

MapReduce Network Enabled Algorithms for

Classification Based on Association Rules

A Thesis submitted for the Degree of

Doctor of Philosophy

By

Suhel Hammoud

Electronic and Computer Engineering

School of Engineering and Design

Brunel University

May 2011

ii

Abstract

There is growing evidence that integrating classification and association rule mining can

produce more efficient and accurate classifiers than traditional techniques. This thesis

introduces a new MapReduce based association rule miner for extracting strong rules from

large datasets. This miner is used later to develop a new large scale classifier. Also new

MapReduce simulator was developed to evaluate the scalability of proposed algorithms on

MapReduce clusters.

The developed associative rule miner inherits the MapReduce scalability to huge datasets and

to thousands of processing nodes. For finding frequent itemsets, it uses hybrid approach

between miners that uses counting methods on horizontal datasets, and miners that use set

intersections on datasets of vertical formats. The new miner generates same rules that usually

generated using apriori-like algorithms because it uses the same confidence and support

thresholds definitions.

In the last few years, a number of associative classification algorithms have been proposed,

i.e. CPAR, CMAR, MCAR, MMAC and others. This thesis also introduces a new

MapReduce classifier that based MapReduce associative rule mining. This algorithm

employs different approaches in rule discovery, rule ranking, rule pruning, rule prediction

and rule evaluation methods. The new classifier works on multi-class datasets and is able to

produce multi-label predications with probabilities for each predicted label. To evaluate the

classifier 20 different datasets from the UCI data collection were used. Results show that the

proposed approach is an accurate and effective classification technique, highly competitive

and scalable if compared with other traditional and associative classification approaches.

Also a MapReduce simulator was developed to measure the scalability of MapReduce based

applications easily and quickly, and to captures the behaviour of algorithms on cluster

environments. This also allows optimizing the configurations of MapReduce clusters to get

better execution times and hardware utilization.

iii

Acknowledgements

I would like to thank all those who have given me academic and moral support for my

research work over the last years. I would like to thank the department of Electronic and

Computing Engineering, in particular to my supervisor, Dr. Maozhen Li for his guidance and

valuable advice.

I would like to thank my wife Zena Ibrahim for her support. I dedicate this work for her and

for all my family members.

I would like to thank my friends Dr. Fadi Thabtah, Dr. Ivan Rankin, Yang Liu and Nasullah

Khalid Alham for their help and advice in my research.

I would like to thank my friends Adam Daowd, Ahmad Daowd, and Ruaa Hasan for their

support.

iv

Declaration

The work described in this thesis has not been previously submitted for a degree in this or

any other university and unless otherwise referenced it is the author’s own work.

v

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be published

without his prior written consent and information derived from it should be acknowledged.

vi

Publications

The following papers have been published for publication or under review as a direct or

indirect result of the research discussed in this thesis.

Journal Papers

F. Thabtah, P. Cowling, and S. Hammoud, ―Improving rule sorting, predictive accuracy and

training time in associative classification,‖ Expert Systems with Applications, vol. 31, Aug.

2006, pp. 414-426.

N.K. Alham, M. Li, S. Hammoud, L. Yang, and M. Ponraj, ―A distributed SVM for image

annotation,‖ 2010 Seventh International Conference on Fuzzy Systems and Knowledge

Discovery, Aug. 2010, pp. 2983-2987.

Y. Liu, M. Li, N.K. Alham, and S. Hammoud, ―HSim: A MapReduce simulator in enabling

Cloud Computing,‖ Future Generation Computer Systems, May. 2011.

N. K. Alham, M. Li, Y. Liu and S. Hammoud, Parallelizing Multiclass Support Vector

Machines for Scalable Image Annotation, Neurocomputing, Elsevier Science 2010. (under

review).

N. K. Alham, M. Li, Y. Liu and S. Hammoud, A Resource Aware Parallel SVM for Scalable

Image Annotation, Parallel Computing, Elsevier Science. 2010. (under review).

Y. Liu, M. Li, N. K. Alham, S. Hammoud, A Resource Aware Distributed LSI for Scalable

Information Retrieval, Information Processing and Management, Elsevier Science. 2010

(under review).

Conference Papers

Y. Liu, M. Li, S. Hammoud, N.K. Alham, M. Ponraj, Distributed LSI for Information

Retrieval, Proc. of IEEE FSKD’10, pp. 2978-2982.

N. K. Alham, M. Li, S. Hammoud, Y. Liu, M. Ponraj, MapReduce-based Distributed SMO

for Support Vector Machines, Proc. of IEEE FSKD’10, pp. 2983-2987.

S. Hammoud, M. Li, Y. Liu, N. K. Alham, Z. Liu, MRSim: A Discrete Event based

MapReduce Simulator, Proc. of IEEE FSKD’10, pp. 2993-2997.

N. K. Alham, M. Li, S. Hammoud and H. Qi, Evaluating Machine Learning Techniques for

vii

Automatic Image Annotations, Proc. of IEEE ICNC09-FSKD09, pp.245-249, 2009 (invited

paper).

viii

Table of Contents

Chapter 1 .. 1

1.1 Background ... 1

1.1.1 MapReduce Framework .. 2

1.1.2 MapReduce Simulation .. 3

1.1.3 Mining Frequent Items and Associations .. 3

1.1.4 Classification and Prediction using Association Rules .. 5

1.1.5 High Performance Computation in Mining Association Rules 6

1.2 Motivations of the Work.. 7

1.3 Major Contributions .. 9

1.4 Structure of the Thesis ... 10

Chapter 2 .. 12

2.1 Introduction ... 12

2.2 Map Reduce Framework for Scalable Intensive Data Applications 12

2.2.1 MapReduce Programming Model ... 13

2.2.2 MapReduce Implementations ... 14

2.2.3 Map Reduce Framework Simulator... 14

2.2.4 Grid System Simulators .. 14

2.2.5 Limitations of Grid Simulators ... 15

2.2.6 Mumak MapReduce Simulator ... 15

2.2.7 MRPerf MapReduce Simulator ... 16

2.3 Mining Association Rule ... 18

2.3.1 Association Rule Discovery Problem .. 19

2.3.2 Association Rule Data Layouts ... 20

ix

2.4 Common Association Rules Techniques .. 21

2.4.1 Apriori.. 21

2.4.2 Dynamic Itemset Counting ... 22

2.4.3 Frequent Pattern Growth ... 23

2.4.4 Partitioning ... 23

2.4.5 Direct Hashing and Pruning .. 24

2.4.6 Multiple Supports Apriori ... 25

2.4.7 Confidence-Based Approach .. 25

2.4.8 Tid-List Intersection ... 26

2.4.9 Constraint-Based Association Mining ... 27

2.5 Classification in Data Mining .. 27

2.5.1 Simple One Rule .. 27

2.5.2 Decision Trees .. 28

2.5.3 ID3 Algorithm .. 28

2.5.4 C4.5 Algorithm... 29

2.5.5 Statistical Approach (Naïve Bayes)... 29

2.5.6 Rule Induction and Covering Approaches ... 30

2.5.7 Prism .. 31

2.5.8 Hybrid Approach (PART)... 31

2.6 Associative Classification Mining.. 32

2.6.1 Associative Classification Problem and Common Solutions 32

2.6.2 CBA ... 33

2.6.3 CPAR ... 34

2.6.4 CACA .. 34

2.6.5 BCAR .. 35

2.6.6 MCAR.. 35

2.7 Issues in Classification .. 36

x

2.7.1 Overfitting .. 36

2.7.2 Inductive Bias... 36

2.8 Summary ... 36

Chapter 3 .. 38

3.1 Introduction ... 38

3.2 MRSim: MapReduce Simulator for Apache Hadoop ... 38

3.2.1 MRSim Features ... 39

3.2.2 System Architecture ... 40

3.3 Differences between MRSim and MRPerf Simulators ... 62

3.4 Validating MRSim .. 63

3.4.1 Design Validation ... 63

3.4.2 Local Cluster Experiment Validation .. 69

3.4.3 Sort Benchmark Validation ... 77

3.5 Summary ... 80

Chapter 4 .. 81

4.1 Introduction ... 81

4.2 Paralleling Apriori -like Algorithms that Uses Horizontal Data Representation 81

4.3 Paralleling Algorithms with Vertical Data Representation 82

4.4 MRApriori .. 83

4.4.1 Data Initialization ... 84

4.4.2 Frequent Items Discovery and Rule Pruning ... 87

4.4.3 Generate Strong Association Rules Form Frequent Itemsets 91

4.4.4 Algorithm Features ... 92

4.5 Scalable Distributed Set Intersection ... 93

4.6 Implementation ... 95

4.6.1 WEKA Software... 95

4.6.2 MR-Apriori in Weka .. 96

xi

4.6.3 Map-Reduce Implementation .. 99

4.7 Experiments .. 99

4.7.1 Number of frequent Item Sets ... 99

4.7.2 Times for find frequent Item Sets in Standalone Implementation 100

4.8 MRApriori Performance in Hadoop Cluster ... 101

4.8.1 Cluster Configuration ... 101

4.8.2 Scalability & Simulation Results .. 103

4.9 Summary ... 105

Chapter 5 .. 106

5.1 Introduction: .. 106

5.2 The Proposed MapReduce-MCAR (MRMCAR) Algorithm................................... 106

5.2.1 Initialization ... 107

5.2.2 Frequent Ruleitem Discovery ... 109

5.2.3 Rule Pruning and Classifier Building .. 115

5.3 MRMCAR for Multi-Label Classification ... 117

5.4 Confidence Batch Classifier .. 118

5.5 Rule Ranking and Sorting Criteria ... 120

5.6 Prediction and Test .. 122

5.6.1 Single Rule Prediction .. 122

5.6.2 Prediction Based on Groups of Rules .. 122

5.7 Incremental Learning .. 122

5.7.1 Incremental Learning in the Frequent Item Discovery Step 123

5.7.2 Incremental Learning in Rule Pruning and Classifier Building Step: 124

5.7.3 Incremental Learning Constraints and Solutions ... 124

5.7.4 HBASE Data Structure and Implementation for Incremental Learning: 126

5.8 Summary ... 127

Chapter 6 .. 128

xii

6.1 Introduction: .. 128

6.2 Sequential Implementation .. 128

6.3 Parallel Implementation Using MapReduce ... 131

6.3.1 Distribution Details .. 131

6.4 Evaluation of the MRMCAR Algorithm .. 132

6.4.1 Cross-Validation ... 132

6.4.2 Predicting Probabilities ... 133

6.4.3 Counting the Cost ... 134

6.4.4 Confusion Matrix ... 135

6.4.5 Kappa Statistic ... 135

6.4.6 Numeric Prediction in Evaluation ... 136

6.5 Experimental Results ... 138

6.5.1 Accuracy .. 139

6.5.2 Number of Rules .. 140

6.5.3 Confidence vs. Support Effects ... 143

6.5.4 Rule Sorting Effect on Accuracy .. 144

6.5.5 Effect of Rule Ranking on Number of Rules in Classifier 145

6.5.6 Support and Confidences for Best Accuracies: .. 147

6.6 Performance Evaluation, Scalability, and MRSim Results: 148

6.7 Summary ... 149

Chapter 7 .. 150

7.1 Conclusions ... 150

7.2 Future work ... 152

References .. 154

xiii

List of Figures and Illustrations

Figure 2-1: MapReduce model abstraction .. 13

Figure 2-2: Detailed characteristics of a TeraSort job using MRPerf simulator.[10] 17

Figure 2-3: MR-LSI algorithm on HSim and MRPerf simulators vs. Actual Hadoop

experiment. [69] .. 18

Figure 2-4: Pseudo code for Apriori algorithm .. 21

Figure 2-5: Pseudo code for generating candidate frequent items... 22

Figure 3-1: System architecture ... 40

Figure 3-2: UML diagram of core entity that uses Observer Pattern..................................... 42

Figure 3-3: UML sequence diagram of observer pattern used in core entities 42

Figure 3-4: JobTracker in MRSim and Hadoop systems [36] ... 46

Figure 3-5: Workflow of JobTracker in Hadoop (and MRSim) .. 47

Figure 3-6: Flow control of JobTracker ... 48

Figure 3-7: Flow control of Map task .. 50

Figure 3-8: Flow control of Reduce Task .. 52

Figure 3-9: Hadoop data flow [36] .. 53

Figure 3-10: Spill writing and merging (M& W: Merge & write to file system) 53

Figure 3-11: Dataflow using combiner on map outputs (C: combine, M: Merge, W write

to file system) .. 54

Figure 3-12: Hardware/Topology Input file ... 58

Figure 3-13: JSON object in Topology file .. 59

Figure 3-14 Job description File .. 61

Figure 3-15: Average Job throughput vs number of maximum of parallel processes 65

Figure 3-16: Standard deviation for job throughput vs. number of maximum parallel

processes on CPU .. 65

Figure 3-17: Average Job turnaround time vs. number of maximum parallel processes

running on CPU ... 65

Figure 3-18 : Standard deviation for job turnaround time vs. number of maximum parallel

processes ... 65

xiv

Figure 3-19: Average Job waiting time vs. number of maximum parallel processes 66

Figure 3-20: Standard deviation of job waiting time vs. number of maximum parallel

processes ... 66

Figure 3-21: Average Job execution times vs. number of maximum parallel processes

allowed on CPU .. 66

Figure 3-22: Standard deviation of job execution time vs. number of maximum parrallel

processes allowed on CPU ... 66

Figure 3-23: Read benchmark ... 68

Figure 3-24: Number of unique keys in sample subset vs. size of sample subset 69

Figure 3-25: Intermediate spilled records to local file system vs. input records 70

Figure 3-26: Intermediate spilled records to local file system vs. input records, using

combiner function.. 70

Figure 3-27: Intermediate spilled records to local file system vs. input records, using

double virtual memory per task.. 71

Figure 3-28: Local file system read bytes vs. input records .. 71

Figure 3-29: Local file system written bytes vs. input records ... 72

Figure 3-30: Local file system read bytes vs. input records, using combiner function 72

Figure 3-31: Local file system written bytes vs. input records, using combiner function 73

Figure 3-32: Local file system read bytes vs. input records, using double virtual memory

per task .. 73

Figure 3-33: Local file system written bytes vs. input records, using double virtual

memory per task .. 74

Figure 3-34: Execution times vs. input records .. 75

Figure 3-35: Execution times vs. input records, using combiner functions 75

Figure 3-36: Execution times vs. input records, using double virtual memory per task......... 76

Figure 3-37: Data shuffled bytes vs. input records, using different job configurations 76

Figure 3-38: TeraSort experiments, time to complete the sort job vs. data input size 80

Figure 4-1: Distributed counting in Apriori using MapReduce framework 82

Figure 4-2: Initialize data using map and reduce methods .. 85

Figure 4-3: Lazy Initialization using map and reduce functions ... 86

xv

Figure 4-4: Pseudo code for Initialization and Frequent Item Discovery steps 91

Figure 4-5: Pseudo code for extracting associative rules in MRApriori 92

Figure 4-6 Workflow of MRApriori algorithm .. 92

Figure 4-7: Set intersection times using Java.retainAll vs. MR.Intersection methods 95

Figure 4-8: Associate panel in WEKA software .. 97

Figure 4-9: Example of MRApriori results .. 98

Figure 4-10: Object editor of MRApriori ... 98

Figure 4-11: Times between Apriori and MRApriori ... 100

Figure 4-12: To Item space support = 3% .. 102

Figure 4-13 To Line space support = 3% ... 102

Figure 4-14: To Item space support = 20% .. 102

Figure 4-15: Line space support = 20% ... 102

Figure 4-16: Total Time for MRApriori using several support thresholds 103

Figure 4-17: Number of nodes vs. execution times .. 104

Figure 5-1: Data workflow in MRMCAR .. 109

Figure 5-2: MRMCAR pseudo code for rules discovery step ... 113

Figure 5-3: Generating next Candidate ruleitems IDs .. 115

Figure 5-4: Steps of rule pruning ... 115

Figure 5-5: Rule pruning and building classifier .. 116

Figure 5-6: Average processing time vs. number of confidences calculated at once 119

Figure 5-7: Total processing times in ms vs. number of confidences calculated at one go .. 120

Figure 5-8: Incremental learning in MRMCAR ... 123

Figure 5-9: Number of Lines in Line Space vs. Iteration in Mushroom dataset for

different support levels .. 125

Figure 5-10: Number of Items in Frequent Items space vs. Iteration number for different

support levels .. 125

Figure 6-1: MRMCAR in Weka explorer .. 129

Figure 6-2: MRMCAR object editor form ... 130

xvi

Figure 6-3: Evaluation of one MRMCAR run on Lymph dataset 134

Figure 6-4: Error rate of the classification algorithms against 20 UCI data sets 139

Figure 6-5: the difference of the number of rules derived by MRMCAR1 and MRMCAR2

algorithms ... 142

Figure 6-6: Number of rules derived by MRMCAR1 and MRMCAR2 algorithms against

20 UCI data sets with MinSupp 5% and MinConf 50%.. 142

Figure 6-7: Number of rules derived by MCAR and MRMCAR algorithms against 20

UCI data sets with MinSupp 1% and MinConf 10% .. 142

Figure 6-8: Classification accuracy of MRMCAR1 MCAR and MRMCAR2 143

Figure 6-9: Effect of confidence vs. support levels on MRMCAR accuracy, (Breast

dataset UCI) .. 143

Figure 6-10: Impact of rule sorting on accuracy... 145

Figure 6-11: Impact of rule sorting on number of rules .. 146

Figure 6-12: Average number of rules for different rule ranking criteria 146

Figure 6-13: Distribution of confidence and support levels for best accuracy using all

datasets and all rule ranking criteria ... 147

Figure 6-14: Clustering using Weka software .. 148

xvii

List of Tables

Table 3-1: Pseudo code for internal CPU scheduler ... 43

Table 3-2: Pseudo code for internal HDD scheduler .. 45

Table 3-3: Cluster configuration for TeraSort benchmark [114] ... 79

Table 4-1: Initial dataset .. 84

Table 4-2: add unique ID for each transaction ... 84

Table 4-3: Spars dataset .. 84

Table 4-4: Map each item to its lowest tid occurrence in the dataset 84

Table 4-5: Initial data representation in item space .. 86

Table 4-6: Map each item to its lowest tid occurrence in the dataset 89

Table 4-7: Batch set intersections .. 94

Table 4-8: Number of associated rules generated for minSupp = 50 % and min

Confidence = 80% ... 100

Table 4-9 Hdoop cluster configuration .. 101

Table 4-10: Configuration of MRSim for scalability evaluation... 104

Table 5-1 Example dataset .. 108

Table 5-2 Initial data in line space ... 108

Table 5-3 Initial data in Item Space ... 108

Table 6-1: Predication results for two class classifier ... 135

Table 6-2: Different outcomes of four-class prediction .. 136

Table 6-3: Error rate in MRMCAR vs. other classification algorithms, MRMCAR1=

CONF_ATT_SUPP, MRMCAR2= CONF_SUPP_ATT .. 140

Table 6-4: Impact of label matching and rule ranking on maximum accuracy achieved by

MRMCAR... 144

xviii

Suhel Hammoud (2011)

Chapter 1: Introduction

1

Chapter 1

 Introduction

This chapter briefly describes the background to the problems investigated in this thesis, the

motivations of the work, major contributions and the structure of the thesis.

1.1 Background

Data mining, a technique to understand and convert raw data into useful information, is

increasingly being used in a variety of fields like marketing, business intelligence, scientific

discoveries, biotechnology, Internet searches, and multimedia. Data mining is an

interdisciplinary field combining ideas from statistics, machine learning, and natural language

processing.

Advances in computing and networking technologies have resulted in many distributed

computing environments. The Internet, intranets, LANs, WANs, and peer-to-peer (P2P)

networks are all rich sources of vast distributed databases. These distributed data sets allow

large-scale data-driven knowledge discovery to be used in science, business, and medicine.

Data mining in such environments requires a utilization of the available resources.

Conventional data mining algorithms are developed with the assumption that data is memory

resident, making them unable to cope with the exponentially increasing size of data sets.

Therefore, the use of parallel and distributed systems has gained significance.

Generally, parallel data mining algorithms work on tightly coupled custom-made shared

memory systems or distributed-memory systems with fast interconnects. Other algorithms

designed for clusters like loosely coupled systems are connected over a fast Ethernet LAN or

Suhel Hammoud (2011)

Chapter 1: Introduction

2

WAN. The main differences between such algorithms are scale, communication costs;

interconnect speed, and data distribution. MapReduce is an emerging programming model to

write applications that run on distributed environments. Several implementations such

Apache Hadoop are currently used on clusters of tens of thousands of nodes [1]. This thesis

focuses on MapReduce design and the implementation of two new data mining techniques

relating to associative rules and associative classification. This trend to use distributed,

complex, heterogeneous computing environments has given rise to a range of new data

mining research challenges. This work explores the different methods and trade-offs when

designing and implementing distributed data mining algorithms. Particularly, it discusses data

partition/replication and workload distribution, and data formats. Also, this work aims to

investigate the hardware utilization when running MapReduce algorithms on the

infrastructure. This helps to study the behaviour of algorithms on simulated large clusters.

This helps rapid optimizing and rapid developing efficient algorithms that use the

MapReduce framework.

1.1.1 MapReduce Framework

MapReduce [2] is a linearly scalable programming model. The programmer writes two

functions—a map function and a reduce function—each of which defines a mapping from

one set of key-value pairs to another. These functions are oblivious to the size of the data or

the cluster that they are operating on, so they can be used unchanged for a small dataset and

for a massive one. More importantly, if you double the size of the input data, a job will run

twice as slowly. But if the size of cluster is doubled, a job will run as fast as the original one.

This is not generally true of SQL queries.

One widely used implementation of MapReduce is Apache Hadoop [3] which is a collection

of related subprojects that compose an infrastructure for distributed computing. These

projects are open-source ones hosted by the Apache Software Foundation. Hadoop is known

for MapReduce and its Hadoop Distributed File System HDFS [4], Hadoop provides

complementary services, such as Core, MapReduce, HDFS, and HBase. Hadoop Core is a

set of components and interfaces for distributed file systems and general I/O (serialization,

Java RPC, persistent data structures). Hadoop MapReduce is distributed data processing

model and execution environment that runs on large clusters of commodity machines.

Hadoop HDFS is distributed file system that runs on large clusters of commodity machines.

Suhel Hammoud (2011)

Chapter 1: Introduction

3

Finally Hadoop HBase is distributed, column-oriented database. HBase is designed after

Google Bigtable [5] and uses HDFS for its underlying storage, and supports both batch-style

computations using MapReduce and point queries (random reads).

Using the MapReduce framework to build machine learning algorithms is investigated in [6]

and Mahout [6] [7] to provide libraries for classification clustering and other machine

learning algorithms.

1.1.2 MapReduce Simulation

Several simulation environments are available to simulate batch systems running on clusters

of machines [8] [9] and others. MapReduce is a paradigm which is only few years old.

MRPerf [10] is an available tool simulator. It uses network simulator NS2 [11] to simulate

the network traffic and uses a call back feature to simulate CPUs and hard drives using

average processing speed and average IO speed respectively.

Mumak [12] is an open source project aim to provide a tool for researchers and developers to

prototype features (e.g. pluggable block-placement for HDFS, Map-Reduce schedulers etc.)

and predict their behaviour and performance with a reasonable amount of confidence.

Mumak takes as an input a job trace from jobs executed on real clusters.

MRPerf is a MapReduce simulator based on C++, TCL and Python. As they described that

they presented the design of an accurate MapReduce simulator, MRPerf, for facilitating

exploration of MapReduce design space. MRPerf captures various aspects of a MapReduce

setup, and uses this information to predict expected application performance.

1.1.3 Mining Frequent Items and Associations

Frequent items are patterns of itemsets or sequences that frequently appear in a data set. For

example, a set of items in shopping basket, such as milk and bread that appear frequently

together in a transaction data set is a frequent itemset. Finding such frequent item plays an

essential role in mining associations, correlations, and many other interesting relationships

among data. Moreover, it helps in data classification as well. Several classifiers [13] [14] [15]

[16] are built based on association rules. Thus, frequent pattern mining has become an

Suhel Hammoud (2011)

Chapter 1: Introduction

4

important data mining task and a focused theme in data mining research. Patterns represented

in the form of association rules are human readable. For example, the association rule below:

milk  bread [support = 2%; confidence = 60%]

Rule support and confidence are two measures of rule interestingness. They respectively

reflect the usefulness and certainty of discovered rules. A support of 2% for an Association

Rule means that 2% of all the transactions under analysis show that milk and bread are

purchased together. A confidence of 60% means that 60% of the customers who purchased

milk also bought bread. Association rules are considered interesting if they pass both a

minimum support threshold and a minimum confidence threshold. Such thresholds can be set

by users or domain experts.

Many algorithms have been developed for frequent itemset mining, from which association

rules can be derived. Some of these algorithms are Apriori-like algorithms. Others are using

growth-based algorithms [17] in addition to algorithms that use the vertical data format [18]

[19].

The Apriori algorithm is one of the first algorithms used for mining frequent itemsets to get

association rules. It employs the mining Apriori property that subsets of a frequent itemset

are also frequent items. It iterates over the data to generate frequent k-itemset candidates

based on the frequent (k-1)-itemsets. Variations involving hashing [20] and transaction

reduction can be used to make the procedure more efficient. Other variations include

partitioning the data [21] (mining on each partition and then combining the results) and

sampling the data [22] [23] (mining on a subset of the data). These variations can reduce the

number of data scans required.

Frequent pattern growth (FP-growth) [17] is a method of mining frequent itemsets without

candidate generation. It constructs an FP-tree data structure to compress the original

transaction database. It tries to achieve greater efficiency by focusing on frequent pattern

growth, thus there are no candidate items generation steps.

Mining frequent itemsets using a vertical data format [19] (ECLAT) is a method that

transforms a given data set of transactions in the horizontal data format of TID-itemset into

the vertical data format of an item-TID set. It employs Apriori properties and mines the

Suhel Hammoud (2011)

Chapter 1: Introduction

5

transformed data set by TID set intersections for generating lower degree frequent items and

vrepeating set intersections till it gets higher degree candidate rules. Additional optimization

techniques are used in this method such as diffset [18]. Other extensions include using

multiple supports thresholds [24] defined for each level of abstraction.

1.1.4 Classification and Prediction using Association Rules

Association rules are not used directly for prediction without further analysis or domain

knowledge. If one of the attributes is used as class label and the other attributes are used as

conditions then associated rules can indicate causality used in classification. A classifier is

usually built in two steps consisting of discovery of frequent itemset mining, as before, but

narrows the search to items of targeted class attribute. The second step is to generate strong

associations between frequent patterns and class labels. Several studies indicated that

associative classification has been found to be more accurate than some traditional

classification methods, such as C4.5 [25]. Classification Based on Associations (CBA) [13],

Classification Based on Multiple Class-Association Rules (CMAR) [26], Multi-class

Classification based on Association Rule (MCAR) [15] and Classification based on

Predictive Association Rules (CPAR) [27] that adopt methods of frequent itemset mining to

generate candidate association rules.

CBA (Classification-Based Association) [13] is one of the earliest and simplest algorithms

for associative classification. CBA uses an iterative approach to frequent itemset mining,

similar to that described for Apriori. Multiple passes are made over the data and the derived

frequent itemsets are used to generate and test longer itemsets

CMAR [26] (Classification based on Multiple Association Rules) differs from CBA in its

strategy for frequent itemset mining and its construction of the classifier. It also employs

several rule pruning strategies with the help of a tree structure for efficient storage and

retrieval of rules. CMAR adopts a variant of the FP-growth algorithm to find the complete set

of rules satisfying the minimum confidence and minimum support thresholds.

CMAR employs another tree structure to store and retrieve rules efficiently and to prune rules

based on confidence, correlation, and database coverage. Rule pruning strategies are triggered

whenever a rule is inserted into the tree.

Suhel Hammoud (2011)

Chapter 1: Introduction

6

MCAR [15] improves the efficiency of the rule discovery phase by employing a method that

extends the tid-list intersection methods.

1.1.5 High Performance Computation in Mining Association Rules

The count distribution [28] algorithm is a distributed formulation of the Apriori algorithm, in

which each processor generates its own version of the candidate hash tree. The counts of the

candidates are estimated by performing a single pass over the local database, and a global

reduction operation is then performed to estimate the global support of the candidate itemsets.

When the globally frequent itemsets at level-k have been discovered, each processor

generates the k+1-candidate itemsets in parallel, and repeats the process till all frequent

itemsets have been found.

The Parallel Data Mining for association rules (PDM) algorithm [29] is a parallel

implementation of the serial Direct Hashing and Pruning (DHP) algorithm [20]. While it is

similar in nature to count distribution, the major difference is the use of a parallel hash table.

The database is distributed among the processors, and each processor generates disjoint

candidate itemsets. As in DHP, the hash table is built during the candidate counting phase

and used to prune candidates in the subsequent generation phase. For this to happen, each

processor needs to have a copy of the global hash table. Since PDM maintains parallel hash

tables, this requires communicating the counts of each location in the hash table by a global

exchange. Communicating the entire hash table is inefficient [30].

Task distribution: Another parallelization paradigm is to replicate the candidate generation

process on each processor, and parallelize the support counting process. The processors will

then perform different computations independently, but will need access to the entire

database.

 The Data Dist [28] algorithm addresses the memory problem of the count distribution

algorithm by splitting the candidate generation process among the processors. The candidate

itemsets are distributed among the processors in a round robin manner, and each processor

computes the global counts of the candidates assigned to it. In order to do this, each processor

needs to scan the transactions belonging to all the other processors. This is done by an

asynchronous send–receive policy, wherein each processor allocates P buffers to read and

write transactions from other processors. While this scheme allows each processor to handle a

Suhel Hammoud (2011)

Chapter 1: Introduction

7

greater number of candidates, the communication overheads make it an order of magnitude

slower than the count distribution algorithm. There are a number of other algorithms such as

Intelligent Data Distribution (IDD) [31], Hybrid Distribution (HD) [31], and Parallel Eclat

[32] are based on the task distribution paradigm. These algorithms allow each processor to

handle a subset of the candidate itemset and attempt to minimize communication and achieve

load balance. The manner in which the database is replicated also impacts performance. A

detailed summary of these techniques is available in [33] [32].

1.2 Motivations of the Work

The MapReduce framework [2] is proved to be reliable low cost, data intensive framework

used by giant enterprises such as Yahoo and Google [34] on clusters of tens of thousands of

machines. Although a number of machine learning techniques are available for association

and classification, very few are designed to be MapReduce aware algorithms. This work aims

to introduce two new algorithms designed to naturally fit with the MapReduce programming

model to benefit from the high scalability of MapReduce applications. Also, it aims to

simulate the performance of MapReduce jobs using new general purpose MapReduce

simulator MRSim [35]. The proposed algorithms are MRApriori for association rules and

MRMCAR for associative classification.

The basic function of the MapReduce model is to iterate over the input, compute key/value

pairs from each part of input, group all intermediate values by key, then iterate over the

resulting groups and finally reduce each group. The programmer can abstract from the issues

of distributed and parallel programming. The MapReduce implementation deals with issues

such as load balancing, network performance, fault tolerance etc [36]. The Apache Hadoop

[3] project is an open-source implementation of Google’s MapReduce written in java for

reliable, scalable, distributed computing. Recently there have been many applications adapted

to the MapReduce model; however these applications are tested with small and medium size

clusters of participating nodes. Having such clusters of nodes it is difficult to measure the

scalability of the algorithms. Scalability is a measure of efficiency of an algorithm with a

much larger cluster i.e. hundreds of nodes as well using a much larger training dataset. It is

almost impractical to set up a very large cluster consisting hundreds or thousands of nodes to

measure the scalability of an algorithm. The Hadoop environment set-up involves alterations

of a great number of parameters which are crucial to achieve best performances. An obvious

Suhel Hammoud (2011)

Chapter 1: Introduction

8

solution to the above problems is to use a simulator which can simulate the Hadoop

environment; a simulator on one hand allows us to measure scalability of MapReduce based

applications easily and quickly, on the other hand to determine the effects of different

configurations of the Hadoop set-up on MapReduce based applications behaviour in terms of

speed. Hadoop is offered as a service on Amazon Elastic Compute Cloud EC2 [37] where

users can launch and terminate instances on demand and pay by the hour for active instances.

Also a Hadoop cluster can be integrated in Sun Grid Engine. Thus, MapReduce simulators

will be very useful utilities to allow users to estimate times and the costs for the jobs before

submitting it to EC2 or Sun Microsystems Grid Compute Utility.

For finding association rules, it has been widely recognized that finding frequent items is

computationally intensive when the size of a training dataset is large. An Apriori-like

algorithm usually involves repeat scanning of datasets. To speed up training for associative

classification, distributed computing paradigms have been investigated to partition a large

training dataset into small data chunks and process each chunk in parallel utilizing the

resources of a cluster of computers [21] [33] [29]. The approaches include those that are

based on the Message Passing Interface (MPI). However, MPI is primarily targeted at

homogeneous computing environments and has limited support for fault tolerance.

