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Abstract 

MODERN wireless telecommunication devices (GSM Mobile system) (cellular 

telephones and wireless modems on laptop computers) have the potential 

to interfere with implantable medical devices/prostheses and cause possible mal- 

function. An implant of resonant dimensions within a homogeneous dielectric lossy 

sphere can enhance local values of SAR (the specific absorption rate). Also antenna 

radiation pattern and other characteristics are significantly altered by the presence 

of the composite dielectric entities such as the human body. Besides, the current 

safety limits do not take into account the possible effect of hot spots arising from 

metallic implants resonant at mobile phone frequencies. Although considerable at- 

tention has been given to study and measurement of scattering from a dielectric 

sphere, no rigorous treatment using electromagnetic theory has been given to the 

implanted dielectric spherical head/cylindrical body. 

This thesis aims to deal with the scattering of a plane electromagnetic wave from 

a perfectly conducting or dielectric spherical/cylindrical implant of electrically small 

radius (of resonant length), embedded eccentrically into a dielectric spherical head 

model. The method of dyadic Green's function (DGF) for spherical vector wave 

functions is used. Analytical expressions for the scattered fields of both cylindrical 

and spherical implants as well as layered spherical head and cylindrical torso models 

are obtained separately in different chapters. The whole structure is assumed to be 

uniform along the propagation direction. 

To further check the accuracy of the proposed solution, the numerical results 

from the analytical expressions computed for the problem of implanted head/body 
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are compared with the numerical results from the Finite-Difference Time-Domain 

(FDTD) method using the EMU-FDTD Electromagnetic simulator. Good agree- 

ment is observed between the numerical results based on the proposed method and 

the FDTD numerical technique. 

This research presents a new approach, away from simulation work, to the study 

of exact computation of EM fields in biological systems. Its salient characteristics 

are its simplicity, the saving in memory and CPU computational time and speed. 



Contents 

Dedication ii 

Abstract iii 

Contents xi 

List of Figures xii 

List of Tables xiii 

Acknowledgements xiv 

Nomenclature xv 

1 Introduction 1 

1.1 Background and Motivation . ...... ..... ........... 
1 

1.2 Organization of Thesis ............... ........... 
7 

1.3 Contributions of Thesis ...... ..... ... ........ ... 12 

1.4 A Remark about Notation ..... ..... . .. .... ...... . 13 

2 Dyadic Green's Functions 14 

2.1 Dyadic analysis ...... ..... ... ..... ....... . ... 14 

2.2 Dyadic Green's Functions of Electric and Magnetic Type . ... ... 19 

2.3 Fields due to Electric and Magnetic Current Distributions ... ... 22 

V 



CONTENTS 
Salehi-Reyhani, S. M (2001) 

vi 

3 Head Model Using Spherical DGF 25 

3.1 Introduction .................. ........... ... 25 

3.2 Spherical Hansen Vector Wave Functions ..... ........ ... 27 

3.3 General Representation of Dyadic Green's Function .......... 
29 

3.3.1 Free Space DGF for an Electric Dipole in Unbounded Medium 29 

3.3.2 Scattering DGFs for an Electric Dipole in the Presence of 

Spherical Head Model ... ................ ... 31 

3.3.3 General Expression of Scattering DGFs for an Electric Dipole 

in the Presence of a Multilayered Spherical Head Model .... 35 

3.3.4 A Novel General Expression of Scattering DGFs for an Electric 

Dipole in the Presence of a Multilayered Spherical Head Model 38 

3.3.5 Electric DGF in the Antenna-Head Configuration ....... 40 

3.3.6 Magnetic DGF in the Antenna-Head Configuration 
...... 

41 

3.3.7 Electric and Magnetic Field at any Point in the Antenna-Head 

Configuration ........................... 
42 

3.4 Scattering DGF for a Perfectly Conducting Spherical Implant .... 
43 

3.5 Discussions and Comparison of General Representation ..... ... 
44 

3.5.1 The Isolated Singular Term in Ge in the Form of Delta Term 

-k 5(R-R) 
...... ..... ...... .... ...... 49 

3.5.2 The Limits of Summing Series Indices .............. 50 

3.5.3 The Range for R and R' ..... ...... ... .... ... 51 

3.5.4 The Range for z and z' ...... ..... ...... ..... 52 

3.5.5 The Integration of Delta Term in Field Equations ....... 52 

3.6 Concluding Remarks ...... ....... . ..... . .... ... 53 

4 Human Torso Model Using Cylindrical DGF 55 

4.1 Introduction . ... .... . .... . ....... . ..... ..... 55 

4.2 Vector Wave Functions for a Circular Cylinder of Finite Length ... 57 



CONTENTS vii 
Salehi-Reyhani, S. M (2001) 

4.3 Orthogonal Properties of Vector Wave Functions for a Circular Cylin- 

der of Finite Length 
..... ...... ............. ... 

61 

4.4 Formulation of the Problem .... .......... . ........ 63 

4.4.1 DGF for a finite Length Cylinder of Circular Cross-Section 
.. 

64 

4.4.2 Scattering DGFs for an Electric Dipole in the Presence of 

Cylindrical Torso Model i. e. a Dielectric Cylinder of Circular 

Cross-Section of Finite Length .................. 
67 

4.4.3 General Expression of Scattering DGFs for an Electric Dipole 

in the Presence of a Multilayered Cylindrical Torso Model 
.. 

72 

4.5 Magnetic DGF in the Antenna-Torso Configuration 
.... . ..... 

76 

4.6 Electric and Magnetic Field at any Point in the Configuration 
.... 76 

4.7 Concluding Remarks ........................... 78 

5 Electromagnetic DGF of an Implantable Medical Device Model 79 

5.1 Introduction ................................ 
79 

5.2 Vector Wave Functions for a Circular Cylinder of Finite Length ... 81 

5.3 Formulation of the Problem 
.... . ..... ... ..... ..... 

83 

5.3.1 DGF for a finite Length Cylinder of Circular Cross-Section .. 
83 

5.4 Scattering DGF for a Finite Conducting Cylinder of Circular Cross- 

Section 
................................... 85 

5.5 Magnetic DGF in the Antenna-Prosthesis Configuration 
.... ... 86 

5.6 Electric and Magnetic Field at any Point in the Configuration .... 86 

5.7 Concluding Remarks . ............. ..... ..... . .. 87 

6 Electromagnetic Modeling of Implantable Medical Devices Using 

Cylindrical DGFs 88 

6.1 Introduction . ....... ..... . ..... ... ... ....... 89 

6.2 Cylindrical Vector Wave Fiunctions 
. ........ ....... . .. 90 

6.3 DGF for an Infinite Length Cylinder of Circular Cross-Section .... 91 

6.4 DGF fora Semi-Infinite Length Cylinder of Circular Cross-Section .. 91 



CONTENTS 
Salehi-Reyhani, S. M (2001) 

vi" 

6.5 DGF for a Finite Length Cylinder of Circular Cross-Section 
.... . 92 

6.6 Magnetic DGF in the Antenna-Prosthesis Configuration 
...... . 93 

6.7 Electric and Magnetic Field at any Point in the Configuration 
.... 93 

6.8 Concluding Remarks 
........................... 94 

7 Insulated Implantable Medical Device Model Using Electromag- 

netic Dyadic Green's Function 95 

7.1 Introduction ............... ................ . 96 

7.2 Vector Wave Functions for a Circular Cylinder of Finite Length ... 97 

7.3 Formulation of the Problem ....... ......... .... ... 98 

7.3.1 DGF for a Finite Length Cylinder of Circular Cross-Section 
. 98 

7.3.2 Scattering DGF for a Coated Implant Model 
....... ... 99 

7.3.3 General Expression of Scattering DGFs for an Electric Dipole 

in the Presence of a Dielectrically Multi-Layered Coated Im- 

plant Model 
............................ 100 

7.4 Magnetic DGF in the Antenna-Prosthesis Configuration 
....... 102 

7.5 Electric and Magnetic Field at any Point in the Configuration 
.... 

102 

7.6 Concluding Remarks . ....... ... ..... ........... 103 

8 Far Field Electromagnetic Modeling of Implantable Medical De- 

vices Using Cylindrical DGFs 104 

8.1 Introduction ............. ........ ........ ... 105 

8.2 Vector Wave Functions for a Circular Cylinder of Finite Length ... 106 

8.3 Formulation of the Problem 
. ... ...... ............. 107 

8.3.1 DGF for a Finite Length Cylinder of Circular Cross-Section . 107 

8.3.2 Scattering DGF for a Finite Conducting Cylinder of Circular 

Cross-Section 
.... .... ...... .... . ..... ... 108 

8.3.3 Far Zone Field Expression of the Prosthesis Configuration .. 109 

8.4 Magnetic DGF in the Antenna-Prosthesis Configuration 
.... ... 110 

8.5 Electric and Magnetic Field at any Point in the Configuration . ... 111 



CONTENTS ix 
Salehi-Reyhani, S. M (2001) 

8.6 Concluding Remarks 
........................... 111 

9 Implanted Spherical Head Model for Numerical EMC Investiga- 

tion 113 

9.1 Introduction ..... ... .......... ........... .. . 114 

9.2 Relations between the Unit Vectors in Coordinate Systems 
..... . 116 

9.3 Vector Wave Functions for an Implanted Spherical Head Model .. . 118 

9.4 Formulation of the Problem . ........ ....... ...... . 119 

9.4.1 Free Space DGF for an Electric Dipole in Unbounded Medium 120 

9.4.2 Scattering DGFs for an Electric Dipole in the Presence of an 
Implanted Spherical Head Model .... ..... ...... . 121 

9.5 Magnetic DGF in a Configuration with an Embedded Prosthesis .. . 123 

9.6 Electric and Magnetic Field at any Point in the Configuration 
... . 124 

9.7 Concluding Remarks . ....... . .... . ......... . .. . 126 

10 Numerical Computations and Results 128 

10.1 Introduction ................................ 129 

10.2 Numerical Implementation and Validation 
. ... ........ ... 

131 

10.3 Concluding Remarks 
........................... 

139 

11 Conclusions 142 

11.1 Critical Appraisal of Research/DGF Method 
.......... . ... 143 

11.2 Concluding Remarks ........................... 143 

12 Further Work 150 

12.1 Performance Improvement 
........................ 150 

12.1.1 Hybridization of MoM-FDTD Hybrid with the DGF Method . 151 

12.1.2 The Development of an Antenna-less PCSs ........ ... 152 

12.2 EM Modeling of Moving/Rotating/Bouncing/Spinning Scatterers .. 154 

12.3 Electromagnetic DGF Modeling of Moving Spherical Scatterers 
.... 155 

12.4 Electromagnetic DGF for a Moving Human Torso Model . ...... 156 



CONTENTS 
Salehi-Reyhani, S. M (2001) 

X 

12.5 Various Research Ideas .............. ........ .... 156 

A Vector Wave Functions and Their Mutual Relationships 161 

A. 1 Spherical Vector Wave Functions .................... 161 

A. 2 Vector Wave Functions for a Circular Cylinder of Finite Length 
... 164 

B Electromagnetic Fields due to Electric and Magnetic Current Dis- 

tributions using Dyadic Green's Functions 168 

B. 1 Introduction .... . ..... .......... . ..... ..... . 169 

B. 2 Derivation of Electromagnetic Fields due to Electric and Magnetic 

Current Distributions using Dyadic Green's Functions 
... ...... 170 

B. 2.1 Method (1) 
................... . ...... .. 172 

B. 2.2 Method (2) 
............................ 174 

B. 3 Rectangular Vector Wave Functions ................... 176 

B. 4 General Representation of Dyadic Green's Function 
......... . 179 

B. 4.1 Free Space DGFs for Electric and Magnetic Dipoles in un- 

bounded medium ...... .... . .... .... ..... . 179 

B. 4.2 General Expression of Scattering DGFs ............. 182 

B. 5 Discussions and Comparison of General Representation 
....... . 185 

B. 5.1 The Electric and Magnetic Field Representations ...... . 186 

B. 5.2 The Isolated Singular Term in in the Form of Delta 

Termýbm(R - 
R) 

..... ....... ... . ..... ... 187 

B. 5.3 The Electric and Magnetic DGFs Representations . ..... . 188 

B. 5.4 The Range for z and z' ... .......... ... ..... . 188 

B. 6 Concluding Remarks ... ..... ....... . ..... . .... . 189 

C Selected Publications 190 

C. 1 Publications List .... . ..... ....... ...... ..... . 190 

C. 1.1 Journal Papers 
....... . .... ..... ... ... ... 190 

C. 1.2 Book Chapters 
.......................... 191 



CONTENTS 
Salehi-Reyhani, S. M (2001) 

xi 

C. 1.3 Invited Conference Papers ........ ........... . 191 

C. 1.4 Conference Papers ........................ 
191 

C. 1.5 Colloquia Papers ......................... 
192 

Glossary 193 

References 195 

Index 208 



List of Figures 

1 Test Position of a Dipole and Cross Section of Spherical Head Model 30 

2 Diagram of a Finite Cylindrical Human Torso ............. 
57 

3 Cross Section of a Human Torso Model . .... . ..... ... ... 
63 

4 Diagram of a Finite Circular Cylinder ......... . ..... ... 83 

5 Diagram of a Finite Circular Cylindrical Implant ..... . .. ... 90 

6 Diagram of a Finite Insulated Circular Implant Model ...... ... 97 

7 Diagram of a Finite Circular Cylinder ......... ...... ... 107 

8 Three Commonly Used Coordinate Systems ..... . ..... ... 116 

9 Diagram of an Implanted Head radiated by a Dipole ... ..... ... 120 

10 Specific Absorption Rates in the x-direction ... ........ ... 132 

11 Specific Absorption Rates in the y-direction . .... . ..... ... 133 

12 Specific Absorption Rates in the z-direction . .... ...... ... 134 

13 Total Electric Field versus Distance in the z-direction ..... . ... 135 

14 Power Absorption versus Distance inside the layered Head ... ... 136 

15 Relative Absorbed Power - Implant Length (1) in x-direction .. ... 138 

16 Relative Absorbed Power - Distance (b) in x-direction ...... ... 139 

17 Maximum SAR - Implant Length (1) in x-direction ....... ... 140 

18 Maximum SAR - Distance (b) in x-direction ...... ..... ... 141 

xii 



List of Tables 

1 Relations between the Unit Vectors in the Rectangular and the Cylin- 

drical Coordinate Systems ..... ....... . .......... . 117 

2 Relations between the Unit Vectors in the Rectangular and the Spher- 

ical Coordinate Systems 
......................... 118 

3 Constitutive parameters ......................... 131 

xiii 



Acknowledgements 

THE author wishes to express his sincere appreciation of the facilities placed 

at his disposal in the department of Electronic and Computer Engineering at 
BRUNEL University, as well as the helpful discussions with the project supervisor 

Dr. R. J. Glover to whom I am particularly grateful for his continual support and 

advice to tackle a variety of problems and investigations throughout the period of 

this project and preparation of this thesis. 

I would also like to take this opportunity to express my gratitude to my other 

supervisor Dr. M. Berwick for all his guidance and encouragement throughout the 

research. 
I am deeply grateful for the financial assistance given by Cochlear U. K Limited 

and EPSRC, and my sincere appreciation is extended to the support given by Dr. 

Barry Nevison of Cochlear U. K Limited. 

Most of my knowledge of electromagnetics has been gained from the study of 

the work of other people, and there are a great many. To these people I am indebted 

and regret that I have not had an opportunity to meet with them. 

I am also very grateful to my family for valuable help and providing me with 
financial support. 

Last, but by no means least, thanks are due to fellow colleagues and friends 

for many helpful suggestions and comments throughout the various stages of this 

project. 

xiv 



Nomenclature 

The symbols defined here are used throughout the dissertation. 

U7 b Denotes Vectors 

ai ith Element of Vector ii 

Ox A Small Change in x 

Sx A Small Disturbance in x 
dx Derivative in x 
E Sum 

fl Product 

f Integral 

ffs Surface (or Double) Contour Integral 
fff Volume (or Tripple) Integral 
V 

Absolute Value of 
Real Component 

Imaginary component 

00 Infinity 

= is Equal to 

is Not Equal to 

Approximately Equal to 

log Logarithm to the Base 10 

In Natural Logarithm 

,W Denote the Spherical Characteristic Function 

xv 



xvi 
Salehi-Reyhani, S. M (2001) 

'I (h) Denote the Cylindrical Characteristic Function 

B Magnetic Flux Density (weber/m2) (Teslas) 

c Conduction 

c Velocity of Light in Air 

c3 Current Moment of Dipole in any Direction 

c Current Moment of Dipole 

d Displacement 

D Electric Flux Density (Coulombs/m2) 

e Subscript Denoting Electic Type 

e Subscripts "e" Stand for Even Character of the Generating Functions 

E Subscript Identifies Electric Type 

E Superscript Identifies TM Waves 

E Electric Field Strength 

E. x-Component of Electric Field Strength 

Ev y-Component of Electric Field Strength 

E; z-Component of Electric Field Strength 

Ei"c Incident Electric Field Strength 

E, 
naz 

Positive Electric Field Strength Peak Value 

E, 
nin 

Negative Electric Field Strength Peak Value 

E'cat Scattered Electric Field Strength 

Etan Tangential Electric Field Strength 

Et°t Total Electric Field Strength 

E, (Ro) Correction Term of Electric Type 

f Field Point or Observer Layer 

f Superscript Identifies Centrifugal Reflection or Transmission 

F, m(cos 0) Identifies the Associated Legendre Functions of the First Kind with 
Order (n, m) 

F)T Transpose of Dyadic F 

G Denotes Dyadic Green's Function 



xvii 

Salehi-Reyhani, S. M (2001) 

00o - GeO (R, R) Free Space Dyadic Green's Function of Electric Type 

=Lfo - -I GQs (R, R) Scattering Dyadic Green's Function of Electric Type in Layered 

Media 
-Lfso - -1 Gm, (R, R) Scattering Dyadic Green's Function of Magnetic Type in Layered 

Media 

h Eigenvalues 

hnl) (kR) Spherical Hankel Function of the First Kind 

H1 (77, r) Cylindrical Hankel Function of the First Kind 

H Superscript Identifies TE Waves 

H Magnetic Field Strength 

H. x-Component of Magnetic Field Strength 

Hy y-Component of Magnetic Field Strength 

H. z-Component of Magnetic Field Strength 

Hm0c Incident Magnetic Field Strength 

H3c0t Scattered Magnetic Field Strength 

Ht°t Total Magnetic Field Strength 

i Integer 1,2,3 

i Unit Vector in the x-Direction 

I Idem Factor 

j Imaginary Numbers i. e vi 

j Integer 1,2,3 

j�(nR) Spherical Bessel Functions of the Order n to Represent 

Both Out-Going and In-Coming Waves 

in(Ar) Cylindrical Bessel Functions of the Order n to Represent 

Both Out-Going and In-Coming Waves 

j Unit Vector in the y-Direction 

J Current Density (C/Sm2) (A/m2) 
k w(/2 6o)'/2 =w 

k Unit Vector in the z-Direction 



xviii 

Salehi-Reyhani, S. M (2001) 

K Separation Constant 

I Length of the Torso/Implant 

L Last Inner Layer 

E",, (k) Nonsolenoidal (Irrotational or Lamellar) Spherical Vector Wave 

Function 

Leý, A(h) Nonsolenoidal (Irrotational or Lamellar) Cylindrical Vector Wave 

Function 
M"n(k) Solenoidal (Rotational/Transverse) Spherical Vector Wave Function 

n Integer 0,1,2,3, .... 
Ný�n(k) Solenoidal (Rotational/Transverse) Spherical Vector Wave Function 

o Subscripts "o" Stand for Odd Character of the Generating Functions 

o Subscript/Superscript Identifies Open Space 

P Superscript Identifies Centripetal Reflection or Transmission 

P Power 

P bi Power Absorbed 

P&I Real Power Delivered to the Antenna 

gad Power Radiated 

P, t 
Total Power 

P 
�(h) 

Solenoidal (Rotational/Transverse) Cylindrical Vector Wave Function 

PVot Principal Value 

q Integer 0,1,2,3, .... 
Q 

,.. 
(h) Solenoidal (Rotational/Transverse) Cylindrical Vector Wave Function 

R Radius of the Sphere 

R Reflection Coefficient 

R Unit Vector in Spherical Coordinate 

RR Spherical Dyad 

r Radius of the Cylinder 

r Unit Vector in Cylindrical Coordinate 

ff Cylindrical Dyad 



xix 

Salehi-Reyhani, S. M (2001) 

s Scattering 

T Transpose of a Matrix, Vector 

T Transmission Coefficient 

Ta Dyadic Spatial Operator 

x x-Component of Rectangular Coordinate System 

x Unit Vector in Rectangular Coordinate System 

y y-Component of Rectangular Coordinate System 

Unit Vector in Rectangular Coordinate System 

Y,, a(krr) Neumann Function 

z z-Component of Rectangular Coordinate System 

z Unit Vector in Rectangular Coordinate System 

6f The Free Space Kronecker Delta Function 

bf The Last Layer Kronecker Delta Function 

ofl Kronecker Delta Function where the Implant is Located 

0 Operator which Exploits the Symmetry of the DGF Expansion 

b(R - 
R) Weighted Dirac Delta Function in Three Dimensions 

- #d(R-R) Isolated Singular Term 

Vx [I8e (R -R )] Source Function 

Greek Symbols 

a Radius 

E Dielectric Constant (Permittivity) (Farads/meter) 

eo Permittivity of Free Space (8.854 x 10-12 Farads/meter) 

0 Angle in Spherical Coordinate 

9 Unit Vector in Spherical Coordinate 

K An Undetermined Wave Number 

A Cylindrical Eigenvalue 

A Wave-length 



Salehi-Reyhani, S. M (2001) 

A Cylindrical Eigenvalue 

µ Permeability (Henrys/meter) 

A Permeability of Free Space (4ir x 10-1 Henrys/meter) 

7r 3.14 

p Mass Density (kgr/m3) (gr/cm3) 

a Medium Conductivity (mho/m) 

Angle in Spherical/Cylindrical Coordinate 

Unit Vector in Cylindrical Coordinate 

Denote a Characteristic Function 

w Discrete Time Physical Frequency Variable 

V Scalar to Vector Operator (Del) (Grad) 

V. Divergence (Vector to scalar) Operator (Div) 

Vx Vector to Vector Operator (Curl) 

xx 



Chapter 1 

Introduction 

COMPUTATIONAL electromagnetics (CEM) may be broadly defined as that 

branch of electromagnetics which intrinsically and routinely involves using a 

computer to obtain numerical results. With the evolutionary development of CEM 

during the past 30-plus years, two basic lines of improvement can be identified. 

One is due to advances taking place in computer hardware and software, providing 

tools of steadily growing power with little effort on the part of the electromagnetics 

community per se. The other line of improvement originates from within the electro- 

magnetics discipline itself, where increasing awareness and utilization of numerical 

techniques has provided an expanding base of capability for solving problems in elec- 

tromagnetics. The result has been to add the third tool of computational methods 

in electromagnetic (EM) specifically, and in science and engineering generally, to 

the two classical tools of experimental observation and mathematical analysis. The 

goal of this research is to create a model for calculating EM field in layered medium 

with application to biological implants. 

1.1 Background and Motivation 

Exposure to electromagnetic fields is not a new phenomenon. However, during the 

20th century environmental exposure to man-made electromagnetic fields has been 

steadily increasing as growing electricity demand, ever-advancing technologies and 

1 
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changes in social behaviour have created more and more artificial sources. Everyone 

is exposed to a complex mix of weak electric and magnetic fields, both at home and at 

work, from the generation and transmission of electricity, domestic appliances and in- 

dustrial equipment, to telecommunications and broadcasting. Computer techniques 

have revolutionized the way in which EM problems are analyzed. EM engineers rely 

heavily on computer methods to analyze, for example, complex antenna-something 

systems, planar microwave devices, EMC/EMI problems, etc. A number of different 

numerical techniques for solving these EM problems are available. They are mostly 

based on full-wave analysis, either in the time or frequency domains, where one or 

two differential equations plus problem-specific boundary conditions are of interest. 

Each numerical technique is well suited for the analysis of a particular class of EM 

problem. 

EM engineers must be very careful in applying these pure numerical techniques. 
Although they are powerful and can be applied to a variety of EM problems, their 

output may frequently mislead or be misinterpreted. As long as there are no nu- 

merical errors such as overflow or under} low, computers always give numbers as 

solutions. The problem is whether these numbers correspond to real physics of the 

problem at hand. EM engineers must always be aware of the assumptions made in 

the numerical technique that is being used. Under what conditions is this technique 

derived? What kind of a problem or problems can be handled via this technique? 

Are there any parametric limitations? What are the accuracy and numerical error 

limits? Without knowing the answers of these questions it is very dangerous to use 

these techniques. 

One of the most powerful techniques in the frequency domain is the method 

of moments (MoM) [1]. The primary formulation of MoM is an integral equation 

obtained through the use of Green's functions. The technique is based on solving 

complex integral equations by reducing them to a system of linear equations and on 

applying method of moments (weighted residuals). 
Mobile phone-human interaction is a current EM research topic [2] - [5]. It is 
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important from both human health and antenna performance points of view. It 

should be noted that, biomedical modeling via these techniques is very difficult. 

Only specific absorption rate (SAR) of human tissues can be calculated [5]. SAR is 

a measure of EM energy converted into heat in tissues. Discrete tissues are modeled 

with their electrical parameters (o, and e, ), which are supplied by EM measurements. 
Different EM groups use quite different values. There are also discrepancies among 

the limits of SAR values declared to be safe by the international health organizations. 

Simulation results must therefore be carefully analyzed when human health is the 

concern. 

Although limited with only idealized geometries, analytical solutions are very 

important to understand the physics behind the problem at hand. It is only then 

possible to use pure numerical techniques in analyzing complex EM problems. 
The state-of-the-art in numerical modeling is progressing rapidly. On the other 

hand, practical EM problems are also becoming more and more complicated. It is, 

therefore, essential that EM engineers should 

" have strong analytical background 

" use numerical as well as analytical techniques at the same time. 

Finally, it may be concluded that the trend in numerical simulation techniques is 

towards using some hybrid forms of analytical approximate and numerical methods. 
As advances in numerical techniques for solutions to Maxwell's equations acceler- 

ate, larger and more complex EM problems are becoming tractable at an astounding 

rate. The science of computational electromagnetics (CEM) gains inertia with each 

passing day. In this exciting time, new and more efficient algorithms are being de- 

veloped that augment the advances in computational facilities promising a bright 

future for CEM research. 

The maturing field of CEM research has sprouted various branches of research. 
The FDTD method provides a simple and robust method for simulating the prop- 

agation of EM radiation through complex media, e. g., human tissue. Although the 
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FDTD method performs superbly for such propagation simulations, it is not very 

well suited for modeling complex metallic structures, e. g., antennas. 
Conversely, a distinct branch of CEM research, MoM, is superior for modeling 

complex metallic structures and is not very well suited for propagation through 

complex media, such as human tissue. It is therefore paramount that a hybrid 

MoM/FDTD/DGF for simulating the interaction of antennas with humans should 

be researched. 

An important problem in the study of the biological effects of microwave radia- 

tion is the prediction of the induced temperatures within irradiated, heat sensitive 

human organs. Animal experimentation has indicated that microwave heating can 

cause tissue damage. However, because of the general dissimilarity of animal and 

human organs, such work can not be exactly related to human exposure to mi- 

crowaves. Direct human experimentation is not possible, in most instances, because 

of the possibility of injury to the test subject. 

The recent efforts aimed at improving available personal communications ser- 

vices and allegedly their health hazards have generated an elevated interest in the 

performance of compact antenna structures mounted on hand-held devices. The 

characterization of such antennas is dependent upon the development of simulation 

tools which can accurately model general topologies including wires, dielectrics, 

conductors, and lumped elements. An important class of simulation tools which 

can accommodate these modeling requirements are derived dyadic Green's function 

(DGF) of Maxwell's equations. In this thesis, the formulation and application of 

this technique is investigated. First, the DGF for spherical head/cylindrical body 

is implemented to allow investigation of head/torso-antenna model. The resulting 

analytical tools are applied to determine the SAR when in proximity to antennas. 
The power absorption characteristics, SAR, within tissue are studied, and it is de- 

termined that approximately 48 to 68% of the power delivered to the antenna is 

absorbed in the human head. 

The increasing use of electromagnetic (EM) equipment and devices, for applica- 
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tions such as radar communications, Nuclear Magnetic Resonance (NMR) imaging, 

radio frequency (RF) heaters and sealers, biomedical applications such as shortwave 

diathermy, hyperthermia devices for cancer therapy, etc., is causing the exposure 

of an increasing number of people to far- and near-field radiation. This has caused 

growing concern about possible health hazards produced by EM radiation. The 

concern has led to increased research aimed at identifying possible hazards due to 

EM radiation. 

An important aspect of the application of this research is the determination of 

the deposition of EM energy in the human head/body when it is subjected to EM 

radiation. 

The deposition of EM energy in the human head/body is usually quantified by 

the mass-normalized rate of energy absorption or the specific absorption rate (SAR), 

that includes the whole-body-averaged SAR, local SAR, etc. Whole-head/body- 

averaged SAR is the total energy absorbed per unit time, divided by the total mass 

of the body. Local SAR, on the other hand, is a point relationship describing the 

time rate of change of the energy absorbed in a differential volume of the absorbing 

body. The SI unit of SAR is watts per kilogram (W/kg). 

In the past most of the researchers used frequency-domain techniques, such as 

the method of moments (MoM) [1], to calculate SARs within human models. Chen 

and Guru [6] used this method for a human model composed of 124 identical size 

cubical cells. However, the model was homogeneous. Hagmann, Gandhi, and Durney 

[7] also used the MoM on a more realistically shaped model. It was composed of 
180 cells, allowed more freedom in defining the shape, and each cell was defined by 

fraction of 10 different tissue types. This model was used to calculate the average 
SAR of a human standing on a ground plane [8], and to study the effects of head 

resonance [9]. Borup used an improved MoM method and a supercomputer (CRAY- 

XMP) to calculate the SAR distribution in a 5600-cell inhomogeneous human model, 
but each run needs about 25 minutes of CPU time, a considerable expense. In 

general, the MoM method derives a set of linear equations for either field variables 
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or field expansion coefficients, and then solves the linear system with a suitable 

matrix-inversion scheme. 
Also the use of numerical techniques for higher resolution models has been hin- 

dered by the fact that its need for computer resources increases rapidly with the 

number of cells used to model the body. Typically, computer storage requirements 

increase on the order of (3N)2 and computation time increase as (3N)3, where N is 

the number of cells. For the FFT-based MoM, the time requirements are reduced 

to N In N [10]. 

A highly promising numerical method is the Finite-Difference Time-Domain 

(FDTD) method which is a direct implementation of the time-dependent Maxwell's 

curl equations. This method treats the irradiation of the scatterer as an initial 

value problem. At t=0, a source of irradiation at frequency f is assumed to be 

turned on. The propagation of waves from this source is simulated by solving a 

finite-difference analog of the time-dependent Maxwell's equations on a lattice of 

points, including the scatterer. Time stepping is continued until the sinusoidal 

steady state is achieved at each point. The field envelope, or maximum absolute 

value, during the final half-wave cycle of time steps is recorded by the peak detectors 

as the magnitude of the phasor of the steady-state field. This method has two 

advantages relative to the frequency-domain approaches. First, and most important, 

its computer memory and running CPU time requirement is not proportional to 

(3N)2 and (3N)3, respectively, but increase linearly with 3N, second, it is simple to 

implement for complicated scatterers, because arbitrary dielectric parameters may 

be assigned to each lattice point. The main advantages of such a method are that 

it can be easily applied to conducting obstacles and/or to dielectric and magnetic 

obstacles, which can be either homogeneous or inhomogeneous. The obstacles can 

be arbitrary shape. Furthermore, the FDTD technique provide a very efficient way 

of solving Maxwell's equations. 

The FDTD method was first proposed by Yee [11] and later developed by Taflove 

[12] - [14], Holland [15], and Kunz and Lee [16]. Recently, it has been extended 
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for calculations of the distribution of electromagnetic fields in a human model for 

incident plane-wave at 100 MHz and 350 MHz [17,18]. 

Analytical methods generally require less computation than numerical tech- 

niques. That makes them very powerful EM analysis tools. 

This thesis presents a unified macroscopic theory of electromagnetic waves in 

accordance with the principle of DGFs from the point of view of the DGF form 

of Maxwell's equations and constitutive relations. We attempt to accomplish this 

extremely broad task by introducing only the detail needed to illustrate the central 
ideas involved and providing an alternative answer to CEM of biological modeling. 

1.2 Organization of Thesis 

In the remainder of this chapter we offer a brief outline of the rest of this thesis, and 

give a short (but important) remark on notation. The organization of this thesis is 

as follows: 

Chapter 1, gives a brief introduction to the work undertaken in this thesis and 
how it is organized. Original contribution of this work is also itemized in this chapter. 

Although each chapter, in itself, outlines the problems addressed by its contents, 

overall justifications for the direction taken during the author's PhD study are also 

contained in this chapter. An overview of computational electromagnetics and a 

few of the available popular numerical modeling techniques have been presented 

in chapter 1. Methods included in this review are categorized in terms of time or 

frequency domain FDTD, TLM and MoM techniques. 

Chapter 2, discusses DGF, a mathematical and conceptual method applicable 
in the analysis of the electromagnetic fields. 

Chapter 3 has been published as a paper in the Journal of Electromagnetics, 

2000, and its concise version was presented in a Colloquium in IEE Savoy Place. It 

introduces a model for human head or any organ resembling an sphere using spher- 
ical DGF. The principle objectives in this chapter are three-fold. An exact general 
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expression of dyadic Green's function (DGF) for the problem of electromagnetic 

radiation from a source of excitation in the presence of a layered spherical dielectric 

head model, which is valid everywhere, including the source region was outlined. 

The medium is assumed to be homogeneous, isotropic, linear, non-dispersive and 

stationary. The DGFs obtained by employing the method of scattering superposi- 

tion. Furthermore, the question of incompleteness of previously related studies with 

regard to the E and H modes in the source region were discussed. We consider that 

one should explicitly extract the singularity term for the expansion to be valid both 

inside and outside the source region. This follows because the primary interest can 

be the development of a formulation to evaluate the electromagnetic fields away from 

the source. Also, a compact alternative general representation has been developed 

to determine the electric and magnetic type DGFs giving clarity as well as more 

efficient and economical computation in terms of speed, time and memory. 

Chapter 4, further investigates human torso model using cylindrical DGF. An- 

tenna radiation pattern and other characteristics are significantly altered by the 

presence of the human body. This chapter aims to express a general representa- 

tion of dyadic Green's function (DGF) for the problem of electromagnetic radiation 

from a source of excitation in the presence of a human torso model (multi-layered 

homogeneous lossy dielectric circular cylinder of finite length) as well as any part 

of the body assuming the shape of a cylinder. The whole structure is assumed to 

be uniform along the propagation direction. Chapter 4 has been submitted to Elec- 

tromagnetic Journal for publication, and a short version was presented in the 11th 

International Conference on EMC (IEE EMC York 99) University of York, UK. 

Chapter 5, (presented in the 3rd IMACS/IEEE International Multiconference 

on: Circuits, Systems, Communications and Computers (CSCC'99) (IMACS/IEEE 

CSCC'99), Athens, Greece), investigates the extension of the cylindrical DGF method 

to electromagnetic DGF of an implantable medical device model. Comprehensive 

understanding of EM interactions between implanted human and modern personal 

communication antennas is essential for the hand held transceiver design. Since the 
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human head is usually located in the reactive or near-field region of the antenna, the 

performance of an antenna may be severely affected by the presence of conducting 

medical devices/prostheses in the head. Also, significant portion of the antenna de- 

livered power may be absorbed in the head. The principle objective of this chapter 

is to outline a general expression of dyadic Green's function (DGF) for the problem 

of electromagnetic radiation from a source of excitation in the presence of a finite 

length of perfectly conducting circular cylinder of any size as well as of resonant 

length, which is valid everywhere, including the source region. The whole structure 

is assumed to be uniform along the propagation direction. The DGFs are obtained 

by employing the method of scattering superposition. 

Chapter 6, discusses an alternative formulation of electromagnetic modeling 

of implantable medical devices using cylindrical DGFs. GSM (global system for 

mobile communication) and PCS's (personal communication services) can interfere 

with implantable medical devices/prostheses particularly for systems using TDMA 

(time-division multiple access) and cause possible malfunction. Also the perfor- 

mance of an antenna is significantly altered by the presence of conducting medical 

devices/prostheses. The objective of this chapter is to propose an alternative gen- 

eral expression of dyadic Green's function (DGF) for the problem of electromagnetic 

radiation from a source of excitation in the presence of a finite length "l" of perfectly 

conducting thin circular cylinder of radius "a" concentric along z-axis of any size as 

well as of resonant length, which is valid everywhere, including the source region. 

The whole structure is assumed to be uniform along the propagation direction. The 

advantage of the proposed analysis is its simplicity and efficiency in computation. 
This chapter was accepted for publication in 7th International Symposium on Recent 

Advances in Microwave Technology ISRAMT 99/IEEE, Malaga, Spain. 

Chapter 7, develops an insulated implantable medical device model using elec- 

tromagnetic dyadic Green's function. Modern wireless telecommunication devices 

(GSM Mobile system and PCS's) can interfere with implantable medical devices or 

prostheses and cause possible malfunction. Also the performance of an antenna is 
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significantly altered by the presence of these conducting medical devices/prostheses. 

Dielectric-coated medical devices are preferable over bare ones for use in a human 

body. The reason is that the often undesirable contact (hyperthermic/heating effect) 

between the prostheses and the surrounding tissue is avoided and, more importantly, 

the radiation efficiency of the antenna can be improved by insulating all or part of the 

medical devices surface. The principle objective of this chapter is to outline a gen- 

eral expression of dyadic Green's function (DGF) for the problem of electromagnetic 

radiation from a source of excitation in the presence of a finite length of insulated 

perfectly conducting circular cylinder of any size as well as of resonant length, which 

is valid everywhere, including the source region. The whole structure is assumed to 

be uniform along the propagation direction. The DGFs are obtained by employing 

the method of scattering superposition. The advantage of the proposed analysis is 

its simplicity and efficiency in computation. Chapter 7 was presented in AP2000 

Millennium Conference on Antennas and Propagation in Davos, Switzerland. 

Chapter 8 was presented in the International Conference on EMC (EMC York 

2000) University of York, UK. It deals with the far field electromagnetic modeling 

of implantable medical devices using cylindrical DGFs. Electromagnetic pollution 

is increasing due to the massive increase in both mobile and fixed electronic equip- 

ments, whilst at the same time, industry is producing devices with ever increasing 

clock speeds. Modern wireless telecommunication devices (GSM Mobile system) can 

interfere with implantable medical devices/prostheses and cause possible malfunc- 

tion. Also the performance of an antenna is significantly altered by the presence of 

conducting medical devices/prostheses. Hence the need to consider electromagnetic 

compatibility (EMC) becomes ever more important. The principle objective of this 

chapter is to outline a far field general expression of dyadic Green's function (DGF) 

for the problem of electromagnetic radiation from a source of excitation in the pres- 

ence of a finite length of perfectly conducting circular cylinder of any size as well as 

of resonant length, which is valid everywhere, including the source region. The whole 

structure is assumed to be uniform along the propagation direction. The DGFs are 
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obtained by employing the eigenfunction expansion (EFE) and the method of scat- 

tering superposition. The advantage of the proposed analysis is its simplicity and 

efficiency in computation. 

Chapter 9 will be submitted as a journal paper to IEEE Transaction on Mi- 

crowave Theory and Techniques. In this chapter we have dealt with the implanted 

spherical head model for numerical EMC investigation. Recent years have seen 

an unprecedented increase in the number and diversity of sources of electric and 

magnetic fields (EMF) used for individual, industrial and commercial purposes. 

Such sources include television, radio, computers, mobile cellular phones, microwave 

ovens, radars and equipment used in industry, medicine and commerce. 

All these technologies have made our life richer and easier. Modern society is 

inconceivable without computers, television and radio. Mobile phones have greatly 

enhanced the ability of individuals to communicate with each other and have facil- 

itated the dispatch of emergency medical and police aid to persons in both urban 

and rural environments. Radars make air traveling much safer. 

At the same time, these technologies have brought with them concerns about 

possible health risks associated with their use. Such concerns have been raised about 

the safety of cellular mobile telephones, electric power lines and police speed-control 

"radar guns". Scientific reports have suggested that exposure to electromagnetic 

fields emitted from these devices could have adverse health effects, such as cancer, 

reduced fertility, memory loss, and adverse changes in the behaviour and develop- 

ment of children. However, the actual level of health risk is not known, although 

for certain types of EMF, at levels found in the community, it may be very low or 

non-existent. 

These technologies can interfere with implantable medical devices/prostheses 

and cause possible malfunction. Also antenna radiation pattern and other charac- 

teristics are significantly altered by the presence of the composite dielectric entities 

such as the human body. This chapter aims to deal with the scattering of a plane 

electromagnetic wave from a perfectly conducting or dielectric spherical/cylindrical 
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implant of electrically small radius (of resonant length), embedded eccentrically into 

a dielectric spherical head model. The method of dyadic Green's function (DGF) for 

spherical vector wave functions is used. Analytical expressions for the scattered fields 

of both cylindrical and spherical implants embedded in head model are obtained. 

The whole structure is assumed to be uniform along the propagation direction. 

Numerical computations and results are discussed in chapter 10. 

Finally, the thesis is concluded in chapter 11, which summarizes the impor- 

tant results of the work presented, before suggestions for further work are given in 

chapter 12. 

1.3 Contributions of Thesis 

Original contributions presented within this thesis that have been all published in 

journals or presented at conferences include; 

1. Electromagnetic Dyadic Green's Function for a Multi-layered Homogeneous 

Lossy Dielectric Spherical Head Model for Numerical EMC Investigation. 

2. Electromagnetic Dyadic Green's Function for a Human Torso Model for Nu- 

merical EMC Investigation. 

3. Electromagnetic Dyadic Green's Function of an Implantable Medical Device 

Model for Numerical EMC Investigation. 

4. An alternative Electromagnetic Modeling of Implantable Medical Devices Us- 

ing Cylindrical DGFs. 

5. Insulated Implantable Medical Device Model Using Electromagnetic Dyadic 

Green's Function. 

6. Far Field Electromagnetic Modeling of Implantable Medical Devices Using 

Cylindrical DGFs. 
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7. Implanted Spherical Head Model for Numerical EMC Investigation. 

8. Electromagnetic Fields due to Electric and Magnetic Current Distributions us- 

ing Dyadic Green's Functions. This contribution, although not directly related 

to this project was investigated while working on the analytical expressions. 

This is included in Appendix B. 

This research presents a new approach away from simulation work to the study 

of exact computation of EM fields in biological systems. Its salient characteristics 

are its simplicity, the saving in memory and CPU computational time and speed. 

1.4 A Remark about Notation 

Notation, where not defined explicitely, is standard (for example, we use the tradi- 

tional symbols i, j, and k, for the unit vectors in the x, y, and z directions). Note 

that we use ff to denote the cylindrical dyad, and RR to represent the spherical 

dyad. Also, the letter w only ever denotes the discrete time physical frequency 

variable 



Chapter 2 

Dyadic Green's Functions 

THE present chapter discusses a mathematical and conceptual method appli- 

cable in the analysis of the electromagnetic fields. The leading tone is dyadic 

algebra. It is in the form originated by J. Willard Gibbs (the American physicist 

called the American Maxwell) more than one hundred years ago. Dyadic algebra 

is seen especially as an aid in solving EM problems involving different linear me- 

dia. In various chapters of this thesis, Green dyadics for different kind of media are 

discussed and a systematic method for their solution is given. 

Dyadics are linear functions of vectors. In real vector space they can be visu- 

alized through their operation on vectors, which for real vectors consists of turning 

and stretching the vector arrow. In complex vector space they correspondingly ro- 

tate and deform ellipses. Dyadic notation was introduced by Gibbs in 1884, Tai [19] 

or Collin [21]. 

2.1 Dyadic analysis 

In this section we will introduce some essential formulae in dyadic analysis, which 

is an extension of vector analysis to a higher level. 

A vector or a vector function F expressed in a Cartesian system is defined by 

Fix; (2.1) 

14 
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where F with i= (1,2,3) denotes the three scalar components of F and i; denotes 

the three unit vectors in the direction of x; . 
We use x; throughout this section to 

denote the Cartesian variables (x, y, z), so the summation sign can be applied to F 

as in (2.1). From now on, it is understood that the summation index always runs 

from 1 to 3 unless specified otherwise. 

Now we consider three distinct vector functions, denoted by 

F; jx;, j= (1,2,3); (2.2) 

then a dyadic or dyadic function, denoted by F, can be formed and is defined by 

F= Fij, (2.3) 

where F with j= (1,2,3) are designated as the three vector components of F. 

In (2.3) the positioning of F and x, must be kept in that order. By substituting (2.2) 

into (2.3) we can write F in the form 

F-ýýFiji, xj (2.4) 

where F, are designated as the nine scalar components of 7 and the doublet i% as 

the nine unit dyadics or dyads, each being formed by a pair of unit vectors in that 

order, which are not commutative; that is, 

ýý ý xýý. (2.5) 

The transpose of a dyadic F expressed by (2.3) will be denoted by (F)T and is 

defined by 

T 
(F) _E tj F= E F. x. £ _EE Fx. x.. (2.6) 

i+jii 

Comparing (2.6) with (2.2) into (2.3) we see that the positions of F and I, in F 

has been interchanged, or the scalar component F in F has been replaced by F, in 

(F)T; hence the nomenclature "transpose". 
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A symmetrical dyadic, denoted by F,, is characterized by F, = F,; hence 

(F, )T = F,. (2.7) 

A symmetrical dyadic therefore has only six distinct scalar components, although it 

still has nine terms or nine dyadic components. 
An anti-symmetrical dyadic, designated by Fa, is characterized by F,. j = -F;; 

hence 1=0 for i= (1,2,3) and 

(, )T = -F,. (2.8) 

An anti-symmetric dyadic, therefore has only three distinct scalar components if 

we do not consider the negative sign as being distinct, and it has six non-vanishing 
dyadic components. 

One special case of a symmetric dyadic is described by 

F,.. =1, i=j 
(2.9) 

Fj = 0, i#j 

or 

F; _ ij, 
(2.10) 

where öý denotes the Kronecker delta function. This dyadic is denoted by I, and it 

is called an idem factor. Its explicit expression is 

I= ýýý. (2.11) 

A dyadic by itself, like a matrix, has no algebraic property. It plays the role 

of an operator when certain products are formed. In particular, we can define two 

scalar products between a vector ä and a dyadic F. 

1. The anterior scalar product, denoted by ä"F, is defined by 

F-ý(aýF; )ý; EEa; F; x;, (2.12) 
ýiý 

which is a vector. 
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2. The posterior scalar product, distinguished by F"ä, is defined by 

i3 (2.13) 
= ajFixj, 

j 

which is also a vector. 

In general, the above scalar products are not equal unless F is a symmetrical dyadic. 

For any dyadic we have the relation 

ä (F)T =Fä. (2.14) 

This is an important identity in dyadic analysis. Consequently as a result of (2.7) 

and (2.8), one deducts that 

äF, =F, ä. (2.15) 

ä"F. = -F, " ä. (2.16) 

If a symmetric dyadic F. = I, the idem factor, then 

ä"I=I"ä=ä. (2.17) 

This is the reason why I is designated as the idem factor. 

There are also two vector products between a vector ä and a dyadic F. 

1. The anterior vector product, denoted by äxF, is defined by 

3 

xF E(ä xF )x ; (2.18) 
j=l 

2. The posterior vector product, indicated by äxF, is defined by 

3 

FxEF, (x, x ä). (2.19) 
j=l 



2.1. Dyadic analysis 
Salehi-Reyhani, S. M (2001) 

18 

These vector products are both dyadics, and there is no relation similar to (2.14) 

for these two products. 
In the following, we draw attention to some definitions and formulae involving 

the differentiation and the integration of dyadic functions. 

The divergence of a dyadic function, denoted by V-F, is defined by 

aF. _ F=ý(ý"F)x =ýý axxi 
(2.20) 

which is a vector function. 

The curl of a dyadic function, denoted by VxF, is defined by 

x Fý)ýj = E(VF;, x xs)x,, (2.21) 

where we have used the vector identity 

Vx(1 xx, )=VF�xx, (2.22) 

to derive (2.21), which is a dyadic function. In addition to these two functions, we 

will encounter the gradient of a vector function, denoted by OF, which is defined 

by 

ýF = E(, Vp = j, x, (2.23) 

which is a dyadic. 

When a dyadic function is constructed with an idem factor I and a scalar func- 

tion f in the form 

F=. f1, 

then 

(2.24) 

F=o"(fI)=ýo"(f )x; =ßä1 (2.25) 

vf 
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and 

V xF=Vx(fI)=EV x(fi)x; 
'_ (2.26) 

=E(Vf xx)x=Vf xI, 
i 

which is a dyadic. 

