
1

An Integrated Search-Based Approach for Automatic Testing from

Extended Finite State Machine (EFSM) Models
Abdul Salam Kalaji, Robert Mark Hierons and Stephen Swift

School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, UB8 3PH, UK

e-mail: {abdulsalam.kalaji, rob.hierons, stephen.swift}@brunel.ac.uk
__

Abstract
Context: The extended finite state machine (EFSM) is a modelling approach that has been used to

represent a wide range of systems. When testing from an EFSM, it is normal to use a test criterion

such as transition coverage. Such test criteria are often expressed in terms of transition paths (TPs)

through an EFSM. Despite the popularity of EFSMs, testing from an EFSM is difficult for two main

reasons: path feasibility and path input sequence generation. The path feasibility problem concerns

generating paths that are feasible whereas the path input sequence generation problem is to find an

input sequence that can traverse a feasible path. Objective: While search-based approaches have been

used in test automation, there has been relatively little work that uses them when testing from an

EFSM. In this paper, we propose an integrated search-based approach to automate testing from an

EFSM. Method: The approach has two phases, the aim of the first phase being to produce a feasible

TP (FTP) while the second phase searches for an input sequence to trigger this TP. The first phase

uses a Genetic Algorithm whose fitness function is a TP feasibility metric based on dataflow

dependence. The second phase uses a Genetic Algorithm whose fitness function is based on a

combination of a branch distance function and approach level. Results: Experimental results using

five EFSMs found the first phase to be effective in generating FTPs with a success rate of

approximately 96.6%. Furthermore, the proposed input sequence generator could trigger all the

generated feasible TPs (success rate = 100%). Conclusion: The results derived from the experiment

demonstrate that the proposed approach is effective in automating testing from an EFSM.

Keywords: Search-based testing, EFSM, feasible transition paths, automatic test derivation.

__

1. Introduction

Faults in systems can have severe consequences and therefore it is generally
accepted that testing is a vital stage of software development. In software testing we
supply the implementation under test (IUT) with a test case that consists of a finite
sequence of inputs and outputs and then observe the resultant output and compare it to that
stated in the test case. Testing can constitute up to 50% of the overall software
development cost [1, 2]. Therefore, it is natural for the software engineering community to
try to develop methods to reduce the cost associated with testing while enhancing the
testing process. Since manual testing is expensive, time consuming and error prone, there
has been significant interest in automation [3], [4], [5], [6].

2

Most approaches to testing can be categorised as white-box or black-box. In white-
box testing, a tester has access to the internal structure of a system (such as the source code
and algorithms) and uses this knowledge to derive test cases. However, it is often the case
that we do not have access to the source code of the system since, for example, it may
contain components that were outsourced. In contrast, black-box testing does not use
information about the internal system structure and so it is normal for the tester to use the
system specification (usually represented as a model) to derive the test cases. Then these
test cases are applied to the IUT and the resultant outputs are monitored. By comparing the
produced outputs to those stated in the specification, the tester can determine whether the
IUT conforms to the specification on that test case. Therefore, such testing is commonly
referred to as specification-based testing.

In order to apply specification-based testing, it is necessary to have a system
specification, usually represented in terms of a model. Two modelling approaches that can
be used for this purpose are finite state machines (FSMs) and extended finite state
machines (EFSMs) [7]. An FSM comprises of a finite set of states and transitions among
the states. Each transition has a start state and an end state. Also, a transition requires an
input and it produces an output. The FSM is used to model a system that has a control part,
for example a basic telephone device. However, if the system has, in addition to the
control part, a data part, then an extended FSM can be used. An EFSM can model both
control and data parts since it extends the FSM structure with a set of variables (memory).
Therefore, in an EFSM, a transition can have guards (preconditions) over the inputs and
the machine’s variables and also can have operations (assignments) to these variables.
EFSMs can model both control and data and a number of standard modelling languages
such as Statecharts and SDL can be seen as EFSMs. EFSM based test techniques can be
applied to models in such languages [7, 8] as well as formalisms such as (UML) Use Cases
and Z and in domains such as communication protocols and web services [8], [9], [10],
[11], [12], [13], [14].

When testing from an EFSM, a test case is required and this consists of a sequence
of inputs and outputs. In this paper we focus on deriving the input section of a test case.
The input section of a test case is a sequence of inputs where each input can also have
parameters. We might produce test cases with the aim of achieving a coverage criterion
such as transition coverage or state coverage [15]. Transition coverage, for example,
requires that the test cases, between them, lead to all transitions of the EFSM being
exercised. Each test case defines a transition path (TP) through the EFSM: the path
traversed when the EFSM is stimulated with the input sequence from the test case. Many
coverage criteria can be seen as requirements on the TPs defined by the test cases used.
For example, transition coverage requires that each transition of the EFSM is contained in
a TP that corresponds to one of the test cases. Therefore, when testing from an EFSM, we
might derive a set of TPs that satisfies the given test criterion and then produce test cases
to trigger these TPs. However, since an EFSM’s transitions may have guards
(preconditions) and operations, a given TP may be infeasible. For example, one
transition’s operation may assign the value 0 to a variable x while a later transition’s guard
requires x>0 despite the value of x not having changed between these transitions. Such a
path is infeasible and so it is impossible to find an input sequence (test case) to trigger it.
However, the problem of determining whether a given path is feasible is undecidable and

3

the development of good methods is an open research problem [16, 17]. If the path is
feasible, then an input sequence is required to trigger (exercise) this path but it can be
difficult to find such an input sequence since the input domain is usually large but the
required input values might constitute just a small subset of this domain [18]. For example,
a machine variable x can be of integer data type, but the required values to exercise a guard
over x can be within a tiny range.

While model-checkers can be used to generate test cases from EFSMs, the presence
of several internal variables with a large range of values (e.g. integers) can lead to a state
space explosion. This paper instead explores the use of search-based techniques in testing
from an EFSM. It is to be expected that there are situations in which model-checkers
outperform search-based methods but also situations in which search-based methods
outperform model-checkers. For example, a study by Nilsson et al. [19] found that when
testing from dynamic systems, the search problem became more difficult and a Genetic
Algorithm (GA) search outperformed a model checker. Also, a recent study by Wenzel et
al. [20] states that using model checkers to generate test cases is more expensive than
using heuristic techniques. Characterising situations in which one approach is superior to
the other is an important problem for future work.

Although optimisation algorithms have proven efficient for automating aspects of
testing [5], very little attention has been paid towards investigating their application to
EFSM testing. This paper proposes a novel search-based approach to automate testing
from EFSMs. The proposed approach has two components. The first uses a TP feasibility
metric, which is a metric that aims to reward TPs that are ‘likely to be feasible’. The
feasibility metric is based on an analysis of the dataflow dependence among the operations
and guards in a path’s transitions. This feasibility metric is used to guide a search for TPs
with the aim of finding feasible TPs that satisfy the test criterion. Once a set of TPs is
obtained, in the second part a fitness function guides the search for an input sequence that
can trigger a given TP.

The main contributions of this paper are the following:
1. It describes a search-based method that directs the automatic generation of TPs

from an EFSM model with the intention that the resultant TPs are feasible.
2. It proposes a search-based method for automatically generating input sequences

that can trigger a given feasible transition path (FTP).
3. The paper is the first to propose an integrated search-based approach for automatic

testing from an EFSM.
4. The paper, also, statistically investigates the relationship between the proposed TP

feasibility metric and the effort in terms of time that is required to generate an input
sequence to exercise the TP.

5. The paper empirically validates the proposed approach by using it with five
EFSMs.

The feasibility metric was devised with the aim of directing search towards paths that
are feasible. Part of the motivation is that, when testing using a given test criterion, the
feasibility metric can be combined with another metric that directs the search towards test
cases that contribute to the satisfaction of the test criterion. For example, if we wish to find
test cases that cover every state of the EFSM then for a state s we could devise a metric
that estimates how close a test case is to passing through s. The two metrics can then be

4

used to search for paths that are likely to be feasible and pass through s. The hope also was
that paths with a good (low) fitness according to our feasibility metric will be relatively
easy to trigger using test generation methods based on search. The results of experiments
reported in Section 5 suggest that the proposed feasibility metric does achieve this: in the
experiments there was a statistically significant strong correlation between the feasibility
metric value for a path and the number of generations required by a GA to find an input
sequence to follow that path. Interestingly, a similar result was found when a constraint
solver was used to generate input sequences instead of a GA.

The rest of the paper proceeds as follows: Section 2 provides background
information, including a description of search-based testing. In Section 3, the proposed
approach is described. Experimental results are provided in Sections 4 and 5 and related
work is described in Section 6. Concluding remarks and future work are in Section 7.

2. Preliminaries
2.1. The Extended Finite State Machine (EFSM)

A finite state machine (FSM) is a Mealy machine [21] (or transducer), which has finite sets
of states, inputs, and outputs. An output is produced upon state transition and this occurs
when applying an input to the machine. When extending a Mealy machine with context
variables, predicates, and operations we get an extended finite state machine (EFSM). An
EFSM is a 6-tuple [18] (S, s0, V, I, O, T) where: S is the finite set of logical states, s0 is the
initial state, V is the finite set of (internal) context variables, I is the finite set of input
declarations, O is the finite set of output declarations, and T is the finite set of transitions.
The transition t T is represented by the 5-tuple (ss, i, g, op, se) in which: ss is the start state
of t, i is the input where i I and i may have associated input parameters, g is a logical
expression called the guard, op is the sequential operation which consists of simple
statements such as output statements and assignment statements, and se is the end state of t.

In an EFSM, a state transition occurs when one of the machine’s transitions is taken.
If the state is ss then transition t = (ss, i, g, op, se) can be taken if input i is received and the
guard g is satisfied. If this happens then the operations in op are executed and the logical
state becomes se. Both g and op can refer to input parameters and context variables. An
EFSM is deterministic if for any group of transitions with the same input that leave a state,
it is not possible to satisfy the guards of more than one transition in this group at the same
time [22]. In this paper, we only consider deterministic EFSMs.

v3 > 0

v1:= v2 + v3; v3:= v2;

S1

S2 S3

p1 ≥ 10, p1 ≤ 20, p2 ≥ 0, p2 ≤ 10

v1:= p1; v2:= p2;

t1 Guards:

Operations:

t2
Nil

v3:= 10;

t3

t4
v1 > v2

Nop;

Figure 1. An EFSM example (M)

t6 v1 < p1, p1> p2

Nop;
t5

v3 < 0

v1:= 0;

Nil: denotes no guards

Nop: denotes no operations

[input / output]

[bb /11]

[aa /00]

[ab /01] [ba /10]

[a /1]
[b /0]

5

The simple EFSM M shown in Fig. 1 will be used throughout this paper to aid the
description of the proposed approach. M has three states, six transitions and three context
variables v1, v2 and v3. If, for example, M is at state S1 then in order to fire t1 an input aa is
required together with two input parameters p1 and p2. If the values of p1 and p2 satisfy the
guard of t1 (p1 ≥ 10, p1 ≤ 20, p2 ≥ 0, p2 ≤ 10) then t1 is fired, the operations (v1:= p1; v2:=
p2;) are executed and the machine outputs 00. These operations update the values of v1 and
v2. Since t1 ends at the same state, S1, then the machine remains at this state. In testing
from an EFSM we supply an input sequence along with parameter values and each such
sequence defines a TP.
2.2. Program Data Flow Dependence

Given a program and a variable x within this program, a statement at which x appears can
be an assignment to x or a use of x (or both). An assignment to x defines or updates the
value of x and so x is said to be defined at such a statement. A use of x occurs when x is
referenced in a predicate (a predicate use/p-use) or x is referenced in a computation that
either updates the value of a variable or is produced as output (a computation use/c-use).
Give a path between two statements n1 and n2, if x is not defined after n1 and before n2 then
the path from n1 to n2 is a definition clear path for x [23]. If, in addition, n1 is a definition
of x and n2 is a use of x, then statements n1 and n2 form a definition-use (du) pair for x and
there is dataflow dependence between n1 and n2 [24].

Consider a transition path (TP) through M which consists of t2t3 (Fig. 1), the context
variable v3 is defined by t2, then used by the guard of t3 (p-use) and the path is definition
clear for v3. Thus, t2t3 forms a du pair for v3 and there is dataflow dependence between the
two transitions. In this paper we utilise dataflow information in EFSMs to define the
proposed TP feasibility metric.

2.3. Symbolic Execution
Symbolic execution is an analysis approach which allows a program to be executed using a
set of symbolic inputs [25]. The execution here is similar to normal program execution.
However, the inputs are given in terms of symbols, and thus the outputs of the program are
symbols and expressions over these symbols. This is particularly useful to understand the
relationship between a given input and its associated output.

When using symbolic execution, the problem of test case generation can be
reformulated to the problem of solving a set of algebraic expressions that result from
symbolically executing a selected path. For example, consider the path t1t1 in the machine
M (Fig. 1). Let the parameters used to trigger the first t1 be p1 and p2 and the parameters
used to trigger the next t1 be p3 and p4. Thus we have the following constraints: (p1≥ 10
AND p1 ≤ 20 AND p2 ≥ 0 AND p2 ≤ 10 AND p3 ≥ 10 AND p3 ≤ 20 AND p4 ≥ 0 AND p4 ≤
10). If these constraints can be solved (e.g. p1 = 10; p2 = 5; p3 = 20; p4 =9) then the
solution defines an input sequence that can exercise the considered path.

In Section 5, we used a constraint-based testing (CBT) approach as an alternative
method to generate input sequences to trigger the generated feasible transition paths.

2.4. Search-Based Testing
It has been observed that many software engineering problems can be expressed as search
problems over sets of complex entities and this has led to interest in search-based software

6

engineering [26]. In search-based software engineering, typically problems are expressed
as optimisation problems and metaheuristic techniques such as hill climbing, simulated
annealing and genetic algorithms are applied in order to find acceptable solutions [27].