Furthermore, inter-node communication in MPI environments can create large overheads

when shipping data across nodes. Although some progress has been made by these

approaches, existing distributed apriori algorithms usually partition large datasets into smaller

parts with the same size which can be used efficiently only in homogeneous computing

environments in which the computers have similar computing capabilities. Currently

heterogeneous computing environments are increasingly being used as platforms for resource

intensive distributed applications. One major challenge in using a heterogeneous environment

is to balance the computation loads across a cluster of participating computer nodes. Using

the MapReduce framework, the two algorithms developed are naturally load balanced to

heterogeneous environments.

Multi-Class Association Rule (MCAR) [15] and Multi-Class Multi-Label (MMAC) [38] are

two algorithms developed for associative classification. Both use the vertical dataset

representation introduced by Eclat [19]. Finding frequent itemset is done by doing set

intersections between sets that hold the occurrences of lower degree frequent itemsets. This

Suhel Hammoud (2011)

Chapter 1: Introduction

9

work tries to consider the steps of MCAR [15] and MMAC [38] to develop a generalized

associative classifier MRMCAR that produces multi-label rules with probabilities attached to

each predicted class.

1.3 Major Contributions

This work has produces a design and an implementation for MapReduce simulator (MRSim)

to simulate the behaviour of newly developed data mining MapReduce based algorithms in a

Hadoop environment. With the real implementation of the algorithms, this helps to find the

best values of parameters to tune the cluster for the best performance. MRSim is to be used

later to evaluate the behaviours and the scalability of newly developed algorithms for

MapReduce environments.

 MRSim extends a discrete event engine used SimJava [39] to accurately simulate the

Hadoop environment. Using SimJava MRSim simulates interactions between different

entities within clusters. The GridSim [8] [40] package is also used for network simulation. It

is written in the Java programming language on top of SimJava. Evaluation of MRSim is

performed using a number of MapReduce based applications which have been implemented

recently. Evaluation results show a high level of accuracy from different aspects. MRSim is

modelled with several layers. This makes it easier to plug-in more components to it, such as

new types of job schedulers. Network topology and hardware specifications are introduced to

the simulator in text files of JSON format. Also, the definitions of algorithms are done in

JavaScript Object Notation (JSON) format. Source code for MRSim is available for the

community on [41].

MRApriori, a MapReduce aware distributed associative algorithm for finding frequent items

has been implemented. MRApriori builds on the apriori algorithm for high efficiency in

training and employs MapReduce. Two implementations of MRApriori are introduced; one is

in-memory sequential application which is pluggable to WEKA [42] machine learning

software and the second implementation was done using the Apache Hadoop distributed

system platform. The Hadoop implementation [3] of MapReduce was used. MRApriori uses

both vertical and horizontal dataset representations to find all frequent item sets. Including

the implementation in WEKA machine learning software makes it available to the

community.

Suhel Hammoud (2011)

Chapter 1: Introduction

10

This work also introduces MRMCAR (MapReduce Multi-Label Classifier based on

Associative Rules). MRMCAR is a MapReduce based generalization of MCAR [15]

classifier. Several ranking methods are plugged into the system allowing different classifiers

for different datasets. Two implementations of MRMCAR are introduced; one is an in-

memory application which is pluggable to WEKA machine learning software and the second

implementation is done using Apache Hadoop [3]. MRMCAR uses both vertical and

horizontal dataset representations to find all frequent item sets. Including the implementation

in WEKA machine learning software makes it available to the community. Also, the

incremental learning capability of MRMCAR is discussed and prototype was implemented

using Google Bigtable distributed data structure. The performance of MRMCAR is evaluated

and compared with several classification algorithms such as C4.5 [25], J48 [43] , RIPPER,

CBA [13], and MCAR [15]. Results are discussed to appreciate the cost of MRMCAR

classification to make it ready to be used in later machine learning analysis and specific

classification applications.

The MapReduce framework facilitates a number of important functions such as partitioning

the input data, scheduling MapReduce jobs across a cluster of participating nodes, handling

node failures, and managing the required network communications. A notable feature of the

Hadoop implementation of MRApriori and MRMCAR is the ability to support heterogeneous

environments. This was utilized to design MRApriori and MRMCAR for effective load

balancing scheme for resources with varied computing capabilities. Source code for

MRApriori and MRMCAR with both Weka and Hadoop implementations is available for the

community [44].

1.4 Structure of the Thesis

The rest of this thesis is organized as follows:

 Chapter 2 reviews two separate subjects; MapReduce framework, and associative

classification in machine learning algorithms. The first part of the chapter introduces

MapReduce and using it in large scale intensive data applications. It explains the MapReduce

programming model and introduces several of its implementations. Then it reviews available

MapReduce simulator and some of Grid System simulators. The second part of the chapter

introduces the problem of mining frequent itemsets. It addresses common association rules

Suhel Hammoud (2011)

Chapter 1: Introduction

11

techniques and data formats used. This part reviews several commonly used classification

algorithms and it concentrates on classification algorithms that are based on association rules.

Chapter 3 introduces the design of MRSim MapReduce Simulator used to evaluate the

behaviour of Map Reduce jobs on Hadoop software, System Architecture, Core entities,

Map-Reduce entities, MRSim user level and input specifications, validating MRSim, design

of core entities, validation on real cluster environments. Validation, Job Execution Times, IO

data sized used locally and shuffled among cluster nodes comparing MRSim with results

obtained from terasort benchmark are discussed.

Chapter 4 describes the design and the implementation of MRApriori, an association rules

distributed algorithm based on MapReduce framework. Features and constraints of the

algorithms are discussed. Sample run results are presented in this chapter in addition to

MRSim configuration and results to simulate MRApriori for a higher number of machines.

Chapter 5 is dedicated to the designing of the MRMCAR a multi-label associative rule

classifier based on the MapReduce framework. Features of the algorithm are discussed.

Challenges of distributions and constraints of incremental learning. and also scalability

features are discussed.

Chapter 6 presents two implementations of the MRMCAR for training multiclass datasets;

Weka plug-in sequential implementation and Hadoop parallel implementation. Several types

of evaluations of the algorithm are presented. Firstly, the prediction accuracy of the algorithm

is presented in experiments and compared with several existing classifiers. Also, other label-

based measurements were calculated evaluating the cost of predication per predicted class.

Performance results, scalability results, using MRSim are also discussed in the chapter.

Finally, Chapter 7 summarizes the contributions of the thesis and proposes directions for

future work.

Suhel Hammoud (2011)

Chapter 2: Literature Review

12

Chapter 2

Literature Review

2.1 Introduction

The first part of this section summarizes the basic principles of the MapReduce model and

discusses available implementations of the MapReduce framework. Also, it concentrates on

available simulators for MapReduce and likewise environments.

In the second part of this chapter, the association rule mining problem is presented with a

review of published research works conducted on it. Specifically, it discusses popular

association rule mining approaches like Apriori [45], FP-growth [46], partitioning [47] and

others. In the third part of this chapter, the classification problem in data mining is briefly

defined with a review of well-known traditional classification approaches like decision trees,

rule induction, and Naïve Bayes. Last part specially focuses on reviewing classification

algorithms that uses associative classification such as CBA [13], CPAR [27], CMAR [26],

CACA was proposed in [14], BCAR [48], and MCAR [15] [49].

2.2 Map Reduce Framework for Scalable Intensive Data Applications

There is increasing interests to use MapReduce [2] in distributed machine learning algorithms

such as Apache Mahout [6] [7]. Several algorithms were paralleled using MapReduce

framework such as DisCo clustering [50], Locally Weighted Linear Regression (LWLR), K-

Suhel Hammoud (2011)

Chapter 2: Literature Review

13

Means, Logistic Regression (LR), Naive Bayes (NB), SVM, ICA, PCA, Gaussian

Discriminant Analysis (GDA), Back Propagation, and several more in [51].

2.2.1 MapReduce Programming Model

Jeffrey and Sanjay [2] introduced the easy and abstracted programming model, MapReduce.

Many computation problems can be expressed using this model. It is inspired by functional

programming languages. The input and output data have a specific format of key/value pairs.

The users express an algorithm using two functions: the Map functions and the Reduce

function. The Map function is written by the application developer. It iterates over a set of the

input key/value pairs, and generates intermediate output key/value pairs. The MapReduce

library groups all intermediate values by key and introduces them to the reduce function. The

Reduce function is also written by the application developer, it iterates over the intermediate

values associated by one key. Then it generates zero or more output key/value pairs. The

output pairs are sorted by their key value.

(input) <k1, v1> -> map -> <k2, v2> -> reduce -> <k3, v3> (output)

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Input Dataset

Split

Split

Split Map

Output

Result

Map

Map

Shuffle

&

Sort

Reduce

Reduce

Output

Result

ValueKey

Key

Key

Key

Value

Value

Value

Key

Key

Value

Value

Value

Value

Value

Key

Key

Key

Value

Value

Value

Value

Value

Value

Key

Key

Key

Key

Value

Value

Value

Value

Figure 2-1: MapReduce model abstraction

Figure 2-1 shows the split of the input into logical chunks and each chunk is processed

independently by a map task. The results of these processing chunks can be physically

Suhel Hammoud (2011)

Chapter 2: Literature Review

14

partitioned into separate sets, which are then sorted. Each sorted chunk is passed to a reduce

task.

2.2.2 MapReduce Implementations

While the programming model is abstracted, it is the job of the implementation to deal with

the details of parallelization, fault tolerance, data distribution, load balancing, etc. Several

implementations of MapReduce have been proposed some of them provided by academic

research as MR-J [52] which used Java multithreading and Phoenix [53] [54] which uses c

threads on shared memory systems to implement MapReduce. Other implementations used

by enterprises include e.g. Microsoft Dryad [55] [56] , Greenplum MapReduce [57] Aster

data SQL-MapReduce [58] , Hadoop [3] and Google MapReduce [59].

The Apache Hadoop project [3] is the most popular and widely used open-source

implementation of Google’s MapReduce. It is written in Java for reliable, scalable,

distributed computing. The code is available as the Apache License Version 2.0 [60]. Hadoop

is being used by known enterprises e.g. Facebook, Yahoo, Amazon and many others [34] .

2.2.3 Map Reduce Framework Simulator

MapReduce is an emerging model. Yet, not much research on simulating the performance of

MapReduce cluster has been done. To the best of our knowledge MRPerf [61] [10] and

Mumak [12] are the only simulators targeting the MapReduce framework. However, there is

a closely related large-scale distributed computing paradigm, Grid computing [62]. Grid

computing is a well known paradigm used to solve large-scale problems on distributed

systems. Several simulators have been developed to simulate the performance of Grid

systems including Bricks [63], MicroGrid [64], SimGrid [9]. Another approach to

understanding how MapReduce behaves is to develop tracing tools to build a comprehensive

view of the system. The Chukwa project [65] and X-trace [66] are examples of tools used to

collect different measurements in real clusters.

2.2.4 Grid System Simulators

Bricks [63] simulation system simulates client-server applications. It follows a centralized

global scheduling methodology.

http://www.apache.org/licenses/LICENSE-2.0

Suhel Hammoud (2011)

Chapter 2: Literature Review

15

The MicroGrid simulator [64] is modelled after Globus. It allows the execution of

applications constructed using the Globus toolkit in a controlled virtual Grid-emulated

environment. The results produced by emulation can be precise but it is very time-consuming

because it runs on emulated virtual resources. Applications modelled in MicroGrid should be

fully implemented as applications ready to run in a real environment. So developing a model

to be emulated by MicroGrid takes more effort than models designed to run on other

simulators.

The SimGrid toolkit [9] is a C language based toolkit for the simulation of application

scheduling. It supports modelling of resources that are time-shared and the jobs can be

submitted dynamically. SimGrid is restricted to a single scheduling entity and time-shared

systems; it is difficult to simulate multiple users, applications and schedulers, with different

policies. This needs a substantial extending of the toolkit.

The GridSim [8] simulator is close to SimGrid [9] but GridSim is implemented in the Java

programming language and extensively uses a SimJava [67] discrete event simulation

infrastructure. GridSim allows users to extend scheduling policies easier than SimGrid.

2.2.5 Limitations of Grid Simulators

Bricks, MicroGrid, SimGrid, GridSim and similar grid computing simulators cannot truly

simulate the MapReduce framework. They model jobs submitted to the system as batch jobs

where each job has fixed computational cost or CPU hours and has predefined input and

output specifications. In the MapReduce framework, the interaction between hardware

resources such as CPUs, memory buffers, local hard drives, and network adapters is more

complicated and cannot be simplified as batch processes without losing a large amount of

accuracy. For example, the reduce phase in any job is highly coupled and affected by the

behaviour of all tasks executing at the map phase and no patch system can simulate this

interaction accurately. The following simulators are dedicated for MapReduce frameworks.

2.2.6 Mumak MapReduce Simulator

Mumak [12], MRSim and MRPerf [10][61] focused on modelling the specifics of

MapReduce framework and not grid systems, so it does not worry about reservations,

resource brokering and wide-area scheduling used in the Grids.

Suhel Hammoud (2011)

Chapter 2: Literature Review

16

Mumak [12] is an open source project aimed to provide a tool for researchers and developers

to prototype features (e.g. pluggable block-placement for HDFS, Map-Reduce schedulers,

etc.) and predict their behaviour and performance with a reasonable amount of confidence.

Mumak takes as input a job trace from jobs executed on a real cluster. Then it simulates

resubmitting the job on a Mumak virtual cluster. The output would be a detailed job

execution trace recorded in virtual simulated time. Analyzing an output will provide more

understanding of the effect of using different schedulers such as the effect of jobs’ turnaround

time, throughput, fairness, capacity guarantee, etc. Mumak accurately simulates the

conditions of the actual system which would affect the scheduler’s decision. This is because

Mumak is unique in plugging in the real JobTracker and scheduler used in Hadoop

middleware [12]. However, Mumak does not simulate tasks-sharing resources at a lower

level. It does not simulate actual map/reduce tasks themselves. It merely takes the job history

for jobs run on real clusters and keeps the run-time for each task as it is. It only re-allocates

the tasks based on new schedulers and a new cluster environment. But tasks – definitely –

will have a different execution time when using a new scheduling policy. This will generate

unrealistic predictions if the same jobs were simulated on different clusters or when jobs were

simulated on same cluster with different configurations. This is a major and the main

limitation of Mumak. An example of wrong prediction is by doubling the number of tasks

that each node can handle concurrently. Mumak will keep predicting the same time for each

task as before, and this will reduce the total job time to half. In a real cluster, this scenario

will roughly double the execution time for each task because now more processes are sharing

the same hardware (CPUs, hard disks, and network adapters), but the total job time will not

change very much from the previous run.

2.2.7 MRPerf MapReduce Simulator

Guanying Wang and et al. [10] proposed their MapReduce simulator MRPerf which is based

on C++, TCL and Python. They presented the design of an accurate MapReduce simulator,

MRPerf, for facilitating exploration of the MapReduce design space. MRPerf captures

various aspects of a MapReduce setup, and uses this information to predict expected

application performance. They designed MRPerf which can serve as a design tool for the

MapReduce infrastructure, and as a planning tool for making MapReduce deployment far

easier via reduction in the number of parameters that currently have to be hand-tuned using

Suhel Hammoud (2011)

Chapter 2: Literature Review

17

rules of thumb. They validated their simulator using the data collected from medium-scale

production clusters. The results showed that the simulator is able to predict application

performance accurately, and thus can be a useful tool in enabling cloud computing.

Figure 2-2: Detailed characteristics of a TeraSort job using MRPerf simulator.[10]

From the published testing results [10][61] as partly showed in Figure 2-2 MRPerf shows its

high accuracy in simulating the impacts of changing the network topologies. This kind of

accuracy is based on two points. The first point is that MRPerf introduced a network

simulator ns-2 [11] to form its network component. The network simulator ns-2 has been

developed for several years and has proved that it can provides support for simulation of TCP,

routing, and multicast protocols over wired and wireless (local and satellite) networks so that

the ns-2 simulator involved can produce high accuracy when MRPerf simulates the

behaviours of networks [68]. The second point is that they involved several benchmarks

including TeraSort, Search and Index, which are presented as being able to represent the

standard MapReduce applications and the results of the tests are quite convincing.

Suhel Hammoud (2011)

Chapter 2: Literature Review

18

Figure 2-3: MR-LSI algorithm on HSim and MRPerf simulators vs. Actual Hadoop experiment. [69]

However, MRPerf shows less accuracy when used to simulate other algorithm of MR-LSI

[69] as in Figure 2-3. This limitation maybe caused showed that realistic behaviours of the

framework are based on a number of interactions of hardware and system components. For in

Map phase, the performances of Map instances are very tightly coupled to the current states

of processor, buffer, hard drive and networks. When certain thresholds are reached, according

to the working mechanisms certain components may be interrupted to guarantee the

performance and synchronizations. In Reduce phase, the performance of Reduce instances is

highly dependent on the current IO states. The copying, shuffling and sorting procedures are

quite dynamic according to the current system states. MRPerf does not simulate these real

time interactions accurately. Instead, it employs a number of rough estimations to estimate

the overhead of the Hadoop system. These approximations in terms of parameterization can

not reflect real world Hadoop implementations. In TeraSort, Search and Index validations,

none of these three algorithms involved complex behaviours of a Hadoop framework when

the tests were carried out. So these rough estimations may generate small errors when

MRPerf simulates these simple-behaviours-involved algorithms. However, whether the

simulator can adapt to complex Hadoop behaviours is quite critical.

2.3 Mining Association Rule

Association rule mining was introduced by Agrawal, Imieliński, & Swami in 1993 [70]. It

still has an active research area in the data mining and machine learning. Association rule

mining finds correlations between items in a database. The classic application for association

Suhel Hammoud (2011)

Chapter 2: Literature Review

19

rule mining is market basket analysis [45][70], in which business experts aim to investigate

the shopping behaviour of customers in an attempt to discover regularities. The aim is to find

groups of items that are frequently sold together in order that marketing experts can develop

strategic decisions concerning shelving, sales promotions and planning. Association rule

mining has been widely used in various industries beside supermarkets such as mail order

[45], telemarketing [70][71], and e-commerce [72].

2.3.1 Association Rule Discovery Problem

Definition 2.1: The task of association rule discovery can be defined [70] as follows: Let D

be a database of sales transactions, and be a set of binary literals called

items. A transaction T in D contains a set of non empty items called an itemset, such that T 

I.

Definition 2.2: The support of an itemset is defined as the proportion of transactions in D that

contain that itemset.

Definition 2.3: An association rule is an expression , where  and

Definition 2.4: The confidence of an association rule is defined as the probability that a

transaction contains Y given that it contains X, and given as

Given a transactional dataset D, the association rule problem is to find all rules that have

supports and confidences greater than certain user-specified thresholds, denoted by minimum

support and minimum confidence, respectively.

Finding rules from in dataset D consistes of two steps [45]: step one is to generate all

frequent itemsets. Frequent itemsets are itemsets that have support greater than minimum

support threshold. Step two is for each frequent itemset generated in Step one, produce all

rules that pass the minimum confidence threshold those rule are considered interesting or

strong rules. For example if itemset XYZ is frequent, then the confidence of rules

 and can be evaluated using equation. The overall performance of mining

Suhel Hammoud (2011)

Chapter 2: Literature Review

20

association rules is determined by the first step because it is relatively harder problem that

requires extensive computation and storage [33][73].

Resulting rule pattern for shopping basket is of type:

milk  bread [support = 2%; confidence = 60%]

A support of 2% for previous association rule means that 2% of all the transactions under

analysis show that milk and bread are purchased together. A confidence of 60% means that

60% of the customers who purchased milk also bought the bread.

A major challenge in mining frequent itemsets from a large data set is the fact that such

mining often generates a huge number of itemsets satisfying the minimum support threshold.

This is because if an itemset is frequent then each of its subsets is frequent as well. A one

candidate long frequent itemset of size 100 should contains

 frequent itemsets of size 1

and

 frequent itemsets of size 2 and so on total possible sub frequent itemsets is:

This is too huge a number of itemsets for any computer to compute or store. Many

researchers have extensively investigated the problem of efficiently finding frequent itemsets

in association rule discovery in the last decade for the purpose of improving its efficiency

[20][24][74][75].

2.3.2 Association Rule Data Layouts

There are several representations of a target database in association rule mining, these are the

horizontal [45] , vertical layouts [33][76][77], and tree format for growth [46][78]. In the

horizontal layout, the database consists of a group of transactions, where each transaction has

transaction identifier (TID) followed by a list of items contained in that transaction. In the

vertical layout on the other hand, the database consists of a group of items where each item is

followed by its tid-list [47] transaction identifiers list that contains the item.

Suhel Hammoud (2011)

Chapter 2: Literature Review

21

2.4 Common Association Rules Techniques

2.4.1 Apriori

Apriori is an algorithm that has been proposed in [45]. The discovery of frequent itemsets is

accomplished in several iterations. In each scan, a full scan of training data is required to

count new candidate itemsets from frequent itemsets already found in the previous step.

Apriori uses the ―apriori‖ property to improve the efficiency of the search process by

reducing the size of the candidate itemsets list for each iteration.

DB : Transactional database

Output O set of all frequent items

 : Set of n-items that pass the minsupp threshold (frequent itemsets)

 : Set of n-candidate itemsets that are possibly frequent

1. ={frequent 1-itemsets};

2. for (n=2; ≠Ø; n++) Do

3. =generate_candidates();

4. for each transaction DB Do

5.

6. for each candidate

7. ;

8. end //for

9.

10.

11. end// for

Figure 2-4: Pseudo code for Apriori algorithm

Suhel Hammoud (2011)

Chapter 2: Literature Review

22

1.For all

2. if and kk
ii 

Do

},,,...,,{:

12121 kkk
iiiiifff 



 if ki
Fiff  }{:

};{: fCC 

 end if

 end

 return C

end

Figure 2-5: Pseudo code for generating candidate frequent items

The Apriori algorithm for finding frequent itemsets is shown in Figure 2-4, where the

generate candidate function shown in Figure 2-5 , is used to produce from by

merging with , and discarding all itemsets in that do not pass the support

threshold. Once these candidate itemsets are identified from , then their supports are

incremented (line 6-7). The algorithm terminates whenever there are no frequent itemsets

in the nth iteration.

2.4.2 Dynamic Itemset Counting

Dynamic Itemset Counting (DIC) [21] was developed to speed up the discovery of frequent

itemsets in a database.DIC splits the database into several partitions marked by start points.

Then, it calculates the supports of all itemsets counted so far, dynamically adding new

candidate itemsets whenever their subsets are determined to be frequent, even if their subsets

have not yet been seen at all transactions. The main difference between DIC and Apriori is

that whenever a candidate itemset reaches the support during a particular scan, DIC starts

producing additional candidate itemsets based on it, without waiting to complete the scan as

Apriori does.

 To accomplish the dynamic candidate itemsets generation, DIC employs a prefix-tree where

each item counted so far is associated with a node. One of the drawbacks of DIC algorithm is

Suhel Hammoud (2011)

Chapter 2: Literature Review

23

its sensitivity to how homogeneous the data is. Particularly, if the database to be mined is

correlated,

2.4.3 Frequent Pattern Growth

Han, et al. [45] [46,78] presented a new association rule mining approach that does not use

candidate rule generation called FP-growth that generates a highly condensed frequent

pattern tree (FP-tree) representation of the transactional database. Each database transaction

is represented in the tree by at most one path. FP-tree is smaller in size than the original

database the construction of it requires two database scans, where in the first scan, frequent

itemsets along with their support in each transaction are produced; and in the second scan,

FP-tree is constructed.

Once the FP-tree is built, a pattern growth method is used to mine association rules by using

patterns of length one in the FP-tree. For each frequent pattern, all possible other frequent

patterns co-occurring with it in the FP-tree (using the pattern links) are generated and stored

in a conditional FP-tree. The mining process is performed by concatenating the pattern with

the ones produced from the conditional FP-tree. One constraint of FP-growth method is that

memory may not fit FP-tree especially in dimensionally large database.

2.4.4 Partitioning

To reduce the number of database scans in association rule mining Savasere et al. [47]

proposed an algorithm that divides the database into small partitions such that each partition

can fit in the main memory and discovers frequent itemsets locally using a step-wise

approach, e.g. Apriori, in the first pass. A tid-list structure for each itemset in a partition is

then constructed. The tid-list of an itemset identifies rows in a partition that contain that

itemset. The cardinality of an itemset tid-list divided by the total number of the transactions

in a partition gives the support of that itemset.

In the second pass, the algorithm performs union operations on local frequent itemsets found

in each partition to discover frequent itemsets in the database as whole. One of the drawbacks

of the partitioning algorithm is that it prefers a uniform data distribution. For an unevenly

distributed database, the majority of the itemsets in the second pass may be infrequent,

causing extra I/O overhead. Furthermore, when the number of partitions increases, the

Suhel Hammoud (2011)

Chapter 2: Literature Review

24

number of local frequent itemsets increases as well, consuming processing time and

increasing redundant computation, especially when these partitions overlap in several

frequent itemsets [19].

Performance comparison between Apriori and the partitioning algorithm using 6 market

basket analysis data sets [45] revealed that the execution time of both algorithms increase

when the support is reduced. A comparison using different number of partitions against the 6

benchmark problems indicate that the execution time decreases when less number of

partitions is used due to the size of the candidate set normally becomes smaller.

2.4.5 Direct Hashing and Pruning

Generally, the computational cost of association rule mining is largely determined by the

speed of discovery of frequent one and two itemsets. Empirical results from [45] suggest that

the computational cost in the initial iterations dominates most of the execution time for the

candidate generation phase. When the number of frequent itemsets during iteration 1 is large,

the expected number of candidate itemsets at iteration 2 is also large, and thus, reducing the

size of the candidate itemsets at early iterations may result in huge savings of processing time

and memory. A hash-based technique, called Direct Hashing and Pruning (DHP), has been

proposed in [20] to efficiently reduce the size of candidate itemsets at early iterations.

DHP works as follow: While scanning the database to find frequent one-itemsets, a hash tree,

H1, is built for candidate one-itemsets to ease the search. The algorithm evaluates during the

scan whether an item exists in the hash table, if so, the count of the item is incremented by

one. Otherwise the item is inserted into the hash table and is given a count of one. Also, when

the occurrences of all one-itemsets are counted for each transaction, all two-itemsets are

produced and hashed into another hash table, H2, where a count is initialised to one for each

itemset. Once the database is scanned, The possible candidate two-itemsets from H2 can be

obtained.

Pruning occurs to reduce the database size during the scan in which not only a transaction is

trimmed but also some of the transactions are removed. DHP trims an item in a transaction t

if it does not have a certain number of occurrences in t’s candidate itemsets. For example, If

the support is set to 2, t = XYZWP and four two-subsets, (XZ, XW, XP, WP), exist in the

hash tree constructed for candidate two-itemsets, H2, the number of frequencies according to

Suhel Hammoud (2011)

Chapter 2: Literature Review

25

each item in t is 3, 0, 1, 2, 2, respectively. For frequent three-itemsets, only three items in t,

e.g. (X, W, P), have occurrences above the support threshold. Consequently, these three items

are kept in t and items Y and Z are removed.

Empirical study indicates that DHP reduces the execution times not only in the second

iteration, when the hash table is employed by DHP to facilitate the production of candidate

two-itemsets, but also in later iterations [20]. Particularly, the execution time required to

produce candidate two-itemsets by DHP is orders of magnitude smaller than that of Apriori.

However, the execution time of DHP is slightly larger than Apriori in the first iteration due to

time required for building the hash table for candidate two-itemsets.

2.4.6 Multiple Supports Apriori

The support constraint is the most important factor that controls the number of association

rules produced [70][74][32]. Setting the support to a high value results in discarding some

useful rare items in the database. To capture such rare items, lower support thresholds is used.

But this will also capture many un-interesting rules [24] [75].

To overcome such a problem,[24] proposed a multiple support Apriori-like approach, which

represents the dataset in hierarchical concepts, then assigns different support values for each

level. This enables users to express different support requirements for different rules. The

candidate generation steps is still similar to the generate function in Apriori algorithm.

An evaluation study from [45] reveals that this method generates smaller number of

candidate itemsets than that of Apriori for real world data sets. However, the execution time

spent to find frequent itemsets for both algorithms is roughly the same.

2.4.7 Confidence-Based Approach

Confidence-based approach was proposed Li et all [75] to solve the problem of discarding

rules with high confidence and low support. This method abandons the support threshold and

mines only top confidence rules. Given a database, the end-user has to set an itemset target,

which represents the consequent of the desired outcome (rules). The problem of mining high

confidence rules is to find all a [79] association rules where the target is the consequent. In

doing that, the algorithm divides the problem of mining confidence rules into two steps. Step

Suhel Hammoud (2011)

Chapter 2: Literature Review

26

1 involves splitting the original database into two sets, one set that holds transactions

containing the target itemset, T1, and the other holds the rest of the transactions, T2. The

algorithm discards all items of the target from transactions in T1 and T2, therefore, the set of

items in the original database I, becomes .

In the second step, all itemsets, X, which appear in T1 but do not appear in T2 are discovered,

and rules such as , is produced, where tg is the target consequent. These itemsets have

a zero support in T2 but non-zero support in T1 and are called Jumping Emerging Patterns

(JEP). The authors of [75] have adopted two border methods from [80] to discover itemsets

whose support is zero in one sub-set, but non-zero in the other sub-set. The first border

algorithm finds all itemsets with non-zero support in a data set and names them horizontal

borders. When taking two horizontal borders produced from two sets of data, as an input, the

second border algorithm can derive all itemsets whose support in one is zero, but non-zero in

the other one.

Confidence-based approach can produce some high confidence rules that cannot be found by

traditional association rules approaches. However, the candidate itemsets generated are many

times larger than the original database. Therefore, a disk-based implementation is often

preferred when pruning the search space using only the confidence threshold [79].

2.4.8 Tid-List Intersection

The Eclat algorithm has been presented in [19] and [18], which requires only one database

scan. Eclat uses a vertical database transaction layout, where frequent itemsets are obtained

by applying simple tid-lists intersections, without the need for complex data structures.

The recent variation of the Eclat algorithm, called dEclat, has been proposed in [18] which

uses new vertical layout representation approach called a diffset. dEclat [19] stores only the

differences in the transactions identifiers (tids) of a candidate itemset from its generating

frequent itemsets. This considerably reduces the size of the memory required to store the tids.

Experimental results in [18] revealed that dEclat and other vertical techniques like Eclat

usually outperform horizontal algorithms like Apriori and FP-growth with regards to

processing time and memory usage. Furthermore, dEclat outperforms Eclat on dense data,

whereas the size of the data stored by dEclat for sparse databases grows faster than that of

Suhel Hammoud (2011)

Chapter 2: Literature Review

27

Eclat. Thus, for dense databases, it is better to start with a diffset representation, and for

sparse databases, it is better to start with a tid-list representation then switch to a diffset at

later iterations [18].

2.4.9 Constraint-Based Association Mining

 Often, users have a good sense of which direction of mining may lead to interesting patterns

and the form of the patterns or rules they would like to find. Thus, a good heuristic is to have

the users specify such intuition or expectations as constraints to confine the search space.

This strategy is known as constraint-based mining. This can include Knowledge type

constraints, data constraints, dimension/level constraints, interestingness constraints, rule

constraints.

2.5 Classification in Data Mining

The goal of classification is to build a model (a set of rules) from a labelled training data set,

in order to classify new data objects, known as test data objects, as accurately as possible.

Figure 2.4 shows classification in data mining as a two-step process, where in the first step, a

classification algorithm is used to learn the rules from a training data set. The second step

involves using the rules extracted in the first step to predict classes of test objects.

 There are many classification approaches for extracting knowledge from data such as divide-

and-conquer [81], separate-and-conquer [82] [83] (also known as rule induction), covering

[84] and statistical approaches [85] [86] [87]. Numerous algorithms have been based on

these approaches such as decision trees [81] , PART [88], RIPPER [89] Prism [84] and

others. Here is brief description of classification techniques related to the work of this thesis:

2.5.1 Simple One Rule

One of the simplest classification algorithms is One Rule 1R [90], which constructs a one-

level decision tree and derives rules for training instances associated with most frequent

classes. Two main challenges for classification algorithms are missing values and real-valued

attributes [88] [91] . An experimental study [90] showed that, in most classification cases,

simple techniques such as 1R generate reasonably accurate classifiers.

Suhel Hammoud (2011)

Chapter 2: Literature Review

28

2.5.2 Decision Trees

A popular approach for classification and prediction is that of decision trees [92] [93]. In

constructing a decision tree, a candidate record will enter the root node, and a branch for each

possible value for the candidate is built. The same process is applied recursively until all the

records in a node end up with the same class or the tree cannot be split any further [92] .

After the tree has been constructed, each path from the root node to each of the leaf nodes

represents a rule. The antecedent of the rule is given by the path from the root node to the leaf

node, and the consequent is the majority class that is assigned by the leaf node.

Several pruning methods are used to simplify the rules and to discard unnecessary ones.

Pruning the tree will involve either replacing some sub-trees with leaf nodes (sub-tree

replacement) or raising some nodes to replace the nodes higher in the tree (sub-tree rising)

[25]. Both of these operations are examples of post-pruning techniques [91]. One effective

pruning method is to estimate the error rate at the internal and leaf nodes and then compare

the error rates for the nodes with their replacement leaves [81].

