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Abstract 

This work is devoted to the synthesis, characterization and modification of a class of 

acrylic-based superabsorbent polymers. The techniques of inverse suspension and 

solution polymerisations were used for synthesis. Each absorbent was mainly 

characterised by its equilibrium capacity of water absorption and by the rate of 

absorption. 

The swelling characteristics of the polymers were evaluated in terms of change in 

polymerisation variables which include, type and amount of crosslinker, monomer 

composition, process of polymerisation, temperature, initiator concentration, monomer 

concentration and particle size of the product. The swelling dependency on salinity was 

also examined. In some cases, the base polymer was blended with certain polymers in 

order to upgrade the swelling properties. 

A swelling model was devised based on a simple viscoelastic model, i. e. Voigt model, 

to obtain a better understanding of the effect of the above-mentioned variables on the 

swelling behaviour. 

Finally, our materials of choice were compared with some commercial analogues and 

some further comments have been made for continuing the work. 
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An extended summary of the work 

The work presented here explores the effects of a number of variables on the swelling 

properties of a class of acrylic-based superabsorbent polymers. The variables have been 

considered among the most important polymerisation parameters and included a couple 

of external parameters, i.e. the parameters which manifest themselves in service. 

In order to produce superabsorbent polymers, two main techniques were used here, i.e. 

inverse suspension and solution polymerisation. The product obtained from these 

polymerisations were expected to be respectively in particle and bulk form. But this has 

not been the case and the product was obtained in different shapes, including granule 

and lump. 

So, the first part of the work was devoted to produce a superabsorbent in particle fonn. 

This step was crucial to survey the effects of the variables on the swelling properties of 

the products, since the swelling was found to be quite sensitive to the size of the 

particles to be examined. 

We experimented with various concentration of the surfactants, the rate of agitation, the 

change in surfactant, applying vacuum distillation, incorporating a variety of additives, 

changing the method of dewatering and fmally incorporation of another class of 

stabilising systems, to produce the polymer in particle form. The last approach proved 

to be best for resolving the problem. 

The effect of the various concentrations of ethylene glycol dimethacrylate on swelling 

was surveyed. The swelling as well as the crosslink density were affected. A polymer of 

high absorption capacity and gel strength was obtained, although the rate of absorption 

was low, i.e. the equilibrium swelling was attained in a fraction of an hour. 

The effect on swelling of another class of crosslinkers, i.e. a water soluble type, was 

also examined. Again, the swelling in the various media and the structural properties of 

the polymers were affected by the cross linker concentration. A decreased swelling was 

obtained at the expense of an increase in the crosslink density. Here again, a 
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polymer of high absorption capacity was obtained, but at a very low loading of 

crosslinker concentration and still having a low rate of absorption. 

Incorporating to the polymer structure of a non-ionic monomer led to a decrease in the 

equilibrium swelling, but the rate of water absorption was much improved. This 

observation was accounted for in terms of the increased mobility and the screening 

effect on the anionic repeating units, as well as the effect of drying on the morphology 

of the polymer chains. 

The inverse suspension was replaced by a solution technique, in order to convert it into 

a simple method of synthesis and to make the product cheaper. Although the swelling 

capacity at the same cross linker concentration was reduced to some extent, the rate of 

absorption was still poor. 

To be able to predict the swelling properties, we devised a model which was based on 

the two element Voigt model, already used for explaining the creep behaviour of typical 

viscoelastic materials. The spring and the dashpot elements of the model were 

considered respectively as the resistance to expansion and to permeation for an 

absorbent system. A very good fit of the experimental swelling data was achieved using 

a two variable exponential relationship, showing the strain behaviour of the model 

under any applied stress. A wide range of the values was obtained for these two 

parameters which characterise any absorbent studied so far. Based on the model 

parameters, we justified the effect on absorption rate of an increase in the crosslinker 

concentration and of using acrylamide. 

The solution polymerisation process is extensively used industrially to produce acrylic

based superabsorbent polymers. Using a simple, small scale laboratory version of the 

polymerisation part of this process, which permits contact with air and evaporation of 

water, the effect of varying the heat input to the reaction mixture and the initiator 

concentration were also explored. The presence of oxygen resulted in an inhibition 

period which lengthened the time for completing the polymerisation and consequently 

increased evaporative losses of water. The absorbency of the reaction products was 

higher under the conditions which gave short reaction times. Long reaction times 

resulted in long inhibition periods, runaway polymerisations and low absorbency. These 
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effects were accounted for in terms of oxygen participation in the reaction and extensive 

losses of water. 

The existence of an inhibition period and observation of a sudden normal 

polymerisation was confrrmed by simulating the bench-scale polymerisation through the 

use of a differential scanning calorimeter. A variety of micropolymerisations was run 

with DSC, at different set temperatures and initiator concentrations. 

The particles obtained from vanous mverse suspenSIOn and solution systems were 

expected to impose certain effects on the swelling properties, because of their sizes. 

This was assessed through measuring the swelling properties of selected particles which 

differed in size. A higher swelling capacity and rate were observed for the smaller 

particles. These observations were accounted for in terms of the increased surface area 

and the excessive capillary effect within the smaller particles. 

The effect on the swelling properties of the ionic strength of the swelling media was 

also surveyed. The change in the crosslinker concentration showed some effect. This 

observation was accounted for in terms of a change in the rigidity of the polymer 

structure. 

F or running polymerisations at higher monomer concentration, the initiator and the 

neutraliser were replaced by their more water soluble counterparts. An increase in 

monomer concentration led to a decrease in the swelling capacity, but to an improved 

rate of absorption. The resulting porous structure was partly responsible for this 

observation. 

In other work, we tried to create a superabsorbent of a porous structure. For this 

purpose, a variety of absorbent formulations containing poly (vinyl chloride) emulsion 

powder was polymerised. No improvement in the capacity and in the rate of absorption 

was obtained with these formulations, except that a vigorous foaming in the reacting 

medium occurred. But in an attempt to etch by a suitable solvent of the PVC particles 

embedded in the superabsorbent matrix, the rate of absorption was increased to some 

extent, while the equilibrium swelling was unchanged. 



Finally, we compared our superabsorbents with a number of commercially available 

types, which were similar in their structure and the method of synthesis. If a better 

swelling property is defmed as the higher water uptake at a shorter period of time, the 

sample of solution polymerisation of a highly monomer-loaded system showed better 

properties than the commercials. 
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Chapter 1: INTRODUCTION 

1.1 Definition 

Hydrophilic polymers having ability to absorb large quantities of pure water saline or 

physiological solutions are nalned superabsorbellt polymers (SAP)] . To qualify as a 

superabsorbent, a dry material should spontaneously imbibe about twenty times or more 

of its own weight of aqueous fluid. Moreover, the swollen material shou ld retain its 

original shape, i.e. a swollen bead is still recognizable as a bead, a swollen fiber as a 

fiber, and a swollen fihn as a film (Fig. 1.1). The 'hydrogel ' resulting from the 

transformation of the dry superabsorbent must have sufficient physical integrity to resist 

flow and fusion with neighboring palticles. When exposed to an excess of water, true 

sllperabsorbent hydrogel particles swell to their equilibriwn volume and do not dissolve. 

The Inechanislns driving swelling are exactly the same as those for dissolution. The 

swollen polYlner is prevented from actually dissolving by some form of network tie

points generally provided by crosslinking 2. 

Figure 1.1 A dry particle of superabsorbent against its s\vollen cOLlnterpart 



This class of material originated in the U.S during the late 1 q50's and was design~d for 

very focused applications, such as water retention agents in agriculture and fire-fillhl i.nu 
'- ~ 

aids. But their real industrial-scale development took place in Japan in the mid-70's iI', 

the personal care area. It appeared that SAP could be a competiti\'ely-priced alternative 

for wood fluff, traditionally-used in baby diapers and catemanial items ". 

Superabsorbent polymers ha\'e revolutionized the personal care industry over the past 

decade and nearly 450,000 tons of SAP are now pruduced annually 4 • 

1.2 Analysis of s.}perabsorbents 

Desired features of SAPs are: high water absorbency (they should abso"b and retain 

huge amounts of water even under load or in contact with other materials ), high 

absorption rates (a large amount of fluid must be absorbed per unit of time) and good 

gel strength (the n1aterial should not become 'slimy' and flow away aft r swelling). 

These requirements 'e dependent on the final use of material. For some applications, 

fluid absorption should be reversible (the polymer lrust be able to absorb and desorb the 

fluid several times without degradation). Moreover, they must be non-toxic and should 

not contain traces of unreacted monomers a,d. finally the cost of thl raw material and 

the prociuction process should be low. 

In practice it is diffinIlt for a polymer structure to meet all of these requirements 

simultaneously. How these properties are measured is optional and generally is as 

follows: 

1.2.1 Absorption capacity 

Absorption capacity is measured by putting a dry polymer sample in excess water for a 

time sufficient to saturate it and then after removing the excl'SS of water, e.g. with a 

sponge, weighing the gel obtained. Synonymous terms used to describe swelling are, gel 

capacity, \\ ater absorbency, ratio of absorption, swelling ratio, swelling, swelling index, 

water retention value and so forth. The same defmitions are also adopted for saline or 

physiological solutions (e.g. synthetic ur ne). 
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1.2.2 Absorption rate 

The absorption rate can be expressed in two ways: either through the amount of fluid 

absorbed by a weighed amount of the polymer in a fixed short time (a rate factor) or 

through the time required by the polymer sample to absorb a given amount of fluid. 

1.2.3 Gel strength 

Gel strength measurement methods are even more exotic and in many cases a 

qualitative observation is preferred. Typical methods used include, the maximum 

diameter of a steel ball required to settle through the gel, the amount of gel free-flowing 

through a screen, or the pressure to be applied to the gel in order to force it to flow 

through a certain screen 1. 

1.3 Structural design of superabsorbent polymers 

Macromolecules exhibiting solubility in aqueous solutions represent a diverse class of 

polymers ranging from biopolymers that direct life processes to synthetic systems with 

enormous commercial utility. This class of materials can be regarded as a base to 

produce superabsorbing polymers. Therefore, to design a desired superabsorbent 

polymer, a deep knowledge on hydrophilic polymers is fundamental. Solution properties 

and ultimate performance of water-soluble polymers are determined by specific 

structural characteristics of the solvated macromolecular backbone which can be 

explained as follows. 

1.3.1 Polymer structure 

The primary structure depends upon the nature of the repeating units (bond length and 

valence bond angles) as well as composition, location and frequency. In terms of 

monomer distribution, repeating units of a macromolecule may be arranged in a 

random, alternating, block or graft mode (Fig. 1.2a). On the other hand, a 

macromolecule may be linear, branched or dendritic (Fig. 1.2b) in terms of its 

segmental distribution. 

a: Monomer distribution 

Alternating copolymer 

Random copolymer 

(l.~.~.~ . .....D-• .....D-. (l._. 0 0 0 ._.~ • .flD 
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Block Ctl'o lymer 

Graft copolymer 

b: Segment di stribution 

( 1). Linear 

(2) . Branched-loJlg branches 

0 00 

(3). Branched-branches protruding from branches (dendrit ic) 

[ J ] [2] 

[3] 

o 

--1_-_ 

Figure 1.2 Primary structUl es of a typical macromolecu e. 

Secondary structure is related to configuration, confonnation and intramolecular effects 

such as hydrogen bonding and ion' c interactions. Te iary tructure is defined b) 

intermolecular interactions while qU..Jt ' mary structure is governed b multi ple-chain 

complexation. 

1.3.2 Functional groups on polymer structure 

For a desired polymer structure to be ~O lble in water, sufficient amounts of h drophi li 

functional groups should be po itioned a ong the backbone or ide Lha ins of th 

pOI)'ll1er. Examples of function al groups imparting water olubility includ til 

following (Fig. 1. 3): 



a 

~I 
+ a a a aNa 

~o ~N ~s ~o 

'" N-
{ 

Figure 1.3 Typical functional groups impart water solubility 

These substituents possess sufficient polarity, charge or hydrogen bonding capability for 

hydration. 

1.3.3 Interaction with solvent 

The solution behavior of polymers can best be predicted by considering chemical 

structure and hydrodynamic volume (HDV) or that volume occupied by the solvated 

chain. This chain can be simply considered as freely jointed having an end-to-end 

distance of, r. The latter parameter can be related to the number of bonds, n, and the 

length of each bond, I, according to Equation. 1.1. 

(1.1) 

However, more realistic nature of this typical chain is provided by taking into account 

the valence bond angle, e, and confonnational angle, q> . These two exhibit restriction 

or stiffening characteristics which are necessary to impose directionality to the chain 

(Equation. 1.2): 

2 2 (1- cos e) (1 + cos q>J < r > = oI 
1 + cose 1- cosq> 

(1.2) 

In a macromolecular chain, additional expansion is predicted since segments cannot 

spatially occupy sites filled by other segments. Reasonably good approximation of the 

end-to-end distance can be obtained by including an expansion factor (a) (Equation. 

1.3): 
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2 2 (1- COSS)(1 + COSq>J 2 < r > = of a 
1 + cosS 1- cosq> 

(1.3) 

In addition to the excluded volume and solvating effects, longer range molecular 

interactions, charge-charge repulsions (or attractions), hydrogen bonding, etc. may 

contribute to the value of (a). 

1.3.4 Approaches to increase chain expansion in solvent 

a) Increase in number of bonds tt 0 ". 

Potential synthetic approaches for increasing the average end-to-end distance and thus 

HDV of macromolecules are revealed by Equation. 1.3. The number of bonds, 0, can 

be increased by increasing the degree of polymerization (DP). Choice of appropriate 

monomers and mechanisms (free-radical, anionic, cationic, coordination or template) 

can lead to high molecular weights. Polymers obtained by step polymerization usually 

have low molecular weight and rely on other interactions for reasonable values of 

HDV. 

b) Increase in bond length ttl ". 

The effective bond length, I, may be increased by the appropriate choice of monomers. 

Introduction of cyclic rings (polysaccharides), double or triple bonds increase rigidity by 

affecting valence bond angle, S , changes. Likewise, rotational bond angles <p might be 

changed by introducing steric bulk along the backbone. Temperature, of course, 

determines the availability of various rotational states and thus HDV . 

Adjacent polymer units may act in concert if associated by hydrogen bonding (partially

hydrolyzed acrylamide) or ionic charge interactions to yield longer effective bond 

lengths with restrictive rotations. In some cases, configurational restrictions lead to 

chain stiffening by helix formation (polypeptides, polynucleotides and polysaccharides). 
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c) Increase affinity to solvent 

Finally, chain expansion may be realized by increasing the polymer-solvent interaction 

and by introducing like charges along or pendant to the macromolecular backbone. 

Extremely large HDV s are attainable for flexible polyelectrolytes in deionized water, 

although addition of simple electrolytes dramatically reduces HDV. 

Viscosity, which is directly related to HDV, can yield a valuable insight into 

structure/performance relationships and can be defmed by the Mark-Hawink-Sakurada 

expression (Equation. 1.4): 

(1.4) 

where M is the molecular weight and k and a are characteristic of a particular 

polymer chain under specified conditions of solvent and temperature. 

Of significance is the extension of the coil in dilute solution indicated by the value of a 

which can range from 0.5 for random coils in theta conditions to nearly 2.0 for 

extended rods. The higher the value of a is, the higher the extension of the coil will be. 

In semi-dilute and concentrated solutions, macromolecules are no longer isolated. 

Intermolecular interactions above a critical concentration lead to an increased value of 

viscosity 5 . 

For a polymer structure of desired associated prescribed parameters, including backbone 

molecular weight and the stiffening parameter, to be water swellable, provisions should 

be made to prevent the chains from attaining infmite solubility. This job can be done by 

crosslinking. 

1.4 Crosslinking 

1.4.1 In bulk 

Crosslinking of polymer chains is basically carried out in two ways (Fig. 1.4). The first 

involves free-radical copolymerization with small amounts of polyvinylic comonomers 

(Fig. l.4a). The use of polyunsaturated comonomers is by far the most common method 

for obtaining crosslinked poly( acrylates). In this case, crosslinking takes place 

simultaneously with chain growth. Diacrylates or bisacrylamides are the most frequently 

used polyunsaturated crosslinkers, although trifunctional acrylates and di-or triallyl 
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compounds are SOI11>. .. times employed. TIle second \\ ay consists of a nuch~(\~\hili '- or 

condensation reaction between the carboxyl tte 'r carboxylic pendant g10Up of the linear 

polymer respectively, with suitable polyfunctional compounds (Fig. l.4b); poly 

(epoxides), halo-epoxides and polyols are the most COmnl011. Spontaneous themlal 

crosslinking or auto-crosslinking without using crc'slinker molecules occurs th:ough 

hydrogen abstraction from the polymer backbcne followed by radical combinations or 

involves intermolecular reactions between chemical functionalities already present in 

the polymer chains as pendant groups such as carboxyls and hydroxyls. These types of 

cross linking reactions render covalent crosslinks. 

Another way to produce crosslinks is treatment of polymerization mixtures with 

polyvalent metallic cation solutions. Multivalent metal ions can function as ionic 

bridges between carboxylate groups of two or more different poly(acrylate) chains. 

Zinc, calcium. strontium or barium acetates are used for this purpo,;e at the end of 

(after) polymerization. 

As in thermoplastic elastomers, £l),stalline domains (hard segments) act as crosslinks. 

Block copolymers of an acrylic monomer and a cr; "tallisable monomer such as "inyl 

alcohol are apparently rendered insoluble through poly(vinyl alcohol) crystalline 

regIOns. 

Hydrophol?ic association of pendant long chain hydrocarbon groups obtained by 

copolymerization of an ;,,:;rylic monomer with a small amount of an oil-soluble 

comonomer, such as lauryl methacrylate, can prevent the polymer chains from 

dissolving. Hydrophilic association via hydrogen bonding may also be the mechanism 

by which some absorbents form gel. 

1.4.2 Crosslinking at surface 

In fact when a water-absorbent resin which crosslinked by any method described above 

is contacted with water, swelling first occurs at the surface of the particles and further 

penetration of water into the core, or toward the central parts of the rarticles, is 

retarded. Mort 0\ er the particles become sticky and form agglomerates (lumps). which 

block the diffusion of water toward particles into the agglomerates. As a result a low 

absorption rate is achieved. The phenomenon is sometimes reD-rred as "fish-eYl's" 

formation or "gel-blocking". A method of obviating these inconveniences is to render 

the gel surface structure more rigid; hence the effectiveness of surface crosslinking was 

found valuable. 
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Hydrophilic 
monomers 
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+-
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/0 

Initiator 

Water -soluble HO 
prepolymer chain 

[b) 

OH 

I 
R 

I 
OH 

Polyvinylic 
crosslinker Initiator Polyfunctional 

____ -.J crosslinker 

Water -swellable polymer network 

------------------- -------~----- ~ --

Figure 1.4 Two essential routes to crosslink polyacrylate superabsorbents. 

a) simultaneous polymerization and crosslinking via radical mechanism. 

b) crosslinking after polymerization via functional groups condensation. 

Treatment with polyvalent metal salts or electrophilic polysubstituted compounds can 

also be applied to induce surface crosslinking of already crosslinked superabsorbent 

polymers recovered from the reaction system. Surface crosslinking of crosslinked 

acrylic-based superabsorbents is also accomplished by coating the particles with 

glycerin or other polyols. Adding peroxide at the end of the polymerization to the 

polymer slurry and heating the mixture at 50-100°C above the decomposition 

temperature of the peroxide also leads to surface crosslinking 1, 6, 7. 

1.5 Swelling 

1.5.1 Non-ionic gels 

When such a polymer is contacted with water or an aqueous solution, free energy of 

mixing comes to play because of polymer- solvent interaction which renders the 

polymer soluble in water. The infmite solubility can be prevented by the elastic 
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response of the network which is provided by some cro"slinking. Baltlh: illg these t\\ 0 

forces determine the swelling capacity of non-charged networks. 

1.5.2 .Jonie gels 

Most synthetic SAPs are polyelectrolyte gels, i. e. gels which bear ionic or ionisable 

moieties and active sites for crosslinkin~. When immersed in a high dielectric constant 

medium, such as aqueous fluids, these ionic moieties will G ~so( iate and create an 

overall charge density along the chains as well as a hi0.h concentratiol1 of mobile ions in 

the gel (F,g 1.5). 

0'-------
Drys upae rabsorbe nt 
paru:~ 

Mag nifled c mins 

water .... 

Collapsed· -hains 
in the p art.i:.1e 

H2O 
- + H2O H2O 

H2O H2O Hrl)-
.:' + 

---_ H2O 
+ 

H2O o 

H2O+ I 
H2O H2O + 

H2O 

H200 
H2O 

H2O + 0 + H2O 

H2O? H~ f 
H2O ·r-------

+ 
+ 0 H2O + H2O 

M~ nifled chains 
in contact with water 

Figure 1.5 Schematic swelling of a typical ionic superabsorbent. 

Con1pared to classical (non-charged) gel behavior. this ionic character will bring ,\ 0 

"new players" forces to the s) sten1: (a) the osmotic pressure resulting from differences 

in ion concentration between the swollen gel and the external sl,Jution (for 

"macroscopic" electroneutrality reasons, mobile ions belonging to the gel cannot leave 

it and minimization of this osmotic pressure can only be achieved through dilution of 
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the network charge density, i. e. swelling) and (b) the net charge density along the chains 

will generate some electrostatic repulsions between chain segments. Therefore the 

resulting expansion of the network is determined by the four forces and because of the 

latter two, the non-ionic absorbents are not as effective as ionic ones in pure-water 

absorbency 3 . 

It should be noted that the amount of crosslinker incorporated into the polymer chains is 

substantially lower than of the conventional thermoset resins. This is critical for facile 

diffusion of water into the polymer chains. Although increased superabsorbent strength 

in its gel form results from incorporating of higher dosage of cross linker, it usually 

leads to decrease in water absorption capacity. 

1.6 Synthetic methods 

Water soluble or swellable polymers or copolymers are prepared by step growth or 

chain-growth polymerization of appropriate monomers or by post-reaction procedures. 

Distribution of the units along the backbone or on the side chain may be accomplished 

in different ways. In nearly all procedures, proper sequencing can be obtained by 

carefully controlling monomer reactivity, concentration, orders of addition and reaction 

conditions. 

The major mechanisms for preparation of such polymers in commercial sense are direct 

chain growth or ring-opening of functionalised alkenes, carbonyl monomers or strained 

ring systems. Initiation may be accomplished free-radically, anionically, cationically or 

by coordination catalysis depending on monomer structure 5. 

1.6.1 Homogenous polymerization 

Commercial syntheses of high molecular weight water-soluble polymers employ 

monomer loadings of approximately 50% of the aqueous phase. Under such 

circumstances some relatively specialized technology is required to overcome the high 

exothermicity of the polymerization and to maintain a mobile reaction mixture. 

The solution process is based on a copolymerization carried out in aqueous solution of 

the monomers. Due to cross linking, the viscosity as well as elastic modulus increases 

very rapidly, affording small gel particles formed under high shear agitation. To 
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overcome thi s, either dil ute so luti ns(assll,jated with an L , nomi tral-l -oit. Ju to 

insuffi cient reactor utiliz tion) or a hetero hase water- in-oi l po l) Itl eriza tion an b 

emplo d (F ig. 1.6). The final sol id product is collected , dried and ground up in order to 

)btain the desil !d particle size distribution . The solution POI)11l~ ri zatio '; proce ~ 

un ited since the e treme viscosities generated at high con ers ion (> 1.000 000 cpo 

result in agitation and heat transfer diffi cu ties, which lead to thennal in tabil it ies. Thu 

polymerisations are usually performed bem:een 40 and 6rfC. 

Monomer(s, 
In itia1or, 
Crosslinker, 
So ven1 

A s10r 

~<----------\I~----------~ 
Reac10r 

~ ____ ---+-t---- -~_ -'-< _--111'---------"-
--

Solution Inverse. Suspensio n 

Continuous 

Organic 
Phase 

Figure 1.6 Set up of the two most common polymenzation systems for SAP synthe is, 

1.6.2 Heterophase polymerization 

Into the typical reactor of heterophase polymerization hown in Fig 1.6 the anou 

heterol Jhase synthetic rocedures (F ig 1.7) can e performed acc rding to two priman 

thresholds: the onset of thermodynamic tability and the surface tension dri ing ~ r . 

\-.; fornler relates to the emul sifier concentration while the latter is etennined b th 

sW'face ten ions of hydrophilic and I ipop lilic moi ties wi lin the emul ifi r m I ul . 

So, four polymerizati on regimes may be identified: I macroemul i n' II In\' r -

macroemuI ion; ill ll1icroemulsiOI1' IV, in r e-micro mul ion. TIle rna [0 mul i n 

domains m be further subdi ided by a se ondary tran ition at the ri ti al mi clle 

concentration (C. 111.C). 



1.6.2.1 Emulsion and Inverse-emulsion 

For surfactant levels above the c.m.c, micelles or inverse-micelles are fonned which can 

have a role in particle nucleation. Such polymerisations are referred to as "emulsion"( Ib 

) and "inverse-emulsion"( lib ) respectively. 

1.6.2.2 Suspension and Inverse-suspension 

If the polymerization is performed at emulsifier levels below the c.m.c, nucleation 

occurs predominantly in the monomer droplets. Each monomer droplet will contain 

unreacted monomers, solvent, primary and macroradicals and dead polymer chains and 

will therefore resemble an independent microbatch polymerization reactor. In such 

cases, the continuous phase serves primarily as a heat sink, although it can also contain 

the initiator species. These polymerisations are designated as "suspensions"( Ia ) and 

"inverse-suspensions"( ITa) respectively 8. 

The inverse suspension process is successfully carried out if the surface tension of the 

lipophilic moiety of emulsifier is higher than of its hydrophilic counterpart. This process 

is further explained in a separate section and the other sections as well, since it is the 

essential process has been used in our work. 

Thermodynamically unstable Thermodynamically stable 

I: Macroemulsion ill 

(a) (b) 

Suspension Emulsion Microemulsion 

* dy t 0.0 

ll: Inverse- Macroemulsion IV 

(a) (b) 

Inverse Inverse Inverse 

suspension emulsion microemulsion 

O.O~ cmc t Thermodynamic threshold 

Emulsifier concentration 
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* Surface tension driving force .'1'( = ~.; A.H - Y O.L 

'f = Surface tension 

A. H = Aql,eous phase - Hydrophilic moiery of emulsifier 

O. L = Organic phase Lipophilic moier) of emulsifier 

Pr ocess is oil in wakr if /::.y > 0 

Pr ocess is water in oil if /::.y < 0 

Figure 1.7 Features of various hete rophase systems of polymerisations 

1.7 Inverse suspension polymerization 

Inverse-suspension polymerization involves the dispersion of a solution of water

soluble monOlner in a continuous organic phase. The latter can be either paraffinic or 

aromatic. Emulsifier levels are typically 2-5 wt. % of the org~nic phase and below the 

c.m.c thus polymerization proceeds in monomer droplets. The dispersion is 

thermodynamically unstable and requires both continuous, vigorous agitation and the 

addition of a low HLB (hydrophilic-lipophilic balance) steric stabilizer. This forms a 

condensed electrically-neutral interface layer and prevents coalescenl.~e. The monomer 

droplets are typically 1-100 microns in diameter and are controlled predominantly 1':

the Weber number of the mixture. 

When particles with 1l0lninal dialneter of one lnicron are fonned, the process is referred 

to as "inverse-n1icrosuspension". The prefix "micro" de~ignaL's the particle size and is 

needed to distinguish polymerisations including inverse-emulsion where interfacial 

reactions occur 8,9. 

The resulting spherical particles from this process are easily removed by filtration or 

centrifugation frOln the continuous organic phase. Upon df) ing, these particles or beads 

will directly provide a free-flowing powder. Apart from the uniljue flov-in s properties 

of the beads, this process displays some further advantages compared to the altemati\e 

gel or solution process. These include better control of reactiun exotherms. regulation of 

particle size distribution and further possibilities for adjusting par1icle structure or 

n10rphology 6, 10. 



1.8 Previous studies on hydrophilic polymers 

1.8.1 Introduction 

According to literature, superabsorbent polymers are water-insoluble hydrophilic 

polymers able to absorb an aqueous solution, as high as 10-1000 times their own 

weight. These are usually polyelectrolytes which bear crosslink sites and contain 

carboxylic groups. Dissociation of the latter groups helps the polymer coils to extend, 

because of electrostatic forces and osmotic pressure. Based on chemical structure, SAPs 

can be grouped into three main classes according to patent literature. 

1. Crosslinked poly (acrylate)s or poly (acrylamide )s. 

2. Cellulose or starch acrylonitrile graft copolymers. 

3. Crosslinked maleic anhydride copolymers. 

Other hydrophilic polymers, including poly (ethylene oxide), poly (vinyl alcohol) and 

poly (N-vinyl pyrrolidone) have been used as superabsorbents after special treatments 

like crosslinking or blending to prevent them from dissolving. 

An up-to-date survey on the state of the art concerning the industrial research activities 

on SAPs has recently been done by Riccardo Po' 1 . This survey covers all the published 

United States (US), European (EP) and World (WO) patents on both chemical and 

application aspects in SAP production appeared in Chemical Abstracts on-line data 

bank through volume 119, 1993. 

Regarding acrylic superabsorbents, subjects including synthetic procedures, monomers 

used, methods of crosslinking, various modifications on the polymers have been 

reviewed in detail. 

Starch graft copolymers, modified cellulose copolymers and miscellaneous poly 

(saccharide) derivatives constitute the second topic of this survey. More than 300 

patents has been covered in this survey. 

Another recent and detailed review on hydrogels and superabsorbents has been written 

by Scranton et al H.This review is concerned with methods of hydrogel synthesis 

including poly (hydroxyethyl methacrylates), (N- isopropylacrylamide), 2-oxazolines, 

poly (acrylic/ methacrylic acid) as well as preparation of hydrogel microspheres by 

emulsion! suspension techniques. The second topic of this review was devoted to 

hydrogel synthesis by polymer modification. Unlike the patent survey done by Po'. this 
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review is essentially based on academic activities done in this area. This review covers 

near 90 references. 

Under the topic on preparation of hydrogel micro spheres by emulsion! suspension 

polymerisations, one of our works regarding synthesis and characterization of acrylic

based superabsorbents has been referenced (Ref 62. p422). It should be noted, this is 

the only reference about SAP which has been used by Scranton et al to introduce inverse 

suspension techniques of polymerization. 

Another recent review which is also based on industrial activities has been written by 

Buchholz 12. This review contains 35 references which is devoted to recent advances in 

superabsorbent polyacrylates. 

Finally general topics on superabsorbent polymers can be found in two books published 

in 1990 2 and 1994 13 which are the sole available books written on this field up to now. 

Although, industrial research publications on SAPs are very extensive, the academic 

counterpart is quite poor. To avoid any redundant work, our literature survey was 

devised to be based on latest academic pUblications regarding in-use or potential 

materials which are promising to be used as superabsorbent polymers. 

To prepare this survey, up to the latest publications (1996) contained mainly in 

"Chemical abstracts ", "RAP RA" and "Polymer Contents" as well as miscellaneous 

references have been viewed. 

This survey was sub-classified according to the structural nature of the polymers which 

are used or promising to be used as superabsorbent polymers. 

1.8.2 Natural polymers 

Among the naturally-occurring water-soluble polymers, 1. e. polynucleotides, 

polypeptides and polysaccharides, derivatized polysaccharides are potentially important 

in absorbent technology. All of them have high values of stiffening parameter which can 

lead to large values of HDV in solutions. The three most abundant, naturally-occurring 

saccharides, cellulose, chitin and starch have been derivatized to yield water solubility. 



COl11mon derivatives include use of hydroxyethyl-, h)drox: prop: 1-. carbox:111ethyl-. 

stdfate-, and phosphate functions. 

Xanthan is the extracellular polysaccharide produced by the microorganism ... 

Xanthomonas campestris. Xanthan (anionic) primary structure is based on a linear (1 ~ 

4)- p- D- glucose backbone, as in cellulose, with charged (COO-) trisaccharide side 

chains on every second residue, that impart semi-rigidity or a wonn-like behaviour into 

its structure. The strong current interest in xanthan is its large potential for use as an 

additive to injection fluids for enhanced oil recovery. It can be used in its solution or 

crosslinked form, for which, in the latter case, the trivalent chromiuLl ion is added to the 

cOffilnercial polYlner commercially as a cross linker. Several studies on xanthan have 

indicated good viscosity reter'tion in seawater at temperatures up to 90°C. 11le excellent 

stability of xanthan solutions in the presence of salts is probably due to the maintenance 

of order 14- 15. 

The high viscosity of these polymers at low solution concentrations, is due to both their 

high molecular weight and their high structural chain rigidity. TIle moleculal reason for 

the high stiffness i~ most likely the multi stranded nature of the polymers. The 

prevalence of the ordered. probably double-stranded, conformation of xanthan at high 

salt concentrations and low temperature, and the triple-stranded conformation of 

scleroglucan also provide a m.Jlecular basis for the enhanced long-tenn stability of these 

polymers under harsh conditions against to that observed for single-stranded 

polysaccharides 16-17. 

