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Abstract 

The goal of transmission planning in electric power systems is a robust network which is 

economical, reliable, and in harmony with its environment taking into account the 

inherent uncertainties. For reasons of practicality, transmission planners have normally 

taken an incremental approach and tended to evaluate a relatively small number of 

expansion alternatives over a relatively short time horizon. 

In this thesis, two new planning methodologies namely the Deterministic Crowding 

Genetic Algorithm and the Ant Colony System are applied to solve the long term 

transmission planning problem. Both optimisation techniques consider a 'green field' 

approach, and are not constrained by the existing network design. They both identify the 

optimal transmission network over an extended time horizon based only on the expected 

pattern of electricity demand and generation sources. 

Two computer codes have been developed. An initial comparative investigation of the 

application of Ant Colony Optimisation and a Genetic Algorithm to an artificial test 

problem has been undertaken. It was found that both approaches were comparable for the 

artificial test problem. 
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These two methods have then been applied to a range of problem classes derived from a 

23-node 49-route transmission network design that represents a simplified version of the 

England and Wales transmission network. The various problem classes are classified 

according to the objective function of the transmission-planning problem. It was found 

that the Deterministic Crowding Genetic Algorithm and Ant Colony Search methods are 

applicable to the transmission-planning problem. However, the Deterministic Crowding 

Genetic Algorithm model is more efficient computationally than the Ant Colony System 

for more realistic problem classes. 
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Chapter 1 Introduction 

1.1 Power System Planning 

Chapter 1 

Introduction 

Most power system planners use the existing system as a starting point to expand their 

network. The power system expansion planning problem is concerned with obtaining 

expansion plans which dictate what new generation and transmission facilities to add, 

when to add, and where. The objective is to select the most economical and reliable 

expansion plans in order to meet future power demand at minimum cost and maximum 

reliability over a long period of time, usually 5 to 40 years, subject to a multitude of 

technical, economical, environmental, legal and political constraints. The practical 

planning problem is an extremely difficult and complex design problem. Costs and 

constraints can not easily be quantified and are difficult to predict. 

At present, most power systems expansion-planning methods are based on a sequence of 

simulation studies such as load flow, stability, reliability, and economic studies. Clearly 

this approach requires a large number of simulation runs and a combination of experience 

and judgement by the system planner, to determine a satisfactory (not necessary 

optimum) plan. Since the cost of power system equipment is high and the operational and 

reliability requirements are severe, most of the current effort is concentrated on more 

accurate mathematical models and efficient computational analysis methods. 

Because of the complexity of the problem, there is no single method that can solve the 

whole expansion problem. Therefore the problem is normally decomposed into two major 

long-term expansion problems, namely, optimal generation expansion planning and 

optimal transmission expansion planning [Kern, Young and K wang. 1988]. 
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Chapter 1 Introduction 

1.2 Transmission Planning Problem 

The goal of the transmission planning problem is the design of an electricity transmission 

network, which is as economical as possible while providing a reliable energy supply. 

The mathematical formulation leads to a complicated, integer-valued, non-convex, non­

linear mathematical programming problem. The complexity of the problem arises mainly 

from the large number of problem variables, combined with the multitude of technical 

and economical constraints. 

The planning problem is typically broken down into two stages: 

• long-term transmission planning, 

• mid-term transmission planning. 

In the long-term stage, the objective is to meet the total demands at the lowest investment 

cost, so as to establish the guidelines for the future network structure, while leaving a 

number of details be decided in the mid-term planning, e.g., those concerning transient 

stability limits, voltage violations, reactive power flow and short circuit capacity. 

The total cost of the transmission system may be up to half the capital cost of generating 

plant. By ensuring economical design it is possible to produce significant savings in the 

overall cost of the power system. 

Good transmission system design should deliver the following: 

• maximum security of supply commensurate with the cost of providing the service, 

• provision for future expansion, 

• ease of maintenance, 

• safety in operation, 

• minitTIum operating costs. 

-----------------~--------
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Chapter 1 Introduction 

There are several planning algorithms available for the solution of the long-term problem, 

each based on a different interpretation of the system model and choice of the design 

objective. These include heuristic algorithms and mathematical optimisation techniques. 

In this thesis, two novel heuristic methodologies namely, the Deterministic Crowding 

Genetic Algorithm (DCGA) and Ant Colony Search (ACS), are proposed for the solution 

of the long-term planning problem. These are based on an original problem formulation 

termed the' green field' approach. 

1.3 Transmission Planning Methodologies 

Transmission planning methods can be classified into two main categories: 

• 'traditional' or 'incremental' approach, 

• 'green-field' or 'non-incremental' approach. 

1.3.1 Traditional Approach 

For reasons of practicability, transmission planners have normally taken an incremental 

approach and tended to evaluate a relatively small number of expansion alternatives over 

a relatively short time horizon. The general form of the network expansion problem can 

be stated as follows: Given 

(i) load-generation patterns for the target year, 

(ii) existing network configuration, 

(iii) possible new routes (lengths and way-leaves), 

(iv) available line types and the corresponding cost, 

estimate: 

the optilTIUm network which feeds the loads with the energy required while respecting the 

transmission security standards. 
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Chapter I Introduction 

The appropriate solution tools for such problems include the standard mathematical 

programming techniques. The general form of these techniques is 

Minimise F(x1, X2 ' X3 , ... , x
n

) 

Subject toGj(x1,x2.,x3, ... ,Xn)' i =1,2, .... ,m. 

According to the form of F, G and x, the techniques are classified into linear, integer, 

zero-one integer, mixed integer linear, non-linear, etc. 

1.3.2 Green-field Approach 

Numeric techniques now offer the possibility of explicitly evaluating a much larger 

number of alternatives including the automatic selection of route alternatives, voltage 

levels and line construction types. The objective function can be designed to derive the 

cheapest cost network that enables the generated energy to be transmitted to satisfy the 

demand while respecting the transmission security standards. This approach is also based 

on the load and demand patterns for the target year, all possible routes, and the available 

transmission line types and their corresponding costs. However, it is not restricted by an 

existing network. The application of a 'green field' approach was suggested by the 

National Grid Company, who also provided the basic data used in this research. 

The two proposed optimisation techniques, namely the Deterministic Crowding Genetic 

Algorithms and the Ant Colony System, will be applied to this problem formulation. 

1.4 Conventional Optimisation Techniques 

Before an optimisation method is applied, the transmission-planning problem must be 

adequately modelled, taking into account the various transmission system constraints. 

The number of options to be analysed increases exponentially with the size of the 

network problem. There are a large number of local optimal solutions (a highly 
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multi modal landscape), which makes the chance of a solution method becoming trapped 

in one of them very high. 

Several classical optimisation techniques have been used previously: 

• linear programming [Chanda and Bhattacharjee, 1994] 

• non-linear programming [Gilles, 1986], [Youssef and Hackam, 1989], 

• mixed integer programming [Gilles, 1986], [Santos, Franca and Said, 1989] , 

• Benders Decomposition [Pereira, Pinto, Cunha, Oliveira, 1985], [Romero and 

Monticelli, 1994] and an associated hierarchical approach [Romero and MonticelIi. 

1994], [Latorre-Bayona and Perez-Arriaga, 1994], 

• and others [Pereira, Pinto, Cunha, and Oliveira, 1985], [Monticelli, Santos, Pereira, 

Cunha, Parker and Praca, 1982], [Rudnick, Palma, Cura and Silva, 1996]. 

Although these methods are successful in transmission planning (for small and medium 

size problems), they present some drawbacks: 

• Due to the non-convexity existing in the network expansion planning, the success of 

the search still largely depends on the starting points. Therefore, the optimisation 

process sometimes stops at non-optimal solutions. 

• The non-linearity of the problem increases the iterations of the optimisation algorithm 

and sometimes causes divergence. 

As an alternative to conventional optimisation methods, different heuristic search 

algorithlTIs have been utilised, based on sensitivity analysis [Pereira, Pinto, Cunha, 

Oliveira, 1985], [Monticelli, santos, Pereira, Cunha, Parker and Praca, 1982], [Latorre­

Bayona and Perez-Arriaga, 1994]. 
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1.5 Heuristic Search Algorithms 

Most of the conventional optimisation algorithms used in practice are however unable to 

generate optimal solutions for larger, complex networks [Gallego, Monticelli, and 

Romero, 1998]. As an alternative, various heuristic search algorithms have been 

addressed. These include Genetic Algorithms (GA), Ant Colony Search methods (ACS), 

Simulated Annealing (SA), Tabu Search (TS) and/or hybrids of the aforementioned 

algorithms. To a certain extent these approaches are based on processes found in nature. 

GAs are based on natural genetic and evolutionary processes. ACS methods take 

inspiration from the behaviour of real ant colonies. SA mimics the physical process of 

solidification and formation of perfect crystals. Finally, TS generalises concepts from the 

field of Artificial Intelligence (AI). 

In this thesis we will concentrate on two proposed methodologies for the long term 

planning problem namely the Deterministic Crowding GA model and the Ant Colony 

Search model. 

1.5.1 Genetic Algorithms 

Genetic Algorithms [Holland, 1975], [Davis, 1991], [Goldberg, 1989] belong to a class of 

evolutionary computation techniques based on models of biological evolution. These 

methods have proved useful in domains that are not well understood, or for search spaces 

which are too large to be efficiently searched by standard methods. The GA paradigm 

uses selection and recombination in various formulations to sample the (usually coded) 

search space. In the GA, solutions to the problem are coded to mimic the genetic make up 

of biological organisms. Each individual in the population represents a possible solution 

to the problem. A fitness value, derived from the problem objective function is assigned 
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to each member of the population. Individuals that represent better solutions are awarded 

higher fitness values, thus enabling them to survive more generations. 

There are many ways of defining and interpreting GAs, but for the purpose of the thesis 

we will primarily consider them as computational optimisation techniques. As such, the 

GAs themselves have to compete with alternative heuristic methods such as SA, TS, ACS 

etc, and also with mathematical programming techniques such as non-linear 

programmmg. 

Different GA models depend on factors such as: 

• selection method and mechanism, 

• parent replacement method, 

• crossover and mutation method, 

• problem to be solved, whether a single or multiple objective formulation is required. 

The GA model to be used is chosen after a careful analysis of the problem to be solved. 

In this thesis, a particular GA model known as the Deterministic Crowing Genetic 

Algorithm (DCGA) has been applied to the transmission planning problem. Previous 

experience with power system problems has shown this technique to be more efficient 

and robust than the canonical GA. 

1.5.1.1 Deterministic Crowing Genetic Algorithm 

Crowding is inspired by the ecological phenomena, where similar members of a natural 

population compete for the same resources [Spears, De long and Baeck, 1993], 

providing a model where only a fraction of the population reproduces and dies in each 

generation, each newly created population member replacing an existing member, 
'-
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preferably the most similar. Through the analysis of the model described in reference 

[Spears, De long and Baeck, 1993] and other crowding methods, the deterministic 

crowding genetic algorithm (DCGA) [Mahfoud, 1992] has been designed and exhibits 

extensive capabilities in solving a wide range of problems such as: 

• multi-modal function optimisation, 

• multi-objective function optimisation, 

• simulation of complex and adaptive systems, 

• learning and classification. 

The technique can be regarded as a generalised niching method that helps in overcoming 

the time and memory limitation problems faced by many practical GAs, that use 

population sizes which cannot maintain the required diversity as the GA run progresses. 

It is also capable of forming and maintaining single or multiple solutions to a problem, 

and basically achieves this by providing selection pressure within but not across regions 

of the search space, leaving the search across the regions to the crossover operator. The 

combination of its crossover and selection-replacement mechanisms is mainly 

responsible for its success. 

1.5.2 Ant Colony Search 

Ant Colony Search (ACS) methods are artificial systems that take inspiration from the 

behaviour of real ant colonies and which are used to solve function or stochastic 

combinatorial optimisation problems. These are population based, co-operative search 

algorithms. The first ACS system was the Ant System (AS), proposed by Dorigo in his 

Ph.D. thesis (1992). Currently, most work has been done in the direction of applying 
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ACS to combinatorial optimisation. Ant Colony Search algorithms, to some extent, 

mimic the behaviour of real ants. As is well known, real ants are capable of finding the 

shortest path between and from food sources to the nest without using visual cues. They 

are also capable of adapting to changes in the environment, for example, finding a new 

shortest path once the old one is no longer feasible due to a new obstacle. It was found 

that such capabilities are due to what is called a pheromone trail, which ants use to 

communicate information among individuals regarding paths. Ants deposit a certain 

amount of recruit pheromone when they move, and each ant prefers to follow a path rich 

in pheromone rather than a poorer one. 

In ACS, the colony consists of many homogeneous artificial ants communicating among 

them by recruit pheromone. The ants change their behaviour according to the situation. 

Firstly, they walk randomly to search for a food source, operating in a discrete-time 

environment. They will not be completely blind, a decision is made based on the intensity 

of trail perceived and the visibility. Each ant will have also some memory about its 

location and the next possible move. According to the objective function, their 

performance will be weighted as a fitness value, which directs influence to the level of 

trail quantity deposited in the path selected by ants. Each ant's decision to choose the 

next node to move to depends on two parameters: the visibility of the node and the trail 

intensity previously laid by other ants. 

The main characteristics of this model are: 

• positive feedback, 

• distributed computation, 

• and the use of a constructive greedy heuristic. 
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Positive feedback accounts for rapid discovery of good solutions, distributed computation 

avoids premature convergence, and the greedy heuristic helps find acceptable solutions in 

the early stages of the search. 

1.6 Advantages of Heuristic Search Algorithms 

Over the past three decades, there has been a considerable interest in heuristic search 

techniques for complex optimisation problems [Reeves, 1995], [Aarts and Lenstra, 1997]. 

The main reasons for considering the two proposed heuristics algorithms (DCGA and 

ACS) are summarised as follows: 

• The transmission planning problem is a complex large scale mixed integer non-linear 

optimisation problem, which has given enormous challenges to the presently 

available computational techniques. The flexibility, computational simplicity, 

robustness and recent success of these heuristic methods in various complex problem 

domains, in particular power optimisation problems, make such methods attractive. 

• The heuristic search algorithms use payoff (fitness or objective function) information 

directly for the search direction, not derivatives or other auxiliary knowledge. 

Therefore, they can deal with non-smooth, non-continuous and non-differentiable 

functions that are characteristic of many real-life optimisations problems. This 

property also relieves these heuristic search methods from the need for approximate 

assumptions for many practical optimisation problems (assumptions which are quite 

often required by traditional optimisation methods). 

• These heuristic methods use probabilistic transition rules in search for the global 

optimum, as opposed to the deterministic rules used by mathematical techniques. An 

important advantage of these heuristic methods is the possibility that more than one 
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local optimum will be explored, and there is a chance that these methods may 

discover a global optimal solution. This is in contrast to mathematical programming 

techniques, which are generally equipped to seek only a local optimum. 

1. 7 Thesis Layout 

Chapter 2 introduces the modelling of the transmission-planning problem and its goals. A 

literature review of the various optimisation techniques is then presented. 

In chapter 3, two heuristic methodologies namely DCGA and ACS are considered for the 

solution of the transmission-planning problem. A summary of the theoretical foundations. 

modelling framework and previous areas of application is presented. 

Chapter 4 illustrates the structure of the two software programs which have been 

developed. A comparative investigation of the application of Ant Colony Search (ACS) 

and a Deterministic Crowding Genetic Algorithm to an artificial test problem is 

undertaken. 

Chapter 5 reports on the application of the proposed methods to a real system, a 

simplified version of the England and Wales transmission network with 23 nodes and 49 

wayleaves. We present an analysis of the performance of both proposed methods for the 

various categories of the transmission-planning problem considered. These include 

minimisation of: 

• losses only, 

• investment only. 

• investment and losses, 

• investment, losses and security requirements. 
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In chapter 6, we extend the transmission modelling design by including voltage 

transformation and maintenance costs. 

Chapter 7 presents two sensitivity analyses based on discount rate and decision variables 

and interpretation of the optimum results. 

In chapter 8, the main conclusions of the research are presented, and some suggestions 

for future research are given. 

Finally, a list of references and bibliography are provided at the end of the thesis. 

1.8 Original Contributions of the Thesis 

I. This work has reviewed the theoretical development of the two proposed heuristic 

methodologies: the Deterministic Crowding Genetic Algorithm and the Ant Colony 

System. The thesis also includes an overview of their various applications with 

emphasis on power system fields. 

2. The Deterministic Crowding Genetic Algorithm and the Ant Colony System have 

been applied to solve the long-term transmission planning problem. Both optimisation 

techniques consider a 'green field' or 'non-incremental' approach, and are not 

constrained by an existing network design. 

3. Two detailed algorithm-modelling frameworks, DCGA and ACS, for the long-term 

transmission planning are developed. A rigorous analysis for both methods based on 

different categories of the objective function of the transmission planning problem is 

undertaken. These categories represent a range of problems derived from a 23-node 

49-route transmission network design problem that represents a simplified version of 

the England and Wales grid. The performance of the algorithms. their effectiveness 

and suitability for the solution of planning problem, have been investigated. 
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4. Two GA representations namely, binary and integer, are implemented and their 

effects on the performance of DCGA are investigated. A limited number of 

experiments with the integer representation, have been carried out to assess the 

relative merits of this representation for the present problem. It was concluded that 

the binary approach was superior in the cases considered. Therefore, further 

modelling and analysis of the transmission system design is undertaken with the 

binary representation and only the corresponding simulation results are reported in 

this thesis. 

5. A modified definition of uniform crossover, first proposed in this thesis, is 

implemented and has been shown to result in substantial improvements in GA 

performance. 

6. An initial comparative investigation of the application of Ant Colony Optimisation 

and a Genetic Algorithm to an artificial test problem has been undertaken. It was 

found that both approaches had comparable performances on the artificial test 

problem. 

7. The DCGA and ACS methods have then been applied to a realistic network model 

with 23 nodes and 49 possible wayleaves that represents a simplified version of the 

England and Wales grid. It was found that both algorithms are applicable to the 

transmission planning problem but the Deterministic Crowding Genetic Algorithm 

model is more efficient computationally than the Ant Colony System. 

8. Further modelling of the transmission system design to incorporate transformation 

and maintenance costs is performed using the DCGA model. 
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9. Two sensitivity analyses based on discount rate and decision variables are carried out 

independently. The objective being to investigate the effect of the discount rate on the 

best solution provided for problem class D and to further investigate the search space 

of the transmission-planning problem. 

10. Finally, conclusions are drawn and some proposals for future work are presented. 
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Chapter 2 

Transmission Network Planning Problem 

2.1 Introduction 

It is recognized that the allocation of transmission costs in a competitive environment 

will require more careful evaluation of alternative transmission plans. As a result, the 

need for methods that are able to synthesize optimal transmission plans has become more 

important. 

Good transmission system design should deliver the following: 

• maximum security of supply commensurate with the cost of providing the service, 

• provision for future expansion, 

• ease of maintenance, 

• safety in operation, 

• minimum operating costs. 

Transmission planning is usually performed usmg an incremental approach that 

acknowledges the existence of an initial network. 

Network expansion planning can be classified as: 

• static, or 

• dynamic. 

Static expansion involves one-stage transitions. The network model is analyzed for 

(usually) one year in the planning horizon and consequently expansion alternatives are 

evaluated. By dynamic planning, it is usually meant the year-by-year expansion that starts 

from the initial year through to the horizon year. In almost all cases the dynamic (timed­

phased) mode of planning [Youssef and Hackam. 1989] has been either ignored or 
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handled by a sequence of static plans, which might not lead to the overall optimal 

solution. Transmission planners have worked mainly with static models as opposed to the 

dynamic model which only a few researchers have considered. Dynamic planning is 

usually undertaken with the help of an interactive tool [Youssef and Hackam, 1989] and 

is not discussed in the present research. 

2.2 Problem Description 

The goal of the transmission-planning problem is the design of an electricity transmission 

network, which is as economical as possible while providing a reliable energy supply. 

The mathematical formulation leads to a complicated, integer-valued, non-convex, non­

linear mathematical programming problem. The complexity of the problem arises mainly 

from the large number of problem variables, combined with the multitude of technical 

and economical constraints. 

The planning problem is typically broken down into two stages: 

• long-term transmission planning, 

• mid-term transmission planning. 

In the long-term stage, the objective is to meet the total demands at the lowest investment 

cost, so as to establish the guidelines for the future network structure, while leaving a 

number of details be decided in the mid-term planning, e.g., those concerning transient 

stability lilnits, voltage violations, reactive power flow and short circuit capacity. This 

research is exclusively devoted to the solution of the long term-transmission planning. 

The representation of the transmission planning problem in mathematical form IS 

achieved by defining the cost function (problem objective function) and constraints. 
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2.2.1 Problem Objective Function 

The objective of transmission planning is to minimize investment cost and annuitised 

energy loss cost while satisfying system constraints. 

The objective function has the following main components: investment cost, operation 

cost (including loss cost), and in some methodologies penalties associated with the 

violation of the constraints. Investment cost is a function of the decision variables 

(variables representing the addition of new transmission equipment); operation costs and 

penalties are functions of the continuous operation variables (power flows). 

2.2.2 Problem Constraints 

The constraints include the following: 

• performance equations: these equations are the main constraints as they govern the 

power flow. They may be in exact nonlinear form (AC load flow equations) or in 

approximate linear form (DC load flow equations) [El-sobki, EI-Metwally and Farrag, 

1986]. More approximate linear forms may be used where impedance-less lines are 

assumed (the power conservation at each bus is the only constraint). 

• Quality constraints: these include line loading and/or magnitude of bus-voltage 

constraints. 

• Reliability level constraints: these encompass security against outage and/or 

maintenance criteria. Reliability is usually realized in a separate stage after finding 

the least cost configuration satisfying quality constraints. 
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2.2.3 Transmission Planning Methodologies 

The transmission planning methods can be classified into two main categories: 

• 'traditional' or 'incremental' approach, 

• 'green-field' or 'non-incremental' approach. 

2.2.3.1 Traditional Approach 

For reasons of practicability, transmission planners have normally taken an incremental 

approach [Garver, 1970], [El-sobki, EI-Metwally and Farrag, 1986], [Rudnick, Palma, 

Cura. and Silva, 1996] and tended to evaluate a relatively small number of expansion 

alternatives over a relatively short time horizon. The general form of the network 

expansion problem can be stated as follows: 

Given: 

(i) load and generation patterns for the target year, 

(ii) an existing network configuration, 

(iii) all possible new routes (lengths and way-leaves), 

(iv) the available transmission line types and their corresponding costs. 

Determine: 

an optimum network configuration which supplies the loads with the energy required at 

the lowest possible cost, while meeting specified transmission security standards. 

The appropriate solution tools for such problems include the standard mathematical 

programmmg techniques. The general form of the problem to be solved by these 

techniques is 

Minill1ise F(x), x 2' X 3 , ..• , X n) 
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According to the form of F, G and x, the techniques are classified into linear. integer, 

zero-one integer, mixed integer-linear, non-linear, etc. Table 2.1 illustrates the \,anous 

mathematical techniques applied to the transmission-planning problem. 

The majority (if not all) of transmission planning techniques belong to this category. 

Table 2.1 Mathematical techniques applied to the transmission-planning problem 

Optimisation Variables Constraints Objective Function Global 
Techniques Optimisation 

continuous discrete linear non- linear non- convex Non-
(real-value) (integer) linear linear convex 

Linear V X V X V X V X V 
Programming 
(LP) 
Quadratic V X V X X V V X V 
Programming 
(QP) 
nonlinear V X V V V V V V V 
programmIng most some for convex 
(NLP) methods methods 
Integer X V V X V X X V v* 
Programming 
(IP) 
Mixed Integer V V V X V X X V v* 
Programming 
(MIP) 
Genetic V V V V V V V V V 
Algorithms 
(GA) 
Ant Colony V V V V V V V V V 
Search (ACS) 

* may reqUIre exceSSIve computatIOn to obtaIn exact global optImum. 

2.1.1.2 Green Field Approach 

An alternative approach, termed as a 'green field', or 'non-incremental' approach, is to 

design an optimal network based on available routes, but without regard to the existing 

network. This problem can be stated as: 

Given: 

(i) load-generation patterns for the target year, 
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(ii) all possible routes (particularly their location and lengths), 

(iii) the available transmission line types and their corresponding costs. 

Determine: 

an optimum network configuration which supplies the loads with the energy required at 

the lowest possible cost, while meeting specified transmission security standards. 

This non-incremental approach is impractical for monthly and annual planning decisions, 

which must be compatible with the existing network configuration. Nevertheless, there is 

some motivation for developing the green field approach as a complementary facility. In 

particular, for deregulated utilities there may be a need for an optimal network design 

against which the existing configuration may be benchmarked. It is useful for planners 

(who are routinely applying the practical incremental approach) to have a long-term 

future target available for reference. For example, if an optimal green-field network 

design is available, engineers can gain insight into which of their plans are heading 

'towards' the optimal design. Conversely, some short-term plans may appear to be 

diverging from the future optimum, and could therefore be regarded as less effective in 

the longer term. 

2.3 Review of Optimisation Techniques 

Practical application of conventional (mathematical) optimisation techniques to large 

scale nonlinear mixed integer problems, such as transmission network expansIon. are 

usually not possible due to their complexity. As an alternative, different heuristic search 

algorithms rooted in natural and physical processes have been addressed. Optimisation 

techniques are classified into two main categories (see figure 2.1): 

• Conventional (mathematical) optimisation techniques, 
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• Heuristic optimisation techniques . 

Good solutions can also be obtained by hybridizing both categories. 

There are several planning algorithms available for the solution of the long-term problem, 

each based on a different interpretation of the system model and a choice of the design 

objective. 

Conventional Heuristic Optimization 
Optimization techniques techniques 

Hybrid of 
Conventional Optimization techniques 

+ 
Heuristic Optimization techniques 

~Ir ~ ~r 

Transmission Planning Problem 

Figure 2.1 Transmission planning optimization techniques 

2.3.1 Review of Heuristic Techniques 

Can b e 
or used f 

I 

Over the past three decades, there has been a growing interest in heuristic search methods 

for complex optimisation problems [Reeves, 1995], [Aarts; Lenstra , 1997]. In particular, 

heuristic search algorithms rooted in natural and physical processes have been applied 

successfully to various combinatorial optimisation problems. These include Tabu Search 

(TS), Simulated Annealing (SA), Evolutionary Algorithms (EA), and Ant Colony Search 

(ACS) among others. 

2.3.1.1 Tabu Search 

With its roots going back to the late 1960's and early 1970's. the Tabu Search was 

proposed in its present form by Glover [Glover, Laguna, 1997]. [Glover. 1989 and 1990]. 

As a heuristic search strategy for efficiently solving combinatorial optimisation problems. 
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TS has now become an established optimisation approach that is rapidly spreading into 

many new fields, and has achieved impressive practical successes in extensive 

application areas [Song, 1999]. For example, TS has been successfully applied to obtain 

optimal or sub-optimal solution to problems such as the Travelling Salesmen Problem 

(TSP), time table scheduling and network layout design. TS is a restricted neighborhood 

search technique, and is an iterative algorithm. The fundamental idea of TS is the use of 

flexible memory of search history, which thus guides the search process to surmount 

local optimal solutions. 

