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Abstract 
This thesis extends the body of research into the application of Genetic Algorithms to the 

Project Scheduling Problem (PSP). A thorough literature review is conducted in this area 

as well as in the application of other similar meta-heuristics. The review extends previous 

similar reviews to include PSP utilizing the Design Structure Matrix (DSM), as well as 

incorporating recent developments. 

There is a need within industry for optimisation algorithms that can assist in the 

identification of optimal schedules when presented with a network that can present a 

number of possible alternatives. The optimisation requirement may be subtle only 

performing slight resource levelling or more profound by selecting an optimal mode of 

execution for a number of activities or evaluating a number of alternative strategies. 

This research proposes a unique, efficient algorithm using adaptation based on the fitness 

improvement over successive generations. The algorithm is tested initially using a 

MATLAB based implementation to solve instances of the travelling salesman problem 

(TSP). The algorithm is then further developed both within MATLAB and Microsoft 

Project Visual Basic to optimise both known versions of the Resource Constrained 

Project Scheduling Problems as well as investigating newly defined variants of the 

problem class. 
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Chapter 1. Introduction 

This first chapter introduces the Project Scheduling Problem (PSP) with a general 

description of the problem and the needs in industry to provide methods that will produce 

a reliable solution. It also provides a formal definition of the problem. PSP 

representations in the form of networks are discussed as well as the mechanism for 

handling these networks within an algorithm. Available classification systems are then 

reviewed in order to determine a common classification to apply to the literature survey 

of PSP solutions by meta-heuristic in Chapter 2. Available benchmark problems are then 

discussed and these are also referenced in the literature survey and later chapters of the 

document. From this point the aims and objectives of the thesis are developed and the 

scope of the research defined. 
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1.1 The Project Scheduling Problem 

1.1.1 General Description 

A project generally requires the completion of a number of tasks or activities. Completing 

each of these activities will require the application of certain resources, the categories of 

which are discussed further below. Due to the complexity of many projects there are 

often many possible sequences that the tasks can be executed in, each different sequence 

may represent a different execution methodology or may be a more subtle 

reconfiguration. Re-sequencing a set of activities can result in a different completion time 

for the project and/or a different profile of resource usage. Companies involved with 

project management will normally be under pressure, either internally or from external 

client to execute the project as quick as possible, however the shortest possible execution 

time for a project may not be supported by availability of resources, or may not produce 

an acceptable capital expenditure. 

Companies therefore aim to formulate a project execution methodology that will maintain 

the desired, or enforced, resource constraints whilst still producing an acceptable 

completion date. However, as mentioned above many modem projects consist of many 

hundreds or even thousands of activities and the number of possible execution 

configurations becomes huge, even when taking hard logic requirements into account. 

There is therefore, a need within project management, for methods by which optimal or 

near optimal solutions can be readily deduced. It is a fundamental objective of this 
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research to illustrate that optimisation by genetic algorithm will in fact provide such a 

method. 

The problem described above is well known as the Resource Constrained Project 

Scheduling Problem (RCPSP) and as will be discussed further in section 1.16 below, this 

problem has a high complexity. Many examples from academic problem sets such as the 

PSPLIB (Kolisch and Sprecher, 1996) still do not have definite optimal solutions, even 

after application of many different techniques and algorithms. For real world problems 

then, which may have greater complexity than the academic problems, it will in most 

cases be impractical to exhaustively produce and prove an optimal solution set. 

Due to the large revenue streams that are often initiated from project completion and the 

operational availability of the project product, as well as penalties that may be incurred 

contractually for late completion, much can be gained by industry through utilising a 

system that can produce only near-optimal results. Many project managers will strive to 

optimise their schedule through application of experience and accepted norms. The 

degree of complexity of this problem however, makes it unlikely that a near optimal 

solution could be achieved repeatedly using experience and norms alone. This research 

will aim to show that near optimal solutions can be consistently arrived at for this type of 

problem using genetic algorithm methods. 
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This research will therefore, aim to produce an algorithm that can be practically applied 

to such problems and that can be relied upon to repeatedly produce near-optimal results. 

The problem considered will now be described more formally in section 1.1.2. 

1.1.2 Formal Description 

In the Project Scheduling problem (PSP) a Project consists of a set of activities, J= 10,1, 

. n, n+l}, each of these activities has a set of predecessor activities (Pfi Each member of 

the set t must be scheduled prior to the scheduling of activity , 
7. The RCPSP extends this 

definition so that a set of resources, 2(= (1, ..., K), exists such that during processing, 

activity I requires r , units of resource kEX Each Resource, k, has a limitation Wk The 

limitations set on the resource, are defined by the type of resource, which may be any 

of the following: 

" Renewable Resources 

" Non Renewable Resources 

" Doubly Constrained Resources 

" Partially Renewable Resources 

Renewable Resources 

Renewable resources are constrained only for the individual period under consideration. 

There is no limitation to the number of periods for which they may be employed. In this 
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case the limitation sexists only for an individual period and if this limit is reached for a 

given period, the resource will then be available again for use in the following period. In 

most cases, examples of renewable resources include human type resources and fuel. 

Non-renewable Resources 

Non-renewable resources are constrained over the life cycle of the project. There is no 

limitation to the utilisation within any particular period but the total usage over the 

lifecycle is finite. For Non-renewable resources dis the total available quantity of kfor 

the entire project and once utilised no further quantity of this resource will become 

available. An example of a non-renewable resource can be material type resources where 

only a specified quantity is to be utilised, or is available for utilisation, in the execution of 

a project. 

Doubly Constrained Resources 

Doubly constrained resources carry the constraints of both renewable and non-renewable 

resources, that is they are limited in both the period utilisation as well as the overall 

utilisation. In this case Wk/ n of resource kwould be available for n periods after which 

no further quantity of kwould be available. 

Partially Renewable Resources 

Partially renewable resources are resources, which are limited in their usage over a 

division of the project duration. For example the weekly or monthly usage may be 

limited. Probably the least considered resource type, Schrimer and Riesenberg (1997) 
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conducted research into the Resource Constrained Project Scheduling Problem under 

Partially renewable resources (RCPSP/f j) using iterative improvement algorithms. 

1.1.2 CPM and Precedence Networks 

A precedence network is constructed as a directed graph with nodes representing the 

activities in the network and arrows representing the links or relationships between them. 

An example of a precedence network is shown below in Figure 1.1. 

Figure 1.1 - Simple Precedence Network Diagram 

Figure 1.1 shows a simple six-node network, the number within the node indicates the 

activity's duration. 

Within every network schedule exists a critical path, that is the longest path through the 

network and the path upon which should any of the member activities be delayed or 

extended in duration, the overall duration of the project would be affected. All other paths 
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on the network will contain some float (or slack). These terms refer to the amount of time 

a task can be delayed or extended before it impacts the successor task, in the case of free 

float, or the amount of time it can delayed or extended before affecting the overall 

completion date of the project in terms of total float. 

The total duration of the project is determined by making a forward pass calculation on 

the network as shown in figure 1.2. 

Figure 1.2 - Simple Precedence Network Diagram - forward pass 

Figure 1.2 shows the forward pass calculation on the precedence network. For each node 

the early start and early finish time is recorded. The early start time is determined as the 

latest early finish time of any predecessors. The early finish time is calculated by adding 

the activity (node) duration to the early start time. 

In order to calculate the critical path an understanding of float or slack is required. Two 

types of float exist within any network, free float and total float. Free float is a measure 
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of the degree by which any activity can be delayed before any of its successors will be 

delayed. For example the activity in figure 1.2 with the 8 unit duration has a finish date of 

time unit 15. Its only successor is the final activity that is schedule to start on time unit 

17. In this cas the activity in question has 2 time units of free float (17 - 15 = 2). 

Total float is defined as the degree by which an activity can be delayed before the project 

completion is delayed. The activity in figure 1.2 with a duration of 5 time units could be 

delayed by 2 time units before delaying its only direct successor (the 8 time unit activity) 

and then a further two days before delaying the final activity. Its total float is therefore 

calculated as 4 time units. 

The total float is calculated for each activity by making the backward pass calculation on 

the network. The tasks with a zero total float (activities that cannot be delayed at all 

without delaying the overall project) will all be on the critical path. The network with the 

completed backward and forward pass is shown below in figure 1.3. The established 

critical path is indicated in red. 
n77 17 

Figure 1.3 - Simple Precedence Network Diagram - forward and backward pass 
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The precedence diagram as described above only takes into account one type of 

precedence relationship: the finish of one activity triggering the start of the next, the full 

set of precedence relationships are: 

" Finish to Start 

" Finish to Finish 

" Start to Start 

" Start to Finish 

1.1.3 Schedule Representation and Decoding 

Algorithms dealing with CPM and precedence network representation make use of a 

schedule representation. Two main types of schedule representation are in common use in 

Evolutionary algorithms: 

" Activity List (AL). 

" Random Key (RK). 

Activity List schedule representation provides a permutation of the activities which are 

then transformed into a feasible schedule utilising a Schedule Generation Scheme. 

In a Random Key schedule representation, a solution is represented as a point in n- 

dimensional Euclidian space, in which the ith vector element is equal to the priority of the 

9 



ith activity. The activities are then processed by a schedule generation scheme on the 

basis of priority. 

The majority of work in schedule optimisation makes use of one of two schedule 

generation schemes (SGS), these two schemes being serial and parallel generation. 

Schrimer and Riesenberg (1997) describe these two systems. The activities are decoded 

from the activity list produced by the algorithm using one, or both, of these schemes. 

With serial SGS (SSS), a dummy activity is generated with time T=0, thereafter 

activities are scheduled in the order they are represented in the activity list, with each 

activity then obtaining the earliest precedence and resource feasible start date. Activities 

are considered scheduled (members of S�), eligible to be scheduled (members of Da), or 

ineligible to be scheduled. Activities, J, are members of the eligible sub set, D,,, if they 

satisfy the following: 

Dn <- 
Ij I 

.lo 
Sn A Pj C Sn} 

(1.1) 

Where S� is the set of scheduled activities and PP is the set of immediate predecessor 

activities for activity j. As eligible activities are moved from Sn to D� this will effect the 

eligibility of other activities to be scheduled. The eligible tasks are evaluated one by one 

until all are scheduled. When including Resource constraints this expression is extended 

to: 

Dnk- tjIj0S�AP, cSfArJk:! ý Rktn(1<_k<_K)} 
(1.2) 
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Where rjk is the quantity of resource k required by activity j and Rk, is the remaining 

quantity of resource k, at period t for stage n (nth activity to be scheduled). 

Parallel SGS (PSS) works using `decision points' these points are taken as the earliest 

finish times of currently scheduled activities. At each of these points activities that can 

feasibly be started are selected and processed until none remain. The next decision point 

is then calculated and the process repeated until all activities are scheduled. For PSS the 

set of eligible activities, D,,, is defined where An is the set of active activities, F� is the set 

of finished activities then the set of eligible activities is D� such that: 

Dn F- {>I J EA�uF�APP gF (1.3) 

The set D� is processed at each interval until empty. Again, the previous expression 

doesn't describe the resource-constrained version of the problem to include resource 

constraints the statement needs to be extended as follows: 

D� <-- tj1jeA�uF�APj cF�Ar, k: 
5 Rkln(1: 9 k: 9 K)} (1.4) 

Where rk is the quantity of resource k required by activity j and Rkt, is the remaining 

quantity of that resource, for period t, at stage n. The use of these schemes and the 

priority rules will be discussed throughout the following sections. 
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The literature dealing with the application of evolutionary algorithms to the RCPSP is 

discussed below. Appendix 1 to this thesis provides a summary of the key characteristics 

of each of the algorithms and provides comparative results where these are available or 

applicable. 

1.1.4 Classification Systems 

To fully understand the extent of research conducted into the solution of PSP by 

evolutionary meta-heuristics it is important to be able to analyse the type of PSP that 

have been addressed. This understanding will illuminate areas where less research effort 

has been expended. 

A number of PSP classification systems have been proposed. Commonly abbreviations 

such as those used so far in this thesis (RCPSP, RCPSPDCF etc. ) have been used to 

describe the problem class. However, these classifications are limited in their description 

of the problem, referring rather to a subset of problems, and they are often used in an 

inconsistent manner. The main weakness of classifying PSP using this system of 

abbreviations is that it fails to describe the type of resources and type of network used. 

The commonly used abbreviation type classifications are: 

" PSP - Project scheduling Problem. 

" RCPSP - Resource Constrained Project Scheduling Problem. 

" RCPSP/II - Resource Constrained Project scheduling Problem with Partially 

Renewable Resources. 
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" RCPSPDCF - Resource Constrained Project Scheduling Problem with Discounted 

Cash Flows. 

" TCTP - Time-Cost Trade-off Problem. 

" MRCPSP - Multi-Mode Resource Constrained Project Scheduling Problem. 

Herroelen et al. (1999) proposed a classification system in line with the problem 

classification system commonly used on machine scheduling problems (see Graham et 

al., 1979). This system, as with Graham et al. 's machine scheduling problem system, 

uses a combination of three sets of characteristics (al 01 y) to detail the nature of the 

problem. 

1. a- up to three Characteristics describing Resources. 

2. ß- up to nine Characteristics describing Activities. 

3. y -One Characteristic describing Performance measures. 

Brucker et al. (1999) propose another system, which also follows this three characteristic 

model (al 01 y), however, a number of problems were subsequently pointed out in this 

system by Herroelen et al. (2001), and from a review of literature the system of 

Herroelen et al. (1999) has been most widely adopted. It has therefore been decided to 

utilise the system of Herroelen et al. (1999) throughout this research. 
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The characteristic values used in this thesis are as given below, this is not the complete 

definition given by Herroelen et al. (1999,2001), but instead it covers all values required 

to describe the problems identified with in this thesis. 

Resource classification 

a, Describes the arrangement of resources. This classification has been used more 

prolifically within the study of machine shop scheduling problems. 

a2 Describes the number of types of resources utilised, where a2 e (°, 1, m) such 

that ° denotes no resource types considered, 1 indicates that one resource type is 

considered and m that a number of resource types equal to m are considered. 

a3 Describes the specific resource types that are used, where a3 e {°, 1, T, 1 T, v} 

such that ° denotes the lack of any resource type specification, 1 indicates 

renewable resources were utilised, T indicates that non-renewable resources were 

utilised, 1T indicates that both renewable and non-renewable resources were 

employed, finally v indicates partially renewable resources were used. 

Activity classification 

P2 Describes the type of precedence logic used to construct the network, where (32 e 

{°, cpm, min, gpr, prob} such that: 

°- Empty. 
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cpm - Critical path method where only Finish-to-Start relationships with 

zero time lags are used. 

min - Minimal time lag relationships where Finish-to-Start, Finish-to- 

Finish, Start-to-Start and Start-to-Finish relationships with minimal lags 

are used. 

gpr - Generalised precedence Relationships where Finish-to-Start, Finish- 

to-Finish, Start-to-Start and Start-to-Finish relationships with minimal and 

maximal lags are used. 

prob - Probabilistic relationships where the occurrence of logic 

relationships is control by assigned probabilities. 

05 Defines deadlines imposed on the project, such that ß5e {°, Sj, S�} where: 

°- Empty. 

Sj - Deadlines are imposed on the individual activities. 

S� -A deadline is imposed on the project. 

37 Defines the type or number of execution modes that are applicable such that 07 E 

{°, mu, id} where: 

°- Empty. 

mu - Multiple execution modes are available. 

id - Mode identity constraints exist for activities. 

08 Defines the nature of cash flow data that is applicable such that ß8 e {°, cj, cj, cj+, 

per, schell} where: 

°- Empty. 

cj - Activities have associated cash flows. 
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cj - Cash flows are stochastic. 

cj+ - Activities have an associated positive cash flow. 

per - Periodic cash flows are specified. 

sched - both the amount and timing of the cash flows have to be 

determined. 

Performance measure classification 

y Describes the objectives or performance measures used to evaluate the solutions 

such that yE {Cmax, av, curve, npv} where: 

Cmax - Minimise the project duration. 

av - Minimise the Resource allocations whilst meeting the project 

deadlines. 

curve - Determine the Time vs. Cost trade-off curve. 

npv - Maximise the Net Present value of the Project. 

multi - Multiple criteria. 

This classification system has the flexibility to allow for the addition of new parameters 

in order to incorporate the study of new or previously unstudied problems. In this thesis, 

the use of a further (32 parameter, dsm, is proposed to represent the DSM network and two 

further y parameters miniter and maxconcur representing minimisation of iteration and 

maximisation of concurrency respectively. The DSM can be applied to many of the same 
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problems studied under the CPM network only with the addition of allowing feedback 

logic. 

1.1.5 Benchmarking Problems 

To establish the effectiveness of various algorithms when applied to PSP, benchmarking 

needs to be performed in order to provide a common base by which the relative 

performance of the various algorithms may be considered. The majority of researchers in 

this field utilise the PSPLIB, a collection of problems, which can be used as a standard 

for comparison of the performance of various algorithms. PSPLIB (Kolisch and Sprecher, 

1996) is a collection of RCPSP in a range of single and multi-mode types comprising 30, 

60,90 and 120 activities. The performance of the various algorithms against these 

benchmark schedules is given in this thesis where this is applicable or available. Other 

benchmarking problem sets are in use in this area of research, a number of these are 

referred to in Wall (1996): 

" Patterson's (1984) Project Scheduling Problems. 

" Kolisch et at (1992) Single mode Project Scheduling Set. 

" Kolisch et at (1992) Single mode Full Factorial Project Scheduling Set. 

" Kolisch et at (1992) Multi-mode Full Factorial Project Scheduling Set. 

" Fox and Ringer (1995) "Benchmarx" problems. 

As stated above the PSPLIB problems are the most widely used and have therefore been 

used in this research where applicable for initial testing of algorithms. 
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1.1.6 Problem Complexity 

Complexity theory provides a framework by which to classify problems based on the 

difficulty incurred to find their solution. Consider a problem with input x, the problem 

being to produce the solution F(x). The complexity of producing the solution is measured 

based on the number of steps that need to be performed in order to produce F(x) from x. 

For each optimisation problem there will also be a decision problem. A decision problem 

will simply determine whether there is a solution F(x) <= y for any given value of y. The 

classifications of problems in complexity theory are given as follows: 

" Polynomial Time Complexity Problems ((I), are problems for which there exists 

an algorithm that takes at most nk steps to produce a decision F(x) from an input, 

x, of length n. 

" Non-deterministic Polynomial Time Complexity Problems (N are problems for 

which there is no algorithm that can produce the solution F(x) from an input, x, of 

length n, within nk steps. 

" AT-Complete problems are problems such that if they were solvable in 

polynomial time, then all problems in AT would be solvable in polynomial time. 

" Optimisation problems whose decision versions are IMP-Complete are termed 

MP-Hard. 

The RCPSP has been shown to be M -Hard (Blazewicz et a1,1983) and as such exhibits 

a high level of complexity. 
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1.1.7 The Design Structure Matrix 

The Design Structure Matrix (DSM) is a scheduling representation, which allows the 

incorporation of iterative relationships. 

The DSM is based on a square nxn matrix (number of columns equals number of rows), 

with the task numbers being listed along both axis, the task itself being represented by the 

respective block on the diagonal. The arrangement of the DSM is shown below in figure 

1.4 from Lancaster (2003). 

MAI KIX 

Figure 1.4 - The Layout of the DSM. 

From figure 1.4 it can be seen that the precedence links are indicated in the matrix as 1's 

entered at the intersection between the two tasks. The diagonal divides the matrix into 

two triangular portions, the lower triangle being used for the mapping of forward feeding 

task links and the upper triangle for backward feeding task links. 

19 



The aim of utilizing the DSM would be firstly to identify and understand the iteration that 

is present in the sequence and secondly to move the matrix as close as possible to 

becoming "lower triangular" (all task links in the lower triangle), by rearranging the 

design sequence. Moving the matrix toward becoming lower triangular means that the 

size of the iterative loop has become smaller, or has been eliminated, limiting its effect on 

the overall program and reducing the number of activities that are involved. In some 

cases it may be possible to completely shift the matrix to lower triangular form, in these 

cases it may be that the initial choice of order of execution was poor or randomly entered. 

In truly iterative sequences it is normal only to improve level of iteration bringing 

feedback loops closer to the diagonal. 

In addition to reducing iteration in the DSM another objective can be to maximise the 

concurrency of tasks. Increased concurrency in the DSM will be reflected by feed 

forward links being moved to the extreme left and the bottom of the matrix. Whilst this is 

in accordance with lower triangularisation of the matrix, the nature of the relationships 

between the activities can make these objectives conflict and the satisfaction of maximum 

concurrency will not necessarily result in minimum iteration. In fact in most cases 

maximising concurrency often results in increased iteration. 

The DSM, sometimes also referred to as the Dependancy Structure Matrix has been 

researched and employed extensively; both Rogers (1994,1996) and Whitfield et al 

(2003) have used a Genetic Algorithm approach to partitioning or optimisation, as will be 

discussed further in the literature review. 
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1.2 Aims and Objectives of the Research 

In the general discussion of the problem in section 1.1.1 a high level objective was 

introduced. The distinct objectives of this thesis are to: 

" Provide a thorough review of existing work into the application of Evolutionary 

algorithms to the optimisation of PSP. This review to include both problems 

utilising Critical Path of Precedence Networks as well as those centring on the 

DSM. 

" Develop an Algorithm suitable for optimisation of PSP, building on and 

enhancing existing research. 

" Investigate the application of the developed algorithms to PSP beyond those 

covered by the current research. 

9 Develop an implementation of the algorithm developed in this research within a 

commercial scheduling application, in order to further examine PSP through 

practical case studies. This implementation is to consider variants to the standard 

RCPSP problem. 

1.3 Scope of the Thesis 

In response to the aims and objectives of the research laid out in section 1.2, the scope of 

this thesis is illustrated in the diagram given below in figure 1.5: 

21 



Chapter 2 Chapter 3 Chapter 4 Chapter S Chapter ti Chapter 7 

Literature Plan Formulate 

Surv ey Methodology Baalc 
Algorithm 

Application of Algorithm 

Initial Initial 
Stochastic Stochastic 
Resources L Ic 

Resourci 

i Conatralnad 
PSP 

MATLAB 

Resource 
Constrained 

PSP 
MICROSOFT PROJECT 

Figure 1.5 - Scope of the Thesis. 

Chapter 2 covers a review of the type of current meta-heuristic algorithms. This is 

provided as a basis for understanding the algorithms prior to further review of their 

application to PSP. 

The second section of the literature review will then cover the application of meta- 

heuristic algorithms to PSP, with existing research being classified according to the type 

of algorithm utilised and the exact sub-class of PSP being optimised. The intention of the 

literature review is to examine the existing body of work but also to extend the breadth of 

the typical consideration of PSP in order encompass problems using the design structure 

matrix. 

Chapter 3 details the methodology employed in the thesis, providing an explanation of 

the approach and the implementation. 
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Chapter 4 provides the structure of the newly developed algorithm and utilises the 

travelling salesman problem to test the effectiveness of the algorithm. 

Chapter 5 tests the developed algorithm on both the DSM and on a precedence based 

network. The DSM and precedence based network are both implemented within 

MATLAB and the precedence network problem is then reconstructed within Microsoft 

Project. 

Chapter 6 discusses further development of the algorithm in order for a special case of 

the RCPSP to be optimised that initially applies resources stochastically to selected 

activities. A test problem is then described and optimised using the extended algorithm. 

Chapter 7, in a similar manner to Chapter 6, produces another variant on the algorithm 

developed in Chapter 4 to solve problems where preferential logic is initially applied 

stochastically. 

Chapter 8 provides a conclusion to the research and makes recommendations for future 

efforts. 
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1.4 Chapter Summary 

This first chapter has introduced the problem being considered by this research. The 

needs of real world organisations in solving this problem have been discussed and a 

formal definition of the problem presented. 

The aims and objectives of the research have been further detailed, leading on from the 

problem discussion, and the research scope defined to further clarify and bound the work. 
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Chapter 2. Literature Survey 

This chapter reviews a range of meta-heuristic algorithms that are prevalent in the 

optimisation arena. The application of these meta-heuristics algorithms to the PSP is then 

thoroughly reviewed. Literature reviews on the application of meta-heuristics to the PSP 

have been conducted previously, an excellent example being Kolisch and Hartmann 

(2005), this review however, extends previous reviews in its depth of scope as well as 

broadening the review by including PSP problem optimisation utilising the Design 

Structure Matrix. Throughout the review of the meta-heuristic application the 

classification system of Herroelen et al (1999) is utilised. 

2.1 Meta Heuristics Algorithms 

2.1.1 Hill Climbers 

Hill climbers are relatively simple optimisation algorithms; they start from a random 

position and then sample from neighbouring solutions. If the sampled solution is of 

higher fitness than the current solution the sampled value is accepted and the process is 
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then repeated for neighbours of the new solution. The flow chart for the Hill Climbing 

algorithm is given below in Figure 2.1. 

Figure 2.1 - Hill Climber Flow Chart 
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The weakness of these methods is that because they only accept higher fitness values they 

easily become trapped in local minima as illustrated in Figure 2.2 below where a 

minimisation algorithm is considered. It can be seen that the algorithm cannot escape 

from the local minima, by finding a solution of higher fitness. The algorithm would first 

have to move to a slightly less fit solution before being able to locate the global minima. 

Due to this Hill Climbers are not well suited to complex search spaces with many local 

minima and maxima. 
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Figure 2.2 - Trapping of Hill climbers in local minima. 

2.1.2 Tabu Search 

The Tabu search starts with an initial solution, then at each iteration, a change is made to 

the solution. Unlike Hill climbing, Tabu search will accept changes that lead to worse 

solutions as well as those leading to better solutions. Changes that can be made may be 

the switching of two variables, the moving of a variable within the sequence etc. 
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In Tabu search a Tabu list is created which is a list of changes or moves, which are not 

allowed to be made, or `Tabu moves'. Typically Tabu moves would include repetition of 

recently made moves. Tabu tenure is the duration, in number of moves (changes), for 

which a Tabu list member remains effective. This method of retaining memory helps to 

remove the chance of cycling and trapping in local minima. 

Tabu search has been effectively applied to a number of classes of problem including: 

" Travelling Salesman Problem. 

" Knapsack Problem. 

" Scheduling Problems. 

Bellenguez (2004) applied both a serial scheduling scheme (section 5.6.1) and a Tabu 

Search, to solve Multi-Skill PSP (Multiple resource), Goto et al (2004) applied Tabu 

search to the RCPSP with NPV maximisation, which they successfully applied to a real 

construction project example. 

Cavalcante et al (1997), applied the Tabu Search to the Project Scheduling Problem under 

labour constraints (SPLC) a subset of RCPSP with limitations on the number of available 

workers. 
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2.1.3 Simulated Annealing 

Simulated Annealing, proposed by Kirkpatrick et al (1983), is another method that bases 

its structure on an Analogy with a physical process. In the annealing process the material 

is heated to a high temperature and then cooled slowly into a uniform structure, in this 

way simulated annealing starts with a randomly chosen solution and then working from 

this point aims to move or `cool' to converge on the optimum solution. 

Once initiated with the random solution, the algorithm tests the fitness of the solution and 

then modifies the solution and retests the fitness. In hill climbing only better solutions 

would be accepted, simulated annealing also accepts better solutions, however, it also 

accepts a certain number of worse solutions as well. The purpose of allowing a certain 

percentage of worse solutions is to prevent the algorithm being trapped in local minima 

(or maxima) introducing variety into the search. 

As the algorithm progresses down the temperature gradient it allows less and less of the 

worse solutions to be accepted. Simulated Annealing achieves this through the use of an 

Annealing schedule. 

In the physical annealing process the law of thermodynamics states that at a particular 

temperature, t, the probability of an increase in energy, SE, is given by equation 2.1: 

6E 

P(bE) =ek. t (2.1) 

29 



where, k, is a constant known as Boltzmann's constant. As the temperature drops so the 

probability drops with it as well, this mechanism can be used to form the Annealing 

schedule. This schedule is then used to determine the probability of acceptance of worse 

solutions so that the number of these solutions that are accepted is reduced as the 

temperature drops. In this way simulated annealing moves from a functionality close to a 

random search through to standard hill climbing at t=0. 

The main advantage of simulated annealing over standard hill climbing algorithms is its 

ability to escape from local minima. 

Simulated Annealing has been successfully applied to project scheduling problems, 

Yildiz (2000) details Simulated Annealing applied to the similar shop scheduling 

problems, Bouleiman and Lecocq (2000), researched the application to multi-project, 

multi-objective project scheduling problems. 

2.1.4 Genetic Algorithms 

Genetic Algorithms are methods by which optimisation problems are solved through the 

application of techniques, which derive their functionality from the Darwin - Wallace 

principle of the survival of the fittest. 

These algorithms work with populations of possible solutions to the given problem, 

encoded into binary or real strings known as chromosomes. The chromosome is made up 

of a series of genes, each gene representing a variable in the problem. 
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The population of chromosomes is evaluated using a fitness function; if the required end 

conditions are not met by the initial population then a selection of the highest fitness 

chromosomes is made. These chromosomes are then paired and the pair mated to produce 

child chromosomes using a genetic crossover operator. In this way the population is 

evolved through a series of generations until a convergence is reached upon an optimal, 

or in the case of a multi-objective genetic algorithm a series of optimal solutions. The 

process of breeding the higher fitness chromosomes to produce even fitter children can 

cause premature convergence, in order to counteract this, a random mutation operator is 

used in order to stimulate exploration of the full search space. 

These algorithms have consistently been found to be suitable to optimising highly 

complex (AT, AT-Complete, NT-Hard) problems. 

2.1.4.1 Structure 

The structure of the basic genetic algorithms is laid out in figure 2.3, below adapted from 

Deb et al (2000): 
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Figure 2.3 - Genetic Algorithm flow diagram. 

Typical pseudocode of a Genetic Algorithm would then be as follows: 

Fitness E 

ME 
Con 

Population(Popsize) `Generate Initial Population 
Fitness(Population) `Calculate Fitness of Initial Population 
Set Generation =0 
Do while TerminationCondition = False 

NO 

TempPop = Selection(Population) 
Crossover(TempPop, CrossoverProbability) 
Mutate(TempPop, Mutation Probabi I ity) 
Population = TempPop Gen = Gen +1 ME 
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Generation = Generation +I 
Fitness(Population) 

Loop 

In this pseudo code the Termination condition for the processing loop could either be the 

arrival at a solution of maximum fitness or having cycled through a predetermined 

number of generations. 

The components of the Genetic algorithm are discussed in more detail in the following 

sub-sections. 

2.1.4.2 Initial Population Generation 

The generation of the initial population will be dependant upon the type of encoding that 

has been chosen for the basis of the algorithm. As mentioned in the introduction Genetic 

algorithms are encoded either as Binary or Real valued chromosomes, the choice being 

dependent upon the nature of the problem to be solved. 

Combinatorial problems such as the well-known Travelling Salesman Problem are better 

suited to encoding as real valued chromosomes, whereas and algorithm concerned with 

the optimisation of the dimensions of a structural member maybe better suited to binary 

encoding as the latter does not rely on selecting a sequence from a given list of variables. 

In binary encoding a suitable word length will need to be selected, this word length must 

be of sufficient length to allow for the range of variable to be considered in each case. 

The word length multiplied by the number of variables will then give the chromosome 
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length. The initial population of chromosomes may then be generated purely from a 

random series of binary values. 

For a Real encoded population a random permutation generator will be required this will 

be run to generate each of the initial chromosomes forming the population. 

The size of population that is used for the problem is mostly a matter for experimentation. 

Research has been conducted though into suitable ratios of Population size to the number 

of variables. 

2.1.4.3 Fitness Evaluation 

The evaluation of fitness is the problem specific functionality of the algorithm. At each 

generation the chromosomes are decoded, the fitness of each chromosome can then be 

calculated from the data the decoding yields. Dependant on the application the 

chromosome may yield a total distance, in the case of the Travelling Salesman problem 

or a total duration in the case of a Project Scheduling Problem. Fitness's may then be 

calculated from these values, dependant on the application this may be calculated as the 

value itself (X), a reciprocal of the value (1/X) or it may simply be the position of a value 

in a range (X - Xmin)/(Xmax - Xmin). 

2.1.4.4 Selection Operators 

A number of different selection operators exist in the literature, the most commonly used 

operators are discussed further below: 

34 



Tournament Selection: 

Deb et al (2000) describes tournament selection as a method in which a number of 

tournaments are arranged between two members of the population with the winner of the 

tournament being given a position in the new population. The tournament should be 

designed such that each member of the population participates in two tournaments. This 

will result in each member of the population being copied to the new population either 

zero times, once or twice dependant on the number of tournaments won. 

Roulette / Proportional Selection: 

When spinning a roulette wheel there is a one in thirty six chance of any particular 

number being selected. Each of the 36 numbers occupies the same portion of the roulette 

wheel, which ensures an even probability of each number being selected. 

The analogy of the roulette wheel in this selection method utilises this same mechanism 

only with each chromosome receiving a portion of the wheel sized in relation to its 

fitness. The algorithm then performs a function, which equates to the spinning of the 

wheel, the probability of selecting a chromosome for transfer to the temporary population 

is then in proportion to its fitness. Figure 2.4 below illustrates this method. 
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POINTER 

Figure 2.4 - Roulette Wheel Selection. 

The wheel in figure 2.4 is seen to be weighted, should the wheel be spun the chances of 

the purple area coming to rest adjacent to the pointer is obviously much great than for the 

green area. The probability, Pr, of each chromosome being selected, where -r is the 

fitness measure, is then: 

f Pri=Po 
p (2.2) 

i=1 

Ranking Selection: 

Ranking Selection is performed by ranking the individuals of the population according to 

their fitness. Wright (2002) prescribes that the ranking is applied with the highest fitness 

individual receiving the highest ranking; the ranking is then scaled by dividing the 

ranking by the total fitness value. The probability, Pr, of selection for an individual is 

then: 
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Pri=Po 
R. 
P 

i=1 

(2.3) 

This method gives more bias to the higher fitness individuals than the Roulette wheel 

Selection method described above. 

2.1.4.5 Genetic Operators 

In order to evolve the successive generations, operators are applied to the parent 

chromosomes chosen randomly from the population. Primary operators that are used fall 

into two categories: 

9 Crossover operators 

" Mutation operators 

The function of crossover operators is to utilise genes from selected parent chromosomes 

in order to improve the fitness of the population. Parent chromosomes are selected from 

the population in random pairs to be `bred'. As with the biological analogy children will 

inherit genes from the parents, in GA's child chromosomes are constructed by mixing 

genes from two parent chromosomes. 

Crossover is applied probabilistically using a user defined crossover factor (0<x<1), 

which gives the probability of crossover occurring. When a pair of parent chromosomes 

has been selected for breeding, a random number, rl, is generated (0<rl<1) and tested 
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against the crossover factor. If the random number is less than the crossover factor then 

crossover is performed. In the simplest form of crossover, single point crossover, a 

further random number, r2, is generated also in the range 0<r2<1. This random number is 

then scaled against the length of the chromosome in order to select a crossover point. 

Once this point has been determined bits to the right of the crossover point are exchanged 

between the chromosomes to create two new child chromosomes. An example of single 

point crossover is given below in figure 2.5: 

Selected Crossover Point (after 12th Bit) 

Parentl 111001001100001101001001101011 
Parent2 100001011100101001111000101110 

Crossover 
111001001100 >< 001101001001101011 

100001011100 101001111000101110 

Child 1 111001001100101001111000101110 
Child 2 100001011100001101001001101011 

Figure 2.5 - Single Point Crossover. 

As can be seen from figure 2.5, the crossover point has been selected between the 12th 

and 13th Bit, resulting in an exchange of the last 18 bits of each chromosome, forming 

child chromosomes 1&2. 

Commonly used crossover operators for binary chromosomes are given below in table 

2.1 
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Real Crossover Operators: 

Certain applications of GA's such as the travelling salesman problem (TSP) require that a 

list of numbers be arranged in an optimal sequence without duplication of any given 

number. In this case real numbers may be used in the chromosome. In order to maintain 

the integrity of the list variations of the crossover operators explained above need to be 

employed. Similarities exist between the this class of problems and project scheduling, 

i. e. the ordering of cities in the TSP can be considered analogous to the ordering of high 

level project activities, for this reason it will be important to consider methods developed 

for the TSP when investigating GA application to project scheduling. 

Todd (1997) and Whitfield (2003) list a number of crossover operators that can be used 

whilst preserving the list contained in a real number chromosome. Table 2.2 below 

summarises these methods. 
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Multi-Objective Genetic Algorithms 

So far only single objective genetic algorithms have been discussed, however genetic 

algorithms have been successfully applied to multi-objective problems. Schaffer is credited as 

one of the pioneers of multi-objective evolutionary algorithms. Multi-objective algorithms 

deal with optimisation under a number of, often opposing criteria. In most cases there can be 

no single correct answer to such problems as solutions will undoubtedly favour on or other 

criteria. A range of solutions have been developed to address this issue, Coello Coello (1999) 

gives the classification of these solutions as follows: 

" First Generation. 

o Non-Pareto based. 

o Pareto based. 

" Second Generation. 

The methods are discussed under this classification below: 

First Generation - Non-Pareto based Solutions 

Many Non-Pareto techniques have been developed, examples of these include: 

" Aggregation. 

" Lexicographic Ordering. 

" Vector Evaluated Genetic Algorithm (VEGA). 

Aggregation involves the weighting of objectives prior to execution of the algorithm, the 

weighted fitness for the individual objectives are then summed into a single fitness value, 
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effectively turning the problem into a single objective problem, with the optimisation of the 

weighted sum as the objective. 

Bentley and Wakefield (1996) identify the following Multi-objective ranking methods, four 

of which were proposed in their thesis. 

1. Sum of Weighted Objectives (SWO) - The most common method, each of the 

objectives is weighted and a single fitness value calculated. This effectively reduces 

the problem to a single objective solution. This method is also termed aggregation as 

discussed above. 

2. Non-dominated Sorting - Pareto based approach discussed in section 3.1.2. 

3. Weighted Average Ranking (WAR) - Proposed by Bentley and Wakefield. This 

method calculates a fitness value for each solution for each objective; the solutions 

are then sorted into lists for each objective and a ranking applied. The weighted 

average ranking for each solution is then calculated according to the weightings 

provided for each objective. 

4. Sum of Weighted Ratios (SWR) - Proposed by Bentley and Wakefield. In this 

method a fitness value is calculated for each objective for each solution. For each 

fitness value a fitness ratio is calculated using the minimum and maximum fitness 

values from the current population this is done using equation 2.4 below: 

(fitness vahre, - min(fitness _ value)) fitness_ ratio, =- (2.4) 
(max(fitness 

_ value) - min(ftness _ value)) 
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This method enhances the Sum of weighted averages (SWO) method by removing 

any range-dependence and allowing fitness values for various objectives to be 

summed directly. 

5. Sum of Weighted Global Ratios (SWGR) - Proposed by Bentley and Wakefield. This 

method is based on the previous discussed Sum of Weighted Ratios (SWR) method, 

only instead of using the minimum and maximum for the current population, the 

global minimum and maximum values are used. 

6. Weighted Maximum Ranking (WMR) - This method is based on Schaffer's (1984) 

VEGA or Vector Evaluated Genetic Algorithm method, which was the first Genetic 

Algorithm to be applied to multi-objective problems. To achieve this Schaffer divided 

the population at each generation into sub-populations, one sub-population for each 

objective. Fitness is then assigned to each of the sub-populations according to one of 

the objectives. In this way sub-populations are ranked according to one or other of the 

objectives, in order to create solutions providing a trade-off between objectives, 

crossover is performed across the entire population. This is similar to the Weighted 

Average Ranking (WAR) method, only in this case the Maximum fitness from each 

sub-population is used to calculate the ranking rather than the average. 

The Lexicographic method requires the ordering of objectives, relative to importance prior to 

execution of the algorithm. The algorithm then aims to select solutions, which optimise 

objectives according to the ordering assigned. 
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First Generation - Pareto based Solutions 

As mentioned above multi-objective optimisation problems will aim to satisfy two or more 

often-conflicting criteria. Due to this no single `best' solution can be arrived at, instead a set 

of non-dominated solutions is sought. 

Goldberg (1989), first suggested Pareto based solutions, the principles of which are described 

as follows: 

Consider three possible solutions to a multi-objective problem where the objective is to 

optimise both the stress and mass of a structural member under given load conditions. In this 

case the aim would be minimisation of both stress and mass. The three results produced are 

shown below if figure 2.6. 

340 

320 

Results: 
300 

1. Stress - 200MPa; Mass - 300kg 
280 

2. Stress - 220MPa; Mass - 280kg 
260 

3. Stress - 240MPa; Mass - 290kg 
240 

4. Stress - 260MPa; Mass - 245kg 
220 

200 

(3) 
(2) 

(4) 

Pareto Optimal Front 

170 190 210 230 250 270 290 

Stress (Mpa) 

Figure 2.6 - Pareto Optimal Front. 

In figure 2.6 above Results 1,2 and 4 would be termed Pareto optimal as no solution from the 

available set dominates any of these three on both objectives. Result three however can be 
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seen to be dominated by result 2, as result 2 is closer to the optimum of both the stress and 

mass objective (minimisation). 

The set of such Pareto Optimal solutions is known as the Pareto Optimal front and it is the set 

of solutions making up the Pareto Optimal front that is the solution sought in Multiple 

Objective Evolutionary Algorithms. 

Second Generation Methods 

Coello Coello (1999) continues to describe Second Generation methods as methods, which 

emphasize efficiency and which often, use secondary populations in order to produce solution 

sets, which are both Pareto Optimal and uniformly distributed. 

A number of such solutions have been developed: 

" Pareto Archived Evolution Strategy (PAES) - Knowles and Come (2000). 

" Pareto Envelope-based Selection Algorithm (PESA) - Come et al (2000). 

" Pareto Envelope-based Selection Algorithm II (PESA II) - Come et al (2001). 

" Strength Pareto Evolutionary Algorithm (SPEA) - Zitzler (1999). 

" Non-dominated Sorting Genetic Algorithm (NSGA II) - Deb et al (2000). 

" Multi-Objective Messy Genetic Algorithm (MOMGA) - van Veldhuizen and Lamont 

(2000). 

Micro Genetic Algorithm (Micro-GA) - Coello Coello and Pulido (1993) 

Whichever solution method is used there are certain criteria that should be displayed by all 

good Multi-objective algorithms, Nam and Park (2000) provide four important properties: 
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1. Searching Precision. 

2. Searching Time. 

3. Uniform Probability distribution over the entire Pareto optimal Set. 

4. Provide as much information as possible about the Pareto optimal front. 

2.1.5 Ant Algorithms 

Ant Colony Optimisation aims to simulate the collective effort of ant colonies to solve 

problems. When ants travel between a nest and food source, for example, they deposit a 

pheromone in the form of a trail as they travel. This pheromone attracts other ants to follow 

and the more ants that travel the path the more pheromone is deposited, and so on and so 

forth. 

This mechanism of depositing and sensing the pheromone is known as stigmergy. Dorigo et 

al (1999), use a double legged bridge experiment to demonstrate this phenomenon, where 

ants both real and simulated utilise the shorter route due to the pheromone trial. 

Ant Colony Optimisation has been applied to the optimisation of many problems, of both 

single and multiple objectives. These applications include: 

" Travelling Salesman Problem - Dorigo (1999) 

. Vehicle routing problems - Reimann et al (2004) 

" JIT Sequencing with Multiobjectives - McMullen (2001) 

In addition to these applications Merkle et al (2000) and Liang et al (2004) applied Ant 

Colony Optimisation to Resource Constrained Project Schedule Problem Optimisation. 
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Merkle et al (2000), based the general principle of their AS-RCPSP algorithm on Dorigo's 

(1992) AS-TSP algorithm. Merkle utilises a serial schedule generation scheme (see section 

5.6.1) in conjunction with a maximum Latest Finish Time (LFT) priority rule. Merkle et al 

report improved performance over a number of algorithms including Genetic Algorithms 

proposed by Hartmann (1998). 

Liang et al (2004), applied ACO to the single mode RCPSP using a parallel Schedule 

generation scheme (see section 5.6.2) the ACT (Activity Control Time) priority rule is 

utilised within this scheme. ACT was reported by Chiu and Tsai (1993) to be the most 

effective priority rule. Using this scheme each Ant constructs a feasible schedule and updates 

the pheromone trail accordingly. Liang ends the algorithm on the bases of no improvement 

being found by the Ants in ten successive iterations. Liang et al report improved performance 

over the algorithms proposed by Merkle et al as discussed above. 

A flow diagram for Ant Colony Optimisation is given below in Figure 2.7: 
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Figure 2.7 - Ant Colony Optimisation Flow Diagram. 

2.1.6 Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO) is modelled upon the dynamics of bird flocks or fish 

schools. A swarm, or population of individuals, travels through the search space, looking for 
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high value locations. The individual, or particle, adapts its `flight' characteristics according to 

its experience and that of the other members of the swarm. 

At the beginning of the PSO a set of particles are initialised the position of each particle is 

evaluated in turn for fitness, in the first iteration the current position of each particle is stored 

as the particles best (Pbest) the best value of the swarm is stored as the Global best (Gbest) a 

velocity is then calculated from the following formula: 

v; +, = v; + (Cl x rand() x (Pbest- Curr; )) + (C2 x rand() x (Gbest- Curr,. )) 

Where: 

Vi =Current Velocity 

C1=C2=2 

From the velocity the new position of the particle is calculated from: 

Curt 1= Curr, +v1 

(2.5) 

(2.6) 

When all particles have been recalculated, the iteration is incremented and the process 

repeated. In the subsequent iterations the Pbest value is only updated for each particle if the 

new value is better than the existing Pbest value. The Gbest is similarly updated if the best 

value for the iteration is an improvement over the existing Gbest. 

A flow diagram of the basic Particle Swarm process is shown below in figure 2.8. 
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Particle Swarm Optimisation has been successfully applied to many types of problems of 

both single and multiple objectives. Examples of these applications include: 

" NC End Milling Optimisation - Tandon et al (2001). 

" Training of Neural Networks -Vanden Bergh (2001). 

Initialize Particles 

IN. 

eration = Iteration 
A 

Particle =0 
A 

Update Particle 
Pbest and Swarm 

Gbest values 

Update Particle 
Velocities 

Particle = No. NO 
of Particles 

YES 

NO Meets 
Condition 

YES 

Figure 2.8 - Particle Swarm Optimisation Flow Diagram. 
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Parsopoulos and Vrahatis (2002), applied PSO to multi-objective problems using both Pareto 

and non-Pareto based methods applied to problems with concave and discontinuous Parcto 

fronts, they achieved success with an algorithm (VEPSO) based on the principles of 

Schaffer's VEGA combined with PSO. 

2.1.7 Electromagnetism 

One of the most recent heuristics, which has been applied to combinatorial optimisation, is 

Electromagnetism (EM), introduced by Birbil and Fang (2003). This optimisation method 

draws its functionality from analogies with electromagnetism. 

Debels (2004a, 2004b) explains that the basic principle behind EM is that each point, x, in a 

multi-dimensional solution space, represents a solution. Each point is attributed a charge, 

based on the fitness of the objective function f(x). The charge of each of these solution points 

will either attract or repel other points with a force proportional to their charge values and 

inversely proportional to their distance apart. 

EM has been successfully applied to the PSP in particular to the RCPSP. Debels (2004b) 

propose an EM solution to the RCPSP using a Random Key schedule representation and a 

serial schedule generation scheme. 
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2.2 Evolutionary Algorithms applied to the Project Scheduling 
Problem 

2.2.1 Single Mode RCPSP using Genetic Algorithms 

Hartmann (1998) produced a genetic algorithm for solving RCPSP and reported better results 

than the currently existing heuristic methods. Hartmann offers a new permutation based 

genetic algorithm, which uses the activity list representation along with a serial SGS. The 

initial population being created using a priority rule selected at random. Hartmann considered 

three different crossover operators; one-point, two-point and uniform. He determined the best 

performing crossover operator to be the two-point crossover, with uniform crossover, noting 

that for larger projects increasing the number of crossover points from two may be desirable. 

In this publication Hartmann studied the RCPSP in the classification (m, 1(cpmIC, �. "}. 

Hartmann benchmarked the results of this algorithm against two other genetic algorithms and 

an existing sampling approach and reported his algorithm performing the best. For further 

information refer to Hartmann (1997) for the application of the algorithm to the scheduling of 

medical experiments. 

Valls et al. (2001) propose a two-phase algorithm for the problem {m, I jcpmI Cm. }. The first 

phase is concerned with basic improvement of the initial population and the second phase 

then performs a localised search of high potential areas using a scatter search (see Glover 

1994). The problem is benchmarked using PSPLIB problems. 

Alcaraz and Maroto (2001) utilized a form of self-adaptation in their Genetic algorithm based 

solution to the RCPSP, the exact problem class studied being {m, 1 jcpmI C""). The initial 

population in Alcaraz and Maroto's algorithm is not generated randomly as is commonly the 

case; instead the initial population members are generated using a sampling method. 
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Activities are selected using the Latest Finish Time (LFT) priority rule; in this way feasible 

schedules are already present in the initial population. They incorporated an additional gene 

into their chromosome, which controlled the mode of decoding. This gene contains a setting 

that determines whether forward or backward pass scheduling would be employed. Forward 

pass scheduling implies that, starting with the first activity to be scheduled, an activity is only 

eligible for scheduling once all its predecessors have been scheduled. Backward pass 

scheduling works in the opposite way, starting at the last activity; an activity can only be 

scheduled once all its successors have been scheduled. Using these two scheduling 

methodologies schedules are formed that may not have been possible using forward only 

scheduling. The mode of decoding therefore, self-adapts, due to the additional gene, which is 

evolved along with the schedule sequence. Alcaraz and Maroto also created three new 

crossover techniques: 

" Precedence Set Crossover. 

9 Forward-Backward Crossover. 

" Two-Point Forward-Backward Crossover. 

Full details of these methods can be found in the referenced thesis. Alcaraz and Maroto 

performed benchmarking using PSPLIB J30, J60 and J120 and reported better results than 

those achieved by Hartmann (1998) in all cases. 

Hartmann (2002) made further progress with the same class of problem, this time using a 

self-adaptive mechanism. Similarly to Alcaraz and Maroto (2001), Hartmann uses self- 

adaptation to select the method of schedule generation from the resultant chromosomes. This 

is also accomplished by extending the chromosomes with an additional gene, this gene 
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determines which SGS is employed (SSS or PSS) and hence the algorithm will adapt to 

utilise the most effective method of decoding for the particular problem under consideration. 

This form of algorithm adaptation is referred to as Self-Adaptation as the progress of the 

algorithm in refining the chromosome also refines the value of the adaptive gene. 

Hindi et al. (2002) introduce their genetic algorithm for solving the RCPSP {1,1 lcpmlC, �}. 

This algorithm utilises routines to provide feasible sequences to the initial population instead 

of a completely random generated population, which is more the norm. Hindi et al. use an 

activity list representation with a serial SGS to decode the chromosome; they experimented 

with a number of crossover operators; one-point crossover, multi-point crossover, uniform 

crossover and alternate crossover. Hindi et al. carried out initial testing of their algorithm 

using the Patterson problem sets and then completed final benchmarking using the PSPLIB 

problem instances. Hindi et al. also provide feedback on their experimentation in selection of 

the population size and number of generations utilised in their algorithm runs. They 

concluded the best performance was achieved by setting the population size equal to the 

number of activities in the problem set and they maintained the number of generations for all 

problems constant at 100. 

Valls et al. (2002,2003) implemented a Hybrid Genetic Algorithm using a serial SGS. They 

introduce a new crossover operator, the `peak' crossover operator. This operator is selective 

in the portions of the parent chromosomes selected for crossover. It selects genes based on 

Peaks in resource utilisation within the activity list. The peaks being transferred from one 

parent, with the other parent determining the fill-in of activities around the transferred peaks. 

Other features of this algorithm include a local search routine, and the double justification 
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operator, which, left and right justifies the schedule to seek local improvement. The problem 

type considered by Valls et al. is defined as(], 1 IcpmIC, �ý}. 