Fungi of the genus Sclerotium secrete scleroglucan. The polymer is present both in fibre 

form and in aql:couS sc·}ution in a triple helical confonnation. A polycarboxylate has 

been obtained from this polymer through a selective and quantitativ~ oxidation of the 

glucopyranosyl side chains and its confomlational changes were reviewed 18. This 

polymer has recently achieved much attention because of its potential as a thickening 

agent. Semi-dilute solutions of entangled scleroglucan show a thermoreversible geLtt ion 

which occurs about 6 °C 19. 

Schizophyllan is a nonll)nic extracellular polysaccharide commg from fungal 

fermentation and has been employed as an anti-tumor agent. It exists as a more rigid 



triple helix in aqueous solutions and consists of a main chain of (1 ~3)- ~- linked D

glucose residues with one (1 ~ 6)-~- linked D- glucosyl group for every three glucose 

residues. The intrinsic viscosity of the latter polymer is not influenced by the ionic 

strength which is opposed to the observations for the xanthan polymer 20. 

Although the biopolymers such as xanthan gums are suitable for low to moderate 

temperature and high salinity conditions the polyacrylamide and partially hydrolyzed 

polyacrylamide are suitable for low temperature and low salinity conditions. Specially 

tailored synthetic copolymers, such as HE polymers ( HE is a trade name) are suitable 

for high salinity and high temperature reservoir conditions 21- 22. 

The phase transition behaviour of the water-xanthan system was investigated as a 

function of water content. Water content can be classified into 'free' and 'bound' water. 

The latter is further classified as 'freezing' and 'non-freezing' water. The 'non-freezing' 

water can be calculated from heat of fusion of water using a differential scanning 

calorimeter. The glass transition behaviour and the transition from the mesophase to 

isotropic liquid can be analyzed as a function of the non-freezing water content. It has 

been found that increase in water content results in an increase in bound water content 

and ~ decrease in the glass transition temperature 23. 

Graft copolymerization of vinyl monomers onto cellulose can be carried out in both 

heterogeneous and homogeneous solvent systems to improve its water solubility 

properties. The desired solubility properties can be achieved through grafting 

acrylamide monomer onto the ethylcellulose backbone 24. Hydrogels based on 

hydrophilic cellulose ethers can be obtained by crosslinking hydroxyethyl cellulose 

(REC) or carboxymethyl cellulose (CMC) with divinylsulphone. The crosslinking 

reaction is much more efficient with REC of nonionic character. The crosslinker reacts 

with the hydroxyl groups on the cellulose ethers. 

With CMC, the majority of the hydroxyl groups at the C6 position are substituted by 

carboxymethyl groups. Only a few hydroxyl groups at C6 as well as most of the less 

reactive hydroxyl groups at C2 and C3 remain available for the cross linking reaction. 

The electric charges carried by the CMC impede intennolecular contacts because of the 

electrostatic repulsion. Hence, the divinylsulphone could mostly be used to link two 

hydroxyl groups of the same macromolecule instead of fonning effective crosslinks. On 
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the at}, '~r hand, the ionic C~1C gels show larger swelling, particularly in solutions of 

low ionic strength. In the swollen state, the mechanical behavior of the gels is largel\' 
'- . 

influe Iced by no:~-Gaussian effects. With the cellulosic gels, these beconh: noticeable at 

considerably lower degrees of swelling than with gels made from :::crylic 

polyelectrolytes. The enhancement of t!1e modulus due to non-Gaussian beha\ior is a 

highly desirable effect. when such gels are considered a potential material for 

superabsorbents 25. 

The fundamental properties of the HEC superabsorbents including viscosity, the state of 

the sorbed water and moisture absorption has been compared with some commercial 

ones. The investigated absorhents were HEC graft copolymers containing partially 

hydrolyzed polyacrylamid \ partiall) hydrolyzed polymethacrylate sodium polyacrylate 

and polydimethylaminopropyl acrylamide 26
. 

The influence of several structliral parameters on the swelling 1 'ehaviour in water or in 

saline water of starch-based superabsorbent gels has been deeply explained. Anionic 

gels were obtained by saponi fication of grafted poly (acrylonitrile) onto starch. 

Crosslinks and sodium acrylate units are fonned during the alkaline hydrolysis. Cationic 

gels have been synthesized by graft cc.polymerizatilJn with a cationic monomer 

(trimethylaminoethylacrylate chloride) and a crosslinking agent, such as methylene 

bisacrylamide. TIle degree of swelling decreases drastically with the crosslink density. 

Among these properties the polymerization rate depends on monomer concentration. 

The higher the dilution of the reaction mixture, the higher the water retention of the gel. 

However the material obtained has a poor consistency. The percentage of linear 

copolymers formed increases with dilution and of very high dilutions gel formation can 

even be prevented. On the other hand, highly concentrated mixtures lead to gels with 

low swelling capacity. Hydrolysis of starch grafte d PAN with LiOH leads to gels with 

higher absorbency compared to NaOH and KOH. The decrease of the network 

expansion through increase in ionic strength was ascribed to screening of the ionic 

charges bOWld to the network and to the decrease of the osmotic pressure difference 

between the gel and the external solution. 

The ionic strength of the solution was found to be dependent on both the mobile ion 

concentration and their valency. Small quantities of divalent or trivalent ions can 
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drastically decrease the swelling values, due to the complexing ability of carboxylate 

groups inducing intramolecular and intermolecular complex formation. Thus the 

'effective' crosslink density of the network increases. The swelling capacity was also 

drastically reduced at a certain range ofNaCI concentrations. This transition was due to 

polymer/polymer affmity which induces the expulsion of free water from the network. 

When the crosslink density of the gel increased, the characteristic time for swelling or 

retardation time decreased as well, indicating a faster rate of swelling 27. 

Superabsorbent polymers were prepared usmg acrylonitrile grafted to com starch 

employing low levels of gamma ray radiation as initiator. In the evaluation of 

superabsorbents as desiccants, data obtained reveal the superiority of superabsorbent 

over silica gel as a desiccant 28. 

Graft copolymerization of acrylamide onto starch initiated by a redox system of Ce 4+ 

to Ce3+ ions was also examined 29. 

1.8.3 Inorganic polymers 

Inorganic polymers are another class of water-soluble or potential water -swellable 

materials. Among the most important are poly (meta-phosphoric acid) and poly (silicic 

acid) 5. 

1.8.4 Synthetic polymers 

1.8.4.1 Non-ionic polymers 

Synthetic water-soluble polymers can be classified into non-charged and charged 

polymers. Polar, nonionic fimctional groups can impart water-solubility if present in 

sufficient amounts along or pendant to the backbone. Amide, lactam, hydroxyl and ether 

groups are the most important ones. Corresponding polymers have similar solution 

behaviour in pure water and in saline. Attention was concentrated on hydrogels 

prepared by gamma-irradiation of aqueous mixtures of vinyl pyrrolidone with various 

hydrophobic monomers, methyl methacrylate and methyl acrylate. Applications of 

hydrogels are usually limited to materials with a water content up to about 80°'0. 

Increased water content results in unacceptable mechanical properties. The latter can be 
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improved by control of chemical (covalent) and physical (especially hydrophobic) 

crosslinking. It was observed that small clusters of hydrophobic groups in a 

predominantly hydrophilic network may serve to increase load bearing, yet with 

avoidance of the embrittlement caused by carbon-carbon crosslinks. 10,30 

The monomer is frequently copolymerised with hydrophobic monomers in the presence 

of a cross linker to produce xerogels. The crosslinked form of PVP (using ethylene 

glycol dimethacrylate) has a very high water absorbency but it is rarely used as a 

hydrogel because of its fragility. With these polymers, an increase in crosslinker results 

in: decrease in sol fraction, increase in modulus, an increase in polymer-solvent 

interaction parameter (due to the hydrophobicity of the crosslinker), a decrease in 

molecular weight between two successive crosslinks, a decrease in water content, a 

decrease in freezing water, and non-freezing water remains rather constant 31. 

Partially-hydrolyzed polyacrylamide can form gels as the result of the formation of the 

crosslinks between added chromium ion Cr+3 and pendant carboxylate groups of the 

polymer. The de-gelation reaction is rather more complex, as the starting solution 

contains not only the elements necessary for gelation, but also a third reagent, sodium 

salicylate, which is a thermodynamically-strong complexing agent for the chromium ion 

ct3
• To promote gelation, the pH and the salicylate concentration can be optionally 

adjusted.32
-
33 

. 

The nonionic poly (N-vinylacetamide), poly NV A, hydrogels were prepared by the 

copolymerization of NV A with divinyl compounds such as methylene bisacrylamide, 

methylene bisNV A, and butylene bisNV A in high yield. The resulting hydrogels are 

more stable than polyacrylamide gel and show quite a high swelling property in a wide 

range of pH (1-12) and even in a 5M NaCI solution. They show not only the typical 

characteristics of nonionic hydrogels (10-35 g/ g in distilled water) but also an 

amphiphilic property and they swell well in some organic solvents. 

The partially hydrolyzed gels, i.e. cationic crosslinked poly (NY A-co-vinylamine) can 

take water up to 400g/g which depends on the percent of hydrolysis. Moreover, when 

the total concentration of NV A and crosslinker decreases in the polymerization system, 

the gel swelling ratio may increase. With nonionic crosslinked polyNV A, the swelling 

does not change with pH. In the case of cationic gel, it has a maximum value at pH 4.5 

since the pKb value of polyvinylamine is about 4.0, the amino group of hydrogels is not 

29 



ionized at high pH. TIle maximum in the swelling cune with r H is typical in beha\ior 

of ionic hydrogels such as polyacrylamide-acrylic acid and crosslinked polyclectrol:1es 

copolymers. rhe reducti' In in swelling at higher pHs is due to the decrease in ionization 

of the network. The decline in swelling at a low pH is considel ed to be due to the 

elimination of Donnan ion exclusion at a high ion concentration 34. 

The preparation of non-ionic hydrogels based on star-shaped polyoxazoline by means of 

partial hydrolysis of this polymer followed by crosslinking reaction or the 

copolymerization with the bifl,:1ctional oxazoline monomer was reported. The gels fonn 

stable dispersion in water and saline solutions. The swelling degrees in two latter 

solution was obtained the same about 6-7 gig. Moreover the equilibrium degree of 

swelling was increased with increase in the feed ratio of the initiator to the monomer. 

Taking into account of the wide range of the 2-oxazoline monomers, a \\"ide variety of 

hydrogels having various functional groups in the side chains can be expected by this 

preparative method 35. 

1.8.4.2 Ionic polyn7ers 

PolYl11ers possessing charges can be clas~ died into two main groups based on their 

behavior in aqueous electrolyte solutions. Polyelectrolytes, such ac polyanions (negative 

charges for carboxylate, sulfonate and phosphonate groups) or polycations (positi\'e 

charges such as amnlonium or quaternary ammonium salts) with their associated 

counter-ions nonnally collapse to smaller hydrodynamic dimensions upon addition of 

electrolytes, while ampholytes (having both positive and negative charges along the 

chain) expand in dilute electrolyte solutions. Electrostatic effects, counter-ion binding, 

solvating and local dielectric effects detennine this phase behaviour and solubility. 

Hydrogels containing phosphate groups were prepared by copolymerization of ~-

11lethacryloyloxyethyl dihydrogen phosphate (phosmer) and various hydrophilic 

m0I1Ol11erS [N,N-dill1ethylacrylanlide (DMAAm), acrylic acid (AAc) and 2-

h>droxyethyl methacrylate (HEMA). TIlese hydrogels are thenno-sensitive. Phosmer

DI\1AAm and phosmer-HEMA hydrogels deswell with increasing temperature, but for 

the phosmer-AAc hydrogel the swelling ratio increases with temperature. The swelling 
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ratio decreases with an increase in phosphate group content, because the latter is acting 

both as the functional group and the crosslinking agent 36. 

Various classes of hydrogels, their polymerization and processing, properties, test 

methods, health and safety factors and uses have been reviewed 37. Polymeric hydrogels 

of methacrylic acid monomer characterized by a high crosslink density (through 1,4-

butanediol dimethacrylate) show relatively low swelling in water and are suitable for 

use as ion-exchange resins, where some swelling is necessary but high swelling ratio 

must be avoided 38. Swelling equilibria of ionized poly (methacrylic acid) gels was 

studied in the absence of salt 39. 

A copolymer in powder form with a particle size of <2mm and water absorbency of 

500-1000 gig was synthesized by suspension polymerization of an aqueous solution of a 

mixture of acrylic acid, sodium acrylate and a crosslinking agent in toluene in the 

presence of dispersing agent. Increase in ethyl cellulose content at a certain range as 

dispersant resulted in a decrease in the mean particle size. With a constant stabilizer 

content in the region of strong stabilization, a reduction in mean particle size was 

observed with an increase in agitation rate. In the intermediate regime the stability of the 

system starts to fall at a high level of mixing, since this decreases the strength of the 

protective layer in this region. The water/ oil ratio is also important. An increase in the 

water phase leads to a reduction in the emulsion stability due to an increase in the 

probability of collision between the particles which is linked with growth in mean 

particle size. With an increase in the crosslinker, MBA, water absorption diminishes. 

Partial neutralization of the acid groups results in an increase water uptake but with 

neutralizations of >90% of the carboxyl groups, water absorption was reduced 40. 

The isoionic dilution method, in which there would be no configurational change if the 

polyelectrolyte solution is diluted with salt solution so that the effective ionic strength is 

kept constant, has been used to measure the intrinsic viscosity of a poly (acrylic acid) 

sample as a function of neutralization degree at low ionic strength. The viscosity 

increases linearly with neutralization in the region 0.06 to 0.35 with a large slope, which 

decreases abruptly after 0.35 neutralization. The results are in good agreement with the 

Manning theory in which a critical value of 0.35 ionic content for ion binding is 

d· d 41 pre lcte . 
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Samples of poly (acrylic acid) neutralized to val") ing degrees with sodium hydroxide 

were subjected to gamma-irradiation to yield insoluble crosslinked hydrogels. For all 

samples, gel fomlation only occurred above a certain minimum con( entration of the 

polymer solution and above a critical irradiation dosage. Crosslinking is less efficient at 

higher neutrfllization levels. It has been suggested that the polyion charges act 

cooperatively to exert long-range electrostatic forces in solution. At high levels of 

neutralization, the macromolecule could expand to such an extent, that the distance 

between neighboring charges o.:comes too great for optimum cooperation etlects 

between the charges. As these cooperative electrostatic effects are thought to playa 

nlajor role in structuring water within the gel, a reduction in these cooperative forces 

could explain reduced water uptake of the gel at high levels ofneutralization. 

The electrostatic effects have been shown to playa major role in water sorption. An 

ele\~tric charge applied across a s\\ollen gel causes the gel to collapse above a particular 

potenti,; 1, the volume of the collapsed gel being up to several hundred times smaller 

than that of the swollen gel. This indicates that the electr'-'static forces cd e much more 

responsible than osmotic pressure in swelling 42. 

Diallyl allllnonlUm chloride (DAAC) was radically copoly} !crised with acrylamide 

(AAm). The rate of polymerization increased with an increase in the mole fraction of 

AAm in the feed. The insoluble fraction of the polymer sample was separated using a 

typical phase transition phenomenon of hydrogel. The polymer sample containing both 

soluble and insoluble fractions was swollen in water ,nd then acetone added until the 

gel or insoluble fraction drastically shrunk to give a precipitate. The latter, separated by 

centrifuging, was swollen again in water, follo\~ed by acetone addition, and this sweII

shrunk pr,)cess was repeated at least three times until no sol was extracted in the 

supenlatant liquid. The reduction of sol content was achieved by increasing the mole 

fraction of AAnl in the monomer mixture. With a 50:50 mixture of DAAC: A, \m the 

swelling ratio was decreased by conversion or the progress of gelation. The quite high 

. 43 
volume swelling value was observed at 37% converSIon . 

The polyelectrolyte network of sodium methacrylate/acrylamide copolymer forms 

complexes with oppositely charged surfactants, cetylpyridinum bromide in mixed 

32 



water-alcohol media. This interaction results in gel shrinking or collapse. TIle 

complexes of charged networks v, ith surfactants are good absorbers for diff('rent 

organic compounds, dyes, phenols etc. 44 

The kinetics of swelling of sodium polyacrylate has been sturlied by gravimetric. 

microscopic observation and calorimetric methods. The swelling process follo\\ ~d a 

first-order kinetics and the rate constant was of the order of 0.01 s. The rate constant 

was depressed by the addition of sodium chloride. The activation energy of the s\\ eUing 

was 46.0I6.2 kJlmol and decreased with the increase in sodium chloride concentration. 

The swelling is an exothermic process in which 196± 17 Jig is released and this quantity 

did not vary with the addition of sodium chloride 45-46. 

The rheological behavior of a water soluble polymer can be altered by 

copolymerization with various monomers to fit the service requirements. The added 

monomers usually contain ionic groups (ion pairs) to create charges along the backbone. 

or hydrophobic groups which can associate to alter solubility behavior. 

1.8.4.3 Amphoteric polymers 

An1photeric water-soluble pol: ;ners co Itain zwitterions on the same monomer (i,t' 

betaines) or along the same backbone (ampholytes). In some cases water-solubility can 

be obtained by preparing interpolymer complexes of polyanions and polycations. 

Amphoteric polymers are generally prepared by copolymerization of betaine monomers 

or ampholytic monomer pairs with appropriate comonomers, mainly acrylamide. 

Polyamphoterics have unusual solution propenies. Unlike typical polyelectrolytes, they 

are more soluble with significantly higher viscosities in aqueous salt solutions than in 

deionized water. For this reason, these polymers are called "anti-polyelectrolytes~·. 

For a polyelectrolyte containing one type of charge, the addition of salt decre~hes 

hydrodynamic volume of the polymer. However, a polyampholyte will expand in the 

presence of added electrolyte. The addition of salt breaks up intramolecular and 

intramonomer interactions allowing the hydrodynamic volume of the polymer coil to 

increase. In other words, this is an increased polymer-solvent interaction, allowing the 

chains to behave more freely. The unusual properties of these polymers may find utility 

in brine viscosification, enhanced oil recovery, drag reduction ·C-79 and 

superabsorbency. 



A number of naturally OCCWTing materials, such as pulp and sponge retain water. but 

release the water under mechanical application of pressure, becau~e a capillary effect is 

involved in the absorption. However, the water absorbency (If ionomers is based on 

electrostatic interactions and water is not as easily removed by the application of 

pressure. In one study, a mixture of ion pair comonomer (3-methacryJamidoprop: I 

trimethyl amnlomum :?-acrylamido-2-1nethylpropanesulfonate, acrylamide and 

hydroxyethyl cellulose with 100 ml distilled water was degassed by a freeze-thaw cycle 

and s-.:aled in vacuo. A 60Co ganlffia ray source of radiation was utilized for initiation of 

polymerization. Water absorbency of the product in distilled water and 1 M NaCI 

solution is 15 and 22g1g respectively 6. 

In another study, three hydrogels 'Nere prepared llsmg the same monomer and 

crosslinker concentration: first, an aI' .pholytic hydrogel by using ion pair monomer, 

methacrylamidopropyl trimethyl ammonium ch oride and sodium styrene sulfonate; a 

second mnpholyte hydrogel using the zwitterionic sulfobetaine monomer and, third, an 

uncharged polyacrylamide hydrogel as a blank. The betaine-based hydrogel is 

insensitive to changes in NaCI concentration below O.OIM, as expected, because of the 

balance between positive and negative fixed charges in the gel. One advantage of l' ing 

betaine for creating an ampholytic hydrogel is that the molar ratio of cationic to anionic 

charges in the hydrogel is automatically unity. Water absorbency of these hydrogels in 

1M NaCI aqueous solution was 60, 33 and 22 gig respectively. Apparently, some of the 

increase in swelling at appreciable salt concentration (>0.1M) for the ampholytic 

hydrogels may be attributed to salting-in of the polymer 80. 

The graft copolymers, of the ampholytic Ion palf comonomer 3-

methacrylanlidopropyltrinlethylammonium 2-acrylamido-2-methyl propanesulphonate 

with acrylamide onto starch and hydroxyethyl cellulose, by both ceric ion and 60Co 

irradiation, have been prepared and show promising use as viscosity modifi,. rs in oil 

recovery and superabsorbents for saline media. It has been shown that the 

polyamphr·lyte has a greater affinity for salt solutions than for pure water, thus higher 

absorbency can be expected in the former than in the latter 81. 
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1. 8. 4. 4 Hydroph0bically-modified polymers 

Hydrophobically modified polymers are water soluble synthetic pol:ll1ers containing 

non-polar groups which aggregate in polar media. Aggregation may result in increased 

viscosity of polymer solution and hence an increased HDV of the pol) mer chains. 

These polymers can be placed into one of two categories: those that form intramolecular 

association and those that form intermolecular association. Both in reality, form micro

heterogeneous solutions in water 82-95. 

1.8.4.5 Rod-like polymers 

Finally, rod-like polymers are potentially suitable for increasing the viscosity of 

aqueous solutions provided that some hydrophilicity can be introduced in their 

structures. These types of polymers may be useful in the field of saline superabsorbency 
96-104 

1.9 Industry status 

1.9.1 Applications 

The comnlercially imp, ,liant superabsorbt 'nt polymers are sodium .alts of crosslinked 

poly(acrylic acid) and graft copolymers of cellulose or starch-acrylonitrile. 

Superabsorbent polYlner technology has been ayailable since the early 1970's, but the 

market potential of superabsorbent polymers was not realized until the Japanese used 

them extensively for personal care products. Commercial production started in Japan in 

1978. In the United States, until a few years ago, these materials were only used in some 

adult incontinence products. These absorbing polym,:rs were reintroduced to the United 

States after Procter & Gamble test marketed its "Ultra Pampers" disposable baby diaper 

in 1985. Superabsorbent polymers are used ill non-woven presentations in three 

particular segments of personal care products: infant disposable diapers, adult 

incontinc nce briefs and feminine pads. In disposable baby diapers, the superabsorbent 

polymer is used at the rate of 5 to 6g per diaper, whereas in the adult incontin~nce 

diapers 12-14g of superabsorbent is used per pad. In the external feminine hygit .: 

products, only about 1.0-I.Sg of superabsorbent is used per p.1d. Personal hygiene 

products accounts for nlore than 950/0 of the market for superabsorbents manufactured 7 

Other uses of superabsorbent polymers are in civil engineering, e.g. mud conditiol1~rs, 

lubricants, sealing material, wall covering to prevent drops of condensation from 
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forming. and in agriculture/ gctrdening, e.g. water retention materiaL artificial culture 

soil, etc. A tiny fraction or the total superabso b t b d . r en can e usc 111 follo\ving area-
~ ~. 

according to the patents 105-162: 

- Artificial snow 105-109. 

- Water scavenger pouches to absorb water from hydrocarbon fuel and oil 110. 

- Artificial soils for hydroponics 111-115. 

- Drilling fluid additive usable in wellbores 116-117. 

- Sealing underground formations, joints in water-supply pipes, building constructions. 

fibre optic cables 118-121. 

- Polymer concrete compositions 122-123. 

- Static demolition agent for destroying rock structures 124. 

- Thickening sewage 125, 

- Absorbing moisture from powder of coking coal 126. 

- Biomass support and carrier 127, 

- Antifouling coating for watercraft 128. 

- A thermal energy storage 129. 

- A dew-preventing coating 130. 

- Preventing electrolyte leakage and electrode drowning 131-132. 

- Thixotropic agent in poly(vinyl c1110ride) paste 133, 

- Protecting wires carrying dc currents and healing shorts caused b) moisture in such 

wires 134, 

- Preserving biological specimens in formaldehyde solution 135. 

- Preserving the freshness of packed fruit and vegetables 136. 

- Towels, bandages and absorbent laminates 137-144. 

- Bubble-free phantoms for NMR diagnosis 145. 

- Biosensors for determination of biochemical analytes 146, 

- Controlled release of drugs 147-148. 

- \Vound dressing gel and foam 149-150. 

- Laminated articles coming into contact with body fluids, prosthesis implants, artificial 

kidneys, membranes and tubing 151. 

_ Emulsions with moisturizing activity toward human skin 152-153, 

_ Gelling materials in suction equipment to absorb medical \vastes and body tluids 

(blood, lymph liquid, medullary fluid, anmiotic fluid, urine) 154, 
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- Deodorizing air ]55. 

- Desiccant materials in refrigeration systems 156. 

- Aqueous gel for fire-fighting 157-] S8. 

- \\'ater desalination media 159. 

- Filtration media ]60. 

- Enhancing water absorption in pol) (urethane) foams 161. 

- Absorbent fibrous materials 1~.2. 

-Viscosifying agent. 

-Fluidity c('ntrol agent. 

-Sludge conditioning agent. 

-Grouting agent. 

-Asphalt cement additive. 

-Friction reducing material. 

-Antidrying agent specially for drilling muds. 

-Fluid solid water. 

-Sludge conditio"ting. 

-Anticondensational agent for paint and wall paper. 

-Imparting water swell.ibility to rul ~1er, plastics, ~tc. 

-Imparting hydrophilicity to films, urethanes, etc. 

-Imparting water absorbency to paper, nonwoven fabrics 163. 

1.9.2 Price and main manufacturers 

Large volume prices of superabsorbent polymers are generally in the range of $2.20 to 

$3.00 per kg. 

The largest producer of superabsorbents in the US is Dow, with H(lcchS I Celanese. 

Stockhausen, ~·nd Nalco sharing the second position. Nippon Shokubai alld Chemdal are 

also big producers in Japan and Western Europe respectively 164-165. 

1.10 Aims 

The physical and chemical phenomena involved in the swelling of superabsorbent 

polymers are very complex. The knowledge and understanding of the chemistry and 

polymerization characteristics leading to superabsorbents is poor, despite the large 

amount of patent literature published in this field (for example. 166-1112). TIHls it \\ as 



necessary to study the mechanisms of synthesis based on a simple structure. such as 

acrylic acid, which is also the principal starting monomer for most commercial SAPs. 

As the literature shows, the inverse-suspension polymerization method is apparently a 

suitable way to control the parameters affecting superabsorbency. Only one 

conlprehensive work in this area has been published 3. but the underl) ing reasons and 

explanations for the events are not fully explained and some parameters, sllch as 

initiator and temperature and the mechanism of the swelling were not discussed in their 

work. 

Following Trijasson's work, the present work was aimed at obtaining a deeper 

understanding of the effects of inverse-suspension variables on the swelling behaviour 

of superabsorbent polymers. 
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Chapter 2: EXPERIMENTAL L---______________ _ 

2.1 General procedure for the sinthesis of superabsorbent polymers 

2.1.1 Inverse suspensiQll.Qolymer-isation 

2. 1. 1. 1 Preparation of the dispersed phase 

raJ Monomer solution 

Glacial acrylic acid was diluted with the prescribed amount of doubly-distilled water at' 

room temperature with mild magnetic agitation. The same procedure was applied to 

prepare acrylamide solutions. The acrylic acid and the acrylamide are liquid and solid 

respectively at room temperature, thus the latter needs longer time to pass into solution. 

These two clear solutions were stored in tightly-stoppered bottles at room temperature 

until required. Solutions were left for a maximum of a couple of hours before starting 

the reactions. 

rb 1 Initiator solution 

To a prescribed amount of dourly-di,:,tilled water contain in a lOOml beaker, a defined 

anl0unt of recrystallised initiator was added at room temperature while shaking, until a 

clear solution was obtained and the solution stored in cool place (O-~ °C) a\\ ay from 

light. 

rc 1 Crosslinker solution 

To a magnetically-stirred prescribed amolmt of doubly-distilled water contained into 3 

100mi beaker, a defmed amount of crosslinker was introduced at room temr·~rature and 

stirred until it passed into solution, as indicated by a clear appearance. The solution \\a~ 

stored in cool place (0-5 °C) aw.'ly from light. 

rdl Neutraliser so(ution 

To a pre-determined amount of doubly-distilled water~ the required amounts of sodium 

hydroxide or potassium hydroxide pellets was added over an ice-wakr bath to suppre"s 

any exothermicity. The nlixture was agitated magnetically until a clear cold solution 

was obtained. The solution was stored at room temperature until required. 
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2.1.1.2 Preparation of the conti()uous phase 

[e 1 Surfactant solution 

To a defined amount of an aromatic hydrocarbon. an appropriate amount of a water in 

oil surfactant was added and heated under stirring up to 80°C while bubbling nitrogen 

through the solution over a period of 15 min. 

{f] Cross linker solution 

To a certain part of an organic hy-iroca bon. the oil-soluble crosslinker was iJlcorporated 

at room temperature while stirring magnetically. 

2.1.1.3 Sequence _of addition 

The sequence of addition and treatment to prepare aqueous dispersion phase was 

conducted as follows: 

-The acrylic acid solution, prepared as in [ a] was treated with the neutraliser solution, 

prepared as in [d]. The latter was added dropwise through a dropping funnel to the 

former under nlild nlagnetic stirring over :m ice-water bath to attain a prescribed, partial 

degree of neutralisation. The treatment was completed short!), after a clear solution wa~ 

obtained. 

-To the acrylamide solution, prepared as in [a], the closslinker solution of [c], was 

introduced. This step is essential to avoid any crosslinker nonho nogenity. 

-The next step was to combine the two above solutions, i.e. [a] plus [d] with [a] plus 

[c]. 

-The initiator solution [b] was left aside tmtil starting the reaction in order to prevent 

any premature polymerisation. 

-To prepare a continuoll~: organic phase, the crosslinker solution, as prepared in [t]. was 

introduced to the surfactant solution, as prepared in [e]. 

2.1.2 Solution polymerisation 

While the inverse suspension polynlerisation is a heterogeneous or a two-phase, water 

in oil polynlerisation, the solution polynlerisation is a one-phase or homogeneous 

polYlllerisation. The preparative procedure of the medium in which polymcrisation 

occurs is quite similar as to the preparation of the dispersed phase for the lI1n~rse-

suspension technique. 



2.2 Materials 

Acrylic acid (C3~02): m.w 72.1, m.p 13°C, b.p 30 °C/3mm, d 1.051. Nonnally 

being stabilised with 0.020/0 hydroquinone mono methyl ether, this was purified by 

steam distillation through a column packed with copper gauze to inhibit polymerisation. 

Heat of polymerisation of acrylic acid is about 77 KJ/mol I. 

Acrylamide (C3HSNO ): m.w 71.1, m.p 84°C, b.p 125 °C/25mm. The material 

crystallised from methanol, then vacuum dried and kept in dark place Wlder vacuum. 

The acrylamide was then recrystallised from chloroform (200g dissolved in lL heated to 

boiling and filtered, without suction, in a warmed funnel through a Whatman 541 filter 

paper. Allowed to cool to room temperature and kept at -15°C overnight). Crystals 

were collected with suction in a cooled funnel and washed with 300ml of cold 

methanol. Crystals were air-dried in a warm oven (30°C). Heat of polymerisation for 

acrylamide monomer is about 82.8 KJ/mol 2. 

Ethylene glycol dimethacrylate (ClOHI40 4): m.w 198.2, b.p 98-100 °C/5mmHg, n 

1.456, d 1.053. This was distilled through a short Vigreux column at about 1 mm 

pressure, in the presence of3.0 wlw % ofphenyl-p-naphthylamine, before use. 

Bisacrylamide (C7H10N202): m.w 154.2. Recrystallised from methanol (lOOg 

dissolved in 500ml boiling methanol and filtered without suction in a wann funnel. 

Allowed to stand at room temperature and then at -15°C overnight. Crystals were 

collected with suction in a cooled funnel and washed with cold methanol). Crystals 

were air-dried in a warm oven (30 °C) . The toxicity of bis-acrylamide is similar to that 

of acrylamide. 

Ammonium peroxydisulphate [(~hS208]: m.w 228.2. Recrystallised at room 

temperature from ethanol/water mixture. 

Potassium peroxydisulphate (K2S208): m.w 270.3. Crystallised twice from distilled 

water (10ml/g) and dried at 50°C in a vacuum desiccator. 

All the purification procedures has been followed according to the reference no 3. 

Ethyl cellulose The degree of substitution of the material (type N 14) was 2.-+2-2.53 

and was purchased from Hercules Incorporated. 
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Commercial superabsorbent This was obtained from Softron Int t' I C erna lOna ompany. 
The material is based on acrylic acid and used as supplied. 

Other ingredients Commercial grades of carboxymethyl cellulose ( obtained from 

toothpaste manufacturer) and poly (vinyl chloride, emulsion type which is used to 

produce PVC plastisols) were used as supplied. Poly (vinyl alcohol), reagents including 

sodium hydroxide and potassium hydroxide as well as solvents were used as supplied 

from Merck. 

2.3 Experiments 

2.3.1 Inverse suspension polymerisations 

2.3. 1. 1 Preliminary trials (Expts. 1-17) 

These preliminary experiments were devised to obtain the polymer product as particles. 

The summary of the formulations can be seen in Table. 2.1. 

Expt. 1 

To a 11 round-bottomed five-necked flanged flask fitted with a mechanical stirrer, 

dropping funnel, an efficient condenser, nitrogen inlet and a thermocouple (heated in a 

stream of nitrogen up to setting temperature for a period of 5 min.), 200g of toluene and 

a toluene solution of sorbitan monostearate (0.75g in 23.6g solvent) were poured in and 

heated while mechanically stirring over an oil bath set at SO °c for a period of 15 min. 

and constant purging with a stream of nitrogen until a light yellow solution was 

obtained. The agitation rate was set at 400 rpm. Separately, an aqueous solution of 

acrylic acid (30g in 7.Sg water) neutralized with an aqueous solution of sodium 

hydroxide (12.S2g in 36.lSg water), the neutralized monomer solution was then 

combined with an aqueous solution of potassium persulphate (O.ISg in 4g water). 

