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Abstract. The static shortest path (SP) problem has been well addresseg
intelligent optimization techniques, e.g., artificial n@lunetworks, genetic algo-
rithms (GAs), particle swarm optimization, etc. Howeveithwhe advancement
in wireless communications, more and more mobile wireletsvorks appear,
e.g., mobile ad hoc network (MANET), wireless mesh netwetk, One of the
most important characteristics in mobile wireless netwdskthe topology dy-
namics, that is, the network topology changes over time dumnergy conser-
vation or node mobility. Therefore, the SP problem turnstouibe a dynamic
optimization problem in mobile wireless networks. In thigppr, we propose
to use multi-population GAs with immigrants scheme to sdhe dynamic SP
problem in MANETSs which is the representative of new generatvireless net-
works. The experimental results show that the proposed @Asjaickly adapt to
the environmental changes (i.e., the network topology gepand produce good
solutions after each change.

1 Introduction

A mobile ad hoc network (MANET) [11] is a self-organizing asdlf-configuring
multi-hop wireless network, comprised of a set of mobileth@®Hs) that can move
around freely and cooperate in relaying packets on behafoh other. In this paper,
we investigate the shortest path (SP) routing, which corecetith finding the shortest
path from a specific source to a specific destination in a ghamork while mini-
mizing the total cost associated with the path. The SP pnolilas been investigated
extensively. It involves a classical combinatorial optiation problem arising in many
design and planning contexts [1, 2].

There are several search algorithms for the SP problem: fjkstia’s algorithm,
the breadth-first search algorithm and the Bellman-Fordrétyn, etc. All these al-
gorithms have polynomial time complexity. Therefore, thail be effective in fixed
infrastructure wireless or wired networks. But, they exhilmacceptably high compu-
tational complexity for real-time communications invaigirapidly changing network
topologies [2, 3]. Since the algorithms with polynomial ércomplexity are not suit-
able for the real-time computation of shortest paths, qaifew research work have
been conducted to solve SP problems using artificial igetice techniques, e.g., ar-
tificial neural networks (ANNS) [2], genetic algorithms (6 3], and particle swarm
optimization (PSO) [7].



However, so far all these algorithms mainly address thes$&t problem. When the
network topology changes, they will regard it as a new neitveord restart the solving
process over the new topology. As is well known that the togpichanges rapidly in
MANETS due to the characteristics of wireless networks,, dagttery exhaustion and
node mobility. Therefore, for the dynamic SP problem in MAN:these algorithms
are not good choices since they require frequent restatamtbt meet the real-time re-
quirement. Therefore, for the dynamic SP problem in a chapgéetwork environment,
we need to employ new appropriate approaches.

In recent years, studying EAs for DOPs has attracted a gmpimiterest due to its
importance in EA's real world applications [14]. The singilevay of addressing DOPs
is to restart EAs from scratch whenever an environment ah@detected. Although
the restart scheme really works for some cases [13], for ri&Diys it is more efficient
to develop other approaches that make use of knowledgergdtfrem old environ-
ments. One of the possible approaches is to maintain antlagedute diversity during
the run of EAs, i.e., the immigrants schemes [15]. Multi-plagion approach [4] is also
an effective technique for DOPs. In the multi-population QAPGA), some popula-
tions are responsible for exploiting and others for explgriBy both exploiting and
exploring the solution space, MPGA can well adapt to therenvhental changes.

In this paper, the multi-population GA with immigrants sofeeis implemented and
applied to solve the dynamic SP problem. The algorithm iotimhas IMPGA. A large
population is created, which will split into several smadlpilations after evolving for
a certain time. These small populations continue the sdardither exploiting or ex-
ploring the solution space. Once the topology is changéth@kmall populations are
processed in an appropriate way and then merge togetheachtgeneration, to en-
hance the diversity a small number of random immigrants dded into the single
population or the small populations which are responsibteekploring. This process
is repeated for each change interval. Since end-to-eng {lHl4 is a pretty important
quality-of-service (Qo0S) metric to guarantee the reaktaata delivery, we also require
the routing path to satisfy the delay constraint. For consparpurposes, we also imple-
ment the Standard GA (SGA), the Restart GA, and the randonignamts GA (RIGA).
By simulation experiments, we evaluate their performamcthe dynamic SP problem.
The results show that IMPGA significantly outperforms thieestthree GA methods.

