

ACTOR PERCEPTION IN BUSINESS USE
CASE MODELING

Sergio de Cesare,

Mark Lycett,
Ray J. Paul

Department of Information Systems and Computing
Brunel University

Sergio.deCesare@brunel.ac.uk

ABSTRACT

Mainstream literature recognizes the validity and effectiveness of use

cases as a technique for gathering and capturing system requirements. Use

cases represent the driver of various modern development methods, mainly of

object-oriented extraction, such as the Unified Process. Although the adoption of

use cases proliferated in the context of software systems development, they are

not as extensively employed in business modeling . The concept of business use

case is not a novelty, but only recently did it begin to re-circulate in the literature

and in case tools.

This paper examines the issues involved in adopting business use cases

for capturing the functionality of an organization and proposes guidelines for their

identification, packaging, and mapping to system use cases. The proposed

guidelines are based on the principle of actor perception described in the paper.

The application of this principle is exemplified with a worked example aimed at

demonstrating the utility of the proposed guidelines and at clarifying the

application of the principle of actor perception. The worked example is based on

a series of workshops run at a major UK financial institution.

Keywords: actor perception, business use cases, modeling

 I. INTRODUCTION

Mainstream literature recognizes the validity and effectiveness of use

cases as a technique for gathering and capturing system requirements

[Cockburn, 2001]. Use case modeling is a requirements engineering technique

aimed at understanding the functional specifications of the modeled system from

the perspective of the parties (or actors) interacting with it. A use case, as

originally defined by Jacobson [Jacobson et al., 1995], ‘is a sequence of

transactions in a system whose task is to yield a result of measurable value to an

individual actor of the system’. This definition was criticized for its vagueness

[Graham, 1996] and led to the adoption of different versions of use case

modeling by most organizations. Consequently, the understanding, application

and representation of use cases varied greatly across companies and

development environments [Firesmith, 1999]. The lack of consistent guidelines

in use case modeling also contributed to its misuse or misinterpretation [Lilly,

1999].

Use cases are predominantly employed in software development and to a

lesser extent in business modeling. The issues concerning use cases at a

software systems level are echoed for business use cases. Therefore, problems

concerning the ambiguity of definition, usage, and consistency not only remain,

but are accentuated given the specific characteristics of business modeling,

which involves both business and technical people with different mindsets and

terminologies. The adoption of use cases for business modeling strengthens the

need for a consistent view of what use cases represent and how they should be

modeled. Such a consistent view would allow greater understandability and

communicability of the business model amongst the different stakeholders of the

business and of the information systems developed. To adopt use cases for

business modeling, guidelines and techniques need to be defined.

The view and guidelines proposed in this paper derive from an analysis of

the definition of use case. The Unified Modeling Language (UML) [Booch et al.,

1999] seems to reinstate Jacobson’s definition, but with an interesting variation.

In UML 1.1, a use case is defined as

‘a description of a set of sequence of actions, including variants,

that a system performs that yields an observable result of value to a

particular actor’.

The most significant difference lies in the term ‘observable’ rather than

‘measurable’. Subsequent versions of the UML, including the current 1.5 version

[OMG, 2003], reformulate the definition, but substantially confirm the observable

nature of a use case. Hence, a use case must be observable by an actor. The

only type of system functionality definable in terms of a use case is functionality

that an actor perceives and thus is aware of. This ‘perception’ is the basis of the

principle and the guidelines defined in this paper for business use case modeling.

The main focus of this paper is on business use cases and the problems

related with their identification, definition, and mapping to system use cases. A

behavioral decomposition approach is proposed for the identification of business

use cases. Use case packages are the means to achieve behavioral

decomposition. This decomposition serves two purposes:

• It allows both the modeler and the business stakeholders to

understand and define the area of study according to groups of

logically related functionalities.

• It provides an initial structure to the business architecture.

The paper also aims at providing guidelines to enable the mapping between

business and system use cases. Actor perception is the principle underlying the

guidelines proposed for these problems.

The paper is structured as follows. Section II briefly defines business

modeling, outlining its underlying principles and issues. It then relates these

general issues with the more specific modelling technique of business use cases.

Section III presents the proposed business modeling approach based on use

cases, use case packages and actor perception. Guidelines are defined to fill the

current gap existing in the area of business use case modeling. Section IV

exemplifies the approach with a worked example based on banking account

services. The example is the result of a series of workshops held with a major UK

bank aimed at clarifying the application of use cases as a business modelling

technique. Implications for theory and practice are drawn in Section V and

conclusions are presented in Section VI.

II. BUSINESS USE CASE MODELING

A GENERAL OVERVIEW OF BUSINESS MODELING
Business modeling is the representation of the structure and the behavior

of a business organization for the purpose of understanding the business itself.

The structure of a business is defined in terms of its entities and the relationships

amongst them; business behavior is defined in terms of processes, events and

rules essential for the fulfillment of the organization’s objectives. Business

modeling approaches must therefore provide techniques for defining elements

essential to both the structure and the behavior of the organization.

Most business modeling approaches place emphasis on the dynamic

aspects of the business. The business can be viewed as a provider of services.

Service is an elusive concept that can be defined in numerous ways (e.g.,

[Johns, 1999]). In the context of this paper, a service is defined as an act or

performance provided by one party to another [Lovelock and Vandermerwe,

1996] and is achieved through the execution of business processes. Business

processes are initiated in response to an event (e.g., customer request). A

business process is defined in terms of process elements whose combined

behavior enables providing a specific service. Parties external to the

organizational area of study (e.g., people, other companies, other internal

organizational units, and governmental bodies) are the beneficiaries of these

services; hence the understanding of the business is necessarily integrated with

the definition of those parties external to the organizational area of study and

interacting with it.

A service-oriented model of an organization is applicable even to

businesses whose main purpose is the production and sale of goods. The

traditional division between goods and services is long outdated [Gummesson,

[Gummesson, 1994]. Consumers buy an offering whose value may consist of

many components, some of them being activities and some things. For example,

when purchasing a good what is being offered in reality is not the good itself, but

the property of the good. In a way the business provides the service of

transferring the property of a good when making a sale. Consequently the sale of

a product also requires the delivery of a service.