Shortly after incorporating the latter solution, the whole aqueous solution of the 

neutralised monomer and initiator was added dropwise over a 10 min. period to the 

above organic toluene solution. This addition was carried out immediately after 

incorporating the toh.me solution of ethylene glycol dimethaayIate (0.036g in 20g solvent) to the 

well-stirred preheated surfactant-loaded toluene solution contained in the flask. In the 

first few seconds of the dispersed phase addition, the clear solution changed to cloudy, since 
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the system is a typical water in oil polymerisation. The rea:tion mixture ' .. IS left stirrin~ 

in the oil bath ~et at 80°C for a total period of 90 min. the timing beil:· ' started when ..... 

the first droplet of the aqueous solution of the monomers was pnured into the 

continuous toluene phase. \\ n-.:n the reaction was completed, the oil bath was remo\ed 

and the flask was allowed to reach room temperature. The supernatant liquid \\ as 

decanted to a separate vessel and rejected. The precipitated solid polymer was dried 

overnight in an air-circulated oven adjusted at 60°C . The tihhtly-attached water

swc len granules of the superabsorbent polymer (see Fig. 3.1) were stored in sealed, 

stoppered bottles until required for the swelling measurements. (Note: a granule is 

defmed as a cluster of microparticles which is typically 2-3 mm in diameter.). 

Expt. 2 

Repeat of E"pt. 1, except that the amount of sorbitan monostearate used was 2.0g rather 
'-

than O.75g. The product was obtained as a lump. The lattel is a mass consisted of lens of 

granules, each contains numerous fine particles. In this case, the granu1es within the 

lump were loosely attached to each other. 

Expt. 3 

Repeat of Expt. 1, except that the amount of sorbitan mOl~ostearate used was 2.0g rather 

than O.75g and that the rate of agitation was set at 600rplll. rather than 400rpm. The 

polymer was obtained as in Exp. 2. 

Expt. 4 

Repeat of Expt. 1, except that the amount of sorbitan monostearate used was 2.0g rather 

than O.75g and that, during the last 45min of the total period of reaction, the dropping 

funnel was replaced by a vacuum line (300mmHg), fitted with a water trap, and the 

vacuum was switched on. The polymer was obtained as in Expt. 2. 

Expt. 5 

Repeat ofExpt. I, except that the amount of sorbitan monostearate used was 20g rather 

than O.75g, that xylene (2·~6.6g) was used in place of toluene (243.6g). and that, during 

the last 45 min. of the total period of reaction, the dropping funnel \\;lS replaced by a 

vacuum line (300nunHg), fitted with a water trap, and the vacuum was switched on. 

The polymer was obtained as in Expt. 2, but the granules were more separated. 

Expt. 6 

Repeat of Expt. 1, except that sorbitan monooleate O.Og) was used in place of the 

stearate, that xylene (246.6g) was used in place of toluene (243.6g), and that, during the 

last 45 nlin. of the total period of reaction, the dropping funnel was replaced by a 
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vacuum line 1300mmHg), fitied with a water trap, and the \'acuum line was switched 

on. The product was obtained as a fine, water soluble powder. 

Expt.l 

Repeat of Expt. 1, except that sorbitan monooleate (O.4g) \\ as used in place of the 

stearate, that xylene (246.6g) was used in plc:e of the toluene (243.6g) and that, ,: uring 

the last 45 min. of the total period of reaction, (he dropping funnel was replaced by a 

vacuum line (300mmHg), fitted with a trap, and the vacuum line was switched on. The 

product was obtained as coarse, star-shaped, water swollen granules (see Fig. 3.2). 

Expt. 8 

This experin1ent was carried out to explore the effect of adding a commercial sample of 

poly (sodium acrylate), as a superabsorbent, to the pol)'lnel isation mixture. TIle idea 

was to try to remove as much water as possible from the reaction medium as the new 

granules of polymer formed. Thus as in Expt. 1, except that sorbitan monooleate (O.4g) 

was used in place of the stearate, that xylene (246.6g) was used in place of toluene. Just 

after 45 min. of the total reaction period, Ci sample (O.08g) of a commercial poly 

(sodium acrylate) superabsorbent was poured into the reaction mixture. The polymer 

obtained was of uniformly-sized, water-s\\ollen but separate granules (see Fig. 3.3). 

Expt. 9 

Repeat of Expt. 1, except that sorbitan monooleate (O.4g) was used in place of stearate 

and that, just after 45 min. of the total reaction period, a sample (O.08g) of a cOIlllllercial 

poly (sodium acrylate) superabsorbent was poured into the reaction mixture. The 

polymer obtained was similar in appearance to that obtlined in Expt. 8. 

Expt. 10 

Repeat of Expt. 1, except that sorbitan monooleate (O.8g) was used in place of the 

stearate. The folymer was obtained as separate, coarse, water-swollen granules in wider 

size distribution. 

Expt. 11 

Repeat of Expt. 1, except that sorbitan monooleate (2.0g) was used in place of the 

stearate. The polymer was obtained as an amorphous, water-soluble gel. 

Expt. 12 

Repeat of Expt. 1, except that sorbitan 11lonooleate (O.8g) was used in place of the 

stearate and that an aqueous solution of poly (vinyl alcohol) (OAg in 109 H20) was 

added to the reaction Inixture at the beginning, before heating. TIle product polymer was 

obtained as a sticky gel. 
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EXQt. 13 

Repeat of Expt. 1, except that sorbitan monooleate (0.8g) was used in place of the 

stearate and that an aqueous solution of sodium carboxynh:thylcellulose (0.17g in ~g 

H20) was initially added to the aqueous dispersed phase. The pol: mer was obtained as 

a sticky gel. 

Expt. 14 

Repeat of Expt. 1, except that sorbitan monooleate (0.8 g) was used in place of the 

stearate. The coarse granules obtained (see Expt. 10) were dehydrated after decanting 

off the supernatant liquids. To methanol (400ml), used as the dehydrating agent, was 

dispersed the polymer granules and the mixture was left stirring for a period of 30 min. 

The mixture was allowed to settle and the supernatant was decanted off. The solid 

precipitate was dried overnight at 60°C in an air-circulating oven. The separate granules 

were obtained as the polymerisation product (see Figs. 3.4 and 3.5). 

~xpt. 15 

Repeat of Expt. 1, except that. to a portion (50ml from the 200ml) of the original 

toluene solvent used, was added ethyl cellulose (0.45g) and this was ~tirred for 30 min. 

to effect dissolution and this "olution was added to the remainder before continuing the 

polymerisation, using sorritan monooleate (0.8g) in place of the ste.lrate. The product 

polymer was dehydrated with methanol, using the procedure described in Expt. 14. The 

sign of granule segragation into particles was observed (see Figs. 3.6-3.9). 

Expt. 16 

Repeat of Expt. I, except that, to a portion (50ml from 200ml) of the origjqal toluene 

solvent used, was added ethyl cellulose (1.5g) and this was stirred for 30 min. to effect 

di~solution and this solution was added to the remainder before continuillg 

polymerisation, using sorbitan monooleate (0.8g) in place of the stearate. The product 

polymer was dehydrated with methanol, using the procedure described in Expt. 14, 

More particles than observed for the Expt. 15, were separated frem granules. 

Expt. 17 

Repeat of Expt. I ,except that to a portion (50ml from 200ml) of the ori~lnal toluene 

solvent used, was added ethyl cellulose (3.0g) and this was stirred for 30 min. to effect 

dissolution and this solution was added to the remainder before continuing the 

polymerisation, using sorbitan monooleate (O.8g) in place of the stearate. The product 

polymer was dehydrated with methanol, using the procedure described in Expt. 14. The 
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number of segragated granules increased, so that, a lot amount of isolated particle~ was 

observed in the product (see Figs. 3.1 0-3.13). 

Table 2 1 Formulations for the Experiments 1-21 . . 
I Acrylic Sodium Potassium EGDlvi4° I 

I SAlft Expt acid hydroxide persulfate mo/% SM(f d rpm · F earures cp 
(g) (g) (g) 10 (g) (g) 

monomers 
... , 

1 30 12.52 0.15 0.045 0.75 t1 
400 ! 

2 30 12.52 0.15 0.045 2.0 t 400 
3 30 12.52 0.15 0.045 2.0 t 600 ! 
4 30 12.52 0.15 0.045 2.0 t 400 I Vacuum 

, i distilled , 

5 30 12.52 0.15 0.045 2.0 x2 
400 I Vacuum 

t 

i distilled ..• - +-- . 
6 30 12.52 0.15 0.045 2.0 x 400 Vacuum 

distilled 
7 30 12.52 0.15 0.045 0.4 x 400 I Vacuum 

I distilled 
8 30 12.52 0.15 0.045 0.4 x 400 ! SAP3 

9 i 30 12.52 I 0.15 0.045 0.4 t 400 I SAP 
-

10 30 12.52 0.15 0.045 0.8 t 400 

11 30 12.52 0.15 0.045 2.0 t 400 
.. --

12 30 12.52 0.15 0.045 0.8 t 400 PVA4 

13 30 12.52 0.15 0.045 0.8 t 400 I CMC5 

14 30 12.52 0.15 0.045 ' 0.8 t 400 I Methanol 
----

IS 30 12.52 0.15 0.045 0.8+0.4 I t 400 I Methanol 
ECe ! 

1 _.-
16 30 12.52 0.15 0.045 0.8+1.5 t 400 i Methanol 

EC 
-

I 

i 

I 

17 30 12.52 0.15 0.045 0.8+3.0 t 400 Methanol I 
EC 

18 30 12.52 0.15 0.055 0.8+3.0 t 400 I Methanol 
EC 

19 30 12.52 0.15 0.24 0.8+3.0 t 400 I Methanol 
EC 

I 
, I 

[ 

I Methanol 
-. 

20 30 12.52 0.15 2.30 0.8+3.0 t 400 
EC 

21 30 12.52 0.15 4.58 0.8+3.0 t 400 Methanol 
EC 

a) ethylene glycol dimethacrylate. b) sorbitan monosrearate. c; sorbitan monoo/eo/e. d) continuous 
phase. e) ethyl cellulose. 1) toluene. 2) xylene. 3) superabsorbent. 4) poly (\'inyl alcohol). 5) 
carboxymethyl cellulose. 

2.3. 1.2 Effect of the oil-soluble crosslinker concentration (Expts. 18-21) 

Expt.18 

Repeat of Expt. 17, except that the amount of crosslinking agent, ethylene glycol 

dinlethacrylate, was increased from 0.045 mol% to 0.055 mol%. 

Expt.19 

Repeat of Expt. 17, except that the amount of crosslinking agent, ethylene glycol 

dimethacrylate, was increased from 0.045 mol% to 0.238 mol%. 
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Expt. 20 

Repeat of Expt. 17, except that the amount of crosslinking agent. eth) lene g.ly-:ol 

dilnethacrylate, was increased from 0.045 mol% to 2.30 mol%. 

Expt.21 

Repeat of Expt. 17, except that the amount of crosslinking agent, ethylene gl: col 

dimethacry]ate, was increased from 0.045 mol% to 4.58 molO/o. 

2.3.1.3 Effect of+he water-soluble crosslinker concentration (Expts. 22-25) 

Expt. 22 

Repeat of Expt. 17, except that the preparation step for the t01uene solution of ethylene 

glycol dimethacrylate was eliminated and that, into 4.0g of doubly distilled water, the 

Inethylene bisacrylamide (0.016 mol% to the total nl0nOlller) was dissolved at room 

temperature with frequent shaking for a period of 30 nlin., to effect dissolution. The 

combined toluene solutions for this preparation were, the pure toluene (170g), a solution 

of sorbitan monooleate (0.8g in 23.6g toluene) and a solution of ethyl cellulose (3.0g in 

50g toluene). 

Expt. 23 

Repeat of Expt. 22, except that the amount of crosslinking agent, methylene 

bisacrylamide, was inc; eased from 0.016 mol% to 0.047 11101°'<>. 

Expt. 24 

Repeat of Expt. 22, except that the amount of crosslin king agent, methylene 

bisacrylamide, was increased from 0.016 mol% to 0.078 molO/o. 

Expt. 25 

Repeat of Expt. 22, except that the amount of crosslin king agent methylene 

bisacrylamide, was increased from 0.016 mo]% to 0.11 mo10/0. 

2.3.1.4 Effect of the comonomer replacement (Expts. 26-29) 

Expt. 26 

To a 11. round-bottomed, five-necked flanged flask fitted with a mechanical stirrer, 

dropping funnel. an efficient condenser. nitrogen inlet and a thermocouple, 145.6g of 

toluene with a toluene solution of sorbitan monooleate (0.72g in 23.6g soh'ent) and a 

solution of ethyl cellulose (2.7g) in toluene (50g) was poured in and heated while 



mechanically stirring to 80°C over an ( 1 bath for a period of 20 min. and constant 

purging with the stream of nitrogen until a light yellow solution was obtained. The 

agitation rate was set at 400 rpm. Prepared cL)mbined aqueous solutions of the acrylic 

acid monomer (l5g in 7.~g water) neutralized with sodium hydroxide (6.26g in 18.11g 

water), acrylaInide monomer (lSg in 13.39g water), methylene bisacrylamide (0.016 

mol% to the total monomer in 4.0g water) and potassium persulphate (O.lSg in 4g 

water) was added dropwise over 10 min. times to the well-stirred preheated solution in 

the flask. Shortly after addition of the dispersed phase, the clear solution changed to 

cloudy. The reaction mixture was left stirring over the oil bath set at 80°C, for a total 

period of 90 min. The timing was started, when the fIrst droplet of the aqueous solution 

of the monomers was poured into the continuos toluene phase. When the reaction was 

con1pleted (1.5h), the oil bath was removed and the flask was allowed to reach room 

temperature. The supernatant liquid was decanted to a separate vessel and rejected. The 

precipitated solid polymer particles v ere dispersed, after decanting the supernatant, into 

400 ml methanol as a dewatering agent. The mixture was left stirring for a period of 30 

min., then allowed to settle followed by decanting the supernatant off. The selid 

precipitate was dried overnight at 60°C in an air-circulating oven. 

Expt. 27 

Repeat of Expt 26, except that the amount of crosslinking agent, methylene 

bisacrylalnide, was increas(:d from 0.016 mol% to 0.047 mol%. 

Expt. 28 

Repeat of Expt. 26, except that the amount of crosslinking agent, methylene 

bisacrylamide, was increased from 0.016 mol% to 0.078 mol%. 

Expt. 29 

Repeat of Expt. 26, except that the amount of crosslinking agent, methylene 

bisacrylamide, was increased from 0.016 n101% to 0.11 mol%. 

2.3.2 Solution polymerisation 

2.3.2.1 Effect of the change in the crosslinker concentration (Expts. 30-33) 

Expt. 30 

First, an aqueous solution of acrylic acid monomer (1Sg in 7.Sg water) was prepared. 

The acrylic acid was partially neutralised with sodium hydroxide solution (6.26g in 

18.11 g water). The degree of neutralisation was 75 moVn101 % which was obtained 
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through an acrylic acid titration curve (see Sec. 2.4.1). Thus in the neutralisation vessel , 
the components are acrylic acid, sodium acrylate and water in a I: 3: 3 mol ratio. This 

water remains in the reaction mixture and accounts for some of the water originally 

present as a diluent in the reaction mixture. Acrylamide was also diluted with water at 

room temperature while stirred (15g in 13.39g water). Methylene bisacrylamide (0.0078 

mol% to the total monomer) was used as a tetrafunctional crosslinker and diluted with 

water (4.0g). Potassium persulfate was recrystallised twice, diluted with water (4.0g) 

and used as the thermally decomposing initiator (0.15g). In highly concentrated aqueous 

solutions especially when a salt is present, the crosslinker is sparingly soluble. Thus, it 

was added to the acrylamide solution first. The latter was mixed with the neutralised 

acrylic acid solution. So the mixture of the reaction contains acrylic acid, sodium 

acrylate and acrylamide as monomers in a 1: 3: 4 mol ratio, besides the crosslinker. The 

prepared initiator solution was poured into the latter mixture of solutions just before 

putting the reaction mixture into the bath. 

A 11 open beaker was used as reactor. An oil thermo stating bath was also used as 

heating source. A digital thermocouple was also used to monitor the reaction 

temperature. The bath was allowed to reach the desired temperature, i.e. 80°C. The 

prepared mixture was poured into the beaker at room temperature. The beaker was 

immersed into the bath and the mixture was continuously stirred magnetically 

(400rpm). The reaction mixture was continuously warmed up due to heat transfer from 

the hot bath to the cold beaker. The reaction mixture was left stirring until the so-called 

gel point, when the magnetic stirrer follower bar was stopped due to the sudden rise in 

viscosity of the reaction medium. At the end of the gel formation, the oil bath was 

removed and the beaker content was freely allowed to reach room temperature. The 

resulting product was removed from the reaction vessel and cut to small pieces 

(dimensions of 2-5 mm) by a pair of scissors. The cut pieces were spread over an 

aluminum foil and heated overnight into an air-circulating oven at 60°C to rather 

constant weight. The, presumably, dried gels were ground by a hammer type 

mini grinder (laboratory scale), then screened using a robot sifter. The classified particles 

were stored in tightly-stoppered bottles until further measurements. 

Expt. 31 

Repeat of Expt. 30, except that the amount of crosslinking agent, methylene 

bisacrylamide, was increased from 0.0078 mol% to 0.016 mol%. 

Expt.32 
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Repeat of Expt. 30. t'xcept that the amount of crosslinking agent, metll) lene 

bisacrylamide. was increased from 0.0078 mol% to 0.047 mol%. 

Expt .. 33 

Repeat of Ex pt. 30, except that the amount of crosslinking agent. methylene 

bisacry1amide, ,vas increased from 0.0078 molo 0 to 0.078 mol%. 

2.3.2.2 Effect of the temperature in solution polymerisation (Expts. 34-47) 

Expts. 34-47 

Repeat of Expt. 30, except that the amount of crosslinker, methylene bisacrylamide, was 

increased from 0.0078 mol(% to 0.078 mol%, and that the bath telnperature ( in degrees 

of Centigra,ie) was varied as follows: 

I ~~~ .. I ~; .=n~ I ~~ I :~5 
1-38 

I ~~o I :~7 I I 112 

._--tEXPt.- }41 1 :~2 1 :~o 144 i -15 1 :~2 1:;03 
1

165 rOC 135 _ 157 

2.3.2.3 Effect of the i!Jitiator concentration in so/LUon polymerisation (Expts. 

48-5§l 

Expts. 48-56 

Repeat ofExpt. 30, eXCtpt that the amount of crosslinker, methylene bisacrylamide, was 

increased from 0.0078 mol% to 0.078 mol%, that the bath temperature was held at 120 

°c and that, the molar ratio of initiator to total monomer was varied as follows: 

-b Expt. 48 49 50 51 52 i 53 54 55 56 
0.010 0.021 0.044 0.087 0.176 J 0.264 0.325 0.441 0.529 -!1!~1 x 100 

2.3.2.4 DSC studies on the effect of initiator concentration (Expts. 57-66) 

Expts. 57-66 

First, sodimn hydroxide (2.51 g) was diluted with prescribed amount of doubly distilled 

water (4.30g), under mild agitation and ice-coo Eng, until a clear cold solution was 

obtained. The latter was poured dropwise onto the acrylic acid (4.40g), while ice

cooling. The crosslinker, methylene bisacrylamide (0.0067g) was added into doubly 

distilled water (1.43g), wlder shaking, until a clear solution was obtained. The latter 
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solution was added to the neutralised acrylic Jcid solution. The initiatur solution 

(0.0043g-0.0616g in 2g water) was sinlilarly prepared as the crosslinker solution, then it 

was added to the combined solutions of crosslinker and monomers. A sample of about 

15-20mg of this original formulation was withdrawn by a disposable syringe and put 

into DSC pan at room temperature. The pan was quickly put into the DSC heating 

chamber, again at room temperature. The chamber was closed and heating rate was set 

at 40 °C/min. to attain an isothermal reaction, with the least delays to reach a setting 

temperature. The total period vf reaction was lh. The polymerisations were calTied out 

under normal atmosphere and at constant temperature of SO °c. 

Ex pt. 57 58 59 60 61 62 63 64 
._-

[IJ ![MJ xJOO 0.014 0.02 0.029 0.033 0.034 0.064 0.076 0.091 
-

In Uiatar g 0.004 0.006 0.009 0.010 0.010 0.02 0.024 0.028 
--

2.3.2.5 DSC studies on the effect of}emperature (Expts. 67-72) 

Expts. 67-72 

65 66 

0.137 0.21 

0.042 0.065 

Repeat of Expts. 57-66, except that O.OllSg of the potassium persulphate was diluted 

with 2.0g water and used as the initiator solution, and that, the temperature was varied 

ranging from 70-95 °c. 

I Expt. I~ 

2.3.2.6 Change in initiator and neutralizer (Expt. 73) 

Expt. 73 

Repeat of Expt. 30, except that the acrylic acid solution (l5g in 7.5g water) was 

neutralised with potassium hydroxide (S.75g in lS.39g water) in place of sodium 

hydroxide and that, anunonium peroxydisulphate (O.l6g in 5.0g water) was used in 

place of the potassium peroxydisulphate. The polymer obtained as in Expt. 30, i.e. in 

rubbery foml. 

2.3.2.7 Change in monomer concentration (Expt. 741 

Expt.74 
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The acrylic acid monOirler was used undiluted (lSg). TI1e aqueous SOIulllln of 

acrylamide monomer was prepared as foIlo\\s: Into 7.0g of magnetical1y-stirred (400 

rpm) double distilled water contained in a 400 ml bolt-capped beaker over a water bath 

held at 50°C, was added lSg acrylamide crystals and the mixture heated for a period of 

30 nlin. until a clear, water white solution was obtained. TIL~ same procedure was 

applied to prepare aqueous caustic potash solution (8.75g in 7.0g water), except that 

stirring was performed without heating but over an ice-water bath. Aqueous solutions of 

the crosslinker, methylene bisacrylamide (0.0078 mol% to the total monomer in 2.0g 

water) and the initiator, ammonium peroxydisulphate (0.16g in 1.0g water) were 

prepared as described under general procedure of synthesis (Sec. 2.1.l.1). To help to 

solubilise the crosslinker, its aqueous solution was added to the aqueous acrylamide 

solution in the cold under magnetic stirring for a period of 30 min. or until a clear 

mixture was attained. Acrylic acid was poured into the latter solution, while s\\ irling 

and fmally the initiator solution was added. TIle reaction was started as in Expt. 30. At 

the early stage of the reaction (say, 5 min. or gel point) an excessive foaming (up to 10 

times of the original vohlIne) occ, lrred and the resulting mass retained its spongy shape 

until the end of the reaction. The foamed product which was excessively dry and brittle 

was removed from the beaker and then easily ground to a pOWder. The powder was 

spread over (".n aluminum foil and heated overnight in an air- circulating oven held at 60 

°c to complete the drying. The dried powders were classified according 11.' their mesh 

sizes and stored individually into well-sl'aled bottles. 

2.3.2.8 Using PVC emulsion powder (Expts. 75-80) 

Expts. 75-79 

The same formulation and procedure as considered for the Expt. 73 was applied to run 

present reactions. The Expt. 73 was considered as a blank to observe the effect of 

introducing such a filler into the reaction medium. The poly (vinyl chloride) was used in 

its free flowing powder form, which is a dried product of poly (vinyl chloride) emulsion 

polyrnerisation. The latter was incorporated portionwise through a dropping funnel 

(with occasional shaking) into the prepared combined aqueous solutions (20.0g of the 

blank formulation of the Expt. 73) contained in a bolt-capped flask while stirring 

magnetically (800 rpm applied to prevent the filler particles forming aggJ, 'merates) at 

room temperature for a period of 30 min. These experiments differ in terms of their 
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blank formulation of the Expt. 73) contained in a bolt-capped flask while stirring 

magnetically (800 rpm applied to prevent the filler particles forming agglomerates) at 

room temperature for a period of 30 min. These experiments differ in terms of their 

PVC loading (2.5, 5.0, 7.5, 10, 12.5 and 15 wlw % respectively for the Expts. 75-,9. 

Into the same, open flask (loosely covered by aluminum foil) fitted with a 

thermocouple, the resulting milky suspension was subjected to polymerisation as for the 

blank experiment. After a short period of time, an excessive foaming was happened to 

the reaction mixture. After spontaneous collapse of the foamed product. it was 

withdrawn from the flask and cut into 2-3 mm pieces. The latter was put into an air

circulating oven set at 60°C, for overnight. The dried pieces of product \\"ere ground by 

a hammer type minigrinder, followed by classified. Amount of the materials eYaporated 

during the exothermic reaction was calculated by difference, just after the completion 

the reaction. 

Expt. 80 

Into a well-stoppered 100 ml dark bottle, 1 g of the dried product obtained from the 

Expt. 78 was poured into 75m! of the solvent, tetrahydrofuran (THF) which has a same 

solubility parameter as the PVC and is a common solvent for PVC- based formulations. 

The mixture was set aside away from light at room temperature for a period of month. 

The dispersion was then filtered through a fluted filter paper and washed several times 

with fresh solvent to remove traces of extracted poly (vinyl chloride). The extract was 

oven-dried overnight at 60°C, then weighted on a laboratory scale (to the nearest 

0.001 g). The dried extract was examined for its swelling behaviour. 

2.4 Detennination and characterization of polymers 

2.4.1 Neutralisation 

To obtain the desired, degree of partial neutralisation of acrylic acid, i.e. the required 

acid/salt ratio, the required amount of sodium hydroxide was estimated by the following 

diagram (Fig. 2.1). To draw the latter, dilute acrylic acid (30g in 7.5g double distilled 

water) was titrated with 25.4 wlw % NaOH solution. According to the diagram. 750/0 

neutralisation degree (acid/salt molar ratio of 1/3) is obtained when the pH aSSllmes a 

value of 5.73. 
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Figure 2.1 Titration curve for acrylic acid neutralization. 

2.4.2 Assaying crosslink density, network chain density and Me 

The amount of water sorption is quantified by the degree of swelling, i. e. the ratio of the 

swollen polymer volume or mass to that of the dry polymer 4. The volume degree of 

swelling of crosslinked polymers is simply the inverse of the polymer volume fraction, 

so the former can be readily predicted as a function of polymer-solvent interaction 

parameter, crosslink density and polymer ionic content, neglecting the electrostatic term 

(see Sec. 1.5.2) and assuming Gaussian chain statistics (see Equation. 2.1). 

[In(1- v ) + v + X v 2] / V + 
2,s 2,s I 2,s I 

V P [(V / v ) 1/3 - O.5( v / v )] + i v / V = 0 (2.1) 
2,r x 2,s 2,r 2,s 2,r 2,s m 

where: 

V2.s is Polymer volwne fraction at equilibrium swelling 

XI is Polymer-solvent interaction parameter 

VI is Solvent molar volume 

U2. r is Polymer volume fraction at network formation 

px is Crosslink density 

I is Ionic content 

Vm is Monomer molar volume 

61 



If non-Gaussian statistics are assumed (that is yalid for highly swollen gels). t!,c dc~rcc 

of swelling is predicted to level off with increased ionisation for a given level of 

crosslinking. Thus at a high degree of ionisation, the Sf rption capacity of a pOI)111er is 

prilnarilya function of crosslink density 5. For ionic gels at large degree of s\\elling. the 

influence of Xl becomes minor. Thus neglecting the mixing term, the Equation. : .2. 

has been derived: 

13 . 
V2. r px [(V2.s I V2. r) -0. 5 ([(V2.s I V2. r)]+ I V2.s I Vm = 0 (2.2) 

This has been solved explicity for crosslink density as displayed in Equation. 2.3: 

Px = (i V2.s I Vm V2. r)1 [( V2.s I V2. r) 13_ (V:.s IV2. r)12] (2.3) 

Weight swelling degree, q has been related to the volume fraction in the gel, V2.s by the 

E . ,., 4 6 quatlOn..... . 

1 +q(p polyme'/ p lIquir;J = 11 V2.s (2.4) 

The following equation (Equation. 2.5) can be used to calculate monomer molar volume 

(Equ(ltion. 2.6)7. 

where: 

P is Density of the sample 

pJ is Density of water 

p = ;.)]+(1- pj/ p:*) C: 

and V m = M I P2 * 

C] is Monomer concentration in glcm3 of solution 

M is Molecular weight of the monomer 

P 2* is Den~ity ofth.' monomer 

(2.5) 

(2.6) 

The moles of crosslinks per unit volume or crosslink density can be related to the 

network chain molecular weight Me by the Equation. 2.7: 

Px = (JlI V) =2 pl¢Mc (2.7) 

where: 

(p / V) is Crosslink density 



and ¢ is Functionality of the crosslinking agent 

Finally, the moles of network chains per unit volume can be calculated according to the 

Equation. 2.88
• 

(vi V)= pi Me (2.8) 

where (v I V) and Me are respectively network chain density and molecular weight 

between two successive crosslinks. 

2.4.3 Density measurements 

The density of the dried polymers were measured usmg solvent mixtures and 

densitometer at room temperature. The solvents used were, chloroform (d, 1.47), 

dichloromethane (d, 1.32) and carbon tetrachloride (d,I.59). 

2.4.4 Swelling measurements 

A sieved sample of the polymer ( l.Og ±O.OOlg, 50-60 mesh) was dispersed into 2L of 

doubly distilled water or accordingly saline solution, and allowed to swell with mild 

agitation. The steady state, or equilibrium swelling was determined by allowing 

overnight for absorption. The swollen samples were filtered through a 100-mesh wire 

gauze and surface water dried carefully using a piece of a soft open-cell polyurethane 

foam until they no longer slipped from the sieve when it was held vertical. For 

measuring swelling kinetics or rate of absorption, the water-absorbed samples were 

taken from the solution at prescribed periods and then exposed to swelling 

measurements through the above procedure. To obtain a reliable value for swelling at 

any time, five values were averaged, although the value of standard deviation for this 

method is ±2.1 g of water absorbed per g of dry superabsorbent. The quantitative 

figures of swelling were calculated as shown in Equation. 2.9: 

q t = [q ss - q ds} I q ds 

where: 

q t is Swelling at time t. 

q ss is Weight of the swollen or water-absorbed polymer at time t. 

q ds is Weight of the original dry superabsorbent polymer. 

(2.9) 
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All of the measurements were done on the original polymer without isolating its sol 

content. 

This measurement recipe is for the dried products. For non-dried products, a same 

procedure was followed, except that 1 g quantities of a bulk material (which still 

contains amounts of water), was immersed into 2L. of doubly distilled water. 

2.4.5 Curve fitting 

This has been done throughout the thesis to fmd the two parameters of the Voigt model 

(see p.109), which fit the experimental data. The values for the parameter no 1 are very 

close to the values for steady state swelling of the individual samples, since the water 

transport is diffusion controlled. To obtain parameter no 2, the values of In [1 - q t / q 

oo} were plotted against time. This showed a typical first order kinetics, thus the slope is 

a measure of the characteristic time of the polymer, or else the value of retardation time, 

which was calculated and named here as parameter no 2. The best fitting curves were 

used to obtain the values of the initial slopes and the time needed to reach constant 

swelling (Sec. 3.3, Table. 3.6). With the former, the slope of the line between the zero 

point and the point at 70% fractional swelling was determined. For the latter, the point 

at which the swelling value diverges from the value of the parameter no 1 was selected. 

2.4.6 Sol content measurement by spectroscopy (Sec. 3.3, Table. 3.6) 

To a 1L beaker containing 500ml of 1.0 w/w % sodium chloride solution, 0.5g 

(±O.OOOlg) of dried superabsorbent (50-60 mesh) was poured. The dispersion was kept 

aside at room temperature for a period of 72h. After several shaking and standing cycles 

to homogenise the liquid phase, the dispersion was allowed to settle, then the 

supernatant liquid was filtered through a sintered glass, followed by withdrawing a 

known volume of it for UV spectroscopy. A PU 8800 UVNIS (double beam) 

spectrophotometer was used, using quartz 10 mm cells. A 1.0 w/w % NaCI solution was 

used as reference and the scanning was performed through the range of 250-190 nm. 

With our acrylate superabsorbents the Amax appears at about 206nm. 
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2.4.7 Water content (bound water) measurement (Sec. 3.3, Table 3.6) 

A thermal analyser, PL-TGA 1500 was used. The temperature was s·~t at 200°C (under 

nitrogen blanket) and held for a period of 30 min. By this time all the water contained 

into t11e polymer was isolated. 

2.4.8 Gel time measurement 

The gel time was measured as the tinle required to create first stable bubbles in the gel. 