Search-based software testing (SBST) is an approach that reformulates software
testing problems as optimisation problems. This reformulation serves the purpose of
allowing the automatic derivation of test cases that satisfy a given test criterion. In SBST
we need a representation of the candidate solutions and a method, called a fitness function,
which can evaluate the candidate solutions.

Solution representation is a method that allows a search technique to manipulate
candidate solutions. There are many methods that can be used to represent candidate
solutions. If the candidate solutions are numbers, then it is possible to use binary valued
encoding, integer valued encoding or real valued encoding. In binary encoding, for
example, each number is represented by its equivalent binary value. For example, (7, 8)
can be represented as (0111, 1000). Often different forms of encoding can be used
depending on the input domain of the problem. For example, if the inputs are integers then
integer valued representation is possible. Similarly, real valued encoding is an option when
inputs are real numbers.

A fitness function is required to compare candidate solutions. The fitness function
measures how good each candidate solution is. The fitness function assigns each candidate
solution a positive number that estimates how far it is from being an acceptable solution.
Since the optimisation problem is a minimisation one, candidate solutions that receive
lower fitness values are better and acceptable solutions usually have a fitness value of zero.

If we have a representation and a fitness function then we can apply a metaheuristic
search technique. Genetic algorithms are a well-know metaheuristic technique that have
been widely applied to white-box testing (for examples see [5]). The next subsection
describes the basic genetic algorithm.

2.5. Genetic Algorithms
Genetic algorithms (GAs) are metaheuristic search techniques that have been found to be
powerful, simple, and robust [28]. In order to apply a GA to an optimisation problem, a
solution representation (encoding) is required. When solutions are encoded, each is called
a chromosome and consists of components that are called genes. For example, let the
initial set of solutions be integer values such as {7, 6, 8}. If binary encoding is used, then
{0111, 0110, 1000} represents the chromosomes (individuals). Any bit of a chromosome
represents a gene with a value of either 0 or 1.

The GA cycle consists of the main operators: evaluation, selection, crossover, and
mutation. The GA cycle starts by evaluating the fitness of each individual which is a
positive value that measures how ‘fit’ this individual is and influences its chance of being
selected as a parent. Evaluating the fitness of each individual is performed through calling
a fitness function which is problem dependent.

Deriving an effective fitness function for a given problem is a central task when
applying a search technique such as a GA. For some problems, a fitness function can be
derived directly. For example, consider minimising the function:

f(x) = x2 ; where 0 ≤ x ≤ 103
For such a problem, a fitness function can be similar to the function that describes the

7

problem (i.e. fitness(x) = x2) or with a slight difference (i.e. fitness(x) = x). Such a fitness
function can differentiate candidate solutions and prioritises those that have better values.
However, this is not always possible and then alternative metrics are required [29]. For
example, consider the metric that measures statement coverage of source code. This metric
can be utilised as a fitness function to measure the number of statements that are covered
by a given test case (candidate solution).

After individuals are evaluated, a selection based on fitness is made to perform
‘breeding’. There are many selection methods, such as roulette wheel and ranking, that can
be used [30]. Through breeding new individuals are introduced. This is accomplished by
applying a crossover operator that acts on two individuals to produce two new individuals.
There are several approaches to crossover including one-point crossover, which operates
by choosing a random position on the individual’s bit string, and then the substrings before
that position are kept while the tails are swapped. For example, crossover on the two
parents Parent1 and Parent2 before position 4, yields the offspring Child1 and Child2.

Parent1 {011|00} Child1 {011|11}
Parent2 {101|11} Child2 {101|00}

In order to maintain population diversity, new characteristics are infrequently
injected by applying mutation. Mutation acts on one individual at a time and randomly
changes the values of some of the individual’s genes [31]. For example, Child1 might
become Child1′ after mutating the bits on positions 1 and 5.

Child1 {01111} Child1′ {11110}
These operators yield new individuals that either replace the old generation (population) or
a selection is used to obtain a new population from the previous population and the new
individuals. The population undergoes a number of updates until satisfying one of the
stopping criteria such as finding a satisfactory solution or reaching a maximum number of
generations [30].
3. The Proposed Approach

The proposed approach has two phases. The first phase generates TPs to satisfy a given
test criterion and in this paper we use transition coverage; in principle the method can be
extended to other criteria. For each transition t, a GA is used to find a TP that executes t.
The fitness function of the GA is a feasibility metric, the aim being that this guides the
search towards TPs that are likely to be feasible TPs (FTPs). The method described in this
paper thus uses a GA to find TPs with good values for the feasibility metric and chooses
one such TP that includes t. However, it is likely that the method can be improved by
including additional information that guides the GA towards paths that contain t and this
will be important when it is hard to find paths that contain t.

The proposed feasibility metric is mainly based on dataflow dependencies among the
transitions of a TP, where there is dependence between transitions t and t′ (with t being
before t′ in the TP) if there is a context variable v that is assigned a value in t, referenced
by the guard of t′, and not assigned to between t and t’. We refer to such a pair (t, t′) as an
(affecting, affected-by) pair. The feasibility metric also considers guards that are not
affected by any transitions, such a guard involving comparisons among input parameters
and possibly constants. When evaluating a TP, all (affecting, affected-by) pairs in this TP
are found and a penalty value is assigned to each pair, with the penalty depending on the

8

relevant assignment and guard. Guards that are included in this TP and are not affected by
transitions are also penalised. In defining the penalties, assignments and guards were
classified and for each possible combination of guard and assignment type, a pre-
determined penalty value assigned. The use of pre-determined penalties has the benefit of
making the feasibility metric evaluation relatively quick. The penalties and feasibility
metric are given in Section 3.1.

Once TPs have been generated, these need to be fired (executed). The second phase
of the proposed approach uses a GA, based on approach level and branch distance, to
generate test inputs to fire the TPs produced by the first phase. If we fail to execute a TP
we might then return to the first phase to produce an alternative TP. For a TP, we have a
sequence of functions instead of one function. This is similar to the structure of nested IF
statements. As a result, we first apply the fitness calculation proposed by Wegener et al.
[34] to each transition in a TP and then consider each function (transition) as an IF
statement. If the function (transition) is executed then it returns zero otherwise it returns a
value that states how close the inputs were to executing this function. The fitness function,
for generating inputs for a TP, is described in detail in Section 3.2.
3.1. Phase 1: Feasible Transition Path (FTP) Generation
Before providing a detailed description of the FTP generation method, we introduce the
following definitions:
Definition 1: A transition path (TP) of length n through an EFSM is a sequence of n
consecutive transitions t1, t2, .., tn that starts at the initial state of the EFSM.
Definition 2: A TP t1, t2, .., tn is feasible (an FTP) if it is possible to trigger each transition
ti, where 1< i < n, in the order that it appears in this TP.

Any path from the initial state of an EFSM defines a TP but only some of these paths
may be FTPs. For example, the TP t1t2t3 through the machine M shown in Fig. 1 is an FTP
but t1t2t5 is not since t2 assigns 10 to v3 and t5 requires v3 to be less than zero.

Any transition can have guards and operations. We assume that a guard consists of
atomic guards combined using AND and OR. In this section we consider only atomic
guards and in Section 3.1.1. we show how more general guards are treated. A guard has
the form of (e gop e′) where e and e′ are expressions and gop ∈ {>, <, ≥, ≤, =, ≠} is the
guard operator.

Given expression e, we let Ref(e) denote the set of variables that appear in e.
According to e and e′ a transition’s guard can be classified into the following types:

1. gpv: a comparison involving a parameter and one or more context variables. More
formally, the guard (e gop e′) is such that Ref(e) Ref(e′) contains at least one
input parameter and at least one context variable and also e and e′ are not constants.
Transition t6 in M (Fig. 1) is an example since it inputs p1 and then compares this
with the variable v1.

2. gvv: a comparison among context variables’ values. More formally, the guard (e
gop e′) is such that Ref(e) Ref(e′) contains only context variables and e and e′
are not constants. Transition t4 in M (Fig. 1) is an example where the guard
compares the values of v1 and v2.

3. gvc: a comparison between a constant and an expression involving context
variables. More formally, the guard (e gop e′) is such that Ref(e) Ref(e′)
contains at least one context variable and either e or e′ is a constant. An example is

9

the transition t3 in M (Fig. 1) since its guard references v3, compares it to a constant
and does not reference an input parameter.

4. gpc: a comparison between a constant and an expression involving a parameter.
More formally, the guard (e gop e′) is such that Ref(e) Ref(e′) contains at least
one input parameter and either e or e′ is a constant. Transition t1 in M (Fig. 1) is an
example since it compares the input p1 to a constant.

5. gpp: a comparison between expressions involving parameters. More formally, the
guard (e gop e′) is such that Ref(e) Ref(e′) contains at least one input parameter
and no context variables and e and e′ are not constants. An example is transition t6
in M (Fig. 1) since it inputs p1 and p2 and then the guard involves a comparison
between p1 and p2.

An assignment in a transition t has the form of v := e, where v is a context variable and e is
an expression. An assignment to context variable v can be classified as one of the
following:

1. opvp: it assigns to v a value that depends on the parameter; Ref(e) contains at least
one input parameter. An example is the transition t1 in M (Fig. 1) since it has an
operation that assigns a parameter value to v1.

2. opvv: it assigns to v a value that depends on the context variable(s); Ref(e) contains
only context variables and e is not a constant. An example is the transition t3 in M
(Fig. 1) since it assigns the sum of the values of v2 and v3 to context variable v1.

3. opvc: it assigns to v a constant. An example is the transition t2 in M (Fig. 1).
Based on the classifications of guards and assignments, two types of transitions can be
distinguished: affecting and affected-by transitions.
Definition 3: In a TP t1, t2, .., tn, a transition ti is affecting if ti has an assignment op
∈ {opvp, opvc, opvv} to v and there exists a guarded transition tj ∈ TP, where 1 < i < j < n, tj
has a guard g ∈ { gpv, gvv, gvc} over v and the path between ti and tj is definition clear with
respect to v. tj is also said to be an affected-by transition.

For example, in the EFSM M (Fig. 1) the transition t2 assigns a value to v3 and the
guard of t3 references this variable. Furthermore, t2t3 is a definition clear path and so for
the subsequence t2t3, the transition t2 is an affecting one whereas t3 is an affected-by
transition.

Sometimes we can immediately determine that a path is infeasible and so we give the
path a high (poor) fitness. The following definitions give the rules used in this work to say
when a path is definitely infeasible. Naturally, additional such cases can be identified.
Definition 4: In a TP t1, t2, .., tn, the assignment op ∈ opvc in ti is opposed to the guard g ∈
gvc of tj (1 < i < j < n) if there exists a variable v such that op is an assignment to v, g
references v, ti+1, …, tj is a definition clear path for v and either the constants that appear in
op and g are the same and gop ∈ {<, >, ≠} or are different and gop ∈ {=}.

Consider again the EFSM M (Fig. 1), the assignment to v3 in transition t2 is opposed
to the guard in t5 since t2 defines v3 to be 10 and t5 requires v3 to be less than zero. As a
result, any path that contains the subsequence t2t5 must be infeasible.
Definition 5: In a TP t1, t2, .., tn, the guards gi, gj ∈ gvc of ti and tj respectively (1 < i < j <
n) are opposed when there exists a variable v such that both guards reference v, the path
from ti to tj is definition clear for v and one of the following holds:

10

1. The constants that appear in gi and gj are the same and (one gop ∈ {≠, >, <} and the
other gop ∈ {=} or one gop ∈ {>, ≥} and the other gop ∈ {<} or one gop ∈ {<, ≤}
and the other gop ∈ {>}).

2. The constants are different and both gops ∈ {=}.
Definition 4 can be seen as there being an assignment operation that falsifies the guard of
the affected-by transition and Definition 5 can be seen as there being two guards that
cannot be satisfied together. For example, consider subsequence t5t3 in the EFSM M (Fig.
1), t5 requires v3 to be less than zero whereas t3 requires v3 to be greater than zero. Also,
t5t3 is a definition clear path for v3 and therefore a TP that includes this subsequence is
infeasible. This subsequence is infeasible regardless of the fact that t5 cannot be executed
in the first place since t2 assigns to v3 a positive value which opposes the guard of t5.

By Definitions 3, 4 and 5, two cases can be defined where a TP is clearly infeasible:
Definition 6: A TP t1, t2, .., tn with length n >1 is definitely infeasible if there exists 1 < i <
j < n such that one of the following holds:

1. ti is an affecting transition with operation op ∈ opvc, tj is an affected-by transition
with guard g ∈ gvc and op opposes g.

2. the guards gi and gj of ti and tj respectively are of type gvc and gi opposes gj.
3.1.1. Dependencies Representation and Penalties
This subsection describes the penalty values used in the feasibility metric. The aim is that a
penalty value estimates how easily a given guard can be satisfied in the TP. Since a guard
can be affected by a previous operation, we consider three factors when assigning a
penalty to a pair of (affecting, affected-by). The first factor is related to the guard type. For
example, a guard of type gvc can be classified as the hardest since the option of selecting
the values of either c or v is not available. In contrast, a guard of the type gpv is typically
easier to satisfy since it is possible to choose the value of the parameter. The second factor
concerns the guard operator. For example, the operator = is normally the most difficult to
satisfy and ≠ is the easiest. Finally, the third factor is related to the operation type of an
affecting transition. For example, an operation of type opvp is potentially useful since the
parameter provides an opportunity to try to select a suitable value for v while opvc is the
worst since it is not possible to select the value of c. In addition to the penalty between a
pair of (affecting, affected-by), it is possible to have a guard that is not affected by any
operation (e.g. gpc) and for such a case, only the first two factors are considered when
assigning a penalty.

