
PROJECT SCHEDULE OPTIMISATION UTILISING
GENETIC ALGORITHMS

A thesis submitted for the degree of Doctor of Philosophy

by

F

John Lancaster

Department of Engineering and Design, Brunel University

December 2007

Abstract
This thesis extends the body of research into the application of Genetic Algorithms to the

Project Scheduling Problem (PSP). A thorough literature review is conducted in this area

as well as in the application of other similar meta-heuristics. The review extends previous

similar reviews to include PSP utilizing the Design Structure Matrix (DSM), as well as

incorporating recent developments.

There is a need within industry for optimisation algorithms that can assist in the

identification of optimal schedules when presented with a network that can present a

number of possible alternatives. The optimisation requirement may be subtle only

performing slight resource levelling or more profound by selecting an optimal mode of

execution for a number of activities or evaluating a number of alternative strategies.

This research proposes a unique, efficient algorithm using adaptation based on the fitness

improvement over successive generations. The algorithm is tested initially using a

MATLAB based implementation to solve instances of the travelling salesman problem

(TSP). The algorithm is then further developed both within MATLAB and Microsoft

Project Visual Basic to optimise both known versions of the Resource Constrained

Project Scheduling Problems as well as investigating newly defined variants of the

problem class.

11

Acknowledgements

I would like to acknowledge Professor Kai Cheng for his continual support and

encouragement in completion of this thesis and the research that has lead up to its

completion. His excellent guidance, advice, feedback and encouragement has been

fundamental to the completion of this project.

I would also like to thank Dr. Mustafa Ozbayrak for his mentorship at the beginning of

this course of study and for giving me such a great direction in refining the topic

selection.

Both the companies I have been employed with during the time I have been working on

this research have aided me greatly through accommodating travel to meet with Professor

Cheng and Dr. Ozbayrak and to attend conferences, such as the recent e-Engdet 2007

held in Harbin, China. I am grateful to both CB&I and Hill International for their support.

Last, but by no means least, I would like to thank my wife, Dorothy, for putting up with

me having my head continuously buried in my computer for the past four years and for

giving me her support for this endeavour that has taken such a large amount of my time,

and my parents for their continuous support and encouragement throughout my career.

John Lancaster
December 2007

111

Abbreviations
ACO Ant Colony Optimisation

ACT Activity Control Time

AL Activity List Schedule Representation

CPM Critical Path Method

DeMAID Design Managers Aid for Intelligent Decomposition

DFS Depth First Search

DSM Design Structure Matrix (alt. Dependency Structure Matrix)

EERX Enhanced Edge Recombination Crossover

EM Electromagnetism

ETI Equal Time Intervals

FDAPCGA Fitness Differential Adaptive Parameter Controlled Genetic
Algorithm

GA Genetic Algorithm

IPX Independent Position Crossover

JIT Just In Time

LFT Latest Finish Time

US Left Justified Schedule

LSP Lump Sum Payment

LST Latest Start Time

Micro-GA Micro Genetic Algorithm

MOMGA Multi-Objective Messy Genetic Algorithm

MRCPSP Multi-Mode Resource Constrained Project Scheduling Scheme.

nLFT Normalised Latest Finish Time

iv

nLST Normalised Latest Start Time

NPV Net Present Value

NSGA II Non-dominated Sorting Genetic Algorithm 2

PAE Payment at Events

PAES Pareto Archived Evolution Strategy

PERT Programme Evaluation and Review Technique

PESA Pareto Envelope Based Selection Algorithm

PESA II Pareto Envelope Based Selection Algorithm 2

PP Progress Payments

PSO Particle Swarm Optimisation

PSP Project Scheduling Problem

PSPLIB Project Scheduling Problem Library

PSS Parallel Schedule Generation Scheme

RCPSP Resource Constrained Project Scheduling Problem

RCPSPDCF Resource Constrained Project scheduling Problem with Discounted
Cash Flows

RCPSP/II Resource Constrained Project Scheduling Problem with Partially
renewable resources

RJS Right Justified Schedule

RK Random Key Schedule Representation

SGS Schedule Generation Scheme

SOM Shift Operator Mutation

SPEA Strength Pareto Evolutionary Algorithm

SSS Serial Schedule Generation Scheme

V

SWO Sum of Weighted Objectives

SWR Sum of Weighted Rankings

SWGR Sum of Weighted Global Ranking

TCTP Time-Cost Trade-off Problem

TSP Travelling Salesman Problem

VBA Microsoft Visual Basic for Applications

VEGA Vector Enhanced Genetic Algorithm

WAR Weighted Average Ranking

WMR Weighted Maximum Ranking

vi

Nomenclature

An Set of Active Activities

Chromosome A vector storing data for a single solution within a population

Dn Set of Activities Eligible for Scheduling

Fn Set of Finished Activities

Gene A single data item within a chromosome

Set of Activities

Set of Resources

k, Individual Resource

ýjl Quantity of Resource r required by activity ý

M , Modes available for activity

'pi Set of Predecessor Activities

Resource Limit

M, � Quantity of Resource r remaining at time t stage n

S� Set of Scheduled Activities

VII

List of Publications arising from this Research
(Full Copies of these papers are provided in Final form in Appendix G)

Journal Papers:
LANCASTER J and CHENG K, 2008, Genetic Algorithm Optimisation in Project

Scheduling Problems using Preferential Logic, Submitted to the International

Journal of Production Research.

LANCASTER J and CHENG K, 2008, Optimisation of the Hydro-testing Sequence in

Tank Farm Construction using an Adaptive Genetic Algorithm with Stochastic Logic,

Accepted for publication by the Journal of Engineering Manufacture - Short

Communications in Manufacture and Design.

LANCASTER J and CHENG K, 2007, A Fitness Differential Adaptive Parameter

controlled Evolutionary Algorithm with Application to the Design Structure Matrix,

International Journal of Production Research, Published on-line DOI:

10.1080/00207540701324176 awaiting Journal inclusion.

LANCASTER J and OZBAYRAK M, 2007, Evolutionary Algorithms Applied to Project

Scheduling Problems -A Survey of the state-of-the-art, International Journal of

Production Research, 45,425 - 450.

Conference Papers:

LANCASTER J and CHENG K, 2007, Balancing Global Project Resources Utilising a

Genetic Algorithm Approach with Stochastic Resource Assignments, Proceedings of

e-ENGDET 2007 international conference, Harbin China, 27ýh - 291' August 2007, pp.

LANCASTER J and CHENG K, 2007, Toward the Application of Genetic Algorithms to

Real World Resource Constrained Project Scheduling Problems, Proceedings of

IPROMS 2007 international conference, Cardiff, UK, 0- 14`h July 2007.

Professional Conference Papers:

LANCASTER J and CHENG K, 2008, Project Schedule Optimisation utilising a genetic

algorithm approach. Accepted for inclusion in the Proceedings of the 52"d annual

meeting of the Association for the Advancement of Cost Engineering, Toronto

Canada, June 2008.

viii

Table of Contents

CHAPTER 1. INTRODUCTION ... 1
1.1 THE PROJECT SCHEDULING PROBLEM

..
2

1.1.1 General Description
.. ..

2
1.1.2 Formal Description 4
1.1.2 CPM and Precedence Networks

6
1.1.3 Schedule Representation and Decoding

.. ..
9

1.1.4 Classification Systems
...

12
1.1.5 Benchmarking Problems .. 17
1.1.6 Problem Complexity .. 18
1.1.7 The Design Structure Matrix ... 19

1.2 AIMS AND OBJECTIVES OF THE RESEARCH
...

21

1.3 SCOPE OF THE THESIS
...

21

1.4 CHAPTER SUMMARY
..

24

CHAPTER 2. LITERATURE SURVEY ... 25
2.1 META HEURISTICS ALGORITHMS

...
25

2.1.1 Hill Climbers ... 25
2.1.2 Tabu Search ...

27
2.1.3 Simulated Annealing

..
29

2.1.4 Genetic Algorithms .. 30
2.1.5 Ant Algorithms ... 51
2.1.6 Particle Swarm Optimisation ... 53
2.1.7 Electromagnetism

..
56

2.2 EVOLUTIONARY ALGORITHMS APPLIED TO THE PROJECT SCHEDULING PROBLEM
...

57
2.2.1 Single Mode RCPSP using Genetic Algorithms ... 57
2.2.2 Single Mode RCPSP using Ant Algorithms ... 63
2.2.3 Single Mode RCPSP using Other Meta-Heuristics ... 65
2.2.4 Multi-Mode RCPSP using Genetic Algorithms

..
66

2.2.5 Multi-Mode RCPSP using Ant Algorithms .. 69
2.2.6 Multi-Mode RCPSP using other Meta-Heuristics ... 69
2.2.7 Time-Cost Trade-Of Problems using Genetic Algorithms

..
69

2.2.8 Problems with Discounted Cash Flow using genetic Algorithms
70

2.3 CHAPTER SUMMARY
..

80

CHAPTER 3. METHODOLOGY ... 81
3.1 APPROACH

...
81

3.2 IMPLEMENTATION
..

82

3.2.1 MATLAB Implementation
..

84
3.2.2 Microsoft Project based VBA

..
85

3.3 CHAPTER SUMMARY
..

87

CHAPTER 4. THE FITNESS DIFFERENTIAL ADAPTIVE PARAMETER

CONTROLLED GENETIC ALGORITHM .. 88

ix

4.1 TAXONOMY OF ADAPTIVITY IN GENETIC ALGORITHMS
...

88

4.2 THE STRUCTURE OF THE FDAPCGA
.. .

92

4.3 APPLICATION OF THE FDAPCGA TO TIIE TRAVELLING SALESMAN PROBLEM
....... .

94
4.4 CHAPTER SUMMARY

... .
98

CHAPTER 5. APPLICATION OF THE FDAPCGA TO THE DSM & RCPSP 100
5.1 THE DESIGN STRUCTURE MATRIX

...
100

5.1.1 Fitness Measurement
...

101
5.1.2 Selection ...

101
5.1.3 Crossover

...
101

5.1.4 Mutation ... 103
5.1.5 Standard Problems used for comparison ...

103

5.2 THE SINGLE MODE RCPSP .. 108
5.2.1 Fitness Function ..

109
5.2.2 The Algorithm Structure .. 109
5.2.3 Sample PSPLIB Problem Solutions ... 110

5.3 THE MULTI-MODE RCPSP .. 115
5.3.1 Fitness Function

..
116

5.3.2 Algorithm Structure ... 116
5.3.3 Sample PSPLIB Problem Solutions ... 118

5.4 APPLICATION WITHIN MICROSOFT PROJECT
...

130
5.5 CHAPTER SUMMARY

..
135

CHAPTER 6. THE FDAPCGA WITH STOCHASTIC RESOURCE
ASSIGNMENTS ... 136

6.1 STOCHASTIC RESOURCES ASSIGNMENTS
..

136
6.2 THE GENETIC ALGORITHM

...
137

6.2.1 Fitness Function .. 138
6.2.2 Selection Operator

...
139

6.2.3 Crossover Operator
...

139
6.2.4 Mutation Operator

...
140

6.2.5 Elitism .. 140
6.2.6 Parameter Control

... 141
6.3 DEVELOPMENT PLATFORM

...
142

6.4 CASE STUDY PROBLEM
..

142

6.5 RESULTS 144
6.6 CHAPTER SUMMARY .. 146

CHAPTER 7. THE FDAGA WITH STOCHASTIC LOGIC ASSIGNMENTS. 147
7.1 STOCHASTIC LOGIC ASSIGNMENTS

..
147

7.2 RECURSIVE DEPTH FIRST SEARCH
...

151

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH 162

8.1 CONCLUSIONS
..

162
8.2 ORIGINALITY AND NOVELTY IN THIS RESEARCH

.. 164
8.2.1 Fitness Differential Adaptation

...
164

8.2.2 Stochastic Resource Assignments
..

164
8.2.3 Stochastic Logic Assignments ..

164

X

8.3 SUGGESTIONS FOR FUTURE RESEARCH
..

165
8.3.1 Integrating the Optimisation of the DSM with CPM based networks

165
8.3.2 Adaptation

..
165

8.3.3 Alternative Strategy Evaluation
...

165

REFERENCES .. 167

APPENDIX A. - TSP MATLAB CODE .. 177

APPENDIX B. - DSM MATLAB CODE ... 184

APPENDIX C. - SINGLE MODE RCPSP MATLAB CODE 189

APPENDIX D. - MULTI-MODE RCPSP MATLAB CODE 194

APPENDIX E. - RCPSP MS PROJECT VBA CODE .. 204

APPENDIX F. - FULL SCHEDULE LISTING .. 246

APPENDIX G. - PAPERS PUBLISHED FROM THIS RESEARCH 247

xi

List of Figures

FIGURE 1.1 - SIMPLE PRECEDENCE NETWORK DIAGRAM
...

6
FIGURE 1.2 - SIMPLE PRECEDENCE NETWORK DIAGRAM - FORWARD PASS

7
FIGURE 1.3 - SIMPLE PRECEDENCE NETWORK DIAGRAM - FORWARD AND BACKWARD PASS

8
FIGURE 1.4 - THE LAYOUT OF THE DSM

... .
19

FIGURE 1.5 - SCOPE OF THE THESIS
... .

22
FIGURE 2.1 - HILL CLIMBER FLOW CHART

.. .
26

FIGURE 2.2 - TRAPPING OF HILL CLIMBERS IN LOCAL MINIMA .. .
27

FIGURE 2.3 - GENETIC ALGORITHM FLOW DIAGRAM .. .
32

FIGURE 2.4 - ROULETTE WHEEL SELECTION
... . 36

FIGURE 2.5 - SINGLE POINT CROSSOVER
... .

38
FIGURE 2.6 - PARETO OPTIMAL FRONT

... .
49

FIGURE 2.7 - ANT COLONY OPTIMISATION FLOW DIAGRAM
.. .

53
FIGURE 2.8 - PARTICLE SWARM OPTIMISATION FLOW DIAGRAM

... .
55

FIGURE 3.1 - TAXONOMY OF DEVELOPED ALGORITHMS
... .

83
FIGURE 3.2 - VENN DIAGRAM OF ALGORITHM DEVELOPMENT ENVIRONMENT

.......................... .
84

FIGURE 3.3 - MICROSOFT PROJECT USER INTERFACE .. .
86

FIGURE 3.4 - GENETIC ALGORITHM TOOLBAR
86

FIGURE 4.1 - TAXONOMY OF PARAMETER SETTING
.. .

89
FIGURE 4.2 - TAXONOMY OF ADAPTIVITY WITH THE SELECTION OPTIONS FOR THIS RESEARCH. 91
FIGURE 4.3 - THE FDAPCEA FLOW DIAGRAM .. .

92
FIGURE 4.4 - OPTIMUM RESULTS FOR THE 10 CITY TOUR (33.65 UNITS)

................................... .
95

FIGURE 4.5 - OPTIMUM RESULTS OBTAINED FOR 25-CITY TOUR (199.37 UNITS)
........................ .

96
FIGURE 4.6 - NEAR OPTIMUM RESULTS OBTAINED FOR 50 CITY TOUR (301 UNITS)

................. .
97

FIGURE 4.7 - OPTIMUM RESULTS OBTAINED FOR 50 CITY TOUR (297.04 UNITS)
....................... .

98
FIGURE 5.1 - TWO-POINT CENTRE CROSSOVER ...

102
FIGURE 5.2 - INDEPENDENT POSITION CROSSOVER

..
103

FIGURE 5.3 - RESULTANT DSM (KUSIAK '91) .. 104
FIGURE 5.4 - ALGORITHM IMPROVEMENT OVER SUCCESSIVE GENERATIONS (KUSIAK '91)

....
105

FIGURE 5.5 - RESULTANT DSM (STEWARD '81) ... 105
FIGURE 5.6 - ALGORITHM IMPROVEMENT OVER SUCCESSIVE GENERATIONS (STEWARD '81) 106

FIGURE 5.7 - RESULTANT DSM (AUSTIN '96) .. 107
FIGURE 5.8 - ALGORITHM IMPROVEMENT OVER SUCCESSIVE GENERATIONS (AUSTIN `96)..... 107
FIGURE 5.9 - OPTIMISATION CURVE FOR THE J30110 PSPLIB PROBLEM

.................................
113

FIGURE 5.10 - OPTIMISATION CURVE FOR THE J6010_1 PSPLIB PROBLEM
...............................

114
FIGURE 5.11 - OPTIMISATION CURVE FOR THE ! 12054_7 PSPLIB PROBLEM

.............................
115

FIGURE 5.12 - DUAL POPULATIONS WITHIN MULTI-MODE ALGORITHM
...................................

117
FIGURE 5.13 - THE J108-5M NETWORK AND ADJACENCY MATRIX

...
121

FIGURE 5.14 - OPTIMISATION CURVE FOR THE J108-5M PSPLIB PROBLEM
..............................

122
FIGURE 5.15 - RESOURCE HISTOGRAM FOR J108-5m

...
123

FIGURE 5.16 - THE J1237-8M NETWORK AND ADJACENCY MATRIX
...

125
FIGURE 5.17 - OPTIMISATION CURVE FOR J1237-8M PSPLIB PROBLEM

...................................
126

FIGURE 5.18 - RESOURCE HISTOGRAM FOR THE J1237-8 PROBLEM ...
126

FIGURE 5.19 - THE J309-5M NETWORK AND ADJACENCY MATRIX
...

128
FIGURE 5.20 - OPTIMISATION CURVE FOR THE J309-5M PSPLIB PROBLEM

..............................
129

FIGURE 5.21 - RESOURCE HISTOGRAM FOR J309-5M
.................

129

xii

FIGURE 5.22 - APPLICATION USER INTERFACE
...

130
FIGURE 5.23 - RESOURCE LIMIT SETTINGS

...
131

FIGURE 5.24 -A PLAN OF THE SCOPE OF THE PROJECT
..

132
FIGURE 5.25 - RESOURCE DISTRIBUTION PRIOR TO OPTIMISATION

..
133

FIGURE 5.26 - IMPROVEMENT CURVE
...

134
FIGURE 5.27 - RESOURCE DISTRIBUTION POST OPTIMISATION

...
134

FIGURE 6.1 - PARALLEL MACHINE PROCESSING
..

137
FIGURE 6.2 - CHROMOSOME EXTENSION ..

138
FIGURE 6.3 - DUAL CROSSOVER OPERATOR

...
140

FIGURE 6.4 - MICROSOFT PROJECT USER INTERFACE
..

142
FIGURE 6.5 - INITIAL RESOURCE ASSIGNMENTS

...
144

FIGURE 6.6 - IMPROVEMENT CURVE
...

145
FIGURE 6.7 - RESULTING RESOURCE LOADING

..
145

FIGURE 7.1 - CHROMOSOME EXTENSION
..

148
FIGURE 7.2 - EXTENDED CROSSOVER OPERATOR

..
149

FIGURE 7.3 - ADJACENCY MATRIX ADDITION
..

151
FIGURE 7.5 - THE DFS SEARCH ORDER ...

153
FIGURE 7.6 - ADJACENCY MATRIX WITH FEEDBACK LOGIC

..
154

FIGURE 7.7 - THE DFS TREE SHOWING THE FEEDBACK LOGIC ...
155

FIGURE 7.8 - ADJACENCY MATRIX INDICATING CYCLES
...

156
FIGURE 7.9 - RESOURCE SETUP WITHIN MICROSOFT PROJECT

...
156

FIGURE 7.10 - CIVIL ACTIVITIES PRIOR TO OPTIMIZATION RUN ...
157

FIGURE 7.11 - CIVIL ACTIVITIES AFTER THE OPTIMIZATION RUN ...
158

FIGURE 7.12 - SCHEDULE EXERT
..

159
FIGURE 7.13 - OPTIMISATION OF CASE STUDY PROBLEM ..

160

Xlll

List of Tables

TABLE 2.1 - BINARY CHROMOSOME CROSSOVER OPERATOR
..

39
TABLE 2.2 - REAL NUMBER CHROMOSOME CROSSOVER OPERATORS .. .

42
TABLE 2.3 - COMPARISON OF TODD'S (1997) GA VS. NON EVOLUTIONARY METHODS

............. .
73

TABLE 2.4 - SUMMARY OF EXISTING RESEARCH
... .

75
TABLE 4.1 - THE COORDINATES OF THE 10 CITY TOUR

.. .
95

TABLE 4.2 - THE COORDINATES OF THE 25 CITY TOUR
.. .

96
TABLE 4.3 - THE COORDINATES FOR THE 50 CITY TOUR

.. .
97

TABLE 5.1 - BEST NON-EVOLUTIONARY SOLUTIONS ..
104

TABLE 5.2 - COMPARATIVE RESULTS OF BEST SOLUTIONS TO DSM PROBLEMS
108

TABLE 5.3 - NUMBER OF MODES AND PRECEDENCE RELATIONSHIPS
..

III
TABLE 5.4 - MODE DURATION AND RESOURCE ALLOCATIONS

..
112

TABLE 5.5 - RESOURCE LIMITS
...

112
TABLE 5.7 - NUMBER OF MODES AND PRECEDENCE RELATIONSHIPS

..
119

TABLE 5.8 - MODE DURATION AND RESOURCE ALLOCATIONS
..

120
TABLE 5.9 - RESOURCE LIMITS

...
120

TABLE 5.10 - NUMBER OF MODES AND PRECEDENCE RELATIONSHIPS
......................................

124
TABLE 5.11 - MODE DURATION AND RESOURCE ALLOCATIONS

..
124

TABLE 5.12 - RESOURCE LIMITS
...

125
TABLE 5.13 - NUMBER OF MODES AND PRECEDENCE RELATIONSHIPS

......................................
127

TABLE 5.15 - RESOURCE LIMITS
...

128
TABLE 5.16 - RESOURCE LIMITS

...
132

TABLE 6.1 -RESOURCE LIMITS
... 143

xlv

Chapter 1. Introduction

This first chapter introduces the Project Scheduling Problem (PSP) with a general

description of the problem and the needs in industry to provide methods that will produce

a reliable solution. It also provides a formal definition of the problem. PSP

representations in the form of networks are discussed as well as the mechanism for

handling these networks within an algorithm. Available classification systems are then

reviewed in order to determine a common classification to apply to the literature survey

of PSP solutions by meta-heuristic in Chapter 2. Available benchmark problems are then

discussed and these are also referenced in the literature survey and later chapters of the

document. From this point the aims and objectives of the thesis are developed and the

scope of the research defined.

1

1.1 The Project Scheduling Problem

1.1.1 General Description

A project generally requires the completion of a number of tasks or activities. Completing

each of these activities will require the application of certain resources, the categories of

which are discussed further below. Due to the complexity of many projects there are

often many possible sequences that the tasks can be executed in, each different sequence

may represent a different execution methodology or may be a more subtle

reconfiguration. Re-sequencing a set of activities can result in a different completion time

for the project and/or a different profile of resource usage. Companies involved with

project management will normally be under pressure, either internally or from external

client to execute the project as quick as possible, however the shortest possible execution

time for a project may not be supported by availability of resources, or may not produce

an acceptable capital expenditure.

Companies therefore aim to formulate a project execution methodology that will maintain

the desired, or enforced, resource constraints whilst still producing an acceptable

completion date. However, as mentioned above many modem projects consist of many

hundreds or even thousands of activities and the number of possible execution

configurations becomes huge, even when taking hard logic requirements into account.

There is therefore, a need within project management, for methods by which optimal or

near optimal solutions can be readily deduced. It is a fundamental objective of this

2

research to illustrate that optimisation by genetic algorithm will in fact provide such a

method.

The problem described above is well known as the Resource Constrained Project

Scheduling Problem (RCPSP) and as will be discussed further in section 1.16 below, this

problem has a high complexity. Many examples from academic problem sets such as the

PSPLIB (Kolisch and Sprecher, 1996) still do not have definite optimal solutions, even

after application of many different techniques and algorithms. For real world problems

then, which may have greater complexity than the academic problems, it will in most

cases be impractical to exhaustively produce and prove an optimal solution set.

Due to the large revenue streams that are often initiated from project completion and the

operational availability of the project product, as well as penalties that may be incurred

contractually for late completion, much can be gained by industry through utilising a

system that can produce only near-optimal results. Many project managers will strive to

optimise their schedule through application of experience and accepted norms. The

degree of complexity of this problem however, makes it unlikely that a near optimal

solution could be achieved repeatedly using experience and norms alone. This research

will aim to show that near optimal solutions can be consistently arrived at for this type of

problem using genetic algorithm methods.

3

This research will therefore, aim to produce an algorithm that can be practically applied

to such problems and that can be relied upon to repeatedly produce near-optimal results.

The problem considered will now be described more formally in section 1.1.2.

1.1.2 Formal Description

In the Project Scheduling problem (PSP) a Project consists of a set of activities, J= 10,1,

. n, n+l}, each of these activities has a set of predecessor activities (Pfi Each member of

the set t must be scheduled prior to the scheduling of activity ,
7. The RCPSP extends this

definition so that a set of resources, 2(= (1, ..., K), exists such that during processing,

activity I requires r , units of resource kEX Each Resource, k, has a limitation Wk The

limitations set on the resource, are defined by the type of resource, which may be any

of the following:

" Renewable Resources

" Non Renewable Resources

" Doubly Constrained Resources

" Partially Renewable Resources

Renewable Resources

Renewable resources are constrained only for the individual period under consideration.

There is no limitation to the number of periods for which they may be employed. In this

4

case the limitation sexists only for an individual period and if this limit is reached for a

given period, the resource will then be available again for use in the following period. In

most cases, examples of renewable resources include human type resources and fuel.

Non-renewable Resources

Non-renewable resources are constrained over the life cycle of the project. There is no

limitation to the utilisation within any particular period but the total usage over the

lifecycle is finite. For Non-renewable resources dis the total available quantity of kfor

the entire project and once utilised no further quantity of this resource will become

available. An example of a non-renewable resource can be material type resources where

only a specified quantity is to be utilised, or is available for utilisation, in the execution of

a project.

Doubly Constrained Resources

Doubly constrained resources carry the constraints of both renewable and non-renewable

resources, that is they are limited in both the period utilisation as well as the overall

utilisation. In this case Wk/ n of resource kwould be available for n periods after which

no further quantity of kwould be available.

Partially Renewable Resources

Partially renewable resources are resources, which are limited in their usage over a

division of the project duration. For example the weekly or monthly usage may be

limited. Probably the least considered resource type, Schrimer and Riesenberg (1997)

5

conducted research into the Resource Constrained Project Scheduling Problem under

Partially renewable resources (RCPSP/f j) using iterative improvement algorithms.

1.1.2 CPM and Precedence Networks

A precedence network is constructed as a directed graph with nodes representing the

activities in the network and arrows representing the links or relationships between them.

An example of a precedence network is shown below in Figure 1.1.

Figure 1.1 - Simple Precedence Network Diagram

Figure 1.1 shows a simple six-node network, the number within the node indicates the

activity's duration.

Within every network schedule exists a critical path, that is the longest path through the

network and the path upon which should any of the member activities be delayed or

extended in duration, the overall duration of the project would be affected. All other paths

6

on the network will contain some float (or slack). These terms refer to the amount of time

a task can be delayed or extended before it impacts the successor task, in the case of free

float, or the amount of time it can delayed or extended before affecting the overall

completion date of the project in terms of total float.

The total duration of the project is determined by making a forward pass calculation on

the network as shown in figure 1.2.

Figure 1.2 - Simple Precedence Network Diagram - forward pass

Figure 1.2 shows the forward pass calculation on the precedence network. For each node

the early start and early finish time is recorded. The early start time is determined as the

latest early finish time of any predecessors. The early finish time is calculated by adding

the activity (node) duration to the early start time.

In order to calculate the critical path an understanding of float or slack is required. Two

types of float exist within any network, free float and total float. Free float is a measure

7

n7 17

of the degree by which any activity can be delayed before any of its successors will be

delayed. For example the activity in figure 1.2 with the 8 unit duration has a finish date of

time unit 15. Its only successor is the final activity that is schedule to start on time unit

17. In this cas the activity in question has 2 time units of free float (17 - 15 = 2).

Total float is defined as the degree by which an activity can be delayed before the project

completion is delayed. The activity in figure 1.2 with a duration of 5 time units could be

delayed by 2 time units before delaying its only direct successor (the 8 time unit activity)

and then a further two days before delaying the final activity. Its total float is therefore

calculated as 4 time units.

The total float is calculated for each activity by making the backward pass calculation on

the network. The tasks with a zero total float (activities that cannot be delayed at all

without delaying the overall project) will all be on the critical path. The network with the

completed backward and forward pass is shown below in figure 1.3. The established

critical path is indicated in red.
n77 17

Figure 1.3 - Simple Precedence Network Diagram - forward and backward pass

8

Va `J I,

The precedence diagram as described above only takes into account one type of

precedence relationship: the finish of one activity triggering the start of the next, the full

set of precedence relationships are:

" Finish to Start

" Finish to Finish

" Start to Start

" Start to Finish

1.1.3 Schedule Representation and Decoding

Algorithms dealing with CPM and precedence network representation make use of a

schedule representation. Two main types of schedule representation are in common use in

Evolutionary algorithms:

" Activity List (AL).

" Random Key (RK).

Activity List schedule representation provides a permutation of the activities which are

then transformed into a feasible schedule utilising a Schedule Generation Scheme.

In a Random Key schedule representation, a solution is represented as a point in n-

dimensional Euclidian space, in which the ith vector element is equal to the priority of the

9

ith activity. The activities are then processed by a schedule generation scheme on the

basis of priority.

The majority of work in schedule optimisation makes use of one of two schedule

generation schemes (SGS), these two schemes being serial and parallel generation.

Schrimer and Riesenberg (1997) describe these two systems. The activities are decoded

from the activity list produced by the algorithm using one, or both, of these schemes.

With serial SGS (SSS), a dummy activity is generated with time T=0, thereafter

activities are scheduled in the order they are represented in the activity list, with each

activity then obtaining the earliest precedence and resource feasible start date. Activities

are considered scheduled (members of S�), eligible to be scheduled (members of Da), or

ineligible to be scheduled. Activities, J, are members of the eligible sub set, D,,, if they

satisfy the following:

Dn <-
Ij I

.lo
Sn A Pj C Sn}

(1.1)

Where S� is the set of scheduled activities and PP is the set of immediate predecessor

activities for activity j. As eligible activities are moved from Sn to D� this will effect the

eligibility of other activities to be scheduled. The eligible tasks are evaluated one by one

until all are scheduled. When including Resource constraints this expression is extended

to:

Dnk- tjIj0S�AP, cSfArJk:! ý Rktn(1<_k<_K)}
(1.2)

10

Where rjk is the quantity of resource k required by activity j and Rk, is the remaining

quantity of resource k, at period t for stage n (nth activity to be scheduled).

Parallel SGS (PSS) works using `decision points' these points are taken as the earliest

finish times of currently scheduled activities. At each of these points activities that can

feasibly be started are selected and processed until none remain. The next decision point

is then calculated and the process repeated until all activities are scheduled. For PSS the

set of eligible activities, D,,, is defined where An is the set of active activities, F� is the set

of finished activities then the set of eligible activities is D� such that:

Dn F- {>I J EA�uF�APP gF (1.3)

The set D� is processed at each interval until empty. Again, the previous expression

doesn't describe the resource-constrained version of the problem to include resource

constraints the statement needs to be extended as follows:

D� <-- tj1jeA�uF�APj cF�Ar, k:
5 Rkln(1: 9 k: 9 K)} (1.4)

Where rk is the quantity of resource k required by activity j and Rkt, is the remaining

quantity of that resource, for period t, at stage n. The use of these schemes and the

priority rules will be discussed throughout the following sections.

11

The literature dealing with the application of evolutionary algorithms to the RCPSP is

discussed below. Appendix 1 to this thesis provides a summary of the key characteristics

of each of the algorithms and provides comparative results where these are available or

applicable.

1.1.4 Classification Systems

To fully understand the extent of research conducted into the solution of PSP by

evolutionary meta-heuristics it is important to be able to analyse the type of PSP that

have been addressed. This understanding will illuminate areas where less research effort

has been expended.

A number of PSP classification systems have been proposed. Commonly abbreviations

such as those used so far in this thesis (RCPSP, RCPSPDCF etc.) have been used to

describe the problem class. However, these classifications are limited in their description

of the problem, referring rather to a subset of problems, and they are often used in an

inconsistent manner. The main weakness of classifying PSP using this system of

abbreviations is that it fails to describe the type of resources and type of network used.

The commonly used abbreviation type classifications are:

" PSP - Project scheduling Problem.

" RCPSP - Resource Constrained Project Scheduling Problem.

" RCPSP/II - Resource Constrained Project scheduling Problem with Partially

Renewable Resources.

12

" RCPSPDCF - Resource Constrained Project Scheduling Problem with Discounted

Cash Flows.

" TCTP - Time-Cost Trade-off Problem.

" MRCPSP - Multi-Mode Resource Constrained Project Scheduling Problem.

Herroelen et al. (1999) proposed a classification system in line with the problem

classification system commonly used on machine scheduling problems (see Graham et

al., 1979). This system, as with Graham et al. 's machine scheduling problem system,

uses a combination of three sets of characteristics (al 01 y) to detail the nature of the

problem.

1. a- up to three Characteristics describing Resources.

2. ß- up to nine Characteristics describing Activities.

3. y -One Characteristic describing Performance measures.

Brucker et al. (1999) propose another system, which also follows this three characteristic

model (al 01 y), however, a number of problems were subsequently pointed out in this

system by Herroelen et al. (2001), and from a review of literature the system of

Herroelen et al. (1999) has been most widely adopted. It has therefore been decided to

utilise the system of Herroelen et al. (1999) throughout this research.

13

The characteristic values used in this thesis are as given below, this is not the complete

definition given by Herroelen et al. (1999,2001), but instead it covers all values required

to describe the problems identified with in this thesis.

Resource classification

a, Describes the arrangement of resources. This classification has been used more

prolifically within the study of machine shop scheduling problems.

a2 Describes the number of types of resources utilised, where a2 e (°, 1, m) such

that ° denotes no resource types considered, 1 indicates that one resource type is

considered and m that a number of resource types equal to m are considered.

a3 Describes the specific resource types that are used, where a3 e {°, 1, T, 1 T, v}

such that ° denotes the lack of any resource type specification, 1 indicates

renewable resources were utilised, T indicates that non-renewable resources were

utilised, 1T indicates that both renewable and non-renewable resources were

employed, finally v indicates partially renewable resources were used.

Activity classification

P2 Describes the type of precedence logic used to construct the network, where (32 e

{°, cpm, min, gpr, prob} such that:

°- Empty.

14

cpm - Critical path method where only Finish-to-Start relationships with

zero time lags are used.

min - Minimal time lag relationships where Finish-to-Start, Finish-to-

Finish, Start-to-Start and Start-to-Finish relationships with minimal lags

are used.

gpr - Generalised precedence Relationships where Finish-to-Start, Finish-

to-Finish, Start-to-Start and Start-to-Finish relationships with minimal and

maximal lags are used.

prob - Probabilistic relationships where the occurrence of logic

relationships is control by assigned probabilities.

05 Defines deadlines imposed on the project, such that ß5e {°, Sj, S�} where:

°- Empty.

Sj - Deadlines are imposed on the individual activities.

S� -A deadline is imposed on the project.

37 Defines the type or number of execution modes that are applicable such that 07 E

{°, mu, id} where:

°- Empty.

mu - Multiple execution modes are available.

id - Mode identity constraints exist for activities.

08 Defines the nature of cash flow data that is applicable such that ß8 e {°, cj, cj, cj+,

per, schell} where:

°- Empty.

cj - Activities have associated cash flows.

15

cj - Cash flows are stochastic.

cj+ - Activities have an associated positive cash flow.

per - Periodic cash flows are specified.

sched - both the amount and timing of the cash flows have to be

determined.

Performance measure classification

y Describes the objectives or performance measures used to evaluate the solutions

such that yE {Cmax, av, curve, npv} where:

Cmax - Minimise the project duration.

av - Minimise the Resource allocations whilst meeting the project

deadlines.

curve - Determine the Time vs. Cost trade-off curve.

npv - Maximise the Net Present value of the Project.

multi - Multiple criteria.

This classification system has the flexibility to allow for the addition of new parameters

in order to incorporate the study of new or previously unstudied problems. In this thesis,

the use of a further (32 parameter, dsm, is proposed to represent the DSM network and two

further y parameters miniter and maxconcur representing minimisation of iteration and

maximisation of concurrency respectively. The DSM can be applied to many of the same

16

problems studied under the CPM network only with the addition of allowing feedback

logic.

1.1.5 Benchmarking Problems

To establish the effectiveness of various algorithms when applied to PSP, benchmarking

needs to be performed in order to provide a common base by which the relative

performance of the various algorithms may be considered. The majority of researchers in

this field utilise the PSPLIB, a collection of problems, which can be used as a standard

for comparison of the performance of various algorithms. PSPLIB (Kolisch and Sprecher,

1996) is a collection of RCPSP in a range of single and multi-mode types comprising 30,

60,90 and 120 activities. The performance of the various algorithms against these

benchmark schedules is given in this thesis where this is applicable or available. Other

benchmarking problem sets are in use in this area of research, a number of these are

referred to in Wall (1996):

" Patterson's (1984) Project Scheduling Problems.

" Kolisch et at (1992) Single mode Project Scheduling Set.

" Kolisch et at (1992) Single mode Full Factorial Project Scheduling Set.

" Kolisch et at (1992) Multi-mode Full Factorial Project Scheduling Set.

" Fox and Ringer (1995) "Benchmarx" problems.

As stated above the PSPLIB problems are the most widely used and have therefore been

used in this research where applicable for initial testing of algorithms.

17

1.1.6 Problem Complexity

Complexity theory provides a framework by which to classify problems based on the

difficulty incurred to find their solution. Consider a problem with input x, the problem

being to produce the solution F(x). The complexity of producing the solution is measured

based on the number of steps that need to be performed in order to produce F(x) from x.

For each optimisation problem there will also be a decision problem. A decision problem

will simply determine whether there is a solution F(x) <= y for any given value of y. The

classifications of problems in complexity theory are given as follows:

" Polynomial Time Complexity Problems ((I), are problems for which there exists

an algorithm that takes at most nk steps to produce a decision F(x) from an input,

x, of length n.

" Non-deterministic Polynomial Time Complexity Problems (N are problems for

which there is no algorithm that can produce the solution F(x) from an input, x, of

length n, within nk steps.

" AT-Complete problems are problems such that if they were solvable in

polynomial time, then all problems in AT would be solvable in polynomial time.

" Optimisation problems whose decision versions are IMP-Complete are termed

MP-Hard.

The RCPSP has been shown to be M -Hard (Blazewicz et a1,1983) and as such exhibits

a high level of complexity.

18

1.1.7 The Design Structure Matrix

The Design Structure Matrix (DSM) is a scheduling representation, which allows the

incorporation of iterative relationships.

The DSM is based on a square nxn matrix (number of columns equals number of rows),

with the task numbers being listed along both axis, the task itself being represented by the

respective block on the diagonal. The arrangement of the DSM is shown below in figure

1.4 from Lancaster (2003).

MAI KIX

Figure 1.4 - The Layout of the DSM.

From figure 1.4 it can be seen that the precedence links are indicated in the matrix as 1's

entered at the intersection between the two tasks. The diagonal divides the matrix into

two triangular portions, the lower triangle being used for the mapping of forward feeding

task links and the upper triangle for backward feeding task links.

19

The aim of utilizing the DSM would be firstly to identify and understand the iteration that

is present in the sequence and secondly to move the matrix as close as possible to

becoming "lower triangular" (all task links in the lower triangle), by rearranging the

design sequence. Moving the matrix toward becoming lower triangular means that the

size of the iterative loop has become smaller, or has been eliminated, limiting its effect on

the overall program and reducing the number of activities that are involved. In some

cases it may be possible to completely shift the matrix to lower triangular form, in these

cases it may be that the initial choice of order of execution was poor or randomly entered.

In truly iterative sequences it is normal only to improve level of iteration bringing

feedback loops closer to the diagonal.

In addition to reducing iteration in the DSM another objective can be to maximise the

concurrency of tasks. Increased concurrency in the DSM will be reflected by feed

forward links being moved to the extreme left and the bottom of the matrix. Whilst this is

in accordance with lower triangularisation of the matrix, the nature of the relationships

between the activities can make these objectives conflict and the satisfaction of maximum

concurrency will not necessarily result in minimum iteration. In fact in most cases

maximising concurrency often results in increased iteration.

The DSM, sometimes also referred to as the Dependancy Structure Matrix has been

researched and employed extensively; both Rogers (1994,1996) and Whitfield et al

(2003) have used a Genetic Algorithm approach to partitioning or optimisation, as will be

discussed further in the literature review.

20

1.2 Aims and Objectives of the Research

In the general discussion of the problem in section 1.1.1 a high level objective was

introduced. The distinct objectives of this thesis are to:

" Provide a thorough review of existing work into the application of Evolutionary

algorithms to the optimisation of PSP. This review to include both problems

utilising Critical Path of Precedence Networks as well as those centring on the

DSM.

" Develop an Algorithm suitable for optimisation of PSP, building on and

enhancing existing research.

" Investigate the application of the developed algorithms to PSP beyond those

covered by the current research.

9 Develop an implementation of the algorithm developed in this research within a

commercial scheduling application, in order to further examine PSP through

practical case studies. This implementation is to consider variants to the standard

RCPSP problem.

1.3 Scope of the Thesis

In response to the aims and objectives of the research laid out in section 1.2, the scope of

this thesis is illustrated in the diagram given below in figure 1.5:

21

Chapter 2 Chapter 3 Chapter 4 Chapter S Chapter ti Chapter 7

Literature Plan Formulate

Surv ey Methodology Baalc
Algorithm

Application of Algorithm

Initial Initial
Stochastic Stochastic
Resources L Ic

Resourci

i Conatralnad
PSP

MATLAB

Resource
Constrained

PSP
MICROSOFT PROJECT

Figure 1.5 - Scope of the Thesis.

Chapter 2 covers a review of the type of current meta-heuristic algorithms. This is

provided as a basis for understanding the algorithms prior to further review of their

application to PSP.

The second section of the literature review will then cover the application of meta-

heuristic algorithms to PSP, with existing research being classified according to the type

of algorithm utilised and the exact sub-class of PSP being optimised. The intention of the

literature review is to examine the existing body of work but also to extend the breadth of

the typical consideration of PSP in order encompass problems using the design structure

matrix.

Chapter 3 details the methodology employed in the thesis, providing an explanation of

the approach and the implementation.

22

Chapter 4 provides the structure of the newly developed algorithm and utilises the

travelling salesman problem to test the effectiveness of the algorithm.

Chapter 5 tests the developed algorithm on both the DSM and on a precedence based

network. The DSM and precedence based network are both implemented within

MATLAB and the precedence network problem is then reconstructed within Microsoft

Project.

Chapter 6 discusses further development of the algorithm in order for a special case of

the RCPSP to be optimised that initially applies resources stochastically to selected

activities. A test problem is then described and optimised using the extended algorithm.

Chapter 7, in a similar manner to Chapter 6, produces another variant on the algorithm

developed in Chapter 4 to solve problems where preferential logic is initially applied

stochastically.

Chapter 8 provides a conclusion to the research and makes recommendations for future

efforts.

23

1.4 Chapter Summary

This first chapter has introduced the problem being considered by this research. The

needs of real world organisations in solving this problem have been discussed and a

formal definition of the problem presented.

The aims and objectives of the research have been further detailed, leading on from the

problem discussion, and the research scope defined to further clarify and bound the work.

24

Chapter 2. Literature Survey

This chapter reviews a range of meta-heuristic algorithms that are prevalent in the

optimisation arena. The application of these meta-heuristics algorithms to the PSP is then

thoroughly reviewed. Literature reviews on the application of meta-heuristics to the PSP

have been conducted previously, an excellent example being Kolisch and Hartmann

(2005), this review however, extends previous reviews in its depth of scope as well as

broadening the review by including PSP problem optimisation utilising the Design

Structure Matrix. Throughout the review of the meta-heuristic application the

classification system of Herroelen et al (1999) is utilised.

2.1 Meta Heuristics Algorithms

2.1.1 Hill Climbers

Hill climbers are relatively simple optimisation algorithms; they start from a random

position and then sample from neighbouring solutions. If the sampled solution is of

higher fitness than the current solution the sampled value is accepted and the process is

25

then repeated for neighbours of the new solution. The flow chart for the Hill Climbing

algorithm is given below in Figure 2.1.

Figure 2.1 - Hill Climber Flow Chart

26

The weakness of these methods is that because they only accept higher fitness values they

easily become trapped in local minima as illustrated in Figure 2.2 below where a

minimisation algorithm is considered. It can be seen that the algorithm cannot escape

from the local minima, by finding a solution of higher fitness. The algorithm would first

have to move to a slightly less fit solution before being able to locate the global minima.

Due to this Hill Climbers are not well suited to complex search spaces with many local

minima and maxima.

5

4

3

2

1

0

_1

Hill Climbers easily
become trapped in
local Minima as they

cannot accept
worse' solutions in

order to escape

123457

Figure 2.2 - Trapping of Hill climbers in local minima.

2.1.2 Tabu Search

The Tabu search starts with an initial solution, then at each iteration, a change is made to

the solution. Unlike Hill climbing, Tabu search will accept changes that lead to worse

solutions as well as those leading to better solutions. Changes that can be made may be

the switching of two variables, the moving of a variable within the sequence etc.

27

In Tabu search a Tabu list is created which is a list of changes or moves, which are not

allowed to be made, or `Tabu moves'. Typically Tabu moves would include repetition of

recently made moves. Tabu tenure is the duration, in number of moves (changes), for

which a Tabu list member remains effective. This method of retaining memory helps to

remove the chance of cycling and trapping in local minima.

Tabu search has been effectively applied to a number of classes of problem including:

" Travelling Salesman Problem.

" Knapsack Problem.

" Scheduling Problems.

Bellenguez (2004) applied both a serial scheduling scheme (section 5.6.1) and a Tabu

Search, to solve Multi-Skill PSP (Multiple resource), Goto et al (2004) applied Tabu

search to the RCPSP with NPV maximisation, which they successfully applied to a real

construction project example.

Cavalcante et al (1997), applied the Tabu Search to the Project Scheduling Problem under

labour constraints (SPLC) a subset of RCPSP with limitations on the number of available

workers.

28

2.1.3 Simulated Annealing

Simulated Annealing, proposed by Kirkpatrick et al (1983), is another method that bases

its structure on an Analogy with a physical process. In the annealing process the material

is heated to a high temperature and then cooled slowly into a uniform structure, in this

way simulated annealing starts with a randomly chosen solution and then working from

this point aims to move or `cool' to converge on the optimum solution.

Once initiated with the random solution, the algorithm tests the fitness of the solution and

then modifies the solution and retests the fitness. In hill climbing only better solutions

would be accepted, simulated annealing also accepts better solutions, however, it also

accepts a certain number of worse solutions as well. The purpose of allowing a certain

percentage of worse solutions is to prevent the algorithm being trapped in local minima

(or maxima) introducing variety into the search.

As the algorithm progresses down the temperature gradient it allows less and less of the

worse solutions to be accepted. Simulated Annealing achieves this through the use of an

Annealing schedule.

In the physical annealing process the law of thermodynamics states that at a particular

temperature, t, the probability of an increase in energy, SE, is given by equation 2.1:

6E

P(bE) =ek. t (2.1)

29

where, k, is a constant known as Boltzmann's constant. As the temperature drops so the

probability drops with it as well, this mechanism can be used to form the Annealing

schedule. This schedule is then used to determine the probability of acceptance of worse

solutions so that the number of these solutions that are accepted is reduced as the

temperature drops. In this way simulated annealing moves from a functionality close to a

random search through to standard hill climbing at t=0.

The main advantage of simulated annealing over standard hill climbing algorithms is its

ability to escape from local minima.

Simulated Annealing has been successfully applied to project scheduling problems,

Yildiz (2000) details Simulated Annealing applied to the similar shop scheduling

problems, Bouleiman and Lecocq (2000), researched the application to multi-project,

multi-objective project scheduling problems.

2.1.4 Genetic Algorithms

Genetic Algorithms are methods by which optimisation problems are solved through the

application of techniques, which derive their functionality from the Darwin - Wallace

principle of the survival of the fittest.

These algorithms work with populations of possible solutions to the given problem,

encoded into binary or real strings known as chromosomes. The chromosome is made up

of a series of genes, each gene representing a variable in the problem.

30

The population of chromosomes is evaluated using a fitness function; if the required end

conditions are not met by the initial population then a selection of the highest fitness

chromosomes is made. These chromosomes are then paired and the pair mated to produce

child chromosomes using a genetic crossover operator. In this way the population is

evolved through a series of generations until a convergence is reached upon an optimal,

or in the case of a multi-objective genetic algorithm a series of optimal solutions. The

process of breeding the higher fitness chromosomes to produce even fitter children can

cause premature convergence, in order to counteract this, a random mutation operator is

used in order to stimulate exploration of the full search space.

These algorithms have consistently been found to be suitable to optimising highly

complex (AT, AT-Complete, NT-Hard) problems.

2.1.4.1 Structure

The structure of the basic genetic algorithms is laid out in figure 2.3, below adapted from

Deb et al (2000):

31

Genera
Popt

GE

Figure 2.3 - Genetic Algorithm flow diagram.

Typical pseudocode of a Genetic Algorithm would then be as follows:

Fitness E

ME
Con

Population(Popsize) `Generate Initial Population
Fitness(Population) `Calculate Fitness of Initial Population
Set Generation =0
Do while TerminationCondition = False

NO

TempPop = Selection(Population)
Crossover(TempPop, CrossoverProbability)
Mutate(TempPop, Mutation Probabi I ity)
Population = TempPop Gen = Gen +1 ME

32

Croy

Generation = Generation +I
Fitness(Population)

Loop

In this pseudo code the Termination condition for the processing loop could either be the

arrival at a solution of maximum fitness or having cycled through a predetermined

number of generations.

The components of the Genetic algorithm are discussed in more detail in the following

sub-sections.

2.1.4.2 Initial Population Generation

The generation of the initial population will be dependant upon the type of encoding that

has been chosen for the basis of the algorithm. As mentioned in the introduction Genetic

algorithms are encoded either as Binary or Real valued chromosomes, the choice being

dependent upon the nature of the problem to be solved.

Combinatorial problems such as the well-known Travelling Salesman Problem are better

suited to encoding as real valued chromosomes, whereas and algorithm concerned with

the optimisation of the dimensions of a structural member maybe better suited to binary

encoding as the latter does not rely on selecting a sequence from a given list of variables.

In binary encoding a suitable word length will need to be selected, this word length must

be of sufficient length to allow for the range of variable to be considered in each case.

The word length multiplied by the number of variables will then give the chromosome

33

length. The initial population of chromosomes may then be generated purely from a

random series of binary values.

For a Real encoded population a random permutation generator will be required this will

be run to generate each of the initial chromosomes forming the population.

The size of population that is used for the problem is mostly a matter for experimentation.

Research has been conducted though into suitable ratios of Population size to the number

of variables.

2.1.4.3 Fitness Evaluation

The evaluation of fitness is the problem specific functionality of the algorithm. At each

generation the chromosomes are decoded, the fitness of each chromosome can then be

calculated from the data the decoding yields. Dependant on the application the

chromosome may yield a total distance, in the case of the Travelling Salesman problem

or a total duration in the case of a Project Scheduling Problem. Fitness's may then be

calculated from these values, dependant on the application this may be calculated as the

value itself (X), a reciprocal of the value (1/X) or it may simply be the position of a value

in a range (X - Xmin)/(Xmax - Xmin).

2.1.4.4 Selection Operators

A number of different selection operators exist in the literature, the most commonly used

operators are discussed further below:

34

Tournament Selection:

Deb et al (2000) describes tournament selection as a method in which a number of

tournaments are arranged between two members of the population with the winner of the

tournament being given a position in the new population. The tournament should be

designed such that each member of the population participates in two tournaments. This

will result in each member of the population being copied to the new population either

zero times, once or twice dependant on the number of tournaments won.

Roulette / Proportional Selection:

When spinning a roulette wheel there is a one in thirty six chance of any particular

number being selected. Each of the 36 numbers occupies the same portion of the roulette

wheel, which ensures an even probability of each number being selected.

The analogy of the roulette wheel in this selection method utilises this same mechanism

only with each chromosome receiving a portion of the wheel sized in relation to its

fitness. The algorithm then performs a function, which equates to the spinning of the

wheel, the probability of selecting a chromosome for transfer to the temporary population

is then in proportion to its fitness. Figure 2.4 below illustrates this method.

35

POINTER

Figure 2.4 - Roulette Wheel Selection.

The wheel in figure 2.4 is seen to be weighted, should the wheel be spun the chances of

the purple area coming to rest adjacent to the pointer is obviously much great than for the

green area. The probability, Pr, of each chromosome being selected, where -r is the

fitness measure, is then:

f Pri=Po
p (2.2)

i=1

Ranking Selection:

Ranking Selection is performed by ranking the individuals of the population according to

their fitness. Wright (2002) prescribes that the ranking is applied with the highest fitness

individual receiving the highest ranking; the ranking is then scaled by dividing the

ranking by the total fitness value. The probability, Pr, of selection for an individual is

then:

36

Pri=Po
R.
P

i=1

(2.3)

This method gives more bias to the higher fitness individuals than the Roulette wheel

Selection method described above.

2.1.4.5 Genetic Operators

In order to evolve the successive generations, operators are applied to the parent

chromosomes chosen randomly from the population. Primary operators that are used fall

into two categories:

9 Crossover operators

" Mutation operators

The function of crossover operators is to utilise genes from selected parent chromosomes

in order to improve the fitness of the population. Parent chromosomes are selected from

the population in random pairs to be `bred'. As with the biological analogy children will

inherit genes from the parents, in GA's child chromosomes are constructed by mixing

genes from two parent chromosomes.

Crossover is applied probabilistically using a user defined crossover factor (0<x<1),

which gives the probability of crossover occurring. When a pair of parent chromosomes

has been selected for breeding, a random number, rl, is generated (0<rl<1) and tested

37

against the crossover factor. If the random number is less than the crossover factor then

crossover is performed. In the simplest form of crossover, single point crossover, a

further random number, r2, is generated also in the range 0<r2<1. This random number is

then scaled against the length of the chromosome in order to select a crossover point.

Once this point has been determined bits to the right of the crossover point are exchanged

between the chromosomes to create two new child chromosomes. An example of single

point crossover is given below in figure 2.5:

Selected Crossover Point (after 12th Bit)

Parentl 111001001100001101001001101011
Parent2 100001011100101001111000101110

Crossover
111001001100 >< 001101001001101011

100001011100 101001111000101110

Child 1 111001001100101001111000101110
Child 2 100001011100001101001001101011

Figure 2.5 - Single Point Crossover.

As can be seen from figure 2.5, the crossover point has been selected between the 12th

and 13th Bit, resulting in an exchange of the last 18 bits of each chromosome, forming

child chromosomes 1&2.

Commonly used crossover operators for binary chromosomes are given below in table

2.1

38

0
w

0

0
ry)
0 I. V

tu E
0 y
0

0

U

tu

C-wO
i, p -0 O

d_c L

wwO`N

O`-

-C3 55 C -'
E

wG0

d «o
o. 9E.

.
LA (0 2~w(..)
Cm

-N
C0

Qaj Ü= ýN

CÜCC
OU 4) 4)

'O 00 -w (0
CEýcv(d

OwCOC

OÜýýC (0

cm rm lu *ö C'4
N iz a- a -0

N -2
.N

N
(0 aD U
o aýw ýo
oOOd Uý
2MO

U) N
n. LNC

U) DN NOcc
NOO ý+

O CO
Cl- o:

2 Y,
> Y'ID

OCÜO
O 7 ý7 UN

OOO tÄ hN
LL,,, d y Cý

aý $öN ö- U

aD

OECy

CV
A

L_

a
0
a)
0 N
N
O

U
C_

0
Q

0

t_
3

00

00

00

00

00

Ei

--
o

N
CcN
NNU

(0 mZi:
IL CL U0

(V
Q)
Q)

ö

C

O

C) 0

0 0

0 0

0 0

0 0

B
o 11

N
ccN

N a> ýv
mmtt
ddUU

N
0)
O)

I,
C
(t

0
I

C_

O
U-

00

00

00

00

00

9UUU

(V
CCN
NNUU
(U fp LL
aaU0

C
3
0
C
C

C_

O
d

M

b
Q) Z
r.
iy

O
U

O
cC

O
O

O

U
N

O

O

O

c

N

F-'

O CM f6

ÜO O Eý
J5 L

U L

U 0>

>OOw
0 An 0 :3 CCO CC

co M

(n E -2 n O CF).. -L=
0
-0 n 2 C-1 -

0
-

OLO o3 a a) c s-- E t0
,o
°) aL m a) (D UO

>O (1)
dON

c0 `Ow
O> cC E

075 C)
-r-

uni
0

C

f0 LNC >+ -O >
OC

ui ONL
aýi (D

_0 U°
oOo3y c UU 0 U

fp -O N to L

c
Q

o Eoc
(n a) L ,NO

d _-
-p

OUOU
In

OO 4ý
Y f0
c c

OfOCNOd
ý-a 0 .ý öa ö O2. y

mEEo
CLLC . C>77 ! -'

C5
O

'OO
O

(V
O O

N Cl)

O
O

O
O

0
NO
O O

0
Z)
a

O
O O N

O O

E E O O O O

0) 0 O

ö Ö 0O.
r

u

z
O
Ü

> EN
0 CC N

ä ly ää0
0

v
ti
c

ü)
N m

C 0) tLp

"
N

N

w Q
0
LL

C
0

C
O o

CL m NE
N 0 (D

(n o
cß

Z) LL tX

C)
IT

Real Crossover Operators:

Certain applications of GA's such as the travelling salesman problem (TSP) require that a

list of numbers be arranged in an optimal sequence without duplication of any given

number. In this case real numbers may be used in the chromosome. In order to maintain

the integrity of the list variations of the crossover operators explained above need to be

employed. Similarities exist between the this class of problems and project scheduling,

i. e. the ordering of cities in the TSP can be considered analogous to the ordering of high

level project activities, for this reason it will be important to consider methods developed

for the TSP when investigating GA application to project scheduling.

Todd (1997) and Whitfield (2003) list a number of crossover operators that can be used

whilst preserving the list contained in a real number chromosome. Table 2.2 below

summarises these methods.

41

0 cu

a
0

0
0

U

0

cz
0

04
N
N

.O 03

o o a) O w
'D C

o
ýU)

'0

u) o cc
m "0

v) CD a) 0
-Ü Co

w aa)
CL LwU

_
cu

CD dL C -W N "o LC ~
+L"' "C

C UO Cl °C aa h" (1) '` NN 0

o >, oÜ
Eo

° aj (D :3

EEU
- 07

a) o- E
,

a to
" °

to
"° ,

Oy ýO
NO ML t- 0

-o
Ew

C: U) ° Z£ CI-- EZw ö a) yö a)Y
ý (1) ö ý c 0 ý ý 4) o vý o

i cß) a
o

N -C)
a ci ä

(D -0 °
ýö 0= o0 L)c: '0-ö ä

cäcýsc
uu) mU

-
O 01

Ü

C O rn
L

w.
O

U L_ c
o ymUo

OYUO a) 0
LwC

(n CD
a) wC

a)
-C

C (D j6 N Gi -0 cY Vi CY

0 (n o° o°

-=

m° oEE
L

°E ýu u) o E,
(D

Cl) '0
C

ýco g aý

OY
rO

C
Y« N
UO

C
O} OUNO °L OEONC L U

CE
(D d ICE 4 fl CE

L
E

Ly O
E O~"' °

c 0
c°°2 E- °' c

E °ý5 ° 0" a
E-a O' c °

E 6ý60-0(
°' c 0E E- o0 C

E0cU
CoEcO

cýv
' Co

o° aý
N °c)

_

-
N

0N
c Q. t: s

o °) Ca o E E c- 0c a)
° 0 °c

CEU C cEC ON
E

° 0) c_ V
wLc E U) O

°N . (- CE

x
(n MU

cn ocEoý
LN O

to (0
ooC Eý ý
3L2 O

(n f0
ooC Eý 0

4 O 3L(ýcö
0 `° a) 0a

(9 OL OL ý OL 0 Ca L

00 C) OD Co C) Co Co M CO Co C') M

N- co CO fý 00 N- N- a0 N N- co 1-
N

cý co N- co cD CO co CD CD (0 cD co

if) N U!) LU N CD U) N U,
ä LU N L[)

a N- v v N- Cn vnv
3

vn ca
ý

C M LO Cl) M LX) C') lA CJ C C') U)

ca
x

ui
NN N N N- V

c
N

ui

C

a-
0

N N N N
NNp y`2 NN Ü) NN

ä äÜ cu cu Q. Ü ä ääÜ MäÜ

Ü Ü Ü Ü Ü
7

L
7

L
7

L
7

L
7

L

d cC C
7

70 (
C

-001
C(

-p (7)
C 0)

N (0ý (pr fOr

N f`C f0 fU N 7
7 7

7 7

c
'0
w

C
Ü w

c c
ä ä a. a° a o

d c 0 3 3 a) ö

0 a

N

b C)
9.1

0 U

0
`-

O

O
U

O
O

O

U
I-

E

N

o L w aý 0 w E
O O-0 V Q). C

C
ö äff ' U)

ö co o- W
ä

o ö U

"R O
-

(D UaC U) 'T C
O CO Da

o.; M
U LO omo -0' o ca

ý.. ý OL
Cl) U) a) 0Uy >70 M

0
3 N o 0U)

0Oý 0 a)
"N LN C

-r c- 3: 70
0 ý cm ` 0)ö

m
s" M` Ei0 L

Cl
E a) Ü0 .

- mU' aE cu A '
ca
C: c0 ONCo(3. o (14 O

ý+
U -p N :3 41)

N O O
L

>L>

OU
C AOYC". - CAC

`OO
U

C
V)

"
Y

O UOU
co Q) OC

O
m

Y. 0 ÜO
0 co COV

ä)
co Cl) (0 CO

OmC ca O -0 to (, J
(D2 U

>
0 ECO2

to

ö-
v)ý a E O CC

0 a
x

OUC L6 rL oc " O
G) L) (6 3oý a) xm

OQ
3` Lu ` 1) CI 6 L a- ch U) (1) CL U

co M
_º

M NM aO N co co

ön co n n oo v co n ao ao co
ö (O (O OD CO (O CO (D CO (O (O (O

C) I[) N LO Lr) NN U') NN LA

V) vn co vnnv a nn a

E
öM M ýA t" M M LA M

0
W öN N co

0
N N

N N N
CC
NN

CN
NN y yU

N

a- Q. Ü co ÜÜ d ä0 0

U
7

L
p)
00
m L
7- 00

0) C
(3)

r.. c 77. O

O :2
ca

co O 0
0

C

O O
Ii a

c
o

C °"
f°

C
C

ä
0

c

;e 0) ' 70 ä 2

M
It

aý Z
.
O
U

O
,r cl
O

O

O

O
U

O
O

O

cl

(V
N
N

cd
H

NÜ w ONc
ý LONNO

C C
np VOi

pÜOO
" O

p ý c w
L

0
gL

O CU OLU

c . c -O . O

O
rU CO

OL
Nr

`
p iß OcO

ac) -6 t LL :j
YC O> 3

(0 pC (V CL m. ÜC
tý Y

mE a te' U OL Cý pL rn- O
-C3
N rnQ)

d0
=p Oc "0 jN

CU ýL V fC C
0ENDc ýA .