2.5.3 ID3 Algorithm

ID3 is a decision tree algorithm introduced in [92]. ID3 utilises a statistical property called

information gain to assess which attribute goes into a decision node. ID3 makes the selection

of the root based on the most informative attribute and the process of selecting an attribute is

repeated recursively at the so-called child nodes of the root, excluding the attributes that have

been chosen before, until the remaining training data objects cannot be split any more [94].

Information gain measures how well a given attribute divides the training data objects into

classes.

The basic ID3 is to be modified to handle missing attribute values and continuous attributes

[25]. Also, there are different pruning methods proposed to produce a smaller subset of rules,

such as replacing a sub-tree by a leaf node [25]. This replacement occurs if the expected error

rate in the sub-tree is greater than that in the leaf node.

Suhel Hammoud (2011)

Chapter 2: Literature Review

29

2.5.4 C4.5 Algorithm

C4.5 algorithm is an extension of the ID3 algorithm and was created by Quinlan [25]

accounts for missing values, continuous attributes and pruning of decision trees. A

commercial version that adds some minor modification to C4.5 named ―C5‖ has been

developed by Quinlan [95].

As for the ID3 algorithm, C4.5 uses information gain to select the root attribute. It calculates

the Entropy for all attributes in order to select one as a root. The same process is repeated on

the remaining attributes.

Missing values are treated by C4.5 using probabilities that are computed based on the

frequencies of the different values for an attribute at a particular node in the decision tree

[91]. Continuous attributes are discretized using a discretisation method such as [96]. One of

the major extensions of the ID3 algorithm that C4.5 proposed is that of pruning. Two known

pruning methods used by C4.5 to simplify the decision trees constructed are sub-tree

replacement and pessimistic error estimation [97] [98]. Sub-tree replacement may be

performed when a sub-tree has an expected error larger than its replacement leaf. At that

point, the decision tree will be pruned by replacing a whole sub-tree by a leaf node [25]. J48

is an implementation of C4.5 under the WEKA [42] data mining platform

2.5.5 Statistical Approach (Naïve Bayes)

Unlike the 1R algorithm [90], statistical modelling uses all available attributes to make a

prediction. One of the well-known statistical classification algorithms is Naïve Bayes [86],

which computes the probability of each class for a data object using the joint probabilities of

attribute values in that data object given the class. This algorithm assumes that the

conditional probability of a data object given a class is independent of the probabilities of

other data objects given that class. This naïve assumption is too optimistic since attributes in

real world data sets are dependent on each others and could have different degree of

importance. However, Naïve Bayes proved to work well in practice in many experimental

studies [87] [80] [99].

Suhel Hammoud (2011)

Chapter 2: Literature Review

30

2.5.6 Rule Induction and Covering Approaches

2.5.6.1 Incremental Reduced Error Pruning

 Furnkranz and Widmer [100] proposed a learning algorithm called Incremental Reduced

Error Pruning (IREP), which integrates a separate-and-conquer approach with Reduced Error

Pruning (REP) [98] .REP was introduced as method that effectively prunes and produces a

small set of classification rules. IREP constructs a rule set in greedy fashion where firstly, the

training data is partitioned randomly into a growing set and a pruning set, where the growing

set contains 66.6% of the training data objects. Rules are constructed greedily in IREP,

starting from an empty rule; a condition (attribute value) is appended to its antecedent. The

choice of which condition to add is preformed using Foil-gain measure [101]. IREP

continuously adds conditions that maximise Foil-gain value, to the current rule until the rule

covers no data objects from the growing set. After a rule is built, IREP immediately considers

pruning it backwards by removing the final sequence of conditions from it. Starting from the

last condition for each generated rule, IREP considers removing one condition at a time and

chooses the deletion that improves the certain function. An Empirical study on different

benchmark problems in [100] revealed that IREP is faster than REP and competitive to it

with reference to error rate. In comparison to C4.5 algorithm [25] on 36 data sets, IREP

achieved less error rate on 16, whereas C4.5 outperformed IREP on 21.

2.5.6.2 Repeated Incremental Pruning to Produce Error Reduction

Repeated Incremental Pruning to Produce Error Reduction algorithm (RIPPER) is a rule

induction algorithm that has been developed by Cohen [89]. RIPPER builds the rules set as

follows: The training data set is divided into two sets, a pruning set and a growing set.

RIPPER constructs the classifier using these two sets by repeatedly inserting rules starting

from an empty rule set. The rule-growing algorithm starts with an empty rule, and

heuristically adds one condition at a time until the rule has no error rate on the growing set.

 RIPPER stops adding a rule using the minimum description length principle (MDL) [102]

where after a rule is inserted, the total description length of the rules set and the training data

is estimated. If this description length is larger than the smallest MDL obtained so far,

RIPPER stops adding rules. The MDL assumes that the best model (set of rules) of data is the

Suhel Hammoud (2011)

Chapter 2: Literature Review

31

one that minimises the size of the model plus the amount of information required to identify

the exceptions relative to the model [91].

A study on 36 benchmark problems from [103] has been reported in [89] in order to compare

the prediction rate of RIPPER, IREP and C4.5 algorithms. The results pointed out that

RIPPER outperformed IREP on 28 data sets, whereas IREP outperformed RIPPER on only 7

occasions. In addition, RIPPER outperformed C4.5 on 20 data sets, whereas C4.5 achieved

less error rate on 15 occasions.

2.5.7 Prism

Prism was developed by Cendrowska in [84] is a covering algorithm for constructing

classification rules. The covering approach starts by taking one class among the available

ones in the training data set, and then it seeks a way of covering all instances to that class, at

the same time it excludes instances not belonging to that class. This approach usually tries to

create rules with maximum accuracy by adding one condition to the current rule antecedent.

At each stage, Prism chooses the condition that maximises the probability of the desired

classification. The process of constructing a rule terminates as soon as a stopping condition is

met. Once a rule is derived, Prism continues building rules for the current class until all

instances associated with the class are covered. Once this happens, another class is selected,

and so forth.

2.5.8 Hybrid Approach (PART)

Unlike the C4.5 and RIPPER techniques that operate in two phases, the PART algorithm

generates rules one at a time by avoiding extensive pruning [88]. PART adopts separate-and-

conquer to generate a set of rules and uses divide-and-conquer to build partial decision trees.

PART avoids constructing a complete decision tree and builds partial decision trees as in

C4.5. Also, in PART each rule corresponds to the leaf with the largest coverage in the partial

decision tree. Missing values and pruning techniques are treated in the same way as C4.5.

Experimental tests using PART, RIPPER and C4.5 on different data sets from [103] have

been reported in [88]. The results revealed that despite the simplicity of PART, it generates

sets of rules, which are as accurate as C4.5 and more accurate (though larger) than those of

RIPPER.

Suhel Hammoud (2011)

Chapter 2: Literature Review

32

2.6 Associative Classification Mining

AC (Associative Classification) mining utilises association rule discovery methods in the

training step of classification. This approach was successfully used to build highly accurate

classification models (i.e. [26][80][27][16][15]) in data mining and machine learning

communities. Some of common algorithms in AC are CBA [13] and MCAR [104].

2.6.1 Associative Classification Problem and Common Solutions

Following the definition of [38] [105] for the AC problem. A training data set D has n distinct

attributes A1, A2… An and C contains a list of classes. The number of cases in D is denoted

|D|. A training case in T contains a mixture of attributes Ai and their values aij, plus a class cj.

An attribute value can be described as a term name Ai and a value ai, denoted <(Ai, ai)>.

Definition 1: An AttributeValueSet is a set of disjoint attribute values contained in a training

case, denoted < (Ai1, ai1), …, (Aik, aik)>.

Definition 2: A ruleitem r is o

Definition 3: The support count (suppcount) of ruleitem r is the number of cases in D that

match r’s AttributeValueSet, and belong to the class c of r.

Definition 4: The frequency of an AttributeValueSet i (AVS_freq) is the number of cases in D

that match i.

Definition5: A ruleitem r passes the MinSupp threshold if (suppcount(r)/|D|) ≥ minsupp.

Definition 6: A ruleitem r passes the minconf threshold if (suppcount(r)/ AVS_freq (r)) ≥

minconf.

Definition 7: Any ruleitem r that passes the minsupp threshold is said to be a frequent

ruleitem.

Definition 8: A rule is represented in the form:
caAaA

ikikii
),(...),(

11 , where the

antecedent (rule body) is an AttributeValueSet and the consequent (RHS) is a class.

Suhel Hammoud (2011)

Chapter 2: Literature Review

33

A classification model is a mapping form CAH  : , where A is the set of AttributeValueSet

and C is the set of classes. The main task of AC is to find a classifier h ε H that maximises the

probability that h (a) = c for each test case.

Unlike neural network and statistical and probabilistic based approaches, which normally

produce classification models that are hard to understand or interpret by end-users, AC

produces ―IF-THEN‖ rules that are easy to understand and manipulate by end-users. This

sub-section shed light on the solution scheme of AC and review some of its common

algorithms.

The AC works as follow. First, all ruleitems that hold enough support values (ruleitem

frequencies in the training data set above the MinSupp threshold are produced. Most of the

current AC algorithms generate frequent ruleitems by making more than one scan over the

training data set. In the first scan, they find the support frequency of 1-ruleitems (ruleitems

consisting of a single attribute value), and then in each subsequent scan, they start with

ruleitems found to be frequent in the previous scan in order to produce new possible frequent

ruleitems involving more attribute values. In other words, frequent 1-ruleitems are used for

the discovery of frequent 2-ruleitems, and frequent 2- ruleitems are the input for the

discovery of frequent 3- ruleitems and so on.

Once all frequent ruleitems are discovered, their confidence values are computed and

compared with the MinConf. When a ruleitem holds enough confidence (its confidence value

is larger than or equal to the MinConf) then it will be produced as a rule. To cut down the

number of rules generated most AC algorithms employ rule pruning procedures to discard

redundant or noisy rules. Lastly, the most significant rules (those with high confidence and

support) that survive the pruning phase will form the classifier that is later utilised to predict

test cases. Each classifier must have a default rule which is applied when no other classifier

rule is used. For example, with a MinSupp of 30%, the frequent 1-ruleitems in Table 1 are <

(<AT1, z1)>, p1), (< AT2, w1>, p1) with support frequencies of 3/10 and 3/10, respectively.

2.6.2 CBA

The first AC algorithm is called CBA and was proposed in [13]. It consists of three main

steps where in the first step any continuous attribute in the training data set gets discretised.

Suhel Hammoud (2011)

Chapter 2: Literature Review

34

Step 2 involves frequent ruleitems discovery and rule generation. Then CBA selects high

confidence rules to represent the classifier. Finally, to predict a test case, CBA applies the

highest confidence rule whose body matches the test case. Experimental results designated

that CBA derives higher quality classifiers with regards to accuracy than rule induction and

decision tree classification approaches.

2.6.3 CPAR

 A greedy AC algorithm called CPAR which employs FOIL-Gain in generating the rules from

data sets was proposed in [27]. CPAR looks for the highest attribute value gain among the

available attributes in the training data set to add it in a rule body. Once this attribute value is

identified, the weights of the positive examples associated with it will be deteriorated by a

multiplying factor, and the process will be repeated until all positive examples (examples that

the rule body matches) in the training dataset are covered. In the rule generation process,

CPAR produces not only the best attribute value but also all similar ones since there are often

more than one attribute values with a similar gain. Results showed that CPAR improves the

speed of the rule discovery process when compared with popular methods like CBA [13] and

CMAR [26].

2.6.4 CACA

Another AC algorithm called CACA was proposed in [14], which first scans the training data

set, stores data vertically like the MCAR algorithm, and then counts the frequency of every

attribute value and sorts them in a descending manner according to their frequencies. All

frequent disjoint attribute values’ TIDs are intersected to reduce the search space of frequent

patterns. A TID of a frequent attribute value holds the row numbers where these attribute

values occur in the training data set. Lastly, for each attribute in a class group that passes the

MinConf, it gets inserted in the Ordered Rule Tree (OR-Tree) as a path from the root node

and its support, confidence and class are stored at the last node in the path. CACA classifies

the unseen data like the CBA algorithm. Experimental results suggested that CACA performs

better with reference to accuracy and computation time than other associative algorithms on

the UCI data sets [103].

Suhel Hammoud (2011)

Chapter 2: Literature Review

35

2.6.5 BCAR

 Yoon and Lee [48]proposed an AC algorithm called BCAR which generates a large number

of rules. BCAR prunes the derived rules using a Boosting-like approach [106]. This pruning

method is a modification of the database coverage pruning of CBA (Liu et al., 1998). It has

been claimed by the authors that the BCAR algorithm can be utilised in large-scale

classification benchmarks like unstructured textual data. Experiments using various text

collections showed that BCAR achieves a good prediction rate when compared with the

Harmony classification approach [107].

2.6.6 MCAR

The MCAR algorithm introduced by [15] uses an intersection technique for discovering

frequent ruleitems. MCAR consists of two main phases: Rule generation and a classifier

builder. In the first phase, the training data set is scanned once to discover frequent 1-

ruleitems, and then MCAR combines ruleitems generated to produce candidate ruleitems

involving more attributes. Any ruleitem with support larger than MinSupp is created as a

candidate rule. In the second phase, rules created are used to build a classifier by considering

their effectiveness on the training data set. Only rules that cover a certain number of training

cases are kept in the classifier.

The frequent ruleitems discovery method employed by MCAR scans the training data set to

count the frequencies of 1-ruleitems, from which it determines those that hold enough

support. During the scan, frequent 1-ruleitems are determined, and their occurrences in the

training data (rowIds) are stored inside an array (TID list) in a vertical format. Also, classes

and their frequencies are stored in the same way. Any ruleitem that fails to pass the support

threshold is discarded. MCAR uses a function ―Produce‖ to find frequent ruleitems of size k

by appending disjoint frequent ruleitems of size k-1 and intersecting their rowIds. The result

of a simple intersection between rowIds of two ruleitems gives a set which holds the rowIds

where both ruleitems occur together in the training data. This set can be used to compute the

support and confidence of the new ruleitem resulting from the intersection.

Suhel Hammoud (2011)

Chapter 2: Literature Review

36

2.7 Issues in Classification

2.7.1 Overfitting

Overall, overfitting is considered one of the reasons why classification task in data mining is

so hard [108]. Over fitting in classification occurs when performance of classifier increases

on the training dataset while it deteriorates on the test dataset. Several reasons can cause the

over fitting like limited number of training data objects or noise among the training objects

[108]. Therefore, in decision trees , pruning approaches like pre-pruning and post-pruning

[97] [25] have been widely used during building decision trees in order to avoid fitting the

training data very well and to provide accurate performance on test data. Several methods

used to evaluate the classifiers in a way that avoids over fitting effect such as cross-validation

[91] and MDL principle [102].

2.7.2 Inductive Bias

An inductive bias can be defined as a set of assumptions that guide the selection of

hypothesises (classification rules) [109] . Classification algorithms are able to generalise their

performance on test data objects by inductive biases since they have implicit assumptions of

favouring one rule over another. For instance, a decision tree algorithms like ID3 [92] and C5

[95] have a bias for the best attribute decision node increases information gain. Since

classification algorithms have a bias, the resulting accuracy depends heavily on the training

data features. Freitas [110] pointed out that when someone says algorithm X is better than

algorithm Y, this should always be directed to the application domain used on the

experiments.

2.8 Summary

This chapter presented association rule discovery and classification tasks in data mining. In

the first part of the chapter gave a general overview on challenges in association rule mining

and surveyed common association rule mining algorithms. The second part of the chapter

discussed popular classification approaches such as decision trees, rule induction and

probabilistic approaches. It concentrated particularly on classifiers based on association rules.

At last it presented using MapReduce framework and its implementations in machine

learning algorithms. Using MapReduce aware algorithms allows scaling the developed

Suhel Hammoud (2011)

Chapter 2: Literature Review

37

algorithms to hundreds of machines and to process huge sizes of datasets. In addition, this

chapter surveyed several simulators that maybe used to evaluate versions algorithms on

distributed application environments. It addressed the need of simulators that particularly

targets MapReduce environments due to the lack of such simulators currently.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

38

Chapter 3

MRSim: MapReduce Simulator

3.1 Introduction

The primary cause to develop MapReduce simulator (MRSim) is the lack of general purpose

MapReduce simulators that allow studying the behaviours and scalability of MapReduce

algorithms on several on heterogeneous environments. MRSim introduced in this chapter is

used later in chapters 4 and 6 to evaluate the scalability and hardware utilization of two new

algorithms for mining association rules and for associative classification.

 MRSim [35] aims to simulate Hadoop MapReduce implementation in order to evaluate the

behaviour of later developed algorithms in chapters 4 and 5 on Hadoop clusters. MapReduce

Hadoop has been around for a while and is open-source, feature rich, and the most widely

used implementation among researchers and enterprises. The following description is how

MRSim models and the MapReduce framework. Also several evaluations of MRSim are

presented in this chapter.

3.2 MRSim: MapReduce Simulator for Apache Hadoop

Hadoop is a large distributed system platform of several hundreds of classes and hundreds of

thousands of code lines. To simulate it the level of abstraction should be decided to reduce the

complexity without losing the needed accuracy. MRSim adopted a layered structure design

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

39

(Figure 3-1). It starts from abstracting the work of CPU, Hard Drive, and network adapters in

three entities CPU, HDD, and NetEnd as essential components used in shared resources in

any distributed application. MRSim names these resources as ―core entities‖ in MRSim.

MRSim also abstracted the huge data sizes that are read, written, processed, or transferred

over the network. Core MRSim entities do not simulate the data transformations resulted by

each of these operations. It is the job of the application developer to consider this. For

example, it is the map task to hold information of sizes and number of records passed to the

―map()‖ function and resulted by it. MRSim processes uses the shared resources of CPU,

HDD, NetEnd entities to estimate the times of such operations and to synchronize the task

process with all other related processes in the cluster.

MRSim highly simulates dynamic systems where thousands of processes of different types

are intended to share cluster resources concurrently .Thus, the problem of synchronization

has to be addressed in the design. MRSim should be free from any risk condition that could

arise between any running processes, especially the dependent processes. There were two

options to solve the concurrency issue while designing MRSim. The first option was to

simulate the processes using parallel threads or agent-based models, and then use the

concurrency control methods provided by the programming language (e.g. using

synchronized methods, lock objects, concurrent collections, thread pools, atomic variables,

etc. in Java) and use other design methodologies to maintain the consistency of components

operating in the system. The second option was that using discrete event simulation (DES)

where operations in the system are represented as events and the DES ensures that events are

always sorted in chronological order. Events can mark state changes in the system and are

consumed in order by the system components resulting in the advance of the virtual

simulation clock. MRSim adopted the discrete event simulation method.

3.2.1 MRSim Features

 Modelling of CPUs of different speeds and number of cores. CPU capability is

defined by MIPS (Mega Instructions Per Second)

 Resources are modelled in time-shared mode.

 The design is layered and core functionality is defined as interfaces or abstract

classes. Developers can implement or subclass new components to test new features

in the system.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

40

 Cluster resources can be heterogeneous.

 Application tasks can be heterogeneous and they can be CPU or I/O intensive.

 More than one application job can be submitted to the cluster at the same time.

Multiple user entities can submit tasks for execution simultaneously to the same

resource.

 The topology and network traffic between cluster nodes are specified and simulated

using GridSim [8][40].

 Statistics of all or selected operations can be recorded and analyzed later.

3.2.2 System Architecture

MRSim component has clear interface that allows the other in-layer component and the

components of upper layers to use it in formal way. Figure 3-1 shows MRSim components in

layered design.

User Entry

MRSim

Infrastructure

MRSim Core

Task Tracker

Java VM

HDD

Job TrackerJob Spec Reader Topology Reader

Map TaskJobs Queus

Schedullers

DFS

Simjava

Gridsim

Reduce Task

CPU Network Interface

Job Specification
Topology

Mergers Combiners Copiers Counters

Figure 3-1: System architecture

3.2.2.1 MRSim Infrastructure

MRSim contains more than 20 thousand lines of code written in the Java programming

language. System components are written using SimJava [39][67] which is a general-purpose

discrete event simulation package implemented in Java. The simulation model in SimJava

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

41

contains a number of entities, each of which runs in parallel in its own thread. An entity’s

behaviour is encoded in Java using its ―body()‖ method. Entities have access to a small

number of Simulation primitives:

 sim_schedule() sends event objects to other entities via ports.

 sim_hold() holds for some simulation time.

 sim_wait() waits for an event object to arrive.

System entities communicate with each other by sending and receiving passive event objects

efficiently.The sequential discrete event simulation algorithm in SimJava is as follows. A

central object Sim_system maintains a timestamp ordered queue of future events. Initially all

entities are created and their body() methods are put in run state. When an entity calls a

simulation function, the Sim_system object halts that entity’s thread and places an event on

the future queue to signify processing the function. When all entities have halted,

Sim_system pops the next event off the queue, advances the simulation time accordingly, and

restarts entities as appropriate. This continues until no more events are generated. If the JVM

supports native threads, then for all entities starting at exactly the same simulation time may

run concurrently.

MRSim is using GridSim for network traffic simulation. GridSim was first preferable choice

because it is built on SimJava and thus is easy to integrate into the system. MRSim – by using

GridSim – is able to define the network topology of all the links between system entities.

This includes defining the link type and baud rate for each node, defining routers used to

interconnect the nodes, and defining routing schedulers and traffic type. MRSim abstracts the

usage of the Gridsim.net package in its NetEnd core entity.

3.2.2.2 MRSim Core Entities

These are used to build other system entities in a composite way, or used by other system

entities as shared resources. For example, a simulated cluster node is a group of one or more

CPU, HDD, and NetEnd components. All other components which simulate computing

functionality in the node must share the node’s CPU, HDD, and NetEnd resources. Core

entities must simulate with good accuracy the behaviour of shared resources used

simultaneously by different processes in different applications. MRSim core entities focus on

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

42

the predicting – at certain point of the cluster run – how much time it will take to complete a

CPU process estimated by Mega Instructions per second (MIPS), how much time to complete

Hard Drive read/write operation of data sizes in MBs, and how much time to complete

network transfer of MBs of data in a certain network topology. It is up to calling processes to

decide how the data format is transformed after being processed by the core entity.

+RegisterUser()

-UnregisterUser()

+GetTaskProgress()

+NotifyUser()

+progress()

-Observer List

Task Info

+Create Task()

+NotifyProgress()

+NotifyComplete()

Core Entity User

+Create Task()

+NotifyProgress()

+NotifyComplete()

User A

+Create Task()

+NotifyProgress()

+NotifyComplete()

User B

+Submit Task()

-List of Tasks Infos

Core Entity

* *

1*

For each user in observer list:

 call notifyProgress

 or call notifyComplete if task is finished

 Figure 3-2: UML diagram of core entity that uses Observer Pattern

User Task Info Core Entity

Create

Task Info

Register User

Submit Task Info

Add to Tasks Infos List

Progress

Notify Progress

Progress(Complete)

Notify Complete
Remove Task Info from list

Figure 3-3: UML sequence diagram of observer pattern used in core entities

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

43

MRSim core entities also have the important role of synchronizing all system processes that

use them. This is essential to get rid of risk of race conditions between dependent processes

in the system. Synchronization at this level is much easier than trying to do it in upper levels.

To achieve it, MRSim core entities implement observer patterns used in software design. An

example of how a Core entity uses observer patterns let’s take the CPU entity. The CPU

entity allows a list of interested processes (observers) to subscribe to a certain CPU task, and

then processes are notified automatically of the task state change (progress or completion).

 Figure 3-2 and Figure 3-3 show the relation and the interaction between a core entity

and core entity user (other entities in the system).

3.2.2.2.1 CPU Model

The CPU in MRSim comprises the following: number of cores (processors), speed of the

processing, internal scheduling policy (currently time shared) and job done notification

mechanism. The CPU is modelled using time shared mode, job scheduling uses a weighted

Round Robin algorithm. CPU capability is defined in the form of MIPS (Millions

Instructions per Second)

Table 3-1: Pseudo code for internal CPU scheduler

While simulation is running:

1. get next event ev
2. if ev tag == "add new job" then:

a. append job to the job’s exec queue

b. if at least one cpu core is available then

o assign job to the idle cpu core

o estimate the next event for cpu core, (job weight * core

time slot)

o schedule local event ev at estimated time

o continue

3. if ev tag is local event then:
get the attached job with the event "job"

a. update job status

b. if job is completed:

o notify all registered users for this job "job"

o if number of jobs in current exec queue > 1 then:

 remove first job in the queue "job_0"

 estimate the next event time for the cpu core

(job_0 weight * core time slot)

 schedule local event ev at estimated time for job

"job_0"

o continue

c. else: //job is not completed

o if number of jobs in current exec queue > 1 then:

 append "job" to the end to exec queue

 remove first job "job_0" in the queue

 estimate the next event time for the cpu core

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

44

(job_0 weight * core time slot)

 schedule local event ev at estimated time

o else

 estimate the next event time for the cpu core

(job weight * core time slot)

 schedule local event ev at estimated time

o continue
o

The scheduler assigns a fixed time unit per process (job), and cycles through jobs in the

execution queue. Processes with more weights will have larger time units.

3.2.2.2.2 Hard Drive Model

The HDD in the MRSim has the following: average seeks time, the average speed for the

write process and the average speed for the read process of the processing, internal

scheduling policy (currently time shared) and read/write done notification mechanism. The

HDD is modelled using time shared mode, job scheduling uses a weighted Round Robin

algorithm. Read and write speed is always adjusted by a dynamic adjustment factor. HDD

keeps track of the concurrent number of read and write processes running on it, and

recalculates the adjustment factor on events of submission of a new job or completion of an

existing job. The calculation of the adjustment factor is derived from experiments on real

hard disks (Figure 3-23).

Here is pseudo-code summarises the internal HDD scheduler:

While simulation is running:

1. get next event ev

2. if ev tag == "add new read/write job" then:

d. append job to the jobs exec queue

e. if disk is idle then

o estimate the next event for HDD core, (job weight * core

time slot)

o schedule local event ev at estimated time

o adjust current read and write speeds of HDD

o continue

3. if ev tag is a local event then:

f. get the attached job with the event "job"

g. update job status

h. if job is completed:

o notify all registered users for this job "job"

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

45

o if number of jobs in current exec queue > 1 then:

 remove first job in the queue "job_0"

 estimate the next event time for the HDD core

(job_0 weight * core time slot)

 schedule local event ev at estimated time for job

"job_0"

 adjust current read and write speeds of HDD

o continue

i. else: //job is not completed

o if number of jobs in current exec queue > 1 then:

 append "job" to the end to exec queue

 remove first job "job_0" in the queue

 estimate the next event time for the HDD core

(job_0 weight * core time slot)

 schedule local event ev at estimated time

o else

 estimate the next event time for the HDD core

(job weight * core time slot)

 schedule local event ev at estimated time

o continue

Table 3-2: Pseudo code for internal HDD scheduler

3.2.2.2.3 Network Interface Model (NetEnd)

NetEnd abstract several classes used in GridSim.net package and support observer pattern as

shown before. It has several methods to allow other system entities to send variance data

sizes between two nodes in the network topology. NetEnd updates the registered users with

the progress of current data transactions. In current GridSim implementation, network ―link‖

entities does not support time shared mode. Only routers support sending network packet in

time (or space) shared mode. This means processes running in one machine need to acquire

the NetEnd resource before it can send data through it to different nodes. Thus, new

transaction processes will not start until the current data transaction is completed. MRSim

NetEnd entity added small extension to GridSim.net to allow several processes to send data

through the GridSim in time shared mode.

3.2.2.3 MRSim Map-Reduce Entities

3.2.2.3.1 JobTracker

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

46

The Hadoop implementation and thus MRSim consists of a single master JobTracker and one

slave TaskTracker per cluster-node. JobTracker is responsible for scheduling the jobs’

component tasks on the TaskTrackers, monitoring them and re-executing the failed tasks. The

TaskTrackers execute the tasks as directed by the JobTracker. Files are shared on the system

using Hadoop distributed file system (HDFS).

Client node

Client JVM

MapReduce

Program
JobClient1:run job

Jobtracker node

JobTracker

Tasktracker node

TaskTracker

Child JVM

Child

MaTask

Or

Reducetask

3:copy job recourses

4:submit job

2:get new job ID

6:retrieve input splits

8:retrieve job resources

9:launch

10:run

7:hearbeat

(returns task)

5: initialize job

DFS

Shared File System

Figure 3-4: JobTracker in MRSim and Hadoop systems [36]

The process of running one job in Hadoop can be described in high level in Figure 3-4. Also,

Figure 3-5 shows the workflow of between Hadoop main entities.

Job Submission: Client Asks the JobTracker for a new job ID, checks specifications of the

job, calculate input splits for the job, and copy resources needed to run the job including job

configuration file.

Job Initialization: Job Initialization: JobTracker it puts the submitted job into an internal

waiting queue from where the job scheduler will pick it up and initialize it. Initialization

involves creating an object to represent the job being run, retrieve the input splits computed

by the Client. Then it creates one map task for each split. The number of reduce tasks to

create is determined by job specifications. All map and reduce tasks are given Ids for

tracking.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

47

Task Assignment: A simple loop running periodically every ―heartbreat‖ updates the

JobTracker with the TaskTrackers’ status. Furthermore, in every loop run, each TaskTracker

will check if it is ready to run new tasks. Then the JobTraker will allocate the new tasks by

using its assigned scheduler. TaskTrackers have fixed number of task slots for map tasks and

for reduce tasks. This is defined in cluster configuration file. To achieve better performance,

assigning map task needs more scheduling work to ensure data locality so the TaskTracker

will be as close as possible to map input split. Assigning reduce task is simpler. The

JobTracker simply takes the next waiting task in the queue and run it on the current available

TaskTracker slot.

JobClient JobTracker TaskTrackerHDFS

get new Job ID

Copy resources

Submit Job

Initilize Job

get Input Splits

Heart beat/update status

Heart beat/update status

attached task

Task (Map/Reduce)

Launch

Report Progress Track Progress

Heart beat/update status

Get Job status

Job Status

Task Complete

Heart beat/update status

Job Complete

Figure 3-5: Workflow of JobTracker in Hadoop (and MRSim)

Task Execution: Now the TaskTracker has been assigned a task, it creates a local working

directory for the task, in MRSim it create local log file to save task log messages. Hadoop

TaskTracker will launch a new Java Virtual Machine to run each task. Similarly in MRSim,

the TaskTracker will assign the task to SimJava entity to run it. Task’s progress is reported

every few seconds (in MRSim using simulated time) until the task is complete.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

48

Submit Job

Using the scheduleller,

add Map/reduce

Tasks to Pending

Map/Reduce queues

For each

TaskTracker:

check available

task T slots

Pending T task

(map or redue

Task)

Using the

scheduler,

Allocate T Task

slot

Submit T task,

Move T to Map/

Reduce exec

queue

map task finished

Add job to Waiting

queue

move job to exec

queue

First map in

Job?

Submit all reduce

tasks in Job, move

them to exec reduce

queue

Update map and

job status

T is first task in

the job?

Update Map and

Job status

reduce task

finished

Last reduce

task in Job?

Job finished,

move to

finished

queue

Update task and

job status

Read Job discribtion,

initilaize JobInfo

object to track and

measure job runtime

parameters

End of

simulation ?

Stop Cluster

Simulator

Heartbeat control message

Init cluster and network topology from topology file

Start Simulator

Figure 3-6: Flow control of JobTracker

Progress and status update: A job and each of its tasks have a status, which includes state of

the job or task, the progress of maps and reduces, and the values of the job’s or task’s

counters. The progress of map tasks is the proportion of the input that has been processed.

The progress of reduce tasks, is divided to three phases: shuffle, sort and reduce. Tasks also

have a set of counters that count various events as the task runs. The JobTracker combines

these updates to produce a global view of the status of all the jobs being run and their tasks.

Finally, the JobClient receives the latest status by polling the JobTracker.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

49

Job Completion: When the last task for a job is completed, the JobTracker will changes the

status for the job to indicate that is successful. When the JobClient polls for status, it learns

that the job has completed successfully. In Hadoop, clients can be configured to receive

callbacks by providing URL of returned call at the ―job.end.notification.url‖ property. In

MRSim, callback is implemented by providing the ID of JobClient, which is of type SimJava

entity id. Finally, In Hadoop and MRSim, the JobTracker cleans up its working state for the

job, remove it from running queues, and keep log history of the job its tasks on the file

system.

3.2.2.3.2 Task Tracker:

Each machine at the cluster has at most one TaskTracker component. TaskTracker run tasks

assigned by JobTracker master node and send progress reports back to it. In MRSim,

TaskTracker has access to the machine resources of CPU HDD and NetEnd network adapter.

All map/reduce tasks running in certain machine will share machine resources through the

TaskTracker interface running on that machine.

3.2.2.3.3 Map Model

If data inputs are not divided by the user MRSim divide them into fixed-size pieces called

―splits‖. MRSim – as in Hadoop – creates one map task for each split. MRSim simulates data

locality optimization behaviour of the map by trying to run the map task on a node where the

input split resides in DFS. However, some splits would have to be transferred across the

network to the node running the map task. Map tasks generate intermediate output and write

it to local HDD and not DFS.