Table 1 shows the penalty values used in this work. For cases where there are no
affecting transitions, ‘–’ is used to indicate that the choices opvp, opvv and opvc are
irrelevant. Where a TP is definitely infeasible, INF1 represents a large positive integer. The
suggested penalty values are based on previous research [32] and initial experiments with
one EFSM. Although the penalty values were found to be effective during the experiment,
these values are by no means definitive and other suitable values can be used.

1INF represents a large positive integer to indicate that a given path is infeasible. In all experiments INF was set to be 1 × 104 since in

the experiments the penalty values associated with transitions dependencies (see Table 1) cannot otherwise lead to a given TP being

assigned a penalty value ≥ 104. However, other large positive integers can also be used.

11

A guard can be given using nested IFs or predicates linked by AND and OR. For guards
represented as nested IF or linked by AND we sum the penalties, however, the minimum
penalty is used with an OR [35]. The dependency between affecting and affected-by
transitions can occur on the basis of one or more context variables and an affected-by
transition can be affected by one or more transitions in a TP. Therefore, each dependency
between a pair of (affecting, affected-by) transitions is recorded together with the context
variable at which the dependency occurs. There are three types of assignments and each
type is represented by an integer. Integers -2 and -1 are used to mean an assignment of a
constant (opvc) and an assignment of a parameter (opvp) respectively. However, a number
in [1..m] represents the corresponding context variable appearing on the right-hand side of
the assignment. If an assignment of type opvv references more than one context variable, in
the calculation we choose one of these: this reduces the time taken to compute the
feasibility metric. We observe that if it is possible to easily set the value of one of the
context variables then it may be less important whether it is possible to set the values of
the others. Consider, for example, the problem of satisfying v=v′ + v′′ for context variables
v, v′ and v′′. If the value of v′ can easily be set using a parameter p, then it may be possible
to choose a value for p that leads to the guard being satisfied. As a result of this
observation, the referenced variable vj is chosen by considering its assignment in the
previous transition and using the following preference: (1) the assignment (to vj) references
a parameter, (2) the assignment references a constant and (3) the assignment references
context variables. Having chosen the vj, we use the penalty shown in Table 1. It is possible
that there is no assignment (nop) and so no dependency between the transitions, or there is

Table 1. The suggested penalty values where INF is a large positive integer to indicate
that a given dependency represents an infeasible case.

Rows Assignment
ID

Guard &
operator (nop) (opvp) (opvv) (opvc)

1. gpv(=) 4 8 16 24
2. gpv(<, >) 3 6 12 18
3. gpv(< , >) 2 4 8 12
4. gpv(≠) 1 2 4 6
5. gvv(=) 16 20 40 60
6. gvv(<, >) 12 16 32 48
7. gvv(< , >) 8 12 24 36
8. gvv(≠) 4 8 16 24
9. gvc(=) 40 30 60 INF if False and 0 otherwise
10. gvc(<, >) 32 24 48 INF if False and 0 otherwise
11. gvc(< , >) 24 18 36 INF if False and 0 otherwise
12. gvc(≠) 16 12 24 INF if False and 0 otherwise
13. gpc(=) 12 - - -
14. gpc(<, >) 8 - - -
15. gpc(< , >) 4 - - -
16. gpc(≠) 1 - - -
17. gpp(=) 6 - - -
18. gpp(<, >) 4 - - -
19. gpp(< , >) 2 - - -
20. gpp(≠) 1 - - -
21. gi opposes gj INF - - -

12

an
open-ended dependency (a reference to a variable whose value is not defined). Such cases
are represented by 0. Table 2 lists the dependency types and their representation.
Example 1: This example shows how the relationship between a pair of (affecting,
affected-by) transitions is represented. The EFSM M (Fig. 1) has three context variables v1,
v2, and v3. Consider transitions t2 and t3: t2 has an operation (opvc) that assigns a constant
value to v3 whereas the guard of t3 compares v3 to a constant (gvc) and so there is dataflow
dependence between t2 and t3 at v3. Further, there is no dependency on the other context
variables v1 and v2. Therefore, t2 is an affecting transition when it comes before t3, which is
an affected-by. From Table 1 (Row 10, Column 6), the associated penalty is zero. There is
no dependency between t2 and t3 at v1 and v2. Thus, in this case we represent the
dependency as a five-tuple. The first three fields record the dependency and penalty which
occur at each context variable (in this example we have three context variables) and the
fourth field, gp, records the sum of penalties of guards that do not involve context
variables. The last field is a Boolean used to record whether there is a dependency between
the considered transitions. The first three fields have two parts: the dependency type and
the associated penalty value.

The information in the above tuple can be read with the help of Tables 1 and 2 as: there is
a dependency between t2 and t3 at v3 where the dependency ends (when working
backwards from t3 to t2) with an assignment of a constant value and the associated penalty
is 0. In addition, there is no dependency at v1 and v2. Also, all guards of t3 involve context
variable and so the gp field has the value of 0.

The tuples are stored in a matrix, a relation matrix, to represent the dependencies and
penalties among all the transitions in a given EFSM. The matrix has size n x n where n is
the number of transitions in the considered EFSM. Affected-by transitions are rows
whereas columns represent affecting transitions. Each cell in this matrix has the form
described above and is computed once for the EFSM.
3.1.2. The Feasibility Metric
In this section we describe the feasibility metric. The aim is for low values to normally be
associated with FTPs where it is relatively easy to find associated input sequences. The
feasibility metric therefore penalises aspects that are likely to make it harder to find input
to trigger a TP. The intention is to use this feasibility metric when searching for TPs that
satisfy a test criterion: the search uses the feasibility metric to evaluate TPs.

Fig. 2 shows a description of the algorithm that calculates the feasibility metric. The
inputs are the relation matrix and a TP with length n > 1. The algorithm first considers the

Table 2. Assignment’s types representation
op Representation Meaning

opvp -1 An assignment to v that references a parameter and no context variables
opvc -2 An assignment of a constant to v.
opvv v1.. m An assignment to v that references context variables
nop 0 There is no assignment and so no dependency or open ended dependency

t2

t3 v1= 0 | 0 v2 = 0 | 0 v3 = -2 | 0

Dependency? gp: gpc&pp Assignment type | Penalty

True 0

13

penalty of any guard that does not involve context variables (Line 10). It then

treats the last transition as a potential affected-by transition and determines which previous
transitions are affecting (Line 13). If the current pair of transitions (tn-1, tn) forms a pair of
(affecting, affected-by) then a loop is entered (Line 16) to decide at which context
variables there is a dependency or a penalty to be incurred. There are two cases: (1) The
dependency type is in [-2..0], the related variable is set to be checked (Line 20) and if the
corresponding penalty is greater than 0 (Line 21), this is added. (2) The dependency type is
greater than 0 which means that the dependency may continue by an assignment
referencing context variables, the related variable is set to be checked (Line 26), and if the
corresponding penalty is greater than 0, then the dependency continues. Thus, the penalty
is added and a call is made to check to detect all previous assignments that are propagated
to the current context variable (Line 28).

The recursive check subroutine performs data dependence analysis by starting from
the context variable and affecting transition passed to the call and then working backwards
to find all previous transitions that may affect the value of the context variable (Line A10).
If an earlier transition tp is found to affect the context variable, then the subroutine finds
the type of the assignment (Line A12). If the assignment type is found to be less than 0
then the context variable is assigned either a constant or a parameter value. Then the
subroutine penalises referencing to a constant with 60 and to a parameter with 20 and stops
(no earlier assignments affect this assignment). If the assignment type is greater than 0, the

A TP feasibility metric
1. input: TP of length n, EFSM relation matrix
2. output: non negative integer value
3. goal: evaluate a TP complexity

4. initialize: result := 0; bool array [1..vk]
5. begin
6. for i := n downto first_transition
7. begin
8. bool array [1..vk]:= false;
9. j:= i;
10. result := result + [ti,tj].gp;
11. while (j > first_transition) do
12. begin
13. j := j -1;
14. if [ti,tj].dependency == true then
15. begin
16. for vs := v1 to vk do
17 begin
18. if ([ti,tj].vs(type) ≤ 0) and (not bool[vs]) then
19. begin
20. bool[vs] := true;
21. if [ti,tj].vs(penalty) > 0 then
22. result := result + [ti,tj].vs(penalty)
23. end;
24. if ([ti,tj].vs(type) > 0) and (not bool[vs]) then
25. begin
26. bool[vs] := true;
27. if [ti,tj].vs(penalty) > 0 then
28. result := result + [ti,tj].vs(penalty) + check(ti,tj,vs);
29. end;
30. end;
31. end;
32. end;
33. end;
34. return result;
35. end.

Figure 2. High level description of the algorithm that calculates the TP feasibility metric

Function check all of a transition dependencies
A1. input: TP, ti,tj,vs
A2. output: non negative integer value
A3. goal: trace back a flow dependence on variable vs

A4. initialise: result := 0; found := false;
A5. begin
A6. p := j + 1;
A7. while (p > first_transtion) and (not found) do
A8. begin
A9. p := p – 1;
A10. if [ti,tp].vs(type) ≠ 0 then
A11. begin
A12 case [ti,tp].vs(type) of
A13. -2 : result := result + 60;
A14. -1 : result := result + 20;
A15. 1..k : result := result + 40 + check(tp, tp-1, v1..k)
A16. end;
A17. found := true;
A18. end;
A19. end;
A20. if found then
A21. return result
A22. else return result + 60;
A23. end.

14

assignment references a context variable v′. Here, the subroutine penalises this referencing
by 40 and repeats the process by calling check with tp and v′ (Line A15). If the dependency
is open ended (depends on an undefined initial value of a variable) then 60 is added (Line
A22). When the subroutine stops (Line A21 or A22) it returns the sum of the penalties.
After the current pair of transitions (tn-1, tn) is scanned, another cycle starts to detect any
possible relation and penalty between the next pair (tn-2, tn) (Line 13) and so forth.
Example 2: Let’s consider the feasibility metric calculation of the TP t1t2t3t4 through M
(Fig. 1). For the considered TP, the following part of the relation matrix is required:

Dependency at v1 Dependency at v2 Dependency at v3 Pairs
(aff-by, aff) Type Penalty Type Penalty Type Penalty gp Dependency

?
t1 affected-by t1 -1 0 -1 0 0 0 16 False
t2 affected-by t1 -1 0 -1 0 0 0 0 False
t3 affected-by t1 -1 0 -1 0 0 0 0 False
t4 affected-by t1 -1 16 -1 16 0 0 0 True
t3 affected-by t2 0 0 0 0 -2 0 0 True
t4 affected-by t2 0 0 0 0 -2 0 0 False
t4 affected-by t3 2 32 0 0 2 0 0 True

The feasibility metric algorithm starts from t4 and checks whether it has guards that do not
involve variables, the gp field, see Fig. 1. However, t4 does not have such guards, so the
algorithm tests whether t3 affects t4. Since t4 has a guard that references v1, and t3 has an
assignment to v1, there is a dependency between (t3 (opvv), t4 (gvv)) at v1. Since the
dependency type is 2, the dependency continues through v2. Here, the algorithm collects
the penalty (32) (Row 6, Column 5 in Table 1) and calls check(t4,t3,v1) to detect earlier
transitions that affect the value of v1 through v2. The function check penalises this
referencing by 40 and then computes check(t3,t2,v2) to determine earlier transitions that
affect v2. From the relations matrix, t2 does not affect the value of v2, thus the function
considers a possible earlier assignment and so it performs check(t3,t1,v2). From the relation
matrix, t1 assigns a parameter value to v2 (assignment type = -1). Thus check penalises this
referencing by 20 and returns the total penalty to the main algorithm. The main algorithm
continues by determining whether the pair (t4, t3) has dependencies on the remaining
context variables v2 and v3. Since there are no such dependencies, the algorithm proceeds
to the next pair (t4, t2) in the path. Since t2 does not affect t4, the next pair of transitions is
checked (t4, t1). For this pair, there are two dependencies at v1 and v2 where both
dependencies end by an assignment of a parameter value. However, a dependency at v1
was previously detected, and so we know that the path from t1 to t4 is not definition clear
for v1. Thus only the dependency at v2 is considered and the penalty (16) is collected (Row
6, Column 4 in Table 1). Since t1 is the first transition, the algorithm has completed testing
all the relations between t4 and earlier transitions. Now, the algorithm proceeds to
determine the dependencies between t3 and the earlier transitions.

From the relation matrix, only t2 affects t3 at v3, and the dependency ends by an
assignment of a constant to v3. The algorithm collects the penalty (0) (Row 10, Column 6
in Table 1) and continues with (t3, t1). Again, t1 is the first transition and the algorithm has
completed testing all the relations between t3 and earlier transitions. Now, the algorithm
proceeds to determine the dependencies between t2 and the earlier transitions. Since t2 does
not have a guard, no penalty is incurred.

15

Finally, when the algorithm reaches t1 to determine its relations with earlier transitions, it
detects that t1 has guards that involve only parameters and constants, thus the value of gp
field (16) is added. Thus, the total penalty (124) of t1t2t3t4 is reported.
3.1.3. The GA Encoding for FTP Generation
The proposed FTP generation method uses the encoding technique from [36] in which a
TP is represented by a sequence of integers, each number defining a transition. Given an
EFSM with k states, let n1, n2.. nk be the number of transitions leaving each state. The
method calculates the lowest common multiple LCM of n1, n2,... nk. The last step is to
define the ranges r1, r2,... rk for each state as ri = LCM / ni. An individual is a sequence of
integers i1, i2,...in, each in [1.. LCM]. Each number ij is divided by the corresponding rj to
determine the transition it defines. Using this encoding, every individual defines a TP.