2.3.1.2 Evolutionary Algorithms 

Evolutionary Algorithms (EA) are computer-based problem-solving systems based on 

principles of evolutionary theory. A variety of EA have been developed and they all share 

a common conceptual base of simulating the evolution of individual structures VIa 

processes of selection, mutation, and recombination. The processes depend on the 

perceived performance of the individual structures as defined by an environment. The 

interest in these algorithms has risen fast, for they provide robust and powerful adaptive 

search Inechanism. Furthermore these approaches are well suited to deal with all kinds of 

problems that usually represent nightmares for researchers and developers: integer 

variables, non-convex-functions, non-differential functions, domains not connected, 

badly-behaved functions, multiple optima, multiple objectives, and fuzzy data. 

The most popular EAs developed so far are the following: Genetic Algorithms. 

Evolutionary Programming, Genetic Programming and Classifier Systems. 
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These methods have been applied to various applications in power systems and other 

related fields. The vast majority of the applications use GA. However the interest in the 

use of other EA techniques (especially CS and EP) is rising fast. 

[Lai, Ma, Wong, Yokoyama, Zhao and Sasaki, 1996] proposed an application of 

evolutionary programming (EP) to solve the long-term transmission-planning problem. 

The objective function considered is to minimize the investment cost and the load 

curtailment subject to the following constraints: satisfaction of load demand (DC power 

flow is used as equality constraint), the active power flow limits in the transmission lines, 

the generation restrictions, the voltage angle difference limits of the transmission lines 

and the maximum number of new lines. The constraints are treated as quadratic penalty 

terms that are added to the objective function. EP has been applied to a six-bus test 

system (maximum load is 240 MW, maximum generation is 600 MW). The authors claim 

that EP is capable of solving the transmission-planning problem. 

Rudnic, Palma, Cura and Silva [1996] formulate a new methodology based on GA to 

determine an economically adapted transmission system in a deregulated open access 

environment. The objective function is to evaluate the transmission investment and losses 

combined with the variable cost of generation subject to an optimal generation 

investment indicative plan, generation operational costs, estimated load growth and 

distribution, and predefined transmission paths or rights of way. (n-l) security is also 

included within the simulation. This method is applied successfully to a reduced model of 

the original Chilean system (8 buses and 10 possible line paths). The computational time 

is 8 hours on HP 715 workstation. 
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Gallego, Monticelli, and Romero [1998] present an extended genetic algorithm for solving 

the optimal transmission network expansion-planning problem. Two main improvements 

have been introduced to the conventional GA: a) initial population obtained by a modified 

Garver's algorithm [Garver, 1970]; b) mutation approach inspired by simulated annealing. 

The extended GA has been successfully applied to three different systems. Two small 

systems with known solutions (to tune the main parameters of the GA) and a large system 

(the North-Northeastern system with 89 buses and 183 possible routes) for which no 

solution is known. The total demand is 29754 MW. The decimal representation has been 

adopted and each member represents the line additions in the corresponding initial routes. 

The objective function considered has two components: investment costs and penalties 

associated with loss of load. The transmission network used is the transportation model 

(impedance-less network; Kirchhoff Voltage Law, KVL, not represented) which is less 

accurate than the DC power flow model although solutions can be computed faster. The 

authors claim that the methodology proposed in this paper is more efficient than any other 

method proposed before, such as mathematical optimisation based on Benders 

decomposition and simulated annealing methods [Romero, Gallego and Monticelli, 1996], 

[Gallego, Alves and Monticelli, 1997]. 

2.3.1.3 Simulated Annealing 

Simulated Annealing is an optimisation technique based on a well-known process found 

in nature, the metal cooling process. It was first proposed by Kirkpatrick in the mid 

1970s. He demonstrated that the method is successfully applied to combinatorial 

optimisation problem. He has introduced several applications [Kirkpatrick. Gelatt and 

---------------------------~~---~--- ---~~- -----
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Vecchi, 1983]. These include physical design of computers, wInng and the traveling 

salesmen problem. 

SA tries to avoid local optima by allowing a temporary limited deterioration of the 

current solution. In that regard, it radically differs from conventional optimisation 

techniques that always proceed by deterministic exchanges, which may lead to local 

optima. In the SA approach, state transitions leading to increases in the objective function 

can be accepted with a certain probability. 

SA has been also applied successfully to a wide range of applications in electrical 

engineering including power systems [Song, 1999]. These include unit commitment, 

generator maintenance scheduling, V AR resource planning, network planning and 

distribution system planning, etc. 

Generally speaking, SA can be effectively applied to combinatorial optimisation 

problems where it is difficult to develop an efficient mathematical programmmg 

algorithm for solving them. 

The method proposed by Romero, Gallego and Monticelli, [996], has been applied to a 

large, difficult test case (89 buses and 189 possible routes) for which no optimum is 

known. The objective function is to minimize investment cost with zero loss of load 

subject to the generation limits, transmission limits, and the satisfaction of load demand 

requirement through the use of a DC load flow to represent the network. 

It is been proven that the SA produced good results, but the computer time was in the 

range of 18 to 19 hours. The potential drawback of this approach. as has been reported in 

other power system applications, is the computational effort required solving large-scale 

problems. 
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2.3.1.4 Ex pert Systems 

An Expert System is a computer program that behaves like an expert in some, usually 

narrow, domain and is capable of solving problems that require that knowledge. Expert 

systems derive their power mainly from the problem domain knowledge they possess and 

from their use of 'rules of thumb' in going about their problem solving activities. They 

can be used as computer-based consultants to humans in the performance of complex 

tasks. Early applications of expert system were in medical diagnosis and therapy, and 

computer system configurations and trouble shooting. Expert systems have been also 

suggested for various power systems applications [Fouad and Venkataraman, 1991]. 

Typical applications include reactive power and voltage control, unit commitment, load 

forecast, power system trouble analysis, contingency screening, etc. Expert Systems is 

rarely applied to transmission planning problem [Francisco D., Galiana, Donald, 

Mcgillis, and Miguel, 1992], [Teive, Silva and Fonseca, 1998]. Teive, Silva and Fonseca 

[1998] apply an expert system to a realistic system (500 bus). The solutions were rapidly 

obtained. 

2.3.1.5 Hybrids 

Due to the complexities of real-world problems and the pros and cons of various search 

techniques, it is apparent that hybridization is a way forward to develop more powerful 

algorithms. Hybridization allows search techniques that display particular properties to be 

produced. The development of hybrids and their theoretical underpinning is a new area of 

research that is just starting to be explored. Some of the emerged hybrid techniques 

[Song, 1999] integrate: SA and TS, SA and GA, GA and local search, fuzzy logic and 

GA. 
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Gallego, Monticelli, and Romero [1998] propose a hybrid algorithm based on TS 

algorithms which incorporate efficient features of SA and GA algorithms. Simulation 

results confirm the claims made in the literature regarding the superiority of this approach 

in dealing with complex, large scale combinatorial problems. 

2.3.1.6 Ant Colony Optimisation 

Ant Colony Search (ACS) methods are artificial systems that take inspiration from the 

behavior of real ant colonies and which are used to solve function or stochastic 

combinatorial optimisation problems. These are population based, co-operative search 

algorithms. The first ACS system was the Ant System (AS), proposed by Dorigo in his 

Ph.D. thesis (1992). Currently, most work has been done in the direction of applying 

ACS to combinatorial optimisation. This was first proposed for tackling the well known 

TSP problem, but has been also successfully applied to problems such as the Quadratic 

Assignment Problem (QAP), Job-shop Scheduling Problem (JSP), vehicle routing and 

graph coloring. ACS has been also applied successfully to solve the problem of economic 

dispatch. 

Ant Colony Search algorithms [Dorigo, Maniezzo, and Colomi, 1995], to some extent. 

mimic the behavior of real ants. In ACS, the colony consists of many homogeneous 

artificial ants communicating among themselves by recruit pheromone. The ants change 

their behavior according to the situation. Firstly, they walk randomly to search for a food 

source, operating in a discrete-time environment. They will not be completely blind, a 

decision is made on the intensity of trail perceived and the visibility. Each ant will ha\"e 

also some memory about its location and the next possible move. According to the 

objective function, their performance will be weighted as a fitness value, which directs 
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influence to the level of trail quantity deposited in the path selected by ants. Each ant's 

decision to choose the next node to move to depends on two parameters: the visibility of 

the node and the trail intensity previously laid by other ants. 

The main characteristics of this model are: 

• positive feedback, 

• distributed computation, 

• and the use of a constructive greedy heuristic. 

Positive feedback accounts for rapid discovery of good solutions, distributed computation 

avoids premature convergence, and the greedy heuristic helps find acceptable solutions in 

the early stages of the search. 

2.3.2 Review of Transmission Planning Techniques 

There are several planning algorithms available for the solution of the long-term problem; 

each based on a different interpretation of the system model and the choice of the design 

objective. These methods are classified into two main approaches: 

• heuristic methods, 

• mathematical optimisation models. 

Most commercial programs combine both approaches [Santos, Franca and Said, 1989]. 

Several classical optimisation techniques have been used in an attempt to solve the 

transmission-planning problem. These include linear programming [Chanda. and 

Bhattacharjee, 1994], non-linear programming [Gilles, 1986], [Youssef and Hackam. 

1989], mixed integer programming [Gilles 1986], [Santos, Franca and Said, 19W)1, 

Benders decomposition [Pereira, Pinto, Cunha, Oliveira, 1985], [Romero and \lonticelli, 

199.+] and others [Rudnick et aI., 1996], [Monticelli, Santos. Pereira, Cunha, Parker and 

----- -----~ 
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Praca, 1982], [Latorre-Bayona and Perez-Arriaga, 1994J. Heuristic models have also 

been utilized, based on sensitivity analysis [Pereira, Pinto, Cunha, Oliveira, 1985], 

[Monticelli, Santos, Pereira, Cunha, Parker and Praca, 1982], [Latorre-Bayona and Perez-

Arriaga, 1994]. 

Practice has shown that conventional optimisation methods are unable to produce optimal 

solutions for large networks [Romero Gallego and Monticelli, 1996], [Gallego, Alves and 

Monticelli, 1997]. As an alternative to conventional optimisation methods, various 

heuristic search algorithms rooted in natural and physical processes have been applied: 

simulated annealing, genetic algorithms, and evolutionary programming among others. 

Expert systems have also been applied to the transmission-planning problem. 

2.3.2.1 Linear Programming 

The main disadvantage of this method is that all the objective functions and constraints 

must be linearised, which often leads to sub optimal solutions of the original non-linear 

problem. Several methods have been introduced to handle transmission expansion 

planning. Linear (or linearised) cost functions were adopted in most of these models 

[Garver, 1970], [Kaltenbach, Peschon and Gehrig, 1970], [Puntel, Reppen, Ringlee, 

Platts, Ryan and Sullivan, 1973], [Sawey and Zinn, 1977]. This assumption often led to 

inaccurate results producing near but not optimal solutions to the original problem. 

Levi and Calovic [1993] suggest a linear-programming based decomposition method. 

Only investment cost optimisation is addressed in this paper. 

In [Levi and Calovic, 1993], overall transmission network expanSIOn planning is 

separated into two independent problems of investments and operations. Within the 

frame\vork of this separation, a new methodology for optimal iIl\'estment is proposed. It 

---------------------------------------------
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IS specified as a mInImum co t l' . d 1 smear programmmg mo e and is sol \'ed by further 

division into two sub-problems. The first considers the maximum use of the existing 

network facilities for future system needs and the choice of the best candidates for 

network reinforcements to be applied in an interactive expansion planning process. The 

second sub-problem considers the prospective expanding network and decides on the 

economically best reinforcements, enabling the optimum-based expansion planning 

policy. The objective function considered is to minimize the investment cost while 

satisfying the following constraints: load balance equation, minimum and maximum 

generation limits, and transmission limits of existing network elements. The (n-l) 

security is also taken into account in the model. This methodology is applied to the 

Garver six-node system and the eastern part of Yugoslavia (61 nodes and 72 branches). 

Although this methodology produced good results compared to the previous work [Levi 

and Calovic, 1991], the computational time is still considerable due to the need to sol ve a 

highly constrained linear programming problem. 

2.3.2.2 Non-Linear Programming 

In this paper [Youssef and Hackam, 1989], the authors introduced a model that deals with 

both static and dynamic modes of transmission planning. An accurate and continuous 

nonlinear cost function (with a dependence on time and line ratings) for the system is 

formulated. It includes both the fixed and the variable cost for all planned lines, in 

addition to the cost of the power losses. The objective function is minimized subject to 

demand satisfaction, overloading, and security constraints on bus voltage magnitudes and 

anglcs. The AC load flow was considered for the modeling of the network. This method 

was applied successfully to the Garver six-bus system [Garver. 1970]. This test system is 

--.-----
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often used as a test bed for a new methodology but it is considered as a small system. The 

main limitation of this method is the replication of the same line type in the 

corresponding wayleave. 

2.3.2.3 Mixed Integer Programming 

Mixed Integer Programming (MIP) [Gilles, 1986], [Santos, Franca and Said, 1989] is 

based on at least two different algorithms: the first of which determines the integer 

variables and the second (usually a linear program) solves the remaining continuous 

problem and provides for a new run of the first algorithm. The integer variables are 

usually determined by some enumeration algorithm [Romero and Monticelli, 1994] such 

as branch and bound, which searches for feasible states. Though theoretically guaranteed 

to find the optimal solution, the MIP program usually cannot be allowed to complete the 

full search because of computation time limitations, hence this techniques is limited to 

small systems. 

2.3.2.4 Branch and Bound 

The Branch and Bound method [Romero and Monticelli, 1994], [Lee, Hicks and 

HnyiIicza, 1974] is a powerful enumeration strategy that helps to reduce the number of 

combinations of integer variables considered in a mixed integer non linear programming 

problem. The advantage of the Branch and Bound technique is that it can provide a 

sequence of solutions with estimates of their sub-optimality. The Branch and Bound 

method suffers from the curse of dimensionality problem. 

2.3.2.5 Benders Decomposition 

The most successful approach to solve the transmission planning is based on Benders 

Decomposition (BD) [Benders, 1962], [Pereira, 1985], [GranviII and Alii, 1988]. 

- .--------------------------
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This method decomposes the original problem into two sub-problems: the investment 

sub-problem (that proposes a trial expansion plan) and the operational sub-problem (that 

analyzes the performance of each trial plan). 

The operational sub-problem (linear programming problem) expresses the operational 

limit violations in terms of discrete investment variables (Benders cuts). These linear 

constraints are added to the investment sub-problem and new iterations are repeated. The 

main difficulty of this approach is due to the high computational time when solving 

medium-large discrete investment sub-problems to optimality. Since the Benders method 

generally requires many iterations to reach convergence, the main effort is due to the 

repeated solution of the investment sub-problem. Another difficulty pertains to the non­

convexity of the problem [Granvill and AlIi, 1988], which can lead to the exclusion of 

feasible solutions when solved by the decomposition method. Hierarchical decomposition 

methods try to overcome this shortcoming. Benders decomposition can also be extended 

to solve non-linear problems [Geoffrion, 1972]. 

[Tsamasphyrou, Renaud and Carpentier, 1999] proposed an efficient method based on 

Benders Decomposition. This method was applied on a reduced model of the French 

network (385 lines, 194 nodes). The authors claim that the decomposition scheme used 

has substantially reduced the computational time. 

2.3.2.6 Hierarchical Decomposition 

Hierarchical decomposition methods are generally based on Benders decomposition. 

These methods try to overcome the following shortcoming: the non-convexity that can 

leads to the exclusion of feasible solutions when solved by decomposition. The 

Hierarchical decomposition methods achieves that by initially solving the operation sub-
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problem using a simple network flow program and after some Bender iterations switches 

to a more adequate formulation (the linearized power flow) [Romero and Monticelli, 

1994]. Nevertheless, repeated solutions of integer problems are still required. 

Successful approaches using hierarchical Benders decomposition incur a high 

computational cost, mainly due to the need to solve a large integer investment sub-

problem for every Benders iteration. 

[Oliveira, Costa, Binato, 1995] proposed a combined optimisation/heuristic method using 

a customized decomposition approach in an attempt to solve real world problems, taking 

advantage of the operational sub-problem structure and reducing the computational effort 

required to solve the non-structured investment sub-problem. This approach allows the 

use of heuristics during the iterative process. A general branch and bound algorithm was 

used so as to obtain a feasible integer solution for each investment sub-problem. The 

objective function considered is to minimize investment cost and load shedding subject to 

generation and transmission network constraints. The proposed method was applied to 

the reduced Southern Brazilian network (79 bus and 155 circuits), and for this case the 

computing time was about 3 minutes. The results presented in this case study indicate 

that this approach can solve difficult expansion problems with a large number of 

alternatives with moderate computational time. 

2.4 Conclusions 

This chapter presented a detailed description of the transmission-planning problem. 

namely, its formulation and methodologies. Various optimisation techniques, which can 

be used to optimise the network design. have also been reviewed. These have included 

conventional and heuristic techniques. 

-------

------------------------------------------------
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Chapter 3 

Genetic Algorithms and Other Heuristics 

3.1 Introduction 

There has been considerable interest in Genetic Algorithms, and other heuristic search 

algorithms (such as Ant Colony Search) rooted in natural and physical processes, among 

researchers in various application fields. The simplicity, flexibility and robustness of 

such algorithms has opened up new areas of application, and has also encouraged a re-

appraisal of some traditional problems that were either very difficult or even intractable 

for traditional optimisation techniques. 

This chapter presents a brief review about GAs, their backgrounds and the basic 

operation steps involved. A particular variant of GA, known as the Deterministic 

Crowding Genetic Algorithm, is explored. Some of the successful applications of GA in 

various areas including power systems are reported. This chapter also considers a novel 

optimisation technique, Ant Colony Search (ACS), as an alternative technique to solve 

the transmission-planning problem. An overview of ACS, background and search 

algorithm steps and areas of application, is presented. Some of the advantages and 

disadvantages of both optimisation techniques, for the purposes of computational 

optimisation, are also discussed. Finally, a comparison is made between the two 

methods. 

3.2 Genetic Algorithms 

3.2.1 Background 

Gcnetic Algorithms [Holland, 1975], [Davis, 1991], [Goldberg, 1989] belong to a class 

of c\,olutionary computation techniques hased on models of biological e\'olution. The 

------------------------.~--------------~----------------------~ 
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basic theory of GA can be found in [Holland, 1975], [Goldberg, 1989] with extensions 

to the theory in various GA conferences [ICGA, 1985, 1987, 19891991. 1993, 1995, 

etc.], [lEE/IEEE GALlS lA, 1995, 1997] and other evolutionary computation related 

conference publications and journals. GAs have proved to be effective for integer and 

non-convex problems. They have proved useful in domains that are not well understood, 

or for search spaces which are too large to be efficiently searched by standard methods. 

Since their introduction GAs have proved to be a great success, with many researchers 

and practitioners adopting them to solve a wide variety of problems. 

The distinguishing feature of a GA from other function optimisers is that the search 

algorithm proceeds not by incremental changes to a single structure but by maintaining 

a population of structures from which new structures are created. These structures 

individually and in combination with other members of the population contain 

information about the various sub-structures making up the optimal solution. 

The basic power of a GA arises from the concept of implicit parallelism [Holland, 

1975], [Davis, 1991], the simultaneous allocation of trials to many regions of the search 

space. This theory suggests that through the repeated process of selection, crossover and 

mutation, the schemata (building blocks) of competing hyper-planes decrease or 

II1crease their presence in the population according to the relative fitness of those 

strings. 

3.2.2 Standard Genetic Algorithm 

A typical Genetic Algorithm can be described as follows: 

1. Select (at random) an initial population of strings {so), ... SOb ... sop}, where P is the 

number of population members. 
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2. Evaluate the cost Ci
k = C(Sik) for all k. 

3. Perform random crossovers, introducing new population members. 

4. Perform random mutations. 

5. Select a subset of population members to be deleted; the selection should depend on 

the cost of each popUlation member, so that high-cost strings are more likely to be 

deleted. 

6. Re-iterate from 2. until no improvement in the best member of the population has 

occurred for some iterations or until a set number of iterations. 

36 

Crossover is the main genetic operator that allows information to be exchanged between 

individuals in the population. The use of crossover is the defining characteristic of a GA 

and has a powerful influence on the speed of convergence of the popUlation. Crossover 

is not performed on every pair of individuals, its frequency being controlled by a 

crossover probability. There are various alternative techniques such as single-point 

multi-point and uniform crossover. Uniform crossover is now generally regarded as the 

best option. 

The main reason for using the mutation operator is to prevent the permanent loss of any 

particular bit values (genes), as without mutation there is no possibility of re-introducing 

a bit value that is missing from the population. It is usually applied to each new structure 

individually. A given mutation consists of randomly altering each gene with a small 

probability. The mutation rate must be kept low since a high value tends to make the 

algorithm behave like a random search strategy. 

An important component of the GA algorithm is the choice of the subset of population 

members to be deleted (or conversely the selection of the individuals to survive into the 
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next generation). This process is called 'selection' and variety of techniques is possible. 

All selection techniques allocate some proportion of the fitness (function of cost) of an 

individual relative to the population average fitness. These selection methods include 

roulette wheel [Goldberg, 1989], [Davis, 1991], and tournament selection [Goldberg], 

[Deb] among others [baker]. In tournament selection some (usually small) subset of the 

population is chosen (usually at random) and the higher cost members (less fit) are 

deleted. In roulette wheel selection, the fitness determines the likelihood of an 

individual being selected for survival. By analogy with a physical roulette wheel, a 

random experiment is performed with the probability of selecting any individual being 

proportional to its fitness, which is inversely related to its cost. The mapping from cost 

value to fitness value, known as fitness scaling, is designed to give a reasonable 

likelihood of survival for any string even in circumstances where cost function values 

can exhibit extremely high, or extremely low numerical variation. An advantage of 

tournament selection is that fitness scaling is not needed. Often 'elitism' is introduced in 

the selection mechanism, whereby the best individual or the best few individuals are 

automatically retained, so that each generation does at least include the individual which 

is 'best so far' . 

3.2.3 Genetic Algorithm models 

Although the main operators that influence the GA performance are only three, i.e. 

selection, crossover and mutation, their interaction is highly complex and slight 

variations in their implementation result in a variety of models. The different models 

depend on factors such as: 

• selection method and mechanism, 
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• parent replacement method, 

• crossover and mutation method , 

• problem to be solved, whether a single or mUltiple objective formulation is required . 

The GA model to be applied is chosen after a careful analysis of the problem to be 

solved. A particular model known as the Deterministic Crowding Genetic Algorithms 

(DCGA), which represent a further enhancement over the standard GA, is adopted for 

the solution of the optimum transmission design and is considered in this chapter. 

3.2.4 Deterministic Crowding Genetic Algorithms 

An area of further enhancement to the standard GA has been the introduction of niche 

methods [Goldberg, 1989], [Mahfoud,1992], [De long, 1975]. These methods reduce 

competition among population members when there is a sufficiently large difference (or 

distance) between them, allowing sub-populations centring on good solutions to co-exist. 

Niche methods fall into two broad categories: 'crowding' and 'sharing'. Crowding 

methods restrict the replacement of individuals by discouraging competition among 

widely differing individuals, while sharing methods de-rate an individual's effective 

fitness when similar individuals co-exist. The potential disadvantage of most niche-based 

methods is the computational burden of comparing each individual to many other 

individuals, in order to evaluate the similarity measure. 

Niche GA methods are inspired by a corresponding ecological phenomenon, where 

similar members of a natural population compete for the same resources. A niche GA 

attempts to maintain a population of diverse individuals in the course of the simulated 

evolution. Genetic Algorithms that incorporate these ideas are thus better able to locate 
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multiple local-optimal solutions within a single population. The particular niche method 

described here is based on the crowding concept. 

In a crowding GA the new population is created by allowing child strings to replace the 

parents that are most similar to themselves. De Jong proposed a crowding factor model 

where only a fraction of the population reproduces and dies in each generation, with each 

newly created population member replacing an existing member, preferably the most 

similar. Following analysis and modification of the De Jong's (and other) other crowding 

methods, Mahfoud proposed the Deterministic Crowding Genetic Algorithm (DCGA). 

Mahfoud's model is computationally efficient, since each offspring is only compared 

with its two parents, and competes only with the more similar parent. The DCGA 

provides selection pressure within but not across regions of the search space, leaving the 

search across regions to the crossover operator. 

The DCGA randomly pairs all population members in each generation to yield P/2 pairs 

of parents, for a population of size P, each pair undergoes crossover, possibly followed 

by mutation, to produce two offspring. Each of the two offspring competes with one of 

the two parents, chosen according to a similarity measure. The fitter among them forms 

the population of the next generation. For example, given a pair of parents and their two 

offspring, two sets of parent-offspring tournaments are possible: 

setl 

• parent 1 against child 1 

• parent 2 against child 2 
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set 2 

• parent I against child 2 

• parent 2 against child I 

The set of tournaments which forces competition among more similar individuals is held, 

where similarity is defined as the average distance between the parent-child 

combinations in the set. 

The DCGA can be summarised as follows: 

l. Select (at random) an initial population of strings {SOI, ... Sob ... sop}, where P is the 

number of population members. 

2. Evaluate the cost Ci
k = C(Sik) for all k. 

3. While (I ::;; P) 

4. Choose two parents, paq and par2 at random, without replacement. 

5. Perform crossover and mutation to produce offspring ch I and ch2. 

6. Evaluate fitness (f) of parents and offspring. 

7. If ( distance (parI, chI) + distance (par2, ch2) ) ::;; ( distance (parI, ch2) + distance 

(par2, ch I) ) then 

Else 

IF (f(chl) > f(parl) ) replace parI by chi 

IF ( f( ch2) > f(par2) )replace par2 by ch2 

IF ( f(ch 2) > f(parl) )replace pari by ch2 

IF ( f(ch l) > f(par2) ) replace par2 by chi 
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Endif 

8 Next i 

9 Re-iterate from 2. Until no improvement in the best member of the population has 

occurred for some iterations or until a set number of iterations. 

3.2.5 Characteristics of the Deterministic Genetic Algorithm 

The main proprieties that distinguish DCGA from other GA models are: 

• selection and population replacement are combined into a single step, 

• random crossover is performed on the whole population, 

• there is no need for any scaling mechanism, 

• embedded elitism (only inferior parents are replaced by children), 

• there are fewer control parameters to be set. 

The major components of the DCGA model that can be explicitly varied are the parent 

replacement-selection strategy, crossover method (mutation is optional in DCGA), 

population size and the number of generations required for the evolution. 

Uniform crossover (now generally considered as the best option) is usually applied in 

DCGA model. 

3.2.5. I Uniform Crossover 

Taking as an example two parents paro and parI with string length 12 and using binary 

symbols: 

paro = I 0 I I 0 0 0 I 0 I 1 0 

parI = 0 0 I 0 I 0 1 I 1 0 I 0 

Define a (random) 'mask string' 

Hind 1\ IUlllcr Chchho 



Chapter 3 Genetic Algorithms and Other Heuristics -+2 

mask = 1 0 1 1 0 0 0 1 0 1 1 0 

Then, according to uniform crossover, a child can be defined as containing the 

corresponding symbol from parent 0 for every bit position in the mask with value 0, and 

containing the corresponding symbol from parent 1 for every bit position in the mask 

with value 1, giving: 

Ch 1 = 0 0 1 0 0 0 0 1 0 0 1 0 

A second child can also be obtained by using the bit-wise inverse of the same mask: 

Ch2 = 1 0 1 1 1 0 1 1 1 1 1 0 

The conventional definition of crossover probability [Spears W.M, De long K.A, 1991] is 

the probability of a mask bit being given a value of 1. With this definition, a probability 

of 0.5 means that a child has an equal likelihood of inheriting bit values from either 

parent, a probability of 1 means that child 1 is identical to parent 1, etc. 