Kochetov and Stolyar (2003), employed a Hybrid Genetic algorithm to optimise the RCPSP 

{1,1IminIC, �ax}. Their algorithm utilises a serial SGS, and a specialised crossover operator 

based on a path re-linking strategy using a Greedy Randomised Adaptive Search Procedure 

(GRASP - see Feo & Resende 1995), with further improvement being carried out using a 

Tabu Search. The PSPLIB was utilised for benchmarking and the algorithm produced new 

best results for two instances of the J60 problem and one instance of the J120 problem as 

known at the time of publication. 

Gonsalves et a!. (2004) extended the RCPSP problem to the Resource Constrained Multi- 

Project Scheduling Problem, specifically the multi-project version of {m, 1 lcpmlmulti}. In 

this research the chromosome encoding includes the activity priority, the delay times and the 

release dates for each of the projects. As the problem classification indicates Gonsalves eta!. 

have designed their algorithm to optimise the schedule for multiple criteria. They combine 

tardiness, earliness and flow time. These criteria can be described as follows: 

" Tardiness - optimisation of due dates. 

" Earliness - Optimisation of stocks. 

" Flow Time - Optimisation of work in progress. 

A number of decoding philosophies (priority rules) are also considered the most successful 

being the `GaSlackMod' method, which modifies the normalised activity slack (float) to 

assign priority values to the activities. 
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Debels and Vanhoucke (2005a), utilise a Bi-Population Genetic Algorithm in which one 

Population contains Left Justified Schedules (LJS) formulated from a forward pass on a 

random activity list, and one Population contains only Right Justified Schedules (RJS) 

formulated from a backward pass on a random activity list. These two populations are then 

used to employ a forward-backward iterative local search process similar to that utilised by 

Alcaraz and Maroto (2001) and Valls et al. (2003). Debels and Vanhoucke (2005a) report this 

Algorithm performing slightly better than their (2004b) Hybrid Electromagnetism/Scatter 

Search algorithm discussed below. The algorithm is applied to the {m, 1 IcpmIC, �... } 

formulation of the RCPSP. 

Debels and Vanhoucke (2005b) also introduce a Decomposition-Based Heuristic. This 

Heuristic utilises their previously discussed Bi-population Algorithm as a subroutine to 

optimise sub-problems (or sub-networks). They describe three stages as follows: 

" Construction of Sub-problem -A RJS is utilised in conjunction with a time interval [Ptl, 

Pt2] to create a schedule Sb, such that Sb cS where S is the schedule of the full problem. 

" Genetic Algorithm - The Genetic Algorithm transforms Sb into an improved Sb. 

" Merge - The improved sub-schedule Sb is reintroduced into the original schedule S to 

create an improved S. 

The problem class considered by Debels and Vanhoucke (2005b) is {m, II cpmI C, � ), it was 

benchmarked using PSPLIB J30, J60, J90 and J120. The Algorithm outperformed most 

algorithms on the J30 and all algorithms that it was compared against for the J60 and J120, 

this included Hartmann (1998,2002) and Debels (2004c). 
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Mendes et al. (2005) propose a Random Key based Genetic Algorithm as a solution to the 

RCPSP {m, 1l cpmlC, � }. They quote the definition of three schedule types: 

9 Semi-Active Schedules - Feasible schedules obtained by sequencing activities as early as 

possible. No activity can be started earlier without changing the sequence. 

" Active Schedules - Feasible Schedules in which no activity can be delayed without 

delaying some other activity or breaking a precedence relationship. Optimal schedules are 

always members of this set of schedules and active schedules are always members of the 

set of semi-active schedules. 

" Non-Delay Schedules - Feasible schedules in which no resource is allowed to be idle 

when it could start to process an activity. Non-Delay schedules are also members of the 

set of active schedules. 

Mendes et al., limit the search space for the optimal solution (Active schedules) by 

employing parameterised active schedules. Whilst the Active Schedule space contains the 

optimal schedule/s this search space is very large and contains many solutions with long 

project durations. Parameterised schedules limit this search space by placing a restriction on 

the project duration. Mendes et al. also employ a unique fitness measurement criterion 

termed `Modified Makespan'. This problem performed well compared with other algorithms 

when tested on J30, J60 and J120 PSPLIB problems. 

Sakalauskas and Felinskas (2006) utilise a job priority list based genetic algorithm to solve 

the single and multi-mode RCPSP. The {m, 1I cpmI Cm¬, } single mode solution is discussed 

here and the multi-mode discussed in 2.2.4 below. The algorithm utilises a binary code 

representation making it unique from all other algorithms discussed in this section. 
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Sakalauskas and Felinskas utilised PSPLIB problems from J30, J60, J90 and J120 solution 

sets to test their algorithm. 

2.2.2 Single Mode RCPSP using Ant Algorithms 

Marco Dorigo et. al. (1999) first introduced Ant Colony Optimisation (ACO). Since the 

inception of ACO it has been successfully applied to various complex problems including the 

well studied Travelling Salesman Problem (TSP) and also more recently to the PSP. 

ACO aims to simulate the collective effort of ant colonies to solve problems. When ants 

travel between a nest and food source, for example, they deposit a pheromone in the form of 

a trail as they travel. This pheromone attracts other ants to follow and the more ants that 

travel the path the more pheromone is deposited, the greater the attraction to other ants, and 

so on and so forth. This mechanism of depositing and sensing the pheromone is known as 

stigmergy. 

Merkle et a!. (2000) first utilized ACO to derive solutions to the RCPSP {m, 1lminlC,,, (LC}, 

employing the serial SGS in conjunction with a modified LFT priority rule. In ACO based 

scheduling a pheromone matrix is commonly utilized, with pheromone being deposited by 

the ants to a matrix element when a good solution is found. The traditional approach being to 

employ the two matrix dimensions to represent the sequence (ith job/task) and the actual 

job/task number j. In other words Tyj would represent the possibility of Task j being the ith 

job. Previous scheduling work using ACO had the ants evaluate the desirability of placing j 

as the ith job/task purely on the level of pheromone present in that matrix location, this is 

known as direct evaluation. Merkte et a!. (2000) proposed an alternative to this evaluation 

method, which helps maintain desirable positions for tasks as it takes into account the 
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desirability of having activityj at the ith or less position in the sequence preventing activities 

which should be scheduled early being postponed until much later in the sequence. This 

alternative method is calculated using the following formula: 

Ii 
k=1 

Tkl 
(2.7) 

Merkle et al. termed this method Summation Evaluation. In the RCPSP algorithm a 

combination of these methods are applied. Other characteristics of this algorithm include an 

elitist strategy, 2-Opt local optimisation and also a low probabilistic possibility of replacing 

the best solution to date with the best for the current generation. The latter was employed to 

prevent premature convergence due to the elitist strategy. Merkle et al. report results that 

supersede those achieved by Hartmann (1998) using a competitive genetic algorithm and by 

Bouleimen and Lecoq (2000) using simulated annealing. 

Based on the success of Chiu and Tsai (1993) in employing priority rule methods using their 

ACTim rule, Liang et al. (2004) produced an ACO based algorithm for the (m, 1I cpm I Cmý) 

RCPSP utilising this rule. The results obtained utilising the PSPLIB problems compared well 

to Bouleiman and Lecoq's (2000) simulated annealing solution and to Hartmann's (1998) 

earlier GA, however it gave slightly worse solutions than both Merkle et al. (2000) and 

Hartmann's (2002) self-adaptive algorithm. 

Herbots et al. (2004) studied the applicability of ACO to the {m, Il cpmI C, �ý}, RCPSP 

problem. Herbots et al. test three different algorithm configurations: 

" SSS with normalised Latest Start Time (nLST) priority rule. 

64 



" PSS with normalised Latest Finish Time (nLFT) priority rule. 

" SSS with normalised Weighted Resource Utilisation and Precedence (nWRUP) 

priority rule. 

Each of these algorithm configurations was tested with forward, backward and bidirectional 

scheduling. The best performing configuration was the PSS/nLFT followed by the 

SSS/nLST. Herbots et a!. refrain from employing hybrid techniques within the algorithm and 

their algorithm compares well with other non-hybrid algorithms. They conclude with the 

belief that ACO has great potential for use as a hybrid due to its good performance in the pure 

form. 

2.2.3 Single Mode RCPSP using Other Meta-Heuristics 

On of the most recent heuristics, which has been applied to combinatorial optimisation, is 

Electromagnetism (EM), introduced by Birbil and Fang (2003). This optimisation method, as 

its name infers, draws its functionality from analogies with electromagnetism principles. 

Debels and Vanhoucke (2004a) explain that the basic principle behind EM is that each point, 

x, in a multi-dimensional solution space, represents a solution. Each point is attributed a 

charge, based on the fitness of the objective function f(x). The charge of each of these 

solution points will either attract or repel other points with a force proportional to their charge 

values and inversely proportional to their distance apart. 

EM has been successfully applied to the PSP in particular to the RCPSP with the 

classification (m, 1IcpmICm ). Debels and Vanhoucke (2004a) propose an EM solution to 

the RCPSP using a Random Key schedule representation and a serial schedule generation 
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scheme. This Algorithm outperforms Hartmann (1998,2002), Alcarez and Maroto (2001) and 

Valls et al. (2002,2003) on J30, J60 and J120 problems. 

Debels et al. (2004b) team scatter search techniques with EM in order to produce a Hybrid 

genetic algorithm. Whilst Kolisch (1996) had found that Activity List schedule representation 

was more consistent in obtaining optimal schedules than Random Key representation, Debels 

et al. state that this is due to the possibility that a number of RK representations can result in 

the same schedule. They supply two reasons specific to the RK representation that cause this: 

" Scaling in Euclidian space - priority values can be scaled in Euclidian space and still 

represent the same schedule. 

" Precedence Constraints - The priority values do not have constraints, therefore a 

predecessor may have a lower RK than that of its successor. 

Debels et al. then provide solutions to these two issues as well as two issues common to both 

the RK and AL representations and they choose to employ an improved RK representation, 

standardised RK (SRK) in their algorithm. This algorithm is then coupled with scatter search 

techniques. 

2.2.4 Multi-Mode RCPSP using Genetic Algorithms 

Wall (1996) employed a genetic algorithm to solve the MRCPSP the exact problem being {m, 

1l cpm, muI C, � } and {171cpm, muI C, � } with non-renewable resources (11) only being 

considered in one problem set. Multi-mode problems consider the case where a number of 
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different duration/resource utilisation options or modes are possible. Various scenarios can be 

employed by considering different modes or resource/duration combinations. Blend 

Crossover (Eshelman and Schaffer, 1992) is employed which is an adaptive operator that 

generates new values, based on the diversity of the parents; Wall tested three other crossover 

operators: 

" Uniform crossover. 

" Mean with Gaussian noise. 

" Extrapolation. 

Wall found uniform crossover to perform slightly worse than the other three operators. Two 

separate mutation methods were utilised, firstly Gaussian noise was applied to the activity 

sequence array and secondly, random flipping was applied to elements of the mode array. 

Walls applied the mutation probability at genome level rather than for the entire 

chromosome, each genome having the possibility of being mutated separately. Wall tested his 

algorithms using a number of sets of test problems including, Patterson's (1984) Project 

Scheduling Problems, Kolisch et al. (1992) single/multi mode Project Scheduling Set and 

Fox and Ringer's (1995) Benchmarx problems. The majority of other algorithms detailed in 

this thesis make use of the PSPLIB (Kolisch and Sprecher, 1996), therefore no direct 

comparison is made of the performance of Walls algorithm against the others algorithms 

presented. 

Mori and Tseng (1996) employed a genetic algorithm to solve the MRCPSP {m, 1 lcpm, 

muI C, �,,, }. In Mori and Tseng's GA the complete schedule is represented in a single 

chromosome, the Mode forming one bit of the Activity Gene. The mode selection is built into 
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the genome for each activity as an additional gene. This gene is initially selected at random, 

along with the sequence gene, and is then evolved along with the rest of the chromosome. 

Hartmann (2001) proposed a genetic algorithm for solving the MRCPSP, the exact problem 

being studied being {171 cpm, muIC}. The algorithm encodes both the activity sequence as 

well as the mode value within the chromosomes genotype. Hartmann employs a serial SGS to 

decode the activity list to a precedence and resource feasible solution. Due to the encoding of 

both the activities and the mode into the chromosome Hartmann developed specific crossover 

and mutation operators to address the extended genotype. 

Sriprasert and Dawood (2003) employed Multi-objective weighting in their multi-constraint 

genetic algorithm. The term "Multi-constraint" has been used to describe the following 

constraint types placed on activities: 

" Contract Constraints (time, cost and quality). 

" Physical Constraints (technology dependency, space etc. ) 

" Resource Constraints (availability). 

" Information Constraints (availability). 

Whilst this provides a different classification of constraints on project activities the authors 

would argue that all of these items are already addressed within the standard RCPSP as 

either, optimisation objectives (time, cost etc. ), Resource Constraints (as above but also 

space) or as predecessor dependencies (Information availability, technology). Details of the 

scheduling mechanism employed in this algorithm are not provided. Sriprasert and Dawoods 

algorithm was integrated with AutoCAD and Microsoft Project in order to produce 4D 

feedback from the optimised schedule. 4D provides a3 dimensional (3D) visualisation of the 
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construction process over time (Fourth dimension) in accordance with the precedence 

relationships defined in the schedule network. Sripraset and Daewoods algorithm uses an 

extended chromosome structure to allow for multiple execution options or multiple modes. 

The algorithm employs a uniform crossover operator and covers problems defined as {m, 

1 jcpm, muICmax}. 

Elloumi et al (2007), propose a solution to the bi-objective multi-mode RCPSP that allows 

overruns on the resource limitations, but assigns a penalty to any overruns based on the extent 

by which the limits are exceeded. The penalty is then utilised as a second minimisation 

objective (along with minimising makespan). They report better performance than the 

algorithm of Hartmann (2001) when testing the algorithm with j 10 - j30 problems. The type 

of problem considered with this algorithm is {171 cpm, muI C.,,, ). 

2.2.5 Multi-Mode RCPSP using Ant Algorithms 

No examples of Ant Algorithms applied to multi-mode RCPSP were found. 

2.2.6 Multi-Mode RCPSP using other Meta-Heuristics 

No examples of Particle Swarm, or Electromagnetism Algorithms applied to multi-mode 

RCPSP were found. 

2.2.7 Time-Cost Trade-Off Problems using Genetic Algorithms 

Feng, Liu and Burns (1997) propose a genetic algorithm solution to the time-cost trade off 

problem. Using the Herroelen et al. (1999) classification the problem would be (1,1 1cpm, 

mu, curve) . 
Feng et aL utilize a non-dominated Pareto front approach in order to provide the 
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time-cost trade-off curve, with multiple modes being available for each activity. Feng et al. 

demonstrate a Microsoft excel implementation that successfully produces the Time-Cost 

Trade-off curve for an 18 activity problem. 

Azeron et al. (2004) also propose a genetic algorithm solution to the time-cost tradeoff 

problem. The problems optimized by there algorithm can be classified as {1,1 1cpm, mu, cj 

(curve). Azeron et al. utilize the generalized Erlang distribution to describe the activity 

duration within a PERT network. Azeron et al. also use the non-dominated Pareto front 

approach. 

2.2.8 Problems with Discounted Cash Flow using genetic Algorithms 

This subclass of problem further extends the RSPSP problem through the addition of the 

consideration of cash flows incurred through the execution of certain activities. The objective 

of these problems being to maximize the Net Present Value (NPV) of the project, whilst also 

satisfying the requirements of the previously discussed RCPSP. 

Ulusoy et al. (2001) propose a Genetic algorithm approach for solving the RCPSPDCF. They 

consider four different payment models, with two different resource scenarios in each case. 

The Herroelen et al. (1999) classification of each of the payment models is given below for 

each resource scenario: 

" Lump Sum Payment at contract end (LSP) { 1,11 cpm, d. mu, cj, I npv}, {171 cpm, a�, mu, 

cj, I npv} 

9 Payment at Event Occurrences (Milestone payments) (PEO) (1,11 cpm, a�, mu, sched 

npv}, (IT I cpm, 8,,, mu, sched I npv). 
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" Equal Time Intervals (ETI) { 1,11 cpm, 8n, mu, per I npv}, JITI cpm, 8�, mu, per I npv}. 

" Progress Payments (PP) (], I I cpm, 8n, mu, per I npv), {IT I cpm, 8�, mu, per I npv}. 

As can be seen from the problem classifications, Ulusoy et al. (2001) have extended the 

RCPSPDCF by applying multiple modes. This is addressed in a similar manner to that 

adopted by Wall (1996), Mori and Tseng (1996) and Hartmann (2001), that is the mode 

option is encoded within the chromosome, thereby being refined through the evolutionary 

process along with the activity sequence. Ulusoy et al. utilise a multi-component uniform 

order based crossover operator, MCOUX, the reader is referred to Ulusoy et aL (1997) and 

Sivrikaya-$erifoglu (1998) for further discussion of this operator. Ulusoy et al. (2001) 

describe the RCPSPDCF with the following equation: 

NPV = 2]CFA (1 + r)-sT' +2]P Tk 
k (1 + r)-(2.8) 

j k¬K 

where CFA" is a set of Cash out flows computed from the cost of use of resource per unit time, 

multiplied by the duration of the activity j. r is the discount rate. ST is the start time of the 

given activity j, K is a set of payment points, P is the set of payments received at payment 

point K and Tk is the set of occurrence times for the payments P. This calculated value of 

NPV is then used as the fitness measurement for this algorithm. 

Ulusoy et al. utilize a modified scheduling scheme, which will not allow an activity to be 

scheduled with an earlier start than that of the start of any activities located to its left in the 

chromosome. 

Vanhoucke (2007) investigated the {m, 1lcpm, bn-1, cj Inpv) problem. This problem 

investigates the optimization of net present value within a defined deadline. Vanhoucke then 
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also investigates a soft deadline where the deadline can be violated in some circumstances but 

a system of penalties costs are then applied for breaching the deadline. Vanhoucke utilises 

three populations within the applied genetic algorithm. The first population contains 

information on the Positive Cash flows, the second on the negative cash flows and the third 

on the net cash flows, Vanhoucke concluded that the three population approach outperformed 

the traditional single population approach. 

2.2.8 Design Structure Matrix based problems using Genetic Algorithms 

Rogers (1994,1996) implemented a genetic algorithm to optimise the sequence of activities 

in the DSM in order to minimise the impact of iteration, which requires the DSM to be 

moved as close as possible to becoming lower triangular. Rogers algorithm was termed 

Design Managers Aid for Intelligent Decomposition (DeMAID). Satisfying this objective has 

the effect of minimising the overall duration of the project (make span) and therefore reduces 

the overall time dependant cost. The problem considered here would be {Idsmlminiter, C. =). 

Rogers offers no comparison of the DeMAID genetic algorithm against other optimisation 

methods. 

Todd (1997) also considered the DSM for the single objective of minimum iteration. Todd's 

experiments showed great improvement over currently existing methods when applied to 

three well-studied problems. Todd tested problems with 12,20 and 51 activities, the results of 

these test can be seen in table 2.3 below: 
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Table 2.3 - Comparison of Todd's (1997) GA vs. Non Evolutionary Methods. 

Problem No of Tasks Previous Best 

Solution 

Todd (1997) 

KUSIAK'91 12 7 6 

STEWARD `81 20 93 24 

AUSTIN `96 51 320 158* 

*later Todd produced a result of 157 under multi-objective solution. 

No evidence of the application of ACO or other types of Meta-heuristic to this class of 

problem was found. 

Todd (1997) considered the maximisation of concurrency as well as the minimisation of 

iteration {Idsmlmaxconcur, miniter). Todd (1997) reported his best results using Enhanced 

Edge Recombination Crossover (EERX), of Starkwcather et al (1991), in combination with 

the 2-City Adjacent swap, so named from its previous application to the Travelling Salesman 

Problem. Todd found a slightly better solution to Austins 1996 51-activity DSM problem 

under the multi-objective (miniter, maxconcur) problem finding a solution with a total 

feedback value of 157, his best result under single objective being 158. 

Whitfield et al. (2003) considered a number of different partitioning techniques whilst also 

investigating maximisation of concurrency and minimisation of iteration. In Whitfield et al. 's 

work emphasis was placed upon identifying the best Algorithm model by assessing the 

relative efficiency of a number of genetic operator combinations. Whitfield et al. found 

Todd's favoured combination of EERX and 2-city adjacent swap mutation to be among the 

worst performing combination and reported their best results from using the Independent 
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Position Crossover (IPX) in conjunction with the Shift Operation Mutation (SOM) of Murata 

and Ishibuchi (1994). 

No evidence of the application of other forms of evolutionary algorithm to this class of 

problem was found. 

Zhaung and Yassine (2004) utilised a Genetic Algorithm to optimise the RCPSP problem 

using the Dependency Structure Matrix. Zhaung and Yassine implement Leu and Yang's 

(1999) Union Crossover 3 operator, this operator performs crossover whilst maintaining 

conformance to precedence relationships. They also consider a Multi-project environment. 

The class of problem considered in this case is {1,1I dsmI Cm } 

No evidence of the application of other forms of evolutionary algorithm to this class of 

problem was found. Table 2.4 below gives a summary of the survey pertaining to the 

application of evolutionary algorithms to PSP. 

From the review of the literature it can be seen that the majority of research conducted into 

solution of the PSP via meta-heuristic has been focused on utilisation of the Genetic 

Algorithm. The Genetic Algorithm has been applied to a wider range of problems and with 

greater depth to each problem than the other meta-heuristics presented here. 

In order to meet the research objectives the research will be continued also utilizing a genetic 

algorithm approach as it is felt the structure of the genetic algorithm will lend itself more to 

the special problems that will be considered in subsequent chapters. 
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2.3 Chapter Summary 

In this chapter a thorough literature review was conducted of topics relating to the project 

scheduling problem, evolutionary algorithms and other meta-heuristics, followed by the 

application of these meta-heuristic techniques to the RCPSP. Each of the applications 

identified was coded in accordance with the Herroelen classification system and a summary 

table was provided giving key characteristics of each algorithm. 
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Chapter 3. Methodology 

This chapter reviews the approach taken with this research and the detail of the 

implementation of the developed algorithms, it discusses the problems that are addressed by 

the research and the environment in which the algorithms are developed and tested. 

3.1 Approach 

After completing the literature review it is evident that the greater portion of the research in 

this area has been conducted utilising genetic algorithms. To build on this research the 

approach selected for this thesis is also a genetic algorithm approach. 

It is intended to propose a modified genetic algorithm that will utilise adaptivity in order to 

intelligently control its parameter settings, it is a premise of this research that this will 

provide a robust algorithm that will lend itself to the complex search space exhibited by many 

PSP. 
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3.2 Implementation 

In order to implement the algorithms it was decided to conduct the initial algorithm 

development in MATLAB, with the algorithm being built in a modular form in order to allow 

for experimentation with different configurations. The decision to first develop the algorithm 

in MATLAB was made in order that the test problems for the TSP and DSM could be 

handled. 

The process decided on was to develop the algorithms in the following manner: 

" Develop a basic Genetic Algorithm that could be tested on a simple problem 

(Travelling Salesman Problem). 

" Develop a unique methodology for helping to guide the search within the optimisation 

routine and test on the Travelling Salesman Problem. 

" Develop Additional modules for the algorithm in order to optimise the Design 

Structure Matrix based problems. 

" Develop Additional modules for the algorithm in order to optimise the Single Mode 

RCPSP. 

" Develop Additional modules for the algorithm in order to optimise the Multi-Mode 

RCPSP. 

Once these algorithms have been successfully developed and tested the algorithm would 

be rewritten in Microsoft Visual Basic for Application within the Microsoft Project 

(MSP) environment. This would allow for experimentation with more practical, `real 

world' type problems in order to satisfy the latter objectives of the research. Once the 
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algorithms were rebuilt in MSP they would be tested with RCPSP problems before being 

further developed to handle extended problems. The extended problems that were focused 

on for further development were: 

" RCPSP with Stochastic Resource Assignments. 

" RCPSP with Stochastic Preferential Logic Assignments. 

The diagram represented in figure 3.1 below shows the taxonomy of the developed 

algorithms. 

Design Structure 
Matrix 

PSP 

Precedence 
Networks 

Iteration P oblemI 

I MRC 
SP 
Mode II Single 

RCPSPde 

RCPSP II RCPSP 
w/Stochastlc w/Stochastic 

Resources Logic 

Figure 3.1 - Taxonomy of Developed Algorithms. 

The Venn diagram in figure 3.2 below shows the development of the various algorithms 

within the appropriate development environment. The shared algorithm shows the point of 

transition from MATLAB to MSP. 
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MATLAB MS-PROJECT 

DSM RCPSP 
PROBLEMS w/Stochastic 

-- -'# Resources 

TSP 
(Non-Schedule) 

RCPSP 

------------- RCPSP w/Stochastic 
ulti- Mode - Logic 

Figure 3.2 - Venn diagram of Algorithm Development Environment. 

3.2.1 MATLAB Implementation 

As shown in Figure 3.2, the initial algorithm implementation was aimed at solving the 

Travelling Salesman problem. This non-scheduling type problem was chosen due to it being a 

simpler problem that is also a permutation type problem. The TSP was considered a simpler 

problem due to the ease of implementation of its fitness function compared to that of the PSP, 

which requires a fairly complex scheduling algorithm in order to calculate the overall 

duration of the schedules. 

The next problem targeted under the MATLAB environment was the first PSP problem. The 

DSM problem to minimise the iteration inherent in the design activity sequence was chosen. 

Again, this problem being considered simpler than the precedence based network type of 

problem as the measurement of iteration is again far more easily implemented than the 

precedence based RCPSP problem. The DSM problems are not intend to be considered as an 

alternative to precedence networks, rather to be complimentary and focused on refining the 

activity interactions that occur during engineering or development phases of a project. As 

discussed in Chapter 2, genetic algorithms have previously been applied to the DSM for the 
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minimum iteration problem, and it was therefore considered a good starting point for testing 

the effectiveness of the developed algorithm in the PSP space. Section 5.1 details this 

application of the algorithm in detail. 

Following the DSM, the algorithm was further developed to encompass the single mode 

RCPSP. As discussed earlier this requires encoding of the scheduling algorithm in order to 

calculate the fitness of the generated schedule. This implementation is discussed in detail in 

section 5.2. 

The final problem consider within the MATLAB environment is the multi-mode RCPSP, this 

required a restructuring of the chromosomes as well as modifications to the genetic operators. 

The detailed implementation of this optimisation problem is discussed in section 5.3. 

3.2.2 Microsoft Project based VBA 

Microsoft Project was chosen as a commercial scheduling environment in which to 

implement the FDAPCGA due to the built in Visual Basic for Applications (VBA) 

development environment integrated into the application. This provides an easily accessible 

interface to the underlying data. The MATLAB algorithms were rewritten in VBA with 

modifications being made as needed in order to utilise Microsoft Project variables. 

A simple graphical user interface was developed in order to solicit run time settings, allow for 

problem selection and to provide feedback on the algorithm execution progress and 

performance. The layout of the user interface dialogue box is given in Figure 3.3 below: 
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DATA CAPTURED FROM THE SCHEDULE 

Project Data: j Problem Type: 

Number of tasks: 180 Problem: 

Number of Resources: 4 

Algorithm Settings: Output Data: 

Population Size: Mini nm Fitness (1): 

Crossover Rate: 0.7 
Average Fitness (1): 

Mutation Rate: 0.07 1ý\an Fitness (2): 

of Generations: Number ý- F 20 
\Avaage Fitness (2): 

Percerxage Ekism: 0.25 

a G, 
0% 

PROGRESS MONITOR 

SELECTION OF PROBLEM TYPE 

j GENETIC 
ALGORITHM 

RCPSP OPTIMISATION 
RCPSP wth 2 Welghted Objectives 
RCPSP ith StochastK Logic 
RCPSP vdh Stochastic Resaxc 

i iI 

RUN PARAMETER SETTINGS 

lohn Lancaster 
PhD Research 

School of 
Engineering and 

Design 
BRUNEL UNIVERSITV 

Get Project Data 

kuiAborRMn -> 

FITNESS DATA FEEDBACK 

Figure 3.3 - Microsoft Project user interface. 

The dialogue box is called by utilising the customised Microsoft Project toolbar as shown in 

Figure 3.4 below: 

GENETIC ALGORITHM TOOLBAR 

!1 Ele I Ldit view Insert Fgrmat Tools ero)ect 4olaborate window Hei 

OaLj 43 davv b69id4 fa ßän4.. El \, O 
Tasks Resarces Treck Report (M Next Steps and Related ActioOes 

*A Pie" Project VX 

Open a project Task Name 

Tank Farm wHyd. mpp 
Tank Farm wMydsd. npp 1a Contract Award 

Tank Farm wHyd_sd sol_sd_sol. mpp 

Dirdbn Start FW sh Stochmtic Predemsora 
Logic 

I day Nbd 2/2107 Wed 2121107 

m n..,. r... omm rw. "nam 

Figure 3.4 - Genetic Algorithm toolbar 

The implementation of problems within Microsoft Project starts with the standard single 

mode RCPSP in section 5.4 this is followed by the special problems being considered in 

Chapters 6 and 7. 

No Qoup ý G)l (Sk . 91 Q) ý 
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3.3 Chapter Summary 

This chapter has summarised the methodology that has been employed in this research. It 

provided the approach and the detail plan of implementation. It details the platforms utilised 

for the algorithm development and the problems considered in each case, as well as introduce 

the user interface used to run the algorithm within Microsoft Project. 
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Chapter 4. The Fitness Differential 
Adaptive Parameter Controlled Genetic 
Algorithm 

It was identified in Chapter 3 that the basic genetic algorithm would sometimes become 

trapped in local minima and that a method was sought which could intelligently select when 

to widen the search path or to follow the current improvement path. Adaptive behaviour was 

selected as a mechanism to implement this additional intelligence. Chapter 4 discusses the 

development of the Fitness Differential Adaptive Parameter Controlled Genetic Algorithm 

(FDAPCGA). The taxonomy of Adaptive behaviour is discussed as well as the structure of 

the FDAPCGA and a test application using the travelling salesman problem (TSP). 

4.1 Taxonomy of Adaptivity in Genetic Algorithms 

A lot of work has been invested in the study of optimal settings for the operating parameters 

for Evolutionary algorithms. Parameter setting can be executed in two main modes prior to 

run and during run. 
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Ursem (2003) and Eiben et al (1999) both provide taxonomies for Parameter setting, which 

follow the same basic structure with some minor terminology differences, we provide the 

taxonomy as per Eiben et al (1999) in figure 4.1 below: 

Figure 4.1 - Taxonomy of Parameter Setting. 

Parameter tuning is concerned with refining the setting parameters prior to nin time. The 

parameters remain constant throughout the execution of the algorithm. Many methods have 

been applied to tuning these parameters including Taguchi methods. Thierens (2002) 

demonstrated the use of adaptive mutation control, employing two methods of controlling the 

mutation factor by testing the effects of increased and decreased mutation rates and then 

modifying the mutation probability accordingly. 

Parameter Control is concerned with the modification of parameters during the run time of 

the algorithm there are a number of methods by which this can be achieved: 

" Deterministic. 

" Adaptive. 

" Self-Adaptive. 
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These three classifications specify the method by which the algorithm receives instruction to 

alter the value of a parameter. 

Deterministic control involves the modification of the algorithm according to a pre-selected 

schedule or function, that is, no feedback is received from the values produced by the 

algorithm during its run-time. As this method receives no-feedback it is not able to adapt 

according to the current state of optimization. Our aim is to produce an algorithm that detects 

and escapes from trapping in local optima, so this method will not be suitable. 

Adaptive Control is achieved by modifying parameters based on the values yielded by the 

algorithm during its run time. Adaptive control reacts to feedback from the algorithm and is 

the method of control the author has selected for the algorithm presented in this thesis. 

Self-Adaptive Control is obtained by extending the chromosome by additional genes. These 

genes are evolved during the execution of the algorithm along with the rest of the 

chromosome. Through this method the best settings for parameters can be evolved during run 

time. The nature of this method of control is that of progressive refinement, the author aims 

to produce an algorithm that reacts quickly to the trapping and temporarily modifies its 

behavior to suit, so again this method is not suitable to our research. Sewell et al. (2006) 

utilized self-adaptation in their `rank-scaled mutation rate' genetic algorithm. This algorithm, 

applied to the traveling salesman problem, adapted the mutation probability of each 

chromosome dependant on the individual's fitness. Sewell et al. concluded that their 

algorithm performed competitively in problems where many local optima were present. 
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Two further classifications of adaptive parameter control should be discussed here, the first is 

concerned with the source of control, that is which algorithm generated data is used to drive 

the parameter changes. This could be any number of measures; in the algorithm presented in 

this thesis the author is concerned with preventing premature trapping of the algorithm within 

local optima. A characteristic of such a trapped algorithm is that its fitness will not improve 

whilst it is trapped in the local optimum, therefore for this algorithm the measure of fitness 

improvement over a number of successive generations has been chosen as the driving 

measure. Figure 4.2 below indicates the algorithms location within the taxonomy. 

Figure 4.2 - Taxonomy of adaptivity with the selection options for this Research. 

Last but not least we need to define what aspect, or parameter of the algorithm is being 

adapted. In order to prevent trapping diversification of search is required, this is most 

effectively achieved via increased mutation rate and therefore mutation rate has been 

identified as the object of adaptation in this algorithm. 

Due to this classification system we have termed the algorithm utilised here a Fitness 

Differential Adaptive Parameter Control Evolutionary Algorithm (FDAPCEA). The structure 

of this algorithm is discussed in the following section. 
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4.2 The Structure of the FDAPCGA 

Fitness Differential adaptation involves monitoring the improvement of the best solution 

from one generation to the next. In this algorithm the mutation factor is modified when the 

algorithm yields no improvement for a number of consecutive generations. The model of the 

FDAPCEA is otherwise quite typical. The flow diagram is given below in figure 4.3: 

Routine 

Generate Initial 
Population 

(9=0) 

I Evaluate 
Fitness 

If Htnese True Increase 
same for mutation factor 

p Bens by 8 times. 

False 

Reset Mutation 

value to original 
value. 

g=g+ 
If g 

True 

Limit 

False 

Perform 
Selection 

Perform 
Croawve,. 

I Perform 
Mutation 

Figure 4.3 - The FDAPCEA flow diagram. 
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The best fitness for each generation is stored in a vector, after the pth generation, the previous 

p generations fitness values are inspected and compared, if no improvement is detected across 

the p generations, the mutation probability is increased by a factor a. This causes a large 

amount of mutation, increasing the spread of the search. If a better solution is found, the best 

fitness will have increased and the mutation factor will return to normal. If no improvement is 

found the mutation factor will remain at the increased level, widening the search again for the 

following generation. 

This process aids the algorithm to escape from local minima and is employed only when the 

algorithm detects the possibility that it has become, or is likely to become trapped. 

Two variables have been identified in the above discussion; p the number of generations for 

which the algorithm will allow no improvement before applying increased mutation and 8 the 

factor by which the mutation probability is increased after the period p with no improvement. 

For purposes of this discussion, p is termed the differential period and b the differential 

factor. 

Due to the combinatorial nature of the problem the algorithm uses `real' encoded 

chromosomes, the operators are therefore also of the real encoded type. 
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4.3 Application of the FDAPCGA to the Travelling Salesman 
Problem 

The Travelling Salesman problem is a well-studied problem, which consists of finding the 

shortest route for a tour of n cities. The co-ordinates of the cities are given in each instance. 

The problem is combinatorial, all the cities need to be visited and each city must be visited 

only once, for this reason real encoding is usually used. 

A large amount of research has been conducted into the TSP, Todd (1997) evaluated a 

number of crossover operators, and the performance of Starkweather's (1991) Enhanced 

Edge Recombination was the best in Todd's tests. 

The basic framework of this Evolutionary Algorithm was constructed in MATLAB allowing 

a modular construction so that experimentation could be conducted with different 

combinations of operators. 

After experimentation using Enhanced Edge Recombination in conjunction with a greedy 

adjacent mutation operator, it was found that the GA would still get stuck in various local 

minima, these minima were in most cases very close to the global minimum. In order to 

overcome this problem self-adaptation was built into the algorithm, in that should the best 

solution from one generation to the next remain the same, i. e. no improvement gained, the 

mutation rate was increased substantially stimulating a wider search. Using this model the 

algorithm was consistently able to locate the optimal solution for 10 and 25 city problems. 

Table 4.1 below gives the input coordinates for the 10 city sample problem. Figure 4.4 then 

gives the resultant tour along with the graph showing improvement of successive generations. 

94 



The settings used for the 10 city tour were: Population - 50, Crossover - 0.7, Mutation - 

0.07, Elitism - 0.25 & Generations - 20. 

Table 4.1 - The Coordinates of the 10 City Tour 

City X-Coord Y-Coord 
1 2 4 
2 3 6 
3 5 7 
4 12 1 
5 10 4 
6 7 2 
7 4 4 
8 6 9 

F9 11 11 
10 6 8 
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Figure 4.4 - Optimum Results for the 10 City Tour (33.65 Units) 

Table 4.2 below gives the input coordinates for the 25 city sample problem and figure 4.5 

shows the solutions derived, along with the graph plotting the best-achieved solution per 

generation. The parameters used for the 25 city tour were: Population - 50, Crossover - 0.7, 

Mutation - 0.07, Elitism - 0.25 & Generations - 90. 

23A56789 10 11 12 
X Coordinalas 
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Table 4.2 - The Coordinates of the 25 City Tour 

City X-Coord Y-Coord 
1 2 32 
2 16 28 
3 22 3 
4 41 17 
5 12 9 
6 39 32 
7 15 32 
8 27 14 
9 11 11 
10 1 43 
11 49 29 
12 12 10 
13 7 6 
14 3 2 
15 44 38 
16 13 4 
17 9 42 
18 17 13 
19 8 6 
20 26 22 
21 19 13 
22 8 1 
23 38 11 
24 2 2 
25 17 45 
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Figure 4.5 - Optimum results obtained for 25-city Tour (199.37 Units) 

The input data for a sample 50 City tour problem is given below in Table 4.3. A near- 

optimum result and improvement curve, as well as the optimum result and improvement 

curve are given in figure 4.6 to show the magnitude of the difference in route producing only 

a very small reduction in the overall distance. The settings utilised in the 50 city tour problem 
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were: Population - 150, Crossover - 0.7, Mutation - 0.1, Elitism - 0.25 & Generations - 

500/400 

Table 4.3 - The Coordinates for the 50 City Tour 

City X-Coord Y-Coord 
1 2 32 
2 16 28 
3 22 3 
4 41 17 
5 12 9 
6 39 32 
7 15 32 
8 27 14 
9 11 11 
10 1 43 
11 49 29 
12 12 10 
13 7 6 
14 3 2 
15 44 38 
16 13 4 
17 9 42 
18 17 13 
19 8 6 
20 26 22 
21 19 13 
22 8 1 
23 38 11 
24 2 2 
25 17 45 

S O 
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City X-Coord Y-Coord 
26 3 46 
27 8 23 
28 23 43 
29 18 7 
30 44 16 
31 2 28 
32 32 43 
33 21 11 
34 16 3 
35 13 46 
36 7 33 
37 34 9 
38 15 23 
39 49 16 
40 19 2 
41 27 10 
42 4 15 
43 28 39 
44 12 20 
45 31 1 
46 5 17 
47 21 8 
48 1 34 
49 16 15 
50 40 32 
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Figure 4.6 - Near Optimum Results Obtained for 50 City Tour (301 Units) 

97 



50 

45 

10 

35 

30 

25 

20 

15 

10 

5 

CO 
5 10 15 20 25 30 35 40 45 50 

X Coordinates 

I-. 

i 
L 

A 
S 
i 
a 

loo 
600 

400 

300 

mo 0 

Figure 4.7 - Optimum Results obtained for 50 City Tour (297.04 Units) 

It can be seen from Figure 4.7 above that the algorithm obtains its optimum value after 355 

generations. It should also be noted from Figure 4.6 that a solution also exists with only 

slightly lower fitness (higher tour length) of 301 units, however the sequence of this solution 

is somewhat different from the optimal solution given in Figure 4.7. Algorithms without the 

adaptivity built into the FDAPCGA may have problems escaping from the 301 unit solution 

in order to find the optimum 297.04 unit solution as the field of search may be too narrow. 

4.4 Chapter Summary 

In this chapter the adaptivity in Genetic algorithms was reviewed. The formulation of the 

FDAPCGA was detailed and each component of the algorithm discussed. The algorithm was 

then applied to the Travelling Salesman Problem using problems with 10,25 and 50 city tour 

problems. The algorithm successfully optimised these problems. 
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The MATLAB code for the FDAPCGA implementation to the Travelling Salesman Problem 

is given in appendix A. Note that three separate algorithms are provided one for each problem 

size. 
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Chapter 5. Application of the FDAPCGA to 
the DSM & RCPSP 

In this chapter the algorithm developed in Chapter 4 is extended in order to solve PSP. Firstly 

the solution for the DSM problem (°, °Idsm Iminiter) is developed followed by the precedence 

network based RCPSP, {m, lflminIC,, Bx}. 

5.1 The Design Structure Matrix 

Section 1.1.4 described the function of the DSM as well as the optimization objectives of the 

problem. The objectives and problems that have been researched are: 

" Minimisation of Iteration {°, °ldsm Iminiter} 

" Maximisation of Concurrency (°, °ldsm Imaxconcur) 

Here we consider the first problem the minimisation of Iteration. 
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5.1.1 Fitness Measurement 

For the Minimum Iteration problem in the DSM the measure of fitness is the sum of the 

distance of the logic links from the diagonal or by moving the matrix as close as possible to 

being lower triangular, that is the feed back links either need to be within the lower triangle 

or failing this as close as possible to the diagonal. The measure of fitness can therefore be 

determined by summing the distance from the diagonal of all the feedback links i. e. links in 

the upper triangle. The measure of Total fitness is therefore given by: 

Wi -(xi -Yi) (5.1) 

Letting n be the number of activities in the upper triangle, w be the feedback value (in this 

case always 11) and x and y being the position in the sequence of the predecessor and 

successor respectively i. e. the distance from the diagonal. 

5.1.2 Selection 

The algorithm uses Roulette selection as described by Goldberg (1989). 

5.1.3 Crossover 

Two types of crossover operator have been used in this work; two-point centre crossover and 

independent position crossover. 

' This research is limited to the study of Binary type DSMs. DSMs are also utilized with numerical feedback 

values these being referred to as Numerical DSMs (NDSM). 
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Two-point centre crossover 

In the two-point centre crossover operator (Murata, 1997), two Random points are selected 

on the first parent chromosome. Genes falling inside these two points are transferred directly 

to the child chromosome. The remaining genes from the first parent are transferred to the 

child chromosome in the order they occur in the second parent. This is shown 

diagrammatically below in figure 5.1: 

Parent 1 1 2 3 4 5 6 7 

Parent 2 4 1 5 7 2 6 8 3 

Child 1 7 3 4 5 6 2 8 

Figure 5.1 - Two-point centre crossover 

This process is then repeated working from the second parent to produce a second child. For 

the solutions to the problems discussed in section 4, the crossover factor was set to 0.7. 

Independent Position Crossover 

The second method of crossover employed is Independent position crossover. This method of 

crossover applies a probability of 0.5 to each gene of being transferred directly from the first 

parent to the child. The values that have then not been transferred to the child due to this 

process are then added in the order they occur in the second parent. Figure 5.2 below shows 

this process graphically. 
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0.3 0.6 0.2 0.3 0.8 0.2 0.6 0.1 
Parent 11 23 4567 8 

Parent 24 15 7268 3 

Child 4 21 6587 3 

Figure 5.2 - Independent Position Crossover 

The first row of figures above the first parent in figure 4.3 are random variables generated for 

each gene in order to determine whether they are eligible for transfer to the child 

chromosome. As can be seen all the values greater than 0.5 have been transferred directly to 

the child (2,5 & 7) the balance of the genes (1,3,4,6 & 8) have been transferred to the child 

in the order they occur in the second parent. 

5.1.4 Mutation 

For the solutions to the problems discussed in section 4, the mutation factor was set to 0.07. 

5.1.5 Standard Problems used for comparison 

Project scheduling problem (PSP) libraries such as PSPLIB (Kolisch and Sprecher, 1996), 

normally utilized for benchmarking of PSP, do not provide problems with iterative links, 

therefore to provide a benchmark for this algorithm the problems considered by Todd (1997) 

are utilized. Todd uses three problems: 

9 KUSIAK '91 -A twelve-activity schedule (Kusiak et al 1991). 

" STEWARD '81 -A twenty-activity schedule (Steward 1981). 

" AUSTIN '96 -A fifty-one-activity schedule - In this case the original DSM was not 

provided, Todd therefore sought further improvement of the solution offered by Austin. 

For comparative purposes the same approach has been taken here (Austin et a! 1996). 

103 



The original authors offered solutions to each of their respective problems. These solutions 

used methods other than evolutionary techniques. The best values obtained for these 

problems before Todd's (1997) work are given in table 5.1 below: 

Table 5.1 - Best non-evolutionary solutions. 

Problem Best solution 

KUSIAK'91 7 

STEWARD `8l 93 

AUSTIN `96 320 

Results obtained with the FDAPCEA. 

2 3 11 1 7 6 101 12 1 9 8 5 4 
2 0 0 0 0 0 0 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 0 0 0 0 0 
11 1 1 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 
7 1 0 1 01 01 00 0 0 0 0 0 0 
6 1 0 0 0 0 0 0 0 0 0 0 
10 1 1 1 0 0 1 0 0 0 0 0 
12 0 0 1 1 0 0 1 0 _`t 0 0 0 
9 0 1 0 0 0 1 1 0 0 0 0 0 
8 0 0 1 1 0 0 0 1 0 0 
5 0 0 1 0 0 1 0 0 0 1 0 0 

14 10 11 0 0 0 1 0 1 0 0 1 0 

Total Fitness (Iteration) -6 

Figure 5.3 - Resultant DSM (KUSIAK '91) 

The algorithm yielded a number of different solutions with a total fitness of 6 as show above 

in figure 5.3. Figure 5.4 below shows that the solution is typically arrived out without any 

significant periods being `trapped' in local minima. The best solution to this DSM yielded by 

Todd was also 6. 

104 



C 

O 

A 

Ö 

30 

25 

20 

15 

10 - 

s 
o 10 20 30 10 50 60 10 00 90 1 00 

Figure 5.4 - Algorithm improvement over successive generations (KUSIAK '91) 

2 19 5 16 6 7 8 18 9 11 10 17 3 4 1 14 20 15 12 13 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 
19 1 0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 1 0 1 0 0 0 0 .: 0 0 0 0 0 0 0 0 
6 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 1 1 1 U- 0 0 0 0 0 01 01 01 0 0 0 0 0 0 0 
8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 1 0 0 1 0 1 0 c Nil 0 0 0 0 0 0 0 
17 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 % 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 

.0 
0 0 0 0 

,0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 

,0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 
13 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

Total Fitness (Iteration) = 24 

Figure 5.5 - Resultant DSM (STEWARD '8l ) 

Figure 5.5 above shows the results obtained for the Steward '81 problem, the best solution 

found for this problem by Todd was also 24. Figure 5.6 below shows a typical improvement 

curve achieved for this problem, it shows that after generation 20 there exist a number of 

plateaus in the improvement graph where the algorithm is potentially `trapped' for a number 

of generations before finding further improvement. For the run shown in figure 5.6 below the 
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differential adaptation factor was set to 4 generations, the plateaus in the improvement graph 

below appear to be typically around 4 generations in length or greater indicating that the 

sudden increase in mutation rate could be responsible for a number of these stepped 

improvements. 

The best solution produced by the algorithm for this DSM was a total fitness of 24; this result 

is also equal to the best result reported by Todd. 
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Figure 5.6 - Algorithm improvement over successive generations (STEWARD '81) 

The resultant DSM for the problem of AUSTIN '96 is given below in figure 5.7. 
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Total Fitness (Iteration) = 157 
Figure 5.7 - Resultant DSM (AUSTIN '96) 

The result produce for the AUSTIN '96 DSM was a total fitness (iteration) of 157, an 

improvement of I over Todd's single objective algorithm result of 158. The Improvement 

graph for the algorithm for this solution is shown below in figure 5.8. 
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Figure 5.8 - Algorithm improvement over successive generations (AUSTIN `96) 
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The improvement curve shows that constant improvement has been achieved right to the last 

25 generations. It should be noted that a function of the algorithm is that the differential 

adaptation is not applied during the last 10% of the generations on each run, in order to allow 

convergence. In this run the differential adaptation would therefore have cut out at generation 

450. 

The effectiveness of the FDAPCEA compared with the original results and the results of 

Todd (1997) as shown below in Table 5.2. 

Table 5.2 - Comparative Results of Best Solutions to DSM problems. 

Problem Original Solution Todd (1997) FDAPCEA 

KUSIAK'91 7 6 6 

STEWARD `81 93 24 24 

AUSTIN `96 320 158* 157 

*Todd later found a solution of 156 using a Multi-objective algorithm. 

5.2 The Single Mode RCPSP 

Single mode RCPSP implies that each of the activities within the network has fixed and 

constant durations and resource assignments and therefore only a single possible mode of 

execution. The description of the problem is as per the RCPSP description given in section 

1.1.1. 
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This implementation of an optimisation algorithm for the single mode RCPSP was 

implemented within MATLAB, utilising a modified version of the fitness differential 

adaptive algorithm tested on the DSM in the previous section. 

The problem classification dealt with in this version of the algorithm is {m, 1lcpmlCmax}, or a 

single mode, resource constrained problem with multiple renewable resources. 

In order to cater for the RCPSP a number of modifications needed to be made to the 

algorithm to cater for this more complex problem. The components of this version of the 

algorithm along with the modifications made are discussed below: 

5.2.1 Fitness Function 

The fitness function is the main portion of the algorithm that is application specific and 

therefore where the major differences occur from the DSM implementation. A number of 

approaches were discussed, within the chapter 2 literature survey, for handling the scheduling 

of activities within cpm networks. The algorithm employs a serial schedule generation 

scheme in order to calculate the overall duration of the project in each case. 

5.2.2 The Algorithm Structure 

The full code implementation of the single mode RCPSP is given in appendix A. 
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5.2.3 Sample PSPLIB Problem Solutions 

In order to test the effectiveness of the algorithm in the solution of the single mode RCPSP a 

number of PSPLIB problems were employed. The solutions to three such problems from the 

single mode PSPLIB are detailed below. The three problems were selected for varying 

complexity, the ones chosen were: 

" J30110 

" J60101 

9 J12054-7 

Problem: J30110 

This test schedule is a single mode problem consisting of 32 activities including the start and 

finish node. The Relationships between the activities are given and are described in Table 5.3 

below. 
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Table 5.3 - Number of Modes and Precedence Relationships. 

Activity 
No. of 
Modes 

No. of 
Succ. Succ Succ Succ 

1 1 3 2 3 4 
2 1 3 6 11 15 
3 1 3 7 8 13 
4 1 3 5 9 10 
5 1 1 20 
6 1 1 30 
7 1 1 27 
8 1 3 12 19 27 
9 1 1 14 
10 1 2 16 25 
11 1 2 20 26 
12 1 1 14 
13 1 2 17 18 
14 1 1 17 
15 1 1 25 
16 1 2 21 22 
17 1 1 22 
18 1 2 20 22 
19 1 2 24 29 
20 1 2 23 25 
21 1 1 28 
22 1 1 23 
23 1 1 24 
24 1 30 
25 1 30 
26 1 31 
27 1 28 
28 1 1 31 
29 1 1 32 
30 1 1 32 
31 1 1 32 
32 1 0 

The durations and the resource utilisation for each of the activities is also provide by the 

problem and is given below in Table 5.4. 