The study of business processes is a useful means for identifying and

defining entities or resources of the business. Processes use, manipulate and/or

transform these entities. Hence, the definition of business behavior is integrated

with the identification of business entities. Moreover, the analysis of business

processes also allows the modeler to define the business architecture by

grouping and relating functionality with similar scope. Business process models

can represent the organization as it currently behaves (descriptive ‘as-is’) or as it

could behave if changes in the business processes are required (prescriptive ‘to-

be’). Whilst the forms of model are complimentary, the prescriptive view is

instrumental to strategies such as business process reengineering (BPR)

[Hammer and Champy, 1993] and improvement (BPI) [Davenport, 1993].

Many techniques are applied to business process modeling, each

technique focusing on a specific aspect or set of aspects of the business to

model. Kettlinger, Teng et al. [Kettlinger et al., 1997], in a study on

methodologies, techniques and tools for BPR, identify several techniques, most

of which (e.g., flowcharting and data flow diagramming) derive from the software

modeling domain. The applicability of software techniques for business modeling

is questionable given that they were not n developed in light of the specific

needs, issues, concepts, and semantics of business organizations. To better

comprehend the characteristic features that a business modeling technique

should possess, it is useful to clarify the purposes of business modeling.

Business modeling is aimed at defining and representing a social system

(i.e., business organization). More specifically, business modeling can serve the

following purposes [Penker and Eriksson, 2000]:

• To improve understanding of the key elements of an existing

business, its dynamics. and underlying structure.

• To act as the basis for creating suitable information systems that

support the business.

• To act as the basis for improving the current business structure and

operation by identifying problem areas and improvement potentials.

• To show the structure of an innovated business.

• To experiment with a new business concept or to copy or study a

concept used by a competitive company.

• To identify outsourcing opportunities.

The representation of the organization, for any of the purposes listed,

involves communication with and participation of the business stakeholders.

Communication and participation are essential to obtain an acceptable

understanding of the organization’s behavior and structure. The product of this

communication should be documented in a way that allows the business

stakeholders to understand the business model clearly. In turn, comprehensibility

and clarity of the model increase active stakeholder participation. A business

model that provides a fair and accurate representation of the organizational area

of study provides developers with a point of reference to use across the whole

development process. Business use cases can be applied as a means for

achieving such objectives.

BUSINESS USE CASES
Use case modeling represents a technique that drives most present-day

object-oriented development methods. In the Unified Process [Jacobson et al.,

1999] use cases are employed for both business and systems modeling. The

route through the former to the latter is through collaboration diagrams. Select

Perspective [Allen and Frost, 1998, Apperly et al., 2003], on the other hand, is an

example of an object-oriented method in which use cases are employed only for

system modeling. Business modeling is carried out with diagramming techniques

(hierarchy diagrams and process thread diagrams) not directly related to

business use cases, but mapped to system use cases in a subsequent phase.

The application of use cases to business modeling, i.e. business use cases, is

still immature. Although the adoption of use cases proliferated in the context of

software systems development, their implementation in business modeling is not

as extensive. The concept of business use case is not a novelty [Jacobson et al.,

1995], but only recently did it begin to re-circulate in the literature [Jacobson et

al., 1999] and in case tools (e.g., Rational Rose).

A business use case is the description of functionality that provides a

service to an actor, with the functionality described in terms of a business

process. A business use case also defines other properties such as triggering

event, pre and post conditions, and stakeholders. In business use case

modeling, the modeled system relates to the organization or one of its sub-units.

As a consequence the actors are external to the organizational area of study.

Examples of business actors are customers, suppliers, and other organizational

units. Conversely, internal workers (e.g., employees of the business) lie within

the system boundary and therefore cannot be defined as actors in this instance.

Workers would typically be considered actors in system use cases.

Business actors are normally parties identifiable as either persons or

groups of persons (e.g. a company). In some cases it may appear that the actor

of a business use case is not a human; for example, when a bank’s computer

system automatically requests a credit check to a credit scoring company.

However, the bank’s computer system is acting on behalf of the bank. In a non-

automated system an employee could forward the credit check request. In either

case, for the credit scoring company, the bank (and not the bank’s computer

system or employee) is the party with whom the business interaction is taking

place. In both cases the bank is always the actor of the hypothetical ‘Request

credit score’ business use case. At a system level it may well be necessary to

define the bank’s computer system as a system actor.

The description of the business process is mainly textual, but can be

combined with graphical forms of representation. This combination of

representations allows the modeler to approach the definition of business

functionality through a gradual transition from a less structured/formalized

representation to a more structured/formalized one. One of the key issues in

gathering requirements is adopting a form of documentation that is clearly

understood by the business stakeholders. Natural language is normally the

means for expressing requirements at an early stage. However, since natural

language lends itself to ambiguities and inconsistencies (not making it ideal for

the purposes of software developers), refinement in other forms is

recommended; for example, more structured and/or graphical representations

can be used to refine the use case’s textual description. It is now common to

utilize activity or interaction diagrams for this purpose. State diagrams can also

be employed when the use case involves the manipulation/transformation of one

type of object. However, graphical representations need to be kept as simple as

possible to provide the business users with a clear understanding of the model.

These different forms of representation constitute different and alternative ways

of representing a use case’s textual description. They form an integral part of the

use case. From this perspective a use case can be viewed as the fundamental

package of behavior encapsulating all diagrams intended to describe its

functionality in terms of ‘what’ (service) is provided to the actor and ‘how’ the

service is realized (process).

Hence, business use case modeling serves the following purposes:

• To capture the functional requirements of an organization or an

organizational unit.

• To facilitate communication amongst business stakeholders and

modelers.

• To lay down the foundations of the business architecture.

• To allow for a gradual and preferably seamless transition toward the

information system model.

III. GUIDELINES FOR BUSINESS USE CASE MODELING BASED
ON ACTOR PERCEPTION

In a business modeling and software development environment, the

effectiveness of use case modeling for the elicitation of business requirements

requires at least two conditions to be satisfied.