L.. cCL

to NOpLO37O

.NCC0
Z, pO

O Qý
c3) OaN -0 M nO -O ON>

CO
'UNL

M
>M>

OO 2 Ü U) r "U
- 0U fp C CO 'O U >,

N N
yUN - p j

O O tý
N

nUÜ O
(nL

ONm N-
OD cL

cmL c- Q
Nr-ý -. L.

«r- ! A+-ýa cU CO -

-NL
c Uý

öS ýýä
0) f0

c: -
öß'5uc c

.- u)
°ý

O"
_ ýY

uý c
°) a3ý a»

"
0) :3

o ý_
Z 3ý

rnN min c cn
O ý Occ ýM

(0 7=AN
>p0COUNM c Co O-cO O(0 NC

06
pÜ -O ýp LO L� M0Ü

N >, aE
äO

LyjcC
aci y Nay pL ý() yÜöw

C0
(1)

YL

C 'L
~_

.
L. (p Orp

p
U cU0

LjNNOc
O C\i o

Jm
U

++ Y -p aONÜ ý' CL N O O~
Ö

-0 C_ CÜp

ý0 Ný cNp
c

(L) 0 ä0 °)Ern ö äý
Q (D -0

_ rn aý ý -
cý ö

40
-

r- c -0 a) ä a) - cUa)
Y 0) w o

WE rnrn aý may ö sOEý

Uli

- p
c" ä rn p äý L

mOccyc a) O 07 " c -O XLOL OLL 0) -0 LO
cUp

OäO

Co M Co M
ao ^n co -o ^

i

ao r-m�, naomn
vi f0 (0 1-- co
d Cl -116 LL7 M

n Co Co

t 10.0 ý, ct
NdMdMdhM J NrNrrNN

JNrNNN
N

.... WrNMd ýA t0 Iý a0

Cfl ä0 (0 (0 W"NMd YI (0 n CO

LC) NN Lf)
Co M VI

ap M^ U)

vnvn ^mm^
^ Co '0 '0

(0 (0 Un f

E U) N CO
Y

U,
NMN

() NO ()

dnN Co
Co

4b b '
M L(1 M0

dM

MNMN

Ndm

; ; ;

N
.
_ L

aaUU
ýN N

cr

__
ääÜÜ ääÜÜ

rn m

8 (» M
C O^

M O rn

C
O

C N

C E °0
0 W- C

"D

NÖ
V) T cU

W W im

It It

b

O U

1r
O

C

O

O
U
NC

O
O

O

. s;
U

aý

N
N

c3
cý

H

- 0 CD c, 4
W Y

aa) a aci EoE 0

o c- Y
c

u ioä CU O c -0 Ea
Uw Cl) C a) O

NO O
'a 2 C

NU
ON 0 'o

a
LV)

EN1, C O L) cu v)
C) CO

:3 a) a) 0
ILI

rn+ c CE C 0
OLtO

(p
o

E i.:. U cA a
B C co C

ONDONE
-0 CC c" o

O OC
ao

ýHOCaý
CO ̀ ova

rA _r_ 0) =3 c

C
OOOr O

"LNOE
-- -

UC
O 0(l)

Om
c a)

a
0 -c CD Cc

ad cY
-

cm c 0)
co a)

-E oO
O C 0 -0 0O co

U) C 9- i; N
.. - ý° mc - to OO

m - -o mÜ -
a)

c
öUL as

-2OO
°-E

QOO
-°>
Ct

co co co
00 U)

(D LO
07 7

rý ýn v co
CO N 00 N (D U)

c0 N t0 Iý

U) 00 LO co U) (D
tO 00 co LO

V hN V Iý
Q1 h I- N

'M
fD 1- (O MM

C
C M (O Cl) CO
W

N M Cl) N NN
w NMN Cl)

,

- IT "-

lzr
N

rN
N

C
N

Cý N r yO

Lt ä äÜ Ü
CL Ü

CL a0U

i0 iß

as
rn
co a) 4,

Op C
a)a

ý'
0)

C a)
0

Y
0

CD

C
c 'D

w

O
+" V 0)

c
.r

`
7

C
0

Cl)
>
c

Multi-Objective Genetic Algorithms

So far only single objective genetic algorithms have been discussed, however genetic

algorithms have been successfully applied to multi-objective problems. Schaffer is credited as

one of the pioneers of multi-objective evolutionary algorithms. Multi-objective algorithms

deal with optimisation under a number of, often opposing criteria. In most cases there can be

no single correct answer to such problems as solutions will undoubtedly favour on or other

criteria. A range of solutions have been developed to address this issue, Coello Coello (1999)

gives the classification of these solutions as follows:

" First Generation.

o Non-Pareto based.

o Pareto based.

" Second Generation.

The methods are discussed under this classification below:

First Generation - Non-Pareto based Solutions

Many Non-Pareto techniques have been developed, examples of these include:

" Aggregation.

" Lexicographic Ordering.

" Vector Evaluated Genetic Algorithm (VEGA).

Aggregation involves the weighting of objectives prior to execution of the algorithm, the

weighted fitness for the individual objectives are then summed into a single fitness value,

46

effectively turning the problem into a single objective problem, with the optimisation of the

weighted sum as the objective.

Bentley and Wakefield (1996) identify the following Multi-objective ranking methods, four

of which were proposed in their thesis.

1. Sum of Weighted Objectives (SWO) - The most common method, each of the

objectives is weighted and a single fitness value calculated. This effectively reduces

the problem to a single objective solution. This method is also termed aggregation as

discussed above.

2. Non-dominated Sorting - Pareto based approach discussed in section 3.1.2.

3. Weighted Average Ranking (WAR) - Proposed by Bentley and Wakefield. This

method calculates a fitness value for each solution for each objective; the solutions

are then sorted into lists for each objective and a ranking applied. The weighted

average ranking for each solution is then calculated according to the weightings

provided for each objective.

4. Sum of Weighted Ratios (SWR) - Proposed by Bentley and Wakefield. In this

method a fitness value is calculated for each objective for each solution. For each

fitness value a fitness ratio is calculated using the minimum and maximum fitness

values from the current population this is done using equation 2.4 below:

(fitness vahre, - min(fitness _ value)) fitness_ ratio, =- (2.4)
(max(fitness

_ value) - min(ftness _ value))

47

This method enhances the Sum of weighted averages (SWO) method by removing

any range-dependence and allowing fitness values for various objectives to be

summed directly.

5. Sum of Weighted Global Ratios (SWGR) - Proposed by Bentley and Wakefield. This

method is based on the previous discussed Sum of Weighted Ratios (SWR) method,

only instead of using the minimum and maximum for the current population, the

global minimum and maximum values are used.

6. Weighted Maximum Ranking (WMR) - This method is based on Schaffer's (1984)

VEGA or Vector Evaluated Genetic Algorithm method, which was the first Genetic

Algorithm to be applied to multi-objective problems. To achieve this Schaffer divided

the population at each generation into sub-populations, one sub-population for each

objective. Fitness is then assigned to each of the sub-populations according to one of

the objectives. In this way sub-populations are ranked according to one or other of the

objectives, in order to create solutions providing a trade-off between objectives,

crossover is performed across the entire population. This is similar to the Weighted

Average Ranking (WAR) method, only in this case the Maximum fitness from each

sub-population is used to calculate the ranking rather than the average.

The Lexicographic method requires the ordering of objectives, relative to importance prior to

execution of the algorithm. The algorithm then aims to select solutions, which optimise

objectives according to the ordering assigned.

48

First Generation - Pareto based Solutions

As mentioned above multi-objective optimisation problems will aim to satisfy two or more

often-conflicting criteria. Due to this no single `best' solution can be arrived at, instead a set

of non-dominated solutions is sought.

Goldberg (1989), first suggested Pareto based solutions, the principles of which are described

as follows:

Consider three possible solutions to a multi-objective problem where the objective is to

optimise both the stress and mass of a structural member under given load conditions. In this

case the aim would be minimisation of both stress and mass. The three results produced are

shown below if figure 2.6.

340

320

Results:
300

1. Stress - 200MPa; Mass - 300kg
280

2. Stress - 220MPa; Mass - 280kg
260

3. Stress - 240MPa; Mass - 290kg
240

4. Stress - 260MPa; Mass - 245kg
220

200

(3)
(2)

(4)

Pareto Optimal Front

170 190 210 230 250 270 290

Stress (Mpa)

Figure 2.6 - Pareto Optimal Front.

In figure 2.6 above Results 1,2 and 4 would be termed Pareto optimal as no solution from the

available set dominates any of these three on both objectives. Result three however can be

49

seen to be dominated by result 2, as result 2 is closer to the optimum of both the stress and

mass objective (minimisation).

The set of such Pareto Optimal solutions is known as the Pareto Optimal front and it is the set

of solutions making up the Pareto Optimal front that is the solution sought in Multiple

Objective Evolutionary Algorithms.

Second Generation Methods

Coello Coello (1999) continues to describe Second Generation methods as methods, which

emphasize efficiency and which often, use secondary populations in order to produce solution

sets, which are both Pareto Optimal and uniformly distributed.

A number of such solutions have been developed:

" Pareto Archived Evolution Strategy (PAES) - Knowles and Come (2000).

" Pareto Envelope-based Selection Algorithm (PESA) - Come et al (2000).

" Pareto Envelope-based Selection Algorithm II (PESA II) - Come et al (2001).

" Strength Pareto Evolutionary Algorithm (SPEA) - Zitzler (1999).

" Non-dominated Sorting Genetic Algorithm (NSGA II) - Deb et al (2000).

" Multi-Objective Messy Genetic Algorithm (MOMGA) - van Veldhuizen and Lamont

(2000).

Micro Genetic Algorithm (Micro-GA) - Coello Coello and Pulido (1993)

Whichever solution method is used there are certain criteria that should be displayed by all

good Multi-objective algorithms, Nam and Park (2000) provide four important properties:

50

1. Searching Precision.

2. Searching Time.

3. Uniform Probability distribution over the entire Pareto optimal Set.

4. Provide as much information as possible about the Pareto optimal front.

2.1.5 Ant Algorithms

Ant Colony Optimisation aims to simulate the collective effort of ant colonies to solve

problems. When ants travel between a nest and food source, for example, they deposit a

pheromone in the form of a trail as they travel. This pheromone attracts other ants to follow

and the more ants that travel the path the more pheromone is deposited, and so on and so

forth.

This mechanism of depositing and sensing the pheromone is known as stigmergy. Dorigo et

al (1999), use a double legged bridge experiment to demonstrate this phenomenon, where

ants both real and simulated utilise the shorter route due to the pheromone trial.

Ant Colony Optimisation has been applied to the optimisation of many problems, of both

single and multiple objectives. These applications include:

" Travelling Salesman Problem - Dorigo (1999)

. Vehicle routing problems - Reimann et al (2004)

" JIT Sequencing with Multiobjectives - McMullen (2001)

In addition to these applications Merkle et al (2000) and Liang et al (2004) applied Ant

Colony Optimisation to Resource Constrained Project Schedule Problem Optimisation.

51

Merkle et al (2000), based the general principle of their AS-RCPSP algorithm on Dorigo's

(1992) AS-TSP algorithm. Merkle utilises a serial schedule generation scheme (see section

5.6.1) in conjunction with a maximum Latest Finish Time (LFT) priority rule. Merkle et al

report improved performance over a number of algorithms including Genetic Algorithms

proposed by Hartmann (1998).

Liang et al (2004), applied ACO to the single mode RCPSP using a parallel Schedule

generation scheme (see section 5.6.2) the ACT (Activity Control Time) priority rule is

utilised within this scheme. ACT was reported by Chiu and Tsai (1993) to be the most

effective priority rule. Using this scheme each Ant constructs a feasible schedule and updates

the pheromone trail accordingly. Liang ends the algorithm on the bases of no improvement

being found by the Ants in ten successive iterations. Liang et al report improved performance

over the algorithms proposed by Merkle et al as discussed above.

A flow diagram for Ant Colony Optimisation is given below in Figure 2.7:

52

º{ Solutions from
Pheromone Trail

T

Evaluate Solutions

Ant = No of NO
Ants

41 Ant =0
YES

Figure 2.7 - Ant Colony Optimisation Flow Diagram.

2.1.6 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is modelled upon the dynamics of bird flocks or fish

schools. A swarm, or population of individuals, travels through the search space, looking for

53

(-Stop
Algorithm)

high value locations. The individual, or particle, adapts its `flight' characteristics according to

its experience and that of the other members of the swarm.

At the beginning of the PSO a set of particles are initialised the position of each particle is

evaluated in turn for fitness, in the first iteration the current position of each particle is stored

as the particles best (Pbest) the best value of the swarm is stored as the Global best (Gbest) a

velocity is then calculated from the following formula:

v; +, = v; + (Cl x rand() x (Pbest- Curr;)) + (C2 x rand() x (Gbest- Curr,.))

Where:

Vi =Current Velocity

C1=C2=2

From the velocity the new position of the particle is calculated from:

Curt 1= Curr, +v1

(2.5)

(2.6)

When all particles have been recalculated, the iteration is incremented and the process

repeated. In the subsequent iterations the Pbest value is only updated for each particle if the

new value is better than the existing Pbest value. The Gbest is similarly updated if the best

value for the iteration is an improvement over the existing Gbest.

A flow diagram of the basic Particle Swarm process is shown below in figure 2.8.

54

Particle Swarm Optimisation has been successfully applied to many types of problems of

both single and multiple objectives. Examples of these applications include:

" NC End Milling Optimisation - Tandon et al (2001).

" Training of Neural Networks -Vanden Bergh (2001).

Initialize Particles

IN.

eration = Iteration
A

Particle =0
A

Update Particle
Pbest and Swarm

Gbest values

Update Particle
Velocities

Particle = No. NO
of Particles

YES

NO Meets
Condition

YES

Figure 2.8 - Particle Swarm Optimisation Flow Diagram.

55

Parsopoulos and Vrahatis (2002), applied PSO to multi-objective problems using both Pareto

and non-Pareto based methods applied to problems with concave and discontinuous Parcto

fronts, they achieved success with an algorithm (VEPSO) based on the principles of

Schaffer's VEGA combined with PSO.

2.1.7 Electromagnetism

One of the most recent heuristics, which has been applied to combinatorial optimisation, is

Electromagnetism (EM), introduced by Birbil and Fang (2003). This optimisation method

draws its functionality from analogies with electromagnetism.

Debels (2004a, 2004b) explains that the basic principle behind EM is that each point, x, in a

multi-dimensional solution space, represents a solution. Each point is attributed a charge,

based on the fitness of the objective function f(x). The charge of each of these solution points

will either attract or repel other points with a force proportional to their charge values and

inversely proportional to their distance apart.

EM has been successfully applied to the PSP in particular to the RCPSP. Debels (2004b)

propose an EM solution to the RCPSP using a Random Key schedule representation and a

serial schedule generation scheme.

56

2.2 Evolutionary Algorithms applied to the Project Scheduling
Problem

2.2.1 Single Mode RCPSP using Genetic Algorithms

Hartmann (1998) produced a genetic algorithm for solving RCPSP and reported better results

than the currently existing heuristic methods. Hartmann offers a new permutation based

genetic algorithm, which uses the activity list representation along with a serial SGS. The

initial population being created using a priority rule selected at random. Hartmann considered

three different crossover operators; one-point, two-point and uniform. He determined the best

performing crossover operator to be the two-point crossover, with uniform crossover, noting

that for larger projects increasing the number of crossover points from two may be desirable.

In this publication Hartmann studied the RCPSP in the classification (m, 1(cpmIC, �. "}.

Hartmann benchmarked the results of this algorithm against two other genetic algorithms and

an existing sampling approach and reported his algorithm performing the best. For further

information refer to Hartmann (1997) for the application of the algorithm to the scheduling of

medical experiments.

Valls et al. (2001) propose a two-phase algorithm for the problem {m, I jcpmI Cm. }. The first

phase is concerned with basic improvement of the initial population and the second phase

then performs a localised search of high potential areas using a scatter search (see Glover

1994). The problem is benchmarked using PSPLIB problems.

Alcaraz and Maroto (2001) utilized a form of self-adaptation in their Genetic algorithm based

solution to the RCPSP, the exact problem class studied being {m, 1 jcpmI C""). The initial

population in Alcaraz and Maroto's algorithm is not generated randomly as is commonly the

case; instead the initial population members are generated using a sampling method.

57

Activities are selected using the Latest Finish Time (LFT) priority rule; in this way feasible

schedules are already present in the initial population. They incorporated an additional gene

into their chromosome, which controlled the mode of decoding. This gene contains a setting

that determines whether forward or backward pass scheduling would be employed. Forward

pass scheduling implies that, starting with the first activity to be scheduled, an activity is only

eligible for scheduling once all its predecessors have been scheduled. Backward pass

scheduling works in the opposite way, starting at the last activity; an activity can only be

scheduled once all its successors have been scheduled. Using these two scheduling

methodologies schedules are formed that may not have been possible using forward only

scheduling. The mode of decoding therefore, self-adapts, due to the additional gene, which is

evolved along with the schedule sequence. Alcaraz and Maroto also created three new

crossover techniques:

" Precedence Set Crossover.

9 Forward-Backward Crossover.

" Two-Point Forward-Backward Crossover.

Full details of these methods can be found in the referenced thesis. Alcaraz and Maroto

performed benchmarking using PSPLIB J30, J60 and J120 and reported better results than

those achieved by Hartmann (1998) in all cases.

Hartmann (2002) made further progress with the same class of problem, this time using a

self-adaptive mechanism. Similarly to Alcaraz and Maroto (2001), Hartmann uses self-

adaptation to select the method of schedule generation from the resultant chromosomes. This

is also accomplished by extending the chromosomes with an additional gene, this gene

58

determines which SGS is employed (SSS or PSS) and hence the algorithm will adapt to

utilise the most effective method of decoding for the particular problem under consideration.

This form of algorithm adaptation is referred to as Self-Adaptation as the progress of the

algorithm in refining the chromosome also refines the value of the adaptive gene.

Hindi et al. (2002) introduce their genetic algorithm for solving the RCPSP {1,1 lcpmlC, �}.

This algorithm utilises routines to provide feasible sequences to the initial population instead

of a completely random generated population, which is more the norm. Hindi et al. use an

activity list representation with a serial SGS to decode the chromosome; they experimented

with a number of crossover operators; one-point crossover, multi-point crossover, uniform

crossover and alternate crossover. Hindi et al. carried out initial testing of their algorithm

using the Patterson problem sets and then completed final benchmarking using the PSPLIB

problem instances. Hindi et al. also provide feedback on their experimentation in selection of

the population size and number of generations utilised in their algorithm runs. They

concluded the best performance was achieved by setting the population size equal to the

number of activities in the problem set and they maintained the number of generations for all

problems constant at 100.

Valls et al. (2002,2003) implemented a Hybrid Genetic Algorithm using a serial SGS. They

introduce a new crossover operator, the `peak' crossover operator. This operator is selective

in the portions of the parent chromosomes selected for crossover. It selects genes based on

Peaks in resource utilisation within the activity list. The peaks being transferred from one

parent, with the other parent determining the fill-in of activities around the transferred peaks.

Other features of this algorithm include a local search routine, and the double justification

59

operator, which, left and right justifies the schedule to seek local improvement. The problem

type considered by Valls et al. is defined as(], 1 IcpmIC, �ý}.

Kochetov and Stolyar (2003), employed a Hybrid Genetic algorithm to optimise the RCPSP

{1,1IminIC, �ax}. Their algorithm utilises a serial SGS, and a specialised crossover operator

based on a path re-linking strategy using a Greedy Randomised Adaptive Search Procedure

(GRASP - see Feo & Resende 1995), with further improvement being carried out using a

Tabu Search. The PSPLIB was utilised for benchmarking and the algorithm produced new

best results for two instances of the J60 problem and one instance of the J120 problem as

known at the time of publication.

Gonsalves et a!. (2004) extended the RCPSP problem to the Resource Constrained Multi-

Project Scheduling Problem, specifically the multi-project version of {m, 1 lcpmlmulti}. In

this research the chromosome encoding includes the activity priority, the delay times and the

release dates for each of the projects. As the problem classification indicates Gonsalves eta!.

have designed their algorithm to optimise the schedule for multiple criteria. They combine

tardiness, earliness and flow time. These criteria can be described as follows:

" Tardiness - optimisation of due dates.

" Earliness - Optimisation of stocks.

" Flow Time - Optimisation of work in progress.

A number of decoding philosophies (priority rules) are also considered the most successful

being the `GaSlackMod' method, which modifies the normalised activity slack (float) to

assign priority values to the activities.

60

Debels and Vanhoucke (2005a), utilise a Bi-Population Genetic Algorithm in which one

Population contains Left Justified Schedules (LJS) formulated from a forward pass on a

random activity list, and one Population contains only Right Justified Schedules (RJS)

formulated from a backward pass on a random activity list. These two populations are then

used to employ a forward-backward iterative local search process similar to that utilised by

Alcaraz and Maroto (2001) and Valls et al. (2003). Debels and Vanhoucke (2005a) report this

Algorithm performing slightly better than their (2004b) Hybrid Electromagnetism/Scatter

Search algorithm discussed below. The algorithm is applied to the {m, 1 IcpmIC, �... }

formulation of the RCPSP.

Debels and Vanhoucke (2005b) also introduce a Decomposition-Based Heuristic. This

Heuristic utilises their previously discussed Bi-population Algorithm as a subroutine to

optimise sub-problems (or sub-networks). They describe three stages as follows:

" Construction of Sub-problem -A RJS is utilised in conjunction with a time interval [Ptl,

Pt2] to create a schedule Sb, such that Sb cS where S is the schedule of the full problem.

" Genetic Algorithm - The Genetic Algorithm transforms Sb into an improved Sb.

" Merge - The improved sub-schedule Sb is reintroduced into the original schedule S to

create an improved S.

The problem class considered by Debels and Vanhoucke (2005b) is {m, II cpmI C, �), it was

benchmarked using PSPLIB J30, J60, J90 and J120. The Algorithm outperformed most

algorithms on the J30 and all algorithms that it was compared against for the J60 and J120,

this included Hartmann (1998,2002) and Debels (2004c).

61

Mendes et al. (2005) propose a Random Key based Genetic Algorithm as a solution to the

RCPSP {m, 1l cpmlC, � }. They quote the definition of three schedule types:

9 Semi-Active Schedules - Feasible schedules obtained by sequencing activities as early as

possible. No activity can be started earlier without changing the sequence.

" Active Schedules - Feasible Schedules in which no activity can be delayed without

delaying some other activity or breaking a precedence relationship. Optimal schedules are

always members of this set of schedules and active schedules are always members of the

set of semi-active schedules.

" Non-Delay Schedules - Feasible schedules in which no resource is allowed to be idle

when it could start to process an activity. Non-Delay schedules are also members of the

set of active schedules.

Mendes et al., limit the search space for the optimal solution (Active schedules) by

employing parameterised active schedules. Whilst the Active Schedule space contains the

optimal schedule/s this search space is very large and contains many solutions with long

project durations. Parameterised schedules limit this search space by placing a restriction on

the project duration. Mendes et al. also employ a unique fitness measurement criterion

termed `Modified Makespan'. This problem performed well compared with other algorithms

when tested on J30, J60 and J120 PSPLIB problems.

Sakalauskas and Felinskas (2006) utilise a job priority list based genetic algorithm to solve

the single and multi-mode RCPSP. The {m, 1I cpmI Cm¬, } single mode solution is discussed

here and the multi-mode discussed in 2.2.4 below. The algorithm utilises a binary code

representation making it unique from all other algorithms discussed in this section.

62

Sakalauskas and Felinskas utilised PSPLIB problems from J30, J60, J90 and J120 solution

sets to test their algorithm.

2.2.2 Single Mode RCPSP using Ant Algorithms

Marco Dorigo et. al. (1999) first introduced Ant Colony Optimisation (ACO). Since the

inception of ACO it has been successfully applied to various complex problems including the

well studied Travelling Salesman Problem (TSP) and also more recently to the PSP.

ACO aims to simulate the collective effort of ant colonies to solve problems. When ants

travel between a nest and food source, for example, they deposit a pheromone in the form of

a trail as they travel. This pheromone attracts other ants to follow and the more ants that

travel the path the more pheromone is deposited, the greater the attraction to other ants, and

so on and so forth. This mechanism of depositing and sensing the pheromone is known as

stigmergy.

Merkle et a!. (2000) first utilized ACO to derive solutions to the RCPSP {m, 1lminlC,,, (LC},

employing the serial SGS in conjunction with a modified LFT priority rule. In ACO based

scheduling a pheromone matrix is commonly utilized, with pheromone being deposited by

the ants to a matrix element when a good solution is found. The traditional approach being to

employ the two matrix dimensions to represent the sequence (ith job/task) and the actual

job/task number j. In other words Tyj would represent the possibility of Task j being the ith

job. Previous scheduling work using ACO had the ants evaluate the desirability of placing j

as the ith job/task purely on the level of pheromone present in that matrix location, this is

known as direct evaluation. Merkte et a!. (2000) proposed an alternative to this evaluation

method, which helps maintain desirable positions for tasks as it takes into account the

63

desirability of having activityj at the ith or less position in the sequence preventing activities

which should be scheduled early being postponed until much later in the sequence. This

alternative method is calculated using the following formula:

Ii
k=1

Tkl
(2.7)

Merkle et al. termed this method Summation Evaluation. In the RCPSP algorithm a

combination of these methods are applied. Other characteristics of this algorithm include an

elitist strategy, 2-Opt local optimisation and also a low probabilistic possibility of replacing

the best solution to date with the best for the current generation. The latter was employed to

prevent premature convergence due to the elitist strategy. Merkle et al. report results that

supersede those achieved by Hartmann (1998) using a competitive genetic algorithm and by

Bouleimen and Lecoq (2000) using simulated annealing.

Based on the success of Chiu and Tsai (1993) in employing priority rule methods using their

ACTim rule, Liang et al. (2004) produced an ACO based algorithm for the (m, 1I cpm I Cmý)

RCPSP utilising this rule. The results obtained utilising the PSPLIB problems compared well

to Bouleiman and Lecoq's (2000) simulated annealing solution and to Hartmann's (1998)

earlier GA, however it gave slightly worse solutions than both Merkle et al. (2000) and

Hartmann's (2002) self-adaptive algorithm.

Herbots et al. (2004) studied the applicability of ACO to the {m, Il cpmI C, �ý}, RCPSP

problem. Herbots et al. test three different algorithm configurations:

" SSS with normalised Latest Start Time (nLST) priority rule.

64

" PSS with normalised Latest Finish Time (nLFT) priority rule.

" SSS with normalised Weighted Resource Utilisation and Precedence (nWRUP)

priority rule.

Each of these algorithm configurations was tested with forward, backward and bidirectional

scheduling. The best performing configuration was the PSS/nLFT followed by the

SSS/nLST. Herbots et a!. refrain from employing hybrid techniques within the algorithm and

their algorithm compares well with other non-hybrid algorithms. They conclude with the

belief that ACO has great potential for use as a hybrid due to its good performance in the pure

form.

2.2.3 Single Mode RCPSP using Other Meta-Heuristics

On of the most recent heuristics, which has been applied to combinatorial optimisation, is

Electromagnetism (EM), introduced by Birbil and Fang (2003). This optimisation method, as

its name infers, draws its functionality from analogies with electromagnetism principles.

Debels and Vanhoucke (2004a) explain that the basic principle behind EM is that each point,

x, in a multi-dimensional solution space, represents a solution. Each point is attributed a

charge, based on the fitness of the objective function f(x). The charge of each of these

solution points will either attract or repel other points with a force proportional to their charge

values and inversely proportional to their distance apart.

EM has been successfully applied to the PSP in particular to the RCPSP with the

classification (m, 1IcpmICm). Debels and Vanhoucke (2004a) propose an EM solution to

the RCPSP using a Random Key schedule representation and a serial schedule generation

65

scheme. This Algorithm outperforms Hartmann (1998,2002), Alcarez and Maroto (2001) and

Valls et al. (2002,2003) on J30, J60 and J120 problems.

Debels et al. (2004b) team scatter search techniques with EM in order to produce a Hybrid

genetic algorithm. Whilst Kolisch (1996) had found that Activity List schedule representation

was more consistent in obtaining optimal schedules than Random Key representation, Debels

et al. state that this is due to the possibility that a number of RK representations can result in

the same schedule. They supply two reasons specific to the RK representation that cause this:

" Scaling in Euclidian space - priority values can be scaled in Euclidian space and still

represent the same schedule.

" Precedence Constraints - The priority values do not have constraints, therefore a

predecessor may have a lower RK than that of its successor.

Debels et al. then provide solutions to these two issues as well as two issues common to both

the RK and AL representations and they choose to employ an improved RK representation,

standardised RK (SRK) in their algorithm. This algorithm is then coupled with scatter search

techniques.

2.2.4 Multi-Mode RCPSP using Genetic Algorithms

Wall (1996) employed a genetic algorithm to solve the MRCPSP the exact problem being {m,

1l cpm, muI C, � } and {171cpm, muI C, � } with non-renewable resources (11) only being

considered in one problem set. Multi-mode problems consider the case where a number of

66

different duration/resource utilisation options or modes are possible. Various scenarios can be

employed by considering different modes or resource/duration combinations. Blend

Crossover (Eshelman and Schaffer, 1992) is employed which is an adaptive operator that

generates new values, based on the diversity of the parents; Wall tested three other crossover

operators:

" Uniform crossover.

" Mean with Gaussian noise.

" Extrapolation.

Wall found uniform crossover to perform slightly worse than the other three operators. Two

separate mutation methods were utilised, firstly Gaussian noise was applied to the activity

sequence array and secondly, random flipping was applied to elements of the mode array.

Walls applied the mutation probability at genome level rather than for the entire

chromosome, each genome having the possibility of being mutated separately. Wall tested his

algorithms using a number of sets of test problems including, Patterson's (1984) Project

Scheduling Problems, Kolisch et al. (1992) single/multi mode Project Scheduling Set and

Fox and Ringer's (1995) Benchmarx problems. The majority of other algorithms detailed in

this thesis make use of the PSPLIB (Kolisch and Sprecher, 1996), therefore no direct

comparison is made of the performance of Walls algorithm against the others algorithms

presented.

Mori and Tseng (1996) employed a genetic algorithm to solve the MRCPSP {m, 1 lcpm,

muI C, �,,, }. In Mori and Tseng's GA the complete schedule is represented in a single

chromosome, the Mode forming one bit of the Activity Gene. The mode selection is built into

67

the genome for each activity as an additional gene. This gene is initially selected at random,

along with the sequence gene, and is then evolved along with the rest of the chromosome.

Hartmann (2001) proposed a genetic algorithm for solving the MRCPSP, the exact problem

being studied being {171 cpm, muIC}. The algorithm encodes both the activity sequence as

well as the mode value within the chromosomes genotype. Hartmann employs a serial SGS to

decode the activity list to a precedence and resource feasible solution. Due to the encoding of

both the activities and the mode into the chromosome Hartmann developed specific crossover

and mutation operators to address the extended genotype.

Sriprasert and Dawood (2003) employed Multi-objective weighting in their multi-constraint

genetic algorithm. The term "Multi-constraint" has been used to describe the following

constraint types placed on activities:

" Contract Constraints (time, cost and quality).

" Physical Constraints (technology dependency, space etc.)

" Resource Constraints (availability).

" Information Constraints (availability).

Whilst this provides a different classification of constraints on project activities the authors

would argue that all of these items are already addressed within the standard RCPSP as

either, optimisation objectives (time, cost etc.), Resource Constraints (as above but also

space) or as predecessor dependencies (Information availability, technology). Details of the

scheduling mechanism employed in this algorithm are not provided. Sriprasert and Dawoods

algorithm was integrated with AutoCAD and Microsoft Project in order to produce 4D

feedback from the optimised schedule. 4D provides a3 dimensional (3D) visualisation of the

68

construction process over time (Fourth dimension) in accordance with the precedence

relationships defined in the schedule network. Sripraset and Daewoods algorithm uses an

extended chromosome structure to allow for multiple execution options or multiple modes.

The algorithm employs a uniform crossover operator and covers problems defined as {m,

1 jcpm, muICmax}.

Elloumi et al (2007), propose a solution to the bi-objective multi-mode RCPSP that allows

overruns on the resource limitations, but assigns a penalty to any overruns based on the extent

by which the limits are exceeded. The penalty is then utilised as a second minimisation

objective (along with minimising makespan). They report better performance than the

algorithm of Hartmann (2001) when testing the algorithm with j 10 - j30 problems. The type

of problem considered with this algorithm is {171 cpm, muI C.,,,).

2.2.5 Multi-Mode RCPSP using Ant Algorithms

No examples of Ant Algorithms applied to multi-mode RCPSP were found.

2.2.6 Multi-Mode RCPSP using other Meta-Heuristics

No examples of Particle Swarm, or Electromagnetism Algorithms applied to multi-mode

RCPSP were found.

2.2.7 Time-Cost Trade-Off Problems using Genetic Algorithms

Feng, Liu and Burns (1997) propose a genetic algorithm solution to the time-cost trade off

problem. Using the Herroelen et al. (1999) classification the problem would be (1,1 1cpm,

mu, curve) .
Feng et aL utilize a non-dominated Pareto front approach in order to provide the

69

time-cost trade-off curve, with multiple modes being available for each activity. Feng et al.

demonstrate a Microsoft excel implementation that successfully produces the Time-Cost

Trade-off curve for an 18 activity problem.

Azeron et al. (2004) also propose a genetic algorithm solution to the time-cost tradeoff

problem. The problems optimized by there algorithm can be classified as {1,1 1cpm, mu, cj

(curve). Azeron et al. utilize the generalized Erlang distribution to describe the activity

duration within a PERT network. Azeron et al. also use the non-dominated Pareto front

approach.

2.2.8 Problems with Discounted Cash Flow using genetic Algorithms

This subclass of problem further extends the RSPSP problem through the addition of the

consideration of cash flows incurred through the execution of certain activities. The objective

of these problems being to maximize the Net Present Value (NPV) of the project, whilst also

satisfying the requirements of the previously discussed RCPSP.

Ulusoy et al. (2001) propose a Genetic algorithm approach for solving the RCPSPDCF. They

consider four different payment models, with two different resource scenarios in each case.

The Herroelen et al. (1999) classification of each of the payment models is given below for

each resource scenario:

" Lump Sum Payment at contract end (LSP) { 1,11 cpm, d. mu, cj, I npv}, {171 cpm, a�, mu,

cj, I npv}

9 Payment at Event Occurrences (Milestone payments) (PEO) (1,11 cpm, a�, mu, sched

npv}, (IT I cpm, 8,,, mu, sched I npv).

70

" Equal Time Intervals (ETI) { 1,11 cpm, 8n, mu, per I npv}, JITI cpm, 8�, mu, per I npv}.

" Progress Payments (PP) (], I I cpm, 8n, mu, per I npv), {IT I cpm, 8�, mu, per I npv}.

As can be seen from the problem classifications, Ulusoy et al. (2001) have extended the

RCPSPDCF by applying multiple modes. This is addressed in a similar manner to that

adopted by Wall (1996), Mori and Tseng (1996) and Hartmann (2001), that is the mode

option is encoded within the chromosome, thereby being refined through the evolutionary

process along with the activity sequence. Ulusoy et al. utilise a multi-component uniform

order based crossover operator, MCOUX, the reader is referred to Ulusoy et aL (1997) and

Sivrikaya-$erifoglu (1998) for further discussion of this operator. Ulusoy et al. (2001)

describe the RCPSPDCF with the following equation:

NPV = 2]CFA (1 + r)-sT' +2]P Tk
k (1 + r)-(2.8)

j k¬K

where CFA" is a set of Cash out flows computed from the cost of use of resource per unit time,

multiplied by the duration of the activity j. r is the discount rate. ST is the start time of the

given activity j, K is a set of payment points, P is the set of payments received at payment

point K and Tk is the set of occurrence times for the payments P. This calculated value of

NPV is then used as the fitness measurement for this algorithm.

Ulusoy et al. utilize a modified scheduling scheme, which will not allow an activity to be

scheduled with an earlier start than that of the start of any activities located to its left in the

chromosome.

Vanhoucke (2007) investigated the {m, 1lcpm, bn-1, cj Inpv) problem. This problem

investigates the optimization of net present value within a defined deadline. Vanhoucke then

71

also investigates a soft deadline where the deadline can be violated in some circumstances but

a system of penalties costs are then applied for breaching the deadline. Vanhoucke utilises

three populations within the applied genetic algorithm. The first population contains

information on the Positive Cash flows, the second on the negative cash flows and the third

on the net cash flows, Vanhoucke concluded that the three population approach outperformed

the traditional single population approach.

2.2.8 Design Structure Matrix based problems using Genetic Algorithms

Rogers (1994,1996) implemented a genetic algorithm to optimise the sequence of activities

in the DSM in order to minimise the impact of iteration, which requires the DSM to be

moved as close as possible to becoming lower triangular. Rogers algorithm was termed

Design Managers Aid for Intelligent Decomposition (DeMAID). Satisfying this objective has

the effect of minimising the overall duration of the project (make span) and therefore reduces

the overall time dependant cost. The problem considered here would be {Idsmlminiter, C. =).

Rogers offers no comparison of the DeMAID genetic algorithm against other optimisation

methods.

Todd (1997) also considered the DSM for the single objective of minimum iteration. Todd's

experiments showed great improvement over currently existing methods when applied to

three well-studied problems. Todd tested problems with 12,20 and 51 activities, the results of

these test can be seen in table 2.3 below:

72

Table 2.3 - Comparison of Todd's (1997) GA vs. Non Evolutionary Methods.

Problem No of Tasks Previous Best

Solution

Todd (1997)

KUSIAK'91 12 7 6

STEWARD `81 20 93 24

AUSTIN `96 51 320 158*

*later Todd produced a result of 157 under multi-objective solution.

No evidence of the application of ACO or other types of Meta-heuristic to this class of

problem was found.

Todd (1997) considered the maximisation of concurrency as well as the minimisation of

iteration {Idsmlmaxconcur, miniter). Todd (1997) reported his best results using Enhanced

Edge Recombination Crossover (EERX), of Starkwcather et al (1991), in combination with

the 2-City Adjacent swap, so named from its previous application to the Travelling Salesman

Problem. Todd found a slightly better solution to Austins 1996 51-activity DSM problem

under the multi-objective (miniter, maxconcur) problem finding a solution with a total

feedback value of 157, his best result under single objective being 158.

Whitfield et al. (2003) considered a number of different partitioning techniques whilst also

investigating maximisation of concurrency and minimisation of iteration. In Whitfield et al. 's

work emphasis was placed upon identifying the best Algorithm model by assessing the

relative efficiency of a number of genetic operator combinations. Whitfield et al. found

Todd's favoured combination of EERX and 2-city adjacent swap mutation to be among the

worst performing combination and reported their best results from using the Independent

73

Position Crossover (IPX) in conjunction with the Shift Operation Mutation (SOM) of Murata

and Ishibuchi (1994).

No evidence of the application of other forms of evolutionary algorithm to this class of

problem was found.

Zhaung and Yassine (2004) utilised a Genetic Algorithm to optimise the RCPSP problem

using the Dependency Structure Matrix. Zhaung and Yassine implement Leu and Yang's

(1999) Union Crossover 3 operator, this operator performs crossover whilst maintaining

conformance to precedence relationships. They also consider a Multi-project environment.

The class of problem considered in this case is {1,1I dsmI Cm }

No evidence of the application of other forms of evolutionary algorithm to this class of

problem was found. Table 2.4 below gives a summary of the survey pertaining to the

application of evolutionary algorithms to PSP.

From the review of the literature it can be seen that the majority of research conducted into

solution of the PSP via meta-heuristic has been focused on utilisation of the Genetic

Algorithm. The Genetic Algorithm has been applied to a wider range of problems and with

greater depth to each problem than the other meta-heuristics presented here.

In order to meet the research objectives the research will be continued also utilizing a genetic

algorithm approach as it is felt the structure of the genetic algorithm will lend itself more to

the special problems that will be considered in subsequent chapters.

74

++ r

*
(ü

c d : U U U U U
O d CS

-6 (D Ü Ü Ü c
O

Ü

14- r r r
-

r

O ö ' +

V

0 E a a 0- d a a
V c

o Ü
U U U U U

C
4

U)
Cl)

U)
Cl)

cn
U) U)

cn
U)

2 L C 0

ýc
L_

3
L_

3
L_

3
(1)

3a ö
L_

"3
O yO J Z

Q Q Q Q Q

C C C UOLC.. OÜ

2-1 C:
C c

0 cu cu 3: E
(D cu co 'a c: ý 2: cm Q 7

2
iu U)
Q

Z
Ü CU ' tf m N
a. 0- to ca-

tý Ü6 U)
ý7Q ND Z 2

12 Q= IL ar-2 U) fß
2

O >
CCE

O COpO (0 N
>

M

to
>" Co >2 (0

?: OC -00
Y -

aa0 p) p ,2 y a) w LL
y

N

c3ý °
Z a°i °cCO° 'CCo°

ý ý > °D
a

V pi U mUý00U
04

Gý C (Cl O C N Cý

L
L C:

_
y>

M 70 - 1 ±,
-

C fý N
E

4)
`Y NÜa "O U_, E

Q C Y äý
O (0 Cl)

Ü a)
CU d U.

U)

C

O N
C UCm

`: ` CUC
f0

DC (Ö
C
Oy Z

m v Z
W

-
OQOc

. m' ° Cu CL .0 °
Qod UN -0 E

v d J= (D YN c: o YON`
° Q) N a)

U °

U)
-
7 ýa - 0 cu (6 CL L O CD

Z
c f0 QU

N
to

U ýO

+

U) 0 a)

U) 'e

C
G

L U U U U U U

O C
CD
c

CD
c

CD
C

a)
c

ä a)
0

a)
C7

4)
0

4)
0

N
U

Cl)
U

yy

c0
M N M

N N
(N

N N

CL
V = 0
z I- 0

O O f9

O V= (7
N 0

J 7

a
Z
W
D

Q

V N
'a
c
cU C iß

W
0

a
U)

ld cu N Cu Cl)

ä w I--
_ (Cl

m
Cu U) >

UU
cý
U
U

.X
W
4-+
O

«3

N

cý
H

kf)

r-

c m (0 m '

X X X X X

r E
E E E E E

0 0 U U
-

0 0 0 U U
_ _ _

I a a Q a C cl CL C
- ö - U U U

c x E E E E E E E E
0

E a a d IL IL a a s
Q Q ä

L) EL
of [if Of

c cn Cl) cI) cI) cn cn cn U) 0)
.20 n U te) (f)

c) (1) (1) (J) a . (/) U c f)

3 3 3 3 3 3 3-° 3 3
0 Q Q Q Q Q Qco

C
p

c
a)

c
N c

a) E .2a a
a) > " > OBE - 0C

Q Q Q Q
0) 0) c a) a) z Z Z Z Z Ö Ö Ö c (U cm O

m
Z z z

0
m

ä L.
d .Y N' (6 ` NQCUC

O
U)

U

o
V l vOi 0

aÖ Q) CD Q
Z

Q
Z

Q
Z

Q Q
Z U)

0 L C:
Q)

EO
U) N .= ECÖ Un Z

j p () C) ý m Z
a-

a)
>L

L
E

L
L Ü

-
t7
Vr

C
O O Q c0

O
U)

O
Cn

M
O

M
O

-0 O
(D Ü 0

Q (n
d u. L 7 O C

0
Z

m
ß

F- O
d

E
0

O7
70 Z J J

0 U V

m

F

,JN
0 NU (N N

NC/)
a-

U U U U 0 0 0
2 _0

L. c U C
Q Q Q w

D c - C
Q)

c C
a)

C
W

C C

C) p
C) O O 0)

Ö
O

i' N
CD
N

0
N

O 0
N

C)
N

Ö
N

O
O

N N 04

N aD O
> W 7

L

L L

- = Z
0

L
. c: c:

(0 ü D +6 co o f0 N (D
> C

CO
C
m

.. a YN
., Q)

0 C
(0 4)

U) fA
m (O

-
ä

a fn (n

v 5 ä -c U) Y
.
- H ý c O

ý W o o 0 Z (1) cu CD (D a) O O U)
LL Q S

W
0 0

b

C U

t-.

0

cd

ct H

r

Ix X

ý

m co
E

Uv

x
(0
E VY

(0
E

x
C, m ý-

E
U

0 :3 U

u E ö- E
E ö QE

E . Q
n

c-
ý .

H
= Ü

F--
V

V V V

ä n
a-
Cl)

CL
U)

.
n.

C o C
o U) ` 0

L)
U)
U)

CD
0) a) 75 0 a)

(D 3
GNU f0 UC

d
N

0 J
Q

LOUN
'O CY)

-FD OC
CO

QN2EOO CO
TND t4 E

O

,cOO
'o O

Cp
C0Ow . - 0

C
OoOO

OLN -00 oi } Coýý C-n .oN
O

ý

ä cü

0
°

0L
cE

Q. C -0 C
c 0 ca äý E

cýaä `° E ýZ ö> mE -OW Emö
Q

M v
W Cm a co

> Co ÖC

c
O 7 (D Cc O

UHU
11,

mz o C Qmm' O
Ua D_ x U V mE

CC)

L
U)

L
U)

V
J

O
p

N
C
p

J

N
Z 0 Z _0o

C C

U U U U U

C C C C
cu
(D

(D
(D

a)
0

a)
(D

O O)
r"

O
N

O
N N

a o
ý

y
F- N

>

a
F-

w cm: ý
C
`° E cu E

OüC
w o

U
ö ö

2 a1 2 = 0 w

b

c
Y

O
0

U

ýG
cn

.Y

.X
w
0

c
E

ýi
U

H

N N

ý _0ýOF- of 7 U
` c

E Q.
EVÜEV ID E Vý

CL , --ý
. U) Q. a

'p acj U> 7 U> > cp

-- - CL
nk

r- c Ä.

_0bQ)`° -Q) U> Q'
0 c ECD o. E aE .ý E :i ÜCÜOOcaCO Üb

O C

LL
0

U-
U

a>
oE° v a-

LL -m°
U Cl-

ä

U) c O`U)0_pai
U a) -

-
0 aowO U)
Q) a)

O A?
0NNUCUCO

(L) Q) EE
OÜCO +4

NOLC2
`Z O

Q Cj

0 C:
O

.2 °°c
to

Q
CCM

-p O

c 3U)E
a)ý u

a) w- pc3

E püi EOS 00CW Oar .O°
U

E m
p c_

0-6
CL

cD

c

öU
D.
3ý

C
o

co cu
m

0 LL

U O
U
C

N

c

CD U

O
O
0

N N

2
I
H

0

J
LL
U

Q

U
a)

am 0 C . V)
F=
iLi

, ö

ä U z ° -C c
C O C9 > >

b r-)

C

O
C-)

U
F.
cL)
U

y

on

LL
w
0

a

ýi

H

00

a)

0 U

U
ca
r'

on

0

Z

ci

H

C
- Yj

xx

.

o

cc .ýýc U ý c
E

o 0 U)

- U) CU En M
E -o :aE

o'
V ýr tiI ýr tiý E

tir

LL
I

^
LL

^) Cl) ^
V/

' ^ Cl) r^ Cl) ^
LL LL

16 '5 *6 ýa 16
N ZO ZO ZO
=3
0-

D
a- cr 0-

U) N U) N U) O U) Q)

om on

lýy

ö C
C ö C

aa)
- C CU 0 0

Ö N -N
to

a: 3
O

N"Ö Lo V
c Z nE

c X
-

ö X
C a CD -

0
a) X C O.. c a)

Oc _
Ü
c rnz w Nc

U
a "°

O W c
70

O
-a -a

c c Q Q
o
Z

o
z Z Z

U U U U
N N

Cl) 4) 4) 4)

. tw.

0)
X z D) O

Ö

0) 0) O
04

O
04

U O

I

i- U)
z Q)

0)
_0
'0 L

Ö ä O I--
N

2.3 Chapter Summary

In this chapter a thorough literature review was conducted of topics relating to the project

scheduling problem, evolutionary algorithms and other meta-heuristics, followed by the

application of these meta-heuristic techniques to the RCPSP. Each of the applications

identified was coded in accordance with the Herroelen classification system and a summary

table was provided giving key characteristics of each algorithm.

80

Chapter 3. Methodology

This chapter reviews the approach taken with this research and the detail of the

implementation of the developed algorithms, it discusses the problems that are addressed by

the research and the environment in which the algorithms are developed and tested.

3.1 Approach

After completing the literature review it is evident that the greater portion of the research in

this area has been conducted utilising genetic algorithms. To build on this research the

approach selected for this thesis is also a genetic algorithm approach.

It is intended to propose a modified genetic algorithm that will utilise adaptivity in order to

intelligently control its parameter settings, it is a premise of this research that this will

provide a robust algorithm that will lend itself to the complex search space exhibited by many

PSP.

81

3.2 Implementation

In order to implement the algorithms it was decided to conduct the initial algorithm

development in MATLAB, with the algorithm being built in a modular form in order to allow

for experimentation with different configurations. The decision to first develop the algorithm

in MATLAB was made in order that the test problems for the TSP and DSM could be

handled.

The process decided on was to develop the algorithms in the following manner:

" Develop a basic Genetic Algorithm that could be tested on a simple problem

(Travelling Salesman Problem).

" Develop a unique methodology for helping to guide the search within the optimisation

routine and test on the Travelling Salesman Problem.

" Develop Additional modules for the algorithm in order to optimise the Design

Structure Matrix based problems.

" Develop Additional modules for the algorithm in order to optimise the Single Mode

RCPSP.

" Develop Additional modules for the algorithm in order to optimise the Multi-Mode

RCPSP.

Once these algorithms have been successfully developed and tested the algorithm would

be rewritten in Microsoft Visual Basic for Application within the Microsoft Project

(MSP) environment. This would allow for experimentation with more practical, `real

world' type problems in order to satisfy the latter objectives of the research. Once the

82

algorithms were rebuilt in MSP they would be tested with RCPSP problems before being

further developed to handle extended problems. The extended problems that were focused

on for further development were:

" RCPSP with Stochastic Resource Assignments.

" RCPSP with Stochastic Preferential Logic Assignments.

The diagram represented in figure 3.1 below shows the taxonomy of the developed

algorithms.

Design Structure
Matrix

PSP

Precedence
Networks

Iteration P oblemI

I MRC
SP
Mode II Single

RCPSPde

RCPSP II RCPSP
w/Stochastlc w/Stochastic

Resources Logic

Figure 3.1 - Taxonomy of Developed Algorithms.

The Venn diagram in figure 3.2 below shows the development of the various algorithms

within the appropriate development environment. The shared algorithm shows the point of

transition from MATLAB to MSP.

83

MATLAB MS-PROJECT

DSM RCPSP
PROBLEMS w/Stochastic

-- -'# Resources

TSP
(Non-Schedule)

RCPSP

------------- RCPSP w/Stochastic
ulti- Mode - Logic

Figure 3.2 - Venn diagram of Algorithm Development Environment.

3.2.1 MATLAB Implementation

As shown in Figure 3.2, the initial algorithm implementation was aimed at solving the

Travelling Salesman problem. This non-scheduling type problem was chosen due to it being a

simpler problem that is also a permutation type problem. The TSP was considered a simpler

problem due to the ease of implementation of its fitness function compared to that of the PSP,

which requires a fairly complex scheduling algorithm in order to calculate the overall

duration of the schedules.

The next problem targeted under the MATLAB environment was the first PSP problem. The

DSM problem to minimise the iteration inherent in the design activity sequence was chosen.

Again, this problem being considered simpler than the precedence based network type of

problem as the measurement of iteration is again far more easily implemented than the

precedence based RCPSP problem. The DSM problems are not intend to be considered as an

alternative to precedence networks, rather to be complimentary and focused on refining the

activity interactions that occur during engineering or development phases of a project. As

discussed in Chapter 2, genetic algorithms have previously been applied to the DSM for the

84

minimum iteration problem, and it was therefore considered a good starting point for testing

the effectiveness of the developed algorithm in the PSP space. Section 5.1 details this

application of the algorithm in detail.

Following the DSM, the algorithm was further developed to encompass the single mode

RCPSP. As discussed earlier this requires encoding of the scheduling algorithm in order to

calculate the fitness of the generated schedule. This implementation is discussed in detail in

section 5.2.

The final problem consider within the MATLAB environment is the multi-mode RCPSP, this

required a restructuring of the chromosomes as well as modifications to the genetic operators.

The detailed implementation of this optimisation problem is discussed in section 5.3.

3.2.2 Microsoft Project based VBA

Microsoft Project was chosen as a commercial scheduling environment in which to

implement the FDAPCGA due to the built in Visual Basic for Applications (VBA)

development environment integrated into the application. This provides an easily accessible

interface to the underlying data. The MATLAB algorithms were rewritten in VBA with

modifications being made as needed in order to utilise Microsoft Project variables.

A simple graphical user interface was developed in order to solicit run time settings, allow for

problem selection and to provide feedback on the algorithm execution progress and

performance. The layout of the user interface dialogue box is given in Figure 3.3 below:

85

DATA CAPTURED FROM THE SCHEDULE

Project Data: j Problem Type:

Number of tasks: 180 Problem:

Number of Resources: 4

Algorithm Settings: Output Data:

Population Size: Mini nm Fitness (1):

Crossover Rate: 0.7
Average Fitness (1):

Mutation Rate: 0.07 1ý\an Fitness (2):

of Generations: Number ý- F 20
\Avaage Fitness (2):

Percerxage Ekism: 0.25

a G,
0%

PROGRESS MONITOR

SELECTION OF PROBLEM TYPE

j GENETIC
ALGORITHM

RCPSP OPTIMISATION
RCPSP wth 2 Welghted Objectives
RCPSP ith StochastK Logic
RCPSP vdh Stochastic Resaxc

i iI

RUN PARAMETER SETTINGS

lohn Lancaster
PhD Research

School of
Engineering and

Design
BRUNEL UNIVERSITV

Get Project Data

kuiAborRMn ->

FITNESS DATA FEEDBACK

Figure 3.3 - Microsoft Project user interface.

The dialogue box is called by utilising the customised Microsoft Project toolbar as shown in

Figure 3.4 below:

GENETIC ALGORITHM TOOLBAR

!1 Ele I Ldit view Insert Fgrmat Tools ero)ect 4olaborate window Hei

OaLj 43 davv b69id4 fa ßän4.. El \, O
Tasks Resarces Treck Report (M Next Steps and Related ActioOes

*A Pie" Project VX

Open a project Task Name

Tank Farm wHyd. mpp
Tank Farm wMydsd. npp 1a Contract Award

Tank Farm wHyd_sd sol_sd_sol. mpp

Dirdbn Start FW sh Stochmtic Predemsora
Logic

I day Nbd 2/2107 Wed 2121107

m n..,. r... omm rw. "nam

Figure 3.4 - Genetic Algorithm toolbar

The implementation of problems within Microsoft Project starts with the standard single

mode RCPSP in section 5.4 this is followed by the special problems being considered in

Chapters 6 and 7.

No Qoup ý G)l (Sk . 91 Q) ý

86

3.3 Chapter Summary

This chapter has summarised the methodology that has been employed in this research. It

provided the approach and the detail plan of implementation. It details the platforms utilised

for the algorithm development and the problems considered in each case, as well as introduce

the user interface used to run the algorithm within Microsoft Project.

87

Chapter 4. The Fitness Differential
Adaptive Parameter Controlled Genetic
Algorithm

It was identified in Chapter 3 that the basic genetic algorithm would sometimes become

trapped in local minima and that a method was sought which could intelligently select when

to widen the search path or to follow the current improvement path. Adaptive behaviour was

selected as a mechanism to implement this additional intelligence. Chapter 4 discusses the

development of the Fitness Differential Adaptive Parameter Controlled Genetic Algorithm

(FDAPCGA). The taxonomy of Adaptive behaviour is discussed as well as the structure of

the FDAPCGA and a test application using the travelling salesman problem (TSP).

4.1 Taxonomy of Adaptivity in Genetic Algorithms

A lot of work has been invested in the study of optimal settings for the operating parameters

for Evolutionary algorithms. Parameter setting can be executed in two main modes prior to

run and during run.

88

Ursem (2003) and Eiben et al (1999) both provide taxonomies for Parameter setting, which

follow the same basic structure with some minor terminology differences, we provide the

taxonomy as per Eiben et al (1999) in figure 4.1 below:

Figure 4.1 - Taxonomy of Parameter Setting.

Parameter tuning is concerned with refining the setting parameters prior to nin time. The

parameters remain constant throughout the execution of the algorithm. Many methods have

been applied to tuning these parameters including Taguchi methods. Thierens (2002)

demonstrated the use of adaptive mutation control, employing two methods of controlling the

mutation factor by testing the effects of increased and decreased mutation rates and then

modifying the mutation probability accordingly.

Parameter Control is concerned with the modification of parameters during the run time of

the algorithm there are a number of methods by which this can be achieved:

" Deterministic.

" Adaptive.

" Self-Adaptive.

89

These three classifications specify the method by which the algorithm receives instruction to

alter the value of a parameter.

Deterministic control involves the modification of the algorithm according to a pre-selected

schedule or function, that is, no feedback is received from the values produced by the

algorithm during its run-time. As this method receives no-feedback it is not able to adapt

according to the current state of optimization. Our aim is to produce an algorithm that detects

and escapes from trapping in local optima, so this method will not be suitable.

Adaptive Control is achieved by modifying parameters based on the values yielded by the

algorithm during its run time. Adaptive control reacts to feedback from the algorithm and is

the method of control the author has selected for the algorithm presented in this thesis.

Self-Adaptive Control is obtained by extending the chromosome by additional genes. These

genes are evolved during the execution of the algorithm along with the rest of the

chromosome. Through this method the best settings for parameters can be evolved during run

time. The nature of this method of control is that of progressive refinement, the author aims

to produce an algorithm that reacts quickly to the trapping and temporarily modifies its

behavior to suit, so again this method is not suitable to our research. Sewell et al. (2006)

utilized self-adaptation in their `rank-scaled mutation rate' genetic algorithm. This algorithm,

applied to the traveling salesman problem, adapted the mutation probability of each

chromosome dependant on the individual's fitness. Sewell et al. concluded that their

algorithm performed competitively in problems where many local optima were present.

90

Two further classifications of adaptive parameter control should be discussed here, the first is

concerned with the source of control, that is which algorithm generated data is used to drive

the parameter changes. This could be any number of measures; in the algorithm presented in

this thesis the author is concerned with preventing premature trapping of the algorithm within

local optima. A characteristic of such a trapped algorithm is that its fitness will not improve

whilst it is trapped in the local optimum, therefore for this algorithm the measure of fitness

improvement over a number of successive generations has been chosen as the driving

measure. Figure 4.2 below indicates the algorithms location within the taxonomy.

Figure 4.2 - Taxonomy of adaptivity with the selection options for this Research.

Last but not least we need to define what aspect, or parameter of the algorithm is being

adapted. In order to prevent trapping diversification of search is required, this is most

effectively achieved via increased mutation rate and therefore mutation rate has been

identified as the object of adaptation in this algorithm.

Due to this classification system we have termed the algorithm utilised here a Fitness

Differential Adaptive Parameter Control Evolutionary Algorithm (FDAPCEA). The structure

of this algorithm is discussed in the following section.

91

4.2 The Structure of the FDAPCGA

Fitness Differential adaptation involves monitoring the improvement of the best solution

from one generation to the next. In this algorithm the mutation factor is modified when the

algorithm yields no improvement for a number of consecutive generations. The model of the

FDAPCEA is otherwise quite typical. The flow diagram is given below in figure 4.3:

Routine

Generate Initial
Population

(9=0)

I Evaluate
Fitness

If Htnese True Increase
same for mutation factor

p Bens by 8 times.

False

Reset Mutation

value to original
value.

g=g+
If g

True

Limit

False

Perform
Selection

Perform
Croawve,.

I Perform
Mutation

Figure 4.3 - The FDAPCEA flow diagram.

92

The best fitness for each generation is stored in a vector, after the pth generation, the previous

p generations fitness values are inspected and compared, if no improvement is detected across

the p generations, the mutation probability is increased by a factor a. This causes a large

amount of mutation, increasing the spread of the search. If a better solution is found, the best

fitness will have increased and the mutation factor will return to normal. If no improvement is

found the mutation factor will remain at the increased level, widening the search again for the

following generation.

This process aids the algorithm to escape from local minima and is employed only when the

algorithm detects the possibility that it has become, or is likely to become trapped.

Two variables have been identified in the above discussion; p the number of generations for

which the algorithm will allow no improvement before applying increased mutation and 8 the

factor by which the mutation probability is increased after the period p with no improvement.

For purposes of this discussion, p is termed the differential period and b the differential

factor.

Due to the combinatorial nature of the problem the algorithm uses `real' encoded

chromosomes, the operators are therefore also of the real encoded type.

93

4.3 Application of the FDAPCGA to the Travelling Salesman
Problem

The Travelling Salesman problem is a well-studied problem, which consists of finding the

shortest route for a tour of n cities. The co-ordinates of the cities are given in each instance.

The problem is combinatorial, all the cities need to be visited and each city must be visited

only once, for this reason real encoding is usually used.

A large amount of research has been conducted into the TSP, Todd (1997) evaluated a

number of crossover operators, and the performance of Starkweather's (1991) Enhanced

Edge Recombination was the best in Todd's tests.

The basic framework of this Evolutionary Algorithm was constructed in MATLAB allowing

a modular construction so that experimentation could be conducted with different

combinations of operators.

After experimentation using Enhanced Edge Recombination in conjunction with a greedy

adjacent mutation operator, it was found that the GA would still get stuck in various local

minima, these minima were in most cases very close to the global minimum. In order to

overcome this problem self-adaptation was built into the algorithm, in that should the best

solution from one generation to the next remain the same, i. e. no improvement gained, the

mutation rate was increased substantially stimulating a wider search. Using this model the

algorithm was consistently able to locate the optimal solution for 10 and 25 city problems.

Table 4.1 below gives the input coordinates for the 10 city sample problem. Figure 4.4 then

gives the resultant tour along with the graph showing improvement of successive generations.

94

The settings used for the 10 city tour were: Population - 50, Crossover - 0.7, Mutation -

0.07, Elitism - 0.25 & Generations - 20.

Table 4.1 - The Coordinates of the 10 City Tour

City X-Coord Y-Coord
1 2 4
2 3 6
3 5 7
4 12 1
5 10 4
6 7 2
7 4 4
8 6 9

F9 11 11
10 6 8

It

I0
9

8

7
8
C
E6
0 0
Y5

3

2

0

So

48
46

42

b

38

36

34

32
05 10 15 20 25 30 35 40 45 5(

C w
ä
Ö

S

Figure 4.4 - Optimum Results for the 10 City Tour (33.65 Units)

Table 4.2 below gives the input coordinates for the 25 city sample problem and figure 4.5

shows the solutions derived, along with the graph plotting the best-achieved solution per

generation. The parameters used for the 25 city tour were: Population - 50, Crossover - 0.7,

Mutation - 0.07, Elitism - 0.25 & Generations - 90.