Table 5.4 - Mode Duration and Resource Allocations 

Activity Mode Duration RI R2 R3 R4 
1 1 0 0 0 0 0 
2 1 8 4 0 0 0 
3 1 4 10 0 0 0 
4 1 6 0 0 0 3 
5 1 3 3 0 0 0 
6 1 8 0 0 0 8 
7 1 5 4 0 0 0 
8 1 9 0 1 0 0 
9 1 2 6 0 0 0 
10 1 7 0 0 0 1 
11 1 9 0 5 0 0 
12 1 2 0 7 0 0 
13 1 6 4 0 0 0 
14 1 3 0 8 0 0 
15 1 9 3 0 0 0 
16 1 10 0 0 0 5 
17 1 6 0 0 0 8 
18 1 5 0 0 0 7 
19 1 3 0 1 0 0 
20 1 7 0 10 0 0 
21 1 2 0 0 0 6 
22 1 7 2 0 0 0 
23 1 2 3 0 0 0 
24 1 3 0 9 0 0 
25 1 3 4 0 0 0 
26 1 7 0 0 4 0 
27 1 8 0 0 0 7 
28 1 3 0 8 0 0 
29 1 7 0 7 0 0 
30 1 2 0 7 0 0 
31 1 2 0 0 2 0 
32 1 0 0 0 0 0 

Four resources are applied within this problem all of which are renewable. The table of' 

Resource limits are given below in Table 5.5 below. 

Table 5.5 -- Resource Limits 

RI R2 R3 R4 
12 13 4 12 
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The algorithm was run using the following settings: Population = 20; Crossover Rate = 0.7; 

Mutation Rate = 0.07 and Generations = 20. The resulting optimisation curve is given below 

in Figure 5.9. 
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Figure 5.9 - Optimisation Curve for the J301_10 PSPLIB Problem 

The Algorithm can be seen to quickly arrive at the optimal solution. This is one of the simpler 

PSPLIB problems and it takes only 5 generations in this run for the algorithm to optimise the 

schedule 

Problem: J60101 

This test schedule consists of 62 activities including the start and finish node. The 

optimisation curve for this run of the algorithm is shown in figure 5.10 and it can be seen that 

the algorithm successfully optimises this problem within two generations. The data provided 

for the problem is in the same format as that given for the J301_10 problem, due to the 

number of activities in the problem this data has not been repeated here. 
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Figure 5.10 - Optimisation Curve for the J60 101 PSPLIB Problem 

This problem and the J30 problem, whilst showing the effectiveness of the algorithm in 

finding the optimal or best known result do not show the algorithms ability in escaping from 

local minima as the result is typically achieved very quickly with no `plateaus' being seen in 

the optimisation curve. 

Problem: J12054-7 

This test schedule consists of 122 activities including the start and finish node. This is one of 

the more difficult problems from the PSPLIB set. The optimal solution is given on the 

PSPLIB website (www. psplib. com), at the time of submission of this thesis the best known 

solution was posted as follows: "54,7,111, Tue Apr 9 15: 43: 57 2002 V. Valls, M. 

Quintanilla, F. Ballestin ". That is for problem 54, instance 7 the best solution is 111 units. 

Figure 5.11 below shows the optimisation curve of a run of the algorithm producing this best 

known solution. 

114 



121 

120 

119 

118 

0 117 

2,116 

115 
U- 

114 

113 

112 

111 
0 10 20 30 40 50 60 70 80 90 100 

Generations 

Figure 5.11 - Optimisation Curve for the J 12054_7 PSPLIB Problem 

It can be seen from figure 5.11 that the algorithm finds the best known solution in this run 

after 89 generations. The algorithm had been stuck in a local minimum with the value of 112 

units from generation 22 to 89, but had then freed itself in order to find the best known 

solution at generation 89. 

For the single mode problems only the optimisation curves have been reproduced here from 

the algorithm runs, demonstrating the algorithms ability to produce optimum or best known 

results. The multi-mode problem algorithm runs below will demonstrate the adherence to the 

resource limitiations where both renewable and non-renewable resources are applied. 

5.3 The Multi-Mode RCPSP 

115 



In the Multi-mode RCPSP each of the activities, , 
7, in the network has multiple modes of 

execution, MI. Each of the modes of execution has a resource requirement, r N. For example 

a task that can be completed in 10 days with 2 people may also be able to be executed in 5 

days using 4 people. Alternatively a different type of resource may be applied. 

The classification of problem considered in this section is (171cpm, muI Cm}, which 

indicates mutli-mode problems that utilise both renewable and non-renewable resources. 

5.3.1 Fitness Function 

No modification of the fitness function is required from the single mode RCPSP algorithm in 

order to solve the multi-mode RCPSP. The serial schedule generation scheme however has to 

be enhanced in order to cater for the decoding of the extended chromosome structure that is 

explained below in section 5.3.2. 

5.3.2 Algorithm Structure 

In order for the algorithm to search for the optimum mode for the execution of each activity 

the mode needs to be encoded as part of the chromosome so that mode data is performed 

upon by the same operators as the activity permutation portion. Having the algorithm act on 

the mode selection as well as the schedule sequence allows the optimum configuration of 

modes to be achieved as an integral part of the optimisation process. The fundamental 

difference therefore between the multi-mode and single mode algorithm implementation is 

the structure of the chromosome. To handle the extended chromosome within the MATLAB 

implementation of the algorithm, two populations of identical dimensions have been 

employed. The first population holds the chromosomes containing the encoding of the task 
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sequences and the second holds the mode selection for each of the tasks. A sample of the data 

held in each population is shown below in figure 5.12. 

POPULATION I 
Task Sequence 

Seq Pos 123456 n-2 n-1 n 
Task No. 12311 18 32 12 3 14 6 121 

POPULATION 2 
Task Mode Selection 

Seq Pos 123456 n-2 n-1 n 
Mode 12 1111131213112 

Figure 5.12 - Dual Populations within Multi-Mode Algorithm 

Both of the two populations are generated during the initial population generation. Population 

1 is formed as with the single mode problem with each chromosome being a random 

permutation of the tasks contained with in the schedule. As not each task may have the same 

number of possible modes a reference table is held giving the number of modes possible for 

each task. In order to generate the population of mode selections, random numbers are 

generated for each task, 1, such that Rande E M, where M, is the set of modes available for 

task]. 

The crossover in operator utilised in the algorithm is the independent crossover operator. This 

operator is used to perform crossover on both the sequence chromosome and the mode 

selection chromosome simultaneously. Due to the tasks in the multi-mode PSPLIB problems 

all having the same number of modes this is possible. Should different numbers of modes be 

available to each task then independent crossover could not be utilised as it could cause an 
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invalid mode selection. A diagram illustrating independent crossover was shown in figure 5.2 

in section 5.1. 

Mutation in the multi-mode algorithm also utilises the same mutation operator for both 

chromosomes. Two-point-adjacent-swap (Two-point-adjacent-city-swap) is applied in both 

cases simultaneously. 

With the exception of these points the algorithm remains the same as the single mode 

algorithm. In order to test the performance of the algorithm on multi-mode problems, samples 

from the PSPLIB were utilised. 

5.3.3 Sample PSPLIB Problem Solutions 

As stated above the problems studied by this genetic algorithm implementation are {m, 

171cpm, mulCmax}. Three sample problems are examined here from the PSPLIB library, one 

J10 problem, one J12 problem and one J30 problem. These problems have 10,12 and 30 

activities respectively with and additional 2 activities each for the start and completion nodes. 

The randomly selected problems are: 

" J108-5m 

9 J1237-8m 

9 J309-5m 

Problem: J108-5m 

This sample problem has a total of 12 activities (including start and finish node) and utilises 2 

renewable and 2 non-renewable resources. The activities each have 3 possible modes of 
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execution and utilise a combination of the lour available resources. "! 'able 5.7 gives the 

precedence relationships. Table 5.8 gives the duration and resource allocations for each mode 

of execution. Table 5.9 gives the resource limits. RI and R2 are the two renewable resources 

and NI and N2 are two non-renewable resources. 

Table 5.7 - Numbcr of Modes and Precedence Relationships 

Activity 
No. of 
Modes 

No. o 
Succ. Succ Succ Succ 

1 1 3 2 3 4 
2 3 1 7 
3 3 2 5 6 
4 3 3 5 6 10 
5 3 2 7 9 
6 3 2 8 9 
7 3 1 11 
8 3 1 11 
9 3 1 12 
10 3 1 12 
11 3 1 12 
12 1 0 
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Table 5.8 - Mode Duration and Resource Allocations 

Activity Mode Duration RI R2 NI N2 
1 1 0 0 0 0 0 
2 1 3 9 0 4 9 
2 2 5 0 5 4 5 
2 3 10 8 0 3 4 
3 1 6 10 0 10 6 
3 2 8 0 2 9 3 
3 3 9 10 0 7 1 
4 1 1 0 7 8 7 
4 2 1 6 0 8 7 
4 3 6 1 0 7 4 
5 1 1 0 5 8 8 
5 2 3 5 0 7 / 
5 3 7 0 5 6 6 
6 1 4 0 8 6 8 
6 2 5 0 5 6 / 
6 3 5 0 6 3 8 
7 1 6 6 0 8 9 
7 2 7 0 9 6 8 
7 3 7 6 0 6 8 
8 1 6 0 7 5 10 
8 2 8 5 0 5 8 
8 3 9 0 7 2 5 
9 1 1 0 8 6 3 
9 2 4 0 6 4 3 
9 3 5 0 2 3 3 
10 1 3 5 0 4 9 
10 2 6 5 0 3 9 
10 3 10 0 4 3 6 
11 1 5 6 0 7 7 
11 2 5 0 1 7 / 
11 3 8 6 0 5 5 
12 1 0 0 0 0 0 

Table 5.9 - Resource Limits 

R1 R2 N1 N2 
59 66 76 

Note the resource limits given in Table 5.9 above are given per unit time liar the two 

renewable resources and total usage for the two non-renewable resources. I'hc network for 

the problem is given below in figure 5.13. 
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Figure 5.13 - The J 108-5m Network and Adjacency Matrix 

The algorithm run parameters utilised for this optimisation were Population 50; Crossover 

Rate = 0.7; Mutation Rate = 0.07 and Generations = 16. Figure 5.14 below shows the 

improvement curve for the optimisation process. 
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Figure 5.14 - Optimisation Curve for the J 108-5m PSPLIB Problem 

The optimisation curve shows the algorithm converging on the best known solution on the 

thirteenth generation. The resource histogram shown in Figure 5.15 below shows the 

adherence of the algorithm to the renewable resource limitations. The cumulative usage of the 

two non-renewable resources NI and N2 was 50 and 62 respectively which is also within the 

prescribed cumulative usage. 

The algorithm has successfully optimised this problem maintaining all required limitations. 
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Resource Histogram - Problem J108-5m 
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Figure 5.15 - Resource Histogram for J 108-5m 

Problem: J1237-8m 

This sample problem has a total of 14 activities (including start and finish node) and utilises 2 

renewable and 2 non-renewable resources. The activities each have 3 possible modes of 

execution and utilise a combination of the four available resources. Table 5.10 gives the 

precedence relationships. Table 5.11 gives the duration and resource allocations for each 

mode of execution. Table 5.12 gives the resource limits. Rl and R2 are the two renewable 

resources and Ni and N2 are two non-renewable resources. 
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Table 5.10 - Number of Modes and Precedence Relationships 

Activity 
O. of 

Modes 
No. of 
Succ. Succ Succ Succ 

1 1 3 2 3 4 
2 3 2 7 13 
3 3 3 5 6 8 
4 3 3 6 7 9 
5 3 3 7 10 11 
6 3 2 11 12 
7 3 1 12 
8 3 3 10 11 13 
9 3 2 10 13 
10 3 1 12 
11 3 1 14 
12 3 1 14 
13 3 1 14 
14 1 0 

Table 5.11 - Mode Duration and Resource Allocations 

Activity Mode Duration R1 R2 N1 N2 
1 1 0 0 0 0 0 
2 1 1 3 9 9 5 
2 2 4 9 8 3 3 
2 3 5 8 6 3 2 
3 1 3 7 4 6 6 
3 2 4 6 4 6 5 
3 3 5 5 4 4 2 
4 1 2 6 8 8 9 
4 2 2 7 8 7 8 
4 3 5 6 8 5 7 
5 1 2 6 5 9 8 
5 2 3 4 4 9 8 
5 3 7 3 1 9 7 
6 1 6 9 10 6 6 
6 2 8 9 8 5 5 
6 3 9 8 6 5 4 
7 1 7 5 8 2 7 
7 2 7 6 6 2 7 
7 3 10 5 5 2 7 
8 1 2 10 9 6 6 
8 2 2 10 9 9 5 
8 3 4 7 9 9 5 
9 1 5 2 6 6 2 
9 2 7 2 6 6 1 
9 3 10 2 5 4 1 
10 1 2 3 10 2 3 
10 2 7 2 7 2 3 
10 3 9 2 4 2 3 
11 1 1 10 6 5 4 
11 2 6 10 6 5 3 
11 3 8 9 4 4 3 
12 1 7 6 8 3 8 
12 2 9 3 6 3 8 
12 3 9 5 6 2 6 
13 1 1 4 6 7 9 
13 2 1 4 5 8 7 
13 3 9 4 5 5 6 
14 1 0 0 0 0 0 
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Table 5.12 - Resource Limits 

RI R2 NI N2 
14 15 54 57 

Note the resource limits given in Table 5.12 above are given per unit time for the two 

renewable resources and total usage for the two non-renewable resources. The network for 

the problem is given below in figure 5.16. 
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Figure 5.16- The J1237-8m Network and Adjacency Matrix 
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The algorithm run parameters utilised for this optimisation were Population = 50; Crossover 

Rate = 0.7; Mutation Rate = 0.07 and Generations = 50. Figure 5.17 below shows the 

improvement curve for the optimisation process. 
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Figure 5.17 - Optimisation Curve for J 1237-8m PSPLIB Problem 

The algorithm can be seen to have optimized the solution to the best known solution on 

generation 26. 
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Figure 5.18 - Resource Histogram for the J 1237-8 problem 
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Figure 5.18 shows that the algorithm has tightly maintained the prescribed resource 

limitations for the renewable resources. The cumulative utilization of' the non-rene vaihle 

resources NI and N2 was 54 and 57 respcctivcly. 

Problem: J309-5m 

This sample problem has 32 activities including the start and tinish node and utilities 2 

renewable and 2 non-renewable resources. The activities each have 3 possible nodes of 

execution and utilise a combination of the four available resources. Table 5.13 gives the 

precedence relationships. Table 5.14 gives the duration and resource allocations tör each 

mode of execution. Table 5.15 gives the resource limits. RI and R2 are the two renewable 

resources and NI and N2 are two non-renewable resources. 

Table 5.13 - Number of Modes and Precedence Relationships 

Activity 
No. of 
Modes 

No. of 
Succ. Succ Succ Succ 

1 1 3 2 3 4 

2 3 3 6 7 11 
3 3 3 5 11 17 
4 3 3 10 14 15 
5 3 3 8 19 21 
6 3 1 9 
7 3 3 14 17 18 
8 3 2 12 16 
9 3 1 28 
10 3 3 20 24 26 
11 3 1 28 
12 3 3 13 15 22 
13 3 1 23 
14 3 3 19 24 31 
15 3 3 25 26 27 
16 3 3 18 22 24 
17 3 1 23 
18 3 2 23 27 
19 3 2 27 29 
20 3 2 25 29 
21 3 1 28 
22 3 2 26 31 
23 3 1 31 
24 3 1 25 
25 3 1 30 
26 3 1 29 
27 3 1 30 
28 3 1 30 
29 3 1 32 
30 3 1 32 
31 3 1 32 
32 1 0 
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'rabic 5.15 - Resource Limits 

RI R2 NI N2 
10 15 91 84 

The adjacency matrix is shown below in figure 5.19. 

123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Figure 5.19 - The J309-5m Network and Adjacency Matrix 

The optimisation curve for the algorithm can be seen below in figure 5.20. The settings used 

for this run of the algorithm were: Population 200; Crossover Rate 0.7: Mutation Rate 

0.07 and Generations = 400. 

128 



60 

55 

5o 

45 

P- 
40 

35 

30 

250 
50 100 150 200 250 300 350 400 

Generations 

Figure 5.20 - Optimisation Curve for the J309-5m PSPLIB Problem 

It can be seen that the algorithm achieved the optimal result at approximately 145 

generations. The resource histogram in figure 5.21 below shows the adherence of the 

produced schedule to the given resource limits for the two renewable resources RI and R2. 

The cumulative usage of the two non-renewable resources NI and N2 were 72 and 83 

respectively. 
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Figure 5.21 - Resource Histogram for J309-Sm 
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5.4 Application within Microsoft Project 

In order to provide a more practically implemented tool the algorithm developed in 

MATLAB was rewritten using Microsoft Visual Basic for applications within Microsoft 

Project 2003. The structure of the algorithm remains the same as the previous implementation 

within MATLAB, the User interface to the application from within Microsoft Project is 

shown in figure 5.22 below. 

Project Data: Problem Type: 

Number of Tasks: ISO Problem: RCPSP 
-ý 

Number of Resources: 3 

Algorithm Settings: 

Population Size: ý 
Minimum Fitness (1): 

Average Fitness (1): 

Crossover Rate: D. 7 

Mutation Rate: 
. 07 D 

Krimum Fitness (2): 

Average Fitness (2): 
Number of Generation: 

F -' ̀  

Percentage Elitism: 0 . 25 - 

Algorithm Progress: 
0 Gen 
0% 

GENETIC 
ALGORITHM 

OPTIMISATION 

Sýi 

)ohn Lancaster 
PhD Research 

School of 
Engineering and 

Design 
BRUNEL UNIVERSITY 

j Get Project Data 

Run Algorithm -> 

Figure 5.22 - Application User Interface 

The parameter settings, population size and the number of generations are all set via this 

interface. The current limitations to this implementation include that it currently doesn't 

allow for project calendars, due to this the problem examined was set up using a seven day 

calendar 

Some adaptation was made within the schedule environment in that material type resources 

were utilised for modelling the labour resources. This was in order to allow direct entry of 
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man-hours rather than utilising the Microsoft Project percentage utilisation method normally 

employed. A user field is added for the setting of the resource limitations as shown below in 

figure 5.23: 

Figure 5.23 - Resource Limit Settings 

Resources are entered as the total number of man-hours for the entire activity. The algorithm 

then calculates the resource man-hours per day in order to calculate the daily total resource 

usage for any given schedule. The limits entered into the `Number I' field shown in figure 

5.23 above are the limits for a given time period. 

Applied Problem 

The analysed problem is a project schedule for the construction of a tank farm. This project 

network consists of one hundred and eighty activities loaded with three labour resources each 

of these resources is limited to a ceiling value of a predetermined number of man hours per 

day. A Plan of the project is given below in Figure 5.24. 
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Figure 5.24 -A Plan of the scope of the Project 

The complete 180 activity schedule is reproduced in Appendix F. All resources considered in 

this problem are renewable. The resources and the limits applied to them are given in Table 

5.16 below. 

Table 5.16 - Resource Limits 

RESOURCE CONSTRAINTS 

Discipline Mrs 

Civil 250 

Struct 200 

Mech 1000 

The tank farm consists of eight tanks with interconnecting pipe rack and pumps and includes 

the construction of foundations as well as structural and mechanical erection. No preferential 

logic has been applied in order to allow the algorithm freedom with the resource levelling. 

Prior to resource levelling the resource distribution is as shown in Figure 5.25 below. 
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Figure 5.25 - Resource Distribution prior to Optimisation 

The improvement curve shown in Figure 5.26 below shows the optimisation of the total 

duration against the resource constraints. Continual improvement is noted on the Minimum 

Fitness from Generation to Generation. The diversity introduced into the algorithm through 

the mutation adaptation is clear from the changes in the Average Fitness curve. The Average 

Fitness follows the Minimum fitness for the first 4 generations and then as the improvement 

of the algorithm slows down the average fitness increases as the algorithm widens its search. 

Finally the Average fitness converges toward the minimum. 

The initial conformance to resource constraints had the effect of prolonging the schedule by 

two months; however the optimisation has then managed to reduce this prolongation by 8 

days (from 380d to 372d) as the improvement curve in figure 5.26 shows. 
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Improvement Curve 
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Figure 5.26 - Improvement Curve 

The success of the algorithm in maintaining the resource limits can be seen from the resource 

distribution curve shown in Figure 5.27. 
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Figure 5.27 - Resource Distribution post Optimisation 
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Each of the resource limits has been tightly maintained by the algorithm. For the mechanical 

resource the lower resource level during the month of April is due to some activities not 

being eligible for scheduling due to their precedence dependence on the civil activities. The 

low mechanical resource usage toward the end is due to the low mechanical loading during 

the relatively long hydro testing activities, which are the penultimate activities for each tank. 

Apart from these anomalies it can be seen that the algorithm has made maximum use of all 

available resource capacity. 

5.5 Chapter Summary 

In this chapter the FDAPCGA developed in chapter 4 was successfully applied to both DSM 

and CPM based problems. The DSM application was benchmarkcd against three problems 

and their solutions offered by Todd (1997). The MATLAB based CPM application was tested 

using three single and three multi-mode problems from PSPLIB. 

The algorithm was able to achieve optimisation to the best known results in the PSPLIB 

problems, showing it's ability to free itself from local minima and continue search for the 

global optima. 

Ater porting the code to Microsoft Project VBA the algorithm was then applied to a real 

world problem. In this application the algorithm successfully optimised the schedule 

maintaining the imposed resource limitations. 

135 



Chapter 6. The FDAPCGA with Stochastic 
Resource Assignments 

The literature review found no previous research into the solving of this problem, whilst the 

problem is similar to the multi-mode RCPSP; it is more analogous with parallel machining in 

shop problems. In this chapter we consider the problem where a number of different 

resources could be brought to bear on a given task. The resources considered are renewable 

and each have limitations as with the standard RCPSP problem. In order to investigate the 

different combinations of resources that can be brought to bear, we investigate the stochastic 

application of resources to selected activities in order to find the resource utilisation 

configuration that allows minimum duration execution of the project. 

6.1 Stochastic Resources Assignments 

To understand this problem we can consider an analogy in the set of machine shop problems, 

where a job maybe processed by one of a number of parallel machines. Figure 6.1 below 

illustrates this problem, to be completed a job must pass through either machine M1& M4, 

M2 & M4 or M3 & M4. 
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Figure 6.1 - Parallel Machine Processing. 

This problem is not normally considered in research into the RCPSP. The classification 

system of Herroelen et a! provides a classification al-P, which refers to the parallel 

processing as given in figure 6.1. To better describe this problem and it's method of solution 

we add the subscript, SSR, to indicate `selected stochastic resource' assignment. The 

classification of the problem considered in this chapter is therefore; {PssR, m, 1I cpm I C,,, uj. 

6.2 The Genetic Algorithm 

The Genetic Algorithm used in the optimisation of this problem is based on the Fitness 

differential Adaptive Genetic Algorithm previously described in Chapter 4&5. In order to 

cater for the novelty of this specific problem the algorithm was modified in the following 

manner: 
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The Chromosome was extended in order to hold the resource assignments for each of the 

activities identified for stochastic resource assignment. In this way the resource assignments 

are optimised along with the activity sequence. In order to deal with the extension specific 

crossover and mutation operators had to be developed that would retain the validity of the 

chromosomes after the genetic operations have been performed. Figure 6.2 below shows the 

structure of the extended chromosome where n is the number of activities in the schedule and 

p is the number of activities that have been identified for stochastic resource assignment. 

4 Random Permutation º 

1234 n-3 n-2 n-1 n 
12 1141 13 12 6 27 4 

4 Extension -10 

12_ p-1 p 

13 122 

Figure 6.2 - Chromosome extension 

For this specific problem n= 60 and p= 10 as there is one Engineering activity for each 

project. 

6.2.1 Fitness Function 

No novelty is required in the fitness function the minimisation of duration is the measure of 

fitness whilst adhering to the resource limitations. A Serial Schedule Generation Scheme is 

employed to convert the sequence permutations into feasible schedules. 
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6.2.2 Selection Operator 

The algorithm utilises roulette selection. The analogy of the roulette wheel in this selection 

method utilises this same mechanism only with each chromosome receiving a portion of the 

wheel sized in relation to its fitness. The algorithm then performs a function, which equates 

to the spinning of the wheel, the probability of selecting a chromosome for transfer to the 

temporary population is then in proportion to its fitness. The probability, Pr, of each 

chromosome being calculated, where f is the fitness measure, (see Equation 6.1). 

Pri =f (6. ý POP 
fi 

i=1 

6.2.3 Crossover Operator 

The crossover in the chromosome is performed using the independent position crossover 

(IPX, Murata and Ishibuchi, 1994) operation on the activity sequence portion of the 

chromosome and then applying a single point crossover on the chromosome extension. 

Two different operators are used due to the differing nature of the data in the two parts of the 

chromosome. The main chromosome is a permutation of the activities and therefore the 

integrity of this permutation needs to be maintained, that is each activity must be represented 

and also must only be present once. The chromosome extension is not a permutation. 

In the IPX method, members of the Parentl chromosome are selected randomly for 

transference directly to the Childl, the balance of members of Parentl are then used to 

populate the remaining positions in Childl in the order that they occur in Parent2. The single 
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point crossover simply chooses a random point in the chromosome extension and takes the 

genes to the left of this point from one parent and the genes to the right from the other. figure 

6.3 below illustrates this methodology. 

4 Random Permutation No 

0.2 0.7 0.4 0.6 0.9 0.3 0.1 0.6 
2 1141 13.................................. 12 6 27 4 

4 Extension -º 

13 122 

14 11 27 18 .. 21 12 3 124 

4 114 13 1121211241 4 

IPX Crossover 

2213 

From Parent 11 From Parent 2 

13 113 

Single Point Crossover 

Figure 6.3 - Dual Crossover Operator 

6.2.4 Mutation Operator 

Mutation is also performed as two separate operations; for the main chromosome the 2 Point 

adjacent swap mutation (Murata and Ishibuchi, 1994) is applied. For the Chromosome 

extension a simple random allele change is performed. An allele is selected at random and 

then a random value chosen from the valid range for that allele, this is similar to the simple 

`bit-flip' mutation used in binary representation. See Section 3.6 for details of the parameter 

control utilised to modify the mutation rate. 

6.2.5 Elitism 

Due to the use of Crossover and Mutation operators the minimum fitness solution can 

sometimes fail to be transferred to subsequent generations. Elitism maintains the best to date 
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solution by filling a predetermined portion of the population with the fittest solution. For 

solution of this problem 25% Elitism was selected. 

6.2.6 Parameter Control 

Mutation is utilised within the algorithm to prevent premature convergence upon a local 

minima. As previously discussed in Chapter 4 and 5 there is benefit to having the mutation 

factor set low when the algorithm is converging to a minima but then increasing the factor 

when no improvement is acknowledged for a number of successive generations. 

Controlling the settings of parameters in this nature is known as adaptive parameter control. 

i. e. utilising information generated by the algorithm to modify its future behaviour. A full 

taxonomy of parameter setting can be found in Chapter 4 as adapted from Eiben et al (1999). 

Hartmann (2002) used a self-adaptive GA where self-adaption was used to control the 

algorithms choice of schedule generation scheme (serial or parallel) but this type of adaptive 

parameter control has not been utilised in a GA solution to the RCPSP to date. In the 

optimisation runs the following settings were used for the run of the algorithms: 

Population Size: 50 

Crossover Rate: 0.7 

Mutate Rate: 0.07 

No. of Generations: 20 

Elitism: 25% 
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6.3 Development Platform 

As an extension of our previously designed algorithm, this algorithm has been developed 

within Microsoft project using Visual Basic for Applications as an extension to the algorithm 

previously discussed in Chapter 5. The algorithm parameters being entered via the same 

custom user interface as shown below in Figure 6.4. 

Project Data: Problem Type: 

Number of Tasks: 28 Problem: 

Number of Resources: 5 

Algorithm Settings: Output Data: 

Population Size: 50 
Ninimun Fitness (1): 

Average Fitness (1): 
Crossover Rate: 0,7 

Mutation Rate: 0.07 
FlinimOm Fitness (2): 

Average Fitness (2): 
Mxnber of Generations: 

Percentage Elitism; 0,25 

Algorithm Progress: 
0 Gen 

0% 

RCPSP with Stochastic Reswscif 

Figure 6.4 - Microsoft Project User Interface 

GENETIC 
ALGORITHM 

OPTIMISATION 

01' " 
John Lancaster 
PhD Research 

School of 
Engineering and 

Design 
BRUNEL UNIVERSITY 

Get Project Data 

Run Algorithm "> 

The Visual Basic for applications code generated for the standard RCPSP was significantly 

modified to cater for this specific problem type. 

6.4 Case Study Problem 

As a test problem we will consider an organisation concerned with the Engineering, 

Procurement and Construction of ten projects. The engineering of these projects can be 

conducted in any of the company's three engineering facilities worldwide. Each of the 
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engineering facilities has a limitation on the number of man-hours per day that it has 

available for any given time period. Table 6.1 below gives the resource limitations at each of 

the locations. 

Table 6.1 - Resource Limits 

Resource Limit 

Eng_Locl 200 

Eng_Loc2 250 

Eng_Loc3 400 

For the testing of this algorithm the 10 projects are included in an integrated schedule. Each 

of the projects is represented for this exercise only at high level i. e. One activity each for the 

major project phases: Engineering, Procurement, Fabrication, Construction and 

Commissioning as well as a final Project Completion Activity. The ten Engineering activities 

will be the activities subject to stochastic resource assignment, we will not consider resource 

assignments for the other activities for the purpose of this exercise. In the initial state the 

Projects are all scheduled to start immediately with no consideration for resource constraints. 

The objective of the problem will then be to find a feasible resource assignment solution that 

will maintain the imposed resource constraints and further to find the minimum duration 

solution under these resource constraints. The initial state resource curves are shown below 

for the three resources can be seen below in figure 6.5. Initially the resources have been 

arbitrarily assigned to provide a starting point for the algorithm 
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Figure 6.5 - Initial Resource Assignments 

It can be seen that the available engineering offices could not process the projects to this 

schedule 

6.5 Results 

The improvement made during the search for the optimal results to the problem being 

considered can be seen below in figure 6.6. This curve shows improvement to the optimal 

found solution within four generations. 

Due to the built in adaptively of the algorithm, it can be seen that the search is widened in 

generation nine after four generations with no improvement to the best solution. In this case 

this increased diversity can still produce no further improvement to the algorithm. 
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Figure 6.6 - Improvement Curve 

The Average fitness then converges toward the minimum fitness curve. Figure 6.7 shows the 

resource levelling results obtained from the optimisation. The three resources can be seen to 

closely adhere to the imposed limits. It can be seen that the available resources at each of the 

companies facilities are being effectively utilised 
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Figure 6.7 - Resulting Resource Loading 
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6.6 Chapter Summary 

In this chapter stochastically applied resources were included within the RCPSP. This 

addition was incorporated in order to study RCPSP optimisation where a number of different 

resources can be brought to bear on an activity. The method of handling the stochastic 

application within the genetic algorithm was detailed as well as the algorithms application to 

a practical problem. The required modifications to the VBA algorithm described in Chapter 5 

were also discussed. 
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Chapter 7. The FDAGA with Stochastic 
Logic Assignments 

Within Project Schedules preferential logic is sometimes used to formulate paths and 

precedence relationships in the network that are not pure dependencies but are often used to 

`hard code' resource paths into the network. Often there are many possible combinations of 

preferential logic that can be applied to a project network, each combination will produce a 

different outcome regarding the overall duration of the schedule. In order then to find the 

optimal solution (minimum duration) a number of different combinations of preferential logic 

configurations should be considered. In this chapter we consider the use of stochastically 

applied preferential logic within the optimization process, in order to arrive at the 

combination that provides the minimum duration schedule. 

7.1 Stochastic Logic Assignments 

The main construction of our algorithm is based on that presented in Chapter 4, which uses 

adaptation based on the Fitness differential between successive generations to modify the 

mutation factor. The Author has modelled the stochastic logic as an extension to the existing 

147 



chromosome, providing a position in the chromosome for each of the activities identified for 

stochastic logic. 

f- Random Permutation 10 

1234 177 178 179 180 
2 45 13 1168134 11781152 

Activites with Stochastic Links 

17 34 51 68 85 102 119 136 
1171851 68 34 

Figure 7.1 - Chromosome Extension 

Figure 7.1 shows the extension of the chromosome. In the test problem a 180 activity 

schedule is utilised with 8 activities selected for stochastic logic relationships. The Random 

permutation portion of the chromosome shown in figure 7.1 holds the sequencing of all 180 

activities. The extension portion shown to the right holds eight additional genes to map the 

randomly generated logic. The actual values contained in these 8 positions refer to the 

stochastic successor of that particular activity. This randomly generated logic is used during 

the schedule generation along with existing deterministic logic to produce the feasible 

schedule. 

One consideration that needs to be made is that by purely applying random logic generation 

we need to avoid the creation of logic loops which would prevent the formation of a feasible 

schedule. Our algorithm performs loop checking after the generation of the stochastic logic, 

correcting this where it occurs and thereby ensures the generation of a feasible schedule. 

The utilization of an extension of this nature to the normal permutation portion requires 

specialized cross-over and mutation operators that are capable of allowing for this functional 

division of the chromosome into two portions performing their operations on the two portions 

separately. 
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To cater to this we have developed a composite crossover operator. This crossover operator 

consists of two components; the first component is a standard independent crossover operator 

(IPX, Murata and Ishibuchi, 1994) which is applied to the traditional part of the chromosome 

i. e. the genes containing the permutation of the activities or the `activity list'. The second 

component is a two-point crossover is utilised on the chromosome extension. This crossover 

operator is illustrated below in figure 7.2. 

4 Random Permutation 

0.2 0.7 0.4 0.6 0.9 0.3 0.1 0.6 
Parent 12 114 13 1112 6 27 6 

Parent 241 27M 21 121 3 24 

Child 14 114 132 21 24 6 

IPX Crossover 

Figure 7.2 - Extended Crossover Operator. 

4- Extension 10 

1311 
..... 

- 
.................... 

22 

Point 1 Point 2 

13 212 

Two-Point Crossover 

In addition to the specialized crossover operator we have also designed a composite, mutation 

operator. This mutation operator also comprises two components. The first component 

applied to the main chromosome is a two point adjacent swap mutation operator (Murata and 

Ishibuchi, 1994) and the second component is simply a single bit random change operator 

which is applied to the chromosome extension. This second mutation operator selects an 
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allele from the chromosome extension at random and then changes its value to a randomly 

selected member of the set of activities identified for stochastic logic application. 

Once the crossover and mutation have been performed, a cycle checking algorithm is 

employed to ensure that loops have not been introduced to the network via the function of the 

genetic operators. This algorithm will also break any detected loops to ensure a feasible 

network remains. The loops are only broken by removing links that have been stochastically 

assigned; hence the integrity of the original network is always maintained. 

In order to communicate the logic into the algorithm an adjacency matrix is utilised. The 

logic links contained in the adjacency matrix are considered in two sets; firstly the 

deterministic logic links which remain constant for the entire optimization, the second set is 

the stochastic logic which will change for each chromosome considered. To manage this 

within the algorithm a copy of the deterministic adjacency matrix is made prior to applying 

the serial schedule generation scheme. The stochastic logic for the chromosome being 

considered is added to the deterministic logic and the schedule generation algorithm is then 

run. Figure 3 below shows a sample of the adjacency matrix with the addition of stochastic 

logic carried out at the processing of each chromosome the example only shows activities 

from the first tank with the hydro-test of activity of the second tank a stochastic link between 

these hydro-tests has been indicated. 
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1 
2 
3 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16 
17 

123456789 10 11 12 13 14 15 16 17 ... 34 ... 180 

34 

180 

Figure 7.3 - Adjacency Matrix Addition 

As these links a added through a stochastic process we have no guarantee that the placement 

of this additional logic will not create cycles or loops within the network. As reviewed in 

earlier chapters cycles (feedback logic) cannot be handled by cpm or precedence network 

calculations, only by the Design Structure Matrix. If cyclic logic is introduced we therefore 

need to be able to detect this and break these links prior to performing scheduling operations. 

In this algorithm we employ a recursive depth first search algorithm to examine the network 

after addition of the additional logic. 

7.2 Recursive Depth First Search 

A Recursive Depth First Search (DFS) is a technique used to explore all the paths running 

through a directed graph. DFS is utilised within this algorithm to run through each path in the 

network and examine each of these paths for cycles. 
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Depth first search starts from a given node in the network and 1`6Ilows the outgoing logic 

from the node. Where a branch exists the algorithm Follows one of the branches and 

continues until it reaches the final node in the path, which is the node with no outgoing logic. 

Once such a node is reached the algorithm backs up to the last branch detected and then 

pursues the path on the alternative, or one of the alternative branches. Consider the adjacency 

matrix given in figure 7.4 below: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

123456789 10 

Figure 7.4 - Sample Adjacency Matrix. 

This adjacency matrix consists of ten activities with feed 16iward only logic, that is no cycles 

exist. It can be seen that branches lead out of' nodes 2,4 & 5. The depth first search that 

would result starting from node I would be as shown in figure 7.5 below. The order of the 

search is given here by the number given against the link arrow. 
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17 

6 

7 

8 

9 

Figure 7.5 - The DFS search order 

From Figure 7.5 the algorithms search behaviour surrounding branches can be clearly seen. 

As stated previously a recursive algorithm has been utilised to implement this DFS. 

Recursion indicates a routine that makes a call to itself the VBA code utilised within the 

algorithm for the DFS is given below: 
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Sub DFS(v) 

If vMatrix(v, v) =9 Then 
CycleList(v) =1 

Else 
vMatrix(v, v) =9 

For d=1 To MatrixSize 
If vMatrix(v, d) =I Then 

DFS (d) 
End If 

Next d 

vMatrix = vMaster 
End If 

End Sub 

In this code, vMatrix, is a copy of the adjacency matrix used by the algorithm to mark nodes 

that have been visited already. vMaster, is the original adjacency without any marking of 

visited nodes and CycleList is a vector where nodes that are members of a loop are recorded. 

A VBA implementation of the recursive DFS algorithm within Microsoft Excel was utilised 

to test and illustrated the operation of this algorithm. Consider Figure 7.6 below in which two 

feedback logic links have been introduced to the matrix given previously in figure 7.4. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

123456789 10 

Figure 7.6 - Adjacency Matrix with Feedback Logic. 
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17 

6 

9 

Figure 7.7 - The DFS Tree showing the feedback logic 

In this Microsoft Excel implementation, the recording of nodes that formed part of a cycle 

will simply be marked in the matrix by the character `c' instead of recording them in the 

CycleList vector and the cycles are broken by removing the "1's" causing the feedback. The 

result from running the algorithm is as shown below in figure 7.8: 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

123456789 10 

c 1 1 

c 1 

c 1 1 
T 

cl 1 

Figure 7.8 - Adjacency Matrix indicating Cycles. 

It can be seen that the feedback loops have been successfully removed from the matrix. 

7.3 Case Study Problem 

The first problem comprised 22 activities and represented a high level schedule for the 

construction of 5 tanks of varying dimensions, including the civil and mechanical 

construction in simplified form. The schedule was loaded with two resources a civil labour 

resource and a mechanical labour resource. The algorithm allows an input to determine which 

resource is the target of optimization as shown below in figure 7.9 the button in the `Opt. ' 

indicates the selected resource. 

Figure 7.9 - Resource Setup within Microsoft Project. 
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As can be seen from figure 9 the goal of the optimization is to level the civil resource below 

the limit of 250 units. Due to the way Microsoft Project handles labour type resources, it was 

decided to use the material type resource to model the labour as man-hours, rather than using 

the % type assignment used for labour resource normal within Microsoft Project. 

Figure 7.10 below shows a filter of the schedule, giving only the civil activities, prior to the 

optimization showing that the resource level greatly exceeded the imposed limitations. 
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Figure 7.10 - Civil Activities prior to optimization run 
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Figure 7.11 - Civil Activities after the optimization run 

Figure 7.11 above shows the same filter of the project after the optimization run. It can be 

seen here that the algorithm has successfully leveled the resources maintaining the imposed 

limits as well as providing a feasible continuous path through the civil activities. 

The second test problem being utilised as an example for this algorithm is the 180 activity 

schedule representing the construction of an eight tank, tank farm as utilised in Chapter 5 and 

reproduced in full in Appendix F. From these activities the eight hydro-testing activities (one 

for each tank) have been selected for stochastic logic assignment. The application of 

stochastic logic to this problem can result in between one and eight transfer paths for the 

hydro-test water eight separate paths if no logic is applied and one path if a continuous 

sequence is formed with logic being applied to all of the stochastic logic activities. An extract 

of the schedule is shown is Figure 7.12 for one of the tanks, the activities included are typical 

for each of the eight tanks, only the durations and the quantity of resources required differs 
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from tank to tank. The flag indicating the activities to be considered for stochastic logic can 

be seen against activity 119. 

Figure 7. l2 - Schedule Exert. 

The objective in this case is to use stochastic logic application and optimisation to level the 

resource loading on the Hydro-testing activity. Resource constraints are not applied to the 

optimisation process as in the optimisations in previous chapters, however the aim is to 

maintain a maximum water usage of 140,000 units. 

In the typical RCPSP activities are scheduled at their first precedence and resource feasible 

time. In this problem we only consider precedence feasibility and utilise the variation in 

preferential logic to provide the vehicle for optimisation. The fitness function of the problem 

has been altered so that the algorithm will aim at minimising the resource utilisation, when a 

utilisation is obtained that falls below the desired limit a reward factor is applied to the fitness 

measure of that solution. 
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Using this philosophy a logic sequence will be produced that will maintain the desired 

resource level. In this specific problem this will produce a transfer path for the hydro-test 

water from tank to tank that will minimise the total water usage. 

The solution provided by the algorithm produce the Gantt chart and resource histogram that is 

shown in figure 7.13 below: 
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Figure 7.13 - Optimisation of case study problem 

It can be seen from figure 7.13 above that the logical path for the hydro-test water through the 

eight tanks. Activity 34 which requires 2,353,000 units of water is predecessor to activity 68 

also requiring 2,353,000 units and this sequence continues through activity 51 and 17. A 

similar chain is formed between the four larger tanks requiring 3,360,000 units. The two 

paths that the algorithm has selected are: 
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34-68-51-17 

& 

136-119-85-102 

Figure 7.13 also shows that the prescribed resource limits have been met by the problem with 

the peak resource usage being 140,000 units. 

7.4 Chapter Summary 

In this chapter the utilisation of preferential logic as a mechanism for resource optimisation 

has been described as has the methodology for implementing this within a modification of the 

FDAPCGA. 

The possibility of introduction cycles into the network has been discussed as has the recursive 

depth first search routine used to identify and break loops. 
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Chapter 8. Conclusions and 
Recommendations for Future Research 

In this final chapter the conclusions to the research are discussed in relation to the objectives 

set in Chapter 1, the contribution of originality provided by the research is explored and 

recommendations for future research extending from this work are made. 

8.1 Conclusions 

In chapter 1 the objectives of the research were established as follows: 

" Provide a thorough review of existing work into the application of Evolutionary 

algorithms to the optimisation of PSP. This review to include both problems utilising 

Critical Path of Precedence Networks as well as those centring on the DSM. 

Whilst this objective is in a way part of the research process rather than new work, the 

survey did extend the scope of previous surveys of this type through the inclusion of 

the DSM problems. This has therefore been retained as an objective although it is a 
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minor one. In Chapter 2a thorough review of the existing body of work was provided 

and was summarised in Table 2.4. 

" Develop a Genetic Algorithm suitable for solution of PSP building on and enhancing 

existing research. 

Chapter 4 and 5 detailed the genetic algorithm developed in response to this objective. 

After initial testing on the TSP, this algorithm proved to be effective in the solution of 

PSP utilising both precedence and DSM networks. This algorithm was implemented 

in both MATLAB and in Microsoft Project using Visual Basic for Applications. The 

algorithm proved able to optimise a range of problems successfully including DSM 

problems cited by Todd (1997), PSPLIB Single and Multi-mode Problems (Kolisch 

and Sprecher, 1996) as well as real world problems. 

" Investigate the application of Genetic Algorithms to PSP beyond those covered by the 

current research. 

Chapter 6 and 7 describe the extended problems considered in the research. These 

problems allowed for the stochastic application of resources and preferential logic in 

order to solve these extended RCPSP. The problems were classified according to the 

Herroelen classification system. 

" Develop an implementation of the algorithms stemming from this research within a 

commercial scheduling application, in order to further examine PSP through practical 

case studies. 
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8.2 Originality and Novelty in this Research 

In this research a number of items have been introduced that provide a contribution to the 

general body of knowledge in this field. These items are identified as follows: 

8.2.1 Fitness Differential Adaptation 

The research has introduced a genetic algorithm that utilises adaptation based on the fitness 

differential between successive generations. The algorithm modifies the mutation factor 

whenever extended periods of no fitness increase are experienced. This allows the algorithm 

to widen its search when trapped in local optima. 

8.2.2 Stochastic Resource Assignments 

The research explores the use of initial stochastic resource assignment in order to apply the 

developed algorithm to the practical problem of balancing multiple global resource pools 

across multiple projects in order to find the configuration that will allow the minimum 

duration execution of all considered projects. 

8.2.3 Stochastic Logic Assignments 

The research investigates the use of stochastic assignments for the application of preferential 

logic. The logic assignments are then included within the optimisation process so that the 

configuration of preferential logic that will produce the shortest possible schedule is defined. 
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8.3 Suggestions for Future Research 

A number of aspects of this research provide a basis upon which further research can be 

conducted. 

8.3.1 Integrating the Optimisation of the DSM with CPM based networks 

The optimisation of the DSM and CPM networks has been performed separately in this 

research. An extension of this would be to investigate the possibility of integrating these two 

problems. Two possible configurations for this research present themselves. Firstly a two 

stage scenario could be considered where the DSM optimisation is then used to feed the CPM 

based schedule with its adjacency matrix after minimisation of feedback. The second scenario 

is to consider a multi-objective problem that looks at minimising iteration, whilst also 

minimising duration. 

8.3.2 Adaptation 

This research has shown the effectiveness of utilising adaptation within an algorithm in order 

assist the algorithm in escaping from a local optimum. The use of adaptation can be extended 

to consider controlling other algorithm parameters such as crossover rate and elitism. 

8.3.3 Alternative Strategy Evaluation 

This research has extended the optimisation of the RCPSP to where it can be used to evaluate 

alternative strategies. The Stochastic application of resources and preferential logic are both 
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key to this. From this point further extensions can be provided so that alternative activities, or 

groups of activities can be considered and in different combinations, allowing a project 

manager to quickly assess the wide range of execution strategies often available to him/her. 
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APPENDIX A. - TSP MATLAB CODE 
This appendix gives the MATLAB code for the travelling salesman problem. The code for 

the 10 city tour is given here. The 25 and 50 city tour code is identical other than they call a 

different data file and that various loops cycle 10,25 or 50 times respectively. 

MAIN MODULE. 

%Application : Travelling Salesman Problem (10 City Tour) 

%John Lancaster - PhD Thesis Brunel University 
%Version 1.0 - 7th - 28th September 2004 

function [DistM] = TSPIO(Popsiz, Xover, MRatc, Elitism, gcns) 

CityCoords = xlsread('TSP Test 10'); 
%Import the 10 city Travelling Salesman Coordinate Data 

iPop = InitPopR(10, Popsiz); 
%Create Initial TSP Population 

for g=l : gens 

ifg-= 1 
iPop = NewPop; 
%FinalPop = NewPop; 

end 

%Step through the Population and Determine Total Distance Travelled and 
%Fitness. 
for x=1: Popsiz 

Travelled = 0; 
for y=1: 9 
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n= iPop(x, y); 
m= iPop(x, y+l); 
CityX = abs(CityCoords(n, 2) - CityCoords(m, 2)); 
CityY = abs(CityCoords(n, 3) - CityCoords(m, 3)); 
CityDist = sgrt(CityX^2 + CityY^2); 
Travelled = CityDist + Travelled; 

end 

n= iPop(x, 10); 
m= iPop(x, 1); 
CityX = CityCoords(n, 2) - CityCoords(m, 2); 
CityY = CityCoords(n, 3) - CityCoords(m, 3); 
CityDist = sgrt(CityX^2 + CityY^2); 
Travelled = CityDist + Travelled; 

DistTrav(x) = Travelled; 

end 

for x=1: Popsiz 
Fitness(x) =1/ ((DistTrav(x)-min(DistTrav))+ 1); 

end 

DistM(g) = mean(DistTrav); 

Se1Vec = RouletteSel(Fitness, Popsiz, iPop, 10, Elitism); 
%Call the Tournament Selection Routine 

Pos = 0; 
%Initialise Pointer 

for x=1: Popsiz 
for y=l : SelVec(x) 

Pos = Pos + 1; 
TempPop(Pos, 1: 10) = iPop(x, 1: 10); 

end 
end 
%Copy Chromosomes into Temporary Population according to Tournament 
%Selection results. 

ifg- 1 
FinalPop = NewPop; 

end 

MateSel = randperm(Popsiz); 
%Generate a random series to pair off Chromosomes for Mating 

Pos = 0; 
%Initialise Pointer 
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%Crossover and Selection 
for x=1: (Popsiz/2) 

Pos = Pos + 2; 
Parent 1= TempPop(MateSel(Pos-1), 1: 10); 
Parent2 = TempPop(MateSel(Pos), 1: 10); 

TestRand = rand; 

if Xover >= TestRand 
[Childl, Child2] = EERXover(Parentl, Parent2); 
% Call to Real Single Point Crossover Operator 
NewPop(Pos- 1,1: 10) = Child 1; 
NewPop(Pos, 1: 10) = Child2; 

elseif Xover < TestRand 
NewPop(Pos- 1,1: 10) = Parent 1; 
NewPop(Pos, 1: 10) = Parent2; 

end 
end 

CurrPop = NewPop; 

%Mutation 
if g <= (gens - 5) 

NewPop = MRMutate(CurrPop, MRate, Popsiz, 10); 
end 

% Produce GA Performance Curve 
plot(DistM); 

fori= 1: 10 
TourCoordx(i) = CityCoords(NewPop(l, i), 2); 
TourCoordy(i) = CityCoords(NewPop(l, i), 3); 

end 

TourCoordx(i+1) = TourCoordx(1); 
TourCoordy(i+l) = TourCoordy(1); 

plot(TourCoordx, TourCoordy); 

end 

ROULETTE SELECTION. 