An alternative is to use the transition label number to map a sequence of integers to a
possible TP. However, this approach has the problem that not every sequence of integers
defines a TP that is syntactically correct; it might contain consecutive integers i and j such
that the transition represented by i cannot be followed by the transition represented by j.
Therefore, there can be a large number of generated TPs that are redundant.
Example 3: The EFSM shown in Fig. 1 has k = 3 states, n1 = 2, n2 = 2 and n3 = 2. Thus
LCM = 2 and r1 = 1, r2 = 1 and r3 = 1. If a sequence of integers is generated in the range
[1..2] i.e. <2, 1, 2> then by starting from the first state, the first number represents t2. Since
t2 ends at the second state, r2 has to be used and so the second integer represents t5.
Similarly, t5 ends at the second state and so by using r2 the last number represents t3. The
TP is therefore t2t5t3.

3.2. Phase 2: A Method for Generating an Input Sequence to Trigger an FTP
We have described a feasibility metric that aims to direct the choice of TPs towards those
that are feasible and relatively easy to trigger. Given a test criterion we can search for a set
of TPs, with good feasibility values, that satisfies the criterion. However, we still have to
find input sequences to trigger these TPs and in this section we describe a search-based
approach for solving this problem.

We need a fitness function to convert the problem of searching for a suitable test
case into an optimisation problem. If a given path, within a program, consists merely of
assignment statements any input can be used because the assignments form a single path
from which the execution flow cannot divert. Problems arise when a program’s path
contains conditional statements such as (IF, FOR and WHILE) for which the execution
flow may divert away from the test target. The work of Tracey et al. [37, 38] proposed a
fitness calculation method in the presence of conditional statements which considered test
case generation as a minimisation problem (see Table 3). This method is widely applied
when generating test cases to satisfy a condition (predicate) in a program’s path. Consider
for example a predicate (x < y), for which the search should locate suitable values for both
x and y. By referring to Table 3, the fitness value (also called a branch distance) is 0 when
(x –y < 0) which states that the current values of x and y satisfy the given predicate.
However, if the branch distance is not zero, it reflects how close the selected values were
to achieving the predicate (branch distance = x – y + k; where k > 0 is a constant added

16

when the guard is not satisfied). Thus, the smaller the branch distance is the closer the
selected values were to achieving the predicate.

Programs can have nested predicates and here the fitness function should reward a
test case that achieves more predicates. As a result, using only the branch distance to guide
the search can be insufficient and extra information is required. This is given in terms of
approach level or approximation level proposed by Wegener et al. [34]. The approach of
[34] is based on critical nodes, where a critical node is a conditional statement at which the
execution flow may divert. Then, the approach level measures how close a test case was to
executing the target statement by subtracting one from the number of critical nodes away
from the target (Equation 2). Since achieving more predicates should result in a smaller
(better) fitness, the branch distance is normalised to a value in the range [0..1] (Equation
1). In this way, the final fitness function consists of two components: branch distance and
approach level as shown in Equation 3.

Consider, for example, t1 in M (Fig. 1). This transition requires two inputs to satisfy four
nested predicates. By applying the fitness calculation method proposed by [34] (Fig. 3a),
the associated fitness function landscape (Fig. 3b) has a smooth downgraded surface. Such
a landscape provides the search with adequate guidance to progress towards its goal.

The fitness calculation method proposed by [34] is effective in structural testing
where the test target is represented as a single node in the main body of the function or the
program. However, this technique is not designed to cope with the case when the test
subject involves a sequence of calls to transitions. In this case, the test target is a sequence
of sub-targets (each transition in an FTP) that have to be achieved. Since a transition in an
EFSM can be considered to be a function with input parameters and conditions [33], the
problem of generating an input sequence to trigger a given FTP can be seen as finding
suitable input parameter values to be applied to each transition (function) in that FTP and
in the order that each transition appears in this FTP.

In order to describe the proposed fitness calculation method, consider the problem of
finding an input sequence that can exercise the FTP t1t1 through the EFSM M (Fig. 1). For

norm (branch_distance) = 1 – 1.05-(branch_distance) (1)

approach_Level= NumOfCriticalNodesAwayFromTarget – 1 (2)

fitness = approach_level + norm (branch_distance) (3)

Table 3. Tracey et al. fitness calculations for different types of guards. The
constant k, k > 0, is added when the guard is not satisfied.

Guard Fitness Calculation

Boolean if TRUE then 0 else k
a = b if abs(a − b) = 0 then 0 else abs(a − b) + k
a ≠ b if abs(a − b) ≠ 0 then 0 else k
a < b if a − b < 0 then 0 else (a − b) + k
a ≤ b if a − b ≤ 0 then 0 else (a − b) + k
a > b if b − a < 0 then 0 else (b − a) + k
a ≥ b if b − a ≤ 0 then 0 else (b − a) + k
¬ a Negation is moved inwards and propagated over a

17

such a path, the search should locate suitable input values (p1,p2) that successfully trigger
the first transition, t1, and then progress to find input values (p3,p4) that trigger the next t1.

The manipulation of a path in this way is similar to the structure of nested IF
statements where each IF statement compares the associated function’s return value with 0.
By applying the fitness calculation proposed by Wegener et al. [34] to each transition
(function) in a path, if a function is successfully triggered then its return value is 0
otherwise the return value reflects the fitness of the input values in respect only to this

particular function. Let’s refer to the return value of a function by function_distance. The
first transition in the path can be considered as the upper IF statement and then functions
which come next are treated as nested IF statements. Therefore, the fitness function for a
path can be derived in a similar way to the method proposed by Wegener et al. [34] for
nested predicates. That is, given an FTP, the function distance is calculated for each
guarded transition by applying the Wegener et al. approach (Equation 4). Then, any
transition that has guard(s) is considered a critical transition and so the value of
function_approach_level is derived by subtracting 1 from the number of critical transitions
away from the target transition (Equation 5). Finally, the path fitness is the sum of
function_approach_level and the normalised value of function_distance at the transition
where the execution flow was diverted (Equation 6).

Let’s consider the path t1(p1,p2) t1(p3,p4) in M (Fig. 1). By applying the proposed
fitness calculation (Fig. 4a), the associated fitness function landscape (Fig. 4b) appears to
have a smooth and downgraded surface, which can provide search with guidance towards
its goal.

In an EFSM, a transition’s guards can be sequenced as nested IF statements (as
shown in Figure 1.4) or linked by AND and OR. In order to apply the proposed feasibility
metric, guards linked by AND operators are represented as nested IF statements.

If guards are linked by OR, a transition is split into a number of transitions equal to
the number of OR operators + 1. One benefit of this is that the test considers satisfying
each predicate/condition in a guard. However, the alternative would be to use the

Figure 3: An example of a fitness calculation by using Wegener et al. (2001) approach.

 Double t1(int p1, int p2)

 {if p1 >= 10

 if p1 <= 20

 if p2 >= 0

 if p2 <= 10

 result = 0 //Test Target achieved

 else result = Norm(abs(b - 10))

 else result = Norm(abs(b - 0)) + 1

 else result – Norm(abs(a - 20))+ 2

 else result = Norm(abs(a -10)) + 3 }

 }

b. The associated fitness landscape

 a. The fitness calculation

P1 P2

function_distance = norm (branch_distance) + approach level (4)

transition_approach_level = NumOfCrticalTransAwayFromTarget – 1 (5)

path_fitness = norm (function_distance) + transition_approach_level (6)

18

minimum fitness value for a set of conditions linked by OR operator as proposed by [35].
3.2.1. GA Encoding for Input Sequence Generation
A solution encoding can be selected on the basis of the input parameter types. It is possible
to use binary or integer encoding when all of the considered input parameters are integers;
however, if some of the input parameters are of double data type then real valued encoding
can be used. A candidate solution that represents a test sequence consists of components
where each component represents one input parameter. For example, a possible solution
encoding of the path shown in Fig. 4 consists of four components of type integer.
4. Experiment

In this section we describe experiments in which the proposed technique was used to
generate test cases from five EFSMs and the results compared with a random approach.
4.1. Experimental Design

The experiments used five EFSMs: Lift EFSM, In-Flight safety EFSM, ATM EFSM,
Class 2 protocol EFSM and Inres initiator EFSM. Both Lift and In-Flight EFSMs are
synthesised case studies whereas the rest of the EFSMs were taken from the literature.
Details of these EFSMs are given in Appendix A.

In designing the experiment, we aimed to evaluate the effectiveness of the proposed
approach. In order to achieve this, we considered two factors, the first relating to the length
of the TPs. That is a short TP is likely to be easy to trigger since it has few guards and
operations. Since the subject EFSMs had 15-31 transitions, we considered TPs of lengths
9, 12 and 15 to be sufficient to avoid the impact of this factor. We used these values since
for each transition t there was a TP of length 9 or less that contained t. However, the
approach is designed to generate any possible TP length and so can be used to produce
other TP lengths. The second factor is related to the EFSMs used. We used a random
approach to give an indication of the difficulty of test case generation for these EFSMs.
For each EFSM we use a random approach with two phases that are similar to the
proposed approach. The first phase generates random TPs from each EFSM and then the
second phase generates random input sequences to attempt to trigger the randomly
generated TPs.

For each EFSM, we generated three sets of TPs using the proposed approach. The
first set contained TPs of length 9, the second contained TPs of length 12 and the third
contained TPs of length 15. Each set provided a transition coverage test suite for the

 double Path_t1_t1(int p1, int p2, int p3,

int p4)

 {if t1 (p1, p2) = 0

 if t1 (p3, p4) = 0

 result = 0 //Target achieved

 else result = Norm(t1(p1,p2))

 else result = Norm(t1(p3,p4)) + 1

 }

b. The associated fitness landscape

a. The proposed fitness calculation

Figure 4: An example of calculating a path fitness approach by using the proposed approach

t1(P3,P4) t1(P1,P2)

19

considered EFSM. That is, each TP in a set is responsible for covering one transition in the
EFSM. Naturally, this leads to more TPs than is necessary but the redundancy provides
additional experimental subjects. For ease of reference, each of the three sets of TPs that
was derived from an EFSM using the proposed approach will be referred to as a group of
TPs. After TPs were generated, the second phase of the proposed approach was applied to
each generated TP to try to generate an input sequence that can execute this TP.

Similarly, the random approach was also applied to each EFSM to generate three
similar sets of TPs (alternative group of TPs); for each group of TPs there was an
alternative group of TPs containing TPs with the same length and each set provided
transition coverage. Then, the second phase of the random approach was applied to each
randomly generated TP to try to execute it.

When trying to execute the generated TPs, if a given TP was executed, then this is an
FTP. If a given TP was generated and had a TP feasibility metric > INF, then this TP is
definitely infeasible. If a generated TP had a TP feasibility metric < INF and a test case
could not be generated to execute this TP (all attempts to trigger this TP were
unsuccessful) then we manually inspected this TP to decide whether it was infeasible.

The proposed search-based approach and the random approach were implemented by
using the publicly available Genetic and Evolutionary Algorithm Toolbox for Matlab
GEATbx [39]. A detailed description of each of the GEATbx parameters used is beyond
the scope of this paper. However, these parameters are fully explained at the GEATbx
website [39] and we record the values used here to allow the experiment to be replicated.

For the proposed approach, an integer valued encoding was used to represent
individuals. The population size was 100, a value determined through preliminary
experiments. However, by using the approximation in [66] of Goldberg’s work [65] for
real valued genetic algorithms we get a population size of O(100) for a ten gene problem
where each gene consists of 10 bits (1024 possible values), which matches our choice
almost exactly. Selection was linear-ranking with selective pressure set to 1.8. Discrete
recombination was used to recombine individuals. Discrete recombination between two
individuals (parents) x: x1..xn and y: y1..yn is performed by selecting one component from
one of the parents at a time (either xi or yi) with equal probability. The mutate integer
method was used for mutation where each component from a given individual is mutated
with a probability equal to 1/ number of components in this individual. This value for
mutation means that each child has a relatively small amount of change done to it by
mutation (on average one change), and thus will not undo the work by the crossover
operator. For TP generation, each individual consisted of 9, 12 or 15 integers for the three
sets of TPs. The range of values allowed for each variable varied according to the EFSM
as previously described in Subsection 3.1.3. For input sequence generation, each individual
consists of 25 integers, which represent the maximum number of input parameters required
by a TP. The range of values allowed for each variable was [0..1000]. Thus, the input
domain used with each TP had 1×1075 possible candidate solutions. Search terminated if
the fitness value of zero was achieved or a maximum number of 1000 generations was
reached. Finally, for each TP we repeated the search ten times.

For the random approach, GEATbx allows the use of a standard random approach by
setting the recombination and mutation methods to “recnone” and “mutrandint”

20

respectively. The rest of the settings in terms of individuals encoding, population size and
maximum number of allowed generations were the same as that of the proposed approach.

4.2. Experimental Results
Fig. 5 shows the results for the five EFSMs. A total of 72 TPs were generated for the Lift
EFSM. Fig. 5a shows that all of the TPs were FTPs. The average TP feasibility metric
value of the generated FTPs was approximately 127. Furthermore, Fig.a5a shows that the
GA search that generated input sequences always required more than 600 generations2.

For the In-Flight EFSM, 93 TPs were generated. Fig. 5b shows that all of these TPs
were FTPs with an average TP feasibility metric value of 113. In the GA search that
generated the input sequences, some FTPs were triggered as early as one generation. This
suggests that the first phase generated TPs that are easy to trigger in the second phase.