23A56789 10 11 12
X Coordinalas

95

Table 4.2 - The Coordinates of the 25 City Tour

City X-Coord Y-Coord
1 2 32
2 16 28
3 22 3
4 41 17
5 12 9
6 39 32
7 15 32
8 27 14
9 11 11
10 1 43
11 49 29
12 12 10
13 7 6
14 3 2
15 44 38
16 13 4
17 9 42
18 17 13
19 8 6
20 26 22
21 19 13
22 8 1
23 38 11
24 2 2
25 17 45

45

40

35

30-

25-

20

v

UY

15

10

5

00
5 10 15 20 25 30 35 40 45 51

x coiauaes

1-

c
a

Ö

i

Figure 4.5 - Optimum results obtained for 25-city Tour (199.37 Units)

The input data for a sample 50 City tour problem is given below in Table 4.3. A near-

optimum result and improvement curve, as well as the optimum result and improvement

curve are given in figure 4.6 to show the magnitude of the difference in route producing only

a very small reduction in the overall distance. The settings utilised in the 50 city tour problem

96

~o 10 zo 30 40 5o 6o to so 90

c am.

were: Population - 150, Crossover - 0.7, Mutation - 0.1, Elitism - 0.25 & Generations -

500/400

Table 4.3 - The Coordinates for the 50 City Tour

City X-Coord Y-Coord
1 2 32
2 16 28
3 22 3
4 41 17
5 12 9
6 39 32
7 15 32
8 27 14
9 11 11
10 1 43
11 49 29
12 12 10
13 7 6
14 3 2
15 44 38
16 13 4
17 9 42
18 17 13
19 8 6
20 26 22
21 19 13
22 8 1
23 38 11
24 2 2
25 17 45

S O

a ö G
U
a

15 20 25 30 35 40
X Coordmaus

1100

City X-Coord Y-Coord
26 3 46
27 8 23
28 23 43
29 18 7
30 44 16
31 2 28
32 32 43
33 21 11
34 16 3
35 13 46
36 7 33
37 34 9
38 15 23
39 49 16
40 19 2
41 27 10
42 4 15
43 28 39
44 12 20
45 31 1
46 5 17
47 21 8
48 1 34
49 16 15
50 40 32

1 lo

900

700

C w
600

Fö 500

400

L

U 50 100 150 äp 250 300 350 100 450 900
G. nsnions

Figure 4.6 - Near Optimum Results Obtained for 50 City Tour (301 Units)

97

50

45

10

35

30

25

20

15

10

5

CO
5 10 15 20 25 30 35 40 45 50

X Coordinates

I-.

i
L

A
S
i
a

loo
600

400

300

mo 0

Figure 4.7 - Optimum Results obtained for 50 City Tour (297.04 Units)

It can be seen from Figure 4.7 above that the algorithm obtains its optimum value after 355

generations. It should also be noted from Figure 4.6 that a solution also exists with only

slightly lower fitness (higher tour length) of 301 units, however the sequence of this solution

is somewhat different from the optimal solution given in Figure 4.7. Algorithms without the

adaptivity built into the FDAPCGA may have problems escaping from the 301 unit solution

in order to find the optimum 297.04 unit solution as the field of search may be too narrow.

4.4 Chapter Summary

In this chapter the adaptivity in Genetic algorithms was reviewed. The formulation of the

FDAPCGA was detailed and each component of the algorithm discussed. The algorithm was

then applied to the Travelling Salesman Problem using problems with 10,25 and 50 city tour

problems. The algorithm successfully optimised these problems.

98

The MATLAB code for the FDAPCGA implementation to the Travelling Salesman Problem

is given in appendix A. Note that three separate algorithms are provided one for each problem

size.

99

Chapter 5. Application of the FDAPCGA to
the DSM & RCPSP

In this chapter the algorithm developed in Chapter 4 is extended in order to solve PSP. Firstly

the solution for the DSM problem (°, °Idsm Iminiter) is developed followed by the precedence

network based RCPSP, {m, lflminIC,, Bx}.

5.1 The Design Structure Matrix

Section 1.1.4 described the function of the DSM as well as the optimization objectives of the

problem. The objectives and problems that have been researched are:

" Minimisation of Iteration {°, °ldsm Iminiter}

" Maximisation of Concurrency (°, °ldsm Imaxconcur)

Here we consider the first problem the minimisation of Iteration.

100

5.1.1 Fitness Measurement

For the Minimum Iteration problem in the DSM the measure of fitness is the sum of the

distance of the logic links from the diagonal or by moving the matrix as close as possible to

being lower triangular, that is the feed back links either need to be within the lower triangle

or failing this as close as possible to the diagonal. The measure of fitness can therefore be

determined by summing the distance from the diagonal of all the feedback links i. e. links in

the upper triangle. The measure of Total fitness is therefore given by:

Wi -(xi -Yi) (5.1)

Letting n be the number of activities in the upper triangle, w be the feedback value (in this

case always 11) and x and y being the position in the sequence of the predecessor and

successor respectively i. e. the distance from the diagonal.

5.1.2 Selection

The algorithm uses Roulette selection as described by Goldberg (1989).

5.1.3 Crossover

Two types of crossover operator have been used in this work; two-point centre crossover and

independent position crossover.

' This research is limited to the study of Binary type DSMs. DSMs are also utilized with numerical feedback

values these being referred to as Numerical DSMs (NDSM).

101

Two-point centre crossover

In the two-point centre crossover operator (Murata, 1997), two Random points are selected

on the first parent chromosome. Genes falling inside these two points are transferred directly

to the child chromosome. The remaining genes from the first parent are transferred to the

child chromosome in the order they occur in the second parent. This is shown

diagrammatically below in figure 5.1:

Parent 1 1 2 3 4 5 6 7

Parent 2 4 1 5 7 2 6 8 3

Child 1 7 3 4 5 6 2 8

Figure 5.1 - Two-point centre crossover

This process is then repeated working from the second parent to produce a second child. For

the solutions to the problems discussed in section 4, the crossover factor was set to 0.7.

Independent Position Crossover

The second method of crossover employed is Independent position crossover. This method of

crossover applies a probability of 0.5 to each gene of being transferred directly from the first

parent to the child. The values that have then not been transferred to the child due to this

process are then added in the order they occur in the second parent. Figure 5.2 below shows

this process graphically.

102

0.3 0.6 0.2 0.3 0.8 0.2 0.6 0.1
Parent 11 23 4567 8

Parent 24 15 7268 3

Child 4 21 6587 3

Figure 5.2 - Independent Position Crossover

The first row of figures above the first parent in figure 4.3 are random variables generated for

each gene in order to determine whether they are eligible for transfer to the child

chromosome. As can be seen all the values greater than 0.5 have been transferred directly to

the child (2,5 & 7) the balance of the genes (1,3,4,6 & 8) have been transferred to the child

in the order they occur in the second parent.

5.1.4 Mutation

For the solutions to the problems discussed in section 4, the mutation factor was set to 0.07.

5.1.5 Standard Problems used for comparison

Project scheduling problem (PSP) libraries such as PSPLIB (Kolisch and Sprecher, 1996),

normally utilized for benchmarking of PSP, do not provide problems with iterative links,

therefore to provide a benchmark for this algorithm the problems considered by Todd (1997)

are utilized. Todd uses three problems:

9 KUSIAK '91 -A twelve-activity schedule (Kusiak et al 1991).

" STEWARD '81 -A twenty-activity schedule (Steward 1981).

" AUSTIN '96 -A fifty-one-activity schedule - In this case the original DSM was not

provided, Todd therefore sought further improvement of the solution offered by Austin.

For comparative purposes the same approach has been taken here (Austin et a! 1996).

103

The original authors offered solutions to each of their respective problems. These solutions

used methods other than evolutionary techniques. The best values obtained for these

problems before Todd's (1997) work are given in table 5.1 below:

Table 5.1 - Best non-evolutionary solutions.

Problem Best solution

KUSIAK'91 7

STEWARD `8l 93

AUSTIN `96 320

Results obtained with the FDAPCEA.

2 3 11 1 7 6 101 12 1 9 8 5 4
2 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0
11 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
7 1 0 1 01 01 00 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0 0
10 1 1 1 0 0 1 0 0 0 0 0
12 0 0 1 1 0 0 1 0 _`t 0 0 0
9 0 1 0 0 0 1 1 0 0 0 0 0
8 0 0 1 1 0 0 0 1 0 0
5 0 0 1 0 0 1 0 0 0 1 0 0

14 10 11 0 0 0 1 0 1 0 0 1 0

Total Fitness (Iteration) -6

Figure 5.3 - Resultant DSM (KUSIAK '91)

The algorithm yielded a number of different solutions with a total fitness of 6 as show above

in figure 5.3. Figure 5.4 below shows that the solution is typically arrived out without any

significant periods being `trapped' in local minima. The best solution to this DSM yielded by

Todd was also 6.

104

C

O

A

Ö

30

25

20

15

10 -

s
o 10 20 30 10 50 60 10 00 90 1 00

Figure 5.4 - Algorithm improvement over successive generations (KUSIAK '91)

2 19 5 16 6 7 8 18 9 11 10 17 3 4 1 14 20 15 12 13
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0
19 1 0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 1 0 1 0 0 0 0 .: 0 0 0 0 0 0 0 0
6 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 1 1 U- 0 0 0 0 0 01 01 01 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 1 0 0 1 0 1 0 c Nil 0 0 0 0 0 0 0
17 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 % 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1 1 1 0

.0
0 0 0 0

,0 14 0
20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0

,0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0
13 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

Total Fitness (Iteration) = 24

Figure 5.5 - Resultant DSM (STEWARD '8l)

Figure 5.5 above shows the results obtained for the Steward '81 problem, the best solution

found for this problem by Todd was also 24. Figure 5.6 below shows a typical improvement

curve achieved for this problem, it shows that after generation 20 there exist a number of

plateaus in the improvement graph where the algorithm is potentially `trapped' for a number

of generations before finding further improvement. For the run shown in figure 5.6 below the

105

differential adaptation factor was set to 4 generations, the plateaus in the improvement graph

below appear to be typically around 4 generations in length or greater indicating that the

sudden increase in mutation rate could be responsible for a number of these stepped

improvements.

The best solution produced by the algorithm for this DSM was a total fitness of 24; this result

is also equal to the best result reported by Todd.

70

60

X
50

F

40

30

4
0 10 20 39 4o bo w 19 0 90 loo

Gonerabon

Figure 5.6 - Algorithm improvement over successive generations (STEWARD '81)

The resultant DSM for the problem of AUSTIN '96 is given below in figure 5.7.

106

1
10
21

2
0
0

3
0
0

17
0
0

1
0
0

5
0
0

7
0
0

6
0
0

34
0
0

4
0
0

0
0

1
0
0

1
0
0

15
0
0

24
0
0

8
0
0

A
0
0

V
0
0

28
0
0

1
0
0

1
0
0

12
0
"

/1
0
n

9
0
o

1
0
0

0
0

11
0
0

32
0
0

28
00
00

31
0
0

30
0
0

22
0
0

33
0
0

38 37
00
00

36
0
0

39
0
0

40
0
0

45
0
0

43
0
0

41
0
0

42
0
0

M
0
0

48 47
00
00

4
0
0

48
0
0

81
0
0

50
0
0

22
0
0

31 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0
0 g- 2 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0

10 1 1 0 " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 00
61 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1

-2.
0 0 a0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0

70 0 0 0 0 1 0 0 1 1 o 0 0 0 0 0 0 1 1 1 0 1 a 0 0 0 00 0 0 0 1 1 0 1 1 1 1 1 A 0 00 0 0 0 0 0
80 0 0 0 0 ' 1 0 0 1 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

41 0 0 0 0 1 1 0 ' 0 t o 0 0I vi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a o 0 0 0 0 o a o 0 0 0 0 0 0
0 0 0 1 0 ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 a 0
0 0 0 1 0 0 0 0 0 0 0 0 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a o 0 0

10
0

1
0

1
0

0
0

0
0

0
1

0
1

0
0

0
1

1
1

0
0

1
0

a
0

0
0

0
0

0
0

0 0 0
0

01
0

01
0

01
0

0
0

01
0

0
0 0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0

0
0

0
0

0
0

0
0

0
0

1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2-

21 2- 2. 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 a 0 0 0 0 1 0 0 0 0 0 0 o o 0

to o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
t0 0 0 0 0 0 1 1 0 1 0 0 o a 0 0 0 0 0 1 0 1 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 l a w 0

0 0 0 0 0 0 0 , 0 1 0 0 0 0 0 0 0 0 1 0 a 0 0
11 o 0 0 0 0 0 a 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 -. 0 K A M

x 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 i l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 ,, 0 ,, . 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 R A M

0 1 1 1 0 0 0 0 1 0 0 0 a 1 0 0 0 0 0 0 0 1 0 1 0

10 1 1 0 a 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 . - 0 0 0
0 0 0 0 0 0 1 1 0- 11 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
0 V 0 0 0 , 1 0

0 0 0 0 0 0 6 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 M M 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 0 0 0 0 0 0

-2.
0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0

0
.0

o 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 o a o 0 0 0 0 0 0 0 0 0 0 0 0
0

30
0

0

0

0

0

0

0

0
0 0

0

0

0

0

0

0

0

0

0
0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0

0
0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

1
0

t o
0

0
0

0
'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 o o 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 a 0 0 0 0 0 0 0 0 0 0 0 0 a 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d o 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-2.
1

-2.0
0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0

0 0 0 0 0 o 0 o 0 10 10 11 0 . 0 0 0 0 0 0 0 0 0
41 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 ,, , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 ! 1 1 1 0 0 0 0 0 0 0 " 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1

1 0 1 1 0 0 0 0 0 0 o 0 0 0 0

0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 o a o 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

`
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 o a o 0 0 o a o 0 o a o

0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 " 0 ,, 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ()

.0 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 , 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

Total Fitness (Iteration) = 157
Figure 5.7 - Resultant DSM (AUSTIN '96)

The result produce for the AUSTIN '96 DSM was a total fitness (iteration) of 157, an

improvement of I over Todd's single objective algorithm result of 158. The Improvement

graph for the algorithm for this solution is shown below in figure 5.8.

uoo

1200

1000

2 Soo

fin
I-

400

200

n
Y 50 lW 150 2W 25V JW 350 400 450 500

GanvabOnf

Figure 5.8 - Algorithm improvement over successive generations (AUSTIN `96)

107

The improvement curve shows that constant improvement has been achieved right to the last

25 generations. It should be noted that a function of the algorithm is that the differential

adaptation is not applied during the last 10% of the generations on each run, in order to allow

convergence. In this run the differential adaptation would therefore have cut out at generation

450.

The effectiveness of the FDAPCEA compared with the original results and the results of

Todd (1997) as shown below in Table 5.2.

Table 5.2 - Comparative Results of Best Solutions to DSM problems.

Problem Original Solution Todd (1997) FDAPCEA

KUSIAK'91 7 6 6

STEWARD `81 93 24 24

AUSTIN `96 320 158* 157

*Todd later found a solution of 156 using a Multi-objective algorithm.

5.2 The Single Mode RCPSP

Single mode RCPSP implies that each of the activities within the network has fixed and

constant durations and resource assignments and therefore only a single possible mode of

execution. The description of the problem is as per the RCPSP description given in section

1.1.1.

108

This implementation of an optimisation algorithm for the single mode RCPSP was

implemented within MATLAB, utilising a modified version of the fitness differential

adaptive algorithm tested on the DSM in the previous section.

The problem classification dealt with in this version of the algorithm is {m, 1lcpmlCmax}, or a

single mode, resource constrained problem with multiple renewable resources.

In order to cater for the RCPSP a number of modifications needed to be made to the

algorithm to cater for this more complex problem. The components of this version of the

algorithm along with the modifications made are discussed below:

5.2.1 Fitness Function

The fitness function is the main portion of the algorithm that is application specific and

therefore where the major differences occur from the DSM implementation. A number of

approaches were discussed, within the chapter 2 literature survey, for handling the scheduling

of activities within cpm networks. The algorithm employs a serial schedule generation

scheme in order to calculate the overall duration of the project in each case.

5.2.2 The Algorithm Structure

The full code implementation of the single mode RCPSP is given in appendix A.

109

5.2.3 Sample PSPLIB Problem Solutions

In order to test the effectiveness of the algorithm in the solution of the single mode RCPSP a

number of PSPLIB problems were employed. The solutions to three such problems from the

single mode PSPLIB are detailed below. The three problems were selected for varying

complexity, the ones chosen were:

" J30110

" J60101

9 J12054-7

Problem: J30110

This test schedule is a single mode problem consisting of 32 activities including the start and

finish node. The Relationships between the activities are given and are described in Table 5.3

below.

110

Table 5.3 - Number of Modes and Precedence Relationships.

Activity
No. of
Modes

No. of
Succ. Succ Succ Succ

1 1 3 2 3 4
2 1 3 6 11 15
3 1 3 7 8 13
4 1 3 5 9 10
5 1 1 20
6 1 1 30
7 1 1 27
8 1 3 12 19 27
9 1 1 14
10 1 2 16 25
11 1 2 20 26
12 1 1 14
13 1 2 17 18
14 1 1 17
15 1 1 25
16 1 2 21 22
17 1 1 22
18 1 2 20 22
19 1 2 24 29
20 1 2 23 25
21 1 1 28
22 1 1 23
23 1 1 24
24 1 30
25 1 30
26 1 31
27 1 28
28 1 1 31
29 1 1 32
30 1 1 32
31 1 1 32
32 1 0

The durations and the resource utilisation for each of the activities is also provide by the

problem and is given below in Table 5.4.

Table 5.4 - Mode Duration and Resource Allocations

Activity Mode Duration RI R2 R3 R4
1 1 0 0 0 0 0
2 1 8 4 0 0 0
3 1 4 10 0 0 0
4 1 6 0 0 0 3
5 1 3 3 0 0 0
6 1 8 0 0 0 8
7 1 5 4 0 0 0
8 1 9 0 1 0 0
9 1 2 6 0 0 0
10 1 7 0 0 0 1
11 1 9 0 5 0 0
12 1 2 0 7 0 0
13 1 6 4 0 0 0
14 1 3 0 8 0 0
15 1 9 3 0 0 0
16 1 10 0 0 0 5
17 1 6 0 0 0 8
18 1 5 0 0 0 7
19 1 3 0 1 0 0
20 1 7 0 10 0 0
21 1 2 0 0 0 6
22 1 7 2 0 0 0
23 1 2 3 0 0 0
24 1 3 0 9 0 0
25 1 3 4 0 0 0
26 1 7 0 0 4 0
27 1 8 0 0 0 7
28 1 3 0 8 0 0
29 1 7 0 7 0 0
30 1 2 0 7 0 0
31 1 2 0 0 2 0
32 1 0 0 0 0 0

Four resources are applied within this problem all of which are renewable. The table of'

Resource limits are given below in Table 5.5 below.

Table 5.5 -- Resource Limits

RI R2 R3 R4
12 13 4 12

112

The algorithm was run using the following settings: Population = 20; Crossover Rate = 0.7;

Mutation Rate = 0.07 and Generations = 20. The resulting optimisation curve is given below

in Figure 5.9.

51

50

49

a 48

47

46

45
02468 10 12 14 16 18 20

Generations

Figure 5.9 - Optimisation Curve for the J301_10 PSPLIB Problem

The Algorithm can be seen to quickly arrive at the optimal solution. This is one of the simpler

PSPLIB problems and it takes only 5 generations in this run for the algorithm to optimise the

schedule

Problem: J60101

This test schedule consists of 62 activities including the start and finish node. The

optimisation curve for this run of the algorithm is shown in figure 5.10 and it can be seen that

the algorithm successfully optimises this problem within two generations. The data provided

for the problem is in the same format as that given for the J301_10 problem, due to the

number of activities in the problem this data has not been repeated here.

113

88

87.5

87

°86.5

U 86

B6.5

BE 05 10 15 20 25 30 35 40
Generations

Figure 5.10 - Optimisation Curve for the J60 101 PSPLIB Problem

This problem and the J30 problem, whilst showing the effectiveness of the algorithm in

finding the optimal or best known result do not show the algorithms ability in escaping from

local minima as the result is typically achieved very quickly with no `plateaus' being seen in

the optimisation curve.

Problem: J12054-7

This test schedule consists of 122 activities including the start and finish node. This is one of

the more difficult problems from the PSPLIB set. The optimal solution is given on the

PSPLIB website (www. psplib. com), at the time of submission of this thesis the best known

solution was posted as follows: "54,7,111, Tue Apr 9 15: 43: 57 2002 V. Valls, M.

Quintanilla, F. Ballestin ". That is for problem 54, instance 7 the best solution is 111 units.

Figure 5.11 below shows the optimisation curve of a run of the algorithm producing this best

known solution.

114

121

120

119

118

0 117

2,116

115
U-

114

113

112

111
0 10 20 30 40 50 60 70 80 90 100

Generations

Figure 5.11 - Optimisation Curve for the J 12054_7 PSPLIB Problem

It can be seen from figure 5.11 that the algorithm finds the best known solution in this run

after 89 generations. The algorithm had been stuck in a local minimum with the value of 112

units from generation 22 to 89, but had then freed itself in order to find the best known

solution at generation 89.

For the single mode problems only the optimisation curves have been reproduced here from

the algorithm runs, demonstrating the algorithms ability to produce optimum or best known

results. The multi-mode problem algorithm runs below will demonstrate the adherence to the

resource limitiations where both renewable and non-renewable resources are applied.

5.3 The Multi-Mode RCPSP

115

In the Multi-mode RCPSP each of the activities, ,
7, in the network has multiple modes of

execution, MI. Each of the modes of execution has a resource requirement, r N. For example

a task that can be completed in 10 days with 2 people may also be able to be executed in 5

days using 4 people. Alternatively a different type of resource may be applied.

The classification of problem considered in this section is (171cpm, muI Cm}, which

indicates mutli-mode problems that utilise both renewable and non-renewable resources.

5.3.1 Fitness Function

No modification of the fitness function is required from the single mode RCPSP algorithm in

order to solve the multi-mode RCPSP. The serial schedule generation scheme however has to

be enhanced in order to cater for the decoding of the extended chromosome structure that is

explained below in section 5.3.2.

5.3.2 Algorithm Structure

In order for the algorithm to search for the optimum mode for the execution of each activity

the mode needs to be encoded as part of the chromosome so that mode data is performed

upon by the same operators as the activity permutation portion. Having the algorithm act on

the mode selection as well as the schedule sequence allows the optimum configuration of

modes to be achieved as an integral part of the optimisation process. The fundamental

difference therefore between the multi-mode and single mode algorithm implementation is

the structure of the chromosome. To handle the extended chromosome within the MATLAB

implementation of the algorithm, two populations of identical dimensions have been

employed. The first population holds the chromosomes containing the encoding of the task

116

sequences and the second holds the mode selection for each of the tasks. A sample of the data

held in each population is shown below in figure 5.12.

POPULATION I
Task Sequence

Seq Pos 123456 n-2 n-1 n
Task No. 12311 18 32 12 3 14 6 121

POPULATION 2
Task Mode Selection

Seq Pos 123456 n-2 n-1 n
Mode 12 1111131213112

Figure 5.12 - Dual Populations within Multi-Mode Algorithm

Both of the two populations are generated during the initial population generation. Population

1 is formed as with the single mode problem with each chromosome being a random

permutation of the tasks contained with in the schedule. As not each task may have the same

number of possible modes a reference table is held giving the number of modes possible for

each task. In order to generate the population of mode selections, random numbers are

generated for each task, 1, such that Rande E M, where M, is the set of modes available for

task].

The crossover in operator utilised in the algorithm is the independent crossover operator. This

operator is used to perform crossover on both the sequence chromosome and the mode

selection chromosome simultaneously. Due to the tasks in the multi-mode PSPLIB problems

all having the same number of modes this is possible. Should different numbers of modes be

available to each task then independent crossover could not be utilised as it could cause an

117

invalid mode selection. A diagram illustrating independent crossover was shown in figure 5.2

in section 5.1.

Mutation in the multi-mode algorithm also utilises the same mutation operator for both

chromosomes. Two-point-adjacent-swap (Two-point-adjacent-city-swap) is applied in both

cases simultaneously.

With the exception of these points the algorithm remains the same as the single mode

algorithm. In order to test the performance of the algorithm on multi-mode problems, samples

from the PSPLIB were utilised.

5.3.3 Sample PSPLIB Problem Solutions

As stated above the problems studied by this genetic algorithm implementation are {m,

171cpm, mulCmax}. Three sample problems are examined here from the PSPLIB library, one

J10 problem, one J12 problem and one J30 problem. These problems have 10,12 and 30

activities respectively with and additional 2 activities each for the start and completion nodes.

The randomly selected problems are:

" J108-5m

9 J1237-8m

9 J309-5m

Problem: J108-5m

This sample problem has a total of 12 activities (including start and finish node) and utilises 2

renewable and 2 non-renewable resources. The activities each have 3 possible modes of

118

execution and utilise a combination of the lour available resources. "! 'able 5.7 gives the

precedence relationships. Table 5.8 gives the duration and resource allocations for each mode

of execution. Table 5.9 gives the resource limits. RI and R2 are the two renewable resources

and NI and N2 are two non-renewable resources.

Table 5.7 - Numbcr of Modes and Precedence Relationships

Activity
No. of
Modes

No. o
Succ. Succ Succ Succ

1 1 3 2 3 4
2 3 1 7
3 3 2 5 6
4 3 3 5 6 10
5 3 2 7 9
6 3 2 8 9
7 3 1 11
8 3 1 11
9 3 1 12
10 3 1 12
11 3 1 12
12 1 0

119

Table 5.8 - Mode Duration and Resource Allocations

Activity Mode Duration RI R2 NI N2
1 1 0 0 0 0 0
2 1 3 9 0 4 9
2 2 5 0 5 4 5
2 3 10 8 0 3 4
3 1 6 10 0 10 6
3 2 8 0 2 9 3
3 3 9 10 0 7 1
4 1 1 0 7 8 7
4 2 1 6 0 8 7
4 3 6 1 0 7 4
5 1 1 0 5 8 8
5 2 3 5 0 7 /
5 3 7 0 5 6 6
6 1 4 0 8 6 8
6 2 5 0 5 6 /
6 3 5 0 6 3 8
7 1 6 6 0 8 9
7 2 7 0 9 6 8
7 3 7 6 0 6 8
8 1 6 0 7 5 10
8 2 8 5 0 5 8
8 3 9 0 7 2 5
9 1 1 0 8 6 3
9 2 4 0 6 4 3
9 3 5 0 2 3 3
10 1 3 5 0 4 9
10 2 6 5 0 3 9
10 3 10 0 4 3 6
11 1 5 6 0 7 7
11 2 5 0 1 7 /
11 3 8 6 0 5 5
12 1 0 0 0 0 0

Table 5.9 - Resource Limits

R1 R2 N1 N2
59 66 76

Note the resource limits given in Table 5.9 above are given per unit time liar the two

renewable resources and total usage for the two non-renewable resources. I'hc network for

the problem is given below in figure 5.13.

120

1

2

3

4

5

6

7

8

9

10

11

12

123456789 10 11 12

Figure 5.13 - The J 108-5m Network and Adjacency Matrix

The algorithm run parameters utilised for this optimisation were Population 50; Crossover

Rate = 0.7; Mutation Rate = 0.07 and Generations = 16. Figure 5.14 below shows the

improvement curve for the optimisation process.

121

19

185-

18-

175

17

165

16-
0 2468 10 12 14 16

Generations

Best Solution = 16

Figure 5.14 - Optimisation Curve for the J 108-5m PSPLIB Problem

The optimisation curve shows the algorithm converging on the best known solution on the

thirteenth generation. The resource histogram shown in Figure 5.15 below shows the

adherence of the algorithm to the renewable resource limitations. The cumulative usage of the

two non-renewable resources NI and N2 was 50 and 62 respectively which is also within the

prescribed cumulative usage.

The algorithm has successfully optimised this problem maintaining all required limitations.

122

Resource Histogram - Problem J108-5m
Renewable Resources

10
 R1

9 R2

8

'O 7
O

IL
6

5

i

...
CL

4

C3

2

0
123456789 10 11 12 13 14 15 16

Period

Figure 5.15 - Resource Histogram for J 108-5m

Problem: J1237-8m

This sample problem has a total of 14 activities (including start and finish node) and utilises 2

renewable and 2 non-renewable resources. The activities each have 3 possible modes of

execution and utilise a combination of the four available resources. Table 5.10 gives the

precedence relationships. Table 5.11 gives the duration and resource allocations for each

mode of execution. Table 5.12 gives the resource limits. Rl and R2 are the two renewable

resources and Ni and N2 are two non-renewable resources.

123

Table 5.10 - Number of Modes and Precedence Relationships

Activity
O. of

Modes
No. of
Succ. Succ Succ Succ

1 1 3 2 3 4
2 3 2 7 13
3 3 3 5 6 8
4 3 3 6 7 9
5 3 3 7 10 11
6 3 2 11 12
7 3 1 12
8 3 3 10 11 13
9 3 2 10 13
10 3 1 12
11 3 1 14
12 3 1 14
13 3 1 14
14 1 0

Table 5.11 - Mode Duration and Resource Allocations

Activity Mode Duration R1 R2 N1 N2
1 1 0 0 0 0 0
2 1 1 3 9 9 5
2 2 4 9 8 3 3
2 3 5 8 6 3 2
3 1 3 7 4 6 6
3 2 4 6 4 6 5
3 3 5 5 4 4 2
4 1 2 6 8 8 9
4 2 2 7 8 7 8
4 3 5 6 8 5 7
5 1 2 6 5 9 8
5 2 3 4 4 9 8
5 3 7 3 1 9 7
6 1 6 9 10 6 6
6 2 8 9 8 5 5
6 3 9 8 6 5 4
7 1 7 5 8 2 7
7 2 7 6 6 2 7
7 3 10 5 5 2 7
8 1 2 10 9 6 6
8 2 2 10 9 9 5
8 3 4 7 9 9 5
9 1 5 2 6 6 2
9 2 7 2 6 6 1
9 3 10 2 5 4 1
10 1 2 3 10 2 3
10 2 7 2 7 2 3
10 3 9 2 4 2 3
11 1 1 10 6 5 4
11 2 6 10 6 5 3
11 3 8 9 4 4 3
12 1 7 6 8 3 8
12 2 9 3 6 3 8
12 3 9 5 6 2 6
13 1 1 4 6 7 9
13 2 1 4 5 8 7
13 3 9 4 5 5 6
14 1 0 0 0 0 0

124

Table 5.12 - Resource Limits

RI R2 NI N2
14 15 54 57

Note the resource limits given in Table 5.12 above are given per unit time for the two

renewable resources and total usage for the two non-renewable resources. The network for

the problem is given below in figure 5.16.

123456789 10 11 12 13 14

f

i
t

1

1

1

1

1

Figure 5.16- The J1237-8m Network and Adjacency Matrix

125

The algorithm run parameters utilised for this optimisation were Population = 50; Crossover

Rate = 0.7; Mutation Rate = 0.07 and Generations = 50. Figure 5.17 below shows the

improvement curve for the optimisation process.

100

90

80

70
ö

60
I

50

30' 05 10 15 20 25 30 35 40 45 50
Generations

Best Solution = 3,

Figure 5.17 - Optimisation Curve for J 1237-8m PSPLIB Problem

The algorithm can be seen to have optimized the solution to the best known solution on

generation 26.

16
15
14
13

.0
12

O 11
10

d9
d8
0.7

6
C5

4
3
2
1
0

Resource Histogram - Problem J1237-8
Renewable Resources

L

23456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Period

Figure 5.18 - Resource Histogram for the J 1237-8 problem

40

126

Figure 5.18 shows that the algorithm has tightly maintained the prescribed resource

limitations for the renewable resources. The cumulative utilization of' the non-rene vaihle

resources NI and N2 was 54 and 57 respcctivcly.

Problem: J309-5m

This sample problem has 32 activities including the start and tinish node and utilities 2

renewable and 2 non-renewable resources. The activities each have 3 possible nodes of

execution and utilise a combination of the four available resources. Table 5.13 gives the

precedence relationships. Table 5.14 gives the duration and resource allocations tör each

mode of execution. Table 5.15 gives the resource limits. RI and R2 are the two renewable

resources and NI and N2 are two non-renewable resources.

Table 5.13 - Number of Modes and Precedence Relationships

Activity
No. of
Modes

No. of
Succ. Succ Succ Succ

1 1 3 2 3 4

2 3 3 6 7 11
3 3 3 5 11 17
4 3 3 10 14 15
5 3 3 8 19 21
6 3 1 9
7 3 3 14 17 18
8 3 2 12 16
9 3 1 28
10 3 3 20 24 26
11 3 1 28
12 3 3 13 15 22
13 3 1 23
14 3 3 19 24 31
15 3 3 25 26 27
16 3 3 18 22 24
17 3 1 23
18 3 2 23 27
19 3 2 27 29
20 3 2 25 29
21 3 1 28
22 3 2 26 31
23 3 1 31
24 3 1 25
25 3 1 30
26 3 1 29
27 3 1 30
28 3 1 30
29 3 1 32
30 3 1 32
31 3 1 32
32 1 0

127

'rabic 5.15 - Resource Limits

RI R2 NI N2
10 15 91 84

The adjacency matrix is shown below in figure 5.19.

123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 5.19 - The J309-5m Network and Adjacency Matrix

The optimisation curve for the algorithm can be seen below in figure 5.20. The settings used

for this run of the algorithm were: Population 200; Crossover Rate 0.7: Mutation Rate

0.07 and Generations = 400.

128

60

55

5o

45

P-
40

35

30

250
50 100 150 200 250 300 350 400

Generations

Figure 5.20 - Optimisation Curve for the J309-5m PSPLIB Problem

It can be seen that the algorithm achieved the optimal result at approximately 145

generations. The resource histogram in figure 5.21 below shows the adherence of the

produced schedule to the given resource limits for the two renewable resources RI and R2.

The cumulative usage of the two non-renewable resources NI and N2 were 72 and 83

respectively.

Resource Histogram - Problem J309-5m
Renewable Resources

16
15 URI

14 12 R2
13

10
12

O 11
y 10

a9
d8 001 ri

a7
6

C5
4
3
2
1
0

123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Period

Figure 5.21 - Resource Histogram for J309-Sm

129

5.4 Application within Microsoft Project

In order to provide a more practically implemented tool the algorithm developed in

MATLAB was rewritten using Microsoft Visual Basic for applications within Microsoft

Project 2003. The structure of the algorithm remains the same as the previous implementation

within MATLAB, the User interface to the application from within Microsoft Project is

shown in figure 5.22 below.

Project Data: Problem Type:

Number of Tasks: ISO Problem: RCPSP
-ý

Number of Resources: 3

Algorithm Settings:

Population Size: ý
Minimum Fitness (1):

Average Fitness (1):

Crossover Rate: D. 7

Mutation Rate:
. 07 D

Krimum Fitness (2):

Average Fitness (2):
Number of Generation:

F -' ̀

Percentage Elitism: 0 . 25 -

Algorithm Progress:
0 Gen
0%

GENETIC
ALGORITHM

OPTIMISATION

Sýi

)ohn Lancaster
PhD Research

School of
Engineering and

Design
BRUNEL UNIVERSITY

j Get Project Data

Run Algorithm ->

Figure 5.22 - Application User Interface

The parameter settings, population size and the number of generations are all set via this

interface. The current limitations to this implementation include that it currently doesn't

allow for project calendars, due to this the problem examined was set up using a seven day

calendar

Some adaptation was made within the schedule environment in that material type resources

were utilised for modelling the labour resources. This was in order to allow direct entry of

130

man-hours rather than utilising the Microsoft Project percentage utilisation method normally

employed. A user field is added for the setting of the resource limitations as shown below in

figure 5.23:

Figure 5.23 - Resource Limit Settings

Resources are entered as the total number of man-hours for the entire activity. The algorithm

then calculates the resource man-hours per day in order to calculate the daily total resource

usage for any given schedule. The limits entered into the `Number I' field shown in figure

5.23 above are the limits for a given time period.

Applied Problem

The analysed problem is a project schedule for the construction of a tank farm. This project

network consists of one hundred and eighty activities loaded with three labour resources each

of these resources is limited to a ceiling value of a predetermined number of man hours per

day. A Plan of the project is given below in Figure 5.24.

131

TK202 TK201
TK101 TK102 (420,580)

70 000m3
(520,580)
70,000m3 (880,570)

((740.570)

, ---, 58,000m3 58,000m3

PC12- PC1201 v F--, -, P-, -

PC12W PC1161 PC1Nf PCtýoý

I/ \I

TK204 TK203
"I

TK103
(680,490)

TKI04
(740,400)

(420,480)
70,000m3

(520,480)
70,000m3

v
1/\I

l Iý

58,000m3 58,000m3

v

SIC-----ý

Y (N)

E X

I, \, I

N. T. S) (

Figure 5.24 -A Plan of the scope of the Project

The complete 180 activity schedule is reproduced in Appendix F. All resources considered in

this problem are renewable. The resources and the limits applied to them are given in Table

5.16 below.

Table 5.16 - Resource Limits

RESOURCE CONSTRAINTS

Discipline Mrs

Civil 250

Struct 200

Mech 1000

The tank farm consists of eight tanks with interconnecting pipe rack and pumps and includes

the construction of foundations as well as structural and mechanical erection. No preferential

logic has been applied in order to allow the algorithm freedom with the resource levelling.

Prior to resource levelling the resource distribution is as shown in Figure 5.25 below.

132

Resource Distribution

2000
1800 Mech
1600 Civil

(0)
1400 Struct

= 1200
1000

800
600

400
200

0
ý- >, c C) a +r >uc º-
CL ß ea ý0 >>7d0ow ý0 d

LL Q'Q U) 0za-U. m

Figure 5.25 - Resource Distribution prior to Optimisation

The improvement curve shown in Figure 5.26 below shows the optimisation of the total

duration against the resource constraints. Continual improvement is noted on the Minimum

Fitness from Generation to Generation. The diversity introduced into the algorithm through

the mutation adaptation is clear from the changes in the Average Fitness curve. The Average

Fitness follows the Minimum fitness for the first 4 generations and then as the improvement

of the algorithm slows down the average fitness increases as the algorithm widens its search.

Finally the Average fitness converges toward the minimum.

The initial conformance to resource constraints had the effect of prolonging the schedule by

two months; however the optimisation has then managed to reduce this prolongation by 8

days (from 380d to 372d) as the improvement curve in figure 5.26 shows.

133

Improvement Curve

400

395

390

c 385

380

375

370

365

1

%

Minimum Fitness

-- Average Fitness

123456789 10 11 12 13 14 15 16 17 18 19 20

Generations

Figure 5.26 - Improvement Curve

The success of the algorithm in maintaining the resource limits can be seen from the resource

distribution curve shown in Figure 5.27.

Resource Distribution

1200
 Mech

1000 Civil

800 Struct

600
lC

400

200

0
M CL C .0

ums. 242 -) -Q t% 0Z0 -) U.

Figure 5.27 - Resource Distribution post Optimisation

134

Each of the resource limits has been tightly maintained by the algorithm. For the mechanical

resource the lower resource level during the month of April is due to some activities not

being eligible for scheduling due to their precedence dependence on the civil activities. The

low mechanical resource usage toward the end is due to the low mechanical loading during

the relatively long hydro testing activities, which are the penultimate activities for each tank.

Apart from these anomalies it can be seen that the algorithm has made maximum use of all

available resource capacity.

5.5 Chapter Summary

In this chapter the FDAPCGA developed in chapter 4 was successfully applied to both DSM

and CPM based problems. The DSM application was benchmarkcd against three problems

and their solutions offered by Todd (1997). The MATLAB based CPM application was tested

using three single and three multi-mode problems from PSPLIB.

The algorithm was able to achieve optimisation to the best known results in the PSPLIB

problems, showing it's ability to free itself from local minima and continue search for the

global optima.

Ater porting the code to Microsoft Project VBA the algorithm was then applied to a real

world problem. In this application the algorithm successfully optimised the schedule

maintaining the imposed resource limitations.

135

Chapter 6. The FDAPCGA with Stochastic
Resource Assignments

The literature review found no previous research into the solving of this problem, whilst the

problem is similar to the multi-mode RCPSP; it is more analogous with parallel machining in

shop problems. In this chapter we consider the problem where a number of different

resources could be brought to bear on a given task. The resources considered are renewable

and each have limitations as with the standard RCPSP problem. In order to investigate the

different combinations of resources that can be brought to bear, we investigate the stochastic

application of resources to selected activities in order to find the resource utilisation

configuration that allows minimum duration execution of the project.

6.1 Stochastic Resources Assignments

To understand this problem we can consider an analogy in the set of machine shop problems,

where a job maybe processed by one of a number of parallel machines. Figure 6.1 below

illustrates this problem, to be completed a job must pass through either machine M1& M4,

M2 & M4 or M3 & M4.

136

START

Ml OR M2 OR p

M4

1

STOP

Figure 6.1 - Parallel Machine Processing.

This problem is not normally considered in research into the RCPSP. The classification

system of Herroelen et a! provides a classification al-P, which refers to the parallel

processing as given in figure 6.1. To better describe this problem and it's method of solution

we add the subscript, SSR, to indicate `selected stochastic resource' assignment. The

classification of the problem considered in this chapter is therefore; {PssR, m, 1I cpm I C,,, uj.

6.2 The Genetic Algorithm

The Genetic Algorithm used in the optimisation of this problem is based on the Fitness

differential Adaptive Genetic Algorithm previously described in Chapter 4&5. In order to

cater for the novelty of this specific problem the algorithm was modified in the following

manner:

137

The Chromosome was extended in order to hold the resource assignments for each of the

activities identified for stochastic resource assignment. In this way the resource assignments

are optimised along with the activity sequence. In order to deal with the extension specific

crossover and mutation operators had to be developed that would retain the validity of the

chromosomes after the genetic operations have been performed. Figure 6.2 below shows the

structure of the extended chromosome where n is the number of activities in the schedule and

p is the number of activities that have been identified for stochastic resource assignment.

4 Random Permutation º

1234 n-3 n-2 n-1 n
12 1141 13 12 6 27 4

4 Extension -10

12_ p-1 p

13 122

Figure 6.2 - Chromosome extension

For this specific problem n= 60 and p= 10 as there is one Engineering activity for each

project.

6.2.1 Fitness Function

No novelty is required in the fitness function the minimisation of duration is the measure of

fitness whilst adhering to the resource limitations. A Serial Schedule Generation Scheme is

employed to convert the sequence permutations into feasible schedules.

138

6.2.2 Selection Operator

The algorithm utilises roulette selection. The analogy of the roulette wheel in this selection

method utilises this same mechanism only with each chromosome receiving a portion of the

wheel sized in relation to its fitness. The algorithm then performs a function, which equates

to the spinning of the wheel, the probability of selecting a chromosome for transfer to the

temporary population is then in proportion to its fitness. The probability, Pr, of each

chromosome being calculated, where f is the fitness measure, (see Equation 6.1).

Pri =f (6. ý POP
fi

i=1

6.2.3 Crossover Operator

The crossover in the chromosome is performed using the independent position crossover

(IPX, Murata and Ishibuchi, 1994) operation on the activity sequence portion of the

chromosome and then applying a single point crossover on the chromosome extension.

Two different operators are used due to the differing nature of the data in the two parts of the

chromosome. The main chromosome is a permutation of the activities and therefore the

integrity of this permutation needs to be maintained, that is each activity must be represented

and also must only be present once. The chromosome extension is not a permutation.

In the IPX method, members of the Parentl chromosome are selected randomly for

transference directly to the Childl, the balance of members of Parentl are then used to

populate the remaining positions in Childl in the order that they occur in Parent2. The single

139

point crossover simply chooses a random point in the chromosome extension and takes the

genes to the left of this point from one parent and the genes to the right from the other. figure

6.3 below illustrates this methodology.

4 Random Permutation No

0.2 0.7 0.4 0.6 0.9 0.3 0.1 0.6
2 1141 13.................................. 12 6 27 4

4 Extension -º

13 122

14 11 27 18 .. 21 12 3 124

4 114 13 1121211241 4

IPX Crossover

2213

From Parent 11 From Parent 2

13 113

Single Point Crossover

Figure 6.3 - Dual Crossover Operator

6.2.4 Mutation Operator

Mutation is also performed as two separate operations; for the main chromosome the 2 Point

adjacent swap mutation (Murata and Ishibuchi, 1994) is applied. For the Chromosome

extension a simple random allele change is performed. An allele is selected at random and

then a random value chosen from the valid range for that allele, this is similar to the simple

`bit-flip' mutation used in binary representation. See Section 3.6 for details of the parameter

control utilised to modify the mutation rate.

6.2.5 Elitism

Due to the use of Crossover and Mutation operators the minimum fitness solution can

sometimes fail to be transferred to subsequent generations. Elitism maintains the best to date

140

solution by filling a predetermined portion of the population with the fittest solution. For

solution of this problem 25% Elitism was selected.

6.2.6 Parameter Control

Mutation is utilised within the algorithm to prevent premature convergence upon a local

minima. As previously discussed in Chapter 4 and 5 there is benefit to having the mutation

factor set low when the algorithm is converging to a minima but then increasing the factor

when no improvement is acknowledged for a number of successive generations.

Controlling the settings of parameters in this nature is known as adaptive parameter control.

i. e. utilising information generated by the algorithm to modify its future behaviour. A full

taxonomy of parameter setting can be found in Chapter 4 as adapted from Eiben et al (1999).

Hartmann (2002) used a self-adaptive GA where self-adaption was used to control the

algorithms choice of schedule generation scheme (serial or parallel) but this type of adaptive

parameter control has not been utilised in a GA solution to the RCPSP to date. In the

optimisation runs the following settings were used for the run of the algorithms:

Population Size: 50

Crossover Rate: 0.7

Mutate Rate: 0.07

No. of Generations: 20

Elitism: 25%

141

6.3 Development Platform

As an extension of our previously designed algorithm, this algorithm has been developed

within Microsoft project using Visual Basic for Applications as an extension to the algorithm

previously discussed in Chapter 5. The algorithm parameters being entered via the same

custom user interface as shown below in Figure 6.4.

Project Data: Problem Type:

Number of Tasks: 28 Problem:

Number of Resources: 5

Algorithm Settings: Output Data:

Population Size: 50
Ninimun Fitness (1):

Average Fitness (1):
Crossover Rate: 0,7

Mutation Rate: 0.07
FlinimOm Fitness (2):

Average Fitness (2):
Mxnber of Generations:

Percentage Elitism; 0,25

Algorithm Progress:
0 Gen

0%

RCPSP with Stochastic Reswscif

Figure 6.4 - Microsoft Project User Interface

GENETIC
ALGORITHM

OPTIMISATION

01' "
John Lancaster
PhD Research

School of
Engineering and

Design
BRUNEL UNIVERSITY

Get Project Data

Run Algorithm ">

The Visual Basic for applications code generated for the standard RCPSP was significantly

modified to cater for this specific problem type.

6.4 Case Study Problem

As a test problem we will consider an organisation concerned with the Engineering,

Procurement and Construction of ten projects. The engineering of these projects can be

conducted in any of the company's three engineering facilities worldwide. Each of the

142

engineering facilities has a limitation on the number of man-hours per day that it has

available for any given time period. Table 6.1 below gives the resource limitations at each of

the locations.

Table 6.1 - Resource Limits

Resource Limit

Eng_Locl 200

Eng_Loc2 250

Eng_Loc3 400

For the testing of this algorithm the 10 projects are included in an integrated schedule. Each

of the projects is represented for this exercise only at high level i. e. One activity each for the

major project phases: Engineering, Procurement, Fabrication, Construction and

Commissioning as well as a final Project Completion Activity. The ten Engineering activities

will be the activities subject to stochastic resource assignment, we will not consider resource

assignments for the other activities for the purpose of this exercise. In the initial state the

Projects are all scheduled to start immediately with no consideration for resource constraints.

The objective of the problem will then be to find a feasible resource assignment solution that

will maintain the imposed resource constraints and further to find the minimum duration

solution under these resource constraints. The initial state resource curves are shown below

for the three resources can be seen below in figure 6.5. Initially the resources have been

arbitrarily assigned to provide a starting point for the algorithm

143

800

700

600

500

400

300

200

100

0

is Eng_Loc1

 Eng_Loc2

O Eng_Loc3

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Figure 6.5 - Initial Resource Assignments

It can be seen that the available engineering offices could not process the projects to this

schedule

6.5 Results

The improvement made during the search for the optimal results to the problem being

considered can be seen below in figure 6.6. This curve shows improvement to the optimal

found solution within four generations.

Due to the built in adaptively of the algorithm, it can be seen that the search is widened in

generation nine after four generations with no improvement to the best solution. In this case

this increased diversity can still produce no further improvement to the algorithm.

144

900

850

800

c
O

750

700

650

600

Minimum Population
Fitness

-- Average Population
Fitness

v

123456789 10 11 12 13 14 15 16 17 18 19 20

Generation

Figure 6.6 - Improvement Curve

The Average fitness then converges toward the minimum fitness curve. Figure 6.7 shows the

resource levelling results obtained from the optimisation. The three resources can be seen to

closely adhere to the imposed limits. It can be seen that the available resources at each of the

companies facilities are being effectively utilised

400

350

300

250

200

150

100

50

0
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Figure 6.7 - Resulting Resource Loading

145

6.6 Chapter Summary

In this chapter stochastically applied resources were included within the RCPSP. This

addition was incorporated in order to study RCPSP optimisation where a number of different

resources can be brought to bear on an activity. The method of handling the stochastic

application within the genetic algorithm was detailed as well as the algorithms application to

a practical problem. The required modifications to the VBA algorithm described in Chapter 5

were also discussed.

146

Chapter 7. The FDAGA with Stochastic
Logic Assignments

Within Project Schedules preferential logic is sometimes used to formulate paths and

precedence relationships in the network that are not pure dependencies but are often used to

`hard code' resource paths into the network. Often there are many possible combinations of

preferential logic that can be applied to a project network, each combination will produce a

different outcome regarding the overall duration of the schedule. In order then to find the

optimal solution (minimum duration) a number of different combinations of preferential logic

configurations should be considered. In this chapter we consider the use of stochastically

applied preferential logic within the optimization process, in order to arrive at the

combination that provides the minimum duration schedule.

7.1 Stochastic Logic Assignments

The main construction of our algorithm is based on that presented in Chapter 4, which uses

adaptation based on the Fitness differential between successive generations to modify the

mutation factor. The Author has modelled the stochastic logic as an extension to the existing

147

chromosome, providing a position in the chromosome for each of the activities identified for

stochastic logic.

f- Random Permutation 10

1234 177 178 179 180
2 45 13 1168134 11781152

Activites with Stochastic Links

17 34 51 68 85 102 119 136
1171851 68 34

Figure 7.1 - Chromosome Extension

Figure 7.1 shows the extension of the chromosome. In the test problem a 180 activity

schedule is utilised with 8 activities selected for stochastic logic relationships. The Random

permutation portion of the chromosome shown in figure 7.1 holds the sequencing of all 180

activities. The extension portion shown to the right holds eight additional genes to map the

randomly generated logic. The actual values contained in these 8 positions refer to the

stochastic successor of that particular activity. This randomly generated logic is used during

the schedule generation along with existing deterministic logic to produce the feasible

schedule.

One consideration that needs to be made is that by purely applying random logic generation

we need to avoid the creation of logic loops which would prevent the formation of a feasible

schedule. Our algorithm performs loop checking after the generation of the stochastic logic,

correcting this where it occurs and thereby ensures the generation of a feasible schedule.

The utilization of an extension of this nature to the normal permutation portion requires

specialized cross-over and mutation operators that are capable of allowing for this functional

division of the chromosome into two portions performing their operations on the two portions

separately.

148

To cater to this we have developed a composite crossover operator. This crossover operator

consists of two components; the first component is a standard independent crossover operator

(IPX, Murata and Ishibuchi, 1994) which is applied to the traditional part of the chromosome

i. e. the genes containing the permutation of the activities or the `activity list'. The second

component is a two-point crossover is utilised on the chromosome extension. This crossover

operator is illustrated below in figure 7.2.

4 Random Permutation

0.2 0.7 0.4 0.6 0.9 0.3 0.1 0.6
Parent 12 114 13 1112 6 27 6

Parent 241 27M 21 121 3 24

Child 14 114 132 21 24 6

IPX Crossover

Figure 7.2 - Extended Crossover Operator.

4- Extension 10

1311
.....

-
....................

22

Point 1 Point 2

13 212

Two-Point Crossover

In addition to the specialized crossover operator we have also designed a composite, mutation

operator. This mutation operator also comprises two components. The first component

applied to the main chromosome is a two point adjacent swap mutation operator (Murata and

Ishibuchi, 1994) and the second component is simply a single bit random change operator

which is applied to the chromosome extension. This second mutation operator selects an

149

allele from the chromosome extension at random and then changes its value to a randomly

selected member of the set of activities identified for stochastic logic application.

Once the crossover and mutation have been performed, a cycle checking algorithm is

employed to ensure that loops have not been introduced to the network via the function of the

genetic operators. This algorithm will also break any detected loops to ensure a feasible

network remains. The loops are only broken by removing links that have been stochastically

assigned; hence the integrity of the original network is always maintained.

In order to communicate the logic into the algorithm an adjacency matrix is utilised. The

logic links contained in the adjacency matrix are considered in two sets; firstly the

deterministic logic links which remain constant for the entire optimization, the second set is

the stochastic logic which will change for each chromosome considered. To manage this

within the algorithm a copy of the deterministic adjacency matrix is made prior to applying

the serial schedule generation scheme. The stochastic logic for the chromosome being

considered is added to the deterministic logic and the schedule generation algorithm is then

run. Figure 3 below shows a sample of the adjacency matrix with the addition of stochastic

logic carried out at the processing of each chromosome the example only shows activities

from the first tank with the hydro-test of activity of the second tank a stochastic link between

these hydro-tests has been indicated.

150

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15

16
17

123456789 10 11 12 13 14 15 16 17 ... 34 ... 180

34

180

Figure 7.3 - Adjacency Matrix Addition

As these links a added through a stochastic process we have no guarantee that the placement

of this additional logic will not create cycles or loops within the network. As reviewed in

earlier chapters cycles (feedback logic) cannot be handled by cpm or precedence network

calculations, only by the Design Structure Matrix. If cyclic logic is introduced we therefore

need to be able to detect this and break these links prior to performing scheduling operations.

In this algorithm we employ a recursive depth first search algorithm to examine the network

after addition of the additional logic.

7.2 Recursive Depth First Search

A Recursive Depth First Search (DFS) is a technique used to explore all the paths running

through a directed graph. DFS is utilised within this algorithm to run through each path in the

network and examine each of these paths for cycles.

151

Depth first search starts from a given node in the network and 1`6Ilows the outgoing logic

from the node. Where a branch exists the algorithm Follows one of the branches and

continues until it reaches the final node in the path, which is the node with no outgoing logic.

Once such a node is reached the algorithm backs up to the last branch detected and then

pursues the path on the alternative, or one of the alternative branches. Consider the adjacency

matrix given in figure 7.4 below:

1

2

3

4

5

6

7

8

9

10

123456789 10

Figure 7.4 - Sample Adjacency Matrix.

This adjacency matrix consists of ten activities with feed 16iward only logic, that is no cycles

exist. It can be seen that branches lead out of' nodes 2,4 & 5. The depth first search that

would result starting from node I would be as shown in figure 7.5 below. The order of the

search is given here by the number given against the link arrow.

152

17

6

7

8

9

Figure 7.5 - The DFS search order

From Figure 7.5 the algorithms search behaviour surrounding branches can be clearly seen.

As stated previously a recursive algorithm has been utilised to implement this DFS.

Recursion indicates a routine that makes a call to itself the VBA code utilised within the

algorithm for the DFS is given below:

153

Sub DFS(v)

If vMatrix(v, v) =9 Then
CycleList(v) =1

Else
vMatrix(v, v) =9

For d=1 To MatrixSize
If vMatrix(v, d) =I Then

DFS (d)
End If

Next d

vMatrix = vMaster
End If

End Sub

In this code, vMatrix, is a copy of the adjacency matrix used by the algorithm to mark nodes

that have been visited already. vMaster, is the original adjacency without any marking of

visited nodes and CycleList is a vector where nodes that are members of a loop are recorded.

A VBA implementation of the recursive DFS algorithm within Microsoft Excel was utilised

to test and illustrated the operation of this algorithm. Consider Figure 7.6 below in which two

feedback logic links have been introduced to the matrix given previously in figure 7.4.

1

2

3

4

5

6

7

8

9

10

123456789 10

Figure 7.6 - Adjacency Matrix with Feedback Logic.

154

17

6

9

Figure 7.7 - The DFS Tree showing the feedback logic

In this Microsoft Excel implementation, the recording of nodes that formed part of a cycle

will simply be marked in the matrix by the character `c' instead of recording them in the

CycleList vector and the cycles are broken by removing the "1's" causing the feedback. The

result from running the algorithm is as shown below in figure 7.8:

155

1

2

3

4

5

6

7

8

9

10

123456789 10

c 1 1

c 1

c 1 1
T

cl 1

Figure 7.8 - Adjacency Matrix indicating Cycles.

It can be seen that the feedback loops have been successfully removed from the matrix.

7.3 Case Study Problem

The first problem comprised 22 activities and represented a high level schedule for the

construction of 5 tanks of varying dimensions, including the civil and mechanical

construction in simplified form. The schedule was loaded with two resources a civil labour

resource and a mechanical labour resource. The algorithm allows an input to determine which

resource is the target of optimization as shown below in figure 7.9 the button in the `Opt. '

indicates the selected resource.

Figure 7.9 - Resource Setup within Microsoft Project.

156

As can be seen from figure 9 the goal of the optimization is to level the civil resource below

the limit of 250 units. Due to the way Microsoft Project handles labour type resources, it was

decided to use the material type resource to model the labour as man-hours, rather than using

the % type assignment used for labour resource normal within Microsoft Project.

Figure 7.10 below shows a filter of the schedule, giving only the civil activities, prior to the

optimization showing that the resource level greatly exceeded the imposed limitations.

CmI
Ove coma

AlKaNE _

PM~ ýY.

e T.. u NOW J ourNr J strt J Ftirn J sroa JJ
h

01 ocme«
wnn 3OA7 1"0 22110

2 Foun4don 28d. ys Tue 2110107 Um 19111107 ' Cr43DOC]
6 Foonwi1 28 days Tue 2110167 Mon 10/11107 If Cn43.500J

10 Fft do on 35 days Tos 2110107 Mw 261111)7 ' C, 4(3 OM
14 Foundation 25 day$ Tue 27! 10107 Mon 191111)7 ' Ch(1,500I
16 Foundation 28 days Tue 2110107 Mon 19111107 ' CM{4.500)

?J
rn oeoe« Lot r. 70N7 1010 22110 0Y12 1401 27102

640-.

560- .

400... __.. _. __. _. ý_. ____.. _.. _........

400_

320...

2r0-

160 -

12

Pam Uik

Figure 7.10 - Civil Activities prior to optimization run

157

8 Tact Nam, Duratr- Start FnM
JJJ -1

Stodýu'- WWVp

C L J' 01 I)lj « 01 Jan u. o1 O w.., wvl toga zz110 03012 1.. aI zvoz 01. o7,
2 Fourwauon Mays Wed 24110107 Tue 20111107 If Cr43.000
6 3 Founostan 2600y. Tue23110107 Tu. 2011117 If Cr435001

10 Founa. W, 35 day, Tu. 20/11/07 Tue 25112107 If Cr43 000v
14 Foundation 28 days Tue 25112+07 Tug 22101/06 If Cr 44 5001

16 Foundatun 28 days Tuw 22/01/06 Tw /9102/06 ' Cr44 000

II

4 J
" :

01 Oelob. r 01 1M1uMy o+ Ap

240

200
cMi
OYer. clfed - , QO

Aloc. roa Q , za
Proposed um

I

ea
41j

P"k U^d
Figure 7.11 - Civil Activities after the optimization run

Figure 7.11 above shows the same filter of the project after the optimization run. It can be

seen here that the algorithm has successfully leveled the resources maintaining the imposed

limits as well as providing a feasible continuous path through the civil activities.

The second test problem being utilised as an example for this algorithm is the 180 activity

schedule representing the construction of an eight tank, tank farm as utilised in Chapter 5 and

reproduced in full in Appendix F. From these activities the eight hydro-testing activities (one

for each tank) have been selected for stochastic logic assignment. The application of

stochastic logic to this problem can result in between one and eight transfer paths for the

hydro-test water eight separate paths if no logic is applied and one path if a continuous

sequence is formed with logic being applied to all of the stochastic logic activities. An extract

of the schedule is shown is Figure 7.12 for one of the tanks, the activities included are typical

for each of the eight tanks, only the durations and the quantity of resources required differs

158

from tank to tank. The flag indicating the activities to be considered for stochastic logic can

be seen against activity 119.

Figure 7. l2 - Schedule Exert.

The objective in this case is to use stochastic logic application and optimisation to level the

resource loading on the Hydro-testing activity. Resource constraints are not applied to the

optimisation process as in the optimisations in previous chapters, however the aim is to

maintain a maximum water usage of 140,000 units.

In the typical RCPSP activities are scheduled at their first precedence and resource feasible

time. In this problem we only consider precedence feasibility and utilise the variation in

preferential logic to provide the vehicle for optimisation. The fitness function of the problem

has been altered so that the algorithm will aim at minimising the resource utilisation, when a

utilisation is obtained that falls below the desired limit a reward factor is applied to the fitness

measure of that solution.

159

dwm. t ro i--i- eoi' caned.. wm.. tw .ex
0d0 ý9 es fD X iý d44- 40 ýý O ,. woao 4d Gl ""f- 9n- aý e"iu EQ" 4.

ram - etraee

Using this philosophy a logic sequence will be produced that will maintain the desired

resource level. In this specific problem this will produce a transfer path for the hydro-test

water from tank to tank that will minimise the total water usage.

The solution provided by the algorithm produce the Gantt chart and resource histogram that is

shown in figure 7.13 below:

Talc Na

34 f M102 - HydrobN

138 TX204 - Hydrolast

65 TKI04 - Hydrotest

119 TX203-Hydrated

85 TK201 - Hydratest

Si TK103 - Hydroled

102 TH202 - Hydra! "

17 TK101 - Hydrotal

JJ

J 0'M i S184 F60 j Sbdu
71 .

2008
- Od Nor DOC Jan Feb Mat Apr may Jun Ad

12 d. y. W 0Y11R17 Sd Iy12A7 W. lr(2.76J. 0001

43 days Yon Sue 3&12)07 r W. lsr11.]M. MýI
12111107

42 ay. Yon Yen 26N1A6 r W. Ira/(i. 7i1, MýI
17/17/07

48 ay. Tue 01101106 W. 1402106 WMSfji. ýM. OMý

48 ays WW To. /6/03.06 ' W '"AM
71101106

42 drys Wed Wed 02A KM Wbrß. 7f3. M/ý
20/02106

48 days Thu 20113106 Wed 07455106

42d. y. Fn 0404106 Fn 18105106 WM-ß. 363JSS1

Water
wa. bcdod -

a. oc. teu Y

Pest U. ft

Figure 7.13 - Optimisation of case study problem

It can be seen from figure 7.13 above that the logical path for the hydro-test water through the

eight tanks. Activity 34 which requires 2,353,000 units of water is predecessor to activity 68

also requiring 2,353,000 units and this sequence continues through activity 51 and 17. A

similar chain is formed between the four larger tanks requiring 3,360,000 units. The two

paths that the algorithm has selected are:

160

34-68-51-17

&

136-119-85-102

Figure 7.13 also shows that the prescribed resource limits have been met by the problem with

the peak resource usage being 140,000 units.