• A consistent view amongst business stakeholders and developers on

what business use cases represent and how they are to be employed.

• All parties must adopt common guidelines for the documentation of

business use cases in order to guarantee consistency across the

organization.

Guidelines for use case modeling can be categorized as follows [Anda et

al., 2001]:

• Minor (or identification) guidelines: Guidelines describing how to

identify actors and use cases. Minor guidelines generally provide

limited guidance on how to represent the use cases themselves.

• Template guidelines: Guidelines defining the structure of a use case

in terms of its properties. Typical use case properties are listed in

Table 1.

• Style guidelines: Guidelines on how to structure the flow of the use

case. Style guidelines refer to the textual description of the underlying

process. Different recommendations are suggested by the literature

and summarized by Anda et al. [Anda et al., 2001] and Cockburn

[Cockburn, 2001].

The guidelines proposed in this paper fit into the above three categories

and build upon those commonly accepted in the literature and by practitioners.

The driving principle of these guidelines is actor perception. Actor perception

facilitates the identification of use cases and is employed in the following

subsection to define a use case template based on the distinction between the

service perceived by the actor and the process to deliver it. Subsequently

guidelines for grouping business use cases are defined as a means to architect

the business. Finally, a technique for mapping business use cases to system use

cases is presented.

STRUCTURE OF A BUSINESS USE CASE
Of particular importance for business use cases is that they are

predominantly textual in nature. In business modeling, models are both about

people and for people [Ould, 1995]. During the elicitation of business

requirements, the business analyst needs to discuss, correct and improve the

model with the business people. Text is a form of representation, which facilitates

interaction and communication with the business representatives since it requires

no special training for it to be understood. The textual nature of business use

cases allows business people to capture the essence of the technique fairly

easily, enabling them to become active modelers. In such a situation, the

business analyst would primarily assume roles of coordinator and moderator.

Business use cases capture a narrative told by the business

representatives about the way their organization or organizational unit delivers

services. The description of the underlying business process follows the flow of

the narrative in which a dialogue between the actor and the organizational

system interact as a means to achieve the ultimate end of receiving and

providing the business service. Narratives captured by use cases are structured

textual descriptions. However, no standard structure is yet defined for use cases

in general. The UML [OMG, 2003] overlooks this important aspect and

concentrates on the less important matter of the graphical representation of use

case diagrams [Cockburn, 2001].

Several use case templates are suggested in the literature [Anda et al.,

2001, Cockburn, 2001, Jacobson et al., 1995, Rosenberg and Scott, 1999]. Each

template defines a set of properties that define a use case. For reference, typical

use case properties are summarized in Table1.

Table1. Properties of a Use Case

Property Definition
Title or Name Defines the name of the use case.
Actor(s):

Party who obtains the observable result of value of the use case, also
known as the primary actor. An actor can be a person or another system. A
use case can have supporting actors, i.e., other parties who contribute
toward the execution of the process defined by the use case for the ultimate
delivery of the service.

Trigger Event that initiates the process defined by the use case
Scope Corresponds to the boundary of the system under study, e.g. business,

software system.
Preconditions Conditions that must be satisfied for the use case to take place.
Basic flow Description of the flow of activities that ordinarily take place for the execution

of the process defined in the use case.
Extension
points

References to other use cases extending the normal process flow.
Extension points are generally referred to in the description of alternate
courses.

Alternate
courses

Courses defining alternative paths of execution of the process defined in the
use case.

Post-
conditions

Conditions that must hold true after the termination of the process.

Source: [Anda et al., 2001]

Most of the properties in Table 1 provide a fairly comprehensive

description of what defines a process. This type of template, however, is limited

when adopting a service-oriented approach to business modeling. From the

actor’s perspective, services represent the observable or visible part of a use

case; hence the principle of actor perception is tightly associated with the

concept of service provision. Actor perception refers to the actor’s awareness of

the existence of specific system (e.g., business organization) behavior from

which the actor expects a finite number of possible predefined outcomes. The

actor knows about the service in terms of what it is and what can be achieved

from it. The actor does not require detailed knowledge of the delivery process. In

some cases, however, some aspects of the process may be transparent to the

actor.

Transparency occurs, for example, when the actor takes part in the

process (e.g., therapy services) or when the Quality of Service (QoS) is

measured at specific stages of the process.

Consequentially, a business use case can be defined as consisting of two

main sections:

• Business service section: Defines the properties of the business

service provided to the actor.

• Business process section: Defines the properties related to the

activation and execution of the business process.

The proposed template of a service-oriented business use case is

illustrated in Table 2. The template is divided into three sections:

• The whole of the business use case and is dedicated to its name and

primary actor.

• The properties of the business service provided to the primary actor.

These properties are drawn from the business service literature [Hart,

1988] and fundamentally relate to the guarantees that the service

provider obliges (or is obliged) to satisfy in favor of the primary actor.

• The business process delivering the service. It includes all the

elements necessary for the initiation, execution, and termination of

the process.

PACKAGING BUSINESS USE CASES
Logically related business use cases can be grouped together to form

business use case packages. The grouping of business use cases is based on a

common packaging rationale that takes into account the characteristics of actors,

services, and their relationships. Packaging serves two fundamental purposes:

• Packages are defined according to a common underlying theme. This

common theme can be used as a basis for discussion during

workshop sessions with the business stakeholders to identify further

services and processes. It can be used as a means to structure

discussion and reflection.

• Business use case packages are architectural elements, which allow

for the initial definition and representation of the business

architecture. The business architecture is an essential part of the

business model, which serves as a conduit toward the translation into

the model of the software system.

Table 2 – Template for a Service-Oriented Business Use Case

Business Use Case Name
Primary Actor Recipient of the service.
Business Service
Service promise Description of the outcome that the actor

can expect. The value of the service is
strongly dependent on the service
outcome.

Necessary Conditions The conditions that must hold true for the
provider to offer the service to the
requesting actor.