%Roulette Selection - Evolutionary Algorithm Toolbox 

%John Lancaster - PhD Thesis Brunel University 
%Version 1.0 - 7th September 2004 

function [TempPop] = RouletteSel(Fitness, Popsiz, iPop, Cities, Elitism) 
%Calculates the number of times a chromosome gets copied to the 
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%intermediate Population 

for x=1: Popsiz 
Selection(x) = ceil((Fitness(x)/sum(Fitness)) * (Popsiz * (1-Elitism))); 

end 

Pos = 1; 
%Initialise Pointer 

for x=1: Popsiz %sum(Selection) 
for y=1: Selection(x) 

TempPop(Pos, 1: Cities) = iPop(x, I : Cities); 
Pos = Pos+I; 

end 
end 

[c, I] = max(Fitness); 
BestCit = iPop(I, 1: Cities); 

for x= sum(Selection): Popsiz 
TempPop(x, 1: Cities) = BestCit; 

end 
%Make up Population using Best Citizen 

ENHANCED EDGE CROSSOVER MODULE 

%Enhanced Edge Recombination Crossover - Evolutionary Algorithm Toolbox 
%Real Encoded Chromosomes 

%John Lancaster - PhD Thesis Brunel University 
%Version 1.0 - 6th October 2004 

function [Child!, Child2] = EERXovcr(Parcntl, Parcnt2) 
%Enhanced Edge Recombination 

ParLG = length(Parent1); 

%Build Edge lists 
for i=l: ParLG 
%Cycle through Edges 

for j=1: ParLG 
%Cycle through Parents to locate adjacent edges 

if Parentl(j) =i 
ifj == 1 

Edgelist(i, I) = Parentl(ParLG); 
elseif j -- =1 

Edgelist(i, 1) = Parentl(j-1); 
end 
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if j == ParLG 
Edgelist(i, 2) = Parent! (1); 

elseif j -= ParLG 
Edgelist(i, 2) = Parentl(j+1); 

end 
end 

if Parent2(j) == i 
ifj==1 

Edgelist(i, 3) = Parent2(ParLG); 
elseifj M= 1 

Edgelist(i, 3) = Parent2(j-1); 
end 

if j= ParLG 
Edgelist(i, 4) = Parent2(1); 

elseifj - ParLG 
Edgelist(i, 4) = Parent2(j+1); 

end 
end 

end 
end 

%Process Edge list for duplicates and multiply all duplicates by -1 
for i=1: ParLG 

forj = 1: 4 
for z=1: 4 

if z -=j 
if Edgelist(ij) = Edgelist(i, z) 

if Edgelist(ij) >0 
Edgelist(ij) = Edgelist(ij) * -1; 
Edgelist(i, z) = Edgelist(i, z) * -1; 

end 
end 

end 
end 

end 
end 

%Build Children 
%Child1 
for i=1: ParLG 

ifi== 1 
test = rand; 
if test > 0.5 

Childl(i) = Parentl(i); 

elseif test <= 0.5 
Childl(i) = Parent2(i); 

end 
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elseif i>1 
PossEdge(1: 4) = Edgelist(prevEdge, 1: 4); 
EdgeFlag = 0; 
for f=1: 4 

if PossEdge(f) <0 
tempEdge = PossEdge(f)*-1; 
[tf, loc] = ismember(tempEdge, Child1); 
if loc =0 

EdgeFlag = 1; 
nextEdge = tempEdge; 
f=4; 

end 
end 

end 
if EdgeFlag == 0 

testPerm = randperm(4); 
for f=1: 4 

if PossEdge(testPerm(f)) >0 
tempEdge = PossEdge(testPerm(f)); 
[tf, loc] = ismember(tempEdge, Child1); 
ifloc=0 

EdgeFlag = 1; 
nextEdge = tempEdge; 
f=4; 

end 
end 

end 
end 
if EdgeFlag == 0 

testperm = randperm(ParLG); 
for f=1: ParLG 

tempEdge = Parent I (testperm(f)); 
[tf, loc] = ismember(tempEdge, Child 1); 
ifloc==0 

EdgeFlag = 1; 
nextEdge = tempEdge; 
f=ParLG; 

end 
end 

end 
Child 1(i)=nextEdge; 

end 
prevEdge = Child 1(i); 

end 

%Child2 
for i=1: ParLG 

ifi== 1 
if Child l (i) == Parent l (i) 

Child2(i) = Parent2(i); 
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elseif Child! (i) == Parent2(i) 
Child2(i) = Parentl(i); 

end 
elseif i>1 

PossEdge(1: 4) = Edgelist(prevEdge, 1: 4); 
EdgeFlag = 0; 
for f=1: 4 

if PossEdge(f) <0 
tempEdge = PossEdge(f)*-1; 
[tf, loc] = ismember(tempEdge, Child2); 
ifloc==0 

EdgeFlag = 1; 
nextEdge = tempEdge; 
f=4; 

end 
end 

end 
if EdgeFlag == 0 

testPerm = randperm(4); 
for f=1: 4 

if PossEdge(testPerm(f)) >0 
tempEdge = PossEdge(testPerm(f)); 
[tf, loc] = ismember(tempEdge, Child2); 
iftoe=0 

EdgeFlag = 1; 
nextEdge = tempEdge; 
f=4; 

end 
end 

end 
end 
if EdgeFlag == 0 

testperm = randperm(ParLG); 
for f=1: ParLG 

tempEdge = Parent2(testperm(f)); 
[tf, loc] = ismember(tempEdge, Child2); 
ifloc==0 

EdgeFlag = 1; 
nextEdge = tempEdge; 
f=ParLG; 

end 
end 

end 
Child2(i)=nextEdge; 

end 
prevEdge = Child2(i); 

end 

end 
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APPENDIX B. - DSM MATLAB CODE 
This appendix contains the MATLAB code utilised for the DSM optimisation. The code is 

arranged in the modules. The 'DSMset' routine is used to call the various problems. The 

three test problems being STEWARD '81, AUSTIN `96 and KUSIAK `87 

MAIN MODULE. 

%Permutation Based Genetic Algorithm for the DSM 

%John Lancaster, PhD Research, Brunel University 

----------------------------------------- 

function [DSMimp, Seq] = DSMGA(Npop, Gens, XRate, MRate) 

%DSM capture 
[Nvar, FFmtx] = DSMset('STEWARD81'); 

%Generate Initial Population 
for i=1: Npop 

Pop(i, 1: Nvar) = randperm(Nvar); 
end 

%Set Generation Differential Factor 
gd = 4; 

%Begin Generation Cycle 
for g=1: Gens 

%Test for improvement over last three generations and modify mutation 
%rate 
if g> gd && g< Gens - (Gens * 0.1) 
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if Best(g-gd) == Best(g-1) 
gMRate = MRate * 5; 

else 
gMRate = MRate; 

end 
else 

gMRate = MRate; 
end 

%Evaluate Fitness - via external Fitness Function 
FITmtx = DSMfit(Pop, Npop, Nvar, FFmtx); 
FITavg = Mean(FITmtx(: )); 
FITmin(g) = min(FITmtx); 
[vl, loc] = min(FITmtx); 
FITseq(g,: ) = Pop(loc,: ); 

Best(g) = min(FITmin); 

if g< Gens 

%Perform Selection - via external Selection Function 
Pop = DSMRoulette3(Pop, Npop, Nvar, FITmtx); 

%Perform Crossover - via external Crossover Function 
Pop = DSMipx(Pop, XRate, Npop, Nvar); 

%Perform Mutation - via External Mutation Function 
Pop = MRMutate(Pop, gMRate, Npop, Nvar); 

end 

end 

%Produce Improved Matrix 
[vl, loc] = min(FITmin); 
Seq = FITseq(loc,: ) 
min(Best) 
DSMimp = DSMplot(Nvar, Seq, FFmtx); 
Pop 
plot(FITmin); 

DSM FITNESS FUNCTION. 

%DSM Fitness Function (Minimise Iteration - Idsmiminiter) 

%John Lancaster, PhD Research, Brunel University 
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function [FITmtx] = DSMfit(Pop, Npop, Nvar, FFmtx) 

FFsiz = size(FFmtx); 

for i=1: Npop 
FitNumb = 0; 
forj = 1: FFsiz(1,1) 

x= (find(Pop(i,: )==FFmtx(j, 1))); 
y= (find(Pop(i,: )==FFmtx(j, 2))); 

ifx>y 
FitNumb = FitNumb + ((x - y) * FFmtx(j, 3)); 

end 
end 

FITmtx(i) = FitNumb; 
End 

DSM ROULETTE SELECTION MODULE. 

%Roulette Selection 

%John Lancaster, PhD Research, Brunel University 
%Version 1.0 - 7th September 2004 
%Version 2.0 - 15th May 2005 

function [Pop] = DSMRoulette(Pop, Npop, Nvar, Fitness) 
%Calculates the number of times a chromosome gets copied to the 
%intermediate Population 

for x=1: Npop 
Selection(x) = ceil(sum(Fitness(: ))/Fitness(x)); 

end 

Pos = 1; 
x=1; 

while and(x <= Npop, Pos <= Npop) 
Share(x) = ceil(Selection(x)*Npop/sum(Selection)); 
y=1; 
while and(y<=Share(x), Share(x)-=O) 

TempPop(Pos,: ) = Pop(x,: ); 
Pos = Pos + 1; 
y=y+l; 

end 
x= x+l; 

end 
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Pop = TempPop; 

DSM CROSSOVER MODULE. 

%Real Independant Point Crossover - Evolutionary Algorithm Toolbox 
%Real Encoded Chromosomes 

%John Lancaster - PhD Thesis Brunel University 
%Version 1.0 - 18th August 2005 

function [Pop] = DSMdpxo(Pop, XRate, Npop, Nvar) 

Matinglist = randperm(Npop); 

for p =1: 2: Npop 

Parentl = Pop(Matinglist(p),: ); 
Parent2 = Pop(Matinglist(p+1),: ); 
Childl = zeros(1, Nvar); 
Child2 = zeros(1, Nvar); 

if rand < XRate 
for i=I : Nvar 

if rand > 0.5 
Childl(i) = Parentl(i); 

end 
end 

for i=1: Nvar 
if not(ismember(Parent2(i), Child1)) 

j=1; 
while Childl(j) 0 

j =j+1; 
end 
Child l(j) = Parent2(i); 

end 
end 

for i=1: Nvar 
if rand>0.5 

Child2(i) = Parent2(i); 
end 

end 

for i=1: Nvar 
if not(ismember(Parentl (i), Child2)) 

j=1; 
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while Child2(j) -0 
j =j+1; 

end 
Child2(j) = Parentl(i); 

end 
end 

else 
Childl = Parent!; 
Child2 = Parent2; 

end 

TempPop(p,: ) = Child!; 
TempPop(p+1,: ) = Child2; 

end 

Pop = TempPop; 

DSM MUTATION MODULE. 

%Mutation - Evolutionary Algorithm Toolbox 
%Real Encoded Evolutionary Algorithms 

%John Lancaster - PhD Thesis Brunel University 
%Version 1.0 - 22nd July 2004 

function [MPop] = Mutate(MPop, MRate, Popsiz, Nvar) 
%Randomly Mutate the Population according to the given Mutation Probability 

for i=1: Popsiz 
if rand < MRate 

perm = randperm(Nvar); 
numb = ceil(rand* 10); 
list = perm(l: numb); 
line = MPop(i, l: Nvar); 
for j=l: numb 

vals(j) = line(list(j)); 
end 
for j=1: numb 

line(list(j)) = vals((numb+l) j); 
end 
MPop(i, 1: Nvar) = line; 

end 
end 
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APPENDIX C. - SINGLE MODE RCPSP 
MATLAB CODE 
The MATLAB code for the single mode RCPSP is given in this appendix. 

%Permutation Based Genetic Algorithm for the Single Mode Precedence Network PSP 

%John Lancaster, PhD Research, Brunel University 
%------------------------------------------------------------------ 

function [Seq] = PredGA(Npop, Gens, XRate, MRate) 

%Network capture 
[PREDmtx, RELmtx, Nvar, ACTmtx, RESLIMmtx] 
Predset('J301_1 ACT', 'J301_1 REL', 'J301 

_1 
LIM'); 

%Generate Initial Population 
for i=1: Npop 

Pop(i, 1: Nvar) = randperm(Nvar); 
end 

%Set Generation Differential Factor 
gd=4; 

%Begin Generation Cycle 
for g=1: Gens 

%Test for improvement over last three generations and modify mutation 
%rate 
ifg>gd&&g<Gens -(Gens*0.1) 

if Best(g-gd) = Best(g-1) 
gMRate = MRate * 5; 

else 
gMRate = MRate; 

end 
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else 
gMRate = MRate; 

end 

%Evaluate Fitness - via external Fitness Function 
FITmtx = PredfitMinDur(Pop, Npop, Nvar, RESLIMmtx, PREDmtx, ACTmtx); 
FITavg = Mean(FITmtx(: )); 
FITmin(g) = min(FITmtx); 
[vl, loc] = min(FITmtx); 
FITseq(g,: ) = Pop(loc,: ); 
Best(g) = min(FITmin); 
BESTLIMmtx(g,:,: ) = RESLIMres(loc,:,: ); 

ifg<Gens 
%Perform Selection - via external Selection Function 
Pop = DSMRoulette3(Pop, Npop, Nvar, FlTmtx); 
%Perform Crossover - via external Crossover Function 
Pop = DSMipx(Pop, XRate, Npop, Nvar); 
%Perform Mutation - via External Mutation Function 
Pop = MRMutate(Pop, gMRate, Npop, Nvar); 

end 
end 

%Produce Improved Matrix 
[vl, loc] = min(FITmin); 
Seq = FITseq(loc,: ) 
min(Best) 

Pop 
BESTres(:,: ) = BESTLIMmtx(loc,:,: ); 
REScurve = RESLIMmtx - BESTres 

plot(FITmin); 

FITNESS FUNCTION MODULE. 

%CPM Network Fitness 
%Single Objective Duration Only 

%John Lancaster, PhD Research, Brunel University. 

function [FITmtx] = PredfitMinDur(Pop, Npop, Nvar, RESLIMmtx, PREDmtx, ACTmtx) 

for f=1: Npop 
Sch = Pop(f, 1: Nvar); 
FITmtx(f) = SSS(Sch, Nvar, RESLIMmtx, PREDmtx, ACTmtx); 

End 
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SERIAL SCHEDULE GENERATION SCHEME MODULE. 

% Serial Schedule Generation Scheme 

%%John Lancaster, PhD Research, Brunel University 2005 

function [Dur] = SSS(Sch, Nvar, RESLIMmtx, PREDmtx, ACTmtx) 

%Initialise the Finish Date Matrix. 
FDmtx=zeros(Nvar, 1); 

%Process Activity list until all Activities are scheduled. 
while ismember(O, FDmtx) 

%Process each activity 
i=l; 

while i <= Nvar 

ACTchk = zeros(size(RESLIMmtx, 1), 1); 

if FDmtx(Sch(i)) == 0 
Npre = PREDmtx(Sch(i), 1); 
FDpre = zeros(Npre, I); 

if Npre -0 

%Check for Predecessors being scheduled 
for j=1: Npre 

if FDmtx(PREDmtx(Sch(i), I +j)) -0 
FDpre(j) = FDmtx(PREDmtx(Sch(i), 1+j)); 

end 
end 

else 

%If no predecessors allow activity to schedule 
FDpre = zeros(1,1); 
FDpre(1) = 1; 

end 

%Check for first Resource feasible time 
if not(ismember(O, FDpre)) 

EarST = max(FDpre); 
ACTdur = ACTmtx(Sch(i), 3); 
RESlim = (3 + size(RESLIMmtx, 1)); 
ACTres(1: size(RESLIMmtx, 1)) = ACTmtx(Sch(i), 4: RESlim); 

ResFes = 0; 
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while ResFes == 0 
EarFI = EarST + ACTdur; 
for k=1: size(RESLIMmtx, 1) 

if not(ismember(O, RESLIMmtx(k, EarST: EarFI) >= ACTres(k))) 
%Record Activity Finish Date in Matrix based on 
%resource 'k' requirement. 
ResFes = 1; 

else 
ResFes = 0; 

end 

end 

EarST = EarST+1; 

end 

FDmtx(Sch(i)) = EarFI; 
i=0; 

for k=l: size(RESLIMmtx, l) 
RESLIMmtx(k, EarFI-ACTdur: EarFI) = RESLIMmtx(k, EarFI-ACTdur: EarFI) - 

ACTres(k); 
end 

end 
end 

i=i+1; 
end 

end 

FDmtx(: ) = FDmtx(: ) - 1; 

Dur = max(FDmtx); 

ROULETTE SELECTION MODULE. 

%Roulette Selection 

%John Lancaster, PhD Research, Brunel University 
%Version 1.0 - 7th September 2004 
%Version 2.0 - 15th May 2005 
%Version 3.0 - 19th June 2005 

function [Pop] = DSMRoulette3(Pop, Npop, Nvar, Fitness) 
%Calculates the number of times a chromosome gets copied to the 
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%intermediate Population 

for x=1: Npop 
Selection(x) = ceil((max(Fitness(: ))-min(Fitness(: ))) / ((Fitncss(x)-min(Fitncss(: )))+0.1)); 

if Selection(x) == Inf 
Selection(x) = 100; 

end 
end 

Pos=1; 
x=1; 

while and(x <= Npop, Pos <= Npop) 
Share(x) = ceil(Selection(x)*Npop/sum(Selection)); 
y=1; 
while and(y<=Share(x), Share(x)-O) 

TempPop(Pos,: ) = Pop(x,: ); 
Pos = Pos + 1; 
y=y+1; 

end 
x=x+l; 

end 

Pop = TempPop; 
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APPENDIX D. - MULTI-MODE RCPSP 
MATLAB CODE 
The following code is the code utilised within MATLAB for solution of the PSPLIB Multi- 
mode problems: 

MAIN ROUTINE 

%Permutation Based Genetic Algorithm for the Multimode Precedence Network MRCPSP 

%John Lancaster, PhD Research, Brunel University 

------------------------------------------------------------------ 

function [Seq, MSeq, REScurve] = mmPredGA(Npop, Gens, XRate, MRate) 

%Network capture 
[PREDmtx, RELmtx, Nvar, ACTmtx, RESLIMmtx, ModePointcrMtx, LIMmtx] _ 
mmPredset('J6010_1 ACT', 'J6010_I REL', 'J6010_I LIM'); 

%Generate Initial Population and Mode Matrix 
for i=1: Npop 

Pop(i, 1: Nvar) = randperm(Nvar); 
Pline= Pop(i, 1: Nvar); 
for j=l: Nvar 

MPop(ij) = ceil(rand*RELmtx(Pline(j), 2)); 
end 

end 

%Set Generation Differential Factor 
gd = 4; 

%Begin Generation Cycle 
for g=1: Gens 

%Test for improvement over last three generations and modify mutation 
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%rate 
if g> gd && g< Gens - (Gens * 0.2) 

if Best(g-gd) == Best(g-1) 
gMRate = MRate * 7; 

else 
gMRate = MRate; 

end 
else 

gMRate = MRate; 
end 

%Evaluate Fitness - via external Fitness Function 
[FITmtx, RESLIMres, FINISHaII] = mmPredfitMinDur(Pop, MPop, Npop, 

Nvar, RESLIMmtx, PREDmtx, ACTmtx, ModePointerMtx, LIMmtx); 
FITavg = Mean(FITmtx(: )); 
FITmin(g) = min(FITmtx); 
[vl, loc] = min(FITmtx); 
FITseq(g,: ) = Pop(loc,: ); 
ModSeq(g,: ) = MPop(loc,: ); 
Best(g) = min(FITmin); 
BESTLIMmtx(g,:,: ) = RESLIMres(loc,:,: ); 

ifg<Gens 
%Perform Selection - via external Selection Function 
[Pop, MPop] = mmDSMRoulette3(Pop, MPop, Npop, Nvar, FITmtx); 
%Perform Crossover - via external Crossover Function 
[Pop, MPop] = mmDSMipx(Pop, MPop, XRate, Npop, Nvar); 
%Perform Mutation - via External Mutation Function 
[Pop, MPop] = mmMutate(Pop, MPop, gMRate, Npop, Nvar, RELmtx); 

end 
end 

%Produce Improved Matrix 
[vl, loc] = min(FITmin); 
Seq = FITseq(loc,: ); 
MSeq = ModSeq(loc,: ) 
BESTres(:,: ) = BESTLIMmtx(loc,:,: ); 
REScurve = RESLIMmtx - BESTres 
FDRES = FINISHa11(loc,: ); 
FDRES = FDRES(: ) -I 
min(Best); 
ACTmtx 

Pop; 
plot(FITmin); 

PSPLIB PROBLEM IMPORT 

%PSPLIB File Import 
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%Note original PSPLIB Files first split into three seperate sheets 

%Processes Excel Based PSPLIB files for Optimisation. 
%Modified for multi-mode optimisation. 
%John Lancaster, PhD Research, Brunel University 2005 

function [PREDmtx, RELmtx, Nvar, ACTmtx, RESLIMmtx, ModePointerMtx, LIMmtx] _ 
mmPredset(ACTfile, RELfile, LIMfile) 

ACTmtx = xlsread(ACTfi1e); %Import the Activity / Resource file from Excel 
RELmtx = xlsread(RELfile); %Import Rel file from Excel 
LIMmtx = xlsread(LIMfile); %Import Resource Limit file from Excel 
Nvar = size(RELmtx, 1); %Calculate number of Activities 

%Generate Predecessor Matrix 
PREDmtx = zeros(Nvar, max(RELmtx(:, 3))+1); 

%Preprocess modes. 
[ACTmtx, RELmtx] = mmMODEpre(LIMmtx, ACTmtx, RELmtx); 

%Generate Mode Pointer Matrix 
ModePointerMtx = zeros(Nvar, 2); 
for i=1: Nvar 

ModePointerMtx(i, 1) = i; 
ifi-=1 

ModePointerMtx(i, 2)=RELmtx(i- 1,2)+ModePointerMtx(i- 1,2); 
end 
ifi= 1 

ModePointerMtx(i, 2)=1; 
end 

end 

%Generate Resource Limit Matrix 
LimLen = length(LIMmtx); 
CeilDur = sum(ACTmtx(1: Nvar, 3)); 

for i=1: LimLen 
RESLIMmtx(i, 1: CeilDur) = LIMmtx(2, i); 

end 

%Convert the Successor Matrix to a Predecessor Matrix 
for i=4: 6 

forj = 1: Nvar 
if not(isnan(RELmtx(j, i))) 

PREDmtx(RELmtx(j, i), 1) = PREDmtx(RELmtx(j, i), 1) + 1; 
PREDmtx(RELmtx(j, i), PREDmtx(RELmtx(j, i), 1) + 1) = RELmtx(j, 1); 

end 
end 

end 
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FITNESS FUNCTION 

%CPM Network Fitness 
%Single Objective Duration Only 

%John Lancaster, PhD Research, Brunel University. 
%Modified from PredfitMinDur for the multi-mode problem 

function [FITmtx, RESLIMres, FINISHall] = mmPredfitMinDur(Pop, MPop, Npop, Nvar, 
RESLIMmtx, PREDmtx, ACTmtx, ModePointerMtx, LIMmtx) 

for f=I : Npop 
Sch = Pop(f, 1: Nvar); 
SchM = MPop(f, 1: Nvar); 
[Dur, RESLIM, FINISHmtx] = mmSSS(Sch, SchM, Nvar, RESLIMmtx, PREDmtx, ACTmtx, 

ModePointerMtx, LIMmtx); 
FITmtx(f) = Dur; 
RESLIMres(f,:,: ) = RESLIM; 
FINISHaII(f,:,: ) = FINISHmtx; 

End 

SERIAL SCHEDULE GENERATION SCHEME 

% Serial Schedule Generation Scheme 

%%John Lancaster, PhD Research, Brunel University 2005 
%Modified from SSS. m for the Multi-mode problem. 
%Modified for Renewable and Non-renewable resources 

function [Dur, RESLIMmtx, FINISHmtx] = mmSSS(Sch, SchM, Nvar, 
RESLIMmtx, PREDmtx, ACTmtx, ModePointerMtx, LIMmtx) 

%Initialise the Finish Date Matrix. 
FDmtx=zeros(Nvar, 1); 
FINISHmtx=zeros(Nvar, l ); 
[n, Lim] = size(RESLIMmtx); 
Esc = 0; 

%Process Activity list until all Activities are scheduled. 
while ismember(O, FDmtx) 

%Process each activity 
i=1; 

while i <= Nvar 

ACTchk = zeros(size(RESLIMmtx, 1), 1); 

if FDmtx(Sch(i)) == 0 
Npre = PREDmtx(Sch(i), 1); 
FDpre = zeros(l, I); 
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FDpre(1) = 1; 

if Npre -= 0 
FDpre = zeros(Npre, I); 
%Check for Predecessors being scheduled 
for j=1: Npre 

if FDmtx(PREDmtx(Sch(i), 1+j)) -= 0 
FDpre(j) = FDmtx(PREDmtx(Sch(i), 1 +j)); 

end 
end 

end 

%Check for first Resource feasible time 
if not(ismember(O, FDpre)) 

Act = Sch(i); 
Mode = SchM(i); 
EarST = max(FDpre); 
ACTdur = ACTmtx(ModePointerMtx(Act, 2)+Mode-1,3); %MM modification. 
RESlim = (3 + size(RESLIMmtx, I)); 
ACTres(l: size(RESLIMmtx, l)) = ACTmtx(ModePointerMtx(Act, 2)+Mode- 

1,4: RESlim); %MM modification. 

if ACTdur -0 

EarFI = EarST + ACTdur - 1; 
ACTres = ACTres; 
DURmtx = zeros(size(RESLIMmtx, 1), ACTdur); 

for d=1: ACTdur 
DURmtx(1: size(RESLIMmtx, 1), d)=ACTres ; 

end 

z= not(ismember(O, RESLIMmtx(:, EarST: EarFI) >= DURmtx)); 

while z == 0 
EarST = EarST+ 1; 
EarFI = EarST + ACTdur- 1; 

if EarFI <= Lim 

z= not(ismember(O, RESLIMmtx(:, EarST: EarFI) >= DURmtx)); 
else 

Z= 1; 
i= Nvar+ 1; 
Esc = 1; 

end 
end 

if Esc == 0 
for r=1: n 

if LIMmtx(1, r) _= 1 

198 



RESLIMmtx(r, EarST: EarFI) = RESLIMmtx(r, EarST: EarFI) - 
DURmtx(r,: ); 

else 
RESLIMmtx(r,: ) = RESLIMmtx(r,: ) - DURmtx(r, 1); 

end 
end 

end 
else 

EarFI = EarST; 
end 

if Esc == 0 
FDmtx(Sch(i)) = EarFI; 
FINISHmtx(Sch(i)) = EarFI; 

else 
FDmtx(: ) = 1; 
FDmtx(Sch(Nvar)) = 100; 

end 
end 

end 

1=i+1; 

end 
end 

FDmtx(: ) = FDmtx(: ) - 1; 

Dur = max(FDmtx); 

MUTATION OPERATOR 

%Mutation - Evolutionary Algorithm Toolbox 
%Real Encoded Evolutionary Algorithms 

%John Lancaster - PhD Thesis Brunel University 
%Version 1.0 - 22nd July 2004 

function [Pop, MPop] = mmMRMutate(Pop, MPop, MRate, Popsiz, Nvar, RELmtx) 
%Randomly Mutate the Population according to the given Mutation Probability 

for i=1: Popsiz 
if rand < MRate 

Line = Pop(i, 1: Nvar); 
PosA = ceil(rand*Nvar); 
PosB = ceil(rand*Nvar); 
ActA = Line(PosA); 
ActB = Line(PosB); 
Line(PosA) = ActB; 
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Line(PosB) = ActA; 
ModesA = RELmtx(ActA, 2); 
ModesB = RELmtx(ActB, 2); 
Mline = MPop(i, 1: Nvar); 
Mline(PosA) = ceil(rand*ModesB); 
Mline(PosB) = ceil(rand*ModesA); 
Pop(i, 1: Nvar) = Line; 
MPop(i, I : Nvar) = Mline; 

end 
end 

INDEPENDENT CROSSOVER OPERATOR 

%Real Independant Point Crossover - Evolutionary Algorithm Toolbox 
%Real Encoded Chromosomes 

%John Lancaster - PhD Thesis Brunel University 
%Version 1.0 - 18th August 2005 

function [Pop, MPop] = mmDSMipx(Pop, MPop, XRate, Npop, Nvar) 
%Perform Single Point Crossover on two Parent Chromosomes 

Matinglist = randperm(Npop); 

for p=1: 2: Npop 

Parentl = Pop(Matinglist(p),: ); 
Parent2 = Pop(Matinglist(p+1),: ); 
Child l= zeros(1, Nvar); 
Child2 = zeros(1, Nvar); 
mParentl = MPop(Matinglist(p),: ); 
mParent2 = MPop(Matinglist(p+l),: ); 
mChildl = zeros(1, Nvar); 
mChild2 = zeros(1, Nvar); 

if rand < XRate 
for i=1: Nvar 

if rand>0.5 
Childl(i) = Parentl(i); 
mChild 1(i) = mParent 1(i); 

end 
end 

for i=1: Nvar 
if not(ismember(Parent2(i), Child1)) 

j=1; 
while Childl(j) -0 

j=j+l; 
end 
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Child 10) = Parent2(i); 
mChild1(j) = mParent2(i); 

end 
end 

for i=1: Nvar 
if rand>0.5 

Child2(i) = Parent2(i); 
mChild2(i) = mParent2(i); 

end 
end 

for i=1: Nvar 
if not(ismember(Parentl(i), Child2)) 

j=1; 
while Child2(j) == 0 

j=j+1; 
end 
Child2(j) = Parentl(i); 
mChild2(j) = mParentl(i); 

end 
end 

else 
Childl = Parentl; 
Child2 = Parent2; 
mChildl = mParentl; 
mChild2 = mParent2; 

end 

TempPop(p,: ) = Child!; 
TempPop(p+l,: ) = Child2; 

mTempPop(p,: ) = mChildl; 
mTempPop(p+l,: ) = mChild2; 

end 

Pop = TempPop; 
MPop = mTempPop; 

ROULETTE SELECTION 

%Roulette Selection 

%John Lancaster, PhD Research, Brunel University 
%Version 1.0 - 7th September 2004 
%Version 2.0 - 15th May 2005 
%Version 3.0 - 19th June 2005 
%Version 4.0 - 8th June 2006 Multi-mode 
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function [Pop, MPop] = mmDSMRoulette3(Pop, MPop, Npop, Nvar, Fitness) 
%Calculates the number of times a chromosome gets copied to the 
%intermediate Population 

Fitness 

for x=1: Npop 
%Selection(x) = ceil((max(Fitness(: ))-min(Fitness(: ))) / ((Fitness(x)-min(Fitness(: )))+0.1)); 
Selection(x) = ceil(sum(Fitness)/Fitness(x)); 

if Fitness(x) == min(Fitness) 
Selection(x) = Selection(x)*6; 

end 
end 

Pos = 1; 
x= 1; 
y= 1; 
Share = zeros(1, Npop); 

while y< Npop 
Share(x) = ceil(Selection(x)*Npop/sum(Selection)); 
y= sum(Share); 
x=x+1; 

end 

x=1; 

while and(x <= Npop, Pos <= Npop) 

y=1; 
while and(y<=Share(x), Share(x)--=O) 

TempPop(Pos,: ) = Pop(x,: ); 
TempMPop(Pos,: ) = MPop(x,: ); 
Pos = Pos + 1; 
y=y+1; 

end 

X= X+1; 

end 

Pop = TempPop; 
MPop = TempMPop; 

MODE PREPROCESSOR 

% Mode Preprocessor 

%%John Lancaster, PhD Research, Brunel University 2006 
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% Preprocesses Modes and deletes any unfeasible modes where 
% per period renewable resource usage is higher than the resource 
% limits. 

function [ACTmtx, RELmtx] = mmMODEpre(LIMmtx, ACTmtx, RELmtx) 

[r, c] = size(ACTmtx); 

[q, s] = size(LIMmtx); 
DELmtx = zeros(1, r); 

fori= 1: r 
forj=1: s 

if LIMmtx(I, j) =I 
if ACTmtx(i, 3+j) > LIMmtx(2j) 

DELmtx(i) = 1; 
end 

end 
end 

end 

fori=r: -1: 1 
if DELmtx(i) == 1 

ACTmtx(i,: ) = []; 
RELmtx(ACTmtx(i, 1), 2) = RELmtx(ACTmtx(i, 1), 2)- 1; 
i=i-1; 
r=r- 1; 

end 
end 
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APPENDIX E. - RCPSP MS PROJECT VBA 
CODE 
The VBA code contained in this appendix supports the MS Project based RCPSP problem 

optimisation as shown in Chapter 5 as well as the optimisation of the variants to the problem 

given in Chapter 6 and 7. 

SUBROUTINE INITIATED FROM GUI DIALOG BOX BUTTON 

Private Sub CommandButton2_Click() 

Pop_Size = TextBox 1. Value 
Xover_Rate = TextBox2. Value 
Mute Rate = TextBox3. Value 
Generations = TextBox4. Value 
Elitism = TextBox5. Value 
Wgtl = TextBox6. Value 
Wgt2 = TextBox7. Value 
Loper =1- TextBox8. Value 

ReDim FitData(Generations, 5) 

gMute_Rate = Mute_Rate 

'Generate initial Random Population. 
Select Case Problem 
Case 1 

Call initial_pop(Pop_Size, tcount) 

204 



Case 2 
Call initial pop(Pop_Size, tcount) 

Case 3 
Call initial pop3(Pop_Size, tcount, SLTaskTable, SLcount) 

Case 4 
Call initial pop4(Pop_Size, tcount, SRTable, SRcount, SLcount) 

End Select 

'Build precedence relationship table. 
Call Prec build(tcount) 

'Set Fitness Differential Factor 
gd=4 

'Main Optimisation Loop 
For g=1 To Generations 

'Set Mutation Factor for Fitness Differential Adaptation 
If g> gd And g< (Generations * 0.6) Then 

If Problem =3 Then 
If FitData(g - gd, 2) = FitData(g - 1,2) Then 

Mute_Rate =4* Mute_Rate 
End If 

Else 
If FitData(g - gd, 1) = FitData(g - 1,1) Then 

Mute_Rate =4* Mute-Rate 
End If 

End If 
Else 

Mute_Rate = gMute_Rate 

End If 

'Fitness Evaluation and calculate Fitness Statistics 
Select Case Problem 
Case 1 

Call RCPSPFitness 
Call FitnessProc 
Call Roulette Sel 
Call IDPXO 
Call Mutate 

Case 2 
Call RCPSPFitness 
Call FitnessProc 
Call Roulette Sel 
Call IDPXO 
Call Mutate 

Case 3 
Call RCPSPFitness3 
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Call FitnessProc 
Call Roulette Sel3 
Call IDPXO3 
Call Mutate3 

Case 4 
Call RCPSPFitness4 
Call FitnessProc 
Call Roulette Se14 
Call IDPXO4 
Call Mutate4 

End Select 

'Status the Dialog box with Algorithm progress 
ProgressBarl. Value = Int(g * 100 / Generations) 
LabellO. Caption = ProgressBarl. Value 
Labell6. Caption =g 
UserForm 1. Repaint 

Next g 

ReDim FDList(tcount) 

UserForm l . hide 
'Update Gantt Chart with Optimised Schedule. 

'Build Activitiy Finish Date List 
For x =1 To tcount 

FDList(x) = FDPop(FitData(Generations, 5), x) 
Next x 

StartDate = ActiveProject. Tasks. Item(1). Start 

'Process Activities 
For Each t In ActiveProject. Tasks 

t. Finish = StartDate + FDList(t) 
Next 

'For Stochastic Logic Problems 
'Fed logic links back into MS Project 
If Problem =3 Then 

'For q=1 To SLcount 
For Each t In ActiveProject. Tasks 

If t. ID = SLTaskTable(q) Then 
If SLTaskTable(q) <> "" Then 

tsk = SLPop(FitData(Generations, 5), q) 
If tsk = Empty Then 
Else 

'td = t. TaskDependencies. Add(tsk, pjFinishToStart, 0) 
End If 
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End If 
End If 

Next t 
'Next q 

'Set xlApp = CreateObject("excel. application") 
'Set x1WB = xlApp. Workbooks. Add 

'xlApp. Visible = True 

'For d=1 To Pop_Size 
' x1WB. Workshcets(1). Cells(d, 1). Valuc = SLPop(FitData(Gencrations, 5), d) 
'Next d 

End If 

'For Stochastic Resource Problems 
'Revise Resource Table according to Best Stochastic Assignments 
If Problem =4 Then 

For e=1 To SLcount 
newres = SRTable(SLPop(FitData(Generations, 5), c), 2) 
Sact = SLTaskTable(e) 
For q=1 To SRcount 

If ResTable(q, Sact + 3) <> 0 Then 
TempHold = ResTable(q, Sact + 3) 
ResTable(q, Sact + 3) = Null 

End If 
Next q 
ResTable(newres, Sact + 3) = Templlold 

Next e 

'Push Resource Assignments back to the Activities 
'First Clear existing assignments 
For Each r In ActiveProject. Resources 

For Each a In r. Assignments 
a. Delete 

Next a 
Next r 

C=1 

For Each aTask In ActiveProject. Tasks 
For r=1 To rcount 

If ResTable(r, c+ 3) <> Empty Then 
Set x= aTask. Assignments. Add(c, r, 1) 
x. Units = ResTable(r, c+ 3) 

End If 
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Next r 
c=c+1 

Next aTask 

End If 

'Write Fitness Improvement Curve to Excel 
'Set xlApp = CreateObject("excel. application") 
'Set x1WB = xlApp. Workbooks. Add 

'xlApp. Visible = True 

'For d=1 To Generations 
x1WB. Worksheets(1). Cells(d, 1). Value =d 
x1WB. Worksheets(1). Cells(d, 2). Value = FitData(d, 1) 
x1WB. Worksheets(1). Cells(d, 3). Value = FitData(d, 2) 

'Next d 

End Sub 

Private Sub TextBox6 ChangeO 
If TextBox6. Value Then 
Else 

If TextBox6. Value > 99 Then 
TextBox6. Value = 99 

End If 
TextBox7. Value = 100 - TextBox6. Value 

End If 
End Sub 

Private Sub TextBox7_Change() 
If TextBox7. Value = "" Then 
Else 

If TextBox7. Value > 99 Then 
TextBox7. Value = 99 

End If 
TextBox6. Value = 100 - TextBox7. Value 

End If 
End Sub 

Private Sub UserForm_Activate() 
TextBoxl. Value = 10 
TextBox2. Value = 0.7 
TextBox3. Value = 0.07 
TextBox4. Value = 10 
TextBox5. Value = 0.25 
TextBox6. Value = 50 
TextBox7. Value = 50 
TextBox8. Value = 0.7 
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ComboBoxl. AddItem ("RCPSP") 
ComboBoxl. Addltem ("RCPSP with 2 Weighted Objectives") 
ComboBoxl. AddItem ("RCPSP with Stochastic Logic") 
ComboBoxl. Addltem ("RCPSP with Stochastic Resourcing") 

TextBox6. Visible = True 
TextBox7. Visible = True 
'Label32. Visible = False 
'Label33. Visible = False 
'Label34. Visible = False 
'Label36. Visible = False 
'Label37. Visible = False 

Problem =I 
ComboBoxl. Value = "RCPSP" 

Call Preprocess 
Label3. Caption = tcount 
Labell8. Caption = rcount 
Label37. Caption = SLcount 

End Sub 

DECLARATIONS 

Public t As Task 
Public td As TaskDependency 
Public g As Integer 
Public Break As Integer 
Public tcount As Integer 
Public UppLim As Integer 
Public rcount As Integer 
Public Pop_Size As Integer 
Public Xover_Rate As Double 
Public Elitism As Double 
Public EliteScore As Integer 
Public Mute_Rate As Double 
Public Generations As Integer 
Public Rfit As Double 
Public Dfit As Double 
Public FDMin1 As Integer 
Public Problem As Integer 
Public ResType As String 
Public Wgtl As Integer 
Public Wgt2 As Integer 
Public Logper As Double 
Public fit_pair(1,2) 
Public fit_mtx() 
Public LDMtx() 
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Public ResPeaks As Integer 
Public ResUsage() 
Public ResNeed() 
Public ResLimit() 
Public LoopList() 
Public RLSource() 
Public Taskdatao 
Public BestRes() 
Public Pop() 
Public SLPopO 
Public SLcount As Integer 
Public SLTaskTable() 
Public SRTable( 
Public SRcount As Integer 
Public TempSLPop() 
Public PrecTable() 
Public PrecTablel() 
Public PrecMaster() 
Public DurTableO 
Public ResTable() 
Public ResAllocTable() 
Public FDmtx() 
Public vMatrix() 
Public FDList() 
Public Sel_Mtx( 
Public Share() 
Public TempPop( 
Public TempLine() 
Public TempSLine() 
Public EliteLine() 
Public SEliteLine() 
Public SuccStat() 
Public alist() 
Public permO 
Public aline() 
Public FDPop() 
Public FitData() 
Public Pareto_Set() 
Public aTask As MSProject. Task 

'GENETIC ALGORITHM - RESOURCE CONSTRAINED PROJECT SCHEDULING 
PROBLEM OPTIMISATION 

'Ph. D. Research - School of Engineering and Design - Brunel University 

'John Lancaster 
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'Coding - November 2006 to October 2007 
'Genetic Algorithm Control Routine 

INITIATING SUBROUTINE 

Sub Schedule_GAO 

UserForml. Show 

End Sub 

PREPROCESSING MODULE 

'Preprocess the schedule to extract task and predecessor information and build resource table 

Sub Preprocess() 

'Save Solution File 
NewFileName = Left(ActiveProject. Name, Len(ActiveProject. Name) - 4) & "_sol. mpp" 
FileSaveAs Name: =NewFileName 

'Count Number of Tasks in Schedule 
tcount =0 
'Count Number of Tasks flagged for Stochastic logic 
SLcount =0 

For Each t In ActiveProject. Tasks 
tcount = tcount +1 
If t. Textl = "S" Or t. Textl = "s" Then 

SLcount = SLcount +1 
End If 

Next t 

ReDim DurTable(tcount) 
If SLcount <> 0 Then 

ReDim SLTaskTable(SLcount) 
End If 

SLpos =0 

For Each t In ActiveProject. Tasks 
DurTable(t) = t. Duration / 480 
If t. Textl = "S" Or t. Textl = "s" Then 

SLpos = SLpos +1 
SLTaskTable(SLpos) = t. ID 

End If 
Next t 

'Extract Resource Listing 
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rcount =0 

For Each r In ActiveProject. Resources 
rcount = rcount +1 

Next r 

ReDim ResTable(rcount, tcount + 4) 

Pos =1 
SRcount =0 

For Each r In ActiveProject. Resources 

ResTable(Pos, 1) = r. ID 
ResTable(Pos, 2) = r. Numberl 
ResTable(Pos, 3) = r. Number2 
ResTable(Pos, 4) = r. Text3 

For Each a In r. Assignments 
ResTable(Pos, a. TasklD + 4) = a. Units 

Next a 

If Problem =4 Then 
If r. Text9 = "Y" Or r. Text9 = "y" Then 

SRcount = SRcount +1 
End If 

End If 

Pos = Pos +1 
Next r 

ReDim SRTable(SRcount, 2) 
xcount =0 

For Each r In ActiveProject. Resources 
If Problem =4 Then 

If r. Text9 = "Y" Or r. Text9 = "y" Then 
xcount = xcount +1 
SRTable(xcount, 1) = r. Name 
SRTable(xcount, 2) = r. ID 

End If 
End If 

Next r 

'Set up Resource Limit Table 
'Establish maximum Upper Limit 
UppLim =0 
For ul =1 To tcount 

UppLim = DurTable(ul) + UppLim 
Next ul 
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'Create Resource Limit Table 
ReDim ResLimit(rcount, UppLim) 

For resset =1 To rcount 
For ihm =1 To UppLim 

ResLimit(resset, Him) = ResTable(resset, 2) 
Next Him 

Next resset 

ReDim RLSource(rcount, UppLim) 

RLSource = ResLimit 

End Sub 

INITIAL POPULATION SET UP - STANDARD RCPSP 

'Set up intial Population 

Sub initial_pop(Pop_Size, tcount) 

Randomize 
ReDim Pop(Pop_Size, tcount) 

'Build Initial Population (Generate Pop_Size Random permutations of tcount items) 
For i=1 To Pop_Size 

For j=1 To tcount 
Pop(i, j) =j 

Next j 

For j=1 To tcount 
rd = Int((Rnd * tcount) + 1) 
a= Pop(i, j) 
b= Pop(i, rd) 
Pop(i, j) =b 
Pop(i, rd) =a 

Next 
Next i 

End Sub 

INITIAL POPULATION SET UP - STOCHASTIC LOGIC PROBLEM 

'Set up intial Population for Stochastic Logic 

Sub initial_pop3(Pop_Size, tcount, SLTaskTablc, SLcount) 

Randomize 
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ReDim Pop(Pop_Size, tcount) 

'Build Initial Population (Generate Pop_Size Random permutations of tcount items) 
For i=1 To Pop_Size 

For j=I To tcount 
Pop(i, j) =j 

Next j 

For j=1 To tcount 
rd = Int((Rnd * tcount) + 1) 
a= Pop(i, j) 
b= Pop(i, rd) 
Pop(i, j) =b 
Pop(i, rd) =a 

Next 
Next i 

'Build Population Extension (For Stochastic Logic) 
ReDim SLPop(Pop_Size, SLcount) 

For i=1 To Pop_Size 
For j=1 To SLcount 

If Rnd > Logper Then 
rl = Int((Rnd * SLcount) + 1) 
Do While rl =j 

rl = Int((Rnd * SLcount) + 1) 
Loop 
SLPop(i, j) = SLTaskTable(rl) 

End If 
Next j 

Next i 
End Sub 

INITIAL POPULATION SET UP - STOCHASTIC RESOURCING PROBLEM 

'Set up intial Population for Stochastic Resourcing 

Sub initial pop4(Pop_Size, tcount, SRTable, SRcount, SLcount) 

Randomize 
ReDim Pop(Pop_Size, tcount) 

'Build Initial Population (Generate Pop_Size Random permutations of tcount items) 
For i =1 To Pop_Size 

For j=1 To tcount 
Pop(i, j) =j 

Next j 

For j=1 To tcount 
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rd = Int((Rnd() * tcount) + 1) 
a= Pop(i, j) 
b= Pop(i, rd) 
Pop(i, j) =b 
Pop(i, rd) =a 

Next 
Next i 

'Build Population Extension (For Stochastic Resourcing) 
If Problem =4 Then 

ReDim SLPop(Pop_Size, SLcount) 

For y=I To Pop_Size 
For z=1 To SLcount 

SLPop(y, z) = Int(Rnd * SRcount) +1 
Next z 

Next y 
End If 

'Set xlApp = CreateObject("excel. application") 
'Set x1WB = xlApp. Workbooks. Add 

'xlApp. Visible = True 

'For d=I To Pop-Size 
For e=1 To SLcount 

x1WB. Worksheets(1). Cells(d, c). Value = SLPop(d, e) 
Next e 

'Next d 

End Sub 

ADJACENCY MATRIX BUILDING ROUTINE 

'Build Precedence Data using Adjacency Matrix and store Activity Duration 

Sub Prec_build(tcount) 

ReDim PrecTable(tcount, tcount) 
ReDim PrecTable 1(tcount, tcount) ' remove 
ReDim PrecMaster(tcount, tcount) 

CeilingDur =0 

For Each t In ActiveProject. Tasks 

x= Len(ActiveProject. Tasks(t). Predecessors) 
y= ActiveProjcct. Tasks(t). Predecessors 
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CeilingDur = CeilingDur + ActiveProject. Tasks(t). Duration 

St =1 

For q=1 To x 
If Mid(y, q, 1) <> ", " Then 

Ifq=x Then 
1= Val(Mid(y, st, (q - st + 1))) 
PrecTable(l, t) =1 

End If 
Else 

1= Val(Mid(y, st, (q - st))) 
PrecTable(1, t) =1 
st=q+1 

End If 
Next q 

Next t 

PrecMaster = PrecTable 
PrecTablel = PrecTable 'Remove 

End Sub 

FITNESS FUNCTION - STANDARD RCPSP 

'RCPSP Fitness Function 
Sub RCPSPFitness() 

ReDim Sch(tcount) 
ReDim fit_mtx(Pop_Size, 2) 
ReDim FDPop(Pop_Size, tcount) 

For ff =1 To Pop_Size 
'Initialise Resource Limits Matrix 
ResLimit = RLSource 

For h=1 To tcount 
Sch(h) = Pop(ff, h) 

Next h 

If Problem =3 Then 
Call SSS3(Sch, ff) 

Else 
Call SSS(Sch, ff) 

End If 

For h=1 To tcount 
FDPop(ff, h) = FDmtx(h) 

Next h 
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fit_mtx(ff, 1) = fitjair(1,1) 'Duration Fitnes 
fit mtx(ff, 2) = fitpair(1,2) 'Resource Fitness 

Next ff 

End Sub 

FITNESS FUNCTION - STOCHASTIC RESOURCE PROBLEM 

Sub RCPSPFitness3() 
ReDim Sch(tcount) 
ReDim fit_mtx(Pop_Size, 2) 
ReDim FDPop(Pop_Size, tcount) 

For ff =I To Pop_Size 
'Initialise Resource Limits Matrix 
ResLimit = RLSource 

For h=1 To tcount 
Sch(h) = Pop(ff, h) 

Next h 

Call SSS3(Sch, ff) 

For h=1 To tcount 
FDPop(ff, h) = FDmtx(h) 

Next h 

fit_mtx(ff, 1) = fitpair(1,1)'Duration Fitness 
ft mtx(ff, 2) = fit j, air(1,2) 'Resource Fitness 

Next ff 

End Sub 

FITNESS FUNCTION - STOCHASTIC LOGIC PROBLEM 

'RCPSP Fitness Function 
Sub RCPSPFitness4() 

ReDim Sch(tcount) 
ReDim fit_mtx(Pop_Size, 2) 
ReDim FDPop(Pop_Size, tcount) 

For ff= I To Pop_Size 
'Initialise Resource Limits Matrix 
ResLimit = RLSource 
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'Revise Resource Table according to Stochastic Assignments 
For e=1 To SLcount 

newres = SRTable(SLPop(ff, e), 2) 
Sact = SLTaskTable(e) 
For q=1 To SRcount 

If ResTable(q, Sact + 3) 00 Then 
TempHold = ResTable(q, Sact + 3) 
ResTable(q, Sact + 3) = Null 

End If 
Next q 
ResTable(newres, Sact + 3) = Templold 

Next e 

UppLim =0 
For u1= 1 To tcount 

UppLim = DurTable(ul) + UppLim 
Next ul 

'Create Resource Limit Table 
ReDim ResLimit(rcount, UppLim) 

For resset =1 To rcount 
For Him =1 To UppLim 

ResLimit(resset, Him) = ResTable(resset, 2) 
Next him 

Next resset 

ReDim RLSource(rcount, UppLim) 

RLSource = ResLimit 

For h=1 To tcount 
Sch(h) = Pop(ff, h) 

Next h 

Call SSS(Sch, ff) 

For h=1 To tcount 
FDPop(ff, h) = FDmtx(h) 

Next h 

fit_mtx(ff, 1) = fitpair(1,1) 'Duration Fitnes 
fit_mtx(ff, 2) = fitpair(1,2) 'Resource Fitness 

Next ff 

End Sub 
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SCHEDULE GENERATION SCHEME - STANDARD 

'Serial Schedule Scheme - Schedule Generation 
Sub SSS(Sch, ff) 

'Set up the empty Finish Date Matrix 
ReDim FDmtx(tcount) 
For act =1 To tcount 

FDmtx(act) = -1 
Next act 

schcomp =0 

'While all tasks are not scheduled 
Do While schcomp =0 

'Step through tasks 
For tsk =1 To tcount 

'Initialise Resource Need vector 
ReDim ResNeed(rcount) 

For ab =1 To rcount 
If ResTable(ab, Sch(tsk) + 4) 00 Then 

ResNeed(ab) = ResTable(ab, Sch(tsk) + 4) / DurTable(Sch(tsk)) 
Else 

ResNeed(ab) =0 
End If 

Next ab 

'If the task is currently not scheduled 
If FDmtx(Sch(tsk)) = -1 Then 

PredsSch =I 'Initially assume all predecessors are scheduled 
Earstrt =0 'Initialise Earstrt at project start t=0 

If Sch(tsk) =I Then 

FDmtx(Sch(tsk)) =0+ DurTable(Sch(tsk)) 

Else 

'Step through adjacency Matrix to look for Predecessors 
For chkpre =1 To tcount 

'If relationship exists 
If PrecTable(chkpre, Sch(tsk)) =1 Then 

test =1 
'Check if Predecessor is scheduled 
If FDmtx(chkpre) = -1 Then 
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PredsSch =0 
'if predecessor is scheduled check it's finish date against the latest so far 
'if it finishes later set this as earliest start. 
Else 

If FDmtx(chkpre) > Earstrt Then 
Earstrt = FDmtx(chkpre) 

End If 

End If 

End If 

Next chkpre 

If PredsSch =1 Then 

'Check for first Resource Feasible Time 

AllResSch = O'Resource Feasibility Flag 

timenow = Earstrt 

'Cycle until Resource Feasible Period is found 
Do While AllResSch =0 

'Set up Resource Feasibilty Matrix 
ReDim ResUsage(rcount) 

For rc =1 To rcount 
ResUsage(rc) =0 

Next rc 

'Step through Resources 
For reschk =1 To rcount 

CapAvail =I 'Initially Assume Capacity 

For dur = timenow To timenow + DurTable(Sch(tsk)) 
If ResNeed(reschk) > ResLimit(reschk, dur) Then 

CapAvail =0 
End If 

Next dur 

'If this requirement is met, mark resource as OK 
If CapAvail =1 Then 

ResUsage(reschk) =1 
End If 

Next reschk 
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'Determine whether all activities are scheduled 
AllResSch =1 

For ResO =1 To rcount 
If ResUsage(ResO) =0 Then 

AllResSch =0 
Else 

'A11ResSch =1 
End If 

Next ResO 

timenow = timenow +1 

Loop 

'Decrease Resource Availability at scheduled task position 
For Res 1=I To rcount 

For Time! = timenow To timenow + DurTable(Sch(tsk)) 
ResLimit(Resl, Timel) = ResLimit(Rcsl, Timel) - ResNecd(Resl) 

Next Time 1 
Next Res 1 

'Update Finish Date Matrix with Task Completion Date 

FDmtx(Sch(tsk)) = timenow + DurTable(Sch(tsk)) 

End If 

End If 

End If 

Next tsk 

'Determine whether all activities are scheduled 
schcomp =1 

For chk0 =1 To tcount 
If FDmtx(chk0) = -1 Then 

schcomp =0 
End If 

Next chkO 

Loop 

'Once all Tasks are scheduled check for total duration 
OADur =0 

For tskl =1 To tcount 
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If FDmtx(tskl) > OADur Then 
OADur = FDmtx(tskl) 

End If 
Next tskI 

Dfit = OADur 

'Determine the Set of Resource Peaks and Weighted Resource Fitness 

Rfit=0 

For Res2 =1 To rcount 
Rpeak =0 

For ppos =1 To Dfit 
localval = ResTable(Res2,2) - ResLimit(Res2, ppos) 
If localval > Rpeak Then 

Rpeak = localval 
End If 

Next ppos 

Rfit = Rpeak 
Next Res2 

fitpair(1,1) = Dfit 
fitjair(1,2) = Rfit 

End Sub 

SCHEDULE GENERATION SCHEME - STOCHASTIC LOGIC PROBLEM 

'Serial Schedule Scheme for stochastic logic problem. 