2.2 Dyadic Green's Functions of Electric and Magnetic Type 

This section introduces the concept of dyadic Green's functions in electromagnetic 

theory. In order to introduce the concept of dyadic Green's functions in electromag- 

netic theory in a coherent manner, Maxwell's equations have to be elevated to a 

dyadic form. We assume three sets of harmonically oscillating fields with the same 

frequency and in the same environment, which are produced by three distinct cur- 

rent distributions Jj with j= (1,2,3). Maxwell's equations for these fields can then 

be written in the form 

VxE. ' 
(R) = iwµ0HH, (R) (2.27) 

VxH. i 
(R) = J. i 

(R) - iweoE", (R) (2.28) 

V" (2.29) 

V. (¬0E.; )=P (2.30) 

0" (µoHýý) =0 (2.31) 

The medium under consideration is assumed to be air. For other isotropic homoge- 

neous media we simply replace the constants µ, and e by p and e. We now change 

the notation (x, y, z) to (x� y� z3). By juxtaposing a unit vector x, at the posterior 

position of (2.27) to (2.31) and summing the three sets of equations with respect to 

j, we obtain Maxwell's equations in dyadic form; namely, 

Vx EQ (R) = icvp. (R) (2.32) 

VxH. (R) = Jý (R) - iwe0E. (R) (2.33) 
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0"J. = iw p (2.34) 

*"(E. Er. ) (2.35) 

V"(µ, H. )=0 (2.36) 

E. = F'j xs = A: 
j x; ii (2.37) 

7 
.7 

H. = ii = Aºj xi ii (2.38) 

J. = J. 1x1 J«jiiii (2.39) 
jj 

Pý _ p; ii (2.40) 

According to the nomenclature of dyadic analysis in the previous section, a dyadic 

function like E, has three vector components, E., with j= (1,2,3), and the vector 

charge density function p, contains three distinct scalar charge distributions. p. 

does not have the normal physical meaning of a vector quantity. For example, the 

magnitude of p, does not have any physical significance. 

Let us consider the three current distributions which correspond to that of three 

infinitesimal electric dipoles located at R=R and oriented in the direction of 

to (117 927 23); then 

J, = c18(R -R )I1, j= (1,2,3), (2.41) 

where c, denotes the current moment of the dipoles; that is, 

$JJ1dv 
= cý x, (2.42) 

We now normalize the current moment such that 

iwµoc1 = 1; (2.43) 

then 

iwµ, Jeý = iwµoc1 S(R -R )xý 
(2.44) 

=« -R)1 
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Under this condition, we introduce a set of new notations for the various dyadic 

functions. They are 

E= Ge (2.45) 

iw/L0 = Gm (2.46) 

iwµaJý = Ia(R - 
R) (2.47) 

Pý= 
10"J. 

= "[IÖ(R-R)ý iw j2--: V 
µ(2.48) 

_- 
k2 Vb(R -R) 

where 

w 
c 

c= (/y, e, ) = velocity of light in air 

The expression for p in the form of the gradient of a delta function is a consequence 

of (2.25). With this change of notation, equations (2.32)-(2.36) can be written in 

the form 

VX? e �+ (2.49) 

Vx Gm = 7ö(R - 
R) + k2Ge (2.50) 

V G. = --V - IJ(R -R )l 
(2.51) 

=-k2-R) vd(R 

V- Gm=0. (2.52) 
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The relation between J,, and p is described by (2.34). The function of Ge so defined 

is designed as the DGF of electric type or electric DGF, and the function G�a is 

designated as the DGF of magnetic type or the magnetic DGF. If one writes these 

two functions in the form 
Ge = GGJ xJ (2.53) 

Gm. _ G, 
nj 

ij (2.54) 

then G.; and Gm, denote, respectively, the vector Green function of the electric type 

and the vector Green function of the magnetic type. Physically, G., represents the 

electric field due to an infinitesimal electric dipole oriented in the direction of x, and 

R=9, that is, 

G'e = G'e(R - 
R) (2.55) 

Gm = Gm(R -RJ (2.56 

where R denotes the position vector of the field point and R that of the point source. 

2.3 Fields due to Electric and Magnetic Current Distribu- 

tions 

In this section we draw attention to electromagnetic fields due to electric and mag- 

netic current distributions using dyadic Green's functions. The general relation for 

(Ef) and (Hf ) for the case of two types of current sources such as J. and J,. radiating 
in an isotropic, homogeneous medium is quite simple and may be usefully applied 

to various problems of propagation in media. 

Here, the time-harmonic convention of e-" is used. Consider electric (R. ) 

and magnetic (H. ) vectors to be generated by an electric current described by the 

current density vector J. The vectors P. and H, are then the solutions of Maxwell's 

equations, (2.57) and (2.58). 

VXE. (R) = iwµ0H. (R) (Faraday's law) (2.57) 

0xF. (R) = J. (R) - iwe, E. (R) (Maxwell-Ampere law) (2.58) 
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Similarly E, 
n and Hm are generated by a non-physical magnetic current density 

vector Jm 

VxE, 
n(R)=iwIJ1m(R)-Jm(R) 

(2.59) 

Vx Hm (R) = -iweoEm (R) (2.60) 

The use of the magnetic current density vector ensures symmetric Maxwell's 

equations. It is sometimes necessary to calculate the electromagnetic fields due to 

both electric and equivalent magnetic current sources. 
Assuming H. +17 .. = Hf and Eý + Em = Pf. Therefore Maxwell's equations with 

a magnetic current density Jm could be written as 

Vx Ef (R) = iwµfi (R) - Jm (R) (2.61) 

Ox Hf (R) = J. (R) - iweý Ef (R). (2.62) 

Since electromagnetic fields are vector fields, the general wave equation is a 

vector wave equation. For a homogeneous isotropic medium, the general form of the 

vector wave equation is given by: 

VxVxEf - kfEf = (iwp Z- Dxm)öf (2.63) 

VxVxHf-kfHý _(iwsfJm+OxJý)6 (2.64) 

The above equations follow directly from the duality principle. We can now in- 

troduce the use of dyadic Green's functions. To obtain the electromagnetic fields due 
fs- 

to these electric and magnetic current distributions, one first constructs Ge(R, R) 
f8 

- -, 

and Gm (R, R ), the electric and magnetic dyadic Green's functions respectively [19] 

and [21]. These two DGFs are the solutions of the following dyadic differential equa- 

tions (taking into account the discontinuous nature of magnetic or electric DGF with 

respect to electric or magnetic dipole respectively at R= R' i. e., V xh-jw - 
R) =0 

and in case of cavities the source term Jm =0 on the surface): 

VxVxG a(R, R) -kfG 
a(R, R) =iwý9lb; JR-R)ýf (2.65) 

Where T9 represents e or p in the electric or magnetic DGF equations respectively. 

Here a unit current density at 9 in the direction of e or m has the space form 
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&JR - R). This requires that both DGFs satisfy the nonsolenoidal condition V" 

=: -A- - -1 
Gm(R, R0 because 

= 
P` 

-V-J` (2.66) 
e iwe 

and 

Q-H- =. 
il. (2.67) 

µ %wµ 



Chapter 3 

Head Model Using Spherical DGF 

THE principle objectives of this chapter are threefold. We outline an exact gen- 

eral expression of dyadic Green's function (DGF) for the problem of electro- 

magnetic radiation from a source of excitation in the presence of a layered spherical 

dielectric head model, which is valid everywhere, including the source region. The 

medium is assumed to be homogeneous, isotropic, linear, nondispersive and station- 

ary. The DGFs are obtained by employing the method of scattering superposition. 

Furthermore, we have made an attempt to discuss the question of incompleteness of 

previously related studies with regard to the E and H modes in the source region. We 

consider that one should explicitly extract the singularity term for the expansion to 

be valid both inside and outside the source region. This follows because the primary 

interest can be the development of a formulation to evaluate the electromagnetic 

fields away from the source. Also, a compact alternative general representation has 

been developed to determine the electric- and magnetic-type DGFs, giving clarity 

as well as more efficient and economical computation in terms of speed, time and 

memory. 

3.1 Introduction 

The objective of modeling biological bodies exposed in near as well as in the far- 

field is to assess the induced and scattered fields. However, near-field exposure is of 

considerably higher complexity because: 

25 
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i) the field distribution is extremely nonuniform in the vicinity of the source as 

well as inside the body; 

ii) in many cases, the interaction of the scattered field on the source is not small 

enough to be negligible. 

The dyadic Green's function (DGF) was introduced by Schwinger in the early 

1940's and has been extensively discussed by Tai [19,20], Collin [21], Samii [22], 

Yaghjian [23,24], and others. This technique was presented mainly to formulate 

various canonical electromagnetic problems in a systematic manner and to enable 

many special cases to be treated as one general problem. If the current source in 

these problems has some specific distributions, we have to consider these distribu- 

tions as special cases, for example, excitation by a transversal electric dipole or a 

longitudinal or a magnetic dipole. The DGF, which relates the current source and 

the field, is singular in the source region. 

The format of this chapter is as follows. The complete set of spherical vector 

wave functions are introduced in section 3.2. 

In section 3.3, we start with the unbounded case, in which the point source radi- 
00o_ 

ates with no interface present, and construct the corresponding DGF, Geo(R, R ), in 

terms of an integral over the spectra of plane waves that constitute the continuous 

eigenfunction expansion (EFE) in which the eigenfunctions are guided in the pre- 
ferred R-coordinate direction, using the procedures described in Tai [19] or Collin 

[21]. This expansion also contains an explicit dyadic delta function term which is 

required for completeness at the source point. It is considered as a correction to the 

general solenoidal EFE, which is valid outside the source point. 
The procedure required to derive the complete EFE of the general scattering 

DGF for the multilayered media in terms of only the solenoidal eigenfunctions is 

shown to be a simple and straightforward general expression. The DGF for the 
=Lfo- -' multilayered media Ge (R, R ), is then constructed from the principle of the super- 

position, which involves the sum of the fields of, first, the source in free-space (or 
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=000- 
the free space Green's function Geo (R, R) and, second, the fields scattered by the 

-Lfo- -' layered media G88 (R, R) .A radically new and generic method for deriving the 

scattering formulae is described in this section, giving an idea of the computational 

burden involved in the general method described in this chapter. This represents 

one of the main contributions of this study. Magnetic-type DGF can be found by 

invoking duality. Once the electric field is obtained the magnetic field is derivable 

by taking the curl of the electric field, and vice versa. 

Conclusions are then presented in section 10.3, which summarize the important 

points contained in this work. 

3.2 Spherical Hansen Vector Wave Functions 

The spherical vector wave functions which were introduced by Hansen [25] are the 

building blocks of the EFE of various kinds of DGF. They are denoted by Lomn. 

Mömn, and N; mn, which are solutions of the homogeneous vector Helmholtz equation. 

The generating functions or eigenfunctions, which are solutions of the spherical 

scalar wave equation V2'Y + k2W=0, can be written in the form 

'rººn(1ý) = j�(kR)Pn (cos9)s°nm 
, 

(3.1) 

Here k is an undetermined wave number and R is the piloting radial vector. Sub- 

scripts "e" stands for even, and "o" is the odd character of the generating functions. 

F `(cos 8) identifies the associated Legendre functions of the first kind with order 
(n, m), and j�(kR) denotes the spherical Bessel functions of the order n to represent 

both outgoing and incoming waves. Spherical vector wave functions are akin to the 

Debye potentials: 

L"n (k) =v nn, (3.2) 

:, 
nn(k) = Vx[4nnA, (3.3) 

N n(k) =1 VxVx[%nR]. (3.4) 
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To satisfy the symmetrical properties of DGF, 

(k) = VxMV.,,,, (k), (3.5) 

M"�(k) = Vx7V",, (k). (3.6) 

Green's functions for bounded regions are usually given in the form of modal 

expansions. Modal series are unsuitable for use in numerical algorithms which re- 

quire the computation of the electric field inside the source region. In this case, the 

Green's function must be computed at points R close to R, where the convergence 

of the series is very poor due to the singularity of Ge(R, R) at point source R= R'. 

This drawback can be avoided by using expressions where a diverging term, ex- 

pressed in closed form, is extracted from the modal expansion of Ge(R, R ), so that 

the remaining series represents a function finite at point source R= R`; see Bressan 

and Conciauro [26]. 

The complete expressions for the solenoidal or rotational or transverse functions 

are given by Collin [21]: 

0 

Mynn(k) - ýa. j�(kR)Pn (cos9)ýýmoO (3.7) 

-j�(kR)(a! 
m "e )""amý 89 ain 

kRl 
j.. (kR)Pn (cosB)ä°'mOR 

N(k) -r R- 
a ap: l (COS 0) [R. l, 

º 
(kR)l 8a )ammo (3.8) 

ain 
kR 8R 

[Rj� (kR)J LT 
sin B 

(COS 9)coamoý] 

and the complete expressions for the nonsolenoidal or irrotational or lamellar func- 

tions are given by Collin [21]: 

eRj� (kR)P; "(cos 9) moR inn 

!! I kR &Plýl (coo e cý ; mn 
()-(R 

Be 
)sin MOi (3.9) 

m (kR) pm (COS O)sin mdý R sin 0n COs 

Note that in the set of spherical vector wave functions, only Momn do not possess 

the radial component. m and n are the eigenvalues associated with the 0 and 0 
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coordinates, respectively, when for problems involving spheres, they are integers. 

The R, B, and are the spherical unit vectors. 

The orthogonal properties of these vector wave functions have been discussed 

by Tai [19,20] and Collin [21]. item 
l functions are not required to derive the eigen- 

function expansion of the magnetic DGF that are solenoidal and satisfy the vector 

wave equation, but to find the EFE of the electric DGF, the Lome functions are 
-Lfo- -Lfo_ ' 

also necessary, because Ge (R, R ), unlike G�, (R, R ), the dyadic Green's functions 

of electric- and magnetic-type, respectively, is a nonsolenoidal dyadic function. 

The spherical vector wave functions in x, y and z-directions and their mutual 

relationships are given in Appendix A (A. 1) where Mrn(k), NDr�n(k), Mrn(k), 
N(, 

ý(k), 
Ml 

n(k), and N 
�(k) are derived in relation to Mý�n(k) and NVnn(k) 

which are the even or odd spherical vector wave functions in R-direction. 

The method for deriving the magnetic/electric DGF given in the following sec- 
tion for spherical configurations uses the Ohm-Rayleigh (Q%) procedure. However, 

there exist several alternative derivations, which will not be discussed further. 

3.3 General Representation of Dyadic Green's Function 

Before we develop the analysis of electromagnetic wave propagation in the multi- 
layered head model, it is convenient to examine the media firstly with no scatterer 

and then secondly with one-, two-, three-, and four-layer head models. Consider 

a multilayered homogeneous lossy dielectric concentric sphere with radii as shown 

in Figure 1 illuminated by an electromagnetic wave. A time dependence ej"' is 

assumed and suppressed throughout. 

3.3.1 Free Space DGF for an Electric Dipole in Unbounded Medium 

The electric and magnetic fields due to an electric dipole located at R in an infinite 

homogeneous space without the presence of an scatterer (obstacle) can be computed 
in spherical coordinates. There are various methods that can be utilized to achieve 
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Figure 1: Test Position of a Dipole and Cross Section of Spherical Head Model 

this. The expansion of the electric field requires both the transverse and longitudinal 

vector eigenfunctions and hence the DGF must also have both sets of eigenfunctions 
in its expansion [191: 

=00o- . 
a° n 

Geo(R, R) -6(R-R)+4ýCmn 
o n=1 m=0 

[ M(mn (ko)M'; 
mn 

(ko)] 

[N(ömn(ko)] R>R, mn(ko)N' 
3.10) 

fMgmn(ko)M'(mn(ko)] 

[Nömn(ko)N gmn(ko)] R< R'. 

Here the first term presents the singularity term specifying inside the source region 

and the second term outside the source region. 

Where, the prime on the vector wave functions indicates that, functions are 
defined with respect to the co-ordinates of the position vector R, co-ordinates 
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The superscript "1" in Mým, ý(ko) and 
m�(ko), M'Omn(ko), and N'ý�n(ko) 

is present to indicate the substitution of spherical Hankel function of the first kind 

(spherical Bessel functions of the third kind) "he(kR)" for "j�(kR)" in the generat- 

ing function TV,,, (k). It is important to note the singularity of the Hankel function 

at the origin. RR is a dyad (dyadic product of the unit vectors) [27]: 

RR=(R+R+R)(IT -k (3.11) 

and 8(R -R) is weighted Dirac delta function in three dimensions. 

Subscripts "o" and "e" stand for unbounded (open) space and electric component 

respectively. 

The dyadic delta function term at the source point is included explicitly as a 

correction to the general solenoidal EFE which is valid outside the source point. 

(2 - So) 
2n +1 (n - m)! 

n(n+1) (n+m)! 
(3.12) 

Coefficient C, nn, depends on the value of m and n, where 60 is the Kronecker 

delta functions, when 

1, ifm=o, 
(3.13) 

0, if m#o 

3.3.2 Scattering DGFs for an Electric Dipole in the Presence of Spher- 

ical Head Model 

When a biological system is illuminated by an electromagnetic wave, an electromag- 

netic field is induced inside the system and an electromagnetic wave is scattered 

externally by the system. Since the biological system is an irregularly shaped het- 

erogeneous imperfectly conducting medium with frequency-dependent permittivity 

and conductivity, the distribution of the internal electromagnetic field and the scat- 

tered electromagnetic wave will depend on the body's physiological parameters and 

geometry, as well as the frequency and polarization of the incident wave. The math- 

ematical complexity of the problem has led researchers to investigate simple models. 
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Several theoretical studies have analyzed these models (Reyhani [28] - [33]). In this 

chapter, the medium is assumed to be homogeneous, isotropic, linear, nondispersive, 

and stationary. 

Having expressed the DGF for an unbounded medium in terms of spherical 

vector wave functions, we may now use that result to construct one for a spherical 

head model. 

DGF for a Single-layer Spherical Head Model 

This can be considered as the contribution of the reflections and transmissions of a 

single layer sphere of radius al centered at 0, superimposed in an unbounded ho- 

mogeneous medium with the radiation source located outside the sphere at R. The 

medium is characterized by (µ,, eo), and material properties of sphere is represented 

by (1y,,, where subscripts "o" and "h" stand for unbounded (open) space and 

head, respectively. 

The Scattered DGF terms for this case was examined by [19): 

Ceý(Rý Rý - 
iko C'mit 

A°Momn( o)Mi(mn( o) (3.14) 
4 

n-1 m=O 
" 

Ae ýl) i( 
ONNomn( oýN omn( o) 

=110- -º 2ýCo oo n 
.1 

1mn(kl)M'm(ko)l 
Ges (R, R) _-EE Cmn ' (3.15) 

_ 1 
n=1 m=0 B-. N N; 

mn(k1)Ný; 
mn(ko) 

Where the first number of triple superscripts signifies the last inner layer in the 

model and the second number identifies the region where the function is defined, 

that is the observation or field point, and the third number corresponds to the 

location of the source, i. e., the source point, which in this case is denoted by the 

letter "o". Subscripts M and N attribute the coefficients to the excitation functions. 
-10o- _ The choice of Me mit 

and Ne m� 
as the field functions in GCs (R, R) is dictated 

by the radiation condition that the scattered field must consist of outgoing waves, 
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and the choice of M'(mn and N'(lm� as the excitation functions is guided by the 

expression for Geo (R, R) and the boundary condition that at R=a, Ge f(R, R) 

must satisfy the Dirichlet boundary condition, which can be satisfied only if the 
00o- 

excitation functions are the same as that of GeO(R, R) for R< R'. 
: -1 '0- The field functions for G., (R, -) are so chosen because they are the solutions for 

=ooo_ -, the vector wave equation in region 1, and they must be finite like that of G,. 
0 

(R, R) 

forR<R'. 

Also, the expanded version of a typical combination is [34, p. 380]: 

i 
A. 'M(mn(ko)Mý(mn( 

oý - 
Aý1ýb°1Mýmný mn( 

o) (3.16) 
OM 0 A1MMmn (ko)M'ý mn (ko) 

Double-layer Spherical Head model 

We consider two concentric spheres centered at 0, superimposed by an unbounded 

homogeneous medium with the current distribution source located outside the sphere 

at M. The medium is characterized by (µ,, e, ), and material properties of the outer 

sphere are represented by (pm, e) and that of the inner sphere by (ph, e). The radii 

of outer to inner spheres are a, and a2, respectively. 

In this case the Scattered DGF terms can be shown by 

Gee (R, R) 
- 

2ko C 
A! 1! 

0 
(o)Mý(mn(ko) 

(3.17) 
47r 

n=l m=o 
mit A No mn( 

o)Nýemn( o) 

B9, MM; 
mit (kl )Rl 

mit 
(k,, ) 

0 

= G, 
s 

21(R' 
R) . 

ik0 0o n 
Cmn 

BI ; 
mnýkl)Niýmn( o) (3.18) 

41r 
n_1 m_0 

" 
Ci M Jemn(ki)M'! 

lnn(ko) 
i 

G+-N Nomn(kl)N'emn(ko) 

G 0Rý R_ iko 00 n 
Gann 

[De22p. Memn(k2)? i11rn(ko)l 
3.19 

ea 
ý 

n_1 m_0 
NN 

mnýk2)71º( 
)ri(]ýo) 
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=21o_ _, The choice of the field and excitation functions in Ges (R, R) are governed by 

the fact that the electromagnetic fields consist of radial wave-modes propagating 

outwards and inwards. Therefore 

. 21o -200 q 
22o 

Ges =a' Ges +N' Ges 
. 

(3.20) 

Trilayer Spherical Head Model 

In this case three concentric spheres centered at 0, superimposed by an unbounded 

homogeneous medium with the radiation source located outside the sphere at R' are 

considered. The material properties of the outer to inner spheres are represented by 

e,, ), ) and (µ6, ), respectively. The radii of outer to inner spheres are 

a, aZ and a3, respectively. 
=30o =31o 

The Scattered DGF terms for Ges and Gei are the same as those in the last 

section and the rest can be expressed by 

=32o- ik 00 n 
R R, 

_0 
[ý z Cmn ' Ges (L 

es 
n=1 m=0 

and for the inner layer, 

DM 
mn(k2)Mº(m(k0) 

320V. 1) º(1) D; NN, mn(k2)N , mn(ko) 
E; nýMömn(k2)Mº2mitýk0) 

EoN N; 
mn 

(k2)Nº2n)in(ko) 

-330 2ko 00 n F&07c Ömn(k3)Miýmn (k, ) 
CesýR, R)--E ý Cmn 

_ 4ýr Ee mit n=1 m=0 . NÖ ( 3)Nº(1) mit( o) 

Quad-layer Spherical Head Model 

(3.21) 

(3.22) 

Similarly, the case of four concentric spheres centered at 0, superimposed by an 

unbounded homogeneous medium with the dipole source of radiation located outside 

the sphere at R', is considered. The material properties of the outer to inner spheres 

are, respectively, represented by (p� e, ), (' 
, c), (µ., c) and (E. y,,, E,,, ). The radii 

of outer to inner spheres are al, a� ag and a� respectively. 
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_40o -41o -42o 
The scattered DGF terms for Ges , Gee and Ges are the same as those in the 

previous section and the rest can be presented by 

F, Mmn(k3)MIemn(ko) 

. 43o °° n 43 
ýý 

0 
(1) I(1) 

G (R Rý = 
Zk° C 

FON N; mn(k3)N ömn(ko) (3.23 Ges 
47f 

n=1 m=0 
mit 

Gö Mömn(k3)Mr(mn(ko) 

G43Nömn(k3WN )n(ko) 

The final inner layer gives 

Rý Rý . 
2ko Cmn " 

[He4si0Memn(k4)M1'r? 
in(ko)l 

_ 
(3.24) Ges( 

47C 
n=1 m=0 H. N 

n(k oý 

3.3.3 General Expression of Scattering DGFs for an Electric Dipole in 

the Presence of a Multilayered Spherical Head Model 

Observation and analysis of the above expressions for the scattering equations allows 

an efficient formulation of the general scattering DGF for a multilayer spherical head 

as: 

A(1 - öL ---IM 

=LA- -u 
2k° oo nA (1 - 6L)Nli) 

mn(kf)N, 
(1) ( 

°) Gea(R R) Cmn of omn (3.25) = 41r B! M°(1- af)Nrömn( 1) , cmn( o) BN (1 - bf)Nomn(k f)N'(mn(ko) 

"L" is the symbol for last inner layer in the head. "f " is the field point or 

observer layer. Superscript/subscript "o" stands for source point at open space 

while subscript "s" is scattering. Where kf = w2(µýEý)and ko = w2(µosa). 

Jf and 8f are the Kronecker delta functions, where 

1, if L/o =f (3.26) 
0, if L/o 0f 
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A! t, AoN°, BoM and BLf' are the amplitude coefficients of scattered DGF to be 

calculated by applying the boundary condition at the surface (f = 0,1,2, ....., L) of 

the sphere. These boundary conditions are; 

RxGjo =RxG 
(f+l)o 

ee 
(3.27) 

and 

=Lfo 1 =L(f+1)o 1 RxVxGe = RxpxGe (3.28) 
µf µ(f+l) 

In this section we list a few of the coefficients of the scattering DGF for the cases 

of two and three layered media when the source is located outside the spherical body. 

All the local reflection coefficients are given by 

R j=L Rf=M (3.29) 

= 
N, 
R 

Z>H f= Rpf (3.30) 

And for the local transmission coefficients, 

rpE =L TFf =M (3.31) 

H 'C7` Hv T1=N, TFf=s (3.32) 

The superscripts E and H in the above equations denote TE and TM waves, whereas 

the subscripts P and F define the centripetal and centrifugal reflection or transmis- 

sion respectively. Here 

L- µikf+lýih(f+l)r - µJ+, kf3"Jh(f+, 
)f 

(3.33) 

M= tLikf+, ju+, »hff - µi+lkfj(f+1)Jhf (3.34) 

N- µi t+ý. 7is ý 
f+ý)f - lAf+ý kfýf hü 

+, » 
(3.35) 

S= µi kf+ýj(f 
1) 

hf- µi+, kfj(f+l) 
f 
hff (3.36) 

V. = µfkr+, r+rOff - /r+lkit9ffV(f+ý) f 
(3.37) 

W. = µr kf+l'9(f 
+ý>rtYrf - ui+, kJt9J, 1f+1)J (3.38) 
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Besides i9 represents j or h in the (Pf) or (Ff) mode representations respectively, 

while 19' represents j' or h' in the relationships for V and W. 

v= µ1k1l(ju+, >rhu+l>r - 
j('f+l)fh(f 

1)f) 
(3.39) 

u' = 1fkf+, (j(f+, 
)fh f+l)f - j(f 

1)fh(f , )f) 
(3.40) 

Where we have assumed the following abbreviations: 

1 

k` (3.41) 
, hfl = hn1)(kfa, ), 

1 
=ka hn1)(kfal) 

f, 

Furthermore j� (x) = xj� (x) and h;, li (x) = xhnl» (x). In the above, the Wronskian of 

the spherical Bessel functions is 

Ir i= ýishcf+l)j - Jifhv+l»" (3.42) 

If the source is located outside the spherical body, the coefficients of the scat- 
tering DGF is given by 

i) For the case of two layered media the coefficients are 

.M ,N= 
-R FO 

E, H (3.43) 

Bllý°lýN = 
TE, H 

[1 
- RFÖ DE, Hl 

0 

Where RFÖ , Rpö and Tp3H can be obtained from (3.29) to (3.32) by letting f=0. 

ii) For the case of three layered media the coefficients are 

A " 
TF, HýEH +ýFO RF, H 

(3.45) 
o , lv r 

FO + TPo 

_ `4`M N- 

RE, H + RE, H 
/ 3.46) 

, E 
,HE ,H T O+T 

( 
F P0 

BOM, N 
1 [1 + RP AOM, N] 

PO 
(3.47) 

Bozo ,, M, N RE, 
xAalo + B21o EH 

[ 
P1 M, N öM, N] (3.48) 

TP1 



3.3. General Representation of Dyadic Green's Function 
Salehi-Reyhani, S. M (2001) 

38 

Where RFÖ , RF H, RPÖ 7 Rp H and TFO'H, T E, H, TPÖ I and T" can be obtained 

from (3.29) to (3.32) by letting f=0,1,2. 

iii) For the case of four layered media the coefficients are 

Aö° 
N= \TPOHRFO 

E, H +TFOE E, HRF 
"JTP1H 

60 (3.49) 

E, H + AH + TE 11 P1 RE' O 
)TFIHRFE, H 

2 

with 

= 
(T" 

+ TFOHRF E, H RPÖ 
) 

TP1H 

(3.50) 
+ 

(THRPII 
+ TFOHRPO H) TFIHRFE, H 

2 

AöM, N = ý, E, H 
{Aö°N + RFÖ , (3.51) 

F0 

BoM, N = E, H 
[1 + RP0 'A0o e. M, N] (3.52) 

p6 

A: M, 
N = 

1 
,H E ý 

[A03m, 
N + RF HBöý', °rNJ (3.53) 

Fl 

BöM 
N= 

1 

N+ 
BöM I Rp NAölý°f (3.54) 

, EH 
PL 

, , NJ L 

BöMN = 
[RHA 

M N+ Bo (3.55) 
TE, H 

P2 
: , m 

H Where RFC 
, 

RF H, RF2 
, 

RPO 
, 

RP H, RP2 and TF0 H'1 
F1H7 

7'F2H' TP0 
'2 P1H 

E, H 

and TP2H can be obtained from (3.29) to (3.32) by letting f=0,1,2,3. 

For more details on the evaluation of coefficients, readers are referred to Caval- 

cante et-al [35] and Li et-al [36,37]. 

3.3.4 A Novel General Expression of Scattering DGFs for an Electric 

Dipole in the Presence of a Multilayered Spherical Head Model 

It is a well known fact that integral equation methods can solve unbounded prob- 

lems very effectively. They are often referred to as exact techniques, because they 
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guarantee convergence for sufficiently dense discretizations. However, they have the 

disadvantage of being difficult to implement for complex objects, and generally re- 

sult in the use of full matrices, whose treatment requires a large amount of memory 

and CPU time. The computational difficulties can be surmounted by more con- 

venient and compact general equations. General formulations for scattering DGFs 

can be expressed by introducing the 0 operator which exploits the symmetry of 

the principle terms in the DGF expansion to give a general formulation applicable 

to a wide range of geometrical configurations [381 when one can significantly reduce 

the number of field samples needed for the field calculation. As shown below 

n ALfý OLfM 
/ / -, 

2k 00 L 3.56 fo 
47f 

Cmn Lf 
-Lfo \) 

n=1 m=0 
AöN ýea 

N 

We give a direct and conceptually simple algorithm whose chief benefit is great 

computational efficiency. Where 

-L0o 

o esM = 0, for L=0 

(This means that, there is only infinite open space in the absence of a scattering 

body. ) and 

LOo 
OeaM 

- ; mný fýM ömný oýý 

ý(1) -Lfo 
_cf 

(1kf)M 
ömn(ko) 

eaM - 
[ßM: 

mn(kj)M'n(ko)j 

and 

u° 
. (1) OeeM 

- ömn(f)Mömn(ko), 

for f=0 and L>0 

0 

for f# or 

L 

for f=L 

C IN 
can be calculated from the same procedure as for QeM. 
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3.3.5 Electric DGF in the Antenna-Head Configuration 

The electric DGF in the system can be computed by means of the method of scat- 

tering superposition expressed as the sum of incident (free-space) DGF and another 

contribution to account for the field scattered by layered media (secondary DGF), 

i. e. 

Lj°- --000- -Lfo- -i Ge (R, R) = Geo(R, R)6" + Ges(R, R) 

substituting in the above equation yields the electric DGF in the system: 

Lfo_ oo n 

Ge (R, R)RS(R-R)df+4°ýýCmn 
n=1 m=0 

[M; mn(ko)Mömn(ko)I ö; 

[N; 
mn 

(ko)N; 
mn 

(ko)]af 

ALfo(1 - Jf)M; 
mn(kf)11'1ý(mn(ko) .m0 

A N(1 - Sf) 
mn( f)N'emn(ko) 

BgM(1 - 5f)Mömn( f)M' n( o) 

__R> 
R', 

B! No(1 
- tsf)Nömn(kf)Nº2mn(ko) 

x 

[-M-. (mn(k0)]ö; 

[Ngmn (k0)N' (mn (k0)]6f 

AöÄ°f(1 - 6f)1ll 
mn(kl)Mý(mn(ýo) 

A N°(1 
- Sf )Nýmn(kf)Ný2mn(ko) 

Bem(1 -a f)Momn(kf)Miemn(k0) 

__ 
R<R'. 

B No(1- ö f)Nömn(kf)N'(nin(ko) 

(3.57) 

(3.58) 
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using the novel general method 

Gf(R, Rº)RR J( i-9)60+4ý00 
n 

Cmn k2 f0 
n=1 m=0 

I[ 
mn(ko)M; mn(ko)1 

bf 

[N(mn (ko)Nömn (k0ý]Sf 

Aej fo Lfo 
M 

Oe8M 

0 

ALfo 
Lfo 

R> R' äj11 
O08 

Ni 

x 

i 
(Memn(ko)M' mit(ko)I of 

[Nömn(ko)N'(mn(k0)}sf 

ALfo -Lfo 
0eMOeuM 

ALfo OLfo R<M. 
ON 

0611N 

41 

(3.59) 

If our concern is only with the region exterior to the source, then the singular term, 

which is important only in the source region can be dropped from the expression for 

the Green's function. 

3.3.6 Magnetic DGF in the Antenna-Head Configuration 

The principle of duality states that once the electric DGF is obtained, the magnetic 
DGF is derivable by interchanging the field functions Mömn -> kNömn and Nömn --ý 
kMömn and omitting the singularity term contribution and vice versa. 

On the other hand, the corresponding total magnetic DGF at any point in the 

system can be calculated from VxG=G, bearing in mind the discontinuous 

nature of magnetic DGF across a point source at R= R' and the Ampere-Maxwell 
=Lfo =Ljo 

equation relating G. and Gm in the dyadic form i. e., 

VxG =76(R-R)+k2G (3.60) 
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=L19- -i 2ýC2 00 n 

G. (77,71) =+41r EECmn 
n=1 m=0 

[Ngmn (ko)Mömn(ko)]af 

[M(mn(ko)Nemn(k0)]afo 

Aöfm°f(1 - 8f)N()n(k1)MF( )n(k ) 

AöNo(1 -! Sf 
mn(kf)Ni(m(ko) 

Bf1 (1 - Sf)Nomn(kf)Mýmn(ko) 

$öN°(1 - SfýNiömnýfýNiemn(ko) 

X 

[N; 
mn(k0)M'ý 

)n(k0)]5 

[Mön+n( 
o)Nºmit(k0)]of 

A; M(1 
- Jf )Nemn(kfMr0mn(ko) 

AöNo(1 - Jf)M(mn(k1)Nºýlýn(ko) 

R> R', (3.61) 

B! M(1- Sf)Nömn( f)Mi(ººýin(ko) 

$, N o(1 - bf)Mömn(kf)N' 
n(ko) 

R< R'. 

Notice that the magnetic DGF does not contain the singularity term because this 

term is canceled by the derivatives of the delta function and the unit function at 

the source point. The above equations can be used to accommodate any number of 

layers in the model system. 

3.3.7 Electric and Magnetic Field at any Point in the Antenna-Head 

Configuration 

The use of DGF technique allows us to determine the expansion of the electric and 

magnetic fields in a head/antenna configuration in a direct and elegant manner. 
For any current source with current density function . 

7(R) located outside the 



3.4. Scattering DGF for a Perfectly Conducting Spherical Implant 43 
Salehi-Reyhani, S. M (2001) 

head, the electric or magnetic field radiated by such a dipole can be calculated using 

the formulae, 

Lfo - -Lfo- -i -ý E (R) = iwµf f f$Ge (R, R) " J(R )dV (3.62) 

v 
Lfo - -Lfo - -ý -ý i H (R) = iwef f$ f G, n 

(R, R) " J(R )dV 
. 

(3.63) 
v 

These signify the computation of the E and H-fields in the structure, which 

states the superposition of the incident field Ej(R) or Hi(R) and the scattered field 

Es (R) or H8 (R) is given by 

ELfo(R) 
_ 

E=oo(R)af + E9fo(R) (3.64) 

oo 
. HLfo(i) _Ho(R)Sf + (3.65) 

3.4 Scattering DGF for a Perfectly Conducting Spherical 

Implant 

When a perfectly conducting sphere of radius a is illuminated by an electromagnetic 

wave, the scattered terms can be written in the form 

oo n [. k 
Gea(R, R) ="u Cmn ' [ßgNflkojflkO9 3.66) 

n1 m-0 
) 

Applying the principle of scattering superposition, we obtain 

Q(R, R)=Geo(R, R)+G�(7Z'R) (3.67) 

Where we consider the function for a conducting sphere in a region 0<a< oo. 
After applying the boundary condition one can determine the unknown coefficients. 

In order to satisfy the boundary condition at interface r=a, 

ix [Mo 
n ( o)M'erin(ko) +C eM 

iýn(ko) , (» (ko)] (3.68) 
- r=a 

X 
ýNomný 

o)Nº( O N. 
ºnn(ko) + ßIN mrt( 

ok 
(k, )] 

r=a 
(3.69) 
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rx [Mömn(ko) +a; MMmn(co)] 
_=0 

(3.70) 
r-a 

1' x 
[Nemn(ko) 

+ f3N74mn(ko)] 
r_ -a 

=0 (3.71) 

substituting for Möm,. (ko) and 
omn(ko) 

Mg, nn(k0) = Vx[an(kR)P, m(cosO)e°nmO }, (3.72) 

Mgmn(ko) = Vx[hn') (kR)Pn (cos 9)g äm¢R), (3.73) 

in equation (3.70) produces a. =-( koa 
n , (koa)] 

Similarly inserting for Nömn(ko) and 
Nemn(ko) 

Nöý, ý (Q _ VxVxU,, (kR)P, (cos 0) ; PgmcR], (3.74) 

Nýmn(k,, ) =1 VxVx[hnl) (kR)P,, (cos 9)$;? mcRJ, (3.75) 

in equation (3.71) produces , BöN -- ý(koa)ji(koa)]/8(kaý) 
ý(koa)hn (koa))/8(koa) 

3.5 Discussions and Comparison of General Representation 

of DGFs with Other Authors' Related Works 

A fundamental problem in electromagnetic theory is the calculation of the field 

at source point. It arises in the evaluation of the antenna impedance, the power 

radiation pattern, the induced current on a scatterer, and other situations. 
A DGF is highly singular. Inside the source region the field is not solenoidal so 

the L�a,, functions must also be included. The singular behaviour of the DGF at the 

source point caused considerable difficulty in the early development of the theory. 

Many authors examined this elusive singular nature of DGF [19] - [24], [26], [27], 

[39] - [66]. 

Collin [39] has shown that, "a relatively straight-forward analysis using the 

complete set of eigenfunctions described by Tai led to the discovery that there was a 

sub-spectrum of zero frequency or "static-like" modes that were part of the spectrum 

of the transverse eigenfunctions (the N functions of Hansen). These zero frequency 
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modes cancel the longitudinal mode spectrum outside the source region. Inside the 

source region the cancellation is not complete but the non-cancellating part can be 

expressed as a delta function contribution". 

A symbolic way to represent a point source of excitation is the use of Dirac's 

three-dimensional delta function expressed in spherical polar coordinates if R' is 

(R', B', 0'); thus 

S(R-R)= 
R12sine16(R-R)6(e-e)6(0-0) (3.76) 

The free space scalar Green function has an R'1 singularity, where R is the 

distance between source and observation points. 
Tai [19] pointed out that the method of expressing the point source dyadics 

only in terms of the transverse (divergenceless) vector functions 9-mn and Nomn can 
lead to a contradiction: the left hand side of the vector wave equation is solenoidal, 
but the right hand side is not. A remedy for this dilemma, is by including the 

longitudinal wave functions, or the discontinuous nature of C (R, R) at R= R'. 

Ge(R, R) unlike 66, a(R, 
R) is not a solenoidal dyadic function because 

V"Ge(R, R) _ T'2- [IS(R-R)ý 
(3.77) 

=-2 Vö(R - 

which is not zero except for R0M. 

In the present work, we have derived a complete eigenfunction expansion of 

the DGF for the multilayered dielectric head-antenna model using the R-directed 

solenoidal electric and magnetic (TM and TE) eigenfunctions. The DGF for this 

canonical problem can be constructed in several ways using methods such as G, n, 
Ge or GA. Furthermore, it is demonstrated that the formula is particularly suitable 
for the numerical evaluation of the field at the source point, because it allows the 

exclusion of a finite region around the singular point from the integration volume. 
This feature is not shared by a few of the previous results on the DGF, such as work 
done by Bowman [34], Ruoss [67], Buttler [68], Jones [70], and a few others. 
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The singularity [24], [27] of the DGF depends on the shape of the infinitesimal 

exclusion volume. Assuming the correlation function for the random medium to be 

spherically symmetric and choose a spherically-shaped exclusion volume. the DGF 

can be decomposed into 

Ge(R, R) = PVG, (R, 7 )- I3S(R-R) (3.78) ýZ 

Where PV stands for principal value. 

If R and the R' coincide we must account for the singularities of the DGF. Thus, 

to make use of DGF when the observation point is in the source region, extreme 

caution must be exercized. We write for Rin the source region, 

E(Ro) = PV fff Ge(Ro, R) 
" J(R )dV + Eo(Ro) (3.79) 

v 

Where the correction term, Ec(R,, ) depends on the shape of AV, but the final 

result which is the sum of the principal value integral and correction term, however 

is independent of the shape of AV. 

The principal value integral is obtained by performing the volume integration 

over the source region excluding a small exclusion volume with spherical shape and 

containing the observation point. The size of exclusion volume is allowed to shrink 

to zero eventually. Thus, the first term can be thought of as the contribution to the 

field at the observation point due to the source outside the exclusion volume. The 

latter term is the contribution to the field at the observation point due to the source 
inside the exclusion volume, which can be shown to be non-vanishing event when 

the exclusion volume shrinks to zero. The two terms on the right-hand side of the 

above equation depend on the shape of the exclusion volume. Since the exclusion 

volume is vanishingly small, we can assume that J(R) is uniform inside the exclusion 

volume. 
Two of the sources of error are to be found in Tai's technical reports and his 

book [20]. The first edition of Tai [20] had made no allowance for the singularity 
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term, and in the second edition, one should notice that he has not considered this 

term for a cone and also for a cone with a spherical sector in [19, chap. 10, pages 223 

and 224 respectively]. The term involving 6 had not been included in Tai's earlier 

works until 1973 [46] and has been a subject of discussions by many authors, Tai 

[46], Rahmat-Samii [22], Collin [21] and [47]. 

In 1971 Tai [20] assumed that for the vector wave equation the eigenfunction 

expansion would be complete without including the irrotational modes. Further 

investigation of the subject by the above mentioned author uncovered the necessity 

to add a term to the expansion in order to achieve a complete expansion for the 

DGF in the source region [19]. 

Since understanding the properties of the singularity is essential to the use of 

the DGF in numerical analyses, it is highly desirable to resolve and clarify the 

apparent incongruities. Samii [22] stated that "Care must be exercized in defining 

the derivatives in the sense of distribution and in using the correct completeness 

relation in order to compute the correct DGF". Proper handling of the electric 

DGF in the source region is essential when using it in numerical analyses involving 

dielectric scatterer. The difficulty arises in the computation of the "self-cell" or 

self-coupling matrix element that must be generated when using the method of 

moments. 

Yaghjian [24] explained the difference in the delta function terms between Tai 

et al. [52] and Samii [22] caused by their different choices of the principal volume 

and emphasized the need to include in G, (R, R) the shape of the principal volume 
involved. Yaghjian [24] and Lee et al. [56] outlined proofs to show that singularity 

associated with the electric DGF in a bounded region is exactly the same as that 

for the free space. 
Wang [60] has also attempted to clarify some of the apparent discrepancies in 

the literature regarding the singular behaviour of C (R, R) and seeking a unified 

and consistent view on this important subject. 

According to the homogeneous vector Helmholtz decomposition theorem and its 
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manifestation in field theory, a general E-field can be decomposed into an irrotational 

(lamellar) and a rotational (solenoidal) component: 

E=E;,. + E�t (3.80) 

The E;, describes current source's near field, the field lines for which emanate 

from and terminate on the dipole electrodes while the Ed approximately describes 

the far field, the field lines for which neither touch nor encompass the dipole. Also 

in Ampere's law 

VxH=J, (3.81) 

where J= JJ + Jd, and here the displacement current density, Jd, can be decom- 

posed in an irrotational component Jd;, and a rotational component J" JJ is the 

conduction-current density. Jd;,, represents the quasi-static displacement-current 

density completing JJ to form a closed current loop, thereby satisfying the continu- 

ity law 0 V. (J, + Jd;, ) = 0. The Jd,,,, represents the far field. Hence the true current 

density of the non-stationary case consists of three components 

J= Jc + Jd;,, + Jd�a, (3.82) 

where JJ + Jd,, represent the quasi-static true current density corresponding to the 

applied excitation. The total displacement-current density Jd = Jd;, + Jd�,,, consists 

of J d,,, driven by the applied voltage and Jd,., existing isolated from the applied 

voltage source, so that Jd,. remains in existent also after disconnecting the voltage 

source [71]. 

In numerical codes, based on the method of moments, the integration domain is 

limited to the conductor surfaces, hence the integration of the quasi-static displace- 

ment current density Jd;, is excluded. 

In using the method of Gý� to find the electric DGF, the key step is to obtain 

an expression of Vx (R, R) while taking into consideration of the discontinuous 

behaviour of C,., � at R=W. 
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Our purpose here is to bring to light the importance of characteristics of the 

delta function term in source region. These comparisons may prove valuable in 

estimating the effect of the delta term. 

In this section we highlight five different discrepancies in other authors' works 

in comparison to ours, taking into account to what was mentioned above. 

3.5.1 The Isolated Singular Term in Ge in the Form of Delta Term 

--S(R -R) 

Since the primary interest can be to develop a formulation for the evaluation of the 
-ooo_ _, electromagnetic fields away from the source, G.. (R, R) can be given only by the 

=ooo_ _, second term on the right side of GeO (R, R) i. e. the non-delta terms outside the 

source region. But on the other hand, it is well known that the solenoidal modes 

do not form a complete set for expanding an electric field. This has been proven by 

Kurokawa [41] as early as 1958 and of course by others later on/afterwards. 

The electric and magnetic dyadic Green's components given in Ruoss' [67] work 

appears to be closely related to those electric and magnetic dyadic Green's compo- 

nents which have been derived by Bowman [34], Butler [68], and Jones [70] utilizing 

the usual boundary conditions at each of the interfaces but not the proper condi- 

tion at the source point. Ruoss did not utilize the vector wave functions to derive 

the complete eigenfunction expansion of the electric DGF which contains a physical 

interpretation at source region. Therefore the expansion (15) in Ruoss' paper does 

not contain an explicit dyadic delta function term which is required for complete- 

ness at the source region even though he has referred to Tai's second edition [19] 

that contains the corrected version. The correct expressions are given here using 

the eigenfunction expansions method. 

These discrepancies can be eliminated by recognizing the distribution or princi- 

pal volume theory. 

One of the most confusing aspects of the above paper deals with the generaliza- 

tion of DGF for electric as well as magnetic type which is really the DGFs for an 
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electric dipole in the presence of a sphere plus that of a dipole in unbounded space 

similar to Butler's work [68] who referred to both Bowman [34] and Jones [70]. 

This delta term does not exist in Li's paper [72] who has referred to Tai [46] whom 

has declared/announced his error about the singular behaviour of the eigenfunction 

expansion of the DGF in his publication [20] presenting his improved method for 

deriving the residue series. This communication of Li [72] has a couple of printing 

errors and in his general representation of scattering DGF. 

Bohren [73] did not manage to extract the singularity term in the source region 

explicitly, even though he has added the radial term to Mömn function by the addi- 

tion of Mg m,. and Nome functions. Consequently, Engheta [74] who used the same 

technique lacks the same expression. Also the dyadic delta function term, which 

makes the DGF representation complete at the source point, was not explicitly ex- 

tracted in Bagby [75]; Viola and Nyquist [76], slightly modified that analysis later 

to properly extract the dyadic delta function term. 

A paper by Pearson [77] gives an expansion of the DGFs in cylindrical coordi- 

nates. Unfortunately, several delta function terms were missed in that expansion. 
When the static like modes cancel, the results reduce to those obtained by Tai [19]. 

Stubenrauch [78] has the same problem. 

3.5.2 The Limits of Summing Series Indices 

Care must be taken in choosing the values of indices in double series in order to 

satisfy the physically required series condition. It is noted that, for any value of the 

double summation index n, there is a different value of m. Infinite series consist 

of terms slowly convergent with m and n. When indices m and n are both equal 

to zero, the functions M; m� and N;,,,,, are null functions, and their normalization 
factors are equal zero, therefore we start n with unity and m begins from zero to 

avoid this situation. 

Li's expressions [36] which have a couple of typographical errors containing dou- 

ble infinite series, which is evaluated by a summation technique over the contribu- 
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tions from all the individual modes. The limits of these summing series are taken as 

n and m both equal zero. Therefore as mentioned above, these limits are incorrect 

and would drive C,,,,, = (2 - So) 21 n-rn to an infinite value. This error also n(n+1) (n+m)! 

exists throughout Li's other paper [72]. 

Butler's summing series indices n equal zero and m starting from -n, at one 

time m and n can become zero where coefficient C, nn, and also Mömn, and Nömn 

vector wave functions can become null vector [68]. 