A modified definition of uniform crossover, first proposed in this thesis, is adopted in the 

DCGA model and will be considered here. This can be defined by following simple rules: 

1. Randomly choose the first bit of the mask string as either 0 or 1, with equal 

probability. 

2. Randomly choose each consecutive bit of mask string with a given probability of 

being the same as the preceding bit. 

Using this definition, a crossover probability of 0.5 (which corresponds to uniform 

crossover) gives statistical properties which are identical to those of the previous 

definition, but other crossover probability values bias the 'expected run length' of 

consecutive I s or Os in the mask. 
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3.2.6 Applications of Genetic Algorithms 

The robustness of Genetic Algorithms has enabled them to be applied in a wide range of 

problem solving areas. GAs are capable of finding global optima for mathematical 

problems having a multiplicity of local optima and hard non-convexities. Highly complex 

problems such as the travelling salesman problem, turbine design and pipe line 

scheduling have been solved successfully. [Goldberg, Millemen and Tidd], References 

[ICGA conferences, 1983-1999], [IEEIIEEE GALISIA conferences, 1995- 1997] contain 

a wide range of applications of GA and other evolutionary techniques. Broadly classified, 

the GA has found widespread application in areas including: 

• computer aided design in all engineering branches, 

• pattern recognition and image processing, 

• artificial intelligence, machine learning and robotics, 

• power telecommunication network optimisation, 

• biotechnology and medical systems, 

• chemical process optimisation, 

• production planning and scheduling, 

• neural network optimisation, 

• non-linear optimisation. 

Recently GAs have been successfully applied to various areas of power system. Some of 

these applications include: 

• unit commitment [Dasgupta and McGregor], [ Shebble and Maifeld], [Orero and 

Irving, 1997], etc., 

• economic despatch [Walters., and Shebble.], [Chen .. and Chang.], etc., 

---.. ----------------------------~------------~---------------
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distribution system planning [Nara et al.], [Yeh et al.], [Miranda et al.], [Wen et al.], 

harmonic analysis in distribution network [Boone and Chiang], [Lee et al.], 

reactive power optimisation and voltage scheduling [Iba], [Lee and Park], 

load flow solution [Yin and Germay], 

network partitioning [Taylor et al.], [Ding et al.], [Orero and Irving], 

load forecasting [Maifeld and Sheble], 

power stability and frequency control [Finch and Besmi], [Lansbery et al.], 

hydro co-ordination [Hulselman et al.], 

power transmission planning [Gallego et al.], [Rudnick et al.]. 

Ant Colony Search 

3.3.1 Background 

44 

Ant Colony Search (ACS) studies artificial systems that take inspiration from the 

behaviour of real ant colonies and which are used to solve functional or stochastic 

combinatorial optimisation problems. 

It is a population-based approach that uses exploitation of positive feedback as well as 

greedy search. The main characteristics of this model are positive feedback, distributed 

computation, and the use of a constructive greedy heuristic. Positive feedback accounts 

for rapid discovery of good solutions, distributed computation avoids premature 

convergence, and the greedy heuristic helps find acceptable solutions in the early stages 

of the search. 

The first ACS system was the Ant System (AS), proposed by Dorigo in his Ph.D. thesis 

(1992). It was first proposed for tackling the well known TSP problem [Dorigo et aL 

1996, 1997], but has been also successfully applied to problems such as Quadratic 
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Assignment Problem (QAP) [Gamberdella et aI., 1997], [Maniezzo et al.. 1994], Job­

shop Scheduling Problem (JSP) [Dorigo et aI., 1996], vehicle routing and graph colouring 

[Bullnheimer, 1997]. 

More recently Dorigo and Gamardella have been working on various extended versions 

of the Ant System paradigm. Ant-Q is an hybridisation of AS with Q-Iearning, a well 

known reinforcement learning algorithm. Ant Colony System (ACS) [Dorigo et aI., 1997] 

is a further extension of Ant-Q. Both have been applied to the symmetric and asymmetric 

travelling salesman problem [Dorigo et aI., 1997], [Dorigo and Gamberdella, 1995, 

1996] . 

Schoonderwoerd et aI. [1997] have developed an ant colony algorithm called ABC, for 

routing and load balancing in circuit switched telecommunications networks, and Di Caro 

and Dorigo [1997] for routing in packet switched telecommunications networks. 

Stutzle and Hoos [1997] have been working on various extensions on Ant System. 

BiIchev has recently developed an ACO method for the optimisation of continuous 

functions [BiIchev and Parmee, 1996]. 

3.3.2 Ant Colony Search Algorithm 

ACS [Dorigo et aI., 1996], [Dorigo, 1992] is a population based, co-operative search 

algorithm inspired by the behaviour of real ants. A colony of ants is able to succeed (for 

instance to find the shortest path between the nest and the food source) whereas a single 

ant would probably fail, especially as ants are almost blind. It was found that ants leave a 

trai I of pheromone when they move. This pheromone trail can be observed by other ants 

and motivates them to follow the path, i.e. a randomly moving ant will follow the 
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pheromone trail with high probability. The trail is then reinforced and more ants follow 

that trail. 

One of the basic ideas of ACS is to use the counterpart of the pheromone trail used by 

real ants as a medium for co-operation and communication among a colony of (artificial) 

ants. The artificial ants are simple agents that have some basic capabilities. 

The artificial ants of Ant System behave in a similar way. They differ from their natural 

counterparts in two aspects. They are not blind, i.e. they have information regarding their 

environment and they use this information to be greedy in addition to being adaptive. 

Second, they have a memory, which is necessary to ensure that only feasible solutions are 

generated [Bullnheimer, 1997]. 

To apply the ACS algorithm to a problem requires defining the following: 

1. an appropriate graph representation of the problem for search by a number of agents; 

2. the autocatalytic (i.e. positive) feedback process; 

3. the heuristic that allows a constructive definition of the solutions (greedy force); 

4. and the constraint satisfaction method. 

A typical ACS algorithm can be stated as follows: 

I. Initialise A (t): Select (at random) an initial population of the colony. 

2. Evaluate A (t): Evaluate the fitness of all ants based on the problem objective 

function. 

3. Deposit-trail: pheromone trail quantity is deposited into the particular nodes (of 

problem graph) selected by the ants according to equation 3.1. 

4. Send-ants A(t): Each ant chooses the next node to move to taking into account two 

parameters: the visibility of the node and the pheromone intensity previously laid by 
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other ants. The decision for an ant k, to move to a node, is made on the basis of the 

probability p/ defined by equation 3.3. 

Note: nodes are labelling by their location (i, j) in a two dimensional space. 

For one iteration of the ACS algorithm, m moves are carried out respectively by the 11l 

ants in the interval (t, t+ 1), then each ant will complete a path (cycle) every II 

(number of nodes in a path) iterations of the algorithm. At this point (t = t+n) the trail 

intensity is updated according to equation 3.1. 

5. Re-iterate from 2. Until no improvement in the best member of the population has 

occurred for some iterations (cycles) or until a set number of iterations is satisfied. 

'[ (t + n) =p . 'l .. (t) + ~ 'l " 
'/ 1/ II (3.1 ) 

where 

where 

Tij (t) is the intensity of trail on node ( i,j ) at time t, 

LlTij is the quantity per unit length of pheromone laid on node (i,j) by the ants 

between step t and ( t + n ) and is defined in equation 3.2, 

P is the persistence of the trail, thus (l-p) simulates the evaporation, 

111 

~r" = ~ ~r.k 
1/ L... II 

k=1 

k _{Q / Fk ifnode(i, j) E path used by the kth ant 
~r -

1/ 0 otherwise 

(3.2) 

is the cost value of the kth ant (low values are better than high values). 

Q is a constant quantity per unit length of pheromone laid by the ant, 

III is the number of ants. 
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~/ = Lkeullowed
k 

['rik(t) jU.[1]ik jfJ 

o otherwise 

if jc allowed k 

where 

1]ij is the visibility (relative local cost) of the node, 

a, fJ are the heuristically defined parameters, 

allowedk is the list of possible moves of the kth ant. 

48 

(3.3) 

The standard ACS algorithm can be refined by introducing some sort of elitism. This can 

be accomplished by retaining automatically the best ant or the best few ants so that each 

ant colony does at least include the ant which is 'best so far'. The concept of keeping the 

best antes) takes advantage of experience and knowledge of elitism in GA. As a result 

more emphasis is put on the best path which helps directing the search towards the 

optimum solution and improving the performance of the standard ACS algorithm. 

The most important part in ACS algorithms is the treatment of the trail intensities. In 

practice, the long term effect of the trail intensities is to reduce the size of the effective 

search space by concentrating the search on a relatively small subset of the initial space. 

Different choices about how to compute the incremental trail and when to update the trail 

cause different instantiations of the ACS algorithms [Colorni et aI., 1996]. 

3.3.3 Ant Colony Search Applications 

ACS algorithms [Dorigo et aI., 1996] are new emergmg techniques that have been 

proposed as powerful tools to solve some order based problems such as Travelling 

Salesmen Problem (TSP) and Quadratic Assignment Problem (QAP). Currently most 

work has been done in the direction of applying ACS to combinatorial optimisation 
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problems. They have been applied to the Asymmetric Travelling Salesmen Problem 

(ATSP), Job-shop Scheduling Problem (JSP) and vehicle routing and graph colouring. 

Other ACS applications include: 

• Adaptive Routing in Communication Networks, 

• Load Balancing in Telecommunications Networks, 

• Economic Dispatch Problem [Chou and Song, 1997]. 

3.4 Advantages of GA and ACS 

Some of the advantages of GA and ACS, for the purposes of computational optimisation, 

are highlighted in the following sections. 

3.4.1 Global Optimisation 

Many practical optimisation problems contain mUltiple local optima. An important 

advantage of GA (or ACS) is the possibility that more than local optimum will be 

explored and there is a chance that GA (or ACS) may discover a global optimal solution. 

This property is shared with many heuristic search techniques (such as SA, TS, etc.) 

where as mathematical programming techniques are generally equipped to seek only a 

local optimum. 

3.4.2 Generality of Objective Functions 

The only restriction on the type of objective function that can be accommodated in a GA 

(or ACS) is simply that it must be a computable scalar function of any feasible candidate 

solution. This is in contrast to most mathematical programming based techniques, which 

may impose quite severe restrictions (such as linearity, differentiability, continuity. 

convexity, etc.) on the type of objective function which can be accepted. 
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3.4.3 Relative Ease of Programming 

GA (ACS) are relatively straightforward to program, in contrast with mathematical 

programming techniques which generally require sophisticated linear algebra routines, 

calculation of partial derivatives, robust line searching methods, etc. 

3.4.4 Algorithm Flexibility 

There are many possible variants to GA (ACS) some of which will be more efficient for 

particular problems than others. Further modelling of a problem can be readily included 

in the objective function with relative ease. 

3.4.5 Numerical Robustness 

The simplicity of GAs (ACS) leads to a further advantage. They do not suffer from the 

numerical robustness problems, which can occur in some mathematical optimisation 

techniques (e.g. matrices becoming ill-conditioned or singular, iteration steps becoming 

too short prematurely, etc.). 

3.5 Disadvantage of GAs and ACS 

Despite the considerable advantages of GAs and ACS there are some disadvantages that 

must be considered: 

3.5.1 Potential Premature Convergence 

In GAs, crossover and selection tend to cause unstable reproduction of schemas 

associated with above-average fitness, which can result in rapid loss of diversity in the 

population and premature convergence to a sub-optimal solution. For ACS, as already 

mentioned, the parameters a and f3 control the relative importance of pheromone trail 

(representing global information) versus visibility (representing local information). An 
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appropriate trade-off between those two measures should be adopted to avoid premature 

convergence to a sub-optimal solution. 

3.5.2 Long Computing Times 

The number of candidates considered III a GA (ACS) popUlation and the number of 

generations (cycles) which must be simulated before convergence is obtained, can 

combine to produce excessive run times for problems in which the fitness calculation is 

non-trivial. 

3.5.3 Parameter Tuning 

Many GA (ACS) variants include a variety of parameters that can be adjusted by the user 

(e.g., for GA, mutation and crossover probabilities, popUlation size, selection 

mechanisms, etc.; for ACS, the parameters that control exploration versus exploitation, 

ant colony size, selection mechanism, etc.). In some ways the ability to 'tune' these 

parameters can be seen as an advantage, because the analyst can adjust the GA (ACS) to 

suite his particular class of problems. However, since this tuning is generally based on 

extensive numerical experiments and can require considerable effort, methods that 

require less tuning are often preferred. 

3.5.4 Modelling Constrained Problems 

GAs (ACS) are probably better suited to unconstrained optimisation problems than to 

constrained problems. In some cases a special coding technique can be defined so that 

any candidate string is guaranteed to satisfy all (or some of) the constraints. This is a very 

advantageous approach, when it is available. In other cases penalty factors can be applied 

to convert a constrained problem into an unconstrained problem. The simplistic approach, 

whereby any candidate is checked against the constraint set and is rejected outright if 
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found to be infeasible, can be very inefficient if a large proportion of the candidates that 

are generated prove to be infeasible. 

3.5.5 Non-deterministic Solutions 

Most mathematical programming techniques provide additional information (such as 

gradient values, approximate Hessian matrix values, duality- or complimentary-gap 

values, etc.) which can provide some reassurance that a good solution has been obtained. 

The results obtained by GAs (ACS), or by other similar probabilistic search methods, do 

not incorporate this type of subsidiary information. This can be an important drawback 

for significant technical and commercial applications where a high level of assurance is 

required. In some respects it can be regarded as an advantage that a better solution might 

be obtained by GAs (ACS) simply by allowing further evolution, greater popUlation sizes 

etc., but the difficulty is that for non-trivial problems some uncertainty always remains as 

to the quality of the final solution produced. 

3.6 A Comparison between Genetic Algorithms and Ant Colony Search 
Algorithms 

There are many similarities between ACS and GA techniques. Both techniques require 

coding the problem parameters in order to apply them. They both search from a 

population of points and use payoff (objective function) information in the pursuit of the 

optimum. Both approaches also use probabilistic transition rules, not deterministic rules 

to solve the problem in hand. In addition both approaches require appropriate parameter 

'tuning' in order to converge. 

However, both techniques differ in two main aspects. In ACS there is a communication 

between ants (synergy) through the pheromone trail, where ants can benefit from the 

experience of other ants. This is in contrast to GAs where every member is evaluated 
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independently and without exchange of information among popUlation members. In 

addition, the decision made by the ants takes into account global information (i.e. ants lay 

an amount of pheromone trail which is proportional to how good the solution produced 

was) as well as local information (the search is not directed by any measure of the final 

results achieved). Table 3.1 reports on the main similarities and differences between GAs 

and ACS. 

Table 3.1 Comparison between GAs and ACS approaches 

GAs ACS 

Need for problem representation Need for problem representation 
(coding of the parameter set) (coding of the parameter set) 

Search from a population of points Search from a population of points 

Iterati ve process Iterati ve process 

Need for parameter tuning Need for parameter tuning 

Use of payoff information Use of payoff information 

Use of probabilistic transition rules Use of probabilistic transition rules 
(through the use of crossover and (through the decision of ants to move to 
mutation probabilities) another node) 

- Use of local information provided by the 
visibility concept 

- Communication among agents (synergy) 
through pheromone trail 

3.7 Solution of Constrained Problems 

Simple constraints, such as upper and lower limits on variables, can easily be represented 

implicitly within the problem coding. In some cases, it may also be possible to represent 

more complex constraints by an appropriate choice of coding. However, for general 

constraints, it is usual to represent constraints via penalty functions added to the cost 

function. An overall cost function, consisting of the original cost function plus additional 
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penalty costs for any violated constraints, is then optimised. In general, penalty functions 

should be chosen to satisfy the following requirements: 

• The penalty function should be progressive, so that a more severe violation of a 

constraint attracts a higher penalty cost- allowing the GA (ACS) to be guided towards 

feasibility. 

• The penalty factors for each violated constraint should be summed to form the overall 

penalty cost, so that a well-behaved penalty cost surface is produced. 

• The value of penalty costs should be higher than actual costs, so that a solution at the 

optimum of the overall cost function (including any penalty costs) would not include 

any non-zero penalties (i.e., violated constraints). If the penalty cost values are too 

small relative to the actual costs, it would be possible for the GA (ACS) to trade-off 

some constraint violations against cheaper actual costs, possibly arriving at an overall 

optimum solution which includes some violated constraints. 

• On the other hand, the value of penalty costs should not be too high in relation to the 

actual costs, so that the overall cost surface (including penalty costs) is reasonably 

well-conditioned. In this respect it is frequently possible to determine a realistic 

penalty cost value in economic or physical terms. For example, in some problem 

formulations the maximum available level of a commodity may be represented as a 

constraint, whereas in reality some additional supply may actually be available (albeit 

with a higher cost), e.g. from a spot market, or by using contingency resources, etc. In 

such cases a suitable penalty cost value for the constraint is already available. 

It is well known in conventional mathematical programming that the use of penalty costs 

can lead to an ill-conditioned overall problem. This arises from the need to satisfy both of 
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the final two points mentioned above. By applying penalty values that are large enough to 

guarantee feasible solutions it is difficult to avoid creating severely distorted overall cost 

function surfaces, which are then problematic for a mathematical programming method. 

This drawback of the penalty factor approach is much less significant for GAs (ACS), 

and similar methods, since they do not impose any particular requirements on the 

mathematical properties of overall cost function surface. The fact that an overall cost 

function (including penalty costs) may not be differentiable or smooth, and may have 

disadvantageous curvature properties (e.g. having singular or ill-conditioned Hessian 

matrices at certain points) could not necessary impede the progress of GA (ACS). 

3.8 Conclusions 

This chapter reviewed two novel optimisation techniques, namely GA and ACS, which 

are proposed to solve the transmission-planning problem. A particular variant of GA, 

known as the Deterministic Crowding Genetic Algorithm, is explored. A variation of the 

uniform crossover operator is introduced. Some of the successful applications of both 

techniques in various areas including power systems are reported. This chapter also 

addressed some of the advantages and disadvantages of both techniques, for the purposes 

of computational optimisation. Finally, a comparison is made between the two methods. 
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In this chapter, the structure of the two proposed algorithms namely, the Ant Colony 

Search (ACS) and the Deterministic Crowding Genetic Algorithm, is illustrated. Then, 

the application of both optimisations algorithms to an artificial test problem (shortest path 

problem) is considered in an attempt to investigate their performance. Next, a 

comparative investigation of both algorithms is carried out. Then, the experimental 

results are analysed to examme the effectiveness of both algorithms as optimisation 

techniques. Finally, we conclude that both algorithms exhibit comparable performance 

which encourage us to apply them to the transmission-planning problem. 

4.2 Artificial Test Problem 

Given a rectangular grid of size (nroute x ntype+ 1), where nroute and ntype represent 

respectively the vertical and horizontal axis (figure 4.1) and assuming the grid elements 

are of equal length (e,g. unit length); the problem is to find the shortest path along the 

vertical axis. The solution to this artificial test problem is obviously known a priori; it is 

any straight path parallel to the vertical axis and its length is equal to nroute-l. 

We have chosen this particular test because it resembles, to a certain extent, our 

transmission-planning problem. In this artificial problem nroute and ntype have no 

particular significance, except that they label the vertical and horizontal axes of the 

problem. (In the transmission planning problem, considered later, nroute will represent 

the number of routes and ntype the possible line types.) Moreover, we aim to investigate 
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the effectiveness of ACS and GA algorithms In the search for the known optimum 

solution. 

0 2 3 type 

1 

~ 
0 

2 0 

3 0 0 

4 0 0 

5 o~ * 0 0 

nroute Vo o~ 0 

Figure 4.1 Problem Mapping: shortest path problem to (nroute x ntype+ 1) grid 

__ Different paths (possible solutions) 

4.3 Structure of Both Programs: Ant Colony Search and Deterministic 
Crowding Genetic Algorithms 

The ACS & DCGA programs are implemented on a Pentium 233 MHz processor, under 

the Windows NT operating system using Fortran 77. Both programs are modular and can 

be applied to various problems with slight variation of the code to accommodate the new 

objective function. 

4.3.1 Ant Colony Search Program 

Given ntype types and nrollte possible routes, III artificial ants much like those used in the 

TSP application [Dorigo, Maniezzo, and Colorni , 1995] are used to search for good 

solutions. 
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Every ant k is assigned a random solution in which every route i is randomly allocated a 

type j in the range {O ... 14 }. Then, a fitness value, representing the objective function and 

penalties for constraint violations, is assigned to each ant. This fitness will influence the 

level of pheromone deposited (trail intensity). Each ant's decision to choose the next 

node to move to depends on two parameters: the visibility of the node and the trail 

intensity previously laid by other ants. 

The selection of an assignment, equivalent to a move for an ant k, is made on the basis of 

the probability p/ defined by equation (4.1). Therefore, the next node is determined by 

selecting a particular type j according to a specific selection scheme (e.g. roulette wheel 

selection) for a route i. Then a move value is associated with this assignment, which 

represents the change in the objective function value. Move values generally provide a 

fundamental basis for evaluating the quality of moves. 

p~ = [ . () a [ ]fJ 
1/ Lkt, allowed k r Ik t ] . 1] if,: 

if j£ allowedk 

(4.1 ) 

o otherwise 

where 

77u is the visibility of the node 

0j (t) is the intensity of trail on node (i,j) at time t 

a, f3 are the heuristically defined parameters to allow tuning of the weighting 

between visibility and trail 

allml'('{h. is the list of possible moves, in this case {O ... 14} 

The visibility of the node is given by the following formula: 

'h = 1 / ( chase + ~c i ) 
(-+.2) 
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where 

cbase = cMin / nroute 

~c. = c. - cMin 
.I .I 

cMin = min C j 
i =0, ntype 

Cj are the values of node j. 

For one iteration of the ACS algorithm, m moves are carried out respectively by the l1l 

ants in the interval (t, t+ 1), then each ant will complete a path (cycle) every nrollte 

iterations of the algorithm. At this point (t = t+nroute) the trail intensity is updated 

according to equation (4.3). 

1· (t + nroute)=p . 1 .. (t)+~ 1 .. 
lj lj lj 

(4.3) 

where 

P is the persistence of the trail, thus (l-p) simulates the evaporation 

~'tij is the quantity per unit length of pheromone laid on node O,j) by the ants 

between time t and (t+nroute) 

and 

~r~ ={Q / Fk ~fnode(i, j) E path used by the kth ant 

lj 0 othenvise 

Fk is the fitness (or value) of the kth ant, 

() is a constant quantity per unit length of pheromone laid by the ant. 

The aforementioned process is repeated for a certain number of cycles or until a 
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satisfactory solution is found. This algorithm represents the standard ACS. 

Finally, a further refinement over the standard ACS algorithm has been included. This 

was accomplished by keeping the best ant so far during simulation. The concept of 

keeping the best ant takes advantage of experience and knowledge of elitism in GA. As a 

result more emphasis is put on the best path (as will be explained later) which helps 

directing the search towards the optimum solution and improving the performance of the 

standard ACS algorithm. 

To summarise, figure 4.2 illustrates the modified ACS algorithm as applied to the 

problem. 

4.3.2 Deterministic Crowding Genetic Algorithm Program 

The DCGA randomly pairs all population members in each generation to yield P/2 pairs 

of parents, for a population of size P. Each pair undergoes crossover, possibly followed 

by mutation, to produce two offspring. Each of the two offspring competes with one of 

the two parents, chosen according to a similarity measure. The fitter among them forms 

the population of the next generation. Figure 4.3 illustrates the DCGA algorithm. 

The method of choosing the two parents without replacement is important, Slllce it 

inherently gives the DCGA the property of elitism. Every population member (including 

the best-so-far) must enter a tournament as a parent, and can only be eliminated from the 

population if it is to be replaced by a fitter child. 
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Initialise trail, visibility, and probability on every node of the grid 

" 
I Build a path for every ant randomly 

Evaluate the fitness of every ant according to the objective function 

Choose the best solution constructed by the ants and save it to the next cycle (elitism) 

Update the trail according to eq. 4.3 

" 
cycle=cycle+ 1 

solution satisfied 
or number of 
cycles exceeded 

Build a path for every ant according to 
probability defined in eq. 4.1 

Figure 4.2 Modified ACS algorithm 
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Generate a random population 

Choose two parents randomly without replacement 

Perform crossover and mutation to obtain two offspring 

Evaluate the fitness of parents & offspring according to the objective function 

Select offspring to replace existing parents according to a similarity measure 

y 

gen = gen + 1 

• y 

Output best results 

Figure 4.3 DCGA structure 
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4.4 Computational Results 

4.4.1 Shortest Path Problem with Ant Colony search 

Several tests have been carried out on artificial test problems. The parameters considered 

are those that affect directly or indirectly the computation of the probability (eq. 4.1). The 

aim is to investigate the effect of the different parameters on the performance of the ACS 

algorithm. 

Table 4.1 illustrates some of the simulation results and the corresponding parameter 

settings of the standard ACS (without elitism). 

A range of artificial test problems has been considered (from ntype=6 and nroute=5, to 

ntype=14 and nroute=25). The number of ants used is given as m in the table. Since an 

optimal solution of the artificial problem is any (complete) vertical line found in the 

problem graph, the optimal cost is (nroute-l) in every case. Where an optimal solution 

has been found the min value is shown in bold. The parameters ex, ~, p and Q are varied 

to assess the effect on the performance of the algorithm. 
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Table 4.1 ACS parameter settings and simulation results (without elitism) for various grid 
sizes of artificial problems 

ntype nroute m iseed Ctetrail a /3 p Q ncycles 
6 

6 
6 
6 
6 
6 
6 

6 
6 

14 

14 
14 
14 

14 
14 
14 
14 
14 
14 

14 

14 
14 

14 

14 

14 

14 

Where 

5 6 123456789 0.7 1 3 0.7 100 30(maxc) 

5 6 987654321 0.7 1 3 0.7 100 30 
5 6 987654321 0.7 2 3 0.7 100 30 
5 8 987654321 0.7 1 3 0.7 100 2 
5 8 987654321 0.7 1 3 0.4 100 2 
5 8 987654321 0.7 1 3 0.2 100 2 
5 8 987654321 0.7 1 3 0 100 2 

6 12 987654321 0.5 1 3 0.7 100 2 
14 20 987654321 0.5 1 3 0.7 100 1 I 

14 25 987654321 0.5 1 3 0.7 100 100 

14 30 987654321 0.5 1 3 0.7 100 I 1 
20 42 987654321 0.5 1 3 0.7 100 100 
20 45 987654321 0.5 1 3 0.8 100 60 

20 45 987654321 0.5 1 3 0.7 100 60 
20 45 123456789 0.5 1 3 0.8 100 13 
20 45 987654321 0.5 1 3 0.8 1000 100 
20 45 123456789 0.5 1 3 0.8 1000 12 
20 45 987654321 0.5 1 3 0.8 10000 60 
20 40 987654321 0.5 1 3 0.7 100 100 

20 40 123456789 0.5 1 3 0.7 100 100 

20 40 123456789 0.5 0.5 3 0.7 100 23 
20 45 123456789 0.5 0.5 3 0.7 100 35 

25 55 987654321 0.5 1 3 0.7 100 70 

25 60 987654321 0.5 1 3 0.7 100 70 

25 60 987654321 0.5 1 3 0.8 100 70 

25 55 987654321 0.5 0.5 3 0.8 100 50 

min is the best obtained during the last cycle, 
(0) represents the best so far during the simulation process (previous cycles), 
(I) represents the best obtained during the last cycle, 
;sccd is the random seed (used for the random number generation software). 

