proposed approach, the results have been compared

with the output image by another algorithm that is dedicated specifically for reconstruct-

ing (inpainting) image. These algorithm is Bertalmio’s method [Bertalmio et al., 2000].

Although the isotropic diffusion operator has been applied as a first step in Bertalmio’s

algorithm (and anisotropic diffusion thereafter), yet, the microarray characteristics cause a

very long settling time. CNNIR method uses the information of one bit thickness layer to

reconstruct the spot’s area. Even though CNNIR is remarkably faster than CNN-NSIR, it

causes more spots to be considered as a bad region and therefore omitted in later analyzes.

7.4.2 Dataset Characteristics

The images used in this paper are derived from the human gen1 clone set data. These

experiments were designed to contrast the effects of two cancer inhibiting drugs (PolyIC

and LPS) over two different cell lines. One cell line represents the control (untreated) and

the other the treatment (HeLa) line over a series of several time points. In total, there are

47 distinct slides with the corresponding GenePix results presented. Each slide consists of

24 gene blocks with each block containing 32 columns and 12 rows of gene spots. The gene

spots in the first row of each odd-numbered block are known as the Lucidea ScoreCard

[Samartzidou et al., 2001] and consist of a set of 32 pre-defined genes that can be used to

test various experiment characteristics.

7.4.3 Evaluation

In order to quantify the performance capabilities of our technique, a quality measure is

required to allow the judgment of how the estimated background affects the quantification

of the gene spot. For this purpose, a systematic objective method, which is based on the
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descriptive statistic Interclass Correlation Coefficient (ICC) measures, see Section 4.5.3, is

used to compare the results produced by different techniques. The rational is justified as

follows. The set of 32 pre-defined genes is used in the comparison process. Using these con-

trols, we base our analysis on the following assumptions: 1) the better the reconstruction,

the higher the correlation within the same control should be (minimum σ2
e); 2) the better

the reconstruction, the lower the correlation between the genes within the array should be

(maximum σ2
g); and 3) the better the reconstruction, the higher the ICC value should be.

Fig. 4.12 presents the estimated variance components and ICC for the dataset im-

ages and on average. The reliabilities of all methods are high, with CNN-NSIR method

appearing on average to be more reliable than the other methods. Note that even the

within-spot variability σ̂2
e (the noise) is notably smaller for CNN-NSIR method, though

the between-spot variability (the signal) is bigger for CNNIR method.

No Est Median Est. Bermio NSE  F−Inpaint

W
ith

in
−

S
po

t E
st

im
at

ed
 V

ar
ia

nc
e

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

04
0

Figure 7.6: Within-Spot estimated variance over the dataset. (The methods are ‘No
Background Correction’, ‘Median Background Estimation’, ‘Bertalmio’, ‘CNN-NSIR’ and
‘CNNIR(f-Inpaint)’.

It should be pointed out that the blind algorithm (operator independent algorithm)

limits our ability to discriminate between bad spots from the good ones. However, this will

give better insight about the robustness of the implemented methodology. In our analysis,

every signal less than 100 is considered to be a bad reading and, consequently, omitted

from the analysis.
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Figure 7.7: Between-Spots estimated variance over the dataset. (The methods are ‘No
Background Correction’, ‘Median Background Estimation’, ‘Bertalmio’, ‘CNN-NSIR’ and
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Figure 7.9 gives more detailed plots about the data. Figure 7.9-(a) shows that not only

the range of the signal has been changed due to the reconstruction algorithm application,

but the average values have also been changed as well. The distribution of the signals,

after applying the reconstruction methods (Median Background Estimation, Bertalmio’s,

CNNIR and CNN-NSIR), have a narrower normal distribution with the data skewed to-

wards the lower side. Note that 50% of the gene’ values fall within 0.1 range around 0.5 for

our method. Furthermore, while the middle 50% values of (“No Est”) fall into 0.4 range

width and the whole range is 1.1, the middle 50% values of (CNN-NSIR) fall into 0.7 range

width and the whole range is 1.6, see Figure 7.9-(b).
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Figure 7.9: Boxplot for one sample gene.

7.5 Conclusion

In this chapter, we have presented a novel image reconstruction framework that attempts

to improve the quantification results of the microarray image. Specifically, the framework

consists of several components that process a microarray image based on a given mask

(could be the output of any automated segmentation process) without human intervention.