Quality of Service
Standards (QoS)

Set of constraints that define measurable
characteristics of the delivered service.

Payout Any obligations that must be carried out by
the service provider whenever the QoS is
not met.

Business Process
Supporting Actors Parties involved in the business process

and whose presence is necessary for
delivering the service.

Pre-conditions Conditions that must be satisfied for the
use case to take place.

Trigger Initiating event of the business process.
Description (or Basic
Course)

Description of the flow of activities that
ordinarily take place for the execution of
the process defined in the use case.

Alternate Courses Description of alternate courses of
execution of the process.

Post-conditions Conditions that must hold true after the
termination of the process.

Business use case packages are, therefore, a way to structure human

interaction and thought, as well as the business model itself. Architecture is a

means of achieving these goals. It is defined as the structure of components of a

system, their interrelationships, and the principles and guidelines governing their

design and evolution over time [Garlan and Perry, 1995]. In the area of business

modeling, however, the concept of business architecture is not consistently

defined throughout the literature. The problematic definition of business

architecture may be due to the contrasting nature of the terms ‘business’ and

‘architecture’. Business refers to the pre-existing area of study or the problem

domain, whereas architecture normally refers to the structure given to a

proposed or developed solution, e.g. the architecture of a bridge or software

architecture. Both the bridge and software are solutions to a need representing

the problem. This duality between problem and solution space residing within the

same concept can be clarified by understanding the purpose of business

architecture for information systems development.

When modeling a business organization, the business architecture

assumes a primary role in preparing the terrain for the transition toward the

subsequent software model, including the software architecture. The business

architecture is, therefore, that part of the business model that gives form to the

organizational domain, shaping the problem in a way that it can be more readily

comprehended by software analysts and designers. The business architecture

pulls and holds together the key components of the business system. These key

components subsequently drive the representation of the software models.

The way architectures are defined and how their constituent parts are

connected is dependent on the approach that the modeler adopts. For example,

architectures can be defined via objects, components, agents, patterns or a

coherent mix of these various, yet similar, approaches. Architectures can be led

behaviorally. This means that the key architectural components are derived from

the behavior of the modeled system. Behaviorally led approaches to defining

business architectures are more consistent with the dynamic nature of business

organizations. Organizations are, of course, societal systems in which the

complexities of human and/or human/machine interaction determine the overall

and emergent behavior of the business. Business use case packaging can be

considered as a behaviorally led approach to representing business

architectures. Analyzing business behavior via use cases, in terms of services

and processes, highlights both the complex interactions occurring between the

business and the external world and the dynamics of the processes delivering

the services requested. Packaging business use cases, ultimately, gives

structure to the representation of behavior.

In use case modeling, no concepts for modularization are given to

manage large use case models [Regnell et al., 1996]. As a consequence, loose

collections of use cases are defined as separate and partial models, addressing

narrow aspects of the system requirements [Regnell et al., 1995]. Given the

complexity of business organizations, the definition of cohesive groups of

logically related use cases is essential for business modeling. Closely related is

the problem of use case granularity in terms of scope of a use case. Jacobson

[Jacobson et al., 1995] indirectly takes these problems into account and

describes how use case models can be represented at different levels of

abstraction to satisfy the perspectives and interests of different ‘handlers’. The

first level is an overview model addressed to the organization’s executive

management (Figure 1a). The second level model is instead intended for the

‘process handlers’, i.e. those stakeholders more closely related with the everyday

functioning of the business processes (Figure 1b). The use cases of Figure 1b

can be considered as ‘packaged’ inside the corresponding higher-level use cases

of Figure 1a.

Use case packaging is introduced in the Unified Modeling Language. The

UML 1.5 [OMG, 2003] defines three use case stereotypes:

• Use case system: A use case system is a top-level package that may

contain use case packages, use cases, and relationships.

• Use case model: A use case model specifies the services a system

provides to its users, i.e., the different ways of using the system, and

whose top-level package is a use case system.

• Use case package: A use case package contains use cases and

relationships. A use case is not partitioned over several use case

packages.

Use case packaging enforces the simplicity, understandability and

communicability of the model. With use case packages, focus can be streamlined

into a group of logically related functionalities of the modeled system. This

approach allows for more meaningful and self-contained representations.

Jacobson in his original work [Jacobson et al., 1995] does not use the term

Procure

Product

Marketing and

Selling

Deliver

Products

and Services

Customer

Beta

User

Potential

Customer

Potential

Customer

Customer

User

Beta

User

Developing

 Partner

Manage Support

Induced Patches

Procure

Objectory Tool

Procure

Objectory Process

a. The Objectory AB Use-Case Model
Overview

b. The Procure Product Detailed Use
Case Model

 Source: [Jacobson et al., 1995], p. 321-322
Figure 1. Use Case Models

package to identify groups of use cases, but refers to them as first level use

cases. Use case package is a more expressive concept that intrinsically

communicates sense of grouping. However, as an interpretation of Jacobson’s

‘Object Advantage’ shows, such packages are use cases in their own right.

Hence, use case packages should be described with a list of properties just as

(lower-level) use cases are. However, given that the level of granularity is

different, the properties defining a business use case package are different than

those utilized to define business use cases. The difference lies in the scope and

purpose.

The scope of a business use case is a specific service expected by an

actor. Hence, a business use case is defined in terms of a service and a process

delivering the service. A business use case package is defined by several

logically related services whose individual specific properties are detailed in their

corresponding business use cases. The list of services provides the main

description of a business use case package. No temporal sequence between the

services can be implied from this list; the primary actor(s) can request any

service at any time as long as the pre-conditions of the related business use

case are met. Table 3 defines the properties of a business use case package.

Table 3. Properties of a Business Use Case Package
Property Definition
Name Designates the name identifying the package.
Packaging
rationale

Reason for grouping the services together.

Actor(s): Persons or systems that can request one of the services provided by the
package and benefiting from it.

