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Abstract. Developing directed mutation methods has been an inter-
esting research topic to improve the performance of genetic algorithms
(GAs) for function optimization. This paper introduces a directed mu-
tation (DM) operator for GAs to explore promising areas in the search
space. In this DM method, the statistics information regarding the fit-
ness and distribution of individuals over intervals of each dimension is
calculated according to the current population and is used to guide the
mutation of an individual toward the neighboring interval that has the
best statistics result in each dimension. Experiments are carried out to
compare the proposed DM technique with an existing directed variation
on a set of benchmark test problems. The experimental results show
that the proposed DM operator achieves a better performance than the
directed variation on most test problems.

1 Introduction

Genetic algorithms (GAs) are a class of probabilistic optimization techniques
inspired by genetic inheritance and natural evolution. GAs have been used for
solving many optimization problems due to the properties of self-learning, self-
organization, and self-adaptation, as well as the properties of implicit parallelism
[1, 5]. GAs are population based approaches, where new populations are gener-
ated by the iterative application of selection and variation of individuals in the
population. For example, mutation is used to explore new solutions, crossover
exchanges genetic information between two individuals, and selection selects rel-
atively fit individuals for the next population. The fitness of an individual is
evaluated by a fitness function, which defines the external environment of a GA.
The performance of a GA depends on not only the above variation operators,
but also some other factors, e.g., the population size and selection method, etc.

Mutation is a key operator to increase the diversity of the population and
hence enables GAs to explore promising areas of the search space [10]. The step
size and search direction are major factors that determine the performance of
mutation operators. It may be beneficial to use different values during differ-
ent stages of evolution in order to get a better performance of GAs. However,
it is impossible to know the optimum mutation step size and search direction



for real-world problems. Hence, it is usually beneficial to use some statistics in-
formation to guide the mutation operator for GAs [4]. Strategy parameters are
adjusted according to one of the three methods: deterministic adaptation ad-
justs the values of parameters according to predefined rules without using any
learning information from GAs; adaptive adaptation alters the parameters using
some learning infromation from the search space. The best example of adaptive
adaptation is Rechenberg’s 1/5 success rule in evolutionary strateggies; and self-
adaptive adaptation embeds the parameters into the chromosomes of individuals
and modifies the parameters by the GA itself.

Several researchers have tried to increase the performance of real-coded GAs
by using directed mutation techniques [2, 6, 12]. In [3], the authors proposed a
co-evolutionary technique where each component of a solution vector is added
one extra bit to determine the direction of mutation. The direction bit is adapted
by using the feedback information from the current population. A directed mu-
tation based on momentum was proposed in [12], where each component of an
individual is attached a standard gaussian mutation and the current momentum
to mutate that component.

In this paper, a new directed mutation technique is proposed for GAs to
explore promising areas in the search space. This approach first calculates the
statistical information from the current population regarding the average fitness
and the number of individuals distributed within each interval of each dimension
of the search space. Then, the statistical information is used to guide the muta-
tion of an individual toward the neighboring interval that has a better statistics
result in each dimension. In order to investigate the performance of the pro-
posed directed mutation, an experimental study is carried out to compare the
performance of the GA with the proposed directed mutation and the GA with
the directed mutation in [2].

2 Related work

A directed variation (DV) technique was proposed by Zhou and Li [14]. This
algorithm does not introduce a scheme for completely generating an average
step size but adjusts some individuals by using the feedback information from
the current population. Suppose the population is a set of N individuals X =
{−→x 1,

−→x 2, · · · ,−→x N} and each individual is a K-dimensional vector, denoted by
−→x i = [xi1, xi2, · · · , xiK ]. Denote the minimal d-th component of the individuals
at generation t by xL

d and the maximum by xU
d , that is, the range of the d-th

dimension at time t is Rd(t) = [xL
d , xU

d ]. This range can be equally divided into
L intervals. The fitness of a nonempty interval, say, the j-th interval of the d-th
dimension, is defined by:

Fdj =

N
∑

i=1

I(xid ∈ Bdj)fNorm(−→x i) (1)

I(xid ∈ Bdj) =

{

1, if xid ∈ Bdj

0, otherwise
(2)



where Bdj denotes the range (lower and upper bounds) of the j-th interval of the
d-th dimension, N presents the population size, I(.) is the indicator function,
and the fitness of each solution vector −→x i is normalized as follows:

fNorm(−→x i) =
f(−→x i) − fmin

fmax − fmin

(3)

where fmax and fmin represent the maximum and minimum fitness of the whole
population respectively.