7.4 Chapter Summary

In this chapter the utilisation of preferential logic as a mechanism for resource optimisation

has been described as has the methodology for implementing this within a modification of the

FDAPCGA.

The possibility of introduction cycles into the network has been discussed as has the recursive

depth first search routine used to identify and break loops.

161

Chapter 8. Conclusions and
Recommendations for Future Research

In this final chapter the conclusions to the research are discussed in relation to the objectives

set in Chapter 1, the contribution of originality provided by the research is explored and

recommendations for future research extending from this work are made.

8.1 Conclusions

In chapter 1 the objectives of the research were established as follows:

" Provide a thorough review of existing work into the application of Evolutionary

algorithms to the optimisation of PSP. This review to include both problems utilising

Critical Path of Precedence Networks as well as those centring on the DSM.

Whilst this objective is in a way part of the research process rather than new work, the

survey did extend the scope of previous surveys of this type through the inclusion of

the DSM problems. This has therefore been retained as an objective although it is a

162

minor one. In Chapter 2a thorough review of the existing body of work was provided

and was summarised in Table 2.4.

" Develop a Genetic Algorithm suitable for solution of PSP building on and enhancing

existing research.

Chapter 4 and 5 detailed the genetic algorithm developed in response to this objective.

After initial testing on the TSP, this algorithm proved to be effective in the solution of

PSP utilising both precedence and DSM networks. This algorithm was implemented

in both MATLAB and in Microsoft Project using Visual Basic for Applications. The

algorithm proved able to optimise a range of problems successfully including DSM

problems cited by Todd (1997), PSPLIB Single and Multi-mode Problems (Kolisch

and Sprecher, 1996) as well as real world problems.

" Investigate the application of Genetic Algorithms to PSP beyond those covered by the

current research.

Chapter 6 and 7 describe the extended problems considered in the research. These

problems allowed for the stochastic application of resources and preferential logic in

order to solve these extended RCPSP. The problems were classified according to the

Herroelen classification system.

" Develop an implementation of the algorithms stemming from this research within a

commercial scheduling application, in order to further examine PSP through practical

case studies.

163

8.2 Originality and Novelty in this Research

In this research a number of items have been introduced that provide a contribution to the

general body of knowledge in this field. These items are identified as follows:

8.2.1 Fitness Differential Adaptation

The research has introduced a genetic algorithm that utilises adaptation based on the fitness

differential between successive generations. The algorithm modifies the mutation factor

whenever extended periods of no fitness increase are experienced. This allows the algorithm

to widen its search when trapped in local optima.

8.2.2 Stochastic Resource Assignments

The research explores the use of initial stochastic resource assignment in order to apply the

developed algorithm to the practical problem of balancing multiple global resource pools

across multiple projects in order to find the configuration that will allow the minimum

duration execution of all considered projects.

8.2.3 Stochastic Logic Assignments

The research investigates the use of stochastic assignments for the application of preferential

logic. The logic assignments are then included within the optimisation process so that the

configuration of preferential logic that will produce the shortest possible schedule is defined.

164

8.3 Suggestions for Future Research

A number of aspects of this research provide a basis upon which further research can be

conducted.

8.3.1 Integrating the Optimisation of the DSM with CPM based networks

The optimisation of the DSM and CPM networks has been performed separately in this

research. An extension of this would be to investigate the possibility of integrating these two

problems. Two possible configurations for this research present themselves. Firstly a two

stage scenario could be considered where the DSM optimisation is then used to feed the CPM

based schedule with its adjacency matrix after minimisation of feedback. The second scenario

is to consider a multi-objective problem that looks at minimising iteration, whilst also

minimising duration.

8.3.2 Adaptation

This research has shown the effectiveness of utilising adaptation within an algorithm in order

assist the algorithm in escaping from a local optimum. The use of adaptation can be extended

to consider controlling other algorithm parameters such as crossover rate and elitism.

8.3.3 Alternative Strategy Evaluation

This research has extended the optimisation of the RCPSP to where it can be used to evaluate

alternative strategies. The Stochastic application of resources and preferential logic are both

165

key to this. From this point further extensions can be provided so that alternative activities, or

groups of activities can be considered and in different combinations, allowing a project

manager to quickly assess the wide range of execution strategies often available to him/her.

166

REFERENCES
ACKLEY, D., 1987, A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic

Publishers.

ALCARAZ, J. and MAROTO, C., 2001a, A Robust Genetic Algorithm for Resource

Allocation in Project Scheduling. Annals of Operations Research, 102,83-109.

ALCAREZ, J. and MAROTO, C., A New Genetic Algorithm for the Multi-Mode Resource-

Constrained Project Scheduling Problem, Dpto de Estadistica e Investigacion Opcrativa,

Universidad Politecnica de Valencia Spain, 2001b.

AUSTIN, S. BALDWIN, A. HASSAN, T. and NEWTON, A., 1996, Techniques for the

Management of Information Flow in Building Design, Information Processing in Civil

and Structural Engineering Design, B. Kumar, I. A. Macleod and A. Rctik (Eds.), Civil-

Comp Ltd. Edinburgh Scotland, 119-123.

AZERON, A. PERKGOZ, C. KATO, K. KATAGIRI, H. and SAKAWA, M., 2004, Time-

Cost Trade-off in PERT Networks using a Genetic Algorithm. The proceedings of the 47th

IEEE International Midwest Symposium on Circuits and Systems.

BELLENGUEZ, 0.2004, A Multi-Skill Project Scheduling Problem, Laboratoire

d'Informatique de 1'Universite de Tours.

BENTLEY, P. and WAKEFIELD, J. 1996, An Analysis of Multi-objective Optimisation

within Genetic Algorithms, Division of Computing and Control Systems Engineering

University of Huddersfield.

BIRBIL, S. and FANG, S., 2003, Electromagnetism-like mechanism for global optimisation.

Journal of Global Optimisation, 25,263 - 282.

BLAZEWICZ, J. LENSTRA, J. K. and RINOOY KAN, A. H. G, 1983, Scheduling subject to

resource constraints: Classification and complexity. Discrete Applied Mathematics, 5,11-

24.

BOULEIMAN, K. and LECOCQ, H., 2000, Multi-Objective Simulated Annealing for the

Resource Constrained Multi-Project Scheduling Problem. Service de Robotic et

Automatisation, Universite de Liege.

BRUCKER, P., DREXL, A., MOHRING, R. H., NEUMANN, K., PESCH, E., 1999,

167

Resource-constrained project scheduling: Notation, classification, models and methods,

European Journal of Operational Research, 112,3-41.

CAVALCANTE, C. and DE SOUZA, C. 1997, "A Tabu Search Approach for Scheduling

Problem under Labour Constraints", Instituto de Computacao, Universidade Estadual de

Campinas, Brasil.

CHEN, R. and LO, S., 2006, Using an Enhanced Ant Colony System to Solve Resource

Constrained Project Scheduling Problem, International Journal of Computer Science and

Network Security, 6,75-84.

CHIU, H. and TSAI, D., 1993, A Comparison of Single-Project and Multi-Project

Approaches in Resource-Constrained Multi-Project Scheduling Problems. Journal of the

Chinese Institute of Industrial Engineers, 10,171-179.

COELLO COELLO, C., 1999, "A Comprehensive Survey of Evolutionary-based Multi-

objective Optimisation Techniques", Knowledge and Information Systems, 1,3,269 -
308.

COELLO COELLO, C. and PULIDO, G., 1993, A Micro-Genetic Algorithm for

Multiobjective Optimisation, P International Conference on Evolutionary Multi-Criterion

Optimisation, 126-140.

CORNE, D., JERRAM, J., KNOWLES, J. and OATES, M., 2001, PESA-II: Region based

Selection in Multiobjective optimisation, Proceedings of GECCO 2001: Genetic and

Evolutionary Computation Conference, 283 - 290.

CORNE, D. and KNOWLES, J., 2000, The Pareto-envelope based selection algorithm for

multiobjective optimisation, Proceedings of the 6'h International conference on Parallel

Problem Solving from Nature (PPSN R), 839 - 848.

DAVIS, L., 1985. "Job Shop Scheduling and Genetic Algorithms", Proceedings of the I

International Conference on Genetic Algorithms and their Applications, 136-140.

DEB, K. PRATAP, A. AGARWAL, S and MEYARIVAN, T.,, (2000), "A Fast Elitist Non-

Dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-11",

Kanpur Genetic Algorithm Laboratory (KanGAL) Indian Institute of Technology Kanpur

Report: 200001.

DEB K, (2001), "Multi-Objective Optimisation using Evolutionary Algorithms", John Wiley

& Sons, ISBN 0-471-87339-X.

168

DEBELS, D. and VANHOUCKE, M., 2004a, An Electromagnetism Meta-Heuristic for the

Resource Constrained Project Scheduling Problem. Working Paper Series, Faculteit

Ecomonie and Bedrijfskunde, Universiteit Gent.

DEBELS, D. DE REYCK, B. LEUS, R. and VANHOUCKE, M., 2004b, A Hybrid Scatter

Search/Electromegnetism Meta-Heuristic for Project Scheduling. Working Paper Series,

Faculteit Ecomonie and Bedrijfskunde, Universiteit Gent.

DEBELS, D., DE REYCK, B., LEUS, R., and VANHOUCKE, M., 2004c, A Scatter-search

meta-heuristic for the Resource Constrained Project Scheduling Problem. European

Journal of Operations Research - forthcoming.

DEBELS, D. and VANHOUCKE, M., 2005a, A Bi-Population based Genetic Algorithm for

the Resource-Constrained Project Scheduling Problem. Working Paper Series, Faculteit

Economic en Bedrijfskunde, Universiteit Gent.

DEBELS, D. and VANHOUCKE, M., 2005b, A Decomposition-Based Heuristic for the

Resource Constrained Project Scheduling Problem. Working Paper Series, Faculteit

Economic en Bedrijfskunde, Universiteit Gent.

DORIGO, M. DI CARO, G. and GAMBARDELLA L, 1999, Ant Algorithms for Discrete

Optimisation. Artificial Life, 5,137 - 172.

EIBEN A, HINTERDING R and MICHALEWICZ Z, 1999, Parameter Control in

Evolutionary Algorithms, IEEE Transactions of Evolutionary Computation, , 3,2,124 -
141

ELLOUMI, S., FORTEMPS, P., TEGHAM, J. and LOUKIL, T., 2007, A new bi-objective

evolutionary algorithm using clustering heuristics to solve the Multi-mode Resource

Constrained Project Scheduling Problem, GIAD University of Economic and Management

Sciences, Tunisia, On-line at http: //www. cs. nott. ac. uk/-rxg/PlanSIG/Elloumi. pdf

ESHELMAN, L. J. AND SCHAFFER, D. J., 1992, Real-coded genetic algorithms and interval

schema, Foundations of Genetic Algorithms 2, Whitely, San Mateo C. A. U. S. A.

FENG, C. LIU, L. and BURNS, S. Using Genetic Algorithms to solve construction Time-

Cost Trade-off problems. Journal of Computing in Civil Engineering, July 1997,184-189.

FEO, T. and RESENDE, M., 1995, Greedy Randomised Adaptive Search Procedure. Journal

of Global Optimisation, 6,109 - 133.

169

FOGEL D and FRASER A, 2000, Running Races with Fraser's Recombination, Proceedings

of the 2000 Congress on Evolutionary Computation IEEE, San Diego California, 1217 -
1222.

FOX, B. and RINGER, M., 1995, "The BENCHMARX PROBLEMS", On-line at:

http//www. neosofl. com/-benchmrx/. Accessed July 2005.

GLOVER. F, 1994, Genetic Algorithms and Scatter Search: Unsuspected Potentials,

Statistics and Computing, 4,131-140.

GOLDBERG, D., 1989, Genetic Algorithms in Search, Optimisation and Machine Learning,

Addison Wesley Longman Inc.

GONQALVES, J. MENDES, J. and RESENDE, M., 2004, A Genetic Algorithm for the

Resource Constrained Multi-Project Scheduling Problem. AT&T Labs Technical Report

TD-668LM4.

GOTO E, 2004, Maximising Net Present Value for Generalised Resource-Constrained

Project Scheduling Problem, Noruma Research Institute Japan.

GRAHAM. R, LAWLER. E, LENSTRA. J and RINNOOY KAN. A, 1979, Optimisation and

approximation in deterministic sequencing and scheduling theory: A survey, Annals of

discrete mathematics, 5,287-326.

GREFFENSTETTE J, GOPAL R, ROSMAITA B, and VANGUCUT D, 1985, Genetic

Algorithms for the Travelling Salesman Problem, Proceedings of The 1 s` International

Conference on Genetic Algorithms and Their Applications, 160-168.

HARTMANN, S., 1997, Scheduling Medical Research Experiements - An application of

project scheduling methods, Manuskripte aus den Instituten fur Betriebswirtschaftslehre,

No. 452, University of Kiel, Germany.

HARTMANN, S., 1998, A Competitive Genetic Algorithm for Resource Constrained Project

Scheduling. Naval Research Logistics, 45,733-750.

HARTMANN, S., 2001, Project Scheduling with Multiple Modes: A Genetic Algorithm,

Annals of Operations Research, 102,111 - 136.

HARTMANN, S., 2002, A Self Adapting Genetic Algorithm for Project Scheduling under

Resource Constraints. Naval Research Logistics, 49,433-448.

HERBOTS. J, HERROELEN. W, and LEUS. R, 2004, Experimental Investigation of the

170

Applicability of Ant Colony Optimisation Algorithms for Project Scheduling, Department

of Applied Economics K. U. Leuvn.

HERROELEN, W. DEMEULEMEESTER, E. and DE REYCK, B., 1999, Project

Scheduling: A research Handbook. 1999, Springer Verlag.

HERROELEN, W. DEMEULEMEESTER, E. and DE REYCK, B., 2001, A note on the

paper `Resource-constrained project scheduling: Notation, classification, models and

methods' by Brucker et at.., European Journal of Operational Research, 128,679-688.

HINDI K, YANG H and FLEZAR K, 2002, An Evolutionary Algorithm for Resource

Constrained Project Scheduling, IEEE Transactions on Evolutionary Computation, 6,512

-518.

HOLLAND J, 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control and Artificial Intelligence, 1974 reprint 1992, ISBN

0-262-58111-6, Massachusetts Institute of Technology Press.

KIRKPATRICK S, GELATT C and VECCIHI M, 1983, Optimisation with Simulated

Annealing, Science, 220,4598,671 - 680.

KOCHETOV, Y. and STOLYAR, A., 2003, Evolutionary Local Search with variable

Neighbourhood for the Resource Constrained Project Scheduling Problem. in The

Workshop on Computer Science and Information Technology CSIT.

KOLISCH, R., 1996, Serial and Parallel resource-constrained project scheduling methods

revisited: Theory and Computation, European Journal of Operations Research, 90,320-

333.

KOLISCH, R. and HARTMANN, S., 2005, Experimental Investigation of Heuristics for

Resource Constrained Project Scheduling: An Update. Accepted for publication in The

European Journal of Operational Research.

KOLISCH, R., SPRECHER, A. and DREXL, A., 1992, Characterisation and generation of a

general class of Resource-constrained project scheduling problems, Institut fur

Betriebswirtschaftslehre, Universitat zu Kiel.

KOLISCH, R. and SPRECHER, A., 1996, PSPLIB: A Project Scheduling Problem Library,

Christian Albrechts Universitat zu Kiel, Germany. On-line at:

http: // 129.187.106.231/psplib/ . Accessed November 2004.

171

KUSIAK, A. and WANG, J., 1991, Concurrent Engineering: Simplification of the Design

Process, Computer Applications in Production Engineering: Integration Aspects,

Doumeingts, Browne and Tomljanovich (Eds.), Elsevier Science Publishers, Holland.

LANCASTER J, 2003, Managing Iteration in Design, The Engineering Designer, Journal of

the Institution of Engineering Designers, January/February 2003 Pages 26-28.

LEU, S. and YANG, C., 1999, A GA-Based multicriteria optimal model for construction

scheduling. Journal of Construction Engineering and Management, 125,420 - 427.

LIANG, Y. CHEN, A. KAO, W. and CIIYU, C., 2004, An Ant Colony Approach to

Resource Constrained Project Scheduling Problems, Department of Industrial Engineering

and Management Yuan-Ze University Taiwan.

McMULLEN, P., 2001, An Ant Colony Optimisation Approach to Addressing a JIT

sequencing problem with Multiple Objectives, Artificial Intelligence in Engineering, 15,

309 - 317.

MENDES J, GONCALVES J and RESENDE M, 2005, A Random Key Based Genetic

Algorithm for the Resource Constrained Project Scheduling Problem, AT&T Labs

Research Technical Report TD-6DUK2C. On-line at http: //www. optimization-

online. org/DB FILE/2005/07/1169. pdf

MERKLE, D. MIDDENDORF, M. and SCHMECK, II., 2000, Ant Colony Optimisation for

Resource-Constrained Project Scheduling. IEEE transactions on Evolutionary

Computation, 6,333 - 346.

MORI, M. and TSENG, C., 1996, A Genetic Algorithm for Multi-Mode resource

Constrained Project Scheduling Problem. European Journal of Operational Research,

100,1,134 - 141.

MURATA T AND ISHIBUCIII H, 1994, Pcrformancc Evaluation of Genetic Algorithms for

Flowshop Scheduling Problems, Proceedings of the I' IEEE Conference on Evolutionary

Computation, 2: 812-817.

MURATA T, 1997, Genetic Algorithms for Multi-objective Optimisation, Doctoral Thesis,

Osaka Prefecture University.

NAM, D. and PARK, C., 2000, Multi-objective Simulated Annealing: A Comparitive study

to Evolutionary Algorithms, International Journal of Fuzzy Systems, 2,125 - 147.

172

OLIVER, I. M., SMITH, C. J. and HOLLAND, J. R. C., 1987, "A Study of Permutation

Crossovers on the Travelling Salesman Problem", Proceedings of the 2"d International

Conference on Genetic Algorithms and their Applications, pp. 225-230.

PARSOPOULOS, K., and VRAIIATIS, M., 2002, Particle Swarm Optimisation Method in

Multiobjective Problems, Proceedings of the 2002 ACM Symposium on Applied

Computing, 603 - 607.

PATTERSON. J H, 1984, A comparison of exact approaches for solving the Multiple

constrained Resource, Project Scheduling Problem, Management Science, 30,584.

REIMANN, M., DOERNER, K., and HARTL, R., 2004, D-Ants: Savings Based Ant Divide

and Conquer the Vehicle Routing Problem, Computers and Operational Research, 31,563

-591.

ROGERS, J., 1994, Ordering Design Tasks based on Coupling Strength, 5th

AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimisation.

AIAA Paper No. 94-4326.

ROGERS, J., 1996, Integrating a Genetic Algorithm into a Knowledge-Based System for

Ordering Complex Design Process, NASA Langley Research Centre, Hampton Virginia.

NASA technical memorandum No. 110247, Accessed at

http: //ntrs. nasa. jzov/archive/nasa/casi. ntrs. nasa. gov/ 19960021052 1996043859. pd f

SAKALAUSKAS. K and FELINSKAS. G, 2006, Optimization of Resource Constrained

Project Schedules by Genetic Algorithm based on the Job Priority List, ISSN 1392 124X

Information Technology and Control, 35,4, pp 412-418.

SCHRIMER, A. and RIESENBERG, S., 1997, Parameterized Heuristics for Project

Scheduling - Biased Random Sampling Methods, Christian-Albrechts Universitat, Keil,

Germany.

SEWELL, M., SAMARABANDU, J., RODRIGO, R. and McISAAC, K., 2006, The Rank-

Scaled Mutation Rate for Genetic Algorithms, International Journal of Information

Technology, 3,32 - 36.

SIVRIKAYA-$ERIFOOLU, F, 1998, A new uniform order-based crossover for concurrent

consideration of sequencing and selection problems, A Working Paper Abaut Izzct Baysal

University, Bolu, Turkey.

173

SRIPRASERT, E. and DAWOOD, N., 2003, Genetic Algorithms for Multi-Constraint

Scheduling: An Application for the Construction Industry, Construction Informatics

Digital Library, On-line at: http: //itc. scix. net/paper w78-2003-341. content., Accessed

August 2005.

STARKWEATHER, T., MCDANIEL, S., MATHIAS, K., WHITLEY D., AND WHITELY,

C,. 1991, A comparison of genetic sequencing operators, Proceedings of the 4th

International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo C. A.

U. S. A.

STEWARD, D., 1981, The design structure system: a method for managing the design of

complex systems, IEEE Transactions on Engineering Management, 28,71-74.

TANDON, V., EL-MOUNAYRI, H., and KISIIAWY, H., 2001, NC End Mill Optimisation

using evolutionary computation, International Journal of Machine Tools and

Manufacture, 42,595-605.

THIERENS, D., 2002, Adaptive Mutation Rate Control Schemes in Genetic Algorithms,

Proceedings of the 2002 Congress on Evolutionary Computation, 1,980 - 985.

TODD, D., 1997, Multiple Criteria Genetic Algorithms in Engineering Design and Operation,

PhD Thesis University of Newcastle Department of Marine Technology.

ULUSOY, G. SIVRIKAYA-SERIFOÖLU, F. and BILGE, U., 1997, A Genetic Algorithm

approach to the simultaneous scheduling of machines and automated guided vehicles,

Computers and Operations Research, 24,335-351.

ULUSOY, G. SIVRIKAYA-$ERIFO6LU, F. and $AIIIN, $., 2001, Four Payment Models

for the Multi-Mode Resource Constrained Project Scheduling Problem with Discounted

Cash Flows. Annals of Operations Research, 102,237-. 261.

URSEM, R. 2003, Models for Evolutionary Algorithms and their Applications in System

Identification and Control Optimisation, PhD Dissertation, Department of Computer

Science, University of Aarhus, Denmark.

VALENZUELA, C. and JONES, A., 1993, Evolutionary Divide And Conquer: A novel

genetic algorithm approach to the TSP. Evolutionary Computation, 1,313 - 333.

VALLS V., QUINTANILLA S. and BALLESTIN F., 2001, An Evolutionary Approach to

the Resource Constrained Project Scheduling Problem, 4`h llletaheuristics International

Conference, Porto Portugal July 16-20 2001.

174

VALLS, V. QUINTANILLA S. and BALLESTIN F., 2002, A Hybrid Genetic Algorithm for

the Resource Constrained Project Scheduling Problem with the Peak Crossover operator,

8th International Workshop on Project Management and Scheduling, 368-371.

VALLS, V. BALLESTIN, F. and QUINTANILLA, S., 2003, A New Crossover Operator for

the Resource Constrained Project Scheduling Problem, in MIC2003: The 5th

Metaheuristics International Conference.

VAN DEN BERGH, F. and ENGLEBRECHT, A., 2000, Cooperative learning in Neural

Networks using Particle Swarm Optimisers, South African Computer Journal, 26, page

numbers not known.

VANHOUCKE M., 2007, A Genetic Algorithm to Investigate the trade-off between project

lead time and net present value, Working Paper Series, Faculteit Economic en

Bedrijfskunde, Universiteit Gent.

VAN VELDHUIZEN D and LAMONT G, 2000, Multi-objective Evolutionary Algorithms:

Analyzing the state of the Art", Evolutionary Computation, Massachusetts Institute of

Technology, 8,125 - 147.

WALL, M., 1996, A Genetic Algorithm for Resource-Constrained Scheduling, PhD Thesis,

Department of Mechanical Engineering, Massachusetts Institute of Technology.

WHITFIELD, R. DUFFY, A. COATES, G. and HILLS, W. 2003, Efficient Process

Optimisation. Concurrent Engineering, 11,83 - 92.

WHITLEY D, STARKWEATHER T, and FUQUAY D, 1989, Scheduling Problems and the

Travelling Salesman: The Genetic Edge Recombination Operator, Proceedings of The

Third International Conference on Genetic Algorithms, Morgan Kaufmann, ISBN 1-

55860-066-3,133-140.

WRIGHT A, 2002, Evolutionary Computation: Selection Methods, University of Montana,

Department of Computer Science.

YILDIZ H, 2000, Simulated Annealing and Application to Scheduling Problems, Department

of Industrial Engineering Bilkent University Turkey.

ZHUANG, M. and YASSINE, A., 2004, Task Scheduling of Parallel Development Projects

using Genetic Algorithms, DETC ASME 2004 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference Salt

Lake City, Utah USA.

175

ZITZLER E, 1999, Evolutionary Algorithms for Multi-objective Optimisation: Methods and

Applications, Doctoral Thesis, Swiss Federal Institute for Technology Zurich.

176

APPENDIX A. - TSP MATLAB CODE
This appendix gives the MATLAB code for the travelling salesman problem. The code for

the 10 city tour is given here. The 25 and 50 city tour code is identical other than they call a

different data file and that various loops cycle 10,25 or 50 times respectively.

MAIN MODULE.

%Application : Travelling Salesman Problem (10 City Tour)

%John Lancaster - PhD Thesis Brunel University
%Version 1.0 - 7th - 28th September 2004

function [DistM] = TSPIO(Popsiz, Xover, MRatc, Elitism, gcns)

CityCoords = xlsread('TSP Test 10');
%Import the 10 city Travelling Salesman Coordinate Data

iPop = InitPopR(10, Popsiz);
%Create Initial TSP Population

for g=l : gens

ifg-= 1
iPop = NewPop;
%FinalPop = NewPop;

end

%Step through the Population and Determine Total Distance Travelled and
%Fitness.
for x=1: Popsiz

Travelled = 0;
for y=1: 9

177

n= iPop(x, y);
m= iPop(x, y+l);
CityX = abs(CityCoords(n, 2) - CityCoords(m, 2));
CityY = abs(CityCoords(n, 3) - CityCoords(m, 3));
CityDist = sgrt(CityX^2 + CityY^2);
Travelled = CityDist + Travelled;

end

n= iPop(x, 10);
m= iPop(x, 1);
CityX = CityCoords(n, 2) - CityCoords(m, 2);
CityY = CityCoords(n, 3) - CityCoords(m, 3);
CityDist = sgrt(CityX^2 + CityY^2);
Travelled = CityDist + Travelled;

DistTrav(x) = Travelled;

end

for x=1: Popsiz
Fitness(x) =1/ ((DistTrav(x)-min(DistTrav))+ 1);

end

DistM(g) = mean(DistTrav);

Se1Vec = RouletteSel(Fitness, Popsiz, iPop, 10, Elitism);
%Call the Tournament Selection Routine

Pos = 0;
%Initialise Pointer

for x=1: Popsiz
for y=l : SelVec(x)

Pos = Pos + 1;
TempPop(Pos, 1: 10) = iPop(x, 1: 10);

end
end
%Copy Chromosomes into Temporary Population according to Tournament
%Selection results.

ifg- 1
FinalPop = NewPop;

end

MateSel = randperm(Popsiz);
%Generate a random series to pair off Chromosomes for Mating

Pos = 0;
%Initialise Pointer

178

%Crossover and Selection
for x=1: (Popsiz/2)

Pos = Pos + 2;
Parent 1= TempPop(MateSel(Pos-1), 1: 10);
Parent2 = TempPop(MateSel(Pos), 1: 10);

TestRand = rand;

if Xover >= TestRand
[Childl, Child2] = EERXover(Parentl, Parent2);
% Call to Real Single Point Crossover Operator
NewPop(Pos- 1,1: 10) = Child 1;
NewPop(Pos, 1: 10) = Child2;

elseif Xover < TestRand
NewPop(Pos- 1,1: 10) = Parent 1;
NewPop(Pos, 1: 10) = Parent2;

end
end

CurrPop = NewPop;

%Mutation
if g <= (gens - 5)

NewPop = MRMutate(CurrPop, MRate, Popsiz, 10);
end

% Produce GA Performance Curve
plot(DistM);

fori= 1: 10
TourCoordx(i) = CityCoords(NewPop(l, i), 2);
TourCoordy(i) = CityCoords(NewPop(l, i), 3);

end

TourCoordx(i+1) = TourCoordx(1);
TourCoordy(i+l) = TourCoordy(1);

plot(TourCoordx, TourCoordy);

end

ROULETTE SELECTION.

%Roulette Selection - Evolutionary Algorithm Toolbox

%John Lancaster - PhD Thesis Brunel University
%Version 1.0 - 7th September 2004

function [TempPop] = RouletteSel(Fitness, Popsiz, iPop, Cities, Elitism)
%Calculates the number of times a chromosome gets copied to the

179

%intermediate Population

for x=1: Popsiz
Selection(x) = ceil((Fitness(x)/sum(Fitness)) * (Popsiz * (1-Elitism)));

end

Pos = 1;
%Initialise Pointer

for x=1: Popsiz %sum(Selection)
for y=1: Selection(x)

TempPop(Pos, 1: Cities) = iPop(x, I : Cities);
Pos = Pos+I;

end
end

[c, I] = max(Fitness);
BestCit = iPop(I, 1: Cities);

for x= sum(Selection): Popsiz
TempPop(x, 1: Cities) = BestCit;

end
%Make up Population using Best Citizen

ENHANCED EDGE CROSSOVER MODULE

%Enhanced Edge Recombination Crossover - Evolutionary Algorithm Toolbox
%Real Encoded Chromosomes

%John Lancaster - PhD Thesis Brunel University
%Version 1.0 - 6th October 2004

function [Child!, Child2] = EERXovcr(Parcntl, Parcnt2)
%Enhanced Edge Recombination

ParLG = length(Parent1);

%Build Edge lists
for i=l: ParLG
%Cycle through Edges

for j=1: ParLG
%Cycle through Parents to locate adjacent edges

if Parentl(j) =i
ifj == 1

Edgelist(i, I) = Parentl(ParLG);
elseif j -- =1

Edgelist(i, 1) = Parentl(j-1);
end

180

if j == ParLG
Edgelist(i, 2) = Parent! (1);

elseif j -= ParLG
Edgelist(i, 2) = Parentl(j+1);

end
end

if Parent2(j) == i
ifj==1

Edgelist(i, 3) = Parent2(ParLG);
elseifj M= 1

Edgelist(i, 3) = Parent2(j-1);
end

if j= ParLG
Edgelist(i, 4) = Parent2(1);

elseifj - ParLG
Edgelist(i, 4) = Parent2(j+1);

end
end

end
end

%Process Edge list for duplicates and multiply all duplicates by -1
for i=1: ParLG

forj = 1: 4
for z=1: 4

if z -=j
if Edgelist(ij) = Edgelist(i, z)

if Edgelist(ij) >0
Edgelist(ij) = Edgelist(ij) * -1;
Edgelist(i, z) = Edgelist(i, z) * -1;

end
end

end
end

end
end

%Build Children
%Child1
for i=1: ParLG

ifi== 1
test = rand;
if test > 0.5

Childl(i) = Parentl(i);

elseif test <= 0.5
Childl(i) = Parent2(i);

end

181

elseif i>1
PossEdge(1: 4) = Edgelist(prevEdge, 1: 4);
EdgeFlag = 0;
for f=1: 4

if PossEdge(f) <0
tempEdge = PossEdge(f)*-1;
[tf, loc] = ismember(tempEdge, Child1);
if loc =0

EdgeFlag = 1;
nextEdge = tempEdge;
f=4;

end
end

end
if EdgeFlag == 0

testPerm = randperm(4);
for f=1: 4

if PossEdge(testPerm(f)) >0
tempEdge = PossEdge(testPerm(f));
[tf, loc] = ismember(tempEdge, Child1);
ifloc=0

EdgeFlag = 1;
nextEdge = tempEdge;
f=4;

end
end

end
end
if EdgeFlag == 0

testperm = randperm(ParLG);
for f=1: ParLG

tempEdge = Parent I (testperm(f));
[tf, loc] = ismember(tempEdge, Child 1);
ifloc==0

EdgeFlag = 1;
nextEdge = tempEdge;
f=ParLG;

end
end

end
Child 1(i)=nextEdge;

end
prevEdge = Child 1(i);

end

%Child2
for i=1: ParLG

ifi== 1
if Child l (i) == Parent l (i)

Child2(i) = Parent2(i);

182

elseif Child! (i) == Parent2(i)
Child2(i) = Parentl(i);

end
elseif i>1

PossEdge(1: 4) = Edgelist(prevEdge, 1: 4);
EdgeFlag = 0;
for f=1: 4

if PossEdge(f) <0
tempEdge = PossEdge(f)*-1;
[tf, loc] = ismember(tempEdge, Child2);
ifloc==0

EdgeFlag = 1;
nextEdge = tempEdge;
f=4;

end
end

end
if EdgeFlag == 0

testPerm = randperm(4);
for f=1: 4

if PossEdge(testPerm(f)) >0
tempEdge = PossEdge(testPerm(f));
[tf, loc] = ismember(tempEdge, Child2);
iftoe=0

EdgeFlag = 1;
nextEdge = tempEdge;
f=4;

end
end

end
end
if EdgeFlag == 0

testperm = randperm(ParLG);
for f=1: ParLG

tempEdge = Parent2(testperm(f));
[tf, loc] = ismember(tempEdge, Child2);
ifloc==0

EdgeFlag = 1;
nextEdge = tempEdge;
f=ParLG;

end
end

end
Child2(i)=nextEdge;

end
prevEdge = Child2(i);

end

end

183

APPENDIX B. - DSM MATLAB CODE
This appendix contains the MATLAB code utilised for the DSM optimisation. The code is

arranged in the modules. The 'DSMset' routine is used to call the various problems. The

three test problems being STEWARD '81, AUSTIN `96 and KUSIAK `87

MAIN MODULE.

%Permutation Based Genetic Algorithm for the DSM

%John Lancaster, PhD Research, Brunel University

function [DSMimp, Seq] = DSMGA(Npop, Gens, XRate, MRate)

%DSM capture
[Nvar, FFmtx] = DSMset('STEWARD81');

%Generate Initial Population
for i=1: Npop

Pop(i, 1: Nvar) = randperm(Nvar);
end

%Set Generation Differential Factor
gd = 4;

%Begin Generation Cycle
for g=1: Gens

%Test for improvement over last three generations and modify mutation
%rate
if g> gd && g< Gens - (Gens * 0.1)

184

if Best(g-gd) == Best(g-1)
gMRate = MRate * 5;

else
gMRate = MRate;

end
else

gMRate = MRate;
end

%Evaluate Fitness - via external Fitness Function
FITmtx = DSMfit(Pop, Npop, Nvar, FFmtx);
FITavg = Mean(FITmtx(:));
FITmin(g) = min(FITmtx);
[vl, loc] = min(FITmtx);
FITseq(g,:) = Pop(loc,:);

Best(g) = min(FITmin);

if g< Gens

%Perform Selection - via external Selection Function
Pop = DSMRoulette3(Pop, Npop, Nvar, FITmtx);

%Perform Crossover - via external Crossover Function
Pop = DSMipx(Pop, XRate, Npop, Nvar);

%Perform Mutation - via External Mutation Function
Pop = MRMutate(Pop, gMRate, Npop, Nvar);

end

end

%Produce Improved Matrix
[vl, loc] = min(FITmin);
Seq = FITseq(loc,:)
min(Best)
DSMimp = DSMplot(Nvar, Seq, FFmtx);
Pop
plot(FITmin);

DSM FITNESS FUNCTION.

%DSM Fitness Function (Minimise Iteration - Idsmiminiter)

%John Lancaster, PhD Research, Brunel University

185

function [FITmtx] = DSMfit(Pop, Npop, Nvar, FFmtx)

FFsiz = size(FFmtx);

for i=1: Npop
FitNumb = 0;
forj = 1: FFsiz(1,1)

x= (find(Pop(i,:)==FFmtx(j, 1)));
y= (find(Pop(i,:)==FFmtx(j, 2)));

ifx>y
FitNumb = FitNumb + ((x - y) * FFmtx(j, 3));

end
end

FITmtx(i) = FitNumb;
End

DSM ROULETTE SELECTION MODULE.

%Roulette Selection

%John Lancaster, PhD Research, Brunel University
%Version 1.0 - 7th September 2004
%Version 2.0 - 15th May 2005

function [Pop] = DSMRoulette(Pop, Npop, Nvar, Fitness)
%Calculates the number of times a chromosome gets copied to the
%intermediate Population

for x=1: Npop
Selection(x) = ceil(sum(Fitness(:))/Fitness(x));

end

Pos = 1;
x=1;

while and(x <= Npop, Pos <= Npop)
Share(x) = ceil(Selection(x)*Npop/sum(Selection));
y=1;
while and(y<=Share(x), Share(x)-=O)

TempPop(Pos,:) = Pop(x,:);
Pos = Pos + 1;
y=y+l;

end
x= x+l;

end

186

Pop = TempPop;

DSM CROSSOVER MODULE.

%Real Independant Point Crossover - Evolutionary Algorithm Toolbox
%Real Encoded Chromosomes

%John Lancaster - PhD Thesis Brunel University
%Version 1.0 - 18th August 2005

function [Pop] = DSMdpxo(Pop, XRate, Npop, Nvar)

Matinglist = randperm(Npop);

for p =1: 2: Npop

Parentl = Pop(Matinglist(p),:);
Parent2 = Pop(Matinglist(p+1),:);
Childl = zeros(1, Nvar);
Child2 = zeros(1, Nvar);

if rand < XRate
for i=I : Nvar

if rand > 0.5
Childl(i) = Parentl(i);

end
end

for i=1: Nvar
if not(ismember(Parent2(i), Child1))

j=1;
while Childl(j) 0

j =j+1;
end
Child l(j) = Parent2(i);

end
end

for i=1: Nvar
if rand>0.5

Child2(i) = Parent2(i);
end

end

for i=1: Nvar
if not(ismember(Parentl (i), Child2))

j=1;

187

while Child2(j) -0
j =j+1;

end
Child2(j) = Parentl(i);

end
end

else
Childl = Parent!;
Child2 = Parent2;

end

TempPop(p,:) = Child!;
TempPop(p+1,:) = Child2;

end

Pop = TempPop;

DSM MUTATION MODULE.

%Mutation - Evolutionary Algorithm Toolbox
%Real Encoded Evolutionary Algorithms

%John Lancaster - PhD Thesis Brunel University
%Version 1.0 - 22nd July 2004

function [MPop] = Mutate(MPop, MRate, Popsiz, Nvar)
%Randomly Mutate the Population according to the given Mutation Probability

for i=1: Popsiz
if rand < MRate

perm = randperm(Nvar);
numb = ceil(rand* 10);
list = perm(l: numb);
line = MPop(i, l: Nvar);
for j=l: numb

vals(j) = line(list(j));
end
for j=1: numb

line(list(j)) = vals((numb+l) j);
end
MPop(i, 1: Nvar) = line;

end
end

188

APPENDIX C. - SINGLE MODE RCPSP
MATLAB CODE
The MATLAB code for the single mode RCPSP is given in this appendix.

%Permutation Based Genetic Algorithm for the Single Mode Precedence Network PSP

%John Lancaster, PhD Research, Brunel University
%--

function [Seq] = PredGA(Npop, Gens, XRate, MRate)

%Network capture
[PREDmtx, RELmtx, Nvar, ACTmtx, RESLIMmtx]
Predset('J301_1 ACT', 'J301_1 REL', 'J301

_1
LIM');

%Generate Initial Population
for i=1: Npop

Pop(i, 1: Nvar) = randperm(Nvar);
end

%Set Generation Differential Factor
gd=4;

%Begin Generation Cycle
for g=1: Gens

%Test for improvement over last three generations and modify mutation
%rate
ifg>gd&&g<Gens -(Gens*0.1)

if Best(g-gd) = Best(g-1)
gMRate = MRate * 5;

else
gMRate = MRate;

end

189

else
gMRate = MRate;

end

%Evaluate Fitness - via external Fitness Function
FITmtx = PredfitMinDur(Pop, Npop, Nvar, RESLIMmtx, PREDmtx, ACTmtx);
FITavg = Mean(FITmtx(:));
FITmin(g) = min(FITmtx);
[vl, loc] = min(FITmtx);
FITseq(g,:) = Pop(loc,:);
Best(g) = min(FITmin);
BESTLIMmtx(g,:,:) = RESLIMres(loc,:,:);

ifg<Gens
%Perform Selection - via external Selection Function
Pop = DSMRoulette3(Pop, Npop, Nvar, FlTmtx);
%Perform Crossover - via external Crossover Function
Pop = DSMipx(Pop, XRate, Npop, Nvar);
%Perform Mutation - via External Mutation Function
Pop = MRMutate(Pop, gMRate, Npop, Nvar);

end
end

%Produce Improved Matrix
[vl, loc] = min(FITmin);
Seq = FITseq(loc,:)
min(Best)

Pop
BESTres(:,:) = BESTLIMmtx(loc,:,:);
REScurve = RESLIMmtx - BESTres

plot(FITmin);

FITNESS FUNCTION MODULE.

%CPM Network Fitness
%Single Objective Duration Only

%John Lancaster, PhD Research, Brunel University.

function [FITmtx] = PredfitMinDur(Pop, Npop, Nvar, RESLIMmtx, PREDmtx, ACTmtx)

for f=1: Npop
Sch = Pop(f, 1: Nvar);
FITmtx(f) = SSS(Sch, Nvar, RESLIMmtx, PREDmtx, ACTmtx);

End

190

SERIAL SCHEDULE GENERATION SCHEME MODULE.

% Serial Schedule Generation Scheme

%%John Lancaster, PhD Research, Brunel University 2005

function [Dur] = SSS(Sch, Nvar, RESLIMmtx, PREDmtx, ACTmtx)

%Initialise the Finish Date Matrix.
FDmtx=zeros(Nvar, 1);

%Process Activity list until all Activities are scheduled.
while ismember(O, FDmtx)

%Process each activity
i=l;

while i <= Nvar

ACTchk = zeros(size(RESLIMmtx, 1), 1);

if FDmtx(Sch(i)) == 0
Npre = PREDmtx(Sch(i), 1);
FDpre = zeros(Npre, I);

if Npre -0

%Check for Predecessors being scheduled
for j=1: Npre

if FDmtx(PREDmtx(Sch(i), I +j)) -0
FDpre(j) = FDmtx(PREDmtx(Sch(i), 1+j));

end
end

else

%If no predecessors allow activity to schedule
FDpre = zeros(1,1);
FDpre(1) = 1;

end

%Check for first Resource feasible time
if not(ismember(O, FDpre))

EarST = max(FDpre);
ACTdur = ACTmtx(Sch(i), 3);
RESlim = (3 + size(RESLIMmtx, 1));
ACTres(1: size(RESLIMmtx, 1)) = ACTmtx(Sch(i), 4: RESlim);

ResFes = 0;

191

while ResFes == 0
EarFI = EarST + ACTdur;
for k=1: size(RESLIMmtx, 1)

if not(ismember(O, RESLIMmtx(k, EarST: EarFI) >= ACTres(k)))
%Record Activity Finish Date in Matrix based on
%resource 'k' requirement.
ResFes = 1;

else
ResFes = 0;

end

end

EarST = EarST+1;

end

FDmtx(Sch(i)) = EarFI;
i=0;

for k=l: size(RESLIMmtx, l)
RESLIMmtx(k, EarFI-ACTdur: EarFI) = RESLIMmtx(k, EarFI-ACTdur: EarFI) -

ACTres(k);
end

end
end

i=i+1;
end

end

FDmtx(:) = FDmtx(:) - 1;

Dur = max(FDmtx);

ROULETTE SELECTION MODULE.

%Roulette Selection

%John Lancaster, PhD Research, Brunel University
%Version 1.0 - 7th September 2004
%Version 2.0 - 15th May 2005
%Version 3.0 - 19th June 2005

function [Pop] = DSMRoulette3(Pop, Npop, Nvar, Fitness)
%Calculates the number of times a chromosome gets copied to the

192

%intermediate Population

for x=1: Npop
Selection(x) = ceil((max(Fitness(:))-min(Fitness(:))) / ((Fitncss(x)-min(Fitncss(:)))+0.1));

if Selection(x) == Inf
Selection(x) = 100;

end
end

Pos=1;
x=1;

while and(x <= Npop, Pos <= Npop)
Share(x) = ceil(Selection(x)*Npop/sum(Selection));
y=1;
while and(y<=Share(x), Share(x)-O)

TempPop(Pos,:) = Pop(x,:);
Pos = Pos + 1;
y=y+1;

end
x=x+l;

end

Pop = TempPop;

193

APPENDIX D. - MULTI-MODE RCPSP
MATLAB CODE
The following code is the code utilised within MATLAB for solution of the PSPLIB Multi-
mode problems:

MAIN ROUTINE

%Permutation Based Genetic Algorithm for the Multimode Precedence Network MRCPSP

%John Lancaster, PhD Research, Brunel University

--

function [Seq, MSeq, REScurve] = mmPredGA(Npop, Gens, XRate, MRate)

%Network capture
[PREDmtx, RELmtx, Nvar, ACTmtx, RESLIMmtx, ModePointcrMtx, LIMmtx] _
mmPredset('J6010_1 ACT', 'J6010_I REL', 'J6010_I LIM');

%Generate Initial Population and Mode Matrix
for i=1: Npop

Pop(i, 1: Nvar) = randperm(Nvar);
Pline= Pop(i, 1: Nvar);
for j=l: Nvar

MPop(ij) = ceil(rand*RELmtx(Pline(j), 2));
end

end

%Set Generation Differential Factor
gd = 4;

%Begin Generation Cycle
for g=1: Gens

%Test for improvement over last three generations and modify mutation

194

%rate
if g> gd && g< Gens - (Gens * 0.2)

if Best(g-gd) == Best(g-1)
gMRate = MRate * 7;

else
gMRate = MRate;

end
else

gMRate = MRate;
end

%Evaluate Fitness - via external Fitness Function
[FITmtx, RESLIMres, FINISHaII] = mmPredfitMinDur(Pop, MPop, Npop,

Nvar, RESLIMmtx, PREDmtx, ACTmtx, ModePointerMtx, LIMmtx);
FITavg = Mean(FITmtx(:));
FITmin(g) = min(FITmtx);
[vl, loc] = min(FITmtx);
FITseq(g,:) = Pop(loc,:);
ModSeq(g,:) = MPop(loc,:);
Best(g) = min(FITmin);
BESTLIMmtx(g,:,:) = RESLIMres(loc,:,:);

ifg<Gens
%Perform Selection - via external Selection Function
[Pop, MPop] = mmDSMRoulette3(Pop, MPop, Npop, Nvar, FITmtx);
%Perform Crossover - via external Crossover Function
[Pop, MPop] = mmDSMipx(Pop, MPop, XRate, Npop, Nvar);
%Perform Mutation - via External Mutation Function
[Pop, MPop] = mmMutate(Pop, MPop, gMRate, Npop, Nvar, RELmtx);

end
end

%Produce Improved Matrix
[vl, loc] = min(FITmin);
Seq = FITseq(loc,:);
MSeq = ModSeq(loc,:)
BESTres(:,:) = BESTLIMmtx(loc,:,:);
REScurve = RESLIMmtx - BESTres
FDRES = FINISHa11(loc,:);
FDRES = FDRES(:) -I
min(Best);
ACTmtx

Pop;
plot(FITmin);

PSPLIB PROBLEM IMPORT

%PSPLIB File Import

195

%Note original PSPLIB Files first split into three seperate sheets

%Processes Excel Based PSPLIB files for Optimisation.
%Modified for multi-mode optimisation.
%John Lancaster, PhD Research, Brunel University 2005

function [PREDmtx, RELmtx, Nvar, ACTmtx, RESLIMmtx, ModePointerMtx, LIMmtx] _
mmPredset(ACTfile, RELfile, LIMfile)

ACTmtx = xlsread(ACTfi1e); %Import the Activity / Resource file from Excel
RELmtx = xlsread(RELfile); %Import Rel file from Excel
LIMmtx = xlsread(LIMfile); %Import Resource Limit file from Excel
Nvar = size(RELmtx, 1); %Calculate number of Activities

%Generate Predecessor Matrix
PREDmtx = zeros(Nvar, max(RELmtx(:, 3))+1);

%Preprocess modes.
[ACTmtx, RELmtx] = mmMODEpre(LIMmtx, ACTmtx, RELmtx);

%Generate Mode Pointer Matrix
ModePointerMtx = zeros(Nvar, 2);
for i=1: Nvar

ModePointerMtx(i, 1) = i;
ifi-=1

ModePointerMtx(i, 2)=RELmtx(i- 1,2)+ModePointerMtx(i- 1,2);
end
ifi= 1

ModePointerMtx(i, 2)=1;
end

end

%Generate Resource Limit Matrix
LimLen = length(LIMmtx);
CeilDur = sum(ACTmtx(1: Nvar, 3));

for i=1: LimLen
RESLIMmtx(i, 1: CeilDur) = LIMmtx(2, i);

end

%Convert the Successor Matrix to a Predecessor Matrix
for i=4: 6

forj = 1: Nvar
if not(isnan(RELmtx(j, i)))

PREDmtx(RELmtx(j, i), 1) = PREDmtx(RELmtx(j, i), 1) + 1;
PREDmtx(RELmtx(j, i), PREDmtx(RELmtx(j, i), 1) + 1) = RELmtx(j, 1);

end
end

end

196

FITNESS FUNCTION

%CPM Network Fitness
%Single Objective Duration Only

%John Lancaster, PhD Research, Brunel University.
%Modified from PredfitMinDur for the multi-mode problem

function [FITmtx, RESLIMres, FINISHall] = mmPredfitMinDur(Pop, MPop, Npop, Nvar,
RESLIMmtx, PREDmtx, ACTmtx, ModePointerMtx, LIMmtx)

for f=I : Npop
Sch = Pop(f, 1: Nvar);
SchM = MPop(f, 1: Nvar);
[Dur, RESLIM, FINISHmtx] = mmSSS(Sch, SchM, Nvar, RESLIMmtx, PREDmtx, ACTmtx,

ModePointerMtx, LIMmtx);
FITmtx(f) = Dur;
RESLIMres(f,:,:) = RESLIM;
FINISHaII(f,:,:) = FINISHmtx;

End

SERIAL SCHEDULE GENERATION SCHEME

% Serial Schedule Generation Scheme

%%John Lancaster, PhD Research, Brunel University 2005
%Modified from SSS. m for the Multi-mode problem.
%Modified for Renewable and Non-renewable resources

function [Dur, RESLIMmtx, FINISHmtx] = mmSSS(Sch, SchM, Nvar,
RESLIMmtx, PREDmtx, ACTmtx, ModePointerMtx, LIMmtx)

%Initialise the Finish Date Matrix.
FDmtx=zeros(Nvar, 1);
FINISHmtx=zeros(Nvar, l);
[n, Lim] = size(RESLIMmtx);
Esc = 0;

%Process Activity list until all Activities are scheduled.
while ismember(O, FDmtx)

%Process each activity
i=1;

while i <= Nvar

ACTchk = zeros(size(RESLIMmtx, 1), 1);

if FDmtx(Sch(i)) == 0
Npre = PREDmtx(Sch(i), 1);
FDpre = zeros(l, I);

197

FDpre(1) = 1;

if Npre -= 0
FDpre = zeros(Npre, I);
%Check for Predecessors being scheduled
for j=1: Npre

if FDmtx(PREDmtx(Sch(i), 1+j)) -= 0
FDpre(j) = FDmtx(PREDmtx(Sch(i), 1 +j));

end
end

end

%Check for first Resource feasible time
if not(ismember(O, FDpre))

Act = Sch(i);
Mode = SchM(i);
EarST = max(FDpre);
ACTdur = ACTmtx(ModePointerMtx(Act, 2)+Mode-1,3); %MM modification.
RESlim = (3 + size(RESLIMmtx, I));
ACTres(l: size(RESLIMmtx, l)) = ACTmtx(ModePointerMtx(Act, 2)+Mode-

1,4: RESlim); %MM modification.

if ACTdur -0

EarFI = EarST + ACTdur - 1;
ACTres = ACTres;
DURmtx = zeros(size(RESLIMmtx, 1), ACTdur);

for d=1: ACTdur
DURmtx(1: size(RESLIMmtx, 1), d)=ACTres ;

end

z= not(ismember(O, RESLIMmtx(:, EarST: EarFI) >= DURmtx));

while z == 0
EarST = EarST+ 1;
EarFI = EarST + ACTdur- 1;

if EarFI <= Lim

z= not(ismember(O, RESLIMmtx(:, EarST: EarFI) >= DURmtx));
else

Z= 1;
i= Nvar+ 1;
Esc = 1;

end
end

if Esc == 0
for r=1: n

if LIMmtx(1, r) _= 1

198

RESLIMmtx(r, EarST: EarFI) = RESLIMmtx(r, EarST: EarFI) -
DURmtx(r,:);

else
RESLIMmtx(r,:) = RESLIMmtx(r,:) - DURmtx(r, 1);

end
end

end
else

EarFI = EarST;
end

if Esc == 0
FDmtx(Sch(i)) = EarFI;
FINISHmtx(Sch(i)) = EarFI;

else
FDmtx(:) = 1;
FDmtx(Sch(Nvar)) = 100;

end
end

end

1=i+1;

end
end

FDmtx(:) = FDmtx(:) - 1;

Dur = max(FDmtx);

MUTATION OPERATOR

%Mutation - Evolutionary Algorithm Toolbox
%Real Encoded Evolutionary Algorithms

%John Lancaster - PhD Thesis Brunel University
%Version 1.0 - 22nd July 2004

function [Pop, MPop] = mmMRMutate(Pop, MPop, MRate, Popsiz, Nvar, RELmtx)
%Randomly Mutate the Population according to the given Mutation Probability

for i=1: Popsiz
if rand < MRate

Line = Pop(i, 1: Nvar);
PosA = ceil(rand*Nvar);
PosB = ceil(rand*Nvar);
ActA = Line(PosA);
ActB = Line(PosB);
Line(PosA) = ActB;

199

Line(PosB) = ActA;
ModesA = RELmtx(ActA, 2);
ModesB = RELmtx(ActB, 2);
Mline = MPop(i, 1: Nvar);
Mline(PosA) = ceil(rand*ModesB);
Mline(PosB) = ceil(rand*ModesA);
Pop(i, 1: Nvar) = Line;
MPop(i, I : Nvar) = Mline;

end
end

INDEPENDENT CROSSOVER OPERATOR

%Real Independant Point Crossover - Evolutionary Algorithm Toolbox
%Real Encoded Chromosomes

%John Lancaster - PhD Thesis Brunel University
%Version 1.0 - 18th August 2005

function [Pop, MPop] = mmDSMipx(Pop, MPop, XRate, Npop, Nvar)
%Perform Single Point Crossover on two Parent Chromosomes

Matinglist = randperm(Npop);

for p=1: 2: Npop

Parentl = Pop(Matinglist(p),:);
Parent2 = Pop(Matinglist(p+1),:);
Child l= zeros(1, Nvar);
Child2 = zeros(1, Nvar);
mParentl = MPop(Matinglist(p),:);
mParent2 = MPop(Matinglist(p+l),:);
mChildl = zeros(1, Nvar);
mChild2 = zeros(1, Nvar);

if rand < XRate
for i=1: Nvar

if rand>0.5
Childl(i) = Parentl(i);
mChild 1(i) = mParent 1(i);

end
end

for i=1: Nvar
if not(ismember(Parent2(i), Child1))

j=1;
while Childl(j) -0

j=j+l;
end

200

Child 10) = Parent2(i);
mChild1(j) = mParent2(i);

end
end

for i=1: Nvar
if rand>0.5

Child2(i) = Parent2(i);
mChild2(i) = mParent2(i);

end
end

for i=1: Nvar
if not(ismember(Parentl(i), Child2))

j=1;
while Child2(j) == 0

j=j+1;
end
Child2(j) = Parentl(i);
mChild2(j) = mParentl(i);

end
end

else
Childl = Parentl;
Child2 = Parent2;
mChildl = mParentl;
mChild2 = mParent2;

end

TempPop(p,:) = Child!;
TempPop(p+l,:) = Child2;

mTempPop(p,:) = mChildl;
mTempPop(p+l,:) = mChild2;

end

Pop = TempPop;
MPop = mTempPop;

ROULETTE SELECTION

%Roulette Selection

%John Lancaster, PhD Research, Brunel University
%Version 1.0 - 7th September 2004
%Version 2.0 - 15th May 2005
%Version 3.0 - 19th June 2005
%Version 4.0 - 8th June 2006 Multi-mode

201

function [Pop, MPop] = mmDSMRoulette3(Pop, MPop, Npop, Nvar, Fitness)
%Calculates the number of times a chromosome gets copied to the
%intermediate Population

Fitness

for x=1: Npop
%Selection(x) = ceil((max(Fitness(:))-min(Fitness(:))) / ((Fitness(x)-min(Fitness(:)))+0.1));
Selection(x) = ceil(sum(Fitness)/Fitness(x));

if Fitness(x) == min(Fitness)
Selection(x) = Selection(x)*6;

end
end

Pos = 1;
x= 1;
y= 1;
Share = zeros(1, Npop);

while y< Npop
Share(x) = ceil(Selection(x)*Npop/sum(Selection));
y= sum(Share);
x=x+1;

end

x=1;

while and(x <= Npop, Pos <= Npop)

y=1;
while and(y<=Share(x), Share(x)--=O)

TempPop(Pos,:) = Pop(x,:);
TempMPop(Pos,:) = MPop(x,:);
Pos = Pos + 1;
y=y+1;

end

X= X+1;

end

Pop = TempPop;
MPop = TempMPop;

MODE PREPROCESSOR

% Mode Preprocessor

%%John Lancaster, PhD Research, Brunel University 2006

202

% Preprocesses Modes and deletes any unfeasible modes where
% per period renewable resource usage is higher than the resource
% limits.

function [ACTmtx, RELmtx] = mmMODEpre(LIMmtx, ACTmtx, RELmtx)

[r, c] = size(ACTmtx);

[q, s] = size(LIMmtx);
DELmtx = zeros(1, r);

fori= 1: r
forj=1: s

if LIMmtx(I, j) =I
if ACTmtx(i, 3+j) > LIMmtx(2j)

DELmtx(i) = 1;
end

end
end

end

fori=r: -1: 1
if DELmtx(i) == 1

ACTmtx(i,:) = [];
RELmtx(ACTmtx(i, 1), 2) = RELmtx(ACTmtx(i, 1), 2)- 1;
i=i-1;
r=r- 1;

end
end

203

APPENDIX E. - RCPSP MS PROJECT VBA
CODE
The VBA code contained in this appendix supports the MS Project based RCPSP problem

optimisation as shown in Chapter 5 as well as the optimisation of the variants to the problem

given in Chapter 6 and 7.

SUBROUTINE INITIATED FROM GUI DIALOG BOX BUTTON

Private Sub CommandButton2_Click()

Pop_Size = TextBox 1. Value
Xover_Rate = TextBox2. Value
Mute Rate = TextBox3. Value
Generations = TextBox4. Value
Elitism = TextBox5. Value
Wgtl = TextBox6. Value
Wgt2 = TextBox7. Value
Loper =1- TextBox8. Value

ReDim FitData(Generations, 5)

gMute_Rate = Mute_Rate

'Generate initial Random Population.
Select Case Problem
Case 1

Call initial_pop(Pop_Size, tcount)

204

Case 2
Call initial pop(Pop_Size, tcount)

Case 3
Call initial pop3(Pop_Size, tcount, SLTaskTable, SLcount)

Case 4
Call initial pop4(Pop_Size, tcount, SRTable, SRcount, SLcount)

End Select

'Build precedence relationship table.
Call Prec build(tcount)

'Set Fitness Differential Factor
gd=4

'Main Optimisation Loop
For g=1 To Generations

'Set Mutation Factor for Fitness Differential Adaptation
If g> gd And g< (Generations * 0.6) Then

If Problem =3 Then
If FitData(g - gd, 2) = FitData(g - 1,2) Then

Mute_Rate =4* Mute_Rate
End If

Else
If FitData(g - gd, 1) = FitData(g - 1,1) Then

Mute_Rate =4* Mute-Rate
End If

End If
Else

Mute_Rate = gMute_Rate

End If

'Fitness Evaluation and calculate Fitness Statistics
Select Case Problem
Case 1

Call RCPSPFitness
Call FitnessProc
Call Roulette Sel
Call IDPXO
Call Mutate

Case 2
Call RCPSPFitness
Call FitnessProc
Call Roulette Sel
Call IDPXO
Call Mutate

Case 3
Call RCPSPFitness3

205

Call FitnessProc
Call Roulette Sel3
Call IDPXO3
Call Mutate3

Case 4
Call RCPSPFitness4
Call FitnessProc
Call Roulette Se14
Call IDPXO4
Call Mutate4

End Select

'Status the Dialog box with Algorithm progress
ProgressBarl. Value = Int(g * 100 / Generations)
LabellO. Caption = ProgressBarl. Value
Labell6. Caption =g
UserForm 1. Repaint

Next g

ReDim FDList(tcount)

UserForm l . hide
'Update Gantt Chart with Optimised Schedule.