When the map function starts producing output, the output is not simply written to disk. First

it is buffered in memory buffer. Each map task has a circular memory buffer that it writes the

output to. The buffer size is defined by the ―ioSortMb‖ parameter in the job description.

When the content of the buffer reaches a certain threshold size (also defined by the job

description), it spills the contents to disk. Before it writes to disk, the map task first divides

the data spill into partitions equal to the number of reducers. Within each partition, in

memory the sort operation is performed, and if there is a combiner function, it is applied to

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

50

the output of the sort. After the map task has written its last output spill, there could be

several spill files. The spill files are merged into a single partitioned and sorted output file.

Combiner is applied again on the resulting file if it is defined in the job description. The

configuration parameter ―ioSortFactor‖ controls the maximum number of spills to be merged

simultaneously. Compression of output data could be enabled by the job configuration. If

enabled, the merged spill will be compressed before it is written to the HDD. This usually

increases the performance of map tasks and reduces the task by shrinking the data sizes to be

written to HDDs and to be transferred over the network. The output data are made available

to the reducers over the network.

Map task

Submit

Init Map & start

task process

Data local no Fetch data chunkRead local data yes

User defined map

function

Threshold

reached ?

Write to memory buffer

no

sort

yes

Use CombinerCombine Yes

Spill

no

User Combiner
Merge with

combine
yes

Merge

no

Task Complete

Last Spill ?

no

yes

Figure 3-7: Flow control of Map task

Figure 3-7 summarizes the previous description of flow control of the map task.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

51

Reduce Model

Figure 3-8 shows the Flow control or Reduce model in MRSim. Each reducer task normally

gets its data input from the output of all Mappers. Thus usually there is no data locality in

reduce tasks. The sorted map outputs are transferred across the network to the node where the

reduce task is running. Then, input partitions are merged and passed to the user-defined

reduce function. The output of reduce tasks is normally stored in a distributed file system. If

there are multiple reducers, the map tasks divide their output, each creating one partition for

each reduce task. The data flow between map and reduce tasks is known as ―shuffle‖ as each

reduce task is fed by many map tasks. The shuffle is an important phase where optimizing

can have a large effect on job execution time. If there are zero reduce tasks, then map tasks

write output data directly to DFS.

The shuffle phase is more complicated than described above. And it is important to model it

in more detail to get a more accurate prediction of a Hadoop MapReduce cluster. The map

tasks may finish at different times, so the reduce task starts ―shuffling‖ their output partitions

as soon as each map completes. This is also known as the copy phase of the reduce task. The

reduce task has a small number of copier processes that fetch map outputs in parallel. This

number is defined by the ―mapredReduceParallelCopies‖ job description property. The map

outputs are copied to the reduce buffer memory if they are small enough. Also the buffer’s

size is defined by the ―mapredJobShuffleInputBufferPercent‖ property, which specifies the

proportion of the memory heap to use for this purpose. If the map outputs are not very small,

they are copied to disk. When the in-memory buffer reaches a threshold size (also defined in

―mapredJobShuffleMergePercent‖), or reaches a threshold number of map outputs (defined

by ―mapredInmemMergeThreshold‖), it is merged and spilled to disk. There is also a

background process that merges the spills into larger files.

When all the map outputs have been copied, the reduce task moves into the ―sort phase‖. In

the sort phase, the merging process keeps merging maps’ output to larger ones and keeps the

data sorted. The maximum files that can by merged at once are defined by the merge factor

(ioSortFactor property).The merging process runs rounds of merges till it completes merging

whole map outputs fetched to the reducer. The final merge can come from a mixture of data

in-memory and data on-disk. In the last round that merges the resulting files, the merger

directly feeds the reducer with the data. The reducer at this stage is in the ―reduce phase‖,

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

52

where the user-defined reduce function is called for each key in the sorted output. The output

of this phase is written directly to the output DFS.

Reduce task

submit

Data fits in

memory

Copy to Memory

Manager

Threshold

reached

In memory Merge

Copy to File

Sytsem Manager

Start parallel N copier, File System Manager, and In-Memory Manager

process

Threshold

reached

Local FS Merge

Coppied outputs ++

Wait for map

output

yesyes

In memory and FS

Merge

Reduce function

Reduce finish

Write results to

DFS (replicate if

replication >1)

All results

copied
yes

no

noyes

no

no

Figure 3-8: Flow control of Reduce Task

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

53

Reduce SideMap Side

Data

split

Data

split

Data

split

Data

split

Data

split

Data

split

Reduce

function
OutputInput

split

Map

function

Memory

Buffer

fetch

Other

reducers

Partition, sort,

combine, and spill

to disk

Merge & Combine

Other

Mappers

Merge

Merge

Copy

phase

Shuffle &

Sortphase

Reduce

phase

Figure 3-9: Hadoop data flow [36]

3.2.2.3.4 Combiner Model

The combiner function is run on the map output data buffered in memory, and sorted by the

keys. Combiners may be run repeatedly over the input because there could be one or more

data spills generated by the map task. Combiners do not affect the final result. Running

combiners makes for a more compact map output, so there is less data to write to local disk

and to transfer to the Reducers. Usually the combiner uses the same or similar code to the

Reducer code because combiners can be used when the reduce function is mathematically

aggregated. MRSim simulates the combiner behaviour in Hadoop as follows: MRSim tries to

predict the key distribution in each output spill generated by the map task, and tries to predict

the key distribution in spills resulting from merging spills previously combined more than

once. Figure 3-10 shows the data flow of merging the map outputs of 10,000 records each,

without using the combiner function.

M & W 30000

10000

10000

10000

M & W 30000

10000

10000

10000

M & W 60000

Figure 3-10: Spill writing and merging (M& W: Merge & write to file system)

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

54

Suppose that the keys at the map output can be grouped in 100,000 groups equally

distributed. Then, MRSim can predict the merge with combine behaviour mathematically.

Figure 3-11 shows using the combiner in the merge process.

M & C & W

9510

25920

10000 C & W

951010000 C & W

951010000 C & W

M & C & W

9510

25920

10000 C & W

951010000 C & W

951010000 C & W

M & C & W 45120

Figure 3-11: Dataflow using combiner on map outputs (C: combine, M: Merge, W write to file system)

 108,900

Using the combiner in this example reduced the file system operations to the value:

Reduction of writings (spilled records) = 14.43 %

Reduction of readings =9.25 %

Depending on the number of output groups of keys the reduction could reach high values

such as more than 99% in the k-means clustering algorithm used in [54].In the following is

how MRSim mathematically calculate the records reduction when using the combiner:

This is a problem of computing the approximate probability that in a set of n records, at least

two records have the same key. Suppose that the total number of possible keys is . MRSim

assumes that the keys are equally likely. Real-life key distributions are not uniform since it

depends on the input data. If is the probability of an event that at least two records in

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

55

the spill have the same key, it may be simpler to calculate , the probability of no two

records having the same key. and are the only two possibilities and are also

mutually exclusive.

 is the probability of having n records with unique keys. can be described as n

independent events.

The n independent events correspond to the n records, and are defined in order. Each event

can be defined as the corresponding record not sharing its key with any of the previously

chosen records. For event 1, there is no previously chosen record. Record number 1 does not

share its key with a previously chosen record Therefore,

For event 2, the only previously chosen record is record 1. The probability, , that record

2 has a different key than record 1 is :

 Similarly,

Continue until record n

 is equal to the product of these individual probabilities:

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

56

Formula (2) calculates the probability of the nth record not sharing the same key as any of the

n – 1 preceding records. The event of at least two of the n records having the same keys is

complementary to all n keys being different.

Assume is a combiner function which calculates how many unique keys in sample S of

number of records equal to n, given that the total number of unique keys in the system is g.

Now, add one more random record to the sample S. The probability that this record is unique

is:

The new expected number of unique keys in the sample is given as:

 ,

If

 then:

 Formula (1)

This is the equation MRSim uses to estimate the number of unique keys in the subset of the

data generated by partial output of the map task. Thus, MRSim can estimate how many

records are reduced in each spill in each merge wave using the combine function.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

57

Another approximation seems to have good accuracy in the current range of tests is

approximation using a continuous exponential variable. Assume the maximum number of

unique keys g is much greater than 1. Then MRSim can approximate that the probability

density function of previous at Sample S of size x is

This is linear differential equation. The solution is:

 Formula (2)

3.2.2.3.5 DSF Distributed File System:

MRSim focused mainly on MapReduce components. The DSF implementation is limited and

very simple. If the MRSim user needs to extend some feature e.g. new policy for fetching

splits for maps, then he/she needs to take care of all DSF details such as in which machines

the actual replicas of splits exist, and which split replica is to be fed to the map. Writing

operations in the Distributed file system in MRSim are simulated simply by storing the first

replica on the local node, the other replicas are stored other nodes on and off the rack. Thus,

writing to the distributed file system does consume network bandwidth. The replication factor

is defined in the cluster configuration.

3.2.2.4 MRSim user level and Input Specifications

MRSim takes two types of inputs: hardware/topology specifications, and job characteristics.

Input files are specified in JSON format [111], and are read by JSON-processor. The JSON

processor provides seamless conversion between JSON format and POJO (Plain Old Java

Object) based either on property accessor conventions or annotations. This data binding is

similar to the DOM XML Tree Model. But the JSON content is converted to regular Java

objects rather than the node-based model in DOM XML. MRSim uses simple data binding

that only uses standard JDK container types of Lists, Maps and scalar types such as String,

Boolean, Number, and nulls.

http://wiki.fasterxml.com/JacksonTreeModel

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

58

3.2.2.4.1 Topology /hardware specifications

Figure 3-12 shows a sample of a hardware/topology file of a rack of machines linked by one

router:

{ "machines" : [

 { "baudRate" : 70000000.0,

 "cpu" : { "cores" : 4,

 "speed" : 500000000.0

 },

 "hardDisk" : { "capacity"

: 40000.0,

 "read" : 40000000.0,

 "seekTime" : 1.0,

 "write" : 20000000.0

 },

 "hostName" : "m1",

 "maxMapper" : 10,

 "maxReducer" : 5

 }

,

{ "baudRate" : 70000000.0,

 "cpu" : { "cores" : 4,

 "speed" : 500000000.0

 },

 "hardDisk" : {

"capacity" : 40000.0,

 "read" : 40000000.0,

 "seekTime" : 1.0,

 "write" : 20000000.0

 },

 "hostName" : "m2",

 "maxMapper" : 10,

 "maxReducer" : 5

 }

],

"router" : "r_01",

 "heartbeat":1.0,

 "propDelay":1.0,

 "maxIM":60000,

 "deltaCPU":1000000.0,

 "deltaHDD":1000000.0,

 "deltaNEt":1000000.0,

 "flowType":false,

 "hlogLevel":"info"

 }

Figure 3-12: Hardware/Topology Input file

Currently Topology input can support only a simple one-rack network, and a tree of racks

network. However, in principle MRSim is able to support many types of topology because

the underlined network simulator (GridSim) can support a user-defined topology. In simple

rack topology the cluster consists of several machines connected in on LAN linked by one

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

59

router. The distance between any two machines is equal to 1 router. In the tree rack topology,

a cluster consists of several simple racks, which are connected using another router.

Hardware specifications and Objects contained in each rack are shown in Figure 3-13:

Network adapter "baudRate" : 70000000.0

cpu { "cores":num_cpus, "speed" :mega_instruction_per_second}

hardDisk { "capacity" : 40000.0,"read" : 40000000.0, "seekTime" :

1.0, "write" : 2000000.0 }

Machine { baudRate : 70000000.0, “cpu”:{}, hardDisk:{}

“maxMapper”:mapper_capacity,“maxReducer”: educer_capacity}

Rack {“machines”:[list of machines],

“heartbeat”:heartbeat_period, …. Cluster_step_parameters }

Figure 3-13: JSON object in Topology file

3.2.2.4.2 Job Configuration Input file

MRSim defines several parameters to describe the job characteristics. Job parameters can be

grouped into three categories as shown in Figure 3-14 :

{

"jobName":"job_01",

"numberOfMappers":60,

"numberOfReducers":1,

"useCombiner":false,

"useCompression":false,

"ioSortFactor":10,

"ioSortMb":100.0,

"ioSortRecordPercent":0.05,

"ioSortSpillPercent":0.8,

"mapredChildJavaOpts":200,

"mapredInmemMergeThreshold":1000,

"mapredJobReduceInputBufferPercent":0.0,

"mapredJobShuffleInputBufferPercent":0.7,

Task Configuration

Parameters

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

60

"mapredJobShuffleMergePercent":0.66,

"mapReduceParallelCopies":5,

"useCombiner":false,

"useCompression":false

"replication":3,

…

"data":{

"name":"data_1",

"size":4.78627929E8,

"records":1620000.0,

"replica":["machine 1","machine 5"]

},

"inputSplits":[],

"outputSplits":[],

Job Data layout

"algorithm":{

"mapCost":10000.0, "mapRecords":50.0,

"mapOutAvRecordSize":12.0,

"combineCost":80.0, "combineRecords":1.0,

"combineGroups":100000.0,

"combineOutAvRecordSize":1.0,

"reduceCost":80.0 , "reduceRecords":0.01,

"reduceOutAvRecordSize":10.9,

….

….

},

}

Job Algorithm

Parameters

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

61

Figure 3-14 Job description File

Task configuration parameters: These parameters are used to override default job parameters.

These parameters are derived from Hadoop most important job configurations. Usually they

describe the amount of resources allocated for processes executing the job such as sizes of

memory buffers used in Mappers and Reducers, the thresholds used to control data flows

between the memory and local hard drives, the number of parallel processes running for a

task, such as in memory or hard drive mergers, and map results fetchers. A full description of

these parameters is listed in [3]. Task configuration parameters also help in predicting the

overhead needed to initialize and finalize each task or job.

Data layout parameters: point to the locations, replicas, number of records, and sizes of data

chuck for a single job. Data layout determines the data locality in each map task. The

JobTracker’s default scheduler tries to allocate a Mapper task on machines containing a

replica of the data chunk to decrease the amount of data to be copied to map tasks, and thus

make the map phase of the job faster.

Algorithm parameters: Jobs consist of map and reduce tasks. In each job the user implements

the ―map()‖, ―reduce()‖, and ―combine()‖ functions. All single jobs have this data sequence

in the system:

(input_data) -> map_function -> (intermediate data) -> combine_function -> (intermediate

data) ->reduce_function -> (output_data)

The algorithm part describes for each of the ―map()‖, ―reduce()‖, ―combine()‖ functions:

 The cost of processing input data unit (Instruction per byte).

 The conversion of sizes between the input and the output.

 The conversion of the number of records between the input and outputs.

 The number of unique keys expected in the combine() and reduce() functions.

These are the minimum number of parameters needed to describe, with good accuracy,

certain job behaviour. Providing algorithm parameters combined with the job configuration

parameters allows simulating the lower sub-processes in each map and reduce tasks, such as:

initializing the task, determine how many times the memory buffered spilled to the local hard

drives, configuring mergers, sorters, and data fetcher over network. Also, they determine the

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

62

interaction between job data (initial, intermediate, and output data) with the hardware

resources. This allows calculating the sizes and times needed to process each data unit in

different job execution stages.

3.3 Differences between MRSim and MRPerf Simulators

MRSim shares a lot of features as in MRPerf [10] [61] and is designed for the same purpose

of studying the behaviour of MapReduce jobs running with different job descriptions and in

different cluster configurations. However, there are main differences which triggered the

developing of MRSim:

 In MRPerf, only a few parameters are available to the user to configure the cluster

settings. Other important parameters either do not exist or are fixed in the simulator's

code and cannot be altered by the user.

 The current release of MRPerf code seems suitable for few algorithms such as for sort

and indexing algorithms. The user can specify the number of CPU cycles per byte for

sorting and merging tasks. This is a useful parameter to describe the computation

needed in the task because data in a MapReduce job undertakes several sorting and

merging steps whatever the algorithm is. However, a general purpose MapReduce

simulator should allow the user to specify – in addition to sorting and merging – the

number of CPU cycles per byte for the map() and reduce() functions in order to

simulate algorithms other than sorting, especially algorithms of high computations

cost in map() and reduce() functions.

 Experiments showed that – on average MapReduce jobs – hard disk I/O operations

are usually the bottleneck in the system. I/O read and writes speed is affected

dramatically by the concurrent number of read and write processes on the disk. This

might be the main cause for less accurate results in MRPerf and in MRSim

simulators. Using accurate models for the disk is highly recommended. G. Wang et al.

in [10] suggested using DiskSim [112] but they did not use it. DiskSim still has

drawbacks as it simulates old IDE hard disks. Most new hard disks nowadays have

SATA interfaces. Because of lack of an accurate open-source hard disk modelling

tool so MRSim used a simple hard disk model in MRSim simulator. MRPerf also uses

a simplified disk model based on average I/O read and write speed. However,

MRSim’s model is more accurate as it used real benchmark that considers the effect

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

63

of the number of I/O processes running in parallel on the same disk (shown later in

Figure 3-23).

 MRPerf does not overlap I/O and CPU operations assigned to a map/reduce task. It

divides these operations into distinct sequential phases. This is done to simplify the

design at the cost of some accuracy. However, Using Discrete-event simulation in

MRSim allows us to truly simulate overlapping I/O and CPU operations without

scarifying the simplicity.

3.4 Validating MRSim

Tow levels of validation are carried out. One is to validate the design of core entities and

scheduler policies used in them. Core entities worth separate evaluation because they are used

heavily by all other system components. The second validation is to validate the overall

system.

3.4.1 Design Validation

3.4.1.1 MRSim CPU validation

Several experiments were carried out to validate the CPU module. The experiment

application uses a Java Thread pool of various sizes to process jobs arriving and waiting in a

queue. Job arrival interval-time and CPU hour cost for a job are generated using random

normal distribution. The application ran on Intel Core Duo processor T7300 CPU. Source

code used is available at [41]. Each experiment generates statistics on the CPU while

processing hundreds of arriving jobs. Experiments are carried out with different parallel

threads capacity assigned to the CPU each time. Before showing the results, a few definitions

presented in the result figures are explained:

 Submit time : is the job arrival time, or the time of entering the waiting

queue.

 Start time : is the time when the job is moved to the execution queue, where it

is being served by the CPU cores using a Weighted Round Robin scheduleller.

 Stop time : is the time when the job is completed and removed from the exec

queue.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

64

 Job execution time : the time it took the job to be processed on the CPU.

 Waiting time :

 Turnaround Time :

In the special case with a CPU of single core, the problem can be modeled mathematically

using as single-server queue. Then if experiment run with Poisson distribution for both job

arrival times and for job CPU hour cost, and with endless capacity queue buffer, then the

problem can be modelled by the M/M/1 single-server queue model.

If λ is arrival rate, µ is job execution time rate,

 then Expected waited time in queue is:

. For a number of cores in the CPU greater than one, the mathematical solution is

complicated. The M/M/C queue model does not fit in this case, because jobs are run

concurrently on the same CPU using time shared (May need to explain more). In this case the

evaluation of the CPU model is done by comparing results of simulation with the results of

experiments.

 CPU utilization is predicted by the simulator. However, the results are not presented

here because of lack of tools that can measure the CPU utilization of real experiments.

 Average Throughput: number of jobs that complete their execution per time unit.

(Figure 3-15 and Figure 3-16).

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

65

Figure 3-15: Average Job throughput vs number of
maximum of parallel processes

Figure 3-16: Standard deviation for job throughput vs.
number of maximum parallel processes on CPU

 Average Turnaround Time: total time between submission of a job and its completion.

(Figure 3-17 and Figure 3-18)

Figure 3-17: Average Job turnaround time vs. number of
maximum parallel processes running on CPU

Figure 3-18 : Standard deviation for job turnaround time
vs. number of maximum parallel processes

 Average waiting time: amount of time between submission of the job and the start of

execution.(Figure 3-19 and Figure 3-20)

0.1820

0.1830

0.1840

0.1850

0.1860

0.1870

0.1880

2 4 6 8 10 12 14 16

jo
b

 /
se

c

Number of parallel processes

Throughput Simulation

Throughput Experiment

0.0288
0.0290
0.0292
0.0294
0.0296
0.0298
0.0300
0.0302
0.0304
0.0306
0.0308

2 4 6 8 10 12 14 16

jo
b

/s
e

c

Number of parallel processes

throughput Experiment

throughput Simulation

0
2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12 14 16

T
im

e
 (

se
c)

Number of parallel processes

Experiment Simulation

0
2
4
6
8

10
12
14
16

2 4 6 8 10 12 14 16

Ti
m

e
(S

e
c)

Number of parallel processes

Experiment

Simulation

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

66

Figure 3-19: Average Job waiting time vs. number of
maximum parallel processes

Figure 3-20: Standard deviation of job waiting time
vs. number of maximum parallel processes

 Average Response time: amount of time it takes from when a request was submitted

until the first response is produced. This is very close to the average waiting time in

the queue before starting executing. It only differs with one time slice used in the

Round robin scheduler.

 Average Job Execution Time: Time between starting executing the job and the time of

completion. This time increases when the maximum number of allowed parallel

processes on the CPU increases. (Figure 3-21 and Figure 3-22)

Figure 3-21: Average Job execution times vs. number
of maximum parallel processes allowed on CPU

Figure 3-22: Standard deviation of job execution time
vs. number of maximum parrallel processes allowed

on CPU

 Fairness: The jobs submitted in the experiments all have same priority. In this case,

the round robin scheduler ensures equal CPU time to each thread. With different job

priorities there is a possibility of process starvation in WRR. Although the CPU

model in MRSim supports different job priorities, other entities in the system submit

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16

Ti
m

e
 (

se
c)

Number of parallel processes

Experiment
Simulation

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

Ti
m

e
(s

ec
)

Number of parallel processes

Experiment

Simulation

0

5

10

15

20

2 4 6 8 10 12 14 16

Ti
m

e
(s

e
c)

Number of parallel processes

Experiment

Simulation

0

5

10

15

20

2 4 6 8 10 12 14 16

Ti
m

e
(s

ec
)

Number of parllel processes

Experiment

Simulation

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

67

the jobs with the same default priority. Thus, no experiments are needed to validate

the fairness in the scheduler of MRSim CPU entity.

3.4.1.2 MRSim Hard Drive validation:

Hard drive accurate simulation is the key to an accurate MapReduce simulator because

MapReduce jobs usually process large sizes of data and the amount of intermediate data

produced while executing are of large sizes too. Also mergers work recursively on data splits

to merge them into one file. This means more than one read/write operation for the same

intermediate data. This is why a Hadoop map reduce cluster is usually sensitive to hard disk

performance. In production clusters, machines are provided with several hard disks to

increase the overall I/O speed. To the best of our knowledge, DiskSim [112] is the most

accurate open source available tool for disk simulation. However, using DiskSim require

configuring hundreds of parameters. Although DiskSim offers tool to automatically extract

the Hard Disk parameters, the new SATA Interface disks are not fully supported and not all

parameters are available to the simulator.

As an alternative, different method is used by simulating the hard disk with few parameters:

Capacity, Access time, and Read/Write speed. The CPU model of average speed with

weighted round robin scheduler is also adopted for hard disk model. However, unlike the

CPU which has stable processing speed, the average read/write speed of hard disks changes

dynamically depending on the concurrent number of read/write processes using the disk.

Without DiskSim-like tools, it cannot decide dynamically the current average read/write

speed. To solve this problem MRSim adopted hybrid approach. Hard disk model uses a CPU-

like model for the Hard Disk and then added a dynamic speed adjustment functionality to the

model. Adjustment functionality data is collected from real experiments on the hard disks

used in the cluster. This means, for each type of hard disk in the system, at least one

experiment is needed to extract the parameters for adjustment functionality. Usually clusters

are composed of tens or hundreds of homogeneous machines. So the number of experiments

needed is small. Here the GUI Linux tool is used to measure the hard drive performance for

one types of hard drive. As shown in Figure 3-23 the average access time and average

read/write speed vary depending on the concurrent number of read/write processes on the

hard drive.

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

68

Figure 3-23: Read benchmark

3.4.1.3 MRSim Network Traffic Validation

MRSim uses GridSim [8] [113] [40] for network traffic simulation. Packet level or flow-level

simulation can be used in GridSim. However, using packet-level simulation takes

considerable time to complete the simulation. More accurate network simulators may be used

instead of GridSim. Any candidate alternative should implement the NetEnd interface defined

in MRSim. The network simulator ns-2 [11] is a good candidate to replace the GridSim

network simulator in future development because it has been used for while by the research

community and more research is being done on it to ensure its accuracy, such as [68]. Also,

ns-2 has call back functionality which allows implementing a MRSim NetEnd interface.

3.4.1.4 MRSim Combiner Function Validation

The Java application was written to generate sample subsets of varying sizes from a set of

keys of size g (g=100,000 in the experiment). Each subset is generated by random choice

with return sampling. Then the number of unique keys in the subset sample is counted. The

experiment was repeated 1000 times for each sample subset and repeated the whole process

for 50 sample sets of sizes ranging from 10,000 to 490,000. Error! Reference source not

found. and Error! Reference source not found. are used to predict the number of unique

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

69

keys in each sample. Figure 3-24 shows the result of using combine functions of various sets

of data.

Figure 3-24: Number of unique keys in sample subset vs. size of sample subset

This is a very accurate result. With a confidence level of 95%, the confidence interval for

data generated by Error! Reference source not found. is ±5.604 and by Error! Reference

source not found. is ±5.606. This means in test samples of sizes of 10,000 and more, 95% of

the results are within a range of less than 0.01% of the expected values. However, in different

algorithms, the map task may generate entries with keys not equally distributed among the

range of keys. Error! Reference source not found. and Error! Reference source not

found. will not generate such accurate results. In the current experiments of algorithms used

in this research, the keys are – with good confidence- equally distributed and thus equations 1

and 2 can be used to estimate the scalability of algorithm when the combiner function is

enabled.

3.4.2 Local Cluster Experiment Validation

The following experimental results were collected in a single rack cluster, consisting of four

participating nodes. Three of the nodes are Intel CPU Q6600, 3GB RAM and Fedora 12 OS,

the fourth one Intel Core 2 Duo T7300, 4GB RAM and Fedora 12 OS. The experiments

focused on job execution times, average task times in every job, intermediate spilled records

in Map and Reduce tasks and the number of HDD read and writes for each job. Datasets used

with different sizes are used. The algorithm used in the test is word count. Each job consists

of 60 map tasks and one reduce task. Each job is tested three times with three configurations;

0

20000

40000

60000

80000

100000

120000

10000 90000 170000 250000 330000 410000 490000

N
u

m
b

er
 o

f
u

n
iq

u
e

 k
ey

s

Size of sample sub set

Experiment g(1-e^-x/g) (1-a^x)/(1-a)

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

70

configuration one is the default configuration. Configuration two is by using combiner tasks.

Configuration three is by using more virtual memory for each of MapReduce tasks. There are

many more configurations that can be tested and is altered from job description file Figure

3-17 . The prefix ―s-― indicates simulation result where other legends used without ―s-‖ prefix

indicate real cluster result.

3.4.2.1 Spilled Records (local hard disk writes)

 Without combiner

Figure 3-25: Intermediate spilled records to local file system vs. input records

 With combiner

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

8.0E+08

9.0E+08

1.0E+09

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

S
p

il
le

d
 R

ec
o
rd

s

Data input records

s-map s-reducer s-job map reducer job

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

S
p

il
le

d
 R

ec
o
rd

s

Data input records

s-map s-reducer s-job map reducer job

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

71

Figure 3-26: Intermediate spilled records to local file system vs. input records, using combiner function

 More virtual machine per task

Figure 3-27: Intermediate spilled records to local file system vs. input records, using double virtual memory per task

3.4.2.2 Local Hard Disk reads and writes

 Without combiner

Figure 3-28: Local file system read bytes vs. input records

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

8.0E+08

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

S
p

il
le

d
 R

ec
o
rd

s

Data input records

s-map s-reducer s-job map reducer job

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

8.0E+09

9.0E+09

1.0E+10

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

b
y
te

s

Data input records

s-map s-reducer s-job map reducer job

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

72

Figure 3-29: Local file system written bytes vs. input records

 With combiner

Figure 3-30: Local file system read bytes vs. input records, using combiner function

0.0E+00

2.0E+09

4.0E+09

6.0E+09

8.0E+09

1.0E+10

1.2E+10

1.4E+10

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

b
y
te

s

Data input records

s-map s-reducer s-job map reducer job

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

b
y
te

s

Data input records

s-map s-reducer s-job map reducer job

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

73

Figure 3-31: Local file system written bytes vs. input records, using combiner function

 More virtual machine per task

Figure 3-32: Local file system read bytes vs. input records, using double virtual memory per task

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

b
y
te

s

Data input records

s-map s-reducer s-job map reducer job

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

8.0E+09

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

b
y
te

s

Data input records

s-map s-reducer s-job map reducer job

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

74

Figure 3-33: Local file system written bytes vs. input records, using double virtual memory per task

It is obvious that the sizes of intermediate data generated between the mappers and reduces is

greatly affected by the job configurations. Using combiner in job submitted results in

applying an aggregate mathematical operation of groups of records in-memory before writing

the intermediate data to local hard disks. Such reduction is shown between Figure 3-25 and

Figure 3-26 for example. On the other hand, using more virtual memory for processes tasks

also reduces the sizes of intermediate data and I/O operations used for the job as shown

between Figure 3-25 and Figure 3-27 for example. However, this reduction in sizes is not as

much as reduction resulted from using combiners Figure 3-26. Using more virtual memory

for MapReduce tasks reduces the I/O operations between CPUs and local hard drives because

data are merged in memory and rather than on hard disks. Same argument applies for all tests

of spilled records, local read sizes, and local write sizes. Figures of these categories usually

have the same trends (ex. Figure 3-25,Figure 3-28, and Figure 3-33). However, there is no

definite consistent pattern between those measurements and thus, MRSim monitor them

separately.

3.4.2.3 Mappers, Reducers, and Job Execution Times

As shown in figures Figure 3-34, Figure 3-35, Figure 3-36 mappers consumes less time from

the total job time. However, this is not a rule and is affected greatly by the algorithm

definitions in job description file Figure 3-14. Figures show that using combiner greatly

reduced times of jobs. Also, there are slightly better execution times when using more virtual

0.0E+00

2.0E+09

4.0E+09

6.0E+09

8.0E+09

1.0E+10

1.2E+10

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

b
y
te

s

Data input records

s-map s-reducer s-job map reducer job

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

75

memory for MapReduce tasks. However, this is not general case and is tightly dependant on

algorithm and job parameters in job description file.

 Without combiner

Figure 3-34: Execution times vs. input records

 With combiner

Figure 3-35: Execution times vs. input records, using combiner functions

 More virtual machine per task

0.0E+00

1.0E+02

2.0E+02

3.0E+02

4.0E+02

5.0E+02

6.0E+02

7.0E+02

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

se
co

n
d

s

Data input records

s-map s-reducer s-job map reducer job

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

1.4E+02

1.6E+02

1.8E+02

2.0E+02

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

se
co

n
d

s

Data input records

s-map s-reducer s-job map reducer job

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

76

Figure 3-36: Execution times vs. input records, using double virtual memory per task

3.4.2.4 Data Shuffled Over the Network Between Mappers and Reducers

Figure 3-37: Data shuffled bytes vs. input records, using different job configurations

Without using the combiner function, the data shuffled in this algorithm is linear to the

number of input records, because all records are transferred over the network to the reducers.

When using the combiner, the data shuffled is decreased to a great extent and the value of

records shuffled is close to the value of the number of unique keys in the map output keyset.

In this example, no matter how big the number of input records is, the shuffled records are

always close to the maximum number of unique keys in the map output keyset (100,000).

0.0E+00

1.0E+02

2.0E+02

3.0E+02

4.0E+02

5.0E+02

6.0E+02

7.0E+02

0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08

se
c
o
n

d
s

Data input records

s-map s-reducer s-job map reducer job

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

1.8E+09

0.0E+00 5.0E+07 1.0E+08 1.5E+08

b
y
te

s

Data input records

no combiner-s no combiner with combiner-s

with combiner double vm-s double vm

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

77

Figure 3-24 shows the equations that control this behaviour when using the combiner

function in the job.

3.4.3 Sort Benchmark Validation

Malley and Murthy [1][114] used Apache Hadoop in a Yahoo cluster of a few thousands

machines to compete in Jim Gray's Sort benchmark [115] . Jim's Gray's sort benchmark

consists of a set of several related benchmarks, with different rules. All of the sort

benchmarks measure the time to sort different numbers of 100 byte records. The TeraSort

benchmark samples the input data of one Tera byte size and uses map/reduce to sort it. O.O.

Malley and A.C. Murthy published their results and provided a comprehensive description of

the cluster configuration and job configuration. This information was used to set up MRSim

to simulate their terasort experiment. They used approximately 3800 nodes with these

hardware features:

 Quad core Xeons @ 2.5GHz per node

 SATA disks per node

 8G RAM per node (and 16GB for the petabyte sort)

 1 gigabit Ethernet on each node. 8 gigabit Ethernet uplinks from each rack to the core.