With DV, in each generation some individuals are selected for directed varia-
tion in each component. DV is applied on a component, say, the d-th component,
only when the range of the d-th dimension of all solutions in the current gen-
eration decreases in comparison with that of the previous generation, i.e., the
population converges regarding that dimension. DV works as follows. First, the
fitness of interval, i.e., Fdj , is calculated according to Eq. (1). Then, DV is ap-
plied for an individual component by component, where each component of the
individual may be shifted from its current interval to a neighboring interval that
has a higher fitness with a certain probability, as described below.

In DV, for each component xid ∈ Bdj of an individual −→x i, whether it is
mutated depends on the value Fdj and the fitness of its neighboring intervals,
i.e., Fd,j−1 and Fd,j+1. If Fdj is bigger than both Fd,j−1 and Fd,j+1, then DV is
not applied to the d-th component of any selected individuals with (xid) ∈ Bdj .
If Fdj is in the middle, without loss of generality, suppose Fd,j−1 > Fdj > Fd,j+1,
the probability of directed variation, PDV

dj , can be calculated as follows:

PDV
dj = 1 −

Fdj

Fd,j−1

(4)

With this probability, xid is replaced with a number, randomly generated be-
tween xid and the center of Bd,j−1. If Fdj is smaller than both Fd,j−1 and Fd,j+1,
then either Bd,j−1 or Bd,j+1 is randomly selected with an equal probability and
xid moves towards the selected interval, i.e., replaced with a number randomly
generated between xid and the center of the selected interval.

3 Directed mutation for genetic algorithms

The main motivation behind directed mutation (DM) is to explore promising
areas in the search space by using the feedback information from the current
population, e.g., the fitness and some other factors. It is a modified version of the
standard mutation. This paper introduces a DM technique which aims to explore
promising areas of the search space with fixed boundaries according to the fitness
of intervals and the percentage of individuals in each interval of each dimension.
The framework of the GA with the proposed DM operator is given in Algorithm
1. The proposed GA differes from the standard GA in that in each generation, a
set of individuals are selected to undergo the DM operation iteratively. As shown
in Algorithm 2, the DM operator is applied for each component of a selected



Algorithm 1 GA with Directed Mutation (DM)

1: Randomly generate an initial population pop

2: Evaluate the fitness of each individual of pop

3: t := 0.
4: while t < max gen do

5: for each individual i in pop do

6: Select individual j by the roulette wheel method
7: Crossover individual i with individual j using the arithmetic crossover method
8: Mutate individual i by using the Gaussian mutation with mean zero and pre-

selected or adaptive standard deviation
9: end for

10: Apply DM on a set of individuals randomly selected from the population
11: Generate next generation by the roulette wheel selection scheme
12: t := t + 1
13: end while

Algorithm 2 Directed Mutation

1: for each dimension d ∈ {1, 2, · · · , K} do

2: if Rd(t) < Rd(t − 1) then

3: for each interval j do

4: Calculate Fdj according to Eq. (1)
5: Calculate the number of individuals Pdj according to Eq. (5)
6: end for

7: for each interval j do

8: Calculate FPdj according to Eq. (6)
9: end for

10: for each interval j do

11: Calculate P DM
dj according to Eq. (7)

12: end for

13: Shift the genes xid of selected individuals to their neighboring interval with a
higher fitness with the associated probability

14: end if

15: end for

solution in a similar way as the DV operator described above. The difference lies
in the calculation of the probability of moving a component of a solution from
one interval to its neighboring interval, which is described in detail below.