'Build Activitiy Finish Date List
For x =1 To tcount

FDList(x) = FDPop(FitData(Generations, 5), x)
Next x

StartDate = ActiveProject. Tasks. Item(1). Start

'Process Activities
For Each t In ActiveProject. Tasks

t. Finish = StartDate + FDList(t)
Next

'For Stochastic Logic Problems
'Fed logic links back into MS Project
If Problem =3 Then

'For q=1 To SLcount
For Each t In ActiveProject. Tasks

If t. ID = SLTaskTable(q) Then
If SLTaskTable(q) <> "" Then

tsk = SLPop(FitData(Generations, 5), q)
If tsk = Empty Then
Else

'td = t. TaskDependencies. Add(tsk, pjFinishToStart, 0)
End If

206

End If
End If

Next t
'Next q

'Set xlApp = CreateObject("excel. application")
'Set x1WB = xlApp. Workbooks. Add

'xlApp. Visible = True

'For d=1 To Pop_Size
' x1WB. Workshcets(1). Cells(d, 1). Valuc = SLPop(FitData(Gencrations, 5), d)
'Next d

End If

'For Stochastic Resource Problems
'Revise Resource Table according to Best Stochastic Assignments
If Problem =4 Then

For e=1 To SLcount
newres = SRTable(SLPop(FitData(Generations, 5), c), 2)
Sact = SLTaskTable(e)
For q=1 To SRcount

If ResTable(q, Sact + 3) <> 0 Then
TempHold = ResTable(q, Sact + 3)
ResTable(q, Sact + 3) = Null

End If
Next q
ResTable(newres, Sact + 3) = Templlold

Next e

'Push Resource Assignments back to the Activities
'First Clear existing assignments
For Each r In ActiveProject. Resources

For Each a In r. Assignments
a. Delete

Next a
Next r

C=1

For Each aTask In ActiveProject. Tasks
For r=1 To rcount

If ResTable(r, c+ 3) <> Empty Then
Set x= aTask. Assignments. Add(c, r, 1)
x. Units = ResTable(r, c+ 3)

End If

207

Next r
c=c+1

Next aTask

End If

'Write Fitness Improvement Curve to Excel
'Set xlApp = CreateObject("excel. application")
'Set x1WB = xlApp. Workbooks. Add

'xlApp. Visible = True

'For d=1 To Generations
x1WB. Worksheets(1). Cells(d, 1). Value =d
x1WB. Worksheets(1). Cells(d, 2). Value = FitData(d, 1)
x1WB. Worksheets(1). Cells(d, 3). Value = FitData(d, 2)

'Next d

End Sub

Private Sub TextBox6 ChangeO
If TextBox6. Value Then
Else

If TextBox6. Value > 99 Then
TextBox6. Value = 99

End If
TextBox7. Value = 100 - TextBox6. Value

End If
End Sub

Private Sub TextBox7_Change()
If TextBox7. Value = "" Then
Else

If TextBox7. Value > 99 Then
TextBox7. Value = 99

End If
TextBox6. Value = 100 - TextBox7. Value

End If
End Sub

Private Sub UserForm_Activate()
TextBoxl. Value = 10
TextBox2. Value = 0.7
TextBox3. Value = 0.07
TextBox4. Value = 10
TextBox5. Value = 0.25
TextBox6. Value = 50
TextBox7. Value = 50
TextBox8. Value = 0.7

208

ComboBoxl. AddItem ("RCPSP")
ComboBoxl. Addltem ("RCPSP with 2 Weighted Objectives")
ComboBoxl. AddItem ("RCPSP with Stochastic Logic")
ComboBoxl. Addltem ("RCPSP with Stochastic Resourcing")

TextBox6. Visible = True
TextBox7. Visible = True
'Label32. Visible = False
'Label33. Visible = False
'Label34. Visible = False
'Label36. Visible = False
'Label37. Visible = False

Problem =I
ComboBoxl. Value = "RCPSP"

Call Preprocess
Label3. Caption = tcount
Labell8. Caption = rcount
Label37. Caption = SLcount

End Sub

DECLARATIONS

Public t As Task
Public td As TaskDependency
Public g As Integer
Public Break As Integer
Public tcount As Integer
Public UppLim As Integer
Public rcount As Integer
Public Pop_Size As Integer
Public Xover_Rate As Double
Public Elitism As Double
Public EliteScore As Integer
Public Mute_Rate As Double
Public Generations As Integer
Public Rfit As Double
Public Dfit As Double
Public FDMin1 As Integer
Public Problem As Integer
Public ResType As String
Public Wgtl As Integer
Public Wgt2 As Integer
Public Logper As Double
Public fit_pair(1,2)
Public fit_mtx()
Public LDMtx()

209

Public ResPeaks As Integer
Public ResUsage()
Public ResNeed()
Public ResLimit()
Public LoopList()
Public RLSource()
Public Taskdatao
Public BestRes()
Public Pop()
Public SLPopO
Public SLcount As Integer
Public SLTaskTable()
Public SRTable(
Public SRcount As Integer
Public TempSLPop()
Public PrecTable()
Public PrecTablel()
Public PrecMaster()
Public DurTableO
Public ResTable()
Public ResAllocTable()
Public FDmtx()
Public vMatrix()
Public FDList()
Public Sel_Mtx(
Public Share()
Public TempPop(
Public TempLine()
Public TempSLine()
Public EliteLine()
Public SEliteLine()
Public SuccStat()
Public alist()
Public permO
Public aline()
Public FDPop()
Public FitData()
Public Pareto_Set()
Public aTask As MSProject. Task

'GENETIC ALGORITHM - RESOURCE CONSTRAINED PROJECT SCHEDULING
PROBLEM OPTIMISATION

'Ph. D. Research - School of Engineering and Design - Brunel University

'John Lancaster

210

'Coding - November 2006 to October 2007
'Genetic Algorithm Control Routine

INITIATING SUBROUTINE

Sub Schedule_GAO

UserForml. Show

End Sub

PREPROCESSING MODULE

'Preprocess the schedule to extract task and predecessor information and build resource table

Sub Preprocess()

'Save Solution File
NewFileName = Left(ActiveProject. Name, Len(ActiveProject. Name) - 4) & "_sol. mpp"
FileSaveAs Name: =NewFileName

'Count Number of Tasks in Schedule
tcount =0
'Count Number of Tasks flagged for Stochastic logic
SLcount =0

For Each t In ActiveProject. Tasks
tcount = tcount +1
If t. Textl = "S" Or t. Textl = "s" Then

SLcount = SLcount +1
End If

Next t

ReDim DurTable(tcount)
If SLcount <> 0 Then

ReDim SLTaskTable(SLcount)
End If

SLpos =0

For Each t In ActiveProject. Tasks
DurTable(t) = t. Duration / 480
If t. Textl = "S" Or t. Textl = "s" Then

SLpos = SLpos +1
SLTaskTable(SLpos) = t. ID

End If
Next t

'Extract Resource Listing

211

rcount =0

For Each r In ActiveProject. Resources
rcount = rcount +1

Next r

ReDim ResTable(rcount, tcount + 4)

Pos =1
SRcount =0

For Each r In ActiveProject. Resources

ResTable(Pos, 1) = r. ID
ResTable(Pos, 2) = r. Numberl
ResTable(Pos, 3) = r. Number2
ResTable(Pos, 4) = r. Text3

For Each a In r. Assignments
ResTable(Pos, a. TasklD + 4) = a. Units

Next a

If Problem =4 Then
If r. Text9 = "Y" Or r. Text9 = "y" Then

SRcount = SRcount +1
End If

End If

Pos = Pos +1
Next r

ReDim SRTable(SRcount, 2)
xcount =0

For Each r In ActiveProject. Resources
If Problem =4 Then

If r. Text9 = "Y" Or r. Text9 = "y" Then
xcount = xcount +1
SRTable(xcount, 1) = r. Name
SRTable(xcount, 2) = r. ID

End If
End If

Next r

'Set up Resource Limit Table
'Establish maximum Upper Limit
UppLim =0
For ul =1 To tcount

UppLim = DurTable(ul) + UppLim
Next ul

212

'Create Resource Limit Table
ReDim ResLimit(rcount, UppLim)

For resset =1 To rcount
For ihm =1 To UppLim

ResLimit(resset, Him) = ResTable(resset, 2)
Next Him

Next resset

ReDim RLSource(rcount, UppLim)

RLSource = ResLimit

End Sub

INITIAL POPULATION SET UP - STANDARD RCPSP

'Set up intial Population

Sub initial_pop(Pop_Size, tcount)

Randomize
ReDim Pop(Pop_Size, tcount)

'Build Initial Population (Generate Pop_Size Random permutations of tcount items)
For i=1 To Pop_Size

For j=1 To tcount
Pop(i, j) =j

Next j

For j=1 To tcount
rd = Int((Rnd * tcount) + 1)
a= Pop(i, j)
b= Pop(i, rd)
Pop(i, j) =b
Pop(i, rd) =a

Next
Next i

End Sub

INITIAL POPULATION SET UP - STOCHASTIC LOGIC PROBLEM

'Set up intial Population for Stochastic Logic

Sub initial_pop3(Pop_Size, tcount, SLTaskTablc, SLcount)

Randomize

213

ReDim Pop(Pop_Size, tcount)

'Build Initial Population (Generate Pop_Size Random permutations of tcount items)
For i=1 To Pop_Size

For j=I To tcount
Pop(i, j) =j

Next j

For j=1 To tcount
rd = Int((Rnd * tcount) + 1)
a= Pop(i, j)
b= Pop(i, rd)
Pop(i, j) =b
Pop(i, rd) =a

Next
Next i

'Build Population Extension (For Stochastic Logic)
ReDim SLPop(Pop_Size, SLcount)

For i=1 To Pop_Size
For j=1 To SLcount

If Rnd > Logper Then
rl = Int((Rnd * SLcount) + 1)
Do While rl =j

rl = Int((Rnd * SLcount) + 1)
Loop
SLPop(i, j) = SLTaskTable(rl)

End If
Next j

Next i
End Sub

INITIAL POPULATION SET UP - STOCHASTIC RESOURCING PROBLEM

'Set up intial Population for Stochastic Resourcing

Sub initial pop4(Pop_Size, tcount, SRTable, SRcount, SLcount)

Randomize
ReDim Pop(Pop_Size, tcount)

'Build Initial Population (Generate Pop_Size Random permutations of tcount items)
For i =1 To Pop_Size

For j=1 To tcount
Pop(i, j) =j

Next j

For j=1 To tcount

214

rd = Int((Rnd() * tcount) + 1)
a= Pop(i, j)
b= Pop(i, rd)
Pop(i, j) =b
Pop(i, rd) =a

Next
Next i

'Build Population Extension (For Stochastic Resourcing)
If Problem =4 Then

ReDim SLPop(Pop_Size, SLcount)

For y=I To Pop_Size
For z=1 To SLcount

SLPop(y, z) = Int(Rnd * SRcount) +1
Next z

Next y
End If

'Set xlApp = CreateObject("excel. application")
'Set x1WB = xlApp. Workbooks. Add

'xlApp. Visible = True

'For d=I To Pop-Size
For e=1 To SLcount

x1WB. Worksheets(1). Cells(d, c). Value = SLPop(d, e)
Next e

'Next d

End Sub

ADJACENCY MATRIX BUILDING ROUTINE

'Build Precedence Data using Adjacency Matrix and store Activity Duration

Sub Prec_build(tcount)

ReDim PrecTable(tcount, tcount)
ReDim PrecTable 1(tcount, tcount) ' remove
ReDim PrecMaster(tcount, tcount)

CeilingDur =0

For Each t In ActiveProject. Tasks

x= Len(ActiveProject. Tasks(t). Predecessors)
y= ActiveProjcct. Tasks(t). Predecessors

215

CeilingDur = CeilingDur + ActiveProject. Tasks(t). Duration

St =1

For q=1 To x
If Mid(y, q, 1) <> ", " Then

Ifq=x Then
1= Val(Mid(y, st, (q - st + 1)))
PrecTable(l, t) =1

End If
Else

1= Val(Mid(y, st, (q - st)))
PrecTable(1, t) =1
st=q+1

End If
Next q

Next t

PrecMaster = PrecTable
PrecTablel = PrecTable 'Remove

End Sub

FITNESS FUNCTION - STANDARD RCPSP

'RCPSP Fitness Function
Sub RCPSPFitness()

ReDim Sch(tcount)
ReDim fit_mtx(Pop_Size, 2)
ReDim FDPop(Pop_Size, tcount)

For ff =1 To Pop_Size
'Initialise Resource Limits Matrix
ResLimit = RLSource

For h=1 To tcount
Sch(h) = Pop(ff, h)

Next h

If Problem =3 Then
Call SSS3(Sch, ff)

Else
Call SSS(Sch, ff)

End If

For h=1 To tcount
FDPop(ff, h) = FDmtx(h)

Next h

216

fit_mtx(ff, 1) = fitjair(1,1) 'Duration Fitnes
fit mtx(ff, 2) = fitpair(1,2) 'Resource Fitness

Next ff

End Sub

FITNESS FUNCTION - STOCHASTIC RESOURCE PROBLEM

Sub RCPSPFitness3()
ReDim Sch(tcount)
ReDim fit_mtx(Pop_Size, 2)
ReDim FDPop(Pop_Size, tcount)

For ff =I To Pop_Size
'Initialise Resource Limits Matrix
ResLimit = RLSource

For h=1 To tcount
Sch(h) = Pop(ff, h)

Next h

Call SSS3(Sch, ff)

For h=1 To tcount
FDPop(ff, h) = FDmtx(h)

Next h

fit_mtx(ff, 1) = fitpair(1,1)'Duration Fitness
ft mtx(ff, 2) = fit j, air(1,2) 'Resource Fitness

Next ff

End Sub

FITNESS FUNCTION - STOCHASTIC LOGIC PROBLEM

'RCPSP Fitness Function
Sub RCPSPFitness4()

ReDim Sch(tcount)
ReDim fit_mtx(Pop_Size, 2)
ReDim FDPop(Pop_Size, tcount)

For ff= I To Pop_Size
'Initialise Resource Limits Matrix
ResLimit = RLSource

217

'Revise Resource Table according to Stochastic Assignments
For e=1 To SLcount

newres = SRTable(SLPop(ff, e), 2)
Sact = SLTaskTable(e)
For q=1 To SRcount

If ResTable(q, Sact + 3) 00 Then
TempHold = ResTable(q, Sact + 3)
ResTable(q, Sact + 3) = Null

End If
Next q
ResTable(newres, Sact + 3) = Templold

Next e

UppLim =0
For u1= 1 To tcount

UppLim = DurTable(ul) + UppLim
Next ul

'Create Resource Limit Table
ReDim ResLimit(rcount, UppLim)

For resset =1 To rcount
For Him =1 To UppLim

ResLimit(resset, Him) = ResTable(resset, 2)
Next him

Next resset

ReDim RLSource(rcount, UppLim)

RLSource = ResLimit

For h=1 To tcount
Sch(h) = Pop(ff, h)

Next h

Call SSS(Sch, ff)

For h=1 To tcount
FDPop(ff, h) = FDmtx(h)

Next h

fit_mtx(ff, 1) = fitpair(1,1) 'Duration Fitnes
fit_mtx(ff, 2) = fitpair(1,2) 'Resource Fitness

Next ff

End Sub

218

SCHEDULE GENERATION SCHEME - STANDARD

'Serial Schedule Scheme - Schedule Generation
Sub SSS(Sch, ff)

'Set up the empty Finish Date Matrix
ReDim FDmtx(tcount)
For act =1 To tcount

FDmtx(act) = -1
Next act

schcomp =0

'While all tasks are not scheduled
Do While schcomp =0

'Step through tasks
For tsk =1 To tcount

'Initialise Resource Need vector
ReDim ResNeed(rcount)

For ab =1 To rcount
If ResTable(ab, Sch(tsk) + 4) 00 Then

ResNeed(ab) = ResTable(ab, Sch(tsk) + 4) / DurTable(Sch(tsk))
Else

ResNeed(ab) =0
End If

Next ab

'If the task is currently not scheduled
If FDmtx(Sch(tsk)) = -1 Then

PredsSch =I 'Initially assume all predecessors are scheduled
Earstrt =0 'Initialise Earstrt at project start t=0

If Sch(tsk) =I Then

FDmtx(Sch(tsk)) =0+ DurTable(Sch(tsk))

Else

'Step through adjacency Matrix to look for Predecessors
For chkpre =1 To tcount

'If relationship exists
If PrecTable(chkpre, Sch(tsk)) =1 Then

test =1
'Check if Predecessor is scheduled
If FDmtx(chkpre) = -1 Then

219

PredsSch =0
'if predecessor is scheduled check it's finish date against the latest so far
'if it finishes later set this as earliest start.
Else

If FDmtx(chkpre) > Earstrt Then
Earstrt = FDmtx(chkpre)

End If

End If

End If

Next chkpre

If PredsSch =1 Then

'Check for first Resource Feasible Time

AllResSch = O'Resource Feasibility Flag

timenow = Earstrt

'Cycle until Resource Feasible Period is found
Do While AllResSch =0

'Set up Resource Feasibilty Matrix
ReDim ResUsage(rcount)

For rc =1 To rcount
ResUsage(rc) =0

Next rc

'Step through Resources
For reschk =1 To rcount

CapAvail =I 'Initially Assume Capacity

For dur = timenow To timenow + DurTable(Sch(tsk))
If ResNeed(reschk) > ResLimit(reschk, dur) Then

CapAvail =0
End If

Next dur

'If this requirement is met, mark resource as OK
If CapAvail =1 Then

ResUsage(reschk) =1
End If

Next reschk

220

'Determine whether all activities are scheduled
AllResSch =1

For ResO =1 To rcount
If ResUsage(ResO) =0 Then

AllResSch =0
Else

'A11ResSch =1
End If

Next ResO

timenow = timenow +1

Loop

'Decrease Resource Availability at scheduled task position
For Res 1=I To rcount

For Time! = timenow To timenow + DurTable(Sch(tsk))
ResLimit(Resl, Timel) = ResLimit(Rcsl, Timel) - ResNecd(Resl)

Next Time 1
Next Res 1

'Update Finish Date Matrix with Task Completion Date

FDmtx(Sch(tsk)) = timenow + DurTable(Sch(tsk))

End If

End If

End If

Next tsk

'Determine whether all activities are scheduled
schcomp =1

For chk0 =1 To tcount
If FDmtx(chk0) = -1 Then

schcomp =0
End If

Next chkO

Loop

'Once all Tasks are scheduled check for total duration
OADur =0

For tskl =1 To tcount

221

If FDmtx(tskl) > OADur Then
OADur = FDmtx(tskl)

End If
Next tskI

Dfit = OADur

'Determine the Set of Resource Peaks and Weighted Resource Fitness

Rfit=0

For Res2 =1 To rcount
Rpeak =0

For ppos =1 To Dfit
localval = ResTable(Res2,2) - ResLimit(Res2, ppos)
If localval > Rpeak Then

Rpeak = localval
End If

Next ppos

Rfit = Rpeak
Next Res2

fitpair(1,1) = Dfit
fitjair(1,2) = Rfit

End Sub

SCHEDULE GENERATION SCHEME - STOCHASTIC LOGIC PROBLEM

'Serial Schedule Scheme for stochastic logic problem.

Sub SSS3(Sch, ff)
'Set up the empty Finish Date Matrix
ReDim FDmtx(tcount)
For act =1 To tcount

FDmtx(act) = -1
Next act

schcomp =0

'Remove previous run Stochastic logic
PrecTable = PrecMaster

'Add Current Schedule Stochastic Logic
For a=1 To tcount

For c=1 To SLcount

222

If a= SLTaskTable(c) Then
PrecTable(SLPop(ff, c), a) =1

End If
Next c

Next a

Call LoopCheck

'While all tasks are not scheduled
Do While schcomp =0

'Step through tasks
For tsk =1 To tcount

'Initialise Resource Need vector
ReDim ResNeed(rcount)

For ab =1 To rcount
If ResTable(ab, Sch(tsk) + 4) <> 0 Then

ResNeed(ab) = ResTable(ab, Sch(tsk) + 4) / DurTable(Sch(tsk))
Else

ResNeed(ab) =0
End If

Next ab

'If the task is currently not scheduled
If FDmtx(Sch(tsk)) = -1 Then

PredsSch =1 'Initially assume all predecessors are scheduled
Earstrt =0 'Initialise Earstrt at project start t=0

If Sch(tsk) =1 Then

FDmtx(Sch(tsk)) =0+ DurTable(Sch(tsk))

Else

'Step through adjacency Matrix to look for Predecessors
For chkpre =1 To tcount

'If relationship exists
If PrecTable(chkpre, Sch(tsk)) =1 Then

test =1
'Check if Predecessor is scheduled
If FDmtx(chkpre) = -1 Then

PredsSch =0
'if predecessor is scheduled check it's finish date against the latest so far
'if it finishes later set this as earliest start.
Else

223

If FDmtx(chkpre) > Earstrt Then
Earstrt = FDmtx(chkpre)

End If

End If

End If

Next chkpre

If PredsSch =1 Then

'Check for first Resource Feasible Time

AllResSch = O'Resource Feasibility Flag

timenow = Earstrt

'Decrease Resource Availability at scheduled task position
For ResI =1 To rcount

For Time 1= timenow To timenow + DurTablc(Sch(tsk))
ResLimit(Res 1, Time 1) = ResLimit(Res 1, Time 1) - ResNecd(Res 1)

Next Time 1
Next Res 1

'Update Finish Date Matrix with Task Completion Date
FDmtx(Sch(tsk)) = timenow + DurTable(Sch(tsk))

End If

End If

End If

Next tsk

'Determine whether all activities are scheduled
schcomp =1

For chk0 =1 To tcount
If FDmtx(chk0) = -1 Then

schcomp =0
End If

Next chk0

Loop

'Once all Tasks are scheduled check for total duration
OADur =0

224

For tskl =I To tcount
If FDmtx(tskl) > OADur Then

OADur = FDmtx(tskl)
End If

Next tskl

Dfit = OADur

'Determine the Set of Resource Peaks

Rfit=0

For ro =1 To rcount
If ResTable(ro, 4) = "Y" Then

Rest = ro
Lim = ResTable(ro, 2)

End If
Next ro

Rpeak =0

For ppos =1 To Dfit
localval = ResTable(Res2,2) - ResLimit(Res2, ppos)
If localval > Rpeak Then

Rpeak = localval
End If

Next ppos

If Rpeak < Lim Then
Rfit=Rpeak/4

Else
Rfit = Rpeak

End If

fitpair(1,1) = Dfit
fitj, air(1,2) = Rfit

End Sub

ROULETTE SELECTION - STANDARD RCPSP

'Roulette Selection

Sub Roulette_Se1Q

ReDim Sel Mtx(Pop_Size)

225

ReDim Share(Pop_Size)
ReDim TempPop(Pop_Size, tcount)

ElitePop = Int(Pop_Size * Elitism)
NonElitePop = Pop_Size - ElitePop

'Calculate the sum of the Fitness functions
FitSum =0

For f =1 To NonElitePop
FitSum = FitSum + fit_mtx(f, 1)

Next f

'Calculate Selection basis Matrix
For f=I To NonElitePop

Sel_Mtx(f) = Int(FitSum / fit_mtx(f, 1)) +1
Next f

Se1Sum =0

'Calculate sum of Selection Matrix
For f=1 To Pop_Size

Se1Sum = Se1Sum + Sel_Mtx(f)
Next f

ReDim TempLine(tcount)

For f=I To Pop-Size
If FitData(g, 1) = fit_mtx(f, 1) Then

For tc =1 To tcount
TempLine(tc) = Pop(f, tc)

Next tc
End If

Next f

If g=1 Then
EliteLine = TempLine

Else
If FitData(g, 1) < FitData(g - 1,1) Then

EliteLine = TempLine
End If

End If

For f=1 To ElitePop
For tc =1 To tcount

TempPop(f, tc) = EliteLine(tc)
Next tc

Next f

Pos = ElitePop +1

226

x= ElitePop +1

'Perform Selection
Do While x <= Pop_Size And Pos <= Pop_Size

Share(x) = Int(Sel_Mtx(x) * NonElitePop / SelSum) +1
y=1

Do While y <= Share(x) And Share(x) 00 And Pos <= Pop_Size

For temp =I To tcount
TempPop(Pos, temp) = Pop(x, temp)

Next temp

Pos = Pos +1
y=y+1

Loop

x=x+1

Loop

Pop = TempPop

End Sub

'Roulette Selection

Sub Roulette_Se13()

ReDim Sel_Mtx(Pop_Size)
ReDim Share(Pop_Size)
ReDim TempPop(Pop_Size, tcount)

ElitePop = Int(Pop_Size * Elitism)
NonElitePop = Pop_Size - ElitePop

'Calculate the sum of the Fitness functions
FitSum =0

For f =1 To NonElitePop
FitSum = FitSum + fit_mtx(f, 2)

Next f

'Calculate Selection basis Matrix
For f=1 To NonElitePop

Sel Mtx(f) = Int(FitSum / fit_mtx(f, 2)) +1

227

Next f

SelSum =0

'Calculate sum of Selection Matrix
For f=1 To Pop_Size

SelSum = SelSum + Sel_Mtx(f)
Next f

ReDim TempLine(tcount)

For f=1 To Pop_Size
If FitData(g, 3) = fit_mtx(f, 2) Then

For tc =1 To tcount
TempLine(tc) = Pop(f, tc)

Next tc
End If

Next f

If g=1 Then
EliteLine = TempLine

Else
If FitData(g, 3) < FitData(g - 1,3) Then

EliteLine = TempLine
End If

End If

For f=1 To ElitePop
For tc =I To tcount

TempPop(f, tc) = EliteLine(tc)
Next tc

Next f

Pos = ElitePop +1
x= ElitePop +1

'Perform Selection
Do While x <= Pop_Size And Pos <= Pop_Size

Share(x) = Int(Sel_Mtx(x) * NonElitePop / Sc1Sum) +1
y=I

Do While y <= Share(x) And Share(x) 00 And Pos <= Pop_Size

For temp =1 To tcount
TempPop(Pos, temp) = Pop(x, temp)

Next temp

Pos = Pos +1
y=y+1

228

Loop

x=x+1

Loop

Pop = TempPop

End Sub

'Roulette Selection

Sub Roulette_Sel4Q

ReDim Sel_Mtx(Pop_Size)
ReDim Share(Pop_Size)
ReDim TempPop(Pop_Size, tcount)
ReDim TempSPop(Pop_Size, SLcount)

ElitePop = Int(Pop_Size * Elitism)
NonElitePop = Pop_Size - ElitePop

'Calculate the sum of the Fitness functions
FitSum =0

For f=I To NonElitePop
FitSum = FitSum + fit_mtx(f, 1)

Next f

'Calculate Selection basis Matrix
For f=1 To NonElitePop

Sel_Mtx(f) = Int(FitSum / fit_mtx(f, 1)) +1
Next f

Se1Sum =0

'Calculate sum of Selection Matrix
For f=1 To Pop_Size

SelSum = SelSum + Sel_Mtx(f)
Next f

ReDim TempLine(tcount)
ReDim TempSLine(SLcount)

For f=1 To Pop_Size
If FitData(g, 1) = fit_mtx(f, 1) Then

For tc =1 To tcount
TempLine(tc) = Pop(f, tc)

229

Next tc

For sc =1 To SLcount
TempSLine(sc) = SLPop(f, sc)

Next sc
End If

Next f

If g=1 Then
EliteLine = TempLine
SEliteLine = TempSLine

Else
If FitData(g, 1) < FitData(g - 1,1) Then

EliteLine = TempLine
SEliteLine = TempSLine

End If
End If

For f=1 To ElitePop
For tc =I To tcount

TempPop(f, tc) = EliteLine(tc)
Next tc
For sc =1 To SLcount

TempSPop(f, sc) = SEliteLine(sc)
Next sc

Next f

Pos = Elitepop +1
x= ElitePop +1

'Perform Selection
Do While x <= Pop_Size And Pos <= Pop_Size

Share(x) = Int(Sel_Mtx(x) * NonElitePop / SelSum) +1
y=I

Do While y <= Share(x) And Share(x) 00 And Pos <= Pop_Size

For temp =1 To tcount
TempPop(Pos, temp) = Pop(x, temp)

Next temp

For temp =1 To SLcount
TempSPop(Pos, temp) = SLPop(x, temp)

Next temp

Pos = Pos +1
y=y+1

Loop

230

x=x+

Loop

Pop = TempPop
SLPop = TempSPop

End Sub

'Independant Crossover

Sub IDPXOO

ReDim MatingList(Pop_Size)
ReDim TempPop(Pop_Size, tcount)

Randomize

'Generate Random Mating Vector
For j=1 To Pop_Size

MatingList(j) =j
Next j

For j=1 To Pop_Size
rd = Int((Rnd * Pop_Size) + 1)
a= MatingList(j)
b= MatingList(rd)
MatingList(j) =b
MatingList(rd) =a

Next

'Process Population Crossover
For pcount =1 To Pop_Size Step 2

ReDim Parent1(tcount)
ReDim Parent2(tcount)
ReDim Child 1(tcount)
ReDim Child2(tcount)

'Setup Parents and empty children
For par =1 To tcount

Parent 1 (par) = Pop(MatingList(pcount), par)
Parent2(par) = Pop(MatingList(pcount + 1), par)
Child 1(par) =0
Child2(par) =0

Next par

Randomize

231

If Rnd() < Xover_Rate Then
For is =1 To tcount

If Rnd() > 0.5 Then
Child 1(ic) = Parent 1(ic)

End If
Next is

For is =I To tcount

mem =0

For me =1 To tcount
If Child I(mc) = Parent2(ic) Then

mem= I
End If

Next me

If mem =0 Then
jc =1
Do While Childl(jc) 00

jc=jc+ 1
Loop
Childl(jc) = Parent2(ic)

End If
Next is

For is =1 To tcount
If Rnd() > 0.5 Then

Child2(ic) = Parent2(ic)
End If

Next is

For is =1 To tcount

mem=0

For me =1 To tcount
If Child2(mc) = Parent 1(ic) Then

mem =1
End If

Next me

If mem =0 Then
jc =1
Do While Child2(jc) 00

jc=jc+1
Loop
Child2(jc) = Parentl(ic)

End If
Next is

232

Else
Childl = Parentl
Child2 = Parent2

End If

'Copy New Children into the Temporary Population

For cl =1 To tcount
TempPop(pcount, c l) = Child l (c 1)

Next c1

For c2 =1 To tcount
TempPop(pcount + 1, c2) = Childl (c2)

Next c2

Next pcount

Pop = TempPop

End Sub

'Mutation Operator for standard RCPSP

Sub Mutate()
ReDim perm(tcount)

ReDim TempPop(Pop_Size, tcount)
TempPop = Pop
Randomize

For z=1 To Pop_Size

If RndO < Mute_Rate Then

Randomize

'Generate Random Mating Vector
For j=1 To tcount

Perm() =j
Next j

For j=I To tcount
rd = Int(Rnd * tcount) +
a= perm(i)
b= perm(rd)
perm(j) =b
perm(rd) =a

Next

numb = Int(Rnd * tcount) +1

233

ReDim alist(numb)
ReDim aline(tcount)

For j1=1 To numb
alist(j 1) = perm(j 1)

Next j1

For j2 =1 To tcount
aline(j2) = TempPop(z, j2)

Next j2

ReDim vals(numb)

For j3 =1 To numb
vals(j3) = aline(alist(j3))

Next j3

For j4 =1 To numb
aline(alist(j4)) = vals((numb + 1) - j4)

Next j4

For M=1 To tcount
TempPop(z, M) = aline(M)

Next M

End If

Next z

Pop = TempPop

End Sub

'Independant Crossover for Problems with Stochastic Logic

Sub IDPXO3()

ReDim MatingList(Pop_Size)
ReDim TempPop(Pop_Size, tcount)
ReDim TempSLPop(Pop_Size, SLcount)

Randomize

'Generate Random Mating Vector
For j =1 To Pop_Size

MatingList(j) =j
Next j

For j=1 To Pop_Size
rd = Int((Rnd * Pop_Size) + 1)

234

a= MatingList(j)
b= MatingList(rd)
MatingList(j) =b
MatingList(rd) =a

Next

'Process Population Crossover
For pcount =1 To Pop_Size Step 2

ReDim Parent 1(tcount)
ReDim Parent2(tcount)
ReDim ParentS 1(SLcount)
ReDim ParentS2(SLcount)
ReDim Child1(tcount)
ReDim Child2(tcount)
ReDim ChildS 1(SLcount)
ReDim ChildS2(SLcount)

'Setup Parents and empty children
For par =1 To tcount

Parentl(par) = Pop(MatingList(pcount), par)
Parent2(par) = Pop(MatingList(pcount + 1), par)
Childl(par) =0
Child2(par) =0

Next par

For spar =1 To SLcount
ParentS! (spar) = SLPop(MatingList(pcount), spar)
ParentS2(spar) = SLPop(MatingList(pcount + 1), spar)
ChildS 1(spar) =0
ChildS2(spar) =0

Next spar

Randomize

If Rnd() < Xover Rate Then

'First Main Chromosome Crossover

For is =1 To tcount
If Rnd() > 0.5 Then

Childl(ic) = Parentl(ic)
End If

Next is

For is =1 To tcount
mcm =0

For me =1 To tcount
If Child I(me) = Parent2(ic) Then

235

mem=1
End If

Next me

If mem =0 Then
jc =1
Do While Childl(jc) 00

jc=jc+1
Loop
Childl(jc) = Parent2(ic)

End If
Next is

'Second Main Chromosome Crossover

For is =1 To tcount
If Rnd() > 0.5 Then

Child2(ic) = Parent2(ic)
End If

Next is

For is =1 To tcount
mem =0

For me =1 To tcount
If Child2(mc) = Parentl(ic) Then

mem =1
End If

Next me

If mcm =0 Then
jc =I

Do While Child2oc) 00
jc=jc+ 1

Loop
Child2(j c) = Parent 1(ic)

End If
Next is

'First SL Extension Crossover

a= Fix(Rnd()* SLcount) +1
b= Fix(Rnd()* SLcount) +1

Select Case a
Case Is >b

Ptl =b
Pt2 =a

Case Is <b
Pt! =a

236

Pt2 =b
Case Is =b

Ptl =e
End Select

For s=1 To SLcount
IfPtl =eThen

ChildSl = ParentSl
Else

Ifs <= Pt! Then
ChildS 1(s) = ParentS 1(s)

End If
Ifs > Ptl And s <= Pt2 Then

ChildS 1(s) = ParentS2(s)
End If
Ifs>Pt2Then

ChildS 1(s) = ParentS 1(s)
End If

End If
Next s

'Second SL Extension Crossover

For s=1 To SLcount
If Ptl =e Then

ChildS2 = ParentS2
Else

If s <= Ptl Then
ChildS2(s) = ParentS2(s)

End If
If s> Ptl And s <= Pt2 Then

ChildS2(s) = ParentS 1(s)
End If
If s> Pt2 Then

ChildS2(s) = ParentS2(s)
End If

End If
Next s

Else
Childl = Parents
Child2 = Parent2
ChildS 1 = ParentS 1
ChildS2 = ParentS2

End If

'Copy New Children into the Temporary Population

For c1=1 To tcount
TempPop(pcount, cl) = Child l (c l)

Next cl

237

For c2 =1 To tcount
TempPop(pcount + 1, c2) = Child I(c2)

Next c2

For c3 =1 To SLcount
TempSLPop(pcount, c3) = ChildS 1(c3)

Next c3

For c4 =1 To SLcount
TempSLPop(pcount + 1, c4) = ChildS 1(c4)

Next c4

Next pcount

Pop = TempPop
SLPop = TempSLPop

End Sub

'Independant Crossover for Problems with Stochastic Resource Assignments

Sub IDPXO4()

ReDim MatingList(Pop_Size)
ReDim TempPop(Pop_Size, tcount)
ReDim TempSLPop(Pop_Size, SLcount)

Randomize

'Generate Random Mating Vector
For j=1 To Pop_Size

MatingList(j) =j
Next j

For j =1 To Pop_Size
rd = Int((Rnd * Pop-Size) + 1)
a= MatingList(j)
b= MatingList(rd)
MatingList(j) =b
MatingList(rd) =a

Next

'Process Population Crossover
For pcount =1 To Pop_Size Step 2

ReDim Parent 1(tcount)
ReDim Parent2(tcount)
ReDim ParentS I (SLcount)
ReDim ParentS2(SLcount)

238

ReDim Childl(tcount)
ReDim Child2(tcount)
ReDim ChildS 1(SLcount)
ReDim ChildS2(SLcount)

'Setup Parents and empty children
For par =1 To tcount

Parent 1 (par) = Pop(MatingList(pcount), par)
Parent2(par) = Pop(MatingList(pcount + 1), par)
Childl(par) =0
Child2(par) =0

Next par

For spar =1 To SLcount
ParentS 1(spar) = SLPop(MatingList(pcount), spar)
ParentS2(spar) = SLPop(MatingList(pcount + 1), spar)
ChildS 1(spar) =0
ChildS2(spar) =0

Next spar

Randomize

If Rnd() < Xover Rate Then

'First Main Chromosome Crossover

For is =I To tcount
If Rnd() > 0.5 Then

Childl(ic) = Parentl(ic)
End If

Next is

For is =1 To tcount
mem =0

For me =I To tcount
If Childl(mc) = Parent2(ic) Then

mem =1
End If

Next me

Ifinem=0Then
jc=1
Do While Child l(jc) 00

jc=jc+1
Loop
Childl(jc) = Parent2(ic)

End If
Next is

239

'Second Main Chromosome Crossover

For is =1 To tcount
If Rnd() > 0.5 Then

Child2(ic) = Parent2(ic)
End If

Next is

For is =1 To tcount
mem=0

For me =I To tcount
If Child2(mc) = Parent I(ic) Then

mem =
End If

Next me

If mem =0 Then
jc =1
Do While Child2(jc) 00

jc=jc+1
Loop
Child2(jc) = Parentl(ic)

End If
Next is

'Single Point Crossover of Chromosome extension

COP = Int(RndO * SLcount) +1

For cp =1 To COP
ChildS 1(cp) = ParentS 1(cp)
ChildS2(cp) = ParentS2(cp)

Next cp

For cp = COP To SLcount
ChildS 1(cp) = ParentS2(cp)
ChildS2(cp) = ParentS 1(cp)

Next cp

Else
Childl = Parentl
Child2 = Parent2
ChildSl = ParentS 1
ChildS2 = ParentS2

End If

'Copy New Children into the Temporary Population

For c1=1 To tcount

240

TempPop(pcount, c 1) = Child 1(c 1)
Next c1

For c2 =1 To tcount
TempPop(pcount + 1, c2) = Child I(c2)

Next c2

For c3 =I To SLcount
TempSLPop(pcount, c3) = ChildS 1(c3)

Next c3

For c4 =1 To SLcount
TempSLPop(pcount + 1, c4) = ChildS 1(c4)

Next c4

Next pcount

Pop = TempPop
SLPop = TempSLPop

End Sub

Mutation Operator for Stochastic Logic Problem
Sub Mutate3()

ReDim perm(tcount)

ReDim TempPop(Pop_Size, tcount)
TempPop = Pop
Randomize

For z=1 To Pop_Size

If Rnd() < Mute_Rate Then

Randomize

'Generate Random Mating Vector
For j=1 To tcount

Perm() =j Next j

For j=I To tcount
rd = Int(Rnd * tcount) +
a= perm(j)
b= perm(rd)
perm(j) =b
perm(rd) =a

Next

numb = Int(Rnd * tcount) +1

241

ReDim alist(numb)
ReDim aline(tcount)

For j1=1 To numb
alist(j 1) = perm(j 1)

Next j1

For j2 =1 To tcount
aline(j2) = TempPop(z, j2)

Next j2

ReDim vals(numb)

For j3=I To numb
vals(j3) = aline(alist(j3))

Next j3

For j4 =1 To numb
aline(alist(j4)) = vals((numb + 1) - j4)

Next j4

For M=1 To tcount
TempPop(z, M) = alinc(M)

Next M

End If

Next z

Pop = TempPop

End Sub

'Mutation Operator for Stochastic Logic Problem
Sub Mutate4()

ReDim perm(tcount)

ReDim TempPop(Pop_Size, tcount)
ReDim TempSLPop(Pop_Size, SLcount)
TempPop = Pop
TempSLPop = SLPop
Randomize

For z=1 To Pop_Size

If Rnd() < Mute_Rate Then

Randomize

'Generate Random Mating Vector for main Chromosome

242

For j=I To tcount
perm() =j

Next j

For j=1 To tcount
rd = Int(Rnd * tcount) +
a= perm(j)
b= perm(rd)
perm(j) =b
perm(rd) =a

Next

numb = Int(Rnd * tcount) +I
ReDim alist(numb)
ReDim aline(tcount)

For j1=1 To numb
alist(j 1) = perm(j 1)

Next j1

For j2 =1 To tcount
aline(j2) = TempPop(z, j2)

Next j2

ReDim vals(numb)

For j3 =1 To numb
vals(j3) = aline(alist(j3))

Next j3

For j4 =1 To numb
aline(alist(j4)) = vals((numb + 1) - j4)

Next j4

For M=1 To tcount
TempPop(z, M) = aline(M)

Next M

'Mutate the Chromosome extension
ra = Int(Rnd() * SLcount) +1
TempSLPop(z, ra) = Int(Rnd() * SRcount) +1

End If

Next z

Pop = TempPop
SLPop = TempSLPop

End Sub

243

Sub FitnessProc()

Dim FDMinI As Double
Dim FDmin2 As Double

FDSum1 =0
FDSum2 =0
FDMin1 = 10000000
FDmin2 = 10000000

For FD =1 To Pop_Size
FDSum1 = FDSum1 + fit_mtx(FD, 1)
FDSum2 = FDSum2 + fit mtx(FD, 2)

If fit_mtx(FD, 1) < FDMin1 Then
FDMin 1= fit_mtx(FD, 1)
If Problem =3 Then
Else

MinPos = FD
End If

End If

If fit_mtx(FD, 2) < FDmin2 Then
FDmin2 = fit_mtx(FD, 2)
If Problem =3 Then

MinPos = FD
Else
End If

End If
Next FD

FDAvgl = FDSum1 / Pop_Size
FDAvg2 = FDSum2 / Pop_Size

FitData(g, 1) = FDMin1
FitData(g, 2) = FDAvgI
FitData(g, 3) = FDmin2
FitData(g, 4) = FDAvg2
FitData(g, 5) = MinPos

UserForml. Label25. Caption = FDMin1
UserForm 1. Label26. Caption = FDAvg 1
UserForml. Label27. Caption = FDmin2
UserForm 1. Label28. Caption = FDAvg2

End Sub

Sub LoopCheck()

244

Dim z As Integer
ReDim LoopList(tcount)

For z=1 To tcount
vMatrix = PrecTable

Call DFS(z)
Next z

For z=1 To tcount
If LoopList(z) = "c" Then

For y=1 To tcount
If PrecTable(z, y) =1 Then

If LoopList(y) _ "c" Then
Ifz>yThen

PrecTable(z, y) =0
End If

End If
End If

Next y
End If

Next z

End Sub

'Conduct Cycle checking of the Adjacency Matrix
'using Recursive Depth-First Search

Sub DFS(v As Integer)

If vMatrix(v, v) =9 Then
LoopList(v) = "c"

Else
vMatrix(v, v) =9

For d=1 To tcount
If vMatrix(v, d) =1 Then

DFS (d)
End If

Next d

'vMatrix = LDMtx

End If

End Sub

245

APPENDIX F. - FULL SCHEDULE LISTING

This appendix contains the full listing of the schedule utilisied in Chapter 5 and 7. The first

listing provides the pre-optimisation version as used in both problem instances. The second

lisiting provides the optimised version for the problem version discussed in Chapter 7.

246

APPENDIX G. - PAPERS PUBLISHED
FROM THIS RESEARCH

The papers attached in this appendix have all been produced as a product of this research

project. All of these papers with the exception of paper number six have either been

committed to print of accepted for publication. The last paper listed is currently un-review by

the International Journal of Production Research.

The papers attached are, in order of submission date:

1. Lancaster J and Ozbayrak M, (2007), "Evolutionary Algorithms applied to Project Scheduling
Problems: A Survey of the state-of-the-art", International Journal of Production Research,
Volume 45, Issue 2 January 2007, Pages 425-450. PUBLISHED.

2. Lancaster J and Cheng K, (2007), "A Fitness Differential Adaptive Parameter Controlled
Evolutionary Algorithm with Application to the Design Structure Matrix", International Journal of
Production Research, ACCEPTED FOR PUBLICATION AND PUBLISHED ON-LINE.

3. Lancaster J and Cheng K, (2007), "Toward the Application of Genetic Algorithms to Real
World Resource Constrained Project Scheduling Problems ", Proceedings of IPROMS 2007
Virtual Conference, Cardiff, Wales, 1-14 July 2007. PUBLISHED

4. Lancaster J and Cheng K, (2007), "Balancing Global Project Resources utilising a Genetic
Algorithm Approach with Stochastic Resource Assignments", Proceedings of e-ENGDET 2007,
Harbin, China, 27-29 August 2007, pp 67-72. PUBLISHED.

5. Lancaster J and Cheng K, (2007), Optimisation Of The Hydro-testing Sequence In Tank Farm
Construction using an Adaptive Genetic Algorithm with Stochastic Preferential Logic, Journal of
Engineering Manufacture. ACCEPTED FOR PUBLICATION.

6. Lancaster J and Cheng K, (2007), Genetic Algorithm Optimisation in Project Scheduling
Problems using Preferential Logic, International Journal of Production Research. SUBMITTED
CURRENLTY UNDER REVIEW.

7. Lancaster J and Cheng K, (2008), Project Schedule Optimisation using a Genetic Algorithm
approach, Proceedings of the 52' annual meeting of the Association for the Advancement of
Cost Engineering, Toronto, Canada July 2008. ACCEPTED FOR PUBLICATION.

246

GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE
ID O Task Name DwatpL1- Stan Finish Stochastic Predecesso

Loaic
rs

Feh M rA M
1 ___.. _- _ Conlrect Award __. 1 day Wed 21/02/07 _ Wed 21/02/07 ------ I

a pr ay : un ýW I Auý Sam pit tlpv I pac
_ ----

2 TK101 - Foundation 50 days The 22/02/07 Thu 12/04/07 1 Iv11ý2,800ý

3 TK101 - Erect and Weld Annulars 6 days Fri 13/04/07 Wed 18/04/07 2 h(3601

4 TK101 - Erecl and Weld Bottom 17 days Thu 19/04/07 Set 05/05/07 3 IK1 7001

5 TK101- Erect and Weld Rig 1 16 days Thu 19/04/07 Fn 04/05/07 3 (1.600

TK101 - Erect and Weld Ring 2 15 days Sat 05/05/07 Sal 19105/07 5 h(l 5001

7 TK101 - Erect and Weld Ring 3 12 days Sun 20/05/07 The 31/05/07 6 M. hl1 200(

8 TK101 - Erect and Weld Roof 75 days Sun 20/05/07 Thu 02/08/07 4 6 . oh(7 300

9 TK101 - Erect and Weld Ring 4 11 days Fn 01/06107 Mon 11/064/7 7
ech(1 1001

1 TK101 - Erect and Weld Ring 5 10 days Tue 12/06/07 The 21/06107 9 h[1.0001

11 TK101 - Erect and Weld Ring 6 10 days Fri 22106/07 Sun 01/07/07 10 h(I. 011 J

12 TK101 - Erect and Weld Ring 7 9 days Mon 02/07/07 Tue 10/07/07 11 M. oh '

13 TK101 - Erect and Weld Wiodgirder 9 days Wed 11107/07 The 19/07/07 12 1001

14 TK101 - Erect and Weld Top Angle 8 days Fn 20/07/07 Fn 27/07/07 13 h(4001

15 TKI01 - Install Slen ay 20 days Fri 20/07/07 Wad 0&08/07 13
IrueW800l

18 TK101 - Install Nortes 23 days Fn 20107107 Sal 11/06/07 13 M. eh(1 000J

TK101 - Hydrotest 42 days Sun 12/08/07 Sat 22/09/07 8,14,15.16
W 2 atorl ,

383,0001

1 TKi01 - Install Foam and Deluge Piping 24 days Sun 23109/07 Tue 16110107 17 �WetylQOOF

1 TK102 - Foundation 50 days Thu 22/02/07 The 12AW07 1 H0ý2 yoaý

TK102 - Erect and Weld Annulars 6 days Fn 13/04/07 Wed 18104/07 19
ech[3601

21 TK102 - Erect and Weld Bottom 17 days Thu 19/04/07 Set 05/09/07 20 M1.7001

22 TK102- Erect and Weld Ring 1 16 days Thu 19/04/07 Fn 04/05/07 20 (1 600)

23 TK102 - Erect and Weld Ring 2 15 days Sat 05/05/07 Sat 19/05/07 22 M7 5001

24 TK102 - ErecI and Weld Ring 3 12 days Sun 20/05/07 The 31/05/07 23 (1.2001

25 TK102 - Erect and Weld Roof 75 days Sun 20/05/07 Thu 02/06/07 21 23 . [7 Swl

26 TKI02 - Erect and Weld Ring 4 11 day. Fn 01/0&07 Mon 11/06/07 24
aehg1,1001

27 TK102 - Erect and Wald Ring 5 10 days T-12/06107 The 21106/07 26 h'1 000'

8 TK102 - ErecI and Weld Ring 6 10 days Fri 22/06/07 Sun 01107/07 27 Wehi1

TK102 - Erect and Wald Ring 7 9 days Mon 02/07/07 Tue 10107107 28 M I

30 TK102 - Erect and Weld Windgirder 9 days Wed 11/07/07 The 19/07/07 29
111 Pool

31 TK102 - Erect and Weld Top Angle 8 day. Fri 20107/07 Fn 27AAT17 30 (400'

32 TK102 - Install Stairway 20 days Fri 20/07/07 Wed 08/0&07 30
nwt(loo'

TK102 - Install Nou taa 23 days Fri 20/07/07 Sat 11/08107 30 M7 000(

34 TK102 - Hydrotest 42 days Sun 12/08/07 Sat 22/09/07 25.31.32,33 WNer12.3S3,0001

Till 02 - Instal Foam and Deluge Piping 24 days Sun 23/09/07 Tue 1&10107 34

TK103 - Foundation 50 days Thu 22/02/07 Thu 12ß4107 1 h11(2,3001

Teak I
Milealona f prolaU Surmrry Dea0ry lvl

Prdlecl: Tank Farm wFtydl mpp Spul Summery 6l dT k Dow. Sun 09/12/07 ern as sU

Progress Baseline Ertemal Mdglorr

page 1

GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE
ID Task Name Duration Start Finish Slocnastic Predecessors

_Look
Feb Mar AX May Jun ý Jul

37 TK103- Erect and Weld Annulars 6days Fn 13104/07 Wed 16/04/07 36 Mach13601

TK103 - Erect and Weld Bottom 17 days Thu 19/04/07 Set 05/55/07 37 M1.766(

TK103- Enact and Weld Ring 1 16 days Thu 19/04/07 Fri 04105/07 37 h(1,100(

40 TK 103 - Erect and Weld Ring 2 15 days Sal 05/05/07 Sat 19/05/07 39 h(1 5601

41

4I

TK103 - Erect and Weld Ring 3 12 days Sun 20/05/07 Thu 31/05/07 40

TK 103 - Erect and Weld Roo/ 75 day, Sun 20/05/07 Thu 02/06/07 36,40

Moch(1 2001

--- (75001

43 TK103- Erect and Weld Ring 4 11 days Fn 01/06/07 Mon 11/0&07 41 schj1,1661

TK103 - Erect and Weld Ring 5 10 days Toe 12/06/07 Thu 21/06/07 43 (1.0001

45 TK103 - Erect and Weld Ring 6 10 days Fri 22/06/07 Sun 01/07/07 4.4 ßh(1

46 TK103 -Erect and Weld Ring 7 9days Mon 02/07/07 Toe 10/07/07 45 yKM

47 TK103- Erect and Weld Wmdgirder 9days Wed 11/07/07 Thu 19/07/07 46 Mae I (

46 TK103 - Erect and Weld Top Angle 8 days Fn 20/07/07 Fn 27)07M7 47 (400(

49 TK103 - Install Stairway 20 days Fn 20107/07 Wad 06106/07 47 buct(po(

5o TK103 - Install Noufes 23 days Fn 20/07/07 Sal 11/08/07 47 Mt 000(

S1 TK103 - Hydrotest 42 days S. 12/06/07 Sat 221391)7 42,48,49,50 watM2,353, D66(

3 TK1D3- Install Foam and Deluge Piping 24 days Sun 23/09/07 Tue 16110107 51 Jlwly1,00%

63 TK104 - Foundation 50 days Thu 22/02/07 Thu 12/04/07 1

TK104 - Erect and Weld Annutars 6 days Fn 13/04/07 Wed 16/04/07 53

NII(2,666(

ach(360ý

SS TK104 - Erect and Weld Bottom 17 days Thu 19/04/07 Sal 05/05/07 54 1,41,7001

56 TK104- Erect and Weld Ring 1 16 days Thu 19/04/07 Fn 04/05/07 54 11, {00(

57 TK104 - Erect and Weld Ring 2 15 days Sat 05/05/07 Sal 19/05/07 56 Mt 500(

s6 TK104 - Erect and Weld Ring 3 12 days Sun 20/05/07 Thu 31105/07 57 Maca(1. (

TK104 - Erect and Weld Roo/ 75 days Sun 20/05/07 Thu 02/06/07 55,57 (7,600(

TN104 - Erect and Weld Ring 4 11 days Fri 01/0107 Mon 11, V6D7 58 M1,106(

61 TK104 - Erect and Weld Ring 5 10 days Tue 12/06/07 Thu 21106/07 60 11.0001

62 TK104 - Erect and Weld Ring 6 10 days Fn 22/06107 Sun 01107/07 61 M"U(1,

63 TK104 - Erect and Weld Ring 79 days Mon 02/07/07 Tue 10107/07 62 MKM 1

64 TK104 - Erect and Weld Windgirder 9 days Wed 11/07/07 Thu 19/07/07 63 (

65 TK104 - Erect and Weld Top Angle 8 days Fri 20/07/07 Fri 27/07107 64 A% i (400(

66 TK104 - Install Stairway 20 days Fn 20/07/07 Wed 06/06/07 64
-ham(

67 Tl(104 - Install Nortes 23 days Fri 20'07/07 Sat 11/06107 64
ca(1 0001

TK104 - Hydrotest 42 days S-12/08107 Sal 22/09/07 ' 59.65.66.67 waur(2,3l7,0001

TK104 - Install Foam and Deluge Piping 24 days Sun 23/09/07 Tua 16/10/07 68 4MaMs. ýF

--To- TK201 - Foundation 65 days The 22102t07 Fn 27/04/07 1 MI(3. i00(

TK201 - Erect and Weld Annulars 10 days Sat 26/04/07 Mon 07/05/07 70 M1,0001

TK201 - Erect and Weld Bottom 21 days Tue 08/05/07 Mon 26/05/07 71 Mi, 100(

Prajact Tank Farre wHydl mpp
De,.: Sun OWI2/07

Task
0

M4esbne .
Project Summary Deadline

Spit
.......................

Summary ^
Egamal casks

Progress Base ine Eetamal Mattalar

Page 2

GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE
10 O Task Name Duration Start Finish Slocnastrc Pled ec essors

L. omc Felt, Mar AV M Jun Jul PI1w

n s. 9 T Oct Dec; 73 TK201-Erect and Weld Ring 1 19 days Tue 08/05I07 Sal 2fLO5107 71
ý

alb pgl

74 TK201 - Erect and Weld Ring 2 17 days Sun 27/05/07 Tue 12/06/07 73 6(1 706)

75 TN201 - Erect and Weld Ring 3 15 days Wed 13/06/07 Wed 27/06107 74 11 000)

/8 TN201 - Erect and Weld Root 82 days Wed 13/06/07 Sun 02/09107 72,74 - 12,2001

77 TK201 - Erect and Wald Ring 4 14 days Thu 28/06/07 Wed 11/07/07 75 6(1, 001

79

TK201 - Erect and Weld Ring 5 12 days Thu 12/07/07 Mon 23/07107 77

TK201 - Erect and Weld Ring 6 12 days Tue 24/07/07 Sal 04/09/07 78

1 11.2001

112001

TK201 - Erect and Weld Ring 7 10 days Sun O5/08/07 Tue 14/08/07 79 sca11, 1

81 TK201 - Erect and Weld Wlndgirder 11 days Wed 15/08/07 Sal 25/08/07 80 Iq 7001

82 TK201 - Erect and Weld Top Angle 9 days Sun 26108/07 Mon 031D9/07 81 10001

83 TK201 - Install Stairway 24 days Sun 26/08/07 Tue 18/09/07 81 it-117501

64 16201 - Install Noules 28 days Sun 26/08/07 Sat 22/09/07 81 6)1 2001

65 11(201 - Hydrotest 48 days Sun 23/09/07 Fn 09111107 76,82,83,84 Wat 1,380,

86 TK201 - Install Foam and Deluge Piping 28 days Set 10/11107 Fn 07/1207 85 In

87

88

TK202 - Foundstron 65 days Thu 22/02/07 Fri 27/04107 1

TK202 - Erect and Weld Annulars 10 days Sat 28/04/07 Mon 07/05/177 87

MIII, i001

611,0001

TK202 - Erect and Weld Bottom 21 days Tue 08/05/07 Mon 28/05/07 88 612.1001

TK202- Erect and Weld Ring 1 19 days Tue 08/05/07 Sat 261 88 611.8991

1 TN202 - Erect and Weld Ring 2 17 days Sun 27/05/07 Tue 12/06107 90 11,7091

TK202 - Erect and Weld Ring 3 15 days Wed 13/06/07 Wed 27/06/07 91 1t 5001

TN202 - Erect and Weld Roof 82 days Wed 13106/07 Sun 02/09/07 89,91 Pill 8.2001

94 T7(202 - Erect and Weld Ring 4 14 days Thu 28/06/07 Wed 11/07/07 92 611, 001

95 TN202 - Erect and Weld Ring 5 12 days Thu 12/07/07 Mon 23107107 94 1,2001

TK202 - Erect and Weld Ring 6 12 days Tue 24/07/07 Sat 04/08/07 95 11.2901

97 TK202 - Erect and Wald Ring 7 10 days S-051011/07 Tue 14/09107 96

TK202 - Erect and Weld Wirdgirder 11 days Wed 15/08/07 Sat 25108/07 97 M 001

100

101

TK202 - Erect and Weld Top Angle 9 days Sun 26/08/07 Mon 03109107 98

TK202 - Instal Stairway 24 days Sun 26/08/07 Tue 18109/07 98

TK202 - Instal Norbaa 28 days Sun 26/08/07 Set 22/09/07 98

Allies 1

5)7001

Uschill. 2001

16202-Hydrolast 48 days Sun 23/09/07 Fn 09111/07 ' 93,99,100,101 Wet 360,

1

104

TN202 - Instal Foam and Deluge Piping 28 days Sal 10/11/07 Fn 07/12t07 102

TK203 - Foundation 65 days Thu 22/02/07 Fn 27/04/07 I I MII)L 200

sa

1 TI(203- Erect and Weld Annulars 10 days Sal 20/04/07 Mon 07/05107 104 5)1,1001

1 TK203 - Erect and Weld Bottom 21 days TI» 08/05/07 Mon 28/D5/07 105 612,1001

1 TK203- Erect and Weld Ring 1 19 days Tue 08/05/07 Sat 26/05/07 103 . 5)19001

TK203 - Erect and Weld Ring 2 17 days Sun 27/05/01 Tue 12/06/07 107 11,7001

Propel Tank Farm WHVdl. OPP
Dar. Sun 0911207

Task O Milestone f Prol. U Suinsr-y ^ D. A.

Split Summery Erternsl Taos ý- -ý
", ". """""""... "... ""...

Progress Baseline Eternal MOasbna

Page 3

GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE
ID

1w

Task game

TK203 - Er_cand Web Rug 3---

Durobon Steil

15 days Wed 13106107

Finish

Wed 27/Ö6/07

Stochastic
Lo. C

Predecessors

Feb

108
Mar Apr May Ju .W Au

ý
cu115001

g $P j QC-. 1110y ---

110 TK203 -Erect end Wald Roof 62 days Tue 29/05/07 Set 16/08/07 106 '1 -- -- Maen16, 1

111 TK203- Erect and Weld Ring 4 14 days Thu 28/06/07 Wed 11/07/07 109 n11, 1

112 TK203 -Erect and Web Ring 5 12 days The 12107N7 Mon 23A7107 7t1 11 1.2001

113 TK203 - Erect and Weld Ring 6 12 deya Tue 24/07/07 Sat 04/08/07 112 . 1111.2001

114 TK203 - Erect and Weld Ring 7 10 days Sun 05/08/07 Tue 14/08/07 113 ach(1,0 I

115 TI(203- Erect and Weld Windgirder 11 days Wed 15/09/07 Sat 25106/07 114 Math) 1001

116 TK203 - Erect and Weld Top Angle 9 days Sun 26/08/07 Mon 03/09/07 115 1 5001

117 TI(203 - Install Stairway, 24 days Sun 26/08/07 Tue 18/09/07 115 nrtn7501

118 TK203 - Install Nonen 28 days Sun 26/08/07 Sat 22/09/07 115 1n11.200)

119 TK203 - Hydrotest 48 days Sun 23/09/07 Fn 09111/07 If 110.116.117,118 Witt 300.

120 TK203 - Install Foem and Deluge Piping 28 days Set 10/11/07 Fri 07112/07 119 Mach

121 TK204 - Foundation 65 days The 22102/07 Fn 27/04/07 1 M1)3,2001

122 TK204 - Erect and Weld Annulars 10 days Sal 28/04/07 Mon 07/05/07 121 1111,6881

123 TK204 - Erect and Weld Bottom 21 days Tue 08/06/07 Mon 28/05/07 122 612.1001

124 TK204- Erect and Weld Ring 1 19 days Tus 08/05/07 SN 26/05/07 122 11-h(I. 11111,1111

1 TK204 - Erect and Weld Ring 2 17 days Sun 27/05/07 Tue 12/06/07 124 11 7001

TK204 - Erect and Weld Ring 3 15 days Wed 13/06/07 Wed 27/08/07 125 11.5001

127 TK204 - Erect and Weld Roof 82 days Tue 29/05/07 SM 19/08/07 123

128 TK204 - Erect and Weld Ring 4 14 day. The 28/06/07 Wed 11/07/07 126 -1,11, 11101

129 TK204 - Erect and Weld Ring 5 12 days The 12/07/07 Mon 23/07/07 128 1 11.2001

13o TK204 - Erect and Weld Ring 6 12 days Tue 24/07/07 Sat 04708107 129 1111,2001

131 TK204 - Erect and Weld Ring 7 10 days Sun 05/08/07 Tua 14/Dd07 130 nil, 1

1 TK204- Erect and Weld Windglyder 11 days Wed 15/08/07 SM 25/08/07 131 nl 1001

133 TK204 - Erect and Weld Top Angle 9 days S-26/08/07 Mon 03/0907 132 1681

134 TK204 - Install Steinway 24 days Sun 26/08/07 Tus 18109/07 132 rutg7791

1 TK204 - Install Hoiden 28 day. Sun 26/08/07 Set 22/09/07 132 1111.2001

138 11(204- Hydroleat 48 days Sun 23/09/07 Fn 09111/07 127.133,134,135 Were 360.

137 TK204 - Install Foern and Deluge Piping 28 days Sal 10/11/07 Fn 07/1207 136 ---- cn

1 East Pipe Rack Pllnthe 35 dry. Thu 22/02/07 Wed 28103107 1 Wi41.000)

1 Erect East Pipe Reck Grid H150 - J162 16 days The 29/03/07 Fn 13/04/07 138 tfg1 ppl

140 Erect East Pipe Rack Grid H162 - J174 16 days Sat 14/04107 Sun 29/04/07 139 h. l

141 Erect Eeet Pips Rad, Gold E161 - H162 5 days S8114/04107 Wed16/04107 139 ýJlkw
3901

14 Erect East Pip. Rock Grid E173 - H174 5 days Mon 30/04/07 Fn 04/05/07 140 113001

Erect East Pipe Rack Grid J161 - L162 5 days Set 14/04/07 Wed 15/0407 139 - ON q

1 Erect East Pipe Rack Grid J173 - L174 5 days Mon 30/04/07 Fn 04/05/07 140 03601

Task
II MiMsbna f Projacl Surnnry Deasrr

Propct Tnk Ferrn WHydl mpp
Dale San 09112107

Split
......................

Summary ^ Eaamr Tasks

Progress Beeline E, lemal Md. W-

Page 4

GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE
ID O Task Name Duralan Stan Finlsh Siucnesnc Predecessors

Look Feu Mar Au Ma un Jul i Auy ' 8} T Oct i Nov Dec
145 Install Pump PC1400 & 1401 Plinth 21 days Thu 29/0107 Wed 18/04107 138 I

_ p.