The results for the ATM EFSM are shown in Fig. 5c. 87 of the 90 TPs were FTPs
and 3 were infeasible. The FTPs had an average feasibility metric of 55. The GA search
for input sequences did not require more than 600 generations and many FTPs were
triggered relatively quickly. The three infeasible TPs had a feasibility metric value of 208;
they were not identified as definitely infeasible. When we examined the ATM’s
transitions, we found that the guard of t3 is (attempt =3) and this cannot be satisfied unless
t2 previously occurred three times. Such behaviour cannot be easily estimated (by penalty
values) and so any TP that included t3 is likely to be infeasible. All of the infeasible TPs
included t3 without sufficient occurrences of t2.

For the Class 2 EFSM, there were 63 generated TPs and all these TPs were FTPs as
observed in Fig. 5d. The average TP feasibility metric for these FTPs was 15. Compared to
the previous EFSMs, the Class 2 EFSM appears to have better TP feasibility metric values.
Fig. 5d shows that the maximum number of generations did not exceed 30.

For the Inres initiator, 36 of the 45 TPs were FTPs. The average TP feasibility metric
value of the FTPs was 7. Similar to the previous EFSM, for all FTPs, the GA search that
generated input sequences did not require more than 35 generations. However, 9 TPs were
infeasible but associated with a TP feasibility metric value < INF. We found that
transitions t4, t9 and t12 have guard (counter ≥ 4) that references a counter variable. Any
TP that includes one of these transitions requires other transitions to previously occur a
certain number of times. For example, t3 must occur exactly four times before the t4 can be
taken. Similar to the ATM, TPs that included one of t4, t9 or t12 were infeasible.

Table 4 summarises the results derived from the five EFSMs. From this table, the
Lift EFSM is associated with the highest average FTPs feasibility metric value whereas the
Inres initiator EFSM has the lowest average FTPs feasibility metric value. By calculating
the average number of generations that was required to trigger all the FTPs in each EFSM,
Fig. 5f plots the average feasibility metric of each EFSM as reported in Table 4 against the
average number of generations required to trigger all the FTPs in that EFSM.

2All experiments were conducted on a PC with Windows® XP Service Pack 3 OS, Intel® Pentium® 4 CPU 2.80 GHz 2.79 GHz and
1.24 GB of RAM

21

a. The group of TPs derived from the Lift EFSM b. The group of TPs derived from the In-Flight

EFSM

c. The group of TPs derived from the ATM EFSM d. The group of TPs derived from the Class 2

EFSM

e. The group of TPs derived from the Inres Initiator

EFSM

f. Each dot represents the average feasibility metric of
all FTPs in one EFSM vs. average GA generations to

trigger all FTPs in the same EFSM
Figure 5: Results of the proposed approach on the five EFSM case studies. Graphs a, b, c, d and e
plots TPs feasibility metric vs. the average generations of the GA search to generate an input
sequence to trigger the FTP in ten tries. Plot f shows (for each EFSM) the average feasibility metric
of all FTPs vs. the average GA generations to trigger all the FTPs.

22

From Fig. 5f, there is clearly a trend between the average feasibility metric of an EFSM
and the average number of generations required to trigger the FTPs in this EFSM.

Table 4 also shows that for the Lift, In-Flight and Class 2 EFSMs, the proposed
approach had a success rate of 100%. However, for the ATM and Inres initiator EFSMs,
the success rate of the first phase of the proposed approach was 96.6% and 80%
respectively and the success rate of the second phase was 100% for both EFSMs. By
considering all the EFSMs, the total success rate of the first phase was 96.7% and for the
second phase was 100%.

The first phase of the proposed approach on ATM and Inres initiator did not achieve
100% success rate due to both EFSM suffering from the counter problem. The counter
problem seems to impact the TP generation phase (the proposed TP feasibility metric)
since a TP that references a counter variable requires a specific transition sequence in
order to be feasible. It appears to be difficult to identify such cases using static data flow
dependencies formulated as penalty values. The counter problem requires additional
analysis and an initial approach to overcome the counter problem was introduced in [40].

Table 5 summarises the results achieved with the random approach. For both Lift
and In-Flight EFSMs, the random path generator could not generate any feasible TPs and
so the random approach had a success rate of 0%. For the ATM EFSM, the random
approach generated 49 FTPs out of 90 TPs (success rate ≈ 54.4%). However, the random
input generator failed to trigger any of these 49 FTPs (success rate = 0%). The random
path generator performed similarly on the Class 2 EFSM where it generated 37 FTPs out
of 63 TPs (success rate ≈ 58.7%). Furthermore, the random input sequence generator was
able to trigger 32 FTPs (success rate ≈ 86.5%). For the Inres initiator EFSM, the random
approach generated 7 FTPs out of 45 TPs (success rate ≈ 15.5%) and triggered 5 FTPs
(success rate ≈ 71.4%). Finally, the overall success rate associated with random path
generator was approximately 26.6% and that associated with random input sequence
generator was approximately 39.8%.

 Table 5: Summary of the results achieved by the random approach on five EFSM case studies
Success rate

 EFSMs Total
TPs FTPs Infeasible

TPs
Avg .FTPs
Feasibility FTPs generation Input sequence generation

Lift 72 0 72 − = 0% = 0%
In-Flight 93 0 93 − = 0% = 0%
ATM 90 49 41 ≈ 219 ≈ 54.4% = 0%
Class 2 63 37 26 ≈ 41 ≈ 58.7% ≈ 86.5%
Inres 45 7 38 ≈ 19 ≈ 15.5% ≈ 71.4%
Total 363 93 270 − ≈ 25.6% ≈ 39.8%

 Table 4: Summary of the results achieved by the proposed approach on five EFSM case studies
Success rate

 EFSMs Total
TPs FTPs Infeasible

TPs
Avg .FTPs
Feasibility FTPs generation Input sequence generation

Lift 72 72 0 ≈ 127 = 100% = 100%
In-Flight 93 93 0 ≈ 113 = 100% = 100%
ATM 90 87 3 ≈ 55 ≈ 96.7% = 100%
Class 2 63 63 0 ≈ 15 = 100% = 100%
Inres 45 36 9 ≈ 7 = 80% = 100%
Total 363 351 12 − ≈ 96.6% = 100%

23

The results achieved with the random approach show that generating FTPs and input test
sequences from the considered EFSMs is not an easy task. Nevertheless, the results
achieved by the proposed approach showed a significant success rate and demonstrated the
effectiveness of the proposed search-based approach.

5. Statistical Study
This section describes the results of experiments that explored the relationship between the
feasibility metric value of a TP and the effort required to find test input to trigger this TP.
5.1 Design

The results of the proposed approach, discussed in Section 4, seem to indicate that the
proposed search-based approach generates FTPs whose feasibility metric value reflects the
effort (such as time or number of generations) required to find input sequences to trigger
them. Furthermore, it is useful to understand whether it is possible to predict the effort
required to find an input sequence to trigger a TP by considering only its feasibility metric
value. Thus the aim of the statistical study reported in this section was to answer two
questions: For the FTPs generated by the proposed approach (1) is there a correlation
between FTPs feasibility metric values and the effort (time and / or generations) required
to trigger this FTP? (2) Can an FTP feasibility metric value be used to predict this effort?
If the answers to these questions are positive then there is scope to use the feasibility
metric to direct the choice of TP towards those for which it is easier (or harder) to find test
input. In order to answer these two questions, there are two factors to be considered.

The first factor is related to using alternative input sequence generators. In the
experiment, we used a GA to generate input sequences to trigger the generated TPs. It is
useful to use another (non search-based) approach to generate such input sequences and we
used a constraint solver. The second factor is related to the results observed from the
experiment. We performed two sets of analysis, one where we analysed the results as a
whole (non-clustered in Section 5.2) and the second where we grouped and averaged
results with the same feasibility metric value (clustered in Section 5.3). The motivation
behind this was to see if there was any bias in results with the same fitness, i.e. if a
particular fitness value appeared more than once in the results data, then there would be
more data rows corresponding to that row. Grouping the data according to feasibility
metric value ensures that each unique feasibility metric value only appears once.
Averaging also tries to address any high variability in the results and any over large
outliers.
5.1.1 Using Constraint-Based Testing (CBT) to Generate Input Sequences
Constraint-Based Testing (CBT) expresses the problem of test case generation in terms of
solving a set of constraints. These constraints are derived by symbolically executing a
given path [41]. If a path is symbolically executed, the resultant constraints can be of two
types: equality constraints and inequality constraints. Let e and e' be expressions:

1. An equality constraint can be given as e = e' where both e and e' are constants, or e
contains input parameters and e' is a constant.

2. An inequality constraint can be given as e ≤ 0 where either e is a constant or e
contains input parameters.

24

Given a set of equality and inequality constraints, a solver can be applied to try to find
values of the parameters for which all the constraints hold. As mentioned previously, an
FTP can be seen as functions to be called in a sequence. Given this description, a set of
constraints from a given path can be derived through the following steps:

1. Rename the input parameters for each transition in the path so that all the input
parameters have unique names.

2. By starting from the first transition, for each transition, then for each assignment
statement, replace a context variable by the expression that is assigned to it using
the input parameters and current values of context variables. If the transition
contains guards, then for each guard that involves a variable, replace this variable
by its current value in terms of parameters and constants.

3. If there is a transition that still has guards that reference context variables, the given
path cannot be executed since the values of these variables are not yet defined.
Otherwise, the resultant list of guards is a set of constraints that reference only
input parameters and constants.

The set of constraints can be given to a solver in order to try to find suitable values for the
input parameters included in the constraints. If the set of constraints are solved, the values
returned by the solver comprise an input sequence that can exercise the considered FTP.

For convenience, we will refer to the proposed input sequence generator by GA and
to the alternative constraint-based testing one by CBT. For the CBT approach, each FTP
was transformed to a set of constraints and a solver, constrained nonlinear minimisation
fmincon [42], was applied. A detailed description of the solver’s parameters is provided in
the MATLAB website; the values that were used are recoded here to allow replication. The
range of values that the solver can search was set to [0..1000] while the initial solutions of
the considered variables were randomly generated in the range [0..1000]. For each FTP,
the solver was called ten times to try to find an adequate input sequence and then the
average time required by the solver in the ten tries was calculated.

In order to answer the two questions, statistical software was used. For the first
question, Pearson correlation was computed between FTP feasibility metric values and the
CBT time, the GA time, and the GA generations required to trigger these FTPs. In Pearson
correlations, there are two main outputs. The first output is the correlation coefficient r and
the second output is the p value. The r value can be in the range [-1..1] where the range
boundaries state a perfect correlation. Other values of r are classified to three categories
[43]: (1) a small correlation when 0.10 ≤ r ≤ 0.29, (2) a medium correlation when 0.30 ≤ r
≤ 0.49 and (3) a large correlation when r ≥ 0.50. The p value determines the confidence in
the results where p < 0.05 denotes a statistically significant result.

We performed a linear regression. In linear regression, there is a dependent variable
and one or more independent (or explanatory) variables. In this case we had only one
independent variable, the feasibility metric value, and we used either GA time or CBT
time as the dependent variable. Also, there are two hypotheses: the null hypothesis which
states that the independent variable has a zero impact on the dependant variable whereas
the other hypothesis states that the independent variable does impact the dependent one.

25

The important outputs of a linear regression are:
1. The coefficient of determination or R Squared (RS) which states how much the

independent variable is capable of explaining the variance in the dependent
variable. The range of RS values is [0..100]%.

2. The F ratio significance (Sig) which states the confidence (1 − Sig) by which the
null hypothesis can be rejected (usually when Sig < 0.05).

3. The line fit plot which shows the trend by which the estimation can be performed.

5.2. Statistical Study on FTPs without Clustering
5.2.1. Correlation Study

The CBT approach described in the previous subsection was applied to each generated TP
ten times in order to try to solve the TP constraints. The generated TPs for each EFSM are
the same TPs generated from the first phase and reported in Fig. 5. The results showed that
the CBT approach was successful in triggering all the FTPs that were generated from the
five EFSM case studies. Infeasible TPs that were identified previously were also reported
as unsolvable constraints by the solver. Fig. 6a shows the performance of the CBT
approach on all the FTPs in terms of the average time that was required by the solver to
trigger each FTP. Fig. 6b shows the performance (observed previously on Fig. 5) of the
GA search that generated input sequences to trigger the same FTPs. From both Fig. 6a and
Fig..6b, it is clear that the CBT approach was much faster than the GA search. This could
be explained by noticing that all the guards in the considered EFSM are linear, which
assists CBT. Furthermore, guards that includes the equal operator {=} are known to be the
hardest for a GA search to satisfy. However, for the CBT technique they often are simply
assignments that must be applied before trying to solve the remainder inequality
constraints. Although the CBT approach was found to be more efficient than the GA
search, the applicability of the CBT approach remains the main concern. For example,
solving a set of non-linear constraints over integer variables is generally undecidable [44].
There are at least two additional factors that may have made the CBT approach faster.
First, we separately symbolically executed the TPs: the results might have been quite
different if we had used a tool for symbolic evaluation and included, in the CBT results,
the time it took. Second, the CBT approach was implemented using a professional CBT

a. CBT approach to trigger all the FTPs b. GA search to trigger the all FTPs

Figure 6. The performances of the GA and CBT approaches on all subject FTPs.

26

tool while the GA was applied using our prototype tool. As a result of these two factors, it
is not surprising that CBT was significantly faster than the GA and the trends are of most
interest. However, it may transpire that a mixed approach is sometimes best, in which
paths are chosen using the GA and test input generated by CBT.