 40 nodes per rack

 Red Hat Enterprise Linux Server Release 5.1 (kernel 2.6.18)

 Sun Java JDK (1.6.0 05-b13 and 1.6.0 13-b03) (32 and 64 bit)

Malley & Murthy modified the Hadoop code to optimize it for best performance for this

specific terasort job.

3.4.3.1 Simulator Configuration

Trying to simulate yahoo terasort experiments is a challenging task for any distributed system

simulator. It takes days to simulate such experiments which run on at least 1406 machines

grouped into racks of 40 machines per rack and linked by routers in a tree topology. When

performing the experiments, it is noticeable that MRSim – in its full feature version – could

not simulate the experiments. Usually simulation engines, such as SimJava, allocate one

thread for each simulated process. In the terasort experiment, the number of processes needed

to be simulated is several times bigger than the default number of processes allowed by the

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

78

operating system for each application. OS configuration was modified to launch the

simulator with more memory heap size. Also, MRSim uses GridSim to simulate network

traffic. Mehta [116] performed an evaluation of GridSim simulation scalability using

NetBeans’ profiler and showed that GridSim scaled up to 1380 resource and with memory

usage of 413MB and the number of processes running was 18000. MRSim showed even less

scalability because it not only uses the GridSim network simulator but it also uses its own

simulation entities to simulate other components in the system.

As Malley & Murthy modified the Hadoop code to get optimum performance for this certain

test, MRSim was modified to get the best performance value. First logging was turn off as the

experiments is interested only in the total job time. Second, by checking the code of Yahoo

TeraSort application and by studying the behaviour of it in small cluster, it is noticeable that

map and reduce tasks have an input closely equal to the amount of data, the data keys are

equally distributed among mappers, and reducers get equal amounts of Mappers outputs.

Thus, there is no need to save different objects to hold the values for each data split generated

by the map tasks. When saving the data one instance is enough. Another modification is

simulating a fewer number of racks while keeping simulating network traffic with other

racks. Also, the machines used by Malley & Murthy to run TeraSort are of homogeneous

hardware features. This allows us to apply the second optimization by simulating part of the

whole cluster while keeping simulating the network traffic with the other part of the cluster.

This generated the same result as if the whole cluster was simulated but with much faster

performance. The third modification to MRSim is the ability to simulate Hadoop in

speculative mode as it is enabled in the previous terasort experiments. In speculative mode,

several copies of the same map or reduce task are running in parallel on other idle slots in the

cluster. Speculative mode provides more reliable job execution but consumes more of the

cluster hardware. The source code of optimized MRSim version for TeraSort experiments is

available on the project website [41].

 Here there are job and cluster configurations for each experiment. These values are derived

from job history logs for real experiments and provided by Malley & Murthy [114].

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

79

Table 3-3: Cluster configuration for TeraSort benchmark [114]

Job Configuration Input Data in Bytes

 500 Giga 1 Tera 100 Tera 1 Peta

"ioSortFactor" 800 100 100 100

"ioSortSpillPercent" 0.95 0.95 0.85 0.9

"mapReduceParallelCopies" 20 20 20 20

"ioSortMb" 800 300 400 1100

"useCompression" TRUE TRUE FALSE FALSE

"mapredJobShuffleInputBufferPercent" 0.95 0.95 0.8 0.8

"reduceTasksMax" 2 2 2 2

"ioSortRecordPercent" 0.2 0.4 0.4 0.2

"mapredJobShuffleMergePercent" 0.95 0.95 0.8 0.8

"mapredInmemMergeThreshold" 10000 10000 10000 10000

"mapredChildJavaOpts" Xmx1024m Xmx200m Xmx200m Xmx200m

"mapTasksMax" 6 4 4 2

Nodes 1406 1460 3452 3658

Maps 8000 8000 190000 80000

Reduces 2600 2700 10000 20000

Replication 1 1 2 2

Benchmark by Malley&Murthy

(seconds)

59 62 10,380.0 58,500.0

MRSim(seconds) 83.74 111.3 4,509.24 55,506.9

Suhel Hammoud (2011)

Chapter 3: MRSim, MapReduce Simulator

80

Figure 3-38: TeraSort experiments, time to complete the sort job vs. data input size

Figure 3-38 Shows results of simulating TeraSort benchmark on optimized MRSim

simulator. There is difference in times especially in 1 Tera dataset. There is no clear answer

for this difference. However, it was noticed that the number of machines used and provided

by Malley & Murthy in their paper is different than the numbers of machines used in each

experiment as logged into the job history logs provided by the experiment. This issue needs

more clarification in order to get more accurate results by the simulator. However, this

validation sticks with the number provided in the published paper and not by the technical

files provided on the experiment website.

3.5 Summary

This chapter introduced MRSim, a discrete-event MapReduce simulator used to study the

behaviour of clusters that run MapReduce middleware implementation. It discussed the

design approach and defined layered model. It showed the flow control between the core

system entities and how core entities are used by other components in the system. Two

schedulers were designed to run the CPU and Hard Drive model. Network topology and

algorithm description is fed to the system using JSON format. Several experiments carried

out to evaluate both core entities and for overall performance. MRSim is used in next chapter

to evaluate the scalability of MapReduce algorithms developed for mining frequent itemset in

large datasets.

0

10000

20000

30000

40000

50000

60000

70000

0 2E+14 4E+14 6E+14 8E+14 1E+15 1.2E+15

se
co

n
d

s

Data input size (bytes)

Yahoo TeraSort MRSim

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

81

Chapter 4

MRAPriori: MapReduce Apriori-like

Algorithm for Associative Rules Mining

4.1 Introduction

This chapter introduces MRApriori MapReduce Apriori-like Algorithm using MapReduce

framework. It can be considered as hybrid approach between Eclat [19] and apriori with HT

pruning [20]. It first discusses distributing apriori in MapReduce. The approach is similar to

Dynamic counting algorithm [21] when dataset has horizontal format. Then it discusses using

vertical format [19] combined with applying scalable parallel intersections for group of tid

sets at once using MapReduce framework. This new method used to build MRApriori new

associated rule miner using both vertical and horizontal dataset. Two implementations of

MRApriori are discussed. At last, experiment results and MRSim simulation shows and

analyzed in addition to study of scalability of the new algorithm using MRSim [35] simulator

introduced in chapter 6.

4.2 Paralleling Apriori -like Algorithms that Uses Horizontal Data Representation

Counting in Apriori algorithm is used to find all frequent items that occurred in the dataset

with number of times of value over the minimum support level. Distributed and parallel

counting in apriori is easy to implement in Map-Reduce framework as data are divided into

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

82

chunks and are distributed to several nodes with parallel counting processes counting on each

node. The results of counting have much smaller size and are communicated into another

central node to calculate the overall sum. Counting is an aggregate operation. Thus, using

combiners that calculate intermediate sums locally before sending them over the network

greatly reduces the data sizes transferred over the network. Using hash tables allows checking

all frequent items of certain size which are included in one line. Frequent items are saved in

hash table and are distributed to the all working processes before scanning the data. Two

main constraints of the previous implementation are it demand repeating scanning whole

input dataset until finding all frequent items and hash tables that hold references to so far

discovered frequent items may grow to sizes does not fit the available memory. Figure 4-1

shows how to implement distributing counting in apriori algorithm using Map Reduce

framework.

Map-Reduce Job

TID1

TID n

TID...

TID2

TID n+3

TID n+2

TID n+1

Input Dataset

Split 1 Map

id1

id2

idn

1

1

1

Combine

id1

id2

idn

sum1

sum2

sumn

Sum 2-1

Sum...

Sum 2-m

Sum 1-n

Sum 1-1

id2

id1

Shuffle

&

Sort Reduce

Freq itemset

i

Candidate

i+1
L i+1

L
o

a
d

Prune

output

id1

id2

idn

sum1

sum2

sumn

d
is

tr
ib

u
te

Split 2

Figure 4-1: Distributed counting in Apriori using MapReduce framework

4.3 Paralleling Algorithms with Vertical Data Representation

Other algorithms showed faster performance than scanning the dataset each time. Other

algorithms such as [19][18] avoid iterative scanning of input dataset. It is using the vertical

representation of data and finds frequent itemsets by intersection between all set of lines

attached to the frequent itemsets of lower size. However, all data is held in virtual memory.

Distributing the algorithms that uses vertical data format and set intersection faces some

challenges. If the current number sets of frequent item sets is N. Then, on average, each set

has to be distributed to (N-1)/2 intersection processes to generate frequent items of higher

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

83

degree. The more parallel processes there are the more data has to be transferred to the other

processing nodes.

Another restriction in paralleling algorithms that uses vertical datasets is that it requires

random access to the data. Random access to data would consume most of the application

time. Relational database systems can be used to improve the access time speed. However is

add restriction to the scalability as more data to be used in distributed way means that

relational database becomes the bottle neck of the system. A good framework for such data

storage with random access is using Google Bigtable [5] distributed data structure introduced

by Google and has good open-source implementation by Apache Hadoop Project called

HBase [3] [117]. The advantage of using HBase also includes seamless effort to parallel

distribution of the data using parallel working nodes. However, more effort is needed to

coordinate the intersections over the distributed environment.

Here comes MRAproiri which benefits from the simplicity and the abstraction introduced by

MapReduce framework to define simple algorithm that is fully distributed and benefits from

a new data representation to avoid repeating scanning of original dataset and to avoid using

more complicated data structures with more fine scheduling to coordinate processes in

distributed environments. MRApriori can be seen as an algorithm that uses vertical data

representation and uses fast distributed batch set intersection for finding frequent itemsets.

4.4 MRApriori

Using MapReduce for frequent itemsets counting in apriori (Figure 4-1) showed good

scalability for algorithm. However, repeated scanning of dataset is still needed. MRApriori

eliminate the need to iterative scanning of the data to find all frequent items. Instead,

MRAPriori repeats scanning other intermediate data that usually keep shrinking per iteration.

Number of iterations is same as number of iterations in Apriori. But usually, MRApriori scan

less data rather than scanning whole data as in Apriori. Thus, the main differences between

Apriori and MRApriori are:

 MRApriori do only one scan for the data in original format.

 MRApriori uses new data structure to represent the dataset. It is hybrid of both

vertical and line representations.

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

84

 MRApriori uses batch set intersection using MapReduce framework where Apriori

uses counting.

 MRApriori uses batch rule extracting based on MapReduce framework.

MRApriori consists of three steps, data initialization, frequent items discovery, and rule

extraction for frequent items. Those steps in addition to data transformations are explained

here.

4.4.1 Data Initialization

MRApriori uses integer values to represents the items in dataset. This makes the algorithm

faster and takes less memory sizes. Mapping items into integer values can be delayed and

merged to the step of finding frequent item sets of size one. Dataset consists of transactions

or records. Each record contains several items. Items in each transaction may be spars. Table

4-1 shows example of input dataset.

Table 4-1: Initial dataset

Items

I1,I2,I3

I2,I4

I2,I5

I1,I2,I4

I1,I5

I2,I5

I1,I5

I1,I2,I5,I3

I1,I2,I5

Table 4-2: add unique ID for each transaction

TID Items

1 I1,I2,I3

2 I2,I4

3 I2,I5

4 I1,I2,I4

5 I1,I5

6 I2,I5

7 I1,I5

8 I1,I2,I5,I3

9 I1,I2,I5

Table 4-3: Spars dataset

TID

Column Id

1 2 3 4 5

1 1 1 1
 2

1

1

 3

1

1

4 1 1

1
 5 1

1

6

1

1

7 1

1

8 1 1 1

1

9 1 1

1

Table 4-4: Map each item to its lowest tid occurrence in
the dataset

TID Item Ids

1 (1)1,(2)1,(3)1

2 (2)1,(4)2

3 (2)1,(5)3

4 (1)1,(2)1,(4)2

5 (1)1,(5)3

6 (2)1,(5)3

7 (1)1,(5)3

8 (1)1,(2)1,(5)3,(3)1

9 (1)1,(2)1,(5)3

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

85

The minimum initialization done for data is to add unique integer value for each transaction.

Line numbers were used as transaction id (TID). Next, items are mapped to its integer

representation (item ids) where each Item is replaced with integer values of two parts;

Column Ids, and row Id.

ColumnIds: Map the attributes values to integer ids as shown in Table 4-3.

RowId: the lowest value of TID at which the item first occurred in the dataset.

Mapping items to ―(ColumnIds)RowId‖ format can be done in one scan of data set. In

standard alone implementation this can be done by using hash Tables that link each item with

the current RowId. Those tables are updated each time new transaction is read. In large

datasets, one MapReduce job can do the mapping using simple ―map‖ and ―reduce‖ functions

(Figure 4-2).

Map():

For each item in the transaction:

 throws the entry <item, TID>

Reduce():

For each group of entries that have same item as key:

 Choose the lowest TID for the item.

 Throw <item, lowest TID number>

Figure 4-2: Initialize data using map and reduce methods

 The previous reduce function is an aggregate operation of finding the minimum value. Thus

reduce function can be used as combiner and this greatly reduces the amount of data to be

communicated between the nodes, and will do the data conversion very fast.

Lazy initialization can be applied to the dataset. In this case, mapping the items into the

format of ―(ColumnIds) RowId‖ is moved to the process of finding the frequent item sets of

size 1. In this way, the previous map or reduce functions are modified to be as shown in

Figure 4-3

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

86

Map(transaction)

For each item (string value) in transaction:

 Throw entry <Item, TID>

Reduce (Group of Entries of same key):

 counter = number of TIDs

 TID_min = lowest value of group of TIDs.

 If counter > min support level

 Throw <Item, TID_min >

Figure 4-3: Lazy Initialization using map and reduce functions

MRApriori uses two data structures formats to represent intermediate data used in the

algorithm; line space format and item space format. Example of line space format is the

dataset initialized in Table 4-4, where dataset is represented in collection of lines. Each line

has the format of:

Line , (columnIds_0)rowId_0,…., (columnIds_n)rowId_n

Line , list of items ids

 This is horizontal representation of data. Other used representation is the vertical or ―item

space‖ format. Item space can be seen as map where keys are items ids and values are set of

occurrence lines to corresponding items. Table 4-5 shows the result of transforming data of

Table 4-4 from horizontal format (line space) to vertical format (item space).

ItemId: set of occurrence lines

Table 4-5: Initial data representation in item space

Item Lines

(1)1 1, 4, 5, 8, 9

(2)1 1, 2, 3, 4, 6, 8, 9

(3)1 1, 8

(4)2 2, 4

(5)3 3, 5, 6, 7, 8, 9

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

87

As shown later, this simple data format allows ruleitems of higher degrees to be represented

the same way.

4.4.2 Frequent Items Discovery and Rule Pruning

Frequent ruleitem discovery phase in MRApriori works by applying the support condition

while repeating the transformation of the input data between the Line space and the Frequent

Item space until discovering all frequent ruleitems (Figure 4-6). Data transformation from a

Line space to a frequent space is performed using the MapReduce methods

―ToFrequent.Mapper‖ and ―ToFrequent.Reducer‖. The input for the ToFrequent.Mapper

method is <line, list of ItemId>, and the output is <ItemId, Line>, which then gets inputted to

the ―ToFrequent.Reducer‖ and this method outputs <ItemId, set of lines>.

(line space)<Line Number, List of ItemIds>  ToFrequent.Mapper  <ItemId,

Line>  ToFrequent.Reducer  <ItemId, set of lines> (item space)

On the other hand, transforming the data from a FrequentItem space into a Line space is

performed using the methods ―ToLine.Mapper‖ and ―ToLine.Reducer‖. The

―ToLine.Mapper‖ gets <ItemId, set of lines> as an input and produce <Line Number: ItemId>

as an output, which is in turn gets inputted to the ―ToLine.Reducer‖ and this method collect

the ItemIds entries for certain line and outputs<line, list of ItemId> in line space.

(item space) <ItemId, set of lines> => ToLineMapper => <ItemId,

Line> => ToLine.Reducer => <line, List of ItemIds> (line space)

If dataset has fixed number of attributes then the maximum number of iterations to find all

frequent ruleitems equals the number of attributes (columns) in the training data set. If the

data has sparse attributes then the maximum number of iterations is equal to the maximum

number of attributes occurred in one line in the dataset. However, the actual number of

iterations could be much smaller as the number of items in both line space and item space

usually keeps shrinking by iterations. In each iteration, more items are dropped because of

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

88

applying support condition and more lines are dropped because they do not have sufficient

number of items to generate next ids of frequent items of higher size.

 Let’s apply the previous frequent items discovery procedures to Table 4-4 . Assume that the

MinSupp is set to 3/9 meaning that any keyword that occurs at least three times in the table is

considered a frequent ruleitem. To discover the frequent ruleitems of size ―1‖ (Single

attribute values with frequencies above the MinSupp threshold), firstly the proposed

algorithm transfers the data into Item space .

(Line 1) <(1)1, (2)1 ,(3)1> ToFrequentItem.Mapper <(1)1 , 1 >, <(2)1, 1>,

<(3)1, 1>.

(line 2) <(2)1, (4)2> => ToFrequentItem.Mapper =><(2)1, 2>,< (4)2 ,2>.

... etc.

Output results from the Mapper get sorted and introduced to the Reducer grouped by the key

value. For instance and for attribute values (keywords) ―I1‖ and ―I3‖, the data offered to the

Reducer are as follows:

<(1)1, 1 >,<(1)1, 4 >, <(1)1, 5 >,<(1)1, 8 >,<(1)1,9> ToItem.Reducer < (1)1 ,[1, 4, 5, 8,

9]>

<(3)1,1>, <(3)1,8> ToItem.Reducer <(3)1, [1,8]>

For these particular attribute values, it is obvious that (1)1 is frequent ruleitems with support

value 5/9 where (3)1 is not frequent ruleitem because it has support value of 2/9 < 3/9. Thus,

item (3)1 is dropped from item space of size 1 as it did not survive the support threshold.

Once the frequent ruleitems of size 1 are determined, then only their occurrences are

transformed into the Line space to data format using the MapReduce methods

ToLineItem.Mapper and ToLineItem.Reducer. So for ruleitems <―a‖, r> and <―b‖, r> which

are frequent, their Line space representations are as follow:

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

89

<(1)1, [1, 4, 5, 8, 9] => ToLine.Mapper => <1, (1)1 >,<4, (1)1>, <5, (1)1 >,<8, (1)1

>,<9, (1)1 >

<1, (1)1> , < 1, (2)1> => ToLine.Reducer => <1, [(1)1,(2)1]>

The sample outputs are sorted and grouped by the line number and then offered to the

ToLine.Reducer which only accumulates the ItemIds and output them to line space. The

resulting lines (Table 4-6) would be similar to the previous lines set of Table 4-4 excluding

any attribute value which was discarded during the frequent ruleitems generation. If no

ItemIds thrown with certain line, or if the number of remaining ItemIds in the line is less than

iteration value then this line is dropped from the line space.

Table 4-6: Map each item to its lowest tid occurrence in the dataset

TID Item Ids

1 (1)1,(2)1

3 (2)1,(5)3

4 (1)1,(2)1

5 (1)1,(5)3

6 (2)1,(5)3

7 (1)1,(5)3

8 (1)1,(2)1,(5)3

9 (1)1,(2)1,(5)3

 In next iteration, the proposed algorithm simply finds frequent ruleitems of size N by

appending frequent ruleitems of size N-1. Particularly, and for each two disjoint ItemIds a

single line within the Line space, the algorithm checks the possibility of joining them to one

ItemId then emits the new item to the Reducer with (line) values similar to the previous

iteration. For example,

<1, [(1)1,(2)1]> => ToFrequentItem.Mapper => < (1,2)11, 1>

The Reducer groups all items of the same key and for each key generates one ruleitem, such

as

< (1,2)11, 1> , < (1,2)11, 4> , < (1,2)11, 8> , < (1,2)11, 9> => ToItem.Reducer => <

(1,2)1, [1,4,8,9]>

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

90

―(1, 2)1‖ is frequent item id where ―(1, 2)‖ are columns attributes and ―1‖ is the line number

of first occurrence of this item. (1,2)1 is mapped in the original data set to (I1, I2) whose first

appearance in the data set is at line 1 (Table 4-1).

The algorithm then repeats the data transformation until all frequent ruleitems are discovered.

If the ruleitem survives the MinSupp threshold it will be kept, otherwise it will be discarded

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Input: Training data (D), minSupp and minConf thresholds

Output: Set of Frequent ruleitems R

// Pre-processing phase

If D contains real/integer attributes then

 Discredite it

//Initialization:

 Map D to integer values to Line Space format LS0

//Frequent Items Discovery

Map D from Line space 0
LS

 to Item Space 1
IS

 to get set 1
S

of frequent 1-ruleitems

)(
01

LSeToItemSpacIS 

1
ISR 

tributesNumberOfAtIteration maxmax 

2i

While
)1)(__max(

1


i
ISsizeandIterationi

{

)(

11 


ii
ISeToLineSpacLS

)(

1


ii
LSeToItemSpacIS

 i
ISRR 

 1 ii

}

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

91

Figure 4-4: Pseudo code for Initialization and Frequent Item Discovery steps

4.4.3 Generate Strong Association Rules Form Frequent Itemsets

Now that MRApriori has collected the set of all frequent items of all sizes that survived the

support threshold. Then it follows the apriori definitions to extract strong associated rules

from frequent item set. MRApriori also uses Map Reduce framework to extract significant

rules form all frequent item sets.

This is done in one Map Reduce job step using the two map and reduce functions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

//generate strong rules form frequent itemsets

Input set of all frequent items fi

Output R: set of strong associated rules

Map Function()

for each frequent item fi, of support supp_i:

 for each left-hand a possible subset from fi:

 right-hand = get the complement right hand part from fi and left-hand.

 map (left-hand -> right-hand: supp_i

 map fi -> []: supp_i //(fi is left-hand part, [] empty set as right-hand part)

//group entries of same left-hand keys :

<left-hand, [right_hand 1: supp_1, … right_hand_n: supp_n]>

Reduce Function():

supp_ = support of entry that has no right-hand _side []

for other entry i which has left-hand side:

 calculate confidence conf = supp_i/ supp_

 if conf >= confidence threshold:

 R = R union (left-hand -> right-hand)

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

92

Figure 4-5: Pseudo code for extracting associative rules in MRApriori

If all frequent item sets can fit in computer memory and if the processing time is not that big

then Hash table data structure can be used to hold the data thrown from the map function. In

this case, the key will be the left-part and the value will be set of (right-part: supp) entries for

frequent item fi. In the distributed implementation of this step, data are thrown to distributed

file system and the Map-Reduce middleware is responsible to sort the entries and to fetch

them grouped to the reduce functions.

The overall workflow of MRAPriori algorithm can be shown in Figure 4-6

Step 3: Rules extraction

Step 1: Frequent Item Discovery

Step 2: Frequent Item Discovery

Start

InitializeData, map

to line number

To Line Space (1..

N)

To Item Spcae

(1..N)

Extract strong

Assoc. Rules

Rules Ready

Size >0

All frequent items

discovered

Figure 4-6 Workflow of MRApriori algorithm

4.4.4 Algorithm Features

 All elements, either in line space or in frequent item space, are saved in one virtual

collection that has same data structure. This produces simpler abstracted data that is

easy to be serialized and to be distributed among the cluster nodes. Also, this helps to

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

93

develop more abstracted algorithms such as MRApriori which does not impose

restrictions on how to save and coordinate the distribution the data. Data chunks can

have arbitrary sizes with no effect on MRApriori accuracy. This allows the underlined

middleware (Hadoop in our implementation) to split the data dynamically to achieve

load balancing execution with no accuracy consequences. This is an advantage over

other algorithms that uses bagging [22] and boosting [23] are affected very much

with the sizes of the splits in parallel implementations.

 All candidate frequent items of all degrees are represented in the same way. In the

special cases where number of attributes is less than hundreds of attributes,

MRApriori can use binary format as in Table 4-3 to hold the values of dataset. Thus

one integer number is sufficient to represent the ColumnIds and another integer is

sufficient to represent RowId of the item. This is used heavily in MCAR algorithm

[15]. In cases of all twenty datasets used in experiments from UCI [103], one integer

number of 32 bits memory size was sufficient to represent any frequent item of any

degree. For example, the first transaction data in ―tic-tac‖ datasets taken from UCI

[103] is ―b,o,b,b,o,x,x,o,x,negative‖ (arff format [42]) there are ten attributes. Thus

ColumnIds are represented in integer value with at least 10 bits computer memory

size. To represent the ColumnIds of candidate frequent item of size 2 of (attribute 0 =

b and attribute 5= x) use .For other candidate frequent

item that represent the highest possible degree reached in this line use

 . This reduces very much the amount of used

memory and increases the algorithm speed as most of operations done on ItemIds in

the algorithm are usually reduced to one direct arithmetic operation. For example,

merging two ItemIds is done using either union or add operator on two integer

numbers () rather than using Java Set data structure to do the union.

 In MRApriori, all data are saved on file system. Processing the data is done in stream

I/O reading. This is much faster than accessing the datasets in random access way.

4.5 Scalable Distributed Set Intersection

In algorithms that uses vertical format as in [19], set intersection is used heavily to discover

frequent itemsets of higher degree. Two main constraints may arise in this case: first one is

data may not fit all in computer memory, the second one is if the number of current frequent

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

94

item set is big then disjointing the set and doing the intersection tends to consume a lot of

time. Prune process helps decrease the amount of sets to be intersected. However, in

processing big datasets, the number of sets to be interested still big even after the pruning

process.

MRApriori can be seen in a way similar to [19] algorithms that uses vertical data

representation. But MRAproiri is doing the set intersections in parallel in one step for all sets.

Here how batch set intersection is done in MRApriori.

Table 4-7: Batch set intersections

Vertical Format

(a)

Map to Horizontal Format

(b)

Generate intersections per line

(c)

Map to Vertical Format

(d)

I1 { 1, 2,4,5 }

I2 {1,2,5,7 }

I3 {2,3,4}

I4 {4,5,6,7}

1 {I1,I2}

2{I1, I2,I3}

3{I3}

4{I1, I3, I4}

5{I1, I2, I4}

6{I4}

7{I2, I4}

1 (I1,I2)

2 (I1,I2), (I1,I3), (I2,I3)

3

4 (I1,I3) , (I1, I4) , (I3,I4)

5 (I1,I2), (I1,I4), (I2,I4)

6

7 (I2,I4)

(I1,I2) {1,2,5}

(I1,I3) {2,4,}

(I1, I4) {4,5}

{I2,I3) {2}

(I2,I4) {5, 7}

(I3,I4) {4}

Column (a) in Table 4-7 shows set of four frequent items with their lines occurrences. There

are few steps to generate intersections to all the disjoint of sets. Step one is to map the data

line space as in Column (b) in Table 4-7. Step two is to generate disjoints of all items in each

line as shown in Column (c). In this column, lines three and six do not produce any disjoint.

Step four, is to map back the new generated disjoints to vertical space with the corresponding

line (Column (c) in Table 4-7). Doing intersections in this way fit naturally to MapReduce

framework. Exact details were explained previously in 4.4.2.

To compare the performance of two methods, another in-memory implementation of this

intersection method is built. The following Figure 4-7 shows the times it take to do all the

intersection using this new method versus the traditional methods for different number of

items.

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

95

Figure 4-7: Set intersection times using Java.retainAll vs. MR.Intersection methods

Implementation of second method is done in Java and source is available at [44]. This

method is compared with method ―Set.retainall()‖ in Java Collections framework [118]. The

dataset chosen was a set of 10,000 lines with up to 50 random items occurs in each line. The

experiment was repeated for for different distinct items in set from 50 to 500 items. Data size

is fixed in all experiments. The more distinct items value means more disjoints to be

intersected and at the same time means fewer items in the intersected sets. Figure 4-7 shows

that MR-Intersection times- after certain range- are faster than traditional method after certain

number of items. The difference between two methods increases as the number of items

increases. This means the new set intersection method is much efficient in big datasets where

huge disjoint entries can occurs. MRAPriori is designed to target such datasets.

4.6 Implementation

Two implementations in the algorithm, one is included in Weka machine learning software

[42]. Other implementation is done in Apache Hadoop [3].

4.6.1 WEKA Software

One implementation of the algorithm is embedded in Weka software [42]. The Weka

workbench is a collection of state-of-the-art machine learning algorithms and data pre-

processing tools. Weka was developed at the University of Waikato in New Zealand. The

system is written in Java and distributed under the terms of the GNU General Public License.

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Ti
m

e
 (

se
c)

Number of Distinct Items

Java.RetainAll MR.Intersection

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

96

It provides a uniform interface to many different learning algorithms, along with methods for

pre- and post-processing and for evaluating the result of learning schemes on any given

dataset. Weka provide hundreds of algorithms in filters, clusters, association, classification,

regression, neural networks, (add more), analysis and visualization tools, evaluation, etc. A

brief explanation about the main GUI interface used in Weka the Weka explorer. Algorithms

used in Weka are grouped in six tabs as in Figure 4-8. Short description of the tabs

 Pre-process: Choose the dataset, load it from file system, URL or data based, convert

it to different formats choose attributes to be processed and apply dozens of filter

algorithms of the data.

 Classify: Train learning schemes that perform classification or regression and evaluate

them.

 Cluster: Learn clusters for the dataset.

 Associate: Learn association rules for the data a.

 Select attributes: Select the most relevant aspects in the dataset.

 Visualize: View different two-dimensional plots of the data and interact with them.

4.6.2 MR-Apriori in Weka

Embedding the MRApriori in Weka software will benefit from the extensive tools available

in the software to analysis the data and to pre process it before applying the new learning

scheme to it. Weka software also has uniform interface to other algorithms. This allows

comparing the new algorithm with already existed algorithms.

Weka’s class hierarchy was extended with the new associate algorithm MRApriori. So the

MRApriori algorithm is available to the user in the Associate tab in the GUI Explorer

interface. The base class is MRApriori is included in the ―weka.association‖ package. More

methods are overridden to provide generic information about the class such as

documentation, its version, its authors and related papers.

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

97

Figure 4-8: Associate panel in WEKA software

Use the Associate panels (Figure 4-8) to invoke methods for finding association rules.

MRApriori is added to the other few existing methods. Figure 4-9 shows the output from the

MRApriori program for association rules on the nominal version of the ―contact‖ dataset

from UCI [103].

Best rules found:

1 tear-prod-rate=reduced 12 ==> contact-lenses=none 12 conf:(1.0)

2 spectacle-prescrip=hypermetrope tear-prod-rate=reduced 6 ==> contact-lenses=none 6

conf:(1.0)

3 astigmatism=yes tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1.0)

4 astigmatism=no tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1.0)

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

98

5 spectacle-prescrip=myope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1.0)

6 contact-lenses=soft 5 ==> astigmatism=no tear-prod-rate=normal 5 conf:(1.0)

7 tear-prod-rate=normal contact-lenses=soft 5 ==> astigmatism=no 5 conf:(1.0)

8 astigmatism=no contact-lenses=soft 5 ==> tear-prod-rate=normal 5 conf:(1.0)

9 contact-lenses=soft 5 ==> astigmatism=no 5 conf:(1.0)

10 contact-lenses=soft 5 ==> tear-prod-rate=normal 5 conf:(1.0)

Figure 4-9: Example of MRApriori results

Despite the simplicity of the data, several rules are found. The number before the arrow is the

number of instances for which the antecedent is true; that after the arrow is the number of

instances in which the consequent is true also; and the confidence (in parentheses) is the ratio

between the two. Ten rules are found by default: User can ask for more by using the object

editor (Figure 4-10) to change ―numRules‖ .

Figure 4-10: Object editor of MRApriori

This is a brief description about Object editor parameters for MRApriori miner in Figure 4-10

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

99

 Class Index: index of which attribute is used as label.

 Minimum Confidence: confidence threshold for surviving rules to be considered in

the classifier model.

 Is Sparse: true if instances in the training dataset have sparse attributes.

 Minimum Support: support threshold for surviving rules to be considered in training

model.

 Number of Rules: build the classifier with support level that generates only this

number of rules. Classifier model will start from high support levels then decrease the

support in steps till generating the needed number of rules

 Verbose: Used for debugging and algorithm demonstration. If true, then the

intermediate data in Item space and Line Space are printed to the output for all

iterations. Also will print all surviving rules before pruning.

 Delta: is the difference between every two support steps used in descending way until

finding the required number of rules.

4.6.3 Map-Reduce Implementation

Map Reduce implementation is done using Apache Hadoop version 20.1 [3]. The code is

documented and available at Google code repository under project name ―dataminingGrid‖

[44].

4.7 Experiments

Twenty datasets were used from UCI [103] were used. Unfortunately, in contrary to the

classification algorithms, Weka does not provide a common evaluation module to measure

the performance of associate algorithm. Still few measurements can be done on MRApriori.

4.7.1 Number of frequent Item Sets

MRAPriori generates almost identical rules as Apriori algorithm [45]. The algorithm was run

on twenty different datasets. The minimum support and minimum confidence levels were

adjusted to values of 50% and 80 % respectively.