The time just after initiator addition was considered as the starting point of the 

measurement. The timing was started after initiator addition (Sec. 3.4, Table. 3.8). In 

Table. 3.12, the gel time was considered as the time, required to create an exothemlic 

peak on the DSC thermogram 

2.4.9 Assaying particle size distribution (Sec. 3.6.2, Table. 3.17) 

The particle size distribution of the samples obtained from the synthesis was fOlmd by 

automatic sieve analysis. A set of sieves was usc.d with apertures of 300, 250, 180, 150, 

106, 75, 53, 45 and 38 Inicrons in diameter. The data obtained from the sieve analysis 

was used to determine the mean surface diameter of the particles (d s ) according to the 

Equation. 2.10: 

(2.10) 

where Pi and d j are the mass of the indi\idual fr: ctions and mean~perture diameter of 

the two successive sieves respectively. 

2.4.10 Gel content measurement by gravimetrY (Sec. 3.4, Tables. 3.7-3.8) 

A saline solution of 1.0 w/w % sodium chloride (supplied from Merck) was used as the 

extracting medium. About 0.8 gram (±O.Olg) of the dry superabsorbent polymer was 

im'nersed in the above solution (260g), then allowed to saturate for 72h at room 

temperature without any stirring. All of the samples were poured onto a sinkred glass 

filter after the prescribed time, then the two phases were separated by gravity until 

observing no free-falling drops of water down the filter. The aqueous extracts were 

coJIected for further experiments. TIle wet gels on the filter were transferred onto a fi Iter 

paper and subjected to drying for a period of 10 hr at 90°C in a normaL air-circulating 

oven. The gel and the sol fraction of the samples were calculated according to Equation. 

2.11 : 
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\\ here: 

G is Gel content or gel fraction 

G= ({A+B)-B+(C-D)}IE x JOO 

S= JOO-G 

A is Weight of residual dried gel on paper 

B is Weight of filter paper 

C is Weight of blank filter paper before heat treatment 

D is Weight of blank filter paper after heat treatment 

E is Weight of original dI) superabsorbent 

S is Sol content or sol fraction 
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Chapter 3: RESULTS AND DISCUSSIONS 

3. 1 Introduction 

Based on our aims in Sec. 1.10, we attempted at first for producing a product in powder 

form and in well-defmed size as well as capable of showing normal superabsorbency. 

This step was crucial for investigating the key parameters involved in controlling the 

polymer function in swelling media. Thus we tried to synthesize a high quality 

superabsorbent polymer in particle form, in reproducible amounts and consistent 

quality, which was the aim for doing the Expts. 1-17 (Sec. 3.2.1.1). 

The next step was investigating the effect of the influential variables including the 

crosslinker concentration and its type on the swelling characteristics of the products. 

This was the subject of the Expts. 18-21 (Sec. 3.2.1.2) and 22-25 (Sec. 3.2.1.3) 

respectively for the oil-soluble and the water-soluble crosslinkers. The fmal variable in 

inverse-suspension experiments was the effect of comonomer replacement, which was 

investigated through the Expts. 26-29 (Sec. 3.2.1.4). 

At the end of these experiments, a suitable material was obtained in terms of its 

swelling characteristics. But, we tried for simplifying the method of polymerisation as 

well as for obtaining the materials at a cheaper price. Thus, the Expts. 30-33 (Sec. 

3.2.2.1) were devised based on these requirements. For this purpose, a simple solution 

polymerisation was introduced after numerous trials for accomplishing it successfully. 

According to our findings from these experiments, a simple and general model (Sec. 

3.3) was devised in order to explain the principal factors responsible for the swelling. 

The step further was using our model for comparing the swelling characteristics of the 

materials obtained up to this stage. 

The effects of other parameters including the amount of the heat supplied for starting 

the polymerisation reaction and the amount of the initiator used to start the kinetic 

chains were also examined respectively through the Expts. 34-47 and 48-56 (Sec. 3.4). 

We used our model to justify the swelling properties of the various materials obtained at 

different bath temperatures and the initiator concentration. 
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Effects of initiator concentration (Expts. 57-66) and of bath temperature (Expts. 67-72) 

were assessed in microsynthesis polymerisation using a Differential Scanning 

Calorimeter (Sec. 3.5). These experiments have been done in order to obtain more 

insight into the kinetics of solution polymerisation, especially at gel point. 

The effects of the particle size and the ionic strength of the swelling media on the 

swelling properties of the products were also assessed in detail, as can be seen 

respectively in Sec. 3.6.2 and 3.6.3 

With some experiments, the type of the initiator and of the neutralizer was changed for 

performing the solution polymerisation at higher monomer concentration. This is the 

subject of the Expts. 73-74. 

Finally, we tried to use our model to obtain superabsorbents of higher quality and, if 

possible of superior properties to those are commercially available. Thus, the Expts. 75-

80 were devised based on this objective. 

3.2 Polymerisations 

The first step was to fmd a suitable preparative procedure to produce a typical polymer 

in particle form, which displays normal superabsorbency. To obtain the desired 

superabsorbency, we required a rather full knowledge of the polymerisation system. 

According to the literature survey, two general approaches could be adopted to make 

superabsorbent polymers, i. e. inverse suspension and solution polymerization; both 

methods have their own advantages and disadvantages. Although, for economic reasons, 

the industrial method of superabsorbent preparation is by solution polymerization, the 

material dosenot lend itself to the study the effects of changing parameters. 

On the other hand, the inverse suspension material does allow one to investigate subtle 

changes in variable parameters and learn the major effects involved in the properties of 

the final superabsorbent material. By these reasons, we started by developing a suitable 

laboratory method first by carrying out the versatile inverse suspension polymerisation. 
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3.2.1 Inverse suspension polymerisar:on 

A typical suspension polymerisejjon consists of hvo in miscible phases (an orgal11C 

phase and an aqueous phase). The organic phase, umtaining a single monomer (or 

mixed monomers) and a radical initiator, which is soluble in the monomer but not in 

water, is added to a reaction vessel containing water, fitted with an impeller until the 

volUlne fraction of the organic phase is of the order 0.2 to 0.35. The impeller breaks this 

phase into drops~ each of which becomes a miniature chemical reactor in which 

monomer is converted to polymer by the radicals generated within 1. 

On the other hand, the inverse suspension polymerisation (Fig. 1.6) in\ olves the 

suspending of a water-lniscible monomer (or monomers), usually in aqueous solution, 

into the continuous oil medium using a water in oil emulsifier. Polymerisation is 

canied out using a water-soluble initiator to give a dispersion of water-swollen particles 

in a continuous oil phase 2. Thus, with suspension method, which is suitable fOi" 

producing hydrophobic polymers, the dispersed phase is an oil-miscible monomer(s) 

and the continuous phase is water. For its inverse version, i.e. inverse suspension 

polytnerisation, which is flexible and is a suitable method for producing hydrophilic 

polymers, the dispersed phase and the continuous phase are water-miscible monomer(s) 

and an oil respectively. All other features are similar for the two methods of 

polymerisation. 

Therefore the basic ingredients in inverse-suspension polymerisation could be adopted 

as follows: 

a) Ingredients for the dispersed phase 

Monomer (or monomers): These are the basic starting ingredients or building blocks of 

a superabsorbent structure. Superabsorbent po:ymers are generally hydrophilic materials 

which can surprisingly swell up to thousands times of their own weight in water. Thus 

regarding the swell ability as a lnatter of solubility, the more hydrophilic the monomer, 

the more the swelling of the polymer. There is a wide variety of the available 

hydrophilic monomers, possessing various functionality (see Fig. 1.3) but, consideration 

of features such as structural simplicity, cheapness, low toxicity and availability are all 

prerequisites. Although different classes of the monomers are available that lead to 

various types of polymers; e.g. anionic, cationic and amphoteric materials, our literature 

survey suggested that the anionic classes are best suited to prepare high quality 
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superabsorbents (in tenns of absorption capacity and rate as well as gel strength). 

Acrylic acid is a readily available and inexpensive monomer and was therefore our first 

material of choice. 

Initiator: In any polymerisation systems, starting a kinetic chain of monomers can be 

accomplished by using an initiator. Among a very wide initiating systems, a thennal one 

using potassium peroxydisulfate was attempted. 

Water: There is a need for a matrix to dilute the monomers to obtain a desired monomer 

concentration. Water is the material of choice, since the monomer(s) are miscible with 

it. Therefore, the aqueous monomer solution fonns the dispersed phase of the 

polymerisation system. 

b) Ingredients for the continuous phase 

Oil (a typical hydrocarbon): Any liquid or low melting hydrocarbon could be 

considered as the dispersing medium for the aqueous phase. This can be selected among 

aliphatic, aromatic and cycloaliphatic hydrocarbons. For our studies, toluene was 

chosen, otherwise indicated. 

c) Ingredients for the interface 

Emulsifier: The dispersed and the continuous phases which being prepared in this way 

are immiscible. Therefore, to render miscibility, there is a need to use certain 

emulsifying stabilizers. The most commonly used stabilizers are monoesters of sorbitol. 

These are defmed according to their characteristic "HLB", Hydrophilic-Lipophilic 

Balance values. The HLB value indicates the hydrophilic-lipophilic balance of a 

particular emulsifier and is a useful guide to the selection of a suitable emulsifier system 

for a given dispersed phase particularly when nonionic emulsifiers are to be used. 

Most of the commonly encountered nonionic and ionic surfactants lie in a HLB range 

from one to twenty 3-4. Moreover, the solubility characteristics of many surface active 

materials in water roughly follows their HLB classification 5.Thus an HLB value of one 

indicates oil solubility, while an HLB value of twenty indicates a high degree of water 

solubility 3. Table. 3.1 shows some features of the common commercial emulsifiers. 

Stabilizers of sorbitan monostearate and sorbitan monooleate were used in our study. 
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Table. 3.1 The features of the common commercial stabilizing emulsifiers. 

HLB Dispersibility Suitable Some commercial 

range in water application samples (RLB values) 

1-4 Nil Span 85 (1.8), Span 65 (2.1) 

3-6 Poor W /0 emulsifier Span 60 1 (4.7), Span 80 2(4.3) 

6-8 Milky dispersion Wetting agent Span 40 (6.7) 

on agitation 

8-10 Stable milky Wetting agent, Span 20 (8.6) 

dispersion OIW emulsifier 

10-13 Translucent to OIW emulsifier Tween 65 (10.5) 

clear dispersion 

>13 Clear solution OIW emulsifier, Tween 21 (13.3), Tween 60 (14.9), Tween 20 

Solubilising agent (16.7) 

1) SorbItan monostearate 2) SorbItan mono oleate 

d) Other provisions . 

The foregoing materials are considered as an integral part of the formulation of the 

system, but a few auxiliary compounds are also needed to achieve superabsorbency: 

these are crosslinking agent(s) (to render the polymer swellable) and a monomer 

neutralizer (to increase swellability). 

The acrylic acid monomer can be neutralized by a variety of hydroxides of the group I 

elements of the periodic table. Generally, the aqueous solubilities of the alkali acrylates 

increase with increasing atomic weight of the alkali metal as is expected. Poly (acrylic 

acid) itself is not a practically useful absorbent, since the excess of hydrogen bonding 

prevents the macromolecular chains from diffusing in water and indeed very little water 

can be absorbed. A similar behaviour is expected for fully-hydrolyzed poly (vinyl 

alcohol) polymers. In such circumstances, the polymers behave like a non-ionic 

materials. As the degree of neutralization is introduced, so does water absorption. This 

is due to the creation of higher salt content which in turn increase the osmotic pressure 

and intra/inter chain ionic repulsions. At the extreme, that is, presumably full 

neutralization, these polymers tend to dissolve in water and this property can only be 

overcome by increasing the degree of crosslinking. When this is achieved, the polymers 

swell as much as possible without actually dissolving, i.e. they behave as 

superabsorbents. Thus we tried to investigate the parameters controlling the "solubility" 

and "swellability" in superabsorbent polymers. 
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The amount and the na: LIre of the crosslinker unit IS also crucial. \\'hen the 

polymeri/ation is simulti1neously being carried out in the presence of crosslinker 

(crosslinking), as is the ca~e for conlmon procedure of superabsorbent manufacturing. 

the crosslinker efficiency should also be taken into consideration. This parameter 

deternlines the number of tbe efficient iies between the polymer chains. Generall) 

speaking, more ties result in less water absorption due to more hindrance of the network 

to swell. Among the variety of crosslinkers, one could selec t either water soluble or oil 

soluble crossJinkers, but different polymer properties could be expected. 

Another parameter of importance in determining the properties of final polymer is the 

concentration of the monomer used in the polymerization reaction. Pol) merit_ation is 

exothermic. By using a lower concentration of mononler, there is less risk of thermal 

runaway, better chances for process control and, generally, more homogeneity in the 

final product but less yield. High heat output of the highly concentrated reaction 

mediUln results in undue polymerization and to high viscosity of the reaction medium 

and both these factors give lower control on the proce~>· and higher heterogeneity with 

product. The advantage of using a higher monoma concentration is to obtain 

cOlnmercial economi~ value. 

Although a big list of other variables, including the water/oil ratio. the rate of agitation 

and the type of the stirrer would be expected, we focused on the main variables which 

could remarkably affect polymer properties. 

To perform polymerisation, the two phases should be intimately contacted with each 

other through a mechanical mixing. To deoxygenate the reacting medium which is 

accessible to the atmospheric oxygen, a blanket should be provided throughout the 

system, e.g. nitrogen blanket. Otherwise, the p'Jlymerisation is prevented or retarded 

due to inefficient monomer consumption. 

The reaction starts after e~ :ablishing the temperature. According to the nature (in terms 

of solubility in water or in oil) and concentration of the materials used and associated 

operating conditions, products of various physical shapes (powder, bead and lump) 

could be obtained. These conditions are also responsible for producing a polymer of the 

desired swelling properties (i.e. swelling amount, swelling rate and gel strength after 
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swelling). Thus the effect of the individual parameters should be interrelated and 

balanced to attain a polymer with the desired appearance and swelling properties. 

3.2. 1. 1 Preliminary trials (Expts. 1-17) 

After numerous trials and errors, a basic preparative procedure (Expt. 1) was adopted 

following methods described in patents 6-23. 

One of the basic requirements for a successful inverse suspension polymerisation, in 

order to produce separated, well-defmed particles was the use of a surfactant of very 

low hydrophilic-lipophilic-balance (HLB). The sorbitan monostearate (HLB, 4.7) 24 was 

used for this purpose in Expt. 1. A characteristic feature of this typical stabiliser was its 

hydrophobicity which brought it to partition mainly in the organic hydrocarbon solvent 

(hence it is very sparingly soluble in water, as indicated by forming a milky mixture 

between water and the stabiliser). 

On the other hand, the total monomer (including acrylic acid and sodium acrylate) 

concentration was set at 40.0 w/w % of the reaction mixture. Following the preparative 

procedure described in Expt. 1, the product was obtained as a swollen lump. The lump 

itself was constituted by the number of granules which were tightly attached to each 

other and each granule had incorporated very numerous smaller particles in different 

sizes (see Fig. 3.1). 

After oven-drying, weight of the lump was reduced. This was due to the amount of the 

water originally present in the reacting medium, which was taken up by the resulting 

reaction product, that was potentially a super water-absorbent. What we needed was 

obtaining the material in particle form not as a big lump or even a granular mass. The 

latter was not a useful material in service, since most of the potentially superabsorbent 

particles were occluded into the granule, thus not being accessible to water in a 

relatively short periods of time. Therefore there was a need to fIrst separate the lump 

into the granules and then break the latter up to give the effective particles. The most 

usual method to obtain discrete particles was to increase the surfactant concentration 

and speed of agitation. The former is essential to separate the particles physically, by, 

presenting the more surface tension along the interfaces, although the latter helps to 

segregate the granules and the particles mechanically through increasing the stress 

between them. 
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Increasing the stabilizer or surfactant concentration (Expt. 2) led to the same product, as 

before, except that the granules within the lump were loosely attached to each other. 

A similar result was obtained from Expt. 3 for which the agitation speed was increased 

while the surfactant concentration was kept high as in Expt. 2. This modification 

showed that the increased agitation rate does not help to separate the swollen granules 

anymore. 

After the latter experiments failed, the possible reason for the granules adhering to one 

another seemed to be a consequence of the water present in the system, since water 

presumably adhered the particles (through solvent-binding), which are hydrophilic in 

nature as well as a swelling medium. Thus vacuum distillation was attempted to remove 

water. However this experiment (Expt. 4) failed due to the partial miscibility of water 

and toluene [ toluene/water mixture containing 20% water forms an azeotrope of boiling 

point 85°C 25 which is very near to the reaction temperature] which perturbed the 

water/oil ratio due to evaporation. 

Based on this assumption, toluene was then replaced by xylene (Expt. 5) which has a 

higher boiling point than toluene (138-142 °c compared to 111°C) and forms an 

azeotropic mixture at temperature [93°C when the mixture contains 33% water 25 ] 

well above the reaction temperature (80 °C). The result was the formation of non

uniform (in size), swollen and rather separated granules, which was not satisfactory. 

Carrying out more experiments with same formulation as in Expt. 5, but incorporating 

higher dosages of surfactant led to the water soluble products. This meant any attempts 

to increase the stabiliser concentration in order to produce separate polymer granules 

and particles was complicated by the increased solubility of the polymer, which is 

undesirable. 

Thus a few experiments were devised using sorbitan mono oleate as a more powerful, 

lower HLB stabilizer than sorbitan monostearate (4.3 compared to 4.7 ) 24. The product 

of the latter modification (Expt. 6) was obtained as a fme, water-soluble but non-

swellable powder. 

Attempts to increase the size of the latter particles through a decrease in the surfactant 

concentration (Expt. 7) led to coarse, star-shaped, rather separated, swollen granules 

(see Fig. 3.2). 
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As an alternative to removing water by vacuum distillation, use of a commercial water

absorbent polymer was attempted (Expt. 8). In this case, more uniform, separated, 

swollen granules were obtained (see Fig. 3.3) which demonstrated more water removal 

efficiency of the superabsorbent polymer compared to the vacuum distillation 

procedure. The average size of 2-3 rom was measured for the granules, which were 

constituted of aggregated particles of 50-500J.lm. One of the outstanding feature of using 

the absorbent appeared to be the very rapid rate of water uptake, which takes too much 

time using the vacuum process. Another feature is that the particles of the 

superabsorbent additive which was liberally added, acts presumably as seeds on which 

polymerisation proceeds. This is the same procedure to produce seeded poly (vinyl 

chloride) emulsion powders. And, fmally, there is an advantage of maintaining the 

system intact, i. e. evaporation of the phases is no longer experienced. 

Nearly a similar result was obtained under the conditions by replacing xylene with 

toluene (Expt. 9). Deleting the superabsorbent from this formulation as well as 

increasing the surfactant concentration (Expt. 10) led to rather coarser granules. Attempt 

to break the granules again through an increase in surfactant concentration (Expt. 11) 

afforded a water soluble powdery gel. 

The material obtained from Expt. 10 was appeared to be a good starting point for our 

work, exhibiting a 416 times absorbency, although it was obtained relatively coarser 

than the product of the Expt. 9. Moreover, compared to the latter, there was no need to 

apply another ingredient, like a superabsorbent which complicates formulation and 

results. 

Attempts to use auxiliary emulsifiers, such as partially-hydrolyzed poly(vinyl alcohol) 

(Expt. 12) and CMC (carboxy methyl cellulose) (Expt. 13) in order to break the 

granules resulted in formation of sticky gels, although their effects on absorption 

capacity was quite remarkable, giving values of 61 0 and 720 gig respectively. 

Another modification was to use methanol as a precipitant (non-solvent or insolubiliser) 

and dewatering agent for the polymer granules, as detailed in Expt. 14. The resulting 

product had better handling properties and was obtained in the form of a coarse and 

separated granules, white in color. This led us to choose methanol as dehydrating agent. 

An examination of ground up and as-synthesised product of Expt. 14, by scanning 

electron microscopy (SEM), without any attempts to break the granules into their 

constituted particles, is shown in Fig. 3.4 and Fig. 3.5 respectively. 
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Figure 3.1 SEM micrograph of the product obtained from the Expt. 1, shows aggrega tion of 

granules consisting nwnerous fine particles. 

Figure 3.2 SEM micrograph of an isolated star-shaped granule obtained [r rn the . x t. 7. 



Figure 3.3 SEM micrograph of an isolated roWld granule obtained from the Expt. 8. 

Figure 3.4 SEM micrograph of groWld-up absorbent btained from the 'pt. 14. 



Figure 3.5 SEM micrograph of as-synthesised product obtained from Expt. 14. 

Figure 3.6 SEM micrograph of a sample obtained in Expt. 15 clearl hows the pr sence of 

ethyl cellulose over the polymer strrface. 



There was no remarkable feature (e.g. porosity) onto the surface of the product. Up to 

this point, we were only successful to break the lump into the separated granules of 

reasonable amount of absorption capacity. 

From our preliminary results it appeared that a single low molecular weight surfactant 

like sorbitan monostearate or even sorbitan monooleate, and in some cases a combined 

surfactant [together with high molecular weight materials like poly (vinyl alcohol) or 

carboxy methyl cellulose] did not produce materials with all the required characteristics, 

mainly obtaining the material as particles. This enforced us to make some further trials. 

The fmal experiments, to reinforce or modify the performance of the principal 

emulsifier was attempted by using ethyl cellulose as an auxiliary macromolecular 

emulsifying agent in order to produce reasonable particle sizes (Expts. 15,16 and 17) 

(Note: low and high molecular weight emulsifiers can be termed micromolecular and 

macromolecular respectively). Figure 3.6 shows the product obtained from the Expt. 

15. It can be observed, that a layer of ethyl cellulose covered the surface of the particles 

and as an abhesive, preventing them from adhering to each other. A typical contraction 

was occurred and can be observed for the ethyl cellulose surface layer, which reshaped 

it as a drape or a wrinkled sheet. The surface contraction was due to the particle 

shrinkage, which was caused by the water removal from the polymer particle through 

applying a methanol dewatering procedure. Figure 3.7 displays this phenomenon under 

higher magnification. The evidence for the presence of the ethyl cellulose barrier over 

the surface of the polymer particles was obtained when the particles shown in Fig. 3.6 

were simply treated with fresh toluene. As clearly be seen in Figs. 3.8 and 3.9 with two 

levels of magnification, the particles were obtained bare and free from any coating. 

A better solution was obtained from Expt. 16, in which more separated particles were 

obtained. Increased dosage of ethyl cellulose (Expt. 17) led to highly separated particles 

as can be seen in Fig. 3.10. The mean surface diameter of the latter particles, with 

almost a 800 times absorption capacity, was about 300 microns. Figures 3.11 and 3.12 

show a completely separated particle in non-swollen and swollen form in water. It 

should be mentioned that, a few bigger particles still show something like aggregation. 

i. e. adhering of smaller particles onto the surface of the bigger ones. This can clearly be 



seen in Fig. 3.13. For simple obs~rvati on of such aggregation one of the articl s was 

allowed to swell in dou' ly distilled water to high extent (left-hand side ofth pil' ..Ire) . 

The properties of the material from the fo :egoing experiment were, an extr30rdinar) 

amount of absorption, reasonab e swollen gel strength (rather hard and tough) and 

relatively low rate of absorption which takes near an hour to reach equilibrium or steady 

state swelling. The other advantage was its shape, i. e. particle, after synthesis, the shape 

we required to assay various system variables on polymer properties. The swelling 

properties of the superabsorbents are critically dependent on the size of the particles to 

be assessed. Therefore, any attenlpts to survey the effect of s stem variabl es on the 

s\velling properties should be done on particles of well-defllled size, e.g. 50-60 mesh or 

something else. But how sensitive the swelling parameters mainly, absorption capacity 

and absorption rate are to the system paranleters and how they inter-relate is of crucial 

importance and should be cleared. Thus a variety of experinlents were designed to 

study the effect of the system paranleters on the swelling characteristics of the Pl lynlers. 

The elected parameters of the former, reviewed here in tum, are the crosslinker type 

and amount (oil and water soluble crosslinkers in a variety of concentrations) , the 

comonomer other than present structural units, methods for supera orbent 

manufacturing other than tl e inverse Sl1 pension method, temperatures and initiator, 

pal1icle size, ionic strength of the swelling media, m nomer concentration and filler. 

Figure 3.7 EM microgra h of the product from E pt. 15 , at higher magnificati n. 
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Figure 3.8 SEM Ij llcrograph of the product obtained from Expt. L after wa rung with fre h 

toluene. 

Figure 3.9 SEM mi rograph of tJ product obtained from E 'pt. 15, fier \Va ru '1 \\1th fr h 

tolu ne at high r magnification. 



Figure 310 Photograph of a product obtai ed from the E. 'pt. 17. 

Figure 3.11 Photograph of a parti 1 (fr m Expt. 17) in iL \\ llen and n n- \\ 11 n ~ rm. 



Figure 3.12 Photo raph of an i 0 ' l ted particle (I pt. 17) ·n it lightl) swollen form. 

Figure 3.13 Photograph howing a typic 1 aggregat i n of fin r particle Expt. 17 nto a big 

pru ticle in swoll n ta te. 



3.2. 1.2 Effect of the oil-soluble crosslinker concentration (Expts. 18-21) 

A series of experiments (Expts. 18-21) was designed to assay the effect of the oil

soluble crosslinker concentrations on the absorption behaviour of the polymers obtained 

as in Expt. 17. The starting conditions were variants of those described for Expt. 17 

using various crosslinker dosages as quoted in Table. 2.1 and 3.2. No difference in 

nature of polymerisation of these fonnulations was observed, moreover, all the products 

were mainly obtained in particle fonn. The swelling measurements carried out on 

particles range in size, 50-60 mesh. Typical properties of these hydrogels are presented 

in Table. 3.2. 

The samples for Expts. 18-21 differ only in tenns of crosslinker amount. Parameters 

recorded in the table have been found according to the equations introduced in Sec. 

2.4.2. 

Table. 3.2 Properties measured for the samples crosslinked usmg ethylene glycol 

dimethacrylate. 

Expt. 18 19 20 21 Change 

Molar percent of 

cross linker to monomer 
0.055 0.238 2.30 4.58 84 x 

Degree of 
swelling (gig) 

in double distilled water 
789 756 617 487 -38.2% 

in 0.009% NaCI solution 
452 439 390 333 -26.3% 

in 0.09% NaCI solution 
196 191 174 144 -26.5% 

in 0.9% NaCI solution 
71 70 65 57 -19.7% 

Polymer volume 
fraction in the gel 8.2 E-4 8.6 E-4 1.03 E-3 1.3 E-3 +58.5% 

Crosslink density (mol/cm
3
) 7.2 E-5 7.4 E-5 8.4 E-5 9.8 E-5 +36.1% 

Network chain density 
(mol/cm3

) 1.44 E-4 1.48 E-4 1.68 E-4 1.96 E-4 +36.1% 

Network chain molecular 
weight (glmol) 10763 10472 9226 7908 -26.5% 

3 
Note: According to the Sec. 2.4.3, the denszty of the samples wasfound 1.55 g/cm . 

In the Table. 3.2, the degree of swelling has been measured according to the Sec. 2.4.4. 

It should be mentioned that this parameter was expressed as a weight ratio. Polymer 

volume fraction in the gel means, the volume of the polymer within the polymer and 

water combination after swelling. Thus, it is reciprocal of the volume degree of 
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swelling. Hence, the higher the swelling, the lower will be the polymer volwne fraction. 

The crosslink density is the measure of the amounts of the ties connected the free chains 

to each other. On the other hand, the network chain density is the density of the chains 

between two junction points, which is simply twice the crosslink density value, if the 

crosslinker is tetrafunctional. In general, network chains exhibit a distribution of 

molecular weights about an average, which serves as a reference quantity in describing a 

network structure 26. Thus, the parameter measured as network chain molecular weight 

is the average value for the molecular weights of different chains between two crosslink 

points. To calculate these parameters, at first, we obtained the amount of the weight 

swelling, q , by the method described in Sec. 2.4.4. Then, with known density value of 

the polymer (Sec. 2.4.3), the polymer volume fraction in the gel was obtained through 

Equation. 2.4. By substituting the parameters in Equation. 2.3 with appropriate 

quantities, the crosslink density was found. Knowing the density of the polymer and the 

functionality of the crosslinker, the molecular weight between two crosslinks and the 

network chain density were calculated using equations 2.7 and 2.8 respectively. 

With these experiments, the crosslinker dosage was substantially increased, i. e. the 

crosslinker in the Expt. 21 was 84 times greater than in the Expt. 18. The highest 

equilibrium swelling was observed for the lowest loaded product. Any increase in the 

crosslinker led to a decrease in the corresponding equilibrium swelling value. Thus, the 

minimum amount of steady state or equilibrium swelling was observed for the product 

containing the highest amount of the crosslinker. 

Generally speaking, an increase in the crosslinker concentration resulted in a decrease in 

equilibrium swelling (in each swelling medium), an increase in the polymer volume 

fraction in the gel, an increase in crosslink or network chain density as well as a 

decrease in the molecular weight between the two successive crosslinks. 

The degree of the swelling for the individual samples was plotted against time, as 

shown in Fig. 3.14. A similar trend was generally observed for the dynaluic swelling 

values of other samples. Thus, three regions could be distinguished in the plot of the 
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swelling against time. The swelling increased sharply. th~n continued sn.Jothly to 

fmally a constant value. 

Considering a same acid/salt molar ratio of 1/3 (means 75% neutralisation degree) for 

all the samples, this was the molar percent of the crosslinker to the monomer, which 

remarkably detennined the equilibrium water-retaining capacity of these absorbents. 

The time taken by the samples to reach their fmal swelling state was different. The 

longest time was recorded for the sample from the Expt. 18 (about 40 min.). An 

increase in the crosslinker led to a decrease in time. so that, the value of 23 min. was 

obtained for the sample from the Expt. 21. This means, the higher crosslinker loaded 

material reaches faster to its equilibrium swelling capacity than the lower loaded 

counterpart. This observation will be further discussed under the heading "A Swelling 

Model" (see Sec. 3.3). 

On the other hand, for each sample, a decrease in the equilibrium swelling was observed 

with salt concentration. The highest swelling was observed in doubly-distilled water, 

whilst the swelling medium of the highest salt concentration led to the lowest amount of 

swelling. The effect of the ionic strength of the swelling medium on the absorbent 

properties will be discussed under the heading "Effect of the Ionic Strength" (see Sec. 

3.6.3). 

When we plotted the equilibrium swelling values of the samples obtained at different 

crosslinker concentrations, against salt concentration of the swelling medium, a sharp 

transition in the swelling curve was generally observed. Finally, the swelling values 

converged nearly to the same point at high saline concentration (see Fig. 3.15). 

The plots of the equilibrium swelling values against crosslinker concentration were 

different for the various swelling media (see Fig. 3.16). The swelling in doubly-disti lIed 

water was reduced sharply with the crosslinker. But this trend became smoother with an 

increase in the ionic strength of the swelling medium. A conclusion could be simply 

made that, the amount of the equilibrium swelling became independent of the 

crosslinker concentration at high saline concentration. 

86 



rr=============--========= 

1000 -

800 ~ 
crosslinker 

i 9 0 9 concentration 
¢ - Q 

CD 9 - II II II II 00.066 CD 600 --CD 

r§ <>0.238 .: 0 0 0 0 
I 

j 400 ~ 
I 112.3 

fI) 04.58 

200 ~ 
~ 

o L ~ ___ , ---,- ___ ~~i 
o 10 20 30 40 60 

Time (mln)1 

Figure 3.14 Dynamic swelling curves for the samples obtained from Expts. 18-21. at different 

crosslinker concentration. 
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Figure 3.15 Equilibrium swellings at different crosslinker concentration, against saline 

concentration of the swelling medium (Expts. 18-21). 
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Figure 3.16 Equilibrium swellings in different swelling media, against crosslinker 

concentration (Expts. 18-21). 
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Figure 3.17 Logarithmic relationships between equilibrium swelling and corresponding 

network chain density (Expts. 18-21). 
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According to the Fig. 3.1 7, the logarithms of the equilibrium swelling values versus the 

logarithms of the network chain density, showed a power law behaviour, q =a v n , in 

two extremes of the swelling media, i. e. in doubly-distilled water and in physiological 

solution. The experimental exponent, n , for these two solutions was found to be 1.57 

and 0.71 respectively. These figures also indicate that the swelling capacity was much 

more dependent on the crosslinker concentration in the salt-free water than in the brine. 

Finally, with the Expt. 18, the ratio of the equilibrium swelling values in distilled water 

and the swelling medium of highest salt concentration was found 11.1. This ratio 

decreased with crosslinker concentration. So that, the ratios of 10.8, 9.5 and 8.5 were 

calculated respectively for the Expts. 19, 20 and 21. 

Although the superabsorbents obtained from the Expts. 17-21 were able to absorb huge 

amounts of water, they suffer from a few disadvantages. Firstly, there was a need to 

apply high crosslinker dosage to obtain a reasonable capacity of water absorption. 

Secondly, a remarkable increase in crosslinker concentration had a very small effect on 

reducing the swelling capacity. Finally, the rate of absorption was very slow, so that, a 

fraction of an hour was required for the samples to reach their equilibrium capacity, 

although the rate was increased with crosslinker concentration. 

F or baby diapers and personal care products, these absorbents are potentially useful, 

since they have a well-defmed particle size. But for some fields of application, such as 

agricultural and horticultural use, the requirement for the particle size can be pursued by 

grinding the superabsorbent in bulk form (lump), followed by classifying the particles. 

Therefore, the material obtained from the Expt. 14 can potentially be used in such 

applications. 