Table 6 shows the correlations from the FTPs in the GA group. Here, all the
correlation values are statistically significant at p < 0.01 (shown by a *). The achieved
correlation shows that there was a strong positive correlation (r = 0.798) between the
feasibility metric and the required GA time in seconds to trigger the FTPs. Similarly, there
was a strong positive correlation (r = 0.791) between the feasibility metric and the required
GA generations to trigger the FTPs. Unsurprisingly, the relationship between the GA time
and GA generations was found to be almost perfect (r = 0.999). Furthermore, the
correlations between the feasibility metric and the required CBT time in seconds to trigger
the FTPs was also found to be positive and strong (r = 0.864). This shows that for the
considered test cases generators (GA and CBT), there was a strong agreement on their
performances (r = 0.851). Greater feasibility metric values were associated with more GA
time or CBT time. It was interesting to see the strong correlation between CBT time and
GA time/generations.
5.2.2. Regression Analysis
Liner regression analysis was performed on the generated FTPs. The independent variable
was the feasibility metric whereas the dependent variables were the GA time and CBT
time. The number of GA generations was not considered in this analysis since this was
found to have an almost perfect correlation with GA time.

Fig. 7 reports the results of the regression analysis in terms of RS and Sig values and
the fitness line fit plot. Fig. 7a and Fig. 7b show the predictions of GA time and CBT time
respectively. From Fig. 7a, the regression analysis reported that the feasibility metric
contributes significantly to the prediction of the GA time (Sig < 0.001) and the null
hypothesis is rejected. Furthermore, the feasibility metric explains 64% of the variance in
the GA time. Fig. 7b also shows that the feasibility metric contributes significantly to the
prediction of the CBT time (Sig < 0.001). The feasibility metric here explains 75% of the
variance in the CBT time.
5.2.3. Summary of the Statistical Analysis on FTPs without Clustering
The results of the correlation study can answer the first question about the relationship
between the feasibility metric and how much effort, in terms of time, that is required by an
input sequence generator to perform. There was a strong positive correlation between the
feasibility metric and the time required by an input sequence generator (CBT or GA) to
trigger the FTPs. The strength of the relationship was almost the same even though

Table 6: FTPs (no clustering) - Correlation among FTPs’ feasibility metric, GA average
generations, GA average time and CBT average time.

	
 Feasibility metric	
 GA Gen.	
 GA time	
 CBT time	

Feasibility metric 1
GA Gen. 0.791* 1
GA time 0.798* 0.999* 1
CBT time 0.864* 0.847* 0.851* 1
* Correlation is significant at the p < 0.01 level (2-tailed).

27

different input sequence generators were used. Greater FTP feasibility metric values were
found to be associated with more time by an input sequence generator to trigger an FTP.

The results from the regression analysis led to an important finding that answers
the second question. The feasibility metric has the potential to predict the effort of an input
sequence generation approach (explains from 64% to 75% of the variance in effort).
5.3. Statistical Study on Clustered FTPs

In this study, the TPs with the same fitness were clustered. For each cluster, the
corresponding GA time, GA generations and CBT time values were averaged. The
correlation study was then conducted again on the clustered FTPs.
5.3.1. Correlation Study
Table 7 shows the correlation results obtained from the clustered FTPs. All the achieved
correlations were statistically significant at p < 0.01. The feasibility metric had strong
positive correlations with both the GA time (r = 0.851) and GA generations (r = 0.847)
respectively. Furthermore, the correlation between the feasibility metric and the CBT time
was also positive and strong (r = 0.904). Moreover, more GA time or generations was
strongly associated with more CBT time (r = 0.919).
5.3.2. Regression Analysis
The linear regression was applied to the clustered FTPs. Fig. 8 reports the linear regression
analysis of the feasibility metric and the GA time and also of the feasibility metric and the
CBT time. Fig. 8a shows that the feasibility metric contributes significantly to the
prediction of GA time (sig < 0.001). Furthermore, the feasibility metric is found to explain
72% of the variance in the GA time. Similarly, Fig. 8b reports that the feasibility metric
makes a significant contribution to the prediction of the CBT time (sig < 0.001). 81% of
the variance in the CBT time is explained by the feasibility metric.
5.3.3. Summary of the Statistical Analysis on Clustered FTPs
The results of the correlation study on the clustered FTPs answers the first question in a
similar way to that derived from FTPs without clustering. There was a strong positive
correlation between the feasibility metric and the time required by an input sequence
generator (CBT or GA) to trigger the FTPs. Compared to the correlation results obtained

a. Predicting GA time to trigger an FTP b. Predicting CBT time to trigger an FTP

Figure 7. The line fit plots for predicting GA time and CBT time to trigger an FTP.

28

from the FTPs without clustering, these values clearly show an improvement in the
strength of these correlations (see Table 6). Therefore, clustering the FTPs has led to
stronger associations among the considered factors.

For the second question, the regression analysis on the clustered FTPs also provides
a similar answer to that observed on the FTPs without clustering. The feasibility metric has
the potential to predict the effort of an input sequence generation approach (explains from
72% to 81% of the variance in efforts). Compared to the linear regression analysis that was
performed without FTPs being clustered (see Fig. 7), the feasibility metric is better able to
predict both the GA time and CBT time when clustering was applied.

5.4. Threats to validity
In this subsection we discuss the potential threats to the validity of our study. Threats to
external validity are the conditions that restrict our ability to generalise our results. The
main threats to external validity of this study are related to (1) the proposed TP feasibility
metric penalties and (2) the achieved experimental results.

The proposed TP feasibility metric penalties, though they led to significant
outcomes, are by no means definitive and research would be useful to calibrate these
values further. It would also be interesting to run sensitivity analysis simulations to
determine how robust the method is to small random changes in the penalties. In addition,
there may scope to adapt them to properties of the EFSM and, in particular, its size. It is
particularly important to note that INF, used in the feasibility metric, was given a value
that ensured that any TP determined to be definitely infeasible would have a higher
(worse) fitness value than one that was not. If longer paths are to be used then the value of
INF should be updated in order to ensure that this property still holds. In addition to the

a. Predicting GA time to trigger an FTP b. Predicting CBT time to trigger an FTP

Figure 8. The line fit plots for predicting GA time and CBT time to trigger an FTP.

Table 7: FTPs (clustered) - Correlation among FTPs’ feasibility metric, GA average
generations, GA average time and CBT average time.

	
 Feasibility metric	
 GA Gen.	
 GA time	
 CBT time	

Feasibility metric 1
GA Gen. 0.847* 1
GA time 0.851* 1.000* 1
CBT time 0.904* 0.919* 0.919* 1
* Correlation is significant at the p < 0.01 level (2-tailed).

29

choice of penalty values, we only used one metaheuristic search technique. It would
therefore be interesting to explore how effective the approach is when using other
metaheuristics such as Simulated Annealing or Hill-Climbing.

Since the experimental results were derived from five EFSM case studies, we do not
know to what extent the performance can be generalised. Three of the EFSMs were taken
from the literature while we produced the other two. We used EFSMs for two different
classes of system: two protocols and three control systems. The use of EFSMs for different
types of system provides us with some additional confidence that the results will
generalise. However, there would be value in repeating the experiments with additional
EFSMs, although many studies use fewer than five EFSMs due to the shortage of
published EFSMs that have non-trivial guards.

An additional factor that could influence the experimental results is the parameters
used in the GA. We tried to limit this effect by basing the values used on recommendations
in the literature. However, these values might not work well for other case studies. It
would be interesting to perform a sensitivity analysis to determine how the results of the
experiments change as we vary the GA parameters.

The main internal threat relates to the possibility of faults in our prototype tool, the
CBT tool, or the tool used for the statistical analysis. We reduced the scope for faults by
using commercial tools to provide the GA, the CBT, and the statistical analysis. In
addition, we carefully checked and tested our implementation.

6. Related work
Many test generation approaches for systems modeled as EFSMs appear in the literature
[16] , [17] , [18] , [36], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57]. A major portion of the previous work can be categorised to three main groups:

1. Rewriting an EFSM to construct another form of EFSM which does not suffer from
the path feasibility problem, see e.g., [16, 17, 45, 46].

2. Converting an EFSM to an FSM so that FSM-based testing techniques can be
applied, see e.g., [45, 47-49].

3. Using symbolic execution and constraint satisfaction methods to check path
feasibility and to generate path test data, see e.g., [50-52, 54].

The first category aims to overcome the problem by producing an EFSM in which all paths
are feasible. However, there is no general algorithm for solving this problem. The
automated approaches impose significant restrictions on the EFSMs. For example, they
require that all actions and guards are linear. Thus, while approaches such as those
described in [16, 17], are extremely useful for some classes of system, they lack generality.
In addition, the work in this area did not consider the problem of generating test cases to
cover the FTPs produced from the transformed EFSM. Finally, it may be difficult to use
the transformed EFSM, in which all paths are feasible, as the basis of producing test cases
that satisfy a test criterion expressed in terms of the original EFSM.

There are two main approaches within the second category: either the data is
expanded to form an FSM or the data is abstracted out. The first approach can lead to the
state explosion problem: the size of the resultant state space is exponential in the number
of variables. The second approach can suffer from the path feasibility problem since a path
in the FSM formed by abstracting an EFSM may not correspond to an FTP in the original
EFSM [58]. The approaches that abstract the EFSM to produce an FSM are part of the

30

motivation for the work in this paper: we may be able to adapt these approaches to use the
proposed feasibility metric. This would lead to new test generation methods that produce
paths from the abstracted FSM that are likely to be feasible in the corresponding EFSM.
Naturally, a method might be iterative: if a chosen path is found to be infeasible, or we fail
to find a test case to trigger it, then we might produce a different path with good fitness.

Finally, approaches based on the last category are affected by the applicability
limitations of symbolic execution and constraint satisfaction techniques [4, 44]. For
example, solving a set of non-linear constraints over integer variables is generally an
undecidable problem [44].

There are also other approaches that apply program testing techniques to test from an
EFSM [18, 55]. An approach which employs software dataflow testing to derive a test
sequence from EFSM models is presented in [18]. The selection of each test case depends
on identifying all the associations between each output and all the inputs that affects that
output. However, the approach essentially defines a test criterion rather than showing how
test cases can be produced to satisfy a test criterion. Work has also generated test
sequences from an EFSM by employing functional program testing [55]. The approach
converted the specification written in Estelle [59] into a simpler form in order to construct
control and data flow graphs to be used in test sequence derivation. However, these
approaches did not consider the path feasibility problem.

Recent work has investigated the use of data flow when testing from UML
statecharts [60]. Similar to [18], the focus was on defining and analysing dataflow, rather
than on input sequence generation. The use of UML statecharts provides additional
challenges because there is a need to analyse OCL guards. The authors then show how the
result of dataflow analysis can be used to choose a transition tree: alternative transition
trees provide different coverage of dataflow. The idea here is that there are alternative
transition trees and the tester might choose between them on the basis of dataflow
information. There is the potential to combine the dataflow analysis reported in [60] with
the feasibility metric proposed in this paper in order to return a transition tree that has good
dataflow coverage and whose paths are likely to be feasible.

Approaches that utilise search algorithms to test from EFSMs are introduced in [36,
56, 57]. The approach proposed in [57] describes a fitness calculation method to find an
input sequence for a path. The considered fitness function applies the Tracey et al. [35]
technique to each transition in a path. Path fitness is defined by considering each function
in the path as a critical node. The limitation of this study is the assumption that each
function does not have an internal path i.e. nested IF statements for which the Tracey et al.
[35] approach does not always provide a sufficient guidance as argued in [5]. Furthermore,
the work did not consider the problem of choosing a path that is likely to be feasible. In
[36, 56] a GA was used to generate FTPs from an EFSM model. The approach evaluated
the feasibility of a given TP according to the number and the types of guards found in that
TP. However, the dependences between transitions in a path were not considered.

To summarise, while there has been significant interest in testing from an EFSM,
there has been little work that uses search-based techniques. In addition, there has been
almost no work that attempts to overcome the infeasible path problem in EFSMs and such
work either has not been implemented or relies on the guards and operations being linear.

31

7. Conclusion
Although the EFSM is a powerful model and has been widely applied, testing from this
model is a challenging task for two reasons: some paths may be infeasible and it may be
difficult to produce an input sequence to execute a feasible transition path. Despite the fact
that optimisation algorithms have proven to be effective in automating software testing,
previously these have mainly been applied to white-box testing.

Many test criteria, for testing from an EFSM, require that certain parts of the EFSM
are executed or reached in testing. Such criteria can be seen as placing requirements on the
paths of the EFSM triggered by the chosen input sequences. For such criteria, one
approach to finding a suitable set of input sequences is to first choose a set of transition
paths that satisfies the criterion. It is important that the transition paths chosen are feasible
but we also want to find input sequences to trigger them.

This paper addressed this problem by proposing an integrated search-based approach
that has two phases. In the first phase a TP feasibility metric is used to guide a search
towards paths that are likely to be feasible and that satisfy a give test criterion such as
transition coverage. The second phase uses a fitness function that guides a search for an
input sequence to exercise a given feasible TP.

We carried out experiments using five EFSMs with the aim of evaluating the
proposed approach. A total of 363 transition paths were generated using the proposed TP
feasibility metric. For each path, the proposed input sequence generator was applied to try
to trigger it. Furthermore, we used a random approach to generate similar alternative TPs
and also to generate input sequences to trigger the randomly generated TPs. Experimental
results showed that the proposed feasibility metric successfully guided a GA search
towards paths that are feasible with an accuracy rate of approximately 96.7%. The
remaining 3.3% of paths were found to be infeasible due to a counter problem.
Furthermore, the proposed input sequence generation method was found to be effective
and successfully triggered all of the generated feasible paths (success rate = 100%). The
results of the random approach showed that generating feasible transition paths from the
considered EFSMs is not an easy task. Also, the random approach was not effective in
generating input sequences to trigger the randomly generated FTPs. The overall success
rate associated with the random approach was approximately 25.6% for FTPs generation
and approximately 39.8% for input sequences generation.