3.5.3 The Range for R and R' 

After correcting an error in the sign in Li's [36] expression for free space electric 
DGF, the ranges R> R' and R< R' are also incorrect because when R=R the 

operational property that Delta ö(R - 
R) = oo, and the operational property that 

Delta 5(R - 
R) =0 for R 54 R' and for any vector function F(M) that is continuous 

atR=R'; 

J5fF(mscR 
-R )dV 

R' in V, 
(3.83) 

v 0, R' not in V 

and 

J R+a 8(R - R')dR' =1 (3.84) 

where the product of delta functions is used to represent a unit source. 
The factor 5(R-R') shows that the impulse occurs at R= R', i. e. 5(W-R) =oo, 

as a result of which free space electric DGF also becomes infinite. Therefore, the 

correct ranges are R> R' and R<R. 

Another of Li's papers [79] which has a great deal of mistakes in its general 

scattering DGF expression for the radially multilayered chiral media also suffers 
from this problem. 



3.5. Discussions and Comparison of General Representation 52 
Salehi-Reyhani, S. M (2001) 

3.5.4 The Range for z and z' 

Li-Bennett et al and one of their references Cavalcante et al have the same problem 

as in IV-C in [35] and [37] respectively by assuming z> z' and z< z' for the DGF 

in free space. A similar analogy following 3.5.3 applies here as well, but in this 

occasion the z= z' makes the delta function to become infinite. 

Li's other paper [80] " On the eigenfunction expansion of electromagnetic dyadic 

Green's functions in rectangular cavities and waveguides", also suffers from this 

problem. 

3.5.5 The Integration of Delta Term in Field Equations 

Notice that the integral representations of E-fields given in Tai [19] throughout his 

book do not have Dirac delta singularity integrated and no explanation have been 

also expressed. But by evaluating one of the integrals in the representation, a sin- 

gularity can be explicitly integrated from the vector wave function representations. 

For example looking at one of these examples in Tai [19, chap. 10, page 213] for 

an infinitesimal horizontal electric dipole with current moment c pointed in the x- 

direction and located at R' = b, 0' =0 and ¢' =0 the electric field produced by this 

dipole in the presence of a perfectly conducting sphere with radius a is then given 

by: 

E(R) - -kcwµo °O 2n +1 
4ir 

1 
n(n + 1) 

Un(Pb) + (xn" (Pb)]vl)(k) 

A 
([Pbjn(Pb)]'-f' ßn[PbW)(Pb)]')Nýl)(k) R> b, (3.85) 

x 

h' ) (Pb) (M(k) + anVl)(k)] 
bnb' (-N (k) (k) +' (k)]' R<b. Pb j//ý 

Of course the explanation can be given as in the previous section, because when 
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one is not interested in the source region, the singular term in the expression for Ge 

may be dropped. 

The answer including consideration of the integration of the delta function term 

and the use of generalized function in 3.5.3 provides 

RR kcwµo °O 2n +1 E(R) _-2 J(R) - 4ir n(n + 1) 
n=1 

U,, (Pb) + anhnl)(Pb)]V')(k) 

ve ([Pb. 7n(Pb)j' + Qn[PbQ)(Pb)]')M')(k) R>b, (3.86) 

x 

hnl)(Pb)fM(k) + a. 
V')(k)] 

LobhP,, 
b 

' (N(k) +ß N'ý(kA R<b. 

Examination of the two equations show that apart from the term in source 

region, the derivative sign in the last line of his equation (3.85) should be removed. 
It must be pointed out that Tai's second edition [19] has many typographical 

errors throughout the book. Jones [70] and Bowman [34] also do not have the 

complete solutions to the total E-fields throughout their books because they have 

not included the delta terms in their representations of eigenfunction expansions of 

DGFs. Bohren [73] and Stubenrauch [78] suffers from the same problem/situation. 

3.6 Concluding Remarks 

A theoretical analysis of antenna/layered head configuration is demonstrated. An 

improved general multilayered homogeneous lossy dielectric spherical head/antenna 

model of DGF for numerical EMC investigation has been proposed and compared 

with the models by various authors. The DGFs are obtained by employing the 

method of scattering superposition. This study enables one to assess the influence 

of the presence of a close-by biological head upon the operating characteristics of 

a mobile phone, antennas input impedance, SAR values inside the head, the power 
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absorbed, the total radiated power, the thermal emission, the induced current on a 

scatterer, novel antenna design, the electric and magnetic near-/far-fields patterns, 

and also other situations. 
In this communication we have also drawn attention to the fact that the singular 

behaviour of the eigenfunction expansion of the DGF is incorrectly formulated in 

some authors' related works. This is significant because this expansion is used in 

the numerical calculation of the electric field in the source region. 

Furthermore, by defining a symmetry operator the required memory for efficient 

numerical computations using the method of moments can be reduced drastically by 

formulating a new compact general expression. The validity of the general model is 

verified by the DGF of the specific models, which agrees with other authors' study. 

Further work is in hand to find a reduced general formulation for electromagnetic 

DGF in spherically multilayered media by utilizing the technique presented in this 

chapter. 

The results of this study could be useful for a further analysis of the problem. 
Both GSM (global system for mobile communication) and PCS (personal communi- 

cation services) pose potential problems with regard to interactions with the human 

body and implanted medical devices. Interaction/interference-free antenna design is 

useful and, increasingly, becoming necessary. Since anything that conducts can be 

considered as an antenna and two antennas interact with each other, the interaction 

problem could potentially be solved by using the mobile phone (handset transceiver) 

user (human body) as an antenna and transmitting at frequency levels (for example, 

noise) unharmful to humans. This would make possible the design of antenna-less 

PCS, receiving/transmitting signals only in close proximity to biological antennas 
(users). 



Chapter 4 

Human Torso Model Using 

Cylindrical DGF 

ANTENNA radiation pattern, performance and other characteristics in modern 

wireless telecommunication devices (GSM Mobile system) are significantly 

altered by the presence of the human body as a volume conductor. This chapter aims 

to express a general representation of dyadic Green's function (DGF) for the problem 

of electromagnetic radiation from a source of excitation in the presence of a human 

torso model (multilayered homogeneous lossy dielectric circular cylinder of finite 

length) as well as any part of the body assuming the shape of a cylinder. The whole 

structure is assumed to be uniform along the propagation direction and stationary. 

The DGFs are obtained by employing the method of scattering superposition. 

4.1 Introduction 

Antenna-body interaction is of interest with the use of chest-mounted 418 MHz 

biotelemetry transmitters for medical applications. Short range telemeters being 

developed for medical applications increasingly operate at UHF, taking advantage 

of greater spectrum availability and reduced levels of synthetic noise. Transmitting 

devices built for the patient-end of the radio link are invariably battery powered so 

must be lightweight and compact to ensure user comfort. Such physical limitations 

on packaging mean that even built-in antennas at UHF are electrically small, with 
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correspondingly low efficiencies. Further problems arise as the telemeter is usually 

worn next to the skin at chest or abdominal level, so the transmitting antenna is in 

close proximity to the body tissue. Power dissipation in the body and impedance 

mismatches induced by effects of proximity presents additional system losses, so the 

risk of signal drop-out in the link is increased. The most important operational 

parameters for a closed-coupled antenna-body interaction for biotelemetry are its 

antenna efficiency and radiation pattern in the azimuthal plane. 

This chapter is organized as follows. The complete set of finite cylindrical vector 

wave functions are introduced in section 4.2 and the orthogonal behaviour of these 

functions are investigated in section 4.3. 

In section 4.4, we begin to formulate the problem for a torso model (finite 

circular cylinder) and in subsection 4.4.1, we set out with the case, in which we 

construct the DGF, Gel (R, R ), in terms that constitute the continuous eigenfunction 

expansion (EFE) in which the eigenfunctions are guided in the preferred r and z- 

coordinate directions, using the procedures described in Tai [19] or Collin [21]. This 

expansion also contains an explicit dyadic delta function term which is required for 

completeness at the source point. It is considered as a correction to the general 

solenoidal EFE which is valid outside the source point. 

The procedure required to derive the complete EFE of the general scattering 

DGF for the torso model (finite multilayered circular cylinder), in terms of only 

the solenoidal eigenfunctions is shown to be a simple and straightforward general 

expression and is summarized in subsections 4.4.2 and 4.4.3. 

Subsection 4.4.3, presents the final construction of the DGFs expansions (4.56). 

It is in this development that the principal point of this chapter is identified. 

Magnetic type DGF can be found by invoking duality. Once the electric field is 

obtained the magnetic field is derivable by taking the curl of the electric field, and 

vice versa. 
Conclusions are then presented in section 4.7 summarizing the important points 

contained in this work. 
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4.2 Vector Wave Functions for a Circular Cylinder of Finite 

Length 

tz 
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Torso Model 

X 

Figure 2: Diagram of a Finite Cylindrical Human Torso 

The cylindrical vector wave functions are the building blocks of the EFE of var- 

ious kinds of DGF. They are denoted by Lna, P na, and Q.. 
00 ö na, that are solutions 

of the homogeneous vector Helmholtz equation. The generating functions or eigen- 

functions, which are solutions of the cylindrical scalar wave equation V2'Y + k; kW=0, 

with the differential equation in the cylindrical coordinate system 

a aW 182W 82W a2%y 
r ar 

(r 
r+ r2 a02 + 502 + -az-2 + KZ1Y =0 (4.1) 

with K, the separation constant and k,, being an undetermined wave number. Imple- 

mentation of the method of separation of variables in this system results, in letting 

%F = R, (Dz to be a solution of the basic differential equation, and substitution in (4.1) 

and dividing by Rbz, one establishes 

1 d2R 1 dR 1d1 d2Z 
R+ 

K2 =0 (4.2) 
dr2 + 

rR Tr + 72; j d0 +Z dz2 
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Solving for Z-component, one obtains 

Z=A cos 
FK2- k? z +B sin K2 - k? z (4.3) 

where kr is a separation constant still to be determined. The equation we are left 

with is of the form 

221R dr2 
+ r- dr 

+ k? r2 dý2 =0 (4.4) 

and permits us to solve for the O-component, 

=Ccosk,, O+DsinA (4.5) 

In order to ensure the uniqueness of the 4P function, the function must be single- 

valued for 0<0< 2ir. This condition gives a value of k. which can not be arbitrary 

but has to be an integer and therefore 

k, =n n=0,1,2,..... 

Whence 

4) =C cos no +D sin no (4.6) 

The differential equation for the r-component, 

dR + 
1dýRr 

+ (k? 2 -T2 2)R=0, 
(4.7) 

has for its solution the cylindrical Bessel functions j�(k, r) and the Neumann func- 

tions Y,, (k,. r). The latter solution has been rejected because we require a finite 

solution at the origin. We will designate kr = A, where p,,,,, are the roots of the 

equation j� (x) =0 and A=p,,, 
n 
/a for r=a. 

Finally, the generating function can be written in the form 

463M (h) = . 7n (Ar) ýn ný& hz, (4.8) 
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Here subscripts "e" stands for even and "o" is the odd character of the generating 

functions. h= are the eigenvalues in the z-direction with q=0,1,2,.... and 1 is 

the length of cylinder. j� (Ar) identifies the cylindrical Bessel functions of the order 

n to represent both out-going and in-coming waves. A is the continuous eigenvalue. 

Cylindrical vector wave functions are akin to the Debye potentials. 

LMl\(h) _ VXFgA (4.9) 

Po:, a(h) = Vx['ý, z], (4.10) 

Qoýý, (h) _ 
ký 

Vxvx[ , 
]. (4.11) 

Where z is the piloting vector. To satisfy the symmetrical properties of DGF 

QeflA(h) =k '7xPöA(h) , 
(4.12) 

Pgý (h) =k_VxQeýA(h). (4.13) 

Green's functions for bounded regions are usually given in the form of modal 

expansions. Modal series are unsuitable for use in numerical algorithms which re- 

quire the computation of the electric field inside the source region. In this case, the 

Green's function must be computed at points k close to R, where the convergence 

of the series is very poor due to the singularity of Ge(R, R) at point source R= R'. 

This drawback can be avoided by using expressions where a diverging term, ex- 

pressed in closed form, is extracted from the modal expansion of Ge (R, R ), so that 

the remaining series represents a function finite at point source R= R' Bressan [26]. 

The complete expressions for the solenoidal (rotational or transverse) functions 

are represented by 

j. (Ar)sn¢ = hzr 

_0 Ar Pcoa coe a\h -ý )sinnO. f. hzo 

0 

(4.14) 
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and 

ßh[8 
a lcosn/sin hzj 

la isin cos 

Qoý, A(h) =* ý7� (Ar)l siCos n ýohz 
x, 

(4.15) 

A2 (. fin (Ar)]Bi°n nýe°n hzz 

and the complete expressions for the non-solenoidal (irrotational or lamellar) func- 

tions are 

(A r)]s nnO°n hzr 

Cos nOýPhzý (4.16) LoýA(h) =Tf [n (Ar)}si 

: FhUn (, \r))e n hzz 

where k,, = A2 + h2 and in these vector wave functions one should be careful with 

the sign of the elements in the matrices when cross-multiplying the terms from 

"e" to "o" and vice-versa e. g. "sin sin" always remains negative while "cos cos" 

positive. Also "- cos sin" and "- sin cos" in second elements of matrices in P., and 

P. respectively. In 7 and 4 both "cos sin" and "sin cos" are positive in the first 

element of their respective matrix. For sin cos" in second element of matrix, 

while "+ cos sin" in the third element. For Q., "- cos sin" and "+ sin cos" in the 

elements 2 and 3 respectively. "f" applies the negative to the top line while positive 

to the bottom line. 

Note that in the set of cylindrical vector wave functions only Po-onA do not possess 

the z component. The r", ý and z are the cylindrical unit vectors. These functions 

are defined in the entire space, corresponding to 0<r< oc, 0< rß < 2ir and 
0 <z<l. 

Cylindrical vector wave functions in x and y-directions and their mutual rela- 

tionships are given in Appendix A (A. 2) where Pa(h) and 
Qea(h) 

are derived in 

relation to P,, \(h) and Qoýý(h) which are the even or odd Cylindrical vector wave 
functions in z-direction. 

Löö functions are not required to derive the EFE of the magnetic DGF that 

are solenoidal and satisfy the vector wave equation, but to find the EFE of the 
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electric DGF, then the L r4), functions are also necessary, because Ge(R, R) unlike 

Gm(R, R ), the DGFs of electric- and magnetic-type, respectively, is a non-solenoidal 
00 

dyadic function. 

The method for deriving the magnetic/electric DGF given in the following sec- 

tions for cylindrical configurations used the Ohm-Rayleigh (C,,,, ) procedure. How- 

ever, there exist several alternative derivations, which will not be discussed further. 

4.3 Orthogonal Properties of Vector Wave Functions for a 
Circular Cylinder of Finite Length 

Having defined the vector wave functions, we will now investigate the orthogonal 

behaviour of these functions. A volume integral of the product of the cylindrical 

vector wave functions is clearly zero if n# n' and h# h' because of the orthogonal 

property of the cos no and sin no functions and the Fourier integral relation. Hence 

it suffices to consider the case n= n' and h= h', A X. The orthogonality of these 

functions can be shown below 

I- fff Pee+ýa(h) - 4,, y (h)dV 
v 

r) 
sin2no cos2hz] _ 

1/ [Jfi _ 
hr [j� (Ar) 

Oj 
Or 

v 

- 
hn U. (A'r) 

aj r) 
cos2no cos2hz]] dV 

(1 +6, )� ('hnrdr f dzcos'hz 
r0 (4.17) 

.l 
I. 7,. (Ar)ai" 

'r) 
+. 7,. (, \'r)_ 

Oj. r) 

LJ 

_ 
(1+6 )q r2 

k� 2 

'f 
00 nr ý� (? r). 

9j ('r) 
+ j" (A'rai. 

(Ar) 

0 
(1 + S; ) gn7r2( 00 

I. 7, (Ar)j� (A, r)l =0 k2LJ o 
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The proofs for the other combinations are very similar to the above solution. 
Such as 

JJjPeeflA(h) 
" Qö 

n, a, (h')dV =0 (4.18) 
V 

The normalization factor for these functions can be found as follows. 

I= Jjj2eenA(h) 
" iaenx(h)dV 

V 

JJJ 
[h2 öi (r) a, (r'r) cos2no sin2hz 

V (4.19) 
h2n2 

+2 in (Ar) j� (A'r) sin2no sin2hz 
r2 

+ )t2a'2 in (\r) j� (A'r) cos2no cos2hz] dV, 

The integrations with respect to 0 and z yield 

I_ 
(1 + So )irl (' 

h2 
8j, (Ar) 8j� (A'r) 

2kAka, 
f[ 

Or Or 
0 (4.20) 

hZn2 1 
+( 

r2 
+ A2Al2)j,. (Ar)j� (A'r)J rdr. 

Using the recurrence relations of the Bessel functions, 

j,, (x) = 2n 
[n-1(x) + jn+1(x)] (4.21) 

dj� (x) 
=1 dx 2 

Un-' (x) - , %n+l (x)], (4.22) 

the above integral (4.20) changes into the form 

I 
(l aö )7l 02 

AA'h2(jn-1(Ar)jn-l (AI r) 
ka J w 

0[ 

+ jn+, (Ar)jn+t(A'r)] (4.23) 

+ A2 A'2j� (1 r)j� (, \'r)1 rdr. 

As a result of the integral representation of the weighted delta function [19] given 
by 

00 5j(Ar)j, (A'r)rdr, (4.24) 

0 

2ý 
(1 + 5o`)irl(A'h2 + \A, 2)6(, \ - \') (4.25) 
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Because of the presence of the delta function ö(A - A'), it is not necessary to distin- 

guish A' and k' from A and k in the coefficient in the function. Therefore 

I=2 (1 + 60)irl)\6(A - A') (4.26) 

This is the normalization factor for the finite cylindrical vector wave functions of 

the same species. 

The proofs for the other combinations are practically the same. 

0, n# n' 
JjJPeA(h) 

' Pö n1al(h)dV = or (4.27) 

v 
(1+bo)2. AS(A-A'), n=n' 

Y 

,. -----'-ý., Torso Model 

\00 11X 
11/ 

1/ 11 1I1 

PO EO 

Figure 3: Cross Section of a Human Torso Model 

4.4 Formulation of the Problem 

Consider a torso model represented by a multilayered cylinder in Figure 2 with radii 
"aý" as shown in Figure 3 concentric along z-axis with length "l" is illuminated by 
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an electromagnetic wave. An electromagnetic field is induced inside the system and 

an electromagnetic wave is scattered by the system. 

A time dependence eilt is assumed and suppressed throughout. 

4.4.1 DGF for a finite Length Cylinder of Circular Cross-Section 

Because the dyadic Vx [IJ, (R - 
V)] is solenoidal, it can be expanded in terms of 

solenoidal vector wave functions; P..,,, \ and Q..,,, \ defined previously. 00 
Applying the method of ((S;,, ) and according to the Ohm-Rayleigh procedure, 

an EFE for the source function Vx [Ik(R - 
9)] using the solenoidal vector wave 

functions. Thus we let 

00 1 00 
Vx [IJ(R - 

Rý] = 
JdAJ'dhE Q° 

na(h)A° "a(h) (4.28) 
00 n=O LP: enA(h): enA(/)i 

where A and h are continuous eigenvalues and , 4; -�a(h) and 19--n. \(h) are two un- 

known vector functions to be determined. This is a three-dimensional problem 

with a dyadic singular function, therefore the above equation can be treated as 

the Fourier transform and the Fourier-Bessel transform or the Hankel transform of 

Vx [1 (R -R )]. By taking the anterior scalar product of the above equation with 

Qö 
n, A, (h') and integrating the resultant equation through the entire space and as 

a result of the orthogonal relationships and repeating the same routine with the 

Pö-nfa'(h') we obtain the EFE, 

O[I(R-R)]= 
00 t 00 
JdJ'dhCkA. 

00 n=o 

Qo 
nA(h)P'* nA(h) 

poýna(h)Q ýo 
nA(h) 

(4.29) 

here, 

(2-do) 
l7ra 

(4.30) 

Where the primed functions are defined with respect to the primed variables r', Of 

and z' pertaining to the position vector it. 



4.4. Formulation of the Problem 65 
Salehi-Reyhani, S. M (2001) 

The DGF of the magnetic type satisfy the differential relation 

VxVx&2(R, R) 
-k2Gm2(R, 

R) =Vx[IJ, (R-R)]. (4.31) 

In view of the above relation (4.31), the EFE of Gm2(R, R ), therefore is given by 

00 00 
Gm2(Iii R) =f dA f dh ZCk2 ka 

k2 . 
', na(h)P°n (4.32) 

00 n_0 
[PeeflA(h)'eeflA(h)] 

To perform the integration with respect to A in (4.32) we can write the dyadics in 

an operational form provided has no poles in A-plane. Thus we have 

Qoona(h)P: °na(h) = =', \[j� (Ar)g� (Ar')] 

Ta represents a dyadic spatial operator. 

('____ ý na(h)dA _ 
('kA [j (Ar)k., (Xr')]dA 

Jo A(kä - k2) Jo . X(kä - k2) 

where A2 = (kä - h2) 

ik7r 7'n° [Hn (77°r)j,, (il°r )], r>r, 
2 277 

Tn° ýn ýýl°r)Hnl) (7l°r')], r< r'. 

ik7r f Qt-°17)° ()'0(h)], r> r', 
277° ýo 

n° 
ýh)Pº0°n° (h)], r< r'. 

(4.33) 

(4.34) 

(4.35) 

here 17o = (k2 - h2) and the superscript "1" in P? (h; 77o) and 
Q 

, 7o 
(h; rho 

P'ýno (h; 77, ) and Q'iý, (h; %) is present to indicate the substitution of cylindri- 

cal Hankel function of the first kind (cylindrical Bessel functions of the third kind) 

"H71 (77or)" for "in(770r)" in the generating function W. 

W. 1 (h) = Hnl)(17. r)e; nn. 0 hz, (4.36) 

'I11 (h) = Hnl)(77or') nO hz', (4.37) sin sin 
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These functions are now defined with respect to the cylindrical Hankel function of 

the first kind; 

Qe (h; i, ) _ VxVx[ (4.38) 
a 

Pýýýa (h) ý, ) = O'x[li'ýz]. (4.39) 

The Fourier integration in the equation (4.32) can be evaluated in a closed form by 

the method of contour integration with the aid of residue theorem in the h-plane. 

The final expression for the equation (4.32) is given by 

-G7 2 (Ni R) = 
fdhCAk. 

0 n=o 

11 

(Q ono (h; ilo)P'-.. no (h; 7lo)) 

( gin, (h; ilo)qo°no(h; rlo)] r> r', 

ýQo 
no 

(h; 17. ) '7 (h; i )] 

(Po. 
no 

(h; Flo )e2 
ýo 

(h;, 9�)] r< r'. 

(4.40) 

Where we have preserved the Fourier integration. The plane of discontinuity for the 

magnetic DGF is located at r= r'. 

CA _i(2-ba) 2177! 
(4.41) 

Coefficient CA, depends on the value of öo which is the Kronecker delta function 

defined with respect to n, when 

I1, ifn=o 
(4.42) 

0, ifn o 

By means of method of (G) the expression for (-GI) for a finite cylinder of 
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radius "a" concentric with the z-axis can now be written in the form 

t 00 
R) =-T24(R-R)+ 

f dhLCA 
0 n=0 

[ .) (h; o no (hý ýlo)ý 170 
[Qä! 

n, 
(h; 7lo)Qý; e, i0 

(h; 770)] r> r', (4.43) 

(P--.., 
70 

[Q; ýno (h; 7la)q(') r< r'. 

Comparing the DGFs for a finite cylinder developed here with those presented 

by other authors e. g. Tai [191 for an infinite cylinder, one can notice that they are 

similar in mathematical form but different in the calculations of Ps and Qs and the 

limits of integration for a finite cylinder. 
Here Tr is a dyad (dyadic product of the unit vectors) and 5 (R - 

R) is weighted 

Dirac delta function in three dimensions. This is included explicitly as a correction 

to the general solenoidal EFE which is valid outside the source point. The dyadic 

delta function term at the source point in cylindrical coordinates 

S(R-R)=r, 6(r-r)b(-¢)S(z-z) (4.44) 

4.4.2 Scattering DGFs for an Electric Dipole in the Presence of Cylin- 

drical Torso Model i. e. a Dielectric Cylinder of Circular Cross- 

Section of Finite Length 

When a biological system is illuminated by an electromagnetic wave, an electromag- 

netic field is induced inside the system and an electromagnetic wave is scattered 

externally by the system. Since the biological system is an irregularly shaped het- 

erogeneous imperfectly conducting medium with frequency dependent permittivity 

and conductivity, the distribution of the internal electromagnetic field and the scat- 

tered electromagnetic wave will depend on the body's physiological parameters and 
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geometry, as well as the frequency and polarization of the incident wave. The math- 

ematical complexity of the problem has led researchers to investigate simple models. 

In this chapter the medium is assumed to be homogeneous, isotropic, linear, non- 

dispersive and stationary. 
Having expressed the DGF for a medium in terms of finite cylindrical vector 

wave functions, we may now use that result to set up the scattered terms for the 

cylinder of finite length for a cylindrical torso model. 

DGF for a Single-layer Cylindrical Torso Model 

This can be considered as the contribution of the reflections and transmissions of a 

single-layer cylinder of radius a, concentric along z-axis with length "l" centered at 

0, superimposed in an unbounded homogeneous medium with the radiation source 

located outside the cylinder at M. The medium is characterized by (g, eo), and 

material properties of the cylinder are represented by (µt1, et, ), where subscripts `o" 

and "t" stand for unbounded (open) space and torso, respectively. 

The Scattered DGF term for the exterior of torso in this case has the form 

=10o _ 
1(' 00 

Ces(R, R)=Jdh CA 

0 n=o 
_ 

(4.45) 
[`4ö°noA. 1) (h; 7lo) + Bg°noQ lo) (h; 77,, 'r(Ono (ýý Flo) o 17. 

l00 ý1) l00 1) q(1) [C.. "17. o, 7, 
(h; ilo)+DceDO- 

(n0(h1ýo)] 
öý, 7o(h; no) 

and for the interior region, 

=110 .ý1 
00 

GEs(R) R)=fdh1: CA 
0 n-0 

_ 
(4.46) 

[ao 
nl(h; i)+b. 1? ° O ý1(h; 7)]P(l) (h; i ) 

[c; °,, Qe", 
1 

(h; ýlý)+d? P: e,, (h; i1)}Q7(lno(h; Flo) 

Where the first number of triple superscripts signifies the last inner layer in the 

model and the second number identifies the region where the function is defined, that 

is the observation or field point, and the third number corresponds to the location 



4.4. Formulation of the Problem 69 
Salehi-Reyhani, S. M (2001) 

of the source, i. e., the source point, which in this case denotes by the letter "d'. 

Subscript r7l attribute the coefficients to the observer layer. 
-10o- 

The choice of 15 (h; rho) and 
Q ono (h; rho) as the field functions in Ges (R, R) is 

dictated by the radiation condition that the scattered field must consist of outgoing 

waves, and the choice of P'ý 
, 7o 

(h; i) and 
0 no 

(h; rho) as the excitation functions is 

guided by the expression for Gel(R, R) and the boundary condition that at r= al, 

Ge (R, R) must satisfy the Dirichlet boundary condition which can be satisfied only 

if the excitation functions are the same as that of Gei (R, R) for r< r'. 
-11o- -, The field functions for Gei (R, R) are so chosen because they are the solutions for 

the vector wave equation in region 1, and they must be finite like that of Gel (R, R) 

forr<r'. 

Also the expanded version of a typical combination in DGF can be written in 

the form 

[A2° Pý1) (h; ii) + Boo° Q ö) (h; ijo)] 92, ) (h; Flo) _ o no ono no no ono 

[A, 1.0* (h; ýo) +B 0Q ono (h; 77o)]P'e o 
(h; 770) (4.47) 

o(h; 
'/o) [A , oP`0011o(h; 

'/n)+Beoqo 
ýeu? 

lu 

(. 
°; '/c)]ý, 00n 

I 

Double-layer Cylindrical Torso model 

We consider two concentric cylinders centered at 0, superimposed by an unbounded 
homogeneous medium with the current distribution source located outside the cylin- 

der at M. The medium is characterized by (µ,, e, ), and material properties of the 

outer cylinder are represented by (µßl, e,, ) and those of the inner cylinder by (IL", eta). 
The radii of outer to inner cylinders are al and a, respectively. 

In this case the Scattered DGFs terms can be shown by 

=20o 
1 00 

Ge8 (R, R) =f dh Cx 
0 n=0 

(4.48) 
[`ýo 

ho °no(h; %)+B. ° 
, 
Ol,, (h; 71°)]P' ,° 

[C. Y, ol g6,1, (h; 77°) +Da! ýP2 (h; ri0))Q'<ino(h; i ) 
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-910- 
1 00 

ß Ges(R, R)=fdhEC, 
0 n=o 

[A210 
1o 

771(hß ýlý) + 8e l ý; 
71(h; 71 ý) P, (ono (h; ? lo) 

a? 01 l 
]50.171 (h; 7l1) + boom g(h; 77, ) (4.49) 

21o -(1) a1o -(1) C o. ý 
Qle. 

771(h; u1)+Dýe771Peýnl(hýýlý) Qº(1> (h; 7la) `no 10 
1Q; ý711(h; 771)+ . 

nll'ýn, 
(h; 771) ) 

and the final inner layer gives 

l 
Ges 

o0 

(No 
0 n=0 

__ 
(4.50) 

[aöön2 P ßn2 (h; 
z) + be 

'12 Cýn2 
(h; ýla))Pºýýno (h; no) 

[ý. o2Q; c172(h; 7/z)+ . n2P-°n2(h; 77z)]e(1)ti 

1 

o(h; 
17. ) 

-21o_ ; 
The choice of the field and excitation functions in Gei (R, R) are governed by 

the fact that the electromagnetic fields consist of wave-modes propagating outwards 

and inwards. Therefore, 

=21o 20o =22o 
Ges = Ges + 13 Ges 

" 
(4.51) 

Trilayer Cylindrical Torso Model 

In this case three concentric cylinders centered at 0, superimposed by an unbounded 

homogeneous medium with the radiation source located outside the cylinder at R' are 

considered. The material properties of the outer to inner cylinders are represented by 

(µt1, etl), (µt2, ef, ), and (µt3 6ea), respectively. The radii of outer to inner cylinders 

are al, a� and a,, respectively. 

The Scattered DGF terms for GCB and Ges are the same as those in the last 

section, and the rest can be expressed by 



4.4. Formulation of the Problem 
Salehi-Reyhani, S. M (2001) 

71 

e. g. for the middle layer, 

-32o -1 
co 

Ge8(R, R)=fdh>2CA 
0 n=0 

A3 
o20 

7t) (h; 112) 
172 172 

+ BO, 2, ' 
. 
1O 

(h; 772) 
ryý 

pý1) (h ) P 
rn0 n2 

(h; 772) aöýn i Qýon (h; + vRý17 ßi2) 
1 'lo ( no (4.52) 

2 Z 2 

Coe 2oý' 
\h7 2) (h; 1)2) en + DO O7 

17 2 

eý Qn (h; 1)2) 
z 2 

+ 2ý Pe`na(h; 1)2) 
ý (h; 710) 

a 2 2 
and for the inner layer, 

1 00 =330 
Ge9(R, =fdhECA 

0n =O (4.53) 
[a33o j5- 

, 1g 
(h; %) _ Qg071 (h; %)] +b ý0 _ P (l) (h; rlo) 

n 
(h; 7]3) [ýý° Q; e 

3 0 
+ ý° Pý`n (h; ýs)] Qý. ) (h; Fl ) o ýIg 8 e ýºg 8 o 0 'l. 

Quad-layer Cylindrical Torso Model 

Similarly, the case of four concentric cylinders centered at 0, superimposed by an 

unbounded homogeneous medium with the dipole source of radiation located outside 

the cylinder at R' is considered. The material properties of the outer to inner 

cylinders are, respectively, represented by (p, c1), (µt� (pa, e, 3), and (pa, 6t4). 

The radii of outer to inner cylinders are al, a2, a3, and a4 respectively. 
=40o =41o =42o 

The scattered DGFs terms for Ge, 
, 

Ges 
, and GE, are the same as those in the 

previous section and the rest can be presented by 

=43o 
! 
(' 

00 

Ges (R' R) =J dh > CA 
0 n=O 

A0 713 !0 
71g 

(h; 77g) + BQ Q (h; (h; 77., ) 
Pý(oý (h; Flo) 

a.,, 7 173 (h; 113) + boo. -oj (h;, 13) (4.54) 

430 -(1ý 430 
;e n9V!. 

) 
n3 - '13 

(h; 773) + Do! f e 113 
(h; 77, ) 

Qº(1) (h; 77. ) 
C;? 13 o ns 

(h; GIs) + ý, °1 
3 
P<<r13 (h> ? Is) 
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The final inner layer gives 

1 00 
=44o 
Ges(R, R)=fdhECA 

0 n=0 

__ 
(4.55) 

[aeo Po n4 
(h-, l4) + bt4o Qgýn4 (h; 714)]ý'ý(Ono (h; Flo) 

[q!, 074 Q; en4 (h; n4) + do. n4Poe, 74 (h; 774)1QýýýL (h; 770) 

4.4.3 General Expression of Scattering DGFs for an Electric Dipole in 

the Presence of a Multilayered Cylindrical Torso Model 

Observation and analysis of the above expressions for the scattering equations (4.45) 

to (4.55) allows an efficient formulation of the general scattering dyadic Green's 

function (DGF) for a multilayer cylindrical torso (Figure 3) as: 

_Lfo _l 
00 

Ge3(R, R)=fdh1: CA 
0 n=0 

ALf0 p(i) (h; i )f) (1 - öL) f 
-(1) ,f Lf, Bý°nfQa°nf (h; ref) 

ýo17° 

o 
1a! 0 e +lf 

(h; i7f ) 
(i-sf) 

f_ ý1ý ! 
7fQý°ýf 

(hi 17f) 

Lfo Cie nfQe. 
(h'7 iý)) 

L 

D. ýnfnf (h;, If) 
Q'ý6 (h; rlo) 

(h; i7f 6fo) 17 
Lfo Lt Pý°+h (h; tIj 

(4.56) 

Where ký = w2(µfej ) and rj. = (kk - h2). 

For the general case, when the current source is located in different layers of the 
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media, one obtains a different general expression of DGF. 

oo 
-Lfso _ Ges (R' R) Sdh>CA 

0 n=0 

i ) A; fn 
'of 

(h; 7Iss 
J(1-bf 

BCfnsQ.; 7 
(h; als) eön. (h; , )s) s 11(1 

- bL8 ), 

aöfn Po°ns (h; rif) 

1(1- 
b°)P(h; CJs) 

(1-6o) 
býfnsQý 

nf(h; i)s 

1,, Wo') (h; 2l ) öý ns (L 
- cSf) 

DLb 152. ) 

7 
(h. ý. << ; ýIf) 

ff (1 - SL)q) (h; 779) 8 0' na 

(h; 0 

4!, * 
f cý nr 

(h; ref ) 

(4.57) 

"L" is the symbol for last inner layer in the torso; "f ", (f = 0,1,2, ....., 
L) is the 

field point or observer layer. Superscript/subscript "o" stands for source point at 

open space. Subscript "s" is scattering, while its superscript represents the layer at 

which the source is located. 

6f and 6f are the Kronecker delta functions, where 

1, if L/o =f (4.58) 
0, if L/o 36 f 

Acf° , a, f° , BLf° , bLf° , Cee LO 
, cýLfO , DLf° , and do' ° are the amplitude coefficients qf 6 17f 

O i, a 17f C ýiJ 6 T)r e "f G ýr CO 

of scattered DGF to be determined by applying the boundary condition at the 
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interfaces r= a� (l = 1,2, ..., L). These boundary conditions are 

-Lfo =L(f+1)o 
rx Ge =f x Ge (4.59) 

and 

1 =Lfo 1 =L(f+l)o 
rxVxGe = TxVxGe (4.60) 

Af 1(f+l) 

All the local reflection coefficients are given by 

R 
fH =1 N (Os+17I, HfHt+1 , s - Vs71s+1Hs+1, fHss) (4.61) 

R 
fK -N 

(t9s+, 77s41i +1, s - 'ýsýs+l. +l, sis) (4.62) 

And for the local transmission coefficients, 

TE H_ -2it9f21+ý (4.63) T; i (irr&fr )N 

E, M 
- 

-2it9f+lnlf (4.64) 
(7r77s+l i )N 

Where we have assumed the following abbreviations. 

: =. ln(17fat), 

HR = Hn1)(71j(Xtýý 

3R =j: 
(rfa, ) 

Hý = H'(1) (77, a 

The superscripts E and H in the above equations denote TM and TE waves, whereas 

the subscripts P and F define the centripetal and centrifugal reflection or transmis- 

sion respectively. Here 

N= Oi+lni4r+,, fijr -'3s71r+, ýfHr+,, f (4.65) 

Besides t9 represents e or p in the E (TM) or H (TE) mode representations respec- 
tively. 

Furthermore j� (x) =xj,, (x) and fl. (') (x) = xh;, iV (x). In the above, the Wron- 

skian of the cylindrical Hankel functions is 

2i 2i 
= 41Hf,, r - Hr+l, 

rj»,. 
(4.66) 
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If the source is located outside the cylindrical body for axial symmetry n=0, 

the scattering DGF is given by 

i) For the case of two layered media the coefficients are 

Aioo = DH 
no Fl 

ioo = TH Oöonl Fl, 

0100 = RE 
170 Fl 

clOo rrE 
onl- 'Fl 

Where RF H and TF; H can be obtained from (4.62) and (4.64) by letting f=1. 

ii) For the case of three layered media the coefficients are 

22o Ci 
P TP T 2ýo c ` - 

Tp 
- e '72 1- RF1RE' ' nl (1 - RF1RP2)2 

22o a 
TPA 21o a ° 

TP2 
0°''2 1- RFlRP2' '71 ° (1 - RF1RP2)2 

2ýo C ` 
RFJTP2 

' C20 = RE 
RF1TF2TP2 

- F2 + '7, ° (1- RF1RP2)2 ° 77° 1- RF1RP2 

z1o A ° 
RF1TP2 

' A20o - RH 
RFITF2TP2 

- F2 + ° '"l (1 - RF1RP2)2 ý n° 1- RFlRp 

jH and TAH can be obtained from (4.61) to (4.64) T Where RF H RE. H and TF2H , P 

by letting f=1. 

The results for these specific cases agree with those given by other authors [811, 

showing the validity of our DGF representation. 

We can obtain the total DGF by applying the principle of scattering superposi- 
tion, 

cLfo - -o_ 
GE1 (R, R) =atG�'i (R, R)+Q, 

B 
(N'R)" (4.67) 

If our concern is only with the region exterior to the source, then the singu- 

lar term, which is important only in the source region can be dropped from the 

expression for the Green's function. 

When more than one source is present in a system, the field of a source is 

affected by the presence of others, i. e. there is some interaction which needs to 

be taken into account. Moreover, the above expression can be used to give a more 

accurate field model on the kind of scatterer (such as human torso/head) to take into 
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account the radiation condition by the sources inside the scatterer due to moving 

cells bioelectromagnetics [82] causing internal electromagnetic fields, resulting in the 

E(total 
sources) 

E(external 
sources) + E(internal 

sources) 
(4.68) 

4.5 Magnetic DGF in the Antenna-Torso Configuration 

The principle of duality states that once the electric DGF is obtained, the magnetic 
DGF is derivable by interchanging the field functions A. -+ k4. and Q. -> kP.. GA CG 00 00 

and omitting the singularity term contribution and vice versa. 
On the other hand the corresponding total magnetic DGF at any point in the 

system can be calculated from Vx Ge = Gm, bearing in mind the discontinuous 

nature of magnetic DGF across a point source at R=R and the Ampere-Maxwell 

equation relating Ge and Gm in the dyadic form i. e.: VxG, a = he(R - 
R) + k2Ge. 

4.6 Electric and Magnetic Field at any Point in the Config- 

uration 

Since electromagnetic fields are vector fields, the general wave equation is a vector 

wave equation. For an homogeneous isotropic medium, the general form of the 

vector wave equation is given by: 

pxpxEf-kEf=(iwµfJ. -VXJm)Sf (4.69) 

VxVxH2-ktHf=(iw¬fJ. +VxJ. )bf (4.70) 

The above equations follow directly from duality principle [19], [21]. To obtain 

the electromagnetic fields due to these electric and magnetic current distributions, 
=kfs- -º =Lfa - -, one first constructs G. (R, R) and G. (R, R ), the electric and magnetic dyadic 

Green's functions respectively. These two DGFs are the solutions of the following 

dyadic differential equations (taking into account the discontinuous nature of mag- 

netic or electric DGF with respect to electric or magnetic dipole respectively at 
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R= R' i. e., Vx1 &JR - 
R) =0 and in the case when the source term Jm =0 on 

the surface): 

VxVxGLf8(R, R)-k2G. (R, R)=iwdIb. R-R)6 /4.71 
mfm .f`) 

Here a unit current density at R in the direction of e or m has the space form J. JR- 

=Lte- -º R ). This requires both DGFs satisfy the non-solenoidal condition V (R, R) 54 0 

because 

D. E= (4.72) 
e iwe 

and 

O. H= Pm 
=V 

. J,. 
(4.73) 

µ iwµ 

Therefore the use of DGF technique allows us to determine the expansion of the 

electric and magnetic fields in a body (cylinder) /antenna configuration in a direct 

and elegant manner. 

For any current source with current density function 7(R) located outside the 

body, the electric or magnetic field radiated by such a dipole can be evaluated using 

the formulae, 

E °(R) = iwµfJJJ Efi (R, R) 
" J(R )dV', (4.74) 

v 
Lf°(R) 

= iwýf ff f°(R, R) 
" J(R )dV'. (4.75) 

These signify the computation of the E and H-fields in the structure, which states 

the superposition of the incident field E_ (R) or Hi (R) and the scattered field E8 (R) 

or H9(R) is given by 

ELf°(R) = 
rO°(R)bf + E; f°(R), (4.76) 

Lf°(R) 
= Hoo°(R)a° + HLf° R. 4.77 
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We have derived general electromagnetic representations for a human torso model 
(in simple form for the multilayered homogeneous lossy dielectric circular cylinder 

of finite length) in order to evaluate deterioration of the antennas performance and 

obtain the rates of RF energy deposition (SAR), the power absorbed, the total 

power radiated, the thermal emission and the current induced on a scatterer. The 

representations may be used to optimize antenna design, ascertain potential health 

hazards, and compliance with standards legislation. The DGFs are obtained by 

employing the EFE and the method of scattering superposition. 

Scattering from complex bodies is often used for detecting possible internal in- 

homogeneities and non-symmetries. By observing the field scattered by a body on 

which radiation is impinging it is possible to obtain information about its internal 

structure. Investigation of cells and of biological bodies, remote sensing techniques 

and detection of imperfections inside optical waveguides and lenses are straightfor- 

ward examples. 

The results of this chapter could be useful for a further analysis of the problem 

of an implant such as heart pace-maker embedded in the body and biotelemetry 

transmitters for medical applications and could easily be expanded so as to handle 

any scatterer having finite radius and length. They can also be applied to problems 

of optical fibers and waveguides for the investigation of inhomogeneities or obstacles 
inside them or by considering the cylinder- as an excitation or scatterer. 



Chapter 5 

Electromagnetic DGF of an 

Implantable Medical Device Model 

COMPREHENSIVE understanding of EM interactions between implanted hu- 

man and modern personal communication antennas is essential for the hand 

held transceiver design. Since the human head is usually located in the reactive or 

near-field region of the antenna, the performance of an antenna may be severely af- 

fected by the presence of conducting medical devices/prostheses in the head. Also, 

significant portion of the antenna delivered power may be absorbed in the head. 

This chapter extends the method developed in the previous chapter to outline a 

general expression of dyadic Green's function (DGF) for the problem of electro- 

magnetic radiation from a source of excitation in the presence of a finite length of 

perfectly conducting circular cylinder of any size as well as of resonant length, which 

is valid everywhere, including the source region. The whole structure is assumed to 

be uniform along the propagation direction. The DGFs are obtained by employing 

the method of scattering superposition. 

5.1 Introduction 

Although electromagnetic scattering by a finite cylinder is a well known canonical 

problem, published work does not include the effects of arbitrary placed source 

point. The derivations presented here are motivated by the need to understand 
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the behaviour of antennas near to or embedded in living tissue. The eigenfunction 

expansion (EFE) of DGFs in electromagnetic theory provide a systematic means 

of constructing and interpreting these dyadics. The pioneering work by Tai [20] 

has set the stage for most of what has been achieved over the last two and a half 

decades. The expansion of DGFs in terms of the Hansen [25] vector wave functions 

must be carried out carefully in order to ensure that one is dealing with a complete 

expansion. 

The organization of this chapter is as follows. The complete set of cylindrical 

vector wave functions are introduced in section 5.2. This material is included here in 

order to explicitly define notation and to call attention to a few points in connection 

with these expansions. 

In section 5.3 we begin to formulate the problem for a finite circular cylinder 

and in subsection 5.3.1, we set out with the case, in which we construct the DGF, 

Gel(R, R ), in terms that constitute the continuous eigenfunction expansion (EFE) 

in which the eigenfunctions are guided in the preferred r and z-coordinate directions, 

using the procedures described in Tai [19] or Collin [21]. This expansion also contains 

an explicit dyadic delta function term which is required for completeness at the 

source point. It is considered as a correction to the general solenoidal EFE which is 

valid outside the source point. 

The procedure required to derive the complete EFE of the scattering DGF for 

the finite circular cylinder, in terms of only the solenoidal eigenfunctions is shown to 

be a simple and straightforward general expression and is summarized in section 5.4. 

The DGF for a finite conducting cylinder, G, (R, R) can be constructed from the 

principle of the superposition, where it satisfies the boundary conditions. 
Magnetic type DGF discussed in section 5.5, can be found by invoking duality 

or once the electric field is obtained the magnetic field is derivable by taking the 

curl of the electric field, and vice versa. 
Conclusions are then presented in section 5.7 summarizing the important points 

contained in this work. 
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5.2 Vector Wave Functions for a Circular Cylinder of Finite 

Length 

The cylindrical vector wave functions are the building blocks of the EFE of various 

kinds of DGF. They are denoted by Lööna, P..,,, \ and ööthat are solutions of 

the homogeneous vector Helmholtz equation. The generating or eigenfunctions, 

which are solutions of the cylindrical scalar wave equation V2IF + k2 T=0, with the 

differential equation in the cylindrical coordinate system 

aW 1 82W aýW 82 
r ar 

(r 
ar) + r2 5ý2 + a02 + 9Z2 + K2ýY =0 (5.1) 

with K, the separation constant and kA being an undetermined wave number. Im- 

plementation of the method of separation of variables in this system finally results 

the generating function [29] in the form 

` (h) = j�(ýr) sinng5J 
hz, (5.2) 

Here subscripts "e" stands for even and "o" is the odd character of the generating 

functions. h= are the eigenvalues in the z-direction with q=0,1,2,.... and l is 

the length of cylinder. j� (. \r) identifies the cylindrical Bessel functions of the order 

n to represent both outgoing and incoming waves. A is the continuous eigenvalue. 
Cylindrical vector wave functions are akin to the Debye potentials. 

Lea (h) =v, (5.3) 

Pg, a(h) = Ox[z], (5.4) 

Qe A(h) _ý ýxOx[ z]. (5.5) 

Where z is the piloting vector. 

The complete expressions for the solenoidal (rotational or transverse) functions 



5.2. Vector Wave Functions for a Circular Cylinder of Finite Length 82 
Salehi-Reyhani, S. M (2001) 

are 

T7�(Ar)"'nos 
hzr Cos 

P. (h) _ -(ej r )e°ýnOe°nhz (5.6) 

0 

8' ar cos sin ýhý ýsinnýrýhz7 

Qoý+A(h) = hr ý. 7n (%ýr)]Consnob hzO 
,\ 

(5.7) 

A2[� (Ar)]8 nnO; °n hzz 

And the complete expressions for the nonsolenoidal (irrotational or lamellar) func- 

tions are 

Un (Ar)]s nnisjhzr" 

Cos nOe°n hzý (5.8) Loý, a (h) _* [j.. (Ar)]B 

=FhUn (AT )]e nn¢ýhzz 

where k, \ = A2 + h2 and in these vector wave functions one should be careful with 

the sign of the elements in the matrices when cross-multiplying the terms from 

"e" to "o" and vice-versa e. g. "sin sin" always remains negative while "cos cos" 

positive. Also "- cos sin" and "- sin cos" in second elements of matrices in Pe, and 

Po. respectively. In and L,, both "cos sin" and "sin cos" are positive in the first 

element of their respective matrix. For l.,, "- sin cos" in second element of matrix, 

while "+ cos sin" in the third element. For Q., "- cos sin" and "+ sin cos" in the 

elements 2 and 3 respectively. "f" applies the negative to the top line while positive 

to the bottom line. 

Note that in the set of cylindrical vector wave functions only Pöö�a do not possess 

the z component. The f, ý and z are the cylindrical unit vectors. These functions 

are defined in the entire space, corresponding to 0<r< oo, 0<< 21r and 
0 <z<l. 

The volume integral of the product of the cylindrical vector wave functions is 

clearly zero if n0 n' and h h' because of the orthogonal property of the cos no and 

sin no functions and the Fourier integral relation. The derivation of the orthogonal 

properties of these vector wave functions were investigated in the previous chapter. 
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5.3 Formulation of the Problem 

Consider the cylinder in Figure 4 of radius "a" concentric along z-axis with length 

"l" is illuminated by an electromagnetic wave. An electromagnetic field is induced 

in the system and an electromagnetic wave is scattered by the system. 
A time dependence ei" is assumed and suppressed throughout. 