Services provided Name and purpose of all services defined within the package

The purpose of a business use case package is architectural. The

package pulls together various use cases around a common theme. One of the

fundamental characteristics of a good business modeling technique is

understandability by the business stakeholders whose vocabulary and semantics

do not include software development terms such as architecture. This

consideration raises the question of whether business stakeholders should be

exposed to the concept of business use case package and whether the concept

should be employed with them during the identification of business use cases.

This question should be answered affirmatively. It is true that architecture is a

term typically applied in the realm of engineering, however architectural

techniques are tools for the organization of thoughts as much as they are for

structuring systems. Since the organization of thoughts is the basis of any

modeling endeavour, then business use case packaging should be used at the

forefront of business modeling with the business stakeholders. Thus, grouping

mechanisms help ‘architect’ both mental models and business and software

models.

In business modeling, the relationship between use case packages and

use cases is that of decomposition. A use case package can be decomposed

into other packages or ultimately into use cases. Although decomposition usually

does not go beyond two levels of representation as with Jacobson’s example

(i.e., use case packages containing use cases), use case packaging can, in

theory, allow for multi-level hierarchies.

The main problem with such an approach is being able to understand

where to terminate in the process of decomposition. Sometimes modelers may

not be aware that they reached the level of a business use case and risk

decomposing further. This problem can be resolved by applying the principle of

actor perception. Since a use case must be visible to an actor, decomposition

terminates when the business use case is described in terms of activities that are

internal to the organization and therefore not externally visible to any actor. Use

case packages, on the other hand, are described as a set of related services

deliverable to actors. Each one of these services is externally perceived by an

actor.

The organization of business use cases into packages facilitates the

representation of the business architecture. Business use case packages

represent the foundation of the business architecture, which would need

completion in terms of dependencies and interfaces amongst packages and their

internal static representations. All these enhancements are added on top of the

model constructed with the business stakeholders. This refined model is more

technical and developed outside of the arena of discussion with the business

stakeholders. It is beyond the scope of this paper to delve into the refinements

that the business model undergoes. However, it is sufficient to state that as part

of a gradual and possibly seamless transition between the business and software

models, various equivalent business models are to be produced before transiting

into the software-modeling domain.

MAPPING BUSINESS USE CASES TO SYSTEM USE CASES
Information systems play a fundamental role in fortifying business

competitiveness. The information counterpart of ‘real’ business behavior is

nowadays generally modeled within software-based information systems. The

underlying models of such systems require continual alignment with the business

model. Unlike business organizations, which are living systems, software

systems are developed systems. This distinction implies that the living nature of

a business inevitably changes at a much faster pace than that of developed

software systems. Consequently software models are merely snapshots [Lycett

and Paul, 1999] in time of the corresponding business system (or subsystem). To

minimize the lead-time between business change and software amendments,

methods, techniques and/or guidelines for mapping elements of the business

model to those of the software model should be defined and introduced into the

development process.
Deriving system use cases from business use cases is, therefore, part of a

more generalized problem regarding the alignment of the information system to

the business model. Transition from the business model(s) to software (analysis

and design) models, and their mapping to implemented software components,

involves semantic, human, and technical aspects. Semantically speaking,

business stakeholders and software developers describe the world with different

ontologies. Their interpretation of the same problem is different and

contextualized in accordance with the purpose and domain of personal

reference. No rigorous techniques currently exist to overcome these difficult

problems. Without investigating in depth the reasons underlying such problems,

a few general criteria can be suggested to alleviate them:

1. Participation of Stakeholders

The development of an information system requires the continual

participation of business and development stakeholders in an integrated

effort of collaboration. The participation of the various stakeholders is

required to manifest the different perspectives and diverse semantics.

2. Iterative and Incremental Development

Because of the multiple views of stakeholders and the evolutionary

nature of business organizations, iteration is necessary and the translation

from the business elements to the system elements should be carried out

as an ongoing process throughout development. In the development of

information systems, the business model should be gradually translated

into a model of the computer system. Preferably such a translation should

be as seamless as possible. Iterative and incremental development

facilitates this transition. Therefore, passage from the business model to

the system model should not be carried out in purely sequential phases.

3. Consistency of Approach and Modeling Language

A way to preserve seamless transition is to adopt the same

underlying philosophy in both business and system modeling. Utilizing the

same approach and modeling language for capturing and representing

both the business and the system requirements reduces the semantic

inconsistencies between techniques and notation. Hence, the adoption of

use cases for business modelling should be coupled with their use in

driving system development as well.

Before deriving system use cases from business use cases, the modelers

and the stakeholders must decide which activities should be automated or

supported by the resulting system. Many factors can influence such a decision

(e.g., strategic or tactical objectives, cost/quality implications). Once this

decision is taken, the next step is to derive system use cases from the business

model. No rigorous approach exists to mapping business use cases to system

use cases.

In the Rational Unified Process (RUP) the mapping between business and

system use cases is carried out through the analysis of collaboration diagrams.

In RUP the textual description of a business use case is combined with the

graphical representation of a collaboration diagram. A collaboration diagram

represents the interactions between objects of the business system. In a

business collaboration model some of the objects represented are business

workers. System use cases are defined around business workers. Business

workers are defined as system actors and the system use cases reflect the task

they carry out in the business use case realization. These tasks are defined as

system use cases only if a decision was taken to automate them. The technique

proposed by RUP is dependent on the adoption of an object-oriented method

and is embedded in RUP itself. It does not easily fit into methods based on other

development approaches.

The technique proposed in this paper is method independent. It derives

system use cases from the activity diagrams employed to represent the process

underlying the business use case. As stated above, a business use case

contains a textual and a graphical description of the business process. The

graphical description usually assumes the form of an activity diagram in which

roles, activities, events and results are represented. When deriving system use

cases, only those activities that will be automated or supported by the information

system should be considered. Each activity should be taken as a candidate

system use case. Since a use case provides an actor with an externally visible

result, each activity should be taken individually and the result produced by the

activity should be analyzed. If the result is visible to anybody or anything lying

outside the boundary of the computer system than that activity most likely

represents a system use case and the individual or system benefiting from the

result represents an actor. If the activity does not represent a use case then it

should be grouped with other adjacent activities. The analysis is then applied to

this group of activities.