2 Model

In this section, we first present our network model and themidate the problem of
dynamic SP routing. We consider a MONET operating within adigeographical re-
gion. We model it by a undirected and connected topologygyagVy, Ey), where
V, represents the set of wireless nodes (i.e., routersfamdpresents the set of com-
munication links connecting two neighboring routers fajlinto the radio transmission
range. A communication linki(j) can not be used for packet transmission until both
nodei and nodg have a radio interface each with a common channel. Howewer, t
channel assignment is beyond the scope of this paper. Iti@udinessage transmis-
sion on a wireless communication link will incur remarkafiéday and cost.

Here, we summarize some notations that we use throughsuabpier.

— Go(Vo, Ep), the initial MANET topology graph.



- Gi(Vi, E;), the MANET topology graph after thigh change.
— s, the source node.

— 1, the destination node.

— P;(s, 1), a path fromstor on the graplG,;.

— d;, the transmission delay on the communication link

— ¢, the cost on the communication limk

— A(P;), the total transmission delay on the p&h

— C(P;), the total cost of the path;.

The problem of the dynamic SP routing can be informally dbscr as follows.
Initially, given a network of wireless routers, a delay uppeund, a source node and
a destination node, we wish to find a delay-bounded leastlooptfree path on the
topology graph. Then periodically or stochastically, duenergy conservation or some
other issues, some nodes are scheduled to sleep or som@gleedes are scheduled
to wake up. Therefore, the network topology changes frone tirtime. The objective
of our problem is to quickly find the new optimal delay-coasted least cost acyclic
path after each topology change.

More formally, consider a mobile ad hoc netwdBV, E) and a unicast commu-
nication request from the source nagl® the destination nodewith the delay upper
boundA. The dynamic delay-constrained shortest path problem is to find a series of
paths{P;|i € {0,1,...}} over a series of grapKs5;|i € {0,1,...}}, which satisfy the
delay constraint as shown in (1) and have the least path sa$taavn in (2).

AP)= > d<A. (1)
leP;(s,r)

op)=pin {3 ayp @
‘ leP(s,r)

3 Design of GA for SP problem

This section describes the design of the GA for the SP probldra GA operations
consist of several key components: genetic represenigtigrulation initialization, fit-
ness function, selection scheme, crossover and mutatioauttng path consists of a
sequence of adjacent nodes in the network. Hence, it is aahatwice to adopt the
path-oriented encoding method. For the routing problehespath-oriented encoding
and the path-based crossover and mutation are also verygo¢®lu For the selection
scheme, the pair-wise tournament selection without rephent [6] is employed and
the tournament size is 2.

3.1 Genetic representation

A routing path is encoded by a string of positive integerg tiearesent the IDs of
nodes through which the path passes. Each locus of the s@jmgsents an order of a
node (indicated by the gene of the locus). The gene of thedicsts is for the source
node and the one of the last locus is for the destination nblae. length of a routing



path should not exceed the maximum lenpth|, whereV, is the set of nodes in the
MANET. Chromosomes are encoded under the delay consttainase it is violated,
the encoding process is usually repeated so as to satisfiethg constraint.

3.2 Population initialization

In GA, each chromosome corresponds to a potential solulibe.initial population
Q is composed of a certain number, denotechasf chromosomes. To explore the
genetic diversity, in our algorithm, for each chromosonhe, torresponding routing
path is randomly generated. We start to search a random quetttsfto r by randomly
selecting a node, from N(s), the neighborhood of. Then we randomly select a node
v, from N(v;). This process is repeated untils reached. Thus, we get a random path
P(s, r)={s, v1, Vo, ...,r}. Since the path should be loop-free, the nodes that aredglrea
included in the current path are excluded, thereby avoidiegtry of the same node.
The initial population is generated as follows.

Sep 1: Start{=0).

Step 2: Generate chromoson@h;: search a random loop-free pa(s, r);

Sep 3: j=j+1. If ] < n, go toSep 2, otherwise, stop.
Thus, the initial populatio® = {Chy, Chy, ...,Ch,,_; } is obtained.

3.3 Fitness function

Given a solution, we should accurately evaluate its quélity, fithess value), which is
determined by the fitness function. In our algorithm, we airfirid the least cost path
between the source and the destination. Our primary a@itexf solution quality is the
path cost. Therefore, among a set of candidate solutiansifnicast paths), we choose
the one with the least path cost. The fitness value of chrome&lh; (representing the
pathP), denoted a&(Ch;), is given by:

F(Chj)=[ Y a]". (3)

leP(s,r)

The proposed fitness function only involves the total pagt.css mentioned above,
The delay constraint is checked for each chromosome in thiesef the run.