4z 

1 
1 

1 

1j 

1 
1 

Figure 4: Diagram of a Finite Circular Cylinder 

5.3.1 DGF for a finite Length Cylinder of Circular Cross-Section 

Because the dyadic Vx [Ik(R - 
9)] is solenoidal, it can be expanded in terms of 

solenoidal vector wave functions; Pena and Qööna defined previously. 
Applying the method of (G) and according to the Ohm-Rayleigh procedure, 

an EFE for the source function Vx [I£-(R -7 )] using the solenoidal vector wave 
functions can be 

00 1 24" 
n a(h)A`ý°na(h) xfdA$dh (5.9) 

0o n=o Pgana(h)Bö°na(h) 

where A and h are continuous eigenvalues and A: o�a(h) and B . na(h) are two un- 
known vector functions to be determined. This is a three-dimensional problem 

with a dyadic singular function, therefore the above equation can be treated as 
the Fourier transform and the Fourier-Bessel transform or the Hankel transform of 
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Vx [Ik(R -R )]. By taking the anterior scalar product of the above equation with 

Q'. -n, A, (h') and integrating the resultant equation through the entire space and as 

a result of the orthogonal relationships and repeating the same routine with the 

Pö-nix(h') we can obtain the EFE, where we have preserved the Fourier integration. 

The plane of discontinuity for the magnetic DGF is located at r= r'. The expres- 

sion for (Gl) for a finite cylinder of radius "a" concentric with the z-axis can now 

be written in the form 

00 

Gel(R, R) _ 
T26(R-R)+fdhECa 

0 n=0 

[P.. (h; ii0)P'ý no (h; rlo)] 

(h; rlo)Q'0 170 (h; i70)] r> r', (5.10) 

J rP-o 
no 

(h; i'lo)Pö, (h; 7lo)1 

ýQ; "n, (h; rlo)7<<+ºo (h; rlo)] r< r'. 

where 

CA _ 
i(2 - ö) (5.11) 

2lr7! 

Coefficient CA depends on the value of 8o which is the Kronecker delta functions 

defined with respect to n, when 

11, ifn=o 
Sö = (5.12) 

to, if n#o 

Here ff is a dyad (dyadic product of the unit vectors) and ö(R - 
R) is weighted 

Dirac delta function in three dimensions. This is included explicitly as a correction 

to the general solenoidal EFE which is valid outside the source point. The dyadic 

delta function term at the source point in cylindrical coordinates 

a(R-R)= -r)a(o- )a(z-z) (5.13) 
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Comparing the DGFs for a finite cylinder developed here with those presented 

by other authors e. g. Tai [19] for an infinite cylinder, one can notice that they are 

similar in mathematical form but different in the calculations of Ps and Qs and the 

limits of integration for a finite cylinder. 

5.4 Scattering DGF for a Finite Conducting Cylinder of 

Circular Cross-Section 

When a perfectly conducting cylinder of the same size as above is illuminated by an 

electromagnetic wave, the scattered terms can be written in the form 

t 00 1, (1) (h. p, (1) h. 
GE8(R, R) = 

jdh>CA. aý°nýý ý)_ý(1) ( ý1) (5.14) 

Applying the principle of scattering superposition, we obtain 

GEI(R, R) =Ge1(R, R)+&G R) (5.15) 

Where we consider the function for a finite circular cylinder in a region 0<r< oo. 

After applying the boundary condition one can determine the unknown coefficients. 

In order to satisfy the boundary condition at interface r=a, 

rx [Peo,, (h; i)P(ö; 1(h; ij) + a0 (h; (h; ii)] (5.16) 
r=a 

rx[: e,, 1; iJ)Q'<<n(h; 77) + ß: e,, 
n(h; 

n)i7ýýý(h, ? J)} (5.17) 
r-a 

Tx {Pe017(h; 
i) + ao (h; ii)] =0 (5.18) 

r=a 

rx rQ--, 
I(h; 77) (h; ýl)ý =0 (5.19) 

r=a 

substituting for Po ,ý 
(h; n) and Pýö; 

7 
(h; 77) 

P; o17 (h; i) = VxU. (r/r) 
sin n¢ sinhzz], (5.20) 

PO 71(h; 77) = Vx[Hnl)(7ºr)e, nno sin hz2], (5.21) 
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aý n« a n« in equation (5.18) produces aöo,, _- ýaxnl ýn«))/ahn«) ' 
Similarly inserting for Qö., 

7(h; 77) and Q.., 
7 
(h; 77) 

Q.. 
77(h; 77) = 

-VxVx[jn(rgr)8ÄnOcoshzz], (5.22) 

Q.. »(h; 
i) = 

VxOx(Hnl) (r7r)s°6nO cos hzz], (5.23) 

in equation (5.19) produces Qeoe, n =- (Hnl (n«)) 

5.5 Magnetic DGF in the Antenna-Prosthesis Configura- 

tion 

The principle of duality states that once the electric DGF is obtained, the magnetic 

DGF is derivable by interchanging the field functions R. -+ kQ.. and Qe. 4 kP« 
4W 00 GG 00 

and omitting the singularity term contribution and vice versa. 

On the other hand the corresponding total magnetic DGF at any point in the 

system can be calculated from VxG, = G,,,, bearing in mind the discontinuous 

nature of magnetic DGF across a point source at R=R and the Ampere-Maxwell 

. equation relating Ge and G�, in the dyadic form i. e.: V xi7% = I3(R - 
R) + k2G, 

5.6 Electric and Magnetic Field at any Point in the Config- 

uration 

The use of DGF technique allows us to determine the expansion of the electric and 

magnetic fields in a cylinder/antenna configuration in a direct and elegant manner. 

For any current source with current density function 7(R) located outside the 

cylinder, the electric or magnetic field radiated by such a dipole can be calculated 

using the formulae, 

E(R) = iwµ, f Jf=GEj(R, R) 
" J(R )dV' (5.24) 

v 
H(R) = iweo f ff=Gmj(R, R) 

" J(R )dV'. (5.25) 
v 
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These signify the computation of the E and H-fields in the structure, which 

states the superposition of the incident field j(R) or HA(R) and the scattered field 

E3 (R) or H9 (R) is given by 

E(R) = Ei (R) + E$(R) (5.26) 

H(R) = Hr(R) + H8(/ ). (5.27) 

5.7 Concluding Remarks 

General expressions have been derived in simple form for the finite conducting cir- 

cular cylinder (medical devices/prostheses) of any size and of very small radius 

(resonant length). The DGFs are obtained by employing the EFE and the method 

of scattering superposition. 

The results of this chapter could be useful for a further analysis of the problem 

as a thin wire or an implant such as heart pace-maker embedded in the body and 

biotelemetry transmitters for medical applications and could easily be expanded so 

as to handle any scatterer having finite radius and length. 

They can be applied to the problems of optical fibers and waveguides for the 

investigation of inhomogeneities or obstacles inside them or by considering the cylin- 

der as an excitation or scatterer. They can also be of use in the study and design 

of antennas of high frequency. 

The usefulness of the present technique obviously requires comparison with nu- 

merical and experimental results. It is envisaged that future work will address this 

aspect of the problem in more detail. 



Chapter 6 

Electromagnetic Modeling of 

Implantable Medical Devices 

Using Cylindrical DGFs 

GSM (global system for mobile communication) and PCS's (personal commu- 

nication services) can interfere with implantable medical devices/prostheses 

particularly for systems using TDMA (time-division multiple access) and cause pos- 

sible malfunction. Also the performance of an antenna is significantly altered by 

the presence of conducting medical devices/prostheses. Development of a computa- 

tional algorithm to perform a systematic evaluation of the EM interactions between 

antennas and biological systems embedded with one or more prostheses is of great 

importance. The objective of this chapter is to outline an alternative general expres- 

sion of dyadic Green's function (DGF) for the problem of electromagnetic radiation 

from a source of excitation in the presence of a finite length "l" of perfectly con- 

ducting thin circular cylinder of radius "a" concentric along z-axis of any size as 

well as of resonant length, which is valid everywhere, including the source region. 
The whole structure is assumed to be uniform along the propagation direction. The 

advantage of the proposed analysis is its simplicity and efficiency in computation. 
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6.1 Introduction 

The understanding of the effects of perfect conducting prostheses on the absorbed 

power distribution within a biological system as an arbitrary placed source point is 

essential for the modern cellular phones and new implants design. The derivations 

presented here are motivated by the need to understand the behaviour of antennas 

near to or embedded in living tissue. Interaction of electromagnetic fields (EMF) 

with living systems and public concern regarding their allegedly/possible harmful 

health effects have been of current research interest. These investigations are moti- 

vated by two relating factors: 

ia need to evaluate the specific absorption rate (SAR) (the rate of RF energy 

deposition) in the user's body, in order to evaluate potential health effects and 

compliance with standards, and; 

ii the antenna performance in the proximity of the user's body and to develop 

better antenna designs whose performance is less affected by the biological 

systems and produce lower SAR. 

Several theoretical studies have analyzed these models in Reyhani [28,29,31]. This 

chapter is organized as follows. The complete set of cylindrical vector wave functions 

are introduced in section 6.2. In section 6.3, we construct the DGF, Gei in 

terms that constitute the continuous eigenfunction expansion (EFE) in which the 

eigenfunctions are guided in the preferred r and z-coordinate directions, using the 

procedures described in Tai [19] or Collin [21]. The procedure required to derive 

the complete EFE of the general scattering DGF for the infinite circular cylin- 
der, in terms of only the solenoidal eigenfunctions is shown to be a simple and 

straight-forward general expression and is summarized in section 6.4. The DGF for 
V a semi-infinite cylinder, GE1(R, R) is then constructed from the principle of the 

superposition, where it satisfies the boundary conditions. Section 6.5, presents the 

final construction of the DGFs expansions. It is in this development that the princi- 
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pal point of this chapter is identified. Conclusions are then presented in section 6.8 

summarizing the important points contained in this work. 

6.2 Cylindrical Vector Wave Functions 

The vector wave functions are the building blocks of the EFE of various kinds 

of DGF. They are solutions of the homogeneous vector Helmholtz equation. The 

generating functions, which are solutions of the cylindrical scalar wave equation 

V2xF + käW=0, can be written in the form (h) = j�(Ar)e°'ngeihz. k,, is an un- 

determined wave number and subscripts "e" stands for even and "o" is the odd 

character of the generating functions. Where j� (Ar) identifies the cylindrical Bessel 

functions of the order n to represent both out-going and in-coming waves. A is the 

continuous eigenvalue. Cylindrical vector wave functions are akin to the Debye po- 

tentials. P3,, A(h) = Vx['I 2] and Qýa(h) =- VxVx[ z]. Where z is the piloting kj\ 

vector. These functions are defined in the entire space, corresponding to 0<r<a, 

0<0< 27r and -oo <z< oo. 

i 
i 
i 
i Ii 

J 

Figure 5: Diagram of a Finite Circular Cylindrical Implant 

The orthogonal properties of these vector wave functions have been discussed 

by Tai [19] and Collin [21]. 
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6.3 DGF for an Infinite Length Cylinder of Circular Cross- 

Section 

Because the dyadic source function Vx [IS(R-R )] is solenoidal, it can be expanded 

in terms of solenoidal vector wave functions Po ,, a and Qöna. Applying the method of 

(Gm) and according to the Ohm-Rayleigh procedure, an EFE for the source function 

Dx[ 5(R -R )] =fa 
00 

dA fAQ, n, \(h)Ao(h) (6.1ý 
0 -00 n=o P; 

nA(h)B; nA(h) 

where A and h are continuous eigenvalues and Ag, 
aa(h) and B; na(h) are two unknown 

vector functions to be determined. This is a three-dimensional problem with a dyadic 

singular function, therefore the electric DGF for infinite conducting cylinder can be 

written as 
a 00 

G,, (R, R)=- Zö(R-R)+ JdA>C,, 
0 n=0 

POn. \(±hl)P'; n. \(ýhl) 
(6.2) 

Q; 
na(±h1)Q7; nx(=Fhj) z< z', 

CA = 4ýý Ahl depends on the value of öo which are the Kronecker delta functions 

defined with respect to n and Ix is the normalization factor. Poles of integrand are 

h= f(k2 -a2)ä = ±hl. 

6.4 DGF for a Semi-Infinite Length Cylinder of Circular 

Cross-Section 

The scattered terms for cylinder of infinite length is 

aPona(1tj)Pý; na(1ti) (6.3) aön 
a Gea(R, Rý = 

fdA>C 

0 n--0 ß 
n. \Q; n, \ 

(hl)e; 
nA(hl) 

Applying the principle of scattering superposition, 

GEýýRýRý =GjR, R)+Cý, (R'R) (6.4) 
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Where we consider the function for a semi-infinite circular cylinder in region 0< 

z< oo. After applying the boundary condition at interface z=0 one can determine 

the unknown coefficients. 
zx [Pona(-lt1) + allnA' flA('1)Iz=o =0 (6.5) 

zx [Q; 
na(-hl) + Q; 

nAQ; nA(hl)1: _o =0 (6.6) 

Equations (6.5) and (6.6) produce a.. .,,, \ = -1 and Mona =1 respectively. Further- 

more, if we introduce vector wave functions 

Pýao(z) =Vx[j,, (Ar) nOsinhizz], (6.7) inn 

Qý,, Ae(z) = 
kVxVx[jn(Ar)$än¢coshlzz]. 

(6.8) 

then the expression for electric DGF for semi-infinite cylinder (6.4) can be written 
in the following compact form: 

6 00 

GE1(R, R)_- 2ö(R-R)+ fdA (-2i)CA 
0 n=0 

Pena (hl)P'$nao (z') 

L2QmA(hj)'nAe(. )] (6.9) 

5enAo(z)PenA(hl) 

ZQonae(z)Q'ona(hi) z< z'. 

6.5 DGF for a Finite Length Cylinder of Circular Cross- 

Section 

The electric DGF for a finite cylinder in Figure 5 can now be derived with the aid 

of equation (6.9) in the form 
FL 7 =eao - -1=300 - ýº GEi ýR, R) = GES ýRý R) + GES. ýR, R) X6.10) 

coo 
The scattered representation GEI. can be assumed 

=so0 a 00 A \oP° -naozP. °nao(Z1) GE1, (R, R) = 
fdaE-2iC, n_ (6.11) 
0 nip 

[B: 
nAecnAe(z)'enAe(Z')j 
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The boundary condition must also be fulfilled at z=1. This yield, A.,,, \,, = 
- 

ethl` 
and B. 'hý Substituting into (6.11) and using (6.10) with the aid sin hll once 

= -iesin hl l' 

of new vector wave functions, we finally obtain the following representation for 

-FL 
6 0p 

,, 

El(R, R) =-k2S(R-R)+ 
J'dA> 

jhl 0 n=0 
"1 

P, n, \o(l - z) enao(z') 

-QenAc(l - z)Q'önao(z') z> z', (6.12) 

P; nao(z)P'; nao(l - z') 

-Qonao(z)ee, nao(l - z') z< z'. 

6.6 Magnetic DGF in the Antenna Prosthesis Configura- 

tion 

The principle of duality states that once the electric DGF is obtained, the magnetic 
DGF is derivable by interchanging the field functions Pe -+ kQ. and Q. -+ kP- and C 

omitting the singularity term contribution and vice versa. 
On the other hand, the corresponding total magnetic DGF at any point in the 

system can be calculated from VxG. = G,,,, bearing in mind the discontinuous 

nature of magnetic DGF across a point source at R= R' and the Ampere-Maxwell 

equation relating G,. and Gm in the dyadic form i. e.: VxG,,, = 74(R - 
R) + k2Ge. 

6.7 Electric and Magnetic Field at any Point in the Config- 

uration 

The use of DGF technique allows us to determine the expansion of the electric and 

magnetic fields in a cylinder/antenna configuration in a direct and elegant manner. 
For any current source with current density function J(R) located outside the 

cylinder, the electric or magnetic field radiated by such a dipole can be calculated 
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using the formulae, 

E(R)=iwp,, fG (R, R)"J(V)dV' (6.13) 
v 

H(R) = iwe,, f ffM (R, V) 
" J(R )dV'. (6.14) 

v 

These signify the computation of the E and H-fields in the structure, which 

states the superposition of the incident field j(R) or i (R) and the scattered field 

E9 (R) or He (R) is given by 

E(R) = Eic) + Es(R) (6.15) 

H(R) = HA(R) + W. (W). (6.16) 

6.8 Concluding Remarks 

General expressions have been derived in simple form for the finite conducting cir- 

cular cylinder (medical devices/prostheses) of any size as well as of very small radius 

(resonant length). The DGFs are obtained by employing the EFE and the method 

of scattering superposition. The advantage of the proposed analysis is its simplicity 

and efficiency in computation. 

As well as applications mentioned in the previous chapter, this enhancement 

can also be be of use in the study and design of antennas of high frequency whose 

performance is less affected by the biological systems and produce lower SAR. 

The usefulness of the present technique obviously requires comparison with nu- 

merical and experimental results. It is envisaged that a later publication will address 

this aspect of the problem in more detail. 



Chapter 7 

Insulated Implantable Medical 

Device Model Using 

Electromagnetic Dyadic Green's 

Function 

MODERN wireless telecommunication devices (GSM Mobile system and PCS's) 

can interfere with implantable medical devices/prostheses and cause possi- 

ble malfunction. Also the performance of an antenna is significantly altered by the 

presence of these conducting medical devices/prostheses. Dielectric-coated medical 
devices are preferable over bare ones for use in a human body. The reason is that the 

often undesirable contact (hyperthermic/heating effect) between the prostheses and 

the surrounding tissue is avoided and, more importantly, the radiation efficiency of 

the antenna can be improved by insulating all or part of the medical devices surface. 
The principle objective of this chapter is to outline a general expression of dyadic 

Green's function (DGF) for the problem of electromagnetic radiation from a source 

of excitation in the presence of a finite length of insulated perfectly conducting cir- 

cular cylinder of any size as well as of resonant length, which is valid everywhere, 

including the source region. The whole structure is assumed to be uniform along 

95 
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the propagation direction. The DGFs are obtained by employing the method of 

scattering superposition. The advantage of the proposed analysis is its simplicity 

and efficiency in computation. 

7.1 Introduction 

Rapid development in PC technology necessitate an efficient near and far-field an- 

alytical technique for the radiation performance of cellular phones considering the 

influence of the implanted user's body. While the EMI in most cases does not gen- 

erally pose a health risk, it may constitute a considerable annoyance, which may 

prevent the hearing aid users from using of the new devices. Dielectric-coated med- 

ical devices are preferable over bare ones for use in a human body. The reason is 

that the often undesirable contact (hyperthermic/localized heating effect) between 

the prostheses and the surrounding tissue is avoided and, more importantly, the 

radiation efficiency of the antenna can be improved by insulating all or part of the 

medical devices surface. The EFE of DGFs in EM theory provide a systematic 

means of constructing and interpreting these dyadics. The DGFs in terms of the 

Hansen [25] vector wave functions must be carried out carefully in order to ensure 

that one is dealing with a complete expansion. This chapter is organized as follows. 

The complete set of cylindrical vector wave functions are introduced in section 7.2. 

In section 7.3 we begin to formulate the problem for a finite circular cylinder 

and in subsection 7.3.1, we set out with the case, in which we construct the DGF, 

Gel(R, R ), in terms that constitute the continuous eigenfunction expansion (EFE) 

in which the eigenfunctions are guided in the preferred r and z-coordinate directions, 

using the procedures described in Tai [19] or Collin [21]. This expansion also contains 

an explicit dyadic delta function term which is required for completeness at the 

source point. It is considered as a correction to the general solenoidal EFE which is 

valid outside the source point. 

Subsection 7.3.3, presents the general scattering DGFs expansions (7.10) in 

terms of only the solenoidal eigenfunctions (EF). It is in this development that 
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the principal point of this chapter is identified. Magnetic type DGF discussed in 

section 7.4, can be found by invoking duality or once the electric field is obtained 

the magnetic field is derivable by taking the curl of the electric field, and vice versa. 
Conclusions are then presented in section 7.6 summarizing the important points 

contained in this work. 

7.2 Vector Wave Functions for a Circular Cylinder of Finite 

Length 

The cylindrical vector wave functions are the building blocks of the EFE of various 

kinds of DGFs. They are solutions of the homogeneous vector Helmholtz equation. 

The generating or eigenfunctions, which are solutions of the cylindrical scalar wave 

equation V2W + k, \T=O can be written [29] in the form 

j,, (Ar)' r. no. 'j". shz, in 

Here subscripts "e" stands for even and "o" is the odd character of the generating 
functions. h= are the eigenvalues in the z-direction with q=0,1,2, .... and 1 is 

the length of cylinder. 

ß 
ýz 

,a 4 -_; _ 

11 

R 
t-a 

y 
Figure 6: Diagram of a Finite Insulated Circular Implant Model 
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j� (Ar) identifies the cylindrical Bessel functions of the order n to represent both 

out-going and in-coming waves. A is the continuous eigenvalue. Cylindrical vector 

wave functions are akin to the Debye potentials. 

ioýA(h) =vý (7.2) 

PoýA(h) = Ox[ ýz) (7.3) 

Qot, a(h) = 
ký 

VxVx[ , ]. (7.4) 

Where z is the piloting vector and here k2 = A2 + h2. 

The complete expressions for the solenoidal (rotational or transverse) and the 

non-solenoidal (irrotational or lamellar) functions are given in Reyhani [28). These 

functions are defined in the entire space, corresponding to 0<r< oo, 0<0< 2ir 

and0<z<1. 

7.3 Formulation of the Problem 

When a conducting cylinder coated by a layer of dielectric of the same length as 

in Figure 6 is illuminated by an electromagnetic wave, the scattered functions for a 

source in open space region "0", corresponding to the exterior region of the coated 

implant will be denoted by GE, 
and for interior region is GEIE. Region "1" is within 

the layer (a <r< , B) for a conducting implant of radius a with thickness of the 
-Lb layer equal to t= ,ß-a. The function GE, must satisfy the Dirichlet boundary 

condition at r=a, the interface of the conducting implant. 

A time dependence ejwt is assumed and suppressed throughout. 

7.3.1 DGF for a Finite Length Cylinder of Circular Cross-Section 

Applying the method of (Gy�) and according to the Ohm-Rayleigh procedure the 

expression for (Gel) for a finite cylinder of radius "ci" concentric with the z-axis is 
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given in Reyhani [28] in the form 

c 00 
Gel(R, R)=-k2ýe(R-R)+ fdhEC. 

0 n=0 

. (h; ? lo)P'o ?? 
(h; rlo)] 

[Q', 
7 

(hý ýo)Q'; ýno (hý ýo)ý r> r', (7.5) 

ýPo 
no 

(h; io)ý"(ýno (h; iio)ý 

ýQ; ýno (h; rlo)q(') (h; rlo)] r< r'. 

where coefficient CA =' 2- ön 

7.3.2 Scattering DGF for a Coated Implant Model 

When a conducting cylinder coated by a layer of dielectric of the same size as above 

is illuminated by an electromagnetic wave, the scattered functions for a source in 

open space region "0" , corresponding to the exterior region of the coated implant 
=100 =110 

will be denoted by GE1 and GE1. Region "1" is within the layer (a <r< 0) for a 

conducting implant of radius a with thickness of the layer equal to t a. the 
=110 

function GE1 must satisfy the Dirichlet boundary condition at r=a, the interface 

of the conducting implant. 

For a dielectric cylinder, an incident TE mode will excite both a scattered TE 

and a scattered TM mode. 
The Scattered DGF term for the exterior of insulated implant in this case, has 

the form 

=10o 
1 °O 

Ges (R, R) = 
Jdh>CA 
0 n=0 

goo -(1> 
(7.6) 

[`4` P- 
no 

(h; Flo) + Be ý, Qe 
17o 

(h; oýo (h; Flo ) 

ýCo° oQ: e, (h; tie) + Vt Pan, (h; (h; Flo) 

Where ko = w2(he. ) and ie = (k2 - h2)" 
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And for the interior region, 

1 00 

GQs(R, R)= Jdh>CA 
0 n=0 

A0 '71 PÖOýI (h; %1) + Býýnl 
°nl 

(hi 
'l P(O) (hi %o) 

aö; ° Pö (h; 771) + b'° QOoýl (h; i) (7.7) 

(h; 771) + Dce °A °e) (h; %1) 
onl onl en, eng Q 1) (hi ýl) 

n(hý T1 (hýýn 
0`'70 

Cee, 
1` 

... 171\'"i"/l)+deýý1Pe`, Il\'"i'Il) 

here k? = w2(IAE, ) and re = (k? - h2). 

The principle of scattering superposition can be applied to compute the total 

DGF, in each layer. 

DGF for the outer layer 

GEI (R' R) = Gei (R' R) + Gea (R' R) (7.8) 

and for the inner layer 

=110 -- -110- 
GE1(R, R) = Ges (R, R) (7.9) 

7.3.3 General Expression of Scattering DGFs for an Electric Dipole in 

the Presence of a Dielectrically Multi-Layered Coated Implant 

Model 

Observation and analysis of the above expressions for the scattering equations allows 

an efficient formulation of the general scattering DGF. The Scattered DGF term 

for the exterior and the interior of a dielectrically multi-layered insulated/coated 
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cylindrical implant in this case, has the form 

00 
=Lfo - -º Ges (R, R) = 

Jdh>CA 
0 n=0 

1AöfýfP., 
°nf (h; 77f) 

e 
4 LO ý nf (h; 7)l) 

ý0°; 
1° 

(h; , l°) 

_f) (1- Sf) 
af of 

P°°nf (h; 77 

bö; °nf Q. °, nf 
(h; 7If ) 

1C äf° Q<<, 

nj 
(h; 170 

onf o 
D ýfnf 

uni (h; r1f) 
(ýý, (h; 17. ) 

ýöfo Q; enf (h; 17, ) 
(1 - Sf) 

P-. d2 
ni(h-i7f) t 

Where kf = w2(µfef) and ref = (ký - h2). 

(7.10) 

"L" is the symbol for last inner layer in the implant model. "f" (f = 0,1,2, ....., L) 

is the field point or observer layer. Superscript/subscript "o" stands for source point 

at open space. Subscript "s" is scattering, while its superscript represents the layer 

at which the source is located. g f* is the Kronecker delta function, where 

o 
1, ifo=f 

f. (7.11) 
0, if o ,-f 

ALf° 
, aW° ,B 

; f° 
, 

iLfo 
, 

Cc'ý 
, c. T 

, Dof° and d, 'f° are the amplitude coefficients 
one onr nf of onr 0of eof r'j 

of scattered DGF to be determined by applying the boundary condition at the 
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interfaces r=a, (l = 1,2, ..., L). These boundary conditions are; 

rxGe =0 (7.12) 

=Lfo =L(f+1)o 7' x Ge =f x Ge (7.13) 

1r"xvxGfo 
=1 rxVxGe(f+l)o (7.14) 

µf A(f+l) 

We can now obtain the total DGF by applying the principle of scattering superpo- 

sition, 

Lfo -- -4 =Lfo - -r GE, (R, R) = Gei (R, R )ö + G6, (R, R) (7.15) 

If our concern is only with the region exterior to the source, then the singular term, 

which is important only in the source region can be dropped from the expression for 

the Green's function. 

7.4 Magnetic DGF in the Antenna Prosthesis Configura- 

tion 

The principle of duality states that once the electric DGF is obtained, the magnetic 
DGF is derivable by interchanging the field functions Pöö -3 k(, g and (g -ý kPý 

and omitting the singularity term contribution and vice versa. 
On the other hand, the corresponding total magnetic DGF at any point in the 

system can be calculated from Vx Ge = G,,,, bearing in mind the discontinuous 

nature of magnetic DGF across a point source at R= R' and the Ampere-Maxwell 

equation relating Ge and G,,, in the dyadic form i. e.: Vx GF, ý = 74 (R - 
R) + k2Ge. 

7.5 Electric and Magnetic Field at any Point in the Config- 

uration 

The use of DGF technique allows us to determine the expansion of the electric and 

magnetic fields in a cylinder/antenna configuration in a direct and elegant manner. 
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For any current source with current density function 7(R) located outside the cylin- 

der, the electric or magnetic field radiated by such a dipole can be calculated using 

the formulae, 

ELf°(R) = iwµf fffE, R, R) 
" J(R )dV' (7.16) 

v 

HLý(R) = iweýf G n°(R, R) 
" J(R )dV'. (7.17) JJJ 

v 

7.6 Concluding Remarks 

General expressions have been derived in simple form for the finite insulated con- 

ducting circular cylinder (insulated medical devices/prostheses) of any size as well 

as of very small radius (resonant length). The DGFs are obtained by employing the 

EFE and the method of scattering superposition. 

The results of this chapter could be useful for a further analysis of the problem as 

a thin insulated wire or a dielectric-coated implant such as heart pace-maker embed- 
ded in the body and biotelemetry transmitters for medical applications and could 

easily be expanded so as to handle any scatterer having finite radius and length. 

They can be applied to problems of optical fibers and waveguides for the investiga- 

tion of inhomogeneities or obstacles inside them or by considering the cylinder as an 

excitation or scatterer. They can also be of use in the study and design of antennas 

of high frequency whose performance is less affected by the biological systems and 

produce lower SAR. 

The usefulness of the present technique obviously requires comparison with nu- 

merical and experimental results. It is envisaged that a later publication will address 
this aspect of the problem in more detail. 



Chapter 8 

Far Field Electromagnetic 

Modeling of Implantable Medical 

Devices Using Cylindrical DGFs 

ELECTROMAGNETIC pollution is increasing due to massive increase in both 

mobile and fixed electronic equipments, whilst at the same time, industry 

is producing devices with ever increasing clock speeds. Modern wireless telecom- 

munication devices (GSM Mobile system) can interfere with implantable medical 

devices/prostheses and cause possible malfunction. Also the performance of an an- 

tenna is significantly altered by the presence of conducting medical devices/prostheses. 

Hence the need to consider electromagnetic compatibility (EMC) becomes ever more 

important. The principle objective of this chapter is to outline a far field general 

expression of dyadic Green's function (DGF) for the problem of electromagnetic 

radiation from a source of excitation in the presence of a finite length of perfectly 

conducting circular cylinder of any size as well as of resonant length, which is valid 

everywhere, including the source region. The whole structure is assumed to be uni- 
form along the propagation direction. The DGFs are obtained by employing the 

eigenfunction expansion (EFE) and the method of scattering superposition. The 

advantage of the proposed analysis is its simplicity and efficiency in computation. 
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8.1 Introduction 
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There is an accelerating growth in the use of radio transmission as the demand for 

mobile communication expands to embrace data as well as speech. As a result, 

the mutual interference between transmitting devices and active medical prostheses 

should be calculated. Analytical solutions are useful for calibrating measurement 

systems and understanding fundamental propagation mechanisms. We represent 

here implanted medical devices as conducting cylinders which can be embedded in 

concentric layered dielectrics. 

Although electromagnetic scattering by a finite cylinder is a well known canon- 
ical problem, published work does not include the effects of arbitrary placed source 

point. The derivations presented here are motivated by the need to understand the 

behaviour of antennas/insulated antennas near to or embedded in living tissue. The 

eigenfunction expansion (EFE) of DGFs in electromagnetic theory provide a sys- 

tematic means of constructing and interpreting these dyadics. The pioneering work 

by Tai [19] has set the stage for most of what has been achieved over the last two 

and a half decades. The expansion of DGFs in terms of the Hansen [25] vector wave 

functions must be carried out carefully in order to ensure that one is dealing with a 

complete expansion. Several theoretical studies have utilized DGFs to analyze the 

implanted head/body antenna models in Reyhani [29] - [31]. 

This chapter is organized as follows. The complete set of cylindrical vector wave 
functions are introduced in section 8.2. This material is included here in order to 

explicitly define notation and to call attention to a few points in connection with 

these expansions. 
In section 8.3 we begin to formulate the problem for a finite circular cylinder 

and in subsection 8.3.1, we set out with the case, in which we construct the DGF, 

Gel(R, R ), in terms that constitute the continuous eigenfunction expansion (EFE) 

in which the eigenfunctions are guided in the preferred r and z-coordinate directions, 

using the procedures described in Tai [19] or Collin [21]. This expansion also contains 

an explicit dyadic delta function term which is required for completeness at the 
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source point. It is considered as a correction to the general solenoidal EFE which is 

valid outside the source point. 

The procedure required to derive the complete EFE of the scattering DGF for 

the finite circular cylinder, in terms of only the solenoidal eigenfunctions is shown 

to be a simple and straight-forward general expression and is summarized in subsec- 

tion 8.3.2. The DGF for a finite conducting cylinder, GE1(R, R) can be constructed 

from the principle of the superposition, where it satisfies the boundary conditions. 

The far zone field expression of the prosthesis configuration has been developed in 

subsection 8.3.3. 

Magnetic type DGF discussed in section 8.4, can be found by invoking duality 

or once the electric field is obtained the magnetic field is derivable by taking the 

curl of the electric field, and vice versa. 
Conclusions are then presented in section 8.6 summarizing the important points 

contained in this work. 

8.2 Vector Wave Functions for a Circular Cylinder of Finite 

Length 

The cylindrical vector wave functions are the building blocks of the EFE of various 
kinds of DGFs. They are solutions of the homogeneous vector Helmholtz equation. 
The generating or eigenfunctions, which are solutions of the cylindrical scalar wave 
equation 02IY + k, xWY=O can be written [29] in the form 

` (h) = ý� r)sin nýB hz, (8.1) 

Here subscripts "e" stands for even and "o' is the odd character of the generating 
functions. h= are the eigenvalues in the z-direction with q=0,1,2,.... and l is 
the length of cylinder. j� (Ar) identifies the cylindrical Bessel functions of the order 
4 to represent both out-going and in-coming waves. A is the continuous eigenvalue. 
Cylindrical 

vector wave functions are akin to the Debye potentials. j 5::,,, \(h) = 
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Vx[44 : 71z] and 4ýa(h) =- VxVx[ tn2]. Where 2 is the piloting vector and here 

kä=A2+h2. 

The complete expressions for the solenoidal (rotational or transverse) and the 

nonsolenoidal (irrotational or lamellar) functions are given in Reyhani [28]. These 

functions are defined in the entire space, corresponding to 0<r< oo, 0<0< 27r 

and0<z<1. 

8.3 Formulation of the Problem 

Consider the cylinder in Figure 7 of radius "a" concentric along z-axis with length 

"l" is illuminated by an electromagnetic wave. An electromagnetic field is induced 

in the system and an electromagnetic wave is scattered by the system. 
A time dependence e' is assumed and suppressed throughout. 

º 
º 
º 
º 
i 1º 

º 
º 

a 

. -. -. -. - 
x 

Figure 7: Diagram of a Finite Circular Cylinder 

8.3.1 DGF for a Finite Length Cylinder of Circular Cross-Section 

Applying the method of (C; �) and according to the Ohm-Rayleigh procedure the 

expression for (Gei) for a finite cylinder of radius "a" concentric with the z-axis is 

fly 
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given in Reyhani [28] in the form 

00 
Gel MIR) =- 

T2 (R - 
R) +f dh E Ca 

0 n=o 

[ .;,, (h; ilo)Po no 
(h; ilo)] 

[Q; ýn, (hý ýo)Qýo°+ºo (h; 7)0)] r> r', 

[Po 
no(h; 7lo)P'(o»o(h; 710)] 

77. )]r< r'. 

where coefficient Ca =' 2i ön 

(8.2) 

8.3.2 Scattering DGF for a Finite Conducting Cylinder of Circular Cross- 

Section 

When a perfectly conducting cylinder of the same size as above is illuminated by an 

electromagnetic wave, the scattered terms can be written in the form 

a°'in(h; 7l)P'o;, (h; 71) 
. 

(8.3) J'dh>Ca 
" 

0 n=0 

[ßeeq(h; 

%)h; 77) 
o ýl oý 

Applying the principle of scattering superposition, we obtain 

GEý(RýR)=GGý(R, R)+Ged(R, R) (8.4) 

Where we consider the function for a finite circular cylinder in a region 0<r< oo. 

After applying the boundary condition one can determine the unknown coefficients. 

In order to satisfy the boundary condition at interface r=a, 

rx [P-..,, (h; q)P"ön(h; 77) + coo (h; i)ý'''. *1? ; 71)J (8.5) 

Px {ecq(h; 77)i7<1), (h; n) +, ýeý .;, (h; n)Q'ýan(h; 17)] r_a 
(8.6) 
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x 
[P: 

o77(h; ii) +a,,, 7P 
7(h; 7i), =0 (8.7) 

r=a 

rx [ee,, (h; ii) +ß; ýnQ; ýn(h; 77), 
r_a 

=0 (8.8) 

substituting for j5-. 
ö n(h; 77) and P{ön(h; i) 

Pý n(h; rj) = Vx[j�(i r)B°nn¢sin hzz], (8.9) 

nn (h; 77) = Vx[H l) (rrr)$jnýß sin hzz], (8.10) 

in equation (8.7) produces a.,,,, _- (eH�' (n_)]/a(na) ' 
Similarly inserting for Q: e , 7(h; rj) and 

Qä. n (h; i) 

QCC�(h; i) = pxpx[j� (r7r)S änß cos hzz], (8.11) 

Q.. n(h; 
i) = 

-Vxpx[Hnl)(ijr)8°nn¢coshzz], (8.12) 

in equation (8.8) produces #o. 
n =- _ (qa)i . iH. IT 

8.3.3 Far Zone Field Expression of the Prosthesis Configuration 

The far field of this medical device in the presence of a source can be computed 

using the asymptotic expression for GE1(R, R ), utilizing the saddle-point integration 

method. Assuming rir »> 1, the Hankel function in (h; , q) and (h; i) can 

be approximated to its asymptotic expression, Chew [40, chap. 1, page 15] 

(fir) 
- 

(ma l 
-z)n+ 

l eý+i* Hni) 

A'2 (h; i) = (-i)n+In( 2) 
e'(mr+nz)s°Bno sin hzý 

(8.13) 

(8.14) 

Qoý17 (h. ý) = (_i)'+4 ?28 Rn/sin hz(-hr") 
(8.15) 

k r? 7r 
e COS no cos hz(i7i) 
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The expression for GE1(R, R) can be approximated with the functions P. ö; 
7(h; i) 

and 
Q .,, (h; q) replaced by (8.14) and (8.15), can be written in the form 

t 00 
GEl ýRý R) fAEC 277 

1(-Z)n+ 
Z 

ez(Yl' +hz) 

4 
0 n=0 

(2irrjr) 

ý''o n(h; rl) 
-is no sin hzo 

aý 
nth; 

7l) 

F Q'« ; 7l) 1Co no sin hz(-hr") ° n(h' ! sin (h; 77) 

1` no cos hx(77z) 
Qý`e n 

(h; 17) 
! sin ýjoýýQ;. ')lhi7l) 

where terms of the order > (rar) 1 have been ignored. 

(8.16) 

8.4 Magnetic DGF in the Antenna-Prosthesis Configura- 

tion 

The principle of duality states that once the electric DGF is obtained, the magnetic 

DGF is derivable by interchanging the field functions Pia -3 kQea and Q4! -+ kX GO 00 00 00 

and omitting the singularity term contribution and vice versa. 
On the other hand, the corresponding total magnetic DGF at any point in the 

system can be calculated from VxG, = G, n, bearing in mind the discontinuous 

nature of magnetic DGF across a point source at R= R' and the Ampere-Maxwell 

equation relating G. and Gm in the dyadic form i. e.: 

Vx Gm = 75e(R -R+ k2Ge. (8.17) 
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8.5 Electric and Magnetic Field at any Point in the Config- 

uration 

The use of DGF technique allows us to determine the expansion of the electric and 

magnetic fields in a cylinder/antenna configuration in a direct and elegant manner. 
For any current source with current density function J(R) located outside the 

cylinder, the electric or magnetic field radiated by such a dipole can be calculated 

using the formulae, 

E(R) =i wµo 
fff CE1(R, R) 

" J(R )dV' (8.18) 
v 

H(R) = iweo fff GM1(R, R) 
" J(R )dV'. (8.19) 

v 
These signify the computation of the E and H-fields in the structure, which 

states the superposition of the incident field Et (R) or H; (R) and the scattered field 

E8 (R) or H8 (R) is given by 

E(R) = 17i (_R) + Es(R) (8.20) 

H(R) = HA(R) + H, (R). (8.21) 

8.6 Concluding Remarks 

General far field expressions have been derived in simple form for the finite conduct- 
ing circular cylinder (medical devices/prostheses) of any size as well as of very small 

radius (resonant length). The DGFs are obtained by employing the EFE and the 

method of scattering superposition. 
The results of this chapter could be useful for a further analysis of the problem 

as a thin wire/insulated wire or an implant/dielectric-coated implant such as heart 

pace-maker embedded in the body and biotelemetry transmitters for medical appli- 

cations and could easily be expanded to handle any scatterer having finite radius 

and length. They can be applied to problems of optical fibers and waveguides for the 

investigation of inhomogeneities or obstacles inside them or by considering the cylin- 
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der as an excitation or scatterer. They can also be of use in the study and design of 

antennas of high frequency whose performance is less affected by the biological sys- 

tems and produce lower SAR (specific absorption rate, the rate of electromagnetic 

energy deposition) and as a result contribute to the efficiency of handheld/mobile 

phones. 

Numerical simulation techniques developed for the comprehensive analysis of 

the human exposure to electromagnetic waves and estimating the SAR may require 

considerable time and large computer memory for calculation. Analytical methods 

provide valuable tools in evaluating the interaction between canonical head/body 

models and antenna sources. The usefulness of the present technique obviously 

requires comparison with numerical and experimental results. It is envisaged that a 
later publication will address this aspect of the problem in more detail. 



Chapter 9 

Implanted Spherical Head Model 

for Numerical EMC Investigation 

PERSONAL communication systems and cellular phones are required to op- 

erate satisfactory beside the human body. They are usually hand-held and 

randomly orientated by the operator. Therefore, their antennas are required to be 

small in size, light-weight, and sensitive to two perpendicular polarizations. Their 

radiation patterns should be quasi-isotropic, in all the principal planes, and they 

should have a wide bandwidth. In this case, the antenna is very close to the user's 

head during normal use of the handset and there is concern about the level of mi- 

crowave emissions to which the brain is being exposed. The effect of the human 

body on the antenna as well as the specific absorption rate (SAR) of the radiation 

from the antenna by the human body should be as small as possible. Reports have 

appeared in the media linking the use of mobile telephones with, among other things, 

headaches, hot spots in the brain and brain cancer. Therefore, caution should be 

exercised when using modern wireless telecommunication devices around sensitive 

electromedical equipments used in hospital intensive care units. Mobile telephones 

can also cause interference in certain other medical devices, such as cardiac pace 

makers and hearing aids. Key issues to address are the questions of whether mobile 

phones have a detrimental effect on implants, and how the interaction of the handset 

with the body can be minimized in order to both alleviate public fears and improve 

113 
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handset antenna performance and new prosthetic designs. 

This work supplements the previous chapters. It aims to extend the results 

of scattering of electromagnetic waves by a spherical head model in chapter 3 to 

the scattering of a plane EM wave from a perfectly conducting spherical/cylindrical 

implant of electrically small radius (of resonant length), embedded eccentrically into 

a dielectric spherical head model. The method of dyadic Green's function (DGF) 

for spherical vector wave functions is used. Analytical expressions for the scattered 
fields of both cylindrical and spherical implants embedded head models are obtained. 
The whole structure is assumed to be uniform along the propagation direction. It is 

assumed that the size of the head is much larger than the size and thickness of the 

implant so that the fringing field can be neglected. The effect of interconnect cross 

section and the fringing field are not taken into account. 
The advantage of the proposed analysis is its simplicity and efficiency in com- 

putation. 

9.1 Introduction 

The march of progress is immutable. Like the rising and setting of the sun, so 

technology evolves, changing the patterns of our daily lives. The need for higher 

performance in devices as well as in human functions has been debated for many 

years. The experimental discipline of neural control relies on the exchange of in- 

formation between an electronic circuit and a nervous system for the purpose of 

studying or supplementing a biological function. One of the main objectives of such 

research is the development of prosthetic devices for replacing defective parts of the 

human nervous system. The cochlea implant aids hearing, while a similar implant 

recently stopped the shake in Parkinson's disease sufferers. A computer-memory 

chip implanted into the optical nerve behind the eye could record a person's every 
lifetime thought, sensation and visual data could be developed. By combining this 

information with a record of the person's genes, one could create a person physically, 

emotionally and spiritually. Similar receptors could gather signals for smell, sound, 

ý! + w. 
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taste and touch. Down-loading the experience of an older person can enhance the 

quality of life of a younger one. This could revolutionize the communication beyond 

current concepts. 

Like a computer with ever larger and larger memory and better and more pow- 

erful processor one can enhance the memory capacity and processing power of brain 

by means of implants. Whence all these implants can be developed as one unit 

and can also be automatically controlled by remote sensing. The most important 

feature of this system is the active security and monitoring of both the system and 

its information contents to be prevented from unauthorized users gaining access to 

the system. 
Of course, these new developments are not going to happen overnight. The 

proposals won't be set in stone until years to come. But, in the meantime where 
they comfortably fulfill the need, the contribution of the EM fields must, of course, 
be considered in antennae, prostheses and equipment design and certification. These 

can be designed to produce improved EMC performance. 

Strong interest in the bio-medical/engineering applications of modeling biolog- 

ical bodies exposed in near as well as in the far-field is to assess the induced and 

scattered fields. The scattering of EM waves by spherical head and cylindrical torso 

models have been studied in my previous chapters. In this chapter we have extended 

these results to the electromagnetic case for a simple implanted head/torso model 
by a perfect conductor. 

This chapter is formatted as follows. The relations between the unit vectors in 

coordinate systems and the relationship between the spherical and cylindrical coor- 
dinates have been pointed out in section 9.2. Vector wave functions are introduced 

in section 9.3. 

In section 9.4 we begin to formulate the problem for an spherical head model 

embedded with a prosthesis model (finite circular cylinder/sphere). 
Subsection 9.4.2, presents the general scattering DGFs expansions (9.25) and (9.26) 

for the implanted head model problem in terms of only the solenoidal eigenfunctions. 
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It is in this development that the principal point of this chapter is identified. 

Magnetic type DGF can be found by invoking duality or once the electric field 

is obtained the magnetic field is derivable by taking the curl of the electric field, and 

vice versa. 
Conclusions are then presented in section 9.7 summarizing the important points 

contained in this work. 

9.2 Relations between the Unit Vectors in Coordinate Sys- 

tems 

The spatial variables associated with three commonly used coordinate systems (The 

Cartesian, x, y, z, Cylindrical, r, ¢, z, and Spherical, R, 8,0) are shown in Figure 8. 

It should be pointed out that the same q5-variable is used for both the cylindrical 

and the spherical systems. 

Figure 8: Three Commonly 'Used Coordinate Systems 

From the above diagram one can deduce the following equations between cylin- 

lpti_ r 
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drical and spherical, and also with rectangular coordinate systems 

R8phen = X2 + y2 + z2 (9.1) 

T cylinder - X2 + y2 (9.2) 

The relationship between the cylindrical coordinates (r, ¢, z) and the spherical 

coordinates (R, 0,0) of a point is 

R2 = r2 + z2 tan O= rcglinder (9.3) 
sphere cylinder >>z 

The relationship between the spherical coordinates (R, 0,0) and the cylindrical 

coordinates (r, ¢, z) of a point is 

rcylinder = Raphere Sin B, 0=0, z= liaphen cos 0 (9.4) 

The relation between these unit vectors are summarized in Table 1 and Table 2. 

Unit Vectors x y z 

f + cos o + sin o 0 

-sin o + cos ¢ 0 

z 0 0 1 

Table 1: Relations between the Unit Vectors in the 

Rectangular and the Cylindrical Coordinate Systems 

To express unit vector t in terms of the unit vectors in rectangular system, one 

uses the coefficients in the first row of Table: 1, which gives 

r" = cos qI + sin Oy. (9.5) 

To express unit vector i in terms of the unit vectors in spherical system, one uses 

the coefficients in the first column of (Table: 2), which gives 

sin 0 cos OR + cos 0 cos ýB - sin (9.6) 

itisit_ t . r,: 
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Unit Vectors x y z 

sin 0 cos 0 sin 0 sin 0 cos 0 

cos 9 cos 0 cos 0 sin 0 - sin 0 

0 -sin O cos 0 0 

Table 2: Relations between the Unit Vectors in the 

Rectangular and the Spherical Coordinate Systems 

9.3 Vector Wave Functions for an Implanted Spherical Head 

Model 

The generating function for a finite length cylinder in cylindrical coordinates is 

represented in chapter 4, by the equation (4.8). 

`ý; ý(h) = . 
9, 
º 
(Ar) nib hz, (9.7) 

Also the generating function or eigenfunction for an sphere in spherical coordinate 

system is mentioned in chapter 3, by the equation (3.1). 

n(k) = j� (kR)PP (cos 8)'mO, (9.8) 

For an implanted head model the generating function is a combination of gen- 

erating functions of both head (sphere) and prosthesis (cylinder) together, such as 

lytotol = Whead + Timpfant 
spheriool 

(9.9) 

'W; mpIQ�ts, heri designates the generating function of the prosthesis in spherical coor- 
dinate system and in this case 

toeot = , w, 
(k) + 46ý, (h), 

pºier; ool 
(9.10) 

Where represents the eigenfunction for the cylinder but converted to 

spherical coordinates using equations given in the last section. One thing to remem- 
ber is the origin of cylinder in this case start from a distance from the coordinate 

ý; ý:,:.. 