3.2.1.3 Effect of the water-soluble crosslinker concentration (Expts. 22-25) 

Another way to make a hydrophilic polymer, useful as a superabsorbent was the use of a 

water-soluble crosslinker. For this purpose, we adopted, among a family of the 

bisacrylamide compounds, a compound containing two identical double bonds. This 

was N, N'- methylene bisacrylamide. This c.rooslinker is moch more soluble in water than 

ethylene glycol dimethacrylate. So, we run a couple of experiments (Expts. 2:2-25), as a 

way similar to the latter experiments, except that, the nature and amount of the cross linker 
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was varied. The crosslinker concentration changed from 0 016 to 0 11 1 . . mo ar percent to 

the total monomer present in the reacting medium The swellm' g data 11 . , as we as some 

structural properties are quoted in the Table. 3.3. 

Here again, the highest value of swelling was observed for the material contain the 

lowest amount of the crosslinker. The equilibrium swelling decreased with the 

crosslinker. 

Table. 3.3 Properties measured for the samples crosslinked using methylene bisacrylamide. 

Expt. 22 23 24 25 change 

Molar percent of 

crosslinker to monomer 0.016 0.047 0.078 0.11 7x 

Degree of 

I swelling (gig) 

in double distilled water 752 517 288 
I 
I 254 -66.2% 
I 

inO. 009% NaCI solution 403 290 212 I 
196 -51.4% 

in 0.09% NaCI solution 179 142 106 105 -41.4% 

in 0.9% NaCI solution 61 53 41 39 I -36.0% 
I 

Polymer volume ! 
fraction in the gel 8.56 E-4 1.25 E-3 2.25 E-3 2.54 E-3 +196% 

Crosslink density (mol/cm3
) 7.4 E-5 9.57 E-5 1.42 E-4 1.55 E-4 +109% 

Network chain density I I 
(mol/cm3

) 1.5 E-4 1.9 E-4 2.8 E-4 I I 

I 3.1 E-4 I +109% 
I 
! 

Network chain molecular I 
weight (glmol) 10333 8157 5535 

I 
5000 -51.6% 

Note: According to the Sec. 2.4.3, the density of the samples was found 1.55 g/cm
3

. 

A similar behaviour was observed in other swelling media. The polymer volume 

fraction in the gel, the crosslink and the network chain density increased with the 

crosslinker, but the molecular weight between the two successive crosslinks decreased. 

With previous experiments, a 84 times increase in the crosslinker concentration led to 

the 36% increase in the crosslink density, whilst a corresponding 7 times increase, in 

case of present experiments resulted in about 110% increase in the crosslink density. In 

a same way, the effect of the amount of the crosslinker was twice that of the latter 

experiments on the molecular weight between two crosslink points (compare the values 

-26% and -520/0 in Tables. 3.2 and 3.3). 
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The swelling data of the individual samples plotted against time is shown in Fig. 3.18. 

Nearly the same trend can be seen as for the Expts. 18-21. The effect of the crosslinker 

on the swelling capacity was clear through the swelling curve, but it was hardly 

possible, observing this effect on the rate of the swelling or absorption rate. This will be 

discussed under the heading "A Swelling Model" (Sec. 3.3). Considering a same acid! 

salt ratio for the samples, the crosslinker showed a remarkable effect on the equilibrium 

swelling capacity. Thus, at a certain degree of neutralisation of the acid, the crosslinker 

concentration determined the equilibrium water retaining capacity of the absorbents. 

According to the swelling values in the Table. 3.3, with each crosslinker concentration, 

swelling reduced with the salt concentration of the swelling medium. 

The plot of the swelling data against salt concentration of the swelling medium was 

similar in trend for the various crosslinker concentrations (see Fig. 3.19). A very sharp 

transition was observed at saline concentration near to the doubly distilled water. The 

swelling values converged to nearly a same point at high saline concentration. 
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Figure 3.18 Dynamic swelling curves for the samples obtained from Expts. 22-25. 
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Figure ~.19 Equilibrium swelling data against saline concentration of the swelling medium, 

for the samples obtained from Expts. 22-25. 

On the other hand, the plot of the equilibrium swellings against the crosslinker 

concentration was different in trend for the various swelling media. A sharp variation 

was observed for the lowest crosslinke: leaded material, whilst with the highest loaded 

cowlterpart, the swelling variation was very low .. ;ith an increase in the crosslinker (see 

Fig. 3.20). 

The plot of the logarithms of the equilibrium swelling against the logarithms of the 

network chain density showed again a power law relationship. The experimental 

exponent, n , was 1.50 and 0.63 respectively for the swelling in doubly distilled water 

and physiological solution (see Fig. 3.21). These exponents were lower than the 

corresponding figures for the ~upcrabsorbents crosslinked with the ethylene glycol 

dilnethacrylate. This observation reinforced that, the swelling sensitivity to the 

crosslinker in doubly distilled ,sater was higher than in the salt contained s\\c1ling 

medium. 



Another outcome was obtained by dividing the ultimate swelling values in doubly 

distilled water and physiological solution. With the lowest cross linker case (Expt. 22), 

the ratio of about 12.3 was found. Here again, an increase in the crosslinker led to a 

decrease in the corresponding ratio. So that, with the highest crosslinker case (Expt. 25), 

the corresponding ratio was 6.51. This will be discussed under the heading "Effect of 

Ionic Strength" (Sec. 3.6.3). 

Although the general behaviour of these absorbents was similar to the absorbents 

crosslinked by the EGDMA, they showed a distinct behaviour in some respects, which 

can be described according to the Figs. 3.22 and 3.23. 

With these figures, the ultimate swelling values of the absorbents obtained from the two 

series of experiments, i.e. Expts. 18-21 and 22-25 are plotted against the molar percent 

of the crosslinker to monomer. The suitably fitted mathematical relationships revealed 

the relative efficiencies of the two types of crosslinker. With both, a power law 

behaviour was observed, but with quite different exponent. As in Fig. 3.22, the 

exponent for the EGDMA case was about -0.1, whilst the corresponding figure for the 

case of :MBA was near to -0.6 according to the Fig. 3.23. This showed us, that MBA 

was much more efficient than the EGDMA to affect swelling capacities. 

It should be noted that, a different particle size distribution was obtained for the two 

series of experiments, although a well-defmed size, i.e. 50-60 mesh was considered for 

the swelling assessments. The swelling dependency on the particle size was considered 

as a separate section under the heading" Effect of the Particle Size" (Sec. 3.6.2). 

A remarkable achievement through replacing the oil-soluble crosslinker by the water

soluble one was attaining a rather, high swelling material by incorporating a minute 

amount of a water soluble crosslinker. Moreover, the time required to reach equilibrium 

swelling improved down to 13 min. which was still poor and needed to be modified. 

To cope with the latter requirement, another series of experiments (26-29) was designed 

by performing a basic change in the backbone chemical structure. 
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Figure 3.20 Equilibrium swellings in different saline, against crosslinker concentration, for the 

Expts.22-25. 

3.: 1 

iJ 2.5 ~ 

y = I.S04x - 2.B7Bsl 
I 

2 "' y = 0.6279x - 0.609 

I ~ ____ --~Q~---e 
!-a 

1.6 p-

I . 
1 ~-~--------~--. 

3.6 3.6 3.7 

-log vi 
3.8 3.9 

D Distilled water 

o Physiological 
solution 

- Linear (Distilled 
water) 

-LInear 
(PhysIologIcal 
solution) 

Figure 3.21 Power law relationship between equilibrium swelling and corresponding network 

chain densities, for the Expts. 22-25. 

94 



o EGCf#. 

-Power 
O~----r----_;-----__ --.; 

o 2 4 6 

[C]/[M] mol % I 

Figure 3.22 Equilibrium swellings of the materials obtained from the Expts. 18-21, 
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Figure 3.23 Equilibrium swellings of the materials obtained from the Expts. 22-25, against 

MBA concentration. 

3.2.1.4 Effect of the comonomer (Expts. 26-29) 

The basic starting monomers in foregoing experiments (22-25) was altered to include 

another hydrophilic but nonionic monomer, i.e. acrylamide. So that, three monomers 

participated in the polymer backbone, i.e. acrylic acid, sodium acrylate and acrylamide 
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in molar ratio of 1/3/4. A same crosslinker and its cor .::entration applied as used for the 

Expts. 22-25. 

Table. 3.4 displays some information on the poly:ner propelties. It should be added, that 

a ccuple of experiments were carried out wi~ 'j different acid/amide ratio. to fmd tl' 

optimum value of this ratio. With the high acid value, the swelling behavior of the 

product was approached to that of the materials obtained in Expts. 22-25, which 

suffered from a low rate of water absorption. On the other hand, with high amide value, 

the absorbency was remarkably ('~creased, so that the molar ratio of I: 1 (acrylic acid 

plus sodium acrylate: acrylamide) was obtained as nearly as an optimum value. 

Table. 3.4 Properties meas! LTed for the samples prepared by using additional comonomer. 

--

Expt. 
J 

26 27 28 29 Change 

Molar percent of 
---r-

cross linker to monomer 0.016 0.047 0.078 0.11 ! x 
-----

Degree of 

swelling (gig) 

in double distilled water 573 423 219 204 -64.4°/0 

in 0.009% Nael solution 32cl 261 183 142 -56.7' <> 

in 0.09% Nael solution 134 99 85 65 -51.4% 

in 0.9% Nael solution 60 50 31 23 -60.4% 
r 

, .. -. 

Polymer volume 

fraction in the gel 1.2 E-3 1.61 E-3 3.2 E-3 3.4 E-3 +183% 

Crosslink density (mollcm3
) 5.3 E-5 6.5 E-5 1.0 E-4 1.1 E-4 +107% 

-
Network chain density 

(mollcm3
) 1.0 E-4 1.3 E-4 2.0 E-4 2.18! -4 +]07% 

---

Network chain molecular weight 

(glmol) 13792 11246 7310 6706 1 -51.0% 
----. j 

Note: According to the Sec. ~ 4.3, the densIty of the samples wasfound 1.462 glcm . 

The swelling decreased with crossLnker as before. This observation was independent of 

the types of the swelling medium. 

A 7 times increase in the crosslinker led to nearly a same change as for the Expts. 22-25 

in polymer voluo1e fraction in the gel (+183% against +197%), the crosslink density 

(+107% against +109%) and the molecular weight between the two crosslinks (-51~'o 
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against -51.60/0). This showed us, that the crosslink density is a matter of the type of the 

cross linker used. 

At a same crosslinker concentration, a lower value of the equilibrium swelling was 

observed, compared to the corresponding swellings of the latter experiments (22-25). 

This was clearly due to a lower ionic nature of the polymer structure. 

The effect of the salt was a decrease in swelling with each experiment. Here again, a 

sharp transition in the plot of the swelling against salt concentration of the swelling 

medium could be seen, as shown in Fig. 3.24. The swelling variation with crosslinker 

was more pronounced in a salt free swelling medium (see Fig. 3.25). 

Although a power law relationship fitted the logarithms of the equilibrium swellings 

against the logarithms of the network chain density, the exponents were different from 

the corresponding value of the latter experiments. So that, the fust exponent, i.e. the 

value of , n , in doubly distilled water was reduced down to 1.3 7. But in physiological 

solution, the exponent was remarkably increased from a value of about 0.63 (Expts. 22-

25) to the value of 1.12 (see Fig. 3.26). This means, through the range of the crosslinker 

used, the swelling behavior of the polymers in doubly distilled water and physiological 

solution approached to each other. This could be attributed to incorporating a nonionic 

building block. Further discussions will be made under the heading "Effect of the Ionic 

Strength" (Sec. 3.6.3). 

The plots of the swelling against time, i.e. the dynamic swelling at different crosslinker 

concentration can be seen for the samples without and with acrylamide (see Fig. 3.27). 

The swelling characteristics, i. e. the capacity and the rate of absorption, of these two 

series of experiments was quite different. In the absence of acrylamide, the swelling 

capacity was relatively higher than of their counterparts contain acrylamide. But, the 

rate of absorption for the latter was much faster than of the fonner. In fact, the 

superabsorbents modified with the acrylamide, could absorb water (up to their 

equilibrium capacities) in a fraction of a minute. For instance, the sample from the Expt. 

27, absorbed doubly distilled water more than 420 times of its own weight, just in a 

period of about 30 sec. 
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Figure 3.24 Equilibrium swellings against saline concentration of the swelling medium. for 

the materials obtained from Expts. 26-29. 
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Up to this point, we examined the effect of the different crosslinker and their 

concentrations, as well as of the comonomer, on the swelling properties of a specific 

class of superabsorbent polymers. Moreover, we were successful to produce absorbents 

of reasonable amount of swelling characteristics. 

All the previous experiments were carried out under the inverse suspension conditions, 

but, it was interesting to know, what is happening to the polymer properties, when the 

polymerisation is carried out under other circumstances. So, our attention turned to the 

development of a solution process. 

3.2.2 Solution polymerisation 

A distinct difference between solution and inverse suspension polymerisation, seemed 

to be the nature of the polymerising system, i.e. being homogenous or heterogeneous. In 

addition to a couple of remarkable advantages of the inverse suspension technique, there 

were some disadvantages, when we were dealing with this system. These include the 

following: 

- The need for the extra materials and equipment, e.g. for the solvent and its recovery. 

-The need for surfactant or co-surfactant, which are expensive ingredients. 

-The fire danger of using hydrocarbons as a continuous phase. 

- The need for an efficient vapor-condensing system, for the material escaping during 

heating and reaction. 

- Need for a continuous agitation to keep the dispersed phase stable. 

- Need for a controlled addition of the dispersed phase to the continuous matrix. 

These all complicate the process and increase the price of the end-product. On the other 

hand, the polymerisation of acrylic acid or sodium acrylate with a crosslinker in an 

aqueous solution would seem to be a straightforward process. The monomers and 

crosslinkers are dissolved in water at a desired concentration, usually from about 10 

wt.% to 70 wt.%, since the polymerisation of undiluted acrylic acid is extremely 

dangerous, because of the heat of polymerisation and rapid polymerisation kinetics. The 

monomer solution is normally deoxygenated by bubbling an inert gas; then a desired 

free radical initiator is added and the temperature is brought to an appropriate point to 

start the polymerisation. Using this technique in industrial usage is also potentially 

complicated by a variety of factors 27. This is the subject of the following sections. 
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In order to explore the effect of the c'1ange in pol) TI1erisation system, on thl? swellinf: 

characteristics, we devised a solution process after performing a numerous trio s to run 

it successfully. The first effort was, runnin~ a same experiment as for the Expts. ~6-=~9. 

but under the conditions of solution polymerisation. For this purpose, a same range of 

water soluble crosslinkd, MBA, was used. 

3.2.2.1 Effect of the water soluble crosslinker concentration (Expts. 30-33) 

According to the experimental section (see Expt. 30 as a base experiment), the reaction 

was deliberately stopped at gel point. This Jv.>riod was nearly equal for the individual 

experinlents 30-33. So that, we were not able to distinguish the gel times, if they were 

different. All the parameters were considered constant for these experiments. 

Data of swelling and other polymer properti..:s, quoted in Table. 3.5. The qualitative 

effect of the amount of crosslinker was as before on the degree of swelling, t'le polymer 

volume fraction in the gel, the crosslink density and the molecular weight between two 

successive crosslink.s. Moreover, at a same crosslinker concentration, nearly a same 

density of crosslinks was obtained as obtained in case of inverse suspenSIOn 

counterparts (compare the corresponding values in Tables. 3.4 and 3.5). 

Table. 3.5 Properties measured for the samples produced by a solution polymerisation. 

-
Expt. 30 31 32 33 Change 

Molar percent of 

Cl'osslinker to monomer 0.0078 0.016 0.047 0.0""'8 10 x 

Degree of 

swelling (gig) 

in double distilled water 779 505 323 228 -70.7% 

in 0.009% NaCl solution 440 337 245 188 -57.1% 

in 0.09% NaCl solution 162 138 109 90 -44.5% 

in 0.9% NaCI solution 56 51 38 37 -34.~~'c I 

-
Polymer volume I 

I fraction in the gel 8.9 E-4 1.37 E-3 2.0 E-3 2.96 E-3 +232% 

Crosslink density (mollcm3
) 4.4 E-5 5.8 E-5 7.57 E-5 9.9 E-5 +125% 

- ----
Network chain density , 

i 

(mollcm3
) 

I 
1.1 E-4 1.5 E-4 1.98 E-4 

I 
+ 125°/0 i 8.8 E-5 

73831-55.0% I Network chain molecular 

weight (glmol) 16613 13290 9746 

I 3 
Note: According to the Sec. 2.4.3, the densIty of the samples was found 1.462 g l m . 

101 



The equilibrium swelling data (Table 3.5) against salt concentration of the swelling 

medium clearly displayed a phenomenon of a typical phase transition from sol to gel. It 

means, the swelling capacity was dramatically changed with the composition of the 

swelling medium. In other words, there is a critical amount of salt, which is required to 

force the transition. 

As before, the water absorbency increased with time generally in exponential form to 

equilibrium (see Fig. 3.28). In this figure, the dynamic swellings of the two different 

series of samples were compared at a same crosslinker concentration. The absorption 

capacities of the solution samples were very close to that of their inverse suspension 

counterparts. But, the rate of absorption for the latter was higher than of the former. In 

other words, suspension samples could reach their equilibrium in water, at a fraction of 

a minute, whilst the time taken by the solution samples was considerably longer (say, 

minimum 10 min.). 
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Figure 3.28 Dynamic swelling curves of the solution polymerised samples (Expts. 30-33), 

against of their inverse suspension counterparts (Expts. 26-29). a) 0.016, b) 0.047, c) 0.078 

molar percent of crosslinker to monomer 

The advantage taken here was obtaining a reasonable swelling characteristics and a very 

short period of polymerisation, of course, the polymerisation system was also quite 

simple (using no extra materials and equipment). 
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Gererally speaking, according to our findings from the experiments done up to now, the 

inverse sll"pension was found a me~hod of choice, if an exact particle size distribution 

and a very fast rate of absorption is required. However, in order to produce 

superabsorbing polymers of high swelling capacity, but without stringent; equirement 

on the size of the p~l11ic1es, a much less expensive, faster manufacturing technique is 

suitably applicable. Examination of some commercial samples, which are introduced 

later show a behaviour of the materials obtained by a solution polymerisation. 

Based on our outcomes, we decided to find a systematic way, i.e. modeling, to predict 

and justify the swelling properties of our absorbents. 

3.3 A swelling model 

3.3.1 Introduction 

The swelling behaviour of superabsorbent polymers, which can swell up to hundreds of 

times their own weight in an aqueous media 28, is characterized mainly by the amount of 

water they absorb and the rate of absorption 29-32. Both are important in practice and 

most applications, such as diapers, require them to be optimized 33. Ibe reason for 

optimization is, these two parameters so far showed an opposite relationship with 

increase in the crosslink density. In other words, the swelling decreased with crosslinker 

at the expense of obtaining a faster rate to read: equilibrium swelling ( this was 

obvious, by looking at Teq values at each crosslinker concentration). 

Although the swelling parameters are dependent on thennodynamic and kinetic factors, 

we and others 34-35 have found that, among the factors, the crosslink density was 

particularly influential. 

The superabsorbents have been con1ll1ercialized for some time, but there would appear 

to be a considerable scope for gaining more insight than has been published so far, into 

relationships between swelling characteristics and molecular structure. Thus, we 

reviewed our exploratory investigations of the influence of some critical variables 

(mainly of crosslinker) on the swelling characteristics. 
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The water retaining capacity and the rate of absorption of our superabsorbents was 

changed with, the amount and nature of crosslinker, e.g. water soluble or oil soluble. the 

monomer composition, e.g. the ratio of acrylic acid! sodium acrylate/ acrylamide and 

the type of polymerisation, e.g. inverse suspension or solution. 

Based on above fmdings, we devised a model to show the swelling phenomenon, to 

compare and justify swelling characteristics and fmally, to use it for possibly producing 

higher qualified absorbents. Before going into this subject, we shortly review the 

foregoing results to highlight the effect of the crosslinker. 

3.3.2 Swelling dependency on the crosslinkers 

The features of the samples have been gathered in Table. 3.6. For convenience, another 

nomenclature was used as follows: 

Table. 3.6 Feature of inverse suspension and solution methods as well as parameters fitted to 

experimental swelling data. 

Time to I Steady 

Expt. Process X* M** CIM Initial Cons. State alE To Sol*** Water 

Type Type Present Mol% Slope Swelling Swelling gig sec cont. cont. 

glmin. min. gig % 

S1.1I19 AAc 0.238 89.7 38. 7 756 760 438
1-

6.25 

S1.2120 I.S O.S ,NaA 2.30 99.0 28.1 617 620 318 : 1.93 5.28 

S1.3121 (1/3) 4.58 86.0 23.8 487 490 270 1.83 5.32 

S2.01@ 0.0 - - - - - 2.08 -

S2.1123 I.S W.S AAc 0.047 123 16.9 517 520 192 1.05 5.17 

S2.2124 ,NaA 0.078 82.5 15.4 288 290 174 0.96 4.81 

S2.3125 (1/3) 0.11 I 86.0 13.2 254 255 150 0.90 4.65 

S3.01@ AAc 0.0 - - - - 2.65 --

S3.1127 I.S W.S ,NaA 0.047 1178 1.6 423 425 18 1.62 8.6 

S3.2128 ,AAm 0.078 825 1.8 219 220 21 0.87 6.7 

S3.3129 (1/3/4) 0.11 785 1.7 204 205 19.8 0.79 7.7 

BI.OI@ 0.0 - - - - - 4.-+-+ 6.11 

BI.1I30 AAc 0.0078 162 21.2 779 783 258 3.70 6,41 

BI.213I S W.S ,NaA 0.016 144 15.9 505 508 180 - 6.42 

BI.3132 ,AAm 0.047 123 12.2 323 325 138 2.68 6.8 

BI.4133 (1/3/4) 0.078 95 10.6 228 230 120 2.65 6.34 

@ The same formulation without usmg crosslmker. 
* Cross linker ** Monomer(s) *** As UVabsorbance in arbitrarily unit 
Abbreviations: 1.S (Inverse suspension). S (Solution). o.S (Oil- Soluble). WS (Water- Soluble). 
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Sf: for the materials obtained by inverse suspension, crosslinked by EGDAfA. 

S2: for the materia 1s obtained by inverse suspensim, crosslinked by .\lBA. 

S3: for the materials contain acrylamide, obtained by inverse suspension, crosslinked by 

MBA. 

Bf: for the materials of same formulations as in S3, obtained by solution 

polymerisation. 

In this Table., the degree of swelling ranged from about 200 to 800glg, whereas, the 

time to reach a steady state varied more widely from about 1.6-40 min. and the initial 

~ate of swelling ranged from about 90-1200glmin. The highest degrees of swelling were 

obtained for inverse suspension polymerisation with an oil soluble crosslinker at its 

lowest concentration and for solution polymerisation at the lowest concentration of 

crosslinker. 

3.3.3 Comparing polymers in terms of tbeir swelling characteristics 

The first two sets of polymerisations (see Table. 3.6), S 1 and S2, differed only in the 

r:lture of the crosslinker. Ethylene glycol dimethacrylate and N, N'- methylene 

bisacrylamide were used as oil soluble and water soluble crosslinkers respectively. A 

much higher concentration of the oil soluble crosslinker was required to fonn a gel and 

prevent the polymer from dissolving, presumably because it partitioned primarily into 

the oil phase. Comparing sample S 1.3 and S2.1 indicates that about 100 times as much 

oil soluble crosslinker was required to give a steady state swelling of 500 gig. Also, 

increasing the concentration of oil soluble crosslinker by a factor of 10 decreased the 

steady state swelling to 65 % of its previous value, whereas increasing tl- e concentration 

of \vater soluble crosslinker by a factor of only 2.3, in the S2 set of polymerisations, cut 

the swelling by half. 

The S: and S3 polymerisations differ only in that acrylamide was present in S3 and not 

in S2. Although the steady state swelling was somewhat higher for S2. there was a 

nluch more striking difference of an order of magnitude, in the initial rate of increase of 

swelling and in the time taken to reach a steady state, i. e. acrylamide speeded up 

swelling by this extent. The S3 and B 1 polymerisations both cc'ntained acrylamide but 

differed in the type of process. This affected the rate of swelling much more than the 
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fmal degree of swelling. Polymer made by the inverse suspension process swelled faster 

than obtained from the solution process by a factor of about 8. 

3.3.4 Mathematical relationships between swelling and crosslinker 

concentration 

F or each set of polymerisations, the steady state swelling decreased as the ratio of 

cross linker to monomer was increased. The relationship was explored further by testing 

different mathematical functions. For this purpose, the extent of swelling was assumed 

to be zero when only crosslinker was present and not monomer. This was done to obtain 

a more reliable fit, by adding another point. It is evident from the data for S 1 

polymerisations in Table. 3.6, that any relationship between crosslinker concentration 

and swelling was quite indirect. The best fit (Equation. 3.1) was obtained with an 

exponent of 0.1 (see Fig. 3.29). 

q = 616 I{[C}I[M}J 0.1 gig (3.1) 

For the S2 and S3 inverse suspension and B1 solution polymerisations, with a water 

soluble crosslinker, the following relationship was obtained in which the power law 

exponent was found about 0.6 (Equation. 3.2): 

q = A I{[C}I[M}J 0.6glg (3.2) 

where A = 64 gig for S2, 49 gig for S3 and 41g1g for Bl. The relationships plotted in 

Fig. 3.30 for the two first and in Fig. 3.31 for the last one. 

The fmding that, the steady state swelling was inversely proportional to about 0.6 power 

exponent of the molar ratio of crosslinker to monomer for S2, S3 and B 1 

polymerisations is quite close to the 0.6 relationship derived thennodynamically 36 • The 

relationship between steady state swelling and crosslinker to monomer ratio was 

different for inverse suspension polymerisation in the presence of an oil-soluble 

crosslinker. When the crosslinker was oil soluble, swelling became less dependent on 

the amount of cross linker than for the water-soluble counterpart, presumably as a result 

of most of the cross linker existing in the oil phase. 
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Figure 3.29 Curves fitted the equilibrium swellings against crosslinker concentration, for S 1 

series of experiments. 
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Figure 3.31 Curves fitted the equilibrium swellings against crosslinker concentration, for B 1 

')eries of experiments. 

3.:3.5 Viscoelastic models 

The rate of change of swelling with time falls off rapidly (see Figs. 3.14, 3.l8, 3.27, 

3.28), but sinlple power law expressions did not fit the experimental data satisfactorily. 

A sharper transition from the high initial rate to the slow rate towards the end of the 

swelling process needed to be explained. 

In the polymer field the spring and dashpot model is best known for its use in modeling 

creep and relaxation in viscoelastic materials. The spring and dashpot elements 

respectively provide the inlillediate elastic and delayed viscous strain responses to an 

externally applied stress. Any number of arrangements of these elements can be 

devised to simulate a particular kind of tinle dependence, however complex. In 

Inolecular terms the elastic responses are the fast, reversible changes in bond length. 

shape and orientation which occur when stress is applied to a polymer chain. The 

viscous responses are the slower, irreversible, energy dissipating processes which occur 

as a result of the I110lecular movements. Elastomers show particularly large effects. 
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3.3.5.1 Vc :gt mcdel 

One of the simplest arrangements of these elements, a spring and a dashpot in pai ·~dlel. 

is known as the Voig: model 37-38 (see Fig. 3.32). 

Spring 
Element 

Stress 

Stress 

Oashpot 
Element 

Figure 3.32 Schematic diagram showing a Voigt model. 

When a stress CYo. is applied at time to, the strain response c , of the model with 

Young's modulus E, is given at time t, by an expression of the form (Equation. 3.3): 

crt) = CYolE [1 - exp{(to-t) ITO}} (3.3) 

where TO is known as the retardation time and determines the influence of the dashpot. 

There are two variables, i.e. CYo IE and TO , in this equation, which determines the 

behaviour of the whole assembly to any stress applied. The quantitative effect of these 

two paranleters on the strain, which the model expe riences under the stress applied, can 

be clearly seen in F/gs. 3.33-3.34. 

In Fig. 3.33, change in CYo IE was assessed, considering a constant value for the other 

variable, TO . TIle effect was the increase in strain with increase in parameter no 1. 

Moreover, the shape of the curves was obtained quite similar. 
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Figure 3.33 Strain variation of a Voigt model against time, evaluation with change in 

parameter no 1. 
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Another assessment was made in Fig. 3.34. assummg a constant value for the 

parameter no 1. The ultin'3te strain did not ehange with increase in parameter no 2. but 

a quite different trends to ultimate strain experienced by the models, which differed only 

in their dashpot nature. The effect of dashpot progressively decreased with 3 deere:;.;,e in 

retardation time. So that, the effect was nearly nil, when the retardation time approached 

zero (assuming infmite elastic nature). This indicates, approaching to a perfect elastic 

material, which respond immediately to any stress applied. Increase in retardation time. 

led to a big del ay to reach ultimate strain. 

3.3.6 Curve fitting 

Using Equation. 3.3, a better fit was obtain2d to the e\perimental swelling data for all 

the polymerisations (see Figs. 3.35-3.38). The quantitative values of the two parameters 

in Equation. 3.3 have been found for the individual samples through curve fitting (Sec. 

2.4.5) and quoted in Table. 3.6. 
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Figure 3.35 Theoretical and experimental dynamic swelling curves for S 1 series of samples. 
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3.3.7 Swelling picture 

When water comes into contact with an absorbent, which is initially in the glassy state. 

it has to penetrate between the chair's and separate and mobilise them for swelling to 

occur. The process becomes self accelerating and a sheath of swollen polymer can be 

envisaged to form. Water then has to travel through the sheath to reach the interior of 

dry polymer (see Fig. 3.39). This description suggests the possibility of replacing the 

resistance to stretching, or modulus, in the viscoelastic model with a resistance to 

permeation and swelling for absorbents. 

3.3.8 Swelling in terms of expansion 

f or an absorbent application, there is no extelnally applied stress. Instead stress is 

exerted on the network of polymer chains in the absorbent by the interaction with water. 

The system differs fundamentally from the stretching of a dry rubber in that the volume 

increases a lot with time and the chains become separated from each other. 

Consequently the modulus in Equation. 3.3 cannot have the same significance for 

absorbents. Although Flory 36, in describing the thennodynamics of swelling~ referred to 

an inverse relationship between the equilibrium swelling of a rubber by a solvent and 

the "modulus" of the rubber, this was for a dry rubber 36 and the time dependence of 

swelling was not discussed. Also the absorbents were dried before coming into contact 

with water and were ,therefore, presumably in a glassy state. 

3.3.9 Swelling in terms of diffusion 

In general, penneation is governed by Fick's laws of diffusion and the degree of 

absorption by a material obeying these laws is proportional to the square root of time. 

This is known as Case I sorption but, in some cases the amount of absorption is 

observed to be directly proportional to time and this is knO\\TI as Case II sorption. Case 1 

occurs when the rate of advance of permeant is determined by the rate of diffusion and 

Case II occurs when the rate of advance is determined by the rate of expansion of the 

material 39. In Case II sorption the pern1eant front is much sharper than in Case I and 

high stresses are generated at the sharp boundary between the swollen and non-swollen 

material. By identifying the type of diffusion which takes place when absorbents swc ll, 
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the rate limiting factor becomes lul0\\TI a:ld th"s is \\ "at has to be tackled for absorption 

to be made faster. 

The rate of swelling for all of the ab' Jrbents can readily be obtained from Equation. 3.3 

for the Voigt model r,ld is given by the Equation. 3.4: 

dddt = (aclEr 0) exp{(t 0 - t)/r oj (3.4) 

In the early stages of swelling, when to - t « 1 0, the exponential term is close to 1 and 

so the rate changes slowly with time, i.e. it approximates to Case I1 sorption. 

For the B 1 series of polymers ( in Table. 3.6), which were prepared by the solution 

process at the lowest crosslinker ratio of O.0078g/g, the degrees of swelling calculated 

using the parameters given in Table. 3.6 for Equation. 3.4 at tilnes of 10/4 and 10/8 are 

respectively 22.2 % and 11.75 % of the steady state value. These values are much closer 

to being proportional to time} than to time1
/
2 and they demonstrate that Case II sorption 

applies over a substantial part of the swelling. The same applies to the other members of 

this series B and to the other series as well, because it is only the ratio (t 0 - t)11 0 ~ hat 

matters. At longer times the ratio increases and swelling changes more slowly \\ith 

time. For example at times of 1 0 and 21 0 the degrees of swelling for the same B 1 

polymer as before become 63.2 % and 86.5 %. These values are close to a square root 

relationship and so it follows that the overall swelling behavior changes progressively 

from Case I1 in the early stages to Case I in the second half. The same Case II sorption 

process might even persist to a late stage of swelling for the last dry material to be 

reached by the water but on too small a scale to be detected. 