Similar to the DV operator, the range of the d-th dimension of indiviuals
at generation t, i.e., Rd(t) = [xL

d , xU
d ], is also equally divided into L intervals.

The fitness Fdj of each non-empty interval is calculated by Eq. (1), Eq. (2), and
Eq. (3). In addition to the fitness of each interval, the percentage of indiviudals
in each interval is also calculated in the DM operator as follows:

Pdj =
1

N

N
∑

i=1

I(xid ∈ Bdj) (5)



where Pdj represents the percentage of individuals with the d-th component
in the j-th interval in the current population, and Bdj and I(.) are the same
as defined before in Eq. (1) and Eq. (2). From Fdj and Pdj , we calculate a
value that is associated with the j-th interval of the d-th dimension, assuming
Fd,j−1 > Fdj > Fd,j+1, as follows:

FPdj =
Fdj

Fd,j−1

+
Pdj

Pd,j−1

(6)

With above definitions, the DM operator works to mutate a component xid

of a selected individual −→x i as follows. DM will not be used to xid if Fdj is bigger
than the fitness of both neighboring intervals, i.e., Fd,j−1 and Fd,j+1. If FPdj is
in the middle in comparison with the fitness of its two neighbor intervals j − 1
and j +1, without loss of generality, suppose FPd,j−1 > FPdj > FPd,j+1. Then,
move the individual −→x i towards the interval j − 1 with a certain probability,
which is calculated as follows.

PDM
dj =

FPdj
∑L

j=1
FPdj

(7)

where the DM probabilities PDM
dj are nomalized over all intervals. In this case,

the solution −→x i is moved toward the interval j−1 by replacing xid with a number
randomly generated between xid and the center of Bd,j−1 as follows:

xid = rand(xid, Bd,j−1) (8)

Otherwise, if FPdj < FPd,j−1 and FPdj < FPd,j+1, then either Bd,j−1 or Bd,j+1

is selected with an equal probability and the solution −→x i moves towards the
selected interval with the probability PDM

dj .

The main motivation behind the proposed DM operator lies in that moving
individuals based on Eq. (6) and Eq. (7) can help the GA explore the promising
intervals in the search space. Since individuals in DV only move toward the
interval with the highest fitness, it may easily cause the premature convergence
problem.

In the proposed DM operator, individual shifting is not only based on the
feedback information of the average fitness of intervals, but also on the popula-
tion distribution. By taking into account the information of population distri-
bution, DM efficiently avoids the premature convergence problem. The key idea
of the DM operator is illustrated in Fig. 1.

From Fig. 1, we consider the j-th interval, if we only consider DV, the two
individuals of interval j will move toward the (j − 1)-th interval due to the
higher fitness of the (j − 1)-th interval. However, the right direction should be
the (j + 1)-th interval since the (j + 1)-th interval is more promising than the
(j − 1)-th interval. Hence, DM is an enhanced version of DV.



Fig. 1. Fitness landscape of the d-th dimension

4 Experimental study

4.1 Experimental setting

In order to test the performance of GA with DM, three unimodal functions
and eleven multimodal functions, which are widely used as the test functions in
the literature [11, 13], were selected as the test bed in this paper. The number
of dimensions n is set to 10 for all test functions. The details of these test
functions are given in Table 1. Function f9 is a composition function proposed
by Suganthan et al. [11], which is composed of ten benchmark functions: the
rotated version and shifted version of f1, f2, f3, f4, and f5, as also listed in Table
1, respectively. Functions f10 to f14 are rotated functions, where the rotation
matrix M for each function is obtained using the method in [8].

The idea of DV was taken from [14], which is implemented in the peer GA.
The adaptive standard deviation [9] is used in DM. The population size (100)
and total number of generations (500) are the same for both DM and DV on all
problems, the total number of intervals L was set to 3, 6, 9, and 12, respectively.
The mutation probability Pm for the Gaussian mutation is the same for DM
and DV, which was set to different values for different test problems, as listed
in Table 1. Both the GA with DM and the GA with DV were run 30 times
independently on each test problem.