('tetrail is the initial value of the intensity of trail, 
l10llfs are the numher of ants that reached min, 
nne/e is the number of cycles needed to reach the best (min=l), 
b(;ld numbers represent the optimum for the corresponding grids considered. 
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nants min 
4.4142 

6 4.8284 
6 4.4142 
6 4.4142 
1 4.0000 
1 4.0000 
1 4.0000 
1 4.0000 

1 5.0000 
2 13.0000 

13.8284 
25 14.2426 
2 13.0000 
32 21.0711 

19.4 142 (0) 
45 19.8284 (I) 
45 19.4142 
I 19.0000 

45 20.2426 
1 19.0000 

45 20.2426 
20.6569 (0) 

40 21.0711 (I) 
19.4 142 (0) 

40 20.2426 (I) 

1 19.0000 
1 19.0000 

25.0711 (0) 
55 26.6568 (I) 

25.0711 (0) 
60 26.6568 (I) 

25.0711 (0) 

60 26.6568 (I) 

2 24.0000 
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Figure 4.4 show the convergence graph of the standard ACS algorithm applied to a 20 

x 14 grid. The parameter settings for that run are as follows: 

ntype=14 nroute=20 m=40 iseed =123456789 ctetrail=0.5 a=0.5 /3=3 p=0.7 Q=100. 

It is noticeable that the best length fluctuates because the best so far was not transferred 

to the next cycle. That is, at every cycle the trail laid on the edges of the best length is 

reinforced with a quantity that is a function of the best length (not the best length so far). 

As a consequence, the performance of the ACS decreases and the computational time 

increases. This finding was the motivation to refine the standard ACS by introducing a 

form of elitism. 

60~------------------------------------------, 

50 -1-----------------

;40_11___---------­
C) 
t: 
(1) 

- - ------- ------I ..I 30 --1"-_______ _ 

~ 20 +-~~~~,v~~~~.~-_~~~~ __ ~~ __________________________ ~ 
10 I I I I I I I I I I I I I I I I I I I 

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 

Ncycles 

Figure 4.4 Evolution of the best path for a (20x 14 )grid without elitism 
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4.4.1. 1 Elitism in Ant Colony Search 

The quality of the solutions produced by the standard ACS can be improved by using the 

so-called elitist ants [Dorigo, Maniezzo, and Colorni, 1995]. The idea of the elitism in the 

context of ACS is to give extra emphasis to the best path found so far after every 

iteration. When the trail levels are updated, this path is treated as if a certain number of 

ants, namely the elitist ants, had chosen that path. Therefore, at every cycle the trail laid 

on the edges belonging to the best so far is reinforced more than in the standard version 

of the ACS. A quantity of value elite.QI Lbest is added to the trail of each edge of the best 

path, where elite is the number of elitist ants and Lbest is the length of the best path. The 

idea is that the trail of the best path so reinforced will direct the search of all other ants in 

probability towards a solution composed by some edges of the best path. 

Figure 4.5 depicts the convergence graph of the modified ACS algorithm (with elitism) 

applied to the same 20x 14 grid problem. The parameter settings for that run are as 

follows: 

elite=l ntype=14 nroute=20 m=40 iseed =123456789 ctetrail=O.5 a=O.5 {3=3 p=O.7 

Q=100. 

By introducing elitism, the performance of ACS has improved and the computational 

time has been reduced (ACS converged in 48 cycles). It is important to note how in the 

early cycles the ACS identifies good paths, which are subsequently refined towards the 

end of the run. 

Several tests have been conducted to investigate the effect of the elite ants on the 

performance of the algorithm. The simulation results and parameter settings are 

illustrated in table 4.2. The stopping criterion was to halt after a certain number of 
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iterations and the computational time is only recorded for those tests with successful 

results. 

80 

60 
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t/) 

,1 
Q) I m ! 

I 
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1 5 9 13 17 21 25 29 33 37 41 45 

Ncycles 

Figure 4.5 Evolution of the best path for a (20x14)grid (with elitism) 

From table 4.2, it can be seen that there is an optimal range for the number of elite ants ( 

elite E { 1 ... 2 lin which the ACS converged in few seconds); above it, the ants force the 

exploration around suboptimal paths in the early stages of the search, so that a decrease 

of performance results. 
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Table 4.2 Effect of the parameter (elite) on the performance of ACS 

ntype=14 nroute=20 m=6 iseed=123456789 ctetrail=0.5 ctevisib=l 
a=0.5 /3 =3 .0=0.8 Q=100 maxcycle-300 
elite ncycles 

. 
time (sec) rmn 

1 38 19.0000 2.25324 
2 40 19.0000 2.20317 
3 ---- 20.2426 ----

4 ---- 20.2426 ----

5 ---- 20.2426 ----

Bold numbers represent the optimum for a grid of (20x 14) 

4.4.1.2 S ynergi stic Effects 

In ACS, ants deposit pheromone when they move and follow (in probability) the 

pheromone previously deposited by other ants. This allows an indirect form of 

C01TIlTIUnication, or synergy, which is responsible of locating short paths through this self-

reinforcing process. 

Several tests have been carried out to assess both the impact of the number of ants and 

the importance of communication through trail on the efficiency of ACS. The stopping 

criterion is to end the search after a certain number of cycles. The parameter settings and 

simulation results are summarised in table 4.3. 

Figure 4.6 illustrates the effect of the number (m) of ants on the performance of the 

algorithm. The ordinate shows the time required to reach the optimum solution of the 

hortest path problem. The algorithm has been able to identify the correct solution with 

the optimum number of ants appearing to be 6. It is also noticeable that the algorithm i 

unreliable and fast for m in the interval {4 ... 16}. However, it is reliable and low for m in 

th interval {25 ... 64 }. 

Figur 4 .7 compare a situation in which ants do not communicate (a=O) with a ituation 

in which they communicate (a=O.5) . It i important to note the ynergi tic effect in u ing 
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many ants and using the trail communication system; that is, a run with l7l ants is more 

effective with communication among ants (b) than with no communication (a). In other 

words, by ignoring the pheromone trail (a=O), the ants search independently relying only 

on the local information (visibility) which lead to the convergence to a local optimum. 

On the other hand, communication among ants through pheromone trail (global 

information) combined with the local information contributed to the convergence of the 

algorithm. 

Hind MunIer Chehhu 



Chapter 4 Algorithms Design and Testing 

Table 4.3 Effect of the parameter (m) on the performance of ACS 

ntype=14 nroute=20 elite=l iseed=123456789 ctetrail=0.5 
ctevisib=l ,0=0.8 Q=100 a=0.5 [3-3 maxcyc[e=300 

m ncycles nun Time (sec) 
4 300 21.8995 ---
5 300 19.4142 ---

6 38 19.0000 2.2532 
7 300 19.8284 ---

8 45 19.0000 3.4850 
16 300 19.4142 ----

25 119 19.0000 29.8029 
30 59 19.0000 20.5395 
32 43 19.0000 16.0831 
40 42 19.0000 20.0188 
45 23 19.0000 13.3692 
50 33 19.0000 20.2291 
64 35 19.0000 27.9001 

bold nUlllbers represent the optimum solution for (20x14) grid 
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Figure 4.6 Time (r quired to reach the optimum) as a function of the number f 
ants (l/l) f r (20 14) grid 
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Compare b) against a) 
111=6 fJ=3 elite= 1 
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4.4.1.3 Parameter Settings (a & ~) 

The most important part of ACS is the treatment of the trail intensities. As already 

mentioned, the transition probability (reflecting the decision of an ant to choose a 

particular node) is a trade off between two desirability measures: the visibility and the 

trail intensity. The visibility implies that a node with a minimum path should be chosen 

with a high probability thus implementing a greedy constructive heuristic. The trail 

intensity suggests that if on a node there has been a lot of traffic then it is highly 

desirable, thus implementing the autocatalytic process. The relative importance of trail 

(representing global information) versus visibility (representing local information) is 

controlled by the parameters a and /3. 

Several tests have been conducted to investigate the behaviour of the ACS. Therefore, 

various combination of ACS parameters, namely, a and ~ , have been considered taking 

into account the best settings of the number of ants and elite ants in previous experiments. 

The possible stagnation behaviour is also investigated; i.e., the situation in which all ants 

followed the same path. This indicates that the system has ceased exploring new 

possibilities and therefore no better solution will arise. 

Simulation results are summarised in table 4.4 and classified into the three following 

categories as illustrated in figure 4.8: 

• Bad solutions and stagnation: for high values of a the algorithm enters stagnation 

behaviour very quickly without finding very good solutions. 

• Bad solutions and no stagnation: if enough importance was not given to the trail (i.e., 

a was set to a low value) and visibility is low, then the algorithm did not find very 

good solutions. 
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• Good solutions: Good solutions are found for a range of parameter combinations. 

Figure 4.8 suggests that good solutions are not limited by clear boundaries. Moreover. the 

ACS algorithm does not find the optimum for high values of a(a~ 1). 

On the other hand, the ACS algorithm frequently converged for low values of 

a (a:S; 0.5) and high values of fJ (fJ ~ 4) with no clear boundaries to the convergence area 

(see figure 4.8). 

The results obtained are consistent with our understanding of the algorithm. A high value 

for a means that the trail is very important. Therefore, ants tend to choose edges chosen 

by other ants in the past, and that has led to the poor performance. On the other hand, low 

values of a make the algorithm very similar to a stochastic multi-greedy algorithm 

guided with a very good visibility (valuable amount of local information). That is why 

the ACS has converged even for particularly high values of ~ compared to a for this 

particular test problem. 

4.4.2 Shortest Path Problem with Deterministic Crowding Genetic Algorithm 

For comparison purposes, DCGA model has been applied to the same artificial test 

problem (shortest path problem). The chromosome used in this case is in binary and 

includes nroute genes. Each gene is a binary number of sufficient bits to enumerate the 

Iltype possible types. Several tests have been conducted to investigate the effect of the 

GA parameters, namely, the population size, crossover and mutation probabilities on the 

performance of the DCGA algorithm. The stopping criterion is to end the search after a 

certain number of generations. The parameter settings and simulation results are 

summarised in tables 4.5 & 4.6. 

Figurl' 4.9 shows the time required to reach the optimum (best length) as a function of the 
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population size. Results suggest that the optimum (in this case 19) could be obtained with 

different settings of the population size but with different computational times. The 

optimum computational time appear to be 7 seconds for a population size of 150. 

In addition, figure 4.10 depicts the behaviour of DCGA with different crossover and 

mutation probabilities. The corresponding results are classified into the three following 

classes: 

• Good solutions: DCGA finds the best solution (in this case 19). 

• Close solution: DCGA gets close to the best solution. 

• Bad solution: DCGA is getting far from the best solution. 

It is noticeable that the optimum can be obtained with a limited set of parameter settings. 

Moreover, the DCGA requires fine-tuning of the parameters due to the narrow range of 

convergence. 
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Table 4.4 Effect of the parameters (ex & ~) on the performance of ACS 

ntype=14 nroute=20 m=6 elite=2 iseed=123456789 ctetrail=0.5 ctevisib=1 
p=0.8 0=100 maxcycle=300 
a j3 ncycles nants min 
0.2 1 --- I 34.0822 
0.2 2 --- I 23.1356 
0.2 3 --- I 19.8284 
0.2 4 130 1 19.0000 
0.2 5 76 1 19.0000 
0.2 6 108 1 19.0000 
0.2 7 26 1 19.0000 
0.2 8 18 1 19.0000 
0.2 9 --- 3 19.4142 

0.3 1 --- 1 21.0711 
0.3 2 --- I 21.0711 
0.3 3 --- I 19.4142 
0.3 4 --- 3 19.4142 
0.3 1" .. 5'1 , --- 1 19.4142 
0.3 6 --- 3 19.4142 
0.3 7 --- 5 19.4142 
0.3 8 --- 4 19.4142 

0.4 1 --- 1 23.9574 
0.4 2 --- 1 19.8284 
0.4 3 --- 3 19.4142 
0.4 4 68 1 19.0000 
0.4 5 --- 5 19.4142 

0.5 1 --- 1 21.4853 
0.5 2 --- 2 20,2426 
0.5 3 40 1 19.0000 
0.5 4 --- 1 19.8284 
0.5 5 --- 6 19.8284 

1 1 --- 6 30.4789 
I 2 --- 6 26.5339 
1 3 --- 6 21.4853 
1 4 --- 6 22.7213 
] 5 --- 6 21.0711 

2 1 --- 6 50.6180 
2 2 --- 6 48.1339 
2 3 - - 6 34.6013 
2 4 --- 6 27.2646 

2 5 --- 6 24 .8836 

Bold number represent the optimum for (20x14) grid 
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(G & B)* (G &B) (G &B) (G &B) 
up to up to up to up to WS for ~>6 

~=85 ~=70 ~=35 ~=25 

6 
B WS WS 

5 G FG WS WS 

4 FG ws ws 

3 w FG FG ws ws 

2 w w w B w ws ws 
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Figure 4.8 ACS behaviour for various combinations of Q & f3 for (20x14) grid 
m=6 elite=2 
G ACS finds the best solution without entering the stagnation 

behaviour. 
FG 
B 

ACS is very close to the solution. 
ACS does not find good solutions but does not enter the stagnation 
behaviour. 

W ACS is getting worse solutions, 
WS ACS is getting worse solutions and enters the stagnation behaviour. 

* 
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Table 4.5 Effect of the population size (popsize) on the performance of GA 

ntype=14 nroute=20 iseed=987654321 
pswitch=0.04 pmut=0.004 maxgen=300 
popsize gen mIn time (sec) 
100 128 21.4787 5.44783 
125 152 20.2426 6.72968 
150 247 19.0000 6.72960 
200 225 19.4142 10.20460 
225 232 19.4142 1l.92715 
250 276 19.0000 12.11742 
280 227 19.0000 11.60669 
300 219 19.0000 11.57665 
325 282 19.4142 17.21475 
350 158 19.4142 17.89573 
400 252 19.0000 17.96583 
425 220 19.0000 17.06454 
500 215 19.0000 19.78845 

Bold numbers represent the optimum for a grid of (20x 14) 
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Figure 4.9 Time required to reach the optimum as a function of the population ize f r 
(20x 14) grid 
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Table 4.6 Effect of crossover and mutation probabilities (pcross & pmut) on 
GA performance 

ntype=14 nroute=20 iseed=987654321 popsize=150 maxgen=1000 
pcross pmut Ken mm 
0.03 0 169 20.2426 
0 0.004 973 22.7213 
0.01 0.003 161 21.0711 

0.02 0.002 151 19.4142 
0.02 0.003 209 19.000 
0.02 0.004 227 19.8284 
0.02 0.005 196 19.4142 

0.03 0.002 183 20.2426 
0.03 0.003 171 19.4142 
0.03 0.004 205 19.0000 
0.03 0.005 206 19.4142 

0.04 0.002 146 20.2426 
0.04 0.003 174 19.8284 
0.04 0.004 247 19.0000 
0.04 0.005 259 19.4142 

0.05 0.002 223 20.2426 
0.05 0.003 284 19.0000 
0.05 0.004 355 19.0000 
0.05 0.005 260 20.6569 

0.06 0.002 218 19.8284 
0.06 0.003 187 19.8284 
0.06 0.004 367 19.4142 
0.06 0.005 360 19.4142 

Bold numbers represent the optimum for a gnd of (20x14) 
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pmut 
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0.003 B B 
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o 0.02 0.03 0.04 0.05 0.06 pcross 

Figure 4.10 GA behaviour for different combinations of crossover and mutation 
probabilities for (20xI4) grid. 
G GA finds the best solution. 
FG GA Gets close to the best solution. 
B GA is getting far from the best solution 
W GA is getting further from the best solution 

4.5 Conclusions 

The structure of the two proposed algorithms namely, the Ant Colony Search (ACS) and 

the Deterministic Crowding Genetic Algorithm (DCGA), have been illustrated in this 

chapter. Then, the application of both optimisations algorithms to the shortest path 

problem (with a known optimum) has been performed in an attempt to investigate their 

performance. Finally, a comparative investigation of both algorithms was carried out. 

Simulation results have shown that both algorithms (DCGA & ACS) are robust and 
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effective in finding the known optimum for the artificial test problem (shortest path 

problem). Moreover, the ACS algorithm converged in relatively less computational time 

(few seconds less). 

Experimental results have also demonstrated the importance of synergy in ACS. That is, 

the search carried out by a given number of ants is more effective with co-operation than 

without (ants acting independently). 

Moreover, the effect of certain parameters of ACS namely, a and [3, has been 

investigated. As already pointed out, a and [3 are parameters that control the relative 

importance of trail (representing global information) versus visibility (representing local 

information). It was found that the optimum can be obtained with different combination 

of a and [3 . However, the ACS algorithm provides a wider range regarding the visibility 

parameter (P). That is, ACS frequently converged with P E {4 ... 90} and for low values 

of ex ({O.I ... O.S}). The reason may be the high visibility in conjunction with low values 

of ex, for this particular test problem, is effective in guiding the search towards 

convergence. On the other hand, GA does not have the concept of visibility and therefore 

has less local search capability, resulting in a narrower range of convergence. 

Consequently, ACS appears to be more reliable than the DCGA model regarding the 

tuning of the parameter settings. 

Therefore, it is interesting to apply the ACS & DCGA algorithms to the power 

transmission-planning problem. However, we can not generalise about the optimum 

parameter settings nor the behaviour of the ACS & GA from this particular problem. The 

reason is that the transmission-planning problem is a difficult non-linear. non-convex.. 

discrete-variable constrained optimisation problem. 
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Chapter 5 

Application of Genetic Algorithms and Ant Colony Search to Power 
Transmission Planning 

5.1 Introduction 

The goal of transmission planning in electric power systems is a robust network, which is 

as economical as possible, reliable and in harmony with its environment taking into 

account the inherent uncertainties. The mathematical formulation of the problem leads to 

a complicated, integer-valued, non-convex, non-linear mathematical programming 

problem. 

In this chapter, we present two heuristic approaches for the transmission planning 

problem, namely the Deterministic Crowding Genetic Algorithm and the Ant Colony 

Search. 

Several tests have been carried out on the NGC system described later. These tests have 

been subdivided into four categories according to the objective function. The aim is to 

assess the GA & ACS models as planning tools to optimise the configuration of the 

system. 

Because the computational time increases with the complexity of the problem, and the 

ACS appears to be less efficient than the GA, further modelling of the transmission 

planning problem will subsequently be carried out using the GA approach. 

Moreover both GA representations namely, the binary and integer, are implemented in 

the DCGA program. However, the binary representation has been adopted. 
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5.2 Network Modelling and Contingency Analysis 

To allow more rapid evaluation of the present network model, the DC load flow [Knight, 

1972] has been adopted. The DC load flow is also used in conjunction with the 

Householder modified matrix formula for outage studies [Cheng, 1983]. 

5.2.1 DC Load Flow Model 

The DC load flow provides a linear active power flow model that is sufficiently accurate 

for the present application. The DC model assumes that: 

• The system is lossless and each line is represented by its series reactance. 

• Each bus has rated system voltage of 1.0 per unit. 

• Angular differences between voltages at adjacent buses m and n are small. 

On the basis of these assumption, the per unit power and current are synonymous and 

therefore can be computed as follows: 

(5.1 ) 

Where 

Xmn is the series reactance for a line between buses m and n (per unit), 

OJ is the voltage phase angle at bus i. 

5.2.2 Branch Outage Simulation 

When considering line additions to, or removals from, an existing network, it is not 

always necessary to build a new admittance matrix; especially if the only requirement is 

to establish the impact of the changes on the remaining network (e.g. overload, 

islanding, satisfaction of load, etc). Therefore, further modified DC models are then 

constructed for every outage case to be considered. 
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Let [Bo] denote the coefficient matrix for the base-case DC load flow. In general, the 

outage of a line can be reflected in [Bo] by modifying two elements in row k and two 

elements in row m. The new matrix (with the outage) is therefore as follows: 

where 

b is a line or nominal transformer series admittance, 

[M] is a row vector which is null except for Mk = a, and M11l = -1, 

a is the off-nominal turns ratio referred to the bus corresponding to 

row m, for a transformer 

or 

= + 1 for a line. 

Depending on the types of the connected buses, only one row, k or m, might be present 

in [B I], in which case Mk or Mm is zero, as appropriate. 

Therefore, the new bus angle vector can be computed as follows [Cheng, 1983]: 

where 

[81] = [8] - c' [X'][M][8] 

C' = ( lib + [M][X'] t 1 

[X'] = [BIl[M]t 

[8] = Bus angle vector of the base-case DC load flow. 
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Once the voltage phase angles at the buses are evaluated the new power flows in the 

remaining network can be computed according to eq. 5.1. 

5.2.3 Load Demand Constraints 

In the representation of the network, a route with no line (type 0) is simulated by a very 

high impedance. To avoid the possibility of using such a route to satisfy the load 

demand requirement, a test criteria is introduced. This involves the observation of the 

angle difference of every route. If the latter is greater than a predefined limit, a penalty 

is applied to the line violating that limit. This penalty is chosen to be proportional to the 

corresponding line flow. 

5.2.4 Network Security Requirement 

In order to meet security requirements, it is necessary that no line shall be overloaded 

when one or more circuits are removed from the planned network. In this work, the so­

called 'n-line' security analysis is adopted, where the optimum network plan is designed 

to withstand any single line outage without overloading. Furthermore the possibility of 

'islanding', whereby the network operates as two or more disconnected parts, is also 

precluded (via high penalties) both in the intact network and in any of the outage case 

networks. Figure 5.1 illustrates the implementation of (n-line) security. 
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Select a line for outage 

Use the modified DC model to 
simulate the outage of that line 

y 

y 

Check for overload of the network and 
penalise according to the overload 

Return the cost of 
the solution 

Penalise according to the number of 
islands, return the cost of solution 

Figure 5.1 (n-line) security modelling 

5.3 Evaluation of the Annuitised Loss Cost 

The evaluation of the loss cost encompasses the following elements: 

• the capacity cost related to the maximum MW level of losses and reflecting the cost 

of building extra generation capacity, 

• and the energy cost related to the total MWhr consumed and reflecting fuel cost, etc. 

In order to compute the annuitised loss cost, the capacity and energy loss costs have to be 

evaluated for a single year, and are then assumed to remain constant during the planning 

period (40 years in our case study) and into the future. Next, the annual costs have to be 

converted to equivalent present values so that they are compared on an equal basis with 

the capital investment cost (which is assumed to be made "now" and is one-off). 
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Assuming the cost of the first year is Xl, then the present values of costs in the future 

years form a geometric series: 

X
2 

= XI / (1 + disc rate) 

/ ( 1 d · )Ilo)'r-I 
XIlO\T = XI + lSC _ rate . 

where 

is the discount rate 

A discount rate of 0.075 has been applied in the present study. 

Therefore the present value of loss costs for the next 40 years in the future is equivalent 

to the sum of the above geometric series [Khatib, 1997] as follows: 

present value = XI + x
2 
+ X3 + ... + x/loyr = XI . ( 1- 1/ ( 1 + disc _ rate rOyr

-
1 

) / disc _ rate 

To work out the annual energy losses, the load factor and shape of the load curve playa 

significant role. Because the losses are not constant during the year a loss load factor will 

be applied to the peak losses. By definition the loss load factor is the ratio of the average 

real annual losses to the annual peak losses. In the network model adopted, a loss load 

factor is introduced for individual routes. 

Consequently, the annuitised capacity and energy costs are computed respectively as 

follows: 

(ll/l1l1itised capacity cos t = peak _losses· lcci 
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annuitised energy cost = peak _losses . lee! . I)lf i 

where 

lee! = cap _ cos t . ( 1 - 1/ ( 1 + disc _ rate r oyr
-

1 
) / disc _ rate· 1000000 

leei = smp . 8760hrs . ( 1 - 1/ ( 1 + disc _ rate ro)'r-l ) / disc _ rate· 1000000 

lUi are the loss load factor for route i, 

lee! is the loss capacity cost factor, 

lee! is the loss energy cost factor, 

noyr is the number of years (40 years in our case study), 

cap_cost is the capacity cost factor per year (30000 £/MW /year), 

smp is the system marginal price (25 £/MWhr). 

5.4 Fitness Function for Transmission Planning 

The objective of transmission planning is to minimise investment cost together with the 

annuitised cost of energy losses, while satisfying system constraints. Both approaches 

eGA & ACS) require mapping the objective cost function into a fitness function. Any 

violation of constraints implied by a candidate solution is handled using a penalty 

function approach, in which penalty costs are incorporated into the fitness function so as 

to reduce the apparent fitness of an infeasible candidate. 

The overall objective function considered is therefore as follows: 

F - Ic(( 'L 19; . IU~ + Icc!. 'L 19; (5.3) -

+ E. 'LeR; + \{i·'L1 pf; I 
+ ¢ . L ( I p!; 1- ratl,. ) + L Ii· costl; 

+ Po . 01isl - 1) + L fl; . L (I P!k 1- ratlk ) 
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where 

F 

leef 

19i 

lIf', 
, I 

leef 

E 

is the overall fitness value, 

(L implies summation over the appropriate elements) 

is the loss energy cost factor, 

are the thermal energy losses for each line at peak load, 

are the loss load factors, 

is the energy loss capacity cost factor, 

is the environmental impact cost factor, 

are the environmental impact factors for each line, 

88 

is a penalty cost factor for unsatisfied loads (based on the power flow that 

would be required to satisfy the load), 

pf; 

rat1i 

Ii 

eostli 

Po 

nis! 

Jii 

are the power flow in the lines, 

is a penalty cost factor for line overloading, 

are the power flow ratings of each line, 

are the lengths of each line, 

are the capital costs (per unit length) of each line, 

is a penalty cost factor for network islanding, 

is the number of network islands, 

is a penalty cost for line overloading following an outage. 

Any additional factors that are pertinent to the planning problem can easily be added to 

the fitness function, provided that they can be computed as a function of a candidate 

string, However the computational time required in evaluating the fitness function will 

have a direct impact on the overall solution. 

The candidate string generated by the GA or ACS is interpreted as a specific power 

network configuration. Power flows, overloads (if any), and approximate energy losses 

are then evaluated using the DC model. Further modified DC models are constructed for 

every outage case to be considered. Then the string candidate is checked against security 
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criteria. Furthermore, the possibility of 'islanding' is also precluded (via high penalties) 

both in the intact network and any of the outage case networks. 