3.4 Crossover and mutation

GA relies on two basic genetic operators - crossover andtiontaCrossover processes
the current solutions so as to find better ones. Mutationsh®kp keep away from local
optima [3]. The performance of GA depends on them greatlg. tfpe and implemen-
tation of operators depend on problem-specific encoding.

In our algorithm, since chromosomes are expressed by thespratcture, we adopt
single point crossover to exchange partial chromosomépéth) at positionally inde-
pendent crossing sites between two chromosomes [3]. Watltithssover probability,
each time we select two chromoson@s andCh; for crossoverCh; andCh; should
possess at least one common node. Among all the common radgespde, denoted

asv, is randomly selected. I8h;, there is a path consisting of two parts:f@ v) and



(v Chs, r). In Ch;, there is a path consisting of two parts:@» v) and { <, r). The

crossover operation exchanges the subparth%‘i( r)and S, r).

The population will undergo the mutation operation after¢hossover operation is
performed. With the mutation probability, each time we setse chromosoméh; on
which one gene is randomly selected as the mutation paéntifiutation node), denoted

asv. The mutation will replace the subpathfﬂ» r) by a new random subpath.

Both crossover and mutation may produce new chromosomehwahé infeasible
solutions. Therefore, we check if the paths representedhéynéw chromosomes are
acyclic. If not, repair functions [8] will be applied to elimate the loops. Here the detalil
is omitted due to the space limit. All the new chromosomesipced by crossover or
mutation satisfy the delay constraint since it has alreaghntzonsidered.

4 IMPGA: multi-population GAs with immigrants scheme

The random immigrants approach was proposed by Grefem$ttivith the inspira-

tion from the flux of immigrants that wander in and out of a plagion between two

generations in nature. It maintains the population divetsivel by replacing some in-
dividuals of the current population with random individsiadalled random immigrants,
every generation. As to which individuals in the populattiould be replaced, usually
there are two strategies: replacing random individualseptacing the worst ones. In
order to avoid that random immigrants disrupt the ongoiragcae progress too much,
especially during the static period between two envirortaaianges, the ratio of the
number of random immigrants to the population sizeis usually set to a small value.

The traditional genetic algorithm has a single populatiesrshing through the en-
tire search space. Multi-population approach tries tod#ivhe search space into several
parts and then uses a number of small populations to seagohgdbparately. Normally,
one of the small populations acts as the parent populatitimearore population. In the
Forking genetic algorithms (FGASs) [12], the parent popaolatontinuously searches
for new optimum, while a number of child populations try t@#it previously detected
promising areas. In the Shifting Balance GA [9], the coreydafion is used to exploit
the best solution found, while the colony populations aspoasible for exploring dif-
ferent areas in the solution space.

In this paper, we generally follow the idea of the FGAs. Hoereto address the
dynamic SP problem, we still need to make specific designimmyorithm. To measure
the similarity degree between two individuals, we definedis¢ance between any two
individuals by counting the same links shared by them. Theeraame links they share,
the closer they are. For the parent population which is mresipée for exploring, we
expect that the individuals in it are kept far away from eattteoin the distance. Thus,
the population can search a wide area. For a child populatiich is responsible for
exploiting, we expect that the individuals in it stay closeah optimum and perform
lots of local search.

In IMPGA, initially we randomly generate a large single ptgiion. For each given
change intervdl, the whole population will evolve together fof /2| generations. Then
the single population is splitinto three small populatiaddsthem, one small population
will act as the parent population for exploring and the othwerwill act as the child pop-
ulations for exploiting. To achieve this goal, we developthllowing splitting method.



First, we identify the present optimal individugdpl,,. in the whole population. Then
we find its closest neighbdtopl;, 2nd closest neighbdfopl,, 3rd closest neighbor
Pop1s, till the (m-1)th closest neighbdtopl,, ;. All thesemindividuals form the first
child population{ Pop1,,,, Popl;, Popls, Popls, ...,Popl,,_1}. Among all the remain-
ing individuals of the whole population, the optimal onedeitified again, denoted as
Pop2,,:. Similarly, among the remaining individuals, we determitseclosest neigh-
bor Pop2;, 2nd closest neighbdpop2,, 3rd closest neighbdPop2s, till the (m-1)th
closest neighboPop2,,, ;. All thesem individuals form the second child population
{Pop2,,:, Pop2;, Pop2z, Pop2s, ..., Pop2,,—1}. All the remaining individuals form the
third population, i.e., the parent population.