9.4. Formulation of the Problem 119 
Salehi-Reyhani, S. M (2001) 

system. Also bearing in mind that the spherical Bessel function is related to the 

half-order cylindrical Bessel function 

ýn (x) = 2x 
J 

�+i> 
(x) (9.11) 

The spherical Hankel function of the first kind, denoted by h(1) (x), is also related 

to the half-order cylindrical Hankel function of the first kind in the same way. 
1 

(x) (9.12) hý'ý (x) 
2x 

Hin+ 
) 

Now the total spherical vector wave functions (denoted by Ltoiat, Mtotat, and 
Ntot, d) can be calculated in the same manner as those introduced in chapter 3, in 

section 3.2 by the equations (3.2), (3.3) and (3.4). 

9.4 Formulation of the Problem 

When electric fields act on conductive materials, they influence the distribution of 

electric charges at their surface. Tiny electrical currents exist in the human body 

due to the chemical reactions that occur as part of the normal bodily functions, 

even in the absence of external electric fields. For example, nerves relay signals by 

transmitting electric impulses. Most biochemical reactions from digestion to brain 

activities go along with the rearrangement of charged particles. Even the heart 

is electrically active - an activity that ones doctor can trace with the help of an 

electrocardiogram. 
The parameters that influence the antenna-user interaction are 

i) to what extent the effect of the human head/body with/without implant on the 

antenna radiation pattern can be simulated; 

ii) how well do SAR's obtained predict those in the body; 

iii) how important are the quality and resolution of the model in determination 

of the body effect on the antenna pattern, total power absorbed in the body 

(or antenna efficiency in the presence of users). 

;, 
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Interest in such problems arises from their usefulness in the detection of metallic 

bodies embedded in dielectrics, in the determination of scattering by "impurities" in 

dielectric structures, etc. Also, scattering data from complex bodies is often used to 

obtain information about their internal structure (inhomogeneities, nonsymmetries 

etc. ). 

Consider an implanted spherical head model as in Figure 9 is illuminated by 

an electromagnetic wave. An electromagnetic field is induced in the system and an 

electromagnetic wave is scattered by the system. 

A time dependence ei`. ' is assumed and suppressed throughout. 

9.4.1 Free Space DGF for an Electric Dipole in Unbounded Medium 

The electric and magnetic field intensities of an incident electromagnetic wave travel- 

ing due to an electric dipole located at R' in an infinite homogeneous space without 

the presence of an scatterer (obstacle) can be computed in spherical coordinates 

based on derivations in chapter 3. 
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Figure 9: Diagram of an Implanted Head radiated by a Dipole 
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oo n 
G (R, R) _- 

kRb(R-R)+ 4"' EZCmn 
° n=1 m=0 

IMO, 
mn(ko)M'omn(1o)] 

rN(mn(ko)N'ömn(ko)] R> R', (9.13) 

f M; 
mn(ko)M'(mn(1c)] 

fN; 
mn( o)Ni! 

mn(ko)] R< R'. 

As before in chapter 3, 

Cmn= (2 -J) 
2n +1 (n - m)! (9.14) 

n(n + 1) (n + m)! 

Again coefficient Cmn depends on the value of m and n, where 8o is the Kronecker 

delta functions, when 

1, ifm=o, 
ö= (9.15) 

0, if m#o 

9.4.2 Scattering DGFs for an Electric Dipole in the Presence of an Im- 

planted Spherical Head Model 

The scattering from composite bodies can give information for their internal compo- 

sition. Thus, by observing their scattered field one can detect inner inhomogeneities, 

nonsymmetries, etc. In this chapter the medium is assumed to be isotropic, linear, 

nondispersive and stationary. We now use the DGF for an unbounded medium in 

terms of spherical vector wave functions to construct one for an implanted spherical 
head model. 

DGF for a Single-layer Spherical Head Model 

This can be considered as the contribution of the reflections and transmissions of a 

single layer sphere of radius a, centered at 0, superimposed in an unbounded ho- 

mogeneous medium with the radiation source located outside the sphere at M. The 

:. k. 
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medium is characterized by ([t, e. ), and material properties of sphere is represented 
by (µl 

, e. ), where subscripts "o" and "h" stand for unbounded (open) space and 
head, respectively. 

The scattered DGF term for the exterior of head model in this case has the form 

looM(1) /k (1) 
G1oo/R 

, 
R) = 

gk 0o n 
Cm öM mnl ,, 

)M' 
; mn( ,, ) 

ea l) 47r 
E 

it l001) -(1) / 
(9.16) 

n=1 m=0 oNN; mn( o)N ; mn(ko) 

It is apparent that the presence of the inner conducting prosthesis, with very small 
dimensions, slightly perturb, the intensity of the scattered field and for the interior 

region, the total scattering DGF comprises of the DGF of the inner head as well as 

the scattering from the prosthesis i. e. 

10 0 
=+ 

(3c R )) (9.17) (')) total \ head implant 
Where 

110- -ý ZýCo [0o 
nB, imn(ki)M'; mn(ko) 

C'ea (R R )ý = 4ý 
EE Cmn 

llo i1) 
(9.18) 

head n=1 m=0 
Be, N; 

mn(kl)N 
1) (ko) 

The scattered terms for a perfectly conducting cylindrical implant model (pre- 

sented in chapter 5, (5.14)) can be written in the form 

i °° aQ, p;; ) (h; n)ß''(ä) hý 
1) 

(9.19) 
OG., 

(R, V) Implant 
=f dh E CX "° -(1 

p n=0 öeýQoaýlhi 
(hi %) 

Here, the coefficients are 

a 
[61j. (? 'la)]/a(7la) (9.20) ön- [Mn(l)('ria)j/a(? la)' 

fl... 
n_ 

_°(17a 
(9.21) 

[HA(l) (7ra)] 
On the other hand, the scattered terms for a perfectly conducting spherical implant 

model is stated in chapter 3, (9.22) presented in the form 

GR_ 
iko 0nC ýM 

; mniko'V''ko' (es(')) 

it 47r 
EE 

mit Q 
(9.22) 

mplaa n=i mý f+: NN. mn(ko)N ; mn(ko) 
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Where the coefficients are 

__ 
Wn 

(kOcr)J 

. 
23) a°M 

[hnl' (k0c)]' 

(9.23) 

(k0a)]/O(k0a) 
(9.24) 

a[(kOa)h1) (kOa)]l a(k, a) 

Where the wave number in any medium is kf = w2(µ1 ) and ýý = (k2 - h2). 

The principle of scattering superposition can now be applied to compute the 

total DGF exterior or interior of the obstacle, 
GEl(R, R) =GEO(R, R)+G (R, R) (9.25) 

GE1 (R, R) = CGes (R' R) (9.26) 
total 

The criteria for computation of fields for the implanted head model can be 

extended to the implanted torso model utilizing the equivalent equations given in 

chapter 4. This approach is more general, in that it can be easily extended to 

consider fields at any layer in the head/torso model. 

As before if our concern is only with the region exterior to the source, then the 

singular term, which is important only in the source region, can be dropped from 

the expression for the Green's function. 

In the present chapter full use of the solenoidal and nonsolenoidal functions in 

different directions are made. These are represented in sections A. 1 and A. 2 of 
Appendix A. 

9.5 Magnetic DGF in a Configuration with an Embedded 

Prosthesis 

The principle of duality states that once the electric DOF is obtained, the magnetic 
DGF is derivable by interchanging the field functions Pa -+ k4. and s -4 kP;; 

for cylindrical form and interchanging the field functions Mgm� --> kN.. mn and 
N; mn --> kM; mn in spherical form, and in either cues omitting the singularity 

term contribution and vice versa. 
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On the other hand, the corresponding total magnetic DGF at any point in the 

system can be calculated from Vx Ge = Gm, bearing in mind the discontinuous 

nature of magnetic DGF across a point source at R= R' and the Ampere-Maxwell 

equation relating Ge and Gm in the dyadic form i. e.: Vx G�+ = 7k (R - 
R) + k2Ge. 

GMl(R, R) = º. o(R, 
R) +G a(R, 

R) (9.27) 

-11o - 
11 

GM1(R, R) = 
(Gms(R, 

R) (9.28) 
total 

9.6 Electric and Magnetic Field at any Point in the Config- 

uration 

The DGF method allows us to determine the expansion of the electric and magnetic 
fields in a configuration directly. For any current source with current density function 

7(R) located outside the cylinder, the electric or magnetic field radiated by such a 
dipole can be calculated using the formulae, 

V '(-R) = iw 4JJJ R, R) . 3(7t)dV' (9.29) 
V_ 

HLf°(R) = iwej fff G°(R, R) 
" J(R W. (9.30) 

V 
The equivalent conduction and polarization current in the conductor can be repre- 

sented by Jeq(R) = Au(R)E(R) where it serves as the distributed volume source 

with Ac(R) = a(R) - of - iw(e(R) -e f). The quantities e(R) and r(R) are 

the permitivity and conductivity, respectively in the cross section of the conduc- 

tor. ef and of are the background permittivity and conductivity respectively, in 

layer (f) and V denotes the volume occupied by the source. The well known Born 

approximation is characterized by assuming E(R) E-00°°°(R) inside the integral 

which yields a direct but approximate solution for This solution is linear 

in the inhomogeneity, which implies that it neglects multibounce interactions from 

the scatterer. 
For a vertical dipole with current moment ?! = cz pointed in the z-direction and 

located at R' = b, 0' = 0,0 = 0, i. e., ' = (b, 0,0) using equations (2.41) and (3.76) 
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we let 

J(V) = cb2 
sn 9'a(ß' - b)a(9' - o)a(ý' - o)2 (9.31) 

c2 = c(Rcos8 - 6sin8) = 
f5J7GR')dV' (9.32) 

v 
but 

SSo 
-R )dV =1 (9.33) 

v 
Therefore the fields (9.29) and (9.30) produced by this dipole in the presence of the 

head model with radius equal to a are given by 

ELib(R) = iwµfcG R, R) 
"z (9.34) 

H °(R) = iwefc (R, R) 
" z. (9.35) 

substitution for z in above equations in terms of spherical unit vectors presents 

(R) = iwµfc GAR, R) " (R cos 0-9 sin 0) (9.36) 

H1O(R) = iwe: fc 
(R, R) 

" (R cos 9-9 sin B). (9.37) 

When the current element is confined to a filament of length I and of constant 

amplitude I as in a Hertzian dipole then c= It. 

In general the field in any layer can be found using 

ELf°(R) = bf2,000 R) + Eý (R) 
(9.38) 

1 

Hj'ý°(R) = öf°(R) + Hü 
(9.39) 

+ ar hin p. S"°'e(R) 
Here IM is the number of implants and fI stand for the layer where the implant is 

located. 

Where bf is the Kronecker delta functions, when 

a= I1, if f =fI, (9.40) 
to, if f 96 fl 
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9.7 Concluding Remarks 

The DGF technique was applied to derive the general electromagnetic representation 
for a simple prosthesis model eccentrically implanted in an spherical human head 

model (in simple form for the single-layered homogeneous lossy dielectric sphere 

embedded by a circular cylinder of finite length) in order to evaluate deterioration 

of the handset antennas performance and obtain the rates of RF energy deposition 

(SAR). The representation may be used to optimize mobile handset antennas design 

which radiate less into body tissue, ascertain potential health hazards, and compli- 

ance with standards legislation. The DGFs are obtained by employing the EFE and 

the method of scattering superposition. 
This method can be employed in other areas since scattering from complex bod- 

ies can be used for detecting possible internal inhomogeneities and nonsymmetries. 
By observing the field scattered by a body on which radiation is impinging, it is 

possible to obtain information about its internal structure, (and in case of inhomo- 

geneities in human body, its effect on the behaviour of nerve excitation elicited by 

magnetic simulation) investigation of cells and of biological bodies, remote sensing 

techniques and detection of imperfections inside optical waveguides and lenses and 

straightforward examples. 
The outcome of this investigation will be improvements in the electronic cir- 

cuitry of the implantable medical devices (New prosthetic designs) such as Cochlea 

implant planted in head, Cardiac (heart) pace-maker embedded in the body and 
biotelemetry transmitters for medical applications and could easily be expanded 

so as to handle any scatterer having finite radius and length. They can also be 

applied to problems of identification of buried unexploded ordnance (UXO) and 

optical fibers and waveguides for the investigation of inhomogeneities or obstacles 

inside them. Electromagnetic assessment and antenna design relating to the health 

implications of mobile phones is another aspect of this work. The problem of de- 

tecting known buried objects and estimating their location from electromagnetic 

field measurements is relevant in many technological areas such as demining, buried 
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waste clean up, excavation planning, and archaeological investigations. 

From the theme of this research, one can use technology to transmit, receive and 

collect data, turn that data into information, and use that information to increase 

our knowledge of how that data can be utilized to its maximum (if we could store 

more data in ourselves). 
Digital information is becoming more pervasive in our lives. Memory devices 

such as hard disk technology is set to move down in size and up in capacity offering 
designers of such systems a huge increase on current memory (disk) capacity. By 

applying our technologies to pack lots of information into something as small as 

the microimplant, we can help people keep in touch with their information more 

conveniently wherever they go. 
I am sure that the microimplants will form the basis of new technology, arguing 

that such large capacity storage devices in such a small package will allow us to 

begin developing very small devices that in the past may have been impossible. The 

microimplants will allow data to be transferred between different hardware devices 

as well as human species. Information from anybody/device could quite easily be 

transferred to another person(s) as well as various devices by simply down loading 

information. Another boon is that additional information and data could be kept 

on separate storage devices and then accessed when they are needed. 



Chapter 10 

Numerical Computations and 

Results 

POSSIBLE adverse effects of EM fields on the human body and especially on 
the nervous system and the brain/implanted head are of increasing concern, 

particularly with reference to mobile transceivers held close to the head/torso. 

Spherical head model, while not accurate, provides easy and reasonably effec- 

tive means for the estimation of the "worst case SAR" either through modeling 

or experiment. This thesis is complete only if there are substantial numerical re- 

sults presented with it. The purpose of this work was to develop a model that will 
describe the field distributions inside a biological entity. The model was delivered 

based on a new approach based on a solution of DGF in spherical and cylindrical co- 

ordinates. Numerical results from analytical expressions are to be computed for the 

problem of spherical head model and implanted head/body and then compared with 

the results from the same models using the EMU/FDTD Electromagnetic simulator 
developed by FDTD research group at the Department of Electronic and Computer 

Engineering at Brunel University. 

A critical evaluation of the process/method is discussed. The results presented 
here show that this method correlates well with other techniques. 

The complete expressions used for solenoidal and nonsolenoidal functions in 

different directions are represented in sections A. 1 and A. 2 of Appendix A. 

128 
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10.1 Introduction 

Research on this subject goes back to at least three decades. At that time, numerous 

investigations have been conducted with mainly experimental approach [83] - [85]. 

Theoretical studies based on analytical methods and simple models of the human 

body commenced later. Amemiya and Uebayshi [86], have derived closed form for- 

mula for homogeneous sphere irradiated by a half-wavelength dipole antenna. They 

modeled the human head as a lossy dielectric sphere and then calculated the power 

deposition inside the sphere by using the theoretical study. With the advances in 

the computer technology, another approach based on computer simulation (Com- 

putational Electromagnetics) and as a result, using more sophisticated models were 

attainable. 

Various numerical techniques have been used, amongst which, method of mo- 

ments (MoM), [17], the method of Multiple Multipole expansion (MMP), [87], and 

Finite Difference Time Domain (FDTD), [88], should be noted. Regarding the geo- 

metric complexity and heterogeneity of dielectric properties inherent in the biologi- 

cal objects, the method of FDTD seems to be very effective and the most relevant 

method of analyzing this problem. This technique is well established in the field 

upto now. It has its advantages and disadvantages, trade-offs, some of which are 

discussed in chapter 1 and some will be discussed in "Further research" in chapter 12. 

In 1991, Dimbylow [89], used the FDTD method to calculate SAR distribution in 

a realistic heterogeneous model of the head for plane wave exposure from 600 MHz to 

3 GHz. His concerns in this report were an enhanced absorption due to resonance in 

the head, hot spots in the brain, and in higher frequencies the increasingly superficial 

absorption of power particularly in the eyes. He then considered the calculations of 

the SAR for a dipole closely coupled to the head at 600 MHz and 1.9 GHz in another 

paper [90]. In this paper, he calculated energy absorption in the eye using a detailed 

model of the eye including four tissue types and arrived at the SAR as a function 

of distance between the electromagnetic source and the eye surface. Toftgard et 

al. [91], analyzed this problem using a homogeneous spherical model of the head, a 
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block model of the head and a box model of the radio-handset at the frequencies of 

914 MHz and 1890 MHz. Based on their findings half of the power is deposited in 

the hand and head, most of which, (96%) is deposited in the head and just (4%) is 

absorbed in the hand. 

In 1994 Martens [92,93], conducted similar investigations at 900 MHz, using 

an MRI (Magnetic Resonance Imaging) based model of the head, for a monopole 

mounted on a box. He reported an absorbed power ratio of about 50%, in [92], and 

15%, in [93]. 

Jensen et al., [2] - [5], investigated the problem of the interaction at 900 MHz, 

using an MRI based model of the head including five tissue layers and considering 

four models of antennas and reported 48-68% of the total power absorption in the 

head and hand. 

Hombach and colleagues [94], conducted a different study at 900 MHz using 

realistic models of the head with various shapes and different sizes and models 

of the internal anatomy. They observed an independence of the SAR properties 

from the size and the shape of models. In a more recent paper [95], based on the 

same methodology at 1800 MHz, used a dipole antenna and a realistic model of the 

head. They concluded that a homogeneous representation of the head is suitable for 

assessing the worst case SAR in the head if appropriate parameters are chosen. 

Gandhi et al., [96], worked on the same problem, at 835 MHz and 1.5 GHz. 

He used a A/4 and a 3A/8 monopole antennas, with realistic MRI based models 

with the resolutions down to 1 mm. They too calculated the SAR distribution in 

the head and observed that using homogeneous models of the head leads to gross 

overestimations in the results of the SAR calculations. 

Okoniewsky and Stuchly [97], investigated another study at 915 MHz using 

various boxes, spherical and realistic head models to consider the effects of the 

head, hand and ear. They reported that the hand holding the handset absorbs 

a significant proportion of the antenna power output, an amount which can be 

considerably decreased by modifying the geometry of the handset metal box. 
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10.2 Numerical Implementation and Validation 

The problem of electromagnetic scattering from a spherical scatterer is considered. 

The approach is based on the model technique presented in chapter 3, conjecturing 

that the features of the scatterer can be determined from the near scattered field 

via DGFs. An expansion in spherical wave functions for the scattered field based 

on the development of formulation by Tai [19,20]. 

With the help of the DGF expressions (3.62) and (3.63) in chapter 3, for the 

head model problem of a sphere of 10 cm radius illustrated in Figure 1 consisting of 

brain and skull with constitutive parameters given in Table 3 illuminated by a dipole 

of a length 0.4 wavelengths with a non-zero feed gap width. Frequencies representa- 

tive of personal communications systems (900 and 1800 MHz) were considered. The 

center of dipole is symmetrically positioned with respect to the head and 1.5 cm 

away from it. 

Material Density 

[g cm'3] 

Relative 

permitivity 

Conductivit 

[mho/m] 

Skull @ 900MHz 1.20 17 0.25 

Skull @ 1800MHz 1.20 16 0.43 

Brain @ 900MHz 1.05 43 0.83 

rain 0 1800MHz 1.05 41 1.14 

Table 3: Constitutive parameters 

Due to the high non-uniformity of the SAR distribution induced by a cellular 

mobile phone within the head, the peak SAR is the relevant parameter to assess the 

risk caused by these devices. 

The specific absorption rate (SAR), is calculated from: 

SAR =a (10.1) 
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where E is the RMS magnitude of the electric field, a the conductivity, p the mass 

density of the head giving SAR in power per unit mass. The SAR is calculated on 

the lines through the center of the homogeneous (brain) head in x-, y-, and in the 

z-directions as shown in Figure 10, Figure 11 and Figure 12 respectively. The SAR 

decreases exponentially with distance from dipole. The DGF theory agrees closely 

with the FDTD algorithm down to low levels. The peak SAR of 15.1 W/Kg from the 

DGF method is comparable with the 15.4 W/Kg calculated by the FDTD method, 

normalized to one watt input power. The FDTD method with Mur second order 

boundary condition was applied to this problem where the computational domain of 

30 cm in each dimension with grid cells of 2.5 mm and time increment approximately 

4.76 ps were used. 
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Figure 10: Specific Absorption Rates in the x-direction 

In Figure 10, comparison of DGF and FDTD results with a homogeneous spher- 

ical head model at 900 MHz, (the relative SAR in the model as a function of the 

distance "d" between the center of the head model and the antenna point source in 

the x-direction) is shown. Since the total electric field approximately decays expo- 
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nentially inside the head, peak SAR will occur where the conductivity of the tissue 

is higher. 
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Figure 11: Specific Absorption Rates in the y-direction 

Figure 11 like Figure 10, shows the relative SAR in the model as a function of 

the distance "d" between the centre of the head model and the antenna point source 
but in the y-direction for both DGF and FDTD. 

Again, Figure 12, shows the relative SAR in the model as a function of the 

distance "d" between the center of the head model and the antenna point source in 

the z-direction for DGF as well as FDTD technique. 

Mobile telephone handsets generate substantial field levels close to the antenna 

and since the antenna is close to the head of the telephone user it is of interest to 

measure the power density and electric field in the region of the head and thereby 

close to the transmitting antenna. 

The total electric field distributions (20 log JED) inside the two head configura- 

tions are compared in Figure 13 when the power delivered by the antenna is set at 1 

Watt. The distance is measured from the center of the head. The field distribution 
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Figure 12: Specific Absorption Rates in the z-direction 

of the two layered and homogeneous heads are similar. This shows that the field 

near the surface of the head agrees very well for the two heads. From this, one can 

suggest that this spherical head model can be used for a reasonable estimate of the 

peak electric field or the peak SAR in the head. 

Since the electric field near the surface of the head for these two configurations 

are similar, a simple homogeneous spherical head model can be sufficient to estimate 

a reasonable value of peak SAR for a variety of antennas. 

The radiated power can be calculated by integrating the real part of the normal 

component of the Poynting vector over a closed surface S around the antenna and 

the head: 

pla Re ffExH'"ndS (10.2) 
s 

where n is a unit vector perpendicular to the surface S and pointing outward of the 

volume. 
The absorbed power is determined by integrating the absorbed power density 
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Figure 13: Total Electric Field versus Distance in the z-direction 

over the volume V of the head: 

' ba =2 
JjJci(r) IE(r)12 dV (10.3) 

V 

with o(r) the conductivity (in Siemens per meter) of the different tissues in the head 

and E(r) the electric field (in volts per meter) inside the head. 

The formula for calculating the efficiency is as follows: 

Efficiency = 
P" p°` 

(10.4) 
P, b, 

Figure 14 shows the power absorption as a function of distance inside the non- 

and homogeneous spherical head model. The power delivered by antenna is at 1 
W, and the operating frequency of the antenna is 900 MHz. As one can notice, 

significant amount of power has been absorbed in the head, when the antenna is in 

close proximity to the head (about 50% at a distance of 2 cm from the head and less 

than 10% for a distance as far as 10 cm from the head). Therefore, the total power 

absorption in the head is dependent upon the proximity between the head and the 

antenna. 
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Figure 14: Power Absorption versus Distance inside the layered Head 

Considering the power absorbed in the head our study indicates that at a dis- 

tance of 15 mm, more than 36% of the input power is absorbed in the head, which 

corresponds to a radiation efficiency around 64%. These values are in a very good 

agreement with similar results reported by Gandhi, [961, using MRI based model of 

the head. 

The intent of this chapter is not to describe any possible measurement technique, 

but to prove the derivation of the underlying physical relations in terms of the 

mathematical formulation employed to express the scattered field. In other words, 

in the problem of scattering, the mathematical formulation definitely dictates the 

development of a most suitable measurement technique. 

This study clearly demonstrates the merits of the DGF scattering model tech- 

nique developed in this thesis, and it shows that the technique is convenient method 
for a numerical solution of this type of problems. 

In a rapidly growing market for mobile telephones, besides the public biological 

concerns in cellular mobile communication systems, and manufacturers and antenna 
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designers great demand to know the deterioration of the antenna performance, there 

is also some concerns of effect of EM fields on implants (prostheses) and increase 

in SAR in human head arising from implantation. The current safety limits do not 

take into account the possible effect of hot spots arising from conducting implants 

(prostheses) resonant at personal communication frequencies. The expected implant 

effects and interaction in a real human head which consists of many different tissues 

has to be investigated and made clear. 

We have adopted the configuration in Figure 9 from chapter 9. The DGF expres- 

sions (9.25) and (9.26), also expressions (9.27) and (9.28) are used for the implanted 

head model problem of a sphere of 10 cm radius consisting of brain and skull with 

constitutive parameters given in table 3 illuminated by a dipole of a length 0.4 

wavelengths with a non-zero feed gap width. The implant is modeled by a perfect 

conducting cylinder. The length of this cylindrical implant is considered up to 3 

cm with a radius of 0.5 cm. Frequency 900 MHz was considered. In this case once 

again, the center of the dipole is symmetrically placed with respect to the head and 
1.5 cm away from it. Owing to polarization, the increase in local SAR is greatest 

when the implant is parallel to the radiating dipole. 

In this section, the effect of perfect conductor implant on the absorbed power 

distribution within a human head is studied numerically using a lossy dielectric 

sphere containing conducting implant excited by the near field of a dipole antenna. 
The implant of resonant dimensions within a homogeneous dielectric lossy sphere 

can enhance local values of SAR considerably. 
Figure 15 shows the relative power absorption as a function of implant length 

inside the homogeneous spherical head model at a distance of 1 cm from the head 

surface facing the antenna. It is observed that the length of implant blocks the 

penetration of the incident wave further into the head model, so that the total 

power absorbed is reduced. 

Figure 16 shows the relative power absorption as a function of implant distance 

from the edge of the spherical head model facing the dipole for an implant of length 
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Figure 15: Relative Absorbed Power - Implant Length (1) in x-direction 

2 cm. It is noticed that the presence of an implant changes the total relative absorbed 

power by less than 5% with respect to that absorbed by the head model in its 

absence. 
The maximum power deposition (measured in Specific Absorption Rate of RF 

energy, or SAR) allowed by the FCC (US Federal Communications Commission) is 

1.6 W/Kg in 1g of head tissue from exposure to cellular telephone radiation. 

The ICNIRP (International Commission on Non-Ionizing Radiation Protection) 

located in Geneva guidelines stipulate a maximum SAR of 2 W/Kg in any 10 g of 

tissue in the head. 

In Figure 17, the SAR as a function of implant length at 1 cm from the head 

surface facing the antenna inside the homogeneous spherical head model for radiated 

power of 0.25 W is shown. 

From this, one can observe that the damping of the traveling wave as it traverses 

the sphere causes the maximum SAR, at the implant to decrease with distance b. 

Also an increase in local SAR can be seen for implant to be very close to the surface 
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Figure 16: Relative Absorbed Power - Distance (b) in x-direction 

of the head model. 
Figure 18 like 17, shows the maximum SAR in the model as function of the 

implant distance "b" from the edge of the spherical head model facing the dipole for 

an implant of length 2 cm. 

All values are normalized to an antenna radiation power of 1 W. 

10.3 Concluding Remarks 

Mobile telephones have transformed the telecommunications industry. These devices 

can be used to make telephone calls from almost anywhere. But reports have ap- 

peared in the media linking the use of mobile telephones with, among other things, 

headaches, hot spots in the brain and brain cancer. At the same time, radio fre- 

quency (RF) fields are known to produce heating and the induction of electrical 

currents. The effect of perfect conductor implants on the absorbed power distri- 

bution within a human head is studied theoretically using a lossy dielectric sphere 

containing conducting prosthesis excited by the near field of a dipole antenna rep- 
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Figure 17: Maximum SAR - Implant Length (1) in x-direction 

resenting a mobile phone. 

The validity of the proposed solution is verified for the unimplanted spherical 

head by comparing the resulting values of the scattered field with those based on the 

FDTD method. The effect of implant within spherical head has been investigated 

and presented for plane wave incidence. 

Examination of our analytical solution indicates that a perfectly conducting 

implant of resonant length within a homogeneous lossy dielectric spherical head give 

rise to an increase in local SAR considerably and the average SAR over 1g could 

be doubled by the conductor. The maximum increase in local SAR happens when 

the implant is parallel to the source. The average SAR over 10g can be increased 

approximately by 4 per cent. 

In a real human head which consists of many different tissues, the expected 

implant effect has to be made clear. One also should consider the effect of resonance. 

The prosthesis should be modeled by other types of shapes as well as materials such 

as an infinitely thin disc and non-circular arbitrary inhomogeneities. 
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The travelling wave as it traverses the sphere causes the maximum SAR at 

the element to decrease with distance b. A resonant implant very near the sphere 

surface can rise to a very marked increase in local SAR. The implant prevents the 

incident wave to penetrate into the head, so that total power absorbed by the head 

is reduced. 
Sample numerical results are presented to illustrate the versatility of the method. 

Good agreement is observed between the numerical results based on the proposed 

method and the FDTD method. The results for these specific cases agree with 

those given by other authors such as Gandhi, [96], showing the validity of our DGF 

representation. This provides a valuable check on all previous formulae and results 

of this work. 
Numerical computations can be used to show that valuable information can be 

obtained about the inner structure of a body observing the field scattered from it. 

The advantage of the proposed analysis is the simplicity and efficiency in com- 

putation. 



Chapter 11 

Conclusions 

The major conclusions of this thesis based on the research carried out are drawn 

within this chapter. It contains a summary of the findings and results of this disser- 

tation. It also brings together the various results obtained in the preceding chapters 

of this thesis and analyses the conclusions reached at each stage of the research 

investigation. Finally ideas which could help future research on the subject are 

suggested. 

Analytical techniques were in vogue before computers became available. Hence, 

many complicated problems can be formulated using this technique. 

In electromagnetic theory, many scalar wave concepts cannot simply be extended 

to the vector wave case. Even though most problems can be solved without the use 

of dyadic Green's functions, the symbolic simplicity with which they could be used 

to express relationships makes the formulations of many problems simpler and more 

compact. Moreover, it is easier to conceptualize many problems with the dyadic 

Green's functions e. g. the dyadic Green's functions in layered media which are 
discussed in chapters 3 and 4. 

A straightforward application of numerical methods to many wave and field 

problems involve using intensive computation and extensive computer time, may 

saturate the resources. A combination of numerical and analytical methods, how- 

ever, can generate computer codes that are many times more efficient. 
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11.1 Critical Appraisal of Research/DGF Method 

Reviewing the research and the results obtained, show that, although this method is 

exact and can be used for validation of models in numerical techniques, the method 

is cumbersome because the fields for every points has to be evaluated/calculated or 

the equations for max field derived e. g to find the max field. 

The technique also lacks visualization therefore hybridization is surely the an- 

swer i. e., improve the technique by considering the capability of other methods in 

order to construct a realistic DGF model. 
Although a wide variety of techniques are currently being applied to com- 

pute electromagnetic fields from a source radiation on biological systems, this work 

presents a new approach to the study of biological systems which can employ FEM, 

MoM and FDTD techniques to generate results. Its salient characteristics is that of 

the saving in memory and CPU computational time and speed. 

11.2 Concluding Remarks 

Technological progress in the broadest sense of the word has always been associated 

with various hazards and risks, both perceived and real. The industrial, commercial 

and household application of electromagnetic fields (EMF) is no exception. 
Throughout the world, the general public is concerned that exposure to EMF 

from such sources as high voltage power lines, radars, mobile telephones and their 

base stations could lead to adverse health consequences, especially in children. As a 

result, the construction of new power lines and mobile telephone networks has met 

with considerable opposition in some countries. Therefore research such as this is 

necessary and economically the cheapest way of evaluating these hazards. 

In chapter 3, a theoretical analysis of antenna/layered head configuration is 

demonstrated. An improved general multilayered homogeneous lossy dielectric spher- 
ical head/antenna model of DGF for numerical EMC investigation has been proposed 

and compared with the models by various authors. This study enables one to assess 

1. 
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the influence of the presence of a close-by biological head upon the operating charac- 

teristics of a mobile phone, antennas input impedance, SAR values inside the head, 

the power absorbed, the total radiated power, the thermal emission, the induced cur- 

rent on a scatterer, novel antenna design, the electric and magnetic near-/far-fields 

patterns, and also other situations. 
In this chapter we have also drawn attention to the fact that the singular be- 

haviour of the eigenfunction expansion (EFE) of the DGF is incorrectly formulated 

in some authors' related works. This is significant because this expansion is used in 

the numerical calculation of the electric field in the source region. 

Furthermore, by defining a symmetry operator the required memory for efficient 

numerical computations using the method of moments can be reduced drastically 

by formulating a new compact general expression. The validity of general model is 

verified by the DGF of the specific models, which agrees with other authors' study. 

Further work is in hand to find a reduced general formulation for electromagnetic 

DGF in spherically multilayered media by utilizing the technique presented in this 

chapter. 

The results of this study could be useful for a further analysis of the problem. 

Both GSM (global system for mobile communication) and PCS (personal communi- 

cation services) pose potential problems with regard to interactions with the human 

body and implanted medical devices. Interaction/interference-free antennas design 

is useful and, increasingly, is becoming necessary. Since anything that conducts 

can be considered as an antenna and two antennas interact with each other, the 

interaction problem could potentially be solved by using the mobile phone (hand- 

set transceiver) user (human body) as an antenna and transmitting at frequency 

levels (for example, noise) unharmful to humans. This would make possible the 

design of antenna-less PCS, receiving/transmitting signals only in close proximity 

to biological antennas (users). 

In chapter 4, we have derived general electromagnetic representations for a hu- 

man torso model (in simple form for the multilayered homogeneous lossy dielectric 

:;;, 
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circular cylinder of finite length) in order to evaluate deterioration of the antennas 

performance and obtain the rates of RF energy deposition (SAR), the power ab- 

sorbed, the total power radiated, the thermal emission and the current induced on 

a scatterer. The representations may be used to optimize antenna design, ascertain 

potential health hazards, and compliance with standards legislation. 

Scattering from complex bodies is often used for detecting possible internal in- 

homogeneities and non-symmetries. By observing the field scattered by a body on 

which radiation is impinging it is possible to obtain information about its internal 

structure. Investigation of cells and of biological bodies, remote sensing techniques 

and detection of imperfections inside optical waveguides and lenses are straightfor- 

ward examples. 
In chapter 5, general expressions have been derived in simple form for the finite 

conducting circular cylinder (medical devices/prostheses) of any size as well as of 

very small radius (resonant length). 

The usefulness of the present technique obviously requires comparison with nu- 

merical and experimental results. It is envisaged that future work will address this 

aspect of the problem in more detail. 

In chapter 6, alternative general expressions have been developed in simple form 

for the medical devices/prostheses (finite conducting circular cylinder) of any size as 

well as of resonant length. The advantage of the proposed analysis is its simplicity 

and efficiency in computation. 
In chapter 7, simple general expressions have been derived for the finite insulated 

conducting circular cylinder (insulated medical devices/prostheses) of any size as 

well as of very small radius (resonant length). 

In chapter 8, general far field expressions have been derived in simple form for the 

k 
rYs. 

. 

finite conducting circular cylinder (medical devices/prostheses) of any size as well 

as of very small radius (resonant length). The DGFs are obtained by employing the 

EFE and the method of scattering superposition. 

In chapter 9 the DGF technique was applied to derive the general electromag- 
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netic representation for a prosthesis eccentrically implanted in a human head model 

(in simple form for the multi-layered homogeneous lossy dielectric sphere embed- 

ded by a circular cylinder of finite length) in order to evaluate deterioration of the 

handset antennas performance and obtain the rates of RF energy deposition (SAR). 

The representation may be used to optimize mobile handset antennas design which 

radiate less into body tissue, ascertain potential health hazards, and compliance 

with standards legislation. The DGFs are obtained by employing the EFE and the 

method of scattering superposition. 

The outcome of this investigation will provide a platform for improvements in 

the electronic circuitry of the implantable medical devices (new prosthetic designs) 

such as cochlea implant planted in the head, cardiac (heart) pace-maker embedded 

in the body and biotelemetry transmitters for medical applications and could easily 

be expanded so as to handle any scatterer having finite radius and length. They 

can also be applied to problems of identification of buried unexploded ordnance 

(UXO) and optical fibers and waveguides for the investigation of inhomogeneities or 

obstacles inside them. 

Throughout the thesis in the above chapters, the DGFs are obtained by employ- 

ing the EFE and the method of scattering superposition. 

The results of these chapters could be useful for a further analysis of the prob- 
lem as a thin wire/insulated wire or an implant/dielectric-coated implant such as 

heart pace-maker embedded in the body and biotelemetry transmitters for medi- 

cal applications and could easily be expanded so as to handle any scatterer having 

finite radius and length. They can be applied to problems of optical fibers and 

waveguides for the investigation of inhomogeneities or obstacles inside them or by 

considering the cylinder as an excitation or scatterer. They can also be of use in the 

study and design of antennas of high frequency whose performance is less affected 

by the biological systems and produce lower SAR (specific absorption rate, the rate 

of electromagnetic energy deposition) and as a result contribute to the efficiency of 
handheld/mobile phones. 
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In chapter 10 the effect of perfect conductor implants on the absorbed power 

distribution within a human head is studied theoretically using a lossy dielectric 

sphere containing conducting prosthesis excited by the near field of a dipole antenna 

representing a mobile phone. 
The validity of the proposed solution is verified for the unimplanted spherical 

head by comparing the resulting values of the scattered field with those based on the 

FDTD method. The effect of implant within spherical head has been investigated 

and presented for plane wave incidence. 

Examination of our analytical solution indicate that a perfectly conducting im- 

plant of resonant length within a homogeneous lossy dielectric spherical head give 

rise to a considerable increase in local SAR and the average SAR over lg could be 

doubled by the conductor. The maximum increase in local SAR happens when the 

implant is parallel to the source. The average SAR over 10g can be increased by 

approximately 4 per cent. 

In a real human head which consists of many different tissues, the expected 
implant effect has to be made clear. One should also consider the effect of resonance. 
The prosthesis should be modeled by other types of shapes as well as materials such 

as an infinitely thin disc and non-circular arbitrary inhomogeneities. 

The traveling wave as it traverses the sphere causes the maximum SAR at the 

element to decrease with distance b. A resonant implant very near the sphere surface 

can rise to a very marked increase in local SAR. The implant prevents the incident 

wave penetrating into the head, so that total power absorbed by the head is reduced. 
Sample numerical results are presented to illustrate the versatility of the method. 

Good agreement is observed between the numerical results based on the proposed 

method and the FDTD method. The results for these specific cases agree with 

those given by other authors such as Gandhi, [96], showing the validity of our DGF 

representation. 

Numerical computations can be used to show that valuable information can be 

obtained about the inner structure of a body observing the field scattered from it. 
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The method used in this thesis can be of great interest in the analysis of the 

electromagnetic wave propagation in layered media in underwater communications, 

geophysical explorations, radio propagation in forests, agricultural applications, etc. 

This study enables one to assess the influence of the operating characteristics as 

well as the presence of a closeby source (mobile phone) upon the operating charac- 

teristics of an electronic tag or implant in a layered biological head, antennas input 

impedance, SAR values inside the implant, the power absorbed, the total radiated 

power, the thermal emission, the induced current on a scatterer, novel antenna de- 

sign, the electric and magnetic near-/far-fields patterns, and also other situations. 

Electronic tagging can be regarded as a more permanent form of identification 

than a smart card. Information on the holder can be read into a computer system. 

In a simple example, when a smart card or tag is presented, and the individual is 

recognized, machinery such as a light or a door can operate if the system passes that 

individual's status. 

An even more permanent arrangement is for an individual to be implanted with 

silicon chip circuitry, which gives out a unique code, identifying the individual con- 

cerned. The potential of this technology is enormous. For example it is quite possible 
for an implant to replace an Access, Visa or bankers card. There is very little dan- 

ger in losing an implant or having it stolen. Security in banking would therefore be 

higher. 

An implant could carry huge amounts of data on an individual, such as National 

Insurance number and blood type, with this data being updated and added to where 

necessary. It could contain information on any medical problems, qualifications, 

prior convictions and even speeding fines. It would be difficult to lie or cover up 

such information. 

Within businesses, individuals with implants could be clocked in and out of their 

office automatically. It would be known, at all times exactly where an individual was 

within a building and whom they were with. They could therefore be contacted for 

a message or an urgent meeting. An implant could also be extremely useful as far 
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as vehicle (car) security is concerned. Unless a vehicle (car) recognized the unique 

signal from its owner it would remain disabled. 

But all of this smacks of Big Brother. With an implant, a machine will know 

where an individual is in a building, at all times. An individual might not even be 

able to pay a visit to the toilet without a machine knowing about it. 

Numerical simulation techniques developed for the comprehensive analysis of 

the human exposure to electromagnetic waves and estimating the SAR may require 

considerable time and large computer memory for calculation. Analytical methods 

provide valuable tools in evaluating the interaction between canonical head/body 

models and antenna sources. 



Chapter 12 

Further Work 

HOWEVER , in view of the encouraging results of this study the present section 

addresses different areas of future work which have emerged during the study 
for this dissertation. These areas can be summarized as follows; 

" Investigation of new type of EM simulators based on real life simulation making 

use of alternative algorithms in particular hybridization of numerical methods 

with the help of DGFs. 

" Another avenue for further work is to investigate the redesign of sources (mo- 

bile communications) with respect to biological systems with EM hazard mit- 

igation in mind. 

12.1 Performance Improvement 

In electromagnetic theory, many scalar wave concepts cannot simply be extended to 

the vector wave case. Even though most problems can be solved without the use of 

dyadic Green's functions, the symbolic simplicity with which they could be used to 

express relationships makes the formulations of many problems simpler and more 

compact. Moreover, it is easier to conceptualize many problems with dyadic Green's 

functions. 

A straightforward application of numerical methods to many wave and field 

problems involve using intensive computation and extensive computer titne, may 
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saturate the resources. A combination of numerical and analytical methods, how- 

ever, can generate computer codes that are many times more efficient, and allow the 

analysis of larger or extremely smaller EM scattering and coupling problems with 

reduced unwanted reflections. 

12.1.1 Hybridization of MoM-FDTD Hybrid with the DGF Method 

Wide-spread use of personal communication (PC) systems necessitates better under- 

standing of EM interactions between various types of antennas and the human body 

especially in GHz bandwidths or higher. There is a need to solve problems which 

extend beyond the scope of workstation technology in bioelectromagnetic modeling 

as well as aerospace design. The recent improvements towards the understanding of 

EM interactions in PCs have been achieved by popular numerical computations em- 

ploying various methodologies such as FDTD method [1] - [18], method of moments 

(MoM) [1] and others. Although MoM is excellent for modeling perfect conductors 

and FDTD very suitable for simulation of dielectrics these techniques have their 

disadvantages. Both of these techniques owing to present computer memory and 

processors computation time have limitations in dealing with the effects of very thin 

layers (e. g. skin of about 1 mm thick) and high or even extremely higher operat- 

ing frequencies (e. g. 30-300 GHz). They are also limited in their ability to handle 

scatterers whose characteristic dimensions are greater than a few wavelengths. 

The problem of EM scattering from large bodies is of great practical interest. 

Indications are that modeling of a finely discretized large object with a very high 

frequency source may lead to problems when using numerical techniques. This is 

because large finely discretized models have a large number of cells requiring cer- 

tain amount of memory allocation and a finite computation time. This results in 

a burden on computational resources. Therefore EEM (Eigenfunction Expansion), 

an efficient exact modular technique that uses DGFs can be used to critically in- 

vestigate these problems especially the effects on very thin layers (e. g. skin), large 

objects and extremely high frequencies without the limitations/drawbacks of com- 
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puter resources. This technique allows to compute the fields for a variety of antennas 

or antenna arrays very cheaply in terms of hardware as well as software in a modular 

fashion. But this method lacks the visualization capability. 
It appears that a large number of benefits are possible from the hybridization. 

Therefore these popular numerical techniques can be hybridized by EEM to im- 

plement the EM problems (head/body-antenna interactions) in personal communi- 

cations more accurately, efficiently and increased confidence in the final developed 

model. One technique of hybridization is to truncate the computational volume 

by enclosing some sort of absorbing boundary condition utilizing DGF around the 

source and another surrounding radiated specimen and then using a second or even 

third computational method such as FDTD for computation of fields inside these 

boundary conditions. The boundaries can be placed close to the contours of source 

and specimen in this approach to save computer memory and computational time. 

Another method is to do exactly the opposite of the former technique. 

12.1.2 The Development of an Antenna-less PCSs 

Both GSM (global system for mobile communication) and PCS (personal communi- 

cation services) pose potential problems with regard to interactions with the human 

body and implanted medical devices. Interaction/interference-free antennas design 

is useful and, increasingly, is becoming necessary. 
Since anything that conducts can be considered as an antenna and two antennas 

interact with each other, the interaction problem could potentially be solved by 

using the mobile phone (handset transceiver) user (human body) as an antenna and 
transmitting at frequency levels (for example, noise) unharmful to humans. This 

would make possible the design of antenna-less PCS, receiving/transmitting signals 

only in close proximity to biological antennas (users). 

Wireless personal communication is a rapidly expanding sector, particularly in 

the field of cellular mobile phones and wireless local area networks (WLAN's). 

In an indoor WLAN system, the user of the mobile terminal can find himself 
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in close proximity to the radiating antenna. It is, therefore, important to consider 

possible health hazards due to this type of exposure. As the adverse effects of the 

electromagnetic (EM) fields are of thermal nature, particularly with reference to the 

eye, we have to try to somehow decrease these health hazards. 

Indoor applications of wireless of local area networks (WLAN's) were introduced 

in the early 80's to reduce the installation and relocation costs of conventional wired 

local area networks (LAN's) and to allow the mobility of connected elements in the 

work space. The existing applications of WLAN's are unlicensed spread-spectrum 

systems operating the industrial, scientific and medical (ISM) frequencies around 

2.45 and 5.8 GHz, and licensed cellular systems operating at 18-19 GHz. More 

recent WLAN's projects contemplate the use of millimeter-wave frequencies (30 

and 60 GHz). In fact, in this frequency region, wide bands are still available from 

spectrum regular agencies, and the signal is more confined within rooms or buildings, 

thereby the possibility of frequency reuse and the privacy of communications. 

To transmit data, wireless LAN systems use a direct antenna placed at a mobile 

personal terminal (computer, telephone, camera, etc. ) and a wide beam antenna 

placed at a fixed site (the base station) usually located at the room ceiling or high 

on a vertical wall. In this arrangement, the user can find himself in close proximity 

to the radiating mobile antenna, where the electromagnetic (EM) field assumes its 

highest values. In particular, the user is exposed to an EM field made of the wave 

directly coming from the radiating antenna and waves produced by reflection and 

scattering from objects present in the area. As a consequence, it is important to 

consider the possible health hazard due to such systems and, in particular, to define 

the EM field values that are safe for human beings. 

With reference to the kind of applications under consideration, the frequency 

range around 2.45 GHz has already been sufficiently investigated due to its extensive 

use in ISM applications. In this proposal, therefore we specifically focus our attention 

on the whole interaction of fields. 

Over 6 GHz, the correlation between the power-flux density of the incident field 
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and the specific absorption rate (SAR) (the rate of RF energy deposition) inside the 

exposed body has been obtained. 
In this frequency range, the eyes seems to be one of the most hazardously exposed 

organs. In fact, the absorption takes place mainly in the skin, and the eye, at 

least when eyelids are open, is not protected by a skin layer. The eye is an organ 

particularly sensitive to heating because of the lack of blood flowing into it, and it 

is subject to thermal damage (lens cataract) even in the presence of weak heating. 

At frequencies around 2.45 GHz, the EM radiation penetrates sufficiently deep 

(starting in the eye so that part of the eye most at risk is its inner region). However, 

when moving toward higher frequencies (6-30 GHz range), the EM radiation has 

a smaller penetration depth and therefore, a greater power deposition takes place 

directly which becomes another hazardously exposed tissue. Unfortunately thermal 

sensitivity has not been extensively investigated. 

On the basis of these facts we have to change our attitude to design of new 

technology. 

As concerns the experimental studies because of the difficulty in performing 

experiments directly on the humans. Investigators could work on other biological 

systems e. g. Another type of study, involving animals/insects, is more closely related 

to real life situations. These studies provide evidence that is more directly relevant 

to establishing safe exposure levels in humans and often employ several different 

field levels to investigate dose-response relationships. 