It also follows that the rate of swelling is restricted in the early stages by the resistance 

of the polynler molecular structure to diffusion or expansion. Diffusion could be 

resisted by unfavorable interactions between the water and polymer chains or by close 

packing and 10\\" chain nl0bility. Expansion could be opposed by bonding between 

chains and by lack of mobility within chains. These factors may also be expected to 

influence the polynler behavior at an earlier stage when, it is dried prior to testing and 

because this comes before the swelling stage, their influence in the drying process may 

well predetermine the swelling behavior. The experimental data provide infomlation 

about the effect of changes in crosslinking, monomer composition and type of 

polymerisation process on the degree and rate of swelling. 
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3.3.10 Discussion on swelling in terms of model parameters 

The fastest rates of swelling by far occurred for the inverse suspension pol)n1erisati~ .. " 

process with acrylamide present as a monomer, i.e. in the S3 s ries. The time taken :0 

reach constant swelling (1.58 - 1.85 min.) and the initial rate of swelling (1178 - 785 

glmin) were about an order of magnitude faster than for the S2 series (l3.~4 - 16.95 

min. & 86.0 - 123 glmin) which, differed only in the absence of acrylamide. Clearly the 

presence of acrylamide (half the total molar monomer concentration) speeds up 

absorption. As may be seen in Table. 3.6, the first parameter of the Voigt model is a 

little lower for the S3 series than for S2 but, the second parameter for S3 is an order of 

magnitude lower than for S2 and so, although the effects are opposing, it is the second 

parameter which dominates and is associated with the higher rate of swelling for S3. 

For viscoelastic systems the second parameter which is also known as the retardation 

time determines the magnitude of the viscous component in the Voigt model and the 

extent to which the spring element is retarded by the dashpot. This suggests that just as 

the spring element and first parameter in the model are thOUght to represent the 

resistance to expansion of the pol)'Iner network in the absorbent, the dashpot element 

and second parameter may represent the resistance to permeation by water. If so, it 

follows, from the values of the parameters for the S2 and S3 series, that introducing 

acrylamide into an acrylic acid! sodium acrylate copolymer speeds up absorption by 

lowering resistance to permeation. The replacement of ionic monomer segments by non

ionic ones would be expected to reduce the stress responsible for the expansion of the 

polymer network by decreasing the number of ionic repulsions and accounts for the 

reduction in the first parameter since this is the ratio of stress to modulus for the 

absorbent system. Neither is measured on its own, unlike the viscoelastic system where 

the stress is applied externally and is readily measured. 

Another feature of the S3 series is that the second parameter did not become smaller 

with more crosslinking as the others did. Since a decrease in the second parameter is 

interpreted as a lowering of resistance to permeation it follows that, crosslinking 

lowered this resistance for series S 1, S2 and B 1, presumably by preventing the chains 

from packing as closely in the drying step. Crosslinking also rl:-duced the first parameter 

but this has the opposite effect of slowing the rate of absorption, presumably by 

increasing the resistance of the network to expansion. The net result of the opposing 
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effects was for 11e ini1 ial rate of absorption to become slower with more crosslinking 

for all the series. 

Comparison of the S3 and B 1 series in Table. 3.6 shows that the solution process gave 

much slower absorption than the inverse suspension process. The data shov.; that this 

was mainly associated with the second parameter being lower for S3 although the first 

parameter also contributed by being smaller at the same level of cross linker. This 

indicates that penneation is slower for products made by the solution process. If the 

polymer particles fom;ed in the inverse suspension process gave a porous structure after 

drying and the ~olution process gave a continuous mass then this would account for the 

difference. 

The longest times to rec1ch steady state swelling were taken by the S 1 series in which the 

crosslinker was oil soluble. The last member, S1.3, of this series had almost the same 

steady stat e swelling as the first member, S2.1 of the S2 series, which differed only in 

the water solubility of the crosslinker. The first parameter was a little lower for S 1.3 

indicating less resistance by the polymer network to expansion since the monomer 

composi; ;on was the same. The retardation time for S 1.3 was longer than for S2.1 

indicating lower permeability. Overall the permeability effect was more pronounced and 

made swelling slower. Although some of this effect may be attributable to a lower 

degree of crosslinking, another factor may have been the distribution of crossIinker. As 

the crossIinker became consumed during polymerisation, more could diffuse from the 

oil phase in the case of the oil soluble crosslinker but not in the case of the water 

soluble one. This could have resulted in a higher degree of crosslinking at the outside of 

polymer particles than at the centre for the oil soluble cosslinker. 

3.3.11 Increased permeability 

With cross linker: The general observation of increased rate of penneation of water 

(through decrease in parameter 10 2) with increase in crosslinker concentration can be 

described as follows. If the polYlner network acted only as a barrier against diffusing 

water molecules, the decreased mobility of water is expected for highly crosslinked 

networks. Thus, rate of water uptake should be increased by decreasing in cr. )SS link 

density 40. However, an acrylic-based superabsorbent is strongly hydrophilic polymer, 

which attracts water molecules instead of repelling them. It must generate a strong 
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thermodynamic force that makes water diffuse so as to cancel the gradient. As a result, 

it may be expected that a denser network offers a higher rate for water uptake. 

Moreover, it has been described that the swelling process of a polyacrylamide gel is in 

fact the polymer network diffusion into water rather than by that of water molecules into 

the polymer network 41. Since the local motion of a polymer network increases with 

increasing the elastic modulus of the network, the diffusion coefficient of water is 

expected to increase with increasing the crosslink density. This relationship has been 

already found for the sodium acrylate gels 42. 

With aerylamide: The increase in permeability resulting from the introduction of 

acrylamide into the polymer is attributable to higher chain mobility or more free 

volume. On completion of polymerisation, there is sufficient water present to permit a 

high level of mobility but this changes as drying progresses. So, as the water level 

drops, the interaction between chains of different structures expected to become 

important. In such circumstances, the difference in polarity between the sodium acrylate 

and acrylamide groups suggests the likelihood of segregation which would affect chain 

packing and perhaps the free volume 

The other point is the acrylamide screens the acrylate anions by which the polymer 

chain assumes more coiled conformations than extended alternative. 

3.3.12 Effect of the local water in the absorbents 

According to data quoted in the Table. 3.6, all the absorbents contain a substantial 

amount of water in their network even after drying process. This type of water can be 

called presumably bound water which can not be readily isolated from the polymer, 

because of excessive hydrogen bonding. In studying the thermal stability and 

degradation mechanism of poly (acrylic acid) and its salt, thermogravimetry analysis 

have indicated that, the initial weight loss below 100°C is due to the release of water 

absorbed by the polymer which is free water 43. But, in other work, the TGA curves of 

four different samples of polyacrylamide displayed one thing in common, i. e. the loss of 

water up to a temperature of approximately 250°C 44. Using the same technique (see 

Sec. 2.4.7), we found that this type of water can not escape from the network at 

temperatures below 200°C, of course, in a short period of time. 
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On the other hand, the transition from glassy to rubbery state in the absorbent polymer 

is characterised by a threshold concentration of water which is the minimum local 

concentration of water required for the glassy state to be transformed into rubbery state 

45. At same crosslinker concentration, S3 samples contain larger amount of bound water 

than their S2 counterparts (1.6 times), i.e. 8.605, 6.707, 7.707 against 5.169, 4.812, 

4.649 respectively. Thus below the threshold of water concentration (before immersing 

in water), it can be expected that the polymer which is originally contained higher 

amount of water assumes shorter times to reach its transition point, after immersing in 

water. 

3.3.13 Effect of the extractable fractions in the absorbents 

The semi-quantitative values of sol content of individual series of samples were also 

quoted in Table. 3.6. Generally speaking, the sol content decreases with increase in 

crosslinker amount as the swelling does. The initial rate of swelling can partly be related 

to the amount of soluble material in the network, although the rate also depends on the 

maximum capacity of absorption. This behavior can be attributed to an initially large 

chemical potential or osmotic driving force for swelling due to the presence of solute 

within the gel 46. Through the range of crosslinker concentration which was studied 

here, samples were obtained by solution polymerisation offered higher concentration of 

soluble materials. 

3.4 Effect of Temperature (Expts. 34-47) and Initiator (Expts. 48-56) 

3.4.1 Introduction 

An initiating system and temperature are integral parts of a recipe for a typical polymer 

synthesis. We theoretically know, that these both parameters can potentially affect the 

polymer properties, in terms of their influence on the polymer backbone molecular 

weight. So that, the high values for these variables, lead to lowering backbone 

molecular weight and vice versa. Superabsorbent polymers are not a linear or a 

branched chains of a hydrophilic structure. In fact, they are a complex network of 

infinite endless chains. In such circumstances, the term, polymer backbone molecular 

weight has no meaning; rather, the term, molecular weight between two successive 

crosslinks is much more meaningful. So, tracing the effect of initiator and temperature 

on polymer molecular weight does not seem to be straightforward. But, in 

119 



simulating an industrial solution process to make supei .lbsorbents, we found the)~ two 

rarameters can seriously affect the polymer properties. 

We have already found that, a polymer )btained from the Expts. 30-33 has a reasonable 

s\\ lling properties, although its kinetics of absorption is still low, compared to its 

inverse suspension counterpart. Considering a couple of advantages of the solution 

method, ,lS well as its popularity in industry, we tried to simulate such a process in our 

laboratory, taking into accollnt the effect of the heat input to the reaction mixture and 

the initiator concentration. 

In a typical industrial process, the pre-heated solutions of monomers and the solutions 

of crosslinker and initiator are prepared separately, brought together in a nozzle type of 

mixer and spread on an endless conveyor belt 47 , and allowed to react. The reaction 

mixture is not agitated in anyway and is open to the atmosphere, providing unrestricted 

access to oxygen and loss ofwatel vapor. 

In our experiments, the presence of oxygen resulted in an inhibition period, which 

lengthened the time for completing pol)'lnerisation and consequently, increased 

evaporation losses of water. The water absorbency of the reaction products was 

obtained high, under conditions which gave short reaction time. Long react;on times 

resulted in long inhibition periods, runaway polymerisation and low absorbency. These 

effects were accounted for in terms of oxygen participation in the polymerisation and 

extensive losses of water as the solvent. 

At best, we tried to use our model to justify the various swelling properties measured 

for the materials obtained at different bath temper,:tures and initiator concentration. 

Detailed description of the synthesis can be seen in Sees. 2.3.2.2 and 2.3.2.3 

respectively for the effect of temperature and initiator concentration. For each 

polymerisation reaction, the gel time was measured according to the Sec. 2.4.8. 

The percent of water renlained in undried products, at gel point, was obtained by 

difference. The swelling capacities of the samples were calculated according to the Sec. 

2.4.4, except that 0.2g of each dried product was di'-persed in 400ml of doubly distilled 

water. Finally, percent of water extractable materials within the individual products was 

measured according to the Sec. 2.4.1 0, except that O.Sg of each dried product was 

immersed in SOOml saline (1 w/w % aqueous NaCI solution). 
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3.4.2 General observations on the reaction 

Gel times ranged from 1094 s to 42 s as the bath temperature was raised from 75°C to 

180°C as shown in Table. 3.7 and from 709 s to 92 s as the initiator concentration was 

raised from 0.01 to 0.529 molar percent ratio as shown in Table. 3.8. 

In each case there was an initial period when the temperature of the reaction mixture 

rapidly rose from ambient temperature towards the bath temperature. However the 

reaction mixture only reached the bath temperature at the low end of the range. The 

highest temperature observed was 110°C. At the longer gel times ;'eaction only became 

apparent near the end of the period. For example at a bath temperature of 75°C nothing 

appeared to happen for the first 18 nlin. and then a vigorous reaction suddenly occurred 

within seconds, resulting in the stirrer slowing down and stopping as the viscosity 

increased and in foaming as the temperature rose to nearly 110°C. On cooling to room 

temperature the reaction mixture was found to have been transformed to a glassy, white 

and porous state. At high bath temperatures and short gel times the reaction was much 

less vigorous, resulting in less foanling and in the fmal product being a soft, transparent 

and rubbery material. This was the case for bath temperatures in the range 120 - 180°C. 

Table. 3.7 Absorption characteristics and extractables at the gel point for different bath 

temperatures and same initiator to monomer molar percent ratio of 0.295. 

Equilibrium 
Wt. % Equilibrium swelling of Equilibrium Wt. % Water-

Bath Gel Water in swelling of Undried swelling of Ex/rae/abies 
Expt. Temp Time Undried Undried Product Dried in Dried 

°C s Product Product without Product Product 
gig Water gig gig 

34 75 1094 1.1 267 269 331 - : 
-~ 

35 90 720 4.2 296 309 355 22 I 

36 97 500 16 270 322 319 - -l 
-- -- -

37 105 345 23.5 325 423 340 12 
-

38 112 200 34 505 765 420 - -l ---"--
39 120 128 38 615 994 588 14 

615 980 569 I 40 127 108 37 - I 

41 135 88 37 593 942 686 6.5 1 
- --< 

838 I 42 142 74 37.5 650 1041 - I 

43 150 63 37 722 1142 848 : 9.8 ---I 
- ----' 

44 157 56 37 622 985 826 - -
45 165 48 37 641 1012 877 7.2 

- -
46 172 46 35.5 655 1015 827 -

--

47 180 42 35.5 621 961 833 -
~--- ---- -
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Table. 3.8 Absorption cl~3.facteristics and extracta~Jlcs at the gel point for different ratios of 

initiator to monomer, [I]/[M]. and a bath temperature of 120 °e. 

i 

I Equilibrium 
- --

Wt.% Equilibrium swelling of Equilibrium Wt. % Warc' 
Expt. [J}/[M} Gel Water sH'elling of Undried swelling of Extra.:rables 

(moles) time in Undried Product Dried in Dried 
x 100 s Undried Product without Product Product , 

Product gig Water gig gig 
l 

: 
I 

48 0.010 709 0.12 276 275 609.2 25.13 
, 

-

49 0.021 500 11.8 390 441 561.15 14.50 
50 0.044 187 11.3 448 503 750.44 10.13 
51 0.087 203 33.3 674 1008 749.81 3.63 

I 52 0.176 122 37.2 642 1020 720.96 4.25 -- -

53 0.264 110 39.5 549 905 750.13 -.. 

~. 0.325 106 38.4 750 1215 l 808.33 6.13 . 

55 0.441 j 94 39.7 926 1533 943.01 =l~_~.38 56 0.529 92 39.9 939 1562 930.22 I 

as the temperature rose to nearly 110°C. On cooling to room temperature the reaction 

mixture was found to have been transformed to a glassy, white and porous state. At high 

bath temperatures and short gel tim ~s the reaction was much less vigorous, resulting in 

less foaming and in the fmal product being a soft, transparent and rubbery material. This 

was the case for bath temperatures in the range 120 - 180°C. 

3.4.3 Results on water remained in undried product, after gel formation 

Temperature case: Before reaction, the concentration of water in each reaction mixture 

for both series of reactions was 60 wt.%. As shown in Table. 3.7 the water contents in 

the reaction nlixtures for the series of reactions at different temperatures dropped to 34 -

38 % after reaction for bath temperatures from 112 - 180°C but dropped much more at 

lower bath temperatures and fell to just 1 % at the lowest. These contents correspond to 

losses of water ranging from 43 - 41 wt. % of the water originally present at the upper 

temperatures to 98 wt. % at the lowest temperature. 

Initiator case: A similar pattern of water loss is evident in Table. 3.8 for the series of 

reactions at different initiator concentrations. At initiator to monomer ratios from 

0.00529 to 0.00087 the water content dropped to 33 - 40 wt.% but at lower 

concentrations the water content dropped as far as 0.12 wt.%. 
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3.4.4 Results on evaporative losses of water and monomer concentration 

Separate experilnen"s wae carried out to measure rates of evaporation of water caused 

solely by the heat from the bath, i. e. in the absence of any readion. For each bath 

temperature and each initiator concentration in Tables. 3.7 and 3.8, the loss in weight 

due to evaporation was measured for the same amount of aqueous solution as used in 

the reaction mixture. These losses in weight, expressed as percentages of the original 

water present, are compared with the losses from the reaction mixtures in the 

temperature series in Table. 3.9 and with the losses from the initiator series in Table. 

3.10. 

Temperature case: In Table. 3.9, the evaporative losses frOln the aqueous solutions 

before reaction are in the range 5.4 to 9.1 wt.% of the water originally present for bath 

temperatures from 180 to 120°C. They increase to 24.1 wt.% at 105°C and reach 85.5 

wt.% at 75°C. The difference between the losses after reaction and the losses without 

reaction gives the losses due to reaction which are in the range 26 - 36 wt.% at 

temperatures of 105 - 180°C and drop sharply to 13 wt.% at 75°C. The ratio of the 

water lost before reaction to the water lost during reaction decreased rapidly as the bath 

temperature was raised from 75°C and appears to have levelled off at about 0.18 at 

higher temperatures. At 75 °c the monomer concentration just before reaction increased 

to 83 wt. % from the original value of 40 wt. ~/o because of water evaporation but at 

higher temperatures was almost unchanged. The increasing importance of the water loss 

before reaction with decreasing bath temperature is shown more strikingly in Table. 3.9 

by the change in ratio of water lost before reaction to the loss during reaction from the 

lowest value of 0.16 to the highest value of7. 

Table. 3.9 Changes in concentration resulting from evaporative losses of water at different 

bath temperatures. 

Temperature °C I 75 105 120 142 165 180 
wt. % water lost after 98 60 35 38 39 , 41 

i 
reaction 

~ wt. % water lost from aqueous 86 24 9 7 5 I 6 
solution without reaction 

wt. % water loss due to reaction 13 36 26 31 33 35 , 
I 

--
water lost before reaction! 7 0.67 0.35 0.22 0.16 0.18 
water lost during reaction 

----~ 

wI. % monomers in reaction mixture at gel point 83 47 42 42 41 41 

- ---- ~---
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Table. 3.10 Changes in concentration re<;lIlting from e\ 31,\)rative losses of water Jt differ~nt 

initiator concentrations . 
.-----~--------.---.--~--- ~----~-

[IP[M x 100, moles 0.01 0.021 I 0.04-4 0.087 0.i--6-Ir--o.-26-4---'-I-O-.3-~5 i 0~41 I 0.5~9 
~w~t~%~0~if~0-rl~~7~-a7Iw-~~u~~9~9~.8~~8~0~~~8~1~-4-4-.5~-3-8-~-34- 36 I 3~,-33~;-

lost after reaction I I -.~ I 
wt. % of original water 
lost at gel time without 

reaction 
50.7 28.8 10.8 6.4 3.3 2.6 2.7 J J J ., 

I -.-

wt. % of original water 
lost during reaction 

49.1 51.2 70.5 38.1 34.7 31.4 33.3 31.6 31.3: 

water lost 
before reaction! 

water lost 1.03 0.56 0.15 0.16 0.09 0.08 0.08 0.07 0.07 
during reaction J 

1---------l-- ~---.-+__-~'------l-----+---f----+--_+_-

wt. % monomers in 
reaction mixture 69 48 42 41 41 40 40 40 40 _! 

at gel point l~ __ ~_ __ --'--__ -'--_____ -"--_______ '--__ _ 
Initiator case: In the same \\ ay the variation of water loss with initiator concentration is 

shown in Table. 3.10. As the initiator concentration was increased from 0.01 to 0.525 

lllole % the loss in \\ ater after reaction, expressed as the proportion of the water 

originally present, dropped from 99.8 % to a steady value of about 34 % and similarly 

the aIllOunt of water lost before reaction dropped from 50.7 % to a steady value of about 

2.5 010. The difference gave the amount of water lost during the reaction and apart from a 

high value of 70.5 % this ranged from about 50 % to 32 0/0. The ratio of the water lost 

before reaction to the water lost during reaction decreased from 1.03 at the lowest 

initiator concentration to a steady value of about 0.07 at the highest concentrations. The 

monomer concentration just before reaction was a little more than the original value of 

13 mole % at higher initiator concentrations and rose to 23 mole % at th:? lowest 

concentration. 

3.4.5 Results on swelling 

Temperature case: The swelling characteristics of reactior· products for bath 

temperatures ranging from 75 to 180°C are given in Table. 3.7. Amounts of swelling 

for both undried and dried products increased with temperature but levelled off at ahout 

1400C. The amolmts of swelling by the undried products are smaller than for the dried 

products at temperatures ranging from 135 to 180°C and 75 to 97 l'( but at 

tenlperatures in the range 105 to 127°C the swelling by the undried products is similar 
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to, or even higher than the swelling by the dried product. When allowance is made for 

the water contents in the undried products then the amount of swelling per unit mass of 

neat product becomes considerably higher for the undried product than for the dried 

product over the temperature range 105 - 180°C but is still lower for the undried 

product at 75 and 90°C. 

Initiator case: Similarly the swelling characteristics of undried and dried reaction 

products for initiator: monomer ratios of 0.01: 0.529 mole % and at a bath 

temperature of 120°C are listed in Table. 3.8. The amounts of swelling for dried 

product increased with increasing initiator concentration and ranged from 561 to 930 

gig. These values are higher than for the series of runs at different temperatures. The 

Expt. 39 in Table. 3.7 can be compared with the experiment which should be some _ 

where between Expts. 53 and 54 in Table. 3.8. With nearly the same gel time and 

amount of water in undried product, the amount of swelling is higher for the latter. 

Although swelling for undried product at the highest initiator concentration is the 

same as for undried product, at the lowest concentration it is less than half. On 

allowing for the water content in the undried product as before, the highest amount of 

swelling for undried product, 1562 gig, became considerably higher than for dried 

product whereas the lowest amount of swelling was still less than half. 

3.4.6 Reaction kinetics 

The experimental observation that the gel time was inversely proportional to the square 

root of the persulphate initiator concentration (Fig. 3040) is as would be expected for a 

normal polymerisation 48 • However the polymerisation was not normal. There was no 

attempt to exclude oxygen and there was an inhibition period which became longer as 

the persulphate concentration was reduced. Precipitation of the reaction mixture in 

nonsolvent during this period showed that only small amounts of polymer were 

produced and there was no sign of an increase in viscosity. The existence of an 

inhibition period in the presence of oxygen is well established for free radical 

49 • ., I 50 S d' . d polymerisations in general and for acryhc monomers m partlcu ar . tu les carne 

out by Barnes and others 51-53 have shown that oxygen essentially forms an alternating 

copolymer with the monomer, i.e. a polyperoxide (-M-O-O-). Moreover the rate of 

addition of monomer to the peroxide radical formed by addition of oxygen to the 
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polymer chain could be as slow as one thousandth of the normal rate of pol)TI1erisation. 

As described by Flory 49 the inhibition period is brought to an end by faster than nom1al 

polymerisation as a result of the polyperoxide decomposing and yielding initiator 

radicals. 

If the polymerisations reported here proceeded in this manner then a possible reaction 

scheme can be fonnulated as follows: 

(i) K2S20 g ~ 20H* 

(ii) OH* + M ~ M* 

(iii) M* + M~ M* 

(iv) M* + O2 ~ O2* 

(v) O2* + M ~ M* 

(vi) 2PP* ~ PP 

Initiator radicals 

Monomer rauical 

Nonnal polymer radical 

Peroxy radical 

Polyperoxide radical 

Recombination of polyperoxide radicals 

The first step is as usual taken to be the decomposition of persulphate initiator (i), 

leading to the production of a pair of OH* radicals 54. Polymerisation is then initiated 

by addition of these radicals to monomer and normal propagation \\ ould consist of 

addition of further monomer units (iii). During the inhibition period oxygen adds on to 

the monomer radical forming a peroxy radical. Addition of monomer to the peroxy 

radical is nluch slower than to the nonnal polymer radical, resulting in suppression of 

the nonnal propagation reaction and fonnation instead of a polyperoxide chain 

alternating in end group between monomer and pernxy radicals. Usually termination is 

attributed to combination or disproportionation of the polymer radicals. In this case the 

reaction is complicated by the two end groups for the polyper :xide, PP*, but would 

still be bimolecular. 

If, as usual, the rate of initiation is assumed to be the same as the rate of tennination for 

steady state conditions then the rate of production of polyperoxide in terms of number 

of moles of mononler segments is given by an expression with a square root dependence 

on the concentration of initiator 55 (see Equation. 3.5) 

In this expression the subscripts of the rate constants, k , correspond to reactions in the 

above scheme and, e , is the efficiency of conversion of persulphate into active radicals. 
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The addition of monomer to the peroxy radical is taken to be the rate controlling step in 

the propagation reaction. 

According to this reaction scheme the pol) peroxide would accumulate at a rate 

inversely proportional to the square root of the persulphate concentration. The degree of 

polymerisation is reported by Flory 49 to be low, in the range 10 - 40. Nevertheless each 

peroxide link might be a potential source of free radicals for initiating polymerisation. If 

so then the concentration of initiating radicals would increase with time, leading to 

more polyperoxide and to a self accelerating process. At some point the concentration of 

initiating radicals might become high enough to enable significant amounts of nonnal 

polymerisation to occur, resulting in a rapid increase in viscosity, slowing of oxygen 

diffusion and rise in temperature. 
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Figure 3.40 : Exponential relationship between gel time and initiator concentration. 

Fig. 3.41 shows an Arrhenius plot of gel time against bath temperature. This would not 

be expected to fit the data accurately because the reaction temperature was not 

necessarily the same as the bdth ten1perature but tlle data give a fair approximation to 

the following relationship (see Equation. 3.6): 

Ln R p = -8.2482 + 5280/ T (3.6) 
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and reducing the temperatures for runs at the upper end ;.: the range would improye the 

linearity of the plot. 
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Figure 3.41: Logarithmic relationship between gel time and absolute temperatur~. 

3.4.7 Discussions on the effects of chaoges in water content befv.l e and after 

reaction 

A complicating factor in the polymerisation process was the loss of water by 

evaporation. It is known that when the concentration of acrylic monomers exceeds a 

certain level 56 that runaway polymerisation occurs. However this has presumabl: been 

observed for normal polymerisation and is attributable to reduced heat transfer. A 

mechanism would still be required to account for oxygen inhibition being overwhelmed 

by normal polymerisation, despite free access to oxygen. Although the possibility 

cannot be excluded that the inhibition period ended as a result of water loss, 

polYr~roxide is known to form w1der the conditions of polymerisation used here and it 

seems more likely to provide an c :~planation for the observed increase in reaction yigour 

with decreasing initiator concentration and decreasing temperature as a result of the 

accumulation of peroxide. 
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For both the temperature and initiator series of runs the water contents in the rt~a.::tion 

products at the lllngest reaction times were so low « 1 0 wt.%) that, they becam~ glassy. 

This suggests the possibility that polymerisation was brought to a stop prematurely by 

lack of monomer mobilit) whereas polymerisations which lost less w8ter stayed in a 

rubbery state and were able to continue polymerising to a higher degree of conversion, 

resulting in higher degrees of swelling. If so then some correlation might be expected 

between the water contents of the products and their degrees of swelling. 

Temperature case: For the series of runs in which the temperature was varied the \\ater 

contents of the reaction product were nearly constant 'over the range 180 - 120°C and 

the degrees of swelling for the W1dried products were nearly constant too, apart from a 

high value at 150°C. Although the degrees of swelling for dried products were also 

nearly constant over much of the range for dried products, they became smaller at 

temperatures below 142 °C. Most of the data for the temperature series therefore appear 

to be consistent with the degree of conversion of monomer to polymer depending on the 

water content in the reaction product. 

The estimates of evaporative losses in Table. 3.9 show that the amount of water in the 

reaction mixture at the gel point for bath temperatures of 120°C or more was only a 

little lower than it was before immersion in the bath because the reaction time was 

short. However as the bath temperature was reduced below 120°C the reaction time 

became 101 ger and at 75°C the evaporative losses became so large that only 14 wt.% of 

the water originally present remained at the onset of rapid polymerisation. This can be 

expected to have affected the polymerisation considerably. It is reported 56 that acrylic 

acid undergoes runaway polymerisation when the monomer concentration is about 0.3-

0.4 mol fraction. As shown in Table. 3.9, the monomer concentration at the gel point is 

estimated to have been close to 40 wt. % at bath temperatures of 120°C or more but to 

have exceeded this at lower temperatures, reaching 86 \\1.0/0 at 75 °e. Runaway 

polymerisations could therefore be expected at bath temperatures below 120°C and this 

seems to be consistent with experimental observations of smooth polymerisation at bath 

telnperatures above 120°C and noise-emitting polymerisation at lower temperatures. 

The low level of water remaining at the onset of rapid polymerisation when the bath 

temperature was 75°C also suggests that conversion of monomer to polymer might be 

restricted by lack of water, as suggested by the lower degree of absorption than for 

higher bath temperatures. 
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Initiator case: For the series in which the initiator concentration was yaried the water 

content in the reaction product was nearly constant over the initiator: monomer ratios in 

the range 0.00529 to 0.00176 but the degree of swelling for both :.mdried and dried 

products became smaller. Evidently the degree of s\\elling was affected by othe; factors. 

If the degree of swelling depended solely on the degree of conversion of mono 'l~r to 

polymer then conversion at the lowest initiator concentration may have been less than 

one third of conversion at the highest concentration. ,\lthough the fifty-fold difference 

in initiator concentration is more than large enough to influence conversion to this 

extent, other factors may have been influential as well. 

Conversion in the fmal prodt ,;1 depended not only on when the mixture was removed 

from the bath but also on how nluch further conversion progressed as the mixture 

cooled. For products in a rubbery state, conversion may have increased considerably. 

Comparison of the highest degrees of swelling (926, 939 gig) with those obtained 

previously for polymerisations where the degree of convc rsion was known to be nearly 

cOlnplete 31 indicates that conversion must have been high for Expts. 55 and 56 at the 

highest initiator concentrations. Given that the reaction mixture temperatures at the gel 

point did not exceed 110°C and assuming that reaction stopped when the temperature 

dropped to a level at which initiator decomposition became too low to maintain 

propagation then it follows that the degree of conversion beyond the gel point depended 

on the rate of polymerisation at the gel point. For nms at the upper end of the initiator 

concentration range this additional conversion will have become smaller with 

decreasing concentration. For runs at the lower end of the range there was an increase in 

the rate of reaction at the gel point which has been attributed to the formation of 

polyperoxide but this was accompanied by loss of water. The resulting transformation 

from a rubbery gel to a rigid glass ac;~ounts for the failure of the acceleration in reaction 

to yield a high conversion. 

3.4.8 Discussions on the effect of drying on swelling 

Temperature case: Another feature of the results for the temperature series is the 

difference in the effect of drying the product on swelling at the two ends of the 

temperature range. Instead of the swelling of dried product being twice that for neat, 

undried product at the longest gel time it only increased by 23 010 and instead of swelling 
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increasing by 67 % at the longest gel time it only increased by 34 ~o. Although the 

highest bath temperature (180 °C) was well above the bath temperatnre in the initiator 

series (120°C) there was much less difference in the reaction temperatures and the 

initiator ratio (0.00295) was well below the highest ratio in the initiator series. Under 

these conditions the rate of polymerisation at the gel point would have been slower and 

so less conversion of monomer to polymer could be expected in the fmal product. This 

deduction is consistent with the observed lower degrees of swelling for the temperature 

senes. 

Initiator case: Similar effects occurred in the initiator senes but more markedly. 

Whereas swelling was more than doubled at the low end it was unchanged at the high 

end. Since the drying procedure ill volved heating the sample at 60°C for 24 h the 

increase in swelling could be accounted for by resumption of polymerisation and 

increased conversion. This explanation is consistent with the substantial increases in 

swelling being restricted to the three products with low enough water contents to be 

glassy. At the upper end of the initiator concentration range the swelling of dried 

product might have been expected to exceed the value for undried product because of 

the higher active content in the dried product whereas the two values are the same and 

the swelling calculated for the active part of the undried product is higher by two thirds 

than for the dried product. It would therefore appear that drying reduced swelling by 

active product at high initiator concentrations, presumably by causing crosslinking. 

Although the swelling (549 gig) for undried product of Expt. 53 was lower than 

expected from the data for neighbouring runs, the swelling for dried product (750 gig) 

was in line with its neighbours, suggesting that the former value was in error. 

Temperature case against initiator case: At the lowest bath temperature (75°C) the 

degree of swelling by the dried product (267 gig) was close to that (276 gig) for the 

lowest initiator concentration, suggesting that the degree of conversion of monomer to 

polymer was similar. This is supported by the sinlilar amounts of extractables in Table. 

3.7 for Expt. 35 (22 wt.%) and in Table. 3.8 for Expt. 48 (25 wt.%). 

Just as the evaporative losses at the onset of fast polymerisation for the temperature 

series were low for high bath temperatures, so were they also low for the higher initiator 

concentrations which gave short reaction times. At initiator concentrations from 0.529 

to 0.044 mole % of the reaction Inixture the evaporative losses were low enough « 11 
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wt.%) tc expect little influence on the reaction at the gel point but at 10\\"\.'[ 

concentrations the losses became significant although they did not reach as Iowa le\e: 

as for the temperature series because the reaction time was not as long. Consequently 

the slnallest proportion of water remaining at the onset of rapid pol)merisation (49 

wt.%) was substantially higher than for the temperature series (14 wt.%). Nevertheless, 

nearly all of the remaining water was lost during polymerisation. As for the temperature 

series the monomer concentration at the onset of rapid polymerisation was close to 40 

wt % for most of the reactions but was higher than this for the two longest gel times. 

Again these were the reactions which showed characteristics of runaway 

polynlerisations and became glassy. 

3.4.9_ Appl_ication of Voigt model to rates of swelling 

Rates of swelling for the absorbents in the temperature and initiator series were found to 

fit the same Voigt expression (Figs. 3.42 and 3.43), we found previously (see Sec. 

3.3.5.1, Equation. 3.3). This expression related the degree of swelling, B, to the time 

taken, t , using two parameters, one representing the resistance of the absorbent to 

expansion, alE, and the other representing the resistance to permeation, f o . 