The CNN algorithms for Network Image Reconstruction, outlined in Algorithms 5-6,

have been found to have the following advantages over current implementations:
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Figure 7.10: Boxplot for one experiment, image, data (All Genes).

• The importance of computational fluid dynamics and Navier-Stokes equations in the

application of image inpainting has been highlighted in [Bertozzi & Bertalmio, 2001].

On the other hand, cellular neural networks approximation of the Navier-Stokes

equation describing the viscous flow of incompressible fluids is proposed in [Kozek

& Roska, 1996]. Hoverer, to the best of our knowledge, a cellular neural network

algorithm that connects and applies both ideas is novel.

• The cellular neural network algorithm, based on isotropic diffusion model, has been

applied. Although it is a simple model, its results are comparable to the other

proposed nonlinear algorithm. However, CNNIR algorithm has two advantages over

the CNN-NSIR. The first is that CNNIR is much simpler and any CNN-UM simple

hardware can be used to execute it. The second is that CNNIR is considerably faster

than CNN-NSIR, which is minor advantage.

• Both algorithms exploit characteristics of cellular neural network. This paradigm can

be used to approximate partial differential equations by introducing finite differences.

• The proposed algorithm achieves the reconstruction of the microarray in a simple

yet robust way. The dataset contains slides from experiments that were conducted

in different time points. However, the wide range of spots’ areas, regarding the
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characteristics of the background of each spot, have proved the ability of the proposed

algorithms to achieve a high performance under many different conditions.

On the other hand, testing the algorithms on different set of experiments’ slides,

produced using different protocols for instance, is expected to increase the confidence

in the results of the algorithms.

• The algorithms are an operator-free methods that take only the raw data and a mask

as the input. The requirement of human intervention would lead to an inefficient

process by not only increasing the processing time but by also introducing the human-

factor error.

• The algorithm can be applied on CNN-UM [Roska & Chua, 1993] and therefore

allows the researchers to process the image itself and get the quantitative data for

further analysis not only in efficient time but also with remarkably high accuracy.

However, CNN-UM is not the only available alternative as a target for the algorithm.

Currently, Graphics Processing Unit (GPU) is a very efficient alternative that can be

considered as a good candidate to apply CNN algorithms in a remarkably fast time,

without any extra cost.

• The potential of the algorithm is proven based on the direct comparisons between

our proposed approaches with other methods such as Bertalmio’s method and median

background estimation method.

With the inpaiting step, we should have got the best possible information from the

microarray image. The next step would be collecting some statistics about the spots and

background signals for further statistic analysis.
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8.1 Introduction

The development of biomedical research has been led by the increasing knowledge as well

as new advances in technology. Traditionally, researchers were able to investigate a small

number of genes at a time by using the available techniques back then. During the 1990s,

many new technologies emerged with a huge potential for tackling problems, which were

unfeasible previously. DNA microarray technology has enabled biologists to study all the

genes within an entire organism to obtain a global view of genes’ interaction and regulation.

This technology has a great potential in obtaining a deep understanding of the functional

organization of cells. However, it is still early in its development, and needs improvements

in all the main stages of the microarray process. The emergence of this technology allows

the researchers to tackle difficult problems and reveal promising solutions in many fields, i.e.

pharmaceutical and agricultural industries. To name some of the applications, we might

mention tumor classification, prognosis prediction, drug development, therapy development

and tracking disease progression. Because they allow researchers to the genes’ functions

in tissues that are subjected to a medication being tested. Moreover, drug companies are

often interested in altering some protein to prevent the faulty gene behavior from causing

a disease.

The typical microarray image can contain information about a thousands of genes’

spots. Besides the analysis required for huge volume of information produced by such

experiments, one of the main concerns is the quality of the image. Although microarray

technology has been engineered to a high tolerance, the microarray image suffers a consid-

erable amount of noise, in spite of which a very valuable data still to be extracted from

these images. These errors and noises will propagate down through, and can significantly

affect, all subsequent processing and analysis. Therefore, to realize the potential of such

technology, it is crucial to obtain high quality image data that would indeed reflect the

underlying biology in the samples. One of the key steps in extracting information from

a microarray image is segmentation: identifying which pixels within an image represent

which gene. This area of spotted microarray image analysis has received relatively little

attention relative to the advances in proceeding analysis stages. But, the lack of advanced

image analysis including the segmentation results in sub-optimal data being used in all

downstream analysis methods.