These three small populations keep evolving independélfitlize change interval
ends. When a new change is detected, i.e., the topology iffiethcall of them need
to be processed appropriately and then merged togethedér tw form a single pop-
ulation again. We develop the following processing metradhese small populations
to adapt to the environmental changes. For each of themeibgitimal individual in
it becomes infeasible, the whole population will be repthbg random immigrants.
Otherwise, if the optimal individual in it is feasible, orllye infeasible individuals in
the population will be replaced by random immigrants. Thesom to do so is that if
the optimal individual becomes infeasible, all the othelividuals are also infeasible
and therefore the whole population should be abandonedeltawif the optimal in-
dividual is suitable for the new environment, we also wankd¢ep other individuals
which are also suitable for the new environment. Thus, teéulsformation in the old
environment can be reused to guide the search in the newoenvant.

In our algorithm, at each generation, a small number of rendomigrants are
added into the population. Before the splitting of the pagioh, all the random im-
migrants are imported into the single population to replieeworst ones. After the
splitting, all the random immigrants are only imported ithie parent population since
it is responsible for exploring.

5 Experimental study

We implement iIMPGA, RIGA, SGA, and Restart GA for the dynar8ie problem

by simulation. For RIGA and SGA, if the change makes one iddizl in the current

population become infeasible (e.g., one link in the comesiing path is lost after the
change), we add penalty value to that individual. By simataéxperiments, we evalu-
ate their performance in a continuously changing mobileadretwork.

5.1 Experimental design

All the algorithms start from the initial network topology 00 nodes. Then every
generations, the present best path is identified and a rcemtember (sayl/) of links
on the path are selected for removal. It means that the seléioks will be forced to
be removed from the network topology. However, just befbeeriext change occurs,
the network topology will be recovered to its original statel ready for the oncoming
change. The population is severely affected by each togalbgnge since the optimal
solution and possibly some other good solutions becomasitite suddenly. Consid-
ering that the optimal path length could not be a large numheletU range from 1



to 3 to see the effect of the change severity. Under this n&tagnamics model, the
topology series cannot be generated in advance becaugecbasge is correlated with
the running of the algorithm. We allow 10 changes in each fuhealgorithms. We set
up experiments to evaluate the impact of the change intangithe change severity,
and the improvements over traditional GAs and RIGA.

In all the experiments, the whole population sids set to 100, the child population
sizemis set to 20, and the mutation probability is set to 0.1. Fer#dndom immigrants
schemer; is set to 0.2. In addition, we set the number of changes to di9terefore
the algorithms will work over 20 different but highly-cotaged network topologies (the
initial topology plus the 19 changed topologies). Both therse and destination nodes
are randomly selected and they are not allowed to be schiituleny change. The
delay upper bound\ is set to be 2 times of the minimum end-to-end delay.

5.2 Experimental results and analysis

At each generation, for each algorithm, we select the bestidual from the current
population and output the cost of the shortest path repteddyy it. We repeat each
experiment 10 times and get the average values of the besios at each generation.
First, we investigate the impact of the change interval analgorithm performance.
We setl to 5, 10, and 15 separately to see the impact of change ih{ge:a change
frequency) on the algorithm performance. Here the numblarkd removed per change
is fixed to 2.

When the change interval is 5, the population evolves onlgregations between
two sequential changes. Intuitively, a larger interval give the population more time
to evolve and search better solutions than what a smallenvaitdoes. We compare the
quality of solutions obtained by iIMPGA at different intelsaHowever, one problem is
that the total generations are different for different iméds, i.e., 100, 200 and 300 ver-
sus the interval 5, 10, and 15 when there are 20 differeniogjes. Since the number
of change points (i.e., the generation at which a new topolegpplied) is the same
for all the intervals, we take the data at each change pothitameft two and right two
generations. Thus, the three different data sets can beedligver the three different
intervals. Fig. 1 shows the comparison results in termsettiange intervals.