4.2 Experimental results and analysis

The average results of 30 independent runs of the GA with directed mutation
and the GA with directed variation on the test problems are shown in Table 2.
From Table 2, it can be seen that the number of intervals used for each dimension
is a key parameter. The performance of the GA with DM becomes significatly
better on some problems than that of the GA with DV as the number of intervals
increases. The performance of both operators is different on different problems.



Table 1. Test functions of n = 10 dimensions, where D (D ∈ Rn) and fmin denote
the domain and the minimum value of a function respectively

Test Function Pm D fmin

f1(x) =
Pn

i=1
x2

i 0.1 [−100, 100] 0

f2(x) =
Pn

i=1
(x2

i − 10 cos(2πxi) + 10) 0.01 [-5.12,5.12] 0

f3(x)=
n

P

i=1

kmax
P

k=0

[ak cos(2πbk(xi + 0.5))]−n
kmax
P

k=0

[ak cos(πbk)], 0.01 [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20

f4(x) = 1

4000

Pn

i=1
(xi − 100)2 −

Qn

i=1
cos(xi−100

√

i
) + 1 0.01 [-600, 600] 0

f5(x) = −20 exp(−0.2
q

1

n

Pn

i=1
x2

i ) − exp( 1

n

Pn

i=1
cos(2πxi)) 0.01 [-32, 32] 0

+20 + e

f6(x) =
Pn

i=1
100(x2

i+1 − xi)
2 + (xi − 1)2) 0.05 [-30, 30] 0

f7(x) =
Pn

i=1
−xi sin (

p

|xi|) 0.01 [-500, 500] -4189.829

f8(x) =
Pn

i=1
(
Pi

j=1
xj)

2 0.01 [-100, 100] 0

f9(x) = Composition function (CF 5) in [11] 0.05 [-5, 5] 0

f10(x) =
Pn

i=1
100(y2

i+1 − yi)
2 + (yi − 1)2), y = M ∗ x 0.05 [-100, 100] 0

f11(x) = 1

4000

Pn

i=1
(yi − 100)2 −

Qn

i=1
cos( yi−100

√

i
) + 1, 0.01 [-600, 600] 0

y = M ∗ x

f12(x)=−20 exp(−0.2
q

1

n

Pn

i=1
y2

i ) − exp( 1

n

Pn

i=1
cos(2πyi)) 0.01 [-32,32] 0

+20+e, y = M ∗ x

f13(x) =
Pn

i=1
(y2

i − 10 cos(2πyi) + 10), y = M ∗ x 0.01 [-5, 5] 0

f14(x)=
n

P

i=1

kmax
P

k=0

[ak cos(2πbk(yi + 0.5))]−n
kmax
P

k=0

[ak cos(πbk)], 0.01 [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20, y = M ∗ x

When the number of intervals is set to 3, the results of DM are better than
DV on half of the test problems. DM is trapped into local optima due to the
large range of intervals. It is interesting that DM achieves the best result on f9,
f10, and f12 over all different number of intervals.

When we increase the number of intervals to 6, the performance of DM is
better than DV on most benchmark problems. Although DV presents better
results than DM on f1, f2, f9, and f14, DM obtains close results to DV on these
functions.

Similar observations can be made as the number of intervals increases to
9. The results obtained by DM are better than that of DV. Compared with
the results of DM with the number of intervals of 6, the performance of DM
deteriorates on some multimodal problems. However, the results of DM with the
number of intervals of 9 are better than the results with the number of intervals
of 6 on most unimodal problems.