Results of number of frequent itemsets found in each run is identical as shown in Table 4-8

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

100

Table 4-8: Number of associated rules generated for minSupp = 50 % and min Confidence = 80%

Dataset Size Classes Apriori MRApriori

Austrad 690 2 2081 2081

Balance 625 3 0 0

Breast 699 2 282 282

Cleved 303 2 760 760

Contact 24 3 38 38

Diabetes 768 2 83 83

German 1000 2 1172 1172

Glass 214 7 192 192

Heart 294 2 94 94

Iris 150 3 55 55

Labord 57 2 69 69

Led7 3200 10 145 145

Lymph 148 4 251 251

Mushroom 8124 2 152 152

Pimad 768 2 83 83

Primary-tumor 339 23 1262 1262

Tic-tac 958 2 42 42

Vote 435 2 1083 1083

Wined 178 3 5747 5747

Zoo 101 7 856 856

4.7.2 Times for find frequent Item Sets in Standalone Implementation

This experiment compares the original Apriori [45] with the new MRApriori algorithm.

Source code is for Apriori [45] is obtained from Weka software [42]. The second algorithm

is implemented as Weka plug-in and source code is available on [44]. Minimum support used

is 10% and minimum confidence used is 90%.

Figure 4-11: Times between Apriori and MRApriori

1255
21 90

266

1

26
599 18

8 3 15 133
50

444
27

172

57

192
2806125

878
31 98

173

16

43
534 20

17 5 36 356
63

4960
51

81

409

165
1168 40

0%

20%

40%

60%

80%

100%

R
el

at
iv

e
 T

im
e

UCI Datasets

Apriori MRApriori

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

101

Figure 4-11 shows the difference of times using 100% stacked columns. WEKA

implementation of Apriori is generally takes less time than MRApriori. This might be

because, for small datasets the batch set intersection in MRApriori is taking more time

comparing with straightforward set intersection. This is shown in Figure 4-7. Also the code of

Apriori is taken from WEKA software which is well tested and optimized and thus expected

to avoid bottlenecks that affect the application performance.

4.8 MRApriori Performance in Hadoop Cluster

A cluster of three machines was used to test the Hadoop implementation of MRApriori. Also,

to further evaluate the effectiveness of MRApriori in large scale MapReduce environments.

MRSim, a MapReduce Hadoop simulator introduced in chapter 6 is used to simulate the

algorithm in Hadoop cluster environment.

4.8.1 Cluster Configuration

The Hadoop cluster for this set of experiments consist of a total of 12 physical cores across 3

computer nodes as shown in Table 4-9.

Table 4-9 Hdoop cluster configuration

Hardware environment

 CPU Number of

Cores
RAM

Nodes 1,2

and 3

Intel Quad

Core 6600

4 4GB

 Software environment

OS Fedora13

Hadoop Hadoop 0.20.1

Java JDK 1.6

The performance of MRApriori has been evaluated from the aspects of efficiency. Regarding

the accuracy, MRApriori generates same results no matter how the input data are splitted.

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

102

Figure 4-12: To Item space support = 3%

Figure 4-13 To Line space support = 3%

Figure 4-14: To Item space support = 20%

Figure 4-15: Line space support = 20%

F1 to Fn shows the times needed to find frequent items of sizes 1 to n. L2 to Ln shows the times

needed to transform data from previous item space to next line space of size 1 to n respectively.

Dataset is generated from Mushroom dataset UCI [103] with 11 nominal attributes. In all figures,

axis X represents the number of transactions introduced to MRApriori miner, axis Y represents time

in seconds to complete the task. Figure 4-12 and Figure 4-14 shows the times it takes to transform

the data to item space for support levels equal to 3% and 20% respectfully. Figure 4-13 and Figure

4-15 shows the times it takes to transform the data to line space for support levels equal to 3% and

20% respectfully.

0

100

200

300

400

500

600

700

0 2000000 4000000

Ti
m

e
(s

e
co

d
s)

Number of Transactions

F1 F2 F3 F4

F5 F6 F7

0

50

100

150

200

250

300

350

0 2000000 4000000

Ti
m

e
(s

e
co

d
s)

Number of Transactions

L2 L3 L4

L5 L6 L7

0

50

100

150

200

250

300

0 2000000 4000000

Ti
m

e(
se

co
n

d
s)

Number of Transactions

F1 F2 F3 F4 F5

0

20

40

60

80

100

120

140

0 2000000 4000000

Ti
m

e(
se

co
n

d
s)

Number of Transactions

L2 L3 L4 L5

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

103

Figure 4-16: Total Time for MRApriori using several support thresholds

Figure 4-16 shows the total time for all iterations for different support levels. It is obvious

from all figures that there is initial overhead time is consumed for initializing the job on

Hadoop cluster. No matter how small the data size is, at least 15 second is needed to submit

the job to the cluster. However, apart from initial overhead, the execution times tend to be

linear to the number of records processed. Another remark is that, in both support levels,

finding frequent itemsets of sizes two and three consumes most of the algorithm time as

shown in Figure 4-12, Figure 4-13,Figure 4-14, and Figure 4-15. This is because line spaces

and item spaces of degree two and three has more items than others. Sometimes, when the

remaining data in current space is small (spaces of degrees more than four) it is more efficient

to carry on finding itemsets of higher sizes in one machine using MRApriori in WEKA

implementation to get rid of the overhead needed to initiate new java processes on Hadoop

cluster.

4.8.2 Scalability & Simulation Results

To further evaluate the scalability of the MRApriori algorithm, MRSim have also

implemented and employed to simulate number of Hadoop environments using a varying

number of nodes up to 50.

0

500

1000

1500

2000

2500

0 1000000 2000000 3000000 4000000

Ti
m

e
(s

e
co

n
d

s)

Number of Transactions

supp.3 supp.5 supp.10 supp.20

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

104

Table 4-10: Configuration of MRSim for scalability evaluation

Simulation environment

Number of simulated nodes: 20

Input transactions: D1=3,412,080- D2=13,648,320

records

CPU processing speed: 100 MIPS

Hard drive reading speed: 80MB/s

Hard drive writing speed: 40MB/s

Network bandwidth: 1Gbps

Total number of Map

instances:

6 mappers per node

MRSim [35] is general purpose MapReduce simulator that aims to simulate the behaviour of

different algorithms on Hadoop cluster. It is described in details in chapter 6. Each simulated

Hadoop node is with 6 mappers, and 2 reducers. Same input dataset were used as an input to

the algorithm. Two input datasets were used in the simulation tests; D1 and D2 is generated

from Mushroom dataset [103] with number of transactions equals to 3,412,080 and

13,648,320 respectively. Table 4-10 shows the configurations of the simulated Hadoop

environments.

Figure 4-17: Number of nodes vs. execution times

Figure 4-17 shows results of MRSim combined with three points representing runs from real

experiments on using D1. The real experiment times is slightly bigger than simulated times.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25

Ti
m

e
(

Se
co

n
d

s)

Support Levels %

sim D1 Sim D2 Cluster D1

Suhel Hammoud (2011)

Chapter 4: MRApriori, MapReduce Association Rule Miner

105

Also Figure 4-17 shows that the processing time of MRApriori decreases as the number of

nodes increases (Cluster D1). It is also worth noting that there is no significant reduction in

processing time of MRApriori beyond certain number of nodes for certain data sizes. This is

primarily due to the fact MRApriori is using several Hadoop jobs to complete the work. Each

job requires around 15 seconds initialization time. Thus, MRApriori in Hadoop scales better

when using huge datasets that require times much greater than job initialization times. This is

shown clearly in Figure 4-16.

4.9 Summary

This chapter introduced a new association rule miner that uses hybrid approach between

algorithms that uses horizontal representation for datasets and other algorithms that use

vertical representation. Two implementations of MRApriori were addressed. This chapter

concluded on presenting the evaluation and scalability results.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

106

Chapter 5

MRMCAR: MapReduce Multi-Label Classifier

based on Associative Classification

5.1 Introduction:

This chapter introduces MRMCAR (Map-Reduce Multi-label Classifier based on

Association Rules). It talks about data representation, steps of the algorithm, prediction, and

incremental learning in the new algorithm.

5.2 The Proposed MapReduce-MCAR (MRMCAR) Algorithm

The proposed AC MapReduce algorithm can be seen as generalized version of MCAR

algorithm [15] that is distributable on MapReduce framework. It consists of four main steps,

where each step may demand one or more MapReduce jobs:

Step One (Initializing): Representing the input data set in a suitable format for the

MapReduce framework, i.e. ItemId= (ColumnId) RowId.

Step Two (Rule Discovery): This step includes discovering frequent ruleitems, rule

extraction, and rule pruning. More details are given in 5.2.2.

Step Three (Constructing the classification model): This step involves selecting high

confidence and representative rules from the set of candidate rules extracted in Step (2) to

represent the classification model, which is laterally employed to predict the class labels of

unseen data cases. Also, MRMCAR generates rules of multiple labels. More details are given

in 5.2.3.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

107

Step Four (Predicting test cases): In this step, MRMCAR algorithm utilizes a single rule

prediction mechanism, and prediction using multiple labels. More details are given in 5.6.

The algorithm deals with categorical and continuous attributes in which continuous attributes

are treated using the Multi-interval discretisation technique [96]. Details on the MRMCAR

algorithm which involve data initialization, frequent ruleitems discovery, rule generation,

classifier builder, and prediction are given in the next subsections.

5.2.1 Initialization

MRMCAR maps each transaction in the dataset to a unique integer value. This value is the

number of lines where the transaction occurs in the dataset. This unique value will be noted

as RowId. It will be part of the ID of corresponding rules or frequent items that first appeared

in dataset at this line. Every frequent item id (ItemId) consists of two parts; column ids, and

RowId

ItemId = (column ids) Row Id

Column Ids: are the ids of attributes in the original data set which compose this frequent

item.

RowId: The line number (transaction id) of the first occurrence of this item in the original

data set.

Once the original data is represented in ItemId format, then all intermediate data generated in

the algorithm will keep the same representation. This makes the iterative process of finding

frequent itemsets simpler throughout the algorithm. One more benefit of such a data

representation is to reduce the amount of data to be communicated between the nodes running

the algorithms in the distributed implementation.

Here an example of how to initialize dataset is shown in Table 5-1. The initial data

representation will look as shown in Table 4-2.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

108

Table 5-1 Example dataset

TID Attributes Class

0 A B C M

1 C B C M

2 C D C P

3 C D C R

4 A B A P

5 A D A R

6 C D A R

7 C B D R

8 A B A R

Table 5-2 Initial data in line space

Line:Label Attributes

0:0 (0)0 (1)0 (2)0

1:0 (0)1 (1)0 (2)0

2:2 (0)1 (1)2 (2)0

3:3 (0)1 (1)2 (2)0

4:2 (0)0 (1)0 (2)4

5:3 (0)0 (1)2 (2)4

6:3 (0)1 (1)2 (2)4

7:3 (0)1 (1)0 (2)7

8:3 (0)0 (1)0 (2)4

Table 5-3 Initial data in Item Space

Attribute Line:Label

(0)0 0:0, 4:2, 8:3

(0)1 1:0, 2:2, 3:3, 6:3, 7:3

(1)0 0:0, 1:0, 4:2, 7:3, 8:3

(1)2 2:2, 3:3, 5:3, 6:6

(2)0 0:0, 1:0, 2:2, 3:3

(2)4 4:2, 5:3, 6:3, 8:3

(2)7 7:3

MRMCAR uses two data structure formats to represent intermediate data used in the

algorithm; line space format and item space format. An example of line space format is the

dataset initialized in Table 5-1, where dataset is represented in collection of lines. Each line

has the format of:

Line:label, (columnIds_0)rowId_0,…., (columnIds_n)rowId_n

Line:label, list of items ids

 This is a horizontal representation of data. The other representation used is the vertical

representation or ―item space‖ format. Frequent Item is data structure which maps the labels

with corresponding lines for this ItemId. ItemId: is set of occurrence lines with their labels.

As shown later, this simple data format allows ruleitems of higher degrees to be represented

the same way.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

109

5.2.2 Frequent Ruleitem Discovery

The key to success of the proposed AC algorithm is data representation and data

transformation in which the algorithm keeps changing the data format between two spaces

(Line space and Frequent Item space).

Start

InitializeData, map

to line number

To Line Space (1..

N)

To Item Spcae

(1..N)

To Line Spcae

add ranks to ranks

To Item Space

With surviving

rules

Classifier Model

Ready

Size >0

All frequent items

discovered

Figure 5-1: Data workflow in MRMCAR

Frequent ruleitem discovery in MRMCAR works by repeating the transformation of the input

data between the Line space and the Frequent Itemset space until all frequent ruleitems are

discovered. Data transformation from a Line space to a frequent space is performed using the

MapReduce methods ―ToFrequent.Mapper‖ and ―ToFrequent.Reducer‖. The input for the

―ToFrequent.Mapper‖ method is <line: label, list of ItemId>, and the output is <ItemId,

(Line: label)>, which then gets inputted to the ―ToFrequent.Reducer‖ and this method outputs

<ItemId, FrequentItem>.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

110

(line space)<Line Number: Label, List of ItemIds> => ToFrequent.Mapper => <ItemId, (Line: label)> =>

ToFrequent.Reducer => <ItemId, FrequentItem>(Frequent ruleitem space)

On the other hand, transforming the data from a FrequentItem space into a Line space is

performed using the methods ―ToLine.Mapper‖ and ―ToLine.Reducer‖. The

―ToLine.Mapper‖ gets <ItemId, FrequentItem> as an input and produces <Line

Number:Label, ItemId> as an output, which is in turn gets inputted for the ―ToLine.Reducer‖

and this method collects the ItemIds entries for a certain line and outputs<line: label, list of

ItemId> (Line space).

(items space) <ItemId, FrequentItem> => ToLineMapper => <ItemId, (Line: label)> =>

ToLine.Reducer => <line: label, List of ItemIds> (line space)

The maximum number of iterations to find all frequent ruleitems equals the number of

attributes (columns) in the training data set excluding the class attribute (For Table 5-1, the

maximum number of iterations is three). The actual number of iterations could be smaller if

there are no FrequentItems discovered at certain steps.

Let’s apply the previous ruleitem discovery procedures to Table 5-1 . Assume that the last

value of each row in Table 5-1 denotes the class label, and MinSupp is set to 2/9, meaning

that any keyword that occurs at least two times in the table is considered a frequent ruleitem.

To discover the frequent ruleitems of size ―1‖ (Single attribute values with frequencies above

the MinSupp threshold), firstly the proposed algorithm transfers the data into Line space as

shown in Table 5-2. The proposed algorithm then applies the "ToFrequent.Mapper" and

"ToFrequent.Reducer" methods to map the input data to entries in the frequent space. In this

way and for each item in the Line space the ―ToFrequent.Mapper‖ method is invoked to emit

list of <ItemId, (Line,Label)>

(line 0) <0:0, (0)0, (1)0, (2)0> ToFrequentItem.Mapper <(0)0 ,(0:0)>, <(1)0, (0:0)>, <(2)0, (0:0)>.

(line 1) <1:0, (0)1, (1)0 , (2)0> => ToFrequentItem.Mapper =><(0)1,(1:0)>,< (1)0 ,(1:0)>,< (2)0 ,(1:0)>

... etc.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

111

Then, the output results from the Mapper are sorted and introduced to the Reducer grouped

by the key value. For instance, for attribute values (keywords) ―a‖ and ―c‖, the data offered to

the Reducer are as follows:

<(0)0, 0:0 >,<(0)0, 4:2 >, <(0)0, 5:3 >,<(0)0, 8:3 > ToFrequentItem.reduce < (0)0 ,[0:0, 4:2, 5:3, 8:3]>

......... ToFrequentItem.reduce< (0)1 ,[1:0, 2:2, 3:3, 6:3, 7:3]>

For these particular attribute values, it is obvious that (0)0 and (0)1 are frequent ruleitems

with support values 2/9, and 3/9, respectively. It should be noted that in the rule discovery

step while determining the frequent ruleitems, MRMCAR considers the attribute value

occurrence with its largest class label, and for this reason (0)0 and (0)1 are marked as

frequent with class label 3 since they appear it in the training data set with it more than the

rest of the class labels (label 3 corresponds to R in original data set). This is the preliminary

label choice attached to this ruleitem. However, the final label for this rule item is decided in

a later step based on which label among the possible labels attached to the ruleitem actually

covers more instances. Thus, MRMCAR, at this step, considers only single label rules and

chooses the largest frequency class associated with an attribute value. In case an attribute

value is associated with multiple class labels with similar frequency, the choice is random.

Now the frequent item set of size 1 (one attribute ruleitems) was collected. For frequent

ruleitems that survived the minimum support threshold, the confidence of the item is

calculated at once and if it passes the minimum confidence condition, it will be marked as a

candidate rule.

List of frequent ruleitems:

(0)0 { sup=2 , conf=0.500, 0:[0] 2:[4] 3:[5, 8]}

(0)1 { sup=3 , conf=0.600, 0:[1] 2:[2] 3:[3, 6, 7]}

(1)0 { sup=2 , conf=0.400, 0:[0, 1] 2:[4] 3:[7, 8]}

(1)2 { sup=3 , conf=0.750, 2:[2] 3:[3, 5, 6]}

(2)0 { sup=2 , conf=0.500, 0:[0, 1] 2:[2] 3:[3]}

(2)4 { sup=3 , conf=0.750, 2:[4] 3:[5, 6, 8]}

As shown previous list of frequent ruleitems, in each ruleitem, lines of the same label value

are grouped together. Once the frequent ruleitems of size 1 are determined, then only their

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

112

occurrences are transformed into the Line space to data format using the MapReduce

methods ―ToLineItem.Mappe‖r and ―ToLineItem.Reducer‖. So for ruleitems <―a‖, r> and

<―b‖, r> which are frequent, their Line space representations are as follows:

(0)0 { sup=2 , conf=0.500, 0:[0] 2:[4] 3:[5, 8]} => ToLineMapper =>

 <0:0, (0)0>, <4:2, (0)0>,<5:3, (0)0>,<8:3, (0)0>

(0)1 { sup=3 , conf=0.600, 0:[1] 2:[2] 3:[3, 6, 7]} =>ToLineMapper =>

 <1:0, (0)1>, <2:2, (0)1>,<3:3, (0)1>,<6:3, (0)1>,<7:3, (0)1>

The sample outputs are sorted and grouped by the line number and then offered to the

―ToLine.Reducer‖ which will only accumulate the ItemIds and output them to line space. So

the lines would be similar to the previous lines set of Table 5-2 excluding any attribute value

which was discarded during the generation of frequent ruleitems. If no ItemIds were thrown

with a certain line, then this line is dropped from the line space.

In the next iteration, the proposed algorithm simply finds frequent ruleitems of size N by

appending frequent ruleitems of size N-1. Particularly, and for each two disjoint ItemIds in a

single line within the Line space, the algorithm checks the possibility of joining them to one

ItemId. More details about this is shown in 5.2.2.1. The new ItemId of higher degree is then

emitted to the Reducer with (line:class) values similar to the previous iteration. For example,

0: 0, (0)0, (1)0, (2)0 => ToFrequentItem.Mapper =>

 <(0,1)00, (0:0)>, <(0,2)00, (0:0)>, <(1,2)00, (0:0)>

The Reducer groups all items of the same key and for each key generates one ruleitem, such

as

 (0, 1)2 {sup=2 , conf=0.667, 2:[2] 3:[3, 6]}

(0,1)2 is ruleitem id: ―(0,1)‖ are columns attributes and ―2‖ is the line number of the first

occurrence of this item. ItemId (0,1)2 is mapped in the original data set to attribute 1= C,

attribute 2= D whose first appearance in the data set is at line 3.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

113

If the ruleitem survives the MinSupp threshold it will be kept, otherwise it will be discarded.

The algorithm then repeats the data transformation until all frequent ruleitems are discovered.

The previous steps can be summarised in the following pseudo code in Figure 5-2.

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

Input: Training data (D), minsupp and minconf thresholds

Output: Set of Frequent ruleitems R

Preprocessing phase
If D contains real/integer attributes then

 Discredite it

Initialization:

 Map D to integer values to Line Space format LS0

Frequent Items Discovery

Map D from Line space 0
LS

 to Item Space 1
IS

 to get set 1
S

of frequent 1-ruleitems

)(
01

LSeToItemSpacIS 

)(
11

ISuleCandidateRS 

1
SR 

tributesnumberOfAtIteration max

2i

While
)1)(__max(

1


i
ISsizeandIterationi

{

)(

11 


ii
ISeToLineSpacLS

)(

1


ii
LSeToItemSpacIS

)(

ii
ISteRulegetCandidaS 

 i
SRR 

 1 ii
}

Figure 5-2: MRMCAR pseudo code for rules discovery step

As explained before, MRMCAR has some salient features.

 MRMCAR scans the original data set only once. However, it scans the ever changing

intermediate data for several times during the rule discovery. Line spaces and frequent

item spaces generated in an iteration tend to shrinks while iteration advances to higher

degrees as will be shown later in incremental learning section 5.7.3.

 MRMCAR works in a file stream I/O way. It avoid the costly slower I/O random

access file operations. ―ToLineSpace‖ and ―ToItemSpace‖ are two procedures to

transform data formats between line and item spaces. Those procedures – in addition

to the data formats – fit naturally in the MapReduce framework. Also, the algorithm

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

114

can be described in a simple abstracted notation usually used in functional

programming languages as Lisp.

5.2.2.1 Generating and Pruning IDs for higher frequent items

In apriori-like algorithms, frequent itemset pruning is done by generating candidate ruleitems

of higher degrees, then, for each candidate frequent item, check if all subsets generated in this

ruleitem are included in the previous set of ruleitems. In MRMCAR, generating candidate

ruleitems is done in the line space from existing ItemIds. For example ,the following line in a

two degree line space:

Line:label (1,2)row0 , (2,3)row1, (1,3)row3 => (1,2,3)row0

 where row0 has the lowest integer value among the values of (row0, row1, row)

Means that it is sure that the candidate ruleitem occurred at least once in the data (at least at

the current line in line space). Thus MRMCAR greatly reduces the candidate ruleitems by

generating them from their actual occurrences in line space, and not from all possible

disjoints of items in frequent item space as apriori-like algorithms do. However, there is still a

need for in-line check before generating candidate ItemIds. This functionality is similar to

hash based technique introduced in [20].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Input L= list of ItemIds in the current line,

Output out= list of ItemIds of higher degree

Sz= number of attributes for each item in L

DJ= disjoint of L

M= hash table that maps each resulting Item to its counter

For each I1, I2 form DJ: begin

 If(Imrg.size == sz+1)begin

 Increase M(Imrg) by 1

 End

End

For each entry in M map: begin

If M(Imrg) == factorial(sz+1)/2: begin

 Output.add(Imrg)

end

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

115

Figure 5-3: Generating next Candidate ruleitems IDs

In MRMCAR, hashing used in the ToItemSpace procedure and explained in pseudo-code in

Figure 5-3. Generating frequent ids of the next iteration requires - for each line in line space -

double scanning the line to generate disjoints of ids in line, and then counting the number of

occurrences for items resulting from merging the disjoint items. If the expected number of

attributes of generated Id is K, then its attached counter in the hash table should have the

value equal to

 as mentioned in line 13 of pseudo code.

5.2.3 Rule Pruning and Classifier Building

The proposed algorithm extracts a set of rules at each iteration starting from rules of length

one (the antecedent contains a single attribute value) until iteration N where N corresponds to

the number of attributes in the training data set excluding the class attribute. The proposed

algorithm invokes a pruning procedure to significantly cut down the number of redundant and

misleading rules and to select the fittest rules to form the classifier.

Frequent RuleItem

ItemID: set(line:label)

Line:label- ItemID1_ranked, ItemID2_ranked,

..... ItemIDn_ranked To Line Space

Line:label- ItemID highest rank

D
ro

p
 l
o

w
e

r

ra
n

k
e

d
 R

u
le

s

To Item Space Rule

ItemID: set(Label:Occurence)

Figure 5-4: Steps of rule pruning

 MRMCAR does the rule pruning in three steps as shown in Figure 5-4. First: it transforms

the rules to line space format. At the same time, a rank value is attached to each rule. The

rank value depends on several criteria; rule confidence, rule support, and number of attributes

in the rule’s antecedent. The algorithm behaviour is studied for each combination of ranking

criteria and results are shown in next chapter at section 6.5.5 . Second: for each line

remaining in the line space, keep only the rule which has the highest rank value which

correctly predicts the instance label. Another possibility is to choose the rule with highest

rank value no matter what the predicted label may be. Other rules that could not cover any

instance in the line space are dropped and will not appear in the classifier. The third step in

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

116

the rule pruning phase is to re-transform the resulting line space to frequent item space. The

same methods as used in rule discovery are used in this step. Using rank value in each rule

ensures the resulting frequent items are sorted as well.

As mentioned before, the sorting of rules is done after the pruning process. In MCAR [15]

and CBA [13], sorting all possible rules is done at once before the process of rule pruning.

Thus, in MRMCAR sorting is done more efficiently, because it is sorting a smaller set of

rules, which are the remaining rules that cover at least one instance. The classifier is the set of

resulting significant sorted rules. One more rule of lowest rank value may be added to the

classifier. It is the default rule which covers all lines that were not covered by any significant

surviving rule. The default rule has the label which has the majority of occurrences in the

remaining uncovered lines. The following pseudo-code in Figure 5-5 summarises the steps of

rule ranking and classifier building.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Input: set of generated rules (R)

Output: The classifier (Cl)

MR’ = rank(R);

Transform R from frequent item space to line space; add rank value for each rule.

For each line in line space, choose the first highest rule as follows:

begin

 if exact label matching is required :

 choose mr :the first highest ranked rule that has label equal to the label of the line

 else

 choose mr :the first highest ranked rule no matter what its label is

 mr is marked as significant rule that covered at least one instance in the dataset

 discard all remaining rule ids in line

end

Transform the rules from line space to item space

For each rule in item space :

 Collect the occurrences of different labels to form multi-label rule

 Choose label of majority of occurrences as main label for single label prediction

Sort the resulting rules based on rank to form the classifier model

if in covered lines > 0 and default label required :

 add default rule with class equals to the majority class in remaining lines

Figure 5-5: Rule pruning and building classifier

The CBA [13] and MCAR [15] pruning procedure requires the similarity of the class labels of

both the selected rule and the training case. This is similar to MRMCAR with the

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

117

configuration of ―exact label matching‖ as in line 8 in the previous pseudo-code. However, in

―any label‖ configuration (line 10 in pseudo-code) MRMCAR only considers the matching

between the rule body and the training case. This indeed reduces overfitting since most

current AC algorithms including CBA and MCAR mark a rule as a classifier rule if it matches

the training case and has the same class as the training case. This may result in a more

accurate prediction on the training data set but not necessarily on new unseen test cases. The

class matching of the candidate rule and the training case does not necessarily give an

additional sign of rule goodness besides the matching condition between this rule body and

the training case attribute values. In other words, the performance of the classification model

is not yet generalised since it has not been tested on an independent test cases to measure its

predictive power. We argue that a similarity test between the candidate rule class and the

training case class may not heavily affect the predictive power of the resulting classification

models during the prediction step. Later in chapter 5, the main results obtained with reference

to classification accuracy on different UCI data sets [103] were shown for both rule pruning

procedures (The one that looks at the class and the one that marks the applicable rule without

checking the class).

5.3 MRMCAR for Multi-Label Classification

In the final step in rule pruning, the frequent rule items are represented in line space in this

format: Line number: Class Lable, ruleId

RuleId is the surviving ruleId based on ranking criteria; it covers the line instance and at the

same time it eliminates all other RuleIds that mapped to that line. As a result, some the rules

may not be able to cover any of the lines they are mapped to, because there are always other

rules with a higher rank value in the same line. The final step in rule pruning is to transfer the

rule to the Frequent Item space. The result is the subset of the surviving rules that for sure

cover at least one line in the original dataset. However, ruleId may be mapped in line space to

several lines of different class labels. When transforming to item space all these lines are

grouped according to each class label. The resulting rule then has the information of all labels

with their occurrences. One final rule in the item space has a similar format to the following

rule:

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

118

RuleId: Label 1: Occurrences 1, Label 2 Occurrences 2 … Label n: Occurrences n

Thus for each rule, the distribution of occurrences for each label is known. It is

straightforward to generate probability values to each label for this rule. The result would be

a rule predicting multiple labels like this: if the attributes of an instance match these

conditions, then the class label would be: Label one for 80% percent probability, Label 2 for

15% probability or label 3 with 5% probability. This information could be helpful for certain

classification applications where it is important to know the other options that the label may

take for a certain instance.

For single label prediction, the MRMCAR chooses the label with the highest number of

occurrences. This label might not have the higher confidence when discovering the possible

rule items in the rule discovery step. These occurrences are the actual occurrences after

applying the rank criteria on the data set. Thus MRMCAR can provide high accuracy results

if tested on the same training dataset. There is an over-fitting factor here. However,

experiments in the next chapter, section 5.5 showed that by using other evaluating methods

that eliminate the over-fitting factor such as a 10-fold cross validation test, MRMCAR still

maintain good accuracy for single label prediction. Usually, the labels of higher confidence

calculated in the frequent item discovery step, keep the same higher confidence and higher

occurrences in the rule pruning step.

5.4 Confidence Batch Classifier

By ―Confidence Batch Classifier‖ means that MRMCAR is able to build at once groups of

classifiers of the same support with different confidences levels. In the rule discovery step,

the candidate frequent items will be calculated based on the support threshold; if they

survived the support threshold then they will be kept for the next iteration even though they

might not survive the confidence threshold. Candidate rules are picked before the rule

pruning step, from the surviving frequent items if they passed the confidence threshold.

Having spent a lot of calculations to get to this step, it is very practical to pick a different rule

set for different confidence values. This adds no calculation cost to the algorithm at the rule

discovery step which takes most of calculations in the MRMCAR algorithm and in other

algorithms such as CBA [13][119], MCAR, and [26]. This allows building - at one go -

several classifiers for several confidence values for one support value. In the experiments,

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

119

this feature is used in MRMCAR for building classifiers for 20 confidence values ranging

from 0% to 100% thresholds for each support threshold. The increasing delta used is 5% each

time.

Figure 5-6: Average processing time vs. number of confidences calculated at once

As an example, Figure 5-6 shows times needed for running MRMCAR on a discredited

―Wine‖ dataset taken from UCI Figure 5-6 . Each test is run for 100 times and average values

are taken. At the same support level, MRMCAR extracted two sets of rules for two

confidence levels in 292.8 milliseconds. Also, it extracted 20 sets of rules based on 20

confidences levels with only 1.5 milliseconds additional time to get 294.31 ms average time.

This is a great saving in time if MRMCAR is to be used with different levels of confidences

per support level. The other line in Figure 5-6 shows that the average time taken to prune the

extracted rules and to build the classifier is linear to the number of sets calculated at one go.

Figure 5-7 shows the total time used for doing all steps in two cases; with and without batch

calculation.

0

50

100

150

200

250

300

350

0 5 10 15 20 25

Ti
m

e
(m

s)

Number of points calculated at once

Average of discovery Average of pruning

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

120

Figure 5-7: Total processing times in ms vs. number of confidences calculated at one go

A later result of evaluating MRMCAR (section 6.5.4) shows that the best accuracy that

MRMCAR may achieve is not fixed in one range of confidence levels. Thus it is useful to

build the classifier for several levels of confidences at once as it only adds a minor overhead

to the calculations.

5.5 Rule Ranking and Sorting Criteria

MRMCAR is flexible when choosing between different rule ranking criteria in the rule

pruning step. The rank value is used to predict the label of a training instance among all rules

that target that instance. When transforming frequent ruleitems that survived the support and

confidence thresholds to the line space, the resulting data has the following format:

Line: Label - RuleId1, RuleId2…RuleIdn

One or more ruleitems can cover the line. The user has the ability to define the way that

MRMCAR chooses which rule to keep. MRMCAR will choose the ruleId based on rule

ranks and based on label matching.

Rules differ from each other in their values of support, confidence, number of attributes in the

left side of the rule. MRMCAR uses these differences to rank different rules. If the user

chooses {CONF_SUPPORT_ATT} then the algorithm compares rules based on confidence

level first. The rule of higher confidence will have the higher rank. If the confidences are

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25

T
o

ta
l t

im
e

(m
s)

Number of points calculated at once

single point muli-points

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

121

equal, then MRMCAR will rank them on their support values. If confidence and support

values are equal, then the ranking is based on the number of attributes in left side of the rule

(the condition). Several possibilities of ranking are available. MRMCAR chose only 5

possibilities and did the experiments on them

 CONF, SUPPORT, ATT: ranking based on confidence then support then number of

attributes.

 CONF, ATT, SUPPORT: ranking based on confidence, then number of attributes and

finally based on the support level of rules.

 SUPPORT, ATT, CONF: ranking based on support level, then number of attributes,

and finally based on confidence levels.

 ATT, CONF, SUPPORT

 SUPP, R_ATT, CONF: R_ATT means the less the number of attributes, the higher the

rank is.

MRMCAR chooses the higher ranked RuleId based on ranking criteria as before, then it will

look to the class label attached to this rule and will apply either of two label matching

criteria:

Any Label Match: MRMCAR will choose the higher ranked rule as the covering rule for

this training instance.