12.2 EM Modeling of Moving/Rotating/Bouncing/Spinning 

Scatterers 

Over the past decade, the ability to simulate EM phenomena in a computer has 

developed considerably. The increase in readily available computing power and 

speed, coupled with improvements in modeling software now provides the modeler 

with much greater detail in the analysis of EM structures. Despite all this progress 

there are no simulators to model/simulate moving, rotating, bouncing, spinning (or 
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a combination of these) objects. Further work should also address this realistic 

improvement. This requires; 

12.3 Electromagnetic DGF Modeling of Moving Spherical 

Scatterers 

The analysis of the interaction of electromagnetic (EM) fields with moving charged 

bodies is one of the classic problems in the theory of electromagnetics. The study of 

moving bodies is relevant to many areas of engineering where the electromagnetic 

effects induced by motion have to be modeled for device(s) or system(s). The effects 

on submarines as well as on the body of airplanes and radar scattering objects such 

as missiles, charged particles moving in a Colimeter, or movement of cells in blood 

may be presented by multilayered, spherical model in three dimensions. The theme 

of this investigation can also be focused on the electric activity of nerve and muscle 

and extracellular electric and magnetic fields that they generate Malmivuo [82]. Also 

on account of the recent progress in mobile telecommunications systems in the high 

frequency range, the human body is increasingly exposed to electromagnetic fields. 

Therefore, the analytical solutions/numerical simulation of the power absorbed in 

human tissue becomes extremely important in order to meet safety requirements. 

A typical example is the strong interaction between the near field of an antenna of 

a hand held transceiver and the sensitive organs on the moving head, such as the 

eyes. 
One could suggest an analytical description based upon Maxwell-Minkowski's 

relations of an electromagnetic dyadic Green's function (DGFs) for a uniformly 

moving (multilayered homogeneous lossy dielectric) spherical scatterer model in an 

isotropic, homogeneous, linear and non-dispersive medium in all directions which 

is valid everywhere, including the source region bearing in mind the computational 

efficiency and economy in terms of speed, time and memory. The scatterer could be 

assumed as a charged particle, cell, ion, human head or even a bullet moving with 

a constant velocity in the x-direction. In this study we can assume the object to be 
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rigid, so that all portions of the material may be considered to be moving with the 

same velocity. 

12.4 Electromagnetic DGF for a Moving Human Torso Model 

Antenna-body interaction is of interest with the use of biotelemetry transmitters for 

medical applications. Short range telemeters being developed for medical applica- 

tions increasingly operate at UHF, taking advantage of greater spectrum availability 

and reduced levels of synthetic noise. Power dissipation in the body and impedance 

mismatches induced by effects of proximity presents system losses, so the risk of 

signal drop-out in the link is increased. The most important operational parame- 

ters for a closed-coupled antenna-body interaction for biotelemetry are its antenna 

efficiency and radiation pattern in the azimuthal plane. 

Moreover, the relations between electrodynamics of moving media formulations 

and Minkowski's classical work which was based upon the special theory of relativity 

were reviewed by Tai in his articles [98] - [100]. On this basis as suggested in the 

previous section, one aims to express a mathematical model based upon Maxwell- 

Minkowski's relations of dyadic Green's function (DGF) for the problem of electro- 

magnetic radiation from a source of excitation in the presence of a uniformly moving 

human torso model (multi-layered homogeneous lossy dielectric circular cylinder of 

finite length) as well as any part of the body assuming the shape of a cylinder in 

an isotropic, homogeneous, linear and non-dispersive medium in all directions. The 

whole structure is assumed to be uniform along the propagation direction and the 

object to be rigid, so that all portions of the material may be considered to be 

moving with the same velocity. 

12.5 Various Research Ideas 

There is considerable room for future investigation, both theoretical and experimen- 

tal, of various sources in the presence of biological systems. Using the method of 
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DGFs, together with scattering superposition, exact expressions could be formu- 

lated for the radiation from biological systems. Numerical results could then be 

easily obtained with the help of a computer since only the calculations of the scat- 

tering coefficients would need to be modified. The radiation pattern of the source 

could also be evaluated. 

It would be interesting to construct the model of a whole biological systems e. g., 
human person and measure its performance. 

Finally a great number of further recommendations for future work are sug- 

gested; 

1. Dyadic Green's Function in a Finite Cylindrically Multilayered Chiral Media. 

2. Radiation From a Wrist-Mounted, Motion/Pulse-Activated Mobile Phone on 
the Wrist. 

3. Radiation From a Wrist-Mounted, Motion/Pulse-Activated antenna-less Mo- 

bile Phone on the Wrist. 

4. Radiation From Sources in the Presence of a Moving Biological System (Head 

/Body). 

5. Dyadic Green's Function for a Moving Finite Cylindrically Multilayered Chiral 

Media. 

6. Dyadic Green's Function for a Moving Finite Cylindrically Multilayered Media 

in uniform translation motion. 

7. Dyadic Green's Function for a Moving Spherically Multilayered Media in uni- 
form translation motion. 

8. Particles with Spin in an Electromagnetic Field using Dyadic Green's Function. 

9. Effect of Electromagnetic Radiation on Particles at Point of Impact using 
Dyadic Green's Function. 
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10. Effect of Electromagnetic Radiation on Rotating Particles/Bodies under Grav- 

itational Influence using Dyadic Green's Function. 

11. Electromagnetic Modeling of Moving Spherical Head Using Dyadic Green's 

Function. 

12. Electromagnetic Dyadic Green's Function for a Moving Human Torso Model. 

13. Electromagnetic Modeling of Moving Spherical Head Using a Hybrid MoM/DGF 

/FDTD. 

14. Electromagnetic Hybrid MoM/DGF/FDTD for a Moving Human Torso Model. 

15. Microwave Thermal Emission from a Spherical Stratified Medium with Non- 

uniform Temperature Distribution. 

16. Microwave Thermal Emission from a Cylindrical Stratified Medium with Non- 

uniform Temperature Distribution. 

17. Microwave Thermal Emission from an Implanted Spherical Stratified Head 

Model Medium with Non-uniform Temperature Distribution. 

18. Microwave Thermal Emission from an Implanted Cylindrical Stratified Body 

Model Medium with Non-uniform Temperature Distribution. 

19. Electromagnetic Dyadic Green's Function in an Implanted Cylindrically Mul- 

tilayered Body Model Media. 

20. Electromagnetic Dyadic Green's Function in an Implanted Spherically Multi- 

layered Head Model Media. 

21. Microwave Thermal Emission from an Implanted Spherical Stratified Head 

Model in a Moving Medium with Non-uniform Temperature Distribution. 

22. Microwave Thermal Emission from an Implanted Cylindrical Stratified Body 

Model in a Moving Medium with Non-uniform Temperature Distribution. 
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23. Electromagnetic FDTD's Function in an Implanted Cylindrically Multilayered 

Body Model Media. 

24. Electromagnetic FDTD's Function in an Implanted Spherically Multilayered 

Body Model Media. 

25. Electromagnetic FDTD's Function in a Whole Multilayered Person Model Me- 

dia. 

26. Electromagnetic FDTD's Function in an Implanted Whole Multilayered Per- 

son Model Media. 

27. Electromagnetic Dyadic Green's Function in a Whole Multilayered Person 

Model Media. 

28. Electromagnetic Dyadic Green's Function in an Implanted Whole Multilayered 

Person Model Media. 

29. Electromagnetic Dyadic Green's Function of a Small Cylindrical/Spherical Im- 

plant Embedded into a Dielectric Single/Multi-Layered Spherical Head Model 

Media. 

30. Electromagnetic Dyadic Green's Function of a Small Cylindrical/Spherical 

Implant Embedded into a Dielectric Single/Multi-Layered Cylindrical Body 

Model Media. 

31. Electromagnetic FDTD's Function of a Small Cylindrical/Spherical Implant 

Embedded into a Dielectric Single/Multi-Layered Spherical Head Model Me- 

dia. 

32. Electromagnetic FDTD's Function of a Small Cylindrical/Spherical Implant 

Embedded into a Dielectric Single/Multi-Layered Cylindrical Body Model Me- 

dia. 
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33. Electromagnetic FDTD's Function of a Small Helical Implant Embedded into 

a Dielectric Single/Multi-Layered Spherical Head Model Media. 

34. Electromagnetic FDTD's Function of a Small Helical Implant Embedded into 

a Dielectric Single/Multi-Layered Cylindrical Body Model Media. 

35. Electromagnetic Dyadic Green's Function of a Small Helical Implant Embed- 

ded into a Dielectric Single/Multi-Layered Spherical Head Model Media. 

36. Electromagnetic Dyadic Green's Function of a Small Helical Implant Embed- 

ded into a Dielectric Single/Multi-Layered Cylindrical Body Model Media. 

37. Electromagnetic Fields Induced Inside an Implanted Multi-Layered Arbitrarily 

Shaped Head Model in a Moving Medium with Non-uniform Temperature 

Distribution. 

38. Electromagnetic Fields Induced Inside an Implanted Multi-Layered Arbitrarily 

Shaped Head Model. 

39. Fast Algorithm for Electromagnetic Fields induced Inside an Implanted Multi- 

Layered Arbitrarily Shaped Head Model. 

40. Performance of Various Mobile Communication Antennas in a Conducting 

Structure using EEM. 

41. Electromagnetic Fields from an Electrosurgical Device that Interferes with 

other Medical Devices using EEM for Numerical EMC Investigation. 

42. Fast Algorithm for Electromagnetic Scattering by Implanted Conducting Pros- 

theses of Large Size using EEM. 

43. The Effect of Shape, Size and Material of Different Antennas on Biological 

Systems. 

Different areas for future work have been raised, many more exist, and they 

should be considered. 



Appendix A 

Vector Wave Functions and Their 

Mutual Relationships 

A. 1 Spherical Vector Wave Functions 

The spherical vector wave functions are the building blocks of the EFE of various 

kinds of spherical DGF. They are solutions of the homogeneous vector equations. 

The generating functions, which are solutions of the spherical scalar wave equation 

V21Q + k2W=0, can be written in the form 

ý. ºýn (k) = 3� (kR) 17 (cos 0). 'j'. mo, (A. 1) 

Here k is an undetermined wave number determined by the boundary conditions 

and x is the piloting vector. Subscripts "e" stands for even and "o" is odd character 

of the generating functions. Where F, m(cos B) identifies the Associated Legendre 

functions of the first kind with order (n, m) and j� (kR) denotes the spherical Bessel 

functions of the order n to represent both out-going and in-coming waves. 
=Lfo =LIo 

The solenoidal vector wave functions needed to construct G. and Gm are 

solutions of the following homogeneous differential equation 

Vx[VxM]-k2T =0 (A. 2) 

Spherical vector wave functions are akin to the Debye potentials. Hp.,, (k) = k0 x 
( nxý and N3. n(k) = ! Vx(M-",, (k)] These 
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functions are defined in the entire space, corresponding to 0<R< oo, 0<0< 27r 

and 0<0 <7r. The orthogonal properties of these vector wave functions have been 

discussed by Tai [19]. 

The complete expressions for the solenoidal (rotational or transverse) functions 

in the R-direction for stationary scatterer are given by Tai [19]: 

ýý, 
nn(k) = Vx[ýk�n1 ] 

0 
_ =F sin ej� (kR)FF (cos 9)"'mgO , 

_in/ 
)(8F'" cos B )cos oo 

(kR l 00 ain m 

and 

Nýn(k) =k VxVx[%nR] 

" 
kRi 

j� (kR) FF (cos O)8°n mcR 

-18 
8F'" (coo 0) cos 

kR5R[Rj,, 
(kR)]( 

80 
)sinmge 

kItäR[Rjn(R)][ýsineFn (cos8)cß°mfýý] 

(A. 3) 

(A. 4) 

where 
MV�. (k) and N,,;, (k) are the even or odd spherical vector wave functions. 

These functions can also be derived in terms of other directions such as x; 

MQ(k) - Vx[%`rnnx] 

- vx [46n (sinOcosk+coscosiö 
- sin ¢)] 

sing 
{ß(sin9sin44mn) 

+I (COS 8COSq 
n)] 

R 

-1+ 
[9(SflOCOSiI4mn)+8R(Rsin0 

n 
)] 8 

kR 

+ [8R (R cos 0 cos ^nn) - 
8B (sin 0 cos 044, 

nn)] 

(A. 5) 
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The relationship to the M mn(k) and N{: 
nn(k) 

functions; 

M: 
rnn(k) = kVX%nnij 

_1 VX [4ýnn (sinocos+cosocosý 
- sin ýý) ] 

ý2n(n 
+ 1) 

rNOR')+1)n(k) 
+ (n + m)(n -m+ 1) gm)-1)n(k), 

+ 2(n + 1) (2n + 1) 
Mo 

m)+1)(n+l) 
(k) 

- 
(n 

- in + 1)(n -m+ 2)Mg(m_1)(n+l)(k)] 

1 [M-9(m 
+l)(n-1) 

(k) - (n +m- 1) (n + m)M m-1)(n-1) 
(k)] 

2n(2n + 1) 

(A. 6) 

N>xin(k) = 
k2 

VxVx[ nx] 

= 
k2 

VxVx [ 
,,. 

(sin 9 cos cbR + cos 0 cos q$B - sin 

_ 2n(n + 1) 
rM--('+l)"(k) + (n + m)(n -m+ 1) Vim)-1)n(k), 

+ 2(n + 1)(2n + 1) 
NG'"+1)(n+i) (k) - (n -m+ 1) (n -m+ 2) Vim)-1)(�+1)(k), 

- (1 ) 
rN. R) (k) - (n +m- 1)(n + 2n2n m)N(R) k, 

+1 (m+ l)(n-1) ä(m-1)(n-1) 
() 

(A. 7) 

The additional constant k which included in these functions makes them of the 

same dimension as that of M{: �n(k) or 1V{gnn(k) defined by (A. 3) and (A. 4). 

M(k) _k Vx[` army] 

_ 
1vx[%,, 

n 
(sin9sin+cos8sinö+cos)] 

(n1+ 1) 
[N 

m+l)n 
(k) - (n + m)(n -m+ 1) R))_i)�(k), 

2n 

R t 
2(n + 1) (2n + 1) 

[M. 
m+i 
) 

)(n+l) (k) + (n -m+ 1)(n -m+ 2)gm)_l)(n+i)(k)} 

M. k+ (n m- 1(n m MAR) k, 
801 

(A. 8) 
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NDmn(k) 
_Z VxVx[ ny] 

2 
Oxvx [T�n (sin 9 sin OR + cos 9 sin 06 + cos 

(n 
1 
+1 ) 
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(m+l)n(k) - (n + m)(n -m+ in 1)Mgm_l)n(k)] 
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n(n + 1) 

(1 
(n -m+ 1-(R) (n + m)-(R) 1 

+ 2n + 1) I. n+1 
N`a'+(n+ý) (k) 

nýºý(, º-i) 
(k) J 

A. 2 Vector Wave Functions for a Circular Cylinder of Finite 

Length 

The cylindrical vector wave functions are the building blocks of the EFE of various 

kinds of cylindrical DGF. They are denoted by L o�a, Puna and iU.. that are 00 nx, 
solutions of the homogeneous vector Helmholtz equation. The generating or Eigen- 

functions, which are solutions of the cylindrical scalar wave equation V2WY+'äW=0, 



A. 2. Vector Wave Functions for a Circular Cylinder of Finite Length 165 
Salehi-Reyhani, S. M (2001) 

with the differential equation in the cylindrical coordinate system 
1a aT 1 02W 02T 82 
r ör 

(r 
ör) 

+ r2 a02 
+ 572 + 

OZ2 
+ K2ý =0 (A. 12) 

with K, the separation constant and 'a being an undetermined wave number. Im- 

plementation of the method of separation of variables in this system finally results 

the generating function in Reyhani [28] in the form 

'Iýý, (h) = in (Ar)ä°nO$°8hz, (A. 13) 

Here subscripts "e" stands for even and "o" is odd character of the generating 

functions. h= are the eigenvalues in the z-direction with q=0,1,2, .... and l 

is the length of cylinder (fig. 2). j� (. Ar) identifies the cylindrical Bessel functions of 

the order n to represent both out-going and in-coming waves. A is the continuous 

eigen-value. 
=Lfo =Lfo 

The solenoidal vector wave functions needed to construct G. and Gm are 

solutions of the following homogeneous differential equation 

Vx[Vx(F)] -rcäýY=0 (A. 14) 

Cylindrical vector wave functions are akin to the Debye potentials. 

Pý ý(h) =Vx [ýk x] (A. 15) 

Qýý (h) =1 Vx(Vx i -1V xVxA. 16 

Where I is the piloting vector. 

The complete expressions for the solenoidal (rotational or transverse) functions 

in the z-direction for stationary scatterer are given by Reyhani [28,29]: 

*. 7� (Ar)cö nisýhzr" 
z), 

\(h) _ -(e r )e; °ýnog hzý (A. 17) 

0 

sin 
Qe, 

a(h) = "U,. (ar)]cosn 
j- 

(A. 18) 

A2[j(Ar)]ännra hz 
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where Pe a(h) and Q( a(h) are the even or odd cylindrical vector wave functions. 

Here rcä = \2 + h2, and in these vector wave functions one should be careful 

with the sign of the elements in the matrices when cross-multiplying the terms from 

"e" to "o" and vice-versa e. g. "sin sin" always remains negative while "cos cos" 

positive. Also "- cos sin" and "- sin cos" in second elements of matrices in 15.. and 

P,, respectively. In t, and Lo. both "cos sin" and "sin cos" are positive in the first 

element of their respective matrix. For 
,, 

"- sin cos" in second element of matrix, 

while "+ cos sin" in the third element. For (fie, "- cos sin" and "+ sin cos" in the 

elements 2 and 3 respectively. "f" applies the negative to the top line while positive 

to the bottom line. 

Note that in the set of cylindrical vector wave functions only Poo,,, do not possess 

the z component. The r, ý and z are the cylindrical unit vectors. These functions 

are defined in the entire space, corresponding to 0<r< oo, 0<< 27r and 

0 <z<l. 

The volume integral of the product of the cylindrical vector wave functions is 

clearly zero if n# n' and h# h' because of the orthogonal property of the cos no and 

sin no functions and the Fourier integral relation. The derivation of the orthogonal 

properties of these vector wave functions have been presented in chapter 4 and also in 

Reyhani [28,29] and are very similar to those for infinite circular cylinder discussed 

by Tai [19]. 

These functions can also be derived in terms of other directions such as x; 

-r, (Z) 

cos (A. 19) 
_ Vx lam, - sin 

0 

The relationship to the P ,,, 
(h) and 

Q 
A(h) functions; 
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P a(h) = Vx[W (h)x] 

hI g)fl+i)A (h) 
x T/X 

1), x (h) 

VxVx[W; (h)I] 

-/-ý(z 
±a `ýýýn+l)A(h) 

ýz) 2A 
Qýafl+i)a&h) 
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(A. 20) 

(z) (z) h 
(A. 21) 

__ 
Qoe(n+i)a(h) ka Pýý(n+i)aýh) 

2i1 z-z 2, \ F'<<(n+1)a(h) 



Appendix B 

Electromagnetic Fields due to 

Electric and Magnetic Current 

Distributions using Dyadic 

Green's Functions 

THE convenience of introducing non-physical magnetic current sources into 

electromagnetic analysis has long been recognized. Thus we can exploit sym- 

metry of the field structure when both electric and magnetic sources are present. 

Integral solutions of electromagnetic vector wave equations arising from electric and 

magnetic current sources are presented. The basic philosophy of this appendix then 

lies in the choice of a particular set of basic functions (dependent on the nature of 

the problem) which are valid everywhere, including the source region. The method 

of analysis involves the derivation of dyadic Green's functions of both electric and 

magnetic type by employing the principle of scattering superposition. We shall 

assume that one can expand the DGFs for other geometries in a similar manner. 
Furthermore, we have also made an attempt to compare these solutions with the 

formulations of previous related studies. 
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The dyadic Green's function (DGF) was introduced by Schwinger in the early 1940's, 

and has become a powerful and important tool for evaluation of fields and solving 

boundary-value problems. Its properties has been extensively discussed by Tai [20] 

- [19], Collin [21], Samii [22], Yaghjian [24] and others. This technique allows the 

formulation of various canonical electromagnetic problems in a systematic manner 

and to enable many special cases to be treated as one general problem. If the 

current source in these problems has a number of specific distribution, we have to 

consider each distribution as special cases. for example, excitation by a transversal 

electric dipole or a longitudinal or a magnetic dipole. The DGF, which relates the 

current source and the field is singular in the source region. Although opinions in 

the literature are not seriously divided, this appendix reviews a number of references 

commencing with early contributors such as Yaghjian [24] and [27] - [66] in order to 

highlight some of the difficulties that were encountered in constructing the correct 

DGF, especially in the source region. 

The format of this appendix is as follows. Section B. 2 presents the integral 

solutions of electromagnetic vector wave equations for fields due to the electric and 

magnetic current sources. Two methods for determining the electric and magnetic 
fields generated by both current sources located inside a finite volume are presented; 

one based on Tai's utilization of second vector dynamic Green's theorem [19] and 

the other employing the method of potentials using the Hertzian (Debye) potentials 
TISR) and rjm(R). Our objective is to present a more complete formulation than 

previously reported. 

The complete set of rectangular vector wave functions are introduced in sec- 

tion B. 3. 

In section B. 4, we consider the unbounded case, in which the point source ra 
diates with no interface present and construct the corresponding DGF, Gmo(R, R ), 

in terms of an integral over the spectra of plane waves that constitute the continu- 

ous eigenfunction expansion in which the eigenfunctions are guided in the preferred 
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R-coordinate direction. These expansions also contain an explicit dyadic delta func- 

tion term, which is required for completeness, at the source point. It is considered 

as a correction to the general solenoidal eigenfunction expansion which is valid out- 

side the source point. In this section, we also express the complete Eigen-function 

expansion of the scattering DGF for the media, in terms of only the solenoidal 

eigenfunctions. These are simple and straight-forward expressions. The DGFs for 

complex media, Gm (R, R) can then be constructed from the principle of the super- 

position, which involves the sum of the fields of a source in free space (or the free 

space Green's function Gmo(R, R )) and secondly, the fields scattered by the media 

Gm (R, R )" 

Section B. 5 discusses the discrepancies involved in other authors' corresponding 

formulations and some remedies are proposed. 
Conclusions are then presented in section B. 6 summarizing the important points 

contained in this work. 

B. 2 Derivation of Electromagnetic Fields due to Electric 

and Magnetic Current Distributions using Dyadic Green's 

Functions 

The derivation of a general relation for (. ) and (H, ) for the case of two types of 

current sources such as J and Jm radiating in an isotropic, homogeneous medium 

is quite simple and may be usefully applied to various problems of propagation in 

media. 
Here, the time-harmonic convention of e'"''t is used. Consider electric (Ee) 

and magnetic (H. ) vectors to be generated by an electric current described by the 

current density vector -j.. The vectors P. and F. are then the solutions of Maxwell's 

equations, (B. 1) and (B. 2). 

0x FieA = iWll0neR (Bd) 
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OxH. (R) = J, 
, 
(R) - iwe0 (R) (B. 2) 

Similarly E,,, and H,, are generated by a non-physical magnetic current density 

vector Jm 

VXE, 
n 
(R) = iwµ0HZ (R) - Jm (R) (B. 3) 

Vx Hm (R) = -iwe0Em (R) (B. 4) 

The use of the magnetic current density vector ensures symmetric Maxwell's 

equations. It is sometimes necessary to calculate the electromagnetic fields due to 

both electric and equivalent magnetic current sources. 

Assuming 77. + Hm = Hf and Eý + Em = Ff. Therefore Maxwell's equations with 

a magnetic current density Jm could be written as 

Vx Ef (R) = iwµ, Hf (R) - J, 
n 
(R) (B. 5) 

Vx Hf (R) = J. (R) - iwefrf (R). (B. 6) 

Since electromagnetic fields are vector fields, the general wave equation is a vector 

wave equation. For an homogeneous isotropic medium, the general form of the 

vector wave equation is given by: 

pxpx Ef - kfEI = (iw1 -Vx7,. )b; (B. 7) 

VxVxHf-kf7i =(iwefJ, n +OxJa)af (B. 8) 

The above equations follow directly from duality principle. To obtain the elec- 

tromagnetic fields due to these electric and magnetic current distributions, one first 
-fa- -/ -1s - -. 

constructs GC(R, R) and Gm(R, R ), the electric and magnetic dyadic Green's func- 

tions respectively [19] and [21]. These two DGFs are the solutions of the following 

dyadic differential equations (taking into account the discontinuous nature of mag- 

netic or electric DGF with respect to electric or magnetic dipole respectively at 

z= z' i. e., Vx I&JR - 
R) =0 and in case of cavities the source term Jm =0 on 

the surface): 

VxVxG 8(R, R)-kfG aý(R, R)=iwz9lý;, ýR-R)ýf (B. 9) 
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Where 19 represents e or µ in the electric or magnetic DGF equations respectively. 

Here a unit current density at R in the direction of e or rn has the space form 

J; JR - 
9). This requires that both DGFs satisfy the non-solenoidal condition V 

G. 

V. 

R) 0 because 

(B. 10) 
e iws 

and 

ý, H= Pm 
_ 

ý'ým 
(B. 11) 

µ iwµ 

To find the integral solutions for the vector wave equations (B. 7) we can either 

apply the second vector dyadic Green's theorem or method of potential [19]; 

B. 2.1 Method (1) 

Using the second vector dyadic Green's theorem, namely; 

JjJ[P. vxvx-(vxvxP). dv 
V (B. 12) 

=-Sn [PxpxQ+(pxP) xQ]dS 

Where V is the entire volume enclosed by surface S. By letting P= E(R), 

Ge(R, R) and assuming Sý (R) = iwµf Jý (R) -OX Jm (R) corresponds to a 

source of finite extent, and in view of (B. 7) and (B. 9) we obtain 

sis [k2E(R) + SA(R)] " Gý(R, R) 

dV (R) " [k2GjR, g) + iW ISe(R -R )] 

= 
ff �,. 

(B. 13) 
E(R) xv xWi, 1) 

dS 
s [VxE(R)]x25j, R) 

Two of the terms in the volume integral of the above equation cancel each other, 
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and using the integral property of a delta function 

fffP(R) 
" iwcIde(R -R )dV = 

v (B. 14) 
iwE Jf f E(R)Se(R -R )dV = iwET(R ) 

v 
Hence 

iwE (R) - 
Iff-g. (X)'Ge(R'R)}dV = 

n 

{)xvx) }ds (B. 15) 

S [OxE(R)JxG R, R) 

for a Maxwellian field such as (B. 5), and because of the dyadic identity 

a-(bxc)=b"(a x=c) =(äxb)"c (B. 16) 

the surface integral in (B. 5) can be changed to an alternative form, 

iweE(R) - 
fJ jS. (R) - G, (R, R) } dV = 

- 
[iwµf Hf (R) - J, 

n 
(R)] " [n x &N, 7t)] 

dS 
(B. 17) 

S -[1 xE(R)] "V x&R, 9) 

R is now the position vector of the field point and R that of a source point. 

In the absence of a scattering body, the surface integrals are absent and the DGFs, 

G,, (R, R) and Gme(R, R) therein correspond to Gýo(R, R) and G,,,, a(R, 
R ), the elec- 

tric and magnetic type DGF respectively. If the region is bounded interiorly by a 

surface Sd and exteriorly by a surface S. at infinity. At S., E(R) and H(R) satisfy 

the Sommerfeld radiation condition at R -+ oo, i. e. 

mim I R[V x E(R) - ikR x E(R)J} =0 (B. 18) 

and 

lim {R[0 x H(R) - ikk x H(R)j} =0 (B. 19) R-ºoo 
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and the dyadic form of Sommerfeld radiation condition 

Limo 
{[v 

x Gee(R, R) 
- ikk x Ge8(R, R )] =0 (B. 20) 

As a result of the radiation condition, the surface integrals in (B. 17) evaluated 

at S. are zero. The only contribution is from Sd, which in case of electric DGF 
, 
f8 

- -I 

should satisfy the dyadic Dirichlet condition on Sd, i. e. nx Ge (R, R) =0 and for 

a perfectly conducting body then nx E(R) = 0, whence the surface integral on 

Sd vanishes completely. By interchanging and 9 in the above expressions and 

making use of symmetrical properties of DGFs 

E(R) 
iwýJfJ {c, ') (} dV' (B. 21) 

v 

substituting for Sý (R ), we can obtain; 

E(R) 
i.., JJ 

JV4R, R) 
- [iwµf J, (R )J } dV' 

V_ (B. 22) 
SJJ {Gffi 

' [V'x Jm (R )] } dV' 
Y 

Once E(R) is known, one can readily find the companion equation for W(V) 

using the appropriate Maxwell's equations. 

By letting P= H(R), Q=n. (-R, R) and assuming ,. 
(R) = iwef 7,. (R) +Vx 

J, (R) corresponds to a source of finite extent, and in view of (B. 8) and (B. 9) we 

obtain 

H(R)=---SJ lGm(R, 
R)"[iwefJm(R)]}dV' 

Y_ (B. 23) 
+ iwµJJJ 

{G"º(R' R) 
" [V'x. lý(R )]} dV' 

Where the prime on the dels denote differentiation with respect to the primed 

co-ordinate R of the source point. 

B. 2.2 Method (2) 

The electromagnetic field also can be obtained from a superposition of T. M and 
T. E modes which are derived from electric and magnetic Hertz vectors. The total 
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field consists of the field due to J, and the field due to J,,,. 

E= E. +E.. (B. 24) 

H=7. + 7. (B. 25) 

The fields excited by prescribed current sources may be expressed by applying 

the method of potential using the Hertzian (Debye) potentials jISR) and f(R) i. e. 

E= 'W(7+ 
1vxI (B. 26) 
Ef 

L 

H= iw(I + 
k2 

00)II 
in 

+ -V xý (B. 27) 
Af 

Where 

ýýR) = µý 
fff Ge(R, R)ýe(R )dV' (B. 28) 

fl (R) = of fSSG, )()dV' (B. 29) 

Gm represent the single source scalar Green function for either electric or magnetic 

type for a three dimensional scalar wave equation. Substituting MR) and 11J R) 

in (B. 26) and (B. 27) and using DGF in terms of scalar Green function 

G, (R, R) = (I + 
k2 

V V)Gm(R, R) (B. 30) 

Then equation (B. 26) becomes 

E(R) = iwµf J'J{T') 
" J, (R) } dV' 

JJJ 
(B. 31) 

JS IV 
x [G(, R) 

- J,. (R )1 } dV' 
v 

making use of the identity and taking into consideration the integration over the 

prime quantities e. g. source point R 

Vx(a)=aVxb-bx(Da) (B. 32) 

Vx (ab) = aV x b+ (Da) xb (B. 33) 
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Ef (R) = iµf Iff { Gf (R, r) 
" J, (R) } dV' 

v` 111 (B. 34) 

- 
fff {D 

x Gm(R, R) J� (77) } dV' 
V 

where 

VxG. (R, R) =Vx [IGm(R, R )] (B. 35) 

then 

T, (N) =iwµf 
fff Gf(R, R) 

"JQ(R) }dV' 
vl Jl 

(B. 36) 

- 
JS tVx 5f (R, R) 

" Jm (R) } dV' 
vJ 

and applying either the duality principle or again the same procedure as before we 

can obtain 

Hf (R) = iwef JJJ {cR, R) 
" J�, (R) } dV' 

v_J (B. 37) 
+fff IVxG. ' (R, J, (R dV' 

v 

Hf (R) = iwýf fffj Gf (R, R) " Jm (R) } dV' 
vJ (B. 38) 

+ JJJ 
IV 

x! (R, R) 
" J. (R) 

} 
dV' 

v 

We have to take into consideration that the differential (V) operators are with 

respect to observation point R, while the integral is with respect to the source point 
R in (B. 31) to (B. 38). For E(R) and H(R) to be identical with those in previous 

method respectively, their second integral term should be identical in each case. 

B. 3 Rectangular Vector Wave Functions 

The vector wave functions was introduced by Hansen [25] are the building blocks of 

the eigenfunction expansions of various kinds of DGF. They are denoted by L. 
mn, 
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M4,,., n and Nöm,., that are solutions of the homogeneous vector Helmholtz equation. 

The generating or eigenfunctions, which are solutions of the scalar wave equation 

V2W + k2WY=0, can be written in the form 

n(h) = 
(cc) 

eihz (B. 39) 
S. Sy 

where 

Sx = sink,, C. = COs kxx (B. 40) 

S, = Sin Icy, y, Cy = COs ky (B. 41) 

and here constants k and ky have the following characteristic values, 

kx = 
mir 

,m=0,1, ... (B. 42) 

ky, =b, n=0,1, ... (B. 43) 

The cut-off wave number of a rectangular waveguide k is related to k and k by 

k2 =%2+Ae 
c 

and the arbitrary constant k is then related to 

k2=k2+h2. 

Here k is an undetermined wave number and z is the piloting vector. Subscripts 

"e" stands for even and "o" is odd character of the generating functions. 

The complete expressions for the solenoidal or rotational or transverse functions 

are given by Tai [19] 

Vynn(h) = VX%nn(h)'z], (B. 44) 

ND, 
nn(h) = VXVx[ �n(h)z]. (B. 45) 

And the complete expressions for the non solenoidal or irrotational or lamellar func- 

tions are given again by Tai [19] 

I; mn(h) = V[�(h}J. (B. 46) 
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It should be pointed out that the odd functions with m or n=0 are null modes. 

To satisfy the symmetrical properties of DGF one should consider the relations 

as follow; 

N3. n(h) = 
1VxMS,,, 

n(h), (B. 47) 

Mýn(h) = 
VxN"n(h). 

(B. 48) 

Green's functions for bounded regions are usually given in the form of modal 

expansions. Modal series are unsuitable for use in numerical algorithms which re- 

quire the computation of the field inside the source region. In this case, the Green's 

function must be computed at points z close to 'z, where the convergence of the 

series is very poor due to the singularity of G,, (R, R) at point source z= z'. This 

drawback can be avoided by using expressions where a diverging term, expressed 

in closed form, is extracted from the modal expansion of Gm so that the 

remaining series represents a function finite at point source z= z' Bressan [26]. 

The orthogonal properties of these vector wave functions have been discussed 

by Tai [20], [19]. If only the electric current source is used, L; mn functions are 

not required to derive the eigenfunction expansion of the magnetic DGF that are 

solenoidal and satisfy the vector wave equation, but to find the eigenfunction ex- 

pansion of the electric DGF then the functions are also necessary, because 
-tfo- -Lfo- Ge (R, R) unlike Gm (R, R ), the dyadic Green's functions of electric and magnetic 

type respectively is a non-solenoidal dyadic function. But in the case of both, an 

electric as well as a magnetic source, both electric and magnetic DGF's expressions 

contain the singularity terms. 

The method for deriving the magnetic/electric DGF given in the following sec- 
tion for rectangular configurations used the Ohm-Rayleigh (a) procedure. However, 

there exist several alternative derivations which will not be discussed further. 
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B. 4 General Representation of Dyadic Green's Function 

Before we develop the analysis of electromagnetic wave propagation in the scattering 

medium, it is convenient to examine the media firstly with no scatterer, and then 

secondly with scatterer in position. 

B. 4.1 Free Space DGFs for Electric and Magnetic Dipoles in unbounded 

medium 

The electric and magnetic fields due to electric and magnetic dipoles located at z' 

in an infinite homogeneous space without the presence of an scatterer (obstacle) can 

be computed in rectangular co-ordinates. There are various methods that can be 

utilized to achieve this using equation (B. 9). 

VxVxG (R, R)-k2G a(R, R)=iwý916. R- 9)6f' 
mfmJ 

A fundamental problem in electromagnetic theory is to calculate the field at 

source point. It arises in the evaluation of the antenna impedance, the power ra- 

diation, the induced current on a scatterer, and other situations. A DGF is highly 

singular. Inside the source region the field is not solenoidal so the L; m� functions 

must also be included. The singular behaviour of the DGF at the source point 

caused considerable difficulty in the early development of the theory. Many authors 

examined this elusive singular nature of DGF [20] - [66]. Collin [39] has elegantly 

shown that, "a relatively straight-forward analysis using the complete set of eigen- 
functions described by Tai led to the discovery that there was a sub-spectrum of zero 
frequency or "static-like" modes that were part of the spectrum of the transverse 

eigenfunctions (the N functions of Hansen). These zero frequency modes cancel the 

longitudinal mode spectrum outside the source region. Inside the source region the 

cancellation is not complete but the non-cancellating part can be expressed as a 
delta function contribution". 
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A symbolic way to represent a point source of excitation is the use of weighted 

Dirac's three-dimensional delta function expressed in Cartesian co-ordinates if R' is 

(x', y', z'); thus 

8(R-R)=8(x-x)d(y-y)6(z-z) (B. 49) 

Tai [19] pointed that the method of expressing the point source dyadics only in 

terms of the transverse (divergenceless) vector functions Mömn and Mmn can lead to 

a contradiction: the left hand side of the vector wave equation is solenoidal, but the 

right hand side is not. A remedy for this dilemma, is by including the longitudinal 

wave functions. In the case of electromagnetic sources G. JR, R) is a non-solenoidal 

dyadic function because 

D"G; JR, R)= 
V-V& 

R-R) (B. 50) 

which are not zero except for R 94- 7t. The expansion of the electric and magnetic 

fields require both the transverse and longitudinal vector eigenfunctions and hence 

the DGFs must also have both sets of eigenfunctions in their expansions Tai [19], 

Samii [22]. 

+ Pv Gmo(RR) = iWb; 
R- b. G; P( 7, R) (B. 51) 

The vector wave function M,,,, (h) represents the electric field of the TEm� mode 

while N. (h) represents that of TM,.. mode. On the other hand M. (h) and N,,,,, (h) 

are the proper functions to represent the H-field in a rectangular waveguide. Having 

expressed the DGF for an unbounded medium in terms of rectangular vector wave 

functions, we may now use that result to construct one for a rectangular waveguide 

or cavity. 
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00 00 

ýäo(R, 
R) =i µ5. a(8 - 

R) + (iwe) 
ab 

Cmn 
n=0 m=0 

/ (Mgmn (±'Y) M'omn (:: F`()] 
(B. 52) 

ýNgmn(f7)Nýýmn(ý'Y)ý Z< Z', 
00 00 

C bEECmn mio(R, R) 
iw 

bmi(R-R)+ 
n=0 m=0 

ý; 
mn(f'Y)M'omn(Py)ý 

(B. 53) 

[Mtmn(f'Y)N'; 
mn(F'Y)] 

'x 
xýý 

Where the prime on the vector wave functions indicates that, functions are defined 

with respect to the co-ordinates of the position vector 7t, co-ordinates (x', y', z'). zz 

is a dyad (dyadic product of the unit vectors), here the dyadic delta function term 

at the source point is included explicitly as a correction to the general solenoidal 

eigenfunction expansion which is valid outside the source point. 

limn = 
(2 

(B. 54) 
-f kc2 

Coefficient Cmn depends on the value of m and n where dö " is the Kronecker delta 

functions, when 

11, ifmorn=o 
ö= (B. 55) 

to, ifmandn o 

Note that the equations (B. 52) and (B. 53) satisfy the dyadic form of Maxwell's 

equations i. e., 

DxGý(R, R) = ficvý9; (, R) ýIbý(R- R) (B. 56) 

and are used in E and H-field formulations (B. 22) and (B. 23) of method 1 (B. 2.1). 

They result in approximate solutions in E and H-field formulations (B. 36) and (B. 38) 

of method 2 (B. 2.2). 
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Exact DGFs to satisfy E and H-field formulations (B. 36) and (B. 38) of method 2 

(B. 2.2) based on the presence of one dipole in the system only and the principle of 

superposition of fields are presented below: 

00 00 

G. z0ýRI R) -- Zbýz(R-R)+äbEECmn 
n=0 m=0 

(B. 57) 
[Mgmn (±'Y)M'°: 

mn 
(F1')] ý2 

[Ngmn(t'YýNýýmn(ý'Yýý Z< Z', 
00 00 

Gm20(R, R) =- zam 2(R - R) + äb EE Cmn 
n=0 m=0 

[M; 
mn(t'Y)M'; mn(R y)ý 

(B. 58) 

[Ngmn(±7)N'gmn(Rý')] z zýý 

B. 4.2 General Expression of Scattering DGFs 

Observation and analysis of the above expressions allows the formulation of the 

general scattering DGF for the media taking the reflected waves into consideration: 

=Lfs - -r 
i 00 00 

Geaa(R, R) (iwe) 
ab 

EE C�. � 
n=0 m=0 

Mgmnl7fý 
A,, 

°mn(rya) 
ý1-Sa)Bmn 

: rnn(-7aý 

Nýnln\ýf/ 

A°mn1V,. 

OTRn\ ls/ 

ý1 - ba )B m8(Nboamn(_7sý 

mn ömnlý'sý ý1 - aýýMöý-'Yjý 
I 

6sL) BIMIEVoomn (ý -Ya)] 

IVO N-i 
ý1 - f}Nemný''Yt} 

A °mn : mn(Its) 
&TM 

a ; mn 
IV' 

°mn 'is 

(B. 59) 
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In a corresponding manner, we can expand the magnetic DGF as follows: 

G z8(RR 2k 00 00 
C 

mis` 
)= 

ab u mit 
n=0 m=0 

F AV8) M ; mn(7a) Ngmn(71) 
(1 - 

AUmnMNýýmn ý'Ye) 

ý1 - 68 )BUmn gmn(-'Ys) 

_ 
AUs)TE-ý 

mn 
M ; mný'Ysý 

ý1 
- 6, )$i T io 

_ 
Ar(fs)TM7r "mn N; 

mn('ia 
ý1 - de : mn 

(B. 60) 

Am A' m TE'Tm B mý and BI? Th are the amplitude coefficients of n00 
0 

scattered DGF to be calculated by applying the boundary condition at the surface 

of the waveguide. These boundary conditions are: 

Ax0 (B. 61) 

AxVxG. ý(R, R) =0 (B. 62) 

and at the interfaces z=z, where (1 = 1,2, ....., L- 2) 

zxý (2, R) =zxG. (R, R) (B. 63) 

and 

zxvxý, (R, R)=p - 2xVxv (W, R) (B. 64) 
t9j m v(I+1) m 

"L" is the symbol for last inner layer in the media. "f" is the field point or ob- 

server layer. Superscript/subscript "s" stands for source point at open space while 

subscript "s" is scattering. 
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Sf and 6f are the Kronecker delta functions, where 

I1, if L=o 
S= (B. 65) 

0, if L#o 

The scattering DGF for magnetic as well as electric type formulations for method 2 

(B. 2.2) can be presented as follows: 

00 00 

Gezs(R'R) G ifl , R) 
abE 

ECmn 
n=0 m=0 

Aomn M ömn(-y») Mämn(7j) 
ý1 

- ad ýBomn ý omný-1'sý 

A; mn KN'gmn ('Ya) 
N`mný'Yý 

L (1i)TM ' ý1 - b8 ýBomn N emn(_7sý 

ý1 -bf ýMömný-'Yfý 
A `omn M ; mn(fs) 

ý1 - as ýBýlimn Omn(-'Yaý 

(1-af)Nam�(-'y, ) 
(1 - b. )B'VmTmNemn(-'Ys) 

(B. 66) 

For more details on evaluation of coefficients the readers are referred to Caval- 

cante et al [35] and Li et al [36] - [37]. 

The principle of scattering superposition can be applied to construct the DGFs 

i. e. 

G d(R, R)=G, (R, R)bý+GTM, R, R). (B. 67) 
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B. 5 Discussions and Comparison of General Representation 

of DGFs with Other Authors' Related Works 

Since understanding the properties of the singularity is essential to the use of the 

DGF in numerical analyses, it is highly desirable to resolve and clarify the apparent 
incongruities. Samii [221 stated that "Care must be exercised in defining the deriva- 

tives in the sense of distribution and in using the correct completeness relation in 

order to compute the correct DGF". Proper handling of the electric DGF in the 

source region is essential when using it in numerical analyses involving dielectric 

scatterer. The difficulty arises in the computation of the "self-cell" or self-coupling 

matrix element that must be generated when using the method of moments. 
Yaghjian [24] explained the difference in the delta function terms between Tai 

et al. [52] and Samii [22] caused by their different choices of the principal volume 

and emphasized the need to include in n(R, ') the shape of the principal volume 
involved. Yaghjian [24] and Lee et al. [56] outlined proofs to show that singularity 

associated with the electric DGF in a bounded region is exactly the same as that 

for the free space. 

Wang [60] has also attempted to clarify some of the apparent discrepancies in 

the literature regarding the singular behaviour of Z4-R, R) and seeking a unified and 

consistent view on this important subject. 

According to the homogeneous vector Helmholtz decomposition theorem and its 

manifestation in field theory, a general E-field can be decomposed into an irrotational 

(lamellar) and a rotational (solenoidal) component: 

E=E;,, +E,, t. (B. 68) 

The Er. describes current source's near field, the field lines for which emanate 
from and terminate on the dipole electrodes while the Eve approximately describes 

the far field, the field lines for which neither touch nor encompass the dipole. Also 
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in Ampere's law 

VxH=J, (B. 69) 

where J= JJ + Jd, and here the displacement current density Jd can be decom- 

posed in an irrotational component J,; - , and a rotational component Jd,. " J, is 

the conduction-current density. Ja;,, represents the quasistatic displacement-current 

density completing Jc to form a closed current loop, thereby satisfying the continu- 

ity law V" (JJ + Jd;,, ) = 0. The Jd,. represents the far field. Hence the true current 

density of the non-stationary case consists of three components 

J=Jc+Jd,,, +Jd, e, (B. 70) 

where JJ + Jd;,, represent the quasistaic true current density corresponding to the 

applied excitation. The total displacement-current density Jd = J. + id,., consists 

of Jd;,,, driven by the applied voltage and Jd,. existing isolated from the applied 

voltage source, so that Jd�d remains in existent also after disconnecting the voltage 

source [71]. 

In numerical codes, based on the method of moments, the integration domain is 

limited to the conductor surfaces, hence the integration of the quasistatic displace- 

ment current density J, is excluded. 

Our purpose here is to bring to light the importance of characteristics of delta 

function term in source region. These comparisons may prove valuable in estimating 

the effect of delta term. 

In this section, we are observing a few different discrepancies in other authors' 

works in comparison to ours, taking into account to what was mentioned above. 

B. 5.1 The Electric and Magnetic Field Representations 

Kisliuk [1011 presented two methods for devaluating E and H-fields. The first is 

based on vector analysis and the second utilized Hertz potentials method. The 

comparison of our formulations with Kisiiuk's show that the format of all equations 

bý 

... _ 
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in both methods is very similar except for the factor terms (I+ I'T V'V') in method 1 

(B. 2.1) and (I+ k VV) which has been introduced due to the choice of Green dyads 

for ze and z,,, in Hertzian potentials of second method. I believe the proper choice of 
Hertzian (Debye) potentials were to use scalar Green functions for electric as well as 

magnetic wave equations as in (B. 26) to (B. 29) resulting in equations that Li [102], 

[80] and Daniel [103] have already used in evaluation of fields. 

B. 5.2 The Isolated Singular Term in G; R, R in the Form of Delta Term 

J. R-R 

Li et al in section III of [102] has categorically stated, "in deriving the DGFs at 

the source regions, as mentioned by Rahmat-Sarnii [22], care must be exercised. At 

the source regions, singularities exist and therefore need to be taken into account 

in the representation of DGFs. In fact, a delta function can be used to express 

the singularity term". Again in the same section undoubtedly he expounded, "the 

unbounded electromagnetic types of DGFs G., (r, r) consisting of the singularity 

and the principal value is according to the Sommerfeld radiation conditions". He 

has then included this delta term into the free space equations for both the electric 

as well as the magnetic DGFs. 

But in section II (fundamental problem) in an earlier [80] but very similar paper 

to the above mentioned [102] Li stated "it is noticed that the electric Green dyads of 

the first and second kinds have a singularity contributed by the source in the source 

region. However, . the magnetic Green dyads of the first and second kinds do not 
have because the singularity term is canceled by the derivatives of the delta function 

and the unit step function at the source point. ". 

Comparison between DGFs in [102] and [80] shows that [102] contains singularity 

term but [80] has not while ZZz(R, it) in [80] is equal to Q. (R, R) in [102]. 

In comparison with our DGF representations our first and second kind electric 
DGFs are the same as those in [80], but our first and second kind magnetic DGFs 

contain singularity delta term as in magnetic DGF representation in [102]. On the 

`ý .. 



B. 5. Discussions and Comparison of General Representation 188 
Salehi-Reyhani, S. M (2001) 

other hand we have also specified the direction of our current densities, such as 
I8m(R -R 

B. 5.3 The Electric and Magnetic DGFs Representations 

Li et al in the introduction of [102] has absolutely stated unconditionally that "Since 

the magnetic type of dyadic Green's function can not be converted directly from the 

electric type by simple and conventional substitutions [39], both the electric and 

the magnetic types of the dyadic Green's functions are derived in that paper". 

Besides, in section III of the same paper [102] he has again explicitly stated "this 

paper presents both the electric and magnetic types of DGFs for the rectangular 

cavities and waveguides. To present both electric and magnetic types in the m 

format requires no extra space, but gives readers a straightforward expression to 

work with". Also in [80] he mentioned that "the magnetic Green dyads of the 

second kind derived here is compared with those reported in the literature and the 

corresponding correctness of the solutions discussed'. Firstly these statements are 

totally contradictory. Secondly these above mentioned equations are not derived but 

expressed in [102]. Thirdly the equations (B. 52), (B. 53), (B. 59) and (B. 60) in our 

communication are direct approach representations of DGFs in unbounded media 
=(Lfa) -(Lfs) 

with Gýq, and G. 2, are used in determination of E and H-fields of method 1 (B. 2.1), 
mod) Lfs) =(4ia) ={rý) 

while G: äo , 
Gmio and G6z, = Gm z, in (B. 57), (B. 58) and (B. 66) are compared with 

the corresponding equations in Li [102] and [80]. We can easily notice that in [80] Li 

has presented both electric and magnetic DGFs of the first and second kind while 
in [102] he has only considered electric field of first and attributed the second kind 

to the magnetic DGF in [102]. 