146 Install Pump PC1402 & 1403 PIlnths 21 days Thu 29/03107 Wed 18/04/07 138 1

147 Install Pump PC1400 & 1401 4 days Thu 19/04/07 Sun 22/04/07 145

146 Install Pump PC1402 & 1403 4 days Thu 19/04/07 Sun 22/04/07 146
k

140 Erect Pipework Grid H150 - J162 12 days Mon 30/04/07 Fn 11/05/07 140
- III 17501

160 Erect Pipework Gnd H162 -J 174 12 days Sat 12105/07 Wed 23005107 140,149 hi750

151 Erect Pipework Rack to PCI400 5 days Sat 12/05/57 Wed 16/05/07 141,147.149

152 Erect Plpewonc Rack to PC1401 5 days Thu 24/05/07 Mon 28N6/01 142,147.150 y ypý

153 Erect Pipework Rack to PC1402 5 days Set 12/05/07 Wed 16/05107 143,148,149

154 Erect Plpework Rack to PC 1403 5 days Thu 24/05/07 Mon 28/05/07 144.148.150

155 Erect Pipework PC1400 to TK101 5 days Sun 12/08/07 Thu 16/08'07 16.147
___..... _

156 Erect Pipework PC1401 lo TK102 5 days Sun 12/08/07 Thu 16/08107 33.147

157 Erect Plpework PC1402 to TK103 5 days Mon 23/04/07 Fn 27104107 148

158 Erect Pipework PC1404 to TK104 5 days Sun 12/08/07 Thu 16/0&07 50,148

159 West Pipe Rack Phn8ts 35 days Thu 22/02/07 Wed 28/03/07 1 NII(1,0001

160 Erect West Pipe Rack Grid H1 - J12 16 days Thu 29/03/07 Fn 13.474/07 159 t uat(t 200

11 Erect West Pipe Rack Grid H12 - J24 16 days Sal 14/04/07 Sun 29/04/07 160 a(1 2001

Erect West Pipe Rack Grid E11 - H12 5 days Sat 14/04/07 Wed 1&(Mr07 160 44 . 113001

163 Erect West Pipe Rack Gnd E23 - H24 5 days Mon 30/04/07 Fn 04105107 161 . 13001

164 Erect West Pipe Reck Gnd 411 - L12 5 days Sat 14/04/07 Wed 18/04/07 160 M 434 '

165 Erect West Pipe Rack Grid J23 - L24 5 days Mon 30704/07 Fn 04/05/77 161 43001

166 Install Pump PC1200 & 1201 Plinths 21 days Thu 29/03/07 Wed 18/04107 159 h I

ley Install Pump PC1202 & 1203 Plinths 21 days Thu 29/03/07 Wed 11/04107 159

:

I

-161- Install Pump PC1200 & 1201 4 days Thu 19/04/07 Sun 22/04107 166,167

169 Install Pump P01 202 & 1203 4 days Mon 23/04/07 Thu 26/04/07 167,166

170 Erect Pipework Grid H1 - /12 12 days Mon 30/04/07 Fn 11/05107 161,169 ý750ý

171 Erect Pipawork Grid 1012 - 424 12 days Sal 12/05/07 Wed 23/05/07 161,170 ý750ý

1 Erect Pipework Rack to PC1200 5 days Sat 12/05/07 Wed 16/05/07 162,166,170

17 Erect Pipework Rack to PC 1201 5 days Thu 24/05/07 Mon 28/005,07 163,168.171

174 Ereil Pipework Rack to PC1202 5 days Set 12/05/07 Wed 16105107 164.169.170

175 Erect Plpework Rack to PC1203 5 days Thu 24/05/07 Mon 28/05/07 165,169,171 Ma. 94344F - _- _

176 Erect Plpework PC1200 I. TK101 5 days Sun 23/09/07 Thu 27/09107 84,168 Yechl]SOJ

177 Erect Pipswork PC1201 to TK102 5 day. S-23/09/07 Thu 27/09107 101,166 Wchý)s01

178 Erect Pipework PC1202 to TK103 5 days Sun 23/09/07 Thu 27/0907 118.169 MKKý 541

Erect Pipework PC1204 to TK104 5 days Sun 23/09/07 Thu 27/09107 135,169 y"ah _

Mechanical Completion I day? Sat 08112/07 Sal 08112107 18,35,52,69,86,103.1

Task II Music- f Prgacl Summary ^ DeW..

Protect Tank Farm wllydl mop Split Summary IPMOMMEW E. lamal F. R. [' -]
Dar S. 09/12/07

Progress Baseline Felsmal Miabrle .

Papa 5

GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE - SOLUTION
O rr 95,. Duration sat Fingn I SbrJlrec P-

I da TluUf/-
FPÖ Me Ie P yh an /ý Aw 'P 1x1 an Da nTMwT ýP rte [A^

M101 - Fane"Ib. 50 Ar Fe 230217/ Is 1405101 1 2 . ml

-. 3 M101 - Ena and WNC NwYFn d days 8- 1510107 Sal 21N1107 2 11901

7j M101 - Eno W WMC 6050nm 11 drye 5n 221M107 WW 09x. 101 3 yM15 iMl

M101- Er. a rN W. M R"1 1e Gay. Sun22101107 Tu06/01001] 11.9WI

.ý TI1101 - EnvWWAN Wy3 15 GFy, WF00440197 TIY]404107 5

3 M101 - Em eM WNO RYy] 12 hye Frl 25105.07 WM 060 07 e 1.]MI

. =j MIDI - Fnd rtl WMC Rao] 75 drye Mon 25. '04,07 S. I03/11107 45 --- ,. e«I

'. 3 70101 - Elea and WM Furp e 11 Ny. Tltu 07106/07 Mon 14406/07 7 1MI

M101 - Ena rtl WME Wq 5 10 Cq� T. 19/09/07 Fn 2~7 9 ISýF

3 M107 - E- ad Wald Rag 6 10Aps F, 414,1]9707 Slon 24,0997 10 1, ý1

MIDI -Enw rN WMe Rag? 9 drye T1r 0971007 Stl 1L10007 11

M107 - Erna 4x10 WNe WMdg9Ex 9 E. Y. Fe 19/10407 S. 26/10,07 1] I

14 TK101- EIFG rtl WM07a9 Any. e Nye Mon 2010.07 Tu. Od1107 13 11111411

.ý 7%101-]01218120x.. 7 20 days Iýtun 29/1010) S. 191111117 11
yýl

1 '. 3 MIDI -- HOFM 23 days M 20,007 0402111147 11 141.9991

x. 31 70101-5510006 22Ery1 TI.. 22/11107 Tw 01/01/05 r 6., 4.15,15 Mr(]. 531.0991

'3 MIDI -IMY FUem and D. " Rp 22 Eeys F10401M MO.. 2GVtge 11
YFYjF. e991

3 M102-FOUlteee00 SOeyn Tuw01l05l07 WFE20101107 1 LIMI

'. 9 70102- Ena rd WW MoIsS SNys T1702710007 WEA21NS07 19

1.97107-Ertl rtl WMJ SOnmI 17 dry Fn 10/00101 970,27406/57 20 1,1991

''j 11(70]- Elsa IM 49.0 Wy I to yyY 174112/07)07 31721.07707 20 1.1

ii .3 M102 -Et rtl WMO RYp 2 15 day. Sun 29.07.07 /700 11/56107 2] 1.5.40]

3 M102- Erna aM W. M NOq] 12 day. T. 14)06107 S. 2001.407 23
1. IMI

']I M102 - Ena and WMe ROOT 75 Ary, Tu. Oe/ l 500 /971 /. 07 21,73

3 70102 - Et ale 0.06 60104 11 dry. Fr12106101 TIU 02/ION) 24
1.197"

=j M102-End r. J WOO WpS IS day. m o&l0107 Thu WIDOW 2e 1

M102-Ei a-WME Slny9 -,, I 90021/1007 W. E]7/7007 27

, 9401

.ý M102-Eia- WMe Fny1 9., TIw 04/11]07 91017/11)01 29
Iý1

-3F- ý ! j' M102-Era rW WW 496/290057 9495+ Stn19717407 To. 27111407 29 "1

St '3 10102-End rW WFN TIp Nq. 5Ery. Wee2N11A7 ITu0911207]0 YwKý991

ý. JI M102 - Yd Slelrwy 2o.. " Wee 2441, /07 Tue 15412101 30 } 9MIIYFI

3 97102-IrsW Nozzle 23AMSs WM25l11407 Fr127/12/07 74

.]j MIOi-NyROlwl e2 Aey. Tue04103M Tu. 151NNe Ir 25 31.32, M
.]9]. 9001

M10]-hnlr Foam rW DNge Pqq 2e dp Wa1&WN0 Sr 1005106 34
1.997]

3 97103 - Fauldlal 50 JeyS Fr12SV]A7 5.14104107 1]. f I

ST 3 9710]-E--2WFle Mr0Yn OAFy. S-smg7 6.12110410/ y

lTl(10]-Etwa 397 WFtl Bahn 1)EFye 0.2722401401 -0m07]7

3 97107- End s. d WW R"I 1e day. SIn22/W07 Tu09rOSV7 37 1,997]

3 70103- Ena x10 WME 6,142 15 Erye Wtl 09/0.457 T7u 2417107]9

t1. .
'j 9710] Erard WW 01010/ 12 Jays F. 2146.01 90060510607 p 1.1

3 97103 -EIW 8,410.19001 75 NyF 90000/56707 F111211807 19.0

3 70753-Cola sd Weld RYq 2 11 days TI,. 0700007 Mon 19,0607 e1

13 TK10S- Elwt end WFIOR495 10 EFye WIC29/09707 W, 01/10.07 43 ýýýJJJýI, w9

49 3j T11101- Erna ne WM. / RYpe 10e/e 002.2510407 10. e01/11,07 y 1

TK103-ElWIM WOO fing? 9Nye TIw04411107 39117/11)07 45

1 3 M10]-Era rN WMO WIndpFOV 9drys Su. 1&11007 T-27111MY e5. poll

T0105-E--WNe Tay Angle ! days WFC25/11N7 Thu0N12A7 IT

3 M103.1nsWSUx*wy 2040100 WFe21111107 Tuw1e112007 47

70103- IruulNOF[N. 23 drye Weti2N11107 Fr121/72/07 e/ - ý

Fgcl Tai Frm w1. -
I-

O
%u4EU Sumry ^ yAMp Fulýttýy ^ E-Mwdr .

0 6z. 0517207 sm
....................

WII- BewYr EOnIeI I- ©-. pryer Ü

Gg91

GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE - SOLUTION
U O lNnr Dunnon S- F- i S50 eoc R. E. c. FFpa

w F 4« A 4. A . . iT 1 Mt 1 ZM-w 41.464§-i(1-
n ,ys. v a. w r o« Hn T u. MI wr IM

w. IM2.151. OW)

52 3 TK103 -1.1.9 Fos, rtl DMp. Ppy 24 Ny. M 010: 5/09 TS 27/01/05 51 rMF

53 ýj MIN - Fp oS000 50 days 70 2102)01 SN ,471 2.5901

S. -3 05704 E--s WNE NrsYn SErys Sun1510N7 Sn 21101/07 5] I>MI

56 3 10100-Elsa rM wep Bortom 17Nys Sun22/01.07 Ww 09/0597 51 (, ýOEI

TR10. -Erp r1E WNtl fbq I 19 days 5,22, W, V7 T. F 09.0501 51 1.9W1

- -

10104. Earl rW WaW -,, 2 15 days W«109)0507 7nu 2405)01 59 1,5MI

11117 MINE--- 69191 124459 Fn 25/05.91 WW 060601 51 1.2111

10701 - EM - WNd Pool 75 drys 75 25/05/07 W. E 0910607 55,57

3 70104-En0 r WM Wy4 116. " 71x007/06/07 Mon 1609.01 54 1.1111

10154-End rWWeM RYy5 10 Ny. Tu. 19/06/07 1529106.07 90
.
Mel

ýj TI/10a-E -Ws RW G 1045.56/20/0 07 I . 1Ug7/07 91 m . l

70101- (1.0- Weld R9147 San WW 11)0707 1020/07.07 e2

MM104 - End -1 WNE 9Pa71d dw 9 No SM 25)0607 Abn 0309/01 63 I

:1 70104- Ena and Weld Tay Ny. 9 NyF Tu. 04/09107 Wed 12/0997 64 IC I

,.
3 M104-Y2p m SWrwy ". 0 Tia 00)099.07 Mon 2~7 M ýI

711191- - Nealw 235/. 50 09.04.09/07 01027)09)07 61
1 9

.
991

3 M104 -MyJUlwl 42 Cry. 702699/07 Fn 09/11/07 59 GS El. 97
IIN

10101-1-41- «d 0.104. Nl 24 No 04513/1707 09.04/1207 50
-..

711201 - FoM. mn 85 d" 7 . 01, OSO7 Tt0.05.0707 1 I

3 TIt201 - ErM Weld Mein 10 A. F. Fl0807)07 Mon 19070? 70 I . MI

TM201 - End. r4 WeM 90/bm 21 dy. Wed 18/07, /07 WM 0906/07 71 Y i IEE ýy . {

3 79201- Errf and Weld Rbq 1 19 N/F Tw 11/07)07 S. 05.09.91 11 1 .9 . 91

3 70201-End- WW R. 92 17 drys 7020/06/07 Fn14.09.07 73

"3' 79201 - End r0/ W. IG RYp 3 15 Ery. SM 19/0901 Sin 3~7 74 1.11.0

3 TK201 -E1n WW Roof !2 CMe Tuw 02/1007 Son 2]/12)01 72.74 -

7X201 - End r11 WMC Rn, g a 14 EMF Mon 15/1(v? Mon 29110107 15

j 00207 - EAO rtl WMU Rw9 5 12 4ry. 1.35/1801 Sut 1111101 77

3 71(201-E i . rd WNE R4749 12 dass Mo. 12111/07 5412.11)07 78
1

'JI 75201E- r1Wald R" 7 1. d- Su-25/11.7 Wed0y12g1 ry
1,9111

3 71(201 - E- WMd WM9nd« 11 A. F. Tnu 06/12.07 Non 1102. /07 99
I, IMI

,.
3 710101 - Ena r4 WOW Tag 414.9 drys Tw 16/12)07 71u 27112.07 61

r. ri. Eq

ý'. 3 70201- Intr SWnry 24 dry T. 1611007 7011)0109 It

64 -3 TK201 - 69. W 740 .. 25 d" Tv. 15/12/07 1u. 15/015/5 51

TK201 - NFdoMY N Cry. S- 24)02.09 Sr 12/54/09 IF 16.82. V, 84 --
. 1001

3 717201 - 1-11- -1 DMq. PON 23 Ehy. Sin 1]RNg9 S. 11/0501 55
1}991

711202- FnvNwcn 95 days 75 23.02/07 S,,, 29/04.07 1 SCI

. TK202. Enq rM Wek MM«. 10 Gry. Mo,]OrdAl 11010.0501 97 1 9MI .

-. JI TN202-Erp. edWMCe- 21 Cry. F, 1 1110&V? 7507)087 M 2 /111 ,

.ý 70202- E8/ «M WW 62)31 190/5. Fn 11)0507 WM 31A9/01 M 9111 1 ,

^. 3 11202-E- rn Wald 2 17 4.10 TIU 51,0507 do 11gso, 90 1.1111

22 711202 - Enpl nM WME Rbq 3 15 "m Mon 15Ndi07 Tuw 0]15/1/01 91 1 e1 .

3 79202-End. 94W at-I 92 Nye Mon 1609.01 Sr 090607 N97

.3 171202- E-f s. 3 WW 0(94 14 Cry. We 0407/07 Wed 11/07107 92 1 . 991 .

.3 T1202 - End rtl WMO Rnp 5 12 Ery. Tlw 19N7N7 1.3110707 9E t]NI

1. T3 71(202 - En 3 sOJ Well 8/16 12 No Ww 010(07 Mon 1301/01 W 115/1

I. 3 TK202-E- rM W. tl #. - 7 10 Ery. Tw10.06/07 7524/0041 q 1.

11 TK202 - E- end WNW W 149YUr 11 0/y. S. 01/0W07 W.! 12104 07 97 IMI

3 7011- Ena rd WM0 1O9114.9 0//F Men 2400407 W. 03/1007 99

Rra . ^1 15202 - 1-1 0Wrw. y 24 dp TItu 131O*07 509 01110007 W 111

Pq. I -Y --n
I.. II

A0gw 5. -. y
^ Pn.. lS inwy

^
EiyTy YY. b. .

D. 8/ 50906/12/0/ sp. maoo- 841. yy E4rrrlT- C::: =
Dwyer fl

Vp2

GENETIC ALGORITHM OPTIMISATION OF HYDROTEST SEQUENCE - SOLUTION
10 O Tak Mrrw Duraton Stan Fkwsh L Starlustk Prsd. naseas

F1 Nr I r May ý. n Juf /u 0. Nu 01, / n [F y M :/ W
n' zzlea i6 . y, TM, 5 Thu 1 ý q v

«Nt.
l l o pr f y .M

1
,
^. 9 TK202- Hybotesl 48 days Fn 12/10/07 Thu 291+1N7 03,99, to0.101 3.340

-. 3 TK202-Iru/Fornend Dekpe P/pkp 28Ea0 Fh30/11/07 F0 28/12A1 102 -

s3j TK203 - FO08 l/On 65 days Moll 18104107 Wed 20/06V7 1 ý1

+ M203-Erect and wea MnuWa IDmys Thu21/06N7 Sin . 1107.1 104 . ("ml

3 TK203-EraOl and wea eonwn 21 een MonoxN]ro] Monx1D7ro7 105 n12., eel

. ýq 711203- Fred and Wed Rhq I 19 days Man 02/07107 9.121/07107 IN M'. "

TN203 - Eren and WW RIn9 2 17 Ean Sun 22/07/07 wee OBIO11/7 107 I1, R01

1 .ý TR203 - Erecl. nd We4 Rvq 3 15 Eeya Thu 09/08.07 FH 24/09.01 108 Ml, l

11

111

P. Jr' TK203 - Ertd anE WW Raol

- TK203 - Erect and Weld Rkg 4

82 Jays Tue 24/07/07

14 Een Sal 25109/07

Sun 14110101

6. t 05/09/07

108

IN 1, I

3 TK]03 - E- and We/d Rlnq 5 12 days Sun 09/09/07 Fr121/U9i)7 111 JIM)

ýJr' TK203-E- end Weld RY9 6 12 can Sal 22/0LU7 Thu04/10/07 112 M1, Zoll

3 T6203-Er. dandWelRln97 lodaya Fr105/1DI07 $4615/10.07 113

.ý M203 -Enact rM waltl VAntlryreer 11 Een Tue 1&10/0] Sal 2111. /01 114 1 al

11)203. Ered era Weld r/9 An9Ie 9 days Sun 2&10.07 rue 06,11/07 115
1

1 3 Ttlz03-InsW SWnxey 24 Jaya Sun2&10I07 Wed21/11/01 115
59 1

.ý TR203 - Insraa Mnos/aa 28 Ean Sun 28/10,07 S. n 25111107 115
1

11 H - t TK203 48 da s Sal 01/12,07 F l 18/0004 . =j y s - y r r 110.116,117 118
aw.))1N. 0001

3 TI(2I)3 - In9W1 Faem and Deluge Pignq 28 Ean 8.119101108 S., 1&O2/D8 119

'. 3 16204- FCUMNbn 65 Eeya F ,l 230210 7 Sun 2904,07 1

- -

. '. ýj TK2W-Er«+rN Weld Mnulan tO Mn Mon 30101/01 i1xr 10/0501 121 1,9001

fff '. ý TN204 - Eieü IM Weld BOtlan 21 Eaye Fr111lO5ID1 Fr101108g7 122 x. t«I

/1(204- E-t and Well Rangt 19 Faye Fr111/05/07 Wed 3010507 122
, 9NI

1 TN204 - E- and Weld RN 2 3

. =j TK2o4 - Er. U eM WaIE Rkq 3

17 days 1 ru 31/05/07

15 ft, Mon 111N&0?

Sun 17/0"?

Tw 03/01/07

124

125

,. 7991
I

1 I. Jr' TK204 - E- end Wek1 Raol 82 days Sat WOW Thu 23/08.07 123

3 702.1 - 0,5« uW Wald Rkq 4 14 days FX 10/04,07 F. 24/06107 128 1. ý1

. nE WeM TUVI Ee Rk 5 12 Jaya at xro] hu 0610491 t2e 1,

TUN - Era) and Wald Rvq 6 12 Lays Fri 07/09/07 W. 79169.07 129 xMl

-IF, - 1%]04 - Ei«t end weld Rkq 7 10 Ean rhu De/I&07 Sin 14/10.07 1]0 M+.

TK254 - Erse and Weld Wlntlgktler 11 Can Mon 15110)07 FH 2&1&07 131 M 1

1 -4 T6204 - Ered aM We1E Top Mga g days Tue 3&101]7 Tu 0&11/07 132

TUN - InsW SlrrwaY 24 den Sal 27/10.07 Tue 2&11101 132

3 TN2D4 - InMW Nuzzles 29 Ean Mon 05/11101 Mon 03112,07 132 -

'. 3' TN204 - HydOl. s1 49 days Sal 05/01/OR F. 22/02/18 ' 121,133,134,135 W Mrl3.154 soa

-{}7 -- . =j 15201 - InsW F- and D. Q. P/Ding 2e days Set 23/020) Sal 22/01r18 138 San 1. x901 M

1

Eur Pq Retli Flom.

- Fawt Ent PIP! Rack Grkl H150 - J162

35 sen Mon telMro7

le days Tu. 22/05.07

Man x1/05/07

rtiu 07, MV7

1

138

ý1

,. m1

141

E]w EUt Pp Ra Gdd H162-J174

.
^Jj Fi«1 Esel P06 nsa und E181-M162

l8 an Sat09NS131

5eaya 150&6/0?

Mon2SU&V1

Wad1108.07

139

139

1, }001

I

. ̂. Ens Call Ppa Rxk Gral E173. H174 5 Mn Wed 27/04/07 Mon 02107/07 140

3 Eras, Eur P/Pa Rack Gold J181 -. 162 5 Ean Fh 08/0&07 Wad 13/0907 139

3 Erq E«IPge Ratlr G0M J173-L174 5N0 W. E2]/0&07 Mon 0210101 140

14 3 InaW Puny PC1400 & 1.01 Plinth 21 E. ys Thu 14/0&07 Thu 05/07107 136 I

- -

,,
InsW PUnn P014D2 & 1403 Pint e 21 days Tue 22/OSg7 T. 12/0&07 13!

r 4T IraW Pump P01420 & 1401 4 days Fn 06/0707 Tue 10//171/07 145

- av '. 3j M. W Pump P01402 6 1403 4 days Wed 13/08/07 S. 171M107 rs

3 ErM P/pawak GM H150 - J182 12 Nys Tu.]&0&07 Sun 08/01/07 140 I

- Erod Pi-a% GrH H182-2174 129.61 Sun 22/07)17 Fn0YT16U7 140,149 $0I ,

Prn. q. Tý'Y Farm wl mF0
D. Y 8un0W122/07

rack

sPM
....................

P'v n

we'lo^e .

Sunnary

8y

^ 1'', r, 8 U, ^[
ý+rn. l l*. by .

r . ý.. r rw D'. u"e
Pa4.3

Taylor & Francis
International Journal of Production Research,
Vol. 45, No. 2,15 January 2007,425-450

Evolutionary algorithms applied to project scheduling problems-a
survey of the state-of-the-art

JOHN LANCASTERt and MUSTAFA OZBAYRAK'$

tSchool of Engineering and Design, Brunel University, Uxbridge, Middlesex
UB8 3PH, UK

: Department of Industrial Engineering, Bahcesehir University, Bahceschir,
34538 Istanbul, Turkey

(Revision received July 2005)

Evolutionary algorithms, a form of meta-heuristic, have been successfully applied
to a number of classes of complex combinatorial problems such as the well-
studied travelling salesman problem, bin packing problems, etc. They have
provided a method other than an exact solution that will, within a reasonable
execution time, provide either optimal or near optimal results. In many cases near
optimal results are acceptable and the additional resources that may be required
to provide exact optimal results prove uneconomical. The class of project
scheduling problems (PSP) exhibit a similar type of complexity to the previous
mentioned problems, also being NP-hard, and therefore would benefit from
solution via meta-heuristic rather than exhaustive search. Improvement to a
project schedule in terms of total duration or resource utilisation can be of major
financial advantage and therefore near optimal solution via evolutionary
techniques should be considered highly applicable. In preparation for further
research this paper reviews the application of evolutionary algorithms to the PSP
to date extending previous reviews in this area by also encompassing the study of
PSP using the design structure matrix. In order to better examine the coverage of
this research, this paper also utilises the PSP classification system proposed by
(Herroelen, W., Demeulemeester, E. and de Reyck, B., A note on the paper
`Resource-constrained project scheduling: notation, classification, models and
methods' by Brucker er al., Euro. J. Op. Res., 2001,128,679-688.) to identify the
problems being studied in each application and to identify the areas lacking in
research. The paper concludes with an examination of areas that in the opinion of
the authors would particularly benefit from further research.

Keywords: Evolutionary algorithms; Project scheduling; Design structure matrix

1. Introduction

The project scheduling problem (PSP) is concerned with finding the precedence
feasible, optimal solution to logic linked project networks by evaluating various
execution sequences. In the simple, single objective PSP this is limited to the
minimisation of overall duration (minimum make-span); however, research is more

*Corresponding author. Email: m_ozbayrak@hotmail. co. uk

International Journal of Production Research
ISSN 0020-7543 print/ISSN 1366--588X online O 2007 Taylor & Francis

hitp: //www. tandfco. uk/joumals
1301- 101080/00207540600800326

426 J. Lancaster and Al. Ozbayrak

commonly focused on more complex variations of this problem, such as the well-
studied resource constrained PSP (RCPSP). The RCPSP is an extension of the PSP
in which resource utilisation is limited either in total usage (non-renewable resource)
or in usage per period (renewable resource) or a combination of the two. A further
level of complexity is added to the RCPSP by also considering the various inward

and outward cash flows that are inherent in the project and the resultant net present
value (NPV), when time-value-of-money is applied. This problem is known as the
RCPSP with discounted cash flows (RSPSPDCF).

The above-described problems are often only considered for PSP that are to be

optimised through the critical path method (CPM) or precedence networks. This
does not address Project scheduling in its entirety and other forms of network
representation also need to be considered. One such alternative being the design
(or dependency) structure matrix (DSM) which, allows for the possibility of feedback

as well as feed forward logic and also can be utilised for the analysis of concurrency.
The additional functionality of the DSM lends rise to two additional optimisation
objectives, the minimisation of the impact of effects of feedback (iteration) as well as
the maximisation of concurrency. The details of achieving minimisation of iteration

and maximisation of concurrency are discussed further in section 6.
Whatever the network representation being employed, the project scheduling

problem exhibits a high degree of complexity not suitable for exhaustive solution by

exact methods. In fact the RCPSP, and therefore its subclass problems, have been
found to be strongly NP-Hard problems. This complexity theory classification
implies that no known exact solution exists that will solve the problem within
polynomial time (Wall 1996). Due to this complexity alternative methods need to be

researched, which will provide time efficient optimisation of this type of problem.
Evolutionary algorithm methods, initiated by the invention of genetic algorithms

by John Holland in his landmark book Adaptation in Natural and Artificial
Systems: ... (1974), utilise methods modelled on naturally occurring phenomena to
create algorithms. These algorithms travel a self-guided route through the problem
search space to arrive at optimal or near optimal solutions. Evolutionary algorithms
have been shown in many cases to be well suited to complex combinatorial problems
of a similar nature to the PSP and indeed to this class of problem itself.

Hartmann et a!. (2005) gave an excellent review of the application of evolutionary
algorithms to the PSP; this paper aims to extend this work in two specific ways.
Firstly, it extends the review to include research on PSP addressed through the use of
the DSM and secondly, it aims to categorise existing research via the Ilerroelen et al.
(1999) PSP classification. The objectives being to consider all research to date under
the Herroelen framework, adding to this classification to also include the DSM, in
order to assess potential areas that have not been substantially researched, to identify
trends in the development of these algorithms and which attributes appear to be
common among the best performing of the algorithms. This paper also reviews some
research not mentioned by Kolisch and Hartmann (2006), as well as extending the
coverage to papers released after this publication.

The balance of the paper is arranged as follows: Section 2 gives a brief
background of evolutionary algorithms, section 3 covers the classification of the PSP
problems and the system used is introduced, section 4 introduces the methods used
by researchers to benchmark the various algorithms that are discussed, section 5
discusses the existing research pertaining to the solution of the PSP via evolutionary

Evolutionary algorithms applied to project scheduling problems 427

algorithm methods for traditional (Precedence, CPM) networks, section 6
investigates evolutionary algorithms methods for the PSP using the DSM. Section
7 is a discussion of the reviewed research and, finally, section 8 provides the
conclusion. A tabulation of the key characteristics of the reviewed algorithms is
given in appendix 1.

2. Evolutionary algorithms

As mentioned in section 1, the development of evolutionary algorithms began with
the introduction of the genetic algorithm by Holland (1974). Since this inception a
large body of work has been invested into the development of the genetic algorithm
and it has been applied to a host of problems from the academic, such as the
travelling salesman problem and 2D and 3D bin packing problems, through to more
practical applications such as vehicle routing solutions and aerofoil design. Many
complex problems require the satisfaction of more than one, often opposing,
objectives. Such multi-objective problems have been addressed via genetic algorithms
with the first multi-objective genetic algorithms being proposed by Schaffer with the
vector evaluated genetic algorithm (VEGA). Goldberg (1989) first proposed a
genetic algorithm to produce the Pareto optimal solution, whereby a set of solutions
is identified, such that no solution completely dominates another in the set on
all objectives. This Pareto optimal approach has been adopted in the majority of
multi-objective algorithms since and is indeed applied in multi-objective forms of
scheduling problems (see Todd 1997 discussed later).

A number of other meta-heuristic techniques have been developed including ant
colony optimisation (ACO), particle swarm optimisation (PSO) and electromagnet-
ism (EM). We have chosen to include algorithms employing ACO and EM in this
paper due to their similarities to evolutionary algorithms in that they are also based
on analogies with naturally occurring phenomena. These techniques also provide a
performance comparison to place the performance of the genetic algorithms in

perspective. This group of techniques has been applied to a wide range of problems
from logistics to mechanical and electrical engineering to operations research. From
the research identified in this paper the genetic algorithm has the most prolific
research base in terms of the PSP and this would appear to be typical of most other
applications.

3. Classification of PSP

To fully understand the extent of research conducted into the solution of PSP by
evolutionary meta-heuristics it is important to be able to analyse the type of PSP that
have been addressed. This understanding will illuminate areas where less research
effort has been expended.

A number of PSP classification systems have been proposed. Commonly
abbreviations such as those used so far in this paper (RCPSP, RCPSPDCF, etc.)
have been used to describe the problem class. However, these classifications are
limited in their description of the problem, referring rather to a subset of problems,
and they are often used in an inconsistent manner. The main weakness of classifying

428 J. Lancaster and M. Ozbayrak

PSP using this system of abbreviations is that it fails to describe the type of resources
and type of network used etc.

Herroelen et a!. (1999) proposed a classification system in line with the problem
classification system commonly used on machine scheduling problems (see Graham

et al. 1979). This system, as with Graham et al. 's machine scheduling problem
system, uses a combination of three sets of characteristics (a ßßl y) to detail the
nature of the problem.

1. a-up to three characteristics describing resources.
2. P--up to nine characteristics describing activities.
3. y-One characteristic describing performance measures.
Brucker et a!. (1999) propose another system, which also follows this three

characteristic model (a 1ßI y), however, a number of problems were subsequently
pointed out in this system by Herroelen et al. (2001), and from a review of
literature the system of Herroelen et a!. (1999) has been most widely adopted.
It has therefore been decided to utilise the system of Herroelen et al. (1999)
throughout this paper.

The characteristic values used in this paper are as given below, this is not the
complete definition given by Herroelen et al. (1999,2001), but instead it covers all
values required to describe the problems identified within this paper.

3.1 Resource classification

a2 Describes the number of types of resources utilised, where a2 E {°, 1, m}
such that ° denotes no resource types considered, I indicates that one resource
type is considered and m that a number of resource types equal to m
are considered.

a3 Describes the specific resource types that are used, where a3 E {°, I, T, I T, v}
such that ° denotes the lack of any resource type specification, I indicates

renewable resources were utilised, T indicates that non-renewable resources
were utilised, 1T indicates that both renewable and non-renewable
resources were employed, finally v indicates partially renewable resources
were used.

3.2 Activity classification

ß2 Describes the type of precedence logic used to construct the network, where
ß2 E {°, cpm, min, gpr, prob} such that:

° Empty.
cpm Critical path method where only Finish-to-Start relationships with zero

time lags are used.
min Minimal time lag relationships where Finish-to-Start, Finish-to-Finish,

Start-to-Start and Start-to-Finish relationships with minimal lags are
used.

gpr Generalised precedence Relationships where Finish-to-Start, Finish-
to-Finish, Start-to-Start and Start-to-Finish relationships with minimal
and maximal lags are used.

Evolutionary algorithms applied to project scheduling problems 429

prob Probabilistic relationships where the occurrence of logic relationships is
control by assigned probabilities.

05 Defines deadlines imposed on the project, such that ßs E {0, Sp S�} where:
° Empty.
Sj Deadlines are imposed on the individual activities.
S� A deadline is imposed on the project.

07 Defines the type or number of execution modes that are applicable such that
ß7 E {°, mu, id} where:

o Empty.
mu Multiple execution modes are available.

id Mode identity constraints exist for activities.
ß8 Defines the nature of cash flow data that is applicable such that ß8 E to, cj, e), cj',
per, schell} where:

° Empty.
cj Activities have associated cash flows.
ej Cash flows are stochastic.

cý Activities have an associated positive cash flow.
per Periodic cash flows are specified.

sched Both the amount and timing of the cash flows have to be determined.

3.3 Performance measure classification

y Describes the objectives or performance measures used to evaluate the solutions
such that ye {Cmax, av, curve, npv} where:

Cmax Minimise the project duration.

av Minimise the resource allocations whilst meeting the project deadlines.
curve Determine the time vs cost trade-off curve.

npv Maximise the net present value of the project.
multi Multiple criteria.

This classification system has the flexibility to allow for the addition of new
parameters in order to incorporate the study of new or previously unstudied
problems. In this paper, we propose the use of a further ß2 parameter dsr» to
represent the DSM network and two further y parameters nziniter and maxconcur
representing minimisation of iteration and maximisation of concurrency respectively.
The DSM can be applied to many of the same problems studied under the CPM
network only with the addition of allowing feedback logic.

4. Benchmarking of PSP

To establish the effectiveness of various algorithms when applied to PSP,
benchmarking needs to be performed in order to provide a common base by

which the relative performance of the various algorithms may be considered.
The majority of researchers in this field utilise the PSPLIB, a collection of problems,

430 J. Lancaster and M. Ozbayrak

which can be used as a standard for comparison of the performance of
various algorithms. PSPLIB (Kolisch and Sprecher 1996) is a collection of RCPSP
in a range of single and multi-mode types comprising 30,60,90 and 120 activities.
The performance of the various algorithms against these benchmark schedules
is given in this paper where this is applicable or available. Other benchmarking

problem sets are in use in this area of research, a number of these are referred to in
Wall (1996):

" Patterson's (1984) project scheduling problems.
" Kolisch ei al. (1992) single mode project scheduling set.
" Kolisch et al. (1992) single mode full factorial project scheduling set.
" Kolisch et al. (1992) multi-mode full factorial project scheduling set.
" Fox and Ringer (1995) `Benchmarx' problems.

Results obtained by the various algorithms are tabulated in appendix 1 to this paper,
where available and applicable.

5. Traditional CPM and precedence network problems

Algorithms dealing with CPM and precedence network representation make use of a
schedule representation. Two main types of schedule representation are in common
use in Evolutionary algorithms:

" Activity list (AL).
" Random key (RK).

Activity list schedule representation provides a permutation of the activities which
are then transformed into a feasible schedule utilising a schedule generation scheme.

In random key schedule representation, a solution is represented as a point in

n-dimensional Euclidian space, in which the ith vector element is equal to the
priority of the ith activity. The activities are then processed by a schedule
generation scheme on the basis of priority.

The majority of work in schedule optimisation makes use of one of two schedule
generation schemes (SGS), these two schemes being serial and parallel generation.
Schrimer and Riesenberg (1997) describe these two systems. The activities are
decoded from the activity list produced by the algorithm using one, or both, of these
schemes. With serial SGS (SSS), a dummy activity is generated with time T=O,
thereafter activities are scheduled in the order they are represented in the activity list,

with each activity then obtaining the earliest precedence and resource feasible start
date. Activities are considered scheduled (S�), eligible to be scheduled (D�), or
ineligible to be scheduled. Activities, J, are members of the eligible sub set, D, if they
satisfy the following:

Dn <- (J IJ SS A Pj C S. 1

where S� is the set of scheduled activities and Pj is the set of immediate predecessor
activities for activity j. As eligible activities are moved from S. to D. this will effect
the eligibility of other activities to be scheduled. The eligible tasks are evaluated one

Evolutionary algorithms applied to project scheduling problems 431

by one until all are scheduled. When including resource constraints this expression is

extended to:

DnE-t/Ii SnAPj9SnAkj, <RK, rn(I r<R)}

where kj, is the quantity of resource r required by activity j and RK,,,, is the remaining
quantity of resource r, at period t for stage n (nth activity to be scheduled).

Parallel SGS (PSS) works using 'decision points' these points are taken as the
earliest finish times of currently scheduled activities. At each of these points activities
that can feasibly be started are selected and processed until none remain. The next
decision point is then calculated and the process repeated until all activities are
scheduled. For PSS the set of eligible activities, D�, is defined where A,, is the set of
active activities, F,, is the set of finished activities then the set of eligible activities is
D,, such that:

UljoA�UF�^PjcF�}

The set D� is processed at each interval until empty. Again, the previous expression
doesn't describe the resource-constrained version of the problem to include resource
constraints the statement needs to be extended as follows:

ýn E {I I. Je A� U F. A Pj 9 F. ^ kjr < RKrrn(I <r< R)}

Where kj, is the quantity of resource r required by activity j and RK�� is the
remaining quantity of that resource, for period t, at stage n. The use of
these schemes and the priority rules will be discussed throughout the following

sections.
The literature dealing with the application of evolutionary algorithms to the

RCPSP is discussed below. Appendix 1 to this paper provides a summary of the key

characteristics of each of the algorithms and provides comparative results where
these are available or applicable.

5.1 RCPSP applied to CPM and precedence networks

This problem class deals with the minimisation of project duration under the
restraint of one or more types of resource limitations.

5.1.1 Genetic algorithm. Hartmann (1998) produced a genetic algorithm for

solving RCPSP and reported better results than the currently existing heuristic

methods. Hartmann offers a new permutation-based genetic algorithm, which uses
the activity list representation along with a serial SGS. The initial population being

created using a priority rule selected at random. Hartmann considered three different

crossover operators; one-point, two-point and uniform. He determined the best

performing crossover operator to be the two-point crossover, with uniform
crossover, noting that for larger projects increasing the number of crossover
points from two may be desirable. In this publication Hartmann studied the RCPSP
in the classification {m, I Icpml Hartmann benchmarked the results of this
algorithm against two other genetic algorithms and an existing sampling approach
and reported his algorithm performing the best. For further information refer to

432 J. Lancaster and M. Ozbayrak

Hartmann (1997) for the application of the algorithm to the scheduling of medical
experiments.

Valls et al. (2001) propose a two-phase algorithm for the problem {m, I lcpml
Cm. x}. The first phase is concerned with basic improvement of the initial population
and the second phase then performs a localised search of high potential areas using a
scatter search (see Glover 1994). The problem is benchmarked using PSPLIB
problems.

Alcaraz and Maroto (2001) utilised a form of self-adaptation in their genetic
algorithm based solution to the RCPSP, the exact problem class studied being {m, I
I cpmI Cmax}. The initial population in Alcaraz and Maroto's algorithm is not
generated randomly as is commonly the case; instead the initial population members
are generated using a sampling method. Activities are selected using the latest finish
time (LFT) priority rule; in this way feasible schedules are already present in the
initial population. They incorporated an additional gene into their chromosome,
which controlled the mode of decoding. This gene contains a setting that determines
whether forward or backward pass scheduling would be employed. Forward pass
scheduling implies that, starting with the first activity to be scheduled, an activity is

only eligible for scheduling once all its predecessors have been scheduled. Backward
pass scheduling works in the opposite way, starting at the last activity; an activity can
only be scheduled once all its successors have been scheduled. Using these two
scheduling methodologies schedules are formed that may not have been possible
using forward only scheduling. The mode of decoding therefore, self-adapts, due to
the additional gene, which is evolved along with the schedule sequence. Alcaraz and
Maroto also created three new crossover techniques:

" Precedence set crossover.
" Forward-backward crossover.
" Two-point forward-backward crossover.

Full details of these methods can be found in the referenced paper. Alcaraz and
Maroto performed benchmarking using PSPLIB J30, J60 and J120 and reported
better results than those achieved by Hartmann (1998) in all cases.

Hartmann (2002) made further progress with the same class of problem, this time
using a self-adaptive mechanism. Similarly to Alcaraz and Maroto (2001), Hartmann
uses self-adaptation to select the method of schedule generation from the resultant
chromosomes. This is also accomplished by extending the chromosomes with an
additional gene, this gene determines which SGS is employed (SSS or PSS) and hence
the algorithm will adapt to utilise the most effective method of decoding for the
particular problem under consideration. This form of algorithm adaptation is
referred to as self-adaptation as the progress of the algorithm in refining the
chromosome also refines the value of the adaptive gene.

Hindi et al. (2002) introduce their genetic algorithm for solving the RCPSP
{1,1 Icpml Cmax, }. This algorithm utilises routines to provide feasible sequences to the
initial population instead of a completely random generated population, which is
more the norm. Hindi et al. (2002) use an activity list representation with a serial
SGS to decode the chromosome; they experimented with a number of crossover
operators; one-point crossover, multi-point crossover, uniform crossover and
alternate crossover. Hindi et al. (2002) carried out initial testing of their algorithm

Evolutionary algorithms applied to project scheduling problems 433

using the Patterson problem sets and then completed final benchmarking using the
PSPLIB problem instances. Hindi et al. (2002) also provide feedback on their
experimentation in selection of the population size and number of generations
utilised in their algorithm runs. They concluded the best performance was achieved
by setting the population size equal to the number of activities in the problem set and
they maintained the number of generations for all problems constant at 100.

Valls et al. (2002,2003) implemented a hybrid genetic algorithm using a serial
SGS. They introduce a new crossover operator, the 'peak' crossover operator.
This operator is selective in the portions of the parent chromosomes selected for

crossover. It selects genes based on peaks in resource utilisation within the activity
list. The peaks being transferred from one parent, with the other parent determining
the fill-in of activities around the transferred peaks. Other features of this algorithm
include a local search routine, and the double justification operator, which, left and
right justifies the schedule to seek local improvement. The problem type considered
by Valls et al. (2002,2003) is defined as {1, II cpml C,,, a,, }.

Kochetov and Stolyar (2003) employed a hybrid genetic algorithm to optimise
the RCPSP {1,1 Iminj C, �8,, }. Their algorithm utilises a serial SGS, and a specialised
crossover operator based on a path re-linking strategy using a greedy randomised
adaptive search procedure (GRASP, see Feo and Resende 1995), with further
improvement being carried out using a Tabu search. The PSPLIB was utilised for
benchmarking and the algorithm produced new best results for two instances of the
J60 problem and one instance of the J120 problem as known at the time of
publication.

Gongalves et al. (2004) extended the RCPSP problem to the resource constrained
multi-project scheduling problem, specifically the multi-project version of {m, II cpmI
multi}. In this research the chromosome encoding includes the activity priority, the
delay times and the release dates for each of the projects. As the problem
classification indicates Gonsalves et a!. have designed their algorithm to optimise the
schedule for multiple criteria. They combine tardiness, earliness and flow time. These

criteria can be described as follows:

" Tardiness-optimisation of due dates.

" Earliness-optimisation of stocks.
" Flow time-optimisation of work in progress.

A number of decoding philosophies (priority rules) are also considered the most
successful being the `GaSlackMod' method, which modifies the normalised activity
slack (float) to assign priority values to the activities.

Debels and Vanhoucke (2005a), utilise a bi-population genetic algorithm in

which one population contains left justified schedules (US) formulated from a
forward pass on a random activity list, and one population contains only right
justified schedules (RJS) formulated from a backward pass on a random activity list.
These two populations are then used to employ a forward-backward iterative local

search process similar to that utilised by Alcaraz and Maroto (2001) and Valls el al.
(2003). Debels and Vanhoucke (2005a) report this algorithm performing slightly
better than their (2004b) hybrid electromagnetism/scatter search algorithm discussed
below. The algorithm is applied to the {m, I tcpml Cm, x}

formulation of the RCPSP.
Debels and Vanhoucke (2005b) also introduce a decomposition-based heuristic.

434 J. Lancaster and M. Ozbayrak

This heuristic utilises their previously discussed bi-population algorithm as a
subroutine to optimise sub-problems (or sub-networks). They describe three stages
as follows:

1. Construction of sub problem. A RJS is utilised in conjunction with a time
interval [Pt 1, Pt2] to create a schedule Sb, such that Sb C_ S where S is the
schedule of the full problem.

2. Genetic algorithm. The genetic algorithm transforms Sb into an improved Sb.
3. Merge. The improved sub-schedule Sb is reintroduced into the original

schedule S to create an improved S.

The problem class considered by Debels and Vanhoucke (2005b) is {m, I Icpml
Cmex}, it was benchmarked using PSPLIB J30, J60, J90 and J120. The algorithm
outperformed most algorithms on the J30 and all algorithms that it was compared
against for the J60 and J120, this included Hartmann (1998,2002) and Debels
(2004c).

Mendes et al. (2005) propose a random key-based genetic algorithm as a solution
to the RCPSP {m, I Icpml Cmex}. They quote the definition of three schedule types:

1. Semi-active schedules. Feasible schedules obtained by sequencing activities as
early as possible. No activity can be started earlier without changing the
sequence.

2. Active schedules. Feasible schedules in which no activity can be delayed
without delaying some other activity or breaking a precedence relationship.
Optimal schedules are always members of this set of schedules and active
schedules are always members of the set of semi-active schedules.

3. Non-delay schedules. Feasible schedules in which no resource is allowed to be
idle when it could start to process an activity. Non-delay schedules are also
members of the set of active schedules.

Mendes et al. (2005) limit the search space for the optimal solution (active schedules)
by employing parameterised active schedules. Whilst the active schedule space
contains the optimal schedule/s this search space is very large and contains many
solutions with long project durations. Parameterised schedules limit this search space
by placing a restriction on the project duration. Mendes et al. (2005) also employ a
unique fitness measurement criterion termed `modified makespan'. This problem
performed well compared with other algorithms when tested on J30, J60 and J 120
PSPLIB problems.

5.1.2 Ant colony optimisation. Dorigo et a/. (1999) first introduced ant colony
optimisation. It has since been successfully applied to various complex problems
including the well studied travelling salesman problem (TSP) and also more recently
to the PSP.

Ant colony optimisation aims to simulate the collective effort of ant colonies to
solve problems. When ants travel between a nest and food source, for example, they
deposit a pheromone in the form of a trail as they travel. This pheromone attracts
other ants to follow and the more ants that travel the path the more pheromone
is deposited, the greater the attraction to other ants, and so on and so forth.
This mechanism of depositing and sensing the pheromone is known as stigmergy.

Evolutionary algorithms applied to project scheduling problems 435

Merkle et al. (2000) first utilised ant colony optimisation (ACO) to derive

solutions to the RCPSP {m, I Imini Cmgx}, employing the serial SGS in conjunction
with a modified LFT priority rule. In ACO based scheduling a pheromone matrix is

commonly utilised, with pheromone being deposited by the ants to a matrix element
when a good solution is found. The traditional approach being to employ the two
matrix dimensions to represent the sequence (ith job/task) and the actual job/task

number j. In other words Ty would represent the possibility of task j being the
ith job. Previous scheduling work using ACO had the ants evaluate the desirability of
placing j as the ith job/task purely on the level of pheromone present in that matrix
location, this is known as direct evaluation. Merkte et a!. (2000) proposed an
alternative to this evaluation method, which helps maintain desirable positions for
tasks as it takes into account the desirability of having activity j at the ith or less

position in the sequence preventing activities which should be scheduled early being

postponed until much later in the sequence. This alternative method is calculated
using the following formula:

Tkj

k=1

Merkte et a!. termed this method summation evaluation. In the RCPSP algorithm a
combination of these methods are applied. Other characteristics of this algorithm
include an elitist strategy, 2-Opt local optimisation and also a low probabilistic
possibility of replacing the best solution to date with the best for the current
generation. The latter was employed to prevent premature convergence due to the
elitist strategy. Merkle et al. report results that supersede those achieved by
Hartmann (1998) using a competitive genetic algorithm and by Bouleimen and
Lecoq (2000) using simulated annealing.

Based on the success of Chiu and Tsai (1993) in employing priority rule methods
using their ACTim rule, Liang et a!. (2004) produced an ACO-based algorithm for
the {m, I Icpml Cmax} RCPSP utilising this rule. The results obtained utilising the
PSPLIB problems compared well to Bouleiman and Lecoq's (2000) simulated
annealing solution and to Hartmann's (1998) earlier GA, however it gave slightly
worse solutions than both Merkle et a!. (2000) and Hartmann's (2002) self-adaptive
algorithm.

Herbots et al. (20(4) studied the applicability of ACO to the {m, I Icpmj C. ex},
RCPSP problem. Herbots et a!. test three different algorithm configurations:

1. SSS with normalised latest start time (nLST) priority rule.
2. PSS with normalised latest finish time (nLFT) priority rule.
3. SSS with normalised weighted resource utilisation and precedence (nWRUP)

priority rule.

Each of these algorithm configurations was tested with forward, backward and
bidirectional scheduling. The best performing configuration was the PSS/nLFT
followed by the SSS/nLST. Herbots et al. (2004) refrain from employing hybrid
techniques within the algorithm and their algorithm compares well with other non-
hybrid algorithms. They conclude with the belief that ACO has great potential for

use as a hybrid due to its good performance in the pure form.

436 J. Lancaster and M. Ozbayrak

5.1.3 Electromagnetism with scatter search. One of the most recent heuristics,

which has been applied to combinatorial optimisation, is electromagnetism (EM),
introduced by Birbil and Fang (2003). This optimisation method, as its name infers,
draws its functionality from analogies with electromagnetism principles.

Debels and Vanhoucke (2004a) explain that the basic principle behind EM is that
each point, x, in a multi-dimensional solution space, represents a solution. Each

point is attributed a charge, based on the fitness of the objective function f (x). The

charge of each of these solution points will either attract or repel other points with a
force proportional to their charge values and inversely proportional to their distance

apart.
EM has been successfully applied to the PSP in particular to the RCPSP with the

classification {m, 1 lcpml C,,, ax}. Debels and Vanhoucke (2004a) propose an EM

solution to the RCPSP using a random key schedule representation and a serial
schedule generation scheme. This algorithm outperforms Hartmann (1998,2002),
Alcarez and Maroto (2001) and Valls et al. (2002,2003) on J30, J60 and J120

problems.
Debels et al. (2004b) team scatter search techniques with EM in order to produce

a hybrid genetic algorithm. Whilst Kolisch (1996) had found that activity list

schedule representation was more consistent in obtaining optimal schedules than
random key (RK) representation, Debels et al. (2004b) state that this is due to the
possibility that a number of RK representations can result in the same schedule.
They supply two reasons specific to the RK representation that cause this:

1. Scaling in Euclidian space. Priority values can be scaled in Euclidian space and
still represent the same schedule.

2. Precedence constraints. The priority values do not have constraints, therefore
a predecessor may have a lower RK than that of its successor.

Debels et al. (2004b) then provide solutions to these two issues as well as two issues

common to both the RK and AL representations and they choose to employ an
improved RK representation, standardised RK (SRK) in their algorithm. This

algorithm is then coupled with scatter search techniques.

5.2 Multi-mode RCPSP (MRCPSP) applied to CPM and precedence networks

5.2.1 Genetic Algorithms. Wall (1996) employed a genetic algorithm to solve the
MRCPSP the exact problem being {m, II cpm, mut C. 871} and (IT l cpm, mut C,,, ax}
with non-renewable resources (IT) only being considered in one problem set. Multi-

mode problems consider the case where a number of different duration/resource
utilisation options or modes are possible. Various scenarios can be employed by

considering different modes or resource/duration combinations. Blend crossover
(Eshelman and Schaffer 1992) is employed, which is an adaptive operator that
generates new values, based on the diversity of the parents. Wall (1996) tested three
other crossover operators:

1. Uniform crossover.
2. Mean with Gaussian noise.
3. Extrapolation.

Evolutionary algorithms applied to project scheduling problems 437

Wall (1996) found uniform crossover to perform slightly worse than the other three
operators. Two separate mutation methods were utilised, firstly Gaussian noise was
applied to the activity sequence array and secondly, random flipping was applied to
elements of the mode array. Wall (1996) applied the mutation probability at genome
level rather than for the entire chromosome, each genome having the possibility of
being mutated separately. Wall (1996) tested his algorithms using a number of sets of
test problems including, Patterson's (1984) project scheduling problems, Kolisch
et al. (1992) single/multi mode project scheduling set and Fox and Ringer's (1995)
Benchmarx problems. The majority of other algorithms detailed in this paper make
use of the PSPLIB (Kolisch and Sprecher, 1996), therefore no direct comparison is
made of the performance of Wall's algorithm against the others algorithms
presented.

Mori and Tseng (1996) employed a genetic algorithm to solve the MRCPSP
{m, 1 Icpm, mul C, �ax}. In Mori and Tseng's GA the complete schedule is represented
in a single chromosome, the Mode forming one bit of the activity gene. The mode
selection is built into the genome for each activity as an additional gene. This gene is
initially selected at random, along with the sequence gene, and is then evolved along
with the rest of the chromosome.

Hartmann (2001) proposed a genetic algorithm for solving the MRCPSP, the
exact problem being studied being {l T Icpm, mul Cm8, j. The algorithm encodes both
the activity sequence as well as the mode value within the chromosomes genotype.
Hartmann employs a serial SGS to decode the activity list to a precedence and
resource feasible solution. Due to the encoding of both the activities and the mode
into the chromosome Hartmann developed specific crossover and mutation
operators to address the extended genotype.

Sriprasert and Dawood (2003) employed multi-objective weighting in their multi-
constraint genetic algorithm. The term `multi-constraint' has been used to describe
the following constraint types placed on activities:

" Contract constraints (time, cost and quality).
" Physical constraints (technology dependency, space, etc.).
" Resource constraints (availability).
" Information constraints (availability).

Whilst this provides a different classification of constraints on project activities the
authors would argue that all of these items are already addressed within the standard
RCPSP as either, optimisation objectives (time, cost, etc.), resource constraints (as
above but also space) or as predecessor dependencies (Information availability,
technology). Details of the scheduling mechanism employed in this algorithm are not
provided. Sriprasert and Dawood's (2003) algorithm was integrated with AutoCAD
and Microsoft Project in order to produce 4D feedback from the optimised schedule.
4D provides a 3D visualisation of the construction process over time (fourth
dimension) in accordance with the precedence relationships defined in the schedule
network. Sripraset and Daewoods (2003) algorithm uses an extended chromosome
structure to allow for multiple execution options or multiple modes. The algorithm
employs a uniform crossover operator and covers problems defined as {m, II cpm,
mul Cmax}.

438 J. Lancaster and M. Ozbayrak

5.3 RCPSPDCF applied to CPM and precedence networks

This subclass of problem further extends the RSPSP problem through the addition of
the consideration of cash flows incurred through the execution of certain activities.
The objective of these problems being to maximise the net present value (NPV) of the
project, whilst also satisfying the requirements of the previously discussed RCPSP.

5.3.1 Genetic algorithm. Ulusoy et al. (2001) propose a genetic algorithm approach
for solving the RCPSPDCF. They consider four different payment models, with two
different resource scenarios in each case. The Herroelen et al. (1999) classification of
each of the payment models is given below for each resource scenario:

" Lump sum payment at contract end (LSP) (1, II cpm, ö�, mu, cjI npv},
{IT l cpm, 8,,, mu, cal npv}.

" Payment at event occurrences (milestone payments) (PEO) {1, I Icpm, S,,, mu,
schedi npv}, {IT I cpm, S�, mu, schedl npv}.

" Equal time intervals (ETI) { 1,1 lcpm, d�, mu, perl npv}, { IT lcpm, S,,, mu, perl
npv}.

" Progress payments (PP) 11,1 lcpm, 5,,, mu, perl npv}, {IT lcpm, ö,,, mu, perl
npv}.

As can be seen from the problem classifications, Ulusoy et a!. (2001) have extended
the RCPSPDCF by applying multiple modes. This is addressed in a similar manner
to that adopted by Mori and Tseng (1996), Wall (1996) and Hartmann (2001), that is
the mode option is encoded within the chromosome, thereby being refined through
the evolutionary process along with the activity sequence. Ulusoy et al. (2001) utilise
a multi-component uniform order based crossover operator, MCOUX, the reader is
referred to Ulusoy et al. (1997) and Sivrikaya-$erifoglu (1998) for further discussion
of this operator. Ulusoy et al. (2001) describe the RCPSPDCF with the following
equation:

NPV =E CFA (1 + r)-sT1 +E Pk(I + r)-T"
1 keK

where CFA is a set of cash out flows computed from the cost of use of resource per
unit time, multiplied by the duration of the activity j; r is the discount rate. ST is the
start time of the given activity j, K is a set of payment points, P is the set of payments
received at payment point K and Tk is the set of occurrence times for the payments P.
This calculated value of NPV is then used as the fitness measurement for this
algorithm.

Ulusoy et a!. (2001) utilise a modified scheduling scheme, which will not allow an
activity to be scheduled with an earlier start than that of the start of any activities
located to its left in the chromosome.

6. DSM network problems

The design or dependency structure matrix (DSM) is often excluded from discussions
of the PSP; however, it is an alternative representation to traditional networks and

Evolutionary algoritluns applied to project scheduling problems 439

will allow the study of the same problems as the traditional networks only with the
additional consideration of feedback flows of information. The invention of the
DSM is credited to Stewart (1981).

As the name implies the DSM is represented in the form of a square matrix with
the activities listed in the same order along both the vertical and horizontal axes.
Dependencies are then mapped using the cells lying at the intersections between

activities with the diagonal formed by the intersection of activities with themselves
dividing the matrix into two triangles. This basic arrangement can be seen in figure I
below.

For each two activities there exist two intersecting cells in the matrix, one lying in
the upper triangle, one lying in the lower triangle. The intersection in the upper
triangle is used to map the feedback links, with the intersection in the bottom being

used to map the feed forward links. For example, in figure I the intersection between

activity 10 and activity 14 is marked by aI in the upper triangle, this represents a
feedback logic link from activity 14 to activity 10. Most implementations follow this
convention an exception being NASA's DeMaID (an implementation of the DSM by
NASA; see Rogers 1994,1996, for further detail), which reverses this arrangement.

The greater the number of iterative loops formed by feedback links the greater
the duration of the schedule, the aim typically with DSM optimisation is therefore to
reduce the magnitude of iterative loops or feed back dependencies. This reduction is

achieved by rearranging the sequence of tasks in order to move the dependency links
toward the lower triangle. Reducing this iteration then has the effect of also reducing
the total make-span of the project.

In addition to minimising the iteration in the matrix, the I)SM can also be

optimised for maximum concurrency of activity execution; this is achieved by

rearranging tasks in order to move the dependency links to the left and lower

edges of the matrix. Whilst optimum concurrency would also result in lower
triangularisation and therefore minimised iteration, the nature of the network of
dependencies may not allow simultaneous satisfaction of these two objectives,

MA I FiIA

Figure I. The basic arrangement of the design structure matrix (I)SM).

440 J. Lancaster and M. Ozbayrak

requiring trade-offs to be considered. Aiming to simultaneously satisfy both of these
objectives would therefore lead to a multi-objective optimisation problem.

Evolutionary methods have been applied to the optimisation of the DSM both in

single and multi-objective forms. The prevalence of these applications, as is the use of
the DSM in general, is much lower than that using traditional CPM or precedence
network methods.

Fitness measurement in the DSM is made in the following manner: For problems
seeking to optimise for minimum iteration the distance of each feedback link from
the diagonal in the matrix is determined and summed for all activities. This equates
to subtracting the position in the sequence of the successor from the position in the
sequence of the predecessor for each feedback link. When solving for maximum
concurrency the distance of each link from the left hand side of the matrix, and the
bottom of the matrix is calculated. Maximum concurrency can be achieved by either
having all the links lined up against either the left hand side of the bottom of the
matrix.

Due to the DSM allowing dependencies to be mapped as either feed forward or
feed back logic the decoding of the activity list via either the SSS or PSS
scheduling schemes is not necessary, as an activities predecessors may be scheduled
after the activity, the actual objective of the algorithm being to minimise these
occurrences, and hence the total iteration.

As stated earlier the Herroelen et al. (1999) classification system allows the
flexibility to incorporate the DSM and its optimisation criteria. Two additional
characteristics and corresponding parameters would be required to define problems
for the DSM:

1. The additional ß2 characteristic - dsm - to define the network type.
2. The additional y characteristics - miniter and nraxconcur -- to describe the

objective functions 'minimise iteration' and 'maximise concurrency'.
This problem is once again combinatorial in nature and meta-heuristics have been

successfully applied to solution of the DSM, the following gives a summation of the
research and development that has been conducted to date.

6.1 Minimum makespan and minimum iteration using the
dependency structure matrix

6.1.1 Genetic algorithm. Rogers (1994,1996) implemented a genetic algorithm to
optimise the sequence of activities in the DSM in order to minimise the impact of
iteration, which requires the DSM to be moved as close as possible to becoming
lower triangular. Satisfying this objective has the effect of minimising the overall
duration of the project (make span) and therefore reduces the overall time dependant
cost. The problem considered here would be {IdsniI miniter, C. J. Rogers offers no
comparison of the DeMAID genetic algorithm against other optimisation methods.

Todd (1997) also considered the DSM for the single objective of minimum
iteration. Todd's experiments showed great improvement over currently existing
methods when applied to three well-studied problems. Todd tested problems with
12,20 and 51 activities, the results of these test can be seen in table I below.

Evolutionary algorithms applied to project scheduling problems 441

Table 1. Comparison of Todd's (1997) genetic algorithm vs. non-evolutionary methods.

Problem No. of tasks Previous best solution Todd (1997)

KUSIAK'91 12 76
STEWARD'81 20 93 24
AUSTIN'96 51 320 158'

*Later Todd produced a result of 157 under multi-objective solution.

No evidence of the application of ACO or other types of meta-heuristic to this
class of problem was found.

6.2 Minimum makespan and maximum concurrency using the
dependency structure matrix

6.2.1 Genetic algorithm. Todd (1997) considered the maximisation of concurrency
as well as the minimisation of iteration {Idsml maxconcur, miniter}. Todd (1997)
reported his best results using enhanced edge recombination crossover (EERX), of
Starkweather (1991), in combination with the 2-city adjacent swap. so named from
its previous application to the travelling salesman problem. Todd found a slightly
better solution to Austins 1996 51-activity DSM problem under the multi-objective
(miniter, maxconcur) problem finding a solution with a total feedback value of 157,
his best result under single objective being 158.

Whitfield et al. (2003) considered a number of different partitioning techniques
whilst also investigating maximisation of concurrency and minimisation of iteration.
In Whitfield et al. 's (2003) work emphasis was placed upon identifying the best
algorithm model by assessing the relative efficiency of a number of genetic operator
combinations. Whitfield et al. found Todd's favoured combination of EERX and
2-city adjacent swap mutation to be among the worst performing combination and
reported their best results from using the independent position crossover (IPX) in

conjunction with the shift operation mutation (SONI) of Murata and Ishibuchi
(1994).

No evidence of the application of other forms of evolutionary algorithm to this
class of problem was found.