In this chapter, it is our aim to overview the whole research conducted through the

chapters of this thesis in order to highlight the contributions as well as the possible im-

provements for future work. The main motivation for this research is to tackle the chal-

lenges involved with the microarray image processing. Furthermore, recent interest in
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achieving the biological cDNA microarray experiments in a fully automated way, on one

hand, and the advances in neural network hardware implementation, on the other, led our

ambition to investigate the possibility of analyzing the microarray image with this up-to-

date paradigm. The application of the proposed techniques showed not only robust and

efficient methods but also also a remarkably faster implementation.

The investigation’s main components cover three areas, which are filtering, segmenta-

tion and reconstruction stages. For every stage, the initial analysis of currently available

techniques sets some rules that are based on the strong and weak points. This analysis sets

the road maps for all the presented improvements. The improvements were either novel

algorithms, which deal with all and every specific parts, or developments of some available

methods and integrating them with the whole proposed system.

In the following, Section 8.2 reviews the achievements and contributions in respect to

the main components as discussed throughout the thesis. The final Section 8.3 reflects

on possible limitation of the proposed methods and highlights some key topic for future

research.

8.2 Achievements and Contributions

The discussion in Chapter 2 reviews the main methodologies which have been applied to

process the microarray image. Although lots of researches have been done to achieve an

automated methodology, until recently, the human operators played a vital role in the

process as a whole. In this respect, our research based heavily on the requirement for a

reliable yet time efficient automated method.

The primary contribution of this research based on the conclusion of Chapter 2 can

be regarded as a fully automated cDNA microarray image processing system. However,

before highlighting the contributions, a summary of each chapter will be represented.

One of the key steps in extracting information from a microarray image is the segmen-

tation whose aim is to identify which pixels within an image represent which gene. This

task is greatly complicated by noise within the image and a wide degree of variation in

the values of the pixels belonging to a typical spot. In the past, there have been many

methods proposed for the segmentation of microarray image. In Chapter 3, a new method

utilizing a series of artificial neural networks, which are based on multi-layer perceptron

(MLP) and Kohonen networks, is proposed. The proposed method is applied to a set of

real-world cDNA images. Quantitative comparisons between the proposed method and

the commercial software GenePix are carried out in terms of the peak signal-to-noise ratio

(PSNR). This method is shown to not only deliver results comparable and even superior



Chapter 8. 165 Conclusions & Future Work

to existing techniques but also have a faster run time.

Chapter 4 is concerned with improving the processes involved in the analysis of microar-

ray image data. The main focus is to clarify an image’s feature space in an unsupervised

manner. Rather than using the raw microarray image, it is suggested that producing

filtered versions of the image data by applying nonlinear anisotropic diffusion, so that

the dynamic range of the image could be increased, and hence, a better ability of sig-

nal extraction could be achieved. Therefore, a novel segmentation algorithm is proposed.

This algorithm is based on Cellular Neural Network computational paradigm integrated

with median and anisotropic diffusion filters. The AnaLogic CNN Simulation Toolbox for

MATLAB (InstantVision Toolboxes for MATLAB) is used during the segmentation pro-

cess. Quantitative comparisons among the proposed methods and GenePix are carried

out in terms of objective and subjective point of views. It has shown that analogic algo-

rithm integrated with Complex Diffusion filter is the best one to be applied to achieve the

segmentation.

The main focus in Chapter 5 is to clarify an image’s feature space in a fully automated

algorithm. Thus, instead of employing the raw microarray image, it is suggested that

producing multiple views of the image data, such that, emphasis is placed on certain

frequencies or regions of interest would not only be advantageous, but also more effective in

terms of the overall goal. Therefore, a multi-view analysis system combined with Median,

Top-Hat and complex diffusion filters is investigated. The proposed image processing

methods are applied to a set of real-world cDNA images. The AnaLogic CNN Simulation

Toolbox for MATLAB is used during the segmentation process. Quantitative comparisons

among different filters are carried out in terms of the peak signal-to-noise ratio (PSNR). It

is shown that the CLD filter is the best one to be applied with the image transformation

engine.

In Chapter 6, an unsupervised CNN algorithm for the segmentation of microarray im-

age was presented. AN improved approximation method was proposed in order to estimate

any non-linear function using a CNN output function PWL. Comparison has shown the

remarkable results which outperform the results of the other method. On the other hand,

the multi-view filtering technique was integrated with an elastic segmentation algorithm,

which based on the linear diffusion and locally adaptive threshold technique. The algo-

rithm was applied on a real microarray image. An objective comparison with GenePix

results suggested that this approach produces remarkably good outcomes in terms of the

robustness and efficiency.