Figure 5.2 summarises the process of analysing the feasibility of the network design 

generated by the GA or ACS and also evaluating its fitness. 

I For every candidate solution (power network configuration) I 

+ 
I Evaluate the fitness (cost of the network and losses) 1 

+ 
Check against the constraints (satisfaction of load demand 

and line overloading) and penalise accordingly (see eq. 5.3) 

Check against 'n-line' security as described in fig. 5.1 I 

+ I Return the final fitness of the candidate I 

Figure 5.2 Analysis of the feasibility of a candidate solution and 
evaluation of its fitness 

5.5 Cost Optimisation Problems 

The problem objective function has been subdivided into four different cost optimisation 

problems. The various classes of problem are described in the following sections. For two 

of the problem classes the nature of the optimal solution is known in advance from 

theoretical considerations. These cases provide an opportunity to test the validity of the 

solutions proposed by GA and AS approaches. The remaining two problem classes are 

more realistic, but are also complex and do not have known optima. For these cases, only 

CIA has been considered as this approach was found to be significantly more efficient 
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than ACS (as will be shown later). Moreover, it is not possible to assess the solutions 

provided by GA theoretically and it is necessary to rely on numerical experiments. 

5.5.1 Problem Class A: Cost of Energy Losses Only 

For this problem class, the cost of energy losses is to be minimised subject only to the 

satisfaction of required generation and load levels throughout the network. Other costs 

and constraints are temporarily neglected. From considerations based on simple electrical 

network theory, it is apparent that an optimal solution for this case consists of a 

transmission network design with each available route occupied by the line type having 

the lowest electrical resistance. 

5.5.2 Problem Class B: Investment Cost Only 

In this problem class, only the capital cost of transmission lines is considered, subject to 

satisfying required generation and load levels. Other costs and constraints are temporarily 

neglected. A theoretical optimal solution for this case consists of a transmission network 

design based on a minimum length spanning tree (i.e. a radial network with shortest 

possible total line length) in which the line with lowest capital cost is used throughout. 

5.5.3 Problem Class C: Energy Losses and Investment Cost 

This problem class represents a realistic planning problem in which all factors, except 

security against outages, are considered. In particular, the solutions obtained for this class 

of problems show how energy loss costs are to be traded-off against initial capital costs. 

There are no known optimal solutions for this class of problems, and so the solutions 

obtained by GAs are of significant interest. 
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5.5.4 Problem Class D: Energy Losses, Investment, and Security Analysis Cost 

This final problem class represents the full-scale problem with all factors considered. 

Again no optimal solutions are known in advance. The comparison of the solutions 

obtained for problem class C with those obtained for class D allow the additional cost of 

designing a secure network to be assessed. 

5.6 Performance Measures 

The performance measure used to judge the two proposed algorithms is based on the 

efficiency of the algorithms (which is assessed by observing the computational time 

needed to identify the optimum) and the convergence characteristics. 

The algorithms can be terminated after a given number of generations (or cycles) based 

on empirical evidence. After the algorithm is stopped the member with the best fitness at 

the end of the run is selected as the optimum solution. The optimum setting of algorithm 

parameters corresponds to the least computational time to achieve the optimum solution. 

5.7 Deterministic Crowding Genetic Algorithm for Transmission Planning 

Before using any of the GA models for transmission planning, the problem must be 

represented in a suitable format that allows the application of the GA operators. This is 

the problem encoding process. The GA works by maximising a single variable, the 

fitness function. Therefore, the objective function and some of the constraints of the 

transmission-planning problem must be transformed into some measure of fitness as 

mentioned earlier. 

The GA model to be used for the optimal solution of the transmission network is the 

Deterministic Crowding Genetic Algorithm (DCGA). Moreover, a modified definition of 

uniform crossover is adopted. 
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5.7.1 Problem Encoding 

Binary representation has been widely used for GA analysis, partly because of the ease 

of binary manipulation and the fact that GA theory is based on the binary alphabet 

[Holland, 1975]. However some recent implementations have adopted other, more 

natural knowledge representation, with many successful results. When a representation 

other than bit strings is used, it is often necessary to redefine the genetic operators. 

Exhaustive tests have been conducted with the binary representation to analyse the 

performance of the GA and to determine the range of optimum parameters. In addition, 

a limited number of experiments with a special symbol representation, namely the 

integer representation, have been carried out to assess the relative merits of this 

representation for the present problem. It was concluded that the binary approach was 

superior in the cases considered. Therefore, further analysis is undertaken with the 

binary representation and the corresponding simulation results are only reported in this 

chapter. However, for the sake of completeness, the alternative integer representation 

for the present problem is presented. 

5.7.1.1 Binary Representation 

Adopting a binary representation, each member of the population corresponds to a string 

of 1 s and Os, and represents a given transmission network design. 

Every route is assigned a binary number, which represents the type of transmission line 

selected for that route. In the test model presented later, 15 line types are availahle, 

including line type 0 to represent an unused route, and various single-circuit and double­

circuit line types. If it is anticipated that two (or more) double circuits may be required 

on a given route, it is necessary to specify two parallel routes in the problem description. 
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Associated with each line type is the corresponding capital cost, the electrical resistance. 

etc. A bit string of length 4 is needed to represent the 14 types. This implies that one 

undefined string, which does not have any corresponding line type, may occur. If this 

string is generated during the execution of GA, the GA operators that produce the 

invalid string are repeated until a valid string is produced. The 4-bit strings for each 

route are concatenated to form an overall string which represents a particular network 

design, and which is a member of the GA popUlation. 

A typical string representing a network design is as follows: 

100 1 1 100 00 1 a ... . ..... . ..... ... ........ 000 1 

Where 

T· l .......................... Tnroute 

Ti represent the line types of route i 

and 

nroute is the number of routes (or wayleaves) in the transmission network. 

5.7.1.2 Integer Representation 

In this representation, each member of the population corresponds to a string of integers, 

and represents a given transmission network design. 

Every route is represented by an integer number, which represents the type of the line 

for that route. In the test model presented later, 15 line types are available. These 

include line type a to represent an unused route, and various single-circuit and double-

circuit line types. 

The integers for each route are concatenated to form an overall string which represents a 

particular network design, and which is a member of the GA population. 
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A typical string representing a network design is as follows: 

9 

TJ 

Where 

o .......................... 1 

Ti ........................ Tnroute 

Ti represent the line types of route i 

and 

nroute is the number of routes (or wayleaves) in the transmission network. 

5.7.2 Experimental Results 

The DCGA model has been applied to the range of problems (problem classes A, B, C 

and D) derived from a 23-node 49-route transmission network design problem, which 

represents a simplified version of the England and Wales transmission network (table 

5.3). The demand/generation profiles represent the predicted peak values for the 

immediate future (see table 5.1). With 15 line types to choose from, the DCGA model has 

the ability to choose a line type in the range 0 to 14 for every route, with type 0 

representing an unused route and 1 to 14 representing standard transmission line (single­

circuit or double-circuit lines) operating at voltage levels 275 kV, 400 kV, 750 kV (see 

table 5.2). The highest voltage level (750kV) is not used in the U.K at present and thus 

represents a hypothetical option. 

Rigorous tests that consumed several months of CPU time have been performed on the 

sample problem and considering the four classes of cost function. The aim is to 

investigate the performance of the DCGA in the search for the optimum network design. 

The effect of various combinations of DCGA parameters, namely crossover and mutation 

probabilities, population size and the seed (i.\'c>ed is an arbitrary large integer used to 
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initialise the random number generation software) responsible for the randomisation 

process (pswitch, pmut, popsize, and iseed respectively), have been considered. The 

convergence criterion is chosen so that a run is terminated after a fixed number of 

generations and the best obtained so far is recorded. The number of generations could be 

different for the various optimisation problems considered. Table 5.4 reports on the 

organisation of simulation results corresponding to the range of problem classes 

considered and the various combinations of DCGA parameters adopted. 

For set values of popsize and iseed, the DCGA program is executed for a range of values 

of pmut and pswitch. The best results are illustrated in graphs. Every graph is associated 

with a certain value of pmut and shows the variation of the best (outcome of a run) as 

pswitch increases and corresponds to a series of DCGA runs that are generated 

automatically in the main program. 

Adopting the same iseed and the optimum setting of pmut of previous runs, the DCGA is 

run again for a range of popsize and pswitch values. For those tests, every graph is 

associated with a certain value of popsize and shows the variation of the best as pswitch 

increases The optimum setting of pmut corresponds to the least computational time to 

achieve the optimum solution. More tests are also carried out by setting pmut and popsize 

to the same values considered in previous runs, and running DCGA program for a range 

of iseed and pswitch values. In this case, every graph is associated with a certain value of 

iseed and shows the variation of the best as pswitch increases. 
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Types 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Table 5.1 The demand / generation profiles for 
the network model for a horizon of 40 years 

Nodes Node Name PD(MW) PG(MW) 
1 CHLX 1400 0 
2 COTT 475 4079 
3 DAIN 3585 246 
4 DEES 523 1631 
5 DUSE 318 2484 
6 EXET 1254 0 
7 HARK 334 1000 
8 HEYS 1033 2440 
9 HINP 28 1430 

10 INDQ 1416 1 
11 LOND 15902 10402 
12 LOVE 3436 115 
13 MELK 1272 1026 
14 MERS 2362 2405 
15 NEAS 2645 4697 
16 NWAL 453 2564 
17 PEMB 0 1597 
18 SIZE 746 1377 
19 SWAL 1975 1234 
20 SYOR 4608 10040 
21 WALP 745 574 
22 WMID 5950 0 
23 WMIG 741 1860 

Table 5.2 Transmission line types: costs and characteristics 

Voltages Circuit Types Rating Reactance Resistance 
(kV) (MW) (%/km) (%/km) 
750 Double-circuit 18866 0.0026 0.00014 
750 Single-circuit 9433 0.0052 0.00027 
400 Double-circuit 6840 0.0083 0.00055 
400 Double-circuit 5720 0.0091 0.00055 
400 Double-circuit 5040 0.0092 0.00065 

400 Double-circuit 4360 0.00925 0.0008 

400 Double-circuit 4020 0.0095 0.0009 

400 Double-circuit 3420 0.0098 0.00105 

275 Double-circuit 4700 0.01925 0.00116 

275 Double-circuit 3000 0.01957 0.00169 

275 Double-circuit 2760 0.0201 0.0019 

275 Double-circuit 2360 0.02073 0.00222 

275 Double-circuit 1730 0.025 0.0027 

275 Double-circuit 1350 0.02 0.00525 
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Cost 
(£m/km) 

0.88 
0.616 
0.578 
0.517 
0.503 
0.405 
0.394 
0.343 
0.578 
0.405 
0.394 
0.343 
0.262 
0.223 
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Table 5.3 Transmission network model 
Routes Sending Receiving Length(km) LLF 

1 WMID CHLX 47 0.5 
2 LOND CHLX 106 0.5 
3 MELK CHLX 58 0.5 
4 SWAL CHLX 113 0.5 
5 SYOR con 103 2* 
6 SYOR con 34 2 
7 WMIG con 71 0.5 
8 LOND COTT 222 0.5 
9 LOND COTT 191 0.5 
10 WALP COTT 104 0.5 
11 SYOR DAIN 98 2 
12 SYOR DAIN 110 2 
13 SYOR DAIN 126 2 
14 HEYS DAIN 60 0.5 
15 DEES DAIN 60 0.5 
16 WMIG DAIN 99 0.5 
17 MERS DEES 12 0.5 
18 WMID DEES 117 0.5 
19 NWAL DEES 79 0.5 
20 NWAL DEES 130 0.5 
21 LOND DUSE 101 0.5 
22 LOVE DUSE 179 0.5 
23 LOVE EXET 210 0.5 
24 HINP EXET 65 0.5 
25 INDO EXET 143 0.5 
26 NEAS HARK 107 2 
27 HEYS HARK 148 2 
28 MERS HEYS 81 0.5 
29 INDO HINP 198 0.5 
30 MELK HINP 87 0.5 
31 SIZE LOND 161 0.5 
32 WMIG LOND 178 0.5 
33 WALP LOND 122 0.5 
34 MELK LOND 132 0.5 
35 LOVE LOND 57 0.5 
36 SWAL MELK 107 0.5 
37 SWAL MELK 157 0.5 
38 SYOR NEAS 289 2 
39 SYOR NEAS 176 2 
40 SWAL PEMB 144 0.5 
41 SWAL PEMB 146 0.5 
42 WALP SIZE 184 0.5 
43 COTT SYOR 27 2 
44 WMIG WMID 52 0.5 
45 WMIG WMID 84 0.5 
46 WMIG WMID 113 0.5 
47 WMID DEES 117 0.5 
48 WMID CHLX 47 0.5 
49 WMIG con 71 0.5 

* for some routes the flow at system peak is relatively low (non-conforming lines) 
and a loss load factor of greater than 1.0 must be applied. 

--- ~---------------------
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Table 5.4 ~lassificati?n ~f simulation results corresponding to the range of problems considered 
and the varIOUS combmatIOns of DCGA parameters adopted 

Class A Class B Class C Class D 

Figures 5.4 Figure 5.9 Figure 5.11 Figure 5.14 
(optium) (optimum) (proposed (proposed 

optimum) optimum) 
Pmut Tables 5.5-5.7 Tables 5.8-5.10 Tables 5.13-5.15 Tables 5.16-5.18 
and Figures 5.3 Figures 5.5-5.6 Figures 5.12-5.13 Figures 5.15-5.16 
pswitch Figure 5.10 

( convergence 
graph) 

popSlze - Tables 5.11-5.12 - -

and Figures5.7 -5.8 
pswitch 
iseed - - - Tables 5.19-5.20 
and Figures 5.17-5.18 
pswitch 

tWlut is the probability of mutation popsize is the population size 
I'switch is the probability of crossover iseed is responsible for initialising the randomisation process 

5.7.2.1 Problem Class A 

The tests were conducted by setting up some of the GA parameters as shown in table 5.5 

and varying other parameters such as the crossover and mutation probabilities (pswitch 

and pmut). A summary of the performance of the DCGA is given in tables 5.6 and 5.7 

and figures 5.3 and 5.4. 

Figure 5.4 shows the power network design obtained by the DCGA model. It is important 

to note that every route has been used and the least resistive line type has been chosen 

(line type 1) throughout. This result agreed with the known theoretical optimum for this 

problem class. 

Figure 5.3 suggests that the optimum is obtained with a wide range of the GA parameters 

considered particularly when ps~\'itch E {0.01. .. 0.5}and pmut E {0.002 ... 0.009}. The 

reason is that the problem of loss minimisation appears to be quite easy for GA. It seems 
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straightforward for GA to use all possible routes, and the least resistive line type (which 

increases the fitness of the candidate) will be chosen through evolution. That is. once 

good solutions are obtained for particular routes, it is very likely for them to be 

propagated to the next generations through crossover and then selection and replacement 

(survival of the fittest). The best of a generation is always copied to the next generation, 

due to the embedded elitism in the DCGA model, and therefore good solutions (parents) 

are only replaced by the most similar solutions (children) if they are fitter. 

In addition, it can be seen from table 5.7 that the number of generations needed to 

converge is different for the various combinations of pmut and pswitch considered, and 

therefore the computational time is different. The optimum setting is when pmut E 

{O.002 ... 0.003} andpswitchE {O.02 ... 0.07}. 
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Table 5.5 GA parameter settings for class A 

GA parameter settings (class A) 

Popsize 500 

iseed 978456333 

maxgen 1000 

ptest 0.5 

Popsize is population size, iseed is responsible for the randomisation process 
I1wxgen is maximum number of generations of a run, 
ptest is probability for crossover applied on first bits of the parents . 

Table 5.6 GA Parameter settings (pmut & pswitch) for Class A 

Best (£m) after 1000 generations 

pmut--> 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 

pswitch 

0.01 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.02 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.03 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.04 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.05 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.06 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.07 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.08 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.09 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.1 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.2 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.3 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.4 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

0.5 238.095 238.095 238.095 238.095 238.095 238.095 238.095 238.095 

fJlI7l1l is the probability of mutation 
p.I'II'iICh is the pr bability f crossover 
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Table 5.7 Number of generations needed to converge for Class A 

Number of generations needed to converge 
pmut--> 0.002 0.003 0.004 0.005 0.006 0.007 0.008 
pswitch 

0.01 221 248 262 292 357 378 382 
0.02 191 178 223 255 316 321 368 
0.03 186 190 239 242 284 318 350 
0.04 177 194 224 252 271 315 354 
0.05 187 213 233 259 254 316 350 
0.06 187 205 235 247 280 355 364 
0.07 196 212 245 266 322 358 382 
0.08 205 217 259 276 281 378 384 
0.09 203 239 254 271 322 379 406 

0.1 221 235 276 289 355 362 388 
0.2 266 309 315 387 453 458 525 
0.3 342 368 412 454 526 559 630 
0.4 392 430 457 512 619 637 753 
0.5 426 486 532 565 707 753 795 

Run-time (min) ~ 21 for 1000 generations 

pmut is the probability of mutation 
pswitch is the probability of crossover 

0.009 
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Figure 5.3 Landscape representing the optimum as a function of pmut and 
pswitch for problem Class A 
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---- Line Routes Used 

Line Routes 

Figure 5.4 The optimum network design obtained by DCGA for problem 

Class A 
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5.7.2.2 Problem Class B 

In these simulations the combined effect of crossover and mutation probabilities (psH'itch 

and pmut respectively) is investigated. More analysis is also undertaken to study the 

effect of the population size (popsize) and pswitch on the performance of DCGA keeping 

the other parameters constant. The parameter settings and the simulation results are 

reported in tables 5.8 to 5.12 and figures 5.5 to 5.10. Figure 5.9 depicts the optimum 

network design obtained by DCGA whereby a minimal tree structure is constructed with 

the cheapest line type (14) chosen throughout. Again, this result agreed with the known 

theoretical optimum for this problem class, which is found to be more challenging for GA 

than problem class A. 

Tables 5.9 shows that the optimum can be obtained with different setting of pmut and 

jJswitch (pmut E {0.003 ... 0.009} and pswitch E {0.02 ... 0.2} ). However, the 

computational time is different as can be seen in table 5.10. The optimum setting (least 

computational time) seems to occur when pmut E {0.003 ... 0.004} and pswitch E 

{0.03 ... 0.1 }. Figures 5.5 and 5.6 illustrate the best as a function of pswitch and pmut. It is 

noticeable that the GA requires some tuning in order to obtain the optimum. Moreover, 

the DCGA exhibit a poor performance when the crossover probability is higher than a 

certain value (pswitch > = 0.2). The reason is that high performance structures are 

discarded faster than selection can produce improvements. However if the crossover 

probability is low (pswitch < 0.02) the search might stagnate, and the performance would 

de~rade. 
'-

Figures 5.7 and 5.8 depict the effect of the population size on the performance of the 

algorithm. It is important to note that GA exhibits poor performance for small population 
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size (the GA did not find the optimum when popsize is less than 200) whereas the GA 

was able to identify the optimum as popsize increases. The reason is that the population 

size affects both the performance and efficiency of a GA. Very small populations do not 

provide a sufficient sample of the problem domain whereas a large population is more 

likely to contain more representatives from the search space leading to a more 

informative search. However a large population requires more evaluations per generation 

possibly resulting in an unacceptable slow computation. 

Figure 5.10 illustrates the convergence graphs (variation of the best as the number of 

generations increase) of several runs corresponding to a particular value of pmut (0.004) 

and various values of pswitch in the range {0.01 ... 0.1} respectively. Figure 5.10 (b) is a 

magnified version of figure 5.10 (a) showing the variation of the best towards the end of 

evolution (best in the range £420m to £460m). It is important to note the convergence 

characteristic of DCGA in the search for the optimum. The best improves fairly quickly 

in the early stage of evolution, whereas this improvement slows down towards the end of 

the run, where the competition is held among similar and fit members. In addition this 

improvement depends on the crossover probability more than on mutation probability 

(optional for the DCGA model). The convergence graph is slower as pswitch increases 

and sometimes leads to poor performance. Moreover, we can see clearly that the best 

remains constant for a number of generations before it improves again. This implies that 

the stopping criteria for a run based on a maximum number of generations should be 

chosen carefully in order to allow enough exploration. Therefore, if the GA is left 

running for more generations, it is more likely to get better solutions and the landscape of 

figure 5.6 and 5.8 would be smoother. 
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Therefore, for production purposes it is recommended to run the program several time 

trying different parameter settings to ensure that the solution falls within the convergence 

area. Moreover, the GA provides other solutions (slightly more expensive) which are of 

interest to the planning engineer. These solutions (network designs) might be worthy of 

consideration due to additional factors, which were not included in the computer 

evaluation of the design cost. 

Table 5.8 GA Parameter settings for Class B 

G A parameter settings (class B) 

Popsize 500 

iseed 978456333 

maxgen 2000 

ptest 0.5 

popsize is population size, iseed is responsible for the randomisation process 
maxgen is maximum number of generations of a run, 
ptest is probability for crossover applied on first bits of the parents. 

Table 5.9 GA Parameter settings (pmut & pswitch) and simulation results for Class B 

8est(£m) after 2000 generations (class B) 

pmut--> 0.003 0,004 0,005 0.006 0.007 0.008 0.009 
pswitch 

0.01 425.93 425.93 425.93 432.62 422.585 425.93 426.153 
0.02 426.153 425.93 426.376 422.362 422.362 425.93 425.93 
0.03 422.362 422.362 422.362 432.174 431.059 422.362 423.923 
0.04 425.038 426.153 425.93 422.362 425.93 432.174 427.045 
0.05 427.491 425.93 422.362 422.362 422.362 422.362 422.362 
0.06 422.362 425.93 425.93 422.362 426.153 425.93 422.362 
0.07 427.491 422.362 422.808 422.585 422.362 422.808 427.045 
0.08 425.93 425.93 427.045 425.93 425.93 422.362 425.93 

0.09 422.808 422.362 422.362 422.362 425.93 422.362 429.944 

0.1 422.362 423.7 422.362 422.362 422.362 427.937 422.362 
0.2 423.923 436.857 426.153 423.7 422.362 434.627 427.853 

0.3 427.714 425.93 428.829 452.315 431 .728 423.031 425.707 

0.4 431 .282 425.93 423.031 434.283 454.653 450.461 444.996 

0.5 436.411 439.31 443.324 459.904 492.026 512.23 473.368 

pI/III! is the pr bability o f mutation 
PSlI'ifCh is th probability of era saver 
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Table 5.10 Number of generations needed to converge for CIa s B 

Number of generations needed to converge (class B) 
pmut--> 0.003 0.004 0.005 0.006 0.007 0.008 0.009 
pswitch - - - - - - -

0.01 - - - - - - -
0.02 - - - 1731 938 - -
0.03 712 585 956 - - 1409 -
0.04 - - - 823 - - -
0.05 - - 1017 1348 1345 1434 1668 
0.06 632 - 1016 1280 - - 1209 
0.07 - 939 - - 1108 - -
0.08 - - - - - 1953 -
0.09 - 791 857 1549 - - -

0.1 869 - 1267 1680 1916 1623 1972 
0.2 - - - - 1633 - -
0.3 - - - - - - -
0.4 - - - - - - -
0.5 - - - - - - -

Run-time (min) == 40 for 2000 generations 

pmut is the probability of mutation 
lJswitch is the probability of crossover 

Table 5.11 GA Parameter settings (pswitch & popsize) and simulation results for Class B 

Best (£m) (class B) 
popsize 100 200 300 400 500 600 700 800 
pswitch 

0.01 470.7531 429.7211 448.23 428.1601 425.93 422.362 425.93 425.93 
0.02 453.582 430.1671 422.585 426.153 425.93 425.93 425.93 425.93 
0.03 435.296 427.045 430.167 422.362 422.362 422.362 422.362 422.362 
0.04 466.739 442.432 427.491 422.362 426.153 422.362 422.362 422.362 
0.05 430.836 427.268 428.606 432.174 425.93 425.93 425.93 422.362 
0.06 433.735 426.376 422.808 425.93 425.93 422.362 422.362 422.362 
0.07 457.819 429.275 431.059 422.362 422.362 422.362 422.362 425.93 

0.08 427.714 422.362 422.808 422.362 425.93 422.362 422.362 425.93 

0.09 433.512 425.93 422.362 429.721 422.362 422.362 423.923 423.923 

0.1 429.052 427.714 422.808 427.937 423.7 426.376 427.491 425.93 

pOfJsize i the population size 
/Jsl\ 'irch is the probability of crossover 
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Table 5.12 Number of generations needed to converge for Class B 

Number of generations needed to converge after 2000 
generations 

Pops;ze-> 100 200 300 400 500 600 700 800 
pswitch - - - - - - - -

0.01 - - - - - 1218 - -

0.02 - - - - - - - -

0.03 - - - 862 585 817 656 639 
0.04 - - - 723 - 775 857 928 
0,05 - - - - - - - 936 ", 

0.06 - - - - - 1197 1624 749 
0.07 - - - 1109 939 1887 1145 -

0.08 - 873 - 986 - 627 1185 -

0.09 - - 766 - 791 778 - -

0.1 - - - - - - - -

Run-time (min) - 16 24 32 - 49 56 64 

pmut is the population size 
pswitch is the probability of crossover 
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5.7.2.3 Problem Class C 

In these simulations the combined effect of crossover and mutation probabilities (pswitch 

and pmut respectively) is investigated. The GA parameter settings and simulation results 

are summarised in tables 5.13, 5.14 and 5.15 and figures 5.11 to 5.13. Figure 5.11 

illustrates the best network design. For this realistic problem (with no known optimum), 

the best solutions obtained did appear to be of high quality when inspected manually by 

experts. Tables 5.14 shows that the best (proposed optimum) is obtained with a wide 

range of pmut and pswitch settings, particularly pmut E {0.003 ... 0.009} and pswitch E 

{O.O 1 ... 0.4}, but different computational time as can be seen from table 5.15. The 

optimum setting is when pmut E {0.003 ... 0.004} and pswitch E {O.O 1. .. 0.07}. 

Figure 5.12 and 5.13 depict the effect of pmut and pswitch on the performance of DCGA. 

It is noticeable how the DCGA is very reliable, relatively ease to get the best solutions in 

the range of parameters specified. 