6.3 RCPSP using the dependency structure matrix

6.3.1 Genetic algorithm. Zhaung and Yassine (2004) utilised a genetic algorithm to
optimise the RCPSP problem using the dependency structure matrix. Zhaung and
Yassine implement Leu and Yang's (1999) union crossover 3 operator, this operator
performs crossover whilst maintaining conformance to precedence relationships.
They also consider a multi-project environment. The class of problem considered in
this case is {1, I IdsmI C,,, a,. }

No evidence of the application of other forms of evolutionary algorithm to this
class of problem was found.

442 J. Lancaster and M. Ozbayrak

7. Discussion of research

7.1 General discussion

From the literature review presented in the previous sections it can be seen that a
large amount of research has been conducted on the application of the evolutionary
algorithm to the PSP. From Wall's (1996) algorithm applying a genetic algorithm to
the RCPSP, the algorithms have been developed to contain self-adaptation, iterative
forward and backward scheduling techniques and the application of problem specific
crossover operators. In addition to this other types of algorithm such as ACO and
EM have also been applied in a limited manner. This development over the last 8 to
9 years has produced a steady increase in the accuracy and efficiency of evolutionary
algorithms applied to this class of problem.

As stated in the introduction the RCPSP is an NP-hard problem, the
optimisation, or near-optimisation, of RCPSP via evolutionary techniques is an
important development, which makes the optimisation of real-world project
schedules an obtainable goal. Increasing pressure in Industry to reduce project
schedules as well as working to tighter profit margins makes the ability to optimise
project schedules of great practical application.

The application of evolutionary algorithms to the RCPSP (specifically {m, I
Icpml Cmax}) has been well researched however, there has been less coverage of the
RCPSPDCF {m, I Icpml npv}. Due to tightening schedules and margins inherent in
current projects, optimisation of cash flows can be extremely important. The authors
believe that this problem is highly applicable in practice, particularly in large
industrial projects, and that it would yield far greater benefit to project managers
than the RCPSP alone. It would therefore be beneficial to invest further research
effort into this area.

There are limitations in the research regarding the network architecture utilised in
the problems to which the evolutionary algorithms have been applied. CPM has been
used abundantly whereas precedence relations with minimal time lags are applied
more in practice. Furthermore, the DSM has not been considered to a great extent
despite the added benefits it offers with the ability to optimise the schedule for
maximum concurrency and minimum iteration. Where the evolutionary algorithms
have been applied to the DSM it has been to very simple forms of the PSP, with little
research, for example entertaining resource constraints or cash flows.

There have been limited applications of other evolutionary techniques such as
ACO, PSO and EM. This is despite implementations by Merkle el al. (2000), Liang
et al. (2004) and Debels (2004a, 2004b) producing comparative results to genetic
algorithms at the time of their publication. There is no evidence to illustrate that
these methods are any less suited to solution of the PSP than are genetic algorithms.

7.2 Observed trends

There are some distinct trends evident within the existing body of research. There is
clearly a move from 'pure' evolutionary methods toward hybrid algorithms, which
utilise the main structure of the evolutionary algorithm combined with local search
techniques. Valls er al. (2001) teamed their genetic algorithm with a scatter search,
local search process, Scatter search was adopted in a similar way by Debels et at.
(2004b) coupled to their EM algorithm.

Evolutionary algorithms applied to project scheduling problems 443

One of the most important trends that is developing among the best performing
algorithms is the use of left and right justified schedules. This has been detailed above
as a feature of algorithms produced by Alcaraz and Maroto (2001), Valls et al. (2002,
2003) and Debels and Vanhoucke (2005a). This technique consistently produces
good results in all of the algorithms in which it is employed.

Hartman and Kolisch (2000) found that in general the activity list based schedule
representation was superior to the random key representation, and until recently
most of the research in the field followed these findings and utilised the activity list

representation. However, Debels and Vanhoucke (2004a), state that the main issue

with the random key representation is that a single schedule can have many random
key representations which significantly extends the search space, they present a
standardised random key (SRK) representation, which offers a solution to this issue.
Their resultant algorithm a hybrid EM/scatter search algorithm performs well
against other research using this SRK. Mendes et al. (2005) have also adopted the
random key representation in their genetic algorithm approach.

Kolisch (1996) demonstrated that the parallel SGS is sometimes unable to
produce the optimum schedule solution, the same not being true for the serial SGS.
Generally researchers have followed this guidance, an exception being Hartman's
(2002) self-adaptive algorithm, which uses the evolutionary process to refine the
selection decoding procedure to best suit the problem at hand.

8. Conclusions

To conclude and to develop observations from the previous section, four key areas
have been identified where additional research would benefit this field of study, these
are:

1. Adaptive and self-adaptive mechanisms.
2. Development of the full time-cost trade off curve (Pareto front), looking at

methods for determining optimum mode.
3. Development of algorithms to efficiently optimise large networks

(x 103 activities).
4. Consideration of a wider range of problems utilising the DSM as the

scheduling mechanism.
Each of these areas is expanded in the following sub-sections.

8.1 Adaptive and self-adaptive mechanisms

Alcaraz and Maroto (2001) and Hartmann (2002) both presented an algorithm with
the ability to self-adapt the SGS that is being applied. This algorithm produced
competitive results and this ability of the algorithm to self-adapt to the problem at
hand would present a lot of promise. A number of references in the literature note
that parameters that are good for one problem may not provide the best results for

another. Eiben et a!. (1999) provide taxonomy for the setting of algorithm
parameters as shown in figure 2 below.

Parameter tuning is concerned with the setting of parameters prior to run time
and for specific problems requires an iterative process, which will have limitations in

practical application. Parameter control is concerned with the modification of

444 J. Lancaster and M. O_batirak

parameters during execution as controlled by the algorithm. The three main divisions

of parameter control being explained as follows:

L. Deterministic control involves the modification of the algorithm according to
a pre-selected schedule or function, that is, no feedback is received from the
values produced by the algorithm during its run-time.

2. Adaptive control is achieved by modifying parameters based on the values
yielded by the algorithm during its run time.

3. Self-adaptive control is obtained by extending the chromosome by additional
genes. These genes are evolved during the execution of the algorithm along
with the rest of the chromosome; the additional genes being utilised to
determine the parameters. Through this method the best settings for
parameters can be evolved during run time.

In order to utilise deterministic control, a schedule or function needs to be defined to
effect control of parameters within the algorithm. For applicability to a specific
problem this would require some degree of a priori knowledge of the problem, which
would again require adjustment in order to be optimum for a specific problem,
therefore to provide robust algorithms a degree of adaptive/self-adaptive behaviour
is indicated. However, deterministic control may also have a practical usage within
PSP algorithms. In Hartmann's (1998) note in reference to crossover operators, he

mentioned that the number of crossover points in the operator may need to increase

along with the size of the project. Deterministic parameter setting could be used in
this instance to set the number of crossover points according to a preset schedule
relating crossover points to schedule size ranges.

It would seem pertinent therefore that any algorithms should contain elements of
adaptive or self-adaptive behaviour in order to present a robust solution to it range
of problems. Further research into adaptive and self-adaptive algorithms for this
class of problem is therefore warranted.

8.2 Time-cost trade-off curve

The trade-off between time and cost in schedule optimisation is vitally important to
many projects. In industrial projects, cash flows generated from beneficial use of
plant (plant providing return to the owner) may often outweigh additional costs
incurred through schedule acceleration. Due to this there is great value in producing

Figure 2. Taxonomy of parameter setting.

Evolutionary algorithms applied to project scheduling problems 445

the entire time/cost trade-off curve (y = curve) i. e. the Pareto optimal front for the
dual objective of time and cost minimisation. This goal has not been prevalent in the
literature to date and would definitely benefit from further research. Whilst multi-
mode problems provide a degree of allowance for different modes of execution, some
activities with resource driven durations are completely scaleable and are not
restricted to the few mode options offered by these problems. The authors therefore
believe that there is value in investigating RCPSPDCF optimisation utilising
continuous variables for mode definition. Development of the four payment models
identified by Ulusoy et al. (2001) under continuous mode variables would be

particularly relevant and applicable in industry.

8.3 Problem optimisation utilising the DSM

The study of PSP under the DSM has been limited in that the full range of PSP has

not been applied and optimised using evolutionary algorithms. The mechanism of
the DSM provides the capability for problems such as RCPSPDCF to be considered,
no literature has been identified here in which this type of problem has been
investigated utilising the DSM. The addition of minimisation of iteration to the
RCPSPDCF could be an interesting problem particularly for large engineering
contracts or FEED contracts where iteration is most evident.

No evidence has been found of any evolutionary algorithm other than the genetic
algorithm being applied to this problem.

Due to the additional optimisation possibilities that are available using the DSM,
the authors believe that there is value in investing further research into ways of
combining the DSM and traditional networks in order to produce schedules with a
greater level of optimisation using evolutionary techniques.

8.4 Large problem decomposition

The literature reviewed provides detail on the performance of the various algorithms
as applied to various test problem sets (in the main, PSPLIB instances). These

problem sets range in size from 30 activities to 120 activities. Large, complex, real
world projects often have activity numbers in the thousands, practical application
would therefore require efficient processing of much larger problem sets. Parallels

could be drawn from Valenzuala and Jones (1993) where they utilise `divide and
conquer' methodology to reduce large travelling salesman problems (TSP) into a
number of smaller more manageable sub-problems for resolution, before 'patching'
is applied to reunite the sub-solutions into a solution for the whole.

In this paper we have presented the key research from the literature relating to
the application of evolutionary algorithms to the project scheduling problem (PSP),
we have utilised the classification system of Herroelen et a!. (1999), to clearly define

all the problems presented as well as tabulating key algorithm results for

comparison. We have also included the DSM into the PSP review, to include what
we believe to be an important subset of the PSP. A breakdown of the key

characteristics, problem type and results for each algorithm from the literature has
been tabulated in appendix 1. To conclude we have presented observations of key
trends and our suggestions for avenues of further research.

E

G
CU

ä.
i

b
C
U
a

8 x x
Pi A pt A

Q

6

QY

`'
.a
N

-

N

N
N
N

ä

f/)
N

^ d V

m
p

a
g

O N
N O O SS

ý8 O O O O O O
N O

O

7
N

p
t'f N

O

O

O O O

8

F w
U E EÜ E E L L E E

ý U U U U J
a$f $ f. E E EE

E
ü Ed E

S
t
L'

IL sz - v w u
Z a E E E E -

E -- E t: t t t t

V E a a a a a a a s a a a a a ä a ä ä d ä a ä ä a. n n a
U
Cr

U
¢

U
Q

U
Cl

U
¢

U
¢

U
Q

U
2

u
2

(ý
R

U
¢

U
Q

U
Q

c p
(h
(/)

U)
N N NU 2

N N N N `/1 a N�1

3 3
;a

s
Y

f ¢ r.
3

k.
f

ýý
6

ä < < ä < < ä 1 1 ý

m

dh Ul
ýOb a Z < < < o 8 ýýt

o

H i_ 7 q N O[A
Q O4 Q }'

r .[
ý

< <
Ü Z ÜLLýLL n ä n ý

Y
pý

ý
'°

ý .
Ö Ü ¢

W
i
Y ä

a mE g+ °ý m °ýý ýöäy ý m
S

n Q

m (5 n y V
to LL

a
N

N

c

.C

8 d
i

p y
L J {Uý

co (D ID

U
p

a

: w
n

u cý
C

v
N

y'°j

a

c
yý ö _ Jp y

ry ,

:
I

of II{ N S 1 Q L
> Y y

U
y
U YI

C

X_

b
G
v

a a Q

ö

ö ${

v c
g
üi

_

,ý
g

v

p

ry
m a y

3
$ m

ä
°

ä i

IL E z f i

m

o "
n

Y L

F
E

E

n
2 >

21 ,§ EEE
C

V

_

V y_

10

a o
ý

ý o
E c n

ü E ý"r "ýöýiö n

v a
ä

Q
ä

a
ä

`v

Qy U U U

ä

Ul2
n a

c

n

c

ýf

n Q N4t
UI

._i x ýý
pp pývNL

G=EJ
p

TýU
p

2 iI
pp
LO

pp
ZO

2

¢U
FUNOU

Q OQ

Ny i
c

y
7a E ovv y `o

o
A

9 E ýZ
Do y

E ý o
äm E°' nay ü;

ý3

8 a[E mE ? N Ä

ö4 gi>ýS a`'
W$ ä Eä

oog
>

ffi

U vU
Zý u gý

U ý-b
w

mW E
.

¢

,ý z° Ein Z o_ .> 3 3
R
E

t

E
s

W

Öý Ö
N

N

i s

J
y

2 Z ý ý

E N U C9 teil "

3
(9 0 ii

)
e ,i 3

I
a

a

I

448 J. Lancaster and Af. Ozbayrak

References

Alcaraz, J. and Maroto, C., A robust genetic algorithm for resource allocation in project
scheduling. Ann. Op. Res., 2001a, 102,83-109.

Alcaraz, J. and Maroto, C., A new genetic algorithm for the multi-mode resource-constrained
project scheduling problem. Dpto de Estadistica e Investigacion Operativa, Universidad
Politecnica de Valencia Spain, 200lb.

Birbil, S. and Fang, S., Electromagnetism-like mechanism for global optimisation. J. Global
Optim., 2003,25,263-282.

Bouleiman, K. and Lecocq, H., Multi-objective simulated annealing for the resource
constrained multi-project scheduling problem. Service de Robotic et Automatisation.
Universite de Liege, 2000.

Brucker, P., Drexl, A., Mohring, R. H., Neumann, K. and Pesch, E., Resource-constrained
project scheduling: an update. Euro. J. Oper. Res., 1999,174(l), 23-37.

Chiu, H. and Tsai, D., A comparison of single-project and multi-project approaches in
resource-constrained multi-project scheduling problems. J. Chinese Inst. Indust. Eng.,
1993,10,171-179.

Debels, D. and Vanhoucke, M., An electromagnetism meta-heuristic for the resource
constrained project scheduling problem. Working Paper Series, Faculteit Ecomonic and
Bedrijfskunde, Universiteit Gent, 2004a.

Debels, D., de Reyck, B., Leus, R. and Vanhoucke, M., A hybrid scatter search/
electromegnetism meta-heuristic for project scheduling. Working Paper Series,
Faculteit Ecomonie and Bedrijfskunde, Universiteit Gent, 2004b.

Debels, D., de Reyck, B., Leus, R. and Vanhoucke, M., A scatter-search meta-heuristic for the
resource constrained project scheduling problem. Euro. J. Op. Res., 2006,169(2),
638-653.

Debels, D. and Vanhoucke, M., A bi-population based genetic algorithm for the resource-
constrained project scheduling problem. Working Paper Series, Faculteit Economic en
Bedrijfskunde, Universiteit Gent, 2005a.

Debels, D. and Vvanhoucke, M., A decomposition-based heuristic for the resource
constrained project scheduling problem. Working Paper Series, Faculteit Economic
en Bedrijfskunde, Universiteit Gent, 2005b.

Dorigo, M., di Caro, G. and Gambardella, L, Ant algorithms for discrete optimisation.
Artif. Life, 1999,5,137-172.

Eiben, A., Hinterding, R. and Michalewicz, Z., Parameter control in evolutionary algorithms.
IEEE Trans. Evol. Compu., 1999,3(2), 124-141.

Eshelman, L. J. and Schaffer, D. J. Real-coded genetic algorithms and interval schema, 1992
(Foundations of Genetic Algorithms 2: Whitely, San Mateo, CA).

Feo, T. and Resende, M., Greedy randomised adaptive search procedure. J. Global Optim..
1995,6,109-133.

Fox, B. and Ringer, M., 1995, The Benchmarx Problems. Available online at: http: //
www. neosoft. com/-benchmrx/

Glover, F., Genetic algorithms and scatter search. Unsuspected potentials. Statist. Comp.,
1994,4,131-140.

Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning. 1989
(Addison Wesley Longman Inc.: Boston, MA).

Gonsalves, J., Mendes, J. and Resende, M., A genetic algorithm for the resource
constrained multi-project scheduling problem. AT&T Labs Technical Report
TD-668LM4,2004.

Graham, R., Lawler, E., Lenstra, J. and Rinnooy Kan, A., Optimisation and approximation
in deterministic sequencing and scheduling theory: a survey. Annals of Discrete
Mathematics, 1979,5,287-326.

Hartmann, S., Scheduling medical research experiments-An application of project
scheduling methods. Manuskripte aus den Instituten fur Betriebswirtschaftslehre.
No. 452, University of Kiel, Germany, 1997.

Hartmann, S., A competitive genetic algorithm for resource constrained project scheduling.
Naval Res. Logist., 1998,45,733-750.

Evolutionary algorithms applied to project scheduling problems 449

Hartmann, S., Project scheduling with multiple modes: a genetic algorithm. Ann. Op. Res.,
2001,102,111-136.

Hartmann, S., A self adapting genetic algorithm for project scheduling under resource
constraints. Naval Res. Logist., 2002,49,433-448.

Herbots, J., Herroelen, W. and Leus, R., Experimental investigation of the applicability of ant
colony optimisation algorithms for project scheduling. Department of Applied
Economics, K. U. Leuvn, 2004.

Herroelen, W., de Reyck, B. and Demeulemeester, E., Resource contrained project scheduling:
a survey of recent developments. Comput. Oper. Res., 1998,25,279-302.

Herroelen, W., Demeulemeester, E. and de Reyck, B., A note on the paper 'Resource-
constrained project scheduling: notation, classification, models and methods' by
Brucker et a!. Euro. J. Op. Res., 2001,128,679-688.

Hindi, K., Yang, H. and Flezar, K., An evolutionary algorithm for resource constrained
project scheduling. IEEE Trans. Evol. Comp., 2002,6,512-518.

Holland, J., Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence, 1992 (Massachusetts Institute
of Technology Press: Cambridge, MA).

Kochetov, Y. and Stolyar, A., Evolutionary local search with variable neighbourhood for the
resource constrained project scheduling problem, in The Workshop on Computer Science
and Information Technology (CSIT), 2003.

Kolisch, R. and Hartmann, S., Experimental investigation of heuristics for resource
constrained project scheduling: an update. Euro. J. Oper. Res., 2006,174(1), 23-37.

Kolisch, R. and Sprecher, A., PSPLIB: A project scheduling problem library. Christian
Albrechts Universitat zu Kiel, Germany, 1996. Available online at: http: //
129.187.106.231/psplib/ (accessed November 2004).

Kolisch, R., Sprecher, A. and Drexl, A., Characterisation and generation of a general
class of Resource-Constrained project scheduling problems. 1992, Institut fur
Betriebswirtschaftslehre, Universitat du Kiel.

Leu, S. and Yang, C., A GA-based multicriteria optimal model for construction scheduling.
J. Construct. Eng. Manage., 1999,125,420-427.

Liang, Y., Chen, A., Kao, W. and Chyu, C., An ant colony approach to resource constrained
project scheduling problems. Department of Industrial Engineering and Management,
Yuan-Ze University, Taiwan, 2004.

Mendes, J., Goncalves, J. and Resende, M., A random key based genetic algorithm for the
resource constrained project scheduling problem. AT&T Labs Research Technical
Report TD-6DUK2C, 2005.

Merkte, D., Middendorf, M. and Schmeck, H.. Ant colony optimisation for resource-
constrained project scheduling. IEEE Trans. Evol. Comp., 2000,6,333-346.

Mori, M. and Tseng, C., A genetic algorithm for multi-mode resource constrained project
scheduling problem. Euro. J. Op. Res., 1996,100(1), 134-141.

Murata, T. and Ishibuchi, If., Performance evaluation of genetic algorithms for flowshop
scheduling problems, in Proceedings of the First IEEE Conference on Evolutionary
Computation, 2, pp. 812-817.

Patterson, J. H., A comparison of exact approaches for solving the multiple constrained
resource, project scheduling problem. Manage. Sri., 1984,30,584.

Rogers, J., Ordering design tasks based on coupling strength, in 5th AIAA/NASA/USAF/
ISSMO Symposium on Multidisciplinary Analysis and Optimisation, AIAA Paper
No. 94-4326,1994.

Rogers, J., Integrating a genetic algorithm into a knowledge-based system for ordering
complex design process. NASA Langley Research Centre, Ilampton, Virginia, 1996.

Schrimer, A. and Riesenberg, S., Parameterised heuristics for project scheduling-- biased
random sampling methods. Christian-Albrechts Universitat, Keil, Germany, 1997.

Sivrikaya-$erifoglu, F., 1998, A new uniform order-based crossover for concurrent
consideration of sequencing and selection problems. Working Paper, Abaut Izzet
Baysal University, Bolu, Turkey.

450 J. Lancaster and M. Ozbayrak

Sriprasert, E. and Dawood, N., Genetic algorithms for multi-constraint scheduling: an
application for the construction industry, Construction Informatics Digital Library.
Available online at: http: //itc. scix. net/paper w78-2003-34I. content (accessed August
2005).

Starkweather, T., McDaniels, S., Mathias, K. and Whitely, C., A comparison of genetic
sequencing operators, in Proceedings of the 4th International Conference on Genetic
Algorithms (Morgan Kaufmann: San Mateo, CA) 1991.

Stewart, D., The design structure system: a method for managing the design of complex
systems. IEEE Trans. Eng. Manage., 1981,28,71-74.

Todd, D., Multiple criteria genetic algorithms in engineering design and operation.
PhD thesis, University of Newcastle, 1997.

Ulusoy, G., Sivrikaya-$erifoglu, F. and Bilge, U., A genetic algorithm approach to the
simultaneous scheduling of machines and automated guided vehicles. Comp. Op. Res.,
1997,24,335-351.

Ulusoy, G., Sivrikaya-$erifoglu, F. and $ahin, $., Four payment models for the multi-mode
resource constrained project scheduling problem with discounted cash flows. Ann. Op.
Res., 2001,102,237-261.

Valenzuela, C. and Jones, A., Evolutionary divide and conquer: a novel genetic algorithm
approach to the TSP. Evol. Comp., 1993,1,313-333.

Valls, V., Quintanilla, S. and Ballestin, F., An evolutionary approach to the resource
constrained project scheduling problem, in 4th 6letaheuristics International Conference.
Porto, Portugal, 16-20 July 2001.

Valls, V., Quintanilla, S. and Ballestin, F., A hybrid genetic algorithm for the resource
constrained project scheduling problem with the peak crossover operator, in 8th
International Workshop on Project Management and Scheduling, 2002, pp. 368- 371.

Valls, V. Ballestin, F. and Quintanilla, S., A new crossover operator for the resource
constrained project scheduling problem, in 611C2003: The Fifth Aletaheuristics
International Conference, 2003.

Wall, M., A genetic algorithm for resource-constrained scheduling. PhD thesis, Massachusetts
Institute of Technology, 1996.

Whitfield, R., Duffy, A., Coates, G. and Hills, W., Efficient process optimisation. Concur.
Engi., 2003,11,83-92.

Zhuang, M. and Yassine, A., Task scheduling of parallel development projects using genetic
algorithms, in DETC ASb1E 2004 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Salt Lake
City, Utah, USA, 2004.

A Fitness Differential Adaptive Parameter Controlled
Evolutionary Algorithm with Application to the Design

Structure Matrix

JOHN LANCASTER* and KAI CHENG

This paper investigates a methodology for adaptation of the mutation factor within an

Evolutionary Algorithm by means of measuring the improvement differential between

successive generations. When no improvement is obtained in an Evolutionary Algorithm

and it has not located the global optimum, it is an indication that the algorithm may have

become trapped within a local minimum or maximum. Mutation is a tool within the

algorithm that is designed to assist in escaping from these local extremes. It is therefore

the premise of this paper that if the preset value for mutation probability is proving

insufficient to release the algorithm from entrapment in a local minima or maxima, then

a temporary increase in this mutation probability may assist in freeing the algorithm and

therefore increasing its chances of ultimately converging on a global optimum.

In order to determine when to implement the increase in mutation probability our

algorithm measures the fitness improvement between successive generations in the

algorithm. When no improvement is detected for a number of successive generations the

probability is increased.

The Design Structure Matrix, a scheduling tool, that has previously been optimized via

the application of Evolutionary Algorithms has been used as a practical implementation

of differential adaptation to investigate it's effectiveness in solving real world problems.

Solutions provided by Todd (1997) are used to benchmark the algorithms effectiveness.

Keywords: Differential Adaptation, Evolutionary Algorithms, Design Structure Matrix.

*To whom correspondence should be addressed

CB&I Constructors, 220 St. Georges Terrace, Perth, W. A. 6000, Australia.

2

1. Introduction.

Within an Evolutionary Algorithm the mutation operator is utilized to generate diversity

within the algorithms search. This diversity is required to prevent premature convergence

on local optima (minima or maxima). As can be seen from the diagram below

Evolutionary Algorithms can easily converge prematurely on these local optima by

obtaining local improvement.

5

4

3
Algorithms can
easily become
trapped in Local

Improvement Optima (Minima or
2 Maxima)

Impro%ement

123457ß

Figure 1. I- Trapping at Local Optima (minimising algorithm).

Mutation is effected by randomly selecting genes within the chromosomes and changing

their values, the probability of selecting a chromosome to undergo mutation is normally

an input variable provided at run time. This mutation probability needs to provide

sufficient variety to the algorithm to allow the search space to be thoroughly investigated

for global optima whilst being limited sufficiently to allow the algorithm to converge on

such optima once these have been detected. These two conflicting requirements need to

3

be carefully balanced in order to ensure optimization takes place. A number of studies

have been undertaken to determine the optimum probability settings for these variables,

for various applications, techniques such as Taguchi's design of experiments (DOE) have

been employed for this purpose.

Whilst studies into optimizing these variables prior to execution will ultimately improve

the performance of the algorithm, they do not allow for the dynamic state of the

algorithm during processing. Ideally the mutation probability needs to adapt its value

according to it's position in the search space i. e. when trapped in a local optima it should

increase in order to widen the algorithms search but when not trapped the mutation

probability should be low enough to allow the algorithm to converge towards a possible

global optimum. In order to achieve this, the technique described in this paper as `fitness

differential adaptive parameter control' is employed.

Previous research which has applied evolutionary algorithms to optimization of the

Design Structure Matrix is reviewed in section 2. Evolutionary algorithm parameter

settings in general are discussed in section 3. The structure and functionality of the fitness

differential adaptive parameter control evolutionary algorithm is then discussed in detail

in section 4.

The Design Structure Matrix has been selected as the application for the algorithm due to

other research being conducted by the authors into the use of evolutionary algorithms for

schedule optimization. The Design Structure Matrix is described in section 5.

4

The test problems, the tests and the achieved results are discussed in section 5 and

conclusions are then discussed in section 6.

2. Review of previous research applying Evolutionary Algorithms to the
DSM.

Rogers (1994,1996) implemented a genetic algorithm into NASA's DSM tool

'DeMAID' (Design managers aid to intelligent decomposition) to optimise the sequence

of activities in the DSM in order to minimise the impact of iteration, which as stated

previously requires the DSM to be moved as close as possible to becoming lower-

triangular. Satisfying this objective has the effect of minimising the overall duration of

the project (make span) and therefore reduces the overall time dependant cost. DeMAID

applies duration and cost to the individual tasks but minimization of these two

characteristics is not used as an optimization objective, they are merely applied to the

iteration minimal matrix.

Todd (1997) considered the maximisation of concurrency as well as the minimisation of

iteration. As Todd details, the maximization of concurrency within the DSM is effected

by moving as many of the links as close to either the left hand side of the matrix, or

alternatively to the bottom edge of the matrix. On first consideration this may seem

compatible with the lower triangularisation required by minimization of iteration and

indeed the two could be mutually achieved, however the network logic will often deny

satisfying both objectives and having a high percentage of links aligned with the left edge

of the matrix may cause the small number of remaining links high into the upper triangle

obstructing the objective of minimum iteration. Todd's algorithm utilized Enhanced Edge

5

Recombination (EERX) crossover (Starkweather, 1991) in conjunction with 2-city'

adjacent swap mutation. Todd's experimentation had shown that the EERX crossover had

proved most successful in combinatorial problems such as the Traveling Salesman

Problem and he therefore chose to apply this to the DSM.

Whitfield et al (2003) performed extensive research into the application of various cross

over and mutation operators to the DSM. They found that Todd had been incorrect to

assume that an operator, which performs well for one combinatorial problem, is best

suited for all combinatorial problems. Whitfield et al reported that the combination of

EERX and 2-point adjacent swap mutation to be among the worst combination of'

operators and in fact revealed the Independent position crossover (IPX) in conjunction

with the Shift Operator mutation (SOM) (Murata and Ishibuchi, 1994) to he the best

combination suited to this application.

Zhaung and Yassine (2004) utilised a Genetic Algorithm to optimise the RCPSP problem

using the Dependency Structure Matrix. Zhaung and Yassine applied two crossover

techniques:

0 Leu and Yang's (1999) Union Crossover 3 (UX3) operator - this operator performs

crossover whilst maintaining conformance to precedence relationships.

" Goldberg's (1989) One-point Crossover Operator.

1 The `City' terminology is derived from the operator's previous application to the Traveling Salesman
Problem.

6

Their experimentation yielded very poor results for the UX3 operator compared to the

one-point operator, they concluded that this is due to the one-point crossover being able

to maintain larger portions of good schema across generations.

Another important feature of Zhaung and Yassine's research was the stochastic

calculation of feedback within the DSM. Probability values were randomly applied to the

feedback values within the algorithm in order to calculate the likely duration of the

project. 31 random trials were conducted in order to evaluate the range of possible

durations.

The body of existing research in this area is relatively small compared to the work that

has been conducted in applying evolutionary algorithms to traditional scheduling

networks.

3. Parameter Settings.

A lot of work has been invested in the study of optimal settings for the operating

parameters for Evolutionary algorithms. Parameter setting can be executed in two main

modes prior to run and during run.

Ursem (2003) and Eiben et al (1999) both provide taxonomies for Parameter setting,

which follow the same basic structure with some minor terminology differences, we

provide the taxonomy as per Eiben et al (1999) in figure 2.1 below:

7

Figure 3.1 - Taxonomy of Parameter Setting.

Parameter tuning is concerned with refining the setting parameters prior to run time. The

parameters remain constant throughout the execution of the algorithm. Many methods

have been applied to tuning these parameters including Taguchi methods. 'I'hierens

(2002) demonstrated the use of adaptive mutation control, employing two methods of

controlling the mutation factor by testing the effects of increased and decreased mutation

rates and then modifying the mutation probability accordingly.

Parameter Control is concerned with the modification of parameters during the run time

of the algorithm there are a number of methods by which this can be achieved:

" Deterministic.

" Adaptive.

" Self-Adaptive.

These three classifications specify the method by which the algorithm receives

instruction to alter the value of a parameter.

8

Deterministic control involves the modification of the algorithm according to a pre-

selected schedule or function, that is, no feedback is received from the values produced

by the algorithm during its run-time. As this method receives no-feedback it is not able to

adapt according to the current state of optimization. Our aim is to produce an algorithm

that detects and escapes from trapping in local optima, so this method will not be

suitable.

Adaptive Control is achieved by modifying parameters based on the values yielded by the

algorithm during its run time. Adaptive control reacts to feedback from the algorithm and

is the method of control we have selected for the algorithm presented in this paper.

Self-Adaptive Control is obtained by extending the chromosome by additional genes.

These genes are evolved during the execution of the algorithm along with the rest of the

chromosome. Through this method the best settings for parameters can be evolved during

run time. The nature of this method of control is that of progressive refinement, we aim to

produce an algorithm that reacts quickly to the trapping and temporarily modifies its

behavior to suit, so again this method is not suitable to our research. Sewell et al. (2006)

utilized self-adaptation in their `rank-scaled mutation rate' genetic algorithm. This

algorithm, applied to the traveling salesman problem, adapted the mutation probability of

each chromosome dependant on the individual's fitness. Sewell et al. concluded that their

algorithm performed competitively in problems where many local optima were present.

9

Two further classifications of adaptive parameter control should be discussed here, the

first is concerned with the source of control, that is which algorithm generated data is

used to drive the parameter changes. This could be any number of measures; in the

algorithm presented in this paper we are concerned with preventing premature trapping of

the algorithm within local optima. A characteristic of such a trapped algorithm is that its

fitness will not improve whilst it is trapped in the local optimium, therefore for this

algorithm we have chosen to use a measure of fitness improvement over a number of

successive generations to be the driving measure.

Last but not least we need to define what aspect, or parameter of the algorithm is being

adapted. In order to prevent trapping diversification of search is required, this is most

effectively achieved via increased mutation rate and therefore mutation rate has been

identified as the object of adaptation in this algorithm.

Due to this classification system we have termed the algorithm utilised here a Fitness

Differential Adaptive Parameter Control Evolutionary Algorithm (FDAPCEA). The

structure of this algorithm is discussed in the following section.

4. Fitness Differential Adaptive Parameter Control Evolutionary

Algorithm (FDAPCEA) for the DSM.

Fitness Differential adaptation involves monitoring the improvement of the best solution

from one generation to the next. In this algorithm the mutation factor is modified when

10

the algorithm yields no improvement for a number of consecutive generations. The model

of the FDAPCEA is otherwise quite typical. The flow diagram is given below:

Figure 4.1 - The FDAPCEA flow diagram.

The best fitness for each generation is stored in a vector, after the pth generation, the

previous p generations fitness values are inspected and compared, if no improvement is

detected across the p generations, the mutation probability is increased by a factor b. This

causes a large amount of mutation, increasing the spread of the search. If a better solution

is found, the best fitness will have increased and the mutation factor will return to

normal. If no improvement is found the mutation factor will remain at the increased level,

widening the search again for the following generation.

This process aids the algorithm to escape from local minima and is employed only when

the algorithm detects the possibility that it has become, or is likely to become trapped.

Two variables have been identified in the above discussion; p the number of generations

for which the algorithm will allow no improvement before applying increased mutation

and 6 the factor by which the mutation probability is increased after the period p with no

improvement. For purposes of this discussion, p is termed the differential period and 6

the differential factor.

Due to the combinatorial nature of the problem the algorithm uses `real' encoded

chromosomes, the operators are therefore also of the real encoded type.

The individual components of the algorithm are further detailed below:

12

4.1 Fitness Measurement.

As the Fitness measurement is application specific, discussion of this component is

postponed to section 3 after discussion of the DSM in general.

4.2 Selection.

The algorithm uses Roulette selection as described by Goldberg (1989).

4.3 Crossover.

Two types of crossover operator have been used in this work; two-point centre crossover

and independent position crossover.

4.3.1 Two-point centre crossover.

In the two-point centre crossover operator (Murata, 1997), two Random points are

selected on the first parent chromosome. Genes falling inside these two points are

transferred directly to the child chromosome. The remaining genes from the first parent

are transferred to the child chromosome in the order they occur in the second parent. This

is shown diagrammatically below:

Parent 1 123 4 5 6 7 8

Parent 2 415 7 2 6 8

Child 173 4 5 6 2 8

Figure 4.2 - Two-point centre crossover.

This process is then repeated working from the second parent to produce it second child.

13

For the solutions to the problems discussed in section 4, the crossover factor was set to

0.7.

4.3.2 Independent Position Crossover.

The second method of crossover employed is Independent position crossover. 't'his

method of crossover applies a probability of 0.5 to each gene of being transferred directly

from the first parent to the child. The values that have then not been transferred to the

child due to this process are then added in the order they occur in the second parent.

Figure 4.3 below shows this process graphically.

0.3 0.6 0.2 0.3 0.8 0.2 0.6 0.1

Parent 1123 4567 8

Parent 2415 7268 3

% . rl-ýl Child 421 6587 3

Figure 4.3 - Independent Position Crossover.

The first row of figures above the first parent in figure 4.3 are random variables generated

for each gene in order to determine whether they are eligible for transfer to the child

chromosome. As can be seen all the values greater than 0.5 have been transferred directly

to the child (2,5 & 7) the balance of the genes (l, 3,4,6 & 8) have been transferred it)

the child in the order they occur in the second parent.

14

4.4 Mutation.

For the solutions to the problems discussed in section 4, the mutation factor was set to

0.07.

5. The Design Structure Matrix.

The Design Structure Matrix (DSM) is a scheduling tool, which caters for iteration

between tasks. As its name suggests the DSM is formed as a square matrix (number of

columns equals number of rows) with the task being listed along both the horizontal and

vertical axis, the task itself being represented by the respective block on the diagonal.

This diagonal listing of tasks divides the matrix into two triangular portions, the lower

triangle being used for the mapping of forward feeding task links and the upper triangle

for backward feeding (iterative) task links. This is shown diagrammatically in the figure

below:

DESIGN STRUCTURE MATRIX

Task Description Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task 1 1
Task 2 2 1
Task 3 3 1
Task 4 4 1
Task 5 5 1
Task 6 6 1 1 1 1
Task 7 7 1
Task 8 8 1 1
Task 9 9 1
Task 10 10 t 1 1 1
Task 11 11 t
Task 12 12 t 1
Task 13 13 1 1 1 1
Task 14 14 t
Task 15 15

Figure 5.1 - The Design Structure Matrix.

The larger the iterative loops present in the schedule the greater its duration is likely to he

and the more assumptions that need to be made during design. It is therefore desirable to

15

optimize the sequence of execution in order to minimize iteration. Within the DSM

minimizing iteration equates to moving the DSM as close as possible to being lower

triangular, that is, all the links sitting in the feed forward (lower) portion of the matrix.

This can be clearly seen as a combinatorial problem, a class of problems that have

successfully had Evolutionary techniques applied to them (for example the Traveling

Salesman Problem). Indeed a number of researchers have applied Evolutionary

algorithms successfully to the DSM as discussed in section 2 above.

5.1 Fitness Measurement in the DSM.

As already discussed the objective of this algorithm is to minimize iteration, this is

characterized by moving the matrix as close as possible to being lower triangular, that is

the feed back links either need to be within the lower triangle or failing this as close as

possible to the diagonal. The measure of fitness can therefore be determined by summing

the distance from the diagonal of all the feedback links i. e. links in the upper triangle.

The measure of Total fitness is therefore given by:

w "(xi -y1)

Letting n be the number of activities in the upper triangle, w be the feedback value (in

this case always 12) and x and y being the position in the sequence of the predecessor and

successor respectively i. e. the distance from the diagonal.

2 This paper is limited to the study of Binary type DSMs. DSMs are also utilized with numerical feedback
values these being referred to as Numerical DSMs (NDSM).

16

6. Results obtained with FDAPCEA.

6.1 Standard Problems used for comparison.

Project scheduling problem (PSP) libraries such as PSPLIB (Kolisch and Sprecher,

1996), normally utilized for benchmarking of PSP, do not provide problems with iterative

links; therefore to provide a benchmark for this algorithm the problems considered by

Todd (1997) are utilized. Todd uses three problems:

" KUSIAK '91 -A twelve-activity schedule.

" STEWARD '81 -A twenty-activity schedule.

" AUSTIN '96 -A fifty-one-activity schedule - In this case the original DSM was not

provided, Todd therefore sought further improvement of the solution offered by

Austin. For comparative purposes the same approach has been taken here.

The original authors offered solutions to each of their respective problems. These

solutions used methods other than evolutionary techniques. The best values obtained for

these problems before Todd's (1997) work are given in table 6.1 below:

Problem Best solution

KUSIAK `91 7

STEWARD `81 93

AUSTIN `96 320

Table 6.1 - Best non-evolutionary solutions.

17

6.2 Results obtained with the FDAPCEA.

2 3 11 1 7 6 10 12 9 8 5 4
2 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 01 0 0 0 0 0 0 0 0 0
11 1 1 01 0 0 0 0 0 0 0 0 0
1 0 0 01 0 0 0 0 0 0 0 0 0
7 1 0 11 0, 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 1 0 0 0 0
10 1 1 1 0 0 1 0 1 0 0 01 0
12 0 0 1 1 0 0 1 0 1 0 0 0
9 0 1 0 0 0 1 1 0 0 0
8 0 0 1 1 0 0 0 i 0 0
5 0 0 1 0 0 1 0 o

l

o 1 0 0
4 1 0 0 0 1 0 0 1 0

Total Fitness (Iteration) =6

Figure 6.1 - Resultant DSM (KUSIAK '91).

The algorithm yielded a number of different solutions with a total fitness of 6. Figure 6?

below shows that the solution is typically arrived out without any significant periods

being `trapped' in local minima. The best solution to this DSM yielded by Todd was also

6

36 -

30

25
0

2O
ö
I-

15

lo

Figure 6.2 - Algorithm improvement over successive generations (KUSIAK '91).

18

2 19 5 16 6 7 8 18 9 11 10 17 3 4 1 14 20 15 12 13
2 0
19 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1. 0 0 0 0 0
6 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
17 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 1

-
0 0 0 0 0 0 0 0

1 0 0 0 10 1 0 0 01 0 0 1 1 1 0 0 0 0 0 0 0
14 0
20
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0
13 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

Total Fitness (Iteration) = 24

Figure 6.3 - Resultant DSM (STEWARD '81).

Figure 6.4 below shows a typical improvement curve achieved for this problem, is shows

that after generation 20 there exist a number of plateaus in the improvement graph where

the algorithm is potentially `trapped' for a number of generations before finding further

improvement, for the run shown in figure 6.4 below the differential adaptation factor was

set to 4 generations, the plateaus in the improvement graph below appear to be typically

around 4 generations in length or greater indicating that the sudden increase in mutation

rate could be responsible for a number of these stepped improvements.

The best solution produced by the algorithm for this DSM was a total fitness of 24; this

result is also equal to the best result reported by Todd.

19

Y-

Figure 6.4 - Algorithm improvement over successive generations (STEWARD '81).

The resultant DSM for the problem of AUSTIN '96 is given below in figure 6.5.

10
2

2
0
0

3
0
0

11
0
0

1
0
0

5
0
0

1
0
0

8
0
0

0
0

1
0
0

3
0
0

14
0
0

18
0
0

1
0
0

24
0
0

8
0
0

251
0
0

271
0
0

261
0
0

101
0
0

1
0
0

12
0
0

11 91
00

000

91201211
00
00

321
0
0

28
0
0

291
0
0

311
0
0

30
0
0

0000
0000

0
0

0
0

0
0

0
0

0
0

f1
0
0

0
0

0
0

0
0

47
0
0

0
0

0
0

1
0
0

im a
00
00

3 000 00 0 0 0 0 0 0 010101 0 0 0 0 0 0 0 0 0 0 0 0 00
170 0 0 O M O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 000 00 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 00
t0
5
7o

0
0 o

0
01
0

0
01
0

0
0
1

0

0

0

1

0

1

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0

000
000
000

00
00
00

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

000
000
000

0
0
o

0
0
a

0
0
0

0
0
0

0
0
0

0
0
0

0

0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

00
00
00

60 0 0 01 01 1 0 0 t 0 0 0 0 0 0 0 0 0 0 0 0 000 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
34 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 000 00 0 0 0 0 0 000 0 a 0 0 0 0 0 0 0 0 0 0 0 0 00
11 0 0 0 0 1 0 1 0 11 0 0 i o o 0 o 0 o 000 00 0 0 0 0 0 000 0 01 0 0 0 0 0 0 0 0 0 0 o a 00

0 0 0 0 0 0 0 1 t 0 0 0 0 0 0 0 0 0 0 0 0 000 00 0 0 0 0 0 000 0 ol o 0 0 0 0 0 0 0 0 0 0 0 00
o 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 000 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

10 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 000 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
1801 1 0 0 0 0 0 01 11 0 1 01 0 0 0 0 0 0 0 0 0 000 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

a 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 000 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 00
11
0
01
01

to
1 01
t 01

0
0
01
01
0
01
01

0
0
01
01
0
01
01

0
0
01
0
0
01
01

0
0
01
0
0
01
01

1
0
0
0
0
0
0

0
0
0

0
1
0

0
0
0
1
0
1
1

0
0
0
0
0
0
0

0
0
0
0
0
1
1

0
0
0
0
0
0
0

0
0
0
0,
0
0
0

0
0
a
0
0
0
0

0
0
0
0
0
0
0

0

0
0
0

0
0
0
0
I
0
0

0
0
0
01
o
0
0

0
0
0
0
0
0
0

0
0

.
0
0
0
0

0
0
0
0
0
1
1

0
4
0
0
0
0
0

0

0
0
0

0

0

000
00
000
000
00

00
00

00
00
00
00
00
00
00

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

000
000
00
00
000
000
000

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

00
00
00
00
00
00
00

11 01
90
19101

01
0
01

01
0
01

01
0
01

01
0
01

0
0
0

0
1
0

1
1
0

0
0
0

1
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

91
0
0

0

0

1
0
1

0 1
0
0

000
000
100

'0
00
0

0
0
0

0

0

0
0
0

0
0
0

0
0
0

000
000
000

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

00
00
00

20 10 101 11 11 11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1O- L00 0 0 0 0 0 00 01 01 01 0 0 0 0 0 0 0 0 0 0 0 0 oj
2110 11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 a 0 0 0-2

-10
0 0 0 0 000 0 01 0 0 0 0 0 0 0 0 0 0 0 0 00

30 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 00 000 0 u 0 0 000 0 o lo 0 0 0 0 O 0 0 0 0 0 0 00
0 0 0 0 0 0 1 0 0 0 0 0 0 0 o 0 o 0 0 0 0 000 00 0 o 0 000 0 01 0 0 0 0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 il o 00 00 1 , 0 . 0 000 0 o lo 0 0 0 0 o lo 0 0 0 0 0 00

t0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 00 000 0 U 1 0 0 000 0 0 0 0
-2-

0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 00 000 0 1 1 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 010 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 00 000 1 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 0 0 00 001 0 0 0 0 000 0 0 0 0 0 10 0 ,0 ,0 0 0 0 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 0 0 00 00 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
0 D 00 001 0 0 0 0 IUU u 0 0 0 0 J U U 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 a o 0 0 a 0 0 0 1 0 0 0 0 000 0 0 0 0 0 1J1 0 1 0 0 u o 9 10 0 10 10 10 10 10 1010
0 0 0 0 0 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 0 00 001 0 0 0 0 0 000 0 o t o o a J o 1 0 o 1 1 a o 0 0 00
0 1 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 o a o0 oao 0 0 0 0 0 oUo o , u J o J o 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 a o 0 0 0 0 0 0 0 00 000 0 0 0 0 0 000 0 0 0 0 , o u o 0 0 0 0 0 00
11 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 o lo 0 0 00 000 0 0 0 0 0 001 0 1 I v 0 0 0 0 0 0 0 00
10 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 00 000 0 0 0 0 0 00 0 1 1 U t t 0 0 0 0 0 0 00
4410

0
40

10
0

10
0
0

10
1
0

10
0
1

10
0
0

0
0
0

0
0
0

0
0
0

0
0
1

0
0
0

0
0
0

0
0
1

0
0
0

0 0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
o

0
0
a

00
00
0

000
000
000

0
0
0

0
0
0

0
0
0

0
0
0

0

0

000
00
000

0
1
0

0
10

0
1
0

0
1
0

I
0
0

0

.0 10

0
0
0

1
0
0

0
0

11

U
0

11

0

10

0
0
0

0
0

0
0
0

00
00
00

49 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000 0 1 1 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
0 0 0 10 10 12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 000 0 0 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 00

61 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 00 000 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
0 00 000 0 0 0 0 0 00 0 0 0 0 0 1 1 1 1 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 00 000 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Total Fitness (Iteration) = 157

Figure 6.5 - Resultant DSM (AUSTIN '96).

20

-0 10 20 30 40 50 60 70 00 90 100
Gormwabon

The result produce for the AUSTIN '96 DSM was a total fitness (iteration) of 157 an

improvement of I over Todd's single objective algorithm result of 158.

The Improvement graph for the algorithm for this solution is shown below in figure 6.6.

1400

1200

1000

800

I--

400

200

oL J 0 50 100 150 200 250 300 350 400 450 500
Genordmm

Figure 6.6 - Algorithm improvement over successive generations (AUSTIN '96).

The improvement curve shows that constant improvement has been achieved right to the

last 25 generations. It should be noted that a function of the algorithm is that the

differential adaptation is not applied during the last 10% of the generations on each run,

in order to allow convergence. In this run the differential adaptation would therefore have

cut out at generation 450.

21

The effectiveness of the FDAPCEA compared with the original results and the results of

Todd (1997) as shown below in Table 6.2.

Problem Original Solution Todd (1997) FDAPCEA

KUSIAK'91 7 6 6

STEWARD `81 93 24 24

AUSTIN `96 320 158* 157

*Todd later found a solution of 156 using a Multi-objective algorithm.

Table 6.2 - Comparative Results of Best Solutions to DSM problems.

6.3 Discussion of the Results.

The results shown in section 6.2 have shown that the FDAPCEA is able to produce

results at least as good as those reported to date, using only simple genetic operators. The

sample improvement curves show that the algorithm is consistently able to release itself

from flat spots in the improvement curve.

7. Conclusions.

This paper has demonstrated the application of dynamic parameter control based on the

differential improvement in fitness between successive generations. It has shown in

general that this technique used in conjunction with basic genetic operators can provide

optimization of the DSM to at least the currently best-known solutions.

22

7.1 Applicability of Evolutionary Algorithms to the solution of the DSM.

The work by Todd (1997) as well as the work presented in this paper has clearly

demonstrated the suitability of evolutionary algorithms to the solution of the DSM.

Evolutionary Algorithms have shown in both these works to produce results better than

those produced by other non-Evolutionary methods.

7.2 Effectiveness of the FDAPCEA.

The FDAPCEA has demonstrated its effectiveness here by being able to equal best-

known solutions to the benchmark problems, without becoming trapped in local optima.

The algorithm has thus also shown its suitability to the DSM type scheduling problems.

8.0 Further Research and Potential Applications

In order to increase the practical applicability of this research it is intended to extend the

application of this algorithm to the precedence network PSP. The algorithm has shown its

suitability to this type of problem and the authors believe there is practical application of

this technique to real world project scheduling problems.

In the current form the solution to the Design Structure Matrix can be utilised to improve

the design process minimising iteration due to the interaction between various disciplines

and information sources.

23

References.

EIBEN A, HINTERDING R and MICHALEWICZ Z, Parameter Control in Evolutionary

Algorithms, IEEE Transactions of Evolutionary Computation, 1999,3,2,124 - 141.

GOLDBERG, D., 1989, Genetic Algorithms in Search, Optimisation and Machine

Learning, Addison Wesley Longman Inc.

HERROELEN W, DEMEULEMEESTER E and DE REYCK B, Project Scheduling: A

research Handbook, 1999, ISBN 1-402-07051-9, (Springer).

KOLISCH R and SPRECHER A, PSPLIB: A Project Scheduling Problem Library,

Christian Albrechts Universitat zu Kiel, Germany. Available on line at:

http: //129.187.106.231/psplib/, 1996.

LANCASTER J, Managing Iteration in Design, Engineering Designer - The Journal of

the Institution of Engineering Designers, January/February 2003 26-28.

LANCASTER J and OZBAYRAK M, Evolutionary Algorithms applied to Project

Scheduling Problems -A survey of the state-of-the-art, International Journal of

Production Research (In press).

ROGERS J, Ordering Design Tasks based on Coupling Strength, in 5th

AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and

Optimisation, 1994.

ROGERS J, Integrating a Genetic Algorithm into a Knowledge-Based System for

Ordering Complex Design Process, NASA Langley Research Centre, Hampton

Virginia, 1996.

SEWELL M, SAMARABANDU J, RODRIGO R and Mclsaac K. The Rank-Scaled

Mutation Rate for Genetic Algorithms, International Journal of Information

Technology, 2006,3,1,32 - 36.

24

THIERENS D, Adaptive Mutation Rate Control Schemes in Genetic Algorithms,

Institute of Information and Computing Sciences, Utrecht University Report UU-CS-

2002-056,2002.

TODD D, Multiple Criteria Genetic Algorithms in Engineering Design and Operation,

PhD Thesis University of Newcastle Department of Marine Technology, 1997.

URSEM R, Models of Evolutionary Algorithms and their applications in Systems

identification and control optimisation, PhD Thesis Faculty of Science University of

Aarhus, 2003.

WHITFIELD R, DUFFY A, COATES G and HILLS W, Efficient Process Optimisation,

Concurrent Engineering, 2003,11,2,83 - 92.

ZHAUNG M and YASSINE A, Task Scheduling of Parallel Development Projects using

Genetic Algorithms, in DETC '04 ASME 2004 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference

Salt Lake City, Utah USA, 2004.

25

Toward the application of genetic algorithms to real world resource
constrained project scheduling problems.

J. Lancaster°', K. Chcng°

'Advanced Manufacturing & Enterprise Engineering (AMEE)
School of Engineering and Design, Brunel University

Uxbridge, Middlesex, UB8 3PH. UK
b CB&J, Level 4,220 St. Georges Terrace, Perth, 6000, W . A. Australia

Abstract

Much research has been invested in the optimisation of the Resource Constrained Project Scheduling Problem
(RCPSP) using genetic algorithms. Reviews of this work can be found in Lancaster and Ozbayrak [II and Kolisch
and Hartmann [2]. This research however doesn't extend to the solution of real world RCPSP. As part of ongoing
research the authors describe a practical implementation of genetic algorithm optimisation within a commercial
scheduling package applied to simple real world problems. The paper will show the effectiveness of genetic
algorithms when applied to real world RCPSP.

Section 1 provides an introduction to genetic algorithms applied to the RCPSP, section 2 outlines the algorithm that
has been implemented and the development process undertaken, section 3 gives a description of the problem that has
been utilised, section 4 provides results and finally section 5 concludes and makes recommendations for further
research.

Keywords: Genetic Algorithms, RCPSP, Scheduling

1. Introduction

The Resource Constrained Project Scheduling
Problem (RCPSP) is concerned with finding the
schedule which can be executed, whilst conforming to
both precedence relations and resource limitations,
within the minimum time frame. This problem is
combinatorial in nature and is well known to be NP-
Hard. These attributes make the problem very suitable
to optimisation, or near-optimisation, using genetic
algorithm methods.

The majority of literature focuses on the
application of genetic algorithms (GA) to academic
problems, most frequently to the PSPLIB set of

problems developed by Kolisch [3). Using these
academic problems is of great value in order to
benchmark various configurations of genetic
algorithms in order to focus research and identify
positive development trends.

In this paper, a GA-based approach is presented to
scheduling resource constrained projects from real
world. It is the authors' intent to implement their
previously developed RCPSP genetic algorithm within
a commercially available scheduling software package
in order to further investigate the practical benefits to
real world projects.

2. Genetic algorithm based approach

The proposed GA approach is based on the theory
of the survival of the fittest and was originally
developed by Holland [4]. Applied to the RCPSP the
GA solution requires the initial generation of a random
population of 'chromosomes'. Each chromosome
contains a random permutation of the schedule
activities.

The algorithm then determines the fitness of each
chromosome by decoding the random sequence of
activities into a precedence and resource feasible

schedule. The fitness of each schedule then being

calculated based on the overall duration of the schedule

produced. Standard genetic algorithm operators;
selection, crossover and mutation are then applied to
produce increasingly fitter and fitter populations.

Our algorithm was initially developed within
MATLAB. A flow chart showing the algorithm
structure is given in Figure 1. The unique feature of our
algorithm is the adaptive parameter control, in that we
control the mutation factor (probability of applying
mutation) dependant upon the fitness improvement that
the algorithm has achieved over the last four
generations. Each component of the algorithm is
described in the subsequent sub-sections.

We first applied this algorithm to the solution of
scheduling problems using the Design Structure Matrix
(see Lancaster [51 and Lancaster and Cheng (6]), where
the results equalled the best known solutions to
problems previously studied by Todd [7]. A RCPSP
fitness function was then developed and the problem
tested on a number of the PSPLIB test problems, where
the algorithm was again able to equal best known
solutions.

2.1. Chromosome representation

Due to the combinatorial nature of the RCPSP the
representation used in the GA is real as opposed to
binary. This implies that each chromosome in the
population is in fact a permutation of the list of
schedule tasks, this permutation being known as an
Activity List. The length of the chromosome will
therefore be equal to the number of activities in the
schedule.

2.2. Fitness

The fitness of the RCPSP is measured by the
achieved duration of the schedule. The lower the
duration - the higher the fitness, therefore the fitness is
equal to the duration of the schedule in days. Two main
methods of Schedule Generation are normally
employed, namely serial or parallel schedule
generation. This algorithm employs serial schedule
generation which has proved tobe the most prolifically
utilised scheme in current research.

2.3. Selection

The algorithm utilises roulette selection. The
analogy of the roulette wheel in this selection method
utilises this same mechanism only with each

Fig. I. Algorithm flow chart

chromosome receiving a portion of the wheel sized in
relation to its fitness. The algorithm then performs a
function, which equates to the spinning of the wheel,
the probability of selecting a chromosome for transfer
to the temporary population is then in proportion to its
fitness.

The probability, Pr, of each chromosome, i, being
selected is calculated, where f is the fitness measure,
(see Eq. 1).

I,
f

2.4 Crossover

The crossover method employed is independent

position crossover (IPX, see Murata and Ishibuchi [81).
In this crossover method members of the Parentl

chromosome are selected randomly for transference
directly to the Childl, the balance of members of
Parentl are then used to populate the remaining
positions in Childl in the order that they occur in
Parent2 (see Figure 2).

03 06 02 03 08 02 06 01

Parent 112345678

Parent 2 14 1572683

Child 14 2165873

Fig. 2. Independent position crossover

The same process is then used to form Child2 only
this time selecting members for direct transfer from
Parent2.

2.5 Mutation

The algorithm utilises 2 point adjacent swap
mutation from Murata and Ishibuchi [81. This mutation
is further controlled via adaptive parameter setting, see
section 2.7 below.

2.6 Elitism

Due to the use of Crossover and Mutation

operators the minimum fitness solution can sometimes
fail to be transferred to subsequent generations. Elitism
maintains the best to date solution by filling a
predetermined portion of the population with the fittest

solution. For solution of this problem 25% Elitism was
selected.

7.7 Parameter control

As discussed in 2.5 mutation is utilised within the
algorithm to prevent premature convergence upon a
local minima. The authors' research has found that
there is benefit to having the mutation factor set low
when the algorithm is converging to a minima but then
increasing the factor when no improvement is
acknowledged for a number of successive generations.

Controlling the settings of parameters in this
nature is known as adaptive parameter control. i. e.
utilising information generated by the algorithm to
modify its future behaviour. A full taxonomy of
parameter setting can be found in t: iben ei al. (9(

Hartmann [I01 used a self adaptive GA where self-
adaption was used to control the algorithms choice of
schedule generation scheme (serial or parallel) but this
type of adaptive parameter control has not been utilised
in a GA solution to the RCPSP to date.

2.8 Implementation within Microsoft Project

In order to implement this algorithm within
Microsoft Project, the algorithm originally developed
in MATLAB was converted into Visual Basic tor
Applications (VBA). The User interface to the
application from within Microsoft Project is shown in
Figure 3 below.

am M
N (1[111IIM

r
ITIASAIMT

yý
ýý. ý1wTýYý

wir. ý/A wl

ýIIý1 wNýYn

Nkr wýý

V ýr1ý

Fig. 3. Application user interface

The parameter settings, population size and the
number of generations are all set via this interface.

The current limitations to this implementation
include that it currently doesn't allow for project
calendars, due to this the problem examined was set up
using a seven day calendar.

As shown in Figure 3 the following parameters
were utilised during the pinning of the algorithm:

Population Size 50
Crossover Rate 0.7
Mutation Rate 0.07
No. of Generations 20
Percentage Elitism 0.25 (25%)

3. Applied problem

The example problem is a project schedule for the

construction of a tank farm. This project network
consists of one hundred and eighty activities loaded

with one of three labour resources dependant upon the
discipline of the activity. Each of these resources is
limited to a ceiling value of a predetermined number of
man hours per day. All resources considered in this

problem are renewable. The resources and the limits

applied to them are given in Table l below.

Table I- Resource limits

RESOURCE CONSTRAINTS
Discipline Mrs

Civil 250
Struct 200
Mech 1000

The tank farm consists of eight tanks with
interconnecting pipe rack and pumps and includes the
construction of foundations as well as structural and
mechanical erection. No preferential logic has been
applied between the construction of the individual
tanks. Due to the lack of preferential logic the
construction of the individual tanks can be scheduled
independently in order to facilitate the optimisation
within resource limits. Prior to optimisation the
resource distribution is as shown in Figure 4 below.

Resource Dle 1butlon

2000
1600 " M. cn

1600 CMi

1400 31-

1200

1000
600
600
400
200

0

lei iLýlýtNO2Dý
LL ý

Fig. 4. Resource distribution prior to optimisation

4. Results and discussions

The improvement curve shown in Figure 5 below
shows the optimisation of the total duration against the
resource constraints. Continual improvement is noted
on the Minimum Fitness from Generation to
Generation. The diversity introduced into the algorithm
through the mutation adaptation is clear from the
changes in the Average Fitness curve. The Average
Fitness follows the Minimum fitness for the first 4
generations and then as the improvement of the

algorithm slows down the average fitness increases as
the algorithm widens its search due to the adaptive
increase in mutation rate. Finally the Average fitness

converges back toward the minimum.
The initial conformance to resource constraints

had the effect of prolonging the schedule by two
months; however the optimisation has then managed to
reduce this prolongation by 8 days (from 380d to 372d)
as the improvement curve in Figure 5 shows.

Improvement Curve

400

395 1390
385

380

375 LL

370 Mnntim Fitness

-- Average Fitness'

365 --r--. i
123456769 1011121314151617161920

Genera ons

Fig. 5. Improvement curve

The success of the algorithm in maintaining the
resource limits can be seen from the resource
distribution curve shown in Figure 6.

R. 0urc. DIolbutlon

1200

 r.. n
Im

" C"

pp wun

Wp

2 . 0p
0 l ißt . Fig. 6. Resource distribution post optimisation

Each of the resource limits has been tightly
maintained by the algorithm. For the mechanical
resource the lower resource level during the month of
April is due to some activities not being eligible für
scheduling due to their precedence dependence on the
civil activities. The low mechanical resource usage
toward the end is due to the low mechanical loading
during the relatively long hydro testing activities,
which are the penultimate activities for each tank.
Apart from these anomalies it can be seen that the

algorithm has made maximum use of all available
resource capacity.

5. Conclusions and future research.

The research presented here has demonstrated the
applicability of GA optimisation to real world RCPSP.
This extends the functionality of existing commercial
software beyond the existing resource levelling
capabilities to find the optimal project duration within
the imposed resource constraints.

Notable limitations of this implementation include
the fact that resources are being levelled to a uniform
distribution which is often not the practical
requirement; a refinement would allow optimisation
against profiled resource limits.

Our on-going research will investigate applying
the GA presented in this paper to practical versions of
the RCPSP that impose further optimisation goals onto
the problem. We intend to handle these problems both

using objective aggregation (weighting of objectives
to produce a single fitness index, see Bentley and
Wakefield [11]), as well as multi-objective Pareto

approaches, developing Time-Cost trade-offs as well as
solutions to more specialised Resource Constrained
problems.

References

[1] Lancaster J. and Ozbayrak M. Evolutionary Algorithms

applied to Project Scheduling Problems: A survey of the
state-of-the-art. International Journal of Production
Research. 45.2.2007. pp 425-450.

[2] Kolisch R and Hartmann S. Experimental Investigation

of Heuristics for Resource Constrained Project
Scheduling: An Update. To appear in European Journal

of Operations Research. 2005.
[3] Kolisch R and Sprecher A. PSPLIB: A Project

Scheduling Problem Library. Christian Albrechts
Universitat zu Kiel, Germany. 1996.

b/ http: //129.187.106.23I/ostili
[4] Holland J. Adaptation in Natural and Artificial Systems:

An Introductory Analysis with Application to Biology,
Control and Artificial Intelligence. Massachusetts
Institute of Technology Press. ISBN 0-262-58111-6.