Values for these parameters are given in Table. 3.11 for the dried products. The effect of 

increasing the bath temperature and the initiator concentration was to increase both 

parameters, indicating that both the resistance to expansion and the resistance to 

permeation were becoming greater. These trends are consistent with increasing 

conversion of monomer to polymer since monomer would rapidly diffuse from the 

absorbent, speeding up absorption and would contribute little to resistance to expansion. 

More directly the data in Tables. 3.7 and 3.8 for extract abIes from the products provide 

evidence for significantly lower conversion of monomer to polymer at low bath 

telnperatures and low initiator concentrations. 

Table. 3.11 a ~1 ,)del parameters for temperature variable system. 

Expt. 35 37 39 41 -13 45 47 
Temperature 0 C 90 105 120 135 150 165 180 

alE gig 355 351 578 710 850 900 870 
To sec 159 203 269 305 410 415 405 
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Tab/e. 3.11 b Model parameters for initiator variable system. 

Expt. 52 53 54 55 56 
fl//fMl mo/% 0.176 0.264 0.325 0.441 0.529 
u,/E $!/g 730 730 810 960 950 
To sec 258 258 250 350 340 

1100 J 
1000 . 

900 ~ 
I :..:105 - 800 ~ 

~ 700 J <> 120 en -c:n 600 j (> A135 
JE 600 +150 

1 400 . 0165 
CI) I X 300 -.! 

I 0180 
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0 

0 1000 2000 3000 4000 

Time (sec)1 

Figure 3.42: Experimental and modeled dynamic swelling figures for the materials obtained at 

different temperatures ( °C). 
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Figure 3.43: Experimental and modeled dynamic swelling figures for the materials obtained at 

different initiator loadings. 
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3.5 Monitoring the gel point through DSC studies (Expts. 57-66 and 
Expts.67-72) 

3.5.1 Introduction 

With previous experiments, i.e. a simulation of an industrial solution process to make 

superabsorbents, the effect of the bath temperature and initiator concentration were 

assessed in the presence of oxygen. We observed an inhibition period, because of 

oxygen participation in the polymerisation reaction, and extensive losses of water. 

which seriously affected the fmal water-absorbency of our products. To obtain more 

insight into the events at the point of gel formation, we devised a few microsyntheses by 

the DSC. 

Any exothermic or endothermic phenomenon could be monitored by this instrument. 

F or instance, a typical polymerisation reaction and gel formation are familiar processes, 

which involve a defmite amount of heat, thus, they can be detected by such a reliable 

instrument. 

3.5.2 DSC results (see Sec. 2.3.2.4 for the preparative procedure) 

Initiator case: Four regions were recorded on the thermo grams (see Fig. 3.44). The first 

one relates to the heat transfer into the contents of the DSC pan to reach them to their 

set temperatures. This region which was observed within the time range of 0-2 min. can 

be seen as an endothermic peak and was same for all the reaction mixtures until they 

reached their set temperature. The first region was followed by a long and nearly 

straight region (slope 0.35 mcal! sec 2 ). The time range for this process was 10-12 min. 

(see Table. 3.12). A little bit difference in shape of the thermo grams was observed 

through the whole range of initiator studied. One thing was common for all the 

thermograms. This was a little variation in the slope of the curves through the whole 

time interval of this region. Rate of heat transfer was ignorably variable (not appeared as 

a straight line or constant) in this time region for each individuals. At low initiator 

concentration in the range of 0.0 139-0.0763 mol% to monomer, a very weak exothermic 

peak was observed within the midway of the second region. But, at high initiator 

concentration in the range of 0.0909-0.2101 mol% to monomer, the general 

endothermic peak was immediately followed by this weak exothermic peak within the 

time interval of 2-3 min. This peak appeared in its most intense form for the highest 

initiator concentration. The second region was completed after 12-14 min. Through the 
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time range of 12-15 min., this relatively straight region was followed by a sudden and a 

very sharp exothermic peak. This was the third region which was observed on the 

thermogram. But this peak was appeared at different times and shapes. With the 

initiator range of 0.0139-0.0285 mol% to monomer, this peak was appeared at longer 

times but stronger. Time and intensity of the peak was decreased through the rest of the 

initiator range. So that, with the highest initiator concentration, no peak was observed in 

this region. On the other hand, this exothermic peak was accompanied with 

temperature rise within the reaction mixture. Rise in temperature was higher for the 

lower initiator concentrations in the range of 0.0139-0.0338 mol% to monomer and was 

nearly low and constant for the initiator range of 0.0640-0.2101 mol% to monomer. 

Through the time range of about 16-20 min. the fourth region was observed as a plateau 

for all the samples. 

Temperature case: Again four regions can be distinguished on DSC thermogram (see 

Fig. 3.45). Within the fust region, samples reached their set temperatures at slightly 

different times. This can be seen as different endothermic peak on the thermogram. 

Shortest (1.75 min.) and longest (2.375 min.) times were observed for low and high 

temperature respectively. After reaching the set temperature, the thermogram was 

changed in shape and smoother region was observed. This region appeared in different 

times and slopes. The longest time (20 min.) and lowest slope (0.15 mcaV sec 2 ) was 

observed for the lowest temperature and vice versa (6.12 min. for 1.66 mcaV sec 2). The 

shape of the thermogram was not exactly as a straight line, i. e. the rate of heat transfer 

was not constant through this region. Small rise in slope of the line which resembles a 

very weak exothermic peak can be seen for all the individuals but in different nature. 

This peak shifted to the shorter times with increase in temperature. So that, it was 

appeared as a shoulder for the high temperature extreme. At the end of this period, an 

exothermic peak suddenly appeared whose position was dependent on the end of the 

second period for each individual. The highest exotherm was observed for the low 

temperature system (see Table. 3.13). Through the temperature range of 85-95 °C, 

intensity of this exothermic peak was much weaker but nearly similar. The exotherm 

peak was followed by a plateau region for all the individuals. 
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Figure 3.45: DSC curves of the samples in case of temperature change. 
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Table. 3.12 DSC studies on superabsorbent microsvTIthesis m solution with 

different initiator concentration. 

Initiator Exotherm Temperature 
Expt. amount Gel time (min) 

during 
at gel point Exotherm 

(g) (m cal/mg) °c 

57 0.0043 13.66 -36.79 82.08 
58 0.0062 14.50 -25.73 81.72 
59 0.0088 14.40 -30.63 83.67 
60 0.010 12.84 -18.63 82.29 
61 0.0104 13.97 -14.30 81.74 
62 0.0197 12.32 -7.30 80.95 
63 0.0235 12.38 -6.02 80.76 
64 0.0280 2.42 -3.52 80.58 

12.01 -1.71 * 80.11 
65 0.0410 2.70 -4.32 80.68 

11.81 -1.89* 80.24 
66 0.0616 2.25 -7.94* 80.78 

1 

Table. 3.13 DSC studies on superabsorbent microsynthesis in solution at different 
temperatures. 

Gel Exotherm Temperature during 
Expt. Temperature time at gel point Exotherm 

°c (min) (mcal/mg) °c 

67 70 16.34 -6.50 70.10 
20.41 -37.24 71.14 

68 75 14.50 -19.18 77.37 
69 80 11.00 -23.78 84.22 
70 85 8.58 -8.49 86.43 
71 90 3.80 weak * 

6.96 -6.24 91.22 
72 95 3.04 very weak* 95.56 

6.12 very weak 

* Is not readily measurable, since it is immediately followed by the endothermic peak. But, 
according to the figures for temperature rise, these exotherm values are more probable. 

3.5.3 Discussion on DSC data 

The four regions have already been described in the DSC thermograms. Within the first 

region, the reaction mixture absorbed heat from the DSC chamber to reach its set 

temperature. This process appeared as an endothermic peak. The first region was 

followed by a another region, through which, the length and slope of the curve was 

varied. In this region the reaction was inhibited and temperature of the reaction mixture 

was sufficient to evaporate water from the system because the latter was open to 

atmosphere. This region was regarded as the evaporation and inhibition region. As 

already said, the rate of heat transfer was nearly constant for the initiator case. This 
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means the rate of water evaporation from the reaction mixture was same and 

independent of the initiator concentration. In other words, the amount of water 

evaporated is only dependent on the time of evaporation. So for low initiator 

concentration higher amount of water is expected to evaporate compared to the high 

initiator case. On the other hand, various rates of evaporation was observed in case of 

temperature variation. For instance, the rate of water evaporation for the temperature 95 

°C is 11.6 time faster than the corresponding value for the temperature 70°C. So, the 

rate of water evaporation is critically dependent on the set temperature. The exothennic 

peak observed after any evaporation is a typical exothermic polymerisation reaction and 

the area under the peak is indicative of the heat of the reaction. Increase in temperature 

and initiator concentration led to suppressing the exothermicity. 

3.5.4 DSC data against bench-scale data 

The existence of an inhibition period in bench-scale Experiments (Sec. 3.4) was 

consistent with the DSC data, in which nonnal polymerisation commenced after a 

defmite time. Moreover, a sudden rise in the viscosity of the reaction medium (Sec. 3.4), 

which was already ascribed to the onset of the nonnal polymerisation, was also clear 

through DSC data. 

Nevertheless, the figures for the gel time and exothenn measured through DSC studies 

can not be compared with bench-scale experiments (Sec. 3.4) in quantitative tenns, 

since the mass of the reaction for the latter case is about 1000 times bigger than the 

micro scale reactor, thus the surface: volume ratio of the two reactors are quite different. 

On the other hand, the DSC instrument was equipped with cooling system to run 

isothennal polymerisation. So that, only 0-3 °c rise in temperature was recorded due to 

the exothennic reaction. This means runaway polymerisation was inhibited in our DSC 

experiments and this is the big difference with bench-scale experiments in which 

runaway polymerisation was led to glass materials at low temperature and initiator 

concentration. 

3.6 Effect of the external parameters 

3.6.1 Introduction 

In our earlier works 30, to produce superabsorbing polymers by inverse suspenslon 

technique, a general procedure was introduced to obtain separate particles rather than 
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obtaining coagulum. The other works in this series were studying the effect of monomer 

nature 31, the effect of process of manufacturing 32 and the effect of temperature and 

initiator concentration 57 on the swelling properties of superabsorbent polymers. What 

has been studied so far was the effect of presumably internal parameters on swelling 

properties. In other words, the study was limited to the effect of those parameters or 

variables which manifest their contributions on polymer structure or simply before 

obtaining the product. In the present work, the effect of so-called external parameters 

including the shape of the product and the presence of electrolyte in swelling media 

were also studied to obtain more knowledge of variables which affect superabsorbent 

properties. 

The particles obtained from different inverse suspension and solution polymerisations 

were expected to impose certain effects on superabsorbent properties because of their 

size. This effect was studied here through measuring the swelling capacities of the 

selected particles which differed in size. Based on our observations, the finer particles 

showed higher swelling capacity and rate than of their coarser counterparts. The space 

between swollen particles and the surface area of the non-swollen particles were 

considered to be responsible for the swelling observations. 

In a parallel study, the effect on the swelling properties of the ionic strength of the 

swelling media was also considered on swelling properties. The steady state swelling of 

the samples were measured in various media and the effect of salt present was studied. 

The crosslinker concentration showed a certain effect on the swelling capacity in these 

media which, was attributed to change in a rigidity of the polymeric network. 

3.6.2 Effect of the particle size 

3.6.2. 1 Dynamic swellings 

The inverse suspension product after classifying was spherical (see Fig. 3.12). The 

particles were nonnally isolated from each other, although some ~ne particles could 

fonn agglomorate through adhering to the other coarser particles (see Fig. 3.13). 

According to the sieve analysis, different sizes but in defmite ranges were recorded for 

the particles of inverse suspension polymers. On the other hand, the solution 
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polymerisation product was irregular in shape after classifying as shown in Fig. 3..+. 

Generally speaking, surface area and volume of a typical particle determines 

respectively the rate by which mass transfer occurs and the ultimate capacity for mass 

transferred. On the other hand surface area and volume of a particle depends on its size. 

So it was expected that the particles which were different in size, impose various effects 

on mass transfer or absorption. 

The following table (Tables. 3.14 a , b) displays the water uptake capacity of the 

particles of two different sizes at different time scales in double distilled water. Particles 

with size of 250-300JlID and smaller than 250 /-lm were distinguished as coarse and 

small particles. 

Table.3.14a Dynamic swellings (in gig) of the coarse particles. 

Expt. [C]/[M] 0.5 1.0 2.0 5.0 10 Equilibrium 
(code) mol% Imn Imn Imn min min 

23 (S2.I) 0.047 231 400 514 517 
24 (S2.2) 0.078 154 240 280 288 
25 (S2.3) 0.11 151 221 247 254 
27 (S3.I) 0.047 202 427 430 454 423 
28 (S3.2) 0.078 146 207 214 I 217 219 
29 (S3.3) 0.11 148 201 202 203 204 
30 (BI.I) 0.0078 92 173 303 I 747 779 
31 (BI.2) 0.016 85 150 252 I 485 505 
32 (BI.3) 0.047 75 115 201 315 323 
33 (BI.4) 0.078 71 94 160 I 225 228 

Table314b Dynamic swellings (in gig) of the small particles . . 
Expt. [C]/[M] 0.5 1.0 2.0 5.0 10 Equilibrium 

(code) mol% Imn min min Imn Imn 

23 (S2.1) 0.047 444 530 534 531 

24 (S2.2) 0.078 290 322 323 323 

25 (S2.3) 0.11 269 281 300 283 

27 (S3.I) 0.047 512 539 521 517 531 

28 (S3.2) 0.078 341 372 353 351 359 

29 (S3.3) 0.11 296 314 301 306 306 

30 (BJ.I) 0.0078 406 433 538 
31 (BI.2) 0.016 204 348 410 

32 (BI.3) 0.047 199 226 266 

33 (BJ.4) 0.078 139 161 196 

S2 series: At each crosslinker concentration, the swelling capacity of both coarse and 

small particles increased with time until approached a plateau region. By the time. 

difference in swelling capacities of the two particles became less. After lO min .. the 
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figures for swelling capacities of coarse particles becomes similar as for equilibriwn. 

This was achieved after 5.0 min time for small particles. 

At the lowest crosslinker concentration, through the time range of 0-2.0 min, the coarse 

particles were swollen up to 44.60/0 of their fmal swelling capacities. This figure was 

83% for the small particles. For other crosslinker dosages, this figure was 53.4 and 

59.4% for coarse particles and 90 and 95% for small particles. 

Through the range of crosslinker used, equilibrium swelling capacity of small particles 

were 1.03, 1.12 and 1.11 times higher than of their coarser counterparts. 

S3 series: After 1.0 min time, the figures for swelling capacity of coarse particles 

became similar to their equilibrium values. This could be achieved after about half a 

minute for smaller particles. 

At lowest crosslinker concentration, the coarse particles were swollen up to 47.8% of 

their fmal swelling capacity after 0.5 min. This figure was 96.4% for the small particles. 

For other crosslinker dosages, this figure was 66.6% and 72.5% for coarse particles and 

94.9% and 96.7% for the small particles after 0.5 min. 

Through the range of cross linker used, equilibrium swelling capacity of small particles 

were 1.25, 1.64 and 1.5 times higher than the coarse particles. 

Generally the same behavior was observed for the B 1 series in which fmer particles 

showed more swelling capacity than their coarse counterparts through the time range of 

0-2.0 min. 

Generally speaking, according to the swelling figures at different intervals, rate of 

absorption for small particles was appreciably higher than their coarser ones. Moreover, 

the rate of absorption increased with the crosslinker concentration. The latter 

observation has been already observed and discussed under the heading "A Swelling 

Model" (see Sec. 3.3.11). On the other hand, equilibrium swelling could be reached 

earlier for the smaller particles. For the whole range of crosslinker studied, equilibrium 

swelling capacities of the smaller particles were found higher than of their coarse 

counterparts for inverse suspension products and much higher was found in case of S3 

series compared to S2 series. 

Table. 3.15 displays the figures for ultimate swelling of the foregoing samples at the 

media of different ionic strengths. 
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3.6.2.2 Equilibrium swelling 

At each crosslinker dosage, the swelling capacity decreased with the salt concentration. 

This was observed for all the samples independent of method of s\nthesis and whether , 

coarse or small in size. The swelling capacity of small particles \\'as found more than 

their coarse counterparts at different media. In other respects, the observations were 

similar for the two particle sizes. Detailed observations have been made in the next 

section under the heading" Effect of the Ionic Strength" (see Sec. 3.6.3). 

To make convenience, the quantitative figures for relative increase or decrease in final 

swelling capacities of the two particles have been gathered in Table. 3.16. With any four 

vertical ( in column) data set which differ in atTIount of crosslinker, the percent of 

increase in swelling was irregular. This indicates that increasing trend of ultimate 

swelling is indeptldent of the crosslinker concentration. So each series of data (any four 

data in column) was averaged to help to make lTIOre reliable conclusions through 

increasing the number of our observations. The average values for S2 series were 

.. + 9.80%, + 15.9%, + 15.22% and + 16.6% at their corresponding saline media. The figures 

for the S3 seri··s were +42.6%, +46.8%, +44.9%, +43.7%. The average values of each 

series at individual ionic strength were very close to each other. So the mean values of 

+ 14.37 atld +44.5 was calculated for individual series of experiments. 

So particles of different systems show a distinct behavior in terms of their swelling 

capacities. The above data shows that difference in swelling capacity between coarse 

and small particles is much more pronounced for S3 than for S2 series as already 

mentioned. 

Table. 3.15 Steady state swelling features of different particles at different swelling media. 

Size 300-250 jJJn Finer than 250 jJJn 

Swelling (gig) in water of various Swelling (g g) in water of various 
salt concentration M salt concentration M 

----

Expt. (code) [C}/[M] 0.0 0.0015 0.015 0.15 0.0 0.(1)15 0.015 0.15 
mol % 

----
22 (S2.0) 0.016 752 403 179 61 850 483 215 74 

-

23 (S2.1) 0.047 517 290 142 53 531 352 165 57 , --
24 (S2.2) 0.078 288 212 106 41 323 234 123 47 
25 (S2.3) 0.11 254 196 105 39 283 220 114 48 

26 (S3.0) 0.016 573 328 134 60 750 544 197 68 
27 (S3.1) 0.047 423 261 99 50 531 331 130 41 
28 (S3.2) 0.078 219 183 85 31 359 247 115 42 

.. -

29 (S3.3) 0.11 204 142 65 23 306 227 108 42 
------- '-----
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Table: 3.16 Percent of increase ?r de~rease ~ stead~, state swelling of different p.:rticies 
travelmg from coarse to fIne particles m swellmg media of different salt concentration ~1. 

l 
Expt. (code) {C}I{M} O.OM 0.0015 JI 0.015 M 0.15.\/ 

mol % I 
i 

22 (S2.0) 0.016 +13.03 +19.8 +20.1 +21.3 
23 (S2.1) 0.047 +2.70 +21.3 +16.2 +7.50 
24 (S2.2) 0.078 +12.1 +]0.3 +16.0 +14.6 , 

25 (S2.3) 0.11 +11.4 +12.2 +8.6 +23.0 
~ 

Avera~e +9.80 +15.9 + 15.22 +16.6 +J.I.3~ I 
-

26 (S3.0) 0.016 +30.9 +65.8 +47.0 +l3.3 
27 (S3.1) 0.047 +25.5 +26.8 +31.3 -
28 (S3.2) .. 0.078 +63.9 +34.9 +35.3 +35.4 
29 (S3.3) 0.11 +50 +59.8 +66.1 +82.6 

Averaee +42.6 +46.8 +44.9 +43.7 +44.5 I - .. 

3.6.2.3 Mean particle size and particle size distribution 

The data gathered in Table. 3.17 displays the weight fraction of individual particles 

ranging frOln 38-400 ~m for the two first series of experiments. The samples were 

classified through eight mean particle sizes and weight of each fraction was measured 

by means of an automatic screener. With the first series the mean particle size .as 

found 336 ~m, while the number 268 ~m was obtained with the second series. Nearly 

the same particle size distribution can be seen for each three individuals in ~. 2 and each 

three individual in S3 series. Although each three are different in terms of amoWlt of 

crosslinker used, the size distribution is similar which indicates particle size distribution 

is independent of crosslink density. But the two different series are quite different in 

terms of mean particle size and particle size distribution which can clearly be seen in 

Fig. 3.46. With S2, near 950/0 of the particles are in the range 250-400 ~, while for the 

S3 series, this figure is 67.2%. In other words, particle size distribution for the fonner is 

quite sharp, while the broad one is observed for the latter. The other thing is the 

presence of much finer particles in particle package of smaller than 250 ~m which can 

be seen for the S3 series. The weight % distribution of fme and coarse particles within 

each particle packages (particles bigger and smaller than 250 ~m) can be seen in Figs. 

3.47 and 3.48 respectively. The a\ erage mass fractions were considered as the 

representative for each series. According to Figs. 3.47 and 3.48, weight contribution of 

coarser particles are bigger than smaller ones in case of S2 series. With S3 serie..;. the 

contribution of smaller pa11icles exceeds the coarser ones. 
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Table. 3.17 Particl e size distribution of the two sene Jf sample (the figure ar in \\1 .°0 . 

Particle size (I'm) 
400-300 
300-250 

total 
250-180 
180-150 
150-106 
106-75 
75-53 
53-45 

45-38 
total 

Mean particle size 
(jJJn) 

Coarser than 

250 J..lTrI % 

Finer than 
250 ).un % 

~ 0 

c 
0 
;:I 
(J 
ftI ... -III 
III 
ftI 

~ 

23 (S2.1) 24 (S2.2) 25 (S2.3) 27 (S3.1) 
83 .80 81.87 85.82 50.79 
10.91 12.83 9.84 23.71 
94.71 94.7 95.66 74.5 
2.18 2.24 2.16 4.54 
1.91 2.03 1.57 13.04 
0.72 0.61 0.39 3.75 
0.18 0.20 0.00 4.15 
0.00 0.00 0.00 . 0.00 

0.09 0.20 0.19 000 
0.21 0.02 0.03 0.02 
5.29 5.30 4.37 25.5 
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95.03 (averaged) 
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Therefore, increased fmal swelling capacity of fmer particles was consistent with their 

increased weight contribution in each package. As already said, this was much more 

pronounced for S3 series in which the contribution of fmer particles were much higher. 

This observation reinforces the assumption through which increased ultimate swellina 
b 

was claimed for the fmer particles in inverse suspension polymerisations. 

3.6.2.4 An explanation for the swelling observations 

The only difference between the two series of samples was the presence of acrylamide 

in the second series which indicates that the latter comonomer contributed to obtain 

firstly, smaller mean particle size and secondly, much wider size distribution. 

As detailed in experimental section, the same stabilising system was used for the two 

series of inverse suspension experiments. The stabiliser concentration (sorbitan 

monooleate plus ethyl cellulose) at the threshold of stability for a system of acrylic acid 

and sodium acrylate mixture (S2 series) was found 0.33 w/w % based on toluene, 

otherwise coagulum occurred (see Fig. 3.5). But any change in chemical structure of the 

superabsorbent backbone alters the hydrophilic-lipophilic balance of the system which 

is typically between 9 and 10 for a number of acrylamide/sodium acrylate monomer 

mixtures 58. Thus the optimum stabilising system which has been found earlier for the 

system of acrylic acid/its sodium salt is not an optimum but, a powerful system for the 

system of acrylic acid/its sodium saltlacrylamide which manifests itself through 

reduction in particle size by about 200/0 and creating a wide particle size distribution. 

Scanning electron micrographs of the two particles of 2.5 times difference in size can 

be seen in Figs. 3.49 and 3.50. All the particles are spherical in shape and there is no 

serious difference between the two types of the particles, for example, difference in 

aggregation and so on. 

To explain the difference in swelling behaviour, two packages of swollen particles can 

be imagined which differ only in terms of the size of the swollen particles. Assuming a 

same volume for the two packages, different patterns for laying the unifonnly-sized 

swollen particles can be expected as be seen in Fig. 3.51. 
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Figure 3.49: Micrograph of an inverse su pension batch of small particles. 

Figure 3.50: Micrograpb of an inver e n batch of ar parti 1 . 



If the particles laid side by side, some spaces could be left between the swollen 

particles, whether the particles are coarse or fme. This space can be called free \'olulile 

which serves to accommodate additional water by a typical capillary action. So the 

capillaries are expected to be wide and narrow in bore for coarse and fine swollen 

particles respectively. Considering the two extremes for the size of the capillary bore, 

water drainage is presumably quite facile in case of extremely wide bore, i. e. coarser 

particles. With lowest size bores, i.e. finer particles, water is hardly drainable. If there 

are size distribution for the swollen particles, the fmer swollen particles can easily 

accommodate within the free volume of the coarser ones and increase the number of 

capillaries. Therefore, absorption capacity of superabsorbents can be increased by 

creating numerous fme capillaries. Higher absorption capacity of the finer particles (in 

case of S2 series) against their coarser counterparts can be attributed to the presence of 

narrower capillaries between the fmer swollen particles and is attributable to much more 

narrow- bore capillaries in case of S3 series of samples. 

View of the water swollen particles laid side by side. 

a) Fine particles 

b) Coarse particles 

Water -swollen particle 

Free volume or 
Capillaries 

Figure 3.51: A schematic diagram, showing capillaries between the water-swollen partic)t?s. 

3.6.2.5 Model interpretation 

The swelling data against time of any absorbent studied so far was followed a particular 

exponential relationship (see Equation. 3.3). 

In this equation, there are two parameters which are unique to any absorbent Zlnd 

identify it. Paranleter no 1 or crJE is the measure of resistance to expansion of the 

polymer network which its v:llue resembles the final swelling capacity. The parameter 
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no 2 or 'to is the retardation time which is the time required for fractional swelling to 

reach 0.632 times of its equilibrium or steady state swelling. TIlis para:neter represents 

the resistance to penneation which is a measure of penneation rate. Shortly speaking. 

the bigger the parameter no 1, the higher the swelling capacity. On the other hand. the 

smaller the parameter no 2~ the higher is the rate of absorption. The quantitative values 

of ac/E and 'to for the individual samples were tabulated in Table. 3.18. Moreover, the 

best fitted curves to experimental data can be seen in Figs. 3.52 and 3.53. 

Table. 3.18 Corresponding values of the model parameters for the fine and coarse particles in 

case of S2 and S3 series of samples. 

Particle size 250-300 j.im Finer than 250 j.im 

Model parameters 0'0 IE (gig) T (sec) 0'0 IE (gig) r (sec) 
23 (S2.1) 0.0467* 520 192 530 65 
24 (S2.2) 0.0779 290 174 325 60 

--

25 (S2.3) 0.109 255 150 285 55 

27 (S3. 1) 0.0467 425 18 530 7 
28 (S3.2) 0.0779 220 21 355 10 
29 (S3.3) 0.109 205 19.8 310 10 I 

- -

* Molar concentratlOn of cross linker 10 monomer (%). 

With each two series of experiments, the paranleter no 1 decreased with crosslinker 

whether the particles were coarse or fme. At each crosslinker concentration, the 

parameter no 1 was higher forle finer particles against of their coarser counterparts. 

Difference between the values of parameter no 1 for the two particles was more 

pronounced with S3 series. 

With S2 series, the parameter no 2 clearly decreased with crosslinker again, whatever 

was the size of the particles. The quantitative values of this parameter in case of S3 

series did not change with crosslinker for both types of particles. 

With S2 series, effect of particle size on the parameter no 1 was much lower than on the 

parallleter no 2. Particle size had more effect on the parameter no 1 with the S3 series 

conlpared to the S2 series, although the effect on the parameter no 2 was nearly the 

same, more exactly, a little bit lower than of the S2 series. This indicated that much 

more accommodation for water should be available between the swollen particles in the 

case of S3 samples, because of distinct difference in particle sizes of the two series of 

sanlples. This was consistent with creation of much more spaces between finer swollen 

particles. Therefore, any increase in parameter no I for the finer particles could be 
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ascribed to the creation of additional spaces for accommodating water. !\ 10[('0\"(,L 

decrease in parameter no 2 up to one third of the value for the coarser pal1icks \\3S 

attributable to an increase in the surface area of the finer particles. 

With our previous works in studying the variables affecting absorption properties. it was 

found that each variable had silnilar effects on the values of the two parameters. In other 

words, an increase or a decrease in parameter no 1 was accompanied respectively with 

an increase or a decrease in param~ter no 2. This means any attempt to increase swelling 

capacity of a typical superabsorbent was faced with a decrease in its rate of absorption. 

But according to the model data on particle size as another variable, it was surprisingly 

found that an increase in the swelling capacity was accompanied with an increase in the 

rate of absorption. 

600 ._--- -

500 ? goo 0 0 0 000 
<> 23 coarse 

- B¢ + 24 coarse 
C) 400 -C) ~25 coarse - X X X X X X X X X C) 

300 023 fine c: ~ ~ ~ ~ ~ ~ ~ ~ ~ 
~ X 24 fine 

Cf) 
200 

025 fine 

100 

0 

0 20 40 60 

Time (min.>1 

Figure 3.52: Modeled dynamic swelling CUf\'es for the fine and the coarse particles of the S2 

serIes. 
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3.6.3 Effect of the ionic strength 

The effect of other external paranleters, i.e. pH, composition, temperature and ionic 

strength of the swelling media on swelling properties have been extensively studied 59-

61. All these effects are associated with conformational changes of the polymeric chains. 

The simultaneous effect of the ionic strength and the crosslinking on swelling in media 

of different ionic strengths was studied here. 

3.6.3. 1 Swelling-crosslinker relationship in various swelling media 

For each sets of polymerisations the steady state swelling decreased as the ratio of 

crosslinker to monomer was increased as indicated before. Thus the relationship was 

explored further by testing different mathematical functions. Generally a po\\cr law 

behavior was obtained with different pair of constants. Table. 3.19 displays dependency 

of steady state swelling to crosslinker concentration in different swelling media. 



Table. 3.19 Power law constants for swelling dependency of different samples to (;,':,~:ink~'f 

concentration in different swelling media. 

0.015.\f U J -" .\1 

I 
0.0.1' I 00015.\/ 

Expts. kin k I --n---+--k 

81 (19-21) 619 f O.1-·=-38~._1 -0-.0-6-3 --16-9- 0.~6 I --6:---O:~4--'-
--~~f!i-~t _. --E--- .. _ ~:}~ -~{. T ~.~~ !! °O'~~ i _n ~~ 0.

24 l __I _---"-_.......:......._--'---=-:·=-~ __ L _ -_- 0.19! 

With double distilled water, i.e. salt-free water, the power law exponent (n) was found 

to be 0.1, 0.5.1 and 0.58 which indicates that swelling capacities of the materials for the 

different systems have different sensitivity to crosslinker concentration. In other words a 

minute change in crosslinker concentration for the S2 and B 1 series has a \ery big effect 

on the fmal swelling values, which is contrary to the observation for the S 1 series. 

Qualitatively this observation is also valid for the swelling in other swelling media but 

in different quantitative terms. According to the figures, the dependency of swelling to 

crosslinker concentration changes with ionic strength of the swelling media. For 

instance, with the S 1 series the value of the exponent ( or sensitivity of s\velling to 

crosslinker conc~ntration) in salt free medium reduces down to 60% of its value in 

physiological s,lution which contains 0.9 w/w % NaCl. With the two other set of 

experiments the reduction in sensitivity was found to be 580/0 and 62%) respectively 

which are very close to each other. This means that increase in ionic strength of the 

swelling medium results in decrease in dependency of swelling to crosslinker 

concentration. Moreover, with different series there is a similar point beyond which the 

swelling dependency to ionic strength of the swelling media is not appreciably changed. 

This occurs at about 0.0005M salt concentration. 

3. 6. 3~ 2 Swelling-salt relationship at different crosslinker concentration 

To make Table. 3.20, the ultimate swelling of each product was measured in a series of 

selected swelling media (presumably infinite, 0.15, 0.015 and 0.0015 \1 aqueous :-;aCl 

solutions) and related to its cOlTesponding crosslinker concentration. Moreover. the 

amount of swelling in highly concentrated saline solution (or where the salt 

concentration is infinity) was truly assumed to be zero. 



Table. 3.10 Power law constants for swelling dependency of different samples to salt 

concentration for different crosslinker concentration. 

i 
Expt. (code) [C]/[M} mol% K 

I 
n I 

19{5I.I) 0.:38 33.~ 0.398 , 
-.. -

20 (Sl.2) 2.30 31.48 0.389 
21 (SI.3) 4.58 27.77 0.383 

23 (S2.1) 0.047 27.43 0.366 
24 (S2.2) 0.078 21.67 0.354 
25 (S2.3) 0.11 21.05 0.348 

-

30 (Bl.l) 0.0078 24.48 0.445 
31 (B1.2) 0.016 23.96 0.408 
32 (B1.3) 0.047 18.29 0.402 

33 (B1.4) 0.078 19.36 0.352 

As generally be seen with each series of experiments, the value of the exponent reduced 

through the range of crosslinker studied. In simple statement, swelling capacity of the 

highly crosslinked samples show less dependency to the salt concentration of the 

swelling medium than the samples with lower crosslinker dosage. 

3.6.3.3 Expansion factor 

The effect of crosslinker concentration on swelling in different salt concentrations can 

be better seen in following table (see Table. 3.21). 