We used a constraint based testing technique as an alternative method to generated
input sequences to trigger the generated FTPs. Then, we performed a statistical analysis to
investigate two questions: (1) the relationship between an FTP feasibility metric value and
the effort, in terms of time3, that is required to trigger the FTP. (2) Whether the feasibility
metric can be used to predict such effort. Results show that there was a statistically
significant correlation between the FTPs feasibility metric and the time that is required by
both the proposed input sequence generator and the alternative constraint based input
sequence generator. Interestingly, there was also a statistically significant agreement in the
performance of the two input sequence generators although they used different techniques.
Finally, the regression analysis showed that the proposed feasibility metric can potentially

3 For the GA we looked at both GA time and number of generations but obtained almost identical results with these.

32

predict the effort by an input sequence generator to trigger an FTP. The feasibility metric
was found to explain from 64% to 82% of the time variance.

Further research will investigate the scalability of the proposed approach by using
different EFSM case studies. Furthermore, other penalty values will be used and the
statistical study will be performed again to investigate whether the TP feasibility metric
can reflect much higher correlations and prediction capability. Also, it would be interesting
to investigate an FTP generation approach based on a dynamic analysis of the relations
among an EFSM transitions. This would have the potential to possibly detect the counter
problem and therefore generating FTPs that bypass this problem.
References:
[1]. Boehm, B.W., Software Engineering Economics. 1981, NJ: Prentice Hall PTR. 768.
[2]. Hierons, R.M., K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe, M.

Harman, K. Kapoor, P. Krause, G. Luettgen, A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H.
Zedan, Using formal specifications to support testing. ACM Computing Surveys, 2009. 41(2): p. 1-76.

[3]. Korel, B., Automated software test data generation. Software Engineering, IEEE Transactions on,
1990. 16(8): p. 870-879.

[4]. Michael, C.C., G. McGraw, and M.A. Schatz, Generating software test data by evolution. Software
Engineering, IEEE Transactions on, 2001. 27(12): p. 1085-1110.

[5]. McMinn, P., Search-based software test data generation: a survey. Software Testing, Verification &
Reliability, 2004. 14(2): p. 105-156.

[6]. Harman, M., L. Hu, R. M. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M. Roper, Testability
transformation. Software Engineering, IEEE Transactions on, 2004. 30(1): p. 3-16.

[7]. Petrenko, A., S. Boroday, and R. Groz, Confirming configurations in EFSM testing. Software
Engineering, IEEE Transactions on, 2004. 30(1): p. 29-42.

[8]. Lorenzoli, D., L. Mariani, and M. Pezz. Automatic generation of software behavioral models. in 30th
international conference on Software engineering. 2008. Leipzig, Germany: ACM Press.

[9]. Sinha, A., A. Paradkar, and C. Williams. On Generating EFSM Models from Use Cases. in Sixth
International Workshop on Scenarios and State Machines (SCESM '07). 2007: IEEE Press.

[10]. Dssouli, R., K. Saleh, E. M. Aboulhamid, A. En-Nouaary, and C. Bourhfir, Test development for
communication protocols: towards automation. Computer Networks, 1999. 31(17): p. 1835-1872.

[11]. Ural, H., K. Saleh, and A. Williams, Test generation based on control and data dependencies within
system specifications in SDL. Computer Communications, 2000. 23(7): p. 609-627.

[12]. Hierons, R.M., S. Sadeghipour, and H. Singh, Testing a system specified using Statecharts and Z.
Information and Software Technology, 2001. 43(2): p. 137-149.

[13]. Wong, W.E., A. Restrepo, and B. Choi, Validation of SDL specifications using EFSM-based test
generation. Information and Software Technology, 2009. 51(11): p. 1505-1519.

[14]. Keum, C., S. Kang, I.-Y. Ko, J. Baik, and Y.-I. Choi, Generating Test Cases for Web Services Using
Extended Finite State Machine, in Testing of Communicating Systems. 2006. p. 103-117.

[15]. Tahat, L.H., A. Bader, B. Vaysburg, and B. Korel, Requirement-based automated black-box test
generation. in 25th Annual International Computer Software and Applications Conference
(COMPSAC '01). 2001: IEEE Press.

[16]. Duale, A.Y. and M.U. Uyar, A method enabling feasible conformance test sequence generation for
EFSM models. Computers, IEEE Transactions on, 2004. 53(5): p. 614-627.

[17]. Duale, A.Y., M. U. Uyar, B. D. McClure, and S. Chamberlain, Conformance testing: towards refining
VHDL specifications. in IEEE Military Communications Conference Proceedings (MILCOM 1999).
1999: IEEE Press.

[18]. Ural, H. and B. Yang, A test sequence selection method for protocol testing. Communications, IEEE
Transactions on, 1991. 39(4): p. 514-523.

[19]. Nilsson, R., J. Offutt, and J. Mellin, Test Case Generation for Mutation-based Testing of Timeliness.
Electronic Notes in Theoretical Computer Science, 2006. 164(4): p. 97-114.

[20]. Wenzel, I., R. Kirner, B. Rieder, and P. P. Puschner, Measurement-Based Timing Analysis, in

33

Leveraging Applications of Formal Methods, Verification and Validation. 2008, Springer: Berlin &
Heidelberg. p. 430-444.

[21]. Lee, D. and M. Yannakakis, Principles and methods of testing finite state machines-a survey.
Proceedings of the IEEE, 1996. 84(8): p. 1090-1123.

[22]. Shih, C.-H., J.-D. Huang, and J.-Y. Jou. Stimulus generation for interface protocol verification using
the nondeterministic extended finite state machine model. in Tenth Annual IEEE International High-
Level Design Validation And Test Workshop. 2005: IEEE Press.

[23]. Tai, K.-C. A program complexity metric based on data flow information in control graphs. in 7th
International Conference on Software Engineering (ICSE '84). 1984. Florida, US: IEEE Press.

[24]. Weiser, M. Program slicing. in 5th International Conference on Software Engineering (ICSE '81).
1981. San Diego, California, United States: IEEE Press.

[25]. King, J.C., Symbolic execution and program testing. Communications of the ACM, 1976. 19(7): p.
385-394.

[26]. Harman, M. and B.F. Jones, Search-based software engineering. Information and Software
Technology, 2001. 43(14): p. 833-839.

[27]. Clark, J., J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M. Lumkin, B. Mitchell, S. Mancoridis,
K. Rees, M. Roper and M. Shepperd, Reformulating software engineering as a search problem.
Software, IEE Proceedings -, 2003. 150(3): p. 161-175.

[28]. Holland, J.H., Adaptation in natural and artificial systems. 1975, Ann Arbor: The University of
Michigan Press. 211.

[29]. Harman, M. and J. Clark. Metrics are fitness functions too. in 10th International Symposium on
Software Metrics (METRICS'04). 2004: IEEE Press.

[30]. Sadiq, M.S. and Y. Habib, Iterative Computer Algorithms with Applications in Engineering: Solving
Combinatorial Optimization Problems. 1999, Los Alamitos, CA: IEEE. 387.

[31]. Srinivas, M. and L.M. Patnaik, Genetic algorithms: a survey. Computer, 1994. 27(6): p. 17-26.
[32]. Kalaji, A.S., R.M. Hierons, and S. Swift. Generating Feasible Transition Paths for Testing from an

Extended Finite State Machine (EFSM). in 2nd IEEE International Conference on Software Testing,
Verification, and Validation (ICST' 09). 2009. Denver, USA: IEEE Press.

[33]. Kalaji, A.S., R.M. Hierons, and S. Swift. A Search-Based Approach for Automatic Test Generation
from Extended Finite State Machine (EFSM). in Testing: Academic and Industrial Conference -
Practice and Research Techniques (TAIC-PART). 2009. Windsor, UK: IEEE Press.

[34]. Wegener, J., A. Baresel, and H. Sthamer, Evolutionary test environment for automatic structural
testing. Information and Software Technology, 2001. 43(14): p. 841-854.

[35]. Tracey, N., J. A. Clark, K. Mander, and J. A. McDermid, An automated framework for structural test-
data generation. in 13th IEEE International Conference on Automated Software Engineering. 1998:
IEEE Press.

[36]. Derderian, K., R. M. Hierons, M. Harman, and Q. Guo, Estimating the feasibility of transition paths in
extended finite state machines. Automated Software Engineering, 2010. 17(1): p. 33-56.

[37]. Tracey, N., J. Clark, and K. Mander. Automated program flaw finding using simulated annealing. in
ACM SIGSOFT International Symposium on Software Testing and Analysis. 1998. Clearwater Beach,
Florida, United States: ACM Press.

[38]. Tracey, N., J. Clark, and K. Mander. The Way Forward for Unifying Dynamic Test-Case Generation:
The Optimisation-Based Approach. in The IFIP International Workshop on Dependable Computing
and Its Applications (DCIA). 1998. South Africa.

[39]. Pohlheim, H. GEATbx - Genetic and Evolutionary Algorithm Toolbox for Matlab. 1994-2010 [cited;
Available from: http://www.geatbx.com.

[40]. Kalaji, A.S., R.M. Hierons, and S. Swift. Generating Feasible Transition Paths for Testing from an
Extended Finite State Machine with the Counter Problem. in 3rd IEEE International Conference on
Software Testing Verification and Validation Workshops (ICSTW' 10). 2010. Paris, France: IEEE
Press.

[41]. Darringer, J.A. and J.C. King, Applications of Symbolic Execution to Program Testing. Computer,
1978. 11(4): p. 51-60.

[42]. Matlab, The Math Works- Optimization Toolbox:
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/fmincon.html. 1984-2010.

[43]. Cohen, J., Statistical power analysis for the behavioral sciences. 2nd ed. 1988, New Jersey: Lawrence

34

Erlbaum Associates.
[44]. Zhang, J., Constraint Solving and Symbolic Execution, in Verified Software: Theories, Tools,

Experiments. 2008, Springer: Berlin / Heidelberg. p. 539-544.
[45]. Cheng, K.-T. and A.S. Krishnakumar, Automatic generation of functional vectors using the extended

finite state machine model. ACM Transactions on Design Automation of Electronic Systems., 1996.
1(1): p. 57-79.

[46]. Hierons, R.M., T.-H. Kim, and H. Ural, On the testability of SDL specifications. Computer Networks,
2004. 44(5): p. 681-700.

[47]. Lee, D. and M. Yannakakis, Testing finite-state machines: state identification and verification.
Computers, IEEE Transactions on, 1994. 43(3): p. 306-320.

[48]. Dahbura, T.A., K.K. Sabnani, and M.U. Uyar, Formal methods for generating protocol conformance
test sequences. Proceedings of the IEEE, 1990. 78(8): p. 1317-1326.

[49]. Petrenko, A., G.v. Bochmann, and M. Yao, On fault coverage of tests for finite state specifications.
Computer Networks and ISDN Systems, 1996. 29(1): p. 81-106.

[50]. Koh, L.-S. and M.T. Liu. Test path selection based on effective domains. in International Conference
on Network Protocols (ICNP '94). 1994. Boston, MA: IEEE Press.

[51]. Bourhfir, C., R. Dssouli, and E.M. Aboulhamid, Automatic Test Generation for EFSM-based Systems.
Technical report. 1996, University of Montreal, TR-1043. p. 1-59.

[52]. Zhang, J., C. Xu, and X. Wang. Path-Oriented Test Data Generation Using Symbolic Execution and
Constraint Solving Techniques. in Second International Conference on Software Engineering and
Formal Methods (SEFM '04). 2004: IEEE Press.

[53]. Chanson, S.T. and Z. Jinsong. Automatic protocol test suite derivation. in 13th IEEE Networking for
Global Communications (INFOCOM '94). 1994: IEEE Press.

[54]. Chanson, S.T. and J. Zhu. A unified approach to protocol test sequence generation. in 12th Annual
Joint Conference of the IEEE Computer and Communications Societies. Networking: Foundation for
the Future (INFOCOM '93). 1993: IEEE Press.

[55]. Sarikaya, B., G.v. Bochmann, and E. Cerny, A Test Design Methodology for Protocol Testing.
Software Engineering, IEEE Transactions on, 1987. SE-13(5): p. 518-531.

[56]. Derderian, K., R. M. Hierons, M. Harman, and Q. Guo, Generating feasible input sequences for
extended finite state machines (EFSMs) using genetic algorithms. in The Genetic and Evolutionary
Computation Conference (GECCO). 2005. Washington DC, USA: ACM Press.

[57]. Lefticaru, R. and F. Ipate. Functional Search-based Testing from State Machines. in 1st International
Conference on Software Testing, Verification, and Validation (ICST '08). 2008: IEEE Press.

[58]. Hierons, R.M. and M. Harman, Testing conformance of a deterministic implementation against a non-
deterministic stream X-machine. Theoretical Computer Science, 2004. 323(1-3): p. 191-233.

[59]. Budkowski, S. and P. Dembinski, An introduction to Estelle: a specification language for distributed
systems. Computer Networks and ISDN Systems., 1987. 14(1): p. 3-23.

[60]. Briand, L., Y. Labiche, and Q. Lin, Improving the coverage criteria of UML state machines using data
flow analysis. Software Testing, Verification and Reliability, 2010. 20(3): p. 177-207.

[61]. Ramalingom, T., K. Thulasiraman, and A. Das, Context independent unique state identification
sequences for testing communication protocols modelled as extended finite state machines. Computer
Communications, 2003. 26(14): p. 1622-1633.

[62]. Bochmann, G.V., Specifications of a simplified transport protocol using different formal description
techniques. Computer Networks and ISDN Systems, 1990. 18(5): p. 335-377.

[63]. Korel, B., L.H. Tahat, and B. Vaysburg. Model based regression test reduction using dependence
analysis. in International Conference on Software Maintenance (ICSM '02). 2002: IEEE Press.

[64]. Hogrefe, D., OSI formal specification case study: the Inres protocol and service. Technical Report
IAM-91-012. 1991, University of Bern, Institute of Computer Science and Applied Mathematics. p. 5.