Apart from our approach, some hardware implementations for microarray image pro-

cessing have been proposed in the literature. Although they represent a potential alterna-
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tive for the currently available software systems, they suffer an improper genes’ quantifica-

tion approach. Therefore, Chapter 7 presented novel Image Reconstruction algorithms us-

ing the cellular neural network paradigm. The underlying principles of this approach based

on linear diffusion and Navier-Stokes equation. This algorithm offers a robust method for

estimating the background signal within the gene spot region. The MATCNN Toolbox for

Matlab is used to test the proposed method. Quantitative comparisons are carried out, in

terms of objective criteria, between our approach and some other available methods. It is

shown that the proposed algorithms give highly accurate and realistic measurements in a

fully automated manner within a remarkably efficient time.

8.2.1 Contribution 1: Total Automation and a Totally Blind Pro-

cess

Minimizing the operator roles in the image processing can be sought in two respects shown

in Chapter 2. The number and characteristics of the spots complicate the process consid-

erably, on the one hand. On the other hand, the high degree of noise reduces the ability

to specify the spots’s signal. These issues result in the time-consuming manual, or semi-

automated, processing of the microarrays. Therefore, the fully automated algorithm will

not only guarantee time efficiency but also will produce more accurate results.

Many methods have been proposed to accomplish different functions in microarray im-

age processing. However, many of those methods suffer either the computation complexity

or the need for some manual input from the operator, sometime both are required. The

operator’s inputs are highly unfavorable since they affect the throughput of the process

and introduce user bias across multiple images.

Based on these conclusions, one principal contribution in this thesis is the production

of novel fully automated algorithms for the key areas highlighted above. Furthermore, the

developed algorithms require no prior assumption about the image or the spots. Thus,

another key contribution is that the algorithms are flexible and can be easily adapted for

any developments in the cDNA microarray image technology.

8.2.2 Contribution 2: Adopting Local Strategy Algorithms

Investigating the surface of the images, which are available in our dataset, showed a huge

diverse in the intensity’s values. Therefore, the global information will be of a minimum

benefit if there is a benefit at all. In addition, utilizing the global data will result in a

costly computation algorithm. On the other hand, relatively local information is enough
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to achieve various tasks required for the microarray images since it is sufficient for a highly

effective and robust yet time efficient algorithms. Therefore, one of the contributions in

this thesis is that the algorithms heavily depend on the local data to perform all the covered

tasks, i.e., filtering, segmentation and reconstruction. Note that even with the multi-view

analysis, where pixel-wise mapping functions have been used, the local information was of

utter importance for the algorithm.

8.2.3 Contribution 3: Image Filtering and Noise Reduction

The existence of the flaws in the microarray images has an impact on our ability to pro-

cess these images. Besides, it is highly important to keep the throughput feature of the

microarray technology. Therefore, any successful system should employ an effective au-

tomated filtering algorithm. This algorithm enhances the image’s quality without any

significant data loss. That is, it is much more rational to produce filtered versions of the

image in order to increase the dynamic range and then to enhance the signal extraction

process.

Regarding the filtering stage, the main contribution was the introduction of a fully

dynamic and highly efficient algorithm, Chapter 6. This algorithm integrates many indi-

vidual filters in one system so that it does not only improve the spots’ positions, but also

it does that without any suppositions about the image. Therefore, The algorithm not only

offers a good method for filtering current microarray images, but also it can cope with any

new development in the cDNA microarray production process.

8.2.4 Contribution 4: Image Segmentation

The final goal of the microarray processing is to get a set of statistical values that char-

acterize the gene expression. However, in order to get sufficiently good results, a good

methodology for separating the spot signal and the background signal is prominent. Al-

though the segmentation algorithm was regarded rather irrelevant when some background

correction algorithm is applied, it is, conversely, proved that the applied segmentation

procedure has a huge implication on the final log ratios of spots.

Part of the contributions in this thesis was the introduction of two now segmentation al-

gorithms. Chapter 3 presented a neural network approach developed with a novel topology

structure that allows the manifestation of our conclusions about locality and robustness.

Chapters 4-6 showed a developed algorithm, where a diffusion based filter was integrated

with a locally adaptive thresholding technique and an advanced meta analysis procedure.
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8.2.5 Contribution 5: Image Reconstruction

In general, the main procedure after the quantification stage is the normalization process,

which is introduced to get the statistics of the spots as correct as possible. Currently

available normalization algorithms lie within two categories, either local procedures or

global procedures. However, most of these methods assume some propositions in order to

justify their results with no access to the real data of the image; i.e., they are built solely

on the statistical summaries.