Hind MunIer Chchho 

Table 5.13 GA parameter settings for 
class C 

GA parameter settings (class C) 

Popsize 500 

iseed 978456333 

maxgen 2000 

ptest 0.5 

popsi::.c is population size, iseed is responsible for the randomisation process 
maxgen is maximum number of generations of a run, 
ptest is probability for crossover applied on first bits of the parents. 
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Table 5.14 GA Parameter settings (pmut & pswitch) and simulation result for CIa C 

Best (£m) (class C) 
pmut--> 0.003 0.004 0.005 0.006 0.007 0.008 
pswitch 

0.01 1959.729 1942.698 1942.698 1942.698 1942.698 1942.698 
0.02 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.03 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.04 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.05 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.06 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.07 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.08 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.09 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.1 1942.698 1942.698 1942.698 1942.698 1942.698 1942.698 
0.2 1942.698 1942.698 1942.698 1942.698 1942.698 1953.031 

0.3 1942.698 1942.698 1942.698 1945.195 1942.698 1942.698 

0.4 1942.698 1942.698 1942.698 1963.065 1965.583 1948.691 

0.5 1959.729 1959.729 1967.02 1980.112 1972.515 2009.477 

pmut is the probability of mutation, 
pswitch is the probability of crossover 

Table 5.15. Number of generations needed to converge to 
the best so far for Class C 

Number of generations needed to converge (class C) 
pmut--> 0.003 0.004 0.005 0.006 0.007 0.008 0.009 

pswitch 
0.01 - 489 792 713 1190 1075 1093 

0.02 315 388 1092 807 757 1232 1426 

0.03 504 534 741 560 606 834 971 

0.04 504 551 511 597 706 1044 1193 

0.05 508 629 597 847 785 999 1276 

0.06 559 638 688 846 652 1004 959 

0.07 528 494 740 691 1038 1019 1257 

0.08 608 593 1200 1051 1156 1412 1297 

0.09 622 518 621 690 1312 1099 1581 

0.1 749 791 723 812 1384 1096 1434 

0.2 1539 931 1252 1431 1624 - 1912 

0.3 1360 1595 1400 - 1921 1973 -

0.4 1521 1495 1943 - - - -
0.5 - - - - - - -

Run-time (min) =: 41 for 2000 generations 

pl1lllt i the probability of mutation 
p witch is the probability of cros over 

0.009 

1942.698 
1942.698 
1942.698 
1942.698 
1942.698 
1942.698 
1942.698 
1942.698 
1942.698 
1942.698 
1942.698 
1944.648 
1988.463 
2030.096 
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5.7.2.4 Problem Class D 

In these simulations the combined effect of crossover and mutation probabilities (psH'itch 

and pmut respectively) is investigated. The GA parameter settings and simulation results 

are summarised in tables 5.16 - 5.18 and figures 5.14-5.16. Figure 5.14 illustrates the best 

network design. It is apparent that the network is 'n-1 secure' against outages. This is can 

be seen through the presence of loops which ensure the connectivity of load or generation 

to the network following an outage. For this realistic problem (with no known optimum), 

the best solutions obtained also did appear to be of high quality when inspected manually 

by experts. Figures 15-16 suggest that the best is obtained with a narrow and intermittent 

range of GA parameters particularly when pswitch E {0.04 ... 0.08} and pmut E {0.004 ... 

009}. However the computational time is different as can be implied from table 5.18. The 

optimum setting is pmut =0.004 and pswitch =0.06. 

Therefore for this realistic problem, the GA required a fine-tuning of GA parameters in 

order to obtain the best results. In addition to providing the best, the DCGA provides 

other solutions (slightly more expensive) which can be of interest to the planner engineer. 

More tests have been carried out to investigate the effect of iseed responsible for the 

randomisation process on the performance of the DCGA. The GA parameter settings and 

simulation results are reported in tables 5.19, and 5.20 and figures 5.17-5.18. It is 

noticeable that the GA is still able to locate the best with different initial population but 

also with different parameter settings. The results obtained emphasises the effectiveness 

of the algorithm but also the need to tune the GA parameters in order to get the best 

results. 

Hind Munzer Chcbbo 
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Table 5.16 GA parameter settings for class D 

GA parameter settings (class D) 

Popsize 500 

iseed 978456333 

maxgen 2000 

ptest 0.5 

Popsize is population size, iseed is responsible for the randomisation process 
Maxgen is maximum number of generations of a run , 
ptest is probability for crossover applied on first bits of the parents. 

Table 5.17 GA Parameter settings (pmut & pswitch) for Class D 

Best (£m) (classD) 
Pmut~ 0.003 0.004 0.005 0.006 0.007 0.008 0.009 
pswitch 

0.01 2265.952 2262.158 2265.377 2268.574 2262.34 2262.158 2265.377 
0.02 2271.995 2265.377 2264.781 2269.433 2262.158 2269.17 2262.603 
0.03 2262.158 2262.158 2262.158 2265.952 2262.158 2262.158 2262.158 
0.04 2262.158 2262.158 2262.158 2261.537 2262.158 2262.158 2262.158 
0.05 2265.377 2262.158 2262.158 2262.158 2262.158 2262.158 2261.537 
0.06 2262.158 2261.537 2271.995 2271.995 2261.537 2262.545 2262.158 
0.07 2262.158 2261.537 2261.537 2262.158 2262.158 2262.158 2262.545 
0,08 2262.158 2262.158 2262.158 2262.158 2261.537 2262.158 2262.158 
0.09 2262.158 2262.158 2262.158 2262.158 2262.158 2262.545 2262.603 
0.1 2262.158 2262.158 2262.158 2262.158 2262.158 2262.158 2262.158 
0.2 2262.158 2266.397 2262.158 2275.459 2267.522 2270.038 2277.477 

0.3 2267.522 2274.981 2285.377 2272.066 2274.29 2308.377 2292.257 

0.4 2269.549 2278.585 2290.583 2293.089 2293.625 2318.006 2295.1 2 

0.5 2284.051 2299.145 2296.9 2289.413 2334.029 2310.895 2356.677 

pm,ut is the probability of mutation 
pswitch is the probability of crossover 
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Table 5.18 Number of generations needed to converge for CIa D 

Number of generations needed to converge (class D) 
Pmut~ 0.003 0.004 0.005 0.006 0.007 0.008 0.009 
pswitch 

0.01 - - - - - - -
0.02 - - - - - - -
0.03 - - - - - - -
0.04 - - - 815 - - -
0.05 - - - - - - 1531 
0.06 - 579 - - 1548 - -
0.07 - 1024 1061 - - - -

0.08 - - - - 1822 - -
0.09 - - - - - - -

0.1 - - - - - - -

0.2 - - - - - - -
0.3 - - - - - - -
0.4 - - - - - - -

0.5 - - - - - - -

Run-time (min) :::: 86 for 2000 generations 

pmut is the probability of mutation 
pswitch is the probability of crossover 
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Table 5.19 GA Parameter settings (pswitch & iseed) and simulation results for CIa D 

Best (£m) for problem class 0 
iseed-> 978456333 123456789 246802467 135791357 357991357 
pswitch 

0.01 2262.158 2272.427 2264.781 2262 .1 58 2271.995 
0.02 2265.377 2262.158 2262.158 2261.537 2265.952 
0.03 2262.158 2262.158 2261.537 2262.158 2262.158 
0.04 2262.158 2262.158 2264.781 2265.377 2262.158 
0.05 2262.158 2262.158 2262.158 2262.158 2262.158 
0.06 2261.537 2269.17 2271.341 2262 .1 58 2262.1 58 
0.07 2261.537 2265.377 2262.1 58 2273.662 2262.1 58 
0.08 2262.158 2262.158 2262.158 2262.1 58 2262.158 
0.09 2262.158 2262.158 2262.158 2262.158 2261.537 

0.1 2262.158 2262.158 2262.158 2262.1 58 2262.1 58 
0.2 2266.397 2265.952 2267.655 2267.655 2267.522 
0.3 2274.981 2283.675 2279.739 2279.739 2265.952 
0.4 2278.585 2280.013 2275.718 2275.718 2279.739 
0.5 2299.145 2279.729 2281 .271 2281.271 2284.674 

iseed is responsible for the randomisation process 
pswitch is the probability of crossover 

Table 5.20 Number of generations needed to converge for Class D 

Number of generation needed to converge (class D) 
iseed--> 978456333 123456789 246802467 135791357 357991357 
pswitch 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.2 
0.3 
0.4 
0.5 

iseed 
pSll'itc/z 

- - - - -

- - - - -
- - - 857 -
- - 710 - -

- - - - -
- - - - -

579 - - - -

1024 - - - -
- - - - -
- - - - 1163 
- - - - -
- - - - -

- - - - -

- - - - -

- - - - -

Run-time (min)::::: 86 for 2000 generations 

r ponsible for the randomisation process 
the probability of crossover 

654321789 

2261.537 
2262.158 
2274.281 
2262.158 
2262.158 
2262.158 
2262.158 
2262.158 
2271 .995 
2274.281 
2262.158 
2266.397 
2271.449 
2273.803 

654321789 

831 
-
-
-
-
-
-
-
-
-

-

-

-
-
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5.8 Ant Colony Search for Transmission Planning 

In order to apply the ACS to the transmission-planning problem, the problem has to be 

mapped into a suitable format that allows the application of the ACS. This is the problem 

encoding. Moreover, ACS uses indirectly an evaluation function (inspired by the 

objective function and system constraints) to guide the search. Hence the objective 

function and some of the constraints of the transmission-planning problem must be 

transformed into an appropriate fitness as described earlier in this chapter. 

5.8.1 Problem Encoding 

Before using the ACS model, the transmission network with all-possible routes (nroute) 

and available types (ntype) is mapped into a (nroute x (ntype+ 1)) grid (see fig.5.19), 

where nroute and ntype represent respectively the vertical and horizontal axis. Then, III 

artificial ants much like those used in the TSP application [Dorigo, Maniezzo, and 

Colorni, 1996] are recruited to search for good solutions. Each ant corresponds to a 

string of integers, and represents a given transmission network design. 

Every route is represented by an integer number, which represents the line type of that 

route. In the test model presented earlier, 14 actual line types are available 

(supplemented by line type 0, to represent an unused route) including various single-

circuit and double-circuit line types. 

The integers for each route are concatenated to form an overall string which represents a 

particular network design, and which is a member of the ant population. 

A typical string (ant) representing a network design is as follows: 

° 3 6 ... 9 14 

T/lroute 

Hind l\ lunzcr Chchbo 
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Figure 5.19 Problem mapping: transmission network with all possible 
routes to (nroute x ntype+ 1) grid. 

Ant paths (possible networks) -o Node (possible assignment of a type to a route) 

5.8.2 Simulation Results 

Several experiments that consumed several months of CPU time have been carried out 

on the 23-bus NGC system described earlier. These tests only consider problems classes 

A and B. The reason is that the computational time increases with the complexity of the 

problem, and the ACS appears to be less efficient than the GA. 

Only the effect of various combination of the important ACS parameters ( a, {J, iseed. 

and 111) have been considered. The convergence criterion is chosen so that a run is 

terminated after a fixed number of cycles and the best obtained so far is recorded. The 

Hind 1\ lunzcr ('hchbo 



Chapter 5 Application of Genetic Algorithms and Ant colony Search to Power Transmission Plannina 125 
to 

number of cycles could be different for the various optimisation problems considered. 

Table 5.21 reports on the organisation of simulation results (tables and figures) 

corresponding to the range of problem classes considered and the various combinations 

of ACS parameters adopted. 

For set values of m, iseed and the remaining parameters, the ACS program is executed for 

a range of values of a and 13. The best results are illustrated in graphs. Every graph is 

associated with a certain value of 13 and shows the variation of the best as a increases and 

corresponds to a series of ACS runs that are generated automatically in the main program 

Adopting the same iseed and the optimum setting of 13 of previous runs, the ACS is again 

run for a range of m and a values. For those tests, every graph is associated with a certain 

value of m and shows the variation of the best as a increases The optimum setting of 13 

corresponds to the least computational time to achieve the optimum solution. More tests 

are also carried out by setting m and 13 to the same values considered in previous runs, 

and running ACS program for a range of iseed and a values. In this case, every graph is 

associated with a certain value of iseed and shows the variation of the best as a 

Increases. 
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Tabl~ 5.21 Classificati?n of simulation results corresponding to the range of problems 
consIdered and the vanous combinations of ACS parameters adopted 

Class A Class B 
Figures 5.4 Figure 5.9 
(optimum) (optimum) 

a and p Tables 5.22- Tables 5.25-27 
5.24 Figures 5.22-5.23 
Figures 5.20- Figure 5.28 
5.21 (convergence graph) 

aandm - Tables 5.28-5.29 
Figures 5.24-5.25 

a and iseed - Tables 5.30-5.31 
Figures 5.26-5.27 

5.8.2.1 Problem Class A 

The ACS parameter settings and the convergence criteria for this optimisation problem 

are shown in table 5.22. These parameters remain constant throughout a simulation. Only 

the variations of a and p are considered in these experiments. Simulation results are 

summarised in tables 5.23 and 5.24 and illustrated in figures 5.20 and 5.21. Table 5.23 

shows that the optimum is obtained with different settings of a and p especially with a in 

the range 0.5 to 0.75 and p in the range 3 to 9 . The optimum thus occurs in a narrow 

range with respect to a (which has a direct influence on the performance of the ACS 

algorithm). However, the computational time is different as can be seen in table 5.24; 

with the optimum settings the optimum can be obtained very fast (in less than a second). 

The results obtained in this experiment are consistent with the characteristic of the 

algorithm. A high value of a (a > 0.75) means that trail is very important and therefore 

ants tend to choose paths chosen by other ants in the past which might force the algorithm 

to enter stagnation behaviour very quickly without finding very good solutions. On the 

Hind Munier Chchho 
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other hand, if enough importance was not given to the trail (0: < 0.5) the algorithm 

becomes very similar to a stochastic multi greedy algorithm and did not find very good 

solutions. 

Figures 5.21 suggest that the landscape of the loss problem is smooth and the algorithm is 

more sensitive to 0: than ~. 
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Table 5.22 Parameter settings for Problem Class A 

A CS Parameter settings 
ctetrail 0.5 
ctevisib 1 

Q 100 
elite 1 

m 15 
p 0.8 

iseed 123456789 
maxcycle 

ctetrail is initial value of phermone trail 
ctevisib is initial value of visibility 

500 

Q is a constant quantity per unit length of pheromone trail laid by the ant 
elite number of ants reinforcing the trail on the best path of a cycle 
p is the persistence of the trail 
m is the number of ants 
iseed is responsible for the randomisation process 
maxcycle is the maximum number of cycles for a run . 

Table 5.23 Parameter settings (ex & ~) and simulation results for Class A 

Best (£m) obtained after 500 cycles (class A) 
/3-:-> 3 4 5 6 7 8 9 

ex 
0 279.888 260.824 249.103 244.935 242.736 240.906 239.914 

0.05 267.272 252.144 247.808 242.736 241.858 239.979 239.768 
0.1 263.994 250.28 243.734 241.006 239.979 239.237 239.166 

0.15 258.81 245.977 242.789 239.979 239.561 238.899 238.901 
0.2 252.717 242.706 240.554 239.164 239.166 238.901 238.901 

0.25 246.553 241.866 239.164 239.158 239.112 238.659 238.453 
0.3 242.275 239.883 238.999 238.912 238.632 238.378 238.281 

0.35 240.75 239.042 238.73 238.581 238.47 238.302 238.143 
0.4 239.199 238.839 238.515 238.416 238.183 238.118 238.149 

0.45 238.777 238.686 238.362 238.149 238.119 238.118 238.117 
0.5 238.216 238.335 238.117 238.117 238.113 238.113 238.117 

0.55 238.375 238.207 238.213 238.112 238.112 238.112 238.112 
0.6 238.112 238.149 238.112 238.112 238.112 238.112 238.117 

0.65 238.147 238.116 238.14 238.112 238.112 238.116 238.113 

0.7 238.143 238.112 238.116 238.14 238.143 238.113 238.112 

0.75 238.143 238.366 238.113 238.328 238.113 238.112 238.112 
0.8 238.574 238.116 238.328 238.113 238.113 238.113 238.1 13 

0.85 238.116 238.366 238.147 238.147 238.147 238.143 238.147 

0.9 238.146 238.573 238.5 238.14 238.14 238.14 238.14 

0.95 238.14 238.525 238.524 238.163 238.163 238.163 238.163 

B ld numbers r present the optimum which can obtained by different combination of a and p. 
a and p arc parameters that control the relative importance of trail versu vi ibility 



Chapter 5 Application of Genetic Algorithms and Ant colony Search to Power Transmission Planning 129 

Table 5.24. Convergence cycles needed for the optimum combination 
of a & ~ for Class A 

Number of cycles needed to converge (class A) 
~--> 3 4 5 6 7 8 9 
ex 

0 - - - - - - -
0.05 - - - - - - -

0.1 - - - - - - -

0.15 - - - - - - -

0.2 - - - - - - -

0.25 - - - - - - -

0.3 - - - - - - -

0.35 - - - - - - -
0.4 - - - - - - -

0.45 - - - - - - -
0.5 - - - - - - -

0.55 - - - 411 134 61 106 
0.6 298 - 61 106 106 106 -

0.65 - - - 143 87 - -
0 . .7 - 87 - - - - 47 

0.75 - - - - - - 37 
0.8 - - - - - - -

0.85 - - - - - - -

0.9 - - - - - - -

0.95 - - - - - - -

Run-time (sec):::: 57.02971 for 500 cycles 

ex and ~ are parameters that control the relative importance of trail versus visibility 
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5.8.2.2 Problem Class B 

This is a relatively difficult problem due to the need for finding the minimum spanning 

tree network design with the cheapest design cost. More exhaustive tests have been 

carried out both to search for the optimum and to study the sensitivity of the ACS to the 

following parameters: 

• iseed that is responsible for the randomisation process (initial distribution of ants), 

• m, the number of ants, which has a direct influence on the intensity of the trail used 

for communication among ants (synergistic effect), 

• and f3 responsible for the local search. 

The ACS parameter settings are as shown in table 5.25. These parameter settings remain 

constant unless otherwise specified. 

Figures 5.22 and 5.23 illustrate the performance of the ACS with respect to a and f3 

parameters. The optimum can be obtained when a in the range 0.2 to 0.7 and fJ in the 

range 2.5 to 4 but with different computational times as reported in tables 5.26 and 5.27. 

The effect of a and m on the performance of the ACS is depicted in figure 5.24 and 5.25. 

Tables 5.28 and 5.29 shows that the optimum can be obtained when a in the range 0.4-

0.6 and 111 in the range 18-25. It is important to note the synergistic effect in using many 

ants and using the trail communication system on the performance of the ACS algorithm; 

that is, a run with 111 ants (enough ants) is more effective with communication among ants 

(a> 0, a in the range 0.4-0.6) than with no communication (a= 0). 

Figures 5.26-5.27 also illustrate the performance of the ACS with respect to a and iseed. 

Starting with different initial population ACS was capable to identify the optimum when 

a in the range 0.35-0.7 and with all iseed considered (see table 5.30-5.31). 
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Simulation results showed that the ACS is more sensitive to a than the other parameters 

considered (/3, m or iseed). They also showed that there is a slightly variable range of a 

whereby the optimum can be obtained if we tune the other parameters appropriately. 

Figure 5.28 depicts the convergence graphs of a series of runs corresponding to f3 = 4 and 

a in the range {0.3 ... 0.75} respectively. It is important to note that the best is improving 

rapidly during the first cycles of the evolution (exploration phase and reduction of the 

search space) and is improving slowly towards the end of the run (where the search space 

is reduced and the solutions are very similar). It can also be observed that the best 

remains constant for a number of cycles before it improves during the search for the 

optimum. Therefore the choice of the number of cycles is critical as it can affect the 

quality of the solution. This also implies that if the ACS is left running for more cycles 

the ACS will probably converge for other sets of parameters. Therefore, the landscape 

resulting from the application of ACS to problem class B would be smoother. 
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Table 5.25 Parameter Settings for Problem Class B 

A CS Parameter settings 

ctetrail 0.5 
ctevisib 1 

Q 100 
elite 1 

m 20 
p 0.8 

iseed 123456789 

f3 3.5 
maxcycle 500 

ctetrail is initial value of pheromone trail 
ctevisib is initial value of visibility 
Q is a constant quantity per unit length of pheromone trai l laid by the ant 
elite number of ants reinforcing the trail on the best path of a cycle 
p is the persistence of the trail 
m is the number of ants 
iseed is responsible fo r the randomisation process 
maxcycle is the maximum number of cycles for a run. 

Table 5.26 Parameter settings (a & /3) and simulation results for Class B 

Best (£m) (class B) 

fJ---> 2.5 3 3.5 4 4.5 5 5.5 

a 
0 599.597 491.633 449.724 432.174 436.338 429.368 983.273 

0.05 551.158 475.164 435.182 435.334 431 .092 430.631 946.448 
0.1 526.476 463.803 425.93 431.21 429.067 431 .768 958.74 

0.15 486.44 449.1 425.93 428.912 426.376 431 .768 926.077 
0.2 467.952 435.182 427.196 422.362 422.808 440.028 865.785 

0.25 458.853 433.119 429.01 425.053 422.808 440.224 824.425 

0.3 439.91 427.694 428.609 422.362 422.808 438.195 686.009 

0.35 434.476 426.862 423.7 422.362 422.808 438.663 628.915 

0.4 426.844 425.363 424.146 422.362 422.808 438.195 556.856 

0.45 424.248 423.923 422.362 422.362 426.376 439.756 486.587 

0.5 422.585 423.7 422.362 422.808 428.829 437.749 441 .773 

0.55 422.362 423.7 422.362 422.808 429.052 437.749 435.841 

0.6 423.7 422.362 423.7 427.045 435.296 440.425 425.975 

0.65 423.7 422.362 423.7 426.599 432.62 437.08 423.7 

0.7 423.7 422.808 422.362 426.599 431 .059 440.425 423.923 

0.75 422.808 422.808 428.383 427.045 435.073 436.857 428.829 

0.8 427.491 427.045 432.174 427.045 438.195 437.972 424.146 

0.85 423.7 424.146 432.174 427.268 437.749 436.857 424.146 

0.9 423.7 428.829 427.937 427.268 441.317 436.857 430.054 

0.95 428.829 427.491 432.62 427.268 440.425 434.404 429.275 

ex and ~ ar parameter that control the relati ve importance of trail ver u vi ibil ity 
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Table 5.27 Convergence cycle needed for the optimum 
combinations of a & f3 for Class B 

Number of cycle needed to converge (class B) 

/3--> 2.5 3 3.5 4 4.5 5 5.5 
a 
0 - - - - - - -

0.05 - - - - - - -
0.1 - - - - - - -

0.15 - - - - - - -
0.2 - - - 322 - - -

0.25 - - - - - - -
0.3 - - - 426 - - -

0.35 - - - 301 - - -
0.4 - - - 426 - - -

0.45 - - 271 426 - - -
0.5 - - 271 - - - -

0.55 241 - 239 - - - -
0.6 - 79 - - - - -

0.65 - 240 - - - - -

0.7 - - 271 - - - -

0.75 - - - - - - -

0.8 - - - - - - -

0.85 - - - - - - -

0.9 - - - - - - -

0.95 - - - - - - -

Run-time (min) :::: 210 

ex. and ~ are parameters that control the relative importance of trail versu visibility 
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Table 5.28 Parameter settings (a & m) and simulation results for Class B for /3= 3.5 

Best (£m) (class B) 
m--> 15 18 19 20 22 25 

a 
0 456.637 457.799 456.434 449.724 451 .244 444. 143 

0.05 450.69 445.612 453.528 435.182 459.017 450.694 
0.1 440.783 436.784 438.326 425.93 432.707 439.205 

0.15 430.308 434.332 430.858 425.93 436.226 431 .527 
0.2 432.668 429.037 427.488 427.196 431.607 432 .349 
0.25 433.576 427.929 424.329 429.01 426.084 429.52 
0.3 426.201 426.644 425.667 428.609 427.138 429.762 

0.35 424.168 423.861 422.585 423.7 423.415 423.923 

0.4 423.7 422.808 422.362 424.146 423.923 424.248 

0.45 422.83 422.362 423.7 422.362 422.362 422.362 

0.5 423.7 422.362 423.7 422.362 422.362 423.7 

0.55 423.7 423.031 422.808 422.362 423.7 424.146 

0.6 424.369 422.808 422.362 423.7 423.923 423.923 

0.65 424.369 424.369 422.808 423.7 423.923 423.923 

0.7 432.62 424.146 422.808 422.362 423.923 424.369 

0.75 424.146 424.146 422.808 428.383 427.491 424.146 

0.8 435.073 428.829 422.808 432.174 427.491 424.146 

0.85 433.066 428.829 424.592 432.174 424.369 424.369 

0.9 436.634 428.829 424.369 427.937 425.93 424.369 

0.95 428.383 427.714 424.369 432.62 429.498 429.275 

a is the parameter that control the relative importance of trail 
m is the number of ants 
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Table 5.29 Convergence cycles needed for the optimum 
combinations of a & m for problem class B for f3 = 3.5 

Hind Munl'r hcbbo 

a 
m 

Number of cycle needed to converge (class B) 

111-'''> 

a 
0 

0.05 
0.1 

0.15 
0.2 

0.25 
0.3 

0.35 
0.4 

0.45 
0.5 

0.55 
0.6 

0.65 
0.7 

0.75 
0.8 

0.85 
0.9 

0.95 

15 18 19 20 22 25 
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

- - 354 - - -
- 495 - 271 456 464 
- 466 - 271 294 -
- - - 239 - -

- - 130 - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

Run-time (min)=between 208 and 259 

is the parameter that control the relative importance of trail 
is the number of ants 
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Table 5.30 Parameter settings (a & iseed) and simulation results for Clas B and for ~=3 . 5 

Best (£m) 
iseed--> 987654321 123456789 975319753 246802457 531975239 246802467 

ex 
0 445.901 449.724 447.863 452.009 450.018 459.723 

0.05 446.3874 435.182 445.337 443.25 442.722 448.495 
0.1 443.775 425.93 439.902 434.819 438.776 435.434 

0.15 436.661 425.93 427.937 435.484 432.71 5 431.716 
0.2 429.77 427.196 429.275 431 .932 429.987 431.419 

0.25 426.775 429.01 424.886 427.513 427.176 428.536 
0.3 426.51 428.609 424.837 423.802 422.585 426.391 

0.35 423.923 423.7 423.638 422.808 422.362 423.415 
0.4 422.362 424.146 422.808 422.808 422.585 426.391 

0.45 422.362 422.362 422.362 422.808 425.93 422.362 
0.5 422.362 422.362 422.808 422.362 422.362 428.606 

0.55 422.362 422.362 422.808 422.362 425.93 427.491 
0.6 422.362 423.7 422.808 422.585 426.153 427.491 

0.65 423.923 423.7 422.808 422.362 431.059 428.606 
0.7 423.923 422.362 422.808 422.808 431 .505 428.606 

0.75 427.937 428.383 429.052 427.491 431.505 428.829 
0.8 426.822 432.174 429.052 422.585 431.505 428.829 

0.85 426.822 432.174 429.052 423.031 431.505 432.397 
0.9 426.822 427.937 430.613 426.376 431 .505 432.843 

0.95 427.937 432.62 430.613 426.599 431 .505 432.62 

ex is the parameter that control the relative importance of trail 
iseed is responsible for the randomisation process 
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Table 5.31 Convergence cycles needed for the optimum combinations of Q & iseed 
for Class B for ~ = 3.5 

Number of cycle needed to converge 
iseed--> 987654321 123456789 975319753 246802457 531975239 246802467 

ex 
0 - - - - - -

0.05 - - - - - -
0.1 - - - - - -

0.15 - - - - - -
0.2 - - - - - -

0.25 - - - - - -
0.3 - - - - - -

0.35 - - - - 449 -
0.4 364 - - - - -

0.45 401 271 315 - - 213 
0.5 291 271 - 436 424 -

0.55 426 239 - 470 - -
0.6 296 - - - - -

0.65 - - - 167 - -
0.7 - - - - - -

0.75 - - - - - -
0.8 - - - - - -

0.85 - - - - - -

0.9 - - - - - -
0.95 - - - - - -

Run-time Jmin) ::::: 211.7034 

a is the parameter that control the relative importance of trail 
iseed is responsible for the randomisation process 
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5.9 Comparison Between Ant Colony Search and Deterministic Crowding 
Genetic Algorithm 

There are many similarities between ACS and DCGA approaches. Both approaches 

require coding the problem parameters in order to apply them. They both search from a 

population of points and use payoff (objective function) information in the pursuit of the 

optimum. Both approaches also use probabilistic transition rules, not deterministic rules 

to solve the problem in hand. In addition both techniques requires appropriate parameter 

tuning in order to converge, however, DCGA has less parameters to tune than ACS. 