[65.] Goldberg, D. E., K. Deb, and J.H. Clark, Genetic Algorithms, Noise, and the Sizing of Populations,
Complex Systems, 1992. 6: p. 333-362.

[66.] Carroll, D. L., Chemical Laser Modeling with Genetic Algorithms, AIAA J., 1996. 34(2): p. 338-346

35

Appendix A: Subject EFSMs

Figure 1. EFSM case studies

-1-

-2- -3-

-4-

-5-

1- Simple in-flight safety system EFSM
2- Class II transport protocol EFSM
3- Lift system EFSM
4- ATM EFSM
5- Inres initiator EFSM

36

This appendix describes the five EFSM case studies (shown in Fig. A1) that are used in the
empirical study to validate the proposed approach. In these five EFSMs, all the input
parameters are of integer data type. When used, the symbol ‘?’ indicates a request for an
input whereas the Symbol “!” indicates an output. These EFSMs are:

1- Simple in-flight safety system: A synthesised simple system that functions as a
monitor of the craft’s cabin in terms of four factors: vibration, pressure,
temperature and smoke. There are three states: (1) Safe when the values of these
four factors are within a set of pre-defined ranges. (2) Warning when the value of
one or more factors is within another set of pre-defined ranges. Here the pilot
should take one or more actions according to a pre-defined list and the system can
respond with some necessary actions i.e. when the air pressure is low, oxygen
masks are released automatically. (3) Critical when the value of one or more factors
is in a critical range and the pilot has to directly intervene. For example, if the
pressure cannot be brought back to normal, an emergency landing might be taken.
The EFSM has five context variables V= {VarsRead, Vb, Pr, Sm, Tm} and 31
transitions. Fig. A1-1 shows the EFSM and Table A1 lists the transitions
specifications.

2- Class II transport protocol: This EFSM is based on the AP-module of the simplified
version of a class 2 transport protocol. The EFSM model represents the core
protocol transitions as described in [61] and [62]. This EFSM has two interaction
points U and N for connecting to transport service access point and a mapping
module respectively. The EFSM is involved in connection establishment, data
transfer, end-to-end flow control and segmentation. This EFSM has seven states S
= {s0, s1, s2, s3, s4, s5, s6}, five context variables V = {opt, R-credit, S-credit, TRsq ,
TSsq} and 21 transitions. The model is shown in Fig. 1-2 and the transitions are
described in Table A2.

3- Lift system: A synthesised lift system for a building with three floors. In order to
open or close the lift cabin’s door, the lift should be situated in the specified place
within a margin that does not exceed 15%. The lift provides three operations:
Request a lift from a specified floor, Service from a floor to another floor and Stop
when there is a request. When a door is closed, the cabin load’s weight is read and
stored. In order for the cabin to move, the temperature and smoke level inside the
cabin should be within pre-defined ranges. The lift does not provide a service if the
cabin load is less than or equal to 15 KG so that a small child cannot operate the lift
alone. The lift EFSM has four states S= {Floor0, Floor1, Floor2, Stop}, three context
variables V= {Drst, w, Floor} and 24 transitions. The EFSM is shown in Fig. A1-3
and the transitions are described in Table A3.

4- ATM: This represents an extension of the machine described in [63]. The machine
offers the option of English or French menu and provides three services: Deposit,
Withdrawal and Transfer between two accounts (Current and Saving). In order for
a transaction to occur, a user must provide a valid PIN within three tries otherwise
the machine will cancel the operation. The ATM EFSM has ten states S= {s0, s1, s2,
s3, s4, s5, s6, s7, s8, s9}, four context variables V= {PIN, cb, sb, attempts} and 30
transitions. Fig. A1-4 shows the ATM EFSM and its transitions specifications.

37

5- Inres initiator: The Inres [64] protocol is connection-oriented and comprises the
initiator, which establishes a connection and sends data, and the responder which
receives data and terminates connections. The Inres protocol was designed to be
similar to real protocols and yet small enough to allow experiments to be conducted
for research purposes. The Inres initiator has five states S = {s0, disconnect, wait,
connect, sending}, four context variables V = {counter, number, T, p} and 15
transitions. Fig. A1-3 shows the Inres initiator EFSM together with the transitions
specifications.

Table A1. The transitions specifications of the in-flight safety system EFSM
t ssse Input declarations Guards Transition atomic operations

t0 s0S1 reset - VarsRead= False;
!SetWarningLights(all, off);
!Sounds are switched off;

t1 s1s1

t8 s2s2
t22 s3s3

?Read(Pvb,
Ppr, Psm, Ptm)

VarsRead == False Vb = Pvb; Pr = Ppr; Sm= Psm;
Tm = Ptm;
VarsRead = True;

t2 s1s1
t7 s2s1
t31 s3s1

?MainCheck1
()

VarsRead == True & Vb ≥ 0 & Vb ≤10
Pr ≥ 86 & Pr ≤ 100 & Sm ≥0 & Sm ≤ 10

Tm ≥ 11 & Tm ≤ 35

VarsRead= False;
!SetWarningLights(all, off);
!Sounds are switched off;

t3 s1s2
t9 s2s2

?CheckVb1() VarsRead == True & Vb ≥ 11 & Vb ≤25

VarsRead= False;
!SetLight(Seatbelt, on);

t4 s1s2
t10 s2s2

?CheckPr1() VarsRead == True & Pr ≥ 50 & Pr ≤ 85

VarsRead= False; Release(masks);
!SetLight(Seatbelt, on);

t5 s1s2
t11 s2s2

?CheckSm1() VarsRead == True & Sm ≥ 11 & Sm ≤ 25

VarsRead= False;
!SetSound(Sm, off);

t6 s1s2
t12 s2s2

?CheckTm1() VarsRead== True & (Tm ≥ 36 & Tm ≤ 46) V (Tm ≥ 3 &
Tm ≤ 10)

VarsRead= False;
!SetLight(Tm, on);

t13 s2s3
t23 s3s3
t27 s1s3

?CheckVb2() VarsRead == True & Vb >25

VarsRead= False;
!SetLight(Seatbelt, on);

t14 s2s3
t24 s3s3
t28 s1s3

?CheckPr2() VarsRead == True & Pr ≥ 0 & Pr ≤ 49

VarsRead= False;
!Release(masks);
!SetLight(Seatbelt, on);
!SetSound(Pr, off);

t15 s2s3
t25 s3s3
t29 s1s3

?CheckSm2() VarsRead == True & Sm > 25

VarsRead= False
!SetSound(Sm, off);

t16 s2s3
t26 s3s3
t30 s1s3

?CheckTm2() VarsRead= True & (Tm >46) V (Tm ≤2) VarsRead= False
!SetLight(Tm, on);
!SetLight(AC, on);

t17 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 11 & Vb ≤25 &
Pr ≥ 50 & Pr ≤ 85 & Sm ≥ 11 & Sm ≤ 25 & (Tm ≥ 36 &

Tm ≤ 46) V (Tm ≥ 3 & Tm ≤ 10)

VarsRead= False
!SetWarningLights(all, on);
!SetWarningSounds (all, off);
!Release(masks);

t18 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 11 & Vb ≤25 & Pr ≥ 86 & Pr
≤ 100 & Sm ≥0 & Sm ≤ 10 & Tm ≥ 11 &Tm ≤ 35

VarsRead= False;
!SetLight(Seatbelt, on);

t19 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 & Pr ≥ 50 & Pr ≤
85 & Sm ≥0 & Sm ≤ 10 & Tm ≥ 11 &Tm ≤ 35

VarsRead= False;
!Release(masks);
!SetLight(Seatbelt, on);
!SetSound(Pr, off);

t20 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 &
Pr ≥ 86 & Pr ≤ 100 & Sm ≥ 11 & Sm ≤ 25 & Tm ≥ 11

&Tm ≤ 35

VarsRead= False;
!SetSound(Sm, off);

t21 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 &
Pr ≥ 86 & Pr ≤ 100 & Sm ≥0 & Sm ≤ 10 & (Tm ≥ 36 &

Tm ≤ 46) V (Tm ≥ 3 & Tm ≤ 10)

VarsRead= False
!SetLight(Tm, on);
!SelLight(AC, on);

38

Table A2. The core transitions in the class II transport protocol EFSM
t ssse Input declarations Guards Transition atomic operations

t0 s1s2 U?TCONreq(dst_add,
prop_opt)

- opt = prop_opt;
R_credit =0; N!TrCR

t1 s1s3 N?TrCR(peer_add, opt_ind, cr) - opt= opt_ind;
S_credit=cr;
R_credit=0; U!TCONind

t2 s2s4 N?TrCC(opt_ind, cr) opt_ind < opt TRsq=0;
TSsq=0;
opt=opt_ind;
S_credit=cr; U!TCONconf

t3 s2s5 N?TrCC(opt_ind, cr) opt_ind > opt U!TDISind; N!TrDR
t4 s2s1 N?TrDR(disc_reason, switch) - U!TDISind; N!terminated
t5 s3s4 U?TCONresp(accpt_opt) accpt_opt < opt opt= accpt_opt;

TRsq=0;
TSsq=0; N!TrCC

t6 s3s6 U?TDISreq() - N!TrDR
t7 s4s4 U?TDATAreq(Udata, E0SDU) S_credit > 0 S_credit= S_credit -1;

TSsq = (TSsq +1)mod128; N!TrDT
t8 s4s4 N?TrDT(Send_sq, Ndata,

E0TSDU)
R_credit != 0 & Send_sq== TRsq TRsq=(TRsq+1)mod128;

R_credit=R_credit -1;
U!DATAind; N!TrAK

t9 s4s4 N?TrDT(Send_sq, Ndata,
E0TSDU)

R_credit == 0 V Send_sq != TRsq U!error; N!error

t10 s4s4 U?U READY(cr) - R_credit= R_credit + cr; N!TrAK
t11 s4s4 N?TrAK(XpSsq, cr) TSsq > XpSsq & cr + XpSsq – TSsq ≥ 0 &

cr +XpSsq – TSsq ≤ 15
S_credit = cr + XpSsq – TSsq

t12 s4s4 N?TrAK(XpSsq, cr) TSsq ≥ XpSsq & (cr + XpSsq – TSsq < 0 V
cr +XpSsq – TSsq >0)

U!error; N!error

t13 s4s4 N?TrAK(XpSsq, cr) TSsq < XpSsq & cr + XpSsq – TSsq – 128 ≥
0 & cr + XpSsq – TSsq – 128 ≤ 15

S_credit= cr+ XpSsq –TSsq – 128

t14 s4s4 N?TrAK(XpSsq, cr) TSsq < XpSsq & (cr + XpSsq – TSsq – 128
< 0 V cr + XpSsq – TSsq – 128 > 15)

U!error; N!error

t15 s4s4 N?Ready() S_creidit > 0 U!Ready

t16 s4s5 U?TDISreq() - N!TrDR

t17 s4s6 N?TrDR(disc_reason, switch) - U!TDISind; N!TrDC

t18 s6s1 N?terminated() - U!TDISconf

t19 s5s1 N?TrDC() - N!terminated; U!TDISconf

t20 s5s1 N?TrDR(disc_reason, switch) - N!terminated

39

Table A3. The transitions specifications of the Lift system EFSM
t ssse Input declarations Guards Transition atomic operations
t0 s0 reset Floor = 0; DrSt = 0;

w = 0;
t1 s0s0 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;
t2 s0s0 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0;

w = Pw
t3 s0s1 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25
Floor = 1;
!Display(Floor);

t4 s1s0 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w ≥15 & w ≤ 250 & Ph ≥
10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 0;
!Display(Floor);

t5 s0s1 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w =0 & Ph ≥ 10 & Ph ≤ 35
& Ps ≥ 0 & Ps ≤25

Floor = 1;
!Display(Floor);

t6 s1s0 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w =0 & Ph ≥ 10 & Ph ≤ 35
& Ps ≥ 0 & Ps ≤25

Floor = 0;
!Display(Floor);

t7 s1s1 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;
t8 s1s1 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0;

w = Pw
t9 s1s2 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25
Floor = 2;
!Display(Floor);

t10 s2s1 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w ≥15 & w ≤ 250 & Ph ≥
10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 1;
!Display(Floor);

t11 s2s1 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf ==1 & w =0 & Ph ≥ 10 & Ph ≤ 35
& Ps ≥ 0 & Ps ≤25

Floor = 1;
!Display(Floor);

t12 s1s2 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w =0 & Ph ≥ 10 & Ph ≤ 35
& Ps ≥ 0 & Ps ≤25

Floor = 2;
!Display(Floor);

t13 s2s2 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;
t14 s2s2 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0;

w = Pw
t15 s2s0 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25
Floor = 0;
!Display(Floor);

t16 s0s2 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w ≥15 & w ≤ 250 & Ph ≥
10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 2;
!Display(Floor);

t17 s0s2 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf ==2 & w =0 & Ph ≥ 10 & Ph ≤ 35
& Ps ≥ 0 & Ps ≤25

Floor = 2;
!Display(Floor);

t18 s2s0 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w =0 & Ph ≥ 10 & Ph ≤ 35
& Ps ≥ 0 & Ps ≤25

Floor = 0;
!Display(Floor);

t19 s0ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥
10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;
!Display(Floor);

t20 sss0 ?Srv(Pf) DrSt == 0 & Pf == 0 Floor = 0;
!Display(Floor);

t21 sss1 ?Srv(Pf) DrSt == 0 & Pf == 1 Floor = 1;
!Display(Floor);

t22 s1ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥
10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;
!Display(Floor);

t23 s2ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥
10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;
!Display(Floor);

t24 sss2 ?Srv(Pf) DrSt == 0 & Pf == 2 Floor = 2;
!Display(Floor);