A variation of the above technique can also be applied. The modeler can

initially identify the actors of the system and group the activities according to the

actors’ expectations of what the system can deliver. In this variation the actors

are identified first.

Sometimes an entire business use case can be mapped to a system use

case. In these situations one should keep in mind that:

• The business and system use cases are not the same use case.

• A business use case serves a business actor (e.g., customer,

supplier), whereas a system use case serves the computer system

user (e.g., clerk).

• The system use case is described in terms of interaction between the

computer system and the user, whereas the business use case is

described in terms of business interaction (e.g., negotiation,

agreement, contractual obligations)

• Business use cases should be kept as simple as possible; therefore

relationships between use cases (such as extend and include) should

be avoided.

• System use case modeling is much more detailed than business use

case modeling. The descriptions contained in system use cases form

the basis for the design and implementation of the computer system.

Reuse should be taken into consideration and, as a consequence,

extend and include relationships should be modeled.

The proposed technique has a much wider range of application than the

RUP mapping technique. In fact, it is based on the use of activity diagrams,

which in various forms, are used by a wide range of methodsbased on diverse

paradigms. This potentially allows to extend the utilization of use cases to non

object-oriented techniques during business modeling.

IV. WORKED EXAMPLE

The worked example presented in this section is aimed at demonstrating

the utility of the guidelines presented throughout the paper and at clarifying the

application of the principle of actor perception for the identification and packaging

of business use cases, and their mapping to system use cases.

The example is based on account services offered by a typical bank. The

models presented in this section were produced during a series of workshops on

business use case modeling with a major UK bank. The scope of the workshops

was to present the modeling technique highlighting its benefits and limitations.

The models presented in this section are not meant to be a complete

representation of account services, but sufficient to illustrate the applicability and

utility of the guidelines based on actor perception and service-orientation.

The business area modeled is ‘Banking Account Services’. Architecturally

it represents the business use case system, i.e. the highest level of the model

within which business use case packages are to be defined. In an initial

brainstorming exercise the modelers (along with the stakeholders) must adopt

the perspective of the focal actor of the business system (i.e. the main party who

benefits from the services provided) and understand what type of services the

focal actor would benefit from. In this example, it is fairly simple to assume that

the services offered by this banking area are provided to the customer. In fact, it

is the customer who requires an account in order to carry out different types of

transactions and operations. An initial brainstorming session on what the

customer expects from the bank may produce a list similar to the following:

• Apply for an account

• Close an account

• Carry out financial transactions (e.g., deposit, withdraw, transfer

money)

• Make amendments to personal details (e.g., change address, change

PIN)

• Order stationary (e.g., check books, paying-in books, reference letters)

• Request account information (e.g., statement)

According to the principle of actor perception this list only includes

services or groups of services observable by the customer. From this initial list,

possible groupings of services can be identified. These groupings are

represented as business use case packages. Four packages are identified:

• Administer account,

• Manage Customer Profile,

• Manage Money and

• Request Account Information and Documents.

These four areas can serve as a theme for discussion in order to identify other

business services. Table 4 defines the properties of these packages and their

related services.

The services provided by the business use case packages can be defined

as business use cases. In fact, any further behavioral decomposition would lead

to activities no longer observable (or perceptible) by the customer. The Apply for

Account business use case is defined in Table 5. This example highlights the

different sections of the business use case and the distinction between

delivered/expected service and underlying business process. Figure 2 refines the

textual description of Apply for Account into an activity diagram.

Table 4 – Business Use Case Packages of the Banking Account System

BUC System: Banking Account Services
BUC Package: Administer Account
Packaging rationale This package comprises all services that concern the

account as a whole.
Actor Customer
Services provided Apply for account

Close account

BUC Package: Manage Customer Profile
Packaging rationale This package comprises all services managing individual

properties of the account or individual aspects of it.
Actor Customer
Services provided Change contact details

Change security details
Request overdraft limit increase
Request replacement card
Dispute account transaction

BUC Package: Manage Money
Packaging rationale This package comprises all services managing financial

transactions.
Actor Customer
Services provided Deposit money

Withdraw money
Pay bills
Create standing order
Cancel standing order
Transfer money
Create direct debit
Cancel direct debit

BUC Package: Request Account Information and Documents
Packaging rationale This package comprises all services that allow the customer

to receive information or documents related to the account.
Actor Customer
Services provided Request statement

Request mini-statement
Order Stationary
Request reference letter

Given its simplicity, the diagram has been developed with the business

stakeholders. More refined and structured diagrams can be developed, if

necessary, by the modeler, once the requirements of the business area of study

are well defined. This simplified example shows different levels of refinement of a

business model.

Table 5. Business Use Case: Apply for Account

Business Use Case: Apply for Account

Primary Actor Customer
Business Service
Service promise To open an account for the applicant if the

applicant’s credit check is successful and, in
any case, inform the applicant of the outcome
of the application.

Necessary Conditions Applicant must be 18 years of age or older and
reside in the European Union.

Quality of Service Standards The applicant is entitled to know about the
status of the application at any time and to
receive a response after 5 days at the latest
after reception of the application.

Payout The applicant is entitled to a free crate of wine
if the bank does not communicate the outcome
of the application within 5 days after receiving
the application.

Business Process
Supporting Actors Clerk
Pre-conditions None
Trigger Customer request
Description (or Basic Course) Following the customer’s request to open a

bank account, the bank clerk collects the
customer’s details and those of the requested
account.
The customer is given information related to
when and how he/she will receive a response
of approval or rejection from the bank.
The clerk submits application form with valid
details to the credit-checking department for
validation.
The credit-checking department proceeds with
the validation of the application and informs the
accounts department of the outcome.
If validation is ok the account is created
otherwise the request is rejected.
The customer is informed of the outcome and
provided with all necessary information.

Alternate Courses None
Post-conditions Creation of new account. Customer informed.