Sub SSS3(Sch, ff) 
'Set up the empty Finish Date Matrix 
ReDim FDmtx(tcount) 
For act =1 To tcount 

FDmtx(act) = -1 
Next act 

schcomp =0 

'Remove previous run Stochastic logic 
PrecTable = PrecMaster 

'Add Current Schedule Stochastic Logic 
For a=1 To tcount 

For c=1 To SLcount 

222 



If a= SLTaskTable(c) Then 
PrecTable(SLPop(ff, c), a) =1 

End If 
Next c 

Next a 

Call LoopCheck 

'While all tasks are not scheduled 
Do While schcomp =0 

'Step through tasks 
For tsk =1 To tcount 

'Initialise Resource Need vector 
ReDim ResNeed(rcount) 

For ab =1 To rcount 
If ResTable(ab, Sch(tsk) + 4) <> 0 Then 

ResNeed(ab) = ResTable(ab, Sch(tsk) + 4) / DurTable(Sch(tsk)) 
Else 

ResNeed(ab) =0 
End If 

Next ab 

'If the task is currently not scheduled 
If FDmtx(Sch(tsk)) = -1 Then 

PredsSch =1 'Initially assume all predecessors are scheduled 
Earstrt =0 'Initialise Earstrt at project start t=0 

If Sch(tsk) =1 Then 

FDmtx(Sch(tsk)) =0+ DurTable(Sch(tsk)) 

Else 

'Step through adjacency Matrix to look for Predecessors 
For chkpre =1 To tcount 

'If relationship exists 
If PrecTable(chkpre, Sch(tsk)) =1 Then 

test =1 
'Check if Predecessor is scheduled 
If FDmtx(chkpre) = -1 Then 

PredsSch =0 
'if predecessor is scheduled check it's finish date against the latest so far 
'if it finishes later set this as earliest start. 
Else 
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If FDmtx(chkpre) > Earstrt Then 
Earstrt = FDmtx(chkpre) 

End If 

End If 

End If 

Next chkpre 

If PredsSch =1 Then 

'Check for first Resource Feasible Time 

AllResSch = O'Resource Feasibility Flag 

timenow = Earstrt 

'Decrease Resource Availability at scheduled task position 
For ResI =1 To rcount 

For Time 1= timenow To timenow + DurTablc(Sch(tsk)) 
ResLimit(Res 1, Time 1) = ResLimit(Res 1, Time 1) - ResNecd(Res 1) 

Next Time 1 
Next Res 1 

'Update Finish Date Matrix with Task Completion Date 
FDmtx(Sch(tsk)) = timenow + DurTable(Sch(tsk)) 

End If 

End If 

End If 

Next tsk 

'Determine whether all activities are scheduled 
schcomp =1 

For chk0 =1 To tcount 
If FDmtx(chk0) = -1 Then 

schcomp =0 
End If 

Next chk0 

Loop 

'Once all Tasks are scheduled check for total duration 
OADur =0 
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For tskl =I To tcount 
If FDmtx(tskl) > OADur Then 

OADur = FDmtx(tskl) 
End If 

Next tskl 

Dfit = OADur 

'Determine the Set of Resource Peaks 

Rfit=0 

For ro =1 To rcount 
If ResTable(ro, 4) = "Y" Then 

Rest = ro 
Lim = ResTable(ro, 2) 

End If 
Next ro 

Rpeak =0 

For ppos =1 To Dfit 
localval = ResTable(Res2,2) - ResLimit(Res2, ppos) 
If localval > Rpeak Then 

Rpeak = localval 
End If 

Next ppos 

If Rpeak < Lim Then 
Rfit=Rpeak/4 

Else 
Rfit = Rpeak 

End If 

fitpair(1,1) = Dfit 
fitj, air(1,2) = Rfit 

End Sub 

ROULETTE SELECTION - STANDARD RCPSP 

'Roulette Selection 

Sub Roulette_Se1Q 

ReDim Sel Mtx(Pop_Size) 
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ReDim Share(Pop_Size) 
ReDim TempPop(Pop_Size, tcount) 

ElitePop = Int(Pop_Size * Elitism) 
NonElitePop = Pop_Size - ElitePop 

'Calculate the sum of the Fitness functions 
FitSum =0 

For f =1 To NonElitePop 
FitSum = FitSum + fit_mtx(f, 1) 

Next f 

'Calculate Selection basis Matrix 
For f=I To NonElitePop 

Sel_Mtx(f) = Int(FitSum / fit_mtx(f, 1)) +1 
Next f 

Se1Sum =0 

'Calculate sum of Selection Matrix 
For f=1 To Pop_Size 

Se1Sum = Se1Sum + Sel_Mtx(f) 
Next f 

ReDim TempLine(tcount) 

For f=I To Pop-Size 
If FitData(g, 1) = fit_mtx(f, 1) Then 

For tc =1 To tcount 
TempLine(tc) = Pop(f, tc) 

Next tc 
End If 

Next f 

If g=1 Then 
EliteLine = TempLine 

Else 
If FitData(g, 1) < FitData(g - 1,1) Then 

EliteLine = TempLine 
End If 

End If 

For f=1 To ElitePop 
For tc =1 To tcount 

TempPop(f, tc) = EliteLine(tc) 
Next tc 

Next f 

Pos = ElitePop +1 

226 



x= ElitePop +1 

'Perform Selection 
Do While x <= Pop_Size And Pos <= Pop_Size 

Share(x) = Int(Sel_Mtx(x) * NonElitePop / SelSum) +1 
y=1 

Do While y <= Share(x) And Share(x) 00 And Pos <= Pop_Size 

For temp =I To tcount 
TempPop(Pos, temp) = Pop(x, temp) 

Next temp 

Pos = Pos +1 
y=y+1 

Loop 

x=x+1 

Loop 

Pop = TempPop 

End Sub 

'Roulette Selection 

Sub Roulette_Se13() 

ReDim Sel_Mtx(Pop_Size) 
ReDim Share(Pop_Size) 
ReDim TempPop(Pop_Size, tcount) 

ElitePop = Int(Pop_Size * Elitism) 
NonElitePop = Pop_Size - ElitePop 

'Calculate the sum of the Fitness functions 
FitSum =0 

For f =1 To NonElitePop 
FitSum = FitSum + fit_mtx(f, 2) 

Next f 

'Calculate Selection basis Matrix 
For f=1 To NonElitePop 

Sel Mtx(f) = Int(FitSum / fit_mtx(f, 2)) +1 
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Next f 

SelSum =0 

'Calculate sum of Selection Matrix 
For f=1 To Pop_Size 

SelSum = SelSum + Sel_Mtx(f) 
Next f 

ReDim TempLine(tcount) 

For f=1 To Pop_Size 
If FitData(g, 3) = fit_mtx(f, 2) Then 

For tc =1 To tcount 
TempLine(tc) = Pop(f, tc) 

Next tc 
End If 

Next f 

If g=1 Then 
EliteLine = TempLine 

Else 
If FitData(g, 3) < FitData(g - 1,3) Then 

EliteLine = TempLine 
End If 

End If 

For f=1 To ElitePop 
For tc =I To tcount 

TempPop(f, tc) = EliteLine(tc) 
Next tc 

Next f 

Pos = ElitePop +1 
x= ElitePop +1 

'Perform Selection 
Do While x <= Pop_Size And Pos <= Pop_Size 

Share(x) = Int(Sel_Mtx(x) * NonElitePop / Sc1Sum) +1 
y=I 

Do While y <= Share(x) And Share(x) 00 And Pos <= Pop_Size 

For temp =1 To tcount 
TempPop(Pos, temp) = Pop(x, temp) 

Next temp 

Pos = Pos +1 
y=y+1 
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Loop 

x=x+1 

Loop 

Pop = TempPop 

End Sub 

'Roulette Selection 

Sub Roulette_Sel4Q 

ReDim Sel_Mtx(Pop_Size) 
ReDim Share(Pop_Size) 
ReDim TempPop(Pop_Size, tcount) 
ReDim TempSPop(Pop_Size, SLcount) 

ElitePop = Int(Pop_Size * Elitism) 
NonElitePop = Pop_Size - ElitePop 

'Calculate the sum of the Fitness functions 
FitSum =0 

For f=I To NonElitePop 
FitSum = FitSum + fit_mtx(f, 1) 

Next f 

'Calculate Selection basis Matrix 
For f=1 To NonElitePop 

Sel_Mtx(f) = Int(FitSum / fit_mtx(f, 1)) +1 
Next f 

Se1Sum =0 

'Calculate sum of Selection Matrix 
For f=1 To Pop_Size 

SelSum = SelSum + Sel_Mtx(f) 
Next f 

ReDim TempLine(tcount) 
ReDim TempSLine(SLcount) 

For f=1 To Pop_Size 
If FitData(g, 1) = fit_mtx(f, 1) Then 

For tc =1 To tcount 
TempLine(tc) = Pop(f, tc) 
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Next tc 

For sc =1 To SLcount 
TempSLine(sc) = SLPop(f, sc) 

Next sc 
End If 

Next f 

If g=1 Then 
EliteLine = TempLine 
SEliteLine = TempSLine 

Else 
If FitData(g, 1) < FitData(g - 1,1) Then 

EliteLine = TempLine 
SEliteLine = TempSLine 

End If 
End If 

For f=1 To ElitePop 
For tc =I To tcount 

TempPop(f, tc) = EliteLine(tc) 
Next tc 
For sc =1 To SLcount 

TempSPop(f, sc) = SEliteLine(sc) 
Next sc 

Next f 

Pos = Elitepop +1 
x= ElitePop +1 

'Perform Selection 
Do While x <= Pop_Size And Pos <= Pop_Size 

Share(x) = Int(Sel_Mtx(x) * NonElitePop / SelSum) +1 
y=I 

Do While y <= Share(x) And Share(x) 00 And Pos <= Pop_Size 

For temp =1 To tcount 
TempPop(Pos, temp) = Pop(x, temp) 

Next temp 

For temp =1 To SLcount 
TempSPop(Pos, temp) = SLPop(x, temp) 

Next temp 

Pos = Pos +1 
y=y+1 

Loop 
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x=x+ 

Loop 

Pop = TempPop 
SLPop = TempSPop 

End Sub 

'Independant Crossover 

Sub IDPXOO 

ReDim MatingList(Pop_Size) 
ReDim TempPop(Pop_Size, tcount) 

Randomize 

'Generate Random Mating Vector 
For j=1 To Pop_Size 

MatingList(j) =j 
Next j 

For j=1 To Pop_Size 
rd = Int((Rnd * Pop_Size) + 1) 
a= MatingList(j) 
b= MatingList(rd) 
MatingList(j) =b 
MatingList(rd) =a 

Next 

'Process Population Crossover 
For pcount =1 To Pop_Size Step 2 

ReDim Parent1(tcount) 
ReDim Parent2(tcount) 
ReDim Child 1(tcount) 
ReDim Child2(tcount) 

'Setup Parents and empty children 
For par =1 To tcount 

Parent 1 (par) = Pop(MatingList(pcount), par) 
Parent2(par) = Pop(MatingList(pcount + 1), par) 
Child 1(par) =0 
Child2(par) =0 

Next par 

Randomize 
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If Rnd() < Xover_Rate Then 
For is =1 To tcount 

If Rnd() > 0.5 Then 
Child 1(ic) = Parent 1(ic) 

End If 
Next is 

For is =I To tcount 

mem =0 

For me =1 To tcount 
If Child I(mc) = Parent2(ic) Then 

mem= I 
End If 

Next me 

If mem =0 Then 
jc =1 
Do While Childl(jc) 00 

jc=jc+ 1 
Loop 
Childl(jc) = Parent2(ic) 

End If 
Next is 

For is =1 To tcount 
If Rnd() > 0.5 Then 

Child2(ic) = Parent2(ic) 
End If 

Next is 

For is =1 To tcount 

mem=0 

For me =1 To tcount 
If Child2(mc) = Parent 1(ic) Then 

mem =1 
End If 

Next me 

If mem =0 Then 
jc =1 
Do While Child2(jc) 00 

jc=jc+1 
Loop 
Child2(jc) = Parentl(ic) 

End If 
Next is 
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Else 
Childl = Parentl 
Child2 = Parent2 

End If 

'Copy New Children into the Temporary Population 

For cl =1 To tcount 
TempPop(pcount, c l) = Child l (c 1) 

Next c1 

For c2 =1 To tcount 
TempPop(pcount + 1, c2) = Childl (c2) 

Next c2 

Next pcount 

Pop = TempPop 

End Sub 

'Mutation Operator for standard RCPSP 

Sub Mutate() 
ReDim perm(tcount) 

ReDim TempPop(Pop_Size, tcount) 
TempPop = Pop 
Randomize 

For z=1 To Pop_Size 

If RndO < Mute_Rate Then 

Randomize 

'Generate Random Mating Vector 
For j=1 To tcount 

Perm() =j 
Next j 

For j=I To tcount 
rd = Int(Rnd * tcount) + 
a= perm(i) 
b= perm(rd) 
perm(j) =b 
perm(rd) =a 

Next 

numb = Int(Rnd * tcount) +1 
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ReDim alist(numb) 
ReDim aline(tcount) 

For j1=1 To numb 
alist(j 1) = perm(j 1) 

Next j1 

For j2 =1 To tcount 
aline(j2) = TempPop(z, j2) 

Next j2 

ReDim vals(numb) 

For j3 =1 To numb 
vals(j3) = aline(alist(j3)) 

Next j3 

For j4 =1 To numb 
aline(alist(j4)) = vals((numb + 1) - j4) 

Next j4 

For M=1 To tcount 
TempPop(z, M) = aline(M) 

Next M 

End If 

Next z 

Pop = TempPop 

End Sub 

'Independant Crossover for Problems with Stochastic Logic 

Sub IDPXO3() 

ReDim MatingList(Pop_Size) 
ReDim TempPop(Pop_Size, tcount) 
ReDim TempSLPop(Pop_Size, SLcount) 

Randomize 

'Generate Random Mating Vector 
For j =1 To Pop_Size 

MatingList(j) =j 
Next j 

For j=1 To Pop_Size 
rd = Int((Rnd * Pop_Size) + 1) 
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a= MatingList(j) 
b= MatingList(rd) 
MatingList(j) =b 
MatingList(rd) =a 

Next 

'Process Population Crossover 
For pcount =1 To Pop_Size Step 2 

ReDim Parent 1(tcount) 
ReDim Parent2(tcount) 
ReDim ParentS 1(SLcount) 
ReDim ParentS2(SLcount) 
ReDim Child1(tcount) 
ReDim Child2(tcount) 
ReDim ChildS 1(SLcount) 
ReDim ChildS2(SLcount) 

'Setup Parents and empty children 
For par =1 To tcount 

Parentl(par) = Pop(MatingList(pcount), par) 
Parent2(par) = Pop(MatingList(pcount + 1), par) 
Childl(par) =0 
Child2(par) =0 

Next par 

For spar =1 To SLcount 
ParentS! (spar) = SLPop(MatingList(pcount), spar) 
ParentS2(spar) = SLPop(MatingList(pcount + 1), spar) 
ChildS 1(spar) =0 
ChildS2(spar) =0 

Next spar 

Randomize 

If Rnd() < Xover Rate Then 

'First Main Chromosome Crossover 

For is =1 To tcount 
If Rnd() > 0.5 Then 

Childl(ic) = Parentl(ic) 
End If 

Next is 

For is =1 To tcount 
mcm =0 

For me =1 To tcount 
If Child I(me) = Parent2(ic) Then 
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mem=1 
End If 

Next me 

If mem =0 Then 
jc =1 
Do While Childl(jc) 00 

jc=jc+1 
Loop 
Childl(jc) = Parent2(ic) 

End If 
Next is 

'Second Main Chromosome Crossover 

For is =1 To tcount 
If Rnd() > 0.5 Then 

Child2(ic) = Parent2(ic) 
End If 

Next is 

For is =1 To tcount 
mem =0 

For me =1 To tcount 
If Child2(mc) = Parentl(ic) Then 

mem =1 
End If 

Next me 

If mcm =0 Then 
jc =I 

Do While Child2oc) 00 
jc=jc+ 1 

Loop 
Child2(j c) = Parent 1(ic) 

End If 
Next is 

'First SL Extension Crossover 

a= Fix(Rnd()* SLcount) +1 
b= Fix(Rnd()* SLcount) +1 

Select Case a 
Case Is >b 

Ptl =b 
Pt2 =a 

Case Is <b 
Pt! =a 
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Pt2 =b 
Case Is =b 

Ptl =e 
End Select 

For s=1 To SLcount 
IfPtl =eThen 

ChildSl = ParentSl 
Else 

Ifs <= Pt! Then 
ChildS 1(s) = ParentS 1(s) 

End If 
Ifs > Ptl And s <= Pt2 Then 

ChildS 1(s) = ParentS2(s) 
End If 
Ifs>Pt2Then 

ChildS 1(s) = ParentS 1(s) 
End If 

End If 
Next s 

'Second SL Extension Crossover 

For s=1 To SLcount 
If Ptl =e Then 

ChildS2 = ParentS2 
Else 

If s <= Ptl Then 
ChildS2(s) = ParentS2(s) 

End If 
If s> Ptl And s <= Pt2 Then 

ChildS2(s) = ParentS 1(s) 
End If 
If s> Pt2 Then 

ChildS2(s) = ParentS2(s) 
End If 

End If 
Next s 

Else 
Childl = Parents 
Child2 = Parent2 
ChildS 1 = ParentS 1 
ChildS2 = ParentS2 

End If 

'Copy New Children into the Temporary Population 

For c1=1 To tcount 
TempPop(pcount, cl) = Child l (c l) 

Next cl 
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For c2 =1 To tcount 
TempPop(pcount + 1, c2) = Child I(c2) 

Next c2 

For c3 =1 To SLcount 
TempSLPop(pcount, c3) = ChildS 1(c3) 

Next c3 

For c4 =1 To SLcount 
TempSLPop(pcount + 1, c4) = ChildS 1(c4) 

Next c4 

Next pcount 

Pop = TempPop 
SLPop = TempSLPop 

End Sub 

'Independant Crossover for Problems with Stochastic Resource Assignments 

Sub IDPXO4() 

ReDim MatingList(Pop_Size) 
ReDim TempPop(Pop_Size, tcount) 
ReDim TempSLPop(Pop_Size, SLcount) 

Randomize 

'Generate Random Mating Vector 
For j=1 To Pop_Size 

MatingList(j) =j 
Next j 

For j =1 To Pop_Size 
rd = Int((Rnd * Pop-Size) + 1) 
a= MatingList(j) 
b= MatingList(rd) 
MatingList(j) =b 
MatingList(rd) =a 

Next 

'Process Population Crossover 
For pcount =1 To Pop_Size Step 2 

ReDim Parent 1(tcount) 
ReDim Parent2(tcount) 
ReDim ParentS I (SLcount) 
ReDim ParentS2(SLcount) 
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ReDim Childl(tcount) 
ReDim Child2(tcount) 
ReDim ChildS 1(SLcount) 
ReDim ChildS2(SLcount) 

'Setup Parents and empty children 
For par =1 To tcount 

Parent 1 (par) = Pop(MatingList(pcount), par) 
Parent2(par) = Pop(MatingList(pcount + 1), par) 
Childl(par) =0 
Child2(par) =0 

Next par 

For spar =1 To SLcount 
ParentS 1(spar) = SLPop(MatingList(pcount), spar) 
ParentS2(spar) = SLPop(MatingList(pcount + 1), spar) 
ChildS 1(spar) =0 
ChildS2(spar) =0 

Next spar 

Randomize 

If Rnd() < Xover Rate Then 

'First Main Chromosome Crossover 

For is =I To tcount 
If Rnd() > 0.5 Then 

Childl(ic) = Parentl(ic) 
End If 

Next is 

For is =1 To tcount 
mem =0 

For me =I To tcount 
If Childl(mc) = Parent2(ic) Then 

mem =1 
End If 

Next me 

Ifinem=0Then 
jc=1 
Do While Child l(jc) 00 

jc=jc+1 
Loop 
Childl(jc) = Parent2(ic) 

End If 
Next is 
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'Second Main Chromosome Crossover 

For is =1 To tcount 
If Rnd() > 0.5 Then 

Child2(ic) = Parent2(ic) 
End If 

Next is 

For is =1 To tcount 
mem=0 

For me =I To tcount 
If Child2(mc) = Parent I(ic) Then 

mem = 
End If 

Next me 

If mem =0 Then 
jc =1 
Do While Child2(jc) 00 

jc=jc+1 
Loop 
Child2(jc) = Parentl(ic) 

End If 
Next is 

'Single Point Crossover of Chromosome extension 

COP = Int(RndO * SLcount) +1 

For cp =1 To COP 
ChildS 1(cp) = ParentS 1(cp) 
ChildS2(cp) = ParentS2(cp) 

Next cp 

For cp = COP To SLcount 
ChildS 1(cp) = ParentS2(cp) 
ChildS2(cp) = ParentS 1(cp) 

Next cp 

Else 
Childl = Parentl 
Child2 = Parent2 
ChildSl = ParentS 1 
ChildS2 = ParentS2 

End If 

'Copy New Children into the Temporary Population 

For c1=1 To tcount 
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TempPop(pcount, c 1) = Child 1(c 1) 
Next c1 

For c2 =1 To tcount 
TempPop(pcount + 1, c2) = Child I(c2) 

Next c2 

For c3 =I To SLcount 
TempSLPop(pcount, c3) = ChildS 1(c3) 

Next c3 

For c4 =1 To SLcount 
TempSLPop(pcount + 1, c4) = ChildS 1(c4) 

Next c4 

Next pcount 

Pop = TempPop 
SLPop = TempSLPop 

End Sub 

Mutation Operator for Stochastic Logic Problem 
Sub Mutate3() 

ReDim perm(tcount) 

ReDim TempPop(Pop_Size, tcount) 
TempPop = Pop 
Randomize 

For z=1 To Pop_Size 

If Rnd() < Mute_Rate Then 

Randomize 

'Generate Random Mating Vector 
For j=1 To tcount 

Perm() =j Next j 

For j=I To tcount 
rd = Int(Rnd * tcount) + 
a= perm(j) 
b= perm(rd) 
perm(j) =b 
perm(rd) =a 

Next 

numb = Int(Rnd * tcount) +1 
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ReDim alist(numb) 
ReDim aline(tcount) 

For j1=1 To numb 
alist(j 1) = perm(j 1) 

Next j1 

For j2 =1 To tcount 
aline(j2) = TempPop(z, j2) 

Next j2 

ReDim vals(numb) 

For j3=I To numb 
vals(j3) = aline(alist(j3)) 

Next j3 

For j4 =1 To numb 
aline(alist(j4)) = vals((numb + 1) - j4) 

Next j4 

For M=1 To tcount 
TempPop(z, M) = alinc(M) 

Next M 

End If 

Next z 

Pop = TempPop 

End Sub 

'Mutation Operator for Stochastic Logic Problem 
Sub Mutate4() 

ReDim perm(tcount) 

ReDim TempPop(Pop_Size, tcount) 
ReDim TempSLPop(Pop_Size, SLcount) 
TempPop = Pop 
TempSLPop = SLPop 
Randomize 

For z=1 To Pop_Size 

If Rnd() < Mute_Rate Then 

Randomize 

'Generate Random Mating Vector for main Chromosome 
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For j=I To tcount 
perm() =j 

Next j 

For j=1 To tcount 
rd = Int(Rnd * tcount) + 
a= perm(j) 
b= perm(rd) 
perm(j) =b 
perm(rd) =a 

Next 

numb = Int(Rnd * tcount) +I 
ReDim alist(numb) 
ReDim aline(tcount) 

For j1=1 To numb 
alist(j 1) = perm(j 1) 

Next j1 

For j2 =1 To tcount 
aline(j2) = TempPop(z, j2) 

Next j2 

ReDim vals(numb) 

For j3 =1 To numb 
vals(j3) = aline(alist(j3)) 

Next j3 

For j4 =1 To numb 
aline(alist(j4)) = vals((numb + 1) - j4) 

Next j4 

For M=1 To tcount 
TempPop(z, M) = aline(M) 

Next M 

'Mutate the Chromosome extension 
ra = Int(Rnd() * SLcount) +1 
TempSLPop(z, ra) = Int(Rnd() * SRcount) +1 

End If 

Next z 

Pop = TempPop 
SLPop = TempSLPop 

End Sub 
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Sub FitnessProc() 

Dim FDMinI As Double 
Dim FDmin2 As Double 

FDSum1 =0 
FDSum2 =0 
FDMin1 = 10000000 
FDmin2 = 10000000 

For FD =1 To Pop_Size 
FDSum1 = FDSum1 + fit_mtx(FD, 1) 
FDSum2 = FDSum2 + fit mtx(FD, 2) 

If fit_mtx(FD, 1) < FDMin1 Then 
FDMin 1= fit_mtx(FD, 1) 
If Problem =3 Then 
Else 

MinPos = FD 
End If 

End If 

If fit_mtx(FD, 2) < FDmin2 Then 
FDmin2 = fit_mtx(FD, 2) 
If Problem =3 Then 

MinPos = FD 
Else 
End If 

End If 
Next FD 

FDAvgl = FDSum1 / Pop_Size 
FDAvg2 = FDSum2 / Pop_Size 

FitData(g, 1) = FDMin1 
FitData(g, 2) = FDAvgI 
FitData(g, 3) = FDmin2 
FitData(g, 4) = FDAvg2 
FitData(g, 5) = MinPos 

UserForml. Label25. Caption = FDMin1 
UserForm 1. Label26. Caption = FDAvg 1 
UserForml. Label27. Caption = FDmin2 
UserForm 1. Label28. Caption = FDAvg2 

End Sub 

Sub LoopCheck() 
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Dim z As Integer 
ReDim LoopList(tcount) 

For z=1 To tcount 
vMatrix = PrecTable 

Call DFS(z) 
Next z 

For z=1 To tcount 
If LoopList(z) = "c" Then 

For y=1 To tcount 
If PrecTable(z, y) =1 Then 

If LoopList(y) _ "c" Then 
Ifz>yThen 

PrecTable(z, y) =0 
End If 

End If 
End If 

Next y 
End If 

Next z 

End Sub 

'Conduct Cycle checking of the Adjacency Matrix 
'using Recursive Depth-First Search 

Sub DFS(v As Integer) 

If vMatrix(v, v) =9 Then 
LoopList(v) = "c" 

Else 
vMatrix(v, v) =9 

For d=1 To tcount 
If vMatrix(v, d) =1 Then 

DFS (d) 
End If 

Next d 

'vMatrix = LDMtx 

End If 

End Sub 
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APPENDIX F. - FULL SCHEDULE LISTING 

This appendix contains the full listing of the schedule utilisied in Chapter 5 and 7. The first 

listing provides the pre-optimisation version as used in both problem instances. The second 

lisiting provides the optimised version for the problem version discussed in Chapter 7. 
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APPENDIX G. - PAPERS PUBLISHED 
FROM THIS RESEARCH 

The papers attached in this appendix have all been produced as a product of this research 

project. All of these papers with the exception of paper number six have either been 

committed to print of accepted for publication. The last paper listed is currently un-review by 

the International Journal of Production Research. 

The papers attached are, in order of submission date: 

1. Lancaster J and Ozbayrak M, (2007), "Evolutionary Algorithms applied to Project Scheduling 
Problems: A Survey of the state-of-the-art", International Journal of Production Research, 
Volume 45, Issue 2 January 2007, Pages 425-450. PUBLISHED. 

2. Lancaster J and Cheng K, (2007), "A Fitness Differential Adaptive Parameter Controlled 
Evolutionary Algorithm with Application to the Design Structure Matrix", International Journal of 
Production Research, ACCEPTED FOR PUBLICATION AND PUBLISHED ON-LINE. 

3. Lancaster J and Cheng K, (2007), "Toward the Application of Genetic Algorithms to Real 
World Resource Constrained Project Scheduling Problems ", Proceedings of IPROMS 2007 
Virtual Conference, Cardiff, Wales, 1-14 July 2007. PUBLISHED 

4. Lancaster J and Cheng K, (2007), "Balancing Global Project Resources utilising a Genetic 
Algorithm Approach with Stochastic Resource Assignments", Proceedings of e-ENGDET 2007, 
Harbin, China, 27-29 August 2007, pp 67-72. PUBLISHED. 

5. Lancaster J and Cheng K, (2007), Optimisation Of The Hydro-testing Sequence In Tank Farm 
Construction using an Adaptive Genetic Algorithm with Stochastic Preferential Logic, Journal of 
Engineering Manufacture. ACCEPTED FOR PUBLICATION. 

6. Lancaster J and Cheng K, (2007), Genetic Algorithm Optimisation in Project Scheduling 
Problems using Preferential Logic, International Journal of Production Research. SUBMITTED 
CURRENLTY UNDER REVIEW. 

7. Lancaster J and Cheng K, (2008), Project Schedule Optimisation using a Genetic Algorithm 
approach, Proceedings of the 52' annual meeting of the Association for the Advancement of 
Cost Engineering, Toronto, Canada July 2008. ACCEPTED FOR PUBLICATION. 
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GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE 
ID O Task Name DwatpL1- Stan Finish Stochastic Predecesso 

Loaic 
rs 

Feh M rA M 
1 ___.. _- _ Conlrect Award __. 1 day Wed 21/02/07 _ Wed 21/02/07 ------ I 

a pr ay : un ýW I Auý Sam pit tlpv I pac 
_ ---- 

2 TK101 - Foundation 50 days The 22/02/07 Thu 12/04/07 1 Iv11ý2,800ý 

3 TK101 - Erect and Weld Annulars 6 days Fri 13/04/07 Wed 18/04/07 2 h(3601 

4 TK101 - Erecl and Weld Bottom 17 days Thu 19/04/07 Set 05/05/07 3 IK1 7001 

5 TK101- Erect and Weld Rig 1 16 days Thu 19/04/07 Fn 04/05/07 3 (1.600 

TK101 - Erect and Weld Ring 2 15 days Sat 05/05/07 Sal 19105/07 5 h(l 5001 

7 TK101 - Erect and Weld Ring 3 12 days Sun 20/05/07 The 31/05/07 6 M. hl1 200( 

8 TK101 - Erect and Weld Roof 75 days Sun 20/05/07 Thu 02/08/07 4 6 . oh(7 300 

9 TK101 - Erect and Weld Ring 4 11 days Fn 01/06107 Mon 11/064/7 7 
ech(1 1001 

1 TK101 - Erect and Weld Ring 5 10 days Tue 12/06/07 The 21/06107 9 h[1.0001 

11 TK101 - Erect and Weld Ring 6 10 days Fri 22106/07 Sun 01/07/07 10 h(I. 011 J 

12 TK101 - Erect and Weld Ring 7 9 days Mon 02/07/07 Tue 10/07/07 11 M. oh ' 

13 TK101 - Erect and Weld Wiodgirder 9 days Wed 11107/07 The 19/07/07 12 1001 

14 TK101 - Erect and Weld Top Angle 8 days Fn 20/07/07 Fn 27/07/07 13 h(4001 

15 TKI01 - Install Slen ay 20 days Fri 20/07/07 Wad 0&08/07 13 
IrueW800l 

18 TK101 - Install Nortes 23 days Fn 20107107 Sal 11/06/07 13 M. eh(1 000J 

TK101 - Hydrotest 42 days Sun 12/08/07 Sat 22/09/07 8,14,15.16 
W 2 atorl , 

383,0001 

1 TKi01 - Install Foam and Deluge Piping 24 days Sun 23109/07 Tue 16110107 17 �WetylQOOF 

1 TK102 - Foundation 50 days Thu 22/02/07 The 12AW07 1 H0ý2 yoaý 

TK102 - Erect and Weld Annulars 6 days Fn 13/04/07 Wed 18104/07 19 
ech[3601 

21 TK102 - Erect and Weld Bottom 17 days Thu 19/04/07 Set 05/09/07 20 M1.7001 

22 TK102- Erect and Weld Ring 1 16 days Thu 19/04/07 Fn 04/05/07 20 (1 600) 

23 TK102 - Erect and Weld Ring 2 15 days Sat 05/05/07 Sat 19/05/07 22 M7 5001 

24 TK102 - ErecI and Weld Ring 3 12 days Sun 20/05/07 The 31/05/07 23 (1.2001 

25 TK102 - Erect and Weld Roof 75 days Sun 20/05/07 Thu 02/06/07 21 23 . [7 Swl 

26 TKI02 - Erect and Weld Ring 4 11 day. Fn 01/0&07 Mon 11/06/07 24 
aehg1,1001 

27 TK102 - Erect and Wald Ring 5 10 days T-12/06107 The 21106/07 26 h'1 000' 

8 TK102 - ErecI and Weld Ring 6 10 days Fri 22/06/07 Sun 01107/07 27 Wehi1 

TK102 - Erect and Wald Ring 7 9 days Mon 02/07/07 Tue 10107107 28 M I 

30 TK102 - Erect and Weld Windgirder 9 days Wed 11/07/07 The 19/07/07 29 
111 Pool 

31 TK102 - Erect and Weld Top Angle 8 day. Fri 20107/07 Fn 27AAT17 30 (400' 

32 TK102 - Install Stairway 20 days Fri 20/07/07 Wed 08/0&07 30 
nwt(loo' 

TK102 - Install Nou taa 23 days Fri 20/07/07 Sat 11/08107 30 M7 000( 

34 TK102 - Hydrotest 42 days Sun 12/08/07 Sat 22/09/07 25.31.32,33 WNer12.3S3,0001 

Till 02 - Instal Foam and Deluge Piping 24 days Sun 23/09/07 Tue 1&10107 34 

TK103 - Foundation 50 days Thu 22/02/07 Thu 12ß4107 1 h11(2,3001 

Teak I 
Milealona f prolaU Surmrry Dea0ry lvl 

Prdlecl: Tank Farm wFtydl mpp Spul Summery 6l dT k Dow. Sun 09/12/07 ... .......... ern as sU 

Progress Baseline Ertemal Mdglorr 
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GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE 
ID Task Name Duration Start Finish Slocnastic Predecessors 

_Look 
Feb Mar AX May Jun ý Jul 

37 TK103- Erect and Weld Annulars 6days Fn 13104/07 Wed 16/04/07 36 Mach13601 

TK103 - Erect and Weld Bottom 17 days Thu 19/04/07 Set 05/55/07 37 M1.766( 

TK103- Enact and Weld Ring 1 16 days Thu 19/04/07 Fri 04105/07 37 h(1,100( 

40 TK 103 - Erect and Weld Ring 2 15 days Sal 05/05/07 Sat 19/05/07 39 h(1 5601 

41 

4I 

TK103 - Erect and Weld Ring 3 12 days Sun 20/05/07 Thu 31/05/07 40 

TK 103 - Erect and Weld Roo/ 75 day, Sun 20/05/07 Thu 02/06/07 36,40 

Moch(1 2001 

--- (75001 

43 TK103- Erect and Weld Ring 4 11 days Fn 01/06/07 Mon 11/0&07 41 schj1,1661 

TK103 - Erect and Weld Ring 5 10 days Toe 12/06/07 Thu 21/06/07 43 (1.0001 

45 TK103 - Erect and Weld Ring 6 10 days Fri 22/06/07 Sun 01/07/07 4.4 ßh(1 

46 TK103 -Erect and Weld Ring 7 9days Mon 02/07/07 Toe 10/07/07 45 yKM 

47 TK103- Erect and Weld Wmdgirder 9days Wed 11/07/07 Thu 19/07/07 46 Mae I ( 

46 TK103 - Erect and Weld Top Angle 8 days Fn 20/07/07 Fn 27)07M7 47 (400( 

49 TK103 - Install Stairway 20 days Fn 20107/07 Wad 06106/07 47 buct(po( 

5o TK103 - Install Noufes 23 days Fn 20/07/07 Sal 11/08/07 47 Mt 000( 

S1 TK103 - Hydrotest 42 days S. 12/06/07 Sat 221391)7 42,48,49,50 watM2,353, D66( 

3 TK1D3- Install Foam and Deluge Piping 24 days Sun 23/09/07 Tue 16110107 51 Jlwly1,00% 

63 TK104 - Foundation 50 days Thu 22/02/07 Thu 12/04/07 1 

TK104 - Erect and Weld Annutars 6 days Fn 13/04/07 Wed 16/04/07 53 

NII(2,666( 

ach(360ý 

SS TK104 - Erect and Weld Bottom 17 days Thu 19/04/07 Sal 05/05/07 54 1,41,7001 

56 TK104- Erect and Weld Ring 1 16 days Thu 19/04/07 Fn 04/05/07 54 11, {00( 

57 TK104 - Erect and Weld Ring 2 15 days Sat 05/05/07 Sal 19/05/07 56 Mt 500( 

s6 TK104 - Erect and Weld Ring 3 12 days Sun 20/05/07 Thu 31105/07 57 Maca(1. ( 

TK104 - Erect and Weld Roo/ 75 days Sun 20/05/07 Thu 02/06/07 55,57 (7,600( 

TN104 - Erect and Weld Ring 4 11 days Fri 01/0107 Mon 11, V6D7 58 M1,106( 

61 TK104 - Erect and Weld Ring 5 10 days Tue 12/06/07 Thu 21106/07 60 11.0001 

62 TK104 - Erect and Weld Ring 6 10 days Fn 22/06107 Sun 01107/07 61 M"U(1, 

63 TK104 - Erect and Weld Ring 79 days Mon 02/07/07 Tue 10107/07 62 MKM 1 

64 TK104 - Erect and Weld Windgirder 9 days Wed 11/07/07 Thu 19/07/07 63 ( 

65 TK104 - Erect and Weld Top Angle 8 days Fri 20/07/07 Fri 27/07107 64 A% i (400( 

66 TK104 - Install Stairway 20 days Fn 20/07/07 Wed 06/06/07 64 
-ham( 

67 Tl(104 - Install Nortes 23 days Fri 20'07/07 Sat 11/06107 64 
ca(1 0001 

TK104 - Hydrotest 42 days S-12/08107 Sal 22/09/07 ' 59.65.66.67 waur(2,3l7,0001 

TK104 - Install Foam and Deluge Piping 24 days Sun 23/09/07 Tua 16/10/07 68 4MaMs. ýF 

--To- TK201 - Foundation 65 days The 22102t07 Fn 27/04/07 1 MI(3. i00( 

TK201 - Erect and Weld Annulars 10 days Sat 26/04/07 Mon 07/05/07 70 M1,0001 

TK201 - Erect and Weld Bottom 21 days Tue 08/05/07 Mon 26/05/07 71 Mi, 100( 

Prajact Tank Farre wHydl mpp 
De,.: Sun OWI2/07 

Task 
0 

M4esbne . 
Project Summary Deadline 

Spit 
....................... 

Summary ^ 
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Progress Base ine Eetamal Mattalar 
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GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE 
10 O Task Name Duration Start Finish Slocnastrc Pled ec essors 

L. omc Felt, Mar AV M Jun Jul PI1w 
___ 

n s. 9 T Oct Dec; 73 TK201-Erect and Weld Ring 1 19 days Tue 08/05I07 Sal 2fLO5107 71 
ý 

alb pgl 

74 TK201 - Erect and Weld Ring 2 17 days Sun 27/05/07 Tue 12/06/07 73 6(1 706) 

75 TN201 - Erect and Weld Ring 3 15 days Wed 13/06/07 Wed 27/06107 74 11 000) 

/8 TN201 - Erect and Weld Root 82 days Wed 13/06/07 Sun 02/09107 72,74 - 12,2001 

77 TK201 - Erect and Wald Ring 4 14 days Thu 28/06/07 Wed 11/07/07 75 6(1, 001 

79 

TK201 - Erect and Weld Ring 5 12 days Thu 12/07/07 Mon 23/07107 77 

TK201 - Erect and Weld Ring 6 12 days Tue 24/07/07 Sal 04/09/07 78 

1 11.2001 

112001 

TK201 - Erect and Weld Ring 7 10 days Sun O5/08/07 Tue 14/08/07 79 sca11, 1 

81 TK201 - Erect and Weld Wlndgirder 11 days Wed 15/08/07 Sal 25/08/07 80 Iq 7001 

82 TK201 - Erect and Weld Top Angle 9 days Sun 26108/07 Mon 031D9/07 81 10001 

83 TK201 - Install Stairway 24 days Sun 26/08/07 Tue 18/09/07 81 it-117501 

64 16201 - Install Noules 28 days Sun 26/08/07 Sat 22/09/07 81 6)1 2001 

65 11(201 - Hydrotest 48 days Sun 23/09/07 Fn 09111107 76,82,83,84 Wat 1,380, 

86 TK201 - Install Foam and Deluge Piping 28 days Set 10/11107 Fn 07/1207 85 In 

87 

88 

TK202 - Foundstron 65 days Thu 22/02/07 Fri 27/04107 1 

TK202 - Erect and Weld Annulars 10 days Sat 28/04/07 Mon 07/05/177 87 

MIII, i001 

611,0001 

TK202 - Erect and Weld Bottom 21 days Tue 08/05/07 Mon 28/05/07 88 612.1001 

TK202- Erect and Weld Ring 1 19 days Tue 08/05/07 Sat 261 88 611.8991 

1 TN202 - Erect and Weld Ring 2 17 days Sun 27/05/07 Tue 12/06107 90 11,7091 

TK202 - Erect and Weld Ring 3 15 days Wed 13/06/07 Wed 27/06/07 91 1t 5001 

TN202 - Erect and Weld Roof 82 days Wed 13106/07 Sun 02/09/07 89,91 Pill 8.2001 

94 T7(202 - Erect and Weld Ring 4 14 days Thu 28/06/07 Wed 11/07/07 92 611, 001 

95 TN202 - Erect and Weld Ring 5 12 days Thu 12/07/07 Mon 23107107 94 1,2001 

TK202 - Erect and Weld Ring 6 12 days Tue 24/07/07 Sat 04/08/07 95 11.2901 

97 TK202 - Erect and Wald Ring 7 10 days S-051011/07 Tue 14/09107 96 

TK202 - Erect and Weld Wirdgirder 11 days Wed 15/08/07 Sat 25108/07 97 M 001 

100 

101 

TK202 - Erect and Weld Top Angle 9 days Sun 26/08/07 Mon 03109107 98 

TK202 - Instal Stairway 24 days Sun 26/08/07 Tue 18109/07 98 

TK202 - Instal Norbaa 28 days Sun 26/08/07 Set 22/09/07 98 

Allies 1 

5)7001 

Uschill. 2001 

16202-Hydrolast 48 days Sun 23/09/07 Fn 09111/07 ' 93,99,100,101 Wet 360, 

1 

104 

TN202 - Instal Foam and Deluge Piping 28 days Sal 10/11/07 Fn 07/12t07 102 

TK203 - Foundation 65 days Thu 22/02/07 Fn 27/04/07 I I MII)L 200 

sa 

1 TI(203- Erect and Weld Annulars 10 days Sal 20/04/07 Mon 07/05107 104 5)1,1001 

1 TK203 - Erect and Weld Bottom 21 days TI» 08/05/07 Mon 28/D5/07 105 612,1001 

1 TK203- Erect and Weld Ring 1 19 days Tue 08/05/07 Sat 26/05/07 103 . 5)19001 

TK203 - Erect and Weld Ring 2 17 days Sun 27/05/01 Tue 12/06/07 107 11,7001 

Propel Tank Farm WHVdl. OPP 
Dar. Sun 0911207 

Task O Milestone f Prol. U Suinsr-y ^ D. A. 

Split Summery Erternsl Taos ý- -ý 
", ". """""""... "... ""... 

Progress Baseline Eternal MOasbna 
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GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE 
ID 

1w 

Task game 

TK203 - Er_cand Web Rug 3--- 

Durobon Steil 

15 days Wed 13106107 

Finish 

Wed 27/Ö6/07 

Stochastic 
Lo. C 

Predecessors 

Feb 

108 
Mar Apr May Ju .W Au 

ý 
cu115001 

g $P j QC-. 1110y --- 

110 TK203 -Erect end Wald Roof 62 days Tue 29/05/07 Set 16/08/07 106 '1 -- -- Maen16, 1 

111 TK203- Erect and Weld Ring 4 14 days Thu 28/06/07 Wed 11/07/07 109 n11, 1 

112 TK203 -Erect and Web Ring 5 12 days The 12107N7 Mon 23A7107 7t1 11 1.2001 

113 TK203 - Erect and Weld Ring 6 12 deya Tue 24/07/07 Sat 04/08/07 112 . 1111.2001 

114 TK203 - Erect and Weld Ring 7 10 days Sun 05/08/07 Tue 14/08/07 113 ach(1,0 I 

115 TI(203- Erect and Weld Windgirder 11 days Wed 15/09/07 Sat 25106/07 114 Math) 1001 

116 TK203 - Erect and Weld Top Angle 9 days Sun 26/08/07 Mon 03/09/07 115 1 5001 

117 TI(203 - Install Stairway, 24 days Sun 26/08/07 Tue 18/09/07 115 nrtn7501 

118 TK203 - Install Nonen 28 days Sun 26/08/07 Sat 22/09/07 115 1n11.200) 

119 TK203 - Hydrotest 48 days Sun 23/09/07 Fn 09111/07 If 110.116.117,118 Witt 300. 

120 TK203 - Install Foem and Deluge Piping 28 days Set 10/11/07 Fri 07112/07 119 Mach 

121 TK204 - Foundation 65 days The 22102/07 Fn 27/04/07 1 M1)3,2001 

122 TK204 - Erect and Weld Annulars 10 days Sal 28/04/07 Mon 07/05/07 121 1111,6881 

123 TK204 - Erect and Weld Bottom 21 days Tue 08/06/07 Mon 28/05/07 122 612.1001 

124 TK204- Erect and Weld Ring 1 19 days Tus 08/05/07 SN 26/05/07 122 11-h(I. 11111,1111 

1 TK204 - Erect and Weld Ring 2 17 days Sun 27/05/07 Tue 12/06/07 124 11 7001 

TK204 - Erect and Weld Ring 3 15 days Wed 13/06/07 Wed 27/08/07 125 11.5001 

127 TK204 - Erect and Weld Roof 82 days Tue 29/05/07 SM 19/08/07 123 

128 TK204 - Erect and Weld Ring 4 14 day. The 28/06/07 Wed 11/07/07 126 -1,11, 11101 

129 TK204 - Erect and Weld Ring 5 12 days The 12/07/07 Mon 23/07/07 128 1 11.2001 

13o TK204 - Erect and Weld Ring 6 12 days Tue 24/07/07 Sat 04708107 129 1111,2001 

131 TK204 - Erect and Weld Ring 7 10 days Sun 05/08/07 Tua 14/Dd07 130 nil, 1 

1 TK204- Erect and Weld Windglyder 11 days Wed 15/08/07 SM 25/08/07 131 nl 1001 

133 TK204 - Erect and Weld Top Angle 9 days S-26/08/07 Mon 03/0907 132 1681 

134 TK204 - Install Steinway 24 days Sun 26/08/07 Tus 18109/07 132 rutg7791 

1 TK204 - Install Hoiden 28 day. Sun 26/08/07 Set 22/09/07 132 1111.2001 

138 11(204- Hydroleat 48 days Sun 23/09/07 Fn 09111/07 127.133,134,135 Were 360. 

137 TK204 - Install Foern and Deluge Piping 28 days Sal 10/11/07 Fn 07/1207 136 ---- cn 

1 East Pipe Rack Pllnthe 35 dry. Thu 22/02/07 Wed 28103107 1 Wi41.000) 

1 Erect East Pipe Reck Grid H150 - J162 16 days The 29/03/07 Fn 13/04/07 138 tfg1 ppl 

140 Erect East Pipe Rack Grid H162 - J174 16 days Sat 14/04107 Sun 29/04/07 139 h. l 

141 Erect Eeet Pips Rad, Gold E161 - H162 5 days S8114/04107 Wed16/04107 139 ýJlkw 
3901 

14 Erect East Pip. Rock Grid E173 - H174 5 days Mon 30/04/07 Fn 04/05/07 140 113001 

Erect East Pipe Rack Grid J161 - L162 5 days Set 14/04/07 Wed 15/0407 139 - ON q 

1 Erect East Pipe Rack Grid J173 - L174 5 days Mon 30/04/07 Fn 04/05/07 140 03601 

Task 
II MiMsbna f Projacl Surnnry Deasrr 

Propct Tnk Ferrn WHydl mpp 
Dale San 09112107 

Split 
...................... 

Summary ^ Eaamr Tasks 

Progress Beeline E, lemal Md. W- 
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GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE 
ID O Task Name Duralan Stan Finlsh Siucnesnc Predecessors 

Look Feu Mar Au Ma un Jul i Auy ' 8} T Oct i Nov Dec 
145 Install Pump PC1400 & 1401 Plinth 21 days Thu 29/0107 Wed 18/04107 138 I 

_ p. 