~ bl 311 D a e. . d epen ency 0 fth d' 'n! e unenslO n' f: t t I'nk ess swe mg ac or 0 cross 1 trf er concen a IOn. 

Expt. [C}I[M} mol% a* 0.OOl5 a 0.Ol5 a 0.15 

22 (S2.0) 0.016 0.53 0.24 0.08 

23 (S2.1) 0.047 0.56 0.27 0.102 

24 (S2.2) 0.078 0.74 0.37 0.14 

25 (S2.3) 0.11 0.77 0.41 0.15 

26 (S3.0) 0.016 0.57 0.23 0.1 

27 (S3.1) 0.047 0.61 0.23 0.12 --
28 (S3.2) 0.078 0.83 0.39 0.14 

29 (S3.3) 0.11 0.70 0.32 0.11 

30 (Bl.1) 0.0078 0.56 0.21 0.07 

31 (B1.2) 0.016 0.67 0.27 0.1 

32 (Bl.3) 0.047 0.76 0.33 0.11 

33 (BI.4) 0.078 0.82 0.39 0.16 

Series [C}I[M1 mol% a 0.OOl5 a 0.01S a 015 

S2 0.016-0.11 0.53-0.77 0.24-0.41 0.08~0.15 

S3 0.016-0.11 0.57-0.83 0.23-0.39 0.1-0.14 

0.56-0.82 0.21-0.39 0.07-0.16 
Bl 0.0078-0.078 

*a' The ratio of swelling in saline to swellmg m salt-free water. The subscripts denotes the molar salt 

concentration. 
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For each ar,sorbent, its s\\ elling capacity in saline media was di\ ided b\ its s\\ ellino . :::-

capacity in double distil1ed water. The ratio was called expansion factor or f'arameter. 

a. This parameter can be varied within the range of 0-1.0 or even more . At lower 

extreme, the polymer should be highly sensitive to the salt present in swelling medium. 

In other words swelling-~ecreases with salt concentration. This displays.he swelling 

behaviour of anionic and cationic polymers. When the parameter approaching unity. the 

polymer structure is becoming inert to salt and its swelling capacity becomes similar in 

saline and salt-free water. This behaviour is limited to the non-ionic and rigid chain 

polymers. With the values greater than unity, again salt sensitivity of the polymer 

structure increases. In other words, swelling increases with salt concentration. This 

behaviour can be seen in anlphiphilic or betaine polymers. 

In each senes and swelling medium, a was increased with increase in crosslinker 

concentration but its range of \;uiation was distinctly different in various media. With 

S2 series, the parameter a was varied in the range of 0.53-0.77 for 0.0015 M saline 

solutions. An almost same range was also observed for the S3 and BIsel ies. This rang~ 

was changed to 0.24-0.41 for 0.015 M saline in case of S2 series. Again, nearly similar 

range was observed for other series. For highly concentrated saline, the variation range 

of a was 0.08-0.15 which was closely rep,~ated for other series. These observations 

indicate that the range of a is primarily dependent on the crosslinker concentration and 

the ionic strength of the swelling medium and, does not change with monomer 

cOlnposition and method of synthesis for the absorbents studied here. 

3.6.3.4 An explanation for the swelling observations 

Linear polymers in solution usually display two types of configuration depending on the 

dielectric constant of the solvent. In a high-dielectric medium like water, the dissociable 

groups of the polymer chain are readily ionized and the macromolecules assume an 

extended configuration due to the repulsive electrostatic interaction between charged 

groups. Whereas in a low-dielectric medium such as saline or non-aqueous solvent, th~ 

ionization process is suppressed and the macromolecules remain in a random or coiled 

configuration. The latter is typical of many non-ionic polymeric systems 62 
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The superabsorbents studied here were basically linear polymers \\ 1 ich cross] inked b\ 

applying a tetra functional crosslinking agent. Although all the polymers obtained \\~re 

ionic according to their different a values in various salines. but their ~welling 
~ 

behaviour was changed towards the non-ionic and rigid-chain polymers. as a 

approached unity because of increase in the crosslinker concentration. This can be 

ascribed to an increased elastic modulus of the polymer network. In other words, 

because of more structural rigidity due to an increase in the crosslink density. the 

polymer chains are less perturbed in saline depending on the amount of crosslinker. 

Thus the ratio of the two swelling values can presumably be a proper measure of chain 

rigidity and may be a hopeful device to assess, calibrate and classify the stnlctures of 

various rigidity. 

3.7 Creating a porous structure 

Based on our model data in foregoing section, a decrease in size of the particle was led 

to a simultaneous increase in absorption capacity and rate. This was achieved through 

an increase in the parameter no 1 and a decrease in the parameter no 2. Moreover, thi:, 

observation was ascribed to an increase in the free volume, which enlarges the capillary 

contribution of swelling. In other words, the swelling characteristics of the finer 

sanlples was improved, because of the capillary action of the free spaces between the 

water swollen particles. This conclusil m brought us to try for creating absorbents of 

porous structure. 

3.7.1 Increased monomer concentration 

In most of the commercial manufacturing of superabsorbents 47, a high monomer 

concentration is desirable. The advantage taken here is the elimination of the drying 

process, by means of an increased heat of polymerisation. But. there is a serious need 

for using higher water-soluble ingredients, especially the crosslinker and the initiator. 

within the superabsorbent formulation. The insolubility problem is presumably due to 

saturation, increased ionic strength of the reacting medium and the very low amount of 

water present in highly concentrated formulations. 

The solubility of potassium peroxy disulphate in water is limited, so that it requires 50 

parts or 25 parts \vater at 40°C, while the ammonium persulfate is freely soluble in 

water. 63 On the other hand the water solubilities of alkali acrylates increases with 
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increasing atomic radius of the alkali metal (~a, 1.896 :,\0 and K. ~.3-+9 A 2). It m~ans 

that higher monomer concentration can be achieved by using potassium hydroxide 

rather than the sodium hydroxide as neutralizer. So the potassium persulphate and the 

sodium hydroxide were replaced by ammonium persu1phate and potassium hydroxide 

respectively (see Expt. 73). It is not justified to compare s\velling property of the present 

sample with its counterpart (Expt. 30), since although the initiator is different, it has 

been shown that monomer reactivity ratios, overall copolymerization rate and some 

electrochemical properties of the copolymers of acrylamide and acrylate salts depend on 

the nature of the cation in the acrylate salt 64. Apparently, the water uptake of the 

copolymers i') also related to the nature of the metal counter-ion in the acrylate salt. 

Table. 3.22 shows the absorption behavior of the sample obtained from the Expt. 73. 

Table. 3.22 Dynamic swelling feature of the samples from the Expts. 30 and 73-74. 

'-.. 

Time min. 0.0 1.0 2.0 5.0 10.0 30.0 l 
Swelling (gig) I 

Expt. 30 0 173 303 747 779 I 
I 

Expt. 73 0 181 
I 

313 I 534 651 J 626 
Expt. 74 0 200 271 ~1)6 30~ i -_ .. ---- ----- _____ • ___ J 

As can be seen the time to reach equilibrium swelling is about 10 min. \vhich is rather 

high as was for its counterpart. An increase in monomer concentration (Expt. 74) 

resulted in ultimate swelling of 300 gig and the time needed to take water up to this 

point was about 5 min. A remarkable point here is their corresponding times to reach 

0.632 of their final swelling values (retardation time) which as mentioned before is a 

measure of the rate of absorption. The quantitative values of the parameter for the 

products of Expt. 73 and 74were 170 and 45 sec respecthely. This increase in 

absorption rate was obtained at the expense of a d-:L rease in the final swelling value 

down to half. As quoted in detailed explanation of the Expts. 73 and 74, a big difference 

between these two samples was, their nature at the gel point. The former was obtained 

as a rubber, whilst the latter obtained in glassy state. According to the Sec. 3A.7, the 

glass nature of the gel obtained from the Expt. 74, prevents the reaction from further 

facile polymerisation, which presumably results in less monomer con\ersion to polymer 

and hence lower swelling capacity. On the other hand, this modification, i.e. an increase 

in mononler concentration was led to an increase in the rate of absorption, which is in 

part due to the creation of a porous structure (see Fig. 3.54). 
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Figure 3.54: SEM micrograph of the sample obtained from the E'\pt. 74. 

3.7.2 Effect of introducing filler (non-etched samples) 

The basic idea was to create porous structure in another way. It is common to polymer 

field, blending the compOl.mds of arious structures (e .g. one rather hydrophilic and the 

other rather hydrophobic or one plastic and the other one metal) followed by remo ing 

one of the components [e. g. etching with suitable solvent or burning at the plastic 

decompo ition temperature ( as a plied to manufacture cellular ceramics)] to produce 

cellular structure. This idea was conducted here with a hydrophilic polymer (say, 

superabsorbent) and a hydrophobic polymer [poly (vinyl chloride)]. The latter in its 

powder form was introduced into the superabsorbent formul tion (before reaction). 

Although the basic idea taken here was remo ing by an appropriate solvent of the PVC 

palticles from the superabsorbent matrix (etching), with our preliminary experiments, 

not indicated here, the foaming of the reacting medium was observed due to the 

presence of PVC powder which br ught us to conduct some experiments \ ithout 

attempting to etch. 



3.7.2.1 General observations on the reaction 

TIle Expt. 73 was chosen as a reference matrix and various amounts of the poly (vinyl 

chloride) powder ranging 2.5-12.5 wt.%> (based on matrix weifht) was incorporated 

according to the Expts. 75 -79. 

Table. 3.23 displays the important features of the experiments. The data in colwlm 5. is 

the temperature during the exothermic reaction. The time to reach gel point and dmount 

of the materials evaporated during the reaction were recorded respectively in colunms 6 

and 7. The PVC powder was considered as a filler and its concentration in the matrix 

fOlmulation can be seen in the column 3. 

Table. 3.23 Features of the reaction in case of PVC-filled samples. 

Bath Temperature Evaporated I 
Expt. Matrix Filler temperature rise Gel time material 

weight (g) weight (g) °c °c Sec. % 

73 20 0.0 80 114 113 20.5 
i 

75 20 0.5 80 99 91 14.7 ~ .. _-
76 20 1.0 80 103 90 15.9 i 

- _. -...... 
77 20 1.5 80 103 106 14.5 I , 
78 20 2.0 80 101 104 ll:!_-l 
79 20 2.5 80 100 93 12.2 

With the Expt. 73, the reaction mixture temperature at gel point rose up to 20-34 °c 
based on the setting bath temperature. But the temperature rise was dropped by 

incorporating the filler, and remained almost the same through the rest of the reactions. 

The remarkable difference between the blank (Expt. 73) and others was occurrence of 

foaming for the latter formulations. The foaming was visually observed more excessive 

for the higher filler-loaded fc,)·mulations. The time required to change the nature of the 

reaction liquid to a rubbery viscous mass, so-called the gel time was not followed a 

regular trend. But the maximum gel time was observed for the blank formulation (Expt. 

73). The amount of ingredients evaporated (presumably monomer/water mixture) 

during the synthesis was decreased by increasing the loading, which may be due to the 

suppressing exothermicity indicated by lowered temperature rise and also the physical 

obstruction of the PVC for the evaporation of volatile. 
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3. 7.2.2 Swelling observations 

The swelling behavior of the individual samples were recorded in Table. 3.2-+. 

Table. 3.24 The swelling features of the PVC-filled samples. 

Observed Expected Filler/matrix Active material equilibrium swelling equilibrium Expt. wt.% wt.% based on blend swelling based on 
material (g/g) active material 

(gig) 73 0.0 100.0 450 450 75 2.5 97.56 448 459 76 5.0 95.24 421 442 77 7.5 93.02 354 381 78 10.0 90.90 393 432 79 12.5 88.88 400 450 

Although the foaming of the reaction medium became more severe by increasing 

loading of filler, the amount of equilibrium swelling (for the filler-contained sample, 

column 3) followed a decreasing trend. It is clear from the data in last column of the 

Table. 3.24, that the PVC powder cannot absorb any water per se. In other words, the 

chosen filler was inert towards swelling and the swelling was apparently due to the 

active material present. These experiments were repeated thrice and overall trend 

observed was similar, although the figures recorded in the tables were not exactly 

reproduced. 

3.7.3 Effect of etching 

Another effort (Expt. 80) was to etch the superabsorbent matrix which was attempted 

with the sample of the Expt. 78 containing 10 wt. % filler. Unexpectedly 7.0 wt. % of the 

original material was removed by the solvent. Scanning electron micrographs of the 

original and treated sample can be seen respectively in Figs. 3.55 and 3.56. The 

swelling behavior of the blank (Expt. 78) and the etched material (Expt. 80) have been 

recorded in Table. 3.25. 

Table. 3.25 The swelling features of the filler loaded and treated materials. 

Expt. Active material Observed Expected * Observed Expected • 
wt.% swelling after swelling after swelling after swelling ajla I 

1 min. 1 min. ~.Jh ~-Ih I 
78 90.90 46.1 50.7 466 51:-:.6 
80 97.90 58.2 59.4 504 514.8 

* Calculated based on the actIve matenal. 
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Figure 3.55 : SEM mjcrograph of the P\ C-c nlamed superab orbent. 

Figure 3.56: Micrograph of an P C-c ntain d ample whi h ha b n extra ted \\;th 

tetrahydr furan. 
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Again assuming that swelling observed is only due to the superabsorbent present. it 

seems that etched material has no advantage over non-etched sample as indicated by 

their swelling values after 24 hours. Surprisingly this is not the case for the swelling 

values after 1 min. With the blank sample, expected value of swelling based on acti\e 

material, after 1 min. was 50.7 gig, while the corresponding value for the treated 

material was 59.4 gig. Keeping the above assumption in mind, the same value (say, 

50.7g1g) of swelling is to be expected for the treated sample which shows + 17.1 0/0 

increase in swelling within the period of 1 min. This is clearly due to the increased 

surface area obtained after etching treatment of the original nlaterial (see Fig. 3.56). 

Thus this typical treatment can help to attain faster rate of absorption, although the final 

swelling values are not being very affected. 

3.8 Our samples against commercials 

A number of cOlnmercial samples was selected among a senes of marketed 

superabsorbents (see Table. 3.26) and examined for their swelling behavior. 

Table. 3.26 Features of a number of commercial superabsorbents. 

Trade name Company Chemical Appearance of Equilibrium Water 
name the dry water absorption 

material absorption rate 
~ 

Hydrosoil Softron Potassium White powder Medium Very fast I 
I 

polyacrylate 
--

Alcosorb 400 White powder High Medium 

PR 3005 KB SNF Floerger Potassium Off-white Medium Medium 
polyacrylate granules 

PR3005 B SNF Floerger Sodium Off-white Medium Medium 
polyacrylate granules 

Most menlbers of the acrylic family of superabsorbents in the market are potassium or 

sodium based. The cOlllil1erciai types shown in Table. 3.26 are also based on potassium 

or sodium which are solution-polymerised. As assayed through the swelling 

measurelnents, a variety of swelling behavior can be observed e.g. medium amount of 

water uptake at very high rate (Hydrosoil), medium amount of water absorption capacity 

at medium rate (PR 3005 B, KB) and high swelling capacity in medium rate (A1cosorb 

400). Table. 3.27 displays the swelling values against time of the latter conunercials 

together with the samples of the Expts. 73 and 74. 
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As already found the swelling model is a valuable tool to predict and compare the 

swelling properties of different superabsorbents. Thus all the swelling figures were 

fitted with the best mathematical relationships to fmd the values of the parameters no 1 

and 2 as can be seen in Figs. 3.57-3.62. The model data were quoted in Table. 3.28. 

Table. 3.27 Dynamic swelling features of a number of commercial superabsorbents together 

with of our laboratory counterparts. 

Time sec Hydrosoi/ Alcosorb 400 PR 3005 KB PR 3005 B Expt. 73 Expt. '7-1 
0 0* 0 0 0 0 0 ! 

15 78 96 
30 114 
45 145 185 
60 182 154 139 120 181 200 
90 208 I 

120 227 262 218 188 313 ! 271 
180 240 i i I 

300 260 434 323 299 534 i 306 
600 270 498 363 350 651 302 
1800 258 583 373 349 626 I I 

I 

3600 552 330 334 590 
* In terms of gig. 

Table. 3.28 Corresponding model data for the commercial and synthesised superabsorbents. 

Samples alE gig 
I 

alE fo gig sec fo sec ! 
Hydrosoi/ 265 56 I 4.73 

Alcosorb 400 570 200 I 2.85 

PR 3005 KB 370 140 I 2.64 

PR 3005 B 350 140 I 2.50 

Expt. 73 630 170 I 3.70 

Expt. 74 300 45 I 6.66 

According to the model, the best swelling properties are acquired at maximum and 

minimum values for the parameters no 1 and no 2 respectively. Thus the ratio of the two 

parameters can be a good indication of swelling properties. As far as the capacity of 

absorption (parameter no 1) is concerned, the materials are being ranked according to 

the following order: 

Expt. 73> Alcosorb 400> PR 3005 KB> PR 3005 B> Expt. 7,/ > Hydrosoi/ 

When the rate of absorption (value of the parameter no 2) is of importance, the above 

order can be rearranged to the following: 
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Expt. 74> Hydrosoil> PR 3005 KB,B> Expt. 73> Alcosorb 400 

Finally the ratio of the two above seems to be a better approach to describe the swellino 
:;:, 

properties in which the capacity and rate of absorption are both included within a same 

tenn. The higher the ratio is, the better the swelling properties would be expected. Thus 

the following order is obtained: 

Expt. 74> Hydrosoil> Expt. 73> Alcosorb 400> PR 3005 KB> PR 3005 B 

Considering the ratio of the two parameters, the Expt. 74 is comparable with Hydrosoil 

and the Expt. 73 is comparable with the others. With the former in which the rate of 

absorption is highlighted, the Expt. 74 shows better performance over the commercial 

Hydrosoil, whilst its equilibrium swelling capacity is also rather higher. On the other 

hand where the capacity of absorption is highlighted, the Expt. 73 performs better than 

its comparable commercials. 

3.9 Validity of the two parameters model 

Based on the numerous experimental swelling data we have found throughout this 

work, followed by fitting them into an appropriate mathematical relationships, i.e. Voigt 

model expression (see Equation. 3.3), the standard deviation of the model was found 

about +2.7. Although a very good fit of the experimental swelling data would be 

expected from our model, in some circumstances, we found that the model couldn't 

predict the swelling properties. 

In some cases, as clearly be seen in Figs. 3.57-3.61, the experimental swelling rapidly 

approached to its maximum value, followed by a slight fall to the equilibrium value. 

The model couldn't appropriately follow the experimental data in this region of the 

dynamic swelling curve. This phenomenon has already been named, overshoot sorption. 

Water uptake overshoot was observed in polymer gels containing water soluble salts in 

the fonn of either drugs or residual initiator. This behavior was attributed to an initially 

large chemical potential or osmotic driving force for swelling due to the presence of 

excess solute within the gel. Subsequently, the solute diffused out of the geL thereby 

reducing this driving force and leading to deswelling of the network. Eventually the 
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concentration inside and outside the network were equalised and the network reached its 

fmal equilibrium. 

We expect that a polymer soluble fraction may lead to overshoot sorption behavior in a 

manner similar to the latter. At the gel point, there are enough crosslinks to produce a 

macromolecular network, which extends throughout the reaction mixture. Subsequently, 

the mixture contains a gel fraction, consisting of the polymer network, and a sol 

fraction, which contains unreacted monomer and polymer chains that have not become 

incorporated into the network. Before the gel point, the reaction mixture is 100% sol 

fraction. After the gel point the sol fraction decreases monotonically as material is 

incorporated in the network. At 1000/0 conversion, most of the polymer is incorporated 

into the gel; however, a small fraction remains in the sol as we quoted in Table. 3.6. 

The bigger difference between the overshoot sorption and the equilibrium swelling is 

expected, if a high amount of the extractable materials are occluded within the network 
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Figure 3.58: Modeled and experimental dynamic swelling curves for Alcosorb 400, a 

commercial superabsorbent. 
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Figure 3.59: Modeled and experimental dynamic swelling curves for PR 3005 KB, a 

commercial superabsorbent. 
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Figure 3.60: Modeled and experimental dynamic swelling cw-ves for PR 3005 B, a commercial 

superabsorbent. 
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Figure 3.61: Modeled and experimental dynamic swelling cw-ves for the material obtained 

from the Expt. 73. 
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Figure 3.62: Modeled and experimental dynamic swelling curves for the material obtained 

from the Expt. 74. 
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Chapter 4: CONCLUSIONS 

4. 1 Preliminary trials 

An inverse suspension polymerisation shows high degree of sensitivity to the variables 

of the reaction system. With our preliminary experimentals to produce a product in 

particle form, unexpectedly, the product was obtained in either a granular fonn or as 

lumps. Although a granule or a lump, as a reaction product could potentially act as a 

superabsorbent, a huge number of particles could be occluded in them which were not 

accessible to water. So, a long time is needed for water to reach to the center of a 

granule or a lump, which remarkably reduces the rate of absorpticn. 

The sorbitan monostearate was not useful at all, to obtain the product in desirable shape. 

And, any further attempts with it was complicated by the solubility of the polymer in 

water. On the other hand, we thought that the water present in the reacting medium may 

be responsible for obtaining the product in undesirable shape. But, this was not the case 

according to unsuccessful dewatering attempts we made by vacuum distillation and 

using a super water absorbent. 

The use of sorbitan monooleate as a more powerful water in oil surfactant than the 

sorbitan monostearate, brought us to conclude that, the fonner acts better and at least 

helps to break the lump into the granules. But, again, higher loading of it resulted in a 

water-soluble product. 

Using a couple of so-called co-surfactants like poly (vinyl alcohol) or sodium salt of 

carboxymethyl cellulose also did not lead to a desirable product. Surprisingly, the 

amount of equilibrium swelling of the absorbent system increased by using them. 

A desired product in particle form was obtained, usmg a certain amount of ethyl 

cellulose as a co-surfactant. So for the rest of inverse suspension experiments, a mixture 

of a micromolecular and macromolecular surfactants were used, as well as using 

methanol as a powerful dewatering agent. Therefore, the latter modifications \vere 
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included within the preparation recIpe, m order to survey the effects on swelling 

behaviour of the main variables. 

4.2 Crosslinking by ethylene glycol dimethaerylate and methylene 

bisaerylamide 

Crosslinking by ethylene glycol dimethacrylate resulted in a material of very high 

swelling capacity and visually of high gel strength. A major change in the cross linker 

concentration led to only a small change in the amount of swelling. In a parallel study of 

the effect on swelling of a water-soluble crosslinker, it was found that a water soluble 

crosslinker is much more efficient than an oil-soluble counterpart to bring the swelling 

under effect. So that, a minute change in concentration of the former, led to a big 

change in the swelling capacity. 

4.3 Inclusion of aerylamide 

Increasing the non-ionic nature of the absorbent structure had a remarkable influence on 

the rate of absorption, although the absorption capacity was decreased. Moreover, 

polymerisation of a same formulation as in solution, led to a high swelling material, but 

still poor in rate and capacity of absorption compared to its inverse suspension 

counterpart. 

4.4 The swelling model 

These above-mentioned observations, constituted a base for devising a model to seek 

the relationships between the polymerisation variables and the swelling properties. For 

instance, in the case of EGDMA-crosslinked absorbents, the swelling smoothly 

increased to a very high constant value. On the other hand, with the acrylamide

containing absorbents, the swelling was abruptly increased to a moderate constant 

value. These two distinct swelling behaviours and also other dynamic swelling 

observations show a good fit to the strain response of a two parameter Voigt model to 

any applied stress. By assigning the spring parameter, the significance of resistance to 

expansion of the polymerised network and the dashpot parameter, the significance of 

resistance to permeation, the swelling characteristics of the different absorbents could 

be accounted for in more fundamental terms. 
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The model approximates to Case IT sorption in the early stages of the swelling process 

and to Case I in the later stages. This shows that the rate -controlling process occurring 

in the early stages is the advance of a water front through the polymer with a sharp 

profile which generates high stresses on the polymer network and that swelling is 

restricted by the rate at which water can permeate into the dry polymer network or by 

the rate at which the network can expand. 

Based on our observations, the water diffusion rate was increased by the two factors, i. e. 

the inclusion of acrylamide into the polymer structure and the cross linker concentration. 

The first observation was mainly attributed to an increased mobility of the structure 

upon contacting with water (as the data for the water bOlUld to the polymer indicated) 

and the screening effect of this comonomer on the carboxylate anions along the polymer 

backbone. The second observation was mainly attributed to an increased elastic 

modulus of the network and to restricting the collapse of the polymer network during 

the drying process, which presumably creates more free volume to accommodate water. 

The inverse suspension products showed higher rate and capacity of absorption than of 

the solution cOlUlterparts, of course at a same crosslinker concentration. The reasons can 

be found somewhere in the process of manufacturing. The big difference was the 

atmosphere under which the polymerisation was carried out. With all the inverse 

suspension formulations, a nitrogen blanket was used, whilst with the solution systems, 

no inert blanket was provided. The other difference was the time of reaction, which was 

much longer for the suspension system. Moreover, at a same crosslinker concentration, 

the extractable materials within the solution products was more than for the inverse 

suspension products. These can be responsible for the decreased swelling characteristics 

in the solution products. 

For the solution and inverse suspension polymerisation, in the presence of MBA as a 

crosslinking agent, the steady state swelling was inversely proportional to the square 

root of the molar ratio of the crosslinker to monomer. This is close to, but not identical, 

the thermodynamically derived 0.6 power relationship obtained by Flory, for the non

ionic polymers. In the case of EGDMA-crosslinked materials, the dependence was 
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much weaker. This can be attributed to the partitioning of the oil-soluble crosslinker 

mainly into the continuous organic phase. 

4.5 Temperature and Initiator 

Regarding our preliminary investigations of the solution process, which is used 

industrially for producing superabsorbent polymers, we found that unrestricted access of 

the reaction mixture to oxygen and unrestricted evaporative losses of water can 

complicate the polymerisation of the acrylic monomers and the swelling characteristics 

of the products. 

The existence of an inhibition period, especially at long reaction times was attributed to 

the fonnation of peroxy radicals with low reactivity, as has been established in the past 

for similar monomer systems. The ending of the inhibition period with the onset of 

rapid, apparently nonnal polymerisation is thought to result from the accumulation of 

polyperoxide which eventually yields enough active free radicals to overwhelm the 

inhibiting effect of the oxygen and set off a self accelerating process in which the heat 

released by nonnal polymerisation increases the rates of peroxide and initiator 

decomposition and the rise in viscosity restricts the inward flow of oxygen and outward 

flow of heat. 

The delay caused by the inhibition period provided more time for water to be lost by 

evaporation and at lower temperatures and initiator concentrations the losses became 

large enough to raise the concentration of monomer into the range where runaway 

polymerisation has been reported for acrylic monomers, even in the absence of 

polyperoxide. Both effects may have combined to induce runaway polymerisations at 

long reaction times. 

The highest degrees of swelling for reaction product were obtained at the higher 

temperatures (140 - 180°C ) and higher initiator concentrations (0.004 - 0.005 

mole/mole of monomer) in the ranges covered. Substantial reductions in swelling with 

decreasing temperature or initiator concentration is attributed to two factors. One is the 

shortening of kinetic chain lengths as initiation by the polyperoxide became more 

important. The second is the loss of mobility when the remaining water level became 
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so low at long reaction times that the product changed from a rubbery state to a glassy 
~ . 

one. The resulting restriction in molecular mobility is believed to have limited the 

conversion of monomer to polymer and to have altered the swelling characteristics of 

the product. Drying the products by heating for a day at 60°C had two effects. One was 

to reduce the swelling at short gel times compared with neat, undried product. This was 

attributed to crosslinking. The other effect was to increase the swelling at long gel 

times. This correlated with quantities of water extractables from dried products and is 

attributed to further conversion of monomer to polymer. Applying the Voigt expression 

to the time dependence of swelling provided further support for attributing decreases in 

swelling at lower temperatures and initiator concentrations to less conversion of 

monomer to polymer. 

Overall it is clear that the highest degrees of swelling for products made by the solution 

process without restricting access to oxygen and evaporation are obtained when the 

reaction conditions such as temperature and initiator concentration favour a short 

reaction time. Further studies would be needed to check the explanations offered for the 

various effects of oxygen and evaporation. Usually precautions are taken to avoid these 

effects in studies of free radical polymerisations and they do not appear to be featured in 

pUblications on the subject, even though they might be important in applications such as 

coatings, adhesives and resin based products where polymerisation occurs in the 

presence of air. If similar effects occur in these applications as has been observed here 

then properties are likely to be downrated, particularly at surfaces. 

4.6 DSC studies 

The existence of an inhibition period and of a sudden rise in viscosity of the reaction 

medium in solution polymerisations were recognised in the parallel DSC studies. The 

effect of changing the initiator and temperature on the duration of inhibition period was 

the same as in bench-scale polymerisations. 

4.7 Particle size 

The effect of particle size on the swelling properties was also highlighted throughout the 

work. We showed that, any reduction in size of the particles obtained in inverse 

suspension systems is accompanied by an increase in capacity and the rate of 
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absorption. \\'ith other variables, \ve found that any increase in the capa('ity of 

absorption is associated with a decrease in rate. Surprisingly. the size of the particles 

was the exclusive variable which sirnultaneously increased both the capacity and the 

rate of water uptake. In superabsorbents, the swelling is mainly favoured, because of 

diffusion. On the other hand, in materials like sponge. water can be absorbed by a 

capillary action of the pores within the matrix. The increased swelling characteristics in 

fmer particles of a typical superabsorbent can be attributed to creating a capillary action 

within the superabsorbent matrix. This was presumably because of the existence of free 

volume between the finer swollen particles. Thus, the swellability of absorbent 

polymers can be enlarged by a supplementary action of capillaries. 

4.8 Ionic strength 

Another variable was the ionic strength of the swelling medium. We and others have 

already found that, the swelling decreases exponentially with the salt present in the 

swelling medium. This was not a surprising conclusion. But, the crosslinker had a 

certain effect on this dependency. It was found that, the crosslinker renders the polymer 

to be much less sensitive to the salt present in the swelling medium. This conclusion 

was achieved through introducing a dimensionless parameter named "expansion factor" 

which was seriously sensitive to the amount of crosslinker in a typical swelling 

medium. The crosslinker changed the swelling behaviour of our 
. . 

anlOlllC 

superabsorbents into a non-ionic or a rigid chain material. 

4.9 Porous structure 

The effect of capillary on the swelling brought us to devise provisions to create a 

superabsorbent of porous structure. This was achieved with an increase in the monomer 

concentration of the reacting mediUln. This modification gave rise to the increased rate 

of absorption, but at the expense of reducing the capacity for absorption. The 

improvement in rate can be ascribed to the pores within the polymer. The adverse effect 

on the absorption capacity can be addressed back to the less conversion of monomer to 

polynler, which is evident from the characteristic odor of unreacted acrylic acid. 

TIle final effort was producing a cellular structure by inclusion followed by removing 

the PVC particles frool the superabsorbent-poly (vinyl chloride) blend. The filler had no 

effect on the rate and the capacity of absorption, but, it resulted in a se\'ere foaming nf 
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the reaction mixture. Moreover, it led to a decreased amount of superabsorbent dusts. 

Etching by a suitable solvent of the blend, in order to create pores within the matrix, led 

to improving the rate of absorption to some extent. This treatment had no effect on the 

capacity for water uptake of the products. 

4.10 Further works 

After extensive investigation of the influence of the various parameters on the structure 

and the properties of the acrylic-based superabsorbent polymers studied here, a few 

areas of further work may prove particularly rewarding. 

- Try to find other correlations between various parameters including change of the 

continuous phase, change in agitator speed, change in water/ oil ratio, change in 

initiating system of the inverse suspension polymerisation on the swelling properties of 

superabsorbent polymers and fmding a replacement for the ethyl cellulose. 

- More work is needed to understand the effect of oxygen and a typical inert blanket on 

the polymer swelling properties via the inhibition period. Differential Scanning 

Calorimeter can be useful in this respect. 

-Attempting a high temperature synthesis of superabsorbent using a thermally resistant 

crosslinker like ethylene bisacrylamide. 

- Using solid state NMR and neutron scattering techniques to understand the chemical 

structure of a superabsorbent in more fundamental terms. 

- Try to modify the two-parameters model in order to predict the swelling properties at 

the very early and late of the swelling process to distinguish the characteristic time 

interval for the diffusion and the relaxation components of the swelling. 

- Try to use diluent or volatile to create a porous structure like what we obtained via 

increasing the monomer concentration and incorporating followed by etching the filler. 

- Producing a superabsorbent polymer on a microreticular matrix to make it spongy. 

- Attempting various drying processes including, oven-drying, vacuum drying and 

freeze drying on the reaction product of inverse suspension polymerisation followed by 

observing the effects on the polymer swelling properties. 

- Synthesizing superabsorbent polymers by microwave ovens in order to saving the time 

of the reaction. 
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- Synthesizing superabsorbent polymers in a supercritical fluid like supercritical carbon 

dioxide as a replacement for the continuous phase of the inverse suspension process. 

This modification potentially helps to have an environmentally friendly process of 

manufacturing by eliminating the hydrocarbon as a continuous phase. 
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