[5] Lancaster J. Managing Iteration in Design. Engineering
Designer - Journal of the Institution of Engineering
Designers. January/February 2003. pp 26-28.

[6] Lancaster J and Cheng K. A Fitness Differential
Adaptive Parameter Controlled Evolutionary Algorithm
with Application to the Design Structure Matrix. To
Appear in the International Journal of Production
Research.

[7] Todd D. Multiple Criteria Genetic Algorithms in
Engineering Design and Operation. Ph. D. Thesis,
University of Newcastle, UK, 1997.

[8] Murata T and Ishibuchi Il. Performance Evaluation of
Genetic Algorithms for Flowshop scheduling problems.
Proceedings of the first IEEE conference on
Evolutionary Computation, 1994,2,812-817.

[9] Eiben A. ilinterding R, and Michalewicz Z. Parameter
Control in Evolutionary Algorithms. IEEE Transactions
of Evolutionary Computation. 3.2.1999. pp 124-141.

[10] Hartmann S. A Self Adapting Genetic Algorithm for
Project Scheduling under Resource Constraints. Naval
Research Logistics, 2002,49,433-448.

[11] Bentley P and Wakefield J. An Analysis of
Multiobjective Optimisation within Genetic Algorithms.
Division of Computing and Control Systems
Engineering. University of lluddersfield.
www. neo. lcc. uma. es

Balancing Global Project Resources utilising a Genetic Algorithm
Approach with Stochastic Resource Assignments

J. Lancaster', a, K. Cheng2, b

CB&I, Level 4,220 St. Georges Terrace, Perth, 6000, W. A. Australia
2 Advanced Manufacturing & Enterprise Engineering (AMEE)

School of Engineering and Design, Brunel University
Uxbridge, Middlesex, UB8 3PH, UK

e jlancaster@cbi. com b kai. cheng@brunel. ac. uk

Keywords: Genetic Algorithms, RCPSP, Project Scheduling

Abstract. Globalisation in large engineering, procurement and construction companies has lead in
many cases to the establishment of a number of global centres for activities such as process design,
detail design, procurement and fabrication. A company with a number of such resources then faces the
problem of maintaining a high percentage utilisation in each of these resource locations, multiple
projects need to be processed through each of these offices and which project is handled by which
office is generally more reliant on available capacity than geography, particularly in the case of
engineering centres.

This paper considers this problem as an extension of the well studied Resource Constrained Project
Scheduling Problem (RCPSP) and utilises a modified form of our existing genetic algorithm to optimise
the utilisation of multiple resource locations when scheduling multiple projects.

The unique aspect of this genetic algorithm implementation is its use of stochastic resource assignments
to simulate the assignment of certain of the project activities to different global facilities. The stochastic
resource assignment is processed as an extension to the main chromosome and is therefore optimised
along with the scheduling sequence.

Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) is a well studied academic problem
that has been shown to be well suited to optimisation via genetic algorithms. Lancaster and Ozbayrak [1]
and Kolisch and Hartmann [2] provide detailed history of the work conducted in this area to date.

A special case of the RCPSP occurs when one considers a company with multiple sites or office
locations that can process certain activities fora number of projects. Each of the offices will be aiming at
a high resource utilisation, but the more projects and the more suitable locations that can be considered
the more complex the problem of optimising the project assignments.

This paper considers the optimisation of this problem utilising genetic algorithms, the main objective
of this research is to prove the applicability of using stochastic resource assignments to solving this type
of problem. The core algorithm is based on our genetic algorithm solution to the RCPSP presented in
Lancaster and Cheng [4] with and extension to cater for the optimisation of stochastically assigned
resources.

Section 2 details the problem being considered in further detail. Section 3 of this paper discusses the
structure of the genetic algorithm. Section 4 provides the results of the application of the algorithm to
the problem and finally section 5 provides our conclusions and direction of future research.

The Multiple Facility Resource Levelling Problem.

As a test problem we will consider an organisation concerned with the Engineering, Procurement and
Construction of ten projects. The engineering of these projects can be conducted in any of the

company's three engineering facilities worldwide. Each of the engineering facilities has a limitation on
the number of man-hours per day that it has available for any given time period. Table 1 below gives the

resource limitations at each of the locations.

Resource Limits

Resource Limit
En Loci 200
Eng_Loc2 250
Eng_Loc3 400

Table 1

For the testing of this algorithm the 10 projects are included in an integrated schedule. Each of the

projects is represented for this exercise only at high level i. e. One activity each for the major project
phases: Engineering, Procurement, Fabrication, Construction and Commissioning as well as a final
Project Completion Activity. The ten Engineering activities will be the activities subject to stochastic
resource assignment, we will not consider resource assignments for the other activities for the purpose of
this exercise. In the initial state the Projects are all scheduled to start immediately with no consideration
for resource constraints. The objective of the problem will then be to find a feasible resource assignment
solution that will maintain the imposed resource constraints and further to find the minimum duration

solution under these resource constraints. The initial state resource curves are shown below for the three

resources can be seen below in figure 1. Initially the resources have been arbitrarily assigned to provide
a starting point for the algorithm

800

700

600

500

400

300

200

100

Figure 1- Initial Resource Assignments

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

It can be seen that the available engineering offices could not process the projects to this schedule.

The Genetic Algorithm.

The Genetic Algorithm used in the optimisation of this problem is based on the Fitness differential
Adaptive Genetic Algorithm previously described in Lancaster and Cheng [4,6]. In order to cater for the
novelty of this specific problem the algorithm was modified in the following manner:

The Chromosome was extended in order to hold the resource assignments for each of the activities
identified for stochastic resource assignment. In this way the resource assignments are optimised along
with the activity sequence. In order to deal with the extension specific crossover and mutation operators
had to be developed that would retain the validity of the chromosomes after the genetic operations have
been performed. Figure 2 below shows the structure of the extended chromosome where n is the number
of activities in the schedule and p is the number of activities that have been identified for stochastic
resource assignment.

f Random Permutation º 1- Extension

1234 n-3 n-2 n-I n12 P1 D

2 114 13 12 6 27 43122

Figure 2- Chromosome extension.

For this specific problem n= 60 and p= 10 as there is one Engineering activity for each project.

Fitness Function. No novelty is required in the fitness function the minimisation of duration is the
measure of fitness whilst adhering to the resource limitations. A Serial Schedule Generation Scheme
is employed to convert the sequence permutations into feasible schedules.

Selection Operator. The algorithm utilises roulette selection. The analogy of the roulette wheel in this
selection method utilises this same mechanism only with each chromosome receiving a portion of the
wheel sized in relation to its fitness. The algorithm then performs a function, which equates to the
spinning of the wheel, the probability of selecting a chromosome for transfer to the temporary
population is then in proportion to its fitness.

The probability, Pr, of each chromosome being calculated, where f is the fitness measure, (see Eq.
1).

Pr =f Pop

f

(1)

Crossover Operator. The crossover in the chromosome is performed using the independent position
crossover (IPX, Murata and Ishibuchi [8]) operation on the activity sequence portion of the chromosome
and then applying a single point crossover on the chromosome extension.

Two different operators are used due to the differing nature of the data in the two parts of the

chromosome. The main chromosome is a permutation of the activities and therefore the integrity of this
permutation needs to be maintained, that is each activity must be represented and also must only be
present once. The chromosome extension is not a permutation.

In the IPX method, members of the Parent! chromosome are selected randomly for transference
directly to the Childl, the balance of members of Parentl are then used to populate the remaining
positions in ChildI in the order that they occur in Parent2. The single point crossover simply chooses a
random point in the chromosome extension and takes the alleles to the left of this point from one parent
and the alleles to the right from the other. Figure 3 below illustrates this methodology.

4- Random Permutation 10 4- Extension 0

0.2 0.7 0.4 0.6 0.9 0.3 0.1 0.6

12 14 13 12 6 27 431_22

14 11 27 18 21 12 3 24 121 213

From Parent II From Parent 2

14 14 13 12 21 24 43113

IPX Crossover Single Point Crossover

Figure 3- Dual Crossover Operator

Mutation Operator. Mutation is also performed as two separate operations; for the main chromosome
the 2 Point adjacent swap mutation (Murata and Ishibuchi [8]) is applied. For the Chromosome

extension a simple random allele change is performed. An allele is selected at random and then a random
value choosen from the valid range for that allele, this is similar to the simple `bit-flip' mutation used in
binary representation.

See Section 3.6 for details of the parameter control utilised to modify the mutation rate.

Elitism. Due to the use of Crossover and Mutation operators the minimum fitness solution can
sometimes fail to be transferred to subsequent generations. Elitism maintains the best to date solution by
filling a predetermined portion of the population with the fittest solution. For solution of this problem
25% Elitism was selected-

Parameter Control. Mutation is utilised within the algorithm to prevent premature convergence upon a
local minima. The authors' previous research [6] has found that there is benefit to having the mutation
factor set low when the algorithm is converging to a minima but then increasing the factor when no
improvement is acknowledged for a number of successive generations.

Controlling the settings of parameters in this nature is known as adaptive parameter control. i. e.
utilising information generated by the algorithm to modify its future behaviour. A full taxonomy of
parameter setting can be found in Eiben et al. [9] this is also discussed in Lancaster and Cheng [6].

Hartmann [10] used a self-adaptive GA where self-adaption was used to control the algorithms
choice of schedule generation scheme (serial or parallel) but this type of adaptive parameter control has

not been utilised in a GA solution to the RCPSP to date.
In the optimisation runs the following settings were used for the run of the algorithms:

Population Size: 50
Crossover Rate: 0.7
Mutate Rate: 0.07
No. of Generations: 20
Elitism: 25%

Development Platform. As an extension of our previously designed algorithm, this algorithm has been
developed within Microsoft project using Visual Basic for Applications. This algorithm was previously
discussed in Lancaster and Cheng [4]. The algorithm parameters being entered via a custom user
interface as shown below in Figure 4.

project Data: Problem TYPE: GENETIC
AýiaiITf'ý'i

Mmbv d TaO.: 20 Problem: RcFSV w[n
stochwx

ResarcY

OPTIMISATION
Amber of Re-cm: s

A
AJgeRhn Settings: Output Data: ttý

N

't
Papi"- Sue: wmmRness(q:

V w ý

trussover Rate:

tS[atlon Rate: 0.07
Mohan FRness (2): - loivi Lancaster

Averepe FRrrsa (2): -
PhD Research

Nmbe, of Gmieratians:
I _- School of

Patentage Elitism: 0.25
Engkteerhg and

Desim ORUWL UNMRSITY

Atgorlth0 Progress:

0 Gen
Ga[Roýect Dde

0% Rin Alord. ->

Figure 4- Microsoft Project User Interface

The Visual Basic for applications code generated for the standard RCPSP was significantly modified
to cater for this specific problem type.

Results.

The improvement made during the search for the optimal results to the problem being considered can be
seen below in figure 5. This curve shows improvement to the optimal found solution within four
generations.

Due to the built in adaptively of the algorithm, it can be seen that the search is widened in

generation nine after four generations with no improvement to the best solution. In this case this
increased diversity can still produce no further improvement to the algorithm.

900

-Minimum Population
Fitness

850 \-- Average Population
Fitness

800

ö\/N
750

700 \/\

650

600
123456789 10 11 12 13 14 15 16 17 18 19 20

Generation

Figure 5- Improvement Curve

The Average fitness then converges toward the minimum fitness curve. Figure 6 shows the resource
levelling results obtained from the optimisation. The three resources can be seen to closely adhere to the
imposed limits. It can be seen that the available resources at each of the companies facilities are being

effectively utilised

400 --

350

300

250

200

150

100

50

0
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Figure 6- Resulting Resource Loading

Conclusions.

This algorithm has met the objectives of testing the benefits of using a genetic algorithm with stochastic
resource assignments to solve this special case of the RCPSP.

Our algorithm has successfully allocated resources to the indicated activities in order to provide a
solution within the specified resource constraints and at the same time conducted duration minimisation.

The algorithm has provided a unique utilisation of extensions to the traditional RCPSP chromosome
as well as adapting existing crossover and mutation techniques to suit this additional data.

As a direction for future research we intend to use a similar extended chromosome structure to
investigate the use of Stochastic Logic application to solve other variations on the RCPSP problem.

References

[1] Lancaster J. and Ozbayrak M: Evolutionary Algorithms applied to Project Scheduling Problems: A
survey of the state-of-the-art. International Journal of Production Research. Vol. 45, Issue 2 (2007),
p. 425-450.

[2] Kolisch R and Hartmann S: Experimental Investigation of Heuristics for Resource Constrained
Project Scheduling: An Update. To appear in European Journal of Operations Research. (2005).

[3] Kolisch R and Sprecher A: PSPLIB: A Project Scheduling Problem Library. Christian Albrechts
Universitat zu Kiel, Germany. (1996). http: //129.187.106.231/psplib/

[4] Lancaster J and Cheng K: Toward the application of Genetic Algorithms to Real World Resource
Constrained Project Scheduling Problems. To appear in the proceedings of IPROMS (2007).

[5] Holland J: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application
to Biology, Control andArtificial Intelligence. Massachusetts Institute of Technology Press. ISBN 0-
262-58111-6.

[6] Lancaster J and Cheng K: A Fitness Differential Adaptive Parameter Controlled Evolutionary
Algorithm with Application to the Design Structure Matrix. Accepted for publication in the
International Journal of Production Research (2007).

[7] Todd D: Multiple Criteria Genetic Algorithms in Engineering Design and Operation. Ph. D. Thesis,
University of Newcastle, UK, (1997).

[8] Murata T and Ishibuchi H: Performance Evaluation of Genetic Algorithms for Flowshop scheduling
problems. Proceedings of the first IEEE conference on Evolutionary Computation, (1994), p. 812-
817.

[9] Eiben A, Hinterding R, and Michalewicz Z: Parameter Control in Evolutionary Algorithms. IEEE
Transactions of Evolutionary Computation. Vol. 3, Issue 2, (1999), p. 124-141.

[10] Hartmann S: A Self Adapting Genetic Algorithm for Project Scheduling under Resource
Constraints. Naval Research Logistics, (2002), Vol. 49, p. 433-448.

[11] Herroelen W, Demuelemeester E and De Reyck B: Project Scheduling: A research handbook,
ISBN 1-402-07051-9, (Springer 1999).

SHORT COMMUNICATION I

Optimization of the hydrotesting sequence in
tank farm construction using an adaptive genetic
algorithm with stochastic preferential logic
J Lancaster' 2* and K Cheng'
'Advanced Manufacturing and Enterprise Engineering, Brunel University, Uxbridge, UK
2 Hi11 International, Abu Dhabi, United Arab Emirates

The manuscript was received on 11 October 2007 and was accepted after revision for publication on 30 October 2007.

DO!: 10.1243 / 09544054 J EM 1022

Abstract: In the construction of tank farms there is a requirement for the tanks to be hydro-
tested in order to verify that they are leak proof as well as proving the lack of differential settle-
ment in the foundations. The tanks will be required to be filled to a predetermined level and
then to maintain this loaded state for a certain period of time before being drained. In areas
such as the Middle East, water for hydrotesting is not freely available as sea water is often not
suitable for this purpose, so fresh water needs to be produced or transported to the construc-
tion site for this purpose. It is therefore of major benefit to the project to schedule the hydro-
testing of the tanks in such a manner as to minimize the utilization of hydrotest water.

This problem is a special case of the resource-constrained project scheduling problem (RCPSP)
and in this research the fitness differential adaptive genetic algorithm previously developed by
the authors has been modified to enable the solution of this real world problem. The algorithm
has been ported from the original MATLAB code into Microsoft Project using Microsoft Visual
Basic for Applications in order to provide a more user friendly, practical interface.

Keywords: genetic algorithm, resource-constrained project scheduling problem (RCPSP),
project scheduling

1 INTRODUCTION

This paper aims to provide a solution to a special case
of the well-studied resource-constrained project sche-
duling problem (RCPSP) utilizing a genetic algorithm
approach. Overviews of previous research in this area
can be found in both Lancaster and Ozbayrak [11
and Kolisch and Hartmann [2]. The unique case
considered in this paper is that the determination of
certain preferential logic links will be considered as
part of the optimization process. Certain activities
are identified that may be considered for the applica-
tion of preferential logic and a stochastic process is
used to apply this logic. This additional logic is then
stored as an extension to the normal genetic algorithm
chromosome and is therefore refined as part of the
optimization process. The problem of hydrotesting a

'Corresponding author: Claims and Construction Management,

Hill International, PO Box 5201, Abu Dhabi, United Arab
Emirates. emaik JohnLancaster@HillintLcom

number of tanks in the construction of a storage tank
farm is considered for application of this technique,
as this type of preferential logic is required in order
to ascertain the sequence in which the hydrotest water
will be transferred from tank to tank.

Oil refineries and import terminals normally
require the construction of large tank storage farms.
These farms comprise a large number of tanks of
differing volumes and designs. One normal require-
ment on the construction of all of the tanks is that
they be tested by partial filling with water in order
to test for leakage and differential settlement in the
foundations. Large volumes of water arc required
for the testing of these tanks and in order to reduce
the total quantity employed, water is transferred from
one tank to another, but with many differing capacities
planning the sequence is complex. as to maintain a
certain quantity of water within the system the total
volume of tankage under hydrotesting at any one time
will need to be approximately consistent. The object-
ive of this optimization problem is to identify the

1EMI022SC ®IMechE 2008 Pros IMechE Vol. 222 Part B: 1. Engineering Manufacture

21 Lancaster and K Cheng

4- Random Permutation º

1234 177 178 179 180
2 45 13 1168134 1178 152

Activites with Stochastic Unks

17 34 51 68 85 102 119 138
1171851 68 34

Fig. 1 Chromosome extension

sequence with the minimum duration that will utilize
no more than the total available volume of water.

This optimization becomes particularly important
in and areas such as the Middle East where water
is at a premium. Sea water is often not suitable for
this testing purpose and therefore fresh water will
often need to be produced or transported to the con-
struction site for this purpose at a large expense.

The current paper is structured as follows: section 2
looks at the additional requirements for optimiz-
ing this problem over those of the standard RCPSP;
section 3 discusses the structure of the current algo-
rithm; section 4 outlines the test problem utilized to
test the effectiveness of the algorithm; section 5 dis-
cusses the results and finally section 6 presents con-
clusions and suggestions for future research.

2 THE HYDROTESTING PROBLEM

On first consideration it would seem that the pro-
blem described would be a simple implementation
of the RCPSP; the water used in hydrotesting can be
modelled as a renewable or non-renewable resource
depending on the approach adopted, and perform-
ing a levelling of this resource within certain limits,
while minimizing the duration, would be a typical
RCPSP problem and would indeed to a certain point
provide optimization of this problem. However, the
vital component that would be missing when opti-
mizing this problem in the manner just described
is that it would not provide, as output, a routing, or
logical sequence in which water is transferred from
one tank to another.

In order to include this additional requirement
into the model, stochastic logic has been adopted
into the problem. Items in the schedule to be con-
sidered for stochastic logic are marked prior to the
optimization run. As part of the processing of each
potential schedule, logical relationships are formed
randomly between the marked activities. This sto-
chastic logic is then considered along with the exist-
ing deterministic logic during the normal processing
of the population of schedules.

3 THE GENETIC ALGORITHM

The main construction of this present algorithm is
based on that presented in Lancaster and Cheng [3],

which uses adaptation based on the fitness differ-
ential between successive generations to modify the
mutation factor. The stochastic logic has been mod-
elled as an extension to the existing chromosome,
providing a position in the chromosome for each of
the activities identified for stochastic logic.

Figure 1 shows the extension of the chromosome.
In the test problem a 180-activity schedule is utilized
with 8 activities selected for stochastic logic relation-
ships. The random permutation portion of the chro-
mosome shown in Fig. 1 holds the sequencing of all
180 activities. The extension portion shown to the
right holds 8 additional alleles (the term for a single
position within the chromosome) to map the ran-
domly generated logic. The actual values contained
in these 8 positions refer to the stochastic successor
of that particular activity. This randomly generated
logic is used during the schedule generation along
with existing deterministic logic to produce the feasi-
ble schedule.

One consideration that needs to be made is that by
purely applying random logic generation it is neces-
sary to avoid the creation of logic loops that would
prevent the formation of a feasible schedule. The
present algorithm performs loop checking utilizing a
depth first recursive cycle check in order to first iden-
tify loops where they exist and then to select a logic
link to remove in order to break the loop.

The utilization of an extension of this nature to
the normal permutation portion requires specialized
cross-over and mutation operators that are capable
of allowing for this functional division of the chromo-
some into two portions, performing their operations
on the two portions separately. In order to cater for
this a composite cross-over operator was developed.
This cross-over operator consists of two compon-
ents; the first component is a standard independent
cross-over operator (IPX (41), which is applied to the
traditional part of the chromosome, i. e. the alleles
containing the permutation of the activities or the
'activity list'. The second component, a two-point
cross-over is utilized on the chromosome extension.
This cross-over operator Is illustrated in Fig. 2.

In addition to the specialized cross-over operator
a complimentary mutation operator has also been
designed. This mutation operator also comprises
two components. The first component applied to
the main chromosome is a two-point adjacent swap
mutation operator (Murata and lshibuchi (3)) and
the second component is simply a single-bit random

Proc. IMechE Vol. 222 Part B: J. Engineering Manufacture IEM11022SC O IMechE 2008

Optimization of the hydrotesting sequence to tank farm construction 3

4---- Random Permutation º f- E)dension -º

02 07 04 06 09 03 01 06

Parent 12 114 13

12 6 27 631

22

Parent2 14 1 27 18 -___----- 21 12 3 24 22........ 13

Point 1 Point 2
II

1 -1 3 12 21 24 63212 Child 14 14 1

IPX Crossover two-Point Crossover

Fig. 2 Extended cross-over operator

change operator which is applied to the chromosome
extension. This second mutation operator selects
an allele from the chromosome extension at random
and then changes its value to a randomly selected
member of the set of activities identified for stochas-
tic logic application.

Once the cross-over and mutation have been per-
formed, a cycle checking algorithm is employed to
ensure that loops have not been introduced to the
network via the function of the genetic operators.
This algorithm will also break any detected loops to
ensure a feasible network remains. The loops are
only broken by removing links that have been sto-
chastically assigned; hence the integrity of the origi-
nal network is always maintained.

In order to communicate the logic into the algo-
rithm an adjacency matrix is utilized. The logic links
contained in the adjacency matrix are considered in
two sets: the first set is the deterministic logic links
which remain constant for the entire optimization;
the second set is the stochastic logic which will
change for each chromosome considered. To manage
this within the algorithm a copy of the deterministic
adjacency matrix is made prior to applying the serial
schedule generation scheme. The stochastic logic
for the chromosome being considered is added to
the deterministic logic and the schedule generation
algorithm is then run. Figure 3 shows a sample of
the adjacency matrix with the addition of stochastic
logic carried out at the processing of each chromo-
some; the example only shows activities from the first
tank with the hydrotest of activity of the second tank,
a stochastic link between these hydrotests has been
indicated.

The authors' original fitness differential adaptive
genetic algorithm [3] has been adapted for this
problem and has been rewritten from the original
MATLAB code into Visual Basic for Applications
(VBA) within Microsoft Project in order to provide a

1li"US9Sf 1S 11 14 lJ

Fig. 3 Adjacency matrix addition

better platform for practical implementation of this
algorithm.

4 THE TEST PROBLEM

The test problem being utilized as an example for
this problem is a 180-activity schedule representing
the construction of an 8-tank tank farm. From these
activities the 8 hydrotesting activities (1 for each
tank) have been selected for stochastic logic assign-
ment. The application of stochastic logic to this pro-
blem can result in between 1 and 8 transfer paths
for the hydrotest water, 8 separate paths if no logic
is applied, and 1 path if a continuous sequence is
formed with logic being applied to all of the stochas-
tic logic activities.

It is the aim of this problem to utilize the app-
lication of preferential logic in order to maintain
the desired level of resource utilization while also

JEM1022SC 0 [MechE 2008 Proc. INlechE Vol. 222 Part B: J. Engineering Manufacture

4 Lancaster and K

determining a suitable logic path from the hydrotest

of one tank to that of another. The target maximum
resource utilization is 140000 units of water, for the
purpose of this problem the resource levels of other
activities are ignored.

In the typical RCPSP, activities are scheduled at
their first precedence and resource feasible time. In
this problem only precedence feasibility is consid-
ered and the variation in preferential logic is utilized
to provide the vehicle for optimization. The fitness
function of the problem has been altered so that the
algorithm will aim at minimizing the resource utiliza-
tion. When a utilization is obtained that falls below
the desired limit, a reward factor is applied to the fit-

ness measure of that solution. Using this philosophy
a logic sequence will be produced that will maintain
the desired resource level. In this specific problem
this will produce a transfer path for the hydrotest

water from tank to tank that will minimize the total
water usage.

5 RESULTS

The solution provided by the algorithm produces
the Gantt chart and resource histogram that are
shown in Fig. 4. The logical path for the hydrofest

water through the 8 tanks can be seen from Fig. 4.

Activity 34 which requires 2353000 units of water
is predecessor to activity 68 also requiring 2 353 000
units and this sequence continues through activity
51 and 17. A similar chain is formed hetween the
four larger tanks requiring 33601100 units. flit
two paths that the algorithm has . elected are:
34-68-51 17 and 136 I i) 85 102. Eilure "1 also shows
that the prescribed resource limits have been tno by
the problem with the peak resource usage being
1,10 000 units.

6 CONCLUSIONS ANI) 1)IRI? (; TIONS
FOR Fll'1'l1KF. RE? SEARCII

This paper has de'scriheel a genetic alguºritlºnº O1ºtiºººi
ration of a project scheduling l)rultlenº that utilizes
preferential logic optimization in order tºi ºnee"t
resource requirements. A practical (problem has
peen elescril)ecl in order to l)nºVielee evaluation öl the
effectiveness of' he solution and the al o lithºn has
successfully provided the clesireel results.

A specific problem faced by stochastically apply-
ing preferential logic was described the formation
of cycles within the network and the solution
employed within the algurithºn fur solving this issue
was also discussed. This method of Optimization is it
parallel of the often used manual process of resource

-ask Name Durat---I Start Finish

JJ

Stocha
109

20C6
(]CI Nov Dec Ian Feb Uar Apr flay Jun Jul

34 'K102 -Hydrotest 42 days Sat 03111107 Sat 1E/12YV7 WaterO. 3S3,0001

138 -K204 - Hydrotest -8 days I. Ien Sun 1CI12/07 V 1WIVO. 36O, 0001
1211107

88 -KI 04 - Hydroteat 42 days Mon Lion 28/01/08 wabrI2.]93,000I
17/12/07

119 TK203 - Hydrotest 48 days Tue 01! 01708 Yon 18/92/08 Watarl3.3 ag000)

85 -K201 - Hydrotest 48 days Wed Tue 1"VO8 1Yatwt3.380,0001
? Oi01108

Si TK103 -Hydrotest 42 days Ward Vied 02, Ca; 08 Water(? 353,0001
20107108

102 TK202 - Hydraast 48 days Thu 20/03/08 Vied 07/C!.: 05 %Yata(3.388.000(

17 -K101 -Hydrotest 42 days Fr104/04/08 Fri leic! j08 1Wter(2,3I. 3.8(

41 . _1

Water

Over& C&ted ýüýI

AkCateU.
Y

Perak UnU

Fig. 4 Optimization cif case study problem

Proc. IMechE Vol. 222 Part B: J. Engineering Manufacture IF M110'22SC IýtechE 2(X)8

Optimization of the hydrotesting sequence in tank farm construction 5

levelling. By applying logic to selected activities it
ensures that resources are levelled in a manner that
will provide an executable schedule. Further work
can be conducted in combining this technique with
the standard RCPSP and also through multi-objective
optimization where duration and resource minimiza-
tion are considered.

REFERENCES

1 Lancaster, J. and Ozbayrak, M. Evolutionary algorithms
applied to project scheduling problems: a survey of the
state-of-the-art. fat. J. Prod. Res., 2007,45(2), 425-450.

2 Kolisch, R. and Hartmann, S. Experimental investigation

of heuristics for resource constrained project scheduling
an update. Available online at http: //129.187.106.231/
psplib/files/KH-18-2-05. pdf, last accessed 12 October
2007.

3 Lancaster, 1. and Cheng, K. A fitness differential adaptive
parameter controlled evolutionary algorithm with appli-
cation to the design structure matrix. Int. I. Prod. Res.,
(in press).

4 Murata, T. and Ishibuchl, 11. Performance Evaluation of
genetic algorithms for f(owshop scheduling problems.
In Proceedings of the First IEEE Conference on Evolu-
tionary computation, 1994,2, pp. 812-817.

5 Eiben, A., Ilinterding, R., and Mlchalewicz, Z. Parameter
control in evolutionary algorithms. IEEE- Trans. Evolu-
tionary Computation, 1999,3(2), 124-141.

6 Lancaster, 1. and Cheng, K. Toward the application of
genetic algorithms to real world resource constrained
project scheduling problems. In Proceedings of IPROMS
2007 Conference, Cardiff, Wales, 1-14 July 2007.

7 Lancaster, 1. and Cheng, K. Balancing global project
resources utilising a genetic algorithm approach with
stochastic resource assignments. In Proceedings of
e-ENGDET 2007, Harbin, China, 27-29 August 2007,
pp. 67-72.

JEM1022SC 0 IMechE 2008 Pros IMechE Vol. 222 Part B: J. Engineering Manufacture

PROJECT SCHEDULE OPTIMISATION UTILISING A
GENETIC ALGORITHM APPROACH

JOHN LANCASTER* a, b and KAI CHENG e

a Advanced Manufacturing & Enterprise Engineering (AMEE)
School of Engineering and Design, Brunel University

Uxbridge, Middlesex, UB8 3PH, UK
b Hill International, PO Box 5201, Abu Dhabi, UAE.

Abstract:

Project schedules represent a model for the execution of a project, activities are
loaded with resources and the planner will attempt to provide a sequence of execution
that meets both the required end date and the desired utilization of resources. Due to
the complexity of this problem using only commercially available tools it is not
possible for the planner to ensure he has arrived at an optimal or even near optimal
solution.

In this paper we present our recent research into the application of Genetic
Algorithms to the optimization of project schedules. We describe the general structure
of the genetic algorithm as well as the unique aspects of our algorithm and also
review the problems to which we have successfully applied the algorithm. The aim of
this paper is to provide an insight into the possibilities for optimization of project
schedules with genetic algorithm methods.

We conclude the paper with a discussion of future possible directions of research and
our beliefs in the abilityfor this methodology to be applied to real world problems.

Key Words: Genetic Algorithm, RCPSP, Project Scheduling
*To whom correspondence should be addressed.

1. Introduction

A project generally requires the completion of a number of tasks or activities.
Completing each of these activities will require the application of certain resources,
the categories of which are discussed further below. Due to the complexity of many
projects there are often many possible sequences that the tasks can be executed in
each different sequence may represent different execution methodologies or may be a
more subtle reconfiguration. Re-sequencing a set of activities can result in a different
completion time for the project and/or a different profile of resource usage.
Companies involved with project management will normally be under pressure, either
internally or from external client to execute the project as quick as possible, however
the shortest possible execution time for a project may not be supported by availability
of resources, or may not produce an acceptable capital expenditure.

Companies therefore aim to formulate a project execution methodology that will
maintain the desired or enforced resource constraints whilst still producing an
acceptable completion date. However, as mentioned above many modern projects
consist of many hundreds or even thousands of activities and the number of possible
execution configurations becomes huge, even when taking hard logic requirements
into account.

There is therefore, a need within project management, for methods by which optimal
or near optimal solutions can be readily deduced it is a fundamental objective of this
research to illustrate that optimisation by genetic algorithm will in fact provide such a
method. An overview of work that has been performed in this field can be found in
Lancaster and Ozbayrak [1] and Kolisch and Hartmann [2].

2. Genetic Algorithm

Genetic Algorithms are methods by which optimisation problems are solved through
the application of techniques, which derive their functionality from the Darwin -
Wallace principle of the survival of the fittest. This technique was first developed by
John Holland in his book "Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Application to Biology, Control and Artificial
Intelligence" [3], which provides an excellent introduction to genetic algorithm
theory.

These algorithms work with populations of possible solutions to the given problem,
encoded into binary or real strings known as chromosomes. The chromosome is made
up of a series of genes, each gene representing a variable in the problem.

The population of chromosomes is evaluated using a fitness function; if the required
end conditions are not met by the initial population then a selection of the highest
fitness chromosomes is made. These chromosomes are then paired and the pair used
to produce child chromosomes using a genetic crossover operator. In this way the
population is evolved through a series of generations until a convergence is reached
upon an optimal, or in the case of a multi-objective evolutionary algorithm a series of
optimal solutions. The process of breeding the higher fitness chromosomes to produce
even fitter children can cause premature convergence. In order to counteract this, a
random mutation operator is used in order to stimulate exploration of the full search
space.

These algorithms have consistently been found to be suitable to solving highly
complex, combinatorial problems, and due to this are highly applicable to solving
project scheduling problems.

A flow chart showing the operation of our algorithm is presented in figure 2.1 below.
This is largely typical of genetic algorithm operation with the exception of the
adaptive mechanism. Our algorithm measures the best found solution over a series of
successive generations and when it finds no improvement for a number of generations
it modifies some of its operating parameters in order to widen the search. Due to this

2

the algorithm is termed the fitness differential adaptive parameter controlled genetic
algorithm (FDAPCGA).

This paper provides an overview of our research and further detail can be found in
Lancaster and Cheng [4,5 & 61.

Figure 2.1 - The FDAPCGA flow diagram.

Each of the features of the algorithm is now discussed in further detail:

2.1. Initial Population Generation

Due to the combinatorial nature of the project scheduling problem the representation
used in the GA is real as opposed to binary. This implies that each chromosome in the
population is in fact a permutation of the list of schedule tasks, the length of the
chromosome will therefore be equal to the number of activities in the schedule.

2.2. Fitness

The fitness of the RCPSP is measured by the achieved duration of the schedule. The
lower the duration - the higher the fitness, therefore the fitness is equal to the duration
of the schedule in days. Two main methods of Schedule Generation are normally
employed, namely serial or parallel schedule generation. This algorithm employs
serial schedule generation which has proved to be the most prolifically utilised
scheme in current research.

2.3. Selection

The algorithm utilises roulette selection. The analogy of the roulette wheel in this
selection method utilises this same mechanism only with each chromosome receiving
a portion of the wheel sized in relation to its fitness. The algorithm then performs a
function, which equates to the spinning of the wheel, the probability of selecting a
chromosome for transfer to the temporary population is then in proportion to its
fitness.

The probability, Pr, of each chromosome, i, being selected is calculated, where f is
the fitness measure, (see Eq. 1).

Pr=P,
f

.
fi

2.4 Crossover

(/. /)

The crossover method employed is independent position crossover (IPX, see Murata
and Ishibuchi [81). In this crossover method members of the Parentl chromosome are
selected randomly for transference directly to the Child 1, the balance of members of
Parentl are then used to populate the remaining positions in Childl in the order that
they occur in Parent2 (see Figure 2).

0.3 0.6 0.2 0.3 0.8 0.2 0.6 0.1
Parent 11 23 4567 8

Parent 24 15 7268 3

\, . r// Child 4 21 6587 3

Figure 2.2 - Independent position crossover.

The same process is then used to form Child2 only this time selecting members for
direct transfer from Parent2.

2.5 Mutation

4

The algorithm utilises 2 point adjacent swap mutation from Murata and Ishibuchi [8].
This mutation is further controlled via adaptive parameter setting, see section 2.7
below.

2.6 Elitism

Due to the use of Crossover and Mutation operators the minimum fitness solution can
sometimes fail to be transferred to subsequent generations. Elitism maintains the best
to date solution by filling a predetermined portion of the population with the fittest
solution. For solution of this problem 25% Elitism was selected.

2.7 Parameter control

As discussed in 2.5 mutation is utilised within the algorithm to prevent premature
convergence upon a local minima. The authors' research has found that there is
benefit to having the mutation factor set low when the algorithm is converging to a
minima but then increasing the factor when no improvement is acknowledged for a
number of successive generations.

Controlling the settings of parameters in this nature is known as adaptive parameter
control. i. e. utilising information generated by the algorithm to modify its future
behaviour.

Hartmann [8] used a self-adaptive GA where self-adaption was used to control the
algorithms choice of schedule generation scheme (serial or parallel) but there is no
evidence of adaptation being applied to scheduling problems as we have incorporated
here.

3. Implementation

Our algorithm was initially developed within MATLAB where a series of academic
project scheduling problems were utilized to test the effectiveness of the algorithm.
The series of problems used for testing was PSPLIB [9].

In order to make the algorithm more applicable to real world scheduling problems the
algorithm was ported into Microsoft Project 2003 using VBA. The user interface for
the algorithm is shown below in figure 3.1.

5

pre"a DaM P^** Tom: Genetic
Number of Tag s: ISO Problem: Rip

Algorithm

Optimisation
Munter of Rexarces: 4 Logic Probability: o. 7

Fagged Tads: 8

AIgoriii Settigs: Output Data:

Pa xMnon Sze: rinnn, m Hauces (1):

Crossover Rate: 0.7 Average Eitross (1):

_
70I1 LanWSber

Minimini Ftrie66 (2): INltation Rege: 0.07 PhD Research

Mattier of Gvrlalbrs: Fiý Average Ftriess (2):

PercerT 6lt^: 0.25

Algomitho Progress: School of Engineering
Gens and Design

- 94

Run AlgWt m ->

Figure 3.1 - Microsoft Project VBA user interface.

The user interface provides feedback on the current schedule number of activities and
resources and allows settings of the algorithm run parameters and problem type.

4. Problems considered and results

Three specific problem types were considered utilizing a CPM base method:

" The standard resource constrained project scheduling problem (RCPSP),

which aims to produce the shortest possible schedule whilst maintaining the
resource limits. Multiple resources were utilized in the problem.

"A variation of the RCPSP in which selected activities can be executed using
one of a number of different resources. The resources are initially randomly
applied and the algorithm then selects the best distribution of resources in

order to achieve the shortest duration schedule.
"A further variation of the basic problem. In this variant preferential logic is

applied to selected activities by the algorithm, this logic is refined as part of
the optimization process in order to maintain resource levels and provide
optimal logic paths through the network.

Each of these problems and sample results are shown below:

6

4.1 Standard RCPSP

A sample problem comprising 180 activities was utilised. Three different resources
were loaded on the activities each with a limit that must be adhered to. The aim of the
standard RCPSP optimisation is to provide the shortest schedule whilst maintaining
the given resource limits. The applied resource limits are provided below in table 4.1.

Table 4.1 - Resource Limits

RESOURCE CONSTRAINTS
Discipline Mrs

Civil 250
Struct 200

Mech 1000

The resource histogram prior to optimisation is given below in figure 4.2 with the

optimised histogram being given in figure 4.3.

Figure 4.1 - Histogram prior to optimisation.

Figure 4.2 - Histogram after optimisation.

7

It can be seen from figure 4.2 that all three resource limits have been closely adhered
to. The schedule has extended in duration from the input state, but this is not purely
resource levelling, many iterations of resource conforming schedules were considered
by the algorithm before arriving at this minimum duration option.

4.2 RCPSP with Stochastic Resources

In some cases in scheduling problems there are a number of possible resources that
can be brought to bear to execute a given task. Each of these resources will have a
finite limit so optimising the utilisation of these resources whilst aiming to execute a
project within a minimum time span complicates the RCPSP even further.

To solve this problem variant an extension was provided to the main chromosome in
order to contain the resource allocations. By encoding the resource allocations within
the chromosome they will be optimised along with the main schedule sequence.

Modifying the chromosome also requires modification of the genetic operators, in this
case the crossover and mutation a performed in two steps first the main chromosome
using operators that will maintain the integrity of the permutation within the main
chromosome, and more simple operators for the non-permutation type information
contained within the chromosome extension.

The test problem considered here was for a company who has a number of
engineering centres through which they can process the engineering phase of a
number of projects. Each office has a fixed resource limitation but any office can
process any project. The schedule represents 10 projects at high level with a total of
60 activities.

The limits applied for each office are given below in Table 4.2.

Table 4.2 - Engineering Resource Limits

Resource Limit
En Locl 200
En Loc2 250
Eng_Loc3 400

The histogram for the problem before the optimisation is given in figure 4.3 and that
after the optimisation is given in figure 4.4 below.

8

800

700

600

500

400

300

200

100

0

Figure 4.3 - Engineering Histogram prior to optimization

400

350

300

250

200

150

100

50

0

Figure 4.4 - Engineering Histogram after optimization

It can be seen that the algorithm has successfully and closely adhered to the limits for

each of the engineering centres.

4.3 Stochastically applied preferential logic

Resource levelling routines within currently available software applications are often
not easy to utilise practically as they are difficult to control and can often provide less
than optimal sequences of activities in their quest to maintain resource limits.

In practice planners often resort to applying preferential logic in order to level

resources. This implies that `resource paths' are hard wired into the logic rather than
relying on resource limits to push activities into areas of high resource availability.

9

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb War

The previous two versions of the RCPSP considered above do not account for this
possibility. In many schedules there are a number of possible areas where preferential
logic could be applied in various different combinations. We modified the existing
FDAPCGA in order that it would make an initial stochastic assignment of preferential
logic links to a number of identified tasks.

This required the use of an extension to the chromosome in order to contain the
preferential logic assignments. In this way the logic links are refined as part of the
optimisation process.

As a test case for this variant of the algorithm we used the hydro-testing of the eight
tanks as a test problem, with a limitation of 140,000 units of water to perform all the
hydro-tests. The eight tanks are in two groups, each tank in a group has the same
dimensions and therefore volume. The eight hydro-testing activities were flagged for

preferential logic application. The outcome of the optimisation is given below in
figure 4.5.

Trt Na. Dur` Staat Fosh Slag
Jf

34 TK102 - MyMO/est 42 dya Sat 0Y11107 Sat 15/12/07 If

136 7804 - Hydrotest 48 days Meal Sun30/12107 If
12/11107

65 TK104 - Mydrobst 42 days Moo Mon 28/01! 08 r
17/12/07

119 TK203 - Hydratest 48 days Tue 01001108 Mon 10/02/08

8S TK201 - Hydr~ 48 days Wed Tue 18103/18
3010108

51 TK103 - Hydrotest 42 drys Wed Wed 02N1/08 r
20102/08

102 TK202 - Nydiuhst 48 drys Thu 20/ 308 Wed 07/05/08

17 TKIOI - Mydrobdt 42 days Fri 04 0W8 Fri 16/05108

t44 000-

t2 000-
�i 000 -

waef I 96000-
owafte. ba

p 90 000 -
AbcrteO

64 000 -

48000-

32,000-

16000.

2DDS
Nov Doc J8. Feb Uff Apr Wy Jun Jul

wreriz. ýsi. ýl

Wit.. 12.3b3J I

waft. 1, N1

-W . F(i. 7N. MSl

Y46M 2.767. wq

WON 3ýMANI

PeN Unb

Figure 4.5 - Optimisation using preferential logic.

Two paths were generated through the schedule, activities 34,68,51 & 17 formed one
path and 136,119,85 & 102 the second. The algorithm has formed the sequences of
water transference so that in each case the tanks in a chain are all of the same size,
which would be desirable as it would prevent water being brought in and out of the
system which would increase the overall usage.

It can be seen from the resource histogram that the resource limit of 140,0(X) units has
been maintained by the algorithm.

I0

This problem is a relatively simple application but indicates the possibilities of
introducing preferential logic into the optimisation process.

5. Conclusions and future research
We have shown that genetic algorithms can be applied successfully to a range of
project scheduling problems, producing results that adhere to the problem
requirements. We have described the unique aspects of our algorithm as well as
applying this algorithm to variants of the RCPSP not currently found in the literature.

To date most of the work involving application of genetic algorithms to project
scheduling has been in the academic domain, we believe that the above example
indicates that there are benefits from application of genetic algorithms to real world
project scheduling problems.

Further development of this algorithm would include a multi-objective version to
produce the full time-cost trade-off curve for a given project and combining the three
problem variants presented here into a single optimization run.

Reference

[1] Lancaster J. and Ozbayrak M. Evolutionary Algorithms applied to Project
Scheduling Problems: A survey of the state-of-the-art. International Journal of
Production Research. 45.2.2007. pp 425-450.

[2] Kolisch R and Hartmann S. Experimental Investigation of Heuristics for Resource
Constrained Project Scheduling: An Update. To appear in European Journal of
Operations Research. 2005.

[3] Holland J. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Application to Biology, Control and Artificial Intelligence. Massachusetts
Institute of Technology Press. ISBN 0-262-58111-6.

[4] Lancaster J and Cheng K. A Fitness Differential Adaptive Parameter Controlled
Evolutionary Algorithm with Application to the Design Structure Matrix. To
Appear in the International Journal of Production Research.

[5] Lancaster J and Cheng K. Toward the Application of Genetic Algorithms to Real
World Resource Constrained Project Scheduling Problems. The proceedings of the
I*PROMS 2007 Conference, Cardiff, Wales, 1- 14 July 2007.

[6] Lancaster J and Cheng K. Balancing Global Project Resources utilising a Genetic
Algorithm approach with Stochastic Resource Assignments. The proceedings of e-
ENGDET 2007, Harbin, China, 27 - 29 August 2007, Pages 67 - 72.

[7] Murata T and Ishibuchi H. Performance Evaluation of Genetic Algorithms for
flowshop scheduling problems. Proceedings of the first IEEE conference on
Evolutionary Computation, 1994,2,812-817.

[8] Hartmann S, 2002, A Self Adapting Genetic Algorithm for Project Scheduling
under Resource Constraints. Naval Research Logistics, 49,433-448.

[9] Kolisch R and Sprecher A, PSPLIB: A Project Scheduling Problem Library,
Christian Albrechts Universitat zu Kiel, Germany. Available on line at:
http: //129.187.106.231/psplib/, 1996.

11

Short Communication Paper

Genetic algorithm based resource optimisation in project

scheduling problems using preferential logic

JOHN LANCASTER* and KAI CHENG

Abstract:

Resource levelling algorithms are normally concerned with re-sequencing activities

within the logic constraints in order to maintain prescribed resource limitations. The well

studied resource constrained project scheduling problem extends this to require

minimization of the overall duration in addition. In practice planners often utilize

preferential logic to assist with resource levelling as it allows more control than the

resource levelling algorithms that commercial software provides.

In this algorithm we extend our previously developed Fitness Differential Adaptive

Parameter controlled genetic algorithm (FDAPCGA) to allow for preferential logic to be

stochastically introduced to selected activities and optimized as part of the overall

optimization process. We discuss the complications that arise from this process and the

techniques we have employed to overcome them. We review the capability of the

algorithm by reviewing the application to two case study problems.

Key Words: Genetic Algorithm, RCPSP, Project Scheduling, Preferential logic.

*To whom correspondence should be addressed.
do Hill International, PO Box 5201, Abu Dhabi, UAE.

1

1. Introduction

Within Project Schedules preferential logic is sometimes used to formulate paths and

precedence relationships in the network that are not pure dependencies, but are often used

to `hard code' resource paths into the network. This type of logic is often used when

scheduling key resources within a network. For example a contractor may have a large

crane that maybe the only crane available that is suitable for a series of heavy lifts. The

Contractor may plan the sequence of operation for the crane by using preferential logic to

link the heavy lift activities in a manner that supports the general path of construction.

Often there are many possible combinations of preferential logic that can be applied to a

project network, each combination will produce a different outcome regarding the overall

duration of the schedule. In this paper we consider the use of stochastically applied

preferential logic within the optimization process, as a method for levelling resources

within the schedule.

Many planners are familiar with using preferential logic to effect resource levelling as

this is often a more controlled method than allowing the resource heuristics built into

commercial software to make the decisions on activities priorities. Although different

methods of prioritising the assignment of resources are normally available it is normally a

very hit and miss affair and if only pure logic is present it can be very difficult to produce

a workable result. We propose a genetic algorithm approach for optimising resource

usage using preferential logic.

A large amount of research has been invested into the application of optimising the

resource constrained project scheduling problem (RCPSP) using Genetic Algorithm

2

methods. Lancaster and Ozbayrak (2007-1) and Kolisch and Hartmann (2005) provide

detailed reviews of the work conducted in this area to date.

2. Genetic Algorithm Structure

In previous papers, Lancaster and Cheng (2007-2 & 3), we have described the operation

of our fitness differential adaptive parameter controlled GA (FDAPCGA). The main

feature of this algorithm is that it adjusts the mutation factor based on the amount of

improvement detected in the previous few generations. Hartman (2002) utilised Self-

Adaptation to select the schedule generation schedule being used by the algorithm. Self

adaptation refines a variable, such as the schedule scheme to be used, within the

algorithm in order to optimise this variable for the specific problem being considered. In

our algorithm we use adaptation in a different way changing a variable based on the

conditions prevalent at a particular time during the algorithm run. Eiben et al (1999)

provide an excellent taxonomy of adaptation in Genetic Algorithms which details the

differences further. We are not aware of another project scheduling genetic algorithm that

utilises adaptation. Further modifications need to be made to the algorithm in order to

accommodate the inclusion of the preferential logic into the optimisation process. These

modifications are described further below.

2.1 Chromosome Structure

In order for the preferential logic to be optimised as part of the general optimisation

process, we have modelled the stochastic logic as an extension to the existing

3

chromosome. Each of the activities flagged for preferential logic has a position in the

chromosome extension.

4 Random Permutation 10

1234 177 178 179 180

12 45 13 168134 1178 152

Activites with Stochastic Links

17 34 51 68 85 102 119 136
1171851 68 34

Figure 1- Chromosome Extension

Figure 1 shows the extension of the chromosome. In the test problem a 180 activity

schedule is utilised with 8 activities selected for stochastic logic relationships. The

Random permutation portion of the chromosome as shown in Figure 1 holds the

sequencing of all 180 activities. The extension portion shown to the right holds eight

additional alleles to map the randomly generated logic. The actual values contained in

these 8 positions refer to the stochastic successor of that particular activity. For example

in Figure 1 activity 34 would be a predecessor of activity 17. This randomly generated

logic is used during the schedule generation along with existing deterministic logic to

produce the feasible schedule.

One consideration that needs to be made is that by purely applying random logic

generation we need to avoid the creation of logic loops which would prevent the

formation of a feasible schedule. Our algorithm performs loop checking after the

generation of the stochastic logic, correcting this where it occurs and thereby ensures the

generation of a feasible schedule, this is explained later in the paper.

4

The utilization of an extension of this nature to the normal permutation portion requires

specialized cross-over and mutation operators that are capable of allowing for this

functional division of the chromosome into two portions performing their operations on

the two portions separately.

2.2 Crossover Operator

To cater to this we have developed a composite crossover operator. This crossover

operator consists of two components; the first component is a standard independent

crossover operator (IPX, Murata and Ishibuchi, 1994) which is applied to the traditional

part of the chromosome i. e. the alleles containing the permutation of the activities or the

`activity list'. IPX crossover has been selected for this portion of the chromosome as the

IPX crossover operator will maintain the integrity of the permutation held in the main

body of the chromosome. The second component is a two-point crossover is utilised on

the chromosome extension. This crossover operator is illustrated below in Figure 2.

4 Random Permutation 10 4 Extension 10

0.2 0.7 0.4 0.6 0.9 0.3 0.1 0.6

Parent 12 114 13 12 6 27 631................ 22

............... Parent 241 127 18 21 12 3 124 2213

Point 1 Point 2

Child 14 114 113 12 21 24 63212

IPX Crossover Two-Point Crossover

5

Figure 2- Extended Crossover Operator.

Two-point crossover can be employed on the chromosome extension as this portion is not

a permutation.

2.3 Mutation Operator

In addition to the composite crossover operator we have also designed a complimentary

mutation operator. This mutation operator also comprises two components. The first

component applied to the main chromosome is a two point adjacent swap mutation

operator (Murata and Ishibuchi, 1994) again due to the fact that two point adjacent swap

mutation will maintain the integrity of the permutation. The second component is simply

a single bit random change operator which is applied to the chromosome extension. This

second mutation operator selects an allele from the chromosome extension at random and

then changes its value to a randomly selected member of the set of activities identified for

stochastic logic application.

2.4 Cycle Checking Algorithm

Once the crossover and mutation have been performed, a cycle checking algorithm is

employed to ensure that loops have not been introduced to the network via the function of

the genetic operators. This algorithm will also break any detected loops to ensure a

feasible network remains. The loops are only broken by removing links that have been

stochastically assigned; hence the integrity of the original network is always maintained.

The cycle checking algorithm utilises the adjacency matrix to identify these cycles.

6

The logic links contained in the adjacency matrix are considered in two sets; firstly the

deterministic logic links which remain constant for the entire optimization, the second set

is the stochastic logic which will change for each chromosome considered. To manage

this within the algorithm a copy of the deterministic adjacency matrix is made prior to

applying the serial schedule generation scheme. The stochastic logic for the chromosome

being considered is added to the deterministic logic and the schedule generation

algorithm is then run. Figure 3 below shows a sample of the adjacency matrix with the

addition of stochastic logic carried out at the processing of each chromosome the

example only shows addition of a single preferential logic assignment linking activity 34

to activity 17.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

123456789 10 11 12 13 14 15 16 17 ... 34 ... 180

34

180

Figure 3- Adjacency Matrix Addition

7

As these links an added through it stochastic process we have no guarantee that the

placement of this additional logic will not create cycles or loops within the network.

Cycles (feedback logic) cannot be handled by critical path method or precedence network

calculations, only by the Design Structure Matrix. If cyclic logic is introduced we

therefore need to be able to detect this and break these links prior to performing

scheduling operations. In this algorithm we employ a recursive depth first search

algorithm to examine the network after addition of the additional logic.

A Recursive Depth First Search (DFS) is it technique used to explore all the paths

running through it directed graph. I)FS is utilised within this algorithm to run through

each path in the network and examine each of these paths for cycles.

Depth first search starts from a given node in the network and follows the outgoing logic

from the node. Where it branch exists the algorithm follows one of' the branches and

continues until it reaches the final node in the path, that is, it node with no outgoing logic.

Once such it node is reached the algorithm backs up to the last branch detected and then

pursues the path on the alternative, or one of the alternative branches. Consider file

adjacency matrix given in Figure 4 below:

1

2

3

4

5

6

7

8

9

10

123456789 10

8

Figure 4- Sample Adjacency Matrix.

This adjacency matrix consists of ten activities with feed forward only logic, that is no

cycles exist. It can be seen that branches lead out of nodes 2,4 & 5. The depth first search

that would result starting from node I would be as shown in Figure 5 below. The order of

the search is given here by the number given against the link arrow.

17

Figure 5- The DFS search order.

9

From Figure 5 the algorithms search behaviour surrounding branches can be clearly seen.

As stated previously a recursive algorithm has been utilised to implement this DFS.

Recursion indicates that a sub-routine that makes call, or calls, to itself.

A Visual Basic for Applications (VBA) implementation of the recursive DFS algorithm

within Microsoft Excel was utilised to test and illustrate the operation of this algorithm.

The code for the main sub-routine is given below:

Sub DFS(v)
If vMatrix(v, v) =9 Then

Sheetl. Cells(v, v) _ "c"
LoopList(v) = "c"

Else

vMatrix(v, v) =9
For d=1 To MatrixSize

If vMatrix(v, d) =1 Then
DFS (d)

End If
Next d
'vMatrix = AdjMatrix

End If
End Sub

In this code AdjMatrix is a square matrix variable with dimension MatrixSize x

MatrixSize. vMatrix is a variable with the same dimensions as AdjMatrix that is set equal

to AdjMatrix prior to the first call to DFS(v). LoopList is a vector with dimension

MatrixSize in which activities incorporated in a loop are marked with a V.

Consider Figure 6 below in which two feedback logic links have been introduced to the

matrix given previously in Figure 4. The loops are also shown in Figure 7 in terms of the

depth first search process.

10

1

2

3

4

5

6

7

8

9

10

123456789 10

Figure 6- Adjacency Matrix with Feedback Logic.

17

6

7

8

9

Figure 7- The DFS Tree showing the feedback logic.

11

In this Microsoft Excel implementation, the recording of nodes that formed part of a

cycle will simply be marked in the matrix by the character `c' instead of recording them

in the LoopList vector and the cycles are broken by removing the "I's" causing the

feedback. The result from running the algorithm is as shown below in Figure 8:

1

2

3

4

5

6

7

8

9

10

123456789 10

Figure 8- Adjacency Matrix with cycles broken.

It can be seen that the feedback loops have been successfully removed from the matrix,

and the nodes included in the cycle have clearly been indicated with a V. This test code

was then ported into the Microsoft Project VBA based algorithm utilising exactly the

same operation.

3. Example Problems

In order to illustrate the functionality of this algorithm two sample projects are utilized in

Microsoft Project. The first project comprises 22 activities and represents a high level

schedule for the construction of 5 storage tanks of varying dimensions, including the civil

(foundation only) and mechanical (Tank Structure) construction in simplified form. The

12

schedule was loaded with two resources a civil labour resource and a mechanical labour

resource. The algorithm allows an input to determine which resource is the target of

optimization as shown below in Figure 9 the button in the `Opt. ' column indicates the

selected resource.

Figure 9- Resource Setup within Microsoft Project.

As can be seen from Figure 9 the goal of the optimization is to level the civil resource

below the limit of 250 units. Due to the way Microsoft Project handles labour type

resources, it was decided to use the material type resource to model the labour as man-

hours, rather than using the standard % type assignment used for labour resource.

Figure 10 below shows a filter of the schedule, giving only the civil activities, prior to the

optimization showing that the resource level greatly exceeded the imposed limitations.

13

o -W Nrre OYT"ý st mJ" f~ J skd 4lqýK1 J '1 wem. _ , o*-

om anö
Z ýwýMýBOn 2! «7. TuýZY, 607 Yon, en . 21 r Ur, 30

e loufld fl M4yý TIMZY, OA7 Ycn, W,,, v7 ý^'(7. ybJ _

Sea�, 1.23,1. A7 ß�2,,, A, ' C,, 2 QU., 14 F .. d n 28d" Tw 2Y1 0107 U. 1w1I 1r r-K4 Sem

is FOYww- 2$WY. Too 2I1$. $7 Mo. 1 1t$1 ' Cm, 4.6001

Cmd
oý«roc. ra -

nbc. re _

Prooo. ea

Figure 10 - Civil Activities prior to optimization run

0 T. * M- -: N-weý l Dll J' ow, J FMM J =J ý 01 01 l OCWbW J ' Y ýy- ýrw aaw too zv1o ' ov I 2"2 üol c
23 ý 28d. " Wo02u10007 Tu. 26i I07 If C3 0001

a3 1aW+mn ze Oý T- 2Y14O7 Tyr 20, I. MIT, C 3.5007

f0 3 F-4. b" 7c 0. y. Typ 2001037 Tue 291D07 C7 3 0001

1. '3 F.. 4.6n 250" T-25012037 TusZ203tgy r Ci. 445d01

1! 3 FtW d l' 2! 0ps Tue 2D01036 Too 19N2A6 r C-4. sm,

41 1

C
ova -

cd

WO ww 01 J. w. y al AV
3607 ' 1609 22/10 OY12 I4 1 2S02 07,

zoo-.. -.

zoo-

ISO-

120-

cskuMs

Figure II- Civil Activities after the optimization run

Here we consider a second project, a tank farm consists of eight tanks that need hydro-

testing with a limited quantity of water. The algorithm needs to produce a path of water

transfer between the tanks that will be executable within the preset limitation. The preset

14

limit in the case of this project is 140,000 units of water. The resource selected for

optimization is water, which has been determined in the same manner as that shown in

Figure 9.

In the typical RCPSP activities are scheduled at their first precedence and resource

feasible time. In this problem we only consider precedence feasibility and utilise the

variation in preferential logic to provide the vehicle for optimisation. The fitness function

of the problem has been altered so that the algorithm will aim at minimising the resource

utilisation, when an utilisation is obtained that falls below the desired limit a reward

factor is applied to the fitness measure of that solution, in the case of this problem a

factor of 2 was utilised.

Using this philosophy a logic sequence will be produced that will maintain the desired

resource level. In this specific problem this will produce a transfer path for the hydro-test

water from tank to tank that will minimise the total water usage. Figure 12 below shows

the result produced by the algorithm.

Two distinct transfer paths are produced; one path transferring water from on tank to

another in the group of larger tanks and the other passing water from one tank to another

in the group of smaller tanks. The two sequences of activities that the algorithm has

therefore produced are:

34-68-51 - 17

136-119-85-102

15

This would logically be the most effective method of transferring water efficiency. The

optimised schedule is given below in Figure 12.

34

Its X2t3-I$1« W

51 K103-

162

Myarvr

I? extol wýr+

JJ

IZ IIw rnrý Sbdu =l JJ '1 ýWU Ott NOV ' UK ' J.. ra ui_ 4p M1 Fyn M
426W Sr 0111N1 SM ývtu> r- mm J. 1NAq

.e an aý. - ýaýu, ýº w. rrlý. ýw. rM
Im,

a e. » wý m- mim If ý wo mju. II
,. 11247

a w. Tt mm, me Mo, tamim r W . o(3 sawq

.e a» w. 1 TOO Ism, mo r w. rK3. ýw. wp

02 Wy, w'0 wo, O2O096 If -W . ot2, M3JI

orvsoe ýº 'e 4M 11w2 U3. V WM

. 2"" Fn0u14w rn, aosie ýº

Wwr
O výYabO _

4b__E
Y

!J
Otl 0 Mc Jr. iM M Yq J .. 111_

t N. 000- --...
ILIIIIIII__

T_

Figure 12 - Optimisation of Hydrotesting Problem.

4. Conclusions

We have demonstrated a methodology, incorporated within and adaptive genetic

algorithm, by which, preferential logic is applied stochastically at run time and then

refined as part of the optimization process. We have discussed the potential issue of

introducing cycles during this process and have described the methodology we have

utilized to overcome this. The algorithm has been demonstrated using two different test

problems which have both been successfully optimized.

Further research could investigate integrating this approach within other forms of RCPSP

to provide a more controllable, flexible optimization process.

16

References

LANCASTER J. and OZBAYRAK M., 2007, Evolutionary Algorithms applied to Project

Scheduling Problems: A survey of the state-of-the-art. International Journal of
Production Research. 45,2, pp 425-450.

KOLISCH R and HARTMANN S., 2005, Experimental Investigation of Heuristics for

Resource Constrained Project Scheduling: An Update. To appear in European Journal

of Operations Research. Available online at http: //129.187.106.231/psplib/files/KH-

18-2-05. pdf last accessed 12 October 2007

LANCASTER J and CHENG K., 2007, A Fitness Differential Adaptive Parameter

Controlled Evolutionary Algorithm with Application to the Design Structure Matrix.

Accepted for publication in the International Journal of Production Research.

HARTMANN, S., 2002, A Self Adapting Genetic Algorithm for Project Scheduling

under Resource Constraints. Naval Research Logistics, 49,433-448.

EIBEN A, HINTERDING R, and MICHALEWICZ Z., 1999, Parameter Control in

Evolutionary Algorithms. IEEE Transactions of Evolutionary Computation. 3.2. pp

124-141.

MURATA T and ISHIBUCHI H., 1994, Performance Evaluation of Genetic Algorithms

for Flowshop scheduling problems. Proceedings of the first IEEE conference on

Evolutionary Computation, 2,812-817.

17