146 Install Pump PC1402 & 1403 PIlnths 21 days Thu 29/03107 Wed 18/04/07 138 1 

147 Install Pump PC1400 & 1401 4 days Thu 19/04/07 Sun 22/04/07 145 

146 Install Pump PC1402 & 1403 4 days Thu 19/04/07 Sun 22/04/07 146 
k 

140 Erect Pipework Grid H150 - J162 12 days Mon 30/04/07 Fn 11/05/07 140 
- III 17501 

160 Erect Pipework Gnd H162 -J 174 12 days Sat 12105/07 Wed 23005107 140,149 hi750 

151 Erect Pipework Rack to PCI400 5 days Sat 12/05/57 Wed 16/05/07 141,147.149 

152 Erect Plpewonc Rack to PC1401 5 days Thu 24/05/07 Mon 28N6/01 142,147.150 y ypý 

153 Erect Pipework Rack to PC1402 5 days Set 12/05/07 Wed 16/05107 143,148,149 

154 Erect Plpework Rack to PC 1403 5 days Thu 24/05/07 Mon 28/05/07 144.148.150 

155 Erect Pipework PC1400 to TK101 5 days Sun 12/08/07 Thu 16/08'07 16.147 
___..... _ 

156 Erect Pipework PC1401 lo TK102 5 days Sun 12/08/07 Thu 16/08107 33.147 

157 Erect Plpework PC1402 to TK103 5 days Mon 23/04/07 Fn 27104107 148 

158 Erect Pipework PC1404 to TK104 5 days Sun 12/08/07 Thu 16/0&07 50,148 

159 West Pipe Rack Phn8ts 35 days Thu 22/02/07 Wed 28/03/07 1 NII(1,0001 

160 Erect West Pipe Rack Grid H1 - J12 16 days Thu 29/03/07 Fn 13.474/07 159 t uat(t 200 

11 Erect West Pipe Rack Grid H12 - J24 16 days Sal 14/04/07 Sun 29/04/07 160 a(1 2001 

Erect West Pipe Rack Grid E11 - H12 5 days Sat 14/04/07 Wed 1&(Mr07 160 44 . 113001 

163 Erect West Pipe Rack Gnd E23 - H24 5 days Mon 30/04/07 Fn 04105107 161 . 13001 

164 Erect West Pipe Reck Gnd 411 - L12 5 days Sat 14/04/07 Wed 18/04/07 160 M 434 ' 

165 Erect West Pipe Rack Grid J23 - L24 5 days Mon 30704/07 Fn 04/05/77 161 43001 

166 Install Pump PC1200 & 1201 Plinths 21 days Thu 29/03/07 Wed 18/04107 159 h I 

ley Install Pump PC1202 & 1203 Plinths 21 days Thu 29/03/07 Wed 11/04107 159 

: 

I 

-161- Install Pump PC1200 & 1201 4 days Thu 19/04/07 Sun 22/04107 166,167 

169 Install Pump P01 202 & 1203 4 days Mon 23/04/07 Thu 26/04/07 167,166 

170 Erect Pipework Grid H1 - /12 12 days Mon 30/04/07 Fn 11/05107 161,169 ý750ý 

171 Erect Pipawork Grid 1012 - 424 12 days Sal 12/05/07 Wed 23/05/07 161,170 ý750ý 

1 Erect Pipework Rack to PC1200 5 days Sat 12/05/07 Wed 16/05/07 162,166,170 

17 Erect Pipework Rack to PC 1201 5 days Thu 24/05/07 Mon 28/005,07 163,168.171 

174 Ereil Pipework Rack to PC1202 5 days Set 12/05/07 Wed 16105107 164.169.170 

175 Erect Plpework Rack to PC1203 5 days Thu 24/05/07 Mon 28/05/07 165,169,171 Ma. 94344F - _- _ 

176 Erect Plpework PC1200 I. TK101 5 days Sun 23/09/07 Thu 27/09107 84,168 Yechl]SOJ 

177 Erect Pipswork PC1201 to TK102 5 day. S-23/09/07 Thu 27/09107 101,166 Wchý)s01 

178 Erect Pipework PC1202 to TK103 5 days Sun 23/09/07 Thu 27/0907 118.169 MKKý 541 

Erect Pipework PC1204 to TK104 5 days Sun 23/09/07 Thu 27/09107 135,169 y"ah _ 

Mechanical Completion I day? Sat 08112/07 Sal 08112107 18,35,52,69,86,103.1 

Task II Music- f Prgacl Summary ^ DeW.. 

Protect Tank Farm wllydl mop Split Summary IPMOMMEW E. lamal F. R. [' -] 
Dar S. 09/12/07 ....................... 

Progress Baseline Felsmal Miabrle . 
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GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE - SOLUTION 
O rr 95,. Duration sat Fingn I SbrJlrec P- 

I da TluUf/- 
FPÖ Me Ie P yh an /ý Aw 'P 1x1 an Da nTMwT ýP rte [ A^ 

M101 - Fane"Ib. 50 Ar Fe 230217/ Is 1405101 1 2 . ml 

-. 3 M101 - Ena and WNC NwYFn d days 8- 1510107 Sal 21N1107 2 11901 

7j M101 - Eno W WMC 6050nm 11 drye 5n 221M107 WW 09x. 101 3 yM15 iMl 

M101- Er. a rN W. M R"1 1e Gay. Sun22101107 Tu06/01001 ] 11.9WI 

.ý TI1101 - EnvWWAN Wy3 15 GFy, WF00440197 TIY]404107 5 

3 M101 - Em eM WNO RYy ] 12 hye Frl 25105.07 WM 060 07 e 1. ]MI 

. =j MIDI - Fnd rtl WMC Rao] 75 drye Mon 25. '04,07 S. I03/11107 45 --- ,. e«I 

'. 3 70101 - Elea and WM Furp e 11 Ny. Tltu 07106/07 Mon 14406/07 7 1MI 

M101 - Ena rtl WME Wq 5 10 Cq� T. 19/09/07 Fn 2~7 9 ISýF 

3 M107 - E- ad Wald Rag 6 10Aps F, 414,1]9707 Slon 24,0997 10 1, ý1 

MIDI -Enw rN WMe Rag? 9 drye T1r 0971007 Stl 1L10007 11 

M107 - Erna 4x10 WNe WMdg9Ex 9 E. Y. Fe 19/10407 S. 26/10,07 1] I 

14 TK101- EIFG rtl WM07a9 Any. e Nye Mon 2010.07 Tu. Od1107 13 11111411 

.ý 7%101-]01218120x.. 7 20 days Iýtun 29/1010) S. 191111117 11 
yýl 

1 '. 3 MIDI -- HOFM 23 days M 20,007 0402111147 11 141.9991 

x. 31 70101-5510006 22Ery1 TI.. 22/11107 Tw 01/01/05 r 6., 4.15,15 Mr(]. 531.0991 

'3 MIDI -IMY FUem and D. " Rp 22 Eeys F10401M MO.. 2GVtge 11 
YFYjF. e991 

3 M102-FOUlteee00 SOeyn Tuw01l05l07 WFE20101107 1 LIMI 

'. 9 70102- Ena rd WW MoIsS SNys T1702710007 WEA21NS07 19 

1.97107-Ertl rtl WMJ SOnmI 17 dry Fn 10/00101 970,27406/57 20 1,1991 

''j 11(70]- Elsa IM 49.0 Wy I to yyY 174112/07)07 31721.07707 20 1.1 

ii .3 M102 -Et rtl WMO RYp 2 15 day. Sun 29.07.07 /700 11/56107 2] 1.5.40] 

3 M102- Erna aM W. M NOq] 12 day. T. 14)06107 S. 2001.407 23 
1. IMI 

']I M102 - Ena and WMe ROOT 75 Ary, Tu. Oe/ l 500 /971 /. 07 21,73 

3 70102 - Et ale 0.06 60104 11 dry. Fr12106101 TIU 02/ION) 24 
1.197" 

=j M102-End r. J WOO WpS IS day. m o&l0107 Thu WIDOW 2e 1 

M102-Ei a-WME Slny9 -,, I 90021/1007 W. E]7/7007 27 

, 9401 

.ý M102-Eia- WMe Fny1 9., TIw 04/11]07 91017/11)01 29 
Iý1 

-3F- ý ! j' M102-Era rW WW 496/290057 9495+ Stn19717407 To. 27111407 29 "1 

St '3 10102-End rW WFN TIp Nq. 5Ery. Wee2N11A7 ITu0911207 ]0 YwKý991 

ý. JI M102 - Yd Slelrwy 2o.. " Wee 2441, /07 Tue 15412101 30 } 9MIIYFI 

3 97102-IrsW Nozzle 23AMSs WM25l11407 Fr127/12/07 74 

. ]j MIOi-NyROlwl e2 Aey. Tue04103M Tu. 151NNe Ir 25 31.32, M 
. ]9]. 9001 

M10]-hnlr Foam rW DNge Pqq 2e dp Wa1&WN0 Sr 1005106 34 
1.997] 

3 97103 - Fauldlal 50 JeyS Fr12SV]A7 5.14104107 1 ]. f I 

ST 3 9710]-E--2WFle Mr0Yn OAFy. S-smg7 6.12110410/ y 

lTl(10]-Etwa 397 WFtl Bahn 1)EFye 0.2722401401 -0m07 ]7 

3 97107- End s. d WW R"I 1e day. SIn22/W07 Tu09rOSV7 37 1,997] 

3 70103- Ena x10 WME 6,142 15 Erye Wtl 09/0.457 T7u 2417107 ]9 
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Evolutionary algorithms, a form of meta-heuristic, have been successfully applied 
to a number of classes of complex combinatorial problems such as the well- 
studied travelling salesman problem, bin packing problems, etc. They have 
provided a method other than an exact solution that will, within a reasonable 
execution time, provide either optimal or near optimal results. In many cases near 
optimal results are acceptable and the additional resources that may be required 
to provide exact optimal results prove uneconomical. The class of project 
scheduling problems (PSP) exhibit a similar type of complexity to the previous 
mentioned problems, also being NP-hard, and therefore would benefit from 
solution via meta-heuristic rather than exhaustive search. Improvement to a 
project schedule in terms of total duration or resource utilisation can be of major 
financial advantage and therefore near optimal solution via evolutionary 
techniques should be considered highly applicable. In preparation for further 
research this paper reviews the application of evolutionary algorithms to the PSP 
to date extending previous reviews in this area by also encompassing the study of 
PSP using the design structure matrix. In order to better examine the coverage of 
this research, this paper also utilises the PSP classification system proposed by 
(Herroelen, W., Demeulemeester, E. and de Reyck, B., A note on the paper 
`Resource-constrained project scheduling: notation, classification, models and 
methods' by Brucker er al., Euro. J. Op. Res., 2001,128,679-688. ) to identify the 
problems being studied in each application and to identify the areas lacking in 
research. The paper concludes with an examination of areas that in the opinion of 
the authors would particularly benefit from further research. 

Keywords: Evolutionary algorithms; Project scheduling; Design structure matrix 

1. Introduction 

The project scheduling problem (PSP) is concerned with finding the precedence 
feasible, optimal solution to logic linked project networks by evaluating various 
execution sequences. In the simple, single objective PSP this is limited to the 
minimisation of overall duration (minimum make-span); however, research is more 
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commonly focused on more complex variations of this problem, such as the well- 
studied resource constrained PSP (RCPSP). The RCPSP is an extension of the PSP 
in which resource utilisation is limited either in total usage (non-renewable resource) 
or in usage per period (renewable resource) or a combination of the two. A further 
level of complexity is added to the RCPSP by also considering the various inward 

and outward cash flows that are inherent in the project and the resultant net present 
value (NPV), when time-value-of-money is applied. This problem is known as the 
RCPSP with discounted cash flows (RSPSPDCF). 

The above-described problems are often only considered for PSP that are to be 

optimised through the critical path method (CPM) or precedence networks. This 
does not address Project scheduling in its entirety and other forms of network 
representation also need to be considered. One such alternative being the design 
(or dependency) structure matrix (DSM) which, allows for the possibility of feedback 

as well as feed forward logic and also can be utilised for the analysis of concurrency. 
The additional functionality of the DSM lends rise to two additional optimisation 
objectives, the minimisation of the impact of effects of feedback (iteration) as well as 
the maximisation of concurrency. The details of achieving minimisation of iteration 

and maximisation of concurrency are discussed further in section 6. 
Whatever the network representation being employed, the project scheduling 

problem exhibits a high degree of complexity not suitable for exhaustive solution by 

exact methods. In fact the RCPSP, and therefore its subclass problems, have been 
found to be strongly NP-Hard problems. This complexity theory classification 
implies that no known exact solution exists that will solve the problem within 
polynomial time (Wall 1996). Due to this complexity alternative methods need to be 

researched, which will provide time efficient optimisation of this type of problem. 
Evolutionary algorithm methods, initiated by the invention of genetic algorithms 

by John Holland in his landmark book Adaptation in Natural and Artificial 
Systems: ... (1974), utilise methods modelled on naturally occurring phenomena to 
create algorithms. These algorithms travel a self-guided route through the problem 
search space to arrive at optimal or near optimal solutions. Evolutionary algorithms 
have been shown in many cases to be well suited to complex combinatorial problems 
of a similar nature to the PSP and indeed to this class of problem itself. 

Hartmann et a!. (2005) gave an excellent review of the application of evolutionary 
algorithms to the PSP; this paper aims to extend this work in two specific ways. 
Firstly, it extends the review to include research on PSP addressed through the use of 
the DSM and secondly, it aims to categorise existing research via the Ilerroelen et al. 
(1999) PSP classification. The objectives being to consider all research to date under 
the Herroelen framework, adding to this classification to also include the DSM, in 
order to assess potential areas that have not been substantially researched, to identify 
trends in the development of these algorithms and which attributes appear to be 
common among the best performing of the algorithms. This paper also reviews some 
research not mentioned by Kolisch and Hartmann (2006), as well as extending the 
coverage to papers released after this publication. 

The balance of the paper is arranged as follows: Section 2 gives a brief 
background of evolutionary algorithms, section 3 covers the classification of the PSP 
problems and the system used is introduced, section 4 introduces the methods used 
by researchers to benchmark the various algorithms that are discussed, section 5 
discusses the existing research pertaining to the solution of the PSP via evolutionary 
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algorithm methods for traditional (Precedence, CPM) networks, section 6 
investigates evolutionary algorithms methods for the PSP using the DSM. Section 
7 is a discussion of the reviewed research and, finally, section 8 provides the 
conclusion. A tabulation of the key characteristics of the reviewed algorithms is 
given in appendix 1. 

2. Evolutionary algorithms 

As mentioned in section 1, the development of evolutionary algorithms began with 
the introduction of the genetic algorithm by Holland (1974). Since this inception a 
large body of work has been invested into the development of the genetic algorithm 
and it has been applied to a host of problems from the academic, such as the 
travelling salesman problem and 2D and 3D bin packing problems, through to more 
practical applications such as vehicle routing solutions and aerofoil design. Many 
complex problems require the satisfaction of more than one, often opposing, 
objectives. Such multi-objective problems have been addressed via genetic algorithms 
with the first multi-objective genetic algorithms being proposed by Schaffer with the 
vector evaluated genetic algorithm (VEGA). Goldberg (1989) first proposed a 
genetic algorithm to produce the Pareto optimal solution, whereby a set of solutions 
is identified, such that no solution completely dominates another in the set on 
all objectives. This Pareto optimal approach has been adopted in the majority of 
multi-objective algorithms since and is indeed applied in multi-objective forms of 
scheduling problems (see Todd 1997 discussed later). 

A number of other meta-heuristic techniques have been developed including ant 
colony optimisation (ACO), particle swarm optimisation (PSO) and electromagnet- 
ism (EM). We have chosen to include algorithms employing ACO and EM in this 
paper due to their similarities to evolutionary algorithms in that they are also based 
on analogies with naturally occurring phenomena. These techniques also provide a 
performance comparison to place the performance of the genetic algorithms in 

perspective. This group of techniques has been applied to a wide range of problems 
from logistics to mechanical and electrical engineering to operations research. From 
the research identified in this paper the genetic algorithm has the most prolific 
research base in terms of the PSP and this would appear to be typical of most other 
applications. 

3. Classification of PSP 

To fully understand the extent of research conducted into the solution of PSP by 
evolutionary meta-heuristics it is important to be able to analyse the type of PSP that 
have been addressed. This understanding will illuminate areas where less research 
effort has been expended. 

A number of PSP classification systems have been proposed. Commonly 
abbreviations such as those used so far in this paper (RCPSP, RCPSPDCF, etc. ) 
have been used to describe the problem class. However, these classifications are 
limited in their description of the problem, referring rather to a subset of problems, 
and they are often used in an inconsistent manner. The main weakness of classifying 
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PSP using this system of abbreviations is that it fails to describe the type of resources 
and type of network used etc. 

Herroelen et a!. (1999) proposed a classification system in line with the problem 
classification system commonly used on machine scheduling problems (see Graham 

et al. 1979). This system, as with Graham et al. 's machine scheduling problem 
system, uses a combination of three sets of characteristics (a ßßl y) to detail the 
nature of the problem. 

1. a-up to three characteristics describing resources. 
2. P--up to nine characteristics describing activities. 
3. y-One characteristic describing performance measures. 
Brucker et a!. (1999) propose another system, which also follows this three 

characteristic model (a 1ßI y), however, a number of problems were subsequently 
pointed out in this system by Herroelen et al. (2001), and from a review of 
literature the system of Herroelen et a!. (1999) has been most widely adopted. 
It has therefore been decided to utilise the system of Herroelen et al. (1999) 
throughout this paper. 

The characteristic values used in this paper are as given below, this is not the 
complete definition given by Herroelen et al. (1999,2001), but instead it covers all 
values required to describe the problems identified within this paper. 

3.1 Resource classification 

a2 Describes the number of types of resources utilised, where a2 E {°, 1, m} 
such that ° denotes no resource types considered, I indicates that one resource 
type is considered and m that a number of resource types equal to m 
are considered. 

a3 Describes the specific resource types that are used, where a3 E {°, I, T, I T, v} 
such that ° denotes the lack of any resource type specification, I indicates 

renewable resources were utilised, T indicates that non-renewable resources 
were utilised, 1T indicates that both renewable and non-renewable 
resources were employed, finally v indicates partially renewable resources 
were used. 

3.2 Activity classification 

ß2 Describes the type of precedence logic used to construct the network, where 
ß2 E {°, cpm, min, gpr, prob} such that: 

° Empty. 
cpm Critical path method where only Finish-to-Start relationships with zero 

time lags are used. 
min Minimal time lag relationships where Finish-to-Start, Finish-to-Finish, 

Start-to-Start and Start-to-Finish relationships with minimal lags are 
used. 

gpr Generalised precedence Relationships where Finish-to-Start, Finish- 
to-Finish, Start-to-Start and Start-to-Finish relationships with minimal 
and maximal lags are used. 
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prob Probabilistic relationships where the occurrence of logic relationships is 
control by assigned probabilities. 

05 Defines deadlines imposed on the project, such that ßs E {0, Sp S�} where: 
° Empty. 
Sj Deadlines are imposed on the individual activities. 
S� A deadline is imposed on the project. 

07 Defines the type or number of execution modes that are applicable such that 
ß7 E {°, mu, id} where: 

o Empty. 
mu Multiple execution modes are available. 

id Mode identity constraints exist for activities. 
ß8 Defines the nature of cash flow data that is applicable such that ß8 E to, cj, e), cj', 
per, schell} where: 

° Empty. 
cj Activities have associated cash flows. 
ej Cash flows are stochastic. 

cý Activities have an associated positive cash flow. 
per Periodic cash flows are specified. 

sched Both the amount and timing of the cash flows have to be determined. 

3.3 Performance measure classification 

y Describes the objectives or performance measures used to evaluate the solutions 
such that ye {Cmax, av, curve, npv} where: 

Cmax Minimise the project duration. 

av Minimise the resource allocations whilst meeting the project deadlines. 
curve Determine the time vs cost trade-off curve. 

npv Maximise the net present value of the project. 
multi Multiple criteria. 

This classification system has the flexibility to allow for the addition of new 
parameters in order to incorporate the study of new or previously unstudied 
problems. In this paper, we propose the use of a further ß2 parameter dsr» to 
represent the DSM network and two further y parameters nziniter and maxconcur 
representing minimisation of iteration and maximisation of concurrency respectively. 
The DSM can be applied to many of the same problems studied under the CPM 
network only with the addition of allowing feedback logic. 

4. Benchmarking of PSP 

To establish the effectiveness of various algorithms when applied to PSP, 
benchmarking needs to be performed in order to provide a common base by 

which the relative performance of the various algorithms may be considered. 
The majority of researchers in this field utilise the PSPLIB, a collection of problems, 
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which can be used as a standard for comparison of the performance of 
various algorithms. PSPLIB (Kolisch and Sprecher 1996) is a collection of RCPSP 
in a range of single and multi-mode types comprising 30,60,90 and 120 activities. 
The performance of the various algorithms against these benchmark schedules 
is given in this paper where this is applicable or available. Other benchmarking 

problem sets are in use in this area of research, a number of these are referred to in 
Wall (1996): 

" Patterson's (1984) project scheduling problems. 
" Kolisch ei al. (1992) single mode project scheduling set. 
" Kolisch et al. (1992) single mode full factorial project scheduling set. 
" Kolisch et al. (1992) multi-mode full factorial project scheduling set. 
" Fox and Ringer (1995) `Benchmarx' problems. 

Results obtained by the various algorithms are tabulated in appendix 1 to this paper, 
where available and applicable. 

5. Traditional CPM and precedence network problems 

Algorithms dealing with CPM and precedence network representation make use of a 
schedule representation. Two main types of schedule representation are in common 
use in Evolutionary algorithms: 

" Activity list (AL). 
" Random key (RK). 

Activity list schedule representation provides a permutation of the activities which 
are then transformed into a feasible schedule utilising a schedule generation scheme. 

In random key schedule representation, a solution is represented as a point in 

n-dimensional Euclidian space, in which the ith vector element is equal to the 
priority of the ith activity. The activities are then processed by a schedule 
generation scheme on the basis of priority. 

The majority of work in schedule optimisation makes use of one of two schedule 
generation schemes (SGS), these two schemes being serial and parallel generation. 
Schrimer and Riesenberg (1997) describe these two systems. The activities are 
decoded from the activity list produced by the algorithm using one, or both, of these 
schemes. With serial SGS (SSS), a dummy activity is generated with time T=O, 
thereafter activities are scheduled in the order they are represented in the activity list, 

with each activity then obtaining the earliest precedence and resource feasible start 
date. Activities are considered scheduled (S�), eligible to be scheduled (D�), or 
ineligible to be scheduled. Activities, J, are members of the eligible sub set, D, if they 
satisfy the following: 

Dn <- (J IJ SS A Pj C S. 1 

where S� is the set of scheduled activities and Pj is the set of immediate predecessor 
activities for activity j. As eligible activities are moved from S. to D. this will effect 
the eligibility of other activities to be scheduled. The eligible tasks are evaluated one 
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by one until all are scheduled. When including resource constraints this expression is 

extended to: 

DnE-t/Ii SnAPj9SnAkj, <RK, rn(I r<R)} 

where kj, is the quantity of resource r required by activity j and RK,,,, is the remaining 
quantity of resource r, at period t for stage n (nth activity to be scheduled). 

Parallel SGS (PSS) works using 'decision points' these points are taken as the 
earliest finish times of currently scheduled activities. At each of these points activities 
that can feasibly be started are selected and processed until none remain. The next 
decision point is then calculated and the process repeated until all activities are 
scheduled. For PSS the set of eligible activities, D�, is defined where A,, is the set of 
active activities, F,, is the set of finished activities then the set of eligible activities is 
D,, such that: 

UljoA�UF�^PjcF�} 

The set D� is processed at each interval until empty. Again, the previous expression 
doesn't describe the resource-constrained version of the problem to include resource 
constraints the statement needs to be extended as follows: 

ýn E {I I. Je A� U F. A Pj 9 F. ^ kjr < RKrrn(I <r< R)} 

Where kj, is the quantity of resource r required by activity j and RK�� is the 
remaining quantity of that resource, for period t, at stage n. The use of 
these schemes and the priority rules will be discussed throughout the following 

sections. 
The literature dealing with the application of evolutionary algorithms to the 

RCPSP is discussed below. Appendix 1 to this paper provides a summary of the key 

characteristics of each of the algorithms and provides comparative results where 
these are available or applicable. 

5.1 RCPSP applied to CPM and precedence networks 

This problem class deals with the minimisation of project duration under the 
restraint of one or more types of resource limitations. 

5.1.1 Genetic algorithm. Hartmann (1998) produced a genetic algorithm for 

solving RCPSP and reported better results than the currently existing heuristic 

methods. Hartmann offers a new permutation-based genetic algorithm, which uses 
the activity list representation along with a serial SGS. The initial population being 

created using a priority rule selected at random. Hartmann considered three different 

crossover operators; one-point, two-point and uniform. He determined the best 

performing crossover operator to be the two-point crossover, with uniform 
crossover, noting that for larger projects increasing the number of crossover 
points from two may be desirable. In this publication Hartmann studied the RCPSP 
in the classification {m, I Icpml Hartmann benchmarked the results of this 
algorithm against two other genetic algorithms and an existing sampling approach 
and reported his algorithm performing the best. For further information refer to 
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Hartmann (1997) for the application of the algorithm to the scheduling of medical 
experiments. 

Valls et al. (2001) propose a two-phase algorithm for the problem {m, I lcpml 
Cm. x}. The first phase is concerned with basic improvement of the initial population 
and the second phase then performs a localised search of high potential areas using a 
scatter search (see Glover 1994). The problem is benchmarked using PSPLIB 
problems. 

Alcaraz and Maroto (2001) utilised a form of self-adaptation in their genetic 
algorithm based solution to the RCPSP, the exact problem class studied being {m, I 
I cpmI Cmax}. The initial population in Alcaraz and Maroto's algorithm is not 
generated randomly as is commonly the case; instead the initial population members 
are generated using a sampling method. Activities are selected using the latest finish 
time (LFT) priority rule; in this way feasible schedules are already present in the 
initial population. They incorporated an additional gene into their chromosome, 
which controlled the mode of decoding. This gene contains a setting that determines 
whether forward or backward pass scheduling would be employed. Forward pass 
scheduling implies that, starting with the first activity to be scheduled, an activity is 

only eligible for scheduling once all its predecessors have been scheduled. Backward 
pass scheduling works in the opposite way, starting at the last activity; an activity can 
only be scheduled once all its successors have been scheduled. Using these two 
scheduling methodologies schedules are formed that may not have been possible 
using forward only scheduling. The mode of decoding therefore, self-adapts, due to 
the additional gene, which is evolved along with the schedule sequence. Alcaraz and 
Maroto also created three new crossover techniques: 

" Precedence set crossover. 
" Forward-backward crossover. 
" Two-point forward-backward crossover. 

Full details of these methods can be found in the referenced paper. Alcaraz and 
Maroto performed benchmarking using PSPLIB J30, J60 and J120 and reported 
better results than those achieved by Hartmann (1998) in all cases. 

Hartmann (2002) made further progress with the same class of problem, this time 
using a self-adaptive mechanism. Similarly to Alcaraz and Maroto (2001), Hartmann 
uses self-adaptation to select the method of schedule generation from the resultant 
chromosomes. This is also accomplished by extending the chromosomes with an 
additional gene, this gene determines which SGS is employed (SSS or PSS) and hence 
the algorithm will adapt to utilise the most effective method of decoding for the 
particular problem under consideration. This form of algorithm adaptation is 
referred to as self-adaptation as the progress of the algorithm in refining the 
chromosome also refines the value of the adaptive gene. 

Hindi et al. (2002) introduce their genetic algorithm for solving the RCPSP 
{1,1 Icpml Cmax, }. This algorithm utilises routines to provide feasible sequences to the 
initial population instead of a completely random generated population, which is 
more the norm. Hindi et al. (2002) use an activity list representation with a serial 
SGS to decode the chromosome; they experimented with a number of crossover 
operators; one-point crossover, multi-point crossover, uniform crossover and 
alternate crossover. Hindi et al. (2002) carried out initial testing of their algorithm 
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using the Patterson problem sets and then completed final benchmarking using the 
PSPLIB problem instances. Hindi et al. (2002) also provide feedback on their 
experimentation in selection of the population size and number of generations 
utilised in their algorithm runs. They concluded the best performance was achieved 
by setting the population size equal to the number of activities in the problem set and 
they maintained the number of generations for all problems constant at 100. 

Valls et al. (2002,2003) implemented a hybrid genetic algorithm using a serial 
SGS. They introduce a new crossover operator, the 'peak' crossover operator. 
This operator is selective in the portions of the parent chromosomes selected for 

crossover. It selects genes based on peaks in resource utilisation within the activity 
list. The peaks being transferred from one parent, with the other parent determining 
the fill-in of activities around the transferred peaks. Other features of this algorithm 
include a local search routine, and the double justification operator, which, left and 
right justifies the schedule to seek local improvement. The problem type considered 
by Valls et al. (2002,2003) is defined as {1, II cpml C,,, a,, }. 

Kochetov and Stolyar (2003) employed a hybrid genetic algorithm to optimise 
the RCPSP {1,1 Iminj C, �8,, }. Their algorithm utilises a serial SGS, and a specialised 
crossover operator based on a path re-linking strategy using a greedy randomised 
adaptive search procedure (GRASP, see Feo and Resende 1995), with further 
improvement being carried out using a Tabu search. The PSPLIB was utilised for 
benchmarking and the algorithm produced new best results for two instances of the 
J60 problem and one instance of the J120 problem as known at the time of 
publication. 

Gongalves et al. (2004) extended the RCPSP problem to the resource constrained 
multi-project scheduling problem, specifically the multi-project version of {m, II cpmI 
multi}. In this research the chromosome encoding includes the activity priority, the 
delay times and the release dates for each of the projects. As the problem 
classification indicates Gonsalves et a!. have designed their algorithm to optimise the 
schedule for multiple criteria. They combine tardiness, earliness and flow time. These 

criteria can be described as follows: 

" Tardiness-optimisation of due dates. 

" Earliness-optimisation of stocks. 
" Flow time-optimisation of work in progress. 

A number of decoding philosophies (priority rules) are also considered the most 
successful being the `GaSlackMod' method, which modifies the normalised activity 
slack (float) to assign priority values to the activities. 

Debels and Vanhoucke (2005a), utilise a bi-population genetic algorithm in 

which one population contains left justified schedules (US) formulated from a 
forward pass on a random activity list, and one population contains only right 
justified schedules (RJS) formulated from a backward pass on a random activity list. 
These two populations are then used to employ a forward-backward iterative local 

search process similar to that utilised by Alcaraz and Maroto (2001) and Valls el al. 
(2003). Debels and Vanhoucke (2005a) report this algorithm performing slightly 
better than their (2004b) hybrid electromagnetism/scatter search algorithm discussed 
below. The algorithm is applied to the {m, I tcpml Cm, x} 

formulation of the RCPSP. 
Debels and Vanhoucke (2005b) also introduce a decomposition-based heuristic. 
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This heuristic utilises their previously discussed bi-population algorithm as a 
subroutine to optimise sub-problems (or sub-networks). They describe three stages 
as follows: 

1. Construction of sub problem. A RJS is utilised in conjunction with a time 
interval [Pt 1, Pt2] to create a schedule Sb, such that Sb C_ S where S is the 
schedule of the full problem. 

2. Genetic algorithm. The genetic algorithm transforms Sb into an improved Sb. 
3. Merge. The improved sub-schedule Sb is reintroduced into the original 

schedule S to create an improved S. 

The problem class considered by Debels and Vanhoucke (2005b) is {m, I Icpml 
Cmex}, it was benchmarked using PSPLIB J30, J60, J90 and J120. The algorithm 
outperformed most algorithms on the J30 and all algorithms that it was compared 
against for the J60 and J120, this included Hartmann (1998,2002) and Debels 
(2004c). 

Mendes et al. (2005) propose a random key-based genetic algorithm as a solution 
to the RCPSP {m, I Icpml Cmex}. They quote the definition of three schedule types: 

1. Semi-active schedules. Feasible schedules obtained by sequencing activities as 
early as possible. No activity can be started earlier without changing the 
sequence. 

2. Active schedules. Feasible schedules in which no activity can be delayed 
without delaying some other activity or breaking a precedence relationship. 
Optimal schedules are always members of this set of schedules and active 
schedules are always members of the set of semi-active schedules. 

3. Non-delay schedules. Feasible schedules in which no resource is allowed to be 
idle when it could start to process an activity. Non-delay schedules are also 
members of the set of active schedules. 

Mendes et al. (2005) limit the search space for the optimal solution (active schedules) 
by employing parameterised active schedules. Whilst the active schedule space 
contains the optimal schedule/s this search space is very large and contains many 
solutions with long project durations. Parameterised schedules limit this search space 
by placing a restriction on the project duration. Mendes et al. (2005) also employ a 
unique fitness measurement criterion termed `modified makespan'. This problem 
performed well compared with other algorithms when tested on J30, J60 and J 120 
PSPLIB problems. 

5.1.2 Ant colony optimisation. Dorigo et a/. (1999) first introduced ant colony 
optimisation. It has since been successfully applied to various complex problems 
including the well studied travelling salesman problem (TSP) and also more recently 
to the PSP. 

Ant colony optimisation aims to simulate the collective effort of ant colonies to 
solve problems. When ants travel between a nest and food source, for example, they 
deposit a pheromone in the form of a trail as they travel. This pheromone attracts 
other ants to follow and the more ants that travel the path the more pheromone 
is deposited, the greater the attraction to other ants, and so on and so forth. 
This mechanism of depositing and sensing the pheromone is known as stigmergy. 



Evolutionary algorithms applied to project scheduling problems 435 

Merkle et al. (2000) first utilised ant colony optimisation (ACO) to derive 

solutions to the RCPSP {m, I Imini Cmgx}, employing the serial SGS in conjunction 
with a modified LFT priority rule. In ACO based scheduling a pheromone matrix is 

commonly utilised, with pheromone being deposited by the ants to a matrix element 
when a good solution is found. The traditional approach being to employ the two 
matrix dimensions to represent the sequence (ith job/task) and the actual job/task 

number j. In other words Ty would represent the possibility of task j being the 
ith job. Previous scheduling work using ACO had the ants evaluate the desirability of 
placing j as the ith job/task purely on the level of pheromone present in that matrix 
location, this is known as direct evaluation. Merkte et a!. (2000) proposed an 
alternative to this evaluation method, which helps maintain desirable positions for 
tasks as it takes into account the desirability of having activity j at the ith or less 

position in the sequence preventing activities which should be scheduled early being 

postponed until much later in the sequence. This alternative method is calculated 
using the following formula: 

Tkj 

k=1 

Merkte et a!. termed this method summation evaluation. In the RCPSP algorithm a 
combination of these methods are applied. Other characteristics of this algorithm 
include an elitist strategy, 2-Opt local optimisation and also a low probabilistic 
possibility of replacing the best solution to date with the best for the current 
generation. The latter was employed to prevent premature convergence due to the 
elitist strategy. Merkle et al. report results that supersede those achieved by 
Hartmann (1998) using a competitive genetic algorithm and by Bouleimen and 
Lecoq (2000) using simulated annealing. 

Based on the success of Chiu and Tsai (1993) in employing priority rule methods 
using their ACTim rule, Liang et a!. (2004) produced an ACO-based algorithm for 
the {m, I Icpml Cmax} RCPSP utilising this rule. The results obtained utilising the 
PSPLIB problems compared well to Bouleiman and Lecoq's (2000) simulated 
annealing solution and to Hartmann's (1998) earlier GA, however it gave slightly 
worse solutions than both Merkle et a!. (2000) and Hartmann's (2002) self-adaptive 
algorithm. 

Herbots et al. (20(4) studied the applicability of ACO to the {m, I Icpmj C. ex}, 
RCPSP problem. Herbots et a!. test three different algorithm configurations: 

1. SSS with normalised latest start time (nLST) priority rule. 
2. PSS with normalised latest finish time (nLFT) priority rule. 
3. SSS with normalised weighted resource utilisation and precedence (nWRUP) 

priority rule. 

Each of these algorithm configurations was tested with forward, backward and 
bidirectional scheduling. The best performing configuration was the PSS/nLFT 
followed by the SSS/nLST. Herbots et al. (2004) refrain from employing hybrid 
techniques within the algorithm and their algorithm compares well with other non- 
hybrid algorithms. They conclude with the belief that ACO has great potential for 

use as a hybrid due to its good performance in the pure form. 
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5.1.3 Electromagnetism with scatter search. One of the most recent heuristics, 

which has been applied to combinatorial optimisation, is electromagnetism (EM), 
introduced by Birbil and Fang (2003). This optimisation method, as its name infers, 
draws its functionality from analogies with electromagnetism principles. 

Debels and Vanhoucke (2004a) explain that the basic principle behind EM is that 
each point, x, in a multi-dimensional solution space, represents a solution. Each 

point is attributed a charge, based on the fitness of the objective function f (x). The 

charge of each of these solution points will either attract or repel other points with a 
force proportional to their charge values and inversely proportional to their distance 

apart. 
EM has been successfully applied to the PSP in particular to the RCPSP with the 

classification {m, 1 lcpml C,,, ax}. Debels and Vanhoucke (2004a) propose an EM 

solution to the RCPSP using a random key schedule representation and a serial 
schedule generation scheme. This algorithm outperforms Hartmann (1998,2002), 
Alcarez and Maroto (2001) and Valls et al. (2002,2003) on J30, J60 and J120 

problems. 
Debels et al. (2004b) team scatter search techniques with EM in order to produce 

a hybrid genetic algorithm. Whilst Kolisch (1996) had found that activity list 

schedule representation was more consistent in obtaining optimal schedules than 
random key (RK) representation, Debels et al. (2004b) state that this is due to the 
possibility that a number of RK representations can result in the same schedule. 
They supply two reasons specific to the RK representation that cause this: 

1. Scaling in Euclidian space. Priority values can be scaled in Euclidian space and 
still represent the same schedule. 

2. Precedence constraints. The priority values do not have constraints, therefore 
a predecessor may have a lower RK than that of its successor. 

Debels et al. (2004b) then provide solutions to these two issues as well as two issues 

common to both the RK and AL representations and they choose to employ an 
improved RK representation, standardised RK (SRK) in their algorithm. This 

algorithm is then coupled with scatter search techniques. 

5.2 Multi-mode RCPSP (MRCPSP) applied to CPM and precedence networks 

5.2.1 Genetic Algorithms. Wall (1996) employed a genetic algorithm to solve the 
MRCPSP the exact problem being {m, II cpm, mut C. 871} and (IT l cpm, mut C,,, ax} 
with non-renewable resources (IT) only being considered in one problem set. Multi- 

mode problems consider the case where a number of different duration/resource 
utilisation options or modes are possible. Various scenarios can be employed by 

considering different modes or resource/duration combinations. Blend crossover 
(Eshelman and Schaffer 1992) is employed, which is an adaptive operator that 
generates new values, based on the diversity of the parents. Wall (1996) tested three 
other crossover operators: 

1. Uniform crossover. 
2. Mean with Gaussian noise. 
3. Extrapolation. 
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Wall (1996) found uniform crossover to perform slightly worse than the other three 
operators. Two separate mutation methods were utilised, firstly Gaussian noise was 
applied to the activity sequence array and secondly, random flipping was applied to 
elements of the mode array. Wall (1996) applied the mutation probability at genome 
level rather than for the entire chromosome, each genome having the possibility of 
being mutated separately. Wall (1996) tested his algorithms using a number of sets of 
test problems including, Patterson's (1984) project scheduling problems, Kolisch 
et al. (1992) single/multi mode project scheduling set and Fox and Ringer's (1995) 
Benchmarx problems. The majority of other algorithms detailed in this paper make 
use of the PSPLIB (Kolisch and Sprecher, 1996), therefore no direct comparison is 
made of the performance of Wall's algorithm against the others algorithms 
presented. 

Mori and Tseng (1996) employed a genetic algorithm to solve the MRCPSP 
{m, 1 Icpm, mul C, �ax}. In Mori and Tseng's GA the complete schedule is represented 
in a single chromosome, the Mode forming one bit of the activity gene. The mode 
selection is built into the genome for each activity as an additional gene. This gene is 
initially selected at random, along with the sequence gene, and is then evolved along 
with the rest of the chromosome. 

Hartmann (2001) proposed a genetic algorithm for solving the MRCPSP, the 
exact problem being studied being {l T Icpm, mul Cm8, j. The algorithm encodes both 
the activity sequence as well as the mode value within the chromosomes genotype. 
Hartmann employs a serial SGS to decode the activity list to a precedence and 
resource feasible solution. Due to the encoding of both the activities and the mode 
into the chromosome Hartmann developed specific crossover and mutation 
operators to address the extended genotype. 

Sriprasert and Dawood (2003) employed multi-objective weighting in their multi- 
constraint genetic algorithm. The term `multi-constraint' has been used to describe 
the following constraint types placed on activities: 

" Contract constraints (time, cost and quality). 
" Physical constraints (technology dependency, space, etc. ). 
" Resource constraints (availability). 
" Information constraints (availability). 

Whilst this provides a different classification of constraints on project activities the 
authors would argue that all of these items are already addressed within the standard 
RCPSP as either, optimisation objectives (time, cost, etc. ), resource constraints (as 
above but also space) or as predecessor dependencies (Information availability, 
technology). Details of the scheduling mechanism employed in this algorithm are not 
provided. Sriprasert and Dawood's (2003) algorithm was integrated with AutoCAD 
and Microsoft Project in order to produce 4D feedback from the optimised schedule. 
4D provides a 3D visualisation of the construction process over time (fourth 
dimension) in accordance with the precedence relationships defined in the schedule 
network. Sripraset and Daewoods (2003) algorithm uses an extended chromosome 
structure to allow for multiple execution options or multiple modes. The algorithm 
employs a uniform crossover operator and covers problems defined as {m, II cpm, 
mul Cmax}. 
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5.3 RCPSPDCF applied to CPM and precedence networks 

This subclass of problem further extends the RSPSP problem through the addition of 
the consideration of cash flows incurred through the execution of certain activities. 
The objective of these problems being to maximise the net present value (NPV) of the 
project, whilst also satisfying the requirements of the previously discussed RCPSP. 

5.3.1 Genetic algorithm. Ulusoy et al. (2001) propose a genetic algorithm approach 
for solving the RCPSPDCF. They consider four different payment models, with two 
different resource scenarios in each case. The Herroelen et al. (1999) classification of 
each of the payment models is given below for each resource scenario: 

" Lump sum payment at contract end (LSP) (1, II cpm, ö�, mu, cjI npv}, 
{IT l cpm, 8,,, mu, cal npv}. 

" Payment at event occurrences (milestone payments) (PEO) {1, I Icpm, S,,, mu, 
schedi npv}, {IT I cpm, S�, mu, schedl npv}. 

" Equal time intervals (ETI) { 1,1 lcpm, d�, mu, perl npv}, { IT lcpm, S,,, mu, perl 
npv}. 

" Progress payments (PP) 11,1 lcpm, 5,,, mu, perl npv}, {IT lcpm, ö,,, mu, perl 
npv}. 

As can be seen from the problem classifications, Ulusoy et a!. (2001) have extended 
the RCPSPDCF by applying multiple modes. This is addressed in a similar manner 
to that adopted by Mori and Tseng (1996), Wall (1996) and Hartmann (2001), that is 
the mode option is encoded within the chromosome, thereby being refined through 
the evolutionary process along with the activity sequence. Ulusoy et al. (2001) utilise 
a multi-component uniform order based crossover operator, MCOUX, the reader is 
referred to Ulusoy et al. (1997) and Sivrikaya-$erifoglu (1998) for further discussion 
of this operator. Ulusoy et al. (2001) describe the RCPSPDCF with the following 
equation: 

NPV =E CFA (1 + r)-sT1 +E Pk(I + r)-T" 
1 keK 

where CFA is a set of cash out flows computed from the cost of use of resource per 
unit time, multiplied by the duration of the activity j; r is the discount rate. ST is the 
start time of the given activity j, K is a set of payment points, P is the set of payments 
received at payment point K and Tk is the set of occurrence times for the payments P. 
This calculated value of NPV is then used as the fitness measurement for this 
algorithm. 

Ulusoy et a!. (2001) utilise a modified scheduling scheme, which will not allow an 
activity to be scheduled with an earlier start than that of the start of any activities 
located to its left in the chromosome. 

6. DSM network problems 

The design or dependency structure matrix (DSM) is often excluded from discussions 
of the PSP; however, it is an alternative representation to traditional networks and 
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will allow the study of the same problems as the traditional networks only with the 
additional consideration of feedback flows of information. The invention of the 
DSM is credited to Stewart (1981). 

As the name implies the DSM is represented in the form of a square matrix with 
the activities listed in the same order along both the vertical and horizontal axes. 
Dependencies are then mapped using the cells lying at the intersections between 

activities with the diagonal formed by the intersection of activities with themselves 
dividing the matrix into two triangles. This basic arrangement can be seen in figure I 
below. 

For each two activities there exist two intersecting cells in the matrix, one lying in 
the upper triangle, one lying in the lower triangle. The intersection in the upper 
triangle is used to map the feedback links, with the intersection in the bottom being 

used to map the feed forward links. For example, in figure I the intersection between 

activity 10 and activity 14 is marked by aI in the upper triangle, this represents a 
feedback logic link from activity 14 to activity 10. Most implementations follow this 
convention an exception being NASA's DeMaID (an implementation of the DSM by 
NASA; see Rogers 1994,1996, for further detail), which reverses this arrangement. 

The greater the number of iterative loops formed by feedback links the greater 
the duration of the schedule, the aim typically with DSM optimisation is therefore to 
reduce the magnitude of iterative loops or feed back dependencies. This reduction is 

achieved by rearranging the sequence of tasks in order to move the dependency links 
toward the lower triangle. Reducing this iteration then has the effect of also reducing 
the total make-span of the project. 

In addition to minimising the iteration in the matrix, the I)SM can also be 

optimised for maximum concurrency of activity execution; this is achieved by 

rearranging tasks in order to move the dependency links to the left and lower 

edges of the matrix. Whilst optimum concurrency would also result in lower 
triangularisation and therefore minimised iteration, the nature of the network of 
dependencies may not allow simultaneous satisfaction of these two objectives, 

MA I FiIA 

Figure I. The basic arrangement of the design structure matrix (I)SM). 
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requiring trade-offs to be considered. Aiming to simultaneously satisfy both of these 
objectives would therefore lead to a multi-objective optimisation problem. 

Evolutionary methods have been applied to the optimisation of the DSM both in 

single and multi-objective forms. The prevalence of these applications, as is the use of 
the DSM in general, is much lower than that using traditional CPM or precedence 
network methods. 

Fitness measurement in the DSM is made in the following manner: For problems 
seeking to optimise for minimum iteration the distance of each feedback link from 
the diagonal in the matrix is determined and summed for all activities. This equates 
to subtracting the position in the sequence of the successor from the position in the 
sequence of the predecessor for each feedback link. When solving for maximum 
concurrency the distance of each link from the left hand side of the matrix, and the 
bottom of the matrix is calculated. Maximum concurrency can be achieved by either 
having all the links lined up against either the left hand side of the bottom of the 
matrix. 

Due to the DSM allowing dependencies to be mapped as either feed forward or 
feed back logic the decoding of the activity list via either the SSS or PSS 
scheduling schemes is not necessary, as an activities predecessors may be scheduled 
after the activity, the actual objective of the algorithm being to minimise these 
occurrences, and hence the total iteration. 

As stated earlier the Herroelen et al. (1999) classification system allows the 
flexibility to incorporate the DSM and its optimisation criteria. Two additional 
characteristics and corresponding parameters would be required to define problems 
for the DSM: 

1. The additional ß2 characteristic - dsm - to define the network type. 
2. The additional y characteristics - miniter and nraxconcur -- to describe the 

objective functions 'minimise iteration' and 'maximise concurrency'. 
This problem is once again combinatorial in nature and meta-heuristics have been 

successfully applied to solution of the DSM, the following gives a summation of the 
research and development that has been conducted to date. 

6.1 Minimum makespan and minimum iteration using the 
dependency structure matrix 

6.1.1 Genetic algorithm. Rogers (1994,1996) implemented a genetic algorithm to 
optimise the sequence of activities in the DSM in order to minimise the impact of 
iteration, which requires the DSM to be moved as close as possible to becoming 
lower triangular. Satisfying this objective has the effect of minimising the overall 
duration of the project (make span) and therefore reduces the overall time dependant 
cost. The problem considered here would be {IdsniI miniter, C. J. Rogers offers no 
comparison of the DeMAID genetic algorithm against other optimisation methods. 

Todd (1997) also considered the DSM for the single objective of minimum 
iteration. Todd's experiments showed great improvement over currently existing 
methods when applied to three well-studied problems. Todd tested problems with 
12,20 and 51 activities, the results of these test can be seen in table I below. 
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Table 1. Comparison of Todd's (1997) genetic algorithm vs. non-evolutionary methods. 

Problem No. of tasks Previous best solution Todd (1997) 

KUSIAK'91 12 76 
STEWARD'81 20 93 24 
AUSTIN'96 51 320 158' 

*Later Todd produced a result of 157 under multi-objective solution. 

No evidence of the application of ACO or other types of meta-heuristic to this 
class of problem was found. 

6.2 Minimum makespan and maximum concurrency using the 
dependency structure matrix 

6.2.1 Genetic algorithm. Todd (1997) considered the maximisation of concurrency 
as well as the minimisation of iteration {Idsml maxconcur, miniter}. Todd (1997) 
reported his best results using enhanced edge recombination crossover (EERX), of 
Starkweather (1991), in combination with the 2-city adjacent swap. so named from 
its previous application to the travelling salesman problem. Todd found a slightly 
better solution to Austins 1996 51-activity DSM problem under the multi-objective 
(miniter, maxconcur) problem finding a solution with a total feedback value of 157, 
his best result under single objective being 158. 

Whitfield et al. (2003) considered a number of different partitioning techniques 
whilst also investigating maximisation of concurrency and minimisation of iteration. 
In Whitfield et al. 's (2003) work emphasis was placed upon identifying the best 
algorithm model by assessing the relative efficiency of a number of genetic operator 
combinations. Whitfield et al. found Todd's favoured combination of EERX and 
2-city adjacent swap mutation to be among the worst performing combination and 
reported their best results from using the independent position crossover (IPX) in 

conjunction with the shift operation mutation (SONI) of Murata and Ishibuchi 
(1994). 

No evidence of the application of other forms of evolutionary algorithm to this 
class of problem was found. 

6.3 RCPSP using the dependency structure matrix 

6.3.1 Genetic algorithm. Zhaung and Yassine (2004) utilised a genetic algorithm to 
optimise the RCPSP problem using the dependency structure matrix. Zhaung and 
Yassine implement Leu and Yang's (1999) union crossover 3 operator, this operator 
performs crossover whilst maintaining conformance to precedence relationships. 
They also consider a multi-project environment. The class of problem considered in 
this case is {1, I IdsmI C,,, a,. } 

No evidence of the application of other forms of evolutionary algorithm to this 
class of problem was found. 
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7. Discussion of research 

7.1 General discussion 

From the literature review presented in the previous sections it can be seen that a 
large amount of research has been conducted on the application of the evolutionary 
algorithm to the PSP. From Wall's (1996) algorithm applying a genetic algorithm to 
the RCPSP, the algorithms have been developed to contain self-adaptation, iterative 
forward and backward scheduling techniques and the application of problem specific 
crossover operators. In addition to this other types of algorithm such as ACO and 
EM have also been applied in a limited manner. This development over the last 8 to 
9 years has produced a steady increase in the accuracy and efficiency of evolutionary 
algorithms applied to this class of problem. 

As stated in the introduction the RCPSP is an NP-hard problem, the 
optimisation, or near-optimisation, of RCPSP via evolutionary techniques is an 
important development, which makes the optimisation of real-world project 
schedules an obtainable goal. Increasing pressure in Industry to reduce project 
schedules as well as working to tighter profit margins makes the ability to optimise 
project schedules of great practical application. 

The application of evolutionary algorithms to the RCPSP (specifically {m, I 
Icpml Cmax}) has been well researched however, there has been less coverage of the 
RCPSPDCF {m, I Icpml npv}. Due to tightening schedules and margins inherent in 
current projects, optimisation of cash flows can be extremely important. The authors 
believe that this problem is highly applicable in practice, particularly in large 
industrial projects, and that it would yield far greater benefit to project managers 
than the RCPSP alone. It would therefore be beneficial to invest further research 
effort into this area. 

There are limitations in the research regarding the network architecture utilised in 
the problems to which the evolutionary algorithms have been applied. CPM has been 
used abundantly whereas precedence relations with minimal time lags are applied 
more in practice. Furthermore, the DSM has not been considered to a great extent 
despite the added benefits it offers with the ability to optimise the schedule for 
maximum concurrency and minimum iteration. Where the evolutionary algorithms 
have been applied to the DSM it has been to very simple forms of the PSP, with little 
research, for example entertaining resource constraints or cash flows. 

There have been limited applications of other evolutionary techniques such as 
ACO, PSO and EM. This is despite implementations by Merkle el al. (2000), Liang 
et al. (2004) and Debels (2004a, 2004b) producing comparative results to genetic 
algorithms at the time of their publication. There is no evidence to illustrate that 
these methods are any less suited to solution of the PSP than are genetic algorithms. 