Table 2. Comparison results between DV and DM with the number of intervals for
each dimension set to different values for different problems

function f1 f2 f3 f4 f5 f6 f7

L = 3
DV 8.28e-06 0.0151 0.2590 0.0985 0.0088 49.41 -2667
DM 7.33e-06 0.0122 0.2304 0.1116 0.0082 33.87 -2062

L = 6
DV 7.55e-06 0.0093 0.2030 0.0820 0.0114 95.25 -2692
DM 8.99e-06 0.0172 0.1837 0.0385 0.0090 18.84 -1797

L = 9
DV 6.19e-06 0.0087 0.2181 0.0731 0.0076 68.78 -2574
DM 9.03e-06 0.0067 0.2558 0.1143 0.0089 22.97 -1857

L = 12
DV 7.21e-06 0.0191 0.2271 0.0972 0.0107 16.63 -2578
DM 7.86e-06 0.0153 0.2196 0.0341 0.0080 5.65 -1905

t-test DV-DM ∼ ∼ ∼ ∼ ∼ + -

function f8 f9 f10 f11 f12 f13 f14

L = 3
DV 2.7677 102 61 0.0929 0.0476 2.0971 0.4200
DM 3.5671 100 21 0.0891 0.0093 2.8655 0.4794

L = 6
DV 2.6971 64 82 0.1147 0.0470 2.5969 0.4283
DM 1.9957 94 30 0.0726 0.0089 2.1034 0.3483

L = 9
DV 3.8969 94 30 0.0726 0.0974 2.1034 0.4099
DM 3.8160 24 24 0.0998 0.0077 2.7950 0.4833

L = 12
DV 2.0960 230 50 0.0826 0.0472 3.0315 0.4175
DM 2.7178 63 53 0.0444 0.0086 1.9218 0.4180

t-test DV-DM ∼ + + ∼ + ∼ ∼

When L = 12, the results of DM are better than the results of DV on most
test funtions. Similar results can be viewed as the number of interval 6 but the
performance of DM increases compared with the number of interval of 9 on some
multimodal problems.

Table 2 also shows the statistical analysis of comparing DM with DV when
L = 6 by using the two-tailed t-test with a 58 degree of freedom at a 0.05
level of significance, where the t-test result is presented as “+”, “−”, or “∼” if
the performance of the GA with DM is significantly better than, significantly
worse than, or statistically equivalent to the GA with DV, respectively. The
DM operator is significantly better on four problems, significantly worse on two
problems, and statistically similar on the rest of the problems.

From Table 2, three conclusions can be made. First, the overall performance
of DM is better than DV on half test functions at least. Especially, on f9, f10 and
f12, the performance of DM is better over all different settings of the number
of intervals. Second, the interval quantity is a crucial factor to the performance
of both DM and DV on different benchmark functions. According to variable
number of intervals, the result of DM and DV varies on different test problems.
Third, a larger number of intervals is needed on multimodal problems than
unimodal problems. The smaller number of intervals causes the larger number
of local optima within an interval, since multimodal problems have many local
optima.
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Fig. 2. Evolutionary progress of directed mutation and directed variation operators on
(a) f4 with L = 12, (b) f6 with L = 12, (c) f7 with L = 3, and (d) f9 with L = 6.

Fig. 2 presents the evolutionary process for DM and DV operators on f4, f6,
f7, and f9 respectively, where the result on f4 is presented in a log scale. From
Fig. 2, it can be seen that the convergence speed of DM is faster than that of
DV except on f9. This result validates our idea that the performance of DV can
be enhanced by taking into account the population distribution in the search
space.

5 Conclusions

In this paper, a directed mutation operator is proposed for genetic algorithms
to explore promising solutions in the search space. In the proposed directed
mutation, individual shifting is not only based on the feedback information of
the fitness of each interval, but also on the population distribution. By taking
into account the information of the population distribution, directed mutation
greatly improves the performance of directed variation.



In order to justify the proposed directed mutation, a set of benchmark func-
tions was used as the test base to compare the performance of the directed
mutation operator with the directed variation operator from the literature [14].
The experimental results show that the efficiency of DV is improved by the
proposed enhancement on more than half of the test functions.

Although DM achieves better results on the test problems, there is a limi-
tation, i.e., different problems need different optimum values of the number of
intervals to achieve the best result. So, how to adaptively adjust the number of
intervals is our major work in the future.
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