B. 5.4 The Range for z and z' 

In Li's [102] expression for free space electric DGF, the range z> z' is also inaccurate 

because when z= z' the operational property Delta ö(T - Y) = oo, i. e. impulse 

occurs at z= z' as a result of which free space electric DGF also becomes infinite. 
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Therefore, correct ranges are z> z' and z< z' and the operational property that 

Delta 6(z - z') =0 for z# z' and for any vector function F(R') that is continuous 

atz=z': 

-R )dV . 
F(J$fFý)oý )R' in V, 

(B. 71) 
v0, R' not in V 

and 

fR +a ö(R - R')dR' =1 (B. 72) 

where the product of delta functions is used to represent a unit source. 
Li et al [37] and one of their references Cavalcante et al [35] also suffers from 

this problem respectively by assuming z> z' and z< z' for the DGF in free space. 

B. 6 Concluding Remarks 

A theoretical analysis of electromagnetic fields generated by a given distribution of 

electric and magnetic currents located inside a finite volume are defined using dyadic 

Green's functions. It is seen that the DGFs in unbounded space, both consist of 

the singularity and the principal value terms according to the Sommerfeld radiation 

conditions and the dyadic form of Maxwell's equations. The eigenfunction expan- 

sions of the DGFs for waveguides and cavities can be obtained by employing the 

method of scattering superposition. Consequently it should be emphasized that one 

expects a similar situation will exist for other geometries. 

In this communication we have also drawn attention to the fact that the singular 
behaviour of the eigenfunction expansion of the DGF is incorrectly formulated in 

some authors' related works. This is significant because this expansion is used in 

the numerical calculation of the electromagnetic fields in the source region. Also the 

DGFs in some related efforts are in contradiction to the dyadic form of Maxwell's 

equations. The technique proposed here, overcomes the above mentioned difficulties. 
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MHz Mega Hertz (106Hz) 
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The princlpk objectives of our research are WOW We opine an exact general 
e on of dyadic Green's function (DGF) for the problem of ekcaromagnedc 
radiation from a source of excitation in the presence of a layered spherical dielectric 
head model, which is cal ewj wlwe, indudh die souse region. 7 he medium is 
assumed to be homogeneous, isotopic, Seear, persi e, and stationary. The 
DGFs an obtained by employing the Method of scattering s&perposftiat. Second a 
compact alte native general representation is developed to determine the electric- 
and margnetic-type DGFs, gmw g clarity as »gell as more efficient and economical 
coºnputatlon in terns of speed, tim and memory. 

Keywords eI - omagaetic compatibility, head model, antenna, dipole, mobile 
phone, dyadic Omens function 

Introduction 

The objective of modeling biological bodies exposed in the near as weil as in the 
far field is to assess the induced and scattered fields. However, near-field exposure 
is of considerably higher complexity because: 

1. the field distribution is extremely nonuniform in the vicinity of the source as 
well as inside the body, 

2. in many cases, the interaction of the scattered field on the source is not 
small enough to be negligible. 

The dyadic Green's function (DGF) was introduced by Schwinger in the early 
1940s and has been extensively discussed by Tai [1,21 Collin [3], Rahmat-Samii [4], 
Yaghjian [5,61 and others. This technique was presented mainly to formulate 

various canonical electromagnetic problems in a systematic manner and to enable 
many special cases to be treated as one general problem. If the current source in 
these problems has some specific distributions, we have to consider these distribu- 
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Lions as special cases, for example, excitation by a transversal electric dipole or a 
longitudinal or a magnetic dipole. The DGF, which relates the current source and 
the field, is singular in the source region. 

The format of this paper is as follows. The complete set of spherical vector 
wave functions are introduced in section 2. 

In section 3, we start with the unbounded case, in which the point source 
radiates with no interface present, and construct the corresponding DGF, 
G°O°(R, R'), in terms of an integral over the spectra of plane waves that constitute 
the continuous eigenfunction expansion (EFE) in which the eigenfunctions are 
guided in preferred R-coordinate direction, using the procedures described in Tai 
[21 or Collin [3]. This expansion also contains an explicit dyadic delta function term 
which is required for completeness at the source point. It is considered as a 
correction to the general solenoidal EFE, which is valid outside the source point. 

the procedure required to derive the complete EFE of the general scattering 
DGF for the multilayered media in terms of only the solenoidal eigenfunctions is 
shown to be a simply and straightforward general expression. The DGF for the 
multilayered media G; J'°(R, R'), is then constructed from the principle of the 
superposition, which involves theý- o-f the fields of, first, the source in free space 
(or the free-space (een's function 0°(R, R') and, second, the fields scattered by 
the layered media G, f°(R, R'). A radically new and generic method for deriving 
the scattering formulae is described in this section, giving an idea of the computa- 
tional burden involved in the general method described in this paper. This 
represents one of the main contributions of this study. Magnetic-type DGF can be 
found by invoking duality. Once the electric field is obtained the magnetic field is 
derivable by taking the curl of the electric field, and vice versa. 

Conclusions are then presented in section 4, which summarizes the important 
points contained in this work, and finally, a short bibliography is provided for 
further research. 

Spherical Hansen Vector Wave Functions 

The spherical vector wave functions that were introduced by Hansen [7] are the 
buildin& blocks of the EFE of various kinds of DOE They are denoted by 
L,,, 

, 
Memo, andNrmA, which are solutions of the homogeneous vector Helmholtz 

equation. The generating functions or eigenfunctions, which are solutions of the 
spherical scalar wave equation V21' + k2'Y - 0, can be written in the form 

- j. (kR)PR (cos 0): p''#, (1) 

Here k is an undetermined wave number and R is the piloting radial vector. 
Subscript "e" stands for even, and "o" is an odd character of the generating 
functions. 

P. (cos 6) identifies the associated Legendre functions of the first kind with 
order (n, m), and jN(kR) denotes the spherical Bessel functions of the order n to 
represent both outgoing and incoming waves. Spherical vector wave functions are 
akin to the Debye potentials: 

i: L 
... 

(k) - Dýewýwr (i) 
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M; .. 
(k) -Vx[ i',,,,, RI, (3) 

NeMR(k) koxVX 
[',. Mn R]' (4) 

To satisfy the symmetrical properties of DOF, 

A (k) =1VXM. (k), (5) 
, MR k rnn 

l 
.,,, (k) 

k0 x N. nºn(k). (6) 

Green's functions for bounded regions are usually given in the form of modal 
expansions. Modal series unsuitable for use in numerical algorithms which require 
the computation of the electric field inside the source region. In this case, the 
Green's function must be computed at points R' close )Q R, where the conver- 
gence of the series is very poor due to the singularity of GG(R, R') at point source 
R- R'. This drawback can be avoided by using expressions where a livergfng 
term, expressed in closed form, is extracted from the modal expansion of G, (R, R'), 

so that the remaining series represents a function finite at point source R- R'; 

see Bressan and Conciauro [81. 
The complete expressions for the solenoidal or rotational or transverse func- 

tions are given by Collin [3): 

jj(kR)P. (cos B)ý; m#9 e (7) 
OP�, (cos 8) 

-j. (kR)( 
a 

)amp 

n(n + 1) 

kR 1. (kR)P(cos 9)un m#I 

ar( 
A (k) = kR aýR 

[)I (kR)l(aP, ý Cos 8)) 
m (8) 

ov Zen 
m 

kR- RJJJ. 
(kR)]I Tn 

OP. 
-(oos 8). m 404 

I 

And the complete expressions for the nonsolenoidal or inotational or lamellar 
functions are given by Collin [3]. 

a 
ýR j"(kR)PR (cos 6) m¢A 

L. (k) 
(! 1(kR) aP. (cos 8) )m#ý. 

(9) 
ö8 .ý 

T 
kR) 

Pr(cos R 9)ß: m 
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Note that in the set of spherical vector wave functions, only R.. do not 
possess the radial component. m and n are the eigenvalues associated with the 44 
and 0 coordinates, respectively, when for problems involving spheres, they are 
integers. The R, 0, and 4) are the spherical unit vectors. 

The orthogonal properties of these vector wave functions have been discussed 
by Tai [1,2] and Collin [3J. L,,... functions are not required to derive the 
eigenfunction expansion of the magnetic DGF that are solenoidal and satisfy the 
vector wave equation, but to f pd the EFE of the e ctric DGF, the L. functions 

are also necessary, because GG f°(R, R'), unlike G, Lj°(R, R'), the dyadic Green's 
functions of electric- and magnetic-type, respectively, is a nonsolenoidal dyadic 
function. 

The method for deriving the magnetic/electric DGF given in the following 

section for spherical configurations uses the Ohm-Rayleigh (G°, ) procedure. 
However, there exist several alternative derivations, which will not be discussed 
further. 

General Representation of DGF 

Before we develop the analysis of electromagnetic wave propagation in the multi- 
layered head model, it is convenient to examine the media first with no scatterer 
and then with one-, two-, three-, and four-layer head models. 

Fine Space DGF far an Electric Dipole in Unbou; NW Mamie 

The electric and magnetic fields due to an electric dipole located at R' in an 
infinite homogeneous space without the presence of a scatterer (obstacle) can be 
computed in spherical coordinates. There are various methods that can be utilized 
to achieve this. The expansion of the electric field requires both the transverse and 
longitudinal vector eigenfunctions, and hence the DGF must also have both sets of 
eigenfunctions in its expansion [2]: 

xA 

+° C, 
1, 

ýýýý 
(10) 

R<R'. 
Me" 

[Nemý(ko)N,. 'N(ko)] 

Here the first term presents the singularity term specifying inside the source region 
and the second term outside the source region. 

Where the prime on the vector wave functions indicates that functions are 
defined with respect to the coordinates of the position vector R', coordinates (R', 
6', ¢'). The superscript "1" in Mp , (ko), M'tl)(k, ), and N. ýý;, (ko) is 
present to indicate the substitution of the spierical Hankel function of the first 
kind (spherical Bessel functions of the third kind) h�(kR) for j. (kR) in the 
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generating function 'P (k). It is important to note the singularity of the Hankel 
function at the origin. is a dyad (dyadic product of the unit vectors) [91: 

RR= 
R+R+! )(t 

+R+i (11) 

and S(R - R') is the weighted Dirac delta function in three dimensions. Subscripts 
o and e stand for unbounded (open) space and electric component, respectively. 

The dyadic delta function term at the source point is included explicitly as a 
correction to the general solenoidal EFE which is valid outside the source point. 

2n+1 (n - m)! 

n(n+1)(n+m)! ý (12) 

Coefficient C.. depends on the values of m and n, where 8n is the 
Kronecker delta functions, when 

$s 
(0,1, ifm-o, 

ifm fo' 

DGFs for as Ekch* Impale in the Pnaence eta Sp kal Ikad Model 
When a biological system is illuminated by an electromagnetic wave, an electro- 
magnetic field is induced inside the system and an electromagnetic wave is 
scattered externally by the system. Since the biological system is an irregularly 
shaped heterogeneous imperfectly conducting medium with frequency-dependent 

permittivity and conductivity, the distribution of the internal electromagnetic field 
and the scattered electromagnetic wave will depend on the body's physiological 
parameters and geometry, as well as the frequency and polarization of the incident 
wave. The mathematical complexity of the problem has led researchers to investi- 
gate simple models. Several theoretical studies have analyzed these models (Rey- 
hani and Glover [10,11D. In this paper the medium is assumed to be homoge- 
neous, isotropic, linear, nondispersive, and stationary. 

Having expressed the DGF for an unbounded medium in terms of spherical 
vector wave functions, we may now use that result to construct one for a spherical 
head model. 

DGF for a single-layer sphufcal head model This can be considered as the 
contribution of the reflections and transmissions of a single-layer sphere of radius 
a, centered at 0, superimposed in an unbounded homogeneous medium with the 
radiation source located outside the sphere at R'. The medium is characterized by 
( µo, e ), and material properties of the sphere are represented by ()Ls,, e,,, ), where 
subscripts o and h stand for unbounded (open) space and head, respectively. 

The scattered DGF terms for this case were examined by (2]: 

A 
R, R') C.. 

4vn-lm-o 
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47r &IIV N;. 
e(k1)N 

»(k°) 

Where the first number of triple superscripts signifies the last inner layer in the 
model and the second number identifies the region where the function is defined, 
that is the observation or field point, and the third number corresponds to the 
location of the source, i. e., the source point, which in this case is denoted by the 
letter o. Subscripts M and N attribute the coefficients to thLexcitation functions. 

The choice of MJ, 'ý?, andN. ý, as the field functions in is dictated 
by the radiation concision that the scattered field must consist of outgoing waves, 
and the choice of M ý'Ä and as the excitation functions is guided by the 

expression for R') and the boundary condition that at R- aI, 
G; f°(R, R') 

must satisfy the Diricblet boundary conditio which can be satisfied only if the 
excitation functions are the same as that of Ge00(R, R') for R< R'. 

The field functions for Gh; °(R, R') are so chosen because they are the 
solMVons for the vector wave equation in region 1, and they must be finite like that 
of for R< R'. 

Also, the expanded version of a typical combination is [12, p. 380]: 

AoMMo(,, " (ko)MemtR(ko) s AýooMt'ý (k )M't»(k) 
(16) 

"M "R aO VIII Ro 

Double-layer spherical head erode. We consider two concentric spheres cen- 
tered at o, superimposed by an unbounded homogeneous medium with the current 
distribution source located outside the sphere at R'. The medium is characterized 
by (µo, e', ), and material properties of the outer sphere are represented by 

ILhl, r51) and those of the inner Sphere by (AN20 Es2). The radii of outer to inner 
spheres are a, and a2, respectivvely 

In this tose the scattered DGF terms can be shown by 

V O(R, fig) - 
zw 

C_w ' 
AIVFf. t> (k )M: ýi)(k ) 

°M . iww o °ýww o (17) 
42r w-t m-0 A., iv 

°M ; wow t ; wow u 

1ko w 
Ciww 

N N; ýiw(kt)ý1ºJNII(ko) 

210 . (t) r 
(18) 

47f 
w_1 m-0 

C; 
M 

M; 
new(k, )M; waw(k°) 

C., 2N N; wýw(kt)N; 
'ý(k°) 

a22c - -. s G 
1k w 

C. 
w " 

D 11ý: 
wew(k2)Möý'R(ko) (19) 

ý, 4ww-t 
m-0 1!; N°%V; 

wýw(k2)Ný 
iý(ko) 

The choice of the field and excitation functions in ; are governed by 
the fact that the electromagnetic fields consist of radial wave-modes propagating 
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outwards and inwards. Therefore, 

G.: iio -a, 
Gzuo + 622o (20) .: 

Trilayer spherical head model In this case three concentric spheres centered at 
0, superimposed by an unbounded homogeneous medium with the radiation 
source located outside the sphere at R' are considered. The material properties of 
the outer to inner spheres are represented by (µh� E*1), ( µh2, eh2), and ( µh3, Eh3), 
respectively. The radii of outer to inner sphg es are a� a2, and a3, respectively. 

The scattered DGF terms for GC3, "° and 6,3, * are the same as those in the last 
section, and the rest can be expressed by 

G, s °(R, R') - 
--'0 

1: 1: 
4ir 

w-1 re-O 

D: M '2°Mn) (k )M'(')(k ) mm 2 mn o 

(k 2)(ko) ,N ; ýww ; nrn 

E320»ö w(k2)No, 
'�', ', (k, ) 

(21) 

and for the inner layer, 

Axp 

Gis°(R, R) !r 41rR-1M-o 

F ÄL k3)MMý'ý(ko) 

F? °N.. 
"(k 3)N.. w rw. 

)(ko) 
,Ný 

(22) 

Quad-layer spherical head model Similarly, the case of four concentric spheres 
centered at 0, superimposed by an unbounded homogeneous medium with the 
dipole source of radiation located outside the sphere at R', is considered. The 
material properties of the outer to inner spheres are, respectively, represented by 

1. LhI, Ehl), (N'h2, E42), (N'h3, Eh3), and (/ih4, Eh4). The radii of outer to inner spheres 
are a,, a2, a3, and a4 respectively 

= 
The scattered DGF terms for6°, G ; '°, and Gis ° are the same as those in 

the previous section and the rest can be presented by 

°°Fx 
; nin(k3)N mm(k°) 

G, 3°(R, R') a-F, C.. - (23) 
41r 

n_, m-o G; M M., 
°p(k3)Mý'p(k°) 

G (k°) 

The final inner layer gives 

ao 
_ 

G« (R, R) L Cmý' 
[HrNo 

p. 
AdR'ý2(k. ) 
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Genenal E sion of ScaUering DGFs for an Emit Dipole in the Pnnaacr of a 
Multilayered Spherical Head Model 

Observation and analysis of the above expressions for the scattering equations 
allows an efficient formulation of the general scattering DGF for a multilayer 
spherical head as: 

Aýj 

__ 
1k xnA: 

G 
ý°ýI - Sý )N. eýn(kf)N m'ý(k�) 

ff°(R, R, ) a F. F. Cron ' (25) 
47r 

n_1 M_o & (1 - Sf )Mýýn(kf)M., 
°n(k�) 

&ý�{°(1 - Sf )Ným�(ki)R ', ý, (k°) 

L is the symbol for last inner layer in the head; f is the field point or observer 
layer. Superscript/subscript o stands for source point at the open space, while 
subscript s is scattering. 

Sf and Sf are the Kronecker delta functions, where 

1, ifL/o - f, ( 
ýt (26) 0, if L/o Of. 

and B4, (° are the amplitude coefficients of scattered DGF to 
be calculated by applying the boundary condition at the surface (f - 0,1, Z ... , L) 
of the sphere. These boundary conditions are 

X ft x. j (f+ I). (27) 

and 

1 ft xoxG; f°- 
1 

xox(28) 
N/ µ(l+ 1) 

For more details on the evaluation of coefficients, readers are referred to 
Cavalcante, Rogers, and Giardola [131 and 11 et al. [141, [151. 

A Nwel General Ea maxion of Scattering DGFs for an Electric Dipole in d o& Presence 
of a Mukilayered Spherical Herod Model 

It is a well-Imown fact that integral equation methods can solve unbounded 
problems very effectively. They are often referred to as exact techniques, because 
they guarantee convergence for sufficiently dense discretizations. However, they 
have the disadvantage of being difficult to implement for complex objects and 
generally remit in the use of full matrices, whose treatment requires a large 
amount of memory and CPU time. The computational difficulties can be sur- 
mounted by a more convenient and compact general equation. General formula- 
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tions for scattering DGFs can be expressed by introducing the 5 operator, which 
exploits the symmetry of the principle terms in the DGF expansion to give a 
general formulation applicable to a wide range of geometrical configurations [16) 
when one can significantly reduce the number of field samples needed for the field 
calculation. As shown below, 

G ff°(Rý Rý) a Cm" (29) 
4wn-1in_0 

[Auooj 

We give a direct and conceptually simple algorithm whose chief benefit is great 
computational efficiency. Where 

Ö; M°=0 forL-0 

(this means that there is only infinite open space in the absence of a scattering 
body) and 

LOO 0 (k, )M 
M,, 

(k°) for f-0 and L>0, 

5L fe for ff0 or L, 

and 

far f=L, 

St° can be calculated from the same procedure as for ýý °. 

Electric DGF in the Antenna-Hard C m%wution 

The electric DGF in the system can be computed by means of the method of 
scattering superposition expressed as the sum of incident (free-space) DGF and 
another contribution to account for the field scattered by layered media (secondary 
DGF); i. e., 

G"Lfo(R, R') - GOOe(R, R')S; + (,; f°(R, R'), (30) 

and substituting in the above equation yields the electric DGF In the system 

Gý f°(R, R') S(R - A) Sf + 
4° 

ý C. � ko 4ý 
ai m-0 
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'N (k°)"; (k°)1 S% 
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A N°(1 - Sý ýN: 
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using the novel general method 
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IýM; 
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)I Sý 

ý 
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"MR(k0 

), ýJ 

111 

Ah: 

AlciP JV 

ý: 
", "(). %1"(k°)I Sf 

At: Lo 

AbA P' 

R>R', 

R< R'. 

(3)) 

(32) 

If our concern is only with the region exterior to the source, then the singular tern, 
which is important only in the source region, can be dropped from the expression 
for the Green's function- 

Magndic DGF in the MtaMa"Head CoVlgurodon 

The principle of duality states that once the electric DOF is obtained, the magnet 
DGF is derivable by interchanging the field functions Mimi, -' kt ., and A. 

N$ 
UM ,,,, and omitting the singularity term contribution and vice versa. 
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On the other hand, the corresposnding total magnetic DGF at any point in the 
system can be calculated from VxG f0, bearing in mind the discontinu- 
ous nature of magnetic DGF across a point source at R- R' and the 
Ampere-Maxwell equation rglaating GG f° and G. Lf° in the dyadic form; i. e., l V xG 1° =IS(R-R')+kGýf°, 

1k2 

ýn+ Gmfo(R+ - lr Cmn 
41r 

n-1 m-0 

x 

[N,,, (k°)Mý,, 
n(k°)Jsj 

ýMä 
, nn(k°)]8f 

A:, °(1 - Sf )Ný, ý(kf)Äi' (k°) 
R>R', 

A! 40ý1 - Sf )A s(k')N. ý'ý(k°) ' 

&, f°(1 - 8f )FV,.. (kf)Mý. 'R(k°) 

Bi, (°(1 - Sf )M: mn(ký)N. 
ý'ý(k°) 

ý N: 
mn(k°)Möý', 

', (k°)J Sf 
(33) 

AL (1 - 8f )M. Ö. 
n(kf)Ný(ný. (k°) 

R< R'. 

& (1 - S; )Ný, °n(k, )M (k°) 

B JO(1 - Sj )Mo, 
°n(kf)N. 'ýý; R(k°) 

Notice that the magnetic DGF does not contain the singularity term because 
this term is canceled by the derivatives of the delta function and the unit function 
at the source point. The above equations can be used to accommodate any number 
of layers in the model system. 

Electric and Magnetic Field at Any Point in She Antenna-Heaad Co rotioe 
The use of the DGF technique allows us to determine the expansion of the electric 
and magnetic fields in a head/antenna configuration in a direct and elegant 
manner. 

For any current source with current density function 1(R') located outside the 
head, the electric or magnetic field radiated by such a dipole can be calculated 
using the formulae 

Eýf°(R) ° twµl!! f G'f°(R, R') "l(A')dV', (34) 

Hof°(R) = iw¬ffff Gam(°(R, Al "1(R')dV'. v 
(35) 
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These signify the computation of the E- and H-fields in the structure, which 
states that the superposition of the incident field E, (R) or H, (R) and the scattered 
field EE(R) or Ha(R) is given by 

EL! °(R) = E°0o(R)Sf + E; f°(R), (36) 

Ho-f°(R) - H°0o(R)87 + H; f0(R). (37) 

Concluding Remarks 
A theoretical analysis of antenna/layered-head configuration is demonstrated. An 
improved general multilayered homogeneous lossy dielectric spherical head/an- 
tenna model of DGF for numerical Electromagnetic Compatibility (EMC) investi- 
gation has been proposed and compared with the models by various authors. The 
DGFs are obtained by employing the method of scattering superposition. This 
study enables one to assess the influence of the presence of a close-by biological 
head upon the operating characteristics of a mobile phone, input impedance, 
Specific Absorbtion Rate (SAR) values inside the head, the power absorbed, the 
total radiated power, the thermal emission, the induced current on a scatterer, 
novel antenna design, the electric and magnetic near or far fields patterns, and 
other situations. 

Furthermore, by defining a symmetry operator, the required memory for 
efficient numerical computations using the method of moments can be reduced 
drastically by formulating a new compact general expression. The validity of the 
general model is verified by the DGF of the specific models, which agrees with 
other authors' studies. Further work is at hand to find a reduced general formula. 
tion for electromagnetic DGF in spherically multilayered media by utilizing the 
technique presented in this paper. Details of this extension will be given in a 
forthcoming paper. 
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ELECTROMAGNETIC DYADIC GREEN'S FUNCTION FOR A HUMAN 
TORSO MODEL FOR NUMERICAL EMC INVESTIGATION 

S. M. S. Reyhani and R. J. Glover 
Brunel University, United Kingdom 

Abstract: -Antenna radiation pattern and other char- 
acteristics are significantly altered by the presence of 
the human body. This paper aims to express a gen- 
eral representation of dyadic Green's function (DGF) 
for the problem of electromagnetic radiation from 

a source of excitation in the presence of a human 
torso model (multi-layered homogeneous lossy dielec- 
tric circular cylinder of finite length) as well as any 
part of the body assuming the shape of a cylinder. 
The whole structure is assumed to be uniform along 
the propagation direction. 

Keywords: -Electromagnetic, Human Torso, Circular 
Cylinder, Antenna, Dipole, Dyadic Green's function. 

in terms that constitute the continuous 
Eigen-function expansion (EFE) in which the Eigen- 
functions are guided in preferred r and z-coordinate 
directions, using the procedures described in Tai (1) 
or Collin (2). This expansion also contains an ex- 
plicit dyadic delta function term which is required for 
completeness at the source point. It is considered as 
a correction to the general solenoidal EFE which is 
valid outside the source point. 

Subsection 3.2, presents the general scattering DGFs 
expansions (13) in terms of only the solenoidal Eigen- 
functions. It is in this development that the principal 
point of this paper is identified. 

1 INTRODUCTION 

Antenna-body interaction is of interest with the use 
of chest-mounted 418 MHz biotelemetry transmit- 
ters for medical applications. Short range teleme- 
ters being developed for medical applications increas- 
ingly operate at UHF, taking advantage of greater 
spectrum availability and reduced levels of synthetic 
noise. Transmitting devices built for the patient-end 
of the radio link are invariably battery powered so 
must be lightweight and compact to ensure user com- 
fort. Such physical limitations on packaging mean 
that even built-in antennas at UHF are electrically 
small, with correspondingly low efficiencies. Further 

problems arise as the telemeter is usually worn next 
to the skin at chest or abdominal level, so the trans- 

mitting antenna is in close proximity to the body tis- 

sue. Power dissipation in the body and impedance 

mismatches induced by effects of proximity presents 
additional system losses, so the risk of signal drop-out 
in the link is increased. The most important opera- 
tional parameters for a closed-coupled antenna-body 
interaction for biotelemetry are its antenna efficiency 
and radiation pattern in the azimuthal plane. 

This paper is organised as follows. The complete set 
of finite cylindrical vector wave functions are intro- 
duced in section 2. 

In section 3 we begin to formulate the problem for a 
finite circular cylinder and in subsection 3.1, we set 
out with the case, in which we construct the DGF, 

Magnetic type DGF can be found by invoking duality 

or once the electric field is obtained the magnetic field 
is derivable by taking the curl of the electric field, and 
vice versa. 

Conclusions are then presented in section 6 summaris- 
ing the important points contained in this work and 
finally a short bibliography is provided for further re- 
search. 

2 VECTOR WAVE FUNCTION 
FOR A CIRCULAR CYLINDER 
OF FINITE LENGTH 

The cylindrical vector wave functions are the building 
blocks of the EFE of various kinds of DGF. They are 

L 

Fig. 1. Diagram of a Finite Cylindrical Human Torso 
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denoted by A"� 
na and that are solutions 

of the homogeneous vector Helmholtz equation. The 
generating or Eigen-functions, which are solutions of 
the cylindrical scalar wave equation V2+ + käst=O, 
with the differential equation in the cylindrical coor- 
dinate system 

18 8* 18ý* BýýY BzVP 2 
02 r5r(r8r)+r28 

+ +8zz+KýY=O 

(1) 

with K, the separation constant and kA being an 
undetermined wave number. Implementation of the 
method of separation of variables in this system fi- 

nally results the generating function in Reyhani (3) 
in the form 

4ýy. (h) =. i�(Ar)'n46 hz, (2) 

Here subscripts "e" stands for even and "o" is odd 
character of the generating functions. h=T are 
the eigenvalues in the z-direction with q=0,1,2,.... 
and I is the length of cylinder. j, (Ar) identifies the 
cylindrical Hasset functions of the order n to represent 
both out-going and in-coming waves. A is the contin- 
uous eigen-value. Cylindrical vector wave functions 
are akin to the Debye potentials. 

1: >.. % (h) = V%: 9, (3) 
i a(h) = Vx[4... 2], (4) 

ix- 

Where i is the piloting vector. 

The complete expressions for the solenoidal (rota- 
tional or transverse) functions are 

ýýýa(h) _ _(a a. )ä ff 
0 

(6) 

: Fh[ ar )c p hzr 

kA 
(7) 

A2(ja(Ar)=shzi 

And the complete exprembns for the non-solenoidal 
(irrotational or lamellar) functions are 

T-arEWArMEMir-O 
: FhU. (Ar')] luz 

where kä = A2 +h2 and in these vector wave functions 
one should be careful with the sign of the elements in 
the matrices when cross-multiplying the terms from 
"e" to "o" and vice-versa e. g. "sin sin" always remains 
negative while "cos cos" positive. Also "- cos sin" and 
"- an coo" in second elements of matrices is P.. and 

.. respectively. In 4. and T. y. both "cos sin" and 

"sin cos" are positive in the first element of their re- 
spective matrix. For 

., 
"- sin cos" in second ele- 

ment of matrix, while "+ cos sin" in the third element. 
For 0, "- cos sin" and "+ sin cos" in the elements 2 
and 3 respectively. ": F" applies the negative to the 
top line while positive to the bottom line. 

Note that in the set of cylindrical vector wave func- 
tions only do not possess the z component. The 
r and z are the cylindrical unit vectors. These func- 
tions are defined in the entire space, corresponding to 
0<r<oo, 0<#5 2wand0<z <1. 

The volume integral of the product of the cylindri- 
cal vector wave functions is dearly zero if n 14 n' 
and h& 4' because of the orthogonal property of the 
coo n4s and sin n¢ functions and the Fourier integral 
relation. The derivation of the orthogonal properties 
of these vector wave functions are very similar to those 
for infinite circular cylinder discussed by Tai (1) and 
Collin (2). 

3 FORMULATION OF THE 
PROBLEM 

Consider a cylinder (fig. 1) of radius "a" concen- 
tric along z-axis with length "1" is illuminated by an 
electromagnetic wave. An electromagnetic field is in- 
duced inside the system and an electromagnetic wave 
is scattered by the system. 

A time dependence e1 is assumed and suppressed 
throughout. 

3.1 DGF for a Suite Length Cylinder of 
Circular Cross-Section 

Because the dyadic Vx [I4(ß - I')] is solenoidal, it 
can be expanded in terms of solenoidal vector wave 
functions; P., aº and 4;,, a defined previously. 

Applying the method of ((k) and according to the 
Ohm-Rayleigh procedure, an EFE for the source func- 
tion Vx[I4(W-1l)) using the solenoidal vector wave 
functions can be 

cc I go 
Vx(t4(7ý-W)]=fdAJu 

o0 "No (9) 

where A and h are continuous eigen-values and 
4,, ß(h) and $; 

�ý(h) are two unknown vector func- 
tions to be determined. This is a 
problem with a dyadic singular function, therefore the 
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above equation can be treated as the Fourier trans- 
form and the Fourier-Bessel transform or the Henkel 
transform of 0x(ß, & (11 -I 

Z)). By taking the anterior 
scalar product of the above equation with ; Ue. 

f, a. (h') 

and integrating the resultant equation through the 
entire space and as a result of the orthogonal rela- 
tionships and repeating the same routine with the 
P". 

n, a, (h') we can obtain the EFE, where we have 

preserved the Flourier integration. The plane of dis- 

continuity for the ma netic DGF is located at r= r'. 
The expression for (al) for a finite cylinder of radius 
"a" concentric with the z-axis can now be written in 
the foim 

_l 
09 

p4(N-It)+ fdhECa 

LP; ";,, (h; v1)P', % (h; )] 1 

ý 
(h; rL)ý'; ý, (h; *1ý)ý r> r', j' 

1 

: 0% 
(10) 

where 

CA - 
i(2 - a; ) 

(11) 
2117; 

Coefficient CA depends on the value of ö; which is the 
Kranecker delta fimctions defined with respect to n, 
when 

6, " 
(0,1, ifn=o (12) 

if n#o 

Comparing the DGFs for a finite cylinder developed 
here with those presented by other authors e. g. Tai 
(1) for an infinite cylinder, one can notice that they 
are similar in mathematical form but different in the 
calculations of Ps and Qs and the limits of integration 
for a finite cylinder. 

3.2 General Expression of Scattering 
DGFs for an Electric Dipole in the 
Presence of a Multi-Layered 
Cylindrical Torso Model 

When a biological system is illuminated by an elec- 
tromagnetic wave, an electromagnetic field is induced 
inside the system and an electromagnetic wave is scat- 
tered externally by the system. Since the biological 

system is an irregularly shaped heterogeneous imper- 
fectly conducting medium with frequency dependent 

permittivity and conductivity, the distribution of the 
internal electromagnetic field and the scattered elec- 
tromagnetic wave will depend on the body's physio- 

logical parameters and geometry, as well as the fre- 
quency and polarisation of the incident wave. The 
mathematical complexity of the problem has led re- 
searchers to investigate simple models. In this paper 
the medium is assumed to be homogeneous, isotropic, 
linear, non-dispersive and stationary. An efficient for- 
mulation of the general scattering DGF for a multi- 
layer cylindrical torso (fig. 2) as: 

G.; °(ß, 7f) _ fI 
cc dhE c� 

o +=o 
At. 

(h; vi, ) 
(1- aý) , 

"., 1' 
(h; ) 

01) 
11 

(h; 
(1- ö) LJe -{1) 

(13) 
Where l2 = w2(hc, ) and = (k2 - h'). 
For the general case, when the current source is lo- 
cated in different layers of the media, one obtains a 
different expression of DGF. 

-[AD 
1 00 

(R. R) = fdh CA 
0 n=0 

As; (h; Ay) ' 

. 171 111 

1 

[(1 
- 

o 
(h'l') 

Ki 

c , 0'. ), (h; n) 
; 1- 5i ) Lfr, 

'P{a 
(h; +, ) 

(14) 

"L" is the symbol for last inner layer in the torso. "f 
(f =0,1,2 . ....., L) is the field point or observer layer. 
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Superscript/subscript "o" stands for source point at 
open space. Subscript "8" is scattering, while its su- 
perscript represents the layer at which the source is 
located. bj and b f* are the Kronecker delta functions, 

where 

a_ f1, ifL=o (15) 
0, if L#o 

A'L n, a!, B Lf* 
,1w,, , 

C. fý 
,c. 

P, D: and 

are the amplitude coefcients of scattered DGF 

to be determined by applying the boundary condi- 
tion at the interfaces r=a, (1 = 1,2,..., L). These 
boundary conditions are; 

and 

fx 
e= fx 

(1+, l, (16) 
tt 

rxVx Ge =1fxVx (17) 
IAI IL(1+1) 

All the local reflection coefficients are given by 

(18) 

1 RH FJ 

And for the local transmission coefficients, 

-2it9f%,,, (20) 

EH T FJ _ 
-2iß +t 21 l) 

Where we have assumed the following abbreviations. 

Ib°o 

Fig. 2. Cress Section of s Human Zbno Model 

The superscripts E and H in the above equations de- 
note TM and TE waves, whereas the subscripts P and 

F define the centripetal and centrifugal reflection or 
transmission respectively. Here 

n=d. 
+" ni' +I., Jn - dine+1 41 Ri+l., (22) 

Besides 09 represents c or µ in the E (TM) or H (TE) 

mode representations respectively. In the above, the 
Wronskii n of the cylindrical Hankel functions is 

2i 
_ xx 
= ý> >+i. ý ' i+ý. >>» 

(23) 

If the source is located outside the cylindrical body 
for axial symmetry n=0, the scattering DGF is given 
by 

i) For the case of two layered media the coeffi- 
cients are 

A10* = R' pul, = RE ; "ryý Fl+ ; "r4 Fl 
tOo H 100 

_ Ts 
ql 

TFl 
eC", Fl 

Where Rj" and TF " can be obtained from (19) 
and (21) by letting f=1. 

ii) For the case of three layered media the coeffi- 
cients are 

gE Ti 
JREW 

zz° = a ° - 
THrH P2' PI 

ý 'ý RF1R' 

' 
RH TH 

= s, +, i-R R ( 
F1 Pl) 

RE Tý 
RF1RI)z, 

q: ° = Tp 
" +r, (1 - RF1R )2 

sio a 
T'ý 

_ - te. (1- RH FI 
C =RE +R 

TV 

A!! * = Rý. l + 
1 

% 1- R Rw 1- F, R 

Where 4im, RE and Tf', TAX and TAX can 
be obtained from (18) to (21) by letting f=1. 

The results for these specific cases agree with those 
given by other authors Xiang and Lu (4), showing the 
validity of our DGF representation. 

We can obtain the total DGF by applying the princi- 
ple of scattering superposition, 

URI (w, 1) =iA 7V) + ý; ° (ý W) (24) 

4 MAGNETIC DGF IN THE 
ANTENNA-TORSO 
CONFIGURATION 

The principle of duality states that once the elec- 
tric DGF is obtained, the magnetic DGF is derivable 
by interchanging the field functions PN -º k? : and 
(� and omitting the singularity term contri- 
bution and vice versa. 

On the other hand the corresponding total magnetic 
DGF at any point in the system can be calculated 
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from VxZ7. = G1m, bearing in mind the discontinuous 
nature of magnetic DGF across a point source at R= 
R' and the Ampere-Maxwell equation relating Z7 and 
6. in the dyadic form i. e.: VxZ;,, = 

76, (X - I') + 
k2 . 

Press, series on Electromagnetic paves, New 
York. 

2. Cohn R. E., Second Edition, 1991, "Field The- 
ory of Guided Waves", IEEE Preen, New York. 

5 ELECTRIC AND MAGNETIC 
FIELD AT ANY POINT IN 
THE CONFIGURATION 

The use of DGF technique allows us to determine the 
expansion of the electric and magnetic fields in a body 
(cylinder)/antenna configuration in a direct and ele- 
gant manner. 

For any current source with current density function 
3(R) located outside the body, the electric or mag- 
netic field radiated by such a dipole can be evaluated 
using the formulae, 

f1J WIr)-JOdV' (25) v 

, fffem(R7w) . 7()dV-. (26) v 
6 CONCLUDING REMARKS 

We have derived general electromagnetic representa- 
tions for a human torso model (in simple form for 
the multi-layered homogeneous loesy dielectric circu- 
lar cylinder of finite length) in order to evaluate de- 
terioration of the antennas performance and obtain 
the rates of RF energy deposition (SAR). The repre- 
seutations may be used to optimise antenna design, 
ascertain potential health hazards, and compliance 
with standards legislation. The DGFs are obtained 
by employing the EFE and the method of scattering 
superposition. 

The results of this paper could be useful for a further 
analysis of the problem of an implant auch as heart 
pace-maker embedded in the body and biotelemetry 
transmitters for medical applications and could w- 
ily be expanded so as to handle any scatterer having 
finite radius and length. They can also be applied 
to problems of optical fibers and wavegtddee for the 
investigation of inbomo ties or obstacles inside 
them or by c onsidedag the cylinder as an excitation 
or scatterer. 
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to be uniform along the propagation direction. The DGFs are obtained by employing the method of scattering 
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1 Introduction 

Although electromagnetic scattering by a Snits cylia- 
der is a well known canonical problem, published 
work does not include the effects of arbitrary placed 
source point. The derivations presented here are mo- 
tivated by the need to understand the behaviour of 
antennas near to or embedded in living tissue. The 
Eigen-[unction expansion (EFE) of DGFs in electro- 
magnetic theory provide a systematic means of con- 

structing and interpreting these dyadics. The pio- 
neering work by Tbi [1) has set the stage for most 
of what has been achieved over the last two and a 
half decades. The expansion of DGFs in terms of the 
Hansen [21 vector wave functions must be carried out 
carefully in order to ensure that one is dealing with a 
complete expansion. 

This paper is organized as follows. The complete 
set of cylindrical vector wave 5Unetions are introduced 
in section 2. This material is included here in order 
to explicitly define notation and to call attention to a 
few points in connection with these expansions. 

In section 3 we begin to formulate the problem for 

a finite circular cylinder and in subsection 3.1, we set 
out with the case, in which we construct the DGF, 
7{00f), in terms that constitute the continuous 
Eigen-function expansion (EFE) in which the Eigen- 
functions are guided in pre&xred r and a-coordinate 
directions, using the procedures described in Tai [3) 

or Collin [4]. This e: paosion also contains an ex- 
plicit dyadic delta function term which is required for 
completes at the source point. It is considered as 
a correction to the general solenoidal EFE which is 
valid outside the source point. 

Az 
a i" 

t' 

x 
r"y 

Ftt. 1. Diagram of a Finite Circular Cylinder 

The procedure required to derive the complete 
EVE of the scattering DGF for the finite circu- 
lar cylinder, in terms of only the solenoidal Eigen- 
functions is shown to be a simple and straight-forward 
general expression and is summarized in section 4. 
The DGF for a finite conducting cylinder, Z`sd'A, 7t") 

can be constructed from the principle of the superpo. 



action, where it satisfies the boundary conditions. 
Magnetic type DGF discussed in median 5, can 

be found by invoking duality or once the electric field 

is obtained the magnetic field is derivable by taking 
the curl of the electric field, and vice versa. 

Conclusions are then presented in section 7 sum- 
marizing the important points contained in this work 
and finally a short bibliography is provided for further 

research. 

2 Vector Wave Functions for a 
Circular Cylinder of Finite 
Length 

The cylindrical vector wave functions are the building 
blodm of the EFE of various kinds of DGF. They are 
denoted by P =. A and 0�a, that are solutions 
of the homogeneous vector Helmholtz equation. The 

generating or Eigen-functions, which are solutions of 
the cylindrical sealer wave equation V9 + käl=0, 

with the differential equation in the cylindrical coor- 
dinate system 

18 8f 182v ear e'f 
r 8r 

(r Or r2 00 W++ lC=ý =0 
(1) 

with K, the separation constant and ka being an 
undetermined wave number. Implementation of the 
method of separation of variables in this system fi- 

nally results the generating function [51 in the form 

146 .:, 
(h) = %da*) MC hx, (2) 

Here subscripts "e" stands for even and ' o" is odd 
character of the generating function. h=I are 
the eigenvalues in the s-direction with q=0,1,1, .... 
and l is the length of cylinder. j,. (Ar) identi8ee the 
cylindrical Beenel fitnctions of the ordern to represent 
both out-going and in-coming waves. A is the coatin- 
uous eigen value. Cylindrical vector wave [unctions 
are akin to the Debye potentials. 

L.: 
+A(h) = VI , (3) 

gpa(h) = VxIi). (4) 

4 (h) = 
ký 

VxVx[l! j]. (5) 

Where i is the piloting vector. 
The complete expressions for the solenoidal (ro- 

tatiooal or trapse) fanctiom we 

hxý 
T-h[ý)r`: n4 hzP 

a2Ga(a*)J n4 hzs 
And the aampkte mcpr. iaos for the non-solenoidal 
(irrotatkuial or lamellar) fanctiaos are 

J: 

FhU. (Ar)=nOZhxi 
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where k= A2 +h2 and in these vector wave functions 
one should be drdui with the sign of the elements in 
the matrices when t=oe -multiplying the terms from 
"e" to `o" and vice-versa e. g. `sin sin" always remains 
negative while "cos one positive. Abo "- cos sin" and 
`-sinacs" in second elements of matrices in F. and 
P respectively. In T. and L both "cam ein" and 
"sinaoe° are positive in the first element of their re- 
spective matrix. For 4L, "- sin cue" in sego ad eie- 
meRt of matrix, while "+ cos din" in the third element. 
Für Q, "-aossin" and '+ sin coe" In the elements 2 
and 3 respectively. ": " applies the negative to the 
top line while positive to the bottom line. 

Note that in the set of cylindrical vector wave 
functions only FL, A do not possess the z component. 
The ?, j and i are the cylindrical unit vectors. These 
functions are defined in the entire space, correspond- 
ing to 0<r<oo, 0<`<2rand 0<a<1. 

The volume integral of the product of the cyhn- 
drical vector wave functions I. clearly zero if n# n' 
and is # h' became of the orthogonal property of the 
coo n# and sin n# fractions and the Fourier integral 
relation. The derivation of the orthogonal proper- 
ties of these vector wave functions are very similar to 
those for infinite circular cylinder discussed by Tai 131 
and Collin [4]. 

3 Formulation of the Problem 

Consider a cylinder (86. ]) of radius "a" concen- 
tric along z-axis with length 9" is illuminated by an 
electromagnetic wave. An electromagnetic field is in- 
duced in the system and an electromagnetic wave is 
scattered by the sue. 

A time dependence ei"g is assumed and sup- 
preesed throughout. 



Z! 6 
3.1 DGF for a Snits Length Cylinder of 

Circular Cross-Section 

Because the dyadic Vx [f4(Tt -W )] it soieaoidal, it 

can be expanded in terms of solenoidal vector wave 
functions; .x and 4",, a defined previously. 

Applying the method of (Gm) and according to 
the Ohm-Rayleigh procedure, an EFE for the source 
function Vx [f4, (R - I')] using the solenoidal vector 
wave functions can be 

no cc 

Vx[I&(12 -IV)] =f dAJdhE 
o0 Ro (9) 

. heie A and h are continuous eigen-values and 
a: 

"na\h) and 8ý. 
ý(h) are two unknown vector func- 

tions to be determined. This Is a three-dimensional 

problem with a dyadic singular function, therefiore the 

above equation can be treated as the Fourier trans- 
form and the Flourier-Beseel transform or the Haakel 

transform of Vx (74(3A - If )]. By taking the anterior 
scalar product of the above equation with ;f ; ",,. a. (W) 

and integrating the resultant equation through the 

entire space and as a result of the orthogonal rely 
tionships and repeating the sinne routine with the 
f "., ý, a, (h') we can obtain the EFE, where we have 

preserved the Fourier integration. The plane of dis- 

continuity for themapetis DGF is located at r=r. 
The expression for (Gkt) for a finite cylinder of radius 
"a" concentric with the z-axis can now be written in 
the form 

00 

0 a" 

J fý:. (h; %)"gý(h: n» 1 
(10) 

where 
i(2 - a°) (11) 

Coeffic t CA depends an the 'due of P. which is the 
Krome 4q delta functions defined with rnepect to is, 
when 

r. 
11 ifn=o (12) 

0, ifn#o 

Here Pf is a dyad (dyadic product of the unit vectors) 
and b(«-t) is weighted Dirac delta function in three 
dimensions. This is included explicitly as a correction 
to the Seneral solenoidal EFE which is -valid outside 
the gnome paint. The dyadic delta function term at 
the source point in cylindrical coordinates 

6(R-R')_-a(i=-id)a(4-4Mr-Y) (13) 

Comparing the DGF9 for a finite cylinder devel- 
oped here with those presented by other authors e. g. 
'Iii [S) for an infinite cylinder, one can notice that 
they are similar in mathematical form but diferent 
in the calculations of Ps and Qs and the limits of in- 
tegration for a finite cylinder. 

4 Scattering DGF for a Finite 
Conducting of Circular 
Crois-Sect on 

When a perfectly conducting cylinder of the same size 
as above is illuminated by an electromagnetic wave, 
the scattered terms can be written in the form 

o, 

=f ca 
a:. }ý:: ý cl) (14) 

w.. w(h; vi)O'1.; 1(h; n)] 

Applying the principle of scattering superposi- 
tion, we obtain 

astour) =Ma Ir)+z. (J t) (15) 

Where we consider the function for a finite circular 
cylinder in a region 0<rG co. After applying the 
boundary condition one can determine the unknown 
coeffiidmb. In order to satisfy the boundary condi- 
tion at Interface r=a, 

ßX1ý"ý. 
ý(h; ýi)ýý"; (h vi)+llý., y, (%r+ß)p`". 

7(h; vi)]r- l 
(16) 

fx [.. �(h; ^- v#7(1) (hi+º)+A; !., (A; (h; .w 
(17) 

rx[P: "w(h; ii)+o;. ý 
äýih; º1)]r-. =0 (18) 

fx[ýý +ý"wýl: ýwý1i; 
ý1), 

ý0-0 
(19) 

substituting for v)) and 
T; 1, (k; A) 

15: ", (h; q) = Vx11w(r1r)=nO dohz1], (20) 
: )(h*, 

q) = Vx[H, tt1(rp'=n#finhzk], (21) 



in equation (18) produces a: w=- 
[m( 

) 
Similarly inserting for and V; 

ýw(h; q) 

; ", ý(hcn) = VxVx& (ipr=n*cmhZi1, (22) 

(h; q) = VxVx(H(, ')(lr) n* COGhz11, (23) 

in equation (19) Produces ß; "� =- [q 

5 Magnetic DGF in the 
Antenna-Prosthesis 
Configuration 

The principle of duality states that once the elec- 
tric DGF is obtained, the magnetic DGF is derivable 

by interchanging the field functions P -a k4; and 
ýý -º kP and omitting the singularity term contri- 
bution and vice versa. 

On the other band the corresponding total mag- 
netic DGF at annj point in the system can be calcu- 
lated from VxV. = U, 

R, bearing in mind the die- 

continuous nature of magnetic DGF across a point 

source at R= R' and the Ampere-Maxwell equa- 
tion_relatiag V. and V. in the dyadic form i. e.: 
Vx? =74(R-jr)+k'2X. 