7.2 Observed trends 

There are some distinct trends evident within the existing body of research. There is 
clearly a move from 'pure' evolutionary methods toward hybrid algorithms, which 
utilise the main structure of the evolutionary algorithm combined with local search 
techniques. Valls er al. (2001) teamed their genetic algorithm with a scatter search, 
local search process, Scatter search was adopted in a similar way by Debels et at. 
(2004b) coupled to their EM algorithm. 
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One of the most important trends that is developing among the best performing 
algorithms is the use of left and right justified schedules. This has been detailed above 
as a feature of algorithms produced by Alcaraz and Maroto (2001), Valls et al. (2002, 
2003) and Debels and Vanhoucke (2005a). This technique consistently produces 
good results in all of the algorithms in which it is employed. 

Hartman and Kolisch (2000) found that in general the activity list based schedule 
representation was superior to the random key representation, and until recently 
most of the research in the field followed these findings and utilised the activity list 

representation. However, Debels and Vanhoucke (2004a), state that the main issue 

with the random key representation is that a single schedule can have many random 
key representations which significantly extends the search space, they present a 
standardised random key (SRK) representation, which offers a solution to this issue. 
Their resultant algorithm a hybrid EM/scatter search algorithm performs well 
against other research using this SRK. Mendes et al. (2005) have also adopted the 
random key representation in their genetic algorithm approach. 

Kolisch (1996) demonstrated that the parallel SGS is sometimes unable to 
produce the optimum schedule solution, the same not being true for the serial SGS. 
Generally researchers have followed this guidance, an exception being Hartman's 
(2002) self-adaptive algorithm, which uses the evolutionary process to refine the 
selection decoding procedure to best suit the problem at hand. 

8. Conclusions 

To conclude and to develop observations from the previous section, four key areas 
have been identified where additional research would benefit this field of study, these 
are: 

1. Adaptive and self-adaptive mechanisms. 
2. Development of the full time-cost trade off curve (Pareto front), looking at 

methods for determining optimum mode. 
3. Development of algorithms to efficiently optimise large networks 

(x 103 activities). 
4. Consideration of a wider range of problems utilising the DSM as the 

scheduling mechanism. 
Each of these areas is expanded in the following sub-sections. 

8.1 Adaptive and self-adaptive mechanisms 

Alcaraz and Maroto (2001) and Hartmann (2002) both presented an algorithm with 
the ability to self-adapt the SGS that is being applied. This algorithm produced 
competitive results and this ability of the algorithm to self-adapt to the problem at 
hand would present a lot of promise. A number of references in the literature note 
that parameters that are good for one problem may not provide the best results for 

another. Eiben et a!. (1999) provide taxonomy for the setting of algorithm 
parameters as shown in figure 2 below. 

Parameter tuning is concerned with the setting of parameters prior to run time 
and for specific problems requires an iterative process, which will have limitations in 

practical application. Parameter control is concerned with the modification of 
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parameters during execution as controlled by the algorithm. The three main divisions 

of parameter control being explained as follows: 

L. Deterministic control involves the modification of the algorithm according to 
a pre-selected schedule or function, that is, no feedback is received from the 
values produced by the algorithm during its run-time. 

2. Adaptive control is achieved by modifying parameters based on the values 
yielded by the algorithm during its run time. 

3. Self-adaptive control is obtained by extending the chromosome by additional 
genes. These genes are evolved during the execution of the algorithm along 
with the rest of the chromosome; the additional genes being utilised to 
determine the parameters. Through this method the best settings for 
parameters can be evolved during run time. 

In order to utilise deterministic control, a schedule or function needs to be defined to 
effect control of parameters within the algorithm. For applicability to a specific 
problem this would require some degree of a priori knowledge of the problem, which 
would again require adjustment in order to be optimum for a specific problem, 
therefore to provide robust algorithms a degree of adaptive/self-adaptive behaviour 
is indicated. However, deterministic control may also have a practical usage within 
PSP algorithms. In Hartmann's (1998) note in reference to crossover operators, he 

mentioned that the number of crossover points in the operator may need to increase 

along with the size of the project. Deterministic parameter setting could be used in 
this instance to set the number of crossover points according to a preset schedule 
relating crossover points to schedule size ranges. 

It would seem pertinent therefore that any algorithms should contain elements of 
adaptive or self-adaptive behaviour in order to present a robust solution to it range 
of problems. Further research into adaptive and self-adaptive algorithms for this 
class of problem is therefore warranted. 

8.2 Time-cost trade-off curve 

The trade-off between time and cost in schedule optimisation is vitally important to 
many projects. In industrial projects, cash flows generated from beneficial use of 
plant (plant providing return to the owner) may often outweigh additional costs 
incurred through schedule acceleration. Due to this there is great value in producing 

Figure 2. Taxonomy of parameter setting. 
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the entire time/cost trade-off curve (y = curve) i. e. the Pareto optimal front for the 
dual objective of time and cost minimisation. This goal has not been prevalent in the 
literature to date and would definitely benefit from further research. Whilst multi- 
mode problems provide a degree of allowance for different modes of execution, some 
activities with resource driven durations are completely scaleable and are not 
restricted to the few mode options offered by these problems. The authors therefore 
believe that there is value in investigating RCPSPDCF optimisation utilising 
continuous variables for mode definition. Development of the four payment models 
identified by Ulusoy et al. (2001) under continuous mode variables would be 

particularly relevant and applicable in industry. 

8.3 Problem optimisation utilising the DSM 

The study of PSP under the DSM has been limited in that the full range of PSP has 

not been applied and optimised using evolutionary algorithms. The mechanism of 
the DSM provides the capability for problems such as RCPSPDCF to be considered, 
no literature has been identified here in which this type of problem has been 
investigated utilising the DSM. The addition of minimisation of iteration to the 
RCPSPDCF could be an interesting problem particularly for large engineering 
contracts or FEED contracts where iteration is most evident. 

No evidence has been found of any evolutionary algorithm other than the genetic 
algorithm being applied to this problem. 

Due to the additional optimisation possibilities that are available using the DSM, 
the authors believe that there is value in investing further research into ways of 
combining the DSM and traditional networks in order to produce schedules with a 
greater level of optimisation using evolutionary techniques. 

8.4 Large problem decomposition 

The literature reviewed provides detail on the performance of the various algorithms 
as applied to various test problem sets (in the main, PSPLIB instances). These 

problem sets range in size from 30 activities to 120 activities. Large, complex, real 
world projects often have activity numbers in the thousands, practical application 
would therefore require efficient processing of much larger problem sets. Parallels 

could be drawn from Valenzuala and Jones (1993) where they utilise `divide and 
conquer' methodology to reduce large travelling salesman problems (TSP) into a 
number of smaller more manageable sub-problems for resolution, before 'patching' 
is applied to reunite the sub-solutions into a solution for the whole. 

In this paper we have presented the key research from the literature relating to 
the application of evolutionary algorithms to the project scheduling problem (PSP), 
we have utilised the classification system of Herroelen et a!. (1999), to clearly define 

all the problems presented as well as tabulating key algorithm results for 

comparison. We have also included the DSM into the PSP review, to include what 
we believe to be an important subset of the PSP. A breakdown of the key 

characteristics, problem type and results for each algorithm from the literature has 
been tabulated in appendix 1. To conclude we have presented observations of key 
trends and our suggestions for avenues of further research. 



E 

G 
CU 

ä. 
i 

b 
C 
U 
a 

8 x x 
Pi A pt A 

Q 

6 

QY 

`' 
.a 
N 

- 

N 

N 
N 
N 

ä 

f/) 
N 

^ d V 

m 
p 

a 
g 

O N 
N O O SS 

ý8 O O O O O O 
N O 

O 

7 
N 

p 
t'f N 

O 

O 

O O O 

8 

F w 
U E EÜ E E L L E E 

ý U U U U J 
a$f $ f. E E EE 

E 
ü Ed E 

S 
t 
L' 

IL sz - v w u 
Z a E E E E - 

E -- E t: t t t t 

V E a a a a a a a s a a a a a ä a ä ä d ä a ä ä a. n n a 
U 
Cr 

U 
¢ 

U 
Q 

U 
Cl 

U 
¢ 

U 
¢ 

U 
Q 

U 
2 

u 
2 

(ý 
R 

U 
¢ 

U 
Q 

U 
Q 

c p 
(h 
(/) 

U) 
N N NU 2 

N N N N `/1 a N�1 

3 3 
;a 

s 
Y 

f ¢ r. 
3 

k. 
f 

ýý 
6 

ä < < ä < < ä 1 1 ý 

m 

dh Ul 
ýOb a Z < < < o 8 ýýt 

o 

H i_ 7 q N O[ A 
Q O4 Q }' 

r .[ 
ý 

< < 
Ü Z ÜLLýLL n ä n ý 

Y 
pý 

ý 
'° 

ý . 
Ö Ü ¢ 

W 
i 
Y ä 

a mE g+ °ý m °ýý ýöäy ý m 
S 

n Q 
# 

m (5 n y V 
to LL 

a 
N 

N 

c 

.C 

8 d 
i 

p y 
L J {Uý 

co (D ID 

U 
p 

a 

: w 
n 

u cý 
C 

v 
N 

y'°j 

a 

c 
yý ö _ Jp y 

ry , 

: 
I 

of II{ N S 1 Q L 
> Y y 

U 
y 
U YI 

C 



X_ 

b 
G 
v 

a a Q 

ö 

ö ${ 

v c 
g 
üi 

_ 

,ý 
g 

v 

p 

ry 
m a y 

3 
$ m 

ä 
° 

ä i 

IL E z f i 

m 

o " 
n 

Y L 

F 
E 

E 

n 
2 > 

21 ,§ EEE 
C 

V 

_ 

V y_ 

10 

a o 
ý 

ý o 
E c n 

ü E ý"r "ýöýiö n 

v a 
ä 

Q 
ä 

a 
ä 

`v 

Qy U U U 

ä 

Ul2 
n a 

c 

n 

c 

ýf 

n Q N4t 
UI 

._i x ýý 
pp pývNL 

G=EJ 
p 

TýU 
p 

2 iI 
pp 
LO 

pp 
ZO 

2 

¢U 
FUNOU 

Q OQ 

Ny i 
c 

y 
7a E ovv y `o 

o 
A 

9 E ýZ 
Do y 

E ý o 
äm E°' nay ü; 

ý3 

8 a[ E mE ? N Ä 

ö4 gi>ýS a`' 
W$ ä Eä 

oog 
> 

ffi 

U vU 
Zý u gý 

U ý-b 
w 

mW E 
. 

¢ 

,ý z° Ein Z o_ .> 3 3 
R 
E 

t 

E 
s 

W 

Öý Ö 
N 

N 

i s 

J 
y 

2 Z ý ý 

E N U C9 teil " 

3 
(9 0 ii 

) 
e ,i 3 

I 
a 

a 

I 



448 J. Lancaster and Af. Ozbayrak 

References 

Alcaraz, J. and Maroto, C., A robust genetic algorithm for resource allocation in project 
scheduling. Ann. Op. Res., 2001a, 102,83-109. 

Alcaraz, J. and Maroto, C., A new genetic algorithm for the multi-mode resource-constrained 
project scheduling problem. Dpto de Estadistica e Investigacion Operativa, Universidad 
Politecnica de Valencia Spain, 200lb. 

Birbil, S. and Fang, S., Electromagnetism-like mechanism for global optimisation. J. Global 
Optim., 2003,25,263-282. 

Bouleiman, K. and Lecocq, H., Multi-objective simulated annealing for the resource 
constrained multi-project scheduling problem. Service de Robotic et Automatisation. 
Universite de Liege, 2000. 

Brucker, P., Drexl, A., Mohring, R. H., Neumann, K. and Pesch, E., Resource-constrained 
project scheduling: an update. Euro. J. Oper. Res., 1999,174(l), 23-37. 

Chiu, H. and Tsai, D., A comparison of single-project and multi-project approaches in 
resource-constrained multi-project scheduling problems. J. Chinese Inst. Indust. Eng., 
1993,10,171-179. 

Debels, D. and Vanhoucke, M., An electromagnetism meta-heuristic for the resource 
constrained project scheduling problem. Working Paper Series, Faculteit Ecomonic and 
Bedrijfskunde, Universiteit Gent, 2004a. 

Debels, D., de Reyck, B., Leus, R. and Vanhoucke, M., A hybrid scatter search/ 
electromegnetism meta-heuristic for project scheduling. Working Paper Series, 
Faculteit Ecomonie and Bedrijfskunde, Universiteit Gent, 2004b. 

Debels, D., de Reyck, B., Leus, R. and Vanhoucke, M., A scatter-search meta-heuristic for the 
resource constrained project scheduling problem. Euro. J. Op. Res., 2006,169(2), 
638-653. 

Debels, D. and Vanhoucke, M., A bi-population based genetic algorithm for the resource- 
constrained project scheduling problem. Working Paper Series, Faculteit Economic en 
Bedrijfskunde, Universiteit Gent, 2005a. 

Debels, D. and Vvanhoucke, M., A decomposition-based heuristic for the resource 
constrained project scheduling problem. Working Paper Series, Faculteit Economic 
en Bedrijfskunde, Universiteit Gent, 2005b. 

Dorigo, M., di Caro, G. and Gambardella, L, Ant algorithms for discrete optimisation. 
Artif. Life, 1999,5,137-172. 

Eiben, A., Hinterding, R. and Michalewicz, Z., Parameter control in evolutionary algorithms. 
IEEE Trans. Evol. Compu., 1999,3(2), 124-141. 

Eshelman, L. J. and Schaffer, D. J. Real-coded genetic algorithms and interval schema, 1992 
(Foundations of Genetic Algorithms 2: Whitely, San Mateo, CA). 

Feo, T. and Resende, M., Greedy randomised adaptive search procedure. J. Global Optim.. 
1995,6,109-133. 

Fox, B. and Ringer, M., 1995, The Benchmarx Problems. Available online at: http: // 
www. neosoft. com/-benchmrx/ 

Glover, F., Genetic algorithms and scatter search. Unsuspected potentials. Statist. Comp., 
1994,4,131-140. 

Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning. 1989 
(Addison Wesley Longman Inc.: Boston, MA). 

Gonsalves, J., Mendes, J. and Resende, M., A genetic algorithm for the resource 
constrained multi-project scheduling problem. AT&T Labs Technical Report 
TD-668LM4,2004. 

Graham, R., Lawler, E., Lenstra, J. and Rinnooy Kan, A., Optimisation and approximation 
in deterministic sequencing and scheduling theory: a survey. Annals of Discrete 
Mathematics, 1979,5,287-326. 

Hartmann, S., Scheduling medical research experiments-An application of project 
scheduling methods. Manuskripte aus den Instituten fur Betriebswirtschaftslehre. 
No. 452, University of Kiel, Germany, 1997. 

Hartmann, S., A competitive genetic algorithm for resource constrained project scheduling. 
Naval Res. Logist., 1998,45,733-750. 



Evolutionary algorithms applied to project scheduling problems 449 

Hartmann, S., Project scheduling with multiple modes: a genetic algorithm. Ann. Op. Res., 
2001,102,111-136. 

Hartmann, S., A self adapting genetic algorithm for project scheduling under resource 
constraints. Naval Res. Logist., 2002,49,433-448. 

Herbots, J., Herroelen, W. and Leus, R., Experimental investigation of the applicability of ant 
colony optimisation algorithms for project scheduling. Department of Applied 
Economics, K. U. Leuvn, 2004. 

Herroelen, W., de Reyck, B. and Demeulemeester, E., Resource contrained project scheduling: 
a survey of recent developments. Comput. Oper. Res., 1998,25,279-302. 

Herroelen, W., Demeulemeester, E. and de Reyck, B., A note on the paper 'Resource- 
constrained project scheduling: notation, classification, models and methods' by 
Brucker et a!. Euro. J. Op. Res., 2001,128,679-688. 

Hindi, K., Yang, H. and Flezar, K., An evolutionary algorithm for resource constrained 
project scheduling. IEEE Trans. Evol. Comp., 2002,6,512-518. 

Holland, J., Adaptation in Natural and Artificial Systems: An Introductory Analysis with 
Applications to Biology, Control and Artificial Intelligence, 1992 (Massachusetts Institute 
of Technology Press: Cambridge, MA). 

Kochetov, Y. and Stolyar, A., Evolutionary local search with variable neighbourhood for the 
resource constrained project scheduling problem, in The Workshop on Computer Science 
and Information Technology (CSIT), 2003. 

Kolisch, R. and Hartmann, S., Experimental investigation of heuristics for resource 
constrained project scheduling: an update. Euro. J. Oper. Res., 2006,174(1), 23-37. 

Kolisch, R. and Sprecher, A., PSPLIB: A project scheduling problem library. Christian 
Albrechts Universitat zu Kiel, Germany, 1996. Available online at: http: // 
129.187.106.231/psplib/ (accessed November 2004). 

Kolisch, R., Sprecher, A. and Drexl, A., Characterisation and generation of a general 
class of Resource-Constrained project scheduling problems. 1992, Institut fur 
Betriebswirtschaftslehre, Universitat du Kiel. 

Leu, S. and Yang, C., A GA-based multicriteria optimal model for construction scheduling. 
J. Construct. Eng. Manage., 1999,125,420-427. 

Liang, Y., Chen, A., Kao, W. and Chyu, C., An ant colony approach to resource constrained 
project scheduling problems. Department of Industrial Engineering and Management, 
Yuan-Ze University, Taiwan, 2004. 

Mendes, J., Goncalves, J. and Resende, M., A random key based genetic algorithm for the 
resource constrained project scheduling problem. AT&T Labs Research Technical 
Report TD-6DUK2C, 2005. 

Merkte, D., Middendorf, M. and Schmeck, H.. Ant colony optimisation for resource- 
constrained project scheduling. IEEE Trans. Evol. Comp., 2000,6,333-346. 

Mori, M. and Tseng, C., A genetic algorithm for multi-mode resource constrained project 
scheduling problem. Euro. J. Op. Res., 1996,100(1), 134-141. 

Murata, T. and Ishibuchi, If., Performance evaluation of genetic algorithms for flowshop 
scheduling problems, in Proceedings of the First IEEE Conference on Evolutionary 
Computation, 2, pp. 812-817. 

Patterson, J. H., A comparison of exact approaches for solving the multiple constrained 
resource, project scheduling problem. Manage. Sri., 1984,30,584. 

Rogers, J., Ordering design tasks based on coupling strength, in 5th AIAA/NASA/USAF/ 
ISSMO Symposium on Multidisciplinary Analysis and Optimisation, AIAA Paper 
No. 94-4326,1994. 

Rogers, J., Integrating a genetic algorithm into a knowledge-based system for ordering 
complex design process. NASA Langley Research Centre, Ilampton, Virginia, 1996. 

Schrimer, A. and Riesenberg, S., Parameterised heuristics for project scheduling-- biased 
random sampling methods. Christian-Albrechts Universitat, Keil, Germany, 1997. 

Sivrikaya-$erifoglu, F., 1998, A new uniform order-based crossover for concurrent 
consideration of sequencing and selection problems. Working Paper, Abaut Izzet 
Baysal University, Bolu, Turkey. 



450 J. Lancaster and M. Ozbayrak 

Sriprasert, E. and Dawood, N., Genetic algorithms for multi-constraint scheduling: an 
application for the construction industry, Construction Informatics Digital Library. 
Available online at: http: //itc. scix. net/paper w78-2003-34I. content (accessed August 
2005). 

Starkweather, T., McDaniels, S., Mathias, K. and Whitely, C., A comparison of genetic 
sequencing operators, in Proceedings of the 4th International Conference on Genetic 
Algorithms (Morgan Kaufmann: San Mateo, CA) 1991. 

Stewart, D., The design structure system: a method for managing the design of complex 
systems. IEEE Trans. Eng. Manage., 1981,28,71-74. 

Todd, D., Multiple criteria genetic algorithms in engineering design and operation. 
PhD thesis, University of Newcastle, 1997. 

Ulusoy, G., Sivrikaya-$erifoglu, F. and Bilge, U., A genetic algorithm approach to the 
simultaneous scheduling of machines and automated guided vehicles. Comp. Op. Res., 
1997,24,335-351. 

Ulusoy, G., Sivrikaya-$erifoglu, F. and $ahin, $., Four payment models for the multi-mode 
resource constrained project scheduling problem with discounted cash flows. Ann. Op. 
Res., 2001,102,237-261. 

Valenzuela, C. and Jones, A., Evolutionary divide and conquer: a novel genetic algorithm 
approach to the TSP. Evol. Comp., 1993,1,313-333. 

Valls, V., Quintanilla, S. and Ballestin, F., An evolutionary approach to the resource 
constrained project scheduling problem, in 4th 6letaheuristics International Conference. 
Porto, Portugal, 16-20 July 2001. 

Valls, V., Quintanilla, S. and Ballestin, F., A hybrid genetic algorithm for the resource 
constrained project scheduling problem with the peak crossover operator, in 8th 
International Workshop on Project Management and Scheduling, 2002, pp. 368- 371. 

Valls, V. Ballestin, F. and Quintanilla, S., A new crossover operator for the resource 
constrained project scheduling problem, in 611C2003: The Fifth Aletaheuristics 
International Conference, 2003. 

Wall, M., A genetic algorithm for resource-constrained scheduling. PhD thesis, Massachusetts 
Institute of Technology, 1996. 

Whitfield, R., Duffy, A., Coates, G. and Hills, W., Efficient process optimisation. Concur. 
Engi., 2003,11,83-92. 

Zhuang, M. and Yassine, A., Task scheduling of parallel development projects using genetic 
algorithms, in DETC ASb1E 2004 International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference, Salt Lake 
City, Utah, USA, 2004. 



A Fitness Differential Adaptive Parameter Controlled 
Evolutionary Algorithm with Application to the Design 

Structure Matrix 

JOHN LANCASTER* and KAI CHENG 

This paper investigates a methodology for adaptation of the mutation factor within an 

Evolutionary Algorithm by means of measuring the improvement differential between 

successive generations. When no improvement is obtained in an Evolutionary Algorithm 

and it has not located the global optimum, it is an indication that the algorithm may have 

become trapped within a local minimum or maximum. Mutation is a tool within the 

algorithm that is designed to assist in escaping from these local extremes. It is therefore 

the premise of this paper that if the preset value for mutation probability is proving 

insufficient to release the algorithm from entrapment in a local minima or maxima, then 

a temporary increase in this mutation probability may assist in freeing the algorithm and 

therefore increasing its chances of ultimately converging on a global optimum. 

In order to determine when to implement the increase in mutation probability our 

algorithm measures the fitness improvement between successive generations in the 

algorithm. When no improvement is detected for a number of successive generations the 

probability is increased. 

The Design Structure Matrix, a scheduling tool, that has previously been optimized via 

the application of Evolutionary Algorithms has been used as a practical implementation 



of differential adaptation to investigate it's effectiveness in solving real world problems. 

Solutions provided by Todd (1997) are used to benchmark the algorithms effectiveness. 

Keywords: Differential Adaptation, Evolutionary Algorithms, Design Structure Matrix. 
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1. Introduction. 

Within an Evolutionary Algorithm the mutation operator is utilized to generate diversity 

within the algorithms search. This diversity is required to prevent premature convergence 

on local optima (minima or maxima). As can be seen from the diagram below 

Evolutionary Algorithms can easily converge prematurely on these local optima by 

obtaining local improvement. 

5 

4 

3 
Algorithms can 
easily become 
trapped in Local 

Improvement Optima (Minima or 
2 Maxima) 

Impro%ement 

123457ß 

Figure 1. I- Trapping at Local Optima (minimising algorithm). 

Mutation is effected by randomly selecting genes within the chromosomes and changing 

their values, the probability of selecting a chromosome to undergo mutation is normally 

an input variable provided at run time. This mutation probability needs to provide 

sufficient variety to the algorithm to allow the search space to be thoroughly investigated 

for global optima whilst being limited sufficiently to allow the algorithm to converge on 

such optima once these have been detected. These two conflicting requirements need to 
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be carefully balanced in order to ensure optimization takes place. A number of studies 

have been undertaken to determine the optimum probability settings for these variables, 

for various applications, techniques such as Taguchi's design of experiments (DOE) have 

been employed for this purpose. 

Whilst studies into optimizing these variables prior to execution will ultimately improve 

the performance of the algorithm, they do not allow for the dynamic state of the 

algorithm during processing. Ideally the mutation probability needs to adapt its value 

according to it's position in the search space i. e. when trapped in a local optima it should 

increase in order to widen the algorithms search but when not trapped the mutation 

probability should be low enough to allow the algorithm to converge towards a possible 

global optimum. In order to achieve this, the technique described in this paper as `fitness 

differential adaptive parameter control' is employed. 

Previous research which has applied evolutionary algorithms to optimization of the 

Design Structure Matrix is reviewed in section 2. Evolutionary algorithm parameter 

settings in general are discussed in section 3. The structure and functionality of the fitness 

differential adaptive parameter control evolutionary algorithm is then discussed in detail 

in section 4. 

The Design Structure Matrix has been selected as the application for the algorithm due to 

other research being conducted by the authors into the use of evolutionary algorithms for 

schedule optimization. The Design Structure Matrix is described in section 5. 
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The test problems, the tests and the achieved results are discussed in section 5 and 

conclusions are then discussed in section 6. 

2. Review of previous research applying Evolutionary Algorithms to the 
DSM. 

Rogers (1994,1996) implemented a genetic algorithm into NASA's DSM tool 

'DeMAID' (Design managers aid to intelligent decomposition) to optimise the sequence 

of activities in the DSM in order to minimise the impact of iteration, which as stated 

previously requires the DSM to be moved as close as possible to becoming lower- 

triangular. Satisfying this objective has the effect of minimising the overall duration of 

the project (make span) and therefore reduces the overall time dependant cost. DeMAID 

applies duration and cost to the individual tasks but minimization of these two 

characteristics is not used as an optimization objective, they are merely applied to the 

iteration minimal matrix. 

Todd (1997) considered the maximisation of concurrency as well as the minimisation of 

iteration. As Todd details, the maximization of concurrency within the DSM is effected 

by moving as many of the links as close to either the left hand side of the matrix, or 

alternatively to the bottom edge of the matrix. On first consideration this may seem 

compatible with the lower triangularisation required by minimization of iteration and 

indeed the two could be mutually achieved, however the network logic will often deny 

satisfying both objectives and having a high percentage of links aligned with the left edge 

of the matrix may cause the small number of remaining links high into the upper triangle 

obstructing the objective of minimum iteration. Todd's algorithm utilized Enhanced Edge 
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Recombination (EERX) crossover (Starkweather, 1991) in conjunction with 2-city' 

adjacent swap mutation. Todd's experimentation had shown that the EERX crossover had 

proved most successful in combinatorial problems such as the Traveling Salesman 

Problem and he therefore chose to apply this to the DSM. 

Whitfield et al (2003) performed extensive research into the application of various cross 

over and mutation operators to the DSM. They found that Todd had been incorrect to 

assume that an operator, which performs well for one combinatorial problem, is best 

suited for all combinatorial problems. Whitfield et al reported that the combination of 

EERX and 2-point adjacent swap mutation to be among the worst combination of' 

operators and in fact revealed the Independent position crossover (IPX) in conjunction 

with the Shift Operator mutation (SOM) (Murata and Ishibuchi, 1994) to he the best 

combination suited to this application. 

Zhaung and Yassine (2004) utilised a Genetic Algorithm to optimise the RCPSP problem 

using the Dependency Structure Matrix. Zhaung and Yassine applied two crossover 

techniques: 

0 Leu and Yang's (1999) Union Crossover 3 (UX3) operator - this operator performs 

crossover whilst maintaining conformance to precedence relationships. 

" Goldberg's (1989) One-point Crossover Operator. 

1 The `City' terminology is derived from the operator's previous application to the Traveling Salesman 
Problem. 
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Their experimentation yielded very poor results for the UX3 operator compared to the 

one-point operator, they concluded that this is due to the one-point crossover being able 

to maintain larger portions of good schema across generations. 

Another important feature of Zhaung and Yassine's research was the stochastic 

calculation of feedback within the DSM. Probability values were randomly applied to the 

feedback values within the algorithm in order to calculate the likely duration of the 

project. 31 random trials were conducted in order to evaluate the range of possible 

durations. 

The body of existing research in this area is relatively small compared to the work that 

has been conducted in applying evolutionary algorithms to traditional scheduling 

networks. 

3. Parameter Settings. 

A lot of work has been invested in the study of optimal settings for the operating 

parameters for Evolutionary algorithms. Parameter setting can be executed in two main 

modes prior to run and during run. 

Ursem (2003) and Eiben et al (1999) both provide taxonomies for Parameter setting, 

which follow the same basic structure with some minor terminology differences, we 

provide the taxonomy as per Eiben et al (1999) in figure 2.1 below: 
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Figure 3.1 - Taxonomy of Parameter Setting. 

Parameter tuning is concerned with refining the setting parameters prior to run time. The 

parameters remain constant throughout the execution of the algorithm. Many methods 

have been applied to tuning these parameters including Taguchi methods. 'I'hierens 

(2002) demonstrated the use of adaptive mutation control, employing two methods of 

controlling the mutation factor by testing the effects of increased and decreased mutation 

rates and then modifying the mutation probability accordingly. 

Parameter Control is concerned with the modification of parameters during the run time 

of the algorithm there are a number of methods by which this can be achieved: 

" Deterministic. 

" Adaptive. 

" Self-Adaptive. 

These three classifications specify the method by which the algorithm receives 

instruction to alter the value of a parameter. 
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Deterministic control involves the modification of the algorithm according to a pre- 

selected schedule or function, that is, no feedback is received from the values produced 

by the algorithm during its run-time. As this method receives no-feedback it is not able to 

adapt according to the current state of optimization. Our aim is to produce an algorithm 

that detects and escapes from trapping in local optima, so this method will not be 

suitable. 

Adaptive Control is achieved by modifying parameters based on the values yielded by the 

algorithm during its run time. Adaptive control reacts to feedback from the algorithm and 

is the method of control we have selected for the algorithm presented in this paper. 

Self-Adaptive Control is obtained by extending the chromosome by additional genes. 

These genes are evolved during the execution of the algorithm along with the rest of the 

chromosome. Through this method the best settings for parameters can be evolved during 

run time. The nature of this method of control is that of progressive refinement, we aim to 

produce an algorithm that reacts quickly to the trapping and temporarily modifies its 

behavior to suit, so again this method is not suitable to our research. Sewell et al. (2006) 

utilized self-adaptation in their `rank-scaled mutation rate' genetic algorithm. This 

algorithm, applied to the traveling salesman problem, adapted the mutation probability of 

each chromosome dependant on the individual's fitness. Sewell et al. concluded that their 

algorithm performed competitively in problems where many local optima were present. 
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Two further classifications of adaptive parameter control should be discussed here, the 

first is concerned with the source of control, that is which algorithm generated data is 

used to drive the parameter changes. This could be any number of measures; in the 

algorithm presented in this paper we are concerned with preventing premature trapping of 

the algorithm within local optima. A characteristic of such a trapped algorithm is that its 

fitness will not improve whilst it is trapped in the local optimium, therefore for this 

algorithm we have chosen to use a measure of fitness improvement over a number of 

successive generations to be the driving measure. 

Last but not least we need to define what aspect, or parameter of the algorithm is being 

adapted. In order to prevent trapping diversification of search is required, this is most 

effectively achieved via increased mutation rate and therefore mutation rate has been 

identified as the object of adaptation in this algorithm. 

Due to this classification system we have termed the algorithm utilised here a Fitness 

Differential Adaptive Parameter Control Evolutionary Algorithm (FDAPCEA). The 

structure of this algorithm is discussed in the following section. 

4. Fitness Differential Adaptive Parameter Control Evolutionary 

Algorithm (FDAPCEA) for the DSM. 

Fitness Differential adaptation involves monitoring the improvement of the best solution 

from one generation to the next. In this algorithm the mutation factor is modified when 
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the algorithm yields no improvement for a number of consecutive generations. The model 

of the FDAPCEA is otherwise quite typical. The flow diagram is given below: 

Figure 4.1 - The FDAPCEA flow diagram. 



The best fitness for each generation is stored in a vector, after the pth generation, the 

previous p generations fitness values are inspected and compared, if no improvement is 

detected across the p generations, the mutation probability is increased by a factor b. This 

causes a large amount of mutation, increasing the spread of the search. If a better solution 

is found, the best fitness will have increased and the mutation factor will return to 

normal. If no improvement is found the mutation factor will remain at the increased level, 

widening the search again for the following generation. 

This process aids the algorithm to escape from local minima and is employed only when 

the algorithm detects the possibility that it has become, or is likely to become trapped. 

Two variables have been identified in the above discussion; p the number of generations 

for which the algorithm will allow no improvement before applying increased mutation 

and 6 the factor by which the mutation probability is increased after the period p with no 

improvement. For purposes of this discussion, p is termed the differential period and 6 

the differential factor. 

Due to the combinatorial nature of the problem the algorithm uses `real' encoded 

chromosomes, the operators are therefore also of the real encoded type. 

The individual components of the algorithm are further detailed below: 
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4.1 Fitness Measurement. 

As the Fitness measurement is application specific, discussion of this component is 

postponed to section 3 after discussion of the DSM in general. 

4.2 Selection. 

The algorithm uses Roulette selection as described by Goldberg (1989). 

4.3 Crossover. 

Two types of crossover operator have been used in this work; two-point centre crossover 

and independent position crossover. 

4.3.1 Two-point centre crossover. 

In the two-point centre crossover operator (Murata, 1997), two Random points are 

selected on the first parent chromosome. Genes falling inside these two points are 

transferred directly to the child chromosome. The remaining genes from the first parent 

are transferred to the child chromosome in the order they occur in the second parent. This 

is shown diagrammatically below: 

Parent 1 123 4 5 6 7 8 

Parent 2 415 7 2 6 8 

Child 173 4 5 6 2 8 

Figure 4.2 - Two-point centre crossover. 

This process is then repeated working from the second parent to produce it second child. 
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For the solutions to the problems discussed in section 4, the crossover factor was set to 

0.7. 

4.3.2 Independent Position Crossover. 

The second method of crossover employed is Independent position crossover. 't'his 

method of crossover applies a probability of 0.5 to each gene of being transferred directly 

from the first parent to the child. The values that have then not been transferred to the 

child due to this process are then added in the order they occur in the second parent. 

Figure 4.3 below shows this process graphically. 

0.3 0.6 0.2 0.3 0.8 0.2 0.6 0.1 

Parent 1123 4567 8 

Parent 2415 7268 3 

% . rl-ýl Child 421 6587 3 

Figure 4.3 - Independent Position Crossover. 

The first row of figures above the first parent in figure 4.3 are random variables generated 

for each gene in order to determine whether they are eligible for transfer to the child 

chromosome. As can be seen all the values greater than 0.5 have been transferred directly 

to the child (2,5 & 7) the balance of the genes (l, 3,4,6 & 8) have been transferred it) 

the child in the order they occur in the second parent. 
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4.4 Mutation. 

For the solutions to the problems discussed in section 4, the mutation factor was set to 

0.07. 

5. The Design Structure Matrix. 

The Design Structure Matrix (DSM) is a scheduling tool, which caters for iteration 

between tasks. As its name suggests the DSM is formed as a square matrix (number of 

columns equals number of rows) with the task being listed along both the horizontal and 

vertical axis, the task itself being represented by the respective block on the diagonal. 

This diagonal listing of tasks divides the matrix into two triangular portions, the lower 

triangle being used for the mapping of forward feeding task links and the upper triangle 

for backward feeding (iterative) task links. This is shown diagrammatically in the figure 

below: 

DESIGN STRUCTURE MATRIX 

Task Description Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Task 1 1 
Task 2 2 1 
Task 3 3 1 
Task 4 4 1 
Task 5 5 1 
Task 6 6 1 1 1 1 
Task 7 7 1 
Task 8 8 1 1 
Task 9 9 1 
Task 10 10 t 1 1 1 
Task 11 11 t 
Task 12 12 t 1 
Task 13 13 1 1 1 1 
Task 14 14 t 
Task 15 15 

Figure 5.1 - The Design Structure Matrix. 

The larger the iterative loops present in the schedule the greater its duration is likely to he 

and the more assumptions that need to be made during design. It is therefore desirable to 
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optimize the sequence of execution in order to minimize iteration. Within the DSM 

minimizing iteration equates to moving the DSM as close as possible to being lower 

triangular, that is, all the links sitting in the feed forward (lower) portion of the matrix. 

This can be clearly seen as a combinatorial problem, a class of problems that have 

successfully had Evolutionary techniques applied to them (for example the Traveling 

Salesman Problem). Indeed a number of researchers have applied Evolutionary 

algorithms successfully to the DSM as discussed in section 2 above. 

5.1 Fitness Measurement in the DSM. 

As already discussed the objective of this algorithm is to minimize iteration, this is 

characterized by moving the matrix as close as possible to being lower triangular, that is 

the feed back links either need to be within the lower triangle or failing this as close as 

possible to the diagonal. The measure of fitness can therefore be determined by summing 

the distance from the diagonal of all the feedback links i. e. links in the upper triangle. 

The measure of Total fitness is therefore given by: 

w "(xi -y1) 

Letting n be the number of activities in the upper triangle, w be the feedback value (in 

this case always 12) and x and y being the position in the sequence of the predecessor and 

successor respectively i. e. the distance from the diagonal. 

2 This paper is limited to the study of Binary type DSMs. DSMs are also utilized with numerical feedback 
values these being referred to as Numerical DSMs (NDSM). 
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6. Results obtained with FDAPCEA. 

6.1 Standard Problems used for comparison. 

Project scheduling problem (PSP) libraries such as PSPLIB (Kolisch and Sprecher, 

1996), normally utilized for benchmarking of PSP, do not provide problems with iterative 

links; therefore to provide a benchmark for this algorithm the problems considered by 

Todd (1997) are utilized. Todd uses three problems: 

" KUSIAK '91 -A twelve-activity schedule. 

" STEWARD '81 -A twenty-activity schedule. 

" AUSTIN '96 -A fifty-one-activity schedule - In this case the original DSM was not 

provided, Todd therefore sought further improvement of the solution offered by 

Austin. For comparative purposes the same approach has been taken here. 

The original authors offered solutions to each of their respective problems. These 

solutions used methods other than evolutionary techniques. The best values obtained for 

these problems before Todd's (1997) work are given in table 6.1 below: 

Problem Best solution 

KUSIAK `91 7 

STEWARD `81 93 

AUSTIN `96 320 

Table 6.1 - Best non-evolutionary solutions. 
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6.2 Results obtained with the FDAPCEA. 

2 3 11 1 7 6 10 12 9 8 5 4 
2 0 0 0 0 0 0 0 0 0 0 0 0 
3 1 0 01 0 0 0 0 0 0 0 0 0 
11 1 1 01 0 0 0 0 0 0 0 0 0 
1 0 0 01 0 0 0 0 0 0 0 0 0 
7 1 0 11 0, 0 0 0 0 0 0 0 0 
6 1 0 0 0 0 0 0 1 0 0 0 0 
10 1 1 1 0 0 1 0 1 0 0 01 0 
12 0 0 1 1 0 0 1 0 1 0 0 0 
9 0 1 0 0 0 1 1 0 0 0 
8 0 0 1 1 0 0 0 i 0 0 
5 0 0 1 0 0 1 0 o 

l 

o 1 0 0 
4 1 0 0 0 1 0 0 1 0 

Total Fitness (Iteration) =6 

Figure 6.1 - Resultant DSM (KUSIAK '91). 

The algorithm yielded a number of different solutions with a total fitness of 6. Figure 6? 

below shows that the solution is typically arrived out without any significant periods 

being `trapped' in local minima. The best solution to this DSM yielded by Todd was also 

6 

36 - 

30 

25 
0 

2O 
ö 
I- 

15 

lo 

Figure 6.2 - Algorithm improvement over successive generations (KUSIAK '91). 
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2 19 5 16 6 7 8 18 9 11 10 17 3 4 1 14 20 15 12 13 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
19 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1. 0 0 0 0 0 
6 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 
17 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 1 

- 
0 0 0 0 0 0 0 0 

1 0 0 0 10 1 0 0 01 0 0 1 1 1 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 
13 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

Total Fitness (Iteration) = 24 

Figure 6.3 - Resultant DSM (STEWARD '81). 

Figure 6.4 below shows a typical improvement curve achieved for this problem, is shows 

that after generation 20 there exist a number of plateaus in the improvement graph where 

the algorithm is potentially `trapped' for a number of generations before finding further 

improvement, for the run shown in figure 6.4 below the differential adaptation factor was 

set to 4 generations, the plateaus in the improvement graph below appear to be typically 

around 4 generations in length or greater indicating that the sudden increase in mutation 

rate could be responsible for a number of these stepped improvements. 

The best solution produced by the algorithm for this DSM was a total fitness of 24; this 

result is also equal to the best result reported by Todd. 
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Y- 

Figure 6.4 - Algorithm improvement over successive generations (STEWARD '81). 

The resultant DSM for the problem of AUSTIN '96 is given below in figure 6.5. 
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Figure 6.5 - Resultant DSM (AUSTIN '96). 
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The result produce for the AUSTIN '96 DSM was a total fitness (iteration) of 157 an 

improvement of I over Todd's single objective algorithm result of 158. 

The Improvement graph for the algorithm for this solution is shown below in figure 6.6. 

1400 

1200 

1000 

800 

I-- 

400 

200 

oL J 0 50 100 150 200 250 300 350 400 450 500 
Genordmm 

Figure 6.6 - Algorithm improvement over successive generations (AUSTIN '96). 

The improvement curve shows that constant improvement has been achieved right to the 

last 25 generations. It should be noted that a function of the algorithm is that the 

differential adaptation is not applied during the last 10% of the generations on each run, 

in order to allow convergence. In this run the differential adaptation would therefore have 

cut out at generation 450. 
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The effectiveness of the FDAPCEA compared with the original results and the results of 

Todd (1997) as shown below in Table 6.2. 

Problem Original Solution Todd (1997) FDAPCEA 

KUSIAK'91 7 6 6 

STEWARD `81 93 24 24 

AUSTIN `96 320 158* 157 

*Todd later found a solution of 156 using a Multi-objective algorithm. 

Table 6.2 - Comparative Results of Best Solutions to DSM problems. 

6.3 Discussion of the Results. 

The results shown in section 6.2 have shown that the FDAPCEA is able to produce 

results at least as good as those reported to date, using only simple genetic operators. The 

sample improvement curves show that the algorithm is consistently able to release itself 

from flat spots in the improvement curve. 

7. Conclusions. 

This paper has demonstrated the application of dynamic parameter control based on the 

differential improvement in fitness between successive generations. It has shown in 

general that this technique used in conjunction with basic genetic operators can provide 

optimization of the DSM to at least the currently best-known solutions. 
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7.1 Applicability of Evolutionary Algorithms to the solution of the DSM. 

The work by Todd (1997) as well as the work presented in this paper has clearly 

demonstrated the suitability of evolutionary algorithms to the solution of the DSM. 

Evolutionary Algorithms have shown in both these works to produce results better than 

those produced by other non-Evolutionary methods. 

7.2 Effectiveness of the FDAPCEA. 

The FDAPCEA has demonstrated its effectiveness here by being able to equal best- 

known solutions to the benchmark problems, without becoming trapped in local optima. 

The algorithm has thus also shown its suitability to the DSM type scheduling problems. 

8.0 Further Research and Potential Applications 

In order to increase the practical applicability of this research it is intended to extend the 

application of this algorithm to the precedence network PSP. The algorithm has shown its 

suitability to this type of problem and the authors believe there is practical application of 

this technique to real world project scheduling problems. 

In the current form the solution to the Design Structure Matrix can be utilised to improve 

the design process minimising iteration due to the interaction between various disciplines 

and information sources. 
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Abstract 

Much research has been invested in the optimisation of the Resource Constrained Project Scheduling Problem 
(RCPSP) using genetic algorithms. Reviews of this work can be found in Lancaster and Ozbayrak [II and Kolisch 
and Hartmann [2]. This research however doesn't extend to the solution of real world RCPSP. As part of ongoing 
research the authors describe a practical implementation of genetic algorithm optimisation within a commercial 
scheduling package applied to simple real world problems. The paper will show the effectiveness of genetic 
algorithms when applied to real world RCPSP. 

Section 1 provides an introduction to genetic algorithms applied to the RCPSP, section 2 outlines the algorithm that 
has been implemented and the development process undertaken, section 3 gives a description of the problem that has 
been utilised, section 4 provides results and finally section 5 concludes and makes recommendations for further 
research. 

Keywords: Genetic Algorithms, RCPSP, Scheduling 

1. Introduction 

The Resource Constrained Project Scheduling 
Problem (RCPSP) is concerned with finding the 
schedule which can be executed, whilst conforming to 
both precedence relations and resource limitations, 
within the minimum time frame. This problem is 
combinatorial in nature and is well known to be NP- 
Hard. These attributes make the problem very suitable 
to optimisation, or near-optimisation, using genetic 
algorithm methods. 

The majority of literature focuses on the 
application of genetic algorithms (GA) to academic 
problems, most frequently to the PSPLIB set of 

problems developed by Kolisch [3). Using these 
academic problems is of great value in order to 
benchmark various configurations of genetic 
algorithms in order to focus research and identify 
positive development trends. 

In this paper, a GA-based approach is presented to 
scheduling resource constrained projects from real 
world. It is the authors' intent to implement their 
previously developed RCPSP genetic algorithm within 
a commercially available scheduling software package 
in order to further investigate the practical benefits to 
real world projects. 



2. Genetic algorithm based approach 

The proposed GA approach is based on the theory 
of the survival of the fittest and was originally 
developed by Holland [4]. Applied to the RCPSP the 
GA solution requires the initial generation of a random 
population of 'chromosomes'. Each chromosome 
contains a random permutation of the schedule 
activities. 

The algorithm then determines the fitness of each 
chromosome by decoding the random sequence of 
activities into a precedence and resource feasible 

schedule. The fitness of each schedule then being 

calculated based on the overall duration of the schedule 

produced. Standard genetic algorithm operators; 
selection, crossover and mutation are then applied to 
produce increasingly fitter and fitter populations. 

Our algorithm was initially developed within 
MATLAB. A flow chart showing the algorithm 
structure is given in Figure 1. The unique feature of our 
algorithm is the adaptive parameter control, in that we 
control the mutation factor (probability of applying 
mutation) dependant upon the fitness improvement that 
the algorithm has achieved over the last four 
generations. Each component of the algorithm is 
described in the subsequent sub-sections. 

We first applied this algorithm to the solution of 
scheduling problems using the Design Structure Matrix 
(see Lancaster [51 and Lancaster and Cheng (6 ]), where 
the results equalled the best known solutions to 
problems previously studied by Todd [7]. A RCPSP 
fitness function was then developed and the problem 
tested on a number of the PSPLIB test problems, where 
the algorithm was again able to equal best known 
solutions. 

2.1. Chromosome representation 

Due to the combinatorial nature of the RCPSP the 
representation used in the GA is real as opposed to 
binary. This implies that each chromosome in the 
population is in fact a permutation of the list of 
schedule tasks, this permutation being known as an 
Activity List. The length of the chromosome will 
therefore be equal to the number of activities in the 
schedule. 

2.2. Fitness 

The fitness of the RCPSP is measured by the 
achieved duration of the schedule. The lower the 
duration - the higher the fitness, therefore the fitness is 
equal to the duration of the schedule in days. Two main 
methods of Schedule Generation are normally 
employed, namely serial or parallel schedule 
generation. This algorithm employs serial schedule 
generation which has proved tobe the most prolifically 
utilised scheme in current research. 

2.3. Selection 

The algorithm utilises roulette selection. The 
analogy of the roulette wheel in this selection method 
utilises this same mechanism only with each 

Fig. I. Algorithm flow chart 



chromosome receiving a portion of the wheel sized in 
relation to its fitness. The algorithm then performs a 
function, which equates to the spinning of the wheel, 
the probability of selecting a chromosome for transfer 
to the temporary population is then in proportion to its 
fitness. 

The probability, Pr, of each chromosome, i, being 
selected is calculated, where f is the fitness measure, 
(see Eq. 1). 

I, 
f 

2.4 Crossover 

The crossover method employed is independent 

position crossover (IPX, see Murata and Ishibuchi [81). 
In this crossover method members of the Parentl 

chromosome are selected randomly for transference 
directly to the Childl, the balance of members of 
Parentl are then used to populate the remaining 
positions in Childl in the order that they occur in 
Parent2 (see Figure 2). 

03 06 02 03 08 02 06 01 

Parent 112345678 

Parent 2 14 1572683 

Child 14 2165873 

Fig. 2. Independent position crossover 

The same process is then used to form Child2 only 
this time selecting members for direct transfer from 
Parent2. 

2.5 Mutation 

The algorithm utilises 2 point adjacent swap 
mutation from Murata and Ishibuchi [81. This mutation 
is further controlled via adaptive parameter setting, see 
section 2.7 below. 

2.6 Elitism 

Due to the use of Crossover and Mutation 

operators the minimum fitness solution can sometimes 
fail to be transferred to subsequent generations. Elitism 
maintains the best to date solution by filling a 
predetermined portion of the population with the fittest 

solution. For solution of this problem 25% Elitism was 
selected. 

7.7 Parameter control 

As discussed in 2.5 mutation is utilised within the 
algorithm to prevent premature convergence upon a 
local minima. The authors' research has found that 
there is benefit to having the mutation factor set low 
when the algorithm is converging to a minima but then 
increasing the factor when no improvement is 
acknowledged for a number of successive generations. 

Controlling the settings of parameters in this 
nature is known as adaptive parameter control. i. e. 
utilising information generated by the algorithm to 
modify its future behaviour. A full taxonomy of 
parameter setting can be found in t: iben ei al. (9( 

Hartmann [ I01 used a self adaptive GA where self- 
adaption was used to control the algorithms choice of 
schedule generation scheme (serial or parallel) but this 
type of adaptive parameter control has not been utilised 
in a GA solution to the RCPSP to date. 

2.8 Implementation within Microsoft Project 

In order to implement this algorithm within 
Microsoft Project, the algorithm originally developed 
in MATLAB was converted into Visual Basic tor 
Applications (VBA). The User interface to the 
application from within Microsoft Project is shown in 
Figure 3 below. 
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Fig. 3. Application user interface 

The parameter settings, population size and the 
number of generations are all set via this interface. 

The current limitations to this implementation 
include that it currently doesn't allow for project 
calendars, due to this the problem examined was set up 
using a seven day calendar. 

As shown in Figure 3 the following parameters 
were utilised during the pinning of the algorithm: 

Population Size 50 
Crossover Rate 0.7 
Mutation Rate 0.07 
No. of Generations 20 
Percentage Elitism 0.25 (25%) 



3. Applied problem 

The example problem is a project schedule for the 

construction of a tank farm. This project network 
consists of one hundred and eighty activities loaded 

with one of three labour resources dependant upon the 
discipline of the activity. Each of these resources is 
limited to a ceiling value of a predetermined number of 
man hours per day. All resources considered in this 

problem are renewable. The resources and the limits 

applied to them are given in Table l below. 

Table I- Resource limits 

RESOURCE CONSTRAINTS 
Discipline Mrs 

Civil 250 
Struct 200 
Mech 1000 

The tank farm consists of eight tanks with 
interconnecting pipe rack and pumps and includes the 
construction of foundations as well as structural and 
mechanical erection. No preferential logic has been 
applied between the construction of the individual 
tanks. Due to the lack of preferential logic the 
construction of the individual tanks can be scheduled 
independently in order to facilitate the optimisation 
within resource limits. Prior to optimisation the 
resource distribution is as shown in Figure 4 below. 
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Fig. 4. Resource distribution prior to optimisation 

4. Results and discussions 

The improvement curve shown in Figure 5 below 
shows the optimisation of the total duration against the 
resource constraints. Continual improvement is noted 
on the Minimum Fitness from Generation to 
Generation. The diversity introduced into the algorithm 
through the mutation adaptation is clear from the 
changes in the Average Fitness curve. The Average 
Fitness follows the Minimum fitness for the first 4 
generations and then as the improvement of the 

algorithm slows down the average fitness increases as 
the algorithm widens its search due to the adaptive 
increase in mutation rate. Finally the Average fitness 

converges back toward the minimum. 
The initial conformance to resource constraints 

had the effect of prolonging the schedule by two 
months; however the optimisation has then managed to 
reduce this prolongation by 8 days (from 380d to 372d) 
as the improvement curve in Figure 5 shows. 