Image reconstruction might be one of the best techniques that can be applied for a

more specific background determination process. In such method, some local pixels that

are most similar to the known border replace selected pixels within the spot. The basic

rational behind it is that the similarities with the border of the spot guarantee the evolution

of the local background into the spot region. Therefore, Chapter 7 presented a major

contribution by the introduction of novel CNN algorithms for local strategy microarray

image reconstruction.

8.2.6 Contribution 6: Cellular Neural Networks and PDEs Ap-

plication

There has been recently much interest in a fully automated microarray experiment. In

such automation, the whole experiment is curried out in one devise such that the human

operator has no effects of the final slide produced by such devises. In addition, the need for

fully automated and resilient algorithm for the image processing has remarkably increased.

The need for automated process is led by two important factor which are the cost which is

yet a relatively high as well as the tendency to reserve the throughput of this technology.

On the other hand, neural network paradigm has become a potential approach to

achieve a hardware implementation for any designed algorithm. Cellular neural network,

in particular, offers a remarkable tool for image processing applications.

Therefore, as a main goal in this thesis, the development of CNN algorithm for various

stages in the microarray image processing is a major contribution. Over many chapters,

from 4 to 7, the design and application of a robust and effective CNN algorithm were in

mind. The filtering proposed methodologies showed the ability of utilizing some findings

from PDEs based filters, which can be applied easily on the CNN-UM. The segmentation

stage was developed with a good consideration about the diffusion PDE equation. Fi-

nally, Navier-Stokes PDE equations were used for the development of the reconstruction

algorithm.
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The main advantage of the CNN is the parallel computing ability, on one hand, and

the implementation potential on either CNN-UM or GPU (such as CUDA), on the other.

8.3 Future Work

All the proposed algorithms have performed extremely well over the available dataset.

However, the algorithms presented in this thesis are not perfect and further investiga-

tion may yield much more improvements in design and implementation. The following

highlights certain points that can be the topics for future research.

Although the training algorithm BP in Chapter 3 is able to build some rules which reign

the classification procedure, it is highly recommended that a thorough investigation should

be done to cover the generalization properly. One possible improvement is the application

of Maximum Covariance Technique. Another possible route is the introduction of multiple

hidden layer. Furthermore, the one-dimension Kohonan network can be replaced with 2-

dimensional network. Such formation is more suitable for inferring some intrinsic statistical

patterns within the input set.

The algorithms, presented in Chapter 4, are remarkably successful. However, a further

improvement can be achieved by employing two or more thresholding templates with differ-

ent bias value. The outputs of this stage should be fed into a more complicated meta level

algorithm. The sophistication of the binary analysis algorithm can lead to more robustness

as a tool for detecting the spot signal within high noisy areas.

In Chapter 6, a fully automated CNN algorithm is proposed. However, the main dif-

fusion equation is the linear diffusion. The application of multiple layer CNN algorithm

for conducting anisotropic diffusion might be beneficial. On the other hand, more re-

search should be devoted the development of CNN algorithm that approximate the linear

complex diffusion equations. Although such algorithm would be much more complicated,

computation-wise, and will require much more complicated hardware requirements, linear

complex diffusion showed a brilliant performance over the other applied filters.

Finally, one remarkable observation has been developed last two years while conducting

the research presented in this thesis. Significantly, there is a possibility to approximate

the grayscale morphological operators using a series of PDEs. In addition, the structure

of CNN was proven to be highly successful in approximating and solving PDEs. On the

other hand, the research community does not have a systematic methodology which is

suitable for developing CNN algorithm effectively, rather more heuristic approaches are

usually followed. One starting point for further research might be exploring the ability

to develop a simple CNN programming block based on morphological PDEs. This simple
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block might be used later for developing a sophisticated CNN algorithm for challenging

applications such as microarray image processing. Another possible route is to establish

a better understanding of the effects of these methodology on the speed of process by

conducting a quantitative research using the CNN-UM and the available GPU hardware.
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Bajla, I., Marušiak, M. & Šrámek, M. (1993). Anisotropic filtering of MRI data based
upon image gradient histogram -, vol. 719, 90-97. Springer-Verlag, Berlin / Heidelberg.
82