6 Electric and Magnetic Field at 
any Point in the Configuration 

The use of DGF tecinigae allows us to determine 

the expansion of the electric and magnetic fields in 

a cylinder/antenna configuration in a direct and de- 

gant manner. 
For any current source with current density faaa 

tioo 7(r) located outside the cylinder, the electric 

or magnetic field radiated by auch a dipole can be 

calculated using the formulae, 

Eltt) _ +wµofJJ "6`(ll'lt) - J(W)dV' (24) 

v 

elffamt('X]r) -3(lr)dV-. (25) v 
The signify the amputation of the E and H- 

fields in the structure, which states the superposition 
of the incident Bald Ei(R) or $(rt) and the scattered 
field F"( or $(11) is given by 

7 Concluding Remarks 
227 

General expressions have been derived in simple form 
for the finite conducting circular cylinder (medical de- 
v- /prostheses) of any size as well as of very small 
radius (resonant length). The DGFs are obtained by 
employing the EFE and the method of scattering su- 
perposition. 

The results of this paper could be useful for a 
further analysis of the problem as a thin wire or an 
implant such as heart pace-maker embedded in the 
body and biotelemetry transmitters for medical appli- 
cations and could easily be expanded so as to handle 
any scatterer having finite radius and length. 

They can also be applied to problems of optical 
fibers and waveguldes for the investigation of inhomo- 
geneities or obstacles inside them or by considering 
the cylinder as an excitation or scatterer. They can 
also be of use in the study and design of antennas of 
high frequency. 

The usefulness of the present technique obviously 
requires comparison with numerical and experimental 
results- it is envisaged that a later publication will 
address this aspect of the problem in more detail. 
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Abstract 
GSM (global system for mobile communication) and PCS's (personal communication services) can interfere 

with implantable medical devices/prostheses particularly for systems using TDMA (time-division multiple access) 
and cause possible malfunction. Also the performance of an antenna is significantly altered by the presence of 
conducting medical devices/prostheses. The objective of this paper is to outline a general expression of dyadic 
Green's function (DGF) for the problem of electromagnetic radiation from a source of excitation in the presence 
of a finite length "! " of perfectly conducting thin circular cylinder of radius "a" concentric along z-axis of any 
size as well as of resonant length, which is valid everywhere, including the source region. The whole structure is 

assumed to be uniform along the propagation direction. The advantage of the proposed analysis is its simplicity 
and efficiency in computation. 
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I. Introduction 

Although electromagnetic scattering by a fi- 

nite cylinder is a well known canonical problem, 
published work does not include the effects of ar- 
bitrary placed source point. The derivations pre- 
sented here are motivated by the need to under- 
stand the behaviour of antennas near to or em- 
bedded in living tissue. Interaction of electromag- 

netic fields (EMF) with living systems and public 
concern regarding their allegedly/possible harm- 
ful health effects have been of current research 
interest. These investigations are motivated by 

two relating factors: 

i) a need to evaluate the specific absorption rate 
(SAR) (the rate of RF energy deposition) in 
the user's body, in order to evaluate potential 
health effects and compliance with standards, 
and; 

ii) the antenna performance in the proximity of 
the users body and to develop better antenna 
designs whose performance is less affected 
by the biological systems and produce lower 
SAR. 

Several theoretical studies have analysed these 
models in Reyhani [1,2,3]. This paper is organ- 
ised as follows. The complete set of cylindri- 
cal vector wave functions are introduced in sec- 
tion 2. In section 3, we construct the DGF, 

G, l(R, R ), in terms that constitute the contin- 

uous Eigen-function expansion (EFE) in which 
the Eigen-functions are guided in preferred r and 
z-coordinate directions, using the procedures de- 
scribed in Tai [4] or Collin [5]. The procedure re- 
quired to derive the complete EFE of the general 
scattering DGF for the infinite circular cylinder, 
in terms of only the solenoidal Eigen-functions is 
shown to be a simple and straight-forward gen- 
eral expression and is summarised in section 4. 

ý800 - -4 The DGF for a semi-infinite cylinder, GEl (R, R) 
is then constructed from the principle of the su- 
perposition, where it satisfies the boundary con- 
ditions. Section 5, presents the final construction 
of the DGFs expansions. It is in this development 
that the principal point of this paper is identified. 

Conclusions are then presented in section 8. 
summarising the important points contained in 
this work. 

2. Cylindrical Vector Wave 
Functions 

The vector wave functions are the build- 
ing blocks of the EFE of various kinds of DGF. 
They are solutions of the homogeneous vector 
Helmholtz equation. The generating functions, 

which are solutions of the cylindrical scalar wave 
equation V2WY + kä1@=O, can be written in the 
form , (h) = jn(Ar)COBnOe'h=. kA is an unde- ein 



termined wave number and subscripts "e" stands 
for even and "o" is odd character of the gen- 
erating functions. Where j, , (Ar) identifies the 
cylindrical Bessel functions of the order n to rep- 
resent both out-going and in-coming waves. A 
is the continuous eigen-value. Cylindrical vector 
wave functions are akin to the Debye potentials. 
P :,,, \(h) _ Vx[4+., z] and Q:,,, \(h) = 1a VxVx[1Yý, z]. 
Where z is the piloting vector. These functions 
are defined in the entire space, corresponding to 
0<r<a, 0<0<2irand -oo<z<oo. 

4z 
_a 

Fig. 1. Diagram of a Finite Circular Cylinder 

The orthogonal properties of these vector 
wave functions have been discussed by Tai [4] and 
Collin [5]. 

3. DGF for an Infinite Length 
Cylinder of Circular 
Cross-Section 

Because the dyadic source function Vx 
[Id(R -R )] is solenoidal, it can be expanded 
in terms of solenoidal vector wave functions Po�a 
and Applying the method of (G,,, ) and ac- 
cording to the Ohm-Rayleigh procedure, an EFE 
for the source function 

O 00 00 

Vxo(-')} )] =f dA f dh > 
0 -00 n=0 (1) 

fQ; 
na(1º)A; na(h)l 

`P-. na (h)Banx(h)1 

where A and h are continuous eigen-values and 
Äo�. \(h) and Bona(h) are two unknown vector 
functions to be determined. This is a three- 
dimensional problem with a dyadic singular func- 
tion, therefore the electric DGF for infinite con- 

ducting cylinder can be written as 

0 
CA 

a 00 G (R, R')=-26(R-R)+fdýk T2- 
"=o 

Pýna(fhl)P'ona(ýhi) 

`w'onA(±11)Q' na(ýh1)J 
'z< zI, 

(2) 

CA = 4ýa ahl depends on the value of Öo which 
are the Kronecker delta functions defined with 
respect to n and Ia is the normalisation factor. 
Poles of integrand are h= ±(k 2- \2) I= ±h1. 

4. DGF for a Semi-Infinite 
Length Cylinder of Circular 
Cross-Section 

The scattered terms for cylinder of infinite 
length is 

a 00 
Gee(R, R)= fdAECA 

0 n=o (3) 
faon, Pöna(hl)2"; 

na(hl )l 
`ß; nA . na(h1)Q'; nA(hl)J 

Applying the principle of scattering superposi- 
tion, 

=800 =00 GE1(R, R) = Gel(R, R) + Gea (R, R? ) (4) 
Where we consider the function for a semi-infinite 
circular cylinder in region 0<z< oo. After 
applying the boundary condition at interface z = 
0 one can determine the unknown coefficients. 

zX (Pena -hl) + a: nAP; na(hl)]z=0 =0 (5) 

zX ýQýnA(-h1) +ßýnAQ; na(h1)]s=0 =0 (6) 

Equations (5) and (6) produce a. nA -1 and 
ßöna =1 respectively. Furthermore, if we intro- 
duce vector wave functions 

P, A0(x) = Vx[jn(. Ar)e°nnosinh1z2], (7) 

QnAe(z) kVXV n(\T)enn¢coshlzz]. (8) 

then the expression for electric DGF for semi- 
infinite cylinder (4) can be written in the following 
compact form: 

a 00 
GE, (R, R)_-kZö(R-R)+ fd\E(-2i)CA 

0 n=0 
fP; 

na(h1)P'; nAo(z') 
[4-. 

na 
(h1)Zý': 

nae 
(z')J 

fP. 
nao(z)P_'enA(h1)1 

L= ; nAe(z)Q': na(h1)J x< Z'. 
(9) 



5. DGF for a Finite Length 
Cylinder of Circular 
Cross-Section 

The electric DGF for a finite cylinder (fig. 1) 

can now be derived with the aid of equation (9) 
in the form 

E1(R, R) = GE1(R, R) + GES. (R, R) X10) 

=800 

The scattered representation GEl, can be as- 
sumed 

o 00 

GE 
l. (R, R) = 

JdA E 
-2iCA 

o n=o (11) 
-ý rA; 

nýoP; nao(z)P onao(z, 
)l 

B; naeQönae 
(Z)ýw'; nae 

(x') 

The boundary condition must also be fulfilled 
M11 

at z=1. This yield Aönao =- ein h, I and 

B. �ae =-e -n h1Il 
. 

Substituting into (11) and us- 
ing (10) with the aid of new vector wave functions, 

we finally obtain the following representation for 

-FL zz _, 
a o0 2CA 

GEl (R, R) _- k2 ö(R - R) +f äa Ei 
sin hl l 

0 n=0 
/ P; nao(l - z)P önao(z/) 

-Q"nae(1 - z)Q'enao(z') 

11 

z> z', 
0 

Ponao(z)P; nAo(l - z') 

-Q: nAo(z)Q'önAo(l - z') z< z'. 
(12) 

6. Magnetic DGF in the 
Antenna-Prosthesis 
Configuration 

The principle of duality states that once 
the electric DGF is obtained, the magnetic DGF 
is derivable by interchanging the field functions 
Pä -3 kZJ and ; Uo -+ OR and omitting the sin- 
gularity term contribution and vice versa. 

On the other hand the corresponding total 

magnetic DGF at and point in the system can be 

calculated from VxGe = Gm, bearing in mind the 
discontinuous nature of magnetic DGF across a 
point source at R=R and the Ampere-Maxwell 

equation relating Gý and in_ the dyadic form 

i. e.: VxG,,, =7&(R-R)+k2Ge. 

7. Electric and Magnetic Field 
at any Point in the 
Configuration 

The use of DGF technique allows us to deter- 
mine the expansion of the electric and magnetic 
fields in a cylinder/antenna configuration in a di- 
rect and elegant manner. 

For any current source with current density 
function J(R) located outside the cylinder, the 
electric or magnetic field radiated by such a dipole 
can be calculated using the formulae, 

E(R) = iwio f'J f El(R, R) 
" J(RI)dV' (13) 

v 

H(R) = iweo$ ff Mj(R, Rý) J(g)dV'. (14) 
v 

These signify the computation of the E and 
H-fields in the structure, which states the super- 
position of the incident field E=(R) or 77i(R) and 
the scattered field F. (-R) or IL(R) is given by 

E(R) = E; (R) + E8(R) (15) 
H(R) = H; (R) + H3(R). (16) 

8. Concluding Remarks 

General expressions have been derived in sim- 
ple form for the finite conducting circular cylinder 
(medical devices/prostheses) of any size as well 
as of very small radius (resonant length). The 
DGFs are obtained by employing the EFE and 
the method of scattering superposition. The ad- 
vantage of the proposed analysis is its simplicity 
and efficiency in computation. 

The results of this paper could be useful for a 
further analysis of the problem as a thin wire or 
an implant such as heart pace-maker embedded in 
the body and biotelemetry transmitters for med- 
ical applications and could easily be expanded so 
as to handle any scatterer having finite radius and 
length. 

They can also be applied to problems of op- 
tical fibers and waveguides for the investigation 
of inhomogeneities or obstacles inside them or by 
considering the cylinder as an excitation or scat- 
terer. They can also be of use in the study and 
design of antennas of high frequency whose per- 
formance is less affected by the biological systems 
and produce lower SAR. 

The usefulness of the present technique ob- 
viously requires comparison with numerical and 
experimental results. it is envisaged that a later 



publication will address this aspect of the problem 
in more detail. 
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Abstract 

Modern wireless telecommunication devices (GSM Mobile system and PCS's) can interfere with im- 

plantable medical devices/prostheses and cause possible malfunction. Also the performance of an antenna 
is significantly altered by the presence of these conducting medical devices/prostheses. Dielectric-coated 

medical devices are preferable over bare ones for use in a human body. The reason is that the often 
undesirable contact (hyperthermic/heating effect) between the prostheses and the surrounding tissue is 

avoided and, more importantly, the radiation efficiency of the antenna can be improved by insulating all or 
part of the medical devices surface. The principle objective of this paper is to outline a general expression 
of dyadic Green's function (DGF) for the problem of electromagnetic radiation from a source of excitation 
in the presence of a finite length of insulated perfectly conducting circular cylinder of any size as well as of 
resonant length, which is valid everywhere, including the source region. The whole structure is assumed to 
be uniform along the propagation direction. The DGFs are obtained by employing the method of scattering 
superposition. The advantage of the proposed analysis is its simplicity and efficiency in computation. 

1. INTRODUCTION 

Although electromagnetic scattering by a finite cylinder is a well known canonical problem, published work 
does not include the effects of arbitrary placed source point. The derivations presented here are motivated 
by the need to understand the behaviour of antennas near to or embedded in living tissue. Dielectric-coated 
medical devices are preferable over bare ones for use in a human body. The reason is that the often undesirable 
contact (hyperthermic/localised heating effect) between the prostheses and the surrounding tissue is avoided 
and, more importantly, the radiation efficiency of the antenna can be improved by insulating all or part of 
the medical devices surface. The Eigen-function expansion (EFE) of DGFs in electromagnetic theory provide 
a systematic means of constructing and interpreting these dyadics. The pioneering work by Tai [1] has set 
the stage for most of what has been achieved over the last two and a half decades. The expansion of DGFs 
in terms of the Hansen [2] vector wave functions must be carried out carefully in order to ensure that one is 
dealing with a complete expansion. This paper is organized as follows. The complete set of cylindrical vector 
wave functions are introduced in section 2. 

In section 3 we begin to formulate the problem for a finite circular cylinder and in subsection 3.1, we set 
out with the case, in which we construct the DGF, Gl(R, R ), in terms that constitute the continuous 
Eigen-function expansion (EFE) in which the Eigen-functions are guided in preferred r and z-coordinate 
directions, using the procedures described in Tai [1] or Collin [3]. This expansion also contains an explicit 
dyadic delta function term which is required for completeness at the source point. It is considered as a 
correction to the general solenoidal EFE which is valid outside the source point. 

Subsection 3.2, presents the general scattering DGFs expansions (3) in terms of only the solenoidal Eigen- 
functions. It is in this development that the principal point of this paper is identified. Magnetic type DGF 
discussed in section 4, can be found by invoking duality or once the electric field is obtained the magnetic field 
is derivable by taking the curl of the electric field, and vice versa. 

Conclusions are then presented in section 6 summarizing the important points contained in this work and 



finally a short bibliography is provided for further research. 

2. VECTOR WAVE FUNCTIONS FOR A CIRCULAR CYLINDER OF FINITE 
LENGTH 

The cylindrical vector wave functions are the building blocks of the EFE of various kinds of DGFs. They 
axe solutions of the homogeneous vector Helmholtz equation. The generating or Eigen-functions, which are 
solutions of the cylindrical scalar wave equation V2W + kä, P=O can be written [4] in the form 

'I'; ýºýh) = 9nýýr)sin nßä°, °hz, ý1) 

Here subscripts "e" stands for even and "o? ' is odd character of the generating functions. h= IM are the 
eigenvalues in the z-direction with q=0,1,2, .... and 1 is the length of cylinder. j,., (Ar) identifies the cylindrical 
Bessel functions of the order n to represent both out-going and in-coming waves. A is the continuous 
eigen-value. Cylindrical vector wave functions are akin to the Debye potentials. F nA(h) = Vx['P. 2] and 
4 a(h) = kx VxVx['I 2]. Where z is the piloting vector and here kä = A2 + h2. 

The complete expressions for the solenoidal (rotational or transverse) and the nonsolenoidal (irrotational or 
lamellar) functions are given in Reyhani [5]. These functions are defined in the entire space, corresponding to 
0<r< oo, 0<0< 27r and 0<z<1. 

3. FORMULATION OF THE PROBLEM 

When a conducting cylinder coated by a layer of dielectric of the same length as in (fig. 1) is illuminated by 

an electromagnetic wave, the scattered functions for a source in open space region "0", corresponding to the 

exterior region of the coated implant will be denoted by GE1 and for interior region is GE1 
. 

Region "1" is 
within the layer (a <r< ß) for a conducting implant of radius a with thickness of the layer equal to t=ß-a. 

Llo 
The function GE1 must satisfy the Dirichlet boundary condition at r=a, the interface of the conducting 
implant. A time dependence ejwt is assumed and suppressed throughout. 

3.1 DGF for a Finite Length Cylinder of Circular Cross-Section 

Applying the method of (G, ) and according to the Ohm-Rayleigh procedure the expression for (GI) for a 
finite cylinder of radius "a" concentric with the z-axis is given in Reyhani [5] in the form 

RZ 

i 

r 

a 

_. _. _. " 
X 

Figure 1. Diagram of a Finite Insulated Circular Cylinder 
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G'ei(R, R) = -kZ&(R-R)+Jdh 
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where coefficient CA =' 2- n 

rpý'+(h; rL)F''o %(h; it)] 

00 (h; ý)} r> r', 
E CA 

�_° Apo°ýýh; )pý(o (h; rt)] 
[ :. %(h; 

(h; i6)I r< r'. 

3.2 General Expression of Scattering DGFs for an Electric Dipole in the Presence of a 
Dielectrically Multi-Layered Coated Implant Model 

(2) 

For a dielectric cylinder, an incident TE mode will excite both a scattered TE and a scattered TM mode. 
The Scattered DGF term for the exterior and the interior of a dielectrically multi-layered insulated cylindrical 
implant in this case has the form 

G,, (R, R)= fdh: Ca- 
0 n=0 

Aöfný P1 ýn (h; 'l, ) 1 

BLOof* 
(h; rl ) 

o 
°ö ný P o, ýý 

(h; 'l, ) 

Cösý'w'; nf (hi7ij 

Do; * 
f 
Pi! ) 

If 
(h; 77f 

(h; 7L) 
aL: ° ýd; 

", ý 
(h;,, ) 

(3) 

Where kf = w2(µfef) and ref = (kk - h2). "L" is the symbol for last inner layer in the implant model. "f" 
(f = 0,1,2 . ....., L) is the field point or observer layer. Superscript/subscript "o" stands for source point at 
open space. Subscript "s" is scattering, while its superscript represents the layer at which the source is located. 
5f is the Kronecker delta function, where 

f_ 
{1, ifo=f 

d 
0, if 0 54 f 

ý4ý 

A. f° , aLf° , B! O 
, hop , CLf° Dof° and -'of* are the amplitude coefficients of scattered DGF to 

c ný o n, . n, nj of 

be determined by applying the boundary condition at the interfaces r=a, (l = 1,2,. .., L). These boundary 

conditions are; 
ýiTn 

TxGe =0 (5) 

ixG o= f xGe 
(f+ý)o (6) 

1ixVx IO 
=1 r"xVx 

(f +')o (7) 
12, m 

(f+1) 

We can now obtain the total DGF by applying the principle of scattering superposition, 

GEl (R, R) = Gel (R, R )ö f+ Gý, (R, R) (8) 

If our concern is only with the region exterior to the source, then the singular term, which is important only 
in the source region can be dropped from the expression for the Green's function. 



4. MAGNETIC DGF IN THE ANTENNA-PROSTHESIS CONFIGURATION 

The principle of duality states that once the electric DGF is obtained, the magnetic DGF is derivable by 
interchanging the field functions R. -> kQ: and (. ö -4 kPöö and omitting the singularity term contribution 
and vice versa. 

On the other hand the corresponding total magnetic DGF at any point in the system can be calculated from 
V xGe = G,,,, bearing in mind the discontinuous nature of magnetic DGF across a point source at R= R' and 
the Ampere-Maxwell equation relating G. and G,,,, in the dyadic form i. e.: Vx G�i = 766 (R - 

R) + k2Ge . 

5. ELECTRIC AND MAGNETIC FIELD AT ANY POINT IN THE CONFIGURATION 

The use of DGF technique allows us to determine the expansion of the electric and magnetic fields in a 
cylinder/antenna configuration in a direct and elegant manner. For any current source with current density 
function J(R) located outside the cylinder, the electric or magnetic field radiated by such a dipole can be 
calculated using the formulae, 

-Lio (' Lf°- 
-' t 

E (R) = iwpy fJf GEl(R, R) ' J(R )ý (9) 
v 

HLfO(R) = iwe, JJJ emf (R, R) ' 7(7)dV'" (10) 
v 

6. CONCLUDING REMARKS 

General expressions have been derived in simple form for the finite insulated conducting circular cylinder 
(insulated medical devices/prostheses) of any size as well as of very small radius (resonant length). The DGFs 
are obtained by employing the EFE and the method of scattering superposition. 

The results of this paper could be useful for a further analysis of the problem as a thin insulated wire or a 
dielectric-coated implant such as heart pace-maker embedded in the body and biotelemetry transmitters for 
medical applications and could easily be expanded so as to handle any scatterer having finite radius and length. 
They can be applied to problems of optical fibers and waveguides for the investigation of inhomogeneities or 
obstacles inside them or by considering the cylinder as an excitation or scatterer. They can also be of use 
in the study and design of antennas of high frequency whose performance is less affected by the biological 
systems and produce lower SAR. 

The usefulness of the present technique obviously requires comparison with numerical and experimental results. 
it is envisaged that a later publication will address this aspect of the problem in more detail. 
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Abstract: - Electromagnetic pollution is increasing due to massive increase in both mobile and fixed elec- 
tronic equipments, whilst at the same time, industry is producing devices with ever increasing clock speeds. 
Modern wireless telecommunication devices (GSM Mobile system) can interfere with implantable medical de- 

vices/prostheses and cause possible malfunction. Also the performance of an antenna is significantly altered by 
the presence of conducting medical devices/prostheses. Hence the need to consider electromagnetic compatibility 
(EMC) becomes ever more important. Although electromagnetic scattering by a finite cylinder is a well known 

canonical problem, published work does not include the effects of arbitrary placed source point. The derivations 

presented here are motivated by the need to understand the behaviour of antennas/insulated antennas near to 
or embedded in living tissue. 

The principle objective of this paper is to outline a far field general expression of dyadic Green's function (DGF) 
for the problem of electromagnetic radiation from a source of excitation in the presence of a finite length of per- 
fectly conducting circular cylinder of any size as well as of resonant length, which is valid everywhere, including 
the source region. The whole structure is assumed to be uniform along the propagation direction. The DGFs 
are obtained by employing the eigenfunction expansion (EFE) and the method of scattering superposition. The 
advantage of the proposed analysis is its simplicity and efficiency in computation. 

The results of this paper could be useful for a further analysis of the problem as a thin wire/insulated wire or 
an implant/dielectric-coated implant such as heart pace-maker embedded in the body and biotelemetry trans- 
mitters for medical applications and could easily be expanded so as to handle any scatterer having finite radius 
and length. 

They can be applied to problems of optical fibers and waveguides for the investigation of inhomogeneities or 
obstacles inside them or by considering the cylinder as an excitation or scatterer. They can also be of use in the 
study and design of antennas of high frequency whose performance is less affected by the biological systems and 
produce lower SAR. 

Key- Words: - Electromagnetic, Far Field, Circular Cylinder, Implants, Antenna, Dipole, Dyadic Green's func- 

tion. 
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Abstract: - Electromagnetic pollution is increasing 

due to massive increase in both mobile and fixed elec- 
tronic equipments, whilst at the same time, indus- 

try is producing devices with ever increasing clock 

speeds. Modern wireless telecommunication devices 

(GSM Mobile system) can interfere with implantable 

medical devices/prostheses and cause possible mal- 
function. Also the performance of an antenna is sig- 

nificantly altered by the presence of conducting med- 
ical devices/prostheses. Hence the need to consider 

electromagnetic compatibility (EMC) becomes ever 

more important. The principle objective of this pa- 

per is to outline a far field general expression of dyadic 

Green's function (DGF) for the problem of electro- 

magnetic radiation from a source of excitation in the 

presence of a finite length of perfectly conducting cir- 

cular cylinder of any size as well as of resonant length, 

which is valid everywhere, including the source region. 
The whole structure is assumed to be uniform along 
the propagation direction. The DGFs are obtained by 

employing the eigenfunction expansion (EFE) and the 

method of scattering superposition. The advantage of 
the proposed analysis is its simplicity and efficiency 
in computation. 

Keywords: - Electromagnetic, Far Field, Circular 
Cylinder, Implants, Antenna, Dipole, Dyadic Green's 
Function. 

1 INTRODUCTION 

There is an accelerating growth in the use of radio 
transmission as the demand for mobile communica- 
tion expands to embrace data as well as speech. As a 
result, the mutual interference between transmitting 
devices and active medical prostheses should be cal- 
culated. Analytical solutions are useful for calibrating 
measurement systems and understanding fundamen- 

tal propagation mechanisms. We represent here im- 

planted medical devices as conducting cylinders which 
can be embedded in concentric layered dielectrics. 

Although electromagnetic scattering by a finite cylin- 
der is a well known canonical problem, published work 
does not include the effects of arbitrary placed source 
point. The derivations presented here are motivated 
by the need to understand the behaviour of anten- 
nas/insulated antennas near to or embedded in living 
tissue. The eigenfunction expansion (EFE) of DGFs 
in electromagnetic theory provide a systematic means 
of constructing and interpreting these dyadics. The 
pioneering work by Tai [1] has set the stage for most 
of what has been achieved over the last two and a 
half decades. The expansion of DGFs in terms of the 
Hansen [2] vector wave functions must be carried out 
carefully in order to ensure that one is dealing with a 
complete expansion. Several theoretical studies have 
utilized DGFs to analyze the implanted head/body 
antenna models in Reyhani (4]-[7]. 

This paper is organized as follows. The complete set 
of cylindrical vector wave functions are introduced in 
section 2. This material is included here in order to 
explicitly define notation and to call attention to a 
few points in connection with these expansions. 

In section 3 we begin to formulate the problem for a 
finite circular cylinder and in subsection 3.1, we set 
out with the case, in which we construct the DGF, 
? 7. l(R, 

R ), in terms that constitute the continuous 
eigenfunction expansion (EFE) in which the eigen- 
functions are guided in preferred r and z-coordinate 
directions, using the procedures described in Tai [1] 
or Collin [3]. This expansion also contains an ex- 
plicit dyadic delta function term which is required for 
completeness at the source point. It is considered as 
a correction tö the general solenoidal EFE which is 
valid outside the source point. 



1. 

L 

Fig. 1. Diagram of a Finite Circular Cylinder 

The procedure required to derive the complete EFE 

of the scattering DGF for the finite circular cylin- 
der, in terms of only the solenoidal eigenfunctions is 

shown to be a simple and straight-forward general 
expression and is summarized in subsection 3.2. The 
DGF for a finite conducting cylinder, G7EI(R, R) can 
be constructed from the principle of the superposi- 
tion, where it satisfies the boundary conditions. The 
far zone field expression of the prosthesis configura- 
tion has been developed in subsection 3.3. 

Magnetic type DGF discussed in section 4, can be 
found by invoking duality or once the electric field is 

obtained the magnetic field is derivable by taking the 

curl of the electric field, and vice versa. 

Conclusions are then presented in section 6 summa- 
rizing the important points contained in this work and 
finally a short bibliography is provided for further re- 
search. 

2 VECTOR WAVE FUNCTION 
FOR A CIRCULAR CYLINDER 
OF FINITE LENGTH 

The cylindrical vector wave functions are the building 
blocks of the EFE of various kinds of DGFs. They 

are solutions of the homogeneous vector Helmholtz 

equation. The generating or eigenfunctions, which 
are solutions of the cylindrical scalar wave equation 
V21@ + k2WY=O can be written [4] in the form 

tyº(h) = 7n(Arýsinnýs, nhx' (1) 

Here subscripts "e" stands for even and "o" is odd 

character of the generating functions. h= 7- are 
the eigenvalues in the z-direction with q=0,1,2,.... 

and 1 is the length of cylinder. jn(Ar) identifies the 

cylindrical Bessel functions of the order n to represent 
both out-going and in-coming waves. A is the continu- 
ous eigenvalue. Cylindrical vector wave functions are 
akin to the Debye potentials. Ps.. �a(h) = Vx[%Yoy, z] 
and ( y, a(h) = IkVxVx[lk- z]. Where z is the pilot- 
ing vector and here kä = A2 + h2. 

The complete expressions for the solenoidal (rota- 
tional or transverse) and the nonsolenoidal (irrota- 
tional or lamellar) functions are given in Reyhani [5]. 
These functions are defined in the entire space, cor- 
responding to 0<r< oo, 0<0: 5 27r and 0<z<I. 

3 FORMULATION OF THE 
PROBLEM 

Consider a cylinder (fig. 1) of radius "a" concen- 
tric along z-axis with length "l" is illuminated by an 
electromagnetic wave. An electromagnetic field is in- 
duced in the system and an electromagnetic wave is 
scattered by the system. 

A time dependence ejwt is assumed and suppressed 
throughout. 

3.1 DGF for a finite Length Cylinder of 
Circular Cross-Section 

Applying the method of (G;,, ) and according to the 
Ohm-Rayleigh procedure the expression for (? 7,1) for 
a finite cylinder of radius "a" concentric with the z- 
axis is given in Reyhani [5] in the form 

! Co 
k24(R-R')+ fdhECA 

0 n=0 

where 

r> r', (2) 

[P; n(h; 7)) '(o) (h; 7))] 
7! )qt: 

n(h; YI)] 'r< r'. 

CA = 
i(2-6) 

(3) 2) 

Coefficient CA depends on the value of 81.1 which is the 
Kronecker delta functions defined with respect to n, 
when 

6°" . 
1, if n=o (4) 

10, 

if n&o 

Here Ff is a dyad (dyadic product of the unit vectors) 
and ö(R-R) is weighted Dirac delta function in three 



dimensions. This is included explicitly as a correction 
to the general solenoidal EFE which is valid outside 
the source point. The dyadic delta function term at 
the source point in cylindrical coordinates 

b(R - wo) =T 8(r - r)d(ý -¢)6(Y - z) (5) 

Comparing the DGFs for a finite cylinder developed 
here with those presented by other authors e. g. Tai 
[1] for an infinite cylinder, one can notice that they 
are similar in mathematical form but different in the 
calculations of Ps and Qs and the limits of integration 
for a finite cylinder. 

3.2 Scattering DGF for a Finite 
Conducting Cylinder of Circular 
Cross-Section 

When a perfectly conducting cylinder of the same size 
as above is illuminated by an electromagnetic wave, 
the scattered terms can be written in the form 

t 00 

Ge, (R, R)=fdh>Ca 
0 n=0 

aý (h; rl)P'.;, (h; rl) 
(6) 

ß 
,72, 

(h; +l)ý'ý; 7(h; n) 

Applying the principle of scattering superposition, we 
obtain 

GEi (R+ R') = ýS'eý (R, R) + Ges (R, R) (7) 

Where we consider the function for a finite circular 
cylinder in a region 0<r< oo. After applying the 
boundary condition one can determine the unknown 
coefficients. In order to satisfy the boundary condi- 
tion at interface r=a, 

rx [ý'o 
n(h; ý! )P'(on(h; t)+aý nPýö; ý(h; n)Pý(oý(h; ý)]r. 

« (8)J 

ýx ý7ýo"n(h; n)e'(. ), (h; 17)+ýo"ý "ý(h; n)ý'. ý(h; ii)] r. « (9) 

i! ) + ae n 
(h; 11)] 

r_a 
=0 (10) 

rx [W:., 7 
(h; 7l)+ß; "n4d; "n(h; 1l)] =0 (11) 

r-c 

substituting for 3'oo,, (h; ti) and P. ö; 
ý 
(h; rj) 

Po, I(h; t) = Vx[9++(nr)el"°nenO sin hz ], (12) 

Pýeý(h; ') = Vx[Hnl)(tr) pn¢sinhz ], (13) 

in equation (10) produces a". =- fa i- °/ 

Similarly inserting for . (h; i) and 1 ý: »(h; 
q) 

Qö., 
7 
(h; 77) = lVxVx(j�(7? r)e°; n¢coshzz], (14) 

1 Qo n(h; 
t) = kVxVx[H(1)(ir) i°; n¢coshzz], (15) 

in equation (11) produces ß". - -^ +r IH^' (n«)1 

3.3 Far Zone Field Expression of the 
Prosthesis Configuration 

The far field of this medical device in the presence 
of a source can be computed using the asymptotic 
expression for GE1 (R, R ), utilizing 'the saddle-point 
integration method. Assuming it 1, the Hankel 
function in P. (h;, 7) and 

Qö )n(h; 
17) can be approx- 

imated to its asymptotic expression 

Hn1)(i? r) ^-' 
(_ . )1(_i)n+ieinr 

ý16) 
l7r 

17 ý_i)"º+ý} (1 
ei(n*+h: )s0ý! no sin hzq 

m7r 

i(n*+hz) 
Q; 

"ý(h; rl) =l-{)ntý3k 
ýT J 

(18) 
ein fn4Psinhz(-h) 
; j�n¢ cos hz(iz) 

} 

The expression for 27E1(R, r) can be approximated 
with the functions Pfö,, (h; 7)) and 

41 ) with replaced 
by (17) and (18), can be written in the form 

1 00 277 VE1(R, R') =f dh C), (-i)n+Je$(nr+hz) 
(2 .. f 46-0 

coe 
P': (h; ) 

-ieo rbo sin hzý 
1 Ra n(h-ýl) 

+º 

ý5 nsnOsin 
hz(-h, ) 

(h' %I) ý 

"n(hýn) ßo n 

'fie ̀ ndcoshz(rjz) 
ý'.;, 

"ý ýh'n) 

[a nýl; "n(h; 17) 
(19) 

where terms of the order > (er) I have been ignored. 



4 MAGNETIC DGF IN THE 
ANTENNA-PROSTHESIS 
CONFIGURATION 

The principle of duality states that once the elec- 
tric DGF is obtained, the magnetic DGF is derivable 
by interchanging the field functions F.. -+ kQ. 

0. 
and 

_ o0 
Q. -3 kP and omitting the singularity term contri- 
bution and vice versa. 

On the other hand the corresponding total magnetic 
DGF at any point in the system can be calculated 
from V xG, = G, bearing in mind the discontinuous 

nature of magnetic DGF across a point source at R= 
R' and the Ampere-Maxwell equation relating GUe and 
rim in the dyadic form i. e.: Vx Gm = Iöe (R - 

R) + 
k2G7e. 

5 ELECTRIC AND MAGNETIC 
FIELD AT ANY POINT IN 
THE CONFIGURATION 

The use of DGF technique allows us to determine 

the expansion of the electric and magnetic fields in 

a cylinder/antenna configuration in a direct and ele- 
gant manner. 

For any current source with current density func- 
tion 7(R) located outside the cylinder, the electric 
or magnetic field radiated by such a dipole can be 

calculated using the formulae, 

E(R) = iwµof J 
-'El(R, R) 

" 7(R )dv' (20) 

v 

H(R) = iweoJJJ GMl(R, it) - J(R )dv'. (21) 
v 

These signify the computation of the E and H-fields 
in the structure, which states the superposition of the 
incident field E; (R) or H; (R) and the scattered field 
E, (R) or W. (R) is given by 

E(R) = E; (R) + E, (R) (22) 
H(R) = HH(R) + H, (R). (23) 

6 CONCLUDING REMARKS 

General far field expressions have been derived in sim- 
ple form for the finite conducting circular cylinder 
(medical devices/prostheses) of any size as well as of 
very small radius (resonant length). The DGFs are 
obtained by employing the EFE and the method of 
scattering superposition. 

The results of this paper could be useful for a further 
analysis of the problem as a thin wire/insulated wire 
or an implant/dielectric-coated implant such as heart 
pace-maker embedded in the body and biotelemetry 
transmitters for medical applications and could eas- 
ily be expanded so as to handle any scatterer having 
finite radius and length. They can be applied to prob- 
lems of optical fibers and waveguides for the investiga- 
tion of inhomogeneities or obstacles inside them or by 
considering the cylinder as an excitation or scatterer. 
They can also be of use in the study and design of 
antennas of high frequency whose performance is less 
affected by the biological systems and produce lower 
SAR (specific absorption rate, the rate of electromag- 
netic energy deposition) and as a result contribute to 
the efficiency of handheld/mobile phones. 

Numerical simulation techniques developed for the 
comprehensive analysis of the human exposure to 
electromagnetic waves and estimating the SAR may 
require considerable time and large computer memory 
for calculation. Analytical methods provide valuable 
tools in evaluating the interaction between canonical 
head/body models and antenna sources. The useful- 
ness of the present technique obviously requires com- 
parison with numerical and experimental results. it 
is envisaged that a later publication will address this 
aspect of the problem in more detail. 
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ELECTROMAGNETIC MODELING OF SPHERICAL HEAD USING 
DYADIC GREEN'S FUNCTION 

S. M. S. Reyhani'. . R. J. Glover 

Abstract 

Antenna radiation pattern and other characteristics are significantly altered by the presence of the 
human head. When considering possible biological effects of electromagnetic (EM) fields, it is important to 
distinguish between field strengths outside the subject, and those within the body. The relationship of fields 

outside and within the body (called coupling) varies greatly with fequency. This paper aims to express an 
exact general representation of dyadic Green's function (DGF) for the problem of electromagnetic radiation 
from a source of excitation in the presence of a human head model (multi-layered homogeneous bray 
dielectric spherical model), which is valid everywhere, including the source region. The medium is assumed 
to be homogeneous, isotropic, linear, non-dispersive and stationary . The DGFs are obtained by employing 
the method of scattering superposition. Alternatively a compact general boa has been developed 
to determine the electric and magnetic type DGFs giving clarity as well as more efficient and economical 
computation in terms of speed, time and memory. 

1. INTRODUCTION 

Interaction of electromagnetic fields (EMF) with living systems and public concern regarding their al- 
Y/poss+ble harmful health elects have been of current research interest. Theme investigations are 

motivated by two relating factors: 

Qa "esd to evalaate the speck absorption rate (SA)t) (the rata of RF epees deposition) in the wer's 
body, in order to evohsate potential health effects and compliance with standards, and; 

ii) the antenna Pe romance is the proximity of the user's body and to develop better antenna deigns 
whose performance i* less g ected by On biologj j s1stew and produce lower SAR. 

The F a"fi on MIPULI on (EFE) of DOP is electromagnetic theory provide a systematic means of 
constructing and interpreting these dyadim. The pioneering work by Tel [1] has set the stag. Boar most 
Of what has been achieved over the lest two and a half decade,. The expansion of DGFs is term of the 
Hausen [2] vector wave functions must be carried out carefully in order to ensure that one is dealing with a 
complete eýcpansioý. 

This paper is organised as follows. The complete set of spherical vector wawa functions are introduced in 
section 2. 

In section 3, we start with the unbounded came, in which the point source radiates with no interface preset 
and construct the corresponding DGF, ,, 

(A, 7t), in terms of an mal over the spectra of plane Nauss 
that constitute the continuous Fagan-function expansion (EFE) In which the F. -tunctione are guided in 
preferred Rrcootdinate direction, using the pznoedi es described is TM [l] or Collin [3]. This expansion 
also contains an explicit dyadic delta function term which is required for completeness at the now= point. 
It is considered as a correction to the general adenoidal EFE which is valid outside the some point. 

Subsection 3.2, presents the general scattering DGFs lmqmmioos (5) in guns of one the soieiioddal 
Eigen-functions. It is in this developer that the prindpal point of this paper is ident ed. 

Magnetic type DGF can be found by invoking duality or once the electric field is obtained the magnetic 
field is derivable by taking the curl of the electric field, and vice verw. 

'TM authors are with the FDTD Ropmach Group, Dipl. of Etat. &E sctrooio Seg., Bruad Univinhq, Uxbddp, 
Mlddleoc. UB8 vPU. United Kingdom. E. Sqed. BMMtii-R aefObentwl tc nk. 
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Conclusions are then presented in section 4 summarising the important points contained in this work and 
finally a short bibliography is provided for further research. 

2. SPHERICAL HANSEN VECTOR WAVE FUNCTIONS 

The spherical vector wave functions are the building blocks of the EFE of various kinds of DGF. They are 
solutions of the homogeneous vector Helmholtz equation. The generating functions, which are solutions of 
the spherical scalar wave equation V2* + 09=0, can be written in the form 

(k) = j�(kR)Fn`(oos6) m#, (1) 

Here k is an undetermined wave number and R is the piloting radial vector. Subscripts "e" stands for even 
and "d' is odd character of the generating functions. Where F "(cosh) identifies the Associated Legendre 
funds of the first kind with order (n, m) and j. (kR) denotes the eLeicai Bessel fimcHaae of the order 
n to represent both out-going and in-caning waves. spherical vector wave functions are akin to the Debye 
potentials. P:,. 

n(k) = Vx fg.,. J 1 and 4*(k) = }VxVx[ 
�AR). These functions are defined in the entire 

space, coarasponding too < R: 5 oo, 0: 5 #: 5 2w and 0: 5 0: 5 w. The orthogonal properties of these vector 
wave functions have been discussed by Tai [11 and Comm [3). 

3. FORMULATION OF THE PROBLEM 

Before developing the ezpressioos of electromagnetic wave pompi4ption in multi-layered head model, one 
should e amine the media firstly with no scatterer present. conthder a multi-layered homogeneous loeey 
dielectric concentric sphere with radii as shown in (ßg. 1) is illuminated by an electromagnetic wave. An 
electromagnetic field is induced in the syst n and an electromagnetic wave is scattered by the system. A 
time dependence e-hot is aesumed and sý, pprwed throughout. 

3.1 Free Space DGF for an Electric Dipole in Unbounded Medium 
The electric and c fields due to an electric dipole located at R' In an infinite homogeneous space without the presence of an scatterer (obstacle) can be computed in spherical co-ordinates. There are various methods that can be utilised to adieus this. The errn'i n of the electric field requires both the transverse 
and ion11tudinai vector Eiges fauch and hence the DGF must also have both sets of Eid-functions in 
its expansion W. 

e00 
. (X1r) -- 

Aft 
4ir 

where 

(Z 
2n+1 (n-m)! 

- b; ̀ ) 
n(a -+I) (n + m)1 

(3) 

Coefficient C, ýn depends an the valve of m and n we fie' is the Kronec]oer delta , when 

1, ifm=o 10, 

¢m#o 
(4) 

Subscripts Id' and "e" stand for unbounded (open) space and 0190 c respect"dy, Here AA is a dyad 
(dyadic product of unit vectors) and ö(A - It) is . tea Dirac delta function is three aimeadoo.. Thi" 
is induced fitly as a correction to the goal soimaaal EFE which Is . tea owe the . ow no point. 

vi 



3.2 General Expression of Scattering DGFe for an Electric Dipole in the Presence of a 
Spherical Head Model 

When a biological system is illuminated by an electromagnetic ware, an electromagnetic field is induced inside 
the system and an electromagnetic wave is scattered externally by the system. Since the biological system is 
an irregularly shaped heterogeneous imperfectly conducting medium with frequency dependent permittivity 
and conductivity, the distribution of the internal electromagnetic field and the scattered electromagnetic wave 
will depend on the body's physiological parameters and geometry, as well as the frequency and polarisation 
of the incident pane. The mathematical complext9 of the problem has led researchers to investigate simple 
models. Several theoretical studies have analysed theme models in Rreyhani [4,5]. In this paper the medium 
is assumed to be homogeneous, isotropic, linear, non-dispersive and stationary. An efficient formulation of 
the general scattering DGF for a multi-layer spherical bead (fig. 1) In 

Al (1- ) laýaº(ý1)ý'ýlaýiý(1Fo) 

'(i - ar)iU.. k, )ý;, (k ) 
"LA is the symbol for bet inner layer is the head. "f" 3s the field point or observer layer. Super 
acriptýsabýcript "o" stands for sours point at open space while subscript «s" is scattering. ö and a; 
are Kranecker delta functions, where 

a_ 1, if L/o =f (6) to, ff L/o 0f 

A. p, A. Q 
,B and ý are the amplitude coýi of scattemd DGF to be calculated by applying the 

boundary candifm at the surface (f = 0,1,2,. -.., L) of the sphere. Theee boundary conditions and 
-LAD 

ti X Cie = lL Xfil)e 

and 

(7) 

11$xvxe 1 
Atxvx 

+'ý 
(8) 

of 0(1+i) 

Fbr more details on the evaluatim of coed, readers are rp6 erred to Ue -e1 [6]. 

We can now obtain the total DGF by applying the principle of scattering snpupositba, 

+'(ý, 1ý) (9) 

If our concern is only with the region exterior 'to the source, then the singular term, which is important 
only in the source region can be dropped from the nzpreion for the Grow's ii n. 

F 

re 46 

r w" 1.1-" t Pbýftfos ds Dipd. and Gros Seedom of Spbmks1 Bead Nodal 

an 



4. A NOVEL GENERAL EXPRESSION OF SCATTERING DGFS FOR AN 
ELECTRIC DIPOLE IN THE PRESENCE OF A SPHERICAL HEAD MODEL 

The integral equation methods have the disadvantage of being difficult to implement for complex objects, 
and generally result in the use of full matrices, whose treatment requires a large amount of memory and 
CPU time. The computational difficulties can be surmounted by more convenient and compact general 
equation. General formulations for scattering DGF9 can be expressed by introducing the 0 operator which 
exploits the symmetry of the principle terms in the DGF expansion to give a general formulation applicable 
to a wide range of geometrical configurations [my unpublished paper] when one can significantly reduce the 
number of field samples needed for the field calculation. As shown below 

et, (It ýko F, F, coo it It 

-n 4u 
n=l m , ̀ ý-Q ONx (10) 

We give a direct and conceptually simple algorithm whose main benefit is great computational efficiency. 
Where 

--M-Lov 

o«p = forL=O 

(This means that, there is only infinite open space in the abeeace of a scattering body. ) and 
-LOD 

0.. = p oam 
4; -n 

and 

Opp 
Qý; 

ý+. 
(kt)'m,. (u) 

-IL. O.. 
p 

Q 
can be calculated from the same pcocedin as for z1v 

. 

soff =O and L>0 

10 
ßoýf # or 

L 

fcrf=L 

S. MAGNETIC DGF IN THE ANTENNA-HEAD CONFIGURATION 

The principle of duality state that once the electm DGF is obtained, the magnetic DGF is derivable by 
P and omitting the singularity feral iutrrrhanging the field fiinctiosis F. k0. +ww 

ý; 
+wA -º ýP. and on 

contribution and vice versa. 

On the other hand the cc respondier total magnetic DGF at any point in the system can be calculated 
from Vx ea 

= G�ý , bearing in mind the discontinuous nature of magnetic. DGF across a point source 

at R= Jr and the Ampere-Maxi ell equation relating Ge and In the dyadic form Le.: Vx 

+ lý' 

6. ELECTRIC AND MAGNETIC FIELD AT ANY POINT IN TIIE 
CONFIGURATION 

The use of DGF technique allows us to determine the otpension of the electric and magnetic fields in a 
head/antenna configuration in a direct and elegant manner. For any current source with current density 
function 7(W) located outside the head, the electric or magnetic field radiated by such a dipole can be 
calculated using the formulae, 

= +w, fIJ . U) " 3( ')dv' (ii) 
v 
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7. CONaUDING B ARKS 

We he papad geoswl i omsýstic relnreatstions %r a human had modal On simpie ßam for the 
mu)% 41 Sd ýomoýesoas lasy dWsetdc sp1h, ) for ii msciai RMC i0ra ioa is order to i'sluste 
daýaiocation cf the asosss r performance and abhin the rates ä RF smut deposition (SAR) amide tie 
bead. The epýssýoRsios sew be used to ap 111 e as+tsons dram, aso 11 potential health hanr* and 
comq*aacs with atsadkads ioJsithion. The DOPE are clAsined by a u6ing the EFE and the method of 
scattering 

Ptiathemoe+s, by deäedos a gnmat, y operator the regohe4 mesoooor7 for eidesrot a®erieal oossputatioos 
aft tbovAdiode(mmeeft can be 
T vali ft of ýoeral aodd it . added by 

reduced 
t 
by 
be specific mochas which was a ri e1 

COOK! s tLow sb 

1äs risahs d this steno could be asoful %c a ßetber ansly*of the probte n. Both GSM (Skomd system ix 
mobiis com®micaeioa) cad P($ (personal aoýuaranksfion services) Pon Potential probbeine with, nsurd 
to lMsraetiaos with the isssen body and implanted medical devices. 
dries is amN end, loczaeim*, is becoaft f Shm m tbbg that eoodoets can be «ii' 4ered 
u art aftemas and two au&s ae inb8cNIA With Seth otbet, the iaheeaCAIM IxobIS could potentially be 
sI by using the mobile pions (ksadset trVMMCWh r) new (human boy) as an antenna, and tammoultdog 
at frequ y levels (for s oMINVIe, arias) nabanmf1J to hism r. TWs world msbs p' ble the deep of 
eitue s-lsss P(, acd, W/te asooW.. semis only In close proxh igr to biological antennae (. en). 

The '. oful sr of the p i. t twit igaee obviously requires com iron with nomerkal and eapecAnnuzai 
res lt. it is etvIss ed sek a beer publication si l ad he. this aspect ä the problem is mars detail. 
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