(Main success scenario) or
Customer informed of rejected application

Figure 2. Activity Diagram of Apply for Account

The principle of actor perception can be applied to the individual activities

of Figure 2 to identify possible system use cases. Before the identification of

system use cases, a decision must be made in terms of which activities shall be

automated. It is assumed that the business stakeholders decide to automate all

activities except for ‘Inform customer of when and how outcome will be

communicated’ performed by the clerk. This activity is to be performed vis-à-vis

with the customer. Actor perception is applied to each of the remaining activities

so as to determine candidate system use cases. Perception of these activities is

defined in terms of the corresponding actor represented by the swimlane.

As an exemplification, the clerk actor is considered. The clerk is

responsible for two automated activities: ‘Collect customer details and account

type’ and ‘Send application to credit-checking department’. The clerk’s perception

of these two activities when using the computer system is that they represent one

business process aimed at enabling the clerk to satisfy the customer’s request.

Although the clerk may be aware of the existence of the two separate activities

(for example because of the messages shown by the system’s interface), his or

her perception is that of a unitary process. The computer system provides the

clerk a complete service only if it provides the means for collecting details and

sending them off for validation. Thus, one system use case can be defined:

Process Application Form. The same process can be applied for the remaining

activities. Table 7 illustrates how the activities of the Apply for Account business

use case map to different system use cases.

Table 6. Mapping Between the Business Use Case and Potential System Use
Cases

Business Use Case: Apply for Account
Actors Activities Automated Possible System Use Cases
Clerk Collect customer details and

account type
Yes Process Application Form

 Inform customer of when and
how outcome will be
communicated

No

 Send application to credit-
checking department

Yes Process Application Form

Credit-
Checking
Department

Conduct validation of
application

Yes Conduct Credit Check

 Inform accounts departments
of outcome

Yes Conduct Credit Check

Accounts
Department

Open account Yes Create Account

 Inform customer of outcome Yes Create Account

V. DISCUSSION

IMPLICATIONS FOR THEORY AND RESEARCH

The theoretical contribution of this work is to propose an approach to

business use case modeling based on the principle of actor perception. The

theoretical relevance of this approach is twofold:

• It builds on pre-existing definitions and principles. Actor perception is an

emphasized reaffirmation of the fundamental characteristic of use case

‘observability’. The approach itself utilizes principles of behavioral

decomposition and sound architecture for the creation of the business model.

The combination of these principles to use case modeling allowed defining an

approach which is both theoretically sound and of practical value.

• The proposed approach introduces the concept of service in business use

case modeling. Services are currently being applied at a technological level.

The novelty of this research is to introduce services as a primary modeling

concept in business modeling. Thus far, business modeling is dominated by

data-driven and process-driven methods and techniques. A service-oriented

approach builds on these previous techniques, especially in the case of

process modeling. The integration of service and process to model behavior

has been defined and demonstrated in the paper.

IMPLICATIONS FOR PRACTICE
From a practical perspective the proposed approach fills a gap concerning

the identification, definition, packaging and mapping of business use cases. As

stated in Section I, misuse and misinterpretation of use cases is not uncommon

in companies. Workshops conducted within a major UK bank reconfirmed these

problems. Without practical guidelines, business use cases, when utilized, tend

to be applied in a non-consistent way throughout the organization and later on in

the process become devoid from the development process lacking traceability

between the business and the software models. The proposed approach

enforces consistency and traceability. Furthermore, actor perception and the

service view that derives from it make the approach more coherent to business

stakeholders’ perspective of organization as an entity that is expected to provide

services delivered by processes in which roles and responsibilities are assigned.

VI. CONCLUSION

Use case modeling is a technique aimed at collecting and specifying

system requirements from the point of view of the system users or actors.

Originally defined by Jacobson [Jacobson et al., 1992], use cases have been

subject of much debate related to their definition and usage. Issues concerning

the ambiguities and inconsistencies surrounding use case modelling are

documented by the literature. Guidelines to overcome these problems were

suggested, but the effectiveness of proposed techniques sometimes is less than

desirable. In business use case modeling, these issues impact the modeling

effort more given the diverse background of the people. The business

stakeholders come from an organizational culture, not a technical one.

Modelers tend to possess a more technical mindset. The latter must

accommodate in order to relate better to the organizational way of thinking.

Business use cases, in a way, reconcile these two worlds.

Business use cases are mainly textual descriptions of business services

and processes, and they are based on the perspective of actors benefiting from

the services offered by the organization or organizational unit under study. These

two characteristics make the technique closer to the way business people

represent (by text and natural language) and perceive (agents supplying and

demanding services) the world. Use cases are also a technique deployed in

software development for several years. Business modelers with a technical

background are able to adopt a technique that is strongly accepted in software

modeling, and is based on an underlying philosophy which reflects the business

way of thinking. However, to adopt business use cases effectively, guidelines on

how to identify, define and represent them are needed.

The guidelines proposed in this paper are based on the principle of actor

perception. This principle derives from the observable nature of a business use

case, i.e. observable to the actor interacting with the business system.

Perception or observability is closely related to the concept of business service.

An actor expects a service from the business system. The service is the

observable and visible part of a business use case and is always known to the

actor. The process, or the way the service is delivered, is not always visible to

the actor. As a consequence, a dual business use case structure is proposed.

One section is dedicated to the definition of service properties and a second

section is dedicated to the definition of the business process. These

representational guidelines are complemented by process or ‘how to’ guidelines

concerning the packaging of business use cases and their mapping to system

use cases.

Business use case packaging groups together logically relate use cases.

Packages serve the dual purpose of

• facilitating discussion around a common theme so as to streamline

the attention and focus of those participating in the modeling activity

and

• structuring the business model by providing an initial business

architecture which will ultimately be translated into the software

model.

Actor perception is applied in business use case packaging as well. Packages

are defined as groups of services (represented subsequently as business use

cases) that an actor perceives and is able to relate together. Business use case

packaging normally involves two levels, but can go beyond that in certain cases.

Packaging, in this instance, represents a form of behavioral decomposition,

which terminates with the identification of business use cases.