Moreover, DCGA has an embedded elitism; i.e., the best of a generation is always 

transferred to the next generation (inferior parents are replaced with their more similar 

children). This property is not embedded in ACS but can be incorporated into the 

algorithm as explained earlier in chapter 4. 

However, both techniques differ in two main aspects. In ACS there is a communication 

between ants (synergy) through the pheromone trail, which is in contrast to DCGA where 

there is no information exchange among the population. In addition, the decision made by 

the ants takes into account global information as well as local information. Table 5.32 

reports on the main similarities and differences between DCGA and ACS. 

Regarding the performance of the two proposed methods, problem class A results show 

that ACS converged to the optimum in at least 7 seconds of CPU time where as DCGA 

achieved convergence in at least 4 minutes. Therefore, for this simple class, ACS appears 

to be faster than DCGA. This is due to the exploitation of the local information provided 

by the visibility in addition to the experience gained by the ants. That is, the solution to 

that problem with ACS is refined as ants construct their paths (solutions) step by step. 

The decision to move from one node to another is made with a probability, which is 

I lind MUll/er l 'hL'bbo 
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function of the pheromone trail accumulated on that node and the visibility of that node 

(the node with the cheapest cost is more attractive to ants than other nodes). 

For problem class B, ACS converged in at least around 59 minutes whereas DCGA 

converged in at least around 2 minutes. For more realistic problems, the DCGA appear to 

be more efficient computationally than ACS and further modelling has been carried out 

with DCGA. Table 5.33 illustrates the comparative performance of DCGA and ACS. 

Table 5.32 Comparison between DCGA and ACS approaches 

DCGA ACS 
Need for problem representation Need for problem representation 
(coding of the parameter set) (coding of the parameter set) 
Search from a population of points Search from a population of points 
Iterati ve process Iterati ve process 
Need for parameter tuning Need for parameter tuning 
Use of payoff information Use of payoff information 
Use of probabilistic transition rules Use of probabilistic transition rules 
(through the use of crossover and (through the decision of ants to move to 
mutation probabilities) another node) 
Embedded elitism Can include elitism ( as it is the case in 

our implementation) 
- Use of local information provided by the 

visibility concept 
- Communication among agents (synergy) 

through pheromone trail 

Table 5.33 Comparison of the performance of DCGA and ACS for problem classes 
AandB 

DCGA ACS 
Problem class A • at least 4 minutes, • at least 7 seconds, 

• more reliable • less reliable 
(optimum is achieved 
with a wide range of 
parameters 

Problem class B at least 2 minutes at least 59 minutes 

Hind ~ lunzcr Chcbbo 



Chapter 5 Application of Genetic Algorithms and Ant colony Search to Power Transmission Planning 145 

5.10 Conclusions 

In this chapter, two heuristic approaches, namely the Deterministic Crowding Genetic 

Algorithm and the Ant Colony Search, have been applied to the transmission planning 

problem. The aim has been to assess both approaches as planning tools to optimise the 

configuration of the system. Both models have been applied to a 23-node 49-route 

transmission network design problem, which represents a simplified version of the 

England and Wales transmission network. 

Rigorous experiments that consume months of CPU time have been carried out. These 

tests have been subdivided into four categories (problem classes A, B, C and D) 

according to the objective function. 

Simulation results have shown the suitability of both approaches to the solution of the 

transmission-planning problem. They have also demonstrated the effectiveness of both 

algorithms in the search for the optimum. However, both algorithms require parameter 

tuning in order to get the best solutions. In addition, the landscape of the transmission 

planning problem resulting from the application of DCGA is smoother than the one 

obtained with ACS for the problems considered. 

The solutions obtained for problem classes A and B agreed with the known theoretical 

optima giving a degree of confidence in both approaches. However ACS appears to be 

more computationally expensive than the GA for more realistic problem classes. 

Therefore further modelling was carried out using DCGA. 

For the realistic problems (classes C and D), with no known optimum, the best solutions 

obtained by DCGA did appear to be of high quality when inspected manually by experts. 
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Chapter 6 

Application of GA to Network Planning Including Voltage 
Transformation 

6.1 Introduction 

1.+6 

Because of the flexibility of Genetic Algorithms, further modelling requirements can be 

included in the fitness function to further improve the transmission system design. 

This chapter illustrates problem class E which includes further enhancement of problem 

class D, the additional implementation of maintenance and transformation costs in the 

transmission-planning problem. Several experiments have been carried out to optimise 

the transmission system design. The aim is to design a cost effective, maintainable, and 

secure system. 

6.2 Transformer Modelling 

As mentioned in chapter S, the GA has the ability to choose a transmission line type in 

the range 0 to 14 for every available route, with type 0 representing an unused route and 

types 1 to 14 representing a variety of standard transmission lines operating at voltage 

levels 27SKV, SOOKV or 7S0KV. To provide a more realistic model for the design 

process it is possible to include a representation of the transformers which are implied by 

the voltage levels used. The string generated by GA is analysed to infer the transformers 

which are required. As well as including the transformer costs, the transformer is 

modelled as a transmission line having nominal resistance and reactance. Two types of 

transformers are considered namely, 27SKV/SOOKV (and vice versa) and SOOKV1750KV 

(and vice versa). Associated with each transformer is the corresponding capital cost, the 

electrical resistance, etc. Table 6.1 reports on the types of transformers and their 

corresponding characteristics. 
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It is necessary to assess the number, and type, of transformers required at any substation 

in the network. 

Assume vI, v2, and v3 are the available voltages with vI being the smallest and v3 the 

largest. Four possible scenarios could be encountered at a node: 

i) transmission lines operating at one voltage level (vI, or v2, or v3) 

ii) transmission lines operating at two consecutive voltage levels (v I and v2 or v2 

and v3) 

iii) transmission lines operating at two voltage levels but not consecutive (v 1 and v3) 

iv) and transmission lines operating at three voltage levels (v 1, v2, and v3). 

In the first scenario, there is no need for transformers. The second possibility requires 

installing one type of transformer depending on the line-voltage levels. One additional 

node only is required to accommodate the transformers. For the last two scenarios, two 

additional nodes are required and two types of transformers are required. The various 

possible scenarios are illustrated in figure 6.1. 

The line-voltage levels are assigned to the initial node and the additional node(s) starting 

with the smallest voltage level at the initial node. To evaluate the number of transformers 

required at an initial node, the sum of line ratings for lines connected to the initial node 

and operating at the same voltage level is evaluated. For scenarios two and three, the 

number of transformers required is equal to the ratio of the minimum sum to the 

transformer rating chosen. For scenario 4, the number of transformers required is the ratio 

of the minimum sum between two adjacent voltage levels to the transformer rating 

chosen. The number of transformers required for the various scenarios are calculated as 

follows: 

Hind Munier Chchho 



Chapter 6 Application of GA to Network Planning Including Voltage Transformation 1..+8 

Scenario 2: 

(

vI v2 J 
M = Min ·~.ratingij' Lratingik 

Ij. JEI ik,kEi 

Or 

M = Min .~ratingii' .l:atingik 
( 

v2 v1 J 
1/ , jE I Ik, kE I 

Number of transformer required = M / rating of transformer (vI to v2 or v2 to v3) 

Scenario 3: 

Number of transformer required = M / rating of transformer (vI to v2) 

+ M / rating of transformer (v2 to v3) 

Scenario 4: 

and 

( 

v2 v3 J 
M2 = Min ij~i rating ij , ,1~ating ik 

Number of transformer required = MJ / rating of transformer (vI to v2) 

+ M2 / rating of transformer (v2 to v3) 

In all scenarios an additional transformer is added to the number of transformers required , 

for security purposes. 

To summarise, Figures 6.1-6.5 illustrate the modelling of transformers. 
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Table 6.1 Transformer types and characteristics 

Types Reactance(%) Resistance(%) Rating(MV A) Cost(£m) 
(275/400 KV) 15 0.15 1000 2 
(400/750 KV)) 15 0.15 2000 4 

V2 V2 V2 V2 

I c:::~> I 
i) no transformer required 

Initial Node Added Node 

V2 
VI V2 

I c:::===> _V_l -t-<IDl 
ii) one type of transformer required 

VI V3 

> VI I 
iii) two types of transformers required 

Initial Node 

V2 c:::~> 
VI 

V3 

iv) two types of transformers required 

Initial Additional Additional 

node 

I 

VI 

nodel 

(IT) I 

Initial 
node 

node2 

(IT) I V3 

Additional Additional 
node I node2 

V3 

V2 

Figure 6.1 Possible voltage scenarios at a node 
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Line=I 

y 

Rating at vI at sending node = Rating at vI at sending node + rating of line 
Rating at vI at receiving node = Rating at vI at receiving node + rating of line 

y 

Rating at v2 at sending node = Rating at v2 at sending node + rating of line 
Rating at v2 at receiving node = Rating at v2 at receiving node + rating of line 

Rating at v3 at sending node = Rating at v3 at sending node + rating of line 
Rating at v3 at receiving node = Rating at v3 at receiving node + rating of line 

y 

Figure 6.2 Evaluation of the sum of line ratings operating at the same voltage level and 
connected to the same initial node 

----------
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Transformectype (vI to v2) or (v2 to v3) 

y 

Number of transformers = rating at initial 
node I rating of transformer chosen 

Number of transformers = rating at additional 
node I rating of transformer chosen 

Number of transformers = Number of transformers + 1 

Figure 6.3 Evaluation of the Number of transformers for scenario 2 
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vI v2 v3 oltages at initial 
node and additional 

nodes 

vI v:l 

Consider rating at v 1 and 
rating at v2 

Evaluate the number of transformers 
(vI to v2) (See figure 6.3) 

,,. 
Consider rating at v2 
and rating at v3 

Evaluate the number of transformers 
(v2 to v3) (See figure 6.3) 

" 

I Return 

Consider rating at v I and 
rating at v3 

Evaluate the number of transformers 
(vI to v2) (See figure 6.3) 

" 
Consider rating at vI 
and rating at v3 

Evaluate the number of transformers 
(v2 to v3) (See figure 6.3) 

" 

Figure 6.4 Evaluation of the Number of transformers for scenarios 3 and 4 
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For every initial node 

Evaluate the 
number of 

transformers 
(v2/v3) for 
Scenario 2 

(See figure 6.3) 

Evaluate the number 
of transformers 

(vllv2) for Scenario 2 
(See figure 6.3) 

Evaluate the number 
of transformers for 

Scenario 3 
(See figure 6.4) 

153 

y 

Evaluate the 
number of 

transformers for 
Scenario 4 

(See figure 6.-1-) 

Figure 6.5 Simulation of the transformer modelling for a particular network design 
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6.3 Network Reconfiguration 

Before any further processing of the network design, the network generated by GA is 

subjected to certain modifications. This includes rearrangement of generators and 

modification of sending and receiving ends of some of the lines to reflect the changes in 

the network design caused by the introduction of transformers. 

6.3.1 Rearrangement of Generators 

After the transformer simulation is accomplished, generation at an initial node is moved 

to the node with the highest vdltage (the first additional node or the second one, if 

available) and the load is retained at the node with the lowest voltage. Figure 6.6 

illustrates the redistribution of generators. 

6.3.2 Modification of Sending and Receiving Nodes of the Initial Network 

Only lines operating at the lowest voltage level have their sending and receiving ends 

unchanged. Lines operating at higher voltage level, their sending and/or receiving end 

will be moved to the additional node(s) according to the scenarios encountered at those 

ends. Figure 6.7 illustrates this process. 
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Initial Node = I 

y 

Move generation to 
the second 

additional node 

Initial node = initial node+ 1 

y 

Move generation to 
the additional node 

Figure 6.6 Rearrangement of generators (move generation to the node with the 
highest voltage) 
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For every line 

y 

Change sending of line to 
the first additional node 

Change sending of line to 
the first additional node 

Change sending of 
line to the second 
additional node 

the same apply at the receiving node of the line 

Figure 6.7 Modification of the sending and receiving nodes of lines having voltage 
level which is the same of the additional node(s) 
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6.4 Fitness Function 

The objective function considered here is to minimise losses and investment including 

transformer costs while satisfying system constraints. In this chapter, the aim is to design 

a cost effective, maintainable, and secure system. As stated in chapter 5. any violation of 

constraints implied by a candidate solution is handled using a penalty function approach. 

in which penalty costs are incorporated into the fitness function so as to reduce the 

apparent fitness of infeasible candidates. 

The overall objective function considered is therefore as follows: 

F L ( . costli + Ltranscosti 

+ leef. ~ 19i . lifi + L translass j • translif) + lecf· ~ 19i + L trans/ass j ) 

where: 

+ E. L egi + 'P. L \ pfi \ + Po' (nislo -1) 

+ ¢> . L ( \ pf \- ratl i ) 

+ L fli . L (\ Pfk \- ratl k ) 

+ L Aj . L (\ pf m \- ratl m ) 

F is the overall fitness value, 

(L implies summation over the appropriate elements) 

1('(( is the loss energy cost factor, 

19i are the thermal energy losses for each line, 

translass) are the thermal energy losses for each transformer, 

lUi are the loss load factors for each line, 

transl(l is the loss load factor for the transformer, 

lc(f is the energy loss capacity cost factor, 

E is the environmental impact cost factor, 

are the environmental impact factors for each line. 

is a penalty cost factor for unsatisfied loads (based on the power tlo\\' that 

would be required to satisfy the load), 
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are the power flows in the lines , 

is a penalty cost factor for line overloading, 

are penalty costs for line overloading following outages for maintenance 

and security respectively, 

rat1i are the power flow ratings of each line, 

Ii are the lengths of each line, 

COSt1i are the annuitised capital costs (per unit length) of each line, 

transcosti are the annuitised capital costs of each transformer, 

po are a penalty cost factors for network islanding for the intact network, 

nisio are the number of network islands for the intact network. 

6.4.1 Security Requirement 

15~ 

In order to meet security requirements, it is necessary that no line shall be overloaded 

when one or more circuits are removed from the planned intact network. As mentioned in 

chapter 5, the so-called 'n-line' security analysis is adopted, where the optimum network 

should withstand any single line outage without overloading. Furthermore the possibility 

of 'islanding', whereby the network operates as two or more disconnected parts is also 

precluded (via high penalties) both in the intact network and in the outage case network. 

Transformers are not checked while considering the security analysis. The reason is that 

the number of transformers required always includes an additional transformer for 

security purposes. 

6.4.2 Maintenance Requirement 

Maintenance of high voltage electricity transmission network aims to improve reliability. 

however it reduces circuit availability since circuits must be switched out for safety 

reasons. It is appropriate to take into account the cost of maintenance during the network 

planning process. In this work, the maintenance is considered at a circuit level. That is. 

the maintenance procedure is to take out of service one circuit at a time (including 
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transformers). The resultant outage network shall not be overloaded nor islanded. In 

addition, it should be (n-line) secure. To avoid excessive computing time, the feasibility 

of the string generated by GA is first checked against a specified criterion. Every node 

with a generator or a load should be connected to at least three circuits. The reason is to 

ensure connectivity of a load or generation to the network while the network undergoes 

maintenance and in the presence of a further outage due to a fault. This will avoid 

checking unfeasible solutions against maintenance and security and therefore avoid 

excessive computational time. The feasibility check is illustrated in figure 6.8. 

The main steps for the consideration of maintenance are as shown in figure 6.9. 
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For every line 

Consider the receiving node of line 

y 

Number of circuits 
connected to receiving 
node increased by 1 

Number of circuits 
connected to receiving 
node increased by 1 

For every node with a load or generation 

y 

Number of circuits 
connected to receiving 
node increased by 2 

Number of circuits 
connected to receiving 
node increased by 2 

Number of nodes with less than 3 circuits 
increased by 1 

Figure 6.8 Evaluate the number of circuits connected to a node (with a load or 
generation) and calculate the number of nodes that have less than 3 circuits. 
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A preliminary check of the feasibility of the modified network (see figure 6.8) 

Hind MunIer Chehho 

Select a single circuit for maintenance 

Use the modified DC model to 
simulate the outal!e of that circuit 

y 

y 

Check for overload of the outage network and 
Denalise accordiI'l1! to the overload 

Check for (n-line) Security of 
the network (se figure 5.1) 

y 

Penalise the solution and return 
the cost of solution 

Figure 6.9 Maintenance procedure 

Return the cost of 
the solution 

Penalise the solution and 
return the cost of solution 
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6.S Simulation Results 

The DCGA model has been applied to a more realistic problem (including security. 

maintenance and transformer requirements) derived from the 23-node 49-route 

transmission network design described in chapter 5. Several tests have been carried out. 

Only the effect of various combinations of mutation and crossover probabilities (pmllt 

and pswitch respectively) has been investigated as the computational time is quite large. 

The convergence criterion is chosen so that a run is terminated after a fixed number of 

generations (5000 generations in this case) and the best obtained so far is recorded. 

For set values of population size and the seed responsible for the randomisation process 

(popsize and iseed respectively), the DCGA program is executed for a range of values of 

pmut and pswitch. The best results are illustrated in graphs. Every graph is associated 

with a certain value of pmut and shows the variation of the best (outcome of a run) as 

pswitch increases and corresponds to a series of DCGA runs that are generated 

automatically in the main program. The GA parameter settings and simulation results are 

reported in tables 6.2 - 6.4 and illustrated in figures 6.10-6.12. 

Table 6.3 shows that the best so far occurs when pmut is set to 0.007 and pswitch to 0.03. 

However, the computational time needed is very high (around 30 hours per DCGA run) 

as can be seen in table 6.4. Figures 6.10-6.11 illustrate the variation of the best as a 

function of pswitch and pmut. It is noticeable that the GA requires appropriate tuning in 

order to obtain the best results. Table 6.4 shows that the best results for the various 

combinations of pswitch and pmut are obtained between 4600 and 5000 generations. This 

suggests that the best results remain unchanged only for few generations compared to the 

max.imum number of generation specified for every run. Therefore. if the DCGA model 
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is left to run for more generations, better results might well be found and the graphs in 

figures 6.10-6.11 would be smoother. However, the computational time would be \'ery 

high. 

Figure 6.12 shows the power network design obtained (so far) by the DCGA model. 

Table 6.5 reports on the distribution of transformers in the best network design. It is 

found that the cost of the best design is around £m 2985.096. This encompasses line cost 

(fm 1661.309), transformer cost (£m 12) and loss cost (£m 13111.787). The comparison 

of the solutions obtained for problem class E with those obtained for class D justifies the 

additional cost of designing a maintainable network design that takes into consideration 

the cost of transformers. 

Therefore, for production purposes it is recommended to run the program several times 

trying different parameter settings to ensure that the solution falls within the best area. 

Moreover, the GA provides other solutions (slightly more expensive) which may be of 

interest to the planning engineer. These solutions (network designs) might be worthy of 

consideration due to additional factors, which were not included in the computer 

evaluation of the design cost. 
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Table 6.2 GA parameter settings 

GA parameter settings 

Popsize 500 

iseed 978456333 

maxgen 5000 

ptest 0.5 

Popsize is population size, iseed is responsible for the randomisation proce s 
maxgen is maximum number of generations of a run , 
ptest is probability for crossover applied on first bits of the parents. 

Table 6.3 Best as function of pmut and pswitch. 
Best (£m) obtained after 5000 generations 

pmut. 0.004 0.005 0.006 0.007 0.008 

pswitch 
0.01 3140.657 3041.183 3202.701 3172.603 3578.798 
0.02 3001.53 3044.042 3498.38 3065.959 3523.269 
0.03 3048.657 3059.259 2995.763 2985.096 3504.103 
0.04 3067.331 3088.8 2993.852 3049.778 3125.739 
0.05 3020.203 3007.353 3010.033 3027.641 3059.455 
0.06 3006.591 3504.255 3052.292 3088.336 3191 .276 
0.07 3091.411 3005.971 3076.914 3204.651 3163.86 
0.08 3126.148 3086.774 3540.805 3324.707 3283.465 
0.09 3020.368 3205.203 3346.989 3407.381 3168.622 

bold number represents the optimum 
PI1'tut is the probability of mutation 
pswitch is the probability of crossover 

Table 6.4 Number of generations to obtain the best as function of Pl1'Lut and pswitch. 

Converged at generation (run stopped after 5000 Jenerations) 
pmut 0.004 0.005 0.006 0.007 0.008 

pswitch 
0.01 4996 4799 4971 4958 4996 

0.02 4858 4954 4817 4794 4831 

0.03 4942 4732 4971 5000 4977 

0.04 4873 4908 4942 4963 4819 

0.05 4860 4992 4928 4973 4972 

0.06 4998 4789 4858 4906 4986 

0.07 4944 4996 4926 4906 4939 

0.08 4954 4797 4832 4643 4975 

0.09 4956 4976 4967 4877 4890 

Run-time ::= 30hours after 5000 generations( for every run) 
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r 

E 
;: 3300 
~ 

CXI 

3200 

2900+-------~--------~------~------~----~--+--------+------~~----~ 

8est(Cm) 

0.01 0.02 0.03 0.04 

pmut 1-+-0.004 ~0.005 

0.05 

pswitch 

0.06 

0.006 -*- 0.007 -IE- 0.008 1 

0.07 0.08 

Figure 6.10 Best as function ofpswitch andpmut for problem class E 
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Table 6.S Distribution of transformers in the best network 
design for problem class E 

Nodes Transformers of Transformers of type 
type _{275 I 400 KVl 1400 I 750KVl 

1 0 0 

2 0 0 
3 0 0 
4 0 0 
5 0 0 
6 0 0 
7 0 0 
8 0 0 
9 0 0 
10 0 0 
11 0 0 
12 0 0 
13 0 0 
14 0 0 
15 0 0 
16 0 0 
17 0 0 
18 3 0 
19 0 0 
20 0 0 
21 3 0 

22 0 0 

23 0 0 
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--
Line Routes Used 

7S0KV 

SOOKV 

2S0KV) 

Line Routes 

Not Used 
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Figure 6.12 The optimum network design obtained by DCGA for problem Clas E 
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6.6 Conclusions 

This chapter extends the modelling of the transmission-planning problem by 

incorporating additional requirements of the network design. This includes the 

implementation of maintenance and transformation costs. The aim is to design a cost 

effective, maintainable, and secure system. It is important to note that the computational 

time increased dramatically when transformer and maintenance costs are considered in 

the network design. A DCGA run lasts around thirty hours for 5000 generations during 

which around 5000x500x49x49 (- 6xl09) DC load flows are evaluated. Simulation 

results have shown that the DCGA requires appropriate tuning in order to obtain the best 

results. 

It is recommended to run the program several times trying different parameter settings to 

ensure that the solution falls within the best area. Moreover, the GA provides other 

solutions (slightly more expensive) which may be of interest to the planning engineer. 

These solutions (network designs) might be worthy of consideration due to additional 

factors, which were not included in the computer evaluation of the design cost. 

Because of the flexibility of Genetic Algorithms, further modelling requirements can be 

included in the fitness function to produce a more realistic model, but the computational 

time increases with the complexity of the problem. There is a trade-off between having a 

realistic model and the computational time required achieving this accurate design. 
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7.1 Introduction 

Chapter 7 

Interpretation of Results 
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Projects in the electricity supply industry live for a long time. For most power projects, 

most expenditure (in the form of operational cost) and income occurs after 

commissioning. Such future financial flows will fluctuate according to time and 

circumstances. Correspondingly, these will have a different financial value than flows 

occurring during project evaluation. Therefore the time value of money (discounting) and 

the choice of a proper discount rate is highly important for capital-intensive long life 

projects with high operational costs like those of the electricity supply industry. 

In this chapter, two sensitivity analyses based on discount rate and decision variables are 

carried out independently. Only problem Class D is considered. The reason is that this 

problem class represents a realistic transmission-planning problem, which can be solved 

within reasonable computational time. The full-scale problem class described in chapter 6 

will not be considered here due to the excessive computational time required. 

The aim of these tests is to: 

• investigate the effect of the discount rate and decision variables on the best solution 

provided for the problem, 

• test the validity of the DCGA solution obtained for problem D. 

It has been observed that: 

• for all the tests considered, the DCGA solution obtained at a defined discount rate is 

better than the evaluation based on this discount rate for DCGA solutions at \'arious 

other discount rates, 
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• 

• 

among all possible combinations of line type assIgnments to the set of routes 

considered, the DCGA solution has proven to be the best, 

the solution provided by DCGA is proven to be robust as concluded from the 

experiments. 

7.2 Discount Rate 

The life cycle of a project and its feasibility, for a given output, depends on three factors: 

the investment cost, the operational costs and the discount rate used. Many planners think 

that the discount rate is the most important of these factors. It greatly affects the whole 

economics of the project and the decision making, particularly in capital intensive 

projects like those of the electricity supply industry. 

The discount rate is the opportunity cost of capital (as a percentage) which is the return 

on investment forgone elsewhere by committing capital to the project under 

consideration. In investment decisions, the opportunity cost of capital is the cut-off rate 

below which it is not worthwhile to invest in the project. 

7.3 Sensitivity Analysis of the Discount Rate on Problem Class D 

As mentioned earlier in chapter 5, this problem class represents a realistic problem. No 

optimal solutions are known in advance. For this case, the objective of transmission 

planning is to minimise investment cost together with the annuitised cost of energy 

losses, while satisfying system constraints. The network design obtained should be 'n-l' 

secure. Furthermore, overloading and the possibility of 'islanding' are also precluded 

both in the intact network and any of the outage case networks. 

Using a discount rate of 7.5%, simulation results (in chapter 5) have shown that the best 

solution is obtained with a narrow and intermittent range of GA parameters particularly 
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when the probability of crossover (pswitch) E {0.04 ... 0.08} and the probability of 

mutation (pmut) E {0.004 ... 0.009} but with different computational time. The optimum 

setting is when pmut = 0.004 and pswitch = 0.06. The optimum parameter settings 

correspond to the least computational time required to achieve the best desi gn network 
'-

(with the cheapest cost). Several tests have been performed using the optimum parameter 

setting of the 'best' network design obtained by DCGA. These tests are classified into 

two categories: 

• run DCGA with a range of discount rates, and 

• for each network design obtained from the tests above, also evaluate the cost with the 

other discount-rate values. 

The aim is to investigate the sensitivity to the discount rate and to test the robustness of 

the solution provided by DCGA. 

7.3.1 Test Category A 

In these tests, the DCGA parameters are set to the optimum parameter values of the best 

solution produced with a discount rate of 7.5 % as illustrated in table 7.1. Then the 

DCGA model is run with various discount rates to search for the 'best' solutions. 

Different 'best' solutions are produced corresponding to the various discount rates. This 

process is illustrated in figure 7.1. Simulation results are reported in tables 7.2-7.3. 