173 References

Bassett, D., Eisen, M. & Boguski, M. (1999). Gene expression informatics - it’s all
in your mine. Nature genetics , 21, 51-55. 143

Bateson, W. (2007). Mendel’s Principles of Heredity . Cosimo, Inc. 12

Bengtsson, A. & Bengtsson, H. (2006). Microarray image analysis: background esti-
mation using quantile and morphological filters. BMC bioinformatics , 7, 96. 38

Bergholm, F. (1987). Edge Focusing. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-9, 726-741. 84

Bertalmio, M., Sapiro, G., Caselles, V. & Ballester, C. (2000). Image inpaint-
ing. In Proceedings of the 27th annual conference on Computer graphics and interactive
techniques , 417-424, ACM Press/Addison-Wesley Publishing Co. New York, NY, USA.
142, 144, 146, 147, 156

Bertozzi, A. & Bertalmio, M. (2001). Navier-Stokes fluid dynamics and image and
video inpainting. Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2001. CVPR 2001., 1, 355-362. 143, 144, 149,
150, 160

Bertucco, L., Nunnari, G., Randieri, C., Rizza, V. & Sacco, A. (1998). A
cellular neural network based system for cell counting in culture of biological cells. In
Proceedings of the 1998 IEEE International Conference on Control Applications (Cat.
No.98CH36104), 341-345, IEEE, Trieste , Italy. 77

Beucher, S. (1982). Watersheds of functions and picture segmentation. In ICASSP 82,
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing , 1928-1931, Paris. 4

Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Clarendon Press. 42, 48,
49, 61

Biswas, S. (1996). Smoothing of digital images using the concept of diffusion process.
Pattern Recognition, 29, 497-510. 83

Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Rad-

macher, M., Simon, R., Yakhini, Z., Ben-Dor, A. & Others (2000). Molecular
classification of cutaneous malignant melanoma by gene expression profiling. Nature,
406, 536-540. 19

Black, M., Sapiro, G., Marimont, D. & Heeger, D. (1998). Robust anisotropic
diffusion. IEEE Transactions on Image Processing , 7, 421-432. 84, 86

Blanchard, A., Kaiser, R. & Hood, L. (1996). High-density oligonucleotide arrays.
Biosensors and bioelectronics , 11, 687-690. 24

Blekas, K., Galatsanos, N.P. & Georgiou, I. (2003). An unsupervised artifact
correction approach for the analysis of DNA microarray images. In N.P. Galatsanos,
ed., IEEE International Conference on Image Processing (ICIP 2003), vol. 2, 165-168,
Barcelona. 35

Blekas, K., Galatsanos, N.P., Likas, A. & Lagaris, I.E. (2005). Mixture model
analysis of DNA microarray images. IEEE Transactions on Medical Imaging , 24, 901-
909. 35



174 References

Botros, N. & Abdul-Aziz, M. (2002). Hardware implementation of an artificial neural
network using field programmable gate arrays (FPGA’s). IEEE Transactions on Indus-
trial Electronics , 41, 665-667. 73

Bovik, A. (2000). Handbook of Image and Video Processing . Electronics & Electrical,
Elsevier Academic Press. 30, 92

Bower, J.M. & Beeman, D. (1998). The book of GENESIS: exploring realistic neural
models with the GEneral .... TELOS, New York. 43

Bozinov, D. (2003). Autonomous system for web-based microarray image analysis. IEEE
Transactions on Nanobioscience, 2, 215-220. 35

Bozinov, D. & Rahnenfuhrer, J. (2002). Unsupervised technique for robust target
separation and analysis of DNA microarray spots through adaptive pixel clustering.
Bioinformatics , 18, 747-756. 35

Brazma, A., Robinson, A., Cameron, G. & Ashburner, M. (2000). One-stop shop
for microarray data. Nature, 403, 699-700. 26

Brown, P. & Botstein, D. (1999). Exploring the new world of the genome with DNA
microarrays. nature genetics , 21, 33-37. 19, 24

Buckley, M.J. (2000). The Spot User’s Guide. 30

Budgen, D. (1993). Software Design (International Computer Science Series). Addison
Wesley.