Guidelines for the derivation of system use cases from business use

cases are also proposed. The principle of actor perception is applied to activity

diagrams, which are defined from the textual description of the business process.

Perception or observability, in this case, is considered from the perspective of the

software system actor.

• First, a decision to which activities are to be automated is made.

• Second, system actors are derived from the activity diagram’s

swimlanes.

• Third, system use cases are derived from individual or groups of

activities defined in the actor’s swimlane.

Groups of activities that the system actor perceives, as part of the achievement

of the same goal, represent possible system use cases.

The above guidelines were applied in a worked example on ‘Banking

Account Services’ defined in a series of workshops with a major UK bank

(Section IV). The worked example demonstrates the practical applicability of the

guidelines.

VII. REFERENCES

Allen, P. and S. Frost (1998) Component-Based Development for Enterprise
Systems : Applying the Select Perspective: Cambridge Univ Press.

Anda, B., D. Sjøberg, and M. Jørgensen. (2001) “Quality and Understandability
of Use Case Models.” European Conference on Object-Oriented
Programming (ECOOP), Budapest, Hungary, 2001, pp. 402-428.

Apperly, H., R. Hofman, S. Latchem, B. Maybank et al. (2003) Service- and
Component-based Development. London: Addison Wesley.

Booch, G., J. Rumbaugh, and I. Jacobson (1999) The Unified Modeling
Language User Guide: Addison-Wesley.

Cockburn, A. (2001) Writing Effective Use Cases. Upper Saddle River, New
Jersey: Addison Wesley.

Davenport, T. H. (1993) Process Innovation. Reengineering Work through
Information Technology. Boston, Massachusetts: Harvard Business
School Press.

Firesmith, D. G. (1999) “Use Case Modeling Guidelines.” Technology of Object-
Oriented Languages (TOOLS 30), Los Alamitos, CA, U.S.A., 1999.

Garlan, D. and D. Perry (1995) "Software Architecture: Editorial," IEEE
Transactions on Software Engineering (21) 4, pp. 269-274.

Graham, I. (1996) “Some problems with use cases ... and how to avoid them.”
International Conference on Object Oriented Information Systems (OOIS),
London, 1996, pp. 18-27.

Gummesson, E. (1994) "Service management:An evaluation and the future,"
Journal of Service Industry Management (5) 1, pp. 28-36.

Hammer, M. and C. Champy (1993) Reengineering the Corporation: A Manifesto
for Business Revolution. New York: Harper Business.

Hart, C. W. L. (1988) "The Power of Unconditional Services Guarantees,"
Harvard Business Review (66) 4, pp. 54-62.

Jacobson, I., G. Booch, and J. Rumbaugh (1999) The Unified Software
Development Process. Upper Saddle River, New Jersey: Addison-Wesley.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard (1992) Object-
Oriented Software Engineering: A Use Case Driven Approach. New York:
ACM Press.

Jacobson, I., M. Ericsson, and A. Jacobson (1995) The Object Advantage:
Business Process Reengineering with Object Technology. New York:
ACM Press.

Johns, N. (1999) "What is this thing called service?," European Journal of
Marketing (33) 9/10, pp. 958-973.

Kettlinger, W. J., J. T. C. Teng, and S. Guha (1997) "Business Process Change:
A Study of Methodologies, Techniques, abd Tools," MIS Quarterly (21) 1,
pp. 55-80.

Lilly, S. (1999) “Use Case Pitfalls: Top 10 Problems from Real Projects Using
Use Cases.” Technology of Object-Oriented Languages (TOOLS 30), Los
Alamitos, CA, U.S.A., 1999.

Lovelock, C. and S. Vandermerwe (1996) Services Marketing. London: Prentice
Hall.

Lycett, M. and R. J. Paul (1999) "Information Systems Development: A
Perspective on the Challenge of Evolutionary Complexity," European
Journal of Information Systems (8) 2, pp. 127-135.

OMG. (2003) OMG Unified Modeling Language Specification formal/03-03-01,
http://www.omg.org/cgi-bin/doc?formal/03-03-01.

Ould, M. (1995) Business Process: Modelling and Analysis for Re-engineering
and Improving: Wiley.

Penker, M. and H. E. Eriksson (2000) Business Modeling With UML: Business
Patterns at Work: John Wiley & Sons.

Regnell, B., M. Andersson, and J. Bergstrand. (1996) “A Hierarchical Use Case
Model with Graphical representation.” Proceedings of the IEEE
Symposium and Workshop on Engineering of Computer Based Systems
(ECBS), 1996.

Regnell, B., K. Kimbler, and A. Wesslen. (1995) “Improving the Use Case Driven
Approach to Requirements Engineering.” Proceedings of Second
International Symposium on Requirements Engineering, York, UK, 1995.

Rosenberg, D. and K. Scott (1999) Use Case Driven Object Modeling. A
Practical Approach.: Addison-Wesley.

VIII. ABOUT THE AUTHORS

Sergio de Cesare holds a PhD in Business Information Systems from

LUISS Guido Carli in Rome. He is currently a Research Fellow at Brunel

University where he is actively involved in the Semantic Integration Environment

(SITE) project. His research focuses on business modeling and information

systems development. He publishes in the areas of object-oriented and

component-based approaches.

Mark Lycett holds a BSc in Computing and Business Management

(Oxford Brookes), a MSc in Information Systems (Brunel University) and a PhD

in Information Systems (Brunel University). Prior to returning to education, Mark

spent a number of years in industry where he both worked on and managed a

number of national and international feasibility/development projects. His

research concentrates on all aspects of component-based software engineering.

Mark publishes in the area of Computer-Based Systems Engineering (CBSE) in a

number of leading journals and international conferences.

Ray J. Paul holds a Chair in Simulation Modelling at Brunel University. He

was educated at the University of Hull in Mathematics (BSc) and Operational

Research (MSc, PhD), before being appointed by the London School of

Economics, where he taught Information Systems and Operational Research for

21 years. His publications include three books and over 200 papers in journals,

books and conference proceedings. He serves as an expert for a variety of U.K.

government departments, software companies, and commercial companies.