Figures 7.2-7.6 depict the best network designs produced with the various discount rates 

considered including the best design obtained with a discount rate of 7.5 %. Figure 7.7 

illustrates the sensitivity of the cost to discount rate. A high discount rate decreases the 

cost of the best design whereas cost increases if a low discount rate is chosen. Figure 7.8 

illustrates the occurrence of line types in the 'best' solutions as a function of the discount 
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rate. It is important to note how the optimum design changes with the discount rat . It ha 

been observed that if a line type is not chosen at a particular discount rate, it is not 

usually chosen when different discount rates are applied. 

2.5 % ... --. .. .... 

5 % ... ... .. ... 

7.5 % 
... DCGAmodel ... .. ... 

10 % 
... ... ... ... 

12.5 % 
---. ... .. .. 

Figure 7.1 Scenarios for test category A 

--
Line Routes Used 

( 7S0KV 

SOOKV 

2S0KV) 

Line Routes 

Not Used 

'best' Solution 1 

'best' Solution2 

'best' Solution3 

'best' Solution4 

'best' SolutionS 

Figure 7.2 Optimum network obtained with a di count rat 
0[7.5 % 
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Line Routes Used 

7501tV 

500J(V 

250J(V) 

Line Rou tee 

Not Used 

Figure 7.3 Optimum network obtained 
with a discount rate of 2.5 % 

LinQ RoutQS Usad 

7501tV 

500KV 

:250KV) 

LinQ RoutQS 

Not USQd 

Figur 7.5 Optimum n twork obtained 
with a discount rate of 10 % 
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Figure 7.4 Optimum network obtained 
with a discount rate of 5 % 

Figure 7.6 Optimum netw rk btaincd 
with a discount rat [12.5 ~ 
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Table 7.1 Optimum DCGA parameter setting corresponding 
to a discount rate of value 7.5% for problem class D 

Optimum GA parameter settin2s 
Popsize 500 

iseed 978456333 
maxgen 2000 

ptest 0.5 
pmut 0.04 

pswitch 0.06 
disc rate 7.5 % 

popsize is population size, iseed is responsible for the randomisation process 
maxgen is maximum number of generations of a run, 
ptest is probability for crossover applied on first bits of the parents 

174 

disc_rate is the discount rate used in the evaluation of the net present value of the losse . 

Table 7.2 Sensitivity of best solution produced by DCGA to 
discount rate (disc_rate) for problem class D 

disc_rate Best(£m) Invest(£m) Loss(£m) 
(total cost) 

0.025 2828.035 1631.867 1196.1677 
0.05 2445.511 1572.896 872.6155 

0.075 2261.537 1483.238 778.29937 
0.1 2042.502 1407.095 635.40651 

0.125 1917.046 1346.905 570.14065 

I-+- best(£m) ---- in\€stment(£m) losses(£m) I 

---, 

1500 +=======~~====~~~-=======~~======~ 

1000 4-------------....::...--------------, 
500 L---------~--~------,_---------,--------~ 

0.025 0.05 0.075 0.1 0.125 

disc_rate 

Figure 7.7 Sensitivity of the cost of the network design produc d by D G 
disc unt rat (disc_rat), for problem class D. 
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Table 7.3 Line types of the best solutions obtained with the variou di count 
rates considered 

Line tYE..es 
disc rate~ 0.025 0.05 0.75 0.1 0.125 lines 

1 2 0 0 2 6 
2 0 0 0 0 0 
3 8 8 8 13 13 
4 14 14 14 14 14 
5 0 0 0 0 0 
6 1 1 1 1 1 
7 0 0 0 0 1 
8 0 0 0 0 0 
9 1 1 1 1 1 

10 0 0 14 14 14 
11 0 0 0 0 0 
12 0 0 0 0 0 
13 0 0 0 0 0 
14 2 2 2 2 2 
15 2 6 8 8 8 
16 0 0 0 0 0 
17 13 14 14 14 14 
18 2 0 2 2 4 
19 2 2 2 2 2 
20 13 13 13 14 14 
21 2 2 2 2 6 
22 13 13 13 13 13 
23 14 14 14 14 14 
24 2 2 2 6 8 
25 8 8 8 13 13 
26 13 13 8 13 14 
27 2 2 2 6 8 
28 14 14 14 14 14 
29 8 8 13 8 8 
30 2 6 6 8 8 
31 8 8 13 13 13 
32 0 0 0 0 0 
33 14 14 0 0 0 
34 0 0 0 0 0 
35 1 1 2 2 2 
36 8 8 8 8 8 
37 0 0 0 0 0 
38 0 0 0 0 0 
39 1 1 2 2 2 

40 2 8 8 8 8 

41 13 8 8 13 13 

42 14 14 14 14 14 

43 1 1 1 1 1 

44 1 1 1 1 1 

45 0 0 0 0 0 

46 0 0 0 0 0 

47 0 2 0 0 0 

48 0 2 2 0 0 

49 1 1 1 1 0 
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11 7--~--·--·- ~.---_~~---._#_-_ ---______ _ 

10r-~1I--~~------~----------------------------------~ 

9+---+--

8 

2 8 10 11 
Type 

disc-rate 1 -+-0 . 02~0.05 0 _ 7~0. 1 -*- 0 12 1 

10 

Number of occurences 

14 

Figure 7.8 Number of occurrences of line types for the best olution with th 
various discount rates considered. 
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7.3.2 Test Category B 

These tests are carried out to examine the robustness of the solution provided by DCGA 

approach. These tests proceed as follows: 

The 'best' network design (with the cheapest cost) produced by a specific discount rate is 

considered. The cost of this network design is then evaluated using the other discount 

rates. This process is repeated for every 'best' solution obtained in test category A, as 

illustrated in figure 7.9. The cost evaluations for the various scenarios are grouped into a 

(5x5) matrix as shown in table 7.4. It can be noted that in a row, the bold number 

represents the best solution corresponding to the discount rate in the same row (diagonal 

elements). Therefore it should be cheaper than any other cost in the same row because it 

has been optimised for this specific discount rate. Figure 7.10 presents a graphical 

representation of table 7.4. Simulation results demonstrate that the 'best' solution 

produced by DCGA for problem class D is the optimum among all the cases examined. 
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5 CJc ... --.... Cost12 
'best' Solution 1 ... Cost evaluation 7.5 CJc ... Cost13 -,.. --.... 

(2.5 %) with a discount 10 CJc ... Cost14 
rate of 12.5 % 

... 

... Cost15 ... 

2.5 % ... ... Cost21 
'best' Solution2 Cost evaluation 7.5 % .... Cost23 ... ..,... 

(5 %) 
.... with a discount 10 % ... Cost24 

rate of 12.5 % 
... 

Cost25 ... -,.. 

2.5 % .... -,.. Cost31 
'best' Solution3 Cost evaluation 5% ..... Cost32 .... -,.. 

(7.5 %) 
.... with a discount 10 % ... Cost34 ... 

rate of 12.5 % .... Cost35 ... 

2.5 % ... ... Cost41 

'best' Solution4 Cost evaluation 5% .... Cost42 .... -,.. 

(10 %) 
... with a discount 7.5 % ... Cost43 ... 

rate of 12.5 % .... Cost45 ... 

2.5 % .... ... Cost41 

'best' Solution5 Cost evaluation 5% .... Cost42 ... -,.. 

(12.5%) 
... with a discount 7.5 % ... Cost43 ... 

rate of 10% ..... Cost44 ... 

Figure 7.9 Scenarios for test category B 
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Table 7.4 Evaluation of Scenarios for test category B 

disc_rate optimum Evaluation Total cost Investment cost Loss cost 
with disc rate (£m) (£m) (£m) 

0.075 2261.537 0.025 2905.1 1483.238 1421.8619 
0.075 2261 .537 0.05 2462.004 1483.238 978.76578 
0.075 2261.537 0.1 2043.894 1483.238 560.65599 
0.075 2261.537 0.125 1938.377 1483.238 455.13924 

0.05 2445.512 0.025 2840.545 1572.896 1267.6493 
0.05 2445.512 0,075 2266.792 1572.896 693.89557 
0.05 2445.512 0.1 2072.73 1572.896 499.83394 
0.05 2445.512 0.125 1978.697 1572.896 405.80069 

0.025 2828.035 0.05 2455.275 1631.867 823.40753 
0.025 2828.035 0.075 2286.631 1631 .867 654.76375 
0.025 2828.035 0.1 2103.521 1631 .867 471.65449 
0.025 2828.035 0.125 2014.775 1631 .867 382.90792 

0.1 2042.502 0.025 3018.47 1407.095 1611 .375 
0.1 2042.502 0.05 2516.308 1407.095 1109.2128 
0.1 2042.502 0.075 2289.115 1407.095 882.02025 

0.1 2042.502 0.125 1922.857 1407.095 515.76169 

0.125 1917.046 0.025 3128.089 1346.905 1781.1841 

0.125 1917.046 0.05 2573.014 1346.905 1226.1086 

0.125 1917.046 0.075 2321.884 1346.905 974.9788 

0.125 1917.046 0.1 2049.256 1346.905 702.35104 

Cost evaluations (£m) 

Optimum at 0.025 0.05 0.075 0.1 0.125 

disc rate 
Evaluated at 
disc rate 

0.025 2828.035 2840.545 2905.1 3018.47 3128.089 

0.05 2455.275 2445.511 2462.004 2516.308 2573.014 

0.075 2286.631 2266.792 2261 .537 2289.115 2321.884 

0.1 2103.521 2072.73 2043.894 2042.502 2049.256 

0.125 2014.775 1978.697 1938.377 1922.857 1917.046 

Evaluation of Scenarios for test category B organised in a 5x5 matrix 
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7.4 Sensitivity Analysis to Problem Class D Decision Variables 

Further tests have been carried out with problem class D. The aim is to examine the 

complexity of the search space of this realistic problem and the robustness of the 

optimum solution produced by DCGA. The network design obtained by DCGA with a 

discount rate of 7.5 % is considered. The tests consist of evaluating the cost of the 

network design obtained by varying the line types of two routes in the range { 1 ... I.+} as 

shown in figure 7.11. The choice of the sets of routes is done to reflect various reasonable 

scenarios and to investigate the interaction between choice of line types for routes. These 

include a set of parallel routes, routes in series, routes situated far apart, and routes 

connecting to nodes of high demand and generation. 

Simulation results are illustrated in figures 7.12-7.15. It is noticeable that the search space 

features a number of local optimum. There is symmetry in some figures (figures 7.15 and 

7.16). It is important to note that the proposed optimum can be located on any figure 

although the search space is not smooth. It was found that there was never any 

improvement over the optimum found by DCGA by carrying out the possible 

combinations of line type assignments to the set of routes considered. This gIves us 

increased confidence about the optimum found by the Genetic Algorithm. 

Route i 
'best' Solution at ... for line-type of Route i = 1, ntype ... 
the discount rate for line-type of Routej =1, ntype 

01'7.5 Route j 
Cost evaluations ... 

..... (196 cost evaluations for 11 typc=: 1-1-) 

Figure 7.11 Test Scenarios for sensitivity analysis to decision variables 
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cost (£m) 

14 13 12 11 10 
line-type of route 31 

line-type of route 35 

11112250-2300 02300-2350 02350-2400 .2400-2450 02450-2500 .2500-2550 0 2550-2600 . 2600-2650 1 

1 _ 

Figure 7.12 Evaluation of the cost of the optimum network design obtained at the 
discount rate of 7.5 % as a function of two decision variables (choice of line-type of 
route 31 and route 35). (Optimum choice is type 13 in route 31 and type 2 in rout 35). 

cost(£m) ""cr. t...<"" 

line-type of route 27 
line-type of route 26 

~ 2250-2300 0 2300-2350 0 2350-2400 . 2400-2450 0 2450-2500 1 

Figure 7.13 Evaluation of the cost of the optimum network d ign btain d at th 
di c unt rat f 7.5 % as a function of two decision variabl (choice r lin -t f 
route 26 and rout 27). (Optimum choice is typ 8 in route 26 and typ 2 in r ut .... 7 
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Cost (Em) 2300 

types of lin e 25 

IIne-t ype of route 29 

Figure 7.14 Evaluation of the cost of the optimum network design obtained at the 
discount rate of 7.5 % as a function of two decision variables (choice of line-type of 
route 25 and route 29). (Optimum choice is type 8 in route 25 and type 13 in route 29). 

2380 

cost (£m) 

22 

lin .. t ~e of route 22 
line·typeof route 26 

Figure 7.15 Evaluation of the cost of the optimum network d ign 
di count rate of 7.5 % as a function of two decision variable (ch ic 
r ute 22 and route 26). (Optimum choice is type 13 in route 22 and lyp 
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cost(£m) 

line-type of route 40 
line-type of route 41 

14 

10 2260-2280 .2280-2300 02300-2320 . 2320-2340 0 2340-2360 .2360-2380 I 

Figure 7.16 Evaluation of the cost of the optimum network design obtained at th 
discount rate of 7.5 % as a function of two decision variables (choice of line-typ of 
route 40 and route 41). (Optimum choice is type 8 in route 40 and type 8 in route 41). 

7.5 Conclusions 

This chapter presents a sensitivity analysis of the network design based on the discount 

rates and decision variables respectively. Only problem Class D with the DCGA 

approach is considered. The reason being that this problem class represents a reali tic 

transmission-planning problem with no known optima and is solved within reasonablc 

computational time. Three sets of tests have been performed. The objective being t 

investigate the effect of the discount rate on the best solution provided for probl m clas 

D and to investigate the search space of the transmission-planning problem. Th t al 

provided an opportunity to test the validity of the solution proposed for problem D. 

Simulation results showed that: 
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• The discount rate greatly affects the solution of problem class D. A low discount rate 

yields a network design with a high net present value whereas a high discount rate 

gives another network design with a lower net present value. 

• For all the tests considered, the DCGA solution obtained at a defined discount rate is 

better than the evaluation based on this discount rate for DCGA solutions at various 

• 

• 

other discount rate values. 

Among all possible combinations of line type assignments to the subsets of routes 

considered, the DCGA solution has proven to be the best. 

Therefore, it can be concluded that the solution proposed by DCGA for problem class 

D is robust and of high quality. 
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There has been considerable interest in Genetic Algorithms, and other heuristic search 

algorithms (such as Ant Colony Search) rooted in natural and physical processes, among 

researchers in various application fields. The simplicity, flexibility and robustness of 

such algorithms has opened up new areas of application, and has also encouraged a re­

appraisal of some traditional problems that were either very difficult or even intractable 

for traditional optimisation techniques. The transmission-planning problem is a 

complicated, integer-valued, non-convex, non-linear mathematical programmmg 

problem. The complexity of the problem arises mainly from the large number of problem 

variables, combined with the multitude of technical and economical constraints. The goal 

is to design an electricity transmission network, which is as economical as possible while 

providing a reliable energy supply. 

There are several planning algorithms available for the solution of the long term 

transmission planning problem, each based on a different interpretation of the system 

model and choice of the design objective. These include heuristic algorithms and 

mathematical optimisation techniques. 

These techniques can be classified into two main categories: 

• 'traditional' or 'incremental' approach, 

• 'green-field' or 'non-incremental' approach. 

Both categories require: 

• load and generation patterns for the target year, 
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• all possible new routes (lengths and way-leaves), 

• the available transmission line types and their corresponding costs. 

The main difference is that the traditional approach is restricted by an existing network 

configuration as opposed to the 'green field' approach which is not constraint by any 

existing network. 

Most planning methods belong to the traditional approach, where transmission planners 

tend to evaluate a relatively small number of expansion alternatives over a relatively 

short time horizon. 

In this thesis, two novel heuristic methodologies namely, the Deterministic Crowding 

Genetic Algorithm (DCGA) and Ant Colony Search (ACS), are proposed for the solution 

of the long term-transmission planning problem based on an original problem 

formulation termed the 'green field' approach. They also differ from the conventional 

mathematical counterparts by the following: 

• the search proceeds from a population of points, 

• use payoff information in the pursuit of the optimum (only the objective function is 

required), 

• use probabilistic transition rules, not deterministic rules, to solve the problem 10 

hand. 

Before applying the DCGA (or ACS) model for transmission planning, the problem 

must be represented in a suitable format that allows the application of the GA operators 

(or ACS method). This is the problem encoding process. The GA works by maximising 

a single variable, the fitness function whereas ACS uses an evaluation function 

indirectly (inspired by the objective function and system constraints) to guide the search. 
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Therefore, in both methods, the objective function and some of the constraints of the 

transmission-planning problem must be transformed into some measure of fitness. 

Two computer programs have been developed corresponding to ACS and DCGA 

approaches. They are both implemented on a Pentium 233 MHz processor. under the 

Windows NT operating system using Fortran 77. Both programs are modular and can be 

applied to various problems with slight variation of the code to accommodate the new 

objective function. Two GA representations namely, the binary and integer. are 

implemented in the DCGA program. However, the binary representation has been 

adopted. 

Two sample-problems are independently considered: 

• shortest path problem, 

• range of problems derived from a 23-node 49-route transmission network design that 

represents a simplified version of the England and Wales transmission network. 

8.1.1 Shortest Path Problem 

We have chosen this particular test because it resembles, to a certain extent, our 

transmission-planning problem and it has a known optimum. This provides a test bed to 

investigate the performance of ACS and DCGA algorithms. 

Simulation results have shown that both algorithms (DCGA & ACS) are robust and 

effective in finding the known optimum for the artificial test problem (shortest path 

problem). Moreover, the ACS algorithm converged in relatively less computational time 

(a few seconds less). 

Experimental results have also demonstrated the importance of synergy in ACS. That is. 

the search carried out by a given number of ants is more effecti\'e with co-operation than 
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without (ants acting independently). 

However, the ACS algorithm provides a wider range of convergence regarding the 

visibility parameter (~, which emphasises the local information). The reason may be that 

the high visibility in conjunction with low values of trail parameter (ex, representing the 

global information), for this particular test problem, is effective in guiding the search 

towards convergence. On the other hand, GA does not have the concept of visibility and 

therefore has less local search capability, resulting in a narrower range of convergence. 

Consequently, ACS appears to be more reliable than the DCGA model regarding the 

tuning of the parameter setting for the shortest path problem. 

Therefore, it is interesting to apply the ACS & DCGA algorithms to the power 

transmission-planning problem. However, we can not generalise about the optimum 

parameter settings nor the behaviour of the ACS & GA from this particular problem. The 

reason is that the transmission-planning problem is a difficult non-linear, non-convex, 

discrete-variable constrained optimisation problem. 

8.1.2 Cost Optimisation Problems 

In order to assess the two proposed models as a planning tool to optimise the 

configuration of the system, they have been applied to the range of problems (problem 

classes A, B, C, D, E) derived from a 23-node 49-route transmission network design 

problem. 

The various problem classes are classified according to the objective function and are 

summarised in the following sections with their corresponding results. 

For two of the problem classes the nature of the optimal solution is known in advance 

from theoretical considerations. These cases provide an opportunity to tcst the validity or 
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the solutions proposed by GA and ACS approaches. The remaining three problem classes 

are more realistic, but are also complex and do not have known optima. For these cases. 

only DCGA has been considered as this approach was found to be significantly more 

efficient computationally than ACS. Moreover, it is not possible to assess the solutions 

provided by GA theoretically and it is necessary to rely on numerical experiments. 

Any violation of constraints implied by a candidate solution is handled using a penalty 

function approach, in which penalty costs are incorporated into the fitness function so as 

to reduce the apparent fitness of an infeasible candidate. 

To allow more rapid evaluation of the present network-planning model, the DC load flow 

approximation has been adopted. The DC load flow provides a linear active power flow 

model that is sufficiently accurate for the present application and can be used efficiently 

in conjunction with the Householder modified matrix formula for outage studies. 

Extensive tests that consume months of CPU time have been carried out on the sample 

problem and considering the five classes of cost function. 

8.1.2.1 Problem Class A: Cost of Energy Losses Only 

For this problem class, the cost of energy losses is to be minimised subject only to the 

satisfaction of required generation and load levels throughout the network. Other costs 

and constraints are temporarily neglected. From considerations based on simple electrical 

network theory, it is apparent that an optimal solution for this case consists of a 

transmission network design with each available route occupied by the line type having 

the lowest electrical resistance. 

Both methods converged to the known optimum. However. ACS appears to be faster than 

DCGA. This is due to the exploitation of the local information provided by the visibility 
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in addition to the experience gained by the ants and representing the global information. 

That is, the solution to that problem with ACS is refined as ants construct their paths 

(solutions) step by step. The decision to move from one node to another is made with a 

probability, which is function of the pheromone trail accumulated on that node and the 

visibility of that node (the node with the cheapest cost is more attractive to ants than other 

nodes). This problem like the shortest path problem is more suited for ACS than for 

DCGA. 

8.1.2.2 Problem Class B: Investment Cost Only 

In this problem class, only the capital cost of transmission lines is considered, subject to 

satisfying required generation and load levels. Other costs and constraints are temporarily 

neglected. A theoretical optimal solution for this case consists of a transmission network 

design based on a minimum length spanning tree (i.e. a radial network with shortest 

possible total line length) in which the line with lowest capital cost is used throughout. 

It has been found that the best solution obtained with both optimisation techniques agreed 

with the known theoretical optimum for this problem class, which is found to be more 

challenging for them than problem class A. 

Both techniques exhibit comparable convergence characteristic. The best improves fairly 

quickly in the early stage of evolution, whereas this improvement slows down towards 

the end of the run. Moreover, it is been observed that the best remains constant for a 

number of generations (or cycles) before it changes again. This implies that the stopping 

criteria for a run based on a maximum number of generations (or cycles) should be 

chosen carefully in order to allow enough exploration. Therefore, if the GA (or ACS) is 

left running for more generations, it is more likely to get better solutions and the 
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landscape of the best solutions obtained by applying DCGA (or ACS) would be 

smoother. 

However, the DCGA appear to be more efficient computationally than ACS and further 

modelling has been undertaken with the DCGA approach. 

8.1.2.3 Problem Class C: Energy Losses and Investment Cost 

This problem class represents a realistic planning problem in which all factors, except 

security against outages, are considered. In particular, the solutions obtained for this class 

of problems show how energy loss costs are to be traded-off against initial capital costs. 

There are no known optimal solutions for this class of problems. and so the solutions 

obtained by the DCGA approach are of significant interest. 

It has been found that the DCGA is very reliable, relatively easy to get the best solutions 

in the range of parameters specified. 

8.1.2.4 Problem Class D: Energy Losses, Investment, and Security Analysis Cost 

This problem class represents a more realistic problem with most factors considered. The 

cost of energy losses and the capital cost of transmission lines are to be minimised 

subject to the satisfaction of required generation and load levels throughout the network 

and security constraints. Again no optimal solutions are known in advance. The 

comparison of the solutions obtained for problem class C with those obtained for class D 

allow the additional cost of designing a secure network to be assessed. 

The DCGA model converged to a best solution which can be located with different 

parameter settings. The best solution is obtained within reasonable computational time. A 

sensitivity analysis of the network design based on the discount rates and decision 

variables respectively is carried out. The objective being to investigate the effect of the 
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discount rate on the best solution provided for problem class D and to in\'estigate the 

search space of the transmission-planning problem. The tests also provided an 

opportunity to test the validity of the solution proposed for problem D. 

Simulation results showed that: 

• There was no further improvement over the best solution obtained by DCGA when it 

is run with an initial popUlation that includes the best solution. 

• The discount rate greatly affects the solution of problem class D. A low discount rate 

yields a network design with a high net present value whereas a high discount rate 

gives another network design with a lower net present value. 

• For all the tests considered, the DCGA solution obtained at a defined discount rate is 

better than the evaluation based on this discount rate for DCGA solutions at various 

other discount rate values. 

• Among all possible combinations of line type assignments to the set of routes 

considered, the DCGA solution has proven to be the best. 

• Therefore, it can be concluded that the solution obtained by DCGA for problem class 

D is robust and of high quality. 

8.1.2.5 Problem Class E: Energy Losses, Investment Including Transformers, and 
Security and Maintenance Analysis Cost 

This final problem class represents the full-scale problem with all factors considered. 

This problem class extends the modelling of the transmission-planning problem D by 

incorporating additional requirements of the network design. This includes the 

implementation of maintenance and transformation costs. The aim is to design a cost 

effective, maintainable, and secure system. 
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Again no optimal solutions are known in advance. Moreover, it is not possible to assess 

the solutions provided by GA theoretically and it is necessary to rely on numerical 

experiments. It is important to note that the computational time increased dramaticall \' 

when transformer and maintenance costs are considered in the network design. It is been 

observed that the DCGA requires appropriate tuning in order to obtain the best results. 

8.1.3 Global Conclusions 

Simulation results have shown the suitability of both approaches to the solution of the 

transmission-planning problem. They have also demonstrated the effectiveness of both 

algorithms in the search for the optimum. However, both algorithms require parameter 

tuning in order to get the best solutions. 

The solutions obtained for problem classes A and B agreed with the known theoretical 

optima giving a degree of confidence in both approaches. However ACS appears to be 

more computationally expensive than the GA for more realistic problem classes. 

For more realistic problems (classes C and D, E), with no known optimum, the best 

solutions obtained by DCGA are robust and of high quality. 

For production purposes, it is recommended to run the programs several times trying 

different parameter settings to ensure that the solution falls within the area of 

convergence. Moreover, the DCGA provides other solutions (slightly more expensive) 

which may be of interest to the planning engineer. These solutions (network designs) 

might be worthy of consideration due to additional factors, which were not included in 

the computer evaluation of the design cost. 

Because of the flexibility of both methods, further modelling requirements can be 

included in the fitness function to produce more a realistic model. but the computational 
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time increases with the complexity of the problem. Therefore, there is a trade-off between 

having a realistic model and the computational time required. 

8.2 Proposals for Future Work 

This research proposed two heuristic methodologies, namely DCGA and ACS for the 

solution of the transmission-planning problem based on an original problem formulation 

termed as the 'green field' approach. This research has sought to answer some of the 

questions on the DCGA and ACS behaviours on real world problems, however there are 

a number of areas that provide an opportunity for further work. 

• In the present model, the demand/generation profiles represent only the predicted 

peak values for an immediate future. Future work is required to extend the modelling 

of transmission planning design to accommodate seasonal load scenarios. 

• To allow more rapid evaluation of the present network model, the DC load flow 

approximation has been adopted. More research can be carried out to enhance the 

transmission modelling by implementing AC load flow to maintain an acceptable 

voltage profile and ensure that reactive generation is within the specified limits. 

• Because the computational time increases with the size and complexity of the 

problem, further research can be oriented towards the improvement of the 

computational efficiency of the optimisation methods without compromising solution 

quality. A possible solution is to implement DCGA (ACS) on powerful machines that 

use parallel processing techniques. 

• An area of further work is the use of hybrid systems where the merits and trade-offs 

of two optimisation techniques can combine to optimally solve large-scale 

transmission systems. 

-----------------------------------------------------
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• The GA and ACS models require parameters tuning in order to achie\'e con\'ergence. 

This is very time consuming and requires extensive experiments. Further research is 

required to provide automatic parameter tuning. 

• The application of GAs to the 'traditional' or 'incremental' planning problem could 

be investigated. 

• The GA modelling could be extended to allow for the expert user to interact during 

the evolutionary process and force some interesting changes during the evolutionary 

process. 
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