Exact Label Match: MRMCAR will choose the higher ranked rule. Then it will keep the

rule if the class of rule matches the label of the line. If they do not match, then MRMCAR

will choose the next higher ranked rule that has a class which matches the label of the line. If

no RuleId matches the label, then this line is not covered by any classifier rules and will be

dropped from line space.

If the rule ranking method is ―CONF, SUPP, ATT‖ and the label matching method is ―Exact

Match‖ then MRMCAR will be pretty much similar to the MCAR algorithm [15]. The effect

of these criteria on MRMCAR accuracy and classifier features is shown in the next chapter,

Section 5.5.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

122

5.6 Prediction and Test

In classifying a test case, two types of prediction are used in MRMCAR; single rule

prediction and group of rules prediction.

5.6.1 Single Rule Prediction

 The classifier finds the first highest ranked rule that matches the test case, and then uses it to

decide the label of the test case. It is worth noting that single rule prediction works for both

one-label prediction and multi-label prediction as the chosen rule is already a multi-label rule.

5.6.2 Prediction Based on Groups of Rules

In this configuration, the classifier divides all rules which fully match the test case into

groups according to their class labels, and then assigns the test case to the class of the

dominant group (the group which has the largest number of rules). This is unlike traditional

AC methods such as MCAR and CBA which utilise a single rule for prediction. Several

experiments on UCI [103] datasets showed that there is no obvious gain in accuracy using

prediction based on groups of rules. However, this predication option is kept in the algorithm

for future evaluation for datasets other than UCI. Lastly, in cases when no rules in the

classifier are applicable to the test case, the default class will be assigned to that case.

5.7 Incremental Learning

Another advantage of adopting a Line and Space representation of dataset is the ability to do

kind of incremental learning while building the classifier model. The learning scheme in

MRMCAR can work in an incremental (instance-based) way if all intermediate data

generated from the transformations are kept. However, the resulting model needs memory

that can fit the dataset several times. Thus, the amount of available memory imposes

constraints on it. Other instance-based algorithms with high memory demands may tend to

keep data on the hard drive and then adopt sophisticated methods in cashing and indexing to

keep the most frequently used part of the data in memory for rapid access time.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

123

Line Space 2

Item Space 2

Item Space 1

Instance, line number=100, I1, I2, ... In, Label= C

Frequent

Item ID1

Lines:

1,

2,

3,

100

100:3 ID1, ID2

Frequent

Item IDn

Lines:

3

5,

100

3:A ID4, ID5

2:A ID5, ID7, ..

5:C ID1, ID2, IDn

100:C ID1, ID2

Frequent

Item

ID5,ID7

Lines:

1,

2,

3,

100

Frequent

Item

ID1,ID2

Lines:

3

5,

100

Line Space 3

Item Space 3

Figure 5-8: Incremental learning in MRMCAR

The MRMCAR intermediate data format is quite useful for incremental learning. It is

naturally indexed so that when learning from new instances, the updates in the model are

performed directly to positions that need updates with new information. The incremental

learning is performed as follows:

5.7.1 Incremental Learning in the Frequent Item Discovery Step

 When adding one or a group of instances to the classifier, they are first mapped to their

integer values in Line space format. Then the same methods used in ruleitem discovery are

used here to update the set of frequent items of size one. Only a few ruleitems are updated. If

the added instances contain attribute values that do not exist before in the dataset, then a new

ruleitem is created and added to the set of ruleitems. To get the frequent ruleitems of size 2,

the algorithm targets only the recently updated frequent items and transforms them to Line

space to update a few corresponding lines there. Figure 5-8 shows these procedures.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

124

5.7.2 Incremental Learning in Rule Pruning and Classifier Building Step:

Adding one or more instances may result in adding a new rule in survived rules, or changing

the rank value for the pack of rules related to that line. MRMCAR can do incremental

learning in rule pruning and classifier building the same way it is done in the frequent item

discovery step because all rules are saved in similar data structures of Frequent item space

format and Line space format. Thus, a quick transformation is performed on the few targeted

rules.

5.7.3 Incremental Learning Constraints and Solutions

In a stand-alone implementation of MRMCAR using WEKA software [42], the major

constraint of using incremental learning in MRMCAR is the memory. MRMCAR scans the

input dataset only once, and then iterates the process of transforming the data between Line

space and Frequent Item space till it finds all the frequent itemsets. Each transformation

usually results in lower data sizes because of dropping non-covered lines in the line space and

dropping non-surviving ruleitems in the frequent item space. MRMCAR keeps iterating till it

reaches the maximum number of iteration or if there are no data left in the current space. The

default setting for the MRMCAR algorithm is to free memory from the current space (line or

frequent) once the next space transformation is calculated because such data is no longer

needed in the calculation. Trying to do incremental learning using MRMCAR means there is

a need to keep all the intermediate data transformations for iterations in the Line space and in

the frequent item discovery phase. More memory is needed to hold these extra data. The

amount of data generated by the data transformations is highly related to the threshold value

assigned to the support.

Figure 5-9 and Figure 5-10and show the effect of choosing different support values for the

number of lines or frequent items in Line/Frequent-item space for each iteration. Figure 5-9

shows that the number of lines in line space decreases after each iteration. For the Mushroom

dataset, the maximum iteration in frequent item discovery is 10, which is equal to the number

of attributes excluding the class attribute. The higher the support threshold is, the lower

number of lines.

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

125

Figure 5-9: Number of Lines in Line Space vs. Iteration in Mushroom dataset for different support levels

Figure 5-10: Number of Items in Frequent Items space vs. Iteration number for different support levels

Figure 5-10 shows the variation of the number of frequent items generated in each iteration.

Different values of support thresholds were used. The maximum number of items increases

dramatically for support thresholds less than 5%. Later results on accuracy in the next chapter

(5.5.6) show that the maximum accuracy achieved using MRMCAR for each dataset does not

always increase for lower support thresholds. This means that MRMCAR can reach optimum

memory/time/accuracy performance for range of support and confidence thresholds for

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12

N
u

m
b

e
r

o
f

Li
n

e
s

In
 li

n
e

 S
p

ac
e

Iteration Number

1% 5% 10% 15%

20% 25% 30%

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12

N
u

m
b

er
 o

f
Fr

e
q

u
en

t
it

em
s

in
 It

em
 S

p
ac

e

Iteration Number

1% 5% 10% 15%

20% 25% 30%

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

126

certain input datasets. However, it is difficult to predict the optimum range for each dataset.

Currently, user experience in each dataset is the key to tuning the threshold levels to reach

such optimization.

Updating only the targeted frequent items in the class model needs indexing and fast access

to the data. In-memory stand-alone MRMCAR implementation discussed in 5.2 provides

such speed. However, as mentioned before, incremental learning works if the entire

intermediate data for both line space and frequent items space were buffered. This works only

for datasets of sizes that can fit in computer memory (tens of megabytes for example). Other

concerns in in-memory incremental learning are the number of attributes of the data set and

the level of the support threshold used for learning. Figure 5-9 and Figure 5-10 show how the

number of attributes in data set and how the support threshold can affect the sizes of

intermediate data used while discovering the frequent items.

Implementation of MRMCAR in the Hadoop distributed file system allows holding all the

data on hard drives. The data sizes used in line and frequent item spaces for all iterations are

no longer a problem. Unfortunately, using incremental learning, the Hadoop distributed File

system will not provide the required performance. In traditional implementations with no

incremental learning, several chunks of datasets are read from hard drives and the instances

in each line or item space are processed in a sequential way. But incremental learning

demands reading only pieces of data from random places saved on hard drives. Long search

times to hard drives are the major constraint of distributed MRMCAR with I/O file system

operations.

5.7.4 HBASE Data Structure and Implementation for Incremental Learning:

To solve the problem of low latency access in incremental learning on data saved on hard

drives, a prototype using HBase [117] is proposed and implemented to hold the data for

MRMCAR with incremental learning configuration. HBase is part of the Apache Hadoop

open source project. It was started towards the end of 2006 and was modelled after Google’s

―Bigtable: A Distributed Storage System for Structured Data‖ by Chang et al. [5]. It is a

distributed column-oriented database built on top of HDFS (Hadoop Distributed File

System). HBase is the Hadoop application to use when applications require real-time

Suhel Hammoud (2011)

Chapter 5: MRMCAR MapReduce Classifier

127

read/write random-access to very large datasets. Thus, HBase was chosen over other

solutions for several reasons:

 Line space and Frequent Item space are naturally suitable for the HBase table format,

because they use a kind of sparse matrix format to hold data. Both spaces are

implemented as HBase tables that can spread to billions of records and has a sparse

number of columns (attributes) that reaches millions.

 HBase is distributed and can scale very easily; this is suitable for managing massive

data sizes over a distributed file system and allows distributed random access to the

data.

 HBase can save copies of data efficiently with a time stamp tag. This is very useful

for keeping copies of the classifier used in incremental learning for different parts of

the input data sets.

5.8 Summary

This chapter started with introducing MRMCAR algorithm for associative classification. It

described in details how datasets are represented in MRMCAR in two formats; Line space

format (horizontal), and Item space format (vertical). Steps of MRMCAR algorithms were

explained with example. This chapter also, described how MRMCAR generate rules of

multiple-label predictions with probabilities attached to each label. Several configurations of

the algorithm were discussed, especially rule ranking configurations. Using incremental

learning in MRMCAR is also presented and limitations were discussed. A practical solution

for MRMCAR incremental learning was proposed and implemented were introduced using

Google’s BigTable data structure.

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

128

Chapter 6

Implementation and Evaluation of MRMCAR

Classifier Algorithm

6.1 Introduction:

This chapter introduces two implementations of the MRMCAR algorithm. It explains the

parameters used with the algorithm. Also, it explained how to distribute MRMCAR and why

it is efficient. In 6.4, the measurements used to evaluate MRMCAR are explained with an

example using one real case. Section 6.5 shows results of extensive experiments performed

using MRMCAR. In addition, it compares the accuracy of the classifier with other existing

learning schemes. Finally, section 6.6 shows the time performance of a distributed

implementation of MRMCAR on 4 PC machines and it shows other results obtained from the

MRSim simulator to investigate the scalability of MRMCAR.

6.2 Sequential Implementation

The algorithm is embedded in Weka software [42]. Weka machine learning software was

introduced in 3.3. Weka’s class hierarchy was extended with the new MRMCAR classifier.

The base class ―Classifier‖ is included in the ―weka.classifiers‖ package which contains

implementations of most of the algorithms for classification and numeric prediction. The

most important methods overridden in the subclass are ―buildClassifier()‖,

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

129

―classifyInstance()‖, and ―distributionForInstance()‖. More methods are overridden to

provide generic information about the class such as documentation, its version, its authors

and related papers.

Figure 6-1: MRMCAR in Weka explorer

By embedding the new algorithm in Weka software (Figure 6-1) the MRMCAR benefits from

the extensive tools available in WEKA to pre-process, filter, evaluate analysis and visualize

the dataset in addition to applying the new MRMCAR learning scheme. Furthermore, Weka

has uniform interface to all classifiers. This allows comparing MRMCAR with other

classifiers included in the classifiers package.

The MRMCAR classifier has tuneable parameters which are accessed through a property

sheet or object editor, as shown in Figure 6-2. A common evaluation module is used to

measure the performance of all classifiers.

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

130

Figure 6-2: MRMCAR object editor form

This is a brief description of Object editor parameters for the MRMCAR classifier:

 Add Default Rule: In the training dataset, add the default rule for instances not

covered by any of generated rules.

 Class Index: index of which attribute is used as label.

 Minimum Confidence: confidence threshold for surviving rules to be considered in

the classifier model.

 Is Sparse: true if instances in the training dataset have sparse attributes.

 Minimum Support: support threshold for surviving rules to be considered in the

training model.

 Number of Rules: build the classifier with support level that generates only this

number of rules. The classifier model will start from high support levels then decrease

the support in steps till generating the needed number of rules.

 Exact Label Match: True for ―exact label match‖ in the rule pruning step, and false for

―any label‖ pruning.

 Rank Method: choose from CONF_SUPP_ATT, CONF_ATT_SUPP,

SUPP_CONF_ATT, SUPP_ATT_CONF, and ATT_CONF_SUPP.

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

131

 User group Predication: for predicting new instances. Use true for prediction based on

all rules that have similar left sides of the new test instance. Use false for prediction

based on single matched rule of the highest rank value.

 Verbose: Used for debugging and algorithm demonstration. If true, then the

intermediate data in Item space and Line Space are printed to the output for all

iterations. It will also print all surviving rules before pruning.

6.3 Parallel Implementation Using MapReduce

Map reduce implementation is done in the Java programming language. The source code is

uploaded to Google code repository and is available on [44]. The Hadoop version used is

hadoop-0.20.1 and HBase

6.3.1 Distribution Details

Map-reduce jobs used to implement MRMCAR:

 Initialization: one map-reduce job to map every item to a unique integer value, which

is the line number of the first occurrence of the item in the data set. Lines in the data

set should be numbered first. A small test on a hard drive of 5400 rpm and one thread

application running on Intel Core2 Duo Processor showed that it took around 93

seconds to add line numbers to the lines of a data set of size 3 GB and of number of

lines equal to 10 million lines. The result of the initialization step is the data

represented in line space.

 Discovering frequent Item sets: starting from frequent item sets of attributes size

equal to one. Two map-reduce jobs for each iteration; ―toItemSpace‖ job, and

―toLineSpace‖ job. The number of iteration is passed as parameter for each job.

 Rule Pruning: two Map-Reduce jobs. The first one transfers candidate rules from Item

Space to Line space and adds rule rank for each item id. Then, it keeps at most one

rule per line. The second map-reduce job is to transform the remaining lines with their

remaining ranked rule id to frequent item space to get the final classifier as a list of

rules sorted and with multi-labels with probability values attached to each label.

 Prediction: Use the predication function which can be distributed easily because the

outcome set of rules for the classifier is of much smaller size than the data set size,

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

132

and there is no need to return to the original data set when predicting new instances.

Thus several instances of the predication function can work in parallel without the

need for network communications.

More details about the implementations are documented in the source code [44].

6.4 Evaluation of the MRMCAR Algorithm

MRMCAR is evaluated using repeated cross-validation. Also, other statistical tests are used

to eliminate the effect of chance between different methods. Also, MRMCAR is able to

predict the class probabilities rather than classes themselves. Few methods were investigated

to help when considering the cost of misclassification without discussing the internals of the

algorithm.

6.4.1 Cross-Validation

For classification problems, it is natural to measure a classifier’s performance in terms of the

error rate. The classifier predicts the class of each instance: if it is correct, it is counted as a

success; if not, it is an error. The error rate is just the proportion of errors made over a whole

set of instances, and it measures the overall performance of the classifier.

The standard way of predicting the error rate of a learning technique given a single, fixed

sample of data is to use stratified 10-fold cross-validation [91] . The data is divided randomly

into 10 parts in which the class is represented in approximately the same proportions as in the

full dataset. Each part is held out in turn and the learning scheme trained on the remaining

nine-tenths; then its error rate is calculated on the holdout set. Thus the learning procedure is

executed a total of 10 times on different training sets (each of which have a lot in common).

Finally, the 10 error estimates are averaged to get an overall error estimate. Random sampling

is done in such a way as to guarantee that each class is properly represented in both training

and test sets. This procedure is called stratification. Stratification provides a safeguard

against uneven representation in training and test sets.

A single 10-fold cross-validation might not be sufficient to get a reliable error estimate

because of the effect of random variation in choosing the folds themselves. Stratification

reduces the variation, but it certainly does not eliminate it entirely. Thus, MRMCAR is

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

133

evaluated using the average of 10-fold cross-validation experiments repeated 10 times with

the same dataset for each min-support and min-confidence value to produce reliable results.

This involves invoking the MRMCAR algorithm 100 times on datasets that are all nine-tenths

the size of the original.

Obtaining the results for the range of confidences and support thresholds and for all data sets

and for the range of rule ranking criteria to measure the performance of MRMCAR is a

computation-intensive undertaking. Approximately, 10,000,000 MRMCAR runs were carried

out. To save time, several Amazon EC2 [37] cloud instances of high hardware capabilities

were hired to perform the evaluation experiments. Results are shown later in this chapter.

6.4.2 Predicting Probabilities

In single label prediction, the outcome for each test instance is either correct, if the prediction

agrees with the actual value for that instance, or incorrect, if it does not. If the classifier

generates either correct or incorrect prediction, then success is the right measure to use. This

is sometimes called a 0 - 1 loss function: the ―loss‖ is either zero if the prediction is correct or

one if it is not. However, in single label predication, MRMCAR can associate a probability

with each prediction, because it knows how many training instances are actually covered by

each resulting rule. It might be more natural to take this probability into account when

judging correctness in certain applications. For example, a correct test case predicted with a

probability of 96% should perhaps weigh more heavily than one predicted with a probability

of 53%, and, in a two class situation, perhaps the latter is not all that much better than an

incorrect outcome randomly predicted with a probability of 53%. Also, MRMCAR generates

- for each test case - predictions of several labels with probabilities attached to each of them.

To compare MRMCAR with other classification algorithms such as C4.5 [25], J48 [43] ,

RIPPER, CBA [13], and MCAR [15] , MRMCAR used it as single label classifier and did not

consider the probability of predicated classes. The 0-1 loss function is used because not all

compared algorithms generate probabilities with the predications. This test used no award for

a realistic assessment of the likelihood of the prediction. However - even though not

evaluated - probabilities in MRMCAR are useful if the prediction is subject to further

processing such as involving assessment by a person, or a cost analysis, or perhaps even

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

134

serving as input to a second-level learning process. This is an advantage of MRMCAR and

depends on the application which MRMCAR is used in.

6.4.3 Counting the Cost

For some applications it is advantageous in evaluating the classifier to consider the cost of

wrong decisions, wrong classifications. In such applications it is not sufficient to predict the

performance of classifier on only error rate. For example, in a fire detection classifier, the

cost of not predicting the fire is far greater than the cost of false alarms generated by the

classifier. More measures can be applied to help evaluating the performance of classifier per

predicted class. The following measures are by default calculated in each run of WEKA

MRMCAR. Take, as an example, one run of the MRMCAR classifier on a Lymph dataset

from UCI [103], with min-support = 5%, min-confidence =35% , rule ranking criteria of

CONF_SUPP_ATT, and exact label match. Figure 6-3 shows the result of such a run.

Figure 6-3: Evaluation of one MRMCAR run on Lymph dataset

Details of evaluation are explained in the following sections.

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

135

6.4.4 Confusion Matrix

In the two-class case with classes yes and no, a single prediction has the four different

possible outcomes shown in Table 6-1.

Table 6-1: Predication results for two class classifier

 Predicted class

yes no

Actual Class yes True Positive (TP) False Negative (FN)

no False Positive (FP) True Negative (TN)

A false positive (FP) occurs when the instance is incorrectly predicted as yes (or positive)

when it is actually no (negative). A false negative (FN) occurs when the instance is

incorrectly predicted as negative when it is actually positive. True positive rate

 and false positive rate

 .The overall success rate is the number of

correct classifications divided by the total number of classifications:

 . Finally: .

In a multiclass prediction as in Table 6-3, the result on a test set is displayed as a two

dimensional confusion matrix with a row and column for each class. Each matrix element

shows the number of test examples for which the actual class is the row and the predicted

class is the column. Good results correspond to large numbers down the main diagonal and

small, ideally zero, off-diagonal elements.

6.4.5 Kappa Statistic

Continuing with the same pervious example,Table 6-2 (MRMCAR) shows MRMCAR

prediction with four classes. In this case the test set has 148 instances (the sum of the 16

numbers in the matrix), and (68 + 47 + 4+0=119) of them are predicted correctly, so the

success rate is 80.4%.

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

136

Table 6-2: Different outcomes of four-class prediction

 Predicted class Predicted class

a b c d total a b c d total

Actual
class

a 68 4 9 0 81 Actual
class

a 38 28 14 0 81

b 2 47 12 0 61 b 29 22 10 0 61

c 0 0 4 0 4 c 2 1 1 0 4

D 0 0 2 0 2 d 1 1 0 0 2

total 70 51 25 0 Total 70 51 25 0

MRMCAR RANDOM

To test if this is a fair measure of overall success, the number of agreements expected by

chance were tested. MRMCAR predicts a total of 70 a’s, 51 b’s, 25 c’s and 0 d’s. To compare

MRMCAR in this run with a random predictor that predicts the same total numbers of the

four classes shown in Table 6-2 (RANDOM). Its first row divides the 81 a’s in the test set

into these overall proportions, and other rows do the same thing for the other classes. The row

and column totals for this matrix are the same as before—the number of instances hasn’t

changed, and the random predictor was set to predicts the same number of a’s, b’s, c’s and d’s

as the actual (MRMCAR) predictor.

This random predictor gets (38 + 21 + 1+ 1 = 60) instances correct. The Kappa statistic

measure takes this expected figure into account by deducting it from the MRMCAR

successes and expressing the result as a proportion of the total for a perfect predictor, to yield

(119 - 60 = 59) extra successes out of a possible total of (148 - 60 = 88), or 67.04%. The

maximum value of Kappa is 100%, and the expected value for a random predictor with the

same column totals is zero. In summary, the Kappa statistic is used to measure the agreement

between predicted and observed categorizations of a dataset, while correcting for agreement

that occurs by chance.

6.4.6 Numeric Prediction in Evaluation

Continuing with the same pervious example, several alternative measures, are also calculated

to evaluate the success of numeric prediction. And this is how the results showed in Figure

6-3 are calculated: If the predicted values on the test instances are p1, p2, . . ., pn ; and the

actual values are a1, a2, . . ., an. Then:

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

137

Root Mean-squared error =

Mean absolute error=

Relative absolute error =

Root relative squared error =

MRMCAR works with nominal values, but it is able to predict classes with its probabilities.

Thus in this case the error is defined as the difference between the probabilities of the actual

classes and predicted classes .Results of calculations are shown in Figure 6-3.

Other measurements are used. Recall, precision, and F-measure is used to evaluate the return

of search request in information retrieval domain

Those measurements can be redefined in analogy to their original definitions to calculate

them for MRMCAR classification algorithm.

From confusion matrix for last run:

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

138

Calculations for other classes are done the same way.

6.5 Experimental Results

In this section, different classification algorithms are compared with MRMCAR according to

different evaluation measures including error rate, number of rules in the classifier, rule

pruning impact, and the usefulness of rule ranking. Twenty different data sets shown in Table

6-3 from the UCI data repository [103] have been used in the experiments. The UCI Machine

Learning Repository is a collection of databases, domain theories, and data generators that

are used by the machine learning community for the empirical analysis of machine learning

algorithms. The archive was created as an ftp archive in 1987 by David Aha and fellow

graduate students at UC Irvine. Since that time, it has been widely used by students,

educators, and researchers all over the world as a primary source of machine learning data

sets. As an indication of the impact of the archive, it has been cited over 1000 times, making

it one of the top 100 most cited "papers" in all of computer science [103].

 The algorithms utilized in the comparison are: C4.5 [25], J48 [43] , RIPPER , CBA[13], and

MCAR [15], and the MRMCAR. The reason behind selecting these algorithms is because the

different training strategies they employ in discovering the rules. For example, C4.5 uses

divide and conquer and RIPPER utilizes heuristic based strategy. On the other hand, CBA is

known AC mining algorithms.

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

139

Ten-fold cross validation [91] is used as a testing method to derive the error rate numbers.

Each Ten-fold cross validation is repeated 10 times with new random partitioning and

averages for error rate where derived. The CBA results were produced from an

implementation version used in [49], and the J48, C4.5 and RIPPER algorithms results are

derived from WEKA open source machine learning tool [42]. The experiments of all learning

algorithms were run on Intel Core2 Duo Processor T7300 with 2.0 GHz speed and 4 GB

RAM.

 The most important threshold in AC is the MinSupp threshold since it controls the number of

rules generated, and is only parameter used to decide which frequent item is to survive to the

next rule item discovery iteration. So, setting the MinSupp to a large value may result in

discarding important knowledge, and setting it to a low value may produce massive numbers

of rules, which possibly causes combinatorial explosion. It is the firms believe of the authors

that there is no related research works that pointed out the optimum value of the MinSupp

threshold since each data set has its own characteristics, thus good results that have been

derived from a training data set X using a certain MinSupp may not necessarily means that

this MinSupp also works well for data set Y.

6.5.1 Accuracy

Figure 6-4 and Table 6-3 display the error rate figures generated by the different algorithms.

Figure 6-4: Error rate of the classification algorithms against 20 UCI data sets

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Er
ro

r
R

at
es

 %

UCI Datasets

C4.5 J48 RIPPER CBA MRMCAR 1 MRMCAR 2

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

140

Two configurations of MRMCAR are used; one is MRMCAR1 with ―CONF_ATT_SUPP‖

rule ranking and with ―Exact label match‖, the other is MRMCAR2 with

―CONF_SUPP_ATT‖ rule ranking and ―Exact label match‖ which is pretty close to MCAR

algorithm [15]. It is obvious from the numbers that MRMCAR is highly competitive with

regards to error rate if compared with the rest of the algorithms considered. Particularly,

MRMCAR1 outperformed the rest of the algorithms on eight data sets, and on average for all

data sets considered, it achieved 3.66%, 2.14%, 3.80%, and 2.55% less error rate than C4.5,

J48, RIPPER, and CBA, respectively. MRMCAR2 achieved 0.26% less error rate than

MRMCAR1.The results clearly indicate that AC algorithms can generate more predictive

classifiers than traditional classification algorithms such as C4.5 and RIPPER.

Table 6-3: Error rate in MRMCAR vs. other classification algorithms, MRMCAR1= CONF_ATT_SUPP, MRMCAR2=
CONF_SUPP_ATT

Dataset Size No.

Attributes

Classes C4.5 J48 RIPPER CBA MRMC

AR1

MRMC

AR2

Austrad 690 14 2 14.79 13.59 14.79 14.64 12.72 12.72

Balance 625 4 3 35.68 35.06 25.44 34.34 14.27 14.27

Breast 699 9 2 5.44 5.41 4.58 4.16 4.12 4.16

Cleved 303 11 2 23.77 22.72 22.45 16.87 14.72 15.38

Contact 24 4 3 16.67 16.50 25.00 20.00 21.67 21.67

Diabetes 768 6 2 26.18 22.54 23.96 24.66 21.47 21.48

German 1000 15 2 29.10 27.42 27.80 27.43 27.09 27.00

Glass 214 7 7 33.18 22.41 31.31 30.11 24.16 24.25

Heart 294 5 2 18.71 20.93 21.77 20.80 18.37 18.37

Iris 150 4 3 4.00 6.33 5.34 6.75 6.20 6.20

Labord 57 12 2 26.32 14.97 22.81 5.01 13.16 12.63

Led7 3200 7 10 26.44 26.61 30.47 28.26 28.10 28.10

Lymph 148 10 4 18.92 18.94 22.98 23.62 19.86 19.86

Mushroom 8124 10 2 0.23 0.20 0.10 8.71 0.14 0.12

Pimad 768 6 2 27.22 22.34 26.70 24.51 21.41 21.45

Primary-tumor 339 11 23 58.41 58.08 65.20 74.89 57.82 57.29

Tic-tac 958 9 2 16.29 13.98 3.03 0.00 0.00 0.00

Vote 435 10 2 11.73 12.16 12.65 13.09 9.89 10.25

Wine 178 13 3 5.62 6.79 7.31 1.67 4.78 3.20

Zoo 101 11 7 6.94 8.36 14.86 4.04 12.57 8.81

Average 20.28 18.77 20.43 19.18 16.63 16.36

6.5.2 Number of Rules

A deeper investigation on the numbers of rules generated by MRMCAR in two

configurations; MRMCAR1 using ―CONF_SUPP_ATT‖ with ―Any Label Match‖ , and

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

141

MRMCAR2 which is using ―CONF_SUPP_ATT‖ with ―Exact Label Match‖. Tests were

carried out against the 20 UCI data collections. Two investigations considered with two

scenarios; one using standard support and confidence (MinSupp 5%, MinConf 50%), and one

with low support and confidence thresholds (MinSupp 1%, MinConf 10%) since results for

this thresholds it is probably indicates the behaviour of both algorithms in normal and sever

cases in terms of amount of calculation needed to find frequent items. Figure 6-6 and Figure

6-7 show the number of rules derived by MRMCAR1 and MRMCAR2 according to the

support and confidence thresholds mentioned above. Figure 6-5 demonstrates consistency on

the numbers of rules for both algorithms with few exceptions. Some of the obvious

exceptions are the ―German‖ and the ―Led‖ data sets where in the first case (―German‖), the

proposed method surprisingly generated 102 more rules than the MRMCAR2 and in the

second case (―Led‖) MRMCAR2 produced 67 more rules than MRMCAR1. Though, both

algorithms consistently behaved in a similar way in generating rules for the different data sets

considered. Figure 6-7 Depicts the number of rules produced by MRMCAR1 and

MRMCAR2 in sever situations particularly when the MinSupp and MinConf are set to very

low values, i.e. 1% and 10%, respectively. In this case, MRMCAR2 algorithm produced more

rules than MRMCAR1, and specifically it derived more rules on nine data sets. In the

remaining eleven data sets, MRMCAR1 generated slightly more rules on five data sets, and

both configurations derived the same number of rules on the remaining six data sets. Figure

6-5 displays the difference on the number of rules between MRMCAR1 and MRMCAR2 on

all data set using MinSupp and MinConf of 1% and 10%, respectively. The positive values

indicate the additional rules generated by MRMCAR2, and the negative values indicate the

additional rules produced by MRMCAR1. The figure clearly indicates that MRMCAR2 often

generates more rules than MRMCAR1 in circumstances when the support is set to low value

by end-user. This increase in the number of rules often leads to an improvement on the

classification accuracy as shown in Figure 6-8. In fact, Figure 6-8 reveals that MRMCAR2

algorithm outperformed MRMCAR1 configuration on 14 data sets when the support

threshold got lowered to 1%, and achieved on average +1.52% improvement on the

classification accuracy than MRMCAR1. It should be noted that on the five data sets which

MRMCAR1 generated more rules than MRMCAR2.

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

142

Figure 6-5: the difference of the number of rules derived by MRMCAR1 and MRMCAR2 algorithms

Figure 6-6: Number of rules derived by MRMCAR1 and MRMCAR2 algorithms against 20 UCI data sets with MinSupp 5%
and MinConf 50%

Figure 6-7: Number of rules derived by MCAR and MRMCAR algorithms against 20 UCI data sets with MinSupp 1% and
MinConf 10%

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

143

Figure 6-8: Classification accuracy of MRMCAR1 MCAR and MRMCAR2

6.5.3 Confidence vs. Support Effects

To study the sensitivity of algorithm to confidence and support levels, MRMCAR was tested

on all datasets with incremental step values for both support and conference thresholds.

Accuracy was monitored.

Figure 6-9: Effect of confidence vs. support levels on MRMCAR accuracy, (Breast dataset UCI)

One example of the results is on ―Breast‖ dataset [103]. Figure 6-9 shows MRMCAR

accuracy for range of support values 1- 20%, and for confidence values 0-100% and with

―Exact Label Match‖ and ―CONF_SUPP_ATT‖ rule ranking;

All tests on all data sets revealed that MRMCAR is more sensitive to changes in support

levels than changes in confidence levels. Accuracy, usually, changes greatly when changing

0 0.1
0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9

80

82

84

86

88

90

92

94

96

0.02
0.06

0.1

0.14

0.18
Confidence

A
cc

u
ra

cy
 %

Support

80-82 82-84 84-86 86-88 88-90 90-92 92-94 94-96

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

144

support levels, but seems fixed for ranges of confidence levels. This behaviour seems

constant no matter of label matching used or rule ranking criteria used in MRMCA.

6.5.4 Rule Sorting Effect on Accuracy

This is minimum error rate that MRMCAR achieved using 10 Fold cross-validation test for

several ranking criteria and label matching.

Table 6-4: Impact of label matching and rule ranking on maximum accuracy achieved by MRMCAR

Label Match Exact Label Match Any Label Match

Rank

A
T

T
_
C

O
N

F
_

S
U

P
P

C
O

N
F

_
A

T
T

_
S

U
P

P

C
O

N
F

_
S

U
P

P
_

A
T

T

S
U

P
P

_
A

T
T

_
C

O
N

F

S
U

P
P

_
R

A
T

T
_

C
O

N
F

A
T

T
_
C

O
N

F
_

S
U

P
P

C
O

N
F

_
A

T
T

_
S

U
P

P

C
O

N
F

_
S

U
P

P
_

A
T

T

Austrad 13.04 12.72 12.72 12.93 12.93 13.39 13.32 13.33

Balance 14.29 14.27 14.27 21.36 21.36 14.83 14.85 14.85

Breast 4.76 4.12 4.16 8.68 8.68 5.09 5.06 4.92

Cleved 17.26 14.72 15.38 17.16 17.10 18.22 16.01 16.50

Contact 15.00 21.67 21.67 22.08 22.92 14.17 20.42 20.42

Diabetes 21.88 21.47 21.48 23.80 23.80 22.85 22.81 22.81

German 27.19 27.09 27.00 27.01 27.02 28.64 27.96 27.79

Glass 25.23 24.16 24.25 26.45 26.54 25.75 24.35 24.35

Heart 17.21 18.37 18.37 19.39 19.29 19.56 19.25 19.25

Iris 6.00 6.20 6.20 4.67 4.67 4.53 4.53 4.53

Labord 13.33 13.16 12.63 16.49 14.74 13.86 13.16 12.63

Led7 26.68 28.10 28.10 30.95 30.88 27.03 26.96 26.96

Lymph 20.95 19.86 19.86 21.15 20.95 20.47 20.20 20.20

Mushroom 0.25 0.14 0.12 2.29 2.29 0.11 0.06 0.03

Pimad 21.98 21.41 21.45 23.78 23.78 22.77 22.75 22.75

Primary-

tumor
58.32 57.82 57.29 57.20 57.64 57.76 54.48 54.60

Tic-tac 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Vote 10.46 9.89 10.25 12.34 12.23 12.09 11.84 10.67

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

145

Wine 4.72 4.78 3.20 3.03 1.35 5.45 5.34 3.76

Zoo 12.57 12.57 8.81 7.92 6.63 14.06 12.38 9.31

Average 16.56 16.63 16.36 17.93 17.74 17.03 16.79 16.48

 In general, best results are for ―exact label matching‖ and ranking using

CONF_ATT_SUPP and CONF_SUPP_ATT ranking criteria.