Since the generation number does not correspond to thel awtdber when the
interval is 10 or 15, we rename it as pseudo generation. Hnertwto subfigures, it can
be seen that the solution quality becomes better when thegehaterval is increased
from 5 to 10. However, when the change interval is increasad L0 to 15, the results
in both subfigures are slightly different. In Fig. 1(a), thRGA shows competing
performance for both intervals. For five times, the perfaro®aat interval 10 is better
and for the other five times, the performance at interval 13eiger. In Fig. 1(b), the
performance at interval 15 is better than the performanitgextval 10 for all the times.
The reason is that in Fig. 1(b), the generations that the eybopulation has evolved at
interval 15 are much larger than the generations that thdeagapulation has evolved
at interval 10. Longer evolution brings better solutionkefiefore, the capability of
the multi-population genetic algorithm in searching thérapm has been significantly
enhanced. In traditional GA, the population may convergeravolving for a while.
However, in iIMPGA, due to the introduction of random immigts the population can
keep evolving and get out of the trap in the local optimum.
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Fig. 1. Comparison of the solution quality of iIMPGA with differenba@nge intervals from (a)
generation 0-49 and (b) generation 50-99.

To evaluate the effect of the change severity on the algaorfibrformance, we vary
the number of links removed per change from 1 to 3. Meanwthikechange interval is
fixed to 10 since it is a reasonably good change frequencyoaasin the above experi-
ments. With more links removed from the network, the envinental changes become
more severe. Furthermore, since all the removed links coome the present best path,
some individuals including the optimal one in the populatizecome infeasible. It is
also possible that the whole population becomes infeasikkech individual contains
at least one removed link. The more the links removed, thiedrithe probability of an
individual being infeasible.

Fig. 2 shows the comparison results in terms of the changwities. It can be seen
that the quality of solution is the best when the number didiremoved per change is
1 and the worst when the number is 3. However, the differeepteden iIMPGA:1 and
IMPGA:2 is less significant than the difference between iMPZand IMPGA:3. The
reason is that the increase in the number of links removecdh@erge is not proportional
to the increase in the change severity. To remove one makewlith bring a much
higher change severity to the network and therefore affectnmore individuals in the
population. Another interesting point is that in Fig. 2(the performance differences
between the algorithms with different change severitieslee less than the differences
in Fig. 2(a). It is also due to the enhanced search capalifithe multi-population
algorithm after long time evolution as explained above.

The quality of solution is the most important metric to ewtithe algorithm per-
formance. We compare iMPGA with both traditional GAs andd@m immigrants GA.
The two traditional GAs are Standard GA and Restart GA. Wetgethange interval
to 10 and the number of links removed per change to 2, respéctBince IMPGA is
a dynamic GA which is specifically designed for the dynamicitemment, it should
show better performance than the traditional GAs over onadyic shortest-path prob-
lem. Fig. 3(a) shows the comparison results between iIMPGAradlitional GAs. It can
be seen that IMPGA achieves better solutions than both df#loitional GAs. Restart
GA shows the worst performance due to frequent restart wdels not give the popu-
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Fig. 2. Comparison of the solution quality of iIMPGA with differenhange severities from (a)
generation 0-99 and (b) generation 100-199.
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Fig. 3. Comparison of the solution quality of IMPGA against (a) tt@thal GAs and (b) RIGA.

lation enough time to evolve. Although RIGA is also a dynafi&, it does not utilize
the approach of multiple populations to help search. Fig) 8tiows the comparison
results between IMPGA and RIGA. It shows that IMPGA perfolmstter than RIGA.
This verifies that the multi-population approach helps iowerthe capability of GA in
handling dynamic environment.

6 Conclusions

The static SP problem considers the static network topotody. Intuitively, it is a

much more challenging task to deal with the dynamic SP prolitea rapidly chang-
ing network environment such as MANETS than to solve thdacstate in a fixed in-
frastructure. Recently, there has been a growing intenestiuidying GAs for dynamic
optimization problems. Among approaches developed for GAteal with DOPs, the
multi-population GA aims at handling the problem dynamigausing multiple small



populations to perform both exploration and exploitatiRandom immigrants scheme
is another approach which maintains the diversity of theufatfpn throughout the run
via introducing new individuals into the current populatidn this paper, we propose
iIMPGA which combines both the multi-population approact anmigrants. We well
design the GA components for the SP problem and the multidatipn GA with im-
migrants scheme. Simulation experiments are conductethirga scale MANET. The
results show that iIMPGA is a powerful technique for solving tlynamic SP problem
and has potential to be applied to the real-world telecomoation network. In the
future work, we will further investigate the robustnesstaf solutions provided by us.
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