Improvement Curve 
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Fig. 5. Improvement curve 

The success of the algorithm in maintaining the 
resource limits can be seen from the resource 
distribution curve shown in Figure 6. 

R. 0urc. DIolbutlon 

1200 

  r.. n 
Im 

" C" 

pp   wun 

Wp 

2 . 0p 
0 l ißt . Fig. 6. Resource distribution post optimisation 

Each of the resource limits has been tightly 
maintained by the algorithm. For the mechanical 
resource the lower resource level during the month of 
April is due to some activities not being eligible für 
scheduling due to their precedence dependence on the 
civil activities. The low mechanical resource usage 
toward the end is due to the low mechanical loading 
during the relatively long hydro testing activities, 
which are the penultimate activities for each tank. 
Apart from these anomalies it can be seen that the 



algorithm has made maximum use of all available 
resource capacity. 

5. Conclusions and future research. 

The research presented here has demonstrated the 
applicability of GA optimisation to real world RCPSP. 
This extends the functionality of existing commercial 
software beyond the existing resource levelling 
capabilities to find the optimal project duration within 
the imposed resource constraints. 

Notable limitations of this implementation include 
the fact that resources are being levelled to a uniform 
distribution which is often not the practical 
requirement; a refinement would allow optimisation 
against profiled resource limits. 

Our on-going research will investigate applying 
the GA presented in this paper to practical versions of 
the RCPSP that impose further optimisation goals onto 
the problem. We intend to handle these problems both 

using objective aggregation (weighting of objectives 
to produce a single fitness index, see Bentley and 
Wakefield [11]), as well as multi-objective Pareto 

approaches, developing Time-Cost trade-offs as well as 
solutions to more specialised Resource Constrained 
problems. 
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Abstract. Globalisation in large engineering, procurement and construction companies has lead in 
many cases to the establishment of a number of global centres for activities such as process design, 
detail design, procurement and fabrication. A company with a number of such resources then faces the 
problem of maintaining a high percentage utilisation in each of these resource locations, multiple 
projects need to be processed through each of these offices and which project is handled by which 
office is generally more reliant on available capacity than geography, particularly in the case of 
engineering centres. 

This paper considers this problem as an extension of the well studied Resource Constrained Project 
Scheduling Problem (RCPSP) and utilises a modified form of our existing genetic algorithm to optimise 
the utilisation of multiple resource locations when scheduling multiple projects. 

The unique aspect of this genetic algorithm implementation is its use of stochastic resource assignments 
to simulate the assignment of certain of the project activities to different global facilities. The stochastic 
resource assignment is processed as an extension to the main chromosome and is therefore optimised 
along with the scheduling sequence. 

Introduction 

The Resource Constrained Project Scheduling Problem (RCPSP) is a well studied academic problem 
that has been shown to be well suited to optimisation via genetic algorithms. Lancaster and Ozbayrak [1] 
and Kolisch and Hartmann [2] provide detailed history of the work conducted in this area to date. 

A special case of the RCPSP occurs when one considers a company with multiple sites or office 
locations that can process certain activities fora number of projects. Each of the offices will be aiming at 
a high resource utilisation, but the more projects and the more suitable locations that can be considered 
the more complex the problem of optimising the project assignments. 

This paper considers the optimisation of this problem utilising genetic algorithms, the main objective 
of this research is to prove the applicability of using stochastic resource assignments to solving this type 
of problem. The core algorithm is based on our genetic algorithm solution to the RCPSP presented in 
Lancaster and Cheng [4] with and extension to cater for the optimisation of stochastically assigned 
resources. 

Section 2 details the problem being considered in further detail. Section 3 of this paper discusses the 
structure of the genetic algorithm. Section 4 provides the results of the application of the algorithm to 
the problem and finally section 5 provides our conclusions and direction of future research. 



The Multiple Facility Resource Levelling Problem. 

As a test problem we will consider an organisation concerned with the Engineering, Procurement and 
Construction of ten projects. The engineering of these projects can be conducted in any of the 

company's three engineering facilities worldwide. Each of the engineering facilities has a limitation on 
the number of man-hours per day that it has available for any given time period. Table 1 below gives the 

resource limitations at each of the locations. 

Resource Limits 

Resource Limit 
En Loci 200 
Eng_Loc2 250 
Eng_Loc3 400 

Table 1 

For the testing of this algorithm the 10 projects are included in an integrated schedule. Each of the 

projects is represented for this exercise only at high level i. e. One activity each for the major project 
phases: Engineering, Procurement, Fabrication, Construction and Commissioning as well as a final 
Project Completion Activity. The ten Engineering activities will be the activities subject to stochastic 
resource assignment, we will not consider resource assignments for the other activities for the purpose of 
this exercise. In the initial state the Projects are all scheduled to start immediately with no consideration 
for resource constraints. The objective of the problem will then be to find a feasible resource assignment 
solution that will maintain the imposed resource constraints and further to find the minimum duration 

solution under these resource constraints. The initial state resource curves are shown below for the three 

resources can be seen below in figure 1. Initially the resources have been arbitrarily assigned to provide 
a starting point for the algorithm 
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Figure 1- Initial Resource Assignments 
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It can be seen that the available engineering offices could not process the projects to this schedule. 

The Genetic Algorithm. 

The Genetic Algorithm used in the optimisation of this problem is based on the Fitness differential 
Adaptive Genetic Algorithm previously described in Lancaster and Cheng [4,6]. In order to cater for the 
novelty of this specific problem the algorithm was modified in the following manner: 

The Chromosome was extended in order to hold the resource assignments for each of the activities 
identified for stochastic resource assignment. In this way the resource assignments are optimised along 
with the activity sequence. In order to deal with the extension specific crossover and mutation operators 
had to be developed that would retain the validity of the chromosomes after the genetic operations have 
been performed. Figure 2 below shows the structure of the extended chromosome where n is the number 
of activities in the schedule and p is the number of activities that have been identified for stochastic 
resource assignment. 

f Random Permutation º 1- Extension 

1234 n-3 n-2 n-I n12 P1 D 

2 114 13 12 6 27 43122 

Figure 2- Chromosome extension. 

For this specific problem n= 60 and p= 10 as there is one Engineering activity for each project. 

Fitness Function. No novelty is required in the fitness function the minimisation of duration is the 
measure of fitness whilst adhering to the resource limitations. A Serial Schedule Generation Scheme 
is employed to convert the sequence permutations into feasible schedules. 

Selection Operator. The algorithm utilises roulette selection. The analogy of the roulette wheel in this 
selection method utilises this same mechanism only with each chromosome receiving a portion of the 
wheel sized in relation to its fitness. The algorithm then performs a function, which equates to the 
spinning of the wheel, the probability of selecting a chromosome for transfer to the temporary 
population is then in proportion to its fitness. 

The probability, Pr, of each chromosome being calculated, where f is the fitness measure, (see Eq. 
1). 

Pr =f Pop 

f 

(1) 

Crossover Operator. The crossover in the chromosome is performed using the independent position 
crossover (IPX, Murata and Ishibuchi [8]) operation on the activity sequence portion of the chromosome 
and then applying a single point crossover on the chromosome extension. 

Two different operators are used due to the differing nature of the data in the two parts of the 



chromosome. The main chromosome is a permutation of the activities and therefore the integrity of this 
permutation needs to be maintained, that is each activity must be represented and also must only be 
present once. The chromosome extension is not a permutation. 

In the IPX method, members of the Parent! chromosome are selected randomly for transference 
directly to the Childl, the balance of members of Parentl are then used to populate the remaining 
positions in ChildI in the order that they occur in Parent2. The single point crossover simply chooses a 
random point in the chromosome extension and takes the alleles to the left of this point from one parent 
and the alleles to the right from the other. Figure 3 below illustrates this methodology. 

4- Random Permutation 10 4- Extension 0 

0.2 0.7 0.4 0.6 0.9 0.3 0.1 0.6 

12 14 13 12 6 27 431_22 

14 11 27 18 21 12 3 24 121 213 

From Parent II From Parent 2 

14 14 13 12 21 24 43113 

IPX Crossover Single Point Crossover 

Figure 3- Dual Crossover Operator 

Mutation Operator. Mutation is also performed as two separate operations; for the main chromosome 
the 2 Point adjacent swap mutation (Murata and Ishibuchi [8]) is applied. For the Chromosome 

extension a simple random allele change is performed. An allele is selected at random and then a random 
value choosen from the valid range for that allele, this is similar to the simple `bit-flip' mutation used in 
binary representation. 

See Section 3.6 for details of the parameter control utilised to modify the mutation rate. 

Elitism. Due to the use of Crossover and Mutation operators the minimum fitness solution can 
sometimes fail to be transferred to subsequent generations. Elitism maintains the best to date solution by 
filling a predetermined portion of the population with the fittest solution. For solution of this problem 
25% Elitism was selected- 

Parameter Control. Mutation is utilised within the algorithm to prevent premature convergence upon a 
local minima. The authors' previous research [6] has found that there is benefit to having the mutation 
factor set low when the algorithm is converging to a minima but then increasing the factor when no 
improvement is acknowledged for a number of successive generations. 

Controlling the settings of parameters in this nature is known as adaptive parameter control. i. e. 
utilising information generated by the algorithm to modify its future behaviour. A full taxonomy of 
parameter setting can be found in Eiben et al. [9] this is also discussed in Lancaster and Cheng [6]. 

Hartmann [10] used a self-adaptive GA where self-adaption was used to control the algorithms 
choice of schedule generation scheme (serial or parallel) but this type of adaptive parameter control has 



not been utilised in a GA solution to the RCPSP to date. 
In the optimisation runs the following settings were used for the run of the algorithms: 

Population Size: 50 
Crossover Rate: 0.7 
Mutate Rate: 0.07 
No. of Generations: 20 
Elitism: 25% 

Development Platform. As an extension of our previously designed algorithm, this algorithm has been 
developed within Microsoft project using Visual Basic for Applications. This algorithm was previously 
discussed in Lancaster and Cheng [4]. The algorithm parameters being entered via a custom user 
interface as shown below in Figure 4. 

project Data: Problem TYPE: GENETIC 
AýiaiITf'ý'i 

Mmbv d TaO.: 20 Problem: RcFSV w[n 
stochwx 

ResarcY 

OPTIMISATION 
Amber of Re-cm: s 

A 
AJgeRhn Settings: Output Data: ttý 

N 

't 
Papi"- Sue: wmmRness(q: 

V w ý 

trussover Rate: 

tS[atlon Rate: 0.07 
Mohan FRness (2): - loivi Lancaster 

Averepe FRrrsa (2): - 
PhD Research 

Nmbe, of Gmieratians: 
I _- School of 

Patentage Elitism: 0.25 
Engkteerhg and 

Desim ORUWL UNMRSITY 

Atgorlth0 Progress: 
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Ga[ Roýect Dde 

0% Rin Alord. -> 

Figure 4- Microsoft Project User Interface 

The Visual Basic for applications code generated for the standard RCPSP was significantly modified 
to cater for this specific problem type. 

Results. 

The improvement made during the search for the optimal results to the problem being considered can be 
seen below in figure 5. This curve shows improvement to the optimal found solution within four 
generations. 

Due to the built in adaptively of the algorithm, it can be seen that the search is widened in 

generation nine after four generations with no improvement to the best solution. In this case this 
increased diversity can still produce no further improvement to the algorithm. 
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Figure 5- Improvement Curve 

The Average fitness then converges toward the minimum fitness curve. Figure 6 shows the resource 
levelling results obtained from the optimisation. The three resources can be seen to closely adhere to the 
imposed limits. It can be seen that the available resources at each of the companies facilities are being 

effectively utilised 
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Figure 6- Resulting Resource Loading 

Conclusions. 

This algorithm has met the objectives of testing the benefits of using a genetic algorithm with stochastic 
resource assignments to solve this special case of the RCPSP. 

Our algorithm has successfully allocated resources to the indicated activities in order to provide a 
solution within the specified resource constraints and at the same time conducted duration minimisation. 



The algorithm has provided a unique utilisation of extensions to the traditional RCPSP chromosome 
as well as adapting existing crossover and mutation techniques to suit this additional data. 

As a direction for future research we intend to use a similar extended chromosome structure to 
investigate the use of Stochastic Logic application to solve other variations on the RCPSP problem. 
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Abstract: In the construction of tank farms there is a requirement for the tanks to be hydro- 
tested in order to verify that they are leak proof as well as proving the lack of differential settle- 
ment in the foundations. The tanks will be required to be filled to a predetermined level and 
then to maintain this loaded state for a certain period of time before being drained. In areas 
such as the Middle East, water for hydrotesting is not freely available as sea water is often not 
suitable for this purpose, so fresh water needs to be produced or transported to the construc- 
tion site for this purpose. It is therefore of major benefit to the project to schedule the hydro- 
testing of the tanks in such a manner as to minimize the utilization of hydrotest water. 

This problem is a special case of the resource-constrained project scheduling problem (RCPSP) 
and in this research the fitness differential adaptive genetic algorithm previously developed by 
the authors has been modified to enable the solution of this real world problem. The algorithm 
has been ported from the original MATLAB code into Microsoft Project using Microsoft Visual 
Basic for Applications in order to provide a more user friendly, practical interface. 

Keywords: genetic algorithm, resource-constrained project scheduling problem (RCPSP), 
project scheduling 

1 INTRODUCTION 

This paper aims to provide a solution to a special case 
of the well-studied resource-constrained project sche- 
duling problem (RCPSP) utilizing a genetic algorithm 
approach. Overviews of previous research in this area 
can be found in both Lancaster and Ozbayrak [11 
and Kolisch and Hartmann [2]. The unique case 
considered in this paper is that the determination of 
certain preferential logic links will be considered as 
part of the optimization process. Certain activities 
are identified that may be considered for the applica- 
tion of preferential logic and a stochastic process is 
used to apply this logic. This additional logic is then 
stored as an extension to the normal genetic algorithm 
chromosome and is therefore refined as part of the 
optimization process. The problem of hydrotesting a 
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Emirates. emaik JohnLancaster@HillintLcom 

number of tanks in the construction of a storage tank 
farm is considered for application of this technique, 
as this type of preferential logic is required in order 
to ascertain the sequence in which the hydrotest water 
will be transferred from tank to tank. 

Oil refineries and import terminals normally 
require the construction of large tank storage farms. 
These farms comprise a large number of tanks of 
differing volumes and designs. One normal require- 
ment on the construction of all of the tanks is that 
they be tested by partial filling with water in order 
to test for leakage and differential settlement in the 
foundations. Large volumes of water arc required 
for the testing of these tanks and in order to reduce 
the total quantity employed, water is transferred from 
one tank to another, but with many differing capacities 
planning the sequence is complex. as to maintain a 
certain quantity of water within the system the total 
volume of tankage under hydrotesting at any one time 
will need to be approximately consistent. The object- 
ive of this optimization problem is to identify the 
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4- Random Permutation º 

1234 177 178 179 180 
2 45 13 1168134 1178 152 

Activites with Stochastic Unks 

17 34 51 68 85 102 119 138 
1171851 68 34 

Fig. 1 Chromosome extension 

sequence with the minimum duration that will utilize 
no more than the total available volume of water. 

This optimization becomes particularly important 
in and areas such as the Middle East where water 
is at a premium. Sea water is often not suitable for 
this testing purpose and therefore fresh water will 
often need to be produced or transported to the con- 
struction site for this purpose at a large expense. 

The current paper is structured as follows: section 2 
looks at the additional requirements for optimiz- 
ing this problem over those of the standard RCPSP; 
section 3 discusses the structure of the current algo- 
rithm; section 4 outlines the test problem utilized to 
test the effectiveness of the algorithm; section 5 dis- 
cusses the results and finally section 6 presents con- 
clusions and suggestions for future research. 

2 THE HYDROTESTING PROBLEM 

On first consideration it would seem that the pro- 
blem described would be a simple implementation 
of the RCPSP; the water used in hydrotesting can be 
modelled as a renewable or non-renewable resource 
depending on the approach adopted, and perform- 
ing a levelling of this resource within certain limits, 
while minimizing the duration, would be a typical 
RCPSP problem and would indeed to a certain point 
provide optimization of this problem. However, the 
vital component that would be missing when opti- 
mizing this problem in the manner just described 
is that it would not provide, as output, a routing, or 
logical sequence in which water is transferred from 
one tank to another. 

In order to include this additional requirement 
into the model, stochastic logic has been adopted 
into the problem. Items in the schedule to be con- 
sidered for stochastic logic are marked prior to the 
optimization run. As part of the processing of each 
potential schedule, logical relationships are formed 
randomly between the marked activities. This sto- 
chastic logic is then considered along with the exist- 
ing deterministic logic during the normal processing 
of the population of schedules. 

3 THE GENETIC ALGORITHM 

The main construction of this present algorithm is 
based on that presented in Lancaster and Cheng [3], 

which uses adaptation based on the fitness differ- 
ential between successive generations to modify the 
mutation factor. The stochastic logic has been mod- 
elled as an extension to the existing chromosome, 
providing a position in the chromosome for each of 
the activities identified for stochastic logic. 

Figure 1 shows the extension of the chromosome. 
In the test problem a 180-activity schedule is utilized 
with 8 activities selected for stochastic logic relation- 
ships. The random permutation portion of the chro- 
mosome shown in Fig. 1 holds the sequencing of all 
180 activities. The extension portion shown to the 
right holds 8 additional alleles (the term for a single 
position within the chromosome) to map the ran- 
domly generated logic. The actual values contained 
in these 8 positions refer to the stochastic successor 
of that particular activity. This randomly generated 
logic is used during the schedule generation along 
with existing deterministic logic to produce the feasi- 
ble schedule. 

One consideration that needs to be made is that by 
purely applying random logic generation it is neces- 
sary to avoid the creation of logic loops that would 
prevent the formation of a feasible schedule. The 
present algorithm performs loop checking utilizing a 
depth first recursive cycle check in order to first iden- 
tify loops where they exist and then to select a logic 
link to remove in order to break the loop. 

The utilization of an extension of this nature to 
the normal permutation portion requires specialized 
cross-over and mutation operators that are capable 
of allowing for this functional division of the chromo- 
some into two portions, performing their operations 
on the two portions separately. In order to cater for 
this a composite cross-over operator was developed. 
This cross-over operator consists of two compon- 
ents; the first component is a standard independent 
cross-over operator (IPX (41), which is applied to the 
traditional part of the chromosome, i. e. the alleles 
containing the permutation of the activities or the 
'activity list'. The second component, a two-point 
cross-over is utilized on the chromosome extension. 
This cross-over operator Is illustrated in Fig. 2. 

In addition to the specialized cross-over operator 
a complimentary mutation operator has also been 
designed. This mutation operator also comprises 
two components. The first component applied to 
the main chromosome is a two-point adjacent swap 
mutation operator (Murata and lshibuchi (3)) and 
the second component is simply a single-bit random 
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4---- Random Permutation º f- E)dension -º 

02 07 04 06 09 03 01 06 

Parent 12 114 13 
________ 

12 6 27 631 
________ 

22 

Parent2 14 1 27 18 -___----- 21 12 3 24 22........ 13 

Point 1 Point 2 
II 

1 -1 3 12 21 24 63212 Child 14 14 1 

IPX Crossover two-Point Crossover 

Fig. 2 Extended cross-over operator 

change operator which is applied to the chromosome 
extension. This second mutation operator selects 
an allele from the chromosome extension at random 
and then changes its value to a randomly selected 
member of the set of activities identified for stochas- 
tic logic application. 

Once the cross-over and mutation have been per- 
formed, a cycle checking algorithm is employed to 
ensure that loops have not been introduced to the 
network via the function of the genetic operators. 
This algorithm will also break any detected loops to 
ensure a feasible network remains. The loops are 
only broken by removing links that have been sto- 
chastically assigned; hence the integrity of the origi- 
nal network is always maintained. 

In order to communicate the logic into the algo- 
rithm an adjacency matrix is utilized. The logic links 
contained in the adjacency matrix are considered in 
two sets: the first set is the deterministic logic links 
which remain constant for the entire optimization; 
the second set is the stochastic logic which will 
change for each chromosome considered. To manage 
this within the algorithm a copy of the deterministic 
adjacency matrix is made prior to applying the serial 
schedule generation scheme. The stochastic logic 
for the chromosome being considered is added to 
the deterministic logic and the schedule generation 
algorithm is then run. Figure 3 shows a sample of 
the adjacency matrix with the addition of stochastic 
logic carried out at the processing of each chromo- 
some; the example only shows activities from the first 
tank with the hydrotest of activity of the second tank, 
a stochastic link between these hydrotests has been 
indicated. 

The authors' original fitness differential adaptive 
genetic algorithm [3] has been adapted for this 
problem and has been rewritten from the original 
MATLAB code into Visual Basic for Applications 
(VBA) within Microsoft Project in order to provide a 

1li"US9Sf 1S 11 14 lJ 

Fig. 3 Adjacency matrix addition 

better platform for practical implementation of this 
algorithm. 

4 THE TEST PROBLEM 

The test problem being utilized as an example for 
this problem is a 180-activity schedule representing 
the construction of an 8-tank tank farm. From these 
activities the 8 hydrotesting activities (1 for each 
tank) have been selected for stochastic logic assign- 
ment. The application of stochastic logic to this pro- 
blem can result in between 1 and 8 transfer paths 
for the hydrotest water, 8 separate paths if no logic 
is applied, and 1 path if a continuous sequence is 
formed with logic being applied to all of the stochas- 
tic logic activities. 

It is the aim of this problem to utilize the app- 
lication of preferential logic in order to maintain 
the desired level of resource utilization while also 
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determining a suitable logic path from the hydrotest 

of one tank to that of another. The target maximum 
resource utilization is 140000 units of water, for the 
purpose of this problem the resource levels of other 
activities are ignored. 

In the typical RCPSP, activities are scheduled at 
their first precedence and resource feasible time. In 
this problem only precedence feasibility is consid- 
ered and the variation in preferential logic is utilized 
to provide the vehicle for optimization. The fitness 
function of the problem has been altered so that the 
algorithm will aim at minimizing the resource utiliza- 
tion. When a utilization is obtained that falls below 
the desired limit, a reward factor is applied to the fit- 

ness measure of that solution. Using this philosophy 
a logic sequence will be produced that will maintain 
the desired resource level. In this specific problem 
this will produce a transfer path for the hydrotest 

water from tank to tank that will minimize the total 
water usage. 

5 RESULTS 

The solution provided by the algorithm produces 
the Gantt chart and resource histogram that are 
shown in Fig. 4. The logical path for the hydrofest 

water through the 8 tanks can be seen from Fig. 4. 

Activity 34 which requires 2353000 units of water 
is predecessor to activity 68 also requiring 2 353 000 
units and this sequence continues through activity 
51 and 17. A similar chain is formed hetween the 
four larger tanks requiring 33601100 units. flit 
two paths that the algorithm has . elected are: 
34-68-51 17 and 136 I i) 85 102. Eilure "1 also shows 
that the prescribed resource limits have been tno by 
the problem with the peak resource usage being 
1,10 000 units. 

6 CONCLUSIONS ANI) 1)IRI? (; TIONS 
FOR Fll'1'l1KF. RE? SEARCII 

This paper has de'scriheel a genetic alguºritlºnº O1ºtiºººi 
ration of a project scheduling l)rultlenº that utilizes 
preferential logic optimization in order tºi ºnee"t 
resource requirements. A practical (problem has 
peen elescril)ecl in order to l)nºVielee evaluation öl the 
effectiveness of' he solution and the al o lithºn has 
successfully provided the clesireel results. 

A specific problem faced by stochastically apply- 
ing preferential logic was described the formation 
of cycles within the network and the solution 
employed within the algurithºn fur solving this issue 
was also discussed. This method of Optimization is it 
parallel of the often used manual process of resource 
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Optimization of the hydrotesting sequence in tank farm construction 5 

levelling. By applying logic to selected activities it 
ensures that resources are levelled in a manner that 
will provide an executable schedule. Further work 
can be conducted in combining this technique with 
the standard RCPSP and also through multi-objective 
optimization where duration and resource minimiza- 
tion are considered. 
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Abstract: 

Project schedules represent a model for the execution of a project, activities are 
loaded with resources and the planner will attempt to provide a sequence of execution 
that meets both the required end date and the desired utilization of resources. Due to 
the complexity of this problem using only commercially available tools it is not 
possible for the planner to ensure he has arrived at an optimal or even near optimal 
solution. 

In this paper we present our recent research into the application of Genetic 
Algorithms to the optimization of project schedules. We describe the general structure 
of the genetic algorithm as well as the unique aspects of our algorithm and also 
review the problems to which we have successfully applied the algorithm. The aim of 
this paper is to provide an insight into the possibilities for optimization of project 
schedules with genetic algorithm methods. 

We conclude the paper with a discussion of future possible directions of research and 
our beliefs in the abilityfor this methodology to be applied to real world problems. 

Key Words: Genetic Algorithm, RCPSP, Project Scheduling 
*To whom correspondence should be addressed. 

1. Introduction 

A project generally requires the completion of a number of tasks or activities. 
Completing each of these activities will require the application of certain resources, 
the categories of which are discussed further below. Due to the complexity of many 
projects there are often many possible sequences that the tasks can be executed in 
each different sequence may represent different execution methodologies or may be a 
more subtle reconfiguration. Re-sequencing a set of activities can result in a different 
completion time for the project and/or a different profile of resource usage. 
Companies involved with project management will normally be under pressure, either 
internally or from external client to execute the project as quick as possible, however 
the shortest possible execution time for a project may not be supported by availability 
of resources, or may not produce an acceptable capital expenditure. 



Companies therefore aim to formulate a project execution methodology that will 
maintain the desired or enforced resource constraints whilst still producing an 
acceptable completion date. However, as mentioned above many modern projects 
consist of many hundreds or even thousands of activities and the number of possible 
execution configurations becomes huge, even when taking hard logic requirements 
into account. 

There is therefore, a need within project management, for methods by which optimal 
or near optimal solutions can be readily deduced it is a fundamental objective of this 
research to illustrate that optimisation by genetic algorithm will in fact provide such a 
method. An overview of work that has been performed in this field can be found in 
Lancaster and Ozbayrak [1] and Kolisch and Hartmann [2]. 

2. Genetic Algorithm 

Genetic Algorithms are methods by which optimisation problems are solved through 
the application of techniques, which derive their functionality from the Darwin - 
Wallace principle of the survival of the fittest. This technique was first developed by 
John Holland in his book "Adaptation in Natural and Artificial Systems: An 
Introductory Analysis with Application to Biology, Control and Artificial 
Intelligence" [3], which provides an excellent introduction to genetic algorithm 
theory. 

These algorithms work with populations of possible solutions to the given problem, 
encoded into binary or real strings known as chromosomes. The chromosome is made 
up of a series of genes, each gene representing a variable in the problem. 

The population of chromosomes is evaluated using a fitness function; if the required 
end conditions are not met by the initial population then a selection of the highest 
fitness chromosomes is made. These chromosomes are then paired and the pair used 
to produce child chromosomes using a genetic crossover operator. In this way the 
population is evolved through a series of generations until a convergence is reached 
upon an optimal, or in the case of a multi-objective evolutionary algorithm a series of 
optimal solutions. The process of breeding the higher fitness chromosomes to produce 
even fitter children can cause premature convergence. In order to counteract this, a 
random mutation operator is used in order to stimulate exploration of the full search 
space. 

These algorithms have consistently been found to be suitable to solving highly 
complex, combinatorial problems, and due to this are highly applicable to solving 
project scheduling problems. 

A flow chart showing the operation of our algorithm is presented in figure 2.1 below. 
This is largely typical of genetic algorithm operation with the exception of the 
adaptive mechanism. Our algorithm measures the best found solution over a series of 
successive generations and when it finds no improvement for a number of generations 
it modifies some of its operating parameters in order to widen the search. Due to this 
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the algorithm is termed the fitness differential adaptive parameter controlled genetic 
algorithm (FDAPCGA). 

This paper provides an overview of our research and further detail can be found in 
Lancaster and Cheng [4,5 & 61. 

Figure 2.1 - The FDAPCGA flow diagram. 

Each of the features of the algorithm is now discussed in further detail: 

2.1. Initial Population Generation 

Due to the combinatorial nature of the project scheduling problem the representation 
used in the GA is real as opposed to binary. This implies that each chromosome in the 
population is in fact a permutation of the list of schedule tasks, the length of the 
chromosome will therefore be equal to the number of activities in the schedule. 

2.2. Fitness 



The fitness of the RCPSP is measured by the achieved duration of the schedule. The 
lower the duration - the higher the fitness, therefore the fitness is equal to the duration 
of the schedule in days. Two main methods of Schedule Generation are normally 
employed, namely serial or parallel schedule generation. This algorithm employs 
serial schedule generation which has proved to be the most prolifically utilised 
scheme in current research. 

2.3. Selection 

The algorithm utilises roulette selection. The analogy of the roulette wheel in this 
selection method utilises this same mechanism only with each chromosome receiving 
a portion of the wheel sized in relation to its fitness. The algorithm then performs a 
function, which equates to the spinning of the wheel, the probability of selecting a 
chromosome for transfer to the temporary population is then in proportion to its 
fitness. 

The probability, Pr, of each chromosome, i, being selected is calculated, where f is 
the fitness measure, (see Eq. 1). 

Pr=P, 
f 

. 
fi 

2.4 Crossover 

(/. /) 

The crossover method employed is independent position crossover (IPX, see Murata 
and Ishibuchi [81). In this crossover method members of the Parentl chromosome are 
selected randomly for transference directly to the Child 1, the balance of members of 
Parentl are then used to populate the remaining positions in Childl in the order that 
they occur in Parent2 (see Figure 2). 

0.3 0.6 0.2 0.3 0.8 0.2 0.6 0.1 
Parent 11 23 4567 8 

Parent 24 15 7268 3 

\, . r// Child 4 21 6587 3 

Figure 2.2 - Independent position crossover. 

The same process is then used to form Child2 only this time selecting members for 
direct transfer from Parent2. 

2.5 Mutation 
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The algorithm utilises 2 point adjacent swap mutation from Murata and Ishibuchi [8]. 
This mutation is further controlled via adaptive parameter setting, see section 2.7 
below. 

2.6 Elitism 

Due to the use of Crossover and Mutation operators the minimum fitness solution can 
sometimes fail to be transferred to subsequent generations. Elitism maintains the best 
to date solution by filling a predetermined portion of the population with the fittest 
solution. For solution of this problem 25% Elitism was selected. 

2.7 Parameter control 

As discussed in 2.5 mutation is utilised within the algorithm to prevent premature 
convergence upon a local minima. The authors' research has found that there is 
benefit to having the mutation factor set low when the algorithm is converging to a 
minima but then increasing the factor when no improvement is acknowledged for a 
number of successive generations. 

Controlling the settings of parameters in this nature is known as adaptive parameter 
control. i. e. utilising information generated by the algorithm to modify its future 
behaviour. 

Hartmann [8] used a self-adaptive GA where self-adaption was used to control the 
algorithms choice of schedule generation scheme (serial or parallel) but there is no 
evidence of adaptation being applied to scheduling problems as we have incorporated 
here. 

3. Implementation 

Our algorithm was initially developed within MATLAB where a series of academic 
project scheduling problems were utilized to test the effectiveness of the algorithm. 
The series of problems used for testing was PSPLIB [9]. 

In order to make the algorithm more applicable to real world scheduling problems the 
algorithm was ported into Microsoft Project 2003 using VBA. The user interface for 
the algorithm is shown below in figure 3.1. 
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Figure 3.1 - Microsoft Project VBA user interface. 

The user interface provides feedback on the current schedule number of activities and 
resources and allows settings of the algorithm run parameters and problem type. 

4. Problems considered and results 

Three specific problem types were considered utilizing a CPM base method: 

" The standard resource constrained project scheduling problem (RCPSP), 

which aims to produce the shortest possible schedule whilst maintaining the 
resource limits. Multiple resources were utilized in the problem. 

"A variation of the RCPSP in which selected activities can be executed using 
one of a number of different resources. The resources are initially randomly 
applied and the algorithm then selects the best distribution of resources in 

order to achieve the shortest duration schedule. 
"A further variation of the basic problem. In this variant preferential logic is 

applied to selected activities by the algorithm, this logic is refined as part of 
the optimization process in order to maintain resource levels and provide 
optimal logic paths through the network. 

Each of these problems and sample results are shown below: 
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4.1 Standard RCPSP 

A sample problem comprising 180 activities was utilised. Three different resources 
were loaded on the activities each with a limit that must be adhered to. The aim of the 
standard RCPSP optimisation is to provide the shortest schedule whilst maintaining 
the given resource limits. The applied resource limits are provided below in table 4.1. 

Table 4.1 - Resource Limits 

RESOURCE CONSTRAINTS 
Discipline Mrs 

Civil 250 
Struct 200 

Mech 1000 

The resource histogram prior to optimisation is given below in figure 4.2 with the 

optimised histogram being given in figure 4.3. 

Figure 4.1 - Histogram prior to optimisation. 

Figure 4.2 - Histogram after optimisation. 
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It can be seen from figure 4.2 that all three resource limits have been closely adhered 
to. The schedule has extended in duration from the input state, but this is not purely 
resource levelling, many iterations of resource conforming schedules were considered 
by the algorithm before arriving at this minimum duration option. 

4.2 RCPSP with Stochastic Resources 

In some cases in scheduling problems there are a number of possible resources that 
can be brought to bear to execute a given task. Each of these resources will have a 
finite limit so optimising the utilisation of these resources whilst aiming to execute a 
project within a minimum time span complicates the RCPSP even further. 

To solve this problem variant an extension was provided to the main chromosome in 
order to contain the resource allocations. By encoding the resource allocations within 
the chromosome they will be optimised along with the main schedule sequence. 

Modifying the chromosome also requires modification of the genetic operators, in this 
case the crossover and mutation a performed in two steps first the main chromosome 
using operators that will maintain the integrity of the permutation within the main 
chromosome, and more simple operators for the non-permutation type information 
contained within the chromosome extension. 

The test problem considered here was for a company who has a number of 
engineering centres through which they can process the engineering phase of a 
number of projects. Each office has a fixed resource limitation but any office can 
process any project. The schedule represents 10 projects at high level with a total of 
60 activities. 

The limits applied for each office are given below in Table 4.2. 

Table 4.2 - Engineering Resource Limits 

Resource Limit 
En Locl 200 
En Loc2 250 
Eng_Loc3 400 

The histogram for the problem before the optimisation is given in figure 4.3 and that 
after the optimisation is given in figure 4.4 below. 
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Figure 4.3 - Engineering Histogram prior to optimization 
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Figure 4.4 - Engineering Histogram after optimization 

It can be seen that the algorithm has successfully and closely adhered to the limits for 

each of the engineering centres. 

4.3 Stochastically applied preferential logic 

Resource levelling routines within currently available software applications are often 
not easy to utilise practically as they are difficult to control and can often provide less 
than optimal sequences of activities in their quest to maintain resource limits. 

In practice planners often resort to applying preferential logic in order to level 

resources. This implies that `resource paths' are hard wired into the logic rather than 
relying on resource limits to push activities into areas of high resource availability. 
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The previous two versions of the RCPSP considered above do not account for this 
possibility. In many schedules there are a number of possible areas where preferential 
logic could be applied in various different combinations. We modified the existing 
FDAPCGA in order that it would make an initial stochastic assignment of preferential 
logic links to a number of identified tasks. 

This required the use of an extension to the chromosome in order to contain the 
preferential logic assignments. In this way the logic links are refined as part of the 
optimisation process. 

As a test case for this variant of the algorithm we used the hydro-testing of the eight 
tanks as a test problem, with a limitation of 140,000 units of water to perform all the 
hydro-tests. The eight tanks are in two groups, each tank in a group has the same 
dimensions and therefore volume. The eight hydro-testing activities were flagged for 

preferential logic application. The outcome of the optimisation is given below in 
figure 4.5. 

Trt Na. Dur` Staat Fosh Slag 
Jf 

34 TK102 - MyMO/est 42 dya Sat 0Y11107 Sat 15/12/07 If 

136 7804 - Hydrotest 48 days Meal Sun30/12107 If 
12/11107 

65 TK104 - Mydrobst 42 days Moo Mon 28/01! 08 r 
17/12/07 

119 TK203 - Hydratest 48 days Tue 01001108 Mon 10/02/08 

8S TK201 - Hydr~ 48 days Wed Tue 18103/18 
3010108 

51 TK103 - Hydrotest 42 drys Wed Wed 02N1/08 r 
20102/08 

102 TK202 - Nydiuhst 48 drys Thu 20/ 308 Wed 07/05/08 

17 TKIOI - Mydrobdt 42 days Fri 04 0W8 Fri 16/05108 

t44 000- 

t2 000- 
�i 000 - 

waef I 96000- 
owafte. ba 

p 90 000 - 
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-W . F(i. 7N. MSl 

Y46M 2.767. wq 

WON 3ýMANI 
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Figure 4.5 - Optimisation using preferential logic. 

Two paths were generated through the schedule, activities 34,68,51 & 17 formed one 
path and 136,119,85 & 102 the second. The algorithm has formed the sequences of 
water transference so that in each case the tanks in a chain are all of the same size, 
which would be desirable as it would prevent water being brought in and out of the 
system which would increase the overall usage. 

It can be seen from the resource histogram that the resource limit of 140,0(X) units has 
been maintained by the algorithm. 
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This problem is a relatively simple application but indicates the possibilities of 
introducing preferential logic into the optimisation process. 

5. Conclusions and future research 
We have shown that genetic algorithms can be applied successfully to a range of 
project scheduling problems, producing results that adhere to the problem 
requirements. We have described the unique aspects of our algorithm as well as 
applying this algorithm to variants of the RCPSP not currently found in the literature. 

To date most of the work involving application of genetic algorithms to project 
scheduling has been in the academic domain, we believe that the above example 
indicates that there are benefits from application of genetic algorithms to real world 
project scheduling problems. 

Further development of this algorithm would include a multi-objective version to 
produce the full time-cost trade-off curve for a given project and combining the three 
problem variants presented here into a single optimization run. 
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Genetic algorithm based resource optimisation in project 

scheduling problems using preferential logic 
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Abstract: 

Resource levelling algorithms are normally concerned with re-sequencing activities 

within the logic constraints in order to maintain prescribed resource limitations. The well 

studied resource constrained project scheduling problem extends this to require 

minimization of the overall duration in addition. In practice planners often utilize 

preferential logic to assist with resource levelling as it allows more control than the 

resource levelling algorithms that commercial software provides. 

In this algorithm we extend our previously developed Fitness Differential Adaptive 

Parameter controlled genetic algorithm (FDAPCGA) to allow for preferential logic to be 

stochastically introduced to selected activities and optimized as part of the overall 

optimization process. We discuss the complications that arise from this process and the 

techniques we have employed to overcome them. We review the capability of the 

algorithm by reviewing the application to two case study problems. 
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1. Introduction 

Within Project Schedules preferential logic is sometimes used to formulate paths and 

precedence relationships in the network that are not pure dependencies, but are often used 

to `hard code' resource paths into the network. This type of logic is often used when 

scheduling key resources within a network. For example a contractor may have a large 

crane that maybe the only crane available that is suitable for a series of heavy lifts. The 

Contractor may plan the sequence of operation for the crane by using preferential logic to 

link the heavy lift activities in a manner that supports the general path of construction. 

Often there are many possible combinations of preferential logic that can be applied to a 

project network, each combination will produce a different outcome regarding the overall 

duration of the schedule. In this paper we consider the use of stochastically applied 

preferential logic within the optimization process, as a method for levelling resources 

within the schedule. 

Many planners are familiar with using preferential logic to effect resource levelling as 

this is often a more controlled method than allowing the resource heuristics built into 

commercial software to make the decisions on activities priorities. Although different 

methods of prioritising the assignment of resources are normally available it is normally a 

very hit and miss affair and if only pure logic is present it can be very difficult to produce 

a workable result. We propose a genetic algorithm approach for optimising resource 

usage using preferential logic. 

A large amount of research has been invested into the application of optimising the 

resource constrained project scheduling problem (RCPSP) using Genetic Algorithm 
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methods. Lancaster and Ozbayrak (2007-1) and Kolisch and Hartmann (2005) provide 

detailed reviews of the work conducted in this area to date. 

2. Genetic Algorithm Structure 

In previous papers, Lancaster and Cheng (2007-2 & 3), we have described the operation 

of our fitness differential adaptive parameter controlled GA (FDAPCGA). The main 

feature of this algorithm is that it adjusts the mutation factor based on the amount of 

improvement detected in the previous few generations. Hartman (2002) utilised Self- 

Adaptation to select the schedule generation schedule being used by the algorithm. Self 

adaptation refines a variable, such as the schedule scheme to be used, within the 

algorithm in order to optimise this variable for the specific problem being considered. In 

our algorithm we use adaptation in a different way changing a variable based on the 

conditions prevalent at a particular time during the algorithm run. Eiben et al (1999) 

provide an excellent taxonomy of adaptation in Genetic Algorithms which details the 

differences further. We are not aware of another project scheduling genetic algorithm that 

utilises adaptation. Further modifications need to be made to the algorithm in order to 

accommodate the inclusion of the preferential logic into the optimisation process. These 

modifications are described further below. 

2.1 Chromosome Structure 

In order for the preferential logic to be optimised as part of the general optimisation 

process, we have modelled the stochastic logic as an extension to the existing 
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chromosome. Each of the activities flagged for preferential logic has a position in the 

chromosome extension. 

4 Random Permutation 10 

1234 177 178 179 180 

12 45 13 168134 1178 152 

Activites with Stochastic Links 

17 34 51 68 85 102 119 136 
1171851 68 34 

Figure 1- Chromosome Extension 

Figure 1 shows the extension of the chromosome. In the test problem a 180 activity 

schedule is utilised with 8 activities selected for stochastic logic relationships. The 

Random permutation portion of the chromosome as shown in Figure 1 holds the 

sequencing of all 180 activities. The extension portion shown to the right holds eight 

additional alleles to map the randomly generated logic. The actual values contained in 

these 8 positions refer to the stochastic successor of that particular activity. For example 

in Figure 1 activity 34 would be a predecessor of activity 17. This randomly generated 

logic is used during the schedule generation along with existing deterministic logic to 

produce the feasible schedule. 

One consideration that needs to be made is that by purely applying random logic 

generation we need to avoid the creation of logic loops which would prevent the 

formation of a feasible schedule. Our algorithm performs loop checking after the 

generation of the stochastic logic, correcting this where it occurs and thereby ensures the 

generation of a feasible schedule, this is explained later in the paper. 
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The utilization of an extension of this nature to the normal permutation portion requires 

specialized cross-over and mutation operators that are capable of allowing for this 

functional division of the chromosome into two portions performing their operations on 

the two portions separately. 

2.2 Crossover Operator 

To cater to this we have developed a composite crossover operator. This crossover 

operator consists of two components; the first component is a standard independent 

crossover operator (IPX, Murata and Ishibuchi, 1994) which is applied to the traditional 

part of the chromosome i. e. the alleles containing the permutation of the activities or the 

`activity list'. IPX crossover has been selected for this portion of the chromosome as the 

IPX crossover operator will maintain the integrity of the permutation held in the main 

body of the chromosome. The second component is a two-point crossover is utilised on 

the chromosome extension. This crossover operator is illustrated below in Figure 2. 

4 Random Permutation 10 4 Extension 10 

0.2 0.7 0.4 0.6 0.9 0.3 0.1 0.6 

Parent 12 114 13 12 6 27 631................ 22 

............... ................ Parent 241 127 18 21 12 3 124 2213 

Point 1 Point 2 

Child 14 114 113 12 21 24 63212 

IPX Crossover Two-Point Crossover 
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Figure 2- Extended Crossover Operator. 

Two-point crossover can be employed on the chromosome extension as this portion is not 

a permutation. 

2.3 Mutation Operator 

In addition to the composite crossover operator we have also designed a complimentary 

mutation operator. This mutation operator also comprises two components. The first 

component applied to the main chromosome is a two point adjacent swap mutation 

operator (Murata and Ishibuchi, 1994) again due to the fact that two point adjacent swap 

mutation will maintain the integrity of the permutation. The second component is simply 

a single bit random change operator which is applied to the chromosome extension. This 

second mutation operator selects an allele from the chromosome extension at random and 

then changes its value to a randomly selected member of the set of activities identified for 

stochastic logic application. 

2.4 Cycle Checking Algorithm 

Once the crossover and mutation have been performed, a cycle checking algorithm is 

employed to ensure that loops have not been introduced to the network via the function of 

the genetic operators. This algorithm will also break any detected loops to ensure a 

feasible network remains. The loops are only broken by removing links that have been 

stochastically assigned; hence the integrity of the original network is always maintained. 

The cycle checking algorithm utilises the adjacency matrix to identify these cycles. 
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The logic links contained in the adjacency matrix are considered in two sets; firstly the 

deterministic logic links which remain constant for the entire optimization, the second set 

is the stochastic logic which will change for each chromosome considered. To manage 

this within the algorithm a copy of the deterministic adjacency matrix is made prior to 

applying the serial schedule generation scheme. The stochastic logic for the chromosome 

being considered is added to the deterministic logic and the schedule generation 

algorithm is then run. Figure 3 below shows a sample of the adjacency matrix with the 

addition of stochastic logic carried out at the processing of each chromosome the 

example only shows addition of a single preferential logic assignment linking activity 34 

to activity 17. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

123456789 10 11 12 13 14 15 16 17 ... 34 ... 180 

34 

180 

Figure 3- Adjacency Matrix Addition 
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As these links an added through it stochastic process we have no guarantee that the 

placement of this additional logic will not create cycles or loops within the network. 

Cycles (feedback logic) cannot be handled by critical path method or precedence network 

calculations, only by the Design Structure Matrix. If cyclic logic is introduced we 

therefore need to be able to detect this and break these links prior to performing 

scheduling operations. In this algorithm we employ a recursive depth first search 

algorithm to examine the network after addition of the additional logic. 

A Recursive Depth First Search (DFS) is it technique used to explore all the paths 

running through it directed graph. I)FS is utilised within this algorithm to run through 

each path in the network and examine each of these paths for cycles. 

Depth first search starts from a given node in the network and follows the outgoing logic 

from the node. Where it branch exists the algorithm follows one of' the branches and 

continues until it reaches the final node in the path, that is, it node with no outgoing logic. 

Once such it node is reached the algorithm backs up to the last branch detected and then 

pursues the path on the alternative, or one of the alternative branches. Consider file 

adjacency matrix given in Figure 4 below: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

123456789 10 
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Figure 4- Sample Adjacency Matrix. 

This adjacency matrix consists of ten activities with feed forward only logic, that is no 

cycles exist. It can be seen that branches lead out of nodes 2,4 & 5. The depth first search 

that would result starting from node I would be as shown in Figure 5 below. The order of 

the search is given here by the number given against the link arrow. 

17 

Figure 5- The DFS search order. 
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From Figure 5 the algorithms search behaviour surrounding branches can be clearly seen. 

As stated previously a recursive algorithm has been utilised to implement this DFS. 

Recursion indicates that a sub-routine that makes call, or calls, to itself. 

A Visual Basic for Applications (VBA) implementation of the recursive DFS algorithm 

within Microsoft Excel was utilised to test and illustrate the operation of this algorithm. 

The code for the main sub-routine is given below: 

Sub DFS(v) 
If vMatrix(v, v) =9 Then 

Sheetl. Cells(v, v) _ "c" 
LoopList(v) = "c" 

Else 

vMatrix(v, v) =9 
For d=1 To MatrixSize 

If vMatrix(v, d) =1 Then 
DFS (d) 

End If 
Next d 
'vMatrix = AdjMatrix 

End If 
End Sub 

In this code AdjMatrix is a square matrix variable with dimension MatrixSize x 

MatrixSize. vMatrix is a variable with the same dimensions as AdjMatrix that is set equal 

to AdjMatrix prior to the first call to DFS(v). LoopList is a vector with dimension 

MatrixSize in which activities incorporated in a loop are marked with a V. 

Consider Figure 6 below in which two feedback logic links have been introduced to the 

matrix given previously in Figure 4. The loops are also shown in Figure 7 in terms of the 

depth first search process. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

123456789 10 

Figure 6- Adjacency Matrix with Feedback Logic. 

17 

6 

7 

8 

9 

Figure 7- The DFS Tree showing the feedback logic. 
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In this Microsoft Excel implementation, the recording of nodes that formed part of a 

cycle will simply be marked in the matrix by the character `c' instead of recording them 

in the LoopList vector and the cycles are broken by removing the "I's" causing the 

feedback. The result from running the algorithm is as shown below in Figure 8: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

123456789 10 

Figure 8- Adjacency Matrix with cycles broken. 

It can be seen that the feedback loops have been successfully removed from the matrix, 

and the nodes included in the cycle have clearly been indicated with a V. This test code 

was then ported into the Microsoft Project VBA based algorithm utilising exactly the 

same operation. 

3. Example Problems 

In order to illustrate the functionality of this algorithm two sample projects are utilized in 

Microsoft Project. The first project comprises 22 activities and represents a high level 

schedule for the construction of 5 storage tanks of varying dimensions, including the civil 

(foundation only) and mechanical (Tank Structure) construction in simplified form. The 
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schedule was loaded with two resources a civil labour resource and a mechanical labour 

resource. The algorithm allows an input to determine which resource is the target of 

optimization as shown below in Figure 9 the button in the `Opt. ' column indicates the 

selected resource. 

Figure 9- Resource Setup within Microsoft Project. 

As can be seen from Figure 9 the goal of the optimization is to level the civil resource 

below the limit of 250 units. Due to the way Microsoft Project handles labour type 

resources, it was decided to use the material type resource to model the labour as man- 

hours, rather than using the standard % type assignment used for labour resource. 

Figure 10 below shows a filter of the schedule, giving only the civil activities, prior to the 

optimization showing that the resource level greatly exceeded the imposed limitations. 
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Figure II- Civil Activities after the optimization run 

Here we consider a second project, a tank farm consists of eight tanks that need hydro- 

testing with a limited quantity of water. The algorithm needs to produce a path of water 

transfer between the tanks that will be executable within the preset limitation. The preset 
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limit in the case of this project is 140,000 units of water. The resource selected for 

optimization is water, which has been determined in the same manner as that shown in 

Figure 9. 

In the typical RCPSP activities are scheduled at their first precedence and resource 

feasible time. In this problem we only consider precedence feasibility and utilise the 

variation in preferential logic to provide the vehicle for optimisation. The fitness function 

of the problem has been altered so that the algorithm will aim at minimising the resource 

utilisation, when an utilisation is obtained that falls below the desired limit a reward 

factor is applied to the fitness measure of that solution, in the case of this problem a 

factor of 2 was utilised. 

Using this philosophy a logic sequence will be produced that will maintain the desired 

resource level. In this specific problem this will produce a transfer path for the hydro-test 

water from tank to tank that will minimise the total water usage. Figure 12 below shows 

the result produced by the algorithm. 

Two distinct transfer paths are produced; one path transferring water from on tank to 

another in the group of larger tanks and the other passing water from one tank to another 

in the group of smaller tanks. The two sequences of activities that the algorithm has 

therefore produced are: 

34-68-51 - 17 

136-119-85-102 

15 



This would logically be the most effective method of transferring water efficiency. The 

optimised schedule is given below in Figure 12. 
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Figure 12 - Optimisation of Hydrotesting Problem. 

4. Conclusions 

We have demonstrated a methodology, incorporated within and adaptive genetic 

algorithm, by which, preferential logic is applied stochastically at run time and then 

refined as part of the optimization process. We have discussed the potential issue of 

introducing cycles during this process and have described the methodology we have 

utilized to overcome this. The algorithm has been demonstrated using two different test 

problems which have both been successfully optimized. 

Further research could investigate integrating this approach within other forms of RCPSP 

to provide a more controllable, flexible optimization process. 
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