 MRMCAR achieved 100% accuracy in ―Tic-Tac‖ dataset for all the criteria used for

rule ranking.

 Other ranking methods achieved very good accuracies for only one or two datasets.

For example, in contact dataset the best accuracy is achieved for any label matching

with ranking based on ATT_CONF_SUPP configuration.

Figure 6-10: Impact of rule sorting on accuracy

6.5.5 Effect of Rule Ranking on Number of Rules in Classifier

All ranking methods used to have close accuracy results. However the number of rules in the

classifier is not that close between each ranking methods. The following figure shows the

number of rules in the classifier model for each dataset for each ranking method.

0

20

40

60

80

100

120

A
cc

u
ra

cy
 %

CARD_CONF_SUPP CONF_CARD_SUPP CONF_SUPP_CARD

SUPP_CARD_CONF SUPP_RCARD_CONF

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

146

Figure 6-11: Impact of rule sorting on number of rules

The average number of rules was taken for each ranking method for best prediction achieved

by this method for certain dataset. Then draw the ratio of each method to its average. All

points located lower than value of one means the number of rules generated for certain

dataset is below the average for this data set. There is big difference in the number of rules

generated by each method. Taking the average rule ratio for whole dataset will generate

results shown in Figure 6-12.

Figure 6-12: Average number of rules for different rule ranking criteria

Results shows that ranking method of CONF_SUPP_ATT usually generate number of rules

close to the average.

0

0.5

1

1.5

2

2.5

R
e

la
ti

ve
 A

cc
u

ra
cy

 t
o

 t
h

e
 A

ve
ra

ge

CARD_CONF_SUPP CONF_CARD_SUPP CONF_SUPP_CARD

SUPP_CARD_CONF SUPP_RCARD_CONF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
el

at
iv

e
A

ve
ra

ge
 N

u
m

b
e

r
o

f
R

u
le

s

CONF_CARD_SUPP

CARD_CONF_SUPP

CONF_SUPP_CARD

SUPP_CARD_CONF

SUPP_RCARD_CONF

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

147

6.5.6 Support and Confidences for Best Accuracies:

Figure 6-13 shows the result of best thresholds that produced best accuracies in different

datasets and using different MRMCAR configurations. Each point is related to cross-

validation test done on one dataset using one ranking method. Experiments showed that it is

not necessary to lower the support and confidence threshold to get the best performance of

algorithms. This is count intuitive to the thinking that lowering the thresholds will increase

the algorithm accuracy.

Figure 6-13: Distribution of confidence and support levels for best accuracy using all datasets and all rule ranking criteria

Using clustering techniques, it is possible to find several ―centroids‖ of regions for best

threshold values. So if MRMCAR is to be tested in four threshold configurations for

example, then the number of regions to set in clustering algorithm is four. Results will show

the four points, where x=confidence threshold and y=support thresholds. Then the user can

use these values to train the classifier model. Using Weka machine learning software, the

centroids of five clusters of the pervious points were calculated. The Results are shown in the

following Figure 6-14.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1

V
er

ti
ca

l L
e

ve
ls

Confidnece Levels

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

148

Figure 6-14: Clustering using Weka software

However, user experience with the dataset domain might enable him to choose manually -

rather than using clustering techniques - better thresholds to train MRMCAR classifier.

6.6 Performance Evaluation, Scalability, and MRSim Results:

Experiments on cluster of three nodes and on dataset generated from ―Mushroom‖ dataset

UCI [103] showed very similar results as in MRApriori (chapter three sections 4.8, 4.8.1, and

4.8.2). This is predictable since MRMCAR is pretty much similar to MRApriori in two

things: data representation, and finding frequent itemsets step. Most of time in MRApriori

and MRMCAR usually is consumed to find frequent itemsets. When using Mushroom dataset

the main difference is MRMCAR is trying to find frequent itemsets from ten attributes

whereas the eleventh attribute is used as label.

Suhel Hammoud (2011)

Chapter 6: MRMCAR, Implementations & Evaluation

149

6.7 Summary

This chapter discussed two implementations of MRMCAR classifier; the sequential and

parallel implementation. Also it compared MRMCAR classifier with other classification

algorithms of C4.5, J48, and MCAR. Extensive experiments using 10 fold cross-validations

were carried out on MRMCAR using twenty datasets from UCI repository. Experiments

focused on the optimum threshold values for better predication in addition to the impact of

sorting criteria on accuracy and number of generated rules. At last, time performance and

scalability evaluation in MRSim were also discussed.

Suhel Hammoud (2011)

Chapter 7: Conclusion

150

Chapter 7

Conclusions and Future Work

This chapter presents the main conclusions of the thesis and highlights future research work

in the related areas.

7.1 Conclusions

This thesis introduces MRSim, the MapReduce simulator that targets a Hadoop environment.

This is due to the lack of tools to investigate the algorithms behaviour on MapReduce

clusters. MRSim has the ability to predict the resource utilizations and execution times of

Hadoop clusters with different configurations. This allows the user to use the simulator to

tune the cluster for best optimization for certain algorithms. MRSim uses discrete event

simulation to simulate system components. MRSim is using abstract classes to represent the

system components allowing new additions to be plugged in the system to simulate different

scheduling plans in the cluster environment. MRSim is open source and available for the

community to download and to be used for further investigation and development.

The thesis has presented and evaluated MRApriori, a distributed associative rule algorithm

that capitalizes on the scalability, parallelism and resiliency of MapReduce for large scale

frequent items discovery. MRAPriori introduced a hybrid approach by representing

intermediate data in both vertical and horizontal formats. MRApriori keeps reducing the data

Suhel Hammoud (2011)

Chapter 7: Conclusion

151

(using support thresholds) while transforming the data between the two formats till it

discovers all frequent items of long lengths. Then it derives association rules from discovered

frequent items. MRApriori generates same number of rules generated by all association rule

miners that use same support and confidence concepts. Two implementations of MRApriori

have been presented. One is for a sequential algorithm and is available as plug-in to Weka

software. The other implementation is for Hadoop MapReduce clusters. MRApriori allows

the underlying MapReduce middleware to arbitrarily partition the training dataset into

subsets. At the same time, it maintains the prediction accuracy. Optimization of the algorithm

can be achieved using fewer configurations in the cluster. Also, MRApriori jobs that run on

Hadoop cluster are naturally balanced and can optimize resource utilization in highly

heterogeneous computing environments. MRApriori is open source and available for the

community to download and to use for further investigation and development.

The thesis has presented and evaluated MRMCAR, a distributed multi-label associate

classifier algorithm that capitalizes on the scalability, parallelism and resiliency of

MapReduce for large classification based on association rules. MRMCAR uses the same

frequent items mining mechanism of MRApriori. MRMCAR allows the underlying

middleware to arbitrarily partition the training dataset into subsets while maintaining

accuracy. Thus, the MRMCAR algorithm can optimize resource utilization in highly

heterogeneous computing environments. MRMCAR showed good accuracy performance

compared with several existing traditional classifiers. Several rule ranking methods were

introduced and tested thoroughly. However, deciding the best ranking method with the best

threshold conditions depends on the type of application and the dataset. MRMCAR produces

multi-label classification rules with probabilities. This makes the results ready for further

analysis to calculate the cost of classification per class. Two implementations of MRMCAR

have been presented. One is for sequential algorithms and is available as a plug-in to Weka

software. The other implementation is for Hadoop MapReduce clusters. Incremental learning

was discussed and a proto-type was implemented using HBase, a Google Big table data

structure. MRMCAR is open source and available for the community to download and to use

for further investigation and development.

Suhel Hammoud (2011)

Chapter 7: Conclusion

152

7.2 Future work

It is necessary to amend the implementation of MRSim to allow a dynamically inserting

resource broker to the system. This will open MRSim to investigate the effect of different job

scheduling plans on resource utilization and on the cluster’s quality of service.

Several parameters in MRSim have to be set before using the simulator. Usually these

parameters are set manually and depend on having some experience in real Hadoop cluster

environments. However, to open MRSim to less experienced users, a pilot application can be

designed and implemented to be run on one instance of cluster nodes. Then the pilot

application will extract the best parameters values to set into MRSim simulator. Similar

methodology is used in other simulators such as DiskSim hard drive simulators.

In this research a small scale cluster of participating nodes was employed to evaluate the

performance of MapReduce based algorithms, in future work algorithms can be evaluated

with a much larger cluster such as Amazon Elastic Compute Cloud (EC2).

As part of the future work, a hybrid implementation between in-memory and Hadoop

implementations can be achieved. This will allow better execution times as the in-memory

part will carry on execution when the current intermediate data is shrunk to fit one computer

memory. Also, multi support levels can be introduced to MRApriori as the intermediate data

has the clarity and independence to apply different support levels on it per different iteration.

Incremental learning in MRMCAR was discussed in chapter 5. The main constraint was the

limitation in memory size needed. One solution was proposed to use the Google BigTable

data structure to hold the data and to benefit from its low access time comparing with files

I/O operations or comparing with RDBS databases. Further work can be done to using

parallel MapReduce tasks over a BigTable data structure to boost the performance of the

incremental learning algorithm.

Experiments show the accuracy of MRMCAR is highly dependent on support and confidence

threshold levels. The experiments show that there is no obvious pattern of support and

confidence thresholds for best accuracies. Each dataset has its own characteristics and

performs best in different ranges of support and confidence levels. However, more study is

encouraged to use statistical analysis on datasets to estimate the optimum support and

Suhel Hammoud (2011)

Chapter 7: Conclusion

153

confidence levels. This further study would – at least – generate few generalized

recommendations of how to choose the best threshold levels for certain datasets rather than

leaving it to user experience.

Sorting criteria in MRMCAR are studied and tested extensively. However, further studies can

concentrate on the cost of classification for certain labels for certain criteria.

It is an easy task to investigate using boosting and bagging methods with the MRMCAR

classifier. Boosting and bagging can be parallel using the MapReduce framework. However,

more consideration is needed for load balancing as boosting and bagging methods generate

different accuracy for different partition sizes of the training datasets.

Suhel Hammoud (2011)

References

[1] O.O. Malley and A.C. Murthy, ―Winning a 60 Second Dash with a Yellow Elephant Hadoop

implementation,‖ March 2009, URL http://sortbenchmark.org/Yahoo2009.pdf.

[2] J. Dean and S. Ghemawat, ―MapReduce: simplified data processing on large clusters,‖

Communications of the ACM, vol. 51, Jan. 2008, pp. 107–113.

[3] Apache Software Foundation., ―Apache Hadoop,‖ Jan. 2010, URL http://hadoop.apache.org/.

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ―The Hadoop Distributed File System,‖

2010 IEEE 26th Symposium on Mass Storage Systems and Technologies MSST, 2010, pp. 1-
10.

[5] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R.E. Gruber, ―Bigtable : A Distributed Storage System for Structured Data,‖ Sports

Illustrated, vol. 26, 2008, pp. 1-26.

[6] Apache Software Foundation, ―Apache Mahout‖, June 2010 URL http://mahout.apache.org/.

[7] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in Action, Manning Publications,

2010.

[8] R. Buyya and M. Murshed, ―GridSim: A Toolkit for the Modeling and Simulation of

Distributed Resource Management and Scheduling for Grid Computing,‖ Concurrency and

Computation Practice and Experience, vol. 14, 2002, pp. 1175-1220.

[9] H. Casanova, ―Simgrid: a toolkit for the simulation of application scheduling,‖ Proceedings
First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 430-437.

[10] G. Wang, A.R. Butt, P. Pandey, and K. Gupta, ―Using realistic simulation for performance

analysis of mapreduce setups,‖ Proceedings of the 1st ACM workshop on LargeScale system
and application performance LSAP 09, 2009, pp. 19.

[11] U. Of Southern California, ―Network Simulator - ns-2,‖ 2008. URL http://isi.edu/nsnam/ns/.

[12] Apache JIRA, ―Mumak Hadoop MapReduce Simulator,‖ 2009. URL
https://issues.apache.org/jira/browse/MAPREDUCE-728 .

[13] B. Liu, W. Hsu, and Y. Ma, ―Integrating classification and association rule mining,‖

Knowledge discovery and data mining, 1998, pp. 80–86.

[14] Z. Tang and Q. Liao, ―A New Class Based Associative Classification Algorithm,‖ Training,
2007, pp. 1-5.

[15] F. Thabtah, P. Cowling, and Y. Peng, ―MCAR: multi-class classification based on association

rule,‖ Computer Systems and Applications, 2005. The 3rd ACS/IEEE International Conference
on, 2005, pp. 33.

[16] F.A. Thabtah, P. Cowling, and Y. Peng, ―MMAC: A New Multi-Class, Multi-Label Associative

Classification Approach,‖ Proceedings of the Fourth IEEE International Conference on Data
Mining, 2004, p. 217–224.

Suhel Hammoud (2011)

[17] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal, and M.-chun Hsu, ―PrefixSpan:

Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth,‖ 2001, pp. 215--
224.

[18] M.J. Zaki and K. Gouda, ―Fast vertical mining using diffsets,‖ Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining - KDD ’03, New

York, New York, USA: ACM Press, 2003, pp. 326.

[19] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ―New Algorithms for Fast Discovery of

Association Rules,‖ 3rd Intl. Conf. on Knowledge Discovery and Data Mining, vol. 20, 1997,

pp. 283--286.

[20] J.S. Park, M.-S. Chen, and P.S. Yu, ―An effective hash-based algorithm for mining association

rules,‖ Proceedings of the 1995 ACM SIGMOD international conference on Management of

data - SIGMOD ’95, New York, New York, USA: ACM Press, 1995, pp. 175-186.

[21] [1] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur, ―Dynamic itemset counting and

implication rules for market basket data,‖ Proceedings of the 1997 ACM SIGMOD

international conference on Management of data - SIGMOD ’97, New York, New York, USA:

ACM Press, 1997, pp. 255-264..

[22] L. Breiman, ―Bagging predictors‖ Machine Learning, vol. 24, Aug. 1996, pp. 123-140.

[23] Y. Freund, ―Boosting a Weak Learning Algorithm by Majority,‖ Information and

Computation, vol. 121, Sep. 1995, pp. 256-285.

[24] B. Liu, W. Hsu, and Y. Ma, Mining association rules with multiple minimum supports, New

York, New York, USA: ACM Press, 1999.

[25] J.R. Quinlan, ―C4.5: Programs for Machine Learning,‖ Morgan Kaufmann San Mateo
California, 1993, pp. 302.

[26] W. Li, J. Han, and J. Pei, ―CMAR: Accurate and Efficient Classification Based on Multiple

Class-Association Rules,‖ Washington, DC, USA: IEEE Computer Society, 2001, p. 369–376.

[27] X. Yin and J. Han. CPAR: Classification based on predictive association rules. In Proc. of SDM,
pp 331–335, 2003.

[28] R. Agrawal and J.C. Shafer, ―Parallel mining of association rules,‖ Knowledge and Data

Engineering, IEEE Transactions on, vol. 8, Dec. 1996, pp. 962-969.

[29] J.S. Park, M.-syan Chen, and P.S. Yu, ―Efficient parallel data mining for association rules,‖

Proceedings of the fourth international conference on Information and knowledge

management - CIKM ’95, 1995, pp. 31-36.

[30] H. Kargupta, J. Han, P. Yu, R. Motwani, and V. Kumar, eds., ―Next Generation of Data
Mining,‖ vol. 7, Dec. 2008, pp. 152-168.

[31] E.-H. Han, G. Karypis, and V. Kumar, ―Scalable parallel data mining for association rules,‖

IEEE Transactions on Knowledge and Data Engineering, vol. 12, 2000, pp. 337-352.

[32] M.J. Zaki, ―Scalable Algorithms for Association Mining,‖ IEEE Transactions on Knowledge

and Data Engineering, vol. 12, 2000, p. 372--390.

Suhel Hammoud (2011)

[33] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ―Parallel Algorithms for Discovery of

Association Rules,‖ Data Mining and Knowledge Discovery, vol. 1, Dec. 1997, p. 343–373.

[34] ―PoweredBy Hadoop‖, June 2010 URL http://wiki.apache.org/hadoop/PoweredBy

[35] S. Hammoud, ―MRSim: A discrete event based MapReduce simulator,‖ 2010 Seventh

International Conference on Fuzzy Systems and Knowledge Discovery, Aug. 2010, pp. 2993-

2997.

[36] T. White, Hadoop: The Definitive Guide, Yahoo Press, 2009.

[37] ―Amazon Elastic Compute Cloud (Amazon EC2). June 2010 URL

http://aws.amazon.com/ec2/‖

[38] F.A. Thabtah, P. Cowling, and Y. Peng, ―MMAC: A New Multi-Class, Multi-Label

Associative Classification Approach,‖ Proceedings of the Fourth IEEE International

Conference on Data Mining, 2004, p. 217–224.

[39] W. Kreutzer, J. Hopkins, and M. van Mierlo, ―SimJAVA---a framework for modeling

queueing networks in Java,‖ Proceedings of the 29th conference on Winter simulation - WSC

’97, 1997, pp. 483-488.

[40] A. Sulistio, G. Poduval, R. Buyya, and C.K. Tham, ―Constructing A Grid Simulation with
Differentiated Network Service Using GridSim,‖ Computing, vol. 27, 2005, pp. -302005.

[41] "MRSim. Simulator Project Site" June 2010, URL http://code.google.com/p/mrsim.

[42] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten, ―The WEKA data
mining software,‖ ACM SIGKDD Explorations Newsletter, vol. 11, 2009, pp. 10.

[43] J.R. Quinlan, ―Improved Use of Continuous Attributes in C4.5,‖ Journal of Artificial

Intelligence Research, vol. 4, 1996, pp. 77-90.

[44] S. Hammoud, "DataMiningGrid Project Site ", June 2010 URL

http://code.google.com/p/datamininggrid.

[45] R. Agrawal and R. Srikant, ―Fast Algorithms for Mining Association Rules in Large

Databases,‖ Journal of Computer Science and Technology, vol. 15, 1994, pp. 487-499.

[46] J. Han, J. Pei, and Y. Yin, ―Mining frequent patterns without candidate generation,‖ Proc of

the ACM SIGMOD International Conference on, vol. 1, 2000, pp. 1-12.

[47] A. Savasere, E. Omiecinski, and S.B. Navathe, ―An Efficient Algorithm for Mining Association
Rules in Large Databases,‖ San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1995, pp. 432–444.

[48] Y. Yoon and G.G. Lee, ―Text Categorization based on Boosting Association Rules,‖ Second

IEEE International Conference on Semantic Computing, 2008, pp. 136-143.

[49] F. Thabtah, P. Cowling, and S. Hammoud, ―Improving rule sorting, predictive accuracy and

training time in associative classification,‖ Expert Systems with Applications, vol. 31, Aug.

2006, pp. 414-426.

[50] S. Papadimitriou and J. Sun, ―DisCo: Distributed Co-clustering with Map-Reduce: A Case

Study towards Petabyte-Scale End-to-End Mining,‖ 2008 Eighth IEEE International

Conference on Data Mining, 2008, pp. 512-521.

Suhel Hammoud (2011)

[51] C.-T. Chu, S.K. Kim, Y.-A. Lin, and A.Y. Ng, ―Map-Reduce for Machine Learning on

Multicore,‖ Architecture, vol. 19, 2007, p. 281.

[52] G. Kovoor, J. Singer, and M. Luján, ―Building a Java MapReduce Framework for Multi-core

Architectures.‖

[1] G. Kovoor, J. Singer, and M. Luján, ―Building a Java MapReduce Framework for Multi-core

Architectures.‖ In Proceedings of the Third Workshop on Programmability Issues for Multi-
Core Computers (MULTIPROG). Jan 2010.

[53] R.M. Yoo, A. Romano, and C. Kozyrakis, ―Phoenix rebirth: Scalable MapReduce on a large-

scale shared-memory system,‖ 2009 IEEE International Symposium on Workload
Characterization IISWC, 2009, pp. 198-207.

[54] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, ―Evaluating

MapReduce for Multi-core and Multiprocessor Systems,‖ 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, vol. 0, 2007, pp. 13-24.

[55] ―Microsoft Dryad.‖ June 2010 URL http://research.microsoft.com/en-us/projects/dryad/

[56] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ―Dryad and DryadLINQ Introduction,‖

ACM SIGOPS Operating Systems Review, vol. 41, 2007, p. 59.

[57] ―Greenplum MapReduce - Bringing Next-Generation Analytics Technology to the Enterprise -

Petabyte Database MapReduce.‖ June 2010 URL

http://www.greenplum.com/technology/mapreduce

[58] Aster Data ―MapReduce, SQL-MR Resources and Hadoop Integration‖ June 2010 URL

http://www.asterdata.com/resources/mapreduce.php#SQLMR

[59] R. Lammel, ―Googleʼs MapReduce programming model - Revisited,‖ Science of Computer
Programming, vol. 70, 2008, pp. 1-30.

[60] Apache Software Foundation, ―Apache License, Version 2.0,‖ 2004, URL

http://www.apache.org/licenses/LICENSE-2.0.

[61] A.R. Butt, P. Pandey, and K. Gupta, ―A simulation approach to evaluating design decisions in
MapReduce setups,‖ 2009 IEEE International Symposium on Modeling Analysis Simulation of

Computer and Telecommunication Systems, 2009, pp. 1-11.

[62] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 2003.

[63] K. Aida, ―Performance Evaluation Model for Scheduling in Global Computing Systems,‖

International Journal of High Performance Computing Applications, vol. 14, Aug. 2000, pp.

268-279.

[64] H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien, ―The

MicroGrid: A scientific tool for modeling Computational Grids,‖ Sci. Program., vol. 8, 2000,

pp. 127–141.

[65] J. Boulon, A. Rabkin, U.C. Berkeley, A. Konwinski, and M. Yang, ―Chukwa : A large-scale

monitoring system,‖ Architecture, vol. 8, 2008, pp. 1-5.

Suhel Hammoud (2011)

[66] A. Konwinski, M. Zaharia, R. Katz, and I. Stoica, ―Monitoring Hadoop using X-Trace,‖

Methodology, 2007.

[67] F. Howell and R. Mcnab, ―A DISCRETE EVENT SIMULATION LIBRARY FOR JAVA 1

Introduction 2 Other java simulation environments 4 How to build a simulation,‖ Computer,

vol. 30, 1998, pp. 51-56.

[68] M. Bateman and S. Bhatti, ―TCP testing : How well does ns2 match reality ?,‖ 2010 24th IEEE
International Conference on Advanced Information Networking and Applications, 2010, pp.

276-284.

[69] Y. Liu, M. Li, N.K. Alham, and S. Hammoud, ―HSim: A MapReduce simulator in enabling
Cloud Computing,‖ Future Generation Computer Systems, May. 2011.

[70] R. Agrawal, T. Imieliński, and A. Swami, ―Mining association rules between sets of items in

large databases,‖ ACM SIGMOD Record, vol. 22, 1993, pp. 207-216.

[71] M.J. Mackinnon and N. Glick, ―Data Mining and Knowledge Discovery in Databases - An

Overview,‖ Australian New Zealand Journal of Statistics, vol. 41, Sep. 1999, pp. 255-275.

[72] I. Pramudiono, T. Shintani, K. Takahashi, and M. Kitsuregawa, ―User Behavior Analysis of

Location Aware Search Engine,‖ Proceedings of the Third International Conference on
Mobile Data Management, 2002, pp. 139–145.

[73] M.H. Dunham, ―Mining association rules: anti-skew algorithms,‖ Proceedings 14th

International Conference on Data Engineering, pp. 486-493.

[74] R.J. Bayardo and R. Agrawal, ―Mining the most interesting rules,‖ Proceedings of the fifth

ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’99,

Aug. 1999, pp. 145-154.

[75] J. Li, X. Zhang, G. Dong, K. Ramamohanarao, and Q. Sun, ―Efficient Mining of High

Confidence Association Rules without Support Thresholds,‖ Principles of Data Mining and

Knowledge Discovery, vol. 1704, 1999, pp. 406-411.

[76] D. Mining, M. Holsheimer, M. Kersten, H. Mannila, H. Toivonen, I. -x, M.H.M. Kersten, M.
Kersten, H. Mannila, and H. Toivonen, ―A Perspective on Databases and Data Mining,‖ 1995.

[77] P. Shenoy, J.R. Haritsa, S. Sundarshan, G. Bhalotia, M. Bawa, and D. Shah, ―Turbo-charging

vertical mining of large databases,‖ ACM SIGMOD Record, vol. 29, Jun. 2000, pp. 22-33.

[78] J. Han, J. Pei, Y. Yin, and R. Mao, ―Mining Frequent Patterns without Candidate Generation:

A Frequent-Pattern Tree Approach,‖ Data Mining and Knowledge Discovery, vol. 8, 2004, pp.

53-87.

[79] K. Wang, Y. He, and D.W. Cheung, ―Mining confident rules without support requirement,‖
New York, NY, USA: ACM, 2001, pp. 89–96.

[80] G. Dong, X. Zhang, L. Wong, and J. Li, ―CAEP: Classification by aggregating emerging

patterns,‖ Discovery Science, 1999, pp. 30-42.

[81] J.R. Quinlan, ―Generating production rules from decision trees,‖ Proceedings of the 10th

international joint conference on Artificial intelligence - Volume 1, 1987, pp. 304–307.

Suhel Hammoud (2011)

[82] W.W. Cohen, ―Efficient Pruning Methods for Separate-and-Conquer Rule Learning Systems,‖

IJCAI93, 1993, pp. 988-994.

[83] J. Fürnkranz, ―Separate-and-Conquer Rule Learning,‖ Artificial Intelligence Review, vol. 13,

1999, pp. 3–54.

[84] J. Cendrowska, ―PRISM: An algorithm for inducing modular rules,‖ International Journal of

Man-Machine Studies, vol. 27, Oct. 1987, pp. 349-370.

[85] M. Thompson, R.O. Duda, and P.E. Hart, ―Pattern Classification and Scene Analysis,‖

Leonardo, vol. 7, Jan. 1974, pp. 370.

[86] M. Thompson, R.O. Duda, and P.E. Hart, ―Pattern Classification and Scene Analysis,‖
Leonardo, vol. 7, Jan. 1974, p. 370.

[87] D. Meretakis and B. Wüthrich, ―Extending naïve Bayes classifiers using long itemsets,‖

Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining - KDD ’99, New York, New York, USA: ACM Press, 1999, pp. 165-174.

[88] E. Frank and I.H. Witten, ―Generating accurate rule sets without global optimization,‖ Proc

15th International Conf on Machine Learning, 1998, pp. 144-151.

[89] W.W. Cohen, ―Fast Effective Rule Induction,‖ In Proceedings of the Twelfth International
Conference on Machine Learning, 1995, pp. 115-123.

[90] R.C. Holte, ―Very Simple Classification Rules Perform Well on Most Commonly Used

Datasets,‖ Mach. Learn., vol. 11, 1993, p. 63–90.

[91] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with

Java Implementations, Morgan Kaufmann, 2000.

[92] J.R. Quinlan, ―Discovering rules by induction from large collections of examples,‖ Expert
Systems in the Microelectronic Age, 1979, pp. 168-201.

[93] J.R. Quinlan, ―Induction of decision trees,‖ Machine Learning, vol. 1, Mar. 1986, pp. 81-106.

[94] P.E. Utgoff, ―Incremental Induction of Decision Trees,‖ Machine Learning, vol. 4, 1989, pp.

161-186.

[95] ―Data Mining Tools See5 and C5.0,‖ 2009, URL http://www.rulequest.com/see5-info.html.

[96] U.M. Fayyad and K.B. Irani, ―Multi-interval discretization of continuous-valued attributes for

classification learning,‖ Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, vol. 2, 1993, pp. 1022-1027.

[97] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, ―Classification and Regression

Trees,‖ Wadsworth International Group, vol. p, 1984, pp. 368.

[98] J.R. Quinlan, ―Simplifying decision trees,‖ International Journal of Man-Machine Studies,
vol. 27, Sep. 1987, pp. 221–234.

[99] N. Friedman, D. Geiger, and M. Goldszmidt, ―Bayesian Network Classifiers,‖ Machine

Learning, vol. 29, 1997, pp. 131-163.

[100] J. Fürnkranz and G. Widmer, ―Incremental reduced error pruning,‖ Proceedings of the 25th

international conference on Machine learning, 1994, pp. 70-77.

Suhel Hammoud (2011)

[101] J.R. Quinlan and R.M. Cameron-Jones, ―FOIL: A Midterm Report,‖ Machine Learning

ECML93 European Conference on Machine Learning Proceedings, vol. 667, 1993, pp. 3-20.

[102] J. Rissanen, ―An introduction to the MDL principle,‖ Helsinki Institute for Information

Technology, Tampere, 2006, pp. 1-10.

[103] C.L. Blake and C.J. Merz, ―UCI Repository of machine learning databases,‖ UCI Repository of

Machine Learning Databases, 1998, URL http://archive.ics.uci.edu/ml/.

[104] F. Thabtah, P. Cowling, and Y. Peng, ―MCAR: multi-class classification based on association

rule,‖ Proceedings of the ACS/IEEE 2005 International Conference on Computer Systems and

Applications, Washington: IEEE Computer Society, 2005, p. 33–I.

[105] F. Thabtah, ―A review of associative classification mining,‖ The Knowledge Engineering

Review, vol. 22, Mar. 2007, pp. 37–65.

[106] Y. Freund and R.E. Schapire, ―A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting,‖ Journal of Computer and System Sciences, vol. 55, 1997, pp.

119-139.

[107] J. Wang and G. Karypis, ―HARMONY: Efficiently Mining the Best Rules for Classification,‖

Proc of the SIAM International Conference on Data Mining SDM05, 2005, pp. 205-216.

[108] D.D. Jensen and P.R. Cohen, ―Multiple Comparisons in Induction Algorithms,‖ Machine

Learning, vol. 38, 2000, pp. 309-338.

[109] J. Liu, Y. Pan, K. Wang, and J. Han, ―Mining Frequent Item Sets by Opportunistic Projection,‖
In Proceedings. 2002 International Conference on Knowledge Discovery in Databases

(KDD’02, 2002, pp. 229--238.

[110] A.A. Freitas, ―Understanding the crucial differences between classification and discovery of
association rules: a position paper,‖ ACM SIGKDD Explorations Newsletter, vol. 2, Jun. 2000,

pp. 65–69.

[111] D. Crockford, ―The application/json Media Type for JavaScript Object Notation (JSON)‖ URL

http://www.ietf.org/rfc/rfc4627.txt.

[112] G.R. Ganger, B.L. Worthington, and Y.N. Patt, ―The DiskSim Simulation Environment -

Version 2.0 Reference Manual,‖ 1999 URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3570.

[113] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, ―A toolkit for modelling and

simulating data Grids: an extension to GridSim,‖ Concurrency and Computation: Practice and

Experience, vol. 20, Sep. 2008, pp. 1591-1609.

[114] O.O. Malley, ―TeraByte Sort on Apache Hadoop,‖ 2008,URL
sortbenchmark.org/YahooHadoop.pdf.

[115] C. Nyberg, M. Shah, and N. Govindaraju, ―Sort Benchmark,‖ 2010, URL

http://sortbenchmark.org/.

[116] H.K. Mehta, M. Chandwani, and P. Kanungo, ―Performance evaluation of Grid simulators

using profilers,‖ 2010 The 2nd International Conference on Computer and Automation

Engineering (ICCAE), Feb. 2010, pp. 74-78.

Suhel Hammoud (2011)

[117] R.C. Taylor, ―An overview of the Hadoop/MapReduce/HBase framework and its current

applications in bioinformatics,‖ BMC Bioinformatics, vol. 11, 2010, pp. S1.

[118] Oracle Java , June 2010 URL

 ―http://java.sun.com/developer/onlineTraining/collections/Collection.html.‖

[119] B. Liu, Y. Ma, and C.K. Wong, ―Improving an Association Rule Based Classifier,‖ Principles

of Data Mining and Knowledge Discovery, 2000, pp. 504--509.