Buhler, J., Ideker, T. & Haynor, D. (2000). Dapple: Improved Techniques for
Finding Spots on DNA Microarrays. 32

Burden, R.L. & Faires, J.D. (2005). Numerical analysis . Cengage Learning, CA, USA.
120, 123

Burt, P. & Adelson, E. (1983). The Laplacian Pyramid as a Compact Image Code.
IEEE Transactions on Communications , 31, 532-540. 64

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8, 679-698. 156

Cantor, C.R. & Smith, C.L. (1999). Genomics: The Science and Technology Behind
the Human Genome Project . Wiley-Interscience, USA. 19

Catte, F., Lions, P.L., Morel, J.M. & Coll, T. (1992). Image Selective Smoothing
and Edge Detection by Nonlinear Diffusion. SIAM Journal on Numerical Analysis , 29,
182-193. 85

Causton, H., Ren, B., Koh, S., Harbison, C., Kanin, E., Jennings, E., Lee, T.,

True, H., Lander, E. & Young, R. (2001). Remodeling of yeast genome expression
in response to environmental changes. Molecular biology of the cell , 12, 323. 19

Charbonnier, P., Blanc-Feraud, L., Aubert, G. & Barlaud, M. (1994). Two
deterministic half-quadratic regularization algorithms for computed imaging. In Proceed-
ings of IEEE International Conference on Image Processing , 168-172, IEEE Comput.
Soc. Press, Austin, USA. 84



175 References

Chedjou, J., Fasih, A., Grausberg, P. & Kyamakya, K. (2009). Use of CNN proces-
sors for ultra-fast solution ODE’s and PDE’s: A renaissance of the analog computer. In
2nd International Workshop on Nonlinear Dynamics and Synchronization, 2009. INDS
’09., 1-1. 77

Chen, T. (2001). Adaptive impulse detection using center-weighted median filters. IEEE
Signal Processing Letters , 8, 1-3. 91

Cheriet, M., Said, J.N. & Suen, C.Y. (1998). A recursive thresholding technique for
image segmentation. IEEE Transactions on Image Processing , 7, 918-921. 34

Cheung, V., Morley, M., Aguilar, F., Massimi, A., Kucherlapati, R., Childs,

G. & Others (1999). Making and reading microarrays. Nature genetics , 21, 15-19. 23

Chou, J.W., Zhou, T., Kaufmann, W.K., Paules, R.S. & Bushel, P.R. (2007).
Extracting gene expression patterns and identifying co-expressed genes from microarray
data reveals biologically responsive processes. BMC bioinformatics , 8, 427. 19

Chua, L.O. (1997). CNN: A Vision of Complexity. International Journal of Bifurcation
and Chaos in Applied Sciences and Engineering , 7, 1425-2219. 36, 77

Chua, L.O. & Roska, T. (1992b). The CNN universal machine. I. The architecture.
In Second International Workshop on Cellular Neural Networks and their Applications ,
1-10. 73, 76, 107

Chua, L.O. & Roska, T. (1993b). The CNN paradigm. IEEE Transactions on Circuits
and Systems-I: Fundamental Theory and Applications , 40, 147-156. 3, 76, 87

Chua, L.O. & Roska, T. (2002). Cellular neural networks and visual computing: foun-
dation and applications . Cambridge University Press. 154

Chua, L.O. & Yang, L. (1988b). Cellular Neural Networks: Applications. IEEE Trans-
actions on Circuits and Systems , 35, 1273-1290. 3, 76, 107, 143, 152

Chua, L.O. & Yang, L. (1988d). Cellular Neural Networks: Theory. IEEE Transactions
on Circuits and Systems , 35, 1257-1272. 3, 76, 107, 128, 147

Chua, L.O., Yang, L. & Krieg, K.R. (1991). Signal processing using cellular neural
networks. The Journal of VLSI Signal Processing , 3, 25-51. 76

Cohen, E., Riesenfeld, R.F. & Elber, G. (2001). Geometric modeling with splines:
an introduction. A K Peters, Ltd., MA, USA. 4

Cohen, J. (2005). Computer science and bioinformatics. Communications of the ACM ,
48, 72-78. 11, 19

Crank, J. (1975). The mathematics of diffusion. larendon Press, Michigan, USA. 83

Crick, F. (1955). On degenerate templates and the adaptor hypothesis: A note for the
RNA tie club. 14

Crounse, K.R. (1997). Image processing techniques for cellular neural network hardware.
Dissertation, University of California, Berkeley. 76

Crounse, K.R. & Chua, L.O. (1995). Methods for image processing and pattern for-
mation in Cellular Neural Networks: a tutorial. Circuits and Systems I: Fundamental
Theory and Applications, IEEE Transactions on, 42, 583-601. 76



176 References

Cruz, J.M. & Chua, L.O. (1998). A 16 x 16 cellular neural network universal chip: The
first complete single-chip dynamic computer array with distributed memory and with
gray-scale input-output. Analog Integrated Circuits and Signal Processing , 15, 227-238.
76

Csapodi, M. & Roska, T. (1996). Dynamic Analogic CNN AAlgorithms for A Complex
Recognition Task - A First Step Towards A Bionic Eyeglass. International Journal of
Circuit Theory and Applications , 24, 127-144. 76

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals, and Systems , 2, 303-314. 53

Daskalakis, A., Glotsos, D. & Kostopoulos, S. (2009). A comparative study of
individual and ensemble majority vote cDNA microarray image segmentation schemes,
originating from a spot-adjustable based restoration framework. Computer Methods and
Programs in Biomedicine, 95, 72-88.

Debouck, C. & Goodfellow, P. (1999). DNA microarrays in drug discovery and
development. nature genetics , 21, 48-50. 22

Demirkaya, O., Asyali, M.H. & Shoukri, M.M. (2005). Segmentation of cDNA
Microarray Spots Using Markov Random Field Modeling. Bioinformatics , 21, 2994-
3000. 35

Demuth, H., Beale, M. & Hagan, M. (2007). Neural Network Toolbox5: User’s Guide.
64

DeRisi, J.L., Iyer, V.R. & Brown, P.O. (1997). Exploring the metabolic and genetic
control of gene expression on a genomic scale. Science, 278, 680-686. 18

Diamandis, E.P. (2000). Sequencing with Microarray Technology-A Powerful New Tool
For Molecular Diagnostics. Clinical Chemistry , 46, 1523-1525. 22

Dolan, R. & DeSouza, G. (2009). GPU-based simulation of cellular neural networks for
image processing. In Proc. International Joint Conference on Neural Networks IJCNN
2009 , 730-735. 87, 107

Dominguez-Castro, R., Espejo, S., Rodriguez-Vazquez, A. & Carmona, R.

(1994). A CNN universal chip in CMOS technology. In The Third IEEE International
Workshop on Cellular Neural Networks and their Applications , 91-96. 76

Dominguez-Castro, R., Espejo, S., Rodriguez-Vazquez, A., Carmona, R.A.,

Foldesy, P., Zarandy, A., Szolgay, P., Sziranyi, T. & Roska, T. (1997).
A 0.8 micrometer CMOS two-dimensional programmable mixed-signal focal-plane array
processor with on-chip binary imaging and instructions storage. IEEE Journal of Solid-
State Circuits , 32, 1013-1026. 76

Drmanac, S., Kita, D., Labat, I., Hauser, B., Schmidt, C., Burczak, J.D. &

Drmanac, R. (1998). Accurate sequencing by hybridization for DNA diagnostics and
individual genomics. Nature biotechnology , 16, 54-8. 22

Duda, R.O. & Hart, P.E. (1973). Pattern classification and scene analysis . Wiley-
Interscience, New York, USA. 48



177 References

Dumontier, C., Luthon, F. & Charras, J.P. (1999). Real-time DSP implementation
for MRF-based video motion detection. IEEE transactions on image processing : a
publication of the IEEE Signal Processing Society , 8, 1341-7. 77

Dunham, C.B. (1973). The limit of non-linear Chebyshev approximation on subsets.
Aequationes Mathematicae, 9, 60-63. 119

Dunham, C.B. (1974). Linear Chebyshev approximation. Aequationes Mathematicae, 10,
40-45. 119

Dunn, J. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact
well-separated clusters. Cybernetics and Systems , 3, 32-57. 35

Eisen, M.B. (2010). ScanAlayse. Online. 32, 142

Eisen, M.B. & Brown, P.O. (1999). DNA arrays for analysis of gene expression. Meth-
ods in Enzymology , 303, 179-205. 5, 19

Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. (1998). Cluster analysis
and display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences of the United States of America, 95, 14863-14868. 19

Epstein, J., Biran, I. & Walt, D. (2002). Fluorescence-based nucleic acid detection
and microarrays. Analytica Chimica Acta, 469, 3-36. 24

Erler, K. & Jernigan, E. (1994). Adaptive image restoration using recursive image
filters. IEEE Transactions on Signal Processing , 42, 1877-1881. 82

Evans, W.E. (1999). Pharmacogenomics: Translating Functional Genomics into Rational
Therapeutics. Science, 286, 487-491. 17
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